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PREFACE

The first five editions of this text have been received warmly, and we are grateful for 
that.

This edition, like previous editions, is written for those who use, rather than develop, 
advanced statistical methods. The focus is on conceptual understanding rather than 
proving results. The narrative and many examples are there to promote understanding, 
and a chapter on matrix algebra is included for those who need the extra help. Through-
out the book, you will find output from SPSS (version 21) and SAS (version 9.3) with 
interpretations. These interpretations are intended to demonstrate what analysis results 
mean in the context of a research example and to help you interpret analysis results 
properly. In addition to demonstrating how to use the statistical programs effectively, 
our goal is to show you the importance of examining data, assessing statistical assump-
tions, and attending to sample size issues so that the results are generalizable. The 
text also includes end-of-chapter exercises for many chapters, which are intended to 
promote better understanding of concepts and have you obtain additional practice in 
conducting analyses and interpreting results. Detailed answers to the odd-numbered 
exercises are included in the back of the book so you can check your work.

NEW TO THIS EDITION

Many changes were made in this edition of the text, including a new lead author of 
the text. In 2012, Dr. Keenan Pituch of the University of Texas at Austin, along with 
Dr. James Stevens, developed a plan to revise this edition and began work. The goals 
in revising the text were to provide more guidance on practical matters related to data 
analysis, update the text in terms of the statistical procedures used, and firmly align 
those procedures with findings from methodological research.

Key changes to this edition are:

 Inclusion of analysis summaries and example results sections
 Focus on just two software programs (SPSS version 21 and SAS version 9.3)
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 New chapters on Binary Logistic Regression (Chapter 11) and Multivariate Mul-
tilevel Modeling (Chapter 14)

 Completely rewritten chapters on structural equation modeling (SEM), explorato-
ry factor analysis, and hierarchical linear modeling.

ANALYSIS SUMMARIES AND EXAMPLE RESULTS SECTIONS

The analysis summaries provide a convenient guide for the analysis activities we gen-
erally recommend you use when conducting data analysis. Of course, to carry out these 
activities in a meaningful way, you have to understand the underlying statistical con-
cepts—something that we continue to promote in this edition. The analysis summa-
ries and example results sections will also help you tie together the analysis activities 
involved for a given procedure and illustrate how you may effectively communicate 
analysis results.

The analysis summaries and example results sections are provided for several techniques. 
Specifically, they are provided and applied to examples for the following procedures: 
one-way MANOVA (sections 6.11–6.13), two-way MANOVA (sections 7.6–7.8), one-
way MANCOVA (example 8.4 and sections 8.15 and 8.17), exploratory factor analysis 
(sections 9.12, 9.17, and 9.18), discriminant analysis (sections 10.7.1, 10.7.2, 10.8, 
10.14, and 10.15), and binary logistic regression (sections 11.19 and 11.20).

FOCUS ON SPSS AND SAS

Another change that has been implemented throughout the text is to focus the use of 
software on two programs: SPSS (version 21) and SAS (version 9.3). Previous edi-
tions of this text, particularly for hierarchical linear modeling (HLM) and structural 
equation modeling applications, have introduced additional programs for these pur-
poses. However, in this edition, we use only SPSS and SAS because these programs 
have improved capability to model data from more complex designs, and reviewers 
of this edition expressed a preference for maintaining software continuity throughout 
the text. This continuity essentially eliminates the need to learn (and/or teach) addi-
tional software programs (although we note there are many other excellent programs 
available). Note, though, that for the structural equation modeling chapter SAS is used 
exclusively, as SPSS requires users to obtain a separate add on module (AMOS) for 
such analyses. In addition, SPSS and SAS syntax and output have also been updated 
as needed throughout the text.

NEW CHAPTERS

Chapter 11 on binary logistic regression is new to this edition. We included the chapter 
on logistic regression, a technique that Alan Agresti has called the “most important 
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model for categorical response data,” due to the widespread use of this procedure in 
the social sciences, given its ability to readily incorporate categorical and continu-
ous predictors in modeling a categorical response. Logistic regression can be used for 
explanation and classification, with each of these uses illustrated in the chapter. With 
the inclusion of this new chapter, the former chapter on Categorical Data Analysis: The 
Log Linear Model has been moved to the website for this text.

Chapter 14 on multivariate multilevel modeling is another new chapter for this edi-
tion. This chapter is included because this modeling procedure has several advan-
tages over the traditional MANOVA procedures that appear in Chapters 4–6 and 
provides another alternative to analyzing data from a design that has a grouping 
variable and several continuous outcomes (with discriminant analysis providing yet 
another alternative). The advantages of multivariate multilevel modeling are pre-
sented in Chapter 14, where we also show that the newer modeling procedure can 
replicate the results of traditional MANOVA. Given that we introduce this additional 
and flexible modeling procedure for examining multivariate group differences, we 
have eliminated the chapter on stepdown analysis from the text, but make it available 
on the web.

REWRITTEN AND IMPROVED CHAPTERS

In addition, the chapter on structural equation modeling has been completely rewritten 
by Dr. Tiffany Whittaker of the University of Texas at Austin. Dr. Whittaker has taught 
a structural equation modeling course for many years and is an active methodological 
researcher in this area. In this chapter, she presents the three major applications of 
SEM: observed variable path analysis, confirmatory factor analysis, and latent varia-
ble path analysis. Note that the placement of confirmatory factor analysis in the SEM 
chapter is new to this edition and was done to allow for more extensive coverage of 
the common factor model in Chapter 9 and because confirmatory factor analysis is 
inherently a SEM technique.

Chapter 9 is one of two chapters that have been extensively revised (along with Chap-
ter 13). The major changes to Chapter 9 include the inclusion of parallel analysis to 
help determine the number of factors present, an updated section on sample size, sec-
tions covering an overall focus on the common factor model, a section (9.7) providing 
a student- and teacher-friendly introduction to factor analysis, a new section on cre-
ating factor scores, and the new example results and analysis summary sections. The 
research examples used here are also new for exploratory factor analysis, and recall 
that coverage of confirmatory analysis is now found in Chapter 16.

Major revisions have been made to Chapter 13, Hierarchical Linear Modeling. Sec-
tion 13.1 has been revised to provide discussion of fixed and random factors to help 
you recognize when hierarchical linear modeling may be needed. Section 13.2 uses 
a different example than presented in the fifth edition and describes three types of 
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widely used models. Given the use of SPSS and SAS for HLM included in this 
edition and a new example used in section 13.5, the remainder of the chapter is 
essentially new material. Section 13.7 provides updated information on sample size, 
and we would especially like to draw your attention to section 13.6, which is a new 
section on the centering of predictor variables, a critical concern for this form of 
modeling.

KEY CHAPTER-BY-CHAPTER REVISIONS

There are also many new sections and important revisions in this edition. Here, we 
discuss the major changes by chapter.

• Chapter 1 (section 1.6) now includes a discussion of issues related to missing data. 
Included here are missing data mechanisms, missing data treatments, and illustra-
tive analyses showing how you can select and implement a missing data analysis 
treatment.

• The post hoc procedures have been revised for Chapters 4 and 5, which largely 
reflect prevailing practices in applied research.

• Chapter 6 adds more information on the use of skewness and kurtosis to evaluate 
the normality assumption as well as including the new example results and analy-
sis summary sections for one-way MANOVA. In Chapter 6, we also include a new 
data set (which we call the SeniorWISE data set, modeled after an applied study) 
that appears in several chapters in the text.

• Chapter 7 has been retitled (somewhat), and in addition to including the example 
results and analysis summary sections for two-way MANOVA, includes a new 
section on factorial descriptive discriminant analysis.

• Chapter 8, in addition to the example results and analysis summary sections, in-
cludes a new section on effect size measures for group comparisons in ANCOVA/
MANCOVA, revised post hoc procedures for MANCOVA, and a new section that 
briefly describes a benefit of using multivariate multilevel modeling that is par-
ticularly relevant for MANCOVA.

• The introduction to Chapter 10 is revised, and recommendations are updated in 
section 10.4 for the use of coefficients to interpret discriminant functions. Sec-
tion 10.7 includes a new research example for discriminant analysis, and sec-
tion 10.7.5 is particularly important in that we provide recommendations for 
selecting among traditional MANOVA, discriminant analysis, and multivariate 
multilevel modeling procedures. This chapter includes the new example results 
and analysis summary sections for descriptive discriminant analysis and applies 
these procedures in sections 10.7 and 10.8.

• In Chapter 12, the major changes include an update of the post hoc procedures 
(section 12.6), a new section on one-way trend analysis (section 12.8), and a 
revised example and a more extensive discussion of post hoc procedures for 
the one-between and one-within subjects factors design (sections 12.11 and 
12.12).
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ONLINE RESOURCES FOR TEXT

The book’s website www.routledge.com/9780415836661 contains the data sets from 
the text, SPSS and SAS syntax from the text, and additional data sets (in SPSS and 
SAS) that can be used for assignments and extra practice. For instructors, the site hosts 
a conversion guide for users of the previous editions, 6 PowerPoint lecture slides pro-
viding a detailed walk-through for key examples from the text, detailed answers for all 
exercises from the text, and downloadable PDFs of chapters 10 and 14 from the 5th 
edition of the text for instructors that wish to continue assigning this content.

INTENDED AUDIENCE

As in previous editions, this book is intended for courses on multivariate statistics 
found in psychology, social science, education, and business departments, but the 
book also appeals to practicing researchers with little or no training in multivariate 
methods.

A word on prerequisites students should have before using this book. They should 
have a minimum of two quarter courses in statistics (covering factorial ANOVA and 
ANCOVA). A two-semester sequence of courses in statistics is preferable, as is prior 
exposure to multiple regression. The book does not assume a working knowledge of 
matrix algebra.

In closing, we hope you find that this edition is interesting to read, informative, and 
provides useful guidance when you analyze data for your research projects.
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Chapter 1

INTRODUCTION

1.1 INTRODUCTION

Studies in the social sciences comparing two or more groups very often measure their 
participants on several criterion variables. The following are some examples:

1. A researcher is comparing two methods of teaching second-grade reading. On a 
posttest the researcher measures the participants on the following basic elements 
related to reading: syllabication, blending, sound discrimination, reading rate, and 
comprehension.

2.	 A	 social	 psychologist	 is	 testing	 the	 relative	 efficacy	 of	 three	 treatments	 on	
self-concept, and measures participants on academic, emotional, and social 
aspects of self-concept. Two different approaches to stress management are being 
compared.

3. The investigator employs a couple of paper-and-pencil measures of anxiety (say, 
the State-Trait Scale and the Subjective Stress Scale) and some physiological 
measures.

4. A researcher comparing two types of counseling (Rogerian and Adlerian) on client 
satisfaction and client self-acceptance.

A major part of this book involves the statistical analysis of several groups on a set of 
criterion measures simultaneously, that is, multivariate analysis of variance, the multi-
variate referring to the multiple dependent variables.

Cronbach and Snow (1977), writing on aptitude–treatment interaction research, ech-
oed the need for multiple criterion measures:

Learning is multivariate, however. Within any one task a person’s performance 
at a point in time can be represented by a set of scores describing aspects of the 
performance . . . even in laboratory research on rote learning, performance can 
be assessed by multiple indices: errors, latencies and resistance to extinction, for 
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example. These are only moderately correlated, and do not necessarily develop at 
the same rate. In the paired associate’s task, sub skills have to be acquired: dis-
criminating among and becoming familiar with the stimulus terms, being able to 
produce the response terms, and tying response to stimulus. If these attainments 
were separately measured, each would generate a learning curve, and there is no 
reason to think that the curves would echo each other. (p. 116)

There are three good reasons that the use of multiple criterion measures in a study 
comparing treatments (such as teaching methods, counseling methods, types of rein-
forcement, diets, etc.) is very sensible:

1. Any worthwhile treatment will affect the participants in more than one way. 
Hence,	the	problem	for	the	investigator	is	to	determine	in	which	specific	ways	the	
participants	will	be	affected,	and	then	find	sensitive	measurement	techniques	for	
those variables.

2. Through the use of multiple criterion measures we can obtain a more complete and 
detailed description of the phenomenon under investigation, whether it is teacher 
method effectiveness, counselor effectiveness, diet effectiveness, stress manage-
ment technique effectiveness, and so on.

3. Treatments can be expensive to implement, while the cost of obtaining data on 
several dependent variables is relatively small and maximizes information gain.

Because	we	define	a	multivariate	study	as	one	with	several	dependent	variables,	multi-
ple regression (where there is only one dependent variable) and principal components 
analysis would not be considered multivariate techniques. However, our distinction is 
more semantic than substantive. Therefore, because regression and component anal-
ysis are so important and frequently used in social science research, we include them 
in this text.

We have four major objectives for the remainder of this chapter:

1. To review some basic concepts (e.g., type I error and power) and some issues asso-
ciated with univariate analysis that are equally important in multivariate analysis.

2. To discuss the importance of identifying outliers, that is, points that split off from 
the rest of the data, and deciding what to do about them. We give some exam-
ples to show the considerable impact outliers can have on the results in univariate 
analysis.

3 To discuss the issue of missing data and describe some recommended missing data 
treatments.

4. To give research examples of some of the multivariate analyses to be covered later 
in the text and to indicate how these analyses involve generalizations of what the 
student has previously learned.

5.	 To	briefly	introduce	the	Statistical	Analysis	System	(SAS)	and	the	IBM	Statistical	
Package for the Social Sciences (SPSS), whose outputs are discussed throughout 
the text.



3chapter 1       

1.2 TYPE I ERROR, TYPE II ERROR, AND POWER

Suppose we have randomly assigned 15 participants to a treatment group and another 
15 participants to a control group, and we are comparing them on a single measure of 
task performance (a univariate study, because there is a single dependent variable). 
You may recall that the t test for independent samples is appropriate here. We wish to 
determine whether the difference in the sample means is large enough, given sampling 
error, to suggest that the underlying population means are different. Because the sam-
ple means estimate the population means, they will generally be in error (i.e., they will 
not hit the population values right “on the nose”), and this is called sampling error. We 
wish to test the null hypothesis (H0) that the population means are equal:

H0	:	μ1	=	μ2

It is called the null hypothesis because saying the population means are equal is equiv-
alent	to	saying	that	 the	difference	in	the	means	is	0,	that	is,	μ1	−	μ2 = 0, or that the 
difference is null.

Now, statisticians have determined that, given the assumptions of the procedure are 
satisfied,	if	we	had	populations	with	equal	means	and	drew	samples	of	size	15	repeat-
edly and computed a t statistic each time, then 95% of the time we would obtain t 
values	in	the	range	−2.048	to	2.048.	The	so-called	sampling	distribution	of	t under H0 
would look like this:

95% of the t values 

–2.048 2.048

t (under H0)

0

This sampling distribution is extremely important, for it gives us a frame of reference 
for judging what is a large value of t. Thus, if our t value was 2.56, it would be very 
plausible to reject the H0, since obtaining such a large t value is very unlikely when 
H0 is true. Note, however, that if we do so there is a chance we have made an error, 
because it is possible (although very improbable) to obtain such a large value for t, 
even when the population means are equal. In practice, one must decide how much of 
a risk of making this type of error (called a type I error) one wishes to take. Of course, 
one would want that risk to be small, and many have decided a 5% risk is small. This 
is	formalized	in	hypothesis	testing	by	saying	that	we	set	our	level	of	significance	(α)	
at the .05 level. That is, we are willing to take a 5% chance of making a type I error. In 
other words, type I error (level of significance) is the probability of rejecting the null 
hypothesis when it is true.
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Recall that the formula for degrees of freedom for the t test is (n1 + n2	−	2);	hence,	
for this problem df	=	28.	If	we	had	set	α	=	.05,	then	reference	to	Appendix	A.2	of	this	
book	shows	that	the	critical	values	are	−2.048	and	2.048.	They	are	called	critical	val-
ues because they are critical to the decision we will make on H0. These critical values 
define	critical	regions	in	the	sampling	distribution.	If	the	value	of	t falls in the critical 
region we reject H0;	otherwise	we	fail	to	reject:

2.048–2.048

t (under H0) for df = 28 

0
Reject H0Reject H0

Type	I	error	is	equivalent	to	saying	the	groups	differ	when	in	fact	they	do	not.	The	α	
level set by the investigator is a subjective decision, but is usually set at .05 or .01 by 
most	researchers.	There	are	situations,	however,	when	it	makes	sense	to	use	α	levels	
other than .05 or .01. For example, if making a type I error will not have serious 
substantive	consequences,	or	if	sample	size	is	small,	setting	α	=	.10	or	.15	is	quite	
reasonable. Why this is reasonable for small sample size will be made clear shortly. 
On the other hand, suppose we are in a medical situation where the null hypothesis 
is equivalent to saying a drug is unsafe, and the alternative is that the drug is safe. 
Here, making a type I error could be quite serious, for we would be declaring the 
drug safe when it is not safe. This could cause some people to be permanently dam-
aged	or	perhaps	even	killed.	In	this	case	it	would	make	sense	to	use	a	very	small	α,	
perhaps .001.

Another type of error that can be made in conducting a statistical test is called a type II 
error.	The	type	II	error	rate,	denoted	by	β,	is	the	probability	of	accepting	H0 when it is 
false. Thus, a type II error, in this case, is saying the groups don’t differ when they do. 
Now, not only can either type of error occur, but in addition, they are inversely related 
(when other factors, e.g., sample size and effect size, affecting these probabilities are 
held constant). Thus, holding these factors constant, as we control on type I error, type 
II error increases. This is illustrated here for a two-group problem with 30 participants 
per group where the population effect size d	(defined	later)	is	.5:   

α β 1 − β
.10 .37 .63
.05 .52 .48
.01 .78 .22
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Notice that, with sample and effect size held constant, as we exert more stringent con-
trol	over	α	(from	.10	to	.01),	the	type	II	error	rate	increases	fairly	sharply	(from	.37	to	
.78).	Therefore,	the	problem	for	the	experimental	planner	is	achieving	an	appropriate	
balance between the two types of errors. While we do not intend to minimize the seri-
ousness of making a type I error, we hope to convince you throughout the course of 
this text that more attention should be paid to type II error. Now, the quantity in the 
last	column	of	the	preceding	table	(1	−	β)	is	the	power of a statistical test, which is the 
probability of rejecting the null hypothesis when it is false. Thus, power is the proba-
bility of making a correct decision, or of saying the groups differ when in fact they do. 
Notice	from	the	table	that	as	the	α	level	decreases,	power	also	decreases	(given	that	
effect and sample size are held constant). The diagram in Figure 1.1 should help to 
make clear why this happens.

The power of a statistical test is dependent on three factors:

1.	 The	α	level	set	by	the	experimenter
2. Sample size
3. Effect size—How much of a difference the treatments make, or the extent to which 

the groups differ in the population on the dependent variable(s).

Figure	1.1	has	already	demonstrated	that	power	is	directly	dependent	on	the	α	level.	
Power is heavily dependent on sample size. Consider a two-tailed test at the .05 level 
for the t test for independent samples. An effect size for the t	test,	as	defined	by	Cohen	
(1988),	 is	 estimated	 as	 d x x s^ = −( )1 2 / ,  where s is the standard deviation. That is, 
effect size expresses the difference between the means in standard deviation units. 
Thus, if x1 = 6 and x2 = 3 and s = 6, then d^ = −( ) =6 3 6 5/ . ,  or the means differ by 
1
2

 standard deviation. Suppose for the preceding problem we have an effect size of .5 

standard	deviations.	Holding	α	(.05)	and	effect	size	constant,	power	increases	dramat-
ically	as	sample	size	increases	(power	values	from	Cohen,	1988):	

n (Participants per group) Power

10 .18
20 .33
50 .70

 100 .94

As	the	table	suggests,	given	this	effect	size	and	α,	when	sample	size	is	large	(say,	100	
or more participants per group), power is not an issue. In general, it is an issue when 
one is conducting a study where group sizes will be small (n	≤	20),	or	when	one	is	
evaluating a completed study that had small group size. Then, it is imperative to be 
very sensitive to the possibility of poor power (or conversely, a high type II error rate). 
Thus, in studies with small group size, it can make sense to test at a more liberal level 
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(.10 or .15) to improve power, because (as mentioned earlier) power is directly related 
to	the	α	level.	We	explore	the	power	issue	in	considerably	more	detail	in	Chapter	4.

1.3  MULTIPLE STATISTICAL TESTS AND THE PROBABILITY 
OF SPURIOUS RESULTS

If	a	researcher	sets	α	=	.05	in	conducting	a	single	statistical	test	(say,	a	t test), then, 
if	statistical	assumptions	associated	with	 the	procedure	are	satisfied,	 the	probability	
of	 rejecting	 falsely	 (a	 spurious	 result)	 is	 under	 control.	Now	 consider	 a	 five-group	
problem in which the researcher wishes to determine whether the groups differ signif-
icantly on some dependent variable. You may recall from a previous statistics course 
that a one-way analysis of variance (ANOVA) is appropriate here. But suppose our 
researcher is unaware of ANOVA and decides to do 10 t tests, each at the .05 level, 
comparing each pair of groups. The probability of a false rejection is no longer under 
control for the set of 10 t	tests.	We	define	the	overall	α	for a set of tests as the probabil-
ity of at least one false rejection when the null hypothesis is true. There is an important 
inequality called the Bonferroni inequality,	which	gives	an	upper	bound	on	overall	α:

Overall α ≤ . . . .05 05 05 50+ + + =

F (under H0)

F (under H0 false)

Reject for α = .01

Power at α = .05

Power at α = .01

Reject for α = .05

Type I error
for .01

Type I error for .05

 Figure 1.1: Graph of F distribution under H0 and under H0 false showing the direct relationship 
between type I error and power. Since type I error is the probability of rejecting H0 when true, it 
is the area underneath the F distribution in critical region for H0 true. Power is the probability of 
rejecting H0 when false; therefore it is the area underneath the F distribution in critical region when 
H0 is false.
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Thus, the probability of a few false rejections here could easily be 30 or 35%, that is, 
much too high.

In general then, if we are testing k	hypotheses	at	the	α1,	α2,	…,	αk levels, the Bonferroni 
inequality guarantees that

Over l al α ≤ α α α1 2+ + + k

If	the	hypotheses	are	each	tested	at	the	same	alpha	level,	say	α′,	then	the	Bonferroni	
upper bound becomes

Overall α α≤ ′k

This Bonferroni upper bound is conservative, and how to obtain a sharper (tighter) 
upper bound is discussed next.

If the tests are independent, then an exact	calculation	for	overall	α	is	available.	First,	
(1	−	α1)	is	the	probability	of	no	type	I	error	for	the	first	comparison.	Similarly,	(1	−	α2) 
is	the	probability	of	no	type	I	error	for	the	second,	(1	−	α3) the probability of no type 
I error for the third, and so on. If the tests are independent, then we can multiply prob-
abilities.	Therefore,	(1	−	α1)	(1	−	α2)	…	(1	−	αk) is the probability of no type I errors 
for all k tests. Thus,

Overall α α α α= − −( ) −( ) −( )1 1 1 11 2  k

is the probability of at least one type I error. If the tests are not independent, then over-
all	α	will	still	be	less	than	given	here,	although	it	is	very	difficult	to	calculate.	If	we	set	
the	alpha	levels	equal,	say	to	α′	for	each	test,	then	this	expression	becomes

Overall α α α α α= − − ′( ) − ′( ) − ′( ) = − − ′( )1 1 1 1 1 1

k

α′ = .05 α′ = .01 α′ = .001

No. of tests 1 − (1 − α′)k kα′ 1 − (1 − α′)k kα′ 1 − (1 − α′)k kα′
5 .226 .25 .049  .05 .00499 .005
10 .401 .50 .096  .10 .00990 .010
15 .537 .75 .140  .15 .0149 .015
30 .785 1.50 .260  .30 .0296 .030
50 .923 2.50 .395  .50 .0488 .050
100 .994 5.00 .634 1.00 .0952 .100
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This	expression,	that	is,	1	−	(1	−	α′)k, is approximately equal to kα′	for	small	α′.	The	
next	table	compares	the	two	for	α′	=	.05,	.01,	and	.001	for	number	of	tests	ranging	from	
5 to 100.

First, the numbers greater than 1 in the table don’t represent probabilities, because 
a probability can’t be greater than 1. Second, note that if we are testing each of a 
large	number	of	hypotheses	at	the	.001	level,	the	difference	between	1	−	(1	−	α′)k 
and the Bonferroni upper bound of kα′	 is	 very	 small	 and	of	no	practical	 conse-
quence.	Also,	the	differences	between	1	−	(1	−	α′)k and kα′	when	testing	at	α′	=	.01	
are	also	small	for	up	to	about	30	tests.	For	more	than	about	30	tests	1	−	(1	−	α′)k 
provides	a	tighter	bound	and	should	be	used.	When	testing	at	the	α′	=	.05	level,	kα′	
is	okay	for	up	to	about	10	tests,	but	beyond	that	1	−	(1	−	α′)k is much tighter and 
should be used.

You may have been alert to the possibility of spurious results in the preceding exam-
ple with multiple t tests, because this problem is pointed out in texts on intermediate 
statistical methods. Another frequently occurring example of multiple t tests where 
overall	α	gets	completely	out	of	control	is	in	comparing	two	groups	on	each item of a 
scale	(test);	for	example,	comparing	males	and	females	on	each	of	30	items,	doing	30	
t tests, each at the .05 level.

Multiple	statistical	tests	also	arise	in	various	other	contexts	in	which	you	may	not	read-
ily recognize that the same problem of spurious results exists. In addition, the fact that 
the researcher may be using a more sophisticated design or more complex statistical 
tests doesn’t mitigate the problem.

As	our	first	illustration,	consider	a	researcher	who	runs	a	four-way	ANOVA	(A × B ×  
C × D). Then 15 statistical tests are being done, one for each effect in the design: A, B, C,  
and D main effects, and AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and 
ABCD interactions. If each of these effects is tested at the .05 level, then all we 
know	from	the	Bonferroni	inequality	is	that	overall	α	≤	15(.05)	=	.75,	which	is	not	
very	reassuring.	Hence,	two	or	three	significant	results	from	such	a	study	(if	they	
were not predicted ahead of time) could very well be type I errors, that is, spurious 
results.

Let us take another common example. Suppose an investigator has a two-way ANOVA 
design (A × B) with seven dependent variables. Then, there are three effects being 
tested	for	significance:	A main effect, B main effect, and the A × B interaction. The 
investigator does separate two-way ANOVAs for each dependent variable. Therefore, 
the investigator has done a total of 21 statistical tests, and if each of them was con-
ducted	at	the	.05	level,	then	the	overall	α	has	gotten	completely	out	of	control.	This	
type of thing is done very frequently in the literature, and you should be aware of it in 
interpreting the results of such studies. Little faith should be placed in scattered signif-
icant results from these studies.
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A third example comes from survey research, where investigators are often interested 
in relating demographic characteristics of the participants (sex, age, religion, socioeco-
nomic status, etc.) to responses to items on a questionnaire. A statistical test for relating 
each	demographic	characteristic	to	responses	on	each	item	is	a	two-way	χ2. Often in 
such	studies	20	or	30	(or	many	more)	two-way	χ2 tests are run (and it is so easy to run 
them on SPSS). The investigators often seem to be able to explain the frequent small 
number	of	 significant	 results	perfectly,	 although	seldom	have	 the	significant	 results	
been predicted a priori.

A fourth fairly common example of multiple statistical tests is in examining the ele-
ments	of	a	correlation	matrix	for	significance.	Suppose	there	were	10	variables	in	one	
set being related to 15 variables in another set. In this case, there are 150 between 
correlations,	 and	 if	 each	 of	 these	 is	 tested	 for	 significance	 at	 the	 .05	 level,	 then	
150(.05)	=	7.5,	or	about	eight	significant	results	could	be	expected	by	chance.	Thus,	
if	10	or	12	of	the	between	correlations	are	significant,	most	of	them	could	be	chance	
results,	and	it	is	very	difficult	to	separate	out	the	chance	effects	from	the	real	associa-
tions. A way of circumventing this problem is to simply test each correlation for signif-
icance	at	a	much	more	stringent	level,	say	α	=	.001.	Then,	by	the	Bonferroni	inequality,	
overall	α	≤	150(.001)	=	.15.	Naturally,	this	will	cause	a	power	problem	(unless	n is 
large),	and	only	those	associations	that	are	quite	strong	will	be	declared	significant.	Of	
course, one could argue that it is only such strong associations that may be of practical 
importance anyway.

A	fifth	case	of	multiple	statistical	 tests	occurs	when	comparing	 the	 results	of	many	
studies in a given content area. Suppose, for example, that 20 studies have been 
reviewed in the area of programmed instruction and its effect on math achievement 
in	the	elementary	grades,	and	that	only	five	studies	show	significance.	Since	at	least	
20 statistical tests were done (there would be more if there were more than a single 
criterion	variable	 in	some	of	 the	studies),	most	of	 these	significant	 results	could	be	
spurious, that is, type I errors.

A sixth case of multiple statistical tests occurs when an investigator(s) selects 
a small set of dependent variables from a much larger set (you don’t know this 
has been done—this is an example of selection bias). The much smaller set is 
chosen	because	all	of	the	significance	occurs	here.	This	is	particularly	insidious.	
Let us illustrate. Suppose the investigator has a three-way design and originally 
15 dependent variables. Then 105 = 15 × 7 tests have been done. If each test is 
done at the .05 level, then the Bonferroni inequality guarantees that overall alpha 
is	less	than	105(.05)	=	5.25.	So,	if	seven	significant	results	are	found,	the	Bonfer-
roni procedure suggests that most (or all) of the results could be spurious. If all 
the	significance	 is	confined	to	 three	of	 the	variables,	and	 those	are	 the	variables	
selected (without your knowing this), then overall alpha = 21(.05) = 1.05, and this 
conveys a very different impression. Now, the conclusion is that perhaps a few of 
the	significant	results	are	spurious.
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1.4  STATISTICAL SIGNIFICANCE VERSUS PRACTICAL 
IMPORTANCE

You	have	probably	been	exposed	to	the	statistical	significance	versus	practical	impor-
tance	issue	in	a	previous	course	in	statistics,	but	it	is	sufficiently	important	to	have	us	
review it here. Recall from our earlier discussion of power (probability of rejecting the 
null hypothesis when it is false) that power is heavily dependent on sample size. Thus, 
given very large sample size (say, group sizes > 200), most effects will be declared 
statistically	significant	at	the	.05	level.	If	significance	is	found,	often	researchers	seek	
to determine whether the difference in means is large enough to be of practical impor-
tance.	There	are	several	ways	of	getting	at	practical	importance;	among	them	are

1.	 Confidence	intervals
2. Effect size measures
3.	 Measures	of	association	(variance	accounted	for).

Suppose you are comparing two teaching methods and decide ahead of time that the 
achievement for one method must be at least 5 points higher on average for practical 
importance.	The	results	are	significant,	but	the	95%	confidence	interval	for	the	differ-
ence in the population means is (1.61, 9.45). You do not have practical importance, 
because, although the difference could be as large as 9 or slightly more, it could also 
be less than 2.

You can calculate an effect size measure and see if the effect is large relative to what 
others have found in the same area of research. As a simple example, recall that the 
Cohen effect size measure for two groups is d x x s = −( )1 2 / ,  that is, it indicates how 
many standard deviations the groups differ by. Suppose your t	 test	was	 significant	
and the estimated effect size measure was d  = .63 (in the medium range according 
to Cohen’s rough characterization). If this is large relative to what others have found, 
then it probably is of practical importance. As Light, Singer, and Willett indicated in 
their excellent text By	Design	(1990),	“because	practical	significance	depends	upon	
the research context, only you can judge if an effect is large enough to be important” 
(p. 195).

Measures	of	association	or	strength	of	relationship,	such	as	Hay’s	 2ˆ ,ω  can also be used 
to assess practical importance because they are essentially independent of sample size. 
However,	 there	 are	 limitations	 associated	with	 these	measures,	 as	O’Grady	 (1982)	
pointed out in an excellent review on measures of explained variance. He discussed 
three basic reasons that such measures should be interpreted with caution: measure-
ment, methodological, and theoretical. We limit ourselves here to a theoretical point 
O’Grady mentioned that should be kept in mind before casting aspersions on a “low” 
amount of variance accounted. The point is that most behaviors have multiple causes, 
and	hence	it	will	be	difficult	in	these	cases	to	account	for	a	large	amount	of	variance	
with just a single cause such as treatments. We give an example in Chapter 4 to show 
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that treatments accounting for only 10% of the variance on the dependent variable can 
indeed	be	practically	significant.

Sometimes practical importance can be judged by simply looking at the means and 
thinking about the range of possible values. Consider the following example.

1.4.1 Example

A survey researcher compares four geographic regions on their attitude toward educa-
tion.	The	survey	is	sent	out	and	800	responses	are	obtained.	Ten	items,	Likert	scaled	
from 1 to 5, are used to assess attitude. The group sizes, along with the means and 
standard deviations for the total score scale, are given here:

West North East South

n 238 182 130 250
x 32.0 33.1 34.0 31.0
S 7.09 7.62 7.80 7.49

An analysis of variance on these groups yields F	=	5.61,	which	is	significant	at	the	.001	
level. Examining the p	value	suggests	that	results	are	“highly	significant,”	but	are	the	
results practically important? Very probably not. Look at the size of the mean differ-
ences for a scale that has a range from 10 to 50. The mean differences for all pairs of 
groups, except for East and South, are about 2 or less. These are trivial differences on 
a scale with a range of 40.

Now	recall	from	our	earlier	discussion	of	power	the	problem	of	finding	statistical	sig-
nificance	with	small	sample	size.	That	is,	results in the literature that are not significant 
may be simply due to poor or inadequate power, whereas results that are significant, 
but have been obtained with huge sample sizes, may not be practically significant. We 
illustrate this statement with two examples.

First, consider a two-group study with eight participants per group and an effect 
size	of	.8	standard	deviations.	This	is,	in	general,	a	large	effect	size	(Cohen,	1988),	
and	most	researchers	would	consider	this	result	to	be	practically	significant.	How-
ever,	if	testing	for	significance	at	the	.05	level	(two-tailed	test),	then	the	chances	
of	 finding	 significance	 are	 only	 about	 1	 in	 3	 (.31	 from	Cohen’s	 power	 tables).	
The danger of not being sensitive to the power problem in such a study is that a 
researcher may abort a promising line of research, perhaps an effective diet or type 
of	psychotherapy,	because	significance	is	not	found.	And	it	may	also	discourage	
other researchers.
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On the other hand, now consider a two-group study with 300 participants per group 
and an effect size of .20 standard deviations. In this case, when testing at the .05 level, 
the	researcher	is	likely	to	find	significance	(power	=	.70	from	Cohen’s	tables).	To	use	
a	domestic	analogy,	this	is	like	using	a	sledgehammer	to	“pound	out”	significance.	Yet	
the	effect	size	here	may	not	be	considered	practically	significant	in	most	cases.	Based	
on these results, for example, a school system may decide to implement an expensive 
program that may yield only very small gains in achievement.

For further perspective on the practical importance issue, there is a nice article by 
Haase,	Ellis,	and	Ladany	(1989).	Although	that	article	is	in	the	Journal of Counseling 
Psychology,	 the	 implications	are	much	broader.	They	suggest	five	different	ways	of	
assessing	the	practical	or	clinical	significance	of	findings:

1. Reference to previous research—the importance of context in determining whether 
a result is practically important.

2.	 Conventional	definitions	of	magnitude	of	effect—Cohen’s	 (1988)	definitions	of	
small, medium, and large effect size.

3.	 Normative	definitions	of	clinical	significance—here	they	reference	a	special	issue	
of Behavioral Assessment	(Jacobson,	1988)	that	should	be	of	considerable	interest	
to clinicians.

4.	 Cost-benefit	analysis.
5. The good-enough principle—here the idea is to posit a form of the null hypothesis 

that	is	more	difficult	to	reject:	for	example,	rather	than	testing	whether	two	popu-
lation means are equal, testing whether the difference between them is at least 3.

Note that many of these ideas are considered in detail in Grissom and Kim (2012).

Finally, although in a somewhat different vein, with various multivariate procedures 
we consider in this text (such as discriminant analysis), unless sample size is large rel-
ative to the number of variables, the results will not be reliable—that is, they will not 
generalize. A major point of the discussion in this section is that it is critically impor-
tant to take sample size into account in interpreting results in the literature.

1.5 OUTLIERS

Outliers are data points that split off or are very different from the rest of the data. Spe-
cific	examples	of	outliers	would	be	an	IQ	of	160,	or	a	weight	of	350	lbs.	in	a	group	for	
which	the	median	weight	is	180	lbs.	Outliers	can	occur	for	two	fundamental	reasons:	
(1) a data recording or entry error was made, or (2) the participants are simply different 
from	the	rest.	The	first	type	of	outlier	can	be	identified	by	always	listing	the	data	and	
checking to make sure the data have been read in accurately.

The importance of listing the data was brought home to Dr. Stevens many years ago as 
a	graduate	student.	A	regression	problem	with	five	predictors,	one	of	which	was	a	set	
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of random scores, was run without checking the data. This was a textbook problem to 
show students that the random number predictor would not be related to the depend-
ent	variable.	However,	 the	random	number	predictor	was	significant	and	accounted	
for a fairly large part of the variance on y. This happened simply because one of the 
scores for the random number predictor was incorrectly entered as a 300 rather than 
as a 3. In this case it was obvious that something was wrong. But with large data sets 
the situation will not be so transparent, and the results of an analysis could be com-
pletely thrown off by 1 or 2 errant points. The amount of time it takes to list and check 
the data for accuracy (even if there are 1,000 or 2,000 participants) is well worth the 
effort.

Statistical procedures in general can be quite sensitive to outliers. This is particularly 
true for the multivariate procedures that will be considered in this text. It is very impor-
tant to be able to identify such outliers and then decide what to do about them. Why? 
Because	we	want	the	results	of	our	statistical	analysis	to	reflect	most	of	the	data,	and	
not	to	be	highly	influenced	by	just	1	or	2	errant	data	points.

In small data sets with just one or two variables, such outliers can be relatively easy to 
identify. We now consider some examples.

Example 1.1
Consider the following small data set with two variables:

Case number x1 x2

1 111 68
2 92 46
3 90 50
4 107 59
5 98 50
6 150 66
7 118 54
8 110 51
9 117 59

10 94 97

Cases 6 and 10 are both outliers, but for different reasons. Case 6 is an outlier because 
the score for case 6 on x1 (150) is deviant, while case 10 is an outlier because the score 
for that subject on x2 (97) splits off from the other scores on x2. The graphical split-off 
of cases 6 and 10 is quite vivid and is given in Figure 1.2.

Example 1.2
In large data sets having many variables, some outliers are not so easy to spot  
and could go easily undetected unless care is taken. Here, we give an example  
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of a somewhat more subtle outlier. Consider the following data set on four  
variables:

90
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100

100 110 120

(108.7, 60)–Location of means on x1 and x2.

Case 10

Case 6
X

130 140 150
x1

x2

 Figure 1.2: Plot of outliers for two-variable example.

Case number x1 x2 x3 x4

1 111 68 17 81
2 92 46 28 67
3 90 50 19 83
4 107 59 25 71
5 98 50 13 92
6 150 66 20 90
7 118 54 11 101
8 110 51 26 82
9 117 59 18 87

10 94 67 12 69
11 130 57 16 97
12 118 51 19 78
13 155 40 9 58
14 118 61 20 103
15 109 66 13 88

The somewhat subtle outlier here is case 13. Notice that the scores for case 13 on none 
of the xs really split off dramatically from the other participants’ scores. Yet the scores 
tend to be low on x2, x3, and x4 and high on x1, and the cumulative effect of all this is 
to isolate case 13 from the rest of the cases. We indicate shortly a statistic that is quite 
useful in detecting multivariate outliers and pursue outliers in more detail in Chapter 3.

Now let us consider three more examples, involving material learned in previous sta-
tistics courses, to show the effect outliers can have on some simple statistics.
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Example 1.3
Consider the following small set of data: 2, 3, 5, 6, 44. The last number, 44, is an 
obvious	outlier;	 that	 is,	 it	 splits	off	sharply	 from	the	rest	of	 the	data.	 If	we	were	 to	
use the mean of 12 as the measure of central tendency for this data, it would be quite 
misleading, as there are no scores around 12. That is why you were told to use the 
median as the measure of central tendency when there are extreme values (outliers in 
our terminology), because the median is unaffected by outliers. That is, it is a robust 
measure of central tendency.

Example 1.4
To show the dramatic effect an outlier can have on a correlation, consider the two scat-
terplots in Figure 1.3. Notice how the inclusion of the outlier in each case drastically 
changes the interpretation of the results. For case A there is no relationship without the 
outlier but there is a strong relationship with the outlier, whereas for case B the rela-
tionship changes from strong (without the outlier) to weak when the outlier is included.

Example 1.5
As	our	final	example,	consider	the	following	data:

Group 1 Group 2 Group 3

y1 y2 y1 y2 y1 y2

15 21 17 36 6 26
18 27 22 41 9 31
12 32 15 31 12 38
12 29 12 28 11 24
9 18 20 47 11 35

10 34 14 29 8 29
12 18 15 33 13 30
20 36 20 38 30 16

21 25 7 23

For now, ignore variable y2, and we run a one-way ANOVA for y1. The score of 30 
in	group	3	 is	 an	outlier.	With	 that	 case	 in	 the	ANOVA	we	do	not	find	 significance	
(F = 2.61, p	<	.095)	at	the	.05	level,	while	with	the	case	deleted	we	do	find	significance	
well beyond the .01 level (F	=	11.18,	p < .0004). Deleting the case has the effect of 
producing greater separation among the three means, because the means with the case 
included	 are	 13.5,	 17.33,	 and	 11.89,	 but	with	 the	 case	deleted the means are 13.5, 
17.33, and 9.63. It also has the effect of reducing the within variability in group 3 
substantially, and hence the pooled within variability (error term for ANOVA) will be 
much smaller.
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 Figure 1.3: The effect of an outlier on a correlation coefficient.

1.5.1 Detecting Outliers

If a variable is approximately normally distributed, then z scores around 3 in abso-
lute value should be considered as potential outliers. Why? Because, in an approx-
imate normal distribution, about 99% of the scores should lie within three standard 



17chapter 1       

deviations of the mean. Therefore, any z value > 3 indicates a value very unlikely to 
occur. Of course, if n is large, say > 100, then simply by chance we might expect a 
few participants to have z scores > 3 and this should be kept in mind. However, even 
for any type of distribution this rule is reasonable, although we might consider extend-
ing the rule to z > 4. It was shown many years ago that regardless of how the data is 
distributed, the percentage of observations contained within k standard deviations of 
the mean must be at least	(1	−	1/k2) × 100%. This holds only for k > 1 and yields the 
following percentages for k = 2 through 5:

Number of standard deviations Percentage of observations

2 at least 75%
3 at least 88.89%
4 at least 93.75%
5 at least 96%

Shiffler	(1988)	showed	that	the	largest	possible	z value in a data set of size n is bounded 
by n n−( )1 / .  This means for n = 10 the largest possible z	is	2.846	and	for	n = 11 the 
largest possible z is 3.015. Thus, for small sample size, any data point with a z around 
2.5 should be seriously considered as a possible outlier.

After	 the	outliers	are	 identified,	what	should	be	done	with	 them?	The	action	 to	be	
taken	is	not	to	automatically	drop	the	outlier(s)	from	the	analysis.	If	one	finds	after	
further investigation of the outlying points that an outlier was due to a recording or 
entry error, then of course one would correct the data value and redo the analysis. 
Or, if it is found that the errant data value is due to an instrumentation error or that 
the process that generated the data for that subject was different, then it is legitimate 
to drop the outlier. If, however, none of these appears to be the case, then there are 
different schools of thought on what should be done. Some argue that such outliers 
should not be dropped from the analysis entirely, but perhaps report two analyses (one 
including the outlier and the other excluding it). Another school of thought is that it 
is	reasonable	to	remove	these	outliers.	Judd,	McClelland,	and	Carey	(2009)	state	the	
following:

In fact, we would argue that it is unethical to include clearly outlying observations 
that “grab” a reported analysis, so that the resulting conclusions misrepresent the 
majority of the observations in a dataset. The task of data analysis is to build a 
story of what the data have to tell. If that story really derives from only a few 
overly	 influential	observations,	 largely	 ignoring	most	of	 the	other	observations,	
then that story is a misrepresentation. (p. 306)

Also, outliers should not necessarily be regarded as “bad.” In fact, it has been argued 
that outliers can provide some of the most interesting cases for further study.
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1.6 MISSING DATA

It is not uncommon for researchers to have missing data, that is, incomplete responses 
from some participants. There are many reasons why missing data may occur. Partic-
ipants, for example, may refuse to answer “sensitive” questions (e.g., questions about 
sexual activity, illegal drug use, income), may lose motivation in responding to ques-
tionnaire items and quit answering questions, may drop out of a longitudinal study, or 
may	be	asked	not	to	respond	to	a	specific	item	by	the	researcher	(e.g.,	skip	this	question	
if you are not married). In addition, data collection or recording equipment may fail. If 
not handled properly, missing data may result in poor (biased) estimates of parameters 
as well as reduced statistical power. As such, how you treat missing data can threaten 
or help preserve the validity of study conclusions.

In	this	section,	we	first	describe	general	reasons	(mechanisms)	for	the	occurrence	of	
missing data. As we explain, the performance of different missing data treatments 
depends on the presumed reason for the occurrence of missing data. Second, we will 
briefly	review	various	missing	data	treatments,	illustrate	how	you	may	examine	your	
data to determine if there appears to be a random or systematic process for the occur-
rence of missing data, and show that modern methods of treating missing data gener-
ally provide for improved parameter estimates compared to other methods. As this is 
a survey text on multivariate methods, we can only devote so much space to coverage 
of missing data treatments. Since the presence of missing data may require the use of 
fairly complex methods, we encourage you to consult in-depth treatments on missing 
data	(e.g.,	Allison,	2001;	Enders,	2010).

We should also point out that not all types of missing data require sophisticated treat-
ment. For example, suppose we ask respondents whether they are employed or not, 
and, if so, to indicate their degree of satisfaction with their current employer. Those 
employed may answer both questions, but the second question is not relevant to those 
unemployed. In this case, it is a simple matter to discard the unemployed participants 
when we conduct analyses on employee satisfaction. So, if we were to use regression 
analysis to predict whether one is employed or not, we could use data from all respond-
ents. However, if we then wish to use regression analysis to predict employee satisfac-
tion, we would exclude those not employed from this analysis, instead of, for example, 
attempting to impute their satisfaction with their employer had they been employed, 
which seems like a meaningless endeavor.

This simple example highlights the challenges in missing data analysis, in that there 
is not one “correct” way to handle all missing data. Rather, deciding how to deal with 
missing data in a general sense involves a consideration of study variables and analysis 
goals. On the other hand, when a survey question is such that a participant is expected 
to respond but does not, then you need to consider whether the missing data appears to 
be a random event or is predictable. This concern leads us to consider what are known 
as missing data mechanisms.
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1.6.1 Missing Data Mechanisms

There are three common missing data mechanisms discussed in the literature, two of 
which	have	similar	labels	but	have	a	critical	difference.	The	first	mechanism	we	con-
sider	is	referred	to	as	Missing	Completely	at	Random	(or	MCAR).	MCAR	describes	
the condition where data are missing for purely random reasons, which could happen, 
for example, if a data recording device malfunctions for no apparent reason. As such, 
if we were to remove all cases having any missing data, the resulting subsample can be 
considered	a	simple	random	sample	from	the	larger	set	of	cases.	More	specifically,	data	
are	said	to	be	MCAR	if	the	presence	of	missing	data	on	a	given	variable	is	not	related	
to any variable in your analysis model of interest or related to the variable itself. Note 
that with the last stipulation, that is, that the presence of missing data is not related to 
the	variable	itself,	Allison	(2001)	notes	that	we	are	not	able	to	confirm	that	data	are	
MCAR,	because	the	data	we	need	to	assess	this	condition	are	missing.	As	such,	we	
are only able to determine if the presence of missing data on a given variable is or is 
not related to other variables in the data set. We will illustrate how one may assess 
this	later,	but	note	that	even	if	you	find	no	such	associations	in	your	data	set,	it	is	still	
possible	that	the	MCAR	assumption	is	violated.

We	now	consider	two	examples	of	MCAR	violations.	First,	suppose	that	respondents	
are asked to indicate their annual income and age, and that older workers tend to leave 
the income question blank. In this example, missingness on income is predictable by 
age and the cases with complete data are not a simple random sample of the larger data 
set. As a result, running an analysis using just those participants with complete data 
would likely introduce bias because the results would be based primarily on younger 
workers.	As	 a	 second	example	of	 a	violation	of	MCAR,	 suppose	 that	 the	 presence	
of missing data on income was not related to age or other variables at hand, but that 
individuals with greater incomes chose not to report income. In this case, missingness 
on income is related to income itself, but you could not determine this because these 
income data are missing. If you were to use just those cases that reported income, mean 
income and its variance would be underestimated in this example due to nonrandom 
missingness, which is a form of self-censoring or selection bias. Associations between 
variables and income may well be attenuated due to the restriction in range in the 
income variable, given that the larger values for income are missing.

A	second	mechanism	for	missing	data	is	known	as	Missing	at	Random	(MAR),	which	
is	a	less	stringent	condition	than	MCAR	and	is	a	frequently	invoked	assumption	for	
missing	data.	MAR	means	that	the	presence	of	missing	data	is	predictable	from	other	
study variables and after taking these associations into account, missingness for a spe-
cific	variable	is	not	related	to	the	variable	itself.	Using	the	previous	example,	the	MAR	
assumption would hold if missingness on income were predictable by age (because 
older participants tended not to report income) or other study variables, but was not 
related to income itself. If, on the other hand, missingness on income was due to those 
with	greater	(or	lesser)	income	not	reporting	income,	then	MAR	would	not	hold.	As	
such, unless you have the missing data at hand (which you would not), you cannot 
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fully verify this assumption. Note though that the most commonly recommended pro-
cedures for treating missing data—use of maximum likelihood estimation and multiple 
imputation—assume	a	MAR	mechanism.

A	third	missing	data	mechanism	is	Missing	Not	at	Random	(MNAR).	Data	are	MNAR	
when the presence of missing data for a given variable is related to that variable itself 
even after predicting missingness with the other variables in the data set. With our run-
ning example, if missingness on income is related to income itself (e.g., those with greater 
income do not report income) even after using study variables to account for missingness 
on	 income,	 the	missing	mechanism	 is	MNAR.	While	 this	missing	mechanism	 is	 the	
most	problematic,	note	that	methods	that	are	used	when	MAR	is	assumed	(maximum	
likelihood and multiple imputation) can provide for improved parameter estimates when 
the	MNAR	assumption	holds.	Further,	by	collecting	data	from	participants	on	variables	
that may be related to missingness for variables in your study, you can potentially turn 
an	MNAR	mechanism	into	an	MAR mechanism. Thus, in the planning stages of a study, 
it may helpful to consider including variables that, although may not be of substantive 
interest, may explain missingness for the variables in your data set. These variables are 
known as auxiliary variables and software programs that include the generally accepted 
missing data treatments can make use of such variables to provide for improved parame-
ter estimates and perhaps greatly reduce problems associated with missing data.

1.6.2 Deletion Strategies for Missing Data

This section, focusing on deletion methods, and three sections that follow present var-
ious	missing	data	 treatments	 suitable	 for	 the	MCAR	or	MAR mechanisms or both. 
Missing	data	treatments	for	the	MNAR condition are discussed in the literature (e.g., 
Allison,	2001;	Enders,	2010).	The	methods	considered	in	these	sections	include	tradi-
tionally used methods that may often be problematic and two generally recommended 
missing data treatments.

A commonly used and easily implemented deletion strategy is listwise deletion, which 
is not recommended for widespread use. With listwise deletion, which is the default 
method for treating missing data in many software programs, cases that have any miss-
ing data are removed or deleted from the analysis. The primary advantages of listwise 
deletion are that it is easy to implement and its use results in a single set of cases that 
can be used for all study analyses. A primary disadvantage of listwise deletion is that 
it	generally	requires	that	data	are	MCAR.	If	data	are	not	MCAR,	then	parameter	esti-
mates and their standard errors using just those cases having complete data are gener-
ally	biased.	Further,	even	when	data	are	MCAR,	using	listwise	deletion	may	severely	
reduce statistical power if many cases are missing data on one or more variables, as 
such cases are removed from the analysis.

There are, however, situations where listwise deletion is sometimes recommended. 
When missing data are minimal and only a small percent of cases (perhaps from 5% 
to 10%) are removed with the use of listwise deletion, this method is recommended. 



21chapter 1       

In addition, listwise deletion is a recommended missing data treatment for regression 
analysis	under	any	missing	mechanism	(even	MNAR)	if a certain condition is satis-
fied.	That	is,	if	missingness	for	variables	used	in	a	regression	analysis	are	missing	as	a	
function of the predictors only (and not the outcome), the use of listwise deletion can 
outperform the two more generally recommended missing data treatments (i.e., maxi-
mum likelihood and multiple imputation).

Another deletion strategy used is pairwise deletion. With this strategy, cases with incom-
plete data are not excluded entirely from the analysis. Rather, with pairwise deletion, 
a given case with missing data is excluded only from those analyses that involve vari-
ables for which the case has missing data. For example, if you wanted to report corre-
lations for three variables, using the pairwise deletion method, you would compute the 
correlation for variables 1 and 2 using all cases having scores for these variables (even 
if such a case had missing data for variable 3). Similarly, the correlation for variables 
1 and 3 would be computed for all cases having scores for these two variables (even if 
a given case had missing data for variable 2) and so on. Thus, unlike listwise deletion, 
pairwise deletion uses as much data as possible for cases having incomplete data. As a 
result, different sets of cases are used to compute, in this case, the correlation matrix.

Pairwise deletion is not generally recommended for treating missing data, as its 
advantages are outweighed by its disadvantages. On the positive side, pairwise dele-
tion is easy to implement (as it is often included in software programs) and can 
produce	approximately	unbiased	parameter	estimates	when	data	are	MCAR.	How-
ever,	when	the	missing	data	mechanism	is	MAR	or	MNAR,	parameter	estimates	are	
biased with the use of pairwise deletion. In addition, using different subsets of cases, 
as in the earlier correlation example, can result in correlation or covariance matrices 
that	are	not	positive	definite.	Such	matrices	would	not	allow	for	 the	computation,	
for	example,	of	regression	coefficients	or	other	parameters	of	interest.	Also,	comput-
ing accurate standard errors with pairwise deletion is not straightforward because a 
common sample size is not used for all variables in the analysis.

1.6.3 Single Imputation Strategies for Missing Data

Imputing data involves replacing missing data with score values, which are (hope-
fully) reasonable values to use. In general, imputation methods are attractive because 
once the data are imputed, analyses can proceed with a “complete” set of data. Single 
imputation strategies replace missing data with just a single value, whereas multiple 
imputation, as we will see, provides multiple replacement values. Different methods 
can be used to assign or impute score values. As is often the case with missing data 
treatments, the simpler methods are generally more problematic than more sophisti-
cated treatments. However, use of statistical software (e.g., SAS, SPSS) greatly sim-
plifies	the	task	of	imputing	data.

A relatively easy but generally unsatisfactory method of imputing data is to replace 
missing values with the mean of the available scores for a given variable, referred to 
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as mean substitution.	This	method	assumes	that	the	missing	mechanism	is	MCAR,	but	
even in this case, mean substitution can produce biased estimates. The main problem 
with this procedure is that it assumes that all cases having missing data for a given 
variable score only at the mean of the variable in question. This replacement strategy, 
then, can greatly underestimate the variance (and standard deviation) of the imputed 
variable. Also, given that variances are underestimated with mean substitution, covar-
iances and correlations will also be attenuated. As such, missing data experts often 
suggest not using mean substitution as a missing data treatment.

Another imputation method involves using a multiple regression equation to replace 
missing values, a procedure known as regression substitution or regression imputation. 
With this procedure, a given variable with missing data serves as the dependent variable 
and is regressed on the other variables in the data set. Note that only those cases having 
complete data are typically used in this procedure. Once the regression estimates (i.e., 
intercept and slope values) are obtained, we can then use the equation to predict or 
impute scores for individuals having missing data by plugging into this equation their 
scores on the equation predictors. A complete set of scores is then obtained for all par-
ticipants. Although regression imputation is an improvement over mean substitution, 
this procedure is also not recommended because it can produce attenuated estimates 
of variable variances and covariances, due to the lack of variability that is inherent in 
using the predicted scores from the regression equation as the replacement values.

An improved missing data replacement procedure uses this same regression idea, but 
adds random variability to the predicted scores. This procedure is known as stochastic 
regression imputation, where the term stochastic refers to the additional random com-
ponent that is used in imputing scores. The procedure is similar to that described for 
regression imputation but now includes a residual term, scores for which are included 
when generating imputed values. Scores for this residual are obtained by sampling 
from a population having certain characteristics, such as being normally distributed 
with a mean of zero and a variance that is equal to the residual variance estimated from 
the regression equation used to impute the scores.

Stochastic single regression imputation overcomes some of the limitations of the 
other single imputation methods but still has one major shortcoming. On the positive 
side, point estimates obtained with analyses that use such imputed data are unbiased 
for	MAR	data.	However,	standard	errors	estimated	when	analyses	are	run	using	data	
imputed	by	stochastic	regression	are	negatively	biased,	leading	to	inflated	test	statistics	
and	an	inflated	type	I	error	rate.	This	misestimation	also	occurs	for	 the	other	single	
imputation methods mentioned earlier. Improved estimates of standard errors can be 
obtained by generating several such imputed data sets and incorporating variability 
across the imputed data sets into the standard error estimates.

The last single imputation method considered here is a maximum likelihood approach 
known as expectation maximization	(EM).	The	EM	algorithm	uses	two	steps	to	esti-
mate parameters (e.g., means, variances, and covariances) that may be of interest 
by themselves or can be used as input for other analyses (e.g., exploratory factor 
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analysis).	In	the	first	step	of	the	algorithm,	the	means	and	variance-covariance	matrix	
for the set of variables are estimated using the available (i.e., nonmissing) data. In the 
second step, regression equations are obtained using these means and variances, with 
the regression equations used (as in stochastic regression) to then obtain estimates for 
the missing data. With these newly estimated values, the procedure then reestimates 
the variable means and covariances, which are used again to obtain the regression 
equations to provide new estimates for the missing data. This two-step process con-
tinues until the means and covariances are essentially the same from one iteration to 
the next.

Of	the	single	imputation	methods	discussed	here,	use	of	the	EM	algorithm	is	consid-
ered to be superior and provides unbiased parameter estimates (i.e., the means and 
covariances). However, like the other single-imputation procedures, the standard errors 
estimated	from	analyses	using	the	EM-obtained	means	and	covariances	are	underesti-
mated. As such, this procedure is not recommended for analyses where standard errors 
and	associated	 statistical	 tests	are	used,	as	 type	 I	 error	 rates	would	be	 inflated.	For	
procedures that do not require statistical inference (principal component or principal 
axis	factor	analysis),	use	of	the	EM	procedure	is	recommended.	The	full	information	
maximum likelihood procedure described in section 1.6.5 is an improved maximum 
likelihood approach that can obtain proper estimates of standard errors.

1.6.4 Multiple Imputation

Multiple	imputation	(MI)	is	one	of	two	procedures	that	are	widely	recommended	for	
dealing	with	missing	data.	MI	involves	three	main	steps.	In	the	first	step,	the	imputa-
tion phase, missing data are imputed using a version of stochastic regression imputa-
tion, except now this procedure is done several times, so that multiple “complete” data 
sets are created. Given that a random procedure is included when imputing scores, the 
imputed score for a given case for a given variable will differ across the multiple data 
sets. Also, note while the default in statistical software is often to impute a total of 
five	data	sets,	current	thinking	is	that	this	number	is	generally	too	small,	as	improved	
standard error estimates and statistical test results are obtained with a larger number 
of	imputed	data	sets.	Allison	(personal	communication,	November	8,	2013)	has	sug-
gested that 100 may be regarded as the maximum number of imputed data sets needed.

The second and third steps of this procedure involve analyzing the imputed data sets 
and	obtaining	a	final	set	of	parameter	estimates.	In	the	second	step,	the	analysis	stage,	
the primary analysis of interest is conducted with each of the imputed data sets. So, if 
100 data sets were imputed, 100 sets of parameter estimates would be obtained. In the 
final	stage,	the	pooling	phase,	a	final	set	of	parameter	estimates	is	obtained	by	combin-
ing the parameter estimates across the analyzed data sets. If the procedure is carried 
out properly, parameter estimates and standard errors are unbiased when the missing 
data	mechanism	is	MCAR	or	MAR.

There	 are	 advantages	 and	 disadvantages	 to	 using	MI	 as	 a	missing	 data	 treatment.	
The	main	 advantages	 are	 that	MI	 provides	 for	 unbiased	 parameter	 estimates	when	
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the	missing	data	mechanism	is	MCAR	and	MAR,	and	multiple	imputation	has	great	
flexibility	in	that	it	can	be	applied	to	a	variety	of	analysis	models.	One	main	disadvan-
tage of the procedure is that it can be relatively complicated to implement. As Allison 
(2012) points out, users must make at least seven decisions when implementing this 
procedure,	and	it	may	be	difficult	for	the	user	to	determine	the	proper	set	of	choices	
that should be made.

Another	disadvantage	of	MI	is	that	it	is	always	possible	that	the	imputation	and	analy-
sis model differ, and such a difference may result in biased parameter estimation even 
when	the	data	follow	an	MCAR	mechanism.	As	an	example,	the	analysis	model	may	
include interactions or nonlinearities among study variables. However, if such terms 
were excluded from the imputation model, such interactions and nonlinear associ-
ations may not be found in the analysis model. While this problem can be avoided 
by making sure that the imputation model matches or includes more terms than the 
analysis model, Allison (2012) notes that in practice it is easy to make this mistake. 
These	latter	difficulties	can	be	overcome	with	the	use	of	another	widely	recommended	
missing data treatment, full information maximum likelihood estimation.

1.6.5 Full Information Maximum Likelihood Estimation

Full	information	maximum	likelihood,	or	FIML	(also	known	as	direct	maximum	like-
lihood or maximum likelihood), is another widely recommended procedure for treat-
ing	missing	data.	When	the	missing	mechanism	is	MAR,	FIML	provides	for	unbiased	
parameter estimation as well as accurate estimates of standard errors. When data are 
MCAR,	FIML	also	provides	for	accurate	estimation	and	can	provide	for	more	power	
than listwise deletion. For sample data, use of maximum likelihood estimation yields 
parameter estimates that maximize the probability for obtaining the data at hand. Or, 
as	stated	by	Enders	(2010),	FIML	tries	out	or	“auditions”	various	parameter	values	
and	 finds	 those	 values	 that	 are	most	 consistent	with	 or	 provide	 the	 best	 fit	 to	 the	
data. While the computational details are best left to missing data textbooks (e.g., 
Allison,	2001;	Enders,	2010),	FIML	estimates	model	parameters,	in	the	presence	of	
missing data, by using all available data as well as the implied values of the missing 
data, given the observed data and assumed probability distribution (e.g., multivariate 
normal).

Unlike	other	missing	data	treatments,	FIML	estimates	parameters	directly	for	the	anal-
ysis model of substantive interest. Thus, unlike multiple imputation, there are no sepa-
rate imputation and analysis models, as model parameters are estimated in the presence 
of incomplete data in one step, that is, without imputing data sets. Allison (2012) 
regards this simultaneous missing data treatment and estimation of model parameters 
as	a	key	advantage	of	FIML	over	multiple	imputation.	A	key	disadvantage	of	FIML	is	
that its implementation typically requires specialized software, in particular, software 
used	for	structural	equation	modeling	(e.g.,	LISREL,	Mplus).	SAS,	however,	includes	
such	capability,	and	we	briefly	illustrate	how	FIML	can	be	implemented	using	SAS	in	
the illustration to which we now turn.
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1.6.6  Illustrative Example: Inspecting Data for  
Missingness and Mechanism

This	section	and	the	next	fulfill	several	purposes.	First,	using	a	small	data	set	with	miss-
ing data, we illustrate how you can assess, using relevant statistics, if the missing mech-
anism	is	consistent	with	the	MCAR	mechanism	or	not.	Recall	that	some	missing	data	
treatments	require	MCAR.	As	such,	determining	that	the	data	are	not	MCAR	would	
suggest using a missing data treatment that does not require that mechanism. Second, 
we	show	the	computer	code	needed	to	implement	FIML	using	SAS	(as	SPSS	does	not	
offer	 this	option)	and	MI	 in	SAS	and	SPSS.	Third,	we	compare	 the	performance	of	
different missing data treatments for our small data set. This comparison is possible 
because while we work with a data set having incomplete data, we have the full set of 
scores or parent data set, from which the data set with missing values was obtained. As 
such, we can determine how closely the parameters estimated by using various missing 
data treatments approximate the parameters estimated for the parent data set.

The hypothetical example considered here includes data collected from 300 adolescents 
on three variables. The outcome variable is apathy, and the researchers, we assume, intend 
to use multiple regression to determine if apathy is predicted by a participant’s percep-
tion of family dysfunction and sense of social isolation. Note that higher scores for each 
variable indicate greater apathy, poorer family functioning, and greater isolation. While 
we generated a complete set of scores for each variable, we subsequently created a data 
set having missing values for some variables. In particular, there are no missing scores 
for the outcome, apathy, but data are missing on the predictors. These missing data were 
created by randomly removing some scores for dysfunction and isolation, but for only 
those participants whose apathy score was above the mean. Thus, the missing data mech-
anism	is	MAR	as	whether	data	are	missing	or	not	for	dysfunction	and	isolation	depends	
on apathy, where only those with greater apathy have missing data on the predictors.

We	first	 show	 how	 you	 can	 examine	 data	 to	 determine	 the	 extent	 of	missing	 data	
as	well	 as	 assess	whether	 the	data	may	be	 consistent	with	 the	MCAR	mechanism.	
Table 1.1 shows relevant output for some initial missing data analysis, which may 
obtained from the following SPSS commands:

[@SPSS CODE]
MVA VARIABLES=apathy dysfunction isolation
/TTEST
/TPATTERN DESCRIBE=apathy dysfunction isolation
/EM.

Note that some of this output can also be obtained in SAS by the commands shown in 
section 1.6.7.

In the top display of Table 1.1, the means, standard deviations, and the number and per-
cent of cases with missing data are shown. There is no missing data for apathy, but 20% 
of the 300 cases did not report a score for dysfunction, and 30% of the sample did not 
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provide a score for isolation. Information in the second display in Table 1.1 (Separate 
Variance t Tests) can be used to assess whether the missing data are consistent with the 
MCAR	mechanism.	This	display	reports	separate	variance	t tests that test for a difference 
in means between cases with and without missing data on a given variable on other study 
variables. If mean differences are present, this suggests that cases with missing data differ 
from	other	cases,	discrediting	the	MCAR	mechanism	as	an	explanation	for	the	missing	
data. In this display, the second column (Apathy) compares mean apathy scores for cases 
with and without scores for dysfunction and then for isolation. In that column, we see that 
the 60 cases with missing data on dysfunction have much greater mean apathy (60.64) 
than the other 240 cases (50.73), and that the 90 cases with missing data on isolation have 
greater mean apathy (60.74) than the other 210 cases (49.27). The t test values, well above 
a magnitude of 2, also suggest that cases with missing data on dysfunction and isolation 
are different from cases (i.e., more apathetic) having no missing data on these predictors. 
Further,	the	standard	deviation	for	apathy	(from	the	EM	estimate	obtained	via	the	SPSS	
syntax just mentioned) is about 10.2. Thus, the mean apathy differences are equivalent to 
about 1 standard deviation, which is generally considered to be a large difference.

Separate Variance t Testsa

Apathy Dysfunction Isolation

Dysfunction

t −9.6 . −2.1
df 146.1 . 27.8
# Present 240 240 189
# Missing 60 0 21
Mean (present) 50.7283 53.7802 52.5622
Mean (missing) 60.6388 . 56.5877

Isolation

t −12.0 −2.9 .
df 239.1 91.1 .
# Present 210 189 210
# Missing 90 51 0

Mean (present) 49.2673 52.8906 52.9647

Mean (missing) 60.7442 57.0770 .

For each quantitative variable, pairs of groups are formed by indicator variables (present, missing).
a Indicator variables with less than 5.0% missing are not displayed.

N Mean Std. deviation

Missing

Count Percent

Apathy 300 52.7104 10.21125 0 .0
Dysfunction 240 53.7802 10.12854 60 20.0
Isolation 210 52.9647 10.10549 90 30.0

 Table 1.1: Statistics Used to Describe Missing Data
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The other columns in this output table (headed by dysfunction and isolation) indicate 
that cases having missing data on isolation have greater mean dysfunction and those 
with missing data on dysfunction have greater mean isolation. Thus, these statistics 
suggest	 that	 the	MCAR	mechanism	is	not	a	 reasonable	explanation	for	 the	missing	
data.	As	such,	missing	data	treatments	that	assume	MCAR	should	not	be	used	with	
these data, as they would be expected to produce biased parameter estimates.

Before considering the third display in Table 1.1, we discuss other procedures that can 
be	used	to	assess	the	MCAR	mechanism.	First,	Little’s	MCAR	test	is	an	omnibus	test	
that may be used to assess whether all mean differences, like those shown in Table 1.1, 
are	consistent	with	the	MCAR	mechanism	(large	p value) or not consistent with the 
MCAR	mechanism	(small	p value). For the example at hand, the chi-square test statis-
tic for Little’s test, obtained with the SPSS syntax just mentioned, is 107.775 (df = 5) 
and	statistically	significant	(p < .001). Given that the null hypothesis for this data is 
that	 the	data	are	MCAR,	 the	conclusion	from	this	 test	 result	 is	 that	 the	data	do	not	
follow	an	MCAR	mechanism.	While	Little’s	test	may	be	helpful,	Enders	(2010)	notes	
that it does not indicate which particular variables are associated with missingness and 
prefers examining standardized group-mean differences as discussed earlier for this 
purpose. Identifying such variables is important because they can be included in the 
missing data treatment, as auxiliary variables, to improve parameter estimates.

A	third	procedure	that	can	be	used	to	assess	the	MCAR	mechanism	is	logistic	regres-
sion.	With	this	procedure,	you	first	create	a	dummy-coded	variable	for	each	variable	
in the data set that indicates whether a given case has missing data for this variable or 
not. (Note that this same thing is done in the t-test procedure earlier but is entirely auto-
mated by SPSS.) Then, for each variable with missing data (perhaps with a minimum 
of 5% to 10% missing), you can use logistic regression with the missingness indicator 
for a given variable as the outcome and other study variables as predictors. By doing 
this, you can learn which study variables are uniquely associated with missingness. 

Tabulated Patterns

Number 
of cases

Missing patternsa

Complete 
if . . .b Apathyc Dysfunctionc IsolationcApathy Dysfunction Isolation

189 189 48.0361 52.8906 52.5622

51 X 240 60.7054 57.0770 .

39 X X 300 60.7950 . .

21 X 210 60.3486 . 56.5877

Patterns with less than 1.0% cases (3 or fewer) are not displayed.
a Variables are sorted on missing patterns.
b Number of complete cases if variables missing in that pattern (marked with X) are not used.
c Means at each unique pattern.
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If	any	are,	this	suggests	that	missing	data	are	not	MCAR	and	also	identifies	variables	
that need to be used, for example, in the imputation model, to provide for improved (or 
hopefully unbiased) parameter estimates.

For the example at hand, given that there is a substantial proportion of missing data 
for	dysfunction	and	isolation,	we	created	a	missingness	indicator	variable	first	for	dys-
function and ran a logistic regression equation with this indicator as the outcome and 
apathy and isolation as the predictors. We then created a missingness indicator for 
isolation and used this indicator as the outcome in a second logistic regression with 
predictors apathy and dysfunction. While the odds ratios obtained with the logistic 
regressions should be examined, we simply note here that, for each equation, the only 
significant	predictor	was	 apathy.	This	finding	provides	 further	 evidence	 against	 the	
MCAR	assumption	 and	 suggests	 that	 the	 only	 study	 variable	 responsible	 for	miss-
ingness is apathy (which in this case is consistent with how the missing data were 
obtained).

To complete the description of missing data, we examine the third output selection 
shown in Table 1.1, labeled Tabulated Patterns. This output provides the number of 
cases for each missing data pattern, sorted by the number of cases in each pattern, as 
well as relevant group means. For the apathy data, note that there are four missing 
data	patterns	shown	in	the	Tabulated	Patterns	table.	The	first	pattern,	consisting	of	189	
cases, consists of cases that provided complete data on all study variables. The three 
columns on the right side of the output show the means for each study variable for 
these	189	cases.	The	second	missing	data	pattern	includes	the	51	cases	that	provided	
complete data on all variables except for isolation. Here, we can see that this group had 
much greater mean apathy than those who provided complete scores for all variables 
and	somewhat	higher	mean	dysfunction,	again,	discrediting	the	MCAR	mechanism.	
The next group includes those cases (n = 39) that had missing data for both dysfunction 
and isolation. Note, then, that the Tabulated Pattern table provides additional informa-
tion than provided by the Separate Variance t Tests table, in that now we can identify 
the	number	of	cases	that	have	missing	data	on	more	than	one	variable.	The	final	group	
in this table (n = 21) consists of those who have missing data on the isolation variable 
only. Inspecting the means for the three groups with missing data indicates that each of 
these groups has much greater apathy, in particular, than do cases with complete data, 
again	suggesting	the	data	are	not	MCAR.

1.6.7 Applying FIML and MI to the Apathy Data

We now use the results from the previous section to select a missing data treatment. 
Given	 that	 the	earlier	analyses	 indicated	 that	 the	data	are	not	MCAR,	 this	suggests	
that listwise deletion, which could be used in some situations, should not be used 
here. Rather, of the methods we have discussed, full information maximum likelihood 
estimation and multiple imputation are the best choices. If we assume that the three 
study	variables	approximately	follow	a	multivariate	normal	distribution,	FIML,	due	
to its ease of use and because it provides optimal parameter estimates when data are 
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MAR,	would	be	the	most	reasonable	choice.	We	provide	SAS	and	SPSS	code	that	can	
be used to implement these missing data treatments for our example data set and show 
how these methods perform compared to the use of more conventional missing data 
treatments.

Although SPSS has capacity for some missing data treatments, it currently can-
not implement a maximum likelihood approach (outside of the effective but lim-
ited mixed modeling procedure discussed in a Chapter 14, which cannot handle 
missingness in predictors, except for using listwise deletion for such cases). As 
such,	we	use	SAS	to	implement	FIML	with	the	relevant	code	for	our	example	as	
follows:

PROC CALIS DATA = apathy METHOD = fiml;
PATH apathy <- dysfunction isolation;
RUN;

PROC CALIS (Covariance Analysis of Linear Structural Equations) is capable of 
implementing	 FIML.	Note	 that	 after	 indicating	 the	 data	 set,	 you	 simply	write	fiml 
following METHOD. Note that SAS assumes that a dot or period (like this. ) repre-
sents missing data in your data set. On the second line, the dependent variable (here, 
apathy) for our regression equation of interest immediately follows PATH with the 
remaining predictors placed after the <− symbols. Assuming that we do not have aux-
iliary variables (which we do not here), the code is complete. We will present relevant 
results later in this section.

Both SAS and SPSS can implement multiple imputation, assuming that you have 
the	Missing	Values	Analysis	module	 in	 SPSS.	 Table	 1.2	 presents	 SAS	 and	 SPSS	
code	that	can	be	used	to	implement	MI	for	the	apathy	data.	Be	aware	that	both	sets	
of code, with the exception of the number of imputations, tacitly accept the default 
choices that are embedded in each of the software programs. You should examine 
SAS and SPSS documentation to see what these default options are and whether they 
are reasonable for your particular set of circumstances. Note that SAS code follows 
the	three	MI	phases	(imputation,	analysis,	and	pooling	of	results).	In	the	first	line	of	
code in Table 1.2, you write after the OUT command the name of the data set that 
will contain the imputed data sets (apout, here). The NIMPUTE command is used 
to specify the number of imputed data sets you wish to have (here, 100 such data 
sets). The variables used in the imputation phase appear in the second line of code. 
The PROC REG command, leading off the second block of code (corresponding 
to the analysis phase), is used because the primary analysis of interest is multiple 
regression. Note that regression analysis is applied to each of the 100 imputed data 
sets	(stored	in	the	file	apout), and the resulting 100 sets of parameter estimates are 
output	to	another	data	file	we	call	est.	The	final	block	of	SAS	code	(corresponding	
to the pooling phase) is used to combine the parameter estimates across the imputed 
data	sets	and	yields	a	final	single	set	of	parameter	estimates,	which	is	then	used	to	
interpret the regression results.
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SPSS	syntax	needed	to	 implement	MI	for	the	apathy	data	are	shown	in	 the	 lower	
half	of	Table	1.2.	In	the	first	block	of	commands,	MULTIPLE IMPUTATION is used 
to create the imputed sets using the three variables appearing in that line. Note 
that the second line of SPSS code requests 100 such imputed data sets, and the last 
line	in	that	first	block	outputs	a	data	file	 that	we	named	impute that has all 100 
imputed	data	sets.	With	 that	data	file	active,	 the	second	block	of	SPSS	code	con-
ducts the regression analysis of interest on each of the 100 data sets and produces a 
final	combined	set	of	regression	estimates	used	for	interpretation.	Note	that	if	you	
close	the	imputed	data	file	and	reopen	it	at	some	later	time	for	analysis,	you	would	
first	 need	 to	 click	 on	View	 (in	 the	Data	Editor)	 and	Mark	 Imputed	Data	 prior	 to	
running the regression analysis. If this step is not done, SPSS will treat the data in 
the	imputed	data	file	as	if	they	were	from	one	data	set,	instead	of,	in	this	case,	100	
imputed	data	sets.	Results	using	MI	for	the	apathy	data	are	very	similar	for	SAS	and	
SPSS,	as	would	be	expected.	Thus,	we	report	the	final	regression	results	as	obtained	
from SPSS.

Table 1.3 provides parameter estimates obtained by applying a variety of missing data 
treatments to the apathy data as well as the estimates obtained from the parent data 
set that had no missing observations. Note that the percent bias columns in Table 1.3 
are	calculated	as	the	difference	between	the	respective	regression	coefficient	obtained	

 Table 1.2: SAS and SPSS Code for Multiple Imputation With the Apathy Data

SAS Code

PROC MI DATA = apathy OUT = apout NIMPUTE = 100;
VAR apathy dysfunction isolation;
RUN;
PROC REG DATA = apout OUTEST = est COVOUT;
MODEL apathy = dysfunction isolation;
BY _Imputation_;
RUN;
PROC MIANALYZE DATA = est;
MODELEFFECTS INTERCEPT dysfunction isolation;
RUN;

SPSS Code

MULTIPLE IMPUTATION apathy dysfunction isolation
/IMPUTE METHOD=AUTO NIMPUTATIONS=100
/IMPUTATIONSUMMARIES MODELS
/OUTFILE IMPUTATIONS=impute.
REGRESSION
/STATISTICS COEFF OUTS R ANOVA
/DEPENDENT apathy
/METHOD=ENTER dysfunction isolation.
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from the missing data treatment to that obtained by the complete or parent data set, 
divided by the latter estimate, and then multiplied by 100 to obtain the percent. For 
coefficient	β1,	we	see	that	FIML	and	MI	yielded	estimates	that	are	closest	to	the	values	
from the parent data set, as these estimates are less than 5% higher. Listwise deletion 
and	mean	substitution	produced	the	worst	estimates	for	both	regression	coefficients,	
and	pairwise	deletion	also	exhibited	poorer	performance	than	MI	or	FIML.	In	line	with	
the	literature,	FIML	provided	the	most	accurate	estimates	and	resulted	in	more	power	
(exhibited by the t	tests)	than	MI.	Note,	though,	that	with	the	greater	amount	of	miss-
ing	data	for	isolation	(30%),	the	estimates	for	FIML	and	MI	are	more	than	10%	lower	
than	the	estimate	for	the	parent	set.	Thus,	although	FIML	and	MI	are	the	best	missing	
data	treatments	for	this	situation	(i.e.,	given	that	the	data	are	MAR),	no	missing	data	is	
the best kind of missing data to have.

1.6.8 Missing Data Summary

You should always determine and report the extent of missing data for your study 
variables. Further, you should attempt to identify the most plausible mechanism for 
missing data. Section 1.6.7 provided some procedures you can use for these purposes 
and illustrated the selection of a missing data treatment given this preliminary analysis. 
The two most widely recommended procedures are full information maximum likeli-
hood and multiple imputation, although listwise deletion can be used in some circum-
stances	(i.e.,	minimal	amount	of	missing	data	and	data	MCAR).	Also,	to	reduce	the	
amount of missing data, it is important to minimize the effort required by participants 
to provide data (e.g., use short questionnaires, provide incentives for responding). 
However, given that missing data are inevitable despite your best efforts, you should 
consider collecting data on variables that may predict missingness for the study varia-
bles of interest. Incorporating such auxiliary variables in your missing data treatment 
can provide for improved parameter estimates.

1.7 UNIT OR PARTICIPANT NONRESPONSE

Section 1.6 discussed the situation where data was collected from each respondent 
but that some cases may not have provided a complete set of responses, resulting in 

Method β1 β2 t (β1) t (β2) % Bias for β1 % Bias for β2

No missing data .289 (.058) .280 (.067) 4.98 4.18 – –
Listwise .245 (.067) .202 (.067) 3.66 3.01 −15.2 −27.9
Pairwise .307 (.076) .226 (.076) 4.04 2.97 6.2 −19.3
Mean substitution .334 (.067) .199 (.072) 4.99 2.76 15.6 −28.9
FIML .300 (.068) .247 (.071) 4.41 3.48 3.8 −11.8
MI .303 (.074) .242 (.078) 4.09 3.10 4.8 −13.6

 Table 1.3: Parameter Estimates for Dysfunction (β1) and Isolation (β2) Under Various 
Missing Data Methods 
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incomplete or missing data. A different type of missingness occurs when no data are 
collected from some respondents, as when a survey respondent refuses to participate in 
a survey. This nonparticipation, called unit or participant nonresponse, happens regu-
larly in survey research and can be problematic because nonrespondents and respond-
ents may differ in important ways. For example, suppose 1,000 questionnaires are sent 
out and only 200 are returned. Of the 200 returned, 130 are in favor of some issue at 
hand and 70 are opposed. As such, it appears that most of the people favor the issue. 
But	800	surveys	were	not	returned.	Further,	suppose	that	55%	of	the	nonrespondents	
are opposed and 45% are in favor. Then, 440 of the nonrespondents are opposed and 
360 are in favor. For all 1,000 individuals, we now have 510 opposed and 490 in favor. 
What looked like an overwhelming majority in favor with the 200 respondents is now 
evenly split among the 1,000 cases.

It is sometimes suggested, if one anticipates a low response rate and wants a certain 
number of questionnaires returned, that the sample size should be simply increased. 
For example, if one wishes 400 returned and a response rate of 20% is anticipated, 
send out 2,000. This can be a dangerous and misleading practice. Let us illustrate. 
Suppose 2,000 are sent out and 400 are returned. Of these, 300 are in favor and 100 are 
opposed. It appears there is an overwhelming majority in favor, and this is true for the 
respondents. But 1,600 did NOT respond. Suppose that 60% of the nonrespondents (a 
distinct possibility) are opposed and 40% are in favor. Then, 960 of the nonrespond-
ents are opposed and 640 are in favor. Again, what appeared to be an overwhelming 
majority in favor is stacked against (1,060 vs. 940) for ALL participants.

Groves et al. (2009) discuss a variety of methods that can be used to reduce unit non-
response. In addition, they discuss a weighting approach that can be used to adjust 
parameter estimates for such nonresponse when analyzing data with unit nonresponse. 
Note that the methods described in section 1.6 for treating missing data, such as multi-
ple imputation, are not relevant for unit nonresponse if there is a complete absence of 
data from nonrespondents.

1.8  RESEARCH EXAMPLES FOR SOME ANALYSES  
CONSIDERED IN THIS TEXT

To give you something of a feel for several of the statistical analyses considered in 
succeeding chapters, we present the objectives in doing a multiple logistic regression 
analysis, a multivariate analysis of variance and covariance, and an exploratory fac-
tor analysis, along with illustrative studies from the literature that use each of these 
analyses.

1.8.1 Logistic Regression

In a previous course you have taken, simple linear regression was covered, where a 
dependent variable (say chemistry achievement) is predicted from just one predictor, 
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such	 as	 IQ.	 It	 is	 certainly	 reasonable	 that	 other	 variables	would	 also	 be	 related	 to	
chemistry achievement and that we could obtain better prediction by making use of 
these variables, such as previous average grade in science courses, attitude toward 
education, and math ability. In addition, in some studies, a binary outcome (success 
or failure) is of interest, and researchers are interested in variables that are related to 
this outcome. When the outcome variable is binary (i.e., pass/fail), though, standard 
regression analysis is not appropriate. Instead, in this case, logistic regression is often 
used. Thus, the objective in multiple logistic regression (called multiple because we 
have multiple predictors) is:

Objective: Predict a binary dependent variable from a set of independent variables.

Example
Reingle Gonzalez and Connell (2014) were interested in determining which of several 
predictors were related to medication continuity among a nationally representative 
sample	of	US	prisoners.	A	prisoner	was	said	to	have	experienced	medication	continu-
ity if that individual had been taking prescribed medication at intake into prison and 
continued to take such medication after admission into prison. The logistic regres-
sion analysis indicated that, after controlling for other predictors, prisoners were more 
likely to experience medication continuity if they were diagnosed with schizophrenia, 
saw a health care professional in prison, were black, were older, and had served less 
time than other prisoners.

1.8.2 One-Way Multivariate Analysis of Variance

In univariate analysis of variance, several groups of participants are compared to deter-
mine whether mean differences are present for a single dependent variable. But, as was 
mentioned earlier in this chapter, any good treatment(s) generally affects participants 
in several ways. Hence, it makes sense to collect data from participants on multiple 
outcomes and then test whether the groups differ, on average, on the set of outcomes. 
This	provides	for	a	more	complete	assessment	of	the	efficacy	of	the	treatments.	Thus,	
the objective in multivariate analysis of variance is:

Objective: Determine whether mean differences are present across several groups for 
a set of dependent variables.

Example
McCrudden,	Schraw,	and	Hartley	(2006)	conducted	an	educational	experiment	to	deter-
mine if college students exhibited improved learning relative to controls after they had 
received general prereading relevance instructions. The researchers were interested in 
determining if those receiving such instruction differed from control students for a set 
of various learning outcomes, as well as a measure of learning effort (reading time). 
The multivariate analysis indicated that the two groups had different means on the 
set of outcomes. Follow-up testing revealed that students who received the relevance 
instructions had higher mean scores on measures of factual and conceptual learning as 
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well as the number of claims made in an essay item and the essay item score. The two 
groups did not differ, on average, on total reading time, suggesting that the relevance 
instructions facilitated learning while not requiring greater effort.

1.8.3 Multivariate Analysis of Covariance

Objective: Determine whether several groups differ on a set of dependent variables 
after the posttest means have been adjusted for any initial differences on the covariates 
(which are often pretests).

Example
Friedman,	Lehrer,	and	Stevens	(1983)	examined	the	effect	of	two	stress	management	
strategies, directed lecture discussion and self-directed, and the locus of control of 
teachers on their scores on the State-Trait Anxiety Inventory and on the Subjective 
Stress	Scale.	Eighty-five	 teachers	were	pretested	 and	posttested	on	 these	measures,	
with the treatment extending to 5 weeks. Teachers who received the stress manage-
ment programs reduced their stress and anxiety more than those in a control group. 
However, teachers who were in a stress management program compatible with their 
locus of control (i.e., externals with lectures and internals with the self-directed) did 
not	reduce	stress	significantly	more	than	participants	in	the	unmatched	stress	manage-
ment groups.

1.8.4 Exploratory Factor Analysis

As	you	know,	a	bivariate	correlation	coefficient	describes	the	degree	of	linear	asso-
ciation between two variables, such as anxiety and performance. However, in many 
situations, researchers collect data on many variables, which are correlated, and they 
wish to determine if there are fewer constructs or dimensions that underlie responses 
to these variables. Finding support for a smaller number of constructs than observed 
variables provides for a more parsimonious description of results and may lead to iden-
tifying new theoretical constructs that may be the focus of future research. Exploratory 
factor analysis is a procedure that can be used to determine the number and nature of 
such constructs. Thus, the general objective in exploratory factor analysis is:

Objective: Determine the number and nature of constructs that underlie responses to 
a set of observed variables.

Example
Wong,	 Pituch,	 and	 Rochlen	 (2006)	 were	 interested	 in	 determining	 if	 specific	
emotion-related variables were predictive of men’s restrictive emotionality, where this 
latter	concept	refers	to	having	difficulty	or	fears	about	expressing	or	talking	about	one’s	
emotions. As part of this study, the researchers wished to identify whether a smaller 
number of constructs underlie responses to the Restrictive Emotionality scale and 
eight other measures of emotion. Results from an exploratory factor analysis suggested 
that three factors underlie responses to the nine measures. The researchers labeled the 
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constructs	 or	 factors	 as	 (1)	Difficulty	With	Emotional	Communication	 (which	was	
related to restrictive emotionality), (2) Negative Beliefs About Emotional Expression, 
and (3) Fear of Emotions, and suggested that these constructs may be useful for future 
research on men’s emotional behavior.

1.9 THE SAS AND SPSS STATISTICAL PACKAGES

As you have seen already, SAS and the SPSS are selected for use in this text for several 
reasons:

1. They are very widely distributed and used.
2. They are easy to use.
3. They do a very wide range of analyses—from simple descriptive statistics to var-

ious analyses of variance designs to all kinds of complex multivariate analyses 
(factor analysis, multivariate analysis of variance, discriminant analysis, logistic 
multiple regression, etc.).

4. They are well documented, having been in development for decades.

In this edition of the text, we assume that instructors are familiar with one of these two 
statistical programs. Thus, we do not cover the basics of working with these programs, 
such as reading in a data set and/or entering data. Instead, we show, throughout the 
text, how these programs can be used to run the analyses that are discussed in the rele-
vant chapters. The versions of the software programs used in this text are SAS version 
9.3 and SPSS version 21. Note that user’s guides for SAS and SPSS are available at 
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm 
#titlepage.htm and http://www-01.ibm.com/support/docview.wss?uid=swg27024972, 
respectively.

1.10 SAS AND SPSS SYNTAX

We nearly always use syntax, instead of dialogue boxes, to show how analyses can 
be conducted throughout the text. While both SAS and SPSS offer dialogue boxes to 
ease obtaining analysis results, we feel that providing syntax is preferred for several 
reasons. First, using dialogue boxes for SAS and SPSS would “clutter up” the text 
with pages of screenshots that would be needed to show how to conduct analyses. In 
contrast,	using	syntax	is	a	much	more	efficient	way	to	show	how	analysis	results	may	
be obtained. Second, with the use of the Internet, there is no longer any need for users 
of this text to do much if any typing of commands, which is often dreaded by students. 
Instead,	you	can	simply	download	the	syntax	and	related	data	sets	and	use	these	files	
to run analyses that are in the textbook. That is about as easy as it gets! If you wish 
to conduct analysis with your own data sets, it is a simple matter of using your own 
data	files	and,	for	the	most	part,	simply	changing	the	variable	names	that	appear	in	the	
online syntax.

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm
http://www-01.ibm.com/support/docview.wss?uid=swg27024972,
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Third, instructors may not wish to devote much time to showing how analyses can 
be obtained via statistical software and instead focus on understanding which anal-
ysis	 should	be	used	 for	 a	given	 situation,	 the	 specific	 analysis	 steps	 that	 should	be	
taken (e.g., search for outliers, assess assumptions, the statistical tests and effect size 
measures that are to be used), and how analysis results are to be interpreted. For these 
instructors, then, it is a simple matter of ignoring the relatively short sections of the 
text that discuss and present software commands. Also, for students, if this is the case 
and	you	still	you	wish	to	know	what	specific	sections	of	code	are	doing,	we	provide	
relevant descriptions along the way to help you out.

Fourth, there may be occasions where you wish to keep a copy of the commands that 
implemented your analysis. You could not easily do this if you exclusively use dia-
logue	boxes,	but	your	syntax	file	will	contain	the	commands	you	used	for	analyses.	
Fifth, implementing some analysis techniques requires use of commands, as not all 
procedures can be obtained with the dialogue boxes. A relevant example occurs with 
exploratory factor analysis (Chapter 9), where parallel analysis can be implemented 
only with commands. Sixth, as you continue to learn more advanced techniques (such 
as multilevel and structural equation modeling), you will encounter other software pro-
grams	(e.g.,	Mplus)	that	use	only	code	to	run	analyses.	Becoming	familiar	with	using	
code will better prepare you for this eventuality. Finally, while we anticipate this will 
be not the case, if SAS or SPSS commands were to change before a subsequent edi-
tion	of	this	text	appears,	we	can	simply	update	the	syntax	file	online	to	handle	recent	
updates to the programming code.

1.11  SAS AND SPSS SYNTAX AND DATA SETS ON THE 
INTERNET

Syntax	and	data	files	needed	 to	 replicate	 the	analysis	discussed	 throughout	 the	 text	
are available on the Internet for both SAS and SPSS (www.psypress.com/books/
details/9780415836661/).	You	must,	of	course,	open	the	SAS	and	SPSS	programs	on	
your	computer	as	well	as	the	respective	syntax	and	data	files	to	run	the	analysis.	If	you	
do not know how to do this, your instructor can help you.

1.12 SOME ISSUES UNIQUE TO MULTIVARIATE ANALYSIS

Many	of	the	techniques	discussed	in	this	text	are	mathematical maximization proce-
dures, and hence there is great opportunity for capitalization on chance. Often, analysis 
results that “look great” on a given sample may not translate well to other samples. 
Thus,	 the	 results	 are	 sample	 specific	 and	 of	 limited	 scientific	 utility.	Reliability	 of	
results, then, is a real concern.

The notion of a linear combination of variables is fundamental to all the types of anal-
ysis we discuss. A general linear combination for p variables is given by:

www.psypress.com/books/details/9780415836661/
www.psypress.com/books/details/9780415836661/
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y a x a x a x a xp p= + + + +1 1 2 2 3 3  ,

where a1, a2, a3, …, ap	are	the	coefficients	for	the	variables.	This	definition	is	abstract;	
however, we give some simple examples of linear combinations that you are probably 
already familiar with.

Suppose we have a treatment versus control group design with participants pretested 
and posttested on some variable. Then, sometimes analysis is done on the difference 
scores (gain scores), that is, posttest–pretest. If we denote the pretest variable by x1 and 
the posttest variable by x2, then the difference variable y = x2	−	x1 is a simple linear 
combination where a1	=	−1	and	a2 = 1.

As another example of a simple linear combination, suppose we wished to sum three 
subtest scores on a test (x1, x2, and x3). Then the newly created sum variable y = x1 + x2 + x3  
is a linear combination where a1 = a2 = a3 = 1.

Still another example of linear combinations that you may have encountered in an 
intermediate statistics course is that of contrasts among means, as when planned com-
parisons are used. Consider the following four-group ANOVA, where T3 is a combina-
tion treatment, and T4 is a control group:

T T T T1 2 3 4

1 2 3 4µ µ µ µ
Then the following meaningful contrast

L1
1 2

32
=

+
−

µ µ
µ

is a linear combination, where a1 = a2 = 1
2

 and a3	=	−1,	while	the	following	contrast	
among means,

L1
1 2 3

43
=

+ +
−

µ µ µ
µ ,

is also a linear combination, where a1 = a2 = a3 = 1
3

 and a4	 =	−1.	The	 notions	of	

mathematical maximization and linear combinations are combined in many of the 
multivariate procedures. For example, in multiple regression we talk about the linear 
combination of the predictors that is maximally correlated with the dependent varia-
ble, and in principal components analysis the linear combinations of the variables that 
account for maximum portions of the total variance are considered.

1.13 DATA COLLECTION AND INTEGRITY

Although in this text we minimize discussion of issues related to data collection and 
measurement of variables, as this text focuses on analysis, you are forewarned that 
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these are critical issues. No analysis, no matter how sophisticated, can compensate 
for poor data collection and measurement problems. Iverson and Gergen (1997) in 
chapter 14 of their text on statistics hit on some key issues. First, they discussed the 
issue of obtaining a random sample, so that one can generalize to some population of 
interest. They noted:

We believe that researchers are aware of the need for randomness, but achieving 
it is another matter. In many studies, the condition of randomness is almost never 
truly	satisfied.	A	majority	of	psychological	studies,	for	example,	rely	on	college	
students for their research results. (Critics have suggested that modern psychology 
should be called the psychology of the college sophomore.) Are college students 
a random sample of the adult population or even the adolescent population? Not 
likely. (p. 627)

Then they turned their attention to problems in survey research, and noted:

In interview studies, for example, differences in responses have been found 
depending on whether the interviewer seems to be similar or different from the 
respondent in such aspects as gender, ethnicity, and personal preferences. . . . 
The place of the interview is also important. . . . Contextual effects cannot be 
overcome totally and must be accepted as a facet of the data collection process. 
(pp.	628–629)

Another point they mentioned is that what people say and what they do often do not cor-
respond. They noted, “a study that asked about toothbrushing habits found that on the 
basis of what people said they did, the toothpaste consumption in this country should 
have been three times larger than the amount that is actually sold” (pp. 630–631).

Another problem, endemic in psychology, is using college freshmen or sophomores. 
This raises issues of data integrity. A student, visiting Dr. Stevens and expecting advice 
on multivariate analysis, had collected data from college freshmen. Dr. Stevens raised 
concerns	about	 the	 integrity	of	 the	data,	worrying	that	for	most	18-	or	19-year-olds	
concentration lapses after 5 or 10 minutes. As such, this would compromise the integ-
rity	of	the	data,	which	no	analysis	could	help.	Many	freshmen	may	be	thinking	about	
the	next	party	or	social	event,	and	filling	out	the	questionnaire	 is	far	from	the	most	
important thing in their minds.

In ending this section, we wish to point out that many mail questionnaires and tele-
phone	interviews	may	be	much	too	long.	Mail	questionnaires,	for	the	most	part,	can	
be limited to two pages, and telephone interviews to 5 to 10 minutes. If you think 
about it, most if not all relevant questions can be asked within 5 minutes. It is always 
a balance between information obtained and participant fatigue, but unless partici-
pants are very motivated, they may have too many other things going in their lives 
to	spend	the	time	filling	out	a	10-page	questionnaire	or	to	spend	20	minutes	on	the	
telephone.
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1.14 INTERNAL AND EXTERNAL VALIDITY

Although this is a book on statistical analysis, the design you set up is critical. In a 
course on research methods, you learn of internal and external validity, and of the 
threats to each. If you have designed an experimental study, then internal validity 
refers	to	the	confidence	you	have	that	the	treatment(s)	are	responsible	for	the	posttest	
group differences. There are various threats to internal validity (e.g., history, matu-
ration, selection, regression toward the mean). In setting up a design, you want to be 
confident	that	the	treatment	caused	the	difference,	and	not	one	of	the	threats.	Random	
assignment of participants to groups controls most of the threats to internal validity, 
and for this reason it is often referred to as the “gold standard.” It is the best way of 
assuring, within sampling error, that the groups are “equal” on all variables prior to 
treatment implementation. However, if there is a variable (we will use gender and two 
groups to illustrate) that is related to the dependent variable, then one should stratify 
on that variable and then randomly assign within each stratum. For example, if there 
were	36	females	and	24	males,	we	would	randomly	assign	18	females	and	12	males	to	
each group. By doing this, we ensure an equal number of males and females in each 
group, rather than leaving this to chance. It is extremely important to understand that 
good research design is essential. Light, Singer, and Willett (1990), in the preface of 
their	book,	summed	it	up	best	by	stating	bluntly,	“you	can’t	fix	by	analysis	what	you	
bungled by design” (p. viii).

Treatment, as stated earlier, is generic and could refer to teaching methods, counseling 
methods, drugs, diets, and so on. It is dangerous to assume that the treatment(s) will be 
implemented as you planned, and hence it is very important to monitor the treatment 
to help ensure that it is implemented as intended. If the planned and implemented treat-
ments differ, it may not be clear what is responsible for the obtained group differences. 
Further, posttest differences may not appear if the treatments are not implemented as 
intended.

Now let us turn our attention to external validity. External validity refers to the gener-
alizability of results. That is, to what population(s) of participants, settings, and times 
can we generalize our results? A good book on external validity is by Shadish, Cook, 
and Campbell (2002).

Two excellent books on research design are the aforementioned By Design by Light, 
Singer, and Willett (which Dr. Stevens used for many years) and a book by Alan Kaz-
din entitled Research Design in Clinical Psychology (2003). Both of these books 
require, in our opinion, that students have at least two courses in statistics and a course 
on research methods.

Before leaving this section, a word of warning on ratings as the dependent variable. 
Often	you	will	hear	of	training	raters	so	that	raters	agree.	This	is	fine.	However,	it	does	
not go far enough. There is still the issue of bias with the raters, and this can be very 
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problematic if the rater has a vested interest in the outcome. Dr. Stevens has seen too 
many dissertations where the person writing it is one of the raters.

1.15 CONFLICT OF INTEREST

Kazdin	notes	that	conflict	of	interest	can	occur	in	many	different	ways	(2003,	p.	537).	
One	way	is	 through	a	conflict	between	the	scientific	responsibility	of	 the	 investiga-
tor(s)	and	a	vested	financial	interest.	We	illustrate	this	with	a	medical	example.	In	the	
introduction to Overdosed America (2004), Abramson gives the following medical 
conflict:

The	 second	 part,	 “The	 Commercialization	 of	American	Medicine,”	 presents	 a	
brief history of the commercial takeover of medical knowledge and the techniques 
used to manipulate doctors’ and the public’s understanding of new developments 
in medical science and health care. One example of the depth of the problem was 
presented in a 2002 article in the Journal of the American Medical Association, 
which	showed	that	59%	of	the	experts	who	write	the	clinical	guidelines	that	define	
good	medical	care	have	direct	financial	ties	to	the	companies	whose	products	are	
being evaluated. (p. xvii)

Kazdin (2003) gives examples that hit closer to home, that is, from psychology and 
education:

In	psychological	research	and	perhaps	specifically	in	clinical,	counseling	and	edu-
cational	psychology,	 it	 is	easy	 to	envision	conflict	of	 interest.	Researchers	may	
own stock in companies that in some way are relevant to their research and their 
findings.	Also,	 a	 researcher	may	 serve	 as	 a	consultant	 to	 a	 company	 (e.g.,	 that	
develops software or psychological tests or that publishes books) and receive 
generous consultation fees for serving as a resource for the company. Serving as 
someone	who	gains	financially	from	a	company	and	who	conducts	research	with	
products	that	the	company	may	sell	could	be	a	conflict	of	interest	or	perceived	as	
a	conflict.	(p.	539)

The example we gave earlier of someone serving as a rater for their dissertation is a 
potential	conflict	of	interest.	That	individual	has	a	vested	interest	in	the	results,	and	for	
him	or	her	to	remain	objective	in	doing	the	ratings	is	definitely	questionable.

1.16 SUMMARY

This chapter reviewed type I error, type II error, and power. It indicated that power 
is dependent on the alpha level, sample size, and effect size. The problem of multi-
ple statistical tests appearing in various situations was discussed. The important issue 
of statistical versus practical importance was discussed, and some ways of assessing 
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practical	importance	(confidence	intervals,	effect	sizes,	and	measures	of	association)	
were mentioned. The importance of identifying outliers (e.g., participants who are 3 or 
more standard deviations from the mean) was emphasized. We also considered at some 
length issues related to missing data, discussed factors involved in selecting a missing 
data treatment, and illustrated with a small data set how you can select and implement 
a missing data treatment. We also showed that conventional missing data treatments 
can	produce	relatively	poor	parameter	estimates	with	MAR	data.	We	also	briefly	dis-
cussed	participant	or	unit	nonresponse.	SAS	and	SPSS	syntax	files	and	accompanying	
data	sets	for	the	examples	used	in	this	text	are	available	on	the	Internet,	and	these	files	
allow you to easily replicate analysis results shown in this text. Regarding data integ-
rity, what people say and what they do often do not correspond. The critical importance 
of a good design was also emphasized. Finally, it is important to keep in mind that 
conflict	of	interest	can	undermine	the	integrity	of	results.

1.17 EXERCISES

1. consider a two-group independent-samples t test with a treatment group 
(treatment is generic and could be intervention, diet, drug, counseling method, 
etc.) and a control group. the null hypothesis is that the population means are 
equal. What are the consequences of making a type I error? What are the con-
sequences of making a type II error?

2. this question is concerned with power.

(a) Suppose a clinical study (10 participants in each of two groups) does not 
find significance at the .05 level, but there is a medium effect size (which is 
judged to be of practical importance). What should the investigator do in a 
future replication study?

(b) It has been mentioned that there can be “too much power” in some stud-
ies. What is meant by this? relate this to the “sledgehammer effect” men-
tioned in the chapter.

3. this question is concerned with multiple statistical tests.

(a) consider a two-way anoVa (A × B) with six dependent variables. If a uni-
variate analysis is done at α = .05 on each dependent variable, then how 
many tests have been done? What is the Bonferroni upper bound on over-
all alpha? compute the tighter bound.

(b) now consider a three-way anoVa (A × B × C) with four dependent vari-
ables. If a univariate analysis is done at α = .05 on each dependent varia-
ble, then how many tests have been done? What is the Bonferroni upper 
bound on overall alpha? compute the tighter upper bound.

4. this question is concerned with statistical versus practical importance: a sur-
vey researcher compares four regions of the country on their attitude toward 
education. to this survey, 800 participants respond. ten items, Likert scaled 
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from 1 to 5, are used to assess attitude. a higher positive score indicates a 
more positive attitude. Group sizes and the means are given next.

North South East West

N 238 182 130 250
x 32.0 33.1 34.0 31.0

 an analysis of variance on these four groups yielded F = 5.61, which is signifi-
cant at the .001 level. discuss the practical importance issue.

5. this question concerns outliers: Suppose 150 participants are measured on 
four variables. Why could a subject not be an outlier on any of the four varia-
bles and yet be an outlier when the four variables are considered jointly?

 Suppose a Mahalanobis distance is computed for each subject (checking for 
multivariate outliers). Why might it be advisable to do each test at the .001 
level?

6. Suppose you have a data set where some participants have missing data on 
income. Further, suppose you use the methods described in section 1.6.6 to 
assess whether the missing data appear to be Mcar and find that is missing-
ness on income is not related to any of your study variables. does that mean 
the data are Mcar? Why or why not?

7. If data are Mcar and a very small proportion of data is missing, would listwise 
deletion, maximum likelihood estimation, and multiple imputation all be good 
missing data treatments to use? Why or why not?
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Chapter 2

MATRIX ALGEBRA

2.1 INTRODUCTION

This chapter introduces matrices and vectors and covers some of the basic matrix 
operations used in multivariate statistics. The matrix operations included are by 
no means intended to be exhaustive. Instead, we present some important tools that 
will help you better understand multivariate analysis. Understanding matrix algebra 
is important, as the values of multivariate test statistics (e.g., Hotelling’s T 2 and 
Wilks’ lambda), effect size measures (D2 and multivariate eta square), and outlier 
indicators (e.g., the Mahalanobis distance) are obtained with matrix algebra. We 
assume here that you have no previous exposure to matrix operations. Also, while it 
is helpful, at times, to compute matrix operations by hand (particularly for smaller 
matrices), we include SPSS and SAS commands that can be used to perform matrix 
operations.

A matrix is simply a rectangular array of elements. The following are examples of 
matrices:

1 2 3 4
4 5 6 9

2 4

1 2 1
2 3 5
5 6 8
1 4 10

4 3

1 2
2 4
2 2











×



















×











×

The numbers underneath each matrix are the dimensions of the matrix, and indicate 
the size of the matrix. The first number is the number of rows and the second num-
ber the number of columns. Thus, the first matrix is a 2 × 4 since it has 2 rows and  
4 columns.

A familiar matrix in educational research is the score matrix. For example, suppose 
we had measured six subjects on three variables. We could represent all the scores as 
a matrix:
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Variables
1 2 3

10 4 18
12 6 21
13 2 20
16 8 16
12 3 14
15 9 13

Subjects

1
2
3
4
5
6



























This is a 6 × 3 matrix. More generally, we can represent the scores of N participants on 
p variables in an N × p matrix as follows:

Variables
p

x x x x

x x x x

x x

p

p

N

1 2 3

11 12 13 1

21 22 23 2

1

Subjects

1
2

N





   

N N Npx x2 3 





















The first subscript indicates the row and the second subscript the column. Thus, x12 
represents the score of participant 1 on variable 2 and x2p represents the score of par-
ticipant 2 on variable p.

The transpose A′ of a matrix A is simply the matrix obtained by interchanging rows 
and columns.

Example 2.1

A A=


























2 3 6
5 4 8

′ =
2 5
3 4
6 8

The first row of A has become the first column of A′ and the second row of A has 
become the second column of A′.

B B=















→ =

















3 4 2
5 6 5
1 3 8

3 5 1
4 6 3
2 5 8

′

In general, if a matrix A has dimensions r × s, then the dimensions of the transpose 
are s × r.

A matrix with a single row is called a row vector, and a matrix with a single column 
is called a column vector. While matrices are written in bold uppercase letters, as we 
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have seen, vectors are always indicated by bold lowercase letters. Also, a row vector is 
indicated by a transpose, for example, x′, y′, and so on.

Example 2.2

x
y

′ = 1,2,3( )
×

=



















×
1 3

4
6
8
7

4 1
 row vector

 column vector

A row vector that is of particular interest to us later is the vector of means for a group 
of participants on several variables. For example, suppose we have measured 100 par-
ticipants on the California Psychological Inventory and have obtained their average 
scores on five of the subscales. The five means would be represented as the following 
row vector x′:

x′ = (24, 31, 22, 27, 30)

The elements on the diagonal running from upper left to lower right are said to be on 
the main diagonal of a matrix. A matrix A is said to be symmetric if the elements below 
the main diagonal are a mirror reflection of the corresponding elements above the main 
diagonal. This is saying a12 = a21, a13 = a31, and a23 = a32 for a 3 × 3 matrix, since these 
are the corresponding pairs. This is illustrated by:

4 6 8
Main diagonal

Denotes
corresponding pairs

73

7 18

6
a21

a31 a32

a23

a13a12

In general, a matrix A is symmetric if aij = aji, i ≠ j, that is, if all corresponding pairs of 
elements above and below the main diagonal are equal.

An example of a symmetric matrix that is frequently encountered in statistical work is 
that of a correlation matrix. For example, here is the matrix of intercorrelations for four 
subtests of the Differential Aptitude Test for boys:

VR NA Cler. Mech.

Verbal reas. 1.00 .70 .19 .55
Numerical abil. .70 1.00 .36 .50
Clerical speed .19 .36 1.00 .16
Mechan. reas. .55 .50 .16 1.00
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This matrix is symmetric because, for example, the correlation between VR and NA is 
the same as the correlation between NA and VR.

Two matrices A and B are equal if and only if all corresponding elements are equal. 
That is to say, two matrices are equal only if they are identical.

2.2  ADDITION, SUBTRACTION, AND MULTIPLICATION  
OF A MATRIX BY A SCALAR

You add two matrices A and B by summing the corresponding elements.

Example 2.3

A B=
2 3
3 4

6 2
2 5









 =











A B+ =
+ +
+ +









 =











2 6 3 2
3 2 4 5

8 5
5 9

Notice the elements in the (1, 1) positions, that is, 2 and 6, have been added, and so on.

Only matrices of the same dimensions can be added. Thus, addition would not be 
defined for these matrices:

2 3 1
1 4 6

1 4
5 6









 +









  not defined

If two matrices are of the same dimension, you can then subtract one matrix from 
another by subtracting corresponding elements.

A B A B−








 −









 =

−









2 1 5
3 2 6

1 4 2
1 2 5

1 3 3
2 0 1

You multiply a matrix or a vector by a scalar (number) by multiplying each element of 
the matrix or vector by the scalar.

Example 2.4

2 3 1 4 6 2 8 1 3
4
3

4 3
1

, , , ,( ) = ( ) 






 =











4
2 1
1 5

8 4
4 20









 =
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2.2.1 Multiplication of Matrices

There is a restriction as to when two matrices can be multiplied. Consider the product 
AB. To multiply these matrices, the number of columns in A must equal the number 
of rows in B. For example, if A is 2 × 3, then B must have 3 rows, although B could 
have any number of columns. If two matrices can be multiplied they are said to be 
сопformable. The dimensions of the product matrix, call it C, are simply the number 
of rows of A by the number of columns of B. In the earlier example, if B were 3 × 4, 
then C would be a 2 × 4 matrix. In general then, if A is an r × s matrix and B is an s × t 
matrix, then the dimensions of the product AB are r × t.

Example 2.5

A B C
2 1 3
4 5 6

2 3

1 0
2 4
1 5
3 2

2

11 12

21 22











× −

















=

×











c c
c c

×× 2

Note first that A and B can be multiplied because the number of columns in A is 3, 
which is equal to the number of rows in B. The product matrix C is a 2 × 2, that is, 
the outer dimensions of A and B. To obtain the element c11 (in the first row and first 
column), we multiply corresponding elements of the first row of A by the elements of 
the first column of B. Then, we simply sum the products. To obtain c12 we take the sum 
of products of the corresponding elements of the first row of A by the second column 
of B. This procedure is presented next for all four elements of C:

Element

c11 2 1 3
1
2
1

2 1 1 2 3 1 1( , , ) ( ) ( ) ( )
−
















= + + − =

c12 2 1 3
0
4
5

2 0 1 4 3 5 19( , , ) ( ) ( ) ( )















= + + =

c21 4 5 6
1
2
1

4 1 5 2 6 1 8( , , ) ( ) ( ) ( )
−
















= + + − =

c22 4 5 6
0
4
5

4 0 5 4 6 5 50( , , ) ( ) ( ) ( )















= + + =
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Therefore, the product matrix C is:

C =
1 19
8 50










We now multiply two more matrices to illustrate an important property concerning 
matrix multiplication.

Example 2.6

                   A B AB
2 1
1 4

3 5
5 6

2 3 1 5 2 5 1 6

















 =

⋅ + ⋅ ⋅ + ⋅
1 3 4 5 1 5 4 6

11 16
23 29⋅ + ⋅ ⋅ + ⋅









 =











                   B A BA
3 5
5 6

2 1
1 4

3 2 5 1 3 1 5 4

















 =

⋅ + ⋅ ⋅ + ⋅
5 2 6 1 5 1 6 4

11 23
16 29⋅ + ⋅ ⋅ + ⋅









 =











Notice that AB ≠ BA; that is, the order in which matrices are multiplied makes a dif-
ference. The mathematical statement of this is to say that multiplication of matrices 
is not commutative. Multiplying matrices in two different orders (assuming they are 
conformable both ways) in general yields different results.

Example 2.7

A x Ax
3 1 2
1 4 5
2 5 2

3 3

2
6
3

3 1

18
41
40

















×( )

















×( )

=
















×( )3 1

Note that multiplying a matrix on the right by a column vector takes the matrix into a 
column vector.

( , ) ( , )2 5
3 1
1 4

11 22








 =

Multiplying a matrix on the left by a row vector results in a row vector. If we are 
multiplying more than two matrices, then we may group at will. The mathematical 
statement of this is that multiplication of matrices is associative. Thus, if we are con-
sidering the matrix product ABC, we get the same result if we multiply A and B first 
(and then the result of that by C) as if we multiply B and C first (and then the result of 
that by A), that is,

A B C = (A B) C = A (B C)
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A matrix product that is of particular interest to us in Chapter 4 is of the following form:

x S x′
1 1× × ×p p p p

Note that this product yields a number, i.e., the product matrix is 1 × 1 or a number. 
The multivariate test statistic for two groups, Hotelling’s T 2, is of this form (except for 
a scalar constant in front). Other multivariate statistics, for example, that are computed 
in a similar way are the Mahalanobis distance (section 3.14.6) and the multivariate 
effect size measure D2 (section 4.11).

Example 2.8

    x′    S     x    =  (x′S)     x

( , ) ( , )4 2
10 3
3 4

4
2

46 20
4
2

184 40 224
















 =








 = + =

2.3 OBTAINING THE MATRIX OF VARIANCES AND COVARIANCES

Now, we show how various matrix operations introduced thus far can be used to obtain 
two very important matrices in multivariate statistics, that is, the sums of squares and 
cross products (SSCP) matrix (which is computed as part of the Wilks’ lambda test) 
and the matrix of variances and covariances for a set of variables (which is computed 
as part of Hotelling’s T 2 test). Consider the following set of data:

x1 x2

1 1

3 4

2 7

x1 = 2 x2 = 4

First, we form the matrix Xd of deviation scores, that is, how much each score deviates 
from the mean on that variable:

X

X X

d =















−















=

− −















1 1
3 4
2 7

2 4
2 4
2 4

1 3
1 0
0 3

Next we take the transpose of Xd:

X′ =
−
−








d

1 1 0
3 0 3
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Now we obtain the matrix of sums of squares and cross products (SSCP) as the prod-
uct of X′d and Xd:

SSCP =
−
−










− −














=










1 1 0
3 0 3

1 3
1 0
0 3

1 12

21 2

ss ss
ss ss

The diagonal elements are just sums of squares:

ss1 = (−1)2 + 12 + 02 = 2
ss2 = (−3)2 + 02 + 32 = 18

Notice that these deviation sums of squares are the numerators of the variances for the 
variables, because the variance for a variable is

s x x nii
i

2 2 1= −( ) −( )∑ .

The sum of deviation cross products (ss12) for the two variables is

ss12 = ss21 = (−1)(−3) + 1(0) + (0)(3) = 3.

This is just the numerator for the covariance for the two variables, because the defini-
tional formula for covariance is given by:

s
x x x x

n

i i
i

n

12

1 1 2 2
1

1
=

−( ) −( )
−

=
∑

,

where x xi1 1−( )  is the deviation score for the ith case on x1 and x xi2 2−( )  is the devi-
ation score for the ith case on x2.

Finally, the matrix of variances and covariances S is obtained from the SSCP matrix 
by multiplying by a constant, namely, 1 1n −( ) :

S SSCP
=

−n 1

S =








 =











1
2

2 3
3 18

1 1 5
1 5 9

.
.

where 1 and 9 are the variances for variables 1 and 2, respectively, and 1.5 is the 
covariance.

Thus, in obtaining S we have done the following:

1. Represented the scores on several variables as a matrix.
2. Illustrated subtraction of matrices—to get Xd.
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3. Illustrated the transpose of a matrix—to get X′d.
4. Illustrated multiplication of matrices, that is, X′d Xd, to get SSCP.
5. Illustrated multiplication of a matrix by a scalar, that is, by 1 1n −( ) ,  to obtain S.

2.4 DETERMINANT OF A MATRIX

The determinant of a matrix A, denoted by A , is a unique number associated with each 
square matrix. There are two interrelated reasons that consideration of determinants is 
quite important for multivariate statistical analysis. First, the determinant of a covari-
ance matrix represents the generalized variance for several variables. That is, it is one 
way to characterize in a single number how much variability remains for the set of 
variables after removing the shared variance among the variables. Second, because the 
determinant is a measure of variance for a set of variables, it is intimately involved in 
several multivariate test statistics. For example, in Chapter 3 on regression analysis, 
we use a test statistic called Wilks’ Λ that involves a ratio of two determinants. Also, 
in k group multivariate analysis of variance (Chapter 5) the following form of Wilks’ 
Λ Λ =( )W T  is the most widely used test statistic for determining whether several 
groups differ on a set of variables. The W and T matrices are SSCP matrices, which are 
multivariate generalizations of SSw (sum of squares within) and SSt (sum of squares total) 
from univariate ANOVA, and are defined and described in detail in Chapters 4 and 5.

There is a formal definition for finding the determinant of a matrix, but it is compli-
cated, and we do not present it. There are other ways of finding the determinant, and 
a convenient method for smaller matrices (4 × 4 or less) is the method of cofactors. 
For a 2 × 2 matrix, the determinant could be evaluated by the method of cofactors; 
however, it is evaluated more quickly as simply the difference in the products of the 
diagonal elements.

Example 2.9

A A=








 = ⋅ − ⋅ =

4 1
1 2

4 2 1 1 7   

In general, for a 2 × 2 matrix , then | |A A=








 −

a b
c d

ad bc= .

To evaluate the determinant of a 3 × 3 matrix we need the method of cofactors and the 
following definition.

Definition: The minor of an element aij is the determinant of the matrix formed by 
deleting the ith row and the jth column.

Example 2.10
Consider the following matrix:
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a a12 13

1 2 3
2 2 1
3 1 4

↓ ↓

=
















A

The minor of a12 (with this element equal to 2 in the matrix) is the determinant of the 

matrix 2 1
3 4








  obtained by deleting the first row and the second column. Therefore, 

the minor of a12 is 2 1
3 4

8 3 5= − = .

The minor of a13 (with this element equal to 3) is the determinant of the matrix 2 2
3 1








  

obtained by deleting the first row and the third column. Thus, the minor of a13 is 
2
3

2
1

2 6 4= − = − .

Definition: The cofactor of aij
i j= −( ) ×+1 minor.

Thus, the cofactor of an element will differ at most from its minor by sign. We now 
evaluate −( ) +1 i j  for the first three elements of the A matrix given:

a11
1 11 1: −( ) =+

a12
1 21 1: −( ) = −+

a13
1 31 1: −( ) =+

Notice that the signs for the elements in the first row alternate, and this pattern contin-
ues for all the elements in a 3 × 3 matrix. Thus, when evaluating the determinant for a 
3 × 3 matrix it will be convenient to write down the pattern of signs and use it, rather 
than figuring out what −( ) +1 i j  is for each element. That pattern of signs is:

+ − +
− + −
+ − +

















We denote the matrix of cofactors C as follows:

C =
















c c c
c c c
c c c

11 12 13

21 22 23

31 32 33
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Now, the determinant is obtained by expanding along any row or column of the matrix 
of cofactors. Thus, for example, the determinant of A would be given by

| |A = + +a c a c a c11 11 12 12 13 13

(expanding along the first row)

or by

| |A = + +a c a c a c12 12 22 22 32 32

(expanding along the second column)

We now find the determinant of A by expanding along the first row:

Element Minor Cofactor Element × cofactor

a11 = 1 2
1

1
4

= 7
7 7

a12 = 2 2
3

1
4

= 5
−5 −10

a13 = 3 2
3

2
1

= 4−
−4 −12

Therefore, |A| = 7 + (−10) + (−12) = −15.

For a 4 × 4 matrix the pattern of signs is given by:

+ − + −
− + − +
+ − + −
− + − +

and the determinant is again evaluated by expanding along any row or column. How-
ever, in this case the minors are determinants of 3 × 3 matrices, and the procedure 
becomes quite tedious. Thus, we do not pursue it any further here.

In the example in 2.3, we obtained the following covariance matrix:

S =










1 0 1 5
1 5 9 0
. .
. .

We also indicated at the beginning of this section that the determinant of S can be 
interpreted as the generalized variance for a set of variables.
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Now, the generalized variance for the two-variable example is just |S| = (1 × 9) −  
(1.5 × 1.5) = 6.75. Because for this example there is a nonzero covariance, the gener-
alized variance is reduced by this. That is, some of the variance of variable 2 is shared 
by variable 1. On the other hand, if the variables were uncorrelated (covariance = 0), 
then we would expect the generalized variance to be larger (because there is no shared 
variance between variables), and this is indeed the case:

| |S = =
1
0

0
9

9

Thus, in representing the variance for a set of variables this measure takes into account 
all the variances and covariances.

In addition, the meaning of the generalized variance is easy to see when we consider 
the determinant of a 2 × 2 correlation matrix. Given the following correlation matrix

R =










1
1
12

21

r
r

,

the determinant of R R= = −1 2r .  Of course, since we know that r2  can be inter-
preted as the proportion of variation shared, or in common, between variables, the 
determinant of this matrix represents the variation remaining in this pair of variables 
after removing the shared variation among the variables. This concept also applies to 
larger matrices where the generalized variance represents the variation remaining in 
the set of variables after we account for the associations among the variables. While 
there are other ways to describe the variance of a set of variables, this conceptualiza-
tion appears in the commonly used Wilks’ Λ test statistic.

2.5 INVERSE OF A MATRIX

The inverse of a square matrix A is a matrix A−1 that satisfies the following equation:

AA−1 = A−1 A = In,

where In is the identity matrix of order n. The identity matrix is simply a matrix with 
1s on the main diagonal and 0s elsewhere.

I I2 3
1 0
0 1

1 0 0
0 1 0
0 0 1

=








 =

















Why is finding inverses important in statistical work? Because we do not literally have 
division with matrices, multiplying one matrix by the inverse of another is the ana-
logue of division for numbers. This is why finding an inverse is so important. An anal-
ogy with univariate ANOVA may be helpful here. In univariate ANOVA, recall that 
the test statistic F MS MS MS MSb w b w= = ( )−1 ,  that is, a ratio of between to within 
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variability. The analogue of this test statistic in multivariate analysis of variance is 
BW−1, where B is a matrix that is the multivariate generalization of SSb (sum of squares 
between); that is, it is a measure of how differential the effects of treatments have been 
on the set of dependent variables. In the multivariate case, we also want to “divide” the 
between-variability by the within-variability, but we don’t have division per se. How-
ever, multiplying the B matrix by W−1 accomplishes this for us, because, again, multi-
plying a matrix by an inverse of a matrix is the analogue of division. Also, as shown in 
the next chapter, to obtain the regression coefficients for a multiple regression analysis, 
it is necessary to find the inverse of a matrix product involving the predictors.

2.5.1 Procedure for Finding the Inverse of a Matrix

1. Replace each element of the matrix A by its minor.
2. Form the matrix of cofactors, attaching the appropriate signs as illustrated later.
3. Take the transpose of the matrix of cofactors, forming what is called the adjoint.
4. Divide each element of the adjoint by the determinant of A.

For symmetric matrices (with which this text deals almost exclusively), taking the 
transpose is not necessary, and hence, when finding the inverse of a symmetric matrix, 
Step 3 is omitted.

We apply this procedure first to the simplest case, finding the inverse of a 2 × 2 matrix.

Example 2.11

D =










4 2
2 6

The minor of 4 is the determinant of the matrix obtained by deleting the first row and 
the first column. What is left is simply the number 6, and the determinant of a number 
is that number. Thus we obtain the following matrix of minors:

6 2
2 4










Now for a 2 × 2 matrix we attach the proper signs by multiplying each diagonal element 
by 1 and each off-diagonal element by −1, yielding the matrix of cofactors, which is

6 2
2 4

−
−








 .

The determinant of D = 6(4) − (−2)(−2) = 20.

Finally then, the inverse of D is obtained by dividing the matrix of cofactors by the 
determinant, obtaining

D− =

−

−



















1

6
20

2
20

2
20

4
20
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To check that D−1 is indeed the inverse of D, note that

D
D D

4 2
2 6

6
20

2
20

2
20

4
20

6
20

2
20

2
20

4
20

1 1











−

−



















=

−

−

− −



























 =











D I
4 2
2 6

1 0
0 1

2

Example 2.12
Let us find the inverse for the 3 × 3 A matrix that we found the determinant for in the 
previous section. Because A is a symmetric matrix, it is not necessary to find nine 
minors, but only six, since the inverse of a symmetric matrix is symmetric. Thus we 
just find the minors for the elements on and above the main diagonal.

A =
















1 2 3
2 2 1
3 1 4

Recall again that the minor of an element is the
determinant of the matrix obtained by deleting  the
row and column that the element is in.

Element Matrix Minor

a11 = 1 2 1
1 4











2 × 4 − 1 × 1 = 7

a12 = 2 2 1
3 4











2 × 4 − 1 × 3 = 5

a13 = 3 2 2
3 1











2 × 1 − 2 × 3 = −4

a22 = 2 1 3
3 4











1 × 4 − 3 × 3 = −5

a23 = 1 1 2
3 1











1 × 1 − 2 × 3 = −5

a33 = 4 1 2
2 2











1 × 2 − 2 × 2 = −2

Therefore, the matrix of minors for A is

7 5 4
5 5 5
4 5 2

−
− −

− − −
















.

Recall that the pattern of signs is
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+ − +
− + −
+ − +
















.

Thus, attaching the appropriate sign to each element in the matrix of minors and com-
pleting Step 2 of finding the inverse we obtain:

7 5 4
5 5 5
4 5 2

− −
− −
− −
















.

Now the determinant of A was found to be −15. Therefore, to complete the final step 
in finding the inverse we simply divide the preceding matrix by −15, and the inverse 
of A is

A− =

−

−

−

























1

7
15

1
3

4
15

1
3

1
3

1
3

4
15

1
3

2
15

.

Again, we can check that this is indeed the inverse by multiplying it by A to see if the 
result is the identity matrix.

Note that for the inverse of a matrix to exist, the determinant of the matrix must not 
be equal to 0. This is because in obtaining the inverse each element is divided by the 
determinant, and division by 0 is not defined. If the determinant of a matrix B = 0, we 
say B is singular. If |B| ≠ 0, we say B is nonsingular, and its inverse does exist.

2.6 SPSS MATRIX PROCEDURE

The SPSS matrix procedure was developed at the University of Wisconsin at Madison. 
It is described in some detail in SPSS Advanced Statistics 7.5. Various matrix opera-
tions can be performed using the procedure, including multiplying matrices, finding 
the determinant of a matrix, finding the inverse of a matrix, and so on. To indicate a 
matrix you must: (1) enclose the matrix in braces, (2) separate the elements of each 
row by commas, and (3) separate the rows by semicolons.

The matrix procedure must be run from the syntax window. To get to the syntax win-
dow, click on FILE, then click on NEW, and finally click on SYNTAX. Every matrix 
program must begin with MATRIX. and end with END MATRIX. The periods are cru-
cial, as each command must end with a period. To create a matrix A, use the following 
COMPUTE A = {2, 4, 1; 3, −2, 5}.
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Note that this is a 2 × 3 matrix. The use of the COMPUTE command to create a matrix 
is not intuitive. However, at present, that is the way the procedure is set up. In the next 
program we create matrices A, B, and E, multiply A and B, find the determinant and 
inverse for E, and print out all matrices.

MATRIX.
COMPUTE A= {2, 4, 1; 3, −2, 5}.
COMPUTE B= {1, 2; 2, 1; 3, 4}.
COMPUTE C= A*B.
COMPUTE E= {1, −1, 2; −1, 3, 1; 2, 1, 10}.
COMPUTE DETE= DET(E).
COMPUTE EINV= INV(E).
PRINT A.
PRINT B.
PRINT C.
PRINT E.
PRINT DETE.
PRINT EINV.
END MATRIX.

The A, B, and E matrices are taken from the exercises at the end of the chapter. Note in 
the preceding program that all commands in SPSS must end with a period. Also, note 
that each matrix is enclosed in braces, and rows are separated by semicolons. Finally, 
a separate PRINT command is required to print out each matrix.

To run (or EXECUTE) this program, click on RUN and then click on ALL from the 
dropdown menu. When you do, the output shown in Table 2.1 is obtained.

 Table 2.1: Output From SPSS Matrix Procedure

Matrix

Run Matrix procedure:
A

 2  4 1
 3 –2 5

B
 1  2
 2  1
 3  4

C
13 12
14 24

(Continued )
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2.7 SAS IML PROCEDURE

The SAS IML procedure replaced the older PROC MATRIX procedure that was used 
in version 5 of SAS. SAS IML is documented thoroughly in SAS/IML: Usage and Ref-
erence, Version 6 (1990). There are several features that are very nice about SAS IML, 
and these are described on pages 2 and 3 of the manual. We mention just three features:

1. SAS/IML is a programming language.
2. SAS/IML software uses operators that apply to entire matrices.
3. SAS/IML software is interactive.

IML is an acronym for Interactive Matrix Language. You can execute a command as 
soon as you enter it. We do not illustrate this feature, as we wish to compare it with 
the SPSS Matrix procedure. So, we collect the SAS IML commands in a file and run 
it that way.

To indicate a matrix, you (1) enclose the matrix in braces, (2) separate the elements of 
each row by a blank(s), and (3) separate the rows by commas.

To illustrate use of the SAS IML procedure, we create the same matrices as we did 
with the SPSS matrix procedure and do the same operations and print all matrices. The 
syntax is shown here, and the output appears in Table 2.2.

proc iml;
a= {2 4 1, 3–2 5} ;
b= {1 2, 2 1, 3 4} ;
c= a*b;
e= {1–1 2, −1 3 1, 2 1 10} ;
dete= det(e);
einv= inv(e);
print a b c e dete einv;

Matrix

E
1 –1 2

–1 3 1
2 1 10

DETE
       3
EINV

 9.666666667
 4.000000000
–2.333333333

 4.000000000
 2.000000000
–1.000000000

–2.333333333
–1.000000000

.666666667

     ----End Matrix----

 Table 2.1: (Continued)
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2.8 SUMMARY

Matrix algebra is important in multivariate analysis for several reasons. For example, 
data come in the form of a matrix when N participants are measured on p variables, 
multivariate test statistics and effect size measures are computed using matrix opera-
tions, and statistics describing multivariate outliers also use matrix algebra. Although 
addition and subtraction of matrices is easy, multiplication of matrices is more diffi-
cult and nonintuitive. Finding the determinant and inverse for 3 × 3 or larger square 
matrices is quite tedious. Finding the determinant is important because the determinant 
of a covariance matrix represents the generalized variance for a set of variables, that 
is, the variance that remains in a set of variables after accounting for the associations 
among the variables. Finding the inverse of a matrix is important since multiplying a 
matrix by the inverse of a matrix is the analogue of division for numbers. Fortunately, 
SPSS MATRIX and SAS IML will do various matrix operations, including finding the 
determinant and inverse.

2.9 EXERCISES

1. Given:

A B C=
−









 =

















=










2 4 1
3 2 5

1 2
2 1
3 4

1 3 5
6 2 1

D E X=








 =

−
−
















=



















4 2
2 6

1 1 2
1 3 1
2 1 10

1 2
3 1
4 6
5 7

u v′ = (1,3), =









2
7

 Table 2.2: Output From SAS IML Procedure

A B C

2 4 1 1   2 13 12
3 –2 5 2   1 14 24

3   4
E DETE EINV
1 –1 2 3   9.6666667 4 –2.333333

–1 3 1   4 2 –1
2 1 10 –2.333333 –1 0.6666667
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 Find, where meaningful, each of the following:

(a) A + C
(b) A + B
(c) AB
(d) AC
(e) u’D u
(f) u’v
(g) (A + C)’
(h) 3 C
(i) | D|
(j)     D−1

(k) |E|
(l) E−1

(m) u’D−1u
(n) BA (compare this result with [c])
(o) X’X

2. In Chapter 3, we are interested in predicting each person’s score on a depend-
ent variable y from a linear combination of their scores on several predictors 
(xi’s). If there were two predictors, then the equations for N cases would look 
like this:

y1 = e1 + b0 + b1x11 + b2x12

y2 = e2 + b0 + b1x21 + b2x22

y3 = e3 + b0 + b1x31 + b2x32

      

yN = eN + b0 + b1xN1 + b2xN2

 Note: each ei represents the portion of y not predicted by the xs, and each b 
is a regression coefficient. express this set of prediction equations as a sin-
gle matrix equation. hint: the right hand portion of the equation will be of 
the form:

vector + matrix times vector

3. Using the approach detailed in section 2.3, find the matrix of variances and 
covariances for the following data:

x1 x2 x3

4 3 10
5 2 11
8 6 15
9 6 9

10 8 5
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4. Consider the following two situations:

(a) s1 = 10, s2 = 7, r12 = .80

(b) s1 = 9, s2 = 6, r12 = .20

 Compute the variance-covariance matrix for (a) and (b) and compute the deter-
minant of each variance-covariance matrix. For which situation is the general-
ized variance larger? Does this surprise you?

5. Calculate the determinant for

A =
















9 2 1

2 4 5

1 5 3
.

 Could A be a covariance matrix for a set of variables? explain.

6. Using SpSS MatrIX or SaS IML, find the inverse for the following 4 × 4 
 symmetric matrix:

6 8 7 6
8 9 2 3
7 2 5 2

6 3 2 1

7. run the following SpSS MatrIX program and show that the output yields the 
matrix, determinant, and inverse.

MATRIX.
COMPUTE A={6, 2, 4; 2, 3, 1; 4, 1, 5}.
COMPUTE DETA=DET(A).
COMPUTE AINV=INV(A).
PRINT A.
PRINT DETA.
PRINT AINV.
END MATRIX.

8. Consider the following two matrices:

A B=








 =











2 3

3 6

1 0

0 1

 Calculate the following products: AB and BA.

 What do you get in each case? Do you see now why B is called the identity  
matrix?
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9. Consider the following covariance matrix:

S =
















4 3 1

3 9 2

1 2 1

(a) Use the SpSS MatrIX procedure to print S and find and print the determi-
nant.

(b) Statistically, what does the determinant represent?

REFERENCES

SaS Institute. (1990). SAS/IML: Usage and Reference, Version 6. Cary, NC: author.
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Chapter 3

MULTIPLE REGRESSION FOR 
PREDICTION

3.1 INTRODUCTION

In multiple regression we are interested in predicting a dependent variable from a set 
of predictors. In a previous course in statistics, you probably studied simple regres-
sion, predicting a dependent variable from a single predictor. An example would be 
predicting college GPA from high school GPA. Because human behavior is complex 
and influenced by many factors, such single-predictor studies are necessarily limited 
in their predictive power. For example, in a college GPA study, we are able to improve 
prediction of college GPA by considering other predictors such as scores on standard-
ized tests (verbal, quantitative), and some noncognitive variables, such as study habits 
and attitude toward education. That is, we look to other predictors (often test scores) 
that tap other aspects of criterion behavior.

Consider two other examples of multiple regression studies:

1. Feshbach, Adelman, and Fuller (1977) conducted a study of 850 middle-class 
children. The children were measured in kindergarten on a battery of vari-
ables: the Wechsler Preschool and Primary Scale of Intelligence (WPPSI), the 
deHirsch–Jansky Index (assessing various linguistic and perceptual motor skills), 
the Bender Motor Gestalt, and a Student Rating Scale developed by the authors 
that measures various cognitive and affective behaviors and skills. These meas-
ures were used to predict reading achievement for these same children in grades 1, 
2, and 3.

2. Crystal (1988) attempted to predict chief executive officer (CEO) pay for the top 
100 of last year’s Fortune 500 and the 100 top entries from last year’s Service 500. 
He used the following predictors: company size, company performance, company 
risk, government regulation, tenure, location, directors, ownership, and age. He 
found that only about 39% of the variance in CEO pay can be accounted for by 
these factors.

In modeling the relationship between y and the xs, we are assuming that a linear model 
is appropriate. Of course, it is possible that a more complex model (curvilinear) may 
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be necessary to predict y accurately. Polynomial regression may be appropriate, or if 
there is nonlinearity in the parameters, then nonlinear procedures in SPSS (e.g., NLR) 
or SAS can be used to fit a model.

This is a long chapter with many sections, not all of which are equally important. 
The three most fundamental sections are on model selection (3.8), checking assump-
tions underlying the linear regression model (3.10), and model validation (3.11). 
The other sections should be thought of as supportive of these. We discuss several 
ways of selecting a “good” set of predictors, and illustrate these with two computer 
examples.

A theme throughout the book is determining whether the assumptions underlying a 
given analysis are tenable. This chapter initiates that theme, and we can see that there 
are various graphical plots available for assessing assumptions underlying the regres-
sion model. Another very important theme throughout this book is the mathematical 
maximization nature of many advanced statistical procedures, and the concomitant 
possibility of results looking very good on the sample on which they were derived 
(because of capitalization on chance), but not generalizing to a population. Thus, it 
becomes extremely important to validate the results on an independent sample(s) of 
data, or at least to obtain an estimate of the generalizability of the results. Section 3.11 
illustrates both of the aforementioned ways of checking the validity of a given regres-
sion model.

A final pedagogical point on reading this chapter: Section 3.14 deals with outliers and 
influential data points. We already indicated in Chapter 1, with several examples, the 
dramatic effect an outlier(s) can have on the results of any statistical analysis. Sec-
tion 3.14 is rather lengthy, however, and the applied researcher may not want to plow 
through all the details. Recognizing this, we begin that section with a brief overview 
discussion of statistics for assessing outliers and influential data points, with prescrip-
tive advice on how to flag such cases from computer output.

We wish to emphasize that our focus in this chapter is on the use of multiple regres-
sion for prediction. Another broad related area is the use of regression for explanation. 
Cohen, Cohen, West, and Aiken (2003) and Pedhazur (1982) have excellent, extended 
discussions of the use of regression for explanation. Note that Chapter 16 in this text 
includes the use of structural equation models, which is a more comprehensive analy-
sis approach for explanation.

There have been innumerable books written on regression analysis. In our opinion, 
books by Cohen et al. (2003), Pedhazur (1982), Myers (1990), Weisberg (1985), Bels-
ley, Kuh, and Welsch (1980), and Draper and Smith (1981) are worthy of special atten-
tion. The first two books are written for individuals in the social sciences and have very 
good narrative discussions. The Myers and Weisberg books are excellent in terms of 
the modern approach to regression analysis, and have especially good treatments of 
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regression diagnostics. The Draper and Smith book is one of the classic texts, gener-
ally used for a more mathematical treatment, with most of its examples geared toward 
the physical sciences.

We start this chapter with a brief discussion of simple regression, which most readers 
likely encountered in a previous statistics course.

3.2 SIMPLE REGRESSION

For one predictor, the simple linear regression model is

y x e i ni i= + + =β β0 1 1 1 2, , , ,

where β0  and β1  are parameters to be estimated. The ei  are the errors of prediction, 
and are assumed to be independent, with constant variance and normally distributed 
with a mean of 0. If these assumptions are valid for a given set of data, then the sample 
prediction errors ( )êi  should have similar properties. For example, the ei

^  should be 
normally distributed, or at least approximately normally distributed. This is considered 
further in section 3.9. The ei

^  are called the residuals. How do we estimate the parame-
ters? The least squares criterion is used; that is, the sum of the squared estimated errors 
of prediction is minimized:

e e e en i
i

n
^ ^ ^ ^

1
2

2
2 2 2

1

+ + + = =
=
∑ min

Of course, e y yi i i
^ ^ ,= −  where yi  is the actual score on the dependent variable and yi

^  
is the estimated score for the ith subject.

The scores for each subject ( , )x yi i  define a point in the plane. What the least squares 
criterion does is find the line that best fits the points. Geometrically, this corresponds to 
minimizing the sum of the squared vertical distances ( )êi

2  of each person’s score from 
their estimated y score. This is illustrated in Figure 3.1.

Example 3.1
To illustrate simple regression we use part of the Sesame Street database from Glasnapp 
and Poggio (1985), who present data on many variables, including 12 background var-
iables and 8 achievement variables for 240 participants. Sesame Street was developed 
as a television series aimed mainly at teaching preschool skills to 3- to 5-year-old 
children. Data were collected on many achievement variables both before (pretest) and 
after (posttest) viewing of the series. We consider here only one of the achievement 
variables, knowledge of body parts.

SPSS syntax for running the simple regression is given in Table 3.1, along with 
annotation. Figure 3.2 presents a scatterplot of the variables, along with selected 



68        MULTIPLE REGRESSION FOR PREDICTION

 Figure 3.1: Geometrical representation of least squares criterion.
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1
1

Least squares minimizes the sum of
these squared vertical distances, i.e., it
finds the line that best fits the points.

output. Inspecting the scatterplot suggests there is a positive association between 
the variables, reflecting a correlation of .65. Note that in the Model Summary table 
of Figure 3.2, the multiple correlation (R) is also .65, since there is only one pre-
dictor in the equation. In the Coefficients table of Figure 3.2, the coefficients are 
provided for the regression equation. The equation for the predicted outcome scores 
is then POSTBODY = 13.475 + .551 PEABODY. Table 3.2 shows a histogram 
of the standardized residuals, which suggests a fair approximation to a normal 
distribution.

 Table 3.1: SPSS Syntax for Simple Regression

TITLE ‘SIMPLE LINEAR REGRESSION ON SESAME DATA.’
DATA LIST FREE/PREBODY POSTBODY.
BEGIN DATA.

DATA LINES
END DATA.
LIST.
REGRESSION DESCRIPTIVES = DEFAULT/
VARIABLES = PREBODY POSTBODY/
DEPENDENT = POSTBODY/

(1) METHOD = ENTER/
(2) SCATTERPLOT (POSTBODY, PREBODY)/
(3) RESIDUALS = HISTOGRAM(ZRESID)/.

(1) DESCRIPTIVES = DEFAULT subcommand yields the means, standard deviations and the correla-
tion matrix for the variables.
(2) This scatterplot subcommand yields a scatterplot for the variables.
(3) This RESIDUALS subcommand yields a histogram of the standardized  
residuals.
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 Figure 3.2: Scatterplot and selected output for simple linear regression.

Variables Entered/Removeda

Model Variables
Entered

Variables
Removed

Method

1 PREBODYb Enter
a. Dependent Variable: POSTBODY
b. All requested variables entered.

Model Summaryb

Model R R Square Adjusted R
Square

Std. Error of the
Estimate

1 0.650a 0.423 0.421 4.119
a. Predictors: (Constant), PREBODY

Coefficientsa

Model Unstandardized Coefficients Standardized
Coefficients 

t Sig.

B Std. Error Beta

1 (Constant)
PREBODY

13.475 0.931 14.473 0.000
0.551 0.042 0.650 13.211 0.000

a. Dependent Variable: POSTBODY
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3.3  MULTIPLE REGRESSION FOR TWO PREDICTORS: MATRIX 
FORMULATION

The linear model for two predictors is a simple extension of what we had for one 
predictor:

y x x ei i= + + +β β β0 1 1 2 2 ,

where β0 (the regression constant), β1, and β2 are the parameters to be estimated, 
and e is error of prediction. We consider a small data set to illustrate the estimation 
process.
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y x1 x2

3 2 1
2 3 5
4 5 3
5 7 6
8 8 7

We model each subject’s y score as a linear function of the βs:

y1 = 3 = 1 × β0 + 2 × β1 + 1 × β2 + e1
y2 = 2 = 1 × β0 + 3 × β1 + 5 × β2 + e2

y3 = 4 = 1 × β0 + 5 × β1 + 3 × β2 + e3

y4 = 5 = 1 × β0 + 7 × β1 + 6 × β2 + e4

y5 = 8 = 1 × β0 + 8 × β1 + 7 × β2 + e5

This series of equations can be expressed as a single matrix equation:

y

X e

=

3
2
4
5
8

=

1 2 1
1 3 5
1 5 3
1 7 6
1 8 7
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 Table 3.2: Histogram of Standardized Residuals
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It is pretty clear that the y scores and the e define column vectors, while not so clear is 
how the boxed-in area can be represented as the product of two matrices, Xβ.

The first column of 1s is used to obtain the regression constant. The remaining two 
columns contain the scores for the subjects on the two predictors. Thus, the classic 
matrix equation for multiple regression is:

y = X + eβ  (1)

Now, it can be shown using the calculus that the least square estimates of the βs are 
given by:

β
^

= X X X y1′( ) ′−   (2)

Thus, for our data the estimated regression coefficients would be:

β
^

=



































X X′
1 1 1 1 1
2 3 5 7 8
1 5 3 6 7

1 2 1
1 3 5
1 5 3
1 7 6
1 8 7




















































−1

3
X

y
′

1 1 1 1 1
2 3 5 7 8
1 5 3 6 7
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Let us do this in pieces. First,

X X X y′ ′=

















=














5 25 22
25 151 130
22 130 120

22
131
11

and 

.

Furthermore, you should show that

( ,X X′ )− =
− −

− −
− −

















1 1
1016

1220 140 72
140 116 100
72 100 130

where 1016 is the determinant of X′X. Thus, the estimated regression coefficients are 
given by

ββ
^

=
− −

− −
− −
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Therefore, the regression (prediction) equation is
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y x xi
^ . . .= + −50 251 2

To illustrate the use of this equation, we find the predicted score for case 3 and the 
residual for that case:

ŷ . . ( ) .3 5 5 25 3 4 75= + − =

e y y^ ^ . .3 3 3 4 4 75 75= − = − = −

Note that if you find yourself struggling with this matrix presentation, be assured that 
you can still learn to use multiple regression properly and understand regression results.

3.4  MATHEMATICAL MAXIMIZATION NATURE OF LEAST 
SQUARES REGRESSION

In general, then, in multiple regression the linear combination of the xs that is max-
imally correlated with y is sought. Minimizing the sum of squared errors of predic-
tion is equivalent to maximizing the correlation between the observed and predicted y 
scores. This maximized Pearson correlation is called the multiple correlation, shown 
as R ry yi i

= ^ . Nunnally (1978, p. 164) characterized the procedure as “wringing out 
the last ounce of predictive power” (obtained from the linear combination of xs, that 
is, from the regression equation). Because the correlation is maximum for the sample 
from which it is derived, when the regression equation is applied to an independent 
sample from the same population (i.e., cross-validated), the predictive power drops 
off. If the predictive power drops off sharply, then the equation is of limited utility. 
That is, it has no generalizability, and hence is of limited scientific value. After all, we 
derive the prediction equation for the purpose of predicting with it on future (other) 
samples. If the equation does not predict well on other samples, then it is not fulfilling 
the purpose for which it was designed.

Sample size (n) and the number of predictors (k) are two crucial factors that determine 
how well a given equation will cross-validate (i.e., generalize). In particular, the n/k 
ratio is crucial. For small ratios (5:1 or less), the shrinkage in predictive power can 
be substantial. A study by Guttman (1941) illustrates this point. He had 136 subjects 
and 84 predictors, and found the multiple correlation on the original sample to be .73. 
However, when the prediction equation was applied to an independent sample, the 
new correlation was only .04. In other words, the good predictive power on the orig-
inal sample was due to capitalization on chance, and the prediction equation had no 
generalizability.

We return to the cross-validation issue in more detail later in this chapter, where we 
show that as a rough guide for social science research, about 15 subjects per predictor 
are needed for a reliable equation, that is, for an equation that will cross-validate with 
little loss in predictive power.
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3.5  BREAKDOWN OF SUM OF SQUARES AND F TEST FOR 
MULTIPLE CORRELATION

In analysis of variance we broke down variability around the grand mean into between- 
and within-variability. In regression analysis, variability around the mean is broken 
down into variability due to regression (i.e., variation of the predicted values) and 
variability of the observed scores around the predicted values (i.e., variation of the 
residuals). To get at the breakdown, we note that the variation of the residuals may be 
expressed as the following identity:

y y y y yyi i i i− = −( ) − −( )^

Now we square both sides, obtaining

( ) [( ) ( )] .y y y y y yi i i i− = − − −2 2

Then we sum over the subjects, from 1 to n:

( ) [( ) ( )] .y y y y y yi i
i

n

i i
i

n

− = − − −
= =
∑ ∑2

1

2

1

By algebraic manipulation (see Draper & Smith, 1981, pp. 17–18), this can be 
rewritten as:

∑ ∑ ∑− = − + −

=

( ) ( ) ( )y y y y y yi i i i
2 2 2

sum of squares sum of sqquares  sum of squares
around the mean of the residuals d

+
uue to regression

        

: 1  (    

tot res regSS SS SS= +

− = −df n n k − + 1)    ( = degrees of freedom)k df   (3)

This results in the following analysis of variance table and the F test for deter-
mining whether the population multiple correlation is different from 0.

Analysis of Variance Table for Regression

Source SS df MS F

Regression SSreg K SSreg / k MS

MS

reg

res
Residual (error) SSres n − k − 1 SSres / (n − k − 1)

Recall that since the residual for each subject is e y yi i i
^ ^ ,= −  the mean square error 

term can be written as MS e n kres i= − −( )Σ 2 1 .  Now, R2 (squared multiple correlation) 
is given by

^

^ ^

^ ^

^

^^
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R2 =

sum of squares
due to regression
sum of squares
about the mmean

reg

tot
= −

−
=Σ

Σ
( )
( )

.y y
y y

SS
SSi

2

2

Thus, R2 measures the proportion of total variance on y that is accounted for by the 
set of predictors. By simple algebra, then, we can rewrite the F test in terms of R2 as 
follows:

F k k dfR k
R n k

= − −
−( ) − −( )

2

21 1
1/ (n )with and   (4)

We feel this test is of limited utility when prediction is the research goal, because it 
does not necessarily imply that the equation will cross-validate well, and this is the 
crucial issue in regression analysis for prediction.

Example 3.2
An investigator obtains R2 = .50 on a sample of 50 participants with 10 predictors. Do 
we reject the null hypothesis that the population multiple correlation = 0?

F df=
− − −

=. /
( . ) / ( )

.50 10
1 50 50 10 1

3 9 10 39 with and

This is significant at the .01 level, since the critical value is 2.8.

However, because the n/k ratio is only 5/1, the prediction equation will probably not 
predict well on other samples and is therefore of questionable utility.

Myers’ (1990) response to the question of what constitutes an acceptable value for R2 
is illuminating:

This is a difficult question to answer, and, in truth, what is acceptable depends on 
the scientific field from which the data were taken. A chemist, charged with doing 
a linear calibration on a high precision piece of equipment, certainly expects to 
experience a very high R2 value (perhaps exceeding .99), while a behavioral sci-
entist, dealing in data reflecting human behavior, may feel fortunate to observe 
an R2 as high as .70. An experienced model fitter senses when the value of R2 is 
large enough, given the situation confronted. Clearly, some scientific phenom-
ena lend themselves to modeling with considerably more accuracy then others. 
(p. 37)

His point is that how well one can predict depends on context. In the physical sciences, 
generally quite accurate prediction is possible. In the social sciences, where we are 
attempting to predict human behavior (which can be influenced by many systematic 
and some idiosyncratic factors), prediction is much more difficult.

^
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3.6  RELATIONSHIP OF SIMPLE CORRELATIONS TO MULTIPLE 
CORRELATION

The ideal situation, in terms of obtaining a high R, would be to have each of the pre-
dictors significantly correlated with the dependent variable and for the predictors to be 
uncorrelated with each other, so that they measure different constructs and are able to 
predict different parts of the variance on y. Of course, in practice we will not find this, 
because almost all variables are correlated to some degree. A good situation in prac-
tice, then, would be one in which most of our predictors correlate significantly with 
y and the predictors have relatively low correlations among themselves. To illustrate 
these points further, consider the following three patterns of correlations among three 
predictors and an outcome.

X1 X2 X3 X1 X2 X3 X1 X2 X3

(1) Y .20 .10 .30 (2) Y .60 .50 .70 (3) Y .60 .70 .70
X1 .50 .40 X1 .20 .30 X1 .70 .60
X2 .60 X2 .20 X2 .80

In which of these cases would you expect the multiple correlation to be the largest 
and the smallest respectively? Here it is quite clear that R will be the smallest for 1 
because the highest correlation of any of the predictors with y is .30, whereas for the 
other two patterns at least one of the predictors has a correlation of .70 with y. Thus, 
we know that R will be at least .70 for Cases 2 and 3, whereas for Case 1 we know 
only that R will be at least .30. Furthermore, there is no chance that R for Case 1 
might become larger than that for cases 2 and 3, because the intercorrelations among 
the predictors for 1 are approximately as large or larger than those for the other two 
cases.

We would expect R to be largest for Case 2 because each of the predictors is moder-
ately to strongly tied to y and there are low intercorrelations (i.e., little redundancy) 
among the predictors—exactly the kind of situation we would hope to find in prac-
tice. We would expect R to be greater in Case 2 than in Case 3, because in Case 3 
there is considerable redundancy among the predictors. Although the correlations 
of the predictors with y are slightly higher in Case 3 (.60, .70, .70) than in Case 2 
(.60, .50, .70), the much higher intercorrelations among the predictors for Case 3 
will severely limit the ability of X2 and X3 to predict additional variance beyond 
that of X1 (and hence significantly increase R), whereas this will not be true for 
Case 2.

3.7 MULTICOLLINEARITY

When there are moderate to high intercorrelations among the predictors, as is the case 
when several cognitive measures are used as predictors, the problem is referred to as 



76        MULTIPLE REGRESSION FOR PREDICTION

multicollinearity. Multicollinearity poses a real problem for the researcher using mul-
tiple regression for three reasons:

1. It severely limits the size of R, because the predictors are going after much of the 
same variance on y. A study by Dizney and Gromen (1967) illustrates very nicely 
how multicollinearity among the predictors limits the size of R. They studied how 
well reading proficiency (x1) and writing proficiency (x2) would predict course 
grades in college German. The following correlation matrix resulted:

x1 x2 y

x1 1.00 .58 .33
x2 1.00 .45
y 1.00

Note the multicollinearity for x1 and x2 (rx1x2 = .58), and also that x2 has a simple 
correlation of .45 with y. The multiple correlation R was only .46. Thus, the rela-
tively high correlation between reading and writing severely limited the ability of 
reading to add anything (only .01) to the prediction of a German grade above and 
beyond that of writing.

2. Multicollinearity makes determining the importance of a given predictor diffi-
cult because the effects of the predictors are confounded due to the correlations 
among them.

3. Multicollinearity increases the variances of the regression coefficients. The greater 
these variances, the more unstable the prediction equation will be.

The following are two methods for diagnosing multicollinearity:

1. Examine the simple correlations among the predictors from the correlation matrix. 
These should be observed, and are easy to understand, but you need to be warned 
that they do not always indicate the extent of multicollinearity. More subtle forms 
of multicollinearity may exist. One such more subtle form is discussed next.

2. Examine the variance inflation factors for the predictors.

The quantity 1 1 2−( )Rj  is called the jth variance inflation factor, where Rj
2  is the 

squared multiple correlation for predicting the jth predictor from all other predictors.

The variance inflation factor for a predictor indicates whether there is a strong linear 
association between it and all the remaining predictors. It is distinctly possible for a 
predictor to have only moderate or relatively weak associations with the other predic-
tors in terms of simple correlations, and yet to have a quite high R when regressed on 
all the other predictors. When is the value for a variance inflation factor large enough 
to cause concern? Myers (1990) offered the following suggestion:

Though no rule of thumb on numerical values is foolproof, it is generally believed 
that if any VIF exceeds 10, there is reason for at least some concern; then one 
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should consider variable deletion or an alternative to least squares estimation to 
combat the problem. (p. 369)

The variance inflation factors are easily obtained from SAS and SPSS (see Table 3.6 
for SAS and exercise 10 for SPSS).

There are at least three ways of combating multicollinearity. One way is to combine 
predictors that are highly correlated. For example, if there are three measures having 
similar variability relating to a single construct that have intercorrelations of about .80 
or larger, then add them to form a single measure.

A second way, if one has initially a fairly large set of predictors, is to consider doing a 
principal components or factor analysis to reduce to a much smaller set of predictors. 
For example, if there are 30 predictors, we are undoubtedly not measuring 30 different 
constructs. A factor analysis will suggest the number of constructs we are actually 
measuring. The factors become the new predictors, and because the factors are uncor-
related by construction, we eliminate the multicollinearity problem. Principal compo-
nents and factor analysis are discussed in Chapter 9. In that chapter we also show how 
to use SAS and SPSS to obtain factor scores that can then be used to do subsequent 
analysis, such as being used as predictors for multiple regression.

A third way of combating multicollinearity is to use a technique called ridge regres-
sion. This approach is beyond the scope of this text, although Myers (1990) has a nice 
discussion for those who are interested.

3.8 MODEL SELECTION

Various methods are available for selecting a good set of predictors:

1. Substantive Knowledge. As Weisberg (1985) noted, “the single most important 
tool in selecting a subset of variables for use in a model is the analyst’s knowledge 
of the substantive area under study” (p. 210). It is important for the investigator to 
be judicious in his or her selection of predictors. Far too many investigators have 
abused multiple regression by throwing everything in the hopper, often merely 
because the variables are available. Cohen (1990), among others, commented on 
the indiscriminate use of variables: There have been too many studies with pro-
digious numbers of dependent variables, or with what seemed to be far too many 
independent variables, or (heaven help us) both.

It is generally better to work with a small number of predictors because it is consist-
ent with the scientific principle of parsimony and improves the n/k ratio, which helps 
cross-validation prospects. Further, note the following from Lord and Novick (1968):

Experience in psychology and in many other fields of application has shown that 
it is seldom worthwhile to include very many predictor variables in a regression 
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equation, for the incremental validity of new variables, after a certain point, is 
usually very low. This is true because tests tend to overlap in content and conse-
quently the addition of a fifth or sixth test may add little that is new to the battery 
and still relevant to the criterion. (p. 274)

Or consider the following from Ramsey and Schafer (1997):

There are two good reasons for paring down a large number of exploratory var-
iables to a smaller set. The first reason is somewhat philosophical: simplicity is 
preferable to complexity. Thus, redundant and unnecessary variables should be 
excluded on principle. The second reason is more concrete: unnecessary terms in 
the model yield less precise inferences. (p. 325)

2. Sequential Methods. These are the forward, stepwise, and backward selection pro-
cedures that are popular with many researchers. All these procedures involve a 
partialing-out process; that is, they look at the contribution of a predictor with the 
effects of the other predictors partialed out, or held constant. Many of you may 
have already encountered the notion of a partial correlation in a previous statistics 
course, but a review is nevertheless in order.

The partial correlation between variables 1 and 2 with variable 3 partialed from both 1 
and 2 is the correlation with variable 3 held constant, as you may recall. The formula 
for the partial correlation is given by:

r
r r r

r r
12 3

12 13 23

13
2

23
21 1

=
−

− −
 (5)

Let us put this in the context of multiple regression. Suppose we wish to know what 
the partial correlation of y (dependent variable) is with predictor 2 with predictor 1 
partialed out. The formula would be, following what we have earlier:

r
r r r

r r
y

y y

y
2 1

2 1 21

1
2

21
21 1

=
−

− −
 (6)

We apply this formula to show how SPSS obtains the partial correlation of .528 for 
INTEREST in Table 3.4 under EXCLUDED VARIABLES in the first upcoming com-
puter example. In this example CLARITY (abbreviated as clr) entered first, having a cor-
relation of .862 with dependent variable INSTEVAL (abbreviated as inst). The following 
correlations are taken from the correlation matrix, given near the beginning of Table 3.4.

rinst int clr = −

− −

. (. )(. )

. .

435 862 20

1 862 1 202 2

The correlation between the two predictors is .20, as shown.

We now give a brief description of the forward, stepwise, and backward selection 
procedures.
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 FORWARD—The first predictor that has an opportunity to enter the equation is the 
one with the largest simple correlation with y. If this predictor is significant, then 
the predictor with the largest partial correlation with y is considered, and so on. 
At some stage a given predictor will not make a significant contribution and the 
procedure terminates. It is important to remember that with this procedure, once a 
predictor gets into the equation, it stays.

 STEPWISE—This is basically a variation on the forward selection procedure. 
However, at each stage of the procedure, a test is made of the least useful 
predictor. The importance of each predictor is constantly reassessed. Thus, 
a predictor that may have been the best entry candidate earlier may now be 
superfluous.

 BACKWARD—The steps are as follows: (1) An equation is computed with ALL 
the predictors. (2) The partial F is calculated for every predictor, treated as though 
it were the last predictor to enter the equation. (3) The smallest partial F value, 
say F1, is compared with a preselected significance, say F0. If F1 < F0, remove 
that predictor and reestimate the equation with the remaining variables. Reenter 
stage B.

3. Mallows’ Cp. Before we introduce Mallows’ Cp, it is important to consider the 
consequences of under fitting (important variables are left out of the model) and 
over fitting (having variables in the model that make essentially no contribution 
or are marginal). Myers (1990, pp. 178–180) has an excellent discussion on the 
impact of under fitting and over fitting, and notes that “a model that is too simple 
may suffer from biased coefficients and biased prediction, while an overly com-
plicated model can result in large variances, both in the coefficients and in the 
prediction.”

This measure was introduced by C. L. Mallows (1973) as a criterion for selecting a 
model. It measures total squared error, and it was recommended by Mallows to choose 
the model(s) where Cp ≈ p. For these models, the amount of under fitting or over fitting 
is minimized. Mallows’ criterion may be written as

C p
s N p

p kp = +
−( ) −( )

= +( )
2 2

2 1
σ

σ
where ,  (7)

where s2  is the residual variance for the model being evaluated, and σ2  is an 
estimate of the residual variance that is usually based on the full model. Note  
that if the residual variance of the model being evaluated, s2 ,  is much larger than 
σ 2,  Cp  increases, suggesting that important variables have been left out of the 
model.

4. Use of MAXR Procedure from SAS. There are many methods of model selection 
in the SAS REG program, MAXR being one of them. This procedure produces 

^

^

^

^
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several models; the best one-variable model, the best two-variable model, and so 
on. Here is the description of the procedure from the SAS/STAT manual:

The MAXR method begins by finding the one variable model producing the high-
est R2. Then another variable, the one that yields the greatest increase in R2, is 
added. Once the two variable model is obtained, each of the variables in the model 
is compared to each variable not in the model. For each comparison, MAXR deter-
mines if removing one variable and replacing it with the other variable increases 
R2. After comparing all possible switches, MAXR makes the switch that produces 
the largest increase in R2. Comparisons begin again, and the process continues 
until MAXR finds that no switch could increase R2. . . . Another variable is then 
added to the model, and the comparing and switching process is repeated to find 
the best three variable model. (p. 1398)

5. All Possible Regressions. If you wish to follow this route, then the SAS REG 
program should be considered. The number of regressions increases quite sharply 
as k increases, however, the program will efficiently identify good subsets. Good 
subsets are those that have the smallest Mallows’ C value. We have illustrated this 
in Table 3.6. This pool of candidate models can then be examined further using 
regression diagnostics and cross-validity criteria to be mentioned later.

Use of one or more of these methods will often yield a number of models of roughly 
equal efficacy. As Myers (1990) noted:

The successful model builder will eventually understand that with many data sets, 
several models can be fit that would be of nearly equal effectiveness. Thus the 
problem that one deals with is the selection of one model from a pool of candidate 
models. (p. 164)

One of the problems with the stepwise methods, which are very frequently used, is 
that they have led many investigators to conclude that they have found the best model, 
when in fact there may be some better models or several other models that are about 
as good. As Huberty (1989) noted, “and one or more of these subsets may be more 
interesting or relevant in a substantive sense” (p. 46).

In addition to the procedures just described, there are three other important criteria to 
consider when selecting a prediction equation. The criteria all relate to the generaliz-
ability of the equation, that is, how well will the equation predict on an independent 
sample(s) of data. The three methods of model validation, which are discussed in detail 
in section 3.11, are:

1. Data splitting—Randomly split the data, obtain a prediction equation on one half 
of the random split, and then check its predictive power (cross-validate) on the 
other sample.

2. Use of the PRESS statistic ( ),RPress
2  which is an external validation method par-

ticularly useful for small samples.
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3. Obtain an estimate of the average predictive power of the equation on many other 
samples from the same population, using a formula due to Stein (Herzberg, 1969).

The SPSS application guides comment on over fitting and the use of several mod-
els. There is no one test to determine the dimensionality of the best submodel. Some 
researchers find it tempting to include too many variables in the model, which is called 
over fitting. Such a model will perform badly when applied to a new sample from the 
same population (cross-validation). Automatic stepwise procedures cannot do all the 
work for you. Use them as a tool to determine roughly the number of predictors needed 
(for example, you might find three to five variables). If you try several methods of selec-
tion, you may identify candidate predictors that are not included by any method. Ignore 
them, and fit models with, say, three to five variables, selecting alternative subsets from 
among the better candidates. You may find several subsets that perform equally as well. 
Then, knowledge of the subject matter, how accurately individual variables are meas-
ured, and what a variable “communicates” may guide selection of the model to report.

We don’t disagree with these comments; however, we would favor the model that 
cross-validates best. If two models cross-validate about the same, then we would favor 
the model that makes most substantive sense.

3.8.1 Semipartial Correlations

We consider a procedure that, for a given ordering of the predictors, will enable us to 
determine the unique contribution each predictor is making in accounting for variance 
on y. This procedure, which uses semipartial correlations, will disentangle the correla-
tions among the predictors.

The partial correlation between variables 1 and 2 with variable 3 partialed from both 1 
and 2 is the correlation with variable 3 held constant, as you may recall. The formula 
for the partial correlation is given by

r
r r r

r r
12 3

12 13 23

13
2

23
21 1

.=
−

− −

We presented the partial correlation first for two reasons: (1) the semipartial correlation 
is a variant of the partial correlation, and (2) the partial correlation will be involved in 
computing more complicated semipartial correlations.

For breaking down R2, we will want to work with the semipartial, sometimes called 
part, correlation. The formula for the semipartial correlation is

r
r r r

r
s12 3

12 13 23

23
21

( ) .=
−

−

The only difference between this equation and the previous one is that the denominator 
here doesn’t contain the standard deviation of the partialed scores for variable 1.
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In multiple correlation we wish to partial the independent variables (the predictors) 
from one another, but not from the dependent variable. We wish to leave the dependent 
variable intact and not partial any variance attributable to the predictors. Let Ry k12

2


 
denote the squared multiple correlation for the k predictors, where the predictors 
appear after the dot. Consider the case of one dependent variable and three predictors. 
It can be shown that:

R r r ry y y s y s( ) ( ) ,123
2

1
2

2 1
2

3 12
2= + +   (8)

where

r
r r r

r
y s

y y
2 1

2 1 21
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21

( ) =
−

−
 (9)

is the semipartial correlation between y and variable 2, with variable 1 partialed only 
from variable 2, and ry s3 12( )  is the semipartial correlation between y and variable 3 
with variables 1 and 2 partialed only from variable 3:

r
r r r
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y s
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3 12
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( ) ( )=

−

−
 (10)

Thus, through the use of semipartial correlations, we disentangle the correlations 
among the predictors and determine how much unique variance on each predictor is 
related to variance on y.

3.9 TWO COMPUTER EXAMPLES

To illustrate the use of several of the aforementioned model selection methods, we 
consider two computer examples. The first example illustrates the SPSS REGRES-
SION program, and uses data from Morrison (1983) on 32 students enrolled in an 
MBA course. We predict instructor course evaluation from five predictors. The second 
example illustrates SAS REG on quality ratings of 46 research doctorate programs in 
psychology, where we are attempting to predict quality ratings from factors such as 
number of program graduates, percentage of graduates who received fellowships or 
grant support, and so on (Singer & Willett, 1988).

Example 3.3: SPSS Regression on Morrison MBA Data
The data for this problem are from Morrison (1983). The dependent variable is instruc-
tor course evaluation in an MBA course, with the five predictors being clarity, stimu-
lation, knowledge, interest, and course evaluation. We illustrate two of the sequential 
procedures, stepwise and backward selection, using SPSS. Syntax for running the 
analyses, along with the correlation matrix, are given in Table 3.3.



 Table 3.3: SPSS Syntax for Stepwise and Backward Selection Runs on the Morrison 
MBA Data and the Correlation Matrix

TITLE ‘MORRISON MBA DATA’.
DATA LIST FREE/INSTEVAL CLARITY STIMUL KNOWLEDG INTEREST 
COUEVAL.
BEGIN DATA.
1 1 2 1 1 2  1 2 2 1 1 1  1 1 1 1 1 2  1 1 2 1 1 2
2 1 3 2 2 2  2 2 4 1 1 2  2 3 3 1 1 2  2 3 4 1 2 3
2 2 3 1 3 3  2 2 2 2 2 2  2 2 3 2 1 2  2 2 2 3 3 2
2 2 2 1 1 2  2 2 4 2 2 2  2 3 3 1 1 3  2 3 4 1 1 2
2 3 2 1 1 2  3 4 4 3 2 2  3 4 3 1 1 4  3 4 3 1 2 3
3 4 3 2 2 3  3 3 4 2 3 3  3 3 4 2 3 3  3 4 3 1 1 2
3 4 5 1 1 3  3 3 5 1 2 3  3 4 4 1 2 3  3 4 4 1 1 3
3 3 3 2 1 3  3 3 5 1 1 2  4 5 5 2 3 4  4 4 5 2 3 4
END DATA.
(1)  REGRESSION DESCRIPTIVES = DEFAULT/

VARIABLES = INSTEVAL TO COUEVAL/
(2) STATISTICS = DEFAULTS TOL SELECTION/

DEPENDENT = INSTEVAL/
(3) METHOD = STEPWISE/
(4) SAVE COOK LEVER SRESID/
(5) SCATTERPLOT(*SRESID, *ZPRED).

CORRELATION MATRIX

Insteval Clarity Stimul Knowledge Interest Coueval

INSTEVAL 1.000 .862 .739 .282 .435 .738
CLARITY .862 1.000 .617 .057 .200 .651
STIMUL .739 .617 1.000 .078 .317 .523
KNOWLEDGE .282 .057 .078 1.000 .583 .041
INTEREST .435 .200 .317 .583 1.000 .448
COUEVAL .738 .651 .523 .041 .448 1.000

(1) The DESCRIPTIVES = DEFAULT subcommand yields the means, standard deviations, and the 
correlation matrix for the variables.
(2) The DEFAULTS part of the STATISTICS subcommand yields, among other things, the  ANOVA 
table for each step, R, R2, and adjusted R2.
(3) To obtain the backward selection procedure, we would simply put METHOD = BACKWARD/.
(4) The SAVE subcommand places into the data set Cook’s distance—for identifying influential data points, 
centered leverage values—for identifying outliers on predictors, and studentized residuals—for identifying 
outliers on y.
(5) This SCATTERPLOT subcommand yields the plot of the studentized residuals vs. the standardized 
predicted values, which is very useful for determining whether any of the assumptions underlying the linear 
regression model may be violated.
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SPSS has “p values,” denoted by PIN and POUT, which govern whether a predictor will 
enter the equation and whether it will be deleted. The default values are PIN = .05 
and POUT = .10. In other words, a predictor must be “significant” at the .05 level to 
enter, or must not be significant at the .10 level to be deleted.

First, we discuss the stepwise procedure results. Examination of the correlation matrix 
in Table 3.3 reveals that three of the predictors (CLARITY, STIMUL, and COUEVAL) 
are strongly related to INSTEVAL (simple correlations of .862, .739, and .738, re-
spectively). Because clarity has the highest correlation, it will enter the equation first. 
Superficially, it might appear that STIMUL or COUEVAL would enter next; however 
we must take into account how these predictors are correlated with CLARITY, and 
indeed both have fairly high correlations with CLARITY (.617 and .651 respectively). 
Thus, they will not account for as much unique variance on INSTEVAL, above and 
beyond that of CLARITY, as first appeared. On the other hand, INTEREST, which has 
a considerably lower correlation with INSTEVAL (.44), is correlated only .20 with 
CLARITY. Thus, the variance on INSTEVAL it accounts for is relatively independent 
of the variance CLARITY accounted for. And, as seen in Table 3.4, it is INTEREST 
that enters the regression equation second. STIMUL is the third and final predictor to 
enter, because its p value (.0086) is less than the default value of .05. Finally, the other 
predictors (KNOWLEDGE and COUEVAL) don’t enter because their p values (.0989 
and .1288) are greater than .05.

 Table 3.4: Selected Results SPSS Stepwise Regression Run on the Morrison MBA Data

Descriptive Statistics

Mean Std. Deviation N

INSTEVAL 2.4063 .7976 32
CLARITY 2.8438 1.0809 32
STIMUL 3.3125 1.0906 32
KNOWLEDG 1.4375 .6189 32
INTEREST 1.6563 .7874 32
COUEVAL 2.5313 .7177 32

Correlations

INSTEVAL CLARITY STIMUL KNOWLEDG INTEREST COUEVAL

Pearson INSTEVAL 1.000 .862 .739 .282 .435 .738
Correlation CLARITY .862 1.000 .617 .057 .200 .651

STIMUL .739 .617 1.000 .078 .317 .523
KNOWLEDG .282 .057 .078 1.000 .583 .041
INTEREST .435 .200 .317 .583 1.000 .448
COUEVAL .738 .651 .523 .041 .448 1.000



Variables Entered/Removeda

Model
Variables 
Entered

Variables 
Removed Method

1 CLARITY Stepwise (Criteria:
Probability-of-F-to-enter  
<= .050,
Probability-of-F-to-remove 
>= .100).

This predictor enters the equa-
tion first, since it  
has the highest simple correla-
tion (.862) with the dependent 
variable INSTEVAL.

2 INTEREST Stepwise (Criteria:
Probability-of-F-to-enter  
<= .050,
Probability-of-F-to-remove  
>= .100).

INTEREST has the opportunity 
to enter the equation next 
since it has the largest partial 
correlation of .528 (see the box 
with EXCLUDED VARIABLES), 
and does enter since its p value 
(.002) is less than the default 
entry value of .05.

3 STIMUL Stepwise (Criteria:
Probability-of-F-to-enter  
<= .050,
Probability-of-F-to-Remove 
>= .100).

Since STIMULUS has the 
strongest tie to INSTEVAL, 
after the effects of CLARITY 
and INTEREST are partialed 
out, it gets the opportunity to 
enter next. STIMULUS does 
enter, since its p value (.009) is 
less than .05.

a Dependent Variable: INSTEVAL

Model Summaryd

Model R R Square
Adjusted 
R Square

Std. Error 
of the 
Estimate

Selection Criteria

Akaike 
 Information 
Criterion

Amemiya 
Prediction 
Criterion

Mallows’ 
Prediction 
Criterion

Schwarz 
Bayesian 
Criterion

1 .862a .743 .734 .4112 −54.936 .292 35.297 −52.004
2 .903b .815 .802 .3551 −63.405 .224 19.635 −59.008
3 .925c .856 .840 .3189 −69.426 .186 11.517 −63.563
a Predictors: (Constant), CLARITY
b Predictors: (Constant), CLARITY, INTEREST
c  Predictors: (Constant), CLARITY, INTEREST, STIMUL
d Dependent Variable: INSTEVAL

With just CLARITY in the equation we account for 74.3% 
of the variance; adding INTEREST increases the variance 
accounted for to 81.5%, and finally with 3 predictors 
(STIMUL added) we account for 85.6% of the variance in 
this sample.

(Continued )



 Table 3.4: (Continued)

Coefficienta

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

Collinearity 
Statistics

B
Std. 
Error Beta t Sig.

Toler-
ance VIF

1 (Constant) 
CLARITY

.598

.636
.207
.068

.862 2.882
9.306

.007

.000
1.000 1.000

2 (Constant)
CLARITY
INTEREST

.254

.596

.277

.207

.060

.083

.807

.273
1.230
9.887
3.350

.229

.000

.002

.960

.960
1.042
1.042

3 (Constant)
CLARITY
INTEREST
STIMUL

.021

.482

.223

.195

.203

.067

.077

.069

.653

.220

.266

.105
7.158
2.904
2.824

.917

.000

.007

.009

.619

.900

.580

1.616
1.112
1.724

a Dependent Variable: INSTEVAL
These are the raw regression coefficients that define the prediction equation, i.e., INSTEVAL = .482 CLARITY 
+ .223 INTEREST + .195 STIMUL + .021. The coefficient of .482 for CLARITY means that for every unit change 
on CLARITY there is a predicted change of .482 units on INSTEVAL, holding the other predictors constant. The 
coefficient of .223 for INTEREST means that for every unit change on INTEREST there is a predicted change of 
.223 units on INSTEVAL, holding the other predictors constant. Note that the Beta column contains the esti-
mates of the regression coefficients when all variables are in z score form. Thus, the value of .653 for CLARITY 
means that for every standard deviation change in CLARITY there is a predicted change of .653 standard 
deviations on INSTEVAL, holding constant the other predictors.

ANOVAd

Model Sum of Squares df Mean Square F Sig.

1 Regression
   Residual
  Total

14.645
5.073

19.719

1
30
31

14.645
.169

86.602 .000a

2 Regression
   Residual
  Total

16.061
3.658

19.719

2
29
31

8.031
.126

63.670 .000b

3 Regression
   Residual
  Total

16.872
2.847

19.719

3
28
31

5.624
.102

55.316 .000c

a Predictors: (Constant), CLARITY
b Predictors: (Constant), CLARITY, INTEREST
c Predictors: (Constant), CLARITY, INTEREST, STIMUL
d Dependent Variable: INSTEVAL
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Excluded Variablesd

Model Beta In T Sig.
Partial  
Correlation

Collinearity Statistics

Tolerance VIF
Minimum 
Tolerance

1 STIMUL .335a 3.274 .003 .520 .619 1.616 .619
KNOWLEDG .233a 2.783 .009 .459 .997 1.003 .997
INTEREST .273a 3.350 .002 .528 .960 1.042 .960
COUEVAL .307a 2.784 .009 .459 .576 1.736 .576

2 STIMUL .266b 2.824 .009 .471 .580 1.724 .580
KNOWLEDG .116b 1.183 .247 .218 .656 1.524 .632
COUEVAL .191b 1.692 .102 .305 .471 2.122 .471

3 KNOWLEDG .148c 1.709 .099 .312 .647 1.546 .572
COUEVAL .161c 1.567 .129 .289 .466 2.148 .451

a Predictors in the Model: (Constant), CLARITY
b Predictors in the Model: (Constant), CLARITY, INTEREST
c Predictors in the Model: (Constant), CLARITY, INTEREST, STIMUL
d Dependent Variable: INSTEVAL
Since neither of these p values is less than .05, no other predictors can enter, and the procedure terminates.

Selected output from the backward selection procedure appears in Table 3.5. First, 
all of the predictors are put into the equation. Then, the procedure determines which 
of the predictors makes the least contribution when entered last in the equation. That 
predictor is INTEREST, and since its p value is .9097, it is deleted from the equation. 
None of the other predictors is further deleted because their p values are less than .10.

Interestingly, note that two different sets of predictors emerge from the two sequential 
selection procedures. The stepwise procedure yields the set (CLARITY, INTEREST, 
and STIMUL), where the backward procedure yields (COUEVAL, KNOWLEDGE, 
STIMUL, and CLARITY). However, CLARITY and STIMUL are common to both 
sets. On the grounds of parsimony, we might prefer the set (CLARITY, INTEREST, 
and STIMUL), especially because the adjusted R2 values for the two sets are quite 
close (.84 and .87). Note that the adjusted R2 is generally preferred over R2 as a meas-
ure of the proportion of y variability due to the model, although we will see later that 
adjusted R2 does not work particularly well in assessing the cross-validity predictive 
power of an equation.

Three other things should be checked out before settling on this as our chosen model:

1. We need to determine if the assumptions of the linear regression model are tenable.
2. We need an estimate of the cross-validity power of the equation.
3. We need to check for the existence of outliers and/or influential data points.
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 Table 3.5: Selected Printout From SPSS Regression for Backward Selection on the 
Morrison MBA Data

Model Summaryc

Model R
R 
Square

Adjusted 
R Square

Std. Error 
of the 
Estimate

Selection Criteria

Akaike  
Information 
Criterion

Amemiya 
Prediction 
Criterion

Mallows’ 
Pre-
diction 
Criterion

Schwarz 
Bayesian 
Criterion

1 .946a .894 .874 .2831 −75.407 .154 6.000 −66.613
2 .946b .894 .879 .2779 −77.391 .145 4.013 −70.062
a Predictors: (Constant), COUEVAL, KNOWLEDG, STIMUL, INTEREST, CLARITY
b Predictors: (Constant), COUEVAL, KNOWLEDG, STIMUL, CLARITY
c Dependent Variable: INSTEVAL

Coefficientsa

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

Collinearity  
Statistics

B Std. Error Beta t Sig. Tolerance VIF

1 (Constant) −.443 .235 −1.886 .070
CLARITY .386 .071 .523 5.415 .000 .436 2.293
STIMUL .197 .062 .269 3.186 .004 .569 1.759
KNOWLEDG .277 .108 .215 2.561 .017 .579 1.728
INTEREST .011 .097 .011 .115 .910 .441 2.266
COUEVAL .270 .110 .243 2.459 .021 .416 2.401

2 (Constant) −.450 .222 −2.027 .053
CLARITY .384 .067 .520 5.698 .000 .471 2.125
STIMUL .198 .059 .271 3.335 .002 .592 1.690
KNOWLEDG .285 .081 .221 3.518 .002 .994 1.006
COUEVAL .276 .094 .249 2.953 .006 .553 1.810

a Dependent Variable: INSTEVAL

Figure 3.4 shows a plot of the studentized residuals versus the predicted values from 
SPSS. This plot shows essentially random variation of the points about the horizontal 
line of 0, indicating no violations of assumptions.

The issues of cross-validity power and outliers are considered later in this chapter, and 
are applied to this problem in section 3.15, after both topics have been covered.

Example 3.4: SAS REG on Doctoral Programs in Psychology
The data for this example come from a National Academy of Sciences report (1982) 
that, among other things, provided ratings on the quality of 46 research doctoral pro-
grams in psychology. The six variables used to predict quality are:
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NFACULTY—number of faculty members in the program as of December 1980
NGRADS—number of program graduates from 1975 through 1980
PCTSUPP—percentage of program graduates from 1975–1979 who received fel-

lowships or training grant support during their graduate education
PCTGRANT—percentage of faculty members holding research grants from the 

Alcohol, Drug Abuse, and Mental Health Administration, the National Institutes 
of Health, or the National Science Foundation at any time during 1978–1980

NARTICLE—number of published articles attributed to program faculty members 
from 1978–1980

PCTPUB—percentage of faculty with one or more published articles from 
1978–1980

Both the stepwise and the MAXR procedures were used on this data to generate sev-
eral regression models. SAS syntax for doing this, along with the correlation matrix, 
are given in Table 3.6.

CORRELATION MATRIX

NFACUL NCRADS PCTSUPP PCTCRT NARTIC PCTPUB QUALITY

2 3 4 5 6 7 1

NFACUL 2 1.000

 Table 3.6: SAS Syntax for Stepwise and MAXR Runs on the National Academy of 
Sciences Data and the Correlation Matrix

DATA SINGER;

INPUT QUALITY NFACUL NGRADS PCTSUPP PCTGRT NARTIC PCTPUB; LINES;

DATA LINES

(1) PROC REG SIMPLE CORR;

(2)  MODEL QUALITY = NFACUL NGRADS PCTSUPP PCTGRT NARTIC PCTPUB/ 
SELECTION = STEPWISE VIF R INFLUENCE;

 MODEL QUALITY = NFACUL NGRADS PCTSUPP PCTGRT NARTIC PCTPUB/ 
SELECTION = MAXR VIF R INFLUENCE;

RUN;

(1) SIMPLE is needed to obtain descriptive statistics (means, variances, etc.) for all variables. 
CORR is needed to obtain the correlation matrix for the variables.

(2) In this MODEL statement, the dependent variable goes on the left and all predictors to the 
right of the equals sign. SELECTION is where we indicate which of the procedures we wish to 
use. There is a wide variety of other information we can get printed out. Here we have selected 
VIF (variance inflation factors), R (analysis of residuals, hat elements, Cook’s D), and INFLU-
ENCE (influence diagnostics).

Note that there are two separate MODEL statements for the two regression procedures being 
requested. Although multiple procedures can be obtained in one run, you must have a separate 
MODEL statement for each procedure.

(Continued)
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CORRELATION MATRIX

NFACUL NCRADS PCTSUPP PCTCRT NARTIC PCTPUB QUALITY

NCRADS 3 0.692 1.000
PCTSUPP 4 0.395 0.337 1.000
PCTCRT S 0.162 0.071 0.351 1.000
NARTIC 6 0.755 0.646 0.366 0.436 1.000
PCTPUB 7 0.205 0.171 0.347 0.490 0.593 1.000
QUALITY I 0.622 0.418 0.582 0.700 0.762 0.585 1.000

 Table 3.6: (Continued)

One very nice feature of SAS REG is that Mallows’ Cp is given for each model. The 
stepwise procedure terminated after four predictors entered. Here is the summary 
table, exactly as it appears in the output:

Summary of Stepwise Procedure for Dependent Variable QUALITY

Variable Partial Model

Step Entered Removed R**2 R**2 C(p) F Prob > F

1 NARTIC 0.5809 0.5809 55.1185 60.9861 0.0001
2 PCTGRT 0.1668 0.7477 18.4760 28.4156 0.0001
3 PCTSUPP 0.0569 0.8045 7.2970 12.2197 0.0011
4 NFACUL 0.0176 0.8221 5.2161 4.0595 0.0505

This four predictor model appears to be a reasonably good one. First, Mallows’ Cp is 
very close to p (recall p = k + 1), that is, 5.216 ≈ 5, indicating that there is not much 
bias in the model. Second, R2 = .8221, indicating that we can predict quality quite well 
from the four predictors. Although this R2 is not adjusted, the adjusted value will not 
differ much because we have not selected from a large pool of predictors.

Selected output from the MAXR procedure run appears in Table 3.7. From Table 3.7 
we can construct the following results:

BEST MODEL VARIABLE(S) MALLOWS Cp

for 1 variable NARTIC 55.118
for 2 variables PCTGRT, NFACUL 16.859
for 3 variables PCTPUB, PCTGRT, NFACUL 9.147
for 4 variables NFACUL, PCTSUPP, PCTGRT, NARTIC 5.216

In this case, the same four-predictor model is selected by the MAXR procedure that 
was selected by the stepwise procedure.
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 Table 3.7: Selected Results From the MAXR Run on the National Academy of 
 Sciences Data

Maximum R-Square Improvement of Dependent Variable QUALITY
Step 1 Variable NARTIC Entered R-square = 0.5809 C(p) = 55.1185
The above model is the best 1-variable model found.
Step 2 Variable PGTGRT Entered R-square = 0.7477 C(p) = 18.4760
Step 3 Variable NARTIC Removed R-square = 0.7546 C(p) = 16.8597

Variable NFACUL Entered
The above model is the best 2-variable model found.
Step 4 Variable PCTPUB Entered R-square = 0.7965 C(p) = 9.1472
The above model is the best 3-variable model found.
Step 5 Variable PCTSUPP Entered R-square = 0.8191 C(p) = 5.9230
Step 6 Variable PCTPUB Removed R-square = 0.8221 C(p) = 5.2161

Variable NARTIC Entered

DF Sum of Squares Mean Square F Prob > f

Regression 4 3752.82299 938.20575 47.38 0.0001
Error 41 811.894403 19.80230
Total 45 4564.71739

Variable
Parameter
Estimate

Standard
Error

Type II
Sum of 
Squares F Prob > F

INTERCEP 9.06133 1.64473 601.05272 30.35 0.0001
NFACUL 0.13330 0.06616 80.38802 4.06 0.0505
PCTSUPP 0.094530 0.03237 168.91498 8.53 0.0057
PCTGRT 0.24645 0.04414 617.20528 31.17 0.0001
NARTIC 0.05455 0.01955 154.24692 7.79 0.0079

3.9.1 Caveat on p Values for the “Significance” of Predictors

The p values that are given by SPSS and SAS for the “significance” of each predictor 
at each step for stepwise or the forward selection procedures should be treated tenu-
ously, especially if your initial pool of predictors is moderate (15) or large (30). The 
reason is that the ordinary F distribution is not appropriate here, because the largest 
F is being selected out of all Fs available. Thus, the appropriate critical value will be 
larger (and can be considerably larger) than would be obtained from the ordinary null 
F distribution. Draper and Smith (1981) noted, “studies have shown, for example, that 
in some cases where an entry F test was made at the a level, the appropriate probability 
was qa, where there were q entry candidates at that stage” (p. 311). This is saying, for 
example, that an experimenter may think his or her probability of erroneously includ-
ing a predictor is .05, when in fact the actual probability of erroneously including the 
predictor is .50 (if there were 10 entry candidates at that point).
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Thus, the F tests are positively biased, and the greater the number of predic-
tors, the larger the bias. Hence, these F tests should be used only as rough guides 
to the usefulness of the predictors chosen. The acid test is how well the predictors 
do under cross-validation. It can be unwise to use any of the stepwise procedures 
with 20 or 30 predictors and only 100 subjects, because capitalization on chance  
is great, and the results may well not cross-validate. To find an equation that probably 
will have generalizability, it is best to carefully select (using substantive knowledge or 
any previous related literature) a small or relatively small set of predictors.

Ramsey and Schafer (1997) comment on this issue:

The cutoff value of 4 for the F-statistic (or 2 for the magnitude of the t-statistic) 
corresponds roughly to a two-sided p-value of less than .05. The notion of “signif-
icance” cannot be taken seriously, however, because sequential variable selection 
is a form of data snooping.

At step 1 of a forward selection, the cutoff of F = 4 corresponds to a hypothesis 
test for a single coefficient. But the actual statistic considered is the largest of 
several F-statistics, whose sampling distribution under the null hypothesis differs 
sharply from an F-distribution.

To demonstrate this, suppose that a model contained ten explanatory variables and 
a single response, with a sample size of n = 100. The F-statistic for a single variable 
at step 1 would be compared to an F-distribution with 1 and 98 degrees of freedom, 
where only 4.8% of the F-ratios exceed 4. But suppose further that all eleven varia-
bles were generated completely at random (and independently of each other), from 
a standard normal distribution. What should be expected of the largest F-to-enter?

This random generation process was simulated 500 times on a computer. The fol-
lowing display shows a histogram of the largest among ten F-to-enter values, along 
with the theoretical F-distribution. The two distributions are very different. At least 
one F-to-enter was larger than 4 in 38% of the simulated trials, even though none of 
the explanatory variables was associated with the response. (p. 93)

0 1 2 3 4 5 6 7 8
F-statistic

Largest of 10 F-to-enter values
(histogram from 500 simulations).

9 10 11 12 13 14 15

F-distribution with 1 and 98 df
(theoretical curve).

Simulated distribution of the largest of 10 F-statistics.
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3.10 CHECKING ASSUMPTIONS FOR THE REGRESSION MODEL

Recall that in the linear regression model it is assumed that the errors are independent 
and follow a normal distribution with constant variance. The normality assumption 
can be checked through the use of the histogram of the standardized or studentized 
residuals, as we did in Table 3.2 for the simple regression example. The independ-
ence assumption implies that the subjects are responding independently of one another. 
This is an important assumption. We show in Chapter 6, in the context of analysis of 
variance, that if independence is violated only mildly, then the probability of a type 
I error may be several times greater than the level the experimenter thinks he or she is 
working at. Thus, instead of rejecting falsely 5% of the time, the experimenter may be 
rejecting falsely 25% or 30% of the time.

We now consider an example where this assumption was violated. Suppose research-
ers had asked each of 22 college freshmen to write four in-class essays in two 1-hour 
sessions, separated by a span of several months. Then, suppose a subsequent regres-
sion analysis were conducted to predict quality of essay response using an n of 88. 
Here, however, the responses for each subject on the four essays are obviously going 
to be correlated, so that there are not 88 independent observations, but only 22.

