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Preface 

The theory of statistical tolerance intervals and tolerance regions has undergone 
vigorous development during the last three decades. In particular, the deriva- 
tion of satisfactory tolerance intervals in the context of random effects models, 
and satisfactory simultaneous tolerance intervals for regression models, has been 
carried out only during the 1980s and 1990s. Furthermore, the construction of 
satisfactory tolerance regions for multivariate normal populations and multi- 
variate regression models was accomplished only within the last ten years. The 
bibliography collected by Jilek (1981) lists around 270 articles on the topic, and 
the one by Jilek and Ackerman (1989) lists an additional 130 articles. The lit- 
erature on the topic has grown considerably since the publication of the latter 
bibliography. However, no book-length treatment of the topic has been available 
since Guttman’s (1970) monograph. The present book was conceived based on 
the perceived need to have a single source that brings together the recent de- 
velopments as well as the earlier results on the topic of tolerance intervals and 
tolerance regions. 

As opposed to a confidence interval that provides information concerning an 
unknown population parameter, a tolerance interval provides information on the 
entire population; to be specific, a tolerance interval is expected to capture a 
certain proportion or more of the population, with a given confidence level. For 
example, an upper tolerance limit for a univariate population is such that with a 
given confidence level, a specified proportion or more of the population will fall 
below the limit. This proportion is referred to as the content of a tolerance inter- 
val. A lower tolerance limit, or a tolerance interval having both lower and upper 
limits, satisfies similar conditions. For multivariate populations. we analogously 
have tolerance regions. The applications of tolerance intervals and tolerance 
regions are varied. They include clinical and industrial applications, including 
quality control, applications to environmental monitoring, to the assessment of 
agreement between two methods or devices, and applications in industrial hy- 
giene. As suggested by the title, this book discusses the theoretical derivation 
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of tolerance intervals and tolerance regions in a wide variety of scenarios. along 
with applications and examples, and also illustrates the computational proce- 
dures. Analytic formulas for the tolerance limits are available in only simple 
cases, for example, for the upper or lower tolerance limit for a univariate normal 
population. Thus it becomes necessary to use numerical methods or approxi- 
mations in order to derive tolerance intervals for many populations. The book 
discusses the various approximations available for different tolerance interval 
problems, and also discusses comparisons among the different approximations, 
making recommendations regarding the choice of the approximation for practical 
use. When it comes to random or mixed effects models, the book provides the 
available procedures for the balanced as well as the unbalanced data situations. 
Furthermore, for situations where the tolerance intervals have to be numerically 
obtained, the book includes extensive tables providing the necessary tolerance 
factors for various combinations of the sample size, content and confidence level. 

The book has twelve chapters and gives a rather broad coverage of its topic. 
Chapter 1 gives the basic concepts and definitions, and also gives some of the 
technical results used throughout the book. The ideas of generalized p-values 
and generalized confidence intervals are extensively used in some of the later 
chapters, and these are also described in Chapter 1. Chapter 2 gives a thorough 
discussion of the various tolerance intervals that have been constructed in the 
context of the univariate normal distribution. Chapter 3 is on the univariate 
linear regression model, where we describe the construction of tolerance intervals 
and simultaneous tolerance intervals. Chapters 4-6 are on the construction 
of tolerance intervals in mixed effects and random effects models. The one- 
way random model is given special emphasis, and is the topic covered in both 
Chapter 4 (the case of balanced data) and Chapter 5 (the case of unbalanced 
data). Other mixed and random effects models are taken up in Chapter 6. The 
computation of tolerance intervals for some continuous distributions other than 
the normal is the topic of Chapter 7. The lognormal, gamma, exponential and 
Weibull distributions are considered in this chapter. Non-parametric tolerance 
intervals form the topic of Chapter 8. Chapter 9 and Chapter 10 deal with 
multivariate populations; Chapter 9 is on the computation of tolerance regions 
for a multivariate normal distribution, and Chapter 10 addresses the problem 
in the context of a multivariate linear regression model. Bayesian approaches 
are described in Chapter 11. Some special topics not covered in the previous 
chapters are discussed in Chapter 12. The topics covered in this chapter include 
the derivation of P-expectation tolerance intervals, sample size determination, 
tolerance intervals for the ratio of normal random variables, tolerance intervals 
for binomial and Poisson distributions, and tolerance intervals based on censored 
data. In Chapter 3 and Chapter 10, the calibration problem is also included, 
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since the computation of a multiple use confidence interval or region in the 
calibration problem can be accomplished using appropriate tolerance intervals 
and regions. 

In each chapter of the book, the theoretical derivations are described in de- 
tail, along with the computational procedures. In fact computational algorithms 
are given throughout the book. However, we have not emphasized any particu- 
lar software. The computational algorithms can be easily coded in any machine 
language (Fortran, C, SAS@, etc.). In each chapter, the results are all illus- 
trated with data analysis based on real examples. Most of the data sets used 
are included in the relevant chapter. Some data sets are also given in Appendix 
A at the end of the book. Appendix B gives table values of tolerance factors. 

The book is appropriate for a graduate level course on tolerance intervals, 
the prerequisite being a basic knowledge of ANOVA, mixed models, regression 
and multivariate analysis. In fact each chapter includes a set of exercises. For 
a researcher interested in the topic, the book provides the state of the art in 
the field. For an applied statistician or a consultant who encounter problems 
that call for the use of tolerance intervals, the book is expected to be a valu- 
able resource. In a Technometrics article, Carroll and Ruppert (1991, p. 199) 
mention that “It appears to us that tolerance intervals should be more widely 
understood and used.” It is hoped that this book will serve this purpose. 

The authors acknowledge the support and the facilities received from the De- 
partment of Mathematics, University of Louisiana at Lafayette, and the Depart- 
ment of Mathematics and Statistics, University of Maryland Baltimore County. 
The authors are grateful to Dr. Ionut Bebu for his assistance with some of 
the numerical computations on Bayesian tolerance intervals. Krishnamoorthy 
is thankful to his wife Usha and sons Prathap and Tharany for their enduring 
love and moral support. Mathew wishes to express his appreciation to his wife 
Ruby, and daughters Stacy and Betsy for their continued affection and support. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

Statistical intervals computed based on a random sample have wide applicability, 
for the purpose of quantifying the uncertainty about a scalar quantity associated 
with a sampled population. The type of interval to be computed obviously 
depends on the underlying problem and application. A confidence interval based 
on a random sample is used to provide bounds for an unknown scalar population 
parameter such as the population mean, standard deviation, percentile, tail 
probability, etc. A prediction interval based on a random sample is used to 
provide bounds for one or more future observations from a univariate sampled 
population. For multivariate populations, we have correspondingly confidence 
regions and prediction regions. The topic of this book is a third type of interval 
and region, namely tolerance intervals and tolerance regions. For a univariate 
population, a tolerance interval is an interval, based on a random sample, that 
is expected to contain a specified proportion or more of the sampled population. 
A tolerance region is similarly defined for a multivariate population. 

Here is a simple example to illustrate the differences among a confidence 
interval, prediction interval and tolerance interval. The application deals with 
the assessment of air lead levels in a laboratory. The data are given in Chapter 
2 (see Table 2.1) and represent air lead levels collected by the National Institute 
of Occupational Safety and Health (NIOSH) at a laboratory for health hazard 
evaluation purpose. The air lead levels were collected from n = 15 different 
areas within the facility. It was noted that the log-transformed lead levels fitted 
a normal distribution well (that is, the data are from a lognormal distribution). 
Let p and g2, respectively, denote the population mean and variance for the log- 
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2 1 Preliminaries 

transformed data. If X denotes the corresponding random variable, we thus have 
X N N ( p , g 2 ) .  We note that exp(p) is the median air lead level. A confidence 
interval for p can be constructed the usual way, based on the t-distribution; this 
in turn will provide a confidence interval for the median air lead level. If X and S 
denote the sample mean and standard deviation of the log-transformed data for a 
sample of size n, a 95% confidence interval for p is given by X k t n - 1 ; . 9 7 5 L  where 
tm;l-cY denotes the 1 - cr quantile of a t-distribution with m degrees of freedom. 
It may also be of interest to derive a 95% upper confidence bound for the median 

95% upper confidence bound for the median air lead level is given by exp(X + 
t n - 1 ; . g 5 g ) .  Now suppose we want to predict the air lead level at a particular 
area within the laboratory. A 95% upper prediction limit for the log-transformed 
lead level is given by X + tn -1; .95S  1 + A. A two-sided prediction interval can 
be similarly computed. The meaning and interpretation of these intervals are 
well known. For example, if the confidence interval X f t n - 1 , , 9 7 5 ~  is Computed 
repeatedly from independent samples, 95% of the intervals so computed will 
include the true value of p,  in the long run. In other words, the interval is meant 
to provide information concerning the parameter p only. A prediction interval 
has a similar interpretation, and is meant to provide information concerning 
a single lead level only. Now suppose we want to use the sample t,o conclude 
whether or not at least 95% of the population lead levels are below a threshold. 
The confidence interval and prediction interval cannot answer this question, 
since the confidence interval is only for the median lead level, and the prediction 
interval is only for a single lead level. What is required is a tolerance interval; 
more specifically, an upper tolerance limit. The upper tolerance limit is to be 
computed subject to the condition that at least 95% of the population lead levels 
is below the limit, with a certain confidence level, say 99%. Once such an upper 
tolerance limit is computed, we can verify if it is less than the threshold value. 

J;G' 

air lead level. Such a bound for p is given by X + tn-1;.95-. S Consequently, a J;E 

J- 
J;G 

We shall now give the precise definitions of tolerance intervals. This will be 
followed by a summary of several preliminary concepts and results, to be used 
for the derivation of tolerance intervals in some of the later chapters. 

1.1.1 One-sided Tolerance Intervals 

Let X be a continuous random variable with cumulative distribution function 
(cdf) Fx(z) = P ( X  5 z). For a given p (0 < p < l), the inverse cdf is defined 
by 

~ i l ( p )  = inf{z : ~x(z) 2 p>.  (1.1.1) 
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The quantity F i l (p)  is obviously the p quantile or loop percentile of the dis- 
tribution F x .  We shall also denote the p quantile by qp. Notice that a pro- 
portion p of the population (with distribution function F x )  is less than or 
equal to qp. If F x ( x )  is a strictly increasing function of II: (this is the case 
for many commonly used distributions), then Fil ( p )  is the value of 2 for which 
F x ( z )  = P ( X  5 .) = p. 

Let XI, X,, ...., X ,  be a random sample from F x ( x ) ,  and write X = 

( X I ,  X z ,  ...., X,). In order to define a tolerance interval, we need to specify 
its content and confidence level. These will be denoted by p and 1 - a,  respec- 
tively, and the tolerance interval will be referred to as a p content arid (1 - a)  
coverage (or p content and (1 - a)  confidence) tolerance interval or simply a 
(p, 1 - a )  tolerance interval (0 < p < 1, 0 < a < 1). In practical applications, p 
and 1 - a usually take values from the set {0.90,0.95,0.99}. The interval will be 
constructed using the random sample X ,  and is required to contain a proportion 
p or more of the sampled population, with confidence level 1 - a. Formally, a 
(p, 1 - a )  one-sided tolerance interval of the form (--00, U ( X ) ]  is required to 
satisfy the condition 

(1.1 .2) 

where X also follows F x ,  independently of X .  That is, U ( X )  is to be determined 
such that at least a proportion p of the population is less than or equal to U ( X )  
with confidence 1 - a. The interval (--00, U ( X ) ]  is called a one-sided tolerance 
interval, and U ( X )  is called a one-sided upper tolerance limit. Note t,hat based 
on the definition of the p quantile qp, we can write (1.1.2) as 

Px {qp 5 U ( X ) }  = 1 - a. (1.1.3) 

It is clear from (1.1.3) that U ( X )  is a 1 - a upper confidence limit for the p 
quantile qp. 

A (p, 1 - a)  one-sided lower tolerance limit L ( X )  is defined similarly. Specif- 
ically, L ( X )  is determined so that 

or equivalently, 
P x  { L ( X )  5 q l p p }  = 1 - a. 

Thus, L ( X )  is a 1 - a lower confidence limit for ql-p.  
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1.1.2 Tolerance Intervals 

There are two types of two-sided tolerance intervals. One is constructed so that 
it would contain at least a proportion p of the population with confidence 1 - a> 
and is simply referred to as the tolerance interval. A second type of tolerance 
interval is constructed so that it would contain at least a proportion p of the 
center of the population with confidence 1 - a, and is usually referred to as an 
equal-tailed tolerance interval. 

