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Preface to the First Edition

Statistical distributions and models are commonly used in many applied areas,
such as economics, engineering, social, health, and biological sciences. In this
era of inexpensive and faster personal computers, practitioners of statistics
and scientists in various disciplines have no difficulty in fitting a probability
model to describe the distribution of a real-life data set. Indeed, statistical
distributions are used to model a wide range of practical problems, from mod-
eling the size grade distribution of onions to modeling global positioning data.
Successful applications of these probability models require a thorough under-
standing of the theory and familiarity with the practical situations where some
distributions can be postulated. Although there are many statistical software
packages available to fit a probability distribution model for a given data set,
none of the packages is comprehensive enough to provide table values and
other formulas for numerous probability distributions. The main purpose of
this book and the software is to provide users with quick and easy access to ta-
ble values, important formulas, and results of the many commonly used, as well
as some specialized, statistical distributions. The book and the software are
intended to serve as reference materials. With practitioners and researchers in
disciplines other than statistics in mind, I have adopted a format intended to
make it simple to use the book for reference purposes. Examples are provided
mainly for this purpose.

I refer to the software that computes the table values, moments, and other
statistics as StatCalc. For rapid access and convenience, many results, formu-
las and properties are provided for each distribution. Examples are provided
to illustrate the applications of StatCalc. The StatCalc is a dialog-based ap-
plication, and it can be executed along with other applications.

The programs of StatCalc are coded in C++ and compiled using Microsoft
Visual C++ 6.0. All intermediate values are computed using double precision
so that the end results will be more accurate. I compared the table values
of StatCalc with classical hard copy tables, such as Biometrika Tables for

Statisticians, Handbook of Mathematical Functions by Abramowitz and Ste-
gun (1965), Tables of the Bivariate Normal Distribution Function and Related

Functions by the National Bureau of Standards (1959), Pocket Book of Statis-

tical Tables by Odeh et al. (1977), and the tables published in various journals
listed in the references. Table values of the distributions of Wilcoxon rank-sum
statistic and Wilcoxon signed-rank statistic are compared with those given in
Selected Tables in Mathematical Statistics. The results are in agreement wher-
ever I checked. I have also verified many formulas and results given in the

xxiii
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xxiv Preface to the First Edition

book either numerically or analytically. All algorithms for random number
generation and evaluating cumulative distribution functions are coded in For-
tran, and verified for their accuracy. Typically, I used 1,000,000 iterations to
evaluate the performance of random number generators in terms of the speed
and accuracy. All the algorithms produced satisfactory results. In order to
avoid typographical errors, algorithms are created by copying and editing the
Fortran codes used for verification.

A reference book of this nature cannot be written without help from nu-
merous people. I am indebted to many researchers who have developed the
results and algorithms given in the book. I thank my colleagues for their
valuable help and suggestions. Special thanks are due to Tom Rizzuto for pro-
viding me numerous books, articles, and journals. I am grateful to computer
science graduate student Prasad Braduleker for his technical help at the ini-
tial stage of the StatCalc project. It is a pleasure to thank P. Vellaisamy at
IIT–Bombay who thoroughly read and commented on the first fourteen chap-
ters of the book. I am thankful to my graduate student Yanping Xia for
checking the formulas and accuracy of the software StatCalc.

K. Krishnamoorthy
University of Louisiana at Lafayette
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Preface to the Second Edition

This revision maintains the organization of chapters and presentation of ma-
terials as in the first edition. Although I cover very much the same topics,
the book has been largely revised by adding some popular results, including
tolerance intervals, prediction intervals, confidence intervals, and many new
examples. In the following, I summarize the major changes by chapter.

Chapter 3 on binomial distribution and Chapter 5 on Poisson distribution
have been revised by adding tolerance intervals, prediction intervals, confi-
dence intervals for the risk ratio, odds ratio, and for a linear combination of
parameters. Fiducial methods and some recent new methods for finding in-
terval estimates are added in these two chapters. I have included one- and
two-sample problems involving coefficients of variation, and one-sample in-
ference with censored data in the chapter on normal distribution. Inferential
methods for estimating/testing are added to chapters on exponential, gamma,
lognormal, logistic, Laplace, Pareto, Weibull, and extreme value distributions.
Pivotal-based exact methods, likelihood methods, and other accurate approx-
imate methods are now described in some of these chapters. The chapter on
gamma distribution now includes likelihood methods for testing means and
parameters, parametric bootstrap confidence intervals for parameters, mean,
and for comparing means. In addition, tolerance intervals, prediction inter-
vals, comparison of several gamma distributions with respect to parameters,
and means are also covered in the chapter on gamma distribution. The chap-
ter on Weibull distribution has been enhanced by adding confidence intervals,
prediction intervals, and tolerance intervals. Some new materials, such as the
Fisher z-transformation, comparison of two correlation coefficients, and com-
parison of two correlated variances, are provided in the chapter on bivariate
normal distribution.

The PC calculator StatCalc has also been enhanced by incorporating the
new materials from the book. Calculation of confidence intervals, tolerance
intervals, prediction intervals, sample size calculation, and power calculation
can be carried out using StatCalc in a straightforward manner. Furthermore,
StatCalc now comes with help topics, and the topic for a dialog box can be
accessed by clicking the help button in the dialog box. The purpose of StatCalc
is to aid users to carry out calculation accurately with ease, although it may
lack graphical appearance. R functions are given for the cases where StatCalc
is not applicable. To avoid entering codes manually, an electronic version of
the R codes is provided along with StatCalc software. This R program file

xxv
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xxvi Preface to the Second Edition

“HBSDA.r” is located in the StatCalc installation directory. StatCalc software
is available at www.ucs.louisiana.edu/∼kxk4695.

I have been very much encouraged by positive comments from the reviewers
of the first edition of this book, reviewers of the sample chapters from the
current edition, and many readers. I am grateful to those readers who have
passed on errors found in the first edition.

K. Krishnamoorthy
University of Louisiana at Lafayette
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1

StatCalc

1.1 Introduction

The software accompanying this book is referred to as StatCalc1, which is
a PC calculator that computes various statistical table values. More specifi-
cally, it computes table values of all the distributions presented in the book,
necessary statistics to carry out some hypothesis tests and to construct confi-
dence intervals, prediction intervals, tolerance intervals, sample size to carry
out a test within specified accuracy, and much more. Readers who are familiar
with some statistical concepts and terminologies, and PC calculators may find
StatCalc simple and easy to use. In the following, we explain how to use this
program and illustrate some features.

The dialog boxes that compute various table values are grouped into three
categories, namely, continuous, discrete, and nonparametric, as shown in the
main page of StatCalc in Figure 0.1(a). Suppose we want to compute bino-
mial probabilities, percentiles, or moments; if so, then we should first select
“Discrete dialog box” (by clicking on the radio button [Discrete]) as the binomial
distribution is a discrete distribution (see Figure 0.1(b)). Click on [Binomial],
and then click on [Probabilities, Critical Values and Moments] to get the binomial
probability dialog box. This sequence of selections is indicated in the book by
the trajectory [StatCalc→Discrete→Binomial→Probabilities, Critical Values and
Moments]. Similarly, if we need to compute factors for constructing tolerance
intervals for a normal distribution, we first select [Continuous] (because the
normal distribution is a continuous one), and then select [Normal] and [Tolerance
and Prediction Intervals]. This sequence of selections is indicated by the trajectory
[StatCalc→Continuous→Normal→Tolerance and Prediction Intervals]. After select-
ing the desired dialog box, input the parameters and other values to compute the
desired table values.

StatCalc is a stand-alone application, and many copies (as much as the screen
can hold) of StatCalc can be opened simultaneously. To open two copies, click on
StatCalc icon on your desktop or select from the start menu. Once the main page
of StatCalc opens, click on the StatCalc icon again on your desktop. The second
copy of StatCalc pops up exactly over the first copy, and so using the mouse, drag
the second copy to a different location on your desktop. Now, we have two copies
of StatCalc. Suppose we want to compare binomial probabilities with those of the

1To download, visit www.ucs.louisiana.edu/∼kxk4695 or the publisher’s site.

1
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2 1 StatCalc

hypergeometric with lot size 5000, and the number of defective items in the lot is
1000, then select binomial from one of the copies and hypergeometric from the other.

(a)

(b)

FIGURE 1.1: Selecting the dialog box for computing binomial probabilities

Input the values as shown in Figure 0.2. We observe from these two dialog boxes
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http://www.crcnetbase.com/action/showImage?doi=10.1201/b19191-2&iName=master.img-022.jpg&w=272&h=203
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19191-2&iName=master.img-023.jpg&w=272&h=204


1.1 Introduction 3

(c)

(d)

FIGURE 1.1 continued.

that the binomial probabilities with n = 20 and p = 0.2 are very close to those of
the hypergeometric with lot size (population size) 5000 and the number of items
with the attribute of interest is 1000. Furthermore, good agreement of the moments
of these two distributions clearly indicates that, when the lot size is 5000 or more,
the hypergeometric probabilities can be safely approximated by the binomial prob-
abilities.

StatCalc can be opened along with other applications, and the values from the
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4 1 StatCalc

FIGURE 1.2: Dialog boxes for computing binomial and hypergeometric prob-
abilities
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1.2 Contents of StatCalc 5

edit boxes (the white boxes) can be copied [Ctrl+c] and pasted [Ctrl+v] in a doc-
ument. StatCalc also comes with a help file, and the appropriate help topic for a
dialog box can be accessed by clicking the [Help] button in the dialog box.

The following contents list various computations that can be performed using
StatCalc.

1.2 Contents of StatCalc

Discrete Distributions

1. Binomial Distribution

1.1 Calculation of cumulative probabilities, percentiles, and moments

1.2 Tests for proportions and power calculation

1.3 Confidence intervals, prediction intervals, tolerance intervals and sample
size calculation

1.4 Tests for comparing proportions and power calculation: Fisher’s test, dif-
ference, relative risk, and odds ratio

2. Discrete Uniform Distribution

3. Geometric Distribution

4. Hypergeometric Distribution

4.1 Calculation of cumulative probabilities, percentiles, and moments

4.2 Tests for proportions and sample size power

4.3 Confidence intervals for proportion and sample size for precision

4.4 Tests for the difference between two proportions and power calculation

5. Logarithmic Series Distribution

6. Negative Binomial Distribution

6.1 Calculation of cumulative probabilities, percentiles, and moments

6.2 Test and confidence interval for the proportion

7. Poisson Distribution

7.1 Calculation of cumulative probabilities, percentiles, and moments

7.2 Tests and confidence intervals for the mean and power calculation

7.3 Tolerance intervals and prediction intervals

7.4 Tests and confidence intervals for comparing two means and power calcu-
lation

Continuous Distributions

8. Beta Distributions

9. Bivariate Normal
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6 1 StatCalc

9.1 Computation of tail probabilities

9.2 Test and confidence interval for a correlation coefficient

9.3 Test and confidence interval for the difference between two correlation co-
efficients

9.4 Test and confidence interval for the ratio of two dependent variances

9.5 Multiple correlation coefficient

9.6 Tolerance factors for multivariate normal distribution

10. Cauchy Distribution

11. Chisquare Distribution

12. Exponential Distribution

12.1 Calculation of cumulative probabilities, percentiles, and moments

12.2 Confidence intervals and prediction intervals

12.3 Confidence intervals for comparing the means and the parameters

12.4 Tolerance limits and survival probability

13. Extreme Value Distribution

13.1 Calculation of cumulative probabilities, percentiles, and moments

13.2 Confidence intervals for the parameters, mean and survival probability

13.3 Tolerance limits and prediction intervals

13.4 Confidence intervals for comparing the means and the parameters

14. F Distribution

15. Gamma Distribution

15.1 Calculation of cumulative probabilities, percentiles, and moments

15.2 Tests and confidence intervals for the mean and parameters

15.3 Tests and confidence intervals for the mean difference and parameters

15.4 Tolerance intervals and prediction intervals

16. Inverse Gaussian Distribution

16.1 Calculation of cumulative probabilities, percentiles, and moments

16.2 Test and confidence interval for the mean

16.3 Test and confidence intervals for comparing two means
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17. Laplace Distribution

17.1 Calculation of cumulative probabilities, percentiles, and moments

17.2 Confidence intervals for parameters

17.3 Prediction intervals

17.4 Tolerance intervals

18. Logistic Distribution

18.1 Calculation of cumulative probabilities, percentiles, and moments

18.2 Confidence intervals for parameters

18.3 Prediction intervals

18.4 Tolerance intervals

19. Lognormal Distribution

19.1 Calculation of cumulative probabilities, percentiles, and moments

19.2 Confidence interval and test for the mean

19.3 Tests and confidence intervals for comparing two means

19.4 Confidence interval for the ratio of two lognormal means

20. Noncentral Chisquare Distribution

21. Noncentral F Distribution

22. Noncentral t Distribution

23. Normal Distribution

23.1 Calculation of cumulative probabilities, percentiles, and moments

23.2 Tests and confidence intervals for the mean and sample size for power

23.3 Tests and confidence intervals for comparing two means and power calcu-
lation

23.4 Tolerance and prediction intervals

23.5 Coefficients of variation and survival probability

23.6 Confidence intervals and tolerance intervals based on censored samples

24. Pareto Distribution

24.1 Calculation of cumulative probabilities, percentiles, and moments

24.2 Confidence intervals for parameters

24.3 Prediction intervals and Tolerance Intervals

25. Rayleigh Distribution

26. Student’s t Distribution

26.1 Calculation of cumulative probabilities, percentiles, and moments

26.2 Distribution of the maximum of independent t variables
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8 1 StatCalc

27. Weibull Distribution

27.1 Calculation of cumulative probabilities, percentiles, and moments

27.2 Confidence intervals for parameters, mean and survival probability

27.3 Prediction intervals

27.4 Tolerance Limits

28. Nonparametric Methods

28.1 Distribution of Runs

28.2 Sign Test and Confidence Intervals for Median

28.3 Wilcoxon Signed-Rank Test

28.4 Wilcoxon Rank-Sum Test

28.5 Sample Size for Nonparametric Tolerance Intervals
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2

Preliminaries

This reference book is written for those who have some knowledge of statistical
distributions. In this chapter, we will review some basic terms and concepts,
and introduce the notations used in the book. Readers should be familiar with
these concepts in order to understand the results, formulas, and properties of
the distributions presented in the rest of the book. This chapter also covers
two standard methods of fitting a distribution for an observed data set, two
classical methods of estimation, some recent methods of finding approximate
confidence intervals, and some aspects of hypothesis testing and interval esti-
mation. Furthermore, some methods for generating random numbers from a
probability distribution are outlined.

2.1 Random Variables and Expectations

Random Experiment : An experiment whose outcomes are determined only
by chance factors is called a random experiment.

Sample Space: The set of all possible outcomes of a random experiment is
called a sample space.

Event : The collection of none, one, or more than one outcomes from a sample
space is called an event.

Random Variable: A variable whose numerical values are determined by
chance factors is called a random variable. Formally, it is a function from
the sample space to a set of real numbers.

Discrete Random Variable: If the set of all possible values of a random variable
X is countable, then X is called a discrete random variable.

Mutually Exclusive and Exhaustive Outcomes: A set of outcomes is said to
be mutually exclusive if occurrence of one prevents occurrence of all other
outcomes. The set is said to be exhaustive if at least one of the outcomes
must occur.

Probability of an Event : If all the outcomes of a random experiment are
equally likely, mutually exclusive, and exhaustive, then the probability of an

9
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10 2 Preliminaries

event A is given by

P (A) =
Number of outcomes in the event A

Total number of outcomes in the sample space
.

Probability Mass Function (pmf): Let S be the set of all possible values of
a discrete random variable X, and f(k) = P ( X = k) for each k in S. Then
f(k) is called the probability mass function of X . The expression P (X = k)
means the probability that X assumes the value k.

Example 2.1. A fair coin is to be flipped three times. Let X denote the
number of heads that can be observed out of these three flips. Then X is a
discrete random variable with the set of possible values {0, 1, 2, 3}; this set
is also called the support of X . The sample space for this example consists of
all possible outcomes (23 = 8 outcomes) that could result out of three flips of
a coin, and is given by

{HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}.

Note that all the above outcomes are mutually exclusive and exhaustive; also
they are equally likely to occur with a chance of 1/8. Let A denote the event of
observing two heads. The event A occurs if one of the outcomes HHT, HTH,
and THH occurs. Therefore, P (A) = 3/8. The probability distribution of X
can be obtained similarly and is given below:

k 0 1 2 3
P(X = k) 1/8 3/8 3/8 1/8

This probability distribution can also be obtained using the probability mass
function. For this example, the pmf is given by

P (X = k) =

(
3

k

)(
1

2

)k (
1− 1

2

)3−k

, k = 0, 1, 2, 3,

and is known as the binomial
(
3, 12

)
probability mass function (see Chapter 4).

Continuous Random Variable: If the set of all possible values of X is an
interval or union of two or more nonoverlapping intervals, then X is called a
continuous random variable.

Probability Density Function (pdf): Any real valued function f(x) that sat-
isfies the following requirements is called a probability density function:

f(x) ≥ 0 for allx, and

∫ ∞

−∞
f(x)dx = 1.

Cumulative Distribution Function (cdf): The cdf of a random variable X is
defined by

F (x) = P (X ≤ x) for all x.
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2.2 Moments and Other Functions 11

For a continuous random variable X with the probability density function
f(x),

P (X ≤ x) =

∫ x

−∞
f(t)dt for allx.

For a discrete random variable X , the cdf is defined by

F (k) = P (X ≤ k) =

k∑

i=−∞
P (X = i).

Many commonly used distributions involve constants known as parameters. If
the distribution of a random variable X depends on a parameter θ (θ could
be a vector), then the pdf or pmf of X is usually expressed as f(x|θ), and the
cdf is written as F (x|θ) or FX(x|θ).

Inverse Distribution Function: Let X be a random variable with the cdf F (x).
For a given 0 < p < 1, the inverse of the distribution function is defined by

F−1(p) = inf{x : P (X ≤ x) = p}.

Expectation: If X is a continuous random variable with the pdf f(x), then the
expectation of g(X), where g is a real valued function, is defined by

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx.

If X is a discrete random variable, then

E(g(X)) =
∑

k

g(k)P (X = k),

where the sum is over all possible values of X . Thus, E(g(X)) is the weighted
average of the possible values of g(X), each weighted by its probability.

2.2 Moments and Other Functions

The moments are a set of constants that represent some important properties
of the distributions. The most commonly used such constants are measures
of central tendency (mean, median, and mode), and measures of dispersion
(variance and mean deviation). Two other important measures are the coef-
ficient of skewness and the coefficient of kurtosis. The coefficient of skewness
measures the degree of asymmetry of the distribution, whereas the coefficient
of kurtosis measures the degree of flatness of the distribution.
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12 2 Preliminaries

2.2.1 Measures of Central Tendency

Mean: Expectation of a random variable X is called the mean of X or the
mean of the distribution of X . It is a measure of location of all possible values
of X . The mean of a random variable X is usually denoted by µ, and for a
discrete random variable X , it is defined by

µ = E(X) =
∑

k

kP (X = k),

where the sum is over all possible values of X . For a continuous random
variable X with probability density function f(x), the mean is defined by

µ = E(X) =

∫ ∞

−∞
xf(x)dx.

Median: The median of a continuous random variable X is the value such
that 50% of the possible values of X are less than or equal to that value. For
a discrete distribution, median is not well defined, and it need not be unique.
Mode: The most probable value of the random variable is called the mode.

2.2.2 Moments

Moments about the Origin (Raw Moments): The moments about the origin
are obtained by finding the expected value of the random variable that has
been raised to k, k = 1, 2, . . .. That is,

µ′
k = E(Xk) =

∫ ∞

−∞
xkf(x)dx

is called the kth moment about the origin or the kth raw moment of X .

Moments about the Mean (Central Moments): When the random variable is
observed in terms of deviations from its mean, its expectation yields moments
about the mean or central moments. The first central moment is zero, and the
second central moment is the variance. The third central moment measures
the degree of skewness of the distribution, and the fourth central moment
measures the degree of flatness. The kth moment about the mean or the kth
central moment of a random variable X is defined by

µk = E(X − µ)k, k = 1, 2, . . . ,

where µ = E(X) is the mean of X . Note that the first central moment µ1 is
always zero.

Sample Moments : The sample central moments and raw moments are defined
analogous to the moments defined above. Let X1, . . . , Xn be a sample from a
population. The sample kth moment about the origin is defined by

m′
k =

1

n

n∑

i=1

Xk
i , k = 1, 2, . . . ,
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2.2 Moments and Other Functions 13

and the sample kth moment about the mean is defined by

mk =
1

n

n∑

i=1

(Xi − X̄)k, k = 1, 2, . . . ,

where X̄ = m′
1. In general, for a real valued function g, the sample version of

E(g(X)) is given by
n∑

i=1

g(Xi)/n.

2.2.3 Measures of Variability

Variance: The second moment about the mean (or the second central moment)
of a random variable X is called the variance and is usually denoted by σ2. It
is a measure of the variability of all possible values of X . The positive square
root of the variance is called the standard deviation.

Coefficient of Variation: Coefficient of variation is the ratio of the standard
deviation to the mean, that is, (σ/µ). This is a measure of variability indepen-
dent of the scale. That is, coefficient of variation is not affected by the units
of measurement.

Note that the variance defined above is affected by the units of measure-
ment. As an example, consider the height measurements (in inches) of 10
people:

68, 62.5, 63, 65.5, 70, 65, 69, 66.5, 67, 64.5

The mean height is 66.1 inches with the variance 6.1 inches. The coefficient of
variation is

√
var/mean = .0374. Suppose that the above data are transformed

to centimeters. As one inch is equal to 2.54 cm, the mean will be 167.894 and
the variance will be (2.54)2×6.1 = 39.35. However, the coefficient of variation
is

√
39.3548/167.894 = .0374, the same as the coefficient of variation for the

measurements in inches.

Mean Deviation: Mean deviation is a measure of variability of the possible
values of the random variable X . It is defined as the expectation of absolute
difference between X and its mean. That is,

Mean Deviation = E(|X − µ|).

2.2.4 Measures of Relative Standing

Percentile (quantile): For a given 0 < p < 1, the 100pth percentile of a
distribution function F (x) is the value of x for which F (x) = p. That is,
100p% of the population data are less than or equal to x. If a set of values of
x satisfy F (x) = p, then the minimum of the set is the 100pth percentile. The
100pth percentile is also called the pth quantile.
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14 2 Preliminaries

Quartiles : The 25th and 75th percentiles are called the first and the third
quartile, respectively. The difference (third quartile – first quartile) is called
the inter quartile range.

2.2.5 Other Measures

Coefficient of Skewness: The coefficient of skewness is a measure of skewness
of the distribution of X . If the coefficient of skewness is positive, then the
distribution is skewed to the right; that is, the distribution has a long right
tail. If it is negative, then the distribution is skewed to the left. The coefficient
of skewness is defined as

Third Moment about the Mean

(Variance)
3
2

=
µ3

µ
3/2
2

.

Coefficient of Kurtosis:

γ2 =
4thMoment about the Mean

(Variance)
2 =

µ4

µ2
2

is called the coefficient of kurtosis or coefficient of excess. This is a scale and
location invariant measure of degree of peakedness of the probability density
curve. If γ2 < 3, then the probability density curve is called platykurtic; if
γ2 > 3, it is called lepto kurtic; if γ2 = 3, it is called mesokurtic.

Coefficient of skewness and coefficient of kurtosis are useful to approxi-
mate the distribution of a random variable X . For instance, if the distribution
of a random variable Y is known, and its coefficient of skewness and coeffi-
cient of kurtosis are approximately equal to those of X , then the distribution
functions of X and Y are approximately equal. In other words, X and Y are
approximately identically distributed.

2.2.6 Moment Generating Function

Moment Generating Function: The moment generating function of a random
variable X is defined by

MX(t) = E
(
etX

)
,

provided that the expectation exists for t in some neighborhood of zero. If the
expectation does not exist for t in a neighborhood of zero, then the moment
generating function does not exist. The moment generating function is useful
to derive the moments of X . Specifically,

E(Xk) =
∂kE(etx)

∂ tk

∣∣∣∣
t=0

, k = 1, 2, . . .

Characteristic Function: The characteristic function of a random variable X
is defined by

φX(t) = E
(
eitX

)
,
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2.3 Some Functions Relevant to Reliability 15

where i is the complex number and t is a real number. Every random variable
has a unique characteristic function. Therefore, the characteristic function of
X uniquely determines its distribution.

Probability Generating Function: The probability generating function of a
nonnegative, integer-valued random variable X is defined by

P (t) =

∞∑

i=0

tiP (X = i),

so that

P (X = k) =
1

k!

(
dkP (t)

dtk

)∣∣∣∣
t=0

, k = 1, 2, . . . ,

Furthermore, P (0) = P (X = 0) and dP (t)
dt

∣∣∣
t=1

= E(X).

2.3 Some Functions Relevant to Reliability

Survival Function: The survival function of a random variable X with the
distribution function F (x) is defined by

1− F (x) = P (X > x).

If X represents the life of a component, then the value of the survival function
at x is called the survival probability (or reliability) of the component at x.
Inverse Survival Function: For a given probability p, the inverse survival
function returns the value of x that satisfies P (X > x) = p.
Hazard Rate: The hazard rate of a random variable at time x is defined by

r(x) =
f(x)

1− F (x)
.

Hazard rate is also referred to as failure rate, intensity rate, and force of
mortality. The survival probability at x in terms of the hazard rate is given
by

P (X > x) = exp

(
−
∫ x

0

r(y)dy

)
.

Hazard Function: The cumulative hazard rate

R(x) =

∫ x

0

f(y)

1− F (y)
dy

is called the hazard function.
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16 2 Preliminaries

Increasing Failure Rate (IFR): A distribution function F (x) is said to have
increasing failure rate if

P (X > x|X > t) =
P (X > t+ x)

P (X > t)
is decreasing in time t for each x > 0.

Decreasing Failure Rate (DFR): A distribution function F (x) is said to have
decreasing failure rate if

P (X > x|X > t) =
P (X > t+ x)

P (X > t)
is increasing in time t for each x > 0.

2.4 Model Fitting

Let X1, . . . , Xn be a sample from a continuous population. To verify whether
the sample can be modeled by a continuous distribution function F (x|θ),
where θ is an unknown parameter, the plot called Q–Q plot can be used.
If the sample size is 20 or more, the Q–Q plot can be safely used to check
whether the data fit the distribution.

2.4.1 Q–Q Plot

Construction of a Q–Q plot involves the following steps:

1. Order the sample data in ascending order and denote the jth smallest
observation by x(j), j = 1, . . . , n. The x(j)s are called order statistics or
sample quantiles.

2. The proportion of data less than or equal to x(j) is usually approximated

by
(
j − 1

2

)
/n for theoretical convenience.

3. Find an estimator θ̂ of θ (θ could be a vector).

4. Estimate the population quantile q(j) as the solution of the equation

F (q(j)|θ̂) =
(
j − 1

2

)
/n, j = 1, . . . , n.

5. Plot the pairs (x(1), q(1)), . . . , (x(n), q(n)).

If the sample is from a population with the distribution function
F (x|θ), then the Q–Q plot forms a line pattern close to the y = x line,
because the sample quantiles and the corresponding population quantiles are
expected to be equal. If this happens, then the distribution model F (x|θ) is
appropriate for the data (for examples, see Example 11.1 and Section 17.5).

The following chi-square goodness-of-fit test may be used if the sample is
large or the data are from a discrete population.
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2.5 Methods of Estimation 17

2.4.2 The Chi-Square Goodness-of-Fit Test

Let X be a discrete random variable with the support {x1, ..., xm}. Assume
that x1 ≤ ... ≤ xm. Let X1, . . . , Xn be a sample of n observations on X . Sup-
pose we hypothesize that the sample is from a particular discrete distribution
with the probability mass function f(k|θ), where θ is an unknown parameter
(it could be a vector). The hypothesis can be tested as follows.

1. Find the number Oj of data points that are equal to xj , j = 1, 2, . . . , m.
The Ojs are called observed frequencies.

2. Compute an estimator θ̂ of θ based on the sample.

3. Compute the probabilities pj = f(xj |θ̂) for j = 1, 2, . . . , m − 1 and

pm = 1−
m−1∑
j=1

pj .

4. Compute the expected frequencies Ej = pj × n, j = 1, . . . ,m.

5. Evaluate the chi-square statistic χ2 =
m∑
j=1

(Oj−Ej)
2

Ej
.

Let d denote the number of components of θ. If the observed value of the chi-
square statistic in Step 5 is larger than the (1− α)th quantile of a chi-square
distribution with degrees of freedom m− d− 1, then we reject the hypothesis
that the sample is from the discrete distribution with pmf f(k|θ) at the level
of significance α.

If we have a large sample from a continuous distribution, then the chi-
square goodness-of-fit test can be used to test the hypothesis that the sample
is from a particular continuous distribution F (x|θ). The interval (the smallest
observation, the largest observation) is divided into l subintervals, and the
number Oj of data values fall in the jth interval is counted for j = 1, . . . , l.
The theoretical probability pj that the underlying random variable assumes
a value in the jth interval can be estimated using the distribution function
F (x|θ̂). The expected frequency for the jth interval can be computed as Ej =
pj ×n, for j = 1, . . . , l. The chi-square statistic can be computed as in Step 5,
and compared with the (1− α)th quantile of the chi-square distribution with
degrees of freedom l− d− 1, where d is the number of components of θ. If the
computed value of the chi-square statistic is greater than the percentile, then
the hypothesis will be rejected at the level of significance α.

2.5 Methods of Estimation

We shall describe here two classical methods of estimation, namely, the mo-
ment estimation and the method of maximum likelihood estimation. Let
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18 2 Preliminaries

X1, . . . , Xn be a sample of observations from a population with the distri-
bution function F (x|θ1, . . . , θk), where θ1, . . . , θk are unknown parameters to
be estimated based on the sample.

Moment Estimation

Let f(x|θ1, . . . , θk) denote the pdf or pmf of a random variable X with the
cdf F (x|θ1, . . . , θk). The moments about the origin are usually functions of
θ1, . . . , θk. Notice that E(Xk

i ) = E(Xk
1 ), i = 2, . . . , n, because the Xis are

identically distributed. The moment estimators can be obtained by solving
the following system of equations for θ1, . . . , θk:

1
n

n∑
i=1

Xi = E(X1)

1
n

n∑
i=1

X2
i = E(X2

1 )

...

1
n

n∑
i=1

Xk
i = E(Xk

1 ),

where

E(Xj
1) =

∫ ∞

−∞
xjf(x|θ1, . . . , θk)dx, j = 1, 2, . . . , k.

Maximum Likelihood Estimation

For a given sample x = (x1, . . . , xn), the function defined by

L(θ1, . . . , θk| x1, . . . , xn) =
n∏

i=1

f(xi|θ1, . . . , θk)

is called the likelihood function. The maximum likelihood estimators are the
values of θ1, . . . , θk that maximize the likelihood function.

2.6 Inference

Let X = (X1, . . . , Xn) be a random sample from a population, and let
x = (x1, . . . , xn), where xi is an observed value of Xi, i= 1,. . . ,n. For sim-
plicity, let us assume that the distribution function F (x|θ) of the population
depends only on a single parameter θ. In the sequel, P (X ≤ x|θ) means the
probability that X is less than or equal to x when θ is the parameter of the
distribution of X .
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2.6 Inference 19

2.6.1 Hypothesis Testing

The main purpose of the hypothesis testing is to identify the range of the
values of the population parameter based on a sample data. Let Θ denote the
parameter space. The usual format of the hypotheses is

H0 : θ ∈ Θ0 vs. Ha : θ ∈ Θc
0, (2.1)

where H0 is called the null hypothesis, Ha is called the alternative or research
hypothesis, Θc

0 denotes the complement set of Θ0, and Θ0 ∪ Θc
0 = Θ. For

example, we want to test the mean difference θ between durations of two
treatments for a specific disease. If it is desired to compare these two treatment
procedures, then one can set hypotheses as H0 : θ = 0 vs. Ha : θ 6= 0.

In a hypothesis testing, a decision based on a sample of data is made as
to “reject H0 and decide Ha is true” or “do not reject H0.” The subset of the
sample space for which H0 is rejected is called the rejection region or critical
region. The complement of the rejection region is called the acceptance region.

Test Statistic: A statistic that is used to develop a test for the parameter of
interest is called the test statistic. For example, usually the sample mean X̄
is used to test about the mean of a population, and the sample proportion is
used to test about the proportion in a population.

Errors and Powers

Type I Error: Wrongly rejecting H0 when it is actually true is called the type
I error. Probability of making a type I error while testing hypotheses is given
by

P (X ∈ R|θ ∈ Θ0),

where R is the rejection region. The type I error is also referred to as the false
positive in clinical trials where a new drug is being tested for its effectiveness.

Type II Error: Wrongly accepting H0 when it is false is called the type II
error. Probability of making a type II error is given by

P (X ∈ Rc|θ ∈ Θc
0),

where Rc denotes the acceptance region of the test. The type II error is also
referred to as the false negative.

Level of Significance: The maximum probability (over Θ0) of making type I
error is called the level or level of significance; this is usually specified (common
choices are 0.1, 0.05, or 0.01) before carrying out a test.

Power Function: The power function β(θ) is defined as the probability of
rejecting null hypothesis. That is,

β(θ) = P (X ∈ R|θ ∈ Θ).
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Power: Probability of not making a type II error is called the power.
That is, the probability of rejecting false H0, and it can be expressed as
β(θ) = P (X ∈ R|θ ∈ Θc

0).

Size of a Test: The probability of rejecting H0 at a given θ1 ∈ Θ0 is called
the size at θ1. That is, P (X ∈ R|θ1 ∈ Θ0) is called the size.

Level α Test: For a test, if sup
θ∈Θ0

P (X ∈ R|θ) ≤ α, then the test is called a level

α test. That is, if the maximum probability of rejecting a true null hypothesis
is less than or equal to α, then the test is called a level α test.

If the size exceeds α for some θ ∈ Θ0, then the test is referred to as a liberal

or anti conservative test. If the sizes of the test are smaller than α, then it is
referred to as a conservative test.

Size α Test: For a test, if sup
θ∈Θ0

P (X ∈ R|θ) = α, then the test is called a size

α test.

Exact Test: If the distribution of a test statistic under H0 : θ = θ0 (null
distribution) does not depend on any parameters, then the test for θ basted
on the statistic is an exact test. This implies that, for any specified value θ0
of θ, the type I error rate is exactly equal to the nominal level α.

The above definition for an exact test is applicable only for continuous
distributions. For discrete distributions, type I error rates is seldom equal to
the nominal level, and a test is said to be “exact” as long as the type I error
rate is no more than the nominal level for all parameter values under the null
hypothesis. Such exact tests are usually more conservative, in the sense that
the type I error rates are much less than the nominal level, as a result, they
have poor power properties.

Unbiased Test: A test is said to be unbiased if β(θ1) ≤ β(θ2) for every θ1 in
Θ0 and θ2 in Θc

0.

The Likelihood Ratio Test (LRT): Let X = (X1, ..., Xn) be a random sample
from a population with the pdf f(x|θ). Let x = (x1, ..., xn) be an observed
sample. Then the likelihood function is given by

L(θ|x) =
n∏

i=1

f(xi|θ).

The LRT statistic for testing (2.1) is given by

λ(x) =
supΘ0

L(θ|x)
supΘ L(θ|x)

.

Notice that 0 < λ(x) < 1, and the LRT rejects H0 in (2.1) for smaller values
of λ(x).

Pivotal Quantity: A pivotal quantity is a function of sample statistics and the
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parameter of interest whose distribution does not depend on any unknown
parameters. The distribution of T (X) can be used to make inferences on θ.
The distribution of T (X) when θ ∈ Θ0 is called the null distribution, and
when θ ∈ Θc it is called the non-null distribution. The value T (x) is called the
observed value of T (X). That is, T (x) is the numerical value of T (X) based
on the observed sample x.

P-Value: The p-value of a test is a measure of sample evidence in support of
Ha. The smaller the p-value, the stronger the evidence for rejecting H0. The
p-value based on a given sample x is a constant in (0,1) whereas the p-value
based on a random sample X is a uniform(0, 1) random variable. A level α
test rejects H0 whenever the p-value is less than or equal to α.

We shall now describe a test about θ based on a pivotal quantity T (X).
Consider testing the hypotheses

H0 : θ ≤ θ0 vs. Ha : θ > θ0, (2.2)

where θ0 is a specified value. Suppose the statistic T (X) is a stochastically
increasing function of θ. That is, T (X) is more likely to be large for large
values of θ. The p-value for testing the hypotheses in (2.2) is given by

sup
θ≤θ0

P (T (X; θ) > T (x)|θ) = P (T (X) > T (x)|θ0) .

For two-sided alternative hypothesis, that is,

H0 : θ = θ0 vs. Ha : θ 6= θ0,

the p-value is given by

2 min {P (T (X) > T (x)|θ0) , P (T (X) < T (x)|θ0)} .

For testing (2.2), let the critical point c be determined so that

sup
θ∈Θ0

P (T (X) ≥ c|θ) = α.

Notice that H0 will be rejected whenever T (x) > c, and the region

{x : T (x) > c}

is the rejection region.
The power function of the test for (2.2) is given by

β(θ) = P (T (X) > c|θ).

The value β(θ1) is the power at θ1 if θ1 ∈ Θc
0, and the value of β(θ1) when

θ1 ∈ Θ0 is the size at θ1.
For an efficient test, the power function should be an increasing function

of |θ − θ0| and the sample size. Between two level α tests, the one that has
more power than the other should be used for practical applications.
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2.6.2 Interval Estimation

Confidence Intervals

Let L(X) and U(X) be functions satisfying L(X) < U(X) for all samples.
Consider the interval (L(X), U(X)). The probability

P ((L(X), U(X)) contains θ|θ)

is called the coverage probability of the interval. The minimum coverage prob-
ability, that is,

inf
θ∈Θ

P ((L(X), U(X)) contains θ|θ)

is called the confidence coefficient. If the confidence coefficient is specified as,
say, 1−α, then the interval (L(X), U(X)) is called a 1−α confidence interval.
That is, an interval is said to be a 1 − α confidence interval if its minimum
coverage probability is 1− α.

One-Sided Limits: If the confidence coefficient of the interval (L(X),∞) is
1 − α, then L(X) is called a 1 − α lower confidence limit for θ, and if the
confidence coefficient of the interval (−∞, U(X)) is 1−α, then U(X) is called
a 1− α upper confidence limit for θ.

Prediction Intervals

Prediction interval, based on a sample from a population with distribution
F (x|θ), is constructed to assess the characteristic of an individual in the pop-
ulation. Let X = (X1, ..., Xn) be a sample from F (x|θ). A 1 − α prediction
interval for X ∼ F (x|θ), where X is independent of X, is a random interval
(L(X), U(X)) that satisfies

inf
θ∈Θ

P [(L(X), U(X)) contains X |θ] = 1− α.

The prediction interval for a random variable X is wider than the confidence
interval for θ because it involves the uncertainty in estimates of θ and the
uncertainty in X .

Tolerance Intervals

A p content – (1−α) coverage tolerance interval (or simply (p, 1−α) tolerance
interval) is an interval based on a random sample that would contain at least
proportion p of the sampled population with confidence 1 − α. Let X =
(X1, ..., Xn) be a sample from F (x|θ), and X ∼ F (x|θ) independently of X .
Then, a p content – (1 − α) coverage one-sided tolerance interval of the form
(−∞, U(X)) is required to satisfy the condition

PX {PX [X ≤ U(X)] ≥ p|X} = PX {F (U(X)) ≥ p} = 1− α, (2.3)

where X also follows F (x|θ) independently of X. That is, U(X) is to be
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determined such that at least a proportion p of the population is less than or
equal to U(X) with confidence 1 − α. The interval (−∞, U(X)] is called a
one-sided tolerance interval, and U(X) is called a one-sided upper tolerance
limit. Note that based on the definition of the p quantile qp (see Section 2.2.4),
we can write (2.3) as

PX {qp ≤ U(X)} = 1− α. (2.4)

Thus, U(X) is indeed a 1−α upper confidence limit for the p quantile qp. The
(p, 1 − α) one-sided lower tolerance limit is a 100(1 − α)% lower confidence
limit for q1−p, the 100(1− p) percentile of the population of interest.

A (p, 1 − α) two-sided tolerance interval (L(X), U(X)] is constructed so
that

PX {PX [L(X) ≤ X ≤ U(X)] ≥ p|X} = PX {FX(U(X))− FX(L(X)) ≥ p}
= 1− α.

It is important to note that the computation of the above two-sided tolerance
interval does not reduce to the computation of confidence limits for certain
percentiles.

Equal-Tailed Tolerance Interval

Another type of interval, referred to as equal-tailed tolerance interval, is de-
fined as follows. Assume that p > 0.5. A (p, 1−α) equal-tailed tolerance inter-
val (Le(X), Ue(X)) is such that, with confidence 1−α, no more than a propor-
tion 1−p

2 of the population is less than Le(X), and no more than a proportion
1−p
2 of the population is greater than Ue(X). That is, for (Le(X), Ue(X)) to

be a (p, 1− α) equal-tailed tolerance interval, the condition to be satisfied is

PX

(
Le(X) ≤ q 1−p

2
and q 1+p

2
≤ Ue(X)

)
= 1− α. (2.5)

In fact, the interval (Le(X), Ue(X)) includes the interval
(
q 1−p

2
, q 1+p

2

)
with

100(1− α)% confidence.

2.7 Pivotal-Based Methods for Location-Scale Families

A continuous univariate distribution is said to belong to the location-scale
family if its pdf can be expressed in the form

f(x;µ, σ) =
1

σ
g

(
x− µ

σ

)
, −∞ < x <∞, −∞ < µ <∞, σ > 0, (2.6)

where g is a completely specified function. Here, µ and σ are referred to as the
location and scale parameters, respectively. As an example, the family of nor-
mal distributions is a location-scale family because the pdf can be expressed
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as

f(x;µ, σ) =
1

σ
φ

(
x− µ

σ

)
with φ(x) =

1√
2π
e−

x2

2 .

2.7.1 Pivotal Quantities

Let X1, ..., Xn be a sample from a distribution with the location parameter µ
and scale parameter σ. Estimators µ̂(X1, ..., Xn) of µ and σ̂(X1, ..., Xn) of σ
are said to be equivariant if for any constants a and b with a > 0,

µ̂(aX1 + b, ..., aXn + b) = aµ̂(X1, ..., Xn) + b

σ̂(aX1 + b, ..., aXn + b) = aσ̂(X1, ..., Xn). (2.7)

For example, the sample mean X̄ and the sample variance S2 are equivariant
estimators for a normal mean and variance, respectively.

Result 2.7.1. Let X1, ..., Xn be a sample from a continuous distribution with
the pdf of the form in (2.6). Let µ̂(X1, ..., Xn) and σ̂(X1, ..., Xn) be equivariant
estimators of µ and σ, respectively. Then

µ̂− µ

σ
,
σ̂

σ
and

µ̂− µ

σ̂

are all pivotal quantities. That is, their distributions do not depend on any
parameters (see Lawless, 2003, Theorem E2).

The above result implies that

µ̂− µ

σ̂
=

(µ̂− µ)/σ

σ̂/σ

is also a pivotal quantity.

Pivotal Quantity for an Equivariant Function

Let h(µ, σ) be an equivariant function. That is, h(bµ + a, bσ) = bh(µ, σ) + a
for all a and b > 0. Then

µ̂− h(µ, σ)

σ̂
=
µ̂− [σh(0, 1) + µ]

σ̂
=
µ̂− µ

σ̂
− h(0, 1)

σ

σ̂

is a pivotal quantity. Furthermore, the definition of pivotal quantity implies
that

µ̂− h(µ, σ)

σ̂
∼ µ̂∗ − h(0, 1)

σ̂∗ , (2.8)

where the notation “∼” means “distributed as,” and (µ̂∗, σ̂∗) are the equivari-
ant estimators based on a sample from the sampled distribution with µ = 0
and σ = 1. Therefore, the percentiles of the above pivotal quantity can be
obtained either by using a numerical method or by Monte Carlo simulation.
For example, if k1 and k2 satisfy

P

(
k1 ≤ µ̂∗ − h(0, 1)

σ̂∗ ≤ k2

)
= 1− α,

then (µ̂− k2σ̂, µ̂− k1σ̂) is a 1− α confidence interval for h(µ, σ).
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2.7.2 Generalized Pivotal Quantities (GPQ)

Let X be a sample from a population with the parameter of interest θ, and let
x be an observed value of X. A generalized confidence interval for θ is com-
puted using the percentiles of a so-called generalized pivotal quantity (GPQ),
sayG(X ;x, θ), a function ofX, x, and θ (and possibly the nuisance parameter
δ) satisfying the following conditions:

(i) For a given x, the distribution of G(X;x, θ) is free of all unknown param-
eters.

(ii) The value of G(X ;x, θ), namely its value at X = x, is θ, the parameter
of interest. (C.1)

When the conditions (i) and (ii) in (C.1) hold, appropriate percentiles of
G(X ;x, θ) form a 1−α confidence interval for θ. For example, if Gp is the pth
quantile of G(X;x, θ), then

(
Gα

2
, G1−α

2

)
is a 1− α confidence interval for θ.

Numerous applications of generalized confidence intervals have appeared in
the literature. Several such applications are given in the books by Weerahandi
(1995). It should, however, be noted that generalized confidence intervals may
not satisfy the usual repeated sampling properties. That is, the actual coverage
probability of a 95% generalized confidence interval could be different from
0.95, and the coverage could in fact depend on the nuisance parameters. The
asymptotic accuracy of a class of generalized confidence interval procedures
has recently been established by Hannig, Iyer, and Patterson (2005). However,
the small sample accuracy of any procedure based on generalized confidence
intervals should be investigated at least numerically. As this generalized vari-
able approach is used to obtain inference for several distributions in later
chapters, we shall illustrate the method for finding GPQs for a location-scale
family of distributions.

GPQs for Location-Scale Families

Consider a location-scale family of distributions with the pdf of the form
f(x|µ, σ), where µ is the location parameter and σ is the scale parameter. Let
µ̂ and σ̂ be equivariant estimators of µ and σ, respectively. Let (µ̂0, σ̂0) be an
observed value of (µ̂, σ̂). A GPQ for µ, denoted by Gµ can be constructed as
follows.

Gµ = µ̂0 −
µ̂− µ

σ

σ

σ̂
σ̂0

= µ̂0 −
µ̂∗

σ̂∗ σ̂0, (2.9)

where µ̂∗ and σ̂∗ are the equivariant estimators based on a random sample
from f(x|0, 1). It is easy to see that when (µ̂, σ̂) = (µ̂0, σ̂0), the expression Gµ

simplifies to µ, the parameter of interest. Furthermore, for a given (µ̂0, σ̂0),
the distribution of Gµ does not depend on any parameters. Thus, Gµ is a bona
fide GPQ for µ.
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A GPQ for the scale parameter σ is given by

Gσ =
σ

σ̂
σ̂0 =

σ̂0
σ̂∗ , (2.10)

where σ̂∗ are the equivariant estimator based on a random sample from
f(x|0, 1). It can be easily verified that Gσ is a valid GPQ satisfying the con-
ditions in (C.1).

In general, a GPQ for a function h(µ, σ) can be obtained by replacing the
parameters by their GPQs, which gives h(Gµ, Gσ).

Example 2.2. Let us find the GPQs for the mean µ and the standard de-
viation (SD) σ for a normal distribution. Let (X̄, S) denote the (mean, SD)
based on a random sample of size n from the normal distribution. Let (x̄, s)
be an observed value of (X̄, S). A GPQ for µ follows from (2.9) as

Gµ = x̄− X̄∗

S∗ s, (2.11)

where (X̄∗, S∗) is the (mean, SD) based on a random sample of size n from a
standard normal distribution. Note that X̄∗ ∼ N(0, 1/

√
n) independently of

(n − 1)S∗ ∼ χ2
n−1, chi-square distribution with n− 1 degrees of freedom. As

a result,
X̄∗

S∗ ∼ 1√
n
tn−1,

where tm denotes the Student’s t distribution with df = m. The lower and
upper α quantiles of the Gµ in (2.11) form a 1− 2α confidence interval for µ,
and is given by

x̄± tn−1;1−α
s√
n
,

the usual t interval for the mean µ.
A GPQ for σ is given by

Gσ =
s

S∗ ,

where S∗ is the standard deviation based on a random sample from a standard

normal distribution. Noting that S∗ ∼ χ2
n−1

n−1 , a 1 − 2α confidence interval for
σ is given by

(Gσ,α, Gσ,1−α) =


 s

√
n− 1√

χ2
n−1;1−α

,
s
√
n− 1√
χ2
n−1;α


 ,

where χ2
m;q denotes the qth quantile of a χ2

m distribution. Note that the above
confidence interval is exact.

A GPQ for the 100pth percentile of a N(µ, σ2) distribution can be obtained
by substituting the GPQs for µ and σ. Note that this percentile is expressed
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as h(µ, σ) = µ + zpσ, where zp is the p quantile of the standard normal
distribution. A GPQ for h(µ, σ) is given by

h(Gµ, Gσ) = Gµ + zp
√
Gσ2

= x̄− X̄∗

S∗ s+ zp
s

S∗ .

Noting that X̄∗ ∼ Z/
√
n, where Z ∼ N(0, 1), independently of S∗ ∼ χ2

n−1

n−1 ,
we can write

Gµ + zpGσ = x̄+
1√
n


 Z + zp

√
n√

χ2
n−1/(n− 1)


 s.

The term within the parentheses is distributed as tn−1(zp
√
n), the noncentral

t distribution with degrees of freedom n− 1 and the noncentrality parameter
zp
√
n; see Chapter 20. So the GPQ for µ+ zpσ is given by

x̄+
1√
n
tn−1(zp

√
n)s.

The 100(1 − α) percentile of the above quantity is x̄ + 1√
n
tn−1;1−α(zp

√
n)s,

which is a 1− α upper confidence limit for µ+ zpσ, and is referred to as the
(p, 1−α) upper tolerance limit for the sampled normal population. See Section
11.6.2.

2.8 Method of Variance Estimate Recovery

The Method of Variance Estimate Recovery (MOVER) is useful to find an
approximate confidence interval for a linear combination of parameters based
on confidence intervals of the individual parameters. Consider a linear com-
bination

∑k
i=1 ciθi of parameters θ1, ...., θg, where ci’s are known constants.

Let θ̂i be an unbiased estimate of θi, i = 1, ..., k. Assume that θ̂1, ..., θ̂g are
independent. Further, let (li, ui) denote the 1 − α confidence interval for θi,

i = 1, ..., k. The 1 − α MOVER confidence interval (L,U) for
∑k

i=1 ciθi can
be expressed as

L =

g∑

i=1

ciθ̂i −

√√√√
g∑

i=1

c2i

(
θ̂i − l∗i

)2

, with l∗i =

{
li if ci > 0,
ui if ci < 0,

(2.12)

and

U =

g∑

i=1

ciθ̂i +

√√√√
g∑

i=1

c2i

(
θ̂i − u∗i

)2

, with u∗i =

{
ui if ci > 0,
li if ci < 0.

(2.13)
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Graybill and Wang (1980) first obtained the above confidence interval for a
linear combinations variance components, and refer to their approach as the
modified large sample method. Zou and coauthors gave a Wald type argument
so as to the above confidence interval is valid for any parameters; see Zou
and Donner (2008), Zou et al. (2009a, 2009b). These authors refer to the
confidence intervals of the above form as the method of variance estimate

recovery confidence intervals.

2.9 Modified Normal-Based Approximation

There are situations where the problem of finding confidence intervals for a
function of parameters simplifies to finding percentiles of a linear combination
of independent continuous random variables or percentiles of the ratio of two
independent random variables from different families. Approximate percentiles
for a linear combination of independent continuous random variables can be
obtained along the lines of the MOVER.

2.9.1 Linear Combination of Independent Random Variables

Let X1, ..., Xk be independent continuous random variables, not necessarily
from the same family of distributions. Let Q =

∑k
i=1 wiXi, where wis are

known constants. For 0 < α < .5, let Xiα denote the 100α percentile of the
distribution of the random variable Xi, i = 1, ..., k. Then the 100α percentile
of Q is approximated by

Qα ≃
k∑

i=1

wiE(Xi)−
[

k∑

i=1

w2
i

[
E(Xi)−X l

i

]2
] 1

2

, (2.14)

where X l
i = Xi;α if wi > 0, and is Xi;1−α if wi < 0. The upper percentile

Q1−α ≃
k∑

i=1

wiE(Xi) +

[
k∑

i=1

w2
i [E(Xi)−Xu

i ]
2

] 1
2

, (2.15)

where Xu
i = Xi;1−α if wi > 0, and is Xi;α if wi < 0. Furthermore,

P (Qα/2 ≤ Q ≤ Q1−α/2) ≃ 1− α, for 0 < α < .5.

It can be readily verified that the above approximate percentiles in (2.14)
and (2.15) are exact for normally distributed independent random variables.
These modified normal-based approximations are very satisfactory for many
commonly used distributions, such as the beta and Student’s t. For more
details, see Krishnamoorthy (2014).
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2.9.2 Ratio of Two Independent Random Variables

Let X and Y be independent random variables with mean µx and µy, respec-
tively. Assume that Y is a positive random variable. For 0 < α < 1, let c
denote the α quantile of R = X/Y so that P (X − cY ≤ 0) = α. This means
that c is the value for which the α quantile of X−cY is zero. The approximate
α quantile of X − cY based on (2.14) is

µx − cµy −
√
(µx −Xα)2 + c2(µy − Y1−α)2.

Equating the above expression to zero, and solving the resulting equation for

c, we get an approximate α quantile for X/Y as

Rα ≃





r−

{

r2−

[

1−
(

1−
Y1−α
µy

)2
][

r2−

(

r−
Xα
µy

)2
]} 1

2

[

1−
(

1−
Y1−α
µy

)2
] , 0 < α ≤ .5,

r+

{

r2−

[

1−
(

1−
Y1−α
µy

)2
][

r2−

(

r−
Xα
µy

)2
]} 1

2

[

1−
(

1−
Y1−α
µy

)2
] , .5 < α < 1,

(2.16)
where r = µx/µy.

2.10 Random Number Generation

Inverse Method

The basic method of generating random numbers from a distribution is known
as the inverse method. The inverse method for generating random numbers
from a continuous distribution F (x|θ) is based on the probability integral trans-

formation: If a random variable X follows F (x|θ), then the random variable
U = F (X |θ) follows a uniform(0, 1) distribution. Therefore, if U1, . . . , Un are
random numbers generated from uniform(0, 1) distribution, then

X1 = F−1(U1, θ), . . . ,Xn = F−1(Un, θ)

are random numbers from the distribution F (x|θ). Thus, the inverse method
is quite convenient if the inverse distribution function is easy to compute. For
example, the inverse method is simple to use for generating random numbers
from the Cauchy, Laplace, Logistic, and Weibull distributions.

If X is a discrete random variable with support x1 < x2 < . . . < xn and
cdf F (x), then random variates can be generated as follows:
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Generate a U ∼ uniform(0,1)
If F (xi) < U ≤ F (xi+1), set X = xi+1.

X is a random number from the cdf F (x). The above method should be used
with the convention that F (x0) = 0.

The Accept/Reject Method

Suppose that X is a random variable with pdf f(x), and Y is a random
variable with pdf g(y). Assume that X and Y have common support, and
random numbers from g(y) can be easily generated. Define

M = sup
x

f(x)

g(x)
.

The random numbers from f(x) can be generated as follows.
1 Generate U ∼ uniform(0,1), and Y from g(y)

If U < f(Y )
Mg(Y ) , deliver X = Y

else go to 1.
The expected number of trials required to generate one X is M .

2.11 Some Special Functions

In this section, some special functions that are used in the following chapters
are given.
Gamma Function: The gamma function is defined by

Γ(x) =

∫ ∞

0

e−ttx−1dt for x > 0.

The gamma function satisfies the relation that Γ(x+ 1) = xΓ(x).
Digamma Function: The digamma function is defined by

ψ(z) =
d [ln Γ(z)]

dz
=

Γ′(z)

Γ(z)
,

where Γ(z) =
∫∞
0 e−ttz−1dt. The value of γ = −ψ(1) is called Euler’s constant

and is given by

γ = 0.5772 1566 4901 5328 6060 · · · .

For an integer n ≥ 2, ψ(n) = −γ+
n−1∑
k=1

1
k . Furthermore, ψ(0.5) = −γ− 2 ln(2)

and

ψ(n+ 1/2) = ψ(0.5) + 2

(
1 +

1

3
+ · · ·+ 1

2n− 1

)
, n ≥ 1.
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The digamma function is also called the Psi function.

Beta Function: For a > 0 and b > 0, the beta function is defined by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

The following logarithmic gamma function can be used to evaluate the beta
function.

Logarithmic Gamma Function: The function lnΓ(x) is called the logarithmic
gamma function, and it has wide applications in statistical computation. In
particular, as shown in the later chapters, lnΓ(x) is needed in computing
many distribution functions and inverse distribution functions. The following
continued fraction for lnΓ(x) is quite accurate for x ≥ 8 (see Hart et al., 1968).
Let

b0 = 8.33333333333333E− 2, b1 = 3.33333333333333E− 2,
b2 = 2.52380952380952E− 1, b3 = 5.25606469002695E− 1,
b4 = 1.01152306812684, b5 = 1.51747364915329,
b6 = 2.26948897420496 and b7 = 3.00991738325940.

Then, for x ≥ 8,

ln Γ(x) = (x− 0.5) ln(x) − x+ 9.1893853320467E− 1

+ b0/(x+ b1/(x+ b2/(x+ b3/(x+ b4/(x+ b5/(x+ b6/(x+ b7))))))).

Using the above expression and the relation that Γ(x + 1) = xΓ(x), lnΓ(x)
can be evaluated for x < 8 as

ln Γ(x) = ln Γ(x+ 8)− ln

7∏

i=0

(x+ i)

= ln Γ(x+ 8)−
7∑

i=0

ln(x+ i).

The R function 2.1 based on the above method evaluates ln Γ(x) for a given
x > 0.

© 2016 by Taylor & Francis Group, LLC

  



32 2 Preliminaries

R function 2.1. (Calculation of logarithmic gamma function)

alng <- function(x){

b <- c(8.33333333333333e-2, 3.33333333333333e-2,

2.52380952380952e-1, 5.25606469002695e-1,

1.01152306812684, 1.51747364915329,

2.26948897420496, 3.00991738325940)

if(x < 8.0){

xx <- x + 8.0

indx <- 1}

else

{indx <- 0

xx <- x}

fterm <- (xx-0.5)*log(xx) - xx + 9.1893853320467e-1

sum <- b[1]/(xx+b[2]/(xx+b[3]/(xx+b[4]/(xx+b[5]/(xx+b[6]

/(xx+b[7]/(xx+b[8])))))))

als <- sum + fterm

if(indx == 1){al <- (als-log(x+7.0)-log(x+6.0)-log(x+5.0)

-log(x+4.0)-log(x+3.0)-log(x+2.0)-log(x+1.0)

-log(x))

return(c(al))}

else{

return(als)}

}
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3

Discrete Uniform Distribution

3.1 Description

The probability mass function of a discrete uniform random variable X is
given by

P (X = k) =
1

N
, k = 1, . . . , N.

The cumulative distribution function is given by

P (X ≤ k) =
k

N
, k = 1, . . . , N.

This distribution is used to model experimental outcomes that are “equally
likely.” The mean and variance can be obtained using the formulas that

k∑

i=1

i =
k(k + 1)

2
and

k∑

i=1

i2 =
k(k + 1)(2k + 1)

6
.

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

FIGURE 3.1: The probability mass function when N = 10
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36 3 Discrete Uniform Distribution

3.2 Moments

Mean: N+1
2

Variance: (N−1)(N+1)
12

Coefficient of Variation:
(

N−1
3(N+1)

) 1
2

Coefficient of Skewness: 0

Coefficient of Kurtosis: 3− 6(N2+1)
5(N−1)(N+1)

Moment Generating Function: MX(t) = et(1−eNt)
N(1−et)

Mean Deviation:





N2−1
4N if N is odd,

N
4 if N is even.
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4

Binomial Distribution

4.1 Description

A binomial experiment involves n independent and identical Bernoulli trials,
such that each trial can result in to one of the two possible outcomes, namely,
success or failure. If p is the probability of observing a success in each trial,
then the number of successes X that can be observed out of these n trials is
referred to as the binomial random variable with n trials and success proba-
bility p. The probability of observing k successes out of these n trials is given
by the probability mass function

P (X = k|n, p) =
(
n

k

)
pk(1− p)n−k, k = 0, 1, ..., n.

The cumulative distribution function of X is given by

P (X ≤ k|n, p) =
k∑

i=0

(
n

i

)
pi(1− p)n−i, k = 0, 1, ..., n.

Binomial distribution is often used to estimate or determine the proportion of
individuals with a particular attribute in a large population. Suppose that a
random sample of n units is drawn by sampling with replacement from a finite
population or by sampling without replacement from a large population. The
number of units that contain the attribute of interest in the sample follows
a binomial distribution. The binomial distribution is not appropriate if the
sample was drawn without replacement from a small finite population; in this
situation, the hypergeometric distribution in Chapter 5 should be used. For
practical purposes, binomial distribution may be used for a population of size
around 5,000 or more.

We denote the binomial distribution with n trials and success probability p
by binomial(n, p). This distribution is right-skewed when p < 0.5, left-skewed
when p > 0.5, and symmetric when p = 0.5. See the plots of probability mass
functions in Figure 4.1. For large n, binomial distribution is approximately
symmetric about its mean np.

37
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38 4 Binomial Distribution

4.2 Moments

Mean: np
Variance: np(1− p)
Mode: The largest integer ≤ (n+ 1)p
Mean Deviation: 2n

(
n−1
m

)
pm+1(1 − p)n−m,

where m denotes the largest
integer ≤ np. [Kamat, 1965]

Coefficient of Variation:
√

1−p
np

Coefficient of Skewness: 1−2p√
np(1−p)

Coefficient of Kurtosis: 3− 6
n + 1

np(1−p)

Factorial Moments: E
(∏k

i=1(X − i+ 1)
)

= pk
∏k

i=1(n− i+ 1)

Moments about the Mean: np(1− p)
k−2∑
i=0

(
k−1
i

)
µi

−p
k−2∑
i=0

(
k−1
i

)
µi+1,

where µ0 = 1 and µ1 = 0.
[Kendall and Stuart 1958, p. 122]

Moments Generating Function: (pet + (1 − p))n

Probability Generating Function: (pt+ (1− p))n

4.3 Probabilities, Percentiles and Moments

The dialog [StatCalc→Discrete→Binomial→Probabilities, Critical Values and Mo-

ments] can be used to compute the following.
To compute probabilities: Enter the values of the number of trials n, success
probability p, and the observed number of successes k; click [P]. When n =
20, p = 0.2, and k = 4,

P (X ≤ 4) = 0.629648, P (X ≥ 4) = 0.588551, and P (X = 4) = 0.218199.

To compute the value of p: Input values for the number of trials n, the number
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FIGURE 4.1: Binomial probability mass functions
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40 4 Binomial Distribution

of successes k, and for the cumulative probability P(X <= k); click [s]. When
n = 20, k = 4 and P (X ≤ k) = 0.7, the value of p is 0.183621.

To compute the value of n: Enter the values of p, the number of successes k,
and P(X <= k); click [n]. When p = 0.20, k = 6, and P (X ≤ k) = 0.4, the
value of n is 36.

To compute the value of k: Enter the values of n, p, and the cumulative
probability P(X <= k); click [k]. If the cumulative probability c is greater
than 0.5, then StatCalc computes the smallest value of k, such that P (X ≥
k) ≤ 1−c. That is, the value of k is computed so that the right-tail probability
is less than or equal to 1−c; if c < 0.5, then the largest value of k is computed
so that the P (X ≤ k) ≤ c.

As an example, p = 0.4234, n = 43, and P (X <= k) = 0.90, the value of k
is 23. Notice that P (X ≥ 23) = 0.0931953, which is less than 1− 0.90 = 0.10.
If P (X ≤ k) = 0.10, then k is 13, and P (X ≤ 13) = 0.071458. Note that
P (X ≤ 14) = 0.125668, which is greater than 0.10.

To compute moments: Enter values for n and p; click [M].

Example 4.1. Suppose that a balanced coin is to be flipped 20 times. Find
the probability of observing

a. 10 heads;

b. at least 10 heads;

c. between 8 and 12 heads.

Solution: Let X denote the number of heads that can be observed out of these
20 flips. Here, the random variable X is binomial with n = 20, and the success
probability = 0.5, which is the probability of observing a head at each flip.

a. To find the probability, select the dialog box [StatCalc→Discrete→Binomial→
Probabilities, Critical Values and Moments], enter 20 for n, 0.5 for success
probability, 10 for k, and click on [P] to get P (X = 10) = 0.176197. That
is, the chances of observing exactly 10 heads are about 18%.

b. To get this probability, enter 20 for n, 0.5 for p, 10 for k, and click [P] to
get P (X ≥ 10) = 0.588099. That is, the chances of observing 10 or more
heads are about 59%.

c. The desired probability is

P (8 ≤ X ≤ 12) = P (X ≤ 12)− P (X ≤ 7)

= 0.868412− 0.131588

= 0.736824.

Example 4.2. What are the chances of observing exactly 3 girls in a family
of 6 children?
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4.4 Proportion 41

Solution: Let us assume that the probability of giving birth to a boy = proba-
bility of giving birth to a girl = 0.5. Let X be the number of girls in the family.
Here, X is a binomial random variable with n = 6 and p = 0.5. To find the
probability, select the dialog box [StatCalc→Discrete→Binomial→Probabilities,

Critical Values and Moments], enter 6 for n, 0.5 for p, and 3 for k; click [P] to
get P (X = 3) = 0.3125.

Example 4.3. Inspection of a random sample of 30 items from a large ship-
ment showed 5 defective items. Let X denote the number of defective items in
a sample of 30 items, and let p denote the true proportion of defective items
in the shipment.

a. Identify the distribution of X .

b. Find the value of p for which P (X ≥ 5|n = 30, p) = .05.

c. What can we conclude from the value of p obtained in part b?

Solution:

a. The distribution of X is binomial with n = 30 and “success probability”
p, which is unknown.

b. Note that the value of p that satisfies P (X ≥ 5|n = 30, p) = .05 is the same
as the one that satisfies P (X ≤ 4|n = 30, p) = .95. To find the p using
StatCalc, select the dialog box [StatCalc→Discrete→Binomial→Probabilities,

Critical Values and Moments], enter 30 for n, 4 for k, and .95 for P (X ≤ k).
Click on [s] to get 0.0680556. For this value of p, P (X ≥ 5|n = 30, p =
.0680556) = .05.

c. The result in part b implies that if p were .06806, then only 5% of all
possible samples, each of size 30, include 5 or more number of defective
items. As a result, we can conclude that the true proportion of defective
items is likely to be to be more than .06806.

4.4 Proportion

Suppose that investigation of a sample of n units from a population revealed
that X successes (the number of units with an attribute of interest). Let p
denote the proportion of individuals in the population with the attribute. The
sample proportion p̂ = X/n is the maximum likelihood estimate as well as an
unbiased estimate of p.

In the following sections, we shall outline an asymptotic test, score test,
and an exact test for proportion. These tests are based on X and n.

© 2016 by Taylor & Francis Group, LLC

  



42 4 Binomial Distribution

4.4.1 Tests

The Wald Test

The Wald test is based on the result that

Z =
p̂− p√
p̂(1−p̂)

n

∼ N(0, 1), asymptotically,

where N(0, 1) denotes the standard normal distribution. Consider testing hy-
potheses

H0 : p ≤ p0 vs. Ha : p > p0, (4.1)

where p0 is a specified value, at the level of significance α. Let z0 be an
observed value of

p̂− p0√
p̂(1 − p̂)/n

.

The null hypothesisH0 will be rejected if z0 ≥ z1−α, where z1−α is the 100(1−
α) percentile of the standard normal distribution, or the p-value 1−Φ(z0) ≤ α,
where Φ is the standard normal cumulative distribution function. For testing

H0 : p ≥ p0 vs. Ha : p < p0, (4.2)

the null hypothesis will be rejected if z0 < zα or if the p-value Φ(z0) ≤ α, and
for testing

H0 : p = p0 vs. Ha : p 6= p0, (4.3)

the null hypothesis will be rejected if |z0| > z1−α
2
or if the p-value

2min{Φ(z0), 1− Φ(z0)} ≤ α.

The Score Test

The score test is based on the result that

Z∗ =
p̂− p√
p(1−p)

n

∼ N(0, 1), asymptotically.

Let z∗0 be an observed value of

p̂− p0√
p0(1−p0)

n

,

where p0 is the specified value under H0 in (4.3). For testing (4.1), the null
hypothesis will be rejected if z∗0 > z1−α, for testing (4.2), the null hypothesis
will be rejected if z∗0 < zα, and for testing (4.3) the null hypothesis will be
rejected if |z∗0 | > z1−α

2
.
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4.4 Proportion 43

An Exact Test

The exact test is based on the exact p-value that can be computed using the
binomial(n, p0) probabilities. Let k be an observed value of X . For testing
(4.1), the null hypothesis will be rejected if the p-value

P (X ≥ k|n, p0) =
n∑

x=k

(
n

x

)
px0(1 − p0)

n−x ≤ α,

for testing (4.2), the null hypothesis will be rejected if the p-value

P (X ≤ k|n, p0) ≤ α,

and for testing (4.3) the null hypothesis will be rejected if the p-value

2min{P (X ≤ k|n, p0), P (X ≥ k|n, p0)} ≤ α. (4.4)

4.4.2 Power and Sample Size Calculation

For a given p, p0 and the level α, the exact power of a test can be computed
using the expression

n∑

k=0

(
n

k

)
pk(1− p)n−kI (p− value ≤ α) , (4.5)

where I(.) is the indicator function. Note that the p-value is a function of
(k, n, p0). The above expression at p = p0 is the type I error rate (size) of the
test.

There are other tests available for a binomial proportion. Among all tests,
the exact test and the score test are popular and commonly used in applica-
tions. The exact test guarantees that the type I error rates never exceed the
nominal level α. However, the exact test is too conservative (type I error rates
are often much smaller than the nominal level), and so it is less powerful than
the score test. The score test is not exact (its type I error rates sometime ex-
ceed the nominal level) but controls the type I error rates around the nominal
level, and is more powerful than the exact test. For these reasons, the score
test is recommended for practical applications. Finally, we note that the Wald
test is not accurate even for large samples. On the basis of extensive numerical
studies, Brown et al. (2001) advocated that the score test is preferable to the
Wald test in terms of type I error rates and powers.

As the score test and the exact test are most popular, we shall con-
sider the power and sample size calculation only for these two tests. Stat-
Calc uses expression (4.5) to calculate the exact power. The dialog box
[StatCalc→Discrete→Binomial →Tests for Proportions and Power Calculation] com-
putes the p-value for testing binomial proportion. This also computes the power for
a given (p, p0, α, n), and computes the sample size for a given (p, p0, α, power).
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44 4 Binomial Distribution

Example 4.4. (Calculation of p-values) When n = 20, k = 8, and p0 = 0.2, it
is desired to test H0 : p ≤ 0.2 vs. Ha : p > 0.2 at the level of 0.05. To compute
the p-value, based on the exact test, select [StatCalc→Discrete→Binomial→Tests
for Proportions and Power Calculation], and enter the values of n, k, and p0 in the
dialog box; click [p-values] under “Exact Test” to get 0.0321427; the p-value based
on the score test is 0.0126737. If the nominal level is 0.05, then both tests reject
the null hypothesis, and they provide evidence to indicate that the true p is greater
than 0.2.

Suppose the hypotheses are H0 : p = 0.2 vs. Ha : p 6= 0.2. For these hypotheses,
the p-value of the exact test is 2 × 0.0321427 = 0.0642854, and the p-value of the
score test is 2× 0.0126737 = 0.0253474. Note that, at the level of .05, the score test
rejects H0, whereas the exact test does not reject H0. This is because the exact test
is conservative.

Example 4.5. (Calculation of p-values) A pharmaceutical company claims that
75% of doctors prescribe one of its drugs to treat a particular disease. In a random
sample of 40 doctors, 23 prescribed the drug to their patients. Does this information
provide sufficient evidence to indicate that the actual percentage of doctors who
prescribe the drug is less than 0.75?
Solution: Let p be the actual proportion of doctors who prescribe the drug to their
patients. The hypotheses of interest are

H0 : p ≥ 0.75 vs. Ha : p < 0.75.

To compute the p-value for testing above hypotheses, select the dialog box
[StatCalc→ Discrete→Binomial→Tests for Proportion ...], enter 40 for n, 23 for
observed k, and 0.75 for [Value of p0]. Click on [p-values], to get the p-value of
the exact test as 0.0115614, and the p-value of the score test as 0.00529357. Both
p-values are less than 0.05, and so we can conclude, contrary to the manufacturer’s
claim, that less than 75% of doctors prescribe the drug. As in the preceding example,
the score test produced smaller p-value than the exact test.

Power and Sample Size Calculation: For a given n, population proportion p, and
a hypothesized value p0, [StatCalc→ Discrete→Binomial→Tests for Proportion ...]
computes the powers of the exact test and score test. Furthermore, for a given p, p0,
level α, and the power, StatCalc computes the sample size so that the type I error
rate is no more than α, and the power is at least the specified value. According to this
criterion, the sample sizes required for both tests (involving one-sided hypotheses)
to attain a specified power are the same. This is because the exact one-sided test is
uniformly the most powerful level α test; for more details, see Krishnamoorthy and
Peng (2007).

Example 4.6. When n = 35, p0 = 0.2, nominal level = 0.05, and p = 0.4, the power
of the exact test for H0 : p ≤ 0.2 vs. Ha : p > 0.2, is 0.804825. To compute the
power, select the dialog box [StatCalc→ Discrete→Binomial→Tests for Proportion
...] enter 1 to indicate right-tailed test, 0.05 for the level, 0.2 for [Null p0], 0.4 for
[Guess p], and 35 for [S Size] and click on [Power] to get 0.804825. The power of the
score test for the same sample size is 0.887746. Note that the power of the score test
is considerably larger than that of the exact test. However, the type I error rate of
the score test (this can be obtained by entering p = p0 = 0.2) is 0.074709, which is
not appreciably larger than the nominal level 0.05.
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For testing H0 : p = 0.2 vs. Ha : p 6= 0.2, the power of the exact test is 0.69427
when the true p is .4.; to compute this power, enter 3 to indicate two-tailed test,
and click [Power]. The power of the score test is 0.80483. We once again notice that
the power of the score test is larger than that of the exact test. For this two-sided
hypothesis, the type I error rate of the score test (which can be obtained by entering
0.2 for [Guess p]) is 0.0533975, which is very close to the nominal level .05.

Example 4.7. (Sample Size Calculation) Suppose that a researcher believes
that a new drug is 20% more effective than the existing drug, which has a
success rate of 70%. The required sample size to test his belief (at the level
0.05 and power 0.90) can be computed as follows. Enter 1 in the dialog box
[StatCalc→Discrete→Binomial→Tests for Proportions and Sample Size Calculation]
to indicate right-tailed test, 0.05 for the level, 0.7 for [Null p0], 0.9 for [Guess p],
0.9 for [Power], and click on [S Size] to get 37; now click on [Power] to get 0.928915,
which is the actual power when the sample size is 37. Note that when the sample
size is 36, the power of the exact test is 0.854603.

To find the sample size required for the score test to attain the same power of
.90, enter 37 for [S Size] under [Score Test], and click on [Power] to get 0.928915,
which is the power of the exact test noted in the preceding paragraph. In order to
understand the power calculation of the score test, let us try some values of sample
size smaller than 37. For example, when [S Size] under [Score Test] is 35, the power
is 0.944817, then why can’t we use the sample size 35 instead of 37? The reason for
using 37 is that the type I error rate of the score test when [S Size] is 35, [Guess p]
= [Null p0] = .7, is 0.0649987, which is larger than the nominal level .05. On the
other hand, the type I error rate of the score test at n = 37 is 0.0439672 < .05. As
noted earlier, StatCalc determines the sample size for the score test so that the type
I error rate is no more than the nominal level, and the power is at least the specified
value. According to this criterion, for testing one-sided hypotheses, the score test
and the exact test require the same sample size to attain a power no less than the
specified value.

Remark 4.1. Regarding sample sizes for a two-tailed test with a specified power,
score test requires smaller sample sizes in many cases. In some situations, the sample
sizes for the score test (with type I error rates smaller than the nominal level) are
smaller than those for the exact method. For a two-tailed test, the score test may
be preferable to the exact test.

4.4.3 Confidence Intervals

Confidence intervals for a binomial proportion can be obtained by inverting the tests
in the preceding section. In the following, we shall outline the Wald, score, exact,
and fiducial confidence intervals.

The Wald Confidence Interval

The set of values of p0 for which the null hypothesis in (4.3) is accepted is a confidence
set. In particular, the set of values of p0 for which

∣∣∣∣
p̂− p0√
p̂(1− p̂)/n

∣∣∣∣ < z1−α
2
,
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where zq is the qth quantile of the standard normal distribution, is a 1−α confidence
interval, and is given by

p̂± z1−α
2

√
p̂(1− p̂)

n
.

The Score Confidence Interval

The acceptance region of the score test is given by

{
p :

∣∣∣∣
p̂− p√

p(1− p)/n

∣∣∣∣ < z1−α/2

}
.

The above acceptance region is an interval with endpoints determined by the roots
of the quadratic equation

(
p̂− p√

p(1− p)/n

)2

− c2 = 0,

where c = z1−α/2. The score confidence interval, determined by these roots, is given
by

(
p̂+ c2

2n

1 + c2

n

)
±

c√
n

√
p̂(1− p̂) + c2/(4n)

1 + c2

n

. (4.6)

An Exact Confidence Interval

For a given sample size n and an observed number of successes k, the lower limit
pL for p is the solution of the equation

n∑

i=k

(
n

i

)
piL(1− pL)

n−i =
α

2
, (4.7)

and the upper limit pU is the solution of the equation

k∑

i=0

(
n

i

)
piU (1− pU )

n−i =
α

2
. (4.8)

Using a relation between the binomial and beta distributions (see Section 16.6.2), it
can be shown that

pL = Bk,n−k+1;α
2

and pU = Bk,n−k+1;1−α
2
, (4.9)

where Ba,b;q denotes the qth quantile of a beta distribution with the shape parame-
ters a and b. The interval (pL, pU ) is an exact 1− α confidence interval for p, in the
sense that the coverage probability is always greater than or equal to the specified
confidence level 1 − α. One-sided 1 − α lower confidence limit for p is Bk,n−k+1;α

and one-sided 1− α upper confidence limit for p is Bk,n−k+1;1−α. When k = n, the
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upper limit is 1 and the lower limit is α
1
n ; when k = 0, the lower limit is 0 and the

upper limit is 1− α
1
n .

The above exact confidence interval and one-sided confidence limits can be ob-
tained by inverting the tests described in Section 4.4.1. For instance, the two-tailed
test based on (4.4), and the one that rejects the null hypothesis in (4.3) whenever
the exact confidence interval (pL, pU ) in (4.9) does not include p0, are the same.
Clopper and Pearson (1934) have proposed the above confidence interval using a
fiducial argument, and it is commonly referred to as the Clopper-Pearson confidence
interval.

Fiducial Confidence Interval

To describe the fiducial approach, let X ∼ binomial(n, p), and let Ba,b denote the
beta random variable (Chapter 17) with shape parameters a and b. It is well-known
that, for an observed value k of X,

P (X ≥ k|n, p) = P (Bk,n−k+1 ≤ p) and P (X ≤ k|n, p) = P (Bk+1,n−k ≥ p) .
(4.10)

On the basis of this relation, we see that there is a pair of fiducial distributions for p,
namely,Bk,n−k+1 for setting lower limit for p and Bk+1,n−k for setting upper limit for
p. Indeed, the Clopper-Pearson exact confidence interval in (4.9) is based on the pair
of fiducial distributions. Instead of having two fiducial variables, a random quantity
that is “stochastically between” Bk,n−k+1 and Bk+1,n−k can be used as a single
approximate fiducial variable for p (Stevens, 1950). Hypothesis test or confidence
interval for p can be obtained from the distribution of Bk+.5,n−k+.5. Specifically, the
interval (

Bk+ 1
2
,n−k+ 1

2
;α
2
, Bk+ 1

2
,n−k+ 1

2
;1−α

2

)
, (4.11)

where Ba,b;α denote the 100α percentile of Ba,b, is an approximate 1−α confidence
interval for p. This is also the Bayesian confidence interval with the Jeffreys prior,
and so it is also referred to as the Jeffreys confidence interval. The above confidence
interval for the binomial proportion is quite comparable with the score confidence
interval in (4.6). The fiducial approach can be extended in a straightforward manner
to find confidence intervals for many summary indices involving binomial proportions
(Krishnamoorthy and Lee, 2010, 2013), such as the relative risk and odds ratio as
shown in the later sections.

Among the confidence intervals described above, the score and fiducial confidence
intervals are satisfactory in terms of coverage probability and precision. These two
confidence intervals are certainly preferable to the Wald confidence interval. The ex-
act confidence interval is often very conservative, and is wider than the approximate
score and fiducial confidence intervals. Most researchers now recommend the score
and fiducial confidence intervals for practical applications. See Agresti and Coull
(1998) and Brown et al. (2001).

4.4.4 Sample Size Calculation for a Given Precision

For a given sample size n and p, the expected length of a 1− α confidence interval
(pL, pU ) can be computed using the expression

n∑

k=0

(
n

k

)
pk(1− p)n−k(pU − pL). (4.12)
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An approximation to the sample size required to construct a 1− α score confidence
interval with a precision d is given by (see Krishnamoorthy and Peng, 2007)

n ≃
z2α/2

[
(pq − 2d2) +

√
(pq − 2d2)2 − d2(4d2 − 1)

]

2d2
, (4.13)

where q = 1− p.
The dialog box [StatCalc→Discrete→Binomial→Confidence intervals ...] cal-

culates confidence intervals for p using the exact method and the score method.
The fiducial confidence interval is not included in the dialog box because
the required beta percentiles can be readily calculated using the dialog box
[StatCalc→Continuous→Beta], and it is as good as the score confidence interval
in terms of coverage probability and precision. Furthermore, this dialog box com-
putes the required sample size for a given precision (margin of error); that is, one
half of the expected width defined in (4.12).

Example 4.8. (Confidence Intervals for p) Suppose that a binomial experiment of
40 trials resulted in 5 successes. To find 95% confidence intervals, select the dialog
box [StatCalc→Discrete→Binomial→Confidence intervals ...], enter 40 for n, 5 for
the observed number of successes k, and 0.95 for the confidence level; click [2-sided]
to get the exact confidence interval (0.0419, 0.2680), and the score confidence interval
(0.0546, .2611). For one-sided limits, click [1-sided] to get 0.0506 and 0.2450 (exact);
score limits are 0.0622 and .2353. That is, 95% exact one-sided lower limit for p is
0.0506, and 95% exact one-sided upper limit for p is 0.2450. Note that the score
confidence intervals are shorter than the exact confidence intervals.

Example 4.9. (Confidence Intervals for p) The manufacturer of a product reports
that at most 5 percent of his products could be defective. In a random sample of 25
such products, 4 of them were found to be defective. Find a 95% confidence interval
for the true percentage of defective products.

Solution: To get a 95% confidence interval for the actual percentage of defective
products, select the dialog box [StatCalc→Discrete→Binomial→Confidence Inter-
vals ...] from StatCalc, enter 25 for n, 4 for k, and 0.95 for the confidence level, and
click on [2-sided] to get (0.0454, 0.3608) (exact) and (0.0640, .3465) (score). If we
use the exact confidence interval, then the actual percentage of defective items is
somewhere between 4.5 and 36, with 95% confidence. Click [1-sided] to get the lower
limit 0.05656; this means that the actual percentage of defective products is at least
5.66, with 95% confidence. The 95% one-sided lower score confidence limit is 0.0739.
We note that the score confidence interval is shorter than the corresponding exact
confidence interval.