3.10.1 Residual Plots

Various types of plots are available for assessing potential problems with the regres-
sion model (Draper & Smith, 1981; Weisberg, 1985). One of the most useful graphs 
the studentized residuals (r) versus the predicted values ( ).yi

  If the assumptions of 
the linear regression model are tenable, then these residuals should scatter randomly 
about a horizontal line defined by ri = 0, as shown in Figure 3.3a. Any systematic 
pattern or clustering of the residuals suggests a model violation(s). Three such sys-
tematic patterns are indicated in Figure 3.3. Figure 3.3b shows a systematic quadratic 
(second-degree equation) clustering of the residuals. For Figure 3.3c, the variability 
of the residuals increases systematically as the predicted values increase, suggesting a 
violation of the constant variance assumption.

It is important to note that the plots in Figure 3.3 are somewhat idealized, constructed 
to be clear violations. As Weisberg (1985) stated, “unfortunately, these idealized plots 
cover up one very important point; in real data sets, the true state of affairs is rarely 
this clear” (p. 131).

In Figure 3.4 we present residual plots for three real data sets. The first plot is for the 
Morrison data (the first computer example), and shows essentially random scatter of 
the residuals, suggesting no violations of assumptions. The remaining two plots are 
from a study by a statistician who analyzed the salaries of over 260 major league base-
ball hitters, using predictors such as career batting average, career home runs per time 
at bat, years in the major leagues, and so on. These plots are from Moore and McCabe 
(1989) and are used with permission. Figure 3.4b, which plots the residuals versus 
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predicted salaries, shows a clear violation of the constant variance assumption. For 
lower predicted salaries there is little variability about 0, but for the high salaries there 
is considerable variability of the residuals. The implication of this is that the model 
will predict lower salaries quite accurately, but not so for the higher salaries.

Figure 3.4c plots the residuals versus number of years in the major leagues. This plot 
shows a clear curvilinear clustering, that is, quadratic. The implication of this curvilin-
ear trend is that the regression model will tend to overestimate the salaries of players 
who have been in the majors only a few years or over 15 years, and it will underesti-
mate the salaries of players who have been in the majors about five to nine years.

In concluding this section, note that if nonlinearity or nonconstant variance is found, 
there are various remedies. For nonlinearity, perhaps a polynomial model is needed. 
Or sometimes a transformation of the data will enable a nonlinear model to be approx-
imated by a linear one. For nonconstant variance, weighted least squares is one possi-
bility, or more commonly, a variance-stabilizing transformation (such as square root or 
log) may be used. We refer you to Weisberg (1985, chapter 6) for an excellent discus-
sion of remedies for regression model violations.

 Figure 3.3: Residual plots of studentized residuals vs. predicted values.
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 Figure 3.4: Residual plots for three real data sets suggesting no violations, heterogeneous 
variance, and curvilinearity.
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 Figure 3.3: (Continued)

3.11 MODEL VALIDATION

We indicated earlier that it was crucial for the researcher to obtain some measure of 
how well the regression equation will predict on an independent sample(s) of data. 
That is, it was important to determine whether the equation had generalizability. We 
discuss here three forms of model validation, two being empirical and the other involv-
ing an estimate of average predictive power on other samples. First, we give a brief 
description of each form, and then elaborate on each form of validation.

1. Data splitting. Here the sample is randomly split in half. It does not have to be 
split evenly, but we use this for illustration. The regression equation is found on 
the so-called derivation sample (also called the screening sample, or the sample 
that “gave birth” to the prediction equation by Tukey). This prediction equation is 
then applied to the other sample (called validation or calibration) to see how well 
it predicts the y scores there.

2. Compute an adjusted R2. There are various adjusted R2 measures, or measures of 
shrinkage in predictive power, but they do not all estimate the same thing. The 
one most commonly used, and that which is printed out by both major statisti-
cal packages, is due to Wherry (1931). It is very important to note here that the 
Wherry formula estimates how much variance on y would be accounted for if we 
had derived the prediction equation in the population from which the sample was 
drawn. The Wherry formula does not indicate how well the derived equation will 
predict on other samples from the same population. A formula due to Stein (1960) 
does estimate average cross-validation predictive power. As of this writing it is not 
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printed out by any of the three major packages. The formulas due to Wherry and 
Stein are presented shortly.

3. Use the PRESS statistic. As pointed out by several authors, in many instances one 
does not have enough data to be randomly splitting it. One can obtain a good meas-
ure of external predictive power by use of the PRESS statistic. In this approach the 
y value for each subject is set aside and a prediction equation derived on the remain-
ing data. Thus, n prediction equations are derived and n true prediction errors are 
found. To be very specific, the prediction error for subject 1 is computed from the 
equation derived on the remaining (n − 1) data points, the prediction error for sub-
ject 2 is computed from the equation derived on the other (n − 1) data points, and so 
on. As Myers (1990) put it, “PRESS is important in that one has information in the 
form of n validations in which the fitting sample for each is of size n − 1” (p. 171).

3.11.1 Data Splitting

Recall that the sample is randomly split. The regression equation is found on the derivation 
sample and then is applied to the other sample (validation) to determine how well it will 
predict y there. Next, we give a hypothetical example, randomly splitting 100 subjects.

Derivation Sample Validation Sample
n = 50 n = 50
Prediction Equation

y x xi
^ . .= + +4 3 71 2

y x1 x2

6 1 .5
4.5 2 .3

. . .
7 5 .2

Now, using this prediction equation, we predict the y scores in the validation sample:

y^ . ( ) . (. ) .1 4 3 1 7 5 4 65= + + =

y^ . ( ) . (. ) .2 4 3 2 7 3 4 81= + + =

. . .

y^ . ( ) . (. ) .50 4 3 5 7 2 5 64= + + =

The cross-validated R then is the correlation for the following set of scores:

y ŷi

6 4.65
4.5 4.81

. . .
7 5.64
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Random splitting and cross-validation can be easily done using SPSS and the filter 
case function.

3.11.2 Cross-Validation With SPSS

To illustrate cross-validation with SPSS, we use the Agresti data that appears on this 
book’s accompanying website. Recall that the sample size here was 93. First, we randomly 
select a sample and do a stepwise regression on this random sample. We have selected an 
approximate random sample of 60%. It turns out that n = 60 in our random sample. This 
is done by clicking on DATA, choosing SELECT CASES from the dropdown menu, then 
choosing RANDOM SAMPLE and finally selecting a random sample of approximately 
60%. When this is done a FILTER_$ variable is created, with value = 1 for those cases 
included in the sample and value = 0 for those cases not included in the sample. When the 
stepwise regression was done, the variables SIZE, NOBATH, and NEW were included as 
predictors and the coefficients, and so on, are given here for that run:

Coefficientsa

Model

Unstandardized Coefficients
Standardized  
Coefficients

B Std. Error Beta t Sig.

1 (Constant) –28.948 8.209 –3.526 .001
   SIZE 78.353 4.692 .910 16.700 .000
2 (Constant) –62.848 10.939 –5.745 .000
   SIZE 62.156 5.701 .722 10.902 .000
   NOBATH 30.334 7.322 .274 4.143 .000
3 (Constant) –62.519 9.976 –6.267 .000
   SIZE 59.931 5.237 .696 11.444 .000
   NOBATH 29.436 6.682 .266 4.405 .000
   NEW 17.146 4.842 .159 3.541 .001
a Dependent Variable: PRICE

The next step in the cross-validation is to use the COMPUTE statement to compute the 
predicted values for the dependent variable. This COMPUTE statement is obtained by 
clicking on TRANSFORM and then selecting COMPUTE from the dropdown menu. 
When this is done the screen in Figure 3.5 appears.

Using the coefficients obtained from the regression we have:

PRED = −62.519 + 59.931*SIZE + 29.436*NOBATH + 17.146*NEW

We wish to correlate the predicted values in the other part of the sample with the y 
values there to obtain the cross-validated value. We click on DATA again, and use 
SELECT IF FILTER_$ = 0. That is, we select those cases in the other part of the sam-
ple. There are 33 cases in the other part of the random sample. When this is done all 
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the cases with FILTER_$ = 1 are selected, and a partial listing of the data appears as 
follows:

Price Size nobed nobath new filter_$ pred

1 48.50 1.10 3.00 1.00 .00 0 32.84
2 55.00 1.01 3.00 2.00 .00 0 56.88
3 68.00 1.45 3.00 2.00 .00 1 83.25
4 137.00 2.40 3.00 3.00 .00 0 169.62
5 309.40 3.30 4.00 3.00 1.00 0 240.71
6 17.50 .40 1.00 1.00 .00 1 –9.11
7 19.60 1.28 3.00 1.00 .00 0 43.63
8 24.50 .74 3.00 1.00 .00 0 11.27

Finally, we use the CORRELATION program to obtain the bivariate correlation between 
PRED and PRICE (the dependent variable) in this sample of 33. That correlation is 
.878, which is a drop from the maximized correlation of .944 in the derivation sample.

3.11.3 Adjusted R 2

Herzberg (1969) presented a discussion of various formulas that have been used to 
estimate the amount of shrinkage found in R2. As mentioned earlier, the one most com-
monly used, and due to Wherry, is given by

ρ2^ ,= −
−( )

− −( ) −( )1
1

1
1 2n

n k
R  (11)

where ρ̂ is the estimate of ρ, the population multiple correlation coefficient. This is the 
adjusted R2 printed out by SAS and SPSS. Draper and Smith (1981) commented on 
Equation 11:

A related statistic . . . is the so called adjusted r Ra
2( ),  the idea being that the sta-

tistic Ra
2  can be used to compare equations fitted not only to a specific set of data 

 Figure 3.5: SPSS screen that can be used to compute the predicted values for cross-validation.
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but also to two or more entirely different sets of data. The value of this statistic for 
the latter purpose is, in our opinion, not high. (p. 92)

Herzberg noted:

In applications, the population regression function can never be known and one is 
more interested in how effective the sample regression function is in other sam-
ples. A measure of this effectiveness is rc, the sample cross-validity. For any given 
regression function rc will vary from validation sample to validation sample. The 
average value of rc will be approximately equal to the correlation, in the popula-
tion, of the sample regression function with the criterion. This correlation is the 
population cross-validity, ρc. Wherry’s formula estimates ρ rather than ρc. (p. 4)

There are two possible models for the predictors: (1) regression—the values of the pre-
dictors are fixed, that is, we study y only for certain values of x, and (2) correlation—the 
predictors are random variables—this is a much more reasonable model for social sci-
ence research. Herzberg presented the following formula for estimating ρc

2 under the 
correlation model:

ρ^ ,c
n

n k
n

n k
n

n
R2 21

1
1

2
2

1 1= −
−( )

− −( )
−

− −






+



 −( )

  (12)

where n is sample size and k is the number of predictors. It can be shown that ρc < ρ.

If you are interested in cross-validity predictive power, then the Stein formula (Equa-
tion 12) should be used. As an example, suppose n = 50, k = 10 and R2 = .50. If you 
used the Wherry formula (Equation 11), then your estimate is

ρ^ / (. ) . ,2 1 49 39 50 372= − =

whereas with the proper Stein formula you would obtain

ρ^ c
2 1= − ( )( )( )( )49 / 39 48 / 38 51 / 50 .50  = .191.

In other words, use of the Wherry formula would give a misleadingly positive impres-
sion of the cross-validity predictive power of the equation. Table 3.8 shows how the 
estimated predictive power drops off using the Stein formula (Equation 12) for small 
to fairly large subject/variable ratios when R2 = .50, .75, and .85.

3.11.4 PRESS Statistic

The PRESS approach is important in that one has n validations, each based on (n − 1) 
observations. Thus, each validation is based on essentially the entire sample. This is 
very important when one does not have large n, for in this situation data splitting is 
really not practical. For example, if n = 60 and we have six predictors, randomly split-
ting the sample involves obtaining a prediction equation on only 30 subjects.
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Recall that in deriving the prediction (via the least squares approach), the sum of the 
squared errors is minimized. The PRESS residuals, on the other hand, are true predic-
tion errors, because the y value for each subject was not simultaneously used for fit and 
model assessment. Let us denote the predicted value for subject i, where that subject 
was not used in developing the prediction equation, by y i

^
( ) .−  Then the PRESS resid-

ual for each subject is given by

e y yi i i( ) ( )− −= −

and the PRESS sum of squared residuals is given by

PRESS = ∑ −( )e i
2 . (13)

Therefore, one might prefer the model with the smallest PRESS value. The preceding 
PRESS value can be used to calculate an R2-like statistic that more accurately reflects 
the generalizability of the model. It is given by

R y yiPress PRESS2 21= − ∑ −( ) ( )   (14)

Importantly, the SAS REG program routinely prints out PRESS, although it is called 
PREDICTED RESID SS (PRESS). Given this value, it is a simple matter to calculate 
the R2 PRESS statistic, because the variance of y is s y y ny i

2 2 1= ∑ − −( ) ( ).

3.12 IMPORTANCE OF THE ORDER OF THE PREDICTORS

The order in which the predictors enter a regression equation can make a great deal 
of difference with respect to how much variance on y they account for, especially 
for moderate or highly correlated predictors. Only for uncorrelated predictors (which 

 Table 3.8: Estimated Cross-Validity Predictive Power for Stein Formulaa

Subject/variable ratio Stein estimate

Small (5:1) N = 50, k = 10, R 2 = .50 .191b

N = 50, k = 10, R 2 = .75 .595
N = 50, k = 10, R 2 = .85 .757

Moderate (10:1) N = 100, k = 10, R 2 = .50 .374
N = 100, k = 10, R 2 = .75 .690

Fairly large (15:1) N = 150, k = 10, R 2 = .50 .421

a If there is selection of predictors from a larger set, then the median should be used as the k. For example, if 
four predictors were selected from 30 by say stepwise regression, then the median between 4 and 30 (i.e., 17) 
should be the k used in the Stein formula.
b If we were to apply the prediction equation to many other samples from the same population, then on the 
average we would account for 19.1% of the variance on y.

^ ^

^
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would rarely occur in practice) does the order not make a difference. We give two 
examples to illustrate.

Example 3.5
A dissertation by Crowder (1975) attempted to predict ratings of individuals having 
trainably mental retardation (TMs) using IQ (x2) and scores from a Test of Social Infer-
ence (TSI). He was especially interested in showing that the TSI had incremental pre-
dictive validity. The criterion was the average ratings by two individuals in charge of 
the TMs. The intercorrelations among the variables were:

r r rx x yx yx1 2 2 1
59 54 566= − =. , . , .

Now, consider two orderings for the predictors, one where TSI is entered first, and the 
other ordering where IQ is entered first.

First ordering % of variance Second ordering % of variance

TSI 32.04 IQ 29.16
IQ 6.52 TSI 9.40

The first ordering conveys an overly optimistic view of the utility of the TSI scale. 
Because we know that IQ will predict ratings, it should be entered first in the equation 
(as a control variable), and then TSI to see what its incremental validity is—that is, 
how much it adds to predicting ratings above and beyond what IQ does. Because of 
the moderate correlation between IQ and TSI, the amount of variance accounted for by 
TSI differs considerably when entered first versus second (32.04 vs. 9.4).

The 9.4% of variance accounted for by TSI when entered second is obtained through 
the use of the semipartial correlation previously introduced:

r ry s y s1 2 2 1 2
2566 54 59

1 59
306 094( ) ( )

. . (. )

.
. .= −

−
= ⇒ =

Example 3.6
Consider the following correlations among three predictors and an outcome:

x x x
y
x
x

1 2 3

1

2

60 70 70
70 60

80

. . .
. .

.

Notice that the predictors are strongly intercorrelated.

How much variance in y will x3 account for if entered first? if entered last?

If x3 is entered first, then it will account for (.7)2 × 100 or 49% of variance on y—a 
sizable amount.
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To determine how much variance x3 will account for if entered last, we need to com-
pute the following second-order semipartial correlation:

r
r r r

r
y s

y s y s
3 12

3 1 2 1 23 1

23 1
21

( )
( ) ( )=

−

−

We show the details next for obtaining ry3 12(s):

r
r r r

r

r

y s
y y

y s

2 1
2 1 21
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2

2 1

1
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1 49
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1 6
4253 1

3 1 31
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=
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1 665

164
746

22

22 04

2

3 12
2 2ry s 88

Thus, when x3 enters last it accounts for only 4.8% of the variance on y. This is a tre-
mendous drop from the 49% it accounted for when entered first. Because the three pre-
dictors are so highly correlated, most of the variance on y that x3 could have accounted 
for has already been accounted for by x1 and x2.

3.12.1 Controlling the Order of Predictors in the Equation

With the forward and stepwise selection procedures, the order of entry of predictors 
into the regression equation is determined via a mathematical maximization procedure. 
That is, the first predictor to enter is the one with the largest (maximized) correlation 
with y, the second to enter is the predictor with the largest partial correlation, and so 
on. However, there are situations where you may not want the mathematics to deter-
mine the order of entry of predictors. For example, suppose we have a five-predictor 
problem, with two proven predictors from previous research. The other three predic-
tors are included to see if they have any incremental validity. In this case we would 
want to enter the two proven predictors in the equation first (as control variables), and 
then let the remaining three predictors “fight it out” to determine whether any of them 
add anything significant to predicting y above and beyond the proven predictors.

With SPSS REGRESSION or SAS REG we can control the order of predictors, and in 
particular, we can force predictors into the equation. In Table 3.9 we illustrate how this 
is done for SPSS and SAS for the five-predictor situation.
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 Table 3.9: Controlling the Order of Predictors and Forcing Predictors Into the Equation 
With SPSS Regression and SAS Reg

SPSS REGRESSION

TITLE ‘FORCING X3 AND X4 & USING STEPWISE SELECTION FOR OTHERS’.
DATA LIST FREE/Y X1 X2 X3 X4 X5.
BEGIN DATA.

DATA LINES
END DATA.
LIST.
REGRESSION VARIABLES = Y X1 X2 X3 X4 X5

/DEPENDENT = Y
(1)    /METHOD = ENTER X3 X4

/METHOD = STEPWISE X1 X2 X5.

SAS REG

DATA FORCEPR;
INPUT Y X1 X2 X3 X4 X5;
LINES;

DATA LINES
PROC REG SIMPLE CORR;

(2) MODEL Y = X3 X4 X1 X2 X5/INCLUDE = 2 SELECTION = STEPWISE;

(1) The METHOD = ENTER subcommand forces variables X3 and X4 into the equation, and the  
METHOD = STEPWISE subcommand will determine whether any of the remaining predictors (X1, X2 or 
X5) have semipartial correlations large enough to be “significant.” If we wished to force in predictors X1, X3, 
and X4 and then use STEPWISE, the subcommands are /METHOD = ENTER X1 X3 X4/METH-
OD = STEPWISE X2 X5.
(2) The INCLUDE = 2 forces the first 2 predictors listed in the MODEL statement into the prediction 
equation. Thus, if we wish to force X3 and X4 we must list them first on the = statement.

3.13 OTHER IMPORTANT ISSUES

3.13.1 Preselection of Predictors

An industrial psychologist hears about the predictive power of multiple regression and 
is excited. He wants to predict success on the job, and gathers data for 20 potential 
predictors on 70 subjects. He obtains the correlation matrix for the variables and then 
picks out six predictors that correlate significantly with success on the job and that 
have low intercorrelations among themselves. The analysis is run, and the R2 is highly 
significant. Furthermore, he is able to explain 52% of the variance on y (more than 
other investigators have been able to do). Are these results generalizable? Probably 
not, since what he did involves a double capitalization on chance:

1. In preselecting the predictors from a larger set, he is capitalizing on chance. Some 
of these variables would have high correlations with y because of sampling error, 
and consequently their correlations would tend to be lower in another sample.

2. The mathematical maximization involved in obtaining the multiple correlation 
involves capitalizing on chance.
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Preselection of predictors is common among many researchers who are unaware of 
the fact that this tends to make their results sample specific. Nunnally (1978) had a 
nice discussion of the preselection problem, and Wilkinson (1979) showed the consid-
erable positive bias preselection can have on the test of significance of R2 in forward 
selection. The following example from his tables illustrates. The critical value for a 
four-predictor problem (n = 35) at .05 level is .26, and the appropriate critical value for 
the same n and α level, when preselecting four predictors from a set of 20 predictors is 
.51. Unawareness of the positive bias has led to many results in the literature that are 
not replicable, for as Wilkinson noted:

A computer assisted search for articles in psychology using stepwise regression 
from 1969 to 1977 located 71 articles. Out of these articles, 66 forward selections 
analyses reported as significant by the usual F tests were found. Of these 66 anal-
yses, 19 were not significant by [his] Table 1. (p. 172)

It is important to note that both the Wherry and Stein formulas do not take into account 
preselection. Hence, the following from Cohen and Cohen (1983) should be seriously 
considered: “A more realistic estimate of the shrinkage is obtained by substituting for 
k the total number of predictors from which the selection was made” (p. 107). In other 
words, they are saying if four predictors were selected out of 15, use k = 15 in the Stein 
formula (Equation 12). While this may be conservative, using four will certainly lead 
to a positive bias. Probably a median value between 4 and 15 would be closer to the 
mark, although this needs further investigation.

3.13.2 Positive Bias of R 2

A study of California principals and superintendents illustrates how capitalization on 
chance in multiple regression (if the researcher is unaware of it) can lead to mislead-
ing conclusions. Here, the interest was in validating a contingency theory of lead-
ership, that is, that success in administering schools calls for different personality 
styles depending on the social setting of the school. The theory seems plausible, and 
in what follows we are not criticizing the theory per se, but the empirical validation 
of it. The procedure that was used to validate the theory involved establishing a rela-
tionship between various personality attributes (24 predictors) and several measures 
of administrative success in heterogeneous samples with respect to social setting 
using multiple regression, that is, finding the multiple R for each measure of success 
on 24 predictors. Then, it was shown that the magnitude of the relationships was 
greater for subsamples homogeneous with respect to social setting. The problem 
was that the sample size is much too low for a reliable prediction equation. Here 
we present the total sample sizes and the subsamples homogeneous with respect to 
social setting:

Superintendents Principals

Total n = 77 n = 147
Subsample(s) n = 29 n1 = 35, n2 = 61, n3 = 36
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Indeed, in the homogeneous samples, the Rs were on the average .34 greater than in 
the total samples; however, this was an artifact of the multiple regression procedure in 
this case. As one proceeds from the total to the subsamples the number of predictors 
(k) approaches sample size (n). For this situation the multiple correlation increases to 1 
regardless of whether there is any relationship between y and the set of predictors. And 
in three of four subsamples the n/k ratios are very close to 1. In particular, it is the case 
that E(R2) = k / (n − 1), when the population multiple correlation = 0 (Morrison, 1976).

To dramatize this, consider Subsample 1 for the principals. Then E(R2) = 24 / 34 = .706, 
even when there is no relationship between y and the set of predictors. The F criti-
cal value required just for statistical significance of R at .05 is 2.74, which implies 
R2 = .868, just to be confident that the population multiple correlation is different 
from 0.

3.13.3 Suppressor Variables

Lord and Novick (1968) stated the following two rules of thumb for the selection of 
predictor variables:

1. Choose variables that correlate highly with the criterion but that have low 
intercorrelations.

2. To these variables add other variables that have low correlations with the criterion 
but that have high correlations with the other predictors. (p. 271)

At first blush, the second rule of thumb may not seem to make sense, but what they 
are talking about is suppressor variables. To illustrate specifically why a suppressor 
variable can help in prediction, we consider a hypothetical example.

Example 3.7
Consider a two-predictor problem with the following correlations among the variables:

r r ryx yx x x1 2 1 2
60 0 50= = =. , , . . and 

Note that x1 by itself accounts for (.6)2 = .36, or 36% of the variance on y. Now con-
sider entering x2 into the regression equation first. It will of course account for no 
variance on y, and it may seem like we have gained nothing. But, if we now enter x1 
into the equation (after x2), its predictive power is enhanced. This is because there is 
irrelevant variance on x1 (i.e., variance that does not relate to y), which is related to x2. 
In this case that irrelevant variance is (.5)2 = .25 or 25%. When this irrelevant variance 
is partialed out (or suppressed), the remaining variance on x1 is more strongly tied to y. 
Calculation of the semipartial correlation shows this:

r
r r r

r
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x x
1 2 2 2
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Thus, ry s
2
1 2 48. ,( ) =   and the predictive power of x1 has increased from accounting for 

36% to accounting for 48% of the variance on y.

3.14 OUTLIERS AND INFLUENTIAL DATA POINTS

Because multiple regression is a mathematical maximization procedure, it can be very 
sensitive to data points that “split off” or are different from the rest of the points, that 
is, to outliers. Just one or two such points can affect the interpretation of results, and 
it is certainly moot as to whether one or two points should be permitted to have such 
a profound influence. Therefore, it is important to be able to detect outliers and influ-
ential points. There is a distinction between the two because a point that is an outlier 
(either on y or for the predictors) will not necessarily be influential in affecting the 
regression equation.

The fact that a simple examination of summary statistics can result in misleading 
interpretations was illustrated by Anscombe (1973). He presented four data sets that 
yielded the same summary statistics (i.e., regression coefficients and same r2 = .667). 
In one case, linear regression was perfectly appropriate. In the second case, however, 
a scatterplot showed that curvilinear regression was appropriate. In the third case, lin-
ear regression was appropriate for 10 of 11 points, but the other point was an outlier 
and possibly should have been excluded from the analysis. In the fourth data set, the 
regression line was completely determined by one observation, which if removed, 
would not allow for an estimate of the slope.

Two basic approaches can be used in dealing with outliers and influential points. We 
consider the approach of having an arsenal of tools for isolating these important points 
for further study, with the possibility of deleting some or all of the points from the 
analysis. The other approach is to develop procedures that are relatively insensitive to 
wild points (i.e., robust regression techniques). (Some pertinent references for robust 
regression are Hogg, 1979; Huber, 1977; Mosteller & Tukey, 1977). It is important to 
note that even robust regression may be ineffective when there are outliers in the space 
of the predictors (Huber, 1977). Thus, even in robust regression there is a need for case 
analysis. Also, a modification of robust regression (bounded-influence regression) has 
been developed by Krasker and Welsch (1979).

3.14.1 Data Editing

Outliers and influential cases can occur because of recording errors. Consequently, 
researchers should give more consideration to the data editing phase of the data anal-
ysis process (i.e., always listing the data and examining the list for possible errors). 
There are many possible sources of error from the initial data collection to the final 
data entry. First, some of the data may have been recorded incorrectly. Second, even 
if recorded correctly, when all of the data are transferred to a single sheet or a few 
sheets in preparation for data entry, errors may be made. Finally, even if no errors are 
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made in these first two steps, an error(s) could be made in entering the data into the 
computer.

There are various statistics for identifying outliers on y and on the set of predictors, as 
well as for identifying influential data points. We discuss first, in brief form, a statistic 
for each, with advice on how to interpret that statistic. Equations for the statistics are 
given later in the section, along with a more extensive and somewhat technical discus-
sion for those who are interested.

3.14.2 Measuring Outliers on y

For finding participants whose predicted scores are quite different from their actual y 
scores (i.e., they do not fit the model well), the studentized residuals (ri) can be used. 
If the model is correct, then they have a normal distribution with a mean of 0 and a 
standard deviation of 1. Thus, about 95% of the ri should lie within two standard devi-
ations of the mean and about 99% within three standard deviations. Therefore, any 
studentized residual greater than about 3 in absolute value is unusual and should be 
carefully examined.

3.14.3 Measuring Outliers on Set of Predictors

The hat elements (hii) or leverage values can be used here. It can be shown that the 
hat elements lie between 0 and 1, and that the average hat element is p / n, where 
p = k + 1. Because of this, Hoaglin and Welsch (1978) suggested that 2p / n may be 
considered large. However, this can lead to more points than we really would want to 
examine, and you should consider using 3p / n. For example, with six predictors and 
100 subjects, any hat element, or leverage value, greater than 3(7) / 100 = .21 should 
be carefully examined. This is a very simple and useful rule for quickly identifying 
participants who are very different from the rest of the sample on the set of predictors. 
Note that instead of leverage SPSS reports a centered leverage value. For this statistic, 
the earlier guidelines for identifying outlying values are now 2k / n (instead of 2p / n) 
and 3k / n (instead of 3p / n).

3.14.4 Measuring Influential Data Points

An influential data point is one that when deleted produces a substantial change in at 
least one of the regression coefficients. That is, the prediction equations with and with-
out the influential point are quite different. Cook’s distance (Cook, 1977) is very use-
ful for identifying influential points. It measures the combined influence of the case’s 
being an outlier on y and on the set of predictors. Cook and Weisberg (1982) indicated 
that a Cook’s distance = 1 would generally be considered large. This provides a “red 
flag,” when examining computer output for identifying influential points.

All of these diagnostic measures are easily obtained from SPSS REGRESSION (see 
Table 3.3) or SAS REG (see Table 3.6).
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3.14.5 Measuring Outliers on y

The raw residuals, e y yi i i
^ ^ ,= −  in linear regression are assumed to be independent, 

to have a mean of 0, to have constant variance, and to follow a normal distribution. 
However, because the n residuals have only n − k degrees of freedom (k degrees of 
freedom were lost in estimating the regression parameters), they can’t be independent. 
If n is large relative to k, however, then the ei

^  are essentially independent. Also, the 
residuals have different variances. It can be shown (Draper & Smith, 1981, p. 144) that 
the variance for the ith residual is given by:

s he iii

2 2= 1 ( ),σ −^  (15)

where σ^
2
 is the estimate of variance not predictable from the regression (MSres), and 

hii is the ith diagonal element of the hat matrix X(X′X)−1X′. Recall that X is the score 
matrix for the predictors. The hii play a key role in determining the predicted values for 
the subjects. Recall that

ββ ββ
^ ^

( ) .= ′ ′ =−X X X Y X1  and y^

Therefore, ŷ = X(X′X)−1 X′y by simple substitution. Thus, the predicted values for 
y are obtained by postmultiplying the hat matrix by the column vector of observed 
scores on y.

Because the predicted values (ŷi) and the residuals are related by e y yi i i
^ ^ ,= −  it should 

not be surprising in view of the foregoing that the variability of the ei
^  would be 

affected by the hii.

Because the residuals have different variances, we need to properly scale the residuals 
so that we can meaningfully compare them. This is completely analogous to what is 
done in comparing raw scores from distributions with different variances and different 
means. There, one means of standardizing was to convert to z scores, using zi = (xi − x) / s. 
Here we also subtract off the mean (which is 0 and hence has no effect) and then 
divide by the standard deviation, which is the square root of Equation 15. Thus, the 
studentized residual is then

r e
h

e
hi

i

ii

i

ii

= − =
^

^

^

^
.0

σ 1− σ 1−  (16)

Because the ri are assumed to have a normal distribution with a mean of 0 (if the 
model is correct), then about 99% of the ri should lie within three standard deviations 
of the mean.

3.14.6 Measuring Outliers on the Predictors

The hii are one measure of the extent to which the ith observation is an outlier for the 
predictors. The hii are important because they can play a key role in determining the 
predicted values for the subjects. Recall that
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ββ ββ
^ ^

( ) .= ′ ′ =−X X X Y X1  and y^

Therefore, y = X(X′X)−1 X′y by simple substitution.

Thus, the predicted values for y are obtained by postmultiplying the hat matrix by the 
column vector of observed scores on y. It can be shown that the hii lie between 0 and 
1, and that the average value for hii = k / n. From Equation 15 it can be seen that when 
hii is large (i.e., near 1), then the variance for the ith residual is near 0. This means 
that y yi i

^ ^ .≈  In other words, an observation may fit the linear model well and yet be 
an influential data point. This second diagnostic, then, is “flagging” observations that 
need to be examined carefully because they may have an unusually large influence on 
the regression coefficients.

What is a significant value for the hii? Hoaglin and Welsch (1978) suggested that 
2p / n may be considered large. Belsey et al. (1980, pp. 67–68) showed that when the 
set of predictors is multivariate normal, then (n − p)[hii − 1 / n] / (1 − hii)(p − 1) is dis-
tributed as F with (p − 1) and (n − p) degrees of freedom.

Rather than computing F and comparing against a critical value, Hoaglin and Welsch 
suggested 2p / n as rough guide for a large hii.

An important point to remember concerning the hat elements is that the points they 
identify will not necessarily be influential in affecting the regression coefficients.

A second measure for identifying outliers on the predictors is Mahalanobis’ (1936) 
distance for case i ( ).Di

2  This measure indicates how far a case is from the centroid of 
all cases for the predictors. A large distance indicates an observation that is an outlier 
for the predictors. The Mahalanobis distance can be written in terms of the covariance 
matrix S as

Di
2 = − ′ −−( ) ( ),x x S x xi

1
i   (17)

where xi is the vector of the data for case i and x  is the vector of means (centroid) for 
the predictors.

For a better understanding of Di
2,  consider two small data sets. The first set has two 

predictors. In Table 3.10, the data are presented, as well as the Di
2  and the descriptive 

statistics (including S). The Di
2  for cases 6 and 10 are large because the score for Case 

6 on xi (150) was deviant, whereas for Case 10 the score on x2 (97) was very deviant. 
The graphical split-off of Cases 6 and 10 is quite vivid and was displayed in Figure 1.2 
in Chapter 1.

In the previous example, because the numbers of predictors and participants were 
few, it would have been fairly easy to spot the outliers even without the Mahalanobis 
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distance. However, in practical problems with 200 or 300 cases and 10 predictors, 
outliers are not always easy to spot and can occur in more subtle ways. For example, 
a case may have a large distance because there are moderate to fairly large differences 
on many of the predictors. The second small data set with four predictors and N = 15 
in Table 3.10 illustrates this latter point. The Di

2  for case 13 is quite large (7.97) even 
though the scores for that subject do not split off in a striking fashion for any of the 
predictors. Rather, it is a cumulative effect that produces the separation.

D6
2

1

41.3, 6
314.455 19.483

19.483 220.444
41.3

6
= ( )











−

S− =
−

−
→





1
6
2.00320 .00029

.00029 .00456
5.484D =

 Table 3.10: Raw Data and Mahalanobis Distances for Two Small Data Sets

Case Y X1 X2 X3 X4 D 2i
1 476 111 68 17 81 0.30
2 457 92 46 28 67 1.55
3 540 90 50 19 83 1.47
4 551 107 59 25 71 0.01
5 575 98 50 13 92 0.76
6 698 150 66 20 90 (1) 5.48
7 545 118 54 11 101 0.47
8 574 110 51 26 82 0.38
9 645 117 59 18 87 0.23

10 556 94 97 12 69 7.24
11 634 130 57 16 97
12 637 118 51 19 78
13 390 91 44 14 64
14 562 118 61 20 103
15 560 109 66 13 88
Summary
Statistics
M 561.70000 108.70000 60.00000
SD 70.74846 17.73289 14.84737

S =










314 455 19 483
10 483 220 944

. .
. .

Note: Boxed-in entries are the first data set and corresponding Di
2. The 10 case numbers having the largest 

Di
2 for a four-predictor data set are: 10, 10.859; 13, 7.977; 6, 7.223; 2, 5.048; 14, 4.874; 7, 3.514; 5, 3.177; 3, 

2.616; 8, 2.561; 4, 2.404.

(1) Calculation of Di
2 for Case 6:
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How large must Di
2  be before you can say that case i is significantly separated from 

the rest of the data? Johnson and Wichern (2007) note that these distances, if multi-
variate normality holds, approximately follow a chi-square distribution with degrees 
of freedom equal to the number of predictors (k), with this approximation improving 
for larger samples. A common practice is to consider a multivariate outlier to be pres-
ent when an obtained Mahalanobis distance exceeds a chi-square critical value at a 
conservative alpha level (e.g., .001) with k degrees of freedom. Referring back to the 
example with two predictors, if we assume multivariate normality, then neither case 6 
( Di

2  = 5.48) nor case 10 ( Di
2  = 7.24) would be considered as a multivariate outlier at 

the .001 level as the chi-square critical value is 13.815.

3.14.7 Measures for Influential Data Points

3.14.7.1 Cook’s DistanCe

Cook’s distance (CD) is a measure of the change in the regression coefficients that 
would occur if this case were omitted, thus revealing which cases are most influential 
in affecting the regression equation. It is affected by the case’s being an outlier both on 
y and on the set of predictors. Cook’s distance is given by

CD k MSi i i= −




′

′ −





+( )− −β β β ββ^ ^
( )

^ ^
( ) ,X X 1 res  (18)

where ββ
^

( )−i  is the vector of estimated regression coefficients with the ith data point 
deleted, k is the number of predictors, and MSres is the residual (error) variance for the 
full data set.

Removing the ith data point should keep ββ
^

( )−i  close to β
^

 unless the ith observation is 
an outlier. Cook and Weisberg (1982, p. 118) indicated that a CDi > 1 would generally 
be considered large. Cook’s distance can be written in an alternative revealing form:

CD
k

r h
hi i

ii

ii
=

+ −
1

1 1
2

( )
,   (19)

where ri is the studentized residual and hii is the hat element. Thus, Cook’s distance 
measures the joint (combined) influence of the case being an outlier on y and on the 
set of predictors. A case may be influential because it is a significant outlier only on y, 
for example,

k = 5, n = 40, ri = 4, hii = .3: CDi > 1,

or because it is a significant outlier only on the set of predictors, for example,

k = 5, n = 40, ri = 2, hii = .7: CDi > 1.

Note, however, that a case may not be a significant outlier on either y or on the set of 
predictors, but may still be influential, as in the following:
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k = 3, n = 20, hii = .4, r = 2.5: CDi > 1

3.14.7.2 Dffits

This statistic (Belsley et al., 1980) indicates how much the ith fitted value will change 
if the ith observation is deleted. It is given by

DFFITSi =
− −

−

y y
s h

i i
^ ^

.1

1 11

  (20)

The numerator simply expresses the difference between the fitted values, with the ith 
point in and with it deleted. The denominator provides a measure of variability since 
s hy ii

2 2= σ .  Therefore, DFFITS indicates the number of estimated standard errors that 
the fitted value changes when the ith point is deleted.

3.14.7.3 Dfbetas

These are very useful in detecting how much each regression coefficient will change if 
the ith observation is deleted. They are given by

DFBETAi =
− −

−

b b
SE b

j j

j

1

1( )
.   (21)

Each DFBETA therefore indicates the number of standard errors a given coefficient 
changes when the ith point is deleted. DFBETAS are available on SAS and SPSS, with 
SPSS referring to these as standardized DFBETAS. Any DFBETA with a value > |2| 
indicates a sizable change and should be investigated. Thus, although Cook’s distance 
is a composite measure of influence, the DFBETAS indicate which specific coeffi-
cients are being most affected.

It was mentioned earlier that a data point that is an outlier either on y or on the set of 
predictors will not necessarily be an influential point. Figure 3.6 illustrates how this 
can happen. In this simplified example with just one predictor, both points A and B are 
outliers on x. Point B is influential, and to accommodate it, the least squares regression 
line will be pulled downward toward the point. However, Point A is not influential 
because this point closely follows the trend of the rest of the data.

3.14.8 Summary

In summary, then, studentized residuals can be inspected to identify y outliers, and the 
leverage values (or centered leverage values in SPSS) or the Mahalanobis distances 
can be used to detect outliers on the predictors. Such outliers will not necessarily be 
influential points. To determine which outliers are influential, find those whose Cook’s 
distances are > 1. Those points that are flagged as influential by Cook’s distance need 
to be examined carefully to determine whether they should be deleted from the anal-
ysis. If there is a reason to believe that these cases arise from a process different from 
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that for the rest of the data, then the cases should be deleted. For example, the failure 
of a measuring instrument, a power failure, or the occurrence of an unusual event (per-
haps inexplicable) would be instances of a different process.

If a point is a significant outlier on y, but its Cook’s distance is < 1, there is no real need 
to delete the point because it does not have a large effect on the regression analysis. 
However, one should still be interested in studying such points further to understand 
why they did not fit the model. After all, the purpose of any study is to understand the 
data. In particular, you would want to know if there are any communalities among the 
cases corresponding to such outliers, suggesting that perhaps these cases come from 
a different population. For an excellent, readable, and extended discussion of outliers, 
influential points, identification of and remedies for, see Weisberg (1980, chapters 5 
and 6).

In concluding this summary, the following from Belsley et al. (1980) is appropriate:

A word of warning is in order here, for it is obvious that there is room for misuse of 
the above procedures. High-influence data points could conceivably be removed 
solely to effect a desired change in a particular estimated coefficient, its t value, or 
some other regression output. While this danger exists, it is an unavoidable con-
sequence of a procedure that successfully highlights such points . . . the benefits 
obtained from information on influential points far outweigh any potential danger. 
(pp. 15–16)

Example 3.8
We now consider the data in Table 3.10 with four predictors (n = 15). This data was run 
on SPSS REGRESSION. The regression with all four predictors is significant at the 
.05 level (F = 3.94, p < .0358). However, we wish to focus our attention on the outlier 
analysis, a summary of which is given in Table 3.11. Examination of the studentized 
residuals shows no significant outliers on y. To determine whether there are any signif-
icant outliers on the set of predictors, we examine the Mahalanobis distances. No cases 

 Figure 3.6: Examples of two outliers on the predictors: one influential and the other not 
 influential.

Y

X

A

B
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are outliers on the xs since the estimated chi-square critical value (.001, 4) is 18.465. 
However, note that Cook’s distances reveal that both Cases 10 and 13 are influential 
data points, since the distances are > 1. Note that Cases 10 and 13 are influential obser-
vations even though they were not considered as outliers on either y or on the set of 
predictors. We indicated that this is possible, and indeed it has occurred here. This is 
the more subtle type of influential point that Cook’s distance brings to our attention.

In Table 3.12 we present the regression coefficients that resulted when Cases 10 and 13 
were deleted. There is a fairly dramatic shift in the coefficients in each case. For Case 
10 a dramatic shift occurs for x2, where the coefficient changes from 1.27 (for all data 
points) to −1.48 (with Case 10 deleted). This is a shift of just over two standard errors 
(standard error for x2 on the output is 1.34). For Case 13 the coefficients change in sign 
for three of the four predictors (x2, x3, and x4).

 Table 3.11: Selected Output for Sample Problem on Outliers and Influential Points

Case Summariesa

Studentized Residual Mahalanobis Distance Cook’s Distance

1 –1.69609 .57237 .06934
2 –.72075 5.04841 .07751
3 .93397 2.61611 .05925
4 .08216 2.40401 .00042
5 1.19324 3.17728 .11837
6 .09408 7.22347 .00247
7 –.89911 3.51446 .07528
8 .21033 2.56197 .00294
9 1.09324 .17583 .02057

10 1.15951 10.85912 1.43639
11 .09041 1.89225 .00041
12 1.39104 2.02284 .10359
13 −1.73853 7.97770 1.05851
14 −1.26662 4.87493 .22751
15 –.04619 1.07926 .00007
Total N 15 15 15
a Limited to first 100 cases.

Model Summary

Model R R Square
Adjusted R 
Square

Std. Error of the 
Estimate

1 .782a .612 .456 57.57994
a Predictors: (Constant), X4, X2, X3, X1

 Table 3.12: Selected Output for Sample Problem on Outliers and Influential Points

(Continued)
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ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression 52231.502 4 13057.876 3.938 .036b

Residual 33154.498 10 3315.450
Total 85386.000 14

a Dependent Variable: Y
b Predictors: (Constant), X4, X2, X3, X1

 Table 3.12: (Continued)

Coefficientsa

Model

Unstandardized Coefficients Standardized Coefficients

t Sig.B Std. Error Beta

1 (Con-
stant)

15.859 180.298 .088 .932

X1 2.803 1.266 .586 2.215 .051
X2 1.270 1.344 .210 .945 .367
X3 2.017 3.559 .134 .567 .583
X4 1.488 1.785 .232 .834 .424

a Dependent Variable: Y

Regression Coefficients With Case 10 Deleted

Variable B

(Constant) 23.362
X1 3.529
X2 –1.481
X3 2.751
X4 2.078

Regression Coefficients With Case 13 Deleted

Variable B

(Constant) 410.457
X1 3.415
X2 −.708
X3 −3.456
X4 −1.339

3.15  FURTHER DISCUSSION OF THE TWO COMPUTER  
EXAMPLES

3.15.1 Morrison Data

Recall that for the Morrison data the stepwise procedure yielded the more parsimonious 
model involving three predictors: CLARITY, INTEREST, and STIMUL. If we were 
interested in an estimate of the predictive power in the population, then the Wherry 
estimate given by Equation 11 is appropriate. This is given under STEP NUMBER 
3 on the SPSS output in Table 3.4, which shows that the ADJUSTED R SQUARE is 
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.840. Here the estimate is used in a descriptive sense: to describe the relationship in the 
population. However, if we are interested in the cross-validity predictive power, then 
the Stein estimate (Equation 12) should be used. The Stein adjusted R2 in this case is

ρc
2 1 31 28 30 27 33 32 1 856 82= − −( )( )( )( ) = / / / . . .

This estimates that if we were to cross-validate the prediction equation on many other 
samples from the same population, then on the average we would account for about 
82% of the variance on the dependent variable. In this instance the estimated drop-off 
in predictive power is very little from the maximized value of 85.6%. The reason is 
that the association between the dependent variable and the set of predictors is very 
strong. Thus, we can have confidence in the future predictive power of the equation.

It is also important to examine the regression diagnostics to check for any outliers or 
influential data points. Table 3.13 presents the appropriate statistics, as discussed in 
section 3.13, for identifying outliers on the dependent variable (studentized residuals), 
outliers on the set of predictors (the centered leverage values), and influential data 
points (Cook’s distance).

First, we would expect only about 5% of the studentized residuals to be > |2| if the lin-
ear model is appropriate. From Table 3.13 we see that two of the studentized residuals 
are > |2|, and we would expect about 32(.05) = 1.6, so nothing seems to be awry here. 
Next, we check for outliers on the set of predictors. Since we have centered leverage 
values, the rough “critical value” here is 3k / n = 3(3) / 32 = .281. Because no centered 
leverage value in Table 3.13 exceeds this value, we have no outliers on the set of pre-
dictors. Finally, and perhaps most importantly, we check for the existence of influential 
data points using Cook’s distance. Recall that Cook and Weisberg (1982) suggested if 
D > 1, then the point is influential. All the Cook’s distance values in Table 3.13 are far 
less than 1, so we have no influential data points.

 Table 3.13: Regression Diagnostics (Studentized Residuals, Centered Leverage 
 Values, and Cook’s Distance) for Morrison MBA Data

Case Summariesa

Studentized Residual Centered Leverage Value Cook’s Distance

1 −.38956 .10214 .00584
2 −1.96017 .05411 .08965
3 .27488 .15413 .00430
4 −.38956 .10214 .00584
5 1.60373 .13489 .12811
6 .04353 .12181 .00009
7 −.88786 .02794 .01240
8 −2.22576 .01798 .06413
9 −.81838 .13807 .03413

(Continued )
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In summary, then, the linear regression model is quite appropriate for the Morrison 
data. The estimated cross-validity power is excellent, and there are no outliers or influ-
ential data points.

3.15.2 National Academy of Sciences Data

Recall that both the stepwise procedure and the MAXR procedure yielded the same 
“best” four-predictor set: NFACUL, PCTSUPP, PCTGRT, and NARTIC. The maxi-
mized R2 = .8221, indicating that 82.21% of the variance in quality can be accounted 
for by these four predictors in this sample. Now we obtain two measures of the 
cross-validity power of the equation. First, SAS REG indicated for this example the 
PREDICTED RESID SS (PRESS) = 1350.33. Furthermore, the sum of squares for 
QUALITY is 4564.71. From these numbers we can use Equation 14 to compute

Case Summariesa

Studentized Residual Centered Leverage Value Cook’s Distance

10 .59436 .07080 .01004
11 .67575 .04119 .00892
12 −.15444 .20318 .00183
13 1.31912 .05411 .04060
14 −.70076 .08630 .01635
15 −.88786 .02794 .01240
16 −1.53907 .05409 .05525
17 −.26796 .09531 .00260
18 −.56629 .03889 .00605
19 .82049 .10392 .02630
20 .06913 .09329 .00017
21 .06913 .09329 .00017
22 .28668 .09755 .00304
23 .28668 .09755 .00304
24 .82049 .10392 .02630
25 −.50388 .14084 .01319
26 .38362 .11157 .00613
27 −.56629 .03889 .00605
28 .16113 .07561 .00078
29 2.34549 .02794 .08652
30 1.18159 .17378 .09002
31 −.26103 .18595 .00473
32 1.39951 .13088 .09475
Total N 32 32 32

a Limited to first 100 cases.

 Table 3.13: (Continued)
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RPress
2 1 1350 33 4564 71 7042= − =( . ) / . . .

This is a good measure of the external predictive power of the equation, where we have 
n validations, each based on (n − 1) observations.

The Stein estimate of how much variance on the average we would account for if the 
equation were applied to many other samples is

ρc
2 1 45 41 44 40 47 46 1 822 7804= − −( )( )( )( ) = / / / . . .

Now we turn to the regression diagnostics from SAS REG, which are presented in 
Table 3.14. In terms of the studentized residuals for y (under the Student Residual 
column), two stand out (−2.756 and 2.376 for observations 25 and 44). These are for 
the University of Michigan and Virginia Polytech. In terms of outliers on the set of 
predictors, using 3p / n to identify large leverage values [3(5) / 46 = .326] suggests that 
there is one unusual case: observation 25 (University of Michigan). Note that leverage 
is referred to as Hat Diag H in SAS.

 Table 3.14:  Regression Diagnostics (Studentized Residuals, Cook’s Distance, and Hat 
Elements) for National Academy of Science Data

Obs Student residual Cook’s D Hat diag H

1 −0.708 0.007 0.0684
2 −0.0779 0.000 0.1064
3 0.403 0.003 0.0807
4 0.424 0.009 0.1951
5 0.800 0.012 0.0870
6 −1.447 0.034 0.0742
7 1.085 0.038 0.1386
8 −0.300 0.002 0.1057
9 −0.460 0.010 0.1865

10 1.694 0.048 0.0765
11 −0.694 0.004 0.0433
12 −0.870 0.016 0.0956
13 −0.732 0.007 0.0652
14 0.359 0.003 0.0885
15 −0.942 0.054 0.2328
16 1.282 0.063 0.1613
17 0.424 0.001 0.0297
18 0.227 0.001 0.1196
19 0.877 0.007 0.0464
20 0.643 0.004 0.0456
21 −0.417 0.002 0.0429

(Continued )
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Obs Student residual Cook’s D Hat diag H

22 0.193 0.001 0.0696
23 0.490 0.002 0.0460
24 0.357 0.001 0.0503
25 −2.756 2.292 0.6014
26 −1.370 0.068 0.1533
27 −0.799 0.017 0.1186
28 0.165 0.000 0.0573
29 0.995 0.018 0.0844
30 −1.786 0.241 0.2737
31 −1.171 0.018 0.0613
32 −0.994 0.017 0.0796
33 1.394 0.037 0.0859
34 1.568 0.051 0.0937
35 −0.622 0.006 0.0714
36 0.282 0.002 0.1066
37 −0.831 0.009 0.0643
38 1.516 0.039 0.0789
39 1.492 0.081 0.1539
40 0.314 0.001 0.0638
41 −0.977 0.016 0.0793
42 −0.581 0.006 0.0847
43 0.0591 0.000 0.0877
44 2.376 0.164 0.1265
45 −0.508 0.003 0.0592
46 −1.505 0.085 0.1583

 Table 3.14: (Continued)

Using the criterion of Cook’s D > 1, there is one influential data point, observation 25 
(University of Michigan). Recall that whether a point will be influential is a joint func-
tion of being an outlier on y and on the set of predictors. In this case, the University 
of Michigan definitely doesn’t fit the model and it differs dramatically from the other 
psychology departments on the set of predictors. A check of the DFBETAS reveals 
that it is very different in terms of number of faculty (DFBETA = −2.7653), and a scan 
of the raw data shows the number of faculty at 111, whereas the average number of 
faculty members for all the departments is only 29.5. The question needs to be raised 
as to whether the University of Michigan is “counting” faculty members in a different 
way from the rest of the schools. For example, are they including part-time and adjunct 
faculty, and if so, is the number of these quite large?

For comparison purposes, the analysis was also run with the University of Michigan 
deleted. Interestingly, the same four predictors emerge from the stepwise procedure, 
although the results are better in some ways. For example, Mallows’ Ck is now 4.5248, 
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whereas for the full data set it was 5.216. Also, the PRESS residual sum of squares is 
now only 899.92, whereas for the full data set it was 1350.33.

3.16  SAMPLE SIZE DETERMINATION FOR A RELIABLE 
PREDICTION EQUATION

In power analysis, you are interested in determining a priori how many subjects are 
needed per group to have, say, power = .80 at the .05 level. Thus, planning is done ahead 
of time to ensure that one has a good chance of detecting an effect of a given magnitude. 
Now, in multiple regression for prediction, the focus is different and the concern, or at 
least one very important concern, is development of a prediction equation that has gener-
alizability. A study by Park and Dudycha (1974) provided several tables that, given certain 
input parameters, enable one to determine how many subjects will be needed for a reliable 
prediction equation. They considered from 3 to 25 random variable predictors, and found 
that with about 15 subjects per predictor the amount of shrinkage is small (< .05) with high 
probability (.90), if the squared population multiple correlation (ρ2) is .50. In Table 3.15 
we present selected results from the Park and Dudycha study for 3, 4, 8, and 15 predictors.

 Table 3.15: Sample Size Such That the Difference Between the Squared Multiple 
Correlation and Squared Cross-Validated Correlation Is Arbitrarily Small With Given 
Probability

Three predictors Four predictors

γ Γ

ρ2 ε .99 .95 .90 .80 .60 .40 ρ2 ε .99 .95 .90 .80 .60 .40

.05 .01 858 554 421 290 158 81 .05 .01 1041 707 559 406 245 144
.03 269 166 123 79 39 18 .03 312 201 152 103 54 27
.01 825 535 410 285 160 88 .01 1006 691 550 405 253 155

.10 .03 271 174 133 91 50 27 .10 .03 326 220 173 125 74 43
.05 159 100 75 51 27 14 .05 186 123 95 67 38 22
.01 693 451 347 243 139 79 .01 853 587 470 348 221 140
.03 232 151 117 81 48 27 .03 283 195 156 116 73 46

.25 .05 140 91 71 50 29 17 .25 .05 168 117 93 69 43 28
.10 70 46 36 25 15 7 .10 84 58 46 34 20 14
.20 34 22 17 12 8 6 .20 38 26 20 15 10 7
.01 464 304 234 165 96 55 .01 573 396 317 236 152 97
.03 157 104 80 57 34 21 .03 193 134 108 81 53 35

.50 .05 96 64 50 36 22 14 .50 .05 117 82 66 50 33 23
.10 50 34 27 20 13 9 .10 60 43 35 27 19 13
.20 27 19 15 12 9 7 .20 32 23 19 15 11 9
.01 235 155 120 85 50 30 .01 290 201 162 121 78 52
.03 85 55 43 31 20 13 .03 100 70 57 44 30 21

(Continued )



Three predictors Four predictors

γ Γ

ρ2 ε .99 .95 .90 .80 .60 .40 ρ2 ε .99 .95 .90 .80 .60 .40

.75 .05 51 35 28 21 14 10 .75 .05 62 44 37 28 20 15
.10 28 20 16 13 9 7 .10 34 25 21 17 13 11
.20 16 12 10 9 7 6 .20 19 15 13 11 9 7
.01 23 17 14 11 9 7 .01 29 22 19 15 12 10
.03 11 9 8 7 6 6 .03 14 11 10 9 8 7

.98 .05 9 7 7 6 6 5 .98 .05 10 9 8 8 7 7
.10 7 6 6 6 5 5 .10 8 8 7 7 7 6
.20 6 6 5 5 5 5 .20 7 7 7 6 6 6

 Table 3.15: (Continued)

Eight predictors Fifteen  predictors

γ Γ

ρ2 ε .99 .95 .90 .80 .60 .40 ρ2 ε .99 .95 .90 .80 .60 .40

.05 .01 1640 1226 1031 821 585 418 .01 2523 2007 1760 1486 1161 918
.03 447 313 251 187 116 71 .05 .03 640 474 398 316 222 156
.01 1616 1220 1036 837 611 450 .01 2519 2029 1794 1532 1220 987

.10 .03 503 373 311 246 172 121 .10 .03 762 600 524 438 337 263
.05 281 202 166 128 85 55 .05 403 309 265 216 159 119
.01 1376 1047 893 727 538 404 .01 2163 1754 1557 1339 1079 884
.03 453 344 292 237 174 129 .03 705 569 504 431 345 280

.25 .05 267 202 171 138 101 74 .25 .05 413 331 292 249 198 159
.10 128 95 80 63 45 33 .10 191 151 132 111 87 69
.20 52 37 30 24 17 12 .20 76 58 49 40 30 24
.01 927 707 605 494 368 279 .01 1461 1188 1057 911 738 608
.03 312 238 204 167 125 96 .03 489 399 355 306 249 205

.50 .05 188 144 124 103 77 59 .50 .05 295 261 214 185 151 125
.10 96 74 64 53 40 31 .10 149 122 109 94 77 64
.20 49 38 33 28 22 18 .20 75 62 55 48 40 34
.01 470 360 308 253 190 150 .01 741 605 539 466 380 315
.03 162 125 108 90 69 54 .03 255 210 188 164 135 113

.75 .05 100 78 68 57 44 35 .75 .05 158 131 118 103 86 73
.10 54 43 38 32 26 22 .10 85 72 65 58 49 43
.20 31 25 23 20 17 15 .20 49 42 39 35 31 28
.01 47 38 34 29 24 21 .01 75 64 59 53 46 41
.03 22 19 18 16 15 14 .03 36 33 31 29 27 25
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To use Table 3.15 we need an estimate of ρ2, that is, the squared population multiple 
correlation. Unless an investigator has a good estimate from a previous study that used 
similar subjects and predictors, we feel taking ρ2 = .50 is a reasonable guess for social 
science research. In the physical sciences, estimates > .75 are quite reasonable. If we 
set ρ2 = .50 and want the loss in predictive power to be less than .05 with probabil-
ity = .90, then the required sample sizes are as follows:

Note: Entries in the body of the table are the sample size such that Ρ ρ ρ ε γ( ) ,2 2− < =c  where ρ is popu-
lation multiple correlation, ε is some tolerance, and γ is the probability.

.98 .05 17 16 15 14 13 12 .98 .05 28 26 25 24 23 22
.10 14 13 12 12 11 11 .10 23 21 21 20 20 19
.20 12 11 11 11 11 10 .20 20 19 19 19 18 18

γ Γ

ρ2 ε .99 .95 .90 .80 .60 .40 ρ2 ε .99 .95 .90 .80 .60 .40

  Eight predictors Fifteen predictors

Number of predictors

ρ2 = .50, ε = .05 3 4 8 15

N 50 66 124 214
n/k ratio 16.7 16.5 15.5 14.3

The n/k ratios in all 4 cases are around 15/1.

We had indicated earlier that, as a rough guide, generally about 15 subjects per pre-
dictor are needed for a reliable regression equation in the social sciences, that is, an 
equation that will cross-validate well. Three converging lines of evidence support this 
conclusion:

1. The Stein formula for estimated shrinkage (see results in Table 3.8).
2. Personal experience.
3. The results just presented from the Park and Dudycha study.

However, the Park and Dudycha study (see Table 3.15) clearly shows that the magni-
tude of ρ (population multiple correlation) strongly affects how many subjects will be 
needed for a reliable regression equation. For example, if ρ2 = .75, then for three pre-
dictors only 28 subjects are needed (assuming ε =.05, with probability = .90), whereas 
50 subjects are needed for the same case when ρ2 = .50. Also, from the Stein formula 
(Equation 12), you will see if you plug in .40 for R2 that more than 15 subjects per 
predictor will be needed to keep the shrinkage fairly small, whereas if you insert .70 
for R2, significantly fewer than 15 will be needed.
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3.17 OTHER TYPES OF REGRESSION ANALYSIS

Least squares regression is only one (although the most prevalent) way of conducting 
a regression analysis. The least squares estimator has two desirable statistical proper-
ties; that is, it is an unbiased, minimum variance estimator. Mathematically, unbiased 
means that Ε( ) ,^β β=  the expected value of the vector of estimated regression coef-
ficients, is the vector of population regression coefficients. To elaborate on this a bit, 
unbiased means that the estimate of the population coefficients will not be consistently 
high or low, but will “bounce around” the population values. And, if we were to aver-
age the estimates from many repeated samplings, the averages would be very close to 
the population values.

The minimum variance notion can be misleading. It does not mean that the variance of 
the coefficients for the least squares estimator is small per se, but that among the class 
of unbiased estimators β has the minimum variance. The fact that the variance of β can 
be quite large led Hoerl and Kenard (1970a, 1970b) to consider a biased estimator of 
β, which has considerably less variance, and the development of their ridge regression 
technique. Although ridge regression has been strongly endorsed by some, it has also 
been criticized (Draper & Smith, 1981; Morris, 1982; Smith & Campbell, 1980). Mor-
ris, for example, found that ridge regression never cross-validated better than other 
types of regression (least squares, equal weighting of predictors, reduced rank) for a 
set of data situations.

Another class of estimators are the James-Stein (1961) estimators. Regarding the util-
ity of these, the following from Weisberg (1980) is relevant: “The improvement over 
least squares will be very small whenever the parameter β is well estimated, i.e., col-
linearity is not a problem and β is not too close to O” (p. 258).

Since, as we have indicated earlier, least squares regression can be quite sensitive to 
outliers, some researchers prefer regression techniques that are relatively insensitive 
to outliers, that is, robust regression techniques. Since the early 1970s, the literature 
on these techniques has grown considerably (Hogg, 1979; Huber, 1977; Mosteller & 
Tukey, 1977). Although these techniques have merit, we believe that use of least 
squares, along with the appropriate identification of outliers and influential points, is a 
quite adequate procedure.

3.18 MULTIVARIATE REGRESSION

In multivariate regression we are interested in predicting several dependent variables 
from a set of predictors. The dependent variables might be differentiated aspects of 
some variable. For example, Finn (1974) broke grade point average (GPA) up into GPA 
required and GPA elective, and considered predicting these two dependent variables 
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from high school GPA, a general knowledge test score, and attitude toward education. 
Or, one might measure “success as a professor” by considering various aspects of 
success such as: rank (assistant, associate, full), rating of institution working at, salary, 
rating by experts in the field, and number of articles published. These would constitute 
the multiple dependent variables.

3.18.1 Mathematical Model

In multiple regression (one dependent variable), the model was

y = Xβ + e,

where y was the vector of scores for the subjects on the dependent variable, X was the 
matrix with the scores for the subjects on the predictors, e was the vector of errors, and 
β was vector of regression coefficients.

In multivariate regression the y, β, and e vectors become matrices, which we denote 
by Y, B, and E:

Y = XB + E
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The first column of Y gives the scores for the subjects on the first dependent variable, 
the second column the scores on the second dependent variable, and so on. The first 
column of B gives the set of regression coefficients for the first dependent variable, 
the second column the regression coefficients for the second dependent variable, and 
so on.

Example 3.11
As an example of multivariate regression, we consider part of a data set from Timm 
(1975). The dependent variables are the Peabody Picture Vocabulary Test score and 
the Raven Progressive Matrices Test score. The predictors were scores from differ-
ent types of paired associate learning tasks, called “named still (ns),” “named action 
(na),” and “sentence still (ss).” SPSS syntax for running the analysis using the SPSS 
MANOVA procedure are given in Table 3.16, along with annotation. Selected output 
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from the multivariate regression analysis run is given in Table 3.17. The multivariate 
test determines whether there is a significant relationship between the two sets of 
variables, that is, the two dependent variables and the three predictors. At this point, 
you should focus on Wilks’ Λ, the most commonly used multivariate test statistic. 
We have more to say about the other multivariate tests in Chapter 5. Wilks’ Λ here is 
given by:

Λ Λ= =
+

≤ ≤
SS
SS

SS
SS SS

resid

tot

resid

reg resid
,0 1

Recall from the matrix algebra chapter that the determinant of a matrix served as a mul-
tivariate generalization for the variance of a set of variables. Thus, |SSresid| indicates the 
amount of variability for the set of two dependent variables that is not accounted for by 

 Table 3.16: SPSS Syntax for Multivariate Regression Analysis of Timm Data—Two 
Dependent Variables and Three Predictors

TITLE ‘MULT. REGRESS. – 2 DEP. VARS AND 3 PREDS’.
(1) DATA LIST FREE/PEVOCAB RAVEN NS NA SS.
(3) BEGIN DATA.

48 8 6 12 16 76 13 14 30 27
40 13 21 16 16 52 9 5 17 8
63 15 11 26 17 82 14 21 34 25
71 21 20 23 18 68 8 10 19 14
74 11 7 16 13 70 15 21 26 25
70 15 15 35 24 61 11 7 15 14
54 12 13 27 21 55 13 12 20 17
54 10 20 26 22 40 14 5 14 8
66 13 21 35 27 54 10 6 14 16
64 14 19 27 26 47 16 15 18 10
48 16 9 14 18 52 14 20 26 26
74 19 14 23 23 57 12 4 11 8
57 10 16 15 17 80 11 18 28 21
78 13 19 34 23 70 16 9 23 11
47 14 7 12 8 94 19 28 32 32
63 11 5 25 14 76 16 18 29 21
59 11 10 23 24 55 8 14 19 12
74 14 10 18 18 71 17 23 31 26
54 14 6 15 14

END DATA.
(2) LIST.
(4) MANOVA PEVOCAB RAVEN WITH NS NA SS/

PRINT = CELLINFO(MEANS, COR).

(1)  The variables are separated by blanks; they could also have been separated by commas.
(2) This LIST command is to get a listing of the data.
(3)  The data is preceded by the BEGIN DATA command and followed by the END DATA command.
(4) The predictors follow the keyword WITH in the MANOVA command.
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Table 3.17: Multivariate and Univariate Tests of Significance and Regression  
Coefficients for Timm Data

EFFECT.. WITHIN CELLS REGRESSION
MULTIVARIATE TESTS OF SIGNIFICANCE (S = 2, M = 0, N = 15)

TEST NAME VALUE APPROX. F HYPOTH. DF ERROR DF SIG. OF F

PILLAIS .57254 4.41203 6.00 66.00 .001
HOTELLINGS 1.00976 5.21709 6.00 62.00 .000
WILKS .47428 4.82197 6.00 64.00 .000
ROYS .47371

This test indicates there is a significant (at α = .05) regression of the set of 2 dependent variables 
on the three predictors.

UNIVARIATE F-TESTS WITH (3.33) D.F.

VARIABLE SQ. MUL. R. MUL. R ADJ. R-SQ F SIG. OF F

PEVOCAB .46345 .68077 .41467 (1) 9.50121 .000
RAVEN .19429 .44078 .12104 2.65250 .065

These results show there is a significant regression for PEVOCAB, but RAVEN is not significantly 
related to the three predictors at .05, since .065 > .05.

DEPENDENT VARIABLE.. PEVOCAB

COVARIATE B BETA STD. ERR. T-VALUE SIG. OF T.

NS –.2056372599 –.1043054487 .40797 –.50405 .618
NA (2) 1.01272293634 .5856100072 .37685 2.68737 .011
SS .3977340740 .2022598804 .47010 .84606 .404

DEPENDENT VARIABLE.. RAVEN

COVARIATE B BETA STD. ERR. T-VALUE SIG. OF T.

NS .2026184278 .4159658338 .12352 1.64038 .110
NA .0302663367 .0708355423 .11410 .26527 .792
SS –.0174928333 –.0360039904 .14233 –.12290 .903

(1) Using Equation 4, F =
R k

(1- R ) (n - k - 1)
=

.46345 3
.53655 (37 - 3 - 1)

= 9.501.
2

2

(2) These are the raw regression coefficients for predicting PEVOCAB from the three predictors, excluding 
the regression constant.

regression, and |SStot| gives the total variability for the two dependent variables around 
their means. The sampling distribution of Wilks’ Λ is quite complicated; however, there 
is an excellent F approximation (due to Rao), which is what appears in Table 3.17. 
Note that the multivariate F = 4.82, p < .001, which indicates a significant relationship 
between the dependent variables and the three predictors beyond the .01 level.
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The univariate Fs are the tests for the significance of the regression of each dependent 
variable separately. They indicate that PEVOCAB is significantly related to the set 
of predictors at the .05 level (F = 9.501, p < .000), while RAVEN is not significantly 
related at the .05 level (F = 2.652, p = .065). Thus, the overall multivariate significance 
is primarily attributable to PEVOCAB’s relationship with the three predictors.

It is important for you to realize that, although the multivariate tests take into account 
the correlations among the dependent variables, the regression equations that appear at 
the bottom of Table 3.17 are those that would be obtained if each dependent variable 
were regressed separately on the set of predictors. That is, in deriving the regression 
equations, the correlations among the dependent variables are ignored, or not taken 
into account. If you wished to take such correlations into account, multivariate multi-
level modeling, described in Chapter 14, can be used. Note that taking these correla-
tions into account is generally desired and may lead to different results than obtained 
by using univariate regression analysis.

We indicated earlier in this chapter that an R2 value around .50 occurs quite often with 
educational and psychological data, and this is precisely what has occurred here with 
the PEVOCAB variable (R2 = .463). Also, we can be fairly confident that the predic-
tion equation for PEVOCAB will cross-validate, since the n/k ratio is 12.33, which is 
close to the ratio we indicated is necessary.

3.19 SUMMARY

1. A particularly good situation for multiple regression is where each of the predic-
tors is correlated with y and the predictors have low intercorrelations, for then each 
of the predictors is accounting for a relatively distinct part of the variance on y.

2. Moderate to high correlation among the predictors (multicollinearity) creates three 
problems: (1) it severely limits the size of R, (2) it makes determining the impor-
tance of given predictor difficult, and (3) it increases the variance of regression coef-
ficients, making for an unstable prediction equation. There are at least three ways 
of combating this problem. One way is to combine into a single measure a set of 
predictors that are highly correlated. A second way is to consider the use of principal 
components or factor analysis to reduce the number of predictors. Because such 
components are uncorrelated, we have eliminated multicollinearity. A third way is 
through the use of ridge regression. This technique is beyond the scope of this book.

3. Preselecting a small set of predictors by examining a correlation matrix from a 
large initial set, or by using one of the stepwise procedures (forward, stepwise, 
backward) to select a small set, is likely to produce an equation that is sample 
specific. If one insists on doing this, and we do not recommend it, then the onus is 
on the investigator to demonstrate that the equation has adequate predictive power 
beyond the derivation sample.

4. Mallows’ Cp was presented as a measure that minimizes the effect of under fitting 
(important predictors left out of the model) and over fitting (having predictors in 
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the model that make essentially no contribution or are marginal). This will be the 
case if one chooses models for which Cp ≈ p.

5. With many data sets, more than one model will provide a good fit to the data. Thus, 
one deals with selecting a model from a pool of candidate models.

6. There are various graphical plots for assessing how well the model fits the assump-
tions underlying linear regression. One of the most useful graphs plots the stu-
dentized residuals (y-axis) versus the predicted values (x-axis). If the assumptions 
are tenable, then you should observe that the residuals appear to be approximately 
normally distributed around their predicted values and have similar variance 
across the range of the predicted values. Any systematic clustering of the residuals 
indicates a model violation(s).

7. It is crucial to validate the model(s) by either randomly splitting the sample and 
cross-validating, or using the PRESS statistic, or by obtaining the Stein estimate of 
the average predictive power of the equation on other samples from the same pop-
ulation. Studies in the literature that have not cross-validated should be checked 
with the Stein estimate to assess the generalizability of the prediction equation(s) 
presented.

8. Results from the Park and Dudycha study indicate that the magnitude of the pop-
ulation multiple correlation strongly affects how many subjects will be needed for 
a reliable prediction equation. If your estimate of the squared population value is 
.50, then about 15 subjects per predictor are needed. On the other hand, if your 
estimate of the squared population value is substantially larger than .50, then far 
fewer than 15 subjects per predictor will be needed.

9. Influential data points, that is, points that strongly affect the prediction equation, 
can be identified by finding those cases having Cook’s distances > 1. These points 
need to be examined very carefully. If such a point is due to a recording error, then 
one would simply correct it and redo the analysis. Or if it is found that the influen-
tial point is due to an instrumentation error or that the process that generated the 
data for that subject was different, then it is legitimate to drop the case from the 
analysis. If, however, none of these appears to be the case, then one strategy is to 
perhaps report the results of several analyses: one analysis with all the data and an 
additional analysis (or analyses) with the influential point(s) deleted.

3.20 EXERCISES

1. Consider this set of data:

X Y

2 3
3 6
4 8
6 4
7 10
8 14
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X Y

9 8
10 12
11 14
12 12
13 16

(a) Run a regression analysis with these data in SPSS and request a plot of 
the studentized residuals (SRESID) by the standardized predicted values 
(ZPRED).

(b) Do you see any pattern in the plot of the residuals? What does this suggest? 
Does your inspection of the plot suggest that there are any outliers on Y ?

(c) Interpret the slope.

(d) Interpret the adjusted R square.

2. Consider the following small set of data:

PREDX DEP

0 1
1 4
2 6
3 8
4 9
5 10
6 10
7 8
8 7
9 6

10 5

(a) Run a regression analysis with these data in SPSS and obtain a plot of the 
residuals (SRESID by ZPRED).

(b) Do you see any pattern in the plot of the residuals? What does this suggest?

(c) Inspect a scatter plot of DEP by PREDX. What type of relationship exists 
between the two variables?

3. Consider the following correlation matrix:

y x1 x2

y 1.00 .60 .50
x1 .60 1.00 .80
x2 .50 .80 1.00
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(a) how much variance on y will x1 account for if entered first?

(b) how much variance on y will x1 account for if entered second?

(c) What, if anything, do these results have to do with the multicollinearity 
problem?

4. a medical school admissions official has two proven predictors (x1 and x2) of 
success in medical school. There are two other predictors under consideration 
(x3 and x4), from which just one will be selected that will add the most (beyond 
what x1 and x2 already predict) to predicting success. here are the correlations 
among the predictors and the outcome gathered on a sample of 100 medical 
students:

x1 x2 x3 x4

y .60 .55 .60 .46
x1 .70 .60 .20
x2 .80 .30
x3 .60

(a) What procedure would be used to determine which predictor has the 
greater incremental validity? Do not go into any numerical details, just 
indicate the general procedure. also, what is your educated guess as to 
which predictor (x3 or x4) will probably have the greater incremental valid-
ity?

(b) Suppose the investigator found the third predictor, runs the regression, 
and finds R = .76. apply the Stein formula, Equation 12 (using k = 3), and 
tell exactly what the resulting number represents.

5. This exercise has you calculate an F statistic to test the proportion of variance 
explained by a set of predictors and also an F statistic to test the additional 
proportion of variance explained by adding a set of predictors to a model that 
already contains other predictors. Suppose we were interested in predicting 
the IQs of 3-year-old children from four measures of socioeconomic status 
(SES) and six environmental process variables (as assessed by a hOME inven-
tory instrument) and had a total sample size of 105. Further, suppose we were 
interested in determining whether the prediction varied depending on sex and 
on race and that the following analyses were done:

 To examine the relations among SES, environmental process, and IQ, two 
regression analyses were done for each of five samples: total group, males, 
females, whites, and blacks. First, four SES variables were used in the regres-
sion analysis. Then, the six environmental process variables (the six hOME 
inventory subscales) were added to the regression equation. For each analysis, 
IQ was used as the criterion variable.

 The following table reports 10 multiple correlations:
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Measure
Males
(n = 57)

Females
(n = 48)

Whites
(n = 37)

Blacks
(n = 68)

Total
(N = 105)

SES (A) .555 .636 .582 .346 .556
SES and HOME (A and B) .682 .825 .683 .614 .765

(a) Suppose that all of the multiple correlations are statistically significant (.05 
level) except for .346 obtained for blacks with the SES variables. Show 
that .346 is not significant at the .05 level. Note that F critical with (.05; 4; 
63) = 2.52.

(b) For males, does the addition of the hOME inventory variables to the pre-
diction equation significantly increase predictive power beyond that of the 
SES variables? Note that F critical with (.05; 6; 46) = 2.30.

 Note that the following F statistic is appropriate for determining whether 
a set of variables B significantly adds to the prediction beyond what set A 
contributes:

F =
(R - R ) / k

(1- R ) / (n - k - k - 1)
,  with k  and (ny,AB

2
y.A
2

B

y.AB
2

A B
B - k - k - 1)df,A B

 where kA and kB represent the number of predictors in sets A and B, respectively.

 6. Plante and Goldfarb (1984) predicted social adjustment from Cattell’s 16 per-
sonality factors. There were 114 subjects, consisting of students and employees 
from two large manufacturing companies. They stated in their RESULTS section:

 Stepwise multiple regression was performed. . . . The index of social adjustment 
significantly correlated with 6 of the primary factors of the 16 PF. . . . Multiple 
regression analysis resulted in a multiple correlation of R = .41 accounting for 
17% of the variance with these 6 factors. The multiple R obtained while utilizing 
all 16 factors was R = .57, thus accounting for 33% of the variance. (p. 1217)

(a) Would you have much faith in the reliability of either of these regression 
equations?

(b) apply the Stein formula (Equation 12) for random predictors to the 
16-variable equation to estimate how much variance on the average we 
could expect to account for if the equation were cross-validated on many 
other random samples.

 7. Consider the following data for 15 subjects with two predictors. The dependent 
variable, MaRK, is the total score for a subject on an examination. The first 
predictor, COMP, is the score for the subject on a so-called compulsory paper. 
The other predictor, CERTIF, is the score for the subject on a previous exam.

Multiple Correlations Between Measures of Environmental Quality and IQ
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Candidate MARK COMP CERTIF Candidate MARK COMP CERTIF

1 476 111 68 9 645 117 59
2 457 92 46 10 556 94 97
3 540 90 50 11 634 130 57
4 551 107 59 12 637 118 51
5 575 98 50 13 390 91 44
6 698 150 66 14 562 118 61
7 545 118 54 15 560 109 66
8 574 110 51

(a) Run a stepwise regression on this data.

(b) Does CERTIF add anything to predicting MaRK, above and beyond that 
of COMP?

(c) Write out the prediction equation.

 8. a statistician wishes to know the sample size needed in a multiple regression 
study. She has four predictors and can tolerate at most a .10 drop-off in predic-
tive power. But she wants this to be the case with .95 probability. From previ-
ous related research the estimated squared population multiple correlation is 
.62. how many subjects are needed?

 9. Recall in the chapter that we mentioned a study where each of 22 college fresh-
men wrote four essays and then a stepwise regression analysis was applied to 
these data to predict quality of essay response. It has already been mentioned 
that the n of 88 used in the study is incorrect, since there are only 22 inde-
pendent responses. Now let us concentrate on a different aspect of the study. 
Suppose there were 17 predictors and that found 5 of them were “significant,” 
accounting for 42.3% of the variance in quality. Using a median value between 
5 and 17 and the proper sample size of 22, apply the Stein formula to estimate 
the cross-validity predictive power of the equation. What do you conclude?

10. a regression analysis was run on the Sesame Street (n = 240) data set, pre-
dicting postbody from the following five pretest measures: prebody, prelet, 
preform, prenumb, and prerelat. The SPSS syntax for conducting a stepwise 
regression is given next. Note that this analysis obtains (in addition to other 
output): (1) variance inflation factors, (2) a list of all cases having a studentized 
residual greater than 2 in magnitude, (3) the smallest and largest values for the 
studentized residuals, Cook’s distance and centered leverage, (4) a histogram 
of the standardized residuals, and (5) a plot of the studentized residuals versus 
the standardized predicted y values.

regression descriptives=default/
variables = prebody to prerelat postbody/
statistics = defaults tol/
dependent = postbody/
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method = stepwise/
residuals = histogram(zresid) outliers(sresid, lever, cook)/
casewise plot(zresid) outliers(2)/
scatterplot (*sresid, *zpred).

 Selected results from SPSS appear in Table 3.18. answer the following 
questions.

 Table 3.18: SPSS Results for Exercise 10

Regression

Descriptive Statistics

Mean Std. Deviation N

PREBODY 21.40 6.391 240
PRELET 15.94 8.536 240
PREFORM 9.92 3.737 240
PRENUMG 20.90 10.685 240
PRERELAT 9.94 3.074 240
POSTBODY 25.26 5.412 240

Correlations

PREBODY PRELET PREFORM PRENUMG PRERELAT POSTBODY

PREBODY
PRELET
PREFORM
PRENUMG
PRERELAT
POSTBODY

1.000 .453 .680 .698 .623 .650
.453 1.000 .506 .717 .471 .371
.680 .506 1.000 .673 .596 .551
.698 .717 .673 1.000 .718 .527
.623 .471 .596 .718 1.000 .449
.650 .371 .551 .527 .449 1.000

Variables Entered/Removeda

Model Variables Entered Variables Removed Method

1 PREBODY . Stepwise (Criteria: 
Probability-of-F-to-enter <= .050, 
Probability-of-F-to-remove >= .100).

2 PREFORM . Stepwise (Criteria: 
Probability-of-F-to-enter <= .050, 
Probability-of-F-to-remove >= .100).

a Dependent Variable: POSTBODY



Model Summaryc

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .650a .423 .421 4.119
2 .667b .445 .440 4.049
a Predictors: (Constant), PREBODY
b Predictors: (Constant), PREBODY, PREFORM
c Dependent Variable: POSTBODY

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1 Regression 2961.602 1 2961.602 174.520 .000b

Residual 4038.860 238 16.970
Total 7000.462 239

2 Regression 3114.883 2 1557.441 94.996 .000c

Residual 3885.580 237 16.395
Total 7000.462 239

a Dependent Variable: POSTBODY
b Predictors: (Constant), PREBODY
c Predictors: (Constant), PREBODY, PREFORM

Coefficientsa

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

Collinearity Statistics

B
Std. 
Error Beta Tolerance VIF

1 (Constant) 13.475 .931 14.473 .000
PREBODY .551 .042 .650 13.211 .000 1.000 1.000

2 (Constant) 13.062 .925 14.120 .000
PREBODY .435 .056 .513 7.777 .000 .538 1.860
PREFORM .292 .096 .202 3.058 .002 .538 1.860

a Dependent Variable: POSTBODY

Excluded Variablesa

Model Beta In T Sig.
Partial 
 Correlation

Collinearity Statistics

Tolerance VIF
Minimum 
Tolerance

1 PRELET .096b 1.742 .083 .112 .795 1.258 .795
PREFORM .202b 3.058 .002 .195 .538 1.860 .538
PRENUMG .143b 2.091 .038 .135 .513 1.950 .513
PRERELAT .072b 1.152 .250 .075 .612 1.634 .612

(Continued )



Excluded Variablesa

Model Beta In T Sig.
Partial 
 Correlation

Collinearity Statistics

Tolerance VIF
Minimum 
Tolerance

2 PRELET .050c .881 .379 .057 .722 1.385 .489
PRENUMG .075c 1.031 .304 .067 .439 2.277 .432
PRERELAT .017c .264 .792 .017 .557 1.796 .464

a Dependent Variable: POSTBODY
b Predictors in the Model: (Constant), PREBODY
c Predictors in the Model: (Constant), PREBODY, PREFORM

 Table 3.18: (Continued)

Casewise Diagnosticsa

Case Number Stud. Residual POSTBODY Predicted Value Residual

36 2.120 29 20.47 8.534
38 −2.115 12 20.47 –8.473
39 −2.653 21 31.65 –10.646
40 −2.322 21 30.33 –9.335

125 −2.912 11 22.63 –11.631
135 2.210 32 23.08 8.919
139 –3.068 11 23.37 –12.373
147 2.506 32 21.91 10.088
155 –2.767 17 28.16 –11.162
168 –2.106 13 21.48 –8.477
210 –2.354 13 22.50 –9.497
219 3.176 31 18.29 12.707

a Dependent Variable: POSTBODY

Outlier Statisticsa (10 Cases Shown)

Case Number Statistic Sig. F

Stud. Residual 1 219 3.176
2 139 –3.068
3 125 –2.912
4 155 –2.767
5 39 –2.653
6 147 2.506
7 210 –2.354
8 40 –2.322
9 135 2.210

10 36 2.120



Outlier Statisticsa (10 Cases Shown)

Case Number Statistic Sig. F

Cook’s Distance 1 219 .081 .970
2 125 .078 .972
3 39 .042 .988
4 38 .032 .992
5 40 .025 .995
6 139 .025 .995
7 147 .025 .995
8 177 .023 .995
9 140 .022 .996

10 13 .020 .996
Centered  
Leverage Value

1 140 .047
2 32 .036
3 23 .030
4 114 .028
5 167 .026
6 52 .026
7 233 .025
8 8 .025
9 236 .023

10 161 .023
a Dependent Variable: POSTBODY

Histogram
Dependent Variable: POSTBODY
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(a) Why did PREBODY enter the prediction equation first?

(b) Why did PREFORM enter the prediction equation second?

(c) Write the prediction equation, rounding off to three decimals.

(d) Is multicollinearity present? Explain.

(e) Compute the Stein estimate and indicate in words exactly what it repre-
sents.

(f) Show by using the appropriate correlations from the correlation matrix 
how the R-square change of .0219 can be calculated.

(g) Refer to the studentized residuals. Is the number of these greater than 
121 about what you would expect if the model is appropriate? Why, or 
why not?

(h) are there any outliers on the set of predictors?

(i) are there any influential data points? Explain.

(j) From examination of the residual plot, does it appear there may be some 
model violation(s)? Why or why not?

(k) From the histogram of residuals, does it appear that the normality as-
sumption is reasonable?

(l) Interpret the regression coefficient for PREFORM.

11. Consider the following data:

3210–1–2–3

–4

–2

0

2

4

Scatterplot
Dependent Variable: POSTBODY
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X1 X2

14 21
17 23
36 10
32 18
25 12

Find the Mahalanobis distance for case 4.

12. Using SPSS, run backward selection on the National academy of Sciences 
data. What model is selected?

13. From one of the better journals in your content area within the last 5 years find 
an article that used multiple regression. answer the following questions:

(a) Did the authors discuss checking the assumptions for regression?

(b) Did the authors report an adjusted squared multiple correlation?

(c) Did the authors discuss checking for outliers and/or influential observa-
tions?

(d) Did the authors say anything about validating their equation?
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Chapter 4

TWO-GROUP MULTIVARIATE 
ANALYSIS OF VARIANCE

4.1 INTRODUCTION

In this chapter we consider the statistical analysis of two groups of participants on 
several dependent variables simultaneously; focusing on cases where the variables 
are correlated and share a common conceptual meaning. That is, the dependent vari-
ables considered together make sense as a group. For example, they may be different 
dimensions of self-concept (physical, social, emotional, academic), teacher effective-
ness, speaker credibility, or reading (blending, syllabication, comprehension, etc.). 
We consider the multivariate tests along with their univariate counterparts and show 
that the multivariate two-group test (Hotelling’s T2) is a natural generalization of the 
univariate t test. We initially present the traditional analysis of variance approach for 
the two-group multivariate problem, and then later briefly present and compare a 
regression analysis of the same data. In the next chapter, studies with more than two 
groups are considered, where multivariate tests are employed that are generalizations 
of Fisher’s F found in a univariate one-way ANOVA. The last part of this chapter (sec-
tions 4.9–4.12) presents a fairly extensive discussion of power, including introduction 
of a multivariate effect size measure and the use of SPSS MANOVA for estimating 
power.

There are two reasons one should be interested in using more than one dependent var-
iable when comparing two treatments:

1. Any treatment “worth its salt” will affect participants in more than one way—hence 
the need for several criterion measures.

2. Through the use of several criterion measures we can obtain a more complete and 
detailed description of the phenomenon under investigation, whether it is read-
ing achievement, math achievement, self-concept, physiological stress, or teacher 
effectiveness or counselor effectiveness.

If we were comparing two methods of teaching second-grade reading, we would obtain 
a more detailed and informative breakdown of the differential effects of the methods 
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if reading achievement were split into its subcomponents: syllabication, blending, 
sound discrimination, vocabulary, comprehension, and reading rate. Comparing the 
two methods only on total reading achievement might yield no significant difference; 
however, the methods may be making a difference. The differences may be confined to 
only the more basic elements of blending and syllabication. Similarly, if two methods 
of teaching sixth-grade mathematics were being compared, it would be more inform-
ative to compare them on various levels of mathematics achievement (computations, 
concepts, and applications).

4.2  FOUR STATISTICAL REASONS FOR PREFERRING A 
MULTIVARIATE ANALYSIS

1. The use of fragmented univariate tests leads to a greatly inflated overall type I error 
rate, that is, the probability of at least one false rejection. Consider a two-group 
problem with 10 dependent variables. What is the probability of one or more spu-
rious results if we do 10 t tests, each at the .05 level of significance? If we assume 
the tests are independent as an approximation (because the tests are not independ-
ent), then the probability of no type I errors is:

(. )(. ) (. ) .95 95 95 60
10



  

 times

≈

because the probability of not making a type I error for each test is .95, and with 
the independence assumption we can multiply probabilities. Therefore, the prob-
ability of at least one false rejection is 1 − .60 = .40, which is unacceptably high. 
Thus, with the univariate approach, not only does overall α become too high, but 
we can’t even accurately estimate it.

2. The univariate tests ignore important information, namely, the correlations among 
the variables. The multivariate test incorporates the correlations (via the covari-
ance matrix) right into the test statistic, as is shown in the next section.

3. Although the groups may not be significantly different on any of the variables 
individually, jointly the set of variables may reliably differentiate the groups. 
That is, small differences on several of the variables may combine to produce a 
reliable overall difference. Thus, the multivariate test will be more powerful in 
this case.

4. It is sometimes argued that the groups should be compared on total test score first 
to see if there is a difference. If so, then compare the groups further on subtest 
scores to locate the sources responsible for the global difference. On the other 
hand, if there is no total test score difference, then stop. This procedure could 
definitely be misleading. Suppose, for example, that the total test scores were not 
significantly different, but that on subtest 1 group 1 was quite superior, on subtest 
2 group 1 was somewhat superior, on subtest 3 there was no difference, and on 
subtest 4 group 2 was quite superior. Then it would be clear why the univariate 
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analysis of total test score found nothing—because of a canceling-out effect. But 
the two groups do differ substantially on two of the four subsets, and to some 
extent on a third. A multivariate analysis of the subtests reflects these differences 
and would show a significant difference.

Many investigators, especially when they first hear about multivariate analysis of var-
iance (MANOVA), will lump all the dependent variables in a single analysis. This is 
not necessarily a good idea. If several of the variables have been included without 
any strong rationale (empirical or theoretical), then small or negligible differences on 
these variables may obscure a real difference(s) on some of the other variables. That 
is, the multivariate test statistic detects mainly error in the system (i.e., in the set of 
variables), and therefore declares no reliable overall difference. In a situation such as 
this, what is called for are two separate multivariate analyses, one for the variables for 
which there is solid support, and a separate one for the variables that are being tested 
on a heuristic basis.

4.3  THE MULTIVARIATE TEST STATISTIC AS A GENERALIZATION 
OF THE UNIVARIATE T TEST

For the univariate t test the null hypothesis is:

H0 : μ1 = μ2 (population means are equal)

In the multivariate case the null hypothesis is:

H

p p

0

11

21

1

12

22

2
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µ
µ

µ

µ
µ

µ
 



















=



















 (population mean vectors are equal)

Saying that the vectors are equal implies that the population means for the two groups 
on variable 1 are equal (i.e., μ11 =μ12), population group means on variable 2 are equal 
(μ21 = μ22), and so on for each of the p dependent variables. The first part of the sub-
script refers to the variable and the second part to the group. Thus, μ21 refers to the 
population mean for variable 2 in group 1.

Now, for the univariate t test, you may recall that there are three assumptions involved: 
(1) independence of the observations, (2) normality, and (3) equality of the population 
variances (homogeneity of variance). In testing the multivariate null hypothesis the 
corresponding assumptions are: (1) independence of the observations, (2) multivariate 
normality on the dependent variables in each population, and (3) equality of the covar-
iance matrices. The latter two multivariate assumptions are much more stringent than 
the corresponding univariate assumptions. For example, saying that two covariance 
matrices are equal for four variables implies that the variances are equal for each of the 
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variables and that the six covariances for each of the groups are equal. Consequences 
of violating the multivariate assumptions are discussed in detail in Chapter 6.

We now show how the multivariate test statistic arises naturally from the univariate t 
by replacing scalars (numbers) by vectors and matrices. The univariate t is given by:

t y y
n s n s

n n n n

=
−

−( ) + −( )
+ −

+










1 2

1 1
2

2 2
2

1 2 1 2

1 1
2

1 1
,  (1)

where s1
2  and s2

2  are the sample variances for groups 1 and 2, respectively. The quan-
tity under the radical, excluding the sum of the reciprocals, is the pooled estimate of 
the assumed common within population variance, call it s2. Now, replacing that quan-
tity by s2 and squaring both sides, we obtain:
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Hotelling’s T  2 is obtained by replacing the means on each variable by the vectors of 
means in each group, and by replacing the univariate measure of within variability s2 
by its multivariate generalization S (the estimate of the assumed common population 
covariance matrix). Thus we obtain:

T n n
n n

2 1 2

1 2
1 2

1
1 2=

+
⋅ −( )′ −( )−y y y yS  (2)

Recall that the matrix analogue of division is inversion; thus (s2)−1 is replaced by the 
inverse of S.

Hotelling (1931) showed that the following transformation of T 2 yields an exact F 
distribution:

F n n p
n n p

T=
+ − −
+ −( )

⋅1 2

1 2

21
2

 (3)
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with p and (N − p − 1) degrees of freedom, where p is the number of dependent varia-
bles and N = n1 + n2, that is, the total number of subjects.

We can rewrite T 2 as:

T k2 1= ′ −d S d,

where k is a constant involving the group sizes, d is the vector of mean differences, 
and S is the covariance matrix. Thus, what we have reflected in T 2 is a comparison of 
between-variability (given by the d vectors) to within-variability (given by S). This 
may not be obvious, because we are not literally dividing between by within as in the 
univariate case (i.e., F = MSh / MSw). However, recall that inversion is the matrix ana-
logue of division, so that multiplying by S−1 is in effect “dividing” by the multivariate 
measure of within variability.

4.4 NUMERICAL CALCULATIONS FOR A TWO-GROUP PROBLEM

We now consider a small example to illustrate the calculations associated  
with Hotelling’s T 2. The fictitious data shown next represent scores on two meas-
ures of counselor effectiveness, client satisfaction (SA) and client self-acceptance 
(CSA). Six participants were originally randomly assigned to counselors who  
used either a behavior modification or cognitive method; however, three in the 
behavior modification group were unable to continue for reasons unrelated to the 
treatment.

Behavior modification Cognitive

SA CSA SA CSA

1 3 4 6
3 7 6 8
2 2 6 8

y11 2=  y21 4=  5 10
5 10
4 6

y12 5=  y22 8=  

Recall again that the first part of the subscript denotes the variable and the second part 
the group, that is, y12 is the mean for variable 1 in group 2.

In words, our multivariate null hypothesis is: “There are no mean differences between 
the behavior modification and cognitive groups when they are compared simulta-
neously on client satisfaction and client self-acceptance.” Let client satisfaction be 
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variable 1 and client self-acceptance be variable 2. Then the multivariate null hypoth-
esis in symbols is:

H0
11

21

12

22
:

µ
µ

µ
µ







=






That is, we wish to determine whether it is tenable that the population means are 
equal for variable 1 (µ11 = µ12) and that the population means for variable 2 are equal 
(µ21 = µ22). To test the multivariate null hypothesis we need to calculate F in Equa-
tion 3. But to obtain this we first need T 2, and the tedious part of calculating T 2 is in 
obtaining S, which is our pooled estimate of within-group variability on the set of two 
variables, that is, our estimate of error. Before we begin calculating S it will be helpful 
to go back to the univariate t test (Equation 1) and recall how the estimate of error 
variance was obtained there. The estimate of the assumed common within-population 
variance (σ2) (i.e., error variance) is given by

s
n s n s

n n
ss ss
n n

g g2 1 1
2

2 2
2

1 2

1 2

1 2

1 1
2 2

=
−( ) + −( )

+ −
=

+
+ −

↓ ↓
(cf. Equation 1) (from the definition of variance)

 (4)

where ssg1 and ssg2 are the within sums of squares for groups 1 and 2. In the multi-
variate case (i.e., in obtaining S) we replace the univariate measures of within-group 
variability (ssg1 and ssg2) by their matrix multivariate generalizations, which we call 
W1 and W2.

W1 will be our estimate of within variability on the two dependent variables in group 1. 
Because we have two variables, there is variability on each, which we denote by ss1 and 
ss2, and covariability, which we denote by ss12. Thus, the matrix W1 will look as follows:

W1
1 12

21 2
=










ss ss
ss ss

Similarly, W2 will be our estimate of within variability (error) on variables in group 2. 
After W1 and W2 have been calculated, we will pool them (i.e., add them) and divide 
by the degrees of freedom, as was done in the univariate case (see Equation 4), to 
obtain our multivariate error term, the covariance matrix S. Table 4.1 shows schemat-
ically the procedure for obtaining the pooled error terms for both the univariate t test 
and for Hotelling’s T 2.

4.4.1 Calculation of the Multivariate Error Term S
First we calculate W1, the estimate of within variability for group 1. Now, ss1 and 
ss2 are just the sum of the squared deviations about the means for variables 1 and 2, 
respectively. Thus,
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ss y y
i

i1
1

3

1 11
2 2 2 21 2 3 2 2 2 2= − = − + − + − =

=
( )∑( ) ( ) ( ) ( )

(y1(i) denotes the score for the ith subject on variable 1)

and

ss y y
i

i2
1

3

2 21
2 2 2 23 4 7 4 2 4 14= − = − + − + − =

=
( )∑( ) ( ) ( ) ( )

Finally, ss12 is just the sum of deviation cross-products:

ss y y
i

i i12
1

3

1 22 4

1 2 3 4 3 2 7 4 2 2 2

= −( ) −( )
= −( ) −( ) + −( ) −( ) + −( ) −

=
( ) ( )∑

4( ) =

Therefore, the within SSCP matrix for group 1 is

W1
2 4
4 14

=








 .

Similarly, as we leave for you to show, the within matrix for group 2 is

W2
4 4
4 16

=








 .

 Table 4.1: Estimation of Error Term for t Test and Hotelling’s T  2

t test (univariate) T 2 (multivariate)

Assumption Within-group population vari-
ances are equal, i.e., σ σ1

2
2
2=

Call the common value σ2

Within-group population covariance 
matrices are equal, Σ1 = Σ2

Call the common value Σ
To estimate these assumed common population values we employ the 
three steps indicated next:

Calculate the 
within-group meas-
ures of variability.

ssg1 and ssg2 W1 and W2

Pool these estimates. ssg1 + ssg2 W1 + W2

Divide by the degrees 
of freedom

SS SS
n n

g g1 2 2

2
+

+ −
=

1 2

σ̂ W W
S=1 2

1 2 2

+

+
=

n n − ∑

Note: The rationale for pooling is that if we are measuring the same variability in each group (which is the 
assumption), then we obtain a better estimate of this variability by combining our estimates.

4
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Thus, the multivariate error term (i.e., the pooled within covariance matrix) is 
calculated as:

S W W
=

+
+ −

=









 +










=








1 2

1 2 2

2 4
4 14

4 4
4 16

7
6 7 8 7
8 7 30 7n n

/ /
/ /  .

Note that 6/7 is just the sample variance for variable 1, 30/7 is the sample variance for 
variable 2, and 8/7 is the sample covariance.

4.4.2 Calculation of the Multivariate Test Statistic

To obtain Hotelling’s T 2 we need the inverse of S as follows:

S− =
−

−










1 1 810 483
483 362

. .
. .

From Equation 2 then, Hotelling’s T 2 is
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The exact F transformation of T2 is then

F n n n p
n n p

T=
= + − −

+ −( )
=

− −
( ) ( ) =1 1 2

1 2

21
2

9 2 1
7 2

21 9,

where F has 2 and 6 degrees of freedom (cf. Equation 3).

If we were testing the multivariate null hypothesis at the .05 level, then we would 
reject this hypothesis (because the critical value = 5.14) and conclude that the two 
groups differ on the set of two variables.

After finding that the groups differ, we would like to determine which of the variables 
are contributing to the overall difference; that is, a post hoc procedure is needed. This 
is similar to the procedure followed in a one-way ANOVA, where first an overall F test 
is done. If F is significant, then a post hoc technique (such as Tukey’s) is used to deter-
mine which specific groups differed, and thus contributed to the overall difference. 
Here, instead of groups, we wish to know which variables contributed to the overall 
multivariate significance.



150        tWO-GrOUp MaNOVa

Now, multivariate significance implies there is a linear combination of the dependent 
variables (the discriminant function) that is significantly separating the groups. We 
defer presentation of discriminant analysis (DA) to Chapter 10. You may see discus-
sions in the literature where DA is preferred over the much more commonly used pro-
cedures discussed in section 4.5 because the linear combinations in DA may suggest 
new “constructs” that a researcher may not have expected, and that DA makes use of 
the correlations among outcomes throughout the analysis procedure. While we agree 
that discriminant analysis can be of value, there are at least three factors that can miti-
gate its usefulness in many instances:

1. There is no guarantee that the linear combination (the discriminant function) will 
be a meaningful variate, that is, that it will make substantive or conceptual sense.

2. Sample size must be considerably larger than many investigators realize in order 
to have the results of a discriminant analysis be reliable. More details on this later.

3. The investigator may be more interested in identifying if group differences are 
present for each specific variable, rather than on some combination of them.

4.5 THREE POST HOC PROCEDURES

We now consider three possible post hoc approaches. One approach is to use the 
Roy–Bose simultaneous confidence intervals. These are a generalization of the Scheffé 
intervals, and are illustrated in Morrison (1976) and in Johnson and Wichern (1982). 
The intervals are nice in that we not only can determine whether a pair of means is 
different, but in addition can obtain a range of values within which the population 
mean differences probably lie. Unfortunately, however, the procedure is extremely 
conservative (Hummel & Sligo, 1971), and this will hurt power (sensitivity for detect-
ing differences). Thus, we cannot recommend this procedure for general use.

As Bock (1975) noted, “their [Roy–Bose intervals] use at the conventional 90% con-
fidence level will lead the investigator to overlook many differences that should be 
interpreted and defeat the purposes of an exploratory comparative study” (p. 422). 
What Bock says applies with particularly great force to a very large number of studies 
in social science research where the group or effect sizes are small or moderate. In 
these studies, power will be poor or not adequate to begin with. To be more specific, 
consider the power table from Cohen (1988) for a two-tailed t test at the .05 level of 
significance. For group sizes ≤ 20 and small or medium effect sizes through .60 stand-
ard deviations, which is a quite common class of situations, the largest power is .45. 
The use of the Roy–Bose intervals will dilute the power even further to extremely low 
levels.

A second widely used but also potentially problematic post hoc procedure we consider 
is to follow up a significant multivariate test at the .05 level with univariate tests, each 
at the .05 level. On the positive side, this procedure has the greatest power of the three 
methods considered here for detecting differences, and provides accurate type I error 
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control when two dependent variables are included in the design. However, the over-
all type I error rate increases when more than two dependent variables appear in the 
design. For example, this rate may be as high as .10 for three dependent variables, .15 
with four dependent variables, and continues to increase with more dependent varia-
bles. As such, we cannot not recommend this procedure if more than three dependent 
variables are included in your design. Further, if you plan to use confidence intervals 
to estimate mean differences, this procedure cannot be recommended because confi-
dence interval coverage (i.e., the proportion of intervals that are expected to capture 
the true mean differences) is lower than desired and becomes worse as the number of 
dependent variables increases.

The third and generally recommended post hoc procedure is to follow a signif-
icant multivariate result by univariate ts, but to do each t test at the α/p level of 
significance. Thus, if there were five dependent variables and we wished to have 
an overall α of .05, then, we would simply compare our obtained p value for the t 
(or F) test to α of .05/5 = .01. By this procedure, we are assured by the Bonferroni 
inequality that the overall type I error rate for the set of t tests will be less than α. 
In addition, this Bonferroni procedure provides for generally accurate confidence 
interval coverage for the set of mean differences, and so is the preferred procedure 
when confidence intervals are used. One weakness of the Bonferroni-adjusted pro-
cedure is that power will be severely attenuated if the number of dependent varia-
bles is even moderately large (say > 7). For example, if p = 15 and we wish to set 
overall α = .05, then each univariate test would be done at the .05/15 = .0033 level 
of significance.

There are two things we may do to improve power for the t tests and yet provide rea-
sonably good protection against type I errors. First, there are several reasons (which 
we detail in Chapter 5) for generally preferring to work with a relatively small number 
of dependent variables (say ≤ 10). Second, in many cases, it may be possible to divide 
the dependent variables up into two or three of the following categories: (1) those var-
iables likely to show a difference, (2) those variables (based on past research) that may 
show a difference, and (3) those variables that are being tested on a heuristic basis. To 
illustrate, suppose we conduct a study limiting the number of variables to eight. There 
is fairly solid evidence from the literature that three of the variables should show a 
difference, while the other five are being tested on a heuristic basis. In this situation, as 
indicated in section 4.2, two multivariate tests should be done. If the multivariate test is 
significant for the fairly solid variables, then we would test each of the individual vari-
ables at the .05 level. Here we are not as concerned about type I errors in the follow-up 
phase, because there is prior reason to believe differences are present, and recall that 
there is some type I error protection provided by use of the multivariate test. Then, a 
separate multivariate test is done for the five heuristic variables. If this is significant, 
we can then use the Bonferroni-adjusted t test approach, but perhaps set overall α 
somewhat higher for better power (especially if sample size is small or moderate). For 
example, we could set overall α = .15, and thus test each variable for significance at the 
.15/5 = .03 level of significance.
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4.6  SAS AND SPSS CONTROL LINES FOR SAMPLE PROBLEM 
AND SELECTED OUTPUT

Table 4.2 presents SAS and SPSS commands for running the two-group sample 
MANOVA problem. Table 4.3 and Table 4.4 show selected SAS output, and Table 4.4 
shows selected output from SPSS. Note that both SAS and SPSS give all four mul-
tivariate test statistics, although in different orders. Recall from earlier in the chapter 
that for two groups the various tests are equivalent, and therefore the multivariate F is 
the same for all four test statistics.

 Table 4.2: SAS and SPSS GLM Control Lines for Two-Group MANOVA Sample Problem

SAS SPSS

TITLE ‘MANOVA’;
DATA twogp;
INPUT gp y1 y2 @@
LINES;
1 1 3 1 3 7 1 2 2
2 4 6 2 6 8 2 6 8
2 5 10 2 5 10 2 4 6

TITLE 'MANOVA'.
DATA LIST FREE/gp y1 y2.
BEGIN DATA.

(6) 1 1 3 1 3 7 1 2 2
2 4 6 2 6 8 2 6 8
2 5 10 2 5 10 2 4 6
END DATA.

(7) GLM y1 y2 BY gp

(1) PROC GLM; (8) /PRINT=DESCRIPTIVE ETASQ 
TEST(SSCP)
 /DESIGN= gp.

(2) CLASS gp;

(3) MODEL y1 y2 = gp;

(4) MANOVA H = gp/PRINTE 
PRINTH;

(5) MEANS gp;
RUN;

(1) The GENERAL LINEAR MODEL procedure is called.
(2) The CLASS statement tells SAS which variable is the grouping variable (gp, here).
(3) In the MODEL statement the dependent variables are put on the left-hand side and the grouping variable(s) 
on the right-hand side.
(4) You need to identify the effect to be used as the hypothesis matrix, which here by default is gp. After 
the slash a wide variety of optional output is available. We have selected PRINTE (prints the error SSCP 
matrix) and PRINTH (prints the matrix associated with the effect, which here is group).
(5) MEANS gp requests the means and standard deviations for each group.
(6) The first number for each triplet is the group identification with the remaining two numbers the scores on 
the dependent variables.
(7) The general form for the GLM command is dependent variables BY grouping variables.
(8) This PRINT subcommand yields descriptive statistics for the groups, that is, means and standard devia-
tions, proportion of variance explained statistics via ETASQ, and the error and between group SSCP matrices.
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 Table 4.3: SAS Output for the Two-Group MANOVA Showing SSCP Matrices and 
Multivariate Tests

E = Error SSCP Matrix In 4.4, under CALCULATING THE  MULIVARIATE ERROR 
TERM, we  computed the separate W1 + W2 matrices (the 
within sums of squares and cross products  matrices), 
and then pooled or added them to obtain the covariance 
matrix S. What SAS is outputting here is this pooled 
W1 = W2 matrix.

Y1 Y2

Y1 6 8

Y2 8 30

H = Type III SSCP Matrix for GP Note that the diagonal elements of this hypothesis or 
between-group SSCP matrix are just the between-group 
sum-of-squares for the univariate F tests.Y1 Y2

Y1 24

Y2 24

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall GP Effect
H = Type III SSCP Matrix for GP

E = Error SSCP Matrix

S=1 M=0 N=2

18

32

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.25000000 9.00 2 6 0.0156
Pillai’s Trace 0.75000000 9.00 2 6 0.0156
Hotelling-Lawley 
Trace

3.00000000 9.00 2 6 0.0156

Roy’s Greatest Root 3.00000000 9.00 2 6 0.0156

In Table 4.3, the within-group (or error) SSCP and between-group SSCP matrices 
are shown along with the multivariate test results. Note that the multivariate F of 9 
(which is equal to the F calculated in section 4.4.2) is statistically significant (p < 
.05), suggesting that group differences are present for at least one dependent vari-
able. The univariate F tests, shown in Table 4.4, using an unadjusted alpha of .05, 
indicate that group differences are present for each outcome as each p value (.003, 
029) is less than .05. Note that these Fs are equivalent to squared t values as F = t2 
for two groups. Given the group means shown in Table 4.4, we can then conclude 
that the population means for group 2 are greater than those for group 1 for both 
outcomes. Note that if you wished to implement the Bonferroni approach for these 
univariate tests (which is not necessary here for type I error control, given that we 
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have 2 dependent variables), you would simply compare the obtained p values to an 
alpha of .05/2 or .025. You can also see that Table 4.5, showing selected SPSS output, 
provides similar information, with descriptive statistics, followed by the multivariate 
test results, univariate test results, and then the between- and within-group SSCP 
matrices. Note that a multivariate effect size measure (multivariate partial eta square) 
appears in the Multivariate Tests output selection. This effect size measure is dis-
cussed in Chapter 5. Also, univariate partial eta squares are shown in the output table 
Test of Between-Subject Effects. This effect size measure is discussed is section 4.8.

Although the results indicate that group difference are present for each dependent 
variable, we emphasize that because the univariate Fs ignore how a given variable 
is correlated with the others in the set, they do not give an indication of the rela-
tive importance of that variable to group differentiation. A technique for determining 
the relative importance of each variable to group separation is discriminant analysis, 
which will be discussed in Chapter 10. To obtain reliable results with discriminant 
analysis, however, a large subject-to-variable ratio is needed; that is, about 20 subjects 
per variable are required.

 Table 4.4: SAS Output for the Two-Group MANOVA Showing Univariate Results 

Dependent Variable: Y2 

Source DF Sum of Squares Mean Square F Value Pr > F

Model 1 18.00000000 18.00000000 21.00 0.0025
Error 7 6.00000000 0.85714286
Corrected Total 8 24.00000000

Dependent Variable: Y2 

Source DF Sum of Squares Mean Square F Value Pr > F

Model 1 32.00000000 32.00000000 7.47 0.0292
Error 7 30.00000000 4.28571429
Corrected Total 8 62.00000000

R-Square CoeffVar Root MSE Y2 Mean

0.516129 31.05295 2.070197 6.666667

Level of
GP N

Y1 Y2

Mean StdDev Mean StdDev

1 3 2.00000000 1.00000000 4.00000000 2.64575131

2 6 5.00000000 0.89442719 8.00000000 1.78885438

R-Square CoeffVar Root MSE Y2 Mean

0.750000 23.14550 0.925820 4.000000



 Table 4.5: Selected SPSS Output for the Two-Group MANOVA

Descriptive Statistics

GP Mean Std. Deviation N

Y1 1.00 2.0000 1.00000 3
2.00 5.0000 .89443 6
Total 4.0000 1.73205 9

Y2 1.00 4.0000 2.64575 3
2.00 8.0000 1.78885 6
Total 6.6667 2.78388 9

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.
Partial Eta 
Squared

GP Pillai’s 
Trace

.750 9.000b 2.000 6.000 .016 .750

Wilks’ 
Lambda

.250 9.000b 2.000 6.000 .016 .750

Hotelling’s 
Trace

3.000 9.000b 2.000 6.000 .016 .750

Roy’s Larg-
est Root

3.000 9.000b 2.000 6.000 .016 .750

a Design: Intercept + GP
b Exact statistic

Tests of Between-Subjects Effects

Source
Dependent 
Variable

Type III Sum 
of Squares Df

Mean 
Square F Sig.

Partial Eta 
Squared

GP Y1 18.000 1 18.000 21.000 .003 .750
Y2 32.000 1 32.000 7.467 .029 .516

Error Y1 6.000 7 .857
Y2 30.000 7 4.286

Corrected 
Total

Y1 24.000 8
Y2 62.000 8

Between-Subjects SSCP Matrix

Y1 Y2

Hypothesis GP Y1 18.000 24.000
Y2 24.000 32.000

Error Y1 6.000 8.000
Y2 8.000 30.000

Based on Type III Sum of Squares

Note: Some nonessential output has been removed from the SPSS tables.
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4.7  MULTIVARIATE SIGNIFICANCE BUT NO UNIVARIATE 
SIGNIFICANCE

If the multivariate null hypothesis is rejected, then generally at least one of the univar-
iate ts will be significant, as in our previous example. This will not always be the case. 
It is possible to reject the multivariate null hypothesis and yet for none of the univar-
iate ts to be significant. As Timm (1975) pointed out, “furthermore, rejection of the 
multivariate test does not guarantee that there exists at least one significant univariate 
F ratio. For a given set of data, the significant comparison may involve some linear 
combination of the variables” (p. 166). This is analogous to what happens occasionally 
in univariate analysis of variance.

The overall F is significant, but when, say, the Tukey procedure is used to determine 
which pairs of groups are significantly different, none is found. Again, all that signifi-
cant F guarantees is that there is at least one comparison among the group means that is 
significant at or beyond the same α level: The particular comparison may be a complex 
one, and may or may not be a meaningful one.

One way of seeing that there will be no necessary relationship between multivariate 
significance and univariate significance is to observe that the tests make use of differ-
ent information. For example, the multivariate test takes into account the correlations 
among the variables, whereas the univariate do not. Also, the multivariate test consid-
ers the differences on all variables jointly, whereas the univariate tests consider the 
difference on each variable separately.

4.8  MULTIVARIATE REGRESSION ANALYSIS FOR THE SAMPLE 
PROBLEM

This section is presented to show that ANOVA and MANOVA are special cases of 
regression analysis, that is, of the so-called general linear model. Cohen’s (1968) 
seminal article was primarily responsible for bringing the general linear model to 
the attention of social science researchers. The regression approach to MANOVA 
is accomplished by dummy coding group membership. This can be done, for the 
two-group problem, by coding the participants in group 1 as 1, and the participants 
in group 2 as 0 (or vice versa). Thus, the data for our sample problem would look 
like this:

y y x1 2

1 3 1
3 7 1
2 2 1






 group 1
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4 6 0
4 6 0
5 10 0
5 10 0
6 8 0
6 8 0
















 group 2

In a typical regression problem, as considered in the previous chapters, the predictors 
have been continuous variables. Here, for MANOVA, the predictor is a categorical or 
nominal variable, and is used to determine how much of the variance in the dependent 
variables is accounted for by group membership.

The setup of the two-group MANOVA as a multivariate regression may seem somewhat 
strange since there are two dependent variables and only one predictor. In the previous 
chapters there has been either one dependent variable and several predictors, or several 
dependent variables and several predictors. However, the examination of the association 
is done in the same way. Recall that Wilks’ Λ is the statistic for determining whether 
there is a significant association between the dependent variables and the predictor(s):

Λ =
+

S
S S

e

e r
,

where Se is the error SSCP matrix, that is, the sum of square and cross products not 
due to regression (or the residual), and Sr is the regression SSCP matrix, that is, an 
index of how much variability in the dependent variables is due to regression. In this 
case, variability due to regression is variability in the dependent variables due to group 
membership, because the predictor is group membership.

Part of the output from SPSS for the two-group MANOVA, set up and run as a regres-
sion, is presented in Table 4.6. The error matrix Se is called adjusted within-cells sum of 
squares and cross products, and the regression SSCP matrix is called adjusted hypoth-
esis sum of squares and cross products. Using these matrices, we can form Wilks’ Λ 
(and see how the value of .25 is obtained):

Λ =
+

=








 +











S
S S

e

e r

6 8
8 30

6 8
8 30

18 24
24 32

Λ = = =

6 8
8 30
24 32
32 62

116
464

25.
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Note first that the multivariate Fs are identical for Table 4.5 and Table 4.6; thus, sig-
nificant separation of the group mean vectors is equivalent to significant association 
between group membership (dummy coded) and the set of dependent variables.

The univariate Fs are also the same for both analyses, although it may not be clear to 
you why this is so. In traditional ANOVA, the total sum of squares (sst) is partitioned as:

sst = ssb + ssw

whereas in regression analysis the total sum of squares is partitioned as follows:

sst = ssreg + ssresid

The corresponding F ratios, for determining whether there is significant group separa-
tion and for determining whether there is a significant regression, are:

F SS df
SS df

F
SS df

SS df
b b

w w
= =

/
/

/
/

and reg reg

resid resid

 Table 4.6: Selected SPSS Output for Regression Analysis on Two-Group MANOVA 
with Group Membership as Predictor

GP Pillai’s Trace .750 9.000a 2.000 6.000 .016
Wilks’ Lambda .250 9.000a 2.000 6.000 .016
Hotelling’s Trace 3.000 9.000a 2.000 6.000 .016
Roy’s Largest Root 3.000 9.000a 2.000 6.000 .016

Source
Dependent
Variable

Type III Sum of
Squares df

Mean
Square F Sig.

Corrected Model Y1 18.000a 1 18.000 21.000 .003
Y2 32.000b 1 32.000 7.467 .029

Intercept Y1 98.000 1 98.000 114.333 .000
Y2 288.000 1 288.000 67.200 .000

GP Y1 18.000 1 18.000 21.000 .003
Y2 32.000 1 32.000 7.467 .029

Error Y1 6.000 7 .857
Y2 30.000 7 4.286

Between-Subjects SSCP Matrix

Y1 Y2
Hypothesis Intercept Y1 98.000 168.000

Y2 168.000 288.000
GP Y1 18.000 24.000

Y2 24.000 32.000
Error Y1 6.000 8.000

Y2 8.000 30.000
Based on Type III Sum of Squares
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To see that these F ratios are equivalent, note that because the predictor variable is 
group membership, ssreg is just the amount of variability between groups or ssb, and 
ssresid is just the amount of variability not accounted for by group membership, or the 
variability of the scores within each group (i.e., ssw).

The regression output also gives information that was obtained by the commands 
in Table 4.2 for traditional MANOVA: the squared multiple Rs for each depend-
ent variable (labeled as partial eta square in Table 4.5). Because in this case there 
is just one predictor, these multiple Rs are just squared Pearson correlations. In 
particular, they are squared point-biserial correlations because one of the varia-
bles is dichotomous (dummy-coded group membership). The relationship between 
the point-biserial correlation and the F statistic is given by Welkowitz, Ewen, and 
Cohen (1982):

r F
F dfpb

w
=

+

r F
F dfpb

w

2 =
+

Thus, for dependent variable 1, we have

rpb
2 21

21 7
75=

+
= . .

This squared correlation (also known as eta square) has a very meaningful and impor-
tant interpretation. It tells us that 75% of the variance in the dependent variable is 
accounted for by group membership. Thus, we not only have a statistically significant 
relationship, as indicated by the F ratio, but in addition, the relationship is very strong. 
It should be recalled that it is important to have a measure of strength of relationship 
along with a test of significance, as significance resulting from large sample size might 
indicate a very weak relationship, and therefore one that may be of little practical 
importance.

Various textbook authors have recommended measures of association or strength of 
relationship measures (e.g., Cohen & Cohen, 1975; Grissom & Kim, 2012; Hays, 
1981). We also believe that they can be useful, but you should be aware that they have 
limitations.

For example, simply because a strength of relationship indicates that, say, only 10% 
of variance is accounted for, does not necessarily imply that the result has no practi-
cal importance, as O’Grady (1982) indicated in an excellent review on measures of 
association. There are several factors that affect such measures. One very important 
factor is context: 10% of variance accounted for in certain research areas may indeed 
be practically significant.
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A good example illustrating this point is provided by Rosenthal and Rosnow (1984). 
They consider the comparison of a treatment and control group where the dependent 
variable is dichotomous, whether the subjects survive or die. The following table is 
presented:

Treatment outcome

Alive Dead
Treatment 66 34 100
Control 34 66 100

100 100

Because both variables are dichotomous, the phi coefficient—a special case of the 
Pearson correlation for two dichotomous variables (Glass & Hopkins, 1984)—meas-
ures the relationship between them:

φ φ=
−

( )( )( )
= − =

34 66
100 100 100 100

32 10
2 2

2. .

Thus, even though the treatment-control distinction accounts for “only” 10% of the 
variance in the outcome, it increases the survival rate from 34% to 66%—far from 
trivial. The same type of interpretation would hold if we considered some less dra-
matic type of outcome like improvement versus no improvement, where treatment 
was a type of psychotherapy. Also, the interpretation is not confined to a dichotomous 
outcome measure. Another factor to consider is the design of the study. As O’Grady 
(1982) noted:

Thus, true experiments will frequently produce smaller measures of explained 
variance than will correlational studies. At the least this implies that consideration 
should be given to whether an investigation involves a true experiment or a corre-
lational approach in deciding whether an effect is weak or strong. (p. 771)

Another point to keep in mind is that, because most behaviors have multiple causes, 
it will be difficult in these cases to account for a large percent of variance with just a 
single cause (say treatments). Still another factor is the homogeneity of the population 
sampled. Because measures of association are correlational-type measures, the more 
homogeneous the population, the smaller the correlation will tend to be, and there-
fore the smaller the percent of variance accounted for can potentially be (this is the 
restriction-of-range phenomenon).

Finally, we focus on a topic that is important in the planning phase of a study: estima-
tion of power for the overall multivariate test. We start at a basic level, reviewing what 
power is, factors affecting power, and reasons that estimation of power is important. 
Then the notion of effect size for the univariate t test is given, followed by the multi-
variate effect size concept for Hotelling’s T2
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4.9 POWER ANALYSIS*

Type I error, or the level of significance (α), is familiar to all readers. This is the 
probability of rejecting the null hypothesis when it is true, that is, saying the groups 
differ when in fact they do not. The α level set by the experimenter is a subjec-
tive decision, but is usually set at .05 or .01 by most researchers to minimize the 
probability of making this kind of error. There is, however, another type of error 
that one can make in conducting a statistical test, and this is called a type II error. 
Type II error, denoted by β, is the probability of retaining H0 when it is false, that 
is, saying the groups do not differ when they do. Now, not only can either of these 
errors occur, but in addition they are inversely related. That is, when we hold effect 
and group size constant, reducing our nominal type I rate increases our type II error 
rate. We illustrate this for a two-group problem with a group size of 30 and effect 
size d = .5:

Α β 1 − β

.10 .37 .63

.05 .52 .48

.01 .78 .22

Notice that as we control the type I error rate more severely (from .10 to .01), type II 
error increases fairly sharply (from .37 to .78), holding sample and effect size con-
stant. Therefore, the problem for the experimental planner is achieving an appropriate 
balance between the two types of errors. Although we do not intend to minimize the 
seriousness of making a type I error, we hope to convince you that more attention 
should be paid to type II error. Now, the quantity in the last column is the power of a 
statistical test, which is the probability of rejecting the null hypothesis when it is false. 
Thus, power is the probability of making a correct decision when, for example, group 
mean differences are present. In the preceding example, if we are willing to take a 10% 
chance of rejecting H0 falsely, then we have a 63% chance of finding a difference of a 
specified magnitude in the population (here, an effect size of .5 standard deviations). 
On the other hand, if we insist on only a 1% chance of rejecting H0 falsely, then we 
have only about 2 chances out of 10 of declaring a mean difference is present. This 
example with small sample size suggests that in this case it might be prudent to aban-
don the traditional α levels of .01 or .05 to a more liberal α level to improve power 
sharply. Of course, one does not get something for nothing. We are taking a greater 
risk of rejecting falsely, but that increased risk is more than balanced by the increase 
in power.

There are two types of power estimation, a priori and post hoc, and very good 
reasons why each of them should be considered seriously. If a researcher is going 

* Much of the material in this section is identical to that presented in 1.2; however, it was be-
lieved to be worth repeating in this more extensive discussion of power.
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to invest a great amount of time and money in carrying out a study, then he or 
she would certainly want to have a 70% or 80% chance (i.e., power of .70 or 
.80) of finding a difference if one is there. Thus, the a priori estimation of power 
will alert the researcher to how many participants per group will be needed for 
adequate power. Later on we consider an example of how this is done in the 
multivariate case.

The post hoc estimation of power is important in terms of how one interprets the 
results of completed studies. Researchers not sufficiently sensitive to power may inter-
pret nonsignificant results from studies as demonstrating that treatments made no dif-
ference. In fact, it may be that treatments did make a difference but that the researchers 
had poor power for detecting the difference. The poor power may result from small 
sample size or effect size. The following example shows how important an awareness 
of power can be. Cronbach and Snow had written a report on aptitude-treatment inter-
action research, not being fully cognizant of power. By the publication of their text 
Aptitudes and Instructional Methods (1977) on the same topic, they acknowledged 
the importance of power, stating in the preface, “[we] . . . became aware of the crit-
ical relevance of statistical power, and consequently changed our interpretations of 
individual studies and sometimes of whole bodies of literature” (p. ix). Why would 
they change their interpretation of a whole body of literature? Because, prior to being 
sensitive to power when they found most studies in a given body of literature had non-
significant results, they concluded no effect existed. However, after being sensitized to 
power, they took into account the sample sizes in the studies, and also the magnitude 
of the effects. If the sample sizes were small in most of the studies with nonsignificant 
results, then lack of significance is due to poor power. Or, in other words, several 
low-power studies that report nonsignificant results of the same character are evidence 
for an effect.

The power of a statistical test is dependent on three factors:

1. The α level set by the experimenter
2. Sample size
3. Effect size—How much of a difference the treatments make, or the extent to which 

the groups differ in the population on the dependent variable(s).

For the univariate independent samples t test, Cohen (1988) defined the popu-
lation effect size, as we used earlier, d = (µ1 − µ2)/σ, where σ is the assumed 
common population standard deviation. Thus, in this situation, the effect size 
measure simply indicates how many standard deviation units the group means are 
separated by.

Power is heavily dependent on sample size. Consider a two-tailed test at the .05 level 
for the t test for independent samples. Suppose we have an effect size of .5 stand-
ard deviations. The next table shows how power changes dramatically as sample size 
increases.
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n (Subjects per group) Power

10 .18
20 .33
50 .70

100 .94

As this example suggests, when sample size is large (say 100 or more subjects per 
group) power is not an issue. It is when you are conducting a study where group sizes 
are small (n ≤ 20), or when you are evaluating a completed study that had a small 
group size, that it is imperative to be very sensitive to the possibility of poor power (or 
equivalently, a type II error).

We have indicated that power is also influenced by effect size. For the t test, Cohen 
(1988) suggested as a rough guide that an effect size around .20 is small, an effect size 
around .50 is medium, and an effect size > .80 is large. The difference in the mean IQs 
between PhDs and the typical college freshmen is an example of a large effect size 
(about .8 of a standard deviation).

Cohen and many others have noted that small and medium effect sizes are very com-
mon in social science research. Light and Pillemer (1984) commented on the fact that 
most evaluations find small effects in reviews of the literature on programs of various 
types (social, educational, etc.): “Review after review confirms it and drives it home. 
Its importance comes from having managers understand that they should not expect 
large, positive findings to emerge routinely from a single study of a new program” 
(pp. 153–154). Results from Becker (1987) of effect sizes for three sets of studies (on 
teacher expectancy, desegregation, and gender influenceability) showed only three large 
effect sizes out of 40. Also, Light, Singer, and Willett (1990) noted that “meta-analyses 
often reveal a sobering fact: Effect sizes are not nearly as large as we all might hope” 
(p. 195). To illustrate, they present average effect sizes from six meta-analyses in differ-
ent areas that yielded .13, .25, .27, .38, .43, and .49—all in the small to medium range.

4.10 WAYS OF IMPROVING POWER

Given how poor power generally is with fewer than 20 subjects per group, the follow-
ing four methods of improving power should be seriously considered:

1. Adopt a more lenient α level, perhaps α = .10 or α = .15.
2. Use one-tailed tests where the literature supports a directional hypothesis. This 

option is not available for the multivariate tests because they are inherently 
two-tailed.

3. Consider ways of reducing within-group variability, so that one has a more sen-
sitive design. One way is through sample selection; more homogeneous subjects 
tend to vary less on the dependent variable(s). For example, use just males, rather 
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than males and females, or use only 6- and 7-year-old children rather than 6- 
through 9-year-old children. A second way is through the use of factorial designs, 
which we consider in Chapter 7. A third way of reducing within-group variabil-
ity is through the use of analysis of covariance, which we consider in Chapter 8. 
Covariates that have low correlations with each other are particularly helpful 
because then each is removing a somewhat different part of the within-group 
(error) variance. A fourth means is through the use of repeated-measures designs. 
These designs are particularly helpful because all individual difference due to the 
average response of subjects is removed from the error term, and individual differ-
ences are the main reason for within-group variability.

4. Make sure there is a strong linkage between the treatments and the dependent 
variable(s), and that the treatments extend over a long enough period of time to 
produce a large—or at least fairly large—effect size.

Using these methods in combination can make a considerable difference in effective 
power. To illustrate, we consider a two-group situation with 18 participants per group 
and one dependent variable. Suppose a two-tailed test was done at the .05 level, and 
that the obtained effect size was

d x x s^ / / . ,= −( ) = −( ) =1 2 8 4 10 40

where s is pooled within standard deviation. Then, from Cohen (1988), power = .21, 
which is very poor.

Now, suppose that through the use of two good covariates we are able to reduce pooled 
within variability (s2) by 60%, from 100 (as earlier) to 40. This is a definite realistic 
possibility in practice. Then our new estimated effect size would be d^ / . .≈ 4 40 63=  
Suppose in addition that a one-tailed test was really appropriate, and that we also take 
a somewhat greater risk of a type I error, i.e., α = .10. Then, our new estimated power 
changes dramatically to .69 (Cohen, 1988).

Before leaving this section, it needs to be emphasized that how far one “pushes” the 
power issue depends on the consequences of making a type I error. We give three 
examples to illustrate. First, suppose that in a medical study examining the safety of a 
drug we have the following null and alternative hypotheses:

H0 : The drug is unsafe.
H1 : The drug is safe.

Here making a type I error (rejecting H0 when true) is concluding that the drug is safe 
when in fact it is unsafe. This is a situation where we would want a type I error to be 
very small, because making a type I error could harm or possibly kill some people.

As a second example, suppose we are comparing two teaching methods, where method 
A is several times more expensive than method B to implement. If we conclude that 
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method A is more effective (when in fact it is not), this will be a very costly mistake 
for a school district.

Finally, a classic example of the relative consequences of type I and type II errors can 
be taken from our judicial system, under which a defendant is innocent until proven 
guilty. Thus, we could formulate the following null and alternative hypotheses:

H0 : The defendant is innocent.
H1 : The defendant is guilty.

If we make a type I error, we conclude that the defendant is guilty when actually inno-
cent. Concluding that the defendant is innocent when actually guilty is a type II error. 
Most would probably agree that the type I error is by far the more serious here, and 
thus we would want a type I error to be very small.

4.11  A PRIORI POWER ESTIMATION FOR A TWO-GROUP  
MANOVA

Stevens (1980) discussed estimation of power in MANOVA at some length, and in 
what follows we borrow heavily from his work. Next, we present the univariate and 
multivariate measures of effect size for the two-group problem. Recall that the univar-
iate measure was presented earlier.

Measures of effect size

Univariate Multivariate

d =
−µ µ
σ

1 2
D 2 = (μ1 − μ2)′Σ

−1 (μ1 − μ2)

d̂
y y

s
= −1 2 ˆ ( ) ( )D2 1 1

1
1 2= − ′ −−y y S y y

The first row gives the population measures, and the second row is used to estimate 
effect sizes for your study. Notice that the multivariate measure D̂2 is Hotelling’s T 2 
without the sample sizes (see Equation 2); that is, it is a measure of separation of the 
groups that is independent of sample size. D2 is called in the literature the Mahalanobis  
distance. Note also that the multivariate measure D̂2 is a natural squared generaliza-
tion of the univariate measure d, where the means have been replaced by mean vectors 
and s (standard deviation) has been replaced by its squared multivariate generaliza-
tion of within variability, the sample covariance matrix S.

Table 4.7 from Stevens (1980) provides power values for two-group MANOVA for 
two through seven variables, with group size varying from small (15) to large (100), 
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and with effect size varying from small (D2 = .25) to very large (D2 = 2.25). Earlier, 
we indicated that small or moderate group and effect sizes produce inadequate power 
for the univariate t test. Inspection of Table 4.7 shows that a similar situation exists for 
MANOVA. The following from Stevens (1980) provides a summary of the results in 
Table 4.7:

For values of D2 ≤ .64 and n ≤ 25, . . . power is generally poor (< .45) and never 
really adequate (i.e., > .70) for α = .05. Adequate power (at α = .10) for two through 
seven variables at a moderate overall effect size of .64 would require about 30 
subjects per group. When the overall effect size is large (D ≥ 1), then 15 or more 
subjects per group is sufficient to yield power values ≥ .60 for two through seven 
variables at α = .10. (p. 731)

In section 4.11.2, we show how you can use Table 4.7 to estimate the sample size 
needed for a simple two-group MANOVA, but first we show how this table can be used 
to estimate post hoc power.

 Table 4.7: Power of Hotelling’s T  2 at α = .05 and .10 for Small Through Large Overall 
Effect and Group Sizes

Number of
variables

D2**

n* .25 .64 1 2.25

2 15 26 (32) 44 (60) 65 (77) 95***
2 25 33 (47) 66 (80) 86 97
2 50 60 (77) 95 1 1
2 100 90 1 1 1
3 15 23 (29) 37 (55) 58 (72) 91
3 25 28 (41) 58 (74) 80 95
3 50 54 (65) 93 (98) 1 1
3 100 86 1 1 1
5 15 21 (25) 32 (47) 42 (66) 83
5 25 26 (35) 42 (68) 72 96
5 50 44 (59) 88 1 1
5 100 78 1 1 1
7 15 18 (22) 27 (42) 37 (59) 77
7 25 22 (31) 38 (62) 64 (81) 94
7 50 40 (52) 82 97 1
7 100 72 1 1 1

Note: Power values at α = .10 are in parentheses.
* Equal group sizes are assumed.
** D 2 = (µ1 − µ2)´Σ

−1(µ1 − µ2)
*** Decimal points have been omitted. Thus, 95 means a power of .95. Also, a value of 1 means the power is 
approximately equal to 1.
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4.11.1 Post Hoc Estimation of Power

Suppose you wish to evaluate the power of a two-group MANOVA that was completed 
in a journal in your content area. Here, Table 4.7 can be used, assuming the number 
of dependent variables in the study is between two and seven. Actually, with a slight 
amount of extrapolation, the table will yield a reasonable approximation for eight or 
nine variables. For example, for D2 = .64, five variables, and n = 25, power = .42 at the 
.05 level. For the same situation, but with seven variables, power = .38. Therefore, a 
reasonable estimate for power for nine variables is about .34.

Now, to use Table 4.7, the value of D2 is needed, and this almost certainly will not 
be reported. Very probably then, a couple of steps will be required to obtain D2. The 
investigator(s) will probably report the multivariate F. From this, one obtains T 2 by 
reexpressing Equation 3, which we illustrate in Example 4.2. Then, D2 is obtained 
using Equation 2. Because the right-hand side of Equation 2 without the sample sizes 
is D2, it follows that T 2 = [n1n2/(n1 + n2)]D

2, or D2 = [(n1 + n2)/n1n2]T 2.

We now consider two examples to illustrate how to use Table 4.7 to estimate power for 
studies in the literature when (1) the number of dependent variables is not explicitly 
given in Table 4.7, and (2) the group sizes are not equal.

Example 4.2
Consider a two-group study in the literature with 25 participants per group that used 
four dependent variables and reports a multivariate F = 2.81. What is the estimated 
power at the .05 level? First, we convert F to the corresponding T 2 value:

F = [(N − p − 1)/(N − 2)p]T 2 or T 2 = (N − 2)pF/(N − p − 1)

Thus, T 2 = 48(4)2.81/45 = 11.99. Now, because D2 = (NT 2)/n1n2, we have 
D2 = 50(11.99)/625 = .96. This is a large multivariate effect size. Table 4.7 does not 
have power for four variables, but we can interpolate between three and five variables 
to approximate power. Using D2 = 1 in the table we find that:

Number of variables n D 2 = 1

3 25 .80
5 25 .72

Thus, a good approximation to power is .76, which is adequate power for a large effect 
size. Here, as in univariate analysis, with a large effect size, not many participants are 
needed per group to have adequate power.

Example 4.3
Now consider an article in the literature that is a two-group MANOVA with five 
dependent variables, having 22 participants in one group and 32 in the other. The 
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investigators obtain a multivariate F = 1.61, which is not significant at the .05 level 
(critical value = 2.42). Calculate power at the .05 level and comment on the size of the 
multivariate effect measure. Here the number of dependent variables (five) is given in 
the table, but the group sizes are unequal. Following Cohen (1988), we use the har-
monic mean as the n with which to enter the table. The harmonic mean for two groups 
is ñ = 2n1n2/(n1 + n2). Thus, for this case we have ñ = 2(22)(32)/54 = 26.07. Now, to 
get D2 we first obtain T 2:

T2 = (N − 2)pF/(N − p − 1) = 52(5)1.61/48 = 8.72

Now, D2 = N T 2/n1n2 = 54(8.72)/22(32) = .67. Using n = 25 and D2 = .64 to enter 
Table 4.7, we see that power = .42. Actually, power is slightly greater than .42 because 
n = 26 and D2 = .67, but it would still not reach even .50. Thus, given this effect size, 
power is definitely inadequate here, but a sample medium multivariate effect size was 
obtained that may be practically important.

4.11.2 A Priori Estimation of Sample Size

Suppose that from a pilot study or from a previous study that used the same kind of 
participants, an investigator had obtained the following pooled within-group covari-
ance matrix for three variables:

S =
















16 6 1 6
6 9 9
1 6 9 1

.
.

. .

Recall that the elements on the main diagonal of S are the variances for the variables: 
16 is the variance for variable 1, and so on.

To complete the estimate of D2 the difference in the mean vectors must be estimated; 
this amounts to estimating the mean difference expected for each variable. Suppose 
that on the basis of previous literature, the investigator hypothesizes that the mean dif-
ferences on variables 1 and 2 will be 2 and 1.5. Thus, they will correspond to moderate 
effect sizes of .5 standard deviations. Why? (Use the variances on the within-group 
covariance matrix to check this.) The investigator further expects the mean difference 
on variable 3 will be .2, that is, .2 of a standard deviation, or a small effect size. What 
is the minimum number of participants needed, at α = .10, to have a power of .70 for 
the test of the multivariate null hypothesis?

To answer this question we first need to estimate D2:

D
^

, . , .
. . .
. . .
. .

2
2 1 5 2

0917 0511 1008
0511 1505 0538
1008 05

= ( )
− −

− −
− − 338 2100

2 0
1 5

2
3347

1.

.
.
.

.




























 =
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The middle matrix is the inverse of S. Because moderate and small univariate effect 
sizes produced this D̂2 value .3347, such a numerical value for D2 would probably 
occur fairly frequently in social science research. To determine the n required for 
power = .70, we enter Table 4.7 for three variables and use the values in parentheses. 
For n = 50 and three variables, note that power = .65 for D2 = .25 and power = .98 for 
D2 = .64. Therefore, we have

Power(D2 = .33) = Power(D2 =.25) + [.08/.39](.33) = .72.

4.12 SUMMARY

In this chapter we have considered the statistical analysis of two groups on several 
dependent variables simultaneously. Among the reasons for preferring a MANOVA 
over separate univariate analyses were (1) MANOVA takes into account important 
information, that is, the intercorrelations among the variables, (2) MANOVA keeps the 
overall α level under control, and (3) MANOVA has greater sensitivity for detecting 
differences in certain situations. It was shown how the multivariate test (Hotelling’s 
T 2) arises naturally from the univariate t by replacing the means with mean vectors 
and by replacing the pooled within-variance by the covariance matrix. An example 
indicated the numerical details associated with calculating T 2.

Three post hoc procedures for determining which of the variables contributed to the 
overall multivariate significance were considered. The Roy–Bose simultaneous con-
fidence interval approach cannot be recommended because it is extremely conserv-
ative, and hence has poor power for detecting differences. The Bonferroni approach 
of testing each variable at the α/p level of significance is generally recommended, 
especially if the number of variables is not too large. Another approach we consid-
ered that does not use any alpha adjustment for the post hoc tests is potentially prob-
lematic because the overall type I error rate can become unacceptably high as the 
number of dependent variables increases. As such, we recommend this unadjusted t 
test procedure for analysis having two or three dependent variables. This relatively 
small number of variables in the analysis may arise in designs where you have col-
lected just that number of outcomes or when you have a larger set of outcomes but 
where you have firm support for expecting group mean differences for two or three 
dependent variables.

Group membership for a sample problem was dummy coded, and it was run as a 
regression analysis. This yielded the same multivariate and univariate results as 
when the problem was run as a traditional MANOVA. This was done to show that 
MANOVA is a special case of regression analysis, that is, of the general linear model. 
In this context, we also discussed the effect size measure R2 (equivalent to eta square 
and partial eta square for the one-factor design). We advised against concluding  
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that a result is of little practical importance simply because the R2 value is small  
(say .10). Several reasons were given for this, one of the most important being con-
text. Thus, 10% variance accounted for in some research areas may indeed be of 
practical importance.

Power analysis was considered in some detail. It was noted that small and medium 
effect sizes are very common in social science research. The Mahalanobis D2 was pre-
sented as a two-group multivariate effect size measure, with the following guidelines 
for interpretation: D2 = .25 small effect, D2 = .50 medium effect, and D2 > 1 large 
effect. We showed how you can compute D2 using data from a previous study to deter-
mine a priori the sample size needed for a two-group MANOVA, using a table from 
Stevens (1980).

4.13 EXERCISES

1. Which of the following are multivariate studies, that is, involve several corre-
lated dependent variables?

(a) an investigator classifies high school freshmen by sex, socioeconomic 
status, and teaching method, and then compares them on total test score 
on the Lankton algebra test.

(b) a treatment and control group are compared on measures of reading 
speed and reading comprehension.

(c) an investigator is predicting success on the job from high school Gpa and 
a battery of personality variables.

2. an investigator has a 50-item scale and wishes to compare two groups of par-
ticipants on the item scores. he has heard about MaNOVa, and realizes that 
the items will be correlated. therefore, he decides to do a two-group MaNOVa 
with each item serving as a dependent variable. the scale is administered to 45 
participants, and the investigator attempts to conduct the analysis. however, 
the computer software aborts the analysis. Why? What might the investigator 
consider doing before running the analysis?

3. Suppose you come across a journal article where the investigators have a 
three-way design and five correlated dependent variables. they report the 
results in five tables, having done a univariate analysis on each of the five 
variables. they find four significant results at the .05 level. Would you be 
impressed with these results? Why or why not? Would you have more confi-
dence if the significant results had been hypothesized a priori? What else could 
they have done that would have given you more confidence in their significant 
results?

4. Consider the following data for a two-group, two-dependent-variable 
problem:
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T1 T2

y1 y2 y1 y2

1 9 4 8
2 3 5 6
3 4 6 7
5 4
2 5

(a) Compute W, the pooled within-SSCp matrix.

(b) Find the pooled within-covariance matrix, and indicate what each of the 
elements in the matrix represents.

(c) Find hotelling’s T2.

(d) What is the multivariate null hypothesis in symbolic form?
(e) test the null hypothesis at the .05 level. What is your decision?

5. an investigator has an estimate of D 2 = .61 from a previous study that used the 
same four dependent variables on a similar group of participants. how many 
subjects per group are needed to have power = .70 at  = .10?

6. From a pilot study, a researcher has the following pooled within-covariance 
matrix for two variables:

S =










8 6 10 4
10 4 21 3

. .

. .

 From previous research a moderate effect size of .5 standard deviations on 
variable 1 and a small effect size of 1/3 standard deviations on variable 2 are 
anticipated. For the researcher’s main study, how many participants per group 
are needed for power = .70 at the .05 level? at the .10 level?

7. ambrose (1985) compared elementary school children who received instruc-
tion on the clarinet via programmed instruction (experimental group) versus 
those who received instruction via traditional classroom instruction on the 
following six performance aspects: interpretation (interp), tone, rhythm, into-
nation (inton), tempo (tem), and articulation (artic). the data, representing the 
average of two judges’ ratings, are listed here, with GpID = 1 referring to the 
experimental group and GpID = 2 referring to the control group:

(a) run the two-group MaNOVa on these data using SaS or SpSS. Is the 
multivariate null hypothesis rejected at the .05 level?

(b) What is the value of the Mahalanobis D 2? how would you characterize the  
magnitude of this effect size? Given this, is it surprising that the null hy-
pothesis was rejected?

(c) Setting overall α = .05 and using the Bonferroni inequality approach, which 
of the individual variables are significant, and hence contributing to the 
overall multivariate significance?
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GP INT TONE RHY INTON TEM ARTIC

1 4.2 4.1 3.2 4.2 2.8 3.5
1 4.1 4.1 3.7 3.9 3.1 3.2
1 4.9 4.7 4.7 5.0 2.9 4.5
1 4.4 4.1 4.1 3.5 2.8 4.0
1 3.7 2.0 2.4 3.4 2.8 2.3
1 3.9 3.2 2.7 3.1 2.7 3.6
1 3.8 3.5 3.4 4.0 2.7 3.2
1 4.2 4.1 4.1 4.2 3.7 2.8
1 3.6 3.8 4.2 3.4 4.2 3.0
1 2.6 3.2 1.9 3.5 3.7 3.1
1 3.0 2.5 2.9 3.2 3.3 3.1
1 2.9 3.3 3.5 3.1 3.6 3.4
2 2.1 1.8 1.7 1.7 2.8 1.5
2 4.8 4.0 3.5 1.8 3.1 2.2
2 4.2 2.9 4.0 1.8 3.1 2.2
2 3.7 1.9 1.7 1.6 3.1 1.6
2 3.7 2.1 2.2 3.1 2.8 1.7
2 3.8 2.1 3.0 3.3 3.0 1.7
2 2.1 2.0 2.2 1.8 2.6 1.5
2 2.2 1.9 2.2 3.4 4.2 2.7
2 3.3 3.6 2.3 4.3 4.0 3.8
2 2.6 1.5 1.3 2.5 3.5 1.9
2 2.5 1.7 1.7 2.8 3.3 3.1

8. We consider the pope, Lehrer, and Stevens (1980) data. Children in kindergar-
ten were measured on various instruments to determine whether they could 
be classified as low risk or high risk with respect to having reading problems 
later on in school. the variables considered are word identification (WI), word 
comprehension (WC), and passage comprehension (pC).

GP WI WC PC

 1 1.00 5.80 9.70 8.90
 2 1.00 10.60 10.90 11.00
 3 1.00 8.60 7.20 8.70
 4 1.00 4.80 4.60 6.20
 5 1.00 8.30 10.60 7.80
 6 1.00 4.60 3.30 4.70
 7 1.00 4.80 3.70 6.40
 8 1.00 6.70 6.00 7.20
 9 1.00 6.90 9.70 7.20
10 1.00 5.60 4.10 4.30
11 1.00 4.80 3.80 5.30
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GP WI WC PC

12 1.00 2.90 3.70 4.20
13 2.00 2.40 2.10 2.40
14 2.00 3.50 1.80 3.90
15 2.00 6.70 3.60 5.90
16 2.00 5.30 3.30 6.10
17 2.00 5.20 4.10 6.40
18 2.00 3.20 2.70 4.00
19 2.00 4.50 4.90 5.70
20 2.00 3.90 4.70 4.70
21 2.00 4.00 3.60 2.90
22 2.00 5.70 5.50 6.20
23 2.00 2.40 2.90 3.20
24 2.00 2.70 2.60 4.10

(a) run the two group MaNOVa on computer software. Is the multivariate test 
significant at the .05 level?

(b) are any of the univariate F s significant at the .05 level?

9. the correlations among the dependent variables are embedded in the covari-
ance matrix S. Why is this true?
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Chapter 5

K-GROUP MANOVA
A Priori and Post Hoc Procedures

5.1 INTRODUCTION

In this chapter we consider the case where more than two groups of participants are 
being compared on several dependent variables simultaneously. We first briefly show 
how the MANOVA can be done within the regression model by dummy-coding group 
membership for a small sample problem and using it as a nominal predictor. In doing 
this, we build on the multivariate regression analysis of two-group MANOVA that 
was presented in the last chapter. (Note that section 5.2 can be skipped if you prefer 
a traditional presentation of MANOVA). Then we consider traditional multivariate 
analysis of variance, or MANOVA, introducing the most familiar multivariate test sta-
tistic Wilks’ Λ. Two fairly similar post hoc procedures for examining group differences  
for the dependent variables are discussed next. Each procedure employs univariate 
ANOVAs for each outcome and applies the Tukey procedure for pairwise  comparisons. 
The procedures differ in that one provides for more strict type I error control and better 
confidence interval coverage while the other seeks to strike a balance between type 
I error and power. This latter approach is most suitable for designs having a small 
number of outcomes and groups (i.e., 2 or 3).

Next, we consider a different approach to the k-group problem, that of using planned 
comparisons rather than an omnibus F test. Hays (1981) gave an excellent discussion 
of this approach for univariate ANOVA. Our discussion of multivariate planned com-
parisons is extensive and is made quite concrete through the use of several examples, 
including two studies from the literature. The setup of multivariate contrasts on SPSS 
MANOVA is illustrated and selected output is discussed.

We then consider the important problem of a priori determination of sample size for 3-, 
4-, 5-, and 6-group MANOVA for the number of dependent variables ranging from 2 to 
15, using extensive tables developed by Lauter (1978). Finally, the chapter concludes 
with a discussion of some considerations that mitigate generally against the use of a 
large number of criterion variables in MANOVA.
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5.2  MULTIVARIATE REGRESSION ANALYSIS FOR A SAMPLE 
PROBLEM

In the previous chapter we indicated how analysis of variance can be incorporated 
within the regression model by dummy-coding group membership and using it as a 
nominal predictor. For the two-group case, just one dummy variable (predictor) was 
needed, which took on a value of 1 for participants in group 1 and 0 for the partici-
pants in the other group. For our three-group example, we need two dummy variables 
(predictors) to identify group membership. The first dummy variable (x1) is 1 for all 
subjects in Group 1 and 0 for all other subjects. The other dummy variable (x2) is 1 
for all subjects in Group 2 and 0 for all other subjects. A third dummy variable is not 
needed because the participants in Group 3 are identified by 0’s on x1 and x2, that is, not 
in Group 1 or Group 2. Therefore, by default, those participants must be in Group 3. In 
general, for k groups, the number of dummy variables needed is (k − 1), corresponding 
to the between degrees of freedom.

The data for our two-dependent-variable, three-group problem are presented here:

y y

Group

Grou

1 2

2 3 1 0
3 4 1 0
5 4 1 0
2 5 1 0

1

4 8 0 1
5 6 0 1
6 7 0 1

1 2x x















pp

Group

2

7 6 0 0
8 7 0 0

10 8 0 0
9 5 0 0
7 6 0 0

3














Thus, cast in a regression mold, we are relating two sets of variables, the two depend-
ent variables, and the two predictors (dummy variables). The regression analysis will 
then determine how much of the variance on the dependent variables is accounted for 
by the predictors, that is, by group membership.

In Table 5.1 we present the control lines for running the sample problem as a mul-
tivariate regression on SPSS MANOVA, and the lines for running the problem as a 
traditional MANOVA (using GLM). By running both analyses, you can verify that 
the multivariate Fs for the regression analysis are identical to those obtained from the 
MANOVA run.



177ChAPteR 5       

5.3 TRADITIONAL MULTIVARIATE ANALYSIS OF VARIANCE

In the k-group MANOVA case we are comparing the groups on p dependent variables 
simultaneously. For the univariate case, the null hypothesis is:

H0 : µ1 = µ2 = · · · = µk (population means are equal)

whereas for MANOVA the null hypothesis is

H0 : µ1 = µ2 = · · · = µk (population mean vectors are equal)

For univariate analysis of variance the F statistic (F = MSb / MSw) is used for testing the 
tenability of H0. What statistic do we use for testing the multivariate null hypothesis? 
There is no single answer, as several test statistics are available. The one that is most 
widely known is Wilks’ Λ, where Λ is given by:

Λ Λ= =
+

≤ ≤
W
T

W
B W

, where 0 1

 Table 5.1: SPSS Syntax for Running Sample Problem as Multivariate Regression and 
as MANOVA

TITLE ‘THREE GROUP MANOVA RUN AS MULTIVARIATE REGRESSION’.
DATA LIST FREE/x1 x2 y1 y2.
BEGIN DATA.

(1) 1 0 2 3 1 0 3 4
1 0 5 4 1 0 2 5
0 1 4 8 0 1 5 6 0 1 6 7
0 0 7 6 0 0 8 7
0 0 10 8 0 0 9 5 0 0 7 6
END DATA.
LIST.
MANOVA y1 y2 WITH x1 x2.
TITLE ‘MANOVA RUN ON SAMPLE PROBLEM’.
DATA LIST FREE/gps y1 y2.

(2) BEGIN DATA.
1 2 3 1 3 4
1 5 4 1 2 5
2 4 8 2 5 6 2 6 7
3 7 6 3 8 7 3 10 8
3 9 5 3 7 6
END DATA.
LIST.
GLM y1 y2 BY gps
/PRINT=DESCRIPTIVE
/DESIGN= gps.

(1) The first two columns of data are for the dummy variables x1 and x2, which identify group membership (cf. 
the data display in section 5.2).
(2) The first column of data identifies group membership—again compare the data display in section 5.2.
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|W| and |T| are the determinants of the within-group and total sum of squares and 
cross-products matrices. W has already been defined for the two-group case, where 
the observations in each group are deviated about the individual group means. Thus 
W is a measure of within-group variability and is a multivariate generalization of the 
univariate sum of squares within (SSw). In T the observations in each group are devi-
ated about the grand mean for each variable. B is the between-group sum of squares 
and cross-products matrix, and is the multivariate generalization of the univariate sum 
of squares between (SSb). Thus, B is a measure of how differential the effect of treat-
ments has been on a set of dependent variables. We define the elements of B shortly. 
We need matrices to define within, between, and total variability in the multivariate 
case because there is variability on each variable (these variabilities will appear on the 
main diagonals of the W, B, and T matrices) as well as covariability for each pair of 
variables (these will be the off diagonal elements of the matrices).

Because Wilks’ Λ is defined in terms of the determinants of W and T, it is important to 
recall from the matrix algebra chapter (Chapter 2) that the determinant of a covariance 
matrix is called the generalized variance for a set of variables. Now, because W and T 
differ from their corresponding covariance matrices only by a scalar, we can think of 
|W| and |T| in the same basic way. Thus, the determinant neatly characterizes within 
and total variability in terms of single numbers. It may also be helpful for you to recall 
that the generalized variance may be thought of as the variation in a set of outcomes 
that is unique to the set, that is, the variance that is not shared by the variables in the 
set. Also, for one variable, variance indicates how much scatter there is about the mean 
on a line, that is, in one dimension. For two variables, the scores for each participant on 
the variables defines a point in the plane, and thus generalized variance indicates how 
much the points (participants) scatter in the plane in two dimensions. For three varia-
bles, the scores for the participants define points in three-dimensional space, and hence 
generalized variance shows how much the subjects scatter (vary) in three dimensions. 
An excellent extended discussion of generalized variance for the more mathematically 
inclined is provided in Johnson and Wichern (1982, pp. 103–112).

For univariate ANOVA you may recall that

SSt = SSb + SSw,

where SSt is the total sum of squares.

For MANOVA the corresponding matrix analogue holds:

T = B + W
Total SSCP = Between SSCP + Within SSCP

Matrix Matrix Matrix

Notice that Wilks’ Λ is an inverse criterion: the smaller the value of Λ, the more evi-
dence for treatment effects (between-group association). If there were no treatment 
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effect, then B = 0 and Λ =
+

=
W

W0
1, whereas if B were very large relative to W then 

Λ would approach 0.

The sampling distribution of Λ is somewhat complicated, and generally an approxima-
tion is necessary. Two approximations are available: (1) Bartlett’s χ2 and (2) Rao’s F. 
Bartlett’s χ2 is given by:

χ2 = −[(N − 1) − .5(p + k)] 1n Λ p(k − 1)df,

where N is total sample size, p is the number of dependent variables, and k is the num-
ber of groups. Bartlett’s χ2 is a good approximation for moderate to large sample sizes. 
For smaller sample size, Rao’s F is a better approximation (Lohnes, 1961), although 
generally the two statistics will lead to the same decision on H0. The multivariate F 
given on SPSS is the Rao F. The formula for Rao’s F is complicated and is presented 
later. We point out now, however, that the degrees of freedom for error with Rao’s F 
can be noninteger, so that you should not be alarmed if this happens on the computer 
printout.

As alluded to earlier, there are certain values of p and k for which a function of Λ is 
exactly distributed as an F ratio (for example, k = 2 or 3 and any p; see Tatsuoka, 1971, 
p. 89).

5.4  MULTIVARIATE ANALYSIS OF VARIANCE FOR  
SAMPLE DATA

We now consider the MANOVA of the data given earlier. For convenience, we present 
the data again here, with the means for the participants on the two dependent variables 
in each group:

G1 G2 G3

y1 y2 y1 y2 y1 y2

2 3 4 8  7 6
3 4 5 6  8 7
5 4 6 7 10 8
2 5

y 12 5= y 22 7=
 9
 7

y 13 8 2= .

5
6

y 23 6 4= .
y 11 3= y 21 4=

We wish to test the multivariate null hypothesis with the χ2 approximation for Wilks’ 
Λ. Recall that Λ = |W| / |T|, so that W and T are needed. W is the pooled estimate of 
within variability on the set of variables, that is, our multivariate error term.
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5.4.1 Calculation of W

Calculation of W proceeds in exactly the same way as we obtained W for Hotelling’s 
T 2 in the two-group MANOVA case in Chapter 4. That is, we determine how much the 
participants’ scores vary on the dependent variables within each group, and then pool 
(add) these together. Symbolically, then,

W = W1 + W2 + W3,

where W1, W2, and W3 are the within sums of squares and cross-products matrices 
for Groups 1, 2, and 3. As in Chapter 4, we denote the elements of W1 by ss1 and ss2 
(measuring the variability on the variables within Group 1) and ss12 (measuring the 
covariability of the variables in Group 1).

W1
1 12

21 2
=











ss ss
ss ss

Then, for Group 1, we have

ss y

ss

y
j

j

j

1
1

4

1 11
2

2 2 2 2

2
1

2 3 3 3 5 3 2 3 6

= −

= − + − + − + − =

=

=
( )

=

∑( )

( ) ( ) ( ) ( )
44

2 21
2

2 2 2 2

12 21
1

4

3 4 4 4 4 4 5 4 2

∑ ( )

=

−

= − + − + − + − =

=

( )

( ) ( ) ( ) ( )

y

ss ss

yj

j
∑∑ ( ) ( )−( ) −( )

= −( ) −( ) + −( ) −( ) + −( ) −( ) +

y yy yj j1 11 2 21

2 3 3 4 3 3 4 4 5 3 4 4 2 3 5 4 0−( ) −( ) =

Thus, the matrix that measures within variability on the two variables in Group 1 is 
given by:

W1
6 0
0 2

=










In exactly the same way the within SSCP matrices for groups 2 and 3 can be shown 
to be:

W W2 3
2 1
1 2

6 8 2 6
2 6 5 2

=
−

−








 =











. .

. .
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Therefore, the pooled estimate of within variability on the set of variables is given by:

W W W W= + + =








1 2 3

14 8 1 6
1 6 9 2
. .
. .

5.4.2 Calculation of T

Recall, from earlier in this chapter, that T = B + W. We find the B (between) matrix, 
and then obtain the elements of T by adding the elements of B to the elements of W.

The diagonal elements of B are defined as follows:

b n y yii
j

k

j ij i= −
=

∑
1

2( ) ,

where nj is the number of subjects in group j, yij is the mean for variable i in group 

j, and yi is the grand mean for variable i. Notice that for any particular variable, say 
variable 1, b11 is simply the between-group sum of squares for a univariate analysis of 
variance on that variable.

The off-diagonal elements of B are defined as follows:

b b n y y y ymi im
j

k

j ij i mj m= −( ) −( )
=

∑
1

To find the elements of B we need the grand means on the two variables. These are 
obtained by simply adding up all the scores on each variable and then dividing by the 

total number of scores. Thus y1 = 68 / 12 = 5.67, and y2 = 69 / 12 = 5.75.

Now we find the elements of the B (between) matrix:

b n y y y
j

j j j11
1

3

1 1
2

1= −
=

∑ ( ) , where  is the mean of variable 1 in group .j

b
j

= − + − + − =

=

4 3 5 67 3 5 5 67 5 8 2 5 67 61 872 2 2

22

( . ) ( . ) ( . . ) .

==
∑ −

= − + − + − =
1

3

2 2
2

2 2 24 4 5 75 3 7 5 75 5 6 4 5 75 19 05

n y y

b

j j( )

( . ) ( . ) ( . . ) .

112 21
1

3

1 1 2 2

4 3 5 67 4 5 75 3 5 5 67

= −( ) −( )
= −( ) −( ) + −( )

=
∑b n y y y y
j

j j j

. . . 7 5 75 5 8 2 5 67 6 4 5 75 24 4−( ) + −( ) −( ) =. . . . . .
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Therefore, the B matrix is

B =










61 87 24 40
24 40 19 05

. .

. .

and the diagonal elements 61.87 and 19.05 represent the between-group sum of squares 
that would be obtained if separate univariate analyses had been done on variables 1 
and 2.

Because T = B + W, we have

T =








 +









 =

61 87 24 40
24 40 19 05

14 80 1 6
1 6 9 2

76 72 26. .
. .

. .

. .
. .000

26 00 28 25. .










5.4.3 Calculation of Wilks Λ and the Chi-Square Approximation

Now we can obtain Wilks’ Λ:

Λ = = =
( ) −

(
W
T

14 8 1 6
1 6 9 2

76 72 26
26 28 25

14 8 9 2 1 6
76 72 28 25

2
. .
. .

.
.

. . .
. . )) −

=
26

08972 .

Finally, we can compute the chi-square test statistic:

χ2 = −[(N − 1) − .5(p + k)] ln Λ, with p (k − 1) df
χ2 = −[(12 − 1) − .5(2 + 3)] ln (.0897)
χ2 = −8.5(−2.4116) = 20.4987, with 2(3 − 1) = 4 df

The multivariate null hypothesis here is:

µ
µ

µ
µ µ

11

21

12

22

13

23







=






=






µ

That is, that the population means in the three groups on variable 1 are equal, and 
similarly that the population means on variable 2 are equal. Because the critical 
value at .05 is 9.49, we reject the multivariate null hypothesis and conclude that 
the three groups differ overall on the set of two variables. Table 5.2 gives the mul-
tivariate Fs and the univariate Fs from the SPSS run on the sample problem and 
presents the formula for Rao’s F approximation and also relates some of the output 
from the univariate Fs to the B and W matrices that we computed. After overall 
multivariate significance is attained, one often would like to find out which of the 
outcome variables differed across groups. When such a difference is found, we 
would then like to describe how the groups differed on the given variable. This is 
considered next.
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1 1 2 1

1
1 2

1

1

2

− − −( ) +
−( ) = − − −

=
−

Λ
Λ

/

/

/
, ( ) /

(

s

s

ms p k

p k
m N p k

s
p k

where and

1 4
1 5

2

2 2

)
( )

−
+ − −p k

is approximately distributed as F with p(k − 1) and ms − p(k − 1) / 2 + 1 degrees of freedom. Here 
Wilks’ Λ = .08967, p = 2, k = 3, and N = 12. Thus, we have m = 12 − 1 − (2 + 3) / 2 = 8.5 and

s = − − + − = ={ ( ) } / { ( ) } / ,4 3 1 4 4 2 5 12 3 22 2

and

F =
−

⋅
( ) − ( ) +

−( ) =
−

⋅ =
1 08967

08967

8 5 2 2 2 2 1

2 3 1
1 29945

29945
16
4

.

.

. / .
.

99 357.

as given on the printout, within rounding. The pair of degrees of freedom is p(k − 1) = 2(3 − 1) = 4 and 
ms − p(k − 1) / 2 + 1 = 8.5(2) − 2(3 − 1) / 2 + 1 = 16.

 Table 5.2: Multivariate F s and Univariate F s for Sample Problem From SPSS MANOVA

Multivariate Tests

Effect Value F Hypothesis df Error df Sig.

gps Pillai’s Trace 1.302 8.390 4.000 18.000 .001
Wilks’ Lambda .090 9.358 4.000 16.000 .000
Hotelling’s Trace 5.786 10.126 4.000 14.000 .000
Roy’s Largest Root 4.894 22.024 2.000 9.000 .000

Tests of Between-Subjects Effects

Source Dependent Variable Type III Sum of Squares df Mean Square F Sig.

gps y1 (1) 61.867 2 30.933 18.811 .001
y2 19.050 2 9.525 9.318 .006

Error y1 (2) 14.800 9 1.644
y2 9.200 9 1.022

(1) These are the diagonal elements of the B (between) matrix we computed in the example:

B =






61 87 24 40
24 40 19 05

. .

. .

(2) Recall that the pooled within matrix computed in the example was

W =






14 8 1 6
1 6 9 2
. .
. .

(Continued )
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 and these are the diagonal elements of W. The univariate F ratios are formed from the elements on the 
main diagonals of B and W. Dividing the elements of B by hypothesis degrees of freedom gives the 
hypothesis mean squares, while dividing the elements of W by error degrees of freedom gives the error 
mean squares. Then, dividing hypothesis mean squares by error mean squares yields the F ratios. Thus, for 
Y1 we have

F = =
30 933

1 644
18 8

.

.
. .1

5.5 POST HOC PROCEDURES

In general, when the multivariate null hypothesis is rejected, several follow-up proce-
dures can be used. By far, the most commonly used method in practice is to conduct 
a series of one-way ANOVAs for each outcome to identify whether group differences 
are present for a given dependent variable. This analysis implies that you are interested 
in identifying if there are group differences present for each of the correlated but dis-
tinct outcomes. The purpose of using the Wilks’ Λ prior to conducting these univariate 
tests is to provide for accurate type I error control. Note that if one were interested in 
learning whether linear combinations of dependent variables (instead of individual 
dependent variables) distinguish groups, discriminant analysis (see Chapter 10) would 
be used instead of these procedures.

In addition, another procedure that may be used following rejection of the overall mul-
tivariate null hypothesis is step down analysis. This analysis requires that you establish 
an a priori ordering of the dependent variables (from most important to least) based 
on theory, empirical evidence, and/or reasoning. In many investigations, this may be 
difficult to do, and study results depend on this ordering. As such, it is difficult to find 
applications of this procedure in the literature. Previous editions of this text contained 
a chapter on step down analysis. However, given its limited utility, this chapter has 
been removed from the text, although it is available on the web.

Another analysis procedure that may be used when the focus is on individual dependent 
variables (and not linear combinations) is multivariate multilevel modeling (MVMM). 
This technique is covered in Chapter 14, which includes a discussion of the benefits 
of this procedure. Most relevant for the follow-up procedures are that MVMM can 
be used to test whether group differences are the same or differ across multiple out-
comes, when the outcomes are similarly scaled. Thus, instead of finding, as with the 
use of more traditional procedures, that an intervention impacts, for example, three 
outcomes, investigators may find that the effects of an intervention are stronger for 
some outcomes than others. In addition, this procedure offers improved treatment of 
missing data over the traditional approach discussed here.

The focus for the remainder of this section and the next is on the use of a series of 
ANOVAs as follow-up tests given a significant overall multivariate test result. There 

 Table 5.2: (Continued)
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are different variations of this procedure that can be used, depending on the balance 
of the type I error rate and power desired, as well as confidence interval accuracy. We 
present two such procedures here. SAS and SPSS commands for the follow-up proce-
dures are shown in section 5.6 as we work through an applied example. Note also that 
one may not wish to conduct pairwise comparisons as we do here, but instead focus 
on a more limited number of meaningful comparisons as suggested by theory and/or 
empirical work. Such planned comparisons are discussed in sections 5.7–5.11.

5.5.1  Procedure 1—ANOVAS and Tukey Comparisons  
With Alpha Adjustment

With this procedure, a significant multivariate test result is followed up with one-way 
ANOVAs for each outcome with a Bonferroni-adjusted alpha used for the univari-
ate tests. So if there are p outcomes, the alpha used for each ANOVA is the experi-
ment-wise nominal alpha divided by p, or a / p. You can implement this procedure by 
simply comparing the p value obtained for the ANOVA F test to this adjusted alpha 
level. For example, if the experiment-wise type I error rate were set at .05 and if 5 
dependent variables were included, the alpha used for each one-way ANOVA would be 
.05 / 5 = .01. And, if the p value for an ANOVA F test were smaller than .01, this indi-
cates that group differences are present for that dependent variable. If group differences 
are found for a given dependent variable and the design includes three or more groups, 
then pairwise comparisons can be made for that variable using the Tukey procedure, as 
described in the next section, with this same alpha level (e.g., .01 for the five dependent 
variable example). This generally recommended procedure then provides strict con-
trol of the experiment-wise type I error rate for all possible pairwise comparisons and 
also provides good confidence interval coverage. That is, with this procedure, we can 
be 95% confident that all intervals capture the true difference in means for the set of 
pairwise comparisons. While this procedure has good type I error control and confi-
dence interval coverage, its potential weakness is statistical power, which may drop to 
low levels, particularly for the pairwise comparisons, especially when the number of 
dependent variables increases. One possibility, then, is to select a higher level than .05 
(e.g., .10) for the experiment-wise error rate. In this case, with five dependent variables, 
the alpha level used for each of the ANOVAs is .10 / 5 or .02, with this same alpha level 
also used for the pairwise comparisons. Also, when the number of dependent variables 
and groups is small (i.e., two or perhaps three), procedure 2 can be considered.

5.5.2  Procedure 2—ANOVAS With No Alpha Adjustment  
and Tukey Comparisons

With this procedure, a significant overall multivariate test result is followed up with 
separate ANOVAs for each outcome with no alpha adjustment (e.g., a = .05). Again, 
if group differences are present for a given dependent variable, the Tukey procedure 
is used for pairwise comparisons using this same alpha level (i.e., .05). As such, this 
procedure relies more heavily on the use of Wilks’ Λ as a protected test. That is, the 
one-way ANOVAs will be considered only if Wilks’ Λ indicates that group differences 
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are present on the set of outcomes. Given no alpha adjustment, this procedure is more 
powerful than the previous procedure but can provide for poor control of the experi-
ment-wise type I error rate when the number of outcomes is greater than two or three 
and/or when the number of groups increase (thus increasing the number of pairwise 
comparisons). As such, we would generally not recommend this procedure with more 
than three outcomes and more than three groups. Similarly, this procedure does not 
maintain proper confidence interval coverage for the entire set of pairwise compari-
sons. Thus, if you wish to have, for example, 95% coverage for this entire set of com-
parisons or strict control of the family-wise error rate throughout the testing procedure, 
the procedure in section 5.5.1 should be used.

You may wonder why this procedure may work well when the number of outcomes 
and groups is small. In section 4.2, we mentioned that use of univariate ANOVAs 
with no alpha adjustment for each of several dependent variables is not a good idea 
because the experiment-wise type I error rate can increase to unacceptable levels. 
The same applies here, except that the use of Wilks’ Λ provides us with some pro-
tection that is not present when we proceed directly to univariate ANOVAs. To illus-
trate, when the study design has just two dependent variables and two groups, the use 
of Wilks’ Λ provides for strict control of the experiment-wise type I error rate even 
when no alpha adjustment is used for the univariate ANOVAs, as noted by Levin, 
Serlin, and Seaman (1994). Here is how this works. Given two outcomes, there are 
three possibilities that may be present for the univariate ANOVAs. One possibility 
is that there are no group differences for any of the two dependent variables. If that 
is the case, use of Wilks’ Λ at an alpha of .05 provides for strict type I error control. 
That is, if we reject the multivariate null hypothesis when no group differences are 
present, we have made a type I error, and the expected rate of doing this is .05. So, 
for this case, use of the Wilks’ Λ provides for proper control of the experiment-wise 
type I error rate.

We now consider a second possibility. That is, here, the overall multivariate null 
hypothesis is false and there is a group difference for just one of the outcomes. In this 
case, we cannot make a type I error with the use of Wilks’ Λ since the multivariate null 
hypothesis is false. However, we can certainly make a type I error when we consider 
the univariate tests. In this case, with only one true null hypothesis, we can make a 
type I error for only one of the univariate F tests. Thus, if we use an unadjusted alpha 
for these tests (i.e., .05), then the probability of making a type I error in the set of uni-
variate tests (i.e., the two separate ANOVAs) is .05. Again, the experiment-wise type 
I error rate is properly controlled for the univariate ANOVAs. The third possibility is 
that there are group differences present on each outcome. In this case, it is not possi-
ble to make a type I error for the multivariate test or the univariate F tests. Of course, 
even in this latter case, when you have more than two groups, making type I errors 
is possible for the pairwise comparisons, where some null group differences may be 
present. The use of the Tukey procedure, then, provides some type I error protection 
for the pairwise tests, but as noted, this protection generally weakens as the number of 
groups increases.
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Thus, similar to our discussion in Chapter 4, we recommend use of this procedure for 
analysis involving up to three dependent variables and three groups. Note that with 
three dependent variables, the maximum type I error rate for the ANOVA F tests is 
expected to be .10. In addition, this situation, three or fewer outcomes and groups, 
may be encountered more frequently than you may at first think. It may come about 
because, in the most obvious case, your research design includes three variables with 
three groups. However, it is also possible that you collected data for eight outcome 
variables from participants in each of three groups. Suppose, though, as discussed in 
Chapter 4, that there is fairly solid evidence from the literature that group mean differ-
ences are expected for two or perhaps three of the variables, while the others are being 
tested on a heuristic basis. In this case, a separate multivariate test could be used for the 
variables that are expected to show a difference. If the multivariate test is significant, 
procedure 2, with no alpha adjustment for the univariate F tests, can be used. For the 
more exploratory set of variables, then, a separate significant multivariate test would 
be followed up by use of procedure 1, which uses the Bonferroni-adjusted F tests.

The point we are making here is that you may not wish to treat all dependent variables 
the same in the analysis. Substantive knowledge and previous empirical research sug-
gesting group mean differences can and should be taken into account in the analysis. 
This may help you strike a reasonable balance between type I error control and power. 
As Keppel and Wickens (2004) state, the “heedless choice of the most stringent error 
correction can exact unacceptable costs in power” (p. 264). They advise that you need 
to be flexible when selecting a strategy to control type I error so that power is not 
sacrificed.

5.6 THE TUKEY PROCEDURE

As used in the procedures just mentioned, the Tukey procedure enables us to examine 
all pairwise group differences on a variable with experiment-wise error rate held in 
check. The studentized range statistic (which we denote by q) is used in the procedure, 
and the critical values for it are in Table A.4 of the statistical tables in Appendix A. 
If there are k groups and the total sample size is N, then any two means are declared 
significantly different at the .05 level if the following inequality holds:

yi y j q MSW
nk N k− > −, , ,05

where MSw is the error term for a one-way ANOVA, and n is the common group size. 
Alternatively, one could compute a standard t test for a pairwise difference but com-
pare that t ratio to a Tukey-based critical value of q / ,2  which allows for direct com-
parison to the t test. Equivalently, and somewhat more informatively, we can infer 
that population means for groups i and j (μi and μj) differ if the following confidence 
interval does not include 0:

y y qi j k N k
MSW

n
− ± −; ,05
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that is,

y y q y y qi j k N k i j k N k
MSW

n i j
MSW

n
− − − +− −< − <; , ; ,05 05µ µ

If the confidence interval includes 0, we conclude that the population means are not 
significantly different. Why? Because if the interval includes 0 that suggests 0 is a 
likely value for the true difference in means, which is to say it is reasonable to act as 
if ui = uj.

The Tukey procedure assumes that the variances are homogenous and it also assumes 
equal group sizes. If group sizes are unequal, even very sharply unequal, then various 
studies (e.g., Dunnett, 1980; Keselman, Murray, & Rogan, 1976) indicate that the pro-
cedure is still appropriate provided that n is replaced by the harmonic mean for each 
pair of groups and provided that the variances are homogenous. Thus, for groups i and 
j with sample sizes ni and nj, we replace n by

2
1 1
n ni j

+

The studies cited earlier showed that under the conditions given, the type I error rate 
for the Tukey procedure is kept very close to the nominal alpha, and always less than 
nominal alpha (within .01 for alpha = .05 from the Dunnett study). Later we show how 
the Tukey procedure may be obtained via SAS and SPSS and also show a hand calcu-
lation for one of the confidence intervals.

Example 5.1 Using SAS and SPSS for Post Hoc Procedures
The selection and use of a post hoc procedure is illustrated with data collected by 
Novince (1977). She was interested in improving the social skills of college females 
and reducing their anxiety in heterosexual encounters. There were three groups in 
the study: control group, behavioral rehearsal, and a behavioral rehearsal + cognitive 
restructuring group. We consider the analysis on the following set of dependent vari-
ables: (1) anxiety—physiological anxiety in a series of heterosexual encounters, (2) a 
measure of social skills in social interactions, and (3) assertiveness.

Given the outcomes are considered to be conceptually distinct (i.e., not measures of 
an single underlying construct), use of MANOVA is a reasonable choice. Because we 
do not have strong support to expect group mean differences and wish to have strict 
control of the family-wise error rate, we use procedure 1. Thus, for the separate ANO-
VAs, we will use a / p or .05 / 3 = .0167 to test for group differences for each outcome. 
This corresponds to a confidence level of 1 − .0167 or 98.33. Use of this confidence 
level along with the Tukey procedure means that there is a 95% probability that all of 
the confidence intervals in the set will capture the respective true difference in means.

Table 5.3 shows the raw data and the SAS and SPSS commands needed to obtain the 
results of interest. Tables 5.4 and 5.5 show the results for the multivariate test (i.e., 
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 Table 5.4: SAS Output for Procedure 1

SAS RESULTS

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall gpid Effect
H = Type III SSCP Matrix for gpid

E = Error SSCP Matrix
S=2 M=0 N=13

Statistic Value F Value Num DF Den DF Pr> F

Wilks’ Lambda 0.41825036 5.10 6 56 0.0003
Pillai’s Trace 0.62208904 4.36 6 58 0.0011
Hotelling-Lawley 
Trace

1.29446446 5.94 6 35.61 0.0002

Roy’s Greatest Root 1.21508924 11.75 3 29 <.0001

Note: F Statistic for Roy’s Greatest Root is an upper bound.
Note: F Statistic for Wilks’ Lambda is exact.

Dependent Variable: anx

Source DF Sum of Squares Mean Square F Value Pr> F

Model  2 12.06060606 6.03030303 15.31 <.0001
Error 30 11.81818182 0.39393939
Corrected Total 32 23.87878788

Dependent Variable: socskls

Source DF Sum of Squares Mean Square F Value Pr> F

Model  2 23.09090909 11.54545455 14.77 <.0001
Error 30 23.45454545  0.78181818
Corrected Total 32 46.54545455

Dependent Variable: assert 

Source DF Sum of Squares Mean Square F Value Pr> F

Model  2 14.96969697 7.48484848 11.65 0.0002
Error 30 19.27272727 0.64242424
Corrected Total 32 34.24242424

Wilks’ Λ) and the follow-up ANOVAs for SAS and SPSS, respectively, but do not 
show the results for the pairwise comparisons (although the results are produced by 
the commands). To ease reading, we present results for the pairwise comparisons in 
Table 5.6.

The outputs in Tables 5.4 and 5.5 indicate that the overall multivariate null hypothesis 
of no group differences on all outcomes is to be rejected (Wilks’ Λ = .418, F = 5.10, 



 Table 5.5: SPSS Output for Procedure 1

SPSS RESULTS1

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.

Gpid Pillai’s Trace .622 4.364 6.000 58.000 .001
Wilks’ Lambda .418 5.098b 6.000 56.000 .000
Hotelling’s Trace 1.294 5.825 6.000 54.000 .000
Roy’s Largest Root 1.215 11.746c 3.000 29.000 .000

a Design: Intercept + gpid
b Exact statistic
c The statistic is an upper bound on F that yields a lower bound on the significance level.

Tests of Between-Subjects Effects

Source Dependent Variable
Type III Sum  
of Squares Df Mean Square F Sig.

Gpid Anx 12.061 2 6.030 15.308 .000
Socskls 23.091 2 11.545 14.767 .000
Assert 14.970 2 7.485 11.651 .000

Error Anx 11.818 30 .394
Socskls 23.455 30 .782
Assert 19.273 30 .642

1 Non-essential rows were removed from the SPSS tables.

 Table 5.6: Pairwise Comparisons for Each Outcome Using the Tukey Procedure

Contrast Estimate SE
98.33% confidence interval  
for the mean difference

Anxiety

Rehearsal vs. Cognitive 0.18 0.27 −.61, .97
Rehearsal vs. Control −1.18* 0.27 −1.97, −.39
Cognitive vs. Control −1.36* 0.27 −2.15, −.58

Social Skills

Rehearsal vs. Cognitive 0.09 0.38 −1.20, 1.02
Rehearsal vs. Control 1.82* 0.38  .71, 2.93
Cognitive vs. Control 1.73* 0.38  .62, 2.84

Assertiveness

Rehearsal vs. Cognitive − .27 0.34 −1.28, .73
Rehearsal vs. Control 1.27* 0.34  .27, 2.28
Cognitive vs. Control 1.55* 0.34  .54, 2.55

* Significant at the .0167 level using the Tukey HSD procedure.
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p < .05). Further, inspection of the ANOVAs indicates that there are mean differences 
for anxiety (F = 15.31, p < .0167), social skills (F = 14.77, p < .0167), and asser-
tiveness (F = 11.65, p < .0167). Table 5.6 indicates that at posttest each of the treat-
ment groups had, on average, reduced anxiety compared to the control group (as the 
respective intervals do not include zero). Further, each of the treatment groups had 
greater mean social skills and assertiveness scores than the control group. The results 
in Table 5.6 do not suggest mean differences are present for the two treatment groups 
for any dependent variable (as each such interval includes zero). Note that in addition 
to using confidence intervals to merely indicate the presence or absence of a mean dif-
ference in the population, we can also use them to describe the size of the difference, 
which we do in the next section.

Example 5.2 Illustrating Hand Calculation of the Tukey-Based Confidence 
Interval

To illustrate numerically the Tukey procedure as well as an assessment of the impor-
tance of a group difference, we obtain a confidence interval for the anxiety (ANX) 
variable for the data shown in Table 5.3. In particular, we compute an interval with the 
Tukey procedure using the 1 − .05 / 3 level or a 98.33% confidence interval for groups 
1 (Behavioral Rehearsal) and 2 (Control). With this 98.33% confidence level, this 
procedure provides us with 95% confidence that all the intervals in the set will include 
the respective population mean difference. The sample mean difference, as shown in 
Table 5.6, is −1.18. Recall that the common group size in this study is n = 11. The 
MSW, the mean square error, as shown in the outputs in Tables 5.4 and 5.5, is .394 for 
ANX. While Table A.4 provides critical values for this procedure, it does not do so 
for the 98.33rd (1 − .0167) percentile. Here, we simply indicate that the critical value 
for the studentized range statistic at q , , . .0167 3 30 4 16=  Thus, the confidence interval is 
given by

− − < − < − +

− < − < −

1 18 4 16 394
11 1 2 1 18 4 16 394

11
1 97 1 2 39

. . . . . .

. . .

µ µ

µ µ

Because this interval does not include 0, we conclude, as before, that the rehearsal 
group population mean for anxiety is different from (i.e., lower than) the control pop-
ulation mean. Why is the confidence interval approach more informative, as indicated 
earlier, than simply testing whether the means are different? Because the confidence 
interval not only tells us whether the means differ, but it also gives us a range of values 
within which the mean difference is likely contained. This tells us the precision with 
which we have captured the mean difference and can be used in judging the practi-
cal importance of the difference. For example, given this interval, it is reasonable to 
believe that the mean difference for the two groups in the population lies in the range 
from −1.97 to −.39. If an investigator had decided on some grounds that a difference 
of at least 1 point indicated a meaningful difference between groups, the investigator, 
while concluding that group means differ in the population (i.e., the interval does not 



193ChAPteR 5       

include zero), would not be confident that an important difference is present (because 
the entire interval does not exceed a magnitude of 1).

5.7 PLANNED COMPARISONS

One approach to the analysis of data is to first demonstrate overall significance, and 
then follow this up to assess the subsources of variation (i.e., which dependent variables 
have group differences). Two procedures using ANOVAs and pairwise comparisons 
have been presented. That approach is appropriate in exploratory studies where the 
investigator first has to establish that an effect exists. However, in many instances, there 
is more of an empirical or theoretical base and the investigator is conducting a confirm-
atory study. Here the existence of an effect can be taken for granted, and the investigator 
has specific questions he or she wishes to ask of the data. Thus, rather than examining 
all 10 pairwise comparisons for a five-group problem, there may be only three or four 
comparisons (that may or may not be paired comparisons) of interest. It is important 
to use planned comparisons when the situation justifies them, because performing a 
small number of statistical tests cuts down on the probability of spurious results (type 
I errors), which can occur much more readily when a large number of tests are done.

Hays (1981) showed in univariate ANOVA that more powerful tests can be conducted 
when comparisons are planned. This would carry over to MANOVA. This is a very 
important factor weighing in favor of planned comparisons. Many studies in educa-
tional research have only 10 to 20 participants per group. With these sample sizes, 
power is generally going to be poor unless the treatment effect is large (Cohen, 1988). If 
we plan a small or moderate number of contrasts that we wish to test, then power can be 
improved considerably, whereas control on overall α can be maintained through the use 
of the Bonferroni Inequality. Recall this inequality states that if k hypotheses, k planned 
comparisons here, are tested separately with type I error rates of α1, α2, . . ., αk, then

overall α ≤ α1 + α2 + ··· + αk,

where overall α is the probability of one or more type I errors when all the hypotheses 
are true. Therefore, if three planned comparisons were tested each at α = .01, then the 
probability of one or more spurious results can be no greater than .03 for the set of 
three tests.

Let us now consider two situations where planned comparisons would be appropriate:

1. Suppose an investigator wishes to determine whether each of two drugs produces 
a differential effect on three measures of task performance over a placebo. Then, if 
we denote the placebo as group 2, the following set of planned comparisons would 
answer the investigator’s questions:

ψ1 = µ1 − µ2 and ψ2 = µ2 − µ3
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2. Second, consider the following four-group schematic design:

Groups

Control T1 & T2 combined T1 T2

µ1 µ2 µ3 µ4

Note: T1 and T2 represent two treatments.

As outlined, this could represent the format for a variety of studies (e.g., if T1 and T2 
were two methods of teaching reading, or if T1 and T2 were two counseling approaches). 
Then the three most relevant questions the investigator wishes to answer are given by 
the following planned and so-called Helmert contrasts:

1. Do the treatments as a set make a difference?

ψ1 1
2 2 4

3
= −

+ +
µ

µ µ µ

2. Is the combination of treatments more effective than either treatment alone?

ψ2 2
3 4

2
= −

+
µ

µ µ

3. Is one treatment more effective than the other treatment?

ψ3 3 4= −µ µ

Assuming equal n per group, these two situations represent dependent versus inde-
pendent planned comparisons. Two comparisons among means are independent if the 
sum of the products of the coefficients is 0. We represent the contrasts for Situation 1 
as follows:

Groups

1 2 3

Ψ1 1 −1 0
Ψ2 0 1 −1

These contrasts are dependent because the sum of products of the coefficients ≠ 0 as 
shown:

Sum of products = 1(0) + (−1)(1) + 0(−1) = −1
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Now consider the contrasts from Situation 2:

Groups

1 2 3 4

Ψ1 1 − 1
3

− 1
3

− 1
3

Ψ2 0 1 −
1
2

−
1
2

Ψ3 0 0 1 −1

Next we show that these contrasts are pairwise independent by demonstrating that the 
sum of the products of the coefficients in each case = 0:

ψ ψ1 2 1 0 1
3

1 1
3

1
2

1
3

1
2

and : ( ) + −



 ( ) + −





−





+ −





−





=

( ) + −



 ( ) + −



 ( ) + −





−

0

1 3 1 0 1
3

0 1
3

1 1
3

1ψ ψand : ( ) =

( ) + ( )( ) + −



 ( ) + −





−( ) =

0

2 3 0 0 1 0 1
2

1 1
2

1 0ψ ψand :

Now consider two general contrasts for k groups:

Ψ1 = c11μ1 + c12μ2+ ··· + c1kμk
Ψ2 = c21μ1 + c22μ2 + ··· +c2kμk

The first part of the c subscript refers to the contrast number and the second part to the 
group. The condition for independence in symbols then is:

c c c c c c c ck k
j

k

j j11 21 12 22 1 2
1

1 2 0+ + + = =
=

∑

If the sample sizes are not equal, then the condition for independence is more compli-
cated and becomes:

c c
n

c c
n

c c
n
k k

k

11 21

1

12 22

2

1 2 0+ + + =

It is desirable, both statistically and substantively, to have orthogonal multivariate 
planned comparisons. Because the comparisons are uncorrelated, we obtain a nice addi-
tive partitioning of the total between-group association (Stevens, 1972). You may recall 
that in univariate ANOVA the between sum of squares is split into additive portions by a 
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set of orthogonal planned comparisons (see Hays, 1981, chap. 14). Exactly the same type 
of thing is accomplished in the multivariate case; however, now the between matrix is 
split into additive portions that yield nonoverlapping pieces of information. Because the 
orthogonal comparisons are uncorrelated, the interpretation is clear and straightforward.

Although it is desirable to have orthogonal comparisons, the set to impose depends 
on the questions that are of primary interest to the investigator. The first example we 
gave of planned comparisons was not orthogonal, but corresponded to the important 
questions the investigator wanted answered. The interpretation of correlated contrasts 
requires some care, however, and we consider these in more detail later on in this chapter.

5.8 TEST STATISTICS FOR PLANNED COMPARISONS

5.8.1 Univariate Case

You may have been exposed to planned comparisons for a single dependent variable, 
the univariate case. For k groups, with population means µ1, µ2, . . ., µk, a contrast 
among the population means is given by

Ψ = c1µ1 + c2µ2 + ··· + ckµk ,

where the sum of the coefficients (ci) must equal 0.

This contrast is estimated by replacing the population means by the sample means, 
yielding

Ψ = + + +c c cx x xk k1 2 2

To test whether a given contrast is significantly different from 0, that is, to test

H0 : Ψ = 0 vs. H1 : Ψ ≠ 0,

we need an expression for the standard error of a contrast. It can be shown that the 
variance for a contrast is given by

σΨ




2

1

2

= ⋅
=
∑MS

c
nw

i

k

i

i , (1)

where MSw is the error term from all the groups (the denominator of the F test) and ni 
are the group sizes. Thus, the standard error of a contrast is simply the square root of 
Equation 1 and the following t statistic can be used to determine whether a contrast is 
significantly different from 0:

t

MS c
nw i

k i

i

=

⋅
=∑

Ψ

1

2
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SPSS MANOVA reports the univariate results for contrasts as F values. Recall that 
because F = t2, the following F test with 1 and N − k degrees of freedom is equivalent 
to a two-tailed t test at the same level of significance:

F
MS c

nw i

k i

i

=
⋅

=

Ψ

∑


2

1

2

If we rewrite this as

F

c
n

MS
i

k i

i

w
=

=
Ψ ∑

2

1

2

/
,
 (2)

we can think of the numerator of Equation 2 as the sum of squares for a contrast, and 
this will appear as the hypothesis sum of squares (HYPOTH. SS specifically) on the 
SPSS print-out. MSw will appear under the heading ERROR MS.

Let us consider a special case of Equation 2. Suppose the group sizes are equal and 
we are making a simple paired comparison. Then the coefficient for one mean will be 
1 and the coefficient for the other mean will be −1, and  Then the F statistic can be 
written as

F n
MS

n MS
w

w= = −Ψ Ψ Ψ


 

2
12

2
/ ( ) .  (3)

We have rewritten the test statistic in the form on the extreme right because we will 
be able to relate it more easily to the multivariate test statistic for a two-group planned 
comparison.

5.8.2 Multivariate Case

All contrasts, whether univariate or multivariate, can be thought of as fundamentally 
“two-group” comparisons. We are literally comparing two groups, or we are comparing 
one set of means versus another set of means. In the multivariate case this means that 
Hotelling’s T2 will be appropriate for testing the multivariate contrasts for significance.

We now have a contrast among the population mean vectors µ1, µ2, . . ., µk, given by

Ψ = c1µ1 + c2µ2 + ··· + ckµk .

This contrast is estimated by replacing the population mean vectors by the sample 
mean vectors:

Ψ = + + +c c ck k1 1 2 2x x x
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We wish to test that the contrast among the population mean vectors is the null vector:

H0 : Ψ = 0

Our estimate of error is S, the estimate of the assumed common within-group popula-
tion covariance matrix Σ, and the general test statistic is

T
c
ni

k
i

i

2

1

2 1
1=











=

−
−∑ Ψ ΨΨ ' ,S  (4)

where, as in the univariate case, the ni refer to the group sizes. Suppose we wish to con-
trast group 1 against the average of groups 2 and 3. If the group sizes are 20, 15, and 
12, then the term in parentheses would be evaluated as [12 / 20 + (−.5)2 / 15 + (−.5)2 / 
12]. Complete evaluation of a multivariate contrast is given later in Table 5.10. Note 
that the first part of Equation 4, involving the summation, is exactly the same as in the 
univariate case (see Equation 2). Now, however, there are matrices instead of scalars. 
For example, the univariate error term MSw has been replaced by the matrix S.

Again, as in the two-group MANOVA chapter, we have an exact F transformation of 
T 2, which is given by

F
n p

n p
T p n pe

e
e=

− +( )
− +( )1

12  with  and  degrees of freedom.
 (5)

In Equation 5, ne = N − k, that is, the degrees of freedom for estimating the pooled 
within covariance matrix. Note that for k = 2, Equation 5 reduces to Equation 3 in 
Chapter 4.