A ( p ,  1-a) two-sided tolerance interval ( L ( X ) ,  U ( X ) )  satisfies the Condition 

P X { P X ( L ( X ) < X < U ( X ) X  I >  > p  1 = 1 -  

or equivalently, 

a ,  (1.1.4) 

(1.1.5) 

In other words, the interval ( L ( X ) ,  U ( X ) )  is constructed so that it would contain 
at least a proportion p of the population with confidence 1 - a. The quantities 
L ( X )  and U ( X )  are referred to as the tolerance limits. It is important to note 
that the computation of L ( X )  and U ( X )  does n o t  reduce to the computation 
of confidence limits for certain percentiles. 

In order to define an equal-tailed tolerance interval, assume that p > 0.5. 
A ( p ,  1 - a )  equal-tailed tolerance interval ( L ( X ) ,  U ( X ) )  is such that, with 
confidence 1 - a, no more than a proportion 2 of the population is less than 
L ( X )  and no more than a proportion 9 of the population is greater than 
U ( X ) .  This requirement can be stated in terms of percentiles. Note that the 
condition L ( X )  5 q h  is equivalent to no more than a proportion 9 of the 
population being less than L ( X ) ,  and the condition q ~ + ~  < U ( X )  is equivalent 

to no more than a proportion 1 - = 2 of the population being greater than 
U ( X ) .  Consequently, for ( L ( X ) ,  U ( X ) )  to be a ( p ,  1 - a )  equal-tailed tolerance 
interval, the condition to be satisfied is 

2 

2 

(1.1.6) 

Apart from the one-sided and two-sided ( p ,  1 - a )  tolerance intervals in- 
troduced above, intervals have also been constructed so as to contain a pro- 
portion /? of the population, on the average. Such intervals are referred to 
as P-expectation tolerance intervals. It has been noted that these are simply 
1000% prediction intervals for a future observation from the population, con- 
structed using a random sample from the population. 
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Early works on the tolerance interval problem are due to Wilks (1941, 1942), 
Wald (1943) and Wald and Wolfowitz (1946). The book by Guttman (1970) 
gives a concise treatment of tolerance intervals and regions, both ( p ,  1 - a )  tol- 
erance intervals as well as P-expectation tolerance intervals; see also the book 
by Aitchison and Dunsinore (1975, Chapters 5 and 6). Extensive bibliographies 
of the literature on tolerance intervals and regions are given in the articles by 
Jilek (1981) and Jilek and Ackerman (1989). Reviews of the literature on the 
topic are provided in Pate1 (1986, 1989), and in the book by Hahn and Meeker 
(1991). For brief introductions and review, we refer to Guttman (1988) and 
Vangel (2008a, b). Several articles on tolerance intervals and regions also pro- 
vide tables of tolerance factors that facilitate easy computation of the required 
intervals and regions, and the book by Odeh and Owen (1980) gives the required 
factors in the context of the normal distribution. The PC calculator S ta tCa lc  
(Krishnamoorthy, 2006) can also be conveniently used to compute tolerance 
factors for univariate and multivariate normal populations. 

1.1.3 Survival Probability and Stress-Strength Reliability 

Estimation of Survival Probability 

In many applications it is desired to estimate the probability that a random 
variable exceeds a specified value. For example, in lifetime data analysis, it 
is of interest to assess the probability that the lifetime of an item exceeds a 
value; this probability is commonly referred to as the survival probability. In 
industrial hygiene, it is of interest to estimate the probability that the exposure 
level (level of exposure to a contaminant in a workplace) of a worker exceeds 
the occupational exposure limit (OEL; usually set by the Occupational Safety 
and Health Administration). This is referred to as an exceedance probability. To 
assess the lifetime of an item, a lower confidence limit for the survival probability 
is warranted. Such a lower confidence limit can be easily deduced from a suitable 
lower tolerance limit, as shown below. 

Let X be a continuous random variable with the distribution function Fx (x). 
For a given t ,  define the survival probability St = P ( X  > t )  = 1 - F x ( t ) .  Let 
X be a sample from F x ,  and L ( X )  = L ( X ; p )  be a ( p ,  1 - a!) lower tolerance 
limit for the distribution of X .  Being a ( p ,  1 - a )  lower tolerance limit, we have 

That is, 
a!. 
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If L ( X ; p )  > t ,  then we obviously have St 2 S ~ X ; ~ ) .  Furthermore, if SL(x; , )  2 
p ,  we can conclude that St > p whenever L ( X ; p )  2 t .  Consequently the maxi- 
mum value of p for which L ( X ; p )  > t gives a 1 - a lower bound, say p l ,  for St. 
That is, 

pl = max { p  : L ( X ; p )  2 t }  . (1.1.7) 

In general, L ( X ; p )  is a decreasing function of p ,  and so the maximum in 
(1.1.7) is attained when L ( X ; p )  = t .  That is, pl is the solution of L ( X ; p )  = t .  
A lower tolerance limit can also be used to test one-sided hypotheses concerning 
St. If it is desired to test 

Ho : St 5 po vs. Ha : st > po 

at a level a ,  then HO will be rejected if a (PO,  1-a) lower tolerance limit is greater 
than t .  

An upper confidence limit for an exceedance probability is often used to 
assess the exposure level (exposure to pollution or contaminant) in a workplace. 
For instance, if t denotes the occupational exposure limit and X denotes the 
exposure measurement for a worker, then the exceedance probability is defined 
by P ( X  > t ) .  If U ( X ; p )  is a ( p ,  1 - a)  upper tolerance limit, and is less than 
or equal to t ,  then we can conclude that P ( X  > t )  is less than 1 - p .  Arguing 
as in the case of (1.1.7), we conclude that if p ,  = max{p : U ( X ; p )  5 t } ,  then 
1 -p ,  is a 1 - a upper confidence limit for the exceedance probability. In general, 
U ( X ;  p )  is a nondecreasing function of p ,  and so p ,  is the solution of the equation 
U ( X ; p )  = t .  

Stress- S trengt h Reliability 

The classical stress-strength reliability problem concerns the proportion of the 
time the strength X of a component exceeds the stress Y to which it is subjected. 
If X 5 Y ,  then either the component fails or the system that uses the component 
may malfunction. If both X and Y are random, then the reliability R of the 
component can be expressed as R = P ( X  > Y ) .  A lower limit for R is commonly 
used to assess the reliability of the component. Writing R = P ( X  - Y > 0), we 
see that R can be considered as a survival probability. Therefore, the procedures 
given for estimating survival probability can be applied to find a lower confidence 
limit for R. More specifically, if it is desired to test 

H o :  R I  Ro vs. Ha : R >  Ro 

at a level a,  then the null hypothesis will be rejected if a (Ro, 1 - a)  lower 
tolerance limit for the distribution of X - Y is greater than zero. 
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1.2 Some Technical Results 

In this section, we shall give a number of technical results to be used in later 
chapters. In particular, the first result has important applications in the deriva- 
tion of tolerance intervals for a univariate normal distribution and other normal 
based models. 

Result 1.2.1 Let X N N(0 ,c )  independently of Q - $, where xz denotes 
a chi-square random variable with degrees of freedom (df) m. Let 0 < p < 1, 
0 < y < 1, and let i9 denote the standard normal distribution function. 

(i) The factor kl  that satisfies 

P X , &  (a (x + ha) 2 P) = Y (1.2.1) 

is given by 

(1.2.2) 

where z p  denotes the p quantile of a standard normal distribution, and 
t U i V ( S )  denotes the 7 quantile of a noncentral t distribution with df v arid 
noncent rality parameter 6. 

(ii) The factor k2 that satisfies 

is the solution of the integral equation 

where x&(6) denotes the 7 quantile of a noncentral chi-square distribution 
with df v and noncentrality parameter 6. 

(iii) An approximation to lcz that satisfies (1.2.4) is given by 

(1.2.5) 

where x&, denotes the 7 quantile of a chi-square distribution with df v. 
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Proof. 

(i) Note that the inner probability inequality in (1.2.1) holds if and only if 
X + I c l f l >  zp.  So we can write (1.2.1) as 

= y. (1.2.6) 

To get the second step of (1.2.6), we used the fact that X and -X are 
identically distributed. Because XI& - N(0,l)  independently of Q - 
&, we have 

where t v ( 6 )  denotes a noncentral t random variable with degrees of freedom 
v and noncentrality parameter S. Therefore, k l  that satisfies (1.2.6) is 
given by (1.2.2). 

(ii) Note that, for a fixed X, Q(X + T )  - @ ( X  - T )  is an increasing function 
of T .  Therefore, for a fixed X, @(X + k , f l )  - @(X - k 2 a )  > p if and 
only if k 2 a  > T or Q > $, where T is the solution of the equation 

k2 

@(X + T )  - q x  - T )  = p ,  (1.2.7) 

or equivalently, 
Pz ((2 - xy 5 T 2 I X )  = p ,  (1.2.8) 

2 being a standard normal random variable (see Exercise 1.5.3). For a 
fixed X, (2 - X)2 N x:(X2), where x$(S) denotes a noncentral chi-square 
random variable with noncentrality parameter 6. Therefore, conditionally 
given X2, r2 that satisfies (1.2.8) is the p quantile of xf(X'), which we 
denote by x:;,(X2). Using these results, and noticing that T is a function 
of X 2  and p ,  we have 

(1.2.9) 
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Taking expectation with respect to the distribution of X ,  we see that the 
factor k2 satisfies 

(1.2.10) 

Since X - N(O,c),  we can write (1.2.10) as 

= y. (1.2.11) 

(iii) An approximation for kz can be obtained from (1.2.10) as follows. Let 

V = X 2  and g ( V )  = PQ ( Q > x’;/”v)). Using a Taylor series expansion 

around V = E ( V )  = c,  we have 

Noting that - x:, and taking expectation on both sides, we get 

E(g(V) )  = s ( c )  +c2*1 2 v  + ... 
V=C 

= g(c) + 0(c2) .  (1.2.13) 

Thus, E ( g ( V ) )  r” g(c),  and using this approximation in (1.2.10), we get 

, and 
0 

x:&) x:L;l-y 

rn 
- 

k22 
As Q - 6, it follows from the above expression that 
solving for k2, we get part (iii). 

Result 1.2.2 (Sat ter thwai te  Approx imat ion )  Let Q1, ..., Qk be independent 
random variables with Qi - oi ”’ * , i = 1, ..., k .  Let c1, ..., ck be positive con- 
stants. Then 

(1.2.14) 
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where 
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Proof. The above approximation can be obtained 

(1.2.15) 

by the moment matching 
method. Specifically, the degrees of freedom f is obtained by matching the mean 
and variance of V with those of f. Toward this, we note that E(x:) = 72 and 

Var(Xi) = 2n. Using these results, we see that E ( V )  = E (q )  = 1, and 

0 

It should be noted that in many applications the 022's are unknown (see 

X 2  

Var(V) = Var (9) when f is as defined in (1.2.15). 

Exercise 1.5.6); in these situations, the estimate 

of the df f is commonly used. Note that ?is obtained by replacing u: by its 
unbiased estimator Q i ,  i = 1, ..., k .  

The result (1.2.14) (with f replaced by 7) can be conveniently used to obtain 
approximate confidence intervals for the linear combination Cizl cia:, provided 
ci > 0. For example, an approximate 1 -a upper confidence bound for cia: 
is given by 

k 

k 

f^Cf=I ciQi 
2 , 

q ; a  

where 
of freedom. 

denotes the CY quantile of a chi-square distribution with m degrees 

Result 1.2.3 (Bonferroni Inequality) Let A l ,  ..., AI, be a set of events. Then 
k 

P ( A ~  n A2 n ... n A ~ )  2 1 - C P(A;),  ( 1.2.16) 
i=l 

where A: denotes the complement of the event Ai, i = 1, ..., k. 

Proof. This inequality essentially follows from the well-known result that, for 
a collection of events El, . . . , El,, 

k 

P(E1 u ... u Ek) 5 c P(E2). 
i=l 
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so 

11 

P(A1 n A2 n ... n A k )  = 1 - P(A: U ... U A;) 
k 

which completes the proof. 0 

The above inequality is useful for constructing conservative simultaneous 
confidence intervals for a set of parameters 81 , . . . , 81, , provided a confidence in- 
terval for each Bi is available. For instance, let 13 be a 1 - : confidence interval 
for 8j, j = 1, ..., k .  Then 

k 

P ( I ~  contains 81, ..., I k  contains 8,) 2 1 - C P ( I ~  does not contain 03) 
j=1 

= I - k ( % )  

= 1 - a .  

Thus, simultaneously the intervals 11, ..., I k  contain 81, ..., 8 k ,  respectively, with 
probability at least 1 - a. 

1.3 The Modified Large Sample (MLS) Procedure 

Consider the set up of the Satterthwaite approximation (Result l.2.2), so that 
we have independent random variables Q1, ..., Qk with Qi - ai mi, i = 1, ..., k .  
As already noted, the Satterthwaite approximation (1.2.14) can be used, in 
particular, to obtain approximate confidence intervals for a linear combination xf=l cia: of the variance components o,;, i = 1, 2, ...., k .  However, the ci’s are 
required to be positive in order to be able to use the chi-square approximation 
(1.2.14). If some of the ci’s are negative, the modified large sample (MLS) 

k 2 procedure can be used to obtain approximate confidence intervals for c i a i .  