Example 4.10. (One-Sided Confidence Limits) For the data in Example 4.3, let
us find a 95% lower confidence limit for the true percentage of defective items in
the shipment. Here, X = 5 and n = 30. To find a 95% lower confidence limit, select
[StatCalc→Discrete→ Binomial→ Confidence Intervals ...] from StatCalc, enter 30
for n, 5 for k, and 0.95 for the confidence level. Click on [1-sided] to get 0.0681
(exact) and .0836 (score). If we use the score confidence limit, then we conclude
that the true percentage of defective items in the shipment is at least 8.36 with
confidence 0.95.
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Example 4.11. (Sample Size Calculation) A researcher hypothesizes that the
proportion of individuals with an attribute of interest in a population is 0.3,
and he wants to estimate the true proportion within ±5% with 95% confidence.
To compute the required sample size, select the dialog box [StatCalc→Discrete→
Binomial→Confidence Intervals ...] from StatCalc, enter .95 for [Conf Level], .3 for
[Guess p], .05 for [Half-Width], and click on [exact] to get 340, and click on [score] to
get 320. Thus, the sample size required to construct an exact confidence interval with
the margin of error ±5% is 340. The required sample size for the score confidence
interval is 320. The approximate formula for n in (4.13) also gives 319.58 ≃ 320.

4.5 Prediction Intervals

The prediction problem concerns two independent binomial samples with the same
“success probability” p. Given that X successes have been observed in n independent
Bernoulli trials, we like to predict the number of successes Y in a future set of m
independent Bernoulli trials. In particular, we like to find a 1−α prediction interval
[L(X;n,m,α), U(X;m,n, α)] so that

PX,Y (L(X;n,m,α) ≤ Y ≤ U(X;m,n, α)) ≥ 1− α.

Assume that X ∼ binomial(n, p) independently of Y ∼ binomial(m, p). The con-
ditional distribution of X given the sum X + Y = s is hypergeometric (Chapter
5) with the sample size s, number of “nondefects” n, and the lot size n +m. The
conditional probability mass function is given by

P (X = x|X + Y = s, n, n+m) =

(
n
x

)(
m
y

)
(
m+n
s

) , max{0, s−m} ≤ x ≤ min{n, s}.

Let us denote the cumulative distribution function (cdf) of X given X + Y = s by
H(t; s, n, n+m). That is,

H(t; s, n, n+m) = P (X ≤ t|s, n, n+m) =

t∑

i=0

(
n
i

)(
m
s−i
)

(
m+n
s

) . (4.14)

Note that the conditional cdf of Y given X + Y = s is given by H(t; s,m, n+m).

An Exact Prediction Interval

Thatcher (1964) developed the following exact prediction interval on the basis of the
conditional distribution of X given X + Y . Let x be an observed value of X. The
1− α lower prediction limit L is the smallest integer for which

P (X ≥ x|x+ L, n, n+m) = 1−H(x− 1;x+ L, n, n+m) > α. (4.15)

The 1− α upper prediction limit U is the largest integer for which

H(x;x+ U, n, n+m) > α. (4.16)

Furthermore, [L, U ] is a 1− 2α two-sided prediction interval for Y . Thatcher (1964)
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has noted that, for a fixed (x,n,m), the probability (4.16) is a decreasing function
of U , and so a backward search, starting from m, can be used to find the largest
integer U for which the probability in (4.16) is just greater than α. Similarly, we
see that the probability in (4.15) is an increasing function of L, and so a forward
search method, starting from a small value, can be used to find the smallest integer
L for which this probability is just greater than α. The exact prediction intervals
for extreme values of X are defined as follows. When X = 0, the lower prediction
limit for Y is 0, and the upper one is determined by (4.16); when X = n, the upper
prediction limit is m, and the lower prediction limit is determined by (4.15).

An Approximate Prediction Interval

Krishnamoorthy and Peng (2011) proposed the following prediction interval based
on the complete sufficient statistic X+Y for the binomial(n+m, p) distribution. To
describe their prediction interval, let cα = z1−α/2, where zq is the 100q percentile of
the standard normal distribution. Define

(L,U) =

[
Ŷ
(
1− c2α

m+n

)
+

mc2α
2n

]
± cα

√
Ŷ (m− Ŷ )

(
1
m

+ 1
n

)
+

m2c2α
4n2

1 +
mc2α

n(m+n)

, (4.17)

where Ŷ = mX/n for X = 0, 1, ..., n. The 1 − α prediction interval is given by
[⌈L⌉ , ⌊U⌋] , where ⌈x⌉ is the smallest integer greater than or equal to x, and ⌊x⌋ is
the largest integer less than or equal to x. As an example, if (L,U) = (3.4, 6.7), then
the prediction interval is [4, 6].

Krishnamoorthy and Peng’s (2011) extensive comparison studies showed that
the exact prediction intervals are too conservative, and the approximate pre-
diction intervals control the coverage probabilities close to the nominal level
and have shorter expected widths than those of exact ones. The dialog box
[StatCalc→Discrete→Binomial→Confidence Intervals ...] computes both the exact
and the approximate prediction intervals.

Example 4.12. (Binomial Prediction Interval) Suppose for a random sample of
n = 100 devices tested, x = 6 devices are unacceptable. A 90% prediction interval
is desired for the number of unacceptable devices in a future sample of m = 50
such devices. The sample proportion of unacceptable devices is p̂ = 6/100 = .06

and Ŷ = m × p̂ = 3. To compute the prediction intervals, select the dialog box
[StatCalc→Discrete→Binomial→Confidence Intervals ...] from StatCalc, enter 100
for [No. of Trials, n], 6 for [No. Successes, k], 50 for [Future Sample Size, m], and
.90 for [Conf Level]; click on [2-sided] to get approximate prediction interval [1, 7],
and the exact one [0, 7].

Example 4.13. The manufacturer of an expensive piece of medical equipment
has sold 40 units in the past year. Of these 40 units, two required repair/services
in the past year. The manufacturer, who has currently received 60 orders for the
equipment, is concerned on the number of service calls that he may receive from
the hospitals that will use the equipment in the forthcoming year. Specifically, the
manufacturer wants to predict the number of service calls in the forthcoming year.
Formally, the problem is to find a prediction interval for Y ∼ binomial(60, p) based
on X ∼ binomial(40, p), where p is the probability of receiving a service call for the
equipment.
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To find a 95% prediction interval in the above setup, select [StatCalc→Discrete→
Binomial→Confidence Intervals ...], enter 40 for [No. of Trials, n], 2 for [No. Suc-
cesses,k], 60 for [Future Sample Size, m], and 0.95 for [Conf Level]; click on [2-sided]
to get [0, 11] (approximate) and [0, 12] (exact).

Example 4.14. The data for this example are taken from the National Institute
of Standards and Technology (NIST) webpage1, and they represent fractions of
defective chips in a sample of wafers. A chip in a wafer is considered to be defective
whenever a misregistration, in terms of horizontal and/or vertical distances from
the center, is recorded. On each wafer, locations of 50 chips were measured and
the proportion of defective chips was recorded. As the original data (based on 30
wafers) was overdispersed (Wang and Tsung, 2009), we shall use a part of the data
consisting of 21 wafers as given in Table 4.1. Krishnamoorthy, Xia, and Xie (2011)
have tested the equality of the proportions of defective chips across the 21 wafers
using a chi-square statistic

21∑

i=1

ni(p̂i − p̂)2

p̂(1− p̂)
= 19.58.

The p-value of the test is P (χ2
20 > 19.58) = 0.4842, where χ2

f denotes the chi-square
random variable with degrees of freedom f . Here, the nis are all equal to 50, p̂is are
the sample fractions of defective given in Table 4.1, and the overall proportion of
defective

p̂ =

∑21
i=1 nip̂i∑21
i=1 ni

=
196

1050
= 0.1867.

As the equality of proportions is tenable, we can use the combined estimate p̂ to
estimate the true proportion of defective chips in a wafer.

TABLE 4.1: Fractions of Defective Chips in a Sample of 21 Wafers

Sample Fraction of Sample Fraction Sample Fraction of
Number Defective, p̂i Number Defective, p̂i Number Defective, p̂i

1 .24 11 .10 21 .22
2 .16 12 .12 22 .18
3 .20 13 .24 23 .24
4 .14 14 .16 24 .14
5 .18 15 .20 25 .26
6 .28 16 .10 26 .18
7 .20 17 .26 27 .12

Suppose it is desired to find a 95% prediction interval for the number of de-
fective chips in a wafer. To find the prediction interval, select the dialog box
[StatCalc→Discrete →Binomial→Confidence Intervals ...], and enter 1050 for n, 196
for k, 50 for the future sample size m, .95 for the confidence level, and click [2-sided]
to get [4, 14] (approximate PI) and [4, 15] (exact). Thus, if we decided to use the
approximate prediction interval, the number of defective chips in a future wafer will
be between 4 and 14.

1http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc332.htm
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4.6 Tolerance Intervals

As noted in Section 2.6.2, one-sided tolerance limits are one-sided confidence limits
of appropriate quantiles. As the binomial quantile involves only one unknown pa-
rameter (the success probability), a confidence limit for the quantile can be obtained
by replacing the parameter in the expression for quantile by a suitable confidence
limit. As a consequence, replacing the parameter by a better confidence limit in
the quantile expression, a better tolerance interval could be obtained. Hahn and
Chandra (1981) used the exact confidence interval (Section 4.4.3) for the binomial
parameter to find tolerance intervals for a binomial distribution. These tolerance
intervals are exact in the sense that the minimum coverage probability is at least
the nominal level 1− α.

4.6.1 Equal-Tailed and Two-Sided Tolerance Intervals

Let X be a binomial(n, p) random variable, and let k be an observed value of
X. We shall describe the method of constructing tolerance intervals for a future
binomial(m, p) distribution based on k, n and m. For 0 < β < 1, the 100β percentile
of the binomial(m, p) distribution is the smallest integer kβ(p,m) for which

P (Y ≤ kβ(p,m)|m,p) =
kβ(p,m)∑

i=0

(
m

i

)
pi(1− p)m−i ≥ β.

The (β, 1−α) upper tolerance limit for the binomial(m, p) distribution is kβ(pu,m),
where pu is a 1 − α upper confidence limit of p based on k and n. Specifically,
kβ(pu,m) is the 100β percentile of the binomial(m, pu) distribution, defined as the
smallest integer that satisfies

P (Y ≤ kβ(pu,m)|m, p) =
kβ(pu,m)∑

i=0

(
m

i

)
piu(1− pu)

m−i ≥ p. (4.18)

The (β, 1−α) lower tolerance limit for the binomial(m, p) distribution is k1−β(pl,m),
where pl is a 1 − α lower confidence limit of p based on k and n. In particular,
k1−β(pl, m) is the largest integer for which

P (Y ≥ k1−β(pl, m)|m,pl) =
m∑

i=k1−β(pl,m)

(
m

i

)
pil(1− pl)

m−i ≥ β. (4.19)

The (β, 1− α) equal-tailed tolerance interval is given by

[
k 1−β

2
(pl,m), k 1+β

2
(pu,m)

]
, (4.20)

where (pl, pu) is a 1−α two-sided confidence interval for p based on a realization of
a binomial(n, p) random variable. In other words, k 1−β

2
(pl,m) is the largest integer

that satisfies (4.19), and k 1+β
2

(pu,m) is the smallest integer that satisfies (4.18).
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The tolerance interval (4.20) based on the exact confidence interval for p is an
exact equal-tailed tolerance interval, and we refer to the one based on the score
confidence interval for p as the score equal-tailed tolerance interval.

4.6.2 Tolerance Intervals Based on Approximate Quantiles

Recall that one-sided tolerance limits are essentially confidence bounds on appropri-
ate quantiles. On the basis of the normal approximation to the quantity

Y −mp√
mp(1− p)

,

the p quantile of a binomial(m, p) distribution is expressed as

kβ(p,m) ≃ mp+ zβ
√
mp(1− p).

Noting that the above quantile is an increasing function of p, an approximate (β, 1−
α) upper tolerance limit for the binomial(m, p) distribution can be obtained by
replacing the p in the above expression by a 1− α upper confidence limit pu. More
specifically,

kβ(pu,m) ≃
[
mpu + zβ

√
mpu(1− pu)

]∗
, (4.21)

where [x]∗ is the integer nearest to x, is an approximate (p, 1− α) upper tolerance
limit. Similarly, an approximate (p, 1− α) lower tolerance limit can be obtained as

kβ(pl,m) ≃
[
mpl − zβ

√
mpl(1− pl)

]∗
. (4.22)

If (pl, pu) is a 1 − α confidence interval for p, then
[
k 1−β

2
(pl,m), k 1+β

2
(pu,m)

]
is

approximately equal to

[[
mpl − z 1+β

2

√
mpl(1− pl)

]∗
,
[
mpu + z 1+β

2

√
mpu(1− pu)

]∗]
. (4.23)

The above interval is an approximate (β, 1−α) equal-tailed tolerance interval. These
tolerance intervals were proposed by Krishnamoorthy, Xia and Xie (2011).

Remark 4.2. In many applications, one needs two-sided tolerance intervals, not
equal-tailed tolerance intervals (see Section 2.6.2). Note that 1−α confidence interval
for p is used in (4.20) and (4.23) to obtain an equal-tailed tolerance interval. Instead,
if we use 1−2α confidence interval for p, then the resulting tolerance interval includes
at least a proportion β of the binomial distribution with coverage probability close to
1−α (Krishnamoorthy, Xia and Xie, 2011), and so it can be used as an approximate
(β, 1− α) tolerance interval.

Remark 4.3. The tolerance intervals based on the exact confidence intervals are
exact, in the sense that their coverage probabilities are at least the nominal con-
fidence level 1 − α. However, the exact tolerance intervals are too conservative, as
a result, unnecessarily wider. The tolerance intervals based on the score confidence
interval are not exact, but they do have good coverage properties, and have shorter
expected widths than those of the exact tolerance intervals. Finally, we note that
the approximate tolerance intervals in (4.21), (4.22), and (4.23) are not only simple
to compute, but they are also comparable with the score tolerance intervals based
on (4.18) and (4.19).
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The dialog box [StatCalc→Discrete →Binomial→Confidence Intervals ...] uses
the above approach to compute the exact equal-tailed tolerance intervals (the ones
in (4.18) and (4.19) with the exact confidence limits pl and pu), and the approximate
equal-tailed tolerance intervals in (4.23) using the score confidence limits pl and pu.
To find a (p, 1− α) two-sided tolerance intervals, just enter 1 − 2α for [Conf Level]
in the dialog box.

Example 4.15. Let us use “wafers data” in Example 4.14 to illustrate the methods
of finding tolerance intervals. To compute (0.90, 0.95) one-sided as well as (0.90, 0.95)
two-sided tolerance intervals using the approaches given in the preceding sections,
we note that n =

∑21
i=1 ni = 1050, k = the total number of defective chips, which

is 196, and m = 50. To construct tolerance intervals for the binomial(m = 50, p)
distribution using StatCalc, select [StatCalc→Discrete →Binomial→Confidence In-
tervals ...], enter 1050 for [No. of Trials, n], 196 for [No. Successes, k], 50 for [Future
Sample Size, m], .90 for [Content Level], .95 for [Conf Level], and click on [2-sided]
to get [4, 15] (exact equal-tailed tolerance interval and the approximate one are the
same). Thus, with 95% confidence, we can say that at least 90% of wafers have 4
to 15 defective chips. Notice that this tolerance interval [4, 15] is an equal-tailed
(.90, .95) tolerance interval. To find an approximate (.90, .95) two-sided tolerance
interval, just enter .90 (instead of .95) for confidence level, and click [2-sided] to get
[4, 15], which is the same as the (.90, .95) equal-tailed tolerance interval.

To find one-sided tolerance limits, click on [1-sided] to get 5 and 14. That is,
a (0.90, 0.95) lower tolerance limit is 5, and a (0.90, 0.95) upper tolerance limit is
14. Thus, with 95% confidence, we can say that at least 90% of wafers have five or
more defective chips. Furthermore, at least 90% of wafers have 14 or fewer defective
chips, with confidence 95%. Finally, we note that both approaches produced the
same results because of the large sample size 1,050.

Remark 4.4. Suppose that a binomial experiment is repeated m times, and let kj
denote the number of successes, and let nj denote the number of trials at the jth
time, j = 1, 2, ..., m. Then, all the inferential procedures in the preceding sections

are valid with (n, k) replaced by

(
m∑
j=1

nj ,
m∑
j=1

kj

)
.

4.7 Tests for the Difference between Two Proportions

Let X1 ∼ binomial(n1, p1) distribution independently of X2 ∼ binomial(n2, p2) dis-
tribution. Let (k1, k2) be an observed value of (X1, X2). We shall describe some tests
for comparing these two success probabilities p1 and p2. These tests are applicable to
compare two proportions in large populations. Specifically, let Xi denote the number
of individuals in a sample of size ni from the population i with an attribute of inter-
est, i = 1, 2. The following tests can be used to compare the population proportions
on the basis of sample proportions p̂1 = X1

n1
and p̂2 = X2

n2
.
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4.7.1 Approximate Tests

The Wald Test

Let p̂i = Xi/ni, i = 1, 2. The Wald test is on the basis of the result that

Z =
(p̂1 − p̂2)− (p1 − p2)√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

∼ N(0, 1), asymptotically. (4.24)

Let z0 be an observed value of Z. For testing

H0 : p1 = p2 vs. Ha : p1 6= p2, (4.25)

the Wald test rejects the null hypothesis when |z0| > z1−α
2
.

An Unconditional Test

Let p̂i = Xi/ni and p̂i0 = ki/ni, where (k1, k2) is an observed value of (X1, X2).
Consider the test statistic

Z(X1, X2, n1, n2) =
X1 −X2√

p̂X(1− p̂X)
(

1
n1

+ 1
n2

) , where p̂X =
X1 +X2

n1 + n2
.

An estimate of the p-value for testing hypotheses H0 : p1 ≤ p2 vs. Ha : p1 > p2 can
be computed using the formula

P (k1, k2, n1, n2) =

n1∑

x1=0

n2∑

x2=0

f(x1|n1, p̂k)f(x2|n2, p̂k)

× I (Z(x1, x2, n1, n2) ≥ Z(k1, k2, n1, n2)) , (4.26)

where

p̂k =
k1 + k2
n1 + n2

,

I(.) is the indicator function, and

f(xi|ni, p̂k) =
(
ni
xi

)
p̂xi−1
k (1− p̂k)

ni−xi , i = 1, 2.

The terms Z(k1, k2, n1, n2) is equal to Z(x1, x2, n1, n2) with x replaced by k. The
null hypothesis will be rejected when the p-value in (4.26) is less than or equal to
the nominal level α. This test is due to Storer and Kim (1990). Even though this
test is approximate, its type I error rates seldom exceed the nominal level, and it is
more powerful than Fisher’s conditional test in the following section.

The p-values for a left-tailed test and for a two-tailed test can be computed
similarly. Specifically, the p-value for a two-tailed test can be obtained by replacing
Z(x1, x2, n1, n2) and Z(k1, k2, n1, n2) in (4.26) by their absolute values.
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4.7.2 Fisher’s Exact Test

Let X ∼ binomial(n1, p1) independently of Y ∼ binomial(n2, p2) random variable.
When p1 = p2, the conditional probability of observingX = k, given thatX+Y = m
is given by

P (X = k|X + Y = m) =

(
n1
k

)(
n2
m−k

)
(
n1+n2
m

) , max{0, m− n2} ≤ k ≤ min{n1,m}.

(4.27)

The probability mass function in (4.27) is known as the hypergeometric(m,n1, n1 +
n2) pmf (Chapter 5). This conditional distribution can be used to test the hypotheses
regarding p1 − p2. For example, when

H0 : p1 ≤ p2 vs. Ha : p1 > p2,

the null hypothesis will be rejected if the p-value P (X ≥ k|X + Y = m) is less
than or equal to the nominal level α. Similarly, the p-value for testing H0 : p1 ≥
p2 vs. Ha : p1 < p2 is given by P (X ≤ k|X + Y = m).
In the form of 2× 2 table we have

TABLE 4.2: 2× 2 Table

Sample Successes Failures Totals
1 k n1 − k n1

2 m− k n2 −m+ k n2

Totals m n1 + n2 −m n1 + n2

4.7.3 Powers and Sample Size Calculation

For a given (n1, n2, p1, p2, α), the exact power of the tests described in the preceding
sections can be computed using the expression

n1∑

k1=0

n2∑

k2=0

f(k1|n1, p1)f(k2|n2, p2)I (p− value ≤ α) , (4.28)

where f(x|n, p) =
(
n
x

)
px(1 − p)n−x and I(.) is the indicator function. The powers

of a left-tailed test and a two-tailed test can be computed similarly. StatCalc uses
the above formula for computing the powers of the unconditional test and Fisher’s
exact test.

For a given 2 × 2 table of “failures and successes,” the dialog box [StatCalc→
Discrete→ Binomial→Two-Sample ...] computes the probability of observing k or
more successes (as well as the probability of observing k or less number of successes)
in the cell (1,1). If either probability is less than α

2
, then the null hypothesis of equal

proportion will be rejected at the level α. This dialog box also calculates p-values of
the unconditional test in Section 4.7.1, and sample sizes required for both tests to
attain a specified power.
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Example 4.16. (P-values of the Conditional and the Unconditional Test) Suppose
a sample of 25 observations from population 1 yielded 20 successes, and a sample
of 20 observations from population 2 yielded 10 successes. Let p1 and p2 denote the
proportions of successes in populations 1 and 2, respectively. We want to test

H0 : p1 ≤ p2 vs. Ha : p1 > p2.

To compute the p-values, select the dialog box [StatCalc→Discrete→ Binomial→Two-
Sample ...] from StatCalc, enter the numbers of successes and failures for each sam-
ple, and click on [Pr <= (1,1) cell] to get the p-value of the conditional test as
.0355347. The p-value for the two-tailed test (H0 : p1 = p2 vs. Ha : p1 6= p2) is
2 × .0355347 = .0711. Thus, at the level of 5%, we can conclude that p1 > p2, but
we cannot conclude that p1 is significantly different from p2.

To find the p-values of the unconditional test, enter 0 for [H0: p1-p2=d], and click
on [p-values for] to get .024635 (for Ha : p1 > p2) and .040065 (for Ha : p1 6= p2).
Note that the p-values of the unconditional test are smaller than the corresponding
p-values of the conditional test.

Example 4.17. A physician believes that one of the causes of a particular disease is
long-term exposure to a chemical. To test his belief, he examined a sample of adults
and obtained the following 2× 2 table:

Group Symptoms Present Symptoms Absent Totals

Exposed 13 19 32
Unexposed 4 21 25

Totals 17 40 57

The hypotheses of interest are

H0 : pe ≤ pu vs. Ha : pe > pu,

where pe and pu denote, respectively, the actual proportions of exposed people and
unexposed people who have the symptom. To find the p-value, select the dialog box
[StatCalc→ Discrete→ Binomial→Two-Sample ...], enter the cell frequencies, and
click [Prob <= (1,1) cell]. The p-value is 0.04056. Thus, at the 5% level, the data
provide sufficient evidence to indicate that there is a positive association between
the prolonged exposure to the chemical and the disease.

To compute the p-value of the unconditional test, click [p-values - difference] to
get 0.022654. We observe that the p-value of the unconditional test is smaller than
the p-value of the Fisher exact test. This is because the Fisher test is conservative.

Example 4.18. (Sample Size Calculation for Power) Suppose the sample size
for each group needs to be determined to carry out a two-tailed test at the level
of significance α = 0.05 and power = 0.80. Furthermore, the guess values of the
proportions are given as p1 = 0.45 and p2 = 0.15. To determine the sample size,
select [StatCalc→Discrete→ Binomial→Two-Sample ...] from StatCalc, enter 2 for
two-tailed test, 0.05 for [Level], 0.45 for p1, 0.15 for p2, and 28 for each sample size.
Click [Power] to get 0.697916. By trial-error, we can find the required sample size
from both groups is 36, and the corresponding power is 0.81429. Also, note that the
power at n1 = n2 = 35 is 0.799666. If we choose to use the Fisher test, then the
required sample size from both groups is 41, and the corresponding power is .8062.
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In general, the sample size required for the Fisher test is larger than that for the
unconditional test, because the former test is conservative.

The power of the tests can also be computed for unequal sample sizes. For
instance, when n1 = 30, n2 = 42, p1 = 0.45, p2 = 0.15, the power of a two-tailed
unconditional test at the nominal level 0.05 is 0.799335. For the same values of p1
and p2, a power of 0.797573 can be attained if n1 = 36 and n2 = 35.

Example 4.19. (Sample Size Calculation for Power) Suppose that an experimenter
wants to apply Fisher’s exact test to compare two proportions. His guess on the
proportion p1 is around .45, and on p2 is around .15, and he wants to compute the
required sample sizes to have a power of 0.9 for testing

H0 : p1 ≤ p2 vs. Ha : p1 > p2

at the level 0.05.

To determine the sample size required from each population, enter 28 (this is our
initial guess) for both sample sizes, 0.45 for p1, 0.15 for p2, 0.05 for level, and click
power to get 0.724359. This is less than 0.9. After trying a few values larger than 28
for each sample size, we find the required sample size is 45 from each population. In
this case, the actual power is 0.90683.

4.8 Two-Sample Confidence Intervals for Proportions

Let X1 ∼ binomial(n1, p1) independently of X2 ∼ binomial(n2, p2). Let (k1, k2) be
an observed value of (X1, X2). It should be noted that there are several interval
estimation methods are available in the literature. Among them the score method
appears to be popular, and comparison studies by several authors indicated that
score confidence intervals are satisfactory in terms of coverage properties and pre-
cision. In the following, we shall describe the Wald, score, and fiducial confidence
intervals for various problems.

4.8.1 Difference

Wald Confidence Interval

Let p̂i =
Xi
ni

and q̂i = 1 − p̂i, i = 1, 2. The Wald confidence interval is based the
result that

p̂1 − p̂2 − d√
p̂1 q̂1
n1

+ p̂2 q̂2
n2

∼ N(0, 1), asymptotically. (4.29)

On the basis of the above distributional result, an approximate 1 − α confidence
interval for p1 − p2 is obtained as

p̂1 − p̂2 ± z1−α
2

√
p̂1q̂1
n1

+
p̂2q̂2
n2

, (4.30)

where zα denotes the α quantile of the standard normal distribution.
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Newcombe Confidence Interval

Newcombe (1998) proposed a confidence interval for the difference d = p1 − p2
based on the Wilson score intervals for individual proportions. Let (Li, Ui) be the
1−α score confidence interval for pi given in (4.6), i = 1, 2. Newcombe’s confidence
interval for p1 − p2 is based on (Li, Ui)’s, and is given by

(
d̂− z1−α

2

√
L1(1− L1)

n1
+
U2(1− U2)

n2
, d̂+ z1−α

2

√
U1(1− U1)

n1
+
L2(1− L2)

n2

)
,

(4.31)

where d̂ = p̂1−p̂2, and zα denotes the α quantile of the standard normal distribution.

Fiducial Confidence Interval

A fiducial quantity (see Section 4.4.3) for pi is given byBki+ 1
2
,ni−ki+ 1

2
, where (k1, k2)

is an observed value of (X1, X2), and Ba,b denotes the beta random variable with
shape parameters a and b. A fiducial quantity for the difference d = p1 − p2 is given
by

Qd = Qp1 −Qp2 = Bk1+ 1
2
,n1−k1+ 1

2
−Bk2+ 1

2
,n2−k2+ 1

2
. (4.32)

The α
2

quantile and the 1 − α
2
quantile of Qd form a 1 − α confidence interval for

p1 − p2. Note that for a given (k1, k2), the percentiles of Qd can be estimated using
Monte Carlo simulation or obtained by numerical method. The percentiles of Qd in
(4.32) can be approximated using the modified normal-based approximations (2.14)
and (2.15). A lower 100α percentile of Qd can be approximated by

Qd;α ≃ p̃1 − p̃2 −
[
(p̃1 −B1;α)

2 + (p̃2 −B2;1−α)
2
] 1

2 , for 0 < α ≤ .5, (4.33)

where

p̃i =
ki +

1
2

ni + 1
and Bi = Bki+ 1

2
,ni−ki+ 1

2
, i = 1, 2,

and Bi;α denotes the 100α percentile of Bi, i = 1, 2. An approximate 100(1 − α)
percentile of Qd is expressed as

Qd;1−α ≃ p̃1 − p̃2 +
[
(p̃1 −B1;1−α)

2 + (p̃2 −B2;α)
2] 1

2 , for 0 < α ≤ .5. (4.34)

The interval (Qd;α, Qd;1−α) is an approximate 1 − 2α confidence interval for the
difference p1 − p2.

Score Confidence Interval

Consider the Wald statistic in (4.24) for testing H0 : p1−p2 = d. The Wald statistic
Z has an asymptotic standard normal distribution. The Wald confidence interval
is obtained by inverting the test based on Z. Instead of using the usual estimate
of variance of (p̂1 − p̂2) in (4.24), Miettinen and Nurminen (1985) have used the
variance estimate based on the maximum likelihood estimate under the constraint
that p1 = p2 + d. Specifically, they proposed the following test statistic:

TM =
p̂1 − p̂2 − d

[(p̃2 + d)(1− p̃2 − d)/n1 + p̃2(1− p̃2)/n2]
1
2
√
Rn

, (4.35)

where Rn = (n1 + n2)/(n1 + n2 − 1), and p̃2 is the maximum likelihood estimator
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under the constraint that p1 − p2 = d. Even though the constrained likelihood
equation (a function of p̃2) is a polynomial of order three, the likelihood equation has
a unique closed-form solution; see Appendix I of Miettinen and Nurminen (1985).
Since the constrained maximum likelihood estimate (MLE) is also a function of
d, an approximate confidence interval for p1 − p2 can be obtained by solving the
equation |TM | = z1−α/2 for d numerically. The R package “gsDesign” or the recent
one “PropCIs” can be used to compute the score confidence interval for p1 − p2.

Comparison of Confidence Intervals for the Difference Between Two
Proportions

On the basis of comparison studies by Newcombe (1998), Krishnamoorthy and Zhang
(2015) and Krishnamoorthy, Lee and Zhang (2014), the score confidence interval,
the Newcombe confidence interval and the fiducial confidence intervals are quite
comparable in terms of coverage probabilities and expected widths, and these three
confidence intervals are superior to the Wald confidence interval. On computational
ease, the fiducial confidence interval and the Newcombe confidence intervals are easy
to calculate, whereas the score confidence interval requires a root fining method for a
nonlinear equation. Furthermore, numerical studies by Krishnamoorthy and Zhang
(2015) indicated some situations where the score confidence intervals are inferior to
the Newcombe and fiducial confidence intervals.

Example 4.20. To assess the effectiveness of a diagnostic test for detecting a certain
disease, it was administered on 30 diseased people, and 28 were correctly diagnosed
by the test. The test was also used on 60 nondiseased persons, and 8 were incorrectly
diagnosed. Let pt and pf denote, respectively, the true positive diagnoses and false
positive diagnoses. We shall find 95% confidence intervals for the difference pt − pf .
Noticing that p̂t = 0.9333 and p̂f = 0.1333, we get the point estimate for the
difference pt − pf as 0.8.

To find the Newcombe confidence interval in (4.31), we find 95% score confidence
intervals for pt and pf as (Lt, Ut) = (.7868, .9815) and (Lf , Uf ) = (.0691, .2417),
respectively. Using these numbers along with z.975 = 1.96 in (4.31), we find the 95%
Newcombe confidence interval as (.6177, .8803). The score confidence interval using
the function

ciBinomial(28,8,30,60,alpha=.05,adj=1,scale=“Difference”)

in R package “GsDesign” is computed as (.6297, .8913). The fiducial confidence inter-
val can be computed using [StatCalc→Discrete→ Binomial→Two-Sample ...], and
is (.6288, .8797). Note that all the confidence intervals are in good agrement.

4.8.2 Relative Risk and Odds Ratio

Let pe denotes the probability of an event (such as death or adverse symptoms) in
the exposed group of individuals, and pc denotes the same in the control group, then
the ratio pe/pc is a measure of relative risk for the exposed group. The ratio of odds
is defined by [pe/(1 − pe)]/[pc/(1 − pc)], which represents the relative odds of an
event in the exposed group compared to that in the control group. In this section,
we shall see some methods for finding confidence intervals for the relative risk and
odds ratio.
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Fiducial Confidence Intervals for the Relative Risk

Let X1 ∼ binomial(n1, p1) independently of X2 ∼ binomial(n2, p2). Let (k1, k2) be
an observed value of (X1, X2). The fiducial variable for pi is Bki+1/2,ni−ki+1/2, where
Ba,b denotes the beta random variable with shape parameters a and b.

A fiducial variable for the relative risk RR = p1/p2 can be obtained as

QRR =
Bk1+1/2,n1−k1+1/2

Bk2+1/2,n2−k2+1/2
, (4.36)

where the beta random variables in (4.36) are independent. For a given (k1, k2),
appropriate percentiles of QRR form a confidence interval for RR. Using the mod-
ified normal approximation (MNA) in (2.16), we find the approximate 1 − α lower
confidence limit for RR as

QRRL =
p̃1p̃2 −

√
(p̃1p̃2)2 − [p̃2

2 − (u2 − p̃2)2][p̃1
2 − (l1 − p̃1)2]

p̃22 − (u2 − p̃2)2
, (4.37)

the approximate 1− α upper confidence limit as

QRRU =
p̃1p̃2 +

√
(p̃1p̃2)2 − [p̃12 − (u1 − p̃1)2][p̃22 − (l2 − p̃2)2]

p̃22 − (l2 − p̃2)2
, (4.38)

where p̃i =
ki+.5
ni+1

and

(li, ui) =
(
Bki+.5,ni−ki+.5;α2 , Bki+.5,ni−ki+.5;1−α

2

)
, i = 1, 2.

Score Confidence Interval for the Relative Risk

To express the score confidence interval (based on the likelihood approach), we shall
use Miettinen and Nurminen’s (1985) derivation. Let ζ = p1/p2. The MLE p̃2 of p2
under the constraint p1 = ζp2, is the solution to the equation ap̃22+bp̃2+c = 0, where
a = (n1 + n2)ζ, b = −[(X2 + n1)ζ +X1 + n2], and c = X1 +X2. The approximate
1− α confidence limits are the roots to the equation (with respect to ζ)

∣∣∣∣∣∣
p̂1 − ζp̂2√
p̃1 q̃1
n1

+ p̃2 q̃2
n2

∣∣∣∣∣∣
= z1−α

2
. (4.39)

Notice that the above confidence interval is based on the asymptotic normality of
the term within the absolute signs. Special algorithm is necessary to find the roots,
and the R package “GsDesign” can be used to find the score confidence interval for
the relative risk.

There are several confidence intervals for the relative risk available in the litera-
ture, and among them the score confidence interval is very popular for its accuracy.
Recent studies by Krishnamoorthy, Lee and Zhang (2014) indicated that the fidu-
cial confidence intervals are quite comparable with the score confidence intervals
for most cases, and are better than the score confidence intervals in some cases.
Furthermore, the fiducial confidence intervals are easier to compute. The dialog box
[StatCalc→Discrete→Binomial→ Two-Sample ...] uses the fiducial approach to find
confidence intervals for the relative risk. For other methods of constructing confi-
dence intervals for p1/p2, see Bedrick (1987).
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Example 4.21. (Relative Risk) Let us find 95% confidence intervals for the relative
risk based on the exposure data in Example 4.17. Here k1 = 13, n1−k1 = 19, k2 = 4,
and n2 − k2 = 21. To compute the 95% confidence interval based on the fiducial ap-
proach, select the dialog box [StatCalc→Discrete→Binomial→Two-Sample ...] from
StatCalc, enter 13 for [Successes 1], 19 for [Failures 1], 4 for [Successes 2], and 21
for [Failures 2]. After entering .95 for [Conf Level], click [CI-Ratio] to get (1.0269,
7.5244). The score confidence interval for the relative risk is computed using the
function

ciBinomial(13,4,32,25,alpha=.05,adj=1,scale=“RR”)

in the R package “GsDesign” as (1.0163, 6.8812). Both confidence intervals indicate
that the risk for the exposed groups is higher than that for the unexposed group.

Confidence Intervals for the Odds Ratio

Let X1 ∼ binomial(n1, p1) independently of X2 ∼ binomial(n2, p2). Let (k1, k2) be
an observed value of (X1, X2). In the following, we shall describe some methods for
estimating the odds ratio η = [p1/(1− p1)]/[p2/(1− p2)].

An Exact Confidence Interval

The exact 1 − α confidence interval for the odds ratio η is based on the condi-
tional distribution of X1 given the total X1 +X2 = m. The pmf of this conditional
distribution is given by

P (X1 = x|η,m, n1, n2) =

(
n1
x

)(
n2
m−x

)
ηx

∑u
y=l

(
n1
y

)(
n2
m−y

)
ηy
, x = l, ..., u,

where l = max{0, m−n2} and u = min{n1,m}. Like the Clopper-Pearson confidence
interval for a binomial proportion, the endpoints of the exact 1−α confidence interval
(ηL, ηU ) are determined by

P (X1 ≥ k|ηL,m, n1, n2) =
α

2
and P (X1 ≤ k|ηU ,m, n1, n2) =

α

2
, (4.40)

where k1 is an observed values of X1. This exact method was proposed by Cornfield
(1956). Thomas and Gart (1977) have provided table values to calculate confidence
intervals for the odds ratio.

Logit Confidence Interval

This confidence interval is based on the asymptotic normality of

ln

(
p̂1

1− p̂1

)
− ln

(
p̂2

1− p̂2

)
,

where p̂i = Xi/ni, i = 1, 2. In order to handle zero counts, the formula for the
confidence interval is adjusted by adding one half to each cell in a 2× 2 contingency
table. Let η = p1(1 − p2)/[p2(1 − p1)] and η̂ 1

2
= p̂1, 1

2
(1− p̂2, 1

2
)/[p̂2, 1

2
(1− p̂1, 1

2
)],

where p̂i, 1
2
= (Xi +1/2)/(ni + 1/2), i = 1, 2. An estimate of the standard deviation

of ln(η̂ 1
2
) is given by

σ̂
(
η̂ 1

2

)
=

(
1

X1 +
1
2

+
1

n1 −X1 +
1
2

+
1

X2 +
1
2

+
1

n2 −X2 +
1
2

) 1
2

.
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Using the above quantities, the 1 − α logit confidence interval for the odds ratio is
given by

η̂ 1
2

(
exp

[
−zα/2σ̂

(
η̂ 1

2

)]
, exp

[
zα/2σ̂

(
η̂ 1

2

)])
. (4.41)

Fiducial Confidence Intervals

Following the lines of fiducial approach for the risk ratio, a fiducial variable for the
odds ratio η = p1(1− p2)/(p2(1− p1)) can be obtained by replacing the parameters
by their fiducial variables. Thus, the fiducial variable for the odds ratio is given by

Qη =
Bk1+1/2,n1−k1+1/2/(1−Bk1+1/2,n1−k1+1/2)

Bk2+1/2,n2−k2+1/2/(1−Bk2+1/2,n2−k2+1/2)
=
G1

G2
, (4.42)

where all the beta random variables are mutually independent. Percentiles of Qη,
which can be estimated using Monte Carlo simulation, form a 1 − α confidence
interval for the odds ratio. The percentiles of Qη can be obtained from those of
lnQη = lnG1−lnG2, and these percentiles can be approximated by modified normal-
based approximations in (2.14) and (2.15). To express the approximate percentiles
of lnQη, let

µg1 = E ln(G1) = ψ(k1+.5)−ψ(n1+1) and µg2 = E ln(G2) = ψ(k2+.5)−ψ(n2+1),

where ψ is the digamma function. Furthermore, let B1;α = Bk1+.5,n1−k1+.5;α and
B2;α = Bk2+.5,n2−k2+.5;α. Define Gi;α = ln[Bi;α/(1−Bi;α)], i = 1, 2. Using the above
expectations and percentiles in (2.14), we find the approximate 100α percentile of
lnQη as

lnQη;α ≃ µg1 − µg2 −
{
(µg1 −G1;α)

2 + (µg2 −G2;1−α)
2
}1/2

, 0 < α < .5, (4.43)

and using (2.15), we find the approximate 100(1 − α) percentile as

lnQη;1−α ≃ µg1 −µg2 +
{
(µg1 −G1;1−α)

2 + (µg2 −G2;α)
2}1/2 , 0 < α ≤ .5. (4.44)

Note that (exp(lnQη;α), exp(lnQη;1−α)) is an approximate 1−2α confidence interval
for the odds ratio.

Among these three confidence intervals for the odds ratio, the exact ones are too
conservative, yielding confidence intervals that are too wide. The logit confidence
intervals are unsatisfactory even for large samples; they could be too conservative
or liberal depending on the values of the sample sizes and the parameters (see Kr-
ishnamoorthy and Lee, 2010). Numerical investigation by Krishnamoorthy, Lee and
Zhang (2014) suggested that the above fiducial confidence interval is very satisfac-
tory when min{k1, n1 − k1, k2, n2 − k2} ≥ 2, equivalently, all cell entries in a 2 ×
2 table are two or more. This approximation may be used when this condition is
met, and the Monte Carlo estimates of the percentiles of Qη in (4.42 ) can be used
otherwise.

Example 4.22. To illustrate the results for the odds ratio, let us use the stillbirth
and miscarriages data reported in Bailey (1987). In a group of 220 women who were
exposed to diethylstilbestrol (DES), eight suffered stillbirths (57 miscarriages), and
in a group of 224 women who were not exposed to DES, three suffered a stillbirth
(36 miscarriages). The data are summarized in the following table.
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group sample size still birth miscarriage

exposed n1 = 220 8 57
unexposed n2 = 224 3 36

Note that k1 = 8, n1 − k1 = 212, k2 = 3, and n2 − k2 = 221. We shall now compute
95% confidence intervals for the ratio of odds of a stillbirth in the exposed group
to that in the nonexposed group. The point estimate of the odds ratio is 2.78. The
95% logit confidence interval is (0.73, 10.62). To compute the confidence intervals
using StatCalc, select the dialog box [StatCalc→Discrete→Binomial→Two-Sample
...], enter the data in appropriate edit boxes, and click on [Fiducial] to get fiducial
confidence interval (0.79, 11.51). Click on [Exact] to get (.65, 16.45). The exact
confidence interval using the conditional approach is the widest among these three
intervals.

We shall now compute 95% confidence intervals for the ratio of odds of a miscar-
riage in the exposed group to that in the nonexposed group. Now, k1 = 57, n1−k1 =
163, k2 = 36, and n2 − k2 = 188. The point estimate of the odds ratio is 1.83. The
95% logit confidence interval is (1.15, 2.87). Using StatCalc, we found the fiducial
confidence interval as (1.15, 2.92), and the exact confidence interval based on the
conditional approach is (1.12, 3.01), which is again the widest among these three
intervals.

4.9 Confidence Intervals for a Linear Combination of

Proportions

We shall now describe some confidence intervals for a linear combination ξ =∑g
i=1 wipi, where w1, ..., wg are specified values, based on independent random vari-

ables X1, ..., Xg with Xi ∼ binomial(ni, pi), i = 1, ..., g.

Score Confidence Intervals

Let p̂i = Xi/ni, i = 1, ..., g, and let ξ̂ =
∑g
i=1 wip̂i. Consider testing

H0 : ξ = ξ0 vs. H1 : ξ 6= ξ0, (4.45)

where ξ0 is a specified value. Let S =
∑g
i=1 wipi. Then

z0 =
ξ̂ − ξ0√
V0

∼ N(0, 1) asymptotically, (4.46)

where V0 =
∑g
i=1 w

2
i p̃i0(1 − p̃i0)/ni, and the p̃i0 is the MLE of pi obtained under

H0 :
∑g
i=1 wipi = ξ0. To calculate z0, let Sw =

∑g
i=1 wi and N =

∑g
i=1 ni. The

value of z20 is determined by

y(z20) = N + (Sw − 2ξ)C −
g∑

i=1

Ri = 0, (4.47)

where C = z20/(ξ̂−ξ0), R2
i = n2

i +2niwibiC+w2
iC

2 and bi = 1−2p̂i with p̂i = ki/ni,
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i = 1, ..., g. The null hypothesis in (4.45) is rejected if y(z21−α/2) ≥ 0, where zq is the
100q percentile of the standard normal distribution.

The endpoints of the score confidence interval are determined by the roots (with
respect to ξ) of the equation y(z21−α/2) = 0. Even though the score test is easy
to apply, finding the confidence interval requires a numerical iterative method. For
more details, see Andrés et al. (2011).

Fiducial Confidence Intervals

A fiducial confidence interval for ξ =
∑g
i=1 wipi is formed by the percentiles of

the fiducial quantity W =
∑g
i=1 wiBki+.5,ni−ki+.5, where (k1, ..., kg) is an observed

value of (X1, ..., Xg), and Ba,b denotes the beta random variable with parameters a
and b. The percentiles of this fiducial quantity can be approximated by the MNA in
Section 2.16. In particular, noting that

E(Bki+.5,ni−ki+.5) =
ki + .5

ni + 1
,

one can find approximations to the percentiles of W . Krishnamoorthy, Lee and
Zhang (2014) have noted that a better approximation for the percentiles of W can
be obtained by using E(Bi) ≃ p̂i = ki/ni, i = 1, ..., g. Letting

(li, ui) =
(
Bki+.5,ni−ki+.5;α2 , Bki+.5,ni−ki+.5;1−α

2

)
, for 0 < α ≤ .5,

we find

Wα ≃
g∑

i=1

wip̂i −

√√√√
g∑

i=1

w2
i (p̂i − l∗i )

2, with l∗i =

{
li if wi > 0,
ui if wi < 0,

(4.48)

and

W1−α ≃
g∑

i=1

wip̂i +

√√√√
g∑

i=1

w2
i (p̂i − u∗

i )
2, with u∗

i =

{
ui if wi > 0,
li if wi < 0.

(4.49)

The interval (Wα,W1−α) is an approximate 100(1 − 2α)% two-sided confidence in-
terval for ξ =

∑g
i=1 wipi.

The score confidence interval and the fiducial confidence interval are quite com-
parable with respect to coverage probabilities and precision. The fiducial confidence
intervals have an advantage over the score confidence intervals, as they are easy to
compute.

Example 4.23. In a study by Cohen et al. (1991), 120 rats were randomly assigned
to four diets, as shown in Table 4.3. The absence or presence of a tumor was recorded
for each rat. The data and the contrast of interest Li = (li1, ..., li4), i = 1, 2, 3 are
taken from Andrés et al. (2011), and they are presented in Table 4.3. Our 95%
fiducial confidence interval for

∑4
j=1 lijpj is formed by the lower 2.5th percentile

and the upper 2.5th percentile of
∑4
j=1 lijBkj+.5,nj−kj+.5, and these percentiles can

be obtained using (4.48) and (4.49).

To find the fiducial confidence intervals, we first find the percentiles of
Bki+.5,ni−ki+.5, i = 1, ..., 4. The needed percentiles are B20.5,10.5;.025 = .4889,
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66 4 Binomial Distribution

B14.5,16.5,.025 = .2981, B27.5,3.5;.025 .7566, B19.5,11.5;.025 = .4551, B20.5,10.5;.975 =
.8140, B14.5,16.5,.975 = .6413, B27.5,3.5;.975 = .9710, and B19.5,11.5;.975 = .7872. The
estimated proportions are p̂1 = .6667, p̂2 = .4667, p̂3 = .9000, and p̂4 = .6333.
For the contrast L1 in Table 4.3, we find

∑4
i=1 l1ip̂i = −.06667. Substituting these

quantities in (4.48), we found W.025 = −0.3812. Similarly, we found W.975 = .3072.
Thus, the 95% fiducial confidence interval for the contrast L1 is (−0.3812, .3072),
and this interval indicates that there is no fiber × fat interaction effect. The 95%
fiducial confidence intervals for other contrasts were computed similarly, as shown
in Table 4.3. The score confidence intervals reported in Table 4.3 are taken from
Andrés et al. (2011).

TABLE 4.3: Types of Diets in Tumor Study

Fiber No Fiber
High fat Low fat High fat Low fat

Sample size, ni 30 30 30 30
Rats with tumor, ki 20 14 27 19
L1 = Fiber × Fat 1 −1 −1 1
L2 = Fiber 1 1 −1 −1
L3 = Fat 1 −1 1 −1

95% confidence intervals for the contrasts

Method L1 L2 L3

Score (−.3883, .2445) (−.7096,−.0772) (.1420, .7742)
Fiducial (−.3812, .2405) (−.6979,−.0767) (.1405, .7615)

R function 4.1 “ci.bin.wavr” can be used to compute fiducial confidence intervals for∑k
i=1 wipi.

4.10 Properties and Results

4.10.1 Properties

1. Let X1, . . ., Xm be independent random variables with Xi ∼ binomial(ni, p),
i = 1, 2, ..., m. Then

m∑

i=1

Xi ∼ binomial

(
m∑

i=1

ni, p

)
.

2. Let X be a binomial(n, p) random variable. For fixed k,

P (X ≤ k|n, p)

is a nonincreasing function of p.

3. Recurrence Relations:

(i) P (X = k + 1) = (n−k)p
(k+1)(1−p)P (X = k), k = 0, 1, 2, . . . , n− 1.
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(ii) P (X = k − 1) = k(1−p)
(n−k+1)p

P (X = k), k = 1, 2, . . . , n.

4. (i) P (X ≥ k) = pk
n∑
i=k

(
i−1
k−1

)
(1− p)i−k.

(ii)
n∑
i=k

i
(
n
i

)
pi(1− p)n−i = npP (X ≥ k) + k(1− p)P (X = k).

[Patel et al. (1976), p. 201]

R function 4.1. R function to find fiducial confidence intervals for∑k
i=1 wipi

a

# w = vector consisting of weights wi

# x = vector of numbers of successes

# n = vector of sample sizes; cl = confidence level

ci.bin.wavr = function(w, x, n, cl){

k = length(n); xls = seq(1:k); xus = seq(1:k)

alp = (1-cl)/2; alc = 1-alp

a = x+.5; b = n-x+.5; xl = qbeta(alp,a,b); xu = qbeta(alc,a,b)

u = x/n; cent = sum(w*u)

for(i in 1:k){

if(w[i] > 0){xls[i] = xl[i]; xus[i] = xu[i]}

else{xls[i] = xu[i]; xus[i] = xl[i]}

}

sel = sqrt(sum(w**2*(u-xls)**2)); seu = sqrt(sum(w**2*(u-xus)**2))

low = cent-sel; upp = cent+seu

return(c(low,upp))

}

aElectronic version of this R function can be found in HBSDA.r located in
StatCalc directory.

4.10.2 Relation to Other Distributions

1. Bernoulli: Let X1, . . . , Xn be independent Bernoulli(p) random variables with
success probability p. That is, P (Xi = 1) = p and P (Xi = 0) = 1 − p, i =
1, . . . , n. Then

n∑

i=1

Xi ∼ binomial(n, p).

2. Hypergeometric: See Section 5.8.

3. Negative Binomial: See Section 8.7.2.

4. F Distribution: See Section 13.4.2.

5. Beta: See Section 17.6.2.
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68 4 Binomial Distribution

4.10.3 Approximations

1. Let n be such that np > 5 and n(1− p) > 5. Then,

P (X ≤ k|n, p) ≃ P

(
Z ≤ k − np+ 0.5√

np(1− p)

)
,

and

P (X ≥ k|n, p) ≃ P

(
Z ≥ k − np− 0.5√

np(1− p)

)
,

where Z is the standard normal random variable.

2. Let λ = np. Then, for large n and small p,

P (X ≤ k|n, p) ≃ P (Y ≤ k) =
k∑

i=0

e−λλi

i!
,

where Y is a Poisson random variable with mean λ.

4.11 Random Number Generation

Input:

n = number of trials

p = success probability

ns = desired number of binomial random numbers

Output:

x(1),...,x(ns) are random numbers from the binomial(n, p)

distribution

The following algorithm, which generates binomial(n, p) random numbers as the sum
of n Bernoulli(p) random numbers, is satisfactory and efficient for small n.

Algorithm 4.1. Binomial variate generator

Set k = 0

For j = 1 to ns

For i = 1 to n

Generate u from uniform(0, 1)

If u <= p, k = k + 1

[end i loop]

2 x(j) = k

k = 0

[end j loop]

The following algorithm first computes the probability and the cumulative proba-
bility around the mode of the binomial distribution, and then searching for k se-
quentially so that P (X ≤ k − 1) < u ≤ P (X ≤ k), where u is a uniform random
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4.12 Computation of Probabilities 69

variate. Depending on the value of the uniform variate, forward or backward search
from the mode will be carried out. If n is too large, search for k may be restricted
in the interval np± c

√
np(1− p), where c ≥ 7. Even though this algorithm requires

the computation of the cumulative probability around the mode, it is accurate and
stable.

Algorithm 4.2. Binomial variate generator

Set k = int((n + 1)*p)

s = p/(1 - p)

pk = P(X = k)

df = P(X <= k)

rpk = pk; rk = k;

For j = 1 to ns

Generate u from uniform(0, 1)

If u > df, go to 2

1 u = u + pk

If k = 0 or u > df, go to 3

pk = pk*k/(s*(n - k + 1))

k = k - 1

go to 1

2 pk = (n - k)*s*pk/(k + 1)

u = u - pk

k = k + 1

If k = n or u <= df, go to 3

go to 2

3 x(j) = k

k = rk

pk = rpk

[end j loop]

For other algorithms, see Kachitvichyanukul and Schmeiser (1988).

4.12 Computation of Probabilities

For small n, the probabilities can be computed in a straightforward manner. For
large values of n, logarithmic gamma function lnΓ(x) (see Section 1.8) can be used
to compute the probabilities.

To Compute P(X = k):

Set x = lnΓ(n+ 1) − ln Γ(k + 1)− ln Γ(n− k + 1)
y = k ∗ ln(p) + (n− k) ∗ ln(1− p)
P (X = k) = exp(x+ y).

To Compute P (X ≤ k):

Compute P (X = k)
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Set m = int(np)
If k ≤ m, compute P (X = k − 1) using the backward recursion relation

P (X = k − 1) =
k(1− p)

(n− k + 1)p
P (X = k),

for k− 1, k− 2, . . ., 0 or until convergence. Sum of these probabilities plus P (X = k)
is P (X ≤ k);
else compute P (X = k + 1) using the forward recursion relation

P (X = k + 1) =
(n− k)p

(k + 1)(1− p)
P (X = k),

for k + 1, . . ., n, or until convergence; sum these probabilities to get P (X ≥ k + 1).
The cumulative probability

P (X ≤ k) = 1.0− P (X ≥ k + 1).

The following algorithm for computing the binomial cdf is based on the above
method.

Algorithm 4.3. Calculation of binomial cdf

Input:

k = nonnegative integer (0 <= k <= n)

p = success probability (0 < p < 1)

n = number of trials, n >= 1

Output: bincdf = P(X <= k)

Set mode = int(n*p)

bincdf = 0.0d0

pk = P(X = k)

if(k .le. mode) then

For i = k to 0

bincdf = bincdf + pk

pk = pk * i*(1.0d0-p)/(en-i+1.0d0)/p

(end i loop)

else

For i = k to n

pk = pk * (en-i)*p/(i+1.0d0)/(1.0d0-p)

bincdf = bincdf + pk

[end i loop]

bincdf = 1.0d0-bincdf+pk

end if

The following R function computes the pmf and the cdf of a binomial(n, p) distri-
bution. To calculate the logarithmic gamma function “alng,” use R function 2.1 in
Section 2.11.
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R function 4.2. Calculation of the binomial pmf

binpr <- function(k,n,p)

{

cft <- alng(n+1)-alng(k+1)-alng(n-k+1)+k*log(p)+(n-k)*log(1-p)

return(exp(cft))

}

R function 4.3. Calculation of the binomial cdfa

bincdf <- function(k, n, p){

pk <- binpr(k, n, p); sum <- 1.0; term <- 1.0

if (k > n*p)

{i <- 0

cons <- p/(1.0-p)

repeat{

term <- term*(n-k-i)/(k+1.0+i)*cons

sum <- sum + term

if(term <= 1.0e-7 || i == n-k-1) break

i <- i+1

}

ans <- 1.0-sum*pk+pk

}

else{

cons <- (1.0-p)/p

for (i in 1:k-1){

term <- term*((k-i)/(n-k+i+1.0)*cons)

sum <- sum + term

if (term <= 1.0e-7 || i >= k-1) ans <- sum*pk}

}

return(c(pk, ans, 1.0-ans+pk))

}

aElectronic version of this R function can be found in HBSDA.r located in
StatCalc directory.
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Hypergeometric Distribution

5.1 Description

Consider a lot consisting of N items of which M of them are defective and the
remaining N −M of them are nondefective. A sample of n items is drawn randomly
without replacement. (That is, an item sampled is not replaced before selecting
another item.) Let X denote the number of defective items that is observed in
the sample. The random variable X is referred to as the hypergeometric random
variable with parameters N and M . For a given set {N,M,n, k}, the probability
P (X = k|n,M,N) is the ratio of the number of samples of size that include exactly
k defective items to the possible number samples of size n from the lot. Noting that
the number of ways one can select b different objects from a collection of a different
objects is (

a

b

)
=

a!

b!(a− b)!
,

we find that the number of ways of selecting k defective items from M defective
items is

(
M
k

)
; the number of ways of selecting n− k nondefective items from N −M

nondefective items is
(
N−M
n−k

)
. Therefore, total number of ways of selecting n items

with k defective and n− k nondefective items is
(
M
k

)(
N−M
n−k

)
. Finally, the number of

ways one can select n different items from a collection of N different items is
(
N
n

)
.

Thus, the probability of observing k defective items in a sample of n items is given
by

f(k|n,M,N) = P (X = k|n,M,N) =

(
M
k

)(
N−M
n−k

)
(
N
n

) , L ≤ k ≤ U, (5.1)

where L = max{0,M −N + n} and U = min{n,M}.
The cumulative distribution function of X is given by

F (k|n,M,N) =
k∑

i=L

(
M
i

)(
N−M
n−i

)
(
N
n

) , L = max{0, M −N + n}. (5.2)

We shall denote the distribution by hypergeometric(n,M,N). The plots of proba-
bility mass functions are given in Figure 5.1 for a small lot size of N = 100 (the
first set of four plots) and for a large lot size of N = 5000 (the second set of eight

73
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74 5 Hypergeometric Distribution

plots). The parameter-sample size configurations are chosen so that the hypergeo-
metric plots can be compared with the corresponding binomial plots in Figure 4.1.
The binomial plots with n = 20 are not in good agreement with the corresponding
hypergeometric plots in Figure 5.1 with (N = 100, n = 20), whereas all binomial
plots are almost identical with the hypergeometric plots with (N = 5000, n = 20)
and with (N = 5000, n = 100); see Burstein (1975).

5.2 Moments

Mean: n
(
M
N

)

Variance: n
(
M
N

) (
1− M

N

) (
N−n
N−1

)

Mode: The largest integer ≤ (n+1)(M+1)
N+2

Mean Deviation:
2x(N−M−n+x)(Mx )(

N−M
n−x )

N(Nn)
,

where x is the smallest integer larger than
the mean. [Kamat (1965)]

Coefficient of Variation:
(

(N−M)(N−n)
nM(N−1)

)1/2

Coefficient of Skewness:
(N−2M)(N−2n)

√
(N−1)

(N−2)
√
nM(N−M)(N−n)

Coefficient of Kurtosis:

(
N2(N−1)

nM(N−M)(N−2)(N−3)(N−n)

)

×
(

3nM(N−M)(6−n)
N

+N(N + 1− 6n) + 6n2

+ 3M(N −M)(n− 2) − 18n2M(N−M)

N2

)

5.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Discrete→Hypergeometric →Probabilities, Critical Val-
ues and Moments] computes the probabilities, moments, and other parameters of a
hypergeometric distribution.

Calculation of Probabilities: When N = 100, M = 36, n = 20, and k = 3,

P (X ≤ 3) = 0.023231, P (X ≥ 3) = 0.995144, and P (X = 3) = 0.018375.

To Compute other Parameters: For any given four values from the set
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FIGURE 5.1: Hypergeometric probability mass functions
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FIGURE 5.1 continued
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{N,M,n, k, P (X ≤ k)}, StatCalc computes the missing one. For example, to com-
pute the value of M for a given N , n, k, and P (X ≤ k), enter the values of N , n, k,
and P (X ≤ k), and then click on [E]. As an example, when N = 300, n = 45, k = 12,
and P (X ≤ k) = 0.4321, the value of M is 87. To carry out the computation, enter
300 for N , 45 for n, 12 for k, and 0.4321 for P (X ≤ k), and then click [E]. Note that
P (X ≤ 12|45, 87, 300) = 0.429135, which is close to the specified probability 0.4321.
Because of the discrete nature of the distribution, there exists no integer value of M
for which the probability is exactly equal to 0.4321. The values of N , n, and k can
also be similarly calculated.

To compute moments: Enter the values of the N , M , and n; click [M].

Example 5.1. The following state lottery is well-known in the United States of
America. A player selects 6 different numbers from 1, 2, . . ., 44 by buying a ticket for
$1. Later in the week, the winning numbers will be drawn randomly by a device. If
the player matches all winning numbers, then he or she will win the jackpot of the
week. If the player matches 4 or 5 numbers, he or she will receive a lesser cash prize.
If a player buys one ticket, what are the chances of matching (a) all numbers? (b)
four numbers?

Solution: Let X denote the number of winning numbers in the ticket. If we regard
winning numbers as defective, then X is a hypergeometric random variable with
N = 44, M = 6, and n = 6. The probabilities can be computed using the dia-
log box [StatCalc→Discrete→Hypergeometric →Probabilities, Critical Values and
Moments].

a.

P (X = 6) =

(
6
6

)(
38
0

)
(
44
6

) =
1(
44
6

) =
6! 38!

44!
=

1

7059052
.

b.

P (X = 4) =

(
6
4

)(
38
2

)
(
44
6

) = 0.0014938.

To find the probability in part (b) using StatCalc, enter 44 for N , 6 for M , 6 for
sample size n, and 4 for observed k, and click [P] to get P(X = 4) = 0.0014938.

Example 5.2. A shipment of 200 items is under inspection. The shipment will
be acceptable if it contains 10 or fewer defective items. The buyer of the shipment
decided to buy the lot if he finds no more than one defective item in a random sample
of n items from the shipment. Determine the sample size n so that the chances of
accepting an unacceptable shipment is less than 10%.

Solution: Since we deal with a finite population, a hypergeometric model with N =
200 is appropriate for this problem. Let X denote the number of defective items in a
sample of n items. The shipment is unacceptable if the number of defective items M
is 11 or more. Furthermore, note that for M in {11, 12, . . . , 200}, the chances of ac-
cepting an unacceptable shipment, that is, P (X ≤ 1|n,M,N), attains the maximum
whenM = 11. So we need to determine the value of n so that P (X ≤ 1|n, 11, 200) ≤
0.10 and P (X ≤ 1|(n−1), 11, 200) > 0.10. To compute the required sample size using
StatCalc, select [StatCalc→Discrete→Hypergeometric→Probabilities, Critical Val-
ues and Moments], enter 200 for N , 11 for M , 1 for k, and 0.1 for P (X ≤ k); click
[S] to get 61. Note that P (X ≤ 1|61, 11, 200) = 0.099901.
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78 5 Hypergeometric Distribution

Thus, the buyer has to inspect a sample of 61 items so that the chances of
accepting an unacceptable shipment is less than 10%. Also, notice that when the
sample size is 60, the probability of accepting an unacceptable lot is 0.106241, which
is greater than 10%.

Example 5.3. Thirteen cards were drawn randomly from a deck of 52 cards. What
are the chances of observing exactly 6 black cards and 7 red cards? At least one red
card?

Solution: Note that there are 26 red cards and 26 black cards in a deck of 52 cards.
So the probability of observing exactly 6 black and 7 red cards is

(
26
6

)(
26
7

)
(
52
7

) = 0.2384914.

Let X denote the number of red cards in a hand of 13 cards. The distribution of X
is hypergeometric with sample size n = 13, number of red cards M = 26, and the
lot size N = 52. Noting that P (X ≥ 1) = 1 − P (X = 0), we find the probability of
observing at least one red card is

1− P (X = 0) = 1−
(
26
0

)(
26
13

)
(
52
13

) = .99998.

5.4 Point Estimation

Let k denote the observed number of defective items in a sample of n items, selected
from a lot of N items. Let M denote the number of defective items in the lot.

Point Estimation of M

The maximum likelihood estimator of M is given by

M̂ =

⌊
k(N + 1)

n

⌋
,

where ⌊x⌋ denotes the largest integer less than or equal to x (floor function). If k(N+
1)/n is an integer, then both k(N + 1)/n and k(N + 1)/n − 1 are the maximum
likelihood estimators of M .

Estimation of the Lot Size

There are situations in which we want to estimate the lot size based on M , n,
and k. For example, the capture–recapture technique is commonly used to estimate
animal abundant in a given region [Thompson (1992), p.212]: A sample of n1 animals
was trapped, marked, and released in the first occurrence. After a while, another
sample of n2 animals was trapped. Let X denote the number of marked animals in
the second trap. Then X follows a hypergeometric distribution with M = n1 and
n = n2. For given X = k, we want to estimate N (lot size = total number of animals
in the region). The maximum likelihood estimator of N is given by

N̂ =
[n1n2

k

]
,

where [x] denotes the largest integer less than or equal to x.
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5.5 Test for the Proportion and Power Calculation

Suppose that we found k defective items in a sample of n items drawn from a lot
of N items. Let M denote the true number of defective items in the population and
let p =M/N .

An Exact Test

Let M0 = int(Np0). For testing

H0 : p ≤ p0 vs. Ha : p > p0, (5.3)

the null hypothesis will be rejected if the p-value P (X ≥ k|n,M0, N) ≤ α, for testing

H0 : p ≥ p0 vs. Ha : p < p0, (5.4)

the null hypothesis will be rejected if the p-value P (X ≤ k|n,M0, N) ≤ α, and for
testing

H0 : p = p0 vs. Ha : p 6= p0, (5.5)

the null hypothesis will be rejected if the p-value

2min{P (X ≤ k|n,M0, N), P (X ≥ k|n,M0, N)} ≤ α.

The dialog box [StatCalc→Discrete→Hypergeometric→Test for Proportion ...] uses
the above formulas for computing p-values of the test described above.

Example 5.4. (Calculation of p-values) When N = 500, n = 20, k = 8, and p0 =
0.2, it is desired to test H0 : p ≤ p0 vs. Ha : p > p0 at the level of 0.05. After entering
these values in the aforementioned dialog box, click [p-values] to get 0.0293035. The
null hypothesis H0 will be rejected in favor of the alternative hypothesis Ha at the
level of significance 0.05. However, if H0 : p = p0 vs. Ha : p 6= p0 then, at the
same nominal level, the H0 in (5.5) can not be rejected because the p-value for this
two-tailed test is 0.058607, which is not less than 0.05.

Example 5.5. (Calculation of p-values) A pharmaceutical company claims that
75% of doctors prescribe one of its drugs for a particular disease. In a random
sample of 40 doctors from a population of 1000 doctors, 23 prescribed the drug to
their patients. Does this information provide sufficient evidence to indicate that the
true percentage of doctors who prescribe the drug is less than 75? Test at the level
of significance α = 0.05.

Solution: Let p denote the actual proportion of doctors who prescribe the drug to
their patients. The hypotheses of interest are

H0 : p ≥ 0.75 vs. Ha : p < 0.75.

In the dialog box [StatCalc→Discrete→Hypergeometric→Test for p and Sample Size
for Power], enter 1000 for N , 40 for n, 23 for observed k, and 0.75 for [Value of p0],
and click on [p-values for]. The p-value for the above left-tailed test is 0.0101239,
which is less than 0.05. Thus, we conclude, on the contrary to the manufacturer’s
claim, that less than 75% of doctors prescribe the drug.
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Power of the Exact Test

For a given p, let M = int(Np) and M0 = int(Np0), where p0 is the specified value
of p under H0 in (5.3). For a right-tailed test, the exact power at the level α can be
computed using the expression

U∑

k=L

(
M
k

)(
N−M
n−k

)
(
N
n

) I(P (X ≥ k|n,M0, N) ≤ α),

and for a two-tailed test the exact power can be expressed as

U∑

k=L

(
M
k

)(
N−M
n−k

)
(
N
n

) I
[
P (X ≥ k|n,M0, N) ≤ α

2
or P (X ≤ k|n,M0, N) ≤ α

2

]
,

where I(.) is the indicator function.

Example 5.6. (Power Calculation) When lot size N = 500, sample size n = 35,
p0 = 0.2, nominal level = 0.05, and p = 0.4, the power of the test for the hypotheses
in (5.3) is 0.813779. For hypotheses in (5.5), the power is 0.701371. The power can
be computed using StatCalc as follows. Enter 500 for [Lot Size, N], 3 to indicate
two-tailed test, .05 for [Nominal Level], 0.4 for [Guess p], 0.2 for [Null p0], and 35
for [S Size]; click on [Power].

Example 5.7. (Sample Size Calculation) Suppose that a researcher believes that
a new drug is 20% more effective than the existing drug, which has a success rate of
70%. Assume that the size of the population of patients is 5000. The required sample
size to test his belief (at the level 0.05 and power 0.90) can be computed using Stat-
Calc as follows. Select the dialog box [StatCalc→Discrete→Hypergeometric→Test
for p ...], enter 5000 for N , 1 to indicate the test is right-tailed, .05 for the nominal
level, .9 for [Guess p] and 0.7 for [Null p0], and click on [S Size] to get 37. Note
that the sample size is determined so that the power will be at least .90. To find the
actual power at sample size 37, click on [Power] to get 0.929651.

Suppose we relax the requirement, and determine sample size so that the power
of the test is close to the specified power of .90. By trial-error (in the dialog box
[StatCalc→Discrete→Hypergeometric→Test for p ...]), we see that a sample of size
33 produces a power of .895. So a little compensation in power, lower the sample
size considerably.

5.6 Confidence Interval and Sample Size Calculation

Suppose that we found k defective items in a sample of n items drawn from a finite
population of N items. Let M denote the true number of defective items in the
population.

Confidence Intervals

A lower confidence limit Ml for M is the largest integer such that

P (X ≥ k|n,Ml, N) =
α

2
,
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and an upper limit Mu for M is the smallest integer such that

P (X ≤ k|n,Mu, N) =
α

2
.

A 1− α confidence interval for the proportion of defective items in the lot is given
by

(pl, pu) =

(
Ml

N
,
Mu

N

)
. (5.6)

A slightly better confidence interval can be obtained by choosing Ml as the smallest
integer for which P (X ≥ k|n,Ml, N) > α/2 and Mu as the largest integer for which
P (X ≤ k|n,Mu, N) > α/2.

The dialog box [StatCalc→Discrete→Hypergeometric→CI for p and Sample size
for Precision] uses the better method in the preceding paragraph to compute 1 − α
confidence intervals for p. This dialog box also computes the sample size required to
estimate the proportion of defective items within a given precision.

Example 5.8. (Computing Confidence Interval) Suppose that a sample of 40 units
from a population of 500 items showed that 5 items are with an attribute of interest.
To find a 95% confidence interval for the true proportion of the items with this
attribute, enter 500 for N , 40 for n, 5 for the observed number of successes k, and
0.95 for the confidence level; click [2-sided] to get (0.044, 0.260). For one-sided limits,
click [1-sided] to get 0.052 and 0.238. That is, 0.052 is 95% one-sided lower limit for
p, and 0.238 is 95% one-sided upper limit for p.

Example 5.9. A shipment of 1000 items is submitted for inspection. Because of
the cost of inspection, the purchaser decided to inspect only a sample of 30 items
randomly selected from the shipment. The inspection showed that 2 out of 30 items
are not acceptable (defective). Based on the result, find a 95% confidence interval for
the true proportion of defective items in the shipment. The purchaser may accept
the shipment if the proportion of defective items is no more that 10%. On the basis
of the sampling result, do you recommend the purchaser to accept the shipment?

Solution: Let p denote the true proportion of defective items in the shipment. To
find a 95% confidence interval for p, note that N = 1000, n = 30, and k = 2. Enter
these data in the dialog box [StatCalc→Discrete→Hypergeometric→CI for p ...],
and click [2-sided] to get (.008, .217).

To check if the true proportion of defective items is less than 10%, we need to show
that a 95% (or 99%, depending on the risk) upper confidence limit for p is less than
10%. To calculate the 95% one-sided upper limit, click on [1-sided] in the dialog box
[StatCalc→Discrete→Hypergeometric→CI for p ...] to get 0.192. That is, the true
proportion of defective items is no more than 19.2% with confidence .95. Since the
upper confidence limit is not less that 10%, we can not recommend the purchaser
to buy the shipment.

Example 5.10. (One-Sided Limit) A highway patrol officer stopped a car for a
minor traffic violation. Upon suspicion, the officer checked the trunk of the car, and
found many bags. The officer arbitrarily checked 10 bags and found that all of them
contained marijuana. A later count showed that there were 300 bags. Before the case
went to trial, all the bags were destroyed without examining the remaining bags.
Since the severity of the fine and punishment depends on the quantity of marijuana,
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it is desired to estimate the minimum number of marijuana bags. Based on the
information, determine the minimum number marijuana bags in the trunk at the
time of arrest.

Solution: The hypergeometric model, with lot size N = 300, sample size n = 10,
and the observed number of defective items k = 10, is appropriate for this prob-
lem. So, we can use a 95% one-sided lower limit for M (total number of mar-
ijuana bags) as an estimate for the minimum number of marijuana bags out of
these 300 bags. To get a 95% one-sided lower limit for M using the dialog box
[StatCalc→Discrete→Hypergeometric→CI for p ...], enter the data in the appropri-
ate edit boxes, and click [1-sided] to get 0.74667. That is, we estimate with 95%
confidence that there were at least 300 × 0.746667 = 224 bags of marijuana at the
time of arrest.

Sample Size for Precision

For a given N , n, and k, the dialog box [StatCalc→Discrete→Hypergeometric →CI
for p and Sample Size for Precision] computes the sample size to find a confidence
interval with a given precision.

Expected Length

For a given lot size N , p and a confidence level 1 − α, the expected length of the
confidence interval in (5.6) can be computed as follows. For a given p, let M =
int(Np). Then the expected length is given by

U∑

k=L

(
M
k

)(
N−M
n−k

)
(
N
n

) (pu − pl),

where L and U are as defined in (5.1). StatCalc computes the required sample size
to have a confidence interval with a specified expected length.

Example 5.11. (Sample Size for a Given Precision) A researcher hypothesizes
that the proportion of individuals with the attribute of interest in a population of
size 1000 is 0.3, and he wants to estimate the true proportion within a margin of
error of ±5% with 95% confidence. To compute the required sample size, enter 1000
for [Lot Size], .95 for [Conf Level], 0.3 for [Guess p] and .05 for [Margin of Error], and
click [Appr S Size] to get 244. Click on [Actual ME] to get .0502386. By increasing
the sample size to 246, we find the actual margin of error is .0499392. Thus, the
required sample size is 246. See Example 4.11 to find out the required sample size if
the population is infinite or the population size is unknown.

5.7 Test for Comparing Two Proportions in Finite

Populations

Suppose that inspection of a sample of n1 individuals from a population of N1

units revealed k1 units with a particular attribute, and a sample of n2 individuals
from another population of N2 units revealed k2 units with the same attribute. The
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problem of interest is to test the difference p1 − p2, where pi denotes the proportion
of individuals in the ith population with the attribute of interest, i = 1, 2.

The Test

Consider testing
H0 : p1 ≤ p2 vs. Ha : p1 > p2. (5.7)

Define p̂k = k1+k2
n1+n2

and M̂i = int(Nip̂k), i = 1, 2. Consider the test statistic

Z(k1, k2) =
k1 − k2√

p̂k(1− p̂k)
(

N1−n1
n1(N1−1)

+ N2−n2
n2(N2−1)

) .

The p-value for testing the above hypotheses on the basis of z(k1, k2) can be com-
puted using the expression

P (k1, k2, n1, n2) =

U1∑

x1=L1

U2∑

x2=L2

f(x1|n1, M̂1, N1)f(x2|n2, M̂2, N2)

× I(Z(x1, x2) ≥ Z(k1, k2)). (5.8)

where I(.) is the indicator function, Li = max{0, M̂i −Ni + ni}, Ui = min{M̂i, ni},
i = 1, 2,

f(xi|ni, M̂i, Ni) =

(
M̂i
xi

)(
Ni−M̂i
ni−xi

)
(
Ni
ni

) , i = 1, 2,

The term Z(k1, k2) is equal to Z(x1, x2) with x replaced by k.
The null hypothesis in (5.7) will be rejected when the p-value in (5.8) is less

than or equal to α. For more details and properties of the test, see Krishnamoorthy
and Thomson (2002). The p-value for a left-tailed test or for a two-tailed test can
be computed similarly.

The dialog box [StatCalc→Discrete→Hypergeometric→Test for comparing ...] cal-
culates the p-values of the above two-sample test.

Example 5.12. (Calculation of p-values) Suppose a sample of 25 observations from
population 1 with size 300 yielded 20 successes, and a sample of 20 observations from
population 2 with size 350 yielded 10 successes. Let p1 and p2 denote the proportions
of successes in populations 1 and 2, respectively. Suppose we want to test

H0 : p1 ≤ p2 vs. Ha : p1 > p2.

To compute the p-value, select the aforementioned dialog box, enter 300 for [Lot
Size 1], 350 for [Lot Size 2], 25 for [Sample Size 1], 20 for [Sample Size 2], 20 for
[Obser defs 1], 10 for [Obser defs 2], 0 for [H0: p1-p2 = d], and click on [p-values] to
get 0.0165608. The p-value for testing H0 : p1 = p2 vs. Ha : p1 6= p2 is 0.0298794.

Example 5.13. The quality control inspector of a manufacturing company has
decided to check if the products produced during different shifts are similar. He
inspected a sample of 30 products from a lot 500 products produced during day
shifts, and a sample of 40 products from a lot of 450 products produced during night
shifts. The inspection revealed 2 defective products in the sample of 30 products,
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84 5 Hypergeometric Distribution

and 4 defective products in the sample of 40. Let pd and pn denote the proportions
of defective products produced during the day shift and night shift, respectively.
Then the inspector may want to test

H0 : pd = pn vs. Ha : pd 6= pn.

To compute the p-value, select the dialog box [StatCalc→Discrete→Hypergeometric→
Test for comparing ...], enter 500 for [Lot Size 1], 450 for [Lot Size 2], 30 for [Sample
Size 1], 40 for [Sample Size 2], 2 for [Obser defs 1], 4 for [Obser defs 2], 0 for [H0:
p1-p2 = d], and click on [p-values] to get 0.558236. This p-value indicates that there
is no significant difference between the proportions of defective products among the
products produced during different shifts.

Power Calculation

For a given p1 and p2, let Mi = int(Nipi), Li = max{0,Mi − Ni + ni} and Ui =
min{ni,Mi}, i = 1, 2. The exact power of the test described above can be computed
using the expression

n1∑

k1=0

n2∑

k2=0

f(k1|n1,M1, N1)f(k2|n2,M2, N2)I(P (k1, k2, n1, n2) ≤ α), (5.9)

where f(k|n,M,N) is the hypergeometric probability mass function,Mi = int(Nipi),
i = 1, 2, and the p-value P (k1, k2, n1, n2) is given in (5.8). The powers of a left-tailed
test and a two-tailed test can be computed similarly.

The dialog box [StatCalc→Discrete→Hypergeometric→Test for comparing ...] uses
the above method for computing powers of the two-sample test.

Example 5.14. (Sample Size Calculation for Power) Suppose the sample size for
each group needs to be determined to carry out a two-tailed test at the level of
significance α = 0.05 and power = 0.80. Assume that the lot sizes are 300 and
350. Furthermore, the guess values of the proportions are given as p1 = 0.45 and
p2 = 0.15. To determine the sample size using StatCalc, enter 2 for two-tailed test,
0.05 for [Level], 0.45 for p1, 0.15 for p2, and 28 for each sample size. Click [Power]
to get a power of 0.751881. Note that the sample size gives a power less than 0.80.
This means, the sample size required to have a power of 0.80 is more than 28. Enter
31 (for example) for both sample sizes and click on [Power] radio button. Now the
power is 0.807982. It can be verified that the power at 30 is 0.78988. Thus, the
required sample size from each population to attain a power of at least 0.80 is 31.

Remark 5.1. Note that the power can also be computed for unequal sample sizes.
For instance, when n1 = 30, n2 = 34, p1 = 0.45, and p2 = 0.15, the power for
testing H0 : p1 = p2 vs. Ha : p1 6= p2 at the nominal 0.05 is 0.804974. For the same
configuration, a power of 0.800876 can be attained if n1 = 29 and n2 = 39.

© 2016 by Taylor & Francis Group, LLC

  



5.8 Properties and Results 85

5.8 Properties and Results

Recurrence Relations

a. P (X = k + 1|n,M,N) = (n−k)(M−k)
(k+1)(N−M−n+k+1)

P (X = k|n,M,N).

b. P (X = k − 1|n,M,N) = k(N−M−n+k)
(n−k+1)(M−k+1)

P (X = k|n,M,N).

c. P (X = k|n+ 1,M,N) = (N−M−n+k)
(M+1−k)(N−M)

P (X = k|n,M,N).

Relation to Other Distributions

1. Binomial: LetX and Y be independent binomial random variables with common
success probability p and numbers of trials m and n, respectively. Then

P (X = k|X + Y = s) =
P (X = k)P (Y = s− k)

P (X + Y = s)
,

which simplifies to

P (X = k|X + Y = s) =

(
m
k

)(
n
s−k
)

(
m+n
s

) , max{0, s− n} ≤ k ≤ min{m, s}.

Thus, the conditional distribution of X given X + Y = s is
hypergeometric(s,m,m+ n).

Approximations

1. Let p = M
N
. Then, for large N and M ,

P (X = k) ≃
(
n

k

)
pk(1− p)n−k.

2. Let M
N

be small and n is large such that n
(
M
N

)
= λ.

P (X = k) ≃ e−λλk

k!

{
1 +

(
1

2M
+

1

2n

)[
k −

(
k − Mn

N

)2
]
+O

(
1

k2
+

1

n2

)}
.

[Burr, 1973]

5.9 Random Number Generation

Input:

N = lot size; M = number of defective items in the lot

n = sample size; ns = number of random variates to be

generated
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Output:

x(1),..., x(ns) are random number from the

hypergeometric(n, M, N) distribution

The following generating scheme is essentially based on the probability mechanism
involved in simple random sampling without replacement, and is similar to Algo-
rithm 3.9.1 for the binomial case.

Algorithm 5.1. Hypergeometric variate generator

Set k = int((n + 1)*(M + 1)/(N + 2))

pk = P(X = k)

df = P(X <= k)

Low = max{0, M - N + n}

High = min{n, M}

rpk = pk; rk = k

For j = 1 to ns

Generate u from uniform(0, 1)

If u > df, go to 2

1 u = u + pk

If k = Low or u > df, go to 3

pk = pk*k*(N - M - n + k)/((M - k + 1)*(n - k + 1))

k = k - 1

go to 1

2 pk = pk*(n - k)*(M -k)/((k + 1)*(N - M + k + 1))

u = u - pk

k = k + 1

If k = High or u <= df, go to 3

go to 2

3 x(j) = k

pk = rpk

k = rk

[end j loop]

For other lengthy but more efficient algorithms, see Kachitvichyanukul and
Schmeiser (1985).

5.10 Computation of Probabilities

To compute P (X = k)

Set U = min{n,M}; L = max{0,M −N + n}
If k > U or k < L then return P (X = k) = 0
Compute S1 = lnΓ(M + 1)− ln Γ(k + 1)− ln Γ(M − k + 1)

S2 = lnΓ(N −M + 1)− ln Γ(n− k + 1)− ln Γ(N −M − n+ k + 1)
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S3 = lnΓ(N + 1)− ln Γ(n+ 1)− ln Γ(N − n+ 1)
P (X = k) = exp(S1 + S2 − S3)

To compute lnΓ(x), see Section 1.8.

To compute P (X ≤ k)

Compute P (X = k)
Set mode = int((n+ 1)(M+ 1)/(N+ 2))
If k ≤ mode, compute the probabilities using the backward recursion relation

P (X = k − 1|n,M,N) =
k(N −M − n+ k)

(n− k + 1)(M − k + 1)
P (X = k|n,M,N)

for k − 1, . . ., L or until a specified accuracy; add these probabilities and P (X = k)
to get P (X ≤ k);
else compute the probabilities using the forward recursion

P (X = k + 1|n,M,N) =
(n− k)(M − k)

(k + 1)(N −M − n+ k + 1)
P (X = k|n,M,N)

for k + 1, . . ., U or until a specified accuracy; add these probabilities to get
P (X ≥ k + 1). The cumulative probability is given by

P (X ≤ k) = 1− P (X ≥ k + 1).