For equal n per group and a simple paired comparison, observe that Equation 4 can be 
written as

T n2 1

2
= −Ψ Ψ ' .S  (6)

Note the analogy with the univariate case in Equation 3, except that now we have 
matrices instead of scalars. The estimated contrast has been replaced by the estimated 
mean vector contrast (Ψ ) and the univariate error term (MSw) has been replaced by the 
corresponding multivariate error term S.

5.9 MULTIVARIATE PLANNED COMPARISONS ON SPSS MANOVA

SPSS MANOVA is set up very nicely for running multivariate planned comparisons. 
The following type of contrasts are automatically generated by the program: Helmert 
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(which we have discussed), Simple, Repeated (comparing adjacent levels of a factor), 
Deviation, and Polynomial. Thus, if we wish Helmert contrasts, it is not necessary to 
set up the coefficients, the program does this automatically. All we need do is give the 
following CONTRAST subcommand:

CONTRAST(FACTORNAME) = HELMERT/

We remind you that all subcommands are indented at least one column and begin with 
a keyword (in this case CONTRAST) followed by an equals sign, then the specifica-
tions, and are terminated by a slash.

An example of where Helmert contrasts are very meaningful has already been given. 
Simple contrasts involve comparing each group against the last group. A situation 
where this set of contrasts would make sense is if we were mainly interested in com-
paring each of several treatment groups against a control group (labeled as the last 
group). Repeated contrasts might be of considerable interest in a repeated measures 
design where a single group of subjects is measured at say five points in time (a longi-
tudinal study). We might be particularly interested in differences at adjacent points in 
time. For example, a group of elementary school children is measured on a standard-
ized achievement test in grades 1, 3, 5, 7, and 8. We wish to know the extent of change 
from grade 1 to grade 3, from grade 3 to grade 5, from grade 5 to grade 7, and from 
grade 7 to grade 8. The coefficients for the contrasts would be as follows:

Grade

1 3 5 7 8

1 −1  0  0  0
0  1 −1  0  0
0  0  1 −1  0
0  0  0  1 −1

Polynomial contrasts are useful in trend analysis, where we wish to determine whether 
there is a linear, quadratic, cubic, or other trend in the data. Again, these contrasts 
can be of great interest in repeated measures designs in growth curve analysis, where 
we wish to model the mathematical form of the growth. To reconsider the previous 
example, some investigators may be more interested in whether the growth in some 
basic skills areas such as reading and mathematics is linear (proportional) during the 
elementary years, or perhaps curvilinear. For example, maybe growth is linear for a 
while and then somewhat levels off, suggesting an overall curvilinear trend.

If none of these automatically generated contrasts answers the research questions of 
interest, then one can set up contrasts using SPECIAL as the code name. Special con-
trasts are “tailor-made” comparisons for the group comparisons suggested by your 
hypotheses. In setting these up, however, remember that for k groups there are only 
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(k − 1) between degrees of freedom, so that only (k − 1) nonredundant contrasts can be 
run. The coefficients for the contrasts are enclosed in parentheses after special:

CONTRAST(FACTORNAME) = SPECIAL(1, 1, . . ., 1  
coefficients for contrasts)/

There must first be as many 1s as there are groups. We give an example illustrating 
special contrasts shortly.

Example 5.3: Helmert Contrasts
An investigator has a three-group, two-dependent variable problem with five partici-
pants per group. The first is a control group, and the remaining two groups are treat-
ment groups. The Helmert contrasts test each level (group) against the average of 
the remaining levels. In this case the two single degree of freedom Helmert contrasts, 
corresponding to the two between degrees of freedom, are very meaningful. The first 
tests whether the control group differs from the average of the treatment groups on the 
set of variables. The second Helmert contrast tests whether the treatments are differ-
entially effective. In Table 5.7 we present the control lines along with the data as part 
of the command file, for running the contrasts. Recall that when the data is part of the 
command file it is preceded by the BEGIN DATA command and the data is followed 
by the END DATA command.

The means, standard deviations, and pooled within-covariance matrix S are presented 
in Table 5.8, where we also calculate S−1, which will serve as the error term for the mul-
tivariate contrasts (see Equation 4). Table 5.9 presents the output for the multivariate 

 Table 5.7 SPSS MANOVA Control Lines for Multivariate Helmert Contrasts

TITLE ‘HELMERT CONTRASTS’.
DATA LIST FREE/gps y1 y2.
BEGIN DATA.
1 5 6 1 6 7 1 6 7 1 4 5 1 5 4
2 2 2 2 3 3 2 4 4 2 3 2 2 2 1
3 4 3 3 6 7 3 3 3 3 5 5 3 5 5
END DATA.
LIST.
MANOVA y1 y2 BY gps(1,3)

/CONTRAST(gps) = HELMERT
(1) /PARTITION(gps)
(2) /DESIGN = gps(1), gps(2)

/PRINT = CELLINFO(MEANS, COV).

(1) In general, for k groups, the between degrees of freedom could be partitioned in various ways. If we wish 
all single degree of freedom contrasts, as here, then we could put PARTITION(gps) = (1, 1)/. Or, 
this can be abbreviated to PARTITION(gps)/.
(2) This DESIGN subcommand specifies the effects we are testing for significance, in this case the two 
single degree of freedom multivariate contrasts. The numbers in parentheses refer to the part of the partition. 
Thus, gps(1) refers to the first part of the partition (i.e., the first Helmert contrast) and gps(2) refers to 
the second part of the partition (i.e., the second Helmert contrast).
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 Table 5.8 Means, Standard Deviations, and Pooled Within Covariance Matrix for 
Helmert Contrast Example

Cell Means and Standard Deviations

Variable.. y1

FACTOR CODE Mean Std. Dev.

gps 1 5.200 .837
gps 2 2.800 .837
gps 3 4.600 1.140
For entire sample 4.200 1.373

Variable.. y2

FACTOR CODE Mean Std. Dev.

gps 1 5.800 1.304
gps 2 2.400 1.140
gps 3 4.600 1.673
For entire sample 4.267 1.944

Pooled within-cells Variance-Covariance matrix

Y1 Y2

y1 .900
y2 1.150 1.933
Determinant of pooled Covariance matrix of dependent vars. = .41750
To compute the multivariate test statistic for the contrasts we need the inverse of the above 
 covariance matrix S, as shown in Equation 4.
The procedure for finding the inverse of a matrix was given in section 2.5. We obtain the matrix of 
cofactors and then divide by the determinant. Thus, here we have

S− =
−

−
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and univariate Helmert contrasts comparing the treatment groups against the control 
group. The multivariate contrast is significant at the .05 level (F = 4.303, p < .042), 
indicating that something is better than nothing. Note also that the Fs for all the mul-
tivariate tests are the same, since this is a single degree of freedom comparison and 
thus effectively a two-group comparison. The univariate results show that there are 
group differences on each of the two variables (i.e., p =.014 and .011). We also show 
in Table 5.9 how the hypothesis sum of squares is obtained for the first univariate 
Helmert contrast (i.e., for y1).

In Table 5.10 we present the multivariate and univariate Helmert contrasts com-
paring the two treatment groups. As the annotation indicates, both the multivariate 
and univariate contrasts are significant at the .05 level. Thus, the treatment groups 
differ on the set of variables, and the groups differ on each dependent variable. 
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 Table 5.9 Multivariate and Univariate Tests for Helmert Contrast Comparing the 
Control Group Against the Two Treatment Groups

EFFECT.. gps (1)

Multivariate Tests of Significance (S = 1, M = 0, N = 4 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .43897 4.30339 2.00 11.00    .042
Hotellings .78244 4.30339 2.00 11.00  .042
Wilks .56103 4.30339 2.00 11.00    .042
Roys .43897
Note.. F statistics are exact.

EFFECT.. gps (1) (Cont.)

Univariate F-tests with (1, 12) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

y1  7.50000 10.80000  7.50000  .90000 8.33333 .014
y2 17.63333 23.20000 17.63333 1.93333 9.12069 .011

The univariate contrast for y1 is given by ψ1 = μ1 − (μ2 + μ3)/2.
Using the means of Table 5.8, we obtain the following estimate for the contrast:

Ψ1  = 5.2 − (2.8 + 4.6)/2 = 1.5.

Recall from Equation 2 that the hypothesis sum of squares is given by ψ2
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The error term for the contrast, MSw, appears under ERROR MS and is .900. Thus, the F ratio for y1 is 
7.5/.90 = 8.333. Notice that both variables are significant at the .05 level.

 This indicates that the multivariate contrast ψ1 = μ1 − (μ2 + μ3)/2 is significant at the .05 level (because .042 < .05). 
That is, the control group differs significantly from the average of the two treatment groups on the set of two variables.

In Table 5.10 we also show in detail how the F value for the multivariate Helmert 
contrast is arrived at.

Example 5.4: Special Contrasts
We indicated earlier that researchers can set up their own contrasts on MANOVA. We 
now illustrate this for a four-group, five-dependent variable example. There are two 
control groups, one of which is a Hawthorne control, and two treatment groups. Three 
very meaningful contrasts are indicated schematically:

T1 (control) T2 (Hawthorne) T3 T4

ψ1 −.5 −.5  .5  .5
ψ2   0   1 −.5 −.5
ψ3   0   0   1 −1
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 Table 5.10 Multivariate and Univariate Tests for Helmert Contrast for the Two 
Treatment Groups

EFFECT.. gps(2)

Multivariate Tests of Significance (S = 1, M = 0, N = 4 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .43003 4.14970 2.00 11.00 .045
Hotellings .75449 4.14970 (1) 2.00 11.00 .045
Wilks .56997 4.14970 2.00 11.00 .045
Roys .43003
Note.. F statistics are exact.

Recall from Table 5.8 that the inverse of pooled within covariance matrix is

S− =
−

−
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Since that is a simple contrast with equal n, we can use Equation 6:
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= 9 0535.
 

To obtain the value of HOTELLING given on printout above we simply divide by error df, i.e., 
9.0535/12 = .75446.
To obtain the F we use Equation 5:

F =
− +( )

=
− +( )

( ) ( ) =
n p

n p
Te

e

1 12 2 1

12 2
9 0535 4 14952 . . ,

With degrees of freedom p = 2 and (ne − p + 1) = 11 as given above.

EFFECT.. GPS (2) (Cont.)

Univariate F-tests with (1, 12) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

y1 8.10000 10.80000 8.10000 .90000 9.00000 .011
y2 12.10000 23.20000 12.10000 (2) 1.93333 6.25862 .028

(1) This multivariate test indicates that treatment groups differ significantly at the .05 level (because 
.045 < .05) on the set of two variables.
(2) These results indicate that both univariate contrasts are significant at .05 level, i.e., the treatment groups 
differ on each variable.

The control lines for running these contrasts on SPSS MANOVA are presented in 
Table 5.11. (In this case we have just put in some data schematically and have used col-
umn input, simply to illustrate it.) As indicated earlier, note that the first four numbers 
in the CONTRAST subcommand are 1s, corresponding to the number of groups. The 
next four numbers define the first contrast, where we are comparing the control groups 
against the treatment groups. The following four numbers define the second contrast, 
and the last four numbers define the third contrast.
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 Table 5.11 SPSS MANOVA Control Lines for Special Multivariate Contrasts

TITLE ‘SPECIAL MULTIVARIATE CONTRASTS’.
DATA LIST FREE/gps 1 y1 3–4 y2 6–7(1) y3 9–11(2)

y4 13–15 y5 17–18.
BEGIN DATA.
1 28 13 476 215 74
. . . . . . 
4 24 31 668 355 56
END DATA.
LIST.
MANOVA y1 TO y5 BY gps(1, 4)

/CONTRAST(gps) = SPECIAL (1 1 1 1 −.5 −.5 .5 .5
0 1 −.5 −.5 0 0 1 −1)
/PARTITION(gps)
/DESIGN = gps(1), gps(2), gps(3)
/PRINT = CELLINFO(MEAN, COV, COR).

5.10 CORRELATED CONTRASTS

The Helmert contrasts we considered in Example 5.3 are, for equal n, uncorrelated. 
This is important in terms of clarity of interpretation because significance on one 
Helmert contrast implies nothing about significance on a different Helmert contrast. 
For correlated contrasts this is not true. To determine the unique contribution a given 
contrast is making we need to partial out its correlations with the other contrasts. We 
illustrate how this is done on MANOVA.

Correlated contrasts can arise in two ways: (1) the sum of products of the coefficients ≠ 
0 for the contrasts, and (2) the sum of products of coefficients = 0, but the group sizes 
are not equal.

Example 5.5: Correlated Contrasts
We consider an example with four groups and two dependent variables. The contrasts 
are indicated schematically here, with the group sizes in parentheses:

T1 & T2 (12) combined Hawthorne (14) control T1 (11) T2 (8)

ψ1 0 1 −1  0
ψ2 0 1 −.5 −.5
ψ3 1 0  0 −1

Notice that ψ1 and ψ2 as well as ψ2 and ψ3 are correlated because the sum of products of 
coefficients in each case ≠ 0. However, ψ1 and ψ3 are also correlated since group sizes 
are unequal. The data for this problem are given next.
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GP1 GP2 GP3 GP4

y1 y2 y1 y2 y1 y2 y1 y2

18 5 18 9 17 5 13 3
13 6 20 5 22 7 9 3
20 4 17 10 22 5 9 3
22 8 24 4 13 9 15 5
21 9 19 4 13 5 13 4
19 0 18 4 11 5 12 4
12 6 15 7 12 6 13 5
10 5 16 7 23 3 12 3
15 4 16 5 17 7
15 5 14 3 18 7
14 0 18 2 13 3
12 6 14 4

19 6
23 2

1. We used the default method (UNIQUE SUM OF SQUARES, as of Release 2.1). 
This gives the unique contribution of the contrast to between-group variation; that 
is, each contrast is adjusted for its correlations with the other contrasts.

2. We used the SEQUENTIAL sum of squares option. This is obtained by putting the 
following subcommand right after the MANOVA statement:

METHOD = SEQUENTIAL/

With this option each contrast is adjusted only for all contrasts to the left of it in the 
DESIGN subcommand. Thus, if our DESIGN subcommand is

DESIGN = gps(1), gps(2), gps(3)/

then the last contrast, denoted by gps(3), is adjusted for all other contrasts, and the 
value of the multivariate test statistics for gps(3) will be the same as we obtained for 
the default method (unique sum of squares). However, the value of the test statistics for 
gps(2) and gps(1) will differ from those obtained using unique sum of squares, since 
gps(2) is only adjusted for gps(1) and gps(1) is not adjusted for either of the other two 
contrasts.

The multivariate test statistics for the contrasts using the unique decomposition are 
presented in Table 5.12, whereas the statistics for the hierarchical decomposition 
are given in Table 5.13. As explained earlier, the results for ψ3 are identical for both 
approaches, and indicate significance at the .05 level (F = 3.499, p < .04). That is, 
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the combination of treatments differs from T2 alone. The results for the other two 
contrasts, however, are quite different for the two approaches. The unique breakdown 
indicates that ψ2 is significant at .05 (treatments differ from Hawthorne control) and ψ1 
is not significant (T1 is not different from Hawthorne control). The results in Table 5.12 
for the hierarchical approach yield a different conclusion for ψ2. Obviously, the con-
clusions one draws in this study would depend on which approach was used to test the 
contrasts for significance. We express a preference in general for the unique approach.   

It should be noted that the unique contribution of each contrast can be 
obtained using the hierarchical approach; however, in this case three DESIGN 

 Table 5.12 Multivariate Tests for Unique Contribution of Each Correlated Contrast to 
Between Variation*

EFFECT.. gps (3) 

Multivariate Tests of Significance (S = 1, M = 0, N = 19)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .14891 3.49930 2.00 40.00 .040
Hotellings .17496 3.49930 2.00 40.00 .040
Wilks .85109 3.49930 2.00 40.00 .040
Roys .14891
Note.. F statistics are exact.

EFFECT.. gps (2)

Multivariate Tests of Significance (S = 1, M = 0, N = 19)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .18228 4.45832 2.00 40.00 .018
Hotellings .22292 4.45832 2.00 40.00 .018
Wilks .81772 4.45832 2.00 40.00 .018
Roys .18228
Note.. F statistics are exact.

EFFECT.. gps (1)

Multivariate Tests of Significance (S = 1, M = 0, N = 19)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .03233 .66813 2.00 40.00 .518
Hotellings .03341 .66813 2.00 40.00 .518
Wilks .96767 .66813 2.00 40.00 .518
Roys .03233
Note.. F statistics are exact.

* Each contrast is adjusted for its correlations with the other contrasts.
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 Table 5.13 Multivariate Tests of Correlated Contrasts for Hierarchical Option of 
SPSS MANOVA

EFFECT.. gps (3) 

Multivariate Tests of Significance (S = 1, M = 0, N = 19)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .14891 3.49930 2.00 40.00 .040
Hotellings .17496 3.49930 2.00 40.00 .040
Wilks .85109 3.49930 2.00 40.00 .040
Roys .14891
Note.. F statistics are exact.

EFFECT.. gps (2)

Multivariate Tests of Significance (S = 1, M = 0, N = 19)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .10542 2.35677 2.00 40.00 .108
Hotellings .11784 2.35677 2.00 40.00 .108
Wilks .89458 2.35677 2.00 40.00 .108
Roys .10542
Note.. F statistics are exact.

EFFECT.. gps (1)

Multivariate Tests of Significance (S = 1, M = 0, N = 19)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .13641 3.15905 2.00 40.00 .053
Hotellings .15795 3.15905 2.00 40.00 .053
Wilks .86359 3.15905 2.00 40.00 .053
Roys .13641
Note.. F statistics are exact.

Note: Each contrast is adjusted only for all contrasts to left of it in the DESIGN subcommand.

subcommands would be required, with each of the contrasts ordered last in one of 
the subcommands:

DESIGN = gps(1), gps(2), gps(3)/
DESIGN = gps(2), gps(3), gps(1)/
DESIGN = gps(3), gps(1), gps(2)/

All three orderings can be done in a single run.
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5.11  STUDIES USING MULTIVARIATE PLANNED  
COMPARISONS

Clifford (1972) was interested in the effect of competition as a motivational technique 
in the classroom. The participants were fifth graders, with the group about evenly 
divided between girls and boys. A 2-week vocabulary learning task was given under 
three conditions:

1. Control—a noncompetitive atmosphere in which no score comparisons among 
classmates were made.

2. Reward Treatment—comparisons among relatively homogeneous partic-
ipants were made and accentuated by the rewarding of candy to high-scoring 
participants.

3. Game Treatment—again, comparisons were made among relatively homogeneous 
participants and accentuated in a follow-up game activity. Here high-scoring par-
ticipants received an advantage in a game that was played immediately after the 
vocabulary task was scored.

The three dependent variables were performance, interest, and retention. The retention 
measure was given 2 weeks after the completion of treatments. Clifford had the fol-
lowing two planned comparisons:

1. Competition is more effective than noncompetition. Thus, she was testing the fol-
lowing contrast for significance:

Ψ
µ µ

µ1
2 3

12
=

−
−

2. Game competition is as effective as reward with respect to performance on the 
dependent variables. Thus, she was predicting the following contrast would not be 
significant:

Ψ2 = µ2 − µ3

Clifford’s results are presented in Table 5.14. As predicted, competition was more 
effective than noncompetition for the set of three dependent variables. Estimation of 
the univariate results in Table 5.14 shows that the groups differed only on the interest 
variable. Clifford’s second prediction was also confirmed, that there was no difference 
in the relative effectiveness of reward versus game treatments (F = .84, p < .47).

A second study involving multivariate planned comparisons was conducted by Stevens 
(1972). He was interested in studying the relationship between parents’ educational 
level and eight personality characteristics of their National Merit Scholar children. Part 
of the analysis involved the following set of orthogonal comparisons (75 participants 
per group):
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1. Group 1 (parents’ education eighth grade or less) versus group 2 (parents’ both 
high school graduates).

2. Groups 1 and 2 (no college) versus groups 3 and 4 (college for both parents).
3. Group 3 (both parents attended college) versus group 4 (both parents at least one 

college degree).

This set of comparisons corresponds to a very meaningful set of questions: Are differences in 
children’s personality characteristics related to differences in parental degree of education?

Another set of orthogonal contrasts that could have been of interest in this study looks 
like this schematically:

 Table 5.14 Means and Multivariate and Univariate Results for Two Planned 
Comparisons in Clifford Study

df MS F P

1st planned comparison (control vs. reward and game)

Multivariate test 3/61 10.04 .0001
Univariate tests
Performance 1/63 .54 .64 .43
Interest 1/63 4.70 29.24 .0001
Retention 1/63 4.01 .18 .67

2nd planned comparison (reward vs. game)

Multivariate test 3/61 .84 .47
Univariate tests
Performance 1/63 .002 .003 .96
Interest 1/63 .37 2.32 .13
Retention 1/63 1.47 .07 .80

Means for the groups

Variable Control Reward Games

Performance  5.72  5.92  5.90
Interest  2.41  2.63  2.57
Retention 30.85 31.55 31.19

Groups

1 2 3 4

ψ1 1 −.33 −.33 −.33
ψ2 0 0 1 −1
ψ3 0 1 −.50 −.50

This would have resulted in a different meaningful, additive breakdown of the between asso-
ciation. However, one set of orthogonal contrasts does not have an empirical superiority over 
another (after all, they both additively partition the between association). In terms of choos-
ing one set over the other, it is a matter of which set best answers your research hypotheses.
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5.12 OTHER MULTIVARIATE TEST STATISTICS

In addition to Wilks’ Λ, three other multivariate test statistics are in use and are printed 
out on the packages:

1. Roy’s largest root (eigenvalue) of BW−1.
2. The Hotelling–Lawley trace, the sum of the eigenvalues of BW−1.
3. The Pillai–Bartlett trace, the sum of the eigenvalues of BT−1.

Notice that the Roy and Hotelling–Lawley multivariate statistics are natural generali-
zations of the univariate F statistic. In univariate ANOVA the test statistic is F = MSb / 
MSw, a measure of between- to within-group association. The multivariate analogue of 
this is BW−1, which is a “ratio” of between- to within-group association. With matrices 
there is no division, so we don’t literally divide the between by the within as in the 
univariate case; however, the matrix analogue of division is inversion.

Because Wilks’ Λ can be expressed as a product of eigenvalues of WT−1, we see that all 
four of the multivariate test statistics are some function of an eigenvalue(s) (sum, prod-
uct). Thus, eigenvalues are fundamental to the multivariate problem. We will show 
in Chapter 10 on discriminant analysis that there are quantities corresponding to the 
eigenvalues (the discriminant functions) that are linear combinations of the dependent 
variables and that characterize major differences among the groups.

You might well ask at this point, “Which of these four multivariate test statistics should 
be used in practice?” This is a somewhat complicated question that, for full under-
standing, requires a knowledge of discriminant analysis and of the robustness of the 
four statistics to the assumptions in MANOVA. Nevertheless, the following will pro-
vide guidelines for the researcher. In terms of robustness with respect to type I error for 
the homogeneity of covariance matrices assumption, Stevens (1979) found that any 
of the following three can be used: Pillai–Bartlett trace, Hotelling–Lawley trace, or 
Wilks’ Λ. For subgroup variance differences likely to be encountered in social science 
research, these three are equally quite robust, provided the group sizes are equal or 

approximately equal  largest
smallest

<





1 5. . In terms of power, no one of the four statistics 

is always most powerful; which depends on how the null hypothesis is false. Impor-
tantly, however, Olson (1973) found that power differences among the four multivari-
ate test statistics are generally quite small (< .06). So as a general rule, it won’t make 
that much of a difference which of the statistics is used. But, if the differences among 
the groups are concentrated on the first discriminant function, which does occur in 
practice, then Roy’s statistic technically would be preferred since it is most powerful. 
However, Roy’s statistic should be used in this case only if there is evidence to suggest 
that the homogeneity of covariance matrices assumption is tenable. Finally, when the 
differences among the groups involve two or more discriminant functions, the Pillai–
Bartlett trace is most powerful, although its power advantage tends to be slight.
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5.13 HOW MANY DEPENDENT VARIABLES FOR A MANOVA?

Of course, there is no simple answer to this question. However, the following consid-
erations mitigate generally against the use of a large number of criterion variables:

1. If a large number of dependent variables are included without any strong rationale 
(empirical or theoretical), then small or negligible differences on most of them 
may obscure a real difference(s) on a few of them. That is, the multivariate test 
detects mainly error in the system, that is, in the set of variables, and therefore 
declares no reliable overall difference.

2. The power of the multivariate tests generally declines as the number of dependent 
variables is increased (DasGupta and Perlman, 1974).

3. The reliability of variables can be a problem in behavioral science work. Thus, 
given a large number of criterion variables, it probably will be wise to combine 
(usually add) highly similar response measures, particularly when the basic meas-
urements tend individually to be quite unreliable (Pruzek, 1971). As Pruzek stated, 
one should always consider the possibility that his variables include errors of 
measurement that may attenuate F ratios and generally confound interpretations 
of experimental effects. Especially when there are several dependent variables 
whose reliabilities and mutual intercorrelations vary widely, inferences based on 
fallible data may be quite misleading (Pruzek, 1971, p. 187).

4. Based on his Monte Carlo results, Olson had some comments on the design of 
multivariate experiments that are worth remembering: For example, one generally 
will not do worse by making the dimensionality p smaller, insofar as it is under 
experimenter control. Variates should not be thoughtlessly included in an analysis 
just because the data are available. Besides aiding robustness, a small value of p is 
apt to facilitate interpretation (Olson, 1973, p. 906).

5. Given a large number of variables, one should always consider the possibility that 
there is a much smaller number of underlying constructs that will account for most 
of the variance on the original set of variables. Thus, the use of exploratory fac-
tor analysis as a preliminary data reduction scheme before the use of MANOVA 
should be contemplated.

5.14  POWER ANALYSIS—A PRIORI DETERMINATION OF 
SAMPLE SIZE

Several studies have dealt with power in MANOVA (e.g., Ito, 1962; Lauter, 1978; 
Olson, 1974; Pillai & Jayachandian, 1967). Olson examined power for small and 
moderate sample size, but expressed the noncentrality parameter (which measures the 
extent of deviation from the null hypothesis) in terms of eigenvalues. Also, there were 
many gaps in his tables: no power values for 4, 5, 7, 8, and 9 variables or 4 or 5 groups. 
The Lauter study is much more comprehensive, giving sample size tables for a very 
wide range of situations:

1. For α = .05 or .01.
2. For 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 50, and 100 variables.



212        K-GROUP MANOVA

3. For 2, 3, 4, 5, 6, 8, and 10 groups.
4. For power = .70, .80, .90, and .95.

His tables are specifically for the Hotelling–Lawley trace criterion, and this might 
seem to limit their utility. However, as Morrison (1967) noted for large sample size, 
and as Olson (1974) showed for small and moderate sample size, the power differences 
among the four main multivariate test statistics are generally quite small. Thus, the 
sample size requirements for Wilks’ Λ, the Pillai–Bartlett trace, and Roy’s largest root 
will be very similar to those for the Hotelling–Lawley trace for the vast majority of 
situations.

Lauter’s tables are set up in terms of a certain minimum deviation from the multivariate 
null hypothesis, which can be expressed in the following three forms:

1. There exists a variable i such that 
1

1
2

1

2

σ
µ µ

j j

j

ij i q
= =

∑ −( ) ≥ ,  where μi is the total 
mean and σ2 is variance.

2. There exists a variable i such that 1 1 2/ σ µ µi ij ij d− ≥  for two groups j1 and j2.
3. There exists a variable i such that for all pairs of groups 1 and m we have 

1 / .σ µ µi il il c− >

In Table A.5 of Appendix A of this text we present selected situations and power val-
ues that it is believed would be of most value to social science researchers: for 2, 3, 
4, 5, 6, 8, 10, and 15 variables, with 3, 4, 5, and 6 groups, and for power = .70, .80, 
and .90. We have also characterized the four different minimum deviation patterns 
as very large, large, moderate, and small effect sizes. Although the characterizations 
may be somewhat rough, they are reasonable in the following senses: They agree with 
Cohen’s definitions of large, medium, and small effect sizes for one variable (Lauter 
included the univariate case in his tables), and with Stevens’ (1980) definitions of 
large, medium, and small effect sizes for the two-group MANOVA case.

It is important to note that there could be several ways, other than that specified by 
Lauter, in which a large, moderate, or small multivariate effect size could occur. But 
the essential point is how many participants will be needed for a given effect size, 
regardless of the combination of differences on the variables that produced the specific 
effect size. Thus, the tables do have broad applicability. We consider shortly a few spe-
cific examples of the use of the tables, but first we present a compact table that should 
be of great interest to applied researchers:

Groups

3 4 5 6

Effect size Very large 12–16 14–18 15–19 16–21
Large 25–32 28–36 31–40 33–44
Medium 42–54 48–62 54–70 58–76
Small 92–120 105–140 120–155 130–170
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This table gives the range of sample sizes needed per group for adequate power (.70) 
at α = .05 when there are three to six variables.

Thus, if we expect a large effect size and have four groups, 28 participants per group 
are needed for power = .70 with three variables, whereas 36 participants per group are 
required if there were six dependent variables.

Now we consider two examples to illustrate the use of the Lauter sample size tables 
in the appendix.

Example 5.6
An investigator has a four-group MANOVA with five dependent variables. He wishes 
power = .80 at α = .05. From previous research and his knowledge of the nature of the 
treatments, he anticipates a moderate effect size. How many participants per group 
will he need? Reference to Table A.5 (for four groups) indicates that 70 participants 
per group are required.

Example 5.7
A team of researchers has a five-group, seven-dependent-variable MANOVA. They 
wish power = .70 at α = .05. From previous research they anticipate a large effect 
size. How many participants per group are needed? Interpolating in Table A.5 (for 
five groups) between six and eight variables, we see that 43 participants per group are 
needed, or a total of 215 participants.

5.15 SUMMARY

Cohen’s (1968) seminal article showed social science researchers that univariate ANOVA 
could be considered as a special case of regression, by dummy-coding group member-
ship. In this chapter we have pointed out that MANOVA can also be considered as a 
special case of regression analysis, except that for MANOVA it is multivariate regres-
sion because there are several dependent variables being predicted from the dummy 
variables. That is, separation of the mean vectors is equivalent to demonstrating that the 
dummy variables (predictors) significantly predict the scores on the dependent variables.

For exploratory research where the focus is on individual dependent variables (and 
not linear combinations of these variables), two post hoc procedures were given for 
examining group differences for the outcome variables. Each procedure followed up 
a significant multivariate test result with univariate ANOVAs for each outcome. If an 
F test were significant for a given outcome and more than two groups were present, 
pairwise comparisons were conducted using the Tukey procedure. The two proce-
dures differ in that one procedure used a Bonferroni-adjusted alpha for the univariate 
F tests and pairwise comparisons while the other did not. Of the two procedures, the 
more widely recommended procedure is to use the Bonferroni-adjusted alpha for the 
univariate ANOVAs and the Tukey procedure, as this procedure provides for greater 
control of the overall type I error rate and a more accurate set of confidence intervals 
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(in terms of coverage). The procedure that uses no such alpha adjustment should be 
considered only when the number of outcomes and groups is small (i.e., two or three).

For confirmatory research, planned comparisons were discussed. The setup of multi-
variate contrasts on SPSS MANOVA was illustrated. Although uncorrelated contrasts 
are desirable because of ease of interpretation and the nice additive partitioning they 
yield, it was noted that often the important questions an investigator has will yield 
correlated contrasts. The use of SPSS MANOVA to obtain the unique contribution of 
each correlated contrast was illustrated.

It was noted that the Roy and Hotelling–Lawley statistics are natural generalizations of 
the univariate F ratio. In terms of which of the four multivariate test statistics to use in 
practice, two criteria can be used: robustness and power. Wilks’ Λ, the Pillai–Bartlett 
trace, and Hotelling–Lawley statistics are equally robust (for equal or approximately 
equal group sizes) with respect to the homogeneity of covariance matrices assumption, 
and therefore any one of them can be used. The power differences among the four sta-
tistics are in general quite small (< .06), so that there is no strong basis for preferring 
any one of them over the others on power considerations.

The important problem, in terms of experimental planning, of a priori determination 
of sample size was considered for three-, four-, five-, and six-group MANOVA for the 
number of dependent variables ranging from 2 to 15.

5.16 EXERCISES

1. Consider the following data for a three-group, three-dependent-variable 
problem:

Group 1 Group 2 Group 3

y1 y2 y3 y1 y2 y3 y1 y2 y3

2.0 2.5 2.5 1.5 3.5 2.5 1.0 2.0 1.0
1.5 2.0 1.5 1.0 4.5 2.5 1.0 2.0 1.5
2.0 3.0 2.5 3.0 3.0 3.0 1.5 1.0 1.0
2.5 4.0 3.0 4.5 4.5 4.5 2.0 2.5 2.0
1.0 2.0 1.0 1.5 4.5 3.5 2.0 3.0 2.5
1.5 3.5 2.5 2.5 4.0 3.0 2.5 3.0 2.5
4.0 3.0 3.0 3.0 4.0 3.5 2.0 2.5 2.5
3.0 4.0 3.5 4.0 5.0 5.0 1.0 1.0 1.0
3.5 3.5 3.5 1.0 1.5 1.5
1.0 1.0 1.0 2.0 3.5 2.5
1.0 2.5 2.0
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 Use SAS or SPSS to run a one-way MANOVA. Use procedure 1 (with the 
adjusted Bonferroni F tests) to do the follow-up tests.

(a) What is the multivariate null hypothesis? Do you reject it at α = .05?

(b) If you reject in part (a), then for which outcomes are there group differenc-
es at the .05 level?

(c) For any ANOVAs that are significant, use the post hoc tests to describe 
group differences. Be sure to rank order group performance based on the 
statistical test results.

2. Consider the following data from Wilkinson (1975):

Group A Group B Group C

5 6 4 2 2 7 4 3 4
6 7 5 3 3 5 6 7 5
6 7 3 4 4 6 3 3 5
4 5 5 3 2 4 5 5 5
5 4 2 2 1 4 5 5 4

 Run a one-way MANOVA on SAS or SPSS. Do the various multivariate test 
statistics agree in a decision on H0?

3. this table shows analysis results for 12 separate ANOVAs. the researchers 
were examining differences among three groups for outpatient therapy, using 
symptoms reported on the Symptom Checklist 90–Revised.

SCL 90–R Group Main Effects

Group

Group 1 Group 2 Group 3

N = 48 N = 60 N = 57

Dimension x̄ x̄ x̄ F df Significance

Somatization 53.7 53.2 53.7  .03 2,141 ns
Obsessive- 

compulsive
48.7 53.9 52.2 2.75 2,141 ns

Interpersonal  
sensitivity

47.3 51.3 52.9 4.84 2,141 p < .01

Depression 47.5 53.5 53.9 5.44 2,141 p < .01
Anxiety 48.5 52.9 52.2 1.86 2,141 ns
Hostility 48.1 54.6 52.4 3.82 2,141 p < .03
Phobic anxiety 49.8 54.2 51.8 2.08 2,141 ns

(Continued )
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Dimension x̄ x̄ x̄ F df Significance

Paranoid ideation 51.4 54.7 54.0 1.38 2,141 ns
Psychoticism 52.4 54.6 54.2 .37 2,141 ns
Global Severity 

index positive 
symptom

49.7 54.4 54.0 2.55 2,141 ns

Distress index 49.3 55.8 53.2 3.39 2,141 p < .04
Positive symptom 

total
50.2 52.9 54.4 1.96 2,141 ns

(a) Could we be confident that these results would replicate? explain.

(b) In this study, the authors did not a priori hypothesize differences on the 
specific variables for which significance was found. Given that, what would 
have been a better method of analysis?

4. A researcher is testing the efficacy of four drugs in inhibiting undesirable 
responses in patients. Drugs A and B are similar in composition, whereas drugs 
C and D are distinctly different in composition from A and B, although similar in 
their basic ingredients. he takes 100 patients and randomly assigns them to five 
groups: Gp 1—control, Gp 2—drug A, Gp 3—drug B, Gp 4—drug C, and Gp 5—
drug D. the following would be four very relevant planned comparisons to test:

Control Drug A Drug B Drug C Drug D

1 1 −.25 −.25 −.25 −.25
Contrasts 2 0 1   1 −1 −1

3 0 1 −1   0   0
4 0 0  0   1 −1

(a) Show that these contrasts are orthogonal.

 Now, consider the following set of contrasts, which might also be of inter-
est in the preceding study:

Control Drug A Drug B Drug C Drug D

1 1 −.25 −.25 −.25 −.25
Contrasts 2 1 −.5 −.5   0   0

3 1    0   0 −.5 −.5
4 0    1   1 −1 −1

(b) Show that these contrasts are not orthogonal.

(c) Because neither of these two sets of contrasts is one of the standard sets 
that come out of SPSS MANOVA, it would be necessary to use the special 
contrast feature to test each set. Show the control lines for doing this for 
each set. Assume four criterion measures.
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5. Find an article in one of the better journals in your content area from within the 
last 5 years that used primarily MANOVA. Answer the following questions:

(a) how many statistical tests (univariate or multivariate or both) were done? 
Were the authors aware of this, and did they adjust in any way?

(b) Was power an issue in this study? explain.

(c) Did the authors address practical importance in ANY way? explain.
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Chapter 6

ASSUMPTIONS IN MANOVA

6.1 INTRODUCTION

You may recall that one of the assumptions in analysis of variance is normality; that 
is, the scores for the subjects in each group are normally distributed. Why should 
we be interested in studying assumptions in ANOVA and MANOVA? Because, in 
ANOVA and MANOVA, we set up a mathematical model based on these assumptions, 
and all mathematical models are approximations to reality. Therefore, violations of 
the assumptions are inevitable. The salient question becomes: How radically must a 
given assumption be violated before it has a serious effect on type I and type II error 
rates? Thus, we may set our α = .05 and think we are rejecting falsely 5% of the time, 
but if a given assumption is violated, we may be rejecting falsely 10%, or if another 
assumption is violated, we may be rejecting falsely 40% of the time. For these kinds 
of situations, we would certainly want to be able to detect such violations and take 
some corrective action, but all violations of assumptions are not serious, and hence it 
is crucial to know which assumptions to be particularly concerned about, and under 
what conditions.

In this chapter, we consider in detail what effect violating assumptions has on type 
I error and power. There has been plenty of research on violations of assumptions in 
ANOVA and a fair amount of research for MANOVA on which to base our conclu-
sions. First, we remind you of some basic terminology that is needed to discuss the 
results of simulation (i.e., Monte Carlo) studies, whether univariate or multivariate. 
The nominal α (level of significance) is the α level set by the experimenter, and is the 
proportion of time one is rejecting falsely when all assumptions are met. The actual 
α is the proportion of time one is rejecting falsely if one or more of the assumptions 
is violated. We say the F statistic is robust when the actual α is very close to the level 
of significance (nominal α). For example, the actual αs for some very skewed (non-
normal) populations may be only .055 or .06, very minor deviations from the level of 
significance of .05.
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6.2 ANOVA AND MANOVA ASSUMPTIONS

The three statistical assumptions for univariate ANOVA are:

1. The observations are independent. (violation very serious)
2. The observations are normally distributed on the dependent variable in each group.

(robust with respect to type I error)
(skewness has generally very little effect on power, while platykurtosis attenuates 

power)
3. The population variances for the groups are equal, often referred to as the homo-

geneity of variance assumption.
(conditionally robust—robust if group sizes are equal or approximately equal—

largest/smallest < 1.5)

The assumptions for MANOVA are as follows:

1. The observations are independent. (violation very serious)
2. The observations on the dependent variables follow a multivariate normal distri-

bution in each group.
(robust with respect to type I error)
(no studies on effect of skewness on power, but platykurtosis attenuates power)

3. The population covariance matrices for the p dependent variables are equal. (con-
ditionally robust—robust if the group sizes are equal or approximately equal—
largest/smallest < 1.5)

6.3 INDEPENDENCE ASSUMPTION

Note that independence of observations is an assumption for both ANOVA and 
MANOVA. We have listed this assumption first and are emphasizing it for three 
reasons:

1. A violation of this assumption is very serious.
2. Dependent observations do occur fairly often in social science research.
3. Some statistics books do not mention this assumption, and in some cases where 

they do, misleading statements are made (e.g., that dependent observations occur 
only infrequently, that random assignment of subjects to groups will eliminate the 
problem, or that this assumption is usually satisfied by using a random sample).

Now let us consider several situations in social science research where dependence 
among the observations will be present. Cooperative learning has become very popular 
since the early 1980s. In this method, students work in small groups, interacting with 
each other and helping each other learn the lesson. In fact, the evaluation of the success 
of the group is dependent on the individual success of its members. Many studies have 
compared cooperative learning versus individualistic learning. It was once common 
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that such data was not analyzed properly (Hykle, Stevens, & Markle, 1993). That is, 
analyses would be conducted using individual scores while not taking into account the 
dependence among the observations. With the increasing use of multilevel modeling, 
such analyses are likely not as common.

Teaching methods studies constitute another broad class of situations where depend-
ence of observations is undoubtedly present. For example, a few troublemakers in a 
classroom would have a detrimental effect on the achievement of many children in 
the classroom. Thus, their posttest achievement would be at least partially dependent 
on the disruptive classroom atmosphere. On the other hand, even with a favorable 
classroom atmosphere, dependence is introduced, because the achievement of many 
of the children will be enhanced by the positive learning situation. Therefore, in either 
case (positive or negative classroom atmosphere), the achievement of each child is not 
independent of the other children in the classroom.

Another situation in which observations would be dependent is a study comparing 
the achievement of students working in pairs at computers versus students working 
in groups of three. Here, if Bill and John, say, are working at the same computer, then 
obviously Bill’s achievement is partially influenced by John. If individual scores were 
to be used in the analysis, clustering effects, due to working at the same computer, 
need to be accounted for in the analysis.

Glass and Hopkins (1984) made the following statement concerning situations where 
independence may or may not be tenable: “Whenever the treatment is individually 
administered, observations are independent. But where treatments involve interaction 
among persons, such as discussion method or group counseling, the observations may 
influence each other” (p. 353).

6.3.1 Effect of Correlated Observations

We indicated earlier that a violation of the independence of observations assumption 
is very serious. We now elaborate on this assertion. Just a small amount of dependence 
among the observations causes the actual α to be several times greater than the level 
of significance. Dependence among the observations is measured by the intraclass 
correlation ICC, where:

ICC = MSb − MSw / [MSb + (n −1)MSw]

Mb and MSw are the numerator and denominator of the F statistic and n is the number 
of participants in each group.

Table 6.1, from Scariano and Davenport (1987), shows precisely how dramatic an 
effect dependence has on type I error. For example, for the three-group case with 10 
participants per group and moderate dependence (ICC = .30), the actual α is .54. Also, 
for three groups with 30 participants per group and small dependence (ICC = .10), the 
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 Table 6.1: Actual Type I Error Rates for Correlated Observations in a One-Way ANOVA

Intraclass correlation

Number of 
groups

Group  
size .00 .01 .10 .30 .50 .70 .90 .95 .99

2 3 .0500 .0522 .0740 .1402 .2374 .3819 .6275 .7339 .8800
10 .0500 .0606 .1654 .3729 .5344 .6752 .8282 .8809 .9475
30 .0500 .0848 .3402 .5928 .7205 .8131 .9036 .9335 .9708

100 .0500 .1658 .5716 .7662 .8446 .8976 .9477 .9640 .9842
3 3 .0500 .0529 .0837 .1866 .3430 .5585 .8367 .9163 .9829

10 .0500 .0641 .2227 .5379 .7397 .8718 .9639 .9826 .9966
30 .0500 .0985 .4917 .7999 .9049 .9573 .9886 .9946 .9990

100 .0500 .2236 .7791 .9333 .9705 .9872 .9966 .9984 .9997
5 3 .0500 .0540 .0997 .2684 .5149 .7808 .9704 .9923 .9997

10 .0500 .0692 .3151 .7446 .9175 .9798 .9984 .9996 1.0000
30 .0500 .1192 .6908 .9506 .9888 .9977 .9998 1.0000 1.0000

100 .0500 .3147 .9397 .9945 .9989 .9998 1.0000 1.0000 1.0000
10 3 .0500 .0560 .1323 .4396 .7837 .9664 .9997 1.0000 1.0000

10 .0500 .0783 .4945 .9439 .9957 .9998 1.0000 1.0000 1.0000
30 .0500 .1594 .9119 .9986 1.0000 1.0000 1.0000 1.0000 1.0000

100 .0500 .4892 .9978 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

actual α is .49, almost 10 times the level of significance. Notice, also, from the table, 
that for a fixed value of the intraclass correlation, the situation does not improve with 
larger sample size, but gets far worse.

6.4  WHAT SHOULD BE DONE WITH CORRELATED 
OBSERVATIONS?

Given the results in Table 6.1 for a positive intraclass correlation, one route investiga-
tors could take if they suspect that the nature of their study will lead to correlated obser-
vations is to test at a more stringent level of significance. For the three- and five-group 
cases in Table 6.1, with 10 observations per group and intraclass correlation = .10, the 
error rates are five to six times greater than the assumed level of significance of .05. 
Thus, for this type of situation, it would be wise to test at α = .01, realizing that the 
actual error rate will be about .05 or somewhat greater. For the three- and five-group 
cases in Table 6.1 with 30 observations per group and intraclass correlation = .10, the 
error rates are about 10 times greater than .05. Here, it would be advisable to either test 
at .01, realizing that the actual α will be about .10, or test at an even more stringent α 
level.

If several small groups (counseling, social interaction, etc.) are involved in each treat-
ment, and there are clear reasons to suspect that observations will be correlated within 
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the groups but uncorrelated across groups, then consider using the group mean as the 
unit of analysis. Of course, this will reduce the effective sample size considerably; 
however, this will not cause as drastic a drop in power as some have feared. The reason 
is that the means are much more stable than individual observations and, hence, the 
within-group variability will be far less.

Table 6.2, from Barcikowski (1981), shows that if the effect size is medium or large, 
then the number of groups needed per treatment for power .80 doesn’t have to be that 
large. For example, at α = .10, intraclass correlation = .10, and medium effect size, 10 
groups (of 10 subjects each) are needed per treatment. For power .70 (which we con-
sider adequate) at α = .15, one probably could get by with about six groups of 10 per 
treatment. This is a rough estimate, because it involves double extrapolation.

A third and much more commonly used method of analysis is one that directly adjusts 
parameter estimates for the degree of clustering. Multilevel modeling is a proce-
dure that accommodates various forms of clustering. Chapter 13 covers fundamental 
concepts and applications, while Chapter 14 covers multivariate extensions of this 
procedure.

 Table 6.2: Number of Groups per Treatment Necessary for Power > .80 in a Two- 
Treatment-Level Design

Intraclass correlation for effect sizea

.10 .20

α Level
Number  
of groups .20 .50 .80 .20 .50 .80

10 73 13 6 107 18 8
15 62 11 5 97 17 8
20 56 10 5 92 16 7

.05 25 53 10 5 89 16 7
30 51 9 5 87 15 7
35 49 9 5 86 15 7
40 48 9 5 85 15 7
10 57 10 5 83 14 7
15 48 9 4 76 13 6
20 44 8 4 72 13 6

.10 25 41 8 4 69 12 6
30 39 7 4 68 12 6
35 38 7 4 67 12 5
40 37 7 4 66 12 5

a .20 = small effect size; .50 = medium effect size; .80 = large effect size.
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Before we leave the topic of correlated observations, we wish to mention an interesting 
paper by Kenny and Judd (1986), who discussed how nonindependent observations 
can arise because of several factors, grouping being one of them. The following quote 
from their paper is important to keep in mind for applied researchers:

Throughout this article we have treated nonindependence as a statistical nuisance, 
to be avoided because of the bias it introduces. . . . There are, however, many 
occasions when nonindependence is the substantive problem that we are trying to 
understand in psychological research. For instance, in developmental psychology, 
a frequently asked question concerns the development of social interaction. Devel-
opmental researchers study the content and rate of vocalization from infants for 
cues about the onset of interaction. Social interaction implies nonindependence 
between the vocalizations of interacting individuals. To study interaction develop-
mentally, then, we should be interested in nonindependence not solely as a statisti-
cal problem, but also a substantive focus in itself. . . . In social psychology, one of 
the fundamental questions concerns how individual behavior is modified by group 
contexts. (p. 431)

6.5 NORMALITY ASSUMPTION

Recall that the second assumption for ANOVA is that the observations are normally 
distributed in each group. What are the consequences of violating this assumption? An 
excellent early review regarding violations of assumptions in ANOVA was done by 
Glass, Peckham, and Sanders (1972). This review concluded that the ANOVA F test is 
largely robust to normality violations. In particular, they found that skewness has only 
a slight effect (generally only a few hundredths) on the alpha level or power associated 
with the F test. The effects of kurtosis on level of significance, although greater, also 
tend to be slight.

You may be puzzled as to how this can be. The basic reason is the Central Limit 
Theorem, which states that the sum of independent observations having any distri-
bution whatsoever approaches a normal distribution as the number of observations 
increases. To be somewhat more specific, Bock (1975) noted, “even for distributions 
which depart markedly from normality, sums of 50 or more observations approximate 
to normality. For moderately nonnormal distributions the approximation is good with 
as few as 10 to 20 observations” (p. 111). Because the sums of independent observa-
tions approach normality rapidly, so do the means, and the sampling distribution of F 
is based on means. Thus, the sampling distribution of F is only slightly affected, and 
therefore the critical values when sampling from normal and nonnormal distributions 
will not differ by much.

With respect to power, a platykurtic distribution (a flattened distribution with thinner 
tails relative to the normal distribution indicated by a negative kurtosis value) does 
attenuate power. Note also that more recently, Wilcox (2012) pointed that the ANOVA 
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F test is not robust to certain violations of normality, which if present may inflate 
the type I error rate to unacceptable levels. However, it appears that data have to be 
very nonnormal for problems to arise, and these arise primarily when group sizes are 
unequal. For example, in a meta analysis reported by Lix, Keselman, and Keselman 
(1996), when skew = 2 and kurtosis = 6, the type I error rate for the ANOVA F test 
remains close to its nominal value of .05 (mean alpha reported under nonnormality as 
.059 with a standard deviation of .026). For unequal group size with the same degree 
of nonnormality, type I error rates can be somewhat inflated (mean alpha = .069 with 
a standard deviation of .048). Thus, while the ANOVA F test appears to be largely 
robust under normality violations, it is important to assess normality and take some 
corrective steps when gross departures are found especially when group sizes are 
unequal.

6.6 MULTIVARIATE NORMALITY

The multivariate normality assumption is a much more stringent assumption than the 
corresponding assumption of normality on a single variable in ANOVA. Although it 
is difficult to completely characterize multivariate normality, normality on each of the 
variables separately is a necessary, but not sufficient, condition for multivariate nor-
mality to hold. That is, each of the individual variables must be normally distributed 
for the variables to follow a multivariate normal distribution. Two other properties 
of a multivariate normal distribution are: (1) any linear combination of the variables 
are normally distributed, and (2) all subsets of the set of variables have multivariate 
normal distributions. This latter property implies, among other things, that all pairs 
of variables must be bivariate normal. Bivariate normality, for correlated variables, 
implies that the scatterplots for each pair of variables will be elliptical; the higher the 
correlation, the thinner the ellipse. Thus, as a partial check on multivariate normality, 
one could obtain the scatterplots for pairs of variables from SPSS or SAS and see if 
they are approximately elliptical.

6.6.1  Effect of Nonmultivariate Normality  
on Type I Error and Power

Results from various studies that considered up to 10 variables and small or moderate 
sample sizes (Everitt, 1979; Hopkins & Clay, 1963; Mardia, 1971; Olson, 1973) indi-
cate that deviation from multivariate normality has only a small effect on type I error. 
In almost all cases in these studies, the actual α was within .02 of the level of signifi-
cance for levels of .05 and .10.

Olson found, however, that platykurtosis does have an effect on power, and the sever-
ity of the effect increases as platykurtosis spreads from one to all groups. For example, 
in one specific instance, power was close to 1 under no violation. With kurtosis present 
in just one group, the power dropped to about .90. When kurtosis was present in all 
three groups, the power dropped substantially, to .55.
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You should note that what has been found in MANOVA is consistent with what was 
found in univariate ANOVA, in which the F statistic is often robust with respect to type 
I error against nonnormality, making it plausible that this robustness might extend to the 
multivariate case; this, indeed, is what has been found. Incidentally, there is a multivar-
iate extension of the Central Limit Theorem, which also makes the multivariate results 
not entirely surprising. Second, Olson’s result, that platykurtosis has a substantial effect 
on power, should not be surprising, given that platykurtosis had been shown in univari-
ate ANOVA to have a substantial effect on power for small n’s (Glass et al., 1972).

With respect to skewness, again the Glass et al. (1972) review suggesting that distor-
tions of power values are rarely greater than a few hundredths for univariate ANOVA, 
even with considerably skewed distributions. Thus, it could well be the case that mul-
tivariate skewness also has a negligible effect on power, although we have not located 
any studies bearing on this issue.

6.7 ASSESSING THE NORMALITY ASSUMPTION

If a set of variables follows a multivariate normal distribution, each of the variables 
must be normally distributed. Therefore, it is often recommended that before other 
procedures are used, you check to see if the scores for each variable appear to approx-
imate a normal distribution. If univariate normality does not appear to hold, we know 
then that the multivariate normality assumption is violated. There are two other rea-
sons it makes sense to assess univariate normality:

1. As Gnanadesikan (1977) has stated, “in practice, except for rare or pathological 
examples, the presence of joint (multivariate) normality is likely to be detected 
quite often by methods directed at studying the marginal (univariate) normality 
of the observations on each variable” (p. 168). Johnson and Wichern (2007) made 
essentially the same point: “Moreover, for most practical work, one-dimensional 
and two-dimensional investigations are ordinarily sufficient. Fortunately, patho-
logical data sets that are normal in lower dimensional representations but nonnor-
mal in higher dimensions are not frequently encountered in practice” (p. 177).

2. Because the Box test for the homogeneity of covariance matrices assumption is 
quite sensitive to nonnormality, we wish to detect nonnormality on the individual 
variables and transform to normality to bring the joint distribution much closer to 
multivariate normality so that the Box test is not unduly affected. With respect to 
transformations, Figure 6.1 should be quite helpful.

6.7.1 Assessing Univariate Normality

There are several ways to assess univariate normality. First, for each group, you can 
examine values of skewness and kurtosis for your data. Briefly, skewness refers to lack 
of symmetry in a score distribution, whereas kurtosis refers to how peaked a distribu-
tion is and the degree to which the tails of the distribution are light or heavy relative 
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 Figure 6.1: Distributional transformations (from Rummel, 1970).
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to the normal distribution. The formulas for these indicators as used by SAS and SPSS 
are such that if scores are normally distributed, skewness and kurtosis will each have 
a value of zero.

There are two ways that skewness and kurtosis measures are used to evaluate the nor-
mality assumption. A simple rule is to compare each group’s skewness and kurtosis 
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values to a magnitude of 2 (although values of 1 or 3 are sometimes used). Then, if 
the values of skewness and kurtosis are each smaller in magnitude than 2, you would 
conclude that the distribution does not depart greatly from a normal distribution, or is 
reasonably consistent with the normal distribution. The second way these measures 
are sometimes used is to consider a score distribution to be approximately normal if 
the sample values of skewness and kurtosis each lie within ±2 standard errors of the 
respective measure. So, for example, suppose that the standard error for skewness 
(as obtained by SAS or SPSS) were .75 and the standard error for kurtosis were .60. 
Then, the scores would be considered to reasonably approximate a normal distribu-
tion if the sample skewness value were within the span of −1.5 to 1.5 (±2 × .75) and 
the sample kurtosis value were within the span of −1.2 to 1.2 (±2 × .60). Note that 
this latter procedure approximates a z test for skewness and kurtosis assuming an 
alpha of .05. Like any statistical test, then, this procedure will be sensitive to sample 
size, providing generally lower power for smaller n and greater power for larger n.

A second method of assessing univariate normality is to examine plots for each group. 
Commonly used plots include a histogram, stem and leaf plot, box plot, and Q-Q plot. 
The latter plot shows observations arranged in increasing order of magnitude and then 
plotted against the expected normal distribution values. This plot should resemble a 
straight line if normality is tenable. These plots are available on SAS and SPSS. Note 
that with a small or moderate group size, it may be difficult to discern whether non-
normality is real or apparent, because of considerable sampling error. As such, the 
skewness and kurtosis values may be examined, as mentioned, and statistical tests of 
normality may conducted, which we consider next.

A third method of assessing univariate normality it to use omnibus statistical tests 
for normality. These tests includes the chi-square goodness of fit, Kolmogorov–
Smirnov, Shapiro–Wilk, and the z test approximations for skewness and kurtosis 
discussed earlier. The chi-square test suffers from the defect of depending on the 
number of intervals used for the grouping, whereas the Kolmogorov–Smirnov test 
was shown not to be as powerful as the Shapiro–Wilk test or the combination of 
using the skewness and kurtosis coefficients in an extensive Monte Carlo study by 
Wilk, Shapiro, and Chen (1968). These investigators studied 44 different distribu-
tions, with sample sizes ranging from 10 to 50, and found that the combination of 
skewness and kurtosis coefficients and the Shapiro–Wilk test were the most power-
ful in detecting departures from normality. They also found that extreme nonnormal-
ity can be detected with sample sizes of less than 20 by using sensitive procedures 
(like the two just mentioned). This is important, because for many practical prob-
lems, group sizes are small. Note though that with large group sizes, these tests may 
be quite powerful. As such it is a good idea to use test results along with examining 
plots and the skewness and kurtosis descriptive statistics to get a sense of the degree 
of departure from normality.

For univariate tests, we prefer the Shapiro–Wilk statistic due to its superior perfor-
mance for small samples. Note that the null hypothesis for this test is that the variable 
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being tested is normally distributed. Thus, a small p value (i.e., < .05) indicates a 
violation of the normality assumption. This test statistic is easily obtained with the 
EXAMINE procedure in SPSS. This procedure also yields the skewness and kurtosis 
coefficients, along with their standard errors, and various plots. All of this information 
is useful in determining whether there is a significant departure from normality, and 
whether skewness or kurtosis is primarily responsible.

6.7.2 Assessing Multivariate Normality

Several methods can be used to assess the multivariate normality assumption. First, as 
noted, checking to see if univariate normality is tenable provides a check on the mul-
tivariate normality assumption because if univariate normality is not present, neither 
is multivariate normality. Note though that multivariate normality may not hold even 
if univariate normality does. As noted earlier, assessing univariate normality is often 
sufficient in practice to detect serious violations of the multivariate normality assump-
tion, especially when combined with checking for bivariate normality. The latter can 
be done by examining all possible bivariate scatter plots (although this becomes less 
practical when many variables and many groups are present). Thus, for this edition 
of the text (as in the previous edition), we will continue to focus on the use of these 
methods to assess normality. We will, though, describe some multivariate methods for 
assessing the multivariate normality assumption as these methods are beginning to 
become available in general purpose software programs, such as SAS and SPSS.

Two different multivariate methods are available to assess whether the multivariate nor-
mality assumption is tenable. First, many different multivariate test statistics have been 
developed to assess multivariate normality, including, for example, Mardia’s (1970) test 
of multivariate skewness and kurtosis, Small’s (1980) omnibus test of multivariate nor-
mality, and the Henze–Zirkler (1990) test of multivariate normality. While there appears 
to be limited evaluation of the performance of these multivariate tests, Looney (1995) 
reports some simulation evidence suggesting that Small’s test has better performance 
than some other tests, and Mecklin and Mundfrom (2003) found that the Henze–Zirkler 
test is the best performing test of multivariate normality of the methods they examined.

As of this edition of the text, SPSS does not include any tests of multivariate normality 
in its procedures. However, Decarlo (1997) has developed a macro that can be used 
with SPSS (which is freely available at http://www.columbia.edu/~ld208/). This macro 
implements a variety of tests for multivariate normality, including Small’s omnibus 
test mentioned previously. SAS now includes multivariate normality tests in the PROC 
MODEL procedure via the fit option, which includes the Henze–Zirkler test (as well as 
other normality tests).

The second multivariate procedure that is available to assess multivariate normality is 
a graphical assessment procedure. This graph compares the squared Mahalanobis dis-
tances associated with the dependent variables to the values expected if multivariate 
normality holds (analogous to the univariate Q-Q plot). Often, the expected values are 

http://www.columbia.edu/~ld208/
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obtained from a chi-square distribution. Note though that Rencher and Christensen 
(2012) state that the chi-square approximation often used in this plot can be poor and do 
not recommend it for assessing multivariate normality. They discuss an alternative plot 
in their text.

6.7.3 Assessing Univariate Normality Using SPSS

We now show how you can use some of these procedures to assess normality. Our 
example comes from a study on the cost of transporting milk from farms to dairy plants.

Example 6.1
From a survey, cost data on Y1 = fuel, Y2 = repair, and Y3 = capital (all measures on 
a per mile basis) were obtained for two types of trucks, gasoline and diesel. Thus, we 
have a two-group MANOVA, with three dependent variables. First, we ran this data 
through the SPSS DESCRIPTIVES program. The complete lines for doing so are pre-
sented in Table 6.3. This was done to obtain the z scores for the variables within each 
group. Converting to z scores makes it much easier to identify potential outliers. Any 
variables with z values substantially greater than 2.5 or so (in absolute value) need to 
be examined carefully. When we examined the z scores, we found three observations 
with z scores greater than 2.5, all of which occurred for Y1. These scores were found 
for case 9, z = 3.52, case 21, z = 2.91 (both in group 1), and case 52, z = 2.77 (in group 
2). These cases, then, would need to be carefully examined to make sure data entry is 
accurate and to make sure these score are valid.

Next, we used the SPSS EXAMINE procedure with these data to obtain, among other 
things, the Shapiro–Wilk test for normality for each variable in each group and the 
group skewness and kurtosis values. The commands for doing this appear in Table 6.4.

The test results for the three variables in each group are shown next. If we were test-
ing for normality in each case at the .05 level, then only variable Y1 deviates from 
normality in just group 1, as the p value for the Shapiro–Wilk statistic is smaller 

 Table 6.3: Control Lines for SPSS Descriptives for Three Variables in Two-Group MANOVA

TITLE ‘SPLIT FILE FOR MILK DATA’.

DATA LIST FREE/gp y1 y2 y3.

BEGIN DATA.

DATA LINES (raw data are on-line)

END DATA.

SPLIT FILE BY gp.

DESCRIPTIVES VARIABLES=y1 y2 y3

/SAVE

/STATISTICS=MEAN STDDEV MIN MAX.



231ChApter 6       

 Table 6.4: SPSS Commands for the EXAMINE Procedure for the Two-Group MANOVA

TITLE ‘TWO GROUP MANOVA — 3 DEPENDENT VARIABLES’.
DATA LIST FREE/gp y1 y2 y3.

BEGIN DATA.
DATA LINES (data are on-line)

END DATA.

(1) EXAMINE VARIABLES = y1 y2 y3 BY gp

(2) /PLOT = STEMLEAF NPPLOT.

(1)  The BY keyword will yield variety of descriptive statistics for each group: mean, median, skewness, 
kurtosis, etc.

(2)  STEMLEAF will yield a stem-and-leaf plot for each variable in each group. NPPLOT yields normal 
probability plots, as well as the Shapiro–Wilk and Kolmogorov–Smirnov statistical tests for normality for 
each variable in each group.

than .05. In addition, while all other skewness and kurtosis values are smaller then 
2, the skewness and kurtosis values for Y1 in group 1 are 1.87 and 4.88. Thus, both 
the statistical test result and the kurtosis value indicate a violation of normality for 
Y1 in group 1. Note that given the positive value for kurtosis, we would not expect 
this departure from normality to have much of an effect on power, and hence we 
would not be very concerned. We would have been concerned if we had found 
deviation from normality on two or more variables, and this deviation was due 
to platykurtosis (indicated by a negative kurtosis value). In this case, we would 
have applied the last transformation in Figure 6.1: [.05 log (1 + X)] / (1 − X). Note 
also that the outliers found for group 1 greatly affect the assessment of normality. 
If these values were judged not to be valid and removed from the analysis, the 
resulting assessment of normality would have concluded no normality violations. 
This highlights the value of attending to outliers prior to engaging in other analysis 
activities.

Tests of normality

Gp

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

y1 1.00 .157 36 .026 .837 36 .000
2.00 .091 23 .200* .962 23 .512

y2 1.00 .125 36 .171 .963 36 .262
2.00 .118 23 .200* .962 23 .500

y3 1.00 .073 36 .200* .971 36 .453
2.00 .111 23 .200* .969 23 .658

* This is a lower bound of the true significance.
a Lilliefors Significance Correction
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6.8 HOMOGENEITY OF VARIANCE ASSUMPTION

Recall that the third assumption for ANOVA is that of equal population variances. 
It is widely known that ANOVA F test is not robust when unequal group sizes are 
combined with unequal variances. In particular, when group sizes are sharply une-
qual (largest/smallest > 1.5) and the population variances differ, then if the larger 
groups have smaller variances the F statistic is liberal. A liberal test result means 
we are rejecting falsely too often; that is, actual α > nominal level of significance. 
Thus, you may think you are rejecting falsely 5% of the time, but the true rejection 
rate (actual α) may be 11%. When the larger groups have larger variances, then the 
F statistic is conservative. This means actual α < nominal level of significance. At 
first glance, this may not appear to be a problem, but note that the smaller α will 
cause a decrease in power, and in many studies, one can ill afford to have power 
further attenuated.

With group sizes are equal or approximately equal (largest/smallest < 1.5), the 
ANOVA F test is often robust to violations of equal group variance. In fact, early 
research into this issue, such as reported in Glass et al. (1972), indicated that ANOVA 
F test is robust to such violations provided that groups are of equal size. More recently, 
though, research, as described in Coombs, Algina, and Oltman (1996), has shown 
that the ANOVA F test, even when group sizes are equal, is not robust when group 
variances differ greatly. For example, as reported in Coombs et al., if the common 
group size is 11 and the variances are in the ratio of 16:1:1:1, then the type I error rate 
associated with the F test is .109. While the ANOVA F test, then, is not completely 
robust to unequal variances even when group sizes are the same, this research sug-
gests that the variances must differ substantially for this problem to arise. Further, 
the robustness of the ANOVA F test improves in this situation when the equal group 
size is larger.

It is important to note that many of the frequently used tests for homogeneity of var-
iance, such as Bartlett’s, Cochran’s, and Hartley’s Fmax, are quite sensitive to non-
normality. That is, with these tests, one may reject and erroneously conclude that the 
population variances are different when, in fact, the rejection was due to nonnormal-
ity in the underlying populations. Fortunately, Levene has a test that is more robust 
against nonnormality. This test is available in the EXAMINE procedure in SPSS. The 
test statistic is formed by deviating the scores for the subjects in each group from 
the group mean, and then taking the absolute values. Thus, z whereij ij j jx x x= - ,   
represents the mean for the jth group. An ANOVA is then done on the zijs.  Although the 
Levene test is somewhat more robust, an extensive Monte Carlo study by Conover, 
Johnson, and Johnson (1981) showed that if considerable skewness is present, a modi-
fication of the Levene test is necessary for it to remain robust. The mean for each group 
is replaced by the median, and an ANOVA is done on the deviation scores from the 
group medians. This modification produces a more robust test with good power. It is 
available on SAS and SPSS.
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6.9 HOMOGENEITY OF THE COVARIANCE MATRICES*

The assumption of equal (homogeneous) covariance matrices is a very restrictive one. 
Recall from the matrix algebra chapter (Chapter 2) that two matrices are equal only 
if all corresponding elements are equal. Let us consider a two-group problem with 
five dependent variables. All corresponding elements in the two matrices being equal 
implies, first, that the corresponding diagonal elements are equal. This means that the 
five population variances in group 1 are equal to their counterparts in group 2. But all 
nondiagonal elements must also be equal for the matrices to be equal, and this implies 
that all covariances are equal. Because for five variables there are 10 covariances, this 
means that the 10 population covariances in group 1 are equal to their counterpart covar-
iances in group 2. Thus, for only five variables, the equal covariance matrices assump-
tion requires that 15 elements of group 1 be equal to their counterparts in group 2.

For eight variables, the assumption implies that the eight population variances in group 
1 are equal to their counterparts in group 2 and that the 28 corresponding covariances 
for the two groups are equal. The restrictiveness of the assumption becomes more 
strikingly apparent when we realize that the corresponding assumption for the univar-
iate t test is that the variances on only one variable be equal.

Hence, it is very unlikely that the equal covariance matrices assumption would ever 
literally be satisfied in practice. The relevant question is: Will the very plausible viola-
tions of this assumption that occur in practice have much of an effect on power?

6.9.1 Effect of Heterogeneous Covariance Matrices on Type I Error

Three major Monte Carlo studies have examined the effect of unequal covariance 
matrices on error rates: Holloway and Dunn (1967) and Hakstian, Roed, and Linn 
(1979) for the two-group case, and Olson (1974) for the k-group case. Holloway 
and Dunn considered both equal and unequal group sizes and modeled moderate 
to extreme heterogeneity. A representative sampling of their results, presented in 
Table 6.5, shows that equal ns keep the actual α very close to the level of signifi-
cance (within a few percentage points) for all but the extreme cases. Sharply unequal 
group sizes for moderate inequality, with the larger group having smaller variability, 
produce a liberal test. In fact, the test can become very liberal (cf., three variables, 
N1 = 35, N2 = 15, actual α = .175). When larger groups have larger variability, this 
produces a conservative test.

Hakstian et al. (1979) modeled heterogeneity that was milder and, we believe, some-
what more representative of what is encountered in practice, than that considered in the 
Holloway and Dunn study. They also considered more disparate group sizes (up to a 
ratio of 5 to 1) for the 2-, 6-, and 10-variable cases. The following three heterogeneity 
conditions were examined:

* Appendix 6.2 discusses multivariate test statistics for unequal covariance matrices.
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 Table 6.5: Effect of Heterogeneous Covariance Matrices on Type I Error for Hotelling’s T  2 (1)

Number of observations per group

Degree of heterogeneity

Number of variables

D = 3 (3) D = 10

N1 N2 (2) (Moderate) (Very large)

3 15 35 .015 0
3 20 30 .03 .02
3 25 25 .055 .07
3 30 20 .09 .15
3 35 15 .175 .28
7 15 35 .01 0
7 20 30 .03 .02
7 25 25 .06 .08
7 30 20 .13 .27
7 35 15 .24 .40

10 15 35 .01 0
10 20 30 .03 .03
10 25 25 .08 .12
10 30 20 .17 .33
10 35 15 .31 .40

(1) Nominal α = .05.
(2) Group 2 is more variable.
(3) D = 3 means that the population variances for all variables in Group 2 are 3 times as large as the popula-
tion variances for those variables in Group 1.

Source: Data from Holloway and Dunn (1967).

1. The population variances for the variables in Population 2 are only 1.44 times as 
great as those for the variables in Population 1.

2. The Population 2 variances and covariances are 2.25 times as great as those for all 
variables in Population 1.

3. The Population 2 variances and covariances are 2.25 times as great as those for 
Population 1 for only half the variables.

The results in Table 6.6 for the six-variable case are representative of what Hakstian et al. 
found. Their results are consistent with the Holloway and Dunn findings, but they extend 
them in two ways. First, even for milder heterogeneity, sharply unequal group sizes can 
produce sizable distortions in the type I error rate (cf., 24:12, Heterogeneity 2 (negative): 
actual α = .127 vs. level of significance = .05). Second, severely unequal group sizes can 
produce sizable distortions in type I error rates, even for very mild heterogeneity (cf., 
30:6, Heterogeneity 1 (negative): actual α = .117 vs. level of significance = .05).

Olson (1974) considered only equal ns and warned, on the basis of the Holloway and 
Dunn results and some preliminary findings of his own, that researchers would be well 
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 Table 6.6: Effect of Heterogeneous Covariance Matrices with Six Variables on Type I 
Error for Hotelling’s T  2

N1:N2(1) Nominal α

Heterog. 1 Heterog. 2 Heterog. 3

(2) POS. NEG. POS. NEG. POS. NEG. (3)

18:18 .01 .006 .011 .012
.05 .048 .057 .064
.10 .099 .109 .114

24:12 .01 .007 .020 .005 .043 .006 .018
.05 .035 .088 .021 .127 .028 .076
.10 .068 .155 .051 .214 .072 .158

30:6 .01 .004 .036 .000 .103 .003 .046
.05 .018 .117 .004 .249 .022 .145
.10 .045 .202 .012 .358 .046 .231

(1) Ratio of the group sizes.
(2) Condition in which the larger group has the larger generalized variance.
(3) Condition in which the larger group has the smaller generalized variance.

Source: Data from Hakstian, Roed, and Lind (1979).

advised to strive to attain equal group sizes in the k-group case. The results of Olson’s 
study should be interpreted with care, because he modeled primarily extreme heteroge-
neity (i.e., cases where the population variances of all variables in one group were 36 
times as great as the variances of those variables in all the other groups).

6.9.2 Testing Homogeneity of Covariance Matrices: The Box Test

Box (1949) developed a test that is a generalization of the Bartlett univariate homogene-
ity of variance test, for determining whether the covariance matrices are equal. The test 
uses the generalized variances; that is, the determinants of the within-covariance matri-
ces. It is very sensitive to nonnormality. Thus, one may reject with the Box test because 
of a lack of multivariate normality, not because the covariance matrices are unequal. 
Therefore, before employing the Box test, it is important to see whether the multivari-
ate normality assumption is reasonable. As suggested earlier in this chapter, a check of 
marginal normality for the individual variables is probably sufficient (inspecting plots, 
examining values for skewness and kurtosis, and using the Shapiro–Wilk test). Where 
there is a departure from normality, use a suitable transformation (see Figure 6.1).

Box has given an χ2 approximation and an F approximation for his test statistic, both 
of which appear on the SPSS MANOVA output, as an upcoming example in this sec-
tion shows. To decide to which of these one should pay more attention, the following 
rule is helpful: When all group sizes are 20 and the number of dependent variables is 
six, the χ2 approximation is fine. Otherwise, the F approximation is more accurate and 
should be used.
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Example 6.2
To illustrate the use of SPSS MANOVA for assessing homogeneity of the covariance 
matrices, we consider, again, the data from Example 1. Note that we use the SPSS 
MANOVA procedure instead of GLM in order to obtain the natural log of the deter-
minants, as discussed later. Recall that this example involved two types of trucks (gas-
oline and diesel), with measurements on three variables: Y1 = fuel, Y2 = repair, and 
Y3 = capital. The raw data were provided in the syntax online. Recall that there were 
36 gasoline trucks and 23 diesel trucks, so we have sharply unequal group sizes. Thus, 
a significant Box test here will produce biased multivariate statistics that we need to 
worry about.

The commands for running the MANOVA, along with getting the Box test and some 
selected output, are presented in Table 6.7. It is in the PRINT subcommand that we 
obtain the multivariate (Box test) and univariate tests of homogeneity of variance. 
Note in Table 6.7 (center) that the Box test is significant well beyond the .01 level 
(F = 5.088, p = .000, approximately). We wish to determine whether the multivariate 
test statistics will be liberal or conservative. To do this, we examine the determinants 
of the covariance matrices. Remember that the determinant of the covariance matrix 
is the generalized variance; that is, it is the multivariate measure of within-group var-
iability for a set of variables. In this case, the larger group (group 1) has the smaller 
generalized variance (i.e., 3,172). The effect of this is to produce positively biased 
(liberal) multivariate test statistics. Also, although this is not presented in Table 6.7, 
the group effect is quite significant (F = 16.375, p = .000, approximately). It is pos-
sible, then, that this significant group effect may be mainly due to the positive bias 
present.

 Table 6.7: SPSS MANOVA and EXAMINE Control Lines for Milk Data and Selected Output

TITLE ‘MILK DATA’.
DATA LIST FREE/gp y1 y2 y3.
BEGIN DATA.
DATA LINES (raw data are on-line)

END DATA.
MANOVA y1 y2 y3 BY gp(1,2)
/PRINT = HOMOGENEITY(COCHRAN, BOXM).

EXAMINE VARIABLES = y1 y2 y3 BY gp
/PLOT = SPREADLEVEL.

Cell Number.. 1
Determinant of Covariance matrix of dependent variables = 3172.91372
LOG (Determinant) = 8.06241
Cell Number.. 2
Determinant of Covariance matrix of dependent variables = 4860.31030
LOG (Determinant) = 8.48886
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Determinant of pooled Covariance matrix of dependent vars. = 6619.49636
LOG (Determinant) = 8.79777
Multivariate test for Homogeneity of Dispersion matrices
Boxs M = 32.53409
F WITH (6,14625) DF = 5.08834, P = .000 (Approx.)
Chi-Square with 6 DF = 30.54336, P = .000 (Approx.)

Test of Homogeneity of Variance

Levene Statistic df 1 df 2 Sig.

y1 Based on Mean 5.071 1 57 .028
y2 Based on Mean .961 1 57 .331
y3 Based on Mean 6.361 1 57 .014

To see whether this is the case, we look for variance-stabilizing transformations that, 
hopefully, will make the Box test not significant, and then check to see whether the 
group effect is still significant. Note, in Table 6.7, that the Levene’s tests of equal var-
iance suggest there are significant variance differences for Y1 and Y3.

The EXAMINE procedure was also run, and indicated that the following new variables 
will have approximately equal variances: NEWY1 = Y1** (−1.678) and NEWY3 = Y3** 
(.395). When these new variables, along with Y2, were run in a MANOVA (see 
Table 6.8), the Box test was not significant at the .05 level (F = 1.79, p = .097), but 
the group effect was still significant well beyond the .01 level (F = 13.785, p > .001 
approximately).

We now consider two variations of this result. In the first, a violation would not be of 
concern. If the Box test had been significant and the larger group had the larger gen-
eralized variance, then the multivariate statistics would be conservative. In that case, 
we would not be concerned, for we would have found significance at an even more 
stringent level had the assumption been satisfied.

A second variation on the example results that would have been of concern is if 
the large group had the large generalized variance and the group effect was not 
significant. Then, it wouldn’t be clear whether the reason we did not find signifi-
cance was because of the conservativeness of the test statistic. In this case, we could 
simply test at a somewhat more liberal level, once again realizing that the effective 
alpha level will probably be around .05. Or, we could again seek variance stabilizing 
transformations.

With respect to transformations, there are two possible approaches. If there is a known 
relationship between the means and variances, then the following two transformations are 
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 Table 6.8: SPSS MANOVA and EXAMINE Commands for Milk Data Using Two Trans-
formed Variables and Selected Output

TITLE ‘MILK DATA – Y1 AND Y3 TRANSFORMED’.
DATA LIST FREE/gp y1 y2 y3.
BEGIN DATA.
DATA LINES

END DATA.
LIST.
COMPUTE NEWy1 = y1**(−1.678).
COMPUTE NEWy3 = y3**.395.
MANOVA NEWy1 y2 NEWy3 BY gp(1,2)
/PRINT = CELLINFO(MEANS) HOMOGENEITY(BOXM, COCHRAN).

EXAMINE VARIABLES = NEWy1 y2 NEWy3 BY gp
/PLOT = SPREADLEVEL.

Multivariate test for Homogeneity of Dispersion matrices

Boxs M = 11.44292

F WITH (6,14625) DF = 1.78967, P = .097 (Approx.)

Chi-Square with 6 DF = 10.74274, P = .097 (Approx.)

EFFECT .. GP

Multivariate Tests of Significance (S = 1, M = 1/2, N = 26 1/2)

Test Name Value Exact F
Hypoth. 
DF

Error 
DF

Sig. 
of F

Pillais .42920 13.78512 3.00 55.00 .000

Hotellings .75192 13.78512 3.00 55.00 .000

Wilks .57080 13.78512 3.00 55.00 .000

Roys .42920

Note .. F statistics are exact.

Test of Homogeneity of Variance

Levene  
Statistic df1 df2 Sig.

NEWy1 Based on Mean 1.008 1 57 .320

Y2 Based on Mean .961 1 57 .331

NEWy3 Based on Mean .451 1 57 .505

helpful. The square root transformation, where the original scores are replaced by yij ,  
will stabilize the variances if the means and variances are proportional for each group. This 
can happen when the data are in the form of frequency counts. If the scores are proportions, 
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then the means and variances are related as follows: σ µ µi i i
2 1= -( ). This is true because, 

with proportions, we have a binomial variable, and for a binominal variable the variance is 
this function of its mean. The arcsine transformation, where the original scores are replaced 
by arcsin yij ,  will also stabilize the variances in this case.

If the relationship between the means and the variances is not known, then one can let 
the data decide on an appropriate transformation (as in the previous example).

We now consider an example that illustrates the first approach, that of using a known 
relationship between the means and variances to stabilize the variances.

Example 6.3

Group 1 Group 2 Group 3

Y 1 Y 2 Y 1 Y 2 Y 1 Y 2 Y 1 Y 2 Y 1 Y 2 Y 1 Y2

.30 5 3.5 4.0 5 4 9 5 14 5 18 8
1.1 4 4.3 7.0 5 4 11 6 9 10 21 2
5.1 8 1.9 7.0 12 6 5 3 20 2 12 2
1.9 6 2.7 4.0 8 3 10 4 16 6 15 4
4.3 4 5.9 7.0 13 4 7 2 23 9 12 5

MEANS Y 1 = 3.1 Y 2 = 5.6 Y 1 = 8.5 Y 2 = 4 Y 1 = 16 Y 2 = 5.3
VARIANCES 3.31 2.49 8.94 1.66 20 8.68

Notice that for Y1, as the means increase (from group 1 to group 3) the variances also 
increase. Also, the ratio of variance to mean is approximately the same for the three 
groups: 3.31 / 3.1 = 1.068, 8.94 / 8.5 = 1.052, and 20 / 16 = 1.25. Further, the variances 
for Y2 differ by a fair amount. Thus, it is likely here that the homogeneity of covariance 
matrices assumption is not tenable. Indeed, when the MANOVA was run on SPSS, 
the Box test was significant at the .05 level (F = 2.821, p = .010), and the Cochran 
univariate tests for both variables were also significant at the .05 level (Y1: p =.047; 
Y2: p = .014).

Because the means and variances for Y1 are approximately proportional, as men-
tioned earlier, a square-root transformation will stabilize the variances. The com-
mands for running SPSS MANOVA, with the square-root transformation on Y1, 
are given in Table 6.9, along with selected output. A few comments on the com-
mands: It is in the COMPUTE command that we do the transformation, calling the 
transformed variable RTY1. We then use the transformed variable RTY1, along with 
Y2, in the MANOVA command for the analysis. Note the stabilizing effect of the 
square root transformation on Y1; the standard deviations are now approximately 
equal (.587, .522, and .568). Also, Box’s test is no longer significant (F = 1.73, 
p = .109).
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 Table 6.9: SPSS Commands for Three-Group MANOVA with Unequal Variances (Illus-
trating Square-Root Transformation)

TITLE ‘THREE GROUP MANOVA – TRANSFORMING y1’.
DATA LIST FREE/gp y1 y2.
BEGIN DATA.
  DATA LINES
END DATA.
COMPUTE RTy1 = SQRT(y1).
MANOVA RTy1 y2 BY gp(1,3)
  /PRINT = CELLINFO(MEANS) HOMOGENEITY(COCHRAN, BOXM).
Cell Means and Standard Deviations
Variable .. RTy1

FACTOR CODE Mean Std. Dev.
gp 1 1.670 .587
gp 2 2.873 .522
gp 3 3.964 .568
For entire sample  2.836 1.095

- — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — -
Variable .. y2

FACTOR CODE Mean Std. Dev.
gp 1 5.600 1.578
gp 2 4.100 1.287
gp 3 5.300 2.946
For entire sample  5.000 2.101

- — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — -
Univariate Homogeneity of Variance Tests
Variable .. RTy1
  Cochrans C(9,3) =          .36712,  P = 1.000 (approx.)
  Bartlett-Box F(2,1640) =        .06176, P = .940
Variable .. y2
  Cochrans C(9,3) =          .67678, P = .014 (approx.)
  Bartlett-Box F(2,1640) =     3.35877,  P = .035
- — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — -
Multivariate test for Homogeneity of Dispersion matrices
Boxs M = 11.65338
F WITH (6,18168) DF =      1.73378, P =  .109 (Approx.)
Chi-Square with 6 DF =       10.40652, P =  .109 (Approx.)

6.10 SUMMARY

We have considered each of the assumptions in MANOVA in some detail individually. 
We now tie together these pieces of information into an overall strategy for assessing 
assumptions in a practical problem.
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1. Check to determine whether it is reasonable to assume the participants are respond-
ing independently; a violation of this assumption is very serious. Logically, from 
the context in which the participants are receiving treatments, one should be able 
to make a judgment. Empirically, the intraclass correlation is a measure of the 
degree of dependence. Perhaps the most flexible analysis approach for correlated 
observations is multilevel modeling. This method is statistically correct for situ-
ations in which individual observations are correlated within clusters, and multi-
level models allow for inclusion of predictors at the participant and cluster level, 
as discussed in Chapter 13. As a second possibility, if several groups are involved 
for each treatment condition, consider using the group mean as the unit of analy-
sis, instead of the individual outcome scores.

2. Check to see whether multivariate normality is reasonable. In this regard, checking 
the marginal (univariate) normality for each variable should be adequate. The EXAM-
INE procedure from SPSS is very helpful. If departure from normality is found, 
consider transforming the variable(s). Figure 6.1 can be helpful. This comment from 
Johnson and Wichern (1982) should be kept in mind: “Deviations from normality are 
often due to one or more unusual observations (outliers)” (p. 163). Once again, we 
see the importance of screening the data initially and converting to z scores.

3. Apply Box’s test to check the assumption of homogeneity of the covariance matri-
ces. If normality has been achieved in Step 2 on all or most of the variables, then 
Box’s test should be a fairly clean test of variance differences, although keep in 
mind that this test can be very powerful when sample size is large. If the Box test 
is not significant, then all is fine.

4. If the Box test is significant with equal ns, then, although the type I error rate will 
be only slightly affected, power will be attenuated to some extent. Hence, look for 
transformations on the variables that are causing the covariance matrices to differ.

5. If the Box test is significant with sharply unequal ns for two groups, compare the 
determinants of S1 and S2 (i.e., the generalized variances for the two groups). If the 
larger group has the smaller generalized variance, T 2 will be liberal. If the larger 
group as the larger generalized variance, T 2 will be conservative.

6. For the k-group case, if the Box test is significant, examine the |Si| for the groups. 
If the groups with larger sample sizes have smaller generalized variances, then 
the multivariate statistics will be liberal. If the groups with the larger sample sizes 
have larger generalized variances, then the statistics will be conservative.

It is possible for the k-group case that neither of these two conditions hold. For exam-
ple, for three groups, it could happen that the two groups with the smallest and the 
largest sample sizes have large generalized variances, and the remaining group has a 
variance somewhat smaller. In this case, however, the effect of heterogeneity should 
not be serious, because the coexisting liberal and conservative tendencies should can-
cel each other out somewhat.

Finally, because there are several test statistics in the k-group MANOVA case, their 
relative robustness in the presence of violations of assumptions could be a criterion 
for preferring one over the others. In this regard, Olson (1976) argued in favor of the 
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Pillai–Bartlett trace, because of its presumed greater robustness against heterogeneous 
covariances matrices. For variance differences likely to occur in practice, however, 
Stevens (1979) found that the Pillai–Bartlett trace, Wilks’ Λ, and the Hotelling–Law-
ley trace are essentially equally robust.

6.11 COMPLETE THREE-GROUP MANOVA EXAMPLE

In this section, we illustrate a complete set of analysis procedures for one-way 
MANOVA with a new data set. The data set, available online, is called SeniorWISE, 
because the example used is adapted from the SeniorWISE (Wisdom Is Simply Explo-
ration) study (McDougall et al., 2010a, 2010b). In the example used here, we assume 
that individuals 65 or older were randomly assigned to receive (1) memory training, 
which was designed to help adults maintain and/or improve their memory-related abil-
ities; (2) a health intervention condition, which did not include memory training but is 
included in the study to determine if those receiving memory training would have bet-
ter memory performance than those receiving an active intervention, albeit unrelated 
to memory; or (3) a wait-list control condition. The active treatments were individ-
ually administered and posttest intervention measures were completed individually.

Further, we have data (computer generated) for three outcomes, the scores for which 
are expected to be approximately normally distributed. The outcomes are thought to tap 
distinct constructs but are expected to be positively correlated. The first outcome, self-ef-
ficacy, is a measure of the degree to which individuals feel strong and confident about per-
forming everyday memory-related tasks. The second outcome is a measure that assesses 
aspects of verbal memory performance, particularly verbal recall and recognition abili-
ties. For the final outcome measure, the investigators used a measure of daily functioning 
that assesses participant ability to successfully use recall to perform tasks related to, for 
example, communication skills, shopping, and eating. We refer to this outcome as DAFS, 
because it is based on the Direct Assessment of Functional Status. Higher scores on each 
of these measures represent a greater (and preferred) level of performance.

To summarize, we have individuals assigned to one of three treatment conditions 
(memory training, health training, or control) and have collected posttest data on mem-
ory self-efficacy, verbal memory performance, and daily functioning skills (or DAFS). 
Our research hypothesis is that individuals in the memory training condition will have 
higher average posttest scores on each of the outcomes compared to control partici-
pants. On the other hand, it is not clear how participants in the health training condi-
tion will do relative to the other groups, as it is possible this intervention will have no 
impact on memory but also possible that the act of providing an active treatment may 
result in improved memory self-efficacy and performance.

6.11.1 Sample Size Determination

We first illustrate a priori sample size determination for this study. We use Table A.5 
in Appendix A, which requires us to provide a general magnitude for the effect size 
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threshold, which we select as moderate, the number of groups (three), the number of 
dependent variables (three), power (.80), and alpha (.05) used for the test of the overall 
multivariate null hypothesis. With these values, Table A.5 indicates that 52 participants 
are needed for each of the groups. We assume that the study has a funding source, and 
investigators were able to randomly assign 100 participants to each group. Note that 
obtaining a larger number of participants than “required” will provide for additional 
power for the overall test, and will help provide for improved power and confidence 
interval precision (narrower limits) for the pairwise comparisons.

6.11.2 Preliminary Analysis

With the intervention and data collection completed, we screen data to identify outli-
ers, assess assumptions, and determine if using the standard MANOVA analysis is sup-
ported. Table 6.10 shows the SPSS commands for the entire analysis. Selected results 
are shown in Tables 6.11 and 6.12. Examining Table 6.11 shows that there are no miss-
ing data, means for the memory training group are greater than the other groups, and 
that variability is fairly similar for each outcome across the three treatment groups. The 
bivariate pooled within-group correlations (not shown) among the outcomes support 
the use of MANOVA as each correlation is of moderate strength and, as expected, is 
positive (correlations are .342, .337, and .451).

 Table 6.10: SPSS Commands for the Three-Group MANOVA Example

SORT CASES BY Group.
SPLIT FILE LAYERED BY Group.

FREQUENCIES VARIABLES=Self_Efficacy Verbal DAFS
/FORMAT=NOTABLE
/STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN SKEWNESS SESKEW 
KURTOSIS SEKURT
/HISTOGRAM NORMAL
/ORDER=ANALYSIS.

DESCRIPTIVES VARIABLES=Self_Efficacy Verbal DAFS
/SAVE
/STATISTICS=MEAN STDDEV MIN MAX.

REGRESSION

/STATISTICS COEFF
/DEPENDENT CASE
/METHOD=ENTER Self_Efficacy Verbal DAFS
/SAVE MAHAL.

SPLIT FILE OFF.

EXAMINE VARIABLES = Self_Efficacy Verbal DAFS BY group
/PLOT = STEMLEAF NPPLOT.

MANOVA Self_Efficacy Verbal DAFS BY Group(1,3)

(Continued )



 Table 6.10: (Continued)

/print = error (stddev cor).

DESCRIPTIVES VARIABLES= ZSelf_Efficacy ZVerbal ZDAFS /STATIS-
TICS=MEAN STDDEV MIN MAX.

GLM Self_Efficacy Verbal DAFS BY Group
/POSTHOC=Group(TUKEY)
/PRINT=DESCRIPTIVE ETASQ HOMOGENEITY
/CRITERIA =ALPHA(.0167).

 Table 6.11: Selected SPSS Output for Data Screening for the Three-Group MANOVA Example

Statistics

GROUP Self_Efficacy Verbal DAFS

Memory 
Training

N Valid 100 100 100
Missing 0 0 0

Mean 58.5053 60.2273 59.1516
Median 58.0215 61.5921 58.9151
Std. Deviation 9.19920 9.65827 9.74461
Skewness .052 –.082 .006
Std. Error of Skewness .241 .241 .241
Kurtosis –.594 .002 –.034
Std. Error of Kurtosis .478 .478 .478
Minimum 35.62 32.39 36.77
Maximum 80.13 82.27 84.17

Health 
Training

N Valid 100 100 100
Missing 0 0 0

Mean 50.6494 50.8429 52.4093
Median 51.3928 52.3650 53.3766
Std. Deviation 8.33143 9.34031 10.27314
Skewness .186 –.412 –.187
Std. Error of Skewness .241 .241 .241
Kurtosis .037 .233 –.478
Std. Error of Kurtosis .478 .478 .478
Minimum 31.74 21.84 27.20
Maximum 75.85 70.07 75.10

Control N Valid 100 100 100
Missing 0 0 0

Mean 48.9764 52.8810 51.2481
Median 47.7576 52.7982 51.1623
Std. Deviation 10.42036 9.64866 8.55991
Skewness .107 –.211 –.371
Std. Error of Skewness .241 .241 .241
Kurtosis .245 –.138 .469
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Statistics

GROUP Self_Efficacy Verbal DAFS

Std. Error of Kurtosis .478 .478 .478
Minimum 19.37 29.89 28.44
Maximum 73.64 76.53 69.01

Verbal
GROUP: Health Training 

Verbal

Mean = 50.84
Std. Dev. = 9.34
N = 100
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Inspection of the within-group histograms and z scores for each outcome suggests the 
presence of an outlying value in the health training group for self-efficacy (z = 3.0) and 
verbal performance (z = −3.1). The outlying value for verbal performance can be seen 
in the histogram in Table 6.11. Note though that when each of the outlying cases is 
temporarily removed, there is little impact on study results as the means for the health 
training group for self-efficacy and verbal performance change by less than 0.3 points. 
In addition, none of the statistical inference decisions (i.e., reject or retain the null) is 
changed by inclusion or exclusion of these cases. So, these two cases are retained for the 
entire analysis.

We also checked for the presence of multivariate outliers by obtaining the with-
in-group Mahalanobis distance for each participant. These distances are obtained by 
the REGRESSION procedure shown in Table 6.10. Note here that “case id” serves 
as the dependent variable (which is of no consequence) and the three predictor vari-
ables in this equation are the three dependent variables appearing in the MANOVA. 
Johnson and Wichern (2007) note that these distances, if multivariate normality holds, 
approximately follow a chi-square distribution with degrees of freedom equal to, in 
this context, the number of dependent variables (p), with this approximation improv-
ing for larger samples. A common guide, then, is to consider a multivariate outlier to be 
present when an obtained Mahalanobis distance exceeds a chi-square critical value at a 
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conservative alpha (.001) with p degrees of freedom. For this example, the chi-square 
critical value (.001, 3) = 16.268, as obtained from Appendix A, Table A.1. From our 
regression results, we ignore everything in this analysis except for the Mahalanobis 
distances. The largest such value obtained of 11.36 does not exceed the critical value 
of 16.268. Thus, no multivariate outliers are indicated.

The formal assumptions for the MANOVA procedure also seem to be satisfied. Based 
on the values for skewness and kurtosis, which are all close to zero as shown in 
Table 6.11, as well as inspection of each of the nine histograms (not shown), does not 
suggest substantial departures from univariate normality. We also used the Shapiro–
Wilk statistic to test the normality assumption. Using a Bonferroni adjustment for the 
nine tests yields an alpha level of about .0056, and as each p value from these tests 
exceeded this alpha level, there is no reason to believe that the normality assumption 
is violated.

We previously noted that group variability is similar for each outcome, and the 
results of Box’s M test (p = .054), as shown in Table 6.12, for equal variance- 
covariance matrices does not indicate a violation of this assumption. Note though 
that because of the relatively large sample size (N = 300) this test is quite powerful. 
As such, it is often recommended that an alpha of .01 be used for this test when 
large sample sizes are present. In addition, Levene’s test for equal group variances 
for each variable considered separately does not indicate a violation for any of 
the outcomes (smallest p value is .118 for DAFS). Further, the study design, as 
described, does not suggest any violations of the independence assumption in part 
as treatments were individually administered to participants who also completed 
posttest measures individually.

6.11.3 Primary Analysis

Table 6.12 shows the SPSS GLM results for the MANOVA. The overall multivar-
iate null hypothesis is rejected at the .05 level, F Wilks’ Lambda(6, 590) = 14.79, 
p < .001, indicating the presence of group differences. The multivariate effect size 
measure, eta square, indicates that the proportion of variance between groups on the 
set of outcomes is .13. Univariate F tests for each dependent variable, conducted 
using an alpha level of .05 / 3, or .0167, shows that group differences are present for 
self-efficacy (F[2, 297] = 29.57, p < .001), verbal performance (F[2, 297] = 26.71, 
p < .001), and DAFS (F[2, 297] = 19.96, p < .001). Further, the univariate effect 
size measure, eta square, shown in Table 6.12, indicates the proportion of variance 
explained by the treatment for self-efficacy is 0.17, verbal performance is 0.15, and 
DAFS is 0.12.

We then use the Tukey procedure to conduct pairwise comparisons using an alpha of 
.0167 for each outcome. For each dependent variable, there is no statistically signifi-
cant difference in means between the health training and control groups. Further, the 
memory training group has higher population means than each of the other groups for 
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 Table 6.12: SPSS Selected GLM Output for the Three-Group MANOVA Example

Box’s Test of Equality of Covariance
Matricesa

Box’s M 21.047
F 1.728
df1 12
df2 427474.385
Sig. .054

Tests the null hypothesis that the observed  
covariance matrices of the dependent variables 
are equal across groups.
a Design: Intercept + GROUP

Levene’s Test of Equality of Error Variancesa

F df1 df2 Sig.

Self_Efficacy 1.935 2 297 .146

Verbal .115 2 297 .892

DAFS 2.148 2 297 .118

Tests the null hypothesis that the error variance of 
the dependent variable is equal across groups.
a Design: Intercept + GROUP

Multivariate Testsa

Effect Value F
Hypothesis  
df Error df Sig.

Partial Eta  
Squared

GROUP Pillai’s Trace .250 14.096 6.000 592.000 .000 .125
Wilks’ Lambda .756 14.791b 6.000 590.000 .000 .131
Hotelling’s Trace .316 15.486 6.000 588.000 .000 .136
Roy’s Largest Root .290 28.660c 3.000 296.000 .000 .225

a Design: Intercept + GROUP
b Exact statistic
c The statistic is an upper bound on F that yields a lower bound on the significance level.

(Continued )

all outcomes. For self-efficacy, the confidence intervals for the difference in means 
indicate that the memory training group population mean is about 4.20 to 11.51 points 
greater than the mean for the health training group and about 5.87 to 13.19 points 
greater than the control group mean. For verbal performance, the intervals indicate that 
the memory training group mean is about 5.65 to 13.12 points greater than the mean 

Tests of Between-Subjects Effects

Source
Dependent  
Variable

Type III  
Sum of 
Squares df

Mean 
Square F Sig.

Partial Eta  
Squared

GROUP Self_Efficacy 5177.087 2 2588.543 29.570 .000 .166
Verbal 4872.957 2 2436.478 26.714 .000 .152
DAFS 3642.365 2 1821.183 19.957 .000 .118

Error Self_Efficacy 25999.549 297 87.541
Verbal 27088.399 297 91.207
DAFS 27102.923 297 91.256
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Multiple Comparisons

Tukey HSD

Dependent 
Variable (I) GROUP (J) GROUP

Mean 
Difference 
(I-J) Std. Error Sig.

98.33% Confidence 
Interval

Lower 
Bound

Upper 
Bound

Memory Training Control 9.5289* 1.32318 .000 5.8727 13.1850

Health Training Control 1.6730 1.32318 .417 -1.9831 5.3291

Verbal Memory Training Health Training 9.3844* 1.35061 .000 5.6525 13.1163

Memory Training Control 7.3463* 1.35061 .000 3.6144 11.0782

Health Training Control -2.0381 1.35061 .288 -5.7700 1.6938

DAFS Memory Training Health Training 6.7423* 1.35097 .000 3.0094 10.4752

Memory Training Control 7.9034* 1.35097 .000 4.1705 11.6363

Health Training Control 1.1612 1.35097 .666 -4.8940 2.5717

Based on observed means.
The error term is Mean Square(Error) = 91.256.
* The mean difference is significant at the .0167 level.

 Table 6.12: (Continued)

for the health training group and about 3.61 to 11.08 points greater than the control 
group mean. For DAFS, the intervals indicate that the memory training group mean 
is about 3.01 to 10.48 points greater than the mean for the health training group and 
about 4.17 to 11.64 points greater than the control group mean. Thus, across all out-
comes, the lower limits of the confidence intervals suggest that individuals assigned 
to the memory training group score, on average, at least 3 points greater than the other 
groups in the population.

Note that if you wish to report the Cohen’s d effect size measure, you need to compute 
these manually. Remember that the formula for Cohen’s d is the raw score difference 
in means between two groups divided by the square root of the mean square error from 
the one-way ANOVA table for a given outcome. To illustrate two such calculations, 
consider the contrast between the memory and health training groups for self-efficacy. 
The Cohen’s d for this difference is 7 8559 87 541 0 84. . . ,=  indicating that this dif-
ference in means is .84 standard deviations (conventionally considered a large effect). 
For the second example, Cohen’s d for the difference in verbal performance means 
between the memory and health training groups is 9 3844 91 207 0 98. . . ,=  again 
indicative of a large effect by conventional standards.

Having completed this example, we now present an example results section from this 
analysis, followed by an analysis summary for one-way MANOVA where the focus is 
on examining effects for each dependent variable.
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6.12 EXAMPLE RESULTS SECTION FOR ONE-WAY MANOVA

The goal of this study was to determine if at-risk older adults who were randomly 
assigned to receive memory training have greater mean posttest scores on memory 
self-efficacy, verbal memory performance, and daily functional status than indi-
viduals who were randomly assigned to receive a health intervention or a wait-list 
control condition. A one-way multivariate analysis of variance (MANOVA) was 
conducted for three dependent variables (i.e., memory self-efficacy, verbal perfor-
mance, and functional status) with type of training (memory, health, and none) 
serving as the independent variable. Prior to conducting the formal MANOVA pro-
cedures, the data were examined for univariate and multivariate outliers. Two such 
observations were found, but they did not impact study results. We determined this 
by recomputing group means after temporarily removing each outlying observation 
and found small differences between these means and the means based on the entire 
sample (less than three-tenths of a point for each mean). Similarly, temporarily 
removing each outlier and rerunning the MANOVA indicated that neither observa-
tion changed study findings. Thus, we retained all 300 observations throughout the 
analyses.

We also assessed whether the MANOVA assumptions seemed tenable. Inspecting his-
tograms, skewness and kurtosis values, and Shapiro–Wilk test results did not indi-
cate any material violations of the normality assumption. Further, Box’s test provided 
support for the equality of covariance matrices assumption (i.e., p = .054). Similarly, 
examining the results of Levene’s test for equality of variance provided support that 
the dispersion of scores for self-efficacy (p = .15), verbal performance (p = .89), and 
functional status (p = .12) was similar across the three groups. Finally, we did not con-
sider there to be any violations of the independence assumption because the treatments 
were individually administered and participants responded to the outcome measures 
on an individual basis.

Table 1 displays the means for each of the treatment groups, which shows that partici-
pants in the memory training group scored, on average, highest across each dependent 
variable, with much lower mean scores observed in the health training and con-
trol groups. Group means differed on the set of dependent variables, λ = .756, F(6, 
590) = 14.79, p < .001. Given the interest in examining treatment effects for each 
outcome (as opposed to attempting to establish composite variables), we conducted 
a series of one-way ANOVAs for each outcome at the .05 / 3 (or .0167) alpha level. 
Group mean differences are present for self-efficacy (F[2, 297] = 29.6, p < .001), ver-
bal performance (F[2, 297] = 26.7, p < .001), and functional status (F[2, 297] = 20.0, 
p < .001). Further, the values of eta square for each outcome suggest that treatment 
effects for self-efficacy (η2 = .17), verbal performance (η2 = .15), and functional status 
(η2 = .12) are generally strong.

Table 2 presents information on the pairwise contrasts of interest. Comparisons of 
treatment means were conducted using the Tukey HSD approach, with an alpha of 
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 Table  1: Group Means (SD) for the Dependent Variables (n = 100)

Group Self-efficacy Verbal performance Functional status

Memory training 58.5 (9.2) 60.2 (9.7) 59.2 (9.7)
Health training 50.6 (8.3) 50.8 (9.3) 52.4 (10.3)
Control 49.0 (10.4) 52.9 (9.6) 51.2 (8.6)

 Table 2: Pairwise Contrasts for the Dependent Variables

Dependent variable Contrast
Differences in  
means (SE) 95% C.I.a

Self-efficacy Memory vs. health 7.9* (1.32)  4.2, 11.5
Memory vs. control 9.5* (1.32)  5.9, 13.2
Health vs. control 1.7 (1.32) −2.0, 5.3

Verbal performance Memory vs. health 9.4* (1.35)  5.7, 13.1
Memory vs. control 7.3* (1.35)  3.6, 11.1
Health vs. control −2.0 (1.35) −5.8, 1.7

Functional status Memory vs. health 6.7* (1.35)  3.0, 10.5
Memory vs. control 7.9* (1.35)  4.2, 11.6
Health vs. control 1.2 (1.35) −2.6, 4.9

a C.I. represents the confidence interval for the difference in means.

Note: * indicates a statistically significant difference (p < .0167) using the Tukey HSD procedure.

.0167 used for these contrasts. Table 2 shows that participants in the memory training 
group scored significantly higher, on average, than participants in both the health train-
ing and control groups for each outcome. No statistically significant mean differences 
were observed between the health training and control groups. Further, given that a 
raw score difference of 3 points on each of the similarly scaled variables represents the 
threshold between negligible and important mean differences, the confidence intervals 
indicate that, when differences are present, population differences are meaningful as 
the lower bounds of all such intervals exceed 3. Thus, after receiving memory train-
ing, individuals, on average, have much greater self-efficacy, verbal performance, and 
daily functional status than those in the health training and control groups.

6.13 ANALYSIS SUMMARY

One-way MANOVA can be used to describe differences in means for multiple depend-
ent variables among multiple groups. The design has one factor that represents group 
membership and two or more continuous dependent measures. MANOVA is used 
instead of multiple ANOVAs to provide better protection against the inflation of the 
overall type I error rate and may provide for more power than a series of ANOVAs. 
The primary steps in a MANOVA analysis are:
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I. Preliminary Analysis
A. Conduct an initial screening of the data.

1) Purpose: Determine if the summary measures seem reasonable and 
support the use of MANOVA. Also, identify the presence and pattern 
(if any) of missing data.

2) Procedure: Compute various descriptive measures for each group (e.g., 
means, standard deviations, medians, skewness, kurtosis, frequencies) 
on each of the dependent variables. Compute the bivariate correlations 
for the outcomes. If there is missing data, conduct missing data analysis.

3) Decision/action: If the values of the descriptive statistics do not make 
sense, check data entry for accuracy. If all of the correlations are near 
zero, consider using a series of ANOVAs. If one or more correlations are 
very high (e.g., .8, .9), consider forming one or more composite varia-
bles. If there is missing data, consider strategies to address missing data.

B. Conduct case analysis.
1) Purpose: Identify any problematic individual observations.
2) Procedure:

i) Inspect the distribution of each dependent variable within each group 
(e.g., via histograms) and identify apparent outliers. Scatterplots may 
also be inspected to examine linearity and bivariate outliers.

ii) Inspect z-scores and Mahalanobis distances for each variable within 
each group. For the z scores, absolute values larger than perhaps 2.5 
or 3 along with a judgment that a given value is distinct from the 
bulk of the scores indicate an outlying value. Multivariate outliers 
are indicated when the Mahalanobis distance exceeds the corre-
sponding critical value.

iii) If any potential outliers are identified, conduct a sensitivity study to 
determine the impact of one or more outliers on major study results.

3) Decision/action: If there are no outliers with excessive influence, con-
tinue with the analysis. If there are one or more observations with ex-
cessive influence, determine if there is a legitimate reason to discard the 
observations. If so, discard the observation(s) (documenting the reason) 
and continue with the analysis. If not, consider use of variable transfor-
mations to attempt to minimize the effects of one or more outliers. If 
necessary, discuss any ambiguous conclusions in the report.

C. Assess the validity of the MANOVA assumptions.
1) Purpose: Determine if the standard MANOVA procedure is valid for the 

analysis of the data.
2) Some procedures:

i) Independence: Consider the sampling design and study circum-
stances to identify any possible violations.

ii) Multivariate normality: Inspect the distribution of each depend-
ent variable in each group (via histograms) and inspect values for 
 skewness and kurtosis for each group. The Shapiro–Wilk test statis-
tic can also be used to test for nonnormality.
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iii) Equal covariance matrices: Examine the standard deviations for each 
group as a preliminary assessment. Use Box’s M test to assess if this 
assumption is tenable, keeping in mind that it requires the assumption 
of multivariate normality to be satisfied and with large samples may 
be an overpowered test of the assumption. If significant, examine 
Levene’s test for equality of variance for each outcome to identify 
problematic dependent variables (which should also be conducted if 
univariate ANOVAs are the follow-up test to a significant MANOVA).

3) Decision/action:
i) Any nonnormal distributions and/or inequality of covariance matri-

ces may be of substantive interest in their own right and should be 
reported and/or further investigated. If needed, consider the use of 
variable transformations to address these problems.

ii) Continue with the standard MANOVA analysis when there is no evi-
dence of violations of any assumption or when there is evidence of a 
specific violation but the technique is known to be robust to an existing 
violation. If the technique is not robust to an existing violation and 
cannot be remedied with variable transformations, use an alternative 
analysis technique.

D. Test any preplanned contrasts.
1) Purpose: Test any strong a priori research hypotheses with maximum power.
2) Procedure: If there is rationale supporting group mean differences on 

two or three multiple outcomes, test the overall multivariate null hypoth-
esis for these outcomes using Wilks’ Λ. If significant, use an ANOVA 
F test for each outcome with no alpha adjustment. For any significant 
ANOVAs, follow up (if more than two groups are present) with tests and 
interval estimates for all pairwise contrasts using the Tukey procedure.

II. Primary Analysis
A. Test the overall multivariate null hypothesis.

1) Purpose: Provide “protected testing” to help control the inflation of the 
overall type I error rate.

2) Procedure: Examine the test result for Wilks’ Λ.
3) Decision/action: If the p-value associated with this test is sufficiently 

small, continue with further tests of specific contrasts. If the p-value is 
not small, do not continue with any further testing of specific contrasts.
B.  If the overall null hypothesis has been rejected, test and estimate all 

post hoc contrasts of interest.
1) Purpose: Describe the differences among the groups for each of the 

dependent variables, while controlling the overall error rate.
2) Procedures:

i) Test the overall ANOVA null hypothesis for each dependent varia-
ble using a Bonferroni-adjusted alpha. (A conventional unadjusted 
alpha can be considered when the number of outcomes is relatively 
small, such as two or three.)
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ii) For each dependent variable for which the overall univariate null 
hypothesis is rejected, follow up (if more than two groups are pres-
ent) with tests and interval estimates for all pairwise contrasts using 
the Tukey procedure.

C. Report and interpret at least one of the following effect size measures.
1) Purpose: Indicate the strength of the relationship between the dependent 

variable(s) and the factor (i.e., group membership).
2) Procedure: Raw score differences in means should be reported. Other 

possibilities include (a) the proportion of generalized total variation 
explained by group membership for the set of dependent variables (mul-
tivariate eta square), (b) the proportion of variation explained by group 
membership for each dependent variable (univariate eta square), and/or 
(c) Cohen’s d for two-group contrasts.
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APPENDIX 6.1

Analyzing Correlated Observations*

Much has been written about correlated observations, and that INDEPENDENCE of 
observations is an assumption for ANOVA and regression analysis. What is not appar-
ent from reading most statistics books is how critical an assumption it is. Hays (1963) 
indicated over 40 years ago that violation of the independence assumption is very 
serious. Glass and Stanley (1970) in their textbook talked about the critical importance 
of this assumption. Barcikowski (1981) showed that even a SMALL violation of the 
independence assumption can cause the actual alpha level to be several times greater 
than the nominal level. Kreft and de Leeuw (1998) note: “This means that if intra-
class correlation is present, as it may be when we are dealing with clustered data, the 
assumption of independent observations in the traditional linear model is violated” 
(p. 9). The Scariano and Davenport (1987) table (Table 6.1) shows the dramatic effect 
dependence can have on type I error rate. The problem is, as Burstein (1980) pointed 
out more than 25 years ago, is that “most of what goes on in education occurs within 
some group context” (p. 158). This gives rise to nested data and hence correlated 

* The authoritative book on ANOVA (Scheffe, 1959) states that one of the assumptions in ANOVA 
is statistical independence of the errors. But this is equivalent to the independence of the observa-
tions (Maxwell & Delaney, 2004, p. 110).
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observations. More generally, nested data occurs quite frequently in social science 
research. Social psychology often is focused on groups. In clinical psychology, if we 
are dealing with different types of psychotherapy, groups are involved. The hierarchi-
cal, or multilevel, linear model (Chapters 13 and 14) is a commonly used method for 
dealing with correlated observations.

Let us first turn to a simpler analysis, which makes practical sense if the effect antic-
ipated (from previous research) or desired is at least MODERATE. With correlated 
data, we first compute the mean for each cluster, and then do the analysis on the means. 
Table 6.2, from Barcikowski (1981), shows that if the effect is moderate, then about 10 
groups per treatment are necessary at the .10 alpha level for power = .80 when there are 
10 participants per group. This implies that about eight or nine groups per treatment 
would be needed for power = .70. For a large effect size, only five groups per treatment 
are needed for power = .80. For a SMALL effect size, the number of groups per treat-
ment for adequate power is much too large and impractical.

Now we consider a very important paper by Hedges (2007). The title of the paper is 
quite revealing: “Correcting a Significance Test for Clustering.” He develops a correc-
tion for the t test in the context of randomly assigning intact groups to treatments. But 
the results have broader implications. Here we present modified information from his 
study, involving some results in the paper and some results not in the paper, but which 
were received from Dr. Hedges (nominal alpha = .05):

M (clusters) n (S’s per cluster) Intraclass correlation Actual rejection rate

2 100 .05 .511
2 100 .10 .626
2 100 .20 .732
2 100 .30 .784
2 30 .05 .214
2 30 .10 .330
2 30 .20 .470
2 30 .30 .553
5 10 .05 .104
5 10 .10 .157
5 10 .20 .246
5 10 .30 .316

10 5 .05 .074
10 5 .10 .098
10 5 .20 .145
10 5 .30 .189

In this table, we have m clusters assigned to each treatment and an assumed alpha level 
of .05. Note that it is the n (number of participants in each cluster), not m, that causes 
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the alpha rate to skyrocket. Compare the actual alpha levels for intraclass correlation 
fixed at .10 as n varies from 100 to 5 (.626, .330, .157 and .098).

For equal cluster size (n), Hedges derives the following relationship between the t 
(uncorrected for the cluster effect) and tA, corrected for the cluster effect:

tA = ct, with h degrees of freedom.

The correction factor is c N n p N n p= -( ) - -( )  -( ) + -( ) 2 2 1 2 1 1/ ,  where 
p represents the intraclass correlation, and h = (N − 2) / [1 + (n − 1) p] (good 
approximation).

To see the difference the correction factor and the reduced df can make, we consider 
an example. Suppose we have three groups of 10 participants in each of two treatment 
groups and that p = .10. A noncorrected t = 2.72 with df = 58, and this is significant at 
the .01 level for a two-tailed test. The corrected t = 1.94 with h = 30.5 df, and this is 
NOT even significant at the .05 level for a two-tailed test.

We now consider two practical situations where the results from the Hedges study 
can be useful. First, teaching methods is a big area of concern in education. If we are 
considering two teaching methods, then we will have about 30 students in each class. 
Obviously, just two classes per method will yield inadequate power, but the modified 
information from the Hedges study shows that with just two classes per method and 
n = 30, the actual type I error rate is .33 for intraclass correlation = .10. So, for more 
than two classes per method, the situation will just get worse in terms of type I error.

Now, suppose we wish to compare two types of counseling or psychotherapy. If we 
assign five groups of 10 participants each to each of the two types and intraclass cor-
relation = .10 (and it could be larger), then actual type I error is .157, not .05 as we 
thought. The modified information also covers the situation where the group size is 
smaller and more groups are assigned to each type. Now, consider the case were 10 
groups of size n = 5 are assigned to each type. If intraclass correlation = .10, then actual 
type I error = .098. If intraclass correlation = .20, then actual type I error = .145, almost 
three times what we want it to be.

Hedges (2007) has compared the power of clustered means analysis to the power of 
his adjusted t test when the effect is quite LARGE (one standard deviation). Here are 
some results from his comparison:

Power n m Adjusted t Cluster means

p = .10 10 2 .607 .265
25 2 .765 .336
10 3 .788 .566

(Continued )
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These results show the power of cluster means analysis does not fare well when 
there are three or fewer means per treatment group, and this is for a large effect 
size (which is NOT realistic of what one will generally encounter in practice). For a 
medium effect size (.5 SD) Barcikowski (1981) shows that for power > .80 you will 
need nine groups per treatment if group size is 30 for intraclass correlation = .10 at 
the .05 level.

So, the bottom line is that correlated observations occur very frequently in social 
science research, and researchers must take this into account in their analysis. The 
intraclass correlation is an index of how much the observations correlate, and an 
estimate of it—or at least an upper bound for it—needs to be obtained, so that the 
type I error rate is under control. If one is going to consider a cluster means anal-
ysis, then a table from Barcikowski (1981) indicates that one should have at least 
seven groups per treatment (with 30 observations per group) for power = .80 at the 
.10 level. One could probably get by with six or five groups for power = .70. The 
same table from Barcikowski shows that if group size is 10, then at least 10 groups 
per counseling method are needed for power = .80 at the .10 level. One could prob-
ably get by with eight groups per method for power = .70. Both of these situations 
assume we wish to detect at least a moderate effect size. Hedges’ adjusted t has 
some potential advantages. For p = .10, his power analysis (presumably at the .05 
level) shows that probably four groups of 30 in each treatment will yield adequate 
power (> .70). The reason we say “probably” is that power for a very large effect 
size is .968, and n = 25. The question is, for a medium effect size at the .10 level, 
will power be adequate? For p = .20, we believe we would need five groups per 
treatment.

Barcikowski (1981) has indicated that intraclass correlations for teaching various sub-
jects are generally in the .10 to .15 range. It seems to us, that for counseling or psy-
chotherapy methods, an intraclass correlation of .20 is prudent. Snidjers and Bosker 
(1999) indicated that in the social sciences intraclass correlations are generally in the 
0 to .4 range, and often narrower bounds can be found.

Power n m Adjusted t Cluster means

25 3 .909 .703
10 4 .893 .771
25 4 .968 .889

p = .20 10 2 .449 .201
25 2 .533 .230
10 3 .620 .424
25 3 .710 .490
10 4 .748 .609
25 4 .829 .689
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In finishing this appendix, we think it is appropriate to quote from Hedges’ (2007) 
conclusion:

Cluster randomized trials are increasingly important in education and the social 
and policy sciences. However, these trials are often improperly analyzed by ignor-
ing the effects of clustering on significance tests. . . . This article considered only 
t tests under a sampling model with one level of clustering. The generalization of 
the methods used in this article to more designs with additional levels of clustering 
and more complex analyses would be desirable. (p. 173)

APPENDIX 6.2

Multivariate Test Statistics for Unequal Covariance Matrices

The two-group test statistic that should be used when the population covariance matri-
ces are not equal, especially with sharply unequal group sizes, is
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This statistic must be transformed, and various critical values have been proposed 
(see Coombs et al., 1996). An important Monte Carlo study comparing seven solu-
tions to the multivariate Behrens–Fisher problem is by Christensen and Rencher 
(1995). They considered 2, 5, and 10 variables (p), and the data were generated 
such that the population covariance matrix for group 2 was d times the covariance 
matrix for group 1 (d was set at 3 and 9). The sample sizes for different p values are 
given here:

p = 2 p = 5 p = 10

n1 > n2 10:5 20:10 30:20
n1 = n2 10:10 20:20 30:30
n1 < n2 10:20 20:40 30:60

Figure 6.2 shows important results from their study.

They recommended the Kim and Nel and van der Merwe procedures because they are 
conservative and have good power relative to the other procedures. To this writer, the 
Yao procedure is also fairly good, although slightly liberal. Importantly, however, all 
the highest error rates for the Yao procedure (including the three outliers) occurred 
when the variables were uncorrelated. This implies that the adjusted power of the Yao 
(which is somewhat low for n1 > n2) would be better for correlated variables. Finally, 
for test statistics for the k-group MANOVA case, see Coombs et al. (1996) for appro-
priate references.
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 Figure 6.2 Results from a simulation study comparing the performance of methods when une-
qual covariance matrices are present (from Christensen and Rencher, 1995).
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SPSS Matrix Procedure Program for Calculating Hotelling’s T2 and v (knu) for the Nel and 
van der Merwe Modification and Selected Output

MATRIX.
COMPUTE S1 = {23.013, 12.366, 2.907; 12.366, 17.544, 4.773; 2.907, 4.773, 13.963}.
COMPUTE S2 = {4.362, .760, 2.362; .760, 25.851, 7.686; 2.362, 7.686, 46.654}.
COMPUTE V1 = S1/36.
COMPUTE V2 = S2/23.
COMPUTE TRACEV1 = TRACE(V1).
COMPUTE SQTRV1 = TRACEV1*TRACEV1.
COMPUTE TRACEV2 = TRACE(V2).
COMPUTE SQTRV2 = TRACEV2*TRACEV2.
COMPUTE V1SQ = V1*V1.
COMPUTE V2SQ = V2*V2.
COMPUTE TRV1SQ = TRACE(V1SQ).
COMPUTE TRV2SQ = TRACE(V2SQ).
COMPUTE SE = V1 + V2.
COMPUTE SESQ = SE*SE.
COMPUTE TRACESE = TRACE(SE).
COMPUTE SQTRSE = TRACESE*TRACESE.
COMPUTE TRSESQ = TRACE(SESQ).
COMPUTE SEINV = INV(SE).
COMPUTE DIFFM = {2.113, −2.649, −8.578}.
COMPUTE TDIFFM = T(DIFFM).
COMPUTE HOTL = DIFFM*SEINV*TDIFFM.
COMPUTE KNU = (TRSESQ + SQTRSE)/(1/36*(TRV1SQ + SQTRV1) + 1/23*(TRV2SQ + SQTRV2)).
PRINT S1.
PRINT S2.
PRINT HOTL.
PRINT KNU.
END MATRIX.

Matrix
Run MATRIX procedure
S1

23.01300000 12.36600000 2.90700000
12.36600000 17.54400000 4.77300000
2.90700000 4.77300000 13.96300000

S2
4.36200000 .76000000 2.36200000

.76000000 25.85100000 7.68600000
2.36200000 7.68600000 46.65400000

HOTL
43.17860426

KNU
40.57627238

END MATRIX



262        Assumptions in mAnoVA

6.14 EXERCISES

1. Describe a situation or class of situations where dependence of the observa-
tions would be present.

2. An investigator has a treatment versus control group design with 30 partici-
pants per group. the intraclass correlation is calculated and found to be .20. if 
testing for significance at .05, estimate what the actual type i error rate is.

3. Consider a four-group study with three dependent variables. What does the 
homogeneity of covariance matrices assumption imply in this case?

4. Consider the following three mAnoVA situations. indicate whether you would 
be concerned in each case with the type i error rate associated with the overall 
multivariate test of mean differences. suppose that for each case the p value 
for the multivariate test for homogeneity of dispersion matrices is smaller than 
the nominal alpha of .05.

(a) Gp 1 Gp 2 Gp 3

n1 = 15 n2 = 15 n3 = 15
|S1| = 4.4 |S2| = 7.6 |S3| = 5.9

(b) Gp 1 Gp 2

n1 = 21 n2 = 57
|S1| = 14.6 |S2| = 2.4

(c) Gp 1 Gp 2 Gp 3 Gp 4

n1 = 20 n2 = 15 n3 = 40 n4 = 29
|S1| = 42.8 |S2| = 20.1 |S3| = 50.2 |S4| = 15.6

5. Zwick (1985) collected data on incoming clients at a mental health center who 
were randomly assigned to either an oriented group, which saw a videotape 
describing the goals and processes of psychotherapy, or a control group. she 
presented the following data on measures of anxiety, depression, and anger 
that were collected in a 1-month follow-up:

Anxiety Depression Anger Anxiety Depression Anger

Oriented group (n1 = 20) Control group (n2 = 26)

285 325 165 168 190 160
23 45 15 277 230 63
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(a) run the eXAmine procedure on this data. Focusing on the shapiro–Wilk 
test and doing each test at the .025 level, does there appear to be a prob-
lem with the normality assumption?

(b) now, recall the statement in the chapter by Johnson and Wichern that lack 
of normality can be due to one or more outliers. obtain the z scores for the 
variables in each group. identify any cases having a z score greater than 
|2.5|.

(c) Which cases have z above this magnitude? For which variables do they 
occur? remove any case from the Zwick data set having a z score greater 
than |2.5| and rerun the eXAmine procedure. is there still a problem with 
lack of normality?

(d) Look at the stem-and-leaf plots for the variables. What transformation(s) 
from Figure 6.1 might be helpful here? Apply the transformation to the 
variables and rerun the eXAmine procedure one more time. how many of 
the shapiro–Wilk tests are now significant at the .025 level?

Anxiety Depression Anger Anxiety Depression Anger

Oriented group (n1 = 20) Control group (n2 = 26)

40 85 18 153 80 29
215 307 60 306 440 105
110 110 50 252 350 175
65 105 24 143 205 42
43 160 44 69 55 10

120 180 80 177 195 75
250 335 185 73 57 32

14 20 3 81 120 7
0 15 5 63 63 0
5 23 12 64 53 35

75 303 95 88 125 21
27 113 40 132 225 9
30 25 28 122 60 38

183 175 100 309 355 135
47 117 46 147 135 83

385 520 23 223 300 30
83 95 26 217 235 130
87 27 2 74 67 20

258 185 115
239 445 145

78 40 48
70 50 55

188 165 87
157 330 67
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6. in Appendix 6.1 we illustrate what a difference the hedges’ correction factor, 
a correction for clustering, can have on t with reduced degrees of freedom. 
We illustrated this for p = .10. show that, if p = .20, the effect is even more 
dramatic.

7. Consider table 6.6. show that the value of .035 for N1: N2 = 24:12 for nominal 
α = .05 for the positive condition makes sense. Also, show that the value = .076 
for the negative condition makes sense.



Chapter 7

FACTORIAL ANOVA AND 
MANOVA

7.1 INTRODUCTION

In this chapter we consider the effect of two or more independent or classification 
variables (e.g., sex, social class, treatments) on a set of dependent variables. Four 
schematic two-way designs, where just the classification variables are shown, are 
given here:

Gender

Treatments

Aptitude

Teaching methods

1 2 3 1 2

Male Low
Female Average

High

Drugs Stimulus complexity

Diagnosis 1 2 3 4 Intelligence Easy Average Hard

Schizop. Average
Depressives Super

We first indicate what the advantages of a factorial design are over a one-way design. 
We also remind you what an interaction means, and distinguish between two types of 
interactions (ordinal and disordinal). The univariate equal cell size (balanced design) 
situation is discussed first, after which we tackle the much more difficult dispropor-
tional (non-orthogonal or unbalanced) case. Three different ways of handling the 
unequal n case are considered; it is indicated why we feel one of these methods is 
generally superior. After this review of univariate ANOVA, we then discuss a multi-
variate factorial design, provide an analysis guide for factorial MANOVA, and apply 
these analysis procedures to a fairly large data set (as most of the data sets provided 
in the chapter serve instructional purposes and have very small sample sizes). We 
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also provide an example results section for factorial MANOVA and briefly discuss 
three-way MANOVA, focusing on the three-way interaction. We conclude the chapter 
by showing how discriminant analysis can be used in the context of a multivariate 
factorial design. Syntax for running various analyses is provided along the way, and 
selected output from SPSS is discussed.

7.2 ADVANTAGES OF A TWO-WAY DESIGN

1. A two-way design enables us to examine the joint effect of the independent varia-
bles on the dependent variable(s). We cannot get this information by running two 
separate one-way analyses, one for each of the independent variables. If one of 
the independent variables is treatments and the other some individual difference 
characteristic (sex, IQ, locus of control, age, etc.), then a significant interaction 
tells us that the superiority of one treatment over another depends on or is mod-
erated by the individual difference characteristic. (An interaction means that the 
effect one independent variable has on a dependent variable is not the same for 
all levels of the other independent variable.) This moderating effect can take two 
forms:

Teaching method

T1 T2 T3

High ability 85 80 76
Low ability 60 63 68

(a) The degree of superiority changes, but one subgroup always does better than 
another. To illustrate this, consider this ability by teaching methods design:
While the superiority of the high-ability students drops from 25 for T1 (i.e., 
85–60) to 8 for T3 (76–68), high-ability students always do better than 
low-ability students. Because the order of superiority is maintained, in this 
example, with respect to ability, this is called an ordinal interaction. (Note that 
this does not hold for the treatment, as T1 works better for high ability but T3 
is better for low ability students, leading to the next point.)

(b) The superiority reverses; that is, one treatment is best with one group, but 
another treatment is better for a different group. A study by Daniels and Ste-
vens (1976) provides an illustration of a disordinal interaction. For a group of 
college undergraduates, they considered two types of instruction: (1) a tradi-
tional, teacher-controlled (lecture) type and (2) a contract for grade plan. The 
students were classified as internally or externally controlled, using Rotter’s 
scale. An internal orientation means that those individuals perceive that pos-
itive events occur as a consequence of their actions (i.e., they are in control), 
whereas external participants feel that positive and/or negative events occur 
more because of powerful others, or due to chance or fate. The design and 
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the means for the participants on an achievement posttest in psychology are 
given here:

T1 T2

Males 18, 19, 21 (2.5) 17, 16, 16 (1.3)
20, 22 18, 15

Females 11, 12, 11 (1.7) 9, 9, 11 (2.2)
13, 14 8, 7

Instruction

Contract for grade Teacher controlled

Internal 50.52 38.01
Locus of control

External 36.33 46.22

The moderator variable in this case is locus of control, and it has a substantial 
effect on the efficacy of an instructional method. That is, the contract for grade 
method works better when participants have an internal locus of control, but 
in a reversal, the teacher controlled method works better for those with exter-
nal locus of control. As such, when participant locus of control is matched 
to the teaching method (internals with contract for grade and externals with 
teacher controlled) they do quite well in terms of achievement; where there is 
a mismatch, achievement suffers.

This study also illustrates how a one-way design can lead to quite misleading 
results. Suppose Daniels and Stevens had just considered the two methods, 
ignoring locus of control. The means for achievement for the contract for grade 
plan and for teacher controlled are 43.42 and 42.11, nowhere near significance. 
The conclusion would have been that teaching methods do not make a dif-
ference. The factorial study shows, however, that methods definitely do make 
a difference—a quite positive difference if participant’s locus of control is 
matched to teaching methods, and an undesirable effect if there is a mismatch.

The general area of matching treatments to individual difference characteristics of 
participants is an interesting and important one, and is called aptitude–treatment 
interaction research. A classic text in this area is Aptitudes and Instructional 
Methods by Cronbach and Snow (1977).

2. In addition to allowing you to detect the presence of interactions, a second advan-
tage of factorial designs is that they can lead to more powerful tests by reducing 
error (within-cell) variance. If performance on the dependent variable is related 
to the individual difference characteristic (i.e., the blocking variable), then the 
reduction in error variance can be substantial. We consider a hypothetical sex × 
treatment design to illustrate:
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 Notice that within each cell there is very little variability. The within-cell variances 
quantify this, and are given in parentheses. The pooled within-cell error term for 
the factorial analysis is quite small, 1.925. On the other hand, if this had been 
considered as a two-group design (i.e., without gender), the variability would be 
much greater, as evidenced by the within-group (treatment) variances for T1 and 
T2 of 18.766 and 17.6, leading to a pooled error term for the F test of the treatment 
effect of 18.18.

7.3 UNIVARIATE FACTORIAL ANALYSIS

7.3.1 Equal Cell n (Orthogonal) Case

When there is an equal number of participants in each cell of a factorial design, then 
the sum of squares for the different effects (main and interactions) are uncorrelated 
(orthogonal). This is helpful when interpreting results, because significance for one 
effect implies nothing about significance for another. This provides for a clean and 
clear interpretation of results. It puts us in the same nice situation we had with uncor-
related planned comparisons, which we discussed in Chapter 5.

Overall and Spiegel (1969), in a classic paper on analyzing factorial designs, discussed 
three basic methods of analysis:

Method 1:  Adjust each effect for all other effects in the design to obtain its unique 
contribution (regression approach), which is referred to as type III sum of 
squares in SAS and SPSS. 

Method 2:  Estimate the main effects ignoring the interaction, but estimate the inter-
action effect adjusting for the main effects (experimental method), which 
is referred to as type II sum of squares.

Method 3:  Based on theory or previous research, establish an ordering for the 
effects, and then adjust each effect only for those effects preceding it in 
the ordering (hierarchical approach), which is referred to as type I sum 
of squares.

Note that the default method in SPSS is to provide type III (method 1) sum of squares, 
whereas SAS, by default, provides both type III (method 1) and type I (method 3) sum 
of squares.

For equal cell size designs all three of these methods yield the same results, that is, 
the same F tests. Therefore, it will not make any difference, in terms of the conclu-
sions a researcher draws, as to which of these methods is used. For unequal cell sizes, 
however, these methods can yield quite different results, and this is what we consider 
shortly. First, however, we consider an example with equal cell size to show two things:  
(a) that the methods do indeed yield the same results, and (b) to demonstrate, using 
effect coding for the factors, that the effects are uncorrelated.
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Example 7.1: Two-Way Equal Cell n
Consider the following 2 × 3 factorial data set:

B

1 2 3

1 3, 5, 6 2, 4, 8 11, 7, 8
A

2 9, 14, 5 6, 7, 7 9, 8, 10

In Table 7.1 we give SPSS syntax for running the analysis. In the general linear model 
commands, we indicate the factors after the keyword BY. Method 3, the hierarchical 
approach, means that a given effect is adjusted for all effects to its left in the ordering. 
The effects here would go in the following order: FACA (factor A), FACB (factor B), 
FACA by FACB. Thus, the A main effect is not adjusted for anything. The B main effect 
is adjusted for the A main effect, and the interaction is adjusted for both main effects.

 Table 7.1: SPSS Syntax and Selected Output for Two-Way Equal Cell N ANOVA

TITLE ‘TWO WAY ANOVA EQUAL N’.
DATA LIST FREE/FACA FACB DEP.
BEGIN DATA.
1 1 3 1 1 5 1 1 6
1 2 2 1 2 4 1 2 8
1 3 11 1 3 7 1 3 8
2 1 9 2 1 14 2 1 5
2 2 6 2 2 7 2 2 7
2 3 9 2 3 8 2 3 10
END DATA.
LIST.
GLM DEP BY FACA FACB
/PRINT = DESCRIPTIVES.

Tests of Significance for DEP using UNIQUE sums of squares (known as Type III sum of squares)

Tests of Between-Subjects Effects

Dependent Variable: DEP

Source
Type III Sum of 
Squares df Mean Square F Sig.

Corrected 
Model

69.167a 5 13.833 2.204 .122

Intercept 924.500 1 924.500 147.265 .000

(Continued )
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Tests of Significance for DEP using UNIQUE sums of squares (known as Type III sum of squares)

Tests of Between-Subjects Effects

Dependent Variable: DEP

Source
Type III Sum of 
Squares df Mean Square F Sig.

FACA 24.500   1 24.500 3.903 .072
FACB 30.333   2 15.167 2.416 .131
FACA * FACB 14.333   2   7.167 1.142 .352
Error 75.333 12   6.278
Total 1069.000 18
Corrected Total 144.500 17

 Table 7.1: (Continued)

Tests of Significance for DEP using SEQUENTIAL Sums of Squares (known as Type I sum 
of squares)

Tests of Between-Subjects Effects

Dependent Variable: DEP

Source
Type I Sum of 
Squares df

Mean 
Square F Sig.

Corrected Model 69.167a 5 13.833 2.204 .122
Intercept 924.500 1 924.500 147.265 .000
FACA 24.500 1 24.500 3.903 .072
FACB 30.333 2 15.167 2.416 .131
FACA * FACB 14.333 2 7.167 1.142 .352
Error 75.333 12 6.278
Total 1069.000 18
Corrected Total 144.500 17

a R Squared = .479 (Adjusted R Squared = .261)

The default in SPSS is to use Method 1 (type III sum of squares), which is obtained by 
the syntax shown in Table 7.1. Recall that this method obtains the unique contribution 
of each effect, adjusting for all other effects. Method 3 (type I sum of squares) is imple-
mented in SPSS by inserting the line /METHOD = SSTYPE(1) immediately below 
the GLM line appearing in Table 7.1. Note, however, that the F ratios for Methods 1 and 
3 are identical (see Table 7.1). Why? Because the effects are uncorrelated due to the 
equal cell size, and therefore no adjustment takes place. Thus, the F test for an effect 
“adjusted” is the same as an effect unadjusted. To show that the effects are indeed 
uncorrelated, we used effect coding as described in Table 7.2 and ran the problem as a 
regression analysis. The coding scheme is explained there.

a R Squared = .479 (Adjusted R Squared = .261)



 Table 7.2: Regression Analysis of Two-Way Equal n ANOVA With Effect Coding and 
Correlation Matrix for the Effects

TITLE ‘EFFECT CODING FOR EQUAL CELL SIZE 2-WAY ANOVA’.
DATA LIST FREE/Y A1 B1 B2 A1B1 A1B2.
BEGIN DATA.
3 1 1 0 1 0 5 1 1 0 1 0 6 1 1 0 1 0
2 1 0 1 0 1 4 1 0 1 0 1 8 1 0 1 0 1
11 1 –1 –1–1 –1 7 1 –1 –1–1 –1 8 1 –1 –1–1 –1
9 –1 1 0–1 0 14 –1 1 0–1 0 5 –1 1 0 –1 0
6 –1 0 1 0 –1 7 –1 0 1 0 –1 7 –1 0 1 0 –1
9 –1 –1 –1 1 1 8 –1 –1–1 1 1 10 –1 –1 –1 1 1
END DATA.
LIST.
REGRESSION DESCRIPTIVES = DEFAULT
/VARIABLES = Y TO A1B2
/DEPENDENT = Y
/METHOD = ENTER.

Y A1 (1) B1 B2 A1B1 A1B2

3.00 1.00 1.00 .00 1.00 .00
5.00 1.00 1.00 .00 1.00 .00
6.00 1.00 1.00 .00 1.00 .00
2.00 1.00 .00 1.00 .00 1.00
4.00 1.00 .00 1.00 .00 1.00
8.00 1.00 .00 1.00 .00 1.00

11.00 1.00 –1.00 –1.00 –1.00 –1.00
7.00 1.00 –1.00 –1.00 –1.00 –1.00
8.00 1.00 –1.00 –1.00 –1.00 –1.00
9.00 –1.00 1.00 .00 –1.00 .00

14.00 –1.00 1.00 .00 –1.00 .00
5.00 –1.00 1.00 .00 –1.00 .00
6.00 –1.00 .00 1.00 .00 –1.00
7.00 –1.00 .00 1.00 .00 –1.00
7.00 –1.00 .00 1.00 .00 –1.00
9.00 –1.00 –1.00 –1.00 1.00 1.00
8.00 –1.00 –1.00 –1.00 1.00 1.00

10.00 –1.00 –1.00 –1.00 1.00 1.00

Correlations

Y A1 B1 B2 A1B1 A1B2

Y 1.000 –.412 –.264 –.456 –.312 –.120
A1 –.412 1.000 .000 .000 .000 .000

(Continued )
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Correlations

Y A1 B1 B2 A1B1 A1B2

B1 –.264 .000 1.000 .500 .000 .000
B2 –.456 (2) .000 .500 1.000 .000 .000
A1B1 –.312 .000 .000 .000 1.000 .500
A1B2 –.120 .000 .000 .000 .500 1.000

(1)  For the first effect coded variable (A1), the S’s in the first level of A are coded with a 1, with the S’s in the 
last level coded as −1. Since there are 3 levels of B, two effect coded variables are needed. The S’s in the 
first level of B are coded as 1s for variable B1, with the S’s for all other levels of B, except the last, coded 
as 0s. The S’s in the last level of B are coded as –1s. Similarly, the S’s on the second level of B are coded 
as 1s on the second effect-coded variable (B2 here), with the S’s for all other levels of B, except the last, 
coded as 0’s. Again, the S’s in the last level of B are coded as –1s for B2. To obtain the variables needed to 
represent the interaction, i.e., A1B1 and A1B2, multiply the corresponding coded variables (i.e., A1 × B1, 
A1 × B2).

(2)  Note that the correlations between variables representing different effects are all 0. The only nonzero 
correlations are for the two variables that jointly represent the B main effect (B1 and B2), and for the two 
variables (A1B1 and A1B2) that jointly represent the AB interaction effect.

 Table 7.2: (Continued)

Predictor A1 represents factor A, predictors B1 and B2 represent factor B, and pre-
dictors A1B1 and A1B2 are variables needed to represent the interaction between 
factors A and B. In the regression framework, we are using these predictors to 
explain variation on y. Note that the correlations between predictors representing 
different effects are all 0. This means that those effects are accounting for distinct 
parts of the variation on y, or that we have an orthogonal partitioning of the y 
variation.

In Table 7.3 we present sequential regression results that add one predictor variable 
at a time in the order indicated in the table. There, we explain how the sum of squares 
obtained for each effect is exactly the same as was obtained when the problem was run 
as a traditional ANOVA in Table 7.1.

Example 7.2: Two-Way Disproportional Cell Size
The data for our disproportional cell size example is given in Table 7.4, along with the 
effect coding for the predictors, and the correlation matrix for the effects. Here there 
definitely are correlations among the effects. For example, the correlations between 
A1 (representing the A main effect) and B1 and B2 (representing the B main effect)  
are −.163 and −.275. This contrasts with the equal cell n case where the correlations 
among the different effects were all 0 (Table 7.2). Thus, for disproportional cell sizes 
the sources of variation are confounded (mixed together). To determine how much 
unique variation on y a given effect accounts for we must adjust or partial out how 



 Table 7.3: Sequential Regression Results for Two-Way Equal n ANOVA With Effect  
Coding

Model No. 1

Variable Entered A1

Analysis of Variance

Sum of Squares DF Mean Square F Ratio

Regression 24.500 1 24.500 3.267

Residual 120.000 16 7.500

Model No. 2

Variable Added B2

Analysis of Variance

Sum of Squares DF Mean Square F Ratio

Regression 54.583 2 27.292 4.553

Residual 89.917 15 5.994

Model No. 3

Variable Added B1

Analysis of Variance

Sum of Squares DF Mean Square F Ratio

Regression 54.833 3 18.278 2.854

Residual 89.667 14 6.405

Model No. 4

Variable Added A1B1

Analysis of Variance

Sum of Squares DF Mean Square F Ratio

Regression 68.917 4 17.229 2.963

Residual 75.583 13 5.814

Model No. 5

Variable Added A1B2

Analysis of Variance

Sum of Squares DF Mean Square F Ratio

Regression 69.167 5 13.833 2.204

Residual 75.333 12 6.278

Note: The sum of squares (SS) for regression for A1, representing the A main effect, is the same as the SS 
for FACA in Table 7.1. Also, the additional SS for B1 and B2, representing the B main effect, is 54.833 − 
24.5 = 30.333, the same as SS for FACB in Table 7.1. Finally, the additional SS for A1B1 and A1B2, represent-
ing the AB interaction, is 69.167 − 54.833 = 14.334, the same as SS for FACA by FACB in Table 7.1.
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much of that variation is explainable because of the effect’s correlations with the 
other effects in the design. Recall that in Chapter 5 the same procedure was employed 
to determine the unique amount of between variation a given planned comparison 
accounts for in a set of correlated planned comparisons.

In Table 7.5 we present the control lines for running the disproportional cell size exam-
ple, along with Method 3 (type I sum of squares) and Method 1 (type III sum of 
squares) results. The F ratios for the interaction effect are the same, but the F ratios for 
the main effects are quite different. For example, if we had used Method 3 we would 
have declared a significant B main effect at the .05 level, but with Method 1 (unique 
decomposition) the B main effect is not significant at the .05 level. Therefore, with 
unequal n designs the method used can clearly make a difference in terms of the con-
clusions reached in the study. This raises the question of which of the three methods 
should be used for disproportional cell size factorial designs.

 Table 7.4: Effect Coding of the Predictors for the Disproportional Cell n ANOVA and 
Correlation Matrix for the Variables

Design

B

A
3, 5, 6 2, 4, 8 11, 7, 8, 6, 9

9, 14, 5, 11
6, 7, 7, 8, 10, 

5, 6
9, 8, 10

A1 B1 B2 A1B1 A1B2 Y
1.00 1.00 .00 1.00 .00 3.00
1.00 1.00 .00 1.00 .00 5.00
1.00 1.00 .00 1.00 .00 6.00
1.00 .00 1.00 .00 1.00 2.00
1.00 .00 1.00 .00 1.00 4.00
1.00 .00 1.00 .00 1.00 8.00
1.00 –1.00 –1.00 –1.00 –1.00 11.00
1.00 –1.00 –1.00 –1.00 –1.00 7.00
1.00 –1.00 –1.00 –1.00 –1.00 8.00
1.00 –1.00 –1.00 –1.00 –1.00 6.00
1.00 –1.00 –1.00 –1.00 –1.00 9.00

–1.00 1.00 .00 –1.00 .00 9.00
–1.00 1.00 .00 –1.00 .00 14.00
–1.00 1.00 .00 –1.00 .00 5.00
–1.00 1.00 .00 –1.00 .00 11.00
–1.00 .00 1.00 .00 –1.00 6.00
–1.00 .00 1.00 .00 –1.00 7.00



Design

 Table 7.5: SPSS Syntax for Two-Way Disproportional Cell n ANOVA With the Sequen-
tial and Unique Sum of Squares F Ratios

TITLE ‘TWO WAY UNEQUAL N’.
DATA LIST FREE/FACA FACB DEP.
BEGIN DATA.
1 1 3 1 1 5 1 1 6
1 2 2 1 2 4 1 2 8
1 3 11 1 3 7 1 3 8 1 3 6 1 3 9
2 1 9 2 1 14 2 1 5 2 1 11
2 2 6 2 2 7 2 2 7 2 2 8 2 2 10 2 2 5 2 2 6
2 3 9 2 3 8 2 3 10
END DATA
LIST.
UNIANOVA DEP BY FACA FACB
/ METHOD = SSTYPE(1)
/ PRINT = DESCRIPTIVES.

(Continued )

–1.00 .00 1.00 .00 –1.00 7.00
–1.00 .00 1.00 .00 –1.00 8.00
–1.00 .00 1.00 .00 –1.00 10.00
–1.00 .00 1.00 .00 –1.00 5.00
–1.00 .00 1.00 .00 –1.00 6.00
–1.00 –1.00 –1.00 1.00 1.00 9.00
–1.00 –1.00 –1.00 1.00 1.00 8.00
–1.00 –1.00 –1.00 1.00 1.00 10.00

Correlation:

For A main effect  For B main effect    For AB interaction effect

 A1      B1        B2    A1B1      A1B2 Y

A1 1.000 –.163 –.275 –.072 .063 –.361
B1 –.163 1.000 .495 .059 .112 –.148
B2 –.275 .495 1.000 .139 –.088 –.350
A1B1 –0.72 0.59 1.39 1.000 .468 –.332
A1B2 .063 .112 –.088 .468 1.000 –.089
Y –.361 –.148 –.350 –.332 –.089 1.000

Note: The correlations between variables representing different effects are boxed in. Compare these correla-
tions to those for the equal cell size situation, as presented in Table 7.2
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Tests of Between-Subjects Effects

Dependent Variable: DEP

Source
Type I Sum of 
Squares df Mean Square F Sig.

Corrected Model     78.877a 5 15.775 3.031 .035
Intercept 1354.240 1 1354.240 260.211 .000
FACA     23.221 1 23.221 4.462 .048
FACB     38.878 2 19.439 3.735 .043
FACA * FACB     16.778 2 8.389 1.612 .226
Error     98.883 19 5.204
Total 1532.000 25
Corrected Total   177.760 24

Tests of Between-Subjects Effects

Dependent Variable: DEP

Source
Type III Sum of 
Squares df Mean Square F Sig.

Corrected Model 78.877a 5 15.775 3.031 .035
Intercept 1176.155 1 1176.155 225.993 .000
FACA 42.385 1 42.385 8.144 .010
FACB 30.352 2 15.176 2.916 .079
FACA * FACB 16.778 2 8.389 1.612 .226
Error 98.883 19 5.204
Total 1532.000 25
Corrected Total 177.760 24

a R Squared = .444 (Adjusted R Squared = .297)

  Table 7.5: (Continued)

7.3.2 Which Method Should Be Used?

Overall and Spiegel (1969) recommended Method 2 as generally being most appro-
priate. However, most believe that Method 2 is rarely be the method of choice, since it 
estimates the main effects ignoring the interaction. Carlson and Timm’s (1974) com-
ment is appropriate here: “We find it hard to believe that a researcher would con-
sciously design a factorial experiment and then ignore the factorial nature of the data 
in testing the main effects” (p. 156).

We feel that Method 1, where we are obtaining the unique contribution of each effect, 
is generally more appropriate and is also widely used. This is what Carlson and Timm 
(1974) recommended, and what Myers (1979) recommended for experimental studies 
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(random assignment involved), or as he put it, “whenever variations in cell frequencies 
can reasonably be assumed due to chance” (p. 403).

When an a priori ordering of the effects can be established (Overall & Spiegel, 1969, 
give a nice psychiatric example), Method 3 makes sense. This is analogous to estab-
lishing an a priori ordering of the predictors in multiple regression. To illustrate we 
adapt an example given in Cohen, Cohen, Aiken, and West (2003), where the research 
goal is to predict university faculty salary. Using 2 predictors, sex and number of 
publications, a presumed causal ordering is sex and then number of publications. The 
reasoning would be that sex can impact number of publications but number of publi-
cations cannot impact sex.

7.4 FACTORIAL MULTIVARIATE ANALYSIS OF VARIANCE

Here, we are considering the effect of two or more independent variables on a set of 
dependent variables. To illustrate factorial MANOVA we use an example from Bar-
cikowski (1983). Sixth-grade students were classified as being of high, average, or 
low aptitude, and then within each of these aptitudes, were randomly assigned to one 
of five methods of teaching social studies. The dependent variables were measures of 
attitude and achievement. These data, with the scores for the attitude and achievement 
appearing in each cell, are:

Method of instruction

1 2 3 4 5

High 15, 11 19, 11 14, 13 19, 14 14, 16
  9, 7 12, 9   9, 9   7, 8 14, 8

12, 6 14, 15   6, 6 18, 16
Average 18, 13 25, 24 29, 23 11, 14 18, 17

  8, 11 24, 23 28, 26 14, 10 11, 13
  6, 6 26, 19   8, 7

Low 11, 9 13, 11 17, 10 15, 9 17, 12
16, 15 10, 11   7, 9 13, 13 13, 15

  7, 9   7, 7   9, 12

Of the 45 subjects who started the study, five were lost for various reasons. This resulted 
in a disproportional factorial design. To obtain the unique contribution of each effect, the 
unique sum of squares decomposition was obtained. The syntax for doing so is given 
in Table 7.6, along with syntax for simple effects analyses, where the latter is used to 
explore the interaction between method of instruction and aptitude. The results of the 
multivariate and univariate tests of the effects are presented in Table 7.7. All of the mul-
tivariate effects are significant at the .05 level. We use the F’s associated with Wilks 
to illustrate (aptitude by method: F = 2.19, p = .018; method: F = 2.46, p = .025; and 
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aptitude: F = 5.92, p = .001). Because the interaction is significant, we focus our interpre-
tation on it. The univariate tests for this effect on attitude and achievement are also both 
significant at the .05 level. Focusing on simple treatment effects for each level of apti-
tude, inspection of means and simple effects testing (not shown,) indicated that treatment 
effects were present only for those of average aptitude. For these students, treatments 2 
and 3 were generally more effective than other treatments for each dependent variable, 
as indicated by pairwise comparisons using a Bonferroni adjustment. This adjustment is 
used to provide for greater control of the family-wise type I error rate for the 10 pairwise 
comparisons involving method of instruction for those of average aptitude.

 Table 7.6: Syntax for Factorial MANOVA on SPSS and Simple Effects Analyses

TITLE ‘TWO WAY MANOVA’.
DATA LIST FREE/FACA FACB ATTIT ACHIEV.
BEGIN DATA.
1 1 15 11 1 1 9 7
1 2 19 11 1 2 12 9 1 2 12 6
1 3 14 13 1 3 9 9 1 3 14 15
1 4 19 14 1 4 7 8 1 4 6 6
1 5 14 16 1 5 14 8 1 5 18 16
2 1 18 13 2 1 8 11 2 1 6 6
2 2 25 24 2 2 24 23 2 2 26 19
2 3 29 23 2 3 28 26
2 4 11 14 2 4 14 10 2 4 8 7
2 5 18 17 2 5 11 13
3 1 11 9 3 1 16 15
3 2 13 11 3 2 10 11
3 3 17 10 3 3 7 9 3 3 7 9
3 4 15 9 3 4 13 13 3 4 7 7
3 5 17 12 3 5 13 15 3 5 9 12

END DATA.
LIST.
GLM ATTIT ACHIEV BY FACA FACB
/PRINT = DESCRIPTIVES.

Simple Effects Analyses
GLM
ATTIT BY FACA FACB
/PLOT = PROFILE (FACA*FACB) 
/EMMEANS = TABLES(FACB) COMPARE ADJ(BONFERRONI)
/EMMEANS = TABLES (FACA*FACB) COMPARE (FACB) ADJ(BONFERRONI).

GLM
ACHIEV BY FACA FACB
/PLOT = PROFILE (FACA*FACB) 
/EMMEANS = TABLES(FACB) COMPARE ADJ(BONFERRONI)
/EMMEANS = TABLES (FACA*FACB) COMPARE (FACB) ADJ(BONFERRONI).



 Table 7.7: Selected Results From Factorial MANOVA

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace .965 329.152b 2.000 24.000 .000
Wilks’ Lambda .035 329.152b 2.000 24.000 .000
Hotelling’s Trace 27.429 329.152b 2.000 24.000 .000
Roy’s Largest Root 27.429 329.152b 2.000 24.000 .000

FACA Pillai’s Trace .574      5.031 4.000 50.000 .002
Wilks’ Lambda .449      5.917b 4.000 48.000 .001

Hotelling’s Trace 1.179      6.780 4.000 46.000 .000

Roy’s Largest Root 1.135    14.187c 2.000 25.000 .000

FACB Pillai’s Trace .534 2.278 8.000 50.000 .037
Wilks’ Lambda .503 2.463b 8.000 48.000 .025
Hotelling’s Trace .916 2.633 8.000 46.000 .018
Roy’s Largest Root .827 5.167c 4.000 25.000 .004

FACA * 
FACB

Pillai’s Trace .757 1.905 16.000 50.000 .042
Wilks’ Lambda .333 2.196b 16.000 48.000 .018
Hotelling’s Trace 1.727 2.482 16.000 46.000 .008
Roy’s Largest Root 1.551 4.847c 8.000 25.000 .001

a Design: Intercept + FACA + FACB + FACA * FACB
b Exact statistic
c The statistic is an upper bound on F that yields a lower bound on the significance level.

Tests of Between-Subjects Effects

Source
Dependent  
Variable

Type III Sum  
of Squares df Mean Square F Sig.

Corrected 
Model

ATTIT 972.108a 14 69.436 3.768 .002
ACHIEV 764.608b 14 54.615 5.757 .000

Intercept ATTIT 7875.219   1 7875.219 427.382 .000
ACHIEV 6156.043   1 6156.043 648.915 .000

FACA ATTIT 256.508   2 128.254 6.960 .004
ACHIEV 267.558   2 133.779 14.102 .000

FACB ATTIT 237.906   4 59.477 3.228 .029
ACHIEV 189.881   4 47.470 5.004 .004

FACA * 
FACB

ATTIT 503.321   8 62.915 3.414 .009
ACHIEV 343.112   8 42.889 4.521 .002

Error ATTIT 460.667 25 18.427
ACHIEV 237.167 25 9.487

Total ATTIT 9357.000 40
ACHIEV 7177.000 40

Corrected 
Total

ATTIT 1432.775 39
ACHIEV 1001.775 39

a R Squared = .678 (Adjusted R Squared = .498)
b R Squared = .763 (Adjusted R Squared = .631)
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7.5 WEIGHTING OF THE CELL MEANS

In experimental studies that wind up with unequal cell sizes, it is reasonable to assume 
equal population sizes, and equal cell weighting is appropriate in estimating the grand 
mean. However, when sampling from intact groups (sex, age, race, socioeconomic 
status [SES], religions) in nonexperimental studies, the populations may well differ 
in size, and the sizes of the samples may reflect the different population sizes. In such 
cases, equally weighting the subgroup means will not provide an unbiased estimate 
of the combined (grand) mean, whereas weighting the means will produce an unbi-
ased estimate. In some situations, you may wish to use both weighted and unweighted 
cell means in a single factorial design, that is, in a semi-experimental design. In such 
designs one of the factors is an attribute factor (sex, SES, ethnicity, etc.) and the other 
factor is treatments.

Suppose for a given situation it is reasonable to assume there are twice as many middle 
SES cases in a population as lower SES, and that two treatments are involved. Forty 
lower SES participants are sampled and randomly assigned to treatments, and 80 mid-
dle SES participants are selected and assigned to treatments. Schematically then, the 
setup of the weighted treatment (column) means and unweighted SES (row) means is:

T1 T2 Unweighted means

SES Lower n11 = 20 n12 = 20 (μ11 + μ12) / 2
Middle n21 = 40 n22 = 40 (μ21 + μ22) / 2

Weighted means n n
n n

n n
n n

11 11 21 21

11 21

12 12 22 22

12 22

µ µ µ µ+
+

+
+

Note that Method 3 (type I sum of squares) the sequential or hierarchical approach, 
described in section 7.3 can be used to provide a partitioning of variance that imple-
ments a weighted means solution.

7.6 ANALYSIS PROCEDURES FOR TWO-WAY MANOVA

In this section, we summarize the analysis steps that provide a general guide for 
you to follow in conducting a two-way MANOVA where the focus is on examining 
effects for each of several outcomes. Section 7.7 applies the procedures to a fairly 
large data set, and section 7.8 presents an example results section. Note that pre-
liminary analysis activities for the two-way design are the same as for the one-way 
MANOVA as summarized in section 6.11, except that these activities apply to the 
cells of the two-way design. For example, for a 2 × 2 factorial design, the scores are 
assumed to follow a multivariate normal distribution with equal variance-covariance 
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matrices across each of the 4 cells. Since preliminary analysis for the two-factor 
design is similar to the one-factor design, we focus our summary of the analysis pro-
cedures on primary analysis.

7.6.1 Primary Analysis

1. Examine the Wilks’ lambda test for the multivariate interaction.
A. If this test is statistically significant, examine the F test of the two-way inter-

action for each dependent variable, using a Bonferroni correction unless the 
number of dependent variables is small (i.e., 2 or 3).

B. If an interaction is present for a given dependent variable, use simple effects 
analyses for that variable to interpret the interaction.

2. If a given univariate interaction is not statistically significant (or sufficiently 
strong) OR if the Wilks’ lambda test for the multivariate interaction is not statisti-
cally significant, examine the multivariate tests for the main effects.
A. If the multivariate test of a given main effect is statistically significant, exam-

ine the F test for the corresponding main effect (i.e., factor A or factor B) for 
each dependent variable, using a Bonferroni adjustment (unless the number of 
outcomes is small). Note that the main effect for any dependent variable for 
which an interaction was present may not be of interest due to the qualified 
nature of the simple effect description.

B. If the univariate F test is significant for a given dependent variable, use pair-
wise comparisons (if more than 2 groups are present) to describe the main 
effect. Use a Bonferroni adjustment for the pairwise comparisons to provide 
protection for the inflation of the type I error rate.

C. If no multivariate main effects are significant, do not proceed to the univariate 
test of main effects. If a given univariate main effect is not significant, do not 
conduct further testing (i.e., pairwise comparisons) for that main effect.

3. Use one or more effect size measures to describe the strength of the effects and/
or the differences in the means of interest. Commonly used effect size measures 
include multivariate partial eta square, univariate partial eta square, and/or raw 
score differences in means for specific comparisons of interest.

7.7 FACTORIAL MANOVA WITH SENIORWISE DATA

In this section, we illustrate application of the analysis procedures for two-way 
MANOVA using the SeniorWISE data set used in section 6.11, except that these 
data now include a second factor of gender (i.e., female, male). So, we now assume 
that the investigators recruited 150 females and 150 males with each being at least 
65 years old. Then, within each of these groups, the participants were randomly 
assigned to receive (a) memory training, which was designed to help adults main-
tain and/or improve their memory related abilities, (b) a health intervention con-
dition, which did not include memory training, or (c) a wait-list control condition. 
The active treatments were individually administered and posttest intervention 
measures were completed individually. The dependent variables are the same as 
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in section 6.11 and include memory self-efficacy (self-efficacy), verbal memory 
performance (verbal), and daily functioning skills (DAFS). Higher scores on these 
measures represent a greater (and preferred) level of performance. Thus, we have a 
3 (treatment levels) by 2 (gender groups) multivariate design with 50 participants 
in each of 6 cells.

7.7.1 Preliminary Analysis

The preliminary analysis activities for factorial MANOVA are the same as with 
one-way MANOVA except, of course, the relevant groups now are the six cells formed 
by the crossing of the two factors. As such, the scores in each cell (in the population) 
must be multivariate normal, have equal variance-covariance matrices, and be inde-
pendent. To facilitate examining the degree to which the assumptions are satisfied and 
to readily enable other preliminary analysis activities, Table 7.8 shows SPSS syntax 
for creating a cell membership variable for this data set. Also, the syntax shows how 
Mahalanobis distance values may be obtained for each case within each of the 6 cells, 
as such values are then used to identify multivariate outliers.

For this data set, there is no missing data as each of the 300 participants has a score for 
each of the study variables. There are no multivariate outliers as the largest within-cell 

 Table 7.8: SPSS Syntax for Creating a Cell Variable and Obtaining Mahalanobis Dis-
tance Values

*/ Creating Cell Variable.
IF (Group = 1 and Gender = 0) Cell=1.
IF (Group = 2 and Gender = 0) Cell=2.
IF (Group = 3 and Gender = 0) Cell=3.
IF (Group = 1 and Gender = 1) Cell=4.
IF (Group = 2 and Gender = 1) Cell=5.
IF (Group = 3 and Gender = 1) Cell=6.
EXECUTE.

*/ Organizing Output By Cell.
SORT CASES BY Cell.
SPLIT FILE SEPARATE BY Cell.

*/ Requesting within-cell Mahalanobis’ distances for each case.

REGRESSION
/STATISTICS COEFF ANOVA
/DEPENDENT Case
/METHOD=ENTER Self_Efficacy Verbal Dafs
/SAVE MAHAL.

*/ REMOVING SPLIT FILE.
SPLIT FILE OFF.
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Mahalanobis distance value, 10.61, is smaller than the chi-square critical value of 
16.27 (a = .001; df = 3 for the 3 dependent variables). Similarly, we did not detect 
any univariate outliers, as no within-cell z score exceeded a magnitude of 3. Also, 
inspection of the 18 histograms (6 cells by 3 outcomes) did not suggest the presence 
of any extreme scores. Further, examining the pooled within-cell correlations pro-
vided support for using the multivariate procedure as the three correlations ranged 
from .31 to .47.

In addition, there are no serious departures from the statistical assumptions 
associated with factorial MANOVA. Inspecting the 18 histograms did not sug-
gest any substantial departures of univariate normality. Further, no kurtosis or 
skewness value in any cell for any outcome exceeded a magnitude of .97, again, 
suggesting no substantial departure from normality. For the assumption of equal 
variance-covariance matrices, we note that the cell standard deviations (not shown) 
were fairly similar for each outcome. Also, Box’s M test (M = 30.53, p = .503), 
did not suggest a violation. Similarly, examining the results of Levene’s test for 
equality of variance (not shown) provided support that the dispersion of scores 
for self-efficacy ( p = .47), verbal performance ( p = .78), and functional status 
( p = .33) was similar across the six cells. For the independence assumption, the 
study design, as described in section 6.11, does not suggest any violation in part 
as treatments were individually administered to participants who also completed 
posttest measures individually.

7.7.2 Primary Analysis

Table 7.9 shows the syntax used for the primary analysis, and Tables 7.10 and 7.11 
show the overall multivariate and univariate test results. Inspecting Table 7.10 indi-
cates that an overall group-by-gender interaction is present in the set of outcomes, 
Wilks’ lambda = .946, F (6, 584) = 2.72, p = .013. Examining the univariate test 
results for the group-by-gender interaction in Table 7.11 suggests that this interac-
tion is present for DAFS, F (2, 294) = 6.174, p = .002, but not for self-efficacy F 
(2, 294) = 1.603, p = .203 or verbal F (2, 294) = .369, p = .692. Thus, we will focus 
on examining simple effects associated with the treatment for DAFS but not for the 
other outcomes. Of course, main effects may be present for the set of outcomes as 
well. The multivariate test results in Table 7.10 indicate that a main effect in the set 
of outcomes is present for both group, Wilks’ lambda = .748, F (6, 584) = 15.170, 
p < .001, and gender, Wilks’ lambda = .923, F (3, 292) = 3.292, p < .001, although 
we will focus on describing treatment effects, not gender differences, from this point 
on. The univariate test results in Table 7.11 indicate that a main effect of the treat-
ment is present for self-efficacy, F (2, 294) = 29.931, p < .001, and verbal F (2, 
294) = 26.514, p < .001. Note that a main effect is present also for DAFS but the 
interaction just noted suggests we may not wish to describe main effects. So, for 
self-efficacy and verbal, we will examine pairwise comparisons to examine treat-
ment effects pooling across the gender groups.



 Table 7.9: SPSS Syntax for Factorial MANOVA With SeniorWISE Data

GLM Self_Efficacy Verbal Dafs BY Group Gender
/SAVE=ZRESID
/EMMEANS=TABLES(Group)
/EMMEANS=TABLES(Gender)
/EMMEANS=TABLES(Gender*Group)
/PLOT=PROFILE(GROUP*GENDER GENDER*GROUP)
/PRINT=DESCRIPTIVE ETASQ HOMOGENEITY.

*Follow-up univariates for Self-Efficacy and Verbal to obtain 
pairwise comparisons; Bonferroni method used to maintain con-
sistency with simple effects analyses (for Dafs).

UNIANOVA Self_Efficacy BY Gender Group
/EMMEANS=TABLES(Group)
/POSTHOC=Group(BONFERRONI).

UNIANOVA Verbal BY Gender Group
/EMMEANS=TABLES(Group)
/POSTHOC=Group(BONFERRONI).

* Follow-up simple effects analyses for Dafs with Bonferroni 
method.

GLM
Dafs BY Gender Group
 /EMMEANS = TABLES (Gender*Group) COMPARE (Group) 
ADJ(Bonferroni).

 Table 7.10: SPSS Results of the Overall Multivariate Tests

Multivariate Testsa

Effect Value F
Hypothesis  
df Error df Sig.

Partial Eta 
Squared

Intercept Pillai’s 
Trace

.983 5678.271b 3.000 292.000 .000 .983

Wilks’ 
Lambda

.017 5678.271b 3.000 292.000 .000 .983

Hotelling’s 
Trace

58.338 5678.271b 3.000 292.000 .000 .983

Roy’s Larg-
est Root

58.338 5678.271b 3.000 292.000 .000 .983

GROUP Pillai’s 
Trace

.258 14.441 6.000 586.000 .000 .129

Wilks’ 
Lambda

.748 15.170b 6.000 584.000 .000 .135



Multivariate Testsa

Effect Value F
Hypothesis  
df Error df Sig.

Partial Eta 
Squared

Hotelling’s 
Trace

.328 15.900 6.000 582.000 .000 .141

Roy’s Larg-
est Root

.301 29.361c 3.000 293.000 .000 .231

GENDER Pillai’s 
Trace

.077 8.154b 3.000 292.000 .000 .077

Wilks’ 
Lambda

.923 8.154b 3.000 292.000 .000 .077

Hotelling’s 
Trace

.084 8.154b 3.000 292.000 .000 .077

Roy’s Larg-
est Root

.084 8.154b 3.000 292.000 .000 .077

GROUP * 
GENDER

Pillai’s 
Trace

.054 2.698 6.000 586.000 .014 .027

Wilks’ 
Lambda

.946 2.720b 6.000 584.000 .013 .027

Hotelling’s 
Trace

.057 2.743 6.000 582.000 .012 .027

Roy’s Larg-
est Root

.054 5.290c 3.000 293.000 .001 .051

a Design: Intercept + GROUP + GENDER + GROUP * GENDER
b Exact statistic
c The statistic is an upper bound on F that yields a lower bound on the significance level.

 Table 7.11: SPSS Results of the Overall Univariate Tests

Tests of Between-Subjects Effects

Source
Dependent 
Variable

Type III Sum 
of Squares df Mean Square F Sig.

Partial Eta 
Squared

Corrected 
Model

Self_Efficacy 5750.604a 5 1150.121 13.299 .000 .184
Verbal 4944.027b 5 988.805 10.760 .000 .155
DAFS 6120.099c 5 1224.020 14.614 .000 .199

Intercept Self_Efficacy 833515.776 1 833515.776 9637.904 .000 .970
Verbal 896000.120 1 896000.120 9750.188 .000 .971
DAFS 883559.339 1 883559.339 10548.810 .000 .973

GROUP Self_Efficacy 5177.087 2 2588.543 29.931 .000 .169
Verbal 4872.957 2 2436.478 26.514 .000 .153
DAFS 3642.365 2 1821.183 21.743 .000 .129

(Continued )
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Tests of Between-Subjects Effects

Source
Dependent 
Variable

Type III Sum 
of Squares df Mean Square F Sig.

Partial Eta 
Squared

GENDER Self_Efficacy 296.178 1 296.178 3.425 .065 .012
Verbal 3.229 1 3.229 .035 .851 .000
DAFS 1443.514 1 1443.514 17.234 .000 .055

GROUP * 
GENDER

Self_Efficacy 277.339 2 138.669 1.603 .203 .011
Verbal 67.842 2 33.921 .369 .692 .003
DAFS 1034.220 2 517.110 6.174 .002 .040

Error Self_Efficacy 25426.031 294 86.483
Verbal 27017.328 294 91.896
DAFS 24625.189 294 83.759

Total Self_Efficacy 864692.411 300
Verbal 927961.475 300
DAFS 914304.627 300

Corrected 
Total

Self_Efficacy 31176.635 299
Verbal 31961.355 299
DAFS 30745.288 299

a R Squared = .184 (Adjusted R Squared = .171)
b R Squared = .155 (Adjusted R Squared = .140)
c R Squared = .199 (Adjusted R Squared = .185)

 Table 7.11: (Continued)

Table 7.12 shows results for the simple effects analyses for DAFS focusing on the 
impact of the treatments. Examining the means suggests that group differences for 
females are not particularly large, but the treatment means for males appear quite dif-
ferent, especially for the memory training condition. This strong effect of the memory 
training condition for males is also evident in the plot in Table 7.12. For females, the F 
test for treatment mean differences, shown near the bottom of Table 7.12, suggests that 
no differences are present in the population, F(2, 294) = 2.405, p = .092. For males, 
on the other hand, treatment group mean differences are present F(2, 294) = 25.512, 
p < .001. Pairwise comparisons for males, using Bonferroni adjusted p values, indi-
cate that participants in the memory training condition outscored, on average, those 
in the health training ( p < .001) and control conditions ( p < .001). The difference in 
means between the health training and control condition is not statistically significant 
( p = 1.00).

Table 7.13 and Table 7.14 show the results of Bonferroni-adjusted pairwise compar-
isons of treatment group means (pooling across gender) for the dependent variables 
self-efficacy and verbal performance. The results in Table 7.13 indicate that the 
large difference in means between the memory training and health training condi-
tions is statistically significant ( p < .001) as is the difference between the memory 



 Table 7.12: SPSS Results of the Simple Effects Analyses for DAFS

Pairwise Comparisons

Dependent Variable: DAFS 

GENDER (I) GROUP (J) GROUP

Mean  
Difference 
(I-J) Std. Error Sig.b

95% Confidence 
Interval for  
Differenceb

Lower 
Bound

Upper 
Bound

FEMALE Memory 
Training

Health Training
Control

2.950
3.833

1.830
1.830

.324

.111
-1.458
-.574

7.357
8.241

Health 
Training

Memory 
Training
Control

-2.950

.884

1.830

1.830

.324

1.000

-7.357

-3.523

1.458

5.291
Control Memory 

Training
-3.833

-.884

1.830

1.830

.111

1.000

-8.241

-5.291

.574

3.523Health Training

MALE Memory 
Training

Health Training
Control

10.535*
11.973*

1.830
1.830

.000

.000
6.128
7.566

14.942
16.381

Health 
Training

Memory 
Training

-10.535* 1.830 .000 -14.942 -6.128

(Continued )

Estimated Marginal Means GENDER * GROUP

Estimates

Dependent Variable: DAFS 

GENDER GROUP Mean Std. Error

95% Confidence Interval

Lower  
Bound

Upper 
Bound

FEMALE Memory  
Training 54.337 1.294 51.790 56.884
Health  
Training
Control

51.388
50.504

1.294
1.294

48.840
47.956

53.935
53.051

MALE Memory  
Training 63.966 1.294 61.419

66.513

Health  
Training
Control

53.431 1.294 50.884 55.978
51.993 1.294 49.445 54.540



Pairwise Comparisons

Dependent Variable: DAFS 

GENDER (I) GROUP (J) GROUP

Mean  
Difference 
(I-J) Std. Error Sig.b

95% Confidence 
Interval for  
Differenceb

Lower 
Bound

Upper 
Bound

Control 1.438 1.830 1.000 -2.969 5.846
Control Memory 

Training
-11.973* 1.830 .000 -16.381 -7.566

Health Training -1.438 1.830 1.000 -5.846 2.969

Based on estimated marginal means
* The mean difference is significant at the .050 level.
b. Adjustment for multiple comparisons: Bonferroni.

Univariate Tests

Dependent Variable: DAFS

GENDER Sum of Squares Df Mean Square F Sig.

FEMALE Contrast 402.939 2 201.469 2.405 .092
Error 24625.189 294 83.759

MALE Contrast 4273.646 2 2136.823 25.512 .000
Error 24625.189 294 83.759

Each F tests the simple effects of GROUP within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

 Table 7.12: (Continued)

Estimated Marginal Means of DAFS

Gender

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

Female

50.00

52.50

55.00

57.50

60.00

62.50

Male

Health Training
Control

Memory Training
Group



 Table 7.13: SPSS Results of Pairwise Comparisons for Self-Efficacy

Post Hoc Tests GROUP

Dependent Variable: Self_Efficacy 

Bonferroni 

(I) GROUP (J) GROUP

Mean 
Difference 
(I-J)

Std. 
Error Sig.

95% Confidence 
Interval

Lower 
Bound

Upper 
Bound

Memory Training Health Training 7.856* 1.315 .000 4.689 11.022
Control 9.529* 1.315 .000 6.362 12.695

Health Training Memory Training -7.856* 1.315 .000 -11.022 -4.689
Control 1.673 1.315 .613 -1.494 4.840

Control Memory Training -9.529* 1.315 .000 -12.695 -6.362
Health Training -1.673 1.315 .613 -4.840 1.494

Based on observed means.
The error term is Mean Square(Error) = 86.483.
* The mean difference is significant at the .050 level.

 Table 7.14: SPSS Results of Pairwise Comparisons for Verbal Performance

(Continued )

Estimated Marginal Means

GROUP

Dependent Variable: Verbal 

GROUP Mean Std. Error

95% Confidence Interval

Lower 
Bound

Upper 
Bound

Memory Training 60.227 .959 58.341 62.114
Health Training 50.843 .959 48.956 52.730
Control 52.881 .959 50.994 54.768

Estimated Marginal Means

GROUP

Dependent Variable: Self_Efficacy 

GROUP Mean Std. Error

95% Confidence 
Interval

Lower 
Bound

Upper 
Bound

Memory Training 58.505 .930 56.675 60.336
Health Training 50.649 .930 48.819 52.480
Control 48.976 .930 47.146 50.807
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Based on observed means.
The error term is Mean Square(Error) = 91.896.
* The mean difference is significant at the .050 level.

 Table 7.14: (Continued)

training and control groups ( p < .001). The smaller difference in means between the 
health intervention and control condition is not statistically significant ( p = .613). 
Inspecting Table 7.14 indicates a similar pattern for verbal performance, where 
those receiving memory training have better average performance than participants 
receiving heath training ( p < .001) and those in the control group ( p < .001). The 
small difference between the latter two conditions is not statistically significant 
( p = .401).

7.8  EXAMPLE RESULTS SECTION FOR FACTORIAL  
MANOVA WITH SENIORWISE DATA

The goal of this study was to determine if at-risk older males and females obtain sim-
ilar or different benefits of training designed to help memory functioning across a 
set of memory-related variables. As such, 150 males and 150 females were randomly 

Post Hoc Tests GROUP

Multiple Comparisons

Dependent Variable: Verbal 

Bonferroni 

(I) GROUP
(J) 
GROUP

Mean 
Difference (I-J)

Std. 
Error Sig.

95% Confidence 
Interval

Lower Bound Upper 
Bound

Memory Training Health 
Training

9.384* 1.356 .000 6.120 12.649

Control 7.346* 1.356 .000 4.082 10.610
Health Training Memory 

Training
-9.384* 1.356 .000 -12.649 -6.120

Control -2.038 1.356 .401 -5.302 1.226
Control Memory 

Training
-7.346* 1.356 .000 -10.610 -4.082

Health 
Training

2.038 1.356 .401 -1.226 5.302
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assigned to memory training, a health intervention or a wait-list control condition. 
A two-way (treatment by gender) multiple analysis of variance (MANOVA) was con-
ducted with three memory-related dependent variables—memory self-efficacy, verbal 
memory performance, and daily functional status (DAFS)—all of which were col-
lected following the intervention.

Prior to conducting the factorial MANOVA, the data were examined to identify 
the degree of missing data, presence of outliers and influential observations, and 
the degree to which the outcomes were correlated. There were no missing data. No 
multivariate outliers were indicated as the largest within-cell Mahalanobis distance 
(10.61) was smaller than the chi-square critical value of 16.27 (.05, 3). Also, no 
univariate outliers were suggested as all within-cell univariate z scores were smaller 
than |3|. Further, examining the pooled within-cell correlations suggested that the 
outcomes are moderately and positively correlated, as these three correlations ranged 
from .31 to .47.

We also assessed whether the MANOVA assumptions seemed tenable. Inspecting 
histograms for each group for each dependent variable as well as the corresponding 
values for skew and kurtosis (all of which were smaller than |1|) did not indicate 
any material violations of the normality assumption. For the assumption of equal 
variance-covariance matrices, the cell standard deviations were fairly similar for 
each outcome, and Box’s M test (M = 30.53, p = .503) did not suggest a violation. 
In addition, examining the results of Levene’s test for equality of variance provided 
support that the dispersion of scores for self-efficacy ( p = .47), verbal performance 
( p = .78), and functional status ( p = .33) was similar across cells. For the independ-
ence assumption, the study design did not suggest any violation in part as treatments 
were individually administered to participants who also completed posttest measures 
individually.

Table 1 displays the means for each cell for each outcome. Inspecting these means 
suggests that participants in the memory training group generally had higher mean 
posttest scores than the other treatment conditions across each outcome. How-
ever, a significant multivariate test of the treatment-by-gender interaction, Wilks’ 
lambda = .946, F(6, 584) = 2.72, p = .013, suggested that treatment effects were dif-
ferent for females and males. Univariate tests for each outcome indicated that the 
two-way interaction is present for DAFS, F(2, 294) = 6.174, p = .002, but not for 
self-efficacy F(2, 294) = 1.603, p = .203 or verbal F(2, 294) = .369, p = .692. Simple 
effects analyses for DAFS indicated that treatment group differences were present 
for males, F(2, 294) = 25.512, p < .001, but not females, F(2, 294) = 2.405, p = .092. 
Pairwise comparisons for males, using Bonferroni adjusted p values, indicate that par-
ticipants in the memory training condition outscored, on average, those in the health 
training, t(294) = 5.76, p < .001, and control conditions t(294) = 6.54, p < .001. The 
difference in means between the health training and control condition is not statisti-
cally significant, t(294) = 0.79, p = 1.00.
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 Table 1: Treatment by Gender Means (SD) For Each Dependent Variable

Treatment conditiona 

Gender Memory training Health training Control

Self-efficacy

Females 56.15 (9.01) 50.33 (7.91) 48.67 (9.93)
Males 60.86 (8.86) 50.97 (8.80) 49.29 (10.98)

Verbal performance

Females 60.08 (9.41) 50.53 (8.54) 53.65 (8.96)
Males 60.37 (9.99) 51.16 (10.16) 52.11 (10.32)

Daily functional skills

Females 54.34 (9.16) 51.39 (10.61) 50.50 (8.29)
Males 63.97 (7.78) 53.43 (9.92) 51.99 (8.84)

a n = 50 per cell.

In addition, the multivariate test for main effects indicated that main effects were 
present for the set of outcomes for treatment condition, Wilks’ lambda = .748, F(6, 
584) = 15.170, p < .001, and gender, Wilks’ lambda = .923, F(3, 292) = 3.292, p < .001, 
although we focus here on treatment differences. The univariate F tests indicated that 
a main effect of the treatment was present for self-efficacy, F(2, 294) = 29.931, p < 
.001, and verbal F(2, 294) = 26.514, p < .001. For self-efficacy, pairwise comparisons 
(pooling across gender), using a Bonferroni-adjustment, indicated that participants in 
the memory training condition had higher posttest scores, on average, than those in the 
health training, t(294) = 5.97, p < .001, and control groups, t(294) = 7.25, p < .001, with 
no support for a mean difference between the latter two conditions ( p = .613). A similar 
pattern was present for verbal performance, where those receiving memory training had 
better average performance than participants receiving heath training t(294) = 6.92, p < 
.001 and those in the control group, t(294) = 5.42, p < .001. The small difference between 
the latter two conditions was not statistically significant, t(294) = −1.50, p = .401.

7.9 THREE-WAY MANOVA

This section is included to show how to set up SPSS syntax for running a three-way 
MANOVA, and to indicate a procedure for interpreting a three-way interaction. We 
take the aptitude by method example presented in section 7.4 and add sex as an addi-
tional factor. Then, assuming we will use the same two dependent variables, the only 
change that is required for the syntax to run the factorial MANOVA as presented in 
Table 7.6 is that the GLM command becomes:

GLM ATTIT ACHIEV BY FACA FACB SEX

We wish to focus our attention on the interpretation of a three-way interaction, if it 
were significant in such a design. First, what does a significant three-way interaction 
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mean in the context of a single outcome variable? If the three factors are denoted by A, 
B, and C, then a significant ABC interaction implies that the two-way interaction pro-
files for the different levels of the third factor are different. A nonsignificant three-way 
interaction means that the two-way profiles are the same; that is, the differences can be 
attributed to sampling error.

Example 7.3
Consider a sex, by treatment, by school grade design. Suppose that the two-way design 
(collapsed on grade) looked like this:

Treatments

1 2

Males 60 50
Females 40 42

This profile suggests a significant sex main effect and a significant ordinal interaction 
with respect to sex (because the male average is greater than the female average for 
each treatment, and, of course, much greater under treatment 1). But it does not tell 
the whole story. Let us examine the profiles for grades 6 and 7 separately (assuming 
equal cell n):

Grade 6 Grade 7

T1 T2 T1 T1

M 65 50 M 55 50
F 40 47 F 40 37

We see that for grade 6 that the same type of interaction is present as before, whereas 
for grade 7 students there appears to be no interaction effect, as the difference in means 
between males and females is similar across treatments (15 points vs. 13 points). The 
two profiles are distinctly different. The point is, school grade further moderates the 
sex-by-treatment interaction.

In the context of aptitude–treatment interaction (ATI) research, Cronbach (1975) had 
an interesting way of characterizing higher order interactions:

When ATIs are present, a general statement about a treatment effect is misleading 
because the effect will come or go depending on the kind of person treated. . . . An 
ATI result can be taken as a general conclusion only if it is not in turn moderated 
by further variables. If Aptitude×Treatment×Sex interact, for example, then the 
Aptitude×Treatment effect does not tell the story. Once we attend to interactions, 
we enter a hall of mirrors that extends to infinity. (p. 119)
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Thus, to examine the nature of a significant three-way multivariate interaction, one 
might first determine which of the individual variables are significant (by examining 
the univariate F’s for the three-way interaction). If any three-way interactions are pres-
ent for a given dependent variable, we would then consider the two-way profiles to see 
how they differ for those outcomes that are significant.

7.10 FACTORIAL DESCRIPTIVE DISCRIMINANT ANALYSIS

In this section, we present a discriminant analysis approach to describe multivariate 
effects that are statistically significant in a factorial MANOVA. Unlike the traditional 
MANOVA approach presented previously in this chapter, where univariate follow-up 
tests were used to describe statistically significant multivariate interactions and main 
effects, the approach described in this section uses linear combinations of variables to 
describe such effects. Unlike the traditional MANOVA approach, discriminant analy-
sis uses the correlations among the discriminating variables to create composite varia-
bles that separate groups. When such composites are formed, you need to interpret the 
composites and use them to describe group differences. If you have not already read 
Chapter 10, which introduces discriminant analysis in the context of a simpler single 
factor design, you should read that chapter before taking on the factorial presentation 
presented here.

We use the same SeniorWISE data set used in section 7.7. So, for this example, the two 
factors are treatment having 3 levels and gender with 2 levels. The dependent variables 
are self-efficacy, verbal, and DAFS. Identical to traditional two-way MANOVA, there 
will be overall multivariate tests for the two-way interaction and for the two main 
effects. If the interaction is significant, you can then conduct a simple effects analyses 
by running separate one-way descriptive discriminant analyses for each level of a fac-
tor of interest. Given the interest in examining treatment effects with the SeniorWISE 
data, we would run a one-way discriminant analysis for females and then a separate 
one-way discriminant analysis for males with treatment as the single factor. According 
to Warner (2012), such an analysis, for this example, allows us to examine the com-
posite variables that best separate treatment groups for females and that best separate 
treatment groups for males.

In addition to the multivariate test for the interaction, you should also examine 
the multivariate tests for main effects and identify the composite variables associ-
ated with such effects, since the composite variables may be different from those 
involved in the interaction. Also, of course, if the multivariate test for the interaction 
is not significant, you would also examine the multivariate tests for the main effects. 
If the multivariate main effect were significant, you can identify the composite vari-
ables involved in the effect by running a single-factor descriptive discriminant anal-
ysis pooling across (or ignoring) the other factor. So, for example, if there were a 
significant multivariate main effect for the treatment, you could run a descriptive 
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discriminant analysis with treatment as the single factor with all cases included. 
Such an analysis was done in section 10.7. If a multivariate main effect for gender 
were significant, you could run a descriptive discriminant analysis with gender as 
the single factor.

We now illustrate these analyses for the SeniorWISE data. Note that the preliminary 
analysis for the factorial descriptive discriminant analysis is identical to that described 
in section 7.7.1, so we do not describe it any further here. Also, in section 7.7.2, we 
reported that the multivariate test for the overall group-by-gender interaction indicated 
that this effect was statistically significant, Wilks’ lambda = .946, F(6, 584) = 2.72, 
p = .013. In addition, the multivariate test results indicated a statistically significant 
main effect for treatment group, Wilks’ lambda = .748, F(6, 584) = 15.170, p < .001, 
and gender Wilks’ lambda = .923, F(3, 292) = 3.292, p < .001. Given the interest in 
describing treatment effects for these data, we focus the follow-up analysis on treat-
ment effects.

To describe the multivariate gender-by-group interaction, we ran descriptive discri-
minant analysis for females and a separate analysis for males. Table 7.15 provides the 
syntax for this simple effects analysis, and Tables 7.16 and 7.17 provide the discri-
minant analysis results for females and males, respectively. For females, Table 7.16 
indicates that one linear combination of variables separates the treatment groups, 
Wilks’ lambda = .776, chi-square (6) = 37.10, p < .001. In addition, the square of the 
canonical correlation (.442) for this function, when converted to a percent, indicates 
that about 19% of the variation for the first function is between treatment groups. 
Inspecting the standardized coefficients suggest that this linear combination is domi-
nated by verbal performance and that high scores for this function correspond to high 
verbal performance scores. In addition, examining the group centroids suggests that, 
for females, the memory training group has much higher verbal performance scores, 
on average, than the other treatment groups, which have similar means for this com-
posite variable.

 Table 7.15: SPSS Syntax for Simple Effects Analysis Using Discriminant Analysis

* The first set of commands requests analysis results separately for each group (females, then 
males).
SORT CASES BY Gender.
SPLIT FILE SEPARATE BY Gender.

* The following commands are the typical discriminant analysis syntax.

DISCRIMINANT

/GROUPS=Group(1 3)
/VARIABLES=Self_Efficacy Verbal Dafs
/ANALYSIS = ALL
/STATISTICS=MEAN STDDEV UNIVF.



 Table 7.16: SPSS Discriminant Analysis Results for Females
Summary of Canonical Discriminant Functions

Eigenvaluesa

Function Eigenvalue % of Variance Cumulative % Canonical Correlation

1 .240b 85.9  85.9 .440
2 .040b 14.1 100.0 .195

a GeNder = FeMale
b First 2 canonical discriminant functions were used in the analysis.

Wilks’ Lambdaa

Test of  
Function(s)

Wilks’  
Lambda

Chi-square df Sig.

1 through 2 .776 37.100 6 .000
2 .962  5.658 2 .059
a GENDER = FEMALE

Standardized Canonical Discriminant Function Coefficientsa

Function

1 2

Self_Efficacy .452 .850
Verbal .847 -.791
DAFS -.218 .434

a GENDER = FEMALE

Structure Matrixa

Function

1 2

Verbal .905* -.293
Self_Efficacy .675 .721*
DAFS .328 .359*

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant 
functions.
Variables ordered by absolute size of correlation within function.
* Largest absolute correlation between each variable and any discriminant function
a GENDER = FEMALE

Functions at Group Centroidsa

GROUP

Function

1 2

Memory Training .673 .054
Health Training -.452 .209
Control -.221 -.263

Unstandardized canonical discriminant functions evaluated at group means.
a GENDER = FEMALE



297chapter 7       

For males, Table 7.17 indicates that one linear combination of variables separates the 
treatment groups, Wilks’ lambda = .653, chi-square (6) = 62.251, p < .001. In addition, the 
square of the canonical correlation (.5832) for this composite, when converted to a percent, 
indicates that about 34% of the composite score variation is between treatment. Inspect-
ing the standardized coefficients indicates that self-efficacy and DAFS are the impor-
tant variables that comprise the composite. Examining the group centroids indicates that, 
for males, the memory group has much greater self-efficacy and daily functional skills 
(DAFS) than the other treatment groups, which have similar means for this composite.

Summarizing the simple effects analysis following the statistically significant mul-
tivariate test of the gender-by-group interaction, we conclude that females assigned 
to the memory training group had much higher verbal performance than the other 
treatment groups, whereas males assigned to the memory training group had much 
higher self-efficacy and daily functioning skills. There appear to be trivial differences 
between the health intervention and control groups.

 Table 7.17: SPSS Discriminant Analysis Results for Males

Summary of Canonical Discriminant Functions

Eigenvaluesa

Function Eigenvalue % of Variance Cumulative % Canonical Correlation

1 .516b 98.0   98.0 .583
2 .011b   2.0 100.0 .103
a GENDER = MALE
b First 2 canonical discriminant functions were used in the analysis.

Wilks’ Lambdaa

Test of 
Function(s) Wilks’ Lambda Chi-square Df Sig.

1 through 2 .653 62.251 6 .000
2 .989   1.546 2 .462
a GENDER = MALE

Standardized Canonical Discriminant Function Coefficientsa

           Function

1 2

Self_Efficacy .545 -.386
Verbal .050   1.171
DAFS .668 -.436
a GENDER = MALE

(Continued )
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 Table 7.17: Continued

Structure Matrixa

Function

1 2

DAFS .844* .025
Self_Efficacy .748* -.107
Verbal .561 .828*

pooled within-groups correlations between discriminating variables and 
standardized canonical discriminant functions.
Variables ordered by absolute size of correlation within function.
* largest absolute correlation between each variable and any discriminant function.
a GeNder = Male

Functions at Group Centroidsa

GROUP

Function

1 2

Memory Training .999 .017
Health Training -.400 -.133
Control -.599 .116

Unstandardized canonical discriminant functions evaluated at group means
a GeNder = Male

Also, as noted, the multivariate main effect of the treatment was also statistically sig-
nificant. The follow-up analysis for this effect, which is the same as reported in Chap-
ter 10 (section 10.7.2), indicates that the treatment groups differed on two composite 
variables. The first of these composites is composed of self-efficacy and verbal perfor-
mance, while the second composite is primarily verbal performance. However, with 
the factorial analysis of the data, we learned that treatment group differences related to 
these composite variables are different between females and males. Thus, we would not 
use results involving the treatment main effects to describe treatment group differences.

7.11 SUMMARY

The advantages of a factorial over a one way design are discussed. For equal cell n, all 
three methods that Overall and Spiegel (1969) mention yield the same F tests. For une-
qual cell n (which usually occurs in practice), the three methods can yield quite differ-
ent results. The reason for this is that for unequal cell n the effects are correlated. There 
is a consensus among experts that for unequal cell size the regression approach (which 
yields the UNIQUE contribution of each effect) is generally preferable. In SPSS and 
SAS, type III sum of squares is this unique sum of squares. A traditional MANOVA 
approach for factorial designs is provided where the focus is on examining each out-
come that is involved in the main effects and interaction. In addition, a discriminant 
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analysis approach for multivariate factorial designs is illustrated and can be used when 
you are interested in identifying if there are meaningful composite variables involved 
in the main effects and interactions.