We shall first describe the MLS procedure for obtaining an upper confidence 
bound for xf=l cia: when all the ti's are positive. Since Qi - ai G, a: = Qi 
is an unbiased estimator for a:, and a 1 - a upper confidence bound for a: is 
miZ2 
+. Note that this is an exact upper confidence bound, and the hound can 
xrni;a 

be rewritten as 

2 u% 

2 Xrn ’ - 

(1.3.1) 



12 1 Preliminaries 

Since E(Z$) = a: and V(Z:) = 22, we have 

Thus, an estimator of V Efz1 c i z ? ) ,  is given by ( 

Assuming an asymptotic normal distribution for Ef=l ciZ?, an approximate 1-cr 
upper confidence bound for El"=, cia: is given by Ei=l k ciZ:+zl-, I/-, 
which simplifies to 

(1.3.2) 

In the above, z1-, denotes the 1 - cr quaritile of a standard normal distribution. 
When all the ti's are positive, the MLS procedure consists of imitating (1.3.1), 

and replacing 2 L  in (1.3.2) with the quantity + - 1 . Thus the 1 - cr 

MLS upper confidence bound for El"=, ciu:, when all the ci's are positive, is 
m, ( X m , ; L t  >' 

(1.3.3) 

In other words, the confidence bound in (1.3.3) has been obtained by modifying 
a large sample confidence bound for Efi_, cia:; hence the name modified large 
sample procedure. It can be shown that the coverage probability of the above 
MLS confidence interval approaches 1 - cr as mi + 00 for all i .  

If some of the ti's are negative, the 1 - Q MLS upper confidence bound for xf=l cia: is obtained as 

(1.3.4) 

where 



1.4 The Generalized P-value and Generalized Confidence Interval 13 

Furthermore, the 1 - a MLS lower confidence bound for Ct=, cia: is obtained 
as 

(1.3.5) 

where 

The limits of a 1 - a two-sided MLS confidence interval for Ef=l cia: are ob- 
tained as the (1 - :) MLS lower confidence bound and the (1 - F) MLS upper 
confidence bound. 

The idea of the MLS confidence interval was proposed by Graybill and Wang 
(1980). The book by Burdick and Graybill (1992) gives a detailed treatment 
of the topic along with numerical results regarding the performance of such 
intervals. 

1.4 The Generalized P-value and Generalized 
Confidence Interval 

The generalized p-value approach for hypothesis testing has been introduced by 
Tsui and Weerahandi (1989) and the generalized confidence interval by Weera- 
handi (1993). Together, these are referred to as the generalized variable approach 
or generalized inference procedure. The concepts of generalized p-values and 
generalized confidence intervals have turned out to be extremely fruitful for ob- 
taining tests and confidence intervals for some complex problems where standard 
procedures are difficult to apply. The generalized variable approach has been 
used successfully to develop tests and confidence intervals for “non-standard” 
parameters, such as lognormal mean (Krishnamoorthy and Mathew, 2003) and 
normal quantiles (Weerahandi, 1995a). Applications of this approach include 
inference for variance components (Zhou and Mathew (1994), Khuri, Mathew 
and Sinha (1998), Mathew and Webb (2005)), ANOVA under unequal variances 
(Weerahandi, 1995b), growth curve model (Weerahandi and Berger, 1999), com- 
mon mean problem (Krishnamoorthy and Lu, 2003), tolerance limits for the 
one-way random effects model (Krishnamoorthy and Mathew, 2004) and multi- 
variate Behrens-Fisher problem (Gamage, Mathew and Weerahandi, 2004). For 
the computation of tolerance limits in the context of mixed and random effects 
models. the generalized variables approach will be used rather extensively in this 
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book. For more applications and a detailed discussion, we refer to the books by 
Weerahandi (1995a, 2004). 

In the following we shall describe the concepts of generalized confidence 
intervals and generalized p-values in a general setup. 

1.4.1 Description 

Let X be a random sample from a distribution F x ( q  8, S), where 8 is it scalar 
parameter of interest, and 6 is a nuisance parameter. Let x be an observed 
sample; that is, x represents the data. 

Generalized Pivotal Quantity (GPQ) 

A generalized confidence interval for 6 is computed using the percentiles of a 
generalized pivotal quantity (GPQ), say G ( X ;  x, O ) ,  a function of X ,  x, and 8 
(and possibly the nuisance parameter 6) satisfying the following conditions: 

(i) For a given x, the distribution of G ( X ;  x, Q) is free of all unknown param- 

(ii) The “observed value” of G ( X ; x , Q ) ,  namely its value at X = z, is 6, the 
eters. 

parameter of interest. (C.1) 

The conditions given above are a bit more restrictive than what is actually 
required. However, we shall assume the above conditions since they are met in 
our applications. Regarding condition (ii) above, note that 6 is not observable, 
since it is an unknown parameter. The term “observed value” refers to the 
simplified form of G ( X ;  x, 8) when X = 2. When the conditions (i) and (ii) in 
((2.1) hold, appropriate quantiles of G ( X ;  x ,6)  form a 1 - a confidence interval 
for 8. For example, if G, is the p quantile of G ( X ;  x, Q), then G E ,  GI-?) is 
a 1 - cy confidence interval for 19. Such confidence intervals are referred to as 
generalized confidence intervals. As already pointed out, G ( X ;  x, 8) may also 
depend on the nuisance parameters. Even though this is not made explicit in 
our notation, this will be clear from the examples given later. 

( 2  

Generalized Test Variable 

A generalized test variable , denoted by T ( X ;  2, 6 ) ,  is a function of X ,  z, and 6 
(and possibly the nuisance parameter 6) and satisfies the following conditions: 
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(i) For a given 5, the distribution of T(X; x,8)  is free of the nuisance param- 
eter 6. 

(ii) The "observed value" of T(X; x, 8), namely its value at X = x, is free of 
any unknown parameters. 

(iii) For a fixed x and S, the distribution of T(X; x ,8)  is stochastically mono- 
tone in 8. That is, P ( T ( X ; x , 8 )  > a) is an increasing function of 8, or is 
a decreasing function of 8 ,  for every a. (C.2) 

Let t = T ( x ;  x, Q), the value of T(X; x ,8 )  at X = z. Suppose we are interested 
in testing 

Ho : 8 I 80 VS. Ha : 8 > 80, (1.4.1) 

where 80 is a specified value. If T(X; x,8)  is stochastically increasing in 0, the 
generalized p-value for testing the hypotheses in (1.4.1) is given by 

and if T(X; x, 8) is stochastically decreasing in 8, the generalized p-value for 
testing the hypotheses in (1.4.1) is given by 

SUpIf"P(T(X; x,8) 5 t )  = P(T(X; x,Oo) I t ) .  (1.4.2) 

Note that the computation of the generalized p-value is possible because the 
distribution of T(X; z,&) is free of the nuisance parameter 6, and t = T ( z ;  x, 80) 
is free of any unknown parameters. However, the nuisance parameter 6 may be 
involved in the definition of T(X; z, 8 ) ,  even though this is not made explicit in 
the notation. 

In many situations, the generalized test variable T ( X ;  x, @) is the GPQ minus 
the parameter of interest; that is T(X;x,8) = G ( X ; x , 8 )  - 8. It should be 
noted that in general, there is no unique way of constructing a GPQ for a given 
problem. Consideration of sufficiency and invariance may simplify the problem 
of finding a GPQ. 

Numerous applications of generalized confidence intervals and generalized 
p-values have appeared in the literature. Several such applications are given in 
the books by Weerahandi (1995a, 2004). It should however be noted that gen- 
eralized confidence intervals and generalized p-values may not satisfy the usual 
repeated sampling properties. That is, the actual coverage probability of a 95% 
generalized confidence interval could be different from 0.95, and the coverage 
could in fact depend on the nuisance parameters. Similarly, the generalized 
p-value may not have a uniform distribution under the null hypothesis. Con- 
sequently, a test carried out using the generalized p-value at a 5% significance 
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level can have actual type I error probability different from 5%, and the type I 
error probability may depend on the nuisance parameters. The asymptotic ac- 
curacy of a class of generalized confidence interval procedures has recently been 
established by Hannig, Iyer and Patterson (2005). However, the small sample 
accuracy of any procedure based on generalized confidence intervals and gener- 
alized p-values has to be investigated at least numerically, before they can be 
recommended for practical use. While applying the generalized confidence inter- 
val idea for the derivation of tolerance limits in later chapters, we shall comment 
on their accuracy based on simulations. 

1.4.2 GPQs for a Location-Scale Family 

A continuous univariate distribution is said to  belong to the location-scale family 
if its probability density function (pdf) can be expressed in the form 

1 
f ( x ; p , a )  = - g  (7) , -00 < < 00, -00 < p < 00, u > 0, (1.4.3) 

0 

where g is a completely specified pdf. Here p and 0 are referred to as the location 
and scale parameters, respectively. As an example, the family of normal tlistri- 
butions belongs to the location-scale family because the pdf can be expressed 
as 

Let XI, ..., X, be a sample from a distribution with the location parameter 
p and scale parameter 0. Estimators G(X1, ..., X,) of p and $(XI, ..., X,) of u 
are said to be equivariant if for any constants a and b with a > 0, 

P(aX1 + b, ..., uX, + b) = ~j2(Xl,...,X~~) + b 
(1.4.4) h a(aX1 + b, ’.., ax, + b) = aS(X1, ..’, X,). 

For example, the sample mean X and the sample variance S2 are equivariant 
estimators for a normal mean and variance respectively. 

Result 1.4.1 Let XI, ..., X, be a sample from a continuous distribution with 
the pdf of the form in (1.4.3). Let ~ ( X I ,  ..., Xn) and $(XI, ..., X,) be equivariant 
estimators of p and 0, respectively. Then 

6 - P  , 
0 

are all pivotal quantities. That is, 
parameters. 

h 

0 G - P  
- and 
0 U 

their distributions do not depend on any 
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Proof. Let Zi = *, i = 1, ..., n. As the sample is from a location-scale 
distribution, the joint distribution of Zi’s are free of unknown parameters. Since 
j2 and 5 are equivariant, we have 

G(X1, ’ ” >  Xn) - p = G(xl-iL X,’-’() , ’”, 
U 0 U 

1 G(Z1, ..., zn) 
and 

U U -1 0  XI, ...,Xn) = (XI - P 
I ” ‘ 1  

A 

= U(Z1, ”., 2,). 

Thus, 9 and a are pivotal quantities. Furthermore, 9 = (9) (5) is also 
a pivotal quantity. 0 

GPQs for p and 0 based on the above pivotal quantities can be constructed 
as follows. Let Go and ?o be observed values of the equivariant estimators i.̂  and 
5, respectively. Recall from condition (ii) of (C.l)  that the value of a GPQ of p 
at (j2,6) = (Eo,i?o) should be p. Keeping this in mind, we construct a GPQ for 
P as 

GJP, c; Go, $0) = Po - (9) $0, (1.4.5) 

Notice that the value of GAL(E, C; Po,  50) at (j2, C )  = (GO, $0) is p. For a given 
( j lo ,?o) .  the distribution of G, doest not depend on any unknown parameters 
because 9 is a pivotal quantity. Thus, G, in (1.4.5) satisfies both conditions 
in (C.1). 

A GPQ for g 2  can be obtained similarly, and is given by 

(1.4.6) 

Again, it is easy to see that G(C2; ci) satisfies both conditions of ((2.1). 

1.4.3 Some Examples 

Generalized Pivotal Quantities for Normal Parameters 

Let X I ,  ..., X ,  be a random sample from a N ( p , a 2 )  distribution. Define the 
sample mean X and sample variance S2 by 

(1.4.7) 
l n  1 7L 

X = - x X i  and S 2 = - x ( X i - X ) 2 .  
n n - 1  

Z = 1  z = 1  
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Let % and s2 denote the observed values of X and S2 ,  respectively. Then g = X 
and c2 = S2,  and Go = x and Z;  = s2.  

A GPQ for a Normal Mean 

It follows from (1.4.5) that 

(1.4.8) 

where Z = J;E(x-fi) ~ - N ( 0 , l )  independently of U 2  = $ - $$. We have also 
used the property that 2 and -2 have the same distribution in order to get the 
last step of (1.4.8). 