The following algorithm for computing a hypergeometric cdf is based on the
above computational method.

Algorithm 5.2. Calculation of hypergeometric distribution function

Input:

k = the value at which the cdf is to be evaluated

n = the sample size

m = the number of defective items in the lot

lot = size of the lot

Output:

hypcdf = P(X <= k|n,m,lot)

Set one = 1.0d0

lup = min(n, m)

low = max(0, m-lot+n)

if(k .lt. low) return hypcdf = 0.0d0

if(k .gt. lup) return hypcdf = one

mode = int(n*m/lot)

hypcdf = 0.0d0

pk = hypprob(k, n, m, lot)

if(k .le. mode) then

For i = k to low

hypcdf = hypcdf + pk
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pk = pk*i*(lot-m-n+i)/(n-i+one)/(m-i+one)

[end i loop]

else

For i = k to lup

pk = pk * (n-i)*(m-i)/(i+one)/(lot-m-n+i+one)

hypcdf = hypcdf + pk

[end i loop]

hypcdf = 1.0d0-hypcdf

end if

The following R functions compute the pmf and cdf of a hypergeometric(n,m, lot)
distribution.

R function 5.1. Calculation of the hypergeometric pmf

hyppr = function(k, n, m, lot){

lup = min(n, m); low = max(0, m-lot+n); one = 1.0

if(k < low | k > lup) return(0)

# alng(x) = logarithmic function R function 1.1

term1 = alng(m+one)-alng(k+one)-alng(m-k+one)

term2 = alng(lot-m+one)-alng(n-k+one)-alng(lot-m-n+k+one)

term3 = alng(lot+one)-alng(n+one)-alng(lot-n+one)

ans = exp(term1+term2-term3)

return(ans)

}

R function 5.2. Calculation of the hypergeometric cdf

hypcdf = function(k, n, m, lot){

lup = min(n, m); low = max(0, m-lot+n); one = 1.0

if(k > lup){return(1)}

if(k < low){return(0)}

mod = floor(n*m/lot)+1

ans = 0.0; pk = hyppr(k, n, m, lot)

if(k <= mod){

for(i in rev(k:low)){

ans = ans + pk;

pk = pk*i*(lot-m-n+i)/(n-i+one)/(m-i+one)}

}

else{

for(i in k:lup){

pk = pk * (n-i)*(m-i)/(i+one)/(lot-m-n+i+one)

ans = ans + pk

}

ans = one-ans}

return(ans)

}
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Poisson Distribution

6.1 Description

Suppose events that occur over a period of time or space satisfy the following:

1. The numbers of events occurring in disjoint intervals of time are independent.

2. The probability that exactly one event occurs in a small interval of time ∆ is
∆λ, where λ > 0.

3. It is almost unlikely that two or more events occur in a sufficiently small interval
of time.

4. The probability of observing a certain number of events in a time interval ∆
depends only on the length of ∆ and not on the beginning of the time interval.

Let X denote the number of events in a unit interval of time or in a unit distance.
Then, X is called the Poisson random variable with mean number of events λ in a
unit interval of time. The probability mass function of a Poisson distribution with
mean λ is given by

f(k|λ) = P (X = k|λ) = e−λλ k

k!
, k = 0, 1, 2, . . . . (6.1)

The cumulative distribution function of X is given by

F (k|λ) = P (X ≤ k|λ) =
k∑

i=0

e−λλ i

i!
, k = 0, 1, 2, . . . . (6.2)

The Poisson distribution can also be developed as a limiting distribution of the
binomial, in which n → ∞ and p → 0 so that np remains a constant. In other
words, for large n and small p, the binomial distribution can be approximated by
the Poisson distribution with mean λ = np. Some examples of the Poisson random
variable are:

1. the number of radioactive decays over a period of time;

2. the number of automobile accidents per day on a stretch of an interstate road;

3. the number of typographical errors per page in a book;

4. the number of α particles emitted by a radioactive source in a unit of time;

5. the number of still births per week in a large hospital.

89
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90 6 Poisson Distribution

Poisson distribution gives probability of observing k events in a given period of
time, assuming that events occur independently at a constant rate. The Poisson
distribution is widely used in quality control, reliability, and queuing theory. It can
be used to model the distribution of the number of defects in a piece of material,
customer arrivals at a train station, auto insurance claims, and incoming telephone
calls per period of time.

As shown in the plots of probability mass functions in Figure 6.1, Poisson dis-
tribution is right-skewed, and the degree of skewness decreases as λ increases.

6.2 Moments

Mean: λ

Variance: λ

Mode: The largest integer less than or equal to λ.
If λ is an integer, λ and λ− 1 are modes.

Mean Deviation: 2e−λλ[λ]+1

[λ]!
,

where [x] denotes the largest integer less than
or equal to x. [Johnson et al. (1992), p. 157]

Coefficient of Variation: 1√
λ

Coefficient of Skewness: 1√
λ

Coefficient of Kurtosis: 3 + 1
λ

Factorial Moments: E

(
k∏
i=1

(X − i+ 1)

)
= λk

E

(
k∏
i=1

(X + i)

)−1

= 1
λ k

(
1− e−λ

k−1∑
i=0

λi

i!

)

Moments about the Mean: µk = λ
k−2∑
i=0

(
k−1
i

)
µi, k = 2, 3, 4, · · · ,

where µ0 = 1 and µ1 = 0. [Kendall 1943]
Moment Generating Function: exp[λ (et − 1)]

Probability Generating Function: exp[λ (t− 1)]
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FIGURE 6.1: Poisson probability mass functions
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92 6 Poisson Distribution

6.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Discrete→Poisson→Probabilities, Critical Values, Mo-
ments] computes the tail probabilities, percentiles, and moments

To compute probabilities: Enter the values of the mean, and k at which the prob-
ability is to be computed; click [P]. As an example, when the mean = 6, k = 5,
P (X ≤ 5) = 0.44568, P (X ≥ 5) = 0.714944, and P (X = 5) = 0.160623.

To compute other parameters: StatCalc also computes the mean or the value of k
when other values are given. For example, to find the value of the mean when k = 5
and P (X ≤ k) = 0.25, enter 5 for k, enter 0.25 for P (X ≤ k), and click [A] to
get 7.4227. To find the value of k, when the mean = 4.5 and P (X ≤ k) = 0.34,
enter these values in appropriate edit boxes, and click [k] to get 3. Also, note that
P (X ≤ 3) = 0.342296 when the mean is 4.5.

To compute moments: Enter the value of the mean, and click [M].

Example 6.1. On average, four customers enter a fast food restaurant per every
3-min period during the peak hours 11 am - 1 pm. Assuming an approximate Poisson
process, what is the probability of 26 or more customers arriving in a 15-min period?

Solution: Let X denote the number of customers entering in a 15-min period. Then,
X follows a Poisson distribution with mean = (4/3)×15 = 20. To find the probability
of observing 26 or more customers, select the dialog box referenced at the beginning
of this section, enter 20 for the mean, 26 for the observed k, and click [P] to get
P (X ≥ 26) = 0.1122.

6.4 Model Fitting with Examples

Example 6.2. Rutherford and Geiger (1910) presented data on α particles emitted
by a radioactive substance in 2608 periods, each of 7.5 sec. The data are given in
Table 6.1.

a. Fit a Poisson model for the data.

b. Estimate the probability of observing 5 or fewer α particles in a period of 7.5
sec.

TABLE 6.1: Observed Frequency Ox of the Number of α Particles x in 7.5
Second Periods

x 0 1 2 3 4 5 6 7 8 9 10

Ox 57 203 383 525 532 408 273 139 45 27 16
Ex 54.6 211 408 526 508 393 253 140 67.7 29.1 17
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Solution:

a. To fit a Poisson model, we estimate first the mean number λ of α particles
emitted per 7.5 - sec period. Note that

λ̂ =
1

2608

10∑

x=0

xOx =
10086

2608
= 3.867.

Using this estimated mean, we can compute the probabilities and the expected
(theoretical) frequencies Ex under the Poisson(λ̂) model. For example, E0 is
given by

E0 = P (X = 0|λ = 3.867) × 2608 = 0.020921 × 2608 = 54.6.

Other expected frequencies are computed similarly. These expected frequencies
are given in Table 5.1. We note that the observed and the expected frequencies
are in good agreement. Furthermore, for this example, the chi-square statistic

χ2 =

10∑

x=0

(Ox − Ex)
2

Ex
= 13.06,

and the df = 11− 1− 1 = 9 (see Section 2.4.2). The p-value for testing

H0: The data fit Poisson(3.867) model vs. Ha: H0 is not true

is given by P (χ2
9 > 13.06) = 0.16, which implies that the Poisson(3.867) model

is tenable for the data.

b. Select the dialog box [StatCalc→Discrete→Poisson→Probabilities, Critical Val-
ues and Moments], enter 3.867 for the mean, and 5 for k; click [P(X <= k)] to
get

P (X ≤ 5) =
5∑

k=0

e−3.867(3.867)k

k!
= 0.805557.

Example 6.3. Data on the number of deaths due to kicks from horses, based on
the observation of 10 Prussian cavalry corps for 20 years (equivalently, 200 corps-
years), are given in Table 5.2. Prussian officials collected this data during the latter
part of the 19th century in order to study the hazards that horses posed to soldiers
(Bortkiewicz, 1898). In this situation, the chances of death due to a kick from a horse

TABLE 6.2: Horse Kick Data

Number of deaths k: 0 1 2 3 4 5
Number of corps-years in which
k deaths occurred, Ox: 109 65 22 3 1 0
Expected number of
corps-years, Ex: 108.7 66.3 20.2 4.1 0.6 0

is small, while the number of soldiers exposed to the risk is quite large. Therefore,
a Poisson distribution may well fit the data. As in Example 6.2, the mean number
of deaths per period can be estimated as

λ̂ =
0× 109 + 1× 65 + . . .+ 5× 0

200
= 0.61.
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94 6 Poisson Distribution

Using this estimated mean, we can compute the expected frequencies as in Example
6.2. They are given in the third row of Table 5.2. For example, the expected frequency
in the second column can be obtained as

P (X = 1|λ = 0.61) × 200 = 0.331444 × 200 = 66.3.

We note that the observed and the expected frequencies are in good agreement.
Furthermore, for this example, the chi-square statistic

χ2 =
5∑

x=0

(Ox − Ex)
2

Ex
= 0.7485,

and the df = 4. The p-value for testing

H0: The data fit Poisson(0.61) model vs. Ha: H0 is not true

is given by P (χ2
4 > 0.7485) = 0.9452, which is greater than any practical level of

significance. Therefore, the Poisson(0.61) model is tenable.

6.5 One-Sample Inference

Let X1, . . ., Xn be independent observations from a Poisson(λ) population. Then,

K =
n∑

i=1

Xi ∼ Poisson(nλ).

The following inferences about λ are based onK. The maximum likelihood estimator
of λ is given by

λ̂ =
1

n

n∑

i=1

Xi,

which is also the uniformly minimum variance unbiased estimator.

6.6 Test for the Mean

An Exact Test
Let K0 be an observed value of K. Then, for testing

H0 : λ ≤ λ0 vs. Ha : λ > λ0, (6.3)

the null hypothesis will be rejected if the p-value P (K ≥ K0|nλ0) ≤ α, for testing

H0 : λ ≥ λ0 vs. Ha : λ < λ0, (6.4)

the null hypothesis will be rejected if the p-value P (K ≤ K0|nλ0) ≤ α, and for
testing

H0 : λ = λ0 vs. Ha : λ 6= λ0, (6.5)
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6.6 Test for the Mean 95

the null hypothesis will be rejected if the p-value

2min{P (K ≤ K0|nλ0), P (K ≥ K0|nλ0)} ≤ α. (6.6)

The Score Test

The score test statistic is given by

Z =
λ̂− λ0√
λ0/n

,

which follows a standard normal distribution. The score test rejects the null hypoth-
esis in (6.3) if the p-value

P (Z ≥ z0) = 1− Φ(z0) ≤ α,

where Φ denotes the standard normal distribution and z0 is an observed value of Z.
P-values for testing other hypotheses are obtained similarly.

Example 6.4. It is desired to assess the average number defective spots per
100-ft of an electric cable. Inspection of a sample of 20 100 ft cables showed an
average of 2.7 defective spots. Does this information indicate that the true mean
number of defective spots per 100 ft is more than 2? Assuming a Poisson model, test
at the level α = 0.05.

Solution: Let X denote the number defective spots per 100-ft cable. Then, X follows
a Poisson(λ) distribution, and we want to test

H0 : λ ≤ 2 vs. Ha : λ > 2.

In the dialog box [StatCalc→Discrete→Poisson→One-Sample: Test, CI and Power],
enter 20 for the sample size, 20 × 2.7 = 54 for the total count, 2 for [Value of M0],
and click the [p-values for] to get 0.0199946. Since the p-value is smaller than 0.05,
we can conclude that true mean is greater than 2.

The score test statistic is

λ̂− λ0√
λ0/n

=
2.7− 2√

2/20
= 2.2136,

and the p-value is
1−Φ(2.2136) = .0134.

Powers of the Exact Test

The exact powers of the tests described in the preceding section can be computed
using Poisson probabilities and an indicator function. For example, for a given λ
and λ0, the power of the test for hypotheses in (6.3) can be computed using the
following expression.

∞∑

k=0

e−nλ(nλ)k

k!
I(P (K ≥ k|nλ0) ≤ α), (6.7)
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96 6 Poisson Distribution

where K ∼ Poisson(nλ). Powers of the right-tailed test and two-tailed test can be
expressed similarly.

The dialog box [StatCalc→Discrete→Poisson→One-Sample ...] uses the above
exact method to compute the power.

Example 6.5. (Sample Size Calculation) Suppose that a researcher hypothesizes
that the mean of a Poisson process has increased from 3 to 4. He likes to determine
the required sample size to test his claim at the level 0.05 with power 0.80. To find
the sample size, select [StatCalc→Discrete→Poisson→One-Sample ...], enter 1 to
select right-tailed test, 0.05 for the level, 4 for [Guess M], 3 for [Null M0], and 0.80
for [Power]; click on [S Size] to get 23. To find the actual power at this sample size,
click on [Power] to get 0.811302.

6.7 Confidence Intervals for the Mean

Let X1, . . ., Xn be a sample from a Poisson(λ) population, and let K =
n∑
i=1

Xi. The

following inferences about λ are based on K.

An Exact Confidence Interval

An exact 1− α confidence interval for λ is given by (λL, λU ), where λL satisfies

P (K ≥ k|nλL) = exp(−nλL)
∞∑

i=k

(nλL)
i

i!
=
α

2
,

and λU satisfies

P (K ≤ k|nλU ) = exp(−nλU )
k∑

i=0

(nλU )
i

i!
=
α

2
,

where k is an observed value of K. Furthermore, using a relation between the Poisson
and chi-square distributions, it can be shown that

λL =
1

2n
χ2
2k;α/2 and λU =

1

2n
χ2
2k+2;1−α/2,

where χ2
m;p denotes the pth quantile of a chi-square distribution with df = m. These

formulas should be used with the convention that χ2
0;p = 0.

Score Confidence Intervals

The score confidence interval is on the basis of asymptotic normality of the score
test statistic

T (λ̂, λ) =
λ̂− λ√
λ/n

,

where λ̂ = K
n
. In particular, the endpoints of the 1−α score confidence interval are

© 2016 by Taylor & Francis Group, LLC

  



6.7 Confidence Intervals for the Mean 97

the roots of the quadratic equation T 2(λ̂, λ) = c2, where c = z1−α/2, and are given
by

(λl, λu) = λ̂+
c2

2n
± c√

n

√
λ̂+

c2

4n
. (6.8)

The dialog box [StatCalc→Discrete→Poisson→CI for Mean and Sample Size for
Width] computes the exact and the score confidence intervals for a Poisson mean.

Example 6.6. (Confidence Interval for the Mean) Let us compute a 95% confidence
interval for the data given in Example 6.4. Recall that n = 20, sample mean = 2.7,
and so the total count is 54. To find confidence intervals for the mean number of
defective spots, select [StatCalc→Discrete→Poisson→One-Sample: Test, confidence
interval and Power], enter 20 for [Sample Size], 54 for [Total], and 0.95 for [Conf
Level]; click [2-sided] to get (2.02832, 3.52291) (exact) and (2.06952, 3.52255) (score).
To find 95% one-sided confidence limits, enter .90 for confidence level, and click [2-
sided] to get (2.12537, 3.387) (exact) and (2.15951, 3.37577) (score).

Example 6.7. The following data represent the number of serious earthquakes
over a period of 75 years 1903–1977 (Blaesild and Granfeldt, 2003). An earthquake
is considered serious if its magnitude is 7.5 or above on the Richter scale or at least
100 people were killed.

No. of serious earthquakes 0 1 2 3 4

Frequency 31 28 14 1 1

Let us find a 95% confidence intervals for the mean number of serious earthquakes per
year. For this example, N = 75 years, and the total number of serious earthquakes
is

0× 3 + 1× 28 + ...+ 4× 1 = 63.

To find 95% confidence intervals, select the dialog box [StatCalc→Discrete→Poisson→
One-Sample ...], enter 75 for [Sample Size], 63 for [Total Count], .95 for [Conf Level],
and click on [2-sided] to get the exact confidence interval (.645, 1.075), and the score
confidence interval (.657, 1.075). If we use the score confidence interval, then we es-
timate the mean number of serious earthquakes per year is between .657 and 1.075,
or equivalently, 7 to 11 every decade. To find a 95% one-sided confidence limits,
enter .90 for [Conf Level], and click on [2-sided]. For this example, 95% one-sided
confidence limits are 0.673828 (exact lower), 1.03603 (exact upper), 0.68303 (score
lower), and 1.03304 (score upper).

Sample Size Calculation for Precision

For a given n and λ, the expected length of the 1 − α confidence interval (λL, λU )
in Section 6.7 can be expressed as

∞∑

k=0

e−nλ(nλ)k

k!
(λU − λL) =

1

2n

∞∑

k=0

e−nλ(nλ)k

k!
(χ2

2k+2,1−α/2 − χ2
2k,α/2).

The dialog box [StatCalc→Discrete→Poisson→One-Sample ...] also computes
the sample size required to estimate the mean within a given precision.
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98 6 Poisson Distribution

Example 6.8. (Sample Size Calculation) Suppose that a researcher hypothesizes
that the mean of a Poisson process is 3. He likes to determine the required sample
size to estimate the mean within ±0.3 and with confidence 0.95. To find the sam-
ple size, select [StatCalc→Discrete→Poisson→One-Sample ...], enter .95 for [Conf
Level], 3 for [Guess M], .3 for [Half-Width], and click [exact] to get 131. That is, if
the experimenter decides to use the exact confidence interval, then the required sam-
ple size to estimate the mean within ±.3 is 131; for the score method, the required
sample size is 129.

6.8 Prediction Intervals

Let X be the total counts in a sample of size n from a Poisson distribution with
mean λ. Note that X ∼ Poisson(nλ). Let Y denote the future total counts that
can be observed in a sample of size m from the same Poisson distribution so that
Y ∼ Poisson(mλ). We shall describe some prediction intervals for Y based on an
observed value of X.

The Exact Prediction Interval

The exact prediction interval is based on the conditional distribution of X given
X + Y . The conditional distribution of X, conditionally given X + Y = s, is
binomial(s, n/(m + n)). Let us denote the cumulative distribution function of a
binomial random variable with the number of trials N and success probability π by
B(x;N, π).

Let x be an observed value of X. The smallest integer L that satisfies

1−B(x− 1; x+ L, n/(n+m)) > α (6.9)

is the 1− α lower prediction limit for Y . The 1− α upper prediction limit U is the
largest integer for which

B(x;x+ U, n/(n+m)) > α. (6.10)

For X = 0, the lower prediction limit is defined to be zero, and the upper prediction
limit is determined by (6.10). The interval (L, U) is a 1− 2α prediction interval for
Y .

The Prediction Interval Based on the Joint Sampling Approach

Let λ̂xy = X+Y
m+n

, and let v̂ar(mλ̂xy − Y ) =
mnλ̂xy

m+n
. The quantity

mλ̂xy − Y√
v̂ar(mλ̂xy − Y )

=
(mX − nY )√
mn(X + Y )

∼ N(0, 1), asymptotically.

In order to handle the zero count, we take X to be 0.5 when it is zero. The 1− 2α
prediction interval is determined by the roots (with respect to Y ) of the quadratic
equation

(mλ̂− Y )2

λ̂xym(1 +m/n)
= z21−α.
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Based on these roots, the 1 − 2α prediction interval is given by [⌈L⌉, ⌊U⌋], where

[L, U ] =

(
Ŷ +

mz21−α
2n

)
± z1−α

√

mŶ

(
1

m
+

1

n

)
+
m2z21−α
4n2

, (6.11)

where Ŷ = mX
n
, for X = 1, 2, ..., and is .5m

n
for X = 0. Furthermore, ⌈x⌉ denotes

the smallest integer greater than or equal to x (ceiling function), and ⌊x⌋ denotes
the largest integer less than or equal to x (floor function). The prediction interval in
(6.11), developed by Krishnamoorthy and Peng (2011), seems to be shorter than the
exact ones determined by (6.9) and (6.10), and it controls the coverage probability
very satisfactorily.

The dialog box [StatCalc→Discrete→Poisson→Tolerance Intervals and Predic-
tion Intervals] uses the exact approach and the joint sampling approach to compute
prediction intervals for a Poisson distribution.

Example 6.9. Consider the data on number of serious earthquakes in Example
6.7. Based on the data, we can predict Y = the number of serious earthquakes in
the next 10-year period as follows. Note that the observed value X = 63, the total
number of serious earthquakes over a period of n = 75 years. To find the prediction
interval, select the dialog box [StatCalc→Discrete→Poisson→Tolerance Intervals ...],
enter 75 for [Sample Size, n], 63 for [# of events], 10 for [Future Sam Size], .95 for
[Conf Level], and click on [2-sided] to get [3, 14] (approximate in (6.11)) and [3, 15]
(exact). If we decide to use the exact prediction interval, then the number of serious
earthquakes in a future 10-year period is between 3 and 15 with confidence 95%.

Example 6.10. This example is adapted from Bain and Patel (1993). For a random
sample of 400 devices tested, 20 devices are unacceptable. A 90% prediction interval
is desired for the number of unacceptable devices in a future sample of 100 such
devices. The sample proportion of unacceptable devices is p̂ = 20/400 = .05 and

Ŷ = m×p̂ = 5. To find 90% prediction intervals using StatCalc, enter 400 for [Sample
Size n], 20 for [# of events], 100 for [Future Sam Size], and .90 for [Conf Level]; click
[2-sided] to get approximate prediction interval based on the joint sampling approach
as [2, 9], and the exact one as [1, 10]. Note that the approximate prediction interval
is shorter than the exact one.

6.9 Tolerance Intervals

One-sided as well as equal-tailed tolerance intervals for a Poisson distribution can be
obtained using the methods similar to the ones for the binomial case in Section 4.6.
Let X1, ..., Xn be a sample from a Poisson(λ) distribution so that S =

∑n
i=1Xi ∼

Poisson(nλ).

Exact Tolerance Intervals

The (p, 1− α) upper tolerance limit is the smallest integer kp(λu) so that

P (X ≤ kp(λu)|λu) ≥ p, (6.12)
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where λu is the 1− α upper confidence limit for λ based on an observed value s of
S. Similarly, a (p, 1− α) lower tolerance limit is the largest integer k1−p(λl) so that

P (X ≥ k1−p(λl)|λl) ≥ p, (6.13)

where λl is the 1 − α lower confidence limit for λ. If (λl, λu) is a 1 − α confidence
interval λ, then

[
k 1−p

2
(λl), k 1+p

2
(λu)

]
(6.14)

is a (p, 1− α) equal-tailed tolerance interval.

An Approximate Method

The tolerance intervals based on the normal approximation to a Poisson quantile
are as follows: Let λl and λu be a 1−α one-sided lower and upper confidence limits
for λ, respectively. Then λu+zp

√
λu is a (p, 1−α) upper tolerance limit, λl−zp

√
λl

is a (p, 1 − α) lower tolerance limit. If (λl, λu) is a 1 − α confidence interval for λ,
then

[
λl − z 1+p

2

√
λl, λu + z 1+p

2

√
λu
]

is a (p, 1 − α) equal-tailed tolerance interval. If λl and λu are score confidence
limits, then we refer to the corresponding tolerance intervals as the approximate-
score tolerance intervals.

As in the binomial case (Section 4.6.2), we suggest to use 1 − 2α confidence
interval (λl, λu) for λ so that

[
k 1−p

2
(λl), k 1+p

2
(λu)

]

can be used as a two-sided tolerance interval with the minimum coverage probability
close to the nominal level 1− α.

In comparison among tolerance intervals, the exact ones are too conservative,
producing tolerance intervals that are unnecessarily wide. The approximate ones
based on the normal approximation are simple to compute and are satisfactory in
terms of coverage probabilities.

The dialog box [StatCalc→Discrete→Poisson→Tolerance Intervals and Predic-
tion Intervals] calculates the exact tolerance intervals based on the exact confidence
intervals for λ in Section 6.7, and the approximate ones with the score confidence
intervals for λ to compute tolerance intervals.

Example 6.11. This example concerns the number of surface defects in steel plates.
The data are given in Montgomery (1996), and as in Wang and Tsung (2009), we
use a part of the data for constructing Poisson tolerance intervals. The counts of
surface defects on 21 steel plates are

1, 0, 4, 3, 1, 2, 0, 2, 1, 1, 0, 0, 2, 1, 3, 4, 3, 1, 0, 2, 4.

The maximum likelihood estimate λ̂ = 35
21

= 1.6667. To compute (0.90, 0.95)
two-sided tolerance intervals, select the dialog box [StatCalc→Discrete→Poisson→
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6.10 Tests for Comparing Two Means and Power Calculation 101

Tolerance Intervals and Prediction Intervals], enter 21 for [Sample Size, n], 3 for [#
of events], 1 for [Future Sam Size], and click on [2-sided TI] to get [0, 5] (approxi-
mate), and [0, 5] (exact). This means that at leat 90% steel plates have 0 to 5 surface
defects with confidence 95%.

6.10 Tests for Comparing Two Means and Power

Calculation

Let Xi1, . . . , Xini be a sample from a Poisson(λi) population. Then,

Ki =

ni∑

j=1

Xij ∼ Poisson(niλi), i = 1, 2.

The following tests about (λ1/λ2) are based on the conditional distribution of K1,
given K1 +K2 = m, is binomial(m, n1λ1/(n1λ1 + n2λ2)).

A Conditional Test for the Ratio of Two Means

Consider testing

H0 :
λ 1

λ 2
≤ c vs. Ha :

λ 1

λ 2
> c, (6.15)

where c is a given positive number. The p-value based on the conditional distribution
of K1, given K1 +K2 = m, is given by

P (K1 ≥ k|m, p) =
m∑

x=k

(
m

x

)
px(1− p)m−x, where p =

n1c/n2

1 + n1c/n2
. (6.16)

The conditional test rejects the null hypothesis whenever the p-value is less than or
equal to the specified nominal α (Chapman, 1952). The p-value of a left-tailed test
or of a two-tailed test can be expressed similarly.

The dialog box [StatCalc→Discrete→Poisson→Two-Sample ...] uses the above
exact approach to compute the p-values of the conditional test for the ratio of two
Poisson means.

Example 6.12. (Calculation of p-value) Suppose that a sample of 20 observations
from a Poisson(λ1) distribution yielded a total of 40 counts, and a sample of 30
observations from a Poisson(λ2) distribution yielded a total of 22 counts. We would
like to test

H0 :
λ1

λ2
≤ 1.5 vs. Ha :

λ1

λ2
> 1.5.

To compute the p-value using StatCalc, enter the sample sizes, total counts, and 1.5
for the value of c in [H0:M1/M2 = c], and click on [p-values-ratio] to get 0.01501.
Thus, there is enough evidence to indicate that λ1 is larger than one and a half times
λ2.
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102 6 Poisson Distribution

Example 6.13. (Calculation of p-value) Suppose that the number of work-related
accidents over a period of 12 months in a manufacturing industry (say, A) is 14.
In another manufacturing industry B, which is similar to A, the number of work-
related accidents over a period of 9 months is 8. Assuming that the numbers of
accidents in both industries follow Poisson distributions, it is desired to test if the
mean number of accidents per month in industry A is greater than that in industry
B. That is, we want to test

H0 :
λ1

λ2
≤ 1 vs. Ha :

λ1

λ2
> 1,

where λ1 and λ2, respectively, denote the true mean numbers of accidents per
month in A and B. To find the p-value using StatCalc, select [StatCalc→Discrete→
Poisson→Two-Sample ...], enter 12 for [Sam Size 1], 9 for [Sam Size 2], 14 for [No.
Events 1], 8 for [No. Events 2], 1 for c in [H0:M1/M2 = c], and click [p-values for]
to get 0.348343. Thus, there is not enough evidence to conclude that λ1 > λ2.

An Unconditional Test for the Difference between Two Means

This test is more powerful than the conditional test given in Section 6.10. However,
this test is approximate, and in some situations, the type I error rates are slightly
more than the nominal level. For more details, see Krishnamoorthy and Thomson
(2004).

Consider testing

H0 : λ1 − λ2 ≤ d vs. Ha : λ1 − λ2 > d, (6.17)

where d is a specified number. Let (k1, k2) be an observed value of (K1,K2), and let

λ̂d =
k1 + k2
n1 + n2

− dn1

n1 + n2
.

The p-value for testing (6.17) is given by

P (k1, k2) =
∞∑

x1=0

∞∑

x2=0

e−ηηx1

x1!

e−δδx2

x2!
I(Z(x1, x2) ≥ Z(k1, k2)), (6.18)

where η = n1(λ̂d + d), δ = n2λ̂d,

Z(x1, x2) =

x1
n1

− x2
n2

− d
√

x1
n2
1
+ x2

n2
2

and Z(k1, k2) is Z(x1, x2) with x replaced by k. The null hypothesis will be rejected
whenever the p-value is less than or equal to the nominal level α.

The dialog box [StatCalc→Discrete→Poisson→Two-Sample ...] in StatCalc uses
the above formula to compute the p-values for testing the difference between two
means.

Example 6.14. (Unconditional Test) Suppose that a sample of 20 observations
from a Poisson(λ1) distribution yielded a total of 40 counts, and a sample of 30
observations from a Poisson(λ2) distribution yielded a total of 22 counts. We would
like to test

H0 : λ1 − λ2 ≤ 0.7 vs. Ha : λ1 − λ2 > 0.7.

© 2016 by Taylor & Francis Group, LLC

  



6.10 Tests for Comparing Two Means and Power Calculation 103

To compute the p-value, select the dialog box [StatCalc→Discrete→Poisson→Two-
Sample ...], enter the sample sizes and the number of counts in appropriate edit
boxes, 0.7 for [H0: M1-M2 = d], and click on [p-values-difference] to get 0.0459181.
So, at the 5% level, we can conclude that there is enough evidence to indicate that
λ1 is 0.7 unit larger than λ2.

Example 6.15. (Unconditional Test) Let us consider Example 6.13, where we used
the conditional test for testing λ1 > λ2. We shall now apply the unconditional test
for testing

H0 : λ1 − λ2 ≤ 0 vs. Ha : λ1 − λ2 > 0.

To find the p-value, enter 12 for the sample size 1, 9 for the sample size 2, 14 for
[No. Events 1], 8 for [No. Events 2], 0 for d, and click [p-values for] to get 0.279551.
Thus, we do not have enough evidence to conclude that λ1 > λ2.

As the unconditional test is more powerful than the conditional test, it produced
a smaller p-value than that of the conditional test (see Example 6.13), which is
0.348343.

Power Study and Sample Size Calculation

For given sample sizes, guess values of the means and a level of significance, the
exact power of the conditional test in (6.15) can be calculated using the following
expression:

∞∑

k1=0

∞∑

k2=0

e−n1λ1(n1λ1)
k1

k1!

e−n2λ2(n2λ2)
k2

k2!
I(P (K1 ≥ k1|k1 + k2, p) ≤ α),

(6.19)

where P (K1 ≥ k1|m, p) and p are as defined in (6.16). The powers of a two-tailed
test and left-tailed test can be expressed similarly.

To compute the powers of the unconditional test, replace P (K1 ≥ k1|k1 + k2, p)
in (6.19) by the p-value P (k1, k2) in (6.18).

The dialog box [StatCalc→Discrete→Poisson→Two-Sample ...] uses (6.19) to
compute the power of the conditional test for the ratio of two Poisson means,
and powers of the unconditional test for testing the difference between two Pois-
son means.

Example 6.16. (Sample Size Calculation) Suppose that a researcher hypothesizes
that the mean λ1 = 3 of a Poisson population is 1.5 times larger than the mean λ2

of another population, and he would like to test

H0 :
λ1

λ2
≤ 1.5 vs. Ha :

λ1

λ2
> 1.5.

To find the required sample size to get a power of 0.80 at the level 0.05, enter 30 for
both sample sizes, 1 for one-tailed test, 0.05 for level, 3 for [Guess M1], 2 for [Guess
M2], click [Cond. test] to get 0.76827, and click [Uncond. test] to get 0.791813. By
trial–error, we see that the power of the conditional test is 0.804721 when both
sample sizes are 33. The power of the unconditional test is 0.803148 when both
sample sizes are 31.
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104 6 Poisson Distribution

We note that StatCalc also computes the power for unequal sample sizes. For
example, when the first sample size is 27 and the second sample size is 41, the power
is 0.803072 (conditional test). Furthermore, if it is desired to find sample sizes for
testing the hypotheses

H0 :
λ1

λ2
= 1.5 vs. Ha :

λ1

λ2
6= 1.5,

then enter 2 for two-tailed test (while keep the other values as they are), and click
[Power]. For example, when both sample sizes are 33, the power is 0.705986 (con-
ditional test); when they are 40, the power is 0.791258, and when they are 41 the
power is 0.801372. If we choose to use the unconditional test, then the required
sample size from both populations is 39, and the power is 0.800053.

Example 6.17. (Power Calculation) Suppose a researcher hypothesizes that the
mean λ1 = 3 of a Poisson population is at least one unit larger than the mean λ2 of
another population, and he would like to test

H0 : λ1 − λ2 ≤ 0 vs. Ha : λ1 − λ2 > 0.

To find the required sample size to get a power of 0.80 at level of 0.05, enter 30 for
both sample sizes, 0 for d in [H0: M1-M2 = d], 1 for one-tailed test, 0.05 for level, 3
for [Guess M1], 2 for [Guess M2], and click [Uncond. test] to get 0.791813. By raising
the sample size to 31, we get a power of 0.803148. We also note that when the first
sample size is 27 and the second sample size is 36, the power is 0.803128.

For the above example, if it is desired to find the sample sizes for testing the
hypotheses

H0 : λ1 − λ2 = 0 vs. Ha : λ1 − λ2 6= 0,

then enter 2 for two-tailed test (while keeping the other values as they are), and click
[Power]. For example, when both sample sizes are 33, the power is 0.730551; when
they are 39, the power is 0.800053. (Note that if one choose to use the conditional
test, then the required sample size from both populations is 41. See Example 6.16).

6.11 Confidence Intervals for the Ratio of Two Means

Let K1 ∼ Poisson(λ1) independently of K2 ∼ Poisson(λ2). In the following, we shall
see a few methods of obtaining confidence intervals for the ratio λ1

λ2
.

An Exact Confidence Interval

The exact confidence interval for (λ1/λ2) is based on the conditional distribution of
K1 given in (6.16). Let

p =
λ1

λ1 + λ2
=

(λ1/λ2)

(λ1/λ2) + 1
. (6.20)

For given K1 = k and K1 +K2 = m, a 1− α confidence interval for λ1/λ2 is
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6.11 Confidence Intervals for the Ratio of Two Means 105

(
pL

(1− pL)
,

pU
(1− pU )

)
, (6.21)

where (pL, pU) is a 1 − α exact confidence interval for p based on k successes from
a binomial(m, p) distribution (see Section 4.4.3).

Binomial-Score Confidence Interval

This confidence interval for λ1/λ2 is obtained from the score confidence interval
(4.6) for p defined in (6.20). Let (psl, psu) denote the score confidence interval (4.6)
for p defined in (6.20) based on K1 = k successes out of K1 + K2 = m trials. Let
a1 = 2K1+z

2
1−α/2, a2 = 2K2+z

2
1−α/2, and a12 = 4z21−α/2K1K2/(K1+K2)+z

4
1−α/2.

Then, the binomial-score confidence interval for λ1/λ2 is given by

(
psl

(1− psl)
,

psu
(1− psu)

)
=

(
a1 −

√
a12

a2 +
√
a12

,
a1 +

√
a12

a2 −
√
a12

)
. (6.22)

Sato (1990) and Graham et al. (2003) developed likelihood-score confidence interval
for λ1/λ2. Their likelihood-score confidence interval is the same as the one in (6.22)
except that the likelihood-score confidence interval is not defined when K2 = 0 and
K1 ≥ 0.

Fiducial Confidence Interval for the Ratio of Poisson Means

A fiducial quantity for λi is given by 1
2
χ2
2ki+1, where ki is an observed value of Ki,

i = 1, 2. A fiducial quantity for the ratio λ1
λ2

is obtained by substitution, and is

given by
χ2
2k1+1

χ2
2k2+1

. The α and 1 − α quantiles of this fiducial quantity form a 1− 2α

confidence interval for λ1
λ2

. Using the relation between the ratio of independent chi-
square random variables and the F random variable, this confidence interval can be
expressed as

(
(2k1 + 1)

(2k2 + 1)
F2k1+1,2k2+1;α

2
,
(2k1 + 1)

(2k2 + 1)
F2k1+1,2k2+1;1−α

2

)
, (6.23)

where Fm,n;q denotes the 100q percentile of an Fm,n distribution. Cox (1953) has
proposed the confidence interval (6.23).

Remark 6.1. If Ki is the total count based on a sample of size ni, then the above
confidence intervals are for the ratio n1λ1

n2λ2
. A confidence interval for the ratio λ1

λ2
can

be obtained by multiplying the endpoints of the confidence interval for n1λ1
n2λ2

by n2
n1

.

The exact confidence intervals are, in general, too conservative, that is, unnec-
essarily wider. Graham et al. (2003) have carried out extensive simulation studies
comparing the binomial-score confidence interval (6.22)) with other asymptotic con-
fidence intervals, and concluded that the likelihood-score confidence interval is the
best. Krishnamoorthy and Lee’s (2010) numerical comparison study indicates that
the binomial-score confidence interval is conservative for small values of λ1/λ2. In
general, the fiducial confidence interval maintains the coverage probability around
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106 6 Poisson Distribution

the nominal level, except in a few cases it could be liberal. The coverage probabilities
of both confidence intervals seldom fall below 0.94 when the nominal level is 0.95.

The dialog box [StatCalc→Discrete→Poisson→Two-Sample ...] calculates the
exact and Cox’s fiducial confidence intervals for the ratio of two Poisson means.

Example 6.18. (Confidence Interval for the Ratio of Means) Suppose that a sample
of 20 observations from a Poisson(λ1) distribution yielded a total of 40 counts, and
a sample of 30 observations from a Poisson(λ2) distribution yielded a total of 22
counts. To compute a 95% confidence interval for the ratio of means, select the
above dialog box from StatCalc, enter 20 for [S Size 1], 30 for [S Size 2], 40 for
[No. events 1], 22 for [No. events 2], .95 for [Conf Level], and click on [2-sided] to
get the exact confidence interval (1.5824, 4.81807) and the Cox confidence interval
(1.63566, 4.63471). To get one-sided confidence intervals click on [1-sided] to get
1.71496 (Cox, 1.77299) and 4.40773 (Cox, 4.24301). That is, 95% lower confidence
limit for the ratio λ1/λ2 is 1.71496, and 95% upper confidence limit for the ratio
λ1/λ2 is 4.40773. Note that fiducial confidence intervals (by Cox) are shorter than
the corresponding exact confidence intervals.

Example 6.19. (Confidence Intervals for the Ratio of Means) This example is taken
from Boice and Monson (1977), where two groups of women were compared to find
whether those who had been examined using x-ray fluoroscopy during treatment
for tuberculosis had a higher rate of breast cancer than those who had not been
examined using the x-ray fluoroscopy. In the treatment group, 41 cases of breast
cancer in 28,010 person-years at risk were reported, while in the control group of
women not receiving x-ray fluoroscopy, 15 cases of breast cancer in 19,017 person-
years at risk were reported. So, we have K1 = 41, n1 = 28, 010, K2 = 15, and
n2 = 19, 017, and the problem of interest is to obtain a confidence interval for the
ratio λ1

λ2
, where λ1 is the mean rate of breast cancers for the treatment group and

λ2 is that for the control group. To find 95% confidence intervals for λ1
λ2

, enter the
sample sizes and the numbers of cases in StatCalc, and click [2-sided] to get the exact
confidence interval (1.01, 3.61), and the Cox fiducial confidence interval (1.05, 3.42).
Note that both intervals indicate that λ1 is significantly larger than λ2. We also
observe that the fiducial interval is shorter than the exact interval.

6.12 Confidence Intervals for the Difference between

Two Means

Let Ki denote the total count based on a sample of size ni from a Poisson(λi)
distribution, i = 1, 2. The following confidence intervals for the difference λ1 − λ2

are based on K1 ∼ Poisson(n1λ1) and K2 ∼ Poisson(n2λ2).

The Wald Confidence Interval

Let λ̂i =
Ki
ni

, i = 1, 2. The 1− α confidence interval for λ1 − λ2 is given by

λ̂1 − λ̂2 ± z1−α
2

√
λ̂1

n1
+
λ̂2

n2
, (6.24)
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6.12 Confidence Intervals for the Difference between Two Means 107

where zp is the p quantile of the standard normal distribution.

The Score Confidence Interval

The score confidence interval is obtained by inverting the test statistic proposed in
Krishnamoorthy and Thomson (2004) and is given by

λ̂1−λ̂2+
z21−α/2

2

(
1

n1
− 1

n2

)
±z1−α/2

√√√√
(
λ̂1

n1
+
λ̂2

n2

)
+
z21−α/2

4

(
1

n1
− 1

n2

)2

,

(6.25)

where zp denotes the p quantile of the standard normal distribution. Notice that the
score confidence interval simplifies to the Wald confidence interval

λ̂1 − λ̂2 ± z1−α/2

√√√√
(
λ̂1

n1
+
λ̂2

n2

)
, (6.26)

when n1 = n2.

Fiducial Confidence Interval

The fiducial confidence interval is formed by the appropriate percentiles of the fidu-
cial quantity

Qλ1−λ2 =
1

2n1
χ2
2k1+1 −

1

2n2
χ2
2k2+1, (6.27)

where k1 and k2 are observed total counts. Let Qλ1−λ2;α denote the α quantile of
Qλ1−λ2 . Then (Qλ1−λ2;α, Qλ1−λ2;1−α) is a 1 − 2α confidence interval for λ1 − λ2.
Note that the percentiles of (6.27) can be estimated using Monte Carlo simulation.
Approximate percentiles of Qλ1−λ2 based on the modified normal-based approxima-
tion in Section 2.9.1 are

Qλ1−λ2;α ≃M1−M2−

√√√√
(
M1 −

χ2
2k1+1;α

2n1

)2

+

(
M2 −

χ2
2k2+1;1−α
2n2

)2

, 0 < α ≤ .5,

(6.28)

where Mi =
ki+1/2
ni

, i = 1, 2, and

Qλ1−λ2;1−α ≃M1−M2+

√√√√
(
M1 −

χ2
2k1+1;1−α
2n1

)2

+

(
M2 −

χ2
2k2+1;α

2n2

)2

, 0 < α ≤ .5,

(6.29)
The score and the fiducial confidence intervals are proposed in Krishnamoorthy

and Lee (2013). These authors have compared several confidence intervals, including
the one by Li et al. (2011), and concluded that fiducial confidence intervals are
preferable for smaller counts, and the score confidence interval is the best, provided
n1λ1 and n2λ2 (expected total counts) are two or more.

Example 6.20. This example is taken from Jaech (1970). Three reactor fuel el-
ement failures were observed out of 310 process tubes for a given type of mate-
rial. In a second type of material, 7 failures were observed out of 3,500 process
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108 6 Poisson Distribution

tubes. Here binomial models are more appropriate to compare the failure rates.
As the Poisson distribution is a limiting form of a binomial distribution, we can
apply the interval estimation procedures given earlier. Let λ1 be the failure rate
of the first type material, and λ2 be the failure rate of the second type material.
To compute 90% confidence intervals for λ1 − λ2 using StatCalc, select the dialog
box [StatCalc→Discrete→Poisson→Two-Sample ...], and enter the data as in the
preceding example, .90 for [Conf Level], and click [2-sided] to get the fiducial confi-
dence interval (.0012, .0206), and the approximate score confidence interval (.0016,
.0217). We observe that the computed score and fiducial confidence intervals for the
difference indicate that λ1 is greater than λ2.

Let us find a binomial-based fiducial confidence interval (Section 4.8.1) for
the difference λ1 − λ2. Select the dialog box [StatCalc→Discrete→Binomial→Two-
Sample ...], enter 3 for sample 1 successes, 307 for sample 1 failures, 7 for sample 2
successes, 3493 for sample 2 failures, .90 for [Conf Level] under [CI for p1 -p2], and
click [CI-Diff] to get (.0012, .0204). Note that this confidence interval is very close
to the one in the preceding paragraph.

6.13 Inference for a Weighted Sum of Poisson Means

Let K1, ..., Kg be independent random variables with Ki ∼ Poisson(niλi), i =
1, ..., g. We are interested in finding confidence intervals for

∑g
i=1 ciλi, where ci’s are

known positive constants. Without loss of generality, we can assume ci ∈ (0, 1), i =
1, ..., g so that

∑g
i=1 ci = 1 and n1 = ... = ng = 1. The case of unequal sam-

ple sizes can be handled by letting wi = ci/ni and ξi = niλi, i = 1, ..., g so that∑g
i=1 wiξi =

∑g
i=1 ciλi.

A fiducial quantity for the weighted mean µ =
∑g
i=1 ciλi is obtained by replacing

the λis by their fiducial quantities. Letting c∗i = ci/(2ni), i = 1, ..., g, we write the
fiducial quantity for µ as Qµ =

∑g
i=1 c

∗
i χ

2
2mi+1, where mi is an observed value of

Yi, i = 1, ..., g. For given sample sizes and observed counts, one can use Monte
Carlo simulation to estimate the percentiles of Qµ. As Qµ is a linear combination of
independent χ2 variables, we can also approximate the distribution of Qµ by eχ2

f ,
where e and f are to be determined by matching moments. By using this moment
matching method, we find

e =

∑g
i=1 c

∗2
i (2mi + 1)∑g

i=1 c
∗
i (2mi + 1)

and f =

(∑g
i=1 c

∗
i (2mi + 1)

)2
∑g
i=1 c

∗2
i (2mi + 1)

.

Thus, an approximate 1− α CI for µ is given by

(
eχ2

f ;α
2
, eχ2

f ;1−α
2

)
. (6.30)

Lee’s (2010) numerical studies indicate that the confidence interval based on the
Monte Carlo method and the one in (6.30) are practically the same.

Example 6.21. We shall find confidence intervals for a weighted sum of Poisson
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means using the incidence rates given in Table III of Dobson et al. (1991). The
data, reported in (WHO MONICA project, 1988), were collected from an urban
area (reporting unit 1) and a rural area (reporting unit 2) in the Federal Republic
of Germany. The 1986 incidence rates for nonfatal definite myocardial infarction
in women aged 35–64 years stratified by 5-year age group and reporting unit. The
incidence rates along with weights ci for age groups (corresponding to the Segi World
Standard Population) are reproduced here in Table 6.3.

We are interested in estimating the age-standardized incidence rates per 100,000
person-years, µ =

∑6
i=1 wiξi with wi = ci/ni. The sample estimates for reporting

units 1 and 2 are 2.75 and 1.41, respectively. The calculated 95% confidence intervals
for µ based on the fiducial approach with simulation consisting of 10,000 runs, and
the one in (6.30) are given in Table 6.31. The confidence interval on the basis of the
chi-square approximation and the one based on the simulation are practically the
same for both reporting units.

TABLE 6.3: 95% Incidence Rates for Myocardial Infarction in Women by Age
and Reporting Unit

Reporting unit 1 Reporting unit 2
Age (years) ci Person-years, ni Events, Yi Person-years, ni Events, Yi

35–39 6/31 7,971 0 10,276 0
40–44 6/31 7,084 0 9,365 1
45–49 6/31 9,291 1 11,623 0
50–54 5/31 7,743 2 8,684 4
55–59 4/31 7,798 4 7,926 0
60–64 4/31 8,809 10 8,375 3

Age standardized rate
per 100,000 2.75 1.41

95% fiducial CI (2.05, 5.05) (0.96, 3.26)
95% CI based on

χ2 apprx. (2.04, 5.04) (0.97, 3.26)

6.14 Properties and Results

6.14.1 Properties

1. For a fixed k, P (X ≤ k|λ) is a nonincreasing function of λ.

2. Let X1, . . . , Xn be independent Poisson random variables with E(Xi) = λi,
i = 1, . . . , n. Then,

n∑

i=1

Xi ∼ Poisson

(
n∑

i=1

λi

)
.

1The first part of the table is reproduced with permission from Wiley.
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3. Recurrence Relations:

P (X = k + 1|λ) = λ
k+1

P (X = k|λ), k = 0, 1, 2, . . .

P (X = k − 1|λ) = k
λ
P (X = k|λ), k = 1, 2, . . .

4. An identity: Let X be a Poisson random variable with mean λ and |g(−1)| < ∞.
Then,

E[Xg(X − 1)] = λE[g(X)]

provided the indicated expectations exist [Hwang, 1982].

6.14.2 Relation to Other Distributions

1. Binomial: Let X1 and X2 be independent Poisson random variables with means
λ1 and λ2 respectively. Then, conditionally

X1|(X1 +X2 = n) ∼ binomial

(
n,

λ1

λ1 + λ2

)
.

2. Multinomial: If X1, . . . , Xm are independent Poisson(λ) random variables, then
the conditional distribution of X1 given X1 + . . .+Xm = n is multinomial with
n trials and cell probabilities p1 = . . . = pm = 1/m.

3. Gamma: Let X be a Poisson(λ) random variable. Then

P (X ≤ k|λ) = P (Y ≥ λ),

where Y is Gamma(k+1, 1) random variable. Furthermore, ifW is a gamma(a, b)
random variable, where a is an integer, then for x > 0,

P (W ≤ x) = P (Q ≥ a) ,

where Q is a Poisson(x/b) random variable.

6.14.3 Approximations

1. Normal:

P (X ≤ k|λ) ≃ P
(
Z ≤ k−λ+0.5√

λ

)
,

P (X ≥ kλ) ≃ P
(
Z ≥ k−λ−0.5√

λ

)
,

whereX is the Poisson(λ) random variable and Z is the standard normal random
variable.

6.15 Random Number Generation

Input:

L = Poisson mean

ns = desired number of random numbers
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6.16 Computation of Probabilities 111

Output:

x(1),..., x(ns) are random numbers from the

Poisson(L) distribution

The following algorithm is based on the inverse method, and is similar to Algorithm
4.1 for the binomial random numbers generator.

Algorithm 6.1. Poisson variate generator

Set k = int(L); pk = P(X = k); df = P(X <= k)

rpk = pk; rk = k

max = L + 10*sqrt(L)

If L > 100, max = L + 6*sqrt(L)

If L > 1000, max = L + 5*sqrt(L)

For j = 1 to ns

Generate u from uniform(0, 1)

If u > df, go to 2

1 u = u + pk

If k = 0 or u > df, go to 3

pk = pk*k/L

k = k - 1

go to 1

2 pk = L*pk/(k + 1)

u = u - pk

k = k + 1

If k = max or u < df, go to 3

go to 2

3 x(j) = k

k = rk

pk = rpk

[end j loop]

6.16 Computation of Probabilities

For a given k and small mean λ, P (X = k) can be computed in a straightforward
manner. For large values, the logarithmic gamma function can be used.

To Compute P (X = k):

P (X = k) = exp(−λ+ k ∗ ln(λ)− ln(Γ(k + 1))

To compute P (X ≤ k):

Compute P (X = k)
Set m = int(λ)
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If k ≤ m, compute the probabilities using the backward recursion relation

P (X = k − 1|λ) = k

λ
P (X = k|λ),

for k − 1, k − 2, . . ., 0 or until the desired accuracy; add these probabilities and
P (X = k) to get P (X ≤ k).
else compute the probabilities using the forward recursion relation

P (X = k + 1|λ) = λ

k + 1
P (X = k|λ),

for k+1, k+2, . . . until the desired accuracy; sum these probabilities to get P (X ≥
k + 1); the cumulative probability P (X ≤ k) = 1− P (X ≥ k + 1).

R function 6.1. Calculation of the Poisson Cumulative Distribution
Function

poicdf = function(k, lambda){

zero = 0.0; one = 1.0

if(k < 0) return(zero)

mod = floor(lambda)+1

pk = poipr(k, lambda)

i = k; ans = 0.0

if(k <= mod){

repeat{

ans = ans + pk

pk = pk*i/lambda

if(i == 0 | pk < 1.0e-14){break}

i = i - 1}

}

else{

repeat{

pk = pk*lambda/(i+one)

if(pk < 1.0e-14){break}

ans = ans + pk

i = i + 1}

ans = one - ans}

return(ans)

}

The following R functions based on the preceding method compute the cumulative
distribution function (poicdf) and the probability mass function (poipr) of a Poisson
distribution with mean λ. The logarithmic gamma function “alng” (R function 2.1)
is required.
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R function 6.2. Calculation of the Poisson pmf

poipr = function(k, lambda){

zero = 0.0; one = 1.0;

if(k < 0){return(zero)}

# alng(x) = logarithmic gamma function; R function 1.1

term = -alng(k+one)+k*log(lambda)-lambda

return(exp(term))

}
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7

Geometric Distribution

7.1 Description

Consider a sequence of independent Bernoulli trials with success probability p. Let
X denote the number of failures until the first success to occur. Then, the probability
mass function of X is given by

P (X = k|p) = P (Observing k failures)

× P (Observing a success at the (k + 1)st trial)

= (1− p)kp, k = 0, 1, 2, . . . .

This is the probability of observing exactly k failures until the first success to occur
or the probability that exactly (k + 1) trials are required to get the first success.
The cdf is given by

F (k|p) = p
k∑

i=0

(1− p)i =
p[1− (1− p)k+1]

1− (1− p)
= 1− (1− p)k+1, k = 0, 1, 2, . . .

Since the above cdf is a geometric series with finite terms, the distribution is called
geometric distribution.

Memoryless Property: For nonnegative integers k and m,

P (X > m+ k|X > m) =
P (X > m+ k and X > m)

P (X > m)

=
P (X > m+ k)

P (X > m)

= P (X > k).

Thus, the probability of observing an additional k failures, given the fact that m
failures have already been observed, is the same as the probability of observing k
failures at the start of the sequence. That is, geometric distribution forgets what has
occurred earlier.

115

© 2016 by Taylor & Francis Group, LLC



116 7 Geometric Distribution

7.2 Moments

Mean: 1−p
p

Variance: 1−p
p2

Mode: 0

Mean Deviation: 2u(1− p)u,
where u is the smallest integer
greater than the mean.

Coefficient of Variation: 1√
(1−p)

Coefficient of Skewness: 2−p√
(1−p)

Coefficient of Kurtosis: 9 + p2

(1−p)

Moments about the Mean: µk+1 = (1− p)
(
∂µk
∂q

+ k
p2
µk−1

)
,

where q = 1− p, µ0 = 1 and µ1 = 0.

Moment Generating Function: p(1− qet)−1

Probability Generating Function: p(1− qt)−1

7.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Discrete→Geometric] computes the tail probabilities,
critical points, parameters, and confidence intervals for a geometric distribution
with parameter p.

To compute probabilities: Enter the number of failures k until the first success and
the success probability p; click [P]. For example, the probability of observing the
first success at the 12th trial, when the success probability is 0.1, can be computed
as follows: Enter 11 for k and 0.1 for p; click on [P] to get

P (X ≤ 11) = 0.71757, P (X ≥ 11) = 0.313811 and P (X = 11) = 0.0313811.

To find the value of the success probability when k = 11 and P(X <= k) = 0.9,
enter these numbers in the appropriate edit boxes, and click [s] to get 0.174596. For
instance, to find the value of k when p = 0.3 and P(X <= k) = 0.8, enter these
numbers in the white boxes, and click [k] to get 4.

To compute confidence intervals: Enter the observed number of failures k until the
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7.4 Properties and Results 117

first success and the confidence level; click on [1-sided] to get one-sided limits, or
click [2-sided] to get two-sided confidence intervals.

As an example, suppose that in an experiment consisting of sequence of Bernoulli
trials, 12 trials were required to get the first success. To find a 95% confidence interval
for the success probability p, enter 11 for k, 0.95 for confidence level; click [2-sided]
to get (0.002, 0.285).

To compute moments: Enter a value for p in (0, 1); click [M].

7.4 Properties and Results

1. P (X ≥ k + 1) = (1− p)k+1, k = 0, 1, . . . .

2. For fixed k, P (X ≤ k|p) is an increasing function of p.

3. If X1, . . ., Xr are independent geometric random variables with success proba-
bility p, then

r∑

i=1

Xi ∼ negative binomial(r, p).

7.5 Random Number Generation

Generate u from uniform(0, 1)

Set k = integer part of ln(u)
ln(1−p)

k is a pseudo random number from the geometric(p) distribution.
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Negative Binomial Distribution

8.1 Description

Consider a sequence of independent Bernoulli trials with success probability p. The
distribution of the random variable that represents the number of failures until the
first success is called geometric distribution. Now, letX denote the number of failures
until the rth success. The random variable X is called the negative binomial random
variable with parameters p and r, and its probability mass function is given by

P (X = k|r, p) = P (observing k failures in the first k + r − 1 trials)

× P (observing a success at the (k + r)th trial)

=

(
r + k − 1

k

)
pr−1(1− p)k × p.

Thus,

f(k|r, p) = P (X = k|r, p) =
(
r + k − 1

k

)
pr(1− p)k, k = 0, 1, 2, . . . ; 0 < p < 1.

This is the probability of observing k failures before the rth success or equivalently,
probability that k + r trials are required until the rth success to occur. In the
binomial distribution, the number of successes out of a fixed number of trials is a
random variable, whereas in the negative binomial, the number of trials required to
have a given number of successes is a random variable.

The plots of the probability mass functions presented in Figure 8.1 show that the
negative binomial distribution is always skewed to the right. The degree of skewness
decreases as r increases. See the formula for coefficient of skewness in Section 8.2.

The following relation between the negative binomial and binomial distributions
is worth noting.

P (X ≤ k) = P (observing k or less failures before the rth success)

= P ((k + r) or less trials are required to have exactly r successes)

= P (observing r or more successes in (k + r) trials)

=

k+r∑

i=r

(
k + r

i

)
pi(1− p)k+r−i

= P (Y ≥ r),

where Y is a binomial(k + r, p) random variable.

119
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120 8 Negative Binomial Distribution

8.2 Moments

Mean: r(1−p)
p

Variance: r(1−p)
p2

Mode: The largest integer ≤ (r−1)(1−p)
p

.

Mean Deviation: 2u
(
r+u−1
u

)
(1− p)upr−1,

where u is the smallest integer
greater than the mean. [Kamat, 1965]

Coefficient of Variation: 1√
r(1−p)

Coefficient of Skewness: 2−p√
r(1−p)

Coefficient of Kurtosis: 3 + 6
r
+ p2

r(1−p)

Central Moments: µk+1 = q
(
∂µk
∂q

+ kr
p2
µk−1

)
,

where q = 1− p, µ0 = 1 and µ1 = 0.
Moment Generating Function: pr(1− qet)−r

Probability Generating Function: pr(1− qt)−r

8.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Discrete→Negative Binomial→Probabilities, Percentiles
and Moments] computes the tail probabilities and percentiles.
To compute probabilities: Enter the number of successes r, number of failures until
the rth success, and the success probability; click [P]. As an example, when r =
20, k = 18, and p = 0.6,

P (X ≤ 18) = 0.862419, P (X ≥ 18) = 0.181983, and P (X = 18) = 0.0444024.

To find the success probability when k = 5, P(X <= k) = 0.56, and r = 4, enter
these values in appropriate edit boxes, and click [s] to get 0.417137.
To compute moments: Enter the values of r and the success probability p; click [M].

Example 8.1. A coin is to be flipped sequentially.

a. What are the chances that the 10th head will occur at the 12th flip?

b. Suppose that the 10th head had indeed occurred at the 12th flip. What can be
said about the coin?
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FIGURE 8.1: Negative binomial probability mass functions; k is the number
of failures until the rth success
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122 8 Negative Binomial Distribution

Solution:

a. Let us assume that the coin is balanced. To find the probability, select the dialog
box [StatCalc→Discrete→Negative Binomial→Probabilities, Critical Values and
Moments] from StatCalc, enter 10 for the number of successes, 2 for the number
of failures, and 0.5 for the success probability; click [P (X <= k)] to get 0.01343.

b. If the coin were balanced, then the probability of observing 2 or less tails before
the 10th head is only 0.01929, which is less than 2%. Therefore, if one observes
10th head at the 12th flip, then it indicates that the coin is not balanced. To
find this probability using StatCalc, just follow the steps in part (a).

Example 8.2. A shipment of items is submitted for inspection. In order to save
the cost of inspection and time, the buyer of the shipment decided to adopt the
following acceptance sampling plan: He decided to inspect a sample of not more
than 30 items. Once the third defective item observed, he will stop the inspection
and reject the lot; otherwise, he will continue the inspection up to the 30th item.
What are the chances of rejecting the lot if it indeed contains 15% defective items?

Solution: Let X denote the number of nondefective items that must be examined
in order to get 3 or more defective items. If we refer defective as “success” and
nondefective as “failure,” then X follows a negative binomial with p = 0.15 and r =
3. We need to find the probability of observing 27 or less nondefective items to get
the third defective item. Thus, the required probability is

P (X ≤ 27|3, 0.15) = 0.8486,

which can be computed using StatCalc as follows: Select the dialog box
[StatCalc→Discrete→Negative Binomial→Probabilities, Percentiles and Moments]
from StatCalc, enter 3 for the number of successes, 27 for the number of failures,
and 0.15 for the success probability; click [P(X <= k)] to get 0.848599. Thus, for
this acceptance sampling plan, the chances of rejecting the lot is about 85% if the
lot actually contains 15% defective items.

8.4 Point Estimation

Suppose that a binomial experiment required k + r trials to get the rth success.
Then the uniformly minimum variance unbiased estimator of the success probability
is given by

p̂ =
r − 1

r + k − 1
,

and its approximate variance is given by

Var(p̂) ≃ p2(1− p)

2

(
2k + 2− p

k(k − p+ 2)

)
.
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8.5 Test for the Proportion 123

8.5 Test for the Proportion

Suppose that in a sequence of independent Bernoulli trials, each with success prob-
ability p, rth success was observed at the (k+ r)th trial. Based on this information,
we like to test about the true success probability p.

For testing

H0 : p ≤ p0 vs. Ha : p > p0, (8.1)

the null hypothesis will be rejected if the p-value P (X ≤ k|r, p0) ≤ α, for testing

H0 : p ≥ p0 vs. Ha : p < p0, (8.2)

the null hypothesis will be rejected if the p-value P (X ≥ k|r, p0) ≤ α, and for testing

H0 : p = p0 vs. Ha : p 6= p0, (8.3)

the null hypothesis will be rejected if the p-value

2min{P (X ≤ k|r, p0), P (X ≥ k|r, p0)} ≤ α.

The dialog box [StatCalc→Discrete→Negative Binomial→Test and CI for Success
Probability] computes the above p-values for testing the success probability.

Example 8.3. A shipment of items is submitted for inspection. The buyer of
the shipment inspected the items one-by-one randomly, and found the 5th defective
item at the 30th inspection. Based on this information, can we conclude that the
percentage of defective items in the shipment is less than 30? Find a point estimate
of the percentage.

Solution: Let p denote the true proportion of defective items in the shipment. Then,
we want to test

H0 : p ≥ 0.3 vs. Ha : p < 0.3.

To compute the p-value, select the dialog box [StatCalc→Discrete→
Negative Binomial→Test and CI ...], enter 5 for r, 25 for k, 0.3 for [p0], and click
[p-values] to get 0.0378949. This is the p-value for the left-tailed test, and is less
than 0.05. Therefore, we conclude that the true proportion of defective items in the
shipment is less than 30%. A point estimate of the actual proportion of defective
items is

p̂ =
r − 1

r + k − 1
=

5− 1

5 + 25− 1
= 0.1379.

Suppose one inadvertently applies the binomial testing method described in Section
4.4.1 instead of negative binomial, then n = 30, and the number of successes is
5. Using [StatCalc→Discrete→Binomial →Tests for Proportion and Power Calcula-
tion], we get the p-value for testing above hypotheses as 0.0765948. Thus, contrary
to the result based on the negative binomial, the result based on the binomial is not
significant at 0.05 level.
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124 8 Negative Binomial Distribution

8.6 Confidence Intervals for the Proportion

For a given r and k, an exact 1−α confidence interval for p can be computed using
the Clopper–Pearson approach. The lower limit pl satisfies

P (X ≤ k|r, pl) = α/2,

and the upper limit pu satisfies

P (X ≥ k|r, pu) = α/2.

Using the relation between negative binomial and beta random variables (see Section
16.6.2), it can be shown that pl = Br,k+1;α

2
and pu = Br,k;1−α

2
, where Ba,b;α denotes

the αth quantile of a beta distribution with shape parameters a and b.
The dialog box [StatCalc→Discrete→Negative Binomial→Test and CI ...] uses

the above methods to compute confidence intervals for p.

Example 8.4. A shipment of items is submitted for inspection. The buyer of the
shipment inspected the items one by one randomly, and found the 6th defective item
at the 30th inspection. Based on this information, find a 95% confidence interval for
the true proportion of defective items in the shipment.

Solution: To find the 95% exact confidence interval for the true proportion of de-
fective items, enter 6 for r, 24 for k, 0.95 for confidence level, and click [2-sided] to
get (0.0771, 0.3577). That is, the true percentage of defective items in the shipment
is between 7.7 and 36 with confidence 95%.

8.7 Properties and Results

In the following, X denotes the negative binomial(r, p) random variable.

8.7.1 Properties

1. For a given k and r, P (X ≤ k) is a nondecreasing function of p.

2. Let X1, . . ., Xm be independent negative binomial random variables with

Xi ∼ negative binomial(ri, p), i = 1, 2, ..., m.

Then,
m∑

i=1

Xi ∼ negative binomial

(
m∑

i=1

ri, p

)
.

3. Recurrence Relations:

P (X = k + 1) = (r+k)(1−p)
(k+1)

P (X = k)

P (X = k − 1) = k
(r+k−1)(1−p)P (X = k)
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8.7.2 Relation to Other Distributions

1. Binomial: Let X be a negative binomial(r, p) random variable. Then

P (X ≤ k|r, p) = P (Y ≥ r), k = 1, 2, ....

where Y is a binomial random variable with k+ r trials and success probability
p.

2. Beta: See Section 17.6.2.

3. Geometric Distribution: Negative binomial distribution with r = 1 specializes
to the geometric distribution described in Chapter 7

8.8 Random Number Generation

Algorithm 8.1. Negative binomial variate generator

Input:

r = number of successes; p = success probability

ns = desired number of random numbers

Output:

k = random number from the negative binomial(r, p)

distribution; the number of failures until the rth

success

Set i = 1; k = 0

For j = 1 to ns

1 Generate u from uniform(0, 1)

If u <= p, k = k + 1

If k = r goto 2

i = i + 1

go to 1

2 x(j) = i - r

k = 0

i = 1

[end j loop]

The following algorithm is based on the inverse method, and is similar to Algorithm
4.1 for binomial variate generator.

Algorithm 8.2. Negative binomial variate generator

Set k = int((r - 1.0)*(1 - p)/p)

pk = P(X = k|r, p)
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126 8 Negative Binomial Distribution

df = P(X <= k|r, p)

rpk = pk

ik = k

xb = r*(1 - p)/p

s = sqrt(xb/p)

mu = xb + 10.0*s

if(xb > 30.0) mu = xb + 6.0*s

if(xb > 100.0) mu = xb + 5.0*s

ml = max(0.0, mu - 10.0*s)

if(xb > 30.0) ml = max(0.0, xb - 6.0*s)

if(xb > 100.0) ml = max(0.0, xb - 5.0*s)

For j = 1 to ns

Generate u from uniform(0, 1)

if(u > df) goto 2

1 u = u + pk

if(k = ml or u > df) goto 3

pk = pk*k/((r + k - 1.0)*(1.0 - p))

k = k - 1

goto 1

2 pk = (r + k)*(1 - p)*pk/(k + 1)

u = u - pk

k = k + 1

If k = mu or u <= df, go to 3

go to 2

3 x(j) = k

k = rk

pk = rpk

[end j loop]

8.9 Computation of Probabilities

For small values of k and r, P(X = k) can be computed in a straightforward manner.
For other values, logarithmic gamma function lnΓ(x) given in Section 1.8 can be
used.

To compute P (X = k):

Set q = 1− p
c = lnΓ(r + k)− ln Γ(k + 1) − ln Γ(r)
b = k ln(q) + r ln(p)
P (X = k) = exp(c+ b)

To compute P (X ≤ k):

If an efficient algorithm for evaluating the cumulative distribution function of beta
distribution is available, then the following relation between the beta and negative
binomial distributions, P (X ≤ k) = P (Y ≤ p), where Y is a beta variable with
shape parameters r and k + 1, can be used to compute the cumulative probabilities.
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8.9 Computation of Probabilities 127

The relation between the binomial and negative binomial distributions,

P (X ≤ k) = 1.0− P (W ≤ r − 1),

where W is a binomial random variable with k + r trials and success probability p,
can also be used to compute the cumulative probabilities.
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Logarithmic Series Distribution

9.1 Description

The probability mass function of a logarithmic series distribution with parameter θ
is given by

P (X = k) =
aθk

k
, 0 < θ < 1, k = 1, 2, . . . ,

where a = −1/[ln(1− θ)]; the cumulative distribution function is given by

F (k|θ) = P (X ≤ k|θ) = a
k∑

i=1

θk

k
, 0 < θ < 1, k = 1, 2, . . . .

The logarithmic series distribution is useful to describe a variety of biological and
ecological data. Specifically, the number of individuals per species can be modeled
using a logarithmic series distribution. This distribution can also be used to fit the
number of products requested per order from a retailer. Williamson and Bretherton
(1964) used a logarithmic series distribution to fit the data that represent quantities
of steel per order from a steel merchant; they also tabulated the cumulative proba-
bilities for various values of the mean of the distribution. Furthermore, Chatfield et
al. (1966) fitted the logarithmic series distribution to the distribution of purchases
from a random sample of consumers.

The logarithmic series distribution is always right-skewed (see Figure 9.1).

9.2 Moments

Mean: aθ
1−θ , a = −1/[ln(1− θ)].

Variance: aθ(1−aθ)
(1−θ)2

Coefficient of Variation:
√

(1−aθ)
aθ

129
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130 9 Logarithmic Series Distribution

Coefficient of Skewness: aθ(1+θ−3aθ+2a2θ2)

[aθ(1−aθ)]3/2

Coefficient of Kurtosis: 1+4θ+θ2−4aθ(1+θ)+6a2θ2−3a3θ 3

aθ(1−aθ)2

Mean Deviation: 2aθ(θm−P (X>m))
1−θ ,

where m denotes the largest integer
≤ the mean. [Kamat, 1965]

Factorial Moments: E

(
k∏
i=1

(X − i+ 1)

)
= aθk(k−1)!

(1−θ)k

Moment Generating Function: ln(1−θ exp(t))
ln(1−θ)

Probability Generating Function: ln(1−θt)
ln(1−θ)

9.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Discrete→Logarithmic Series] in StatCalc computes the
probabilities, moments, and the MLE of θ based on a given sample mean.

To compute probabilities: Enter the values of the parameter θ and the observed
value k; click [P(X <= k)]. As an example, when θ = 0.3 and k = 3, P (X ≤ 3) =
0.9925, P (X ≥ 3) = 0.032733, and P (X = 3) = 0.025233. StatCalc also computes
the value of θ or the value of k. For example, when k = 3, P (X ≤ 3) = 0.6, the value
of θ is 0.935704. To get this value, enter 3 for k, 0.6 for [P(X <= k)], and click [T].

To compute the MLE of θ: Enter the sample mean, and click on [MLE]. For example,
when the sample mean = 2, the MLE of θ is 0.715332.

To compute moments: Enter a value for θ in (0,1); click [M].

Example 9.1. A mail-order company recorded the number of items purchased per
phone call or mail in form. The data are given in Table 8.1. We will fit a logarithmic
series distribution for the number of item per order. To fit the model, we first need
to estimate the parameter θ based on the sample mean, which is

x̄ =

∑
xifi∑
fi

=
2000

824
= 2.4272.

To find the MLE of θ using StatCalc, enter 2.4272 for the sample mean, and click
[MLE] to get 0.7923. Using this number for the value of θ, we can compute the
probabilities P (X = 1), P (X = 2), etc. These probabilities are given in column 3
of Table 8.1. To find the expected frequencies, multiply the probability by the total
frequency, which is 824 for this example. Comparison of the observed and expected
frequencies indicates that the logarithmic series distribution is very well fitted for
the data. The fitted distribution can be used to check whether the distribution of
number of items demanded per order changes after a period of time.

© 2016 by Taylor & Francis Group, LLC

  



9.3 Probabilities, Percentiles, and Moments 131

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 2 4 6 8 10 12 14

k

θ = 0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 2 4 6 8 10 12 14

k

θ = 0.2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4 6 8 10 12 14

k

θ = 0.4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4 6 8 10 12 14

k

θ = 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14

k

θ = 0.7

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0 2 4 6 8 10 12 14

k

θ = 0.9

FIGURE 9.1: Probability mass functions of logarithmic series distribution

© 2016 by Taylor & Francis Group, LLC

  



132 9 Logarithmic Series Distribution

Example 9.2. Suppose that the mail-order company in the previous example
collected new data a few months after the previous study, and recorded them as
shown Table 9.2. First, we need to check whether a logarithmic series distribution
still fits the data. The sample mean is

x̄ =

∑
xifi∑
fi

=
1596

930
= 1.7161,

and using StatCalc, we find that the MLE of θ is 0.631316. As in Example 9.1,
we can compute the probabilities and the corresponding expected frequencies using
0.631316 as the value of θ. Comparison of the observed frequencies with the expected
frequencies indicate that a logarithmic series distribution still fits the data well;
however, the smaller MLE indicates that the demand for fewer units per order has
increased since the last study.

TABLE 9.1: Number of Items Ordered per Call or Mail-In Order

No. of item xi Observed frequency Probability Expected frequency

1 417 0.504116 415.4
2 161 0.199706 164.6
3 84 0.105485 86.9
4 50 0.062682 51.6
5 39 0.039730 32.7
6 22 0.026232 21.6
7 12 0.017814 14.7
8 8 0.012350 10.2
9 7 0.008698 7.2
10 6 0.006202 5.1
11 5 0.004467 3.7

12 and over 13 0.012518 10.3
Total 824 1.0 824

9.4 Inferences

9.4.1 Point Estimation

Let X̄ denote the mean of a random sample of n observations from a logarithmic
series distribution with parameter θ. The maximum likelihood estimate θ̂ of θ is the
solution of the equation

θ̂ =
X̄ ln(1− θ̂)

X̄ ln(1− θ̂)− 1
,

which can be solved numerically for a given sample mean. Williamson and Bretherton
(1964) tabulated the values of θ̂ for x̄ ranging from 1 to 50.
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Patil (1962) derived an asymptotic expression for the variance of the MLE, and
it is given by

Var(θ̂) =
θ2

nµ2
,

where µ2 denotes the variance of the logarithmic series distribution with parameter
θ (see Section 8.2).

Patil and Bildikar (1966) considered the problem of minimum variance unbiased
estimation. Wani (1975) compared the MLE and the minimum variance unbiased
estimator (MVUE) numerically and concluded that there is no clear-cut criterion to
choose between these estimators. It should be noted that the MVUE also cannot be
expressed in a closed form.

TABLE 9.2: Number of Items Ordered per Call or Mail-In Order after a Few
Months

No. of item xi Observed frequency Probability Expected frequency

1 599 0.632698 588.4
2 180 0.199716 185.7
3 75 0.084056 78.2
4 30 0.039799 37
5 20 0.020101 18.7
6 11 0.010575 9.9
7 5 0.005722 5.3
8 4 0.003161 2.9
9 3 0.001774 1.6

10 2 0.001010 0.9
11 0 0.000578 0
12 1 0.000811 0.8

Total 930 1.0 929.4

9.4.2 Interval Estimation

Let X1, . . . , Xn be a random sample from a logarithmic series distribution with
parameter θ. Let Z denote the sum of the Xis, and let f(z| n, θ) denote the proba-
bility mass function of Z (see Section 8.5). For an observed value z0 of Z, a (1− α)
confidence interval is (θL, θU ), where θL and θU satisfy

∞∑

k=z0

f(k|n, θL) = α

2

and
z0∑

k=1

f(k|n, θU ) = α

2
,

respectively. Wani (1975) tabulated the values of (θL, θU ) for n = 10, 15, and 20,
and the confidence level 0.95.
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134 9 Logarithmic Series Distribution

9.5 Properties and Results

1. Recurrence Relations:

P (X = k + 1) = kθ
k+1

P (X = k), k = 1, 2, . . .

P (X = k − 1) = k
(k−1)θ

P (X = k), k = 2, 3, . . . .

2. Let X1, . . ., Xn be independent random variables, each having a logarithmic
series distribution with parameter θ. The probability mass function of the Z =∑n
i=1Xi is given by

P (Z = k) =
n!|S(n)

k |θk
k![− ln(1− θ)]n

, k = n, n+ 1, . . . .

where S
(n)
k denotes the Stirling number of the first kind (Abramowitz and Ste-

gun, 1965, p. 824).

9.6 Random Number Generation

The following algorithm is based on the inverse method. That is, for a random
uniform(0, 1) number u, the algorithm searches for k such that

P (X ≤ k − 1) < u ≤ P (X ≤ k).

Input:
θ = parameter
ns = desired number of random numbers

Output:
x(1), . . ., x(ns) are random numbers from the
Logarithmic Series(θ) distribution

Algorithm 9.1. Logarithmic series variate generator

Set pk = −θ/ ln(1− θ)
rpk = pk

For j = 1 to ns
Generate u from uniform(0, 1)
k = 1

1 If u ≤ pk, go to 2
u = u – pk
pk = pk *θ*k/(k + 1)
k = k + 1
goto 1

2 x(j) = k
pk = rpk

[end j loop]
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9.7 Computation of Probabilities 135

9.7 Computation of Probabilities

For a given θ and k, P (X = k) can be computed in a straightforward manner. To
compute P (X ≤ k), compute first P (X = 1), compute other probabilities recursively
using the recurrence relation

P (X = i+ 1) =
iθ

i+ 1
P (X = i), i = 1, 2, ..., k − 1 . . . .

and then compute P (X ≤ k) = P (X = 1) +
∑k
i=2 P (X = i).

The above method is used to obtain the following algorithm.

Algorithm 9.2. Calculation of logarithmic series tail probabilities

Input:

k = the positive integer at which the cdf is to be evaluated

t = the value of the parameter ‘theta’

a = -1/ln(1-t)

Output:

cdf = P(X <= k| t)

Set p1 = t

cdf = p1

For i = 1 to k

p1 = p1*i*t/(i+1)

cdf = cdf + p1

(end i loop)

cdf = cdf*a
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Continuous Uniform Distribution

10.1 Description

The probability density function of a continuous uniform random variable over an
interval [a, b] is given

f(x; a, b) =
1

b− a
, a ≤ x ≤ b.

The cumulative distribution function is given by

F (x|a, b) = x− a

b− a
, a ≤ x ≤ b.

The uniform distribution with support [a, b] is denoted by uniform(a, b). This dis-
tribution is also called the rectangular distribution because of the shape of its prob-
ability density function (see Figure 10.1).

10.2 Moments

Mean: b+a
2

Variance: (b−a)2
12

Median: b+a
2

Coefficient of Variation: (b−a)√
3(b+a)

Mean Deviation: b−a
4

Coefficient of Skewness: 0

139
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FIGURE 10.1: The probability density function of uniform(2,5) distribution

Central Moments:

{
0, k = 1, 3, 5, . . . ,

(b−a)k
2k(k+1)

, k = 2, 4, 6, . . .

Moments about the Origin: E(Xk) = bk+1−ak+1

(b−a)(k+1)
, k = 1, 2, · · ·

Moment Generating Function: etb−eta
(b−a)t

10.3 Inferences

Let X1, . . ., Xn be a random sample from a uniform(a, b) distribution. Let X(1)

denote the smallest order statistic and X(n) denote the largest order statistic.

1. When b is known,

âu =
(n+ 1)X(1) − b

n

is the uniformly minimum variance unbiased estimator (UMVUE) of a; if a is
known, then

b̂u =
(n+ 1)X(n) − a

n

is the UMVUE of b.

2. When both a and b are unknown,

â =
nX(1) −X(n)

n− 1
and b̂ =

nX(n) −X(1)

n− 1

are the UMVUEs of a and b, respectively.
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10.4 Properties and Results

1. Probability Integral Transformation: Let X be a continuous random variable
with cumulative distribution function F (x). Then,

U = F (X) ∼ uniform(0, 1).

2. Let X be a uniform(0, 1) random variable. Then,

−2 ln(X) ∼ χ2
2.

3. Let X1, . . . ,Xn be independent uniform(0,1) random variables, and let X(k)

denote the kth order statistic. ThenX(k) follows a beta(k, n−k + 1) distribution.

4. Relation to Normal: See Section 11.9.

10.5 Random Number Generation

Uniform(0, 1) random variates generator is usually available as a built-in intrinsic
function in many commonly used programming languages such as Fortran and C. To
generate random numbers from uniform(a, b), use the result that if U ∼ uniform(0,1),
then X = a+ U ∗ (b− a) ∼ uniform(a, b).
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Normal Distribution

11.1 Description

The probability density function of a normal random variable X with mean µ and
standard deviation σ is given by

f(x|µ, σ) = 1

σ
√
2π

exp

[
− (x− µ)2

2σ2

]
,−∞ < x <∞, −∞ < µ <∞, σ > 0.

This distribution is commonly denoted by N(µ, σ2). The cumulative distribution
function (cdf) is given by

F (x|µ, σ) =
∫ x

−∞
f(t|µ, σ)dt.

The normal random variable with mean µ = 0 and standard deviation σ = 1 is
called the standard normal random variable, and its cdf is denoted by Φ(z).

If X is a normal random variable with mean µ and standard deviation σ, then

F (X|µ, σ) = P
(
Z ≤ x− µ

σ

)
=

∫ (x−µ)/σ

−∞
exp(−t2/2)dt = Φ

(x− µ

σ

)
.

The mean µ is the location parameter, and the standard deviation σ is the scale
parameter. See the plots of the pdfs in Figures 11.1 and 11.2.

The normal distribution is the most commonly used distribution to model uni-
variate data from a population or from an experiment.

143
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144 11 Normal Distribution

FIGURE 11.1: Normal probability density functions with µ = 0

11.2 Moments

Mean: µ

Variance: σ2

Coefficient of Variation: σ/µ

Median: µ

Mean Deviation:
√

2σ2

π

Coefficient Skewness: 0

Coefficient of Kurtosis: 3

Moments about the Origin:





σk
(k+1)/2∑
i=1

k!µ2i−1

(2i−1)![(k+1)/2−i]!2(k+1)/2−iσ2i−1 ,

k = 1, 3, 5, . . .

σk
k/2∑
i=0

k!µ2i

(2i)!(k/2−i)!2k/2−iσ2i ,

k = 2, 4, 6, . . .

Moments about the Mean:

{
0, k = 1, 3, 5, . . . ,

k!

2k/2(k/2)!
σk, k = 2, 4, 6, . . .

Moment Generating Function: E(etx) = exp
(
tµ+ t2σ2/2

)

A Recurrence Relation: E(Xk) = (k − 1)σ2E(Xk−2) + µE(Xk−1),
k = 3, 4, · · ·
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FIGURE 11.2: Normal probability density functions with σ = 1

11.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→Normal→Probabilities, Percentiles and Mo-
ments] computes the tail probabilities, critical points, parameters, and moments.