7.12 EXERCISES

1. consider the following 2 × 4 equal cell size MaNoVa data set (two dependent 
variables, Y1 and Y2, and factors Faca and FacB):

B

A

  6, 10 13, 16   9, 11 21, 19
  7, 8 11, 15   8, 8 18, 15
  9, 9 17, 18 14, 9 16, 13

11, 8 10, 12   4, 12 11, 10
  7, 6 11, 13 10, 8   9, 8
10, 5 14, 10 11, 13   8, 15

(a) run the factorial MaNoVa with SpSS using the commands: GLM Y1 Y2 
BY FACA FACB.

(b) Which of the multivariate tests for the three different effects is (are) signif-
icant at the .05 level?

(c) For the effect(s) that show multivariate significance, which of the individu-
al variables (at .025 level) are contributing to the multivariate significance?

(d) run the data with SpSS using the commands:

GLM Y1 Y2 BY FACA FACB /METHOD=SSTYPE(1).

recall that SSTYPE(1) requests the sequential sum of squares associated 
with Method 3 as described in section 7.3. are the results different? explain.

2. an investigator has the following 2 × 4 MaNoVa data set for two dependent 
variables:

B

A

13, 16   9, 11 21, 19
7, 8 11, 15   8, 8 18, 15

17, 18 14, 9 16, 13
13, 11

11, 8 10, 12 14, 12 11, 10
  7, 6 11, 13 10, 8   9, 8
10, 5 14, 10 11, 13   8, 15
  6, 12 17, 12
  9, 7 13, 14
11, 14
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 (a) run the factorial MaNoVa on SpSS using the commands:

GLM Y1 Y2 BY FACA FACB

/EMMEANS=TABLES(FACA)

/EMMEANS=TABLES(FACB)

/EMMEANS=TABLES(FACA*FACB)

/PRINT=HOMOGENEITY.

(b) Which of the multivariate tests for the three effects are significant at the .05 
level?

(c) For the effect(s) that show multivariate significance, which of the individu-
al variables contribute to the multivariate significance at the .025 level?

(d) is the homogeneity of the covariance matrices assumption for the cells 
tenable at the .05 level?

(e) run the factorial MaNoVa on the data set using the sequential sum of 
squares (type i) option of SpSS. are the univariate F ratios different?  
explain.
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Chapter 8

ANALYSIS OF COVARIANCE

8.1 INTRODUCTION

Analysis of covariance (ANCOVA) is a statistical technique that combines regres-
sion analysis and analysis of variance. It can be helpful in nonrandomized studies in 
drawing more accurate conclusions. However, precautions have to be taken, otherwise 
analysis of covariance can be misleading in some cases. In this chapter we indicate 
what the purposes of ANCOVA are, when it is most effective, when the interpretation 
of results from ANCOVA is “cleanest,” and when ANCOVA should not be used. We 
start with the simplest case, one dependent variable and one covariate, with which 
many readers may be somewhat familiar. Then we consider one dependent variable 
and several covariates, where our previous study of multiple regression is helpful. 
Multivariate analysis of covariance (MANCOVA) is then considered, where there are 
several dependent variables and several covariates. We show how to run MANCOVA 
on SAS and SPSS, interpret analysis results, and provide a guide for analysis.

8.1.1  Examples of Univariate and Multivariate Analysis of 
Covariance

What is a covariate? A potential covariate is any variable that is significantly corre-
lated with the dependent variable. That is, we assume a linear relationship between 
the covariate (x) and the dependent variable (y ). Consider now two typical univari-
ate ANCOVAs with one covariate. In a two-group pretest–posttest design, the pretest 
is often used as a covariate, because how the participants score before treatments is 
generally correlated with how they score after treatments. Or, suppose three groups 
are compared on some measure of achievement. In this situation IQ may be used as a 
covariate, because IQ is usually at least moderately correlated with achievement.

You should recall that the null hypothesis being tested in ANCOVA is that the adjusted 
population means are equal. Since a linear relationship is assumed between the covari-
ate and the dependent variable, the means are adjusted in a linear fashion. We consider 
this in detail shortly in this chapter. Thus, in interpreting output, for either univariate 
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or MANCOVA, it is the adjusted means that need to be examined. It is important to 
note that SPSS and SAS do not automatically provide the adjusted means; they must 
be requested.

Now consider two situations where MANCOVA would be appropriate. A counselor 
wishes to examine the effect of two different counseling approaches on several personal-
ity variables. The subjects are pretested on these variables and then posttested 2 months 
later. The pretest scores are the covariates and the posttest scores are the dependent vari-
ables. Second, a teacher wishes to determine the relative efficacy of two different meth-
ods of teaching 12th-grade mathematics. He uses three subtest scores of achievement on 
a posttest as the dependent variables. A plausible set of covariates here would be grade 
in math 11, an IQ measure, and, say, attitude toward education. The null hypothesis that 
is tested in MANCOVA is that the adjusted population mean vectors are equal. Recall 
that the null hypothesis for MANOVA was that the population mean vectors are equal.

Four excellent references for further study of ANCOVA/MANCOVA are available: an 
elementary introduction (Huck, Cormier, & Bounds, 1974), two good classic review 
articles (Cochran, 1957; Elashoff, 1969), and especially a very comprehensive and 
thorough text by Huitema (2011).

8.2 PURPOSES OF ANCOVA

ANCOVA is linked to the following two basic objectives in experimental design:

1. Elimination of systematic bias
2. Reduction of within group or error variance.

The best way of dealing with systematic bias (e.g., intact groups that differ system-
atically on several variables) is through random assignment of participants to groups, 
thus equating the groups on all variables within sampling error. If random assignment 
is not possible, however, then ANCOVA can be helpful in reducing bias.

Within-group variability, which is primarily due to individual differences among the 
participants, can be dealt with in several ways: sample selection (participants who are 
more homogeneous will vary less on the criterion measure), factorial designs (block-
ing), repeated-measures analysis, and ANCOVA. Precisely how covariance reduces 
error will be considered soon. Because ANCOVA is linked to both of the basic objec-
tives of experimental design, it certainly is a useful tool if properly used and interpreted.

In an experimental study (random assignment of participants to groups) the main pur-
pose of covariance is to reduce error variance, because there will be no systematic bias. 
However, if only a small number of participants can be assigned to each group, then 
chance differences are more possible and covariance is useful in adjusting the posttest 
means for the chance differences.
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In a nonexperimental study the main purpose of covariance is to adjust the posttest 
means for initial differences among the groups that are very likely with intact groups. 
It should be emphasized, however, that even the use of several covariates does not 
equate intact groups, that is, does not eliminate bias. Nevertheless, the use of two or 
three appropriate covariates can make for a fairer comparison.

We now give two examples to illustrate how initial differences (systematic bias) on 
a key variable between treatment groups can confound the interpretation of results. 
Suppose an experimental psychologist wished to determine the effect of three meth-
ods of extinction on some kind of learned response. There are three intact groups to 
which the methods are applied, and it is found that the average number of trials to 
extinguish the response is least for Method 2. Now, it may be that Method 2 is more 
effective, or it may be that the participants in Method 2 didn’t have the response as 
thoroughly ingrained as the participants in the other two groups. In the latter case, the 
response would be easier to extinguish, and it wouldn’t be clear whether it was the 
method that made the difference or the fact that the response was easier to extinguish 
that made Method 2 look better. The effects of the two are confounded, or mixed 
together. What is needed here is a measure of degree of learning at the start of the 
extinction trials (covariate). Then, if there are initial differences between the groups, 
the posttest means will be adjusted to take this into account. That is, covariance will 
adjust the posttest means to what they would be if all groups had started out equally 
on the covariate.

As another example, suppose we are comparing the effect of two different teaching 
methods on academic achievement for two different groups of students. Suppose 
we learn that prior to implementing the treatment methods, the groups differed on 
motivation to learn. Thus, if the academic performance of the group with greater 
initial motivation was better than the other group at posttest, we would not know if 
the performance differences were due to the teaching method or due to this initial 
difference on motivation. Use of ANCOVA may provide for a fairer comparison 
because it compares posttest performance assuming that the groups had the same 
initial motivation.

8.3  ADJUSTMENT OF POSTTEST MEANS AND REDUCTION OF 
ERROR VARIANCE

As mentioned earlier, ANCOVA adjusts the posttest means to what they would be if 
all groups started out equally on the covariate, at the grand mean. In this section we 
derive the general equation for linearly adjusting the posttest means for one covariate. 
Before we do that, however, it is important to discuss one of the assumptions under-
lying the analysis of covariance. That assumption for one covariate requires equal 
within-group population regression slopes. Consider a three-group situation, with 15 
participants per group. Suppose that the scatterplots for the three groups looked as 
given in Figure 8.1.
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Recall from beginning statistics that the x and y scores for each participant determine 
a point in the plane. Requiring that the slopes be equal is equivalent to saying that the 
nature of the linear relationship is the same for all groups, or that the rate of change 
in y as a function of x is the same for all groups. For these scatterplots the slopes are 
different, with the slope being the largest for group 2 and smallest for group 3. But the 
issue is whether the population slopes are different and whether the sample slopes dif-
fer sufficiently to conclude that the population values are different. With small sample 
sizes as in these scatterplots, it is dangerous to rely on visual inspection to determine 
whether the population values are equal, because of considerable sampling error. For-
tunately, there is a statistic for this, and later we indicate how to obtain it on SAS and 
SPSS. In deriving the equation for the adjusted means we are going to assume the 
slopes are equal. What if the slopes are not equal? Then ANCOVA is not appropriate, 
and we indicate alternatives later in the chapter.

The details of obtaining the adjusted mean for the ith group (i.e., any group) are 
given in Figure 8.2. The general equation follows from the definition for the slope 
of a straight line and some basic algebra. In Figure 8.3 we show the adjusted means 
geometrically for a hypothetical three-group data set. A positive correlation is assumed 
between the covariate and the dependent variable, so that a higher mean on x implies 
a higher mean on y. Note that because group 3 scored below the grand mean on the 
covariate, its mean is adjusted upward. On the other hand, because the mean for group 
2 on the covariate is above the grand mean, covariance estimates that it would have 
scored lower on y if its mean on the covariate was lower (at grand mean), and therefore 
the mean for group 2 is adjusted downward.

8.3.1 Reduction of Error Variance

Consider a teaching methods study where the dependent variable is chemistry achieve-
ment and the covariate is IQ. Then, within each teaching method there will be con-
siderable variability on chemistry achievement due to individual differences among 
the students in terms of ability, background, attitude, and so on. A sizable portion 
of this within-variability, we assume, is due to differences in IQ. That is, chemistry 

 Figure 8.1: Scatterplots of y and x for three groups.
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 Figure 8.2: Deriving the general equation for the adjusted means in covariance.

Regression line

x

x – xi

x – xi

b(x – xi)
+ b(x – xi)

(x, yi)

(xi, yi)

xi

yi

yi – yi

yi – yi

yi – yi
yi yi

x

y

Slope of straight line = b =
change in y
change in x

b =

=
=

– b(xi – x)yi yi=

achievement scores differ partly because the students differ in IQ. If we can statisti-
cally remove this part of the within-variability, a smaller error term results, and hence 
a more powerful test of group posttest differences can be obtained. We denote the cor-
relation between IQ and chemistry achievement by rxy. Recall that the square of a cor-
relation can be interpreted as “variance accounted for.” Thus, for example, if rxy = .71, 
then (.71)2 = .50, or 50% of the within-group variability on chemistry achievement can 
be accounted for by variability on IQ.

We denote the within-group variability of chemistry achievement by MSw, the usual 
error term for ANOVA. Now, symbolically, the part of MSw that is accounted for by 
IQ is MSwrxy

2. Thus, the within-group variability that is left after the portion due to the 
covariate is removed, is

MS MS r MS rw w xy w xy− = −( )2 21 ,   (1)

and this becomes our new error term for analysis of covariance, which we denote by 
MSw*. Technically, there is an additional factor involved,
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MS MS r fw w xy e
* = −( ) + −( ){ }1 1 1 22 ,  (2)

where fe is error degrees of freedom. However, the effect of this additional factor is 
slight as long as N ≥ 50.

To show how much of a difference a covariate can make in increasing the sensitivity 
of an experiment, we consider a hypothetical study. An investigator runs a one-way 
ANOVA (three groups with 20 participants per group), and obtains F = 200/100 = 2, 
which is not significant, because the critical value at .05 is 3.18. He had pretested the 
subjects, but did not use the pretest as a covariate because the groups didn’t differ 
significantly on the pretest (even though the correlation between pretest and posttest 
was .71). This is a common mistake made by some researchers who are unaware of an 
important purpose of covariance, that of reducing error variance. The analysis is redone 
by another investigator using ANCOVA. Using the equation that we just derived for 
the new error term for ANCOVA she finds:

 Figure 8.3: Regression lines and adjusted means for three-group analysis of covariance.
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MSw
* [ (. ) ]≈ − =100 1 71 502

Thus, the error term for ANCOVA is only half as large as the error term for ANOVA! It 
is also necessary to obtain a new MSb for ANCOVA; call it MSb*. Because the formula 
for MSb* is complicated, we do not pursue it. Let us assume the investigator obtains 
the following F ratio for covariance analysis:

F* = 190 / 50 = 3.8

This is significant at the .05 level. Therefore, the use of covariance can make the dif-
ference between not finding significance and finding significance due to the reduced 
error term and the subsequent increase in power. Finally, we wish to note that MSb* 
can be smaller or larger than MSb, although in a randomized study the expected values 
of the two are equal.

8.4 CHOICE OF COVARIATES

In general, any variables that theoretically should correlate with the dependent vari-
able, or variables that have been shown to correlate for similar types of participants, 
should be considered as possible covariates. The ideal is to choose as covariates var-
iables that of course are significantly correlated with the dependent variable and that 
have low correlations among themselves. If two covariates are highly correlated (say 
.80), then they are removing much of the same error variance from y; use of x2 will 
not offer much additional power. On the other hand, if two covariates (x1 and x2) have 
a low correlation (say .20), then they are removing relatively distinct pieces of the 
error variance from y, and we will obtain a much greater total error reduction. This 
is illustrated in Figure 8.4 with Venn diagrams, where the circle represents error var-
iance on y.

The shaded portion in each case represents the additional error reduction due to add-
ing x2 to the model that already contains x1, that is, the part of error variance on y it 
removes that x1 did not. Note that this shaded area is much smaller when x1 and x2 are 
highly correlated.

Solid lines—part of
variance on y that x1
accounts for.

Dashed lines—part of
variance on y that x2
accounts for.

x1 and x2 High correl.x1 and x2 Low correl.

 Figure 8.4: Venn diagrams with solid lines representing the part of variance on y that x1 
accounts for and dashed lines representing the variance on y that x2 accounts for.
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If the dependent variable is achievement in some content area, then one should always 
consider the possibility of at least three covariates:

1. A measure of ability in that specific content area
2. A measure of general ability (IQ measure)
3. One or two relevant noncognitive measures (e.g., attitude toward education, study 

habits, etc.).

An example of this was given earlier, where we considered the effect of two different 
teaching methods on 12th-grade mathematics achievement. We indicated that a plausi-
ble set of covariates would be grade in math 11 (a previous measure of ability in math-
ematics), an IQ measure, and attitude toward education (a noncognitive measure).

In studies with small or relatively small group sizes, it is particularly imperative to 
consider the use of two or three covariates. Why? Because for small or medium effect 
sizes, which are very common in social science research, power for the test of a treat-
ment will be poor for small group size. Thus, one should attempt to reduce the error 
variance as much as possible to obtain a more sensitive (powerful) test.

Huitema (2011, p. 231) recommended limiting the number of covariates to the extent 
that the ratio

C J
N

+ −( )
<

1
10. ,   (3)

where C is the number of covariates, J is the number of groups, and N is total sample size. 
Thus, if we had a three-group problem with a total of 60 participants, then (C + 2) / 60 < .10 
or C < 4. We should use fewer than four covariates. If this ratio is > .10, then the estimates 
of the adjusted means are likely to be unstable. That is, if the study were replicated, it 
could be expected that the equation used to estimate the adjusted means in the original 
study would yield very different estimates for another sample from the same population.

8.4.1 Importance of Covariates Being Measured Before Treatments

To avoid confounding (mixing together) of the treatment effect with a change on the 
covariate, one should use information from only those covariates gathered before treat-
ments are administered. If a covariate that was measured after treatments is used and 
that variable was affected by treatments, then the change on the covariate may be cor-
related with change on the dependent variable. Thus, when the covariate adjustment is 
made, you will remove part of the treatment effect.

8.5 ASSUMPTIONS IN ANALYSIS OF COVARIANCE

Analysis of covariance rests on the same assumptions as analysis of variance. Note that 
when assessing assumptions, you should obtain the model residuals, as we show later, 
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and not the within-group outcome scores (where the latter may be used in ANOVA). 
Three additional assumptions are a part of ANCOVA. That is, ANCOVA also assumes:

1. A linear relationship between the dependent variable and the covariate(s).*
2. Homogeneity of the regression slopes (for one covariate), that is, that the slope of 

the regression line is the same in each group. For two covariates the assumption is 
parallelism of the regression planes, and for more than two covariates the assump-
tion is known as homogeneity of the regression hyperplanes.

3. The covariate is measured without error.

Because covariance rests partly on the same assumptions as ANOVA, any violations 
that are serious in ANOVA (such as the independence assumption) are also serious 
in ANCOVA. Violation of all three of the remaining assumptions of covariance may 
be serious. For example, if the relationship between the covariate and the dependent 
variable is curvilinear, then the adjustment of the means will be improper. In this case, 
two possible courses of action are:

1. Seek a transformation of the data that is linear. This is possible if the relationship 
between the covariate and the dependent variable is monotonic.

2. Fit a polynomial ANCOVA model to the data.

There is always measurement error for the variables that are typically used as covari-
ates in social science research, and measurement error causes problems in both rand-
omized and nonrandomized designs, but is more serious in nonrandomized designs. As 
Huitema (2011) notes, in randomized experimental designs, the power of ANCOVA 
is reduced when measurement error is present but treatment effect estimates are not 
biased, provided that the treatment does not impact the covariate.

When measurement error is present on the covariate, then treatment effects can be 
seriously biased in nonrandomized designs. In Figure 8.5 we illustrate the effect meas-
urement error can have when comparing two different populations with analysis of 
covariance. In the hypothetical example, with no measurement error we would con-
clude that group 1 is superior to group 2, whereas with considerable measurement error 
the opposite conclusion is drawn. This example shows that if the covariate means are 
not equal, then the difference between the adjusted means is partly a function of the 
reliability of the covariate. Now, this problem would not be of particular concern if 
we had a very reliable covariate such as IQ or other cognitive variables from a good 
standardized test. If, on the other hand, the covariate is a noncognitive variable, or a 
variable derived from a nonstandardized instrument (which might well be of question-
able reliability), then concern would definitely be justified.

A violation of the homogeneity of regression slopes can also yield misleading results 
if ANCOVA is used. To illustrate this, we present in Figure 8.6 a situation where the 

* Nonlinear analysis of covariance is possible (cf., Huitema, 2011, chap. 12), but is rarely done.



 Figure 8.5: Effect of measurement error on covariance results when comparing subjects from 
two different populations.
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 Figure 8.6: Effect of heterogeneous slopes on interpretation in ANCOVA.
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assumption is met and two situations where the assumption is violated. Notice that 
with homogeneous slopes the estimated superiority of group 1 at the grand mean is an 
accurate estimate of group 1’s superiority for all levels of the covariate, since the lines 
are parallel. On the other hand, for case 1 of heterogeneous slopes, the superiority of 
group 1 (as estimated by ANCOVA) is not an accurate estimate of group 1’s superiority 
for other values of the covariate. For x = a, group 1 is only slightly better than group 2, 
whereas for x = b, the superiority of group 1 is seriously underestimated by covariance. 
The point is, when the slopes are unequal there is a covariate by treatment interaction. 
That is, how much better group 1 is depends on which value of the covariate we specify.

For case 2 of heterogeneous slopes, the use of covariance would be totally mis-
leading. Covariance estimates no difference between the groups, while for x = c,  
group 2 is quite superior to group 1. For x = d, group 1 is superior to group 2. We 
indicate later in the chapter, in detail, how the assumption of equal slopes is tested 
on SPSS.

8.6 USE OF ANCOVA WITH INTACT GROUPS

It should be noted that some researchers (Anderson, 1963; Lord, 1969) have argued 
strongly against using ANCOVA with intact groups. Although we do not take this 
position, it is important that you be aware of the several limitations or possible dan-
gers when using ANCOVA with intact groups. First, even the use of several covariates 
will not equate intact groups, and one should never be deluded into thinking it can. 
The groups may still differ on some unknown important variable(s). Also, note that 
equating groups on one variable may result in accentuating their differences on other 
variables.

Second, recall that ANCOVA adjusts the posttest means to what they would be if all 
the groups had started out equal on the covariate(s). You then need to consider whether 
groups that are equal on the covariate would ever exist in the real world. Elashoff 
(1969) gave the following example:

Teaching methods A and B are being compared. The class using A is composed 
of high-ability students, whereas the class using B is composed of low-ability 
students. A covariance analysis can be done on the posttest achievement scores 
holding ability constant, as if A and B had been used on classes of equal and aver-
age ability. . . . It may make no sense to think about comparing methods A and 
B for students of average ability, perhaps each has been designed specifically for 
the ability level it was used with, or neither method will, in the future, be used for 
students of average ability. (p. 387)

Third, the assumptions of linearity and homogeneity of regression slopes need to be 
satisfied for ANCOVA to be appropriate.
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A fourth issue that can confound the interpretation of results is differential growth of 
participants in intact or self-selected groups on some dependent variable. If the natural 
growth is much greater in one group (treatment) than for the control group and covar-
iance finds a significance difference after adjusting for any pretest differences, then it 
is not clear whether the difference is due to treatment, differential growth, or part of 
each. Bryk and Weisberg (1977) discussed this issue in detail and propose an alterna-
tive approach for such growth models.

A fifth problem is that of measurement error. Of course, this same problem is present 
in randomized studies. But there the effect is merely to attenuate power. In nonrand-
omized studies measurement error can seriously bias the treatment effect. Reichardt 
(1979), in an extended discussion on measurement error in ANCOVA, stated:

Measurement error in the pretest can therefore produce spurious treatment effects 
when none exist. But it can also result in a finding of no intercept difference when 
a true treatment effect exists, or it can produce an estimate of the treatment effect 
which is in the opposite direction of the true effect. (p. 164)

It is no wonder then that Pedhazur (1982), in discussing the effect of measurement 
error when comparing intact groups, said:

The purpose of the discussion here was only to alert you to the problem in the hope 
that you will reach two obvious conclusions: (1) that efforts should be directed to 
construct measures of the covariates that have very high reliabilities and (2) that 
ignoring the problem, as is unfortunately done in most applications of ANCOVA, 
will not make it disappear. (p. 524)

Huitema (2011) discusses various strategies that can be used for nonrandomized 
designs having covariates.

Given all of these problems, you may well wonder whether we should abandon the 
use of ANCOVA when comparing intact groups. But other statistical methods for 
analyzing this kind of data (such as matched samples, gain score ANOVA) suffer 
from many of the same problems, such as seriously biased treatment effects. The 
fact is that inferring cause–effect from intact groups is treacherous, regardless of the 
type of statistical analysis. Therefore, the task is to do the best we can and exercise 
considerable caution, or as Pedhazur (1982) put it, “the conduct of such research, 
indeed all scientific research, requires sound theoretical thinking, constant vigilance, 
and a thorough understanding of the potential and limitations of the methods being 
used” (p. 525).

8.7 ALTERNATIVE ANALYSES FOR PRETEST–POSTTEST DESIGNS

When comparing two or more groups with pretest and posttest data, the following 
three other modes of analysis are possible:
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1. An ANOVA is done on the difference or gain scores (posttest–pretest).
2. A two-way repeated-measures ANOVA (this will be covered in Chapter 12) 

is done. This is called a one between (the grouping variable) and one within 
(pretest–posttest part) factor ANOVA.

3. An ANOVA is done on residual scores. That is, the dependent variable is regressed 
on the covariate. Predicted scores are then subtracted from observed dependent 
scores, yielding residual scores ( ).êi  An ordinary one-way ANOVA is then per-
formed on these residual scores. Although some individuals feel this approach is 
equivalent to ANCOVA, Maxwell, Delaney, and Manheimer (1985) showed the 
two methods are not the same and that analysis on residuals should be avoided.

The first two methods are used quite frequently. Huck and McLean (1975) and Jen-
nings (1988) compared the first two methods just mentioned, along with the use of 
ANCOVA for the pretest–posttest control group design, and concluded that ANCOVA 
is the preferred method of analysis. Several comments from the Huck and McLean arti-
cle are worth mentioning. First, they noted that with the repeated-measures approach 
it is the interaction F that is indicating whether the treatments had a differential effect, 
and not the treatment main effect. We consider two patterns of means to illustrate the 
interaction of interest.

Situation 1 Situation 2

Pretest Posttest Pretest Posttest

Treatment 70 80 Treatment 65 80
Control 60 70 Control 60 68

In Situation 1 the treatment main effect would probably be significant, because there 
is a difference of 10 in the row means. However, the difference of 10 on the posttest 
just transferred from an initial difference of 10 on the pretest. The interaction would 
not be significant here, as there is no differential change in the treatment and con-
trol groups here. Of course, in a randomized study, we should not observe such 
between-group differences on the pretest. On the other hand, in Situation 2, even 
though the treatment group scored somewhat higher on the pretest, it increased 15 
points from pretest to posttest, whereas the control group increased just 8 points. That 
is, there was a differential change in performance in the two groups, and this differ-
ential change is the interaction that is being tested in repeated measures ANOVA. 
One way of thinking of an interaction effect is as a “difference in the differences.” 
This is exactly what we have in Situation 2, hence a significant interaction effect.

Second, Huck and McLean (1975) noted that the interaction F from the repeated- 
measures ANOVA is identical to the F ratio one would obtain from an ANOVA on the 
gain (difference) scores. Finally, whenever the regression coefficient is not equal to 
1 (generally the case), the error term for ANCOVA will be smaller than for the gain 
score analysis and hence the ANCOVA will be a more sensitive or powerful analysis.
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Although not discussed in the Huck and McLean paper, we would like to add a cau-
tion concerning the use of gain scores. It is a fairly well-known measurement fact that 
the reliability of gain (difference) scores is generally not good. To be more specific, 
as the correlation between the pretest and posttest scores approaches the reliability 
of the test, the reliability of the difference scores goes to 0. The following table from 
Thorndike and Hagen (1977) quantifies things:

Correlation between tests

Average reliability of two tests

.50 .60 .70 .80 .90 .95

.00 .50 .60 .70 .80 .90 .95

.40 .17 .33 .50 .67 .83 .92

.50 .00 .20 .40 .60 .80 .90

.60 .00 .25 .50 .75 .88

.70 .00 .33 .67 .83

.80 .00 .50 .75

.90 .00 .50

.95 .00

If our dependent variable is some noncognitive measure, or a variable derived from a 
nonstandardized test (which could well be of questionable reliability), then a reliability 
of about .60 or so is a definite possibility. In this case, if the correlation between pretest 
and posttest is .50 (a realistic possibility), the reliability of the difference scores is only 
.20. On the other hand, this table also shows that if our measure is quite reliable (say 
.90), then the difference scores will be reliable provided that the correlation is not too 
high. For example, for reliability = .90 and pre–post correlation = .50, the reliability of 
the differences scores is .80.

8.8  ERROR REDUCTION AND ADJUSTMENT OF POSTTEST 
MEANS FOR SEVERAL COVARIATES

What is the rationale for using several covariates? First, the use of several covariates 
may result in greater error reduction than can be obtained with just one covariate. The 
error reduction will be substantially greater if the covariates have relatively low inter-
correlations among themselves (say < .40). Second, with several covariates, we can 
make a better adjustment for initial differences between intact groups.

For one covariate, the amount of error reduction is governed primarily by the magnitude 
of the correlation between the covariate and the dependent variable (see Equation 2). 
For several covariates, the amount of error reduction is determined by the magnitude 
of the multiple correlation between the dependent variable and the set of covariates 
(predictors). This is why we indicated earlier that it is desirable to have covariates 
with low intercorrelations among themselves, for then the multiple correlation will 
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be larger, and we will achieve greater error reduction. Also, because R2 has a variance 
accounted for interpretation, we can speak of the percentage of within variability on 
the dependent variable that is accounted for by the set of covariates.

Recall that the equation for the adjusted posttest mean for one covariate was given by:

y y b x xi i i
* ( ),= − −  (4)

where b is the estimated common regression slope.

With several covariates (x1, x2, . . ., xk), we are simply regressing y on the set of xs, and 
the adjusted equation becomes an extension:

y y b x x b x x b x xj j j j k kj k
* = − −( ) − −( ) − − −( )1 1 1 2 2 2  ,  (5)

where the bi are the regression coefficients, x j
−

1  is the mean for the covariate 1 in group 
j, x j

−
2  is the mean for covariate 2 in group j, and so on, and the xi

−  are the grand means 
for the covariates. We next illustrate the use of this equation on a sample MANCOVA 
problem.

8.9  MANCOVA—SEVERAL DEPENDENT VARIABLES AND 
SEVERAL COVARIATES

In MANCOVA we are assuming there is a significant relationship between the set of 
dependent variables and the set of covariates, or that there is a significant regression 
of the ys on the xs. This is tested through the use of Wilks’ Λ. We are also assuming, 
for more than two covariates, homogeneity of the regression hyperplanes. The null 
hypothesis that is being tested in MANCOVA is that the adjusted population mean 
vectors are equal:

H
adj adj adj adj0 1 2 3: µ µ µ µ= = = = j

In testing the null hypothesis in MANCOVA, adjusted W and T matrices are needed; 
we denote these by W* and T*. In MANOVA, recall that the null hypothesis was 
tested using Wilks’ Λ. Thus, we have:

Test
Statistic

MANOVA MANCOVA

*
*

*
Λ Λ= =

W
T

W

T

The calculation of W* and T* involves considerable matrix algebra, which we wish 
to avoid. For those who are interested in the details, however, Finn (1974) has a nicely 
worked out example.
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In examining the output from statistical packages it is important to first make two 
checks to determine whether MANCOVA is appropriate:

1. Check to see that there is a significant relationship between the dependent varia-
bles and the covariates.

2. Check to determine that the homogeneity of the regression hyperplanes is satisfied.

If either of these is not satisfied, then covariance is not appropriate. In particular, if 
condition 2 is not met, then one should consider using the Johnson–Neyman technique, 
which determines a region of nonsignificance, that is, a set of x values for which the 
groups do not differ, and hence for values of x outside this region one group is superior 
to the other. The Johnson–Neyman technique is described by Huitema (2011), and 
extended discussion is provided in Rogosa (1977, 1980).

Incidentally, if the homogeneity of regression slopes is rejected for several groups, 
it does not automatically follow that the slopes for all groups differ. In this case, one 
might follow up the overall test with additional homogeneity tests on all combinations 
of pairs of slopes. Often, the slopes will be homogeneous for many of the groups. In 
this case one can apply ANCOVA to the groups that have homogeneous slopes, and 
apply the Johnson–Neyman technique to the groups with heterogeneous slopes. At 
present, neither SAS nor SPSS offers the Johnson–Neyman technique.

8.10  TESTING THE ASSUMPTION OF HOMOGENEOUS 
HYPERPLANES ON SPSS

Neither SAS nor SPSS automatically provides the test of the homogeneity of the 
regression hyperplanes. Recall that, for one covariate, this is the assumption of equal 
regression slopes in the groups, and that for two covariates it is the assumption of 
parallel regression planes. To set up the syntax to test this assumption, it is necessary 
to understand what a violation of the assumption means. As we indicated earlier (and 
displayed in Figure 8.4), a violation means there is a covariate-by-treatment interac-
tion. Evidence that the assumption is met means the interaction is not present, which is 
consistent with the use of MANCOVA.

Thus, what is done on SPSS is to set up an effect involving the interaction (for a given 
covariate), and then test whether this effect is significant. If so, this means the assump-
tion is not tenable. This is one of those cases where researchers typically do not want 
significance, for then the assumption is tenable and covariance is appropriate. With 
the SPSS GLM procedure, the interaction can be tested for each covariate across the 
multiple outcomes simultaneously.

Example 8.1: Two Dependent Variables and One Covariate
We call the grouping variable TREATS, and denote the dependent variables by 
Y1 and Y2, and the covariate by X1. Then, the key parts of the GLM syntax that 
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produce a test of the assumption of no treatment-covariate interaction for any of the 
outcomes are

GLM Y1 Y2 BY TREATS WITH X1
/DESIGN=TREATS X1 TREATS*X1.

Example 8.2: Three Dependent Variables and Two Covariates
We denote the dependent variables by Y1, Y2, and Y3, and the covariates by X1 and X2. 
Then, the relevant syntax is

GLM Y1 Y2 Y3 BY TREATS WITH X1 X2
/DESIGN=TREATS X1 X2 TREATS*X1 TREATS*X2.

These two syntax lines will be embedded in others when running a MANCOVA on 
SPSS, as you can see in a computer example we consider later. With the previous two 
examples and the computer examples, you should be able to generalize the setup of the 
control lines for testing homogeneity of regression hyperplanes for any combination of 
dependent variables and covariates.

8.11  EFFECT SIZE MEASURES FOR GROUP COMPARISONS IN 
MANCOVA/ANCOVA

A variety of effect size measures are available to describe the differences in adjusted 
means. A raw score (unstandardized) difference in adjusted means should be reported 
and may be sufficient if the scale of the dependent variable is well known and easily 
understood. In addition, as discussed in Olejnik and Algina (2000) a standardized dif-
ference in adjusted means between two groups (essentially a Cohen’s d measure) may 
be computed as

d
y y

MSW
adj adj=

−1 2
1 2/ ,

where MSW is the pooled mean squared error from a one-way ANOVA that includes 
the treatment as the only explanatory variable (thus excluding any covariates). This 
effect size measure, among other things, assumes that (1) the covariates are participant 
attribute variables (or more properly variables whose variability is intrinsic to the pop-
ulation of interest, as explained in Olejnik and Algina, 2000) and (2) the homogeneity 
of variance assumption for the outcome is satisfied.

In addition, one may also use proportion of variance explained effect size measures 
for treatment group differences in MANOVA/ANCOVA. For example, for a given 
outcome, the proportion of variance explained by treatment group differences may be 
computed as

η2 =
SSeffect
SStotal

,
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where SSeffect is the sum of squares due to the treatment from the ANCOVA and SStotal is 
the total sum of squares for a given dependent variable. Note that computer software 
commonly reports partial η2, which is not the effect size discussed here and which 
removes variation due to the covariate from SStotal . Conceptually, η2 describes the 
strength of the treatment effect for the general population, whereas partial η2 describes 
the strength of the treatment for participants having the same values on the covariates 
(i.e., holding scores constant on all covariates). In addition, an overall multivariate 
strength of association, multivariate eta square (also called tau square), can be com-
puted and is

η Λmultivariate
2 1

1= − r ,

where Λ is Wilk’s lambda and r is the smaller of (p, q), where p is the number of 
dependent variables and q is the degrees of freedom for the treatment effect. This 
effect size is interpreted as the proportion of generalized variance in the set of out-
comes that is due the treatment. Use of these effect size measures is illustrated in 
Example 8.4.

8.12 TWO COMPUTER EXAMPLES

We now consider two examples to illustrate (1) how to set up syntax to run MAN-
COVA on SAS GLM and then SPSS GLM, and (2) how to interpret the output, includ-
ing determining whether use of covariates is appropriate. The first example uses 
artificial data and is simpler, having just two dependent variables and one covariate, 
whereas the second example uses data from an actual study and is a bit more complex, 
involving two dependent variables and two covariates. We also conduct some prelimi-
nary analysis activities (checking for outliers, assessing assumptions) with the second 
example.

Example 8.3: MANCOVA on SAS GLM
This example has two groups, with 15 participants in group 1 and 14 participants in 
group 2. There are two dependent variables, denoted by POSTCOMP and POSTHIOR 
in the SAS GLM syntax and on the printout, and one covariate (denoted by PRE-
COMP). The syntax for running the MANCOVA analysis is given in Table 8.1, along 
with annotation.

Table 8.2 presents two multivariate tests for determining whether MANCOVA is 
appropriate, that is, whether there is a significant relationship between the two depend-
ent variables and the covariate, and whether there is no covariate by group interaction. 
The multivariate test at the top of Table 8.2 indicates there is a significant relationship 
between the covariate and the set of outcomes (F = 21.46, p = .0001). Also, the multi-
variate test in the middle of the table shows there is not a covariate-by-group interac-
tion effect (F = 1.90, p < .1707). This supports the decision to use MANCOVA.
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 Table 8.1: SAS GLM Syntax for Two-Group MANCOVA: Two Dependent Variables and 
One Covariate

TITLE ‘MULTIVARIATE ANALYSIS OF COVARIANCE’; DATA COMP;

INPUT GPID PRECOMP POSTCOMP POSTHIOR @@;

LINES;

1 15 17 3 1 10 6 3 1 13 13 1 1 14 14 8

1 12 12 3 1 10 9 9 1 12 12 3 1 8 9 12

1 12 15 3 1 8 10 8 1 12 13 1 1 7 11 10

1 12 16 1 1 9 12 2 1 12 14 8

2 9 9 3 2 13 19 5 2 13 16 11 2 6 7 18

2 10 11 15 2 6 9 9 2 16 20 8 2 9 15 6

2 10 8 9 2 8 10 3 2 13 16 12 2 12 17 20

2 11 18 12 2 14 18 16

PROC PRINT;

PROC REG;

 MODEL POSTCOMP POSTHIOR = PRECOMP;

MTEST;

 PROC GLM;

CLASS GPID;

MODEL POSTCOMP POSTHIOR = PRECOMP GPID PRECOMP*GPID;

MANOVA H = PRECOMP*GPID;

 PROC GLM;

CLASS GPID; 

MODEL POSTCOMP POSTHIOR = PRECOMP GPID;

MANOVA H = GPID;

 LSMEANS GPID/PDIFF;
RUN;

 PROC REG is used to examine the relationship between the two dependent variables and the covariate. 
The MTEST is needed to obtain the multivariate test.
 Here GLM is used with the MANOVA statement to obtain the multivariate test of no overall PRECOMP 
BY GPID interaction effect.
 GLM is used again, along with the MANOVA statement, to test whether the adjusted population mean 
vectors are equal.
 This statement is needed to obtain the adjusted means.

The multivariate null hypothesis tested in MANCOVA is that the adjusted population 
mean vectors are equal, that is,

H0
11

21

12

22

: .
µ

µ

µ

µ

*

*

*

*









 =
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 Table 8.2: Multivariate Tests for Significant Regression, Covariate-by-Treatment Inter-
action, and Group Differences

Multivariate Test:

Multivariate Statistics and Exact F Statistics

S = 1 M = 0 N = 12

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.37722383 21.46 2 26 0.0001
Pillar’s Trace 0.62277617 21.46 2 26 0.0001
Hotelling-Lawley Trace 1.65094597 21.46 2 26 0.0001
Roy’s Greatest Root 1.65094597 21.46 2 26 0.0001

MANOVA Test Criteria and Exact F Statistics for the Hypothesis  
of no Overall PRECOMP*GPID Effect

H = Type III SS&CP Matrix for PRECOMP*GPID E = Error SS&CPMatrix

S = 1 M = 0 N = 11

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.86301048 1.90 2 24 0.1707
Pillar’s Trace 0.13698952 1.90 2 24 0.1707
Hotelling-Lawley Trace 0.15873448 1.90 2 24 0.1707
Roy’s Greatest Root 0.15873448 1.90 2 24 0.1707

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no Overall GPID Effect

H = Type III SS&CP Matrix for GPID E = Error SS&CP Matrix

S = 1 M = 0 N = 11.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.64891393 6.76 2 25 0.0045
Pillar’s Trace 0.35108107 6.76 2 25 0.0045
Hotelling-Lawley Trace 0.54102455 6.76 2 25 0.0045
Roy’s Greatest Root 0.54102455 6.76 2 25 0.0045

The multivariate test at the bottom of Table 8.2 (F = 6.76, p = .0045) shows that 
we reject the multivariate null hypothesis at the .05 level, and hence conclude that 
the groups differ on the set of adjusted means. The univariate ANCOVA follow-up F 
tests in Table 8.3 (F = 5.26 for POSTCOMP, p = .03, and F = 9.84 for POSTHIOR, 
p = .004) indicate that adjusted means differ for each of the dependent variables. The 
adjusted means for the variables are also given in Table 8.3.

Can we have confidence in the reliability of the adjusted means? From Huitema’s 
inequality we need C + (J − 1) / N < .10. Because here J = 2 and N = 29, we obtain  
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 Table 8.3: Univariate Tests for Group Differences and Adjusted Means

Source DF Type I SS Mean Square F Value Pr > F

PRECOMP 1 237.6895679 237.6895679 43.90 <0.001
GPID 1 28.4986009 28.4986009 5.26 0.0301

Source DF Type III SS Mean Square F Value Pr > F

PRECOMP 1 247.9797944 247.9797944 45.80 <0.001
GPID 1 28.4986009 28.4986009 5.26 0.0301

Source DF Type I SS Mean Square F Value Pr > F

PRECOMP 1 17.6622124 17.6622124 0.82 0.3732
GPID 1 211.5902344 211.5902344 9.84 0.0042

Source DF Type III SS Mean Square F Value Pr > F

PRECOMP 1 10.2007226 10.2007226 0.47 0.4972
GPID 1 211.5902344 211.5902344 9.84 0.0042

General Linear Models Procedure Least Squares Means

GPID POSTCOMP Pr > |T| H0:
LSMEAN LSMEAN1 = LSMEAN2

1 12.0055476 0.0301
2 13.9940562
GPID POSTHIOR Pr > |T| H0:

LSMEAN LSMEAN1 = LSMEAN2
1 5.0394385 0.0042
2 10.4577444

(C + 1) / 29 < .10 or C < 1.9. Thus, we should use fewer than two covariates for reliable 
results, and we have used just one covariate.

Example 8.4: MANCOVA on SPSS MANOVA
Next, we consider a social psychological study by Novince (1977) that examined the 
effect of behavioral rehearsal (group 1) and of behavioral rehearsal plus cognitive 
restructuring (combination treatment, group 3) on reducing anxiety (NEGEVAL) and 
facilitating social skills (AVOID) for female college freshmen. There was also a con-
trol group (group 2), with 11 participants in each group. The participants were pre-
tested and posttested on four measures, thus the pretests were the covariates.

For this example we use only two of the measures: avoidance and negative evalua-
tion. In Table 8.4 we present syntax for running the MANCOVA, along with anno-
tation explaining what some key subcommands are doing. Table 8.5 presents syntax 
for obtaining within-group Mahalanobis distance values that can be used to identify 
multivariate outliers among the variables. Tables 8.6, 8.7, 8.8, 8.9, and 8.10 present 
selected analysis results. Specifically, Table 8.6 presents descriptive statistics for 
the study variables, Table 8.7 presents results for tests of the homogeneity of the 
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regression planes, and Table 8.8 shows tests for homogeneity of variance. Table 8.9 
provides the overall multivariate tests as well as follow-up univariate tests for the 
MANCOVA, and Table 8.10 presents the adjusted means and Bonferroni-adjusted 
comparisons for adjusted mean differences. As in one-way MANOVA, the Bonfer-
roni adjustments guard against type I error inflation due to the number of pairwise 
comparisons.   

Before we use the MANCOVA procedure, we examine the data for potential outliers, 
examine the shape of the distributions of the covariates and outcomes, and inspect 
descriptive statistics. Using the syntax in Table 8.5, we obtain the Mahalanobis dis-
tances for each case to identify if multivariate outliers are present on the set of depend-
ent variables and covariates. The largest obtained distance is 7.79, which does not 
exceed the chi-square critical value (.001, 4) of 18.47. Thus, no multivariate outliers 

 Table 8.4: SPSS MANOVA Syntax for Three-Group Example: Two Dependent Variables 
and Two Covariates

TITLE ‘NOVINCE DATA — 3 GP ANCOVA-2 DEP VARS AND 2 COVS’.

DATA LIST FREE/GPID AVOID NEGEVAL PREAVOID PRENEG.

BEGIN DATA.

1 91 81 70 102 1 107 132 121 71 1 121 97 89 76 1 86 88 80 85
1 137 119 123 117 1 138 132 112 106 1 133 116 126 97
1 127 101 121 85 1 114 138 80 105 1 118 121 101 113 1 114 72 112 76
2 107 88 116 97 2 76 95 77 64 2 116 87 111 86 2 126 112 121 106
2 104 107 105 113 2 96 84 97 92 2 127 88 132 104 2 99 101 98 81
2 94 87 85 96 2 92 80 82 88 2 128 109 112 118
3 121 134 96 96 3 140 130 120 110 3 148 123 130 111 3 147 155 145 118
3 139 124 122 105 3 121 123 119 122 3 141 155 104 139 3 143 131 121 103
3 120 123 80 77 3 140 140 121 121 3 95 103 92 94

END DATA.

LIST.

GLM AVOID NEGEVAL BY GPID WITH PREAVOID PRENEG
/PRINT=DESCRIPTIVE ETASQ
 /DESIGN=GPID PREAVOID PRENEG GPID*PREAVOID GPID*PRENEG.
 GLM AVOID NEGEVAL BY GPID WITH PREAVOID PRENEG
/EMMEANS=TABLES(GPID) COMPARE ADJ(BONFERRONI)
 /PLOT=RESIDUALS
 /SAVE=RESID ZRESID
 /PRINT=DESCRIPTIVE ETASQ HOMOGENEITY
 /DESIGN=PREAVOID PRENEG GPID.

 With the first set of GLM commands, the design subcommand requests a test of the equality of regression 
planes assumption for each outcome. In particular, GPID*PREAVOID GPID*PRENEG creates the 
product variables needed to test the interactions of interest.
 This second set of GLM commands produces the standard MANCOVA results. The EMMEANS subcom-
mand requests comparisons of adjusted means using the Bonferroni procedure.
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 Table 8.5: SPSS Syntax for Obtaining Within-Group Mahalanobis Distance Values

 SORT CASES BY gpid(A).
SPLIT FILE by gpid.

 REGRESSION
/STATISTICS COEFF OUTS R ANOVA
/DEPENDENT case
/METHOD=ENTER avoid negeval preavoid preneg
/SAVE MAHAL.
EXECUTE.
SPLIT FILE OFF.

 To obtain the Mahalanobis’ distances within groups, cases must first be sorted by the grouping variable. 
The SPLIT FILE command is needed to obtain the distances for each group separately.
 The regression procedure obtains the distances. Note that case (which is the case ID) is the 
dependent variable, which is irrelevant here because the procedure uses information from the 
“predictors” only in computing the distance values. The “predictor” variables here are the dependent 
variables and covariates used in the MANCOVA, which are entered with the METHOD subcommand.

are indicated. We also computed within-group z scores for each of the variables sepa-
rately and did not find any observation lying more than 2.5 standard deviations from 
the respective group mean, suggesting no univariate outliers are present. In addition, 
examining histograms of each of the variables as well as scatterplots of each outcome 
and each covariate for each group did not suggest any unusual values and suggested 
that the distributions of each variable appear to be roughly symmetrical. Further, 
examining the scatterplots suggested that each covariate is linearly related to each of 
the outcome variables, supporting the linearity assumption.

Table 8.6 shows the means and standard deviations for each of the study variables 
by treatment group (GPID). Examining the group means for the outcomes (AVOID, 
NEGEVAL) indicates that Group 3 has the highest means for each outcome and Group 
2 has the lowest. For the covariates, Group 3 has the highest mean and the means for 
Groups 2 and 1 are fairly similar. Given that random assignment has been properly 
done, use of MANCOVA (or ANCOVA) is preferable to MANOVA (or ANOVA) for 
the situation where covariate means appear to differ across groups because use of the 
covariates properly adjusts for the differences in the covariates across groups. See 
Huitema (2011, pp. 202–208) for a discussion of this issue. 

Having some assurance that there are no outliers present, the shapes of the distributions 
are fairly symmetrical, and linear relationships are present between the covariates and 
the outcomes, we now examine the formal assumptions associated with the procedure. 
(Note though that the linearity assumption has already been assessed.) First, Table 8.7 
provides the results for the test of the assumption that there is no treatment-covariate 
interaction for the set of outcomes, which the GLM procedure performs separately for 
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Report

GPID AVOID NEGEVAL PREAVOID PRENEG

1.00 Mean 116.9091 108.8182 103.1818 93.9091

N 11 11 11 11

Std. deviation 17.23052 22.34645 20.21296 16.02158

2.00 Mean 105.9091 94.3636 103.2727 95.0000

N 11 11 11 11

Std. deviation 16.78961 11.10201 17.27478 15.34927

3.00 Mean 132.2727 131.0000 113.6364 108.7273

N 11 11 11 11

Std. deviation 16.16843 15.05988 18.71509 16.63785

 Table 8.6: Descriptive Statistics for the Study Variables by Group

each covariate. The results suggest that there is no interaction between the treatment 
and PREAVOID for any outcome, multivariate F = .277, p = .892 (corresponding to 
Wilks’ Λ) and no interaction between the treatment and PRENEG for any outcome, 
multivariate F = .275, p = .892. In addition, Box’s M test, M = 6.689, p = .418, does 
not indicate the variance-covariance matrices of the dependent variables differs across 
groups. Note that Box’s M does not test the assumption that the variance-covariance 
matrices of the residuals are similar across groups. However, Levene’s test assesses 
whether the residuals for a given outcome have the same variance across groups. The 
results of these tests, shown in Table 8.8, provide support that this assumption is not 
violated for the AVOID outcome, F = 1.184, p = .320 and for the NEGEVAL outcome, 
F = 1.620, p = .215. Further, Table 8.9 shows that PREAVOID is related to the set of 
outcomes, multivariate F = 17.659, p < .001, as is PRENEG, multivariate F = 4.379, 
p = .023.      

Having now learned that there is no interaction between the treatment and covar-
iates for any outcome, that the residual variance is similar across groups for each 
outcome, and that the each covariate is related to the set of outcomes, we attend to 
the assumption that the residuals from the MANCOVA procedure are independently 
distributed and follow a multivariate normal distribution in each of the treatment 
populations. Given that the treatments were individually administered and individ-
uals completed the assessments on an individual basis, we have no reason to sus-
pect that the independence assumption is violated. To assess normality, we examine 
graphs and compute skewness and kurtosis of the residuals. The syntax in Table 8.4 
obtains the residuals from the MANCOVA procedure for the two outcomes for each 
group. Inspecting the histograms does not suggest a serious departure from normal-
ity, which is supported by the skewness and kurtosis values, none of which exceeds 
a magnitude of 1.5.
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 Table 8.8: Homogeneity of Variance Tests for MANCOVA

Box’s test of equality of covariance matricesa

Box’s M 6.689
F 1.007
df1 6
df2 22430.769
Sig. .418

Tests the null hypothesis that the observed covariance matrices of the  
dependent variables are equal across groups.
a Design: Intercept + PREAVOID + PRENEG + GPID

 Table 8.7: Multivariate Tests for No Treatment-Covariate Interactions

Multivariate Testsa

Effect Value F
Hypothesis 
df

Error 
df Sig.

Partial 
eta 
squared

Intercept Pillai’s Trace .200 2.866b 2.000 23.000 .077 .200
Wilks’ Lambda .800 2.866b 2.000 23.000 .077 .200
Hotelling’s Trace .249 2.866b 2.000 23.000 .077 .200
Roy’s Largest Root .249 2.866b 2.000 23.000 .077 .200

GPID Pillai’s Trace .143 .922 4.000 48.000 .459 .071
Wilks’ Lambda .862 .889b 4.000 46.000 .478 .072
Hotelling’s Trace .156 .856 4.000 44.000 .498 .072
Roy’s Largest Root .111 1.334c 2.000 24.000 .282 .100

PREAVOID Pillai’s Trace .553 14.248b 2.000 23.000 .000 .553
Wilks’ Lambda .447 14.248b 2.000 23.000 .000 .553
Hotelling’s Trace 1.239 14.248b 2.000 23.000 .000 .553
Roy’s Largest Root 1.239 14.248b 2.000 23.000 .000 .553

PRENEG Pillai’s Trace .235 3.529b 2.000 23.000 .046 .235
Wilks’ Lambda .765 3.529b 2.000 23.000 .046 .235
Hotelling’s Trace .307 3.529b 2.000 23.000 .046 .235
Roy’s Largest Root .307 3.529b 2.000 23.000 .046 .235

GPID * 
PREAVOID

Pillai’s Trace .047 .287 4.000 48.000 .885 .023

Wilks’ Lambda .954 .277b 4.000 46.000 .892 .023
Hotelling’s Trace .048 .266 4.000 44.000 .898 .024
Roy’s Largest Root .040 .485c 2.000 24.000 .622 .039

GPID * 
PRENEG

Pillai’s Trace .047 .287 4.000 48.000 .885 .023

Wilks’ Lambda .954 .275b 4.000 46.000 .892 .023
Hotelling’s Trace .048 .264 4.000 44.000 .900 .023
Roy’s Largest Root .035 .415c 2.000 24.000 .665 .033

a Design: Intercept + GPID + PREAVOID + PRENEG + GPID * PREAVOID + GPID * PRENEG
b Exact statistic
c The statistic is an upper bound on F that yields a lower bound on the significance level.



Levene’s test of equality of error variancesa

F df1 df2 Sig.

AVOID 1.184 2 30 .320
NEGEVAL 1.620 2 30 .215

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
a Design: Intercept + PREAVOID + PRENEG + GPID

 Table 8.9: MANCOVA and ANCOVA Test Results

Multivariate testsa

Effect Value F
Hypothesis  
df

Error  
df Sig.

Partial eta 
squared

Intercept Pillai’s Trace .219 3.783b 2.000 27.000 .036 .219
Wilks’ Lambda .781 3.783b 2.000 27.000 .036 .219
Hotelling’s Trace .280 3.783b 2.000 27.000 .036 .219
Roy’s Largest 
Root

.280 3.783b 2.000 27.000 .036 .219

PREAVOID

Pillai’s Trace .567 17.659b 2.000 27.000 .000 .567
Wilks’ Lambda .433 17.659b 2.000 27.000 .000 .567
Hotelling’s Trace 1.308 17.659b 2.000 27.000 .000 .567
Roy’s Largest 
Root

1.308 17.659b 2.000 27.000 .000 .567

PRENEG

Pillai’s Trace .245 4.379b 2.000 27.000 .023 .245
Wilks’ Lambda .755 4.379b 2.000 27.000 .023 .245
Hotelling’s Trace .324 4.379b 2.000 27.000 .023 .245
Roy’s Largest 
Root

.324 4.379b 2.000 27.000 .023 .245

GPID

Pillai’s Trace .491 4.555 4.000 56.000 .003 .246
Wilks’ Lambda .519 5.246b 4.000 54.000 .001 .280
Hotelling’s Trace .910 5.913 4.000 52.000 .001 .313
Roy’s Largest 
Root

.889 12.443c 2.000 28.000 .000 .471

a Design: Intercept + PREAVOID + PRENEG + GPID
b Exact statistic
c The statistic is an upper bound on F that yields a lower bound on the significance level.

Tests of between-subjects effects

Source
Dependent 
variable

Type III sum 
of squares df

Mean 
square F Sig.

Partial 
eta 
squared

Corrected 
model

AVOID 9620.404a 4 2405.101 25.516 .000 .785
NEGEVAL 9648.883b 4 2412.221 10.658 .000 .604
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Having found sufficient support for using MANCOVA, we now focus on the primary 
test of interest, which assesses whether or not there is a difference in adjusted means 
for the set of outcomes. The multivariate F = 5.246 (p = .001), shown in first output 
selection of Table 8.9, indicates that the adjusted means differ in the population for 
the set of outcomes, with ηmultivariate

2 1 21 519 28= − =. . ./  The univariate ANCOVAs on 
the bottom part of Table 8.9 suggest that the adjusted means differ across groups for 
AVOID, F = 7.24, p = .003, with η2 = 1365.61 / 12259.64 = .11, and NEGEVAL 
F = 9.02, p = .001, with η2 = 4088.12 / 15985.88 = .26. Note that we ignore the partial 
eta squares that are in the table.

Since group differences on the adjusted means are present for both outcomes, we 
consider the adjusted means and associated pairwise comparisons for each outcome, 
which are shown in Table 8.10. Considering the social skills measure first (AVOID), 
examining the adjusted means indicates that the combination treatment (Group 3) 
has the greatest mean social skills, after adjusting for the covariates, compared to the 
other groups, and that the control group (Group 2) has the lowest social skills. The 
results of the pairwise comparisons, using a Bonferroni adjusted alpha (i.e., .05 / 3), 
indicates that the two treatment groups (Groups 1 and 3) have similar adjusted mean 
social skills and that each of the treatment groups has greater adjusted mean social 
skills than the control group. Thus, for this outcome, behavioral rehearsal seems to 

Tests of between-subjects effects

Source
Dependent 
variable

Type III sum 
of squares df

Mean 
square F Sig.

Partial 
eta 
squared

Intercept AVOID 321.661 1 321.661 3.413 .075 .109
NEGEVAL 1479.664 1 1479.664 6.538 .016 .189

PREAVOID AVOID 3402.401 1 3402.401 36.097 .000 .563
NEGEVAL 262.041 1 262.041 1.158 .291 .040

PRENEG AVOID 600.646 1 600.646 6.372 .018 .185
NEGEVAL 1215.510 1 1215.510 5.371 .028 .161

GPID AVOID 1365.612 2 682.806 7.244 .003 .341
NEGEVAL 4088.115 2 2044.057 9.032 .001 .392

Error AVOID 2639.232 28 94.258
NEGEVAL 6336.995 28 226.321

Total AVOID 474588.000 33
NEGEVAL 425470.000 33

Corrected 
Total

AVOID 12259.636 32
NEGEVAL 15985.879 32

a R Squared = .785 (Adjusted R Squared = .754)
b R Squared = .604 (Adjusted R Squared = .547)
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be an effective way to improve social skills, but the addition of cognitive restructur-
ing does not seem to further improve these skills. The d effect size measure, using 
MSW of 280.067 (MSW 1/2 = 16.74) with no covariates in the analysis model, is 0.27 
for Group 3 versus Group 1, 0.68 for Group 1 versus Group 2, and 0.95 for Group 
3 versus Group 2.

For the anxiety outcome (NEGEVAL), where higher scores indicate less anxiety, 
inspecting the adjusted means at the top part of Table 8.10 suggests a similar pat-
tern. However, the error variance is much greater for this outcome, as evidenced 
by the larger standard errors shown in Table 8.10. As such, the only difference in 
adjusted means present in the population for NEGEVAL is between Group 3 and 
the control, where d = 29.045 / 16.83 = 1.73 (with MSW = 283.14). Here, then the 
behavioral rehearsal and cognitive restructuring treatment shows promise as this 

 Table 8.10: Adjusted Means and Bonferroni-Adjusted Pairwise Comparisons

Estimates

Dependent variable GPID Mean Std. error

95% Confidence interval

Lower bound Upper bound

AVOID 1.00 120.631a 2.988 114.510 126.753
2.00 109.250a 2.969 103.168 115.331
3.00 125.210a 3.125 118.808 131.612

NEGEVAL 1.00 111.668a 4.631 102.183 121.154
2.00 96.734a 4.600 87.310 106.158
3.00 125.779a 4.843 115.860 135.699

a Covariates appearing in the model are evaluated at the following values: PREAVOID = 106.6970,  
PRENEG = 99.2121.

Pairwise comparisons

Dependent 
variable (I) GPID (J) GPID

Mean  
difference 
(I-J) Std. error Sig.b

95% Confidence interval 
for differenceb

Lower 
bound Upper bound

AVOID 1.00 2.00 11.382* 4.142 .031 .835 21.928
3.00 −4.578 4.474 .945 −15.970  6.813

2.00 1.00 −11.382* 4.142 .031 −21.928  −.835
3.00 −15.960* 4.434 .004 −27.252 −4.668

3.00 1.00 4.578 4.474 .945 −6.813 15.970
2.00 15.960* 4.434 .004 4.668 27.252
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group had much less mean anxiety, after adjusting for the covariates, than the con-
trol group.

Can we have confidence in the reliability of the adjusted means for this study? Huite-
ma’s inequality suggests we should be somewhat cautious, because the inequality sug-

gests we should just use one covariate, as the ratio C J
N

+ −( )1  in this example is 
2 3 1

33
12

+ −( )
= . ,  which is larger than the recommended value of .10. Thus, replication 

of this study using a larger sample size would provide for more confidence in the 
results.

8.13 NOTE ON POST HOC PROCEDURES

Note that in previous editions of this text, the Bryant-Paulson (1976) procedure was 
used to conduct inferences for pairwise differences among groups in MANCOVA (or 
ANCOVA). This procedure was used, instead of the Tukey (or Tukey–Kramer) pro-
cedure because the covariate(s) used in social science research are essentially always 
random, and it was thought to be important that this information be incorporated into 
the post hoc procedures, which the Tukey procedure does not. Huitema (2011), how-
ever, notes that Hochberg and Varon-Salomon (1984) found that the Tukey procedure 
adequately controls for the inflation of the family-wise type I error rate for pairwise 
comparisons when a covariate is random and has greater power (and provides nar-
rower intervals) than other methods. As such, Huitema (2011, chaps. 9–10) recom-
mends use of the procedure to obtain simultaneous confidence intervals for pairwise 

Pairwise comparisons

Dependent 
variable (I) GPID (J) GPID

Mean  
difference 
(I-J) Std. error Sig.b

95% Confidence interval 
for differenceb

Lower 
bound Upper bound

NEGEVAL 1.00 2.00 14.934 6.418 .082 −1.408 31.277
3.00 −14.111 6.932 .154 −31.763 3.541

2.00 1.00 −14.934 6.418 .082 −31.277 1.408
3.00 −29.045* 6.871 .001 −46.543 −11.548

3.00 1.00 14.111 6.932 .154 −3.541 31.763
2.00 29.045* 6.871 .001 11.548 46.543

Based on estimated marginal means
* The mean difference is significant at the .050 level.
b Adjustment for multiple comparisons: Bonferroni.
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comparisons. However, at present, SPSS does not incorporate this procedure for 
MANCOVA (or ANCOVA). Readers interested in using the Tukey procedure may 
consult Huitema. We used the Bonferroni procedure because it can be readily obtained 
with SAS and SPSS, but note that this procedure is somewhat less powerful than the 
Tukey approach.

8.14 NOTE ON THE USE OF MVMM

An alternative to traditional MANCOVA is available with multivariate multilevel 
modeling (MVMM; see Chapter 14). In addition to the advantages associated with 
MVMM discussed there, MVMM also allows for different covariates to be used for 
each outcome. The more traditional general linear model (GLM) procedure, as imple-
mented in this chapter with SPSS and SAS, requires that any covariate that appears in 
the model be included as an explanatory variable for every dependent variable, even 
if a given covariate were not related to a given outcome. Thus, MVMM, in addition 
to other benefits, allows for more flexible use of covariates for multiple analysis of 
covariance models.

8.15 EXAMPLE RESULTS SECTION FOR MANCOVA

For the example results section, we use the study discussed in Example 8.4.

The goal of this study was to determine whether female college freshmen randomly 
assigned to either behavioral rehearsal or behavioral rehearsal plus cognitive restruc-
turing (called combined treatment) have better social skills and reduced anxiety after 
treatment compared to participants in a control condition. A one-way multivariate 
analysis of covariance (MANCOVA) was conducted with two dependent variables, 
social skills and anxiety, where higher scores on these variables reflect greater social 
skills and less anxiety. Given the small group size available (n = 11), we adminis-
tered pretest measures of each outcome, which we call pre-skills and pre-anxiety, to 
allow for greater power in the analysis. Each participant reported complete data for 
all measures.

Prior to conducting MANCOVA, the data were examined for univariate and multivari-
ate outliers, with no such observations found. We also assessed whether the MANCOVA 
assumptions seemed tenable. First, tests of the homogeneity of regression assumption 
indicated that there was no interaction between treatment and pre-skills, Λ = .954,  
F(4, 46) = .277, p = .892, and between treatment and pre-anxiety, Λ = .954,  
F(4, 46) = .275, p = .892, for any outcome. In addition, no violation of the 
variance-covariance matrices assumption was indicated (Box’s M = 6.689, p = .418), 
and the variance of the residuals was not different across groups for social skills, Lev-
ene’s F(2, 30) = 1.184, p = .320, and anxiety, F(2, 30) = 1.620, p = .215. Further, 
there were no substantial departures from normality, as suggested by inspection of 
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histograms of the residuals for each group and that all values for skewness and kurtosis 
of the residuals were smaller than |1.5|. Further, examining scatterplots suggested that 
each covariate is positively and linearly related to each of the outcome variables. Test 
results from the MANCOVA indicated that pre-skills is related to the set of outcomes, 
Λ = .433, F(2, 27) = 17.66, p < .001, as is pre-anxiety, Λ = .755, F(2, 27) = 4.38, 
p = .023. Finally, we did not consider there to be any violations of the independence 
assumption because the treatments were individually administered and participants 
responded to the measures on an individual basis.

Table 1 displays the group means, which show that participants in the combined treat-
ment had greater posttest mean scores for social skills and anxiety (less anxiety) than 
those in the other groups, and performance in the control condition was worst. Note 
that while sample pretest means differ somewhat, use of covariance analysis provides 
proper adjustments for these preexisting differences, with these adjusted means shown 
in Table 1. MANCOVA results indicated that the adjusted group means differ on the set 
of outcomes, λ = .519, F(4, 54) = 5.23, p = .001. Univariate ANCOVAs indicated that 
group adjusted mean differences are present for social skills, F(2, 28) = 7.24, p = .003, 
and anxiety, F(2, 28) = 9.03, p = .001.

 Table 1: Observed (SD) and Adjusted Means for the Analysis Variables (n = 11)

Group Pre-skills Social skills
Social 
skills1 Pre-anxiety Anxiety Anxiety1 

Combined 113.6 (18.7) 132.3 (16.2) 125.2 108.7 (16.6) 131.0 (15.1) 125.8

Behavioral 
Rehearsal

103.2 (20.2) 116.9 (17.2) 120.6 93.9 (16.0) 108.8 (22.2) 111.7

Control 103.3 (17.3) 105.9 (16.8) 109.3 95.0 (15.3) 94.4 (11.1)  96.7
1 This column shows the adjusted group means.

Table 2 presents information on the pairwise contrasts. Comparisons of adjusted 
means were conducted using the Bonferroni approach to provide type I error con-
trol for the number of pairwise comparisons. Table 2 shows that adjusted mean 
social skills are greater in the combined treatment and behavioral rehearsal group  
compared to the control group. The contrast between the two intervention groups 
is not statistically significant. For social skills, Cohen’s d values indicate the pres-
ence of fairly large effects associated with the interventions, relative to the control  
group.

For anxiety, the only difference in adjusted means present in the population is between 
the combined treatment and control condition. Cohen’s d for this contrast indicates 
that this mean difference is quite large relative to the other effects in this study.
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8.16 SUMMARY

The numbered list below highlights the main points of the chapter.

1. In analysis of covariance a linear relationship is assumed between the dependent 
variable(s) and the covariate(s).

2. Analysis of covariance is directly related to the two basic objectives in experi-
mental design of (1) eliminating systematic bias and (2) reduction of error vari-
ance. Although ANCOVA does not eliminate bias, it can reduce bias. This can be 
helpful in nonexperimental studies comparing intact groups. The bias is reduced 
by adjusting the posttest means to what they would be if all groups had started out 
equally on the covariate(s), that is, at the grand mean(s). There is disagreement 
among statisticians about the use of ANCOVA with intact groups, and several 
precautions were mentioned in section 8.6.

3. The main reason for using ANCOVA in an experimental study (random assignment 
of participants to groups) is to reduce error variance, yielding a more powerful test 
of group differences. When using several covariates, greater error reduction may 
occur when the covariates have low intercorrelations among themselves.

4. Limit the number of covariates (C) so that

C J
N

+ −( )
<

1
10. ,

 where J is the number of groups and N is total sample size, so that stable estimates 
of the adjusted means are obtained.

5. In examining output from the statistical packages, make two checks to determine 
whether MANCOVA is appropriate: (1) Check that there is a significant relation-
ship between the dependent variables and the covariates, and (2) check that the 
homogeneity of the regression hyperplanes assumption is tenable. If either of 
these is not satisfied, then MANCOVA is not appropriate. In particular, if (2) is not 
satisfied, then the Johnson–Neyman technique may provide for a better analysis.

6. Measurement error for covariates causes loss of power in randomized designs, and 
can lead to seriously biased treatment effects in nonrandomized designs. Thus, if 

 Table 2: Pairwise Contrasts for the Adjusted Means

Outcome Contrast Contrast (SE) Cohen’s d

Social skills Combined vs. control 15.96* (4.43) 0.95
Behavioral rehearsal vs. control 11.38* (4.14) 0.68
Combined vs. behavioral rehearsal 4.58 (4.47) 0.27

Anxiety Combined vs. control 29.05* (6.87) 1.73
Behavioral rehearsal vs. control 14.93 (6.42) 0.89
Combined vs. behavioral rehearsal 14.11 (6.93) 0.84

Note: * indicates a statistically significant contrast (p < .05) using the Bonferroni procedure.
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one has a covariate of low or questionable reliability, then true score ANCOVA 
should be considered.

7. With three or more groups, use the Tukey or Bonferroni procedure to obtain con-
fidence intervals for pairwise differences.

8.17 ANALYSIS SUMMARY

The key analysis procedures for one-way MANCOVA are:

I. Preliminary Analysis
A. Conduct an initial screening of the data.

1) Purpose: Determine if the summary measures seem reasonable and sup-
port the use of MANCOVA. Also, identify the presence and pattern (if 
any) of missing data.

2) Procedure: Compute various descriptive measures for each group (e.g., 
means, standard deviations, medians, skewness, kurtosis, frequencies) for 
the covariate(s) and dependent variables. If there is missing data, conduct 
missing data analysis.

B. Conduct a case analysis.
1) Purpose: Identify any problematic individual observations that may 

change important study results.
2) Procedure:

i) Inspect bivariate scatterplots of each covariate and outcome for 
each group to identify apparent outliers. Compute and inspect 
within-group Mahalanobis distances for the covariate(s) and out-
come(s) and within-group z-scores for each variable. From the final 
analysis model, obtain standardized residuals. Note that absolute val-
ues larger than 2.5 or 3 for these residuals indicate outlying values.

ii) If any potential outliers are identified, consider doing a sensitivity 
study to determine the impact of one or more outliers on major study 
results.

C. Assess the validity of the statistical assumptions.
1) Purpose: Determine if the standard MANCOVA procedure is valid for the 

analysis of the data.
2) Some procedures:

i) Homogeneity of regression: Test treatment-covariate interactions. 
A nonsignificant test result supports the use of MANCOVA.

ii) Linearity of regression: Inspect the scatterplot of each covariate and 
each outcome within each group to assess linearity. If the association 
appears to be linear, test the association between the covariate(s) and 
the set of outcomes to assess if the covariates should be included in 
the final analysis model.

iii) Independence assumption: Consider study circumstances to identify 
possible violations.
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iv) Equality of covariance matrices assumption of the residuals: Lev-
ene’s test can be used to identify if the residual variation is the same 
across groups for each outcome. Note that Box’s M test assesses if 
the covariance matrices of outcome scores (not residuals) are equal 
across groups.

v) Multivariate normality: Inspect the distribution of the residuals for 
each group. Compute within-group skewness and kurtosis values, 
with values exceeding |2| indicative of nonnormality.

vi) Each covariate is measured with perfect reliability: Report a measure 
of reliability for the covariate scores (e.g., Cronbach’s alpha). Con-
sider using an alternate technique (e.g., structural equation modeling) 
when low reliability is combined with a decision to retain the null 
hypothesis of no treatment effects.

3) Decision/action: Continue with the standard MANCOVA when there is 
(a) no evidence of violations of any assumptions or (b) there is evidence 
of a specific violation but the technique is known to be robust to an exist-
ing violation. If the technique is not robust to an existing violation, use an 
alternative analysis technique.

II. Primary Analysis
A. Test the overall multivariate null hypothesis of no difference in adjusted 

means for the set of outcomes.
1) Purpose: Provide “protected testing” to help control the inflation of the 

overall type I error rate.
2) Procedure: Examine the results of the Wilks’ lambda test associated with 

the treatment.
3) Decision/action: If the p-value associated with this test is sufficiently 

small, continue with further testing as described later. If the p-value is not 
small, do not continue with any further testing.

B. If the multivariate null hypothesis has been rejected, test for group differences 
on each dependent variable.
1) Purpose: Describe the adjusted mean outcome differences among the 

groups for each of the dependent variables.
2) Procedures:

i) Test the overall ANCOVA null hypothesis for each dependent vari-
able using a conventional alpha (e.g., .05) that provides for greater 
power when the number of outcomes is relatively small (i.e., two or 
three) or with a Bonferroni adjustment for a larger number of out-
comes or whenever there is great concern about committing type 
I  errors.

ii) For each dependent variable for which the overall univariate null 
hypothesis is rejected, follow up (if more than two groups are 
present) with tests and interval estimates for all pairwise contrasts 
using a Bonferroni adjustment for the number of pairwise compar-
isons.
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C. Report and interpret at least one of the following effect size measures.
1) Purpose: Indicate the strength of the relationship between the dependent 

variable(s) and the factor (i.e., group membership).
2) Procedure: Adjusted means and their differences should be reported. Oth-

er possibilities include (a) the proportion of generalized total variation 
explained by group membership for the set of dependent variables (mul-
tivariate eta square), (b) the proportion of variation explained by group 
membership for each dependent variable (univariate eta square), and/or 
(c) Cohen’s d for two-group contrasts.

8.18 EXERCISES

1. Consider the following data from a two-group MAnCovA with two dependent 
variables (y1 and y2) and one covariate (X):

GPID X Y1 Y2

1.00 12.00 13.00 3.00
1.00 10.00 6.00 5.00
1.00 11.00 17.00 2.00
1.00 14.00 14.00 8.00
1.00 13.00 12.00 6.00
1.00 10.00 6.00 8.00
1.00 8.00 12.00 3.00
1.00 8.00 6.00 12.00
1.00 12.00 12.00 7.00
1.00 10.00 12.00 8.00
1.00 12.00 13.00 2.00
1.00 7.00 14.00 10.00
1.00 12.00 16.00 1.00
1.00 9.00 9.00 2.00
1.00 12.00 14.00 10.00
2.00 9.00 10.00 6.00
2.00 16.00 16.00 8.00
2.00 11.00 17.00 8.00
2.00 8.00 16.00 21.00
2.00 10.00 14.00 15.00
2.00 7.00 18.00 12.00
2.00 16.00 20.00 7.00
2.00 9.00 12.00 9.00
2.00 10.00 11.00 7.00
2.00 8.00 13.00 4.00
2.00 16.00 19.00 6.00
2.00 12.00 15.00 20.00
2.00 15.00 17.00 7.00
2.00 12.00 21.00 14.00
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 run a MAnCovA using sAs or spss.

(a) is MAnCovA appropriate? explain.

(b) if MAnCovA is appropriate, then are the adjusted mean vectors signifi-
cantly different at the .05 level?

(c) Are adjusted group mean differences present for both variables?

(d) What are the adjusted means? Which group has better performance?

(e) Compute Cohen’s d for the two contrasts (which requires a MAnovA to 
obtain the relevant MSW for each outcome).

2. Consider a three-group study (randomized) with 24 participants per group. the 
correlation between the covariate and the dependent variable is .25, which is 
statistically significant at the .05 level. is AnCovA going to be very useful in 
this study? explain.

3. suppose we were comparing two different teaching methods and that the 
covariate was iQ. the homogeneity of regression slopes is tested and rejected, 
implying a covariate-by-treatment interaction. relate this to what we would 
have found had we blocked (or formed groups) on iQ and ran a factorial 
AnovA (iQ by methods) on achievement.

4. in this example, three tasks were employed to ascertain differences between 
good and poor undergraduate writers on recall and manipulation of informa-
tion: an ordered letters task, an iconic memory task, and a letter reordering 
task. in the following table are means and standard deviations for the percent-
age of correct letters recalled on the three dependent variables. there were 15 
participants in each group.

Good writers Poor writers

Task M SD M SD

Ordered letters 57.79 12.96 49.71 21.79
Iconic memory 49.78 14.59 45.63 13.09
Letter reordering 71.00 4.80 63.18 7.03

 Consider this results section:

 the data were analyzed via a multivariate analysis of covariance using the 
background variables (english usage ACt subtest, composite ACt, and grade 
point average) as covariates, writing ability as the independent variable, and 
task scores (correct recall in the ordered letters task, correct recall in the iconic 
memory task, and correct recall in the letter reordering task) as the dependent 
variables. the global test was significant, F(3, 23) = 5.43, p < .001. to control for 
experiment-wise type i error rate at .05, each of the three univariate analyses  
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was conducted at a per comparison rate of .017. no significant difference was 
observed between groups on the ordered letters task, univariate F(1, 25) = 1.92, 
p > .10. similarly, no significant difference was observed between groups on 
the iconic memory task, univariate F < 1. however, good writers obtained sig-
nificantly higher scores on the letter reordering task than the poor writers, 
univariate F(1, 25) = 15.02, p < .001.

(a) from what was said here, can we be confident that covariance is appropri-
ate here?

(b) the “global” multivariate test referred to is not identified as to whether it 
is Wilks’ Λ, roy’s largest root, and so on. Would it make a difference as to 
which multivariate test was employed in this case?

(c) the results mention controlling the experiment-wise error rate at .05 by 
conducting each test at the .017 level of significance. Which post hoc pro-
cedure is being used here?

(d) is there a sufficient number of participants for us to have confidence in the 
reliability of the adjusted means?

5. What is the main reason for using covariance analysis in a randomized  
study?
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Chapter 9

EXPLORATORY FACTOR 
ANALYSIS

9.1 INTRODUCTION

Consider the following two common classes of research situations:

1. Exploratory regression analysis: An experimenter has gathered a moderate to large 
number of predictors (say 15 to 40) to predict some dependent variable.

2. Scale development: An investigator has assembled a set of items (say 20 to 50) 
designed to measure some construct(s) (e.g., attitude toward education, anxiety, 
sociability). Here we think of the items as the variables.

In both of these situations the number of simple correlations among the variables is 
very large, and it is quite difficult to summarize by inspection precisely what the pat-
tern of correlations represents. For example, with 30 items, there are 435 simple cor-
relations. Some way is needed to determine if there is a small number of underlying 
constructs that might account for the main sources of variation in such a complex set 
of correlations.

Furthermore, if there are 30 items, we are undoubtedly not measuring 30 different con-
structs; hence, it makes sense to use a variable reduction procedure that will indicate 
how the variables cluster or hang together. Now, if sample size is not large enough 
(how large N needs to be is discussed in section 9.6), then we need to resort to a logical 
clustering (grouping) based on theoretical or substantive grounds. On the other hand, 
with adequate sample size an empirical approach is preferable. Two basic empirical 
approaches are (1) principal components analysis for variable reduction, and (2) factor 
analysis for identifying underlying factors or constructs. In both approaches, the basic 
idea is to find a smaller number of entities (components or factors) that account for 
most of the variation or the pattern of correlations. In factor analysis a mathematical 
model is set up and factor scores may be estimated, whereas in components analysis 
we are simply transforming the original variables into a new set of linear combinations 
(the principal components).
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In this edition of the text, we focus this chapter on exploratory factor analysis (not prin-
cipal components analysis) because researchers in psychology, education, and the social 
sciences in general are much more likely to use exploratory factor analysis, particularly 
as it used to develop and help validate measuring instruments. We do, though, begin the 
chapter with the principal components method. This method has been commonly used 
to extract factors in factor analysis (and remains the default method in SPSS and SAS). 
Even when different extraction methods, such as principal axis factoring, are used in 
factor analysis, the principal components method is often used in the initial stages of 
exploratory factor analysis. Thus, having an initial exposure to principal components 
will allow you to make an easy transition to principal axis factoring, which is presented 
later in the chapter, and will also allow you to readily see some underlying differences 
between these two procedures. Note that confirmatory factor analysis, covered in this 
chapter in previous editions of the text, is now covered in Chapter 16.

9.2 THE PRINCIPAL COMPONENTS METHOD

If we have a single group of participants measured on a set of variables, then principal 
components partitions the total variance (i.e., the sum of the variances for the original 
variables) by first finding the linear combination of the variables that accounts for the 
maximum amount of variance:

y a x a x a xp p1 11 1 12 2 1= + + + ,

where y1 is called the first principal component, and if the coefficients are scaled such 
that a1′a1 = 1 [where a1′ = (a11, a12, . . ., a1p)] then the variance of y1 is equal to the larg-
est eigenvalue of the sample covariance matrix (Morrison, 1967, p. 224). The coeffi-
cients of the principal component are the elements of the eigenvector corresponding to 
the largest eigenvalue.

Then the procedure finds a second linear combination, uncorrelated with the first com-
ponent, such that it accounts for the next largest amount of variance (after the variance 
attributable to the first component has been removed) in the system. This second com-
ponent, y2, is

y a x a x a xp p2 21 1 22 2 2= + + + ,

and the coefficients are scaled so that a2′a2= 1, as for the first component. The fact that 
the two components are constructed to be uncorrelated means that the Pearson correla-
tion between y1 and y2 is 0. The coefficients of the second component are the elements 
of the eigenvector associated with the second largest eigenvalue of the covariance 
matrix, and the sample variance of y2 is equal to the second largest eigenvalue.

The third principal component is constructed to be uncorrelated with the first two, and 
accounts for the third largest amount of variance in the system, and so on. The principal 
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components method is therefore still another example of a mathematical maximization 
procedure, where each successive component accounts for the maximum amount of 
the variance in the original variables that is left.

Thus, through the use of principal components, a set of correlated variables is trans-
formed into a set of uncorrelated variables (the components). The goal of such an anal-
ysis is to obtain a relatively small number of components that account for a significant 
proportion of variance in the original set of variables. When this method is used to 
extract factors in factor analysis, you may also wish to make sense of or interpret the 
factors.

The factors are interpreted by using coefficients that describe the association between a 
given factor and observed variable (called factor or component loadings) that are suf-
ficiently large in absolute magnitude. For example, if the first factor loaded high and 
positive on variables 1, 3, 5, and 6, then we could interpret that factor by attempting 
to determine what those four variables have in common. The analysis procedure has 
empirically clustered the four variables, and the psychologist may then wish to give a 
name to the factor to make sense of the composite variable.

In the preceding example we assumed that the loadings were all in the same direction 
(all positive for a given component). Of course, it is possible to have a mixture of high 
positive and negative loadings on a particular component. In this case we have what 
is called a bipolar component. For example, in factor analyses of IQ tests, the second 
factor may be bipolar contrasting verbal abilities against spatial-perceptual abilities.

Social science researchers often extract factors from a correlation matrix. The reason 
for this standardization is that scales for tests used in educational, sociological, and 
psychological research are usually arbitrary. If, however, the scales are reasonably 
commensurable, performing a factor analysis on the covariance matrix is preferable 
for statistical reasons (Morrison, 1967, p. 222). The components obtained from the 
correlation and covariance matrices are, in general, not the same. The option of doing 
factor analysis on either the correlation or covariance matrix is available on SAS and 
SPSS. Note though that it is common practice to conduct factor analysis using a corre-
lation matrix, which software programs will compute behind the scenes from raw data 
prior to conducting the analysis.

A precaution that researchers contemplating a factor analysis with a small sample 
size (certainly any N less than 100) should take, especially if most of the elements in 
the sample correlation matrix are small (< |.30|), is to apply Bartlett’s sphericity test 
(Cooley & Lohnes, 1971, p. 103). This procedure tests the null hypothesis that the var-
iables in the population correlation matrix are uncorrelated. If one fails to reject with 
this test, then there is no reason to do the factor analysis because we cannot conclude 
that the variables are correlated. Logically speaking, if observed variables do not “hang 
together,” an analysis that attempts to cluster variables based on their associations does 
not make sense. The sphericity test is available on both the SAS and SPSS packages.
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Also, when using principal components extraction in factor analysis, the composite var-
iables are sometimes referred to as components. However, since we are using principal 
components simply as a factor extraction method, we will refer to the entities obtained 
as factors. Note that when principal axis factoring is used, as it is later in the chapter, the 
entities extracted in that procedure are, by convention, referred to as factors.

9.3  CRITERIA FOR DETERMINING HOW MANY FACTORS TO 
RETAIN USING PRINCIPAL COMPONENTS EXTRACTION

Perhaps the most difficult decision in factor analysis is to determine the number of fac-
tors that should be retained. When the principal components method is used to extract 
factors, several methods can be used to decide how many factors to retain.

1. A widely used criterion is that of Kaiser (1960): Retain only those factors having 
eigenvalues are greater than 1. Although using this rule generally will result in 
retention of only the most important factors, blind use could lead to retaining 
factors that may have no practical importance (in terms of percent of variance 
accounted for).

Studies by Cattell and Jaspers (1967), Browne (1968), and Linn (1968) evaluated the 
accuracy of the eigenvalue > 1 criterion. In all three studies, the authors determined 
how often the criterion would identify the correct number of factors from matrices 
with a known number of factors. The number of variables in the studies ranged from 
10 to 40. Generally, the criterion was accurate to fairly accurate, with gross overesti-
mation occurring only with a large number of variables (40) and low communalities 
(around .40). Note that the communality of a variable is the amount of variance for a 
variable accounted for by the set of factors. The criterion is more accurate when the 
number of variables is small (10 to 15) or moderate (20 to 30) and the communalities 
are high (> .70). Subsequent studies (e.g., Zwick & Velicer, 1982, 1986) have shown 
that while use of this rule can lead to uncovering too many factors, it may also lead 
to identifying too few factors.

2. A graphical method called the scree test has been proposed by Cattell (1966). In 
this method the magnitude of the eigenvalues (vertical axis) is plotted against their 
ordinal numbers (whether it was the first eigenvalue, the second, etc.). Generally 
what happens is that the magnitude of successive eigenvalues drops off sharply 
(steep descent) and then tends to level off. The recommendation is to retain all 
eigenvalues (and hence factors) in the sharp descent before the first one on the line 
where they start to level off. This method will generally retain factors that account 
for large or fairly large and distinct amounts of variances (e.g., 31%, 20%, 13%, 
and 9%). However, blind use might lead to not retaining factors that, although they 
account for a smaller amount of variance, might be meaningful. Several studies 
(Cattell & Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Tucker, Koopman, & 
Linn, 1969) support the general accuracy of the scree procedure. Hakstian et al. 
note that for N > 250 and a mean communality > .60, either the Kaiser or scree 
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rules will yield an accurate estimate for the number of true factors. They add that 
such an estimate will be just that much more credible if the Q / P ratio is < .30 (P is 
the number of variables and Q is the number of factors). With mean communality 
.30 or Q / P > .3, the Kaiser rule is less accurate and the scree rule much less accu-
rate. A primary concern associated with the use of the scree plot is that it requires 
subjective judgment in determining the number of factors present, unlike the 
numerical criterion provided by Kaiser’s rule and parallel analysis, discussed next.

3. A procedure that is becoming more widely used is parallel analysis (Horn, 1965), 
where a “parallel” set of eigenvalues is created from random data and compared to 
eigenvalues from the original data set. Specifically, a random data set having the 
same number of cases and variables is generated by computer. Then, factor analysis 
is applied to these data and eigenvalues are obtained. This process of generating ran-
dom data and factor analyzing them is repeated many times. Traditionally, you then 
compare the average of the “random” eigenvalues (for a given factor across these 
replicated data sets) to the eigenvalue obtained from the original data set for the 
corresponding factor. The rule for retaining factors is to retain a factor in the original 
data set only if its eigenvalue is greater than the average eigenvalue for its random 
counterpart. Alternatively, instead of using the average of the eigenvalues for a given 
factor, the 95th percentile of these replicated values can be used as the comparison 
value, which provides a somewhat more stringent test of factor importance.

Fabrigar and Wegener (2012, p. 60) note that while the performance of parallel 
process analysis has not been investigated exhaustively, studies to date have shown 
it to perform fairly well in detecting the proper number of factors, although the 
procedure may suggest the presence of too many factors at times. Nevertheless, 
given that none of these methods performs perfectly under all conditions, the use of 
parallel process analysis has been widely recommended for factor analysis. While 
not available at present in SAS or SPSS, parallel analysis can be implemented using 
syntax available at the website of the publisher of Fabrigar and Wegener’s text. We 
illustrate the use of this procedure in section 9.12.

4. There is a statistical significance test for the number of factors to retain that was 
developed by Lawley (1940). However, as with all statistical tests, it is influenced 
by sample size, and large sample size may lead to the retention of too many factors.

5. Retain as many factors as will account for a specified amount of total variance. Gen-
erally, one would want to account for a large proportion of the total variance. In some 
cases, the investigator may not be satisfied unless 80–85% of the variance is accounted 
for. Extracting factors using this method, though, may lead to the retention of factors 
that are essentially variable specific, that is, load highly on only a single variable, 
which is not desirable in factor analysis. Note also that in some applications, the actual 
amount of variance accounted for by meaningful factors may be 50% or lower.

6. Factor meaningfulness is an important consideration in deciding on the number of 
factors that should be retained in the model. The other criteria are generally math
ematical, and their use may not always yield meaningful or interpretable factors. In 
exploratory factor analysis, your knowledge of the research area plays an important 
role in interpreting factors and deciding if a factor solution is worthwhile. Also, it is 
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not uncommon that use of the different methods shown will suggest different num-
bers of factors present. In this case, the meaningfulness of different factor solutions 
takes precedence in deciding among solutions with empirical support.

So what criterion should be used in deciding how many factors to retain? Since the 
methods look at the issue from different perspectives and have certain strengths and 
limitations, multiple criteria should be used. Since the Kaiser criterion has been shown 
to be reasonably accurate when the number of variables is < 30 and the communal-
ities are > .70, or when N > 250 and the mean communality is > .60, we would use 
it under these circumstances. For other situations, use of the scree test with an N > 
200 will probably not lead us too far astray, provided that most of the communalities 
are reasonably large. We also recommend general use of parallel analysis as it has 
performed well in simulation studies. Note that these methods can be relied upon to a 
lesser extent when researchers have some sense of the number of factors that may be 
present. In addition, when the methods conflict in the number of factors that should be 
retained, you can conduct multiple factor analyses directing your software program to 
retain different numbers of factors. Given that the goal is to arrive at a coherent final 
model, the solution that seems most interpretable (most meaningful) can be reported.

9.4  INCREASING INTERPRETABILITY OF FACTORS BY  
ROTATION

Although a few factors may, as desired, account for most of the variance in a large set 
of variables, often the factors are not easily interpretable. The factors are derived not to 
provide interpretability but to maximize variance accounted for. Transformation of the 
factors, typically referred to as rotation, often provides for much improved interpret-
ability. Also, as noted by Fabrigar and Wegener (2012, p. 79), it is important to know 
that rotation does not change key statistics associated with model fit, including (1) the 
total amount (and proportion) of variance explained by all factors and (2) the values of 
the communalities. In other words, unrotated and rotated factor solutions have the same 
mathematical fit to the data, regardless of rotation method used. As such, it makes sense 
to use analysis results based on those factor loadings that facilitate factor interpretation.

Two major classes of rotations are available:

1. Orthogonal (rigid) rotations—Here the new factors obtained by rotation are still 
uncorrelated, as were the initially obtained factors.

2. Oblique rotations—Here the new factors are allowed to be correlated.

9.4.1 Orthogonal Rotations

We discuss two such rotations:

1. Quartimax—Here the idea is to clean up the variables. That is, the rotation is 
done so that each variable loads mainly on one factor. Then that variable can be 
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considered to be a relatively pure measure of the factor. The problem with this 
approach is that most of the variables tend to load on a single factor (producing the 
“g factor” in analyses of IQ tests), making interpretation of the factor difficult.

2. Varimax—Kaiser (1960) took a different tack. He designed a rotation to clean 
up the factors. That is, with his rotation, each factor has high correlations with a 
smaller number of variables and low or very low correlations with the other var-
iables. This will generally make interpretation of the resulting factors easier. The 
varimax rotation is available in SPSS and SAS.

It should be mentioned that when rotation is done, the maximum variance property 
of the originally obtained factors is destroyed. The rotation essentially reallocates the 
loadings. Thus, the first rotated factor will no longer necessarily account for the maxi-
mum amount of variance. The amount of variance accounted for by each rotated factor 
has to be recalculated.

9.4.2 Oblique Rotations

Numerous oblique rotations have been proposed: for example, oblimax, quartimin, 
maxplane, orthoblique (Harris–Kaiser), promax, and oblimin. Promax and oblimin are 
available on SPSS and SAS.

Many have argued that correlated factors are much more reasonable to assume in 
most cases (Cliff, 1987; Fabrigar & Wegener, 2012; Pedhazur & Schmelkin, 1991; 
Preacher & MacCallum, 2003), and therefore oblique rotations are generally preferred. 
The following from Pedhazur and Schmelkin (1991) is interesting:

From the perspective of construct validation, the decision whether to rotate fac-
tors orthogonally or obliquely reflects one’s conception regarding the structure of 
the construct under consideration. It boils down to the question: Are aspects of a 
postulated multidimensional construct intercorrelated? The answer to this ques-
tion is relegated to the status of an assumption when an orthogonal rotation is 
employed. . . . The preferred course of action is, in our opinion, to rotate both 
orthogonally and obliquely. When, on the basis of the latter, it is concluded that 
the correlations among the factors are negligible, the interpretation of the simpler 
orthogonal solution becomes tenable. (p. 615)

You should know, though, that when using an oblique solution, interpretation of the 
factors becomes somewhat more complicated, as the associations between variables 
and factors are provided in two matrices:

1. Factor pattern matrix—The elements here, called pattern coefficients, are analo-
gous to standardized partial regression coefficients from a multiple regression anal-
ysis. From a factor analysis perspective, a given coefficient indicates the unique 
importance of a factor to a variable, holding constant the other factors in the model.

2. Factor structure matrix—The elements here, known as structure coefficients, are 
the simple correlations of the variables with the factors.



346        Exploratory Factor analysis

For orthogonal rotations or completely orthogonal factors these two matrices are 
identical.

9.5  WHAT COEFFICIENTS SHOULD BE USED FOR 
INTERPRETATION?

Two issues arise in deciding which coefficients are to be used to interpret factors. 
The first issue has to do with the type of rotation used: orthogonal or oblique. When 
an orthogonal rotation is used, interpretations are based on the structure coefficients 
(as the structure and pattern coefficients are identical). When using an oblique rota-
tion, as mentioned, two sets of coefficients are obtained. While it is reasonable to 
examine structure coefficients, Fabrigar and Wegener (2012) argue that using pattern 
coefficients is more consistent with the use of oblique rotation because the pattern 
coefficients take into account the correlation between factors and are parameters of a 
correlatedfactor model, whereas the structure coefficients are not. As such, they state 
that focusing exclusively on the structure coefficients in the presence of an oblique 
rotation is “inherently inconsistent with the primary goals of oblique rotation” (p. 81).

Given that we have selected the type of coefficient (structure or pattern), the second 
issue pertains to which observed variables should be used to interpret a given factor. 
While there is no universal standard available to make this decision, the idea is to use 
only those variables that have a strong association with the factor. A threshold value that 
can be used for a structure or pattern coefficient is one that is equal to or greater than a 
magnitude of .40. For structure coefficients, using a value of |.40| would imply that an 
observed variable shares more than 15% of its variance (.42 = .16) with the factor that it 
is going to be used to help name. Other threshold values that are used are .32 (because it 
corresponds to approximately 10% variance explained) and .50, which is a stricter stand-
ard corresponding to 25% variance explained. This more stringent value seems sensible 
to use when sample size is relatively small and may also be used if it improves factor 
interpretability. For pattern coefficients, although a given coefficient cannot be squared 
to obtain the proportion of shared variance between an observed variable and factor, 
these different threshold values are generally considered to represent a reasonably strong 
association for standardized partial regression coefficients in general (e.g., Kline, 2005, 
p. 122). To interpret what the variables with high loadings have in common, that is, to 
name the component, a researcher with expertise in the content area is typically needed.

Also, we should point out that standard errors associated with factor loadings are not 
available for some commonly used factor analysis methods, including principal com-
ponent and principal axis factoring. As such, statistical tests for the loadings are not 
available with these methods. One exception involves the use of maximum likelihood 
estimation to extract factors. This method, however, assumes the observed variables 
follow a multivariate normal distribution in the population and would require a user to 
rely on the procedure to be robust to this violation. We do not cover maximum likeli-
hood factor extraction in this chapter, but interested readers can consult Fabrigar and 
Wegener (2012), who recommend use of this procedure.
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9.6 SAMPLE SIZE AND RELIABLE FACTORS

Various rules have been suggested in terms of the sample size required for reliable 
factors. Many of the popular rules suggest that sample size be determined as a function 
of the number of variables being analyzed, ranging anywhere from two participants 
per variable to 20 participants per variable. And indeed, in a previous edition of this 
text, five participants per variable as the minimum needed were suggested. However, a 
Monte Carlo study by Guadagnoli and Velicer (1988) indicated, contrary to the popular 
rules, that the most important factors are factor saturation (the absolute magnitude of 
the loadings) and absolute sample size. Also, the number of variables per factor is some-
what important. Subsequent research (MacCallum, Widaman, Zhang, & Hong, 1999; 
MacCallum, Widaman, Preacher, & Hong, 2001; Velicer & Fava, 1998) has highlighted 
the importance of communalities along with the number and size of loadings.

Fabrigar and Wegener (2012) discuss this research and minimal sample size require-
ments as related to communalities and the number of strong factor loadings. We sum-
marize the minimal sample size requirements they suggest as follows:

1. When the average communality is .70 or greater, good estimates can be obtained 
with sample sizes as low as 100 (and possibly lower) provided that there are at 
least three substantial loadings per factor.

2. When communalities range from .40 to .70 and there are at least three strong load-
ings per factor, good estimates may be obtained with a sample size of about 200.

3. When communalities are small (< .40) and when there are only two substantial 
loadings on some factors, sample sizes of 400 or greater may be needed.

These suggestions are useful in establishing at least some empirical basis, rather than 
a seatofthepants judgment, for assessing what factors we can have confidence in. 
Note though that they cover only a certain set of situations, and it may be difficult in 
the planning stages of a study to have a good idea of what communalities and loadings 
may actually be obtained. If that is the case, Fabrigar and Wegener (2012) suggest 
planning on “moderate” conditions to hold in your study, as described by the earlier 
second point, which implies a minimal sample size of 200.

9.7  SOME SIMPLE FACTOR ANALYSES USING PRINCIPAL 
COMPONENTS EXTRACTION

We provide a simple hypothetical factor analysis example with a small number of 
observed variables (items) to help you get a better handle on the basics of factor analy-
sis. We use a small number of variables in this section to enable better understanding of 
key concepts. Section 9.12 provides an example using real data where a larger number 
of observed variables are involved. That section also includes extraction of factors 
with principal axis factoring.

For the example in this section, we assume investigators are developing a scale to 
measure the construct of meaningful professional work, have written six items related 
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to meaningful professional work, and would like to identify the number of con-
structs underlying these items. Further, we suppose that the researchers have care-
fully reviewed relevant literature and have decided that the concept of meaningful 
professional work involves two interrelated constructs: work that one personally finds 
engaging and work that one feels is valued by one’s workplace. As such, they have 
written three items intended to reflect engagement with work and another three items 
designed to reflect the idea of feeling valued in the workplace. The engagement items, 
we suppose, ask workers to indicate the degree to which they find work stimulating 
(item 1), challenging (item 2), and interesting (item 3). The “feeling valued” concept 
is thought to be adequately indicated by responses to items asking workers to indicate 
the degree to which they feel recognized for effort (item 4), appreciated for good work 
(item 5), and fairly compensated (item 6). Responses to these six items—stimulate, 
challenge, interest, recognize, appreciate, and compensate—have been collected, we 
suppose from a sample of 300 employees who each provided responses for all six 
items. Also, higher scores for each item reflect greater properties of the attribute being 
measured (e.g., more stimulating, more challenging work, and so on).

9.7.1 Principal Component Extraction With Three Items

For instructional purposes, we initially use responses from just three items: stimulate, 
challenge, and interest. The correlations between these items are shown in Table 9.1. Note 
each correlation is positive and indicates a fairly strong relationship between variables. 
Thus, the items seem to share something in common, lending support for a factor analysis.

In conducting this analysis, the researchers wish to answer the following research 
questions:

1. How many factors account for meaningful variation in the item scores?
2. Which items are strongly related to any resultant factors?
3. What is the meaning of any resultant factor(s)?

To address the first research question about the number of factors that are present, we 
apply multiple criteria including, for the time being, inspecting eigenvalues, examining 
a scree plot, and considering the meaningfulness of any obtained factors. Note that we 
add to this list the use of parallel analysis in section 9.12. An eigenvalue indicates the 
strength of relationship between a given factor and the set of observed variables. As we 
know, the strength of relationship between two variables is often summarized by a cor-
relation coefficient, with values larger in magnitude reflecting a stronger association. 

 Table 9.1: Bivariate Correlations for Three Work-Related Items

Correlation matrix

1 2 3

Stimulate 1.000 .659 .596
Challenge .659 1.000 .628
Interest .596 .628 1.000
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Another way to describe the strength of association between two variables is to square 
the value of the correlation coefficient. When the correlation is squared, this measure 
may be interpreted as the proportion of variance in one variable that is explained by 
another. For example, if the correlation between a factor and an observed variable is 
.5, the proportion of variance in the variable that is explained by the factor is .25. In 
factor analysis, we are looking for factors that are not just associated with one variable 
but are strongly related to, or explain the variance of, a set of variables (here, items). 
With principal components extraction, an eigenvalue is the amount of variance in the 
set of observed variables that is explained by a given factor and is also the variance of 
the factor. As you will see, this amount of variance can be converted to a proportion of 
explained variance. In brief, larger eigenvalues for a factor means that it explains more 
variance in the set of variables and is indicative of important factors.

Table 9.2 shows selected summary results using principal components extraction with 
the three workrelated items. In the Component column of the first table, note that three 
factors (equal to the number of variables) are formed in the initial solution. In the Total 
column, the eigenvalue for the first factor is 2.256, which represents the total amount 
of variance in the three items that is explained by this factor. Recall that the total max-
imum variance in a set of variables is equal to the number of variables. So, the total 
amount of variance that could have been explained is three. Therefore, the proportion 
of the total variance that is accounted for by the first factor is 2.256 / 3, which is about 
.75 or 75%, and is shown in the third (and fourth column) for the initial solution. The 
remaining factors have eigenvalues well below 1, and using Kaiser’s rule would not be 
considered as important in explaining the remaining item variance. Therefore, applying 
Kaiser’s rule suggests that one factor explains important variation in the set of items.

Further, examining the scree plot shown in Table 9.2 provides support for the 
single-factor solution. Recall that the scree plot displays the eigenvalues as a function 
of the factor number. Notice that the plot levels off or is horizontal at factor two. Since 
the procedure is to retain only those factors that appear before the leveling off occurs, 
only one factor is to be retained for this solution. Thus, applying Kaiser’s rule and 
inspecting the scree plot provides empirical support for a single-factor solution.

To address the second research question—which items are related to the factor—we 
examine the factor loadings. When one factor has been extracted (as in this example), 
a factor loading is the correlation between a given factor and variable (also called a 
structure coefficient). Here, in determining if a given item is related to the factor, we 
use a loading of .40 in magnitude or greater. The loadings for each item are displayed 
in the component matrix of Table 9.2, with each loading exceeding .80. Thus, each 
item is related to the single factor and should be used for interpretation.

Now that we have determined that each item is important in defining the factor, we 
can attempt to label the factor to address the final research question. Generally, since 
the factor loadings are all positive, we can say that employees with high scores on 
the factor also have high scores on stimulate, challenge, and interest (with an anal-
ogous statement holding for low scores on the factor). Of course, in this example, 
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the researchers have deliberately constructed the items so that they reflect the idea of 
engaging professional work. This analysis, then, provides empirical support for refer-
ring to this construct as engagement with work.

9.7.2  A Two-Factor Orthogonal Model Using  
Principal Components Extraction

A second illustrative factor analysis using principal components extraction includes all 
six work-related variables and will produce uncorrelated factors (due to an orthogonal 
rotation selected). The reason we will present an analysis that constrains the factors 
to be uncorrelated is that it is sometimes used in factor analysis. In section 9.7.4, we 
present an analysis that allows the factors to be correlated. We will also examine how 
the results of the orthogonal and oblique factor solutions differ.

For this example, factor analysis with principal components extraction is used to 
address the following research questions:

1. How many factors account for substantial variation in the set of items?
2. Is each item strongly related to factors that are obtained?
3. What is the meaning of any resultant factor(s)?

When the number of observed variables is fairly small and/or the pattern of their correla-
tions is revealing, inspecting the bivariate correlations may provide an initial indication 
of the number of factors that are present. Table 9.3 shows the correlations among the 
six items. Note that the first three items are strongly correlated with each other and last 
three items are strongly correlated with each other. However, the correlations between 
these two apparent sets of items are, perhaps, only moderately correlated. Thus, this 
“eyeball” analysis suggests that two distinct factors are associated with the six items.

Selected results of a factor analysis using principal components extraction for these 
data are shown in Table 9.4. Inspecting the initial eigenvalues suggests, applying Kai-
ser’s rule, that two factors are related to the set of items, as the eigenvalues for the first 
two factors are greater than 1. In addition, the scree plot provides additional support 
for the two-factor solution, as the plot levels off after the second factor. Note that the 
two factors account for 76% of the variance in the six items.

 Table 9.3: Bivariate Correlations for Six Work-Related Items

Variable 1 2 3 4 5 6

Stimulate 1.000 – – – – –
Challenge .659 1.000 – – – –
Interest .596 .628 1.000 – – –
Recognize .177 .111 .107 1.000 – –
Appreciate .112 .109 .116 .701 1.000 –
Compensate .140 .104 .096 .619 .673 1.000
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With a multifactor solution, factor interpretability is often more readily accomplished 
with factor rotation. This analysis was conducted with varimax rotation, an orthogonal 
rotation that assumes factors are uncorrelated (and keeps them that way). When factors 
are extracted and rotated, the variance accounted for by a given factor is referred to as 
the sum of squared loadings. These sums, following rotation, are shown in Table 9.4, 
under the heading Rotation Sums of Squared Loadings. Note that the sums of squared 
loadings for each factor are more alike following rotation. Also, while the sums of 
squared loadings (after rotation) are numerically different from the original eigenvalues, 
the total amount and percent of variance accounted for by the set of factors is the same 
pre- and post-rotation. Note in this example that after rotation, each factor accounts 
for about the same percent of item variance (e.g., 39%, 38%). Note, then, that if you 
want to compare the relative importance of the factors, it makes more sense to use the 
sum of squared loadings following rotation, because the factor extraction procedure is 
designed to yield initial (unrotated) factors that have descending values for the amount 
of variance explained (i.e., the first factor will have the largest eigenvalue and so on).

Further, following rotation, the factor loadings will generally be quite different from 
the unrotated loadings. The unrotated factor loadings (corresponding to the initially 
extracted factors) are shown in the component matrix in Table 9.4. Note that these 
structure coefficients are difficult to interpret as the loadings for the first factor are all 
positive and fairly strong whereas the loadings for the second factor are positive and 
negative. This pattern is fairly common in multifactor solutions.

A much more interpretable solution, consistent in this case with the item correlations, 
is achieved after factor rotation. The Rotated Component Matrix displays the rotated 
loadings, and with an orthogonal rotation, the loadings still represent the correlation 
between a component and given item. Thus, using the criteria in the previous section 
(loadings greater than .40 represent a strong association), we see that the variables 
stimulate, challenge, and interest load highly only on factor two and that variables 
recognize, appreciate, and compensate load highly only on the other factor. As such, it 
is clear that factor two represents the engagement factor, as labeled previously. Factor 
one is composed of items where high scores on the factor, given the positive load-
ings on the important items, are indicative of employees who have high scores on the 
items recognize, appreciate, and compensate. Therefore, there is empirical support for 
believing that these items tap the degree to which employees feel valued at the work-
place. Thus, answering the research questions posed at the beginning of this section, 
two factors (an engagement and a valued factor) are strongly related to the set of items, 
and each item is related to only one of the factors.

Note also that the values of the structure coefficients in the Rotated Component Matrix 
of Table 9.4 are characteristic of a specific form of what is called simple structure. 
Simple structure is characterized by (1) each observed variable having high loadings 
on only some components and (2) each component having multiple high loadings and 
the rest of the loadings near zero. Thus, in a multifactor model each factor is defined 
by a subset of variables, and each observed variable is related to at least one factor. 
With these data, using rotation achieves a very interpretable pattern where each item 
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loads on only one factor. Note that while this is often desired because it eases interpre-
tation, simple structure does not require that a given variable load on only one factor. 
For example, consider a math problemsolving item on a standardized test. Perfor-
mance on such an item may be related to examinee reading and math ability. Such 
cross-loading associations may be expected in a factor analysis and may represent a 
reasonable and interpretable finding. Often, though, in instrument development, such 
items are considered to be undesirable and removed from the measuring instrument.

9.7.3  Calculating the Sum of the Squared Loadings and 
Communalities From Factor Loadings

Before we consider results from the use of an oblique rotation, we show how the sum 
of squared loadings and communalities can be calculated given the item-factor corre-
lations. The sum of squared loadings can be computed by squaring the itemfactor cor-
relations for a given factor and summing these squared values for that factor (column). 
Table 9.5 shows the rotated loadings from the twofactor solution with an orthogonal 
(varimax) rotation from the previous section with the squares to be taken for each 
value. As shown in the bottom of the factor column, this value is the sum of squared 
loadings for the factor and represents the amount of variance explained by a factor 
for the set of items. As such, it is an aggregate measure of the strength of association 
between a given factor and set of observed variables. Here it is useful to think of a 
given factor as an independent variable explaining variation in a set of responses. Thus, 
a low value for the sum of squared loadings suggests that a factor is not strongly related 
to the set of observed variables. Recall that such factors (factors 3–6) have already been 
removed from this analysis because their eigenvalues were each smaller than 1.

The communalities, on the other hand, as shown in Table 9.5, are computed by sum-
ming the squared loadings across each of the factors for a given observed variable 
and represent the proportion of variance in a variable that is due to the factors. Thus, 

 Table 9.5: Variance Calculations from the Two-Factor Orthogonal Model

Items Value factor Engagement factor
Sum across the 
row Communality

Stimulate .1002 .8612 .1002 + .8612 = .75
Challenge .0522 .8802 .0522 + .8802 = .78
Interest .0522 .8512 .0522 + .8512 = .73
Recognize .8742 .0862 .8742 + .0862 = .77
Appreciate .8992 .0582 .8992 + .0582 = .81
Compensate .8632 .0622 .8632 + .0622 = .75
Sum down the 
column

.1002 + .0522 + 

.0522 + .8742 + 

.8992 + .8632

.8612 + .8802 + .8512 + 

.0862 + .0582 + .0622

Amount of variance 
(sum of squared 
loadings)

= 2.33 = 2.25
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a communality is an aggregate measure of the strength of association between a given 
variable and a set of factors. Here, it is useful to think of a given observed variable as 
a dependent variable and the factors as independent variables, with the communality 
representing the r-square (or squared multiple correlation) from a regression equa-
tion with the factors as predictors. Thus, a low communality value suggests that an 
observed variable is not related to any of the factors. Here, all variables are strongly 
related to the factors, as the factors account for (minimally) 73% of the variance in the 
Interest variable and up to 81% of the variance in the Appreciate variable.

Variables with low communalities would likely not be related to any factor (which 
would also then be evident in the loading matrix), and on that basis would not be used 
to interpret a factor. In instrument development, such items would likely be dropped 
from the instrument and/or undergo subsequent revision. Note also that communalities 
do not change with rotation, that is, these values are the same pre- and post-rotation. 
Thus, while rotation changes the values of factor loadings (to improve interpretability) 
and the amount of variance that is due to a given factor, rotation does not change the 
values of the communalities and the total amount of variance explained by both factors.

9.7.4  A Two-Factor Correlated Model Using Principal 
Components Extraction

The final illustrative analysis we consider with the workrelated variables presents results 
for a two-factor model that allows factors to be correlated. By using a varimax rotation, as 
we did in section 9.7.2, the factors were constrained to be completely uncorrelated. How-
ever, assuming the labels we have given to the factors (engagement and feeling valued in 
the workplace) are reasonable, you might believe that these factors are positively related. 
If you wish to estimate the correlation among factors, an oblique type of rotation must be 
used. Note that using an oblique rotation does not force the factors to be correlated but 
rather allows this correlation to be nonzero. The oblique rotation used here is direct quar-
timin, which is also known as direct oblimin when the parameter that controls the degree 
of correlation (called delta or tau) is at its recommended default value of zero. This oblique 
rotation method is commonly used. For this example, the same three research questions 
that appeared in section 9.7.2 are of interest, but we are now interested in an additional 
research question: What is the direction and magnitude of the factor correlation?

Selected analysis results for these data are shown in Table 9.6. As in section 9.7.2, 
examining the initial eigenvalues suggests, applying Kaiser’s rule, that two factors 
are strongly related to the set of items, and inspecting the scree plot provides support 
for this solution. Note though the values in Table 9.6 under the headings Initial Eigen-
values and Extraction Sums of Squared Loadings are identical to those provided in 
Table 9.4 even though we have requested an oblique rotation. The reason for these 
identical results is that the values shown under these headings are from a model where 
the factors have not been rotated. Thus, using various rotation methods does not affect 
the eigenvalues that are used to determine the number of important factors present in 
the data. After the factors have been rotated, the sums of squared loadings associated 
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 Table 9.6: Selected Analysis Results Using Oblique Rotation and Principal 
Components Extraction

Total variance explained

Component

Initial eigenvalues
Extraction sums of squared  

loadings

Rotation 
sums of 
squared 
loadingsa

Total
% of  
Variance

Cumulative 
% Total

% of  
Variance

Cumulative 
% Total

1
2
3
4
5
6

2.652 44.205 44.205 2.652 44.205 44.205 2.385
1.934 32.239 76.445 1.934 32.239 76.445 2.312

.417 6.954 83.398

.384 6.408 89.806

.341 5.683 95.489

.271 4.511 100.000

Extraction Method: Principal Component Analysis.
a When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

with each factor are located under the heading Rotation Sums of Squared Loadings. 
Like the loadings for the orthogonal solution, these sums of squared loadings are more 
similar for the two factors than before rotation. However, unlike the values for the 
orthogonal rotation, these post-rotation values cannot be meaningfully summed to pro-
vide a total amount of variance explained by the two factors, as such total variance 
obtained by this sum would now include the overlapping (shared) variance between 
factors. (Note that the total amount of variance explained by the two factors remains 
2.652 + 1.934 = 4.586.) The postrotation sum of squared loadings can be used, though, 
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Pattern matrix Structure matrix

Component Component

1 2 1 2

Stimulate .033 .861 Stimulate .167 .867
Challenge −.017 .884 Challenge .120 .882
Interest −.015 .855 Interest .118 .853
Recognize .875 .018 Recognize .878 .154
Appreciate .902 −.012 Appreciate .900 .128
Compensate .866 −.005 Compensate .865 .129

Extraction Method: Principal Component Analysis.
Rotation Method: Oblimin with Kaiser 
 Normalization.

Extraction Method: Principal Component Analysis.
Rotation Method: Oblimin with Kaiser 
 Normalization.

 Table 9.6: (Continued)

to make a rough comparison of the relative importance of each factor. Here, given that 
three items load on each factor, and that the each factor has similarly large and simi-
larly small loadings, each factor is about the same in importance.

As noted in section 9.4.2, with an oblique rotation, two types of matrices are provided. 
Table 9.6 shows the pattern matrix, containing values analogous to standardized partial 
regression coefficients, and the structure matrix, containing the correlation between 
the factors and each observed variable. As noted, using pattern coefficients to interpret 
factors is more consistent with an oblique rotation. Further, using the pattern coeffi-
cients often provides for a clearer picture of the factors (enhanced simple structure). 
In this case, using either matrix leads to the same conclusion as the items stimulate, 
challenge, and interest are related strongly (pattern coefficient >. 40) to only one factor 
and the items recognize, appreciate, and compensate are related strongly only to the 
other factor.

Another new piece of information provided by use of the oblique rotation is the factor 
correlation. Here, Table 9.6 indicates a positive but not strong association of .155. 
Given that the factors are not highly correlated, the orthogonal solution would not be 
unreasonable to use here, although a correlation of this magnitude (i.e., > |.10|) can be 
considered as small but meaningful (Cohen, 1988).

Component correlation matrix

Component 1 2

1 1.000 .155
2 .155 1.000
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Thus, addressing the research questions for this example, two factors are important 
in explaining variation in the set of items. Further, inspecting the values of the pat-
tern coefficients suggested that each item is related to only its hypothesized factor. 
Using an oblique rotation to estimate the correlation between factors, we found that 
the two factors—engagement and feeling valued in the workplace—are positively but 
modestly correlated at 0.16.

Before proceeding to the next section, we wish to make a few additional points. Nun-
nally (1978, pp. 433–436) indicated several ways in which one can be fooled by fac-
tor analysis. One point he made that we wish to comment on is that of ignoring the 
simple correlations among the variables after the factors have been derived—that 
is, not checking the correlations among the variables that have been used to define a 
factor—to see if there is communality among them in the simple sense. As Nun-
nally noted, in some cases, variables used to define a factor may have simple cor-
relations near zero. For our example this is not the case. Examination of the simple 
correlations in Table 9.3 for the three variables used to define factor 1 shows that the corre-
lations are fairly strong. The same is true for the observed variables used to define factor 2.

9.8 THE COMMUNALITY ISSUE

With principal components extraction, we simply transform the original variables into 
linear combinations of these variables, and often a limited number of these combina-
tions (i.e., the components or factors) account for most of the total variance. Also, we 
use 1s in the diagonal of the correlation matrix. Factor analysis using other extraction 
methods differs from principal components extraction in two ways: (1) the hypothet-
ical factors that are derived in pure or common factor analysis can only be estimated 
from the original variables whereas with principal components extraction, because the 
components are specific linear combinations, no estimate is involved; and (2) numbers 
less than 1, the communalities, are put in the main diagonal of the correlation matrix in 
common factor analysis. A relevant question is: Will different factors emerge if com-
munalities (e.g., the squared multiple correlation of each variable with all the others) 
are placed in the main diagonal?

The following quotes from five different sources give a pretty good sense of what might 
be expected in practice under some conditions. Cliff (1987) noted that “the choice of 
common factors or components methods often makes virtually no difference to the 
conclusions of a study” (p. 349). Guadagnoli and Velicer (1988) cited several studies 
by Velicer et al. that “have demonstrated that principal components solutions differ 
little from the solutions generated from factor analysis methods” (p. 266). Harman 
(1967) stated, “as a saving grace, there is much evidence in the literature that for all 
but very small data sets of variables, the resulting factorial solutions are little affected 
by the particular choice of communalities in the principal diagonal of the correlation 
matrix” (p. 83). Nunnally (1978) noted, “it is very safe to say that if there are as many 
as 20 variables in the analysis, as there are in nearly all exploratory factor analysis, then 
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it does not matter what one puts in the diagonal spaces” (p. 418). Gorsuch (1983) took 
a somewhat more conservative position: “If communalities are reasonably high (e.g., 
.7 and up), even unities are probably adequate communality estimates in a problem 
with more than 35 variables” (p. 108). A general, somewhat conservative conclusion 
from these is that when the number of variables is moderately large (say > 30), and 
the analysis contains virtually no variables expected to have low communalities (e.g., 
.4), then practically any of the factor procedures will lead to the same interpretations.

On the other hand, principal components and common factor analysis may provide 
different results when the number of variables is fairly small (< 20), and some com-
munalities are low. Further, Fabrigar and Wegener (2012) state, despite the Nunnally 
assertion described earlier, that these conditions (relatively low communalities and a 
small number of observed variables or loadings on a factor) are not that unusual for 
social science research. For this reason alone, you may wish to use a common factor 
analysis method instead of, or along with, principal components extraction. Further, as 
we discuss later, the common factor analysis method is conceptually more appropriate 
when you hypothesize that latent variables are present. As such, we now consider the 
common factor analysis model.

9.9 THE FACTOR ANALYSIS MODEL

As mentioned, factor analysis using principal components extraction may provide sim-
ilar results to other factor extraction methods. However, the principal components and 
common factor model, discussed later, have some fundamental differences and may 
at times lead to different results. We briefly highlight the key differences between 
the principal component and common factor models and point out general conditions 
where use of the common factor model may have greater appeal. A key difference 
between the two models has to do with the goal of the analysis. The goal of principal 
component analysis is to obtain a relatively small number of variates (linear com-
binations of variables) that account for as much variance in the set of variables as 
possible. In contrast, the goal of common factor analysis is to obtain a relatively small 
number of latent variables that account for the maximum amount of covariation in a 
set of observed variables. The classic example of this latter situation is when you are 
developing an instrument to measure a psychological attribute (e.g., motivation) and 
you write items that are intended to tap the unobservable latent variable (motivation). 
The common factor analysis model assumes that respondents with an underlying high 
level of motivation will respond similarly across the set of motivation items (e.g., have 
high scores across such items) because these items are caused by a common factor 
(here motivation). Similarly, respondents who have low motivation will provide gen-
erally low responses across the same set of items, again due to the common underlying 
factor. Thus, if you assume that unobserved latent variables are causing individuals 
to respond in predictable ways across a set of items (or observed variables), then the 
common factor model is conceptually better suited than use of principal components 
for this purpose.
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A visual display of the key elements of a factor analysis model helps further highlight 
differences between the common factor and principal component models. Figure 9.1 
is a hypothesized factor analysis model using the previous example involving the 
workrelated variables. The ovals at the bottom of Figure 9.1 represent the hypoth-
esized “engagement” and “valued” constructs or latent variables. As shown by the 
singleheaded arrows, these constructs, which are unobservable, are hypothesized to 
cause responses in the indicators (the engagement items, E1–E3, and the value items, 
V1–V3). Contrary to that shown in Figure 9.1, note that in exploratory factor anal-
ysis, each construct is assumed to linearly impact each of the observed variables. 
That is, arrows would appear from the engagement oval to each of the value variables 
(V1–V3) and from the valued oval to variables E1–E3. In exploratory factor analy-
sis such cross-loadings cannot be set a priori to zero. So, the depiction in Figure 9.1 
represents the researcher’s hypothesis of interest. If this hypothesis is correct, these 
undepicted crossloadings would be essentially zero. Note also that the doubleheaded 
curved arrow linking the two constructs at the bottom of Figure 9.1 means that the con-
structs are assumed to be correlated. As such, an oblique rotation that allows for such a 
correlation would be used. Further, the ovals at the top of Figure 9.1 represent unique 
variance that affects each observed variable. This unique variance, according to the 
factor analysis model, is composed of two entities: systematic variance that is inherent 
or specific to a given indicator (e.g., due to the way an item is presented or written) 
and variance due to random measurement error. Note that in the factor analysis model 
this unique variance (composed of these two entities) is removed from the observed 
variables (i.e., removed from E1, E2, and so on).

 Figure 9.1: A hypothesized factor analysis model with three engagement (E1–E3) and three 
value items (V1–V3).

Ue1 Ue2 Ue3 Uv1 Uv2 Uv3

Engagement

E1

Valued

E2 E3 V1 V2 V3
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So, how does this depiction compare to the principal components model? First, the 
principal components model does not acknowledge the presence of the unique vari-
ances associated with the items as shown in the top of Figure 9.1. Thus, the principal 
components model assumes that there is no random measurement error and no specific 
variance associated with each indicator. As such, in the principal components model, 
all variation associated with a given variable is included in the analysis. In contrast, 
in common factor analysis, only the variation that is shared or is in common among 
the indicators (assumed to be in common or shared because of underlying factors) 
can be impacted by the latent variables. This common variance is referred to as the 
communality, which is often measured initially by the proportion of variance in an 
observed variable that is common to all of the other observed variables. When the 
unique variance is small (or the communalities are high), as noted, factor analysis and 
the principal components method may well lead to the same analysis results because 
they are both analyzing essentially the same variance (i.e., the common variance and 
total variable variance are almost the same).

Another primary difference between factor and principal components analysis is the 
assumed presence of latent variables in the factor analysis model. In principal compo-
nents, the composite variables (the components) are linear combinations of observed 
variables and are not considered to be latent variables, but instead are weighted sums of 
the observed variables. In contrast, the factor analysis model, with the removal of the 
unique variance, assumes that latent variables are present and underlie (as depicted in 
Figure 9.1) responses to the indicators. Thus, if you are attempting to identify whether 
latent variables underlie responses to observed variables and explain why observed 
variables are associated (as when developing a measuring instrument or attempting to 
develop theoretical constructs from a set of observed variables), the exploratory factor 
analysis model is consistent with the latent variable hypothesis and is, theoretically, a 
more suitable analysis model.

Also, a practical difference between principal components and common factor anal-
ysis is the possibility that in common factor analysis unreasonable parameter esti-
mates may be obtained (such as communalities estimated to be one or greater). Such 
occurrences, called Heywood cases, may be indicative of a grossly misspecified factor 
analysis model (too many or too few factors), an overly small sample size, or data that 
are inconsistent with the assumptions of exploratory factor analysis. On the positive 
side, then, Heywood cases could have value in alerting you to potential problems with 
the model or data.

9.10 ASSUMPTIONS FOR COMMON FACTOR ANALYSIS

Now that we have discussed the factor analysis model, we should make apparent the 
assumptions underlying the use of common factor analysis. First, as suggested by Fig-
ure 9.1, the factors are presumed to underlie or cause responses among the observed 
variables. The observed variables are then said to be “effect” or “reflective” indicators. 
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This presumed causal direction is the reason why observed variables that are caused 
by a common factor should be fairly highly correlated. While this causal direction 
may be reasonable for many situations, indicators are sometimes thought to cause 
changes in the factors. For example, it may be reasonable to assume indicators of 
socioeconomic status (SES, such as income or salary) are causally related to an SES 
factor, with increases in the observed indicators (e.g., inheriting a fortune) causing an 
increase in the SES construct. Common factor analysis is not intended for such causal 
or formative-indicator models. Having a good conceptual understanding of the varia-
bles being studied will help you determine if it is believable that observed variables are 
effect indicators. Further discussion of causal indicator and other related models can 
be found in, for example, Bollen and Bauldry (2011).

A second assumption of the factor analysis model is that the factors and observed 
variables are linearly related. Given that factors are unobservable, this assumption is 
difficult to assess. However, there are two things worth keeping in mind regarding the 
linearity assumption. First, factor analysis results that are not meaningful (i.e., unin-
terpretable factors) may be due to nonlinearity. In such a case, if other potential causes 
are ruled out, such as obtaining too few factors, it may be possible to use data trans-
formations on the observed variables to obtain more sensible results. Second, consid-
ering the measurement properties of the observed variables can help us determine if 
linearity is reasonable to assume. For example, observed variables that are categori-
cal or strictly ordinal in nature are generally problematic for standard factor analysis 
because linearity presumes an approximate equal interval between scale values. That 
is, the interpretation of a factor loading—a 1-unit change in the factor producing a cer-
tain unit change in a given observed variable—is not meaningful without, at least, an 
approximate equal interval. With such data, factor analysis is often implemented with 
structural equation modeling or other specialized software to take into account these 
measurement properties. Note that Likert-scaled items are, perhaps, often considered 
to operate in the gray area between the ordinal and interval property and are sometimes 
said to have a quasi-interval like property. Floyd and Widamen (1995) state that stand-
ard factor analysis often performs well with such scales, especially those having five 
to seven response options.

Another assumption for common factor analysis is that there is no perfect multicol-
linearity present among the observed variables. This situation is fairly straightforward 
to diagnose with the collinearity diagnostics discussed in this book. Note that this 
assumption implies that a given observed variable is not a linear sum or composite of 
other variables involved in the factor analysis. If a composite variable (i.e., y3 = y1 + 
y2) and its determinants (i.e., y1, y2) were included in the analysis, software programs 
would typically provide an error message indicating the correlation matrix is not pos-
itive definite, with no further results being provided.

An assumption that is NOT made when principal components or principal axis fac-
toring is used is multivariate or univariate normality. Given that these two proce-
dures are almost always implemented without estimating standard errors or using 
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statistical inference, there is no assumption that the observed variables follow 
a multivariate or univariate normal distribution. Note though that related to the 
quasi-interval measurement property just discussed, more replicable factor analysis 
results are generally obtained when scores do not deviate grossly from a normal 
distribution.

One important nonstatistical consideration has to do with the variables included in 
the factor analysis. The variables selected should be driven by the constructs one is 
hypothesizing to be present. If constructs are poorly defined or if the observed vari-
ables poorly represent a construct of interest, then factor analysis results may not be 
meaningful. As such, hypothesized factors may not emerge or may only be defined by 
a single indicator.

9.11  DETERMINING HOW MANY FACTORS ARE PRESENT WITH 
PRINCIPAL AXIS FACTORING

In this section, we discuss criteria for determining the number of factors in explora-
tory factor analysis given the use of principal axis factoring. Principal axis factoring 
is a factor extraction method suitable for the common factor model. While there are 
several methods that can be used to extract factors in exploratory factor analysis, some 
of which are somewhat better at approximating the observed variable correlations, 
principal axis factoring is a readily understood and commonly used method. Further, 
principal axis factoring has some advantages relative to other extraction methods, as it 
does not assume multivariate normality and is not as likely to run into estimation prob-
lems as is, for example, maximum likelihood extraction (Fabrigar & Wegener, 2012). 
As mentioned, mathematically, the key difference between principal components and 
principal axis factoring is that in the latter estimates of communalities replace the 1s 
used in the diagonal of the correlation matrix. This altered correlation matrix, with 
estimated communalities in the diagonal, is often referred to as the reduced correlation 
matrix.

While the analysis procedures associated with principal axis factoring are very similar 
to those used with principal components extraction, the use of the reduced correlation 
matrix complicates somewhat the issue of using empirical indicators to determine the 
number of factors present. Recall that with principal components extraction, the use of 
Kaiser’s rule (eigenvalues > 1) to identify the number of factors is based on the idea 
that a given factor, if important, ought to account for at least as much as the variance 
of a given observed variable. However, in common factor analysis, the variance of 
the observed variables that is used in the analysis excludes variance unique to each 
variable. As such, the observed variable variance included in the analysis is smaller 
when principal axis factoring is used. Kaiser’s rule, then, as applied to the reduced 
correlation matrix is overly stringent and may lead to overlooking important factors. 
Further, no similar rule (eigenvalues > 1) is generally used for the eigenvalues from 
the reduced correlation matrix.
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Thus, the multiple criteria used in factor analysis to identify the number of important 
factors are somewhat different from those used with the principal components method. 
Following the suggestion in Preacher and MacCallum (2003), we will still rely on 
Kaiser’s rule except that this rule will be applied to the matrix used with principal com-
ponents extraction, the unreduced correlation matrix—that is, the unaltered or con-
ventional correlation matrix of the observed variables with 1s on the diagonal. Even 
though this correlation matrix is not used in common factor analysis, Preacher and 
MacCallum note that this procedure may identify the proper number of factors (espe-
cially when communalities are high) and is reasonable to use provided other criteria 
are used to identify the number of factors. Second, although the application of Kaiser’s 
rule is not appropriate for the reduced correlation matrix, you can still examine the 
scree plot of the eigenvalues obtained from use of the reduced correlation matrix to 
identify the number of factors. Third, parallel analysis based on the reduced correlation 
matrix can be used to identify the number of factors. Note that the eigenvalues from 
the reduced correlation matrix are readily obtained with the use of SAS software, but 
SPSS does not, at present, provide these eigenvalues. Further, neither software pro-
gram provides the eigenvalues for the parallel analysis procedure. The eigenvalues 
from the reduced correlation matrix as well as the eigenvalues produced via the par-
allel analysis procedure can be obtained using syntax found in Fabrigar and Wegener 
(2012). Further, the publisher’s website for that text currently provides the needed 
syntax in electronic form, which makes it easier to implement these procedures. Also, 
as before, we will consider the meaningfulness of any retained factors as an important 
criterion. This interpretation depends on the pattern of factor loadings as well as, for 
an oblique rotation, the correlation among the factors.

9.12  EXPLORATORY FACTOR ANALYSIS EXAMPLE WITH 
PRINCIPAL AXIS FACTORING

We now present an example using exploratory factor analysis with principal axis fac-
toring. In this example, the observed variables are items from a measure of test anxiety 
known as the Reactions to Tests (RTT) scale. The RTT questionnaire was developed 
by Sarason (1984) to measure the four hypothesized dimensions of worry, tension, 
testirrelevant thinking, and bodily symptoms. The summary data (i.e., correlations) 
used here are drawn from a study of the scale by Benson and Bandalos (1992), who 
used confirmatory factor analysis procedures. Here, we suppose that there has been 
no prior factor analytic work with this scale (as when the scale is initially developed), 
which makes exploratory factor analysis a sensible choice. For simplicity, only three 
items from each scale are used. Each item has the same four Likert-type response 
options, with larger score values indicating greater tension, worry, and so on. In this 
example, data are collected from 318 participants, which, assuming at least moderate 
communalities, is a sufficiently large sample size.

The hypothesized factor model is shown in Figure 9.2. As can be seen from the figure, 
each of the three items for each scale is hypothesized to load only on the scale it was 
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written to measure (which is typical for an instrument development context), and the 
factors are hypothesized to correlate with each other. The 12 ovals in the top of the 
figure (denoted by U1, U2, and so on) represent the unique variance associated with 
each indicator, that is, the variance in a given item that is not due to the presumed 
underlying latent variable. Given the interest in determining if latent variables underlie 
responses to the 12 items (i.e., account for correlations across items), a common factor 
analysis is suitable.

9.12.1 Preliminary Analysis

Table 9.7 shows the correlations for the 12 items. Examining these correlations sug-
gests that the associations are fairly strong within each set and weaker across the sets 
(e.g., strong correlations among the tension items, among the worry items, and so on, 
but not across the different sets). The exception occurs with the body items, which 
have reasonably strong correlations with other body items but appear to be somewhat 
similarly correlated with the tension items. The correlation matrix suggests multiple 
factors are present but it is not clear if four distinct factors are present. Also, note that 
correlations are positive as expected, and several correlations exceed a magnitude of 
.30, which supports the use of factor analysis.

We do not have the raw data and cannot perform other preliminary analysis activi-
ties, but we can describe the key activities. Histograms (or other plots) of the scores 
of each item and associated z-scores should be examined to search for outlying 
values. Item means and standard deviations should also be computed and examined 
to see if they are reasonable values. All possible bivariate scatterplots could also 
be examined to check for bivariate outliers, although this becomes less practical as 
the number of item increases. Further, the data set should be inspected for missing 
data. Note that if it were reasonable to assume that data are missing at random, 
use of the Expectation Maximization (EM) algorithm can be an effective missing 
data analysis strategy, given that no hypothesis testing is conducted (i.e., no stand-
ard errors need to be estimated). Further, multicollinearity diagnostics should be 

 Figure 9.2: Four-factor test anxiety model with three indicators per factor.
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examined, as estimation with principal axis factoring will fail if there is perfect 
multicollinearity.

Note also that you can readily obtain values for the Mahalanobis distance (to identify 
potential multivariate outliers) and variance inflation factors (to determine if excessive 
multicollinearity is present) from SPSS and SAS. To do this, use the regression pack-
age of the respective software program and regress ID or case number (a meaningless 
dependent variable) on the variables used in the factor analysis. Be sure to request 
values for the Mahalanobis distance and variance inflation factors, as these values will 
then appear in your data set and/or output. See sections 3.7 and 3.14.6 for a discussion 
of the Mahalanobis distance and variance inflation factors, respectively. Sections 9.14 
and 9.15 present SPSS and SAS instructions for factor analysis.

9.12.2 Primary Analysis

Given that a fourfactor model is hypothesized, we begin by requesting a fourfactor 
solution from SPSS (and SAS) using principal axis factoring with an oblique rotation, 
which allows us to estimate the correlations among the factors. The oblique rotation 
we selected is the commonly used direct quartimin. The software output shown next is 
mostly from SPSS, which we present here because of the somewhat more complicated 
nature of results obtained with the use of this program. Table 9.8 presents the eigenval-
ues SPSS provides when running this factor analysis. The initial eigenvalues on the left 
side of Table 9.8 are those obtained with a principal components solution (because that 
is what SPSS reports), that is, from the correlation matrix with 1s in the diagonal. While 
this is not the most desirable matrix to use when using principal axis factoring (which 
uses communalities on the diagonal), we noted previously that Kaiser’s rule, which 
should not be applied to the reduced matrix, can at times identify the correct number 
of factors when applied to the standard correlation matrix. Here, applying Kaiser’s rule 

 Table 9.7: Item Correlations for the Reactions-to-Tests Scale

1 2 3 4 5 6 7 8 9 10 11 12

Ten1 1.000
Ten2 .657 1.000
Ten3 .652 .660 1.000
Wor1 .279 .338 .300 1.000
Wor2 .290 .330 .350 .644 1.000
Wor3 .358 .462 .440 .659 .566 1.000
Tirt1 .076 .093 .120 .317 .313 .367 1.000
Tirt2 .003 .035 .097 .308 .305 .329 .612 1.000
Tirt3 .026 .100 .097 .305 .339 .313 .674 .695 1.000
Body1 .287 .312 .459 .271 .307 .351 .122 .137 .185 1.000
Body2 .355 .377 .489 .261 .277 .369 .196 .191 .197 .367 1.000
Body3 .441 .414 .522 .320 .275 .383 .170 .156 .101 .460 .476 1.000
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suggests the presence of three factors, as the eigenvalues associated with factors 1–3 
are each larger than 1. Note though that under the heading Extraction Sums of Squared 
Loadings four factors are extracted, as we asked SPSS to disregard Kaiser’s rule and 
simply extract four factors. Note that the values under the extracted heading are the 
sum of squared loadings obtained via principal axis factoring prior to rotation, while 
those in the final column are the sum of squared loadings after factor rotation. Neither 
of these latter estimates are the initial or preliminary eigenvalues from the reduced cor-
relation matrix that are used to identify (or help validate) the number of factors present.

In addition to Kaiser’s rule, a second criterion we use to identify if the hypothesized 
four-factor model is empirically supported is to obtain the initial eigenvalues from the 
reduced matrix and examine a scree plot associated with these values. In SAS, these 
values would be obtained when you request extraction with principal axis factoring. 
With SPSS, these initial eigenvalues are currently not part of the standard output, as 
we have just seen, but can be obtained by using syntax mentioned previously and pro-
vided in Fabrigar and Wegener (2012). These eigenvalues are shown on the left side 
of Table 9.9. Note that, as discussed previously, it is not appropriate to apply Kaiser’s 

 Table 9.8: Eigenvalues and Sum-of-Squared Loadings Obtained from SPSS for the 
Four-Factor Model

Total variance explained

Factor

Initial eigenvalues
Extraction sums of squared 

loadings

Rotation 
sums of 
squared 
loadingsa

Total
% of 
 Variance

Cumulative 
% Total

% of 
Variance

Cumulative 
% Total

1 4.698 39.149 39.149 4.317 35.972 35.972 3.169
2 2.241 18.674 57.823 1.905 15.875 51.848 2.610
3 1.066 8.886 66.709 .720 5.997 57.845 3.175
4 .850 7.083 73.792 .399 3.322 61.168 3.079
5 .620 5.167 78.959
6 .526 4.381 83.339
7 .436 3.636 86.975
8 .385 3.210 90.186
9 .331 2.762 92.947

10 .326 2.715 95.662
11 .278 2.314 97.976
12 .243 2.024 100.000

Extraction Method: Principal Axis Factoring.
a When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.
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rule to these eigenvalues, but it is appropriate to inspect a scree plot of these values, 
which is shown in Table 9.9. Note that this scree plot of initial eigenvalues from the 
reduced correlation matrix would not be produced by SPSS, as it produces a scree plot 
of the eigenvalues associated with the standard or unreduced correlation matrix. So, 
with SPSS, you need to request a scatterplot (i.e., outside of the factor analysis pro-
cedure) with the initial eigenvalues from the reduced correlation matrix appearing on 
the vertical axis and the factor number on the horizontal axis. This scatterplot, shown 
in Table 9.9, appears to indicate the presence of at least two factors and possibly up to 

Raw Data Eigenvalues From  
Reduced Correlation Matrix

Random Data Eigenvalues From  
Parallel Analysis

Root Eigen. Root Means Prcntyle
1.000000 4.208154 1.000000 .377128 .464317
2.000000 1.790534 2.000000 .288660 .356453
3.000000 .577539 3.000000 .212321 .260249
4.000000 .295796 4.000000 .150293 .188854
5.000000 .014010 5.000000 .098706 .138206
6.000000 -.043518 6.000000 .046678 .082671
7.000000 -.064631 7.000000 -.006177 .031410
8.000000 -.087582 8.000000 -.050018 -.015718
9.000000 -.095449 9.000000 -.099865 -.064311

10.000000 -.156846 10.000000 -.143988 -.112703
11.000000 -.169946 11.000000 -.194469 -.160554
12.000000 -.215252 12.000000 -.249398 -.207357

 Table 9.9: Eigenvalues From Principal Axis Extraction and Parallel Process Analysis
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four factors, as there is a bit of a drop after the fourth factor, with the plot essentially 
leveling off completely after the fourth factor. As mentioned previously, use of this 
plot can be somewhat subjective.

A third criterion that we use to help us assess if the four-factor model is reasonable 
involves parallel analysis. Recall that with use of parallel analysis a set of eigenvalues 
is obtained from replicated random datasets (100 used in this example), and these 
values are compared to the eigenvalues from the data set being analyzed (here, the 
initial eigenvalues from the reduced matrix). Table 9.9 shows the eigenvalues from 
the reduced matrix on the left side. The right side of the table shows the mean eigen-
value as well as the value at the 95th percentile for each factor from the 100 replicated 
random data sets. Note that the first eigenvalue from the analyzed factor model (4.21) 
is greater than the mean eigenvalue (.377), as well as the value at the 95th percentile 
(.464) for the corresponding factor from parallel analysis. The same holds for fac-
tors two through four but not for factor five. Thus, use of parallel analysis supports 
a fourfactor solution, as the variation associated with the first four factors is greater 
than variation expected by chance. (Note that is common to obtain negative eigenval-
ues when the reduced correlation matrix is analyzed. The factors associated with such 
eigenvalues are obviously not important.)

Before we consider the factor loadings and correlations to see if the four factors are 
interpreted as hypothesized, we consider the estimated communalities, which are 
shown in Table 9.10, and indicate the percent of item variance explained by the four 
extracted factors. An initial communality (a best guess) is the squared multiple correla-
tion between a given item and all other items, whereas the values in the extraction col-
umn represent the proportion of variance in each item that is due to the four extracted 
factors obtained from the factor model. Inspecting the extracted communalities sug-
gests that each item is at least moderately related to the set of factors. As such, we 
would expect that each item will have reasonably high loadings on at least one factor. 
Although we do not show the communalities as obtained via SAS, note that SPSS and 
SAS provide identical values for the communalities. Note also, as shown in the seventh 
column of Table 9.8, that the four factors explain 61% of the variance in the items.

Table 9.11 shows the pattern coefficients, structure coefficients, and the estimated cor-
relations among the four factors. Recall that the pattern coefficients are preferred over 
the structure coefficients for making factor interpretations given the use of an oblique 
rotation. Inspecting the pattern coefficients and applying a value of |.40| to identify 
important itemfactor associations lends support to the hypothesized fourfactor solu-
tion. That is, factor 1 is defined by the body items, factor 2 by the testirrelevant think-
ing items, factor 3 by the worry items, and factor 4 by the tension items. Note the 
inverse association among the items and factors for factors 3 and 4. For example, for 
factor 3, participants scoring higher on the worry items (greater worry) have lower 
scores on the factor. Thus, higher scores on factor three reflect reduced anxiety (less 
worry) related to tests whereas higher scores on factor 2 are suggestive of greater anx-
iety (greater test-irrelevant thinking).      



 Table 9.10: Item Communalities for the Four-Factor Model

Communalities

Initial Extraction

TEN1 .532 .636
TEN2 .561 .693
TEN3 .615 .721
WOR1 .552 .795
WOR2 .482 .537
WOR3 .565 .620
IRTHK1 .520 .597
IRTHK2 .542 .638
IRTHK3 .606 .767
BODY1 .322 .389
BODY2 .337 .405
BODY3 .418 .543

Extraction Method: Principal Axis Factoring.

 Table 9.11: Pattern, Structure, and Correlation Matrices From the Four-Factor Model

Pattern matrixa

Factor

1 2 3 4

TEN1 .022 −.027 −.003 −.783
TEN2 −.053 .005 −.090 −.824
TEN3 .361 .005 .041 −.588
WOR1 −.028 −.056 −.951 .052
WOR2 .028 .071 −.659 −.049
WOR3 .110 .087 −.605 −.137
IRTHK1 −.025 .757 −.039 −.033
IRTHK2 .066 .776 −.021 .094
IRTHK3 −.038 .897 .030 −.027
BODY1 .630 −.014 −.068 .061
BODY2 .549 .094 .027 −.102
BODY3 .710 −.034 −.014 −.042

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser Normalization.
a Rotation converged in 8 iterations.

(Continued )
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Factor correlation matrix

Factor 1 2 3 4

1 1.000 .278 −.502 −.654
2 .278 1.000 −.466 −.084
3 −.502 −.466 1.000 .437
4 −.654 −.084 .437 1.000

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser Normalization.

 Table 9.11: (Continued)

Structure matrix

Factor

1 2 3 4

TEN1 .529 .047 −.345 −.797
TEN2 .532 .102 −.426 −.829
TEN3 .727 .135 −.400 −.806
WOR1 .400 .376 −.888 −.341
WOR2 .411 .390 −.728 −.362
WOR3 .527 .411 −.761 −.481
IRTHK1 .227 .771 −.394 −.097
IRTHK2 .230 .796 −.375 −.023
IRTHK3 .214 .875 −.381 −.064
BODY1 .621 .187 −.351 −.380
BODY2 .628 .242 −.337 −.457
BODY3 .735 .173 −.373 −.510

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser Normalization.

These factor interpretations are important when you examine factor correlations, 
which are shown in Table 9.11. Given these interpretations, the factor correlations 
seem sensible and indicate that factors are in general moderately correlated. One 
exception to this pattern is the correlation between factors 2 (test irrelevant thinking) 
and 4 (tension), where the correlation is near zero. We note that the nearzero corre-
lation between test-irrelevant thinking and tension is not surprising, as other studies 
have found the test-irrelevant thinking factor to be the most distinct of the four factors. 
A second possible exception to the moderate correlation pattern is the fairly strong 
association between factors 1 (body) and 4 (tension). This fairly high correlation might 
suggest to some that these factors may not be that distinct. Recall that we made a simi-
lar observation when we examined the correlations among the observed variables, and 
that applying Kaiser’s rule supported the presence of three factors.
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Thus, to explore this issue further, you could estimate a factor model requesting soft-
ware to extract three factors. You can then inspect the pattern coefficients and factor 
correlations to determine if the three-factor solution seems meaningful. When we did 
this, we found that the body and tensions items loaded only on one factor, the worry 
items loaded only on a second factor, and the test-irrelevant thinking items loaded only 
on a third factor. Further, the factor correlations were reasonable. Thus, assuming that 
it is reasonable to consider that the tension and body items reflect a single factor, there 
is support for both the three- and four-factor models. In such a case, a researcher might 
present both sets of results and/or offer arguments for why one solution would be 
preferred over another. For example, Sarason (1984, p. 937) preferred the four-factor 
model stating that it allowed for a more finegrained analysis of test anxiety. Alterna-
tively, such a finding, especially in the initial stages of instrument development, might 
compel researchers to reexamine the tension and body items and possibly rewrite them 
to make them more distinct. It is also possible that this finding is sample specific and 
would not appear in a subsequent study. Further research with this scale may then be 
needed to resolve this issue.

Before proceeding to the next section, we show some selected output for this same 
example that is obtained from SAS software. The top part of Table 9.12 shows the 
preliminary eigenvalues for the fourfactor model. These values are the same as those 
shown in Table 9.9, which were obtained with SPSS by use of a specialized macro. 
A scree plot of these values, which can readily be obtained in SAS, would essentially be 
the same plot as shown in Table 9.9. Note that inspecting the eigenvalues in Table 9.12 
indicates a large drop off after factor 2 and somewhat of a drop off after factor 4, pos-
sibly then supporting the fourfactor solution. The middle part of Table 9.12 shows the 
pattern coefficients for this solution. These values have the same magnitude as those 
shown in Table 9.11, but note that the signs for the defining coefficients (i.e., pattern 
coefficients > |.40|) here are all positive, suggesting that the signs of the coefficients are 
somewhat arbitrary and indeed are done for computational convenience by software. 
(In fact, within a given column of pattern or structure coefficients, you can reverse all 
of the signs if that eases interpretation.) In this case, the positive signs ease factor inter-
pretation because higher scores on each of the four anxiety components reflect greater 
anxiety (i.e., greater tension, worrying, test-irrelevant thinking, and bodily symptoms). 
Accordingly, all factor correlations, as shown in Table 9.12, are positive.

9.13 FACTOR SCORES

In some research situations, you may, after you have achieved a meaningful factor 
solution, wish to estimate factor scores, which are considered as estimates of the true 
underlying factor scores, to use for subsequent analyses. Factor scores can be used as 
predictors in a regression analysis, dependent variables in a MANOVA or ANOVA, and 
so on. For example, after arriving at the four-factor model, Sarason (1984) obtained 
scale scores and computed correlations for each of the four subscales of the RTT ques-
tionnaire (discussed in section 9.12) and a measure of “cognitive interference” in order 



Preliminary Eigenvalues: Total = 6.0528105 Average = 0.50440088

Eigenvalue Difference Proportion Cumulative

1 4.20815429 2.41762010 0.6952 0.6952
2 1.79053420 1.21299481 0.2958 0.9911
3 0.57753939 0.28174300 0.0954 1.0865
4 0.29579639 0.28178614 0.0489 1.1353
5 0.01401025 0.05752851 0.0023 1.1377
6 –.04351826 0.02111277 –0.0072 1.1305
7 –.06463103 0.02295100 –0.0107 1.1198
8 –.08758203 0.00786743 –0.0145 1.1053
9 –.09544946 0.06139632 –0.0158 1.0896

10 –.15684578 0.01309984 –0.0259 1.0636
11 –.16994562 0.04530621 –0.0281 1.0356
12 –.21525183 –0.0356 1.0000

 Table 9.12: Selected SAS Output for the Four-Factor Model

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2 Factor3 Factor4

TEN1 –0.02649 0.00338 0.78325 0.02214
TEN2 0.00510 0.09039 0.82371 –0.05340
TEN3 0.00509 –0.04110 0.58802 0.36089
WOR1 –0.05582 0.95101 –0.05231 –0.02737
WOR2 0.07103 0.65931 0.04864 0.02843
WOR3 0.08702 0.60490 0.13716 0.10978
TIRT1 0.75715 0.03878 0.03331 –0.02514
TIRT2 0.77575 0.02069 –0.09425 0.06618
TIRT3 0.89694 –0.02998 0.02734 –0.03847
BODY1 –0.01432 0.06826 –0.06017 0.62960
BODY2 0.09430 –0.02697 0.10260 0.54821
BODY3 –0.03364 0.01416 0.04294 0.70957

Inter-Factor Correlations

Factor1 Factor2 Factor3 Factor4

Factor1 1.00000 0.46647 0.08405 0.27760
Factor2 0.46647 1.00000 0.43746 0.50162
Factor3 0.08405 0.43746 1.00000 0.65411
Factor4 0.27760 0.50162 0.65411 1.00000
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to obtain additional evidence for the validity of the scales. Sarason hypothesized (and 
found) that the worry subscale of the RTT is most highly correlated with cognitive 
interference.

While several different methods of estimating factor scores are available, two are commonly 
used. One method is to estimate factor scores using a regression method. In this method, 
regression weights (not the factor loadings) are obtained and factor scores are created by 
multiplying each weight by the respective observed variable, which is in z-score form. 
For example, for the six workrelated variables that appeared in section 9.7, Table 9.13 
shows the regression weights that are obtained when you use principal axis factoring 
(weights can also be obtained for the principal components method). With these weights, 
scores for the first factor (engagement) are formed as follows: Engagement = .028 × 
zstimulate + .000 × zchallenge + .001 × zinterest + .329 × zrecognize + .463 × zappreciate + .251 × zcompensate. 
Scores for the second factor are computed in a similar way by using the weights in the 
next column of that table. Note that SPSS and SAS can do these calculations for you and 
place the factor scores in your data set (so no manual calculation is required).

A second, and simpler, method to estimate factor scores especially relevant for scale 
construction is to sum or average scores across the observed variables that load highly 
on a given factor as observed in the pattern matrix. This method is known as unit 
weighting because values of 1 are used to weight important variables as opposed to the 
exact regression weights used in the foregoing procedure. To illustrate, consider esti-
mating factor or scale scores for the RTT example in section 9.12. For the first factor, 
inspecting the pattern coefficients in Table 9.11 indicated that only the bodily symptom 
items (Body1, Body2, Body3) are strongly related to that factor. Thus, scores for this 
factor can be estimated as Bodily Symptoms = 1 × Body1 + 1 × Body2 + 1 × Body3, 
which, of course, is the same thing as summing across the three items. When variables 

 Table 9.13: Factor Score Regression Weights for the Six Work-Related Variables

Factor score coefficient matrix

Factor

1 2

Stimulate .028 .338
Challenge .000 .431
Interest .001 .278
Recognize .329 .021
Appreciate .463 .006
Compensate .251 .005

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser Normalization.
Factor Scores Method: Regression.
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are on the same scale, as they often are in an instrument development context, averaging 
the scores can be used here as well, which provides for greater meaning because the 
score scale of the observed scores and factor scores are the same, making averaging 
an appealing option. Note that if the observed variables are not on the same scale, the 
observed variables could first be placed in z-score form and then summed (or averaged).

Note that for some factors the defining coefficients may all be negative. In this case, 
negative signs can be used to obtain factor scores. For example, scores for factor 4 in 
the RTT example, given the signs of the pattern coefficients in Table 9.11, can be com-
puted as Tension = −1 × Ten1 − 1 × Ten2 − 1 × Ten3. However, scale scores in this case 
will be negative, which is probably not desired. Given that the coefficients are each 
negative, here, a more sensible alternative is to simply sum scores across the tension 
items ignoring the negative signs. (Remember that it is appropriate to change signs of 
the factor loadings within a given column provided that all signs are changed within 
that column.) When that is done, higher scale scores reflect greater tension, which is 
consistent with the item scores (and with the output produced by SAS in Table 9.12). 
Be aware that the signs of the correlations between this factor and all other factors will 
be reversed. For example, in Table 9.11, the correlation between factors 1 (body) and 4 
(tension) is negative. If scores for the tension items were simply summed or averaged 
(as recommended here), this correlation of scale scores would then be positive, indicat-
ing that those reporting greater bodily symptoms also report greater tension. For this 
example, then, summing or averaging raw scores across items for each subscale would 
produce all positive correlations between factors, as likely desired.

You should know that use of different methods to estimate factor scores, including 
these two methods, will not produce the same factor scores (which is referred to as fac-
tor score indeterminacy), although such scores may be highly correlated. Also, when 
factor scores are estimated, the magnitude of the factor correlations as obtained in the 
factor analysis (i.e., like those in Table 9.11) will not be the same as those obtained 
if you were to compute factor scores and then compute correlations associated with 
these estimated scores. One advantage with regression weighting is that its use maxi-
mizes the correlation between the underlying factors and the estimated factor scores. 
However, use of regression weights to produce factor scores, while optimal for the 
sample at hand, do not tend to hold up well in independent samples. As such, simple 
unit weighting is often recommended, and studies examining the performance of unit 
weighting support its use in estimating factor scores (Fava & Velicer, 1992; Grice, 
2001; Nunnally, 1978). Note also that this issue does not arise with the principal com-
ponents method. That is, with principal components extraction and when the regres-
sion method is used to obtain factor (or component) scores, the obtained factor score 
correlations will match those found via the use of principal components extraction.

9.14 USING SPSS IN FACTOR ANALYSIS

This section presents SPSS syntax that can be used to conduct a factor analysis with 
principal axis extraction. Note that SPSS can use raw data or just the correlations 
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obtained from raw data to implement a factor analysis. Typically, you will have raw 
data available and will use that in conducting a factor analysis. Table 9.14 shows syn-
tax needed assuming you are using raw data, and Table 9.15 shows syntax that can 
be used when you only have a correlation matrix available. Syntax in Table 9.15 will 
allow you to duplicate analysis results presented in section 9.12. Section 9.15 presents 
the corresponding SAS syntax.

The left side of Table 9.14 shows syntax that can be used when you wish to apply 
Kaiser’s rule to help determine the number of factors present. Note that in the sec-
ond line of the syntax, where the VARIABLES subcommand appears, you simply 
list the observed variables from your study (generically listed here as var1, var2, 
and so on). For the ANALYSIS subcommand in the next line, you can list the 
same variables again or, as shown here, list the first variable name followed by the 
word “to” and then the last variable name, assuming that the variables 1–6 appear 
in that order in your data set. Further, SPSS will apply Kaiser’s rule to eigen-
values obtained from the unreduced correlation matrix when you specify MINEI-
GEN(1) after the CRITERIA subcommand in line 5 of the code. As discussed in 
sections 9.11 and 9.12, you must use supplemental syntax to obtain eigenvalues 
from the reduced correlation matrix, which is desirable when using principal axis 
factoring.

In the next line, following the EXTRACTION subcommand, PAF requests SPSS 
to use principal axis factoring. (If PC were used instead of PAF, all analysis results 
would be based on the use of principal components extraction). After the ROTATION 
command, OBLIMIN requests SPSS to use the oblique rotation procedure known as 
direct quartimin. Note that replacing OBLIMIN with VARIMAX would direct SPSS 
to use the orthogonal rotation varimax. The SAVE subcommand is an optional line that 
requests the estimation of factor scores using the regression procedure discussed in 

Using Kaiser’s Rule Requesting Specific Number of Factors
FACTOR
/VARIABLES var1 var2 var3 var4 var5 
var6
/ANALYSIS var1 to var6
/PRINT INITIAL EXTRACTION ROTATION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PAF
/CRITERIA ITERATE(25)
/ROTATION OBLIMIN
/SAVE REG(ALL)
/METHOD=CORRELATION.

FACTOR
/VARIABLES var1 var2 var3 var4 
var5 var6
/ANALYSIS var1 to var6
/PRINT INITIAL EXTRACTION 
ROTATION
/CRITERIA FACTORS(2) ITERATE(25)
/EXTRACTION PAF
/CRITERIA ITERATE(25)
/ROTATION OBLIMIN
/SAVE REG(ALL)
/METHOD=CORRELATION.

 Table 9.14: SPSS Syntax for Factor Analysis With Principal Axis Extraction 
Using Raw Data
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section 9.13. The last line directs SPSS to use correlations (as opposed to covariances) 
in conducting the factor analysis.

The right side of the Table 9.14 shows syntax that can be used when you wish to 
extract a specific number of factors (as done in section 9.12) instead of relying, for 
example, on Kaiser’s rule to determine the number of factors to be extracted. Note that 
the syntax on the right side of the table is identical to that listed on the left except for 
line 5 of the syntax. Here, the previously used MINEIGEN(1) has been replaced with 
the statement FACTORS(2). The FACTORS(2) statement in line 5 directs SPSS to 
extract two factors, regardless of their eigenvalues. FACTORS(3) would direct SPSS 
to extract three factors and so on. Note that neither set of syntax requests a scree plot 
of eigenvalues. As described, with SPSS, such a plot would use eigenvalues from the 
unreduced correlation matrix. When principal axis factoring is used, it is generally 
preferred to obtain a plot of the eigenvalues from the reduced correlation matrix.

Table 9.15 shows SPSS syntax that was used to obtain the fourfactor solution presented 
in section 9.12.2. The first line is an optional title line. The second line, following the 
required phrase MATRIX DATA VARIABLES=, lists the 12 observed variables used 
in the analysis. The phrase N_SCALER CORR, after the CONTENTS subcommand, 
informs SPSS that a correlation matrix is used as entry and that sample size (N) will 
be specified prior to the correlation matrix. After the BEGIN DATA command, you 
must indicate the sample size for your data (here, 318), and then input the correlation 
matrix. After the END DATA code just below the correlation matrix, the FACTOR 
MATRIX IN(COR=*) informs SPSS that the factor analysis will use as data the cor-
relation matrix entered earlier. Note that PAF is the extraction method requested, and 
that SPSS will extract four factors no matter what the size of the eigenvalues are. Also, 
note that the direct quartimin rotation procedure is requested, given that the factors are 
hypothesized to be correlated.

9.15 USING SAS IN FACTOR ANALYSIS

This section presents SAS syntax that can be used to conduct factor analysis using 
principal axis extraction. Like SPSS, SAS can implement a factor analysis with raw 
data or using just the correlations obtained from raw data. Table 9.16 shows syntax 
assuming you are using raw data, and Table 9.17 shows syntax that can be used when 
you only have a correlation matrix available. Syntax in Table 9.17 will allow you to 
duplicate analysis results presented in section 9.12.

The left side of Table 9.16 shows syntax that can be used when you wish to apply Kai-
ser’s rule to help determine the number of factors present. The syntax assumes that the 
data set named my_data is the active data set in SAS. The first line initiates the factor 
analysis procedure in SAS where you must indicate the data set that is being used (sim-
ply called my_data here). The second line of the syntax directs SAS to apply Kaiser’s 
rule to extract factors having an eigenvalue larger than 1, and the code METHOD=prin 
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PRIOR=one directs SAS to use principal components extraction with values of 1 on 
the diagonal of the correlation matrix. Thus, this line requests SAS to use the unre-
duced correlation matrix and extract any factors whose corresponding eigenvalue is 
greater than 1. If you wanted to use principal components extraction only for the pur-
pose of applying Kaiser’s rule (as is done in section 9.12), you would disregard output 
from this analysis except for the initial eigenvalues.

To complete the explanation of the syntax, ROTATE=oblimin directs SAS to use the 
oblique rotation method direct quartimin. The orthogonal rotation method varimax 
can be implemented by replacing the ROTATE=oblimin with ROTATE=varimax. 
After the VAR command on the fourth line, you must indicate the variables being used 
in the analysis, which are generically named here var1, var2, and so on. RUN requests 
the procedure to be implemented.

The right side of the Table 9.16 shows syntax that uses principal axis factoring, 
requests a specific number of factors be extracted (as done in section 9.12), and 
obtains factor scores (which are optional). The code also requests a scree plot 
of the eigenvalues using the reduced correlation matrix. The second line of the 
code directs SAS to use, initially, squared multiple correlations (smc) as esti-
mates of variable communalities (instead of the 1s used in principal components 
extraction). Also, NFACTORS=2 in this same line directs SAS to extract two 
factors while METHOD=prinit directs SAS to use an iterative method to obtain 
parameter estimates (which is done by default in SPSS). Thus, use of the code 
PRIORS=smc and METHOD=prinit requests an iterative principal axis factoring 
solution (identical to that used by SPSS earlier). Again, the ROTATE=oblimin 
directs SAS to employ the direct quartimin rotation, and SCREE instructs SAS 
to produce a scree plot of the eigenvalues from the reduced correlation matrix 
(unlike SPSS, which would provide a SCREE plot of the eigenvalues associated 
with the unreduced correlation matrix). The SCORE OUTSTAT code is optional 

 Table 9.16: SAS Syntax for Factor Analysis Using Raw Data

Using Kaiser’s Rule With PC
Requesting Specific Number of Factors 
With PAF

PROC FACTOR DATA = my_data

MINEIGEN = 1.0 METHOD=prin 
 PRIOR=one ROTATE=oblimin;

VAR var1 var2 var3 var4 var5 var6;

RUN;

PROC FACTOR DATA = my_data

PRIORS=smc NFACTORS=2 METHOD=prinit  
ROTATE=oblimin SCREE SCORE OUTSTAT=fact;

VAR var1 var2 var3 var4 var5 var6;

PROC SCORE DATA = my_data SCORE = fact 
OUT=scores;

RUN;
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and requests that the factor score coefficients, used in creating factor scores (as 
well as other output), be placed in a file called here fact. Following the variable 
line, the next couple of lines is optional and is used to create factor scores using 
the regression method and have these scores placed in a data file called here 
scores. RUN executes the code.

Table 9.17 shows SAS syntax that was used to obtain the fourfactor solution presented 
in section 9.12.2. Line 1 is an optional title line. In lines 2–4, all of the code shown 
is required when you are using a correlation matrix as input; the only user option is 
to name the dataset (here called rtsitems). In line 5, the required elements include 
everything up to and including the dollar sign ($). The remainder of that line includes 
the variable names that appear in the study. After the DATALINES command, which 
is required, you then provide the correlation matrix with the variable names placed in 
the first column. After the correlation matrix is entered, the rest of the code is similar 
to that used when raw data are input. The exception is NOBS=318, which you use to 
tell SAS how large the sample size is; for this example, the number of observations 
(NOBS) is 318.

9.16 EXPLORATORY AND CONFIRMATORY FACTOR ANALYSIS

This chapter has focused on exploratory factor analysis (EFA). The purpose of EFA is 
to identify the factor structure for a set of variables. This often involves determining 
how many factors exist, as well as the pattern of the factor loadings. Although most 
EFA programs allow for the number of factors to be specified in advance, it is not pos-
sible in these programs to force variables to load only on certain factors. EFA is gen-
erally considered to be more of a theory-generating than a theory-testing procedure. In 
contrast, confirmatory factor analysis (CFA), which is covered in Chapter 16, is gen-
erally based on a strong theoretical or empirical foundation that allows you to specify 
an exact factor model in advance. This model usually specifies which variables will 
load on which factors, as well as such things as which factors are correlated. It is more 
of a theory-testing procedure than is EFA. Although, in practice, studies may con-
tain aspects of both exploratory and confirmatory analyses, it is useful to distinguish 
between the two techniques in terms of the situations in which they are commonly 
used. Table 9.18 displays some of the general differences between the two approaches.

Let us consider an example of an EFA. Suppose a researcher is developing a scale to 
measure selfconcept. The researcher does not conceptualize specific selfconcept fac-
tors in advance and simply writes a variety of items designed to tap into various aspects 
of self-concept. An EFA of these items may yield three factors that the researcher then 
identifies as physical, social, and academic selfconcept. The researcher notes that 
items with large loadings on one of the three factors tend to have very small loadings 
on the other two, and interprets this as further support for the presence of three distinct 
factors or dimensions of underlying self-concept. In scale development, EFA is often 
considered to be a better choice.
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 Table 9.18 Comparison of Exploratory and Confirmatory Factor Analysis

Exploratory—theory generating Confirmatory—theory testing

Heuristic—weak literature base Strong theory or strong empirical base
Determine the number of factors Number of factors fixed a priori
Determine whether the factors are correlated 
or uncorrelated

Factors fixed a priori as correlated or uncorrelated

Variables free to load on all factors Variables fixed to load on a specific factor or 
factors

Continuing the scale development example, as researchers continue to work with this 
scale in future research, CFA becomes a viable option. With CFA, you can specify both 
the number of factors hypothesized to be present (e.g., the three selfconcept factors) 
but also specify which items belong to a given dimension. This latter option is not pos-
sible in EFA. In addition, CFA is part of broader modeling framework known as struc-
tural equation modeling (SEM), which allows for the estimation of more sophisticated 
models. For example, the self-concept dimensions in SEM could serve as predictors, 
dependent variables, or intervening variables in a larger analysis model. As noted in 
Fabrigar and Wegener (2012), the associations between these dimensions and other 
variables can then be obtained in SEM without computing factor scores.

9.17  EXAMPLE RESULTS SECTION FOR EFA OF  
REACTIONS-TO-TESTS SCALE

The following results section is based on the example that appeared in section 9.12. In 
that analysis, 12 items measuring text anxiety were administered to college students at 
a major research university, with 318 respondents completing all items. Note that most 
of the next paragraph would probably appear in a method section of a paper.

The goal of this study was to identify the dimensions of text anxiety, as measured by 
the newly developed RTT measure. EFA using principal axis factoring (PAF) was used 
for this purpose with the oblique rotation method direct quartimin. To determine the 
number of factors present, we considered several criteria. These include the number of 
factors that (1) had eigenvalues greater than 1 when the unreduced correlation matrix 
was used (i.e., with 1s on the diagonal of the matrix), (2) were suggested by inspect-
ing a scree plot of eigenvalues from the reduced correlation matrix (with estimates of 
communalities in the diagonal of correlation matrix), which is consistent with PAF, 
(3) had eigenvalues larger than expected by random as obtained via parallel analysis, 
and (4) were conceptually coherent when all factor analysis results were examined. 
The 12 items on the scale represented possible dimensions of anxiety as suggested in 
the relevant literature. Three items were written for each of the hypothesized dimen-
sions, which represented tension, worry, test-irrelevant thinking, and bodily symp-
toms. For each item, a 4-point response scale was used (from “not typical of me” to 
“very typical of me”).
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Table 1 reports the correlations among the 12 items. (Note that we list generic item 
names here. You should provide some descriptive information about the content of the 
items or perhaps list each of the items, if possible.) In general, inspecting the correla-
tions appears to provide support for the four hypothesized dimensions, as correlations 
are mostly greater within each dimension than across the assumed dimensions. Exam-
ination of Mahalanobis distance values, variance inflation factors, and histograms 
associated with the items did not suggest the presence of outlying values or excessive 
multicollinearity. Also, scores for most items were roughly symmetrically distributed.

 Table 1: Item Correlations (N = 318)

1 2 3 4 5 6 7 8 9 10 11 12

Ten1 1.000
Ten2 .657 1.000
Ten3 .652 .660 1.000
Wor1 .279 .338 .300 1.000
Wor2 .290 .330 .350 .644 1.000
Wor3 .358 .462 .440 .659 .566 1.000
Tirt1 .076 .093 .120 .317 .313 .367 1.000
Tirt2 .003 .035 .097 .308 .305 .329 .612 1.000
Tirt3 .026 .100 .097 .305 .339 .313 .674 .695 1.000
Body1 .287 .312 .459 .271 .307 .351 .122 .137 .185 1.000
Body2 .355 .377 .489 .261 .277 .369 .196 .191 .197 .367 1.000
Body3 .441 .414 .522 .320 .275 .383 .170 .156 .101 .460 .476 1.000

To initiate the exploratory factor analysis, we requested a fourfactor solution, given 
we selected items from four possibly distinct dimensions. While application of Kai-
ser’s rule (to eigenvalues from the unreduced correlation matrix) suggested the pres-
ence of three factors, parallel analysis indicated four factors, and inspecting the scree 
plot suggested the possibility of four factors. Given that these criteria differed on the 
number of possible factors present, we also examined the results from a three-factor 
solution, but found that the four-factor solution was more meaningful.

Table 2 shows the communalities, pattern coefficients, and sum of squared loadings for 
each factor, all of which are shown after factor rotation. The communalities range from 
.39 to .80, suggesting that each item is at least moderately and in some cases strongly 
related to the set of factors. Inspecting the pattern coefficients shown in Table 2 and 
using a magnitude of least .4 to indicate a nontrivial pattern coefficient, we found that 
the test-irrelevant thinking items load only on factor 1, the worry items load only on 
factor 2, the tension items load only on factor 3, and the bodily symptom items load 
only on factor 4. Thus, there is support that the items thought to be reflective of the same 
factor are related only to the hypothesized factor. The sums of squared loadings suggest 
that the factors are fairly similar in importance. As a whole, the four factors explained 
61% of the variation of the item scores. Further, the factors, as expected, are positively 
and mostly moderately correlated, as indicated in Table 3. In sum, the factor analysis 
provides support for the four hypothesized dimensions underlying text anxiety.
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 Table 2: Selected Factor Analysis Results for the Reaction-to-Tests Scale

Item

Factors

Communality
Test-irrelevant 
thinking Worry Tension

Bodily  
symptoms

Tension1 −0.03 0.00 0.78 0.02 0.64
Tension2 0.01 0.09 0.82 −0.05 0.69
Tension3 0.01 −0.04 0.59 0.36 0.72
Worry1 −0.06 0.95 −0.05 −0.03 0.80
Worry2 0.07 0.66 0.05 0.03 0.54
Worry3 0.09 0.60 0.14 0.11 0.62
TIRT11 0.76 0.04 0.03 −0.03 0.60
TIRT2 0.78 0.02 −0.09 0.07 0.64
TIRT3 0.90 −0.03 0.03 −0.04 0.77
Body1 −0.01 0.07 −0.06 0.63 0.39
Body2 0.09 −0.03 0.10 0.55 0.41
Body3 −0.03 0.01 0.04 0.71 0.54
Sum of squared 
loadings

2.61 3.17 3.08 3.17

1 TIRT = test irrelevant thinking.

 Table 3: Factor Correlations

1 2 3 4

Test-irrelevant 
thinking

1.00

Worry 0.47 1.00
Tension 0.08 0.44 1.00
Bodily symptoms 0.28 0.50 0.65 1.00

9.18 SUMMARY

Exploratory factor analysis can be used when you assume that latent variables under-
lie responses to observed variables and you wish to find a relatively small number of 
underlying factors that account for relationships among the larger set of variables. The 
procedure can help obtain new theoretical constructs and/or provide initial validation 
for the items on a measuring instrument. Scores for the observed variables should be 
at least moderately correlated and have an approximate interval level of measurement. 
Further, unless communalities are expected to be generally high (> .7), a minimal sam-
ple size of 200 should be used. The key analysis steps are highlighted next.

I. Preliminary Analysis
A. Conduct case analysis.

1) Purpose: Identify any problematic individual observations and determine 
if scores appear to be reasonable.
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2) Procedure:
i) Inspect the distribution of each observed variable (e.g., via histo-

grams) and identify apparent outliers. Scatterplots may also be in-
spected to examine linearity and bivariate outliers. Examine descrip-
tive statistics (e.g., means, standard deviations) for each variable to 
assess if the scores appear to be reasonable for the sample at hand.

ii) Inspect the z-scores for each variable, with absolute values larger 
than perhaps 2.5 or 3 along with a judgment that a given value is 
distinct from the bulk of the scores indicating an outlying value. Ex-
amine Mahalanobis distance values to identify multivariate outliers.

iii) If any potential outliers or score abnormalities are identified, check 
for data entry errors. If needed, conduct a sensitivity study to de-
termine the impact of one or more outliers on major study results. 
Consider use of variable transformations or case removal to attempt 
to minimize the effects of one or more outliers.

B. Check to see that data are suitable for factor analysis.
1) Purpose: Determine if the data support the use of exploratory factor anal-

ysis. Also, identify the presence and pattern (if any) of missing data.
2) Procedure: Compute and inspect the correlation matrix for the observed 

variables to make sure that correlations (especially among variables 
thought to represent a given factor) are at least moderately correlated  
(> |.3|). If not, consider an alternate analysis strategy (e.g., a causal indi-
cator model) and/or check accuracy of data entry. If there is missing data, 
conduct missing data analysis. Check variance inflation factors to make 
sure that no excessive multicollinearity is present.

II. Primary Analysis
A. Determine how many factors underlie the data.

1) Purpose: Determine the number of factors needed in the factor model.
2) Procedure: Select a factor extraction method (e.g., principal axis factor-

ing) and use several criteria to identify the number of factors. Assuming 
principal axis factoring is implemented, we suggest use of the following 
criteria to identify the number of factors:
i) Retain factors having eigenvalues from the unreduced correlation ma-

trix (with 1s on the diagonals) that are greater than 1 (Kaiser’s rule);
ii) Examine a scree plot of the eigenvalues from the reduced correlation 

matrix (with communalities on the diagonals) and retain factors ap-
pearing before the plot appears to level off;

iii) Retain factors having eigenvalues that are larger than those obtained 
from random data (as obtained from parallel analysis);

iv) Retain only those factors that make sense conceptually (as evidenced 
particularly by factor loadings and correlations); and

v) Consider results from models having different numbers of factors 
(e.g., two, three, or four factors) to avoid under- and over-factoring 
and assess which factor model is most meaningful.
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B. Rotate factors and attempt to identify the meaning of each factor.
1) Purpose: Determine the degree to which factors are correlated (assuming 

multiple factors are present) and label or interpret factors so that they are 
useful for future research.

2) Procedure:
i) Select an oblique rotation method (e.g., direct quartimin) to estimate 

factor correlations. If factor correlations are near zero, an orthogonal 
rotation (e.g., varimax) can be used.

ii) Determine which variables are related to a given factor by using 
a factor loading that reflects a reasonably strong association (e.g.,  
> |.40|). Label or interpret a given factor based on the nature of the 
observed variables that load on it. Consider whether the factor corre-
lations are reasonable given the interpretation of the factors.

iii) Summarize the strength of association between the factors and observed 
variables with the communalities, the sum of squared loadings for each 
factor, and the percent of total variance explained in the observed scores.

C. (Optional) If needed for subsequent analyses, compute factor scores using a 
suitable method for estimating such scores.

9.19 EXERCISES

1. consider the following principal components solution with five variables using 
no rotation and then a varimax rotation. only the first two components are 
given, because the eigenvalues corresponding to the remaining components 
were very small (< .3).

Unrotated solution Varimax solution

Variables Comp 1 Comp 2 Comp 1 Comp 2

1 .581 .806 .016 .994
2 .767 −.545 .941 −.009
3 .672 .726 .137 .980
4 .932 −.104 .825 .447
5 .791 −.558 .968 −.006

(a) Find the amount and percent of variance accounted for by each unrotated 
component.

(b) Find the amount and percent of variance accounted for by each varimax 
rotated component.

(c) compare the variance accounted for by each unrotated component with 
the variance accounted for by each corresponding rotated component.

(d) compare (to 2 decimal places) the total amount and percent of variance 
accounted for by the two unrotated components with the total amount and 
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percent of variance accounted for by the two rotated components. Does 
rotation change the variance accounted for by the two components?

(e) compute the communality (to two decimal places) for the first observed 
variable using the loadings from the (i) unrotated loadings and (ii) load-
ings following rotation. Do communalities change with rotation?

2. Using the correlation matrix shown in table 9.3, run an exploratory factor anal-
ysis (as illustrated in section 9.12) using principal axis extraction with direct 
quartimin rotation.

(a) confirm that the use of Kaiser’s rule (using the unreduced correlation matrix) 
and the use of parallel analysis as discussed in sections 9.11 and 9.12 (using 
the reduced correlation matrix) provide support for a two factor solution.

(b) Do the values in the pattern matrix provide support for the two-factor solu-
tion that was obtained in section 9.7?

(c) are the factors correlated?

3. For additional practice in conducting an exploratory factor analysis, run an 
exploratory factor analysis using principal axis extraction using the correla-
tions shown in table 9.7 but do not include the bodily symptom items. run a 
two- and three-factor solution for the remaining nine items.

(a) Which solution(s) have empirical support?

(b) Which solution seems more conceptually meaningful?

4. Bolton (1971) measured 159 deaf rehabilitation candidates on 10 communica-
tion skills, of which six were reception skills in unaided hearing, aided hear-
ing, speech reading, reading, manual signs, and finger spellings. the other 
four communication skills were expression skills: oral speech, writing, man-
ual signs, and finger-spelling. Bolton conducted an exploratory factor analysis 
using principal axis extraction with a varimax rotation. he obtained the follow-
ing correlation matrix and varimax factor solution:

Correlation Matrix of Communication Variables for 159 Deaf Persons

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 M S

C1 39 1.10 0.45
C2 59 55 1.49 1.06
C3 30 34 61 2.56 1.17
C4 16 24 62 81 2.63 1.11
C5 −02 −13 28 37 92 3.30 1.50
C6 00 −05 42 51 90 94 2.90 1.44
C7 39 61 70 59 05 20 71 2.14 1.31
C8 17 29 57 88 30 46 60 78 2.42 1.04
C9 −04 −14 28 33 93 86 04 28 92 3.25 1.49
C10 −04 −08 42 50 87 94 17 45 90 94 2.89 1.41

Note: The italicized diagonal values are squared multiple correlations.
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Varimax Factor Solution for 10 Communication Variables for 159 Deaf Persons

I II

C1 Hearing (unaided) 49
C2 Hearing (aided) 66
C3 Speech reading 32 70
C4 Reading 45 71
C5 Manual signs 94
C6 Finger-spelling 94
C7 Speech 86
C8 Writing 38 72
C9 Manual signs 94
C10 Fingerspelling 96
Percent of common variance 53.8 39.3

Note: Factor loadings less than .30 are omitted.

(a) interpret the varimax factors. What does each of them represent?

(b) Does the way the variables that define factor 1 correspond to the way they 
are correlated? that is, is the empirical clustering of the variables by the 
principal axis technique consistent with the way those variables go together 
in the original correlation matrix?

5. consider the following part of the quote from pedhazur and schmelkin (1991): 
“it boils down to the question: are aspects of a postulated multidimensional 
construct intercorrelated? the answer to this question is relegated to the sta-
tus of an assumption when an orthogonal rotation is employed” (p. 615).
What did they mean by the last part of this statement?

REFERENCES

Benson, J., & Bandalos, D. l. (1992). second-order confirmatory factor analysts of the reac-
tions to tests scale with cross-validation. Multivariate Behavioral Research, 27, 459–487.

Bollen, K. a., & Bauldry, s. (2011). three cs in measurement models: causal indicators, com-
posite indicators, and covariates. Psychological Methods, 16, 265–284.

Bolton, B. (1971). a factor analytical study of communication skills and nonverbal abilities of 
deaf rehabilitation clients. Multivariate Behavioral Research, 6, 485–501.

Browne, M. W. (1968). a comparison of factor analytic techniques. Psychometrika, 33, 267–334.

cattell, r. B. (1966). the meaning and strategic use of factor analysis. in r. B. cattell (Ed.), Hand-
book of multivariate experimental psychology (pp. 174–243). chicago, il: rand Mcnally.

cattell, r. B., & Jaspers, J. a. (1967). a general plasmode for factor analytic exercises and 
research. Multivariate Behavior Research Monographs, 3, 1–212.

cliff, n. (1987). Analyzing multivariate data. new york, ny: harcourt Brace Jovanovich.

cohen, J. (1988). Statistical power analysis for the social sciences (2nd ed.). hillsdale, nJ: 
lawrence Erlbaum associates.



390        Exploratory Factor analysis

cooley, W. W., & lohnes, p. r. (1971). Multivariate data analysis. new york, ny: Wiley.

Fabrigar, l. r., & Wegener, D. t. (2012). Factor analysis. new york, ny: oxford University press.

Floyd, F. J., & Widamen, K. F. (1995). Factor analysis in the development and refinement of 
clinical assessment instruments. Psychological Assessment, 7, 286–299.

Grice, J. W. (2001). a comparison of factor scores under conditions of factor obliquity. Psy-
chological Methods, 6, 67–83.

Gorsuch, r. l. (1983). Factor analysis (2nd ed.). hillsdale, nJ: lawrence Erlbaum associates.

Guadagnoli, E., & Velicer, W. (1988). relation of sample size to the stability of component 
patterns. Psychological Bulletin, 103, 265–275.

hakstian, a. r., rogers, W. D., & cattell, r. B. (1982). the behavior of numbers factors rules 
with simulated data. Multivariate Behavioral Research, 17, 193–219.

harman, h. (1967). Modern factor analysis (2nd ed.). chicago, il: University of chicago press.

horn, J. l. (1965). a rationale and test for the number of factors in factor analysis. Psycho-
metrika, 30, 179–185.

Kaiser, h. F. (1960). the application of electronic computers to factor analysis. Educational 
and Psychological Measurement, 20, 141–151.

Kline, r. B. (2005). Principles and Practice of Structural Equation Modeling (2nd ed.) new 
york, ny: Guilford press.

lawley, D. n. (1940). the estimation of factor loadings by the method of maximum likeli-
hood. Proceedings of the Royal Society of Edinburgh, 60, 64.

linn, r. l. (1968). a Monte carlo approach to the number of factors problem. Psychometrika, 
33, 37–71.

Maccallum, r. c., Widaman, K. F., Zhang, s., & hong, s. (1999). sample size in factor analy-
sis. Psychological Methods, 4, 84– 89.

Maccallum, r. c., Widaman, K. F., preacher, K. J., & hong, s. (2001). sample size in factor 
analysis: the role of model error. Multivariate Behavioral Research, 36, 611–637.

Morrison, D. F. (1967). Multivariate statistical methods. new york, ny: McGraw-hill.

nunnally, J. (1978). Psychometric theory. new york, ny: McGraw-hill.

pedhazur, E., & schmelkin, l. (1991). Measurement, design, and analysis. hillsdale, nJ: law-
rence Erlbaum.

preacher, K. J., & Maccallum, r. c. (2003). repairing tom swift’s electric factor analysis 
machine. Understanding Statistics, 2(1), 13–43.

sarason, i. G. (1984). stress, anxiety, and cognitive interference: reactions to tests. Journal 
of Personality and Social Psychology, 46, 929–938.

tucker, l. r., Koopman, r. E, & linn, r. l. (1969). Evaluation of factor analytic research proce-
dures by means of simulated correlation matrices. Psychometrika, 34, 421–459.

Velicer, W. F., & Fava, J. l. (1998). Effects of variable and subject sampling on factor pattern 
recovery. Psychological Methods, 3, 231– 251.

Zwick, W. r., & Velicer, W. F. (1982). Factors influencing four rules for determining the num-
ber of components to retain. Multivariate Behavioral Research, 17, 253–269.

Zwick, W. r., & Velicer, W. F. (1986). comparison of five rules for determining the number of 
components to retain. Psychological Bulletin, 99, 432–442.



Chapter 10

DISCRIMINANT ANALYSIS

10.1 INTRODUCTION

Discriminant analysis is used for two purposes: (1) to describe mean differences 
among the groups in MANOVA; and (2) to classify participants into groups on the 
basis of a battery of measurements. Since this text is primarily focused on multivariate 
tests of group differences, more space is devoted in this chapter to what is often called 
descriptive discriminant analysis. We also discuss the use of discriminant analysis for 
classifying participants, limiting our attention to the two-group case. We show the use 
of SPSS for descriptive discriminant analysis and SAS for classification.

Loosely speaking, descriptive discriminant analysis can be viewed conceptually as a 
combination of exploratory factor analysis and traditional MANOVA. Similar to fac-
tor analysis, where an initial concern is to identify how many linear combinations of 
variables are important, in discriminant analysis an initial task is to identify how many 
discriminant functions (composite variables or linear combinations) are present (i.e., 
give rise to group mean differences). Also, as in factor analysis, once we determine 
that a discriminant function or composite variable is important, we attempt to name 
or label it by examining coefficients that indicate the strength of association between 
a given observed variable and the composite. These coefficients are similar to pattern 
coefficients (but will now be called standardized discriminant function coefficients). 
Assuming we can meaningfully label the composites, we turn our attention to exam-
ining group differences, as in MANOVA. However, note that a primary difference 
between MANOVA, as it was presented in Chapters 4–5 and discriminant analysis, 
is that in discriminant analysis we are interested in identifying if groups differ not on 
the observed variables (as was the case previously), but on the composites (formally, 
discriminant functions) that are formed in the procedure. The success of the procedure 
then depends on whether such meaningful composite variables can be obtained. If 
not, the traditional MANOVA procedures of Chapters 4–5 can be used (or multivar-
iate multilevel modeling as described in Chapter 14, or perhaps logistic regression). 
Note that the statistical assumptions for descriptive discriminant analysis, as well as all 
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preliminary analysis activities, are exactly the same as for MANOVA. (See Chapter 6 
for these assumptions as well as preliminary analysis activities.)

10.2 DESCRIPTIVE DISCRIMINANT ANALYSIS

Discriminant analysis is used here to break down the total between association in 
MANOVA into additive pieces, through the use of uncorrelated linear combinations of 
the original variables (these are the discriminant functions or composites). An additive 
breakdown is obtained because the composite variables are derived to be uncorrelated.

Discriminant analysis has two very nice features: (1) parsimony of description; and 
(2) clarity of interpretation. It can be quite parsimonious in that when comparing five 
groups on say 10 variables, we may find that the groups differ mainly on only two 
major composite variables, that is, the discriminant functions. It has clarity of inter-
pretation in the sense that separation of the groups along one function is unrelated to 
separation along a different function. This is all fine, provided we can meaningfully 
name the composites and that there is adequate sample size so that the results are 
generalizable.

Recall that in multiple regression we found the linear combination of the predictors 
that was maximally correlated with the dependent variable. Here, in discriminant anal-
ysis, linear combinations are again used, in this case that best distinguish the groups. 
As throughout the text, linear combinations are central to many forms of multivariate 
analysis.

An example of the use of discriminant analysis, which is discussed later in this chapter, 
involves National Merit Scholars who are classified in terms of their parents’ educa-
tion, from eighth grade or less up to one or more college degrees, yielding four groups. 
The discriminating or observed variables are eight vocational personality variables 
(realistic, conventional, enterprising, sociability, etc.). The major personality differ-
ences among the scholars are captured by one composite variable (the first discri-
minant function), and show that the two groups of scholars whose parents had more 
education are less conventional and more enterprising than scholars whose parents 
have less education.

Before we begin a detailed discussion of discriminant analysis, it is important to note 
that discriminant analysis is a mathematical maximization procedure. What is being 
maximized will be made clear shortly. The important thing to keep in mind is that any 
time this type of procedure is employed there is a tremendous opportunity for capital-
ization on chance, especially if the number of participants is not large relative to the 
number of variables. That is, the results found on one sample may well not replicate 
on another independent sample. Multiple regression, it will be recalled, was another 
example of a mathematical maximization procedure. Because discriminant analysis is 
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formally equivalent to multiple regression for two groups (Stevens, 1972), we might 
expect a similar problem with replicability of results. And indeed, as we see later, this 
is the case.

If the discriminating variables are denoted by x1, x2, . . ., xp, then in discriminant anal-
ysis the row vector of coefficients a1′ is sought, which maximizes a1′Ba1 / a1′Wa1, 
where B and W are the between and the within sum of squares and cross-products 
matrices. The linear combination of the discriminating variables involving the ele-
ments of a1′ as coefficients is the best discriminant function, in that it provides for 
maximum separation on the groups. Note that both the numerator and denominator 
in the quotient are scalars (numbers). Thus, the procedure finds the linear combina-
tion of the discriminating variables, which maximizes between to within association. 
The quotient shown corresponds to the largest eigenvalue (φ1) of the BW−1 matrix. 
The next best discriminant function, corresponding to the second largest eigenvalue 
of BW−1, call it φ2, involves the elements of a2′ in the ratio a2′Ba2 / a2′Wa2, as coef-
ficients. This function is derived to be uncorrelated with the first discriminant func-
tion. It is the next best discriminator among the groups, in terms of separating them. 
The third discriminant function would be a linear combination of the discriminating 
variables, derived to be uncorrelated from both the first and second functions, which 
provides the next maximum amount of separation, and so on. The ith discriminant 
function (di) then is given by di = ai′x, where x is the column vector of the discrimi-
nating variables.

If k is the number of groups and p is the number of observed or discriminating varia-
bles, then the number of possible discriminant functions is the minimum of p and  
(k − 1). Thus, if there were four groups and 10 discriminating variables, three composite  
variables would be formed in the procedure. For two groups, no matter how many dis-
criminating variables, there will be only one composite variable. Finally, in obtaining 
the discriminant functions, the coefficients (the ai) are scaled so that ai′ai = 1 for each 
composite (the so-called unit norm condition). This is done so that there is a unique 
solution for each discriminant function.

10.3 DIMENSION REDUCTION ANALYSIS

Statistical tests, along with effect size measures described later, are typically used 
to determine the number of linear composites for which there are between-group 
mean differences. First, it can be shown that Wilks’ Λ can be expressed as the fol-
lowing function of eigenvalues (φi) of BW−1 (Tatsuoka, 1971, p. 164):

Λ =
+ + +
1

1
1

1
1

1φ φ φ1 2


r
,

where r is the number of possible composite variables. Now, Bartlett showed that the 
following V statistic can be used for testing the significance of Λ:
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where V is approximately distributed as a χ2 with p(k − 1) degrees of freedom.

The test procedure for determining how many of the composites are significant is a 
residual procedure. The procedure is sometimes referred to as dimension reduction 
analysis because significant composites are removed or peeled away during the testing 
process, allowing for additional tests of group differences of the remaining composites 
(i.e., the residual or leftover composites). The procedure begins by testing all of the 
composites together, using the V statistic. The null hypothesis for this test is that there 
are no group mean differences on any of the linear composites. Note that the values 
for Wilks’ lambda obtained for this test statistic is mathematically equivalent to the 
Wilks’ lambda used in section 5.4 to determine if groups differ for any of the observed 
variables for MANOVA. If this omnibus test for all composite variables is significant, 
then the largest eigenvalue (corresponding to the first composite) is removed and a test 
made of the remaining eigenvalues (the first residual) to determine if there are group 
differences on any of the remaining composites. If the first residual (V1) is not signif-
icant, then we conclude that only the first composite is significant. If the first residual 
is significant, we conclude that the second composite is also significant, remove this 
composite from the testing process, and test any remaining eigenvalues to determine if 
group mean differences are present on any of the remaining composites. We do this by 
examining the second residual, that is, the V statistic with the largest two eigenvalues 
removed. If the second residual is not significant, then we conclude that only the first 
two composite variables are significant, and so on. In general then, when the residual 
after removing the first s eigenvalues is not significant, we conclude that only the 
first s composite variables are significant. Sections 10.7 and 10.8 illustrate dimension 
reduction analysis.

Table 10.1 gives the expressions for the test statistics and degrees of freedom used in 
dimension reduction analysis, here for the case where four composite variables are 
formed. The constant term, in brackets, is denoted by C for the sake of conciseness 
and is [N − 1 − (p + k) / 2]. The general formula for the degrees of freedom for the rth 
residual is (p − r)[k − (r + 1)].

 Table 10.1: Residual Test Procedure for Four Possible Composite Variables

Name Test statistic df

V
C i

i
ln(1+

=1
φ )

4
∑

p(k − 1)

V1 C [ln(1 + φ2) + ln(1 + φ3) + ln(1+ φ4)] (p − 1)(k − 2)
V2 C [ln(1 + φ3) + ln(1 + φ4)] (p − 2)(k − 3)
V3 C [ln(1 + φ4)] (p − 3)(k − 4)
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10.4 INTERPRETING THE DISCRIMINANT FUNCTIONS

Once important composites are found, we then seek to interpret or label them. An 
important step in interpreting a composite variable is to identify which of the observed 
variables are related to it. The approach is similar to factor analysis where, after you 
have identified the number of factors present, you then identify which observed varia-
bles are related to the factor.