Noticing that 6 - tn-l, we can also write 

S 
Gp = G p ( X ,  S; Z, S )  = z + tn-i-. 

fi 
The generalized confidence interval is then given by 

(1.4.9) 

which is the usual t-interval. Here 
distribution with n - 1 df. 

denotes the y quantile of a central t 

Now consider the testing problem 

Ho : 1-1 5 po VS. Ha : p > po. (1.4.10) 

A generalized test variable , say Tp(X,  S; Z, s), for the above testing problem is 
given by 

T p ( X ,  S; 2 ,  S )  = G I 1 ( X ,  S; Z, S) - p. (1.4.11) 

It is easy to see that the generalized test variable T, = T,(X, S; 2 ,  s )  satisfies the 
first two conditions in (C.2). Furthermore, for a given ( 2 ,  s), Tp is stochastically 
decreasing in p because, for a fixed (2 ,  s), the distribution of G,(X, S; 2 ,  s )  does 
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not depend on p and T, = G,(X, S ;  2 ,  s )  - p. So t.he generalized p-value for 
testing (1.4.10) is given by (see (1.4.2)) 

supff,P(Tp 5 0 )  = SuPH$(Gp F p)  

= P(G, < P o )  

(1.4.12) 

which is the usual p-value based on the t-test for a normal mean. To get the 
third step of (1.4.12), we have used the result that t ,  and 4, are identically 
distributed. 

A GPQ for the Normal Variance 

A GPQ for o2 is given by 
0 0 

(1.4.13) 

where ~2 = 5 
conditions in (C.2). Furthermore, the generalized confidence interval 

2 x T L p l  n-1 ' It can be easily verified that G02 satisfies the two 

is also the usual 1 - a confidence interval for a2. 

Thus, we see that the generalized variable method is conducive to get exact 
inferential procedures for normal parameters, and the solutions reduce to the 
respective standard solutions. An appealing feature of this approach is that the 
GPQ for any function of (p ,  02)  can be easily obtained by substitution. Indeed, 
if it is desired to make inference for a function f ( p ,02 ) ,  then the GPQ is given 
by f(G,, Ga2). A particular case is described below. 

A GPQ for a Lognormal Mean 

We first note that if Y follows a lognormal distribution with parameters p and 
02, then X = h ( Y )  follows a N ( p ,  a2)  distribution. Furthermore, note that the 
lognormal mean is given by E ( Y )  = exp p + - , and so the GPQs for p and 

o2 derived above can be readily applied to get a GPQ for E ( Y )  or for q = p+ 7. ( $1 0 2  
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Let X and S’ denote the mean and variance of the log-transformed sample from 
a lognormal distribution. Then a GPQ for 7,  say G,], based on the GPQs of /L 

and u2, is given by 

2 s 1 (n  - 1)s’ 
UJ;; 2 u2 ? 

= J:+--+- 

where 2 and U’ are the quantities in (1.4.8). Being a function of the inde- 
pendent random variables 2 - N ( 0 , l )  and U 2  - a, XTL-1 it is straightforward to 
estimate the percentiles of G, by Monte Carlo simulation. In other words, the 
computation of a generalized confidence interval for 7 is quite simple. We refer 
to Krishnamoorthy and Mathew (2003) for further details. An exact confidence 
interval for q is available, based on a certain conditional distribution; see Land 
(1973). Krishnamoorthy and Mathew (2003) showed that the results based on 
G, are practically equivalent to the exact ones by Land (1973). 

The reader of this book will notice the rather heavy use of the generalized 
variable approach in this book, especially in Chapters 4, 5 and 6, dealing with 
the derivation of tolerance intervals for mixed and random effects models. The 
reason for this is that this approach has turned out to be particularly fruitful for 
obtaining satisfactory tolerance intervals in such models. It also appears that 
solutions to several such tolerance interval problems have been possible due to 
the availability of the generalized variable approach. To a reader who is new to 
this topic, a careful reading of Section 1.4 is recommended. Further insight and 
experience on this topic can be gained by solving the related problems in the 
exercise set given below. 

1.5 Exercises 

1.5.1. Let X be a sample from a continuous distribution Fx, and let qp denote 
the p quantile of Fx. Define U ( X )  such that 

Px {Px (X 5 U ( X ) l X )  2 p }  = 1 - a .  

Show that U ( X )  is a 1 - cy upper confidence limit for qp. 

1.5.2. Let qp denote the p quantile of a continuous distribution Fx. Let 
Ll ( X ; p ,  s) and L, ( X ; p ,  1 - $) respectively be one-sided lower and up- 
per confidence limits for qp. Furthermore, let pl and p ,  be such that 
Ll ( X ; p l ,  5) = t and L, ( X ; p u ,  1 - 5) = t ,  where t is a specified value. 
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Show that ( p i ,  p,) is a 1 - a confidence 
st = 1 - F x ( t ) .  

nterval for the survival probability 

1.5.3. Let @ denote the standard normal cdf. For a given p in (0, l),  show that 
the solution of @(u) - @(-u) = p ,  is given by a = x : : ~ .  For a constant 
c # 0, show that ( c  + a,) - @ ( c  - u) = p when a = x 2 3  

(c - ) .  1 ;P 

1.5.4. Consider a distribution Fx(z10) that depends only on a single parameter 
8, and is stochastically increasing in 8. Let qp(8)  be the p quantile of the 
distribution, and let (el, 0,) be a 1 - 2 0  confidence interval for 8. 

(a) Show that qp(O,) is a ( p ,  1 - a)  upper tolerance limit for the distri- 

(b) Show that (q1-p(81), qP(8,)) is a ( p ,  1 - 2a) equal-tailed tolerance in- 
bution. 

terval for the distribution. 

1.5.5. Let X1 and Xp be independent continuous random variables, and let 
R = P(X1 > X2) .  Consider the testing problem Ho : R 5 Ro vs. 
Ha : R > Ro, where Ro is a specified number in (0 , l ) .  Show- that the 
test that rejects Ho whenever a (Ro, 1 - a)  lower tolerance limit for the 
distribution of X I  - X2 is greater than zero, is a level a test. 

1.5.6. Let (Xi, S,") denote the (mean, variance) based on a sample of size ni from 
a N(pu, ,  c:) distribution, i = 1 , 2 .  

(a) Show that 

sf s; - + - - -  " approximately, with f = 
n1 732 f 

(b) Using part (a), show that for testing Ho : p1 = p2, the test statistic 

when Ho is true. (This test is known as the Welch approximate 
degrees of freedom test for equality of the means when the variances 
are not assumed to be equal). 

1.5.7. Let X and S denote, respectively, the mean and standard deviation based 
on a random sample of size n from a N ( p , g 2 )  distribution. Explain how 
you will use the generalized confidence interval methodology to compute 



22 1 Preliminaries 

an upper confidence limit for p+zpa,  the p percent,ile of N ( p ,  a2 ) ,  where zp 
is the p percentile of N(0 , l ) .  Show that, the resulting confidence interval 
is based on a noncentral t distribution, and is exact. 

1.5.8. Suppose random samples of sizes n1 and 722, respectively, are available from 
the independent normal populations N(p1 ,  a2)  and N ( p 2 ,  a2) ,  having a 
common variance a2. Explain how you will compute a confidence interval 
for p1 -p2 by the generalized confidence interval procedure. Show that the 
resulting confidence interval coincides with the usual student’s t confidence 
interval. 

1.5.9. Suppose random samples of sizes n1 and 722, respectively, are available 
from the independent normal populations N(p1 ,  a:) and N(p2,a,”). 

(a) Explain how you will compute a confidence interval for a: - a,” by the 
generalized confidence interval procedure and by the MLS procedure. 

(b) Explain how you will compute a confidence interval for a:/a,” by the 
generalized confidence interval procedure. Show that the resulting 
confidence interval coincides with the usual confidence interval based 
on an F distribution. 

1.5.10. Let YI and Y2 be independent random variables with Y,  - lognormal(p.i, as),  
i = 1,2. Based on random samples from the respective distributions, derive 
GPQs for computing a confidence interval for the ratio of the two lognor- 
mal means, and for the difference between the two lognormal means. 

[Krishnamoorthy and Mathew, 20031 

1.5.11. An oil refinery located at the northeast of San Francisco obtained 31 ob- 
servations on carbon monoxide levels from one of their stacks; the mea- 
surements were obtained between April 16 and May 16, 1993, and were 
submitted to the Bay Area Air Quality Management District (BAAQMD) 
for establishing a baseline. Nine independent measurements of the carbon 
monoxide concentration from the same stack were made by the BAAQMD 
personnel over the period from September 11, 1990 - March 30. 1993. 
Based on the data, it is decided to test if the refinery overestimated the 
carbon monoxide emissions (to setup a baseline at a higher level). The 
data are give below. 

Carbon Monoxide Measurements by the Refinery (in ppm) 
45 30 38 42 63 43 102 86 99 63 58 
34 37 55 58 153 75 58 36 59 43 102 
52 30 21 40 141 85 161 86 161 86 71 
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Carbon Monoxide Measurements by the BAAQMD (in ppni) 
12.5, 20, 4, 20, 2 5 ,  170, 15. 20, 15 

Based on normal probability plots of the log-transformed data, con- 
clude that lognormality can be assumed for the two samples. 
Compute a 95% generalized lower confidence limit for the ratio of the 
two lognormal means: the population mean carbon monoxide level 
for the measurements made by the refinery and for the measurements 
made by the BAAQMD. Use 10,000 simulated values of the GPQ to 
estimate the required percentile. 
Based on the lower confidence limit that you have computed, can 
you conclude that the refinery overestimated the carbon monoxide 
emissions? [Krishnamoorthy and Mathew, 20031 

1.5.12. Let X I ,  ..., X ,  be a sample from a N ( p ,  02)  distribution. Find 1 - Q Bon- 
ferroni simultaneous confidence intervals, simultaneously for p and 02. 

1.5.13. The following is a samplc from a N ( p ,  02)  distribution. 

-1.11 4.64 -1.14 -0.57 2.61 0.12 0.81 4.18 7.26 4.59 
1.90 2.79 2.44 3.74 2.70 4.09 1.42 1.80 -0.82 1.84 

For these data the mean J: = 2.165 and the standard deviation s = 2.225. 

(a) Construct a 95% confidence interval for p. 

(b) Construct a 95% confidence interval for cr2. 

(c) Using the result of Exercise 1.5.12, construct a 95% simultaneous 
confidence intervals for p and 02. 

(d) Compare the confidence intervals in parts (a) and (b) with the corre- 
sponding Bonferroni intervals. Explain, why the Bonferroni intervals 
are wider than the corresponding ones in parts (a) and (b). 

1.5.14. Let 21, ..., 2, be a sample from an exponential distribution with the pdf 
, 2 > p, p > 0, 8 > 0. The maximum likelihood estimators of p 

1 (2-w) 

$e 
and Q are given by 

8 

where Z(l) is the smallest of the Zi’s, and Z is the average of the 2~‘s .  
h 

(a) Show that ji and 8 are equivariant estimators. 
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(b) It is known that p and $are independent with 

ê  X L - 2  and - N -. @ - P I  N -  x; 
e 2 n  O 2n 

Using these distributional results find GPQs for p and 8. 
(c) Show that the 1 - a generalized confidence interval for p is given by 

where Fa,b;p denotes the p quantile of an F distribution with df = 

( a ,  b) .  

1.5.15. Let X I ,  ..., X n  be a sample from a Laplace distribution with the pdf 

- -oo<J :<oo ,  - -oo<u<-oo,  b > 0 ,  

where a is the location parameter and b is the scale parameter. 

(a) Show that the sample median is the MLE of a ,  and the MLE of b is 
h 

h n 
given by b = C IX, - a l .  

i=l 

(b) Show that the MLEs are equivariant. 

(c) Construct a GPQ for a, and obtain a 1 - a generalized confidence 

(d) Using Monte Carlo simulation, check if the coverage probabilities of 
interval for a. 

the confidence interval are close to the nominal level 1 - a. 



Chapter 2 

Univariate Normal Distribution 

2.1 Introduction 

The normal distribution is the most commonly used distribution in practical 
applications. Early work on the construction of tolerance limits due to Wilks 
(1941, 1942), Wald (1943) and Wald and Wolfowitz (1946) are all for the normal 
distribution. Exact methods for computing one-sided tolerance limits, two-sided 
tolerance intervals, and two-sided tolerance intervals controlling both tails, are 
available for the normal distribution. Factors for constructing tolerance intervals 
for normal distributions have been tabulated for a wide range of sample sizes, 
and software packages that compute tolerance factors are also available. Because 
of its popularity and applicability, normal based tolerance limits are routinely 
used in acceptance sampling plans and for setting tolerance specifications for 
engineering products. 

Note that normal based methods are applicable to a non-normal distribution 
if it has a one-one relation with a normal distribution. For example, if X follows 
a lognormal distribution, then ln(X) follows a normal distribution. Therefore, 
the approaches that we shall describe in the following sections can be used to 
construct tolerance intervals for a lognormal distribution as well. Specifically, if 
the data are from a lognormal distribution, then normal based methods for con- 
structing tolerance intervals can be used after taking logarithmic transformation 
of the data. 