To compute probabilities: Enter the values of the mean, standard deviation, and the
value of x at which the cdf is to be computed; click the [P(X <= x)] radio button.
For example, when mean = 1.0, standard deviation = 2.0, and the value x = 3.5,
P (X ≤ 3.5) = 0.89435, and P (X > 3.5) = 0.10565.

To compute percentiles: Enter the values of the mean, standard deviation, and the
cumulative probability P(X <= x); click on [x] radio button. For example, when
mean = 1.0, standard deviation = 2.0, and the cumulative probability P(X <= x)
= 0.95, the 95th percentile is 4.28971. That is,

P (X ≤ 4.28971) = 0.95.

To compute the mean: Enter the values of the standard deviation, x, and P(X <=
x). Click [Mean]. For example, when standard deviation = 3, x = 3.5, and P(X <=
x) = 0.97, the value of the mean is −2.14238.

To compute the standard deviation: Enter the values of the mean, x, and P(X <=
x). Click [Std Dev]. For example, when mean = 3, x = 3.5, and P(X <= x) = 0.97,
the standard deviation is 0.265845.

To compute moments: Enter the values of the mean and standard deviation; click
[M] button.

In the following example, we illustrate a method of checking whether a sample
is from a normal population.
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146 11 Normal Distribution

Example 11.1. (Assessing normality) An important problem in industrial hy-
giene is the exposure level of employees who are constantly exposed to workplace
contaminants. In order to assess the exposure levels, hygienists monitor employees
periodically. The following data represent the exposure measurements from a sample
of 15 employees who were exposed to a chemical over a period of three months.

x : 69 75 82 93 98 102 54 59 104 63 67 66 89 79 77

We want to test whether the exposure data are from a normal distribution. Follow-
ing the steps of Section 2.4.2, we first order the data. The ordered data x(j)s are
given in the second column of Table 10.1. The cumulative probability level of x(j)

is approximately equal to (j − 0.5)/n, where n is the number of data points. For
these cumulative probabilities, standard normal quantiles are computed, and they
are given in the fourth column of Table 10.1. For example, when j = 4, the observed
0.233333th quantile is 66, and the corresponding standard normal quantile z(j) is
−0.7279. To compute the standard normal quantile for the 4th observation, select
[StatCalc→Continuous→Normal→Probabilities, Percentiles and Moments], enter 0
for [Mean], 1 for [Std Dev], and 0.233333 for P(X<=x); click on [x] to get −0.7279.
If the data are from a normal population, then the pairs (x(j), z(j)) will be approxi-
mately linearly related. The plot of the pairs (Q–Q plot) is given in Figure 10.3. The
Q–Q plot is nearly a line suggesting that the data are from a normal population.

If a graphical technique does not give a clear-cut result, a rigorous test, such
as Shapiro–Wilk test and the correlation test, can be used. We shall use the test
based on the correlation coefficient to test the normality of the exposure data. The
correlation coefficient between the x(j)s and the z(j)s is given by

r =

∑n
i=1(X(i) − x̄)(z(i) − z̄)√∑n

i=1(x(i) − x̄)2
√∑n

i=1(z(i) − z̄)2
= 0.984.

At the level 0.05, the critical value for n = 15 is 0.937 (see Looney and Gulledge,
1985). Since the observed correlation coefficient r is larger than the critical value,
we have further evidence for our earlier conclusion that the data are from a normal
population.

Example 11.2. An electric bulb manufacturer reports that the average lifespan
of 100W bulbs is 1100 h with a standard deviation of 100 h. Assume that the life
hours distribution is normal.

a. Find the percentage of bulbs that will last at least 1000 h.

b. Find the percentage of bulbs with lifetime between 900 and 1200 h.

c. Find the 90th percentile of the life hours.

Solution: Select the dialog box [StatCalc→Continuous→Normal→Probabilities,
Percentiles and Moments].

a. To find the percentage, enter 1100 for the mean, 100 for the standard deviation,
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FIGURE 11.3: Q–Q plot of the exposure data

TABLE 11.1: Observed and Normal Quantiles for Exposure Data

j Observed Cumulative Standard Normal
Quantiles Probability Levels Quantile
x(j) (j − 0.5)/15 z(j)

1 54 0.0333 -1.8339
2 59 0.1000 -1.2816
3 63 0.1667 -0.9674
4 66 0.2333 -0.7279
5 67 0.3000 -0.5244
6 69 0.3667 -0.3407
7 75 0.4333 -0.1679
8 77 0.5000 0.0000
9 79 0.5667 0.1679
10 82 0.6333 0.3407
11 89 0.7000 0.5244
12 93 0.7667 0.7279
13 98 0.8333 0.9674
14 102 0.9000 1.2816
15 104 0.9667 1.8339

and 1000 for the observed x; click [P(X <= x)] radio button to get P(X ≤ 1000)
= 0.1587 and P(X > 1000) = 0.8413. This means that about 84% of the bulbs
will last more than 1000 h.

b.
P (900 ≤ X ≤ 1200) = P (X ≤ 1200) − P (X ≤ 900)

= 0.841345 − 0.022750
= 0.818595.

That is, about 82% of the bulbs will last between 900 and 1200 h.

c. To find the 90th percentile, enter 1100 for the mean, 100 for the standard devi-
ation, and 0.90 for the cumulative probability; click on [x] to get 1228.16. That
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148 11 Normal Distribution

is, 90% of the bulbs will last less than 1228 h; and 10% of the bulbs will last
more than 1228 h.

Example 11.3. Suppose that the weekly demand for 5-lb sacks of onions at a
grocery store is normally distributed with mean 140 sacks and standard deviation
10.

a. If the store stocks 160 sacks every week, find the percentage of weeks that the
store has overstocked onions.

b. How many sacks should the store keep in stock each week in order to meet the
demand for 95% of the weeks?

Solution:

a. Let X denote the weekly demand. We need to find the percentage of the weeks
that the demand is less than the stock. Enter 140 for the mean, 10 for the
standard deviation, and click [P(X <= x)] radio button to get P (X ≤ 160) =
0.97725. This probability means that about 98% of the weeks the demand will
be less than the supply.

b. Here, we need to find the 95th percentile of the normal distribution; that is,
the value of x such that P (X ≤ x) = 0.95. Using StatCalc, we get the value
of x = 156.449. This means that the store has to stock 157 sacks each week in
order to meet the demand for 95% of the weeks.

Example 11.4. A machine is set to pack 3 lb of ground beef per package. Over a
long period of time, it was found that the average amount packed was 3 lb with a
standard deviation of 0.1 lb. Assume that the weights of the packages are normally
distributed.

a. Find the percentage of packages weighing more than 3.1 lb.

b. At what level should the machine be set, so that no more than 5% of the packages
weigh less than 2.9 lb?

Solution: Let X be the actual weight of a randomly selected package. Then, X is
normally distributed with mean 3 lb and standard deviation 0.1 lb.

a. To find the percentage, enter 3 for the mean, 0.1 for the standard deviation, and
3.1 for the x; click [P(X <= x)] radio button to get P(X > 3.1) = 0.158655.
That is, about 16% of the packages will weigh more than 3.1 lb.

b. We are looking for the value of the mean µ such that P (X < 2.9) = 0.05. To get
the value of the mean, enter 0.1 for the standard deviation, 2.9 for x, 0.05 for
P (X ≤ x), and then click on [Mean] to get 3.06449. That is, the machine needs
to be set at about 3.07 pounds so that fewer than 5% of the packages weigh less
than 2.9 lb.

Example 11.5. A manufacturing company received a large quantity of bolts from
one of its suppliers. A bolt is useable if it is 3.9 to 4.1 in long. Inspection of a sample
of 50 bolts revealed that the average length is 3.95 in., with standard deviation 0.1
in. Assume that the distribution of lengths is normal.

a. Find an approximate proportion of bolts that are useable.

b. Find an approximate proportion of bolts that are longer than 4.1 in.
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c. Find an approximate 95th percentile of the lengths of all bolts.

Solution: Assume that the lengths of bolts form a normal population with the mean
µ and standard deviation σ. If µ and σ are known, then exact proportions and
percentile can be computed using StatCalc. Since they are unknown, we can use the
sample mean and standard deviation to find approximate solutions to the problem.

a. The proportion of bolts useable is given by P (3.9 ≤ X ≤ 4.1) = P (X ≤ 4.1) −
P (X ≤ 3.9), where X is a normal random variable with mean 3.95 and standard
deviation 0.1. Using StatCalc, we get P (X ≤ 4.1) − P (X ≤ 3.9) = 0.933193 −
0.308538 = 0.624655. Thus, about 62% of bolts are useable.

b. This proportion is given by P (X ≥ 4.1) = 1 − P (X ≤ 4.1) = 1 − 0.933193 =
0.0668074. That is, about 7% of bolts are longer than 4.1 inch.

c. To find an approximate 95th percentile, enter 3.95 for the mean, 0.1 for the stan-
dard deviation, 0.95 for the probability [P(X <= x)], and click [x] to get 4.11449.
This means that approximately 95% of the bolts are shorter than 4.11449 inch.

11.4 One-Sample Inference

Let X1, . . ., Xn be a random sample from a normal population with mean µ and
standard deviation σ. The sample mean X̄ and the variance S2 are defined as

X̄ =
1

n

n∑

i=1

Xi, and S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2

are the uniformly minimum variance unbiased estimators of µ and σ2, respectively.
The sample mean is the maximum likelihood estimator of µ; however, the maximum
likelihood estimator of σ2 is (n− 1)S2/n, which is a biased estimate of σ2.

11.4.1 Test for the Mean and Power Computation

t-test

The test statistic for testing null hypothesis H0 : µ = µ0 is given by

t =
X̄ − µ0

S/
√
n
, (11.1)

which follows a t distribution with df = n − 1. Let (x̄, s2) be an observed value of
(X̄, S2). Then t0 = x̄−µ0

s/
√
n
is the observed value of t in (11.1). For a given level α, the

null hypothesis H0 : µ = µ0 will be rejected in favor of

Ha : µ 6= µ0 if the p-value P (|t| > |t0|) < α,

for testing H0 : µ ≥ µ0 vs. Ha : µ < µ0, the H0 will be rejected if the p-value
P (t ≤ t0) < α, and for testing H0 : µ ≤ µ0 vs. Ha : µ > µ0, the H0 will be rejected
if the p-value = P (t ≥ t0) < α.
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150 11 Normal Distribution

Power Computation

Consider the hypotheses

H0 : µ ≤ µ0 vs. Ha : µ > µ0.

For a given nominal level α, the power of the t-test is the probability of rejecting
the null hypothesis when the true mean µ is indeed greater than µ0, and is given by

P (t > tn−1;1−α|Ha) = P (tn−1(δ) > tn−1;1−α), (11.2)

where t is given in (11.1), tn−1,1−α denotes the (1 − α)th quantile of the
t-distribution (see Chapter 20) with degrees of freedom n− 1, and tn−1(δ) denotes
the noncentral t random variable with degrees of freedom n−1 and the noncentrality
parameter

δ =

√
n(µ− µ0)

σ
.

The power of a two-tailed test is similarly calculated. For a given µ, µ0, σ and level
α, StatCalc computes the power using (11.2).

To compute p-values for hypothesis testing about µ: Select [StatCalc→Continuous
→Normal→One-Sample ...] from StatCalc, enter the values of the sample mean,
sample standard deviation, sample size, and the value of the mean under the null
hypothesis. Click [p-values (mean)] to get the p-values for various alternative hy-
potheses.

Example 11.6. (Hypothesis testing) Suppose that a sample of 20 observations
from a normal population produced a mean of 3.4 and a standard deviation of 2.1.
Consider testing

H0 : µ ≤ 2.5 vs. Ha : µ > 2.5.

To compute the p-value for testing above hypotheses, select [StatCalc→Continuous
→Normal→One-Sample ...] from StatCalc, enter 20 for [Sample Size, n], 3.4 for
[Sample Mean], 2.1 for [Sample SD], 2.5 for [H0: M = M0], and click [p-values
(mean)] to get 0.0352254. That is, the p-value for testing the above hypotheses is
0.0352254. Thus, at 5% level, we have enough evidence to conclude that the true
population mean is greater than 2.5.

Furthermore, note that for the two-sided hypothesis, that is,

H0 : µ = 2.5 vs. Ha : µ 6= 2.5,

the p-value is 2×0.0352254 = 0.0704508. Now, the null hypothesis cannot be rejected
at the level of significance 0.05. The value of the t-test statistic for this problem is
1.91663.

Sample Size for One-Sample t-test: For a given level of significance, the true mean
and hypothesized mean of a normal population, and the standard deviation, the di-
alog box [StatCalc→Continuous → Normal → One-Sample ...] computes the sample
size that is required to have a specified power. To compute the sample size, enter the
hypothesized value of the population mean in [H0: M = M0], the population mean
in [Population M], population standard deviation, level of the test, and power. Click
[sample size for].
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Example 11.7. (Sample Size Calculation) An experimenter believes that the actual
mean of the population under study is 1 unit more than the hypothesized value
µ0 = 3. From the past study, he learned that the population standard deviation is
1.3. He decides to use one-sample t-test, and wants to determine the sample size to
attain a power of 0.90 at the level 0.05. The hypotheses for his study will be

H0 : µ ≤ 3 vs. Ha: µ > 3.

To compute the required sample size using the dialog box [StatCalc→Continuous
→ Normal → One-Sample ...], enter 3 for [H0: M = M0], 4 for [Population M], 1.3
for [Population SD], .05 for [Level], .9 for [Power], and click [Sample Size for] to get
16. Thus, a sample of 16 observations will be sufficient to test if the true mean is
greater than 3 with a power of 90%.

11.4.2 Confidence Interval for the Mean

A 1− α confidence interval for the mean µ is given by

X̄ ± tn−1, 1−α
2

S√
n
,

where tn−1,1−α
2
is the (1− α

2
) quantile of a t distribution with df = n−1. The above

interval commonly referred to as the t-interval.
For a given sample mean, sample standard deviation, and sample size, the dialog

box [StatCalc→Continuous→Normal→One-Sample ...] computes the p-value of the
t-test and confidence interval for the mean.

To compute a confidence interval for µ: Select the dialog box [StatCalc→
Continuous→Normal→One-Sample ...], enter the values of the sample mean, sam-
ple standard deviation, sample size, and the confidence level. Click [1-sided] to get
one-sided lower and upper limits for µ. Click [2-sided] to get confidence interval for
the mean µ.

Example 11.8. Let us compute a 95% confidence interval for the true popula-
tion mean based on summary statistics given in Example 11.6. In the dialog box
[StatCalc→ Continuous →Normal→t-test and confidence interval for Mean], enter
3.4 for the sample mean, 2.1 for the sample standard deviation, 20 for the sample
size, and 0.95 for the confidence level. Click [1-sided] to get 2.58804 and 4.21196.
These are the one-sided limits for µ. That is, the interval (2.58804, ∞) would con-
tain the population mean µ with 95% confidence. The interval (-∞, 4.21196) would
contain the population mean µ with 95% confidence. To get a two-sided confidence
interval for µ, click on [2-sided] to get 2.41717 and 4.38283. This means that the
interval (2.41717, 4.38283) would contain the true mean with 95% confidence.

The following examples illustrate the one-sample inferential procedures for a
normal mean.

Example 11.9. (Confidence Interval for the Mean) A marketing agency wants to
estimate the average annual income of all households in a suburban area of a large
city. A random sample of 40 households from the area yielded a sample mean of
$65,000 with standard deviation approximately $8,000. Assume that the incomes
follow a normal distribution.
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a. Construct a 95% confidence interval for the true mean income of all the house-
holds in the suburb community.

b. Do these summary statistics indicate that the true mean income is greater than
$63,000?

Solution:

a. To construct a 95% confidence interval for the true mean income, enter 65000
for the sample mean, 8000 for the sample standard deviation, and 40 for the
sample size, and 0.95 for the confidence level. Click [2-sided] to get 62697.3 and
67302.7. That is, the actual mean income is somewhere between $62,697 and
$67,303 with 95% confidence.

b. It is clear from part a that the mean income is greater than $62,697. However,
to illustrate the t-test, we formulate the following hypothesis testing problem.
Let µ denote the true mean income. We want to test

H0 : µ ≤ 63000 vs. Ha : µ > 63000.

To compute the p-value for the above test, enter the sample mean, standard
deviation, and the sample size as in part a, and 63000 for [Ha: M = M0]. Click
[p-values for] to get 0.0609618. Since this p-value is greater than .05, the data do
not provide enough evidence to indicate that the mean income is greater than
$63,000.

Example 11.10. (Sample Size for the t-test) A light bulb manufacturer considering
a new method that is supposed to increase the average lifetime of bulbs by at least
100 h. The mean and standard deviation of the life hours of bulbs produced by
the existing method are 1200 and 140 h, respectively. The manufacturer decides to
test if the new method really increases the mean life hour of the bulbs. How many
new bulbs should he test so that the test will have a power of 0.90 at the level of
significance 0.05?

Solution: Let µ denote the actual mean life hours of the bulbs manufactured using
the new method. The hypotheses of interest here are

H0 : µ ≤ 1200 vs. Ha : µ > 1200.

Enter 1200 for [H0: M = M0], 1300 for the population mean, 140 for the population
standard deviation (it is assumed that the standard deviations of the existing method
and old method are the same), 0.05 for the level and 0.9 for the power. Click [Sample
Sizes for] to get 19. Thus, 19 new bulbs should be tested to check if the new method
would increase the average life hours of the bulbs.

11.4.3 Confidence Interval for the Coefficient of Variation
and Survival Probability

The coefficient of variation is a commonly used measure of variation, because it is
not affected by the units of measurement. It is defined as the ratio of the standard
deviation to the mean. In practical situations where the coefficient of variation is an
appropriate measure of variability, the variable is usually positive. So for a N(µ, σ2)
population this measure is appropriate provided µ− 3σ > 0, or equivalently, σ/µ <
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1/3; that is, the coefficient of variation must be at most .33 in practical situations
where the coefficient of variation is a suitable measure of variability. Johnson and
Welch (1940) have proposed an exact method of finding confidence intervals for the
normal coefficient of variation, and it is described as follows.

An Exact Confidence Interval for the Coefficient of Variation

Let τ = σ/µ, ν = n − 1 and τ̂ = s/x̄. An exact 1 − 2α confidence interval (τL, τU )
is determined by the roots of the following equations:

tν;α(
√
n/τL) =

√
n

τ̂
and tν;1−α(

√
n/τU ) =

√
n

τ̂
.

For fixed ν and α, the percentile tν;α(δ) is an increasing function of δ, and so the
roots of the above equations are unique and they can be found numerically.

Approximate Confidence Intervals for the Coefficient of Variation

The modified McKay’s confidence interval for τ proposed by Vangel (1996) is given
by

{
s

x̄

[
(u1 − 1)

s2

x̄2
+
u1

ν

]−1/2

,
s

x̄

[
(u2 − 1)

s2

x̄2
+
u2

ν

]−1/2
}
, (11.3)

where u1 =
(
χ2
ν;1−α/2 + 2

)
/n and u2 =

(
χ2
ν;α/2 + 2

)
/n and ν = n− 1.

Krishnamoorthy (2014) proposed the following approximate confidence interval
based on the modified normal-based approximations in (2.14) and (2.15). Let

cm =
1√
e

(
1 +

1

m

)m/2
, with m = n− 1. (11.4)

Define

v∗u =






√
χ2
m;1−α
m

if τ̂ > 0,√
χ2
m;α

m
if τ̂ ≤ 0.

and v∗l =






√
χ2
m;α

m
if τ̂ > 0,√

χ2
m;1−α
m

if τ̂ ≤ 0,
(11.5)

where τ̂ = x̄/s. In terms of these quantities, an approximate 1 − 2α confidence
interval for the coefficient of variation is given by

([
cm
τ̂

+

√
(cm − v∗u)2

τ̂ 2
+
z21−α
n

]−1

,

[
cm
τ̂

−
√

(cm − v∗l )
2

τ̂ 2
+
z21−α
n

]−1)
.

(11.6)

© 2016 by Taylor & Francis Group, LLC

  



154 11 Normal Distribution

An Exact Confidence Interval for the Survival Probability

For X ∼ N(µ, σ2),

P (X > t) = P

(
Z >

t− µ

σ

)
= Φ

(
t− µ

σ

)
,

where t is a specified value. If X represents the lifetime of a piece of equipment, then
P (X > t) is the probability that the equipment works for at least the specified time
t. Because Φ(x) is a one-to-one function, it is enough to find confidence intervals for

ηt =
t− µ

σ
.

If U is an upper confidence limit for (t− µ)/σ, then 1− Φ(U) is a lower confidence
limit for P (X > t). A confidence limit for ηt can also be obtained from the noncentral
t distribution. The exact 1 − 2α confidence interval (ηtL, ηtU ) due to Johnson and
Welch (1940) is determined by

tn−1;1−α(
√
nηtL) =

√
n(t− x̄)

s
and tn−1;α(

√
nηtU ) =

√
n(t− x̄)

s
. (11.7)

The 1 − 2α exact confidence interval for the survival probability P (X > t) = 1 −
Φ
(
t−µ
σ

)
is given by

(1− Φ(ηtU ), 1− Φ(ηtL)) .

An Approximate Confidence Interval for the Survival Probability

Krishnamoorthy (2014) proposed the following approximate confidence interval
based on the modified normal-based approximations in (2.14) and (2.15). Let
η̂t = (t − x̄)/s. An approximate 1 − 2α confidence interval for ηt = (t − µ)/σ is
given by

(Lη, Uη) =

(
η̂tcm −

√
η̂2t (cm − v∗l )

2 +
z2α
n
, η̂tcm +

√
η̂2t (cm − v∗u)2 +

z2α
n

)
, (11.8)

where cm is given in (11.4) and (v∗l , v
∗
u) is given in (11.5). An approximate 1 − 2α

confidence interval for the survival probability Φ̄
(
t−µ
σ

)
is

(1−Φ(Uη), 1− Φ(Lη)) .

Remark 11.1. The dialog box [StatCalc→ Continuous→Normal→Coefficients of
Variation ...] uses the exact methods to find confidence intervals for the coefficient
of variation and for the survival probability for a given (n, x̄, s, t). The approximate
confidence intervals are very accurate, and they can be easily calculated. In rare cases
where the exact method has a convergence problem, these approximate confidence
intervals can be used.

Example 11.11. (Coefficient of Variation) Consider the following simulated data
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2.45, 1.28, 1.44, 1.91, 2.36, 1.78, 2.54, 2.15,

2.17, 1.72, 2.17, 1.68, 1.55, 1.49, 1.77

from a normal distribution. For the above data, n = 15, the mean x̄ = 1.897,
the standard deviation s = 0.3901, and the sample coefficient of variation is
.3901/1.897 = 0.2056. To compute the exact 95% confidence interval for the popula-
tion coefficient of variation, select [StatCalc→ Continuous→Normal→Coefficients of
Variation ...], enter 15 for [Sample Size], .95 for [Conf Level], 0.2056 for [Sample CV],
and click on [confidence interval for CV] to get (.149,.333). That is, the population
coefficient of variation is between .149 and .333 with 95% confidence.

To compute the approximate confidence interval by Vangel (1996), the chi-square
percentiles are u2 = χ2

14;.025 = 5.6287 and u1 = χ2
14;.975 = 26.119. Also, note that

x̄/s = 4.8629. Using these numbers in (11.3), we find (.149, .333), which is the
same as the exact one. To compute the approximate confidence interval by Krish-

namoorthy (2014), we first compute r = x̄/s = 4.8629, v∗l =
√
χ2
14;.025/14 = .6341,

v∗u =
√
χ2
14;.975/14 = 1.3659, and cm = .9831. Substituting these numbers in (11.6),

we find (.149, .332), which is also practically the same as the exact one.

Example 11.12. To illustrate the estimation method for the survival probability,
let us consider the exposure data of 15 employees in Example 11.1. In this situa-
tion, it is desired to find an upper confidence limit for P (X > OEL), where OEL
means the occupational exposure limit. This probability is referred to as the ex-
ceedance probability. Suppose for this chemical, the OEL is 105. For this example,
the sample size is 15, the sample mean is 78.5 and the standard deviation is 15.9.
To find the 95% exact upper confidence limit, select the dialog box [StatCalc→
Continuous→Normal→Coefficients of Variation ...], enter 15 for [Sample Size], 78.5
for [Sample Mean], 15.9 for [Sample SD], .9 for [Conf Level], 105 for [Value of t],
and click on [confidence interval] to get .163. Note that we used .90 for confidence
level to find 95% one-sided limits. Based on this upper confidence limit, we cannot
conclude that the exceedance probability is less than .05 (compliance guidelines by
federal agency such as the Occupational Safety and Health Administration (OSHA).

To compute the approximate 95% upper confidence limit based on (11.8), we
find the following quantities:

v∗l =

√
χ2
14;.05

14
= .6851, v∗u =

√
χ2
14;.95

14
= 1.3007, cm = .9831, η̂t = 1.6667.

Using these numbers, and noting that z2.95 = 2.7055, we calculated the left endpoint
Lη of the interval in (11.8) as .9850. Thus, the approximate 95% upper confidence
limit for the exceedance probability is

1− Φ(Lη) = 1− Φ(.9850) = .162.

Note that this approximate limit is very close to the exact one, .163, reported in the
preceding paragraph.

11.4.4 Prediction Intervals

Let (X̄, S) denote the (mean, SD) based on a sample of size n from a N(µ, σ2)
distribution. A 1−α prediction interval for an individual (from the normal population
from which the sample was drawn) is given by
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X̄ ± tn−1, 1−α/2S

√
1 +

1

n
. (11.9)

Upper Prediction Limits for at least l of m Observations from Each of r
Locations

Construction of an upper prediction limit for at least l of m observations from a
normal population at each of r locations is needed in ground water quality detection
monitoring in the vicinity of hazardous waste management facilities (HWMF), and
in process monitoring. For example, in groundwater quality monitoring near waste
disposal facilities, a series of m sample observations from each of r monitoring wells
located hydraulically downgradient of the HWMF are often compared with statistical
prediction limits based on n measurements obtained from one or more upgradient
sampling locations. The statistical problem is to construct upper prediction limit
based on the n measurements so that it includes at least l of m samples at each
of r downgradient monitoring wells. For a detailed discussion of this problem and
strategies for monitoring ground-water quality, see Davis and McNichols (1987) and
Bhaumik and Gibbons (2006). Davis and McNichols developed an exact method of
constructing the upper prediction limit (UPL) assuming normality.

We shall outline Davis and McNichols’ (1987) approach. The upper prediction
limit is of the form

X̄ + kuS,

where ku is chosen so that at least l of m future observations are below X̄ + kuS on
each of r locations, with probability 1−α. Davis and McNichols (1987) showed that
the factor ku for constructing a 1− α level upper prediction limit can be obtained
as the solution of the equation

∫ 1

0

F

(√
nku

∣∣∣∣n− 1,
√
πΦ−1(x)

)
r (I(x; l, m+ 1− l))r−1 x

l−1(1− x)m−l

B(l,m+ 1− l)
dx = 1−α,

(11.10)
where F (x|ν, δ) denotes the cdf of the noncentral t random variable with df = ν
and the noncentrality parameter δ, B(a, b) denotes the usual beta function, and
I(x;a, b) denotes the cdf of a beta random variable with parameters a and b. Davis
and McNichols tabulated values of ku for some selected values of (n, r, l,m) and for
γ = 0.95. It follows from the prediction interval in (11.9), the factor ku should be
tn−1;1−α

√
1 + 1/n when r = m = l = 1.

Example 11.13. This example, along with the simulated data, are taken from
Davis and McNichols (1987). Suppose in the vicinity of a hazardous waste manage-
ment facility (HWMF), a single quantity, say, total organic compounds (TOC), has
been specified for monitoring. A background sample size of n = 20 is chosen, and
log(TOC) measurements from a single downgradient well and upgradient well were
obtained. The differences are

.769 .093 -.669 -.284

.005 -.022 .036 1.028
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.311 .233 .025 1.568

.276 .958 .369 .091

.590 1.000 -.402 .065

The mean and standard deviation for the background sample are X̄ = .302 and S =
.544. Suppose we select the plan (r,m, l) = (16, 4, 2), then the factor for constructing
95% upper prediction limit is 1.542. The upper prediction limit is .302+1.542×.544 =
1.141. Thus, at each of the semiannual sampling occasions, up to four measurements
will be taken until two observations less than 1.141 are obtained. None or only one
of such observations is less than 1.141 indicate that a change in the mean level of
the downgradient-upgradient difference in log(TOC) has occurred.

The factor in the preceding paragraph can be obtained as follows. Select the
dialog box [StatCalc→Continuous→Normal→Tolerance ...], enter 20 for n, 16 for r,
4 for m, 2 for l, .95 for confidence level, and click on [Factor k] to get 1.54238.

11.4.5 Test and Interval Estimation for the Variance

Let S2 denote the variance of a sample of n observations from a normal population
with mean µ and variance σ2. The pivotal quantity for testing and interval estimation
of a normal variance is given by

Q =
(n− 1)S2

σ2
,

which follows a chi-square distribution with df = n−1. Let Q0 be an observed value
of Q. For testing

H0 : σ2 = σ2
0 vs. Ha : σ2 6= σ2

0 ,

a size α test rejects H0 if 2min{P (χ2
n−1 > Q0), P (χ2

n−1 < Q0)} < α. For testing
H0 : σ2 ≤ σ2

0 vs. Ha : σ2 > σ2
0 , the null hypothesis H0 will be rejected if P (χ2

n−1 >
Q0) < α, and for testing H0 : σ2 ≥ σ2

0 vs. Ha : σ2 < σ2
0 , the null hypothesis H0

will be rejected if P (χ2
n−1 < Q0) < α.

A 1− α confidence interval for the variance σ2 is given by

(
(n− 1)S2

χ2
n−1,1−α/2

,
(n− 1)S2

χ2
n−1,α/2

)
,

where χ2
m,p denotes the pth quantile of a chi-square distribution with df = m.

For a given sample variance and sample size, the dialog box [StatCalc
→Continuous → Normal →One-Sample ...] computes the confidence interval for
the population variance σ2, and p-values for hypothesis testing about σ2.

To compute a confidence interval for σ2: Enter the value of the sample size, sample
variance, and the confidence level. Click [1-sided] to get one-sided lower and upper
confidence limits for σ2. Click [2-sided] to get confidence interval for σ2.

Example 11.14. Suppose that a sample of 20 observations from a normal popula-
tion produced a variance of 12. To compute a 90% confidence interval for σ2, select
the dialog box [StatCalc →Continuous → Normal →One-Sample ...], enter 20 for
[Sample Size],

√
12 = 3.464 for [Sample SD], and 0.90 for [Confidence Level]. Click
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[1-sided] to get 8.381 and 19.57. These are the one-sided limits for σ2. That is, the
interval (8.381, ∞) would contain the population variance σ2 with 90% confidence.
The interval (0, 19.57) would contain the population variance σ2 with 90% confi-
dence. To get a two-sided confidence interval for σ2, click on [2-sided] to get 7.56381
and 22.5363. This means that the interval (7.564, 22.535) would contain σ2 with
90% confidence.
To compute p-values for hypothesis testing about σ2: Enter the summary statistics
as in the above example, and the specified value of σ2 under the null hypothesis.
Click [p-values for] to get the p-values for various alternative hypotheses.

Example 11.15. Suppose we want to test

H0 : σ2 ≤ 9 vs. Ha : σ2 > 9 (11.11)

at the level of 0.05 using the summary statistics given in Example 11.14. After
entering the summary statistics, enter 9 for [H0: V = V0]. Click [p-values for] to get
0.1499. Since this p-value is not less than 0.05, the null hypothesis in (11.11) cannot
be rejected at the level of significance 0.05. We conclude that the summary statistics
do not provide sufficient evidence to indicate that the true population variance is
greater than 9.

Example 11.16. (Test about σ2) A hardware manufacturer was asked to produce a
batch of 3-in screws with a specification that the standard deviation of the lengths of
all the screws should not exceed 0.1 in. At the end of a day’s production, a sample of
27 screws was measured, and the sample standard deviation was calculated as 0.09.
Does this sample standard deviation indicate that the actual standard deviation of
all the screws produced during that day is less than 0.1 inch?

Solution: Let σ denote the standard deviation of all the screws produced during
that day. The appropriate hypotheses for the problem are

H0 : σ ≥ 0.1 vs. Ha : σ < 0.1 ⇐⇒ H0 : σ2 ≥ 0.01 vs. Ha : σ2 < 0.01.

Note that the sample variance is (0.09)2 = 0.0081. To compute the p-value for the
above test, enter 27 for the sample size, 0.09 for the sample SD, 0.01 for [H0: V
= V0], and click on [p-values (var)]. The computed p-value is 0.26114. Since this
p-value is not smaller than any practical level of significance, we can not conclude
that the standard deviation of all the screws made during that day is less than 0.1
in.

Example 11.17. (Confidence interval for σ2) An agricultural student wants to
estimate the variance of the yields of tomato plants. He selected a sample of 18
plants for the study. After the harvest, he found that the mean yield was 38.5
tomatoes with standard deviation 3.4. Assuming a normal model for the yields of
tomato, construct a 90% confidence interval for the standard deviation of the yields
of all tomato plants.

Solution: To construct a 90% confidence interval for the variance, enter 18 for the
sample size, 3.4 for [Sample SD], and 0.90 for the confidence level. Click [2-sided] to
get 7.12362 and 22.6621. Thus, the standard deviation of tomato yields is somewhere
between

√
7.12362 = 2.669 and

√
22.6621 = 4.760 with 90% confidence.
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11.5 Two-Sample Inference

Let S2
i denote the variance of a random sample of ni observations from N(µi, σ

2
i ),

i = 1, 2. The following inferential procedures for the ratio σ2
1/σ

2
2 are based on the F

statistic given by

F =
S2
1

S2
2

. (11.12)

11.5.1 Inference for the Ratio of Variances

Hypothesis Test for the Ratio of Variances

Consider testing H0 : σ2
1/σ

2
2 = 1. When H0 is true, then the F statistic in (11.12)

follows an Fn1−1,n2−1 distribution. Let F0 be an observed value of the F in (11.12).
A size α test rejects the null hypothesis in favor of

Ha : σ2
1 > σ2

2 if the p-value P (Fn1−1,n2−1 > F0) < α.

For testing H0 : σ2
1 ≥ σ2

2 vs. Ha : σ2
1 < σ2

2 , the null hypothesis will be rejected
if the p-value P (Fn1−1,n2−1 < F0) < α. For a two-tailed test, the null hypothesis
H0 : σ2

1 = σ2
2 will be rejected if either tail p-value is less than α/2.

Interval Estimation for the Ratio of Variances

A 1− α confidence interval for σ2
1/σ

2
2 is given by

(
S2
1

S2
2

Fn2−1,n1−1,α
2
,
S2
1

S2
2

Fn2−1,n1−1,1−α
2

)
,

where Fm,n,p denotes the pth quantile of an F distribution with the numerator df
= m and the denominator df = n. The above confidence interval can be obtained
from the distributional result that

(
S2
2/σ

2
2

S2
1/σ

2
1

)
=
σ2
1

σ2
2

S2
2

S2
1

∼ Fn2−1,n1−1.

The dialog box [StatCalc→Continuous → Normal → Two-Sample ...] computes con-
fidence intervals as well as the p-values for testing the ratio of two variances.

To compute a confidence interval for σ2
1/σ

2
2 : Enter the values of the sample sizes

and sample variances, and the confidence level. Click [1-sided] to get one-sided lower
and upper limits for σ2

1/σ
2
2 . Click [2-sided] to get confidence interval for σ2

1/σ
2
2 .

Example 11.18. (Confidence interval for σ2
1/σ

2
2) A sample of 8 observations from

a normal population produced a variance of 4.41. A sample of 11 observations from
another normal population yielded a variance of 2.89. To compute a 95% confidence
interval for σ2

1/σ
2
2 , select the dialog box [StatCalc→Continuous → Normal → Two-

Sample ...], enter the sample sizes, sample variances, and 0.95 for the confidence level.
Click [1-sided] to get 0.4196 and 4.7846. This means that the interval (0.4196, ∞)
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would contain the ratio σ2
1/σ

2
2 with 95% confidence. Furthermore, we can conclude

that the interval (0, 4.7846) would contain the variance ratio with 95% confidence.
Click [2-sided] to get 0.3863 and 7.2652. This means that the interval (0.3863, 7.2652)
would contain the variance ratio with 95% confidence.

Example 11.19. (Hypothesis tests for σ2
1/σ

2
2) Suppose we want to test

H0 : σ2
1 = σ2

2 vs. Ha : σ2
1 6= σ2

2 ,

at the level of 0.05 using the summary statistics given in Example 11.18. To compute
the p-value, enter the summary statistics in the dialog box, and click on [p-values
for] to get 0.5251. Since the p-value is greater than 0.05, we cannot conclude that
the population variances are significantly different.

11.5.2 Inference for the Difference between Two Means

There are two procedures available to make inference about the mean difference
µ1 − µ2. One is based on the assumption that σ2

1 = σ2
2 and another is valid for

any variances. In practice, the equality of the variances is tested first using the F
test in the previous section. If the assumption of equality of variances is tenable,
then the two-sample t procedures given below are used to make inference about
µ1−µ2. otherwise, an approximate procedure (see Section 10.5.3) known as Welch’s
approximate degrees of freedom method can be used. This approach of selecting a
two-sample test is criticized by many authors (see Moser and Stevens, 1992, and
Zimmerman, 2004). In general, many authors suggested using the Welch test when
the variances are unknown. Nevertheless, for the sake of completeness and illustrative
purpose, we describe both approaches in the sequel.

Let X̄i and S
2
i denote, respectively, the mean and variance of a random sample

of ni observations from N(µi, σ
2
i ), i = 1, 2. Let

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
. (11.13)

The following inferential procedures for µ1 −µ2 are based on the sample means and
the pooled variance S2

p, and are valid only when σ2
1 = σ2

2 .

Two-Sample t Test

The test statistic for testing H0 : µ1 = µ2 is given by

t2 =
(X̄1 − X̄2)√
S2
p

(
1
n1

+ 1
n2

) , (11.14)

which follows a t-distribution with degrees of freedom n1+n2−2, provided σ2
1 = σ2

2 .
Let t20 be an observed value of t2. For a given level α, the null hypothesis will be
rejected in favor of

Ha : µ1 6= µ2 if the p-value P (|t2| > |t20|) < α,

in favor of Ha : µ1 < µ2 if the p-value P (t2 < t20) < α, and in favor of Ha : µ1 >
µ2 if the p-value P (t2 > t20) < α.
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Power of the Two-Sample t-test

Consider the hypotheses

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2.

For a given level α, the power of the two-sample t-test is the probability of rejecting
the null hypothesis when µ1 is indeed greater than µ2, and is given by

P (t2 > tn1+n2−2,1−α) = P (tn1+n2−2(δ) > tn1+n2−2,1−α), (11.15)

where t2 is given in (11.14), tn1+n2−2,1−α denotes the (1 − α)th quantile of a t-
distribution with degrees of freedom n1+n2−2, tn1+n2−2(δ) denotes the noncentral
t random variable with the degrees of freedom n1+n2−2 and noncentrality parameter

δ =
(µ1 − µ2)

σ
√

1
n1

+ 1
n2

.

The power of a two-tailed test is similarly calculated. For given sample sizes,
µ1 − µ2, common σ and the level of significance, StatCalc computes the power
using (11.15).

Interval Estimation of µ1 − µ2

A 1− α confidence interval based on the test-statistic in (11.14) is given by

X̄1 − X̄2 ± tn1+n2−2,1−α/2

√

S2
p

(
1

n1
+

1

n2

)
, (11.16)

where tn1+n2−2,1−α/2 denotes the 1− α
2
quantile of a t-distribution with n1+n2− 2

degrees of freedom. This confidence interval is valid only when σ2
1 = σ2

2 .

The dialog box [StatCalc→Continuous → Normal → Two-Sample ...] computes
the p-values for testing the difference between two normal means and confidence
intervals for the difference between the means. The results are valid under the as-
sumption that σ2

1 = σ2
2 .

To compute a confidence interval for µ1 −µ2: Enter the values of the sample means,
sample standard deviations, sample sizes, and the confidence level. Click [1-sided]
to get one-sided lower and upper limits for µ1 −µ2. Click [2-sided] to get confidence
interval for µ1 − µ2.

Example 11.20. (Test about σ2
1/σ

2
2) A sample of 8 observations from a normal

population with mean µ1, and variance σ2
1 produced a mean of 4 and standard de-

viation of 2.1. A sample of 11 observations from another normal population with
mean µ2, and variance σ2

2 yielded a mean of 2 with standard deviation of 1.7. Since
the inferential procedures given in this section are appropriate only when the pop-
ulation variances are equal, we first want to test that if the variances are indeed
equal (see Section 11.5.1). The test for equality of variances yielded a p-value of
2 × 0.262577 = 0.525154, and hence the assumption of equality of population vari-
ances seems to be tenable.
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To compute a 95% confidence interval for µ1 − µ2 using StatCalc, enter the
sample means, standard deviations, sample sizes, and 0.95 for the confidence level.
Click [1-sided] to get 0.484333 and 3.51567. This means that the interval (0.48433,
∞) would contain the difference µ1 − µ2 with 95% confidence. Furthermore, we can
conclude that the interval (−∞, 3.51567) would contain the difference µ1 − µ2 with
95% confidence. Click [2-sided] to get 0.161782 and 3.83822. That is, the interval
(0.161782, 3.83822) would contain the difference µ1 − µ2 with 95% confidence.

To compute p-values for testing µ1 − µ2: Select the dialog box [StatCalc→ Con-
tinuous →Normal → Two-Sample ...], enter the values of the sample sizes, sample
means, and sample standard deviations, and click [p-values for] to get the p-values
for a right-tailed test, left-tailed test, and two-tailed test.

Example 11.21. Suppose we want to test

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2

at the level of 0.05 using the summary statistics given in Example 11.20. To compute
the p-value, enter the summary statistics in the dialog box, and click on [p-values
for] to get 0.0173486. Since the p-value is less than 0.05, we conclude that µ1 > µ2.
Power Calculation of Two-Sample t-test: The dialog box [StatCalc→Continuous →
Normal → Two-Sample ...] computes the power of the two-sample t-test for

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2

assuming that σ2
1 = σ2

2 . To compute the power, enter the values of the level α of the
test, the difference between the population means, the value of the common standard
deviation σ and sample sizes n1 and n2. Click [Power]. Power of a two-tailed test
can be computed by entering α/2 for the level.

Example 11.22. (Calculation of Power) Suppose that the difference between two
normal means is 1.5 and the common standard deviation is 2. It is desired to test

H0 : µ1 ≤ µ2 vs. H0 : µ1 > µ2

at the level of significance 0.05. To compute the power when each sample size is 27,
enter 0.05 for level, 1.5 for the mean difference, 2 for the common σ, 27 for n1, and
n2; click [Power] to get 0.858742.

Sample Size Calculation: In practical applications, it is usually desired to compute
the sample sizes required to attain a given power. This can be done by a trial-
error method. Suppose in the above example we need to determine the sample sizes
required to have a power of 0.90. By trying a few sample sizes more than 27, we can
find the required sample size as 32 from each population. In this case, the power is
0.906942. Also, note that when n1 = 27 and n2 = 37, the power is 0.900729.

Example 11.23. A company, which employs thousands of computer programmers,
wants to compare the mean difference between the salaries of the male and female
programmers. A sample of 23 male programmers and a sample of 19 female pro-
grammers were selected, and programmers’ salaries were recorded. Assume that the
salary distributions for male and female programmers are normal. The summary
statistics are given in the following table.

© 2016 by Taylor & Francis Group, LLC

  



11.5 Two-Sample Inference 163

Male Female

sample size 23 19
mean 52.56 48.34 (in $1000)
SD 3.195 2.750 (in $1000)

a. Do these summary statistics indicate that the average salaries of the male pro-
grammers are higher than that of female programmers?

b. Construct a 95% confidence interval for the mean difference between the salaries
of male and female programmers.

Solution: Since the salaries are from normal populations, a two-sample procedure
for comparing normal means is appropriate for this problem. Furthermore, to choose
between the two comparison methods (one assumes that the population variances
are equal and the other is not), we need to test the equality of the population
variances. Using the dialog box [StatCalc→Continuous → Normal → Two-Sample
Case → Test and confidence interval for the Variance Ratio], we get the p-value for
testing the equality of variances is 2×0.261234 = 0.522468, which is greater than any
practical level of significance. Therefore, the assumption that the variances are equal
is tenable, and we can use the two-sample t procedures for the present problem.

a. Let µ1 denote the mean salaries of all male programmers, and µ2 denote the
mean salaries of all female programmers in the company. We want to test

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2.

To compute the p-value for the above test, enter the sample sizes, means, and
standard deviations, click [p-values for] to get 2.58684e-005. Since this p-value
is much less than any practical levels, we reject the null hypothesis, and con-
clude that the mean salaries of male programmers is higher than that of female
programmers.

b. To compute a 95% confidence interval for µ1 − µ2, enter 0.95 for the confidence
level, and click [2-sided] to get 2.33847 and 6.10153. That is, the mean difference
is somewhere between $2,338 and $6,101.

11.5.3 Inference for the Difference between Two Means
when Variances Are Unknown and Arbitrary

The following method known as the Welch approximate degrees of freedom method
can be used to make inferences about µ1 − µ2 when the population variances are
unknown and arbitrary. This approximate method is based on the result that

X̄1 − X̄2√
S2
1
n1

+
S2
2
n2

∼ tf approximately, with f =

(
S2
1
n1

+
S2
2
n2

)2

(
S4
1

n2
1(n1−1)

+
S4
2

n2
2(n2−1)

) .

The hypothesis testing and interval estimation of µ1 − µ2 can be carried out as in
Section 10.5.1 with the degrees of freedom f given above. For example, a 1 − α
confidence interval for µ1 − µ2 is given by
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X̄1 − X̄2 ± tf,1−α/2

√
S2
1

n1
+
S2
2

n2
, (11.17)

where tm,p denotes the pth quantile of a t distribution with degrees of freedom f .
This approximate method is commonly used, and the results based on this method
are very accurate even for small samples.

The dialog box [StatCalc→Continuous → Normal → Two-Sample ...] uses the
above approximate method for hypothesis testing and interval estimation of µ1−µ2

without assuming equality of variances.

Example 11.24. A sample of 8 observations from a normal population with mean
µ1, and variance σ2

1 produced X̄1 = 4 and standard deviation S1 = 2.1. A sample
of 11 observations from another normal population with mean µ2 and variance σ2

2

yielded X̄2 = 2 with standard deviation S2 = 5.

To find the 95%Welch confidence interval for µ1−µ2, select [StatCalc→Continuous
→ Normal →Two-Sample ...], enter the sample statistics and click [2-sided] to get
(−1.5985, 5.5985). To get one-sided limits, click [1-sided]. For this example, 95% one-
sided lower limit is −0.956273, and 95% one-sided upper limit is 4.95627. Suppose
we want to test H0 : µ1 − µ2 = 0 vs. H0 : µ1 − µ2 6= 0. To compute the p-values
using StatCalc, click [p-values for] to get 2 × 0.126725 = 0.25345. Thus, we cannot
conclude that the means are significantly different.

Example 11.25. Let us consider the statistics in Example 11.20, and find the
Welch confidence interval. Note that n1 = 8, X̄1 = 4 and s1 = 2.1; n2 = 11, X̄1 = 2
and s1 = 1.7. Using StatCalc as in the preceding example, we find the 95% Welch
confidence interval as (.0534, 3.947). The t-interval in Example 11.20 was calculated
as (.1618, 3.838), which is shorter than the Welch confidence interval. On the other
hand, the data in Example 11.24 indicate that the population variances may not be
equal, and 95% t-interval for Example 11.24 is (−1.9848, 5.985), which is wider than
the Welch confidence interval reported in the preceding example.

11.5.4 Comparison of Two Coefficients of Variation

Let (X̄i, S
2
i ) denote the mean and variance (unbiased estimate) of a random sample

of size ni from a N(µi, σ
2
i ) distribution, i = 1, 2. Let (x̄i, s

2
i ) be an observed value

of (X̄i, S
2
i ), i = 1, 2. Define τi = σi/µi, the coefficient of variation for the N(µi, σ

2
i )

distribution. We shall describe a test for comparing τ1 and τ2, and the generalized
variable approach to find confidence intervals for τ1 − τ2 or for the ratio τ1/τ2.

A Test for the Ratio of Coefficients of Variation

Consider testing

H0 : τ1 ≤ τ2 vs. Ha : τ1 > τ2. (11.18)

Forkman (2009) proposed a test based on a statistic that has an approximate F
distribution. To outline the test, let τ̂i = Si/X̄i, where S

2
i is the usual unbiased

estimate of σ2
i , i = 1, 2. The test statistic proposed by Forkman is given by
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F =
τ̂ 21 /[1 + τ̂ 21 (n1 − 1)/n1]

τ̂ 22 /[1 + τ̂ 22 (n2 − 1)/n2]
. (11.19)

Forkman has shown that the above statistic has an approximate F distribution with
degrees of freedom n1−1 and n2−1. This test rejects H0 in (11.18) when an observed
value of F in (11.19) is greater than Fn1−1,n2−1;1−α. Simulation studies by Krish-
namoorthy and Lee (2013) indicated that this test is very accurate in controlling
type I error rates, and has comparable powers with other tests.

Generalized Variable Approach

Let (X̄i, Si) denote the (mean, SD) based on a sample of size ni from a N(µi, σ
2
i )

distribution, i = 1, 2. For the two-sample case, let (Gµi , Gσi) denote the generalized
pivotal quantities (GPQs) for (µi, σi), i = 1, 2. Using the results of Section 2.7.2, a
GPQ for τi = σi/µi is given by

Gτi =
Gσi
Gµi

=

(
x̄i
√
Wi

si
− Zi√

ni

)−1

, (11.20)

whereWi = χ2
ni−1/(ni−1). Note that this GPQ for τi could be negative even though

τi is assumed to positive. This is not a problem in finding a confidence interval (or
a test) for the ratio, because a confidence interval for τ1/τ2 can be obtained from
the one for τ 21 /τ

2
2 .

A GPQ for τ 21 /τ
2
2 is given by

Gτ21 /τ22
= G2

τ1/G
2
τ2 =

(
x̄2

√
W2

s2
− Z2√

n2

)2/(
x̄1

√
W1

s1
− Z1√

n1

)2

. (11.21)

The 100α percentile, and the 100(1−α) percentile of Qτ21/τ22 , form a 1−2α confidence

interval for τ 21 /τ
2
2 , and the square root of this confidence interval is a 1−2α confidence

interval for τ1/τ2.
To find a confidence interval for the difference τ1 − τ2, we propose the GPQ

Gτ1−τ2 =
√
G2
τ1 −

√
G2
τ2 . (11.22)

For a given (x̄1, s1, x̄2, s2), the distribution of Gτ21 /τ22
(or that of Gτ1−τ2) does not

depend on any unknown parameters, and so they can be estimated using Monte
Carlo simulation as shown in Algorithm 11.1.

The generalized test for

H0 : τ1 ≤ τ2 vs. Ha : τ1 > τ2 (11.23)

is described as follows. Let Gτ21 /τ22 ;α denote the α quantile of Qτ21 /τ22
. Note that

Qτ21 /τ22 ;α is the 1− α lower confidence limit for τ 21 /τ
2
2 . The above null hypothesis is

rejected if this lower confidence limit is greater than one, or equivalently,

P1 = P
(
Qτ21/τ22 < 1

)
≤ α.

The above probability is referred to as the generalized p-value. The generalized
p-value for a two-tailed test is given by 2min{P1, 1 − P1}. These generalized p-
values and the generalized confidence intervals can be estimated using Monte Carlo
simulation, as shown in the following algorithm.
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Algorithm 11.1. Calculation of generalized confidence intervals

For given samples from N(µ1, σ
2
1) and N(µ2, σ

2
2), compute (x̄1, s1, x̄2, s2).

For i = 1 to N
Generate Zj ∼ N(0, 1) and Wj ∼ χ2

nj−1/(nj − 1), j = 1, 2.

Calculate Qi = G2
τ1/G

2
τ2 using (11.21).

Set Ii = 1 if Qi < 1; else set Ii = 0
(end do loop)

The proportion P1 = 1
N

∑N
i=1 Ii is a Monte Carlo estimate of the generalized p-value

for testing (11.23). The 100α percentile of these Qis generated above is a 100α%
lower confidence limit for τ 21 /τ

2
2 .

11.6 Tolerance Intervals

Let X1, . . . , Xn be a sample from a normal population with mean µ and variance
σ2. Let X̄ denote the sample mean and S denote the sample standard deviation.

11.6.1 Two-Sided Tolerance Intervals

For a given 0 < β < 1, 0 < γ < 1 and n, the tolerance factor k is to be determined
so that the interval

X̄ ± kS

would contain at least proportion β of the normal population with confidence γ.
Mathematically, k should be determined so that

PX̄,S
{
PX
[
X ∈ (X̄ − kS, X̄ + kS )|X̄, S

]
≥ β

}
= γ, (11.24)

where X also follows the N(µ, σ2) distribution independently of the sample. An
explicit expression for k is not available and has to be computed numerically. The
k satisfies (11.24) and is called the tolerance factor, and X̄ ± kS is called a (β, γ)
tolerance interval or a β content – γ coverage tolerance interval.

An approximate expression for k is given by

k ≃
(
mχ2

1,β(1/n)

χ2
m,1−γ

)1/2

, (11.25)

where χ2
1,p(1/n) denotes the pth quantile of a noncentral chi-square distribution with

df = 1, and noncentrality parameter 1/n, χ2
m,1−γ denotes the (1 − γ)th quantile of

a central chi-square distribution with df = m = n − 1, the df associated with the
sample variance. This approximation is extremely satisfactory even for small samples
(as small as 3) if β and γ are greater than or equal to 0.95 [Wald and Wolfowitz,
1946].
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The dialog box [StatCalc→Continuous → Normal→ Tolerance Intervals and Pre-
diction Intervals] uses an exact method [see Kendall and Stuart, 1973, p. 134 or
Krishnamoorthy and Mathew, 2009, Chapter 2] of computing the factor k.

11.6.2 One-Sided Tolerance Limits

The one-sided β content – γ coverage upper tolerance limit is given by X̄+cS, where
the tolerance factor c is to be determined so that

PX̄,S{PX [X ≤ X̄ + cS|X̄, S] ≥ β} = γ.

In this case, c = 1√
n
tn−1,γ(zβ

√
n), where tm,p(δ) denotes the 100pth percentile of a

noncentral t distribution with df = m and noncentrality parameter δ, and zp denotes
the 100pth percentile of the standard normal distribution. The quantity c is called
tolerance factor. Thus, the (β, γ) upper tolerance limit is given by

X̄ +
1√
n
tn−1,γ(zβ

√
n)S.

That is, at least 100β% of the data from the normal population are less than or
equal to X̄ + cS with confidence γ. The same tolerance factor c can be used to find
the lower tolerance limits. That is,

X̄ − 1√
n
tn−1,γ(zβ

√
n)S,

is a (β, γ) lower tolerance limit. This means that at least 100β% of the data are
greater than or equal to X̄ − cS with confidence γ.

It should be noted that X̄+ cS is a 1−α upper confidence limit for the quantile
µ+ zβσ, and X̄− cS is a 1−α lower confidence limit for the quantile µ− zβσ, where
zβ is the β quantile of the standard normal distribution.

Remark 11.2. The degrees of freedom associated with S2 is n− 1. In some situ-
ations, the df associated with the S2 could be different from n− 1. For example, in
one-way analysis of variance, the df associated with the pooled sample variance S2

p

is (total sample size − g), where g denotes the number of groups. If one is interested
in computing (β, γ) tolerance interval of the form

X̄1 ± k1Sp

for the first group, then for this case, the sample size is n1 and the degrees of freedom
associated with the pooled variance is

g∑

i=1

ni − g ,

where ni denotes the size of the sample from the ith group, i = 1, . . ., g.

For a given n, df, 0 < β < 1 and 0 < γ < 1, the dialog box [StatCalc→
Continuous → Normal → Tolerance ...] computes one-sided as well as two-sided
tolerance factors.
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Example 11.26. When n = 23, df = 22, β = 0.90, and γ = 0.95, the one-sided
tolerance factor is 1.86902, and the two-sided tolerance factor is 2.25125. To compute
the factors, enter 23 for [Sample Size n], 22 for [DF], 0.90 for [Proportion p], and
0.95 for [Coverage Prob g]; click [1-sided] to get 1.86902, and click [2-sided] to get
2.25125.

Applications

The normal-based tolerance factors are applicable to a non-normal distribution if
it has a one-to-one relation with a normal distribution. For example, if X follows
a lognormal distribution, then ln(X) follows a normal distribution. Therefore, the
factors given in the preceding sections can be used to construct tolerance intervals
for a lognormal distribution. Specifically, if the sample Y1, . . . , Yn is from a lognormal
distribution, then normal based methods for constructing tolerance intervals can be
used after taking logarithmic transformation of the sample. If U is a (β, γ) upper
tolerance limit based on the log-transformed data, then exp(U) is the (β, γ) upper
tolerance limit for the lognormal distribution. Approximate tolerance intervals for a
gamma distribution can be constructed using cube root transformation (see Section
16.6.3).

In many practical situations, one wants to assess the proportion of the data that
fall in an interval or a region. For example, engineering products are usually required
to satisfy certain tolerance specifications. The proportion of the products that are
within the specifications can be assessed by constructing a suitable tolerance region
based on a sample of products. As an example, consider the following acceptance
sampling plan. A lot of items is submitted for inspection, and the lot will be accepted
if at least 95% of the items are within the specification (L, U), where L is the lower
specification limit and U is the upper specification limit. In order to save time and
cost, typically a sample of items is inspected and a (.95, .95) tolerance interval is
constructed. If this tolerance interval falls in (L, U), then it can be concluded that
at least 95% of the items in the lot are within the specification limits with 95%
confidence, so the lot will be accepted.

In some situations, each item in the lot is required to satisfy only the lower spec-
ification. In this case, a (.95, .95) lower tolerance limit is constructed and compared
with the lower specification L. If the lower tolerance limit is greater than or equal
to L, then the lot will be accepted.

Tolerance limits can be used to monitor exposure levels of employees to work-
place contaminants. Specifically, if the upper tolerance limit based on exposure mea-
surements from a sample of employees is less than a permissible exposure limit
(PEL), then it indicates that a majority of the exposure measurements are within
the PEL, and hence exposure monitoring might be reduced or terminated until a
process change occurs. Such studies are feasible because the National Institute for
Occupational Safety and Health provides PEL for many workplace chemicals (see
Krishnamoorthy and Mathew, 2009, Chapter 2).

Example 11.27. Let us construct tolerance limits for the exposure data given in
Example 11.1. We already verified that the data satisfy the normality assumption.
Note that the sample size is 15 (df = 15− 1 = 14), the sample mean is 78.5, and the
standard deviation is 15.9. The tolerance factor for a (.95, .95) tolerance interval is
2.96494. Using these numbers, we compute the tolerance interval as

78.5 ± 2.96494 × 15.9 = (31.4, 125.6).
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That is, at least 95% of the exposure measurements fall between 31.4 and 125.6 with
95% confidence. The tolerance factor for a (.95, .95) one-sided limit is 2.566. The
one-sided upper limit is 78.5 + 2.566 × 15.9 = 119.3. That is, at least 95% of the
exposure measurements are below 119.3 with 95% confidence. The one-sided lower
tolerance limit is 78.5 − 2.566 × 15.9 = 37.7. That is, at least 95% of the exposure
measurements are above 37.7.

11.6.3 Equal-Tailed Tolerance Intervals

Let X1, . . . , Xn be a sample from a normal population with mean µ and variance σ2.
Let X̄ denote the sample mean and S denote the sample standard deviation. The β
content – γ coverage equal-tailed tolerance interval (L,U) is constructed so that it
would contain at least 100β% of the “center data” of the normal population. That
is, (L,U) is constructed such that no more than 100 (1−β)

2
% of the data are less than

L, and no more that 100 (1−β)
2

% of the data are greater than U with confidence γ.
This amounts to constructing (L,U) so that it would contain

(
µ− z 1+β

2
σ, µ+ z 1+β

2
σ
)

with confidence γ. Toward this, we consider the intervals of the form (X̄ − kS, X̄ +
kS), where k is to be determined so that

P
(
X̄ − kS < µ− z 1+β

2
σ and µ+ z 1+β

2
σ < X̄ + kS

)
= γ.

The dialog box [StatCalc→Continuous→Normal→Tolerance Intervals and Predic-
tion Intervals] uses an exact method due to Owen (1964) for computing the tolerance
factor k satisfying the above probability requirement.

Example 11.28. (Equal-tailed tolerance intervals) In order to understand the dif-
ference between the tolerance interval and the equal-tailed tolerance interval, let us
consider Example 11.27, where we constructed the (.95, .95) tolerance interval as
(31.4, 125.6). Note that this interval would contain at least 95% of the data (not nec-
essarily center data) with 95% confidence. Also, for this example, the sample size is
15, the sample mean is 78.5 and the standard deviation is 15.9. To compute the (.95,
.95) equal-tailed tolerance factor, enter 15 for [Sample Size n], 0.95 for [Proportion
p], and 0.95 for [Coverage Prob g]; click [Factors for equal-tailed TI]] to get 3.216.
The (.95, .95) equal-tailed tolerance interval is 78.5 ± 3.216 × 15.9 = (27.37, 129.6).
We also observe that this equal-tailed tolerance interval is wider than the tolerance
interval (31.4, 125.6).

11.6.4 Simultaneous Hypothesis Testing for Quantiles

Let X1, . . . , Xn be a sample from a normal population with mean µ and variance
σ2. Let X̄ denote the sample mean and S denote the sample standard deviation.
Owen (1964) pointed out an acceptance sampling plan, where a lot of items will be
accepted if the sample provides evidence in favor of the alternative hypothesis given
below:

H0 : Hc
a vs. Ha : L < µ− z 1+β

2
σ and µ+ z 1+β

2
σ < U,
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where L and U are specified numbers, and β is a number in (0, 1), usually close to
1. Note that the lot is not acceptable if either

µ− z 1+β
2
σ ≤ L, U ≤ µ− z 1+β

2
σ or µ− z 1+β

2
σ ≤ L and U ≤ µ− z 1+β

2
σ.

The null hypothesis will be rejected at level α, if

L < X̄ − kS and X̄ + kS < U,

where k is to be determined such that

P (L < X̄ − kS and X̄ + kS < U |H0) = α.

Notice that the factor k is determined in such a way that the probability of accepting
an unacceptable lot (rejecting H0 when it is true) is no more than α.

The dialog box [StatCalc→Continuous → Normal → Tolerance Intervals and
Prediction Intervals] uses an exact method due to Owen (1964) for computing the
factor k satisfying the above probability requirement.

Example 11.29. (Test for quantiles) Let us use the summary statistics in Example
11.27 for illustrating above quantile test. Note that n = 15, X̄ = 78.5 and S = 15.9.
We would like to test if the lower 2.5th percentile is greater than 30 and the upper
2.5th percentile is less than 128 at the level of 0.05. That is, our

H0 : Hc
a vs. Ha : 30 < µ− z.975σ and µ+ z.975σ < 128.

Note that (1+ β)/2 = 0.975 implies that β = 0.95. To find the factor k, enter 15 for
the sample size, 0.95 for the proportion p, 0.05 for the level, and click [2-sided] to get
k = 2.61584. Thus, X̄−kS = 36.9082 and X̄+kS = 120.092. Thus, we have enough
evidence to conclude that the lower 2.5th percentile of the normal distribution is
greater than 30 and the upper 2.5th percentile of the normal distribution is less
than 128.

11.7 Inference Based on Censored Samples

Consider a sample of size n with m censored observations from a N(µ, σ2) distribu-
tion. The measurements on these m censored observations are not recorded, because
the values (of the variable of interest) of these m units could be less than the trace
level (detection limit of a device or a laboratory method). This type of censoring is
referred to as the type I left-censoring. If an experiment is terminated at a predeter-
mined mission time, then the censoring is referred to as the time-censoring or type
I right-censoring. Note that the value of m is unknown prior to the experiment and
is a random variable. In some situations, an experiment may be carried out until a
fixed number of items fail, and this type of censoring is referred to as the type II
right-censoring (failure-censoring). In type II censoring, the values of the items that
were not failed are only known to be larger than the value of the last item failed.

In the sequel, we shall describe some inferential methods for the mean, variance,
and percentiles of a normal distribution based on a type II left-censored sample.
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11.7 Inference Based on Censored Samples 171

Inference based on a type II right-censored sample can be obtained by converting
the right-censored sample to left-censored sample. This conversion can be done by
multiplying the right-censored sample by −1.

Consider a left-censored sample of size n with m censored values. Denote the
uncensored sample by

X1, ..., Xn−m,

X1 being the smallest, X2 the second smallest, and so on. Define

X̄d =
1

n−m

n−m∑

i=1

Xi and S
2
d =

1

n−m

n∑

i=1

(Xi − X̄d)
2. (11.26)

The log-likelihood function, after omitting a constant term, can be written as

l(µ, σ) = m ln Φ(z∗)− (n−m) ln σ − (n−m)(s2d + (x̄d − µ)2)

2σ2
, (11.27)

where z∗ = X1−µ
σ

if the sample is type II left-censored and is (DL − µ)/σ, if the
sample includes a single detection limit; that is, the sample is type I left-censored.
Now let µ̂ and σ̂ denote the maximum likelihood estimates of µ and σ, respectively,
obtained by maximizing the above log-likelihood function. These can be numerically
obtained as follows.

Computation of the MLEs

The method by Cohen (1961) is commonly used to find the maximum likelihood
estimates (MLEs) based on a censored normal sample. An alternative approach by
Krishnamoorthy and Xie (2011), which appears to be slightly faster than Cohen’s
method, determines the MLEs as the roots of the equations

σ̂2(µ) = S2
d + (X̄d − µ)2 − (X1 − µ)(X̄d − µ) (11.28)

and
(n−m)(X̄d − µ)

σ̂(µ)
−m

φ(ẑ∗)

Φ(ẑ∗)
= 0, (11.29)

where X̄d and S2
d are as defined in (11.26), ẑ∗ = (X1 − µ)/σ̂(µ). Note that, for a

given sample, the above equation is a function of µ only. The value of µ that satisfies
(11.29) is the MLE µ̂ of µ, and the corresponding σ̂(µ̂) is the MLE of σ. The root of
(11.29) can be found using a root bracketing (bisection) method with the bracketing
interval, for example, (X̄d − 3Sd, X̄d).

Remark 11.3. The MLEs based on a sample with m nondetects below a single
detection limit DL can be obtained by solving equations (11.28) and (11.29) with
X1 replaced by DL.

The R function 11.1 calculates the MLEs for a given vector x of detected observa-
tions, the number of nondetects m, and the value of the detection limit dl.

Pivotal Quantities

Consider a type II singly left-censored sample of size n withm censored observations.
As the family of normal distributions is a location-scale family, and the MLEs are
equivariant estimators, Result 2.7.1 implies that

µ̂− µ

σ
∼ µ̂∗ and

σ̂

σ
∼ σ̂∗, (11.30)
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172 11 Normal Distribution

where the notation ∼ means “distributed as,” and µ̂∗ and σ̂∗ are the MLEs based
on a type II censored sample of size n (with m censored values) from a N(0, 1)
distribution. That is, the MLEs µ̂∗ and σ̂∗ are the values of µ and σ, respectively,
that maximize the log-likelihood function based on a random sample of size n with
m censored values from a N(0, 1) distribution. As a result, the distributions of
the above quantities can be evaluated empirically by generating censored samples
of size n from a N(0, 1) distribution. The empirical distributions can be used to
find confidence intervals for various parameters, such as the mean, variance, and
percentiles as shown in the sequel.

11.7.1 Confidence Intervals for the Mean and Variance

It follows from (11.30) that µ̂−µ
σ̂

∼ µ̂∗

σ̂∗
. Let cl and cu be determined so that

P

(
cl ≤

µ̂∗

σ̂∗ ≤ cu

)
= 1− α, (11.31)

where 1− α is the confidence level of the desired confidence interval for µ. Then

(µ̂− cuσ̂, µ̂− clσ̂) (11.32)

is an approximate 1−α confidence interval for µ. A confidence interval for variance
σ2 can be obtained similarly. Let vl and vu be determined so that

P (vl ≤ σ̂∗2 ≤ vu) = 1− α, (11.33)

where σ̂∗ is as defined in (11.30). Then it follows from (11.30) that

(
σ̂2

vu
,
σ̂2

vl

)
,

is an approximate 1− α confidence interval for σ2.

Algorithm 11.2. Estimation of (cl, cu) satisfying (11.31), and (vl, vu) satisfying
(11.33)

1. Generate a sample of size n from N(0, 1) distribution.
2. Sort the random numbers generated in the previous step, and discard the small-

est m numbers.
3. Based on the above censored sample, compute the MLEs µ̂∗ and σ̂∗ using the

log-likelihood function (11.27).
4. Set Q∗

µ = µ̂∗/σ̂∗ and Q∗
σ2 = σ̂∗2.

5. Repeat steps 1–4 for a large number of times, say, 10000.

Let Q∗
µ;1−α denote the 100(1 − α) percentile of 10,000 Q∗

µs generated above. Then,
cl = Q∗

µ;α/2 and cu = Q∗
µ;1−α/2. Similarly, vl = Q∗

σ2;α/2 and vu = Q∗
σ2;1−α/2.

The dialog box [StatCalc→Continuous → Normal → Censored Samples] calcu-
lates the values (cl, cu) and (vl, vu) using the above algorithm with 100,000 simula-
tion runs. Furthermore, for a given value of X1 (type II censored), detection limit
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11.7 Inference Based on Censored Samples 173

DL, or mission time (when type I censored), the mean and standard deviation of the
uncensored data, sample size, and the number of censored data, the aforementioned
dialog box computes confidence intervals for the mean and for the variance.

11.7.2 Tolerance Intervals

One-sided tolerance limits are one-sided confidence limits for appropriate percentile
of the population interest. For a N(µ, σ2) distribution, the 100β percentile is

ξβ = µ+ zβσ, (11.34)

where zβ is the β quantile of the standard normal distribution. Using the distribu-
tional results in (11.30), it can be readily verified that

Qβ =
ξβ − µ̂

σ̂
=
µ− µ̂

σ̂
+ zβ

σ

σ̂
∼ zβ − µ̂∗

σ̂∗ , (11.35)

where µ̂∗ and σ̂∗ are the MLEs based on a type II censored sample of size n with m
censored values from a N(0, 1) distribution.

For 0 < α < .5 and 0 < β < .5, let Qβ;1−α denote the 100(1 − α) percentile of
Qβ in (11.35). Then

µ̂+Qβ;1−ασ̂ (11.36)

is a 1 − α upper confidence limit for ξβ, or equivalently, (β, 1 − α) upper tolerance
limit for the sampled normal population. The (β, 1 − α) lower tolerance limit is
constructed similarly as

µ̂+Q1−β;ασ̂. (11.37)

To find a (β, 1 − α) tolerance interval of the form µ̂ ± kσ̂, the factor k is to be
determined so that

Pµ̂∗,σ̂∗

{
PZ

(
µ̂∗ − kσ̂∗ ≤ Z ≤ µ̂∗ + kσ̂∗

∣∣∣∣µ̂
∗, σ̂∗

)
≥ β

}
= 1− α, (11.38)

where Z ∼ N(0, 1) and (µ̂∗, σ̂∗) is as defined in (11.35). This condition is further
simplified (see Krishnamoorthy and Xie, 2011), and the k should be determined so
that

Pµ̂∗,σ̂∗ (v/σ̂∗ ≤ k) = 1− α, (11.39)
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R function 11.1. Computation of the MLEs based on a censored samplea

mles.norm.cens = function(x, m, dl){

nm = length(x)

n = m + nm

l = 1

xbd = mean(x)

sqd = var(x)

xl = xbd-3*sqrt(sqd)

xu = xbd

eqnu = function(uh, xbd, sqd, n, m, dl){

sigsqh = sqd +(xbd-dl)*(xbd-uh)

sh = sqrt(sigsqh); zs = (dl-uh)/sh

ans = (n-m)*(xbd-uh)/sh-m*dnorm(zs)/pnorm(zs)

return(ans)}

repeat{

fxl = eqnu(xl, xbd, sqd, n, m, dl)

fxu = eqnu(xu, xbd, sqd, n, m, dl)

if(fxl*fxu < 0.0){break}

xl = xl - 0.1}

c0 = (xu*fxl-xl*fxu)/(fxl-fxu)

repeat{

c1 = (xu*fxl-xl*fxu)/(fxl-fxu)

if(eqnu(c1, xbd, sqd, n, m, dl)*fxu < 0.0){

xl = c1

fxl = eqnu(xl, xbd, sqd, n, m, dl)

if(eqnu(c0, xbd, sqd, n, m, dl)*eqnu(c1, xbd, sqd, n, m, dl) > 0.0)+

{fxu = fxu/2.0}}

else{xu = c1; fxu = eqnu(xu, xbd, sqd, n, m, dl)

if(eqnu(c0, xbd, sqd, n, m, dl)*eqnu(c1, xbd, sqd, n, m, dl) > 0.0)+

{fxl = fxl/2.0}}

c0 = c1; ans = abs(eqnu(c1, xbd, sqd, n, m, dl))

if(l >= 30 | ans <= 1.0e-7){break}

l = l + 1}

mlemu = c1; mlesqh = sqd + (xbd-mlemu)**2-(dl-mlemu)*(xbd-mlemu)

return(c(mlemu,mlesqh))}

aElectronic version of this R function can be found in HBSDA.r located in
StatCalc directory.

where v satisfies

Φ(µ̂∗ + v)− Φ(µ̂∗ − v) = p, (11.40)

and Φ denotes the standard normal distribution function.

Krishnamoorthy and Xie (2011) have provided an algorithm to compute the
value of k satisfying (11.39). The dialog box [StatCalc→Continuous → Normal →
Censored Samples] calculates the values of Qβ;1−α for computing one-sided tolerance
limits and the factor k, satisfying (11.39), for computing tolerance intervals.
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11.7.3 Inference Based on Type I Censored Samples

All inferential methods described in earlier sections are exact, except for simulation
errors, when the samples are type II censored. If the samples are type I censored,
then the aforementioned factors for one-sided tolerance limits or tolerance intervals
can be used to find approximate tolerance intervals, and confidence intervals for the
mean and variance (see Schmee, Gladstein and Nelson, 1985, and Krishnamoorthy,
Mallick and Mathew, 2011). For more accurate methods, see Krishnamoorthy and
Xu (2011).

In most applications, the samples are type I right-censored or left-censored. For
instance, in analysis of exposure or pollution data, the samples often include de-
tection limits. If a sample includes a single detection limit (DL), the contaminant
concentrations below DL are not detected, as a result, the resulting sample is type
I left-censored. On the other hand, in survival analysis the samples are often type
I right-censored, because the measurements on test units are not observed after the
mission time. The method for finding the MLEs for left-censored samples can be used
to find the MLEs for right censored samples; multiplying the right-censored sample
by −1, the sample can be converted to left-censored. This conversion results into
−µ̂, and by changing the sign, we obtain the MLE of µ based on the right-censored
sample. Note that the conversion does not affect the MLE of σ.

The dialog box [StatCalc→Continuous → Normal → Censored Samples] calcu-
lates confidence intervals for the mean and variance, one-sided tolerance limits, and
tolerance intervals for type I right-censored samples. This is done by entering 1 for
[left-censored] and 2 for [right-censored] in the dialog box cited above.

Example 11.30. A batch of 25 AA size batteries was put on test to estimate the
average life hours. After 5 hours, the test was terminated, and by that time 15
batteries were dead with lifetimes (in minutes)

281 282 286 287 289 291 292 292 292 293 293 294 294 296 297

Normal Q–Q plot for uncensored data indicates that the normality assumption is
tenable. The mean and standard deviation of the uncensored data are

X̄ = 290.6 and S =
1

14

√√√√
15∑

i=1

(Xi − X̄)2 = 4.733.

Note that the sample is type I right-censored with n = 25 and the number of censored
values m = 10.
The R function 11.1 calculates the MLEs based on a left-censored sample. To use
this function to find the MLEs based on a right-censored sample, we can call the
function as follows.

x = c(281,282,286,287,289,291,292,292,292,293,293,294,294,296,297)

dl = 300

m = 10

mles.norm.cens(-x, 10, -300)

[1] -296.8114 80.7872

Note that −x with −dl is a left-censored sample. Thus, the MLEs are µ̂ = 296.81
and σ̂2 = 80.79.
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To find a 95% confidence interval for the mean life hour, select the dialog box
[StatCalc→Continuous → Normal → Censored Samples], enter 2 to indicate right-
censored, 25 for [Sample Size], 10 for [No. censored], 300 for [X1 or DL], 290.6 for
[Mean(uncens)], 4.733 for [SD(uncens)], .95 for confidence level, and click on [CIs]
to get (290.7, 300.9). That is, on average the battery will last between 291 and 301
minutes. Note also that the MLE for the mean is 296.775 and the MLE of σ is
8.8855. Further, a 95% confidence interval for σ2 is (39.2, 210.7).

To find the (.90, .95) lower tolerance limits for the lifetime distribution of the
batteries, enter .90 for [Content Level p] and .95 for [Coverage Level] while keeping
other entries (in the preceding paragraph); click on [Low Tol Lim] to get 275.9. This
means that at least 90% of such batteries will last about 276 minutes with confidence
95%. To find (.90, .95) two-sided tolerance intervals, click on [Tol Interval] to get
(272.947, 320.603). That is, at least 90% of batteries will last 273 to 321 minutes
with confidence 95%.

Example 11.31. To illustrate the methods for type I left-censored data, let us
create a censored sample from the exposure data in Example 11.1. The complete
sorted data is

54 59 63 66 67 69 75 77 79 82 89 93 98 102 104

The data include 15 uncensored values with mean X̄ = 78.4667 and the standard
deviation S = 15.87874. To compute the (.95, .95) one-sided upper tolerance limit,
we find the required factor using the dialog box [StatCalc→Continuous → Normal →
Tolerance Intervals and Prediction Intervals] as 2.566. Thus, the (.95, .95) one-sided
upper tolerance limit for the exposure distribution is

X̄ + 2.566 × S = 78.4667 + 2.566 × 15.8784 = 119.21.

The (.95, .95) tolerance interval was similarly computed as (27.40, 129.53).
Let us now assume a detection limit of 68, and pretend that the data

below 68 are nondetects. The resulting sample is type I left-censored with
the censoring value 68, number of nondetects is 5. The detected values are
69, 75, 77, 79, 82, 89, 93, 98, 102, 104 with the mean X̄ = 86.8 and the standard devi-
ation S = 12.1637. The MLEs of µ and σ2 can be computed using R function 11.1
as follows.

x = c(69, 75, 77, 79, 82, 89, 93, 98, 102, 104)

m = 5

dl = 68

mles.norm.cens(x,m,dl)

[1] 76.52146 341.19208

To compute a (.95, .95) upper tolerance limit based on this censored sample, select
the dialog box [StatCalc→Continuous → Normal → Censored Samples], enter 1
in the first edit box to indicate that the sample is left-censored, 15 for [Sample
Size], 5 for [No. Censored], 68 for [X1 or DL], 86.8 for [Mean (uncens)], 12.1637 for
[SD(uncens)], .95 for [Cont Level], .95 for [Coverage level], and click on [Upp Tol
Lim] to get 129.4. Note that the upper tolerance limit based on all 15 measurements
is 119.21. The increase in the upper tolerance limit is due to the loss of 5 data
points which we assumed to be nondetects. To find the (.95, .95) two-sided tolerance
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11.8 Properties and Results 177

interval, click on [Tol Interval] to get (9.79,143.53) which is wider than the one based
on all 15 measurements.

For this example, the 95% confidence interval for the mean of the exposure dis-
tribution is (60.37, 87.93) based on the censored sample, and is (76.20, 80.74) based
on all 15 measurements. As the calculations of the factors and critical values are
based on simulation, a reader may get slightly different results from those reported
here.

11.8 Properties and Results

1. Let X1, . . . , Xn be independent normal random variables with
Xi ∼ N(µi, σ

2
i ), i = 1, 2, 3, . . . , n. Then

n∑

i=1

aiXi ∼ N

(
n∑

i=1

aiµi,

n∑

i=1

a2iσ
2
i

)
,

where a1, . . ., an are constants.

2. Let U1 and U2 be independent uniform(0,1) random variables. Then

X1 = cos(2πU1)
√

−2 ln(U2),

X2 = sin(2πU1)
√

−2 ln(U2)

are independent standard normal random variables [Box–Muller transforma-
tion].

3. Let Z be a standard normal random variable. Then Z2 is distributed as a chi-
square random variable with df = 1.

4. Let X and Y be independent normal random variables with common variance
but possibly different means. Define U = X + Y and V = X − Y . Then U and
V are independent normal random variables.

5. The sample mean
X̄ and {(X1 − X̄), . . . , (Xn − X̄)}

are statistically independent.

6. Let X1, . . . , Xn be independent N(µ, σ2) random variables. Then

V 2 =
n∑

i=1

(Xi − X̄)2 and

{
(X1 − X̄)

V
, . . . ,

(Xn − X̄)

V

}

are statistically independent.

7. Stein’s (1981) Lemma: If X follows a normal distribution with mean µ and
standard deviation σ, then

E(X − µ)h(X) = σE

[
∂h(X)

∂X

]
,

provided the indicated expectations exist.
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8. Let X1, . . . , Xn be independent identically distributed normal random variables.
Then

n∑
i=1

(Xi − X̄)2

σ2
∼ χ2

n−1 and

n∑
i=1

(Xi − µ)2

σ2
∼ χ2

n.

11.9 Relation to Other Distributions

1. Cauchy: If X and Y are independent standard normal random variables, then
U = X/Y follows the Cauchy distribution (Chapter 26) with probability density
function

f(u) =
1

π(1 + u2)
, −∞ < u <∞.

2. F Distribution: If X and Y are independent standard normal random variables,
then X2 and Y 2 are independent and distributed as a χ2 random variable with
df = 1. Also F = (X/Y )2 follows an F1,1 distribution.

3. Gamma: Let Z be a standard normal random variable. Then

P (0 < Z ≤ z) = P (Y < z2)/2,

and
P (Y ≤ y) = 2P (Z ≤ √

y)− 1, y > 0,

where Y is a gamma random variable with shape parameter 0.5 and scale pa-
rameter 2.

4. Lognormal: A random variable Y is said to have a lognormal distribution with
parameters µ and σ if ln(Y ) follows a normal distribution. Therefore,

P (Y ≤ x) = P (ln(Y ) ≤ ln(x)) = P (X ≤ ln(x)),

where X is the normal random variable with mean µ and standard deviation σ.

For more results and properties, see Patel and Read (1981).

11.10 Random Number Generation

Algorithm 11.3. Normal variate generator

Generate U1 and U2 from uniform(0,1) distribution. Set

X1 = cos(2πU1)
√

−2 ln(U2)

X2 = sin(2πU1)
√

−2 ln(U2).

Then X1 and X2 are independent N(0, 1) random variables. There are several other
methods available for generating normal random numbers (see Kennedy and Gentle
1980, Section 6.5). The above Box–Muller transformation is simple to implement
and is satisfactory if it is used with a good uniform random number generator.
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11.10 Random Number Generation 179

The following algorithm due to Kinderman and Ramage (1976; correction Vol. 85,
p. 272) is faster than the Box–Muller transformations. For better accuracy, double
precision may be required.

Algorithm 11.4. Normal variate generator1

In the following, u, v, and w are independent uniform(0, 1) random

numbers.

The output x is a N(0, 1) random number.