To identify which observed variables are related to a given composite, two types of 
coefficients are available:

1. Standardized (canonical) discriminant function coefficients—These are obtained 
by multiplying the raw (or unstandardized) discriminant function coefficient for 
each variable by the standard deviation of that variable. Similar to standardized 
regression coefficients, they represent the unique association between a given 
observed variable and composite, controlling for or holding constant the effects of 
the other observed variables.

2. The structure coefficients, which are the bivariate correlations between each com-
posite variable and each of the original variables.

There are opposing views in the literature on which of these coefficient types should 
be used. For example, Meredith (1964), Porebski (1966), and Darlington, Weinberg, 
and Walberg (1973) argue in favor of using structure coefficients for two reasons: (1) 
the assumed greater stability of the correlations in small- or medium-sized samples, 
especially when there are high or fairly high intercorrelations among the variables; and 
(2) the correlations give a direct indication of which variables are most closely aligned 
with the unobserved trait that the canonical variate (discriminant function) represents.

On the other hand, Rencher (1992) showed that using structure coefficients is analo-
gous to using univariate tests for each observed variable to determine which variables 
discriminate between groups. Thus, he concluded that using structure coefficients is 
not useful “because they yield only univariate information on how well the variables 
individually separate the means” (p. 225). As such, he recommends use of the standard-
ized discriminant function coefficients, which take into account information on the set 
of discriminating variables. We note, in support of this view, that the composite scores 
that are used to compare groups are obtained from a raw score form of the standardized 
equation that uses a variable’s unique effect to obtain the composite score. Therefore, 
it makes sense to interpret a function by using the same weights (now, in standardized 
form) that are used in forming its scores.

In addition, as a practical matter, simulation research conducted by Finch and Laking 
(2008) and Finch (2010) indicate that more accurate identification of the discriminat-
ing variables that are related to a linear composite is obtained by use of standardized 
rather than structural coefficients. In particular, Finch found that use of structural 
coefficients too often resulted in finding that a discriminating variable is related to 
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the composite when it is in fact not related. He concluded that using structural coef-
ficients to identify important discriminating variables “seems to be overly simplistic, 
frequently leading to incorrect decisions regarding the nature of the group differ-
ences” (p. 48). Note though that one weakness identified with the use of standardized 
coefficients by Finch and Laking occurs when a composite variable is related to only 
one discriminating variable (as opposed to multiple discriminating variables). In this 
univariate type of situation, they found that use of standardized coefficients too often 
suggests that the composite is (erroneously) related to another discriminating variable. 
Section 10.7.5 discusses alternatives to discriminant analysis that can be used in this 
situation.

Given that the standardized coefficients are preferred for interpreting the composite 
variables, how do you identify which of the observed variables is strongly related 
to a composite? While there are various schools of thought, we propose using the 
largest (in absolute value) coefficients to select which variables to use to interpret 
the function, a procedure that is also supported by simulation research conducted 
by Finch and Laking (2008). When we interpret the composite itself, of course, we 
also consider the signs (positive or negative) of these coefficients. We also note 
that standard errors associated with these coefficients are not available with the 
use of traditional methods. Although Finch (2010) found some support for using 
a bootstrapping procedure to provide inference for structure coefficients, there has 
been very little research on the performance of bootstrapping in the context of dis-
criminant analysis. Further, we are not aware of any research that has examined the 
performance of bootstrap methods for standardized coefficients. Future research 
may shed additional light on the effectiveness of bootstrapping for discriminant 
analysis.

10.5 MINIMUM SAMPLE SIZE

Two Monte Carlo (computer simulation) studies (Barcikowski & Stevens, 1975; 
Huberty, 1975) indicate that unless sample size is large relative to the number of 
variables, both the standardized coefficients and the correlations are very unstable. 
That is, the results obtained in one sample (e.g., interpreting the first composite var-
iable using variables 3 and 5) will very likely not hold up in another sample from 
the same population. The clear implication of both studies is that unless the N (total 
sample size) / p (number of variables) ratio is quite large, say 20 to 1, one should 
be very cautious in interpreting the results. This is saying, for example, that if there 
are 10 variables in a discriminant analysis, at least 200 participants are needed for 
the investigator to have confidence that the variables selected as most important in 
interpreting a composite variable would again show up as most important in another 
sample. In addition, while the procedure does not require equal group sizes, it is 
generally recommended that, at bare minimum, the number of participants in the 
smallest group should be at or larger than 20 (and larger than the number of observed 
variables).
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10.6 GRAPHING THE GROUPS IN THE DISCRIMINANT PLANE

If there are two or more significant composite variables, then a useful device for 
assessing group differences is to graph them in the discriminant plane. The horizontal 
direction corresponds to the first composite variable, and thus lateral separation among 
the groups indicates how much they have been distinguished on this composite. The 
vertical dimension corresponds to the second composite, and thus vertical separation 
tells us which groups are being distinguished in a way unrelated to the way they were 
separated on the first composite (because the composites are uncorrelated).

Given that each composite variable is a linear combination of the original varia-
bles, group means of each composite can be easily obtained because the mean of the 
linear combination is equal to the linear combination of the means on the original 
variables. That is,

d a a ax x xp p1 11 1 12 2 1= + + + ,

where d1 is the composite variable (or discriminant function) and the xi are the original 
variables. Note that this is analogous to multiple regression, where if you insert the 
mean of each predictor into a regression equation the mean of the outcome is obtained.

The matrix equation for obtaining the coordinates of the groups on the composite var-
iables is given by:

D = XV,

where X  is the matrix of means for the original variables in the various groups and V 
is a matrix whose columns are the raw coefficients for the discriminant functions (the 
first column for the first function, etc.). To make this more concrete we consider the 
case of three groups and four variables. Then the matrix equation becomes:

D = X V
3 2 3 4 4 2×( ) = ×( ) ×( )

The specific elements of the matrices would be as follows:

d d
d d
d d

x x x x
x x x x
x x

11 12

21 22

31 32

11 12 13 14

21 22 23 24

31 3

















=

2 33 34

11 12

21 22

31 32

41 42
x x

a a
a a
a a
a a





































In this equation x11  gives the mean for variable 1 in group 1, x12 the mean for variable 2 
in group 1, and so on. The first row of D gives the x and y Cartesian coordinates of group 
1 on the two discriminant functions; the second row gives the location of group 2 in the 
discriminant plane, and so on. Sections 10.7.2 and 10.8.2 show a plot of group centroids.
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10.7 EXAMPLE WITH SENIORWISE DATA

The first example used here is from the SeniorWISE data set that was used in sec-
tion 6.11. We use this example having relatively few observed variables to facilitate 
understanding of discriminant analysis. Recall for that example participants aged 65 
and older were randomly assigned to receive one of three treatments: memory training, 
a health intervention, or a control condition. The treatments were administered and 
posttest measures were completed on an individual basis. The posttest or discriminat-
ing variables (as called in discriminant analysis) are measures of self-efficacy, verbal 
memory performance (or verbal), and daily functioning (or DAFS). In the analysis in 
section 6.11 (MANOVA with follow-up ANOVAs), the focus was to describe treat-
ment effects for each of the outcomes (because the treatment was hypothesized to 
impact each variable, and researchers were interested in reporting effects for each of 
the three outcomes). For discriminant analysis, we seek parsimony in describing such 
treatment effects and are now interested in determining if there are linear combinations 
of these variables (composites) that separate the three groups. Specifically, we will 
address the following research questions:

1. Are there group mean differences for any of the composite variables? If so, how 
many composites differ across groups?

2. Assuming there are important group differences for one or more composites, what 
does each of these composite variables mean?

3. What is the nature of the group differences? That is, which groups have higher/
lower mean scores on the composites?

10.7.1 Preliminary Analysis

Before we begin the primary analysis, we consider some preliminary analysis activ-
ities and examine some relevant results provided by SPSS for discriminant analysis. 
As mentioned previously, the same preliminary analysis activities are used for discri-
minant analysis and MANOVA. Table 10.2 presents some of these results as obtained 
by the SPSS discriminant analysis procedure. Table 10.2 shows that the memory train-
ing group had higher mean scores across each variable, while the other two groups 
had relatively similar performance across each of the variables. Note that there are 
100 participants in each group. The F tests for mean differences indicate that such 
differences are present for each of the observed variables. Note though that these dif-
ferences in means reflect strictly univariate differences and do not take into account 
the correlations among these variables, which we will do shortly. Also, given that 
an initial multivariate test of overall mean differences has not been used here, these 
univariate tests do not offer any protection against the inflation of the overall Type 
I error rate. So, to interpret these test results, you should apply a Bonferroni-adjusted 
alpha for these tests, which can be done by comparing the p value for each test to 
alpha divided by the number of tests being performed (i.e., .05 / 3 = .0167). Given that 
each p value is smaller than this adjusted alpha allows us to conclude that there are 
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mean differences present for each observed variable in the population. Note that while 
univariate differences are not the focus in discriminant analysis, they are useful to 
consider because they give us a sense of the variables that might be important when we 
take the correlations among variables into account. These correlations, pooled across 
each of the three groups, are shown at the bottom of Table 10.2. The observed varia-
bles are positively and moderately correlated, the latter of which supports the use of 
discriminant analysis. Also, note that the associations are not overly strong, suggesting 
that multicollinearity is not an issue.   

 Table 10.2: Descriptive Statistics for the SeniorWISE Study

Group Statistics

GROUP Mean Std. deviation

Valid N (listwise)

Unweighted Weighted

Memory 
training

Self_Efficacy 58.5053 9.19920 100 100.000
Verbal 60.2273 9.65827 100 100.000
DAFS 59.1516 9.74461 100 100.000

Health 
training

Self_Efficacy 50.6494 8.33143 100 100.000
Verbal 50.8429 9.34031 100 100.000
DAFS 52.4093 10.27314 100 100.000

Control Self_Efficacy 48.9764 10.42036 100 100.000
Verbal 52.8810 9.64866 100 100.000
DAFS 51.2481 8.55991 100 100.000

Total Self_Efficacy 52.7104 10.21125 300 300.000
Verbal 54.6504 10.33896 300 300.000
DAFS 54.2697 10.14037 300 300.000

Tests of Equality of Group Means

Wilks’ Lambda F df1 df2 Sig.

Self_Efficacy .834 29.570 2 297 .000
Verbal .848 26.714 2 297 .000
DAFS .882 19.957 2 297 .000

Pooled Within-Groups Matrices

Self_Efficacy Verbal DAFS

Correlation Self_Efficacy 1.000 .342 .337
Verbal .342 1.000 .451
DAFS .337 .451 1.000



400        Discriminant analysis

 Table 10.3: Test Results for the Equality of Covariance Matrices Assumption

Box’s Test of Equality of Covariance Matrices

Test Results

Box’s M 21.047

F Approx. 1.728
df1 12
df2 427474.385
Sig. .054

Tests null hypothesis of equal population covariance matrices.

The statistical assumptions for discriminant analysis are the same as for MANOVA 
and are assessed in the same manner. Table 10.3 reports Box’s M test for the equality 
of variance-covariance matrices as provided by the discriminant analysis procedure. 
These results are exactly the same as those reported in section 6.11 and suggest that the 
assumption of equal variance-covariance matrices is tenable. Also, as reported in sec-
tion 6.11, for this example there are no apparent violations of the multivariate normal-
ity or independence assumptions. Further, for the MANOVA of these data as reported 
in section 6.11, we found that no influential observations were present. Note though 
that since discriminant analysis uses a somewhat different testing procedure (i.e., 
dimension reduction analysis) than MANOVA and has a different procedure to assess 
the importance of individual variables, the impact of these outliers can be assessed 
here as well. We leave this task to interested readers.

10.7.2 Primary Analysis

Given that the data support the use of discriminant analysis, we can proceed to address 
each of the research questions of interest. The first primary analysis step is to deter-
mine the number of composite variables that separate groups. Recall that the number 
of such discriminant functions formed by the procedure is equal to the smaller of the 
number of groups − 1 (here, 3 − 1 = 2) or the number of discriminating variables (here, 
p = 3). Thus, two composites will be formed, but we do not know if any will be statis-
tically significant.

To find out how many composite variables we should consider as meaningfully sepa-
rating groups, we first examine the results of the dimension reduction analysis, which 
are shown in Table 10.4. The first statistical test is an omnibus test for group differ-
ences for all of the composites, two here. The value for Wilks’ lambda, as shown in the 
lower table, is .756, which when converted to a chi-square test is 82.955 (p < .001). 
This result indicates that there are between group mean differences on, at least, one 
linear composite variable (i.e., the first discriminant function). This composite is then 
removed from the testing process, and we now test whether there are group differences 
on the second (and final) composite. The lower part of Table 10.4 reports the relevant 
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information for this test, for which the Wilks’ lambda is .975, the chi-square test is 
7.472 with p = .024. These test results suggest that there are group differences on both 
composites. However, we do not know at this point if these composite variables are 
meaningful or if the group differences that are present can be considered as nontrivial. 
Recall that our sample size is 300, so it is possible that the tests are detecting small 
group differences.

So, in addition to examining test results for the dimension reduction analysis, we also 
consider measures of effect size to determine the number of composite variables that 
separate groups. Here, we focus on two effect size measures: the proportion of vari-
ance that is between groups and the proportion of between-group variance that is due 
to each variate. The proportion of variance that is between groups is not directly pro-
vided by SPSS but can be easily calculated from canonical correlations. The canonical 
correlation is the correlation between scores on a composite and group membership 
and is reported for each function in Table 10.4 (i.e., .474 and .158). If we square the 
canonical correlation, we obtain the proportion of variance in composite scores that 
is between groups, analogous to eta square in ANOVA. For this first composite, this 
proportion of variance is .4742 = .225. This value indicates that about 23% of the score 
variation for the first composite is between groups, which most investigators would 
likely regard as indicative of substantial group differences. For the second composite, 
the proportion of variation between groups is much smaller at .1582 = .025.

The second measure of effect size we consider is the percent of between-group vari-
ation that is due to each of the linear composites, that is, the functions. This measure 
compares the composites in terms of the total between-group variance that is present 
in the analysis. To better understand this measure, it is helpful to calculate the sum of 
squares between groups for each of the composites as would be obtained if a one-way 
ANOVA were conducted with the composite scores as the dependent variable. This can 

Summary of Canonical Discriminant Functions

Eigenvalues

Function Eigenvalue % of Variance Cumulative % Canonical Correlation

1 .290a 91.9 91.9 .474

2 .026a 8.1 100.0 .158
a First 2 canonical discriminant functions were used in the analysis.

 Table 10.4: Dimension Reduction Analysis Results for the SeniorWISE Study

Wilks’ Lambda

Test of Function(s) Wilks’ Lambda Chi-square Df Sig.

1 through 2 .756 82.955 6 .000

2 .975 7.472 2 .024
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be done by multiplying the value of N − k, where N is the total sample size and k is the 
number of groups, by the eigenvalues for each function. The eigenvalues are shown in 
Table 10.4 (i.e., .290 and .026), although here we use more decimal places for accuracy. 
Thus, for the first composite, the amount of variance that is between groups is (300 − 
3)(.290472) = 86.27018, and for the second composite is (297)(.025566) = 7.593102. 
The total variance that is between groups for the set of composite variables is then 
86.27018 + 7.593102 = 93.86329.

Now, it is a simple matter to compute the proportion of the total between-group 
variance that is due to each composite. For the first composite, this is 86.27018 
/ 93.86329 = .919, or that 92% of the total between-group variance is due to this 
composite. For the second composite, the total between-group variation due to it is 
7.593102 / 93.86329 = .081, or about 8%. Note that these percents do not need to be 
calculated as they are provided by SPSS and shown in Table 10.4 under the “% of 
Variance” column.

Summarizing our findings thus far, there are group mean differences on two com-
posites. Further, there are substantial group differences on the first composite, as it 
accounts for 92% of the total between-group variance. In addition, about 23% of the 
variance for this composite is between groups. The second composite is not as strongly 
related to group membership as about 2.5% of the variance is between groups, and 
this composite accounts for about 8% of the total between-group variance. Given the 
relatively weak association between the second composite and group membership, you 
could focus attention primarily on the first composite. However, we assume that you 
would like to describe group differences for each composite.

We now focus on the second research question that involves interpreting or naming 
the composite variables. To interpret the composites, we use the values reported for 
the standardized canonical discriminant function coefficients, as shown in Table 10.5, 
which also shows the structure coefficients. Examining Table 10.5, we see that the 
observed variables are listed in the first column of each output table and the coeffi-
cients are shown under the respective composite or function number (1 or 2). For the 
first composite, the standardized coefficients are 0.575, 0.439, and 0.285 for self-effi-
cacy, verbal, and DAFS, respectively. It is a judgment call, but the coefficients seem to 
be fairly similar in magnitude, although the unique contribution of DAFS is somewhat 
weaker. However, given that a standardized regression coefficient near 0.3 is often 
regarded as indicative of a sufficiently strong association, we will use all three varia-
bles to interpret the first composite. While a specialist in the research topic might be 
able to apply a more meaningful label here, we can say that higher scores on the first 
composite correspond to individuals having (given positive coefficients for each varia-
ble) higher scores on memory self-efficacy, verbal performance, and daily functioning. 
(Note that using the structure coefficients, which are simple bivariate correlations, 
would in this case lead to the same conclusion about observed variable importance.) 
For the second composite, inspection of the standardized coefficients suggests that 
verbal performance is the dominant variable for that function (which also happens to 
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be the same conclusion that would be reached by use of the structure coefficients). For 
that composite variable, then, we can say that higher scores are indicative of partici-
pants who have low scores (given the negative sign) on verbal performance.

We now turn our attention to the third research question, which focuses on describing 
group differences. Table 10.6 shows the group centroids for each of the composites. 
In Chapters 4–5, we focused on estimating group differences for each of the observed 
variables. With discriminant function analysis, we no longer do that. Instead, the sta-
tistical procedure forms linear combinations of the observed variables, which are the 
composites or functions. We have created two such composites in this example, and 
the group means for these functions, known as centroids, are shown in Table 10.6. Fur-
ther, each composite variable is formed in such a way so that the scores have a grand 
mean of zero and a standard deviation of 1. This scaling facilitates interpretation, as 
we will see. Note also that there are no statistical tests provided for these contrasts, so 
our description of the differences between groups is based on the point estimates of the 
centroids. However, a plot of the group centroids is useful in assessing which groups 
are different from others. Figure 10.1 presents a plot of the group centroids (and discri-
minant function scores). Note that a given square in the figure appearing next to each 
labeled group is the respective group’s centroid.

First, examining the values of the group centroids in Table 10.6 for the first composite 
indicates that the typical (i.e., mean) score for those in the memory training group 
is about three-quarters of a standard deviation above the grand mean for this com-
posite variable. Thus, a typical individual in this group has relatively high scores on 
self-efficacy, verbal performance, and daily functioning. In contrast, the means for 
the other groups indicate that the typical person in these groups has below average 
scores for this composite variable. Further, the difference in means between the mem-
ory training and other groups is about 1 standard deviation (.758 − [−.357] = 1.12 and 
.758 − [−.401] = 1.16). In contrast, the health training and control groups have similar 

 Table 10.5: Structure and Standardized Discriminant Function Coefficients

Structure matrix
Standardized canonical discriminant 
function coefficients

Function Function

1 2 1 2

Self_Efficacy .821* .367 Self_Efficacy .575 .552
Verbal .764* −.634 Verbal .439 −1.061
DAFS .677* .236 DAFS .285 .529

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant 
functions
Variables ordered by absolute size of correlation within function.
* Largest absolute correlation between each variable and any discriminant function
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 Table 10.6: Group Means (Centroids) for the Discriminant Functions

Functions at Group Centroids

GROUP

Function

1 2

Memory Training .758 −.007
Health Training −.357 .198
Control −.401 −.191

means on this composite. For the second composite, although group differences are 
much smaller, it appears that the health training and control groups have a noticeable 
mean difference on this composite, suggesting that participants in the health training 
group score lower on average than those in the control group on verbal performance.

Inspecting Figure 10.1 also suggests that mean scores for function (or composite) 1 are 
much higher for the memory training group than the other groups. The means for func-
tion 1 are displayed along the horizontal axis of Figure 10.1. We can see that the mean 

 Figure 10.1: Group centroids (represented by squares) and discriminant function 
scores (represented by circles).

Canonical Discriminant Functions

3

2

1

Fu
nc

tio
n 

2

Function 1

0

–1

–2

–3

–3 –2 –1 10 2 3

Health Training
Health Training

Control

Control
Group Centroid

Memory Training Memory Training
Group



405chapter 10       

for the memory training group is much further to the right (i.e., much larger) than the 
other means. Note that the means for the other groups essentially overlap one another 
on the left side of the plot. The vertical distances among group means represents mean 
differences for the scores of the second composite. These differences are much smaller 
but the health intervention and control group means seem distinct.

In sum, we found that there were fairly large between-group differences on one com-
posite variable (the first function) and smaller differences on the second. With this anal-
ysis, we conclude that the memory training group had much higher mean scores on a 
composite variable reflecting memory self-efficacy, verbal performance, and daily func-
tioning than the other groups, which had similar means on this function. For the second 
function, which was defined by verbal performance, participants in the health training 
group had somewhat lower mean verbal performance than those in the control group.

10.7.3 SPSS Syntax for Descriptive Discriminant Analysis

Table 10.7 shows SPSS syntax used for this example. The first line invokes the discri-
minant analysis procedure. In the next line, after the required GROUP subcommand, 
you provide the name of the grouping variable (here, Group) and list the first and last 
numerical values used to designate the groups in your data set (groups 1–3, here). 
After the required VARIABLES subcommand, you list the observed variables. The 
ANALYSIS ALL subcommand, though not needed here to produce the proper results, 
avoids obtaining a warning message that would otherwise appear in the output. After 
the STATISTICS subcommand in the next to last line, MEAN and STDEV request 
group means and standard deviations for each observed variable, UNIVF provides 
univariate F tests of group mean differences for each observed variable, and CORR 
requests the pooled within-group correlation, output for which appears in Table 10.2. 
BOXM requests the Box’s M test for the equal variance-covariance matrices assump-
tion, the output for which was shown in Table 10.3. The last line requests a plot of the 
group centroids, as was shown in Figure 10.1. In general, SPSS will plot just the first 
two discriminant functions, regardless of the number of composites in the analysis.

10.7.4 Computing Scores for the Discriminant Functions

It has been our experience that students often find discriminant analysis initially, at 
least, somewhat confusing. This section, not needed for results interpretation, attempts 

DISCRIMINANT
/GROUPS=Group(1 3)
/VARIABLES=Self_Efficacy Verbal Dafs
/ANALYSIS ALL
/STATISTICS=MEAN STDDEV UNIVF BOXM CORR
/PLOT=COMBINED.

 Table 10.7: SPSS Commands for Discriminant Analysis for the SeniorWISE Study
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to clarify the nature of discriminant analysis by focusing on the scores for the compos-
ites, or discriminant functions. As stated previously, scores for composite variables are 
obtained using a linear combination of variables (which are weighted in such a way 
as to produce maximum group separation). We can compute scores for the composites 
obtained with the example at hand using the raw score discriminant function coeffi-
cients, which are shown in Table 10.8. (Note that we interpret composite variables by 
using standardized coefficients, which are obtained from the raw score coefficients.)

For example, using the raw score coefficients for function 1, we can compute scores 
for this composite for each person in the data set with the expression

d1 = −7.369 + .061(Self_Efficacy) + .046(Verbal) + .030(DAFS),

where d1 represents scores for the first discriminant function. Table 10.9 shows the raw 
scores for these discriminating variables as well as for the discriminant functions (d1 
and d2) for the first 10 cases in the data set. To illustrate, to compute scores for the first 
composite variable for the first case in the data set, we would simply insert the scores 
for the observed variables into the equation and obtain

d1 = −7.369 + .061(71.12) + .046(68.78) + .030(84.17) = 2.67.

Such scores would then be computed for each person simply by placing their raw 
scores for the observed variables into the expression. Scores for the second discrimi-
nant function would then be computed by the same process, except that we would use 
the coefficients shown in Table 10.8 for the second composite variable.

It is helpful, then, to remember that when using discriminant analysis, you are simply 
creating outcome variables (the composites), each of which is a weighted sum of the 
observed scores. Once obtained, if you were to average the scores within each group 
for d1 in Table 10.9 (for all 300 cases) and then for d2, you would obtain the group cen-
troids that are shown in Table 10.6 and in Figure 10.1 (which also shows the individual 

 Table 10.8: Raw Score Discriminant Function Coefficients

Canonical Discriminant Function Coefficients

Function

1 2

Self_Efficacy .061 .059
Verbal .046 −.111
DAFS .030 .055
(Constant) −7.369 −.042
Unstandardized coefficients
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function scores). Thus, with discriminant analysis you create composite variables, 
which, if meaningful, are used to assess group differences.

10.7.5 Univariate or Composite Variable Comparisons?

Since the data used in the illustration were also used in section 6.11, we can compare 
results obtained in section 6.11 to those obtained with discriminant analysis. While 
both procedures use at least one omnibus multivariate test to determine if groups differ, 
traditional MANOVA (as exemplified by the procedures used in section 6.11) uses uni-
variate procedures only to describe specific group differences, whereas discriminant 
analysis focuses on describing differences in means for composite variables. Although 
this is not always the case, with the preceding example the results obtained from tra-
ditional MANOVA and discriminant analysis results were fairly similar, in that use 
of each procedure found that the memory training group scored higher on average on 
self-efficacy, verbal performance, and DAFS. Note though that use of discriminant 
analysis suggested a group difference for verbal performance (between the health and 
control conditions), which was not indicated by traditional MANOVA. Given differ-
ent analysis results may be obtained by use of these two procedures, is one approach 
preferred over the other?

There are different opinions about which technique is preferred, and often a prefer-
ence is stated for discriminant analysis, primarily because it takes associations among 
variables into account throughout the analysis procedure (provided that standardized 
discriminant function coefficients are used). However, the central issue in selecting an 
analysis approach is whether you are interested in investigating group differences (1) 
for each of the observed variables or (2) in linear composites of the observed variables. 
If you are interested in forming composite variables or believe that the observed varia-
bles at hand may measure one or more underlying constructs, discriminant analysis is 
the method to use for that purpose. For this latter reason, use of discriminant analysis, 
in general, becomes more appealing as the number of dependent (or discriminating 

 Table 10.9: Scores for the First 10 Cases Including Discriminant Function Scores

Self_Efficacy Verbal DAFS GROUP CASE D1 D2

1 71.12 68.78 84.17 1.00 1.00 2.67249 1.17202
2 52.79 65.93 61.80 1.00 2.00 .74815 -.83122
3 48.48 47.47 38.94 1.00 3.00 −1.04741 −.30143
4 44.68 53.71 77.72 1.00 4.00 .16354 .92961
5 63.27 62.74 60.50 1.00 5.00 1.20672 .06957
6 57.46 61.66 58.31 1.00 6.00 .73471 −.27450
7 63.45 61.41 47.59 1.00 7.00 .77093 −.48837
8 55.29 44.32 52.05 1.00 8.00 −.38224 1.17767
9 52.78 67.72 61.08 1.00 9.00 .80802 −1.07156

10 46.04 52.51 36.77 1.00 10.00 −1.03078 −1.12454
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variables) increases as it becomes more difficult to believe that each observed variable 
represents a distinct stand-alone construct of interest. In addition, the greater parsi-
mony potentially offered by discriminant analysis is also appealing when the number 
of dependent variables is large.

A limitation of discriminant analysis is that meaningful composite variables may not 
be obtained. Also, in discriminant analysis, there seems to be less agreement on how 
you should determine which discriminating variables are related to the composites. 
While we favor use of standardized coefficients, researchers often use structure coef-
ficients, which we pointed out is essentially adopting a univariate approach. Further, 
there are no standard errors associated with either of these coefficients, so determining 
which variables separate groups seems more tentative when compared to the tradi-
tional MANOVA approach. Although further research needs to be done, Finch and 
Laking (2008), as discussed earlier, found that when only one discriminating variable 
is related to a function, use of standardized weights too often results (erroneously) in 
another discriminating variable being identified as the important variable. This sug-
gests that when you believe that group differences will be due to only one variable in 
the set, MANOVA or another alternative mentioned shortly should be used. All things 
being equal, use of a larger number of variables again tends to support use of discrimi-
nant analysis, as it seems more likely in this case that meaningful composite variables 
will separate groups.

For its part, MANOVA is sensible to use when you are interested in describing group 
differences for each of the observed variables and not in forming composites. Often, in 
such situations, methodologists will recommend use of a series of Bonferroni-corrected 
ANOVAs without use of any multivariate procedure. We noted in Chapter 5 that use of 
MANOVA has some advantages over using a series of Bonferroni-adjusted ANOVAs. 
First, use of MANOVA as an omnibus test of group differences provides for a more 
exact type I rate in testing for any group differences on the set of outcomes. Second, 
and perhaps more important, when the number of observed dependent variables is rel-
atively small, you can use the protected test provided by MANOVA to obtain greater 
power for the F tests of group differences on the observed variables. As mentioned in 
Chapter 5, with two outcomes and no Bonferroni-correction for the follow-up univari-
ate F tests that are each, let’s assume, tested using a standard .05 alpha, the maximum 
risk of making a type I error for the set of such F tests, following the use of Wilks’ Λ as 
a protected test, is .05, as desired. However, an overcorrected alpha of .025 would be 
used in the ANOVA-only approach, resulting in unnecessarily lower power. With three 
outcomes, this type I error rate, at worst, is .10 with use of the traditional MANOVA 
approach. Note that with more dependent variables, this approach will not properly 
control the inflation of the type I error rate. So, in this case, Bonferroni-adjusted alphas 
would be preferred, or perhaps the use of discriminant analysis as meaningful compos-
ites might be formed from the larger number of observed variables.

We also wish to point out an alternative approach that has much to offer when you are 
interested in group differences on a set of outcome variables. A common criticism of 
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the traditional MANOVA approach is that the follow-up univariate procedures ignore 
associations among variables, while discriminant analysis does not. While this is true, 
you can focus on tests for specific observed variables while also taking correlations 
among the outcomes into account. That is, multivariate multilevel modeling (MVMM) 
procedures described in Chapter 14, while perhaps more difficult to implement, allow 
you to test for group differences for given observed variables (without forming com-
posites) while taking into account correlations among the outcomes. In addition, if you 
are interested in examining group differences on each of several outcomes and were 
to adopt the often recommended procedure of using only a series of univariate tests 
(without any multivariate analysis), you would miss out on some critical advantages 
offered by MVMM. One such benefit involves missing data on the outcomes, with 
such cases typically being deleted when a univariate procedure is used, possibly result-
ing in biased parameter estimates. On the other hand, if there were missing data on one 
or more outcomes and missingness were related to these outcomes, use of MVMM as 
described in Chapter 14 would provide for optimal parameter estimates due to using 
information on the associations among the dependent variables. The main point we 
wish to make here is that you can, with use of MVMM, test for group differences on a 
given dependent variable while taking associations among the outcomes into account.

10.8. NATIONAL MERIT SCHOLAR EXAMPLE

We present a second example of descriptive discriminant analysis that is based on a 
study by Stevens (1972), which involves National Merit Scholars. Since the original 
data are no longer available, we simulated data so that the main findings match those 
reported by Stevens. In this example, the grouping variable is the educational level 
of both parents of the National Merit Scholars. Four groups were formed: (1) those 
students for whom at least one parent had an eighth-grade education or less (n = 90); 
(2) those students both of whose parents were high school graduates (n = 104); (3) 
those students both of whose parents had gone to college, with at most one graduating 
(n = 115); and (4) those students both of whose parents had at least one college degree 
(n = 75). The discriminating variables are a subset of the Vocational Personality Inven-
tory (VPI): realistic, intellectual, social, conventional, enterprising, artistic, status, and 
aggression.

This example is likely more typical of discriminant analysis applications than the pre-
vious example in that there are eight discriminating variables instead of three, and 
that a nonexperimental design is used. With eight variables, you would likely not be 
interested in describing group differences for each variable but instead would prefer 
a more parsimonious description of group differences. Also, with eight variables, it 
is much less likely that you are dealing with eight distinct constructs. Instead, there 
may be combinations of variables (discriminant functions), analogous to constructs in 
factor analysis, that may meaningfully distinguish the groups. For the primary analysis 
of these data, the same syntax used in Table 10.7 is used here, except that the names of 
the observed and grouping variables are different. For preliminary analysis, we follow 
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the outline provided in section 6.13. Note that complete SPSS syntax for this example 
is available online.

10.8.1 Preliminary Analysis

Inspection of the Mahalanobis distance for each group did not suggest the presence 
of any multivariate outliers, as the largest value (18.9) was smaller than the cor-
responding chi-square critical value (.001, 8) of 26.125. However, four cases had 
within-group z-scores greater than 3 in magnitude. When we removed these cases 
temporarily, study results were unchanged. Therefore, we used all cases for the anal-
ysis. There are no missing values in the data set, and no evidence of multicolline-
arity as all variance inflation factors were smaller than 2.2. The variance inflation 
factors were obtained by running a regression analysis using all cases with case ID 
regressed on all discriminating variables and collinearity diagnostics requested. Also, 
the within-group pooled correlations, not shown, range from near zero to about .50, 
and indicate that the variables are, in general, moderately correlated, supporting the 
use of discriminant analysis.

In addition, the formal assumptions for discriminant analysis seem to be satisfied. None 
of the skewness and kurtosis values for each variable within each group were larger 
than a magnitude of 1, suggesting no serious departures of the normality assumption. 
For the equality of variance-covariance matrices assumption, we examined the group 
standard deviations, the log determinants of the variance-covariance matrices, and 
Box’s M test. The group standard deviations were similar across groups for each vari-
able, as an examination of Table 10.10 would suggest. The log determinants, shown in 
Table 10.11, are also very similar. Recall that the determinant of the covariance matrix 
is a measure of the generalized variance. Similar values for the log of the determinant 
for each group covariance matrix support the assumption being satisfied. Third, as 
shown in Table 10.11, Box’s M test is not significant (p = .249), suggesting no serious 
departures from the assumption of equal group variance-covariance matrices. Further, 
the study design does not suggest any violations of the independence assumption, as 
participants were randomly sampled. Further, there is no reason to believe that a clus-
tering effect or any other type of nonindependence is present.   

10.8.2 Primary Analysis

Before we present results from the dimension reduction analysis, we consider the 
group means and univariate F tests for between-group differences for each discrim-
inating variable. Examining the univariate F tests, shown in Table 10.12, indicates 
the presence of group differences for the conventional and enterprising variables. The 
group means for these variables, shown in Table 10.10, suggest that the groups having 
a college education have lower mean values for the conventional variable but higher 
means for the enterprising variable. Keep in mind though that these are univariate 
differences, and the multivariate procedure that focuses on group differences for com-
posite variables may yield somewhat different results.




 T

ab
le

 1
0.

10
: 

G
ro

up
 M

ea
ns

 a
nd

 S
ta

nd
ar

d 
D

ev
ia

tio
ns

 fo
r t

he
 N

at
io

na
l M

er
it 

Sc
ho

la
r E

xa
m

pl
e

Re
po

rt

Gr
ou

p
Re

al
In

te
ll

So
ci

al
Co

nv
en

En
te

rp
Ar

tis
St

at
us

Ag
gr

es
s

Ei
gh

th
 g

ra
de

M
ea

n
52

.9
28

4
55

.6
88

7
56

.0
23

1
55

.7
77

4
54

.0
27

3
55

.0
32

0
58

.6
13

7
56

.1
80

1
N

90
90

90
90

90
90

90
90

St
d.

 d
ev

ia
tio

n
11

.0
10

32
10

.6
71

35
9.

29
34

0
9.

90
84

0
8.

88
91

4
10

.5
63

71
11

.0
59

43
10

.3
53

41
Hi

gh
 s

ch
oo

l d
ip

lo
m

a
M

ea
n

52
.6

90
0

55
.4

46
0

54
.9

28
2

55
.2

86
7

53
.9

99
0

54
.2

29
3

57
.7

60
3

55
.4

50
9

N
10

4
10

4
10

4
10

4
10

4
10

4
10

4
10

4
St

d.
 d

ev
ia

tio
n

9.
59

39
3

9.
51

50
7

11
.1

02
55

10
.2

49
10

10
.0

54
22

11
.6

59
62

11
.2

26
63

11
.0

09
61

So
m

e 
co

lle
ge

M
ea

n
51

.9
32

3
56

.1
79

8
56

.5
98

0
50

.1
63

5
63

.7
13

7
56

.0
94

2
59

.1
37

4
56

.8
19

2
N

11
5

11
5

11
5

11
5

11
5

11
5

11
5

11
5

St
d.

 d
ev

ia
tio

n
9.

82
37

8
8.

87
02

5
10

.1
97

37
9.

24
97

0
9.

80
47

7
10

.3
71

80
10

.2
77

87
9.

95
95

6
Co

lle
ge

 d
eg

re
e

M
ea

n
50

.4
03

3
55

.5
27

8
56

.8
00

9
49

.4
47

4
63

.5
54

9
57

.4
36

5
59

.0
43

6
55

.8
45

9
N

75
75

75
75

75
75

75
75

St
d.

 d
ev

ia
tio

n
9.

71
62

8
9.

83
05

1
8.

79
04

4
9.

33
98

0
8.

35
38

3
8.

68
60

0
8.

91
86

1
8.

88
81

0
To

ta
l

M
ea

n
52

.0
72

4
55

.7
38

6
56

.0
50

7
52

.7
26

9
58

.7
81

4
55

.6
02

4
58

.6
23

4
56

.1
08

7
N

38
4

38
4

38
4

38
4

38
4

38
4

38
4

38
4

St
d.

 d
ev

ia
tio

n
10

.0
35

75
9.

64
32

7
9.

98
21

6
10

.0
71

18
10

.5
32

46
10

.5
07

51
10

.4
61

55
10

.1
28

10



412        Discriminant analysis

 Table 10.11: Statistics for Assessing the Equality of the Variance-Covariance Matrices 
Assumption

Log Determinants

Group Rank Log determinant

Eighth grade 8 34.656
High school diploma 8 34.330
Some college 8 33.586
College degree 8 33.415
Pooled within-groups 8 34.327

The ranks and natural logarithms of determinants printed are those of the group covariance m atrices.

Test Results

Box’s M 122.245

F Approx. 1.089
df 1 108
df 2 269612.277
Sig. .249

Tests null hypothesis of equal population covariance matrices.

 Table 10.12: Univariate F Tests for Group Mean Differences

Tests of Equality of Group Means

Wilks’ Lambda F df1 df2 Sig.

Real .992 1.049 3 380 .371
Intell .999 .124 3 380 .946
Social .995 .693 3 380 .557
Conven .921 10.912 3 380 .000
Enterp .790 33.656 3 380 .000
Artis .988 1.532 3 380 .206
Status .997 .367 3 380 .777
Aggress .997 .351 3 380 .788

The results of the dimension reduction analysis are shown in Table 10.13. With four 
groups and eight discriminating variables in the analysis, three discriminant functions 
will be formed. Table 10.13 shows that only the test with all functions included is 
statistically significant (Wilks’ lambda = .564, chi-square = 215.959, p < .001). Thus, 
we conclude that only one composite variable distinguishes between groups in the 
population. In addition, the square of the canonical correlation (.6562) for this com-
posite, when converted to a percent, indicates that about 43% of the score variation for 
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the first function is between groups. As noted, the test results do not provide support 
for the presence of group differences for the remaining functions, and the proportion 
of variance between groups associated with these composites is much smaller at .007 
(.0852) and .002 (.0492) for the second and third functions, respectively. In addition, 
about 99% of the between-group variation is due to the first composite variable. Thus, 
we drop functions 2 and 3 from further consideration.   

We now use the standardized discriminant function coefficients to identify which var-
iables are uniquely associated with the first function and to interpret this function. 
Inspecting the values for the coefficients, as shown in Table 10.14, suggests that the 
conventional and enterprising variables are the only variables strongly related to this 
function. (Note that we do not pay attention to the coefficients for functions 2 and 3 
as there are no group differences for these functions.) Interpreting function 1, then, 
we can say that a participant who has high scores for this function is characterized by 
having high scores on the conventional variable but low scores (given the negative 
coefficient) on the enterprising variable. Conversely, if you have a low score on the 
first function, you are expected to have high scores on the enterprising variable and 
low scores on the conventional variable.

To describe the nature of group differences for the first function, we consider the group 
means for this function (i.e., the group centroids) and examine a plot of the group cen-
troids. Table 10.15 shows the group centroids, and Figure 10.2 plots the means for the 
first two functions and shows the individual function scores. The means in Table 10.15 
for the first function show that children whose parents have had exposure to college 
(some college or a college degree) have much lower mean scores on this function than 
children whose parents did not attend college (high school diploma or eighth-grade 
education). Given our interpretation of this function, we conclude that Merit Scholars 

Wilks’ Lambda

Test of function(s) Wilks’ Lambda Chi-square df Sig.

1 through 3 .564 215.959 24 .000
2 through 3 .990 3.608 14 .997
3 .998 .905 6 .989

 Table 10.13: Dimension Reduction Analysis Results

Eigenvalues

Function Eigenvalue % of Variance Cumulative % Canonical correlation

1 .756a 98.7 98.7 .656
2 .007a .9 99.7 .085
3 .002a .3 100.0 .049
a First 3 canonical discriminant functions were used in the analysis.
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 Table 10.14: Standardized Discriminant Function Coefficients

Standardized Canonical Discriminant Function Coefficients

Function

1 2 3

Real .248 .560 .564
Intell −.208 .023 −.319
Social .023 −.056 .751
Conven .785 −.122 −.157
Enterp −1.240 .127 −.175
Artis .079 −.880 .253
Status .067 .341 .538
Aggress .306 .504 −.067

 Figure 10.2: Group centroids and discriminant function scores for the first two functions.
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whose parents have at least some college education tend to be much less conventional 
and much more enterprising than scholars of other parents. Inspection of Figure 10.2 
also provides support for large group differences between those with college education 
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and those without and very small differences within these two sets of groups. Finally, 
we can have confidence in the reliability of the results from this study since the par-
ticipant/variable ratio is very large, about 50 to 1. Section 10.15 provides an example 
write-up of these results.

10.9 ROTATION OF THE DISCRIMINANT FUNCTIONS

In factor analysis, rotation of the factors often facilitates interpretation. The discri-
minant functions can also be rotated (varimax) to help interpret them, which can be 
accomplished with SPSS. However, rotation of functions is not recommended, as the 
meaning of the composite variables that were obtained to maximize group differences 
can change with rotation.

Up to this point, we have used all the variables in forming the discriminant functions. 
There is a procedure, called stepwise discriminant analysis, for selecting the best set 
of discriminators, just as one would select the best set of predictors in a regression 
analysis. It is to this procedure that we turn next.

10.10 STEPWISE DISCRIMINANT ANALYSIS

A popular procedure with the SPSS package is stepwise discriminant analysis. In 
this procedure the first variable to enter is the one that maximizes separation among 
the groups. The next variable to enter is the one that adds the most to further sepa-
rating the groups, and so on. It should be obvious that this procedure capitalizes on 
chance in the same way stepwise regression analysis does, where the first predictor 
to enter is the one that has the maximum correlation with the dependent variable, the 
second predictor to enter is the one that adds the next largest amount to prediction, 
and so on.

The Fs to enter and the corresponding significance tests in stepwise discriminant anal-
ysis must be interpreted with caution, especially if the participant/variable ratio is 

 Table 10.15: Group Means for the Discriminant Functions (Group Centroids)

Functions at Group Centroids

Group

Function

1 2 3

Eighth grade .894 −.003 .072
High school diploma .822 −.002 −.065
Some college −.842 .100 .002
College degree −.922 −.146 .001

Unstandardized canonical discriminant functions evaluated at group means
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small (say ≤ 5). The Wilks’ Λ for the best set of discriminators is positively biased, and 
this bias can lead to the following problem (Rencher & Larson, 1980):

Inclusion of too many variables in the subset. If the significance level shown on a 
computer output is used as an informal stopping rule, some variables will likely be 
included which do not contribute to the separation of the groups. A subset chosen 
with significance levels as guidelines will not likely be stable, i.e., a different sub-
set would emerge from a repetition of the study. (p. 350)

Hawkins (1976) suggested that a variable be entered only if it is significant at the  
a / (k − p) level, where a is the desired level of significance, p is the number of vari-
ables already included, and (k − p) is the number of variables available for inclusion. 
Although this probably is a good idea if the N / p ratio is small, it probably is conserv-
ative if N / p > 10.

10.11 THE CLASSIFICATION PROBLEM

The classification problem involves classifying participants (entities in general) into 
the one of several groups that they most closely resemble on the basis of a set of 
measurements. We say that a participant most closely resembles group i if the vector 
of scores for that participant is closest to the vector of means (centroid) for group i. 
Geometrically, the participant is closest in a distance sense (Mahalanobis distance) to 
the centroid for that group. Recall that in Chapter 3 we used the Mahalanobis distance 
to measure outliers on the set of predictors, and that the distance for participant i is 
given as:

Di
2 1= -( )′ -( )-x x S x xi i ,

where xi  is the vector of scores for participant i, x  is the vector of means, and S is the 
covariance matrix. It may be helpful to review the section on the Mahalanobis distance 
in Chapter 3, and in particular a worked-out example of calculating it in Table 3.10.

Our discussion of classification is brief, and focuses on the two-group problem. For a 
thorough discussion see Johnson and Wichern (2007), and for a good review of discri-
minant analysis see Huberty (1984).

Let us now consider several examples from different content areas where classifying 
participants into groups is of practical interest:

1. A bank wants a reliable means, on the basis of a set of variables, to identify 
low-risk versus high-risk credit customers.

2. A reading diagnostic specialist wishes a means of identifying in kindergarten those 
children who are likely to encounter reading difficulties in the early elementary 
grades from those not likely to have difficulty.
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3. A special educator wants to classify children with disabilities as either having a 
learning disability or an emotional disability.

4. A dean of a law school wants a means of identifying those likely to succeed in law 
school from those not likely to succeed.

5. A vocational guidance counselor, on the basis of a battery of interest variables, 
wishes to classify high school students into occupational groups (artists, lawyers, 
scientists, accountants, etc.) whose interests are similar.

10.11.1 The Two-Group Situation

Let x′ = (x1, x2, . . ., xp) denote the vector of measurements on the basis of which we 
wish to classify a participant into one of two groups, G1 or G2. Fisher’s (1936) idea 
was to transform the multivariate problem into a univariate one, in the sense of finding 
the linear combination of the xs (a single composite variable) that will maximally dis-
criminant the groups. This is, of course, the single discriminant function. It is assumed 
that the two populations are multivariate normal and have the same covariance matrix. 
Let d = (a1x1 + a2x2 + . . . + apxp) denote the discriminant function, where a′ = (a1, 
a2, . . ., ap) is the vector of coefficients. Let x1 and x2 denote the vectors of means 
for the participants on the p variables in groups 1 and 2. The location of group 1 on 
the discriminant function is then given by d1 = ′ ⋅a x1  and the location of group 2 by 
d2 = ′ ⋅a x2.  The midpoint between the two groups on the discriminant function is then 
given by m d d= +( )1 2 2.

If we let di denote the score for the ith participant on the discriminant function, then 
the decision rule is as follows:

If di ≥ m, then classify the participant in group 1.
If di < m, then classify the participant in group 2.

As we have already seen, software programs can be used to obtain scores for the dis-
criminant functions as well as the group means (i.e., centroids) on the functions (so 
that we can easily determine the midpoint m). Thus, applying the preceding decision 
rule, we are easily able to determine why the program classified a participant in a 
given group. In this decision rule, we assume the group that has the higher mean is 
designated as group 1.

This midpoint rule makes intuitive sense and is easiest to see for the single-variable 
case. Suppose there are two normal distributions with equal variances and means 55 
(group 1) and 45. The midpoint is 50. If we consider classifying a participant with a 
score of 52, it makes sense to put the person into group 1. Why? Because the score puts 
the participant much closer to what is typical for group 1 (i.e., only 3 points away from 
the mean), whereas this score is nowhere near as typical for a participant from group 2 
(7 points from the mean). On the other hand, a participant with a score of 48.5 is more 
appropriately placed in group 2 because that person’s score is closer to what is typical for 
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group 2 (3.5 points from the mean) than what is typical for group 1 (6.5 points from the 
mean). In the following example, we illustrate the percentages of participants that would 
be misclassified in the univariate case and when using the discriminant function scores.

10.11.2 A Two-Group Classification Example

We consider the Pope, Lehrer, and Stevens (1980) data used in Chapter 4. Children in 
kindergarten were measured with various instruments to determine whether they could 
be classified as low risk (group 1) or high risk (group 2) with respect to having reading 
problems later on in school. The observed group sizes for these data are 26 for the 
low-risk group and 12 for the high-risk group. The discriminating variables considered 
here are word identification (WI), word comprehension (WC), and passage compre-
hension (PC). The group sizes are sharply unequal and the homogeneity of covariance 
matrices assumption here was not tenable, so that in general a quadratic rule (see sec-
tion 10.12) could be implemented. We use this example just for illustrative purposes.

Table 10.16 shows the raw data and the SAS syntax for obtaining classification 
results with the SAS DISCRIM procedure using ordinary linear discriminant analy-
sis. Table 10.17 provides resulting classification-related statistics for the 38 cases in 
the data. Note in Table 10.17 that the observed group membership for each case is 
displayed in the second column, and the third column shows the predicted group mem-
bership based on the results of the classification procedure. The last two columns show 
estimated probabilities of group membership. The bottom of Table 10.17 provides a 
summary of the classification results. Thus, of the 26 low-risk cases, 17 were classified 

 Table 10.16: SAS DISCRIM Code and Raw Data for the Two-Group Example

data pope;
input gprisk wi wc pc @@;
lines;
1 5.8 9.7 8.9 1 10.6 10.9 11 1 8.6 7.2 8.7
1 4.8 4.6 6.2 1 8.3 10.6 7.8 1 4.6 3.3 4.7
1 4.8 3.7 6.4 1 6.7 6.0 7.2 1 7.1 8.4 8.4
1 6.2 3.0 4.3 1 4.2 5.3 4.2 1 6.9 9.7 7.2
1 5.6 4.1 4.3 1 4.8 3.8 5.3 1 2.9 3.7 4.2
1 6.1 7.1 8.1 1 12.5 11.2 8.9 1 5.2 9.3 6.2
1 5.7 10.3 5.5 1 6.0 5.7 5.4 1 5.2 7.7 6.9
1 7.2 5.8 6.7 1 8.1 7.1 8.1 1 3.3 3.0 4.9
1 7.6 7.7 6.2 1 7.7 9.7 8.9
2 2.4 2.1 2.4 2 3.5 1.8 3.9 2 6.7 3.6 5.9
2 5.3 3.3 6.1 2 5.2 4.1 6.4 2 3.2 2.7 4.0
2 4.5 4.9 5.7 2 3.9 4.7 4.7 2 4.0 3.6 2.9
2 5.7 5.5 6.2 2 2.4 2.9 3.2 2 2.7 2.6 4.1
proc discrim data = pope testdata = pope testlist;
class gprisk;
var wi wc pc;
run;



 Table 10.17: Classification Related Statistics for Low-Risk and High-Risk Participants

Posterior probability of 
membership in GPRISK

Obs From GPRISK
CLASSIFIED 
into GPRISK 1 2

1 1 1 0.9317 0.0683
2 1 1 0.9840 0.0160
3 1 1 0.8600 0.1400
4 1 2a 0.4365 0.5635
5 1 1 0.9615 0.0385
6 1 2a 0.2511 0.7489
7 1 2a 0.3446 0.6554
8 1 1 0.6880 0.3120
9 1 1 0.8930 0.1070

10 1 2a 0.2557 0.7443
11 1 2a 0.4269 0.5731
12 1 1 0.9260 0.0740
13 1 2a 0.3446 0.6554
14 1 2a 0.3207 0.6793
15 1 2a 0.2295 0.7705
16 1 1 0.7929 0.2071
17 1 1 0.9856 0.0144
18 1 1 0.8775 0.1225
19 1 1 0.9169 0.0831
20 1 1 0.5756 0.4244
21 1 1 0.7906 0.2094
22 1 1 0.6675 0.3325
23 1 1 0.8343 0.1657
24 1 2a 0.2008 0.7992
25 1 1 0.8262 0.1738
26 1 1 0.9465 0.0535
27 2 2 0.0936 0.9064
28 2 2 0.1143 0.8857
29 2 2 0.3778 0.6222
30 2 2 0.3098 0.6902
31 2 2 0.4005 0.5995
32 2 2 0.1598 0.8402
33 2 2 0.4432 0.5568
34 2 2 0.3676 0.6324
35 2 2 0.2161 0.7839
36 2 1a 0.5703 0.4297
37 2 2 0.1432 0.8568
38 2 2 0.1468 0.8532

(Continued )
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Number of Observations and Percent: into GPRISK:
From GPRISK 1 2 Total

1 low-risk 17 9 26 We have 9 low-risk  
participants misclassified  
as high-risk.

65.38 34.62 100.00

2 high-risk 1 11 12 There is only 1 high-risk  
participant misclassified as  
low-risk.

8.33 91.67 100.00

a Misclassified observation.

 Table 10.17: (Continued)

correctly into this group (group 1) by the procedure. For the high-risk group, 11 of the 
12 cases were correctly classified.

We can see how these classifications were made by using the information in Table 10.18. 
This table shows the means for the groups on the discriminant function (.46 for low 
risk and −1.01 for high risk), along with the scores for the participants on the discri-
minant function (these are listed under CAN.V, an abbreviation for canonical vari-
ate). The midpoint, as calculated after Table 10.18, is −.275. Given the discriminant 
function scores and means, it is a simple matter to classify cases into groups. That 
is, if the discriminant function score for a case is larger than −.275, this case will be 
classified into the low-risk group, as the function score is closer to the low risk mean 
of .46. On the other hand, if a case has a discriminant function score less than −.275, 
this case will be classified into the high-risk group. To illustrate, consider case 1. This 
case, observed as being low risk, has a discriminant function score obtained from the 
procedure of 1.50. This value is larger than the midpoint of −.275 and so is classified 
as being low risk. This classification matches the observed group membership for this 
case and is thus correctly classified. In contrast, case 4, also in the low-risk group, has 
a discriminant function score of −.44, which is below the midpoint. Thus, this case is 
classified (incorrectly) into the high-risk group by the classification procedure. At the 
bottom of Table 10.19, the histogram of the discriminant function scores shows that 
we have a fairly good separation of the two groups, although there are several (nine) 
misclassifications of low-risk participants’ being classified as high risk, as their discri-
minant function scores fell below −.275.

10.11.3 Assessing the Accuracy of the Maximized Hit Rates

The classification procedure is set up to maximize the hit rates, that is, the number 
of correct classifications. This is analogous to the maximization procedure in multi-
ple regression, where the regression equation was designed to maximize predictive 
power. With regression, we saw how misleading the prediction on the derivation sam-
ple could be. There is the same need here to obtain a more realistic estimate of the hit 
rate through use of an external classification analysis. That is, an analysis is needed in 
which the data to be classified are not used in constructing the classification function. 
There are two ways of accomplishing this:



 Table 10.18: Means for Groups on Discriminant Function, Scores for Cases on Discri-
minant Function, and Histogram of Discriminant Scores

Group Mean Coordinates Symbol for cases Symbol for mean
Low risk (1) 0.46 0 L 1
High risk –1.01 0 H 2
Low risk group (2)
Case CAN.V Case CAN.V Case CAN.V
1 1.50 11 –0.47 21 0.63
2 2.53 12 1.44 22 0.20
3 0.96 13 –0.71 23 0.83
4 –0.44 14 –0.78 24 –1.21
5 1.91 15 –1.09 25 0.79
6 –1.01 16 0.64 26 1.68
7 –0.71 17 2.60
8 0.27 18 1.07
9 1.17 19 1.36
10 –1.00 20 –0.06
High risk group
Case CAN.V Case CAN.V
27 –1.81 37 –1.49
28 –1.66 38 –1.47
29 –0.81
30 –0.82
31 –0.55
32 –1.40
33 –0.43
34 –0.64
35 –1.15
36 –0.08

(1) These are the means for the groups on the discriminant function. Thus, the midpoint is 

.46 + ( 1.01)

2
= .275

-
-

(2) The scores listed under CAN.V (for canonical variate) are the scores for the participants on the discriminant 
function.
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1. We can use the jackknife procedure of Lachenbruch (1967). Here, each participant 
is classified based on a classification statistic derived from the remaining (n − 1) 
participants. This is the procedure of choice for small or moderate sample sizes, 
and is obtained by specifying CROSSLIST as an option in the SAS DISCRIM 
program (see Table 10.19). The jackknifed probabilities, not shown, for the Pope 
data are somewhat different from those obtained with standard discriminant func-
tion analysis (as given in Table 10.17), but the classification results are identical.

2. If the sample size is large, then we can randomly split the sample and cross-vali-
date. That is, we compute the classification function on one sample and then check 
its hit rate on the other random sample. This provides a good check on the external 
validity of the classification function.

10.11.4 Using Prior Probabilities

Ordinarily, we would assume that any given participant has a priori an equal probabil-
ity of being in any of the groups to which we wish to classify, and SPSS and SAS have 
equal prior probabilities as the default option. Different a priori group probabilities 
can have a substantial effect on the classification function. The pertinent question is, 
“How often are we justified in using unequal a priori probabilities for group member-
ship?” If indeed, based on content knowledge, one can be confident that the different 
sample sizes result because of differences in population sizes, then prior probabilities 
are justified. However, several researchers have urged caution in using anything but 
equal priors (Lindeman, Merenda, & Gold, 1980; Tatsuoka, 1971). Prior probabilities 
may be specified in SPSS or SAS (see Huberty & Olejnik, 2006).

 Table 10.19: SAS DISCRIM Syntax for Classifying the Pope Data With the Jackknife 
Procedure

data pope;
input gprisk wi wc pc @@;
lines;
1 5.8 9.7 8.9 1 10.6 10.9 11 1 8.6 7.2 8.7
1 4.8 4.6 6.2 1 8.3 10.6 7.8 1 4.6 3.3 4.7
1 4.8 3.7 6.4 1 6.7 6.0 7.2 1 7.1 8.4 8.4
1 6.2 3.0 4.3 1 4.2 5.3 4.2 1 6.9 9.7 7.2
1 5.6 4.1 4.3 1 4.8 3.8 5.3 1 2.9 3.7 4.2
1 6.1 7.1 8.1 1 12.5 11.2 8.9 1 5.2 9.3 6.2
1 5.7 10.3 5.5 1 6.0 5.7 5.4 1 5.2 7.7 6.9
1 7.2 5.8 6.7 1 8.1 7.1 8.1 1 3.3 3.0 4.9
1 7.6 7.7 6.2 1 7.7 9.7 8.9
2 2.4 2.1 2.4 2 3.5 1.8 3.9 2 6.7 3.6 5.9
2 5.3 3.3 6.1 2 5.2 4.1 6.4 2 3.2 2.7 4.0
2 4.5 4.9 5.7 2 3.9 4.7 4.7 2 4.0 3.6 2.9
2 5.7 5.5 6.2 2 2.4 2.9 3.2 2 2.7 2.6 4.1
proc discrim data = pope testdata = pope crosslist;
class gprisk;
var wi wc pc;

When the CROSSLIST option is listed, the program prints the cross validation classification results for each 
observation. Listing this option invokes the jackknife procedure.
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10.11.5 Illustration of Cross-Validation With National Merit Data

We consider an additional example to illustrate randomly splitting a sample (a few 
times) and cross-validating the classification function with SPSS. This procedure esti-
mates a classification function for the randomly selected cases (the developmental 
sample), applies this function to the remaining or unselected cases (the cross-validation 
sample), and then summarizes the percent correctly classified for the developmental 
and cross-validation samples. To illustrate the procedure, we have selected two groups 
from the National Merit Scholar example presented in section 10.8. The two groups 
selected here are (1) those students for whom at least one parent had an eighth-grade 
education or less (n = 90) and (2) those students both of whose parents had at least one 
college degree (n = 75). The same discriminating variables are used here as before.

We begin the procedure by randomly selecting 100 cases from the National Merit data 
three times (labeled Select1, Select2, and Select3). Figure 10.3 shows 10 cases from 
this data set (which is named Merit Cross). We then cross-validated the classifica-
tion function for each of these three randomly selected samples on the remaining 65 
participants. SPSS syntax for conducting the cross-validation procedure is shown in 
Table 10.20. The first three lines of Table 10.20, as well as line 5, are essentially the 
same commands as shown in Table 10.7. Line 4 selects cases from the first random 
sample (via Select1). When you wish to cross-validate the second sample, you need to 
replace Select1 with Select2, and then replacing that with Select3 will cross-validate 
the third sample. Line 6 of Table 10.20 specifies the use of equal prior probabilities, 
and the last line requests a summary table of results.

The results of each of the cross-validations are shown in Table 10.21. Note that the 
percent correctly classified in the second random sample is actually higher in the 
cross-validation sample (87.7%) than in the developmental sample (80.0%), which is 
unusual but can happen. This also happens in the third sample (82.0% to 84.6%). With 

 Figure 10.3: Selected cases appearing in the cross validation data file (i.e., Merit Cross).

 Table 10.20: SPSS Commands for Cross-Validation

DISCRIMINANT
/GROUPS=Group(1 2)
/VARIABLES=Real Intell Social Conven Enterp Artis Status Aggress
/SELECT=Select1(1)
/ANALYSIS ALL
/PRIORS EQUAL
/STATISTICS=TABLE.
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Table 10.21: Cross-Validation Results for the Three Random Splits of National Merit Data

Classification Results First Samplea,b

Group

Predicted group membership

TotalEighth grade College degree

Cases 
selected

Original Count Eighth grade 51 7 58
College degree 6 36 42

% Eighth grade 87.9 12.1 100.0
College degree 14.3 85.7 100.0

Cases not 
selected

Original Count Eighth grade 23 9 32
College degree 7 26 33

% Eighth grade 71.9 28.1 100.0
College degree 21.2 78.8 100.0

a 87.0% of selected original grouped cases correctly classified.
b 75.4% of unselected original grouped cases correctly classified.

Classification Results Second Samplea,b

Group

Predicted group membership

TotalEighth grade College degree

Cases 
selected

Original Count Eighth grade 47 11 58

College degree 9 33 42

% Eighth grade 81.0 19.0 100.0

College degree 21.4 78.6 100.0
Cases not 
selected

Original Count Eighth grade 29 3 32
College degree 5 28 33

% Eighth grade 90.6 9.4 100.0
College degree 15.2 84.8 100.0

a 80.0% of selected original grouped cases correctly classified.
b 87.7% of unselected original grouped cases correctly classified.

Classification Results Third Samplea,b

Group

Predicted group membership

TotalEighth grade College degree

Cases 
selected

Original Count Eighth grade 45 8 53

College degree 10 37 47

% Eighth grade 84.9 15.1 100.0

College degree 21.3 78.7 100.0
Cases not 
selected

Original Count Eighth grade 28 9 37
College degree 1 27 28

% Eighth grade 75.7 24.3 100.0
College degree 3.6 96.4 100.0

a 82.0% of selected original grouped cases correctly classified.
b 84.6% of unselected original grouped cases correctly classified.
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the first sample, the more typical case occurs where the percent correctly classified in 
the unselected or cross-validation cases drops off quite a bit (from 87.0% to 75.4%).

10.12 LINEAR VERSUS QUADRATIC CLASSIFICATION RULE

A more complicated quadratic classification rule is available that is sometimes used by 
investigators when the equality of variance-covariances matrices assumption is vio-
lated. However, Huberty and Olejnik (2006, pp. 280–281) state that when sample size 
is small or moderate the standard linear function should be used. They explain that 
classification results obtained by use of the linear function are more stable from sample 
to sample even when covariance matrices are unequal and when normality is met or 
not. For larger samples, they note that the quadratic rule is preferred when covariance 
matrices are clearly unequal.

Note that when normality and constant variance assumptions are not satisfied, an alter-
native to discriminant analysis (and traditional MANOVA) is logistic regression, as 
logistic regression does not require that scores meet the two assumptions. Huberty and 
Olejnik (2006, p. 386) summarize research comparing the use of logistic regression 
and discriminant analysis for classification purposes and note that these procedures do 
not appear to have markedly different performance in terms of classification accuracy. 
Note though that logistic regression is often regarded as a preferred procedure because 
its assumptions are considered to be more realistic, as noted by Menard (2010). Logis-
tic regression is also a more suitable procedure when there is a mix of continuous and 
categorical variables, although Huberty and Olejnik indicate that a dichotomous dis-
criminating variable (coded 0 and 1) can be used for the discriminant analysis classifi-
cation procedure. Note that Chapter 11 provides coverage of binary logistic regression.

10.13  CHARACTERISTICS OF A GOOD CLASSIFICATION 
PROCEDURE

One obvious characteristic of a good classification procedure is that the hit rate be 
high; we should have mainly correct classifications. But another important consid-
eration, which is sometimes overlooked, is the cost of misclassification (financial or 
otherwise). The cost of misclassifying a participant from group A in group B may 
be greater than misclassifying a participant from group B in group A. We give three 
examples to illustrate:

1. A medical researcher wishes to classify participants as low risk or high risk in terms 
of developing cancer on the basis of family history, personal health habits, and 
environmental factors. Here, saying a participant is low risk when in fact he is high 
risk is more serious than classifying a participant as high risk when he is low risk.

2. A bank wishes to classify low- and high-risk credit customers. Certainly, for the 
bank, misclassifying high-risk customers as low risk is going to be more costly 
than misclassifying low-risk as high-risk customers.
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3. This example was illustrated previously, of identifying low-risk versus high-risk 
kindergarten children with respect to possible reading problems in the early ele-
mentary grades. Once again, misclassifying a high-risk child as low risk is more 
serious than misclassifying a low-risk child as high risk. In the former case, the 
child who needs help (intervention) doesn’t receive it.

10.14   ANALYSIS SUMMARY OF DESCRIPTIVE DISCRIMINANT 
ANALYSIS

Given that the chapter has focused primarily on descriptive discriminant analysis, 
we provide an analysis summary here for this procedure and a corresponding results 
write-up in the next section. Descriptive discriminant analysis provides for greater par-
simony in describing between-group differences compared to traditional MANOVA 
because discriminant analysis focuses on group differences for composite varia-
bles. Further, the results of traditional MANOVA and discriminant analysis may dif-
fer because discriminant analysis, a fully multivariate procedure, takes associations 
between variables into account throughout the analysis procedure.

Note that section 6.13 provides the preliminary analysis activities for this procedure 
(as they are the same as one-way MANOVA). Thus, we present just the primary anal-
ysis activities here for descriptive discriminant analysis having one grouping variable.

10.14.1 Primary Analysis
A. Determine the number of discriminant functions (i.e., composite variables) that 

separate groups.
1) Use dimension reduction analysis to identify the number of composite varia-

bles for which there are statistically significant mean differences. Retain, ini-
tially, any functions for which the Wilks’ lambda test is statistically significant.

2) Assess the strength of association between each statistically significant com-
posite variable and group membership. Use (a) the square of the canonical 
correlation and (b) the proportion of the total between-group variation due 
to a given function for this purpose. Retain any composite variables that are 
statistically significant and that appear to be strongly (i.e., nontrivially) related 
to the grouping variable.

B. For any composite variable retained from the previous step, determine the mean-
ing of the composite and label it, if possible.
1) Inspect the standardized discriminant function coefficients to identify which 

of the discriminating variables are related to a given function. Observed vari-
ables having greater absolute values should be used to interpret the function. 
After identifying the important observed variables, use the signs of each of 
the corresponding coefficients to identify what high and low scores on the 
composite variable represent. Consider what the observed variables have in 
common when attempting to label a composite.
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2)  Though standardized coefficients should be used to identify important vari-
ables and determine the meaning of a composite variable, it may be helpful 
initially to examine univariate F tests for group differences for each observed 
variable and inspect group means and standard deviations for the significant 
variables.

C. Describe differences in means on meaningful discriminant functions as identified 
in steps A and B.
1) Examine group centroids and identify groups that seem distinct from others. 

Remember that each composite variable has a grand mean of 0 and a pooled 
within-group standard deviation of 1.

2) Examine a plot of group centroids to help you determine which groups seem 
distinct from others.

10.15  EXAMPLE RESULTS SECTION FOR DISCRIMINANT 
ANALYSIS OF THE NATIONAL MERIT SCHOLAR EXAMPLE

Discriminant analysis was used to identify how National Merit Scholar groups differed 
on a subset of variables from the Vocational Personality Inventory (VPI): realistic, 
intellectual, social, conventional, enterprising, artistic, status, and aggression. The four 
groups for this study were (1) those students for whom at least one parent had an 
eighth-grade education or less (n = 90); (2) those students both of whose parents were 
high school graduates (n = 104); (3) those students both of whose parents had gone to 
college, with at most one graduating (n = 115); and (4) those students both of whose 
parents had at least one college degree (n = 75).

No multivariate outliers were indicated as the Mahalanobis distance for each case was 
smaller than the corresponding critical value. However, univariate outliers were indi-
cated as four cases had z scores greater than |3| for the observed variables. When we 
removed these cases temporarily, study results were unchanged. The analysis reported 
shortly, then, includes all cases. Also, there were no missing values in the data set, and 
no evidence of multicollinearity as all variance inflation factors associated with the 
discriminating variables were smaller than 2.2. Inspection of the within-group pooled 
correlations, which ranged from near zero to about .50, indicate that the variables 
were, in general, moderately correlated.

In addition, there did not appear to be any serious departures from the statistical 
assumptions associated with discriminant analysis. For example, none of the skewness 
and kurtosis values for each variable within each group were larger than a magnitude 
of 1, suggesting no serious departures of the normality assumption. For the equal-
ity of variance-covariance matrices assumption, the log determinants of the within 
group covariance matrices were similar, as were the group standard deviations, and 
the results of Box’s M test (p = .249) did not suggest a violation. In addition, the study 
design did not suggest any violations of the independence assumption as participants 
were randomly sampled.
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While the discriminant analysis procedure formed three functions (due to four groups 
being present), only the test with all functions included was statistically significant 
(Wilks’ Λ = .564, χ2(24) = 215.96, p < .001). As such, the first function separated the 
groups. Further, using the square of the canonical correlation, we computed that 43% 
of the score variation for the first function was between groups. Also, virtually all 
(99%) of the total between-group variation was due to the first function. As such, we 
dropped functions 2 and 3 from further consideration.

Table 1 shows the standardized discriminant function coefficients for this first function, 
as well as univariate test results. Inspecting the standardized coefficients suggested that 
the conventional and enterprising variables were the only variables strongly related to 
this function. Note that the univariate test results, although not taking the variable 
correlations into account, also suggested that groups differ on the conventional and 
enterprising variables. Using the standardized coefficients to interpret the function, or 
composite variable, we concluded that participants having higher scores on the func-
tion are characterized by having relatively high scores on the conventional variable but 
low scores on the enterprising variable. Conversely, participants having below average 
scores on the first function are considered to have relatively high scores on the enter-
prising variable and low scores on the conventional variable.

The group centroids for the first function as well as means and standard deviations 
for the relevant observed variables are shown in Table 2. Although the results from 
the multivariate discriminant analysis procedure do not always correspond to uni-
variate results, results here were similar. Specifically, inspecting the group centroids 
in Table 2 indicates that children whose parents have had exposure to college (some 
college or a college degree) have much lower mean scores on this function than 
children whose parents did not attend college (high school diploma or eighth-grade 
education). Given our interpretation of this function, we conclude that Merit Schol-
ars whose parents have at least some college education tend to be much less conven-
tional and much more enterprising than students of other parents. Note that inspecting 
the group means for the conventional and enterprising variables also supports this 
conclusion.

 Table 1: Standardized Discriminant Function Coefficients and Univariate Test Results

Variable Standardized coefficients Univariate F tests p Values for F tests

Realistic .248 1.049 .371
Intellectual −.208 .124 .946
Social .023 .693 .557
Conventional .785 10.912 < .001
Enterprising −1.240 33.656 < .001
Artistic .079 1.532 .206
Status .067 .367 .777
Aggression .306 .351 .788
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 Table 2: Group Centroids and Means (SD)

Centroids Means (SD)

Education level Function Conventional Enterprising
Eighth grade or less .894 55.77 (9.91) 54.03 (8.89)
High school graduate .822 55.29 (10.25) 54.00 (10.05)
Some college -.842 50.16 (9.25) 63.71 (9.80)
College degree -.922 49.45 (9.34) 63.56 (8.35)

10.16 SUMMARY

1. Discriminant analysis is used for two purposes: (a) for describing mean composite 
variable differences among groups, and (b) for classifying cases into groups on the 
basis of a battery of measurements.

2. The major differences among the groups are revealed through the use of uncorre-
lated linear combinations of the original variables, that is, the discriminant func-
tions. Because the discriminant functions are uncorrelated, they yield an additive 
partitioning of the between association.

3. About 20 cases per variable are needed for reliable results, to have confidence 
that the variables selected for interpreting the discriminant functions would again 
show up in an independent sample from the same population.

4. Stepwise discriminant analysis should be used with caution.
5. For the classification problem, it is assumed that the two populations are multivar-

iate normal and have the same covariance matrix.
6. The hit rate is the number of correct classifications, and is an optimistic value, 

because we are using a mathematical maximization procedure. To obtain a more 
realistic estimate of how good the classification function is, use the jackknife 
procedure for small or moderate samples, and randomly split the sample and 
cross-validate with large samples.

7. If discriminant analysis is used for classification, consider use of a quadratic classi-
fication procedure if the covariance matrices are unequal and sample size is large.

8. There is evidence that linear classification is more reliable when small and moder-
ate samples are used.

9. The cost of misclassifying must be considered in judging the worth of a classi-
fication rule. Of procedures A and B, with the same overall hit rate, A would be 
considered better if it resulted in less costly misclassifications.

10.17 EXERCISES

1. although the sample size is small in this problem, obtain practice in conduct-
ing a discriminant analysis and interpreting results by running a discriminant 
analysis using the spss syntax shown in table 10.7 (modifying variable names 
as needed, of course) with the data from exercise 1 in chapter 5.
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(a) Given there are three groups and three discriminating variables, how 
many discriminant functions are obtained?

(b) Which of the discriminant functions are significant at the .05 level?

(c) calculate and interpret the square of the canonical correlations.

(d) interpret the “% of Variance explained” column in the eigenvalues table.

(e) Which discriminating variables should be used to interpret the first func-
tion? Using the observed variable names given (i.e., y1, y2, y3), what do 
high and low scores represent on the first function?

(f) examine the group centroids and plot. Describe differences in group 
means for the first discriminant function.

(g) Does this description seem consistent or conflict with the univariate re-
sults shown in the output?

(h) What is the recommended minimum sample size for this example?

2. this exercise shows that some of the key descriptive measures used in dis-
criminant analysis can computed (and then interpreted) fairly easily using the 
scores for the discriminant functions. in section 10.7.4, we computed scores 
for the discriminant function using the raw score discriminant function coef-
ficients. spss can compute these for you and place them in the data set. this 
can be done by placing this subcommand /saVe=scOres after the subcom-
mand /analysis all in table 10.7.

(a) Use the seniorWise data set (as used in section 10.7) and run a discrimi-
nant analysis placing this new subcommand in the syntax. note that the 
scores for the discriminant functions (Dis1_1, Dis2_1), now appearing in 
your data set, match those reported in table 10.10.

(b) Using the scores for the first discriminant function, conduct a one-anOVa 
with group as the factor, making sure to obtain the anOVa summary table 
results and the group means. note that the group means obtained here 
match the group centroids reported in table 10.6. note also that the grand 
mean for this function is zero, and the pooled within-group standard de-
viation is 1. (the anOVa table shows that the pooled within-group mean 
square is 1. the square root of this value is then the pooled within-group 
standard deviation.)

(c) recall that an eigenvalue in discriminant analysis is a ratio of the 
between-group to within-group sum-of-squares for a given function. Use 
the results from the one-way anOVa table obtained in (b) and calculate 
this ratio, which matches the eigenvalue reported in table 10.4.

(d) Use the relevant sum-of-squares shown in this same anOVa table and 
compute eta-square. note this value is equivalent to the square of the ca-
nonical correlation for this function that was obtained by the discriminant 
analysis in section 10.7.2.
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3. press and Wilson (1978) examined population change data for the 50 states. 
the percent change in population from the 1960 census to the 1970 census for 
each state was coded as 0 or 1, according to whether the change was below 
or above the median change for all states. this is the grouping variable. the 
following demographic variables are to be used to predict the population 
changes: (a) per capita income (in $1,000), (b) percent birth rate, (c) presence 
or absence of a coastline, and (d) percent death rate.

(a) run the discriminant analysis, forcing in all predictors, to see how well 
the states can be classified (as below or above the median). What is the 
hit rate?

(b) run the jackknife classification. Does the hit rate drop off appreciably?

Data for Exercise 3

State Population change Income Births Coast Deaths

Arkansas 0.00 2.88 1.80 0.00 1.10
Colorado 1.00 3.86 1.90 0.00 0.80
Delaware 1.00 4.52 1.90 1.00 0.90
Georgia 1.00 3.35 2.10 1.00 0.90
Idaho 0.00 3.29 1.90 0.00 0.80
Iowa 0.00 3.75 1.70 0.00 1.00
Mississippi 0.00 2.63 3.30 1.00 1.00
New Jersey 1.00 4.70 1.60 1.00 0.90
Vermont 1.00 3.47 1.80 0.00 1.00
Washington 1.00 4.05 1.80 1.00 0.90
Kentucky 0.00 3.11 1.90 0.00 1.00
Louisiana 1.00 3.09 2.70 1.00 1.30
Minnesota 1.00 3.86 1.80 0.00 0.90
New Hampshire 1.00 3.74 1.70 1.00 1.00
North Dakota 0.00 3.09 1.90 0.00 0.90
Ohio 0.00 4.02 1.90 0.00 1.00
Oklahoma 0.00 3.39 1.70 0.00 1.00
Rhode Island 0.00 3.96 1.70 1.00 1.00
South Carolina 0.00 2.99 2.00 1.00 0.90
West Virginia 0.00 3.06 1.70 0.00 1.20
Connecticut 1.00 4.92 1.60 1.00 0.80
Maine 0.00 3.30 1.80 1.00 1.10
Maryland 1.00 4.31 1.50 1.00 0.80
Massachusetts 0.00 4.34 1.70 1.00 1.00
Michigan 1.00 4.18 1.90 0.00 0.90
Missouri 0.00 3.78 1.80 0.00 1.10
Oregon 1.00 3.72 1.70 1.00 0.90
Pennsylvania 0.00 3.97 1.60 1.00 1.10

(Continued )
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State Population change Income Births Coast Deaths

Texas 1.00 3.61 2.00 1.00 0.80
Utah 1.00 3.23 2.60 0.00 0.70
Alabama 0.00 2.95 2.00 1.00 1.00
Alaska 1.00 4.64 2.50 1.00 1.00
Arizona 1.00 3.66 2.10 0.00 0.90
California 1.00 4.49 1.80 1.00 0.80
Florida 1.00 3.74 1.70 1.00 1.10
Nevada 1.00 4.56 1.80 0.00 0.80
New York 0.00 4.71 1.70 1.00 1.00
South Dakota 0.00 3.12 1.70 0.00 2.40
Wisconsin 1.00 3.81 1.70 0.00 0.90
Wyoming 0.00 3.82 1.90 0.00 0.90
Hawaii 1.00 4.62 2.20 1.00 0.50
Illinois 0.00 4.51 1.80 0.00 1.00
Indiana 1.00 3.77 1.90 0.00 0.90
Kansas 0.00 3.85 1.60 0.00 1.00
Montana 0.00 3.50 1.80 0.00 1.00
Nebraska 0.00 3.79 1.80 0.00 1.10
New Mexico 0.00 3.08 2.20 0.00 0.90
North Carolina 1.00 3.25 1.90 1.00 0.90
Tennessee 0.00 3.12 1.90 0.00 1.00
Virginia 1.00 3.71 1.80 1.00 0.80
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Chapter 11

BINARY LOGISTIC 
 REGRESSION

11.1 INTRODUCTION

While researchers often collect continuous response data, binary (or dichotomous) 
response data are also frequently collected. Examples of such data include whether an 
individual is abstinent from alcohol or drugs, has experienced a “clinically significant 
change” following treatment, enlists in the military, is diagnosed as having type 2 
diabetes, reports a satisfactory retail shopping experience, and so on. Such either/or 
responses are often analyzed with logistic regression.

The widespread use of logistic regression is likely due to its similarity with standard 
regression analyses. That is, in logistic regression, a predicted outcome is regressed 
on an explanatory variable or more commonly a set of such variables. Like standard 
regression analysis, the predictors included in the logistic regression model can be con-
tinuous or categorical. Interactions among these variables can be tested by including 
relevant product terms, and statistical tests of the association among a set of explanatory 
variables and the outcome are handled in a way similar to standard multiple regression.

Further, like standard regression, logistic regression can be used in a confirmatory type 
of approach to test the association between explanatory variables and a binary out-
come in an attempt to obtain a better understanding of factors that affect the outcome. 
For example, Berkowitz, Stover, and Marans (2011) used logistic regression to deter-
mine if an intervention resulted in reduced diagnosis of posttraumatic stress disorder 
in youth compared to a control condition. Dion et al. (2011) used logistic regression 
to identify if teaching strategies that included peer tutoring produced more proficient 
readers relative to a control condition among first-grade students. In addition, logistic 
regression can be used as more of an exploratory approach where the goal is to make 
predictions about (or classify) individuals. For example, Le Jan et al. (2011) used 
logistic regression to develop a model to predict dyslexia among children.

While there are many similarities between logistic and standard regression, there are 
key differences, all of which are essentially due to the inclusion of a binary outcome. 
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Perhaps the most noticeable difference between logistic and standard regression is the 
use of the odds of an event occurring (i.e., the odds of Y = 1) in logistic regression. The 
use of these odds is most evident in the odds ratio, which is often used to describe the 
effect a predictor has on the binary outcome. In addition, the natural log of the odds of 
Y = 1 is used as the predicted dependent variable in logistic regression. The use of the 
natural log of the odds may seem anything but natural for those who are encountering 
logistic regression for the first time. For that reason, we place a great deal of focus on 
the odds of Y = 1 and the transformations that are used in logistic regression.

Specifically, the outline of the chapter is as follows. We introduce a research example 
that will be used throughout the chapter and then discuss problems that arise with the 
use of traditional regression analysis when the outcome is binary. After that, we focus 
on the odds and odds ratio that are a necessary part of the logistic regression procedure. 
After briefly casting logistic regression as a part of the generalized linear model, we 
discuss parameter estimation, statistical inference, and a general measure of associa-
tion. Next, several sections cover issues related to preliminary analysis and the use of 
logistic regression as a classification procedure. The chapter closes with sections on 
the use of SAS and SPSS, an example results section, and a logistic regression anal-
ysis summary. Also, to limit the scope of the chapter, we do not consider extensions 
to logistic regression (e.g., multinomial logistic regression), which can be used when 
more than two outcome categories are present.

11.2 THE RESEARCH EXAMPLE

The research example used throughout the chapter involves an intervention designed 
to improve the health status of adults who have been diagnosed with prediabetes. 
Individuals with prediabetes have elevated blood glucose (or sugar), but this glucose 
level is not high enough to receive a diagnosis of full-blown type 2 diabetes. Often, 
individuals with prediabetes develop type 2 diabetes, which can have serious health 
consequences. So, in the attempt to stop the progression from prediabetes to full-blown 
type 2 diabetes, we suppose that the researchers have identified 200 adults who have 
been diagnosed with prediabetes. Then, they randomly assigned the patients to receive 
treatment as normal or the same treatment plus the services of a diabetes educator. This 
educator meets with patients on an individual basis and develops a proper diet and 
exercise plan, both of which are important to preventing type 2 diabetes.

For this hypothetical study, the dependent variable is diagnosis of type 2 diabetes, 
which is obtained 3 months after random assignment to the intervention groups. We 
will refer to this variable as health, with a value of 0 indicating diagnosis of type 2 
diabetes, or poor health, and a value of 1 indicating no such diagnosis, or good health. 
The predictors used for the chapter are:

• treatment, as described earlier, with the treatment-as-normal group (or the control 
group) and the diabetes educator group (or educator group), and
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• a measure of motivation collected from patients shortly after diagnosis indicating 
the degree to which they are willing to change their lifestyle to improve their 
health.

Our research hypotheses is that, at the 3-month follow-up, the educator treatment 
will result in improved health status relative to the control condition and that those 
with greater motivation will also have better health status. For the 200 participants 
in the sample, 84 or 42% were healthy (no diabetes) at the 3-month follow-up. The 
mean and standard deviation for motivation for the entire sample were 49.46 and 9.86, 
respectively.

11.3 PROBLEMS WITH LINEAR REGRESSION ANALYSIS

The use of traditional regression analysis with a binary response has several limitations 
that motivate the use of logistic regression. To illustrate these limitations, consider 
Figure 11.1, which is a scatterplot of the predicted and observed values for a binary 
response variable as a linear function of a continuous predictor. First, given an out-
come with two values (0 and 1), the mean of Y for a given X score (i.e., a conditional 
mean or predicted value on the regression line in Figure 11.1) can be interpreted as 
the probability of Y = 1. However, with the use of traditional regression, predicted 
probabilities may assume negative values or exceed 1, the latter of which is evident in 
the plot. While these invalid probabilities may not always occur with a given data set, 
there is nothing inherent in the linear regression procedure to prevent such predicted 
values.

 Figure 11.1: Scatterplot of binary Y across the range of a continuous predictor.
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A second problem associated with the use of linear regression when the response is binary 
is that the distributional assumptions associated with this analysis procedure do not hold. 
In particular, the outcome scores for a given X score cannot be normally distributed around 
the predicted value as there are only two possible outcome scores (i.e., 0 and 1). Also, 
as suggested in Figure 11.1, the variance of the outcome scores is not constant across 
the range of the predicted values, as this variance is relatively large near the center of X 
(where the observed outcome values of 0 and 1 are both present) but is much smaller at the 
minimum and maximum values of X where only values of 0 and 1 occur for the outcome.

A third problem with the use of standard linear regression is the assumed linear func-
tional form of the relationship between Y and X. When the response is binary, the pre-
dicted probabilities are often considered to follow a nonlinear pattern across the range of 
a continuous predictor, such that these probabilities may change very little for those near 
the minimum and maximum values of a predictor but more rapidly for individuals hav-
ing scores near the middle of the predictor distribution. For example, Figure 11.2 shows 
the estimated probabilities obtained from a logistic regression analysis of the data shown 
in Figure 11.1. Note the nonlinear association between Y and X, such that the probability 
of Y = 1 increases more rapidly as X increases near the middle of the distribution but that 
the increase nearly flattens out for high X scores. The S-shaped nonlinear function for 
the probability of Y = 1 is a defining characteristic of logistic regression with continuous 
predictors, as it represents the assumed functional form of the probabilities.

In addition to functional form, note that the use of logistic regression addresses other 
problems that were apparent with the use of standard linear regression. That is, with 
logistic regression, the probabilities of Y = 1 cannot be outside of the 0 to 1 range. The 

 Figure 11.2: Predicted probabilities of Y = 1 from a logistic regression equation.
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logit transformation, discussed in the next section, restricts the predicted probabilities 
to the 0 to 1 range. Also, values for the binary response will not be assumed to follow 
a normal distribution, as assumed in linear regression, but are assumed to follow a 
binomial (or, more specifically, Bernoulli) distribution. Also, neither normality nor 
constant variance will be assumed.

11.4  TRANSFORMATIONS AND THE ODDS RATIO WITH A 
DICHOTOMOUS EXPLANATORY VARIABLE

This section presents the transformations that occur with the use of logistic regression. 
You are encouraged to replicate the calculations here to get a better feel for the odds 
and, in particular, the odds ratio that is at the heart of logistic regression analysis. Note 
also that the natural log of the odds, or the logits, serve as the predicted dependent var-
iable in logistic regression. We will discuss why that is the case as we work through the 
transformations. We first present the transformations and odds ratio for the case where 
the explanatory variable is dichotomous.

To illustrate the transformations, we begin with a simple case where, using our exam-
ple, health is a function of the binary treatment indicator variable. Table 11.1 presents 
a cross-tabulation with our data for these variables. As is evident in Table 11.1, adults 
in the educator group have better health. Specifically, 54% of adults in the educator 
group have good health (no diabetes diagnosis), whereas 30% of the adults in the 
control group do. Of course, if health and treatment were the only variables included 
in the analysis, a chi-square test of independence could be used to test the association 
between the two variables and may be sufficient for these data. However, we use these 
data to illustrate the transformations and the odds ratio used in logistic regression.

11.4.1 Probability and Odds of Y = 1

We mimic the interpretations of effects in logistic regression by focusing on only one 
of the two outcome possibilities—here, good health status (coded as Y = 1)—and cal-
culate the probability of being healthy for each of the treatment groups. For the 100 
adults in the educator group, 54 exhibited good health. Thus, the probability of being 

 Table 11.1: Cross-Tabulation of Health and Treatment

Treatment group

Health Educator Control Total

Good 54 (54%) 30 (30%) 84
Poor 46 (46%) 70 (70%) 116
Total 100 100 200

Note: Percentages are calculated within treatment groups.
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healthy for those in this group is 54 / 100 = .54. For those in the control group, the 
probability of being healthy is 30 / 100 or .30. You are much more likely, then, to 
demonstrate good health if you are in the educator group.

Using these probabilities, we can then calculate the odds of Y = 1 (being of good 
health) for each of the treatment groups. The odds are calculated by taking the proba-
bility of Y = 1 over 1 minus that probability, or

Odds P
P

( ) ( )
( )

,Y Y
Y

= = =
- =

1 1
1 1

 (1)

where P is the probability of Y = 1. Thus, the odds of Y = 1 is the probability of Y =1 
over the probability of Y = 0. To illustrate, for those in the educator group, the odds 
of being healthy are .54 / (1 − .54) = 1.17. To interpret these odds, we can say that for 
adults in the educator group, the probability of being healthy is 1.17 times the proba-
bility of being unhealthy. Thus, the odds is a ratio contrasting the size of the probability 
of Y = 1 to the size of the probability of Y = 0. For those in the control group, the odds 
of Y = 1 are .30 / .70 or 0.43. Thus, for this group, the probability of being healthy is 
.43 times the probability of being unhealthy.

Table 11.2 presents some probabilities and corresponding odds, as well as the natural 
logs of the odds that are discussed later. While probabilities range from 0 to 1, the 
odds, range from 0 to, theoretically, infinity. Note that an odds of 1 corresponds to a 
probability of .5, odds smaller than 1 correspond to probabilities smaller than .5, and 
odds larger than 1 correspond to probabilities greater than .5. In addition, if you know 
the odds of Y = 1, the probability of Y = 1, can be computed using

P Odds
Odds

( ) ( )
( )

.Y Y
Y

= = =
+ =

1 1
1 1

 (2)

For example, if your odds are 4, then the probability of Y = 1 is 4 / (4 + 1) = .8, which 
can be observed in Table 11.2.

 Table 11.2: Comparisons Between the Probability, the Odds, and the Natural Log of 
the Odds

Probability Odds Natural log of the odds

.1 .11 −2.20

.2 .25 −1.39

.3 .43 −0.85

.4 .67 −0.41

.5 1.00 0.00

.6 1.50 0.41

.7 2.33 0.85

.8 4.00 1.39

.9 9.00 2.20
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Those learning logistic regression often ask why the odds are needed, since probabili-
ties seem very natural to understand and explain. As Allison (2012) points out, the odds 
provide a much better measure for making multiplicative comparisons. For example, if 
your probability of being healthy is .8 and another person has a probability of .4, it is 
meaningful to say that your probability is twice as great as the other’s. However, since 
probabilities cannot exceed 1, it does not make sense to consider a probability that is 
twice as large as .8. However, this kind of statement does not present a problem for 
the odds. For example, when transformed to odds, the probability of .8 is .8 / .2 = 4. 
An odds twice as large as that is 8, which, when transformed back to a probability, is 8 
/ (1 + 8) = .89. Thus, the odds lend themselves to making multiplicative comparisons 
and can be readily converted to probabilities to further ease interpretations in logistic 
regression.

11.4.2 The Odds Ratio

The multiplicative comparison idea leads directly into the odds ratio, which is used to 
capture the effect of a predictor in logistic regression. For a dichotomous predictor, the 
odds ratio is literally the ratio of odds for two different groups. For the example in this 
section, the odds ratio, or O.R.,

O.R. Odds of  for the Educator Group
Odds of  for the

= =
=

Y
Y

1
1   Control Group

.  (3)

Note that if the odds of Y = 1 were the same for each group, indicating no association 
between variables, the odds ratio would equal 1. For this expression, an odds ratio 
greater than 1 indicates that those in the educator group have greater odds (and thus 
a greater probability) of Y = 1 than those in the control group, whereas an odds ratio 
smaller than 1 indicates that those in the educator group have smaller odds (and thus a 
smaller probability) of Y = 1 than those in the control group. With our data and using 
the odds calculated previously, the odds ratio is 1.17 / .43 = 2.72 or 2.7.

To interpret the odds ratio of 2.7, we can say that the odds of being in good health for 
those in the educator group are about 2.7 times the odds of being healthy for those in 
the control group. Thus, whereas the odds multiplicatively compares two probabilities, 
the odds ratio provides this comparison in terms of the odds. To help ensure accurate 
interpretation of the odds ratio (as a ratio of odds and not probabilities), you may find 
it helpful to begin with the statement “the odds of Y = 1” (describing what Y = 1 repre-
sents, of course). Then, it seems relatively easy to fill out the statement with “the odds 
of Y = 1 for the first group” (i.e., the group in the numerator) “are x times the odds of 
Y = 1 for the reference group” (i.e., the group in the denominator). That is the generic 
and standard interpretation of the odds ratio for a dichotomous predictor.

But, what if the odds for those in the control group had been placed in the numerator 
of the odds ratio and the odds for those in the educator group had been placed in the 
denominator? Then, the odds ratio would have been .43 / 1.17 = .37, which is, of 
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course, a valid odds ratio. This odds ratio can then be interpreted as the odds of being 
healthy for adults in the control group are .37 times (or roughly one third the size of) 
the odds of those in the educator group. Again, the odds of the first group (here the 
control group) are compared to the odds of the group in the denominator (the educator 
group). You may find it more natural to interpret odds ratios that are greater than 1. If 
an odds ratio is smaller than 1, you only need to take the reciprocal of the odds ratio 
to obtain an odds ratio larger than 1. Taking the reciprocal switches the groups in the 
numerator and denominator of the odds ratio, which here returns the educator group 
back to the numerator of the odds ratio. When taking a reciprocal of the odds ratio, be 
sure that your interpretation of the odds ratio reflects this switch in groups. For this 
example, the reciprocal of .37 yields an odds ratio of 1 / .37 = 2.7, as before.

11.4.3 The Natural Log of the Odds

Recapping the transformations, we have shown how the following can be calculated 
and interpreted: the probability of Y = 1, the odds of Y = 1, and the odds ratio. We now 
turn to the natural log of the odds of Y = 1, which is also called the log of the odds, 
or the logits. As mentioned, one problem associated with the use of linear regression 
when the outcome is binary is that the predicted probabilities may lie outside the 0 
to 1 range. Linear regression could be used, however, if we can find a transformation 
that produces values like those found in a normal distribution, that is, values that are 
symmetrically distributed around some center value and that range to, theoretically, 
minus and plus infinity. In our discussion of the odds, we noted that the odds have a 
minimum of zero but have an upper limit, like the upper limit in a normal distribution, 
in the sense that these values extend toward infinity. Thus, the odds do not represent 
an adequate transformation of the predicted probabilities but gets us halfway there to 
the needed transformation.

The natural log of the odds effectively removes this lower bound that the odds have 
and can produce a distribution of scores that appear much like a normal distribution. 
To some extent, this can be seen in Table 11.2 where the natural log of the odds is 
symmetrically distributed around the value of zero, which corresponds to a probabil-
ity of 0.5. Further, as probabilities approach either 0 or 1, the natural log of the odds 
approaches negative or positive infinity, respectively.

Mathematically speaking, the natural log of a value, say X, is the power to which the 
natural number e (which can be approximated by 2.718) must be raised to obtain X. 
Using the first entry in Table 11.2 as an example, the natural log of the odds of .11 is 
−2.20, or the power that e (or 2.718) must be raised to obtain a value of .11 is −2.20. 
For those wishing to calculate the natural log of the odds, this can be done on the 
calculator typically by using the “ln” button. The natural log of the odds can also be 
transformed to the odds by exponentiating the natural log. That is,

eln( ) ,odds Odds=  (4)
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where ln(odds) is the natural log of the odds. To illustrate, to return the value of −2.20 
to the odds metric, simply exponentiate this value. So, e−2 20 = 0.11. The odds can then 
be transformed to a probability by using Equation 2. Thus, the corresponding proba-
bility for an odds of .11 is .11 / (1 + .11) = .1.

Thus, the natural log of the odds is the final transformation needed in logistic regres-
sion. In the context of logistic regression, the logit transformation of the predicted val-
ues transforms a distribution of predicted probabilities into a distribution of scores that 
approximate a normal distribution. As a result, with the logit as the dependent variable 
for the response, linear regression analyses can proceed, where the logit is expressed 
as a linear function of the predictors. Note also that this transformation used in logistic 
regression is fundamentally different from the types of transformations mentioned pre-
viously in the text. Those transformations (e.g., square root, logarithmic) are applied 
to the observed outcome scores. Here, the transformations are applied to the predicted 
probabilities. The fact that the 0 and 1 outcome scores themselves are not transformed 
in logistic regression is apparent when you attempt to find the natural log of 0 (which 
is undefined). In logistic regression, then, the transformations are an inherent part of 
the modeling procedure. We have also seen that the natural log of the odds can be 
transformed into the odds, which can then be transformed into a probability of Y = 1.

11.5  THE LOGISTIC REGRESSION EQUATION WITH A SINGLE 
DICHOTOMOUS EXPLANATORY VARIABLE

Now that we know that the predicted response in logistic regression is the natural log 
(abbreviated ln) of the odds and that this variate is expressed as a function of explan-
atory variables, we can present a logistic regression equation and begin to interpret 
model parameters. Continuing the example with the single dichotomous explanatory 
variable, the equation is

ln(odds Y = 1) = β0 + β1 treat, (5)

where treat is a dummy-coded indicator variable with 1 indicating educator group and 
0 the control group. Thus, β0 represents the predicted log of the odds of being healthy 
for those in the control group and β1 is the regression coefficient describing the asso-
ciation between treat and health in terms of the natural log of the odds. We show later 
how to run logistic regression analysis with SAS and SPSS but for now note that the 
estimated values for β0 and β1 with the chapter data are −.85 and 1.01, respectively.

Using Equation 5, we can now calculate the natural log of the odds, the odds, the odds 
ratio, and the predicted probabilities for the two groups given that we have the regres-
sion coefficients. Inserting a value of 1 for treat in Equation 5 yields a value for the 
log of the odds for the educator group of −.847 + 1.008(1) = .161. Their odds (using 
Equation 4) is then e( 161) = 1.175, and their probability of demonstrating good health 
(using Equation 2) is 1.175 / (1 + 1.175) = .54, the same as reported in Table 11.1. You 
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can verify the values for the control group, which has a natural log of −.847, an odds of 
.429, and a probability of .30. We can also compute the odds ratio by using Equation 3, 
which is 1.175 / .429 = 2.739.

There is a second and more commonly used way to compute the odds ratio for explan-
atory variables in logistic regression. Instead of working through the calculations 
in the preceding paragraph, you simply need to exponentiate β1 of Equation 5. That 
is, eβ1 the odds ratio= ,  so e1 008 = 2.74. Both SAS and SPSS provide odds ratios for 
explanatory variables in logistic regression and can compute predicted probabilities 
for values of the predictors in your data set. The calculations performed in this section 
are intended to help you get a better understanding of some of the key statistics used 
in logistic regression.

Before we consider including a continuous explanatory variable in logistic regres-
sion, we now show why exponentiating the regression coefficient associated with an 
explanatory variable produces the odds ratio for that variable. Perhaps the key piece of 
knowledge needed here is to know that e(a + b), where a and b represent two numerical 
values, equals (ea)(eb). So, inserting a value of 1 for treat in Equation 5 yields ln = β0 + 
β1, and inserting a value of zero for this predictor returns ln = β0. Since the right side of 
these expressions is equal to the natural log of the odds, we can find the odds for both 
groups by using Equation 4, which for the educator group is then e e eβ β β β0 1 0 1+( ) =  given 
the equality mentioned in this paragraph, and then for the control group is eβ0 . Using 

these expressions to form the odds ratio (treatment to control) yields O.R. = e eβ β

β

0 1

0
,  

which by division is equal to O.R. = eβ1 . Thus, exponentiating the regression coeffi-
cient associated with the explanatory variable returns the odds ratio. This is also true 
for continuous explanatory variables, to which we now turn.

11.6  THE LOGISTIC REGRESSION EQUATION WITH A SINGLE 
CONTINUOUS EXPLANATORY VARIABLE

When a continuous explanatory variable is included in a logistic regression equation, 
in terms of what has been presented thus far, very little changes from what we saw for a 
dichotomous predictor. Recall for this data set that motivation is a continuous predictor 
that has mean of 49.46 and standard deviation of 9.86. The logistic regression equation 
now expresses the natural log of the odds of health as a function of motivation as

ln( ) ,odds Y motiv= = +1 0 1β β  (6)

where motiv is motivation. The estimates for the intercept and slope, as obtained by 
software, are −2.318 and 0.040, respectively for these data. The positive value for the 
slope indicates that the odds and probability of being healthy increase as motivation 
increases. Specifically, as motivation increases by 1 point, the odds of being healthy 
increase by a factor of e( 04) = 1.041. Thus, for a continuous predictor, the interpretation 
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of the odds ratio is the factor or multiplicative change in the odds for a one point 
increase in the predictor. For a model that is linear in the logits (as Equation 6), the 
change in the odds is constant across the range of the predictor.

As in the case when the predictor is dichotomous, the odds and probability of Y = 1 
can be computed for any values of the predictor of interest. For example, inserting a 
value of 49.46 into Equation 6 results in a natural log of −.340 (i.e., −2.318 + .04 × 
49.46), an odds of 0.712 (e − 34), and a probability of .42 (0.712 / 1.712). To illustrate 
once more the meaning of the odds ratio, we can compute the same values for students 
with a score of 50.46 on motivation (an increase of 1 point over the value of 49.46). For 
these adults, the log of the odds is −0.300. Note that the change in the log of the odds 
for the 1 point increase in motivation is equal to the slope of −.14. While this is a valid 
measure to describe the association between variables, the natural log of the odds is 
not a metric that is familiar to a wide audience. So, continuing on to compute the odds 
ratio, for those having a motivation score of 50.46, the odds is then 0.741 (e− 3), and 
the probability is .43. Forming an odds ratio (comparing adults having a motivation 
score of 50.46 to those with a score of 49.46) yields 0.741 / 0.712 = 1.041, equal to, 
of course e( 04).

In addition to describing the impact of a 1-point change for the predictor on the odds 
of exhibiting good health, we can obtain the impact for an increase of greater than 1 
point on the predictor. The expression that can be used to do this is e cβ× ,  where c is 
the increase of interest in the predictor (by default a value of 1 is used by computer 
software). Here, we choose an increment of 9.86 points on motivation, which is about 
a 1 standard deviation change. Thus, for a 9.86 point increase in motivation¸ the odds 
of having good health increase by a factor of e( 04)(9 86) = e( 394) = 1.48. Comparing adults 
whose motivation score differs by 1 standard deviation, those with the higher score are 
predicted to have odds of good health that are about 1.5 times the odds of adults with 
the lower motivation score. Note that the odds ratio for an increase of 1 standard devi-
ation in the predictor can be readily obtained from SAS and SPSS by using z-scores 
for the predictor.

11.7 LOGISTIC REGRESSION AS A GENERALIZED LINEAR MODEL

Formally, logistic regression can be cast in terms of a generalized linear model, which 
has three parts. First, there is a random component or sampling model that describes 
the assumed population distribution of the dependent variable. For logistic regression, 
the dependent variable is assumed to follow a Bernoulli distribution (a special form of 
the binomial distribution), with an expected value or mean of p (i.e., the probability 
of Y = 1) and variance that is a function of this probability. Here, the variance of the 
binary outcome is equal to p(1 − p). The second component of the generalized linear 
model is the link function. The link function transforms the expected value of the 
outcome so that it may be expressed as a linear function of predictors. With logistic 
regression, the link function is the natural log of the odds, which converts the predicted 
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probabilities to logits. As mentioned earlier this link function also constrains the pre-
dicted probabilities to be within the range of 0 to 1.

The final component of the generalized linear model is the systematic component, 
which directly expresses the transformed predicted value of the response as a function 
of predictors. This systematic component then includes information from predictors to 
allow you to gain an understanding of the association between the predictors and the 
binary response. Thus, a general expression for the logistic regression model is

ln( ) ,odds Y X X Xm m= = + + +1 0 1 1 2 2β β β β  (7)

where m represents the final predictor in the model. Note that there is an inverse of the 
natural log of the odds (which we have used), which transforms the predicted log of 
the odds to the expected values or probabilities. This transformation, called the logistic 
transformation, is

p =
+

+ + + +( )

+ + + +( )
e

e

X X X

X X X

m m

m m

β β β β

β β β β

0 1 1 2 2

0 1 1 2 21





,

and where you may recognize, from earlier, that the numerator is the odds of Y =1. 
Thus, another way to express Equation 7 is

p logistic= + + + +( )β β β β0 1 1 2 2X X Xm m ,

where it is now clear that we are modeling probabilities in this procedure and that the 
transformation of the predicted outcome is an inherent part of the modeling procedure.

The primary reason for presenting logistic regression as a generalized linear model is 
that it provides you with a broad framework for viewing other analysis techniques. For 
example, standard multiple regression can also be cast as a type of generalized linear 
model as its sampling model specifies that the outcomes scores, given the predicted 
values, are assumed to follow a normal distribution with constant variance around each 
predicted value. The link function used is linear regression is called the identity link 
function because the expected or predicted values are multiplied by a value of 1 (indi-
cating, of course, no transformation). The structural model is exactly like Equation 7 
except that the predicted Y values replace the predicted logits. A variety of analysis 
models can also be subsumed under the generalized linear modeling framework.

11.8 PARAMETER ESTIMATION

As with other statistical models that appear in this text, parameters in logistic regres-
sion are typically estimated by a maximum likelihood estimation (MLE) procedure. 
MLE obtains estimates of the model parameters (the βs in Equation 7 and their stand-
ard errors) that maximize the likelihood of the data for the entire sample. Specifically, 
in logistic regression, parameter estimates are obtained by minimizing a fit function 
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where smaller values reflect smaller differences between the observed Y values and the 
model estimated probabilities. This function, called here −2LL or “negative 2 times the 
log likelihood” and also known as the model deviance, may be expressed as

- = - × ×( ) + -( ) × -( ) ∑2 2 1 1LL Y p Y pi i i iln ln ,  (8)

where pi  represents the probability of Y = 1 obtained from the logistic regression 
model and the expression to the right of the summation symbol is the log likelihood.

The expression for −2LL can be better understood by inserting some values for Y and 
the predicted probabilities for a given individual and computing the log likelihood 
and −2LL. Suppose that for an individual whose obtained Y score is 1, the predicted 
probability is also a value of 1. In that case, the log likelihood becomes 1 × ln(1) = 0, 
as the far right-hand side of the log likelihood vanishes when Y = 1. A value of 
zero for the log likelihood, of course, represents no prediction error and is the small-
est value possible for an individual. Note that if all cases were perfectly predicted, 
−2LL would also equal zero. Also, as the difference between an observed Y score 
(i.e., group membership) and the predicted probability increase, the log likelihood 
becomes greater (in absolute value), indicating poorer fit or poorer prediction. You 
can verify that for Y = 1, the log likelihood equals −.105 for a predicted probability 
of .9 and −.51 for a predicted probability of .6. You can also verify that with these 
three cases −2LL equals 1.23. Thus, −2LL is always positive and larger values reflect 
poorer prediction.

There are some similarities between ordinary least squares (OLS) and maximum like-
lihood estimation that are worth mentioning here. First, OLS and MLE are similar in 
that they produce parameter estimates that minimize prediction error. For OLS, the 
quantity that is minimized is the sum of the squared residuals, and for MLE it is −2LL. 
Also, larger values for each of these quantities for a given sample reflect poorer pre-
diction. For practical purposes, an important difference between OLS and MLE is that 
the latter is an iterative process, where the estimation process proceeds in cycles until 
(with any luck) a solution (or convergence) is reached. Thus, unlike OLS, MLE esti-
mates may not converge. Allison (2012) notes that in his experience if convergence has 
not been attained in 25 iterations, MLE for logistic regression will not converge. Lack 
of convergence may be due to excessive multicollinearity or to complete or nearly 
completion separation. These issues are discussed in section 11.15.

Further, like OLS, the parameter estimates produced via MLE have desirable prop-
erties. That is, when assumptions are satisfied, the regression coefficient estimates 
obtained with MLE are consistent, asymptotically efficient, and asymptotically nor-
mal. In addition, as in OLS where the improvement in model fit (increment in R2) 
can be statistically tested when predictors are added to a model, a statistical test 
for the improvement in model fit in logistic regression, as reflected in a decrease 
in −2LL, is often used to assess the contribution of predictors. We now turn to this 
topic.

^

^

^
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11.9  SIGNIFICANCE TEST FOR THE ENTIRE MODEL AND SETS OF 
VARIABLES

When there is more than one predictor in a logistic regression model, you will gen-
erally wish to test whether a set of variables is associated with a binary outcome of 
interest. One common application of this is when you wish to use an omnibus test to 
determine if any predictors in the entire set are associated with the outcome. A second 
application occurs when you want to test whether a subset of predictors (e.g., the coded 
variables associated with a categorical explanatory variable) is associated with the 
outcome. Another application involves testing an interaction when multiple product 
terms represent an interaction of interest. We illustrate two of these applications later.

For testing whether a set of variables is related to a binary outcome, a likelihood ratio 
test is typically used. The likelihood ratio test works by comparing the fit between two 
statistical models: a reduced model that excludes the variable(s) being tested and a 
full model that adds the variable(s) to the reduced model. The fit statistic that is used 
for this purpose is −2LL, as the difference between this fit statistic for the two models 
being compared has a chi-square distribution with degrees of freedom equal to the 
number of predictors added in the full model. A significant test result supports the use 
of the full model, as it suggests that the fit of the model is improved by inclusion of 
the variables in the full model. Conversely, an insignificant test result suggests that the 
inclusion of the new variables in the full model does not improve the model fit and 
thus supports the use of the reduced model as the added predictors are not related to the 
outcome. Note that the proper use of this test requires that one model is nested in the 
other, which means that the same cases appear in each model and that the full model 
simply adds one or more predictors to those already in the reduced model.

The likelihood ratio test is often initially used to test the omnibus null hypothesis that 
the impact of all predictor is zero, or that β1 = β2 = . . . βm = 0 in Equation 7. This test 
is analogous to the overall test of predictors in standard multiple regression, which is 
often used as a “protected” testing approach before the impact of individual predictors 
is considered. To illustrate, we return to the chapter data where the logistic regression 
equation that includes both predictors is

ln( ) ,odds Y treat motiv= = + +1 0 1 2β β β  (9)

where Y = 1 represents good health status, treat is the dummy-coded treatment variable 
(1 = educator group and 0 = control), and motiv is the continuous motivation variable.

To obtain the likelihood test result associated with this model, you first estimate a 
reduced model that excludes all of the variables being tested. The reduced model in 
this case, then, contains just the outcome and the intercept of Equation 9, or ln(odds 
Y = 1) = β0. The fit of this reduced model, as obtained via computer software, is 272.117 
(i.e., −2LLreduced). The fit of the full model, which contains the two predictors in Equa-
tion 9 (i.e., the set of variables that are to be tested), is 253.145 (i.e., −2LLfull). The 
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difference in these model fit values (−2LLreduced − 2LLfull) is the chi-square test statistic 
for the overall model and is 272.117 − 253.145 = 18.972. A chi-square critical value 
using an alpha of .05 and degrees of freedom equal to the number of predictors that 
the full model adds to the restricted model (here, 2) is 5.99. Given that the chi-square 
test statistic exceeds the critical value, this suggests that at least one of the explanatory 
variables is related to the outcome, as the model fit is improved by adding this set of 
predictors.

As a second illustration of this test, suppose we are interested in testing whether the 
treatment interacts with motivation, thinking perhaps that the educator treatment will 
be more effective for adults having lower motivation. In this case, the reduced model 
is Equation 9, which contains no interaction terms, and the full model adds to that an 
interaction term, which is the product of treat and motiv. The full model is then

ln( ) .odds Y treat motiv treat motiv= = + + + ×1 0 1 2 3β β β β  (10)

As we have seen, the fit of the reduced model (Equation 9) is 253.145, and the fit of 
this new full model (Equation 10) is 253.132. The difference in fit chi-square statistic 
is then 253.145 − 253.132 = 0.013. Given a chi-square critical value (α = .05, df = 1) of 
3.84, the improvement in fit due to adding the interaction term to a model that assumes 
no interaction is present is not statistically significant. Thus, we conclude that there is 
no interaction between the treatment and motivation.

11.10  MCFADDEN’S PSEUDO R -SQUARE FOR STRENGTH OF 
ASSOCIATION

Just as with traditional regression analysis, you may wish to complement tests of asso-
ciation between a set of variables and an outcome with an explained variance measure 
of association. However, in logistic regression, the variance of the observed outcome 
scores depends on the predicted probability of Y = 1. Specifically, this variance is 
equal to pi(1 − pi), where pi is the probability of Y = 1 that is obtained from the logistic 
regression model. As such, the error variance of the outcome is not constant across the 
range of predicted values, as is often assumed in traditional regression or analysis of 
variance. When the error variance is constant across the range of predicted values, it 
makes sense to consider the part of the outcome variance that is explained by the model 
and the part that is error (or unexplained), which would then apply across the range of 
predicted outcomes (due to the assumed constant variance). Due to variance heteroge-
neity, this notion of explained variance does not apply to logistic regression. Further, 
while there are those who do not support use of proportion of variance explained meas-
ures in logistic regression, such pseudo R-square measures may be useful in summa-
rizing the strength of association between a set of variables and the outcome. While 
many different pseudo R-square measures have been developed, and there is certainly 
no consensus on which is preferred, we follow Menard’s (2010) recommendation and 
illustrate use of McFadden’s pseudo R-square.



449Chapter 11       

McFadden’s (1974) pseudo R-square, denoted RL
2 ,  is based on the improvement in 

model fit as predictors are added to a model. An expression that can be used for RL
2  is

R
LLL

baseline

2
2

2
=

-
χ ,  (11)

where the numerator is the χ2 test for the difference in fit between a reduced and full 
model and the denominator is the measure of fit for the model that contains only the 
intercept, or the baseline model with no predictors. The numerator then reflects the 
amount that the model fit, as measured by the difference in the quantity −2LL for a 
reduced model and its full model counterpart, is reduced by or improved due to a set of 
predictors, analogous to the amount of variation reduced by a set of predictors in tra-
ditional regression. When this amount (i.e., χ2) is divided by −2LLbaseline, the resulting 
proportion can be interpreted as the proportional reduction in the lack of fit associated 
with the baseline model due to the inclusion of the predictors, or the proportional 
improvement in model fit, analogous to R2 in traditional regression. In addition to the 
close correspondence to R2, RL

2  also has lower and upper bounds of 0 and 1, which is 
not shared by other pseudo R2 measures. Further, RL

2  can be used when the dependent 
variable has more than two categories (i.e., for multinomial logistic regression).

We first illustrate use of RL
2  to assess the contribution of treatment and motivation in 

predicting health status. Recall that the fit of the model with no predictors, or −2LLbase-

line, is 272.117. After adding treatment and motivation, the fit is 253.145, which is a 
reduction or improvement in fit of 18.972 (which is the χ2 test statistic) and the numer-
ator of Equation 11. Thus, RL

2  is 18.972/272.117 or .07, indicating a 7% improvement 
in model fit due to treatment and motivation. Note that RL

2  indicates the degree that 
fit improves when the predictors are added while the use of the χ2 test statistic is done 
to determine whether an improvement in fit is present or different from zero in the 
population.

The RL
2  statistic can also be used to assess the contribution of subsets of variables 

while controlling for other predictors. In section 11.9, we tested for the improvement 
in fit that is obtained by adding an interaction between treatment and motivation to 
a model that assumed this interaction was not present. Relative to the main effects 
model, the amount that the model fit improved after including the interaction is 0.013 
and the proportional improvement in model fit due to adding the interaction to the 
model, or the strength of association between the interaction and outcome, is then 
0.013 / 272.117, which is near zero.

McFadden (1979) cautioned that values for RL
2  are typically smaller than R-square 

values observed in standard regression analysis. As a result, researchers cannot rely on 
values, for example, as given in Cohen (1988) to indicate weak, moderate, or strong 
associations. McFadden (1979) noted that for the entire model values of .2 to .4 rep-
resent a strong improvement in fit, but these values of course cannot reasonably be 
applied in every situation as they may represent a weak association in some contexts 
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and may be unobtainably high in others. Note also that, at present, neither SAS nor 
SPSS provides this measure of association for binary outcomes.

11.11  SIGNIFICANCE TESTS AND CONFIDENCE INTERVALS FOR 
SINGLE VARIABLES

When you are interested in testing the association between an individual predictor 
and outcome, controlling for other predictors, several options are available. Of those 
introduced here, the most powerful approach is the likelihood ratio test described in 
section 11.9. The reduced model would exclude the variable of interest, and the full 
model would include that variable. The main disadvantage of this approach is practi-
cal, in that multiple analyses would need to be done in order to test each predictor. In 
this example, with a limited number of predictors, the likelihood ratio test would be 
easy to implement.

A more convenient and commonly used approach to test the effects of individual pre-
dictors is to use a z test, which provides results equivalent to the Wald test that is often 
reported by software programs. The z test of the null hypothesis that a given regression 
coefficient is zero (i.e., βj = 0) is

z
S

j

j
=

β

β
,  (12)

where Sβj is the standard error for the regression coefficient. To test for significance, 
you compare this test statistic to a critical value from the standard normal distribution. 
So, if alpha were .05, the corresponding critical value for a two-tailed test would be 
±1.96. The Wald test, which is the square of the z test, follows a chi-square distribu-
tion with 1 degree of freedom. The main disadvantage associated with this procedure 
is that when βj becomes large, the standard error of Equation 12 becomes inflated, 
which makes this test less powerful than the likelihood ratio test (Hauck & Donner, 
1977).

A third option to test the effect of a predictor is to obtain a confidence interval for the 
odds ratio. A general expression for the confidence interval for the odds ratio, denoted 
CI(OR), is given by

CI(OR) = ± ( )( )( )e c z a cSjβ β ,  (13)

where c is the increment of interest in the predictor (relevant only for a continuous 
variable) and z(a) represents the z value from the standard normal distribution for the 
associated confidence level of interest (often 95%). If a value of 1 is not contained in 
the interval, then the null hypothesis of no effect is rejected. In addition, the use of 
confidence intervals allows for a specific statement about the population value of the 
odds ratio, which may be of interest.
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11.11.1 Impact of the Treatment

We illustrate the use of these procedures to assess the impact of the treatment on health. 
When Equation 9 is estimated, the coefficient reflecting the impact of the treatment, 
β1, is 1.014 (SE = .302). The z test for the null hypothesis that β1 = 0 is then 1.014 / 
.302 = 3.36 (p = .001), indicating that the treatment effect is statistically significant. 
The odds ratio of about 3 (e1 014 = 2.76) means that the odds of good health for adults 
in the educator group are about 3 times the odds of those in the control group, con-
trolling for motivation. The 95% confidence interval is computed as e(1 014 ± 1 96 × 302) and 
is 1.53 to 4.98. The interval suggests that the odds of being diabetes free for those in 
the educator group may be as small as 1.5 times and as large as about 5 times the odds 
of those in the control group.

11.12 PRELIMINARY ANALYSIS

In the next few sections, measures of residuals and influence are presented along with 
the statistical assumptions associated with logistic regression. In addition, other prob-
lems that may arise with data for logistic regression are discussed. Note that formulas 
presented for the following residuals assume that continuous predictors are used in 
the logistic regression model. When categorical predictors only are used, where many 
cases are present for each possible combination of the levels of these variables (some-
times referred to as aggregate data), different formulas are used to calculate residuals 
(see Menard, 2010). We present formulas here for individual (and not aggregate) data 
because this situation is more common in social science research. As throughout the 
text, the goal of preliminary analysis is to help ensure that the results obtained by the 
primary analysis are valid.

11.13 RESIDUALS AND INFLUENCE

Observations that are not fit well by the model may be detected by the Pearson resid-
ual. The Pearson residual is given by

r
Y p
p pi

i i

i i

=
-

-( )
,

1
 (14)

where pi  is the probability (of Y = 1) as predicted by the logistic regression equation 
for a given individual i. The numerator is the difference (i.e., the raw residual) between 
an observed Y score and the probability predicted by the equation, and the denominator 
is the standard deviation of the Y scores according to the binomial distribution. In large 
samples, this residual may approximate a normal distribution with a mean of 0 and a 
standard deviation of 1. Thus, a case with a residual value that is quite distinct from 
the others and that has a value of ri greater than 2 5.  or 3 0.  suggest a case that is not 
fit well by the model. It would be important to check any such cases to see if data are 

^

^ ^

^
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entered correctly and, if so, to learn more about the kind of cases that are not fit well 
by the model.

An alternative or supplemental index for outliers is the deviance residual. The deviance 
residual reflects the contribution an individual observation makes to the model devi-
ance, with larger absolute values reflecting more poorly fit observations. This residual 
may be computed for a given case by calculating the log likelihood in Equation 8 (the 
expression to the right of the summation symbol), multiplying this value by −2, and 
then taking the square root of this value. The sign of this residual (i.e., positive or neg-
ative) is determined by whether the numerator in Equation 14 is positive or negative. 
Some have expressed preference for use of the deviance residual over the Pearson 
residual because the Pearson residual is relatively unstable when the predicted probably 
of Y = 1 is close to 0 or 1. However, Menard (2010) notes an advantage of the Pearson 
residual is that it has larger values and so outlying cases are more greatly emphasized 
with this residual. As such, we limit our discussion here to the Pearson residual.

In addition to identifying outlying cases, a related concern is to determine if any cases 
are influential or unduly impact key analysis results. There are several measures of 
influence that are analogous to those used in traditional regression, including, for 
example, leverage, a Cook’s influence measure, and delta beta. Here, we focus on delta 
beta because it is directed at the influence a given observation has on the impact of a 
specific explanatory variable, which is often of interest and is here in this example with 
the impact of the intervention being a primary concern. As with traditional regression, 
delta beta indicates the change in a given logistic regression coefficient if a case were 
deleted. Note that the sign of the index (+ or −) refers to whether the slope increases 
or decreases when the case is included in the data set. Thus, the sign of the delta beta 
needs to be reversed if you wish to interpret the index as the impact of specific case on 
a given regression coefficient when the case is deleted. For SAS users, note that raw 
delta beta values are not provided by the program. Instead, SAS provides standardized 
delta beta values, obtained by dividing a delta beta value by its standard error. There is 
some agreement that standardized values larger than a magnitude of 1 may exert influ-
ence on analysis. To be on the safe side, though, you can examine further any cases 
having outlying values that are less than this magnitude.

We now illustrate examining residuals and delta beta values to identify unusual and 
influential cases with the chapter data. We estimated Equation 9 and found no cases 
had a Pearson residual value greater than 2 in magnitude. We then inspected histo-
grams of the delta betas for β1 and β2. Two outlying delta beta values appear to be 
present for motivation (β2), the histogram for which is shown in Figure 11.3. The value 
of delta beta for each of these cases is about −.004. Given the negative value, the value 
for β2 will increase if these cases were removed from the analysis. We can assess the 
impact of both of these cases on analysis results by temporarily removing the obser-
vations and reestimating Equation 9. With all 200 cases, the value for β2 is 0.040 and 
e( 04) = 1.041, and with the two cases removed β2 is 0.048 and e( 048) = 1.049. The change, 
then, obtained by removing these two cases seems small both for the coefficient and 
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the odds ratio. We also note that with the removal of these two cases, all of the con-
clusions associated with the statistical tests are unchanged. Thus, these two discrepant 
cases are not judged to exert excessive influence on key study results.

11.14 ASSUMPTIONS

Three formal assumptions are associated with logistic regression. First, the logistic 
regression model is assumed to be correctly specified. Second, cases are assumed to 
be independent. Third, each explanatory variable is assumed to be measured without 
error. You can also consider there to be a fourth assumption for logistic regression. 
That is, the statistical inference procedures discussed earlier (based on asymptotic the-
ory) assume that a large sample size is used. These assumptions are described in more 
detail later. Note that while many of these assumptions are analogous to those used in 
traditional regression, logistic regression does not assume that the residuals follow a 
normal distribution or that the residuals have constant variance across the range of pre-
dicted values. Also, other practical data-related issues are discussed in section 11.15.

11.14.1 Correct Specification

Correct specification is a critical assumption. For logistic regression, correct specifi-
cation means that (1) the correct link function (e.g., the logistic link function) is used, 

 Figure 11.3: Histogram of delta beta values for coefficient β2.
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and (2) that the model includes explanatory variables that are nontrivially related to the 
outcome and excludes irrelevant predictors. For the link function, there appears to be 
consensus that choice of link function (e.g., use of a logistic vs. probit link function) 
has no real consequence on analysis results. Also, including predictors in the model 
that are trivially related to the outcome (i.e., irrelevant predictors) is known to increase 
the standard errors of the coefficients (thus reducing statistical power) but does not 
result in biased regression coefficient estimates. On the other hand, excluding impor-
tant determinants introduces bias into the estimation of the regression coefficients and 
their standard errors, which can cast doubt on the validity of the results. You should 
rely on theory, previous empirical work, and common sense to identify important 
explanatory variables. If there is little direction to guide variable selection, you could 
use exploratory methods as used in traditional regression (i.e., the sequential methods 
discussed in section 3.8) to begin the theory development process. The conclusions 
drawn from the use of such methods are generally much more tentative than studies 
where a specific theory guides model specification.

The need to include important predictors in order to avoid biased estimates also extends 
to the inclusion of important nonlinear terms and interactions in the statistical model, 
similar to traditional regression. Although the probabilities of Y = 1 are nonlinearly 
related to explanatory variables in logistic regression, the log of the odds or the logit, 
given no transformation of the predictors, is assumed to be linearly related to the pre-
dictors, as in Equation 7. Of course, this functional form may not be correct.

The Box–Tidwell procedure can be used to test the linear aspect of this assumption. 
To implement this procedure, you create new variables in the data set, which are the 
natural logs of each continuous predictor. Then, you multiply this transformed varia-
ble by the original predictor, essentially creating a product variable that is the original 
continuous variable times its natural log. Any such product variables are then added 
to the logistic regression equation. If any are statistically significant, this suggests that 
the logit has a nonlinear association with the given continuous predictor. You could 
then search for an appropriate transformation of the continuous explanatory variable, 
as suggested in Menard (2010).

The Box–Tidwell procedure to test for nonlinearity in the logit is illustrated here with 
the chapter data. For these data, only one predictor, motivation, is continuous. Thus, 
we computed the natural log of the scores for this variable and multiplied them by 
motivation. This new product variable is named xlnx. When this predictor is added to 
those included in Equation 9, the p value associated with the coefficient of xlnx is .909, 
suggesting no violation of the linearity assumption. Section 11.18 provides the SAS 
and SPSS commands needed to implement this procedure as well as selected output.

In addition to linearity, the correct specification assumption also implies that important 
interactions have been included in the model. In principle, you could include all possible 
interaction terms in the model in an attempt to determine if important interaction terms 
have been omitted. However, as more explanatory variables appear in the model, the 
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number of interaction terms increases sharply with perhaps many of these interactions 
being essentially uninterpretable (e.g., four- and five-way interactions). As with tradi-
tional regression models, the best advice may be to include interactions as suggested by 
theory or that are of interest. For the chapter data, recall that in section 11.9 we tested the 
interaction between treatment and motivation and found no support for the interaction.

11.14.2 Hosmer–Lemeshow Goodness-of-Fit Test

In addition to these procedures, the Hosmer–Lemeshow (HL) test offers a global 
goodness-of-fit test that compares the estimated model to one that has perfect fit. Note 
that this test does not assess, as was the case with the likelihood ratio test in sec-
tion 11.9, whether model fit is improved when a set of predictors is added to a reduced 
model. Instead, the HL test assesses whether the fit of a given model deviates from 
the perfect fitting model, given all relevant explanatory variables are included. Alter-
natively, as Allison (2012) points out, the HL test can be interpreted as a test of the 
null hypothesis that no additional interaction or nonlinear terms are needed in the 
model. Note, however, that the HL test does not assess whether other predictors that 
are entirely excluded from the estimated model could improve model fit.

Before highlighting some limitations associated with the procedure, we discuss how it 
works. The procedure compares the observed frequencies of Y = 1 to the frequencies 
predicted by the logistic regression equation. To obtain these values, the sample is 
divided, by convention, into 10 groups referred to as the deciles of risk. Each group is 
formed based on the probabilities of Y = 1, with individuals in the first group consisting 
of those cases that have the lowest predicted probabilities, those in the second group 
are cases that have next lowest predicted probabilities, and so on. The predicted, or 
expected, frequencies are then obtained by summing these probabilities over the cases 
in each of the 10 groups. The observed frequencies are obtained by summing the num-
ber of cases actually having Y = 1 in each of the 10 groups.

The probabilities obtained from estimating Equation 9 are now used to illustrate this 
procedure. Table 11.3 shows the observed and expected frequencies for each of the 
10 deciles. When the probabilities of Y = 1 are summed for the 20 cases in group 1, 
this sum or expected frequency is 3.995. Note that under the Observed column of 
Table 11.3, 4 of these 20 cases actually exhibited good health. For this first decile, 
then, there is a very small difference between the observed and expected frequen-
cies, suggesting that the probabilities produced by the logistic regression equation, for 
this group, approximate reality quite well. Note that Hosmer and Lemeshow (2013) 

suggest computing the quantity Observed Expected
Expected

-  for a given decile with values 

larger than 2 in magnitude indicating a problem in fit for a particular decile. The largest 
such value here is 0.92 for decile 2, i.e., 7 4 958 4 958 0 92-( ) =. . . .  This suggests that 
there are small differences between the observed and expected frequencies, supporting 
the goodness-of-fit of the estimated model.
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In addition to this information, this procedure offers an overall goodness-of-fit sta-
tistical test for the differences between the observed and expected frequencies. The 
null hypothesis is that these differences reflect sampling error, or that the model has 
perfect fit. A decision to retain the null hypothesis (i.e., p > a) supports the adequacy 
of the model, whereas a reject decision signals that the model is misspecified (i.e., 
has omitted nonlinear and/or interaction terms). The HL test statistic approximates a 
chi-square distribution with degrees of freedom equal to the number of groups formed 
(10, here) − 2. Here, we simply report that the χ2 test value is 6.88 (df = 8), and the 
corresponding p value is .55. As such, the goodness-of-fit of the model is supported 
(suggesting that adding nonlinear and interaction terms to the model will not improve 
its fit).

There are some limitations associated with the Hosmer–Lemeshow goodness-of-fit 
test. Allison (2012) and Menard (2010) note that this test may be underpowered and 
tends to return a result of correct fit of the model, especially when fewer than six 
groups are formed and when sample size is not large (i.e., less than 500). Further, 
Allison (2012) notes that even when more than six groups are formed, test results 
are sensitive to the number of groups formed in the procedure. He further discusses 
erratic behavior with the performance of the test, for example, that including a sta-
tistically significant interaction in the model can produce HL test results that indicate 
worse model fit (the opposite of what is intended). Research continues on ways to 
improve the HL test (Prabasaj, Pennell, & Lemeshow, 2012). In the meantime, a sen-
sible approach may be to examine the observed and expected frequencies produced 
by this procedure to identify possible areas of misfit (as suggested by Hosmer & 
Lemeshow, 2013) use the Box–Tidwell procedure to assess the assumption of line-
arity, and include interactions in the model that are based on theory or those that are 
of interest.

 Table 11.3: Deciles of Risk Table Associated With the Hosmer–Lemeshow 
Goodness-of-Fit Test

Number of groups

Health = 1

Number of casesObserved Expected

1 4 3.995 20
2 7 4.958 20
3 6 5.680 20
4 3 6.606 20
5 9 7.866 20
6 8 8.848 20
7 10 9.739 20
8 9 10.777 20
9 15 12.156 20

10 13 13.375 20
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11.14.3 Independence

Another important assumption is that the observations are obtained from independ-
ent cases. Dependency in observations may arise from repeatedly measuring the 
outcome and in study designs where observations are clustered in settings (e.g., stu-
dents in schools) or cases are paired or matched on some variable(s), as in a matched 
case-control study. Note that when this assumption is violated and standard analy-
sis is used, type I error rates associated with tests of the regression coefficients may 
be inflated. In addition, dependence can introduce other problems, such as over- and 
underdispersion (i.e., where the assumed binomial variance of the outcome does not 
hold for the data). Extensions of the standard logistic regression procedure have been 
developed for these situations. Interested readers may consult texts by Allison (2012), 
Hosmer and Lemeshow (2013), or Menard (2010), that cover these and other exten-
sions of the standard logistic regression model.

11.14.4 No Measurement Error for the Predictors

As with traditional regression, the predictors are assumed to be measured with perfect 
reliability. Increasing degrees of violation of this assumption lead to greater bias in the 
estimates of the logistic regression coefficients and their standard errors. Good advice 
here obviously is to select measures of constructs that are known to have the great-
est reliability. Options you may consider when reliability is lower than desired is to 
exclude such explanatory variables from the model, when it makes sense to do that, or 
use structural equation modeling to obtain parameter estimates that take measurement 
error into account.

11.14.5 Sufficiently Large Sample Size

Also, as mentioned, use of inferential procedures in logistic regression assume large 
sample sizes are being used. How large a sample size needs to be for these properties 
to hold for a given model is unknown. Long (1997) reluctantly offers some advice 
and suggests that samples smaller than 100 are likely problematic, but that samples 
larger than 500 should mostly be adequate. He also advises that there be at least 10 
observations per predictor. Note also that the sample sizes mentioned here do not, 
of course, guarantee sufficient statistical power. The software program NCSS PASS 
(Hintze, 2002) may be useful to help you obtain an estimate of the sample size needed 
to achieve reasonable power, although it requires you to make a priori selections about 
certain summary measures, which may require a good deal of speculation.

11.15 OTHER DATA ISSUES

There are other issues associated with the data that may present problems for logis-
tic regression analysis. First, as with traditional regression analysis, excessive multi-
collinearity may be present. If so, standard errors of regression coefficients may be 
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inflated or the estimation process may not converge. Section 3.7 presented methods to 
detect multicollinearity and suggested possible remedies, which also apply to logistic 
regression.

Another issue that may arise in logistic regression is known as perfect or complete 
separation. Such separation occurs when the outcome is perfectly predicted by an 
explanatory variable. For example, for the chapter data, if all adults in the educator 
group exhibited good health status (Y = 1) and all in the control group did not (Y = 0), 
perfect separation would be present. A similar problem is known as quasi-complete or 
nearly complete separation. In this case, the separation is nearly complete (e.g., Y = 1 
for nearly all cases in a given group and Y = 0 for nearly all cases in another group). 
If complete or quasi-complete separation is present, maximum likelihood estimation 
may not converge or, if it does, the estimated coefficient for the explanatory varia-
ble associated with the separation and its standard error may be extremely large. In 
practice, these separation issues may be due to having nearly as many variables in the 
analysis as there are cases. Remedies here include increasing sample size or removing 
predictors from the model.

A related issue and another possible cause of quasi-complete separation is known as 
zero cell count. This situation occurs when a level of a categorical variable has only 
one outcome score (i.e., Y = 1 or Y = 0). Zero cell count can be detected during the ini-
tial data screening. There are several options for dealing with zero cell count. Potential 
remedies include collapsing the levels of the categorical variable to eliminate the zero 
count problem, dropping the categorical variable entirely from the analysis, or drop-
ping cases associated with the level of the “offending” categorical variable. You may 
also decide to retain the categorical variable as is, as other parameters in the model 
should not be affected, other than those involving the contrasts among the levels of the 
categorical variable with that specific level. Allison (2012) also discusses alternative 
estimation options that may be useful.

11.16 CLASSIFICATION

Often in logistic regression, as in the earlier example, investigators are interested in 
quantifying the degree to which an explanatory variable, or a set of such variables, 
is related to the probability of some event, that is, the probability of Y = 1. Given 
that the residual term in logistic regression is defined as difference between observed 
group membership and the predicted probability of Y = 1, a common analysis goal 
is to determine if this error is reduced after including one or more predictors in the 
model. McFadden’s RL

2  is an effect size measure that reflects improved prediction 
(i.e., smaller error term), and the likelihood ratio test is used to assess if this improve-
ment is due to sampling error or reflects real improvement in the population. Menard 
(2010) labels this type of prediction as quantitative prediction, reflecting the degree to 
which the predicted probabilities of Y = 1 more closely approximate observed group 
membership after predictors are included.
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In addition to the goal of assessing the improvement in quantitative prediction, inves-
tigators may be interested or primarily interested in using logistic regression results 
to classify participants into groups. Using the outcome from this chapter, you may be 
interested in classifying adults as having a diabetes-free diagnosis or of being at risk 
of being diagnosed with type 2 diabetes. Accurately classifying adults as being at risk 
of developing type 2 diabetes may be helpful because adults can then change their 
lifestyle to prevent its onset. In assessing how well the results of logistic regression can 
effectively classify individuals, a key measure used is the number of errors made by 
the classification. That is, for cases that are predicted to be of good health, how many 
actually are and how many errors are there? Similarly, for those cases predicted to be 
of poor health, how many actually are?

When results from a logistic regression equation are used for classification purposes, 
the interest turns to minimizing the number of classification errors. In this context, the 
interest is to find out if a set of variables reduces the number of classification errors, or 
improves qualitative prediction (Menard, 2010). When classification is a study goal, a 
new set of statistics then is needed to describe the reduction in the number of classifi-
cation errors. This section presents statistics that can be used to address the accuracy 
of classifications made by use of a logistic regression equation.

11.16.1 Percent Correctly Classified

A measure that is often used to assess the accuracy of prediction is the percent of cases 
correctly classified by the model. To classify cases into one of two groups, the probabil-
ities of Y = 1 are obtained from a logistic regression equation. With these probabilities, 
you can classify a given individual after selecting a cut point. A cut point is a probability 
of Y = 1 that you select, with a commonly used value being .50, at or above which results 
in a case being classified into one of two groups (e.g., success) and below which results 
in a case being classified into the other group (e.g., failure). Of course to assess the accu-
racy of classification in this way, the outcome data must already be collected. Given that 
actual group membership is already known, it is a simple matter to count the number of 
cases correctly and incorrectly classified. The percent of cases classified correctly can be 
readily determined, with of course higher values reflecting greater accuracy. Note that if 
the logistic regression equation is judged to be useful in classifying cases, the equation 
could then be applied to future samples without having the outcome data collected for 
these samples. Cross-validation of the results with an independent sample would pro-
vide additional support for using the classification procedure in this way.

We use the chapter data to obtain the percent of cases correctly classified by the full 
model. Table 11.4 uses probabilities obtained from estimating Equation 9 to classify 
cases into one of two groups: (1) of good health, a classification made when the prob-
ability of being of good health is estimated by the equation to be 0.5 or greater; or (2) 
of poor health, a classification made when this probability is estimated at values less 
than 0.5. In the Total column, Table 11.4 shows that the number of observed cases that 
did not exhibit good health was 116, whereas 84 cases exhibited good health. Of the 
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116 adults diagnosed with type 2 diabetes, 92 were predicted to have this diagnosis. Of 
those who were of good health, 37 were predicted to be diabetes free by the equation 
(i.e., the probability of Y = 1 was greater than .5 for these 37 cases). The total number of 
cases correctly classified is then 92 + 37 = 129. The percent of cases correctly classified 
is then the number of cases correctly classified over the sample size times 100. As such, 
(129 / 200) × 100 = 64.5% of the cases are correctly classified by the equation. Note 
that SAS provides a value, not shown here, for the percent of cases correctly classified 
that is adjusted for bias due to using information from a given case to also classify it.

11.16.2 Proportion Reduction in Classification Errors

While the percent correctly classified is a useful summary statistic, you cannot determine 
from this statistic alone the degree to which the predictor variables are responsible for 
this success rate. When the improvement in quantitative prediction was assessed, we 
examined −2LL, a measure of lack of fit obtained from the baseline model, and found 
the amount this quantity was reduced (or fit improved) after predictors were added to the 
model. We then computed the ratio of these 2 values (i.e., RL

2 )  to describe the propor-
tional improvement in fit. A similar notion can be applied to classification errors to obtain 
the degree to which more accurate classifications are due to the predictors in the model.

To assess the improvement in classification due to the set of predictors, we compare 
the amount of classification errors made with no predictors in the model (i.e., the null 
model) and determine the amount of classification errors made after including the pre-
dictors. This amount is then divided by the number of classification errors made by the 
null model. Thus, an equation that can be used to determine the proportional reduction 
in classification errors is

Proportional error reduction =
-PErrors PErrors

PError
null full

ssnull
,  (15)

where PErrorsnull and PErrorsfull are the proportions of classification errors for the null 
and full models, respectively. For the null model, the proportion of classification errors 
can be computed as the proportion of the sample that is in the smaller of the two out-
come categories (i.e., Y = 0 or 1). The error rate may be calculated this way because the 
probability of Y = 1 that is used to classify all cases in the null model (where this prob-
ability is a constant) is simply the proportion of cases in the larger outcome category, 
leaving the classification error rate for the null model to be 1 minus this probability. 

 Table 11.4: Classification Results for the Chapter Data

Predicted

Total Percent correctObserved Unhealthy Healthy

Unhealthy 92 24 116 79.3
Healthy 47 37 84 44.0
Total 64.5
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For the full model, the proportion of cases classified incorrectly is 1 minus the propor-
tion of cases correctly classified.

We illustrate the calculation and interpretation of Equation 15 with the chapter data. 
Since there are 116 cases in the unhealthy group and 84 cases in the healthy group, 
the proportion of classification errors in the null model is 84 / 200 = .42. As can be 
obtained from Table 11.4, the proportion of cases incorrectly classified by use of the 
full model is (24 + 47) / 200 = .355.

Therefore, the proportional reduction in the number of classification errors that is due 
to the inclusion of the predictors in the full model is

(.42 − .355) / .42 = .155.

Inclusion of the predictors, then, results in a 16% reduction in the number of classifi-
cation errors compared to the null model.

In addition to this descriptive statistic on the improvement in prediction, Menard 
(2010) notes that you can test whether the degree of prediction improvement is differ-
ent from zero in the population. The binomial statistic d can be used for this purpose 
and is computed as

d
PErrors PErrors

PErrors PErrors N
null full

null null

=
-

-( ) /
.

1
 (16)

In large samples, this statistic approximates a normal distribution. Further, if you are 
interested in testing if classification accuracy improves due to the inclusion of pre-
dictors (instead of changes, as the proportional reduction in error may be negative), a 
one-tailed test is used.

Illustrating the use of the binomial d statistic with the chapter data,

d =
-

-
=
=

. .
. ( . ) /

. / .
. .

42 355
42 1 42 200

065 035
1 86

For a one-tailed test at .05 alpha, the critical value from the standard normal distribu-
tion is 1.65. Since 1.86 > 1.65, a reduction in the number of classification errors due to 
the predictors in the full model is present in the population.

11.17  USING SAS AND SPSS FOR MULTIPLE LOGISTIC 
REGRESSION

Table 11.5 shows SAS and SPSS commands that can be used to estimate Equation 9 
and obtain other useful statistics. Since SAS and SPSS provide similar output, we 
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show only SPSS output in Table 11.6. Although not shown in the output, the com-
mands in Table 11.5 also produce logistic regression classification tables as well as a 
table showing the deciles of risk used in the Hosmer–Lemeshow procedure.

Table 11.5 shows selected output from SPSS. With SPSS, results are provided in 
blocks. Block 0, not shown, provides results for a model with the outcome and inter-
cept only. In Block 1, the results are provided for the full model having the predictors 
treatment and motivation. The first output in Table 11.5 provides the chi-square test 
for the improvement in fit due to the variables added in Block 1 (i.e., 18.972), which 
is an omnibus test of two predictors. The Model Summary output provides the overall 

 Table 11.5: SAS and SPSS Control Lines for Multiple Logistic Regression

SAS

(1) PROC LOGISTIC DATA = Dataset;
(2) MODEL health (EVENT = ’1’) = treat motiv 
     /LACKFIT CL CTABLE PPROB = .5 IPLOTS;
(3)  OUTPUT OUT = Results PREDICTED = Prob DFBETAS = _All_ 

RESCHI = Pearson;
      RUN;

SPSS

(4) LOGISTIC REGRESSION VARIABLES health
(5) /METHOD=ENTER treat motiv
(6) /SAVE=PRED DFBETA ZRESID
(7) /CASEWISE OUTLIER(2)
(8) /PRINT=GOODFIT CI(95)
(9) /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

(1) Invokes the logistic regression procedure and indicates the name of the data set to be analyzed, which has 
been previously read into SAS.
(2) Indicates that health is the outcome and that the value coded 1 for this outcome (here, good health) is 
the event being modeled. The predictors appear after the equals sign. After the slash, LACKFIT requests 
the Hosmer-Lemeshow test, CL requests confidence limits for the odds ratios, CTABLE and PPROB = .5 
produces a classification table using a cut value of .5, and IPLOTS is used to request plots of various 
diagnostics.
(3) OUTPUT OUT saves the following requested diagnostics in a data set called Results.  PREDICTED 
requests the probabilities of Y = 1 and names the corresponding column prob. DFBETAS requests the 
delta betas for all coefficients and uses a default naming convention, and RESCHI requests the standardized 
residuals and names the associated column Pearson.
(4) Invokes the logistic regression procedure and specifies that the outcome is health.
(5) Adds predictors treat and motiv.
(6) Saves to the active data set the predicted probabilities of Y = 1, delta betas, and standardized residuals 
from the full model.
(7) Requests information on cases having standardized residuals larger than 2 in magnitude.
(8) Requests output for the Hosmer-Lemeshow goodness-of-fit test and confidence intervals.
(9) Lists the default criteria; relevant here are the number of iterations and the cut value used for the classifi-
cation table.   
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model fit (−2LL) along with other pseudo R-square statistics. The Variables in the 
Equation section provides the point estimate, the standard error, test statistic informa-
tion, odds ratio, and the 95% confidence interval for the odds ratio for the predictors. 
Note that the odds ratios are given in the column Exp(B). Test statistic information for 
the HL test is provided at the bottom of Table 11.6.         

11.18  USING SAS AND SPSS TO IMPLEMENT THE BOX–TIDWELL 
PROCEDURE

Section 11.14.1 presented the Box–Tidwell procedure to assess the specification of 
the model, particularly to identify if nonlinear terms are needed to improve the fit of 

 Table 11.6: Selected Output From SPSS

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step 18.972 2 .000
Block 18.972 2 .000
Model 18.972 2 .000

Model Summary

Step –2 Log likelihood Cox & Snell R Square Nagelkerke R Square

1 253.145a .090 .122
a Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)

Lower Upper

Step 1a Treat 1.014 .302 11.262 1 .001 2.756 1.525 4.983
Motiv .040 .015 6.780 1 .009 1.041 1.010 1.073
Constant -2.855 .812 12.348 1 .000 .058

a Variable(s) entered on step 1: Treat, Motiv.

Hosmer and Lemeshow Test

Step Chi-square Df Sig.

1 6.876 8 .550
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the model. Table 11.7 provides SAS and SPSS commands that can be used to imple-
ment this procedure using the chapter data set. Further, selected output is provided and 
shows support for the linear form of Equation 9 as the coefficient associated with the 
product term xlnx is not statistically significant (i.e., p = .909).

Now that we have presented the analysis of the chapter data, we present an example 
results section that summarizes analysis results in a form similar to that needed for 
a journal article. We close the chapter by presenting a summary of the key analysis 
procedures that is intended to help guide you through important data analysis activities 
for binary logistic regression.

 Table 11.7: SAS and SPSS Commands for Implementing the Box-Tidwell Procedure 
and Selected Output

SAS SPSS

Commands

(1) xlnx = motiv*LOG(motiv);
(2)  PROC LOGISTIC DATA = Data-

set; MODEL health 
(EVENT = ’1’) = treat 
motiv xlnx;
RUN;

(1)  COMPUTE 
xlnx=motiv*LN(motiv).

(2)  LOGISTIC REGRESSION VARIA-
BLES health
/METHOD=ENTER treat motiv 
xlnx
/CRITERIA=PIN(0.05) 
POUT(0.10) ITERATE(20) 
CUT(0.5).

Selected SAS Output

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard 
Error

Wald 
Chi-Square

Pr > ChiSq

Intercept 1 -2.1018 6.6609 0.0996 0.7523
treat 1 1.0136 0.3022 11.2520 0.0008
motiv 1 -0.0357 0.6671 0.0029 0.9574
xlnx 1 0.0155 0.1360 0.0130 0.9093

Selected SPSS Output

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a Treat 1.014 .302 11.252 1 .001 2.755
Motiv -.036 .667 .003 1 .957 .965
xlnx .015 .136 .013 1 .909 1.016
Constant -2.102 6.661 .100 1 .752 .122

a Variable(s) entered on step 1: Treat, Motiv, xlnx.
(1) Creates a variable named xlnx that is the product of the variable motivation and its natural log.
(2) Estimates Equation 9 but also includes this new product variable.
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11.19  EXAMPLE RESULTS SECTION FOR LOGISTIC REGRESSION 
WITH DIABETES PREVENTION STUDY

A binary logistic regression analysis was conducted to determine the impact of an 
intervention where adults who have been diagnosed with prediabetes were ran-
domly assigned to receive a treatment as usual (control condition) or this same 
treatment but also including the services of a diabetes educator (educator condi-
tion). The outcome was health status 3 months after the intervention began with a 
value of 1 indicating healthy status (no type 2 diabetes diagnosis) and 0 indicating 
poor health status (type 2 diabetes diagnosis). The analysis also includes a meas-
ure of perceived motivation collected from patients shortly after diagnosis indicat-
ing the degree to which they are willing to change their lifestyle to improve their 
health. Of the 200 adults participating in the study, 100 were randomly assigned to 
each treatment.

Table 1 shows descriptive statistics for each treatment condition as well as statistical 
test results for between-treatment differences. The two groups had similar mean moti-
vation, but a larger proportion of those in the educator group had a diabetes-free diag-
nosis at posttest. Inspection of the data did not suggest any specific concerns, as there 
were no missing data, no outliers for the observed variables, and no multicollinearity 
among the predictors.

For the final fitted logistic regression model, we examined model residuals and delta 
beta values to determine if potential outlying observations influenced analysis results, 
and we also assessed the degree to which statistical assumptions were violated. No cases 
had outlying residual values, but two cases had delta beta values that were somewhat 
discrepant from the rest of the sample. However, a sensitivity analysis showed that 
these observations did not materially change study conclusions. In addition, use of the 
Hosmer–Lemeshow procedure did not suggest any problems with the functional form of 
the model, as there were small differences between the observed and expected frequen-
cies for each of the 10 deciles formed in the procedure. Further, use of the Box–Tidwell 
procedure did not suggest there was a nonlinear association between motivation and the 
natural log of the odds for health ( p = .909) and a test of the interaction between the 
treatment and motivation was not significant ( p = .68). As adults received the treatment 

 Table 1: Comparisons Between Treatments for Study Variables

Variable  Educator n = 100 Control n = 100 p Valuea

Motivation, mean 
(SD)

49.83 (9.98) 49.10 (9.78) 0.606

Dichotomous variable n (%) n (%)
Diabetes-free diag-
nosis

54 (54.0) 30 (30.0) 0.001

a P values from independent samples t test for motivation and Pearson chi-square test for the diagnosis.
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on a individual basis, we have no reason to believe that the independence assumption is 
violated.

Table 2 shows the results of the logistic regression model, where z-scores are used 
for motivation. The likelihood ratio test of the model was statistically significant 
(χ2 = 18.97, df = 2, p < .01). As Table 2 shows, the treatment effect and the association 
between motivation and health was statistically significant. The odds ratio for the treat-
ment effect indicates that for those in the educator group, the odds of being diabetes 
free at posttest are 2.76 times the odds of those in the control condition, controlling for 
motivation. For motivation, adults with greater motivation to improve their heath were 
more likely to have a diabetes-free diagnosis. Specifically, as motivation increases by 
1 standard deviation, the odds of a healthy diagnosis increase by a factor of 1.5, con-
trolling for treatment.

11.20 ANALYSIS SUMMARY

Logistic regression is a flexible statistical modeling technique with relatively few sta-
tistical assumptions that can be used when the outcome variable is dichotomous, with 
predictor variables allowed to be of any type (continuous, dichotomous, and/or cate-
gorical). Logistic regression can be used to test the impact of variables hypothesized 
to be related to the outcome and/or to classify individuals into one of two groups. The 
primary steps in a logistic regression analysis are summarized next.

I. Preliminary analysis
A. Conduct an initial screening of the data.

1) Purpose: Determine if summary measures seem reasonable and support 
the use of logistic regression. Also, identify the presence and pattern (if 
any) of missing data.

2) Procedure: Conduct univariate and bivariate data screening of study vari-
ables. Examine collinearity diagnostics to identify if extreme multicollin-
earity appears to be present.

 Table 2: Logistic Regression Estimates

Odds ratio

Variable  β(SE) Wald test Estimate 95% CI

Treatment 1.014 (.302) 11.262 2.756 [1.53, 4.98] 
Motivationa 0.397 (.153) 6.780 1.488 [1.10, 2.01]
Constant −0.862 (.222) 15.022 0.422

Note: CI = confidence interval.
a Z scores are used for motivation.
* p < .05.
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3) Decision/action: If inspection of the descriptive measures does not sug-
gest problems, continue with the analysis. Otherwise, take action needed 
to address such problems (e.g., conduct missing data analysis, check data 
entry scores for accuracy, consider data transformations). Consider alter-
native data analysis strategies if problems cannot be resolved.

B. Identify if there are any observations that are poorly fit by the model and/or 
influence analysis results.
1) Inspect Pearson residuals to identity observations poorly fit by the model.
2) Inspect delta beta and/or Cook’s distance values to determine if any ob-

servations may influence analysis results.
3) If needed, conduct sensitivity analysis to determine the impact of individ-

ual observations on study results.
C. Assess the statistical assumptions.

1) Use the Box–Tidwell procedure to check for nonlinear associations 
and consider if any interactions should be tested to assess the assump-
tion of correct model specification. Inspect deciles obtained from the 
Hosmer–Lemeshow procedure and consider using the HL goodness-of-fit 
test results if sample size is large (e.g., > 500).

2) Consider the research design and study circumstances to determine if the 
independence assumption is satisfied.

3) If any assumption is violated, seek an appropriate remedy as needed.

II. Primary analysis
A. Test the association between the entire set of explanatory variables and the 

outcome with the likelihood ratio test. If it is of interest, report the McFad-
den pseudo R-square to describe the strength of association for the entire 
model.

B. Describe the unique association of each explanatory variable on the outcome.
1) For continuous and dichotomous predictors, use the odds ratio and its sta-

tistical test (as well as associated confidence interval, if desired) to assess 
each association.

2) For variables involving 2 or more degrees of freedom (e.g., categorical 
variables and some interactions), test the presence of an association 
with the likelihood ratio test and, for any follow-up comparisons of 
interest, estimate and test odds ratios (and consider use of confidence 
intervals).

C. Consider reporting selected probabilities of Y = 1 obtained from the model to 
describe the association of a key variable or variables of interest.

D. If classification of cases is an important study goal, do the following:
1) Report the classification table as well as the percent of cases correctly 

classified given the cut value used.
2) Report the reduction in the proportion of classification errors due to the 

model and test whether this reduction is statistically significant.
3) If possible, obtain an independent sample and cross validate the classifi-

cation procedure.
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11.21 EXERCISES

1. Consider the following research example and answer the questions.

 a researcher has obtained data from a random sample of adults who have 
recently been diagnosed with coronary heart disease. the researchers are 
interested in whether such patients comply with their physician’s recommen-
dations about managing the disease (e.g., exercise, diet, take needed medica-
tions) or not. the dependent variable is coded as Y = 1 indicating compliance 
and Y = 0 indicating noncompliance.

 the predictor variables of interest are:

 X1  patient gender (1 = female; 0 = male)

 X2  motivation (continuously measured)

(a) Why would logistic regression likely be used to analyze the data?

(b) Use the following table to answer the questions.

Logistic Regression Results

Variable Coefficient p Value for the Wald test

X1 0.01 0.97
X2 0.2 0.03
Constant −5.0

 (c) Write the logistic regression equation.

(d) Compute and interpret the odds ratio for each of the variables in the table. 
For the motivation variable, compute the odds ratio for a 10-point increase 
in motivation.

2. the results shown here are based on an example that appears in tate (1998). 
researchers are interested in identifying if completion of a summer individ-
ualized remedial program for 160 eighth graders (coded 1 for completion, 0 
if not), which is the outcome, is related to several predictor variables. the 
predictor variables include student aptitude, an award for good behavior 
given by teachers during the school year (coded 1 if received, 0 if not), and 
age. Use these results to address the questions that appear at the end of the 
output.

 For the model with the intercept only: −2LL = 219.300

 For the model with predictors: −2LL = 160.278
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Variable (coefficient) β(SE)
Wald chi-square 
test p Value

Odds ratio

Estimate      95% CI

Aptitude (β1) .138(.028) 23.376 .000 1.148 [1.085, 
1.213] 

Award (β2) 3.062(.573) 28.583 .000 21.364 [6.954, 
65.639]

Age (β3) 1.307(.793) 2.717 .099 3.694 [.781, 
17.471]

Constant −22.457(8.931) 6.323 .012 .000

Logistic Regression Estimates

Predicted

Observed Dropped out Completed Total Percent correct

Dropped out 50 20 70 71.4
Completed 11 79 90 87.8
Total 80.6

Classification Results (With Cut Value of .05)

Case
Observed 
Outcome

Predicted 
Probability Residual Pearson

22 0 .951 −.951 −4.386
33 1 .873 −.873 −2.623
90 1 .128 .872 2.605

105 0 .966 −.966 −5.306

Cases Having Standardized Residuals > |2|

(a) report and interpret the test result for the overall null hypothesis.

(b) Compute and interpret the odds ratio for a 10-point increase in aptitude.

(c) interpret the odds ratio for the award variable.

(d) Determine the number of outliers that appear to be present.

(e) Describe how you would implement the Box–tidwell procedure with 
these data.

(f) assuming that classification is a study goal, list the percent of cases correct-
ly classified by the model, compute and interpret the proportional reduction 
in classification errors due to the model, and compute the binomial d test to 
determine if a reduction in classification errors is present in the population.
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Chapter 12

REPEATED-MEASURES 
ANALYSIS

12.1 INTRODUCTION

Recall that the two basic objectives in experimental design are the elimination of sys-
tematic bias and the reduction of error (within group or cell) variance. The main reason 
for within-group variability is individual differences among the subjects. Thus, even 
though the subjects receive the same treatment, their scores on the dependent variable 
can differ considerably because of differences on IQ, motivation, socioeconomic sta-
tus (SES), and so on. One statistical way of reducing error variance is through analysis 
of covariance, which was discussed in Chapter 8.

Another way of reducing error variance is through blocking on a variable such as IQ. 
Here, the subjects are first blocked into more homogeneous subgroups, and then ran-
domly assigned to treatments. For example, participants may be in blocks with only 
9-point IQ ranges: 91–100, 101–110, 111–120, 121–130, and 131–140. The subjects 
within each block may score similarly on the dependent variable, and the average 
scores for the subjects may differ substantially between blocks. But all of this vari-
ability between blocks is removed from the within-variability, yielding a much more 
sensitive (powerful) test.

In repeated-measures designs, blocking is carried to its extreme. That is, we are block-
ing on each subject. Thus, variability among the subjects due to individual differences is 
completely removed from the error term. This makes these designs much more powerful 
than completely randomized designs, where different subjects are randomly assigned to 
the different treatments. Given the emphasis in this text on power, one should seriously 
consider the use of repeated-measures designs where appropriate and practical. And 
there are many situations where such designs are appropriate. The simplest example of 
a repeated-measures design you may have encountered in a beginning statistics course 
involves the correlated or dependent samples t test. Here, the same participants are pre-
tested and posttested (measured repeatedly) on a dependent variable with an interven-
ing treatment. The subjects are used as their own controls. Another class of repeated 
measures situations occurs when we are comparing the same participants under several 
different treatments (drugs, stimulus displays of different complexity, etc.).
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Repeated measures is also the natural design to use when the concern is with perfor-
mance trends over time. For example, Bock (1975) presented an example comparing 
boys’ and girls’ performance on vocabulary over grades 8 through 11. Here we may be 
concerned with the mathematical form of the trend, that is, whether it is linear, quad-
ratic, cubic, and so on.

Another distinct advantage of repeated-measures designs, because the same subjects 
are being used repeatedly, is that far fewer subjects are required for the study. For 
example, if three treatments are involved in a completely randomized design, we may 
require 45 subjects (15 subjects per treatment). With a repeated-measures design we 
would need only 15 subjects. This can be a very important practical advantage in many 
cases, since numerous subjects are not easy to come by in areas such as counseling, 
school psychology, clinical psychology, and nursing.

In this chapter, consideration is given to repeated-measures designs of varying com-
plexity. We start with the simplest design: a single group of subjects measured under 
various treatments (conditions), or at different points in time. Schematically, it would 
look like this:

Treatments

1 2 3 . . . k
1
2

Subjects �
N

We then consider a similar design except that time, instead of treatment, is the with-
in-subjects factor. When time is the within-subjects factor, trend analysis may be of 
interest. With trend analysis, the investigator is interested in assessing the form or 
pattern of change across time. This pattern may linear or nonlinear.

We then consider a one-between and one-within design. Many texts use the terms 
between and within in referring to repeated measures factors. A between variable is 
simply a grouping or classification variable such as sex, age, or social class. A within 
variable is one on which the subjects have been measured repeatedly (such as time). 
Some authors even refer to a repeated-measure design as a within-subjects design (Kep-
pel & Wickens, 2004). An example of a one-between and one-within design would be 
as follows, where the same males and females are measured under all three treatments:

Treatments

1 2 3
Males
Females
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Another useful application of repeated measures occurs in combination with a one-way 
ANOVA design. In a one-way design involving treatments, participants are posttested 
to determine which treatment is best. If we are interested in the lasting or residual 
effects of treatments, then we need to measure the subjects at least a few more times. 
Huck, Cormier, and Bounds (1974) presented an example in which three teaching 
methods are compared, but in addition the subjects are again measured 6 weeks and 12 
weeks later to determine the residual effect of the methods on achievement. A repeat-
ed-measures analysis of such data could yield a quite different conclusion as to which 
method might be preferred. Suppose the pattern of means looked as follows:

POSTTEST SIX WEEKS 12 WEEKS

METHOD 1 66 64 63
METHOD 2 69 65 59
METHOD 3 62 56 52

Just looking at a one-way ANOVA on posttest scores (if significant) could lead one to 
conclude that method 2 is best. Examination of the pattern of achievement over time, 
however, shows that, for lasting effect, method 1 is to be preferred, because after 12 
weeks the achievement for method 1 is superior to method 2 (63 vs. 59). What we have 
here is an example of a method-by-time interaction.

In the previous example, teaching method is the between variable and time is the 
within, or repeated measures factor. You should be aware that other names are used 
to describe a one-between and one-within design, such as split plot, Lindquist Type I, 
and two-way ANOVA with repeated measures on one factor. Our computer example in 
this chapter involves weight loss after 2, 4, and 6 months for three treatment groups.

Next, we consider a one-between and two-within repeated-measures design, using the 
following example. Two groups of subjects are administered two types of drugs at each 
of three doses. The study aims to estimate the relative potency of the drugs in inhibit-
ing a response to a stimulus. Schematically, the design is as follows:

Drug 1 Drug 2

Dose 1 2 3 1 2 3
Gp 1
Gp 2

Each participant is measured six times, for each dose of each drug. The two within 
variables are dose and drug.

Then, we consider a two-between and a one-within design. The study we use here is the 
same as with the split plot design except that we add age as a second between-subjects 
factor. The study compares the relative efficacy of a behavior modification approach to 
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dieting versus a behavior modification approach + exercise on weight loss for a group 
of overweight women across three time points. The design is:

GROUP AGE WGTLOSS1 WGTLOSS2 WGTLOSS3

CONTROL 20–30 YRS
CONTROL 30–40 YRS
BEH. MOD. 20–40 YRS
BEH. MOD. 30–40 YRS
BEH. MOD. + EXER. 20–30 YRS
BEH. MOD. + EXER. 30–40 YRS

This is a two between-factor design, because we are subdividing the subjects on the 
basis of both treatment and age; that is, we have two grouping variables.

For each of these designs we provide software commands for running both the uni-
variate and multivariate approaches to repeated-measures analysis on SAS and SPSS. 
We also interpret the primary results of interest, which focus on testing for group 
differences and change across time. To keep the chapter length manageable, though, 
we largely dispense with conducting preliminary analysis (e.g., searching for outliers, 
assessing statistical assumptions). Instead, we focus on the primary tests of interest for 
about 10 different repeated measures designs. We also discuss and illustrate post hoc 
testing for some of the designs.

Additionally, we consider profile analysis, in which two or more groups of subjects are 
compared on a battery of tests. The analysis determines whether the profiles for the 
groups are parallel. If the profiles are parallel, then the analysis will determine whether 
the profiles are coincident.

Although increased precision and economy of subjects are two distinct advantages of 
repeated-measures designs, such designs also have potentially serious disadvantages 
unless care is taken. When several treatments are involved, the order in which treat-
ments are administered might make a difference in the subjects’ performance. Thus, it 
is important to counterbalance the order of treatments.

For two treatments, this would involve randomly assigning half of the subjects to get 
treatment A first, and the other half to get treatment B first, which would look like this 
schematically:

Order of administration

1 2

A B
B A
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It is balanced because an equal number of subjects have received each treatment in 
each position.

For three treatments, counterbalancing involves randomly assigning one third of the 
subjects to each of the following sequences:

Order of administration of treatments

A B C
B C A
C A B

This is balanced because an equal number of subjects have received each treatment in 
each position. This type of design is called a Latin Square.

Also, it is important to allow sufficient time between treatments to minimize carryover 
effects, which certainly could occur if treatments, for example, were drugs. How much 
time is necessary is, of course, a substantive rather than a statistical question. A nice 
discussion of these two problems is found in Keppel and Wickens (2004) and Myers 
(1979).

12.2 SINGLE-GROUP REPEATED MEASURES

Suppose we wish to study the effect of four drugs on reaction time to a series of tasks. 
Sufficient time is allowed to minimize the effect that one drug may have on the sub-
ject’s response to the next drug. The following data is from Winer (1971):

Drugs

Ss 1 2 3 4 Means

1 30 28 16 34 27
2 14 18 10 22 16
3 24 20 18 30 23
4 38 34 20 44 34

5 26 28 14 30 24.5

M 26.4 25.6 15.6 32 24.9 (grand mean)
SD 8.8 6.5 3.8  8.0

We will analyze this set of data in three different ways: (1) as a completely randomized 
design (pretending there are different subjects for the different drugs), (2) as a univar-
iate repeated-measures analysis, and (3) as a multivariate repeated-measures analysis. 
The purpose of including the completely randomized approach is to contrast the error 
variance that results against the markedly smaller error variance that results in the 
repeated measures approach. The multivariate approach to repeated-measures analysis 
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may be new to our readers, and a specific numerical example will help in understand-
ing how some of the printouts on the packages are arrived at.

12.2.1 Completely Randomized Analysis of the Drug Data

This simply involves doing a one-way ANOVA. Thus, we compute the sum of squares 
between (SSb) and the sum of squares within (SSw):

SS n y yb
j

j= - = - + - + -
=

∑
1

4
2 2 2 25 26 4 24 9 25 6 24 9 15 6 24 9( ) [( . . ) ( . . ) ( . . ) ++

-
=

= - + - + + -

( . )
.

( . ) ( . ) ... (

]32 24 9
698 2

30 26 4 14 26 4 26 26

2

2 2

SS

SS
b

w . ) ...

( ) ... ( ) .

4

34 32 30 32 793 6

2

2 2

+

+ - + + - =

Thus, MSb = 698.2 / 3 = 232.73 and MSw = 793.6 / 16 = 49.6, and our F = 232.73 / 
49.6 = 4.7, with 3 and 16 degrees of freedom. This is not significant at the .01 level, 
because the critical value is 5.29.

12.2.2 Univariate Repeated-Measures Analysis of the Drug Data

Note from the column of means for the drug data that the participants’ average 
responses to the four drugs differ considerably (ranging from 16 to 34). We quantify 
this variability through the so-called sum of squares for blocks (SSbl), where we are 
blocking on the subjects. The error variability that we calculated is split up into two 
parts, SSw = SSb1 + SSres, where SSres stands for sum of squares residual. Denote the 
number of repeated measures by k.

Now we calculate the sum of squares for blocks:

SS k y y

S

b
i

i1
1

5
2

2 24 27 24 9 16 24 9 24 5 24 9

= -

= - + - + + -
=
∑( )

[( . ) ( . ) ( . . ) ]

SSb1 680 8= .

Our error term for the repeated-measures analysis is formed from SSres = SSw − 
SSb1 = 793.6 − 680.8 = 112.8. Note that the vast portion of the within variability is due 
to individual differences (680.8 out of 793.6), and that we have removed all of this 
from our error term for the repeated-measures analysis. Now,

MSres = SSres / (n − 1)(k − 1) = 112.8 / 4(3) = 9.4,
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and F = MSb / MSres = 232.73 / 9.4 = 24.76, with (k − 1) = 3 and (n − 1)(k − 1) = 12 
degrees of freedom. This is significant well beyond the .01 level, and is approx-
imately five times as large as the F obtained under the completely randomized 
design.

12.3  THE MULTIVARIATE TEST STATISTIC FOR 
REPEATED MEASURES

Before we consider the multivariate approach, it is instructive to go back to the t test 
for correlated (dependent) samples. Here, we suppose participants are pretested and 
posttested, and we form a set of difference (d1) scores.

Ss Pretest Posttest di

1 7 10  3
2 5  4 –1
3 6  8  2

. . . . . . . . . . . . . . . . . . . . . .
N 3  7  4

The null hypothesis here is

H0 : μ1 = μ2 or equivalently that μ1 − μ2 = 0

The t test for determining the tenability of H0 is

t d
s nd

=
/

,

where d is the average difference score and sd is the standard deviation of the difference 
scores. It is important to note that the analysis is done on the difference variable di.

In the multivariate case for repeated measures the test statistic for k repeated measures 
is formed from the ( k − 1) difference variables and their variances and covariances. 
The transition here from univariate to multivariate parallels that for the two-group 
independent samples case:

Independent samples Dependent samples

t
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(Continued )
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Independent samples Dependent samples

To obtain the multivariate statistic we replace 
the means by mean vectors and the pooled 
 within-variance (s 2) by the pooled within- 
covariance matrix.

To obtain the multivariate statistic we replace the 
mean difference by a vector of mean differences 
and the variance of difference scores by the 
matrix of variances and covariances on the (k − 1) 
created difference variables.

T
n n

n n
2 1 2

1 2
1 2

1
1 2=

+
-( ) -( )-y y S y y’ T 2 1= -n ’d d dy S y

S is the pooled within covariance matrix, i.e., 
the measure of error variability.

yd’ is the row vector of mean  differences 
on the (k − 1) difference variables, i.e., 
yd k k’ y y y y y y= - - -( )-1 2 2 3 1, ,  and Sd is the 
matrix of variances and covariances on the (k − 1) 
difference variables, i.e., the measure of error 
variability.

We now calculate the preceding multivariate test statistic for dependent samples 
(repeated measures) on the drug data. This should help to clarify the somewhat abstract 
development thus far.

12.3.1 Multivariate Analysis of the Drug Data

The null hypothesis we are testing for the drug data is that the drug population means 
are equal, or in symbols:

H0 : μ1 = μ2 = μ3 = μ4

But this is equivalent to saying that μ1 − μ2 = 0, μ2 − μ3 = 0, and μ3 − μ4 = 0. (You are 
asked to show this in one of the exercises.) We create three difference variables on the 
adjacent repeated measures (y1 − y2, y2 − y3, and y3 − y4) and test H0 by determining 
whether the means on all three of these difference variables are simultaneously 0. Here 
we display the scores on the difference variables:

y1 − y2 y2 − y3 y3 − y4

2 12 −18
−4 8 −12
4 2 −12
4 14 −24 Thus, the row vector of mean differences here is yd

′ = 
(.8, 10, –16.4)–2 14 −16

Means .8 10 −16.4
Variances 13.2 26 24.8
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We need to create Sd, the matrix of variances and covariances on the difference var-
iables. We already have the variances, but need to compute the covariances. The 
calculation for the covariance for the first two difference variables is given next and 
calculation of the other two is left as an exercise.

Sy y y y1 2 2 3
2 8 12 10 4 8 8 10 2 8 14 10

4- - =
-( ) -( ) + - -( ) -( ) + + - -( ) -( )

,
. . .

= -3

Recall that in computing the covariance for two variables the scores for the subjects 
are simply deviated about the means for the variables. The matrix of variances and 
covariances is

y1 − y2    y2 − y3   y3 − y4

Sd =
- -

- -
- -
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There is an exact F transformation of T 2, which is

F n k
n k

T k n k df= - +
-( ) -( ) -( ) - +( )1

1 1
1 12 , .with and

Thus,

F df= - +
( ) ( ) =5 4 1

4 3
170 659 28 443. . , .with 3 and 2 

This F value is significant at the .05 level, exceeding the critical value of 19.16. The 
critical value is very large here, because the error degrees of freedom is extremely 
small (2). We conclude that the drugs are different in effectiveness.
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12.4 ASSUMPTIONS IN REPEATED-MEASURES ANALYSIS

The three assumptions for a single-group univariate repeated-measures analysis are:

1. Independence of the observations
2. Multivariate normality
3. Sphericity (sometimes called circularity).*

The first two assumptions are also required for the multivariate approach, but the sphe-
ricity assumption is not necessary. You should recall from Chapter 6 that a violation 
of the independence assumption is very serious in independent samples ANOVA and 
MANOVA, and it is also serious here. Just as ANOVA and MANOVA are fairly robust 
against violation of multivariate normality, so that also carries over here.

What is the sphericity condition? Recall that in testing the null hypothesis for the pre-
vious numerical example, we transformed the original four repeated measures to three 
new variables, which were then used jointly in the multivariate approach. In general, 
if there are k repeated measures, then we transform to (k − 1) new variables. There are 
other choices for the (k − 1) variables than the adjacent differences used in the drug 
example, which will yield the same multivariate test statistic. This follows from the 
invariance property of the multivariate test statistic (Morrison, 1976, p. 145).

Suppose that the (k − 1) new variates selected are orthogonal (uncorrelated) and are 
scaled such that the sum of squares of the coefficients for each variate is 1. Then we 
have what is called an orthonormal set of variates. If the transformation matrix is 
denoted by C and the population covariance matrix for the original repeated measures 
by Σ, then the sphericity assumption says that the covariance matrix for the new (trans-
formed) variables is a diagonal matrix, with equal variances on the diagonal:
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* For many years it was thought that a stronger condition, called uniformity (compound symmetry) was neces-
sary. The uniformity condition required that the population variances for all treatments be equal and also that all 
population covariances are equal. However, Huynh and Feldt (1970) and Rouanet and Lepine (1970) showed 
that sphericity is an exact condition for the F test to be valid. Sphericity requires only that the variances of the 
differences for all pairs of repeated measures be equal.
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Saying that the off-diagonal elements are 0 means that the covariances for all trans-
formed variables are 0, which implies that the correlations are 0.

Box (1954) showed that if the sphericity assumption is not met, then the F ratio is posi-
tively biased (we are rejecting falsely too often). In other words, we may set our α level 
at .05, but may be rejecting falsely 8% or 10% of the time. The extent to which the 
covariance matrix deviates from sphericity is reflected in a parameter called ϵ (Green-
house & Geisser, 1959). We give the formula for ε̂ in one of the exercises. If sphericity 
is met, then ϵ = 1, while for the worst possible violation the value of ϵ = l / (k − 1), 
where k is the number of levels of the repeated measures factor (e.g., treatment or 
time). To adjust for the positive bias, a lower bound estimate of ϵ can be used, although 
this makes the test very conservative. This approach alters the degrees of freedom from

(k − 1) and (k − 1)(n − 1) to 1 and (n − 1).

Using the modified degrees of freedom then effectively increases the critical value to 
which the F test is compared to determine statistical significance. This adjustment of 
the degrees of freedom (and thus the F critical value) is intended to reduce the inflation 
of the type I error rate that occurs when the sphericity assumption is violated.

However, this lower bound estimate of ϵ provides too much of an adjustment, making 
an adjustment for the worst possible case. Because this procedure is too conservative, 
we don’t recommend it. A more reasonable approach is to estimate ε. SPSS and SAS 
GLM both print out the Greenhouse–Geisser estimate of ϵ. Then, the degrees of free-
dom are adjusted from

k k n k k n-( ) -( ) -( ) -( ) -( ) -( )1 1 1 1 1 1 and  to  and ε ε .

Results from Collier, Baker, Mandeville, and Hayes (1967) and Stoloff (1967) show 
that this approach keeps the actual alpha very close to the level of significance. Huynh 
and Feldt (1976) found that even multiplying the degrees of freedom by ε̂ is somewhat 
conservative when the true value of ϵ is above about .70. They recommended an alter-
native measure of ϵ, which is printed out by both SPSS and SAS GLM.

The Greenhouse–Geisser estimator tends to underestimate ϵ, especially when ϵ is close 
to 1, while the Huynh–Feldt estimator tends to overestimate ϵ (Maxwell & Delaney, 
2004). One possibility then is to use the average of the estimators as the estimate of 
ϵ. At present, neither SAS nor SPSS provide p values for this average method. A rea-
sonable, though perhaps somewhat conservative, approach then is to use the Green-
house–Geisser estimate. Maxwell and Delaney (p. 545) recommend this method when 
the univariate approach is used, noting that it properly controls the type I error rate 
whereas the Huynh and Feldt approach may not.

In addition, there are various statistical tests for sphericity, with the Mauchley test 
(Kirk, 1982, p. 259) being widely available in various software. However, based on the 

ˆ ˆ
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results of Monte Carlo studies (Keselman, Rogan, Mendoza, & Breen, 1980; Rogan, 
Keselman, & Mendoza, 1979), we don’t recommend using these tests. The studies just 
described showed that the tests are highly sensitive to departures from multivariate 
normality and from their respective null hypotheses. Not using the Mauchley test does 
not cause a serious problem, though. Instead, one can use the Greenhouse–Geisser 
adjustment procedure without using the Mauchley test because it takes the degree of 
the violation into account. That is, minimal adjustments are made for minor violations 
of the sphericity assumption and greater adjustments are made when violations are 
more severe (as indicated by the estimate of ϵ). Note also that another option is to use 
the multivariate approach, which does not invoke the sphericity assumption. Keppel 
and Wickens (2004) recommend yet another option. In this approach, one does not use 
the overall test results. Instead, one proceeds directly to post hoc tests or contrasts of 
interest that control the overall alpha, by, for example, using the Bonferroni method.

12.5 COMPUTER ANALYSIS OF THE DRUG DATA

We now consider the univariate and multivariate repeated-measures analyses of the 
drug data that was worked out in numerical detail earlier in the chapter. Table 12.1 
shows the control lines for SAS and SPSS. Tables 12.2 and 12.5 present selected results 
from SAS, and Tables 12.3 and 12.4 present selected output from SPSS. In Table 12.2, 
the first output selection shows the multivariate results. Note that the multivariate test 
is significant at the .05 level (F = 28.41, p = .034), and that the F value agrees, within 
rounding error, with the F calculated in section 12.3.1 (F = 28.44). Given that p is 
smaller than alpha (i.e., .05), we conclude that the reaction means differ across the four 
drugs. We wish to note that this example is not a good situation, particularly for the 
multivariate approach, because the small sample size makes this procedure less pow-
erful than the univariate approach (although a significant effect was obtained here). We 
discuss this situation later on in the chapter.

The next output selection in Table 12.2 provides the univariate test results for these 
data. Note that to the right of the F value of 24.76 (as was also calculated in sec-
tion 12.2.2), there are three columns of p values. The first column makes no adjust-
ments for possible violations of the sphericity assumption, and we ignore this column. 
The second p value (.0006) is obtained by use of the Greenhouse–Geisser procedure 
(labeled G-G), which indicates mean differences are present. The final column in that 
output selection is the p value from the Huynh–Feldt procedure. The last output selec-
tion in Table 12.2 provides the estimates of ϵ as obtained by the two procedures shown. 
These estimates, as explained earlier, are used to adjust the degrees of freedom for the 
univariate F test (i.e., 24.76).

Table 12.3 presents the analogous output from SPSS, although it is presented in a 
different format. The first output selection provides the multivariate test result, which 
is the same as obtained in SAS. The second output selection provides results from the 
Mauchley test of the sphericity assumption, which we ignore, and also shows estimates 



 Table 12.1: SAS and SPSS Control Lines for the Single-Group Repeated Measures

SAS SPSS

DATA Oneway;
INPUT y1 y2 y3 y4;
LINES;
30.00 28.00 16.00 34.00
14.00 18.00 10.00 22.00
24.00 20.00 18.00 30.00
38.00 34.00 20.00 44.00
26.00 28.00 14.00 30.00
(1)  PROC GLM;
(2)  MODEL y1 y2 y3 y4 = / 

NOUNI;
(3)  REPEATED drug 4  

CONTRAST(1) /SUMMARY MEAN;
RUN;

DATA LIST FREE/ y1 y2 y3 y4.
BEGIN DATA.
30.00 28.00 16.00 34.00
14.00 18.00 10.00 22.00
24.00 20.00 18.00 30.00
38.00 34.00 20.00 44.00
26.00 28.00 14.00 30.00
END DATA.
(4) GLM y1 y2 y3 y4
(5) /WSFACTOR=drug 4
(6)  /EMMEANS=TABLES(drug)  

COMPARE ADJ(BONFERRONI)
    /PRINT=DESCRIPTIVE
(7)  /WSDESIGN=drug.

(1) PROC GLM invokes the general linear modeling procedure.
(2) MODEL specifies the dependent variables and NOUNI suppresses display of univariate statistics that are 
not relevant for this analysis.
(3) REPEATED names drug as a repeated measure factor with four levels; SUMMARY and MEANS request 
statistical test results and means and standard deviations for each treatment level. CONTRAST(1) requests 
comparisons of mean differences between group 1 and each of the remaining groups. The complete set of 
pairwise comparisons for this example can be obtained by rerunning the analysis and replacing CONTRAST(1) 
with CONTRAST(2), which would obtain contrasts between group 2 and each of the other groups, and then 
conducting a third run using CONTRAST(3). In general, the number of times this procedure needs to be run 
with the CONTRAST statements is one less than the number of levels of the repeated measures factor.
(4) GLM invokes the general linear modeling procedure.
(5) WSFACTOR indicates that the within-subjects factor is named drug, and it has four levels.
(6) EMMEANS requests the expected marginal means and COMPARE requests pairwise comparisons among 
the four means with a Bonferroni adjusted alpha.
(7) WSDESIGN requests statistical testing of the drug factor.

 Table 12.2:  Selected SAS Results for Single-Group Repeated Measures

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Drug Effect
H = Type III SSCP Matrix for drug

E = Error SSCP Matrix
S=1 M=0.5 N=0

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.02292607 28.41 3 2 0.0342
Pillai’s Trace 0.97707393 28.41 3 2 0.0342
Hotelling- 
Lawley Trace

42.61846352 28.41 3 2 0.0342

Roy’s Greatest 
Root

42.61846352 28.41 3 2 0.0342

(Continued )



The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

Adj Pr > F

G – G H – F

Drug  3 698.2000000 232.7333333 24.76 .0001 0.0006 <.0001
Error(drug) 12 112.8000000 9.4000000     

Greenhouse-Geisser Epsilon 0.6049
Huynh-Feldt Epsilon 1.0789

 Table 12.3  Selected SPSS Results for Single-Group Repeated Measures

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.

Drug Pillai’s Trace .977 28.412b 3.000 2.000 .034
Wilks’ Lambda .023 28.412b 3.000 2.000 .034
Hotelling’s Trace 42.618 28.412b 3.000 2.000 .034
Roy’s Largest Root 42.618 28.412b 3.000 2.000 .034

a Design: Intercept
 Within Subjects Design: drug
b Exact statistic

 Table 12.2: (Continued)

Mauchly’s Test of Sphericitya

Measure: MEASURE_1 

Within  
Subjects 
Effect Mauchly’s W

Approx.  
Chi-Square df Sig.

Epsilonb

Greenhouse- 
Geisser

Huynh-
Feldt

Lower- 
bound

Drug .186 4.572 5 .495 .605 1.000 .333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 
dependent variables is proportional to an identity matrix.
a Design: Intercept
 Within Subjects Design: drug
b May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected 
tests are displayed in the Tests of Within-Subjects Effects table.



485ChapteR 12       

of ϵ using the Greenhouse–Geisser, Huynh–Feldt, and lower-bound procedures. The 
last output selection shows the univariate test results. We focus our attention on the 
Greenhouse–Geisser row, where the p value is rounded to p = .001, again indicating 
differences in the reaction means across the drug types. Note that the adjusted degrees 
of freedom for this procedure are 1.815 and 7.258, whereas the unadjusted degrees of 
freedom, as used in section 12.2.2, are 3 and 12. These unadjusted degrees of freedom 
appear in the sphericity assumed rows, where inference is conducted assuming no 
violation of the sphericity assumption and with no corresponding adjustment to the 
inference for the F test (which again we ignore).

Table 12.4 shows the estimated marginal means and provides Bonferroni adjusted 
multiple comparisons for the four reaction means from SPSS. The comparisons that 
are statistically significant involve drug 4, which indicates that average reaction time is 
greater for drug 4 than for drugs 3 and 1. Table 12.5 shows the results from the multiple 
comparisons as can be obtained from SAS. (The output titles have been edited to ease 
comprehension.) To obtain pairwise comparisons using SAS, you can simply rerun the 
analysis the needed number of times (here, 3) and use the CONTRAST commands as 
described under Table 12.1.

Instead of using multiple dependent samples t tests, as SPSS does, SAS uses corre-
sponding F tests that produce p values that are equivalent to that provided by the t tests. 
Note though that the p values obtained by SAS here, and, as displayed in Table 12.5, 
are not Bonferroni adjusted. Thus, if you wish to use a Bonferroni adjustment, you can 

Tests of Within-Subjects Effects

Measure: MEASURE_1 

Source
Type III Sum 
of Squares df

Mean 
Square F Sig.

Drug Sphericity 
Assumed

698.200 3 232.733 24.759 .000

Greenhouse- 
Geisser

698.200 1.815 384.763 24.759 .001

Huynh-Feldt 698.200 3.000 232.733 24.759 .000
Lower-bound 698.200 1.000 698.200 24.759 .008

Error(drug) Sphericity 
Assumed

112.800 12 9.400

Greenhouse- 
Geisser

112.800 7.258 15.540

Huynh-Feldt 112.800 12.000 9.400
Lower-bound 112.800 4.000 28.200



 Table 12.4:  Multiple Comparisons from SPSS for Single-Group Repeated Measures

Estimates

Measure: MEASURE_1 

Drug Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

1 26.400 3.919 15.519 37.281
2 25.600 2.926 17.477 33.723
3 15.600 1.720 10.823 20.377
4 32.000 3.578 22.067 41.933

Pairwise Comparisons

Measure: MEASURE_1 

(I) drug (J) drug Mean Difference (I-J) Std. Error Sig.b

95% Confidence  
Interval for Differenceb

Lower 
Bound

Upper 
Bound

1 2 .800 1.625 1.000 -7.082 8.682
3 10.800 2.577 .083 -1.700 23.300
4 -5.600* .748 .010 -9.230 -1.970

2 1 -.800 1.625 1.000 -8.682 7.082
3 10.000 2.280 .071 -1.062 21.062
4 -6.400 1.600 .097 -14.162 1.362

3 1 -10.800 2.577 .083 -23.300 1.700
2 -10.000 2.280 .071 -21.062 1.062
4 -16.400* 2.227 .011 -27.204 -5.596

4 1 5.600* .748 .010 1.970 9.230
2 6.400 1.600 .097 -1.362 14.162
3 16.400* 2.227 .011 5.596 27.204

Based on estimated marginal means
* The mean difference is significant at the .050 level.
b Adjustment for multiple comparisons: Bonferroni.

 Table 12.5:  Multiple Comparisons from SAS for Single-Group Repeated Measures

Drug 1 vs. Drug 2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 3.20000000  3.20000000 0.24 0.6483
Error 4 52.80000000 13.20000000   
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Drug 1 vs. Drug 3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 583.2000000 583.2000000 17.57 0.0138
Error 4 132.8000000  33.2000000   

Drug 1 vs. Drug 4

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 156.8000000 156.8000000 56.00 0.0017
Error 4 11.2000000     2.8000000   

Drug 2 vs. Drug 3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 500.0000000 500.0000000 19.23 0.0118
Error 4 104.0000000  26.0000000   

Drug 2 vs. Drug 4

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 204.8000000 204.8000000 16.00 0.0161
Error 4 51.2000000  12.8000000   

Drug 3 vs. Drug 4

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 1344.800000 1344.800000 54.23 0.0018
Error 4 99.200000     24.800000   

do this by multiplying the obtained p value by the number of tests conducted (here, 6). 
So, for example, for the group 2 versus group 3 comparison, the Bonferroni-adjusted 
p value, using SAS results, is, 6 × .0118 = .071, which is the same p value shown in 
Table 12.4, as obtained with SPSS, as SPSS and SAS provide identical results.

12.6  POST HOC PROCEDURES IN REPEATED- 
MEASURES ANALYSIS

As in a one-way independent samples ANOVA, if an overall difference is found, you 
would almost always want to determine which specific treatments or conditions differed, 
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as we did in the previous section. This entails a post hoc procedure. Pairwise compari-
sons are easily interpreted and implemented and are quite meaningful. If the assumption 
of sphericity is satisfied, a Tukey procedure, which uses a pooled error term from the 
within-subjects ANOVA, could be used. However, Maxwell and Delaney (2004) note 
that the sphericity assumption is likely to be violated in most within-subjects designs. 
If so, Maxwell (1980) found that use of the Tukey approach does not always provide 
adequate control of the overall type I error. Instead, Maxwell and Delaney recommend 
a Bonferroni approach (as does Keppel & Wickens, 2004) that uses separate error terms 
from just those groups involved in a given comparison. In this case, the assumption of 
sphericity cannot be violated as the error term used in each comparison is based only on 
the two groups being compared (as in the two-group dependent samples t test).

The Bonferroni procedure is easy to use, and, as we have seen, is readily available 
from SPSS and can be easily applied to the contrasts obtained from SAS. As we saw 
in the previous section, this approach uses multiple dependent sample t (or F) tests, 
and uses the Bonferroni inequality to keep overall α under control. For example, if 
there are five treatments, then there will be 10 paired comparisons. If we wish overall 
α to equal .05, then we simply do each dependent t test at the .05 / 10 = .005 level of 
significance. In general, if there are k treatments, then to keep overall α at .05, do each 
test at the .05 / [k(k − 1) / 2] level of significance (because for k treatments there are 
k(k − 1) / 2 paired comparisons). Note that with the SPSS results in Table 12.4, the 
p values for the pairwise comparisons have already been adjusted (as have the confi-
dence intervals). So, to test for significance, you simply compare a given p value to 
the overall alpha used for the analysis (here, .05). With the SAS results in Table 12.5, 
you need to do the adjustment manually (e.g., multiply each p value by the number of 
comparisons tested).

12.7  SHOULD WE USE THE UNIVARIATE OR 
MULTIVARIATE APPROACH?

In terms of controlling type I error, there is no strong basis for preferring the multivar-
iate approach, because use of the modified test (i.e., multiplying the degrees of free-
dom by ε̂) yields an “honest” error rate. Another consideration is power. If sphericity 
holds, then the univariate approach is more powerful. When sphericity is violated, 
however, then the situation is much more complex. Davidson (1972) stated, “when 
small but reliable effects are present with the effects being highly variable . . . the 
multivariate test is far more powerful than the univariate test” (p. 452). And O’Brien 
and Kaiser (1985), after mentioning several studies that compared the power of the 
multivariate and modified univariate tests, state, “Even though a limited number of 
situations have been investigated, this work found that no procedure is uniformly 
more powerful or even usually the most powerful” (p. 319). More recently, Algina 
and Keselman (1997), based on their simulation study, recommend the multivariate 
approach over the univariate approach when ϵ ≤ .90 given that the number of levels 
of the repeated measures factor (a) is 4 or less, provided that n ≥ a + 15 or when 5 ≤ 
a ≤ 8, ε ≤ .85, and n ≥ a + 30.
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Maxwell and Delaney (2004, pp. 671–676) present a thoughtful discussion of the uni-
variate and multivariate approaches. In discussing the recommendations of Algina and 
Keselman (1997), they note that even when these guidelines hold, “there is no guarantee 
that the multivariate approach is more powerful” (p. 674) Also, when these conditions 
are not met, which suggests use of univariate approach, they note that even in these sit-
uations, the multivariate approach may be more powerful. They do, though, recommend 
the multivariate approach if n is not too small, that is, if n is chosen appropriately. Keppel 
and Wickens (2004) also favor this approach, noting that it avoids issues associated with 
the sphericity assumption and is “more frequently used than other possibilities” (p. 379).

These remarks then generally support the use of the multivariate approach, unless 
one has only a handful of observations more than the number of repeated measures, 
because of power considerations. However, given that there is no guarantee that one 
approach will be more powerful than the other, even when guidelines suggest its use, 
we still tend to agree with Barcikowski and Robey (1984) that, given an exploratory 
study, both the adjusted univariate and multivariate tests be routinely used because 
they may differ in the treatment effects they will discern. In such a study, the overall 
level of significance might be set for each test. Thus, if you wish overall alpha to be 
.05, do each test at the .025 level of significance.

12.8 ONE-WAY REPEATED MEASURES—A TREND ANALYSIS

We now consider a similar design, but focus on the pattern of change across time, 
where time is the within-subjects variable. In general, trend analysis is appropriate 
whenever a factor is a quantitative (not qualitative) variable. Perhaps the most com-
mon such quantitative factor in repeated measures studies involves time, where partic-
ipants are assessed on an outcome variable at each of several points across time (e.g., 
days, weeks, months). With a trend analysis, we are not so much interested in compar-
ing means from one time point to another, but instead are interested in describing the 
form of the expected change across time.