In the following sections, we describe methods for constructing one-sided 
tolerance limits, two-sided tolerance intervals, and two-sided tolerance intervals 
controlling both tails, for a normal distribution. In addition, some approximate 
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methods for setting tolerance limits for the distribution of the difference between 
two independent normal random variables will be given. Also described are 
procedures for testing whether a specified proportion of the data are within 
tolerance specifications, and exact procedures for finding factors for simultaneous 
tolerance limits. 

2.2 One-sided Tolerance Limits for a Normal 
Population 

Let X I ,  ..., X ,  be a sample from a N ( p u ;  a2) population with unknown mean 1.1 

and unknown variance a2. The sample mean X and sample variance S2 are 
defined by 

n 1 ,  1 x = - X X i  and S2 = - c ( X i  - X ) 2 .  

In this section, we shall describe the coniputation of one-sided tolerance limits 
based on X and S2 for a normal population. 

n, - 1 i=l n 
i=l 

Let zp denote the p quantile of a standard normal distribution. Then the p 
quantile of N ( p ,  a’) is given by 

A 1 - a upper confidence limit for qp is a ( p :  1 - a )  one-sided upper tolerance 
limit for the normal population (see Section 1.2, Chapter 1). In most practical 
applications, an upper limit for qp is desired if p > .5 and a lower limit for qp is 
desired if p < .5. 

The Classical Approach 

We shall assume that the ( p ,  1 - a )  upper tolerance limit is of the forni X + k l S .  
The factor k l ,  referred to as a tolerance factor, is to be determined such that at 
least a proportion p of the population measurements are less than x + IClS with 
confidence 1 - a. That is, 

PX,,{P(X < x + IClSIX, S )  > p} = 1 - a ,  (2.2.1) 

x - p  where X - N ( p , a 2 ) .  Letting 2 = % - N ( 0 ,  I ) ,  2, = 0. - N (0, i), 
u2 = 2 X L l  , where & denotes a chi-square random variable with rn, df, we 

0 2  n-l 
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can write (2.2.1) as 

&,,I7 { P ( Z  < zn + k l U I ~ n ,  U )  > P> = pz,,,lJ { W Z n  + klU) > P> 
= 1 - a .  (2.2.2) 

As 2, - N (0, k) independently of U 2  - 9, we can apply Result 1.2.1(ii) of 
Chapter 1 with c = ;, y = 1 - a and m = n - 1, to get 1 

(2.2.3) 

where t,;+,(6) denotes the 1 - cy quantile of a noncentral t distribution with 
degrees of freedom m, and the noncentrality parameter 6. Thus, a ( p ,  1 - a) 
upper tolerance limit is given by 

1 
h = -tn , ; I - a b p f i ) ,  f i -  

(2.2.4) 

The same factor kl can be used to obtain ( p ,  1 - a) lower tolerance limit, and 
the limit is given by X - klS (see Exercise 2.6.1). 

S x + klS = x + t n - p - a ( z p f i ) - .  
fi 

The Generalized Variable Approach 

Since the computation of a ( p ,  1 - a )  upper tolerance limit for N ( p ,  02) is equiv- 
alent to the computation of a 1 - a upper confidence limit for qp = p + zpo,  
we shall now describe the generalized confidence interval approach for obtaining 
such a confidence limit. A generalized pivotal quantity (GPQ) for qp = p + z p o  
can be constructed as follows (see also Section 1.4 of Chapter 1). Let Z and 
s denote the observed values of x and S, respectively. That is, 2 and s are 
the numerical values of X and S based on an observed sample. A GPQ for 
qp = p + zpa is given by 

G,, = G,+zp& 
z s  S 

= Z+--+z, -  u f i  u 
z + z p f i  s 

= x +  u f i  
(2.2.5) 

where Z = &.E follows a standard normal distribution independently of U 2  = 

$ which is distributed as *, and G, and Ga2 are given in (1.4.8) and (1.4.13), 
2 

u l f i  
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respectively. These distributional results and a definition of the noncentral t 
variable are used to get the last step of the above equation from its preceding 
step. It can be easily verified that the GPQ in (2.2.5) satisfies both conditions 
in ((2.1) of Section 1.4. Specifically, using step 1 of (2.2.5), we see that the value 
of G, at ( X , S )  = ( 2 , s )  is qp, the parameter of interest. Furthermore, for a 
fixed value of (Z,s), the distribution of G,, does not depend on any unknown 
parameters. Thus, G,, is a GPQ for qp, and its percentiles can be used to 
construct confidence limits for qp.  In particular, the 1 - a quantile of G,, is 
given by 2 + t n - p - a ( z p f i ) s .  Thus, it follows from (2.2.4) that the generalized 
variable approach produces the same exact t,olerance limit. 

Tolerance factors for computing one-sided tolerance limits are given in Ta- 
ble B1, Appendix B, for values of p = 0.5,0.75,0.80,0.90,0.95,0.99 and 0.999, 
1 - a = 0.90,0.95 and 0.99, and n ranging from 2 to 1,000. 

Assessing a Survival or Exceedance Probability 

A 1 - a lower confidence limit for a survival probability St = P ( X  > t ) ,  where 
X is a normal random variable and t is a given number, can be readily obtained 
following the result of Section 1.1.3. In particular, a 1 - a lower confidence limit 
for St is the solution (with respect to  p )  of the equation 

(2.2.6) 

For a given sample size, p ,  1 - a, X ,  S and t ,  the value of p that satisfies (2.2.6) 
can be obtained by first solving for z p f i  and then solving the resulting equation 
for p .  The PC calculator that accompanies the book StutCulc by Krishnamoor- 
thy (2006) can be used to solve (2.2.6) for the noncentrality parameter z p f i .  
The quantity St is also referred to as an exceedance probability, since it is simply 
the probability that X exceeds a specified value t .  

For an alternate approach to obtain confidence limits for the exceedance 
probability, see Exercise 2.6.3. 

Example 2.1 (Assessing pollution level) 

One-sided upper tolerance limits are commonly used to assess the pollution 
level in a work place or in a region. In this example, we like to assess the 
air lead level in a laboratory. The data in Table 2.1 represent air lead levels 
collected by the National Institute of Occupational Safety and Health (NIOSH) 
at a laboratory, for health hazard evaluation. The air lead levels were collected 
from 15 different areas within the facility. 



2.2 One-sided Tolerance Limits for a Normal Population 29 

Table 2.1: Air lead levels (p9 /m3)  
200 120 15 7 8 6 48 61 
380 80 29 1000 350 1400 110 

A normal distribution fitted the log-transformed lead levels quite well (that 
is, the sample is from a lognormal distribution; see Section 7.2 for more de- 
tails). Therefore, we first compute an upper tolerance limit based on the log- 
transformed data in order to assess the maximum air lead level in the laboratory. 

The sample mean and standard deviation of the log-transformed data are 
computed as Z = 4.333 and s = 1.739. A (0.95, 0.90) upper tolerance limit for the 
air lead level (see (2.2.4)) is 3+k l s  = 4.333+2.329(1.739) = 8.383. The tolerance 
factor k1 = 2.329 is obtained from Table B1 (n  = 1 5 , l  - a = 0 . 9 0 , ~  = 0.95) in 
Appendix B. Thus, exp(8.383) = 4372 is a (0.95,0.90) upper tolerance limit for 
the air lead levels. The occupational exposure limit (OEL) for lead exposure set 
by the Occupational Safety and Health Administration (OSHA) is 50 p9/rn3.  
The work place is considered safe if an upper tolerance limit does not exceed 
the OEL. In this case, the upper limit of 4372 far exceeds the OEL; hence we 
can not conclude that the workplace is safe. 

To assess the probability that the lead level in a randomly chosen location 
exceeds the OEL, let us compute a 95% lower confidence limit for the exceedance 
probability P ( X  > OEL) = P ( X  > 50). Using the result of Section 1.1.3 of 
Chapter 1, we set the (p,O.95) lower tolerance limit equal to ln(50), and solve 
for p .  That is, a 95% lower confidence limit for P ( X  > 50) is the solution of 

1 1 
3 - - ~ , - I ; C I . ~ ~ ( % ~ & ) S  = 4.333 - - t 1 q 0 . g 5 ( z p f i )  x 1.739 = ln(50). 

fi J 1 5  

To solve the above equation, we first note that t 1 4 ; 0 . 9 5 ( ~ ~ ~ % )  = 0.9376. Now, 
using StatCaZc, we get zp\/15 = -0.7486 or p = 0.423. Thus, P ( X  > 50) is at 
least 0.423 with confidence 0.95. 

Tolerance intervals are in fact widely used for the purpose of environmental 
monitoring and assessment, and for exposure data analysis. For details, exam- 
ples and further applications, we refer to the books by Gibbons (1994), Gibbons 
and Coleman (2001) and Millard and Neerchal (2000). 
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2.3 Two-sided Tolerance Intervals 

Suppose that an item is acceptable for its intended purpose if an associated mea- 
surement falls in the interval (L l ,  Lu ) ,  where Ll and L, are, respectively, lower 
and upper specification limits. In general, engineering products are required 
to meet such specifications (see Example 2.4). If majority of the items (say, a 
proportion p )  in a lot satisfies this requirement, then the lot will be accepted. 
Acceptability of the lot can be determined using an appropriate two-sided tol- 
erance interval. For example, if a (0.95, 0.99) two-sided tolerance interval is 
contained in (Ll,  Lu)  then the lot may be accepted. This is because at least 95% 
of the items fall within the tolerance interval with a confidence of at least 99%, 
and the tolerance interval is contained in (Ll ,Lu) .  We now describe two meth- 
ods of constructing tolerance intervals that would contain at least a proportion 
p of a normal population with confidence level 1 - a. 

2.3.1 Tolerance Intervals 

The two-sided tolerance factor k2 is determined such that the interval X f k2S 
would contain at  least a proportion p of the normal population with confidence 
1 - Q. That is, k2 is to  be determined such that 

P x , ~  {Px(X  - k2S 5 X 5 X + kzSIX,  S )  2 p }  = 1 - Q, (2.3.1) 

where X N N ( p ,  02) independently of X and S.  The inner probability inequality 
can be expressed as 

I -  x - P  I X - , , + k 2 S )  > p  
CT o 

(ZTL + k2U) - @ (Zn - k2U) > p ,  (2.3.2) 

where @ denotes the standard normal cdf, 2, = 

of U 2  = 

- N (0, A) independently 
N $ with m = n - 1. Using (2.3.2), we can write (2.3.1) as 

Pz,,u (@(Zn + k2U) - @(Zn - k2U) > p )  = 1 - a. (2.3.3) 

Now applying Result 1.2.l(ii) of Section 1.2 with c = A, we see that k2 is the 
solution of the integral equation 
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Odeh (1978) has computed the exact tolerance factors k2 satisfying (2.3.4) for 
n = 2(1)98,100, p = 0.75,0.90,0.95, 0.975,0.99,0.995,0.999 and 1 - a  = 0.5,0.75, 
0.90,0.95,0.975,0.99,0.995. Weisberg and Beatty (1960) has also provided fac- 
tors for computing normal tolerance limits. Using a Fortran program, we corn- 
puted the tolerance factors k2 satisfying (2.3.4) for various values of 'n, for p = 

0.5, 0.75, 0.80, 0.90, 0.95, 0.99, 0.999 and for 1 - a = 0.90,0.95,0.99. The ap- 
proximate tolerance factor given in (2.3.5) is used as an initial value for finding 
the root of the equation (2.3.4) by an iterative method. These exact tolerance 
factors are given in Table B2, Appendix B. 

Remark 2.3.1 There are situations where the degrees of freedom m is not 
necessarily equal to n - 1. For example, in a one-way analysis of variance with 
1 groups and sample sizes n1, ..., 7x1, the degrees of freedom associated with the 
pooled variance is m = N - 1, where N = Cf=, ni. If it is desired to find a 
( p ,  1 - a )  tolerance interval for a particular group, say the first group, then 
the required tolerance factor k2 satisfies (2.3.4) with n = n1 and m = N - 1. 
The PC calculator StatCalc (Krishnamoorthy, 2006) computes the two-sided 
tolerance factor for a given sample size n and the df m associated with the 
sample variance. 

An Approximation 

Although exact two-sided tolerance factors can be obtained from various sources 
or can be computed using a computer, it is still worthwhile to point out a simple 
and satisfactory approximation. Using Result 1.2.1 (iii) of Chapter 1 (with c = A 
and y = 1 - a ) ,  we can approximate k2 as 

(2.3.5) 

where x:rL;a denotes the QI quantile of a chi-square distribution with df m, and 
x:;,(S) denotes the Q quantile of a noncentral chi-square distribution with df 
m and noncentrality parameter 6 .  