Set g = 2.21603 58671 66471

f(t) =
1√
2π

exp(−t2/2) − 0.180025191068563(g − |t|), |t| < g

Generate u

If u < 0.88407 04022 98758, generate v

return x = g*(1.3113 16354 44180*u + v + 1)

If u < 0.97331 09541 73898 go to 4

3 Generate v and w

Set t = g**2/2 - ln(w)

If v**2*t > g**2/2, go to 3

If u < 0.98665 54770 86949, return x = sqrt(2*t)

else return x = - sqrt(2*t)

4 If u < 0.95872 08247 90463 goto 6

5 Generate v and w

Set z = v - w

t = g - 0.63083 48019 21960*min(v, w)

If max(v, w) <= 0.75559 15316 67601 goto 9

If 0.03424 05037 50111*abs(z) <= f(t), goto 9

goto 5

6 If u < 0.91131 27802 88703 goto 8

7 Generate v and w

Set z = v - w

t = 0.47972 74042 22441 + 1.10547 36610 22070*min(v, w)

If max(v, w) <= 0.87283 49766 71790, goto 9

If 0.04926 44963 73128*abs(z) <= f(t), goto 9

goto 7

8 Generate v and w

1Reproduced with permission from the American Statistical Association.
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Set z = v - w

t = 0.47972 74042 22441 - 0.59950 71380 15940*min(v, w)

If max(v, w) <= 0.80557 79244 23817 goto 9

If t >= 0 and 0.05337 75495 06886*abs(z) <= f(t), goto 9

goto 8

9 If z < 0, return x = t

else return x = -t

11.11 Computation of the Distribution Function

Method 1

For z > 0, the following simple approximation given in Abramowitz and Stegun
(1964) can be used.

Φ(x) = 1− φ(x)(b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5) + ǫ(x), t = (1 + b0x)
−1,

where b0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782, b3 = 1.781477937,
b4 = −1.821255978, b5 = 1.330274429, and |ǫ(x)| ≤ 7.5× 10−8.

Method 2

For 0 < z < 7, the following polynomial approximation can be used to compute
the cumulative distribution function.

Φ(z) = e
−z2

2
P7z

7 + P6z
6 + P5z

5 + P4z
4 + P3z

3 + P2z
2 + P1z + P0

Q8z8 +Q7z7 +Q6z6 +Q5z5 +Q4z4 +Q3z3 +Q2z2 +Q1z +Q0
,

where

P0 = 913.167442114755700, P1 = 1024.60809538333800, P2 = 580.109897562908800,
P3 = 202.102090717023000, P4 = 46.0649519338751400, P5 = 6.81311678753268400,
P6 = 6.047379926867041E − 1, P7 = 2.493381293151434E − 2,
and
Q0 = 1826.33488422951125, Q1 = 3506.420597749092, Q2 = 3044.77121163622200,
Q3 = 1566.104625828454, Q4 = 523.596091947383490, Q5 = 116.9795245776655,
Q6 = 17.1406995062577800, Q7 = 1.515843318555982,
Q8 = 6.25E − 2.
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R function 11.2. Calculation of the standard normal cdfa

normcdf <- function(x)

{

p <- c(913.167442114755700, 1024.60809538333800,

580.109897562908800, 202.102090717023000,

46.0649519338751400, 6.81311678753268400,

6.047379926867041E-1,2.493381293151434E-2)

q <- c(1826.33488422951125, 3506.420597749092,

3044.77121163622200, 1566.104625828454,

523.596091947383490, 116.9795245776655,

17.1406995062577800, 1.515843318555982,

6.25E-2)

sqr2pi <- 2.506628274631001;

if(x > 0.0){z <- x; check <- 1.0}

else{z <- -x; check <- 0.0;}

if (z > 32.0){

if (x > 0.0){prb <- 1.0}

else{prb <- 0.0}}

first <- exp(-0.5*z*z)

phi <- first/sqr2pi

if (z < 7.0){

prb <- (first*(((((((p[8]*z + p[7])*z + p[6])*z + p[5])*z + p[4])*z

+ p[3])*z + p[2])*z + p[1])/((((((((q[9]*z + q[8])*z + q[7])*z

+ q[6])*z + q[5])*z + q[4])*z + q[3])*z + q[2])*z + q[1]))

}

else{prb <- (phi/(z + 1.0/(z + 2.0/(z + 3.0/(z + 4.0/

(z + 5.0/(z + 6.0/(z + 7.0))))))))}

if (check == 1.0){prb <- 1.0 - prb}

return(prb)

}

aElectronic version of this R function can be found in HBSDA.r, located in
StatCalc directory.

For z ≥ 7, the following continued fraction can be used to compute the probabilities.

Φ(z) = 1− ϕ(z)

[
1

z+

1

z+

2

z+

3

z+

4

z+

5

z+
· · ·
]
,

where ϕ(z) denotes the standard normal density function. The above method is
supposed to give 14 decimal accurate probabilities. [Hart et al., 1968, p. 137].
R function 11.2, based on the above computational method, evaluates the standard
normal cdf.
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Chi-Square Distribution

12.1 Description

Let X1, . . . , Xn be independent standard normal random variables. The distribution

of X =
n∑
i=1

X2
i is called the chi-square distribution with degrees of freedom (df) n,

and its probability density function is given by

f(x|n) = 1

2n/2Γ(n/2)
e−x/2xn/2−1, x > 0, n > 0. (12.1)

The chi-square random variable with df = n is denoted by χ2
n. Since the probability

density function is valid for any n > 0, alternatively, we can define the chi-square
distribution as the one with the probability density function (12.1). This latter
definition holds for any n > 0.
The cdf is given by

F (x|n) = 1

2n/2Γ(n/2)

∫ x

0

e−t/2tn/2−1dt, n > 0.

An infinite series expression for the cdf is given in Section 11.5.1. Alternatively, the
cdf may be calculated using the relation that P (X ≤ x|n) = P

(
Y ≤ x

2

)
, where Y is a

gamma random variable with the shape parameter a = n/2 and the scale parameter
b = 1. Plots in Figure 12.1 indicate that, for large degrees of freedom n, the chi-
square distribution is symmetric about its mean. Furthermore, χ2

a is stochastically
larger than χ2

b for a > b.

12.2 Moments

Mean: n
Variance: 2n

Mode: n− 2, n > 2

Coefficient of Variation:
√

2
n

183
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FIGURE 12.1: Chi-square probability density functions

Coefficient of Skewness: 2
√

2
n

Coefficient of Kurtosis: 3 + 12
n

Mean Deviation: nn/2e−n/2

2n/2−1Γ(n/2)

Moment Generating Function: (1− 2t)−n/2

Moments about the Origin: E[(χ2
n)
k] = 2k

k−1∏
i=0

(n/2 + i), k = 1, 2, · · ·

E
(
ln(χ2

n)
)
: ψ(n/2) + ln(2)

12.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous → Chi-sqr] computes the probabilities and
percentiles of a chi-square distribution. For the df greater than 100,000, a normal
approximation to the chi-square distribution is used to compute the distribution
function as well as the percentiles.
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12.4 Applications 185

To compute probabilities: Enter the value of the df, and the value of x at which the
cdf is to be computed; click P(X <= x). For example, when df = 13.0 and x = 12.3,

P (X ≤ 12.3) = 0.496789 and P (X > 12.3) = 0.503211.

To compute percentiles: Enter the values of the df and the cumulative probability,
and click [x]. As an example, when df = 13.0 and the cumulative probability = 0.95,
the 95th percentile is 22.362. That is, P (X ≤ 22.362) = 0.95.

To compute the df: Enter the values of the cumulative probability and x, and click
[DF]. For x = 6.0 and the cumulative probability = 0.8, the value of DF is 4.00862.

To compute moments: Enter the value of the df and click [M].

12.4 Applications

The chi-square distribution is also called the variance distribution by some authors,
because the variance of a random sample from a normal distribution follows a chi-
square distribution. Specifically, if X1, . . . , Xn is a random sample from a normal
distribution with mean µ and variance σ2, then

n∑
i=1

(Xi − X̄)2

σ2
=

(n− 1)S2

σ2
∼ χ2

n−1.

This distributional result is useful to make inferences about σ2 (see Section 11.4.5).

In categorical data analysis consists of an r × c table, the usual test statistic,

T =

r∑

i=1

c∑

j=1

(Oij − Eij)
2

Eij
∼ χ2

(r−1)×(c−1) approximately,

where Oij and Eij denote, respectively, the observed and expected cell frequencies.
The null hypothesis of independent attributes will be rejected at a level of significance
α, if an observed value of T is greater than (1 – α)th quantile of a chi-square
distribution with df = (r − 1)× (c− 1).

The chi-square statistic

k∑

i=1

(Oi − Ei)
2

Ei

can be used to test whether a frequency distribution fits a specific model. See Section
2.4.2 for more details.
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186 12 Chi-Square Distribution

12.5 Properties and Results

12.5.1 Properties

1. If X1, . . . , Xk are independent chi-square random variables with degrees of free-
dom n1, . . . , nk, respectively, then

k∑

i=1

Xi ∼ χ2
m with m =

k∑

i=1

ni.

2. Let Z be a standard normal random variable. Then Z2 ∼ χ2
1.

3. Let F (x|n) denote the cdf of χ2
n. Then

a. F (x|n) = 1
Γ(n/2)

∞∑
i=0

(−1)i(x/2)n/2+i

i!Γ(n/2+i)
,

b. F (x|n+ 2) = F (x|n)− (x/2)n/2e−x/2

Γ(n/2+1)
,

c. F (x|2n) = 1− 2
n∑
k=1

f(x|2k),

d. F (x|2n+ 1) = 2Φ(
√
x)− 1− 2

n∑
k=1

f(x|2k + 1),

where f(x|n) is the probability density function of χ2
n, and Φ denotes the cdf of

the standard normal random variable [(a) Abramowitz and Stegun 1965, p. 941;
(b) and (c) Peizer and Pratt 1968; (d) Puri 1973].

4. Let Z′ = (Z1, . . . , Zm)′ be a random vector whose elements are independent
standard normal random variables, and A be an m×m symmetric matrix with
rank = k. Then

Q = Z′AZ =
m∑

i=1

m∑

j=1

aijZiZj ∼ χ2
k

if and only if A is an idempotent matrix, that is, A2 = A.

5. Cochran’s Theorem: Let Z be as defined in (4) and Ai be an m×m symmetric
matrix with rank(Ai) = ki, i = 1, 2, . . . , r. Let

Qi = Z′AiZ, i = 1, 2, . . . , r

and
m∑

i=1

Z2
i =

r∑

i=1

Qi.

Then Q1, . . ., Qr are independent with Qi ∼ χ2
ki
, i = 1, 2, . . . , r, if and only if

r∑

i=1

ki = m.

6. For any real valued function f ,

E[(χ2
n)
kf(χ2

n)] =
2kΓ(n/2 + k)

Γ(n/2)
E[f(χ2

n+2k)],

provided the indicated expectations exist.
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7. Haff’s (1979) Identity: Let f and h be real valued functions, and X be a chi-
square random variable with df = n. Then

E[f(X)h(X)] = 2E

[
f(X)

∂h(X)

∂X

]
+2E

[
∂f(X)

∂X
h(X)

]
+(n−2)E

[
f(X)h(X)

X

]
,

provided the indicated expectations exist.

12.5.2 Relation to Other Distributions

1. F and Beta: Let X and Y be independent chi-square random variables with
degrees of freedoms m and n, respectively. Then

(X/m)

(Y/n)
∼ Fm,n.

Furthermore, X
X+Y

∼ beta(m/2, n/2) distribution.

2. Beta: If X1, . . . , Xk are independent chi-square random variables with degrees
of freedoms n1, . . . , nk, respectively. Define

Wi =
X1 + . . .+Xi
X1 + . . .+Xi+1

, i = 1, 2, . . . , k − 1.

The random variables W1, . . . ,Wk−1 are independent with

Wi ∼ beta
(m1 + . . .+mi

2
,
mi+1

2

)
, i = 1, 2, . . . , k − 1.

3. Gamma: The gamma distribution with shape parameter a and scale parameter
b specializes to the chi-square distribution with df = n when a = n/2 and b = 2.
That is, gamma(n/2, 2) ∼ χ2

n.

4. Poisson: Let χ2
n be a chi-square random variable with even degrees of freedom

n. Then

P (χ2
n > x) =

n/2−1∑

k=0

e−x/2(x/2)k

k!

[see Section 16.1].

5. t distribution: See Section 14.5.1.

6. Laplace: See Section 21.8.

7. Uniform: See Section 10.4.

12.5.3 Approximations

1. Let Z denote the standard normal random variable.

a. P (χ2
n ≤ x) ≃ P (Z ≤

√
2x−

√
2n− 1), n > 30.

b. P (χ2
n ≤ x) ≃ P

(
Z ≤

√
9n
2

[(
x
n

)1/3 − 1 + 2
9n

])
.
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188 12 Chi-Square Distribution

c. Let X denote the chi-square random variable with df = n. Then

X − n+ 2/3− 0.08/n

|X − n+ 1|

(
(n− 1) ln

(
n− 1

X

)
+X − n+ 1

)1/2

is approximately distributed as a standard normal random variable [Peizer
and Pratt 1968].

2. Wilson–Hilferty (1931) approximation:

(
χ2
n

n

) 1
3

∼ N

(
1− 2

9n
,

2

9n

)
, approximately.

3. Let χ2
n,p denote the pth quantile of a χ2

n distribution, and zp denote the pth
quantile of the standard normal distribution. Then

a. χ2
n,p ≃ 1

2

(
zp +

√
2n− 1

)2
, n > 30.

b. χ2
n,p ≃ n

(
1− 2

9n
+ zp

√
2
9n

)3
.

The approximation (b) is satisfactory even for small n [Wilson and Hilferty,
1931].

12.6 Random Number Generation

For smaller degrees of freedom, the following algorithm is reasonably efficient.

Algorithm 12.1. Chi-square variate generator

Generate U1, . . ., Un from uniform(0, 1) distribution.
Set X = −2(lnU1 + . . .+ lnUn).
Then X is a chi-square random number with df = 2n. To generate chi-square random
numbers with odd df, add one Z2 to X, where Z ∼ N(0, 1).

Since the chi-square distribution is a special case of the gamma distribution
with the shape parameter a = n/2, and the scale parameter b = 2, the algorithms
for generating gamma variates can be used to generate the chi-square variates (see
Section 16.9).

12.7 Computation of the Distribution Function

The distribution function and the percentiles of the chi-square random variable can
be evaluated as a special case of the gamma(n/2, 2) distribution (see Section 15.8).
Specifically,

P (χ2
n ≤ x|n) = P (Y ≤ x|n/2, 2),

where Y is a gamma(n/2, 2) random variable.
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F Distribution

13.1 Description

Let X and Y be independent chi-square random variables with degrees of freedoms
(dfs) m and n, respectively. The distribution of the ratio

Fm,n =
(X
m
)

(Y
n
)

is called the F distribution with the numerator df = m and the denominator
df = n. The probability density function of an Fm,n distribution is given by

f(x|m,n) = Γ
(
m+n

2

)

Γ
(
m
2

)
Γ
(
n
2

)
(
m
2

)m/2
xm/2−1

(
n
2

)m/2 [
1 + mx

n

]m/2+n/2 , m > 0, n > 0, x > 0.

Let S2
i denote the variance of a random sample of size ni from a N(µi, σ

2) distribu-
tion, i = 1, 2. Then the variance ratio

S2
1

S2
2

∼ Fn1−1,n2−1

distribution. For this reason, the F distribution is also known as the variance ratio
distribution.

We observe from the plots of pdfs in Figure 13.1 that the F distribution is
always skewed to right; also, for equally large values of m and n, the F distribution
is approximately symmetric about unity.

13.2 Moments

Mean: n
n−2

Variance: 2n2(m+n−2)

m(n−2)2(n−4)
, n > 4.

Mode: n(m−2)
m(n+2)

, m > 2.

Moment Generating Function: does not exist.
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FIGURE 13.1: The probability density functions of Fm,n
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Coefficient of Variation:

√
2(m+n−2)√
m(n−4)

, n > 4.

Coefficient of Skewness:
(2m+n−2)

√
8(n−4)

(n−6)
√
m(m+n−2)

, n > 6.

Coefficient of Kurtosis: 3 + 12[(n−2)2(n−4)+m(m+n−2)(5n−22)]
m(n−6)(n−8)(m+n−2)

, n > 8.

Moments about the Origin: Γ(m/2+k)Γ(n/2−k)
Γ(m/2)Γ(n/2)

(n/m)k,

n > 2k, k = 1, 2, ...

13.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→F] computes probabilities, percentiles, mo-
ments, and also the degrees of freedoms when other parameters are given.

To compute probabilities: Enter the numerator df, denominator df, and the value
x at which the cdf is to be evaluated; click [P(X <= x)]. For example, when the
numerator df = 3.3, denominator df = 44.5, and the observed value x = 2.3, P (X ≤
2.3) = 0.915262 and P (X > 2.3) = 0.084738.

To compute percentiles: Enter the values of the degrees of freedoms and the cumu-
lative probability; click [x]. For example, when the numerator df = 3.3, denominator
df = 44.5, and the cumulative probability = 0.95, the 95th percentile is 2.73281.
That is, P (X ≤ 2.73281) = 0.95.

To compute other parameters: StatCalc also computes the df when other values are
given. For example, when the numerator df = 3.3, cumulative probability = 0.90,
x = 2.3, and the value of the denominator df = 22.4465. To find this value, enter
other known values in appropriate edit boxes, and click on [Den DF].

To compute moments: Enter the values of the numerator df, denominator df, and
click [M].

13.4 Properties and Results

13.4.1 Identities

1. For x > 0, P (Fm,n ≤ x) = P (Fn,m ≥ 1/x).

2. If Fm,n,p is the pth quantile of an Fm,n distribution, then

Fn,m,1−p =
1

Fm,n,p
.
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192 13 F Distribution

13.4.2 Relation to Other Distributions

1. Binomial: Let X be a binomial(n, p) random variable. For a given k

P (X ≥ k|n, p) = P

(
F2k,2(n−k+1) ≤

(n− k + 1)p

k(1− p)

)
.

2. Beta: Let X = Fm,n. Then

mX

n+mX

follows a beta(m/2, n/2) distribution.

3. Student’s t : Consider a Student’s t random variable with df = n, say, tn. Then
t2n is distributed as F1,n.

4. Laplace: See Section 21.8.

13.4.3 Series Expansions

For y > 0, let x = n
n+my

.

1. For even m and any positive integer n,

P (Fm,n ≤ y) = 1− x(m+n−2)/2

{
1 +

m+ n− 2

2

(
1− x

x

)

+
(m+ n− 2)(m+ n− 4)

2 · 4

(
1− x

x

)2

+
(m+ n− 2) · · · (n+ 2)

2 · 4 · · · ·(m− 2)

(
1− x

x

)(m−2)/2
}
.

2. For even n and any positive integer m,

P (Fm,n ≤ y) = (1− x)(m+n−2)/2

{
1 +

m+ n− 2

2

(
x

1− x

)

+
(m+ n− 2)(m+ n− 4)

2 · 4

(
x

1− x

)2

+ . . .

+
(m+ n− 2) · · · (m+ 2)

2 · 4 · · · ·(n− 2)

(
x

1− x

)(n−2)/2
}
.

3. Let θ = arctan
(√

my
n

)
. For odd n,

(a) P (F1,1 ≤ y) = 2θ
π
.

(b) P (F1,n ≤ y) = 2
π

{
θ + sin(θ)

[
cos(θ) + 2

3
cos3(θ) +. . .+ 2·4···(n−3)

3·5···(n−2)
cosn−2(θ)

]}
.
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(c) For odd m and any positive integer n,

P (Fm,n ≤ y) =
2

π

{
θ + sin(θ)

[
cos(θ) +

2 cos3(θ)

3
+ . . .

+
2 · 4 · · · (n− 3)

3 · 5 · · · (n− 2)
cosn−2(θ)

]}

− 2[(n− 1)/2]!√
πΓ(n/2)

sin(θ) cosn(θ)×
{
1 +

n+ 1

3
sin2(θ) + · · ·

+
(n+ 1)(n+ 3) · · · (m+ n− 4)

3 · 5 · · · (m− 2)
sinm−3(θ)

}
.

[Abramowitz and Stegun. 1965, p. 946]

13.4.4 Approximations

1. For large m, n
Fm,n

is distributed as χ2
n. For large n, mFm,n is distributed as χ2

m.

2. Let M = n/(n − 2). For large m and n,
Fn,m−M

M

√
2(m+n−2)
m(n−4)

is distributed as the

standard normal random variable. This approximation is satisfactory only when
both degrees of freedoms are greater than or equal to 100.

3. The distribution of

Z =

√
(2n− 1)mFm,n/n−

√
2m− 1√

1 +mFm,n/n

is approximately standard normal. This approximation is satisfactory even for
small degrees of freedoms.

4.
F1/3(1− 2

9n )−(1−
2

9m )√
2

9m
+F2/3 2

9n

∼ N(0, 1) approximately.

[Abramowitz and Stegun, 1965, p. 947]

13.5 Random Number Generation

Algorithm 13.1. F variate generator

For a given m and n:
Generate X from gamma(m/2, 2) (see Section 16.9)
Generate Y from gamma(n/2, 2)
Set F = nX/(mY ).

F is the desired random number from the F distribution with numerator df = m,
and the denominator df = n.
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194 13 F Distribution

Algorithm 13.2. F variate generator

Generate Y from a beta(m/2, n/2) distribution (see Section 16.7), and set

F =
nY

m(1− Y )
.

F is the desired random number from the F distribution with numerator df = m,
and the denominator df = n.

13.6 A Computational Method for Probabilities

For smaller degrees of freedoms, the distribution function of Fm,n random variable
can be evaluated using the series expansions given in Section 12.4. For other de-
grees of freedoms, the algorithm for evaluating the beta distribution can be used.
Probabilities can be computed using the relation that

P (Fm,n ≤ x) = P

(
Y ≤ mx

n+mx

)
,

where Y is the beta(m/2, n/2) random variable. The pth quantile of an Fm,n distri-
bution can be computed using the relation that

Fm,n,p =
nBm/2,n/2;p

m(1−Bm/2,n/2;p)
,

where Ba,b;p denotes the pth quantile of a beta(a, b) distribution.
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Student’s t Distribution

14.1 Description

Let Z and S be independent random variables such that

Z ∼ N(0, 1) and nS2 ∼ χ2
n.

The distribution of t = Z/S is called Student’s t distribution with df = n. The Stu-
dent’s t random variable with df = n is commonly denoted by tn, and its probability
density function is

f(x|n) = Γ[(n+ 1)/2]

Γ(n/2)
√
nπ

1

(1 + x2/n)(n+1)/2
, −∞ < x <∞, n ≥ 1.

Probability density plots of tn are given in Figure 14.1 for various degrees of free-
doms. We observe from the plots that for large n, the curve of tn is approaching the
standard normal curve.

Series expansions for computing the cumulative distribution function (cdf) of tn
are given in Section 14.5.3. The cdf can also be computed using the calculation for
the cdf of F or of the beta random variable (see Section 14.5.2).

This t-distribution arises when estimating the mean of a normal distribution
based on a small sample. Specifically, if (X̄, S) denote the (mean, SD) of a random
sample of size n from a normal population with mean µ, then

X̄ − µ

S/
√
n

∼ tn−1.

This distribution also plays an important role in many commonly used statistical
analyses, including linear regression analysis.

195
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196 14 Student’s t Distribution

FIGURE 14.1: The probability density functions of tn

14.2 Moments

Mean: 0 for n > 1; undefined for n = 1

Variance: n/(n− 2), n > 2

Median: 0

Mode: 0

Mean Deviation:
√
n Γ((n−1)/2)√
π Γ(n/2)

Coefficient of Skewness: 0

Coefficient of Kurtosis: 3(n−2)
(n−4)

, n > 4

Moment Generating Function: does not exist

Moments about the Origin: E(tkn) =





0 for odd k < n,
1·3·5···(k−1)

(n−2)(n−4)...(n−k)n
k/2

for even k < n
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14.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→ Student t] computes probabilities, per-
centiles, moments and also the degrees of freedom (df) for given other values.

To compute probabilities: Enter the value of the df, and the observed value x; click
[x]. For example, when df = 12.0 and the observed value x = 1.3,

P (X ≤ 1.3) = 0.890991 and P (X > 1.3) = 0.109009.

To compute percentiles: Enter the value of the degrees of freedom, and the cu-
mulative probability; click [x]. For example, when df = 12.0, and the cumulative
probability = 0.95, the 95th percentile is 1.78229. That is, P (X ≤ 1.78229) = 0.95.

To compute the DF: Enter the value of x, and the cumulative probability; click
[DF]. For example, when x = 1.3, and the cumulative probability = 0.9, the value
of DF = 46.5601.

To compute moments: Enter the value of the df and click [M].

14.4 Distribution of the Maximum of Several |t|
Variables

Let X1, . . . , Xk be independent normal random variables with mean µ and common
standard deviation σ. Let mS2/σ2 follow a chi-square distribution with df = m. The
dialog box [StatCalc→Continuous→Student’s t→Max |t|] computes the distribution
function of

X = max
1≤i≤k

{
|Xi|
S

}
= max

1≤i≤k
{|ti|}, (14.1)

where t1, ..., tk are Student’s t variables with df = m. The percentiles of X are
useful for constructing simultaneous confidence intervals for the treatment effects
and orthogonal estimates in the analysis of variance, and to test extreme values.

14.4.1 Applications

One-Way Analysis of Variance

Suppose we want to compare the effects of k treatments in a one-way analysis of
variance setup based on the following summary statistics:

treatments 1 . . . k
sample sizes n1 . . . nk
sample means X̄1 . . . X̄k
sample variances S2

1 . . . S2
k
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198 14 Student’s t Distribution

Let n =
k∑
i=1

ni, and S
2
p =

k∑
i=1

(ni−1)S2
i

n−k be the pooled sample variance, and

¯̄X =

k∑
i=1

niX̄i

n

be the pooled sample mean.
For testing H0 : µ1 = ... = µk vs. Ha : µi 6= µj for some i 6= j, the F statistic

is given by
k∑
i=1

ni(X̄i − ¯̄X)2/(k − 1)

S2
p

,

which follows an F distribution with numerator df = k − 1 and the denominator
df = n− k. For an observed value F0 of the F statistic, the null hypothesis will be
rejected if F0 > Fk−1,n−k,1−α, where Fk−1,n−k,1−α denotes the (1−α)th quantile of
an F distribution with the numerator df = k − 1, and the denominator df = n− k.
Once the null hypothesis is rejected, it may be desired to estimate all the treatment
effects simultaneously.

Simultaneous Confidence Intervals for the Treatment Means

It can be shown that

√
n1(X̄1 − µ1)/σ, . . . ,

√
nk(X̄k − µk)/σ

are independent standard normal random variables, and they are independent of

(n− k)S2
p

σ2
∼ χ2

n−k.

Define

Y = max
1≤i≤k

{√
ni|(X̄i − µi)|

Sp

}
.

Then, Y is distributed as X in (14.1). Thus, if c denotes the (1 − α)th quantile of
Y , then

X̄1 ± c
Sp√
n1
, . . . , X̄k ± c

Sp√
nk

(14.2)

are exact simultaneous confidence intervals for µ1, . . ., µk.

14.4.2 Percentiles of Max{|t1|, ..., |tk |}
The dialog box [StatCalc→Continuous→Student’s t→Distribution of max{|t1|, ..., |tk|}]
computes the cumulative probabilities, and the percentiles of X defined in (14.1).

To compute probabilities: Enter the values of the number of groups k, df, and the
observed value x of X defined in (14.1); click [P(X <= x)]. For example, when k =
4, df = 45 and x = 2.3, P (X ≤ 2.3) = 0.900976 and P (X > 2.3) = 0.099024.

To compute percentiles: Enter the values of k, df, and the cumulative probability;
click [x]. For example, when k = 4, df = 45, and the cumulative probability is 0.95,
the 95th percentile is 2.5897. That is, P (X ≤ 2.5897) = 0.95.
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Example 14.1. Consider the one-way ANOVA model with the following summary
statistics:

treatments 1 2 3

sample sizes 11 9 14
sample means 5 3 7
sample variances 4 3 6

The pooled variance S2
p is computed as 4.58. Let us compute 95% simultaneous

confidence intervals for the mean treatment effects. To get the critical point using
StatCalc, select the dialog box [StatCalc→Continuous→Student’s t→Distribution of
max{|t1|, ..., |tk|}], enter 3 for k, 11 + 9 + 14 - 3 = 31 for df, 0.95 for [P(X <= x)], and
click [x]. The required critical point is 2.5178, and the 95% simultaneous confidence
intervals for the mean treatment effects based on (14.2) are

5± 2.5178

√
4.58

11
, 3± 2.5178

√
4.58

9
, 7± 2.5178

√
4.58

14
.

14.5 Properties and Results

14.5.1 Properties

1. The t distribution is symmetric about 0. That is,

P (−x ≤ t < 0) = P (0 < t ≤ x).

2. Let X and Y be independent chi-square random variables with dfs 1 and n,
respectively. Let I be a random variable independent of X and Y such that
P (I = 1) = P (I = −1) = 1/2. Then

I

√
X

Y/n
∼ tn.

3. If X and Y are independent chi-square random variables with df = n, then

0.5
√
n(X − Y )√
XY

∼ tn.

14.5.2 Relation to Other Distributions

1. Let F1,n denote the F random variable with the numerator df = 1, and the
denominator df = n. Then, for any x > 0,

a. P (t2n ≤ x) = P (F1,n ≤ x)

b. P (F1,n ≤ x) = 2P (tn ≤ √
x)− 1

c. P (tn ≤ x) = 1
2

[
P (F1,n ≤ x2) + 1

]
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2. Let tn,α denote the αth quantile of Student’s t distribution with df = n. Then

a. Fn,n,α = 1 +
2(tn,α)2

n
+

2tn,α√
n

√
1 +

(tn,α)2

n

b. tn,α =
√
n
2

(
Fn,n,α−1√
Fn,n,α

)
. [Cacoullos, 1965]

3. Relation to beta distribution: (see Section 16.6.2)

14.5.3 Series Expansions for Cumulative Probability

1. For odd n,

P (tn ≤ x) = 0.5 +
arctan(c)

π
+
cd

π

(n−3)/2∑

k=0

akd
k,

and for even n,

P (tn ≤ x) = 0.5 +
0.5c

√
d

π

(n−2)/2∑

k=0

bkd
k,

where
a0 = 1, b0 = 1,

ak =
2kak−1

2k+1
, bk =

(2k−1)bk−1

2k
,

c = x/
√
n, and d = n

n+x2
.

[Owen, 1968]

2. Let x = arctan(t/
√
n). Then, for n > 1 and odd,

P (|tn| ≤ t) =
2

π

[
x+ sin(x)

(
cos(x) +

2

3
cos3(x) + ...

+
2 · 4 · ... · (n− 3)

1 · 3 · ... · (n− 2)
cosn−2(x)

)]
.

For even n,

P (|tn| ≤ t) = sin(x)

[
1 +

1

2
cos2(x) +

1 · 3
2 · 4 cos4(x) + ...

+
1 · 3 · 5...(n − 3)

2 · 4 · 6...(n − 2)
cosn−2(x)

]
,

and P (|t1| ≤ t) = 2x
π
. [Abramowitz and Stegun 1965, p. 948]

An Approximation

P (tn ≤ t) ≃ P


Z ≤ t

(
1− 1

4n

)
√

1 + t2

2n


 ,

where Z is the standard normal random variable.
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14.6 Random Number Generation

Algorithm 14.1. t-random variate generator

Generate Z from N(0, 1)
Generate S from gamma(n/2, 2)
Set x = Z√

S/n
.

Then, x is a Student’s t random variate with df = n.

14.7 Computation of the Distribution Function

For small integer dfs, the series expansions in Section 14.5.3 can be used to compute
the cumulative probabilities. For other dfs, use the relation that, for x > 0,

P (tn ≤ x) =
1

2

[
P

(
Y ≤ x2

n+ x2

)
+ 1

]
,

where Y is a beta(1/2, n/2) random variable. If x is negative, then P (tn ≤ x) =
1− P (tn ≤ |x|).
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15

Exponential Distribution

15.1 Description

A classical situation in which an exponential distribution arises is as follows: Consider
a Poisson process with mean λ where we count the events occurring in a given interval
of time or space. Let X denote the waiting time until the first event to occur. Then,
for a given x > 0,

P (X > x) = P (no event in (0, x))

= exp(−xλ),

and hence
P (X ≤ x) = 1− exp(−xλ). (15.1)

The above distribution is the exponential distribution with mean waiting time b =
1/λ. The probability density function (pdf) is given by

f(x|b) = 1

b
exp

(
−x
b

)
, x > 0, b > 0. (15.2)

Suppose that the waiting time is known to exceed a threshold value a, then the pdf
is given by

f(x|a, b) = 1

b
exp

(
−x− a

b

)
, x > a, b > 0. (15.3)

The distribution with the above pdf is called the two-parameter exponential dis-
tribution, and we referred to it as exponential(a, b). The cumulative distribution
function is given by

F (x|a, b) = 1− exp(−(x− a)/b), x > a, b > 0. (15.4)

15.2 Moments

Mean: b+a Median a− ln(.5)b

Variance: b2 Mode: a

203
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FIGURE 15.1: Exponential probability density functions

Coefficient of Variation: b
b+a

Coefficient of Skewness: 2

Coefficient of Kurtosis: 9

Moment Generating Function: (1− bt)−1, t < 1
b
when a = 0

Moments about the Origin: E(Xk) = bkΓ(k + 1) = bkk!, k = 1, 2, . . .; a = 0

15.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→Exponential→Probabilities...] computes
the tail probabilities, percentiles, moments, and other parameters of an exponen-
tial distribution.

To compute probabilities: Enter the values of the shape parameter a, scale parameter
b, and the observed value x; click on [P(X <= x)]. When a = 1.1, b = 1.6, and x = 2,
P (X ≤ 2) = 0.430217 and P (X > 2) = 0.569783.
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15.4 Estimation 205

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x]. For example, when a = 2, b = 3, and the cumulative probability = 0.05,
the 5th percentile is 2.15388. That is, P (X ≤ 2.15388) = 0.05.

To compute other parameters: Enter the values of the cumulative probability, one
of the parameters, and a positive value for x; click on the parameter that is missing.
For example, when b = 3, x = 7, and P (X ≤ x) = 0.9, the value of the location
parameter a = 0.0922454.

To compute moments: Enter the values of a and b; click [M].

15.4 Estimation

Let X1, . . . , Xn be a sample of observations from an exponential distribution with
pdf in (15.3).

MLEs and Their Distributions

The maximum likelihood estimators (MLEs) of a and b are given by

â = X(1) and b̂ =
1

n

n∑

i=1

(Xi −X(1)) = X̄ −X(1), (15.5)

where X(1) is the smallest of the Xis. The MLEs â and b̂ are independent with

2n(â − a)

b
∼ χ2

2 and
2nb̂

b
∼ χ2

2n−2. (15.6)

15.5 Confidence Intervals

Location and Scale Parameter

The pivotal quantity 2nb̂/b in (15.6) can be used to make inference on b. In particular,
a 1− α confidence interval for b is given by

(
2nb̂

χ2
2n−2,1−α/2

,
2nb̂

χ2
2n−2,α/2

)
.

It follows from (15.6) that

â− a

b̂
∼ 1

n− 1
F2,2n−2.

A 1− α confidence interval for a (based on the above distributional result) is given
by (

â− b̂

n− 1
F2,2n−2,1−α/2, â−

b̂

n− 1
F2,2n−2,α/2

)
,
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206 15 Exponential Distribution

where Fa,b;p denotes the pth quantile of an F distribution with the numerator df =
a, and the denominator df = b.

Mean

To find a confidence interval for the mean, we shall find a pivotal quantity for
estimating a + cb, where c is a known constant. Using the distributional results in
(15.6), we find

a+ cb − â

b̂
∼ 2nc− χ2

2

χ2
2n−2

= fn,c, say, (15.7)

where the chi-square random variables are independent. For 0 < α < .5, let fn,c;α
denote the α quantile of fn,c. In terms of this quantile, a 1− 2α confidence interval
for a+ cb is given by (

â+ fn,c;αb̂, â+ fn,c;1−αb̂
)
. (15.8)

Noting that the mean of the exponential distribution is a + b, an exact 1 − α
confidence interval for the mean is (15.8) with c = 1. Specifically,

(
â+ fn,1;α/2b̂, â+ fn,1;1−α/2b̂

)
(15.9)

is a 1−α confidence interval for the mean. The percentiles of fn,1 can be estimated
by Monte Carlo simulation, or approximated using the modified normal-based ap-
proximations (2.14) and (2.15) as follows.

Let X = 2n − χ2
2 and Y = χ2

2n−2. Then µx = µy = 2n − 2, r = 1, Xα =
2 − χ2

1−α, X1−α = 2n − χ2
2;α, Yα = χ2

2n−2;α and Y1−α = χ2
2n−2;1−α. Substituting

these expressions in (2.16), we find approximate values of fn,1;α and fn,1;1−α for
0 < α < .5. This approximation is quite satisfactory even for samples of size as
small as three.

15.6 Prediction Intervals

To find a prediction interval, let X ∼ exponential(a, b) independently of the MLEs

â and b̂. Then
X − â

b̂
∼ 2nZ − χ2

2

χ2
2n−2

= Rn, say, (15.10)

where Z is the exponential(0, 1) random variable, and Z, χ2
2 and χ2

2n−2 are mutually
independent. If Rn;α denote the α quantile of Rn, then

(â+Rn;αb̂, â+Rn;1−α b̂) (15.11)

is a 1 − 2α prediction interval for X. The 100α percentile of Rn, denoted by Rn;α,
is given by [Lawless, 1977]

Rn;α =





n
{
[(1− α)(1 + 1/n)]−

1
n−1 − 1

}
, 1

1+n
≤ α < 1,

1− [α(1 + n)]−
1

n−1 , 0 < α < 1
n+1

.
(15.12)
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Example 15.1. To illustrate the method for finding confidence interval for the
mean of an exponential distribution, we shall use the failure mileage data on 19
military carriers given in Grubbs (1971). The data are reproduced here in Table
15.1. The probability plot by Krishnamoorthy and Mathew (2009, Example 7.3)
indicated that the data fit a two-parameter exponential distribution. The MLEs

TABLE 15.1: Failure Mileage of 19 Military Carriers

162 200 271 302 393 508 539 629 706 777
884 1008 1101 1182 1463 1603 1984 2355 2880

Reproduced with permission from Technometrics. Copyright [1971] by the American

Statistical Association.

based on the above data are â = X(1) = 162 and b̂ = 835.21. To compute 95%
confidence intervals for the location and scale parameters and for the mean, select
the dialog box [StatCalc→Continuous→Exponential→Confidence Intervals ...], enter
19 for [S Size], 162 for [MLE of a], 835.21 for [MLE of b], .95 for [Conf Level], and
click on [Conf Interval] to get (703, 1582). In the same dialog box, we can find 95%
confidence interval for the location parameter as (0, 160.82), and 95% confidence
interval for the scale parameter as (583.02, 1487.54).

15.7 Tolerance Limits and Survival Probability

The p quantile of a two-parameter exponential distribution is given by a−b ln(1−p).
A 1− α upper confidence limit for this quantile is a (p, 1− α) upper tolerance limit
for the exponential(a, b) distribution. A pivotal quantity for estimating the quantile
is given by (15.7) with c = − ln(1− p). That is,

−χ
2
2 + 2n ln(1− p)

χ2
2n−2

is the pivotal quantity for the quantile a− ln(1−p)b. Let Ep;α denote the α quantile

of Ep =
χ2
2+2n ln(1−p)
χ2
2n−2

. Then

â−Ep;αb̂ (15.13)

is a 1−α upper confidence limit for qp, which in turn is a (p, 1−α) upper tolerance
limit for the exponential(a, b) distribution. Similarly, we see that

â−E1−p,1−α b̂ (15.14)

is a 1− α lower confidence limit for q1−p = a− b ln(p), or equivalently, a (p, 1− α)
lower tolerance limit for the exponential(a, b) distribution. Note that the percentile
Ep;α can be estimated using Monte Carlo simulation.

The percentiles of Ep can be approximated as follows. Let c = − ln(1 − p),
X = 2nc − χ2

2, and Y = χ2
2n−2. Then µx = E(X) = 2nc − 2, µy = 2n − 2,

Xα = 2nc − χ2
1−α, X1−α = 2nc − χ2

2;α, Yα = χ2
2n−2;α, and Y1−α = χ2

2n−2;1−α.
Substituting these expressions in (2.16), we find approximate values of fn,c;α and
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fn,c;1−α for 0 < α < .5. Simulation studies by Krishnamoorthy and Xia (2014)
indicated that this approximation is quite satisfactory even for samples of size as
small as three.

For a given sample size n, MLEs, content level p, and coverage level 1−α, the di-
alog box [StatCalc→Continuous→Exponential→Tolerance Limits ...] calculates one-
sided lower and upper tolerance limits. There are other exact methods available in
the literature. However, these methods are computationally complex (e.g., Guenther
et al. 1976).

Survival Probability

A confidence limit for a survival probability can be deduced from the tolerance limit
in the preceding section. Let t denote the specified time at which we like to estimate
the survival probability

St = P (X > t|a, b) = 1− F (x|a, b) = exp

(
− t− a

b

)
.

The value of p for which the (p, 1−α) lower tolerance limit is equal to t is the 1−α
lower confidence limit for P (X > t). That is, p is determined so that

â− E1−p,1−α b̂ = t ⇔ â− t

b̂
= E1−p,1−α.

It can be verified that the value of p that satisfies the above equation is the α quantile
of

exp

{
− 1

2n
A

}
, where A =

(
t− â0

b̂0

)
χ2
2n−2 + χ2

2,

which in turn is a 95% lower confidence limit of P (X > t). Finally, the 1 − 2α
confidence interval for P (X > t) is expressed as

(
exp

{
− 1

2n
A1−α,

}
, exp

{
− 1

2n
Aα

})
(15.15)

where Aq is the q quantile of A.

For a given (â0, b̂0), Monte Carlo simulation can be used to estimate the per-
centiles of A. A convenient approximation to the percentiles of A can be obtained
using the modified normal approximation (MNA) in (2.14) and (2.15). This approx-
imation yields the αth quantile of A as

Aα ≃ η̂t(2n− 2) + 2−
[
η̂2t (2(n− 2)− L∗)2 + (2− χ2

2;α)
] 1

2 , 0 < α < .5, (15.16)

where

η̂t =
t− â

b̂
, L∗ =

{
χ2
2n−2;α if η̂t > 0,
χ2
2n−2;1−α otherwise

.

Similarly, the approximate 1− α quantile for A is expressed as

A1−α ≃ η̂t(2n−2)+2+
[
η̂2t (2(n− 2)− U∗)2 + (2− χ2

2;1−α)
] 1

2 , 0 < α < .5, (15.17)

where

U∗ =

{
χ2
2n−2;1−α if η̂t > 0,
χ2
2n−2;α otherwise

.

This approximation is quite satisfactory even for sample of sizes as small as four.
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Example 15.2. We shall compute (.90, .95) tolerance limits based on mileage

data in Table 15.1. Recall that the MLEs are â = X(1) = 162 and b̂ =
835.21. To compute a (0.95, 0.95) lower tolerance limit, select the dialog box
[StatCalc→Continuous→Exponential→Tolerance Limits...], enter 19 for [S Size], 162
for [MLE of a], 835.21 for [MLE of b], .90 for [Cont Level], .95 for [Conf Level], and
click on [Tol Limits] to get 114.56 (lower) and 3236.3 (upper). This means that at
least 90% of military carriers work 114.56 units of miles or more with 95% confidence.
We can also say that at most 10% of military carriers work more than 3236.3 units
of miles with confidence 95%. These tolerance limits were estimated using 1,000,000
simulation runs.

We once again use the failure mileage data in Table 15.1 to find a 95% lower
confidence limit for P (X > 300), where X represents the failure milage of a military
carrier. To compute a 95% lower confidence limit using StatCalc, select the dialog box
[StatCalc→Continuous→Exponential→ Tolerance Limits...], enter 19 for [S Size],
162 for [MLE of a], 835.21 for [MLE of b], .95 for [Conf Level], 300 for [Time t], and
click on [Conf Limits] to get .720 (lower) and .882 (upper). This means that at least
72% of military carriers work 300 units of miles or more with confidence 95%. These
confidence limits were estimated using 1,000,000 simulation runs.

To find the approximate 95% lower confidence limit (15.17) for P (X > 300), we
found η̂t = 0.1652, U∗ = 50.9985, χ2

2;.95 = 5.9914, and A.95 = 12.6464. Using these
quantities in (15.17), we find the 95% lower confidence limit for P (X > 300) is

exp

(
− 1

38
A.95

)
= 0.717,

which is the same as the one based on 1,000,000 simulation runs.

15.8 Two-Sample Case

Let âi and b̂i denote the MLEs based on a sample of size ni from an
exponential(ai, bi) distribution, i = 1, 2. It follows from (15.6) that

2n1b̂1
b1

∼ χ2
2n1−2 and

2n2b̂2
b2

∼ χ2
2n2−2. (15.18)

The above pivotal quantities are also independent because the MLEs are based on
independent samples.

15.8.1 Confidence Interval for Comparing Two Parameters

Let âi0 and b̂i0 be observed values of âi and b̂i, respectively. Based on the distribu-
tional results (15.6), generalized pivotal quantities (GPQs; see Section 2.7.2) for ai
is given by

Gai = âi0 − χ2
2

χ2
2n−2

b̂i0, i = 1, 2. (15.19)
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The GPQ for a1 − a2 can be expressed as

Ga1 −Ga2 = â10 − â20 −
(

b̂10
n1 − 1

F2,2n1−2 − b̂20
n2 − 1

F2,2n2−2

)
,

where the F random variables are independent. The lower and upper α quantiles of
Ga1 − Ga2 form a 1 − 2α confidence interval for a1 − a2. Notice that, for a given

(â10, b̂10â20b̂20), the distribution of the above GPQ can be obtained by Monte Carlo
simulation.

A closed-form approximate confidence interval for a1−a2 can also be obtained by
approximating the percentiles of Tn1,n2 using the expressions in (2.14) and (2.15).
To find the approximation, note that E(F2,2ni−2) = ni−1

ni−2
, i = 1, 2. Using these

expectations in (2.14) and (2.15), and letting D = b̂10
n1−2

− b̂20
n2−2

, we find

Tn1,n2;α =






D −
√
w2

1

(
n1−1
n1−2

− F2,2n1−2;α

)2
+ w2

2

(
n2−1
n2−2

− F2,2n2−2;1−α
)2
,

0 < α < .5,

D +

√
w2

1

(
n1−1
n1−2

− F2,2n1−2;α

)2
+ w2

2

(
n2−1
n2−2

− F2,2n2−2;1−α
)2
,

0.5 < α < 1,

where wi = b̂i0/(ni − 1), i = 1, 2. The approximate 1 − 2α confidence interval for
a1 − a2 is given by

(â10 − â20 − Tn1n2;1−α, â10 − â20 − Tn1n2;α) . (15.20)

15.8.2 Ratio of Scale Parameters

It follows from (15.6) that

b2
b1

b̂1

b̂2
∼ n2(n1 − 1)

n1(n2 − 1)
F2n1−2,2n2−2,

where Fm,n denotes the F distribution with numerator df = m and the denominator
df = n. On the basis of the above distribution, an exact 1 − α confidence interval
for the ratio b1/b2 is given by

(
n1(n2 − 1)̂b1

n2(n1 − 1)̂b2
F2n2−2,2n1−2;α/2,

n1(n2 − 1)̂b1

n2(n1 − 1)̂b2
F2n2−2,2n1−2;1−α/2

)
,

where Fa,b;p denotes the 100pth percentile of an F distribution with the numerator
df a and the denominator df b.

15.8.3 Confidence Interval for the Difference between Two
Means

We shall describe an interval estimation method for the difference between two
means, (a1 + b1) − (a2 + b2), based on the generalized variable approach (Section
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2.7.2). Let âi0 and b̂i0 be observed values of âi and b̂i, respectively. Based on the
distributional results (15.6), generalized pivotal quantities (GPQs) for ai and bi are

Gai = âi0 − χ2
2

χ2
2n−2

b̂i0 and Gbi =
2nib̂i0
χ2
2n−2

, (15.21)

respectively.
A generalized pivotal quantity for the mean µi = ai + bi can be obtained by

substitution as

Gµi = Gai +Gbi = âi0 +

(
2ni − χ2

2

χ2
2ni−2

)
b̂i0,

where the chi-square random variables are independent. The lower α/2 quantile of
Gµi and the upper α/2 quantile of Gµi form a 1−α confidence interval for µi, which
is the same as the exact confidence interval in (15.9). A GPQ for µ1−µ2 is obtained
as

Gµ1 −Gµ2 = â10 − â20 + b̂10

(
2n1 − χ2

2

χ2
2n1−2

)
− b̂20

(
2n2 − χ2

2

χ2
2n2−2

)

= â10 − â20 + b̂10fn1 ,1 − b̂20fn2,1. (15.22)

For a given (â10, b̂10, â20, b̂20), the distribution of Gµ1 −Gµ2 does not depend on any
unknown parameters, and so they can be estimated by Monte Carlo simulation. The
lower α/2 quantile and the upper α/2 quantile of Gµ1 −Gµ2 form a 1−α confidence
interval for µ1 − µ2.

Approximate Confidence Intervals for the Mean and Mean Difference

The percentiles of Gµ1 −Gµ2 can also be approximated using the modified normal-
based approximation as follows. It follows from (15.22) that to find a confidence

interval for µ1 − µ2, it is enough to find percentiles of Qn1,n2 = b̂10fn1,1 − b̂20fn2,1,
which can be approximated using the approximation in (2.16) as follows. Let ui =
E(fni,1) = (ni − 1)/(ni − 2), i = 1, 2. Then

Qn1,n2;α ≃ b̂10u1 − b̂20u2 −
√
b̂210 (u1 − fn1,1;α)

2 + b̂220 (u2 − fn2,1;1−α)
2, 0 < α < .5,

(15.23)
and

Qn1,n2;1−α ≃ b̂10u1−b̂20u2+

√
b̂210 (u1 − fn1,1;1−α)

2 + b̂220 (u2 − fn2,1;α)
2, .5 < α < 1,

(15.24)
where fni,α is as defined in (15.9). Using the above approximations, we find an
approximate 1− 2α confidence interval for µ1 − µ2 as

(â1 − â2 +Qn1,n2;α, â1 − â2 +Qn1,n2;1−α) . (15.25)

Even though the above confidence interval is obtained by first approximating the
percentiles of fni,1 and then approximating the percentiles of Qn1,n2 , it is satisfac-
tory in terms of coverage probabilities.

Approximate percentiles of fn,1 can be obtained using the MNA for the per-
centiles of the ratio of independent random variables in (2.16). To find these approx-
imate percentiles of fn, let X = 2n − χ2

2 and Y = χ2
2n−2. Then µx = µy = 2n − 2,

© 2016 by Taylor & Francis Group, LLC

  



212 15 Exponential Distribution

Xα = 2 − χ2
1−α, X1−α = 2n − χ2

2;α, Yα = χ2
2n−2;α and Y1−α = χ2

2n−2;1−α. Substi-
tuting these expressions in (2.16), we find approximate values of fn;α and fn;1−α for
0 < α < .5. This approximation is quite satisfactory even for samples of size four
[Krishnamoorthy and Xia, 2014].

15.9 Properties and Results

Properties

1. Memoryless Property: For a given t > 0 and s > 0,

|P (X > t+ s|X > s) = P (X > t),

where X is the exponential random variable with pdf (15.3).

2. Let X1, . . . , Xn be independent exponential(0, b) random variables. Then

n∑

i=1

Xi ∼ gamma (n, b) .

3. Let X1, . . . , Xn be a sample from an exponential(0, b) distribution. Then, the
smallest order statistic X(1) = min{X1, ..., Xn} has the exponential(0, b/n) dis-
tribution.

Relation to Other Distributions

1. Pareto: If X follows a Pareto distribution with pdf λσλ/xλ+1, x > σ, σ > 0,
λ > 0, then Y = ln(X) has the exponential(a, b) distribution with a = ln(σ) and
b = 1/λ.

2. Power Distribution: If X follows a power distribution with pdf λxλ−1/σλ, 0 <
x < λ, σ > 0, then Y = ln(1/X) has the exponential(a, b) distribution with
a = ln(1/σ) and b = 1/λ.

3. Weibull: See Section 25.9.

4. Extreme Value Distribution: See 26.9.

5. Geometric: Let X be a geometric random variable with success probability p.
Then

P (X ≤ k|p) = P (Y ≤ k + 1),

where Y is an exponential random variable with mean b∗ = (− ln(1 − p))−1

[Prochaska, 1973].
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15.10 Random Number Generation

Input: a = location parameter

b = scale parameter

Output: x is a random number from the exponential(a, b) distribution

Generate u from uniform(0, 1)

Set x = a - b*ln(u)
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Gamma Distribution

16.1 Description

The gamma distribution can be viewed as a generalization of the exponential dis-
tribution with mean 1/λ, λ > 0. An exponential random variable with mean 1/λ
represents the waiting time until the first event to occur, where events are gen-
erated by a Poisson process with mean λ, while the gamma random variable X
represents the waiting time until the ath event to occur. Notice that X =

∑a
i Yi,

where Y1, . . . , Yn are independent exponential random variables with mean 1/λ. The
probability density function of X is given by

f(x|a, b) = 1

Γ(a)ba
e−x/bxa−1, x > 0, a > 0, b > 0, (16.1)

where b = 1/λ. The distribution defined by (16.1) is called the gamma distribution
with shape parameter a and the scale parameter b. It should be noted that (16.1) is
a valid probability density function (pdf) for any a > 0 and b > 0. The cumulative
distribution function is given by

F (x|a, b) = 1

Γ(a)ba

∫ x

0

e−t/bta−1dt, x > 0, a > 0, b > 0.

The three-parameter gamma distribution has the pdf

f(x|a, b, c) = 1

Γ(a)ba
e−(x−c)/b(x− c)a−1, a > 0, b > 0, x > c,

where c is the location parameter. The standard form of the gamma distribution
(when b = 1 and c = 0) has the pdf

f(x|a, b) = 1

Γ(a)
e−xxa−1, x > 0, a > 0, (16.2)

and cumulative distribution function

F (x|a) = 1

Γ(a)

∫ x

0

e−tta−1dt. (16.3)

The cdf in (16.3) is often referred to as the incomplete gamma function.

The gamma distribution with a positive integer shape parameter a is called the

215
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216 16 Gamma Distribution

Erlang Distribution. If a is a positive integer, then

P (X ≤ x|a, b) = P (waiting time until the ath event is at most x units of time)

= P (observing at least a events in x units of time when the

mean waiting time per event is b)

= P (observing at least a events in a Poisson process when

the mean number of events is x/b)

=
∞∑

k=a

e−x/b(x/b)k

k!
,

which is P (Y ≥ a), where Y ∼ Poisson(x/b). Thus, if a is a positive integer, then
the gamma cdf can be easily evaluated.

The gamma probability density plots in Figure 16.1 indicate that the degree
of asymmetry of the gamma distribution diminishes as a increases. For large a,
(X − a)/

√
a is approximately distributed as the standard normal random variable.

16.2 Moments

Mean: ab

Variance: ab2

Mode: b(a− 1), a > 1

Coefficient of Variation: 1/
√
a

Coefficient of Skewness: 2/
√
a

Coefficient of Kurtosis: 3 + 6/a

Moment Generating Function: (1− bt)−a, t < 1
b

Moments about the Origin: Γ(a+k)bk

Γ(a)
= bk

k∏
i=1

(a+ i− 1), k = 1, 2, . . .

16.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→ Gamma] computes probabilities, per-
centiles, moments, and also the parameters when other values are given.

To compute probabilities: Enter the values of the shape parameter a, scale parameter
b, and the observed value x; click on [P(X <= x)]. When a = 2, b = 3, and x = 5.3,
P (X ≤ 5.3) = 0.527172 and P (X > 5.3) = 0.472828.
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FIGURE 16.1: Gamma probability density functions

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x]. When a = 2, b = 3 and the cumulative probability = 0.05, the 5th percentile
is 1.06608. That is, P (X ≤ 1.06608) = 0.05.

To compute other parameters: Enter the values of the probability, one of the pa-
rameters, and a positive value for x; click on the parameter that is missing. For
example, when b = 3, x = 5.3 and P (X ≤ x) = 0.9, the value of the shape parame-
ter a = 0.704973.

To compute moments: Enter the values of a and b; click [M].

Example 16.1. The distribution of 50-year summer rainfall (in inches) in a certain
part of India is approximately gamma with a = 3.0 and b = 2.0.

a. Find the percentage of summer rainfalls that exceed 6 inches.

b. Find an interval that will contain 95% of the summer rainfall totals.

Solution: Let X denote the total summer rainfall in a year.

a. Select the dialog box [StatCalc→Continuous→ Gamma] from StatCalc, enter 3
for a, 2 for b, and 6 for observed x; click [P(X <= x)] to get P (X > 6) = 0.42319.
That is, about 42% of the summer rainfall totals exceed 6 inches.

b. To find a right endpoint, enter 3 for a, 2 for b, and 0.975 for cumulative probabil-
ity; click [x] to get 16.71. To find a lower endpoint, enter 0.025 for the cumulative
probability and click [x] to get 0.73. Thus, 95% of the summer rainfall totals are
between 0.73 and 16.71 inches.
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218 16 Gamma Distribution

Example 16.2. Customers enter a fast food restaurant, according to a Poisson
process, on average 4 for every 3-minute period during the peak hours 11 a.m. – 1
p.m. Let X denote the waiting time in minutes until arrival of the 60th customer.

a. Find E(X).

b. Find P (X > 50).

Solution: The mean number of customers per minute is 4/3. Therefore, mean waiting
time in minutes is b = 3/4.

a. E(X) = ab = 60 x 3/4 = 45 min.

b. To find the probability using [StatCalc→Continuous→ Gamma], enter 60 for a,
3/4 = 0.75 for b, and 50 for x; click [P(X <= x)] to get P (X > 50) = 0.19123.

16.4 Applications

The gamma distribution arises in situations where one is concerned about the wait-
ing time for a finite number of independent events to occur, assuming that events
occur at a constant rate and chances that more than one event occurs in a small
interval of time are negligible. This distribution has applications in reliability and
queuing theory. Examples include the distribution of failure times of components,
the distribution of times between calibration of instruments that need re-calibration
after a certain number of uses, and the distribution of waiting times of k customers
who will arrive at a store. The gamma distribution can also be used to model the
amounts of daily rainfall in a region. For example, the data on daily rainfall in
Sydney, Australia, (October 17–November 7; years 1859–1952) were modeled by a
gamma distribution. A gamma distribution was postulated because precipitation
occurs only when water particles can form around dust of sufficient mass, and the
waiting time for such accumulation of dust is similar to the waiting time aspect
implicit in the gamma distribution (Das, 1955). Stephenson et al. (1999) showed
that the gamma and Weibull distributions provide good fits to the wet-day rainfall
distribution in India.

In exposure/pollution data analysis, gamma models are used as alternatives to
lognormal models. Maxim et al. (2006) have observed that the gamma distribution is
a possible distribution for concentrations of carbon/coke fibers in plants that produce
green or calcined petroleum coke. Gibbons (1994), Bhaumik and Gibbons (2006), Kr-
ishnamoorthy, Mathew and Mukherjee (2008) and Bhaumik et al. (2009) noted that
gamma distributions are potentially useful for applications in many fields, includ-
ing environmental monitoring, groundwater monitoring, industrial hygiene, genetic
research, and industrial quality control. For specific applications in groundwater
monitoring, see examples in the sequel.
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16.5 Estimation of Parameters: Three-parameter Case

Let X1, . . . , Xn be a sample from a gamma distribution with the shape parameter
a, scale parameter b, and the location parameter c. Let X̄ denote the sample mean.

Maximum Likelihood Estimators

The MLEs of a, b and c are the solutions of the equations

n∑

i=1

ln(Xi − c)− n ln b− nψ(a) = 0

n∑

i=1

(Xi − c)− nab = 0

n∑

i=1

(Xi − c)−1 + n[b(a− 1)]−1 = 0, (16.4)

where ψ is the digamma function (see Section 1.8). These equations may yield reliable
solutions if a is expected to be at least 2.5.

If the location parameter c is known, the MLEs of a and b are the solutions of
the equations

1

n

n∑

i=1

ln(Xj − c)− ln(X̄ − c)− ψ(a) + ln a = 0 and ab = X̄.

If a is also known, then X̄/a is the UMVUE of b.

Moment Estimators

Moment estimators are given by

â =
4m3

2

m2
3

, b̂ =
m3

2m2
and ĉ = X̄ − 2

m2
2

m3
,

where

mk =
1

n

n∑

i=1

(Xi − X̄)k, k = 1, 2, . . .

is the kth sample central moment.

16.6 One-Sample Inference

Let X1, ..., Xn be a sample from a gamma(a, b) distribution. Define

X̄ =
1

n

n∑

i=1

Xi and G̃ =

(
n∏

i=1

Xi

) 1
n

. (16.5)

© 2016 by Taylor & Francis Group, LLC

  



220 16 Gamma Distribution

Note that X̄ is the usual sample mean, and G̃ is the sample geometric mean. In the
sequel, we shall describe inferential methods based on X̄ and G̃ for some one-sample
problems involving two-parameter gamma distribution.

Maximum Likelihood Estimators

The log-likelihood function is expressed as

l(a, b|X̄, G̃) = −n ln Γ(a)− na ln b− nX̄/b + (a− 1)nln G̃. (16.6)

The maximum likelihood estimate (MLE) â is the solution of the equation

ln(a)− ψ(a) = ln(X̄/G̃), (16.7)

where ψ is the digamma function. Letting s = ln(X̄/G̃), an approximation to â is
given by

â ≃ 3− s+
√

(s− 3)2 + 24s

12s
. (16.8)

Using the above approximate MLE as the initial value a0, the MLE can be evaluated
by the Newton–Raphson iterative scheme

a1 = a0 −
ln a0 − ψ(a0)− s

1/a0 − ψ′(a0)
,

where ψ′(x) = ∂ψ(x)
∂x

is the trigamma function. The MLE of b is b̂ = X̄/â. Note

that the MLE â is implicitly a function of X̄/G̃, and so it is invariant under a scale

transformation of the samples, and b̂ = X̄/â is scale equivariant.

16.6.1 One-Sample Tests

Signed Likelihood Ratio Test (SLRT) for the Shape Parameter

Consider testing
H0 : a ≤ a0 vs. Ha : a > a0, (16.9)

where a0 is a specified value. It is easy to verify that, for a fixed a0, the MLE of b
is given by b̂a0 = X̄/a0. The SLRT statistic is expressed as

R(a0) = sign(â− a0)
{
2[ln l(â, b̂)− ln l(a0, b̂a0)]

}1/2

= sign(â− a0)
√
2n

[
ln

Γ(a0)

Γ(â)
+ (â− a0)

[
ln
(
G̃/X̄

)
− 1
]

+ (â ln â− a0 ln a0)]
1/2 ,

where â and b̂ are the MLEs.
As the testing problem is invariant under scale transformation X → cX, where

c is a positive constant, the distribution of R(a0) depends only on a0. Therefore,
the null distribution can be evaluated empirically by Monte Carlo simulation. In
particular, for an observed value of the SLRT statistic R0(a0), the null hypothesis
in (16.9) is rejected if the p-value P (R(a0) > R0(a0)) < α, where 0 < α < .5
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is a specified level of significance. Note that this p-value can be estimated using
simulated samples from a gamma(a0, 1) distribution. So this test is exact, except for
the simulation error.

SLRT for the Scale Parameter

Consider testing

H0 : b ≤ b0 vs. Ha : b > b0, (16.10)

where b0 is a specified value. For a fixed b, the MLE âb of a is the solution of the
equation

ψ(a)− ln
G̃

b
= 0. (16.11)

For calculation details, see Krishnamoorthy and Novelo (2014). The SLRT statistic
for testing b = b0 is expressed as

R(b0) = sign(̂b− b0)
{
2[ln l(â, b̂|X̄, G̃)− ln l(âb0 , b0|X̄, G̃)]

}1/2

= sign(̂b− b0)
√
2n

{
ln

Γ(âb0)

Γ(â)
+ â

(
ln
G̃

b̂
− 1

)

− âb0 ln
G̃

b0
+
X̄

b0

}1/2

. (16.12)

Extensive simulation studies by Krishnamoorthy and Novelo (2014) indicated that
the distribution of the SLRT statistic does not depend on any parameters. So the
p-value of the SLRT for testing (16.10) is given by P (R∗(1) > R0(b0)|a = 1, b = 1),
where R0(b0) is an observed value of R(b0), and R

∗(1) is the test statistic in (16.12)
based on a random sample of size n from a gamma(1,1) distribution. Note that, for
an observed SLRT statistic R0(b0), this p-value can be estimated by Monte Carlo
simulation.

Modified LRT for the Mean

The SLRT statistic for testing µ = µ0 is given by

R(µ0) = sign(µ̂− µ0)
{
2[l(â, b̂|X̄, G̃)− l(âµ0 , µ0|X̄, G̃)]

}1/2

, (16.13)

where l(a, b|X̄, G̃) is the log-likelihood function in (16.6),

l(a, µ|X̄, G̃) = −n ln Γ(a)− na ln(a/µ)− naX̄/µ+ (a− 1)nln G̃,

and âµ0 is the MLE of a at µ = µ0. This constrained MLE âµ0 is obtained as the
root of the equation

ln a− ψ(a) = ln
µ0

G̃
+
X̄

µ0
− 1. (16.14)

As the above equation is similar to (16.7), a Newton–Raphson iterative scheme is
readily obtained. The modified LRT by Fraser et al. (1997) is given by

MLRT (µ0) = R(µ0)−
1

R(µ0)
ln

(
R(µ0)

Q

)
, (16.15)
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where R(µ0) is defined in (16.13), and

Q =
√
nâ (µ̂/µ0 − 1) (ψ′(â)− 1/â)

1
2 /(ψ′(âµ0)− 1/âµ0 )

1
2 ,

and ψ′(x) is the trigamma function. This MLRT has third-order accuracy in the
sense that the standard normal approximation to the distribution of MLRT(µ0) is
accurate up to O(n−3/2). For testing

H0 : µ ≤ µ0 vs. Ha : µ > µ0, (16.16)

the MLRT rejects the null hypothesis if MLRT (µ0) > z1−α. For a two-sided alter-
native hypothesis, the MLRT rejects the null hypothesis if MLRT (µ0) > z1−α/2.

For a given (n, X̄, ln(G̃)), the dialog box [StatCalc→Continuous→ Gamma→Test,
CI...] uses the above testing methods to compute p-values for testing the shape pa-
rameter, scale parameter, and the mean.

Example 16.3. The data in Table 16.1 represent vinyl chloride concentrations (in
µg/L) collected from clean upgradient monitoring wells. The data are taken from
Bhaumik and Gibbons (2006), who have used the data to find prediction limits. A
quantile–quantile plot in Figure 16.2 clearly indicates that a gamma model fits these
data well. The mean X̄ = 1.8794 and the geometric mean G̃ = 1.0959. The ln(GM)

TABLE 16.1: Vinyl Chloride Concentrations in Monitoring Wells

5.1 2.4 .4 .5 2.5 .1 6.8 1.2 .5 .6 5.3 2.3 1.8
1.2 1.3 1.1 .9 3.2 1. .9 .4 .6 8 .4 2.7 .2
2 .2 .5 .8 2 2.9 .1 4

= .0915856. The MLEs are â = 1.063 and b̂ = 1.769. Note that the sample size
n = 34. To compute the p-value for testing H0 : a ≤ .5 vs. Ha : a > .5, select the
dialog box [StatCalc→Continuous→ Gamma→Test, CI...], enter 34 for the sample
size, 1.8794 for the sample mean, 0.0915856 for [Sam log(GM)], and .8 for [H0: a
= a0]; click on [p-value] to get the SLRT statistic 3.198 with the p-value of 0.0014.
The p-value indicates that the shape parameter of the concentration distribution is
greater than 0.5.

Suppose it is desired to test H0 : b ≥ 50 vs. Ha : b < 50. To find the p-value,
enter 50 for [H0: b = b0] and click on [p-value] to get the SLRT statistic −7.08115
and the p-value .001. Thus, the scale parameter of the vinyl chloride concentration
distribution is less than 50.

Example 16.4. In this example, we shall use the lifetime data on air condition-
ing equipments given in Proschan (1963). Keating et al. (1990) used the data for
illustrating a gamma model-based inference. The lifetime data in operating hours
for plane number 7909 with 13 Boeing 720 aircrafts are as given in Table 16.2. The
MLEs are â = 1.6710 and b̂ = 49.981. The sample mean X̄ = 83.517, the geometric
mean X̃ = 60.154, and ln(GM) = ln(60.154) = 4.0969. The sample size is n = 29.

For this example, it is desired to testH0 : a ≤ 1 vs.Ha : a > 1. To calculate the p-
value using StatCalc, select the dialog box [StatCalc→Continuous→ Gamma→Test,
CI...], enter 29 for the sample size, 83.5172 for the [Sample AM], 4.0969 for [Sam
log(GM)], 1 for [H0: a = a0], and click [p-values] to get the SLRT statistic 1.9897
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FIGURE 16.2: Gamma Q–Q plot for vinyl chloride concentrations

TABLE 16.2: Lifetime Data on Air Conditioning Equipment

90 10 60 186 61 49 14 24 56 20 79 84
44 59 29 118 25 156 310 76 26 44 23 62
130 208 70 101 208

with the p-value .039. As this p-value is less than .05, we can conclude that the
shape parameter of the lifetime distribution is greater than 1.

To test H0 : µ ≥ 110 vs. Ha : µ < 110, enter 110 for [H0: M = M0] in the dialog
box noted in the preceding paragraph, and click on [p-values] to get the MLRT
statistic −1.6984 and the p-value is Φ(−1.6984) = .045, where Φ is the standard
normal distribution. On the basis of the p-value, we can conclude that the mean
concentration is less than 110.

16.6.2 One-Sample Confidence Intervals

The tests in the preceding sections are not conducive to find confidence intervals
for the parameters or for the mean. So we shall describe simple parametric boot-
strap (PB) confidence intervals for the parameters and the mean. Let X̄ and G̃
denote the mean and geometric mean, respectively, based on a sample of size n from
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a gamma(a, b) distribution. Let â and b̂ denote the MLEs based on (X̄, G̃). Simi-

larly, let X̄∗ and G̃∗ denote the mean and geometric mean, respectively, based on a
bootstrap sample of size n generated from the gamma(â, b̂) distribution. Let (â∗, b̂∗)

denote the MLEs based on (X̄∗, G̃∗).

PB Confidence Interval for the Shape Parameter

Let Qa;α denote the 100α percentile of

Qa =
â∗ − â

σ̂â∗
=

â∗ − â

{â∗/[n(â∗ψ′(â∗)− 1)]}1/2
, (16.17)

where the variance estimate σ̂2
â∗ in the above expression is obtained from the inverse

Fisher information matrix. The 100(1 − 2α) percent PB confidence interval for the
shape parameter a is given by

(â−Qa;ασ̂â, â−Qa;1−ασ̂â) , (16.18)

where σ̂2
â = â/[n(âψ′(â)− 1)]. The following algorithm can be used to estimate the

percentiles Qa;α and Qa;1−α.

Algorithm 16.1. PB confidence interval for the shape parameter a

1. For a given sample of size n, calculate the MLEs â and b̂.

2. Generate a bootstrap sample of size n from gamma(â, b̂) distribution, and cal-

culate the MLEs â∗ and b̂∗ based on the bootstrap sample.

3. Set Qa = â∗−â
{â∗/[n(â∗.ψ′(â∗)−1)]}1/2

4. Repeat steps 2 and 3 for a large number of times, say, 100,000.

5. The 100α lower percentile and the 100α upper percentile of Qas are estimates
of Qa;α and Qa;1−α, respectively.

PB Confidence Interval for the Scale Parameter

To find the PB confidence interval for the scale parameter b, we note that

Qb =
b̂∗ − b̂

σ̂b̂∗
=

b̂∗ − b̂
{
b̂∗2ψ′(â∗)/[n(â∗ψ′(â∗)− 1)]

}1/2
, (16.19)

where the variance estimate of b̂∗ is obtained from the Fisher information matrix.
Letting σ̂2

b̂
= b̂2ψ′(â)/[n(âψ′(â)− 1)], the PB confidence interval for b is given by

(
b̂−Qb;1−ασ̂b̂, b̂−Qb;ασ̂b̂

)
, (16.20)

where Qb;α is the 100α percentile of Qb. The above PB confidence interval can be
estimated using an algorithm similar to Algorithm 16.1.
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PB Confidence Interval for the Mean

Recall that the mean of a gamma distribution is given by µ = ab, and so the MLE
of µ is µ̂ = âb̂ = X̄. The variance estimate

σ̂2
X̄ =

âb̂2

n
=
X̄2

nâ
.

The PB pivotal is given by

Qµ =
µ̂∗ − µ̂

σ̂X̄∗

=
(X̄∗ − X̄)

X̄∗/
√
nâ∗

, (16.21)

where the MLEs â∗ and X̄∗ are based on a bootstrap sample from gamma(â, b̂)
distribution. The 100(1− 2α) percent PB confidence interval for µ is given by

(
X̄ −Qµ;1−α

X̄√
nâ
, X̄ −Qµ;α

X̄√
nâ

)
, (16.22)

where Qµ;α is the 100α percentile of Qµ defined in (16.21).

For a given (n, X̄, ln(G̃)), the dialog box [StatCalc→Continuous→ Gamma→Test,
CI...] computes the above PB confidence intervals the shape parameter, scale pa-
rameter, and the mean. These PB confidence intervals are quite satisfactory even
for small samples [Krishnamoorthy and Novelo, 2014].

Example 16.5. Let us compute 95% confidence intervals for the mean lifetime of air
conditioning equipments based on the data in Table 16.2. Recall that X̄ = 83.5172,
ln(GM) = 4.0969, and the sample size n = 29. To compute the 95% PB confidence
interval, select the dialog box [StatCalc→Continuous→ Gamma→Test, CI...], enter
29 for the sample size, 83.5172 for the [Sample AM], 4.0969 for [Sam log(GM)], .95
for [Conf Level], and click [CI] to get (63.1, 114.7).

The 95% confidence interval (L,U) based on MLRT test in (16.15) is determined
such that

MLRT (L) = z.975 = 1.96 and MLRT (U) = z.025 = −1.96.

Using the PB confidence interval as starting values and trial-error, it can be verified
that MLRT (63.38) = 1.96 and MLRT (115.16) = 1.96. Thus, the 95% confidence
interval for the mean time to failure on the basis of MLRT in (16.15) is (63.4, 115.2),
which is in good agreement with the PB confidence interval.

By clicking appropriate [CI] radio button in the same dialog box, we find 95%
PB confidence intervals for the shape parameter as (.948, 2.492) and for the scale
parameter as (32.07, 99.51).

Example 16.6. Grice and Bain (1980) discuss the data (Gross and Clark, 1975)
on survival times on 20 mice exposed to 240 rads of gamma radiation. The data
are reproduced here in Table 16.3. The mean X̄ = 113.45 and ln(GM) = 4.6734.

The MLEs are â = 8.805 and b̂ = 12.885. To compute the 95% PB confidence
interval for the mean survival time, select the dialog box [StatCalc→Continuous→
Gamma→Test, CI...], enter 20 for the sample size, 113.45 for the [Sample AM],
4.6734 for [Sam log(GM)], .95 for [Conf Level], and click [CI] to get (97.0, 134.1).
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226 16 Gamma Distribution

TABLE 16.3: Survival Time Data

152 152 115 109 137 88 94 77 160 165
125 40 128 123 136 101 62 153 83 69

To find a 95% confidence interval for the shape parameter, click on [CI] (under CI
for the Shape Parameter) to get (4.0, 14.30).
To find a 95% confidence interval for the mean based on the MLRT and the PB
confidence interval in the preceding paragraph, we find

MLRT (97.2) = 1.96 = z.975 and MLRT (134.3) = −1.96 = z.025.

Thus, the 95% MLRT confidence interval for the mean is (97.2, 134.3), which is in
good agreement with the PB confidence interval (97.0, 134.1).

Remark 16.1. If the shape parameter a is known, then an exact interval estimation
method for b is available. In this case, S = nX̄ ∼ gamma(na, b), and the endpoints
of 1− α confidence interval (bL, bU ) satisfy

P (S ≤ S0|bU ) = α/2

and
P (S ≥ S0|bL) = α/2.

Using the result that the gamma distribution is stochastically increasing in b, the
confidence interval can be obtained as

(bL, bU ) =

(
S0

Gna,1;1−α/2
,

S0

Gna,1;α/2

)
,

where Gna,1;α denotes the α quantile of a gamma distribution with the shape pa-
rameter na and the scale parameter 1, is a 1−α confidence interval for b [Guenther
1969 and 1971].

16.6.3 Prediction Intervals, Tolerance Intervals, and
Survival Probability

Approximate prediction intervals, tolerance intervals and confidence intervals for
survival probability can be obtained using the cube root transformation. Specifi-
cally, if X ∼ gamma(a, b) distribution, then X1/3 is approximately normally dis-
tributed (Wilson-Hilferty, 1931). As a result, tolerance limits, prediction limits, and
confidence limits for a survival probability involving gamma distributions are eas-
ily obtained by applying normal-based methods for cube root transformed samples,
and then taking third power. Krishnamoorthy et al. (2008) proposed this cube root
transformed approach, and their simulation studies indicated that the approximate
results are very satisfactory even for samples as small as four.

Let X1, ..., Xn be a sample from a gamma(a, b) distribution. Let

Yi = X
1
3
i , i = 1, ..., n, Ȳ =

1

n

n∑

i=1

Yi and S
2
y =

1

n− 1

n∑

i=1

(Yi − Ȳ )2.
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Prediction Intervals

An approximate 1− α prediction interval for a future individual is

(
Ȳ ± tn−1;1−α/2Sy

√
1 + 1/n

)3
,

where tm;q denotes the qth quantile of a t distribution with df = m.

Upper Prediction Limits for at least l of m Observations from Each of r
Locations

As noted in Section 11.4.4, construction of an upper prediction limit (UPL) for
at least l of m observations from a normal population at each of r locations is
needed in ground water quality detection monitoring in the vicinity of hazardous
waste management facilities (HWMF), and in process monitoring. Let ku denote the
factor for the normal case determined by the integral equation (11.10). Then

(
Ȳ + kuSy

)3

is the desired UPL. Numerical investigation by Krishnamoorthy et al. (2008) indi-
cated that the above approximate UPL is very accurate even for small samples.

Tolerance Intervals

An approximate (p, 1−α) upper tolerance limit for the sampled gamma population
is given by

(
Ȳ + cSy

)3
, where c =

1√
n
tn−1;1−α(zp

√
n),

where tm;q(δ) denotes the q quantile of a noncentral t distribution with df = m
and the noncentrality parameter δ, and zp is the pth quantile of a standard normal

distribution. Furthermore,
(
Ȳ − cSy

)3
is an approximate (p, 1 − α) lower tolerance

limit.
An approximate two-sided tolerance interval is given by

(
Ȳ ± kSy

)3
,

where k is the normal tolerance factor as defined in (11.6.1).

Survival Probability

Note that, for a given t > 0, P (X > t) = P (X1/3 > t1/3), where Y is approximately
normally distributed. On the basis of this approximation, we can find a confidence
interval for the survival probability P (X > t) following (11.7) in Section 11.4.3. Let
L and U be determined by the following equations:

tn−1;1−α(
√
nL) =

√
n(t1/3 − Ȳ )

Sy
and tn−1;α(

√
nU) =

√
n(t1/3 − Ȳ )

Sy
. (16.23)

An approximate 1− 2α approximate confidence interval for the survival probability
P (X > t) is given by
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228 16 Gamma Distribution

FIGURE 16.3: Normal Q–Q plot for cube root transformed lifetime data on
air conditioning equipment

(1− Φ(U), 1− Φ(L)) .

Example 16.7. Let us calculate (.90, .95) lower tolerance limit for lifetime data on
air conditioning equipments in Example 16.4. The Q–Q plot in Figure 16.3 clearly
indicates that a normal model for cube root transformed data is tenable. The mean
and the standard deviation of the cube root transformed sample are

Ȳ = 4.0710 and Sy = 1.1425.

Tolerance limits and prediction limits can be calculated using [StatCalc
→Continuous→Gamma→Tolerance ...]. In this dialog box, just enter 29 for [Sample
Size n], 0.9 for [Proportion p], .95 for [Coverage Prob g], 4.071 for [x-bar*] and 1.1425
for [s*]; click on [1-sided] to get 8.344.

Suppose it is desired to find 95% lower confidence limit for P (X > 15). Select
the dialog box [StatCalc→Continuous→Normal→Coefficients ...], enter 29 for [S
Size], 4.0710 for the [Sample Mean], 1.1425 for [Sample SD], .95 for [Conf Level],
151/3 = 2.4662 for [Value of t], and click [CI for P(X > t)] to get .8111. This
means that at least 81% of air conditioning equipment will last 15 units of time with
confidence 95%.

Example 16.8. Let us calculate tolerance limits and prediction limits for the vinyl
chloride concentration data in Table 16.1. The mean of the cube root transformed
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data is Ȳ = 1.1022 and Sy = 0.3999. To compute (.95, .95) upper tolerance limit,
select the dialog box ([StatCalc→Continuous→Normal→Tolerance ...]), enter 34 for
[Sample Size n], .95 for [Proportion p], .95 for [Coverage Prob g], 1.1022 for [x-bar*],
and 0.3999 for [s*]; click on [1-sided] to get 7.674. This means that at least 95% of
the concentrations are less than 7.674 with confidence 95%.

We shall now calculate 95% UPL so that at least one of three future measure-
ments from each of five locations fall below the UPL. To find the desired factor,
choose the dialog box in the preceding paragraph, enter the sample size, the mean,
and SD as in the preceding paragraph and enter (34, 5, 3, 1) for (n, r,m, l) and .95
for [Conf Level]; click on [1-sided] to get 3.008.

16.7 Comparison of Several Gamma Distributions

Let (X̄i, G̃i) denote the (arithmetic mean, geometric mean) based on a sample of size
ni from gamma(ai, bi) distribution, i = 1, ..., k. In the following we shall describe the
likelihood ratio statistics for comparing several parameters, means, and homogeneity
of several gamma distributions.

LRT for Equality of Shape Parameters

Consider testing

H0 : a1 = ... = ak vs. Ha : ai 6= aj for some i 6= j. (16.24)

Following (16.6), the log-likelihood function under H0 is expressed as

k∑

i=1

l(a, bi) = −
k∑

i=1

ni

(
ln Γ(a) + a ln(bi) +

X̄i
bi

− (a− 1) ln G̃i

)
, (16.25)

where a is the unknown common shape parameter. It can be readily checked that the
constrained MLE of the common shape parameter, denoted by âc, that maximizes
(16.25) is the solution of the equation

ln a− ψ(a) =
n∑

i=1

wi ln
X̄i

G̃i
, (16.26)

where wi = ni/
∑k

j=1 nj . Noting that the above equation is similar to (16.7), the root
can be found using the Newton–Raphson method with the starting value as defined
in (16.8) with s =

∑n
i=1 wi ln

X̄i

G̃i
. The constrained MLEs b̂ic = X̄i/âc, i = 1, ..., k.

The LRT statistic for testing (16.24) is given by

Λa = 2

{
k∑

i=1

l(âi, b̂i)−
k∑

i=1

l(âc, b̂ic)

}

= 2
k∑

i=1

ni

(
ln

Γ(âc)

Γ(âi)
− (ln ââcc − ln ââii )

+ (âc − âi)

[
ln
X̄i

G̃i
+ 1

])
, (16.27)
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230 16 Gamma Distribution

where l(a, b) is given in (16.6), (âi, b̂i) is the MLE of (ai, bi) based on (X̄i, G̃i),
i = 1, ..., k, and âc is constrained MLE of a satisfying equation (16.26).

Since the LRT statistic Λa is invariant under the transformation Xij → ciXij ,
j = 1, ..., ni, i = 1, ..., k, and ci > 0 for all i. The null distribution of Λa may depend
on the unknown common shape parameter under H0 in (16.24). However, extensive
simulation studies by Krishnamoorthy, Lee and Wang (2015) indicate that the null
distribution of Λa does not depend on the common unknown shape parameter, so it
appears that the LRT is exact.

The necessary percentiles to carry out the test or p-values can be estimated by
Monte Carlo simulation based on independent samples, each of size ni, generated
from gamma(1, 1) distribution (or from the standard exponential distribution) as
described in the following algorithm.

Algorithm 16.2. Calculation of the p-value of the LRT for equality of shape pa-
rameters

For a given set of sample sizes (n1, ..., nk):

1. Generate independent samples

Uij ∼ uniform(0, 1), j = 1, ..., ni, i = 1, ..., k

Set Xij = − ln(Uij)

2. Compute X̄i =
1
ni

∑ni
j=1Xij and ln G̃i =

1
n

∑ni
j=1 ln(Xij), i = 1, ..., k

3. Find the MLEs (âi, b̂i) and the constrained MLEs (âc, b̂ic) based on

(ni, X̄i, ln G̃i), i = 1, ..., k

4. Compute the LRT statistic Λa using (16.27)

5. Repeat steps 1–4 for a large number of times, say, 100,000

6. The 100(1−α) percentile of the 100,000 LRT statistics is a Monte Carlo estimate
of the 100(1− α) percentile of the null distribution of Λa.