In our example here, an investigator, interested in verbal learning, has obtained recall 
scores after exposing participants to verbal material after 1, 2, 3, 4, and 5 days. She 
expects a decline in recall across the 5-day time period and is interested in modeling 
the form of the decline in verbal recall. For this, trend analysis is appropriate and in 
particular orthogonal (uncorrelated) polynomials are in order. If the decline in recall 
is essentially constant over the days, then a significant linear (straight-line) trend, or 
first-degree polynomial, will be found. On the other hand, if the decline in recall is slow 
over the first 2 days and then drops sharply over the remaining 3 days, a quadratic trend 
(part of a parabola), or second-degree polynomial, will be found. Finally, if the decline 
is slow at first, then drops off sharply for the next few days and finally levels off, we will 
find a cubic trend, or third-degree polynomial. Figure 12.1 shows each of these cases.

The fact that the polynomials are uncorrelated means that the linear, quadratic, cubic, and 
quartic components are partitioning distinct (different) parts of the variation in the data.
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 Figure 12.1: Linear, quadratic, and cubic trends across time.
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In Table 12.6 we present the SAS and SPSS control lines for running the trend analysis 
on the verbal recall data. Both SAS and SPSS provide trend analysis in the form of 
polynomial contrasts. In fact, these contrasts are built into the programs. So, all we 
need to do is request them, which is what has been done in the following commands.

Table 12.7 provides the SPSS results for the trend analysis. Inspecting the means for 
each day (y1 through y5) indicates that mean recall is relatively high on day 1 but 
drops off substantially as time passes. The multivariate test result, F(4, 12) = 65.43, 

 Table 12.6:  SAS and SPSS Control Lines for the Single-Group Trend Analysis

SAS SPSS

DATA TREND;
INPUT y1 y2 y3 y4 y5;
LINES;
26 20 18 11 10
34 35 29 22 23
41 37 25 18 15
29 28 22 15 13
35 34 27 21 17
28 22 17 14 10
38 34 28 25 22
43 37 30 27 25
42 38 26 20 15
31 27 21 18 13
45 40 33 25 18
29 25 17 13 8
39 32 28 22 18
33 30 24 18 7
34 30 25 24 23
37 31 25 22 20

DATA LIST FREE/ y1 y2 y3 y4 y5.
BEGIN DATA.
26 20 18 11 10
34 35 29 22 23
41 37 25 18 15
29 28 22 15 13
35 34 27 21 17
28 22 17 14 10
38 34 28 25 22
43 37 30 27 25
42 38 26 20 15
31 27 21 18 13
45 40 33 25 18
29 25 17 13 8
39 32 28 22 18
33 30 24 18 7
34 30 25 24 23
37 31 25 22 20
END DATA.



SAS SPSS

PROC GLM;
(1)  MODEL y1 y2 y3 y4 y5 = / 

NOUNI;
(2)  REPEATED Days 5 (1 2 3 

4 5)
(3) POLYNOMIAL/SUMMARY MEAN;
RUN;

(1)  GLM y1 y2 y3 y4 y5
(4)  /WSFACTOR=Day 5 Polynomial
   /PRINT=DESCRIPTIVE
(5)  /WSDESIGN=day.

(1) MODEL (in SAS) and GLM (in SPSS) specifies the outcome variables used.
(2) REPEATED labels Days as the within-subjects factor, having five levels, which are provided in the 
parenthesis.
(3) POLYNOMIAL requests the trend analysis and SUMMARY and MEAN request statistical test results and 
means and standard deviations for the days factor.
(4) WSFACTOR labels Day as the within-subjects factor with five levels, Polynomial requests the trend 
analysis.
(5) WSDESIGN requests statistical testing for the day factor.

 Table 12.7:  Selected SPSS Results for the Single-Group Trend Analysis

Descriptive Statistics

Mean Std. Deviation N

y1 35.2500 5.77927 16
y2 31.2500 5.77927 16
y3 24.6875 4.68642 16
y4 19.6875 4.68642 16
y5 16.0625 5.63878 16

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.

Day Pillai’s Trace .956 65.426b 4.000 12.000 .000
Wilks’ 
Lambda

.044 65.426b 4.000 12.000 .000

Hotelling’s 
Trace

21.809 65.426b 4.000 12.000 .000

Roy’s Largest 
Root

21.809 65.426b 4.000 12.000 .000

a Design: Intercept
  Within Subjects Design: Day
b Exact statistic

(Continued )
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Tests of Within-Subjects Effects

Measure: MEASURE_1 

Source
Type III Sum 
of Squares Df

Mean 
Square F Sig.

Day Sphericity 
Assumed

4025.175 4 1006.294 164.237 .000

Greenhouse- 
Geisser

4025.175 1.821 2210.222 164.237 .000

Huynh-Feldt 4025.175 2.059 1954.673 164.237 .000
Lower-bound 4025.175 1.000 4025.175 164.237 .000

Error(Day) Sphericity 
Assumed

367.625 60 6.127

Greenhouse- 
Geisser

367.625 27.317 13.458

Huynh-Feldt 367.625 30.889 11.902
Lower-bound 367.625 15.000 24.508

Tests of Within-Subjects Contrasts

Measure: MEASURE_1 

Source Day
Type III Sum 
of Squares Df

Mean 
Square F Sig.

Day Linear 3990.006 1 3990.006 237.036 .000
Quadratic 6.112 1 6.112 1.672 .216
Cubic 24.806 1 24.806 9.144 .009
Order 4 4.251 1 4.251 3.250 .092

Error(Day) Linear 252.494 15 16.833
Quadratic 54.817 15 3.654
Cubic 40.694 15 2.713
Order 4 19.621 15 1.308

 Table 12.7: (Continued)

p < .001, indicates recall means change across time (as does the Greenhouse–
Geisser adjusted univariate F test). The final output selection in Table 12.7 displays 
the results from the polynomial contrasts. Note that for these data four patterns of 
change are tested, a linear, quadratic (or second order), a cubic (or third order), and a 
fourth-order pattern. The number of such terms that will be fit to the data are one less 
than the number of levels of the within-subjects factor (e.g., days with 5 levels here, 
so 4 patterns tested). As indicated in the table, the linear trend is statistically signif-
icant at the .05 level (F = 237.04, p < .001), as is the cubic component (F = 9.14, 
p = .009). The linear trend is by far the most pronounced, and a graph of the means 
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 Figure 12.2: Linear and cubic plots for verbal recall data.
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for the data in Figure 12.2 shows this, although a cubic curve (with a few bends) fits 
the data slightly better.

Analysis results obtained from SAS are in a similar format to what we have seen pre-
viously from SAS, so we do not report these here. However, the format of the results 
from the polynomial contrasts is quite different than that reported by SPSS. Table 12.8 
displays the results for the polynomial contrasts obtained from SAS. The test for the 
linear trend is shown under the output selection Contrast Variable: Days_1. The test for 
the quadratic change is shown under the output selection Contrast Variable: Days_2, 
and so on. Of course, the results obtained by SAS match those obtained by SPSS.

 Table 12.8: Selected SAS Results for the Single-Group Trend Analysis

Contrast Variable: Days_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 3990.006250 3990.006250 237.04 <.0001
Error 15 252.493750 16.832917   

(Continued )
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Contrast Variable: Days_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 6.11160714 6.11160714 1.67 0.2155
Error 15 54.81696429 3.65446429   

Contrast Variable: Days_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 24.80625000 24.80625000 9.14 0.0085
Error 15 40.69375000  2.71291667   

 Table 12.8: (Continued)

Contrast Variable: Days_4

Source DF Type III SS Mean Square F Value Pr > F

Mean 1    4.25089286 4.25089286 3.25 0.0916
Error 15 19.62053571 1.30803571   

In concluding this example, the following from Myers (1979) is important:

Trend or orthogonal polynomial analyses should never be routinely applied when-
ever one or more independent variables are quantitative. . . . It is dangerous to 
identify statistical components freely with psychological processes. It is one thing 
to postulate a cubic component of A, to test for it, and to find it significant, thus 
substantiating the theory. It is another matter to assign psychological meaning to 
a significant component that has not been postulated on a priori grounds. (p. 456)

12.9 SAMPLE SIZE FOR POWER = .80 IN SINGLE-SAMPLE CASE

Although the classic text on power analysis by Cohen (1977) has power tables for a 
variety of situations (t tests, correlation, chi-square tests, differences between correla-
tions, differences between proportions, one-way and factorial ANOVA, etc.), it does 
not provide tables for repeated-measures designs. Some work has been done in this 
area, most of it confined to the single sample case. The PASS program (2002) does 
calculate power for more complex repeated-measures designs. The following is taken 
from the PASS 2002 User’s Guide—II:

This module calculates power for repeated-measures designs having up to three 
within factors and three between factors. It computes power for various test statis-
tics including the F test with the Greenhouse-Geisser correction, Wilks’ lambda, 
Pillai-Bartlett trace, and Hotelling-Lawley trace. (p. 1127)
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Robey and Barcikowski (1984) have given power tables for various alpha levels for the 
single group repeated-measures design. Their tables assume a common correlation for the 
repeated measures, which generally will not be tenable (especially in longitudinal studies); 
however, a later paper by Green (1990) indicated that use of an estimated average correla-
tion (from all the correlations among the repeated measures) is fine. Selected results from 
their work are presented in Table 12.9, which indicates sample size needed for power = .80 
for small, medium, and large effect sizes at alpha = .01, .05, .10, and .20 for two through 
seven repeated measures. We give two examples to show how to use the table.   

 Table 12.9:  Sample Sizes Needed for Power = .80 in Single-Group Repeated 
Measures

Number of repeated measures

Average corr. Effect sizea 2 3 4 5 6 7

α = .01
.30 .12 404 324 273 238 214 195

.30 68 56 49 44 41 39

.49 28 24 22 21 21 21
.50 .14 298 239 202 177 159 146

.35 51 43 38 35 33 31

.57 22 19 18 18 18 18
.80 .22 123 100 86 76 69 65

.56 22 20 19 18 18 18

.89 11 11 11 12 12 13
α = .05

.30 .12 268 223 192 170 154 141
.30 45 39 35 32 30 29
.49 19 17 16 16 16 16

.50 .14 199 165 142 126 114 106
.35 34 30 27 25 24 23
.57 14 14 13 13 13 14

.80 .22 82 69 60 54 50 47
.56 15 14 13 13 14 14
.89 8 8 8 9 10 10

α = .10
.30 .12 209 178 154 137 125 116

.30 35 31 28 26 25 24

.49 14 14 13 13 13 13

.50 .14 154 131 114 102 93 87
.35 26 24 22 20 20 19
.57 11 11 11 11 11 12

.80 .22 64 55 49 44 41 39
.56 12 11 11 11 12 12
.89 6 7 7 8 9 9

(Continued )
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Example 12.1
An investigator has a three treatment design: That is, each of the subjects is exposed 
to three treatments. He uses r = .80 as his estimate of the average correlation of the 
subjects’ responses to the three treatments. How many subjects will he need for 
power = .80 at the .05 level, if he anticipates a medium effect size?

Reference to Table 12.9 with correl = .80, effect size = .56, k = 3, and α = .05, shows 
that only 14 subjects are needed.

Example 12.2
An investigator will be carrying out a longitudinal study, measuring the subjects at five 
points in time. She wishes to detect a large effect size at the .10 level of significance, 
and estimates that the average correlation among the five measures will be about .50. 
How many subjects will she need?

Reference to Table 12.9 with correl = .50, effect size = .57, k = 5, and α = .10, shows 
that 11 subjects are needed.

12.10 MULTIVARIATE MATCHED-PAIRS ANALYSIS

It was mentioned in Chapter 4 that often in comparing intact groups the subjects are 
matched or paired on variables known or presumed to be related to performance on 

Number of repeated measures

Average corr. Effect sizea 2 3 4 5 6 7

α = .20
.30 .12 149 130 114 103 94 87

.30 25 23 21 20 19 19

.49 10 10 10 10 11 11
.50 .14 110 96 85 76 70 65

.35 19 17 16 16 15 15

.57 8 8 8 9 9 10
.80 .22 45 40 36 33 31 30

.56 8 8 9 9 10 10

.89 4 5 6 7 8 8

a These are small, medium, and large effect sizes, and are obtained from the corresponding effect size 
measures for independent samples ANOVA (i.e., .10, .25, and .40) by dividing by 1- correl. Thus, for example, 

.
.

, .
.

.
.14

10
1 50

57
40

1 50
=

-
=

-
and

 Table 12.9: (Continued)
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the dependent variable(s). This is done so that if a significant difference is found, the 
investigator can be more confident it was the treatment(s) that “caused” the difference. 
In Chapter 4 we gave a univariate example, where kindergarteners were compared 
against nonkindergarteners on first-grade readiness, after they were matched on IQ, 
SES, and number of children in the family.

Now consider a multivariate example, that is, where there are several dependent 
variables. Kvet (1982) was interested in determining whether excusing elementary 
school children from regular classroom instruction for the study of instrumental 
music affected sixth-grade reading, language, and mathematics achievement. These 
were the three dependent variables. Instrumental and noninstrumental students from 
four public school districts were used in the study. We consider the analysis from just 
one of the districts. The instrumental and noninstrumental students were matched 
on the following variables: sex, race, IQ, cumulative achievement in fifth grade, 
elementary school attended, sixth-grade classroom teacher, and instrumental music 
outside the school.

Table 12.10 shows the control lines for running the analysis on SAS and SPSS. Note 
that we compute three difference variables, on which the multivariate analysis is done, 
and that it is these difference variables that are used in the MODEL (SAS) and GLM 
(SPSS) statements. We are testing whether these three difference variables (considered 
jointly) differ significantly from the 0 vector, that is, whether the group mean differ-
ences on all three variables are jointly 0.

Again we obtain a T 2 value, as for the single sample multivariate repeated-measures 
analysis; however, the exact F transformation is somewhat different:

F N p
N p

T p N p df= -
-( ) -( )

1
2 , ,with and

where N is the number of matched pairs and p is the number of difference variables.

The multivariate test results shown in Table 12.11 indicate that the instrumental 
group does not differ from the noninstrumental group on the set of three difference 
variables (F = .9115, p < .46). Thus, the classroom time taken by the instrumental 
group does not appear to adversely affect their achievement in these three basic aca-
demic areas.

12.11 ONE-BETWEEN AND ONE-WITHIN DESIGN

We now add a grouping (between) variable to the one-way repeated measures design. 
This design, having one-between and one-within subjects factor, is often called a 
split plot design. For this design, we consider hypothetical data from a study com-
paring the relative efficacy of a behavior modification approach to dieting versus a 
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behavior modification plus exercise approach (combination treatment) on weight 
loss for a group of overweight women. There is also a control group in this study. 
In this experimental design, 12 women are randomly assigned to one of the three 
treatment conditions, and weight loss is measured 2 months, 4 months, and 6 months 
after the program begins. Note that weight loss is relative to the weight measured at 
the previous occasion.

When a between-subjects variable is included in this design, there are two additional 
assumptions. One new assumption is the homogeneity of the covariance matrices on 
the repeated measures for the groups. That is, the population variances and covariances 
for the repeated measures are assumed to be the same for all groups. In our example, 
the group sizes are equal, and in this case a violation of the equal covariance matrices 
assumption is not serious. That is, the within-subjects tests (for the within-subject 
main effect and the interaction) are robust (with respect to type I error) against a 
violation of this assumption (see Stevens, 1986, chap. 6). However, if the group sizes 
are substantially unequal, then a violation is serious, and Stevens (1986) indicated 
in Table 6.5 what should be added to test this assumption. A key assumption for the 

 Table 12.11:  Multivariate Test Results for Matched Pairs Example

SAS Output

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall Intercept Effect
H = Type III SSCP Matrix for Intercept

E = Error SSCP Matrix
S=1 M=0.5 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.83658794 0.91 3 14 0.4604
Pillai’s Trace 0.16341206 0.91 3 14 0.4604
Hotelling-Lawley 
Trace

0.19533160 0.91 3 14 0.4604

Roy’s Greatest Root 0.19533160 0.91 3 14 0.4604

SPSS Output

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace .163 .912b 3.000 14.000 .460
Wilks’ Lambda .837 .912b 3.000 14.000 .460
Hotelling’s Trace .195 .912b 3.000 14.000 .460
Roy’s Largest Root .195 .912b 3.000 14.000 .460

a Design: Intercept
b Exact statistic
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validity of the within-subjects tests that was also in place for the single-group repeated 
measures is the assumption of sphericity that now applies to the repeated measures 
within each of the groups. It is still the case here that the unadjusted univariate F tests 
for the within-subjects effects are not robust to a violation of sphericity. Note that the 
combination of the sphericity and homogeneity of the covariance matrices assumption 
has been called multisample sphericity. The second new assumption is homogeneity 
of variance for the between-subjects main effect test. This assumption applies not to 
the raw scores but to the average of the outcome scores across the repeated measures 
for each subject. As with the typical between-subjects homogeneity assumption, the 
procedure is robust when the between-subjects group sizes are similar, but a liberal or 
conservative F test may result if group sizes are quite discrepant and these variances 
are not the same.

Table 12.12 provides the SAS and SPSS commands for the overall tests associated 
with this analysis. Table 12.13 provides selected SAS and SPSS results. Note that 
this analysis can be considered as a two-way ANOVA. As such, we will test main 
effects for diet and time, as well as the interaction between these two factors. The 
time main effect and the time-by-diet interaction are within-subjects effects because 
they involve change in means or change in treatment effects across time. The uni-
variate tests for these effects appear in the first output selections for SAS and SPSS 
in Table 12.13. Using the Greenhouse–Geisser procedure, the main effect of time 
is statistically significant (p < .001) as is the time-by-diet interaction (p = .003). 
(Note that these effects are also significant using the multivariate approach, which 
is not shown to conserve space.) The last output selections for SAS and SPSS in 
Table 12.13 indicate that the main effect of diet is also statistically significant, F(2, 
33) = 4.69, p = .016.

To interpret the significant effects, we display in Table 12.14 the means involved 
in the main effects and interaction as well as a plot of the cell means for the two 
factors. Recall that graphically an interaction is evidenced by nonparallel lines. In 
this graph you can see that the profiles for diets 1 and 2 are essentially parallel; 
however, the profile for diet 3 is definitely not parallel with the profiles for diets 
1 and 2. And, in particular, it is the relatively greater weight loss at time 2 for 
diet 3 (i.e., 5.9 pounds) that is making the profile distinctly nonparallel. The main 
effect of diet, evident in Table 12.14, indicates that the population row means are 
not equal. The sample means suggest that, weight loss averaging across time, is 
greatest for diet 3. The main effect of time indicates that the population column 
means differ. The sample column means suggest that weight loss is greater after 
month 2 and 4, than after month 6. In addition to the graph, the cell means in 
Table 12.14 can also be used to describe the interaction. Note that weight loss for 
each treatment was relatively large at 2 months, but only those in the diet 3 condi-
tion experienced essentially the same weight loss at 2 and 4 months, whereas the 
weight loss for the other two treatments tapered off at the 4-month period. This 
created much larger differences between the diet groups at 4 months relative to 
the other months.
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12.12  POST HOC PROCEDURES FOR THE ONE-BETWEEN  
AND ONE-WITHIN DESIGN

In the previous section, we presented and discussed statistical test results for the main 
effects and interaction. We also used cell and marginal means and a graph to describe 
results. When three or more levels of a factor are present in a design, researchers may also 
wish to conduct follow-up tests for specific effects of interest. In our example, an investi-
gator would likely focus on simple effects given the interaction between diet and time. We 
will provide testing procedures for such simple effects, but for completeness, we briefly 
discuss pairwise comparisons associated with the diet and time main effects. Note that for 
the follow-up procedures discussed in this section, there is more than one way to obtain 
results via SAS and SPSS. In this section, we use procedures, while not always the most 
efficient, are intended to help you better understand the comparisons you are making.

12.12.1 Comparisons Involving Main Effects

As an example of this, to conduct pairwise comparisons for the means involved in a 
statistically significant main effect of the between-subjects factor (here, diet), you can 
simply compute the average of each participant’s scores across the time points of the 

 Table 12.14:  Cell and Marginal Means for the One-Between One-Within Design

TIME

1 2 3 ROW MEANS

1 4.50 3.33 2.083 3.304
DIETS 2 5.33 3.917 2.250 3.832

3 6.00 5.917 2.250 4.722
COLUMN MEANS 5.278 4.389 2.194

Diet 3

Diet 2

Diet 1

Time

W
ei

gh
t l

os
s

6

4

2

1 2 3
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study and run a one-way ANOVA with these average values, requesting pairwise com-
parisons. As such, this is nothing more than a one-way ANOVA, except that average 
scores for an individual are used as the dependent variable in the analysis. When you 
conduct this ANOVA, the error term used is the pooled term from the ANOVA you are 
conducting. So, it would be important to check the homogeneity of variance assump-
tion. Also, you may also wish to use the Bonferroni procedure to control the inflation 
of the type I error rate for the set of comparisons. These comparisons would involve 
the row means shown in Table 12.14.

For the within-subjects factor (here, time), pairwise comparisons may also con-
ducted, which could be considered when the main effect of this factor is significant. 
Here, it is best to use the built-in functions provided by SAS and SPSS to obtain 
these comparisons. For SPSS, these comparisons are obtained using the syntax in 
Table 12.11. For SAS, the CONTRAST command shown in and discussed under 
Table 12.1 can be used to obtain these comparisons. Note that with three levels of 
the within-subject factor in this example (i.e., the three time points), two such com-
puter runs with SAS would be needed to obtain the three pairwise comparisons. The 
Bonferroni procedure may also be used here. These comparisons would involve the 
column means of Table 12.14.

12.12.2 Simple Effects Analyses

When an interaction is present (here, time by diet), you may wish to focus on the anal-
ysis of simple effects. With this split plot design, two types of simple effects are often 
of interest. One simple effects analysis compares the effect of the treatment at each 
time point to identify when treatment differences are present. The means involved here 
are those shown for the groups in Table 12.14 for each time point of the study (i.e., 4.5, 
5.33, and 6.00 for time 1; 3.33, 3.917, and 5.917 for time 2; and so on). The second 
type of simple effects analysis is to compare the time means for each treatment group 
separately to describe the change across time for each group. In Table 12.14, these 
comparisons involve the means across time for each of the given groups (i.e., 4.5, 3.33, 
and 2.083 for diet 1; 5.55, 3.917, and 2.25 for diet 2; and so on). Note that polynomial 
contrasts could be used instead of pairwise comparisons to describe growth or decay 
across time. We illustrate pairwise comparisons later.

12.12.3 Simple Effects Analyses for the Within-Subjects Factor

A simple and intuitive way to describe the change across time for each group is to 
conduct a one-way repeated measures ANOVA for each group separately, here with 
time as the within-subjects factor. Multiple comparisons are then typically of interest 
when the change across time is significant. The top part of Table 12.15 shows the con-
trol lines for this analysis using the data shown in Table 12.12. Note that for SAS, an 
additional analysis would need to be conducted replacing CONTRAST(1) with CON-
TRAST(2) to obtain all the needed pairwise comparisons.
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 Table 12.15:  SAS and SPSS Control Lines for Simple Effects Analyses

SAS SPSS

One-Way Repeated Measures ANOVAs for Each Treatment

PROC GLM;
(1) BY diet;
MODEL wgtloss1 wgtloss2 wgt-
loss3 = / NOUNI;
(2) REPEATED time 3 CONTRAST(1) 
/SUMMARY MEAN;
RUN;

(1) SPLIT FILE SEPARATE BY 
diet.
GLM wgtloss1 wgtloss2 wgtloss3
/WSFACTOR=time 3
(3) /EMMEANS=TABLES(time)  
COMPARE ADJ(BONFERRONI)
/PRINT=DESCRIPTIVE
/WSDESIGN=time.

One-Way Between Subjects ANOVAs at Each Time Point

PROC GLM;
CLASS diet;
(4) MODEL wgtloss1 wgtloss2 
wgtloss3 = diet /;
(5) LSMEANS diet / ADJ=BON;
RUN;

(6) UNIANOVA wgtloss1 BY diet
(7) /EMMEANS=TABLES(diet)  
COMPARE ADJ(BONFERRONI)
 /PRINT=HOMOGENEITY  
DESCRIPTIVE
/DESIGN=diet.

(1) These commands are used so that separate analyses are conducted for each diet group.
(2) CONTRAST(1) will obtain contrasts in means for time 1 vs. time 2 and then time 1 vs. time 3. Re-
running the analysis using CONTRAST(2) instead of CONTRAST(1) will provide the time 2 vs. time 3 
contrast to complete the pairwise comparisons. Note these comparisons are not Bonferroni adjusted.
(3) EMMEANS requests Bonferroni-adjusted pairwise comparisons for the effect of time within each group.
(4) The MODEL statement requests three separate ANOVAS for weight at each time point.
(5) The LSMEANS line requests Bonferroni-adjusted pairwise comparisons among the diet group means.
(6) This command requests a single ANOVA for the weight loss scores at time 1. To obtain separate ANOVAs 
for times 2 and 3, this analysis needs to be rerun replacing wgtloss1 with wgtloss2, and then with 
wgtloss3.
(7) EMMEANS requests Bonferroni-adjusted pairwise comparisons for the diet groups.

Table 12.16 provides selected analysis results for the simple effects of time. The top three 
output selections (univariate results from SAS) indicate that within each treatment, mean 
weight loss changed across time. Note that the same conclusion is reached by the mul-
tivariate procedure. To conserve space, and because it is of interest, we present only the 
pairwise comparisons from the third treatment group. These results, shown in the last out-
put selection in Table 12.16 (from SPSS) indicate that in this treatment group, there is no 
difference in means between time 1 and time 2 (p = 1.0), suggesting that a similar average 
amount of weight was lost from 0 to 2 months, and from 2 to 4 months (about a 6-pound 
drop each time as shown in Table 12.14). At month 6, though, this degree of weight loss 
is not maintained, as the 3.67-pound difference in weight loss between the last two time 



 Table 12.16:  Selected Results from Separate One-Way Repeated Measures ANOVAs

Univariate Tests of Hypotheses for Within Subject Effects
diet=1

Source DF Type III SS Mean Square F Value Pr > F

Adj Pr > F

G – G H – F

Time  2 35.05555556 17.52777778 35.23 <.0001 <.0001 <.0001
Error(time) 22 10.94444444  0.49747475     

Univariate Tests of Hypotheses for Within Subject Effects
diet=2

Source DF Type III SS Mean Square F Value Pr > F

Adj Pr > F

G – G H – F

Time  2 57.16666667 28.58333333 71.19 <.0001 <.0001 <.0001
Error(time) 22  8.83333333  0.40151515     

Univariate Tests of Hypotheses for Within Subject Effects
diet=3

Source DF Type III SS Mean Square F Value Pr > F

Adj Pr > F

G – G H – F

Time  2 110.0555556 55.0277778 25.25 <.0001 <.0001 <.0001
Error(time) 22  47.9444444  2.1792929     

Pairwise Comparisonsa

Measure: MEASURE_1 

(I) time (J) time Mean Difference (I-J) Std. Error Sig.c

95% Confidence  
Interval for Differencec

Lower 
Bound

Upper 
Bound

1 2 .083 .733 1.000 -1.984 2.150
3 3.750* .664 .000 1.877 5.623

2 1 -.083 .733 1.000 -2.150 1.984
3 3.667* .333 .000 2.727 4.607

3 1 -3.750* .664 .000 -5.623 -1.877
2 -3.667* .333 .000 -4.607 -2.727

Based on estimated marginal means
* The mean difference is significant at the .050 level.
a diet = 3.00
c Adjustment for multiple comparisons: Bonferroni.
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points is statistically significant. This pattern for diet 3 is in contrast to each of the other 
groups, where the amount of average weight loss decreased across each of the time points.   

Note that with these within-subject simple effect tests, there are different options avail-
able. With the procedure we just used, for the test of time within each treatment con-
dition, the error term we used involved only those scores in a given diet group. If the 
assumption of multiple sample sphericity holds, a more powerful test can be obtained 
by pooling the separate error terms across groups. However, if this assumption is not 
satisfied, the pooled error term is not appropriate. Further, as we did in the one-way 
repeated measures design, the error term used for a pairwise comparison involved only 
those scores in a given comparison. Keppel and Wickens (2004, p. 458) note that it 
is possible to use an error term for a given comparison that pools error terms across 
the treatment groups. Such a pooled error term requires that the assumption of equal 
population variance and covariances is satisfied, which, if the case, would provide for 
a more powerful test. However, if this assumption were violated, the inferences made 
using this pooled error approach would not be appropriate. Thus, the procedure we 
illustrated is safer than using a pooled error approach but less powerful, the latter of 
which is applicable only if the relevant assumptions are satisfied.

Another choice we made involved control of the type I error rate. For the test of the 
simple effect of time in each group, we used an alpha of .05 that was not adjusted for 
the number of treatment conditions in the study (here, the three groups). So here, we 
are assuming that each simple effect test of time within a given diet group represents 
a distinct family of interest, for which an alpha of .05 would likely be used. A more 
conservative, but less powerful approach, would be to regard the set of tests here to 
represent a single family, for which the nominal overall type I error rate may be set at 
.05 / 3. Note though that for the pairwise comparisons of cell means, (as shown in the 
last output selection in Table 12.16), we used a Bonferroni adjustment to provide for 
more strict control of the type I error rate for each family. A less conservative approach 
here would be to rely on the test for the effect of time in each group to provide for type 
I error protection when comparing cell means, where no alpha adjustment would be 
used. The logic for this latter approach depends on conducting tests for cell means only 
if the test of time for the group at hand is statistically significant.

12.12.4 Simple Effects Analyses for the Between-Subjects Factor

Given the presence of the time-by-diet interaction, the second type of simple effect that 
is often of interest is to compare treatment group differences at each time point. Again, 
a simple and useful procedure is to select just those scores at a given time point and 
conduct separate one-way between-subjects ANOVAs with treatment as the factor at 
each time point. If group differences are present at a given time point, pairwise compar-
isons can be requested to pinpoint group differences. Like the procedure for the with-
in-subjects simple effects, this procedure does not use a pooled error term involving all 
of the scores. However, the procedure does use a pooled error term (from the ANOVA) 
at each time point, so it is important to determine if the homogeneity assumption is 



510        Repeated-MeasuRes analysis

reasonable for each ANOVA. Note that while it is possible to use a pooled error term 
for this analysis based on all scores (i.e., across the three time points), Maxwell and 
Delaney (2004, p. 604) note that the homogeneity assumption for this pooled error 
term (involving all scores) is likely violated when time is the within-subjects factor. 
So, again, the procedure we illustrate here is safer but less powerful than a testing pro-
cedure that, in this case, pools the error term across all cells. Also, the procedure we 
illustrate assumes that the tests of treatment group differences at each time point are 
regarded as separate families. As such, for each ANOVA the nominal alpha level we 
use is .05. If we find that group differences are present at a given time point, we use 
the Bonferroni method to provide for strict control of this family-wise error rate when 
conducting pairwise comparisons of cell means.

Table 12.15, in the lower half, provides the control lines for conducting the simple 
effect analyses associated with diet. Note that with SPSS, that syntax needs to be run 
as described after Table 12.15 for as many levels of the repeated measures factor are 
present, here, three for the three measurement occasions. Selected results of this analysis 
that focus on diet group differences at the second time point (month 4) are displayed in 
Table 12.17. The reason for displaying just these results is that the one-way ANOVA 
F test for group differences at the first time point is not statistically significant, F(2, 

 Table 12.17:  Selected Results From the One-Way Between-Subjects  
ANOVA at Month Four

Estimates

Dependent Variable: wgtloss2 

Diet Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

1.00 3.333 .378 2.565 4.102
2.00 3.917 .378 3.148 4.685
3.00 5.917 .378 5.148 6.685

Tests of Between-Subjects Effects

Dependent Variable: wgtloss2 

Source Type III Sum of Squares Df Mean Square F Sig.

Corrected Model 44.056a 2 22.028 12.866 .000
Intercept 693.444 1 693.444 405.021 .000
Diet 44.056 2 22.028 12.866 .000
Error 56.500 33 1.712
Total 794.000 36
Corrected Total 100.556 35
a R Squared = .438 (Adjusted R Squared = .404)
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Pairwise Comparisons

Dependent Variable: wgtloss2 

(I) diet (J) diet Mean Difference (I-J) Std. Error Sig.b

95% Confidence  
Interval for Differenceb

Lower 
Bound

Upper 
Bound

1.00 2.00 -.583 .534 .848 -1.931 .764
3.00 -2.583* .534 .000 -3.931 -1.236

2.00 1.00 .583 .534 .848 -.764 1.931
3.00 -2.000* .534 .002 -3.347 -.653

3.00 1.00 2.583* .534 .000 1.236 3.931
2.00 2.000* .534 .002 .653 3.347

Based on estimated marginal means
* The mean difference is significant at the .05 level.
b Adjustment for multiple comparisons: Bonferroni.

33) = 2.29, p = .12, with the same finding holding for diet group differences at the last 
time point, F(2, 33) = 0.08, p = .92. However, as Table 12.17 shows, group differences 
are present at the second time point, F(2, 33) = 12.87, p < .001. In addition, the Bonfer-
roni-adjusted pairwise comparisons as shown in Table 12.17 indicate the weight loss, 
at time 2, was greater for diet group 3 compared to the other groups. As noted, it is this 
greater weight loss for diet group 3 at time 2 that led to the time-by-diet interaction.      

12.13 ONE-BETWEEN AND TWO-WITHIN FACTORS

We consider both the univariate and multivariate analyses of a one-between and two-
within repeated measures data set from Elashoff (1981). Two groups of subjects were 
given three different doses of two drugs. There are several different questions of inter-
est in this study: Will the drugs be differentially effective for different groups? Is the 
effectiveness of the drugs dependent on dose level? Is the effectiveness of the drugs 
dependent both on dose level and on the group?

Table 12.18 shows the SAS and SPSS commands for this analysis. For the data lines, 
note that the first score is group ID; the second score is for drug 1, dose 1; the third 

DRUG

1 2

DOSE 1 2 3 1 2 3

GROUP 1 17.50 22.50 27.0 19.0 21.88 26.50
GROUP 2 19.63 22.38 24.0 26.88 28.63 33.0



 Table 12.18:  SAS and SPSS Control Lines for the One-Between and  
Two-Within Example

SAS SPSS

DATA ELAS;

INPUT gp y1 y2 y3 y4 y5 y6;

LINES;

1 19 22 28 16 26 22

1 11 19 30 12 18 28

1 20 24 24 24 22 29

1 21 25 25 15 10 26

1 18 24 29 19 26 28

1 17 23 28 15 23 22

1 20 23 23 26 21 28

1 14 20 29 25 29 29

2 16 20 24 30 34 36

2 26 26 26 24 30 32

2 22 27 23 33 36 45

2 16 18 29 27 26 34

2 19 21 20 22 22 21

2 20 25 25 29 29 33

2 21 22 23 27 26 35

2 17 20 22 23 26 28

PROC GLM;

CLASS gp;

MODEL y1 y2 y3 y4 y5 y6 = gp /NOUNI;

(1) REPEATED drug 2, dose 3;

RUN;

DATA LIST FREE/ gpid y1 y2 y3 y4 y5 y6.

BEGIN DATA.

1 19 22 28 16 26 22 2 16 20 24 30 34 36

1 11 19 30 12 18 28 2 26 26 26 24 30 32

1 20 24 24 24 22 29 2 22 27 23 33 36 45

1 21 25 25 15 10 26 2 16 18 29 27 26 34

1 18 24 29 19 26 28 2 19 21 20 22 22 21

1 17 23 28 15 23 22 2 20 25 25 29 29 33

1 20 23 23 26 21 28 2 21 22 23 27 26 35

1 14 20 29 25 29 29 2 17 20 22 23 26 28

END DATA.

GLM y1 y2 y3 y4 y5 y6 BY gpid

(1) /WSFACTOR=drug 2 dose 3

/EMMEANS=TABLES(gpid)

/EMMEANS=TABLES(drug)

/EMMEANS=TABLES(dose)

/EMMEANS=TABLES(gpid*drug)

/EMMEANS=TABLES(gpid*dose)

/EMMEANS=TABLES(drug*dose)

/EMMEANS=TABLES(gpid*drug*dose)

/PRINT=DESCRIPTIVE HOMOGENEITY

/WSDESIGN=drug dose drug*dose

/DESIGN=gpid.

(1) Note that in these lines the drug factor is indicated to have two levels and the dose factor is indicated to 
have three levels. Note that the REPEATED command in SAS is sufficient to request test results for the 
main effects of the within subjects factors and their interaction. With SPSS, these effects are specified in the 
WSDESIGN command.

score is for drug 1, dose 2; and so on. Table 12.19 provides some descriptive statistics 
for the 12 cells in the design. In Table 12.20 are the univariate test results for all seven 
effects in the study (i.e., three main effects, three 2-way interactions, and one 3-way 
interaction). Note also that use of the multivariate tests, not shown in Table 12.20, 
reach the same conclusion. In particular, the results indicate statistically significant 
main effects of group, drug, and dose, and a group-by-drug interaction. Let us examine 
why the GROUP, DRUG, DRUG*GP and DOSE effects are significant. We take the 
means from Table 12.19 and insert them into the design, yielding:   

DRUG

1 2

DOSE 1 2 3 1 2 3

GROUP 1 17.50 22.50 27.0 19.0 21.88 26.50

GROUP 2 19.63 22.38 24.0 26.88 28.63 33.0



 Table 12.19:  Means, Standard Deviations, and Cell Sizes for the One-Between and 
Two-Within Example

Descriptive Statistics

Gpid Mean Std. deviation N

y1 1.00 17.5000 3.42261 8
2.00 19.6250 3.42000 8
Total 18.5625 3.48270 16

y2 1.00 22.5000 2.07020 8
2.00 22.3750 3.24863 8
Total 22.4375 2.63233 16

y3 1.00 27.0000 2.61861 8
2.00 24.0000 2.72554 8
Total 25.5000 3.01109 16

y4 1.00 19.0000 5.34522 8
2.00 26.8750 3.75832 8
Total 22.9375 6.03842 16

y5 1.00 21.8750 5.89037 8
2.00 28.6250 4.62717 8
Total 25.2500 6.19139 16

y6 1.00 26.5000 2.92770 8
2.00 33.0000 6.84523 8
Total 29.7500 6.09371 16

 Table 12 20: Univariate Analyses from SAS GLM for One-Between and Two-Within Example

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

Drug 1 348.8437500 348.8437500 13.00 (2) 0.0029
drug*gp 1 326.3437500 326.3437500 12.16 (2) 0.0036
Error(drug) 14 375.6458333 (4) 26.8318452   

Source DF Type III SS Mean Square F Value Pr > F

Adj Pr > F

G – G H–F–L

Dose 2 758.7708333 379.3854167 36.51 <.0001 (3) <.0001 <.0001
dose*gp 2 42.2708333 21.1354167 2.03 0.1497 0.1565 0.1500
Error(dose) 28 290.9583333 (4) 10.3913690     

(Continued )

Greenhouse-Geisser Epsilon 0.8787
Huynh-Feldt-Lecoutre Epsilon 0.9949
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Source DF Type III SS Mean Square F Value Pr > F

Adj Pr > F

G – G H–F–L

drug*dose 2 12.0625000 6.0312500 0.68 0.5140 0.4724 0.4834
drug*dose*gp 2 14.8125000 7.4062500 0.84 0.4436 0.4134 0.4215
Error(drug*dose) 28 247.7916667 (4) 8.8497024     

Greenhouse-Geisser Epsilon 0.7297
Huynh-Feldt-Lecoutre Epsilon 0.7931

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

gp 1 270.0104167 270.0104167 7.09 (1) 0.0185
Error 14 532.9791667 (4) 38.0699405   

(1) Groups differ significantly at the .05 level, since .0185 < .05.
(2) & (3) The drug main effect and drug by group interaction are significant at the .05 level, while the dose 
main effect is also significant at the .05 level.
(4) Note that four different error terms are involved in this design, an additional complication with complex 
repeated-measures designs. The error terms are boxed.

 Table 12.20: (Continued)

The dose main effect is apparent in that the increases in the outcome as dose increases are 
similar for each group and for each drug type. Now, collapsing on dose, the group × drug 
means are obtained which reveal the reason for the other significant effects. This table is:

DRUG

1 2

GROUP 1 22.33 22.46
GROUP 2 22.00 29.50

Note that the mean in cell 11 (22.33) is simply the average of 17.5, 22.5, and 27, while the 
mean in cell 12 (22.46) is the average of 19, 21.88, and 26.5, and so on. It is now appar-
ent that the outlier cell mean of 29.5 is what “caused” the significance for the drug and 
group effects. For some reason drug 2 was not as effective with group 2 in inhibiting the 
response. As such, the small difference in outcome means between the two groups for drug 
1 (averaging over dose) becomes a much larger group difference for drug 2. Thus, group 
differences depend on drug. The nonsignificant 3-way interaction indicates that this pattern 
is present for each dosage level. We mentioned previously, especially in connection with 
multiple regression, how influential an individual subject’s score can be in affecting the 
results. This example shows the same type of thing, only now the outlier is a mean.
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12.14 TWO-BETWEEN AND ONE-WITHIN FACTORS

To illustrate how to run a two-between and one-within factor repeated-measures design 
we return to the example used in sections 12.11 and 12.12, where we compared the 
relative efficacy of a behavior modification approach to dieting versus a behavior mod-
ification plus exercise approach (combination treatment) on weight loss for a group of 
overweight women. There is also a control group in this study. However, we now add 
age as a between-subjects factor. One purpose for adding this variable may be to learn 
if the diet-by-time interaction obtained previously holds for (or differs across) the age 
groups. That is, the investigator wishes to determine whether age further moderates 
the effectiveness of the diet approach. In this example, we have 18 women between 20 
and 30 years old who have been randomly assigned to one of the three groups. Then, 
18 women between 30 to 40 years old have been randomly assigned to one of the three 
groups. As before, weight loss is measured 2 months, 4 months, and 6 months after the 
program begins. Schematically, the design is as follows:

GROUP AGE WGTLOSS1 WGTLOSS2 WGTLOSS3

CONTROL 20–30 YRS
CONTROL 30–40 YRS
BEH. MOD. 20–30 YRS
BEH. MOD. 30–40 YRS
BEH. MOD. + EXER. 20–30 YRS
BEH. MOD. + EXER. 30–40 YRS

Treatment and age are the two grouping or between-subjects variables and time (over 
which weight loss is measured) is the within-subjects variable. Table 12.21 shows 
the SAS and SPSS control lines for this example. Table 12.22 shows the tests for the 
between-subjects effects and the univariate tests for the within-subjects effects. (Again, 
use of the multivariate tests reaches the same conclusions.) The first output selection in 
Table 12.22, showing the tests for between-subjects effects, indicates that only the diet 
main effect is significant at the .05 level (F = 4.30, p < .023). The next output selection 
in Table 12.22 shows the univariate test results for the within-subjects effects. Using 
the Greenhouse–Geisser (G-G) results, we find that both time (F = 84.57, p ≤ .0001) 
and the diet-by-time interaction (F = 4.88, p = .0045) are significant.   

To interpret the significant effects, we can obtain the means for diet by time, collaps-
ing over the two age groups. These means are identical to those shown in Table 12.14. 
There, we saw that the diet-by-time interaction was due to the weight loss of group 3 at 
the second time point. That is, diet group 3 lost, on average, a similar amount of weight 
at time 1 and time 2, whereas the other diet groups experienced diminished weight 
loss at time 2. Note that the three-way time × diet × age interaction is not statistically 
significant at the .05 level, indicating that this two-way diet-by-time interaction holds 
across the two age groups. Thus, age does not further moderate the impact of diet 
group on weight loss.



 Table 12.21:  SAS and SPSS Control Lines for the Two-Between and  
One-Within Example

SAS SPSS

DATA weight2;
INPUT diet age y1 y2 y3;
LINES;
1 1 4 3 3
1 1 4 4 3
1 1 4 3 1
1 1 3 2 1
1 1 5 3 2
1 1 6 5 4
1 2 6 5 4
1 2 5 4 1
1 2 3 3 2
1 2 5 4 1
1 2 4 2 2
1 2 5 2 1
2 1 6 3 2
2 1 5 4 1
2 1 7 6 3
2 1 6 4 2
2 1 3 2 1
2 1 5 5 4
2 2 4 3 1
2 2 4 2 1
2 2 6 5 3
2 2 7 6 4
2 2 4 3 2
2 2 7 4 3
3 1 8 4 2
3 1 3 6 3
3 1 7 7 4
3 1 4 7 1
3 1 9 7 3
3 1 2 4 1
3 2 3 5 1
3 2 6 5 2
3 2 6 6 3
3 2 9 5 2
3 2 7 9 4
3 2 8 6 1
PROC GLM;
CLASS diet age;

DATA LIST FREE / diet age y1 y2 
y3.
BEGIN DATA.
1 1 4 3 3 1 1 4 4 3 1 1 4 3 1
11 3 2 1 1 1 5 3 2 1 1 6 5 4
1 2 6 5 4 1 2 5 4 1 1 2 3 3 2
1 2 5 4 1 1 2 4 2 2 1 2 5 2 1
2 1 6 3 2 2 1 5 4 1 2 1 7 6 3
2 1 6 4 2 1 2 3 2 1 2 1 5 5 4
2 2 4 3 1 2 2 4 2 1 2 2 6 5 3
2 2 7 6 4 2 2 4 3 2 2 2 7 4 3
3 1 8 4 2 3 1 3 6 3 3 1 7 7 4
3 1 4 7 1 31 9 7 3 3 1 2 4 1
3 2 3 5 1 3 2 6 5 2 3 2 6 6 3
3 2 9 5 2 3 2 7 9 4 3 2 8 6 1
END DATA.
GLM y1 y2 y3 BY diet age
/WSFACTOR=time 3
/PRINT=DESCRIPTIVE
/CRITERIA=ALPHA(.05)
(2)/WSDESIGN=time
(1) /DESIGN=diet age diet*age.
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 Table 12.22:  Selected SAS Output for the Two-Between and One-Within Example

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

diet 2 36.9074074 18.4537037 4.30 0.0229
age 1 0.2314815 0.2314815 0.05 0.8180
diet*age 2 0.7962963 0.3981481 0.09 0.9117
Error 30 128.8333333 4.2944444   

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS
Mean 

Square F Value Pr > F

Adj Pr > F

G – G H–F–L

Time  2 181.3518519 90.6759259 84.57 <.0001 <.0001 <.0001
time*diet  4  20.9259259 5.2314815  4.88 0.0018 0.0045 0.0039
time*age  2  1.7962963 0.8981481  0.84 0.4377 0.4128 0.4172
time*di-
et*age

 4  1.5925926 0.3981481  0.37 0.8282 0.7810 0.7894

Error(time) 60  64.3333333 1.0722222

Greenhouse-Geisser Epsilon 0.7775
Huynh-Feldt-Lecoutre Epsilon 0.8122

SAS SPSS

(1) MODEL y1 y2 y3 = diet age 
diet*age /NOUNI;
(2)REPEATED time 3;
RUN;

(1) The MODEL (SAS) and DESIGN (SPSS) statements specify that weight loss is a function of the two 
between-subjects factors and their interaction.
(2) The REPEATED (SAS) and WSDESIGN (SPSS) statements incorporate the effect of time into the model 
as well as its associated interactions.

12.15 TWO-BETWEEN AND TWO-WITHIN FACTORS

This is a very complex design, an example of which appears in Bock (1975, pp. 483–
484). The data was from a study by Morter, who was concerned about the comparabil-
ity of the first and second responses on the form definiteness and form appropriateness 
variables of the Holtzman Inkblot procedure for a preadolescent group of subjects. The 
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two between factors are grade level (4 and 7) and IQ (high and low), with these two 
factors being crossed. The two within-subjects factors are form and time, where each 
subject completed both forms at each of the two times. The schematic layout for the 
design is given at the bottom of Table 12.23, which also gives the syntax for running 
the analysis with SPSS, along with the data.

It may be quite helpful for you to compare the control lines for this example with those 
for the one-between and two-within example in Table 12.18, as they are quite similar. The 
main difference here is that there is an additional between variable, hence an additional 
factor after the keyword BY in the GLM command and three between-subjects effects in the 
DESIGN subcommand. You are referred to Bock (1975) for an interpretation of the results.

12.16 TOTALLY WITHIN DESIGNS

There are research situations where the same subjects are measured under various 
treatment combinations, that is, where the same subjects are in each cell of the design. 

 Table 12.23:  Control Lines for the Two-Between and Two-Within Repeated 
Measures Example on SPSS

TITLE ‘Two Between and Two Within’.
DATA LIST FREE/grade iq fd1 fd2 fa1 fa2.
BEGIN DATA.
1 1 2 1 0 2 1  1  −7  −2  −2  −5 1  1  −3  −1  −3  −1
1  1  1  1  0  −3 1  1  1  −1  −4  −2 1  1  −7  1  −4  −3
1  2  0  −4  −9  −7 1  2  −1  −9  −9  −4 1  2  −6  −6  3  −4
1  2  −2  −4  −4  −5 1  2  −2  −1  −3  −3 1  2  −9  −9  −3  1
2  1  3  4  2  −3 2  1  −1  −1  −3  −3 2 1 2 2 2 0
2  1  2  0  −2  0 2  1  0  −1  2  2 2  1  3  3  −4  −2
2  1  −1  2  2  −1 2  1  −3  −2  3  −2
2  2  −3  −2  5  2 2  2  2  3  −2  −3 2 2 2 4 1 3
2  2  3  2  −5  −5 2  2  −4  −3  −3  −3 2  2  6  4  −9  −9
2  2  2  1  −3  0 2  2  −1  −4  −2  0 2  2  −2  −1  2  −2
2  2  −2  4  −1  0
END DATA.

LIST.
(1) GLM fd1 fd2 fa1 fa2 BY grade iq
/WSFACTOR = form 2 time 2

(2) /WSDESIGN = form time form*time
/PRINT DESCRIPTIVE HOMOGENEITY
/DESIGN = grade iq grade*iq.

(1) FORM FD FA

TIME 1 2 1 2
GRADE 4 HI IQ

LOW IQ
GRADE 7 HI IQ

LOW IQ
(2) As seen in the other examples, WSDESIGN specifies the within-subjects effects to be tested 
and DESIGN specifies the between-subjects effects to be tested.
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This may be particularly the case when few subjects are available. We consider three 
examples to illustrate.

Example 12.3
A researcher in child development is interested in observing the same group of preschool 
children (all 4 years of age) in two situations at two different times (morning and after-
noon) of the day. She is concerned with the extent of their social interaction, and will 
measure this by having two observers independently rate the amount of social interaction. 
The average of the two ratings will serve as the dependent variable. The within-subjects 
factors here are situation and time of day. There are four scores for each child: social inter-
action in Situation 1 in the morning and afternoon, and social interaction in Situation 2 in 
the morning and afternoon. We denote the four scores by Y1, Y2, Y3, and Y4.

Such a totally within repeated-measures design is easily set up with SPSS GLM. The 
control lines are given here:   

TITLE ‘Two Within Design’.
DATA LIST FREE/y1 y2 y3 y4.
BEGIN DATA.
DATA LINES
END DATA.
GLM y1 y2 y3 y4
/WSFACTOR = sit 2 time 2
/WSDESIGN = sit time sit*time
/PRINT DESCRIPTIVE.

Note in this example that only univariate tests will be printed out by SPSS for all three 
effects. This is because there is only 1 degree of freedom for each effect, and hence 
only one transformed variable for each effect.

Example 12.4
Suppose in an ergonomic study we are interested in the effects of day of the work week 
and time of the day (AM or PM) on various measures of posture. We select 30 com-
puter operators, and for this example we consider just one measure of posture called 
shoulder flexion. We then have a two-factor totally within design that looks as follows:

Monday Wednesday Friday

AM PM AM PM AM PM

1
2
3
.
.
.
30
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Example 12.5
A social psychologist is interested in determining how self-reported anxiety level for 
35- to 45-year-old men varies as a function of situation, who the men are with, and 
how many people are involved. A questionnaire will be administered to 20 such men, 
asking them to rate their anxiety level (on a Likert scale from 1 to 7) in three situations 
(going to the theater, going to a football game, and going to a dinner party), with pri-
marily friends and primarily strangers, and with a total of 6 people and with 12 people. 
Thus, the men will be reporting anxiety for 12 different contexts. This is a three-within, 
crossed repeated-measures design, where situation (three levels) is crossed with the 
nature of the group (two levels) and with the number in the group (two levels).

12.17  PLANNED COMPARISONS IN REPEATED- 
MEASURES DESIGNS

Planned orthogonal comparisons can also be easily set up in SPSS for repeated-measures 
designs. To illustrate, we consider the setup of Helmert contrasts for a single group repeat-
ed-measures design with data again from Bock (1975). The study involved the effect of 
three drugs on the duration of sleep of 10 mental patients. The drugs were given orally 
on alternate evenings, and the hours of sleep were compared with an intervening control 
night. Each of the drugs was tested a number of times with each patient. Thus, there are 
four levels for treatment: the control condition and the three drugs. The first drug (Level 
2) was of a different type from the other two, which were of a similar type. Therefore, 
Helmert contrasts are appropriate. SPSS syntax for this analysis is shown in Table 12.24 
and selected results appear in Table 12.25. The top output selection in Table 12.25 indi-
cates that the first two Helmert contrasts are significant at the .05 level (which would 

 Table 12.24:  SPSS Syntax for Helmert Contrasts in a Single-Group  
Repeated-Measures Design

TITLE ‘Helmert Contrasts For Repeated Measures’.
DATA LIST FREE/y1 y2 y3 y4.
BEGIN DATA.
.6 1.3 2.5 2.1 3 1.4 3.8 4.4 4.7 4.5 5.8 4.7
6.2 6.1 6.1 6.7 3.2 6.6 7.6 8.3 2.5 6.2 8 8.2
2.8 3.6 4.4 4.3 1.1 1.1 5.7 5.8 2.9 4.9 6.3 6.4
5.5 4.3 5.6 4.8
END DATA.
LIST.
GLM y1 y2 y3 y4
(1) /WSFACTOR=Drug 4 Helmert
   /METHOD=SSTYPE(3)
(2)  /PRINT=DESCRIPTIVE TEST(MMATRIX)
     /WSDESIGN=Drug.

(1) Helmert requests the Helmert contrasts.
(2) TEST(MMATRIX) will output the contrast coefficients.



521ChapteR 12       

also hold if a Bonferroni-adjusted alpha were applied to the analysis). The second output 
selection shows the contrast coefficients for this analysis that can be used to test the grand 
mean (which is not of interest), and the last output selection shows the Helmert contrast 
coefficients. For readers of previous editions of this text, the coefficients here are not 
orthonormalized by SPSS so they are not the same as the coefficients shown in previous 
editions, although the test results are not affected by this transformation.         

 Table 12.25:  Selected Results for the Helmert Contrasts

Tests of Within-Subjects Contrasts

Measure: MEASURE_1 

Source Drug Type III Sum of Squares df Mean Square F Sig.

Drug Level 1 vs. Later 32.400 1 32.400  8.776 .016
Level 2 vs. Later 24.806 1 24.806 15.222 .004
Level 3 vs. Level 4 .001 1  .001    .003 .959

Error(Drug) Level 1 vs. Later 33.227 9  3.692
Level 2 vs. Later 14.666 9  1.630
Level 3 vs. Level 4 3.289 9  .365

Average
Measure: MEASURE_1
Transformed Variable: AVERAGE

Y1 .250
Y2 .250
Y3 .250
Y4 .250

Druga

Measure: MEASURE_1 

Dependent Variable

Drug

Level 1 vs. Later Level 2 vs. Later Level 3 vs. Level 4

Y1 1.000 .000 .000
Y2 –.333 1.000 .000
Y3 –.333 –.500 1.000
Y4 –.333 –.500 –1.000
a The contrasts for the within subjects factors are:
Drug: Helmert contrast

There is an important additional point to be made regarding planned comparisons with 
repeated-measures designs. If SPSS GLM syntax were used to set up nonorthogonal 
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contrasts, SPSS will orthogonalize them, which is not desirable. This leads us to con-
sider nonorthogonal contrasts in SPSS, which require the use of the SPSS MANOVA 
procedure, along with a TRANSFORM statement, as we will see.

12.17.1 Nonorthogonal Contrasts in SPSS

In previous editions of this text we simply referred readers to Appendix B, which pro-
vides additional information about these contrasts and is directly from SPSS. However, 
it is helpful to provide some elaboration here. It is important to note, as SPSS points out, 
that SPSS is structured so that orthogonal contrasts are needed in repeated measures to 
obtain proper overall test results. However, for nonorthogonal contrasts, the contrasts 
obtained by the repeated measures commands do not obtain the correct results. Let us 
consider an example to illustrate. This example, which involves nonorthogonal con-
trasts, will be run as repeated measures AND in a way that preserves the nonorthogonal-
ity of the contrasts. The control lines for each analysis are given in Table 12.26.

When nonorthogonal contrasts are run using repeated measures syntax, as on the left 
side of Table 12.26, they are transformed into orthogonal contrasts so that the multi-
variate test is correct. To see what contrasts the program is actually testing one MUST 
refer to the transformation matrix. SPSS warns of this:

MANOVA automatically orthonormalizes contrast matrices for WSFACTORS. If 
the special contrasts that were requested are nonorthogonal, the contrasts actually 
fitted are not the contrasts requested. See the transformation matrix for the actual 
contrasts fitted. (Nichols, 1993, n.p.)

Note that in the correct syntax, any reference to repeated measures is removed, such 
as WSFACTOR, WSDESIGN, and ANALYSIS(REPEATED). In addition, the TRANS-
FORM=SPECIAL replaces the CONTRAST(drugs)=SPECIAL statement that is 
used in the incorrect syntax. In the incorrect syntax, the contrasts we requested are 
transformed into an orthogonal set, as this matrix of contrast coefficients suggests:

T1 T2 T3 T4

Y1 .500  .254  .828  .000
Y2 .500 −.085 −.276  .816
Y3 .500  .592 −.483 −.408
Y4 .500 −.761 −.069 −.408

In contrast, with the correct syntax, SPSS uses the coefficients we input, as shown:

T1 T2 T3 T4

Y1 1.000  1.000 1.000  .000
Y2 1.000  1.000 −.500 1.000
Y3 1.000 −1.000 −.500 −.500
Y4 1.000 −1.000  .000 −.500
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With either syntax, the multivariate test is the SAME in both cases (F = 5.53737, 
p = .029). However, the univariate tests for the three contrasts, T2, T3, and T4 (i.e., 
the transformed variables), using the proper syntax are respectively F = 16.86253, 
7.35025, and 15.22245, each of which is significant at the .05 level. The test statistics 
(t tests) for the contrasts obtained by use of the incorrect syntax are not proper and in 
this case lead to different conclusions.

Also, it is very important that separate error terms are used for testing each of the 
planned comparisons for significance. Boik (1981) showed that for even a very slight 
deviation from sphericity (ϵ = .90), the use of a pooled error term can result in a type 
I error rate quite different from the level of significance. For ϵ = .90 Boik showed, if 
testing at α =.05, that the actual alpha for single degree of freedom contrasts ranged 
from .012 to .097. In some cases, the pooled error term will underestimate the amount 
of error and for other contrasts the error will be overestimated, resulting in a conserv-
ative test. Fortunately, SPSS provides separate error terms for the contrasts (for exam-
ple, see the mean square errors in the first output selection of Table 12.25). Thus, the 
SPSS syntax presented here uses proper error terms for contrasts, whether the contrasts 
are orthogonal or nonorthogonal.

12.18 PROFILE ANALYSIS

In profile analysis the interest is in comparing the performance of two or more groups 
on a battery of test scores (interest, achievement, personality). It is assumed that the 
tests are scaled similarly or that they are commensurable. In profile analysis there are 
three questions that may be asked of the data in the following order:

1. Are the profiles parallel? If the answer to this is yes for two groups, it would imply 
that one group scored uniformly better than the other on all variables, assuming 
group differences are present, which leads to the next question.

2. If the profiles are parallel, then are they coincident? In other words, did the groups 
score the same on each variable?

3. If the profiles are coincident, then is the profile level or what is also called flat? In 
other words, are the means on all variables equal to the same constant?

Next, Figure 12.3 shows hypothetical examples of parallel and nonparallel profiles, 
with the variables representing achievement in different content areas.

If the profiles are not parallel, then there is a group-by-variable interaction. That is, 
how much better one group does than another depends on the variable.

Why is it necessary that the tests be scaled similarly in order to have the results of 
a profile analysis meaningfully interpreted? To illustrate, suppose we compared two 
groups on three variables, A, B, and C, two of which were on a 1 to 5 scale and the 
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other on a 1 to 30 scale, that is, not scaled similarly. Suppose the graph in Figure 12.4 
resulted, suggesting nonparallel profiles.

But the nonparallelism is a scaling artifact. The magnitude of superiority of group 1 
for Test A is 1/5, which is exactly the same order of superiority on Test C, 6/30 = 1/5. 
A way of dealing with this problem if the tests are scaled differently is to first con-
vert to some type of standard score (e.g., z or T) before proceeding with the profile 
analysis.

We now consider the running and interpretation of a profile analysis using SPSS, with 
some data from Johnson and Wichern (1988), which is available online.

 Figure 12.3:  Examples of parallel and nonparallel profiles.

Parallel Non-parallel

5th Graders

4th Graders
Middle SES

Low SES

Math Science English History Computations Concepts
(In mathematics)

Application

 Figure 12.4:  Nonparallel profiles resulting from different scales used for variables A, B, and C.

A B C

1

6
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Example 12.6
In a study of love and marriage, a sample of married men and women (not from the 
same couple) were asked to respond to the following questions:

1. What is the level of passionate love you feel for your partner?
2. What is the level of passionate love that your partner feels for you?
3. What is the level of companionate love that you feel for your partner?
4. What is the level of companionate love that your partner feels for you?

The responses to all four questions were on a Likert-type scale from 1 (none at all) to 
5 (a tremendous amount). We wish to determine whether the profiles for the men and 
women are parallel. There were 30 men and 30 women who responded. The control 
lines for running the analysis on SPSS are given in Table 12.27.

The multivariate test of parallelism appears in Table 12.28 and is the test for the 
dv-by-sex interaction. Here, we see that this test shows that parallelism is tenable 
at the .01 level, because the probability of .057 is greater than .01. Now, it is mean-
ingful to proceed to the second question in profile analysis, and ask whether the 
profiles are coincident. The test for this is provided in the second output selection 
of Table 12.28 and shows that the profiles can be considered coincident, that is, 
the same, as p = .196. Given that we have concluded that the profiles are the same, 
it is reasonable to ask whether the participants scored the same on all four tests, 
that is, the question of equal scale means. The multivariate test for equal scale 
means, appearing in the first output selection of Table 12.28, which is the test for 
dv pooling across groups, indicates this is not tenable (p < .001). The relevant 

 Table 12.27:  Control Lines for Profile Analysis of Participant Ratings

TITLE ‘Profile Analysis On Participant Ratings’.
DATA LIST FREE/sex passyou passpart compyou comppart.
BEGIN DATA.

DATA LINES
END DATA.
GLM passyou passpart compyou comppart BY sex
(1) /WSFACTOR=dv 4 Repeated
    /PLOT=PROFILE(dv*sex)
    /EMMEANS=TABLES(sex)
    /EMMEANS=TABLES(dv)
    /EMMEANS=TABLES(sex*dv)
    PRINT=DESCRIPTIVE
    /WSDESIGN=DV
    /DESIGN=sex.

(1) The Repeated statement sets up contrasts between the first and second dependent variables, then the 
second and third dependent variables, and then the third and fourth dependent variables.
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 Table 12.28:  Selected Output From Profile Analysis

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.

Dv Pillai’s Trace .303 8.115b 3.000 56.000 .000
Wilks’ Lambda .697 8.115b 3.000 56.000 .000
Hotelling’s Trace .435 8.115b 3.000 56.000 .000
Roy’s Largest Root .435 8.115b 3.000 56.000 .000

dv * sex Pillai’s Trace .125 2.660b 3.000 56.000 .057
Wilks’ Lambda .875 2.660b 3.000 56.000 .057
Hotelling’s Trace .143 2.660b 3.000 56.000 .057
Roy’s Largest Root .143 2.660b 3.000 56.000 .057

a Design: Intercept + sex
Within Subjects Design: dv
b Exact statistic

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Source Type III Sum of Squares Df Mean Square F Sig.

Intercept 1066.817 1 1066.817 6843.359 .000
Sex .267 1     .267     1.711 .196
Error 9.042 58     .156

Measure: MEASURE_1

Dv Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

1 3.867 .094 3.678 4.055
2 4.050 .094 3.863 4.237
3 4.483 .075 4.333 4.634
4 4.467 .077 4.312 4.621

means, shown in the third output selection, suggest that the participants generally 
scored higher on the latter two variables. The contrasts for dv shown in the last 
output selection of Table 12.28 support this judgment as the contrast between the 
second and third variables (passpart and compyou) is statistically significant 
(p = .001).         
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source Dv Type III Sum of Squares df
Mean 
Square F Sig.

Dv Level 1 vs. 
Level 2

2.017 1 2.017 2.912 .093

Level 2 vs. 
Level 3

11.267 1 11.267 12.948 .001

Level 3 vs. 
Level 4

.017 1 .017 .212 .647

dv * sex Level 1 vs. 
Level 2

.817 1 .817 1.179 .282

Level 2 vs. 
Level 3

.267 1 .267 .306 .582

Level 3 vs. 
Level 4

.417 1 .417 5.292 .025

Error(dv) Level 1 vs. 
Level 2

40.167 58 .693

Level 2 vs. 
Level 3

50.467 58 .870

Level 3 vs. 
Level 4

4.567 58 .079

12.19 DOUBLY MULTIVARIATE REPEATED-MEASURES DESIGNS

In this section we consider a complex, but, not unusual in practice, repeated-measures 
design, in which the same subjects are measured on several variables at each point in 
time, or on several variables for each treatment or condition, when treatment is a with-
in-subjects factor. The following are three examples:

1. We are interested in tracking elementary school children’s achievement in math 
and reading, and we have their standardized test scores obtained in grades 2, 4, 6, 
and 8. Here we have data for two variables, each measured at four points in time.

2. As a second example of a doubly multivariate problem, suppose we have 53 sub-
jects measured on five types of tests on three occasions. In this example, there are 
also two between variables (group and gender).

3. A study by Wynd (1992) investigated the effect of stress reduction in preventing 
smoking relapse. Subjects were randomly assigned to an experimental group 
or control group. They were then invited to three abstinence-booster sessions 
(three-part treatment) provided at 1-, 2-, and 3-month intervals. After each of 
these sessions, they were measured on three variables: imagery, stress, and 
smoking rate.
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Why are the data from the three situations considered to be doubly multivariate? Recall 
from Chapter 4 that we defined a multivariate problem as one involving several corre-
lated dependent variables. In these cases, the problem is doubly multivariate because 
there is a correlational structure within each measure and a different correlational 
structure across the measures. For item 1, the children’s scores on math ability will be 
correlated across the grades, as will their verbal scores, but, in addition, there will be 
some correlation between their math and verbal scores.

12.20 SUMMARY

1. Repeated-measures designs are much more powerful than completely randomized 
designs, because the variability due to individual differences is removed from the 
error term, and individual differences are the major reason for error variance.

2. Two major advantages of repeated-measures designs are increased precision 
(because of the smaller error term), and the fact that many fewer subjects are 
needed than in a completely randomized design. Two potential disadvantages are 
that the order of treatments may make a difference (this can be dealt with by coun-
terbalancing) and carryover effects.

3. Either a univariate or a multivariate approach can be used for repeated- measures 
analysis. The assumptions for a single-group univariate repeated-measures anal-
ysis are (a) independence of the observations, (b) multivariate normality, and  
(c) sphericity (also called circularity). For the multivariate approach, the first two 
assumptions are still needed, but the sphericity assumption is not needed. Spheric-
ity requires that the variances of the differences for all pairs of repeated measures 
be equal. Although statistical tests of sphericity exist, they are not recommended.

4. Under a violation of sphericity the type I error rate for the univariate approach is 
inflated. However, a modified (adjusted) univariate approach, obtained by multi-
plying each of the degrees of freedom by ε̂, yields an honest type I error rate.

5. Because both the modified (Greenhouse–Geisser adjusted) univariate approach 
and the multivariate approach control the type I error rate, the choice between 
them can be made on the basis of the power of the tests. The multivariate test 
probably should be avoided when n<k + 10, because under this condition its power 
will tend to be low. When sphericity is violated, research suggests that when N is 
moderately large the multivariate approach may generally provide more power. 
It is difficult to know, though, at what point N becomes sufficiently large. So, if 
power is the criterion you are using to make this decision, it seems reasonable to 
consider both tests, because they may differ in the effects they will detect.

6. If the sphericity assumption is tenable, then a Tukey procedure is a good post hoc 
technique for locating significant pairwise differences. If the sphericity assump-
tion is violated, as may often be the case, the Bonferroni approach should be used. 
That is, do multiple correlated t tests, but use the Bonferroni inequality to keep the 
overall alpha level under control.

7. When several groups are involved, then an additional assumption is multisample 
sphericity, which states that the sphericity assumption is satisfied for each level of 
the between-subjects factor and that the population variance-covariance matrix of the 
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repeated measures is the same across the groups. The overall tests are robust to viola-
tions of this second assumption provided that group sizes are similar. Violations of the 
first assumption are generally more problematic, which is the basis for recommending 
use of the Greenhouse–Geisser and/or multivariate tests for the within-subjects effects.

8. Designs with only within-subject factors are fairly common in certain areas of 
research. These are designs where the same subjects are involved in every treatment 
combination or in each situation. Totally within designs are easily set up on SPSS.

9. In testing contrasts with repeated-measures designs it is imperative that separate error 
terms be used for each contrast, because Boik (1981) showed that if a pooled error term 
is used the actual alpha will be quite different from the presumed level of significance.

10. In profile analysis we are comparing two or more groups of subjects on a battery of 
tests. It is assumed that the tests are scaled similarly. If they are not, then the scores 
must be converted to some type of standard score (e.g., z or T) for the analysis to 
be meaningful. Nonparallel profiles means there is a group-by- variable interac-
tion; that is, how much better one group does than another depends on the variable.

12.21 EXERCISES

1. in the multivariate analysis of the drug data we stated that H0 : μ1 = μ2 = μ3 = μ4 is 
equivalent to saying that μ1 − μ2 = 0 and μ2 − μ3 = 0 and μ3 − μ4 = 0. show this is true.

2. Consider the following data set from a single-sample repeated-measures 
design with three repeated measures:

Treatments

Ss 1 2 3

1 5 6 1
2 3 4 2
3 3 7 1
4 6 8 3
5 6 9 3
6 4 7 2
7 5 9 2

(a) do a univariate repeated-measures analysis by hand (i.e., using a calcula-
tor), using the procedure employed in the text. do you reject at the .05 level?

(b) do a multivariate repeated-measures analysis by hand with the following 
difference variables: y1 − y2 and y2 − y3.

(c) Run the data on sas or spss, obtaining both the univariate and multivar-
iate results, to check the answers you obtained in (a) and (b).

(d) note the sas and spss uses polynomial transformations as the default 
for this analysis, whereas you used a difference score transformation in 
letter (b). yet, the same multivariate F is obtained in each case. What point 
that we mentioned in the text does this illustrate?
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(e) use the Bonferroni procedure at the .05 level to determine which pairs of 
treatments differ.

3. a school psychologist is testing the effectiveness of a stress management 
approach in reducing the state and trait anxiety for college students. the 
subjects are pretested and matched on these variables and then randomly 
assigned within each pair to either the stress management approach or to a 
control group. the following data are obtained:

Stress management Control

Pairs State Trait State Trait

1 41 38 46 35
2 48 41 47 50
3 34 33 39 36
4 31 40 28 38
5 26 23 35 19
6 37 31 40 30
7 44 32 46 45
8 53 47 58 53
9 46 41 47 48
10 34 38 39 39
11 33 39 36 41
12 50 45 54 40

(a) test at the .05 level, using the multivariate matched pairs analysis, wheth-
er the stress management approach was successful.

(b) Which of the variables are contributing to multivariate significance?

4. suppose that in the elashoff drug example the two groups of subjects had 
been given the three different doses of two drugs under two different con-
ditions. then we would have a one-between and three-within design. set up 
schematically the appropriate repeated measures design. What modifications 
in the control lines from table 12.18 would be necessary to run this analysis? 
(spss users can ignore the eMMeans lines.)

5. the extent of the departure from the sphericity assumption can be measured by

ε =
-( )

-( ) - +( )∑∑ ∑
k s s

k s k s k s

ii

ij
i

i

2 2

2 2 2 21 2
,

where

s  is the mean of all entries in the covariance matrix S

sii  is the mean of entries on main diagonal of S

si  is the mean of all entries in row i of S
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sij  is the ijth entry of S

Find ε̂ for the following covariance matrix:

S =
















=( )
4 3 2

3 5 2

2 2 6

answer .82ε

6. trend analysis was run using data from potthoff and Roy (1964). it consists of 
growth measurements for 11 girls (coded as 1) and 16 boys at ages 8, 10, 12, 
and 14. since some of the data is suspect (as the sas manual notes), we have 
deleted observations 19 and 20 before running the analysis. Following is part 
of the spss printout that seeks to identify if there are any trend differences 
between girls and boys as well as any significant overall trends:

Descriptive Statistics

Gp Mean Std. deviation N

y1 1.00 21.1818 2.12453 11
2.00 22.7857 2.61441 14
Total 22.0800 2.49867 25

y2 1.00 22.2273 1.90215 11
2.00 24.2143 1.95836 14
Total 23.3400 2.14437 25

y3 1.00 23.0909 2.36451 11
2.00 25.4286 2.40078 14
Total 24.4000 2.61805 25

y4 1.00 24.0909 2.43740 11
2.00 27.7143 2.11873 14
Total 26.1200 2.87692 25

   
Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source Year
Type III sum 
of squares df

Mean 
square F Sig.

year Linear 201.708 1 201.708 84.319 .000
Quadratic 1.015 1 1.015 1.086 .308
Cubic .792 1 .792 .942 .342

year × gp Linear 12.652 1 12.652 5.289 .031
Quadratic 1.255 1 1.255 1.343 .258
Cubic .288 1 .288 .343 .564

Error(year) Linear 55.020 23 2.392
Quadratic 21.485 23 .934
Cubic 19.350 23 .841
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(a) are there any significant (at the .05 level) interactions (linear by gender, 
etc.)?

(b) are there any significant (at .05) year effects?

7. Consider the following covariance matrix:

=S

y

y

y

1

2

3

y y y

=

1 2 3

3

1.0 .5 1.5

.5 3.0 2.5

1.5 2.5 5.0

















Calculate the variances of the three difference variables: y1 − y2, y1 − y3, and 
y2 − y3. note that the formula for the variance of the difference scores for the 
ith and jth repeated measures is S2

i – j = Si
2 + Sj

2 – 2Sij, where Si
2 is the variance for 

variable i and Sj
2 is the variance for variable j and sij  is their covariance. What 

do you think ε̂ will be equal to in this case?

8. Consider the following real data, where the dependent variable is the Beck 
depression score:

WINTER SPRING SUMMER FALL

1 7.50 11.55 1.00 1.21
2 7.00 9.00 5.00 15.00
3 1.00 1.00 .00 .00
4 .00 .00 .00 .00
5 1.06 .00 1.10 4.00
6 1.00 2.50 .00 2.00
7 2.50 .00 .00 2.00
8 4.50 1.06 2.00 2.00
9 5.00 2.00 3.00 5.00
10 2.00 3.00 4.21 3.00
11 7.00 7.35 5.88 9.00
12 2.50 2.00 .01 2.00
13 11.00 16.00 13.00 13.00
14 8.00 10.50 1.00 11.00

(a) Run this on spss or sas as a single group repeated measures. is it signif-
icant at the .05 level, assuming sphericity?

(b) is the adjusted univariate test significant at the .05 level?

(c) is the multivariate test significant at the .05 level?

9. Marketing researchers are conducting a study to evaluate both consumer 
beliefs and the stability of those beliefs about the following three brands of 
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toothpaste: Crest, Colgate, and arm & hammer. the beliefs to be assessed are 
(1) good taste and (2) cavity prevention. they also wish to determine the extent 
to which the beliefs are moderated by sex and by age (20–35, 36–50, and 51 
and up). the subjects will be asked their beliefs at two points in time separated 
by a 2-month interval.

(a) set up schematically the appropriate repeated-measures design.

(b) show the syntax needed to run the analysis using spss GlM (including 
the data step) and/or sas pROC GlM (including the input lines).

10. Consider the following data for a single group repeated-measures 
design:

k = 4, n = 8, ε = .70, α = .05
(a) Find the degrees of freedom for the unadjusted univariate test, the Green-

house–Geisser test, and the conservative test.

(b) suppose there were no true differences in means and that an investigator 
had obtained F = 3.29 for this case and used the unadjusted test. What type 
of error would he make?

(c) suppose there are real mean differences and a different investigator in a 
replication study had obtained F = 4.03 and applied the conservative test. 
What type of error would he make?

11. a researcher is interested in the smoking behavior of a group of 30 pro-
fessional men, 10 of whom are 30–40 years of age, 10 are 41–50, and the 
remaining 10 are 51–60. she wishes to determine whether how much they 
smoke is influenced by the time of day (morning or afternoon) and by 
context (at home or in the office). the men are observed in each of the 
four situations and the number of cigarettes smoked is recorded. she also 
wishes to determine whether the age of the men influences their smoking 
behavior.

(a) What type of repeated-measures design is this?

(b) show the spss and/or sas syntax needed to obtain the overall test results 
(including the data step in spss and the input step in sas).

12. Find an article from one of the better journals in your content area from within 
the last 5 years that used a repeated-measures design. answer the following 
questions:

(a) What type (in terms of between and within factors) of design was used?

(b) did the authors do a multivariate analysis?

(c) did the authors do a univariate analysis? Was it the unadjusted or adjusted 
univariate test?

(d) Was any mention made of the relative power of the adjusted univariate 
versus multivariate approach?
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Chapter 13

HIERARCHICAL LINEAR  
MODELING

13.1 INTRODUCTION

In the social sciences, nested data structures are very common. As Burstein (1980) 
noted, “much of what goes on in education occurs within some group context” (p. 158). 
Nested data (which can yield correlated observations) occurs whenever participants 
are clustered together in groups, as is frequently found in social science research. For 
example, students in the same school will typically be more alike than students from 
different schools. Responses of clients to counseling for those clients clustered together 
in therapy groups will depend to some extent on the group dynamics, resulting in a 
within-therapy group dependency (Kreft & de Leeuw, 1998). Yet, a key inferential 
assumption made in virtually any statistical technique (including regression, ANOVA, 
etc.) used in the social sciences (and covered in this text) is that the observations are 
independent.

Kenny and Judd (1986) noted that while nonindependence is commonly treated as a 
nuisance, there are still “many occasions when nonindependence is the substantive 
problem that we are trying to understand in psychological research” (p. 431). These 
authors refer to researchers interested in studying social interaction. Kenny and Judd 
note that social interaction by definition implies nonindependence. If a researcher is 
interested in studying social interaction, or behavior that occurs in various settings or 
contexts, the inherent nonindependence is not so much a statistical problem to be sur-
mounted as a focus of interest.

Figure 13.1 provides a general depiction of a two-level nested design, where such 
dependence is often present. The lower or first level comprises the participants, each 
of which is a member of or belongs to only one cluster. Within each cluster are n par-
ticipants (which may vary across clusters), and N refers to the number of clusters in the 
design. Examples of such two level designs include employees within workplaces, sol-
diers within military units, households within neighborhoods, and even citizens within 
nations. These scenarios, as well as students nested within schools and clients within 
therapy groups, are examples of two-level designs.
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Such clustering or nestedness does not always involve just two levels. A commonly 
encountered three-level design found in educational research involves students (level 
one) nested within classrooms (level two), clustered within schools (level three). Indi-
viduals (level one) are nested within families (level two) that are clustered in neighbor-
hoods (level three). Clients (level one) are frequently counseled in groups (level two) 
that are clustered within counseling centers (level three). There is an endless list of 
such groupings. When data are clustered in these ways, the use of multilevel modeling 
is often needed to provide accurate statistical inference.

Although nested data may suggest use of multilevel modeling, a key consideration is 
the nature of the clustering or grouping variable. If participants are nested or grouped 
in what is considered to be a fixed factor, then traditional analysis may be appropri-
ate. A fixed factor may be thought of as one where if a replication study were to be 
done, the same levels of that factor would be included in the study. A classic example 
is a two-group or multiple-group experimental design, where traditional analysis of 
variance (ANOVA) may be used. In this case, treatment group membership is almost 
always considered to be a fixed factor, so that if the study were replicated, the same set 
of treatment conditions would be implemented. Note that there is no consideration that 
the treatment conditions represent a sample from a population of conditions that could 
have been included in the study. Rather, all the conditions of interest are included in 
the study.

Consider, however the nature of the participants included in the standard experimental 
design. If a replication study were conducted, a different set of participants would 
likely be included in the study. That is, the participants are thought to represent a 
sample from a larger population of interest. Participants, thus, are considered to be 
a random factor. In the traditional experimental design, then, one random factor is 
included (often individuals), and one or more fixed factors of interest (e.g., treatment 
conditions, gender) are included.

The key for recognizing the need for multilevel analysis is that such analysis is often 
needed when two or more factors in the design are considered to be random factors. 
For example, with students nested in schools, both students and schools are likely to be 
considered as random factors, so that if the study were replicated, a different set of stu-
dents and schools would be included (or sampled) in the study. Stated in another way, 
both students and schools may be considered as representing a larger population of 
students and schools, respectively. For clients nested within each of many therapists, 

Clusters ...

Participants         1 2 3 ... n    1 2 3 ... n    1 2 3 ... n    1 2 3  ... n    1 2 3 ... n      ...        1 2 3 ... n

N54321

 Figure 13.1: General depiction of a two-level design, with participants nested in clusters.
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both clients and therapists may be considered as random factors, as would employees 
and workplaces in a study involving, for example, factors affecting worker productiv-
ity. Thus, it is the inclusion of multiple random factors in a research design that signals 
the need for multilevel analysis.

13.2  PROBLEMS USING SINGLE-LEVEL ANALYSES  
OF MULTILEVEL DATA

Sophisticated estimation techniques, developed mostly in the late 1970s, led to the 
creation of multilevel software programs that greatly facilitated use of multilevel 
modeling (Arnold, 1992; Raudenbush & Bryk, 2002). Before this time, researchers 
typically used single-level regression models to examine relationships between varia-
bles at different levels (e.g., student and school), despite the expected violation of the 
independence assumption. This mismatch between design characteristics and analysis 
model may be problematic for a variety of reasons.

First, suppose a researcher is interested in the relationship between students’ test scores 
and characteristics of the schools they attend. A design of such a study may involve a 
random selection of schools, followed by a random selection of students within each 
of the schools. Note that schools and students would be considered as random fac-
tors, as each represents a sample from a larger population of interest, suggesting a 
need for multilevel analysis. When investigating the question of interest, a researcher 
who chose to ignore dependency in the data would have two analytical choices using 
single-level modeling. The researcher could aggregate the student outcome data to the 
school level and use resultant school-level data in a single-level regression analysis. 
In this case, the outcome would often be the school’s average student score, with pre-
dictors consisting of school descriptors and average school characteristics summarized 
across students within each school. One of the primary problems with such an analysis 
is that valuable information is lost concerning variability of students’ scores within 
schools, statistical power may be decreased, and the ecological validity of the infer-
ences has been compromised (Hox, 2010; Kreft & de Leeuw, 1998).

Alternatively, the researcher could disaggregate the student- and school-level data. 
This generally undesirable form of modeling would involve using students as the unit 
of analysis and ignoring the nonindependence of students’ scores within each school. 
In the single-level regression that would be used with disaggregated data, the outcome 
would be the student’s test score, with predictors including student and school char-
acteristics. The problem in this analysis is that variation across students and schools 
is, most likely, improperly combined in the model residual term and does not properly 
reflect variation at the student and school levels. An important consequence here is 
that the standard errors associated with the estimate of the effects of school predictors 
may be substantially underestimated. Such misestimated standard errors then lead to 
inflated type I error rates and poor confidence interval estimates. This problem wors-
ens when there is greater dependency among the observations.
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A commonly used measure of the degree of dependence between individuals is called 
the intra-class correlation (ICC), or residual ICC when explanatory variables are 
included in the model. The more that characteristics of the context (say, school) are 
related to the individual (student) outcome of interest, the greater will be the ICC. And, 
as the ICC is larger, the greater the need is for multilevel analysis. For two-level data-
sets (where there is only one level of clustering), the ICC (when numerically positive, 
which is generally the case) can be interpreted as the proportion of the total variance 
in the outcome that occurs between the clusters (as opposed to within the clusters). 
Hedges and Hedberg (2007) note that ICCs in educational research typically range 
from .05 to .20, although, of course, smaller or larger values may be obtained.

However, it is important to realize that even an ICC that is slightly larger than zero 
can have a dramatic effect on type I error rates, as can be seen in Table 6.1, which 
is taken from Scariano and Davenport (1987). Note from the table that for an ICC of 
only .01, with three clusters (or groups) and 30 participants per cluster, the actual alpha 
is inflated to .0985 for a one-way ANOVA F test that does not take into account the 
positive ICC. With a three-cluster n = 30 scenario and an ICC of .10, the actual alpha 
is .4917, which means that a researcher has about a 50% chance of declaring that group 
mean differences are present, when none truly are.

Fortunately, researchers do not have to choose between the loss of information asso-
ciated with aggregation of dependent data or the inflated type I error rates associated 
with disaggregated data. Thus, instead of choosing a single level at which to conduct 
analyses of clustered or hierarchical data, researchers can instead use the technique 
called multilevel or hierarchical linear modeling. This chapter will provide an intro-
duction to some basic multilevel models. Several excellent multilevel modeling texts 
are available (e.g., Heck, Thomas, & Tabata, 2014; Hox, 2010; Kreft & de Leeuw, 
1998; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012) that will provide the inter-
ested reader additional details as well as discussion of more advanced topics in multi-
level modeling.

Several terms are used to describe essentially the same family of multilevel mod-
els including multilevel modeling, hierarchical linear modeling (HLM), (co)variance 
component models, multilevel regression models, and linear mixed effects models. 
The terms multilevel modeling and hierarchical linear modeling will be used here.

In this chapter, formulation of a two-level model will be presented first. This will be 
followed with a two-level example where students are nested within schools. In this 
example, we will begin with what is called an unconditional model (no predictors at 
either level). Then, we add a predictor at level 1 and then predictors at level 2. This 
model building approach (from simple to more complex models) is a common prac-
tice in multilevel modeling. We also consider the centering of explanatory variables 
in some detail, which is an important yet sometimes confusing aspect of multilevel 
modeling. We then consider a second example where the study goal is to evaluate the 
efficacy of treatments on a dependent variable in the context of a cluster randomized 
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trial. For each example, we show how multilevel analysis can be conducted using SAS 
and SPSS and interpret analysis results.

13.3 FORMULATION OF THE MULTILEVEL MODEL

There are two common ways to display the analysis models for multilevel modeling. 
Multilevel models may be expressed as a set of equations at each level separately, or 
each level’s equations can be combined to provide a single expression. The multiple 
levels formulation is often easier to comprehend especially when you are first learning 
HLM but the combined equation also has advantages. With the multilevel expression, 
the level-1 or lower-level model contains variables measured at the micro level (e.g., 
student level) while the level-2 or upper-level model contains variables at the cluster 
or macro level (e.g., the school level). We will use both the multilevel and combined 
equations here.

13.4 TWO-LEVEL MODEL—GENERAL FORMULATION

Before presenting the general formulation of the two-level model, some terminology 
will be explained. First, Raudenbush and Bryk (2002) distinguish between uncondi-
tional and conditional models. An unconditional model is one in which no predictors 
(at any of the levels) are included. A conditional model includes at least one predictor 
at any of the levels. A commonly used model in HLM is one that is conditional at 
level-1 and unconditional at level-2. We will see later that such a model, when it has 
variable intercepts and slopes, is referred to as a random-coefficient model.

Second, output obtained from multilevel modeling software is often separated into 
what are called fixed and random effects, which are related to the fixed and random fac-
tors described previously. In brief, the effects of a random factor (e.g., student, school) 
are summarized with variances (and sometimes covariances), whereas the effect of a 
fixed factor is summarized (as they are in single-level regression) with a regression 
coefficient. We will also see that it is possible that a fixed factor may have both fixed 
and random effects. In the following example, students are nested in schools, and 
the dependent variable is math achievement. There is one explanatory variable at the 
student level, student ses (a continuous variable), and the primary variable of interest 
at the school level (public) is a dummy-coded variable indicating whether a school is 
public (coded as 1) or private (coded as 0).

First, we consider the random effects. Similar to analysis of variance, the effect of a 
student is captured initially as a deviation of given student’s math score around the 
predicted value for the school attended by that student. The deviations for a set of stu-
dents within a school are then summarized by a variance term, reflecting within-school 
variance in the math scores (often modeled as constant across schools). Similarly, the 
effect of school is captured initially as a deviation of a given school’s math mean 
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around the grand mean, and the deviations for the sample of schools are then summa-
rized by a school-level variance term, reflecting between-school variance in the math 
scores.

In contrast, the impact of school type (public vs. private), a fixed factor, is summarized 
by a regression coefficient (i.e., a fixed effect) capturing the difference in predicted 
math scores between these two school types. Also, the impact of student ses is sum-
marized by a regression coefficient (fixed effect). However, note that the impact of 
student ses on math achievement could be different across schools. These varying 
effects can be considered as an interaction between a fixed factor (student ses) and a 
random factor (school), with the interaction interpreted in the usual way, that is, the 
effect of one variable (ses) depends on school. Such an interaction is considered to be 
a random factor and thus is represented by a variance term, describing the degree to 
which the within-school ses-math slopes vary across schools. If these terms are not yet 
clear, working through the multilevel regression models, to which we now turn, should 
help you better understand these effects.

The two-level example with students nested in schools involves estimating the associ-
ation between math test scores and a measure of student ses at the student level. With 
the multilevel formulation of the model, the level-1 or student-level model is

Y X X rij j j ij j ij= + - +β β0 1 ( ) ,  (1)

where Yij is student i’s math score in a given school j, Xij is student i’s ses score, and 
X j  is the mean ses score for the sample of students at the given school j. The expres-

sion X Xij j-  is referred to as group-mean centering because the group, or school ses 
mean, is subtracted from each student’s ses score. We discuss centering in more detail 
in section 13.6 but note for now that a primary advantage of using group-mean center-
ing is that the regression coefficient, β1j, represents the pure within-school association 
between student ses and math scores. As such, β1j represents the expected change in 
student math as student ses increases by 1 point in that school. Note that other forms 
of centering for ses or use of raw or uncentered ses scores may result in β1j represent-
ing an undesirable blend of the within-and between-school associations of math and 
ses, associations that may be different. Further, when group-mean centering is used 
in Equation 1, β0j is the school mean math score ( ).or Y j  A simple way to understand 
why this is so is to recall that the regression line in a simple linear regression equation 
runs through Y  and X .  Thus, when X j  is inserted into Equation 1 for Xij to obtain 
the expected Yij score, the expected Yij score is Y j  (due to Y j  and X j  lying on the 
regression line), and all terms on the right hand side of Equation 1 disappear except for 
β0j, which then must be equal to Y j .  The rij represents the residual or the deviation of 
student i’s math score from the Y value predicted from the equation. It is assumed that 
rij is normally distributed with a mean of zero and variance σ2, or rij ~ N(0, σ2).

As mentioned earlier, a commonly used model is the random-coefficient model, which 
includes predictors at level 1 but has no predictors at level 2 and allows both the 
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level-1 intercept (i.e., β0j) and slope (i.e., β1j) to vary. Why is this model used? First, the 
model will provide us with the overall averages of the regression coefficients in Equa-
tion 1. Given that these coefficients are readily interpretable (as a given school’s math 
mean and the within-school ses-math slope), the average of these quantities would 
provide the overall math average across students and schools and the overall ses-math 
slope, with the latter indicating the degree to which, averaging across schools, student 
ses and math are related. In addition to these averages, it is perhaps natural to think 
that schools have different math means and that the association between ses and math 
may also differ across schools. We can estimate a school-level model that will provide 
for us the mean value of each of these coefficients across the sample and estimate the 
extent to which each coefficient varies (and covaries) across schools. Further, in sub-
sequent models, it is a common research focus to attempt to account for such variation 
with school-level, or more generally cluster-level, variables.

Note that in the upper- or school-level model, the regression coefficients, β0j and 
β1j, in Equation 1 become outcome variables at the school level. This school-level 
model is

β γ0 00 0j ju= =  (2)

and

β γ1 10 1j ju= + .   (3)

In Equation 2, β0j is the intercept or school math mean, due to the use of group-mean 
centering in Equation 1, and, thus, γ00 is the average of the individual school intercepts 
across schools, or the overall math mean, and u0j is a deviation of a given school’s 
math mean from this overall average. Note that we previously labeled these deviations 
as random effects. These effects or residuals are assumed to be normally distributed 
with a mean of zero and a variance denoted by τ00, or u0j ~ N(0, τ00). The regression 
coefficient, γ00, is regarded as a fixed effect.

Similarly, in Equation 3, β1j represents the ses-math achievement slope for a given 
school. As such, γ10, the fixed effect, is the average of the student-level ses-math slopes 
across schools (or, in other words, the average measure of the association between 
student math and ses), and u1j is deviation of a given school’s slope around this aver-
age slope value, where these residuals (or random effects) are assumed to be normally 
distributed with a mean of zero and a variance of τ11, or u1j ~ N(0, τ11). In addition to 
the assumptions given, it is commonly assumed that the intercept and slope (β0j and 
β1j, or equivalently u0j and u1j) are bivariately normally distributed with covariance τ01, 
or equivalently τ10 (Raudenbush & Bryk, 2002). If so, the school-level random effects 
would be summarized by the variance-covariance matrix

τ τ
τ τ

00 10

01 11












.  (4)
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Note that variances and covariances, as well as fixed effects, can be tested for signifi-
cance to guide model specification.

A combined equation can be formed by replacing β0j and β1j in Equation 1 with the 
right sides of Equations 2 and 3, respectively. This combined model is

Y X X u u X X rij ij j j j ij j ij= + - + + - +γ γ00 10 0 1( ) ( ) .  (5)

Note that the number and nature of the effects can be determined perhaps more easily 
with this model formulation than the multilevel one. Here, there are two fixed effects 
(γ00 and γ10) and three random effects (u0j, u1j, rij). Further, note that the error variation 
of the outcome involves between- and within-school components and includes the 
variation in the ses-math slopes across schools, reflected by the term u X Xj ij j1 ( ).-  
This latter term allows the variation in Yij, particularly the between-school variation, to 
depend on values of the student predictor. The heterogeneous variance can be under-
stood by imagining a situation where high ses students perform similarly high on 
math, no matter which school they attend. For high ses students, then, variation across 
schools in math would be small. On the other hand, suppose some schools are much 
more effective than other schools in educating low ses students. Thus, for low ses stu-
dents, there would be great differences in math achievement across schools. Account-
ing for such between-school differences by introducing school-level predictors is often 
a substantive research goal. In addition, while there are five effects in the model, six 
parameters would be estimated here: the two fixed effects, the student-level variance 
(σ2), and the three variance-covariance terms for the school effects as depicted in 
Equation 4.

Given Equation 1, there is another fairly common model specification for the ran-
dom effects besides that given in Equation 4. This model allows only the intercept of 
Equation 1 to vary across schools and is thus called a random intercept model. The 
student-level equation is the same as Equation 1, but the school-level equations, pre-
sented more succinctly than previously, are now,

β γ
β γ

0 00 0

1 10

j j

j

= +
=







u
.  (6)

In this model, all of the parameters are interpreted the same as before but the ses-math 
slopes are specified to be the same across schools, as no residual term appears in Equa-
tion 6 for β1j. This specification is sometimes used when a nonsignificant test result 
is obtained for τ11 in Equation 4 or when parameters cannot be estimated due to non-
convergence. This latter issue may arise when the population variance (τ11) is at or 
near zero.

Table 13.1 provides a summary of the multilevel models described in this section. 
These models are commonly used in multilevel modeling. Note that the interpreta-
tions of the parameters for the random-coefficient and random intercept models 
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depend on the centering used for the predictor variable (Xij). Centering is discussed 
in section 13.6. Of course, more predictors can be used at level 1, and researchers 
almost always include predictors at level 2, none of which appears in the equations in 
Table 13.1. The next section includes predictors at level 2.

Having discussed the general formulation of some two-level models, in the next section 
we work through a series of models that are often used in multilevel modeling. We 
first describe the data set and data file layout for a two-level design and provide some 
descriptive statistics for the data set we are using. When we work through the models, 
we interpret model parameters and discuss statistical tests that can be used to test various 
null hypotheses. We also show how such models can be estimated with SAS and SPSS.

13.5  EXAMPLE 1: EXAMINING SCHOOL DIFFERENCES IN 
MATHEMATICS

The data we are using here, with some modification, appears in Heck et al. (2014) and 
reflects a two-level design where a random sample of schools (N = 419) is selected 
followed by a random selection of students within the schools (n = 6,871).1 Table 13.2 

 Table 13.1: Multilevel Models and Parameters Estimated

Level Equation Parameters estimated

Unconditional model

1 Yij = β0j + rij The overall outcome average (γ00), within-cluster 
variance of Yij (σ

2), and the variance of the cluster 
means (i.e., the variance of β0j, or τ00)

2 β0j = γ00 + u0j

Random coefficient model

1 Y X X rij j j ij j ij= + - +β β0 1 ( ) The overall outcome average (γ00), the variance of 
the level-1 residuals (σ2), the overall association 
between Xij and Yij (γ10), the variance of the clus-
ter means (τ00), the variance of the slopes (i.e., 
the variance of β1j, or τ11), and the covariance of 
the means and slopes (τ01)

2 β0j = γ00 + u0j 

2 β1j = γ10 + u1j

Random intercept model

1 Y X X rij j j ij j ij= + - +β β0 1 ( ) The overall outcome average (γ00), the variance of 
the level-1 residuals (σ2), the overall association 
between Xij and Yij (γ10), and the variance of the 
cluster means (τ00)

2 β0j = γ00 + u0j

2 β1j = γ10

1 Copyright (2014) from Multilevel and Longitudinal Modeling with IBM SPSS by Heck, Thomas, and 
Tabata. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.
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 Table 13.2: Data Set Showing First 15 Cases

shows the first 15 cases for the data set used here, and Table 13.3 shows descriptive 
statistics. In Table 13.2, schcode is the school ID (sorted from 1 to 419), and id is the 
student ID variable. The student outcome is math, and ses is the student-level predic-
tor. Note that some of the ses scores are negative, which is due to these scores being 
centered around their respective school ses mean. At the school level, the focal varia-
ble of interest is the dichotomous public, with 73% of the schools in the sample being 
public. The other school-level variable meanses, is included as a control variable, and 
was formed by computing the mean of the uncentered (raw) student ses scores for the 
students included in the sample from each of the given schools. Scores for mean ses 
were then subsequently centered. Note that the student-level variables in Table 13.2 
vary within a school but the school-level variables are constant for each person within 
a school. Also, note that even though we have variables at two different levels (student 
and school), all of the variables appear in one data file.

In addition, you might wonder why mean ses is needed in the analysis model, given 
that we have a student ses variable. There are two primary reasons for this. First, 
when student ses is group-mean centered, it cannot serve as a control variable for 
any school-level predictor, because this form of centering makes the student predictor 
uncorrelated with school predictors. As such, if we wish to use group-mean centering 
for student ses and also control for ses differences between schools when we compare 
public and private schools’ math performance, mean ses must be included as a predic-
tor variable. Second, sometimes, the association between a predictor and an outcome 
at level 1 (e.g., student ses and math) may differ from the association of these variables 
at the school level (e.g., school mean ses and school mean math). When these associ-
ations differ, school mean ses is said to have contextual effect on math performance. 
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 Table 13.3: Variables and Descriptive Statistics for HLM Analysis

Variable Variable name Values Mean SD

Student-level

Math achievement Math 27.42 to 99.98 57.73 8.78
Socioeconomic status Ses −21.71 to 24.10 0.00 6.07

School-level

School type Public 1 = public, 0 = other 0.73 0.44
School ses Meanses −13.34 to 14.20 0.00 4.94

These within- and between-school associations, sometimes of intrinsic interest, are 
estimated by including student ses and mean ses in the same analysis model. Sec-
tion 13.6.1 discusses contextual effects in more detail.

In the analysis that follows, we assume that the researchers are interested primarily in 
examining differences between public and private schools in math achievement. With 
these data, researchers can not only examine whether public or private schools have, 
on average, greater math achievement, but may also examine whether the association 
between student ses and math is different for the two school types. What is desired, 
perhaps, is to determine if there are schools where math performance is generally high 
but that the ses-math slope is relatively small. Such a co-occurrence would indicate 
that there are schools where students of varying ses values are all performing relatively 
high in mathematics and that math performance does not depend in a great way on 
student ses. If such schools are present, the analysis can then determine whether such 
schools tend to be public or private.

13.5.1 The Unconditional Model

Researchers often begin multilevel analysis with a completely unconditional model. 
This model provides for us an estimate of the overall average across all students and 
schools for the outcome (i.e., math), as well as an estimate of the variation that is 
within and between schools for math. This model is:

mathij j ijr= +β0 ,  (7)

where the outcome math for student i in school j is modeled as a function of school 
j’s intercept (β0j) and a residual term rij. Note that when no explanatory variables are 
included on the right side of the model, the intercept becomes the average of the quan-
tity on the left side. Thus, β0j represents a given school’s math mean.

At level 2, school j’s intercept (or math mean) is modeled as function of a school-level 
intercept and residual:

β γ0 00 0j ju= +  (8)
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Again, with no predictors on the right side of the model, γ00 represents the average of 
the school math means, or is sometimes referred to as the overall average. The school 
random effect (i.e., u0j) represents the deviation of a given school’s math mean from 
the overall math average. Note that the residual terms in Equations 7 and 8 are assumed 
to be normally distributed, with a mean of zero, and have constant variance, with the 
student- or within-school variance denoted by σ2 and the school-level variance denoted 
by τ00. The student and school random effects (rij, u0j) are assumed to be uncorrelated. 
As before, the combined model is formed by replacing the regression coefficients in 
Equation 7 with the right-hand side of Equation 8. This model is

mathij j iju r= + +γ 00 0 ,  (9)

where there is one fixed effect (γ00), a school-level random effect (u0j), and a student 
random effect (rij), the latter of which is referred to as a residual (not random effect) 
by SAS and SPSS.

Table 13.4 shows the SAS and SPSS commands needed to estimate Equation 9, and 
Table 13.5 shows selected analysis results. In Table 13.5, the results from SAS and 
SPSS are virtually identical with a couple of differences (i.e., degrees of freedom 
for tests of fixed effects and p values reported for tests of variances). First, in the Fit 
Statistics table in SAS and in the Information Criteria table of SPSS, −2 Restricted 
Log Likelihood is a measure of lack of fit (sometimes referred to as model deviance), 
estimated here to be 48,877.3. This value can be used to conduct a statistical test 
for the intercept variance (τ00), which we will illustrate shortly. In the Fixed Effect 
output tables, the intercept (γ00) is estimated to be 57.67, which is the overall math 
average. Typically, the intercept would not be tested for significance, unless zero 
is a value of interest as the null hypothesis is that γ00 = 0. Note that the degrees of 
freedom associated with the test of the fixed effect differs between SAS (418) and 
SPSS (416.066). West, Welch, and Galecki (2014) explain that t tests with multilevel 
models do not exactly follow a t distribution. As a result, different methods are avail-
able to estimate a degrees of freedom for this test. The MIXED procedure in SPSS 
uses the Satterthwaite method (by default and exclusively) to estimate the degrees of 
freedom, with this method intended to provide more accurate inferences when small 
sample sizes are present. SAS PROC MIXED has a variety of methods available to 
estimate this degrees of freedom. While the Satterthwaite method can be requested 
in SAS, the syntax in Table 13.3 uses the default method (called containment), which 
estimates the degrees of freedom based on the model specified for the random effects 
(West et al., 2014, p. 131).

In the Covariance Parameters table of Table 13.5, the student-level variance in 
math is estimated to be 66.55, and the school-level math variance is estimated to be 
10.64. The Wald z tests associated with these variances suggest that math variation 
is present in the population within and between schools (the null hypothesis for 
each variance is that it is zero in the population). Note that when using these z tests 
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 Table 13.4: SAS and SPSS Control Lines for Estimating the Completely Unconditional 
Model

SAS SPSS

(1)  PROC MIXED METHOD = REML NOCLPRINT 

COVTEST NOITPRINT;

(2) CLASS schcode;

(3) MODEL math = / SOLUTION;

(4)  RANDOM intercept / SUBJECT=schcode;

RUN;

(5) MIXED math

(6) /FIXED=| SSTYPE(3)

(7) /METHOD=REML

(8) /PRINT=G SOLUTION TESTCOV

(9)  /RANDOM=INTERCEPT | SUB-

JECT(schcode)COVTYPE(VC).

(1) PROC MIXED invokes the mixed modeling procedure; METHOD = REML requests restrict-
ed maximum likelihood estimation, NOCLPRINT suppresses printing of the number of schools, 
COVTEST requests z tests for variance-covariance elements, and NOITPRINT suppresses printing of 
information on iteration history.
(2) CLASS defines the cluster-level variable and must precede the MODEL statement.
(3) MODEL specifies that math is the dependent variable and no predictors are included, although the inter-
cept (γ00) is included by default, SOLUTION displays fixed effects estimates in the output.
(4) RANDOM specifies random effects for the intercept and the identifier (schcode) indicates that students are 
nested in schools. This line is omitted when a deviance test is used for τ00.
(5) MIXED invokes the mixed modeling procedure and math is then indicated as the dependent variable.
(6) FIXED indicates that no fixed effects are included in the model although the intercept (γ00) is included by 
default. SSTYPE(3) requests the type 3 sum of squares.
(7) METHOD requests restricted maximum likelihood estimation.
(8) PRINT requests school-level variance components, the fixed effect estimates and tests, and statistical 
test results for the variance parameters.
(9) RANDOM specifies random effects for the intercept and the identifier (schcode) indicates that students 
are nested in schools, COVTYPE(VC) requests the estimation of the intercept variance (τ00). This line is 
omitted when a deviance test is used for τ00.

for variances, Hox (2010) recommends that the obtained p values be divided by 2 
because while this z test is a two-tailed test, variances must be zero or greater. It is 
important to note that SAS provides these recommended p values, whereas SPSS 
does not. So, p values obtained from SPSS for variances should be divided by 2 
when assessing statistical significance. Given the small p values here, the results 
indicate, then, that within school, student math scores vary and between schools 
math means vary. Note though that these z tests provide approximate p values as 
variances are not normally distributed. More accurate inference for variances can be 
obtained by testing model deviances, which are generally preferred over the z tests 
and is discussed next.

As is the case with other statistical techniques discussed in this book, statistical tests 
that compare model deviances may often be conducted when maximum likelihood 
estimation is used. With multilevel modeling, two forms of maximum likelihood 
estimation are generally available in software programs: Full Maximum Likelihood 



 Table 13.5: Results From the Unconditional Model

SAS

Fit Statistics

-2 Res Log Likelihood 48877.3
AIC (smaller is better) 48881.3
AICC (smaller is better) 48881.3
BIC (smaller is better) 48889.3

Solution for Fixed Effects

Effect Estimate Standard Error DF t Value Pr > |t|
Intercept 57.6742 0.1883 418 306.34 <.0001

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr > Z
Intercept Schcode 10.6422 1.0287 10.35 <.0001
Residual  66.5507 1.1716 56.80 <.0001

SPSS

Information Criteriaa

-2 Restricted Log Likelihood 48877.256
Akaike’s Information Criterion (AIC) 48881.256
Hurvich and Tsai’s Criterion (AICC) 48881.257
Bozdogan’s Criterion (CAIC) 48896.925
Schwarz’s Bayesian Criterion (BIC) 48894.925

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: math.

Fixed Effects

Estimates of Fixed Effectsa

Parameter Estimate Std. Error Df T Sig.

95% Confidence Interval

Lower Bound Lower 
Bound

Intercept 57.674234 .188266 416.066 306.344 .000 57.304162 58.044306
a Dependent Variable: math.

Covariance Parameters

Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence Interval

Lower Bound Lower 
Bound

Residual 66.550655 1.171618 56.802 .000 64.293492 68.887062
Intercept [sub-
ject = schcode]

Variance 10.642209 1.028666 10.346 .000 8.805529 12.861989

a Dependent Variable: math.
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(FML) and Restricted Maximum Likelihood (RML), with the latter preferred when 
the number of clusters is relatively small because it provides for unbiased estimates 
of variance and covariances. However, when RML is used, only variances and covar-
iances (not fixed effects) may be properly tested with the deviance method. When 
FML is used, both fixed effects and variance-covariance elements may be tested using 
model deviances, although West et al. (2014, p. 36) recommend deviance tests of 
variance-covariances be done with RML only and tests of fixed effects be conducted 
with FML. In this example, RML, which is the default estimation procedure for SAS 
and SPSS, is used for estimation.

To conduct a test using deviances to determine if the intercept varies across schools, 
two models, one nested in the other, need to be estimated. Then, one obtains an overall 
measure of model fit, the deviance, and computes the difference between the nested 
and full model deviances. This difference, in effect, follows a chi-square distribution 
with a given alpha level (i.e., .05) and degrees of freedom, where the latter is equal 
to the difference in the number of parameters estimated between the full and nested 
model. Note that since the intercept variance cannot be negative, Snijders and Bosker 
(2012, p. 98) recommend halving the p values, which is the same as doubling the alpha 
level used for the test (i.e., .10.)

To test the variance of the intercept (H0 : τ00 = 0) using deviances, the two comparison 
models must be identical in terms of the fixed effects and can only differ in the vari-
ances estimated. Thus, to estimate an appropriate comparison model here, Equation 7 
is the level-1 model. The level-2 model is the same as Equation 8 except there is no u0j 
term in the model for β0j, as each u0j is constrained to be zero. As such, the variance of 
β0j (i.e., τ00) in this new model is constrained to be zero. This new model, then, is nested 
in the three-parameter model, represented by Equation 9, and estimates two parame-
ters: one fixed effect (like the previous model) but just one variance component, the 
student-level variance (σ2). Note that to obtain the results for this nested model, you 
use the same syntax as shown in Table 13.4, except that the RANDOM subcommand 
line is removed, which constrains τ00 to zero.

To complete the statistical test, we estimated this reduced two-parameter model and 
found that the deviance, or the quantity −2 times the log likelihood, is 49,361.120, 
whereas the original unconditional model deviance is 48,877.256 (as shown in 
Table 13.5). The difference between these deviances is 483.864, which is greater than 
the corresponding chi-square value of 2.706 (.10, df = 1). Therefore, we conclude that 
the school math means vary in the population.

Summarizing the results obtained from this unconditional model, performance on the 
math test is, on average, 57.7. Math scores vary both within and between schools. 
Inspecting the variance estimates indicates that a majority of math variance is within 
schools. In this two-level design, the intraclass correlation provides a measure of the 
proportion of variability in the outcome that exists between clusters. For the example 
here, the intraclass correlation provides a measure of the proportion of variability in 



552        HierarcHical linear Modeling 

math that is between schools. The formula for the intraclass correlation for a two-level 
model is:

ρ
τ

τ σICC =
+
00

00
2

 (10)

For the current data set, the intraclass correlation estimate then is

ρ
τ

τ σICC =
+

=
+

=00

00
2

10 642
10 642 66 551

138.
. .

. .  (11)

Thus, about 14% of the variation in math scores is between schools. According to 
Spybrook and Raudenbush (2009, p. 304), the intraclass correlation for academic out-
comes in two-level educational research with students nested in schools is often in 
the range from 0.1 to 0.2, which is consistent with the data here and suggests that an 
important part of the math variation is present across schools.

13.5.2 Random-Coefficient Model

A second model often used in multilevel analysis is the random-coefficient model. In 
this model, one or more predictors are added to the level-1 model, and the lower-level 
intercept and slope for at least one of the predictors are specified to vary across clus-
ters. In this example, student ses will be included as a predictor variable and we will 
determine if the association between ses and math varies across schools. The level-1 
or student-level model is

math ses ses rij j j ij j ij= + -( ) +β β0 1 ,  (12)

where group-mean centered ses is now included as a predictor at level 1. As discussed 
in section 13.4, with group-mean centering, β0j represents a given school j’s math 
mean, and β1j represents the within-school association between ses and math. The 
student-level residual term represents the part of the student-level math score that is 
not predictable by ses, and rij ~ N(0, σ2).

In the school-level model, the regression coefficients of Equation 12 serve as outcome 
variables and no school-level predictors are included. This model is

β γ

β γ
0 00 0

1 10 1

j j

j j

= +

= +






u

u
, (13)

where the two fixed effects (i.e.,γ00 and γ10) represent the overall math average and 
overall average of the student-level slopes relating ses to math. We allow the residual 
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terms to vary and covary, as in Equation 4. The combined expression for the multilevel 
model is then

math ses ses u u ses ses rij ij j j j ij j ij= + -( ) + + -( ) +γ γ00 10 0 1 .  (14)

Table 13.6 shows the syntax that can be used to estimate Equation 14 using SAS 
and SPSS. Table 13.7 shows selected SPSS results, as results from SAS, as we have 
seen, are very similar. In Table 13.7, the deviance for the random-coefficient model is 
48,479.875. Recall that since RML was used, we cannot use this deviance to test any 
hypotheses associated with the fixed effects. However, we will use this deviance to test 
the slope variance (i.e., τ11). The estimates of the fixed effects are that the mean math 
score is 57.7, and the average of the within-school ses-math slopes is .313, indicating 
that student math scores increase by about .3 points as student ses increases by 1 point. 
The corresponding t test (t = 18.759) and p value (< .001) for this association indicates 
a positive association is present in the population.

For the variance and covariance estimates, we begin with the student-level resid-
ual variance in Table 13.7, which is 62.18 (p < .001), indicating that significant 
student-level variance in math remains after adding ses. The estimates for the school 
variance-covariance components are readily seen in the last output table in Table 13.7, 
which is the variance-covariance matrix for the school random effects. This table 
shows that the variance in math means between schools is 10.91, the variance in 
slopes is .01, and the covariance between the school math means and ses-math slopes 

 Table 13.6: SAS and SPSS Control Lines for Estimating the Random-Coefficient Model

SAS SPSS

PROC MIXED METHOD = REML NOCLPRINT  

COVTEST NOITPRINT;

CLASS schcode;

(1)  MODEL math = ses /  SOLUTION;

(2)  RANDOM intercept ses / type = un 

SUBJECT=schcode;

RUN;

(3) MIXED math WITH ses

(4)  /FIXED= ses | SSTYPE(3)

    /METHOD=REML

    /PRINT=G SOLUTION TESTCOV

(5)  /RANDOM=INTERCEPT ses | 

 SUBJECT(schcode) COVTYPE(UN).

(1) The MODEL statement adds ses as a predictor variable.
(2) The RANDOM statement specifies that random effects appear in the model for the school math means and 
the ses-math slopes; type = un specifies that a variance-covariance matrix be estimated for the school random 
effects. Note that removing ses from this statement would specify a random intercept model, which constrains 
τ11 and τ01 to zero.

(3) The MIXED statement indicates that ses is included as a covariate.
(4) The FIXED statement requests that a fixed effect be estimated for ses.
(5) The RANDOM statement specifies that random effects appear in the model for the school math means 
and the ses-math slopes; COVTYPE(UN) specifies that a variance-covariance matrix be estimated for the 
school random effects. Note that removing ses from this statement would specify a random intercept model, 
which constrains τ11 and τ01 to zero.
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Random Effect Covariance Structure (G)a

Intercept | schcode sesgrpcen | schcode

Intercept | schcode 10.909371 -.162162
sesgrpcen | schcode -.162162 .011194

Unstructured
a Dependent Variable: math.

 Table 13.7: SPSS Results From the Random-Coefficient Model

Information Criteriaa

-2 Restricted Log Likelihood 48479.875
Akaike’s Information Criterion (AIC) 48487.875
Hurvich and Tsai’s Criterion (AICC) 48487.881
Bozdogan’s Criterion (CAIC) 48519.215
Schwarz’s Bayesian Criterion (BIC) 48515.215

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: math.

Covariance Parameters

Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence Interval

Lower Bound Upper Bound

Residual 62.176171 1.122366 55.397 .000 60.014834 64.415345
Intercept + 
sesgrpcen [sub-
ject = schcode]

UN 
(1,1)

10.909371 1.028421 10.608 .000 9.068958 13.123270

UN 
(2,1)

-.162162 .067697 -2.395 .017 -.294846 -.029477

UN 
(2,2)

.011194 .007102 1.576 .115 .003228 .038814

a Dependent Variable: math.

Fixed Effects

Estimates of Fixed Effectsa

Parameter Estimate Std. Error Df t Sig.

95% Confidence Interval

Lower Bound Upper 
Bound

Intercept 57.675771 .188222 416.090 306.425 .000 57.305787 58.045755
Sesgrpcen .312781 .016674 384.194 18.759 .000 .279998 .345565
a Dependent Variable: math.
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is −.16. The correlation, then, between school math means and ses-math slopes is 
- × = -. . . . .16 10 91 01 48  This negative correlation indicates that schools with higher 
math means tend to have flatter ses-math slopes, suggesting that math performance in 
some schools is relatively high and more equitable for students having various ses val-
ues. Note that the value of the slope variance (.01) is not, perhaps, readily interpretable 
and in an absolute sense seems small. To render the slope variance more meaningful, 
we can compute the expression γ τ10 112± × ,  which obtains values of β1j that are 2 
standard deviations above and below the mean slope value. For these data, these slope 
values are .113 and .513. Thus, this suggests that there are schools in the sample where 
the ses-math slope is fairly small (about a .11 increase in math for a point change 
in ses), whereas this association in other schools is stronger (about a .51 increase in 
math for a point change in ses). Further, using the z tests, the p values provided in the 
Covariance Parameters table indicate that the variance in the math means (p < .001) 
and the covariance of the math means and ses-math slopes (p = .017) is significant at 
the .05 level but that the variance in ses-math slopes is not (p / 2 = .115 / 2 = .058). As 
discussed, these z tests do not provide as accurate inference as deviance tests, so in the 
next section we consider using a deviance test to assess the variance-covariance terms 
associated with the slope.

Figure 13.2 provides a visual depiction of these results. This plot shows predicted math 
scores for each of 50 schools as a function of student ses (with 50 schools selected 
instead of all schools to ease viewing). Given that ses is group-mean centered, the 
mean math score for a given school is located on the regression line above an ses score 
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Figure 13.2 Predicted math scores as a function of ses for each of 50 schools.
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of zero. Examining the plot suggests that these mean math scores vary greatly across 
schools. In addition, the plot also suggests that the math-ses slopes vary across schools 
as some slopes are near zero, while others are mostly positive. Also, the negative cor-
relation between the math means and math-ses slopes is evident in that schools having 
predicted math scores greater than 57 when ses is zero tend to have slopes near zero 
(flat slopes), whereas other schools (with lower mean math scores) tend to have posi-
tive math-ses slopes.

13.5.3  Deviance Test for a Within-School Slope Variance and 
Covariance

Previously, we showed how model deviances can be used to test a single variance 
(e.g., τ00). We now show how model deviances can be used to test the variance and 
covariance associated with adding a random effect for a within-school slope. As 
before, we compare the deviance from two models, where one model is nested in 
the other. The random-coefficient model (i.e., the full model) has already been esti-
mated, and this model includes six parameters: two fixed effects (γ00 and γ01) and four 
variance-covariance terms, that is, the student-level variance (σ2), the variance of the 
math means (τ00), the slope variance (τ11), and the covariance between the math means 
and ses-math slopes (τ01). The nested model that we will estimate will constrain the 
slope variance (τ11) to zero and by doing so will also constrain the covariance (τ01) 
to zero.

Recall that when testing variance-covariance terms, the two comparison models must 
have the same fixed effects. Thus, for this reduced model, Equation 12 remains the 
student-level model. In addition, Equation 13 is the school-level model, except that 
there is no u1j term in the model for β1j, as each u1j is constrained to be zero (which 
then constrains τ11 and τ01 to zero). Thus, the reduced model has four parameters: the 
same two fixed effects as the random-coefficient model, but just two variances: the 
student-level variance (σ2) and the variance of the math means (τ00). Note that this 
random intercept model can be estimated with SAS and SPSS by removing ses from 
the respective RANDOM statement from the syntax in Table 13.6.

We estimated the random intercept model to conduct this deviance test. The esti-
mate of the deviance from the random intercept model is 48,488.846, whereas the 
random-coefficient model returned a deviance of 48,479.875. The difference between 
these deviances is 8.971. A key difference between the deviance test of a single vari-
ance (as illustrated in section 13.5.1) and the test of the variance and covariance here is 
that this test statistic is not distributed as a standard chi-square test (Snijders & Bosker, 
2012, p. 99; West et al. 2014, p. 36). Instead, this test statistic follows a chi-bar distri-
bution, which is a mix of chi-square distributions having different degrees of freedom. 
Snijders and Bosker (2012, p. 99) provide selected critical values for such a distribu-
tion, and we use a critical value from their text given an alpha of .05 and when the 
slope variance and covariance for a single predictor (here, ses) is being tested, with this 
critical value being 5.14. Given in our example that the test statistic of 8.971 exceeds 



557cHapter 13       

this critical value of 5.14, we conclude that there is sufficient variation-covariation 
in the ses-math slopes to treat these slopes as randomly varying. We will then add 
school-level predictors to the model for β1j.

Although the deviance test used here provides more accurate inference for 
variance-covariance terms than the z test, we caution that it may not always be wise 
to require a significant test result for the variance of a random slope (e.g., τ11) before 
adding school predictors to the model for the corresponding coefficient (e.g., β1j). As 
Snijders and Bosker (2012) note, there may be theoretical reasons to test the impact of 
a school-level predictor on a within-school slope, and the power for the test of a school 
predictor is greater (perhaps much greater) than the power for the test of the variance 
of a random slope. Note that while more than one random slope may be tested simul-
taneously (with different critical values needed when more than one random slope is 
tested), Hox (2010, p. 58) and Heck et al. (2014, p. 14) recommend testing random 
slopes one variable at a time to avoid convergence problems. Multilevel modeling 
texts (e.g., Hox, 2010; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012; West et 
al., 2014) provide more information about these test procedures, as well as deviance 
testing for fixed effects.

13.5.4 Model Including Student and School Predictors

By using the random-coefficient model, we learned that there is a positive association 
between ses and math achievement, and that school math means and ses-math slopes 
vary across schools. We now test the primary question of interest: Do public and pri-
vate schools differ in mean math achievement and ses-math slopes? In the previous 
section, the correlation between the math means and ses-math slopes, as well as the 
plot in Figure 13.2, indicated that there are schools in the sample that have relatively 
high math scores and relatively low ses-math slopes, suggesting that some schools 
exhibit what is sometimes called excellence and equity. The question now is whether 
these particular schools tend to be public or private. In addressing this question, we 
will also control for between-school ses differences.

A key purpose of the random-coefficient model presented previously is to determine 
how level-1 predictors should be modeled. In our example, we learned that student ses 
is related to math performance and that the ses-math slopes should be modeled as var-
ying across schools. Thus, both fixed and random effects associated with ses should be 
included in the model. Also, since we are adding no additional predictors to the level-1 
model, the student-level model as specified in Equation 12, which was supported by 
the data, remains the student-level model for this analysis. The school-level models, 
however, are now modified to include the predictors of interest. These models for the 
school math means (β0j) and the ses-math slopes (β1j) are now

β γ γ γ

β γ γ γ
0 00 01 02 0

1 10 11 12 1

j j j

j j j

u

u

= + + +

= + + +

public SES

public SES






,  (15)
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where public (coded 1 for public, 0 otherwise) and mean ses ( ),i.e., SES j  centered 
across schools, have been added as predictors. The combined model is then

math ses ses

se

ij ij j= + + + -( ) + ( )γ γ γ γ γ00 01 02 10 11public SES publicj

s ses ses ses u u ses ses rij j ij j j j ij j ij-( ) + ( ) -( ) + + -( ) +γ12 0 1SESj .
 (16)

As Equation 16 shows, there are six fixed effects and three random effects in the model. 
Although nine effects are present, a total of 10 parameters are estimated because we 
also estimate the covariance among the school random effects (u0j, u1j), which is not 
evident in Equation 16.

Inspecting Equation 16 reveals the nature of the fixed effects that are estimated. The 
coefficients in the model, γ01, γ02, and γ10, may be viewed as analogous to main effects, 
here of school type, mean ses and student ses, respectively, as there are no product 
variables associated with these terms. In contrast, γ11 and γ12 represent what are called 
cross-level interactions because each coefficient is associated with a product variable 
involving school- and student-level predictors. If you look back at Equation 15, you 
can see then that whenever predictor variables are added to the model for a slope (here, 
β1j), cross-level interactions will appear in the model. This makes sense because if γ11 
and/or γ12 are nonzero, this implies that β1j (which carries the association between ses 
and math) depends on one or both school-level predictors, consistent with an interac-
tion interpretation (i.e., the effect of one variable depends on another).

The cross-level interactions are interpreted in the usual manner. That is, a nonzero 
value for γ11 indicates that the association between public and math depends on or 
varies across student ses or that the association between student ses and math depends 
on or is different for the two school types. Also, a nonzero value for γ12 indicates that 
the association between mean ses and math depends on student ses or that the asso-
ciation between student ses and math depends on or varies across mean ses levels. 
Inspecting Equation 16 also reveals that the model does not allow for an interaction 
between public and mean ses, which could be included in the model but we assume is 
not hypothesized by the researchers. Inspecting the combined equation, then, is useful 
for determining the types of effects, particularly, interactions that are included in the 
model.

To interpret the fixed effects, one may focus on Equation 15 or Equation 16. Equa-
tion 16 casts the effects in terms of a single student response (math). As such, research-
ers wishing to describe how each predictor impacts this single response would focus 
on Equation 16. Another way to describe the effects would be to focus on Equation 15. 
Note that this equation sets up two response variables: school mean math and the 
within-school ses-math slopes, where these outcomes are correlated. Researchers 
interested in describing the associations between the school predictors and these 
two school-level responses would focus on Equation 15. Here, we assume that the 
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researchers are interested in comparing the performance of public and private schools 
on the two school outcomes (as appears to be commonly done). As such, we focus on 
Equation 15 to interpret the fixed effects.

Table 13.8 provides SAS and SPSS syntax that can be used to estimate the model. 
Using Equation 15 and the selected results shown in Table 13.9, we now interpret the 
effects. First, by examining Equation 15 for β0j, we see that γ00 represents the school 
mean math score for a private school (given the coding for public) that has the sample 
average ses (given the centering of mean ses). Table 13.9 indicates that this mean math 
score for private schools having the sample average ses is expected to be 57.86. The 
difference in mean math scores between public and private schools, controlling for 
mean ses, is represented by γ01, which is estimated to be −.17 points, favoring private 
schools, but is not statistically significant (p = .55). The last fixed effect in the equation 
for the school math means is γ02, which represents the association between mean ses 
and mean math, controlling for school type. This estimate is .59 (p < .05), indicating 
that mean math scores are expected to increase by more than a half point as mean ses 
increases, holding school type constant. Thus, mean math performance is greater in 
schools having higher mean ses.

We now focus on Equation 15 where the outcome variable is the ses-math slopes. In 
this model, γ10 represents the ses-math slope for a private school that has the sample 
mean ses. Table 13.9 shows that this association is .36 (p < .05), indicating that stu-
dent math scores are expected to increase by .36 points as ses increases by 1 point 
in private schools having the mean ses. The difference in predicted ses-math slopes 
between public and private schools, controlling for mean ses, is represented by γ11 and 

 Table 13.8: SAS and SPSS Control Lines for Estimating the Model With Student and 
School Predictors

SAS SPSS

PROC MIXED METHOD = REML NOCLPRINT  

COVTEST NOITPRINT;

CLASS schcode;

(1)  MODEL math = public Meanses ses  

public*ses Meanses*ses / SOLUTION;

RANDOM intercept ses / type = un  

SUBJECT=schcode;

RUN;

(2) MIXED math WITH public Meanses ses

(3)  /FIXED= public Meanses ses  

public*ses Meanses*ses | SSTYPE(3)

    /METHOD=REML

    /PRINT=G SOLUTION TESTCOV

     /RANDOM=INTERCEPT ses | SUBJECT 

(schcode) COVTYPE(UN).

(1) The MODEL statement specifies the predictor variables for math are now public, meanses, ses,  public*ses, 
and meanses*ses.
(2) The MIXED statement indicates that math is the outcome and the covariates are public, meanses, 
and ses.
(3) The FIXED statement requests that fixed effects be estimated for public, meanses, ses, public*ses, and 
meanses*ses.
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 Table 13.9: SPSS Output for the Model With Student and School Predictors

Fixed Effects

Estimates of Fixed Effectsa

Parameter Estimate Std. Error Df T Sig.

95% Confidence Interval

Lower 
Bound

Upper 
Bound

Intercept 57.859078 .238468 406.989 242.628 .000 57.390295 58.327861
Public -.165129 .278869 411.097 -.592 .554 -.713316 .383058
Meanses .588304 .025359 385.305 23.199 .000 .538445 .638164
Ses .363018 .031978 409.267 11.352 .000 .300156 .425880
public * ses -.065590 .037286 399.665 -1.759 .079 -.138891 .007710
Meanses * ses -.002633 .003734 491.439 -.705 .481 -.009968 .004703
a Dependent Variable: math.

Covariance Parameters

Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence Interval

Lower  
Bound

Upper 
Bound

Residual 62.203595 1.122733 55.404 .000 60.041548 64.443497
Intercept + 
ses [sub-
ject = schcode]

UN (1,1) 2.565643 .453243 5.661 .000 1.814780 3.627175
UN (2,1) -.109477 .043315 -2.527 .011 -.194373 -.024581
UN (2,2) .010668 .007014 1.521 .128 .002940 .038701

a Dependent Variable: math.

Random Effect Covariance Structure (G)a

Intercept | schcode sesgrpcen | schcode

Intercept | schcode 2.565643 -.109477
ses| schcode -.109477 .010668

Unstructured
a Dependent Variable: math.

is estimated to be −.07, with public schools having flatter ses-math slopes, although 
this public-private school difference in ses-math slopes is not statistically signifi-
cant (p = .08). The last fixed effect in the equation for the within-school ses-math 
slopes is γ12, which represents the association between mean ses and the ses-math 
slopes, controlling for school type. This estimate is −.002 (p = .48), indicating that the 
within-school ses-math associations are not related to mean ses.

Estimates for the variance-covariance elements appear in the last two output selections 
of Table 13.9. The student-residual variance is 62.20 (p < .001). The variance that 
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Figure 13.3 Predicted math scores for public and private schools across student ses holding mean 
ses constant at its average.

remains in school math means is 2.57 (p < .001), the residual covariance between the 
math means and the ses-math slopes is −.11 (p = .011), and the variance remaining 
in the math slopes is .01 (p = .128 / 2 = .064). Note that deviance testing is generally 
preferred for variance components as illustrated in previous sections.

In addition to the numerical results, it is also possible to obtain various graphs of pre-
dicted outcomes. Figure 13.3 shows predicted math scores across student ses (range of 
−20 to 20 displayed) for public and private schools holding mean ses at its average value 
(zero). This graph was obtained by using the compute statement in SPSS into which was 
placed the parameter estimates for the fixed effects in Equation 16 along with the values 
of student ses and public in the data set. The equation for the graph is then

math public ses ses public sesij ij j ij= - ( ) + -( ) - -57 86 17 36 07. . . . ( ) sses j( ).  (17)

Two key findings are evident in the graph. First, note there are very small differences 
between the predicted math values for public and private schools across student ses. In 
addition, although the slope of the lines are somewhat different (with public schools hav-
ing flatter slopes), this difference appears to be negligible and, of course, was not statisti-
cally significant, as we observed in the results (i.e., γ11 = −.07, p = .08). Second, for each 
school type, student ses is positively, and by appearance, strongly related to math achieve-
ment. Although not shown here, it is also possible to display the impact of mean ses in 
such a plot by obtaining predicted values for schools having different mean ses values.
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We now summarize the key results from the analysis. First, math achievement, for the 
population of schools, varied across students and schools, with most of the math vari-
ation occurring at the student level. In addition, while a positive association was found 
between student ses and math achievement, this association varied across schools 
with ses being more strongly related to math achievement in some schools than oth-
ers. However, after controlling for between-school ses differences, public and private 
schools did not differ in math achievement. In addition, the association between stu-
dent ses and math did not differ for public and private schools. As such, neither school 
type had greater math achievement or a more equitable association between ses and 
math. Math achievement was, though, positively related to student and school ses.

13.5.5  Summary of Commonly Used Statistical Tests in SPSS 
and SAS

Section 13.5 introduced a variety of statistical tests that can be used in multilevel mod-
eling. Table 13.10 provides a summary of commonly used tests available in SPSS and 
SAS to test parameters of interest, along with relevant remarks. As noted previously, 
the z tests shown in the table for variance-covariance terms provide approximate signif-
icance values. When possible, deviance tests should be used for variance-covariances.

 Table 13.10: Statistical Tests Commonly Used in SPSS and SAS for Multilevel Modeling

Parameter Test Remarks

Fixed effects (regression coefficients)

Single effect (e.g., γ10) t test, or chi-square deviance 
test

Deviance test requires use of 
FML

Multiple effects1 (e.g., γ01, γ11) Chi-square deviance test Deviance test requires use of 
FML

Random effects (variances-covariances)

A single variance (e.g., σ2, τ00, 
or τ11)

z test, or chi-square deviance 
test

For z test, SPSS users should 
compare p / 2 to α; deviance 
test can be used with RML or 
FML (RML preferred) and the 
chi-square critical value should 
be obtained using 2 × α

A single covariance (e.g., τ01) z test or chi-square deviance  
test

No adjustments are needed for 
the p value (for the z test) or α 
(for the chi-square critical value)

Variance and covariance  
(e.g., τ01 and τ11)

Deviance test The test statistic should be com-
pared to a chi-bar critical value

Note: Deviance test requires estimation of full and reduced models. FML is full maximum likelihood and RML 
is restricted maximum likelihood.

(1) We illustrate use of this test in section 14.6.2.
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13.6 CENTERING PREDICTOR VARIABLES

Predictor variables in multilevel modeling will often need to be centered to produce 
meaningful results, particularly for predictors at the lower levels of the data (i.e., level 1 
in a two-level design). The discussion and recommendations provided later are limited 
to two-level designs (although the key concepts apply to three-level designs) where 
repeated measures have not been collected. That is, this discussion is not intended for 
so-called growth curve modeling applications.

In multilevel modeling, centering of predictors is generally done with one of two meth-
ods: grand- or group-mean centering. We limit our discussion to these two methods. 
While it is important to consider the substantive research questions in selecting a cen-
tering method, it is often the case that group-mean centering will generally provide for 
more meaningful parameter estimates. The reasons for this have to do with the pres-
ence of contextual effects as well as a problem that may arise when level-1 predictors 
have slopes that vary across clusters (e.g., schools).

13.6.1 Contextual Effects and Centering

There are different ways to think about contextual effects, but a contextual effect is 
present when the association between a predictor and outcome (ses and math) is dif-
ferent at level 1 and level 2. To explore this idea, let’s return to our data set and set up 
a basic multilevel model that will estimate within-school and between-school associa-
tions of ses on math. This model is

math ses ses rij j j ij j ij= + -( ) +β β0 1 ,  (18)

where group-mean centered ses is now included as a predictor at level 1. A simple 
school-level model that includes mean ses is

β
β

0 00 01 0

1 10

j j j

j

meanses u= + +
=







γ γ
γ

, (19)

where only the intercept from the student-level equation is allowed to vary across 
schools.

The parameters from Equations 18 and 19 are readily interpretable. We have seen that 
with group-mean centering at the student level, β0j represents school j’s math mean, 
and β1j represents the within-school association, or slope, for math and ses. Since no 
school random effect is included in the model for β1j in Equation 19, γ10 represents 
the within-school association between ses and math (which is assumed to be constant 
across schools). This within-school association is often referred to as βw and is inter-
preted as the expected within-school change in student math achievement as student 
ses increases by 1 point. Further, in Equation 19, the school math means (β0j) are 
regressed on mean ses. As such, γ01 represents the expected change in school math 
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means for a unit change in mean ses. Parameter γ01 is often referred as βb as it captures 
the between-school association for ses and math. If the within- and between-school 
associations are the same (i.e., βb = βw), then no contextual effect is present. However, 
if these associations differ (i.e., βb ≠ βw), then a contextual effect is present for ses.

We estimated Equations 18 and 19 with our math data and found that βb was estimated 
to be .59 (p < .001), and βw was estimated to be .32 (p < .001). Thus, there seems to 
be a large difference in these associations. In this model, the contextual effect is equal 
to this difference and is βc = βb − βw , which is .59 − .32 = .27. This contextual effect, 
although not yet tested for significance, is nearly as large as the within-school associ-
ation, suggesting that it represents an important association.

Let’s now consider the same model but replace group-mean centered ses within 
grand-mean centered ses. Grand-mean centering involves subtracting the grand mean 
for the predictor from each person’s score for that predictor, which simply then sub-
tracts a constant value from each person’s predictor score. Note, in contrast, that with 
group-mean centering, from school to school, a potentially different value is subtracted 
from each person’s raw score, as school ses means are likely to be different. With 
grand-mean centering, the student-level model is

math ses ses rij j j ij ij= + -( ) +β β0 1 , (20)

where ses  is the average student ses score across all schools. The school-level model 
is unchanged and is

β γ γ
β γ

0 00 01 0

1 10

j j j

j

meanses u= + +
=






.  (21)

While these equations are similar to Equations 18 and 19, not every parameter is inter-
preted in the same way. In Equation 20, β0j is no longer the school math mean. Instead, 
it is the math mean for school j that is adjusted for between-school differences on mean 
ses, or may be thought of as the expected math score for a student in school j who has 
the overall average ses score. Further, γ01 does not represent βb, but instead represents 
the contextual effect βc. According to Raudenbush and Bryk (2002), a contextual effect 
can be interpreted as “the expected difference in the outcomes between two students 
who have the same individual ses, but who attend schools differing by one unit in mean 
ses” (p. 141). That is, holding constant student ses, to what degree is a student’s math 
score expected to change if a given student were to attend a higher ses school? (This 
effect of school context is the reason it is called the contextual effect.) Note though that 
by virtue of including mean ses parameter γ10 represents the within-school association 
between ses and math, or is equal to βw , the same result as obtained with group-mean 
centering. To illustrate this, we estimated Equations 20 and 21 with our example data. 
The estimate of γ10 (βw) is .32, as previously, and the estimate of γ01 is .27 (p < .001), 
which is the contextual effect (as βb − βw = .27).
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Note, then, that when a random intercept model is estimated, and a level-1 predictor 
and its mean are included as predictors, either group-mean or grand-mean centering of 
the level-1 predictor may be used. Group-mean centering can be used to obtain point 
estimates and statistical tests for βw and βb, and grand-mean centering provides an 
easy way to obtain a point estimate and statistical test of βc. In this particular case, the 
models, for which different forms of centering were used, provide identical fit and are 
considered equivalent models, in the sense that parameter values from one model are a 
simple expression of the parameter values in the other model (i.e., βc = βb − βw). How-
ever, this case is atypical, and use of different centering methods for level-1 predictors 
generally does not result in equivalent models. We now consider potential problems 
that may arise with grand- and then group-mean centering. After that, we make our 
centering recommendations.

13.6.2 Problems With Grand-Mean Centering

One problem that may arise with grand-mean centering occurs when the 
random-coefficient model is estimated. Recall that this model is often used to deter-
mine if fixed and random effects are present for a level-1 predictor. With grand-mean 
centering of the level-1 predictor, this model, using our running example, is

math ses ses rij j j ij ij= + -( ) +β β0 1  (22)

and the school-level model, including no predictors, is

β γ
β γ

0 00 0

1 10 1

j j

j j

u
u

= +
= +






.  (23)

In the group-mean centered version of this model (Equations 12 and 13), and focus-
ing on the parameter of interest, γ10 represents the within-school association between 
ses and math. Unfortunately, when a contextual effect is present (βb ≠ βw) and when 
grand-mean centering is used for the level-1 predictor, γ10 becomes a weighted aver-
age of βw and βb and does not have a clear interpretation. As such, Raudenbush and 
Bryk (2002) state that in this case γ10 is an “inappropriate estimator of the person-level 
effect” and is an “uninterpretable blend” of effects (p. 139). With our running exam-
ple, estimating Equations 22 and 23 produces an estimate of γ10 of .40, which is lies 
between the estimates obtained earlier of βw (.32) and βb (.59). In this case, γ10 is not a 
meaningful parameter and use of grand-mean centering in random-coefficient models 
should generally be avoided. Note that with group-mean centering, estimating these 
same equations yields an estimate of γ10 that is .32 (consistent with βw as obtained 
previously).

The reason that grand-mean centering fails to produce a meaningful param-
eter estimate for the random-coefficient model when a contextual effect is 
present is as follows. A grand-mean centered predictor may be expressed as 

X X X X X Xij ij j j-( ) = -( ) + -( ).  On the right hand side of the equation, note that 
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terms in the first parenthesis represent within-cluster variability while the expression 
in the second parenthesis represents between-cluster, or between-school, variability. In 
Equation 23, though, only one fixed effect for the predictor is estimated, and if βw and βb 
differ, the resultant coefficient (γ10) is, as mentioned, a weighted average of these coef-
ficients. Note when group-mean centering is used, each cluster, or school, has a mean 
of zero for this predictor, due to the centering. Therefore, there is no between-cluster 
variation in a group-mean centered level-1 predictor. As a result, when group-mean 
centering is used for a predictor at level 1, the fixed effect associated with this varia-
ble reflects only the within-cluster, or within-school, variation (i.e., βw). Note that if 
there is no contextual effect, (i.e., βb = βw), this problem with grand-mean centering 
does not arise. It will also not arise when all of the clusters have the same mean on 
the predictor (i.e., all X j  are the same). This situation will be present, for example, if 
participants are randomly assigned to treatments within clusters, and each cluster has 
the same proportion (e.g., .50) of participants in each treatment condition. In this case, 
there would be no variability across clusters in, for example, a dummy-coded level-1 
treatment variable.

Further, problems with grand-mean centering are not necessarily corrected when the 
mean of the predictor (i.e., )X j  is added to Equation 23 for β0j. While including the 
mean of the predictor worked great for Equations 20 and 21, note that Equation 21 
is a random intercept model, as the slope β1j was not allowed to vary. If Equation 21 
were modified to allow both the intercept and slope to vary, as in Equation 23, the use 
of grand-mean centering can provide attenuated estimates of slope variance when the 
mean of the predictor (i.e., )X j  varies across clusters. That is, τ11 may be underesti-
mated when grand-mean centering is used in variable slope models. Interested readers 
may consult Raudenbush and Bryk (2002, pp. 143–149) for an explanation. Thus, 
when a slope of a level-1 predictor is modeled as varying across clusters, group-mean 
centering is preferred. Raudenbush and Bryk state this about multilevel models in 
general, not just contextual effect models, by recommending group-mean centering for 
level-1 predictors “to detect and estimate properly the slope heterogeneity” (p. 143) 
when X j  varies across clusters.

13.6.3 Problems With Group-Mean Centering

While group-mean centering may often be less problematic than grand-mean cen-
tering for level-1 predictors, there is a problem that arises when group-mean cen-
tering is used. Specifically, when group-mean centering is used and the raw score 
mean of that predictor (i.e., )X j  is not included in the model, this level-1 predictor 
does not provide for statistical control for predictors at level 2 of the model (e.g., 
the school level). Again, the use of group-mean centering removes cluster variabil-
ity from this predictor, rendering it useless as a control variable at the cluster level 
(although it works fine as a control variable for other level-1 predictors). A simple 
way to address this problem, as illustrated section 13.5.4, is to include the mean of 
the predictor in the model for β0j (and β1j if an interaction with the level-1 predictor 
is hypothesized).
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In addition, Enders and Tofighi (2007), in an informative discussion of centering, note 
that study goals drive the selection of centering choices. They recommend the use of 
grand-mean centering for level-1 predictors when one wishes to control for differences 
across clusters and when the focal variable of interest is a level-2 predictor (again 
assuming that a random intercept model is appropriate). The cluster randomized trial 
is the leading example here, where clusters or organizations are randomly assigned to 
treatment conditions, and the treatment variable is a level-2 predictor. In this situation, 
the level-1 variables are not of interest except as potential control variables. In this 
case, use of grand-mean centering would provide for statistical adjustments for the 
impact of the level-2 predictor variable, although the regression coefficients associated 
with the control variables may still be a blend of βb and βw. In this case, another way 
of providing statistical control is to use group-mean centering for the level-1 control 
variables and then include the means of these variables (i.e., )X j  as predictors, where 
the latter variables then provide the statistical control. This recommendation appears 
in Raudenbush and Bryk (2002, p. 258), who note that this method is preferable to the 
first option when a contextual effect is present.

13.6.4 Centering Recommendations

Our centering recommendations follow from the discussion of problems associated 
with grand- and group-mean centering of level-1 predictors. First, grand-mean cen-
tering of level-1 predictors is perhaps best used in contextual effect models where 
only the intercept varies at the cluster level (as in Equations 20 and 21). Note also that 
the mean of the same predictor variable appears as a predictor in the model. Use of 
grand-mean centering in Equation 20 facilitates the testing of contextual effects while 
also providing a proper estimate of the within-cluster association (βw). Second, if the 
association between level-1 predictors and the outcome is not of primary interest (and 
no slope variability is present for these variables), grand-mean centering could be used 
for the level-1 predictors to provide statistical control for situations where the focal 
variable(s) of interest is at the second level, as in the cluster randomized trial. Note 
though that use of group-mean centering of the level-1 predictors while also including 
the cluster mean of these variables as predictors in the model may be a better option 
when contextual effects are present.

Group-mean centering can be more widely used than grand-mean centering of level-1 
predictors. First, since grand-mean centering may be problematic when slopes asso-
ciated with a level-1 variable vary across clusters (e.g., schools), group-mean cen-
tering should be used for level-1 predictors having variable slopes or when one is 
interested in determining if slopes vary (as in the random-coefficient model). More 
generally, group-mean centering is preferred when the association between a level-1 
predictor and the outcome is of primary interest, as such centering will provide for a 
pure (unconfounded) estimate of the within-cluster association (i.e., βw), which may 
not be the case when grand-mean centering is used. Estimating within-cluster asso-
ciations (βw) is commonly of interest in multilevel modeling applications. As such, 
group-mean centering will likely be relevant for your study. Note that group-mean 
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centering should also be used in situations where interactions with level-1 variables 
are of interest (both within- and cross-level interactions). In these cases, obtaining esti-
mates of pure within-group associations is an important goal, which is accomplished 
by group-mean centering.

We offer some final comments related to centering. First, for each centering method, 
the mean value of the level-1 predictor should generally be included as a predictor 
variable at the second level of the model (i.e., for β0j) to assess the presence of con-
textual effects, which is also recommended in the literature (Raudenbush & Bryk, 
2002, p. 258; Snijders & Bosker, 2012, p. 102). Of course, for grand-mean centering, 
this assumes that only the intercept varies at level 2. Second, the same recommen-
dations and comments hold for binary predictors at level 1. If a binary predictor 
variable has between-cluster variability (which may not always be the case), the use 
of group-mean centering at level-1 for this variable will provide for a proper estimate 
of the within-school group difference. Finally, we have not discussed centering for 
level-2 predictors, as centering versus not centering these predictors is generally of 
little consequence. Of course, group-mean centering cannot be used here (as it would 
have no effect on the predictor scores), but grand-mean centering of level-2 predictors 
is possible, which Raudenbush and Bryk (2002, p. 35) note is often convenient. We 
used this centering in section 13.5.4 so that the cluster-level intercepts (i.e., γ00, γ10) 
had a meaningful interpretation, although such centering is generally not necessary.

13.7 SAMPLE SIZE

In example 1, sample sizes were quite large at level 1 (i.e., 6,871 students) and level 
2 (419 schools). Applied researchers do not always have ready access to such large 
sample sizes at each level, so it is natural to wonder about sample size needs for multi-
level modeling. In the literature, sample sizes needed for multilevel models have been 
examined in two different ways. First, researchers have established rules of thumb for 
sample sizes needed at various levels to ensure that parameter estimates are accurate 
or unbiased. Software programs have also been developed to help researchers estimate 
needed sample sizes to ensure adequate power (e.g., .80) to test effects of interest.

Hox (2010) presents a summary of various rules of thumb that are generally consid-
ered to be necessary to provide good parameter estimates. An important point is that 
sample size requirements depend on the type of effects (e.g., fixed, random) that are 
of interest in one’s study and also are generally different from level 1 to level 2. For 
two-level designs, Kreft (1996) offered a 30/30 rule, which means that 30 clusters 
with 30 persons per cluster are needed to provide for proper estimates. Hox (2010) 
notes that while these values may be reasonable to provide valid estimates of certain 
fixed effects they are not generally applicable for estimating cross-level interactions or 
variance-covariances. If one were estimating cross-level interactions, Hox suggests a 
50/20 rule, with 50 clusters and 20 participants per cluster needed. Hox also suggests 
a 100/10 rule if estimating variance-covariance parameters are of great interest, with 
100 clusters having 10 participants per cluster.
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More recently, though, Bell, Morgan, Schoeneberger, Kromery, and Ferron (2014) 
examined how well fixed effects and their standard errors (though not random effects) 
were estimated for a variety of different effects (e.g., main effects of level-1 and 
level-2 predictors, various interactions among these) and for different numbers and 
types of predictor variables (binary and continuous predictors) when sample sizes at 
each level are fairly small. They found that when the number of clusters is 20 or greater 
(even when within-cluster sample sizes are as small as 5 to 10), fixed effects esti-
mates and their standard errors are accurate. Further, even when the number of clusters 
was as small as 10, these estimates were generally accurate. Note that, in their study, 
RML was used along with the Kenward–Roger method of estimating the denomina-
tor degrees of freedom for the tests of the effects, which is intended to provide for 
improved inference for small sample sizes. We will use this method to estimate the 
degrees of freedom in Example 2. Note though that while Bell et al. found that estima-
tion was accurate when cluster and sample size were small, statistical power to detect 
the presence of effects was often too low given the sample, effect sizes, and other 
factors included in their study.

Statistical power programs are available for multilevel models to enable a priori esti-
mates of statistical power, given various sample sizes, effect sizes, intraclass corre-
lations, and other factors affecting power in multilevel designs. Van Breukelen and 
Moorbeek (2013) describe various power-related programs, including, for example, 
Optimal Design, PINT, and MLPowSim. As described by van Breukelen and Moor-
beek, Optimal Design can be used to estimate power for various multilevel exper-
imental designs, including longitudinal designs, for a specific set of models. PINT 
provides a priori estimates of standard errors for fixed effects in two level designs, 
and MLPowSim can be used for various random effects models. In addition, Mathieu, 
Aguinis, Culpepper, and Chen (2012) developed software that can be used specifically 
to estimate sample sizes needed to detect the presence of cross-level interactions.

13.8 EXAMPLE 2: EVALUATING THE EFFICACY OF A TREATMENT

Multilevel models can also be used to analyze data arising from multilevel experimen-
tal designs, such as determining whether two or more counseling (or, say teaching) 
methods impact an outcome. The example used here compares mean performance on 
client empathy for two counseling methods, referred to as “new treatment” and “con-
trol” conditions. It should be noted that for this example a smaller sample size is used 
than is typically recommended for HLM analyses. This is done to facilitate the pres-
entation. Note though as suggested by the research of Bell et al. (2014) mentioned in 
the previous section, we will use RML estimation combined with methods to compute 
the denominator degrees of freedom for tests of fixed effects (i.e., Kenward–Roger for 
SAS and Satterthwaite for SPSS), both of which are intended to provide for accurate 
inferences in the presence of small sample sizes. For our example, five groups (which 
we will refer to as clusters) of clients are treated with each counseling method, and 
each cluster has four clients. Thus, the design involves clients nested within clusters 
that have been randomly assigned to one of two treatment conditions. Thus, this is a 
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small-scale cluster-randomized trial where clusters or groups (not individuals) have 
been randomly assigned to experimental conditions and scores for an outcome and 
covariate have been collected from participants. Note that the two counseling methods 
do not constitute a separate level as method is a fixed factor that describes the clusters, 
as the counseling method conditions do not represent a sample from some larger popu-
lation of possible counseling methods. Even if they did, two levels would be much too 
small to serve as the upper level of a multilevel model. Thus, this cluster randomized 
trial is a two-level nested design, with clients (level 1) nested within clusters (level 2). 
Counseling method is a fixed level-2 (cluster-level) variable.

Given the relatively small number of observations in the data set, we present the fol-
lowing data set. Shown are the client id, the cluster id, client empathy (which is the 
outcome of interest), client scores on a measure of contentment (which is intended to 
serve as a covariate), and counseling method (method) employed in the relevant clus-
ters coded either as 0 for the new treatment or 1 for control.

Note that in the online data set, group- and grand-mean centered forms of contentment 
are present, labeled respectively, groupcontent and grandcontent, as well as meancon-
tent, which was obtained by computing the cluster means for the contentment variable.

ClientId Cluid Empathy Contentment Method

1 1 23 33 0
2 1 22 33 0
3 1 20 27 0
4 1 19 25 0
5 2 16 22 0
6 2 17 21 0
7 2 18 28 0
8 2 19 31 0
9 3 25 28 0
10 3 28 38 0
11 3 29 35 0
12 3 31 34 0
13 4 27 38 0
14 4 23 27 0
15 4 22 28 0
16 4 21 25 0
17 5 32 28 0
18 5 31 37 0
19 5 28 33 0
20 5 26 30 0
21 6 13 27 1
22 6 12 22 1
23 6 14 34 1
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Table 13.11 shows some basic descriptive statistics for each counseling method based 
on the client scores (without regard to cluster, as will be considered in the multilevel 
analysis). Inspecting Table 13.11 indicates that mean empathy is greater by about 6.5 
points for the new treatment condition, the two treatment groups have similar mean 
scores on contentment (which is expected due to the random assignment of clusters), 
and that variability for each variable is similar across the two methods.

Due to the limited number of clusters and participants in this example, statistical power 
to detect treatment effects will, in general, not be sufficient unless there are large treat-
ment effects. So, while we will include contentment as a covariate shortly, we first esti-
mate a multilevel model with only method included. Note that a null model (i.e., with 
no predictors) could also be estimated but our presentation here focuses on treatment 
effects. The client- or level-1 model is

empathy rij j ij= +β0 ,  (24)

where the outcome empathy is modeled as a function of a cluster intercept and residual 
term rij where rij ~ N(0, σ2). With no predictor in Equation 24, β0j represents a given 
cluster j’s empathy mean. The cluster-level model, which includes the dummy-coded 
method predictor, is

β γ γ0 00 01 0j jmethod u= + +( ) ,  (25)

ClientId Cluid Empathy Contentment Method

24 6 15 28 1
25 7 16 30 1
26 7 17 37 1
27 7 14 27 1
28 7 12 25 1
29 8 11 28 1
30 8 10 23 1
31 8 20 34 1
32 8 15 33 1
33 9 21 29 1
34 9 18 31 1
35 9 19 30 1
36 9 23 39 1
37 10 18 27 1
38 10 17 36 1
39 10 16 36 1
40 10 23 32 1



572        HierarcHical linear Modeling 

where γ00, given the coding for method, represents the empathy mean for the new treat-
ment condition, and γ01 represents the difference in empathy means for the two treat-
ment conditions. The residuals are assumed to be normally distributed, with a mean 
of zero, and have homogeneous variance, or u0j ~ N(0, τ00). When we estimated this 
model, we found that γ00 is estimated to be 23.85 (which is the same as in Table 13.11 
due to the design being completely balanced) and that the estimate for γ01 is −6.45 
(SE = 3.02, p = .065). Thus, using an alpha of .05, we could not conclude that the dif-
ference of about 6.5 points, which favors the new treatment condition, is statistically 
significant. The nonsignificance is somewhat expected given the small sample size in 
this study.

To improve statistical power, we now consider the covariate contentment. This predic-
tor is at the client level and so it is possible that the within-cluster and between-cluster 
associations between contentment and empathy differ. If so, including both the client 
and mean form of this covariate may provide for greater power than may be obtained 
by just adding the client-level predictor alone. So, for now, we include client con-
tentment and cluster mean contentment. With group-mean centered contentment, the 
client-level model becomes

empathy contentment rij j j ij ij= + +β β0 1 .  (26)

With group mean centering, β0j remains a given clusters j’s empathy mean and β1j 
captures the within-cluster association between empathy and contentment. Since add-
ing the group-mean centered contentment will not explain any variance at the clus-
ter level, we now include mean contentment (uncentered) in the cluster-level model, 
which is now

β γ γ γ

β γ
0 00 01 02 0

1 10

j j j j

j

method meancontent u= + ( ) + +

=






.  (27)

Note that the within-cluster slope (β1j) is specified as a fixed effect at the cluster level, 
as its variance (τ11) is assumed to be zero, an assumption we will check shortly. The 
combined equation is then

empathy method meancontent contentment uij j j j= + + + +γ γ γ γ00 01 02 10 00 j ijr+  (28)

 Table 13.11: Descriptive Statistics for the Study Variables

Method
Empathy Contentment

M SD M SD

New treatment (n = 20) 23.85 4.96 30.05 5.00
Control (n = 20) 17.40 4.95 30.40 4.69
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Thus, the fixed effects of interest are γ01, which represents the difference in empathy 
means between the two treatment conditions, controlling for mean contentment, γ02, 
which represents the change in mean empathy given a unit increase in mean content-
ment, holding treatment condition constant, and γ10 is the within-cluster association 
between empathy and contentment.

Table 13.12 presents SAS and SPSS syntax that was used to estimate Equation 28, 
and Table 13.13 reports the SAS results (as results obtained using SPSS were similar). 
Focusing on the parameter of interest, the treatment effect estimate of −7.03 (p < .001) 
indicates that after adjusting for differences in mean contentment, the new treatment 
mean is about 7 points greater than the control mean, with this difference being sta-
tistically significant. Note that by including the contentment variables, the standard 
error of the treatment effect is now 1.25, compared to 3.02 in the model without any 
covariates, with this power increase due to adding these covariates. Note that both 
client contentment and mean contentment are positively related to empathy. Also, the 
difference in these latter coefficients, γ02 − γ10 = 1.66 − .33 = 1.33, is indicative of a 
contextual effect (which can be tested for significance if desired).

If desired, we can compute adjusted means for the two counseling conditions by com-
bining parameter estimates, covariate means (zero for contentment and 30.23 for mean 
contentment) and the dummy codes for method using Equation 28, while inserting 
means (zeros) for the random effects. So, to compute the adjusted mean empathy for 
the control group, the computation is −26.15 − 7.03(1) + 1.66(30.23) = 17.00. For the 
new treatment, the adjusted empathy mean is −26.15 − 7.03(0) + 1.66(30.23) = 24.03. 
This difference, 17.0 − 24.3= −7.03, is the treatment effect estimate, of course, and has 
already been found to be statistically significant.

Although the analysis is largely concluded, we estimate a couple of models, the first to 
check for the possibility of variable within-cluster slopes and the second to compare 
the results of the previous model with those obtained by using grand-mean centering 
for client contentment (without inclusion of mean contentment). Testing for variable 
slopes (β1j of Equation 26) is of interest for two reasons. First, finding such variation 
would be of interest for those who hypothesize that the treatment may interact with cli-
ent contentment, as it may be hypothesized that clients experiencing the new treatment 
will have relatively high empathy regardless of their prior level of contentment. As such, 
within-cluster slopes in the new treatment condition may be much flatter or smaller than 
the positive association obtained in the previous analysis (i.e., γ10 = .33). Observing vari-
ation in these slopes, although not a prerequisite for testing such an interaction, suggests 
the possibility of such an interaction. In addition, the standard error of the treatment 
effect, as previously estimated, may be misestimated if slope variation were present, 
so including such variation may provide for more accurate inference for the treat-
ment effect. To test for the possibility that the within-cluster or client-level association 
between empathy and contentment varies across clusters, we estimated Equations 26 
and 27, except that we modified the cluster-level equation, keeping Equation 27 as is for 
β0j but including a residual term for the slope that so the slope equation is β1j = γ10 + u1j.
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 Table 13.12: SAS and SPSS Control Lines for Estimating Equation 28

SAS SPSS

PROC MIXED METHOD = REML NOCLPRINT  

COVTEST NOITPRINT;

CLASS cluid;

(1)  MODEL empathy = method groupcontent 

meancontent / ddfm=kenwardroger 

SOLUTION;

RANDOM intercept / type = vc SUBJECT 

=cluid;

RUN;

(1)  MIXED empathy WITH method groupcon-

tent meancontent

     /FIXED= method groupcontent mean-

content | SSTYPE(3)

    /METHOD=REML

    /PRINT=G SOLUTION TESTCOV

     /RANDOM=INTERCEPT | SUBJECT(cluid) 

COVTYPE(VC).

(1) In the MODEL (SAS) and MIXED (SPSS) statements, the variable groupcontent is the within-cluster 
centered client contentment variable and meancontent is the cluster mean contentment variable. Also for 
SAS, the ddfm = kenwardroger option requests that the denominator degrees of freedom for fixed 
effect tests be calculated using the Kenward-Roger method. SPSS MIXED does not offer this option but by de-
fault uses the Satterthwaite method to compute these degrees of freedom. Each of these methods is intended 
to provide for better inference when sample size is small.

When we estimated Equations 26 and 27 but now allowing for variable slopes, 
we initially requested estimates for a full variance-covariance matrix for the clus-
ter random effects, which includes estimates of the intercept variance (τ00), slope 
variance (τ11), and the covariance (τ01) of the random effects. However, the esti-
mated model did not converge (for both SAS and SPSS), which is often indica-
tive of variance-covariance components that are near zero. We then estimated the 
same model but constrained the covariance (τ01) to zero. This can be done in SAS 
by replacing the RANDOM line that appears in Table 13.12 with the statement 
RANDOM intercept groupcontent / type = vc SUBJECT=cluid; and in SPSS by 
replacing the RANDOM statement with /RANDOM = INTERCEPT groupcontent| 
SUBJECT(cluid) COVTYPE(VC).

When this was done, convergence was attained, and the estimate of the slope variance 
τ11 is .002 (SE = .04, p = .48), suggesting no variation in slopes. Of course, this p value 
is obtained from the z test, and we know that deviance testing is preferred over the z 
test for variances. Note that Equations 26 and 27 are nested in the current equations 
because Equations 26 and 27 are identical to the current equations except that the slope 
variance is constrained to be zero. The deviance associated with Equations 26 and 27, 
as shown in Table 13.13, is 183.000 and the deviance for the variable slope model is 
also 183.000. We can readily see that there is no improvement in fit by allowing for 
slope variation. Formally, we would compare this difference in fit (here, zero) to a 
corresponding chi-square critical value of 2.706, again doubling the alpha of .05 given 
we are testing a single variance with 1 degree of freedom. So, there is no support for 
variable slopes. Note that a conventional chi-square critical value can be used here 
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 Table 13.13: SAS Output for Equation 28 (or Equivalently Equations 26 and 27)

Fit Statistics

-2 Res Log Likelihood 183.0
AIC (smaller is better) 187.0
AICC (smaller is better) 187.3
BIC (smaller is better) 187.6

Solution for Fixed Effects

Effect Estimate Standard  
Error

DF t Value Pr > |t|

Intercept -26.1484 7.9531 7 -3.29 0.0133
METHOD -7.0323 1.2483 7 -5.63 0.0008
groupCONTENT 0.3274 0.08212 29 3.99 0.0004
MEANCONTENT 1.6638 0.2630 7 6.33 0.0004

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard  
Error

Z Value Pr > Z

Intercept CLUID 2.7454 2.0921 1.31 0.0947
Residual  4.5164 1.1861 3.81 <.0001

Note: Predictor variable groupCONTENT is the group-mean centered client contentment variable and MEAN-
CONTENT is the cluster mean contentment variable.

because we are testing one parameter (i.e., τ11), as opposed to the two parameters (i.e., 
τ11 and τ01) that were tested in section 13.5.3.

Finally, we might wonder whether using grand-mean centering and excluding mean 
content would provide for a more powerful analysis than obtained by Equation 28. To 
test this idea, we replaced the group-mean centered client contentment in Equation 28 
with grand-mean centered contentment (referred to as grandcontent in the online data 
set) and removed mean contentment from the model. Recall that a grand-mean centered 
level-1 variable can explain variation in an outcome at level 2, while a group-mean 
centered level-1 predictor cannot. Further, by not including the mean of the predictor 
in the grand-mean centered model, we could potentially increase the power for the test 
of the treatment effect because the degrees of freedom for this effect are larger (pro-
viding a lower critical value) with the omission of the variable. When we estimated 
this new grand-mean centered model, the treatment effect estimate (−6.6) was some-
what different than that obtained with Equation 28, and the standard error was larger 
(2.48). Given this larger standard error, there is no advantage to using this grand-mean 
centered model. Also, Equation 28 is arguably a better model because it provides for 
valid estimates of the within- and between-cluster associations of empathy and con-
tentment when a contextual effect is present, whereas the grand-mean centered model 
just described blends these effects.
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13.9 SUMMARY

In this chapter, we provided an introduction to multilevel modeling as well as the use of 
SAS and SPSS to estimate model parameters for a two-level cross-sectional design. It 
should be noted that while it is relatively easy to use software to estimate model param-
eters, it is more challenging to understand the model being estimated, which is neces-
sary, of course, to properly interpret the resulting parameter estimates and associated 
significance tests. Examining the equations for multilevel models in both forms, that 
is, equations expressed separately for each level and the combined equation, is helpful 
for understanding the effects that are being estimated. In addition, graphical displays of 
results, particularly for interactions, helps you achieve and convey understanding of study 
findings. It is also helpful to recognize that the fixed effects in such models are essentially 
regression coefficients. It is the random effects and their associated variance-covariance 
components that may be initially challenging to understand. Further, while not demon-
strated in this chapter, because this is an introductory treatment, residuals can be esti-
mated to allow for an examination of statistical assumptions. As in any analysis, one 
should attempt to determine if the assumptions of the procedure are reasonably satisfied, 
whether outlying and influential observation are present, and whether important interac-
tions or nonlinear associations have been left out of the model.

Consulting multilevel modeling texts, many of which were cited in this chapter, will 
help you learn how to assess statistical assumptions. In addition, these texts will provide 
you with additional worked examples, fuller descriptions of the estimation processes 
used, as well as other important multilevel modeling techniques. These include mod-
els for growth across time, dichotomous or ordinal outcomes, multivariate outcomes, 
meta-analysis, and use with more complicated data structures, such as those with three 
or more levels, cross-classification, and multiple membership, each involving multiple 
random effects. You should also be aware that in addition to SAS and SPSS, sev-
eral other software programs can be used to estimate multilevel models including, for 
example, HLM (Raudenbush, Bryk, Cheong, Congdon Jr., & du Toit, 2011), MLwiN 
(Rasbash, Browne, Healy, Cameron, & Charlton, 2012), Mplus (Muthén & Muthén, 
1998–2013), and R (R Development Core Team, 2014).

We hope that you continue learning about multilevel modeling, as this technique is 
being increasingly applied to a wide variety of research designs.
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Chapter 14

MULTIVARIATE MULTILEVEL 
MODELING

14.1 INTRODUCTION

Previous chapters in this text have addressed the use of multivariate analysis of vari-
ance (MANOVA) and hierarchical linear modeling or, more generally, multilevel mod-
eling. Traditional applications of these procedures have limitations that restrict their 
use. In particular, standard use of MANOVA assumes that responses of individuals are 
independently distributed, an assumption that may be violated when participants are 
nested in organizations or settings (such as students nested in schools, clients nested 
in therapists, workers nested in workplaces). When such dependence is present, use of 
MANOVA may result in unacceptably high type I error rates associated with the effects 
of explanatory variables, as detailed in Chapter 6. For its part, multilevel modeling 
accommodates the dependence arising from such clustered data that MANOVA does 
not. However, standard multilevel modeling is able to incorporate only one dependent 
variable from units, often participants, at the lower level. Thus, such use of multilevel 
modeling is not able to take advantage of the benefits associated with multivariate 
analysis that have been described previously in this book.

An extension of traditional MANOVA and multilevel analysis, multivariate multilevel 
modeling (MVMM) can accommodate dependence of responses that results from the 
nesting of participants in settings while simultaneously modeling multiple outcomes. 
More generally, MVMM may be employed in a variety of research designs that involve 
repeated measures analysis, multivariate growth curve modeling, multilevel structural 
equation modeling, and multilevel mediation analysis. MVMM also shares key fea-
tures of models where items comprise the lowest level of the data structure, such as 
with applications of multilevel item response theory and those where researchers wish 
to form an overall scale using responses, for example, from several survey items. As 
such, MVMM can be viewed as a gateway technique to other advanced applications 
that enable investigators to address a wide range of research questions.

This chapter focuses on some basic applications of multivariate multilevel mode-
ling where multiple outcomes have been collected from individuals. After presenting 
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motivation for using this multivariate procedure, we explain the format of the data 
required to conduct MVMM and show how the SAS and SPSS software programs 
can reorganize data into the needed format. We then show how standard multilevel 
models can be modified to include multiple outcome variables, where scores for these 
variables have been collected from individuals. We then present a research example 
with simulated data that we use to illustrate two sets of analyses. The first set of analy-
ses, with two-level models, is designed to ease you into MVMM but also to show that 
MVMM can replicate the results produced by standard MANOVA when no organi-
zational nesting is present. This is important because an investigator may wish to use 
MVMM instead of MANOVA in such a design because of the ability of MVMM to 
include individuals in the analysis who have some missing data on the outcomes and 
to readily test for the equivalence of effects. In the second set, various three-level anal-
yses using MVMM are conducted, with multiple outcomes nested within students who 
are nested in schools. In these analyses, we show how covariates and interactions can 
be modeled when multiple outcomes are present in a multilevel design.

14.2  BENEFITS OF CONDUCTING A MULTIVARIATE MULTILEVEL 
ANALYSIS

When data are collected on multiple outcomes, researchers have a choice to conduct 
univariate or multivariate analysis. As stated earlier in the text, one reason for consid-
ering a multivariate analysis is to help guard against the inflation of the overall type 
I error rate by using an initial global multivariate test as a protected testing approach. 
A second reason is that instead of examining univariate group differences using a total 
score, obtained by summing or averaging scores across multiple subtests, investiga-
tors can compare group differences on the multiple subtests, which may provide more 
insight into the nature of group differences.

These advantages for multivariate analysis are also applicable to MVMM. However, 
there are some additional advantages associated with the use of MVMM:

1. The MVMM approach does not require that a participant provide scores for each 
dependent variable. Rather, if a participant provides a score for at least one of the 
dependent variables, that participant may be included in the analysis. Thus, com-
pared to the standard MANOVA approach, MVMM makes greater use of available 
data, which may provide for increased power. Further, SAS and SPSS provide 
maximum likelihood treatment of missing data for MVMM, which we noted in 
Chapter 1, provides for optimal estimates of parameters when the missing data 
mechanism is Missing Completely at Random (MCAR) or Missing at Random 
(MAR).

2. Snijders and Bosker (2012) note that use of MVMM may result in smaller stand-
ard errors for the tests of predictors on a given outcome compared to a univar-
iate analysis. They note that the additional precision and increase in power for 
the multivariate approach may be substantial when the dependent variables are 
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more highly correlated and participants have missing data on some of the outcome 
variables.

3. When the dependent variables are similarly scaled, MVMM can be used to test 
whether the effects of an explanatory variable are the same or differ across the 
multiple outcomes. In an experimental setting, for example, an investigator may 
learn if treatment effects are stronger for some outcomes than others, which may 
suggest revising the nature and/or implementation of the intervention.

4. When participants are clustered in organizations, MVMM can be used to describe 
the associations between the outcome variables at the participant and cluster levels 
due to the partitioning of variability that is obtained with multilevel modeling. 
Instead of learning about how scores for a single outcome vary across participants 
and clusters, as with traditional multilevel modeling, MVMM can inform investi-
gators of the associations between outcome variables that are within and between 
clusters.

Of course, MVMM is a more complicated analysis procedure compared to univariate 
analysis. As such, instead of proceeding immediately into an analysis with MVMM, 
an investigator may wish to conduct preliminary analysis using one outcome at a time 
in order to obtain an initial understanding of how a given outcome is related to the 
explanatory variables of interest. Once that is attained, MVMM could be conducted to 
make use potentially of a greater number of observations, provide the formal signifi-
cance testing needed for the study, and decompose the correlations among outcomes at 
the participant and cluster (or other) levels.

14.3 RESEARCH EXAMPLE

This chapter presents two sets of illustrative analyses involving MVMM that each 
use the same hypothetical research example. In this example, we suppose a study is 
being conducted to assess the effectiveness of a new component of an existing health 
curriculum that is being introduced to fifth graders in a large school district. The new 
component, delivered by a computer-based type of game, focuses on nutrition educa-
tion. The program is intended to complement the regular health curriculum but, due to 
its perhaps more engaging delivery, is expected to impart greater knowledge of proper 
nutrition and motivation for adhering to a healthier diet. Ultimately, the goal of the 
intervention is that students will begin (or continue) a lifetime habit of proper nutri-
tion. Each set of analyses will focus on estimating and testing treatment effects for the 
multiple outcome variables.

In order to minimize potential contamination between students in the same school, 
the researchers have selected a cluster randomized trial where schools are randomly 
assigned to the new computer-based instruction or regular nutrition education as pro-
vided in the existing curriculum. The researchers, we suppose, were able to recruit 40 
elementary schools and randomly assigned 20 schools to each condition. To simplify 
the presentation, only one class per school was selected to be included in the study. 
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Note that if multiple classes were selected, the design would have a student, class, and 
school level, instead of just the student and school level used in this example. Such a 
design would be a better choice if a broader within-school type of intervention were 
expected to lead to improved students norms and outcomes regarding proper nutrition. 
We also simplified the simulation of data by using a common class size of 20. How-
ever, such a perfectly balanced design is not required.

In such a design, the research team would likely select several dependent variables 
of interest. For the purposes of this chapter, we use two outcomes, each of which is 
continuous. These dependent variables are measures of intention to eat a healthy diet 
(called intention) and knowledge of proper nutrition (or knowledge). Some analyses 
in this chapter include a student pretest score measuring knowledge of proper nutri-
tion, which is called pretest. Table 14.1 shows means and standard deviations for the 
student-level variables averaged across all schools for each treatment condition.

14.4  PREPARING A DATA SET FOR MVMM USING SAS 
AND SPSS

Three general steps can be taken to conduct analyses with SAS and SPSS. First, a data 
file is created with a long or vertical format. Second, preliminary analysis is done to 
assess the nature of any missing data, determine if outlying values are present, and 
help ensure that assumptions associated with the procedure are reasonably satisfied. 
Third, analysis models are specified and parameters are estimated. We illustrate the 
first and third steps below, but not preliminary analysis. While such analysis activities 
are beyond the scope of this chapter, other resources are available to assist in these 
activities and assess more generally the adequacy of the model (e.g., Goldstein, 2011; 
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).

In this section, we show how a data set that is organized in wide or horizontal format 
can be reformatted into the long or vertical format required for MVMM using SAS and 
SPSS. A two-level MVMM is used for this purpose with our two outcomes (labeled 
here as Y1 and Y2) considered to be nested within students. Table 14.2 shows data in 
the wide format for five cases of the chapter data set. This truncated data set contains 
a record number, a student id variable, a column of scores for Y1, a separate column of 
scores for Y2, and a treatment indicator variable, coded as −.5 for the control group and 
.5 for the treatment group.11 Dummy-coding can also be used here. It will become clear 

 Table 14.1: Means and (Standard Deviations) for Each Treatment Condition

Treatment Intention Knowledge Pretest

Experimental 54.42 (10.27) 54.61 (10.39) 50.14 (10.29)
Control 45.69 (9.85) 45.98 (10.54) 49.73 (10.16)

Note: Means are based on 800 students (400 experimental and 400 control).
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later in the chapter why we used this coding for the treatment groups. The wide format 
depicted in Table 14.2 means that each student has one record, and all of the variables 
for that student, particularly Y1 and Y2, appear on that same record in different columns. 
Thus, given that there are 800 students in the data set, the data set contains 800 records.

However, for MVMM, data need to be in the long format. That is, instead of having the 
scores for the dependent variables appear in separate columns, scores for all dependent 
variables must be placed in a single column, which creates multiple records for each 
individual. Thus, in the reformatted data set, an individual will have multiple records, 
equal to the number of outcome scores obtained from that individual. So, if there are 
1,000 students in the sample and data have been collected on three outcomes for each 
student, the data set needed for MVMM will have 3,000 records. In the example for 
this chapter, each of the 800 individuals has two outcome scores, so the data will be 
organized into the long format containing 1,600 records.

Table 14.3 presents data from the same cases shown in Table 14.2 except that data are 
now in the long or vertical format, with the number of records equal to 1,600. Note that 
scores for each student appear on two separate lines or rows. Further, the columns con-
taining variables Y1 and Y2 have been dropped. In their place are two new variables, 
Index1 and Response, both of which can be created by computer, as shown below. The 
Response variable contains the scores for Y1 and Y2 in single column. Index1 indicates 
the sequence of outcome variables in the Response column (i.e., Y1 followed by Y2). 
Also, the Student ID and Treatment variables are in the long format, with the values for 
a given case repeated across records. The far right-hand side of Table 14.3 shows two 
dummy-coded indicator variables, a1 and a2. These variables are used in the statistical 
model as shown in the next section. Note that a1 is coded 1 when a given record con-
tains a score for Y1 and zero otherwise. Similarly, a2 is coded 1 when a given record 
contains a score for Y2 and zero otherwise.

The SAS and SPSS programs can reorganize a data set in the wide format to one in the 
long format. Table 14.4 provides the commands that can be used to convert a data set 
from wide to long format and to create the dummy-coded indicator variables a1 and a2. 
These commands assume the dataset is already open in the respective software programs.

 Table 14.2: Selected Cases Showing Variables in Wide Format

Record Student Y1 Y2 Treat

1 1 29 47 −.50
2 2 52 50 −.50
3 3 42 36 −.50
4 4 47 64 −.50
. . . . .
. . . . .
800 800 66 50 .5
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 Table 14.3: Selected Cases Showing Variables in Long Format

Record Student Index1 Response Treat a1 a2

1 1 1 29 −.50 1 0
2 1 2 47 −.50 0 1
3 2 1 52 −.50 1 0
4 2 2 50 −.50 0 1
5 3 1 42 −.50 1 0
6 3 2 36 −.50 0 1
7 4 1 47 −.50 1 0
8 4 2 64 −.50 0 1
. . . . . . .
. . . . . . .
1599 800 1 66 .5 1 0
1600 800 2 50 .5 0 1

 Table 14.4: SAS and SPSS Control Lines for Reorganizing Data From the Wide to Long 
Format and for Creating Dummy-Coded Indicator Variables

SAS SPSS

REORGANIZING DATA
DATA LONG; SET WIDE;

(1)  INDEX1=1; IF Y1 NE. THEN RESPONSE=Y1; 

ELSE DELETE; OUTPUT;

     INDEX1=2; IF Y2 NE. THEN RESPONSE=Y2; 

ELSE DELETE; OUTPUT;

(2)  KEEP SCHOOL STUDENT TREAT INDEX1 

 RESPONSE;

(4)  VARSTOCASES/

(5)  MAKE Response FROM Y1 Y2/

(6)  INDEX=Index1(2)/

(7)  KEEP=School Student Treat/

(8)  NULL=DROP.

CREATING DUMMY-CODED INDICATOR VARIABLES
DATA LONG; SET LONG;

(3) IF INDEX1=1 THEN DO; A1=1; A2=0; END;

IF INDEX1=2 THEN DO; A1=0; A2=1; END;

(9)   RECODE INDEX1 (1=1) (ELSE=0) 

INTO A1.

(10) EXECUTE.

      RECODE INDEX1 (2=1) (ELSE=0) 

INTO A2.

     EXECUTE.

 (1) This creates the index and response variables shown in Table 14.3. In addition, any missing responses in 
the wide format will be dropped in the long data set.
 (2) The KEEP statement lists all the variables to be included in the long data set.
 (3) The general form for the IF-THEN statement to execute more than one action is IF condition 
THEN DO; action; action; END;
 (4) The VARSTOCASES command restructures the wide data set into the long format.
 (5) The MAKE subcommand combines the FROM variables (here Y1 and Y2) into a single column with 
Response as the variable name.

(Continued )
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14.5  INCORPORATING MULTIPLE OUTCOMES IN THE 
LEVEL-1 MODEL

For MVMM, organizing the data set in the long format and using dummy-coded 
variables are keys to converting a standard univariate multilevel model into a multi-
variate model. For this chapter, the notation used for the equations follows that used 
in Raudenbush and Bryk (2002). For the two-level MVMM with two outcomes, the 
level-1 model can be displayed as:

Y a aij j j j j= +π π1 1 2 2 ,  (1)

where Yij in this example is the single column labeled Response in Table 14.3 that 
contains the scores for each outcome i (Y1 and Y2), for a given student j. The variables 
a1j and a2j are dummy-coded variables for a given outcome i of student j, as shown in 
Table 14.3. Note that Equation 1 has no intercept and no error term.

It is important to understand what parameters π1j and π2j in Equation 1 represent. 
Note that when a1j = 1, a2j, due to the coding that is used, is always equal to zero. 
In this case, Equation 1 becomes Yij = π1j (1) or simply π1j, which must equal Y1 due 
to the structure of the response column and dummy-coded variables. That is, when 
a1j = 1, the response variable in Equation 1 draws observations from only those 
records having a score for Y1 in the response column, which in this data set also 
corresponds to selecting the odd numbered records only (given no missing data for 
the outcomes). Similarly, when a2j = 1, Yij = π2j, which must equal Y2 (knowledge), 
as a1j = 0 in this case. So, when a2j = 1, the response in Equation 1 uses only those 
scores from the even numbered records in the data set, which correspond to Y2. As a 
result, π1j and π2j represent the dependent variables Y1 and Y2 in this analysis due to 
the data and model set up.

Equation 1, or a slightly modified form of it, is used for all analyses in this chapter, and 
these level-1 parameters are the dependent variables at the student-level (level 2) of the 
analysis. Note, however, that SAS and SPSS software, as shown in the next section, 
simplify the modeling process by having the user express the response as a function of 

 (6) The number in parenthesis indicates the number of values for the index variable and corresponds to the 
number of dependent variables in the wide data set.
 (7) This KEEP subcommand indicates which variables from the wide data set to retain in the long data set. 
The KEEP variables are a subset of all the variables in the long data set.
 (8) This drops missing responses from the long data set.
 (9) This RECODE command changes the values of an existing variable (here Index1) and displays the 
new values under a new variable (here A1). Within each parenthesis, the equals sign is preceded by the 
original value and followed by the new value.
(10) The EXECUTE command reads the data and executes the RECODE command.

 Table 14.4: (Continued)
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the Index1 variable, shown in Table 14.5. Thus, with these software programs, the a 
variables in Equation 1 generally do not need to be created by the user or specified as 
explanatory variables in the modeling process. However, we show later in the chapter 
that the a variables are useful in certain situations.

14.6  EXAMPLE 1: USING SAS AND SPSS TO CONDUCT 
TWO-LEVEL MULTIVARIATE ANALYSES

For the first example, three different analyses will be conducted, all of which include 
the measure and student levels, but ignore the school level. Note that you would gen-
erally want to include the school level in the analysis model, given the nested design, 
as omitting this level may result in an inflated type I error rate for the test of a given 

 Table 14.5: SAS and SPSS Control Lines for Estimating the Two-Level Empty Model

SAS SPSS
(1)  PROC MIXED DATA=LONG METHOD=ML  

COVTEST;

(2) CLASS INDEX1 STUDENT;

(3)  MODEL RESPONSE = INDEX1 / NOINT 

 SOLUTION;

(4)  REPEATED INDEX1 / SUBJECT = STUDENT 

TYPE=UN R;

(5)  MIXED RESPONSE BY INDEX1/

(6) FIXED=INDEX1 | NOINT/

(7) METHOD=ML/

(8)  PRINT=R SOLUTION TESTCOV/

(9)  REPEATED=INDEX1 | SUBJECT 

STUDENT) COVTYPE(UN).

(1) We fit the MVMM using the MIXED procedure and specify full maximum likelihood (ML) as the estima-
tion method. We also request hypothesis test results for the variance and covariance components with the 
COVTEST option.
(2) The CLASS statement defines the grouping variable(s) and must precede the MODEL statement.
(3) The MODEL statement specifies the dependent variable and the fixed effects. INDEX1 is listed as a 
fixed effect to estimate separate intercepts for Y1 and Y2, and the NOINT option is included to suppress the 
default intercept at level 1. The SOLUTION option displays the fixed effects estimates in the output.
(4) This REPEATED statement specifies an unstructured covariance structure (UN) for the residual cova-
riance or R matrix with the TYPE= option and displays the matrix in the output with the R option. The 
level-2 unit identifier (STUDENT) appears after the SUBJECT=option, indicating that outcomes are nested in 
students.
(5) The general form for the MIXED command is MIXED dependent variables BY factors 
WITH covariates. There are no covariates in this model, so the WITH part is not included.
(6) This FIXED subcommand estimates separate intercepts for Y1 and Y2 by specifying INDEX1 as a fixed 
effect and suppresses the default intercept term at level 1 with the NOINT option.
(7) The estimation method is full maximum likelihood (ML).
(8) This PRINT subcommand displays the residual covariance matrix (R), the fixed and random effects esti-
mates (SOLUTION), and the statistical tests results for the variance and covariance parameters  
(TESTCOV).
(9) This REPEATED subcommand identifies the level-2 unit as SUBJECT and an unstructured covariance 
structure (UN) for the residual covariance matrix.
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predictor. We include the school level in the analysis model in section 14.7. The first 
analysis for our two-level model will include the outcomes, but will have no predic-
tors. The goal of this analysis is to obtain some descriptive statistics and the model 
deviance, which will be used to test the effect of the treatment. In the second analysis, 
a coded treatment variable will be included as an explanatory variable for each out-
come. The goal of this analysis is to determine if students in the intervention group 
score significantly greater, on average, than those in the control group for any of the 
outcomes. If a significant overall treatment effect is present, then the treatment effect 
for each outcome will be estimated and tested for significance. In the third analysis, we 
presume that the outcome scores are measured on the same scale (which they are for 
the simulated data set). We then test whether the impact of the treatment is the same 
for each outcome.

14.6.1 Estimating the Empty or Null Model

The first analysis of the data does not include any explanatory variables and is called 
an unconditional or empty model. For this model, Equation 1 is the level-1 model. At 
the second level of the model, the parameters, π1j and π2j, which represent the variables 
intention (Y1) and knowledge (Y2), are allowed to vary across students. This level-2 
model is

π β1 10 1j jr= +  (2)

π β2 20 2j jr= + ,   (3)

where β10 and β20 represent the mean for intention and knowledge, respectively. The 
residual terms (r1j and r2j) are assumed to follow a bivariate normal distribution, with 
an expected mean of zero, some variance and covariance.

The five parameters to be estimated for this empty model are two fixed effects (i.e., β10, 
β20), which are the means of Y1 and Y2, the variance of r1j, or Y1 (τπ11), the variance of 
r2j, or Y2 (τπ22), and their covariance (τπ12). Note that 1,600 cases are being used in the 
analysis. The SAS and SPSS commands for estimating these parameters are given in 
Table 14.5 and selected results are presented in Table 14.6.

In Table 14.6, the SAS and SPSS outputs show that the means for intention (Y1) and 
knowledge (Y2), as shown in the tables of fixed effects, are respectively, 50.05 and 
50.29, with variances 119.95 and 127.90, and covariance 60.87, as shown in the covar-
iance parameter tables and also in the R or residual covariance matrices. Given the 
covariance matrix, the standard deviations for intention and knowledge are, respec-
tively, 10.95 and 11.31, and the correlation of the residuals is .491, indicating that 
intention and knowledge are positively and moderately correlated. The model deviance 
for the five parameters is 12,030.2, as shown in the outputs. This deviance value, as 
previously indicated in this text, reflects the fit of the model. This model deviance (i.e., 
−2LL) will be compared to the deviance obtained when the treatment variable is added 
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the model to determine whether the fit of the model improves with the addition of the 
treatment indicator variable. Note that the full maximum likelihood estimation pro-
cedure (as implemented throughout the chapter), not restricted maximum likelihood, 
needs to be used when one wishes to test the effects of explanatory variables using 
deviances.

Note that although we do not place much focus on testing variances in this chapter, 
each variance and covariance element can be tested for significance with a z test, as 
described in Chapter 13. This test is provided by SAS and SPSS through the COV-
TEST and TESTCOV options, respectively, and is shown in the covariance parameters 
tables in Table 14.6. However, the z test for variances should be used as a rough guide 
for determining statistical significance as the sampling distribution of the variance is 
approximately normal. A chi-square test using model deviances is preferred for testing 
variances, with such a test illustrated in section 14.7.3.

14.6.2 Including an Explanatory Variable in the Model

We now include the treatment variable in this multivariate analysis. The goal of the 
analysis is to determine if there are treatment effects for any outcome, which will be 
accomplished by a global test of the null hypothesis that no treatment effects are pres-
ent for any outcome. If treatment effects are present, then the effects and statistical test 
results for the treatment will be examined for each outcome. For this two-level model, 
Equation 1 is the level-1 model. At the student level, Equations 2 and 3 are modified so 
that the treatment variable (Treat) is added to each of the equations. Although dummy 
coding can be used for the treatment variable, the coding employed here uses values 
of −.5 and .5 representing membership in the control and treatment conditions, respec-
tively. The level-2 model that is used now is

π β β1 10 11 1j j jX r= + +   (4)

π β β2 20 21 2j j jX r= + + ,   (5)

where Xj represents the treatment variable. Due to the coding used for the treatment 
variable, β10 and β20 represent the mean for intention and knowledge, respectively. 
More importantly, β11 and β21 represent the mean difference between students in the 
experimental and control conditions for intention and knowledge, respectively. The 
residual terms are assumed to follow a bivariate normal distribution, with an equal 
variance-covariance matrix across treatment groups. Note that the multivariate null 
hypothesis for the test of the treatment is H0 : β11 = β21 = 0, which will be tested by 
using deviances from this and the empty model of Equations 1–3.

For this model, four fixed effects (the four βs in Equations 4 and 5) and the three 
variance-covariance elements are to be estimated. Note that to include an explanatory 
variable in the model so that separate effects of that variable are estimated for each 
outcome, SAS and SPSS require that a given explanatory variable be multiplied by the 
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Table 14.6 Selected Output for the Two-Level Empty Model 

SAS

Estimated R Matrix for Student 1

Row Col1 Col2

1 119.95 60.8689
2 60.8689 127.9

Fit Statistics

-2 Log Likelihood 12030.2
AIC (smaller is better) 12040.2
AICC (smaller is better) 12040.2
BIC (smaller is better) 12063.6

Solution for Fixed Effects

Effect Index1 Estimate
Standard 
Error DF t Value Pr > |t|

Index1 1 50.0548 0.3872 800 129.27 <.0001
Index1 2 50.2909 0.3998 800 125.78 <.0001

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr Z

UN(1,1) Student 119.95 5.9976 20 <.0001
UN(2,1) Student 60.8689 4.8794 12.47 <.0001
UN(2,2) Student 127.9 6.3951 20 <.0001

SPSS

Estimates of Fixed Effectsa

Parameter Estimate Std. Error Df t Sig. 95% 
Confidence 
Interval

Lower 
Bound

Upper 
Bound

[Index1=1] 50.054814 0.38722 800 129.267 49.294726 50.814902
[Index1=2] 50.290916 0.399847 800 125.775 49.506042 51.075789
a Dependent Variable: Response.

(Continued)
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Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence Interval

Lower 
Bound

Upper 
Bound

Repeated 
Measures

UN (1,1) 119.95174 5.997587 20 0 108.754309 132.302067
UN (2,1) 60.868913 4.879436 12.475 0 51.305394 70.432431
UN (2,2) 127.902203 6.39511 20 0 115.962601 141.071116

a Dependent Variable: Response.

Information Criteriaa

-2 Log Likelihood 12030.164

Akaike’s Information Criterion (AIC) 12040.164

Hurvich and Tsai’s Criterion (AICC) 12040.202

Bozdogan’s Criterion (CAIC) 12072.053

Schwarz’s Bayesian Criterion (BIC) 12067.053

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: Response.

Residual Covariance (R) Matrixa

[Index1 = 1] [Index1 = 2]

[Index1 = 1] 119.95174 60.868913
[Index1 = 2] 60.868913 127.902203

Unstructured
a Dependent Variable: Response.

Index1 variable. So, to estimate β11 and β21 in SAS, the term TREAT*INDEX1 must be 
added to the MODEL statement shown in Table 14.5. In SPSS, we add the statements 
WITH TREAT to the MIXED command and TREAT*INDEX1 to the FIXED sub-
command. The complete SAS and SPSS control lines for estimating all models in this 
chapter are shown in section 14.9. Table 14.7 shows selected results for this model.

As shown in the outputs, the deviance for this current model is 11,847.6, with seven 
parameters estimated. Recall that the deviance for the empty model was 12,030.2 with 
five parameters estimated. The global test for the null hypothesis that no treatment 
effects are present for any of the outcomes (H0: β11 = β21 = 0) can be tested by comput-
ing the difference in these deviances, which is distributed as a chi-square value having 
degrees of freedom equal to the difference in the number of parameters estimated for 

 Table 14.6: (Continued)
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 Table 14.7: Selected Output for the Two-Level Model With Treatment Effects

SAS

Solution for Fixed Effects

Effect Index1 Estimate
Standard 
Error DF t Value Pr > |t|

Index1 1 50.0548 0.3552 800 140.92 <.0001
Index1 2 50.2909 0.3696 800 136.06 <.0001
Treat*Index1 1 8.7233 0.7104 800 12.28 <.0001
Treat*Index1 2 8.6257 0.7393 800 11.67 <.0001

Estimated R Matrix for Student 1

Row Col1 Col2

1 100.93   42.0579
2   42.0579 109.3

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr Z

UN(1,1) Student 100.93 5.0464 20 <.0001
UN(2,1) Student   42.0579 4.0001 10.51 <.0001

UN(2,2) Student 109.3 5.4651 20 <.0001

Fit Statistics

-2 Log Likelihood 11847.6
AIC (smaller is better) 11861.6
AICC (smaller is better) 11861.7
BIC (smaller is better) 11894.4

SPSS

Estimates of Fixed Effectsa

Parameter Estimate Std. Error Df t Sig.