The above approximation is known to be very satisfactory even for sample 
size as small as 3 provided p and 1 - cy take values from the set {0.9,0.95,0.99}. 
However, to demonstrate its accuracy, we computed the exact tolerance factors 
satisfying (2.3.4) and the approximate ones given in (2.3.5) for n = 3(1)10, 
p = 0.90,0.95,0.99 and 1 - a = 0.90,0.95. These values are given in Table 
2.2. We observe from the table values that the approximation is, in general, 
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satisfactory even for very small samples. If n 2 10, the differences between the 
exact tolerance factors and the corresponding approximate ones exceed 0.01 only 
in a few cases. Furthermore, as already mentioned, these approximate values 
can be used as initial values to compute the exact tolerance factors satisfying 
(2.3.4). 

Table 2.2: Approximate two-sided tolerance factor given in (2.3.5) and the exact 
factor satisfying (2.3.4); a = approximate; b = exact 

1 - cy = 0.90 1 - a = 0.95 
P P 

0.90 0.95 0.99 0.90 0.95 0.99 
n a b  a b  a b  a b  a b a b  
3 5.85 5.79 6.92 6.82 8.97 8.82 8.38 8.31 9.92 9.79 12.9 12.7 
4 4.17 4.16 4.94 4.91 6.44 6.37 5.37 5.37 6.37 6.34 8.30 8.22 
5 3.49 3.50 4.15 4.14 5.42 5.39 4.28 4.29 5.08 5.08 6.63 6.60 
6 3.13 3.14 3.72 3.72 4.87 4.85 3.71 3.73 4.41 4.42 5.78 5.76 
7 2.90 2.91 3.45 3.46 4.52 4.50 3.37 3.39 4.01 4.02 5.25 5.24 
8 2.74 2.75 3.26 3.27 4.27 4.27 3.14 3.16 3.73 3.75 4.89 4.89 
9 2.63 2.64 3.13 3.13 4.10 4.09 2.97 2.99 3.53 3.55 4.63 4.63 
10 2.55 2.55 3.02 3.03 3.96 3.96 2.84 2.86 3.38 3.39 4.43 4.44 

Example 2.2 (Filling machine monitoring) 

A machine is set to fill a liter of milk in plastic containers. At the end of a 
shift operation, a sample of 20 containers was selected, and the actual amount 
of milk in each container was measured using an accurate method. The accurate 
measurements are given in Table 2.3. 

Table 2.3: Actual amount of milk (in liters) in containers 
0.968 0.982 1.030 1.003 1.046 1.020 0.997 1.010 1.027 1.010 
0.973 1.000 1.044 0.995 1.020 0.993 0.984 0.981 0.997 0.992 

To assess the accuracy of the filling machine, we like to compute a two-sided 
tolerance interval using the data in Table 2.3. The sample statistics are 3 = 

1.0036 and s = 0.0221085. Using these statistics, let us compute a (0.99,0.95) 
two-sided tolerance interval. For this, we get the tolerance factor Ic2 satisfying 
(2.3.4) from Table B2, Appendix B, as 3.621 (use n = 20, p = .99, 1 - ai = .95). 
The tolerance interval is 2 f kzs  = 1.0036 f 3.621(0.0221085) = 1.0036 & 0.0801. 
Thus, at least 99% of containers are filled with amount of milk in the range 
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0.9235 to 1.0837 liters with confidence 0.95. 

2.3.2 Equal-Tailed Tolerance Intervals for a Normal 
Distribution 

We now describe a method of constructing a tolerance interval ( I l ,  I U )  that would 
contain at least l00pYO of the “center data” of a normal population with 1 - a 
confidence. That is, the interval ( I l ,  I,) is constructed using a sample such that 
at most a proportion of the normal data are less than Il arid at most a 
proportion 9 of the normal data  are above I,, with confidence 1 - a. As 
argued in Section 1.1.2 of Chapter 1, this amounts to  finding the interval ( I l ,  I u )  
such that it would contain the interval with confidence 
1 - a. Based on this form of the “population interval”, a natural choice for 
(Il ,  I,) is (X - k,S, X + keS) ,  where k ,  is to be determined such that 

P Z , ~  (X - k,S < p - 2-0 and p + z1+1,o < X + k,S = 1 - a. 

p - zl+po, p + zl+po 
( 2  2 )  

(2.3.6) 

After standardizing X and rearranging the terms, we see that (2.3.6) is equiva- 
lent to 

1 

where Z = 

these quantities, we see that (2.3.7) can be expressed as 
N N ( 0 , l ) .  Let 6 = fi x z l+p ,  and U 2  = g. In terms of 

P z , ~  ( Z  < -6 + ke/‘GU and 2 > 6 - ke&U) = 1 - a. (2.3.8) 

Notice that the inequalities in the above probability statement holds only if 
6 - k e f i U  < -6 + ke&iU or equivalently U 2  > G. 62 Thus, (2.3.8) can be 
expressed as 

6 -  k,/‘GU < Z < - 6 +  k e f i U  = 1 - a ,  (2.3.9) 

where EU denotes the expectation with respect to the distribution of U .  Because 
U 2  N s, it follows from (2.3.9) that k ,  is the solution of the integral equation 

2 

(2.3.10) 
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where a(.) denotes the standard normal distribution function. To get (2.3.10) 
from (2.3.9), we have used the relation a(.) = 1 - a(-.). 

Owen (1964) computed k ,  satisfying (2.3.10) for p = 0.8,0.90,0.95.0.98, 
1 - cy = 0.90 and for various values of n. We used a numerical integra- 
tion procedure and a root finding method to compute the values of k ,  sat- 
isfying (2.3.10). The one-sided tolerance factor t n - p - c y  ( z y f i ) ,  given in 
2.2.3, was used as an initial value to find the root of (2.3.10). The exact 
values of k ,  are presented in Table B3, Appendix B for various values of n, 
p = 0.5,0.75,0.80,0.90,0.95,0.99,0.999, and 1 - a = 0.90,0.95,0.99. 

Example 2.2 (continued) 

To compute the equal-tailed (0.99, 0.95) tolerance interval using the data 
given in Example 2.2, we find the tolerance factor k ,  satisfying (2.3.10) from 
Table B3, Appendix B as 3.812. This gives the equal-tailed interval Z f Ices = 

1.0036 f 3.812(0.0221085) = 1.0036 f 0.0843. This means that, with SrY o con- 
fidence, no more than 0.5% of containers are filled with less than 0.9193 liters 
of milk, and no more than 0.5% of containers are filled with more than 1.0880 
liters of milk. 

2.3.3 Simultaneous Hypothesis Testing about Normal Quantiles 

Owen (1964) proposed an ‘acceptance sampling plan in which a lot will be ac- 
cepted if the sample data provide sufficient evidence to indicate that no more 
than a proportion 9 of items’ characteristics are less than L1 and no more than 
a proportion 2 of items’ characteristics are greater than L,. Notice that this 
latter acceptance sampling plan not only demands that at least a proportion p of 
the items are within specification limits but also puts a limit on the proportion 
of defective items in a single tail of the distribution. If normality is assumed, 
then the lot will be accepted if we have sample evidence indicating that 

L1 < p - 2-0 and p + zl+pa < L,. 
2 2 

In a hypothesis testing set up, we have 

H o : L l L p - z - a  or p + z y a L L ,  
2 

vs. Ha : Ll < p - z l f p o  and p + z*a < L,. 

The lot is not acceptable if Ho is true. That is, the lot is not acceptable if either 
p - z w a  5 L1 or L, 5 p + 2-0. The acceptance sampling plan has to be 

2 2 

2 2 
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designed such that the probability of accepting a non-acceptable lot (rejecting 
Ho when it is true) should not exceed a, where a usually ranges from 0.01 to 
0.1. 

We see from the above sampling plan that the null hypothesis will be rejected 
at the level of significance a if 

Ll 5 x - k h s  and x + k!,S 5 L,, 

where the critical value kh is to  be determined so that 

supHoP ( X  - k h s  2 Ll and X + khS 5 L,/Ho) = a. (2.3.11) 

Note that the supremum in the above equation is attained at  Ll = p - z i + , o  
and L, = p + z-o. Because the equations Ll = p - z i  g and L,, = p + zl+pg 

uniquely determine p and g, (2.3.11) is equivalent to  

+ 
2 -P 2 

P ( X -  k h s  > p-z+o  and X + k h S  < p+zzl+po) = a .  
2 

Letting 2, = % - N (0, i), the above equation can be expressed as 

(2.3.12) 

Proceeding as in the derivation of equal-tailed tolerance interval (see Section 
2.3.2), we see that the factor kh is the solution of the integral equation 

where S = fi x z*. 
2 

Owen (1964) computed the values of kh satisfying (2.3.13) for p = 0.8, 0.90, 
0.95, 0.98, a = .10 and for various values of n. Krishnamoorthy and Mathew 
(2002a) considered the above hypothesis testing problem in a different appli- 
cation (see Example 2.5), and provided tables for p = 0.90, 0.95, 0.99, 0.999, 
a = 0.01, 0.05, 0.10, and for various values of n. We used a Fortran program 
to compute the values of kh satisfying (2.3.13). The one-sided tolerance factor 
t , - ~ . l - ~  (z+fi) given in (2.2.3) was used as an initial value to  find the root 
of (2.3.13). The exact critical values kh are presented in Table B4, Appendix B, 
for p = 0.70, 0.80, 0.90, 0.95, 0.98, 0.99, a = 0.01, 0.05, 0.10, and for various 
values of n. Our table values are in complete agreement with those in Owen 
(1964). 



36 2 Univariate Normal Distribution 

Example 2.4 (Shaft diameters) 

The quality assurance department of an engineering product manufacturing 
company wants to check the proportion of shafts (with basic size 1.5 inch; the 
housing hole diameter at least 1.5 inch) that are within the tolerance specification 
(1.4968, 1.4985)*. A sample of n = 24 shafts was selected randomly, and the 
diameters were measured. The data are given in Table 2.4. The data satisfy 

Table 2.4: Shaft diameters 
1.4970 1.4972 1.4970 1.4973 1.4979 1.4978 1.4974 1.4975 
1.4981 1.4980 1.4981 1.4984 1.4972 1.4979 1.4974 1.4968 
1.4978 1.4973 1.4973 1.4974 1.4974 1.4987 1.4973 1.4971 

the normality assumption (Minitab, default method). The sample mean Z = 

1.497555 and the sample standard deviation s = 0.000476. We shall apply the 
testing method in Section 2.3.3 to see if at least 95% of the shafts are within the 
specifications. That is, we want to test 

Ho : 1.4968 2 p - 2-u or p + z ~ u  2 1.4985 
2 2 

vs. Ha : 1.4968 < p - 2-0 and p + 2-u < 1.4985. 

If we use the nominal level a = 0.05, then the necessary factor kj, from Table 
B4, Appendix B, is 2.424. Using this factor, we have 3 - khs  = 1.4964 and 
Z f k h S  = 1.4988. Because these two limits are not within the specification limits, 
we cannot conclude that 95% of the shafts are within the tolerance specification. 
On the other hand, if we take p = 0.80, then kh = 1.543, ..7: - khS = 1.4969 and 
Z + khs = 1.4983. Since (1.4969,1.4983) is within the tolerance specification 
(1.4968, 1.4985), we can conclude that no more than 10% of the shafts are 
below the lower tolerance specification of 1.4968, and no more than 10% of the 
shafts are above the upper tolerance specification of 1.4985. 

2 2 

The preceding simultaneous hypothesis testing about quantiles can he used 
to show whether a new measuring device is equivalent to the standard device 
approved by a government or regulatory agency. For example, the occupational 
safety and health administration (OSHA) regulations allow the use of an al- 
ternate sampling device for exposure monitoring, provided the device has been 
demonstrated to be equivalent to the standard device. Typically, the OSHA 
criterion is that 90% of the readings of the sampling device should be within 
plus or minus 25% of the readings obtained by the standard device. Assum- 
ing bivariate lognormal distribution for the measurements, Krishnamoort hy and 

* http://www.engineersedge.com/ 
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Mathew (2002a) showed that the simultaneous hypothesis testing method can 
be used to establish the equivalency of the devices based on the OSHA criterion. 
Their solution is given below for an example. 