The LRT rejects the null hypothesis in (16.24) when an observed value Λ0
a of Λa is

greater than the above 100(1 − α) percentile. For an observed value Λ0
a of Λa, the

percentage of 100,000 LRT statistics that is greater than Λ0
a is an estimate of the

p-value. For a vector n of sample sizes, vector X̄ = xb, and vector lgm = ln G̃, R
function 16.2 calculates the p-value of the LRT for equality of shape parameters.

Example 16.9. Schickdanz and Krause (1970) fitted normal, lognormal, and
gamma distributions to weekly rainfall data from Springfield, Ill., during the seasons
of summer, fall and winter for 1960–64. They found that the gamma distribution is
the best fit among these three distributions. The sample sizes along with MLEs are
given for each season in Table 16.4.

To test equality of the shape parameters of the rainfall distributions during
these three seasons, we calculated the constrained MLEs âc = .8430, b̂1c = 1.0723,
b̂2c = .9057, and b̂3c = .4370. The LRT statistic in (16.27) is 1.2673 with the p-value
of .540. This p-value clearly indicates that the shape parameters are not significantly
different.
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TABLE 16.4: Weekly Rainfall Data with Sample Statistics and MLEs

Summer Fall Winter
Sample Statistics n1 = 58 n2 = 51 n3 = 57

X̄ .9040 .7635 .3684

ln G̃ -.8471 -1.0417 -1.5850

MLEs (â, b̂) (.7959, 1.1358) (.7725, .9884) (.9860, .3736)

The above calculation can be carried out using the R function 16.2 as follows.

> n = c(58,51,57)

> xb = c(.9040, .7635, .3684)

> lgm = c(-.8471,-1.0417,-1.5850)

> test.gamma.shapes(100000,n,xb,lgm)

[1] 1.267333 0.540 # (LRT statistic, p-value)

LRT for Equality of Scale Parameters

Consider testing

H0 : b1 = ... = bk vs. Ha : bi 6= bj for some i 6= j. (16.28)

The log-likelihood function under H0 can be expressed as

k∑

i=1

l(ai, b) = −
k∑

i=1

ni

(
ln Γ(ai) + ai ln(b) +

X̄i
b

− (ai − 1) ln(G̃i)

)
, (16.29)

where b is the unknown common scale parameter under H0. The constrained MLEs
âics of ais are the solutions of the equations

ni ln

(
k∑

j=1

njaj

)
−niψ(ai)−ni ln

(
k∑

j=1

njX̄j

)
+ni ln(G̃i) = 0, i = 1, ..., k (16.30)

and

b̂c =

∑k
i=1 niX̄i∑k
i=1 niâic

.

For calculation details of âics, see Krishnamoorthy, Lee and Wang (2015). The LRT
statistic for testing the equality of scale parameters is given by

Λb = 2

{
k∑

i=1

l(âi, b̂i)−
k∑

i=1

l(âi, b̂c)

}

= 2
k∑

i=1

ni

(
ln

Γ(âic)

Γ(âi)
+ ln

(
b̂âicc

b̂âii

)
+ (âic − âi)

(
1− ln(G̃i)

))
,(16.31)

where l(a, b) is given in (16.6), (âi, b̂i) is the MLE of (ai, bi) based on (X̄i, G̃i),
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i = 1, ..., k, and âics are the constrained MLEs of ais satisfying equation (16.30),

and b̂c =
∑k
i=1 niX̄i/

∑k
i=1 niâic.

On the basis of extensive simulation studies, Krishnamoorthy, Lee and Wang
(2015) noted that the null distribution of Λb does not depend on any parameters.
Furthermore, the null distribution of Λb and that of Λa are the same, and both
distributions depend only on sample sizes. So Algorithm 16.2 can be used to find
the percentiles or the p-value of an observed value of the LRT statistic Λb.

For given sample sizes, (X̄1, ..., X̄k) and (ln G̃1, ..., lnG̃k), R function 16.3 calcu-
lates the p-value of the LRT for equality of the shape parameters or of the LRT for
equality of scale parameters.

Example 16.10. To test the equality of the scale parameters of the rainfall dis-
tributions in Example 16.9, we calculated the constrained MLEs as b̂c = .9480,
â1c = .8474, b̂2c = .6396, and b̂3c = .8345. The LRT statistic for testing the equality
of the scale parameters is 13.46 with the p-value .001, which indicates that the scale
parameters of the rainfall distributions are significantly different. These quantities
can be calculated using R function 16.3 as follows.

> n = c(58,51,57)

> xb = c(.9040, .7635, .3684)

> lgm = c(-.8471,-1.0417,-1.5850)

> test.gamma.scales(100000,n,xb,lgm)

[1] 13.45636 0.00144

LRT for Equality of Means

Let (X̄i, G̃i) denote the (arithmetic mean, geometric mean) based on a sample of
size ni from a gamma(aibi) distribution, i = 1, ..., k. Let µi = aibi, i = 1, ..., k, and
consider testing

H0 : µ1 = ... = µk vs. Ha : µi 6= µj for some i 6= j.

Denoting the unknown common mean under H0 by µ, the log-likelihood function
under H0 can be expressed as

k∑

i=1

l(ai, µ) = −
k∑

i=1

ni

(
ln Γ(ai) + ai ln

µ

ai
+ X̄i

ai
µ

− (ai − 1) ln G̃i

)
. (16.32)

The MLEs of ais, under H0, are the solutions of the equations

ln ai − ψ(ai) = ln
µ

G̃i
+
X̄i
µ

− 1, (16.33)

where

µ =

∑k
i=1 niaiX̄i∑k
i=1 niai

.

Denoting the MLEs satisfying the above equations (16.33) by âic, the MLE of µ is
given by the above expression with ai replaced by âic.
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The LRT statistic is given by

Λµ = 2

{
k∑

i=1

l(âi, b̂i)−
k∑

i=1

l(âic, µ̂c)

}

= 2

k∑

i=1

ni

(
ln

Γ(âic)

Γ(âi)
+ âic ln

µ̂c
âic

− âi ln
X̄i
âi

+ âi

(
b̂i

b̂ic
− 1

)
− (âic − âi) ln G̃i

)
, (16.34)

where l(ai, bi) is defined in (16.6) and l(ai, µ) is defined in (16.32).
Simulation results by Krishnamoorthy, Lee and Wang (2015) indicate that the

null distribution of the LRT statistic Λµ depends only on the number of groups k and
the sample sizes, not on the common mean µ under H0 and the shape parameters.
Thus, for a given set of sample sizes, Monte Carlo simulation can be used to estimate
the p-value or the percentile of Λµ.

For given sample sizes, sample means, and logarithm of sample geometric means,
R function 16.4 calculates the p-value for testing equality of means.

Example 16.11. To test the equality of the means of the rainfall distributions in
Example 16.9, the constrained MLEs are computed as µ̂c = .6694, â1c = .7421,
â2c = .7556, and â3c = .8002. The LRT statistic for testing the equality of the
means is 20.17 with the p-value .00005. This p-value provides a strong evidence to
conclude that the means are quite different. These quantities can be calculated using
R function 16.4 as follows.

> n = c(58,51,57)

> xb = c(.9040, .7635, .3684)

> lgm = c(-.8471,-1.0417,-1.5850)

> test.gamma.means(100000,n,xb,lgm)

[1] 20.17182 0.00005

LRT for Homogeneity of Several Gamma Distributions

Consider testing

H0 : (a1, b1) = ... = (ak, bk) vs. Ha : (ai, bi) 6= (aj , bj) for some i 6= j. (16.35)

The log-likelihood function under H0 is simply the log-likelihood function based on a
single sample of size N =

∑k
i=1 ni from a gamma(a, b) distribution, and is expressed

as

l(a, b) = −N ln Γ(a)−Na ln b−N
¯̄X

b
+N(a− 1) ln

˜̃
G, (16.36)

where ( ¯̄X,
˜̃
G) is the (mean, geometric mean) based on all N observations. The LRT

statistic for testing H0 in (16.35) is given by

ΛE = 2

(
k∑

i=1

l(âi, b̂i)− l(â, b̂)

)
, (16.37)

where l(a, b) is given in (16.36), âi and b̂i are the MLEs based on the ith sample.
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For large samples, the LRT rejects H0 in (16.35) if ΛE > χ2
2k−2;1−α. On the basis of

extensive simulation studies Krishnamoorthy, Lee and Wang (2015) conjectured that
the distribution of the statistic ΛE does not depend on any unknown parameters.
So the percentiles of the null distribution of ΛE or the p-value can be estimated by
Monte Carlo simulation.

Example 16.12. To test if the rainfall distributions in Example 16.9 are identical,
the MLEs based on all three samples are computed as â = .7741 and b̂ = .8745. The
LRT statistic for testing the equality of the means is 20.26 with the p-value .0005.
This p-value provides a strong evidence to conclude that the rainfall distributions
are quite different. The LRT statistic and the p-value can be calculated using R
function 16.5 as follows.

> n = c(58,51,57)

> xb = c(.9040, .7635, .3684)

> lgm = c(-.8471,-1.0417,-1.5850)

> test.gamma.means(100000,n,xb,lgm)

[1] 20.17182 0.00005

One-Sided Tests for Comparing Two Parameters

Solutions to two-sample problems can be readily obtained as a special case of k-
sample problems. In order to test one-sided hypotheses in a two-sample problem,
the LRT statistics in the preceding sections can be modified as follows. For example,
to test

H0 : a1 ≤ a2 vs. Ha : a1 > a2,

the LRT statistic Λa in (16.27) can be modified as

Λ∗
a = sign(â1 − â2)

√
2Λa,

where sign(x) = 1 if x > 0, and is −1 if x < 0. The distribution of the above statistic
also does not depend on any parameters, so Monte Carlo simulation can be used to
find the p-value or percentile of Λ∗

a.
The test statistics Λb and Λµ can be modified similarly to handle a one-sided

hypothesis test for equality of the scale parameters and for equality of two means.

Approximate Test for a1 − a2

The approximate test by Shiue, Bain and Engelhardt (1988) is described as follows.

Let Ri = ln(X̄i/G̃i), and νi = (n1−1)
(
1 + 1/(1 + 4.3âi)

2
)
, i = 1, 2. Then the above

test rejects the null hypothesis of equal shape parameter at the level of significance
α, if

n1R1/(n1 − 1)

n2R2/(n2 − 1)
> Fν1,ν2;1−α, (16.38)

where Fm,n;p denotes the 100p percentile of the F distribution with degrees of free-
doms (dfs) m and n. Numerical studies by Krishnamoorthy and Novelo (2014) indi-
cated that the SLRT and the above test are very similar in terms of type I error rates
and powers. As this test is simple to carry out, it is recommended for applications.
StatCalc uses this approximate test to calculate the p-value for testing a1 = a2.

For a given {n1, n2, X̄1, X̄2, ln G̃1, ln G̃2}, the dialog box [StatCalc→Continuous
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16.8 Properties and Results 235

→Gamma→Test, CI for Mean Difference ...] calculates the p-values for testing equal-
ity of two shape parameters, two scale parameters, or two means.

Example 16.13. Experimental Meteorology Laboratory conducted randomized py-
rotechnic seeding experiments on single clouds in south Florida during 1968 and
1970. Overall, 26 seeded and 26 control clouds were compared in the experiment to
judge the effect of seeding. The data (in acre-feet per cloud) are given in Table 1 of
Simpson (1972). The seeded rain data fit a gamma distribution very well (p-value
>.250) whereas the data on control rain barely fit a gamma model (p-value > .057).
We shall use the data to illustrate some two-sample methods described in earlier
sections.

The calculated statistics for seeded rain are as follows: X̄1 = 441.98, ln(G̃1) =

5.134, â1 = .6396, b̂1 = 691.05. For control rain (after replacing an entry of 0 by

1), X̄2 = 164.59, ln(G̃2) = 3.990, â2 = .5608, b̂2 = 293.51. The mean difference
X̄1 − X̄2 = 277.4.

Let µ1 denote the mean amount of seeded rain, and let µ2 denote the
same for the control rain. To test the effect of seeding, one may want to test
H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2. To find the p-value, select the dialog box
[StatCalc→Continuous→Gamma→Test, CI for Mean Difference ...], enter 26 for
both sample sizes, 441.98 and 164.59 for [Sample AM], 5.134 and 3.990 for [Sample
log(GM)]; click on [p-value] (under Test for M1 = M2) to get .006. This p-value
indicates that there is a seeding effect on rainfall.

To find a 95% PB confidence interval for µ1 − µ2, enter .95 for [Conf Level] and
click on [CI] (under CI for M1 - M2) to get (94.1, 579.6). This confidence interval
indicates that on the average seeding effect on rainfall exceeded by 92.5 to 579.5
acre-feet.

To illustrate the test for the difference between two shape parameters, let us
consider testing H0 : a1 = a2 vs. Ha : a1 6= a2, where a1 is the shape parameter for
seeded rain, and a2 is the shape parameter for the control rain. To find the p-value,
click on [p-value] (under Test for a1-a2) to get .350 for [Ha: a1 > a2]. The p-value for
the two-tailed test is 2× .350 = .7. Thus, the null hypothesis is not rejected. A 95%
confidence interval for a1 − a2 can be obtained by clicking [CI], and is (−.279, .448).

The p-value of the test H0 : b1 ≤ b2 vs. Ha : b1 > b2 can be found by clicking
on [p-value] under [Test for b1 - b2]. For this example, the p-value is .048, which
indicates that b1 is barely greater than b2.

16.8 Properties and Results

1. An Identity: Let F (x|a, b) and f(x|a, b) denote, respectively, the cdf and pdf of
a gamma random variable X with parameters a and b. Then

F (x|a, 1) = F (x|a+ 1, 1) + f(x|a+ 1, 1).

2. Additive Property: Let X1, . . . , Xk be independent gamma random vari-
ables with the same scale parameter but possibly different shape parameters
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236 16 Gamma Distribution

a1, . . . , ak, respectively. Then

k∑

i=1

Xi ∼ gamma

(
k∑

i=1

ai, b

)
.

3. Exponential: Let X1, . . . , Xn be independent exponential random variables with
mean b. Then

n∑

i=1

Xi ∼ gamma(n, b).

4. Chi-square: When a = n/2 and b = 2, the gamma distribution specializes to
the chi-square distribution with df = n.

5. Normal: If X is a gamma(a) random variable, then

X
1
3 ∼ N(µ, σ2), approximately,

where µ = α
1
3
(
1− 1

9α

)
and σ2 = 1/(9α

1
3 ) [Wilson and Hilferty, 1931].

6. Beta: See Section 17.6.2.

7. Student’s t : If X and Y are independent gamma(n, 1) random variables, then

√
n/2

(
X − Y√
XY

)
∼ t2n.

16.9 Random Number Generation

Input: a = shape parameter gamma(a) distribution

Output: x = gamma(a) random variate

y = b*x is a random number from gamma(a, b).

Algorithm 16.3. Gamma variate generator

For a = 1:

Generate u from uniform(0, 1) return x = -ln(u)

The following algorithm for a > 1 is due to Schmeiser and Lal (1980). When 0 <
a < 1, X = gamma(a) variate can be generated using relation that X = U1/aZ,
where Z is a gamma(a + 1) random variate.

Set f(x) = exp(x3*ln(x/x3) + x3 - x)

x3 = a-1

d = sqrt(x3)

k =1

x1 = x2 = f2 = 0

If d >= x3, go to 2

x2 = x3 - d

k = 1- x3/x2
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x1 = x2 + 1/k

f2 = f(x2)

2 Set x4 = x3 + d

r = 1 - x3/x4

x5 = x4 + 1/r

f4 = f(x4)

p1 = x4 - x2

p2 = p1 - f2/k

p3 = p2 + f4/r

3 Generate u, v from uniform(0, 1)

Set u = u*p3

If u > p1 go to 4

Set x = x2 + u

If x > x3 and v <= f4 + (x4 - x)*(1 - f4)/(x4 - x3), return x

If x < x3 and v <= f2 + (x - x2)*(1 - f2)/(x3 - x2), return x

go to 6

4 If u > p2, go to 5

Set u = (u - p1)/(p2 - p1)

x = x2 - ln(u)/k

If x < 0, go to 3

Set v = v*f2*u

If v <= f2*(x - x1)/(x2 - x1) return x

go to 6

5 Set u = (u - p2)/(p3 - p2)

x = x4 - ln(u)/r

v = v*f4*u

If v <= f4*(x5 - x)/(x5 - x4) return x

6 If ln(v) <= x3*ln(x/x3) + x3 - x, return x

else go to 3

x is a random number from the gamma(a, 1) distribution.

16.10 Computational Method for Probabilities

To compute P (X ≤ x) when a > 0 and b = 1:
The Pearson series for the cdf is given by

P (X ≤ x) = exp(−x)xa
∞∑

i=0

1

Γ(a+ 1 + i)
xi. (16.39)

The cdf can also be computed using the continued fraction:

P (X > x) =
exp(−x)xa

Γ(a)

(
1

x+ 1− a−
1 · (1− a)

x+ 3− a−
2 · (2− a)

x+ 5− a− · · ·
)
. (16.40)
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To compute Γ(a+ 1), use the relation Γ(a+ 1) = aΓ(a) [Press et al., 1992].

The series (16.39) converges faster for x < a + 1, while the continued fraction
(16.40) converges faster for x ≥ a+ 1. A method of evaluating continued fraction is
given in Kennedy and Gentle (1980, p. 76).

The following R function computes the gamma distribution function.

R function 16.1. Calculation of the gamma cdfa

gamcdf = function(x, a){

one = 1.0; maxitr = 1000; err = 1.0e-12

# alng(x) = logarithmic gamma function; R function 1.1

com = exp(a*log(x)-alng(a)-x)

a0 = a

term = one/a; su = one/a

for(i in 1:maxitr){

a0 = a0 + one

term = term*x/a0;

su = su + term;

if (abs(term) < su*err){break}

}

return(su*com)

}

aElectronic version of this R function can be found in HBSDA.r, located in
StatCalc directory.

16.11 R Programs

The following R functions are also provided in the file “HBSDA.r” in StatCalc in-
stallation directory.
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R function 16.2. Calculation of the p-value of the LRT for equality of
shape parameters

test.gamma.shapes = function(nr, n, xb, lgm){

k = length(n); stats = seq(1:nr)

s = log(xb)-lgm

stat0 = lrt.stat.shapes(n, s)

for(i in 1:nr){

for(j in 1:k){

x = -log(runif(n[j]))

xb[j] = mean(x); lgm[j] = mean(log(x))

s[j] = log(xb[j])-lgm[j]

}

stats[i] = lrt.stat.shapes(n, s)

}

pval = sum(stats > stat0)/nr

return(c(stat0, pval))

}

# LRT statistic Lambda_a

lrt.stat.shapes = function(n, s){

k = length(n); sn = sum(n)

w = n/sn; ah = seq(1:k)

for(i in 1:k){

ah[i] = gam.mles(n[i], s[i])}

sti = sum(w*s)

a0 = (3-sti+sqrt((sti-3)**2+24*sti))/12/sti

l = 1

repeat{

a1 = a0-(log(a0)-digamma(a0)-sti)/(1/a0-trigamma(a0))

if(abs(a1-a0) <= 1.0e-7 | l >= 300){break}

a0 = a1

l = l+1}

ahc = a1

lrts = sum(n*(lgamma(ahc)-lgamma(ah)))-sum(n*(ahc*log(ahc)+

-ah*log(ah)))+sum(n*(ahc-ah)*(s+1))

return(2*lrts)

}
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# MLE of the shape parameter

gam.mles = function(n, s){

a0 = (3.0-s+sqrt((s-3.0)^2+24.0*s))/12.0/s

l = 1

repeat{

ans = (log(a0)-digamma(a0)-s)

a1 = a0-ans/(1.0/a0-trigamma(a0))

if(abs(ans) <= 1.0e-7 | l >= 30){break}

a0 = a1

l = l+1}

ah = a1

return(ah)

}

R function 16.3. Calculation of the p-value of the LRT for equality of
scale parameters

test.gamma.scales = function(nr, n, xb, lgm){

k = length(n); stats = seq(1:nr)

s = log(xb)-lgm

stat0 = lrt.stat.scales(n, xb, lgm)

for(i in 1:nr){

for(j in 1:k){

x = -log(runif(n[j]))

xb[j] = mean(x); lgm[j] = mean(log(x))

s[j] = log(xb[j])-lgm[j]

}

stats[i] = lrt.stat.shapes(n, s)

}

pval = sum(stats > stat0)/nr

return(c(stat0, pval))

}
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# LRT statistic Lambda_b

lrt.stat.scales = function(n, xb, lgm){

k = length(n); ah = seq(1:k); bh = seq(1:k)

s = log(xb)-lgm

for(i in 1:k){

mle = gam.mles(n[i],s[i]) # see R function 15.1

ah[i] = mle[1]; bh[i] = xb[i]/ah[i]}

mlc = cons.mles.scales(n, xb, lgm)

ahc = mlc[1:k]; bhc = mlc[k+1]

stat = sum(n*(lgamma(ahc)-lgamma(ah)))+sum(n*(ahc*log(bhc)+

-ah*log(bh)))+sum(n*(ahc-ah)*(1-lgm))

stat = 2*stat

return(stat)

}

# Calculation of the MLEs under the null hypothesis

cons.mles.scales = function(n, xb, lgm){

k = length(n); fm = matrix(0,k,k)

s = log(sum(n*xb))-lgm

a0 = (3.0-s+sqrt((s-3.0)^2+24.0*s))/12.0/s

l = 1

repeat{

sumna = sum(n*a0)

f = n*(log(sumna)-digamma(a0)-s)

for(i in 1:k){

for(j in 1:k){

if(i == j){

fm[i,i] = n[i]**2/sum(n*a0)-n[i]*trigamma(a0[i])}

else{

fm[i,j] = n[i]*n[j]/sumna}

}}

b0 = fm%*%a0-f

a1 = solve(fm,b0)

err = max(abs(f))

if(err <= 1.0e-5 | l >= 30){break}

a0 = a1

l = l + 1

}

ahc = a1; bhc = sum(n*xb)/sum(n*ahc)

return(c(ahc,bhc))

}
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R function 16.4. Calculation of the p-value of the LRT for equality of
gamma means

test.gamma.means = function(nr, n, xb, lgm){

k = length(n); stat = seq(1:nr)

stat0 = lrt.stat.means(n, xb, lgm)

pval = 0

for(j in 1:nr){

for(i in 1:k){

x = -log(runif(n[i]))

xb[i] = mean(x); lgm[i] = mean(log(x))

}

stat[j] = lrt.stat.means(n, xb, lgm)

}

pval = sum(stat > stat0)/nr; return(c(stat0, pval))

}

# LRT statistic Lambda_mu

lrt.stat.means = function(n, xb, lgm){

k = length(n)

ah = seq(1:k)

bh = seq(1:k)

mlc = cons.mles.means(n, xb, lgm)

uhc = mlc[1]

ahc = mlc[2:(k+1)]

bhc = uhc/ahc

ah = mlc[(k+2):(2*k+1)]

bh = mlc[(2*k+2):(3*k+1)]

stat = sum(n*(lgamma(ahc)-lgamma(ah)))+sum(n*(ahc*log(bhc)+

- ah*log(bh)))+sum(n*ah*(bh/bhc-1))-sum(n*(ahc-ah)*lgm)

stat = 2*stat

return(stat)

}
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# Constrained MLEs under the null hypothesis of equal mean

cons.mles.means = function(n, xb, lgm){

k = length(n); ah = seq(1:k); bh = seq(1:k)

sumn = sum(n); gm = matrix(0,k,k)

for(i in 1:k){

ah[i] = gam.mles(n[i], log(xb[i])-lgm[i])

bh[i] = xb[i]/ah[i]}

u0 = sum(n*ah*xb)/sum(n*ah)

s = log(u0)-lgm+xb/u0-1

a0 = (3.0-s+sqrt((s-3.0)^2+24.0*s))/12.0/s; a0s = a0;

sumna = sum(n*a0)

u0 = sum(n*a0*xb)/sumna; u0s = u0

l = 1

repeat{

g = n*(log(a0)-digamma(a0)-log(u0)+lgm-xb/u0+1)

for(i in 1:k){

for(j in 1:k){

if(i == j){

gm[i,i] = n[i]*(1/a0[i]-trigamma(a0[i])+

+n[i]*(xb[i]-u0)**2/u0**2/sumna)}

else{

gm[i,j] = n[i]*n[j]*(xb[i]-u0)*(xb[j]-u0)/u0**2/sumna}

}}

b0 = gm%*%a0-g

mls = solve(gm,b0)

if(min(mls) < 0){

return(c(u0s,a0s, ah, bh))}

err = max((mls-a0)**2)

if(err <= 1.0e-7 | l > 300){break}

a0 = mls

sumna = sum(n*a0)

u0 = sum(n*xb*a0)/sumna

l = l + 1

}

ahc = a0; uhc = u0

return(c(uhc, ahc, ah, bh))

}
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# Approximate MLEs under the null hypothesis of equal mean

cons.mles.apprx = function(n, xb, lgm){

k = length(n); ah = seq(1:k); bh = seq(1:k)

sumn = sum(n);

for(i in 1:k){

ah[i] = gam.mles(n[i], log(xb[i])-lgm[i])

bh[i] = xb[i]/ah[i]}

u0 = sum(n*ah*xb)/sum(n*ah)

s = log(u0)-lgm+xb/u0-1

a0 = (3.0-s+sqrt((s-3.0)^2+24.0*s))/12.0/s

u0 = sum(n*a0*xb)/sum(n*a0)

s = log(u0)-lgm+xb/u0-1

a0 = (3.0-s+sqrt((s-3.0)^2+24.0*s))/12.0/s

u0 = sum(n*a0*xb)/sum(n*a0)

return(c(u0,a0,ah,bh))

}

R function 16.5. Calculation of the p-value of the LRT for homogeneity
of several gamma distributions

test.gamma.equal = function(nr, n, xb, lgm){

k = length(n); stat = seq(1:nr)

stat0 = lrt.stat.equal(n, xb, lgm)

for(j in 1:nr){

for(i in 1:k){

x = -log(runif(n[i]))

xb[i] = mean(x); lgm[i] = mean(log(x))

}

stat[j] = lrt.stat.equal(n,xb,lgm)

}

pval = sum(stat > stat0)/nr

return(c(stat0, pval))

}
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# LRT statistic Lambda_E

lrt.stat.equal = function(n, xb, lgm){

k = length(n); s = log(xb)-lgm

N = sum(n); xbb = sum(n*xb)/N; ah = seq(1:k); bh = seq(1:k)

GM = sum(n*lgm)/N; S = log(xbb)-GM

AH = gam.mles(N, S)

BH = xbb/AH

for(i in 1:k){

ah[i] = gam.mles(n[i], s[i])

bh[i] = xb[i]/ah[i]}

tr1 = -N*lgamma(AH)-N*AH*log(BH)-N*xbb/BH+N*(AH-1)*GM

tr2 = -sum(n*lgamma(ah))-sum(n*ah*log(bh))-sum(n*ah)+

+sum(n*(ah-1)*lgm)

slrt = 2*(tr2-tr1)

return(c(AH,BH,slrt))

}
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Beta Distribution

17.1 Description

The probability density function (pdf) of a beta random variable with shape param-
eters a and b is given by

f(x|a, b) = 1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1, a > 0, b > 0,

where the beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

We denote the above beta distribution by beta(a, b). A situation where the beta
distribution arises is given below.

Consider a Poisson process with arrival rate of λ events per unit time. Let Wk

denote the waiting time until the kth arrival of an event and Ws denote the waiting
time until the sth arrival, s > k. Then, Wk and Ws −Wk are independent gamma
random variables with

Wk ∼ gamma

(
k,

1

λ

)
and Ws −Wk ∼ gamma

(
s− k,

1

λ

)
.

The proportion of the time taken by the first k arrivals in the time needed for the
first s arrivals is

Wk

Ws
=

Wk

Wk + (Ws −Wk)
∼ beta(k, s− k).

The beta density plots are given for various values of a and b in Figure 17.1. We
observe from the plots that the beta density is U shaped when a < 1 and b < 1,
symmetric about 0.5 when a = b > 1, J shaped when (a−1)(b−1) < 0, and unimodal
for other values of a and b. For equally large values of a and b, the cumulative
probabilities of a beta distribution can be approximated by a normal distribution.

247
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FIGURE 17.1: Beta probability density functions
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17.2 Moments

Mean: a
a+b

Variance: ab
(a+b)2(a+b+1)

Mode: a−1
a+b−2

, a > 1, b > 1

Mean Deviation: Γ(a+b)
Γ(a)Γ(b)

2aabb

(a+b)(a+b+1)

Coefficient of Skewness: 2(b−a)(a+b+1)1/2

(a+b+2)(ab)1/2

Coefficient of Variation:
√
b√

a(a+b+1)

Coefficient of Kurtosis: 3(a+b+1)[2(a+b)2+ab(a+b−6)]
ab(a+b+2)(a+b+3)

Characteristic Function: Γ(a+b)
Γ(a)

∞∑
k=0

Γ(a+k)(it)2

Γ(a+b+k)Γ(k+1)

Moments about the Origin: E(Xk) =
k−1∏
i=0

a+i
a+b+i

, k = 1, 2, ...

17.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→Beta] computes the distribution function,
percentiles and moments of a beta distribution.

To compute probabilities: Enter the values of the parameters a and b, and the value
of x; click [P(X <= x)]. For example, hen a = 2, b = 3, and x = 0.4, P (X ≤ 0.4) =
0.5248 and P (X > 0.4) = 0.4752.

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x]. For example, when a = 2, b = 3, and the cumulative probability = 0.40,
the 40th percentile is 0.329167. That is, P (X ≤ 0.329167) = 0.40.

To compute other parameters: Enter the values of one of the parameters, cumulative
probability, and the value of x; click on the missing parameter. For example, hen
b = 3, x = 0.8, and the cumulative probability = 0.40, the value of a is 12.959.

To compute moments: Enter the values of a and b and click [M].
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17.4 Inferences

Let X1, . . . , Xn be a sample from a beta distribution with shape parameters a and
b. Let

X̄ =
1

n

n∑

i=1

Xi and S
2 =

1

n− 1

n∑

i=1

(Xi − X̄)2.

Moment Estimators

â = X̄

[
X̄(1− X̄)

S2
− 1

]
and b̂ =

(1− X̄)â

X̄
.

Maximum Likelihood Estimators

MLEs are the solution of the equations

ψ(â)− ψ(â+ b̂) =
1

n

n∑

i=1

ln(Xi)

ψ(̂b)− ψ(â+ b̂) =
1

n

n∑

i=1

ln(1−Xi),

where ψ(x) is the digamma function given in Section 2.11. Moment estimators can
be used as initial values to solve the above equations numerically.

17.5 Applications with an Example

As mentioned in earlier chapters, the beta distribution is related to many other
distributions such as Student’s t, F , noncentral F , binomial, and negative binomial
distributions. Therefore, cumulative probabilities and percentiles of these distribu-
tions can be obtained from those of beta distributions. For example, as mentioned
in Sections 4.4.3 and 8.6, percentiles of beta distributions can be used to construct
exact confidence limits for binomial and negative binomial success probabilities. In
Bayesian analysis, the beta distribution is considered as a conjugate prior distribu-
tion for the binomial success probability p. Beta distributions are often used to model
data consisting of proportions. Applications of beta distributions in risk analysis are
mentioned in Johnson (1997).

Chia and Hutchinson (1991) used a beta distribution to fit the frequency dis-
tribution of daily cloud durations, where cloud duration is defined as the fraction
of daylight hours not receiving bright sunshine. They used data collected from 11
Australian locations to construct empirical frequency distributions of 132 (11 sta-
tions by 12 months) daily cloud durations. Sulaiman et al. (1999) fitted Malaysian
sunshine data covering a 10-year period to a beta distribution. Nicas (1994) pointed
out that beta distributions offer greater flexibility than lognormal distributions in
modeling respirator penetration values over the physically plausible interval [0,1]. An
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approach for dynamically computing the retirement probability and the retirement
rate when the age manpower follows a beta distribution is given in Shivanagaraju
et al. (1998). The coefficient of kurtosis of the beta distribution has been used as a
good indicator of the condition of a gear (Oguamanam et al., 1995). Schwarzenberg-
Czerny (1997) showed that the phase dispersion minimization statistic (a popular
method for searching for nonsinusoidal pulsations) follows a beta distribution. In
the following, we give an illustrative example.

Example 17.1. National Climatic Center (North Carolina, USA) reported the fol-
lowing data in Table 16.1 on percentage of day during that sunshine occurred in
Atlanta, Georgia, November 1–30, 1974. Daniel (1990) considered these data to
demonstrate the application of a run test for testing randomness. Let us check if a
beta model fits the data.

TABLE 17.1: Percentage of Sunshine Period in a Day in November 1974

85 85 99 70 17 74 100 28 100 100 31 86 100 0 100
100 45 7 12 54 87 100 100 88 50 100 100 100 48 0

To fit a beta distribution, we first compute the mean and variance of the data:

x̄ = 0.6887 and s2 = 0.1276.

Using the computed mean and variance, we compute the moment estimators (see
Section 17.4) as

â = 0.4687 and b̂ = 0.2116.

The observed quantiles qj (that is, the ordered proportions) for the data are given
in the second column of Table 16.2. The estimated shape parameters can be used to
compute the beta quantiles so that they can be compared with the corresponding
observed quantiles. For example, when the observed quantile is 0.31 (at j = 7), the
corresponding beta quantile Qj can be computed as

Qj = beta−1(0.21667; â, b̂) = 0.30308,

where beta−1(p; â, b̂) denotes the 100pth percentile of the beta distribution with

shape parameters â and b̂. Comparison between the sample quantiles and the cor-
responding beta quantiles (see the Q–Q plot in Figure 16.1) indicates that the data

set is well fitted by the beta(â, b̂)distribution. Using this fitted beta distribution,
we can estimate the probability that the sunshine period exceeds a given proportion
in a November day in Atlanta. For example, the estimated probability that at least
70% of a November day will have sunshine is given by P (X ≥ 0.7) = 0.61546, where
X is the beta(0.4687, 0.2116) random variable.
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Figure 16.1 Beta Q–Q plots of the sunshine data

TABLE 17.2: Observed and Beta Quantiles for Sunshine Data

j Observed Cumulative Beta j Observed Cumulative Beta
Quantiles qj Probability Quantiles Quantiles qj Probability Quantiles

(j − 0.5)/30 Qj (j − 0.5)/30 Qj

1 0 12 0.7 0.383333 0.69772
2 0 0.05 0.01586 13 0.74 0.416667 0.75946
3 0.7 0.083333 0.04639 14 0.85 .... ....
4 0.12 0.116667 0.09263 15 0.85 0.483333 0.85746
5 0.17 0.15 0.15278 16 0.86 0.516667 0.89415
6 0.28 0.183333 0.22404 17 0.87 0.55 0.92344
7 0.31 0.216667 0.30308 18 0.88 0.583333 0.94623
8 0.45 0.25 0.38625 19 0.99 0.616667 0.96346
9 0.48 0.283333 0.47009 20 1 ... ...
10 0.5 0.316667 0.55153 ... ... ... ...
11 0.54 0.35 0.62802 30 1 0.983333 1
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17.6 Properties and Results 253

17.6 Properties and Results

17.6.1 An Identity and Recurrence Relations

1. Let F (x|a, b) denote the cumulative distribution of a beta(a, b) random variable;
that is F (x|a, b) = P (X ≤ x|a, b).
a. F (x|a, b) = 1− F (1− x|b, a).
b. F (x|a, b) = xF (x|a− 1, b) + (1− x)F (x|a, b− 1), a > 1, b > 1.

c. F (x|a, b) = [F (x|a+ 1, b)− (1− x)F (x|a+ 1, b− 1)]/x, b > 1.

d. F (x|a, b) = [aF (x|a+ 1, b) + bF (x|a, b+ 1)]/(a+ b).

e. F (x|a, b) = Γ(a+b)
Γ(a+1)Γ(b)

xa(1− x)b−1 + F (x|a+ 1, b− 1), b > 1.

f. F (x|a, b) = Γ(a+b)
Γ(a+1)Γ(b)

xa(1− x)b + F (x|a+ 1, b).

g. F (x|a, a) = 1
2
F (1− 4(x− 0.5)2|a, 0.5), x ≤ 0.5.

[Abramowitz and Stegun 1965, p. 944]

17.6.2 Relation to Other Distributions

1. IfX is a beta random variable, then Y = (− ln(X))
1
3 has an approximate normal

distribution.

2. Chi-square Distribution: Let X and Y be independent chi-square random vari-
ables with degrees of freedom (df) m and n, respectively. Then

X

X + Y
∼ beta(m/2, n/2) distribution.

3. Student’s t Distribution: Let t be a Student’s t random variable with df = n.
Then

P (|t| ≤ x) = P (Y ≤ x2/(n+ x2)) for x > 0,

where Y is a beta(1/2, n/2) random variable.

4. Uniform Distribution: The beta(a, b) distribution specializes to the uniform(0,1)
distribution when a = 1 and b = 1.

5. Let X1, . . . , Xn be independent uniform(0,1) random variables, and let X(k)

denote the kth order statistic. Then, X(k) follows a beta(k, n−k+1) distribution.

6. F Distribution: Let X be a beta(m/2, n/2) random variable. Then

nX

m(1−X)
∼ Fm,n distribution.

7. Binomial: Let X be a binomial(n, p) random variable. Then, for a
given k,

P (X ≥ k|n, p) = P (Y ≤ p),

where Y is a beta(k, n− k + 1) random variable. Furthermore,

P (X ≤ k|n, p) = P (W ≥ p),

where W is a beta(k+ 1, n− k) random variable.
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254 17 Beta Distribution

8. Negative Binomial: Let X be a negative binomial(r, p) random variable.

P (X ≤ k|r, p) = P (W ≤ p),

where W is a beta random variable with parameters r and k + 1.

9. Gamma: Let X and Y be independent gamma random variables with the same
scale parameter b, but possibly different shape parameters a1 and a2. Then

X

X + Y
∼ beta(a1, a2).

17.7 Random Number Generation

The following algorithm generates beta(a, b) variates. It uses the approach by Jöhnk
(1964) when min{a, b} < 1 and Algorithm 2P of Schmeiser and Shalaby (1980)
otherwise.

Algorithm 17.1. 1

Input:

a, b = the shape parameters

Output:

x is a random variate from beta(a, b) distribution

if a > 1 and b > 1, goto 1

2 Generate u1 and u2 from uniform(0, 1)

Set s1 = u1**(1./a)

s2 = u2**(1./b)

s = s1 + s2

x = s1/s

if(s <= 1.0) return x

goto 2

1 Set aa = a - 1.0

bb = b - 1.0

r = aa + bb

s = r*ln(r)

x1 = 0.0; x2 = 0.0

x3 = aa/r

x4 = 1.0; x5 = 1.0

f2 = 0.0; f4 = 0.0

if(r <= 1.0) goto 4

d = sqrt(aa*bb/(r-1.0))/r

if(d >= x3) goto 3

1Reproduced with permission from the American Statistical Association.
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x2 = x3 - d

x1 = x2 - (x2*(1.0-x2))/(aa-r*x2)

f2 = exp(aa*ln(x2/aa)+bb*ln((1.0-x2)/bb)+s)

3 if(x3+d >= 1.0) goto 4

x4 = x3 + d

x5 = x4 - (x4*(1.0-x4)/(aa-r*x4))

f4 = exp(aa*ln(x4/aa) + bb*ln((1.0-x4)/bb)+s)

4 p1 = x3 - x2

p2 = (x4 - x3) + p1

p3 = f2*x2/2.0 + p2

p4 = f4*(1.0-x4)/2.0+ p3

5 Generate u from uniform(0,1)

Set u = u*p4

Generate w from uniform(0,1)

if(u > p1) goto 7

x = x2 + w*(x3-x2)

v = u/p1

if(v <= f2 + w*(1.0-f2)) return x

goto 10

7 if(u > p2) goto 8

x = x3 + w*(x4 - x3)

v = (u - p1)/(p2 - p1)

if(v <= 1.0 - (1.0-f4)/w) return x

goto 10

8 Generate w2 from uniform(0,1)

if(w2 > w) w = w2

if(u > p3) goto 9

x = w*x2

v = (u-p2)/(p3-p2)*w*f2

if(x <= x1) goto 10

if(v <= f2*(x-x1)/(x2-x1)) return x

goto 10

9 x = 1.0 - w*(1.0-x4)

v = ((u-p3)/(p4-p3))*(1.0-x)*f4/(1.0-x4)

if(x >= x5) goto 10

if(v <= f4*(x5-x)/(x5-x4)) return x

10 ca = ln(v)

if(ca >= -2.0*r*(x-x3)**2) goto 5

if(ca <= aa*ln(x/aa)+bb*ln((1.0-x)/bb) + s) return x

goto 5

For other equally efficient algorithms, see Cheng (1978).
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17.8 Computation of the Distribution Function

The recurrence relation

F (x|a, b) = Γ(a+ b)

Γ(a+ 1)Γ(b)
xa(1− x)b + F (x|a+ 1, b)

can be used to evaluate the cdf at a given x, a and b. The above relation produces
the series

F (x|a, b) =
xa(1− x)b

Beta(a+ 1, b)

(
1

a+ b
+

x

a+ 1
+

(a+ b+ 1)x2

(a+ 1)(a+ 2)

+
(a+ b+ 1)(a+ b+ 2)

(a+ 1)(a+ 2)(a+ 3)
x3 + . . .

)
. (17.1)

If x > 0.5, then, to speed up the convergence, compute first F (1− x|b, a), and then
use the relation that F (x|a, b) = 1− F (1− x|b, a) to evaluate F (x|a, b).
Majumder and Bhattacharjee (1973a, Algorithm AS 63) proposed a slightly faster
approach than the above method. Their algorithm uses a combination of the recur-
rence relations 1(e) and 1(f) in Section 16.6.1, depending on the parameter configu-
rations and the value of x at which the cdf is evaluated. For computing percentiles
of a beta distribution, see Majumder and Bhattacharjee (1973b, Algorithm AS 64).

The following R function evaluates the cdf of a beta(a, b) distribution, and is
based on the above method.

R function 17.1. Calculation of the cdf of a beta(a, b) distribution

betacdf = function(x, a, b){

one = 1.0; errtol = 1.0e-12; zero = 0.0; maxitr = 1000

if(x > 0.5){

xx = one-x; aa = b; bb = a

check = TRUE}

else{

xx = x; aa = a; bb = b

check = FALSE}

# alng(x) = logarithmic gamma function; R function 1.1

bet = alng(aa+bb+one)-alng(aa+one)-alng(bb)

su = zero

term = xx/(aa+one)

i = 1
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17.8 Computation of the Distribution Function 257

repeat{

su = su + term

if(term <= errtol | i >= maxitr){break}

term = term*(aa+bb+i)*xx/(aa+i+one)

i = i + 1

}

ans = (su + one/(aa+bb))*exp(bet+aa*log(xx)+bb*log(one-xx))

if(check) ans = one-ans

return(ans)

}
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Noncentral Chi-square Distribution

18.1 Description

The probability density function (pdf) of a noncentral chi-square random variable
with the degrees of freedom n and the noncentrality parameter δ is given by

f(x|n, δ) =
∞∑

k=0

exp
(
− δ

2

) (
δ
2

)k

k!

exp
(
−x

2

)
x

n+2k
2

−1

2
n+2k

2 Γ(n+2k
2

)
, (18.1)

where x > 0, n > 0, and δ > 0. This random variable is usually denoted by χ2
n(δ).

It is clear from the density function (18.1) that conditionally given K, χ2
n(δ) is

distributed as χ2
n+2K , where K is a Poisson random variable with mean δ/2. Thus,

the cumulative distribution of χ2
n(δ) can be written as

P (χ2
n(δ) ≤ x|n, δ) =

∞∑

k=0

exp
(
− δ

2

) (
δ
2

)k

k!
P (χ2

n+2k ≤ x). (18.2)

The plots of the noncentral chi-square pdfs in Figure 18.1 show that, for fixed n,
χ2
n(δ) is stochastically increasing with respect to δ, and for large values of n, the pdf

is approximately symmetric about its mean n+ δ.

18.2 Moments

Mean: n+ δ

Variance: 2n+ 4δ

Coefficient of Variation:

√
(2n+4δ)

(n+δ)

Coefficient of Skewness: (n+3δ)
√

8

(n+2δ)3/2

Coefficient of Kurtosis: 3 + 12(n+4δ)

(n+2δ)2

259
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260 18 Noncentral Chi-square Distribution

Moment Generating Function: (1− 2t)−n/2 exp[tδ/(1− 2t)]

Moments about the Origin: E(Xk) = 2kΓ(n/2 + k)
∞∑
j=0

(
k
j

) (δ/2)j

Γ(n/2+j)
,

k = 1, 2, . . .
[Johnson and Kotz 1970, p. 135]

18.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→NC Chi-sqr] computes the distribution
function, percentiles, moments, and other parameters of a noncentral chi-square
distribution.

To compute probabilities: Enter the values of the degrees of freedom (df), noncen-
trality parameter, and the value of x; click [P(X <= x)]. For example, when df =
13.0, noncentrality parameter = 2.2 and the observed value x = 12.3,

P (X ≤ 12.3) = 0.346216 and P (X > 12.3) = 0.653784.

To compute percentiles: Enter the values of the df, noncentrality parameter, and the
cumulative probability; click [x]. For example, when df = 13.0, noncentrality parame-
ter = 2.2, and the cumulative probability = 0.95, the 95th percentile is 26.0113. That
is,
P (X ≤ 26.0113) = 0.95.

To compute other parameters: Enter the values of one of the parameters, the cu-
mulative probability, and click on the missing parameter. For example, when df =
13.0, the cumulative probability = 0.95, and x = 25.0, the value of the noncentrality
parameter is 1.57552.

To compute moments: Enter the values of the df and the noncentrality parameter;
click [M].

18.4 Applications

The noncentral chi-square distribution is useful in computing the power of the
goodness-of-fit test based on the usual chi-square statistic (see Section 1.4.2)

Q =

k∑

i=1

(Oi − Ei)
2

Ei
,

where Oi is the observed frequency in the ith cell, Ei = Npi0 is the expected
frequency in the ith cell, pi0 is the specified (under the null hypothesis) probability
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FIGURE 18.1: Noncentral chi-square probability density functions
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262 18 Noncentral Chi-square Distribution

that an observation falls in the ith cell, i = 1, · · · , k, and N = total number of
observations. The null hypothesis will be rejected if

Q =
k∑

i=1

(Oi − Ei)
2

Ei
> χ2

k−1, 1−α,

where χ2
k−1,1−α denotes the 100(1 - α)th percentile of a chi-square distribution

with df = k − 1. If the true probability that an observation falls in the ith cell is
pi, i = 1, · · · , k, then Q is approximately distributed as a noncentral chi-square
random variable with the noncentrality parameter

δ = N
k∑

i=1

(pi − pi0)
2

pi0
,

and df = k − 1. Thus, an approximate power function is given by

P
(
χ2
k−1(δ) > χ2

k−1,1−α
)
.

The noncentral chi-square distribution is also useful in computing approximate tol-
erance factors for univariate (see Section 11.6) and multivariate normal tolerance
factor.

18.5 Properties and Results

18.5.1 Properties

1. Let X1, . . . , Xn be independent normal random variables with

Xi ∼ N(µi, 1), i = 1, 2, ..., n, and let δ =
n∑
i

µ2
i . Then

n∑

i=1

X2
i ∼ χ2

n(δ).

2. For any real valued function h,

E[h(χ2
n(δ))] = E[E(h(χ2

n+2K)|K)],

where K is a Poisson random variable with mean δ/2.

18.5.2 Approximations to Probabilities

Let a = n+ δ and b = δ/(n+ δ).

1. Let Y be a chi-square random variable with df = a/(1+b). Then

P (χ2
n(δ) ≤ x) ≃ P

(
Y ≤ x

1 + b

)
.
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2. Let Z denote the standard normal random variable. Then

a. P (χ2
n(δ) ≤ x) ≃ P

(
Z ≤ ( x

a )
1/3−[1− 2

9 (
1+b
a )]√

2
9 (

1+b
a )

)
.

b. P (χ2
n(δ) ≤ x) ≃ P

(
Z ≤

√
2x
1+b

−
√

2a
1+b

− 1
)
.

18.5.3 Approximations to Percentiles

Let χ2
n,p(δ) denote the 100pth percentile of the noncentral chi-square distribution

with df = n, and noncentrality parameter δ. Define a = n+ δ and b = δ/(n+ δ)

1. Patnaik’s (1949) Approximation:

χ2
n,p(δ) ≃ cχ2

f,p,

where c = 1 + b, and χ2
f,p denotes the 100pth percentile of the central chi-square

distribution with df f = a/(1 + b).

2. Normal Approximations: Let zp denote the 100pth percentile of the standard
normal distribution.

a. χ2
n,p(δ) ≃ 1+b

2

(
zp +

√
2a
1+b

− 1
)2

.

b. χ2
n,p(δ) ≃ a

[
zp

√
2
9

(
1+b
a

)
− 2

9

(
1+b
a

)
+ 1

]3
.

18.6 Random Number Generation

The following exact method can be used to generate random numbers when the
degrees of freedom n ≥ 1. The following algorithm is based on the additive property
of the noncentral chi-square distribution given in Section 17.5.1.

Algorithm 18.1. Noncentral chi-square variate generator

For a given n and δ:
Set u = sqrt(δ)
Generate z1 from N(u, 1)
Generate y from gamma((n− 1)/2, 2)
return x = z21 + y

x is a random variate from χ2
n(δ) distribution.
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18.7 Evaluating the Distribution Function

The following computational method is due to Benton and Krishnamoorthy (2003),
and is based on the following infinite series expression for the cdf.

P (χ2
n(δ) ≤ x) =

∞∑

i=0

P (X = i)Ix/2(n/2 + i), (18.3)

where X is a Poisson random variable with mean δ/2, and

Iy(a) =
1

Γ(a)

∫ y

0

e−tta−1dt, a > 0, y > 0, (18.4)

is the incomplete gamma function. To compute (18.3), evaluate first the kth term,
where k is the integer part of δ/2, and then compute the other Poisson probabilities
and incomplete gamma functions recursively using forward and backward recursions.
To compute Poisson probabilities, use the relations

P (X = k + 1) =
δ/2

k + 1
P (X = k), k = 0, 1, . . .

and

P (X = k − 1) =
k

δ/2
P (x = k), k = 1, 2, . . . .

To compute the incomplete gamma function, use the relations

Ix(a+ 1) = Ix(a)− xa exp(−x)
Γ(a+ 1)

, (18.5)

and

Ix(a− 1) = Ix(a) +
xa−1 exp(−x)

Γ(a)
. (18.6)

Furthermore, the series expansion

Ix(a) =
xa exp(−x)
Γ(a+ 1)

(
1 +

x

(a+ 1)
+

x2

(a+ 1)(a+ 2)
+ · · ·

)

can be used to evaluate Ix(a).
When computing the terms using both forward and backward recurrence relations,
stop if

1−
k+i∑

j=k−i
P (X = j)

is less than the error tolerance or the number of iterations is greater than a specified
integer. While computing using only forward recurrence relation, stop if

(
1−

2k+i∑

j=0

P (X = j)

)
Ix(2k + i+ 1)

is less than the error tolerance or the number of iterations is greater than a specified
integer.

© 2016 by Taylor & Francis Group, LLC

  



18.7 Evaluating the Distribution Function 265

The R function 18.1 computes the noncentral chi-square distribution function,
and is based on the algorithm given in Benton and Krishnamoorthy (2003).

R function 18.1. Calculation of the noncentral chi-square cdf

ncchicdf = function(xx, dfs, lambda){

one = 1.0; half = 0.5; zero = 0.0; maxitr = 1000; errtol = 1.0e-12

if(xx <= zero){return(0)}

x = half*xx; del = half*lambda; k = floor(del)+one

a = half*dfs + k

gamkf = gamcdf(x, a); gamkb = gamkf

if(del == zero){return (gamkf)}

poikf = poipr(k, del); poikb = poikf

# alng(x) = logarithmic gamma function in Section 1.8

xtermf = exp((a-one)*log(x)-x-alng(a)); xtermb = xtermf*x/a

su = poikf * gamkf; remain = one - poikf

i = 0

repeat{

i = i + 1

xtermf = xtermf*x/(a+i-one)

gamkf = gamkf - xtermf; poikf = poikf * del/(k+i)

termf = poikf * gamkf; su = su + termf; error = remain * gamkf

remain = remain - poikf

# Do forward and backward computations "maxitr" times or until

# convergence

if (i > k){

if(error <= errtol | i > maxitr){break}

}

else{

xtermb = xtermb * (a-i+one)/x

gamkb = gamkb + xtermb; poikb = poikb * (k-i+one)/del

termb = gamkb * poikb

su = su + termb; remain = remain - poikb

if(remain <= errtol | i > maxitr){break}

}}

return(su)

}
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Noncentral F Distribution

19.1 Description

Let χ2
m(δ) be a noncentral chi-square random variable with degrees of freedom (df)

= m, and noncentrality parameter δ, and χ2
n be a chi-square random variable with

df = n. If χ2
m(δ) and χ2

n are independent, then the distribution of the ratio

Fm,n(δ) =
χ2
m(δ)/m

χ2
n/n

is called the noncentral F distribution with the numerator df = m, the denominator
df = n, and the noncentrality parameter δ.

The cumulative distribution function (cdf) is given by

F (x|m,n, δ) =
∞∑

k=0

exp(− δ
2
)( δ

2
)k

k!
P

(
Fm+2k,n ≤ mx

m+ 2k

)
,

m > 0, n > 0, δ > 0,

where Fa,b denotes the central F random variable with the numerator df = a, and
the denominator df = b.

The plots of probability density functions (pdfs) of Fm,n(δ) are presented in
Figure 19.1 for various values of m, n and δ. It is clear from the plots that the
noncentral F distribution is always right skewed.

19.2 Moments

Mean: n(m+δ)
m(n−2)

, n > 2

Variance: 2n2 [(m+δ)2+(m+2δ)(n−2)]

m2(n−2)2(n−4)
, n > 4

E(F km,n) :
Γ[(n−2k)/2] Γ[(m+2k)/2] nk

Γ(n/2)mk

k∑
j=0

(
k
j

) (δ/2)j

Γ[(m+2j)/2]
, n > 2k
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FIGURE 19.1: Noncentral F probability density functions
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19.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→NC F] computes cumulative probabilities,
percentiles, moments, and other parameters of an Fm,n(δ) distribution.

To compute probabilities: Enter the values of the numerator df, denominator df,
noncentrality parameter, and x; click [P(X <= x)]. For example, when numerator
df = 4.0, denominator df = 32.0, noncentrality parameter = 2.2, and x = 2, P (X ≤
2) = 0.702751 and P (X > 2) = 0.297249.

To compute percentiles: Enter the values of the df, noncentrality parameter, and the
cumulative probability; click [x]. For example, when numerator df = 4.0, denomi-
nator df = 32.0, noncentrality parameter = 2.2, and the cumulative probability =
0.90, the 90th percentile is 3.22243. That is, P (X ≤ 3.22243) = 0.90.

To compute moments: Enter the values of the numerator df, denominator df and
the noncentrality parameter; click [M].

StatCalc also computes one of the dfs or the noncentrality parameter for given
other values. For example, when numerator df = 5, denominator df = 12, x = 2 and
P (X ≤ x) = 0.7, the value of the noncentrality parameter is 2.24162.

19.4 Applications

The noncentral F distribution is useful to compute the powers of a test based on
the central F statistic. Examples include analysis of variance and tests based on the
Hotelling T 2 statistics. Let us consider the power function of the Hotelling T 2 test
for testing about a multivariate normal mean vector.

Let X1, . . . ,Xn be a sample from an m-variate normal population with mean
vector µ and covariance matrix Σ. Define

X̄ =
1

n

n∑

i=1

Xi and S =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)′.

The Hotelling T 2 statistic for testing H0 : µ = µ0 vs. Ha : µ 6= µ0 is given by

T 2 = n
(
X̄ − µ0

)′
S−1 (

X̄ − µ0

)
.

Under H0, T
2 ∼ (n−1)m

n−m Fm,n−m. Under Ha,

T 2 ∼ (n− 1)m

n−m
Fm,n−m(δ),

where Fm,n−m(δ) denotes the noncentral F random variable with the numer-
ator df = m, denominator df = n – m, and the noncentrality parameter
δ = n(µ − µ0)

′Σ−1(µ − µ0), and µ is true mean vector. The power of the T 2

test is given by
P (Fm,n−m(δ) > Fm,n−m,1−α) ,

© 2016 by Taylor & Francis Group, LLC

  



270 19 Noncentral F Distribution

where Fm,n−m,1−α denotes the 100(1 - α)th percentile of the F distribution with
the numerator df = m and denominator df = n−m.

The noncentral F distribution also arises in multiple use confidence estimation
in a multivariate calibration problem [Mathew and Zha, 1996].

19.5 Properties and Results

19.5.1 Properties

1.
mFm,n(δ)

n+mFm,n(δ)
∼ noncentral beta

(m
2
,
n

2
, δ
)
.

2. Let F (x; m, n, δ) denote the cdf of Fm,n(δ). Then

a. for a fixed m, n, x, F (x; m, n, δ) is a nonincreasing function of δ;

b. for a fixed δ, n, x, F (x; m, n, δ) is a nondecreasing function of m.

19.5.2 Approximations

1. For a large n, Fm,n(δ) is distributed as χ2
m(δ)/m.

2. For a large m, Fm,n(δ) is distributed as (1 + δ/m)χ2
n(δ).

3. For large values of m and n,

Fm,n(δ)− n(m+δ)
m(n−2)

n
m

[
2

(n−2)(n−4)

(
(m+δ)2

n−2
+m+ 2δ

)]1/2 ∼ N(0, 1) approximately.

4. Let m∗ = (m+δ)2

m+2δ
. Then

m

m+ δ
Fm,n(δ) ∼ Fm∗,n approximately.

5.
(
mFm,n(δ)

m+δ

)1/3 (
1− 2

9n

)
−
(
1− 2(m+2δ)

9(m+δ)2

)

[
2(m+2δ)

9(m+δ)2
+ 2

9n

(
mFm,n(δ)

m+δ

)2/3]1/2 ∼ N(0, 1) approximately.

[Abramowitz and Stegun, 1965]

19.6 Random Number Generation

The following algorithm is based on the definition of the noncentral F distribution
given in Section 19.1.
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Algorithm 19.1. Noncentral F variate generator

1. Generate x from the noncentral chi-square distribution with df = m and non-
centrality parameter δ (See Section 18.6).

2. Generate y from the central chi-square distribution with df = n.

3. return F = nx/(my).

F is a noncentral Fm,n(δ) random number.

19.7 Evaluating the Distribution Function

The following approach is similar to the one for computing the noncentral χ2 in
Section 18.7, and is based on the method for computing the tail probabilities of a
noncentral beta distribution given in Chattamvelli and Shanmugham (1997). The
distribution function of Fm,n(δ) can be expressed as

P (X ≤ x|m,n, δ) =
∞∑

i=0

exp(−δ/2)(δ/2)i
i!

Iy(m/2 + i, n/2), (19.1)

where y = mx/(mx + n), and

Iy(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ y

0

ta−1(1− t)b−1dt

is the incomplete beta function. Let Z denote the Poisson random variable with mean
δ/2. To compute the cumulative distribution function, compute first the kth term in
the series (19.1), where k is the integral part of δ/2, and then compute other terms
recursively. For Poisson probabilities one can use the forward recurrence relation

P (X = k + 1|λ ) =
λ

k + 1
p(X = k|λ ), k = 0, 1, 2, . . . ,

and backward recurrence relation

P (X = k − 1|λ ) =
k

λ
P (X = k|λ ), k = 1, 2, . . . . (19.2)
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272 19 Noncentral F Distribution

R function 19.1. Calculation of the beta cdf

“alng” (R function 2.1), “poipr” (R function 6.2) and “betacdf” (R function
17.1) are required.

ncfcdf = function(x, dfn, dfd, del){

half = 0.5; zero = 0.0; errtol = 1.0e-14;

if(x <= zero){return(0)}

d = half*del; k = as.integer(d)

y = dfn*x/(dfn*x+dfd); b = half*dfd; a = half*dfn+k

# betacdf(x, a, b) = beta distribution function

fkf = betacdf(y,a,b);

if(d == zero){return(fkf)}

# poipr(k,d) = Poisson pmf given in Section 5.13

pkf = poipr(k,d); fkb = fkf; pkb = pkf

# Logarithmic gamma function alng(x) in Section 1.8 is required

xtermf = exp(alng(a+b-1)-alng(a)-alng(b)+(a-1)*log(y)+ b*log(1-y))

xtermb = xtermf*y*(a+b-1)/a

cdf = fkf*pkf

sumpois = 1 - pkf

if(k == 0){

i = 1

cdf = back.sum(i,xtermf,a,b,y,k,d,fkf,pkf,cdf,sumpois,errtol)}

else{

for(i in 1:k){

xtermf = xtermf*y*(a+b+(i-1)-1)/(a+i-1)

fkf = fkf - xtermf

pkf = pkf * d/(k+i)

termf = fkf*pkf

xtermb = xtermb *(a-i+1)/(y*(a+b-i))

fkb = fkb + xtermb

pkb = (k-i+1)*pkb/d

termb = fkb*pkb

term = termf + termb

cdf = cdf + term

sumpois = sumpois-pkf-pkb

if (sumpois <= errtol){break}}

i = k + 1

cdf = back.sum(i,xtermf,a,b,y,k,d,fkf,pkf,cdf,sumpois,errtol)}

return(cdf)

}

back.sum = function(i,xtermf,a,b,y,k,d,fkf,pkf,cdf,sumpois,errtol){

repeat{

xtermf = xtermf*y*(a+b+(i-1)-1)/(a+i-1)

fkf = fkf - xtermf

pkf = pkf*d/(k+i)

termf = fkf*pkf

cdf = cdf + termf

sumpois = sumpois-pkf

if(sumpois <= errtol) {return(cdf)}

i = i+1}

}
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To compute incomplete beta function, use forward recurrence relation

Ix(a+ 1, b) = Ix(a, b)− Γ(a+ b)

Γ(a)Γ(b)
xa(1− x)b,

and backward recurrence relation

Ix(a− 1, b) = Ix(a, b) +
Γ(a+ b− 1)

Γ(a)Γ(b)
xa−1(1− x)b. (19.3)

While computing the terms using both forward and backward recursions, stop if

1−
k+i∑

j=k−i
P (X = j)

is less than the error tolerance or the number of iterations is greater than a specified
integer; otherwise, stop if

(
1−

2k+i∑

j=0

P (X = j)

)
Ix(m/2 + 2k + i, n/2)

is less than the error tolerance, or the number of iterations is greater than a specified
integer.

The R function 19.1 evaluates the cdf of the noncentral F distribution function
with numerator df = dfn, denominator df = dfd and the noncentrality parameter
“del.”
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Noncentral t Distribution

20.1 Description

Let X be a normal random variable with mean δ and variance 1 and S2 be a chi-
square random variable with degrees of freedom (df) n. If X and S2 are independent,
then the distribution of the ratio

√
nX/S is called the noncentral t distribution with

the degrees of freedom n and the noncentrality parameter δ. The probability density
function is given by

f(x|n, δ) =
nn/2 exp(−δ2/2)√

π Γ(n/2)(n+ x2)(n+1)/2

∞∑

i=0

Γ[(n+ i+ 1)/2]

i!

(
xδ

√
2√

n+ x2

)i
,

−∞ < x <∞, −∞ < δ <∞,

where

(
xδ

√
2√

n+x2

)0

should be interpreted as 1 for all values of x and δ, including 0.

The above noncentral t random variable is denoted by tn(δ).

The noncentral t distribution specializes to Student’s t distribution when δ = 0.
We also observe from the plots of pdfs in Figure 20.1 that the noncentral t random
variable is stochastically increasing with respect to δ. That is, for δ2 > δ1,

P (tn(δ2) > x) > P (tn(δ1) > x) for every x.

20.2 Moments

Mean: µ1 =
Γ[(n−1)/2]

√
n/2

Γ(n/2)
δ

Variance: µ2 = n
n−2

(1 + δ 2)−
(

Γ[(n−1)/2]
Γ(n/2)

)2
(n/2)δ 2

275
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276 20 Noncentral t Distribution

Moments about the Origin: E(Xk) = Γ[(n−k)/2]nk/2

2k/2Γ(n/2)
uk,

where u2k−1 =
k∑
i=1

(2k−1)!δ2i−1

(2i−1)!(k−i)!2k−i , k = 1, 2, . . .

and u2k =
k∑
i=0

(2k)!δ 2i

(2i)!(k−i)!2k−i , k = 1, 2, . . .

[Bain, 1969]

Coefficient of Skewness:
µ1

n(2n−3+δ2)
(n−2)(n−3)

−2µ2

µ
3/2
2

Coefficient of Kurtosis:
n2

(n−2)(n−4)
(3+6δ2+δ4)−(µ1)

2
[
n[(n+1)δ2+3(3n−5)]

(n−2)(n−3)
−3µ2

]

µ2
2

.

[Johnson and Kotz, 1970, p. 204]
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FIGURE 20.1: Noncentral t probability density functions

20.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→NC t] computes the distribution function,
percentiles, moments, and noncentrality parameter.
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To compute probabilities: Enter the values of the df, noncentrality parameter, and
x; click [P(X <= x)]. For example, when df = 13.0, noncentrality parameter = 2.2,
and x = 2.2, P (X ≤ 2.2) = 0.483817 and P (X > 2.2) = 0.516183.

To compute percentiles: Enter the values of the df, noncentrality parameter, and
the cumulative probability; click [x]. For example, when df = 13.0, noncentrality
parameter = 2.2, and the cumulative probability = 0.90, the 90th percentile is
3.87082. That is, P (X ≤ 3.87082) = 0.90.

To compute other parameters: Enter the values of one of the parameters, the cu-
mulative probability and x. Click on the missing parameter. For example, when df
= 13.0, the cumulative probability = 0.40, and x = 2, the value of noncentrality
parameter is 2.23209.

To compute moments: Enter the values of the df, and the noncentrality parameter;
click [M].

20.4 Applications

The noncentral t distribution arises as a power function of a test if the test procedure
is based on a central t distribution. More specifically, powers of the t-test for a normal
mean and of the two-sample t-test (Sections 11.4.1 and 11.5.2) can be computed
using noncentral t distributions. The percentiles of noncentral t distributions are
used to compute the one-sided tolerance factors for a normal population (Section
10.6) and tolerance limits for the one-way random effects model (Section 10.6.5).
This distribution also arises in multiple-use hypothesis testing about the explanatory
variable in calibration problems [Krishnamoorthy, Kulkarni and Mathew (2001), and
Benton, Krishnamoorthy and Mathew (2003)].

20.5 Properties and Results

20.5.1 Properties

1. The noncentral distribution tn(δ) specializes to the t distribution with
df = n when δ = 0.

2. P (tn(δ) ≤ 0) = P (Z ≤ −δ), where Z is the standard normal random variable.

3. P (tn(δ) ≤ t) = P (tn(−δ) ≥ −t).

4. a. P (0 < tn(δ) < t) =
∞∑
j=0

exp(−δ2/2)(δ2/2)j/2
Γ(j/2+1)

P
(
Yj ≤ t2

n+t2

)
,

b. P (|tn(δ)| < t) =
∞∑
j=0

exp(−δ2/2)(δ2/2)j
j!

P
(
Yj ≤ t2

n+t2

)
,

where Yj denotes the beta((j + 1)/2, n/2) random variable, j = 1, 2, . . .
[Craig, 1941, and Guenther, 1978].
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278 20 Noncentral t Distribution

5.

P (0 < tn(δ) < t) =
∞∑

j=0

exp(−δ2/2)(δ2/2)j
j!

P

(
Y1j ≤ t2

n+ t2

)

+
δ

2
√
2

∞∑

j=0

exp(−δ2/2)(δ2/2)j
Γ(j + 3/2)

P

(
Y2j ≤ t2

n+ t2

)
,

where Y1j denotes the beta((j+1)/2, n/2) random variable and Y2j denotes the
beta(j + 1, n/2) random variable, j = 1, 2, . . . [Guenther, 1978].

6. Relation to the Sample Correlation Coefficient: Let R denote the correlation
coefficient of a random sample of n + 2 observations from a bivariate normal
population. Then, letting

ρ = δ
√

2/(2n+ 1 + δ2),

the following function of R,

R√
1−R2

√
n(2n+ 1)

2n+ 1 + δ2
∼ tn(δ) approximately. [Harley, 1957]

20.5.2 An Approximation

Let X = tn(δ). Then

Z =
X
(
1− 1

4n

)
− δ

(
1 + X2

2n

)1/2 ∼ N(0, 1) approximately.

[Abramowitz and Stegun 1965, p 949]

20.6 Random Number Generation

The following algorithm for generating tn(δ) variates is based on the definition given
in Section 20.1.

Algorithm 20.1. Noncentral t variate generator

Generate z from N(0, 1)
Set w = z + δ
Generate y from gamma(n/2, 2)
return x = w*sqrt(n)/sqrt(y)
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20.7 Evaluating the Distribution Function 279

20.7 Evaluating the Distribution Function

The following method is due to Benton and Krishnamoorthy (2003). Letting x =
t2

n+t2
, the distribution function can be expressed as

P (tn(δ) ≤ t) = Φ(−δ) + P (0 < tn(δ) ≤ t)

= Φ(−δ) + 1

2

∞∑

i=0

[
PiIx(i+ 1/2, n/2) +

δ√
2
QiIx(i+ 1, n/2)

]
,

(20.1)

where Φ is the standard normal distribution, Ix(a, b) is the incomplete beta function
given by

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ya−1(1− y)b−1dy,

Pi = exp(−δ 2/2)(δ 2/2)i/i! and Qi = exp(−δ 2/2)(δ 2/2)i/Γ(i+ 3/2), i = 0, 1, 2, ...

To compute the cdf, first compute the kth term in the series expansion (20.1),
where k is the integer part of δ2/2, and then compute the other terms using forward
and backward recursions:

Pi+1 =
δ 2

2(i+ 1)
Pi, Pi−1 =

2i

δ 2
Pi, Qi+1 =

δ 2

2i+ 3
Qi, Qi−1 =

2i+ 1

δ 2
Qi

Ix(a+ 1, b) = Ix(a, b)− Γ(a+ b)

Γ(a+ 1)Γ(b)
xa(1− x)b,

and

Ix(a− 1, b) = Ix(a, b) +
Γ(a+ b− 1)

Γ(a)Γ(b)
xa−1(1− x)b.

Let Em denote the remainder of the infinite series in (17.7.1) after the mth term. It
can be shown that

|Em| ≤ 1

2
(1 + |δ|/2)Ix(m+ 3/2, n/2)

(
1−

m∑

i=0

Pi

)
(20.2)

[See Lenth, 1989, and Benton and Krishnamoorthy, 2003].

Forward and backward iterations can be stopped when 1 −∑k+i
j=k−i Pj is less

than the error tolerance or when the number of iterations exceeds a specified integer.
Otherwise, forward computation of (20.1) can be stopped once the error bound (20.2)
is less than a specified error tolerance or the number of iterations exceeds a specified
integer. The following R function computes the noncentral t cdf.
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280 20 Noncentral t Distribution

R function 20.1. Calculation of the noncentral t cdf

nctcdf = function(t, dfs, delta){

zero = 0.0; one = 1.0; half = 0.5

errtol = 1.0e-12; maxitr = 1000

if (t < zero){

x = -t

del = -delta

indx = TRUE}

else{

x = t; del = delta

indx = FALSE}

# normcdf(x) is the normal cdf in Section 10.10

ans = normcdf(-del)

if( x == zero){return(ans)}

y = x*x/(dfs+x*x)

dels = half*del*del

k = floor(dels)+1; a = k+half; c = k+one; b = half*dfs

# alng(x) is the logarithmic gamma function in Section 1.8

pkf = exp(-dels+k*log(dels)-alng(k+one))

pkb = pkf

qkf = exp(-dels+k*log(dels)-alng(k+one+half))

qkb = qkf

# betadf(y, a, b) is the beta cdf in Section 16.6

pbetaf = pbeta(y, a, b); pbetab = pbetaf

qbetaf = pbeta(y, c, b); qbetab = qbetaf

pgamf = exp(alng(a+b-one)-alng(a)-alng(b)+(a-one)*log(y)+

+ b*log(one-y))

pgamb = pgamf*y*(a+b-one)/a

qgamf = exp(alng(c+b-one)-alng(c)-alng(b)+(c-one)*log(y)+

+ b*log(one-y))

qgamb = qgamf*y*(c+b-one)/c

rempois = one - pkf

delosq2 = del/1.4142135623731

sum = pkf*pbetaf+delosq2*qkf*qbetaf

cons = half*(one + half*abs(delta))

i = 0

repeat{

i = i + 1

pgamf = pgamf*y*(a+b+i-2.0)/(a+i-one)

pbetaf = pbetaf - pgamf

pkf = pkf*dels/(k+i)

ptermf = pkf*pbetaf

qgamf = qgamf*y*(c+b+i-2.0)/(c+i-one)

qbetaf = qbetaf - qgamf

qkf = qkf*dels/(k+i-one+1.5)

qtermf = qkf*qbetaf

term = ptermf + delosq2*qtermf
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sum = sum + term

error = rempois*cons*pbetaf

rempois = rempois - pkf

# Do forward and backward computations k times or until convergence

if (i > k){

if(error <= errtol | i > maxitr){break}

}

else{

pgamb = pgamb*(a-i+one)/(y*(a+b-i))

pbetab = pbetab + pgamb

pkb = (k-i+one)*pkb/dels

ptermb = pkb*pbetab

qgamb = qgamb*(c-i+one)/(y*(c+b-i))

qbetab = qbetab + qgamb

qkb = (k-i+one+half)*qkb/dels

qtermb = qkb*qbetab

term = ptermb + delosq2*qtermb

sum = sum + term

rempois = rempois - pkb

if (rempois <= errtol | i >= maxitr){break}

}}

tnd = half*sum + ans

if(indx) tnd = one - tnd

return(tnd)

}
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Laplace Distribution

21.1 Description

The distribution with the probability density function (pdf)

f(x|a, b) =
1

2b
exp

[
−|x− a|

b

]
, (21.1)

−∞ < x <∞, −∞ < a <∞, b > 0,

where a is the location parameter and b is the scale parameter, is called the
Laplace(a, b) distribution. The cumulative distribution function (cdf) is given by

F (x|a, b) =
{

1− 1
2
exp

[
a−x
b

]
for x ≥ a,

1
2
exp

[
x−a
b

]
for x < a.

(21.2)

The Laplace distribution is also referred to as the double exponential distribution
(see Figure 21.1). For any given probability p, the inverse distribution is given by

F−1(p|a, b) =
{
a+ b ln(2p) for 0 < p ≤ 0.5,
a− b ln(2(1− p)) for 0.5 < p < 1.

(21.3)

21.2 Moments

Mean: a

Median: a

Mode: a

Variance: 2b2

Mean Deviation: b

Coefficient of Variation: b
√

2
a

283
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FIGURE 21.1: Laplace probability density functions

Coefficient of Skewness: 0

Coefficient of Kurtosis: 6

Moments about the Mean: E(X − a)k =

{
0 for k = 1, 3, 5, . . .
k!bk for k = 2, 4, 6, . . .

21.3 Probabilities, Percentiles, and Moments

For given values of a and b, the dialog box [StatCalc→Continuous→Laplace] com-
putes the cdf, percentiles, moments, and other parameters of the Laplace(a, b) dis-
tribution.

To compute probabilities: Enter the values of the parameters a, b, and the value of
x; click [P(X <= x)]. For example, when a = 3, b = 4, and x = 4.5,

P (X ≤ 4.5) = 0.656355 and P (X > 4.5) = 0.343645.

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x]. For example, when a = 3, b = 4, and the cumulative probability = 0.95,
the 95th percentile is 12.2103. That is, P (X ≤ 12.2103) = 0.95.
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21.4 Maximum Likelihood Estimators 285

To compute parameters: Enter value of one of the parameters, cumulative proba-
bility, and x; click on the missing parameter. For example, when a = 3, cumulative
probability = 0.7, and x = 3.2, the value of b is 0.391523.

To compute moments: Enter the values of a and b and click [M].

21.4 Maximum Likelihood Estimators

Let X1, . . . , Xn be a sample of independent observations from a Laplace distribution
with the pdf (21.1). Let X(1) < X(2) < . . . < X(n) be the order statistics based on
the sample.

If the sample size n is odd, then the sample median â = X((n+1)/2) is the maxi-
mum likelihood estimate (MLE) of a. If n is even, then the MLE of a is any number
between X(n/2) and X(n/2+1). The MLE of b is given by

b̂ =
1

n

n∑

i=1

|Xi − â| (if a is unknown) and b̂ =
1

n

n∑

i=1

|Xi − a| (if a is known).

Censored Case

Let X(r+1), ..., X(n) be the largest order statistics for a sample of size n from a
Laplace distribution. The MLEs can be obtained as a special case of a general result
in Childs and Balakrishnan (1997), and they are as follows.

â =





X∗ − b̂ ln
(

n
2(n−r)

)
, if r ≥ n

2
,

X( n+1
2 ), if r ≤ n

2
− 1 and n is odd,

X
(n

2 )
+X

(n+1
2 )

2
if r ≤ n

2
− 1, and n is even,

(21.4)

and

b̂ =






1
n−r

[∑n
i=r+2X(i) − (n− r − 1)X∗] , if r ≥ n

2
,

1
n−r

[∑n
i=(n+1)/2+1X(i) −

∑(n−1)/2
i=r+2 X(i) − (r + 1)X∗

]
,

if r ≤ n
2
− 1 and n is odd,

1
n−r

[∑n
i=n/2+1X(i) −

∑n/2
i=r+2X(i) − (r + 1)X∗

]
,

if r ≤ n
2
− 1 and n is even,

(21.5)

where X∗ is X(r+1) if the samples are type II censored, and is the censoring value
X0 if the samples are type I censored.
The R function 21.1 computes the MLEs for a left censored sample. If the sample
is right censored, then set y = −x and y0 = −x0, and calculates the MLEs â and b̂;
change the sign of â.

Example 21.1. Consider the following sample of size 30 of which 10 observations
are type II left censored.

3.606 3.633 3.642 3.669 3.847 3.975 4.064 4.291 4.475 4.612

4.781 4.861 4.945 5.430 5.476 5.487 5.529 5.599 5.641 6.943
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Here n = 30, r = 10, x is the vector containing all the above 20 data, x0 = 3.606,
and type = 2. We find the MLEs by calling the R function 21.1.

x = c(3.606, 3.633, 3.642, 3.669, 3.847, 3.975, 4.064, 4.291, 4.475,

4.612, 4.781, 4.861, 4.945, 5.430, 5.476, 5.487, 5.529, 5.599,

5.641, 6.943)

n= 30; x0 = 3.606; r = 10; type = 2

mles.laplace.cens(n, x, x0, r, type)

[1] 3.84700 0.43635

R function 21.1. Calculation of the MLEs based on a left censored sample

# n = sample size; x = vector of uncensored observations

# r = number of censored observations;

# x0 = mission time if type I censored or the smallest observation

# in x if type II censored

# type = 1 if type I censored or 2 if type II censored

mles.laplace.cens = function(n, x, x0, r, type){

nminusr = length(x)

x = sort(x); y = seq(1:n);

if(r == 0){

ah = median(x)

bh = sum(abs(x-ah))/nminusr

return(c(ah,bh))

}

if(type == 2){

x0 = x[r+1]

}

y[1:r]=x0; y[(r+1):n] = x;

if(r >= n/2){

bh = (sum(y[(r+2):n])-(n-r-1)*x0)/(n-r)

}

else if(r <= n/2-1 & n%%2 != 0){

bh = (sum(y[((n+1)/2+1):n])-sum(y[(r+2):((n-1)/2)])-(r+1)*x0)/(n-r)

}

else if(r <= (n/2-1) & n%%2 == 0){

bh = (sum(y[(n/2+1):n])-sum(y[(r+2):(n/2)])-(r+1)*x0)/(n-r)

}

if(r >= n/2){

ah = x0 - bh*log(.5*n/(n-r))

}
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if(r <= (n/2-1) & n%%2 !=0){

ah = y[(n+1)/2]

}

else if(r <= (n/2-1) & n%%2 ==0){

ah = (y[n/2]+y[(n+1)/2])/2

}

return(c(ah,bh))

}

Assume now that the above sample is type II right censored. That is, observations
above the largest value 6.943 are censored. To find the MLEs, set x0 = 6.943 and
type = 2, and call the function

mles.laplace.cens(n, -x, -x0, r, type)

[1] -5.48700 0.38405

The MLEs are â = 5.48700 and b̂ = .38405.

21.5 Confidence Intervals and Prediction Intervals

Since the MLEs are location-scale equivariant, confidence intervals for the param-
eters can be obtained using the results of Section 2.7.1. Note that the mean of a
Laplace(a, b) distribution is the location parameter a, and a 1−α confidence interval
for a is given by (

â− kub̂, â− klb̂
)
, (21.6)

where kl and ku are determined by

P

(
kl ≤

â∗

b̂∗
≤ ku

)
= 1− α,

â∗ and b̂∗ are the MLEs based on a random sample from a Laplace(0, 1) distribution.
Note that kl and ku can be estimated using simulated samples from a Laplace(0, 1)
distribution.

A 1− α confidence interval for b is given by
(
cl b̂, cub̂

)
, (21.7)

where cu and cl are determined by

P

(
cl ≤

1

b̂∗
≤ cu

)
= 1− α,

and b̂∗ is the MLE based on a random sample from a Laplace(0, 1) distribution.
Note that cl and cu can be estimated using simulated samples from a Laplace(0, 1)
distribution.

© 2016 by Taylor & Francis Group, LLC

  



288 21 Laplace Distribution

Remark 21.1. The above confidence intervals are exact when samples are type II
censored or uncensored except for simulation errors. They can be used as approxi-
mate confidence intervals when the samples are type I censored. StatCalc calculates
the above confidence intervals for the parameters based on a censored on an uncen-
sored sample.

Prediction Intervals

Suppose it is desired to find an upper prediction limit (UPL) based on a sample
(uncensored) of size n so that it includes at least l of m observations from each of
r locations. As the MLEs are equivariant, the required factor k does not depend
on any unknown parameters, and it depends only on (n,R,m, l) and the confi-
dence level. So Monte Carlo simulation can be used to find such factor. For a given
(n, r,m, l, conf level), the dialog box [Continuous→Laplace→Prediction...] calculates
the factor so that

â+ kb̂

is the desired UPL.

A pivotal based approach can be used to find a prediction interval for a future
observation. Specifically, let â and b̂ be the MLEs based on sample (censored or
uncensored), and let X follows the sampled Laplace distribution. Then

X − â

b̂

is a pivotal quantity, whose empirical distribution can be evaluated using generated
samples from a Laplace(0, 1) distribution. Let kl and ku be determined so that

P

(
−kl ≤

X∗ − â∗

b̂∗
≤ ku

)
= 1− α,

where X∗ ∼ Laplace(0, 1) independently of â∗ and b̂∗, which are the MLEs based
on a sample from a Laplace(0, 1) distribution. Then

(
â− klb̂, â+ kub̂

)
(21.8)

is a 1− α prediction interval for X.

21.6 Tolerance Intervals

One-Sided Tolerance Limits

Recall that one-sided tolerance limits are one-sided confidence limits for appropriate
quantiles of the population. The pth quantile (see (21.3)) is of the form

a+ qpb, with qp =

{
ln(2p), 0 < p ≤ .5,
− ln(2(1− p)), .5 < p < 1.

(21.9)
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As this is a location-scale equivariant function of a and b, a pivotal based approach
is readily obtained from Section 2.7.1. Specifically, it follows from Result 2.7.1 that

â− (a+ qpb)

b̂
∼ â∗ − qp

b̂∗
,

where â∗ and b̂∗ are the MLEs based on a sample from a Laplace(0, 1) distribution.