95% Confidence Interval

Lower Bound Upper Bound

[Index1=1] 50.054814 0.35519 800 140.924 49.3576 50.752029
[Index1=2] 50.290916 0.369631 800 136.057 49.565355 51.016477
[Index1=1] * Treat 8.723254 0.71038 800 12.28 7.328825 10.117683
[Index1=2] * Treat 8.625689 0.739262 800 11.668 7.174567 10.07681
a Dependent Variable: Response.

(Continued)
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 Table 14.7: (Continued)

Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence Interval

Lower 
Bound

Upper  
Bound

Repeated 
Measures

UN (1,1) 100.92795 5.046398 20 91.50638 111.319573
UN (2,1) 42.057895 4.00007 10.514 34.217901 49.897889
UN (2,2) 109.301577 5.465079 20 99.098334 120.555355

a Dependent Variable: Response.

Information Criteriaa

-2 Log Likelihood 11847.606
Akaike’s Information Criterion (AIC) 11861.606
Hurvich and Tsai’s Criterion (AICC) 11861.676
Bozdogan’s Criterion (CAIC) 11906.25
Schwarz’s Bayesian Criterion (BIC) 11899.25

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: Response.

Residual Covariance (R) Matrixa

[Index1 = 1] [Index1 = 2]

[Index1 = 1] 100.92795 42.057895
[Index1 = 2] 42.057895 109.301577

Unstructured
a Dependent Variable: Response.

these models, i.e., 7 − 5 = 2. This deviance test can be used here because the empty 
model can be obtained from this current model by constraining the treatment effects to 
be zero. Computing the difference in model deviances results in a chi-square value of 
12,030.2 − 11,847.6 = 182.6, which is statistically significant, as this value exceeds the 
chi-square critical value of 5.99 (α = .05, df = 2).

Since rejection of the overall multivariate null hypothesis suggests that treatment 
effects are present for at least one of the outcomes, we now consider the estimates 
and statistical test results of the treatment effect for each outcome. Here, the two 
null hypotheses being tested are H0 : β11 = 0 and H0 : β21 = 0. As shown in the 
outputs, the treatment effects are 8.72 (SE = .710) for intention and 8.63 (SE = 
.739) for knowledge. The t ratios of about 12.28 (p < .05) and 11.67 (p < .05), re-
spectively, for intention and knowledge, suggest that treatment effects are present 
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for each outcome in the population. To obtain the group means for each outcome, 
values of −.5 and .5 for the control and experimental group can be inserted into 
Equations 4 and 5, along with the parameter estimates. Thus, for intention, the con-
trol group mean is 50.055 − .5(8.723) = 45.693, and the experimental group mean is 
50.055 + .5(8.723) = 54.417. For knowledge, you can confirm that the control group 
mean is 45.978 and the experimental group mean is 54.604. The residual variances 
are also shown in the outputs, and they are 100.93 (SD =10.05) for intention and 
109.30 (SD = 10.45) for knowledge. The correlation between the residuals can be 
calculated in the usual manner and is .400.

14.6.3 Comparison to Traditional MANOVA Results

For comparison purposes, we provide and briefly discuss selected SPSS results from a 
traditional multivariate analysis of these same data with the treatment as the explana-
tory variable. Table 14.8 shows that the p value associated with Wilks’ lambda is quite 
small, leading to the decision to reject the overall multivariate null hypothesis for the 
treatment effects, the same decision as obtained with MVMM. In the parameter esti-
mates table in Table 14.8, SPSS automatically dummy codes the treatment variable, 
coding the value for the experimental and control groups, in this example, as 0 and 
1, respectively. Thus, in that table, the intercept represents the experimental group 
average for a given outcome, and the treatment effect is computed by subtracting the 
experimental mean from the control mean (thus obtaining negative differences). Other 
than that, the SPSS results in this table are virtually the same as those obtained with 
the MVMM approach, with the difference in means estimated to be 8.72 (SE =.711) 
for intentions and 8.63 (SE =.740) for knowledge. Thus, if desired, MVMM can be 
used in place of traditional multivariate analysis. The remaining analyses in this chap-
ter illustrate some extensions of the traditional MANOVA approach that can be more 
effectively handled by MVMM.    

14.6.4  Testing Whether the Effect of a Predictor Differs Across 
Outcomes

The final analysis conducted with the two-level example tests whether the effect of the 
treatment is of the same magnitude for each outcome. Given that the outcomes are meas-
ured on or placed on the same scale, investigators may wish to learn if a new intervention 
has stronger effects for some outcomes than others. This can be done by first constraining 
the fixed effects—in this case treatment effects—to be equal, and then testing the differ-
ence in fit using the deviances between this constrained model and one where the effects 
are freely estimated. In Equations 4 and 5, the effects of the treatment are freely esti-
mated (i.e., without constraints) for intention (β11) and knowledge (β21). In this analysis, 
we test whether these treatment effects are the same or different for the two outcomes. 
The model used now is essentially the same as with the previous analysis except that an 
assumed common treatment effect will be estimated. As such, the number of parameters 
estimated is now six, consisting of three fixed effects (i.e., only one treatment effect esti-
mate) and the three elements in the variance-covariance matrix.
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 Table 14.8: Selected Output From a Traditional MANOVA

Multivariate Testsb

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace .972 13654.003a 2.000 797.000 .000
Wilks’ Lambda .028 13654.003a 2.000 797.000 .000
Hotelling’s Trace 34.263 13654.003a 2.000 797.000 .000
Roy’s Largest Root 34.263 13654.003a 2.000 797.000 .000

Treat Pillai’s Trace .204 102.149a 2.000 797.000 .000
Wilks’ Lambda .796 102.149a 2.000 797.000 .000
Hotelling’s Trace .256 102.149a 2.000 797.000 .000
Roy’s Largest Root .256 102.149a 2.000 797.000 .000

a Exact statistic
a Design: Intercept + Treat

Parameter Estimates

Dependent  
Variable Parameter B Std. Error t Sig.

95% Confidence Interval

Lower 
Bound

Upper 
Bound

Y1 Intercept 54.416 .503 108.196 .000 53.429 55.404
[Treat=-.50] -8.723 .711 -12.264 .000 -10.119 -7.327
[Treat=.50] 0a . . . . .

Y2 Intercept 54.604 .523 104.327 .000 53.576 55.631
[Treat=-.50] -8.626 .740 -11.653 .000 -10.079 -7.173
[Treat=.50] 0a . . . . .

a This parameter is set to zero because it is redundant.

To estimate this model in SAS and SPSS, we replace the TREAT*INDEX1 term in the 
previous model with TREAT. Complete control lines for this model can be found in 
section 14.9. Selected outputs are presented in Table 14.9.   

As shown in the outputs, the deviance associated with this constrained treatment-effects 
model is 11,847.621, which is only slightly larger (i.e., reflecting worse fitting) than 
the previous model that provided separate estimates of treatment effects. Specifi-
cally, the difference in model deviances, which is distributed as a chi-square value is 
11,847.621 − 11,847.606 = 0.015, which does not exceed the chi-square critical value 
of 3.84 (α = .05, df = 1). Thus, this test does not suggest that these two models have 
different fit. As such, there is evidence supporting the hypothesis that the effect of the 
intervention is similar for intention and knowledge. Note that in the SAS and SPSS 
outputs, shown in the fixed effects tables of Table 14.9, the common treatment effect is 
estimated to be 8.678 (SE = .606) and is statistically significant (p < .05).
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 Table 14.9: Selected Output for the Two-Level Model With Treatment Effects  
Constrained to Be Equal

SAS

Solution for Fixed Effects

Effect Index1 Estimate
Standard 
Error DF t Value Pr > |t|

Index1 1 50.0548 0.3552 799 140.92 <.0001
Index1 2 50.2909 0.3696 799 136.06 <.0001
Treat 8.6777 0.606 799 14.32 <.0001

Estimated R Matrix for Student 1

Row Col1 Col2

1 100.93 42.0573
2 42.0573 109.3

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr Z

UN(1,1) Student 100.93 5.0464 20 <.0001
UN(2,1) Student 42.0573 4.0001 10.51 <.0001
UN(2,2) Student 109.3 5.4651 20 <.0001

Fit Statistics

-2 Log Likelihood 11847.6
AIC (smaller is better) 11859.6
AICC (smaller is better) 11859.7
BIC (smaller is better) 11887.7

SPSS

Estimates of Fixed Effectsa

Parameter Estimate Std. Error Df T Sig.

95% Confidence 
Interval

Lower 
Bound

Upper 
Bound

[Index1=1] 50.054814 0.355191 799.994 140.924 49.357598 50.75203
[Index1=2] 50.290916 0.369632 799.993 136.057 49.565353 51.016479
Treat 8.67771 0.606001 800 14.32 7.488171 9.867249
a Dependent Variable: Response.

(Continued)
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14.7  EXAMPLE 2: USING SAS AND SPSS TO CONDUCT 
THREE-LEVEL MULTIVARIATE ANALYSES

The previous examples illustrated two-level multivariate analyses, but did not 
include the school level in the statistical model. In the research design used in this 
chapter, students are nested in one of 40 schools. Often, such nesting needs to be 
accounted for in the analysis because the responses of students within treatment 
groups are not independent, as is assumed in the previous analysis. Instead, these 
responses are likely related because the students share a similar environment. As dis-
cussed previously, such dependence, if not accounted for statistically, can increase 
type I error rates associated with fixed effects and may lead to false claims of, in 
this case, the presence of treatment effects. The analyses in this section take the 

Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence 
Interval

Lower 
Bound

Upper 
Bound

Repeated 
Measures

UN (1,1) 100.928469 5.046442 20 91.506817 111.320185
UN (2,1) 42.057303 4.000082 10.514 34.217285 49.89732
UN (2,2) 109.302254 5.465135 20 99.098907 120.556151

a Dependent Variable: Response.

 Table 14.9: (Continued)

Information Criteriaa

-2 Log Likelihood 11847.621
Akaike’s Information Criterion (AIC) 11859.621
Hurvich and Tsai’s Criterion (AICC) 11859.673
Bozdogan’s Criterion (CAIC) 11897.887
Schwarz’s Bayesian Criterion (BIC) 11891.887

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: Response.

Residual Covariance (R) Matrixa

[Index1 = 1] [Index1 = 2]

[Index1 = 1] 100.928469 42.057303
[Index1 = 2] 42.057303 109.302254

Unstructured
a Dependent Variable: Response.
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within-school dependence into account by adding a third level—the school level—to 
the multilevel model. Further, instead of including only the treatment variable in the 
model, we include other explanatory variables, including student gender, student 
pretest knowledge, a school average of these pretest scores, and a treatment-gender 
product term.

There is one primary hypothesis underlying these analyses. That is, while treatment 
effects are expected to be present for intention and knowledge for both boys and girls, 
boys are expected to derive greater benefit from the computer-based instruction. The 
reason for this extra impact of the intervention, we assume, is that fifth-grade boys will 
enjoy playing the instructional video game more than girls. As a result, the impact that 
the experimental program has for intention and knowledge will be greater for boys 
than girls. Thus, the investigators hypothesize the presence of a treatment-by-gender 
interaction for both outcomes, where the intervention will have stronger effects on 
intention and knowledge for boys than for girls.

In addition, because the cluster randomized trial with this limited number of schools (i.e., 
40) does not generally provide for great statistical power, knowledge pretest scores were 
collected from all students. These scores are expected to be fairly strongly associated with 
both outcomes. Further, because associations may be stronger at the school level than at the 
student level, the researchers computed school averages of the knowledge pretest scores 
and plan to include this variable in the model to provide for increased power.

Three MVMM analyses are illustrated next. The first analysis includes the treatment varia-
ble as the sole explanatory variable. The purpose of this analysis is to obtain a preliminary 
estimate of the treatment effect for each outcome. The second analysis includes all of the 
explanatory variables as well as the treatment-by-gender interaction. The primary purpose 
of this analysis is to test the hypothesized interactions. If the multivariate test for the inter-
action is significant, the analysis will focus on examining the treatment-by-gender interac-
tion for each outcome, and if significant, describing the nature of any interactions obtained. 
The third analysis will illustrate a multivariate test for multiple variance and covariance 
elements. Often, in practice, it is not clear if, for example, the association between a student 
explanatory variable and outcome is the same or varies across schools. Researchers may 
then rely on empirical evidence (e.g., a statistical test result) to address this issue.

14.7.1 A Three-Level Model for Treatment Effects

For this first analysis, Equation 1, which had previously been the level-1 model, needs 
to be modified slightly in order to acknowledge the inclusion of the school level. The 
level-1 model now is:

Y a aijk jk jk jk jk= +π π1 1 2 2 ,   (6)

which is identical to Equation 1 except that subscript k has been added. Thus, π1jk and 
π2jk represent the intention and knowledge posttest scores, respectively, for a given 
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student j who is attending a given school k. The second- or student-level of the model, 
with no explanatory variables included, is then

π β1 10 1jk k jkr= +  (7)

π β2 20 2jk k jkr= + ,    (8)

where β10k and β20k represent the mean for a given school k for intention and knowl-
edge, respectively. The student-level or within-school residual terms (r1jk and r2jk) are 
assumed to follow a bivariate normal distribution, with an expected mean of zero, var-
iances (τπ1 and τπ2), and covariance (τπ12). Since treatment assignment varies across and 
not within schools, the treatment indicator variable (coded −.5 and .5 for control and 
experimental schools, respectively) appears in the school-level model. This third- or 
school-level model is

β γ γ10 100 101 10k k kTreat u= + +   (9)

β γ γ20 200 201 20k k kTreat u= + + ,  (10)

where γ100 and γ200 represent the overall average for intention and knowledge, re-
spectively. The key parameters are γ101 and γ201, which represent the differences in 
means between the experimental and control groups for intention and knowledge. The 
school-level residual terms are u10k and u20k, which are assumed to follow a bivariate 
normal distribution with an expected mean of zero and constant variances (τβ11 and 
τβ22), and covariance (τβ12).

The software commands for reorganizing a data set given in Table 14.4 can be used 
here to change the data set from the wide to the needed long format. Note that the Keep 
commands in Table 14.4 should be modified to also include variables gender, pretest, 
meanpretest, and TXG, which are used in subsequent analyses. Table 14.10 shows 
some cases for the reorganized data set that is needed for this section.

The variables in this data set include a school and student id, the index variable iden-
tifying the response as Y1 or Y2, response containing the scores for the outcomes, 
treatment (with −.5 for the control group and .5 for the experimental group), gen-
der (with −.5 indicating female and .5 male), pretest knowledge, meanpretest, and a 
treatment-by-gender product variable (denoted TXG), which is needed to model the 
interaction of interest. To ensure that the output you obtain will correspond to that in 
the text, all variables except the index and id variables should appear as continuous 
variables in the data set.

The model described in Equations 6–10 has four fixed effects (the four γs) and six 
variance-covariance elements, for a total of 10 parameters. As shown in Table 14.11, 
we build upon the SAS and SPSS commands for the two-level models to estimate 
these parameters and present selected results in Table 14.12. Note that the R matrix is 
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 Table 14.10: Selected Cases Showing Variables in Long Format for Three-Level Models

Record School Student Index1 Response Treat Gender Pretest
Mean 
Pretest TXG

1 1 1 1 29 −.50 −.50 48 46 .25
2 1 1 2 47 −.50 −.50 48 46 .25
3 1 2 1 52 −.50 .50 52 46 −.25
4 1 2 2 50 −.50 .50 52 46 −.25
5 1 3 1 42 −.50 −.50 41 46 .25
6 1 3 2 36 −.50 −.50 41 46 .25
7 1 4 1 47 −.50 .50 63 46 −.25
8 1 4 2 64 −.50 .50 63 46 −.25
. . . . . . . . . .
. . . . . . . . . .
1599 40 800 1 66 .50 .50 41 53 .25
1600 40 800 2 50 .50 .50 41 53 .25

the variance-covariance matrix for the student-level residuals, and the G matrix is the 
variance-covariance matrix for the school-level residuals.

In Table 14.12, the outputs (in the fixed effects tables) show that students scored higher, 
on average, for both intentions (γ101 = 8.72, p < .05) and knowledge (γ201 = 8.63, p < 
.05) when they were exposed to the experimental nutritional educational program. In 
addition, after taking treatment membership into account, most of the posttest score 
variability is within schools, as the proportion of remaining variability that is between 
schools for intention is about .03 (i.e., 3.31 / (3.31 + 97.62)) and .08 (i.e., 8.74 / (8.74 
+ 100.56)) for knowledge. Note that estimates for the variances and covariances appear 
in the covariance parameter tables and in the R and G matrices of Table 14.12. The 
correlation among the residuals, which can be calculated manually, at the student level 
is .40 and at the school level is .38. Note that if desired, an empty model omitting the 
treatment variable from Equations 9 and 10 could be estimated prior to this model. If 
that were done, model deviances could be compared as in sections 14.6.1 and 14.6.2 
to test the overall multivariate null hypothesis of no treatment effect. A test of model 
deviances will be used to provide a multivariate test of the interaction of interest.

14.7.2 A Three-Level Model With Multiple Predictors

In the second analysis, all explanatory variables are included and the multivariate null 
hypothesis of no treatment-by-gender interaction for any of the outcomes is tested. 
For this analysis, Equation 6 remains the level-1 model. The student-level model 
is modified to include gender (coded −.5 for females and .5 for males) and pretest, 
which is group-mean centered. For the remaining models in this chapter, variable 
names, instead of symbols, are used to ease understanding of the models. Thus, the 
student-level model is



 Table 14.11: SAS and SPSS Control Lines for Estimating the Three-Level Model With 
Treatment Effects

SAS SPSS
PROC MIXED DATA=LONG METHOD=ML  
COVTEST;
(1)  CLASS INDEX1 STUDENT SCHOOL;
     MODEL RESPONSE = INDEX1 

 TREAT*INDEX1 / NOINT SOLUTION;
(2)  RANDOM INDEX1 / SUBJECT=SCHOOL 

TYPE=UN G;
(3)  REPEATED INDEX1 / SUBJECT =  

STUDENT(SCHOOL) TYPE=UN R;

MIXED RESPONSE BY INDEX1 WITH 
TREAT/
   FIXED=INDEX1 TREAT*INDEX1 | 
NOINT/

  METHOD=ML/
  PRINT=G R SOLUTION TESTCOV/
(4)  RANDOM=INDEX1 | SUBJECT 

(SCHOOL) COVTYPE(UN)/
(5)  REPEATED=INDEX1 | SUBJECT 

(SCHOOL*STUDENT)  
COVTYPE(UN).

(1) We add the level-3 unit identifier (SCHOOL) as a CLASS variable.
(2) The RANDOM statement estimates separate random effects for INDEX1 (i.e., Y1 and Y2) at the SCHOOL 
level and displays the corresponding variance-covariance matrix, G matrix.
(3) The nesting of level-2 units within level-3 units appears as STUDENT(SCHOOL). The R matrix is the 
person-level variance covariance matrix.
(4) The RANDOM subcommand specifies random effects for Y1 and Y2 at the school level and requests an 
unstructured school-level variance-covariance matrix, G matrix.
(5) SCHOOL*STUDENT refers to the nesting of level-2 units within level-3 units and specifies an unstruc-
tured matrix for the student-level variance-covariance matrix, which is the R matrix.

 Table 14.12: Selected Output for the Three-Level Model With Treatment Effects

SAS

Solution for Fixed Effects

Effect Index1 Estimate
Standard 

Error DF t Value Pr > |t|

Index1 1 50.0548 0.4525 76 110.62 <.0001
Index1 2 50.2909 0.5867 76 85.72 <.0001
Treat*Index1 1 8.7233 0.905 1520 9.64 <.0001
Treat*Index1 2 8.6257 1.1734 1520 7.35 <.0001

Estimated R Matrix for Student (School)

Row Col1 Col2

1 97.6186 40.0357
2 40.0357 100.56

(Continued)



Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr Z

UN(1,1) School 3.3094 1.8484 1.79 0.0367
UN(2,1) School 2.0222 1.806 1.12 0.2629
UN(2,2) School 8.7416 3.0898 2.83 0.0023
UN(1,1) Student(School) 97.6186 5.0077 19.49 <.0001
UN(2,1) Student(School) 40.0357 3.8763 10.33 <.0001
UN(2,2) Student(School) 100.56 5.1586 19.49 <.0001

Fit Statistics

-2 Log Likelihood 11813.4
AIC (smaller is better) 11833.4
AICC (smaller is better) 11833.5
BIC (smaller is better) 11850.3

Estimated G Matrix

Row Effect Index1 School Col1 Col2

1 Index1 1 1 3.3094 2.0222
2 Index1 2 1 2.0222 8.7416

SPSS

Estimates of Fixed Effectsa

95% Confidence  
Interval

Parameter Estimate Std. Error Df t Sig.
Lower  
Bound

Upper 
Bound

[Index1=1] 50.054814 0.452502 40 110.618 49.140274 50.969355
[Index1=2] 50.290916 0.58672 40 85.715 49.105111 51.476721
[Index1=1] * Treat 8.723254 0.905004 40 9.639 6.894173 10.552335
[Index1=2] * Treat 8.625689 1.17344 40 7.351 6.254078 10.997299
a Dependent Variable: Response.

Estimates of Covariance Parametersa

95% Confidence  
Interval

Parameter Estimate Std. Error Wald Z Sig.
Lower 
Bound

Upper  
Bound

Repeated 
Measures

UN (1,1) 97.618558 5.007726 19.494 88.280884 107.943901
UN (2,1) 40.035727 3.876274 10.328 32.438371 47.633084



Random Effect Covariance Structure (G)a

[Index1=1] | School [Index1=2] | School

[Index1=1] | School 3.309392 2.022168
[Index1=2] | School 2.022168 8.741618

Unstructured
a Dependent Variable: Response.

Information Criteriaa

-2 Log Likelihood 11813.380
Akaike’s Information Criterion (AIC) 11833.38
Hurvich and Tsai’s Criterion (AICC) 11833.518
Bozdogan’s Criterion (CAIC) 11897.157
Schwarz’s Bayesian Criterion (BIC) 11887.157

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: Response.

Residual Covariance (R) Matrixa

[Index1 = 1] [Index1 = 2]

[Index1 = 1] 97.618558 40.035727
[Index1 = 2] 40.035727 100.55996

Unstructured
a Dependent Variable: Response.

Estimates of Covariance Parametersa

95% Confidence  
Interval

Parameter Estimate Std. Error Wald Z Sig.
Lower 
Bound

Upper  
Bound

UN (2,2) 100.55996 5.158614 19.494 90.940926 111.196421
Index1 
[subject = 
School]

UN (1,1) 3.309392 1.848448 1.79 0.073 1.107421 9.889709
UN (2,1) 2.022168 1.806048 1.12 0.263 -1.517621 5.561956
UN (2,2) 8.741618 3.089764 2.829 0.005 4.37251 17.476435

a Dependent Variable: Response.

 Table 14.12: (Continued)
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π β β β1 10 11 12 1jk k k jk k jk jkGender r= + + +Pretest  (11)

π β β β2 20 21 22 2jk k k jk k jk jkGender r= + + +Pretest .  (12)

The student-level or within-school residual terms (r1jk and r2jk) are assumed to follow 
a bivariate normal distribution, with an expected mean of zero, some variance, and a 
covariance.

At the school level, each of the regression coefficients in Equations 11 and 12 may 
be considered as outcomes to be modeled. However, the investigators assume that the 
association between the pretest and each of the outcomes is the same across schools, 
so β12k and β22k are modeled as fixed effects in the school-level model. Also, in order 
to model the treatment-by-gender interaction, the treatment variable needs to be added 
in the model for β11k and β21k. Further, meanpretest, which is grand-mean centered, is 
included in the model for β10k and β20k so that it may serve as a covariate for each out-
come. This school-level model is

β γ γ γ10 100 101 102 10k k k kTreat Mean u= + + +Pretest   (13)

β γ γ11 110 111k kTreat= +   (14)

β γ12 120k =  (15)

β γ γ γ20 200 201 202 20k k k kTreat Mean u= + + +Pretest   (16)

β γ γ21 210 211k kTreat= +  (17)

β γ22 220k = .  (18)

Note that there are no residual terms included in the Equations 14 and 17, which sug-
gests that any systematic between-school variability in male-female performance is due 
to the treatment. This assumption is tested in the third analysis. Thus, Equations 13–18 
have two residual terms, u10k and u20k, which are assumed to follow a bivariate normal 
distribution with an expected mean of zero and constant variance and covariance.

The focus of this analysis is on the interaction between treatment and gender. Per-
haps the best way to recognize which coefficients represent this interaction is to form 
equations for Y1 (intention) and Y2 (knowledge), separately. Recall that Y1 is the same 
as π1jk in Equation 11, and Y2 is the same as π2jk in Equation 12. Therefore, separate 
equations for the outcomes can be formed by replacing each of the β terms on the right 
hand side of Equations 11 and 12 with the expressions for these coefficients found in 
Equations 13–18. Thus, the equations for Y1 and Y2 may be expressed as

Y Treat Mean Gender TXGk k jk jk1 100 101 102 110 111= + + + +γ γ γ γ γPretest

+ + +γ120 10 1Pretestk k jku r
  (19)
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Y Treat Mean Gender TXGk k jk jk2 200 201 202 210 211= + + + +γ γ γ γ γPretest

+ + +γ 220 20 2Pretestk k jku r .   (20)

From Equations 19 and 20, the treatment-by-gender product variable (TXG) is readily 
recognizable, and the absence of other product terms indicates that no other interac-
tions are included in the model. Thus, γ111 and γ211 represent the treatment-by-gender 
interactions (cross-level interactions) for intention and knowledge. Note that while 
some software programs (e.g., HLM) would include these cross-level interaction terms 
without a user needing to enter the specific product variable, the SAS and SPSS pro-
grams require a user to enter this product term.

Note that in this data set, the number of girls and boys is the same in each of the 40 
schools (which is not a requirement of the model). As a result, the use of the coding −.5 
and .5 for females and males effectively makes gender a centered variable (centered 
within schools). Such centering is useful here because it (1) results in parameters β11k 
and β21k of Equations 11 and 12 reflecting only within-school gender differences on 
the outcomes and (2) reduces multicollinearity, given that the product of gender and 
treatment appears in the model. Similarly, pretest is also centered within-schools, so 
that (1) parameters β12k and β22k of Equations 11 and 12 represent the within-school 
associations of pretest and each of the outcomes and (2) parameters γ102 and γ202 of 
Equations 13 and 16 represent the between-school associations between meanpretest 
and each of the outcomes. We also center meanpretest in Equations 13 and 16, which 
while not necessary, is done here so that the intercepts of these equations continue to 
represent the means for Y1 and Y2. Table 14.13 shows the SAS and SPSS commands 
that can be used to create a group-mean centered student pretest variable, called pre-
test_cen, and a centered school pretest variable, called meanpretest_cen.

Note that in this model, there are 12 fixed effects, six γs in each of the equations for 
Y1 and Y2 and six variance-covariance elements, with three such terms at each of the 
student and school levels. To estimate these parameters, we insert additional terms 
into the SAS and SPSS commands from Table 14.11. These additions are shown in 
Table 14.14, and selected results are presented in Table 14.15.   

The multivariate hypothesis of no interaction for the two outcomes can be conducted 
by comparing the deviance from the current model to the deviance from the model 
that omits the TXG variable from Equations 19 and 20. Although the results from the 
model where both interactions are constrained to be zero (i.e., γ111 = γ211 = 0) are not 
shown here, we estimated that model, and its deviance is 11,358.5. Note that this no 
interaction model has 16 parameters estimated (i.e., two fewer than the current model 
with the removal of TXG from Equations 19 and 20). As shown in the SAS and SPSS 
outputs in Table 14.15, the deviance from the current model is 11,338.9, and there are 
18 parameters estimated. The difference in model fit, as reflected by the difference in 
model deviances, is then 11,358.5 − 11,338.9 = 19.6, which is statistically significant 
as it exceeds the chi-square critical value of 5.99 (α = .05, df = 2). Thus, the statistically 
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 Table 14.13: SAS and SPSS Control Lines for Creating Centered Student Pretest and 
School Pretest Variables

SAS SPSS

CREATING CENTERED PRETEST VARIABLE

DATA LONG; SET LONG;
(1)  PRETEST_CEN=PRETEST- 

MEANPRETEST;

(1)  COMPUTE PRETEST_CEN=PRETEST 
— MEANPRETEST.

    EXECUTE.

CREATING CENTERED MEANPRETEST VARIABLE

(2) PROC SQL;
(3) CREATE TABLE LONG2 AS
(4)  SELECT *, MEAN 

(MEANPRETEST),
(5)  MEANPRETEST — MEAN 

MEANPRETEST) as  
MEANPRETEST_CEN

(6) FROM LONG
(7) QUIT;

(8)  AGGREGATE/ MEANPRETEST_
MEAN=MEAN(MEANPRETEST).

(5)  COMPUTE MEANPRETEST_
CEN=MEANPRETEST — MEANPRE-
TEST_MEAN.

    EXECUTE.

(1) We create the group-mean centered variable (PRETEST_CEN) by subtracting the respective school’s 
mean (MEANPRETEST) from each student’s pretest score (PRETEST). 
(2) The SQL procedure is just one way to center data.
(3) The general form for the CREATE statement is CREATE TABLE name of new dataset AS.
(4) The SELECT statement includes a SELECT clause and a FROM clause. The * selects all the columns 
from the dataset specified in (6) below. The MEAN function calculates the mean of the scores for the variable 
within the parentheses (here, school pretest scores or MEANPRETEST).
(5) We create a centered variable (MEANPRETEST_CEN) by subtracting the grand mean from each 
school’s mean.
(6) The name of the original dataset appears in the FROM clause.
(7) QUIT terminates PROC SQL.
(8) We use the AGGREGATE and following subcommand to create a MEANPRETEST score  
(MEANPRETEST_MEAN) created for each record.

significant improvement in fit obtained by allowing for treatment-by-gender interac-
tions for both outcomes suggests the presence of a treatment-by-gender interaction for 
at least one of the dependent variables.

Examining the outputs for the estimates of the treatment-by-gender interaction for 
each outcome in Table 14.15 (in the fixed effects tables) shows that the point esti-
mates of the interaction for intention is 4.791 (SE = 1.247) and for knowledge is 3.293 
(SE = 1.116). The corresponding t ratios, 3.84 and 2.95, and p values (each smaller 
than .05) suggest that the treatment-by-gender interaction is significant for each out-
come. To better understand these interactions, we use the LSMEANS statement in 
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 Table 14.14: SAS and SPSS Control Lines for Estimating the Three-Level Model With 
All Explanatory Variables and a Treatment-by-Gender Interaction

SAS SPSS

PROC MIXED DATA=LONG METHOD=ML 
COVTEST;
     CLASS INDEX1 STUDENT 

SCHOOL;
(1)  MODEL RESPONSE = INDEX1 

TREAT*INDEX1 GENDER*INDEX1 
 PRETEST_CEN*INDEX1  
MEANPRETEST_CEN*INDEX1 TX-
G*INDEX1 / NOINT SOLUTION;

     RANDOM INDEX1 / SUBJECT=-
SCHOOL TYPE=UN G;

     REPEATED INDEX1 /  
SUBJECT = STUDENT(SCHOOL) 
TYPE=UN R;

(2)  MIXED RESPONSE BY  
INDEX1 WITH TREAT GENDER 
PRETEST_CEN

    MEANPRETEST_CEN TXG /
(1)  FIXED=INDEX1 TREAT*INDEX1 

GENDER*INDEX1 PRETEST_
CEN*INDEX1

     MEANPRETEST_CEN*INDEX1  
TXG*INDEX1 | NOINT/

    METHOD=ML/
     PRINT=G R SOLUTION  

TESTCOV/
     RANDOM=INDEX1 | SUBJECT 

(SCHOOL) COVTYPE(UN)/
     REPEATED=INDEX1 |  

SUBJECT(SCHOOL* 
STUDENT) COVTYPE(UN).

(1) We add GENDER*INDEX1, PRETEST_CEN*INDEX1, MEANPRETEST_CEN*INDEX1, and 
TXG*INDEX1 as fixed effects.
(2) We include GENDER, PRETEST_CEN, MEANPRETEST_CEN, and TXG as covariates.

SAS and the EMMEANS subcommand in SPSS to obtain the experimental and control 
group means for males and females, holding constant the values of the other explan-
atory variables at their means, as well as tests of the simple effects of the treatment. 
Table 14.16 shows the commands from Table 14.14 along with the changes required 
for the LSMEANS and EMMEANS commands. Selected output is summarized in 
Table 14.17.   

For intention, the differences in means between the experimental and control groups 
shown in Table 14.17 suggest that the intervention has positive effects for both males 
and females, but that this impact is greater for males. Specifically, the treatment effect 
for males is 11.00 points and for females is 6.21 points. The extra impact the treatment 
provides to males then is 11.00 − 6.21 or 4.79, which is equal to γ111 in Equation 19, 
with this additional impact being statistically significant as shown in Table 14.15. 
As described earlier, while the computer-based intervention is hypothesized to have 
greater effects for boys than girls, the investigators also hypothesized that the inter-
vention will have positive effects for both boys and girls. The p-values for the tests of 
these simple effects, shown in Table 14.17, suggest that the intervention has a posi-
tive impact on intention for both groups. Note that SAS also provides the associated 



 Table 14.15: Selected Output for the Three-Level Model With a Treatment-By-Gender 
Interaction

SAS

Solution for Fixed Effects

Effect Index1 Estimate
Standard 
Error DF t Value Pr > |t|

Index1 1 50.0548 0.4269 74 117.24 <.0001
Index1 2 50.2909 0.3409 74 147.51 <.0001
Treat*Index1 1 8.6057 0.8555 1514 10.06 <.0001
Treat*Index1 2 8.2513 0.6832 1514 12.08 <.0001
Gender* 
Index1

1 3.6551 0.6243 1514 5.85 <.0001

Gender* 
Index1

2 2.3247 0.5589 1514 4.16 <.0001

Pretest_ 
cen*Index1

1 0.3981 0.03232 1514 12.32 <.0001

Pretest_ 
cen*Index1

2 0.6123 0.02893 1514 21.16 <.0001

MeanPretest_ 
c*Index1

1 0.2854 0.1285 1514 2.22 0.0265

MeanPretest_ 
c*Index1

2 0.9091 0.1026 1514 8.86 <.0001

TXG*Index1 1 4.7911 1.247 1514 3.84 0.0001
TXG*Index1 2 3.2932 1.1163 1514 2.95 0.0032

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr Z

UN(1,1) School 3.4041 1.6425 2.07 0.0191
UN(2,1) School 0.4806 0.9475 0.51 0.612
UN(2,2) School 1.5342 1.0518 1.46 0.0723
UN(1,1) Student(School) 77.7445 3.9882 19.49 <.0001
UN(2,1) Student(School) 13.6003 2.5723 5.29 <.0001
UN(2,2) Student(School) 62.3026 3.1961 19.49 <.0001

Estimated G Matrix

Row Effect Index1 School Col1 Col2

1 Index1 1 1 3.4041 0.4806
2 Index1 2 1 0.4806 1.5342

(Continued)



 Table 14.15: (Continued)

Fit Statistics

-2 Log Likelihood 11338.9
AIC (smaller is better) 11374.9
AICC (smaller is better) 11375.3
BIC (smaller is better) 11405.3

Estimated R Matrix for Student(School)

Row Col1 Col2

1 77.7445 13.6003
2 13.6003 62.3026

SPSS

Estimates of Fixed Effectsa

Parameter Estimate Std. Error Df t Sig.

95% Confidence 
Interval

Lower 
Bound

Upper 
Bound

[Index1=1] 50.054814 0.426947 40 117.239 49.191922 50.917707
[Index1=2] 50.290916 0.340931 40 147.511 49.601869 50.979963
[Index1=1] * 
Treat

8.605723 0.855533 40 10.059 6.876627 10.33482

[Index1=2] * 
Treat

8.251335 0.68317 40 12.078 6.870597 9.632073

[Index1=1] * 
Gender

3.655092 0.624344 760 5.854 2.429448 4.880735

[Index1=2] * 
Gender

2.324697 0.55891 760 4.159 1.227506 3.421888

[Index1=1] * 
Pretest_cen

0.398114 0.032318 760 12.319 0.334672 0.461557

[Index1=2] * 
Pretest_cen

0.612272 0.028931 760 21.163 0.555478 0.669065

[Index1=1] 
* MeanPre-
test_cen

0.285419 0.128524 40 2.221 0.032 0.025662 0.545177

[Index1=2] 
* MeanPre-
test_cen

0.909107 0.102631 40 8.858 0.701683 1.116532

[Index1=1] * 
TXG

4.791081 1.246977 760 3.842 2.343153 7.239009

[Index1=2] * 
TXG

3.293155 1.116289 760 2.95 0.003 1.10178 5.484531

a Dependent Variable: Response.



Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence 
Interval

Lower 
Bound

Upper 
Bound

Repeated 
Measures

UN (1,1) 77.744543 3.988211 19.494 70.307912 85.967765

UN (2,1) 13.600348 2.572286 5.287 8.558761 18.641935

UN (2,2) 62.302597 3.196056 19.494 56.343061 68.892488

Index1 
[subject = 
School]

UN (1,1) 3.404127 1.642546 2.072 0.038 1.32217 8.76444

UN (2,1) 0.480581 0.94748 0.507 0.612 -1.376445 2.337608

UN (2,2) 1.534221 1.051837 1.459 0.145 0.400238 5.881087
a Dependent Variable: Response.

Random Effect Covariance Structure (G)a

[Index1=1] | School [Index1=2] | School

[Index1=1] | School 3.404127 0.480581
[Index1=2] | School 0.480581 1.534221

Unstructured
a Dependent Variable: Response.

Information Criteriaa

-2 Log Likelihood 11338.913
Akaike’s Information Criterion (AIC) 11374.913
Hurvich and Tsai’s Criterion (AICC) 11375.346
Bozdogan’s Criterion (CAIC) 11489.713
Schwarz’s Bayesian Criterion (BIC) 11471.713

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: Response.

Residual Covariance (R) Matrixa

[Index1 = 1] [Index1 = 2]

[Index1 = 1] 77.744543 13.600348
[Index1 = 2] 13.600348 62.302597

Unstructured
a Dependent Variable: Response.
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 Table 14.16: SAS and SPSS Control Lines for Estimating and Testing Simple Treatment 
Effects

SAS SPSS

PROC MIXED DATA=LONG2 
METHOD=ML COVTEST;
(1)  CLASS INDEX1 STUDENT 

SCHOOL TREAT GENDER TXG;
     MODEL RESPONSE = INDEX1 

TREAT*INDEX1 GENDER*INDEX1
     PRETEST_CEN*INDEX1 MEAN-

PRETEST_CEN*INDEX1 TXG* 
INDEX1

(2)  INDEX1*TREAT*GENDER*TXG / 
NOINT SOLUTION;

     RANDOM INDEX1 / SUBJECT 
=SCHOOL TYPE=UN G;

     REPEATED INDEX1 /  
SUBJECT = STUDENT(SCHOOL) 
TYPE=UN R;

(3)  LSMEANS INDEX1*TREAT* 
GENDER*TXG / DIFF;

(4)  MIXED RESPONSE BY INDEX1 
TREAT GENDER TXG WITH  
PRETEST_CEN

    MEANPRETEST_CEN/
     FIXED=INDEX1 TREAT*INDEX1 

GENDER*INDEX1 PRETEST_ 
CEN*INDEX1

(2)  MEANPRETEST_CEN*INDEX1  
TXG*INDEX1 INDEX1* 
TREAT*GENDER*TXG

    | NOINT/
    METHOD=ML/
     RANDOM=INDEX1 | SUBJECT 

(SCHOOL) COVTYPE(UN)
     REPEATED=INDEX1 | SUBJECT 

(SCHOOL*STUDENT)  
COVTYPE(UN)

(5)  EMMEANS TABLES(INDEX1* 
TREAT*GENDER)  
COMPARE(TREAT).

(1) We add TREAT, GENDER, and TXG as CLASS variables in order to include them in the LSMEANS 
statement in (3) below.
(2) We add INDEX1*TREAT*GENDER*TXG as a fixed effect.
(3) LSMEANS calculates means associated with the treatment-by-gender interactions. The DIFF option 
calculates the pairwise differences of cell means and corresponding t-values.
(4) We change TREAT, GENDER, and TXG from WITH variables to BY variables as needed for this 
procedure.
(5) EMMEANS estimates the marginal means associated with the treatment-by-gender interactions specified 
in the TABLES keyword (INDEX1*TREAT*GENDER). COMPARE calculates and tests simple effects 
associated with the treatment as requested by listing the factor (TREAT).

t- values for these tests. SPSS users, however, will need to manually compute the t 
ratios by dividing the mean differences by their corresponding standard errors.

For knowledge, Table 14.17 again suggests that the impact of the treatment is stronger 
for males than females. For males, the treatment effect is 9.90 points, which is statisti-
cally significant (t = 11.22, p < .05). For females, the impact of the treatment is about 
6.60 points with this effect also being statistically significant (t = 7.49, p < .05). The 
extra impact the intervention has on knowledge for males is then 9.90 − 6.60 or about 
3.30, which is equivalent to γ211 in Equation 20, and which the results in Table 14.15 
(shown there as 3.2932) indicate is statistically significant.
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 Table 14.17: Estimated Experimental and Control Means and Tests of Simple  
Treatment Effects

Group Experimental Control Mean  
Difference

Standard  
Error

t Value* p value

Intention

Male 57.38 46.38 11.00 1.06 10.39 .
Female 51.33 45.12  6.21 1.06  5.87 .000

Knowledge

Male 56.40 46.50  9.90 0.88 11.22 .000
Female 52.43 45.83  6.60 0.88  7.49 .000

* Not provided in SPSS output.

 Table 14.18: SAS and SPSS Control Lines With Gender as a Random Effect for  
Knowledge

SAS SPSS

PROC MIXED DATA=LONG 
METHOD=ML COVTEST;
 CLASS INDEX1 STUDENT SCHOOL;
MODEL RESPONSE = INDEX1 
TREAT*INDEX1 GENDER*INDEX1
PRETEST_CEN*INDEX1 MEANPRE-
TEST_CEN*INDEX1 TXG*INDEX1 / 
NOINT
SOLUTION;
(1)  RANDOM INDEX1 GENDER*A2 /  

SUBJECT=SCHOOL TYPE=UN G;
REPEATED INDEX1 / SUBJECT =  
STUDENT(SCHOOL) TYPE=UN R;

MIXED RESPONSE BY INDEX1 WITH 
TREAT GENDER PRETEST_CEN
(2)  MEANPRETEST_CEN TXG A2/
     FIXED=INDEX1 TREAT* 

INDEX1 GENDER*INDEX1 
PRETEST_CEN*INDEX1

     MEANPRETEST_CEN* 
INDEX1 TXG*INDEX1 | 
NOINT SSTYPE(3)/

    METHOD=ML/
     PRINT=G R SOLUTION  

TESTCOV/
(1)  RANDOM=INDEX1 GENDER*A2 

| SUBJECT(SCHOOL) COV-
TYPE(UN)

     REPEATED=INDEX1 |  
SUBJECT(SCHOOL*STUDENT) 
COVTYPE(UN).

(1) We cross GENDER with the dummy-coded indicator variable A2 and include this term as a random 
effect. Note that we would specify GENDER*INDEX1 as a random effect to test whether the effect of 
GENDER varies across schools for both outcomes. Attempts to estimate this model resulted in convergence 
failure as the between-school variance associated with the gender difference for intention is essentially equal 
to zero.
(2) We add A2 as a covariate.



 Table 14.19:  Selected Output for the Model With Gender as a Random Effect for 
Knowledge

SAS

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr Z

UN(1,1) School 3.4044 1.6427 2.07 0.0191
UN(2,1) School 0.4824 0.9476 0.51 0.6107
UN(2,2) School 1.5466 1.0526 1.47 0.0709
UN(3,1) School 0.7638 1.5399 0.50 0.6199
UN(3,2) School 0.9222 1.2335 0.75 0.4547
UN(3,3) School 0.8685 2.9360 0.30 0.3837
UN(1,1) Student(School) 77.7445 3.9882 19.49 <.0001
UN(2,1) Student(School) 13.5723 2.5719 5.28 <.0001
UN(2,2) Student(School) 62.0642 3.2725 18.97 <.0001

Estimated R Matrix for Student(School)

Row Col1 Col2

1 77.7445 13.5723
2 13.5723 62.0642

Fit Statistics

-2 Log Likelihood 11338.1
AIC (smaller is better) 11380.1
AICC (smaller is better) 11380.7
BIC (smaller is better) 11415.6

Estimated G Matrix

Row Effect Index1 School Col1 Col2 Col3

1 Index1 1 1 3.4044 0.4824 0.7638
2 Index1 2 1 0.4824 1.5466 0.9222
3 Gender*a2 1 0.7638 0.9222 0.8685

SPSS

Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence Interval

Lower Bound Upper Bound

Repeated 
Measures

UN (1,1) 77.744543 3.988211 19.494 70.307912 85.967765

UN (2,1) 13.572284 2.571881 5.277  8.53149 18.613079
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SPSS

Estimates of Covariance Parametersa

Parameter Estimate Std. Error Wald Z Sig.

95% Confidence Interval

Lower Bound Upper Bound

UN (2,2) 62.064233 3.272486 18.965 55.970572 68.821327

Index1 + 
Gender * A2 
[subject = 
School]

UN (1,1) 3.40445 1.642689 2.072 0.038 1.322305 8.765207

UN (2,1) 0.482374 0.947619 0.509 0.611 -1.374925 2.339673

UN (2,2) 1.546609 1.052627 1.469 0.142 0.407428 5.870982

UN (3,1) 0.763736 1.539926 0.496 0.62 -2.254465 3.781936

UN (3,2) 0.922211 1.233522 0.748 0.455 -1.495447 3.339869

UN (3,3) 0.868756 2.936166 0.296 0.767 0.001154 654.235886
a Dependent Variable: Response.

Random Effect Covariance Structure (G)a

[Index1=1] | School [Index1=2] | School Gender * A2 | School

[Index1=1] | School 3.40445 0.482374 0.763736
[Index1=2] | School 0.482374 1.546609 0.922211
Gender * A2 | School 0.763736 0.922211 0.868756

Unstructured
a Dependent Variable: Response.

Information Criteriaa

-2 Log Likelihood 11338.119
Akaike’s Information Criterion (AIC) 11380.119
Hurvich and Tsai’s Criterion (AICC) 11380.705
Bozdogan’s Criterion (CAIC) 11514.052
Schwarz’s Bayesian Criterion (BIC) 11493.052

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: Response.

Residual Covariance (R) Matrixa

[Index1 = 1] [Index1 = 2]

[Index1 = 1] 77.744543 13.572284
[Index1 = 2] 13.572284 62.064233

Unstructured
a Dependent Variable: Response.



613Chapter 14       

Although the main focus of this analysis is on the treatment effects, we note that the 
student and school pretest variables are positively related to each of the outcome var-
iables, as shown in Table 14.15 (in the fixed effects tables). Further, the variances and 
covariances are generally smaller in this model than in the previous model, indicating 
that including the additional explanatory variables accounted for more variation and 
covariation of intention and knowledge. Also, the residual correlation (not shown in 
the output) at the student level is now .195 and at the school level is .210.

14.7.3 A Multivariate Test for Multiple Variance-Covariances

The final analysis for the three-level MVMM tests whether the within-school differ-
ence between males and females on knowledge varies across schools. In Equation 12, 
β21k represents the expected difference between males and females on knowledge that 
is within a given school k, controlling for the other variables in the model. In Equa-
tion 17, this gender difference was assumed to be constant from school to school. It 
may often be the case that investigators do not have strong a priori hypothesis for 
specifying whether such effects are fixed or vary across schools. While it may often be 
prudent to model such effects as fixed across schools, because including trivial varia-
tion can cause estimation problems, true variation, if present, should be included in the 
analysis since exclusion of this variation can result in an increased type I error rate for 
the test of the fixed effects.

To use an empirical basis for modeling the gender difference as fixed or varying, we 
illustrate a multivariate test to determine if this difference on knowledge varies across 
schools, after controlling for the other variables in the model. To implement this test, a 
random term associated with this gender difference needs to be added to Equation 17. 
To do this in SAS and SPSS, we reproduce the commands from Table 14.14 and then 
utilize the dummy-coded indicator variable a2 that was created at the beginning of the 
chapter (see Table 14.3). Table 14.18 shows the needed commands, and Table 14.19 
presents the variance-covariance matrices and model fit statistics estimated for this 
model.

By adding a residual to Equation 17 (u21k), three total parameters are added to this 
model compared to the previous model. The three parameters and their estimates 
(appearing in the G matrices and tables of covariance parameters in Table 14.19) are 
the school-level residual variance for u21k for the gender effects (i.e., .87) and two new 
covariances for the school-level residuals, the covariance of (1) u10k and u21k (i.e., .76) 
and (2) u20k and u21k (i.e., .92). The multivariate null hypothesis assumes that the param-
eter values for all of the new terms are zero in the population. This can be tested by 
comparing the deviance from this model to the deviance in the previous model. Note 
that the previous model is nested in the current model because the previous model can 
be obtained from this one by constraining each of these three terms to a value of zero. 
The deviance for the previous model was 11,338.9 (with 18 parameters) and for this 
model, as shown in the output, is 11,338.1 (with 21 parameters). Thus, the improve-
ment in fit obtained by adding these three terms is negligible, as the chi-square test 
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statistic is 11,338.9 − 11,338.1 = 0.8, which does not exceed the critical value of 7.815 
(α = .05 and df = 3). Thus, there is no empirical support to include these additional 
random effects.Table 14.19 Selected Output for the Model With Gender as a Random 
Effect for Knowledge

14.8 SUMMARY

The primary goals of this chapter were to provide an introduction to MVMM and help 
readers implement such analyses. The initial hurdles for MVMM are to understand 
how the data need to be formatted, with multiple outcomes appearing in a single col-
umn and sequenced within individuals, and how the level-1 model can be specified 
to include multiple outcomes in a conventional multilevel model. This level-1 model 
differs from standard models because it does not include an intercept, has no resid-
ual term, and makes use of dummy-coded indicator variables so that model param-
eters become specific dependent variables. However, once these hurdles are cleared, 
including explanatory variables and random effects is similar to multilevel modeling 
in general. We also provided analysis examples with increasing complexity to enable 
understanding of MVMM and to provide more realistic examples. Note also that while 
SAS and SPSS were used throughout the chapter to reorganize data from the wide to 
long format and conduct analyses, MVMM analyses can also be carried out by other 
software programs, such as MLwiN, HLM, and Mplus.

Further, we pointed out that MVMM is an important analysis tool for several rea-
sons. First, MVMM can be used in the place of traditional MANOVA (where multiple 
outcomes are nested in individuals). If missing data on some outcomes are present, 
MVMM makes use of more observations than would a traditional application of 
MANOVA (using listwise deletion), which allows for greater power in testing for group 
differences (e.g., treatment effects). In addition, SAS and SPSS provide for maximum 
likelihood estimation for treating missing data, which provides for optimal parameter 
estimates when data are missing completely at random or missing at random. Also, 
as illustrated in the chapter, it is straightforward in MVMM to test for the equality of 
the effects of an explanatory variable across multiple outcomes. These features alone 
could in the future make MVMM a routine modeling procedure for multivariate data. 
Second, if individuals are nested in settings, such as schools, clinics, or workplaces, the 
use of MVMM is generally preferred over traditional MANOVA because MVMM can 
properly model the dependence of observations such shared contexts produces while 
also incorporating multiple dependent variables. Third, like traditional MANOVA and 
as implemented in this chapter, you can use MVMM to provide for global tests of mul-
tiple parameters to help control for the inflation of the type I error rate associated with 
more numerous testing of individual parameters.

Finally, there are useful extensions of MVMM applications, such as parallel growth 
curve modeling, where growth in multiple outcomes, as well as explanatory variables 
that predict such growth, can be investigated, or multilevel mediation analysis where 



615Chapter 14       

the multiple outcomes incorporated at level 1 are mediators and outcomes. Thus, hav-
ing exposure to the basic ideas of MVMM can be helpful for readers who wish to 
tackle these and many other extensions of MVMM. Such extensions will likely grow 
as investigators find new ways to model phenomena of interest.

14.9  SAS AND SPSS COMMANDS USED TO ESTIMATE ALL 
MODELS IN THE CHAPTER

SAS Control Lines

Two-Level Empty Model

PROC MIXED DATA=LONG METHOD=ML COVTEST;
CLASS INDEX1 STUDENT;
MODEL RESPONSE = INDEX1 / NOINT SOLUTION;
REPEATED INDEX1 / SUBJECT = STUDENT TYPE=UN R;

Two-Level Model with Treatment Effects

PROC MIXED DATA=LONG METHOD=ML COVTEST;
CLASS INDEX1 STUDENT;
MODEL RESPONSE = INDEX1 TREAT*INDEX1 / NOINT SOLUTION;
REPEATED INDEX1 / SUBJECT = STUDENT TYPE=UN R;

Two-Level Model with Treatment Effects Constrained to be Equal

PROC MIXED DATA=LONG METHOD=ML COVTEST;
CLASS INDEX1 STUDENT;
MODEL RESPONSE = INDEX1 TREAT / NOINT SOLUTION;
REPEATED INDEX1 / SUBJECT = STUDENT TYPE=UN R;

Three-Level Model with Treatment Effects

PROC MIXED DATA=LONG METHOD=ML COVTEST;
CLASS INDEX1 STUDENT SCHOOL;
MODEL RESPONSE = INDEX1 TREAT*INDEX1 / NOINT SOLUTION;
RANDOM INDEX1 / SUBJECT=SCHOOL TYPE=UN G;
REPEATED INDEX1 / SUBJECT = STUDENT(SCHOOL) TYPE=UN R;

Three-Level Model with Multiple Predictors

PROC MIXED DATA=LONG METHOD=ML COVTEST;
CLASS INDEX1 STUDENT SCHOOL;
MODEL RESPONSE = INDEX1 TREAT*INDEX1 GENDER*INDEX1
PRETEST_CEN*INDEX1 MEANPRETEST_CEN*INDEX1 TXG*INDEX1 / NOINT
SOLUTION;
RANDOM INDEX1 / SUBJECT=SCHOOL TYPE=UN G;
REPEATED INDEX1 / SUBJECT = STUDENT(SCHOOL) TYPE=UN R;

Three-Level Model with Estimates of Cell Means for Treatment-by-Gender Interaction

PROC MIXED DATA=LONG2 METHOD=ML COVTEST;

(Continued)



CLASS INDEX1 STUDENT SCHOOL TREAT GENDER TXG;
MODEL RESPONSE = INDEX1 TREAT*INDEX1 GENDER*INDEX1
PRETEST_CEN*INDEX1 MEANPRETEST_CEN*INDEX1 TXG*INDEX1
INDEX1*TREAT*GENDER*TXG / NOINT SOLUTION;
RANDOM INDEX1 / SUBJECT=SCHOOL TYPE=UN G;
REPEATED INDEX1 / SUBJECT = STUDENT(SCHOOL) TYPE=UN R;
LSMEANS INDEX1*TREAT*GENDER*TXG / DIFF;

Three-Level Model with Multivariate Test of Multiple Variance-Covariances

PROC MIXED DATA=LONG METHOD=ML COVTEST;
CLASS INDEX1 STUDENT SCHOOL;
MODEL RESPONSE = INDEX1 TREAT*INDEX1 GENDER*INDEX1
PRETEST_CEN*INDEX1 MEANPRETEST_CEN*INDEX1 TXG*INDEX1 / NOINT
SOLUTION;
RANDOM INDEX1 GENDER*A2 / SUBJECT=SCHOOL TYPE=UN G;
REPEATED INDEX1 / SUBJECT = STUDENT(SCHOOL) TYPE=UN R;

SPSS Control Lines

Two-Level Empty Model

MIXED RESPONSE BY INDEX1/
FIXED=INDEX1 | NOINT/
METHOD=ML/
PRINT=R SOLUTION TESTCOV/
REPEATED=INDEX1 | SUBJECT(STUDENT) COVTYPE(UN).

Two-Level Model with Treatment Effects

MIXED RESPONSE BY INDEX1 WITH TREAT/
FIXED=INDEX1 TREAT*INDEX1 | NOINT/
METHOD=ML/
PRINT=R SOLUTION TESTCOV/
REPEATED=Index1 | SUBJECT(STUDENT) COVTYPE(UN).

Two-Level Model with Treatment Effects Constrained to be Equal

MIXED RESPONSE BY INDEX1 WITH TREAT/
FIXED=INDEX1 TREAT | NOINT/
METHOD=ML/
PRINT=R SOLUTION TESTCOV/
REPEATED=Index1 | SUBJECT(STUDENT) COVTYPE(UN).

Three-Level Model with Treatment Effects

MIXED RESPONSE BY INDEX1 WITH TREAT/
FIXED=INDEX1 TREAT*INDEX1 | NOINT/
METHOD=ML/
PRINT=G R SOLUTION TESTCOV/
RANDOM=INDEX1 | SUBJECT(SCHOOL) COVTYPE(UN)/
REPEATED=INDEX1 | SUBJECT(SCHOOL*STUDENT) COVTYPE(UN).

 Table 14.19: (Continued)
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Three-Level Model with Multiple Predictors

MIXED RESPONSE BY INDEX1 WITH TREAT GENDER PRETEST_CEN
MEANPRETEST_CEN TXG /
FIXED=INDEX1 TREAT*INDEX1 GENDER*INDEX1 PRETEST_CEN*INDEX1
MEANPRETEST_CEN*INDEX1 TXG*INDEX1 | NOINT/
METHOD=ML/
PRINT=G R SOLUTION TESTCOV/
RANDOM=INDEX1 | SUBJECT(SCHOOL) COVTYPE(UN)/
REPEATED=INDEX1 | SUBJECT(SCHOOL*STUDENT) COVTYPE(UN).

Three-Level Model with Estimates of Cell Means for Treatment-by-Gender Interaction

MIXED RESPONSE BY INDEX1 TREAT GENDER TXG WITH PRETEST_CEN
MEANPRETEST_CEN/
FIXED=INDEX1 TREAT*INDEX1 GENDER*INDEX1 PRETEST_CEN*INDEX1
MEANPRETEST_CEN*INDEX1 TXG*INDEX1 INDEX1*TREAT*GENDER*TXG
NOINT/
METHOD=ML/
RANDOM=INDEX1 | SUBJECT(SCHOOL) COVTYPE(UN)
REPEATED=INDEX1 | SUBJECT(SCHOOL*STUDENT) COVTYPE(UN)
EMMEANS TABLES(INDEX1*TREAT*GENDER) COMPARE(TREAT ).

Three-Level Model with Multivariate Test of Multiple Variance-Covariances

MIXED RESPONSE BY INDEX1 WITH TREAT GENDER PRETEST_CEN
MEANPRETEST_CEN TXG A2/
FIXED=INDEX1 TREAT*INDEX1 GENDER*INDEX1 PRETEST_CEN*INDEX1
MEANPRETEST_CEN*INDEX1 TXG*INDEX1 | NOINT SSTYPE(3)/
METHOD=ML/
PRINT=G R SOLUTION TESTCOV/
RANDOM=INDEX1 GENDER*A2 | SUBJECT(SCHOOL) COVTYPE(UN)
REPEATED=INDEX1 | SUBJECT(SCHOOL*STUDENT) COVTYPE(UN).



Chapter 15

CANONICAL CORRELATION

15.1 INTRODUCTION

In Chapter 3, we examined breaking down the association between two sets of vari-
ables using multivariate regression analysis. This is the appropriate technique if our 
interest is in prediction, and if we wish to focus our attention primarily on the individ-
ual variables (both predictors and dependent) rather than on linear combinations of the 
variables. Canonical correlation is another means of breaking down the association 
for two sets of variables, and is appropriate if the wish is to parsimoniously describe 
the number and nature of mutually independent relationships existing between the 
two sets. This is accomplished through the use of pairs of linear combinations that are 
uncorrelated.

Because the combinations are uncorrelated, we will obtain a very nice additive parti-
tioning of the total between association. Thus, there are several similarities to principal 
components analysis (discussed in Chapter 9). Both are variable reduction schemes 
that use uncorrelated linear combinations. In components analysis, generally the first 
few linear combinations (the components) account for most of the total variance in 
the original set of variables, whereas in canonical correlation the first few pairs of lin-
ear combinations (the so-called canonical variates) generally account for most of the 
between association. Also, in interpreting the principal components, we used the asso-
ciations between the original variables and the components. In canonical correlation, 
the associations between the original variables and the canonical variates will again be 
used to name the canonical variates.

One could consider doing canonical regression. However, as Darlington, Weinberg, 
and Walberg (1973) stated, investigators are generally not interested in predicting lin-
ear combinations of the dependent variables.

Let us now consider a couple of situations where canonical correlation would be use-
ful. An investigator wishes to explore the relationship between a set of personality var-
iables (say, as measured by the Cattell 16 PF scale or by the California Psychological 
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Inventory) and a battery of achievement test scores for a group of high school students. 
The first pair of canonical variates will tell us what type of personality profile (as 
revealed by the linear combination and named by determining which of the original 
variables associate most highly with this linear combination) is maximally associated 
with a given profile of achievement (as revealed by the linear combination for the 
achievement scores). The second pair of canonical variates will yield an uncorrelated 
personality profile that is associated with a different pattern of achievement, and so on.

As a second example, consider the case where a single group of subjects is measured 
on the same set of variables at two different points in time. We wish to investigate 
the stability of the personality profiles of female college subjects from their freshman 
to their senior years. Canonical correlation analysis will reveal which dimension of 
personality is most stable or reliable. This dimension would be named by determining 
which of the original variables associate most highly with the canonical variates cor-
responding to the largest canonical correlation. Then the analysis will find an uncorre-
lated dimension of personality that is next most reliable. This dimension is named by 
determining which of the original variables has the highest association with the second 
pair of canonical variates, and so on. This type of multivariate reliability analysis 
using canonical correlation has been in existence for some time. Merenda, Novack, 
and Bonaventure (1976) did such an analysis on the subtest scores of the California 
Test of Mental Maturity for a group of elementary school children.

15.2 THE NATURE OF CANONICAL CORRELATION

To focus more specifically on what canonical correlation does, consider the following 
hypothetical situation. A researcher is interested in the relationship between job success 
and academic achievement. He has two measures of job success: (1) the amount of money 
the individual is making, and (2) the status of the individual’s position. He has four meas-
ures of academic achievement: (1) high school GPA, (2) college GPA, (3) number of 
degrees, and (4) ranking of the college where the last degree was obtained. We denote the 
first set of variables by xs and the second set of variables (academic achievement) by ys.

The canonical correlation procedure first finds two linear combinations (one from the 
job success measures and one from the academic achievement measures) that have the 
maximum possible Pearson correlation. That is,

u1 = a11 x1 + a12 x2 and v1 = b11 y1 + b12 y2 + b13 y3 + b14 y4

are found such that ru1v1 is maximum. Note that if this were done with data, the as 
and bs would be known numerical values, and a single score for each subject on each 
linear composite could be obtained. These two sets of scores for the subjects are then 
correlated just as we would perform the calculations for the scores on two individual 
variables, say x and y. The maximized correlation for the scores on two linear compos-
ites (ru1v1) is called the largest canonical correlation, and we denote it by R1.
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Now, the procedure searches for a second pair of linear combinations, uncorrelated 
with the first pair, such that the Pearson correlation between this pair is the next largest 
possible. That is,

u2 = a21x1 + a22 x2 and v2 = b21 y1 + b22 y2 + b23 y3 + b24 y4

are found such that ru2v2 is maximum. This correlation, because of the way the proce-
dure is set up, will be less than ru1v1. For example, ru1v1 might be .73 and ru2v2 might 
be .51. We denote the second largest canonical correlation by R2.

When we say that this second pair of canonical variates is uncorrelated with the 
first pair we mean that (1) the canonical variates within each set are uncorrelated, 
that is, ru1u2 = 0, and (2) the canonical variates are uncorrelated across sets, that is, 
ru1v2 = rv1u2 = 0.

For this example, there are just two possible canonical correlations and hence only 
two pairs of canonical variates. In general, if one has p variables in one set and q in 
the other set, the number of possible canonical correlations is min (p,q) = m (see Tat-
suoka, 1971, p. 186, for the reason). Therefore, for our example, there are only min 
(2,4) = 2 canonical correlations. To determine how many of the possible canonical 
correlations indicate statistically significant relationships, a residual test procedure 
identical in form to that for discriminant analysis is used. Thus, canonical correlation 
is still another example of a mathematical maximization procedure (as were multiple 
regression and principal components), which partitions the total between association 
through the use of uncorrelated pairs of linear combinations.

15.3 SIGNIFICANCE TESTS

First, we determine whether there is any association between the two sets with the 
following test statistic:

V N p q= − − − − −∑{( . ) ( ) / } ,1 5 2 ln(1 )2

=1

Ri
i

m

where N is sample size and Ri denotes the ith canonical correlation. V is approximately 
distributed as a χ2 statistic with pq degrees of freedom. If this overall test is significant, 
then the largest canonical correlation is removed and the residual is tested for signif-
icance. If we denote the term in braces by k, then the first residual test statistic (V1) is 
given by

V k1 = − ⋅ −∑ ln(1 )2

=2

Ri
i

m

.

V1 is distributed as a χ2 with (p − 1)(q − 1) degrees of freedom. If V1 is not significant, 
then we conclude that only the largest canonical correlation is significant. If V1 is 
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significant, then we continue and examine the next residual (which has the two largest 
roots removed), V2, where

V k1 = − ⋅∑ ln(1 )2

=3

− Ri
i

m

.

V2 is distributed as a χ2 with (p − 2)(q − 2) degrees of freedom. If V2 is not significant, 
then we conclude that only the two largest canonical correlations are significant.

If V2 is significant, we examine the next residual, and so on. In general, then, when the 
residual after removing the first s canonical correlations is not significant, we conclude 
that only the first s canonical correlations are significant. The degree of freedom for the 
ith residual is (p − i)(q − i).

When we introduced canonical correlation, it was indicated that the canonical variates 
additively partition the association. The reason they do is because the variates are 
uncorrelated both within and across sets. As an analogy, recall that when the predictors 
are uncorrelated in multiple regression, we obtain an additive partitioning of the vari-
ance on the dependent variable.

The sequential testing procedure has been criticized by Harris (1976). However, a 
Monte Carlo study by Mendoza, Markos, and Gonter (1978) has refuted Harris’s criti-
cism. Mendoza et al. considered the case of a total of 12 variables, six variables in each 
set, and chose six population situations. The situations varied from three strong popu-
lation canonical correlations (ηi), .9, .8, and .7, to three weak population canonical cor-
relations (.3, .2, and .1), to a null condition (all population canonical correlations = 0). 
The last condition was inserted to check on the accuracy of their generation procedure. 
One thousand sample matrices, varying in size from 25 to 100, were generated from 
each population, and the number of significant canonical correlations declared by Bart-
lett’s test (the one we have described) and three other tests were recorded.

Strong population canonical correlations (.9, .8, and .7) will be detected more than 
90% of the time with as small a sample size as 50. For a more moderate population 
canonical correlation (.50), a sample size of 100 is needed to detect it about 67% of 
the time. A weak population canonical correlation (.30), which is probably not worth 
detecting because it would be of little practical value, requires a sample size of 200 
to be detected about 60% of the time. It is fortunate that the tests are conservative in 
detecting weaker canonical correlations, given the tenuous nature of trying to accu-
rately interpret the canonical variates associated with smaller canonical correlations 
(Barcikowski & Stevens, 1975), as we show in the next section.

15.4 INTERPRETING THE CANONICAL VARIATES

The two methods in use for interpreting the canonical variates are the same as those 
used for interpreting the discriminant functions:
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1. Examine the standardized coefficients.
2. Examine the canonical variate–variable correlations.

For both of these methods, it is the largest (in absolute value) coefficients or correla-
tions that are used. We now refer you back to the corresponding section in the chapter 
on discriminant analysis, because all of the discussion there is relevant here and will 
not be repeated.

We do add, however, some detail from the Barcikowski and Stevens (1975) Monte 
Carlo study on the stability of the coefficients and the correlations, since it was for 
canonical correlation. They sampled eight correlation matrices from the literature and 
found that the number of subjects per variable necessary to achieve reliability in deter-
mining the most important variables for the two largest canonical correlations was 
very large, ranging from 42/1 to 68/1. This is a somewhat conservative estimate, and if 
we were just interpreting the largest canonical correlation, then a ratio of about 20/1 
is sufficient for accurate interpretation. However, it doesn’t seem likely, in general, 
that in practice there will be just one significant canonical correlation. The association 
between two sets of variables is likely to be more complex than that.

To impress on you the danger of misinterpretation if the subject to variable ratio is not 
large, we consider the second largest canonical correlation for a 31-variable exam-
ple from our study. Suppose we were to interpret the left canonical variate using the 
canonical variate–variable correlations for 400 subjects. This yields a subject to vari-
able ratio of about 13 to 1, a ratio many readers might feel is large enough. However, 
the frequency rank table (i.e., a ranking of how often each variable was ranked from 
most to least important) that resulted is presented here:

Var.

Total number 
of times less 
than third

Rank
Population 
value1 2 3

1 76 4 11 9 .43
2 43 34 7 16 .64
3 86 1 4 9 .10
4 74 6 12 8 .16
5 60 19 16 5 .07
6 92 2 4 2 .09
7 78 1 5 16 .34
8 64 11 13 12 .40
9 72 6 13 9 .27

10 55 16 15 14 .62

Variables 2 and 10 are clearly the most important. Yet, with an n of 400, about 50% of 
the time each of them is not identified as being one of the three most important vari-
ables for interpreting the canonical variate. Furthermore, variable 5, which is clearly 
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not an important variable in the population, is identified 40% of the time as one of the 
three most important variables.

In view of these reliability results, an investigator considering a canonical analysis on 
a fairly large number of variables (say 20 in one set and 15 in the other set) should 
consider doing a components analysis on each set to reduce the total number of varia-
bles dramatically, and then relate the two sets of components via canonical correlation. 
This should be done even if the investigator has 300 subjects, for this yields a subject 
to variable ratio less than 10 to 1 with the original set of variables. The practical imple-
mentation of this procedure, as seen in section 15.7, can be accomplished efficiently 
and elegantly with the SAS package.

15.5 COMPUTER EXAMPLE USING SAS CANCORR

To illustrate how to run canonical correlation on SAS CANCORR and how to inter-
pret the output, we consider data from a study by Lehrer and Schimoler (1975). This 
study examined the cognitive skills underlying an inductive problem-solving method 
that has been used to develop critical reasoning skills for educable mentally retarded 
(EMR) children. A total of 112 EMR children were given the Cognitive Abilities Test, 
which consists of four subtests measuring the following skills: oral vocabulary (CAT1), 
relational concepts (CAT2), multimental concepts (one that doesn’t belong) CAT3, and 
quantitative concepts (CAT4). We relate these skills via canonical correlation to seven 
subtest scores from the Children’s Analysis of Social Situations (CASS), a test that is a 
modification of the Test of Social Inference. The CASS was developed as a means of 
assessing inductive reasoning processes. For the CASS, the children respond to a sample 
picture and various pictorial stimuli at various levels: CASS1—labeling, or identification 
of a relevant object; CASS2—detail, which represents a further elaboration of an object; 
CASS3—low-level inference, or a guess concerning a picture based on obvious clues; 
CASS4—high-level inference; CASS5—prediction, or a statement concerning future 
outcomes of a situation; CASS6—low-level generalization, or a rule derived from the 
context of a picture, but that is specific to the situation in that picture; and CASS7—high-
level inference, or deriving a rule that extends beyond the specific situation.

In Table 15.1 we present the correlation matrix for the 11 variables, and in Table 15.2 
give the control lines from SAS CANCORR for running the canonical correlation 
analysis, along with the significance tests.

Table 15.3 has the standardized coefficients and canonical variate–variable correla-
tions that we use jointly to interpret the pair of canonical variates corresponding to the 
only significant canonical correlation. These coefficients and loadings are boxed in on 
Table 15.3. For the cognitive ability variables (CAT), note that all four variables have 
uniformly strong loadings, although the loading for CAT1 is extremely high (.953). 
Using the standardized coefficients, we see that CAT2 through CAT4 are redundant, 
because their coefficients are considerably lower than that for CAT1. For the CASS 
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 Table 15.1: Correlation Matrix for Cognitive Ability Variables and Inductive Reasoning 
Variables

CAT1 1.000
CAT2 .662 1.000
CAT3 .661 .697 1.000
CAT4 .641 .730 .703 1.000
CASS1 .131 −.112 .033 .040 1.000
CASS2 .253 .031 .185 .149 .641 1.000
CASS3 .332 .133 .197 .132 .574 .630 1.000
CASS4 .381 .304 .304 .382 .312 .509 .583 1.000
CASS5 .413 .313 .276 .382 .254 .491 .491 .731 1.000
CASS6 .520 .485 .450 .466 .034 .117 .294 .595 .534 1.000
CASS7 .434 .392 .380 .390 .065 .100 .203 .328 .355 .508 1.000

 Table 15.2: SAS CANCORR Control Lines for Canonical Correlation Relating Cognitive 
Abilities Subtests to Subtests From Children’s Analysis of Social Situations

TITLE ‘CANONICAL CORRELATION’;
DATA CANCORR (TYPE = CORR);
INFILE CARDS MISSOVER;
_TYPE_= ‘CORR’;
INPUT_NAME_$ CAT1 CAT2 CAT3 CAT4 CASS1 CASS2 CASS3 CASS4 CASS5

CASS6 CASS7;
DATALINES;

CAT1  1.00
CAT2   .662  1.00
CAT3    .661   .697  1.00
CAT4    .641  .730 .703 1.00
CASS1  .131  .112 .033  .040 1.00
CASS2  .253  .031 .185  .149  .641   1.00
CASS3  .332  .133 .197  .132 .574   .630     1.00
CASS4  .381  .304 .304  .382 .312   .509        .583  1.00
CASS5  .413  .313 .276  .382  .254  .491          .491 .731  1.00
CASS6   .520  .485  .450   .466 .034 .117     .294  .595 .534   1.00
CASS7  .434   .392 .380 .390  .065  .100    .203   .328 .355                 508 1.00
PROC CANCORR EDF = 111 CORR;
VAR CAT1 CAT2 CAT3 CAT4;
WITH CASS1 CASS2 CASS3 CASS4 CASS5 CASS6 CASS7;
RUN;

variables, the loadings on CASS4 through CASS7 are clearly the strongest and of 
uniform magnitude. Turning to the coefficients for those variables, we see that CASS4 
and CASS5 are redundant, because they clearly have the smallest coefficients. Thus, 
the only significant linkage between the two sets of variables relates oral vocabulary 
(CAT1) to the children’s ability to generalize in social situations, particularly low-level 
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 Table 15.3: Standardized Coefficients and Canonical Variate–Variable Loadings

Standardized Canonical Coefficients for the ‘VAR’ Variables

V1 V2 V3 V4

CAT1 0.6335 -0.9443 -0.0323 -0.9203
CAT2 0.1667 1.1608 -1.0872 -0.3546
CAT3 0.1379 -0.5733 -0.3969 1.4165
CAT4 0.1844 0.5093 1.5292 0.0373

Standardized Canonical Coefficients for the ‘WITH’ Variables

 W1 W2 W3 W4

CASS1 -0.1514 -0.3489 0.8569 -0.3278
CASS2 0.2442 -0.5986 -0.0074 1.0501
CASS3 0.1147 -0.4960 -1.0745 -0.7008
CASS4 -0.0955 0.6283 0.6701 0.4818
CASS5 0.1417 0.2634 0.4085 -1.1733
CASS6 0.6355 -0.1528 -0.3615 0.3456
CASS7 0.3681 0.0392 -0.0006 0.2203
 

Correlations Between the VAR Variables and Their Canonical Variables

 V1 V2 V3 V4

CAT1 0.9533 -0.2284 -0.0341 -0.1948
CAT2 0.8169 0.5078 -0.2688 0.0507
CAT3 0.8025 -0.0304 -0.1009 0.5872
CAT4 0.8091 0.3483 0.4359 0.1843
 

Correlations Between the WITH Variables and Their Canonical 
Variables

 W1 W2 W3 W4

CASS1 0.1227 -0.7570 0.5359 -0.1785
CASS2 0.3515 -0.6995 0.3642 0.1302
CASS3 0.4571 -0.6147 -0.1024 -0.3762
CASS4 0.6508 0.0401 0.3906 -0.0743
CASS5 0.6797 0.0289 0.3916 -0.4701
CASS6 0.8984 0.1539 -0.0325 0.0233
CASS7 0.7477 0.0779 0.0174 0.0788

generalization. We now consider a study from the literature that used canonical corre-
lation analysis.

15.6 A STUDY THAT USED CANONICAL CORRELATION

A study by Tetenbaum (1975) addressed the issue of the validity of student ratings of 
teachers. She noted that current instruments generally list several teaching behaviors 
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and ask the student to rate the instructor on each of them. The assumption is made that 
all students focus on the same teaching behavior, and furthermore, that when focus-
ing on the same behavior, students perceive it in the same way. Tetenbaum noted that 
principles from social perception theory (Warr and Knapper, 1968) make both of these 
assumptions questionable. She argued that the social psychological needs of the stu-
dents would influence their ratings, stating, “it was reasoned that in the process of rat-
ing a teacher the student focuses on the need-related aspects of the perceptual situation 
and bases his judgment on those areas of the teacher’s performance most relevant to 
his own needs” (p. 418).

To assess student needs, the Personality Research Form was administered to 405 grad-
uate students. The entire scale was not administered because some of the needs were 
not relevant to an academic setting. The part administered was then factor analyzed 
and a four-factor solution was obtained. For each factor, the three subscales having 
the highest loadings (.50) were selected to represent that factor, with the exception of 
one subscale (dominance), which had a high loading on more than one factor, and one 
subscale (harm avoidance), which was not felt to be relevant to the classroom setting. 
The final instrument consisted of 12 scales, three scales representing each of the four 
obtained factors: Factor I, Cognitive Structure (CS), Impulsivity (IM), Order (OR); 
Factor II, Endurance (EN), Achievement (AC), Understanding (UN); Factor III, Affil-
iation (AF), Autonomy (AU), Succorance (SU); Factor IV, Aggression (AG), Defend-
ance (DE), Abasement (AB). These factors were named Need for Control, Need for 
Intellectual Striving, Need for Gregariousness-Defendance, and Need for Ascendancy, 
respectively.

Student ratings of teachers were obtained on an instrument constructed by Tetenbaum 
that consisted of 12 vignettes, each describing a college classroom in which the teacher 
was engaged in a particular set of behaviors. The particular behaviors were designed 
to correspond to the four need factors; that is, within the 12 vignettes, there were three 
replications for each of the four teacher orientations. For example, in three teacher 
vignettes, the orientation was aimed at meeting control needs. In these vignettes, the 
teachers attempted to control the classroom environment by organizing and structur-
ing all lessons and assignments by stressing order, neatness, clarity, and logic, and by 
encouraging deliberation of thought and moderation of emotion so that the students 
would know what was expected of them.

Tetenbaum hypothesized that specific student needs (e.g., control needs) would be 
related to teacher orientations that met those needs. The 12 need variables (Set 1) were 
related to the 12 rating variables (Set 2) via canonical correlation. Three significant 
canonical correlations were obtained: R1 = .486, R2 = .389, and R3 = .323 (p < .01 in all 
cases). Tetenbaum chose to use the canonical variate–variable correlations to interpret 
the variates. These are presented in Table 15.4. Examining the underlined correlations 
for the first pair (i.e., for the largest canonical correlation), we see that it clearly reflects 
the congruence between the intellectual striving needs and ratings on the corresponding 
vignettes, as well as the congruence between the ascendancy needs and ratings. The 



627Chapter 15       

second pair of canonical variates (corresponding to the second largest canonical corre-
lation) reflects the congruence between the control needs and the ratings. Note that the 
correlation for impulsivity is negative, because a low score on this variable would imply 
a high rating for a teacher who exhibits order and moderation of emotion. The interpre-
tation of the third pair of canonical variates is not as clean as it was for the first two pairs. 
Nevertheless, the correspondence between gregariousness–dependency needs and rat-
ings is revealed, a correspondence that did not appear for the first two pairs. However, 
there are high loadings on other needs and ratings as well. The interested reader is 
referred to Tetenbaum’s article for a discussion of why this may have happened.

In summary, then, the correspondence that Tetenbaum hypothesized between student 
needs and ratings was clearly revealed by canonical correlation. Two of the need-rating 
correspondences were revealed by the first canonical correlation, a third correspond-
ence (for control needs) was established by the second canonical correlation, and finally 
the gregariousness need-rating correspondence was revealed by the third canonical 
correlation.

Through the use of factor analysis, the author in this study was able to reduce the num-
ber of variables to 24 and achieve a fairly large subject to variable ratio (about 17/1). 
Based on our Monte Carlo results, one could interpret the largest canonical correlation 
with confidence; however, the second and third canonical correlations should be inter-
preted with some caution.

 Table 15.4: Canonical Variate–Variable Correlations for Tetenbaum Study

Canonical variables

First pair Second pair Third pair

Needs Ratings Needs Ratings Needs Ratings

.111 .028   .614   .453 −.018 −.325
−.099 −.051 −.785   .491 .078 −.397 Control
.065 .292   .774   .597 −.050 .059

−.537 −.337 .210 .263   .439   .177
−.477 −.294 .252 .125   .500   .102 Intellectual Striving
−.484 −.520 −.005 .154   .452   .497

−.134 −.233 −.343 −.210 −.354 −.335
.270 −.141 .016 .114 .657 −.468  Gregarious

−.271 −.072 −.155 −.175 −.414 −.579

−.150   .395 .205 .265 .452   .211
  .535   .507 −.254 .034 .421   .361 Ascendancy
  .333   .673 −.312 −.110 .289   .207

Note: Correlations >|.3| are underlined.

}
}
}
}
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15.7  USING SAS FOR CANONICAL CORRELATION ON TWO SETS 
OF FACTOR SCORES

As indicated previously, if there is a large or fairly large number of variables in each of 
two sets, it is desirable to do a factor analysis on each set of variables for two reasons:

1. To obtain a more parsimonious description of what each set of variables is really 
measuring.

2. To reduce the total number of variables that will appear in the eventual canonical 
correlation analysis so that a much larger subject/variable ratio is obtained, mak-
ing for more reliable results.

The practical implementation of doing the component analyses and then passing the 
factor scores for a canonical correlation can be accomplished quite efficiently and ele-
gantly with the SAS package. To illustrate, we use the National Academy of Science 
data from Chapter 3. Those data were based on 46 observations and involved the fol-
lowing seven variables: QUALITY, NFACUL, NGRADS, PCTSUPP, PCTGRT, NAR-
TIC, and PCTPUB. We use SAS to do a components analysis on NFACUL, NGRADS, 
and PCTSUPP and then do a separate component analysis on PCTGRT, NARTIC, and 

 Table 15.5: SAS Control Lines for a Components Analysis on Each of Two Sets of 
 Variables and Then a Canonical Correlation Analysis on the Two Sets of Factor Scores

DATA NATACAD;
INPUT QUALITY NFACUL NGRADS PCTSUPP PCTGRT NARTIC PCTPUB;
LINES;

(1) PROC PRINCOMP N = 2 OUT = FSCORE1;
VAR NFACUL NGRADS PCTSUPP;

(2) PROC PRINCOMP N = 3 PREFIX = PCTSET2 OUT = FSCORE2;
VAR PCTGRT NARTIC PCTPUB;

(3) PROC PRINT DATA = FSCORE2;
(4) PROC CANCORR CORR;

VAR PRIN1 PRIN2;
WITH PCTSET21 PCTSET22 PCTSET23;
RUN;

(1) The principal components procedure is called and a components analysis is done on only the three vari-
ables indicated.
(2) The components procedure is called again, this time to do a components analysis on the PCTGRT, NAR-
TIC, and PCTPUB variables. To distinguish the names for the components retained for this second analysis, 
we use the PREFIX option.
(3) This statement is to obtain a listing of the data for all the variables, that is, the original variables, the 
factor scores for the two components for the first analysis, and the factor scores for the three components 
from the second analysis.
(4) The canonical correlation procedure is called to determine the relationship between the two components 
from the first analysis and the three components from the second analysis.



629Chapter 15       

PCTPUB. Obviously, with such a small number of variables in each set, a factor anal-
ysis is really not needed, but this example is for pedagogical purposes only. Then we 
use the SAS canonical correlation program (CANCORR) to relate the two sets of factor 
scores. The complete SAS control lines for doing both component analyses and the 
canonical correlation analysis on the factor scores are given in Table 15.5.

Now, let us consider a more realistic example, that is, where factor analysis is really 
needed. Suppose an investigator has 15 variables in set X and 20 variables in set Y. 
With 250 subjects, she wishes to run a canonical correlation analysis to determine the 
relationship between the two sets of variables. Recall from section 15.4 that at least 
20 subjects per variable are needed for reliable results, and the investigator is not near 
that ratio. Thus, a components analysis is run on each set of variables to achieve a more 
adequate ratio and to determine more parsimoniously the main constructs involved 
for each set of variables. The components analysis and varimax rotation are done for 
each set. On examining the output for the two component analyses, using Kaiser’s rule 
and the scree test in combination, she decides to retain three factors for set X and four 
factors for set Y. In addition, from examination of the output, the investigator finds that 
the communalities for variables 2 and 7 are low. That is, these variables are relatively 
independent of what the three factors are measuring, and thus she decides to retain 
these original variables for the eventual canonical analysis. Similarly, the communality 
for variable 12 in set Y is low, and that variable will also be retained for the canonical 
analysis.

We denote the variables for set X by X1, X2, X3, . . ., X15 and the variables for set Y 
by Y1, Y2, Y3, . . ., Y20. The complete control lines in this case are:

DATA REAL;
INPUT X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17
Y18 Y19 Y20;
LINES;
DATA
PROC FACTOR ROTATE = VARIMAX N = 3 SCREE OUT = FSCORES1;
VAR X1 − X15;
PROC DATASETS;
MODIFY FSCORES1;
RENAME FACTOR1 = SET1FAC1 FACTOR2 = SET1FAC2 FACTOR3 = SET1FAC3;
PROC FACTOR ROTATE = VARIMAX N = 4 SCREE OUT = FSCORES2;
VAR Y1 − Y20;
PROC PRINT DATA = FSCORES2;
PROC CANCORR CORR;
VAR SET1FAC1 SET1FAC2 SET1FAC3 X2 X7;
WITH FACTOR1 FACTOR2 FACTOR3 FACTOR4 Y12;
RUN;
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15.8 THE REDUNDANCY INDEX OF STEWART AND LOVE

In multiple regression, the squared multiple correlation represents the proportion of 
criterion variance accounted for by the optimal linear combination of the predictors. 
In canonical correlation, however, a squared canonical correlation tells us only the 
amount of variance that the two canonical variates share, and does not necessarily 
indicate considerable variance overlap between the two sets of variables. The canoni-
cal variates are derived to maximize the correlation between them, and thus, we can’t 
necessarily expect each canonical variate will extract much variance from its set. For 
example, the third canonical variable from set X may be close to a last principle com-
ponent and thus extract negligible variance from set X, that is, it may not be an impor-
tant factor for battery X. Stewart and Love (1968) realized that interpreting squared 
canonical correlations as indicating the amount of informational overlap between two 
batteries (sets of variables) was not appropriate and developed their own index of 
redundancy.

The essence of the Stewart and Love idea is quite simple. First, determine how much 
variance in Y the first canonical variate (C1) accounts for. How this is done will be 
indicated shortly. Then multiply the extracted variance (we denote this by VC1) by 
the square of the canonical correlation between C1 and the corresponding canonical 
variate (P1) from set X. This product then gives the amount of variance in set Y that is 
predictable from the first canonical variate for set X. Next, the amount of variance in 
Y that the second canonical variate (C2) for Y accounts for is determined, and is mul-
tiplied by the square of the canonical correlation between C2 and the corresponding 
canonical variate (P2) from set X. This product gives the amount of variance in set Y 
predictable from the second canonical variate for set X. This process is repeated for all 
possible canonical correlations. Then the products are added (since the respective pairs 
of canonical variates are uncorrelated) to determine the redundancy in set Y, given set 
X, which we denote by RY / X . If the square of the ith canonical correlation is denoted 
by λi, then RY / X is given by:

R i
i

h

Y X iVC/ ,= ∑λ
=1

where h is the number of possible canonical correlations.

The amount of variance canonical variate i extracts from set Y is given by:

VC1 =
−Σ squared canonical variate variable correlations

 (nuq mber of variables in set )Y

There is an important point we wish to make concerning the redundancy index. It is 
equal to the average squared multiple correlation for predicting the variables in one 
set from the variables in the other set. To illustrate, suppose we had four variables 
in set X and three variables in set Y, and we computed the multiple correlation for 
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each y variable separately with the four predictors. Then, if these multiple correlations 
are squared and the sum of squares divided by 3, this number is equal to RY / X . This 
fact hints at a problem with the redundancy index, as Cramer and Nicewander (1979) 
noted:

Moreover, the redundancy index is not multivariate in the strict sense because it 
is unaffected by the intercorrelations of the variables being predicted. The redun-
dancy index is only multivariate in the sense that it involves several criterion var-
iables. (p. 43)

This is saying we would obtain the same amount of variance accounted for with the 
redundancy index for three y variables that are highly correlated as we would for three 
y variables that have low intercorrelations (other factors being held constant). This is 
very undesirable in the same sense as it would be undesirable if, in a multiple regres-
sion context, the multiple correlation were unaffected by the magnitude of the intercor-
relations among the predictors.

This defect can be eliminated by first orthogonalizing the y variables (e.g., obtaining a 
set of uncorrelated variables, such as principal components or varimax rotated factors), 
and then computing the average squared multiple correlation between the uncorrelated 
y variables and the x variables. In this case we could, of course, compute the redundancy 
index, but it is unnecessary since it is equal to the average squared multiple correlation.

Cramer and Nicewander recommended using the average squared canonical corre-
lation as the measure of variance accounted for. Thus, for example, if there were two 
canonical correlations, simply square each of them and then divide by 2.

15.9 ROTATION OF CANONICAL VARIATES

In Chapter 9 on principal components, it was stated that often the interpretation of the 
components can be difficult, and that a rotation (e.g., varimax) can be quite helpful 
in obtaining factors that tend to load high on only a small number of variables and 
therefore are considerably easier to interpret. In canonical correlations, the same rota-
tion idea can be employed to increase interpretability. The situation, however, is much 
more complex, since two sets of factors (the successive pairs of canonical variates) are 
being simultaneously rotated. Cliff and Krus (1976) showed mathematically that such 
a procedure is sound, and the practical implementation of the procedure is possible in 
multivariance (Finn, 1978). Cliff and Krus also demonstrated, through an example, 
how interpretation is made clearer through rotation.

When such a rotation is done, the variance will be spread more evenly across the 
pairs of canonical variates; that is, the maximization property is lost. Recall that this 
is what happened when the components were rotated. But we were willing to sacri-
fice this property for increased interpretability. Of course, only the canonical variates 
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corresponding to significant canonical correlations should be rotated, in order to ensure 
that the rotated variates still correspond to significant association (Cliff & Krus, 1976).

15.10 OBTAINING MORE RELIABLE CANONICAL VARIATES

In concluding this chapter, we mention five approaches that will increase the proba-
bility of accurately interpreting the canonical variates, that is, the probability that the 
interpretation made in the given sample will hold up in another sample from the same 
population. The first two points have already been made, but are repeated as a means 
of summarizing:

1. Have a very large (1,000 or more) number of subjects, or a large subject to variable 
ratio.

2. If there is a large or fairly large number of variables in each set, then perform a 
components analysis on each set. Use only the components (or rotated factors) 
from each set that account for most of the variance in the canonical correlation 
analysis. In this way, an investigator, rather than doing a canonical analysis on a 
total of, say, 35 variables with 300 subjects, may be able to account for most of 
the variance in each of the sets with a total of 10 components, and thus achieve 
a much more favorable subject to variable ratio (30/1). The components analysis 
approach is one means of attacking the multicollinearity problem, which makes 
accurate interpretation difficult.

3. Ensure at least a moderate to large subject to variable ratio by judiciously selecting 
a priori a small number of variables for each of the two sets that will be related.

4. Another way of dealing with multicollinearity is to use canonical ridge regression. 
With this approach the coefficients are biased, but their variance will be much less, 
leading to more accurate interpretation. Monte Carlo studies (Anderson & Carney, 
1974; Barcikowski & Stevens, 1975) of the effectiveness of ridge canonical regres-
sion show that it can yield more stable canonical variate coefficients and canonical 
variate–variable correlations. Barcikowski and Stevens examined 11 different cor-
relation matrices that exhibited varying degrees of within and between multicol-
linearity. They found that, in general, ridge became more effective as the degree 
of multicollinearity increased. Second, ridge canonical regression was particularly 
effective with small subject to variable ratios. These are precisely the situations 
where the greater stability is desperately needed.

5. Still another approach to more accurate interpretation of canonical variates was 
presented by Weinberg and Darlington (1976), who used biased coefficients of 0 
and 1 to form the canonical variates. This approach makes interpretation of the most 
important variables, those receiving 1s in the canonical variates, relatively easy.

15.11 SUMMARY

Canonical correlation is a parsimonious way of breaking down the association between 
two sets of variables through the use of linear combinations. In this way, because the 
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combinations are uncorrelated, we can describe the number and nature of independent 
relationships existing between two sets of variables. That canonical correlation does 
indeed give a parsimonious description of association that can be seen by considering 
the case of five variables in set X and 10 variables in set Y. To obtain an overall pic-
ture of the association using simple correlations would be very difficult, because we 
would have to deal with 50 fragmented between correlations. Canonical correlation, 
on the other hand, consolidates or channels all the association into five uncorrelated 
big pieces, that is, the canonical correlations.

Two devices are available for interpreting the canonical variates: (1) standardized 
coefficients, and (2) canonical variate–variable correlations. Both of these are quite 
unreliable unless the n/total number of variables ratio is very large: at least 42/1 if 
interpreting the largest two canonical correlations, and about 20/1 if interpreting only 
the largest canonical correlation. The correlations should be used for substantive inter-
pretation of the canonical variates, that is, for naming the constructs, and the coeffi-
cients are used for determining which of the variables are redundant. Because of the 
probably unattainably large n required for reliable results (especially if there are a 
fairly large or large number of variables in each set), several suggestions were given 
for obtaining reliable results with the n available, or perhaps just a somewhat larger 
n. The first suggestion involved doing a components analysis and varimax rotation on 
each set of variables and then relating the components or rotated factors via canonical 
correlation. An efficient, practical implementation of this procedure, using the SAS 
package, was illustrated.

Some other means of obtaining more reliable canonical variates were:

1. Selecting a priori a small number of variables from each of the sets, and then 
relating these. This would be an option to consider if the n was not judged to be 
large enough to do a reliable components analysis—for example, if there were 20 
variables in set X and 30 variables in set Y and n = 120.

2. The use of canonical ridge regression.
3. The use of the technique developed by Weinberg and Darlington.

A study from the literature that used canonical correlation was discussed in detail.

The redundancy index, for determining the variance overlap between two sets of vari-
ables, was considered. It was indicated that this index suffers from the defect of being 
unaffected by the intercorrelations of the variables being predicted. This is undesirable 
in the same sense as it would be undesirable if the multiple correlation were unaffected 
by the intercorrelations of the predictors.

Finally, in evaluating studies from the literature that have used canonical correlation, 
remember it isn’t just the n in a vacuum that is important. The n/total number of vari-
ables ratio, along with the degree of multicollinearity, must be examined to determine 
how much confidence can be placed in the results. Thus, not a great deal of confidence 
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can be placed in the results of a study involving a total of 25 variables (say 10 in set 
X and 15 in set Y) based on 200 subjects. Even if a study had 400 subjects, but did 
the canonical analysis on a total of 60 variables, it is probably of little scientific value 
because the results are unlikely to replicate.

15.12 EXERCISES

1. name four features that canonical correlation and principal components anal-
ysis have in common.

2. Suppose that a canonical correlation analysis on two sets of variables yielded 
r canonical correlations. indicate schematically what the matrix of intercorrela-
tions for the canonical variates would look like.

3. Shin (1971) examined the relationship between creativity and achievement. he 
used Guilford’s battery to obtain the following six creativity scores: ideational 
fluency, spontaneous flexibility, associational fluency, expressional fluency, 
originality, and elaboration. the Kropp test was used to obtain the following 
six achievement variables: knowledge, comprehension, application, analysis, 
synthesis, and evaluation. Data from 116 11th-grade suburban high school stu-
dents yielded the following correlation matrix.

examine the association between the creativity and achievement variables via 
canonical correlation, and from the printout answer the following ques-
tions:

(a) how would you characterize the strength of the relationship between the 
two sets of variables from the simple correlations?

(b) how many of the canonical correlations are significant at the .05 level?

(c) Use the canonical variable loadings to interpret the canonical variates cor-
responding to the largest canonical correlation.

(d) how large an n is needed for reliable interpretation of the canonical vari-
ates in (c)?

(e) Considering all the canonical correlations, what is the value of the redun-
dancy index for the creativity variables given the achievement variables? 
express in words what this number tells us.

(f) Cramer and nicewander (1979) argued that the average squared canonical 
correlation should be used as the measure of association for two sets of 
variables, stating, “this index has a clear interpretation, being an arithme-
tic mean, and gives the proportion of variance of the average of the ca-
nonical variates of the y variables predictable from the x variables” (p. 53). 
obtain the Cramer–nicewander measure for the present problem, and 
compare its magnitude to that obtained for the measure in (e). explain the 

reason for the difference and, in particular, the direction of the difference.
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4. Shanahan (1984) examined the nature of the reading–writing relationship 
through canonical correlation analysis. Measures of writing ability (t unit, 
vocabulary diversity, episodes, categories, information units, spelling, pho-
nemic accuracy, and visual accuracy) were related to reading measures of 
vocabulary, word recognition, sentence comprehension, and passage compre-
hension. Separate canonical correlation analyses were done for 256 second 
graders and 251 fifth graders.

(a) how many canonical correlations will there be for each analysis?

(b) Shanahan found that for second graders there were only two significant 
canonical correlations, and he only interpreted the largest one. Given his 
sample size, was he wise in doing this?

(c) For fifth graders there was only one significant canonical correlation. Giv-
en his sample size, can we have confidence in the reliability of the results?

(d) Shanahan presents the following canonical variate–variable correlations 
for the largest canonical correlation for both the second- and fifth-grade 
samples. if you have an appropriate content background, interpret the re-
sults and then compare your interpretation with his.

Canonical Factor Structures for the Grade 2 and Grade 5 Samples: Correlations of 
 Reading and Writing Variables with Canonical Variables

Canonical variable

2nd grade 5th grade

Reading Writing Reading Writing

Writing
t-Unit .32 .41 .19 .25
Vocabulary diversity .46 .59 .47 .60
Episodes .25 .32 .20 .26
Categories .37 .48 .33 .43
Information units .36 .46 .24 .30
Spelling .74 .95 .71 .92
Phonemic accuracy .60 .77 .67 .86
Visual accuracy .69 .89 .68 .88

Reading
Comprehension .81 .63 .79 .61
Cloze .86 .66 .80 .62
Vocabulary .65 .51 .89 .69
Phonics .88 .68 .85 .66

5. estabrook (1984) examined the relationship among the 11 subtests on the 
Wechsler intelligence Scale for Children–revised (WiSC–r) and the 12 sub-
tests on the Woodcock–Johnson tests of Cognitive ability for 152 learning 
disabled children. he seemed to acknowledge sample size as a problem in his 
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study, stating, “the primary limitation of this study is the size of the sample. . . . 
however, a more conservative criterion of 100(p + q) + 50 (where p and q refer 
to the number of variables in each set) has been suggested by thorndike” 
(p. 1176). is this really a conservative criterion according to the results of Bar-
cikowski and Stevens (1975)?
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Chapter 16

STRUCTURAL EQUATION 
MODELING
Tiffany A. Whittaker
University of Texas at Austin

16.1 INTRODUCTION

Structural equation modeling (SEM) is a broad designation that encompasses a  number 
of different techniques with which researchers may model the relationships among dif-
ferent variables that are observed (e.g., IQ score, GPA, years in school) and/or unob-
served (e.g., motivation, need for achievement, academic self-concept). SEM may also 
be referred to as covariance structure analysis, latent variable analysis, causal mod-
eling, and simultaneous equation modeling. This chapter will introduce three SEM 
techniques, including observed variable path analysis, confirmatory factor analysis 
(CFA), and latent variable path analysis. The presentations in this chapter will be more 
conceptual than statistical and, thus, will not include the respective system of equa-
tions for the models presented. Readers interested in learning more about the equations 
associated with each SEM technique are encouraged to consult Bollen’s (1989) text.

16.2 NOTATION, TERMINOLOGY, AND SOFTWARE

Structural equation models are typically illustrated visually and include various sym-
bols that represent variables and their interrelationships, such as squares, circles, 
one-headed arrows, and two-headed arrows. Table 16.1 provides a summary of the 
conventional symbols and terminology used in SEM.

In SEM, squares denote observed variables whereas circles signify unobserved or 
latent variables. One-headed arrows correspond to direct effects while two-headed 
arrows signify that two variables are simply related. For instance, Figure 16.1 illus-
trates an observed variable path model.

As seen in Figure 16.1, X1 and X2 are modeled to directly affect Y1 (represented by 
paths a and c, respectively) and Y2 (represented by paths b and d, respectively). Y1 is 
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 Table 16.1: Conventional Symbols and Terminology

Diagram Description Conventional notation
Chapter 
notation

A latent variable that is 
not directly measured 
(may also be called a 
factor or construct)

η (eta) represents latent 
endogenous variables 

ξ (ksi) represents latent 
exogenous variables

F

Observed variable (may 
also be called measured 
or manifest variable)

Y represents observed 
endogenous variables (also 
indicators of η)

X represents observed 
exogenous variables (also 
indicators of ξ)

Y

X

Errors or disturbances 
for latent endogenous 
variables

ζ (zeta) represents errors for 
latent endogenous variables

D

Errors or residuals for 
observed endogenous 
variables

ε (epsilon) represents errors for 
Y variables

δ (delta) represents errors for  
X variables

E

E

 Figure 16.1 Observed variable path model example.

also modeled to directly affect Y2 (represented by path e). Because these variables are 
illustrated pictorially with squares, they represent observed variables that are directly 
measured (e.g., annual income, math score). In this example, X1 and X2 are exoge-
nous or independent variables and Y1 and Y2 are endogenous or dependent variables. 
In general, variables (observed or latent) that have arrows pointing toward them are 
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endogenous whereas variables (observed or latent) that are directly affecting other var-
iables and have no arrows pointing toward them are exogenous variables. Additionally, 
X1 and X2 are modeled to covary because they are connected with a double-headed 
arrow (represented by the covariance f  ).

Another concept that is important to introduce is error. As in standard regression analysis, 
when a variable is endogenous, it will have explained variance (e.g., R square) as well 
as unexplained variance. Thus, endogenous variables in SEM have error terms associated 
with them. These are oftentimes represented via circles because they are also unobserved or 
latent and have direct effects on their respective endogenous variables. Errors are generally 
exogenous variables since they have direct effects on endogenous variables. In Figure 16.1, 
both Y1 and Y2 have errors associated with them (E1 and E2, respectively) since they are  
endogenous variables. You may also notice double-headed arrows associated with exoge-
nous variables in Figure 16.1. This reflects the fact that these variables are free to vary and 
that their variances will be estimated because they are not directly affected by other vari-
ables in the model. Table 16.2 provides a summary of directional symbols used in SEM.

If the observed variables in Figure 16.1 were instead unobserved constructs or latent 
factors (e.g., self-efficacy, perceived social support), they would be pictorially illus-
trated with circles instead of squares. This is demonstrated in the structural equation 
model or latent variable path model in Figure 16.2.

 Table 16.2: Additional Symbols in SEM

Diagram Description

X  Y Represents a direct effect from X to Y

X  Y Represents a covariance between X and Y

Variances associated with exogenous variables, including 
errors or disturbances associated with endogenous variables

 Figure 16.2 Latent variable path model example.



642        Structural Equation ModEling

F1 and F2 are exogenous or independent latent variables, and F3 and F4 are endoge-
nous or dependent latent variables. In Figure 16.2, the endogenous factors (F3 and F4) 
still have errors associated with them, but they are typically differentiated from the 
errors associated with observed variables and commonly called disturbances (e.g., D1 
and D2, respectively).

Various software programs exist that are capable of analyzing structural equation mod-
els. Some of the programs are stand-alone software, such as LISREL, EQS, AMOS, 
Mx, and Mplus. Other procedures that estimate parameters for structural equation mod-
els are available and are subsumed within larger software platforms, such as the CALIS 
procedure in SAS, the SEPATH procedure in STATISTICA, the RAMONA procedure 
in SYSTAT, and add-on packages in R (lavaan and sem). A review of the capabilities of 
these software programs is beyond the scope of this chapter. A fairly comprehensive dis-
cussion of available SEM software programs is provided in Kline (2011) as well as the 
available syntax for examples using LISREL, EQS, and Mplus. Further, Barbara Byrne 
has written a chapter describing popular SEM software (Byrne, 2012b) in addition to 
several books describing the analysis of structural equation models using different soft-
ware, including LISREL (Byrne, 1998), EQS (Byrne, 2006), AMOS (Byrne, 2010), 
and Mplus (Byrne, 2012a). To be consistent with the software used in this textbook, 
software application examples in this chapter will be done using the CALIS procedure 
in SAS (SPSS does not include a structural equation modeling procedure). Hence, basic 
knowledge of SAS will be assumed when presenting these examples.

16.3 CAUSAL INFERENCE

Given the various types of relationships that may exist in path models, it is impor-
tant to briefly discuss the issue of causal inference. By no means is this discussion 
exhaustive. As such, readers should refer to seminal readings in the area (Davis, 1985; 
Mulaik, 2009; Pearl, 2000; Pearl, 2012; Sobel, 1995).

As is evident in the models previously presented in this chapter, one-headed arrows 
represent hypotheses concerning causal directions. For instance, in Figure 16.1, X1 is 
hypothesized to directly affect both Y1 and Y2. Based on theoretical bases, the impli-
cation is that X1 causes Y1 and Y2. In SEM, three conditions are generally necessary 
to infer causality: association, isolation, and temporal precedence. Association simply 
means that the cause and effect are observed to covary with one another. Isolation 
signifies that the cause and effect continue to covary when they are isolated from other 
influential variables. This condition is generally the most difficult to meet in its entirety, 
but it may be closer to realization if data are collected for the variables that may influ-
ence the relationship between the cause and effect (e.g., SES) and controlled for sta-
tistically and/or with respect to design considerations (e.g., collecting data only on 
females to avoid the influence of sex differences). Temporal precedence indicates that 
the hypothesized cause occurs prior to the hypothesized effect in time. Temporal prec-
edence may be accomplished by way of collecting data using methods incorporated in 
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experimental (e.g., random assignment) or quasi-experimental designs (e.g., manipula-
tion of treatment exposure) or collecting data for the causal variables prior to collecting 
data for the outcome variables on which they are hypothesized to affect.

16.4 FUNDAMENTAL TOPICS IN SEM

Before introducing the models associated with the three SEM techniques mentioned in 
the opening paragraph (i.e., observed variable path analysis, CFA, and latent variable 
path analysis), there are some fundamental topics in SEM that must first be outlined 
because they generally apply to all of the models in the SEM arena. These topics 
include model identification, model estimation, model fit, and model modification and 
selection. Some of these fundamentals will be discussed again in the context of the 
model being introduced for more clarity.

16.4.1 Identification

Model identification is a fundamental requirement for parameters to be estimated in a 
model. Before elaborating upon this important issue, it is first necessary to introduce 
some relevant information concerning the data input and the parameters to be esti-
mated in a model. Figure 16.3 will be used to demonstrate these issues.

The model in Figure 16.3 is a basic multiple regression model with two predictor var-
iables (X1 and X2) and one outcome variable (Y). In SEM, procedures are performed 
on the covariances among the observed variables. Thus, the input data used in SEM 
analyses consists of a sample covariance matrix, which is simply the unstandardized 
version of a correlation matrix. The sample covariance matrix (S) is given here for the 
variables used in Figure 16.3:

S =
















200
220

175

110 115
110 130
115 130

 Figure 16.3 Multiple regression model with two predictors.
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As you know, the variances of X1, X2, and Y appear in the main diagonal of the sample 
covariance matrix (noted in the covariance matrix with bold font). Here, the variances 
of X1, X2, and Y are equal to 200, 220, and 175, respectively. Further, the covariances 
between all possible pairs of variables appear in the off-diagonal elements of the sam-
ple covariance matrix (noted in the covariance matrix with italics). For instance, the 
covariance between X1 and X2 is 110; the covariance between X1 and Y is 115; and 
the covariance between X2 and Y is 130. This is what SEM software then uses during 
the estimation process which will be discussed in more detail subsequently.

You can determine if a given model is identified by calculating the difference between 
the number of nonredundant observations in the sample covariance matrix (  p*) and 
the number of model parameters that must be estimated (q; for a more detailed expla-
nation of the various rules of model identification, see Bollen, 1989 and Kenny & 
Milan, 2012). Nonredundant observations do not pertain to the number of partic-
ipants for which data were collected. Rather, the nonredundant observations in  
a sample  covariance matrix include the variance elements in the main diagonal of the  
sample covariance matrix and the upper or lower triangle of covariance elements 
in the sample covariance matrix. In the sample covariance matrix for the model in  
Figure 16.3, there are three variances and three covariances. Thus, there are six nonre-
dundant observations. The number of nonredundant observations in a sample covari-
ance matrix can more easily be calculated with the following formula:

p
p p

* ,=
+( )

=
+( )

=
1

2
3 3 1

2
6

where p* is the number of nonredundant observations and p is the number of observed 
variables in the model. The second quantity needed to determine if a model is identi-
fied is the number of model parameters (q) requiring estimation in SEM. This number 
consists of the variances of exogenous variables (which include error and/or distur-
bance variances), direct effects (represented with one-headed arrows), and covariances 
(represented with double-headed arrows).

Three different scenarios may occur when subtracting the number of model param-
eters that are to be estimated from the number of nonredundant observations, result-
ing in three different types of models: 1) just-identified; 2) over-identified; and  
3) under-identified. A just-identified model has the same number of nonredundant 
observations in the sample covariance matrix as model parameters to estimate and 
is sometimes referred to as a saturated model. An over-identified model contains 
more nonredundant observations in the sample covariance matrix than model param-
eters to estimate. Models that are just- and over-identified allow model parameters 
to be estimated. However, an under-identified model, having fewer nonredundant 
observations in the sample covariance matrix than parameters to estimate, does not 
allow for parameters to be estimated. Thus, prior to collecting data, you should deter-
mine if your hypothesized model is identified, thus allowing you to obtain parameter 
estimates.
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To illustrate, consider the multiple regression model in Figure 16.3. To obtain the 
number of parameters that will be estimated, we first observe that the variances of 
X1, X2, and E1 (exogenous variables) will be estimated. In addition, the direct effect 
from X1 to Y and the direct effect from X2 to Y will be estimated. Lastly, the covar-
iance between X1 and X2 will be estimated. As a result, we have six parameters to 
be estimated, and recall that there are six nonredundant observations in the sample 
covariance matrix. The difference between nonredundant observations and param-
eters to estimate (p* − q), in this case, is 6 − 6 = 0. This value is referred to as the 
degrees of freedom associated with the theoretical model (dfT). Thus, there are zero 
dfT associated with our multiple regression model presented in Figure 16.3, which 
means that it is a just-identified model. Over-identified models will be associated with 
more than zero (positive) dfT whereas under-identified models will result in negative 
(less than zero) dfT.

Under-identified models are mathematically impossible to analyze because there are 
an infinite set of solutions that will satisfy the structural model, which makes estima-
tion of a unique set of model parameters unattainable. To help illustrate the notion 
of under-identification, we borrow an example from Kline (2011, chap. 6) because it 
nicely clarifies the concept. Consider the following equation in which we have one 
known value (6) and two unknown values (a and b):

a + b = 6

Note that you would not be able to uniquely solve for a and b in this equation because 
they could take on numerous sets of corresponding values that satisfy the equation 
(i.e., that sum to 6).

Further, while models that are just- and over-identified allow for parameters to be esti-
mated, there is an important difference between these models. That is, just-identified 
models reproduce the data exactly whereas there may be multiple solutions when 
estimating over-identified models. Just-identified models reproduce the data per-
fectly because there is only one solution for the parameter estimates. Further, because 
just-identified models simply reproduce the data, the model fits the data perfectly. 
Thus, you cannot test the model fit of just-identified models (which is often desired) 
whereas you can test the model fit of over-identified models (more to come later about 
model fit). To help illustrate this point, consider the following set of equations in which 
we have three known values (17, 13, and 5) and three unknown values (a, b, and c):

a + bc = 17
b + ac = 13
c = 5

Solving for c was easy enough (because it was given). To solve for the remaining 
unknown values, however, you will have to revisit the algebra course you took during 
your high school days. Here are the solved values:
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a = 2
b = 3
c = 5

Note that there is only one solution for a, b, and c values that will satisfy the three 
equations (as in a just-identified model).

When estimating parameters in over-identified models, you will not be able to solve 
the equations so easily. For instance, suppose that you instead hypothesized that X1 
directly affected X2, which in turn directly affected Y (as opposed to the multiple 
regression model). This would render the model illustrated in Figure 16.4.

Again, there are six non-redundant observations in the sample covariance matrix:

p
p p

* =
+( )

=
+( )

=
1

2
3 3 1

2
6

Note that the number of nonredundant observations is the same as before because 
we have three observed variables. Although you are hypothesizing a different causal 
relationship between the three variables, you are using the same sample covariance 
matrix. What does change, however, is the number of parameters to estimate given 
that the hypothesized model differs from the previous one. With this model, there are 
now five parameters to estimate, including the variances of X1, E1, and E2 in addition 
to the two direct effects, one from X1 to X2 and the other from X2 to Y. Thus, the dfT 
associated with this model is 6 − 5 = 1, resulting in an over-identified model.

To help illustrate the difficulty with solving for unknown values in over-identified 
models, consider the following set of equations with three known values (5, 4, and 18) 
and two unknown values (a and b):

a = 5
b = 4
ab = 18

As seen from this example, you would not be able to solve for values of a and b that 
would reproduce the data perfectly (i.e., ab = 4 × 5 ≠ 18). Consequently, a criterion is 

 Figure 16.4: Over-identified observed variable path model.
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necessary to determine which estimates are the most optimal estimates for the model. 
When thinking about this, think back to linear regression in which the difference 
between observed and predicted Y values are minimized when solving for the intercept 
and slope values. A similar concept is implemented in SEM. The underlying principle 
in SEM analysis is to minimize the discrepancy between the elements in the sam-
ple covariance matrix and the corresponding elements in the covariance matrix that 
is implied (or reproduced) by the hypothesized model. More specifically, structural 
equation models are tested to determine how well they account for the variances and 
covariances among the observed variables.

16.4.2 Estimation

Consider the basic equation used in structural equation procedures:

Σ Σ θ= ( ),

where Σ is the population covariance matrix for p observed variables, θ  is the vector 
containing model parameters, and Σ θ( )  is the covariance matrix implied by the func-
tion of model parameters θ( )  (Bollen, 1989). In applications of structural equation 
modeling, the population covariance matrix Σ( )  is unknown and is estimated by the 
sample covariance matrix (S). The unknown model parameters θ( )  are also estimated 
θ( )  by minimizing a discrepancy function between the sample covariance matrix (S) 

and the implied covariance matrix Σ θ( ) :

F S,Σ θ( ) .

Substituting the estimates of the unknown model parameters in Σ θ( )  results in the 
implied covariance matrix, Σ = ( )Σ θ .  The unknown model parameters are estimated 
to reduce the discrepancy between the implied covariance matrix and the sample 
covariance matrix. An indication of the discrepancy between the sample covariance 
matrix and the implied covariance matrix may be deduced from the residual matrix:

S -( )Σ ,

with values closer to zero indicating better fit of the structural model to the data  
(Bollen, 1989).

Estimation of model parameters in SEM is an iterative process that begins with initial 
structural model parameter estimates, or starting values, which are either generated 
by the model fitting software package or provided by the user. Depending upon these 
values, the model fitting program will iterate through sequential cycles that calcu-
late improved estimates. That is, the elements of the implied covariance matrix that 
are based on the parameter estimates from each iteration will become closer to the 
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elements of the observed covariance matrix (Kline, 2011). The discrepancy function 
is fundamentally the sum of squared differences between respective elements in the 
sample covariance matrix (S) and the implied covariance matrix Σ( )  and will result 
in a single value.

If the structural model is just-identified, the discrepancy function will equal zero 
because the elements in the sample covariance matrix will exactly equal the elements 
in the implied covariance matrix, S = Σ  (Bollen, 1989). For instance, the residual 
matrix associated with the just-identified model in Figure 16.3 would be calculated as 
follows:

S -( ) =
















-ΣΣ
200 110 115
110 220 130
115 130 175

200 110 115
110 2220 130
115 130 175

0 0 0
0 0 0
0 0 0
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For over-identified structural models, the sample covariance matrix will not equal the 
implied covariance matrix, but the estimation iterations will proceed until the differ-
ence between the discrepancy function in one iteration to the next falls below a spec-
ified default value used in the software program (e.g., < .00005 in Mplus) or until the 
maximum number of iterations has been reached (Kline, 2011). For instance, after 
estimating parameters for the over-identified model in Figure 16.4, the residual matrix 
would be calculated as follows:

S -( ) =
















-ΣΣ
200 110 115
110 220 130
115 130 175

200 110 65
110 2200 130
65 130 175

0 0 50
0 0 0

50 0 0

















=
















Notice how all of the values in the implied covariance matrix Σ( )  equal their respec-
tive values in the sample covariance matrix (S) with the exception of the covariance 
between X1 and Y. Specifically, the relationship (or covariance) between X1 and Y 
was not fully explained by the hypothesized model as compared to the remaining rela-
tionships (or variances and covariances). This is a consequence of not modeling X1 
as directly affecting Y in the model. Accordingly, the difference between respective 
elements will not equal zero for this relationship in the residual matrix.

SEM software programs have default settings for the maximum number of iterations 
allowed during the estimation process. When the number of iterations necessary to 
obtain parameter estimates exceeds the maximum number of iterations without reach-
ing the specified minimum difference between the discrepancy function from one iter-
ation to the next, the estimates have failed to converge on the parameters. That is, the 
estimation process failed to reach a solution for the parameter estimates. Nonconver-
gent solutions may provide unstable parameter estimates that should not be considered 
reliable. Nonconvergence may be corrected by increasing the maximum number of 
iterations allowed in the SEM software, changing the minimum difference stopping 
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criteria (e.g., < .0005) between iterations, or providing start values that are closer to the 
initial estimates of the model parameter estimates. If these corrections do not result in 
a convergent solution, other issues may need to be addressed, such as sample size and 
model complexity (Bollen, 1989).

Recall that the unknown model parameters θ( )  are estimated θ( )  by minimizing a 
discrepancy function. Different types of discrepancy functions may be used during the 
estimation process. Again, a discrepancy function, sometimes referred to as a loss or fit 
function, basically reflects the sum of squared differences between respective elements 
in the sample covariance matrix (S) and the implied covariance matrix Σ( ).  However,  
the various estimators currently available implement different matrix weighting proce-
dures while calculating these differences (see Bollen, 1989, and Lei & Wu, 2012, for 
more detailed explanations concerning estimation procedures).

The most widely employed discrepancy function in structural equation modeling, and 
usually the default discrepancy function in structural equation modeling software (e.g., 
LISREL, EQS, AMOS, and Mplus), is the maximum likelihood (ML) discrepancy 
function (see Ferron & Hess, 2007 for a detailed example using ML estimation). ML 
estimation is based on the assumption of multivariate normality among the observed 
variables and is often referred to as normal theory ML. The popularity of the ML dis-
crepancy function is evident when considering the following strengths of the estima-
tors’ properties. Under small sample size conditions, ML estimators may be biased, 
although they are asymptotically unbiased. Thus, as sample size increases, the expected 
values of the ML estimates represent the true values in the population. The ML estima-
tor is also consistent, meaning that as sample size approaches infinity, the probability 
that the estimate is close to the true value becomes larger (approaches 1.0). Another 
essential property of ML estimators is asymptotic efficiency. That is, the ML estimator 
has the lowest asymptotic variance among a class of consistent estimators. Further, the 
ML estimator is scale invariant in that the values of the ML discrepancy function will 
be the same for any change in the scale of the observed variables (Bollen, 1989).

Another normal theory estimator is generalized least squares (GLS; for a review of 
GLS, see Bollen, 1989). When the assumption of multivariate normality is met, ML 
and GLS estimates are asymptotically equal. Thus, as sample size increases, the esti-
mates produced by GLS are approximately equal to the estimates produced by ML. 
However, ML estimation has been shown to outperform GLS estimation under model 
misspecification conditions (Olsson, Foss, Troye, & Howell, 2000).

Under violations of the assumption associated with multivariate normality, the param-
eters estimated by ML are generally robust and produce consistent estimates (Beaudu-
cel & Herzberg, 2006; DiStefano, 2002; Dolan, 1994). However, skewed and kurtotic 
distributions may sometimes render an incorrect asymptotic covariance matrix of 
parameter estimates (Bollen, 1989). Further, increased levels of skewness (e.g., greater 
than 3.0) and/or kurtosis (e.g., greater than 8.0) largely invalidates the property of 
asymptotic efficiency associated with the estimated parameters, producing inaccurate 
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model test statistics (Kline, 2011). Consequently, observed variables with nonnormal 
distributions may affect statistical significance tests of overall model fit as well as the 
consistency and efficiency of the estimated parameters.

Other discrepancy functions that produce asymptotically efficient estimators have 
been proposed that do not require multivariate normality among the observed varia-
bles. One of these discrepancy functions is the weighted least squares (WLS) function 
(Browne, 1984), also referred to as asymptotically distribution free (ADF) estimation 
(see Browne, 1984, and Muthén & Kaplan, 1985, for more information concerning 
WLS estimation). WLS was proposed as an efficient estimator for any arbitrary distri-
bution of observed variables, including ordered categorical variables (Browne, 1984). 
Although WLS estimation has been shown to be efficient and more consistent than ML 
estimation under the presence of nonnormality among categorical variables (Muthén & 
Kaplan, 1985), the performance of WLS estimation in other studies has been ques-
tionable under certain conditions. For instance, model fit tests associated with WLS 
have been shown to reject the correct factor model too frequently, even under normal 
distributions at small sample sizes (Hu, Bentler, & Kano, 1992), and increasingly over-
estimate the expected value of the model fit test statistic as nonnormality and model 
misspecification increase (Curran, West, & Finch, 1996). Although WLS has demon-
strated better efficiency under nonnormal distributions than ML (Chou, Bentler, & 
Satorra, 1991; Muthén & Kaplan, 1985), WLS efficiency is adversely affected under 
conditions of increasing nonnormality, small sample sizes, and large model size 
(Muthén & Kaplan, 1992). Thus, WLS estimation requires very large (and possibly 
inaccessible) sample sizes (approximately 2,500 to 5,000) for accurate model fit tests 
and parameter estimates (Finney & DiStefano, 2006; Hu et al., 1992; Loehlin, 2004). 
In addition, WLS estimation is more computationally intensive than other estimation 
procedures due to taking the inverse of a full weighting matrix, which increases in size 
as the number of observed variables increases (Loehlin, 2004).

Robust WLS approaches were subsequently developed in order to correct for the dif-
ficulties inherent with full WLS estimation (see Muthén, du Toit, & Spisic, 1997, and 
Jöreskog & Sörbom, 1996, for more information concerning robust WLS). Gener-
ally, these approaches use a diagonal weight matrix instead of a full weight matrix. 
Robust WLS has been shown to outperform full WLS with respect to chi-square test 
and parameter estimate accuracy (Flora & Curran, 2004; Forero & Maydeu-Olivares, 
2009).

As discussed earlier, model test statistics and the standard errors of the parameter esti-
mates may become biased under increased conditions of nonnormality when using 
normal theory estimators, such as ML estimation (Hoogland & Boomsma, 1998; Hu 
et al., 1992). While nonnormal theory estimators (e.g., WLS) and their robust coun-
terparts may be implemented, another alternative is to implement the Satorra and 
Bentler (1994) scaling correction that adjusts the model test statistic (i.e., a chi-square 
test statistic, χ2) to provide a chi-square test statistic that more closely approximates 
the chi-square distribution and adjusts the standard errors to be more robust when 
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assumptions of normality are violated using ML estimation. The Satorra–Bentler 
scaled χ2 test statistic χSB

2( )  has been shown to perform more accurately than ML or 
WLS chi-square tests (Chou et al., 1991) under increasing nonnormality conditions. 
The χSB

2  has also performed more accurately than ML or WLS chi-square tests under 
model misspecification conditions (Curran et al., 1996). The Satorra–Bentler scaled 
standard errors for the model parameters have also been shown to be more robust 
than ML and WLS under increasing nonnormality conditions, demonstrating less bias 
(Chou et al., 1991).

We conclude this section by noting that under conditions of normality and mild con-
ditions of nonnormality, ML estimation is generally recommended and will perform 
well with respect to the resulting chi-square test of model fit and the standard errors 
associated with the model parameters. As the variables deviate more from normality, 
however, the Satorra–Bentler scaling correction is recommended for more appropriate 
chi-square tests of model fit and standard errors associated with the model parameters. 
When estimating models that incorporate ordered categorical data as outcomes (e.g., 
Likert scale responses), particularly with less than four response categories, a robust 
WLS approach is advised.

16.4.3 Model Fit

Assessing the fit of structural equation models is multifaceted. It entails not only 
examining model fit at a global level, but also involves assessing the fit in terms of the 
plausibility of the parameter estimates. The following subsections of model fit provide 
information concerning each of these facets of model fit.

16.4.3.1 CHi-sQUaRe tests of MoDeL fit

The fundamental hypothesis in covariance structure analysis is that the population 
covariance matrix of p observed variables, Σ,  is equal to the reproduced implied 
covariance matrix, Σ θ( ),  based on the hypothesized structural model: Σ Σ θ= ( ).  For 
over-identified structural models, each estimation procedure previously discussed is 
able to provide a test associated with this fundamental hypothesis for the theoretical 
model. Once a discrepancy or fit function (e.g., ML) has been minimized, resulting 
in a single value (F ), this value is multiplied by (N − 1), yielding an approximately 
chi-square distributed statistic (Bollen, 1989):

χT
2 = -( )F N 1 .

This chi-square test of model fit is a test of the overall fit of the theoretical model to the 
data with p* − q (i.e., number of non-redundant observations − number of parameters) 
degrees of freedom (dfT). The theoretical model is rejected if

χT ac2 > ,
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where cα is the critical value of the chi-square test and α is the significance level of 
the chi-square test (e.g., α = .05). It is important to note that the χT

2
 will equal a value 

of zero (with dfT = 0) when the model is just-identified because the value of the mini-
mized fit function will equal zero. It is also important to note that the Satorra–Bentler 
scaled chi-square statistic χSB

2( )  involves dividing the chi-square statistic obtained 
using a normal-theory estimator (e.g., ML) by a scaling correction in order to adjust 
for nonnormality (Satorra & Bentler, 1994).

The chi-square test for the theoretical model is testing the null hypothesis that the 
population covariance matrix, Σ  (estimated using our sample covariance matrix, S), 
is equal to the implied covariance matrix in the population, ΣΣ θ( )  (after estimating the 
parameters using our sample data, Σ ).  Thus, the more consistent the relationships are 
in our theoretical model with the observed data, the more likely the sample covariance 
matrix will be similar to the implied covariance matrix. Given that the null hypothesis 
signifies that our hypothesized model explains the observed relationships well, we do 
not want to reject the null hypothesis. Thus, we would like the chi-square test of the 
theoretical model χT

2( )  to be nonsignificant, statistically speaking, to provide support 
for our hypothesized relationships.

Another chi-square test is available in SEM, which is the chi-square test of the baseline 
or null model, χB

2 .  The baseline or null model is a model in which all of the observed 
variables in the model are treated as exogenous (independent) and are not correlated 
with any of the other variables in the model. For instance, the baseline model for the 
multiple regression model initially presented in Figure 16.3 would look like the model 
illustrated in Figure 16.5.

Notice that only the variances of the p variables in the baseline model are estimated 
(in this case, three variances) given that they are treated as exogenous and the lack 
of interrelationships hypothesized in this model. The degrees of freedom associated 
with this model (dfB) are calculated similarly to that previously described in which 

 Figure 16.5 Baseline model for the multiple regression model with two predictors.
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the number of parameters to estimate is subtracted from the number of nonredundant 
observations ( p* − q = 6 − 3 = 3 dfB). The dfB may also be calculated as:

df
p p

B =
-( )

=
-( )

=
1

2
3 3 1

2
3.

The null hypothesis is the same for the test of the baseline model i.e., Σ Σ θ= ( ) .  It is 
in our best interest to fail to reject the null hypothesis when testing the fit of the theo-
retical model in order to provide support for our theoretically driven hypothesized rela-
tionships among the variables. However, consider the implication of failing to reject 
the null hypothesis in the case with the baseline model. That is, if our observed sample 
covariance matrix is similar to an implied covariance matrix for a baseline model in 
which no relationships among the variables are hypothesized, this would suggest that 
our variables do not covary (or correlate) with one another. Consequently, rejecting 
the null hypothesis for the baseline model would provide support for the presence of 
interrelationships among our variables of interest. Otherwise, modeling relationships 
among variables that do not covary at the outset is a moot point.

The chi-square test statistic has been criticized for its sensitivity to sample size, which 
is evident from the formula

χT
2 = -( )F N 1 .

Thus, as sample size increases, the χT
2

 test statistic is more likely to identify small 
differences between the observed and implied covariance matrices as being significant. 
Consequently, the null hypothesis, Σ Σ θ= ( ),  is more likely to be rejected, indicating 
poor fit of the hypothesized structural model. A method that may be used to deter-
mine if a chi-square statistic is sensitive to sample size when assessing model fit is to 
continue adding parameters to a model until the chi-square is no longer statistically 
significant. Adding parameters to estimate in a model will generally improve model fit.

16.4.3.2 fit indices

This sample size dependency of the chi-square statistic has led to the proposal of 
numerous alternative fit indices that evaluate model fit and supplement the χT

2
 test 

statistic (Bentler & Bonett, 1980; Hu & Bentler, 1999; Kline, 2011). While differ-
ent classifications of these fit indices exist (e.g., see Kline, 2011), Hu and Bentler 
(1998; 1999) classified model fit indices as either incremental or absolute fit indices. 
Table 16.3 provides the formulas, properties, and associated cutoff values for the more 
commonly used fit indices in SEM.

Commonly used incremental fit indices include the Normed Fit Index (NFI; Bentler & 
Bonnett, 1980), Bollen’s (1986) Incremental Fit Index (IFI), the Non-normed Fit Index 
(NNFI), which is also called the Tucker-Lewis Index (TLI; Tucker & Lewis, 1973), 
and the Comparative Fit Index (CFI; Bentler, 1990). Incremental fit indices measure 
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the proportionate improvement in a model’s fit to the data by comparing a specific 
structural equation model k to a baseline structural equation model. The typical base-
line comparison model is the null model in which all of the variables in the model are 
independent of each other or uncorrelated (Kline, 2011). This can easily be seen in 
the formulas for these indices in Table 16.3. You may also notice that some of these 
fit indices include degrees of freedom (dfT) in their calculation (e.g., CFI, IFI, NNFI/
TLI). This is done in order to counter the impact of model complexity. Specifically, 
models tend to fit better when estimating more parameters than when estimating fewer 
parameters. Thus, as the number of parameters being estimated in a model increases, 
the smaller the dfT becomes (remember: p* − q). The weight of the dfT is most easily 
seen for the IFI formula in Table 16.3. Notice in this formula that as the dfT becomes 
smaller, the IFI value becomes larger (all other things remaining constant). Thus, a 
subclassification of model fit indices exists with respect to model complexity adjust-
ments. Traditionally, models with values of .90 and above associated with these indi-
ces have been considered to fit the data acceptably.

Absolute fit indices measure how well a structural equation model reproduces the 
data. Commonly used absolute fit indices include the Goodness-of-Fit Index (GFI) 
and its adjusted version, the Adjusted Goodness-of-Fit Index (AGFI; Jöreskog &  
Sörbom, 1984), McDonald’s (1989) Fit Index (MFI), the Standardized Root 
Mean-Square Residual (SRMR; Bentler, 1995), and the Root Mean-Square Error of 
Approximation (RMSEA; Steiger & Lind, 1980). Conventionally, models with val-
ues of .90 or above associated with the GFI, the AGFI, and MFI have been deemed 
as acceptably fitting the data. Hu and Bentler (1995) suggested that SRMR values of 
.05 and less indicate “good fit” and values between .05 and .10 indicate “acceptable 
fit.” Browne and Cudeck (1993) proposed that RMSEA values of .05 and less indicate 
“close fit” and values between .05 and .08 indicate “adequate fit.” The RMSEA is the 
only fit index of those mentioned that is supplemented with a confidence interval and 
associated p-value. It is important to note that if a value of .05 is contained within the 
90% confidence interval associated with the RMSEA and is accompanied by a p-value 
greater than .05, this is recognized as evidence of acceptable model fit. A p-value greater 
than .05 would indicate a failure to reject the null that the RMSEA is equal to or less 
than .05 and that the model is “close fitting.” In contrast, a p-value less than .05 would 
indicate that the null be rejected that the RMSEA is equal to or less than .05 and that the 
model is not “close fitting.” It is also noteworthy to point out that some of the absolute 
fit indices also adjust for model complexity (e.g., see formulas for the AGFI, MFI, and 
RMSEA in Table 16.3).

Given the various types of model fit indices available in SEM, some recommendations 
concerning the evaluation of model fit as well as the reporting of model fit informa-
tion is necessary. Given that incremental and absolute fit indices indicate different 
aspects of model fit, it is largely recommended to report values of several fit indices.  
According to Kline (2011), a minimum collection of fit indices to report would con-
sist of the χT

2
 test statistic with corresponding degrees of freedom and level of sig-

nificance, the CFI, the GFI, the RMSEA (with associated 90% CI and p-value), and 
the SRMR.
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In a large-scale simulation study, Hu and Bentler (1999) examined the performance of 
a number of model fit indices in SEM under varied conditions of model misspecifica-
tion, sample size, and model complexity. Ultimately, they recommended using joint 
criteria when assessing model fit. This was proposed in order to reduce the poten-
tial of rejecting the “correct” model (paralleling a type II error) and failing to reject 
the “incorrect” (or misspecified) model (paralleling a type I error). For instance, they 
suggested a cutoff value for the SRMR of .10 or less along with a supplemental fit 
index cutoff value of .96 or less for the NNFI/TLI, IFI, RNI, MFI, or CFI to support 
acceptable model fit. They also advocated using a cutoff value for the SRMR of .10 
or less along with an RMSEA value of .06 or less to support adequate fit of a model 
to the data.

In reaction to this article, more stringent fit index cutoff values, particularly for the 
NNFI/TLI, IFI, RNI, MFI, and CFI, began to be promoted as well as reported in appli-
cations of SEM while citing Hu and Bentler (1999). Although use of their joint criteria 
helps reduce the potential of both type I and II errors with respect to model retention, 
use of these criteria may also result in higher than expected type I and type II errors in 
some circumstances. In fact, Hu and Bentler (1989; 1999) noted limitations concerning 
the use of their recommendations in all scenarios because additional research is needed 
and the joint criteria may not be generalizable to all conditions (Fan & Sivo, 2005; 
Yuan, 2005). Marsh, Hau, and Wen (2004) nicely summarized and called into question 
some issues surrounding the current state of model fit evaluation in SEM applications. 
While some are still proponents of using the joint criteria and the increased cutoff val-
ues associated with some of the fit indices, others are content with using the originally 
proposed cutoff values associated with the model fit indices in SEM.

16.4.3.3 parameter estimates

Of course, even if a model exhibits good fit (based on the obtained model fit indices), 
the model parameter estimates should also be examined to ensure that they are appro-
priate. For example, if it has been consistently demonstrated in the relevant literature 
that the relationship between motivation and achievement is a positive and moderate 
association, the standardized regression coefficient or correlation estimated in a struc-
tural equation model should correspond with this past evidence. If an expected asso-
ciation is not obtained, other problems may be occurring in the hypothesized model 
that warrant attention. As in multiple regression analysis, these problems could be 
the result of multicollinearity and/or suppressor relationships as well as measurement 
issues (e.g., poor reliability of measures used).

If unstandardized parameter estimates are presented in a model, the direct paths may 
be interpreted as unstandardized partial regression coefficients. The two-headed arrow 
represents something that is implicit in multiple regression models, which is that pre-
dictors (or covariates) covary with each other. Standardized estimates may be pre-
sented in models instead of unstandardized estimates. The choice depends on how 
meaningful the interpretations are when using the original data’s metric. For example, 
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interpreting total scores comprised of Likert or other response scale options may not 
be as meaningful as interpreting data concerning age, GPA, education in years, or IQ. 
Another consideration for the presentation of estimates in path models is to report 
findings consistently with past literature in the area. That is, if similar studies in which 
similar scales or measures have been used reported their findings in a certain met-
ric (unstandardized or standardized), it would be practical to report findings in the 
same metric for comparison purposes. Applied researchers in the social and behavio-
ral sciences regularly report standardized results because of the prevalent use of total 
scores from questionnaires and for ease of interpretation across studies.

Regardless of the metric in which the data are reported, the sample covariance matrix, 
which is an unstandardized version of a correlation matrix, is used as input in SEM 
analyses. The unstandardized data are used because of statistical testing purposes. That 
is, information concerning the distributional properties of the variables (particularly 
variability information) is necessary in order to compute standard errors associated 
with parameter estimates. Parameter estimates are divided by their respective standard 
errors in order to calculate a z statistic (or t statistic, depending upon the software), 
which may be compared to the critical z value to determine if it is statistically sig-
nificantly different from zero. If parameters are estimated using a correlation matrix 
with a normal theory estimator (e.g., ML) instead of a covariance matrix, the param-
eter estimates and their respective standard errors as well as model fit values may 
be erroneous. Some software programs will allow for the estimation of a correlation 
matrix with some minor modifications to the command or input file (e.g., LISREL and 
Mplus, PROC CALIS in SAS). Other methods exist that also allow the estimation of 
parameters using a correlation matrix, but they generally require that the user set up 
complicated nonlinear constraints that are challenging. See Browne (1982) and Steiger 
(2002) for more information concerning this issue.

16.4.3.4 recommendations

All in all, it is not clear whether there will ever be overarching consensus concerning 
model fit in SEM, which is a complicated and sizeable topic of research. Model fit 
is affected by various components, including the actual fit index calculation, sample 
size, estimation procedure, and model complexity (to name a few). Accordingly, it is 
proposed that model fit be evaluated not only globally using model fit indices, but it 
should also be evaluated in terms of the appropriateness of the model parameter esti-
mates associated with the hypothesized relationships.

At the global level, we recommend that the χT
2

 with respective dfT and significance 
level be reported. We also recommend that two incremental fit indices and two abso-
lute fit indices be reported. Thus, it is suggested that the TLI and the CFI be reported 
given that they are comparatively unaffected by sample size (Hu & Bentler, 1995; 
West, Taylor, & Wu, 2012). Further, the RMSEA (with 90% CI and p-value) and the 
SRMR are recommended for use during model fit assessment given previous findings 
concerning their relative performance to other fit indices (Hu & Bentler, 1999; West 
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et al., 2012). We also recommend using the originally proposed (or traditional) cutoff 
values when assessing overall model fit. The reason for this is because when working 
with real data, the true model in the population will not be known. Accordingly, we 
prefer to err on the side of failing to reject misspecified models as compared to reject-
ing the “correct” model should it be attainable.

16.4.4 Model Modification and Selection

When structural equation models do not demonstrate adequate fit through the use of 
the χT

2
 test statistic and/or fit indices, researchers may modify or respecify their model 

and subsequently retest the model fit to the data (MacCallum, Roznowski, & Necow-
itz, 1992). Given that models in SEM are a priori models based on theoretically driven 
hypotheses concerning the relationships among the variables, inadequate fit of the 
model may be viewed by some as an indication that the hypothetical model is not cred-
ible and, as a result, modification of the model is not advised. On the other hand, some 
may consider inadequate fit of a model as an indication that specification errors exist 
in the model, meaning that there is disagreement between the hypothesized model and 
the correct or true model in the population. Specification errors refer to the inclusion 
of extraneous associations in the model and/or the exclusion of pertinent associations 
in the model (MacCallum, 1986). Inadequate model fit is more commonly attributed 
to the exclusion of pertinent associations, which is regarded by some to result in more 
severe consequences than the alternative (Saris, Satorra, & van der Veld, 2009). Con-
sequently, applied researchers will most likely add associations (additional parameters 
to estimate) to the originally proposed model for model fit improvement. In practice, 
“true” structural equation models are not known to the researcher and the resulting 
hypothesized models symbolize approximations of the true model in the population 
(Cudeck & Browne, 1983). Accordingly, some consider model modification indispen-
sable for attaining a model that suitably explains the relationships among the variables 
of interest in the model (Saris et al., 2009).

Notwithstanding these different viewpoints concerning model modification, it is uni-
versally accepted that once modifications of a model begin, it becomes an exploratory 
model in practice. As with model selection in multiple regression analyses, modifica-
tions followed by the retesting of models in SEM on the basis of model fit evaluations 
capitalizes on the chance occurrences in the sample in which the models are being 
assessed. Therefore, modifications should be justified by theoretical bases and the 
resulting model should be cross-validated in a subsequent sample in order to provide 
support for the model’s predictive validity (MacCallum et al., 1992). The following 
subsections introduce different approaches that may be used by applied researchers 
when modifying and/or selecting models in SEM.

16.4.4.1 modification indices and the epc

During model modification or model respecification, different statistics may be used to help 
you determine which parameters may be added to a model in order to improve its fit to  
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the data. The most widely used statistic for this purpose is the Modification Index (MI) or  
Lagrange Multiplier (LM), which provides an estimated value of the decrease in the 
model χT

2
 if a specific association (covariance or direct effect) were added and its 

respective parameter were then estimated. See Satorra (1989) and Sörbom (1989) for 
more information concerning the MI or LM. Specific parameters associated with a large 
MI or LM (e.g., greater than a χ2 critical value of 3.84 that corresponds with 1 degree 
of freedom at an alpha level of .05) would be assessed as to whether it would be theo-
retically reasonable to incorporate into the model and estimated. In general, specifica-
tion searches employing the MI or LM would be conducted by first checking whether 
adding any associations (or parameters) to the model would significantly decrease the 
model’s χT

2
 (by at least 3.84 points). If this is the case, researchers would judge the set 

of possible parameters or respecifications to decide which would result in the largest 
reduction in the χT

2
 If the parameter or respecification resulting in the largest reduction 

in χT
2

 is theoretically conceivable, it could be added to the model and estimated. This 
procedure would be repeated until the addition of parameters would no longer result 
in a significant reduction in the model’s χT

2
 or until none of the possible parameters 

or respecifications that would reduce the χT
2

 significantly is theoretically justifiable  
to add to the model (Bollen, 1989).

Research in this area concerning the accuracy of the MI or LM with respect to arriv-
ing at the correct model has demonstrated less than satisfactory results. For instance, 
MacCallum’s (1986) simulation study examined the performance of the MI/LM with 
respect to arriving at the correct model under varied conditions, including model mis-
specification, sample sizes, and type of search (restricted to include only parameters in 
the correct model versus unrestricted to include any parameter suggested by the MI/
LM to include in the model). The findings were largely disappointing, and MacCallum 
(1986) cautioned applied researchers about the confidence placed on the MI/LM during 
the model modification process. While two studies have demonstrated more promising 
results concerning the accuracy of the MI/LM (Chou & Bentler, 1990; Hutchinson, 
1993), the findings from other studies echoed MacCallum’s (1986) discouraging find-
ings (Kaplan,1988; MacCallum et al., 1992; Silvia & MacCallum, 1988).

An additional statistic that researchers may consult to aid in the identification of 
parameters that may be added to a model in order to improve fit is the expected param-
eter change (EPC). The unstandardized EPC was first introduced by Saris, Satorra, and 
Sörbom (1987). The EPC provides the estimated value of a parameter if it were added 
and estimated in the respecified model. See Saris, Satorra, & Sörbom (1987) for more 
information concerning the EPC. Similar to the model modification process using the 
MI/LM, parameters associated with the largest relative EPC would be assessed with 
respect to theoretical credibility and could be added to the model and freely estimated. 
Again, this procedure would be repeated until the parameters are not associated with 
sizeable EPC values relative to others in the set of potential parameters to add or until 
none of the parameters associated with sizeable EPC values relative to others in the 
set is theoretically reasonable to include in the model. There are also standardized 
versions of the EPC available (Chou & Bentler, 1993; Kaplan, 1989; Luijben, 1989).
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Saris et al. (1987) delineated four scenarios in which the EPC could notably contrib-
ute to the model modification process (in accordance with theory, of course). First, 
a sizeable, statistically significant MI/LM corresponding with a sizeable EPC value 
for a certain parameter would suggest the inclusion of the parameter in the model to 
be freely estimated. Second, a sizeable, statistically significant MI/LM corresponding 
with a small EPC value would suggest not including the parameter in the model to 
be freely estimated because this may be a function of the MI’s/LM’s sensitivity to 
sample size. Third, a small, nonsignificant MI/LM corresponding with a sizeable EPC 
value would, regrettably, be inconclusive and a power analysis is recommended for 
the MI/LM. Fourth, a small, nonsignificant MI/LM corresponding with a small EPC 
value associated with a certain parameter would suggest not including the parameter 
in the model to be freely estimated. It is important to note that Saris et al. (1987) did 
not provide cutoff criteria with respect to how sizeable an EPC value should be when 
determining whether or not to add a particular parameter to model. Studies examining 
the accuracy of the EPC during the model modification process have found promising 
results (Kaplan, 1989; Luijben & Boomsma, 1988; Whittaker, 2012).

16.4.4.2 residuals

Another useful tool that may help identify potential model misspecification is the resid-
ual covariance matrix. Remember that the residual covariance matrix is the matrix 
resulting from taking the difference between the observed sample covariance matrix and 
the model-implied covariance matrix. The elements in a residual covariance matrix for 
over-identified models will not equal zero, but the estimation of parameter estimates will 
yield values in the residual covariance matrix as close to zero as is possible given the 
hypothesized relationships. Relatively large nonzero values in the off-diagonal of the 
residual covariance matrix would suggest that the relationship between two variables is 
not explained well by the theoretical model. Thus, this could represent a possible model 
misspecification (omission of an association) that the researcher could examine and eval-
uate in light of theoretical explanations. The elements in the residual covariance matrix 
are presented in unstandardized units (i.e., in the raw data metric) and in standardized 
units. Thus, the standardized residuals may be examined to see if a nonzero residual 
value is significantly different than zero (if greater than |1.96|).

16.4.4.3 wald test

While model modification more commonly occurs in order to improve model fit by 
way of adding parameters to estimate in a model, the model modification process can 
also involve eliminating associations from a model to reach a more parsimonious 
model. Adding parameters to a model is referred to as model building whereas elim-
inating parameters from a model is referred to as model trimming. Similar to the MI/
LM, the Wald statistic estimates the increase in the χχT

2  test statistic that would occur 
if a parameter were fixed to zero (not freely estimated in the model). Thus, the Wald 
statistic estimates whether a parameter may be dropped from the model without signif-
icantly increasing the χχT

2  test statistic.
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16.4.4.4 chi-square difference test

The two models being compared in the procedures using the MI/LM and the Wald sta-
tistic are considered as nested models. In other words, one of these models is a subset 
of the model to which it is compared. For instance, if the MI/LM indicated that the χT

2
 

test statistic would significantly decrease by adding a parameter to Model 1, Model 1 
would be nested in the model with the new parameter estimated (Model 2). Moreover, 
if the Wald statistic indicated that the χχT

2  test statistic would not significantly increase 
by eliminating a parameter from Model 1, the model formed by eliminating the param-
eter (Model 2) would be nested in Model 1.

These two test statistics ultimately determine if a statistically significant difference 
exists between two models’ χ2 test statistics when adding or eliminating a model 
parameter and is given by the chi-square difference test (Δχ2):

∆χ χ χ2 2 2= -restricted unrestricted ,

where χrestricted
2

 is the chi-square value associated with the nested, less parameterized 
(restricted) model and χunrestricted

2  is the chi-square value associated with the more 
parameterized, less restricted (unrestricted) model, with corresponding degrees of 
freedom for the Δχ2 test:

∆df df df= -restricted unrestricted .

When the Δχ2 test indicates a significant difference between two nested models  
(Δχ2 > ca), the nested model with less parameters has been oversimplified. That is, 
the less parameterized (nested) model has significantly decreased the overall fit of the 
model when compared to the model with more parameters. In this situation, then, the 
more parameterized model would be selected over the less parameterized model. On 
the other hand, when the Δχ2 test is not significant (Δχ2 > ca), the two models are com-
parable in terms of overall model fit. In this situation, the less parameterized would 
most likely be selected over the more parameterized model in support of parsimony. It 
is important to note here that the Δχ2 test is possible because it uses likelihood ratio χ2 
statistics as opposed to Pearson χ2 statistics. It is also important to note that when the 
fit of nested models is being compared the Δχ2 test must be modified if you use a scaled 
Satorra–Bentler chi-square or a chi-square obtained from using a variance-adjusted 
estimator (see http://www.statmodel.com/chidiff.shtml; www.uoguelph.ca/~scolwell/
difftest.html; Satorra & Bentler, 2001).

16.4.4.5 information-based criteria

When structural equation models are not related in a nested classification but involve the 
same variables of interest and it is desired to compare them for model selection purposes, 
the Δχ2 test is an inappropriate method to assess significant model fit differences because 
neither of the two models can serve as a baseline comparison model. A comparison of 

http://www.statmodel.com/chidiff.shtml
www.uoguelph.ca/~scolwell/difftest.html
www.uoguelph.ca/~scolwell/difftest.html
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chi-square test statistics associated with nonnested models could be conducted, but this 
is not highly recommended because models with more parameters tend to have smaller 
χ2 values, indicating better fit than less parameterized models. Another instinct might 
also be to compare the model fit indices of competing nonnested models. This also 
would not be recommended because models with more parameters tend to fit the data 
better than models with fewer parameters. Thus, this would not necessarily be a fair 
comparison. Also, if comparing competing nonnested models, the objective would be 
to compare adequately fitting models at the outset. As such, information-based criteria, 
which have also been referred to as cross-validation indices (Cudeck & Browne, 1983), 
have been advocated as tools that may be used to compare nonnested structural equation 
models. These information-based model selection indices are different from the model 
fit indices previously discussed in that they do not have cutoff values to which models 
may be gauged in terms of overall model fit. Instead, these information criteria are used 
comparatively among at least two competing models. Specifically, the model associated 
with the smallest information criteria value in a set of competing models would be 
selected as the model demonstrating more predictive validity (or would be generaliza-
ble in subsequent samples from the same population) than the comparison models. It is 
important to note that these information criteria may actually be used to compare nested 
or non-nested models. They are simply more popular for nonnested model comparisons 
given that a statistical significance test can be conducted with nested models (Δχ2).

While various information-based criteria exist, the most popular information-based 
criterion is Akaike’s (1987) Information Criterion (AIC),

AIC = +χT q2 2 ,

where q is the number of parameters estimated in the model. Additional 
information-based criteria that are widely used include Schwarz’s Bayesian informa-
tion criterion (BIC; Schwarz, 1978),

BIC = + ( ) χT q N2 ln ,

where ln is the natural log and N is the sample size; and Bozdogan’s (1987) consistent 
AIC (CAIC),

CAIC = + ( ) + χT q N2 1ln .

It must be noted that you may see variations in the presentation of the formulas associ-
ated with these criteria in assorted sources. Regardless of their calculation, the model 
associated with the smallest information-based criterion value would be selected as the 
model demonstrating better predictive accuracy than the comparison models.

Research in this area has demonstrated that the AIC has a propensity toward selecting 
more complex (more parameterized) models (Bozdogan, 1987; Browne & Cudeck, 
1989; Shibata, 1976), whereas the BIC and CAIC have a propensity toward selecting 
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less complex (less parameterized) models (Whittaker & Stapleton, 2006). Further, the 
BIC and the CAIC tend to perform more accurately than the AIC in terms of selecting 
the “correct” model from a set of misspecified competing models (Haughton, Oud, & 
Jansen, 1997; Whittaker & Stapleton, 2006). Still, these information-based criteria 
begin to behave more comparably (and accurately) as conditions associated with the 
data become more favorable (e.g., larger sample sizes and stronger associations among 
variables; Bandalos, 1993; Cudeck & Browne, 1983; Whittaker & Stapleton, 2006). 
Readers are encouraged to consult West et al. (2012) and Whittaker and Stapleton 
(2006) for more information concerning these and additional model selection indices.

16.5 THREE PRINCIPAL SEM TECHNIQUES

The following sections cover three principal applications of SEM, including observed 
variable path analysis, confirmatory factor analysis, and latent variable path analysis. 
For each of these sections, we describe and provide examples of each application. We 
also present and describe the SAS code needed to estimate these models and display 
the analysis results with interpretations.

16.6 OBSERVED VARIABLE PATH ANALYSIS

Observed variable path analysis is an extension of multiple regression analysis in 
which the relationships among measured variables may be modeled. Figures 16.1, 
16.3, and 16.4 all represent observed variable path models in which squares represent 
variables that are directly measured (as opposed to constructs). Indirect effects are 
commonly examined and tested in observed variable path models. The following sub-
sections present an observed variable path model with hypothesized indirect effects.

16.6.1 Indirect Effects

Path models, whether observed or latent, include interesting types of relationships 
among variables. For instance, researchers are commonly interested in hypotheses 
concerning whether or not a certain variable intervenes or mediates the relationship 
between two or more variables. Mediation models are popular in the SEM arena 
because of the capability of estimating direct and indirect effects in a model simultane-
ously. Indirect or mediated effects are comprised of two (or more) one-headed arrows 
aiming in the same direction wherein one arrow is pointed toward the mediator and the 
other arrow is stemming from the mediator.

Consider the model in Figure 16.6 posited by Howard and Maxwell (1982), in which 
they examined the relationships between motivation, student progress, expected grade 
in class, and student satisfaction in the class (measured using two separate questions, 
one regarding the instructor and the other regarding the subject matter) in an undergrad-
uate sample at two time points during a semester (mid-semester and end of semester).
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In terms of identification, there are 10 nonredundant observations in the sample covar-
iance matrix:

p
p p

* =
+( )

=
+( )

=
1

2
4 4 1

2
10 .

Four variances require estimation, including the variance of motivation and the 
three error variances associated with progress, grade, and satisfaction; and six direct 
effects require estimation, totaling 10 parameters to estimate. Thus, this model is a 
just-identified model with 0 dfT .

In this model, motivation has direct effects on progress, satisfaction, and grade (paths 
a, b, and c, respectively). Progress and grade both have direct effects on satisfaction 
(paths e and f, respectively). Further, progress has a direct effect on grade (path d ). 
While the direct effects (paths a through f  ) were of theoretical interest to the authors,  
the indirect effects in this model were more interesting given their hypothesis of medi-
ation. In this model, there are three channels through which motivation indirectly 
affects satisfaction. That is, motivation is hypothesized to indirectly affect satisfac-
tion via progress, via grade, and via progress then via grade. The indirect effects of 

 Figure 16.6 Course satisfaction model hypothesized by Howard and Maxwell (1982).
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motivation on satisfaction via these three channels correspond to the products of the 
path coefficients associated with their direct effects, namely ae, cf, and adf, respec-
tively. Progress also indirectly affects satisfaction via grade (represented by the prod-
uct df  ). Typically, researchers present the results from a mediation model in effects 
decomposition tables in which the direct, indirect, and total effects within a model 
are summarized. For instance, a table for this model would look similar to Table 16.4 
with estimated values in place of the path letters corresponding to direct and indirect 
effects.

The path model for satisfaction regarding the instructor at the second measurement 
occasion (end of semester) with standardized results is presented in Figure 16.7. Using 
the standardized estimates from this model, the resulting effects decomposition table 
with standardized direct, indirect, and total effects is presented in Table 16.5. You can 
see that none of the indirect effects are statistically significant in this example. To con-
clude, Howard and Maxwell (1982) argued that motivation and progress were more 
influential than expected grade that had previously been thought to heavily impact 
course satisfaction ratings.

 Figure 16.7 Satisfaction with instructor model with standardized results from Howard and  
Maxwell’s (1982) study.
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 Table 16.4: Effects Decomposition Table Example for Path Model in Howard and  
Maxwell (1982)

Association Direct Indirect Total

Motivation, Progress a — a

Motivation, Satisfaction

     Motivation → Progress → Satisfaction
     Motivation → Grade → Satisfaction
     Motivation → Progress → Grade → Satisfaction

b ae + cf + adf
ae
cf
adf

b + ae + cf + 
adf

Motivation, Grade c — c

Progress, Grade d — d

Progress, Satisfaction e df e + df

Grade, Satisfaction f — f

 Table 16.5: Standardized Direct, Indirect, and Total Effects for Satisfaction With  
Instructor at Time 2 in Howard and Maxwell (1982)

Association Direct Indirect Total

Motivation, Progress .073 – .073

Motivation, Satisfaction

     Motivation → Progress → Satisfaction
     Motivation → Grade → Satisfaction
     Motivation → Progress → Grade → Satisfaction

.355* TI = .04
.026
.011
.003

.395

Motivation, Grade .135 – .135

Progress, Grade .523* – .523

Progress, Satisfaction .356* .043 .399

Grade, Satisfaction .082 – .082

Note: TI = Total indirect. *p < .05.

16.6.2 Tests of Indirect Effects

There are numerous approaches available to estimate the statistical significance of indi-
rect effects. A full-length discussion of all the available approaches to test mediation is 
beyond the scope of this chapter. You should consult MacKinnon, Fairchild, and Fritz 
(2007), MacKinnon, Lockwood, Hoffman, West, and Sheets (2002), and Shrout and Bol-
ger (2002) for more information concerning mediational methods. A brief presentation of 
the more commonly used approaches in the SEM arena will, however, be presented next.

One of the simplest procedures that may be used to test the significance of an indirect 
effect is a modified version of the causal steps method originally proposed by Baron 
and Kenny (1986). This modified approach was proposed by Cohen and Cohen (1983) 
and has been referred to as the joint test of statistical significance (MacKinnon et al., 
2002). As the name implies, the indirect effect is deemed statistically significant if 
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each of the direct effects that comprise the indirect effect is statistically significant. For 
instance, a significant indirect effect would exist between motivation and satisfaction 
via progress in Howard and Maxwell’s (1982) study if both the direct effect of moti-
vation on progress and the direct effect from progress to satisfaction were statistically 
significant (see Table 16.5).

Another approach is to calculate a standard error associated with the indirect effect and 
conduct a statistical significance test of the indirect effect. Using a simple mediation 
model as an example, consider Figure 16.8 in which X directly affects Y and indirectly 
affects Y via the mediator variable M.

The product of paths a and b would comprise the indirect effect of X on Y via M. There 
are various formulas available that may be used to calculate standard errors for indirect 
effects. The most widely used calculation for the standard error associated with an 
indirect effect σab ( ), derived by Sobel (1982), is:

σab b aa s b s
   

 = +
2 2 2 2 ,

where a  is the unstandardized path value from X to M; sb  is the standard error asso-
ciated with the path from M to Y (b); b  is the unstandardized path value from M to 
Y; and sa  is the standard error associated with the path from X to M (a). Dividing the 
indirect effect, ab, by its associated standard error, σab  ,  yields a z test. If this value is 
greater than ±1.96, this would indicate that the unstandardized indirect effect is sig-
nificantly different from zero at α = .05. The majority of SEM software includes these 
tests (or variants of these tests) for indirect effects (e.g., LISREL, EQS, and Mplus). 
We note that this standard error can also be used to create a 95% confidence interval 
around the indirect effect point estimate:

ab zab
 

 

± ( )( )σ α 2 ,

where zα 2  is the z critical that cuts off the middle 95% of scores (i.e., 1.96). If a zero falls in 
the confidence interval, the indirect effect would not be considered statistically significant.

A criticism of using the Sobel test (and similar variants) when testing indirect effects 
is that the distribution of the product of direct effects (e.g., ab) is not approximately 

 Figure 16.8 Simple mediation model.
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normally distributed unless the sample size is quite large. Thus, calculating standard 
errors for these indirect effects and assuming an underlying normal distribution when 
testing their statistical significance may lead to erroneous conclusions (Preacher & 
Hayes, 2008). Methodological researchers have derived alternative tests that attempt 
to correct for this drawback. One option gaining in popularity involves the use of 
bootstrapping estimation techniques to obtain the standard errors associated with indi-
rect effects. Some SEM software programs (e.g., AMOS and Mplus) can implement 
bootstrapping techniques when calculating standard errors and, thus, provide more 
appropriate standard errors, statistical significance tests, and confidence intervals.

Other tools are available for applied researchers when calculating indirect effects. For 
instance, Kristopher Preacher’s webpage has an entire section dedicated to conduct-
ing mediational analyses. See his page at http://www.quantpsy.org/medn.htm for var-
ious tools to help calculate statistical significance tests, including the Sobel test and 
bootstrapping, for indirect effects. MacKinnon, Fritz, Williams, and Lockwood (2007) 
wrote programs in SAS, SPSS, and R that calculate confidence intervals for the product 
of two paths comprising an indirect effect called PRODCLIN. Tofighi and Mac Kinnon 
(2011) created a more advanced program in R called RMediation that calculates confi-
dence intervals for the product of two paths comprising an indirect effect using several 
different methods and produces plots of the distribution of the indirect effect.

Research in this area has suggested that bootstrapping techniques are recommended 
when sample sizes are small in order to increase the power to detect significant indirect 
effects (Shrout & Bolger, 2002). In addition, the modified causal steps approach, or the 
joint test of statistical significance, while performing more conservatively than some 
methods, demonstrated adequate performance across various conditions examined 
in MacKinnon et al.’s (2002) simulation study with respect to maintaining adequate 
power and effectively controlling for type I error. In the same study, the Sobel test, and 
its variants, performed fairly conservatively and had very low type I error rates. See 
MacKinnon et al. (2002) for information concerning other techniques that may be used 
to optimize the power associated with the test of indirect effects while still maintaining 
appropriate type I error control.

16.7  OBSERVED VARIABLE PATH ANALYSIS  
WITH THE MUELLER STUDY

In this section, an example of an observed variable path analysis with analyses of indi-
rect effects is illustrated using PROC CALIS in SAS. Data for this illustration were 
taken from a study conducted by Mueller (1988) in which he examined the impact 
of the selective nature of a college on future income among college graduates with a 
4-year bachelor’s degree using observed variable path analysis. The model that will be 
used in the subsequent example is not the same as the model originally proposed and 
tested by Mueller (1988). Instead, the model in Figure 16.9, which includes a subset 
of the fifteen variables originally analyzed in Mueller (1988), will be examined for 
simplicity.

http://www.quantpsy.org/medn.htm
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These data were taken from various national data sets collected through surveys con-
tracted by the American Council on Education (ACE; see Mueller, 1988, for a descrip-
tion of the variables). In this model, academic ability, drive to achieve, and degree 
aspirations are exogenous variables hypothesized to covary and to directly impact 
highest degree earned and selectivity. Highest degree earned and selectivity, in turn, 
are hypothesized to directly influence current salary. Three indirect effects are mod-
eled as originating from academic ability, drive to achieve, and degree aspirations to 
current income by way of highest degree earned that are represented by the following 
products: ag, cg, and eg, respectively. Three additional indirect effects are modeled as 
originating from academic ability, drive to achieve, and degree aspirations to current 
income by way of college selectivity, which are represented by the following products: 
bh, dh, and f h, respectively.

Before discussing the SAS code for this model using PROC CALIS, let us first deter-
mine the dfT associated with this model. There are six observed variables in this model. 
Accordingly, we have:

p
p p

* =
+( )

=
+( )

=
1

2
6 6 1

2
21.

Thus, there are 21 nonredundant observations in the sample covariance matrix. From 
examining the model, there are six variances to estimate (the variances of the three 
exogenous variables and the three error variances associated with the three endoge-
nous variables, highest degree, selectivity, and current income); eight direct effects to 
estimate (paths a through h); and three covariances among the exogenous variables, 
totaling 17 parameters. Consequently, this is an over-identified model with 4 dfT .

 Figure 16.9 Observed variable path analysis model from the Mueller (1988) study.
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 Table 16.6: SAS Code to Create a Temporary Data Set Containing a Correlation Matrix 
and Standard Deviations

DATA COLLEGE(TYPE=CORR);
INFILE CARDS MISSOVER;
INPUT _TYPE_ $ _NAME_ $ ABILITY ACHIEVE DEG_ASP HI_DEG

SELECTIV INCOME;

CARDS;
STD      .    .71  .75  .90  .69 1.84 1.37
CORR ABILITY 1.00
CORR ACHIEVE  .28 1.00
CORR DEG_ASP  .19  .21 1.00
CORR HI_DEG   .15  .15  .23 1.00
CORR SELECTIV .35  .09  .20  .20 1.00
CORR INCOME   .08  .11  .09  .11  .23 1.00
;

Mueller’s (1988) article presented the intercorrelations among all variables as well as 
their corresponding standard deviations separately for men and for women. The data 
for the women were used in this example. This type of summary information can be 
used to calculate the covariance matrix that can then be used as input in SAS. The SAS 
code presented in Table 16.6 creates a correlation matrix with standard deviations in a 
temporary SAS data set so that the covariance matrix can be used during the analyses. 
Although the correlation matrix is being used as input, the raw data may also be used 
as input in PROC CALIS.

16.7.1 SAS Code for the Mueller Study

In the temporary data set called COLLEGE, a correlation matrix (TYPE=CORR) is 
being created. The INFILE CARDS statement allows you to use the file reference 
CARDS, which allows us to use options associated with the INFILE statement (DATA-
LINES could also be used in place of CARDS). Specifically, this is used so that we may 
use the MISSOVER option with the INFILE statement. MISSOVER prevents SAS 
from going to a new line of data when inputting the instream data if any of the values 
are missing. This is important since we are using the lower triangle of the correlation 
matrix and, thus, it is not a complete symmetric matrix.

The input statement assigns variable names to the columns in the data file work.
COLLEGE. TYPE is the variable type (e.g., STD for standard deviation and CORR 
for correlation value) and NAME is the name of the observed variables. The variable 
names are then written to be input in that particular order that follows the arrange-
ment of the correlation matrix. Following the CARDS statement is the information 
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 Table 16.7: SAS Code to Analyze the Observed Variable Path Model for the Mueller 
Study Using PROC CALIS 

PROC CALIS DATA=COLLEGE COVARIANCE RESIDUAL MODIFICATION TOTEFF
NOBS=3094;

LINEQS
HI_DEG = B14 ABILITY + B24 ACHIEVE + B34 DEG_ASP + E1,
SELECTIV = B15 ABILITY + B25 ACHIEVE + B35 DEG_ASP + E2,
INCOME = B46 HI_DEG + B56 SELECTIV + E3;

VARIANCE
E1 = VARE1,
E2 = VARE2,
E3 = VARE3,
ABILITY = VARV1,
ACHIEVE = VARV2,
DEG_ASP = VARV3;

COV
ABILITY ACHIEVE = COV_12,
ABILITY DEG_ASP = COV_13,
ACHIEVE DEG_ASP = COV_23;

RUN;

necessary to create the correlation matrix in SAS with standard deviations and sample 
size information. STD is the standard deviation for each respective variable (in the 
same order as in the INPUT statement). Following that is the standard form of entering 
the lower triangle of the correlation matrix. This should align directly with the corre-
sponding relationships for each of the variables. The entire correlation matrix may also 
be entered in the SAS code instead of the upper or lower triangle to create the data set 
with a correlation matrix.

The SAS code to analyze the observed variable path model in Figure 16.9 using PROC 
CALIS is presented in Table 16.7. PROC CALIS invokes the CALIS procedure. The 
options following the PROC CALIS statement do the following: DATA=COLLEGE 
indicates the input data set (created previously using the correlation matrix with stand-
ard deviations); COVARIANCE requests that the covariance matrix be used when esti-
mating parameters; RESIDUAL requests that the residual matrices (unstandardized 
and standardized) be included in the output; MODIFICATION requests modification 
indices (MI) or Lagrange Multiplier (LM) tests to be provided in the output; TOTEFF 
requests that the direct, indirect, and total effects be provided in the output; and NOBS 
indicates the sample size.
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The linear equations relating the variables in the model are specified in the LINEQS 
statement. The form specifies that the endogenous variable is a function of the varia-
bles directly affecting it as well as error. For instance, in the following equation:

HI_DEG = B14 ABILITY + B24 ACHIEVE + B34 DEG_ASP + E1

the variable highest degree earned is a function of the direct effect of ability (which 
is associated with the partial regression slope parameter B14), the direct effect of 
achieve (which is associated with the partial regression slope parameter B24), the 
direct effect of degree aspirations (which is associated with the partial regression slope 
parameter B34), and the direct effect of error (E1). Selectivity is directly affected by 
ability, drive to achieve, degree aspirations, and error (E2). Income is directly affected 
in the model by highest degree earned, college selectivity, and error (E3). These equa-
tions are separated by commas.

The VARIANCE statement indicates which variance parameters to estimate in the 
hypothesized model. These include variances of exogenous variables (including error 
variances). Thus, three error variances will be estimated, E1, E2, and E3, which will 
be labeled as VARE1, VARE2, and VARE3, respectively, in the output. The variances 
of the three observed exogenous variables (ability, achieve, and degree aspirations) 
will be estimated and labeled as VARV1, VARV2, and VARV3, respectively, in the 
output. It is important to note that these variances will be calculated by default if not 
included in the CALIS procedure code. These statements are separated by commas.

The COV statement indicates which variables you hypothesize to covary in the model. 
For instance, covariances between all of the exogenous variables were hypothesized. 
As such, the covariance between ability and achieve will be estimated and labeled as 
COV_12 in the output; the covariance between ability and degree aspirations will be 
estimated and labeled as COV_13 in the output; and the covariance between achieve 
and degree aspirations will be estimated and labeled as COV_23 in the output. It must 
be noted that the default is to estimate covariances among all exogenous observed 
variables in the CALIS procedure. Thus, the covariances between ability, achieve, and 
degree aspirations would be estimated by default if omitted from the code. If you 
hypothesize no covariance among exogenous observed variables, you can set them 
equal to zero. For example, the following statement would set the covariance between 
ability and achieve equal to zero and, hence, would not be freely estimated in the 
model:

ABILITY ACHIEVE = 0

These statements are separated by commas.

16.7.2 Analysis Results: Model Fit and Residuals

There is an abundance of output provided in SAS when using PROC CALIS, including 
model specification information, descriptive statistics, and optimization information (to 
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name a few). The following discussion of abbreviated SAS output will focus on the most 
relevant output when conducting path analyses. The Fit Summary table is presented in two 
separate tables given its length. Table 16.8 presents the top half of the Fit Summary table.

In the Modeling Information section, you can see the number of nonredundant obser-
vations (21) labeled as the number of moments and the number of parameters (17) 
estimated. In the Absolute Index section of the table, the model chi-square is presented, 
χ2(4) = 84.36, p < .05, which indicates that the test of overall model fit is significant. 
Again, this is opposite of the desired result. Remember, the hypothesis is that the 
observed sample covariance matrix is equal to the implied covariance matrix. Also in 
the Absolute Index section of the table, the SRMR is .03, which is below both the “good 
fit” (.05) and the “acceptable fit” (.10) cutoff values. The remaining fit indices of inter-
ested are presented in Table 16.9, which is the bottom half of the Fit Summary table.

The Parsimony Index section provides the value of the RMSEA estimate, correspond-
ing 90% confidence interval, and the p-value associated with the test of “close fit.” The 
RMSEA estimate is equal to .08 (90% CI: .07, .10) with p < .05. Thus, the RMSEA 
estimate suggests inadequate model fit because .08 falls at the top of the “adequate fit” 
cutoff range (.05–.08), a value of .05 is not contained in the 90% CI, and the p-value 
is less than .05, suggesting a not “close-fitting” model. The Incremental Index sec-
tion provides values associated with the CFI (.94) and the TLI (.79; Bentler–Bonnett 

 Table 16.8: Top Half of Fit Summary Table From PROC CALIS for the Mueller Study

Fit Summary

Modeling Info Number of Observations 3094

Number of Variables 6

Number of Moments 21

Number of Parameters 17

Number of Active Constraints 0

Baseline Model Function Value 0.4593

Baseline Model Chi-Square 1420.6759

Baseline Model Chi-Square DF 15

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.0273

Chi-Square 84.3579

Chi-Square DF 4

Pr > Chi-Square <.0001

Z-Test of Wilson & Hilferty 7.7148

Hoelter Critical N 348

Root Mean Square Residual (RMR) 0.0399

Standardized RMR (SRMR) 0.0332

Goodness of Fit Index (GFI) 0.9911
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Non-normed Index in SAS). Hence, the CFI meets the original proposed cutoff value 
of .90 or greater whereas the TLI (NNFI) does not meet this criteria.

The unstandardized (or raw) residual matrix is presented in Table 16.10. Remember 
that the residual matrix is the difference between the sample covariance matrix and the 
implied covariance matrix. Values closer to zero in the residual matrix indicate that 
the relationship (variance or covariance) is explained well by the hypothesized model. 
As seen in the unstandardized (raw) residual matrix, there are seven variances/covar-
iances with nonzero residual values. The relationship explained the least well given 
the hypothesized model is the relationship between highest degree earned and college 
selectivity because it has the largest residual value (.155). SAS also provides the rank-
ing of these seven residual values in descending order. These values, however, are in 
the original metric, so it is difficult to gauge if these are substantially different from 
zero. Consequently, the standardized residual matrix is also provided when including 
RESIDUAL in the CALIS procedure options list. The standardized residual matrix is 
presented in Table 16.11.

The standardized residual values may be interpreted as z scores. Thus, a value greater 
than ±1.96 would indicate that the residual is significantly different from zero. Five of 
the seven nonzero residual values, according to the matrix, are greater than |1.96| or 
significantly different than zero. The largest residual is now associated with the rela-
tionship between income and selectivity.

 Table 16.9: Bottom Half of Fit Summary Table from PROC CALIS for the Mueller Study

Parsimony Index Adjusted GFI (AGFI) 0.9531

Parsimonious GFI 0.2643

RMSEA Estimate 0.0806

RMSEA Lower 90% Confidence Limit 0.0661

RMSEA Upper 90% Confidence Limit 0.0960

Probability of Close Fit 0.0003

ECVI Estimate 0.0383

ECVI Lower 90% Confidence Limit 0.0298

ECVI Upper 90% Confidence Limit 0.0492

Akaike Information Criterion 118.3579

Bozdogan CAIC 237.9906

Schwarz Bayesian Criterion 220.9906

McDonald Centrality 0.9871

Incremental Index Bentler Comparative Fit Index 0.9428

Bentler-Bonett NFI 0.9406

Bentler-Bonett Non-normed Index 0.7856

Bollen Normed Index Rho1 0.7773

Bollen Non-normed Index Delta2 0.9433

James et al. Parsimonious NFI 0.2508



 Table 16.10: Unstandardized Residual Matrix from PROC CALIS for the Mueller Study

Raw Residual Matrix

ABILITY ACHIEVE DEG_ASP HI_DEG SELECTIV INCOME

ABILITY 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00567

ACHIEVE 0.00000 0.00000 0.00000 0.00000 0.00000 0.08271

DEG_ASP 0.00000 0.00000 0.00000 0.00000 0.00000 0.03863

HI_DEG 0.00000 0.00000 0.00000 0.00000 0.15500 0.02500

SELECTIV 0.00000 0.00000 0.00000 0.15500 0.00000 0.02052

INCOME -0.00567 0.08271 0.03863 0.02500 0.02052 0.00662

Rank Order of the 7 Largest Raw Residuals

Var1 Var2 Residual

SELECTIV HI_DEG 0.15500

INCOME ACHIEVE 0.08271

INCOME DEG_ASP 0.03863

INCOME HI_DEG 0.02500

INCOME SELECTIV 0.02052

INCOME INCOME 0.00662

INCOME ABILITY -0.00567

 Table 16.11: Standardized Residual Matrix From PROC CALIS for the Mueller Study

Asymptotically Standardized Residual Matrix

ABILITY ACHIEVE DEG_ASP HI_DEG SELECTIV INCOME

ABILITY 0.00000 0.00000 0.00000 0.00000 0.00000 -0.35977

ACHIEVE 0.00000 0.00000 0.00000 0.00000 0.00000 4.67826

DEG_ASP 0.00000 0.00000 0.00000 0.00000 0.00000 1.87743

HI_DEG 0.00000 0.00000 0.00000 0.00000 7.60477 7.60428

SELECTIV 0.00000 0.00000 0.00000 7.60477 0.00000 7.60591

INCOME -0.35977 4.67826 1.87743 7.60428 7.60591 7.60542

Rank Order of the 7 Largest Asymptotically Standardized Residuals

Var1 Var2 Residual

INCOME SELECTIV 7.60591

INCOME INCOME 7.60542

SELECTIV HI_DEG 7.60477

INCOME HI_DEG 7.60428

INCOME ACHIEVE 4.67826

INCOME DEG_ASP 1.87743

INCOME ABILITY -0.35977
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16.7.3 Analysis Results: Unstandardized Parameter Estimates

The unstandardized parameter estimates for the model are presented in Table 16.12. 
The unstandardized partial regression coefficients, corresponding standard errors, and 
significance tests are presented in the Linear Equations section. The unstandardized par-
tial regression coefficient associated with regressing college selectivity on ability indi-
cates that as academic ability increases by 1 point, selectivity is estimated to increase 
by .86 points, controlling for everything else. This estimate (.8603) is divided by its 
respective standard error (.0454), which can be found in the row beneath the estimated 
value. This results in what SAS labels a t test (18.95); however, to interpret statistical 
significance, you compare the t value to a critical value of ±1.96 (a critical z value with 

 Table 16.12: Unstandardized Parameter Estimates From PROC CALIS for the Mueller 
Study

Linear Equations

HI_DEG = 0.0869 * ABILITY + 0.0772 * ACHIEVE + 0.1498 * DEG_ASP + 1.0000 E1
Std Err 0.0177 B14 0.0168 B24 0.0137 B34
t Value 4.9018 4.5849 10.9142

SELECTIV = 0.8603 * ABILITY + -0.0814 * ACHIEVE + 0.2942 * DEG_ASP + 1.0000 E2
Std Err 0.0454 B15 0.0432 B25 0.0352 B35
t Value 18.9449 -1.8848 8.3638

INCOME = 0.1324 * HI_DEG + 0.1613 * SELECTIV + 1.0000 E3
Std Err 0.0348 B46 0.0130 B56
t Value 3.8069 12.3720

Estimates for Variances of Exogenous Variables

Variable Type Variable Parameter Estimate Standard Error t Value

Error E1 VARE1 0.44233 0.01125 39.32556

E2 VARE2 2.90493 0.07387 39.32556

E3 VARE3 1.76960 0.04500 39.32556

Observed ABILITY VARV1 0.50410 0.01282 39.32556

ACHIEVE VARV2 0.56250 0.01430 39.32556

DEG_ASP VARV3 0.81000 0.02060 39.32556

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate Standard Error t Value

ABILITY ACHIEVE COV_12 0.14910 0.00994 14.99540

ABILITY DEG_ASP COV_13 0.12141 0.01170 10.38108

ACHIEVE DEG_ASP COV_23 0.14175 0.01240 11.42979
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Squared Multiple Correlations

Variable Error Variance Total Variance R-Square

HI_DEG 0.44233 0.47610 0.0709

SELECTIV 2.90493 3.38560 0.1420

INCOME 1.76960 1.87028 0.0538

alpha = .05) because SEM is considered a population technique. This coefficient is 
statistically significant (18.94 > 1.96). The unstandardized partial regression coefficient 
associated with regressing college selectivity on drive to achieve indicates that as drive 
to achieve increases by 1 point, selectivity is estimated to decrease by .08 points, holding 
everything else constant. Yet, this estimate is not statistically significant (−1.88 < −1.96).  
All of the remaining direct effects in the model are statistically significant.

The variance estimates and the covariances are also presented in Table 16.12 in the Esti-
mates for Variances of Exogenous Variables and Covariances Among Exogenous Vari-
ables sections, respectively. The error variances associated with highest degree earned 
(E1), selectivity (E2), and income (E3) are significantly different from zero as seen from 
their associated t statistics, which are greater than 1.96. Accordingly, there is significant 
unexplained variability in highest degree earned, selectivity, and income. It is important 
to note that the t statistics associated with all of these error variances (as well as for the 
variances of observed exogenous variables) are identical (see Table 16.12). The reason 
for this is due to the calculation of the variance associated with each of these estimates 
in which a constant value is included (i.e., N − 1 − q) in the denominator. As a result, 
the t statistics will be the same (see Jöreskog, n.d., for more information concerning the 
calculation of variances for error variances and resulting t statistics in LISREL).

The covariances among the three exogenous variables (ability, drive to achieve, and 
degree aspirations) are all statistically significant. Information concerning unexplained 
and explained variance in the endogenous variables is presented in the Squared Multi-
ple Correlations section in Table 16.12. For instance, the error variance associated with 
highest degree earned (.44233) can be divided by the total variance of highest degree 
earned (.47610) to obtain the proportion of unexplained variability in highest degree 
earned, which is equal to .929. Thus, approximately 93% of the variance in highest 
degree earned is unexplained by the model. For college selectivity, approximately 86% 
of the variance in selectivity is unexplained (2.90493 / 3.3856 = .858). Subtracting 
these values from a value of one results in the R square value of .07 for highest degree 
earned and .14 for selectivity, respectively. These are also provided in the output (see 
Table 16.12). As such, approximately 7% of the variability in highest degree earned 
and 14% of the variability in selectivity is explained by the model. There is even less 
variability in income that is explained by the model (approximately 5%).

The TOTEFF options in the CALIS procedure invoked information concerning Total 
Effects, Direct Effects, and Indirect Effects to be included in the output and the 
unstandardized estimates for these effects are presented in Table 16.13.



 Table 16.13: Unstandardized Total, Direct, and Indirect Effects From PROC CALIS for the 
Mueller Study

Total Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0 0.0869
0.0177
4.9018
<.0001

0.0772
0.0168
4.5849
<.0001

0.1498
0.0137

10.9142
<.0001

INCOME 0.1324
0.0348
3.8069
0.000141

0.1613
0.0130

12.3720
<.0001

0.1503
0.0137

10.9359
<.0001

-0.002902
0.007889

-0.3678
0.7130

0.0673
0.008616
7.8099
<.0001

SELECTIV 0 0 0.8603
0.0454

18.9449
<.0001

-0.0814
0.0432

-1.8848
0.0595

0.2942
0.0352
8.3638
<.0001

Direct Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0 0.0869
0.0177
4.9018
<.0001

0.0772
0.0168
4.5849
<.0001

0.1498
0.0137

10.9142
<.0001

INCOME 0.1324
0.0348
3.8069
0.000141

0.1613
0.0130

12.3720
<.0001

0 0 0

SELECTIV 0 0 0.8603
0.0454

18.9449
<.0001

-0.0814
0.0432

-1.8848
0.0595

0.2942
0.0352
8.3638
<.0001

Indirect Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0 0 0 0

INCOME 0 0 0.1503
0.0137

10.9359
<.0001

-0.002902
0.007889

-0.3678
0.7130

0.0673
0.008616
7.8099
<.0001

SELECTIV 0 0 0 0 0
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Total effects are comprised of both direct and indirect effects. Because highest degree 
earned and selectivity were hypothesized to affect income directly, and not indirectly, 
their total effects are equal to their direct effects. Below the unstandardized coeffi-
cient is its respective standard error. Again, the coefficient is divided by its respective 
standard error to obtain the t test, which indicates if the coefficient is statistically sig-
nificantly different from zero and is listed below the standard error in each of these 
cells. Recall that t statistics greater than ±1.96 indicate statistical significance of the 
coefficient. The p-value associated with the t test is listed below the t statistic value. 
As seen previously in Table 16.12 with the unstandardized results, the direct effect of 
highest degree earned (.13) on income and the direct effect of selectivity on income 
(.16) are statistically significant ( ps < .001 as indicated in Table 16.13).

There were six indirect effects hypothesized in the example model. These effects were 
hypothesized to originate from ability, drive to achieve, and degree aspirations and 
indirectly affect income via highest degree earned and via college selectivity. Notice, 
however, that in the Indirect Effects section in Table 16.13, only three indirect effects 
are listed from ability, drive to achieve, and degree aspirations to income. These repre-
sent the total indirect effects, of which two are statistically significant using the Sobel 
test. Specifically, the total indirect effects from ability and from degree aspirations to 
income are statistically significant. For instance, the total indirect effect from ability 
to income is the sum of (1) the specific indirect effect from ability to income via 
highest degree earned and (2) the specific indirect effect from ability to income via 
college selectivity. Specific indirect effects are comprised of the product of the corre-
sponding unstandardized direct effect paths involved in the relationship (see the Direct 
Effects section in Table 16.13). As such, the specific indirect effect from ability to 
income via highest degree earned (.0869 × .1324 = .0115) and the specific indirect 
effect from ability to income via college selectivity (.8603 × .1613 = .1388) sums to 
the total indirect effect (.1503) shown in the Indirect Effects section in Table 16.13. 
Likewise, the total indirect effect of degree aspirations on income (.0673) is the sum 
of the specific indirect effect from degree aspirations to income via highest degree 
(.1498 × .1324 = .0198) earned and the specific indirect effect from degree aspirations 
to income via college selectivity (.2942 × .1613 = .0475).

Although the Sobel test is not provided for the specific indirect effects, these could 
easily be calculated by hand or by using the Sobel test calculator on Kristopher Preach-
er’s webpage (http://www.quantpsy.org/sobel/sobel.htm). Alternatively, the joint test 
of statistical significance method could be used to infer statistical significance asso-
ciated with these specific indirect effects. Congruent with the joint test of statistical 
significance, because all of the direct effect paths involved in the specific indirect 
effects from ability and from degree aspirations to income via highest degree earned 
and via college selectivity are statistically significant (see the Direct Effects section in 
Table 16.13), the specific indirect effects may also be inferred to be statistically signif-
icant. Although the total indirect effect from drive to achieve to income is not statisti-
cally significant (see the Indirect Effects section in Table 16.13), the specific indirect 
effect from drive to achieve to income via highest degree earned may be inferred to 
be statistically significant because the direct paths that comprise this indirect effect 

http://www.quantpsy.org/sobel/sobel.htm


680        Structural Equation ModEling

are statistically significant (.0772 × .1324 = .0102; see the Direct Effects section in 
Table 16.12).

16.7.4 Analysis Results: Standardized Parameter Estimates

The standardized estimates are printed in SAS output following the unstandardized 
parameter estimates and are presented in Table 16.14.

 Table 16.14: Standardized Parameter Estimates From PROC CALIS for the Mueller Study

Standardized Results for Linear Equations

HI_DEG = 0.0894 * ABILITY + 0.0839 * ACHIEVE + 0.1954 * DEG_ASP + 1.0000 E1
Std Err 0.0182 B14 0.0183 B24 0.0176 B34
t Value 4.9186 4.5987 11.1109

SELECTIV = 0.3319 * ABILITY + -0.0332 * ACHIEVE + 0.1439 * DEG_ASP + 1.0000 E2
Std Err 0.0166 B15 0.0176 B25 0.0171 B35
t Value 19.9399 -1.8856 8.4363

INCOME = 0.0668 * HI_DEG + 0.2170 * SELECTIV + 1.0000 E3
Std Err 0.0175 B46 0.0171 B56
t Value 3.8150 12.6708

Standardized Results for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value

Error E1 VARE1 0.92906 0.00890 104.40535

E2 VARE2 0.85802 0.01163 73.79955

E3 VARE3 0.94617 0.00788 120.04049

Observed ABILITY VARV1 1.00000

ACHIEVE VARV2 1.00000

DEG_ASP VARV3 1.00000

Standardized Results for Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard
Error t Value

ABILITY ACHIEVE COV_12 0.28000 0.01657 16.89684

ABILITY DEG_ASP COV_13 0.19000 0.01733 10.96255

ACHIEVE DEG_ASP COV_23 0.21000 0.01719 12.21791
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The standardized partial regression coefficients, corresponding standard errors, and 
significance tests are presented in the Standardized Results for Linear Equations sec-
tion. The standardized partial regression coefficient associated with regressing college 
selectivity on ability indicates that as academic ability increases by 1 standard devia-
tion, college selectivity is estimated to increase by .33 standard deviations, controlling 
for drive to achieve and degree aspirations. Standard errors are also computed for 
the standardized estimates (.0166). The standardized estimate (.3319) is divided by 
its respective standard error (.0166), which results in a t test (19.9399). This t test 
indicates a statistically significant standardized coefficient because it is greater than 
1.96. The standardized partial regression coefficient associated with regressing college 
selectivity on drive to achieve indicates that as drive to achieve increases by 1 standard 
deviation, college selectivity is estimated to decrease by .03 standard deviations, hold-
ing all else constant. According to the t test, this estimate is not statistically significant 
(−1.89 < −1.96). The remaining standardized direct effects are statistically significant.

The variance estimates and the covariances are also presented in Table 16.14 in the 
Standardized Results for Estimates for Variances of Exogenous Variables and Standard-
ized Results for Covariances Among Exogenous Variables sections, respectively. The 
standardized error variances associated with highest degree earned (E1), selectivity (E2), 
and income (E3) are significantly different from zero as seen from their associated t 
statistics, which are greater than 1.96. These standardized estimates indicate the propor-
tion of unexplained variance in highest degree earned, selectivity, and income. That is, 
approximately 93% of the variance in highest degree earned is unexplained by the model. 
Likewise, approximately 86% of the variance in college selectivity is unexplained and 
approximately 95% of the variance in income is unexplained. Subtracting the standard-
ized variance estimates from a value of one results in the R square value of .07 for highest 
degree earned, .14 for college selectivity, and .05 for income. These results match those 
in Table 16.12. The correlations (Standardized Results for Covariances Among Exoge-
nous Variables) among all three exogenous variables (i.e., ability, drive to achieve, and 
degree aspirations) range from .19 to .28 and are all statistically significant.

The standardized results for the total effects, direct effects, and the indirect effects 
are presented in Table 16.15. These tables mimic those for the unstandardized total, 
direct, and indirect effects tables presented in Table 16.13. The difference is that these 
results are computed using the standardized results as illustrated in Table 16.14. For 
instance, using values from the Standardized Direct Effects section in Table 16.14, the 
specific indirect effect from degree aspirations to income via highest degree (.1954 
× .0668 = .0131) earned and the specific indirect effect from degree aspirations to 
income via college selectivity (.1439 ×.2170 = .0312) sum to equal the total indi-
rect effect from degree aspirations to income (.0443), which is statistically significant 
(see the Standardized Indirect Effects section in Table 16.14). The total indirect effect 
from ability to income is also statistically significant whereas the total indirect effect 
from drive to achieve to income is not statistically significant. The joint statistical 
significance method indicates that the specific indirect effects from ability to income 
via highest degree earned and via college selectivity are statistically significant; the 



 Table 16.15: Standardized Total, Direct, and Indirect Effects From PROC CALIS for the 
Mueller Study

Standardized Total Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0 0.0894
0.0182
4.9186
<.0001

0.0839
0.0183
4.5987
<.0001

0.1954
0.0176

11.1109
<.0001

INCOME 0.0668
0.0175
3.8150
0.000136

0.2170
0.0171

12.6708
<.0001

0.0780
0.006996

11.1512
<.0001

-0.001592
0.004327

-0.3679
0.7130

0.0443
0.005615
7.8869
<.0001

SELECTIV 0 0 0.3319
0.0166

19.9399
<.0001

-0.0332
0.0176

-1.8856
0.0594

0.1439
0.0171
8.4363
<.0001

Standardized Direct Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0 0.0894
0.0182
4.9186
<.0001

0.0839
0.0183
4.5987
<.0001

0.1954
0.0176

11.1109
<.0001

INCOME 0.0668
0.0175
3.8150
0.000136

0.2170
0.0171

12.6708
<.0001

0 0 0

SELECTIV 0 0 0.3319
0.0166

19.9399
<.0001

-0.0332
0.0176

-1.8856
0.0594

0.1439
0.0171
8.4363
<.0001

Standardized Indirect Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0 0 0 0

INCOME 0 0  0.0780
 0.006996
11.1512
 <.0001

-0.001592
0.004327

-0.3679
  0.7130

0.0443
0.005615
7.8869
<.0001

SELECTIV 0 0  0 0 0
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specific indirect effects from degree aspirations to income via highest degree earned 
and via college selectivity are statistically significant; and the specific indirect effect 
from drive to achieve to income via highest degree earned is statistically significant. 
The specific indirect effect from drive to achieve to income via college selectivity is 
not statistically significant because the direct path from drive to achieve to college 
selectivity is not statistically significant.

16.7.5 Analysis Results: Model Modification

Output concerning model modification is subsequently printed in SAS. For instance, 
the Wald test associated with this example observed variable path model is presented 
in Table 16.16.

Remember, the Wald test indicates which parameter may be eliminated (i.e., not esti-
mated or set equal to zero) in the model without increasing the chi-square test of model 
fit statistic significantly. SAS provides a multivariate (cumulative) test and a univariate 
(incremental) test. The multivariate test indicates the cumulative increase in chi-square 
when dropping the set of suggested parameters from the model whereas the univariate 
test indicates the increase in chi-square when dropping one parameter at a time. In this 
example, the Wald test indicates that parameter B25 may be dropped from the model, 
which would increase the chi-square test of model fit by 3.55 points, which is not a 
significant increase as indicated in the PR > ChiSq column (i.e., p > .05). The B25 
parameter is associated with the direct effect of drive to achieve on selectivity, which 
is not statistically significant in the model (see Table 16.12).

The results for the Lagrange Multiplier [LM; also called modification indices (MI)] 
tests are presented subsequently in Table 16.17.