Example 2.5 (Equivalency of sampling devices) 

This example is concerned with establishing equivalency of a new cotton dust 
sampler (ND) to a standard sampler called Vertical Elutriator (VE) with respect 
to the OSHA criterion described above. A sample of 60 readings was taken using 
both devices side-by-side from four different sites, and the data were analyzed 
by Rockette and Wadsworth (1985) and Krishnamoorthy a.nd Alathew (2002a). 
For the sake of illustration, we use a subset of 20 pairs of readings from the full 
data set in Rockette and Watlsworth (1985), and they are given in Table 2.5. 
Let X and Y, respectively, be random variables denoting the readings using ND 
and VE. Assume that (X ,Y)  follows a bivariate lognormal distribution. The 
above requirement amounts to testing 

H” : 8 5 0.90 vs. Ha : 8 > 0.90, (2.3.14) 

where 

= P (ln(0.75) 5 ln(X) - ln(Y) I ln(1.25)) 

Let (Xi, Y ; ) ,  i = 1, ...) n, denote a random sample of n measurements on (X, Y ) ,  
and let Di = ln(Xi) - ln(Y,). Notice that Di follows a normal distribution, say 
N(pdr 0’). Instead of (2.3.14) consider the testing problem 

Ho : ln(.75) 2 ,ud - zl+pn or p d  + zl+po 2 ln(1.25) 

Ha : ln(.75) < pd  - 2-0 and pd + 2-0 < ln(1.25). 
2 2 

vs. (2.3.15) 

where p = 0.90. Notice that Ha in (2.3.14) holds if Ha in (2.3.15) holds. Thus 
the null hypothesis in (2.3.14) will be rejected if Ho in (2.3.15) is rejected. Let 
D and s d  denote the mean and the standard deviation among the Di’s. These 
quantities have the observed values D = 0.0042 and s d  = 0.0545. El-om Table 
B4 in Appendix B, we get the critical value ktb = 2.448 (corresponding to n = 

20,p = 0.90 and Q = 0.05). Hence D-khsd  = 0.0042-2.488(0.0545) = -0.1314 
and D + k h s d  = 0.1380. Thus, we have ln(0.75) = -0.2877 < -0.1314 and 
0.1380 < 0.2231 = ln(1.25). So we reject the null hypothesis at level 0.05, and 
conclude that at least 90% of the readings of the ND are within plus or minus 
25% of the readings obtained by the VE. 

2 2 
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ND VE D 
72 75 -.0408 
79 74 ,0654 
93 89 ,0440 
72 78 .0800 
84 82 .0241 

110 118 -.0702 
132 140 -.I3588 
130 125 .0392 

134 129 .0380 
120 125 -.0408 

2 Univariate Normal Distribution 

ND VE D 
230 250 -.0834 
305 270 ,1219 
287 285 ,0070 
329 320 .0277 
305 320 -.0480 
495 480 ,0308 
640 620 .0317 
536 525 .0207 

560 547 .0235 
630 610 .0323 

Remark 2.3.2 We would like to point out that the tolerance intervals computed 
in this section (and throughout this chapter) are based on simple random samples 
from the normal distribution. We refer to Mee (1989) for the computation of 
tolerance intervals based on a stratified random sample, under the assumption 
that the variable of interest is normally distributed within each stratum, where 
the stratum means could be different, but the stratum variances are equal. 

2.4 One-sided Tolerance Limits for the Distribution 
of the Difference Between Two Independent 
Normal Random Variables 

Let X I  - N ( p 1 , o f )  independently of X2 - N(p2 ,o ; ) ,  where ( p l , p 2 )  and 
(o4,a;) are unknown means and unknown variances, respectively. Let z, de- 
note the p quantile of a standard normal distribution, and let 

Lp = p1 - p2 - .,do! + a; = p1 - p2 + z1-,\io: + a;. (2.4.1) 

Note that L, is the 1 - p  quantile (that is, the lower p quantile) of the distribu- 
tion of X1 - X2. Therefore, a ( p ,  1 - a )  lower tolerance limit for the distribution 
of X1 - X2 is a 1 - a lower confidence limit for L,. An exact method of con- 
structing confidence limits for L, is available only when the variance ratio -+ is 
known. If the variances are unknown and arbitrary, some satisfactory approxi- 
mate methods are available. In the following section, we shall describe an exact 
method of constructing a lower tolerance limit when the variance ratio 3 is 

U2 

c 2  

“ 2  
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known. Other approximate methods for constructing tolerance limits when the 
variances are unknown and arbitrary will be described subsequently. 

Let X i  and S:, respectively, denote the mean and variance of a random 
sample of ni observations from N(pi ,a: ) ,  i = 1,2 .  Under the independence 
assumption in the preceding paragraph, the summary statist,ics XI, x2, S: 
and ,922 are all independent. In the following, we describe the computation of 
tolerance limits for X1 - X2 based on these summary statistics. 

2.4.1 Exact One-sided Tolerance Limits for the Distribution of 
XI - X 2  When the Variance Ratio Is Known 

The method of constructing an exact one-sided lower tolerance limit, when the 
variance ratio $ is known, is due to  Hall (1984). Let q1 = $ be known, and 

0 2  g 2  

define 

(2.4.2) 

Notice that 
(nl + 122 - 2)s; - (nl - 1)s: + (n2 - 1)s; 

and it follows a chi-square distribution with degrees of freedom n1 + n2 - 2, 
independently of XI - X 2 .  Also, we can write 

- 

fl; + 0; 4 4 , 

(2.4.3) = Z + z,&, where v1 = 

with L, as given in (2.4.1) and Z = xl-xzr('lrm) - N(0,l) .  Using (2.4.2) and 

(2.4.3), it can be easily verified that the pivotal quantity 

x, - x z  - L, 

&In1 + .,"In2 

n1(1 + (21) 

q 1 +  n1In2 ' 

Jal/nl t a$ /nz  

(2.4.4) 
X I  - x 2  - L, + z p f i  

rw 

Sd fidx:l+nz-2/(n1+ 722 - 2) 

Because Z defined above is independent of the chi-square random variable 
(nl+n2-2)S: ,  we have 
4 +4 

(2.4.5) 

Thus, using the above exact distributional result, we get a 1 -a  lower confidence 
limit for L, as 

- ~ 

(2.4.6) 
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which is an exact ( p ,  1 - a )  lower tolerance limit for the distribution of 
X1 - X2. Here v1 is defined in (2.4.3). An exact one-sided upper tolerance 
limit can be obtained by replacing the negative sign (preceding the noncentral 
t critical value) in (2.4.6) by the positive sign. 

2.4.2 One-sided Tolerance Limits for the Distribution of X I  -X2 

When the Variance Ratio Is Unknown 

U 2  

0 2  
If the variance ratio q1 = -+ is unknown, an approximate tolerance limit can be 
obtained by substituting an estimate for v1 in (2.4.3). This approximate limit 
is, in general, too liberal (actual coverage probability can be much less than the 
specified confidence level). Therefore, in the following we shall present Hall’s 
(1984) alternative approximate approach. 

Hall’s Approach 

Using the Satterthwaite approximation given in Result 1.2.2, it can be shown 
that 

. (2.4.7) bl - N 4 l  + , approximately, where f l  = 
s: +s; x;, 
a: +a; - fi (I: + (n1 - l>/(n2 - 1) 

Using this approximation, and proceeding as in Section (2.4.1)> it can be shown 
that 

approximately, ( 2.4.8) 

where v1 is given in (2.4.3). Because 

lower confidence limit for L, as 

$ 

(72 
Notice that both v1 and f1 involve the unknown variance ratio 41 = 3. To get 

s?(nz-3) an approximate limit, Hall suggested using the unbiased estimator ;i; = s,2(n,2-1) 

for 41. Plugging this estimator of q1 in (2.4.3) and in (2.4.7), we get estimators 
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h 

GI of u1 and f1 of fl. Using these estimators, Hall’s approximate lower tolerance 
limit for the distribution of XI - X2 can be expressed as 

(2.4.9) 

A ( p ,  1 - a )  upper tolerance limit can be obtained by replacing the minus sign 
preceding the tolerance factor by the plus sign. 

Reiser and Guttman (1986) considered the problem of constructing tolerance 
limits for the distribution of XI - X2 in the context of stress-strength reliability 
(see Section 2.4.5). The solution given in their paper is essentially Hall’s solution 
given above, except that the variance ratio 41 = CJ?/O,” is estimated by c = 8. Notice tha,t c i s  a biased estimator of 41. Using this estimator, we get an 
approximate ( p ,  1 - a )  lower tolerance limit for the distribution of X1 - X2 as 

(2.4.10) 

where G is v1 in (2.4.3) with 41 replaced by $, and f̂  is f l  in (2.4.7) with q1 
replaced by c. 

Guo-Krishnamoorthy Approach 

Guo and Krishnamoorthy (2004) observed that Hall’s (1984) tolera.nce limits 
depend on the definition of the variance ratio. Specifically, if the variance ratio 
is defined as 42 = q, and it is estimated by T2 = m, then the one-sided 
lower tolerance limit based on Hall’s method is given by 

SZ(n1-3) 
01 

where 

(2.4.11) 

It is clear that the lower tolerance limit in (2.4.11) is different from the one in 
(2.4.9). Guo and Krishnamoorthy (2004) found via simulation studies that if one 
of the limits is too liberal for a sample size and parameter configuration, then 
the other limit is satisfactory at the same configuration. This finding suggests 
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that the tolerance limit given by 

(i.4.12) 
where D = XI - X 2 ,  can be a better lower tolerance limit in terms of coverage 
probabilities. 

The Generalized Variable Approach 

Let ( Z ~ , S ? , Z ~ , S ; )  be an observed value of (X1,SfrX2,Si ) .  A GPQ for the 
interval estimation of L, can be constructed similar to the one-sample case 
given in Section 2.2, and is given by 

(2.4.13) 

* Y n  - 1  where d = 51 - 5 2  and Z is a standard normal random variable, U: = % - 22 
cTz n,-1 ’ 

i = 1,2 ,  and all these random variables are mutually independent. We see from 
the first step of (2.4.13) that the value of GL, at (XI, Sf, X 2 ,  S,”) = (Z1, sy, T2, s;)  
is L, in (2.4.1), the parameter of interest. For fixed (51, sy, Z2, s;) ,  it is clear from 
step 2 of (2.4.13) that the distribution of GL, is free of any unknown parameters. 
Thus, GL, satisfies the required two conditions in ((3.1) of Section 1.4 for it to 
be a valid GPQ, and its percentiles can be used to construct confidence limits 
for L,. 

Since for fixed (51, s?, 3 2 ,  s z ) ,  the distribution of GL, does not depend on any 
unknown parameters, its percentiles can be estimated using Monte Carlo simula- 
tion. This simulation essentially involves generation of random numbers from the 
standard normal distribution, xil-l distribution and distribution. Even 
though Weerahandi and Johnson (1992) provided a numerical method of com- 
puting the exact percentiles in a related problem, our own investigation showed 
that Monte Carlo method is easy to use and produces results (if the number of 
simulation runs is 100,000 or more) which are practically the same as the ones 
due to the exact numerical method. This generalized variable approach is often 
too conservative when the sample sizes are small, even if the exact percentiles 
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are used. Comparison of the different tolerance factors given above is discussed 
in Section 2.4.4. 

2.4.3 Hypothesis Testing About the Quantiles of XI - X 2  

There are some applications where it is of interest to test hypotheses concerning 
the quantiles of X I  - X z  (see Section 2.4.5). The confidence limits for L, = 

p1 - p2 - z p d w  given in the preceding sections can be used to carry out a 
test at a fixed level a. In practice, one may be interested in computing p-values 
for testing the hypotheses 

Ho : L, I: L,, VS. Ha : L, > L,,, (2.4.14) 

2 where L,, is a specified value of L,. Assume that the variance ratio 41 = 3 
“2 

is unknown. Let (31, s:, 2 2 ,  s$ )  be an observed value of (XI, S;, X 2 ,  S,”). Then, 
the p-value for testing the above hypotheses based on Hall’s (1984) approach is 
given by 

(2.4.15) 

As pointed out in Guo and Krishnamoorthy (2004), the test based on the above 
p-value has larger (than the nominal level) Type-I error rates when the sample 
sizes are small and/or they are drastically different. These authors suggested 
using the following approach motivated by (2.4.12), which controls t,he Type-I 
error rates satisfactorily. Define 

(2.4.16) 

where 6 and C2 are as defined in (2.4.11). The test that rejects Ho whenever 

max(P1,Pz) < (2.4.17) 

has better size properties than the one based on the p-value in (2.4.15). 

Tests for an upper quantile Up = yl - pup + z p d m ,  p > .5, can be 
developed similarly. For example, for testing 

Ho : Up 2 Up,, VS. Ha : Up < Up,, (2.4.18) 

the p-value based on Hall’s (1984) approach is given by 

(2.4.19) 
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In this case, Guo and Krishnamoorthy’s (2004) approach rejects Ho in (2.4.18) 
when 

Inin{P;,P;) < Q, (2.4.20) 

where p ;  has an expression similar to the p-value in (2.4.19) with ( f l :  P I )  replaced 
h 

by (6, C2). 