Let cl denote the α quantile of (â∗ − qp)/b̂
∗. Then

â− clb̂ (21.10)

is a (p, 1−α) upper tolerance limit for the Laplace(a, b) distribution. For 0 < p < .5,

let cu denote the 1− α quantile of (â∗ − qp)/b̂
∗. Then

â− cub̂ (21.11)

is a (p, 1−α) lower tolerance limit for the Laplace(a, b) distribution. For the uncen-
sored case, cu = −cl.

For a given (n, r, p, 1− α), StatCalc calculates factors kl and ku so that â− klb̂

is a (p, 1−α) lower tolerance limit, and â+ kub̂ is a (p, 1−α) upper tolerance limit.
These tolerance limits are exact, except for simulation errors.

Tolerance Intervals

The (p, 1 − α) tolerance factor k for constructing a Laplace tolerance interval is
determined by

Pâ∗,b̂∗
{
FZ(â

∗ + kb̂∗)− FZ(â
∗ − kb̂∗) ≥ p

}
= 1− α, (21.12)

where

FZ(z) =

{
1− 1

2
e−z, z > 0,

1
2
ez, z < 0.

(21.13)

Let v(â∗, p) be the root (with respect to r) of the equation

FZ(â
∗ + r)− FZ(â

∗ − r) = p. (21.14)

Then the factor k is the 1− α quantile of v(â∗, p)/b̂∗. See Krishnamoorthy and Xie
(2012) for more details.

Algorithm 21.1. Calculation for tolerance factor satisfying (21.12)

1. Generate a sample of size n from a Laplace distribution with a = 0 and b = 1.

2. Discard the smallest r samples, and compute the MLEs (or equivariant estima-
tors) of a and b based on the largest n−r samples, say, z1, ..., zn−r; denote these

estimators by â∗ and b̂∗.

3. For a given p, and using â∗ computed in step 2, find the root v(â∗, p) of equation
(21.14).

4. Set Q = v(â∗,p)

b̂∗
.

5. Repeat the steps 1–4 for a large number of times, say, N .

6. The 100(1−α) percentile of Q1, ..., QN is a Monte Carlo estimate of the tolerance
factor k that satisfies (21.12).

StatCalc uses the above algorithm to estimate the factor k.
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290 21 Laplace Distribution

21.7 Applications with Examples

Because the distribution of differences between two independent exponential variates
with mean b is Laplace (0, b), a Laplace distribution can be used to model the
difference between the waiting times of two events generated by independent random
processes. The Laplace distribution can also be used to describe breaking strength
data. Korteoja et al. (1998) studied tensile strength distributions of four paper
samples and concluded that among extreme value, Weibull and Laplace distributions,
a Laplace distribution fits the data best. Sahli et al. (1997) proposed a one-sided
acceptance sampling by variables when the underlying distribution is Laplace. In
the following, we see an example where the differences in flood stages are modeled
by a Laplace distribution.

Example 21.2. The data in Table 20.1 represent the differences in flood stages for
two stations on the Fox River in Wisconsin for 33 different years. The data were first
considered by Gumbel and Mustafi (1967), and later Bain and Engelhardt (1973)
justified the Laplace distribution for modeling the data. Kappenman (1977) used
the data for constructing one-sided tolerance limits.

To fit a Laplace distribution for the observed differences of flood stages, we
estimate

â = 10.13 and b̂ = 3.36

by the maximum likelihood estimates (see Section 21.4). Using these estimates,
the population quantiles are estimated as described in Section 1.4.1. For example,
to find the population quantile corresponding to the sample quantile 1.96, select
[Continuous→Laplace] from StatCalc, enter 10.13 for a, 3.36 for b and 0.045 for
[P(X <= x)]; click on [x] to get 2.04. The Q–Q plot of the observed differences
and the Laplace(10.13, 3.36) quantiles is given in Figure 20.2. The Q–Q plot shows
that the sample quantiles (the observed differences) and the population quantiles
are in good agreement. Thus, we conclude that the Laplace(10.13, 3.36) distribution
adequately fits the data on flood stage differences.

The fitted distribution can be used to estimate the probabilities. For example,
the percentage of differences in flood stages exceed 12.4 is estimated by

P (X > 12.4|a = 10.13, b = 3.36) = 0.267631.

That is, about 27% of differences in flood stages exceed 12.4.
To find a 95% confidence interval for the mean a, select the dialog box

[Cont..→Laplace→CI...] from StatCalc, enter 33 for [Sample Size], 0 for [No. Cen-
sored], .95 for [Conf Level], and click on [CI for a] to get (8.748, 11.517). To find
a 90% confidence interval for the scale parameter b, just click on [CI for b] to get
(2.486, 4.971).

To find (.90, .95) one-sided tolerance limits, select the dialog box [Cont..→Laplace
→Tolerance...] from StatCalc, enter 33 for [Sample Size], 0 for [No. Censored], .90
for [Proportion p], .95 for [Conf Level], and click on [1-sided] to get the factor 2.34.
That is,

10.13 − 2.34 × 3.36 = 2.268

is a (.90, .95) lower tolerance limit, and

10.13 + 2.34× 3.36 = 17.992
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is a (.90, .95) upper tolerance limit.

To find a (.90, .95) two-sided tolerance interval, just click on [2-sided] to get
3.233. This means that 10.13 ± 3.233 × 3.36 is (.90, .95) tolerance interval.

TABLE 21.1: Differences in Flood Stages

j Observed j−0.5
33

Population j Observed j−0.5
33

Population
Differences Quantiles Differences Quantiles

1 1.96 – – 18 10.24 0.530 10.34
2 1.96 0.045 2.04 19 10.25 0.561 10.56
3 3.60 0.076 3.80 20 10.43 0.591 10.80
4 3.80 0.106 4.92 21 11.45 0.621 11.06
5 4.79 0.136 5.76 22 11.48 0.652 11.34
6 5.66 0.167 6.44 23 11.75 0.682 11.65
7 5.76 0.197 7.00 24 11.81 0.712 11.99
8 5.78 0.227 7.48 25 12.34 0.742 12.36
9 6.27 0.258 7.90 26 12.78 0.773 12.78
10 6.30 0.288 8.27 27 13.06 0.803 13.26
11 6.76 0.318 8.61 28 13.29 0.833 13.82
12 7.65 0.348 8.92 29 13.98 0.864 14.50
13 7.84 0.379 9.20 30 14.18 0.894 15.34
14 7.99 0.409 9.46 31 14.40 0.924 16.47
15 8.51 0.439 9.70 32 16.22 0.955 18.19
16 9.18 0.470 9.92 33 17.06 0.985 21.88
17 10.13 0.500 10.13

Example 21.3. (Laplace tolerance intervals). The following data in Table 21.2
are breaking strengths of 100 yarns reported in Duncan (1974). Puig and Stephens
(2000) showed that a Laplace distribution fits the samples well. We shall use these
samples to construct a (.90, .95) tolerance interval for the breaking strength of yarns.
The MLEs based on all 100 measurements are

TABLE 21.2: Breaking Strength of 100 Yarns

62 66 78 79 80 84 84 85 85 86 86 87 88 88 89
89 91 91 91 91 92 92 92 92 93 94 94 94 95 95
95 96 96 96 96 96 97 97 97 97 97 97 98 98 98
98 98 98 98 99 99 99 99 99 100 100 100 100 100 101
101 101 101 102 102 102 102 102 102 102 103 103 103 104 104
104 104 104 104 104 105 105 106 107 107 109 110 111 111 111
111 114 115 117 122 132 132 137 137 138

â = 99 and b̂ = 8.33.

To find a 95% confidence interval for the mean a, select the dialog box
[Cont..→Laplace→CI...] from StatCalc, enter 100 for [Sample Size], 0 for [No. Cen-
sored], .95 for [Conf Level], and click on [CI for a] to get (97.2, 100.8). To find
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FIGURE 21.2: Q–Q plot of differences in flood stages data

a 90% confidence interval for the scale parameter b, just click on [CI for b] to get
(6.91, 10.30).

The (.90, .95) tolerance factor is computed as 2.76 (using StatCalc; see the pre-
ceding example). So the tolerance interval for breaking strength is 99±2.76×8.33 =
(76, 122). This means that at least 90% of the yarns have breaking strength between
76 and 122 with confidence 95%.

To illustrate the methods for the censored, suppose that the measuring device
can not measure the strength of a yarn if it is below 90. In this case, only n− r = 84
yarn strengths are recorded in a sample of size n = 100, and the MLEs are µ̂ = 99
and σ̂ = 8.45. The (.90, .95) tolerance factor when n = 100 and r = 16 is 2.81, and
the tolerance interval is (75.26, 122.74). Note that the tolerance interval based on the
censored sample is wider, but still close to the one based on all 100 measurements.
The factor for computing (.90, .95) one-sided lower tolerance limit, when n = 100
and k = 16, is 2.01, and the limit is 99− 2.01 × 8.45 = 82.02.

To illustrate the methods for type I right censored samples, let us assume that
the right censoring value is 103.5. Note that 27 values are censored with X∗ = 103.5.
To compute the MLEs, the x-vector is x = c(66, 78, ... ,103,103), which includes 73
uncensored observations. To calculate the MLEs, call the R function 21.1:

mle.laplace.cens(100,-x,-103.5,27,1)

[1] -99 7.7123

Thus, the MLEs are â = 99 and b̂ = 7.7123. To find a (.90, .95)
tolerance interval, the required factor was calculated using the dialog box
[StatCalc→Cont..→Laplace→Tolerance ...] as 2.85, and the (.90, .95) tolerance in-
terval is 99± 2.85 × 7.7123 = (77, 121).
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21.8 Relation to Other Distributions

1. Exponential: If X follows a Laplace(a, b) distribution, then |X − a|/b follows
an exponential distribution with mean 1. That is, if Y = |X−a|/b, then the pdf
of Y is exp(−y), y > 0.

2. Chi-square: |X − a| is distributed as (b/2)χ2
2.

3. Chi-square: If X1, . . ., Xn are independent Laplace(a, b) random variables, then

2

b

n∑

i=1

|Xi − a| ∼ χ2
2n.

4. F Distribution: If X1 and X2 are independent Laplace(a, b) random variables,
then

|X1 − a|
|X2 − a| ∼ F2,2.

5. Normal: If Z1, Z2, Z3, and Z4 are independent standard normal random vari-
ables, then

Z1Z2 − Z3Z4 ∼ Laplace(0, 2).

6. Exponential: If Y1 and Y2 are independent exponential random variables with
mean b, then

Y1 − Y2 ∼ Laplace(0, b).

7. Uniform: If U1 and U2 are uniform(0,1) random variables, then

ln (U1/U2) ∼ Laplace(0, 1).

21.9 Random Number Generation

Algorithm 21.2. Laplace variate generator

For a given a and b:
Generate u from uniform(0, 1)
If u ≥ 0.5, return x = a− b ∗ ln(2 ∗ (1− u))
else return x = a+ b ∗ ln(2 ∗ u)

x is a pseudo random number from the Laplace(a, b) distribution.
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Logistic Distribution

22.1 Description

The probability density function (pdf) of a logistic distribution with the location
parameter a and scale parameter b is given by

f(x|a, b) = 1

b

exp
{
−
(
x−a
b

)}
[
1 + exp

{
−
(
x−a
b

)}]2 , −∞ < x <∞, −∞ < a <∞, b > 0.

(22.1)
The cumulative distribution function (cdf) is given by

F (x|a, b) =
[
1 + exp

{
−
(x− a

b

)}]−1

. (22.2)

For 0 < p < 1, the inverse distribution function is

F−1(p|a, b) = a+ b ln[p/(1− p)]. (22.3)

The cdf and the inverse distribution function are in simple form, so they easy to
calculate. The logistic distribution is symmetric about the location parameter a (see
Figure 22.1), and it can be used as a substitute for a normal distribution.

22.2 Moments

Mean: a

Variance: b2π2

3

Mode: a

Median: a

Mean Deviation: 2bln(2)

Coefficient of Variation: bπ

a
√
3

295
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296 22 Logistic Distribution

Coefficient of Skewness: 0

Coefficient of Kurtosis: 4.2

Moment Generating Function: E(etY ) = πcosec(tπ),
where Y = (X − a)/b.

Inverse Distribution Function: a+ b ln[p/(1− p)]

Survival Function: 1
1+exp[(x−a)/b]

Inverse Survival Function: a+ b ln{(1 – p)/p}

Hazard Rate: 1
b[1+exp[−(x−a)/b]]

Hazard Function: ln{1 + exp[(x− a)/b]}

22.3 Probabilities, Percentiles, and Moments

For given values of a and b, the dialog box [StatCalc→Continuous→Logistic→
Probabilities ...] computes the cdf, percentiles and moments of a Logistic(a, b) dis-
tribution.

To compute probabilities: Enter the values of the parameters a, b, and the value of x;
click [P(X <= x)]. For example, when a = 2, b = 3, and the observed value x = 1.3,
P (X ≤ 1.3) = 0.44193 and P (X > 1.3) = 0.55807.

To compute percentiles: Enter the values a, b, and the cumulative probability; click
[x]. For example, when a = 2, b = 3, and the cumulative probability = 0.25, the
25th percentile is -1.29584. That is, P (X ≤ −1.29584) = 0.25.

To compute other parameters: Enter the values of one of the parameters, cumula-
tive probability and x; click on the missing parameter. For example, when b = 3,
cumulative probability = 0.25 and x = 2, the value of a is 5.29584.

To compute moments: Enter the values of a and b and click [M].

22.4 Maximum Likelihood Estimators

Let X1, . . ., Xn be a sample of independent observations from a logistic distribution
with parameters a and b. Explicit expressions for the maximum likelihood estimates
(MLEs) of a and b are not available. Likelihood equations can be solved only nu-
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FIGURE 22.1: Logistic probability density functions; a = 0

merically, and they are

n∑

i=1

[
1 + exp

(
Xi − a

b

)]−1

=
n

2

n∑

i=1

(
Xi − a

b

)
1− exp[(Xi − a)/b]

1 + exp[(Xi − a)/b]
= n. (22.4)

The sample mean and standard deviation can be used to estimate a and b. Specifi-
cally,

â =
1

n

n∑

i=1

Xi and b̂ =

√
3

π

√√√√ 1

n− 1

n∑

i=1

(Xi − X̄)2.

These estimators may be used as initial values to solve the equations in (22.4)
iteratively for a and b.

Censored Case

Suppose that in a sample of n observations, r observations are censored, and denote
the ordered uncensored observations by X1, ..., Xn−r. Define Zi = (Xi − a)/b, i =
1, ..., n− r, and Z∗

1 = (X1 − a)/b if the sample is type II censored, and is (X0 − a)/b
if the sample is type I censored with censoring time X0. Let h(z) = exp(−z)/[1 +

© 2016 by Taylor & Francis Group, LLC

  



298 22 Logistic Distribution

exp(−z)]. The MLEs are the roots of the equations

f1(a, b) = (n− r)− 2

n−r∑

i=1

h(Zi)− rh(Z∗
1 ) = 0,

f2(a, b) =

n−r∑

i=1

zi − 2

n−r∑

i=1

Zih(Zi)− (n− r)− rZ∗
1h(Z

∗
1 ) = 0, (22.5)

which can be obtained as a special case from Harter and Moore (1967). Newton–
Raphson iterative method can be used to find the MLEs satisfying the above equa-
tions. The following equivariant estimators

ã =
1

n− r

n−r∑

i=1

xi and b̃ =
1

ñ
(xn − xr+1), (22.6)

where ñ = 2
∑n−r
i=1

1
i
can be used as initial values for the Newton-Raphson method.

Partial derivatives to implement Newton–Raphson method are given in Krish-
namoorthy and Xie (2011).

The following R function computes MLEs based on a censored sample of size n
with k censored observations.

R function 22.1. Calculation of the MLEs based on a left censored sample

# n = sample size; k = number of censored observations

# x0 = censoring value (type I) or the smallest uncensored

# value (type II)

# y = vector containing uncensored values

mles.logistic.cens = function(n, k, x0, y){

nmk = n-k; x = as.vector(n); z= as.vector(nmk);

hz = function(x){

return(exp(-x)/(1+exp(-x)))}

x = c(rep(x0,k),y); one = 1.0

x = sort(x); a0 = sum(x[(k+1):n])/nmk

sk = 2*sum(1/seq(1:nmk)); b0 = (x[n]-x[k+1])/sk

j = 1

repeat{

z = (x[(k+1):n]-a0)/b0; zs1 = (x0-a0)/b0

hz1 = hz(zs1); fz1 = hz1/(one+exp(-zs1))

hzi = hz(z); fzi = hzi/(one+exp(-z))

f1 = - sum(hzi); f2 = sum(z-2*z*hzi)

f1a = 2*sum(fzi); f1b = 2*sum(z*fzi)

f2a = sum(hzi - z*fzi); f2b = sum(-0.5*z+z*hzi-z*z*fzi)

f1 = 2*f1 + nmk - k*hz1; f2 = f2 - nmk-k*zs1*hz1

f1a = -(f1a+k*fz1)/b0; f1b = -(f1b+k*zs1*fz1)/b0

f2a = (2*f2a-nmk+k*hz1-k*zs1*fz1)/b0

f2b = (2*f2b+k*zs1*hz1-k*zs1**2*fz1)/b0
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detf = f1a*f2b-f1b*f2a

f1ai = f2b/detf; f1bi = -f2a/detf

f2ai = -f1b/detf; f2bi = f1a/detf

ahat = a0 - (f1ai*f1+f1bi*f2); bhat = b0 - (f2ai*f1+f2bi*f2)

if((abs(f1) <= 1.0e-5 & abs(f2) <= 1.0e-5) | j >= 30){break}

j = j + 1; a0 = ahat; b0 = bhat

}

return(c(ahat,bhat))

}

22.5 Confidence Intervals and Prediction Intervals

Recall that the MLEs are location-scale equivariant, so confidence intervals for the
parameters can be obtained using the results of Section 2.7.1. Note that the mean
of a Logistic(a, b) distribution is the location parameter a, and a 1 − α confidence
interval for a is given by (

â− kub̂, â− klb̂
)
, (22.7)

where kl and ku are determined by

P

(
kl ≤

â∗

b̂∗
≤ ku

)
= 1− α,

and â∗ and b̂∗ are the MLEs based on a random sample from a Logistic(0, 1) dis-
tribution. Note that kl and ku can be estimated using simulated samples from a
Loistic(0, 1) distribution.

A 1− α confidence interval for b is given by

(
clb̂, cu b̂

)
, (22.8)

where cu and cl are determined by

P

(
cl ≤

1

b̂∗
≤ cu

)
= 1− α,

and b̂∗ is the MLE based on a random sample from a Logistic(0, 1) distribution.
The critical values cl and cu can be estimated using simulated samples from a
Logistic(0, 1) distribution.

Prediction Intervals

Let â and b̂ denote the MLEs based on a sample (could be censored) of size n from a
Logistic(a, b) distribution. Let X follow the same distribution independently of the
sample. A prediction interval for X is given by

(
â− kl b̂, â+ kub̂

)
, (22.9)

© 2016 by Taylor & Francis Group, LLC

  



300 22 Logistic Distribution

where kl and ku is determined by

P

(
−kl ≤

X∗ − â∗

b̂∗
≤ ku

)
= 1− α,

where X∗ ∼ Logistic(0, 1) distribution, and â∗ and b̂∗ are the MLEs based on a

sample from a Logistic(0, 1) distribution. Also, X∗ and (â∗, b̂∗) are independent.
Note that the factors kl and ku can be estimated by Monte Carlo simulation by
generating independent samples from a Logistic(0, 1) distribution.

Example 22.1. The data in Table 22.1 represent failure mileage (in units of 1000
miles) of different locomotive controls in a life test involving 96 locomotive controls.
The test was terminated after 135,000 miles, and by then 37 controls had failed. This
example is discussed in Schmee and Nelson (1977), and also in Lawless (2003, Section
5.3). These authors noted that a lognormal distribution gives a good fit to the data.
Lawless has noted that the data also fit a log-logistic model (log-transformed failure
data fit a logistic distribution). In this type of situation, a lower tolerance limit is

TABLE 22.1: Failure Mileage (in 1000) of Locomotive Controls

22.5 37.5 46.0 48.5 51.5 53.0 54.5 57.5 66.5 68.0
69.5 76.5 77.0 78.5 80.0 81.5 82.0 83.0 84.0 91.5
93.5 102.5 107.0 108.5 112.5 113.5 116.0 117.0 118.5 119.0
120.0 122.5 123.0 127.5 131.0 132.5 134.0

desired to assess the reliability of the controls, and to estimate the lifetime at certain
mileage.
For the above data, the sample size n = 96 and the number of censored data is
r = 59. Recall that the data were type I right censored with the censoring value 135.
So the R function 22.1 for left censored data can be applied to the right censored data
after taking negative log transformation. Specifically, the MLEs for the parameters
can be computed using the R function 22.1 as follows.

#locomotive mileage data

> x = c(22.5,37.5,46.0,...,132.5 ,134.0)

> y = -log(x); x0 = -log(135)

> n = 96; k = 59 # number of censored observations

> mles.logistic.cens(n, k, x0, y)

[1] -5.0829458 0.3836752

Thus the MLEs are â = 5.083 and b̂ = 0.384.

To compute 95% confidence intervals for the parameters a and b using StatCalc,
select [StatCalc→Continuous→Logistic→Confidence ...], enter 96 for n, 59 for the
number of observations censored k, 5.083 for [MLE of a], .384 for [MLE of b], and
.95 for [Conf Level]; click on [Confidence Intervals] to get (4.85, 5.23) for a and (.27,
.49) for b.

To find a 90% prediction interval for a failure time of a locomotive control using
StatCalc, select [StatCalc→Continuous→Logistic→Prediction ...], enter 96 for n, 59
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for k, and .95 for [Conf Level]; click on [Factors for ...] to get factors 3.20 (lower)
and 3.05 (upper). Thus, the 95% prediction interval is

(5.083 − 3.20 × 0.384, 5.083 + 3.05 × 0.384) = (3.85, 6.25).

By taking exponentiation, we find the prediction interval as (46.993, 518.013). Thus,
a locomotive control may survive between 46,993 and 518,013 miles with confidence
95%.

22.6 Tolerance Intervals

One-Sided Tolerance Limits

Recall that one-sided tolerance limits are one-sided confidence limits for appropriate
quantiles of the population. The pth quantile (see (22.3)) is given by

a+ qpb, with qp = ln

(
p

1− p

)
. (22.10)

As this is a location-scale equivariant function of a and b, a pivotal based approach
is readily obtained from Section 2.7.1. Specifically, it follows from Result 2.7.1 that

â− (a+ qpb)

b̂
∼ â∗ − qp

b̂∗
,

where X ∼ Y means that X and Y are identically distributed, and â∗ and b̂∗ are
the MLEs based on sample of size n from a Logistic(0, 1) distribution. Let cl denote

the α quantile of (â∗ − q1−p)/b̂
∗. Then

â− clb̂ (22.11)

is a (p, 1 − α) upper tolerance limit for the Laplace(a, b) distribution. To find a

(p, 1− α) lower tolerance limit, let cu denote the 1− α quantile of (â∗ − q1−p)/b̂
∗.

Then
â− cub̂ (22.12)

is a (p, 1−α) lower tolerance limit for the Logistic(a, b) distribution. For the uncen-
sored case, cu = −cl.

For a given sample size n, the number of censored observations r, and the values
of (p, 1 − α), StatCalc calculates factors kl = cu and ku = −cl so that â − klb̂ is a

(p, 1 − α) lower tolerance limit, and â + kub̂ is a (p, 1 − α) upper tolerance limit.
These tolerance limits are exact, except for simulation errors, provided the samples
are type II censored, and can be used as approximate if the samples are type I
censored.
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Tolerance Intervals

The (p, 1 − α) tolerance factor k for constructing a logistic tolerance interval is
determined by

Pâ∗,b̂∗
{
FZ(â

∗ + kb̂∗)− FZ(â
∗ − kb̂∗) ≥ p

}
= 1− α, (22.13)

where
FZ(z) = [1 + exp(−z)]−1 . (22.14)

Let v(â∗, p) be the root (with respect to x) of the equation

FZ(â
∗ + x)− FZ(â

∗ − x) = p. (22.15)

Then, the factor k is the 1−α quantile of v(â∗, p)/b̂∗. See Krishnamoorthy and Xie
(2011) for more details.

An algorithm similar to Algorithm 21.1 for calculating Laplace tolerance in-
tervals can be used to compute the factor k satisfying 22.15. The dialog box
[StatCalc→Continuous→Logistic→Tolerance ...] computes the factors for finding
one-sided and two-sided tolerance intervals for a logistic distribution.

Remark 22.1. The factors for the type II censored case can be used as an approx-
imation for the type I censored case with the following adjustment. Let kn,r,p,1−α
denote the tolerance factor for a sample of size n with r type II censored observa-
tions, and let P̂x0 denote the proportion of censored observations in the sample. If
Px0 ≤ .20, then one could use the factor kn,r,p,1−α, otherwise use kn,r−1,p,1−α. The
tolerance intervals with this adjustment seem to be satisfactory as long as P̂x0 ≤ .70.

Example 22.2. To find the (.90, .90) two-sided tolerance interval for locomotive
control data in Table 22.1, we computed the factor (with n = 96 and r− 1 = 58) as
3.74. Thus, the tolerance interval is 5.083± 3.74× 0.384 = (3.647, 6.519). By taking
exponentiation, we get (38.359, 677.900). Thus, we are 90% confident that at least
90% of locomotive controls survive 38,359 to 677,900 miles.

22.7 Applications

The logistic distribution can be used as a substitute for a normal distribution. It
is also used to analyze data related to stocks. Braselton et al. (1999) considered
the day-to-day percent changes of the daily closing values of the S&P 500 index
from January 1, 1926 through June 11, 1993. These authors found that a logistic
distribution provided the best fit for the data even though the lognormal distribution
has been used traditionally to model these daily changes. An application of the
logistic distribution in nuclear-medicine is given in Prince et al. (1988). de Visser
and van den Berg (1998) studied the size grade distribution of onions using a logistic
distribution. The logistic distribution is also used to predict the soil-water retention
based on the particle-size distribution of Swedish soil (Rajkai et al., 1996). Scerri
and Farrugia (1996) compared the logistic and Weibull distributions for modeling
wind speed data. Applicability of a logistic distribution to study citrus rust mite
damage on oranges is given in Yang et al. (1995).
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22.8 Properties and Results

1. If X is a Logistic(a, b) random variable, then (X − a)/b ∼ Logistic(0, 1).

2. If u follows a uniform(0, 1) distribution, then a + b[ln(u) - ln(1 − u)] ∼
Logistic(a, b).

3. If Y is a standard exponential random variable, then

− ln

[
e−y

1− e−y

]
∼ Logistic(0, 1).

4. If Y1 and Y2 are independent standard exponential random variables, then

− ln

(
Y1

Y2

)
∼ Logistic(0, 1).

For more results and properties, see Balakrishnan (1991).

22.9 Random Number Generation

Algorithm 22.1. Logistic variate generator

For a given a and b:
Generate u from uniform(0, 1)
return x = a+ b ∗ (ln(u)− ln(1− u))
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Lognormal Distribution

23.1 Description

A positive random variable X is lognormally distributed if ln(X) is normally dis-
tributed. The probability density function (pdf) of X is given by

f(x|µ, σ) = 1√
2πxσ

exp

[
− (lnx− µ)2

2σ2

]
, x > 0, σ > 0, −∞ < µ < ∞. (23.1)

Note that if Y = ln(X), and Y follows a normal distribution with mean µ and stan-
dard deviation σ, then the distribution of X is called lognormal. Since X is actually
an antilogarithmic function of a normal random variable, some authors refer to this
distribution as antilognormal. We denote this distribution by lognormal(µ, σ2).

The cumulative distribution function (cdf) of a lognormal(µ, σ2) distribution is
given by

F (x|µ, σ) = P (X ≤ x|µ, σ)
= P (lnX ≤ ln x|µ, σ)

= P

(
Z ≤ ln x− µ

σ

)

= Φ

(
ln x− µ

σ

)
, (23.2)

where Z = (lnX − µ)/σ and Φ is the standard normal distribution function.

23.2 Moments

Mean: exp[µ+ σ2/2]

Variance: exp(σ2)[exp(σ2)− 1] exp(2µ)

Mode: exp[µ− σ2]

Median: exp(µ)

305
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FIGURE 23.1: Lognormal probability density functions; µ = 0

Coefficient of Variation:
√

[exp(σ2)− 1]

Coefficient of Skewness: [exp(σ2) + 2]
√

[exp(σ2)− 1]

Coefficient of Kurtosis: exp(4σ2) + 2 exp(3σ2) + 3 exp(2σ2)− 3

Moments about the Origin: exp [kµ+ k2σ2/2]

Moments about the Mean: exp [k(µ+ σ2/2)]
k∑
i=0

(−1)i
(
k
i

)
exp

[
σ2(k−i)(k−i−1)

2

]
.

[Johnson et al. (1994, p. 212)]

23.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous →Lognormal] computes the cdf, percentiles,
and moments of a lognormal(µ, σ2) distribution.

To compute probabilities: Enter the values of the parameters µ, σ, and the observed
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value x; click [P(X <= x)]. For example, when µ = 1, σ = 2, and x = 2.3, P (X ≤
2.3) = 0.466709 and P (X > 2.3) = 0.533291.

To compute percentiles: Enter the values of µ, σ, and the cumulative probability P(X
<= x); click on [x]. For example, when µ = 1, σ = 2, and the cumulative probability
P(X <= x) = 0.95, the 95th percentile is 72.9451. That is, P (X ≤ 72.9451) = 0.95.

To compute µ: Enter the values of σ, x, and the cumulative probability P(X <=
x); click on [U]. For example, when x = 2.3, σ = 2, and the cumulative probability
P(X <= x) = 0.9, the value of µ is −1.73019.

To compute σ: Enter the values of x, µ, and the cumulative probability P(X <= x);
click on [S]. For example, when x = 3, µ = 2, and the cumulative probability P(X
<= x) = 0.1, the value of σ is 0.703357.

To compute moments: Enter the values of µ and σ and click [M].

23.4 Maximum Likelihood Estimators

Let X1, . . ., Xn be a sample of independent observations from a lognormal(µ, σ)
distribution. Let Yi = ln(Xi), i = 1, . . ., n. Then

µ̂ = Ȳ =
1

n

n∑

i=1

Yi and σ̂ =

√√√√ 1

n

n∑

i=1

(Yi − Ȳ )2

are the maximum likelihood estimates of µ and σ, respectively.

23.5 Confidence Interval and Test for the Mean

Let X1, ..., Xn be a sample from a lognormal(µ, σ). Let Yi = ln(Xi), i = 1, . . ., n. Let

Ȳ =
1

n

n∑

i=1

Yi and S2 =
1

n− 1

n∑

i=1

(
Yi − Ȳ

)2
.

Recall that the mean of a lognormal(µ, σ) distribution is given by exp(η), where
η = µ+ σ2/2. Since the lognormal mean is a one-one function of η, it is enough to
estimate or test about η. For example, if L is a 95% lower confidence limit for η,
then exp(L) is a 95% lower limit for exp(η).

Generalized Confidence Intervals

The inferential procedures are based on the generalized variable approach given in
Krishnamoorthy and Mathew (2003). Following Example 2.2, we obtain the gener-
alized pivotal quantity (GPQ) for η = µ+ 1

2
σ2 as

Gη = ȳ − Z√
χ2
n−1

n−1

+
1

2

(n− 1)s2

χ2
n−1

,
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where Z ∼ N(0, 1) independently of χ2
n−1 random variable. The following algorithm

can be used to compute the generalized confidence interval for η, and thereby for
the lognormal mean.

Algorithm 23.1. (Calculation of generalized p-value)

For j = 1, m
Generate Z ∼ N(0, 1) and U2 ∼ χ2

n−1

Set Tj = ȳ −
√

n−1
n

Z
U
s+ 1

2
(n−1)

U2 s2

(end loop)

The percentiles of the Tjs generated above can be used to find confidence intervals
for η. Let Tp denote the 100pth percentile of the Tjs. Then (T.025, T.975) is a 95%
confidence interval for η. Furthermore, (exp(T.025), exp(T.975)) is a 95% confidence
interval for the lognormal mean exp(η). A 95% lower limit for exp(η) is given by
exp(T0.05).

Suppose we are interested in testing

H0 : exp(η) ≤ c vs. Ha : exp(η) > c,

where c is a specified number. For a given level of significance α, the H0 is rejected
if exp (Tα) > c or Tα > ln(c). Notice that

Tα > ln(c) if and only if P (T < ln(c)) < α.

The above probability is the p-value of the test.

MOVER Approach

The MOVER confidence interval for η = µ + 1
2
σ2 is obtained by combining the

confidence intervals for µ and σ2. See Section 2.8 and Zou et al. (2009b). Let

(Lµ, Uµ) = Ȳ ∓ z1−α/2
S√
n
,

and let

(L2
σ, U

2
σ) =

(
(n− 1)S2

χ2
n−1;1−α/2

,
(n− 1)S2

χ2
n−1;α/2

)
.

The 1− α MOVER confidence interval for η is given by (Lη, Uη), where

Lη = Ȳ +
1

2
S2 −

√
(
Ȳ − Lµ

)2
+

1

4
(S2 − L2

σ)
2 (23.3)

and

Uη = Ȳ +
1

2
S2 +

√
(
Ȳ − Uµ

)2
+

1

4
(S2 − U2

σ)
2. (23.4)

Finally, an approximate 1 − α confidence interval for the lognormal mean exp(µ +
σ2/2) is (exp(Lη), exp(Uη)).

For a given sample size, mean, and standard deviation of the logged data, Stat-
Calc computes confidence intervals and the p-values for testing about a lognormal
mean using Algorithm 23.1 with a specified number of simulation runs and the
MOVER confidence intervals.
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Example 23.1. Suppose that a sample of 15 observations from a lognormal(µ, σ)
distribution produced the mean of log-transformed sample as ȳ = 1.2 and the stan-
dard deviation of log-transformed sample s = 1.5. It is desired to find a 95% confi-
dence interval for the lognormal mean exp(µ+σ2/2). To compute a 95% confidence
interval using StatCalc, select [StatCalc→Continuous→Lognormal→CI and Test for
Mean], enter 15 for the sample size, 1.2 for [Mean of ln(x)], 1.5 for [Std Dev of
ln(x)], 0.95 for the confidence level, and click [GV CI] to get (4.37, 70.34), and click
[MOVER CI] to get the MOVER confidence interval as (4.07, 64.22).
Suppose we want to test

H0 : exp(η) ≤ 4.85 vs. Ha : exp(η) > 4.85.

To find the p-value, enter 4.85 for [H0: M = M0] and click [p-values for] to get 0.045.
Thus, at 5% level, we can reject the null hypothesis and conclude that the true mean
is greater than 4.85.

23.6 Methods for Comparing Two Means

Suppose that we have a sample of ni observations from a lognormal(µ, σ2) popu-
lation, i = 1, 2. Let ηi = µi + σ2

i /2, i = 1, 2. Let Ȳi and Si denote, respectively,
the mean and standard deviation of the log-transformed measurements in the ith
sample, i = 1, 2.

Generalized Variable Approach

Let (ȳi, si) be an observed value of (Ȳi, Si), i = 1, 2. For a given (n1, ȳ1, s1, n2, ȳ2, s2),
generalized confidence intervals for the difference exp(η1)− exp(η2) or for the ratio
exp(η1)/ exp(η2) can be obtained using the following algorithm.

Algorithm 23.2. Calculation of p-values for comparing two means

For j = 1,m
Generate independent random numbers Z1, Z2, U

2
1 , and U2

2 such that
Zi ∼ N(0, 1) and U2

i ∼ χ2
ni−1, i = 1, 2.

Set
Gi = ȳi −

√
ni−1
ni

Zisi
Ui

+ 1
2

(ni−1)s2i
U2

i
, i = 1, 2.

T2j = exp(G1)− exp(G2)
Rj = exp(G1)/ exp(G2)
(end loop)

The percentiles of the T2j ’s generated above can be used to construct confidence
intervals for exp(η1)−exp(η2). Let T2,p denote the 100pth percentile of the T2js.
Then, (T2,.025, T2,.975) is a 95% confidence interval for exp(η1) − exp(η2); T2,.05

is a 95% lower confidence limit for exp(η1)−exp(η2). Similarly, using appropriate
percentiles of Rjs, we can find confidence intervals for the ratio exp(η1)/ exp(η2) of
the means.

Suppose we are interested in testing

H0 : exp(η1)− exp(η2) ≤ 0 vs. Ha : exp(η1)− exp(η2) > 0.
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Then, an estimate of the p-value based on the generalized variable approach is the
proportion of the T2js that are less than zero.

MOVER Confidence Intervals for the Ratio of Means

A MOVER confidence interval for the ratio of means exp(η1)/ exp(η2) = exp(η1 −
η2) can be deduced from those of individual means. In particular, we can use the
confidence intervals of the form (23.3) and (23.4) for η1 and η2, to find a MOVER
confidence interval for η1−η2. Let (Lηi , Uηi) be the 1−αMOVER confidence interval
for ηi based on (Ȳi, Si), i = 1, 2. Let

η̂i = Ȳi +
1

2
S2
i , i = 1, 2.

Then, the MOVER confidence interval for η1 − η2 is given by (LD, UD), where

LD = η̂1 − η̂2 −
√

(η̂1 − Lη1)
2 + (η̂2 − Uη2)

2

and
UD = η̂1 − η̂2 +

√
(η̂1 − Uη1)

2 + (η̂2 − Lη2)
2.

In terms of (LD, UD), the MOVER confidence interval for the ratio of means is given
by (exp(LD), exp(UD)) .

For given sample sizes, sample means, and standard deviations of the log-
transformed data, StatCalc computes the confidence intervals and the p-values for
testing about the difference between two lognormal means using Algorithm 23.2 and
the MOVER confidence interval.

Example 23.2. The data for this example are taken from the website
http://lib.stat.cmu.edu/DASL/. An oil refinery conducted a series of 31 daily mea-
surements of the carbon monoxide levels arising from one of their stacks. The mea-
surements were submitted as evidence for establishing a baseline to the Bay Area Air
Quality Management District (BAAQMD). BAAQMD personnel also made nine in-
dependent measurements of the carbon monoxide concentration from the same stack.
The data are given below:

Carbon Monoxide Measurements by the Refinery (in ppm):
45, 30, 38, 42, 63, 43, 102, 86, 99, 63, 58, 34, 37, 55, 58, 153, 75 58, 36, 59, 43, 102,
52, 30, 21, 40, 141, 85, 161, 86, 161, 86, 71

Carbon Monoxide Measurements by the BAAQMD (in ppm):
12.5, 20, 4, 20, 25, 170, 15, 20, 15
The assumption of lognormality is tenable. The hypotheses to be tested are

H0 : exp(η1) ≤ exp(η2) vs. Ha : exp(η1) > exp(η2),

where exp(η1) = exp(µ1 +σ2
1/2) and exp(η2) = exp(µ2 +σ2

2/2) denote, respectively,
the population mean of the refinery measurements and the mean of the BAAQMD
measurements. For log-transformed measurements taken by the refinery, we have:
n1 = 31, sample mean ȳ1 = 4.0743, and s1 = 0.5021; for log-transformed measure-
ments collected by the BAAQMD, n2 = 9, ȳ2 = 2.963, and s2 = 0.974. To find
the p-value for testing the above hypotheses using StatCalc, enter the sample sizes
and the summary statistics, and click [p-values for] to get 0.112. Thus, we cannot
conclude that the true mean of the oil refinery measurements is greater than that
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23.7 Tolerance Limits, Prediction Limits, andSurvival Probability 311

of BAAQMD measurements. To get a 95% confidence intervals for the difference
between two means using StatCalc, enter the sample sizes, the summary statistics
and 0.95 for confidence level; click [GV CI] to get (−79.6, 57.3), and [MOVER CI]
to get (−62.3, 57.1)

Ratio of Two Means

Suppose that we have a sample of ni observations from a lognormal population
with parameters µi and σi, i = 1, 2. Let Ȳi and Si denote, respectively, the mean
and standard deviation of the logged measurements from the ith sample, i = 1, 2.
For given (n1, ȳ1, s1, n2, ȳ2, s2), StatCalc computes confidence intervals for the ratio
exp(η1)/ exp(η2), where ηi = µi + σ2

i /2, i = 1, 2. StatCalc uses Algorithm 23.2 with
Rj = exp(G1)/ exp(G2) = exp(G1 −G2).

Example 23.3. Let us construct a 95% confidence interval for the ratio of the pop-
ulation means in Example 23.2. We have n1 = 31 and n2 = 9. For log-transformed
measurements, ȳ1 = 4.0743, s1 = 0.5021, ȳ2 = 2.963, and s2 = 0.974. To get a 95%
confidence interval for the ratio of two means using StatCalc, select [StatCalc→
Continuous→Lognormal→CI for Mean1/Mean2], enter the sample sizes, the sum-
mary statistics, and 0.95 for confidence level; click [GV CI] to get (0.46, 4.16), and
click [MOVER CI] to get (.514, 4.39). Because both confidence intervals include 1,
we cannot conclude that the means are significantly different.

23.7 Tolerance Limits, Prediction Limits, and

Survival Probability

As the log-transformed samples from a lognormal distribution follow a normal dis-
tribution, we can use normal-based methods for log-transformed samples to find
tolerance limits, prediction limits, and confidence interval for a survival probability.
Specifically, we simply find normal tolerance intervals (or prediction intervals) based
on log-transformed samples, and then taking exponentiation, we can find tolerance
intervals for the sampled lognormal population.

As an example, let X1, ..., Xn be a sample from a lognormal distribution, and let
Ȳ and Sy be the mean and standard deviation of Yis, where Yi = ln(Xi), i = 1, ..., n.
The (p, 1− α) normal tolerance interval is

Ȳ ± kSy,

where k is the factor as defined in (11.24). The interval
(
exp(Ȳ − kSy), exp(Ȳ + kSy)

)

is a (p, 1− α) tolerance interval for the lognormal distribution.
A 1−α prediction interval for a future observation from a lognormal population

can be found similarly using the formula (11.9).
To obtain a confidence interval for a survival probability P (X > t) = P (ln(X) >

ln(t)), we simply find normal-based confidence interval based on log-transformed
data for the probability evaluated at ln(t). See Section 11.4.3.
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312 23 Lognormal Distribution

Normal-based methods for censored samples are also applicable for censored
samples from a lognormal population to find tolerance limits and prediction intervals.
See Example 23.5.

Example 23.4. To illustrate the normal-based methods for a lognormal distribu-
tion, let us use the following 20 simulated data from a lognormal distribution.

6.620 6.475 5.661 6.347 9.496 7.297 5.329 7.389 6.937 7.321

10.150 8.802 6.296 6.312 8.393 7.211 5.277 11.091 4.586 5.921

The mean of the log-transformed sample is Ȳ = 1.941 with the standard deviation
Sy = 0.2274. Suppose it is desired to find a (.90, .95) tolerance intervals, then the
required tolerance factor (using [StatCalc→Continuous →Normal→Tolernace...]) is
2.319. So the tolerance interval based on the log-transformed data is

1.941 ± 2.319 × .2274 = (1.414, 2.468).

Thus, the (.90, .95) tolerance interval for the lognormal distribution is

(exp(1.414), exp(2.468)) = (4.112, 11.799).

To find a 95% confidence interval for the probability P (X > 4.5), select the dialog
box [StatCalc→Continuous →Normal→Coefficient...], enter 20 for sample size, 1.941
for the sample mean, .2274 for the sample SD, .95 for the confidence level, ln(t) =
ln(4.5) = 1.504 for [Value of t], and click [CI for P(X > t)] to get (.878, .996).

Example 23.5. The data in Table 22.1 represent failure r (in units of 1000 miles)
of different locomotive controls in a life test involving 96 locomotive controls. Recall
that for these data, the censoring value is 135,000 miles, and the number of censored
observation is 37. It has been noted by Schmee and Nelson (1977) and Lawless (2003,
Section 5.3) that a lognormal distribution gives a good fit to the data. In this type
of situations, a lower tolerance limit is desired to assess the reliability of the controls
and to estimate the lifetime at certain mileage.

Since the lognormal distribution is applicable here, we shall use normal-based
methods to log-transformed data, and transforms the result back by taking exponen-
tiation. To find tolerance limits, we first find the mean of the log-transformed data
as 4.4226 with standard deviation 0.4087, and ln(135) = 4.905. Using these numbers,
we can find tolerance limits as follows. Select the dialog box [StatCalc→Continuous
→Normal→Censored...], enter 2 for [right-censored], 96 for sample size, 58 for [No.
censored], ln(135) = 4.905 for [X1 or DL], 4.4226 for the the [Mean (uncens)],
0.4087 for [SD (uncens)], .9 for [Cont Level], and .9 for [Coverage Level], and
click [Tol Interval] to get (3.66, 6.53). Thus, the (.90, .90) tolerance interval is
(exp(3.66), exp(6.53)) = (38.86, 685.4) and we are 90% confident that at least 90%
of locomotive controls work 38,860 to 685,400 miles.

It should be noted that we used 58 for the number of censored observations
(instead of 59), because we are using the method for the type II censored samples as
an approximation for type I censored samples, and the accuracy of the approximation
may be improved by using k − 1 = 58; see Remark 22.1.
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23.8 Applications

The lognormal distribution can be postulated in physical problems when the random
variable X assumes only positive values and its histogram is remarkably skewed to
the right. In particular, lognormal model is appropriate for a physical problem if
the natural logarithmic transformation of the data satisfy normality assumption.
Although lognormal and gamma distributions are interchangeable in many practical
situations, a situation where they could produce different results is studied by Wiens
(1999).

Practical examples where lognormal model is applicable vary from modeling
raindrop sizes (Mantra and Gibbins, 1999) to modeling the global position data
(Kobayashi, 1999). The latter article shows that the position data of selected vehicles
measured by global positioning system (GPS) follow a lognormal distribution. Appli-
cation of lognormal distribution in wind speed study is given in Garcia et al. (1998)
and Burlaga and Lazarus (2000). In exposure data analysis (data collected from em-
ployees who are exposed to workplace contaminants or chemicals) the applications
of lognormal distributions are shown in Schulz and Griffin (1999), Borjanovic, et
al. (1999), Saltzman (1997), Nieuwenhuijsen (1997), and Roig Navarro et al. (1997).
In particular, the one-sided tolerance limits of a lognormal distribution is useful in
assessing the workplace exposure to toxic chemicals (Tuggle, 1982). Wang and Wang
(1998) showed that lognormal distributions fit very well to the fiber diameter data as
well as the fiber strength data of merino wool. Lognormal distribution is also useful
to describe the distribution of grain sizes (Jones et al., 1999). Nabe et al. (1998)
analyzed data on inter-arrival time and the access frequency of World Wide Web
traffic. They found that the document size and the request inter–arrival time follow
lognormal distributions, and the access frequencies follow a Pareto distribution.

23.9 Properties and Results

The following results can be proved using the relation between the lognormal and
normal distributions.

1. Let X1 and X2 be independent random variables with Xi ∼ lognormal(µi, σ
2
i ),

i = 1, 2. Then

X1X2 ∼ lognormal(µ1 + µ2, σ
2
1 + σ2

2)

and

X1/X2 ∼ lognormal(µ1 − µ2, σ
2
1 + σ2

2).

2. Let X1, . . ., Xn be independent lognormal random variables with parameters
(µ, σ). Then

Geometric Mean =

(
n∏

i=1

Xi

)1/n

∼ lognormal

(
µ,

σ2

n

)
.
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314 23 Lognormal Distribution

3. Let X1, . . ., Xn be independent lognormal random variables with
Xi ∼ lognormal(µi, σ

2
i ), i = 1, . . . , n. For any positive numbers c1, . . ., cn,

n∏

i=1

ciXi ∼ lognormal

(
n∑

i=1

(ln ci + µi),

n∑

i=1

σ2
i

)
.

For more results and properties, see Crow and Shimizu (1988).

23.10 Random Number Generation

Algorithm 23.3. Lognormal variate generator

For given µ and σ:
Generate z from N(0, 1)
Set y = z ∗ σ + µ
return x = exp(y)
x is a pseudo random number from the lognormal(µ, σ2) distribution.

23.11 Calculation of Probabilities and Percentiles

Using the relation that

P (X ≤ x) = P (ln(X) ≤ ln(x)) = P

(
Z ≤ ln(x)− µ

σ

)
,

where Z is the standard normal random variable, the cumulative probabilities, and
the percentiles of a lognormal distribution can be easily computed. Specifically, if zp
denotes the pth quantile of the standard normal distribution, then exp(µ+ zpσ) is
the pth quantile of the lognormal(µ, σ2) distribution.
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Pareto Distribution

24.1 Description

The probability density function (pdf) of a Pareto distribution with parameters σ
and λ is given by

f(x|σ, λ) = λσλ

xλ+1
, x ≥ σ > 0, λ > 0. (24.1)

The cumulative distribution function (cdf) is given by

F (x|σ, λ) = P (X ≤ x|σ, λ) = 1−
(σ
x

)λ
, x ≥ σ.

For any given 0 < p < 1, the inverse distribution function is

F−1(p|σ, λ) = σ

(1− p)1/λ
.

Plots of the pdf are given in Figure 24.1 for λ = 1, 2, 3, and σ = 1. All the plots
show long right tail; this distribution may be postulated if the data exhibit a long
right tail.

If X has Pareto distribution, then

Y = ln(X) ∼ exp

(
a = ln(σ), b =

1

λ

)
,

where a is the location parameter and b is the scale parameter. This transformation
is quite useful to find pivotal quantities, thereby confidence intervals and tolerance
limits. In fact, various inferential results for exponential distribution can be extended
to the Pareto distribution in a straightforward manner.

24.2 Moments

Mean: σλ
λ−1

, λ > 1

Variance: λσ2

(λ−1)2(λ−2)
, λ > 2

315
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FIGURE 24.1: Pareto probability density functions; σ = 1

Mode: σ

Median: σ21/λ

Mean Deviation: 2σλλ−1

(λ−1)λ
, λ > 1

Coefficient of Variation:
√

1
λ(λ−2)

, λ > 2

Coefficient of Skewness: 2(λ+1)
(λ−3)

√
λ−2
λ
, λ > 3

Coefficient of Kurtosis: 3(λ−2)(3λ2+λ+2)
λ(λ−3)(λ−4)

, λ > 4

Moments about the Origin: E(Xk) = λσk

(λ−k) , λ > k

Moment Generating Function: does not exist

Survival Function: (σ/x)λ

Hazard Function: λ ln(x/σ)

24.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous →Pareto] computes the cdf, percentiles, and
moments of a Pareto(σ, λ) distribution.
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To compute probabilities: Enter the values of the parameters a, λ, and x; click [P(X
<= x)]. For example, when σ = 2, λ = 3, and the value of x = 3.4, P (X ≤ 3.4) =
0.796458 and P (X > 3.4) = 0.203542.

To compute percentiles: Enter the values of σ, λ, and the cumulative probability;
click [x]. For example, when a = 2, λ = 3, and the cumulative probability = 0.15,
the 15th percentile is 2.11133. That is, P (X ≤ 2.11133) = 0.15.

To compute other parameters: Enter the values of one of the parameters,
cumulative probability, and x. Click on the missing parameter. For example, when
λ = 4, cumulative probability = 0.15, and x = 2.4, the value of σ is 2.30444.

To compute moments: Enter the values σ and λ and click [M].

24.4 Confidence Intervals

Let X1, . . . , Xn be a sample of independent observations from a Pareto(σ, λ) distri-
bution with pdf in (24.1). Let

X(1) = min{X1, . . . , Xn} and G̃ =

(
n∏

i=1

Xi

)1/n

.

Consider the transformation Yi = ln(Xi), i = 1, ..., n. Then Y1, ..., Yn can be regarded
as a sample from an exponential(a = ln(σ), b = 1/λ) distribution. Furthermore, the
maximum likelihood estimates (MLEs) based on exponential model are

â = Y(1) and b̂ = Ȳ − Y(1), (24.2)

which give the MLEs

σ̂ = X(1) and λ̂ =
1

b̂
=

1

ln
(
G̃/X(1)

) . (24.3)

Unbiased estimators, in terms of the MLEs, are

λ̂u =

(
1− 1

2n

)
λ̂ and σ̂u =

(
1− 1

(n− 1)λ̂

)
σ̂.

It follows from the distributional results (15.6) that

2nλ ln

(
σ̂

σ

)
∼ χ2

2 and
2nλ

λ̂
∼ χ2

2n−2, (24.4)

where the chi-square random variables are independent.

Confidence Interval for λ

A 1 − α confidence interval for λ based on the distributional result (24.4) is given
by (

λ̂

2n
χ2
2(n−1),α/2,

λ̂

2n
χ2
2(n−1),1−α/2

)
.
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318 24 Pareto Distribution

Confidence Interval for σ

Let F ∗
α denote F2,2n−2;α/(n − 1). A 1 − α confidence interval for σ based on the

confidence interval (see Section 15.5) for the location parameter of the exponential
distribution is (

exp
(
â− F ∗

1−α/2b̂
)
, exp

(
â− F ∗

α/2b̂
))

,

where â and b̂ are as defined in (24.2). After simplification, it can be written as

(
X(1)

(
X(1)

G̃

)F∗

1−α/2

, X(1)

(
X(1)

G̃

)F∗

α/2

)
. (24.5)

24.5 Prediction Intervals and Tolerance Limits

A 1 − α prediction interval for a future observation X from a Pareto(λ, σ) distri-
bution can be obtained from the one for an exponential distribution as follows. Let
X1, ..., Xn be a sample from a Pareto distribution, and let Yi = ln(Xi), i = 1, ..., n.
Construct a 1− α exponential prediction interval (15.11)

(L,U) = (â+Rn;α b̂, â+Rn;1−αb̂),

where Rn;α is defined in (15.12), based on Y1, ..., Yn. Then (exp(L), exp(U)) is a 1−α
prediction interval for X.

Tolerance Limits

One-sided tolerance limits can also obtained via log-transformation. Let L denote
the (p, 1 − α) exponential lower tolerance limit based on a log-transformed sample
from a Pareto distribution. Then exp(L) is a (p, 1− α) lower tolerance limit for the
sampled Pareto distribution. An upper tolerance limit can be found similarly.

24.6 Applications

The Pareto distribution is often used to model the data on personal incomes and
city population sizes. Pareto distributions are useful to model a wide variety of
socioeconomic data. It is often used to model the size distribution of income. In
this context, Pareto (1897) introduced the concept in his well-known economics
text. Even though there are criticisms on application of a Pareto model to income
distributions, on the basis of empirical evidence it is generally accepted that most
income distributions indeed fit Pareto distributions. In general, this distribution may
be postulated if the histogram of the data from a physical problem has a long tail.
Nabe et al. (1998) studied the traffic data of World Wide Web (www), and they
found that the access frequencies of www follow a Pareto distribution. Atteia and
Kozel (1997) showed that water particle sizes fit a Pareto distribution. The Pareto
distribution is also used to describe the lifetimes of components. Aki and Hirano
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24.7 Random Number Generation 319

(1996) mentioned a situation where the lifetimes of components in a conservative-k-
out-of-n-F system follow a Pareto distribution.

24.7 Random Number Generation

For a given a and λ:
Generate u from uniform(0, 1)
Set x = σ/(1− u) ∗ ∗(1/λ)
x is a pseudo random number from the Pareto(a, λ) distribution.
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Weibull Distribution

25.1 Description

Let Y be a standard exponential random variable with probability density function
(pdf)

f(y) = e−y, y > 0.

Define
X = bY 1/c +m, b > 0, c > 0.

The distribution of X is known as the Weibull distribution with shape parameter c,
scale parameter b, and the location parameter m. Its probability density is given by

f(x|b, c,m) =
c

b

(x−m

b

)c−1

exp

{
−
[x−m

b

]c}
, x > m, b > 0, c > 0. (25.1)

The cumulative distribution function (cdf) is given by

F (x|b, c,m) = 1− exp

{
−
[x−m

b

]c}
, x > m, b > 0, c > 0. (25.2)

For 0 < p < 1, the inverse distribution function is

F−1(p|b, c,m) = m+ b(− ln(1− p))
1
c . (25.3)

Let us denote the three-parameter distribution by Weibull(b, c,m). A two-parameter
Weibull distribution is denoted by Weibull(a, b).

25.2 Moments

The following formulas are valid when m = 0.

Mean: bΓ(1 + 1/c)

Variance: b2Γ(1 + 2/c)− [Γ(1 + 1/c)]2

Mode: b
(
1− 1

c

)1/c
, c ≥ 1

Median: b[ln(2)]1/c

321
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FIGURE 25.1: Weibull probability density functions; m = 0 and b = 1

Coefficient of Variation:

√
Γ(1+2/c)−[Γ(1+1/c)]2

Γ(1+1/c)

Coefficient of Skewness: Γ(1+3/c)−3Γ(1+1/c)Γ(1+2/c)+2[Γ(1+1/c)]3

[Γ(1+2/c)−{Γ(1+1/c)}2]3/2

Moments about the Origin: E(Xk) = bkΓ(1 + k/c)

Inverse Distribution Function(p): b{− ln(1− p)}1/c

Survival Function: P (X > x) = exp{−(x/b)c}

Inverse Survival Function(p): b{(1/c) ln(−p)}

Hazard Rate: cxc−1/bc

Hazard Function: (x/b)c

25.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→Weibull] computes the cdf, percentiles, and
moments of a Weibull(b, c,m) distribution.

To compute probabilities: Enter the values ofm, c, b, and the cumulative probability;
click [P(X <= x)]. For example, when m = 0, c = 2.3, b = 2, and x = 3.4, P (X ≤
3.4) = 0.966247 and P (X > 3.4) = 0.033753.
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To compute percentiles: Enter the values of m, c, b, and the cumulative probability;
click [x]. For example, when m = 0, c = 2.3, b = 2, and the cumulative probability
= 0.95, the 95th percentile is 3.22259. That is, P (X ≤ 3.22259) = 0.95.

To compute other parameters: Enter the values of any two of m, c, b, cumulative
probability, and x. Click on the missing parameter. For example, when m = 1, c =
2.3, x = 3.4, and the cumulative probability = 0.9, the value of b is 1.67004.

To compute moments: Enter the values of c and b and click [M]. The moments are
computed assuming that m = 0.

25.4 Maximum Likelihood Estimators and Pivotal

Quantities

Let X1, . . ., Xn be a sample from a two-parameter Weibull(b, c). Let Yi = ln(Xi ).
An asymptotically unbiased estimator of θ= (1/c) is given by

θ̂ =

√
6

π

√√√√√
n∑
i=1

(Yi − Ȳ )2

n− 1
. (25.4)

Further, the estimator is asymptotically distributed as normal with variance =
1.1/(c2n) [Menon, 1963]. The maximum likelihood estimate (MLE) of c is the solu-
tion to the equation

1

ĉ
−

n∑
i=1

X ĉ
i Yi

n∑
i=1

X ĉ
i

+
1

n

n∑

i=1

Yi = 0, (25.5)

and the MLE of b is given by

b̂ =

(
1

n

n∑

i=1

X ĉ
i

)1/ĉ

. (25.6)

The R function 25.1 based on the Newton–Raphson iterative method with initial
value (25.4) can be used to find the MLEs.

Pivotal Quantities

Pivotal quantities can be obtained using the one-one relation between the Weibull
and extreme-value distributions, and then applying the distributional results of the
MLEs for a location-scale family. Specifically, Yi = − ln(Xi), i = 1, ..., n, can be
regarded as a sample from an extreme-value(µ, σ) distribution, where µ = − ln(b) is
the location parameter, and σ = 1/c is the scale parameter. The MLEs of µ and σ
are

µ̂ = ln(̂b) and σ̂ = 1/ĉ,

respectively. Since the family of extreme-value distributions is a location-scale family,

µ̂− µ

σ̂
,

σ̂

σ
and

µ̂− µ

σ
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324 25 Weibull Distribution

are pivotal quantities. Replacing (µ, σ, µ̂, σ̂) by

(
− ln(b),

1

c
, − ln(̂b),

1

ĉ

)
, we see

that

ĉ

c
and ĉ ln

(
b̂

b

)
(25.7)

are pivotal quantities. This means that the empirical distribution of these piv-
otal quantities can be evaluated using simulated samples from a Weibull(1, 1) =
exponential(0, 1) distribution. In other words,

ĉ

c
∼ ĉ∗ and ĉ ln

(
b̂

b

)
∼ ĉ∗ ln(̂b∗), (25.8)

where ĉ∗ and b̂∗ are determined by (25.5) and (25.6) with (X1, ..., Xn) being a sample
from the standard exponential distribution.

R function 25.1. Calculation of the Weibull MLEs

mles.weibull.nr = function(x){

y = log(x); yb = mean(y)

cho = 1.28255/sd(y)

j = 1

repeat{

xc = x**cho

s1 = sum(xc); v = xc/s1; s2 = sum(y*v); s3 = sum(y*y*v)

fc = 1.0/cho+yb-s2; fpc= 1.0/cho**2 +(s3-s2**2)

ch = cho + fc/fpc

if(abs(fc) <= 0.000001 | j >= 30){break}

cho = ch; j = j + 1}

bh = (mean(x**ch))**(1/ch)

return(c(ch,bh,j))

}

25.5 Confidence Intervals and Prediction Intervals

Let (ĉ, b̂) be the MLEs of (c, b) based on a sample of size n from a Weibull(b, c)
distribution.

Confidence Interval for c

On the basis of the pivotal quantities in (25.7), we find a 1− α confidence interval
for c as (

ĉ

cl
,

ĉ

cu

)
,
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where cl and cu are determined so that

P (cl ≤ ĉ∗ ≤ cu) = 1− α,

and ĉ∗ is as defined in (25.8).

Confidence Interval for b

Let bl and bu be determined by

P
(
bl ≤ ĉ∗ ln(̂b∗) ≤ bu

)
= 1− α.

A 1− α confidence interval for b is given by
(
b̂ exp

(
− bu
ĉ

)
, b̂ exp

(
− bl
ĉ

))
. (25.9)

The above confidence intervals for the parameters are exact, except for the simulation
errors involved in estimating the percentiles.

Mean

Let b̂0 and ĉ0 be the observed values of the MLEs based on a sample of n observations
from a Weibull(b, c) distribution. A generalized pivotal quantity (GPQ) for the scale
parameter b is given by

Gb =

(
b

b̂

) ĉ
ĉ0

b̂0 =

(
1

b̂∗

) ĉ∗

ĉ0

b̂0. (25.10)

A GPQ for c can be obtained as

Gc =
c

ĉ
ĉ0 =

ĉ0
ĉ∗
. (25.11)

It can be easily checked that the GPQs Gb and Gc satisfy the two conditions in
Section 2.7.2.

By substituting the above GPQs in the expression for the mean, we find the
GPQ for the mean as

Gµ = Gb Γ (1 + 1/Gc) . (25.12)

Note that for a given (ĉ0, b̂0), the distribution of Gµ does not depend on any unknown
parameters, and so its percentiles can be estimated using Monte Carlo simulated
samples from a Weibull(1, 1) distribution. Let Gµ;p denote the pth quantile of Gµ.
Then (

Gµ;α
2
, Gµ;1−α

2

)

is a 1 − α confidence interval for the Weibull mean. Simulation studies by Krish-
namoorthy, Lin and Xia (2009) indicate that the above generalized confidence inter-
vals are quite accurate even for small samples.

Prediction Intervals

Let X be a future observation form a Weibull(a, b) distribution, and let â and b̂
be the MLEs based on a sample of size n from the Weibull(a, b) distribution. The
pivotal quantity for finding a prediction interval is

ln(X)− ln(µ̂)

σ̂
,

© 2016 by Taylor & Francis Group, LLC

  



326 25 Weibull Distribution

where µ̂ = − ln(̂b) and σ̂/ĉ. Let Pl and Pu be determined such that

P

(
Pl ≤

ln(X)− ln(µ̂)

σ̂
≤ Pu

)
= 1− α,

where 1− α is a specified value. Then

(
b̂ exp

(
Pl
ĉ

)
, b̂ exp

(
Pu
ĉ

))
(25.13)

is a 1− α prediction interval for X.

25.6 One-Sided Tolerance Limits

Recall that the (p, 1−α) upper tolerance limit is a 1− α upper confidence limit for
the pth quantile qp of the Weibull(b, c) distribution,

qp = b(− ln(1− p))
1
c . (25.14)

Substituting the GPQs for b and c (see (25.10) and (25.11)) in the above expression,
we obtain GPQ for qp, denoted by Gqp . Letting κp = − ln(1− p), we can write

ln(Gqp) = (ĉ0)
−1
[
ĉ∗
(
− ln(̂b∗) + ln(κp)

)]
+ ln(̂b0),

where (̂b0, ĉ0) is an observed value of the MLE (̂b, ĉ). Let

wp = ĉ∗
(
− ln(̂b∗) + ln(κp)

)
,

and let wp;q denote the qth quantile wp. Then a (p, 1−α) upper tolerance limit can
be expressed as

b̂0 exp

(
wp;1−α
ĉ0

)
. (25.15)

Note that the distribution of wp does not depend on any unknown parameters, and
so its percentiles can be estimated based on simulated samples from a Weibull(1, 1)
distribution. The one-sided lower tolerance limit can be obtained similarly as

b̂0 exp

(
w1−p;α
ĉ0

)
. (25.16)

25.7 Survival Probability

For a given t, the survival probability

St = P (X > t) = e−(t/b)c .
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Let S∗
t = ln[− ln(S(t))] = c ln(t/b). A GPQ for S∗

t can be expressed as

GS∗

t
= Gc ln(t/Gb) =

ln(− ln(Ŝt))

ĉ∗
+ ln(̂b∗),

where Ŝt = exp

[
−
(
t

b̂0

)ĉ0]
. For a given b̂0 and ĉ0, let L and U be determined so

that
P (L ≤ GS∗

t
≤ U) = 1− α.

In terms of L and U , a 1− α confidence interval for St can be expressed as

(exp [− exp(U)] , exp [− exp(L)]) .

For a given (̂b0, ĉ0), the distribution of GS∗

t
does not depend on any unknown pa-

rameters, and so the percentiles L and U can be estimated by simulation.

Example 25.1. The data in Table 25.1 represent the number of million revolutions
before failure for each of 23 ball bearings. The data were analyzed by Thoman
et al. (1969) and others using a Weibull distribution. The MLEs ĉ0 = 2.103 and

b̂0 = 81.876.

TABLE 25.1: Numbers of Millions of Revolutions of 23 Ball Bearings before
Failure

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

The MLE η̂ for the Weibull mean b̂0Γ(1 + 1/ĉ0) = 72.52. After enter-
ing these sample size, MLEs, and .95 for [Conf Level] in the dialog box
[StatCalc→Continuous→Weibull→CIs for para...], click on [CI for Mean] to get
(58.58, 91.11). In the same dialog box, by clicking [CI for c] and [CI for b], we
can estimate confidence intervals for c and b, respectively. For this example, 95%
confidence interval for c is (1.413, 2.728), and 95% confidence interval for b is (65.35,
102.2).

Suppose it is desired to find a 95% confidence interval for the probability that
a ball bearing lasts 50 million or more revolutions. To find the confidence interval,
enter 50 [Mission time t], .95 for [Conf Level], and click [CI for P(X ¿ t)] to get [.56,
.81]. To find a 95% lower confidence bound for P (X > 50), enter .90 for [Conf Level]
and click [CI for P(X > t)] to get 0.59. That is, at least 59% of the ball bearings
last 50 million or more revolutions with confidence 95%.

25.8 One-sided Prediction Limits for at Least l of m

Observations at Each of r Locations

We shall first describe a pivotal-based approach to find a prediction interval for a
single future observation X from a Weibull(b, c) distribution. Let X1, ..., Xn be a
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sample from a Weibull(b, c) distribution. Using the one-one relation between the
Weibull and extreme value distribution, we find the following pivotal quantity:

lnX − ln b̂

1/ĉ
= ĉ ln

(
X

b̂

)
∼ ĉ∗ ln

(
X∗

b̂∗

)
, (25.17)

where X∗ ∼ Weibull(1, 1) independently of b̂∗ and ĉ∗, which are the MLEs based on
a sample of size n from a Weibull(1, 1) distribution. Let Pl and Pu be determined
so that

P
(
Pl ≤ ĉ ln(X/b̂) ≤ Pu

)
= 1− α.

A 1− α prediction interval for a future observation X is given by

(
b̂ exp(Pl/ĉ), b̂ exp(Pu/ĉ)

)
. (25.18)

We describe an empirical method of constructing a 1−α upper prediction limit
for an extreme value distribution so that it will include at least l of m samples
from each of r locations. We shall consider the upper prediction limit of the form
µ̂ + un,r,m,lσ̂, where un,r,m,l is the factor to be determined so that the coverage
probability is 1− α. Let µ̂∗ and σ̂∗ be the MLEs based on a sample y∗1 , ..., y

∗
n from

an extreme-value(0, 1) distribution, and y∗11, ..., y
∗
1m, y∗21, ..., y

∗
2m, ... , y∗r1, ..., y

∗
rm be

independent samples from an extreme-value(0, 1) distribution. Assume that y∗i s and
y∗ijs are all mutually independent. Let y∗i(l) be the lth order statistic, i = 1, ..., r,
y∗r,m,l = max1≤i≤r y

∗
i(l), and u = (y∗r,m,l − µ̂∗)/σ̂∗. The 1 − α quantile of u is the

desired factor for constructing upper prediction limit. A 1−α upper prediction limit
that will include at least l of m observations from each of r locations is given by

exp (µ̂+ un,r,m,lσ̂) = b̂ exp
(un,r,m,l

ĉ

)
. (25.19)

As the distribution of u does not depend on any parameter, its percentiles can be
obtained using Monte Carlo simulation, as explained in the following algorithm.

Algorithm 25.1. Calculation of the factor un,r,m,l

For a given n, r,m, l and 1− α:
For k = 1, N

Generate x∗
1, ..., x

∗
n from a Weibull(1, 1) distribution

Compute the MLEs b̂∗ and ĉ∗

Generate x∗
i1, ..., x

∗
im from a Weibull(1, 1) distribution, j = 1, ..., m. i = 1, ..., r

Find the lth order statistic xi(l), i = 1, ..., r
Set x∗

r,m,l = max1≤i≤r x
∗
i(l)

Set uk = ĉ∗ ln(x∗
r,m,l/b̂

∗)
(end k loop)
The 100(1−α)th percentile of the ujs is a Monte Carlo estimate of the factor un,r,m,l.

Example 25.2. To illustrate the construction of an upper prediction limit, we use
the vinyl chloride data given in Table 16.1. A Q–Q plot in Figure 25.2 indicates that
the assumption of Weibull model is tenable for the data.

We shall calculate upper prediction limit of the form b̂ exp(un,r,m,l/ĉ) so that at
least l of m measurements from each of r locations are less than the upper prediction
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TABLE 25.2: 95% Upper Prediction Limits for the Vinyl Chloride Data

n = 34, b̂ = 1.8842 and ĉ = 1.1010

r m l un,r,m,l Weibull UPL Gamma UPL

1 2 1 0.450 2.942 2.893
10 2 1 1.079 5.483 5.203
10 3 1 0.650 3.586 3.479
10 3 2 1.295 6.791 6.369

limit. In the following Table 25.2, we provided 95% factors for some values of (r,m, l),
and the corresponding Weibull upper prediction limits (UPLs) along with gamma
UPLs (Example 16.8).

The values of the factor un,r,m,l for constructing 95% upper prediction limits for a
few combinations of r,m, and l are given in Table 25.2. To find, for example, the 95%
factor u34,1,2,1, select the dialog box [StatCalc→Continuous→Weibull→Prediction
...], enter (34, 1, 2, 1) for (n, r,m, l), .95 for [Conf Level], and click [Factor k] to get
0.450. The corresponding upper prediction limit is

b̂ exp(.450/ĉ) = 2.942.

The other upper prediction limits are computed similarly. The Weibull-based pre-
diction limits, along with those based on a gamma distribution are given in Table
25.2. We observe from this table that the upper prediction limits based on a Weibull
model are slightly larger than those based on a gamma model for all the cases con-
sidered. It should be noted that the upper prediction limits based on the Weibull
distribution are exact except for simulation errors, whereas the ones based on a
gamma distribution are approximate.

25.9 Properties and Results

1. Let X be a Weibull(b, c,m) random variable. Then,

(
X −m

b

)c
∼ exp(0, 1),

that is, the exponential distribution with mean 1.

2. It follows from (1) and the probability integral transform that

1− exp

[
−
(
X −m

b

)c]
∼ uniform(0, 1),

and hence

X = m+ b[− ln(1− U)]1/c ∼ Weibull(b, c,m),

where U denotes the uniform(0, 1) random variable.
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FIGURE 25.2: Weibull probability plot of the vinyl chloride data

25.10 Random Number Generation

For a given m, b, and c:
Generate u from uniform(0, 1)
return x = m+ b ∗ (− ln(1− u)) ∗ ∗(1/c)
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26

Extreme Value Distribution

26.1 Description

The probability density function (pdf) of the extreme value distribution with the
location parameter µ and the scale parameter σ is given by

f(x|µ, σ) = 1

σ
exp (−z − exp(−z)) , (26.1)

where z = x−µ
σ
. The cumulative distribution function (cdf) is given by

F (x|µ, σ) = exp{− exp[−z]}, −∞ < x <∞, σ > 0. (26.2)

The inverse distribution function is given by

F−1(p|µ, σ) = µ− σ ln(− ln(p)), 0 < p < 1. (26.3)

The plots of the pdf in Figure 26.1 show that this distribution asymmetric and right-
skewed. The family of distributions with the pdf in (26.1) is referred to as the type
I largest extreme value distribution (LEV), as this is the sampling distribution of
the largest observation in a sample from a continuous distribution. We shall refer to
this distribution as LEV(µ, σ). We also note that if

Y ∼ Weibull(b, c) then, − ln(Y ) ∼ LEV(µ = − ln b, σ = 1/c). (26.4)

This one-to-one relation allows us to find prediction intervals, tolerance limits, and
confidence intervals for survival probability from those for a Weibull distribution.

The family of distributions with the pdf of the form

f(x|µ, σ) = 1

σ
exp (z − exp(z)) , (26.5)

where z = x−µ
σ

, is referred to as the type I smallest extreme value, as this is the
sampling distribution of the smallest observation of a sample from a continuous
distribution. If Y has the Weibull(b, c) distribution, then ln(Y ) has the smallest
extreme value distribution with µ = ln(b) and σ = 1/c.

In the sequel, we shall consider only the Type I LEV distribution, which is also
called the Gumbel distribution.

331
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FIGURE 26.1: Extreme value probability density functions

26.2 Moments

Mean: µ+ γσ,
where γ = 0.5772 15664 9. . . .

Mode: µ

Median: µ− σ ln(ln 2)

Variance: σ2π2/6

Coefficient of Skewness: 1.139547

Coefficient of Kurtosis: 5.4

Moment Generating Function: exp(µt) Γ(1− σt), t < 1/σ.

Characteristic Function: exp(iµt) Γ(1− iσt)

Inverse Distribution Function: µ− σ ln(− ln p)

Inverse Survival Function: µ – σ ln(-ln (1 – p))

Hazard Function: exp[−(x−µ)/σ]
σ{exp[exp(−(x−µ)/σ)]−1}
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26.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→Extreme→Probabilities ...] computes prob-
abilities, percentiles, and moments of an extreme value distribution.

To compute probabilities: Enter the values of the parameters µ and σ, and of x; click
[P(X <= x)]. For example, when µ = 2, σ = 3, and x = 2.3, P (X ≤ 2.3) = 0.404608
and P (X > 2.3) = 0.595392.

To compute percentiles: Enter the values of µ, σ, and the cumulative probability;
click [x]. For example, when µ = 1, σ = 2, and the cumulative probability = 0.15,
the 15th percentile is −0.280674. That is, P (X ≤ −0.280674) = 0.15.

For any given three of the four values µ, σ, cumulative probability, and x, StatCalc
computes the missing one. For example, when σ = 2, x = 1, and P(X <=x) = 0.15,
the value of µ is 2.28067.

To compute moments: Enter the values of µ and σ and click [M].

26.4 Maximum Likelihood Estimators

The maximum likelihood estimates (MLEs) of µ and σ can be readily obtained from
those of Weibull MLEs based on e−X transformation. Specifically, let X1, ..., Xn be
a sample from an LEV(µ, σ) distribution. Transform the sample as Yi = exp(−Xi),
and calculate the Weibull MLEs b̂ and ĉ. Then

µ̂ = − ln(̂b) and σ̂ =
1

ĉ

are the MLEs of µ and σ, respectively.
The MLEs can also be obtained by maximizing the log-likelihood based on

LEV(µ, σ) distribution. Let θ = 1/σ. The MLE θ̂ of θ is the solution of the equation

1

θ̂
− X̄ +

∑n
i=1Xie

−Xiθ̂

∑n
i=1 e

−Xiθ̂
= 0, (26.6)

and the MLE of µ is given by

µ̂ = −1

θ̂
ln

(
1

n

n∑

i=1

e−Xiθ̂

)
. (26.7)

The root of (26.6) can be obtained iteratively using the scheme

θnew = θ0 −
f(θ0)

f ′(θ0)
,

where f(θ) is the function in (26.6) and

f ′(θ) =

(∑n
i=1Xie

−Xiθ
)2

(∑n
i=1 e

−Xiθ
)2 −

∑n
i=1X

2
i e

−Xiθ

∑n
i=1 e

−Xiθ
− 1

θ2
,
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and θ0 is some starting value for the iterative scheme. The Menon (1963) estimate

θ̂ =
π√
6




n∑
i=1

(Xi − X̄)2

n− 1




−1/2

(26.8)

can be used as a starting value.
The following R function can be used to calculate MLEs (µ̂, σ̂) of the parameters

(µ, σ).

R function 26.1. Calculation of the MLEs of µ and σ

mle.extreme = function(x){

theta0 = 1.0/(sqrt(6)*sd(x)/pi)

n = length(x); xb = mean(x);

j = 1

repeat{

y = exp(-x*theta0)

fc = 1.0/theta0 - xb + sum(x*y)/sum(y)

fpc = (sum(x*y))**2/(sum(y))**2-sum(x**2*y)/sum(y)-1.0/theta0**2

thetan = theta0-fc/fpc

if(abs(fc) <= 1.0e-5 | j > 30){break}

j = j + 1

theta0 = thetan

}

mu_hat = -log(mean(y))/thetan; sig_hat = 1.0/thetan

return(c(mu_hat,sig_hat))

}

26.5 Confidence Intervals

Let µ̂ and σ̂ be the MLEs based on a sample X1, ..., Xn from an LEV(µ, σ) distri-
bution. The pivotal quantities based on the MLEs are

µ̂− µ

σ̂
and

σ̂

σ
.

This result implies that

µ̂− µ

σ̂
∼ µ̂∗

σ̂∗ and
σ̂

σ
∼ σ̂∗, (26.9)

where “∼” means “distributed as,” and µ̂∗ and σ̂∗ are the MLEs based on a random
sample of size n from an LEV(0, 1) distribution.
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Location Parameter

Let (cl, cu) be determined so that

P

(
cl ≤ µ̂∗

σ̂∗ ≤ cu

)
= 1− α.

Then

(µ̂− cuσ̂, µ̂− clσ̂) (26.10)

is a 1−α confidence interval µ. The required percentiles µl and µu can be estimated
based on simulated samples from an LEV(0, 1) distribution.

Scale Parameter

Let (kl, ku) be determined so that

P (kl ≤ σ̂∗ ≤ ku) = 1− α.

Then (
σ̂

ku
,

σ̂

kl

)

is a 1− α confidence interval for σ.

Mean

Recall that the mean of an LEV(µ, σ) distribution is given by µ + γσ, where γ is
the Euler constant. The pivotal for the mean is given by

Q =
µ̂− (µ+ γσ)

σ̂
∼ µ̂∗ − γ

σ̂∗ ,

where (µ̂∗, σ̂∗) is as defined in (26.9). If Qα denotes the α quantile of Q, then

(µ̂−Q1−ασ̂, µ̂−Qασ̂)

is an exact 1 − 2α confidence interval for the mean. The percentiles of Q can be
estimated using simulated samples from an LEV(0, 1) distribution.

Example 26.1. We shall illustrate the interval estimation methods using the sur-
vival data on 20 rats given in Example 16.6. The Q–Q plot of the data with an LEV
distribution is shown in Figure 26.2. This plot indicates that the assumption of an
extreme value distribution for the data is tenable. To compute the MLEs, we used
the R function 26.1:

x = c(152, 152, 115, 109, 137, 88, 94, 77, 160, 165, 125, 40, 128,

123, 136, 101, 62, 153, 83, 69)

mle.extreme(x)

[1] 95.55 34.82

Thus, µ̂ = 95.55 and σ̂ = 34.82. As noted earlier, we could also use Weibull MLEs
(R function 25.1) as follows:
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> y = exp(-x)

> mle.weibull.nr(y)

[1] 2.872219e-02 3.200613e-42

> -log(3.200613e-42)

[1] 95.54523 # mle of the location parameter

> 1/2.872219e-02

[1] 34.81629 # mle of the scale parameter

To compute the 95% parametric bootstrap (PB) confidence interval for the mean
survival time, select the dialog box [StatCalc→Continuous→ Extreme→Conf ...],
enter 20 for the sample size, 95.55 for the [MLE of mu], 34.82 for [MLE of sig],
.95 for [Conf Level], and click [CI] to get (97.7, 139.8). Note that the confidence
interval for the mean based on a gamma model (see Example 16.6) is (97, 134), not
appreciably different from the one based on an extreme value distribution.

To find a 95% confidence interval for the location parameter, click on [CI for
mu] (under CI for Parameters) to get (78.12, 113.1); click [CI for sig] to get 95%
confidence interval for the scale parameter σ as (25.96, 53.41).

FIGURE 26.2: Extreme value Q–Q plot for survival times of 20 rats
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26.6 Prediction Interval, Tolerance Limits, and Survival

Probability

Using the one-to-one relation between the Weibull and extreme value distribution
(see Section 26.4), prediction intervals, tolerance limits, and confidence intervals
for survival probability can be readily obtained from those based on the Weibull
distribution. Specifically, we transform the sample using the transformation Y =
exp(−X), simply apply the Weibull-based methods to the transformed samples, and
then transform the results back by applying negative log transformation.

Prediction Interval

Suppose it is desired to find a 95% prediction interval for a future observation X
based on a sample X1, ..., Xn from an LEV(µ, σ) distribution. The following steps
can be used to find the prediction interval.

1. Transform the sample Yi = exp(−Xi), i = 1, ..., n

2. Based on the sample Y1, ..., Yn, find the 95% Weibull-based prediction interval,
say, (L, U).

3. Noting that the transformation is monotone decreasing, we obtain

(− ln(U),− ln(L))

as a 95% prediction interval for a future observation X from the sampled pop-
ulation.

The above steps lead to the prediction interval

(µ̂− Uwσ̂, µ̂− Lwσ̂) ,

where Lw and Uw are, respectively, lower and upper prediction factors for Weibull
prediction intervals. See Section 25.8.

Tolerance Limits

One-sided tolerance limits can be found similarly. For example, to find a (.90, .95)
upper tolerance limit, use the following steps.

1. Transform the sample Yi = exp(−Xi), i = 1, ..., n.

2. Based on the sample Y1, ..., Yn, find the (.90, .95) Weibull-based lower tolerance
limit, say, TL.

3. Noting that the transformation is monotone decreasing, − ln(TL) is the (.90, .95)
upper tolerance limit for the extreme value distribution.

For a given sample size, MLEs µ̂ and σ̂, the dialog box [StatCalc→Continuous→Extreme
→Tolerance ...] calculates the prediction intervals and one-sided tolerance limits us-
ing the above methods. These methods are exact except for simulation errors.
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Survival Probability

Let t denote the mission time, and consider the problem of estimating P (X > t),
where X is an LEV(µ, σ) random variable. Note that

P (X > t) = P
(
e−X < e−t

)

= 1− P
(
Y > e−t

)
,

where Y is the Weibull(exp(−µ), 1/σ) random variable. Thus, the problem of es-
timating P (X > t) is equivalent to estimating the Weibull survival probability at
exp(−t). If (L, U) is a 1−α confidence interval for P

(
Y > e−t

)
, then (1−U, 1−L)

is a 1− α confidence interval for P (X > t).

Example 26.2. We shall use again the survival data on 20 rats given in Example
16.6. From Example 26.1, we found

n = 20, µ̂ = 95.55, and σ̂ = 34.42.