 Table 16.16: Wald Test From PROC CALIS for the Mueller Study

Stepwise Multivariate Wald Test

Parm

Cumulative Statistics Univariate Increment

Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq

B25 3.55247 1 0.0595 3.55247 0.0595

 Table 16.17: LM Tests From PROC CALIS for the Mueller Study

Rank Order of the 4 Largest LM Stat for Paths from Endogenous Variables

To From LM Stat Pr > ChiSq
Parm

Change

HI_DEG SELECTIV 57.83259 <.0001 0.05336

SELECTIV HI_DEG 57.83259 <.0001 0.35042

HI_DEG INCOME 6.49345 0.0108 0.06971

SELECTIV INCOME 1.83862 0.1751 0.08316

(Continued )
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Rank Order of the 7 Largest LM Stat for Paths with New Endogenous Variables

To From LM Stat Pr > ChiSq
Parm

Change

ABILITY ACHIEVE 57.83259 <.0001 6.11099

DEG_ASP ACHIEVE 57.83259 <.0001 3.18465

ACHIEVE DEG_ASP 57.83259 <.0001 10.08094

ABILITY DEG_ASP 57.83259 <.0001 -3.18231

ACHIEVE INCOME 21.79302 <.0001 0.04497

ABILITY INCOME 3.72997 0.0534 -0.01860

DEG_ASP INCOME 1.25843 0.2619 0.01356

Rank Order of the 3 Largest LM Stat for Error Variances and Covariances

Var1 Var2 LM Stat Pr > ChiSq
Parm

Change

E2 E1 57.83259 <.0001 0.15500

E3 E1 8.26566 0.0040 -0.17903

E2 E3 0.0002707 0.9869 0.00181

Rank Order of the 3 Largest LM Stat for Paths from Exogenous Variables

To From LM Stat Pr > ChiSq
Parm

Change

INCOME ACHIEVE 21.88610 <.0001 0.15139

INCOME DEG_ASP 3.52476 0.0605 0.05220

INCOME ABILITY 0.12944 0.7190 -0.01305

 Table 16.17: Continued

Remember, LM tests indicate which parameters, if added and freely estimated in the 
model, would result in a significant decrease in the chi-square test of model fit. The 
“Largest LM Stat for Paths from Endogenous Variables” is presented first. Thus, these 
indicate paths that could be estimated that originate from and terminate to endogenous 
or dependent variables. This table suggests that either the direct effect from college 
selectivity to highest degree earned or the direct effect from highest degree earned to 
college selectivity would decrease the chi-square test statistic by approximately 57.83 
points, which is a significant reduction in chi-square ( p < .05). The “Parm Change” is 
the expected parameter change (EPC), which is the estimated value of the parameter 
if it were added and estimated in the model. The direct effect from college selectivity 
to highest degree earned would result in an estimated partial regression coefficient of 

Note: There is no parameter to free in the default LM tests for the covariances of exogenous variables. Rank-
ing is not displayed.
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approximately .05 whereas the direct effect from highest degree earned to college selec-
tivity would result in an estimated partial regression coefficient of approximately .35.

The “Rank Order of the 3 Largest LM Stat for Paths from Exogenous Variables” are 
displayed next, which indicate paths that could be estimated that originate from exog-
enous or independent variables. Consequently, adding the path from drive to achieve 
to income in the model (estimated to be .15 according to the EPC) would decrease the 
chi-square statistic by approximately 21.89 points ( p < .05). Adding the path from 
degree aspirations to income (estimated to be .05) would decrease the chi-square sta-
tistic by approximately 3.52 points ( p > .05) and adding the path from ability to income 
(estimated to be −.01) would decrease the chi-square by approximately .13 point (p > 
.05). Thus, adding drive to achieve to income would result in a statistically significant 
improvement in fit whereas adding either of the other two suggested paths would not 
significantly improve model fit in terms of the chi-square statistic.

The “Rank Order of the 7 Largest LM Stat for Paths with New Endogenous Variables” 
are subsequently displayed in the output. These indicate which paths may be estimated 
that originate from endogenous variables and terminate with exogenous variables in 
the model. The first four paths listed would reduce the chi-square statistic similarly 
(by approximately 58 points; p < .05) and involve estimating direct effects among 
the three exogenous variables (ability, drive to achieve, and degree aspirations). The 
fifth path listed would reduce the chi-square by approximately 22 points ( p < .05) and 
involves adding a direct effect from income to drive to achieve. The remaining two 
paths involve direct effects from income to ability and from income to degree aspi-
rations, but these would not result in a significant reduction in the chi-square statistic 
( ps > .05).

The “Rank Order of the 3 Largest LM Stat for Error Variances and Covariances” are 
also printed in the output. These suggest which error covariances may be estimated 
to help improve model fit. For instance, adding the covariance between the error 
associated with highest degree earned (E1) and the error associated with college 
selectivity (E2) would result in a decrease in chi-square of approximately 58 points 
( p < .05). Adding the covariance between the errors associated with highest degree 
earned (E1) and income (E3) would decrease the chi-square by approximately 8 
points ( p < .05). Adding the covariance between the errors associated with college 
selectivity (E2) and income (E3) would not reduce the chi-square significantly (by 
.0003 points; p > .05). Covariances among errors associated with two variables indi-
cate that the two respective variables systematically covary for reasons above and 
beyond those hypothesized to explain the relationship between the two variables in 
the model.

16.7.6 Model Respecification

Given that the model fit of this model was not adequate, the LM tests were consulted 
to help improve fit. Of the largest LM tests, the suggested direct effect from college 
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selectivity to highest degree earned made theoretical sense in that the less selective the 
college is, the less likely one would obtain a higher degree at the institution. Along 
similar lines, the more selective the college is, the more likely one would obtain a 
higher degree at the institution. This direct effect was added to the model and freely 
estimated. Model fit improved with the addition of this direct effect in the respecified 
model. The model chi-square is still statistically significant, χ2(3) = 25.98, p < .05, 
which indicates that the test of overall model fit is significant. The SRMR (.02), the 
RMSEA [.05 (90% CI: .03, .07) with p > .05], the CFI (.98), and the NNFI/TLI (.91) 
all suggest good model fit. The path from college selectivity to highest degree earned 
is statistically significant. The standardized results suggested that as college selectivity 
increased by 1 standard deviation, highest degree was estimated to increase by .14 
standard deviations, holding all else constant. It is important to note that the endoge-
nous variables included in this model are coded on ordinal scales. For example, high-
est degree earned ranged from 1 (high school diploma or equivalent) to 7 (advanced 
professional); selectivity (average SAT score) ranged from 1 (less than 775) to 9 (1300 
or greater); and current income ranged from 1 (none) to 10 ($40,000 or greater). As 
previously discussed, nonnormality of the endogenous variables may result in inaccu-
rate chi-square tests of model fit and standard errors. As such, robust estimators that 
provide scaled chi-square statistics and standard errors would be recommended in this 
situation. Because the raw data were not readily available, however, these variables 
were treated as interval in the demonstration.

The Wald test still suggested dropping the direct effect from drive to achieve to college 
selectivity. In addition, adding the path from drive to achieve to income in the model 
would result in the largest statistically significant decrease in the chi-square statistic 
according to the LM tests. Adding this direct effect would make theoretical sense in 
that stronger drives to achieve could result in a person making higher income subse-
quently in life. Consequently, this direct path was added to the model and was freely 
estimated in a respecified model.

Model fit also improved with the addition of this direct effect in the respecified model. 
The model chi-square is not statistically significant as it was before, χ2(2) = 4.07, p > 
.05. The SRMR (.01), the RMSEA [.02 (90% CI: .00, .04) with p > .05], the CFI (1.00), 
and the NNFI/TLI (.99) all suggest good model fit. The path from drive to achieve to 
income is statistically significant and indicates that as drive to achieve increases by 1 
standard deviation, current income is estimated to increase by .08 standard deviations, 
controlling for everything else. Again, the Wald test still indicated that the direct effect 
from drive to achieve to selectivity could be dropped without significantly increasing 
the model chi-square statistic. Accordingly, this path was dropped from the respecified 
model. This respecified model fit the data well [χ2(3) = 7.62, p > .05; SRMR = .01; 
RMSEA = .02 (90% CI: .00, .04) with p > .05; CFI = 1.00; and NNFI/TLI = .98].

16.7.7 Results for the Final Model

The abbreviated SAS output for this final model is presented in Appendix 16.1. When 
reporting the results for this model, the model fit information could be summarized 
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similarly to that in Table 16.18 and the effects decomposition table would look 
similar to that shown in Table 16.19. The final model is illustrated pictorially in 
Figure 16.10.

It must be noted that there is some rounding error involved with some of the values 
presented in Table 16.19 due to hand calculating the specific indirect effects using 
the values in the output for direct effects. Nonetheless, the values are fairly close to 
those reported in the SAS output (see Appendix 16.1). In Figure 16.10, the standard-
ized results are reported with asterisks indicating statistical significance. When inter-
preting results in SEM, some readers would like to see the corresponding standard 
errors associated with the parameter estimates. These can easily be incorporated into 
figures in parentheses next to their respective parameter estimates or they could be 
presented in table form. Also, notice that the error variance estimates are presented 
in Figure 16.10. An alternative to presenting the findings this way could be to report 
the R square associated with each of the endogenous variables either in the figure 
illustrating the model or they could be described in the results section of a paper. 
Another alternative is to include the path value from the error to the endogenous 
variable in the figure. These paths are calculated by taking the square root of the 
error variance estimate. For instance, the direct effect from E1 to highest degree 
earned is . . .91 95=  This value would then be included as the path value from E1 
to highest degree earned to represent the direct effect of the error on highest degree 
earned. When reporting the unstandardized results in a figure, the unstandardized 
direct effects, covariances, and error variances would simply replace the standardized 
results in Figure 16.10.

 Table 16.18: Model Fit Information for Observed Variable Path Model Example From 
Mueller (1988)

Model χ2 df SRMR
RMSEA (90% CI)  
p-value CFI NNFI/TLI

Original Model 84.36* 4 .03 .08
(.07, .10)  
p < .05

.94 .79

Respecified Model – Added
Selectivity → Highest Degree

25.98* 3 .02 .05
(.03, .07)
p > .05

.98 .91

Respecified Model – Added
Achieve → Income

4.07 2 .01 .02
(.00, .04)
p > .05

1.00 .99

Respecified Model – Dropped
Achieve → Selectivity

7.62 3 .01 .02
(.00, .04)
p > .05

1.00 .98

Note: *p < .05.



 Table 16.19: Standardized Direct, Indirect, and Total Effects for Observed Variable Path 
Model Example From Mueller (1988)

Association Direct Indirect Total

Ability, Highest Degree Earned
Ability → Selectivity → Highest Degree

.0421* .0460* .0881

Ability, College Selectivity .3237* – .3237

Ability, Current Income
Ability → Highest Degree → Income
Ability → Selectivity → Income

– TI = .0707*
.0023*
.0684*

.0707

Achieve, Highest Degree Earned .0886* – .0886

Achieve, College Selectivity – – –
Achieve, Current Income

Achieve → Highest Degree → Income
.0826* .0049* .0875

Degree Aspirations, Highest Degree Earned
Degree Aspirations → Selectivity → Highest Degree

.1749* .0197* .1946

Degree Aspirations, College Selectivity .1385* – .1385

Degree Aspirations, Current Income
Degree Aspirations → Highest Degree → Income
Degree Aspirations → Selectivity → Income

– TI = .0390*
.0097*
.0293*

.0390

Highest Degree Earned, Current Income .0553* – .0553

Selectivity, Highest Degree Earned .1422* – .1422
Selectivity, Income

Selectivity → Highest Degree → Income
.2114* .0079* .2193

Note: TI = Total indirect. *p < .05.

 Figure 16.10 Results for the final model from the Mueller (1988) study with standardized estimates.
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16.8 CONFIRMATORY FACTOR ANALYSIS

The path models previously discussed have modeled the relationships among varia-
bles that are observed or directly measured. Frequently in the social and behavioral 
sciences, the variables of interest are unobservable or represent latent constructs that 
cannot be directly measured (e.g., motivation, self-efficacy, depression, aptitude). 
Confirmatory factor analysis (CFA) models, also called measurement models, allow 
researchers to test the construct validity of latent variables of interest. In contrast to 
exploratory factor analysis (EFA), CFA models are a priori, meaning that the number 
of factors in the model must be specified by the user in addition to which items will 
load on which factors, and whether the factors will covary with one another. CFA 
is commonly used during the scale development process following the item devel-
opment and initial administration process, which is accompanied by an EFA that 
explores the possible factor structure underlying the responses to the items. Thus, 
after an EFA or multiple EFAs (which is recommended by some), a subsequent sam-
ple is administered the items retained during the EFA and a CFA may be conducted 
on the newly collected data to provide further support of the factor structure uncov-
ered by the EFA.

16.8.1 Identification in CFA

Figure 16.11 illustrates a one-factor CFA model in which the latent factor, F1, under-
lies four measured or indicator variables (Y1–Y4).

 Figure 16.11 One-factor confirmatory factor analysis model with four indicator variables.
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In this model, the factor is an independent or exogenous variable and has direct effects 
on each of the four measured indicator variables. Paths a through d are called factor 
loadings and can be interpreted similarly to traditional regression coefficients given 
that it is a one-factor model. For instance, for every 1-unit increase in F1, each of the 
indicators (observed variables) is estimated to change by their factor loading value 
and direction as denoted by their respective sign (assuming the factor loadings are in 
unstandardized units). Thus, CFA models hypothesize that the factor directly affects 
the responses to (or scores on) each of the indicator variables. Because of this, it is 
inherent in CFA models that the factor is the reason that its respective indicators covary. 
Indicator variables for a factor are endogenous variables in CFA models and, thus, they 
will have error variances associated with them (E1–E4 in Figure 16.11). Accordingly, 
the factor will explain variability in the item responses (or scores) as well as also will 
the unobservable construct of error.

The method of determining whether or not a CFA model is identified is similar to that 
used for determining the identification of path models, with some slight distinctions. 
Nonredundant observations are computed using the same formula with CFA mod-
els. For the model presented in Figure 16.11, there are 10 nonredundant observations 
( p* = 10) in the sample covariance matrix with p = 4 observed variables:

p
p p

* =
+( )

=
+( )

=
1

2
4 4 1

2
10.

Although a factor structure will be imposed on the data, we are still working with 
observed variables as the indicators for the factor. Again, the sample covariance matrix 
is what is analyzed in SEM analyses, including CFA. As indicated before, the model 
parameters that must be estimated include the variances and covariances of exogenous 
variables and direct paths to endogenous variables. For the model in Figure 16.11, 
then, it appears that 9 parameters (q = 9) must be estimated, including the four error 
variances associated with the observed indicators Y1–Y4, the variance of the exoge-
nous factor F1, and the four direct paths from the factor to each of the observed indica-
tors. Subtracting the nine parameters to (9) estimate from the number of nonredundant 
observations (10) results in a model with dfT = 1, which signifies an over-identified 
model.

Because the exogenous factor is unmeasured (or latent), however, its scale of meas-
urement is unknown, which would actually prohibit the estimation of all of the model 
parameters in the model, even though our calculation indicates that it is over-identified. 
To set the scale of the factor, two options are available. One option is to fix the factor 
variance to a specific value, which is typically a value of one. When using this option, 
the factor is standardized, but the observed variable indicators are not standardized. 
The second option is to scale the factor via one of the indicator variable’s variance. 
This is done by fixing one of the direct paths from the factor to an indicator variable 
(a factor loading) to a specific value, which again is typically a value of 1.0. Indicators 
for which loadings are set equal to 1.0 to scale the factor are referred to as reference 



691chaptEr 16       

indicators. You may have noticed in most of the figures previously presented that val-
ues of 1.0 are inserted in the direct paths from the errors to their respective endogenous 
variable. Because errors are latent, their scale of measurement is also unknown. Thus, 
they are scaled by setting the direct paths to their corresponding endogenous variable 
to values of 1.0. This is done by default in SEM software and does not need to be 
specified by the user.

For the model in Figure 16.11, then, setting the latent factor variance to a value of 
one will result in eight model parameters (q = 8) that must be estimated, resulting 
in an over-identified model with dfT = 2. It must be noted that a single-factor CFA 
model with three indicator variables is a just-identified model. Although you be able 
to get by with fewer than three indicators per factor in a multiple-factor solution, 
three indicators per factor are recommended to avoid identification problems. Read-
ers interested in more detail concerning CFA models are encouraged to read Brown’s 
(2015) book.

Another important aside deals with the selection of the reference indicator. While the 
variable selected to serve as the reference indicator is generally arbitrary in the context 
of CFA models, it has serious implications for other techniques in the SEM arena, 
particularly in multiple-group modeling (Cheung & Rensvold, 1999; Yoon & Millsap, 
2007). If a reference indicator is used for CFA models, it is best to pick one that is at 
least positively correlated with the factor if set to a value of +1.0. Otherwise, estima-
tion problems may be encountered because you are fixing its relationship with the fac-
tor (and, in turn, its relationship with the other variables loading on the same factor) to 
a relationship that contradicts the original data. Readers interested in more discussion 
of reference indicator selection methods in SEM when used in other techniques may 
refer to Hancock, Stapleton, and Arnold-Berkovits (2009).

The standardized solution is unaffected by the scaling of the factor. Standardized load-
ings represent the correlations between items and their respective factor and may be 
interpreted similarly to traditional standardized regression coefficients given that it is 
a one-factor model. For instance, as the factor increases by 1 standard deviation, the 
indicator is estimated to change by their standardized factor loading value in standard 
deviation units in the direction of that signified by its corresponding sign.

16.9 CFA WITH REACTIONS-TO-TESTS DATA

The data used in Chapter 9 for the EFA illustration will be used to demonstrate a 
CFA conducted in SAS. As a reminder, these data were taken from the Reactions to 
Tests (RTT) scale developed by Sarason (1984) to measure four factors of test anxi-
ety. These four factors include Tension, Worry, Test-irrelevant Thinking, and Bodily 
Symptoms. Three items were used to measure each of the four underlying factors. 
Thus, a four-factor, correlated structure on which their three respective items loaded 
was analyzed in SAS. This factor model is represented in Figure 16.12.
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 Figure 16.12 CFA model for the reactions to tests scale developed by Sarason (1984).

There are 78 non-redundant observations in the sample covariance matrix associated 
with the model in Figure 16.12:
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To set the scale of the four factors, the factor variances will be set equal to values of 
1.0 and, thus, will not require estimation. There are 12 error variances, 12 factor load-
ings, and six factor covariances to estimate, resulting in 30 total parameters. This is an 
over-identified model with dfT = 48.

16.9.1 SAS Code for RTT CFA

The SAS code presented in Table 16.20 creates a covariance matrix in a temporary 
SAS data set so that it can be used during the analysis. Although the covariance matrix 
is being used in this example, the raw data may also be used in PROC CALIS when 
analyzing CFA models.

In the temporary data set called ANXIETY, a covariance matrix (TYPE=COV) is being 
created. The INFILE CARDS statement allows you to use the file reference CARDS, 
which allows you to use options associated with the INFILE statement (DATALINES 
could also be used in place of CARDS). Specifically, this is used so that we may use the 
MISSOVER option with the INFILE statement. MISSOVER prevents SAS from going 
to a new line of data when inputting the instream data if any of the values are missing. 
This is important since we are using the lower triangle of the covariance matrix and, thus, 
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it is not a complete symmetric matrix. The INPUT statement assigns variable names to 
the columns in the data file work.ANXIETY. TYPE is the variable type (i.e., COV for 
covariance value) and NAME is the name of the observed variables. The variable names 
are then written to be input in that particular order, which follows the arrangement of the 
covariance matrix. Following the CARDS statement is the information necessary to cre-
ate the covariance matrix in SAS (DATALINES may also be used in place of CARDS). 
Following that is the standard form of entering the lower triangle of the covariance 
matrix. This should align directly with the corresponding relationships for each of the 
variables. The entire symmetric covariance matrix may also be entered in the SAS code 
instead of the upper or lower triangle to create the data set with a covariance matrix.

The SAS code to analyze the four-factor correlated CFA model in Figure 16.12 using 
PROC CALIS is presented in Table 16.21.

 Table 16.21: SAS Code to Analyze the CFA Model for the RTT Scale in Figure 16.13 Using 
PROC CALIS

PROC CALIS DATA=ANXIETY COVARIANCE RESIDUAL MODIFICATION 
NOBS=318;

LINEQS
TEN1   = L11 F1 + E1,
TEN2   = L21 F1 + E2,
TEN3   = L31 F1 + E3,
WOR1   = L12 F2 + E4,
WOR2   = L22 F2 + E5,
WOR3   = L32 F2 + E6,
IRTHK1 = L13 F3 + E7,
IRTHK2 = L23 F3 + E8,
IRTHK3 = L33 F3 + E9,
BODY1  = L14 F4 + E10,
BODY2  = L24 F4 + E11,
BODY3  = L34 F4 + E12;

VARIANCE
E1 – E12 = VARE1-VARE12,
F1 = 1.0,
F2 = 1.0,
F3 = 1.0,
F4 = 1.0;

COV
F1 F2 = COV12,
F1 F3 = COV13,
F1 F4 = COV14,
F2 F3 = COV23,
F2 F4 = COV24,
F3 F4 = COV34;

RUN;
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PROC CALIS invokes the CALIS procedure. The options following the PROC 
CALIS statement do the following: DATA=ANXIETY indicates the input data set; 
COVARIANCE requests that the covariance matrix be used when estimating parame-
ters; RESIDUAL requests that the residual matrices (unstandardized and standardized) 
be included in the output; MODIFICATION requests modification indices (MI) or 
Lagrange Multiplier (LM) tests to be provided in the output; and NOBS indicates the 
number of participants on which the data are based (in this case, 318 participants com-
pleted the RTT scale).

The linear equations relating the variables in the model are specified in the LINEQS 
statement. As in the observed variable path analysis example, the form specifies that 
the endogenous variable is a function of the variables directly affecting it as well as 
error. Thus, in the following equation:

TEN1 = L11 F1 + E1

the variable tension1 is a function of the direct effect of F1 (which is associated with 
the factor loading L11) and the direct effect of error (E1). You can see that all twelve 
items are a function of their respective factor (labeled F1 through F4) and error (labe-
led E1 through E12). The assignment of parameter labels in this example adopts a 
convention used in LISREL in which lambdas (L) are factor loadings and the numbers 
refer to the item number on its respective factor (e.g., 24 indicates it is the second indi-
cator variable for factor 4). Again, these equations are separated by commas.

The VARIANCE statement indicates which variance parameters to estimate in the 
hypothesized model. These include variances of exogenous variables (including error 
variances and factor variance). Thus, 12 error variances will be estimated (E1 – 
E12), which will be labeled as VARE1–VARE12, respectively, in the output. The four 
factors must be scaled for identification purposes. In this example, all four of the factor 
variances have been set to a value of one (e.g., F1 = 1.0). It must be noted that 
these variances will be estimated by default if not included in the CALIS procedure 
code. Thus, if the statements setting the factor variances equal to 1.0 are excluded, one 
reference indicator per factor should be designated. This can be done, for example, as 
follows for F1 by fixing the loading of tension1 on F1 equal to a value of 1.0:

TEN1 = 1 F1 + E1

Thus, every factor would require this specification with one of their respective indicators.

The COV statement indicates which variables you hypothesize to covary in the model. 
In this model, covariances between all of the exogenous factors were hypothesized. 
For instance, the covariance between tension (F1) and worry (F2) will be estimated 
and labeled as COV_12. The default is to estimate covariances among all exogenous 
latent variables (with the exception of errors and disturbances) in the CALIS proce-
dure. Consequently, the covariances among all four factors would be estimated by 
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default if not included in the code. If you hypothesize no covariance among the exog-
enous latent variables, you can set them equal to zero. For example, the following 
statement would set the covariance between F1 (tension) and F2 (worry) equal to zero 
and, hence, would not be freely estimated in the model:

F1 F2 = 0

Again, these statements are separated by commas.

16.9.2 Analysis Results: Model Fit

The Fit Summary table is presented in Tables 16.22 (top half) and 16.23 (bottom half ).

Using the cutoff values previously discussed, the fit indices (with the exception of the 
model chi-square statistic) indicate that the four-factor correlated model fits the data 
well [χ2(48) = 88.40, p < .05; SRMR = .04; RMSEA = .05 (90% CI: .03, .07) with 
p > .05; CFI = .98; and NNFI/TLI = .97]. The unstandardized factor loadings (with 

 Table 16.22: Top Half of Fit Summary Table From PROC CALIS for RTT CFA Example

Fit Summary

Modeling Info Number of Observations 318

Number of Variables 12

Number of Moments 78

Number of Parameters 30

Number of Active Constraints 0

Baseline Model Function Value 5.5711

Baseline Model Chi-Square 1766.0539

Baseline Model Chi-Square DF 66

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.2789

Chi-Square 88.3955

Chi-Square DF 48

Pr > Chi-Square 0.0003

Z-Test of Wilson & Hilferty 3.3856

Hoelter Critical N 234

Root Mean Square Residual (RMR) 0.0256

Standardized RMR (SRMR) 0.0364

Goodness of Fit Index (GFI) 0.9565
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 Table 16.23: Bottom Half of Fit Summary Table From PROC CALIS for RTT CFA Example

Parsimony Index Adjusted GFI (AGFI) 0.9294

Parsimonious GFI 0.6957

RMSEA Estimate 0.0515

RMSEA Lower 90% Confidence Limit 0.0342

RMSEA Upper 90% Confidence Limit 0.0682

Probability of Close Fit 0.4194

ECVI Estimate 0.4762

ECVI Lower 90% Confidence Limit 0.4045

ECVI Upper 90% Confidence Limit 0.5738

Akaike Information Criterion 148.3955

Bozdogan CAIC 291.2571

Schwarz Bayesian Criterion 261.2571

McDonald Centrality 0.9385

Incremental Index Bentler Comparative Fit Index 0.9762

Bentler-Bonett NFI 0.9499

Bentler-Bonett Non-normed Index 0.9673

Bollen Normed Index Rho1 0.9312

Bollen Non-normed Index Delta2 0.9765

James et al. Parsimonious NFI 0.6909

corresponding standard errors and t test statistics) are presented in Tables 16.24 (for 
Tension and Worry factors) and 16.25 (for Test-Irrelevant Thinking and Bodily Symp-
toms factors).

16.9.3 Analysis Results: Parameter Estimates

All of the unstandardized factor loadings are statistically significant (t statistics are 
greater than |1.96|). The variance estimates of the error variances associated with each 
of the indicators (though not presented) indicate that a significant amount of variance 
is unexplained by their respective factor. The Covariances Among Exogenous Varia-
bles and the Squared Multiple Correlations are shown in Table 16.26.

As demonstrated by the t statistics for the covariances among the exogenous factors, 
all covariances among the factors are statistically significant, with the exception of the 
covariance between F1 (Tension) and F3 (Test-Irrelevant Thinking). Because all of 
the factor variances were set to equal 1.0, these covariances are actually the correla-
tions among factors. The R square values suggested that the explained variance in the 
indicators ranged from 36% to 74%. Thus, the factors explained at least 36% of the 
variance in their respective indicator.



 Table 16.25: Unstandardized Factor Loadings for 
RTT CFA Example (Test-Irrelevant Thinking and Bodily 
Symptoms Factors)

IRTHK1 = 0.6445* F3 + 1.0000 E7
Std Err 0.0417 L13
t Value 15.4664

IRTHK2 = 0.6688* F3 + 1.0000 E8
Std Err 0.0416 L23
t Value 16.0851

IRTHK3 = 0.6705* F3 + 1.0000 E9
Std Err 0.0379 L33
t Value 17.6880

 Table 16.24: Unstandardized Factor Loadings for 
RTT CFA Example (Tension and Worry Factor Loadings)

Linear Equations

TEN1 = 0.6881 * F1 + 1.0000 E1
Std Err 0.0441 L11
t Value 15.5878

TEN2 = 0.7649 * F1 + 1.0000 E2
Std Err 0.0478 L21
t Value 16.0087

TEN3 = 0.8408 * F1 + 1.0000 E3
Std Err 0.0475 L31
t Value 17.6955

WOR1 = 0.6449 * F2 + 1.0000 E4
Std Err 0.0398 L12
t Value 16.1838

WOR2 = 0.6649 * F2 + 1.0000 E5
Std Err 0.0458 L22
t Value 14.5134

WOR3 = 0.6698 * F2 + 1.0000 E6
Std Err 0.0411 L32
t Value 16.2961



BODY1 = 0.3837* F4 + 1.0000 E10
Std Err 0.0365 L14
t Value 10.5115

BODY2 = 0.5443* F4 + 1.0000 E11
Std Err 0.0472 L24
t Value 11.5246

BODY3 = 0.5585* F4 + 1.0000 E12
Std Err 0.0420 L34
t Value 13.2939

 Table 16.26: Covariances Among Factors and Squared Multiple Correlations of Indica-
tors in RRT CFA Example

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard
Error t Value

F1 F2 COV12 0.55015 0.04996 11.01069

F1 F3 COV13 0.11423 0.06476 1.76399

F1 F4 COV14 0.77837 0.04156 18.72978

F2 F3 COV23 0.49176 0.05298 9.28262

F2 F4 COV24 0.59452 0.05458 10.89274

F3 F4 COV34 0.28632 0.06742 4.24701

Squared Multiple Correlations

Variable Error Variance Total Variance R-Square

TEN1 0.30857 0.78210 0.6055

TEN2 0.34486 0.92990 0.6291

TEN3 0.26822 0.97510 0.7249

WOR1 0.21936 0.63520 0.6547

WOR2 0.35224 0.79430 0.5565

WOR3 0.22970 0.67830 0.6614

IRTHK1 0.27009 0.68550 0.6060

IRTHK2 0.24793 0.69520 0.6434

IRTHK3 0.15688 0.60650 0.7413

BODY1 0.25957 0.40680 0.3619

BODY2 0.40523 0.70150 0.4223

BODY3 0.26669 0.57860 0.5391
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The standardized factor loadings (with corresponding standard errors and t test sta-
tistics) are presented in Tables 16.27 (for Tension and Worry factors) and 16.28 (for 
Test-Irrelevant Thinking and Bodily Symptoms factors).

As seen with the unstandardized factor loadings, all of the standardized factor loadings 
are statistically significant (t statistics are greater than |1.96|). Further, all of the stand-
ardized factor loading values are .60 or greater. The standardized variance estimates 
for the exogenous variables (including the error variances associated with each of the 

 Table 16.27: Standardized Factor Loadings for RTT 
CFA Example (Tension and Worry Factor Loadings)

Standardized Results for Linear Equations

TEN1 = 0.7781 * F1 + 1.0000 E1
Std Err 0.0280 L11
t Value 27.8027

TEN2 = 0.7932 * F1 + 1.0000 E2
Std Err 0.0270 L21
t Value 29.4269

TEN3 = 0.8514 * F1 + 1.0000 E3
Std Err 0.0233 L31
t Value 36.5504

WOR1 = 0.8091 * F2 + 1.0000 E4
Std Err 0.0275 L12
t Value 29.4711

WOR2 = 0.7460 * F2 + 1.0000 E5
Std Err 0.0314 L22
t Value 23.7608

WOR3 = 0.8132 * F2 + 1.0000 E6
Std Err 0.0272 L32
t Value 29.8801

 Table 16.28: Standardized Factor Loadings for RTT 
CFA Example (Test-Irrelevant Thinking and Bodily 
Symptoms Factors)

IRTHK1 = 0.7785 * F3 + 1.0000 E7
Std Err 0.0287 L13
t Value 27.1137
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IRTHK2 = 0.8021 * F3 + 1.0000 E8
Std Err 0.0274 L23
t Value 29.3261

IRTHK3 = 0.8610 * F3 + 1.0000 E9
Std Err 0.0244 L33
t Value 35.2893

BODY1 = 0.6016 * F4 + 1.0000 E10
Std Err 0.0445 L14
t Value 13.5328

BODY2 = 0.6499 * F4 + 1.0000 E11
Std Err 0.0418 L24
t Value 15.5613

BODY3 = 0.7342 * F4 + 1.0000 E12
Std Err 0.0376 L34
t Value 19.5101

 Table 16.29: Standardized Variances of and Covariances Among Exogenous Variables 
for RTT CFA Example

Standardized Results for Variances of Exogenous Variables

Variable 
Type Variable Parameter Estimate

Standard
Error t Value

Error E1 VARE1 0.39454 0.04355 9.05879

E2 VARE2 0.37086 0.04276 8.67297

E3 VARE3 0.27507 0.03967 6.93427

E4 VARE4 0.34534 0.04443 7.77329

E5 VARE5 0.44346 0.04685 9.46657

E6 VARE6 0.33864 0.04427 7.64981

E7 VARE7 0.39400 0.04470 8.81421

E8 VARE8 0.35662 0.04388 8.12775

E9 VARE9 0.25866 0.04202 6.15637

E10 VARE10 0.63807 0.05349 11.92876

E11 VARE11 0.57766 0.05428 10.64226

E12 VARE12 0.46092 0.05526 8.34070

Latent F1 1.00000

F2 1.00000

F3 1.00000

F4 1.00000

(Continued )
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Standardized Results for Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard
Error t Value

F1 F2 COV12 0.55015 0.04996 11.01069

F1 F3 COV13 0.11423 0.06476 1.76399

F1 F4 COV14 0.77837 0.04156 18.72978

F2 F3 COV23 0.49176 0.05298 9.28262

F2 F4 COV24 0.59452 0.05458 10.89274

F3 F4 COV34 0.28632 0.06742 4.24701

 Table 16.29: Continued

indicators) and the correlations among exogenous variables (i.e., all of the factors) are 
presented in Table 16.29.

The smallest correlation among the factors is between the Tension factor and the 
Test-Irrelevant Thinking factor, which is equal to .11 and is not statistically significant 
according to its associated t test (1.76 < 1.96). The statistically significant correlations 
among factors range from .29 to .78. You may have noticed that these correlations 
are identical to the covariances among factors presented in Table 16.26. Again, these 
values match because the factor variances were set equal to 1.0, resulting in the stand-
ardization of the factors. The standardized error variance estimates associated with 
the indicators specify the proportion of unexplained variance in each of the indicators. 
The most unexplained variance estimated (approximately 64%) is demonstrated for the 
item associated with E10, which is the first bodily symptoms item (body1). Subtracting 
these values from a value of one results in the R square values presented previously in 
Table 16.26 (e.g., 1 − .64 = .36 for the bodily symptoms1 indicator).

16.9.4 Analysis Results: Model Modification

The Wald test and LM tests were printed in the SAS output because we used the  
MODIFICATION option in PROC CALIS. The Wald test is presented in Table 16.30. 
The Wald test agrees with the output regarding the covariance between F1 (Tension) 
and F3 (Test-Irrelevant Thinking). Hence, the Wald test is suggesting that this covari-
ance (parameter COV12) can be dropped from the model without significantly increas-
ing chi-square (p > .05). If theory supports this decision, you could justify dropping 
this covariance from the model. In contrast, if theory supports this covariance between 
the two factors, it should be retained, regardless of statistical significance.

The LM tests are presented in Tables 16.31 and 16.32. The LM Tests for Paths from 
Endogenous Variables shown in Table 16.31 indicate which direct paths originating 
from endogenous variables (in this case, the indicator variables) may be added to the 
model to significantly decrease the chi-square statistic. The top three LM sugges-
tions include adding a direct path from worry3 to worry2, a direct path from worry2 
to worry3, and a direct path from worry3 to tension2. The LM Tests for Paths from 
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 Table 16.30: The Wald Test for the RTT CFA Example

Stepwise Multivariate Wald Test

Parm

Cumulative Statistics Univariate Increment

Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq

COV13 3.11166 1 0.0777 3.11166 0.0777

 Table 16.31: LM Tests for the RTT CFA Example

Rank Order of the 10 Largest LM Stat for Paths from Endogenous Variables

To From LM Stat Pr > ChiSq
Parm

Change

WOR3 WOR2 14.16120 0.0002 -0.33957

WOR2 WOR3 14.16075 0.0002 -0.52072

WOR3 TEN2 13.25134 0.0003 0.14798

WOR2 WOR1 12.99412 0.0003 0.50217

WOR1 WOR2 12.99366 0.0003 0.31273

TEN3 BODY1 12.97464 0.0003 0.25305

WOR1 TEN3 12.60477 0.0004 -0.14216

TEN2 TEN1 10.57540 0.0011 0.33976

TEN1 TEN2 10.57540 0.0011 0.30402

TEN3 BODY2 9.14647 0.0025 0.16979

Rank Order of the 10 Largest LM Stat for Paths from Exogenous Variables

To From LM Stat Pr > ChiSq
Parm

Change

TEN3 F4 18.32723 <.0001 0.45216

WOR3 F4 12.36214 0.0004 0.20495

WOR3 F1 11.94309 0.0005 0.17102

WOR1 F1 9.58317 0.0020 -0.14815

WOR1 F4 8.71089 0.0032 -0.16626

TEN1 F4 5.75662 0.0164 -0.22028

TEN2 F4 4.45498 0.0348 -0.21171

BODY3 F3 2.61711 0.1057 -0.07448

TEN1 F3 2.60138 0.1068 -0.06366

TEN2 F2 2.41395 0.1203 0.08676

Exogenous Variables suggest which direct paths from exogenous variables (in this 
case, the factors) may be added to significantly decrease the chi-square. Hence, these 
suggest the addition of cross-loadings. For instance, allowing tension3 to load on the 
Bodily Symptoms factor in addition to the Tension factor would reduce the chi-square 
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 Table 16.32: LM Tests for the RTT CFA Model Example

Rank Order of the 10 Largest LM Stat for Paths with New Endogenous Variables

To From LM Stat Pr > ChiSq
Parm

Change

F4 TEN3 18.56890 <.0001 0.63971

F2 WOR1 14.16250 0.0002 0.78963

F2 WOR3 12.99261 0.0003 -0.74913

F1 TEN3 10.57557 0.0011 -0.62440

F4 TEN2 8.58264 0.0034 -0.32532

F1 WOR1 6.50164 0.0108 -0.32712

F1 WOR3 5.40273 0.0201 0.29429

F2 TEN2 4.58009 0.0323 0.21502

F1 TEN1 4.37550 0.0365 0.29548

F4 TEN1 2.75440 0.0970 -0.18916

Note: No LM statistic in the default test set for the covariances of exogenous variables is nonsingular. Ranking 
is not displayed.

Rank Order of the 10 Largest LM Stat for Error Variances and Covariances

Var1 Var2 LM Stat Pr > ChiSq
Parm

Change

E6 E5 14.16122 0.0002 -0.11961

E5 E4 12.99369 0.0003 0.11016

E2 E1 10.57543 0.0011 0.10484

E9 E12 7.97824 0.0047 -0.04842

E3 E10 7.69945 0.0055 0.05595

E4 E3 6.54831 0.0105 -0.05123

E1 E10 5.13997 0.0234 -0.04368

E6 E2 4.99702 0.0254 0.04769

E3 E2 4.37546 0.0365 -0.08521

E3 E11 4.16317 0.0413 0.05304

by approximately 18.33 points. Other top LM suggested cross-loadings include worry3 
cross-loading both on the Bodily Symptoms factor and on the Tension factor. Again, 
theoretical justifications would need to be considered when deciding whether or not 
to allow cross-loadings. If you did want to allow tension3 to cross-load on the Bodily 
Symptoms factor, for instance, the equation in PROC CALIS would look similar to 
the following in the LINEQS section:

TEN3 = L31 F1 + L31_4 F4 + E3

in which the parameter L31_4 represents the factor loading of tension3 on the Bodily 
Functions factor (F4).
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The LM Tests for Paths with New Endogenous Variables in Table 16.32 recommend 
paths originating from endogenous to exogenous variables. For instance, the chi-square 
would decrease by approximately 18.57 points if the direct effect from tension3 to the 
Bodily Symptoms factor (F4) was added to the model. The chi-square would decrease 
by approximately 14.16 points if the direct effect from worry1 to the Worry factor (F2) 
was added to the model, representing a bidirectional relationship. The last LM tests 
in Table 16.32 are for Error Variances and Covariances. Thus, the chi-square would 
decrease by approximately 14.16 points if the covariance between the errors associated 
with worry2 (E5) and worry3 (E6) was added to the model. Similarly, the chi-square 
would decrease more than 12 points if the covariance between the errors associated 
with worry2 (E5) and worry1 (E4) was added to the model. Again, these error covari-
ances indicate the possibility that something above and beyond the explanation by the 
Worry factor (F2) is influencing the relationship between the variables. Of course, the 
choice to add any of these parameters in the model would depend upon theoretical val-
idations. If you did want to add an error covariance, for instance, between worry2 (E5) 
and worry3 (E6), it would look like the following in the COV section of PROC CALIS:

E5 E6 = COV_E56

16.9.5 Results for the Final Model

The results of CFA models, depending upon their complexity, may be presented in a 
figure or they could be tabled. For instance, the RTT CFA model could be presented 
similarly to the model illustrated in Figure 16.13.

 Figure 16.13 CFA model for the reactions to tests scale with standardized estimates.
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In this model, the standardized factor loadings are reported and the standardized paths 
from the errors to each respective indicator is presented. This could be presented dif-
ferently, for instance, by including the standardized residual variance at the top of the 
arrow from the error to its respective indicator:

Ten1

E1

0.39

or the R square associated with each indicator could instead be presented:

If you also want to report standard errors in the figures, those can easily be incorporated 
in parenthesis next to their respective parameter estimate. If the model is highly com-
plex, you may want to present the results in tables instead of in figures. Tables 16.33 
and 16.34 provide examples of how you could present these results in table form. 
Kline (2011) also presents example tables when reporting the findings from CFA in 

Tension

Ten1

R2 = 0.61

0.78*

 Table 16.33: Unstandardized Loadings, Standard Errors, Standardized Factors Loadings, 
and R Square Values for the RTT CFA Model

Item
Unstandardized 
loadings S.E.

Standardized 
loadings R square

Tension1 .69* .04 .78 .61
Tension2 .76* .05 .79 .63
Tension3 .84* .05 .85 .72
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 Table 16.34: Factor Intercorrelations for the RTT CFA Model

Factor Tension Worry
Test-Irrelevant 
Thinking Bodily Symptoms

Tension –
Worry .55* –
Test-Irrelevant 
Thinking

.11 .49* –

Bodily Symptoms .78* .59* .29* –

Note: *p < .05.

Item
Unstandardized 
loadings S.E.

Standardized 
loadings R square

Worry1 .64* .04 .81 .65
Worry2 .66* .05 .75 .56
Worry3 .67* .04 .81 .66
Test-Irrelevant Thinking1 .64* .04 .78 .61
Test-Irrelevant Thinking1 .67* .04 .80 .64
Test-Irrelevant Thinking1 .67* .04 .86 .74
Bodily Symptoms1 .38* .04 .60 .36
Bodily Sypmtoms2 .54* .05 .65 .42
Bodily Symptoms3 .56* .04 .73 .54

Note: *p < .05.

which the unstandardized measurement errors are reported with respective standard 
errors and standardized estimates.

CFA is a valuable tool that may be used to provide support for theoretically meaningful 
factor structures underlying observed scores. It can aid in the detection of the nature of 
the dimensionality of the factor structure by way of comparing nested and nonnested 
CFA models (e.g., Galassi, Schanberg, & Ware, 1992). CFA models are also the foun-
dation of latent variable path models.

16.10 LATENT VARIABLE PATH ANALYSIS

The causal links previously modeled among observed variables in observed variable 
path analysis models may also be modeled among unobserved or latent variables 
(see Figure 16.2). Latent variable path analysis allows relationships among latent 
factors, which are indicated by observed variables, to be modeled. In observed var-
iable path analysis models, the observed variables may be a measureable single 
score (e.g., GRE scores) or an aggregate of responses to items from a questionnaire 
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(e.g., total or averaged score), which may then be used to “represent” a construct 
of interest (e.g., student motivation). In observed variable path analysis models, an 
assumption is that each exogenous variable and aggregate variable (endogenous 
or exogenous) has no measurement error and, hence, has perfect reliability. If this 
assumption is not supported, which is often the case with measures used in the 
social sciences and in educational settings, the results of the observed variable path 
analysis may result in biased estimates (Bollen, 1989). Since applied researchers 
are essentially interested in examining the relationships among constructs, latent 
variable path analysis incorporates the latent or unobserved factors that underlie the 
observed variables. Consequently, latent variable path analysis counters the unde-
sirable effects associated with measurement error seen in observed variable path 
models by modeling the unobservable error that accompanies measured variables 
(as was seen in CFA models).

16.10.1  Specification and Identification of Latent Variable Path 
Models

Latent variable path models, which are also called structural models, are basically 
extensions of observed variable path models. For instance, consider the latent variable 
path model in Figure 16.14 from a study conducted by Duncan and Stoolmiller (1993) 
in which they investigated the determinants (i.e., social support and self-efficacy) of 
maintaining an exercise program across time.

 Figure 16.14 Latent variable path model for exercise behavior proposed by Duncan and 
Stoolmiller (1993).
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In this example, each factor that is modeled at both measurement occasions are indicated 
by the same three indicator variables. That is, the same three questions per factor are 
asked at the two different time points and serve as indicators for their respective factor at 
time 1 and at time 2. You should notice similarities between this model and an observed 
variable path model. The one-headed arrows represent direct effects (d through j)  
among the factors that are analogous to partial regression coefficients. For instance, the 
self-efficacy factor at time 1 is hypothesized to directly impact the self-efficacy factor at 
time 2 (path f ), which in turn is hypothesized to directly affect the exercise behavior factor 
at time 2 (path i). The two-headed arrows connecting the three factors at time 1 represent 
hypothesized covariances (a, b, and c) among these factors instead of causal relationships.

In latent variable path models, factors may be exogenous or endogenous. For example, 
all of the time 1 factors are exogenous factors that directly affect other factors at time 
2. Social support, self-efficacy, and exercise behavior at time 2 all represent endoge-
nous factors in the model because they are receiving causal inputs from other factors in 
model. As in previously discussed models, errors will be associated with the endoge-
nous factors, which in turn directly affect their respective endogenous factor. However, 
in latent variable path analysis, these errors are typically termed disturbances to make 
a distinction between unexplained variance associated with an endogenous latent vari-
able as compared to the unexplained variance associated with an endogenous observed 
variable. Disturbances are unobserved variables and are, thus, denoted with circles in 
which a “D” is contained (see Figure 16.14).

You may also notice that indirect effects are modeled at the structural level. For exam-
ple, the social support and self-efficacy factors at time 2 are modeled as mediating 
the relationships between the social support and self-efficacy factors at time 1 and the 
exercise behavior factor at time 2 via three channels (corresponding to the products hji, 
gi, and fi, respectively). Similar to the analyses of indirect effects in observed variable 
path analysis, mediational relationships among latent variables can also be tested for 
their statistical significance.

As illustrated in the model in Figure 16.14, each of the latent constructs symbolizes a 
measurement or a CFA model in which the latent factor underlies their corresponding 
indicator variables. Determining model identification is similar to that described for 
CFA models with another distinction concerning the scaling of endogenous factors. 
Before discussing this issue more, let us first determine the number of nonredundant 
observations in the sample covariance matrix:

p
p p

* =
+( )

=
+( )

=
1

2
16 16 1

2
136.

with 16 observed variables.

Recall that the variances of and covariances among exogenous variables, direct effects, 
and covariances require estimation in SEM. As with CFA models, the scale of the fac-
tors in structural models are unknown and must be set. In CFA, we could either set the 
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scale of the factor by setting its variance equal to a value of 1.0 or setting the factor 
loading of a reference indicator equal to a value of 1.0. These methods were acceptable 
because the factors were exogenous. When factors become endogenous variables in 
structural models, because they are directly affected by another factor in the model, 
the only option available to set its scale is by way of using a reference indicator. The 
reason for this is because we do not estimate the variances of endogenous variables. 
Instead, the variances of disturbances associated with endogenous factors are esti-
mated. Thus, to set the scale of an endogenous factor, the reference indicator method 
of scaling must be used. The model in Figure 16.14 portrays which loadings will be 
set to a value of 1.0 to serve as the reference indicator for its corresponding factor. All 
of the other loadings will be estimated and are designated as such with lambdas and 
associated parameter coefficient numbers.

The parameters to estimate in this model include 16 error variances (one per indicator); 
three disturbance variances (one per endogenous factor); 13 factor loadings; seven 
direct effects among the factors; and three covariances among the factors at time 1, 
resulting in 42 total parameters to estimate in this hypothesized model. Thus, the dfT 
for this model is 94 (136 − 42 = 94). It is important to note that two of the factors in the 
model, if estimated independently of this structural model, would be under-identified 
because they only have two indicators (i.e., self-efficacy factors at time 1 and at time 
2). The social support and exercise behavior factors at times 1 and 2, if estimated inde-
pendently of this structural model, would be just-identified because they have three 
indicators. As mentioned previously, three indicators per factor is recommended for 
the identification of CFA models. Nonetheless, under-identified CFA models can be 
estimated if included in a larger model, as in this case.

16.10.2  Two-Step Model Testing Procedure in Latent  
Variable Path Analysis

This brings us to a discussion of model testing with latent variable path models. When 
working with latent variable path models, the structural model (i.e., the relationships 
among the factors) introduces a new tier in the analysis in addition to the measure-
ment model. More specifically, if the model presented in Figure 16.14 did not fit the 
data acceptably after running the initial analysis, the location of unacceptable fit within 
the model may be difficult to decode because the structural and measurement models 
are being estimated simultaneously. Consequently, a two-step model fitting sequence, 
suggested by Anderson and Gerbing (1988), is a popular method used when analyzing 
latent variable path models in order to identify the source of poor fit in the model. The 
first step of the two-step modeling approach involves specifying a model in which all 
of the factors covary with all of the other factors in the model. This model is referred 
to as the initial measurement model. As a result of allowing all of the factors to covary 
with one another, the structural part of the model is a just-identified or saturated model. 
Because no additional parameters may be estimated at the structural level, it fits the 
data perfectly. Accordingly, if this model fits the data unacceptably, the poor model fit is 
due to the measurement model. That is, the relationships among the indicator variables 
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are not explained well by the measurement model. As such, the LM/MI tests may be 
consulted to identify possible parameters to add and the model may be respecified to 
help improve fit to the data. These parameters typically consist of error covariances or 
cross-loadings. If the initial measurement model fits the data well or once the respeci-
fied model fits acceptably after adding parameters, you can continue to the second step 
of the two-step modeling approach, which involves assessing the fit of the latent varia-
ble path model. The resulting model (the initial measurement model or the respecified 
measurement model) in this step is referred to as the final measurement model.

The second step of the two-step modeling approach consists of imposing the structural 
model on the final measurement model. Thus, all of the covariances among factors are 
released and the structural parameters (i.e., the relationships among the factors) are 
specified in the model. This is referred to as the initial structural model and is nested in 
the final measurement model. When assessing the fit of the model in the second step of 
the two-step modeling process, it is important to realize that it will not fit as well as the 
final measurement model. Remember that the structural or latent variable path model 
is just-identified in the first step. Thus, the latent variable path model fits the data per-
fectly. The fit of the hypothesized structural model is assessed during the second step. 
Because structural models will commonly be over-identified models, the fit will tend 
to become worse during the second step of the two-step modeling process. The hope 
is that the fit will not become significantly worse. This is why it is important that the 
measurement model fit well before imposing the structural relationships.

If the initial structural model fits the data acceptably, a chi-square difference test (Δχ2) 
may be conducted to see if a significant decline in model fit occurred when imposing 
the structural relationships. If the Δχ2 is not significant, the structural model did not 
decrease model fit and can be retained. If there is a significant difference in fit between 
the two models, model modifications may be considered for the structural part of the 
model. If the initial structural model does not fit the data well, again, LM/MI tests 
can be assessed for potential respecifications. Once the model fits adequately, the Δχ2 
may then be conducted between the final structural model and the final measurement 
model. Again, a significant test would indicate a significant loss of fit when specifying 
the structural model on the measurement model. An important consideration is that the 
sample size sensitivity of the chi-square extends to the Δχ2 test statistic. Others have 
suggested using differences between fit indices associated with comparison models 
instead of the Δχ2, such as the CFI (e.g., Cheung & Rensvold, 2002, and Meade, John-
son, & Braddy, 2008). A four-step modeling approach has also been suggested (see 
Mulaik & Millsap, 2000, for more information about the four-step modeling approach).

16.11  LATENT VARIABLE PATH ANALYSIS  
WITH EXERCISE BEHAVIOR STUDY

The latent variable path model illustrated in Figure 16.14 that was examined by Dun-
can and Stoolmiller (1993) will be used to demonstrate a latent variable path analysis 
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using SAS. The SAS code for the initial measurement model in which all of the factors 
covary with all of the other factors is presented in Table 16.35. All of the options in the 
PROC CALIS statement in this example have been previously described. The number 
of participants for this study is fairly small (N = 84).

 Table 16.35: SAS Code for Initial Measurement Model for the Latent Variable Path Model  
of Exercise Behavior

PROC CALIS DATA=EXERCISE COVARIANCE RESIDUAL MODIFICATION 
NOBS=84;

LINEQS
SS1_1 = L11_1 FSS1 + E1,
SS2_1 = L21_1 FSS1 + E2,
SS3_1 = L31_1 FSS1 + E3,
SE1_1 = L12_1 FSE1 + E4,
SE2_1 = L22_1 FSE1 + E5,
EB1_1 = L13_1 FEB1 + E6,
EB2_1 = L23_1 FEB1 + E7,
EB3_1 = L33_1 FEB1 + E8,
SS1_2 = 1     FSS2 + E9,
SS2_2 = L21_2 FSS2 + E10,
SS3_2 = L31_2 FSS2 + E11,
SE1_2 = 1     FSE2 + E12,
SE2_2 = L22_2 FSE2 + E13,
EB1_2 = 1     FEB2 + E14,
EB2_2 = L23_2 FEB2 + E15,
EB3_2 = L33_2 FEB2 + E16;

VARIANCE
E1 – E16 = VARE1-VARE16,
FSS1 = 1.0,
FSE1 = 1.0,
FEB1 = 1.0,
FSS2 = VARFSS2,
FSE2 = VARFSE2,
FEB2 = VARFEB2;

COV
FSS1 FSE1 = COV1,
FSS1 FEB1 = COV2,
FSS1 FSS2 = COV3,
FSS1 FSE2 = COV4,
FSS1 FEB2 = COV5,
FSE1 FEB1 = COV6,
FSE1 FSS2 = COV7,
FSE1 FSE2 = COV8,
FSE1 FEB2 = COV9,
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FEB1 FSS2 = COV10,
FEB1 FSE2 = COV11,
FEB1 FEB2 = COV12,
FSS2 FSE2 = COV13,
FSS2 FEB2 = COV14,
FSE2 FEB2 = COV15;

RUN;

The linear equations relating the variables in the model are specified in the LINEQS 
statement. As in the CFA example, all of the equations in the initial measurement model 
relate the observed indicator variables to their corresponding factor. For instance, in 
the following equation:

SS1_1 = L11_1 FSS1 + E1

the variable SS1_1 (social support item 1 at time 1) is a function of the direct effect of 
FSS1 (the social support factor at time 1), which is associated with the factor loading 
L11_1 and the direct effect of error (E1). The _1 and _2 specify the relevant meas-
urement occasion associated with the indicator. Because social support, self-efficacy, 
and exercise behavior factors at time 2 are endogenous, their scale must be set by way 
of a reference indicator. Thus, each of these factors has one of its respective item’s 
factor loading set equal to value of 1.0. For instance, the following statement sets the 
factor loading for the first item (SS1) loading on the social support factor at time 2 
equal to a value of 1 instead of allowing it to be freely estimated:

SS1_2 = 1 FSS2 + E9

In the VARIANCE statement, all of the error variances associated with the sixteen indi-
cators will be estimated (E1 – E16) and labeled in the output as VARE1–VARE16, 
respectively. The variances of the three exogenous factors at time 1 were set to a 
value of one (e.g., FSS1 = 1.0), and the variances of the three factors at time 2 
(which will ultimately be endogenous in the structural model) will be estimated (e.g., 
FSS2 = VARFSS2). Again, these variances will be estimated by default unless oth-
erwise specified. The COV statement is where all of the factors are modeled to covary 
in the initial measurement model and will be labeled as COV1 through COV15 in the 
output. Again, these would be modeled by default in the CALIS procedure if omitted 
from the code.

16.11.1 Two-Step Modeling With the Exercise Behavior Study

The initial measurement model did not fit the data adequately [χ2(89) = 180.38,  
p < .05; SRMR = .09; RMSEA = .11 (90% CI: .09, .13) with p < .05; CFI = .88; and 
NNFI/TLI = .84]. As such, the LM/MI tests were examined to evaluate potential model 
respecifications. Although the various output for the LM/MI tests were printed, only 
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the LM/MI tests associated with error covariances were examined in order to be con-
sistent with the original study. As such cross-loadings were not considered. The LM/
MI tests for Error Variances and Covariances are shown in Table 16.36.

The largest decrease in the chi-square statistic (by approximately 25.18 points) would 
result if the covariance between E14 and E6 were added to the model. These errors are 
associated with the first item for the exercise behavior factor at time 1 (EB1_1) and at 
time 2 (EB1_2). The addition of this error covariance is theoretically reasonable given 
that these indicators are the same item measured at different occasions. Thus, the way 
in which a person responds to an item at one measurement occasion is likely to be sim-
ilar to the way they respond to the same item at a subsequent measurement occasion. 
This error covariance was added to the model (E14 E6 = COV14_6 was included 
in the COV statement in PROC CALIS) and the model was reanalyzed. While the 
model fit of this respecified model did improve [χ2(88) = 156.62, p < .05; SRMR = .08; 
RMSEA = .10 (90% CI: .07, .12) with p < .05; CFI = .91; and NNFI/TLI = .88], it was 
still unacceptable. LM/MI tests associated with the error covariances were again exam-
ined for those that would decrease the chi-square significantly if added to the model and 
would be theoretically justified. This process was repeated sequentially until the model 
fit was acceptable. In the end, four additional covariances between errors associated 
with the same item measured at time 1 and at time 2 were added to the model, including 
pairs 13–5, 11–3, 10–2, and 16–18. The final measurement model fit the data accept-
ably well [χ2(84) = 92.48, p > .05; SRMR = .07; RMSEA = .03 (90% CI: .00, .07) with  
p > .05; CFI = .99; and NNFI/TLI = .98]. As such, this is the final measurement model.

Now that the measurement model fits the date adequately, the initial structural model 
can be analyzed. The SAS code for this model is presented in Table 16.37.

 Table 16.36: LM Tests for Error Variances and Covariances From PROC CALIS for the 
Initial Measurement Model of Exercise Behavior

Rank Order of the 10 Largest LM Stat for Error Variances and Covariances

Var1 Var2 LM Stat Pr > ChiSq
Parm

Change

E14 E6 25.17856 <.0001 8.76739

E13 E5 20.99473 <.0001 2.55923

E5 E12 20.28727 <.0001 -2.11353

E11 E3 12.44762 0.0004 0.85090

E9 E1 11.75956 0.0006 0.66092

E8 E14 11.05086 0.0009 -2.17658

E10 E2 10.92726 0.0009 0.46800

E16 E8 10.05405 0.0015 1.22001

E13 E4 9.78739 0.0018 -1.43268

E7 E14 9.00517 0.0027 -2.11006
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 Table 16.37: SAS Code for Initial Structural Model for the Latent Variable Path Model 
of Exercise Behavior

PROC CALIS DATA=EXERCISE COVARIANCE RESIDUAL MODIFICATION TOTEFF 
NOBS=84;

LINEQS
SS1_1 = L11_1 FSS1 + E1,
SS2_1 = L21_1 FSS1 + E2,
SS3_1 = L31_1 FSS1 + E3,
SE1_1 = L12_1 FSE1 + E4,
SE2_1 = L22_1 FSE1 + E5,
EB1_1 = L13_1 FEB1 + E6,
EB2_1 = L23_1 FEB1 + E7,
EB3_1 = L33_1 FEB1 + E8,
SS1_2 = 1     FSS2 + E9,
SS2_2 = L21_2 FSS2 + E10,
SS3_2 = L31_2 FSS2 + E11,
SE1_2 = 1     FSE2 + E12,
SE2_2 = L22_2 FSE2 + E13,
EB1_2 = 1     FEB2 + E14,
EB2_2 = L23_2 FEB2 + E15,
EB3_2 = L33_2 FEB2 + E16,
FSS2  = SS1_SS2 FSS1 + D1,
FSE2  = SS1_SE2 FSS1 + SS2_SE2 FSS2 + SE1_SE2 FSE1 + D2,
FEB2  = SE1_EB1 FSE1 + SE2_EB2 FSE2 + EB1_EB2 FEB1 + D3;

VARIANCE
E1 – E16 = VARE1-VARE16,
FSS1 = 1.0,
FSE1 = 1.0,
FEB1 = 1.0,
D1-D3 = VARD1-VARD3;

COV
FSS1 FSE1 = COV1,
FSS1 FEB1 = COV2,
FSE1 FEB1 = COV3,
E14  E6   = COV14_6,
E13  E5   = COV13_5,
E11  E3   = COV11_3,
E10  E2   = COV10_2,
E16  E8   = COV16_8;

RUN;

Because indirect effects are hypothesized at the structural level in this model, the 
TOTEFF option was listed in order to request output for the total, direct, and indirect 
effects among the factors at the structural level. Three new equations are included in 
the LINEQS statement to specify the relationships among the factors at the structural 
model. For instance, the following equation for the exercise behavior factor at time 2 
(FEB2):

FEB2 = SE1_EB1 FSE1 + SE2_EB2 FSE2 + EB1_EB2 FEB1 + D3
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denotes that it is directly affected by the self-efficacy factor at time 1 (FSE1), the 
self-efficacy factor at time 2 (FSE2), and the exercise behavior factor at time 1 (FEB1) 
with associated parameter coefficients (SE1_EB1, SE2_EB2, and EB1_EB2, respec-
tively). It is also affected by a disturbance (D3). In the VARIANCE statement, the 
errors associated with the indicators will be estimated and the variances of the three 
exogenous factors at time 1 will be set equal to 1. The variances of the disturbances 
associated with the three endogenous factors at time 2 (D1–D3) will now be estimated 
and be labeled as VARD1–VARD3 in the output, respectively. In the COV statement, 
the only remaining factor covariances are between the three exogenous factors at time 
1. Also specified in the COV statement are the five error covariances suggested by the 
LM/MI tests when respecifying the initial measurement model.

The abbreviated output for the initial structural model is presented in Appendix 16.2. 
The initial structural model fit the data well according to the fit criteria [χ2(89) = 105.12, 
p > .05; SRMR = .10; RMSEA = .05 (90% CI: .00, .08) with p > .05; CFI = .98; and 
NNFI/TLI = .97]. You could present the model fit information in a summary table 
similar to that in Table 16.38.

The Δχ2 between the final measurement model and the structural model [Δχ2(5) = 12.64, 
p < .05] is statistically significant. Thus, imposing our structural model on our meas-
urement model resulted in a significant loss of fit. Although this is not the desired 
outcome, the final structural model fits the data well.

In the Squared Multiple Correlations table in Appendix 16.2, you can see the R square 
values not only associated with each indicator variable, but also those associated with 
the endogenous factors. For instance, approximately 58% of the variance in the social 
support factor at time 2 (FSS2) is explained by the model; approximately 59% of the 

 Table 16.38: Model Fit Summary Table for Latent Variable Path Model for Exercise  
Behavior

Model χ2 df SRMR

RMSEA  
(90% CI)  
p-value CFI NNFI/TLI

Initial measurement model 180.38* 89 .09 .11
(.09, .13)  
p < .05

.88 .84

Final measurement model 92.48 84 .07 .03
(.00, .07)
p > .05

.99 .98

Initial/final structural model 105.12 89 .11 .05
(.00, .08)
p > .05

.98 .97

Note: *p < .05.
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variance in the self-efficacy factor at time 2 (FSE2) is explained by the model; and 
approximately 90% of the variance in exercise behavior at time 2 (FEB2) is explained 
by the model.

All of the standardized factor loadings are statistically significant because all of the t sta-
tistics associated with these loadings are greater than |1.96| (see the Standardized Results 
for Linear Equations output in Appendix 16.2). With the exception of the direct effect of 
the social support factor at time 1 on the self-efficacy factor at time 2, the standardized 
direct effects among factors are all statistically significant. For example, as social sup-
port at time 1 increases by one standard deviation, social support at time 2 is estimated to 
increase by approximately .76 standard deviation units, controlling for everything else.

16.11.2 Results of the Final Model

When presenting these results, you may include the standardized values in the model 
as seen in Figure 16.15. It must be noted that the five error covariances between the 
same items measured at times 1 and 2 (i.e., 14–6; 13–15; 11–3, 10–2; and 16–18) are 
not illustrated in the figure for simplicity. Or, you could only present the picture of 
the structural model with standardized values and present a table similar to that in 
Table 16.33 for the measurement model.

Of particular interest in this model are the indirect effects among the factors at the 
structural level. The TOTEFF option in the PROC CALIS statement invoked the test of  

 Figure 16.15 Latent variable path model for exercise behavior with standardized estimates.



718        Structural Equation ModEling

total, direct, and indirect effects. The standardized results for these effects are included 
in Appendix 16.2. Similar to the effects decomposition table for the observed variable 
path model with indirect effects, Table 16.39 presents the direct and indirect effects for 
this structural model. Specific indirect effects can again be tested for statistical signif-
icance using the joint statistical significance test. Thus, indirect effects comprised of 
significant direct effects would be deemed as statistically significant.

To illustrate, the indirect effect of social support at time 1 on self-efficacy at time 
2 (via social support at time 2) and the indirect effect of social support at time 1 on 
exercise behavior at time 2 (via both social support and self-efficacy at time 2) are sta-
tistically significant. Using the values from the Standardized Direct Effects section in 
Appendix 16.2, the indirect effect from social support at time 1 to self-efficacy at time 
2 via social support at time 2 is equal to .3408 (.7583 × .4494 = .3408). The indirect 
effect of social support at time 1 on exercise behavior at time 2 via social support at 
time 2 and self-efficacy at time 2 is equal to .2222 (.7583 × .4494 × .6521 = .2222). 
In contrast, the indirect effect of social support at time 1 on exercise behavior at time 
2 via self-efficacy at time 2 is not statistically significant because the direct effect 

 Table 16.39: Standardized Direct, Indirect, and Total Effects for Latent Variable Path 
Model of Exercise

Association Direct Indirect Total

Social Support1, Self-Efficacy1 – – –
Social Support1, Exercise Behavior1 – – –
Social Support1, Social Support2 .7583* – .7583
Social Support1, Self-Efficacy2

SS1 → SS2 → SE2
−.2141 .3408* .1267

Social Support1, Exercise Behavior2
SS1 → SE2 → EB2
SS1 → SS2 → SE2 → EB2

– TI = .0826
−.1396

.2222*

.0826

Self-Efficacy1, Exercise Behavior1 – – –
Self-Efficacy1, Social Support2 – – –
Self-Efficacy1, Self-Efficacy2 .6416* – .6416
Self-Efficacy1, Exercise Behavior2

SE1 → SE2 → EB2
−.5226 .4184* −.1042

Exercise Behavior1, Social Support2 – – –
Exercise Behavior1, Self-Efficacy2 – – –
Exercise Behavior1, Exercise Behavior2 .8405* – .8405
Social Support2, Self-Efficacy2 .4494* – .4494
Social Support2, Exercise Behavior2

SS2 → SE2 → EB2
– .2931* .2931

Self-Efficacy2, Exercise Behavior2 .6521* – .6521

Note: SS = Social Support; SE = Self-Efficacy; EB = Exercise Behavior; TI = Total indirect.
*p < .05.
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of social support at time 1 on self-efficacy at time 2 is not statistically significant  
(−.2141 × .6521 = −.1396). The indirect effect of self-efficacy at time 1 on exercise behav-
ior at time 2 via self-efficacy at time 2 is statistically significant (.6416 × .6521 = .4184).  
Finally, the indirect effect of social support at time 2 on exercise behavior at time 
2 via self-efficacy at time 2 is statistically significant (.4494 × .6521 = .2931; see 
Table 16.39).

16.12 SEM CONSIDERATIONS

As with any statistical technique, satisfying assumptions related to the properties of 
the data and/or the parameterization of a model in SEM is necessary for making appro-
priate inferences. In this section, some of these issues will be presented. Because a 
thorough discussion of these issues is beyond the scope of this chapter, you will be 
provided with relevant references for further reading (see Kaplan, 2009, and Kline, 
2011, for more information concerning these issues as well).

16.12.1 Assumptions and Properties of the Data in SEM

One of the main assumptions in SEM analyses is that the scores for endogenous var-
iables follow a multivariate normal distribution. When using ML estimation or other 
normal theory estimators, the assumption of normality is necessary to obtain accurate 
model fit statistics and parameter estimates with their associated standard errors. As 
previously discussed, when endogenous variables are extremely nonnormal and/or cat-
egorical in nature, alternative estimators must be implemented to ensure appropriate 
conclusions concerning the findings. Methods to assessing normality were described 
in Chapter 6 of this text.

As in multiple regression analyses, the models in SEM are assumed to be correctly 
specified. As mentioned previously, model misspecification may occur because of 
omitted relationships that should be included in the model or relationships included 
in the model are irrelevant and should be excluded from the model. Specification 
searches using the LM/MI tests and/or the EPC may lead to the identification of 
an omitted relevant relationship in the model (Saris et al., 2009) whereas the Wald 
test may lead to the identification of irrelevant relationships in the model. Never-
theless, studies have shown that specification searches do not always correctly lead 
a researcher to the true model in the population (MacCallum, 1986). Omitted rela-
tionships may also be due to not measuring variables that may be relevant. Although 
omitted relationships are generally considered more serious than the alternative of 
including an irrelevant relationship, both misspecification errors can result in biased 
parameter estimates (Kaplan, 2009). This assumption is difficult to confidently sat-
isfy in practice because researchers may not be aware of all germane predictors to 
include in a model. Accordingly, understanding the relationships among germane 
predictors based on the relevant theory is crucial in order to reduce potential mis-
specification errors.
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Missing data is an unfortunate byproduct of needing humans to participate in research 
studies in the social and behavioral studies. There are texts and courses dedicated 
solely to this topic, and Chapter 1 of this text provides an introduction to missing data 
analysis. Needless to say, it is a researcher’s responsibility to try to understand the 
missing data mechanisms. Little (1988) proposed a test that can detect whether data 
are missing completely at random (MCAR; see Craig Ender’s webpage for a SAS 
macro that will conduct this test: https://webapp4.asu.edu/directory/person/839490). 
A procedure to detect whether or not data are missing at random (MAR) in models 
with latent variables incorporated has been suggested by Falcaro, Pendleton, & Pick-
les, 2013). Methods that deal with data that are MCAR or MAR are available (e.g., full 
information maximum likelihood and multiple imputation methods) that work well 
when recovering parameter estimates. When data are not missing at random (NMAR), 
however, other advanced methods developed that account for the missing data trigger 
may be implemented (Enders, 2011; Little, 1994; Little & Rubin, 1987; Schafer & 
Graham, 2002). Longitudinal data will most likely result in missing data across meas-
urement times for various expected reasons, such as fatigue, illness, or other human 
factors (moving, time constraints). However, missing data could be a function of the 
outcome of interest in longitudinal studies (e.g., when collecting data on health out-
comes for a sample of participants with cancer). At a minimum, researchers should 
examine potential sources of missing data and implement a missing data treatment 
that has been shown to perform well under MAR conditions (e.g., FIML). Of course, 
researchers should also mention the limitations associated with the uncertainty of the 
missing data mechanism.

A frequently asked question by students and researchers of SEM is one that deals 
with sample size requirements when analyzing different models. The answer is not 
as straightforward as they would like. This is because the answer depends upon the 
complexity of the model being analyzed, the relationships among variables in the 
model, and the estimator being used (Worthington & Whittaker, 2006). SEM is based 
on large sample theory and large samples are necessary to avoid convergence problems 
and unstable parameter estimates. Generally, it is recommended that a sample size of 
at least 200 be used for SEM analyses (Kline, 2011). Further, given the relationship 
between sample size and model complexity, it is recommended that sample size be 
decided using the N:q or number of participants (N ) to number of parameters to esti-
mate (q) ratio. Bentler and Chou (1987) recommended that this ratio be at a minimum 
5:1 and more optimally 10:1. Jackson (2003) recommended an optimal ratio of 20:1 
for increased confidence in the results. Thus, researchers should strive to meet the 
20:1 ratio if feasible without falling below the 5:1 ratio of sample size to parameters 
to estimate.

16.12.2 Model Typology

It is important to briefly discuss a general model typology used in SEM in case you run 
across the terms. This typology can apply to both observed and latent variable path mod-
els. Two different types of models exist in the SEM arena: recursive and nonrecursive 

https://webapp4.asu.edu/directory/person/839490
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models. Recursive models are less complicated than nonrecursive models and gener-
ally do not include error/disturbance covariances or what are called feedback loops. In 
contrast, nonrecursive models may include error/disturbance covariances or feedback 
loops. For instance, the models in Figures 16.1–16.4 and in Figures 16.6–16.10 are 
all examples of recursive models. Another example of a recursive model is shown in 
Figure 16.16 in which the errors of two endogenous variables are allowed to covary. 
Although the errors covary in this model, it is recursive because neither endogenous 
variable has a direct effect on the other. Some refer to this type of model as partially 
recursive. In contrast, the model illustrated in Figure 16.17 is a nonrecursive model 
because a direct effect from Y1 to Y2 is also modeled, which results in a reciprocal 
pattern of causation between Y1 and Y2 (i.e., Y1 → Y2 ↔ Y1).

 Figure 16.16 Recursive observed variable path model.

 Figure 16.17 Nonrecursive observed variable path model.
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 Figure 16.18 Nonrecursive observed variable path model with a direct feedback loop.

Another example of a nonrecursive model with a direct feedback loop is shown in 
Figure 16.18. In Figure 16.18, Y1 is hypothesized to directly affect Y2, which in turn 
is hypothesized to directly affect Y1. When direct feedback loops are considered, they 
appear in studies having cross-sectional data or data collected at a single time point. 
This is because you are specifying that the two variables involved are reciprocally 
related or that both variables are the cause of and affected by the other variable. As 
such, temporal precedence is not a consideration for these relationships. An example 
of an indirect feedback loop is demonstrated in Figure 16.19.

 Figure 16.19 Nonrecursive observed variable path model with an indirect feedback loop.
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These feedback loops include three or more variables and create a reciprocal pattern of 
causation among the variables involved. In this example, Y1 directly affects Y2, which 
in turn directly affects Y3, which, in turn directly affects Y1. The major implications 
with respect to the differentiation between these two types of models deals with iden-
tification and estimation. As a general rule, a recursive model is an identified model 
and, thus, its parameters are able to be estimated. On the other hand, identification of 
a nonrecursive model may prove more difficult, and, thus, estimation of its parame-
ters may not be possible (if under-identified) or the estimation process may encounter 
problems. For instance, correlations greater than 1.0 or negative variances may result 
from modeling relationships in nonrecursive models. In the end, theory should guide 
the specification of these models and you should determine if the model will be iden-
tified prior to estimation. See Bollen (1989) and Kline (2011) for more information 
concerning nonrecursive models.

16.12.3 Equivalent Models

Another consideration in SEM is the issue of equivalent models. Equivalent models 
are those in which the causal relationships among variables are specified differently, 
yet mathematically, they result in identical implied covariance matrices. Consequently, 
equivalent models are indistinguishable with respect to fit criteria because they fit the 
data identically. These types of models may occur with observed variable path models, 
CFA models, and latent variable path models. For instance, the four models in Fig-
ure 16.20 are equivalent observed variable path models. The variances of exogenous 
variables, errors, and path letters are excluded for illustrative simplicity. It is important 
to note that because errors are omitted from these diagrams, the covariance between X1 
and X2 in Figure 16.20c is actually the covariance between the errors for X1 and X2.

 Figure 16.20 Four equivalent observed variable path models.
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Notice that the four models portray quite different theoretical connections between 
some of the variables. For instance, the covariance between X1 and X2 in Fig-
ure 16.20a and 16.20c symbolizes a different relationship between these two variables 
as compared to the direct effect of X1 on X2 as in Figure 16.20b and 16.20d. The 
direct effects linking X1 and Y2 as well as X2 and Y1 also change causal direction in 
these equivalent models. The implications of equivalent models are that they cannot be 
distinguished based on model fit because of the mathematical equivalencies of models. 
Thus, knowledge of the relevant theory is necessary to make more appropriate deci-
sions concerning the direction of causal relationships in a model. Further, you should 
also evaluate the parameter estimates in equivalent models to ensure their plausibility.

Equivalent models are often not considered by researchers but warrant some consid-
eration in studies in which causal directions among the variables of interest are not 
clearly prescribed. For instance, MacCallum, Wegener, Uchino, and Fabrigar (1993) 
conducted a study concerning equivalent models and included the following in their 
discussion:

A tempting way to manage the problem with equivalent models is to argue that 
the original model is more compelling and defensible than the equivalent models 
because of its a priori status. That is, because the original model was developed 
from theory or prior research or both and was found to yield an interpretable solu-
tion and adequate fit to the data, it is inherently more justifiable as a meaningful 
explanation of the data than the alternative equivalent models. We believe, how-
ever, that such a defense would often be the product of wishful thinking. This 
argument implies that no other equally good explanation of the data is plausible 
as the researcher’s a priori model simply because the researcher did not generate 
the alternatives a priori. Such a position ignores the possibilities that prior research 
and theoretical development might not have been adequate or complete, that the 
researcher might not have been aware of alternative theoretical views, or that the 
researcher simply did not think of reasonable alternative models of the relation-
ships among the variables under study. (p. 197)

16.13 ADDITIONAL MODELS IN SEM

While space is not available to offer detailed explanations of additional modeling 
techniques in the SEM arena, a brief synopsis of techniques available in SEM will 
be provided. All of the models discussed in this chapter have involved using data 
collected from a single group of participants. SEM is a popular tool with which 
models may be compared for multiple groups. All of the models described in this 
chapter can be used in a multiple-group analysis context. Briefly, multiple-group 
in SEM allows tests of whether certain model parameters of interest (e.g., causal 
paths, factor loadings, covariances) are the same or unequal across groups. This 
technique is a common method to test for invariance or equivalence in models at 
various levels (measurement and structural) across groups. Invariance testing is a 
vast area of study in SEM and a thorough explanation of this topic is beyond the 
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scope of this chapter (see Vandenberg & Lance, 2000, for more information con-
cerning this topic).

Just as in multiple regression, models in SEM may include interaction terms among 
the variables. These variables may be observed and/or unobserved. With observed var-
iables, products of two variables may be created to represent their interaction. Latent 
variable interactions may also be analyzed using SEM techniques. Various methods 
are available when creating interaction terms among latent factors (see, e.g., Marsh, 
Wen, & Hau, 2006).

Two SEM techniques allow comparisons of the mean of factors across groups. For 
instance, a researcher may be interested in whether differences exist between males 
and females on a factor used to represent math anxiety. One of the techniques that can 
assess this difference involves regressing a factor (e.g., math anxiety) on a dummy 
coded predictor (e.g., sex) or a set of dummy-coded predictors (e.g., undergraduate 
major). The direct path from the dummy-coded sex variable to the math anxiety factor 
would indicate the difference, on average, between males and females on math anxiety. 
This model is commonly referred to as a multiple indicator multiple cause or MIMIC 
model (Jöreskog & Goldberger, 1975). The second technique that can assess mean 
differences on factors across groups is structured means modeling (SMM; Sörbom, 
1974), which actually incorporates a mean structure in a multiple group model. Factor 
mean difference estimates can then be estimated by way of regressing the factor on a 
constant. Effect sizes associated with these factor mean differences can also be calcu-
lated for aid in interpretation (Hancock, 2001).

In addition, longitudinal data may be analyzed in SEM using various techniques, par-
ticularly using what is called latent growth curve modeling (LGCM). LGCM allows 
individual growth in outcomes of interest to be modeled across three or more measure-
ment occasions (three is necessary for identification purposes). A latent growth curve 
model is similar to a CFA model in which each indicator is an outcome measured at 
each measurement occasion. A basic latent growth curve model includes two factors 
that are used to characterize two dimensions of growth or change across time. One 
factor is the Intercept factor, which indicates the standing of the participants on the 
measured outcome (e.g., reading score) at a specified time-based reference point. The 
second factor is the Slope factor, which captures the participants’ linear growth trajec-
tory on the measured outcome across time. Observed and/or unobserved predictors of 
the intercept and slope factors may be modeled to explain their variability. The flexi-
bility of LGCM allows equally spaced or unequally spaced measurement occasions to 
be modeled as well as nonlinear trajectories (Hancock & Lawrence, 2006). In addition, 
multivariate extensions of the basic LGCM may be easily modeled (McArdle, 1988; 
Sayer & Cumsille, 2001).

Further, in the social and behavioral sciences, data commonly exhibit dependencies 
in the form of clustering or nested groups. For instance, data may be collected from 
participants who attend the same class or attend the same therapy group. The data 
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for the participants that share a common teacher or therapist cannot be assumed to 
be independent. That is, outcomes for participants in the same cluster (e.g., class or 
therapy group) will share similarities in their outcomes due to the influence of a com-
mon source (e.g., same teacher or same therapist). This dependency, if not accounted 
for in statistical analyses, including SEM, may result in standard error estimates that 
are smaller than they would be if this dependency did not exist. Consequently, type 
I error rates associated with significance tests of parameter estimates may be inflated 
(Snijders & Bosker, 1999). Multilevel modeling methods (as presented in Chapters 13 
and 14 in this text) are available to appropriately account for the variability in out-
comes due to the clustering or nesting structure and adjust the standard errors associ-
ated with parameter estimates for these dependencies among the data. These methods 
are also available in the SEM arena and may be applied to any of the techniques intro-
duced in this chapter and beyond. Multilevel SEM is a flexible tool that allows struc-
tural equation models to be analyzed while incorporating the appropriate statistical 
adjustments when dependencies due to nesting or clustering exist in the data responses 
(Rabe-Hesketh, Skrondal, & Zheng, 2012; Stapleton, 2006).

A technique growing in popularity in the SEM arena is mixture modeling. Mixture 
modeling provides model parameter estimates from different populations that are not 
directly identifiable by observed classifications, which is the case when using multiple 
group SEM analyses. Mixture models may be comprised of observed and latent varia-
ble path models, CFA models, latent growth models, and variants of these models (see 
Gagné, 2006, for an introduction to mixture models in SEM). Mixture modeling allows 
researchers to examine the differences or heterogeneity in a model’s parameters as a 
function of a grouping variable that is unobserved or latent. For instance, a researcher 
may postulate that measures of academic self-concept are more reliable for certain 
groups of high school kids, but an explicit measure that agrees with the grouping (e.g., 
low vs. high need for achievement in school) may not be available. In consequence, the 
researcher first uses the data to inform whether or not heterogeneity exists in a model’s 
parameter estimates. The number of latent classes or unobserved groups hypothesized 
to produce these differences must be specified by the researcher. The parameter esti-
mates from the mixture model and the characteristics observed in the data are then used 
to help with the interpretation of the results. For instance, the researcher examining 
academic self-concept may find support for a three latent-class factor model. After 
considering the results and information concerning the high school kids in the dataset, 
the researcher may be able to discover what characterizes membership in each of the 
three latent classes (e.g., low, moderate, and high involvement in school).

16.14 FINAL THOUGHTS

SEM is a popular and flexible tool that may be used to answer a number of research 
questions in the social and behavioral sciences. Nonetheless, it is a mathematical 
tool that is often used in the context of nonexperimental studies. As such, it is the 
user’s responsibility to ensure that the appropriate assumptions are supported and the 
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inferences are soundly based on theory and the proper causal stipulations. When we 
find support for a model using model fit information, there are alternative models and/
or equivalent models that may fit just as well or identically. Model fit and specifi-
cation searches lend themselves to minimizing errors within specific samples. Thus, 
cross-validation, which is commonly neglected, is highly suggested when conduct-
ing SEM analyses, particularly if any model modifications have been performed. See 
Breckler (1990) and Cliff (1983) for a review of mistakes commonly made in SEM and 
recommendations for best practices in SEM.

Once again, the importance of theory in SEM cannot be overstated. It is what guides 
model building and respecification and it informs us of the plausibility of parameter 
estimates. To end, we would like to conclude with a statement written by Wolfe (1985) 
when considering what is easy and what is difficult when analyzing causal models. He 
wrote that “the easy part is mathematical. The hard part is constructing causal models 
that are consistent with sound theory. In short, causal models are no better than the 
ideas that go with them” (p. 385).
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APPENDIX 16.1

Abbreviated SAS Output for Final Observed Variable Path Model

Fit Summary

Modeling Info Number of Observations 3094

Number of Variables 6
Number of Moments 21
Number of Parameters 18
Number of Active Constraints 0
Baseline Model Function Value 0.4593
Baseline Model Chi-Square 1420.6759
Baseline Model Chi-Square DF 15
Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.0025
Chi-Square 7.6190
Chi-Square DF 3
Pr > Chi-Square 0.0546
Z-Test of Wilson & Hilferty 1.6109
Hoelter Critical N 3173
Root Mean Square Residual (RMR) 0.0117
Standardized RMR (SRMR) 0.0096
Goodness of Fit Index (GFI) 0.9992

Parsimony Index Adjusted GFI (AGFI) 0.9943
Parsimonious GFI 0.1998
RMSEA Estimate 0.0223
RMSEA Lower 90% Confidence 
Limit

0.0000

RMSEA Upper 90% Confidence 
Limit

0.0426

Probability of Close Fit 0.9901
ECVI Estimate 0.0141
ECVI Lower 90% Confidence Limit 0.0126
ECVI Upper 90% Confidence Limit 0.0181
Akaike Information Criterion 43.6190
Bozdogan CAIC 170.2889
Schwarz Bayesian Criterion 152.2889
McDonald Centrality 0.9993

Incremental Index Bentler Comparative Fit Index 0.9967
Bentler-Bonett NFI 0.9946
Bentler-Bonett Non-normed Index 0.9836
Bollen Normed Index Rho1 0.9732
Bollen Non-normed Index Delta2 0.9967
James et al. Parsimonious NFI 0.1989



Asymptotically Standardized Residual Matrix

ABILITY ACHIEVE DEG_ASP HI_DEG SELECTIV INCOME

ABILITY 0.00000 0.00000 0.00000 0.00000 0.00000 -1.61891
ACHIEVE 0.00000 0.00000 0.00000 -1.88372 -1.88372 -1.88274
DEG_ASP 0.00000 0.00000 0.00000 0.00000 0.00000 1.06999
HI_DEG 0.00000 -1.88372 0.00000 -1.88372 -1.88372 -1.88337
SELECTIV 0.00000 -1.88372 0.00000 -1.88372 0.00000 -1.88435
INCOME -1.61891 -1.88274 1.06999 -1.88337 -1.88435 -1.88339

Standardized Results for Linear Equations

HI_DEG = 0.0421*ABILITY+ 0.0886*ACHIEVE +0.1749*DEG_ASP+0.1422*SELECTIV+1.0000 E1
Std Err 0.0190 B14 0.0181 B24 0.0177 B34 0.0184 B54
t Value 2.2158 4.9046 9.8959 7.7453

SELECTIV= 0.3237*ABILITY+ 0.1385*DEG_ASP+1.0000 E2
Std Err 0.0161 B15 0.0168 B35
t Value 20.0873 8.2267

INCOME = 0.0553*HI_DEG+ 0.2114*SELECTIV +0.0826*ACHIEVE +1.0000 E3
Std Err 0.0179 B46 0.0175 B56 0.0176 B26
t Value 3.0901 12.1121 4.6898

Standardized Results for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value

Error E1 VARE1 0.91101 0.00977 93.27893
E2 VARE2 0.85901 0.01160 74.05702
E3 VARE3 0.93511 0.00855 109.40187

Observed ABILITY VARV1 1.00000
ACHIEVE VARV2 1.00000
DEG_ASP VARV3 1.00000

Standardized Results for Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard
Error t Value

ABILITY ACHIEVE COV_12 0.28000 0.01657 16.89684
ABILITY DEG_ASP COV_13 0.19000 0.01733 10.96255
ACHIEVE DEG_ASP COV_23 0.21000 0.01719 12.21791

(Continued )



Standardized Total Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0.1422
0.0184
7.7453
<.0001

0.0882
0.0182
4.8564
<.0001

0.0886
0.0181
4.9046
<.0001

0.1946
0.0176

11.0688
<.0001

INCOME 0.0553
0.0179
3.0901
0.002001

0.2192
0.0171

12.7875
<.0001

0.0733
0.006746

10.8657
<.0001

0.0875
0.0175
5.0021
<.0001

0.0400
0.005414
7.3941
<.0001

SELECTIV 0 0 0.3237
0.0161

20.0873
<.0001

0 0.1385
0.0168
8.2267
<.0001

APPENDIX 16.2

Abbreviated SAS Output for the Final Latent Variable Path Model 
for Exercise Behavior

Fit Summary

Modeling Info Number of Observations 84
Number of Variables 16
Number of Moments 136
Number of Parameters 47
Number of Active Constraints 0
Baseline Model Function Value 10.7621
Baseline Model Chi-Square 893.2570
Baseline Model Chi-Square DF 120
Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 1.2665
Chi-Square 105.1160
Chi-Square DF 89
Pr > Chi-Square 0.1168
Z-Test of Wilson & Hilferty 1.1916
Hoelter Critical N 89
Root Mean Square Residual 
(RMR)

0.9104

Standardized RMR (SRMR) 0.0970
Goodness of Fit Index (GFI) 0.8733

 



Parsimony Index Adjusted GFI (AGFI) 0.8064
Parsimonious GFI 0.6477
RMSEA Estimate 0.0467
RMSEA Lower 90% Confidence Limit 0.0000
RMSEA Upper 90% Confidence Limit 0.0788
Probability of Close Fit 0.5402
ECVI Estimate 2.6907
ECVI Lower 90% Confidence Limit 2.7727
ECVI Upper 90% Confidence Limit 3.0687
Akaike Information Criterion 199.1160
Bozdogan CAIC 360.3644
Schwarz Bayesian Criterion 313.3644
McDonald Centrality 0.9085

Incremental Index Bentler Comparative Fit Index 0.9792
Bentler-Bonett NFI 0.8823
Bentler-Bonett Non-normed Index 0.9719
Bollen Normed Index Rho1 0.8413
Bollen Non-normed Index Delta2 0.9800
James et al. Parsimonious NFI 0.6544

Squared Multiple Correlations

Variable Error Variance Total Variance R-Square

SS1_1 0.50862 6.05200 0.9160
SS2_1 0.85011 3.12930 0.7283
SS3_1 1.99287 7.39512 0.7305
SE1_1 1.99482 4.16200 0.5207
SE2_1 3.60724 4.53175 0.2040
EB1_1 8.24764 17.83037 0.5374
EB2_1 2.18553 3.61000 0.3946
EB3_1 3.06846 3.61997 0.1524
SS1_2 0.71810 6.91700 0.8962
SS2_2 1.70380 3.51067 0.5147
SS3_2 1.95256 7.89840 0.7528
SE1_2 1.12159 5.37838 0.7915
SE2_2 2.89953 5.05542 0.4265
EB1_2 15.54943 21.31787 0.2706
EB2_2 1.10344 6.46395 0.8293
EB3_2 3.27431 3.72164 0.1202
FSS2 2.63415 6.19890 0.5751
FSE2 1.75357 4.25679 0.5881
FEB2 0.59540 5.76844 0.8968

(Continued )



Standardized Results for Linear Equations

SS1_1 = 0.9571 * FSS1 + 1.0000 E1
Std Err 0.0198 L11_1
t Value 48.3838

SS2_1 = 0.8534 * FSS1 + 1.0000 E2
Std Err 0.0342 L21_1
t Value 24.9685

SS3_1 = 0.8547 * FSS1 + 1.0000 E3
Std Err 0.0340 L31_1
t Value 25.1536

SE1_1 = 0.7216 * FSE1 + 1.0000 E4
Std Err 0.1009 L12_1
t Value 7.1543

SE2_1 = 0.4517 * FSE1 + 1.0000 E5
Std Err 0.1017 L22_1
t Value 4.4417

EB1_1 = 0.7331 * FEB1 + 1.0000 E6
Std Err 0.0711 L13_1
t Value 10.3153

EB2_1 = 0.6282 * FEB1 + 1.0000 E7
Std Err 0.0818 L23_1
t Value 7.6794

EB3_1 = 0.3903 * FEB1 + 1.0000 E8
Std Err 0.1041 L33_1
t Value 3.7485

SS1_2 = 0.9467 FSS2 + 1.0000 E9
Std Err 0.0250
t Value 37.8737

SS2_2 = 0.7174 * FSS2 + 1.0000 E10
Std Err 0.0568 L21_2
t Value 12.6365

SS3_2 = 0.8676 * FSS2 + 1.0000 E11
Std Err 0.0345 L31_2
t Value 25.1259



Standardized Results for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value

Error E1 VARE1 0.08404 0.03786 2.21969
E2 VARE2 0.27166 0.05834 4.65648

E3 VARE3 0.26949 0.05808 4.63955
E4 VARE4 0.47929 0.14556 3.29265
E5 VARE5 0.79599 0.09186 8.66537
E6 VARE6 0.46256 0.10420 4.43906
E7 VARE7 0.60541 0.10277 5.89115
E8 VARE8 0.84765 0.08129 10.42782
E9 VARE9 0.10382 0.04732 2.19370
E10 VARE10 0.48532 0.08146 5.95786
E11 VARE11 0.24721 0.05992 4.12556
E12 VARE12 0.20854 0.10430 1.99937
E13 VARE13 0.57355 0.09509 6.03157
E14 VARE14 0.72941 0.09115 8.00238
E15 VARE15 0.17071 0.13342 1.27948
E16 VARE16 0.87980 0.07224 12.17958

Latent FSS1 1.00000
FSE1 1.00000
FEB1 1.00000

Disturbance D1 VARD1 0.42494 0.08139 5.22116
D2 VARD2 0.41195 0.12325 3.34239
D3 VARD3 0.10322 0.12983 0.79501

SE1_2 = 0.8896 FSE2 + 1.0000 E12
Std Err 0.0586
t Value 15.1765

SE2_2 = 0.6530 * FSE2 + 1.0000 E13
Std Err 0.0728 L22_2
t Value 8.9693

EB1_2 = 0.5202 FEB2 + 1.0000 E14

(Continued )



Standardized Results for Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard
Error t Value

FSS1 FSE1 COV1 0.45828 0.12066 3.79815
FSS1 FEB1 COV2 0.46192 0.10410 4.43735
FSE1 FEB1 COV3 0.54355 0.12855 4.22836
E14 E6 COV14_6 0.43611 0.08332 5.23441
E13 E5 COV13_5 0.45709 0.07705 5.93238
E11 E3 COV11_3 0.13442 0.03889 3.45626
E10 E2 COV10_2 0.15816 0.04755 3.32651
E16 E8 COV16_8 0.29152 0.09095 3.20529

Standardized Total Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

EB1_1 0 0 0 0.7331
0.0711
10.3153
<.0001

0 0

EB1_2 0.5202
0.0876
5.9374
<.0001

0.3392
0.0992
3.4184
0.000630

0.1525
0.0626
2.4345
0.0149

0.4372
0.1080
4.0464
<.0001

-0.0542
0.0825
-0.6572
0.5111

0.0430
0.0415
1.0347
0.3008

EB2_1 0 0 0 0.6282
0.0818
7.6794
<.0001

0 0

EB2_2 0.9107
0.0733
12.4315
<.0001

0.5938
0.1445
4.1101
<.0001

0.2669
0.1014
2.6322
0.008483

0.7654
0.1203
6.3609
<.0001

-0.0949
0.1443
-0.6578
0.5107

0.0752
0.0720
1.0451
0.2960

EB3_1 0 0 0 0.3903
0.1041
3.7485
0.000178

0 0

EB3_2 0.3467
0.1042
3.3279
0.000875

0.2261
0.0887
2.5501
0.0108

0.1016
0.0496
2.0475
0.0406

0.2914
0.1013
2.8775
0.004008

-0.0361
0.0559
-0.6466
0.5179

0.0286
0.0288
0.9948
0.3198



Standardized Total Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

SE1_1 0 0 0 0 0.7216
0.1009
7.1543
<.0001

0

SE1_2 0 0.8896
0.0586
15.1765
<.0001

0.3998
0.1337
2.9910
0.002780

0 0.5708
0.1234
4.6263
<.0001

0.1127
0.1107
1.0187
0.3083

SE2_1 0 0 0 0 0.4517
0.1017
4.4417
<.0001

0

SE2_2 0 0.6530
0.0728
8.9693
<.0001

0.2935
0.1014
2.8935
0.003810

0 0.4190
0.1053
3.9787
<.0001

0.0827
0.0816
1.0137
0.3107

SS1_1 0 0 0 0 0 0.9571
0.0198
48.3838
<.0001

SS1_2 0 0 0.9467
0.0250
37.8737
<.0001

0 0 0.7179
0.0552
13.0124
<.0001

SS2_1 0 0 0 0 0 0.8534
0.0342
24.9685
<.0001

SS2_2 0 0 0.7174
0.0568
12.6365
<.0001

0 0 0.5440
0.0649
8.3814
<.0001

SS3_1 0 0 0 0 0 0.8547
0.0340
25.1536
<.0001

SS3_2 0 0 0.8676
0.0345
25.1259
<.0001

0 0 0.6580
0.0595
11.0542
<.0001

(Continued )



Standardized Total Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

FEB2 0 0.6521
0.1601
4.0733
<.0001

0.2931
0.1115
2.6293
0.008556

0.8405
0.1276
6.5877
<.0001

-0.1042
0.1580
-0.6597
0.5094

0.0826
0.0790
1.0454
0.2959

FSE2 0 0 0.4494
0.1479
3.0390
0.002374

0 0.6416
0.1300
4.9340
<.0001

0.1267
0.1248
1.0151
0.3101

FSS2 0 0 0 0 0 0.7583
0.0537
14.1314
<.0001

Standardized Direct Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

EB1_1 0 0 0 0.7331
0.0711

10.3153
<.0001

0 0

EB1_2 0.5202
0.0876
5.9374
<.0001

0 0 0 0 0

EB2_1 0 0 0 0.6282
0.0818
7.6794
<.0001

0 0

EB2_2 0.9107
0.0733
12.4315
<.0001

0 0 0 0 0

EB3_1 0 0 0 0.3903
0.1041
3.7485
0.000178

0 0



Standardized Direct Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

EB3_2 0.3467
0.1042
3.3279
0.000875

0 0 0 0 0

SE1_1 0 0 0 0 0.7216
0.1009
7.1543
<.0001

0

SE1_2 0 0.8896
0.0586

15.1765
<.0001

0 0 0 0

SE2_1 0 0 0 0 0.4517
0.1017
4.4417
<.0001

0

SE2_2 0 0.6530
0.0728
8.9693
<.0001

0 0 0 0

SS1_1 0 0 0 0 0 0.9571
0.0198

48.3838
<.0001

SS1_2 0 0 0.9467
0.0250

37.8737
<.0001

0 0 0

SS2_1 0 0 0 0 0 0.8534
0.0342

24.9685
<.0001

SS2_2 0 0 0.7174
0.0568

12.6365
<.0001

0 0 0

SS3_1 0 0 0 0 0 0.8547
0.0340

25.1536
<.0001

(Continued )



Standardized Direct Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

SS3_2 0 0 0.8676
0.0345

25.1259
<.0001

0 0 0

FEB2 0 0.6521
0.1601
4.0733
<.0001

0 0.8405
0.1276
6.5877
<.0001

-0.5226
0.2110

-2.4768
0.0133

0

FSE2 0 0 0.4494
0.1479
3.0390

0.002374

0 0.6416
0.1300
4.9340
<.0001

-0.2141
0.1649

-1.2986
0.1941

FSS2 0 0 0 0 0 0.7583
0.0537

14.1314
<.0001

Standardized Indirect Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

EB1_1 0 0 0 0 0 0
EB1_2 0 0.3392

0.0992
3.4184
0.000630

0.1525
0.0626
2.4345
0.0149

0.4372
0.1080
4.0464
<.0001

-0.0542
0.0825

-0.6572
0.5111

0.0430
0.0415
1.0347
0.3008

EB2_1 0 0 0 0 0 0
EB2_2 0 0.5938

0.1445
4.1101
<.0001

0.2669
0.1014
2.6322
0.008483

0.7654
0.1203
6.3609
<.0001

-0.0949
0.1443

-0.6578
0.5107

0.0752
0.0720
1.0451
0.2960

EB3_1 0 0 0 0 0 0
EB3_2 0 0.2261

0.0887
2.5501
0.0108

0.1016
0.0496
2.0475
0.0406

0.2914
0.1013
2.8775
0.004008

-0.0361
0.0559

-0.6466
0.5179

0.0286
0.0288
0.9948
0.3198



Standardized Indirect Effects

Effect / Std Error / t Value / p Value

FEB2 FSE2 FSS2 FEB1 FSE1 FSS1

SE1_1 0 0 0 0 0 0
SE1_2 0 0 0.3998

0.1337
2.9910
0.002780

0 0.5708
0.1234
4.6263
<.0001

0.1127
0.1107
1.0187
0.3083

SE2_1 0 0 0 0 0 0
SE2_2 0 0 0.2935

0.1014
2.8935
0.003810

0 0.4190
0.1053
3.9787
<.0001

0.0827
0.0816
1.0137
0.3107

SS1_1 0 0 0 0 0 0
SS1_2 0 0 0 0 0 0.7179

0.0552
13.0124
<.0001

SS2_1 0 0 0 0 0 0
SS2_2 0 0 0 0 0 0.5440

0.0649
8.3814
<.0001

SS3_1 0 0 0 0 0 0
SS3_2 0 0 0 0 0 0.6580

0.0595
11.0542
<.0001

FEB2 0 0 0.2931
0.1115
2.6293
0.008556

0 0.4184
0.1623
2.5774
0.009955

0.0826
0.0790
1.0454
0.2959

FSE2 0 0 0 0 0 0.3408
0.1179
2.8901
0.003852

FSS2 0 0 0 0 0 0

(Continued )



Standardized Direct Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0.1422
0.0184
7.7453
<.0001

0.0421
0.0190
2.2158
0.0267

0.0886
0.0181
4.9046
<.0001

0.1749
0.0177
9.8959
<.0001

INCOME 0.0553
0.0179
3.0901
0.002001

0.2114
0.0175

12.1121
<.0001

0 0.0826
0.0176
4.6898
<.0001

0

SELECTIV 0 0 0.3237
0.0161

20.0873
<.0001

0 0.1385
0.0168
8.2267
<.0001

Standardized Indirect Effects

Effect / Std Error / t Value / p Value

HI_DEG SELECTIV ABILITY ACHIEVE DEG_ASP

HI_DEG 0 0 0.0460
0.006412
7.1798
<.0001

0 0.0197
0.003500
5.6284
<.0001

INCOME 0 0.007864
0.002742
2.8676
0.004136

0.0733
0.006746

10.8657
<.0001

0.004900
0.001876
2.6123
0.008993

0.0400
0.005414
7.3941
<.0001

SELECTIV 0 0 0 0 0
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 Table A.2: Critical Values for t

Level of Significance for One-Tailed Test

.10 .05 .025 .01 .005 .0005

Level of Significance for Two-Tailed Test

df .20 .10 .05 .02 .01 .001

1 3.078 6.314 12.706 31.821 63.657 636.619
2 1.886 2.920 4.303 6.965 9.925 31.598
3 1.638 2.353 3.182 4.541 5.841 12.941
4 1.533 2.132 2.776 3.747 4.604 8.610
5 1.476 2.015 2.571 3.365 4.032 6.859
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.449 5.405
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.767
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
60 1.296 1.671 2.000 2.390 2.660 3.460

120 1.289 1.658 1.980 2.358 2.617 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.291

Source: Reproduced from E. F. Lindquist, Design and Analysis of Experiments in Psychology and Education,  
Boston, MA: Houghton Mifflin, 1953, p. 37, with permission.



 Table A.3: Critical Values for F

df for Numerator

df Error α 1 2 3 4 5 6 8 12

1 .01 4052 4999 5403 5625 5764 5859 5981 6106
.05 161.45 199.50 215.71 224.58 230.16 233.99 238.88 243.91
.10 39.86 49.50 53.59 55.83 57.24 58.20 59.44 60.70
.20 9.47 12.00 13.06 13.73 14.01 14.26 14.59 14.90

2 .01 98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.42
.05 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41
.10 8.53 9.00 9.16 9.24 9.29 9.33 9.37 9.41
.20 3.56 4.00 4.16 4.24 4.28 4.32 4.36 4.40

3 .001 167.5 148.5 141.1 137.1 134.6 132.8 130.6 128.3
.01 34.12 30.81 29.46 28.71 28.24 27.91 27.49 27.05
.05 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74
.10 5.54 5.46 5.39 5.34 5.31 5.28 5.25 5.22
.20 2.68 2.89 2.94 2.96 2.97 2.97 2.98 2.98

4 .001 74.14 61.25 56.18 53.44 51.71 50.53 49.00 47.41
.01 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37
.05 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91
.10 4.54 4.32 4.19 4.11 4.05 4.01 3.95 3.90
.20 2.35 2.47 2.48 2.48 2.48 2.47 2.47 2.46

5 .001 47.04 36.61 33.20 31.09 29.75 28.84 27.64 26.42
.01 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89
.05 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68
.10 4.06 3.78 3.62 3.52 3.45 3.40 3.34 3.27
.20 2.18 2.26 2.25 2.24 2.23 2.22 2.20 2.18

6 .001 35.51 27.00 23.70 21.90 20.81 20.03 19.03 17.99
.01 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72
.05 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00
.10 3.78 3.46 3.29 3.18 3.11 3.05 2.98 2.90
.20 2.07 2.13 2.11 2.09 2.08 2.06 2.04 2.02

7 .001 29.22 21.69 18.77 17.19 16.21 15.52 14.63 13.71
.01 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47
.05 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57
.10 3.59 3.26 3.07 2.96 2.88 2.83 2.75 2.67
.20 2.00 2.04 2.02 1.99 1.97 1.96 1.93 1.91

8 .001 25.42 18.49 15.83 14.39 13.49 12.86 12.04 11.19
.01 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67
.05 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28
.10 3.46 3.11 2.92 2.81 2.73 2.67 2.59 2.50
.20 1.95 1.98 1.95 1.92 1.90 1.88 1.86 1.83
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df for Numerator

df Error α 1 2 3 4 5 6 8 12

9 .001 22.86 16.39 13.90 12.56 11.71 11.13 10.37 9.57
.01 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11
.05 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07
.10 3.36 3.01 2.81 2.69 2.61 2.55 2.47 2.38
.20 1.91 1.94 1.90 1.87 1.85 1.83 1.80 1.76

10 .001 21.04 14.91 12.55 11.28 10.48 9.92 9.20 8.45
.01 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71
.05 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91
.10 3.28 2.92 2.73 2.61 2.52 2.46 2.38 2.28
.20 1.88 1.90 1.86 1.83 1.80 1.78 1.75 1.72

11 .001 19.69 13.81 11.56 10.35 9.58 9.05 8.35 7.63
.01 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40
.05 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79
.10 3.23 2.86 2.66 2.54 2.45 2.39 2.30 2.21
.20 1.86 1.87 1.83 1.80 1.77 1.75 1.72 1.68

12 .001 18.64 12.97 10.80 9.63 8.89 8.38 7.71 7.00
.01 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16
.05 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69
.10 3.18 2.81 2.61 2.48 2.39 2.33 2.24 2.15
.20 1.84 1.85 1.80 1.77 1.74 1.72 1.69 1.65

13 .001 17.81 12.31 10.21 9.07 8.35 7.86 7.21 6.52
.01 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96
.05 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60
.10 3.14 2.76 2.56 2.43 2.35 2.28 2.20 2.10
.20 1.82 1.83 1.78 1.75 1.72 1.69 1.66 1.62

14 .001 17.14 11.78 9.73 8.62 7.92 7.43 6.80 6.13
.01 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80
.05 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53
.10 3.10 2.73 2.52 2.39 2.31 2.24 2.15 2.05
.20 1.81 1.81 1.76 1.73 1.70 1.67 1.64 1.60

15 .001 16.59 11.34 9.34 8.25 7.57 7.09 6.47 5.81
.01 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67
.05 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48
.10 3.07 2.70 2.49 2.36 2.27 2.21 2.12 2.02
.20 1.80 1.79 1.75 1.71 1.68 1.66 1.62 1.58

16 .001 16.12 10.97 9.00 7.94 7.27 6.81 6.19 5.55
.01 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55
.05 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42
.10 3.05 2.67 2.46 2.33 2.24 2.18 2.09 1.99
.20 1.79 1.78 1.74 1.70 1.67 1.64 1.61 1.56
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df for Numerator

df Error α 1 2 3 4 5 6 8 12

17 .001 15.72 10.66 8.73 7.68 7.02 6.56 5.96 5.32
.01 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45
.05 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38
.10 3.03 2.64 2.44 2.31 2.22 2.15 2.06 1.96
.20 1.78 1.77 1.72 1.68 1.65 1.63 1.59 1.55

18 .001 15.38 10.39 8.49 7.46 6.81 6.35 5.76 5.13
.01 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37
.05 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34
.10 3.01 2.62 2.42 2.29 2.20 2.13 2.04 1.93
.20 1.77 1.76 1.71 1.67 1.64 1.62 1.58 1.53

19 .001 15.08 10.16 8.28 7.26 6.61 6.18 5.59 4.97
.01 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30
.05 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31
.10 2.99 2.61 2.40 2.27 2.18 2.11 2.02 1.91
.20 1.76 1.75 1.70 1.66 1.63 1.61 1.57 1.52

20 .001 14.82 9.95 8.10 7.10 6.46 6.02 5.44 4.82
.01 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23
.05 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28
.10 2.97 2.59 2.38 2.25 2.16 2.09 2.00 1.89
.20 1.76 1.75 1.70 1.65 1.62 1.60 1.56 1.51

21 .001 14.59 9.77 7.94 6.95 6.32 5.88 5.31 4.70
.01 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17
.05 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25
.10 2.96 2.57 2.36 2.23 2.14 2.08 1.98 1.88
.20 1.75 1.74 1.69 1.65 1.61 1.59 1.55 1.50

22 .001 14.38 9.61 7.80 6.81 6.19 5.76 5.19 4.58
.01 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12
.05 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23
.10 2.95 2.56 2.35 2.22 2.13 2.06 1.97 1.86
.20 1.75 1.73 1.68 1.64 1.61 1.58 1.54 1.49

23 .001 14.19 9.47 7.67 6.69 6.08 5.65 5.09 4.48
.01 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07
.05 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20
.10 2.94 2.55 2.34 2.21 2.11 2.05 1.95 1.84
.20 1.74 1.73 1.68 1.63 1.60 1.57 1.53 1.49

24 .001 14.03 9.34 7.55 6.59 5.98 5.55 4.99 4.39
.01 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03
.05 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18
.10 2.93 2.54 2.33 2.19 2.10 2.04 1.94 1.83
.20 1.74 1.72 1.67 1.63 1.59 1.57 1.53 1.48
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df for Numerator

df Error α 1 2 3 4 5 6 8 12

25 .001 13.88 9.22 7.45 6.49 5.88 5.46 4.91 4.31
.01 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99
.05 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16
.10 2.92 2.53 2.32 2.18 2.09 2.02 1.93 1.82
.20 1.73 1.72 1.66 1.62 1.59 1.56 1.52 1.47

26 .001 13.74 9.12 7.36 6.41 5.80 5.38 4.83 4.24
.01 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96
.05 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15
.10 2.91 2.52 2.31 2.17 2.08 2.01 1.92 1.81
.20 1.73 1.71 1.66 1.62 1.58 1.56 1.52 1.47

27 .001 13.61 9.02 7.27 6.33 5.73 5.31 4.76 4.17
.01 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93
.05 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13
.10 2.90 2.51 2.30 2.17 2.07 2.00 1.91 1.80
.20 1.73 1.71 1.66 1.61 1.58 1.55 1.51 1.46

28 .001 13.50 8.93 7.19 6.25 5.66 5.24 4.69 4.11
.01 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90
.05 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12
.10 2.89 2.50 2.29 2.16 2.06 2.00 1.90 1.79
.20 1.72 1.71 1.65 1.61 1.57 1.55 1.51 1.46

29 .001 13.39 8.85 7.12 6.19 5.59 5.18 4.64 4.05
.01 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87
.05 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10
.10 2.89 2.50 2.28 2.15 2.06 1.99 1.89 1.78
.20 1.72 1.70 1.65 1.60 1.57 1.54 1.50 1.45

30 .001 13.29 8.77 7.05 6.12 5.53 5.12 4.58 4.00
.01 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84
.05 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09
.10 2.88 2.49 2.28 2.14 2.05 1.98 1.88 1.77
.20 1.72 1.70 1.64 1.60 1.57 1.54 1.50 1.45

40 .001 12.61 8.25 6.60 5.70 5.13 4.73 4.21 3.64
.01 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66
.05 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00
.10 2.84 2.44 2.23 2.09 2.00 1.93 1.83 1.71
.20 1.70 1.68 1.62 1.57 1.54 1.51 1.47 1.41

60 .001 11.97 7.76 6.17 5.31 4.76 4.37 3.87 3.31
.01 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50
.05 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92
.10 2.79 2.39 2.18 2.04 1.95 1.87 1.77 1.66
.20 1.68 1.65 1.59 1.55 1.51 1.48 1.44 1.38

120 .001 11.38 7.31 5.79 4.95 4.42 4.04 3.55 3.02
.01 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34
.05 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83
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 Table A.4: Percentile Points for Studentized Range Statistic

90th Percentiles

Number of Groups

df Error 2 3 4 5 6 7 8 9 10

1 8.929 13.44 16.36 18.49 20.15 21.51 22.64 23.62 24.48
2 4.130 5.733 6.773 7.538 8.139 8.633 9.049 9.409 9.725
3 3.328 4.467 5.199 5.738 6.162 6.511 6.806 7.062 7.287
4 3.015 3.976 4.586 5.035 5.388 5.679 5.926 6.139 6.327
5 2.850 3.717 4.264 4.664 4.979 5.238 5.458 5.648 5.816
6 2.748 3.559 4.065 4.435 4.726 4.966 5.168 5.344 5.499
7 2.680 3.451 3.931 4.280 4.555 4.780 4.972 5.137 5.283
8 2.630 3.374 3.834 4.169 4.431 4.646 4.829 4.987 5.126
9 2.592 3.316 3.761 4.084 4.337 4.545 4.721 4.873 5.007

10 2.563 3.270 3.704 4.018 4.264 4.465 4.636 4.783 4.913
11 2.540 3.234 3.658 3.965 4.205 4.401 4.568 4.711 4.838
12 2.521 3.204 3.621 3.922 4.156 4.349 4.511 4.652 4.776
13 2.505 3.179 3.589 3.885 4.116 4.305 4.464 4.602 4.724
14 2.491 3.158 3.563 3.854 4.081 4.267 4.424 4.560 4.680
15 2.479 3.140 3.540 3.828 4.052 4.235 4.390 4.524 4.641
16 2.469 3.124 3.520 3.804 4.026 4.207 4.360 4.492 4.608
17 2.460 3.110 3.503 3.784 4.004 4.183 4.334 4.464 4.579
18 2.452 3.098 3.488 3.767 3.984 4.161 4.311 4.440 4.554
19 2.445 3.087 3.474 3.751 3.966 4.142 4.290 4.418 4.531
20 2.439 3.078 3.462 3.736 3.950 4.124 4.271 4.398 4.510
24 2.420 3.047 3.423 3.692 3.900 4.070 4.213 4.336 4.445
30 2.400 3.017 3.386 3.648 3.851 4.016 4.155 4.275 4.381
40 2.381 2.988 3.349 3.605 3.803 3.963 4.099 4.215 4.317
60 2.363 2.959 3.312 3.562 3.755 3.911 4.042 4.155 4.254

120 2.344 2.930 3.276 3.520 3.707 3.859 3.987 4.096 4.191
∞ 2.326 2.902 3.240 3.478 3.661 3.808 3.931 4.037 4.129
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df for Numerator

df Error α 1 2 3 4 5 6 8 12

.10 2.75 2.35 2.13 1.99 1.90 1.82 1.72 1.60

.20 1.66 1.63 1.57 1.52 1.48 1.45 1.41 1.35
∞ .001 10.83 6.91 5.42 4.62 4.10 3.74 3.27 2.74

.01 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18

.05 3.84 2.99 2.60 2.37 2.21 2.09 1.94 1.75

.10 2.71 2.30 2.08 1.94 1.85 1.77 1.67 1.55

.20 1.64 1.61 1.55 1.50 1.46 1.43 1.38 1.32

Source: Reproduced from E. F. Lindquist, Design and Analysis of Experiments in Psychology and Education,  
Boston, MA: Houghton Mifflin, 1953, pp. 41–44, with permission.
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95th Percentiles

Number of Groups

df Error 2 3 4 5 6 7 8 9 10

1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07
2 6.085 8.331 9.798 10.88 11.74 12.44 13.03 13.54 13.99
3 4.501 5.910 6.825 7.502 8.037 8.478 8.853 9.177 9.462
4 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.602 7.826
5 3.635 4.602 5.218 5.673 6.033 6.330 6.582 6.802 6.995
6 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493
7 3.344 4.165 4.681 5.060 5.359 5.606 5.815 5.998 6.158
8 3.261 4.041 4.529 4.886 5.167 5.399 5.597 5.767 5.918
9 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739

10 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 5.599
11 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5.487
12 3.082 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395
13 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318
14 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254
15 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198
16 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150
17 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108
18 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071
19 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038
20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008
24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915
30 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824
40 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735
60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560
∞ 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 4.474

Table A.4: (Continued )



97.5th Percentiles

Number of Groups

df Error 2 3 4 5 6 7 8 9 10

1 35.99 54.00 65.69 74.22 80.87 86.29 90.85 94.77 98.20
2 8.776 11.94 14.01 15.54 16.75 17.74 18.58 19.31 19.95
3 5.907 7.661 8.808 9.660 10.34 10.89 11.37 11.78 12.14
4 4.943 6.244 7.088 7.716 8.213 8.625 8.976 9.279 9.548
5 4.474 5.558 6.257 6.775 7.186 7.527 7.816 8.068 8.291
6 4.199 5.158 5.772 6.226 6.586 6.884 7.138 7.359 7.554
7 4.018 4.897 5.455 5.868 6.194 6.464 6.695 6.895 7.072
8 3.892 4.714 5.233 5.616 5.919 6.169 6.382 6.568 6.732
9 3.797 4.578 5.069 5.430 5.715 5.950 6.151 6.325 6.479

10 3.725 4.474 4.943 5.287 5.558 5.782 5.972 6.138 6.285
11 3.667 4.391 4.843 5.173 5.433 5.648 5.831 5.989 6.130
12 3.620 4.325 4.762 5.081 5.332 5.540 5.716 5.869 6.004
13 3.582 4.269 4.694 5.004 5.248 5.449 5.620 5.769 5.900
14 3.550 4.222 4.638 4.940 5.178 5.374 5.540 5.684 5.811
15 3.522 4.182 4.589 4.885 5.118 5.309 5.471 5.612 5.737
16 3.498 4.148 4.548 4.838 5.066 5.253 5.412 5.550 5.672
17 3.477 4.118 4.512 4.797 5.020 5.204 5.361 5.496 5.615
18 3.458 4.092 4.480 4.761 4.981 5.162 5.315 5.448 5.565
19 3.442 4.068 4.451 4.728 4.945 5.123 5.275 5.405 5.521
20 3.427 4.047 4.426 4.700 4.914 5.089 5.238 5.368 5.481
24 3.381 3.983 4.347 4.610 4.816 4.984 5.126 5.250 5.358
30 3.337 3.919 4.271 4.523 4.720 4.881 5.017 5.134 5.238
40 3.294 3.858 4.197 4.439 4.627 4.780 4.910 5.022 5.120
60 3.251 3.798 4.124 4.356 4.536 4.682 4.806 4.912 5.006

120 3.210 3.739 4.053 4.276 4.447 4.587 4.704 4.805 4.894
∞ 3.170 3.682 3.984 4.197 4.361 4.494 4.605 4.700 4.784
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99th Percentiles

Number of Groups

df Error 2 3 4 5 6 7 8 9 10

1 90.03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6
2 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69
3 8.261 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69
4 6.512 8.120 9.173 9.958 10.58 11.10 11.55 11.93 12.27
5 5.702 6.976 7.804 8.421 8.913 9.321 9.669 9.972 10.24
6 5.243 6.331 7.033 7.556 7.973 8.318 8.613 8.869 9.097
7 4.949 5.919 6.543 7.005 7.373 7.679 7.939 8.166 8.368
8 4.746 5.635 6.204 6.625 6.960 7.237 7.474 7.681 7.863
9 4.596 5.428 5.957 6.348 6.658 6.915 7.134 7.325 7.495

10 4.482 5.270 5.769 6.136 6.428 6.669 6.875 7.055 7.213
11 4.392 5.146 5.621 5.970 6.247 6.476 6.672 6.842 6.992
12 4.320 5.046 5.502 5.836 6.101 6.321 6.507 6.670 6.814
13 4.260 4.964 5.404 5.727 5.981 6.192 6.372 6.528 6.667
14 4.210 4.895 5.322 5.634 5.881 6.085 6.258 6.409 6.543
15 4.168 4.836 5.252 5.556 5.796 5.994 6.162 6.309 6.439
16 4.131 4.786 5.192 5.489 5.722 5.915 6.079 6.222 6.349
17 4.099 4.742 5.140 5.430 5.659 5.847 6.007 6.147 6.270
18 4.071 4.703 5.094 5.379 5.603 5.788 5.944 6.081 6.201
19 4.046 4.670 5.054 5.334 5.554 5.735 5.889 6.022 6.141
20 4.024 4.639 5.018 5.294 5.510 5.688 5.839 5.970 6.087
24 3.956 4.546 4.907 5.168 5.374 5.542 5.685 5.809 5.919
30 3.889 4.455 4.799 5.048 5.242 5.401 5.536 5.653 5.756
40 3.825 4.367 4.696 4.931 5.114 5.265 5.392 5.502 5.599
60 3.762 4.282 4.595 4.818 4.991 5.133 5.253 5.356 5.447

120 3.702 4.200 4.497 4.709 4.872 5.005 5.118 5.214 5.299
∞ 3.643 4.120 4.403 4.603 4.757 4.882 4.987 5.078 5.157

Source: Reproduced from H. Harter, “Tables of Range and Studentized Range,” Annals of Mathematical Statis-
tics, Baltimore, MD: Institute of Mathematical Statistics, 1960, pp. 1132–1138, with permission.
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 Table A.5: Sample Size Needed in Three-Group MANOVA for Power = .70, .80, and .90  
for α = .05 and α = .01

Effect 
Size

Number 
of 
Variables

Power

α = .05 α = .01

.70 .80 .90 .70 .80 .90

Very Large q 2 = 1.125 2 11 13 16 15 17 21
d = 1.5 3 12 14 18 17 20 24
c = 0.75 4 14 16 19 19 22 26

5 15 17 21 20 23 28
6 16 18 22 22 25 29
8 18 21 25 24 28 32

10 20 23 27 27 30 35
15 24 27 32 32 35 42

Large q 2 = 0.5 2 21 26 33 31 36 44
d = 1 3 25 29 37 35 42 50
c = 0.5 4 27 33 42 38 44 54

5 30 35 44 42 48 58
6 32 38 48 44 52 62
8 36 42 52 50 56 68

10 39 46 56 54 62 74
15 46 54 66 64 72 84

Moderate q 2 = 0.2813 2 36 44 58 54 62 76
d = 0.75 3 42 52 64 60 70 86
c = 0.375 4 46 56 70 66 78 94

5 50 60 76 72 82 100
6 54 66 82 76 88 105
8 60 72 90 84 98 120

10 66 78 98 92 105 125
15 78 92 115 110 125 145

Small q 2 = 0.125 2 80 98 125 115 140 170
d = 0.5 3 92 115 145 135 155 190
c = 0.25 4 105 125 155 145 170 210

5 110 135 170 155 185 220
6 120 145 180 165 195 240
8 135 160 200 185 220 260

10 145 175 220 200 230 280
15 170 210 250 240 270 320

(Continued)



Effect 
Size

Number 
of 
Variables

Power

α = .05 α = .01

.70 .80 .90 .70 .80 .90

Very Large q2 = 1.125 2 12 14 17 17 19 23
d = 1.5 3 14 16 20 19 22 26
c = 0.4743 4 15 18 22 21 24 28

5 16 19 23 23 26 30
6 18 21 25 24 27 32

8 20 23 28 27 30 36

10 22 25 30 29 33 39
15 26 30 36 35 39 46

Large q2 = 0.5 2 24 29 37 34 40 50
d = 1 3 28 33 42 39 46 56
c = 0.3162 4 31 37 46 44 50 60

5 34 40 50 48 54 64
6 36 44 54 50 58 70
8 42 48 60 56 64 76

10 46 52 64 62 70 82
15 54 62 76 72 82 96

Moderate q2 = 0.2813 2 42 50 64 60 70 86
d = 0.75 3 48 58 72 68 80 96
c = 0.2372 4 54 64 80 76 88 105

5 58 70 86 82 94 115
6 62 74 92 86 100 120
8 70 84 105 96 115 135

10 78 92 115 105 120 145
15 92 110 130 125 145 170

Small q2 = 0.125 2 92 115 145 130 155 190
d = 0.5 3
c = 0.1581 4 120 145    180 165 195 240

5 130 155    195 180 210 250
6 140 165    210 190 220 270
8 155 185    230 220 250 300

10 170 200    250 240 270 320
15 200 240    290 280 320 370
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Effect 
Size

Number 
of 
Variables

Power

α = .05 α = .01

.70 .80 .90 .70 .80 .90

Very Large q2 = 1.125 2 13 15    19 18 20 25
d = 1.5 3 15 17    21 20 23 28
c = 0.3354 4 16 19    23 22 26 30

5 18 21    25 24 28 33
6 19 22    27 26 30 35
8 22 25    30 29 33 39

10 24 27    33 32 36 42
15 28 33    39 38 44 50

Large q2 = 0.5 2 26 32    40 37 44 54
d = 1 3 31 37    46 44 50 60

c = 0.2236 4 34 42    50 48 56 66
5 37 44    54 52 60 70
6 40 48    58 56 64 76
8 46 54    66 62 70 84

10 50 58    72 68 78 90
15 60 70    84 80 90 110

Moderate q2 = 0.2813 2 46 56    70 66 76 92
d = 0.75 3 54 64    80 74 86 105
c = 0.1677 4 60 72    88 82 96 115

5 64 78    96 90 105 125
6 70 82    105 96 110 135
8 78 92    115 110 125 145

10 86 105    125 120 135 160
15 105 120    145 140 160 185

Small q2 = 0.125 2 100 125    155 145 170 210
d = 0.5 3 120 145    180 165 195 240
c = 0.1118 4 130 160    195 185 210 260

5 145 170    220 200 230 280
6 155 185    230 220 250 300
8 175 210    260 240 280 330

10 190 230    280 260 300 360
15 230 270    330 310 350 420
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Effect 
Size

Number 
of 
Variables

Power

α = .05 α = .01

.70 .80 .90 .70 .80 .90

Very Large q2 = 1.125 2 14 16    20 19 22 26
d = 1.5 3 16 18    23 22 25 29
c = 0.2535 4 18 21    25 24 27 32

5 19 22    27 26 30 35
6 21 24    29 28 32 37
8 23 27    33 31 35 42

10 25 30    36 34 39 46
15 30 35    42 42 46 54

Large q2 = 0.5 2 28 34    44 40 46 56
d = 1 3 33 39    50 46 54 64
c = 0.1690 4 37 44    54 52 60 70

5 40 48    60 56 64 76

6 44 52    64 60 68 82
8 50 58    70 68 76 90

10 54 64    78 74 84 98
15 64 76    90 88 98 115

Moderate q2 = 0.2813 2 50 60    76 70 82 98
d = 0.75 3 58 70    86 80 94 115
c = 0.1268 4 64 76    96 90 105 125

5 70 84    105 98 115 135
6 76 90    110 105 120 145
8 86 100    125 120 135 160

10 94 110    135 130 145 175
15 115 135    160 155 175 210

Small q2 = 0.125 2 110 135    170 155 180 220
d = 0.5 3 130 155    190 180 210 250
c = 0.0845 4 145 170    220 200 230 280

5 155 185    230 220 250 300
6 170 200    250 230 270 320
8 190 230    280 260 300 350

10 210 250    300 290 330 390
15 250 290  360 340 380 460

1 There exists a variate i such that 1/ ( ) ,2
ij ij=1

J 2σ µ − µ ≥∑ q  where µi, is the total mean and σ2 is the variance. 

There exists a variate s such that 1/ -i ij1 ij2σ µ µ ≥ d , for two groups j1 and j2. There exists a variate s such 

that for all pairs of groups 1 and m we have 1/ .i i1 imσ µ − µ ≥ c

2 The entries in the body of the table are the sample size required for each group for the power indicated. For 
example, for power = .80 at α = .05 for a large effect size with four variables, we would need 33 subjects per 
group.
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Appendix B

OBTAINING 
NONORTHOGONAL 
CONTRASTS IN REPEATED 
MEASURES DESIGNS

(Reprinted from KEYWORDS, number 52, 1993, copyright by SSPS, Inc., Chicago.)

This appendix features a KEYWORDS (an SPSS publication) article from 1993 on 
how to obtain nonorthogonal contrasts in repeated measures designs. The article first 
explains why SPSS is structured to orthogonalize any set of contrasts for repeated 
measures designs. It then clearly explains how to obtain nonorthogonal contrasts for 
a single sample repeated measures design, and indicates how to do so for some more 
complex repeated measures designs.

Nonorthogonal Contrasts on WSFACTORS in MANOVA

A substantial number of users have asked how to get SPSS MANOVA to produce non-
orthogonal contrasts in repeated measures, or within subjects, designs. The reason that 
nonorthogonal contrasts (such as the default DEVIATION, or the popular SIMPLE, or 
some SPECIAL user requested contrasts) are not available when using WSFACTORS 
is that the averaged tests of significance require orthogonal contrasts, and the program 
has been structured to ensure that this is the case when WSFACTORS is used (users 
working on version 5 and later of SPSS should note that DEVIATION is no longer the 
default contrast type for WSFACTORS).

MANOVA thus transforms the original dependent variables Y(1) to Y(K) into trans-
formed variables labeled T1 to TK (if no renaming is done) which represent orthonor-
mal linear combinations of the original variables. The transformation matrix applied 
by MANOVA can be obtained by specifying PRINT=TRANSFORM. Note that the 
transformation matrix has been transposed for printing, so that the contrasts estimated 
by MANOVA are discerned by reading down the columns.
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Here is an example, obtained by specifying a simple repeated measures MANOVA 
with four levels and no between subjects factors. The following syntax produces the 
output in Figure B.1.

MANOVA Y1 TO Y4
/WSFACTORS = TIME(4)
/PRINT = TRANSFORM

To see what contrasts have been obtained, simply read down the columns of the trans-
formation matrix. Thus, we have:

T1 = .500*Y1 + .500*Y2 + .500*Y3 + .500*Y4

T2 = .707*Y1 − .707*TY4

T3 = −.408*Y1 + .816*Y2 − .408*Y4

T4 = −.289*Y1 − .289*Y2 + .866*Y3 − .289*Y4

Three further points should be noted here. First, the coefficients of the linear combi-
nations used to form the transformed variables are scaled such that the transformation 
vectors are of unit length (are normalized). This can be duplicated by first specifying 
the form of the contrasts using integers, then dividing each coefficient by the square 
root of the sum of the squared integer coefficients. For example,

T3 = (−1*Y1 + 2*Y2 − 1*Y4)/SQRT[(−1)**2 + 2**2 + (−1)**2]

Second, the first transformed variable (T1) is the constant term in the within subjects 
model, a constant multiple of the mean of the original dependent variables. This will 
be used to test between subjects effects if any are included in the model.

Finally, note that the contrasts generated here are not those that we asked for (since we 
did not specify any contrasts, the default DEVIATION contrasts would be expected). 
An orthogonalization of a set of nonorthogonal contrasts changes the nature of the 
comparisons being made. It is thus very important when interpreting the univariate 
F-tests or the parameter estimates and their t-statistics to look at the transformation 
matrix when transformed variables are being used, so that the inferences being drawn 
are based on the contrasts actually estimated.

Figure B.1: Orthonormalized Transformation Matrix (Transposed)

T1 T2 T3 T4

Y1 .500 .707 –.408 –.289
Y2 .500 .000 .816 –.289
Y3 .500 .000 .000 .866
Y4 .500 –.707 –.408 –.289
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This is not the case with the multivariate tests. These are invariant to transforma-
tion, which means that any set of linearly independent contrasts will produce the 
same results. The averaged F-tests will be the same given any orthonormal set of 
contrasts.

Now that we know why we can’t get the contrasts we want when running a design 
with WSFACTORS, let’s see how to make MANOVA give us what we want. This 
is actually fairly simple. All that we have to do is to get MANOVA to apply a non-
orthogonal transformation matrix to our dependent variables. This can be achieved 
through the use of the TRANSFORM subcommand. What we do is to remove the 
WSFACTORS subcommand (and anything else such as WSDESIGN or ANALY-
SIS(REPEATED) that refers to within subjects designs) and transform the dependent 
variables ourselves.

For our example, the following syntax produces the transformation matrix given in 
Figure B.2:

MANOVA Y1 TO Y4
 /TRANSFORM = DEVIATION
 /PRINT = TRANSFORM
 /ANALYSIS = (T1/T2 T3 T4)

Figure B.2: Transformation Matrix (Transposed)

T1 T2 T3 T4

Y1 1.000 .750 –.250 –.250
Y2 1.000 –.250 .750 –.250
Y3 1.000 –.250 –.250 .750
Y4 1.000 –.250 –.250 –.250

Note that this transformation matrix has not been orthonormalized; it gives us the 
deviation contrasts we requested. You might be wondering what the purpose of the 
ANALYSIS subcommand is here. The analysis subcommand is used to separate the 
transformed variables into effects so that the multivariate tests produced in this case 
are equivalent to those in the run where WSFACTORS was used. This serves two pur-
poses. First, it allows us to check to make sure that we’re still fitting the same model. 
Second, it helps us to identify the different effects on the output. In this case, we will 
have only effects labeled “CONSTANT,” since we don’t have any WSFACTORS as 
far as MANOVA is concerned. MANOVA is simply doing a multivariate analysis on 
transformed variables. This is the same thing as the WSFACTORS analysis, except 
that the labeling will not match for the listed effects.

In this case, we will look for the effects labeled CONSTANT with T2, T3, and T4 as the 
variables used in the analysis. These correspond to the TIME effect from the WSFAC-
TORS run, as can be seen by comparing the multivariate tests, but the univariate tests 
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now represent the contrasts that we wanted to see (as would the parameter estimates if 
we had printed them).

Often the design is more complex than a simple repeated measures analysis. Can this 
method be extended to any WSFACTORS design? The answer is yes. If there are 
multiple dependent variables to be transformed (as in a doubly multivariate repeated 
measures design), each set can be transformed in the same manner. For example, if 
variables A and B are each measured at 3 time points, resulting in A1, A2, A3, etc., the 
following MANOVA statements could be used:

MANOVA A1 A2 A3 B1 B2 B3
 /TRANSFORM(A1 A2 A3/B1 B2 B3) = SIMPLE
 /PRINT = TRANSFORM
 /ANALYSIS = (T1 T4/T2 T3 T5 T6)

The TRANSFORM subcommand tells MANOVA to apply the same transformation 
matrix to each set of variables. The transformation matrix printed by MANOVA would 
then have a block diagonal structure, with two 3 × 3 matrices on the main diagonal, and 
two 3 × 3 null matrices off the main diagonal. The ANALYSIS subcommand separates 
the two constants, T1 and T4, from the TIME variables, T2 and T3 (for A), and T5 and 
T6 (for B).

Another complication that may arise is the inclusion of between subjects factors in 
an analysis. The only real complication involved here is in the interpretation of the 
output. Printing the transformation matrix always allows us to see what the trans-
formed variables represent, but there is also a way to identify specific effects with-
out reference to the transformation matrix. There are two keys to understanding the 
output from a MANOVA with a TRANSFORM subcommand: (1) The output will 
be divided into two sections: those which report statistics and tests for transformed 
variables T1, etc., which are the constants in the repeated measures model, used 
for testing between subjects effects, and those which report statistics and tests for 
the other transformed variables (T2, T3, etc.), which are the contrasts among the 
dependent variables and measure the time or repeated measures effects; (2) Output 
indicating that transformed variable T1 has been used represents exactly the effect 
stated in the output. Output indicating that transformed variables T2, etc. have been 
used represents the interaction of whatever is listed on the output with the repeated 
measures factor (such as time).

In other words, an effect for CONSTANT using variates T2 and T3 is really the time 
effect, and an effect FACTOR1 using T2 and T3 is really the FACTOR1 BY TIME 
interaction effect. If between subjects effects have been specified, the CONSTANT 
term must be specified on the DESIGN subcommand in order to get the TIME effects. 
Also, the effects can always be identified by matching the multivariate results to those 
from the WSFACTORS approach as long as the effects have been properly separated 
with an ANALYSIS subcommand.
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An example might help to make these principles more concrete. The following 
MANOVA commands produced the four sets of F-tests listed in Figure B.3:

MANOVA Y1 TO Y4 BY A(1,2)
 /WSFACTORS = TIME (4)

The second run used TRANSFORM to analyze the same data, producing the output 
in Figure B.4.

MANOVA Y1 TO Y4 BY A(1,2)
 /TRANSFORM = SIMPLE
 /ANALYSIS = (T1/T2 T3 T4)
 /DESIGN = CONSTANT, A

The first table in each run is the test for the between subjects factor A. Note that 
the F-values and associated significances are identical. The sums of squares differ 
by a constant multiple due to the orthonormalization. The CONSTANT term in the 
TRANSFORM run is indeed the constant and is usually not of interest. The second 
and third tables in the WSFACTORS run contain only multivariate tests for the A BY 
TIME and A factors, respectively. The univariate tests here are not printed by default. 
The corresponding tables in the TRANSFORM output are labeled A and CONSTANT, 
with the header above indicating that variates T2, T3, and T4 are being analyzed. Note 
that the multivariate tests are exactly the same as those for the WSFACTORS run. This 
tells us that we have indeed fit the same model in both runs.

The application of our rule for interpreting the labeling in the TRANSFORM run tells 
us that the second table represents A BY TIME and that the third table represents CON-
STANT BY TIME, which is simply TIME. Since MANOVA is simply running a mul-
tivariate analysis with transformed variables, as opposed to a WSFACTORS analysis, 
univariate F-tests are printed by default. The univariate tests for TIME are generally 
the major source of interest, as they are usually the reason for the TRANSFORM run. 
The A BY TIME tests may be the tests of interest if interaction is present.

Finally, the WSFACTORS run presents the averaged F-tests, which are not available 
in the TRANSFORM run (and which would not be valid, since we have not used 
orthogonal contrasts).

One further example setup might be helpful in order to clarify how we would pro-
ceed if we had multiple within subject factors. This is probably the most complex and 
potentially time consuming situation we will encounter when trying to get MANOVA 
to estimate nonorthogonal contrasts in within subjects designs, since we must know the 
entire contrast (transformation) matrix we want MANOVA to apply to our data. In this 
case we must use a SPECIAL transformation, and spell out the entire transformation 
matrix (or at least the entire matrix for each dependent variable; if there are multiple 
dependent variables we can tell MANOVA to apply the same transformation to each).
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Figure B.3:

#1—The A main effect
Tests of Between-Subjects Effects.
Tests of Significance for T1 using UNIQUE sums of squares

Source of Variation SS DF MS F Sig. of F

WITHIN CELLS 36.45 17 2.14
A  3.79 1 3.79 1.77 2.01

#2—The A BY TIME interaction effect EFFECT.. A BY TIME
Multivariate Tests of Significance (S = 1, M = 1/2, N = 6 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais  .59919 7.47478 3.00 15.00 .003
Hotellings 1.49496 7.47478 3.00 15.00 .033
Wilks  .40081 7.47478 3.00 15.00 .033
Roys  .49919

Note: F statistics are exact.

#3—The TIME effect EFFECT.. TIME
Multivariate Tests of Significance (S = 1, M = 1/2, N = 6 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .29487 2.09085 3.00 15.00 .144
Hotellings .41817 2.09085 3.00 15.00 .144
Wilks .70513 2.09085 3.00 15.00 .144
Roys .29487

Note: F statistics are exact.

#4—The averaged F-tests for TIME and A BY TIME Tests involving ‘TIME’ Within-Subject 
Effect.
AVERAGED Tests of Significance for Y using UNIQUE sums of squares

Source of Variation SS DF MS F Sig. of F

WITHIN CELLS 231.32 51  4.54
TIME  25.97 3  8.66 1.91 .140
A BY TIME  30.55 3 10.18 2.25 .094
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Order of Variables for Analysis
Variates   Covariates
T1

#1—The A main effect
Tests of Significance for T1 using UNIQUE sums of squares

Source of variation SS DF MS F Sig. of F    

WITHIN CELLS  145.79 17     8.58    
CONSTANT 8360.21 1 8360.21 974.86 .000    
A  15.16 1      15.16     1.77 .201    

Order of Variables for Analysis   

Variates Covariates    
T2    
T3    
T4    

#2—The A BY TIME interaction effect
Effect .. A
Multivariate Tests of Significance (S = 1, M = 1/2, N = 6 1/2) 

Test Name Value Exact F Hypoth. DF Error DF Sig. of F    

Pillais .59919 7.47478 3.00 15.00 .003    
Hotellings 1.49496 7.47478 3.00 15.00 .003    
Wilks .40081 7.47478 3.00 15.00 .003    
Roys .59919    

Note: F statistics are exact.   

EFFECT .. A 
Univariate F-tests with (1,17) D.F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

T2 18.73743 135.78889 18.73743 7.98758 2.34582 .144
T3 9.58129 227.15556 9.58129 13.36209 .71705 .409
T4 2.24795 108.48889 2.24795 6.38170 .35225 .561

#3—The TIME effect EFFECT .. CONSTANT
Multivariate Tests of Significance (S =1, M =1/2, N= 6 1/2)   

Test Name Value Exact F Hypoth. DF Error DF Sig. of F    

Pillais .29487 2.09085 3.00 15.00 .144    
Hotellings .41817 2.09085 3.00 15.00 .144    
Wilks .70513 2.09085 3.00 15.00 .144    
Roys .29487    

Note: F statistics are exact.

(Continued  )
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Figure B.3: (Continued)

EFFECT .. CONSTANT
Univariate F-tests with (1,17) D.F.   

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

T2 23.15848 135.78889 23.15848 7.98758 2.89931 .107
T3 4.94971 227.15556 4.94971 13.36209 .37043 .551
T4 45.19532 108.48889 45.19532 6.38170 7.08202 .016

Let’s look at a situation where we have a 2 × 3 WSDESIGN and we want to do SIM-
PLE contrasts on each of our WSFACTORS. The standard syntax for the WSFAC-
TORS run would be:

MANOVA V1 TO V6
 /WSFACTORS = A(2) B(3)

The syntax for the TRANSFORM run would be:

MANOVA V1 TO V6
/TRANSFORM = SPECIAL (1 1 1 1 1 1

1 1 1 –1 –1 –1
1 0 –1 1 0 –1
0 1 –1 0 1 –1
1 0 –1 –1 0 1
0 1 –1 0 –1 1)

/PRINT = TRANSFORM
/ANALYSIS = (T1/T2/T3 T4/T5 T6)

Note that the final two rows of the contrast matrix are simply coefficient by coefficient 
multiples of rows two and three and two and four, respectively. Also, the ANALY-
SIS subcommand here separates the effects into four groups: the CONSTANT and 
A effects (each with one degree of freedom) and the B and A BY B interaction effect 
(with two degrees of freedom). Once again, this separation allows us to compare the 
TRANSFORM output with appropriate parts of the WSFACTORS output. Though this 
use of SPECIAL transformations can be somewhat tedious if there are many WSFAC-
TORS or some of these factors have many levels, it is also very general and will allow 
us to obtain the desired contrasts for designs of any size.



DETAILED ANSWERS

Chapter 1
1. The consequences of type I error would be false optimism. For example, if the treatment 

is a diet and a type I error is made, you would be concluding that a diet is better than no 
diet, when in fact that is not the case. The consequences of type II error would be false 
negativism. For example, if the treatment is a drug, and a type II error is made, you would 
be concluding that the drug is not better than placebo, when in fact that is not the case.

3. (a)  Two-way ANOVA with six dependent variables. How many tests were done? For each 
dependent variable there are three tests: two main effects and an interaction. Thus, the 
total number of tests done is 6(3) = 18. The Bonferroni upper bound is 18(.05) = .90. 
The tighter upper bound is 1 − (.95)18 = .603.

(b) Three-way ANOVA with four dependent variables. How many tests were done? For 
each dependent variable there are seven tests: A, B, and C main effects, AB, AC, and 
BC interactions, and the ABC interaction. Thus, the total number of tests done is 
4(7) = 28. The Bonferroni upper bound is 28(.05) = 1.4. The tighter upper bound is 
1 − (.95)28 = .762.

5. (a)  The differences on each variable may combine to isolate the participant in space of the 
four variables.

(b) It would be advisable to test at the .001 level since 150 tests are being done.

7. Yes, in this case, they are all good methods to use. When data are MCAR, listwise deletion 
provides unbiased parameter estimates, and any power loss due to the missing data would 
be expected to be negligible due to the small amount of missing data. FIML and MI provide 
unbiased parameter estimates when data are MCAR and MAR, although they may provide 
for less power in the case with minimal missing data. Analyzing data with listwise deletion 
and one of these other methods may be useful to assess which method provides for more 
power. In practice, if may be difficult to rule out the MNAR mechanism, which might 
lead some researchers at times to use FIML and MI if some useful auxiliary variables are 
available.
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Chapter 2
1. (a) A + C = 

3 7 6
9 0 6







(b) A + B is not meaningful; matrices must be of the same dimension to add.

(c) AB = 13 12
14 24







(d) AC is not meaningful; the number of rows of C is not equal to the number of columns 
of A.

(e) u′D u in parts is:
 u′D = (10, 20)

 and (10, 20)(u) = 10, 20
1
3

= 10 + 60 = 70.( ) 





(f) u′v = (1)(2) + (3)(7) = 23.

(g) (A + C) =
2 4 1
3 2 5

+
1 3 5
6 2 1

=
3 7 6
9 0 6−



















 thus, (A + C)′ = 
3 9
7 0
6 6

.












(h) 3C = 3 9 15
18 6 3







(i) |D|= (4 × 6) − (2 × 2) = 20

(j) D−1 = 1

20

6 2
2 4

6
20

2
20

2
20

4
20

−
−

=
−

−



















(k) E = − −
−

+
−

=( )1
3 1
1 10

1
1 1

2 10
2

1 3
2 1

3

(l) E− = =
−
−

− −













1
29 12 7
12 6 3

7 3 2
? Matrix of cofactors

 therefore, E− =
−
−

− −













1 1

3

29 12 7
12 6 3

7 3 2
.

(m) ′ − = ′ − = =( ) ( ) 





u D u D u1 0 10
20

1 0 10
20

1
3

30
20, . , , Thus .
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(n) BA =












8 0 11
7 6 7

18 4 23

(o) ′ = 





X X
51 64
64 90

3. S (covariance matrix) = 
1

4

26 8 24 14
24 24 14
14 14 52

. −
−

− −













5. A cannot be a variance-covariance matrix, since the determinant is −113, and the determi-
nant of a covariance matrix represents the generalized variance.

7. When the SPSS MATRIX program is run the following output is obtained:

A
6 2 4
2 3 1
4 1 5

DETA
32.00000000

AINV
 .4375000000   –.1875000000   –.3125000000
–.1875000000    .4375000000    .0625000000
–.3125000000    .0625000000    .4375000000

9. (a) The SPSS output is:

S
4 3 1
3 9 2
1 2 1

DETS
14

(b) The determinant represents the variation in the set of three variables after we account 
for the associations among the variables.

Chapter 3
 1. (b)  There does not appear to be a pattern in the residual plot, suggesting there are no vio-

lations of assumptions. There are no outliers for Y.
(c) The slope of .978 indicates that for every unit increase in x, the y values are predicted to 

increase by .98 units. This increase is statistically significant (p = .001).
(d) In the population, the proportion of variation in y that is due to x is estimated to be .675.

 3. (a) If x1 enters the equation first, it will account for (.60)2 × 100 or 36% of the y variance.
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(b) To determine how much variance on y that predictor x will account for if entered sec-
ond, we need to partial out x2. Thus, we compute the following semipartial correlation:

 r
r r r

r
y1 2 s

y1 y2 12

12
2

=
-

1 -
( )

 =
.60 .50 .80

1 .8
= .33

2

−

−

( )
( )

 thus = .33 = .1089.y1 2 s
2 2r ( ) ( )

(c) Since x1 and x2 are strongly correlated (exhibit multicollinearity), when a predictor en-
ters the equation influences greatly how much variance it will account for. Here, when 
x1 is entered first it accounted for 36% of the variance, while it accounted for only 11% 
when entered second.

 5. (a) F = 
.346 4

1 .346 68 5
= .03 .014 = 2.14

2

2

( )
( ) ( )− −

Since 2.14 < 2.52, we fail to reject the null hypothesis.

(b) F = 
.682 .555 6

1 .682 57 11
= .026 .012 = 2.17

2 2

2

−

− −

( )
( ) ( )

 Since 2.17 is less than the critical value of 2.3, we conclude that the Home inventory 
variables do not significantly increase predictive power.

 7. (b) No, the t test associated with the coefficient for CERTIF is .736, and p =.476.
(c) With COMP as the only statistically significant predictor, the prediction  

equation is:
 MARK=164.254+3.591*COMP

 9. If we use the median value of 11, the Stein estimate of average cross validity predictive 
power is

p c
2 = 1

21
10

20
9

23
22

1 .423 = 1.81.− − −















 ( )

Since this estimate is negative, we would accept 0 as the value, and conclude that the equa-
tion has essentially no generalizability.

11. The value is 2.117. The following SPSS syntax can be used to obtain this value.

MATRIX.
COMPUTE A = {7.2, 1.2}.
COMPUTE ATRANS = T(A).
PRINT A.
PRINT ATRANS.
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COMPUTE S = {88.7, -40.55; -40.55, 31.7}.
COMPUTE SINV = INV(S).
PRINT S.
PRINT SINV.
COMPUTE FIRST = A*SINV.
PRINT FIRST.
COMPUTE SECOND = FIRST*ATRANS.
PRINT SECOND.
END MATRIX.

12. The backwards procedure selects the same predictors as selected by the stepwise procedure 
(implemented in SAS) in Example 3.4.

Chapter 4
1. (a)  This is a three-way univariate ANOVA, with sex, socioeconomic status, and teaching 

method as the factors and the Lankton algebra test as the dependent variable.
(b) This is a multivariate study, a two-group MANOVA with reading speed and reading 

comprehension as the dependent variables.
(c) This is a multiple regression study, with success on the job as the dependent variable and 

high school GPA and the personality variables as the predictors.
3. No, the results are generally not impressive. Since this is a three-way design (call the fac-

tors A, B, and C), there are seven statistical tests (seven effects: A, B, and C main effects; 
the AB, AC, and BC interactions; and the three-way interaction) being done for each of the 
five dependent variables. Thus, 35 statistical tests were done for these effects with each test 
using an alpha of .05. The chance of three or four of these tests resulting in a type I error is 
high. Yes, we could have more confidence if the significant effects had been hypothesized 
a priori. In this case, there would have been an empirical (theoretical) basis for expecting 
the results to be “real,” which would then be empirically confirming. Since there are five 
correlated dependent variables, a three-way MANOVA would have been a better way of 
analyzing the data.

5. Using Table 4.7 with D2 = .64 (as a good approximation):

Variables N .64

3 25 .74
5 25 .68

 Interpolating between the power values of .74 for the three variables and the .68  
for the five variables, we see that about 25 participants per group will be needed for 
 power = .70 for four variables.

7. (a) The multivariate null hypothesis is rejected, since F = 3.749, p = .016.
(b) D2 can be calculated. First, use the obtained F to calculate T 2, which is

 T
N pF
N p

2 2

1

23 2 6 3 749

23 6 1
29 523=

−

− −
=

−

− −
=

( ) ( )( )( ).
. .
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 Then, D2 is

 D
NT
n n

2
2

1 2
23 29 523 11 12 5 144= = × =( )( ) ( ). . .

 This is a very large effect size. Thus, it is not surprising that the multivariate null 
hypothesis was rejected, as not many participants per group are needed for excellent 
power given this effect.

(c) Setting overall alpha to .05, then applying the Bonferroni adjustment, each variable is 
tested for significance at the .05 / 6 = .0083 level of significance. Examining the output 
indicates that significant group mean differences are present for tone (F = 13.97, p 
=.001), rhythm (F = 9.34, p =.006), intonation (F = 13.86, p =.001), and articulation 
(F = 17.17, p < .001).

9. The reason the correlations are embedded in the covariance matrix is that, to calculate the 
correlations for each pair of variables, we can divide the covariance by the product of the 
respective standard deviations (as the formula for the correlation has the covariance in the 
numerator).

Chapter 5
1. (a)  The multivariate null hypothesis is that the population mean vectors for the groups are 

equal, i.e., μ1 = μ2 = μ3  We do reject the multivariate null hypothesis at the .05 level 
since F = 3.34 (corresponding to Wilks’ Λ), p = .008.

(b) There are no group differences on Y1 (F = 2.46, p = .105) but differences are present 
for Y2 (F = 12.10, p < .001) and Y3 (F = 8.81, p = .001).

(c) For Y2, the performance of group 2 is superior as it may be concluded that their pop-
ulation mean is greater than the mean of group 1 (p = .006) and group 3 (p < .001). 
We cannot conclude there is a difference in population means between groups 1 and 3 
(p = .226).

For Y3, the mean of group 2 is greater than the mean of group 3 (p = .001). However, using 
an alpha of .0167, we cannot conclude that there is a difference in population means 
between groups 2 and 1 (p = .026) or between groups 1 and 3 (p = .282).

3. (a)  We would not place a great deal of confidence in these results, since from the  
Bonferroni Inequality the probability of at least one spurious significant result could 
be as high as 12(.05) = .60. Thus, it is possible that some of these differences represent  
type I errors. Further, since the authors did not a priori hypothesize differences on the 
variables for which significance was found, there would certainly be a concern about 
type I errors.

(b) One way to minimize the probability of making type I errors is to apply an adjusted 
alpha (a / p) to each ANOVA. Alternatively, the authors could have attempted to form 
composite variables if they believed that some variables tapped certain constructs, 
thus reducing the number of comparisons. Additionally, if the researchers were in-
terested in exploring whether any linear combinations of variables separates groups, 
discriminant function analysis (see Chapter 10) can be used.
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Chapter 6
1. Dependence of the observations would be expected to be present whenever participants 

are clustered in or receive treatments in groups: classrooms, counseling or psychotherapy 
groups, workplaces, and so on.

3. It implies that whatever the three population variances and three covariances are for a 
given group, the values for these six elements are the same across all groups.

5. (a) Given the alpha level of .025, there are four departures from normality.

Tests of Normality

Group

Kolmogorov–Smirnova Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Anxiety 1.00 .215 20 .016 .841 20 .004
2.00 .157 26 .096 .912 26 .030

Depression 1.00 .207 20 .025 .863 20 .009
2.00 .142 26 .187 .901 26 .016

Anger 1.00 .208 20 .023 .820 20 .002
2.00 .142 26 .190 .921 26 .046

a Lilliefors Significance Correction

(c) Case 18 in group 1 has two z-scores greater than |2.5|: z = 2.65 (anxiety) and z = 2.67 
(depression). Case 9 has one such z-score: z = 2.62 (anger).

 Even with these two cases removed, there are still four departures from normality.

Tests of Normality

Group

Kolmogorov–Smirnova Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Anxiety 1.00 .190 18 .086 .852 18 .009
2.00 .157 26 .096 .912 26 .030

Depression 1.00 .194 18 .072 .866 18 .015
2.00 .142 26 .187 .901 26 .016

Anger 1.00 .177 18 .142 .860 18 .012
2.00 .142 26 .190 .921 26 .046

a Lilliefors Significance Correction

(d) By examining the stem and leaf plots (with all cases), you can see considerable positive 
skew for each variable. Examining Figure 6.1 suggests use of the square root transfor-
mation. When the EXAMINE procedure is rerun with the transformed variables, none 
of the Shapiro–Wilk tests is significant at the .025 level.

7. The type I error rate of .035 makes sense because for this situation the group with the larger 
size has the larger generalized variance (thus, leading to a more conservative test). The 
value of .076 also makes sense because for this situation the larger group has the smaller 
generalized variance, thus leading to more liberal test result.
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Chapter 7
1. (b)  Using Wilks’ lambda, all three multivariate effects are significant at the .05 level; 

FACA, p = .011, FACB, p = .001, FACA*FACB, p = .013.
(c) For the main effects, both dependent variables are significant at the .025 level. For the 

interaction effect only dependent variable 1 is significant at the .025 level.
(d) The result will be the SAME. For equal cell n, which we have here, all three methods 

yield identical results.

Chapter 8
1. (a)  Yes. The test for the homogeneity of regression slopes for the set of outcomes is not 

statistically significant (Wilks’ lambda = .995, p = .944). Also, the covariate is related 
to the set of outcomes (Wilks’ lambda = .736, p = .022).

(b) Yes, the adjusted mean vectors are significantly different, as Wilks’ lambda = .616, 
p = .002.

(c) Yes. The test of group differences for Y1 is significant (F = 9.1, p =.006) as is the test 
for Y2 (F = 8.3, p =.008).

(d) Group 2 had greater adjusted mean performance for Y1 (15.4 vs. 11.9) and for Y2 (10.4 
vs. 5.7).

(e) For Y1, d = =3 50 11 71 1 02. . . . For Y2, d = =4 78 20 05 1 07. . . .

3. What we would have found had we blocked on IQ and ran a factorial ANOVA on achieve-
ment is a block (IQ) by method interaction.

5. The main reason for using covariance in a randomized study is to obtain greater power for 
the test of the treatment.

Chapter 9
1. (a) Amount for Comp 1 = .5812 + .7672 + .6722 + .9322 + .7912 = 2.871739
 Percent for Comp 1 = (2.871739 / 5)(100) = 57%
 Amount for Comp 2 = .8062 + .5452 + .7262 + .1042 + .5582 = 1.795917

 Percent for Comp 2 = (1.795917 / 5)(100) = 36%

(b) Amount for Comp 1 = .0162 + .9412 + .1372 + .8252 + .9682 = 2.522155
 Percent for Comp 1 = (2.522155 / 5)(100) = 50%
 Amount for Comp 2 = .9942 + .0092 +.9802 + .4472 + .0062 = 2.148362

 Percent for Comp 2 = (2.148362 / 5)(100) = 43%

(c) The variance accounted for by each component in the rotated solution is more evenly 
distributed across the two components than in the unrotated solution. In the initial 
(unrotated) solution, component 1 must account for the greatest amount of variance. 
That property no longer holds for rotated solutions.

(d) For the unrotated components, the total amount of variance explained is 2.87 + 
1.80 = 4.67. The total percent explained variance is (4.67 / 5)(100) = 93%.

  For the rotated components, the total amount of variance explained is 2.52 + 2.15 
= 4.67. The total percent explained variance is (4.67 / 5)(100) = 93%. No, rotation 
does not affect the total amount and percent of variance explained by the set of 
components.
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(e) Communality for variable 1 for unrotated solution = .5812 + .8062 = 0.99.
 Communality for variable 1 for rotated solution = .0162 + .9942 = 0.99.

 No, the communalities do not change with rotation.
3. (a)  The two-factor solution has empirical support as only two factors using the unreduced 

correlation matrix have eigenvalues greater than 1.
 The three-factor solution has empirical support as using parallel analysis supports the 

presence of three factors. Also, inspecting the scree plot of the eigenvalues from the 
reduced correlation matrix supports the three-factor solution.

(b) Inspecting the pattern coefficients from the three-factor solution provides support for 
the three factors (given that we removed the bodily symptoms factor) hypothesized 
to underlie test anxiety. The values of the correlations also seem sensible and support 
the presence of three distinct factors (since the correlations are not too high). For the 
two-factor solution, the test-irrelevant thinking items appear to compose one factor, 
but note that the worry items could be considered to cross-load on this factor. The oth-
er factor is a combination of the tension and worry items, and it is not clear how this 
factor may be interpreted. As such, the three-factor solution seems more meaningful.

5. Regardless of the association between factors, an orthogonal rotation keeps factors uncor-
related. Thus, with this rotation, factors are assumed to be uncorrelated (which may not be 
the case, but is undiscoverable by an orthogonal rotation). An oblique rotation must be used 
to estimate factor correlations.

Chapter 10
1. (a)  Since the number of functions is the smaller of groups − 1(2) and the number of dis-

criminating variables (3), 2 functions will be formed.
(b) As shown in the table below, only the first function is statistically significant at the .05 

level.

Wilks’ Lambda

Test of function(s) Wilks’ lambda Chi-square df Sig.

1 through 2 .498 17.450 6 .008
2 .985 .366 2 .833

(c) .7042 = .4956 and .1212 = .0146. Thus, about 50% of the variation for the first function 
is between groups, and about 1% of the variation in the second function is between 
groups.

(d) The first function accounts for 98.5% of the total between-group variance, and the 
second function accounts for the remaining 1.5%

(e) Given the values for the standardized discriminant function coefficients, it appears 
that variables Y2 and Y3 should be used to interpret the function. Individuals having 
high scores on this function would be expected to have high scores for Y2 and Y3. 
Low scores on this function correspond with low scores for the same two variables.

(f) Each group seems distinct from one another as there are fairly large differences be-
tween each group centroid (or mean). The centroids suggest that individuals in group 
2 have generally very high scores on the first function (Y2 and Y3), and those in group 
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3 have generally low scores on this combination of variables. Participants in group 2, 
on average, have somewhat below average scores on this function.

(g) Examining the univariate F tests indicates there are group differences on variables Y2 
and Y3, which agrees with the discriminant analysis results. In addition, examining 
the table of means shown in the output is also consistent with the differences in group 
centroids, as discussed earlier.

(h) As discussed in section 10.5, the total sample size should be at least 20 times the number 
of observed variables, and there should be at least 20 cases per group. Thus, for this 
example, 60 cases (with 20 in each group) would meet this minimum standard.

3. (a) The original hit rate is 72%.
 (b) The jackknife hit rate is 68%, dropping off just a bit from the original hit rate.

Chapter 11
1. (a)  The dependent variable is dichotomous, and there is a mix of predictor variables 

(dichotomous and continuous). Use of traditional regression analyses would pose 
potential problems, such as violation of constant variance and normality assumptions, 
use of an incorrect functional form, and estimated probabilities that may be negative 
or exceed 1.

(c) Logit = −5 + .01gender +.2motiv
(d) For X1: Odds ratio is exp(.01) = 1.01. The odds of compliance are 1.01 times greater for 

females than for males, controlling for motivation. This association between gender and 
compliance is not significant (p = .97).
For X2: For a 10-point increase in motivation, the odds ratio is exp(.2 × 10) =  
exp(2) = 7.39. For a 10-point increase in motivation, the odds of compliance increase 
by a factor of 7.39, controlling for gender. This association between motivation and 
compliance is significant (p = .03).

Chapter 12
1. The difference in population means being equal is the same as saying the population means 

are equal. By transitivity, we have that the population means for 1 and 3 are equal. Contin-
uing in this way, we show that all the population means are equal.

3. (a) The stress management approach was successful: Multivariate F = 8.98, p = .006.
(b) Only the STATEDIFF variable is contributing: p = .005.

5.     si

S =














4 3 2
3 5 2
2 2 6

3
3 33
3 33
.
.

Here, k s sii= = =
+ +

=3 3 222
4 5 6

3
5, . ,

∑∑ = + + + … + + =sij
2 2 2 2 2 24 3 2 2 6 111

ε =
−

− + + +

( )
( ){ } ( ) 

3 5 3 222

2 111 2 3 9 11 09 11 09 9 10 381

2 2
.

. . .
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ε =
28.45

2 111-187.08 + 93.43
= .82( )( ) .

7. sy y1 2
2 1 3 2 5 3− = + − =( ).

 sy y1 3
2 1 5 2 1 5 3− = + − =( ).

sy2-y3
2 = + − =( )3 5 2 2 5 3.

 Since the variances of the three difference variables are identical, this indicates no violation of the 
sphericity assumption. Thus, ε will be at its maximum value of 1, which indicates no violation.

9. (a) The design schematically looks as follows:

Time 1 Time 2

Brand Crest Colgate A&H Crest Colgate A&H

Belief 1 2 3 4 5 6 7 8 9 10 11 12

Gender AGE
20–35

M 36–50
> 51
20–35

F 36–50
> 51

 Note that each person is measured 12 times. Thus, there are 12 outcome variables in the analysis.
(b) SPSS syntax:

TITLE ‘SEX by AGE by TIME by BRAND by BELIEF’.
DATA LIST FREE/ SEX AGE y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12.
BEGIN DATA.
DATA LINES

END DATA.
GLM y1 to y12 BY SEX AGE
/WSFACTOR = time 2 brand 3 belief 2
 /WSDESIGN = time brand belief time*brand time*belief 
brand*belief time*brand*belief
/PRINT DESCRIPTIVE HOMOGENEITY
/DESIGN = SEX AGE SEX*AGE.

SAS syntax:
INPUT sex age y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12;
LINES;
DATA LINES

PROC GLM;
CLASS sex age;
MODEL y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 = sex age 
sex*age /NOUNI;
REPEATED time 2, brand 3, belief 2;
RUN;
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11. (a) This is a one between (age) and two within (time of day and context) design.
(b) SPSS syntax:

TITLE ‘AGE by TIME by CONTEXT’.
DATA LIST FREE/AGE y1 y2 y3 y4.
BEGIN DATA.
DATA LINES

END DATA.
GLM y1 to y4 BY AGE
/WSFACTOR = time 2 context 2
/WSDESIGN = time context time*context
/PRINT DESCRIPTIVE HOMOGENEITY
/DESIGN = AGE.

SAS syntax:
INPUT age y1 y2 y3 y4;
LINES;
DATA LINES

PROC GLM;
CLASS age;
MODEL y1 y2 y3 y4 = age /NOUNI;
REPEATED time 2, context 2;
RUN;

Chapter 15
1. Four features that canonical correlation and principal components have in common:

(a) Both are mathematical maximization procedures.
(b) Both use uncorrelated linear combinations of the variables.
(c) Both provide for an additive partitioning: in components analysis an additive parti-

tioning of the total variance, and in canonical correlation an additive partitioning of 
the between association.

(d) Associations between the original variables and the linear combinations can be used in 
both procedures for interpretation purposes.

3. (a)  The association between the two sets of variables is weak, since 17 of the 26 simple 
correlations are less than .30.

(b) Only the largest canonical correlation is significant at the .05 level, as the p value 
associated with the test of the first canonical correlation is less than .0001, and for the 
second is .65.

(c) The following are the loadings (correlations) from the output:

Creativity Achievement

Ideaflu .227 Know .669
Flexb .412 Compre .578
Assocflu .629 Applic .374
Exprflu .796 Anal .390
Orig .686 Synth .910
Elab .703 Eval .542
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 The canonical correlation basically links the ability to synthesize (the loading of .910 
dominates the achievement loadings) to the last four creativity variables, which have 
loadings of the same order of magnitude.

(d) Since only the largest canonical correlation was significant, about 20 subjects per var-
iable are needed for reliable results, i.e., 20(12) = 240 subjects. So, the above results, 
based on an N of 116, must be treated somewhat tenuously.

(e) The redundancy index for the creativity variables given the achievement variables is 
obtained from the following values on the output:

Av. Sq. Loading times Sqed Can

Correl (1st Set)

.17787

.00906

.00931

.00222

.00063

.00019

.19928

 This indicates that about 20% of the variance on the set of creativity variables is ac-
counted for by the set of achievement variables.

(f) The squared canonical correlations are given in the output, and they yield the follow-
ing value for the Cramer-Nicewander index:

 . . . . . .
.

48148 10569 06623 01286 00468 00917
6

112
+ + + + +

=

 This indicates that the “variance” overlap between the sets of variables is only about 
11%, and is more accurate than the redundancy index since that index ignores the cor-
relations among the dependent variables. And there are several significant correlations 
among the creativity variables, eight in the weak to moderate range (.32 to .46) and one 
strong correlation (.71).

5. The criterion of 10(p + q) + 50 is not a conservative one according to the results of Bar-
cikowski and Stevens. This criterion would imply, for example, if p = 10 and q = 20, that 
10(10 + 20) + 50 = 350 subjects are needed for reliable results. From Barcikowski and 
Stevens, on the other hand, about 30(20) = 600 subjects are needed for reliable results, and 
more than that would be required if interpreting more than one canonical correlation.
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significance test for entire model and sets 
of variables 447 – 8; with single continuous 
explanatory variable 443 – 4; with single 
dichotomous explanatory variable 442 – 3; 
single variable significance test/confidence 
interval 450 – 1; standard regression and 
434 – 5; transformations and odds ratio 
with dichotomous explanatory variable and 
438 – 42; uses for 434

binomial distribution 444 – 5
bipolar component 341
bivariate normality 225, 229
blocking, repeated-measures analysis and 

471
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Bonferroni inequality 6, 7, 8, 9
Bonferroni upper bound 7, 8
bootstrapping techniques 396, 668
bounded-influence regression 107
Box test, homogeneity of covariance matrices 

235 – 40

calibration 96
CALIS program 29
canonical correlation 618 – 37; canonical 

variates, interpreting 621 – 3, 633; defined 
618; exercises 634 – 7; nature of 619 – 20; 
redundancy index and 630 – 1; reliable 
variates, obtaining 632, 633; rotation 
of variates 631 – 2; SAS CANCORR 
computer example 623 – 5, 628 – 9; 
significance tests 620 – 1; Tetenbaum study 
using 625 – 7; uses for 618 – 19

canonical variates, interpreting 621 – 3
carryover effects 475
casual inference 642 – 3
causal modeling 639; see also structural 

equation modeling (SEM)
cell means, weighting of 280
Central Limit Theorem 224
chi-square difference test, model 

modification and 661
chi-square tests, of model fit 651 – 3
circularity 480
classification, logistic regression 458 – 61; 

percent correctly classified 459 – 60; 
proportion reduction in classification errors 
460 – 1

classification problem, discriminant 
analysis 416 – 24; cross-validating 423 – 5; 
example, two-group 418 – 20; hit rates, 
accuracy of maximized 420 – 2; prior 
probabilities, using 422 ; two-group 
situation 417 – 18

cofactor, of element 53
column vector 45
common factor analysis, assumptions for 

362 – 4
communality, exploratory factor analysis and 

359 – 60, 362
Comparative Fit Index 653, 654
component loadings 341
components 342
confirmatory factor analysis (CFA) models 

382 – 3, 689 – 707; see also reactions-to-
tests (RTT) data; identification in 689 – 91; 
with reactions-to-tests data 691 – 707; 
reference indicators and 691

conflict of interest 40
consistent AIC (CAIC) 662 – 3
containment 548
contextual effects: centering and 563 – 5; 

defined 564

contrasts 199 – 207; correlated 204 – 7; 
Helmert 194, 199, 200 – 2; polynomial 199; 
special 199 – 200, 202 – 4

Cook’s distance 108, 112
correlated contrasts 204 – 7
correlated observations: analyzing 255 – 9; 

independence assumption and 221 – 2; 
MANOVA assumptions and 222 – 4

counterbalance 474 – 5
covariance matrices, homogeneity of 

233 – 40; Box test for 235 – 40; test 
statistics for unequal 259 – 61; type I error 
and 233 – 5

covariance matrix 50 – 2
covariance structure analysis 639; see also 

structural equation modeling (SEM)
covariates: choice of 307 – 8; defined 301
critical values 4
cross-level interactions 558
cross-validation: classification problem, 

discriminant analysis 423 – 5; indices 662; 
with SPSS 72, 98 – 9

data collection and integrity 37 – 8
data editing 107 – 8
data sets: SAS, on Internet 36; SPSS, on 

Internet 36
data splitting 80, 96, 97 – 8
deciles of risk 455
degrees of freedom associated with the 

theoretical model 645
derivation sample 96
descriptive discriminant analysis 391,  

392 – 3
DFBETAS 113
DFFITS 113
dimension reduction analysis 393 – 4
direct maximum likelihood see full 

information maximum likelihood (FIML)
direct oblimin 356
direct quartimin 356
discrepancy function 649 – 50
discriminant analysis 391 – 432; analysis 

summary of 426 – 7; classification 
problem 416 – 24; classification procedure, 
characteristics of good 425–6; descriptive 
392 – 3; dimension reduction analysis 
393 – 4; exercises 429 – 32; graphing groups 
in discriminant plane 397; interpreting 
discriminant functions 395 – 6; linear 
versus quadratic classification rule 425; 
National Merit Scholar example 409 – 15, 
427 – 9; rotation of discriminant functions 
415; sample size 396; SeniorWISE data 
example 398 – 409; stepwise 415 – 16; uses 
for 391

discriminant functions, interpreting 395 – 6
distributional transformations 227
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disturbances 642
dummy coding 156, 175, 581

effect size 5, 10 – 12, 161 – 9, 212 – 13, 246 – 8, 
317 – 18, 401 – 2, 448 – 50; power and 163

element: cofactor of 53; minor of 52
EM see Expectation Maximization (EM)
equal cell n (orthogonal) case 268 – 72
equivalent models 723 – 4
error term calculation, multivariate 147 – 9
error variance, reduction of 304 – 7; for 

several covariates 314 – 15
estimation, SEM modeling 647 – 51
eta square 159, 318
exercise behavior study: final model results 

717 – 19; latent variable path model with 
711 – 13; two-step modeling with 713 – 17

exercises: analysis of covariance (ANCOVA) 
335 – 7; assumptions in MANOVA 
262 – 4; binary logistic regression 468 – 9; 
canonical correlation 634 – 7; exploratory 
factor analysis 387 – 9; factorial ANOVA/
MANOVA 299 – 300; introductory 41 – 2; 
k-group MANOVA 214 – 17; matrix 
algebra 61 – 4; multiple regression 129 – 39; 
repeated-measures analysis 530 – 4; two-
group MANOVA 170 – 3

Expectation Maximization (EM) 22 – 3; 
algorithm 366

expected parameter change (EPC), model 
modification and 658 – 60

exploratory factor analysis (EFA) 339 – 89; 
assumptions for common factor analysis 
362 – 4; coefficients used for interpretation 
346; communality issue 359 – 60; 
confirmatory factor analysis and 382 – 3; 
example using principal components 
extraction 347 – 59; exercises 387 – 9; 
factor analysis model 360 – 2; factor 
scores 373 – 6; factors to retain, criteria 
for determining 342 – 4; principal axis 
factoring 364 – 73; principal components 
method 340 – 2; of reactions-to-tests scale 
383 – 5; research examples for 34 – 5; 
rotation method, interpretability of factors 
using 344 – 6; sample size and reliable 
factors 347; SAS and 378 – 82; SPSS and 
376 – 8

external validity 39 – 40

factor analysis model 77, 360 – 2
factorial ANOVA/MANOVA 265 – 300; 

example results with SeniorWISE 
data 290 – 2; cell means, weighting of 
280; discriminant analysis approach 
294 – 8; exercises 299 – 300; multivariate 
analysis of variance 277 – 9; overview of 
265 – 6; SeniorWISE data and 281 – 90; 

three-way MANOVA 292 – 4; two-way 
design, advantages of 266 – 8; two-way 
MANOVA, analysis procedures for 280 – 1; 
univariate analysis 268 – 77

factorial discriminant analysis 294 – 8
factorial multivariate analysis of variance 

277 – 9
factor loadings 341, 690
factor pattern matrix 345
factors 342
factor score indeterminacy 376
factor structure matrix 345
feedback loops 721
final measurement model 711
first principal component 340
fit function 649
fit indices 653 – 6
fixed effects 541
forward selection procedure 79
full information maximum likelihood  

(FIML) 24
Full Maximum Likelihood (FML) 549, 551

generalized least squares (GLS) 649
generalized variance 178
gold standard 39
Goodness-of-Fit Index (GFI) 654, 655
grand-mean centering, problems  

with 565 – 6
Greenhouse-Geisser estimate 481
group-mean centering 542; problems with 

566 – 7
growth curve modeling 563

hat elements 108, 119 – 20
Helmert contrasts 194, 199, 200 – 2
Heywood cases 362
hierarchical linear modeling 537 – 76; 

deviance test for within-school variance/
covariance 556 – 7; evaluating treatment 
example 569 – 75; multilevel model, 
formulation of 541; overview of 537 – 9; 
predictor variables, centering 563 – 8; 
random-coefficient model example 
552 – 62; sample size 568 – 9; single-level 
analyses of multilevel data, problems 
using 539 – 41; SPSS/SAS commonly 
used statistical tests 562; two-level model, 
general formulation of 541 – 5; two-level 
school mathematics example 545 – 7; 
unconditional model example 547 – 52

homogeneity of hyperplanes: testing on SPSS 
316 – 17; see also analysis of covariance 
(ANCOVA)

homogeneity of variance assumption 220
Hotelling-Lawley trace 210
Hotelling’s T 2 145, 146 – 7, 148 – 9
Huynh-Feldt estimator 481, 485
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identity link function 445
identity matrix 55
Incremental Fit Index (IFI) 653, 654
incremental fit indices 653 – 5
independence assumption 220 – 2; correlated 

observations and 221 – 2
independence of the observations assumption 

480
independent variables, joint effect of 266
indirect effects 663 – 6; tests of 666 – 8
influential data points, measures for  

112 – 13
information-based criteria, for model 

modification/selection 661 – 3
initial measurement model 410, 710
initial structural model 711
intact groups, analysis of covariance and 

311 – 12
Interactive Matrix Language (IML) 60
internal validity 39 – 40
intra-class correlation (ICC) 540
inverse of matrix 55 – 8; defined 55; examples 

of 56 – 8; finding 56

jackknife procedure 422
joint test of statistical significance 666 – 7, 

668
just-identified SEM model 644, 645, 646

Kaiser rule 342, 367 – 8
k-group MANOVA 175 – 217; ANOVAS with 

no alpha adjustment/Tukey comparisons 
185 – 7; correlated contrasts 204 – 7; 
dependent variables for MANOVA 211; 
exercises 214 – 17; multivariate planned 
comparisons on SPSS MANOVA 
198 – 204; multivariate regression analysis, 
sample problem 176 – 7; multivariate 
test statistics, other 210; overview of 
175; planned comparisons 193 – 6; post 
hoc procedures 184 – 7; power analysis 
211 – 13; sample data variance, multivariate 
analysis of 179 – 84; SAS and SPSS for 
post hoc procedures 188 – 92; studies using 
multivariate planned comparisons 208 – 9; 
T, calculation of 181 – 2; test statistics 
for planned comparisons 196 – 8; Tukey 
comparisons with alpha adjustment, 
ANOVAS with 185; Tukey procedure 
187 – 93; variance, multivariate analysis of 
177 – 9; W, calculation of 180 – 1; Wilks’ Λ 
and chi-square approximation calculation 
182 – 4

Kolmogorov-Smirnov test 228, 231

Lagrange Multiplier (LM) 659, 683
largest canonical correlation 619
latent growth curve modeling (LGCM) 725

latent variable analysis 639; see also 
structural equation modeling (SEM)

latent variable path model 641 – 2, 707 – 19; 
abbreviated SAS output for final 736 – 46; 
with exercise behavior study 711 – 19; 
specification and identification of 708 – 10; 
two-step model testing procedure in 
710 – 11

Latin Square 475
least squares regression 72, 124
Levene test 232, 246
linear combination example 36 – 7
linear versus quadratic classification  

rule 425 
listwise deletion 20 – 1
logistic regression 458 – 61; percent correctly 

classified 459 – 60; proportion reduction 
in classification errors 460 – 1; research 
examples for 32 – 3

logistic transformation 445
logits 441
log of the odds 441
loss function 649

magnitude of ρ (population multiple 
correlation) 123

Mahalanobis distance 110, 111, 115, 165
Mallows’ Cp 79
MANCOVA: analysis procedures for one-

way 333 – 5; on SAS GLM computer 
example 318 – 21; on SPSS MANOVA 
computer example 321 – 9; variables and 
covariates 315 – 16

MANOVA, assumptions in 219 – 64; ANOVA 
and 220; example results section 249 – 50; 
correlated observations, analyzing 255 – 9; 
correlated observations and 222 – 4; 
covariance matrices, homogeneity of 
233 – 40; exercises 262 – 4; independence 
assumption 220 – 2; multivariate normality 
225 – 31; multivariate test statistics for 
unequal covariance matrices 259 – 61; 
nonmultivariate normality, effect on 
type I error and power 225 – 6; normality 
assumption 224 – 5; one-way MANOVA 
example 242 – 9; overview of 219 – 20; 
univariate normality, assessing 226 – 9, 
230 – 1; variance assumption, homogeneity 
of 232

MANOVA, k-group see k-group MANOVA
mathematical maximization procedures 36
matrices: addition of 47; defined 44; 

examples of 44 – 5; multiplication of 
47 – 50; subtraction of 47; symmetric 
46 – 7, 56

matrix algebra 44 – 64; addition, subtraction, 
and multiplication by scaler 47 – 50; 
determinant of matrix 52 – 5; examples of 
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45 – 7; exercises 61 – 4; inverse of matrix 
55 – 8; overview of 44 – 5; SAS IML 
procedure 60 – 1; SPSS matrix procedure 
58 – 60; for variances and covariances 50 – 2

matrix formulation, two predictors 69 – 72
Mauchley test 481 – 2
maximized Pearson correlation 72, 73 – 4
maximum likelihood see full information 

maximum likelihood (FIML)
maximum likelihood (ML) discrepancy 

function 649
maximum variance property 345
MAXR procedure for model selection 

79 – 80, 89 – 91
McDonald’s Fit Index (MFI) 654, 655
mean substitution 21 – 2
measurement models 689
minor, of element 52
Missing at Random (MAR) 19 – 20
Missing Completely at Random (MCAR) 19
missing data 18 – 31; deletion strategies for 

20 – 1; examples of 25 – 31; full information 
maximum likelihood 24; mechanisms 
19 – 20; multiple imputation 23 – 4; 
overview 18; single imputation strategies 
for 21 – 3

Missing Not at Random (MNAR) 20
mixture modeling 726
model deviance 548
model fit, SEM 651 – 8; chi-square tests of 

651 – 3; fit indices 653 – 6; index cutoff 
values 656; parameter estimates 656 – 7; 
recommendations 657 – 8

model identification, SEM 643 – 7; types of 
644

model modification/selection, SEM 658 – 63; 
chi-square difference test and 661; 
expected parameter change and 658 – 60; 
information-based criteria for 661 – 3; 
residual covariance matrix and 660; Wald 
statistic and 660

model selection, multiple regression 77 – 81; 
all possible regressions 80; Mallows’ Cp 
79; MAXR from SAS 79 – 80; sequential 
methods of 78 – 9; substantive knowledge 
and 77 – 8

model trimming 660
modification indices (MI) 659, 683
modified causal steps approach 668
Mueller study: final model results 686 – 8; 

Fit Summary table for 673; model fit and 
residuals 672 – 5; modification of model 
683 – 5; observed variable path analysis 
model from 668 – 88; respecification of 
model 685 – 6; SAS code for 670 – 2; 
standardized parameter estimates for 
680 – 3; unstandardized parameter 
estimates for 676 – 80

multicollinearity 75 – 7
multilevel model, formulation of 541
multilevel modeling see hierarchical linear 

modeling
multilevel structural equation modeling 

(SEM) 726
multiple correlation 72, 73 – 4
multiple criterion measures: need for 1 – 2; 

reasons for using 2
multiple imputation (MI) 23 – 4
multiple indicator multiple cause (MIMIC)

model 725
multiple regression 65 – 139; adjusted R2 

96 – 7, 99 – 100; assumptions for, checking 
93 – 6; cross-validation with SPSS 72, 
98 – 9; data splitting 96, 97 – 8; described 
65 – 7; estimators 124; exercises 129 – 39; 
for explanation 66; influential data points, 
measures for 112 – 13; least squares 72, 
124; matrix formulation 69 – 72; model 
selection 77 – 81; model validation 
96 – 101; multicollinearity 75 – 7; multiple 
correlation 73 – 4; multivariate regression 
124 – 8; outliers and influential data points 
107 – 16; positive bias of R2 105 – 6; 
predictors, order of 101 – 4; predictors, 
preselection of 104 – 5; PRESS statistic 
80, 97, 100 – 1; p values for significance 
of predictors 91 – 2; residual plots 93 – 6; 
ridge regression 124; robust regression 
124; sample size for prediction equation 
72, 121 – 3; SAS computer example 88 – 91, 
118 – 21; semipartial correlations 81 – 2; 
simple regression 67 – 9; simple to multiple 
correlation relationship 75; SPSS computer 
example 82 – 8, 116 – 18; studies of 65 – 6; 
summary of 128 – 9; suppressor variables 
106 – 7

multiple statistical tests 6 – 9; Bonferroni 
inequality 7; examples of 8 – 9; probability 
of spurious results 6 – 9

multisample sphericity 500
multivariate analysis, issues unique to 36 – 7
multivariate analysis of covariance, research 

examples for 34
multivariate analysis of variance 

(MANOVA), two-group 142 – 73; a priori 
power estimation for 165 – 6; a priori 
sample size estimation 168 – 9; error term 
calculation 147 – 9; exercises 170 – 3; 
improving power 163 – 5; multivariate but 
no univariate significance 156; multivariate 
test statistic as generalization of univariate 
t 144 – 6; numerical calculations for 
146 – 50; overview of 142 – 3; post hoc 
power estimation 161 – 2, 167 – 8; post hoc 
procedures 150 – 1; power analysis 161 – 3; 
regression analysis for sample problem 
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156 – 60; SAS and SPSS control lines for 
sample problem/output 152 – 5; statistical 
reasons for preferring 143 – 4; test statistic 
calculation 149 – 50

multivariate multilevel modeling (MVMM) 
578 – 617; benefits of conducting 579 – 80; 
data set using SAS and SPSS, preparing 
581 – 4; multiple outcomes in level-1 
model, incorporating 584 – 5; research 
example 580 – 1; SAS/SPSS commands 
used in 615 – 17; three-level multivariate 
analyses, using SAS and SPSS 595 – 614; 
two-level multivariate analyses, using SAS 
and SPSS 585 – 95; uses for 578

multivariate normality assumption 225 – 31, 
480; assessing 229 – 30; deviation from, 
type I error/power and 225 – 6

multivariate regression 124 – 8; mathematical 
model example 125 – 8

multivariate reliability analysis 619
multivariate study, defined 2
multivariate test statistic, for repeated-

measures analysis 477 – 9

natural log of value 441 – 2
nominal alpha 185, 256
nonmultivariate normality, effect on type I 

error and power 225 – 6
Non-normed Fit Index (NNFI) 653, 654
nonorthogonal contrasts in repeated measures 

designs, obtaining 763 – 70
normality assumption 224 – 5; assessing 

226 – 31
Normed Fit Index 653, 654
null hypothesis 3

oblique rotations 345 – 6
observed variable path analysis 663 – 8; see 

also Mueller study; abbreviated SAS 
output for final 734 – 6; indirect effects 
663 – 6; with Mueller study 668 – 88; tests 
of indirect effects 666 – 8

odds ratio (O.R.) 440 – 1
one between factor ANOVA 313
one-way multivariate analysis of variance, 

research examples for 33 – 4
one-way repeated-measures analysis  

489 – 94
one within factor ANOVA 313
ordinal interaction 266
orthoblique rotations 345
orthogonal rotations 344 – 5
orthonormal set of variates 480
outliers 12 – 17; correlation coefficient and 

16; data editing and 107 – 8; defined 12; 
detecting 16 – 17; examples of 13 – 16; 
influential data points and 107 – 16; 
measuring, influential data points 108; 

measuring, on predictors 108, 109 – 12; 
measuring, on y 108, 109; reasons for 12

over fitting 81
over-identified SEM model 644, 

 645, 646

pairwise deletion 21
parallel analysis 343
parameter estimates, SEM 656 – 7
participant nonresponse 31 – 2
pattern coefficients 345
Pillai-Bartlett trace 210
planned comparisons: k-group MANOVA 

193 – 6; multivariate, on SPSS MANOVA 
198 – 204; studies using multivariate 
208 – 9; test statistics for 196 – 8

platykurtic distribution 224
polynomial contrasts 199
positive bias of R2 105 – 6
post hoc procedures: analysis of covariance 

329 – 30; in factorial descriptive 
discriminant analysis 294 – 7; in factorial 
MANOVA 284 – 90; multivariate analysis 
of variance 150 – 1, 184 – 92; power 
estimation 161 – 2, 167 – 8; in repeated-
measures analysis 487 – 8

post hoc procedures, one-between and 
one-within design 505 – 11; comparisons 
involving main effects 505 – 6; simple 
effects analyses 506; simple effects 
analyses for between-subjects factor 
509 – 11; simple effects analyses for 
within-subjects factor 506 – 9

posttest means, adjustment of 303 – 4; for 
several covariates 314 – 15

power 3 – 6; defined 5; effect size and 163; 
sample size and 5 – 6

power analysis: improving power 163 – 5; 
k-group MANOVA 211 – 13; multivariate 
analysis of variance (MANOVA), two-
group 161 – 3; sample size and 162 – 3; of 
statistical test 162

practical importance versus statistical 
significance 10 – 12

Preacher, Kristopher 668, 679
PREDICTED RESID SS (PRESS) 101
predictors: controlling order of 103 – 4; 

multiple regression for two 69 – 72; order 
of 101 – 4; preselection of 104 – 5; p values 
for significance of 91 – 2; variance inflation 
factor for 76 – 7

predictor variables, centering in 
multilevel modeling 563 – 8; centering 
recommendations 567 – 8; contextual 
effects and 563 – 5; grand-mean centering 
and 565 – 6; group-mean centering and 
566 – 7

PRESS statistic 80, 97, 100 – 1
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principal axis factoring 364 – 73; determining 
factors present with 364 – 5; exploratory 
factor analysis example with 365 – 73

principal components 77
principal components extraction method: 

calculating sum of squared loadings and 
communalities 355 – 6; exploratory factor 
analysis 340 – 2; with three items 348 – 51; 
two-factor correlated model using 356 – 9; 
two-factor orthogonal model using 351 – 5

PRODCLIN 668

quartimax rotations 344 – 5

random-coefficient model 541, 552 – 62
random effects 541
Rao’s F approximation 179
reactions-to-tests (RTT) data: confirmatory 

factor analysis models with 691 – 2; final 
model results 705 – 7; model fit 696 – 7; 
model modification 702 – 5; parameter 
estimates 697 – 702; SAS code for 692 – 6

Reactions to Tests (RTT) scale 365
reduced correlation matrix 364
redundancy index 630 – 1
regression analysis, for two-group MANOVA 

sample problem 156 – 60
regression imputation 22
regression model validation 96 – 101
regression substitution 22
reliable factors, sample size and 347
repeated-measures analysis 471 – 534; 

assumptions 480 – 2; blocking and 471; 
computer analysis 482 – 7; controlling 
type I error and 488 – 9; described 471; 
doubly multivariate 528 – 9; exercises 
530 – 4; multivariate matched-pairs 
analysis 496 – 7; multivariate test statistic 
for 477 – 9; nonorthogonal contrasts in 
SPSS 522 – 4; one-between and one-within 
design 497 – 505; one-between and two-
within factors 511 – 14; one-way 489 – 94; 
planned comparisons in 520 – 4; post hoc 
procedures for one-between and one-
within design 505 – 11; post hoc procedures 
in 487 – 8; profile analysis 524 – 8; sample 
size for power 494 – 6; single-group 
475 – 7; totally within designs 518 – 20; 
two-between and one-within factors 
515 – 17; two-between and two-within 
factors 517 – 18; uses for 472 – 5

residual covariance matrix, model 
misspecification and 660

residual plots 93 – 6
residuals 67
Restricted Log Likelihood 548
Restricted Maximum Likelihood (RML) 551
restriction-of-range phenomenon 160

ridge regression 77
RMediation 668
Root Mean-Square Error of Approximation 

(RMSEA) 655
rotation method, interpretability of factors 

using 344 – 6; oblique rotations 345 – 6; 
orthogonal rotations 344 – 5

row vector 45 – 6
Roy-Bose confidence intervals 150
Roy’s largest root 210

sample size: a priori estimation of 168 – 9, 
211 – 13; power analysis and 162 – 3; for 
prediction equation 72, 121 – 3

sampling distribution 3
sampling error 3
SAS: abbreviated, output for final latent 

variable path model 736 – 46; abbreviated, 
output for final observed variable path 
model 734 – 6; for Box-Tidwell procedure 
463 – 4; code for reactions-to-tests data 
692 – 6; commands used in multivariate 
multilevel modeling 615 – 17; control lines 
for sample problem/selected output 152 – 5; 
data sets on Internet 36; factor analysis 
and 378 – 82; Hat Diag H in 119; IML 
procedure 60 – 1; for k-group MANOVA 
post hoc procedures 188 – 92; MAXR 
procedure 79 – 80, 89 – 91; missing data 
29 – 30; multilevel modeling statistical tests 
in 562; for multiple logistic regression 
461 – 3; REG example 88 – 91, 118 – 21; 
statistical package 35; syntax 35 – 6; 
variance inflation factors 77

SAS CANCORR canonical correlation 
example 623 – 5; on two sets of factor 
scores 628 – 9

Satterthwaite method 548
saturated model 644
screening sample 96
scree test 342 – 3
SEM see structural equation modeling (SEM)
semipartial correlations 81 – 2
SeniorWISE data 242; discriminant analysis 

example 398 – 409
SeniorWISE data, factorial MANOVA 

with 281 – 92; example results 290 – 2; 
preliminary analysis activities 282 – 3; 
primary analysis 283 – 90

separate error terms 524
sequential methods of model selection  

78 – 9
sequential testing procedure 621
significance tests, canonical correlation and 

620 – 1
simple regression 67 – 9
simple structure 354
simple to multiple correlation relationship 75
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simultaneous equation modeling 639; see 
also structural equation modeling (SEM)

single-group repeated-measures analysis 
475 – 7; completely randomized 476; 
univariate 476 – 7

single imputation strategies 21 – 3
single-level analyses of multilevel data, 

problems using 539 – 41
special contrasts 199 – 200, 202 – 4
sphericity assumption 480 – 1
split plot design 497
SPSS: assessing univariate normality using 

230 – 1; for Box-Tidwell procedure 463 – 4; 
commands used in multivariate multilevel 
modeling 615 – 17; control lines for sample 
problem/selected output 152 – 5; cross-
validation with 72, 98 – 9; data sets on 
Internet 36; factor analysis and 376 – 8; 
homogeneity of hyperplanes on 316 – 17; 
for k-group MANOVA post hoc procedures 
188 – 92; matrix procedure 58 – 60; missing 
data 29 – 30; multilevel modeling statistical 
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