To find a (.90, .95) lower tolerance limit, select the dialog box [StatCalc→Continuous→
Extreme→Tolerance ...], enter 20 for [Sample Size], .9 for [Content Level], .95 for
[Coverage Level], 95.55 for [MLE of mu], 34.42 for [MLE of sig], and click on [1-sided
TLs] to get 47.88.

To find a 95% prediction interval for survival time of a rat, enter .95 for [Conf
Level] (under Prediction Interval) and click [PI] to get (53, 208).

To find a 95% confidence interval for the survival probability P (X > 70), select
the dialog box [StatCalc→Continuous→Extreme→Confidence ...], enter the values
of (n, µ̂, σ̂, t), and confidence level, click [CI for P(X>t)] to get (.74, .95).

26.7 Applications

Extreme value distributions are often used to describe the limiting distribution of
the maximum or minimum of n observations selected from an exponential family of
distributions, such as normal, gamma, and exponential. They are also used to model
the distributions of breaking strength of metals, capacitor breakdown voltage, and
gust velocities encountered by airplanes. Parsons and Lal (1991) studied thirteen
sets of flexural strength data on different kinds of ice and found that between the
three-parameter Weibull and the extreme value distributions, the latter fits the data
better. Belzer and Kellog (1993) used the extreme value distribution to analyze the
sources of uncertainty in forecasting peak power loads. Onoz and Bayazit (1995)
showed that the extreme value distribution fits the flood flow data (collected from
1819 site-years from all over the world) best among seven distributions considered.
Cannarozzo et al. (1995), Karim and Chowdhury (1995), and Sivapalan and Bloschl
(1998) also used extreme value distributions to model the rainfall and flood flow data.
Xu (1995) used the extreme value distribution to study the stochastic characteristics
of wind pressures on the Texas Tech University Experimental Building.

Extreme value distributions are also used in stress-strength models. Herrington
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26.8 Two-Sample Inference 339

FIGURE 26.3: Extreme value Q–Q plot for the lifetime data

(1995) pointed out that if failure of a structural component is caused by the maxi-
mum of a sequence of applied loads, then the applied load distribution is an extreme
value distribution. When strength of individual fibers is determined by the largest
defect, an extreme value distribution describes the distribution of the size of the
maximum defect of fibers. Lawson and Chen (1999) used an extreme value distribu-
tion to model the distribution of the longest possible microcracks in specimens of a
fatigues aluminum-matrix silicon carbide whisker composite.

Kuchenhoff and Thamerus (1996) modeled extreme values of daily air pollu-
tion data by an extreme value distribution. Sharma et al. (1999) used an extreme
value distribution for making predictions of the expected number of violations of
the National Ambient Air Quality Standards, as prescribed by the Central Pollu-
tion Control Board of India for hourly and eight-hourly average carbon monoxide
concentration in an urban road intersection region. Application of an extreme value
distribution for setting the margin level in future markets is given in Longin (1999).

26.8 Two-Sample Inference

Let (µ̂i, σ̂i) denote the MLE of (µi, σi) based on a sample of size ni from an
LEV(µi, σi) distribution, i = 1, 2.. We shall see some generalized inferential methods
for comparing the location parameters, scale parameters, and the means.
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340 26 Extreme Value Distribution

Generalized Pivotal Quantity

A generalized pivotal quantity (GPQ) for µi can be developed as follows. Let
(µ̂i0, σ̂i0) be an observed value of (µ̂i, σ̂i), i = 1, 2. The GPQs for µ and σ can be
obtained from (2.9) and (2.10) of Section 2.7.2. These GPQs are

Gµi = µ̂i0 − µ̂∗
i

σ̂∗
i

σ̂i0 and Gσi =
σ̂0i

σ̂∗
i

, (26.11)

where (µ̂∗
i , σ̂

∗
i ) is the MLE based on a sample of size ni from an LEV(1, 1) distribu-

tion. The lower α quantile and the upper α quantile of Gµi form a 1−2α confidence
interval for µi, which is an exact confidence interval for µi; see the confidence interval
(26.10).

Confidence Intervals for the Difference Between Two Location
Parameters

A GPQ for µ1 − µ2 is given by

Gµ1 −Gµ2 =

(
µ̂10 − µ̂∗

1

σ̂∗
1

σ̂10

)
−
(
µ̂20 − µ̂∗

2

σ̂∗
2

σ̂20

)

= µ̂10 − µ̂20 −
(
σ̂10

µ̂∗
1

σ̂∗
1

− σ̂20
µ̂∗
2

σ̂∗
2

)

= µ̂10 − µ̂20 −Q, (26.12)

where Q =
(
σ̂10

µ̂∗

1
σ̂∗

1
− σ̂20

µ̂∗

2
σ̂∗

2

)
. Let Qα denote the α quantile of Q. Then

(µ̂10 − µ̂20 −Q1−α, µ̂10 − µ̂20 −Qα)

is a 1 − 2α confidence interval for µ1 − µ2. Notice that for a given (ni, µ̂i0, σ̂i0),
i = 1, 2, the percentiles of Q can be estimated using simulated samples from an
LEV(0, 1) distribution.

Confidence Intervals for the Ratio of Two Scale Parameters

A GPQ for σ1/σ2 is given by

Gσ1
Gσ2

=
σ̂10

σ̂20

σ̂∗
2

σ̂∗
1

=
σ̂10

σ̂20
R, (26.13)

where R =
σ̂∗

2
σ̂∗

1
. Let Rα denote the α quantile of R. Then

(
σ̂10

σ̂20
Rα,

σ̂10

σ̂20
R1−α

)

is a 1− 2α confidence interval for the ratio σ1/σ2.

Confidence Intervals for the Difference Between Two Means

Recall that the mean of an LEV(µ, σ) is given by η = µ+ γσ. A GPQ for η1 − η2,
where ηi = µi + γσi and γ is the Euler constant, is given by

Gη1 −Gη2 = (Gµ1 + γGσ1)− (Gµ2 + γGσ2)

= µ̂10 − µ̂20 −
(
σ̂10

µ̂∗
1

σ̂∗
1

− σ̂20
µ̂∗
2

σ̂∗
2

)
+ γ

(
σ̂10

σ̂∗
1

− σ̂20

σ̂∗
2

)
. (26.14)
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26.9 Properties and Results 341

For a given (µ̂10, σ̂10, µ̂20, σ̂20), appropriate percentiles of Gη1−Gη2 form a confidence
interval for η1 − η2. These percentiles can be estimated by Monte Carlo simulation.

The dialog box [StatCalc→Continuous→Extreme→CIs for ...] computes the pre-
ceding generalized confidence intervals using 100,000 simulation runs.

Example 26.3. We shall use the following simulated samples to illustrate the pre-
ceding two-sample confidence intervals. Sample 1 is generated from LEV(3, 2) dis-
tribution, and Sample 2 is generated from LEV(1, 1) distribution.

Sample 1

11.39 3.18 3.82 9.32 3.98 9.86 0.290 1.97 2.79 4.62

6.38 3.12 3.09 1.66 3.76 3.44 6.26 4.47 7.49 5.15

Sample 2

2.25 1.24 0.32 3.99 1.21 3.93 2.68 1.01 0.97 0.48

0.74 -0.21 0.67 0.93 1.04

For sample 1, n1 = 20, µ̂1 = 3.5259, and σ̂1 = 2.1876. For sample 2, n2 = 15,
µ̂2 = 0.8887, and σ̂2 = 0.8478. To find a 95% confidence interval for the difference
µ1 − µ2, select the dialog box [StatCalc→Continuous→Extreme→CIs for ...], enter
the sample sizes, and the MLEs, enter .95 for [Conf Level] under (CI for mu1 - mu2),
and click [CI] to get (1.42, 3.88). To find a 95% confidence interval for the difference
between two means, enter .95 for [Conf Level] under (CI for M1 - M2), and click
[CI] to get [2.08, 5.03]. By clicking [CI] under (CI for sig1/sig2), we obtain the 95%
confidence interval for σ1/σ2 as (1.76, 4.40).

26.9 Properties and Results

1. If X is an exponential(0, σ), then µ− σ ln(X) ∼ extreme(µ, σ).

2. If X and Y are independently distributed as extreme(µ, σ) random variable,
then

X − Y ∼ logistic(0, σ).

3. If X is an LEV(0, 1) variable, then

b exp(−X/c) ∼ Weibull(b, c)

and
exp[− exp(−X/b)] ∼ Pareto(a, b).

26.10 Random Number Generation

For a given µ and σ:
Generate u from uniform(0, 1)
Set x = µ− σ ∗ ln(− ln(u))
x is a pseudo random number from the extreme(µ, σ) distribution.
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Cauchy Distribution

27.1 Description

The probability density function (pdf) of a Cauchy distribution with the location
parameter a and the scale parameter b is given by

f(x|a, b) = 1

π b[1 + ((x− a)/b)2]
, −∞ < a <∞, b > 0.

The cumulative distribution function (cdf) can be expressed as

F (x|a, b) = 1

2
+

1

π
tan−1

(x− a

b

)
, b > 0. (27.1)

We refer to this distribution as Cauchy(a, b). The standard forms of the pdf and the
cumulative distribution function can be obtained by replacing a with 0 and b with
1.

The inverse distribution function can be expressed as

F−1(p|a, b) = a+ b tan(π(p− 0.5)), 0 < p < 1. (27.2)

Using the above inverse distribution function, random variates from a Cauchy(a, b)
distribution can be generated in a straightforward manner. Specifically, if u is uni-
form(0, 1) variate, then x = a+ btan(π(u− 0.5)) is a Cauchy(a, b) random number.

27.2 Moments

Mean: does not exist

Median: a

Mode: a

First Quartile: a – b

Third Quartile: a+ b

Moments: do not exist

Characteristic Function: exp(ita - |t|b)
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FIGURE 27.1: Cauchy probability density functions; a = 0

27.3 Probabilities and Percentiles

The dialog box [StatCalc→Continuous→Cauchy] computes the cumulative proba-
bilities and percentiles of a Cauchy distribution.

To compute probabilities: Enter the values of the parameters a and b, and of x; click
[P(X <= x)]. For example, when a = 1, b = 2, and x = 1.2, P (X ≤ 1.2) = 0.531726
and P (X > 1.2) = 0.468274.

To compute percentiles: Enter the values of a, b, and cumulative probability; click
[x]. For example, when a = 1, b = 2, and the cumulative probability = 0.95, the
95th percentile is 13.6275. That is, P (X ≤ 13.6275) = 0.95.

To compute parameters: Enter the value of one of the parameters, cumulative prob-
ability, and x; click on the missing parameter. For example, when b = 3, cumulative
probability = 0.5, and x = 1.25, the value of a is 1.25.

27.4 Inference

Let X1, ..., Xn be a sample from a Cauchy(a, b) distribution. For 0.5 < p < 1, let Xp
and X1−p denote the sample quantiles.
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27.4.1 Estimation Based on Sample Quantiles

The point estimators of a and b based on the sample quantiles Xp and X1−p and
their variances are as follows.

â =
Xp +X1−p

2

with

Var(â) ≃ b̂2

n

[
π2

2
(1− p)

]
cosec4(πp), (27.3)

and

b̂ = 0.5(xp − x1−p) tan[π(1− p)]

with

Var(̂b) ≃ b̂2

n

[
2π2(1− p)(2p− 1)

]
cosec2(2πp).

27.4.2 Maximum Likelihood Estimators

Maximum likelihood estimators of a and b are the solutions of the equations

1

n

n∑

i=1

2

1 + [(xi − a)/b]2
= 1

and

1

n

n∑

i=1

2xi
1 + [(xi − a)/b]2

= a.

27.5 Applications

The Cauchy distribution represents an extreme case and serves as counter examples
for some well-accepted results and concepts in statistics. For example, the central
limit theorem does not hold for the limiting distribution of the mean of a random
sample from a Cauchy distribution (see Section 26.6, Property 4). Because of this
special nature, some authors consider the Cauchy distribution as a pathological case.
However, it can be postulated as a model for describing data that arise as n realiza-
tions of the ratio of two normal random variables. Other applications given in the
recent literature: Min et al. (1996) found that Cauchy distribution describes the dis-
tribution of velocity differences induced by different vortex elements. An application
of the Cauchy distribution to study the polar and nonpolar liquids in porous glasses
is given in Stapf et al. (1996). Kagan (1992) pointed out that the Cauchy distribution
describes the distribution of hypocenters on focal spheres of earthquakes. It is shown
in the paper by Winterton et al. (1992) that the source of fluctuations in contact
window dimensions is variation in contact resistivity, and the contact resistivity is
distributed as a Cauchy random variable.
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346 27 Cauchy Distribution

27.6 Properties and Results

1. If X and Y are independent standard normal random variables, then X/Y ∼
Cauchy(0, 1).

2. If X ∼ Cauchy(0, 1), then 2X/(1−X2) also follows a Cauchy(0, 1) distribution.

3. Student’s t distribution with df = 1 specializes to the Cauchy(0, 1) distribution.

4. If X1, . . ., Xk are independent random variables with Xj ∼ Cauchy(aj , bj),
j = 1, . . . , k. Then

k∑

j=1

cjXj ∼ Cauchy

(
k∑

j=1

cjaj ,
k∑

j=1

|cj | bj
)
.

5. It follows from (4) that the mean of a random sample of n independent obser-
vations from a Cauchy distribution follows the same distribution.
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Inverse Gaussian Distribution

28.1 Description

The probability density function (pdf) of X is given by

f(x|µ, σ) =
(

λ

2πx3

) 1
2

exp

(
−λ(x− µ)2

2µ2x

)
, x > 0, λ > 0, µ > 0. (28.1)

This distribution is usually denoted by IG(µ, λ). Using the standard normal distri-
bution function Φ, the cumulative distribution function (cdf) of an IG(µ, λ) can be
expressed as

F (x|µ, λ) = Φ

(√
λ

x

(
x

µ
− 1

))
+ e2λ/µΦ

(
−
√
λ

x

(
x

µ
+ 1

))
, x > 0, (28.2)

where Φ(x) is the standard normal distribution function.

Inverse Gaussian (IG) distributions offer a convenient modeling for positive right
skewed data. The IG family is often used as an alternative to the normal family
because of the similarities between the inference methods for these two families.

28.2 Moments

Mean: µ

Variance: µ3

λ

Mode: µ

[(
1 + 9µ2

4λ2

)1/2
− 3µ

2λ

]

Coefficient of Variation:
√

µ
λ

Coefficient of Skewness: 3
√

µ
λ

Coefficient of Kurtosis: 3 + 15µ/λ
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FIGURE 28.1: Inverse Gaussian probability density functions; µ = 1

Moments about the Origin: µk
k−1∑
i=0

(k−1+i)!
(k−1−i)!

(
µ
2λ

)i
, k ≥ 2

Moment Generating Function: exp

[
λ
µ

(
1−

(
1− 2µ2t

λ

)1/2)]

Mean Deviation: 4
√

λ
µ
exp

(
2
√

λ
µ

)
Φ
(
−2
√

λ
µ

)√
µ3

λ
,

where Φ is the standard normal cdf

28.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→Inv Gau→Probabilities, Percentiles and
Moments]

To compute probabilities: Enter the values of the parameters µ and λ and the
observed value x; click [P]. For examples, when µ = 2, λ = 1, and x = 3,

P (X ≤ 3) = 0.815981 and P (X > 3) = 0.184019.

To compute percentiles: Enter the values of µ and λ, and the cumulative probability
P(X <= x); click on [x]. For examples, when µ = 1, λ = 2, and the cumulative
probability P (X ≤ x) = 0.95, the 95th percentile is 2.37739. That is, P (X ≤
2.37739) = 0.95.

To compute moments: Enter the values of µ and λ; click [M].
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28.4 One-Sample Inference 349

28.4 One-Sample Inference

Let X1, . . ., Xn be a sample from a IG(µ, λ) distribution. Define

X̄ =
1

n

n∑

i=1

Xi and V =
1

n

n∑

i=1

(1/Xi − 1/X̄). (28.3)

The sample mean X̄ is the maximum likelihood estimate (MLE) as well as unbiased
estimate of µ and V −1 is the MLE of λ. The minimum variance unbiased estimator
of 1/λ is given by nV/(n− 1). The mean X̄ and V are independent with X̄ ∼ IG(µ,
nλ), and λnV ∼ χ2

n−1. Furthermore,

∣∣∣∣∣

√
(n− 1)(X̄ − µ)

µ
√
X̄V

∣∣∣∣∣∼ |tn−1|,

where tm is a Student’s t variable with df = m.

28.4.1 A Test for the Mean

Let X̄ and V be as defined in (28.3). Define

S1 =

n∑

i=1

(Xi + µ0)
2/Xi and S2 =

n∑

i=1

(Xi − µ0)
2/Xi.

The p-value for testing

H0 : µ ≤ µ0 vs. Ha : µ > µ0

is given by

Fn−1 (−w0) +

(
S1

S2

)(n−2)/2

Fn−1

(
−
√

4n+ w2
0µ0S1

)
, (28.4)

where Fm denotes the cdf of Student’s t variable with df = m, and w0 is an observed
value of

W =

√
(n− 1)(X̄ − µ0)

µ0

√
X̄V

.

See Chhikara and Folks (1989). The p-value for testing

H0 : µ = µ0 vs. Ha : µ 6= µ0

is given by

P (|tn−1| > |w0|),
where tm denotes the t variable with df = m.
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350 28 Inverse Gaussian Distribution

28.4.2 Confidence Interval for the Mean

A 1− α confidence interval for µ is given by




X̄

1 + tn−1,1−α/2

√
V X̄
n−1

,
X̄

max

{
0, 1 + tn−1,α/2

√
V X̄
n−1

}


 .

Example 28.1. Suppose that a sample of 18 observations from an IG(µ, λ) dis-
tribution yielded X̄ = 2.5 and V = 0.65. To find a 95% confidence interval for
the mean µ, select [Continuous→Inv Gau→CI and Test for Mean], enter 0.95 for
the confidence level, 18 for the sample size, 2.5 for the mean, and 0.65 for V; click
[2-sided] to get (1.51304, 7.19009).

Suppose we want to test H0 : µ = 1.4 vs. Ha : µ 6= 1.4. Enter 1.4 for [H0:
M=M0], click [p-values for] to get 0.0210821.

28.5 Two-Sample Inference

The following two-sample inferential procedures are based on the generalized variable
approach given in Krishnamoorthy and Tian (2008). This approach is valid only for
two-sided hypothesis testing about µ1 − µ2, and constructing confidence intervals
for µ1−µ2 (not one-sided limits). More details can be found in the above mentioned
paper.

Let Xi1, ..., Xini be a sample from an IG(µi, λi) distribution, i = 1, 2. Let

X̄i =
1

ni

ni∑

j=1

Xij and Vi =
1

ni

ni∑

j=1

(1/Xij − 1/X̄i), i = 1, 2. (28.5)

The generalized variable of µi is given by

Gi =
x̄i

max
{
0, 1 + tni−1

√
x̄ivi
ni−1

} , i = 1, 2, (28.6)

where (x̄i, vi) is an observed value of (X̄i, Vi), i = 1, 2, and tn1−1 and tn2−1 are
independent Student’s t variables.

28.5.1 Inferences for the Difference between Two Means

Notice that for a given (ni, x̄i, vi), the distribution of the generalized variable Gi in
(28.6) does not depend on any unknown parameters. Therefore, the Monte Carlo
method can be used to estimate the p-value for testing about µ1 − µ2 or to find
confidence intervals for µ1 − µ2. The procedure is given in the following algorithm.

Algorithm 28.1. Generalized CIs for the difference between two IG means

For a given (n1, x̄1, v1, n2, x̄2, v2):
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For j = 1,m
Generate tn1−1 and tn2−1

Compute G1 and G2 using (28.6)
Set Tj = G1 −G2

(end loop)

Suppose we are interested in testing

H0 : µ1 = µ2 vs. Ha : µ1 6= µ2.

Then, the generalized p-value for the above hypotheses is given by

2min {P (G1 −G2 < 0), P (G1 −G2 > 0)} .
The null hypothesis will be rejected when the above p-value is less than a specified
nominal level α. Notice that P (G1 −G2 < 0) can be estimated by the proportion of
the Tjs in Algorithm 27.5.1 that are less than zero; similarly, P (G1 − G2 > 0) can
be estimated by the proportion of the Tjs that are greater than zero.

For a given 0 < α < 1, let Tα denote the αth quantile of the Tjs in Algorithm
27.5.1. Then, (Tα/2, T1−α/2) is a 1− α confidence interval for the mean difference.

StatCalc uses Algorithm 28.1 with m = 1, 000, 000 to compute the generalized
p-value and generalized confidence interval. The results are almost exact. (see Kr-
ishnamoorthy and Tian, 2008).

Example 28.2. Suppose that a sample of 18 observations from an IG(µ1, λ1)
distribution yielded x̄1 = 2.5 and v1 = 0.65. Another sample of 11 observations
from an IG(µ2, λ2) distribution yielded x̄2 = 0.5 and v2 = 1.15. To find a 95%
confidence interval for the mean difference µ1 − µ2, enter these statistics in the
dialog box [StatCalc→Continuous→Inv Gau→CI and Test for Mean1-Mean2], 0.95
for the confidence level, and click [2-sided] to get (0.85, 6.65).

The p-value for testing H0 : µ1 = µ2 vs. Ha : µ1 6= µ2 is given by 0.008.

28.5.2 Inferences for the Ratio of Two Means

Let G1 and G2 be as defined in (28.6), and let R = G1/G2. The generalized p-value
for testing

H0 :
µ1

µ2
= 1 vs. Ha :

µ1

µ2
6= 1

is given by
2min {P (R < 1), P (R > 1)} .

Let Rp denote the 100pth percentile of R. Then, (Rα/2, R1−α/2) is a 1−α confidence
interval for the ratio of the IG means.

The generalized p-value and confidence limits for µ1/µ2 can be estimated using
Monte Carlo method similar to the one given in Algorithm 27.5.1. The results are
very accurate for practical purposes (see Krishnamoorthy and Tian, 2008).

Example 28.3. Suppose that a sample of 18 observations from an IG(µ1, λ1)
distribution yielded x̄1 = 2.5 and v1 = 0.65. Another sample of 11 observations from
an IG(µ2, λ2) distribution yielded x̄2 = 0.5 and v2 = 1.15. To find a 95% confidence
interval for the ratio µ1/µ2, enter these statistics and 0.95 for the confidence level
in [StatCalc→ Continuous→Inv Gau→CI and Test for Mean1/Mean2], and click
[2-sided] to get (2.05, 15.35). The p-value for testing H0 : µ1 = µ2 vs. Ha : µ1 6= µ2

is given by 0.008.
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352 28 Inverse Gaussian Distribution

28.6 Random Number Generation

The following algorithm is due to Taraldsen and Lindqvist (2005).

Algorithm 28.2. Inverse Gaussian variate generator

For a given µ and λ:
Generate w ∼ uniform(0, 1) and z ∼ N(0, 1)

set v = z2; d = λ/µ
y = 1− 0.5(

√
v2 + 4dv − v)/d

x = yµ
if (1 + y)w > 1, set x = µ/y

x is a random number from the IG(µ, λ) distribution.
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Rayleigh Distribution

29.1 Description

The Rayleigh distribution with the scale parameter b has the probability density
function (pdf)

f(x|b) = x

b2
exp

(
−1

2

x2

b2

)
, x > 0, b > 0.

The cumulative distribution function (cdf) is given by

F (x|b) = 1− exp

(
−1

2

x2

b2

)
, x > 0, b > 0. (29.1)

Letting F (x|b) = p, and solving (29.1) for x, we get the inverse distribution function
as

F−1(p|b) = b
√

−2 ln(1− p), 0 < p < 1, b > 0. (29.2)

We observe from the plots of pdfs in Figure 28.1 that the Rayleigh distribution is
always right skewed.

If X has a Rayleigh distribution, then X2 follows an exponential distribution
with mean 2b2. This transformation is useful to find confidence interval, prediction
interval, and tolerance interval based on the results for an exponential distribution.

29.2 Moments

Mean: b
√

π
2

Variance:
(
2− π

2

)
b2

Mode: b Median: b
√

ln(4)

Coefft. of Variation:
√

(4/π−1) Coefft. of Skewness: 2(π−3)
√
π

(4−π)3/2

Coefft. of Kurtosis: (32−3π2)

(4−π)2 Moments about the Origin: 2k/2bkΓ(k/2 + 1)
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FIGURE 29.1: Rayleigh probability density functions

29.3 Probabilities, Percentiles, and Moments

The dialog box [StatCalc→Continuous→Rayleigh] computes the tail probabilities,
percentiles, and moments of a Rayleigh distribution.

To compute probabilities: Enter the values of the parameter b and x; click
[P(X <= x)]. For example, when b = 2 and x = 2.3, P (X ≤ 2.3) = 0.733532 and
P (X > 2.3) = 0.266468.

To compute percentiles: Enter the values of b and the cumulative probability
P (X <= x); click on [x]. For example, when b = 1.2, and the cumulative probability
P (X <= x) = 0.95, the 95th percentile is 2.07698. That is, P (X ≤ 2.07698) = 0.95.

To compute the Value of b: Enter the values of x and the cumulative probability
P(X <= x); click on [b]. For example, when x = 3, and the cumulative probability
P(X <= x) = 0.9, the value of b is 1.97703. That is, P (X ≤ 3|b = 1.97703) = 0.9.

To compute moments: Enter the value of b and click [M].

29.4 Confidence Interval

LetX1, ..., Xn be a sample from Rayleigh distribution with parameter b. The squared
sample X2

1 , ..., X
2
n can be regarded as a sample from an exponential distribution with

mean 2b2. Thus, maximum likelihood estimate (MLE) of b, follows from the MLE
of the scale parameter of an exponential distribution (see Section 15.4), and is given
by

b̂ =

√√√√ 1

2n

n∑

i=1

X2
i .
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29.5 Prediction Intervals and One-Sided Tolerance Limits 355

A confidence interval for b can be obtained from the one for 2b2. The 1−α confidence
interval for b can be obtained from the one for 2b2 based on X2

1 , ..., X
2
n and the result

for exponential distribution (see Section 15.4). It is given by

(√∑n
i=1X

2
i

χ2
2n;1−α/2

,

√∑n
i=1X

2
i

χ2
2n;α/2

)
.

29.5 Prediction Intervals and One-Sided Tolerance

Limits

Recall that if X has a Rayleigh distribution with parameter b, then X2 has an
exponential distribution with mean 2b2, or equivalently, X2/b2 follows a chi-square
distribution with df = 2. Let X1, ..., Xn be a sample from a Rayleigh distribution,
and X follow the same distribution independently of the sample. Then

X2

∑n
i=1X

2
i

∼ 1

n
F2,2n.

On the basis of the above distributional result, we find the 1−α prediction interval
for X as 



√√√√ 1

n

n∑

i=1

X2
i F2,2n; α

2
,

√√√√ 1

n

n∑

i=1

X2
i F2,2n;1−α

2



 .

To find one-sided tolerance limits, we first note that the pth quantile of the
Rayleigh distribution with parameter b is given by qp = b

√
−2 ln(1− p), 0 < p < 1.

For 0.5 < p < 1, a 1−α upper confidence limit for qp is the (p, 1−α) upper tolerance
limit. Noticing that qp is an increasing function of b, the (p, 1− α) upper tolerance
limit is given by

√
−2 ln(1− p)

√∑n
i=1X

2
i

χ2
2n;α

.

For example, the (.90, .95) upper tolerance limit is given by

√
−2 ln(0.1)

√∑n
i=1X

2
i

χ2
2n;.05

.

For 0 < p < .5, the (p, 1− α) lower tolerance limit can be expressed as

√
−2 ln(1− p)

√∑n
i=1X

2
i

χ2
2n;1−α

.

For example, the (.90, .95) upper tolerance limit is given by

√
−2 ln(0.9)

√∑n
i=1X

2
i

χ2
2n;.95

.
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356 29 Rayleigh Distribution

29.6 Relation to Other Distributions

1. Let X1 and X2 be independent N(0, b2) random variables. Then,
Y =

√
X2

1 +X2
2 follows a Rayleigh(b) distribution.

2. The Rayleigh(b) distribution is a special case of the Weibull distribution (see
Chapter 24) with b =

√
2b, c = 2 and m = 0.

3. Let X be a Rayleigh(b) random variable. Then, Y = X2 follows an exponential
distribution with mean 2b2. That is, Y has the pdf

1

2b2
exp

(
− y

2b2

)
, y > 0.

The above result also implies that X2/b2 has a chi-square distribution with
degrees of freedom = 2.

29.7 Random Number Generation

Since the cdf has explicit from (see Section 28.1), random numbers can be generated
using inverse transformation:
For a given b :
Generate u ∼ uniform(0,1)
Set x = b ∗

√
−2 ln(u)

x is a random number from the Rayleigh(b)
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30

Bivariate Normal Distribution

30.1 Description

Let (Z1, Z2) be a bivariate normal random vector with

E(Z1) = 0, Var(Z1) = 1.0, E(Z2) = 0, Var(Z2) = 1.0

and

Correlation(Z1, Z2) = ρ.

The probability density function (pdf) of (Z1, Z2) is given by

f(z1, z2|ρ) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
z21 − 2ρ z1z2 + z22

)}
, (30.1)

−∞ < z1 <∞, −∞ < z2 <∞, −1 < ρ < 1.

Suppose that (X1, X2) is a bivariate normal random vector with

E(X1) = µ1, Var(X1) = σ11, E(X2) = µ2, Var(X2) = σ22

and the covariance Cov(X1, X2) = σ12. Then

(
X1 − µ1√

σ11
,
X2 − µ2√

σ22

)

is distributed as (Z1, Z2) with correlation coefficient ρ = σ12√
σ11σ22

. That is,

P (X1 ≤ a, X2 ≤ b) = P

(
Z1 ≤ a− µ1√

σ11
, Z2 ≤ b− µ2√

σ22

)
.

The following relations are useful for computing probabilities over different regions.

1. P (Z1 ≤ a, Z2 > b) = Φ(a)− P (Z1 ≤ a, Z2 ≤ b),

2. P (Z1 > a, Z2 ≤ b) = Φ(b)− P (Z1 ≤ a, Z2 ≤ b),

3. P (Z1 > a, Z2 > b) = 1−Φ(a)− Φ(b) + P (Z1 ≤ a, Z2 ≤ b),

where Φ is the standard normal distribution function.
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358 30 Bivariate Normal Distribution

30.2 Computing Probabilities

Let (X,Y ) be a bivariate normal random vector with mean (0, 0) and the corre-
lation coefficient ρ. For given x, y, and ρ, the dialog box [StatCalc→Continuous→
Biv Normal→All Tail Probabilities] computes the following probabilities:

a. P (X ≤ x, Y > y)

b. P (X > x,Y > y)

c. P (X > x,Y ≤ y)

d. P (X ≤ x, Y ≤ y)

e. P (|X| < x, |Y | < y).

For example, when x = 1.1, y = 0.8, and ρ = 0.6,

a. P (X ≤ 1.1, Y > 0.8) = 0.133878

b. P (X > 1.1, Y > 0.8) = 0.077977

c. P (X > 1.1, Y ≤ 0.8) = 0.057689

d. P (X ≤ 1.1, Y ≤ 0.8) = 0.730456

e. P (|X| < 1.1, |Y | < 0.8) = 0.465559.

If (X, Y ) is a normal random vector with mean = (µ1, µ2) and covariance matrix

Σ =

(
σ11 σ12

σ21 σ22

)
,

then to compute the probabilities at (x, y), enter the standardized values x−µ1√
σ11

for

the x value, y−µ2√
σ22

for the y value, and σ12√
σ11σ22

for the correlation coefficient, and

click on [P].

Example 30.1. The Fuel Economy Guide published by the Department of Energy
reports that the average city mileage for the 1998 compact car is 22.8 with standard
deviation 4.5, the average highway mileage is 31.1 with standard deviation 5.5. In
addition, the correlation coefficient between the city and highway mileage is 0.95.

a. Find the percentage of 1998 compact cars that give city mileage greater than 20
and highway mileage greater than 28.

b. What is the average city mileage of a car that gives highway mileage of 25?

Solution: Let (X1, X2) denote the (city, highway) mileage of a randomly selected
compact car. Assume that (X1, X2) follows a bivariate normal distribution with the
means, standard deviation, and correlation coefficient given in the problem.

a.

P (X1 > 20, X2 > 28) = P

(
Z1 >

20− 22.8

4.5
, Z2 >

28− 31.1

5.5

)

= P (Z1 > −0.62, Z2 > −0.56)

= 0.679158.
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30.3 Inferences on Correlation Coefficients 359

That is, about 68% of the 1998 compact cars give at least 20 city mileage and
at least 28 highway mileage. To find the above probability, select the dialog
box [StatCalc→Continuous→Biv Normal→All Tail Probabilities] from StatCalc,
enter −0.62 for the [x value], −0.56 for the [y value], and 0.95 for the correlation
coefficient; click [P].

b. From Section 30.6, Property 4, we have

µ 1 +

√
σ11

σ22
ρ(x2 − µ2) = 22.8 +

4.5

5.5
× 0.95 × (25− 31.1)

= 18.06 miles.

For other applications and more examples, see “Tables of the Bivariate Normal Dis-
tribution Function and Related Functions,” National Bureau of Standards, Applied
Mathematics Series 50, 1959.

30.3 Inferences on Correlation Coefficients

Let (X11, X21), . . . , (X1n, X2n) be a sample of independent observations from a bi-
variate normal population with

covariance matrix Σ =

(
σ11 σ12

σ21 σ22

)
.

The population correlation coefficient is defined by

ρ =
σ12√
σ11σ22

, −1 ≤ ρ ≤ 1. (30.2)

Define

(
X1

X2

)
=




1
n

n∑
i=1

X1i

1
n

n∑
i=1

X2i


 and S =

(
s11 s12
s21 s22

)
, (30.3)

where sii denotes the sample variance of Xi, given by

sii =
1

n− 1

n∑

j=1

(Xij −Xi)
2, i = 1, 2,

and s12 denotes the sample covariance between X1 and X2 and is computed as

s12 =
1

n− 1

n∑

j=1

(X1j −X1)(X2j −X2).

The sample correlation coefficient is defined by

r =
s12√
s11s22

, −1 ≤ r ≤ 1.
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360 30 Bivariate Normal Distribution

The pdf of r is given by

f(r|ρ) = 2n−3(1− ρ2)(n−1)/2(1− r2)n/2−2

(n− 3)!π

∞∑

i=0

(2rρ)i

i!
{Γ[(n+ i− 1)/2]}2 . (30.4)

Another form of the density function is given by Hotelling (1953):

(n− 2)√
2π

Γ(n− 1)

Γ(n− 1/2)
(1− ρ2)(n−1)/2(1− r2)n/2−2(1− rρ)−n+3/2

× F

(
1

2
;
1

2
; n− 1

2
;
1 + rρ

2

)
, (30.5)

where

F (a; b; c; x) =

∞∑

j=0

Γ(a+ j)

Γ(a)

Γ(b+ j)

Γ(b)

Γ(c)

Γ(c+ j)

xj

j!
.

This series converges faster than the series in (30.4).
The sample correlation coefficient r is a biased estimate of the population cor-

relation coefficient ρ. Specifically,

E(r) = ρ− ρ(1− ρ2)

2(n− 1)
+O

(
1/n2) .

The estimator

U(r) = r +
r(1− r2)

(n− 2)
, (30.6)

is an asymptotically unbiased estimator of ρ; the bias is of O(1/n2). [Olkin and
Pratt, 1958]

An Exact Test

Consider the hypotheses

H0 : ρ ≤ ρ0 vs. Ha : ρ > ρ0. (30.7)

For a given n and an observed value r0 of r, the test that rejects the null hypothesis
whenever P (r > r0|n, ρ0) < α has exact size α. Furthermore, when

H0 : ρ ≥ ρ0 vs. Ha : ρ < ρ0, (30.8)

the null hypothesis will be rejected if P (r < r0|n, ρ0) < α. The null hypothesis of

H0 : ρ = ρ0 vs. Ha : ρ 6= ρ0, (30.9)

will be rejected whenever

P (r < r0|n, ρ0) < α/2 or P (r > r0|n, ρ0) < α/2.

The above tests are uniformly most powerful (UMP) among the scale and location
invariant tests. (see Anderson 1984, p. 114.) The above p-values can be computed
by numerically integrating the pdf in (30.5).

A simpler test is available for the special case of ρ0 = 0. In this case, the statistic

r

√
n− 2

1− r2
∼ tn−2.
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30.3 Inferences on Correlation Coefficients 361

For example, for testing hypotheses in (30.7), the null hypothesis is rejected if

r0

√
n− 2

1− r20
> tn−2;1−α,

where r0 is an observed value of r.

Fisher’s z-Transformation

Fisher’s z-transformation of a sample correlation coefficient r is given by

z =
1

2
ln

(
1 + r

1− r

)
.

If the r is a correlation coefficient for a sample of size n from a bivariate normal
distribution, then

z ∼ N

(
Λ =

1

2
ln

(
1 + ρ

1− ρ

)
,

1

n− 3

)
, approximately. (30.10)

Let r0 be an observed value of r. For testing H0 : ρ ≤ ρ0 vs. Ha : ρ > ρ0, the p-value
is given by

1−Φ
(√
n− 3(z0 − Λ0)

)
,

where

z0 =
1

2
ln

(
1 + r0
1− r0

)
and Λ0 =

1

2
ln

(
1 + ρ0
1− ρ0

)
,

and Φ is the standard normal cdf.

A Generalized Variable Test

The generalized test given in Krishnamoorthy and Xia (2007) involves Monte Carlo
simulation, and is equivalent to the exact test described above. The following algo-
rithm can be used to compute the p-value and confidence interval for ρ.

Algorithm 30.1. Generalized confidence interval for ρ

For a given n and r:
Set r∗ = r/

√
1− r2

For i = 1 to m
Generate Z ∼ N(0, 1), U1 ∼ χ2

n−1 and U2 ∼ χ2
n−2

Set Gi =
r∗

√
U2−Z√

(r∗
√
U2−Z)

2
+U1

[end loop]

The generalized p-value for (30.7) is estimated by the proportion of Gis that are less
than ρ0. The H0 in (30.7) will be rejected if this generalized p-value is less than α.
Similarly, the generalized p-value for (30.8) is estimated by the proportion of Gis
that are greater than ρ0, and the generalized p-value for (30.9) is given by two times
the minimum of one-sided p-values.

The dialog box [StatCalc→Continuous→Biv Normal→Test...] uses Algorithm
30.1 with m = 100, 000 for computing the generalized p-values for hypothesis test
about ρ. Krishnamoorthy (2013) showed that this generalized variable test is exact.

© 2016 by Taylor & Francis Group, LLC

  



362 30 Bivariate Normal Distribution

Example 30.2. Suppose that a sample of 20 observations from a bivariate normal
population produced the correlation coefficient r = 0.75, and we would like to test

H0 : ρ ≤ 0.5 vs. Ha : ρ > 0.5.

To compute the p-value using StatCalc, enter 20 for n, 0.75 for [Sam Corrl r] and 0.5
for [rho 0]. Click [GV p-val] to get 0.045, and click [Fisher’s z] to get .040. Note that
both methods produced p-values that are less than 0.05, and so we can conclude
that the population correlation coefficient is larger than 0.5 at the 5% level.

Approximate Confidence Interval for ρ

An approximate confidence interval for ρ is based on the well-known Fisher’s Z
transformation of r. Let

Z =
1

2
ln

(
1 + r

1− r

)
and µρ =

1

2
ln

(
1 + ρ

1− ρ

)
. (30.11)

Then

Z ∼ N(µρ, (n− 3)−1) asymptotically. (30.12)

The confidence interval for ρ is given by

(
tanh[Z − z1−α/2/

√
n− 3], tanh[Z + z1−α/2/

√
n− 3]

)
, (30.13)

where tanh(x) = ex−e−x

ex+e−x , and zp is the pth quantile of the standard normal distri-
bution.

Exact Confidence Interval for ρ

Let r0 be an observed value of r based on a sample of n bivariate normal observations.
For a given confidence level 1 − α, the upper limit ρU for ρ is the solution of the
equation

P (r ≤ r0|n, ρU ) = α/2, (30.14)

and the lower limit ρLis the solution of the equation

P (r ≥ r0|n, ρL) = α/2. (30.15)

See Anderson (1984, Section 4.2.2). One-sided limits can be obtained by replacing
α/2 by α in the above equations. Although (30.14) and (30.15) are difficult to solve
for ρU and ρL, they can be used to assess the accuracy of the approximate confidence
intervals (see Krishnamoorthy and Xia, 2007).

Generalized Confidence Interval for ρ

The generalized confidence interval due to Krishnamoorthy and Xia (2007) can be
constructed using the percentiles of the Gis given in Algorithm 30.1. Specifically,

(Gα/2, G1−α/2),

where Gp, 0 < p < 1, denotes the pth quantile of Gis, is a 1 − α confidence inter-
val. Furthermore, these confidence intervals are exact because the endpoints satisfy
the equations (30.15) and (30.14). For example, when n = 20, r = 0.7, the 95%
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30.3 Inferences on Correlation Coefficients 363

generalized confidence interval for ρ (using StatCalc) is given by (0.365, 0.865). The
probabilities in (30.15) and (30.14) are

P (r ≥ 0.7|20, 0.365) = 0.025 and P (r ≤ 0.7|20, 0.865) = 0.025.

In this sense, the generalized confidence limits are exact (see Krishnamoorthy and
Xia, 2007, and Krishnamoorthy, 2013).

The dialog box [StatCalc→Continuous→Biv Normal→Test and CI for Correla-
tion Coefficient] uses Algorithm 30.1 with m = 100, 000 for computing the general-
ized confidence intervals for ρ. The number of simulation runs can be increased as
you wish.

Example 30.3. Suppose that a sample of 20 observations from a bivariate normal
population produced the correlation coefficient r = 0.75. To compute a 95% confi-
dence interval for ρ using StatCalc, enter 20 for n, 0.75 for [Sam Corrl r], and 0.95
for [Conf Lev]. Click [1] to get one-sided confidence limits 0.509 and 0.872; click [2]
to get confidence interval as (0.450, 0.889).

Example 30.4. The marketing manager of a company wants to determine whether
there is a positive association between the number of TV ads per week and the
amount of sales (in $1,000). He collected a sample of data from the records as shown
in the following table. The sample correlation coefficient is given by

TABLE 30.1: TV Sales Data

No. of ads, x1 5 7 4 4 6 7 9 6 6
Sales, x2 24 30 18 20 21 29 31 22 25

r =

n∑
i=1

(x1i − x1)(x2i − x2)

√
n∑
i=1

(x1i − x1)2
n∑
i=1

(x2i − x2)2

= 0.88.

An unbiased estimator using (30.6) is 0.88 + 0.88(1 − 0.882)/7 = 0.91.

To compute a 95% confidence interval for the population correlation coefficient
ρ, select [Continuous→Biv Normal→Test and CI for Correlation Coefficient] from
StatCalc, enter 9 for n, 0.88 for sample correlation coefficient, 0.95 for the confidence
level, and click [2] to get (0.491, 0.969).

Suppose we want to test

H0 : ρ ≤ 0.70 vs. Ha : ρ > 0.70.

To compute the p-value, enter 9 for n, 0.88 for the sample correlation, and 0.70
for [rho 0]; click [p-values for] to get 0.122. Since this is not less than 0.05, at the
5% level, there is not sufficient evidence to indicate that the population correlation
coefficient is greater than 0.70.
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364 30 Bivariate Normal Distribution

30.4 Inferences on the Difference Between Two

Correlation Coefficients

Let ri denote the correlation coefficient based on a sample of ni observations from
a bivariate normal population with covariance matrix Σi, i = 1, 2. Let ρi denote the
population correlation coefficient based on Σi, i = 1, 2.

An Asymptotic Approach

The asymptotic approach is based on Fisher’s Z transformation given for the one-
sample case, and is mentioned in Anderson (1984, p. 114). Let

Zk =
1

2
ln

(
1 + rk
1− rk

)
and µρk =

1

2
ln

(
1 + ρk
1− ρk

)
, k = 1, 2. (30.16)

Then it follows from the asymptotic result in (30.12) that,

(Z1 − Z2)− (µρ1 − µρ2)√
1

n1−3
+ 1

n2−3

∼ N(0, 1) asymptotically. (30.17)

Using the above asymptotic result, one can easily develop test procedures for ρ1−ρ2.
Specifically, for an observed value (z1, z2) of (Z1, Z2), the p-value for testing

H0 : ρ1 ≤ ρ2 vs. Ha : ρ1 > ρ2 (30.18)

is given by 1.0−Φ
(
(z1 − z2)/

√
1/(n1 − 3) + 1/(n2 − 3)

)
, where Φ is the standard

normal distribution function. Notice that, using the distributional result in (30.17),
one can easily obtain confidence interval for µρ1 − µρ2 but not for ρ1 − ρ2.

Generalized Test and Confidence Limits for ρ1 − ρ2

The generalized p-values and confidence intervals can be obtained using the following
algorithm.

Algorithm 30.2. Generalized confidence interval for ρ1 − ρ2

For a given (r1, n1) and (r2, n2):
Set r∗1 = r1/

√
1− r21 and r∗2 = r2/

√
1− r22

For i = 1 to m
Generate Z10 ∼ N(0, 1), U11 ∼ χ2

n1−1 and U12 ∼ χ2
n1−2

Z20 ∼ N(0, 1), U21 ∼ χ2
n2−1 and U22 ∼ χ2

n2−2

Set Ti =
r∗1

√
U12−Z01√

(r∗1
√
U12−Z01)

2
+U11

− r∗2
√
U22−Z02√

(r∗2
√
U22−Z02)

2
+U21

(end loop)

Suppose we want to test

H0 : ρ1 − ρ2 ≤ c vs. Ha : ρ1 − ρ2 > c, (30.19)

where c is a specified number. The generalized p-value for (30.19) is estimated by
the proportion of the Tis that are less than c. The H0 in (30.19) will be rejected
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if this generalized p-value is less than α. Similarly, the generalized p-value for a
left-tail test is estimated by the proportion of Tis that are greater than c, and the
generalized p-value for a two-tail test is given by two times the minimum of the
one-sided p-values.

Generalized confidence limits for ρ1−ρ2 can be constructed using the percentiles
of the Tis in Algorithm 29.4.2. In particular, (Tα/2, T1−α/2), where Tp, 0 < p < 1,
is a 1− α confidence interval for ρ1 − ρ2.

The dialog box [StatCalc→Continuous→Biv Normal→Test and CI for rho1 -
rho2] uses Algorithm 29.4.2 with m = 500, 000 for computing the generalized p-
values and generalized confidence intervals for ρ1 − ρ2.

Example 30.5. Suppose that a sample of 15 observations from a bivariate normal
population produced the correlation coefficient r1 = 0.8, and a sample from another
bivariate normal population yielded r2 = 0.4. It is desired to test

H0 : ρ1 − ρ2 ≤ 0.1 vs. Ha : ρ1 − ρ2 > 0.1.

To compute the p-value using StatCalc, enter the sample sizes and correlation coef-
ficients in the appropriate edit boxes, and 0.1 for [H0: rho1 - rho2]; click on [p-values
for] to get 0.091. Because this p-value is not less than 0.05, theH0 can not be rejected
at the level of significance 0.05.

To get confidence intervals for ρ1 − ρ2, click on [1] to get one-sided limits, and
click on [2] to get confidence interval. For this example, 95% one-sided limits for
ρ1 − ρ2 are 0.031 and 0.778, and 95% confidence interval is (−0.037, 0.858).

30.5 Test and Confidence Interval for Variances

Let (
x11

x21

)
, ...,

(
x1n

x2n

)

be a sample from a bivariate normal distribution with covariance matrix Σ =(
σ11 σ12

σ21 σ22

)
. The sample variance-covariance matrix is defined as

s =

(
s11 s12
s12 s22

)

=
1

n− 1

( ∑n
i=1(x1i − x̄1)

2 ∑n
i=1(x1i − x̄1)(x2i − x̄2)∑n

i=1(x1i − x̄1)(x2i − x̄2)
∑n
i=1(x2i − x̄2)

2

)
.

Let ω = σ11/σ22, w = s11/s22, and r = s12/
√
s11s22. Consider testing

H0 : ω = ω0 vs. Ha : ω 6= ω0, (30.20)

where ω0 is a specified positive value. Pitman (1939) showed that the statistic

t =
(w − ω0)

√
n− 2√

4(1− r2)wω0

∼ tn−2,
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366 30 Bivariate Normal Distribution

where tm denotes the t-distribution with df = m (Pitman, 1939). The H0 in (30.20)
is rejected at the level α if |t| > tn−2;1−α/2.

An exact 1− α confidence interval for ω = σ11/σ22 is given by
(
w
[
Kr −

√
K2
r − 1

]
, w

[
Kr +

√
K2
r − 1

])
, (30.21)

where w = s11/s22 and Kr = 1 + 2(1− r2)t2n−2;1−α/2/(n− 2).
For a given (n, s11, s22, s12), the dialog box [StatCalc→Continuous→Biv

Normal→Test and confidence interval for sig11/sig22] calculates the above confi-
dence interval and p-values for testing the parameter σ11/σ22.

Example 30.6. The following data represent measurements on a variable before
and after administration of a treatment on 10 subjects:

Before (x1): 7.4, 6.4, 14.9, 10.2, 32.5, 15.0, 17.1, 19.2, 22.0, 15.9

After (x2): 11.3, 10.3, 16.2, 12.4, 45.0, 17.4, 16.8, 22.1, 23.9, 17.9

For the above data, s11 = 57.96, s22 = 100.39 and s12 = 73.17. To find a
95% confidence interval for the population variance ratio σ11/σ22, select the dia-
log box [StatCalc→Continuous→Biv Normal→Test and CI for sig11/sig22], enter
these quantities, and n = 10. Click on [CI] to get (0.366, 0.912). This confidence
interval indicates that σ22 is significantly larger than σ11.

To find the p-value for testing H0 : σ11/σ22 ≥ .95 vs. Ha : σ11/σ22 < .95, enter
0.95 for [value of c] in the dialog box noted in the preceding paragraph, and click
on [p-value] to get 0.0179637. Thus, the data provide sufficient evidence to indicate
that σ11/σ22 < 0.95.

30.6 Some Properties

Suppose that (X1, X2) is a bivariate normal random vector with

E(X1) = µ1, Var(X1) = σ11, E(X2) = µ2, Var(X2) = σ22

and the covariance, Cov(X1, X2) = σ12.

1. The marginal distribution of X1 is normal with mean µ1 and variance σ11.

2. The marginal distribution of X2 is normal with mean µ2 and variance σ22.

3. The distribution of aX1 + bX2 is normal with

mean = aµ1 + bµ2 and variance = a2σ11 + b2σ22 + 2abσ12.

4. The conditional distribution of X1 given X2 is normal with

mean = µ1 +
σ12

σ22
(x2 − µ2)

= µ 1 + ρ

√
σ11

σ22
(x2 − µ2)

and
variance = σ11 − σ2

12/σ22.
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30.7 Random Number Generation 367

30.7 Random Number Generation

The following algorithm generates bivariate normal random vectors with mean
(µ1, µ2) and variances σ11 and σ22, and the correlation coefficient ρ.

Algorithm 30.3. Bivariate normal random numbers generator

Generate independent N(0, 1) variates u and v
Set
x1 = µ1 +

√
σ11u

x2 =
√
σ22(ρu+ v

√
1− ρ2) + µ2

For a given n and ρ, correlation coefficients r can be generated using the following
results. Let A = (n−1)S, where S is the sample covariance matrix defined in (30.3).
Write

A = V V ′, where V =

(
v11 0
v21 v22

)
, vii > 0, i = 1, 2.

Similarly, let us write

Σ =

(
σ11 σ12

σ21 σ22

)
= θθ′, where θ =

(
θ11 0
θ21 θ22

)
, θii > 0, i = 1, 2.

Then, V is distributed as θT , where T is a lower triangular matrix whose elements
tij are independent with t211 ∼ χ2

n−1, t
2
22 ∼ χ2

n−2 and t21 ∼ N(0, 1). Furthermore,
note that the population correlation coefficient can be expressed as

ρ =
θ21√

θ221 + θ222
=

θ21/θ22√
θ221/θ

2
22 + 1

.

The above equation implies that

θ21
θ22

= ρ

/√
1− ρ2 = ρ∗, say.

Similarly, the sample correlation coefficient can be expressed in terms of the elements
vij of V as

r =
v21√

v221 + v222
∼ θ21t11 + θ22t21√

(θ21t11 + θ22t21)2 + θ222t
2
22

=
ρ∗t11 + t21√

(ρ∗t11 + t21)2 + t222
.

Using these results, we get the following algorithm for generating r.

Algorithm 30.4. Sample correlation coefficient generator

For a given sample size n and ρ:

Set ρ∗ = ρ

/√
1− ρ2

Generate t211 ∼ χ2
n−1, t

2
22 ∼ χ2

n−2, and t21 ∼ N(0, 1)

Set r = ρ∗t11+t21√
(ρ∗t11+t21)2+t

2
22
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368 30 Bivariate Normal Distribution

30.8 A Computational Algorithm for Probabilities

In the following, Φ(x) denotes the standard normal distribution function and
Prob = P (Z1 > x,Z2 > y). Define

f(x, y) =
1√
2π

∫ x

0

Φ

(
ty

x

)
exp(−t2/2)dt.

If ρ = 0, return Prob = (1− Φ(x)) ∗ (1− Φ(y))
If x = 0 and y = 0, return Prob = 0.25 + arc sin(ρ)/(2π)
If ρ = 1 and y ≤ x, return Prob = 1−Φ(x)
If ρ = 1 and y > x, return Prob = 1−Φ(y)
If ρ = −1 and x+ y ≥ 0, return Prob = 0
If ρ = −1 and x+ y ≤ 0, return Prob = 1−Φ(x)− Φ(y)
F = 0.25− 0.5 ∗ (Φ(x) + Φ(y)− 1) + arcsin(ρ)/(2 ∗ π)
Prob = f

(
x, y−ρx√

1−ρ2

)
+ f

(
y, x−ρy√

1−ρ2

)
+ F

[Tables of the Bivariate Normal Distribution Function and Related Functions; Na-
tional Bureau of Standards, Applied Mathematics Series 50, 1959]
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31

Some Nonparametric Methods

In all earlier chapters we dealt with parametric models, and described inferential
methods for testing and estimating model parameters, prediction intervals and tol-
erance intervals. In this chapter, we shall see some basic inferential methods for
continuous distributions without assuming any parametric models. In other words,
the results in the following sections are applicable to any continuous population.
Furthermore, if an inferential method is not available for a parametric continuous
distribution, then one could safely use an appropriate nonparametric method. How-
ever, it should be noted that the nonparametric methods are less efficient than their
parametric counterparts. If a sample data from a population fits a parametric model,
such as a normal distribution, it is better to use the inferential methods applicable
to that model.

31.1 Distribution of Runs

Consider a random arrangement of m+n elements, m of them are one type, and n of
them are of another type. A run is a sequence of symbols of the same type bounded
by symbols of another type except for the first and last position. Let R denote the
total number of runs in the sequence. The probability mass function of R is given
by

P (R = r|m,n) =
2
(
m−1
r/2−1

)(
n−1
r/2−1

)
(
m+n
n

) for even r,

and

P (R = r|m,n) =
(
m−1

(r−1)/2

)(
n−1

(r−3)/2

)
+
(
m−1

(r−3)/2

)(
n−1

(r−1)/2

)
(
m+n
n

) for odd r.

The distribution of runs is useful to test the hypothesis of randomness of an arrange-
ment of elements. The hypotheses of interest are

H0: arrangement is random vs. Ha: arrangement is nonrandom.

Too many runs or too few runs provide evidence against the null hypothesis. Specif-
ically, for a given m, n, the observed number of runs r of R, and the level of signifi-
cance α, the H0 will be rejected if the p-value

2min{P (R ≤ r), P (R ≥ r)} ≤ α.

The plots of probability mass functions of runs in Figure 31.1 show that the run
distribution is asymmetric when m 6= n and symmetric when m = n. The mean and

369
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FIGURE 31.1: Probability mass functions of runs

variance of R are given by

E(R) = 1 +
2mn

m+ n
and Var(R) =

2mn(2mn−m− n)

(m+ n)2(m+ n− 1)
.

For givenm and n, the dialog box [StatCalc→Nonparametric→Distribution of Runs]
evaluates the distribution function of R and critical points.

Example 31.1. Consider the following sequence:

a a a b b a b b b a a a a b b a a a a b.

Here m = 12, n = 8, and the observed number of runs r = 8. To compute the
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31.1 Distribution of Runs 371

probabilities using StatCalc, enter 12 for the number of [1st type symbols], 8 for the
number of [2nd type symbols], and 8 for the [Observed runs r]; click on [P(R <= r)]
to get

P (R ≤ 8) = 0.159085 and P (R ≥ 8) = 0.932603.

Since the probability of observing 8 or fewer runs is not less than 0.025, the null
hypothesis that the arrangement is random will be retained at the level 0.05. To find
the critical value, enter 0.025 for the tail probability, and click on [Left Crt] to get

P (R ≤ 6) = 0.024609 and P (R ≥ 16) = 0.00655.

This means that the null hypothesis of randomness will be rejected (at the 5% level)
if the observed number of runs is 6 or less, or, 16 or more.

Example 31.2. Consider the simple linear regression model

Yi = α + βXi + ǫi, i = 1, ..., N.

It is usually assumed that the error terms ǫis are random. This assumption can be
tested using the estimated errors

ei = Yi − Ŷi, i = 1, ..., N,

where Yi and Ŷi denote, respectively, the observed value and the predicted value of
the ith individual. Suppose that the estimated errors when N = 18 are:

-3.85 -0.11 6.63 -2.42 3.63 5.37 0.15 -2.76 -3.54
5.85 2.42 -6.37 -2.15 -0.37 3.24 3.48 -7.63 3.37

The arrangement of the signs of the errors is given by

−−+−+++−−++−−−++−+

In this example, m = 9, n = 9, and the observed number of runs r = 10.
We want to test the null hypothesis that the errors are randomly distributed
at the level of significance 0.05. To compute the p-value, select the dialog box
[StatCalc→Nonparametric→Distribution of Runs], enter 9 for the number of first
type of symbols, 9 for the number of second type symbols, and 10 for the observed
number of runs; click [P(R <= r)] to get

P (R ≤ 10) = 0.600782 and P (R ≥ 10) = 0.600782.

Since these probabilities are greater than 0.05/2 = 0.025, the null hypothesis of
randomness will be retained at the 5% level.

To get the critical values, enter 0.025 for the tail probability, and click [Left Crt]
to get 5 and 15. That is, the left-tail critical value is 5 and the right-tail critical value
is 15. Thus, the null hypothesis will be rejected at 0.05 level, if the total number of
runs is 5 or less or 15 or more.

Example 31.3. Suppose that a sample of 20 students from a school is selected for
some purpose. The genders of the students are recorded as they were selected:

M F M F F M F F M F M F F M F F M M F
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372 31 Some Nonparametric Methods

We would like to test if this really is a random sample. In this example, m =
8 (number of male students), n = 12 (number of female students), and the total
number of runs = 14. Since the mean number of runs is given by

1 +
2mn

m+ n
= 10.6,

it appears that there are too many runs, and so we want to compute the probability
of observing 14 or more runs under the hypothesis of randomness. To compute the p-
value using StatCalc, select the dialog box [StatCalc→Nonparametric→Distribution
of Runs], enter 8 for the number of first type of symbols, 12 for the number of
second type symbols, and 14 for the observed number of runs; click [P(R <= r)] to
get P (R ≥ 14) = 0.0799. Since the probability of observing 14 or more runs is not
less than 0.025, we can accept the sample as a random sample at the 5% level.

31.2 Sign Test and Confidence Interval for the

Median

Let X1, . . . , Xn be a sample of independent observations from a continuous popula-
tion. Let M denote the median of the population. We want to test

H0 :M = M0 vs. Ha :M 6=M0.

Let K denote the number of plus signs of the differences X1 −M0, . . . , Xn −M0.
That is, K is the number of observations greater than M0. Then, under the null
hypothesis, K follows a binomial distribution with number of trials n and success
probability

P (Xi > M0) = 0.5.

If K is too large, then we conclude that the true median M > M0; if K is too small,
then we conclude that M < M0. Let k be an observed value of K. For a given level
of significance α, the null hypothesis will be rejected in favor of the alternative hy-
pothesis M > M0 if P (K ≥ k|n, 0.5) ≤ α, and in favor of the alternative hypothesis
M < M0 if P (K ≤ k|n, 0.5) ≤ α. If the alternative hypothesis is M 6=M0, then the
null hypothesis will be rejected if

2min{P (K ≥ k|n, 0.5), P (K ≤ k|n, 0.5)} ≤ α.

Confidence Interval for the Median

Let X(1), . . . , X(n) be the ordered statistics based on a sample X1, . . . , Xn. Let r be
the largest integer such that

P (K ≤ r) =

r∑

i=0

(
n

i

)
(0.5)n ≤ α/2 (31.1)

and s is the smallest integer such that

P (K ≥ s) =

n∑

i=s

(
n

i

)
(0.5)n ≤ α/2. (31.2)
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31.2 Sign Test and Confidence Interval for theMedian 373

Then, the interval (X(r+1), X(s)) is a 1 − α confidence interval for the median M
with coverage probability at least 1− α.

For a given sample size n and confidence level 1 − α, the dialog box
[StatCalc→Nonparametric→Sign Test and Confidence Interval for the Median] com-
putes the integers r and s that satisfy (31.1) and (31.2), respectively.

Remark 31.1. If Xi −M0 = 0 for some i, then simply discard those observations
and reduce the sample size n accordingly. Zero differences can also be handled by
assigning signs randomly (e.g. flip a coin; if the outcome is head, assign +, otherwise
assign −).

The dialog box [StatCalc→Nonparametric→Signa Test and Confidence Interval
for the Median] computes confidence intervals and p-values for testing the median.

Example 31.4. (Confidence Interval) To compute a 95% confidence interval for
the median of a continuous population based on a sample of 40 observations, enter
40 for n, 0.95 for confidence level, click [CI] to get 14 and 27. That is, the required
confidence interval is formed by the 14th and 27th order statistics from the sample.

Example 31.5. (p-value) Suppose that a sample of 40 observations yielded k = 13,
the number of observations greater than the specified median. To obtain the p-value
of the test when Ha : M < M0, enter 40 for n, 13 for k, and click [P(X <= k)] to
get P (K ≤ 13) = 0.0192387. Since this p-value is less than 0.05, the null hypothesis
that H0 :M =M0 will be rejected at the 5% level.

The nonparametric inferential procedures are applicable for any continuous dis-
tribution. However, in order to understand the efficiency of the procedures, we apply
them to a normal distribution.

Example 31.6. A sample of 15 observations is generated from a normal population
with mean 2 and standard deviation 1, and is given below.

1.01 3.00 1.12 1.68 0.82 4.01 2.85 2.49
1.58 2.30 2.84 2.32 3.01 1.77 2.10

Recall that for a normal population, mean and median are the same. Let us test the
hypotheses that

H0 :M ≤ 1.5 vs. Ha :M > 1.5.

Note that there are 12 data points that are greater than 1.5. So, the p-value,
P (K ≥ 12) = 0.01758, which is less than 0.05. Therefore, the null hypothesis is
rejected at the 5% level.

To find a 95% confidence interval for the median, enter 15 for the sample size
n, and 0.95 for the confidence level. Click [CI] to get (X(4), X(12)). That is, the 4th
smallest observation and the 12th smallest (or the 4th largest) observation form the
required confidence interval; for this example, the 95% confidence interval is (1.58,
2.84). Note that this interval indeed contains the actual median 2. Furthermore, if
the hypotheses are

H0 :M = 1.5 vs. Ha :M 6= 1.5,

then the null hypothesis will be rejected, because the 95% confidence interval does
not contain 1.5.
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31.3 Wilcoxon Signed-Rank Test and Mann–Whitney U

Statistic

Wilcoxon signed-rank statistic is useful to test the median of a continuous symmetric
distribution. Let M denote the median of the population. Consider the null hypoth-
esis H0 : M = M0, where M0 is a specified value of the median. Let X1, . . ., Xn be
a sample from the population, and let

Di = Xi −M0, i = 1, 2, . . ., n.

Rank the absolute values |D1|, |D2|, . . ., |Dn|. Let T+ be the sum of the ranks of the
positive Dis. The distribution function of T+ under H0 is symmetric about its mean
n(n + 1)/4 (see Figure 31.2). The null hypothesis will be rejected if T+ is too large
or too small.

Let t be an observed value of T+. For a given level α, the null hypothesis will
be rejected in favor of the alternative

Ha :M > M0 if P (T+ ≥ t) ≤ α,

and in favor of the alternative

Ha :M < M0 if P (T+ ≤ t) ≤ α.

Furthermore, for a two-sided test, the null hypothesis will be rejected in favor of the
alternative

Ha :M 6=M0 if 2 min{P (T+ ≤ t), P (T+ ≥ t)} ≤ α.

For a given n and an observed value t of T+, the dialog box [StatCalc→
Nonparametric→Wilcoxon Signed-Rank Test] computes the above tail probabilities.
StatCalc also computes the critical point for a given n and nominal level α.

For α < 0.5, the left tail critical point k is the largest number such that

P (T+ ≤ k) ≤ α,

and the right tail critical point k is the smallest integer such that

P (T+ ≥ k) ≤ α.

Mean: n(n+1)
4

Variance: n(n+1)(2n+1)
24

[Gibbons and Chakraborti, 1992, p. 156]

The variable

Z =
(T+) −mean√

var

is approximately distributed as the standard normal random variable. This approx-
imation is satisfactory for n greater than or equal to 15.
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FIGURE 31.2: Probability mass function of the WSR statistic

Computing the Percentiles of Wilcoxon-Signed Rank Statistic

The dialog box [StatCalc→ Nonparametric→Wilcoxon Signed-Rank Test] com-
putes the tail probabilities and critical points of the distribution of the signed-rank
statistic T+. As an example, suppose that a sample of 20 observations yielded T+ =
130. To compute tail probabilities using StatCalc, enter 20 for n, 130 for T+, and
click on [P(X <= k)] to get P (T+ ≤ 130) = 0.825595 and P (T+ ≥ 130) = 0.184138.

To get the upper 5% critical point, enter 20 for n, 0.95 for cumulative probability
and click [Critical Pt] to get 150. That is, P (T+ ≥ 150) = 0.048654. To get the
lower 5% critical point, enter 0.05 for cumulative probability and click [Critical
Pt] to get 60. Notice that, because of the discreteness of the distribution, we get
P (T+ ≤ 60) = 0.048654, not exactly 0.05.

Example 31.7. We will illustrate the Wilcoxon Signed-Rank test for the data given
in Example 31.4.1. The data set consists of 15 observations generated from a normal
population with mean 2 and standard deviation 1, and they are

1.01 3.00 1.12 1.68 0.82 4.01 2.85 2.49
1.58 2.30 2.84 2.32 3.01 1.77 2.10

Note that for a normal population mean and median are the same. For illustration
purpose, let us test the hypotheses that

H0 :M ≤ 1.5 vs. Ha :M > 1.5.

The differences Di = Xi − 1.5 are

−0.49 1.5 −0.38 0.18 −0.68 2.51 1.30
0.99 0.08 0.80 1.34 0.82 1.51 0.27 0.60
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Rank 1 2 3 4 5 6 7 8
Ordered |Di| 0.08 0.18 0.27 0.38* 0.49* 0.60 0.68* 0.80

Rank 9 10 11 12 13 14 15
Ordered |Di| 0.82 0.99 1.30 1.34 1.50 1.51 2.51

The ordered absolute values of Dis with ranks are given below. The Dis with
negative sign are identified with *. Sum of the ranks of the positive differences can
be computed as

T+ = Total rank – Sum of the ranks of the negative Dis

= 15(15 + 1)/2− 4− 5− 7 = 104.

Using StatCalc, we can compute the p-value as

P (T+ ≥ 104) = 0.0051.

Since the p-value is less than any practical levels, we reject the null hypothesis; there
is sufficient evidence to indicate that the median is greater than 1.5. Note that the
Wilcoxon Signed-Rank test provides stronger evidence against the null hypothesis
than the sign test (see Example 31.4.1).

To get the right-tail critical point using StatCalc, enter 15 for n, 0.95 for cumu-
lative probability, and click [Critical Pt] to get

P (T+ ≥ 90) = 0.0473022.

Thus, any observed value of T+ greater than or equal to 90 would lead to the
rejection of H0 at the 5% level of significance.

31.4 Wilcoxon Rank-Sum Test

The Wilcoxon rank-sum test is useful for comparing two continuous distributions.
Let X1, . . . , Xm be independent observations from a continuous distribution FX ,
and Y1, . . . , Yn be independent observations from a continuous distribution FY . Let
W denote the sum of the ranks of the X observations in the combined ordered
arrangement of the two samples. The range of W is given by

m(m+ 1)

2
≤W ≤ m(2(m+ n) −m+ 1)

2
.

The W can be used as a test statistic for testing

H0 : FX(x) = FY (x) for all x vs. Ha : FX(x) = FY (x− c) for some c 6= 0.

The alternative hypothesis means that the distributions of X and Y are the same
except for location. If W is too large or too small, then the null hypothesis will be
rejected in favor of the alternative. If the hypotheses are

H0 : FX(x) = FY (x) for all x vs. Ha : FX(x) = FY (x− c) for some c > 0,
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then the alternative hypothesis implies that the distribution of Y is shifted to the
left from the distribution of X by c. That is, X values are more likely to be larger
than Y values. In this case, the null hypothesis will be rejected for larger values of
W . If the hypotheses are

H0 : FX(x) = FY (x) for all x vs. Ha : FX(x) = FY (x+ c) for some c > 0,

then the alternative hypothesis implies that the distribution of Y is shifted to the
right from the distribution of X by c. That is, X values are more likely to be smaller
than Y values. In this case, the null hypothesis will be rejected for smaller values of
W .

Let W0 be an observed value of W and α be a specified level of significance. If
P (W ≥W0) ≤ α, then we conclude that FX(x) = FY (x−c), c > 0; if P (W ≤W0) ≤
α, then we conclude that Ha : FX(x) = FY (x+ c), c > 0. If P (W ≤ W0) ≤ α/2 or
P (W ≥W0) ≤ α/2, then we have evidence to conclude that FX(x) = FY (x−c), c 6=
0.

Mean: m(m+n+1)
2

Variance: mn(m+n+1)
12

[Gibbons and Chakraborti, 1992, p. 241]

The variable

Z =
W −mean√

var
∼ N(0, 1) approximately.

Mann–Whitney U Statistic

Wilcoxon rank-sum statistic and Mann–Whitney U statistic differ only by a
constant, and, therefore, the test results based on these two statistics are the same.
The Mann–Whitney U statistic is defined as follows: Let

Dij =

{
1 if Yj < Xi,
0 otherwise,

for i = 1, . . . ,m and j = 1, . . . , n. The statistic U is defined as

U =

m∑

i=1

n∑

j=1

Dij,

or equivalently,

U =
n∑

i=1

(number of X ′s greater than the Yi).

It can be shown that

U =W − m(m+ 1)

2
,

and hence

P (U ≤ u) = P

(
W ≤ u+

m(m+ 1)

2

)
.
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Calculation of Percentiles of the Wilcoxon Rank-Sum Statistic

The dialog box [StatCalc→Nonparametric →Wilcoxon Rank-Sum Test] com-
putes probabilities and percentiles of the rank-sum statistic W .

To compute probabilities: Enter the values ofm, n, and the observed value w; click on
[P(W <= w)]. For example, when m = 13, n = 12, and the observed value w is 180,
P (W ≤ 180) = 0.730877 and P (W ≥ 180) = 0.287146.

To compute the critical values: Enter the values of m, n, and the cumulative proba-
bility; click on [Critical Pt]. For example, when m = 13, n = 12, and the cumulative
probability is 0.05, the left-tail critical value is 138. Because of the discreteness of
the distribution, the actual probability is 0.048821; that is P (W ≤ 138) = 0.048821.

Example 31.8. It is desired to compare two types of treatments, A and B, based on
recovery times of patients. Given below are recovery times of a sample of 9 patients
who received treatment A, and recovery times of a sample of 9 patients who received
treatment B. We want to see whether the data provide sufficient evidence to indicate

Recovery times (in days)

A: 17 19 20 24 13 18 21 22 25
B: 14 18 19 23 16 15 13 22 16

that the recovery times of A are more likely longer than the recovery times of B. In
notation,

H0 : FA(x) = FB(x) for all x, vs. Ha : FA(x) = FB(x− c) for some c > 0.

Note that the alternative hypothesis implies that the values of the random
variable associated with A are more likely to be larger than those associated
with B. The pooled sample data and their ranks (the average of the ranks is as-
signed to tied observations) are as follow. The sum of the ranks of A in the pooled

Pooled sample and ranks

Treatment B A B B B B A A B
data 13 13 14 15 16 16 17 18 18
ranks 1.5 1.5 3 4 5.5 5.5 7 8.5 8.5

Treatment A B A A B A B A A
data 19 19 20 21 22 22 23 24 25
ranks 10.5 10.5 12 13 14.5 14.5 16 17 18

sample is 102. The null hypothesis will be rejected if this sum is too large. Using
[StatCalc→Nonparametric →Wilcoxon Rank-Sum Test], we get

P (W ≥ 102) = 0.0807,

which is less than 0.1. Hence, the null hypothesis will be rejected at the 10% level.
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Remark 31.2. StatCalc also computes critical values; for the above example,
to compute right-tail 5% critical point, enter 9 for m, 9 for n, and 0.95 for the
cumulative probability; click [Critical Pt] to get 105. That is,

P (W ≥ 105) = 0.04696.

Thus, for the above example, had the observed value of W been 105 or more, then
we would have rejected the null hypothesis at the 5% level of significance.

31.5 Quantile Estimation and Nonparametric Tolerance

Interval

Let X1, . . . , Xn be a sample from a continuous distribution FX . Let X(k) denote the
kth order statistic. Let κp denote the pth quantile of FX , and let X(1), ..., X(n) be
the order statistics for the sample X1, ..., Xn from FX . The sample pth quantile is
the rth order statistic, where r = np if np is an integer, and is ⌊np⌋ otherwise, where
⌊x⌋ is the largest integer not exceeding x (floor function). For example, [5.9] = 5
and [5.1] = 5. The order statistic X(r) is the sample pth quantile, which is a point
estimate of κp. Point estimate is of limited use, and for practical applications one
needs a confidence interval for κp.

To find a 1 − α confidence interval for κp based on order statistics, we need to
find the values of r and s, r < s, so that

P (X(r) < κp < X(s)) = P (X(r) < κp)− P (X(s) < κp)

=
s−1∑

i=r

(
n

i

)
pi[1− p]n−i (because F (κp) = p)

= 1− α. (31.3)

For a given confidence level 1−α, choose r and s so that s−r small. Then (X(r), X(s))
is a 1− α confidence interval for κp. For a given n, there may not exist r and s so
that P (X(r) < κp < X(s)) ≥ 1− α. However, the above expression is useful to find
the percentile of the population contained in (X(r), X(s)) when r, s, and 1 − α are
given.

Example 31.9. The following data represent lifetimes (in days) of a sample of 40
electronic components.

35.11, 38.45, 39.05, 39.83, 39.97, 40.98, 41.55, 41.72, 42.46, 44.41

45.49, 46.91, 47.90, 48.29, 48.48, 48.97, 49.24, 50.11, 50.17, 50.41

50.51, 51.18, 51.28, 51.46, 52.80, 53.25, 53.61, 53.69, 55.61, 55.92

56.08, 56.27, 57.82, 59.04, 60.24, 60.45, 60.46, 61.41, 65.98, 68.10

What percentile does the interval (39, 60) include with 95% confidence?

Solution: For this example, r ≃ 3 and s ≃ 35 so that (X(3), X(35)) ≃ (39, 60). We
need to find the value of p so that

34∑

i=3

(
40

i

)
pi[1− p]n−i = .95.
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The following R can be used to find the value of p.

R function 31.1. (Content estimate)

cont.in.rs = function(n, r, s, p){

u = pbinom(s-1,n,p)-pbinom(r-1,n,p)

return(u)

}

> cont.in.rs(40,3,35,.7)

[1] 0.9913819

> cont.in.rs(40,3,35,.8)

[1] 0.8386712

> cont.in.rs(40,3,35,.75)

[1] 0.956726

> cont.in.rs(40,3,35,.74)

[1] 0.9679278

> cont.in.rs(40,3,35,.755)

[1] 0.9499561

So, the 75.5th percentile of the lifetime distribution is somewhere between 39 and
60 days with confidence 95%.

Nonparametric Tolerance Intervals

A p-content – (1−α) coverage nonparametric tolerance interval is formed by a pair
of order statistics X(r) and X(s), where the integers 1 ≤ r < s ≤ n should be
determined so that

PX(r),X(s)

{
F (X(s))− F (X(r)) ≥ p

}
= 1− α, (31.4)

or equivalently,

PU(r),U(s)

{
U(s) − U(r) ≥ p

}
= P (X ≤ s− r − 1|n, p), (31.5)

where U(m), the mth order statistic for a sample of size n from a uniform(0, 1)
distribution, and X ∼ binomial(n, p). Notice that the above probability depends
only on the difference s − r not the actual values of s and r. Let k = s − r is the
least value for which

P (X ≤ s− r − 1) ≥ 1− α. (31.6)

Then any interval (X(l), X(m)) is a (p, 1−α) tolerance interval provided 1 ≤ l < m ≤
n and m− l = k. It is customary to take s = n− r+1, so that (X(r), X(n−r+1)) is a
(p, 1−α) tolerance interval. However, we note that we can find intervals of the form
(X(r), X(n−r)), which is shorter than (X(r), X(n−r+1)), in many cases. Specifically,
for a given m, let n be the least sample size that satisfies

P (X ≤ n−m− 1) ≥ 1− α. (31.7)

Then (X(m), X(n)),
(
X(m

2 )
, X(n−m

2 )

)
if m is even, and

(
X(m+1

2 ), X(n−m+1
2

+1)

)
if

m is odd, are (p, 1− α) tolerance intervals.
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Sample Size for Computing Tolerance Intervals

The required sample size n so that the smallest order statistic and the largest order
statistic form a (p, 1− α) tolerance interval is the smallest integer that satisfies

(n− 1)pn − npn−1 + 1 ≥ 1− α. (31.8)

For a one-sided limit, the value of the n is the smallest integer such that

1− pn ≥ 1− α. (31.9)

For a one-sided limit, the sample size is determined so that at least proportion
p of the population data are greater than or equal to X(1); furthermore, at least
proportion p of the population data are less than or equal to X(n).

Because of the discreteness of the sample size, the true coverage probability
will be slightly more than the specified probability g. For example, when p = 0.90
and 1 − α = 0.90, the required sample size for the two-sided tolerance limits is 38.
Substituting 38 for n, 0.90 for p in (31.8), we get 0.9047, which is the actual coverage
probability.

For a given value of (p, 1−α = g,m), the dialog box [StatCalc→Nonparametric→
Sample Size for NP Tolerance Interval] computes the required sample size so that

(p, 1− α) tolerance interval =






(
X(m), X(n)

)
,(

X(m
2 )
, X(n−m

2 )

)
, if m is even,(

X(m+1
2 ), X(n−m+1

2
+1)

)
, if m is odd.

Example 31.10. When p = 0.90 and g = 0.95, the value of n is 46; that is, the
interval (X(1), X(46)) would contain at least 90% of the population with confidence
95%. Furthermore, the sample size required for a one-sided tolerance limit is 29;
that is, 90% of the population data are less than or equal to X(29) — the largest
observation in a sample of 29 observations, with confidence 95%. Similarly, 90% of
the population data are greater than or equal to X(1) — the smallest observation in
a sample of 29 observations, with confidence 95%.

Example 31.11. Suppose that one desires to find a tolerance interval so that it
would contain 99% of household incomes in a large city with coverage probability
0.95. How large should the sample be so that the interval (smallest order statistic,
largest order statistic) would contain at least 99% of the household incomes with
confidence 95%?

To compute the required sample size, enter 0.99 for p, 0.95 for g, and click
[Required Sample Size] to get 473. That is, if we take a random sample of 473
households from the city and record their incomes, then at least 99% of the household
incomes in the city fall between the lowest and the highest household incomes in the
sample with 95% confidence. For one-sided limits, the required sample size is 299.
That is, if we take a sample of 299 households from the city and record the incomes,
then at least 99% of the household incomes are greater than the smallest income in
the sample; further, at least 99% of the household incomes are less than the highest
income in the sample.

Example 31.12. Suppose it is desired to find a sample size so that the smallest
third order statistic and the largest order statistic form a (.90, .95) tolerance interval.
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382 31 Some Nonparametric Methods

To find the desired sample size enter (.90, .95, 3) for (p, g,m) and click on [sample
size TI] to get 76. That is, the interval (X(3), X(76)) from a sample of size 76 form
a (.90, .95) tolerance interval. Furthermore, because m = 3 is odd, (X(2), X(75)) is
also a (.90, .95) tolerance interval.
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Fisher’s test, 56
Fisher’s z-transformation, 361
Forkman’s test, 164
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exponential, 209, 210

Generalized variable
bivariate normal, 362
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Geometric series, 115
Goodness-of-fit test, 17, 260

Poisson, 92

Haff’s identity, 187
Hazard function, 15
Hazard rate, 15
Hwang’s identity, 110

Increasing failure rate, 15
Inter quartile range, 14
Inverse distribution function, 11
Inverse survival function, 15
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binomial, 47

Joint sampling approach, 98

Largest extreme value, 331
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Level of a test, 19
Likelihood function, 18
Likelihood ratio test, 20

equality of means, 232
equality of scale parameters, 231
equality of shape parameters, 229

Linear combination of
Poisson means, 108
proportions, 64

Location-scale family, 23
Logarithmic gamma function, 31
Logit CI, 62
LRT

comparing gamma parameters, 234

Maximum likelihood estimate
Laplace, 285
logistic, 296
normal, 149
Weibull, 323

Maximum likelihood estimates, 18
Beta distribution, 250
gamma, 220

Mean, 12
Mean deviation, 13
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Memoryless property, 115
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Mode, 12
Modified large sample, 28
Modified LRT, 221
Moment estimates, 18
Moment generating function, 14
Moments

about the origin, 12
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raw moments, 12

MOVER, 27, 28
linear combination, 28
ratio of random variables, 29

MOVER confidence interval
lognormal, 308
ratio of lognormal means, 310

Newton-Raphson method, 220

Odds ratio, 60
Order statistic, 379

P-value, 21
Parametric Bootstrap, 224
Pivotal quantity, 206

extreme value, 335
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Weibull, 323
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Power, 19
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conditional test Poisson, 102
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Probability density function, 10
Probability generating function, 15
Probability integral transform, 29
Probability mass function, 10
Proportion
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Psi function, 31

Q-Q plot, 16
normal, 147

Quantile, 13, 23
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Random number generator
Cacuhy, 343

Random variable, 9
continuous, 10
discrete, 9

Ratio of coefficients of variation, 164
Ratio of proportions, 60
Rectangular distribution, 139
Recurrence relation

binomial pmf, 66
Rejection region, 19
Relative risk, 60
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test for randomness, 369

Sample size
binomial

unconditional test, 57
binomial CI, 49
binomial power, 45
CI for proportion in finite

population, 82
nonparameteric TI, 381
Poisson CI, 97
Poisson test, 95
t-test, 150

Sample space, 9
Score CI

linear combination of proportions,
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Poisson mean, 96

Poisson means, 107
ratio of Poisson means, 105
relative risk, 61

Score test
binomial, 42
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Simultaneous

confidence intervals, 198
hypothesis test, 169

Size of a test, 20
Smallest extreme value, 331
Standard deviation, 13
Stein’s lemma, 177
Stochastic order

chi-square, 183
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Stochastically increasing, 21
Support, 10, 17
Survival function, 15
Survival probability

exponential, 207
extreme, 337
gamma, 226
normal, 152
Weibull, 326

t-interval, 151
t-test

one-sample, 149
two-sample, 160

Tolerance factor
normal, 166

Tolerance interval, 22
equal-tailed, 23, 169
exponential, 207
extreme, 337
gamma, 226
Laplace, 288
logistic, 301
nonparametric, 381
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one-sided, 167
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type I error, 19
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Poisson means, 102

Variance, 13
ratio distribution, 189

Wald CI
binomial, 45
Poisson means, 106

Wald test
binomial, 42

Weighted sum of Poisson rates, 108
Welch’s test, 163
Wilson–Hilferty approximation, 188
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