We mainly addressed left-tail test for an upper quantile Up, and right-tail test 
for a lower quantile L,, because these are the tests most relevant in practical 
applications. However, tests for other hypotheses (e.g., right-tail test for an 
upper quantile of X1 - X z )  can be developed easily using the arguments given 
above. 

To describe the generalized variable approach, we first note that the gener- 
alized test variable for testing (2.4.14) is given by 

where GL, is given in (2.4.13). Notice that given the observed data, the gen- 
eralized test variable is stochastically decreasing in L,, and so the generalized 
p-value is given by 

SUP P ( T ~ ,  < 0) = P (GL, > Lpo) . 
HO 

(2.4.21) 

The test rejects the null hypothesis in (2.4.14) whenever the above generalized 
p-value is less than a. 

2.4.4 Comparison of the Approximate Methods for Making 
Inference about Quantiles of X I  - X2 

Guo and Krishnamoorthy (2004) studied the validity of the approximate meth- 
ods and the generalized variable method considered in the preceding sections 
using Monte Carlo simulation. Their studies showed that, in general, the meth- 
ods due to Hall (1984) and Reiser and Guttman (1986) are liberal (the sizes of 
the tests are larger than the nominal; the coverage probabilities of the confidence 
limits are smaller than the nominal confidence level) when the sample sizes are 
small and/or they are drastically different. These approaches maybe used only 
when the sample sizes are large and close to each other. 

Between the approach due to Guo and Krishnarnoorthy (2004) and the gen- 
eralized variable method, the former is preferable to the latter when the sample 
sizes are close to each other. For moderate samples, generalized variable method 
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produces results that are very conservative. If both sample sizes are at least, 5, 
and their ratio is between 0.7 and 1.4, then the sizes of the tests based on the 
suggestion by Guo and Krishnamoorthy are very close to the nominal level. The 
generalized variable approach can be recommended for practical use if the ratio 
of the sample sizes is less than 0.7 or greater than 1.4 and both samples are at 
least 15. We would like to caution the readers that when applied t,o practical 
data, the different approaches can lead to very different results and conclusions; 
see Example 2.6 below. Thus it is important to follow the recommendations 
given above, and use the appropriate approach. 

2.4.5 Applications of Tolerance Limits for X1-X2  with Examples 

In some practical situations we need to estimate the proportion of times one 
random variable assumes a larger value than another independent random vari- 
able. For example, the classical stress-strength reliability problem concerns the 
proportion of times the strength X1 of a component exceeds the stress X2 to 
which it is subjected. The component works as long as X1 > X2. The reliabil- 
ity parameter is defined by R = P(X1  > X2) .  To assess the reliability of the 
component, inference on R is desired. Suppose we are interested in testing 

(2.4.22) 

where p is a specified probability. usually close to one. Because 
R = P(X1 - X2 > 0 )  > p holds if and only if the p lower quantile L, of 
X I  - X2 is greater than zero, the above testing problem is equivalent to testing 
Ho : L, 5 0 vs Ha : L, > 0. A test for the latter consists of rejecting Ho when 
a ( p ,  1 - a)  lower tolerance limit for the distribution of X1 - X2 is greater than 
zero. 

Tolerance limits for the distribution of X I  - X2 can also be used to establish 
the equivalence of two treatments or to establish superiority of one treatment 
over another. For example, let X1 and X2,  respectively, denote the response 
times of treatments 1 and 2. If P(X1 > X2)  > p ,  where p E (5 ,  l),  then 
treatment 2 may be considered superior to treatment 1. 

If it is assumed that X1 and X2 are independent normal random variables, 
then the results given in Sections 2.4.2 and 2.4.3 can be readily applied to the 
aforementioned practical problems. Furthermore, as shown in Section 1.1.3 of 
Chapter 1, a 1 - a! lower confidence limit for the reliability parameter can be 
deduced from a lower tolerance limit for the distribution of X I  -X2. For example, 
based on Hall’s (1984) lower tolerance limit given in (2.4.9), a 1 - a lower limit 



46 2 Univariate Normal Distribution 

for R is given by 

For a fixed degrees of freedom and 1 -a ,  the nonceritral t percentile is increasing 
with respect to  the noncentrality parameter (equivalently, with respect to p ) ;  
thus the lower tolerance limit is decreasing with increasing p ,  and p* is the 
unique solut,ion (with respect to p )  of the equation 

For given sample sizes and for a given value of (31, sy, 2 2 ,  s?),  (2.4.24) can be 
solved numerically for p (see Example 2.6). The root p* is the 1 - (Y lower 
confidence limit for R based on Hall’s (1984) lower tolerance limit in (2.4.9). 

Example 2.6 (Simulated data) 

We use the following simulated data (Table 2.6) from two normal distri- 
butions to show that the results based on the different methods described in 
the preceding sections could lead to very different conclusions. Suppose we are 

Table 2.6: Simulated data from normal distributions 
X i :  10.166 5.889 8.258 7.303 8.757 

X2: -0.204 2.578 1.182 1.892 0.786 -0.517 1.156 
0.980 0.323 0.437 0.397 0.050 0.812 0.720 

interested in hypothesis testing and interval estimation of the 0.01 quantile of 
X I  - X2, which is p1 - p2 - z , g g d m ,  where 2.99 = 2.3264. The summary 
statistics are 21 = 8.075, sz = 2.561, 22 = 0.7564 and s? = 0.6512. Other 
quantities are 

h 

= 3.328, fi = 6.582, 51 = 6.502, 
F2 = 0.1271, f2 = 5.056, $2 = 7.418, 

h 

A 

?= 3.933, f = 6.170, and 5 = 6.271 

Given below are the (0.99,0.90) lower tolerance limits for the distribution of 
X I  - X2,  based on the different approaches. 
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Hall’s Tolerance Limit in (2.4.9): 

7.318 - t6.582;.90(5.932) X 0.7028 = 7.318 - 9.878 X 0.7028 = 0.376. 

Hall’s Tolerance Limit an (2.4.11): 

7.318 - t5.056;.90(6.336) X 0.6580 = 7.318 - 11.437 x 0.6580 = -0.208. 

Reiser and Guttman’s Limit in (2.4.10): 

7.318 - t6.170;.90(5.826) x 0.7157 = 7.318 - 9.899 x 0.7157 = 0.233. 

Notice that the tolerance limits are quite different. Specifically, if Hall’s ap- 
proach with variance ratio defined as q1 = 3 is used, then the (0.99, 0.90) 
lower tolerance limit is 0.376. Since the limit is positive, we conclude that the 
reliability parameter R = P(X1 > X2)  is at least 0.99 at the level 0.10. On the 
other hand, if the variance ratio is defined as q2 = 3) then the lower tolerance 
limits is -0.208, and based on this value we can not conclude that R > .99. 

0 2  

Cl 

If Guo and Krishnamoorthy’s (2004) approach is used, then the (0.99,0.90) 
lower tolerance limit is given by min(0.376, -0.208} = -0.208. 

Suppose we want to test 

Ho : p1 - p2 - z.gg Jm 5 O vs. Ha : p1 - p2 - z.99 d--- CT? + 022 > 0. 

If the variance ratio is defined as q1 = 3, then the p-value based on Hall’s 
method is given by 

0 2  If the variance ratio is defined as q2 = -$, then the p-value is given by 

The p-value of the Reiser and Guttman’s approach is given by 

= P(t6,170(5.826) > 10.225) = 0.0869. 
&(21 - 2 2 )  

&-q 
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Notice again that the conclusions based on Hall's (1984) tests depend on the 
definition of the variance ratio. 

Example 2.7 (Breakdown voltage - power supply) 

This example, taken from Hall (1984), is concerned with the proportion of 
times the breakdown voltage X1 of a capacitor exceeds the voltage output. X2 of 
a transverter (power supply). A sample of n1 = 50 capacitors yielded 21 = 6.75 
kV and s: = 0.123. The voltage output from n2 = 20 transverters produced 
3 2  = 4.00 kV and si = 0.53. We have 21 - 22 = 2.75. Using the methods 
in Section 2.4.2, we shall compute a (0.95, 0.95) lower tolerance limit for the 
distribution of X1 - X2. We computed the required quantities as shown below: 

h 

= 0.2077, 51 = 22.3007, fl = 27.2543, 
h 

F2 = 4.1331, 52 = 22.6471, f2 = 28.6559 and 2.95 = 1.6449. 

Hall's Tolerance Limit  Based on the Variance Ratio 3 
(72 

= 2.75 - 10.7169Jo-0293 
= 0.9156. 

Hall's Tolerance Limit  Based on the Variance Ratio $ 
"1 

= 2.75 - 10.7293Jo288 
= 0.9292. 

The 95% lower limit for the reliability parameter R = P ( X 1  > X,) based 
on the tolerance limit 0.9156 is given by the solution (with respect to p )  of the 
equation 

Solving this equation, we get zp  = 2.5560 which yields p = 0.9947. The 95% 
lower limit for R based on the tolerance limit 0.9292 is given by the equ a t ' ion 



2.4 Tolerance Limits for X1 - X2 49 

The above equation yields zp = 2.5745 and p = 0.9950. 

If we follow Guo and Krishnamoorthy’s (2004) suggestion, then we use 
min{0.9156,0.9292} = 0.9156 as (0.95, 0.95) lower tolerance limit for the dis- 
tribution of X1 - Xp,  and min{0.9947,0.9950) = 0.9947 as 95% lower limit for 
the reliability parameter R. Finally, the generalized variable approach based on 
the GPQ in (2.4.13) with 100,000 runs produced the (0.95, 0.95) lower tolerance 
limit as 0.8870. We see that the tolerance limit based on the generalized variable 
approach is the smallest among all the limits. This is because this approach, as 
pointed out in Section 2.4.4, is conservative. 

Example 2.8 (Mechanical component data) 

The summary statistics for this example are taken from Reiser and Guttman 
(1986). The data are pertaining to  a mechanical component that yielded 31 = 

170,000, s1 = 5,000, 3 2  = 144,500, s2 = 8,900, for n1 = 7x2 = 32. Using the 
formulas of the preceding sections, we computed 

h h Ti = 0.29525, f l  = 47.8377, &I = 2.9640, f 2  = 49.7800, and G1 = G2 = 32. 

Based on these quantities, we like to test whether the lower 95th percentile of 
X I  - X2 is greater than zero. That is, 

Ho : pi - p2 - z . s x i d ~  5 0 vs. Ha p1 - pug - z . 9 5 d m  > 0, 

or equivalently Ho : R 5 0.95 vs Ha : R > 0.95. 

Hall’s (1 984) Approach 

If the variance ratio defined as q1 = 3, then the p-value is 

= P (t47.8:577(9.3050) > 14.1306) 
= 0.0027. 

2 
01 

If the variance ratio defined as q 2  = 3, then the p-value is 
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The generalized p-value, using (2.4.21) and 100,000 simulation runs, is 0.0042. 
The p-values of the approximate tests are very close to each other while the gen- 
eralized p-value is relatively higher than the others. This is once again consistent 
with the conclusions in Section 2.4.4. 

2.5 Simultaneous Tolerance Limits for Normal 
Populations 

We shall now describe methods of constructing ( p ,  1 - a)  simultaneous tolerance 
intervals for several normal populations. The procedure given in this section is 
due to Mee (1990a). Let X i l ,  ..., Xini be a sample from a N ( p i ,  u2)  population, 
i = 1, ..., 1. Let Xi and S:, respectively, denote the mean and the variance of the 
ith sample, i = 1, ..., 1. The pooled variance estimator of u2, say S:, is given by 

cz (nz - 1)s; 1 

s, 2 = z=1 , where N = Cni 
i=l 

N - l  

2.5.1 Simultaneous One-sided Tolerance Limits 

One-sided ( p ,  1 - a )  tolerance factors ki are to be determined such that 

PX1 ,... / X,,S,(XZ + kiSp 2 pz + zpa,i = 1, ..., 1) = 1 - Q. (2.5.1) 

Letting Zi = 6(xz-p'), i = 1, ..., 1, and U 2  = 3, we can express (2.5.1) as 
0% 

Noticing that Zi is distributed as -Zi, we can rewrite the above equation as 

Ew[ij@(Jn,(m- .,,I = 1 - a ,  (2.5.2) 

where W 2  = ( N  - 1)U2 N xkP1 distribution. When the sample sizes are equal, 
it is reasonable to require that kl = ... = k1, and this common tolerance factor 
kT is the solution of the integral equation 

N - 1  
1 

N - l  
la [@ (6 (-%& - z p ) ) ]  e-x/211:T-1dn: = 1-a, (2.5.3) 

2 2 r ( y )  
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where n = n1 = ... = nl. Mee (1990a) has tabulated the values of ky satisfying 
(2.5.3) for several values of n ranging from 2 to 1000, 1 = 2,3,4,5,6.8,10, p = 
0.90,0.95,0.99 and 1 - a = 0.90, 0.95,0.99. We computed the factors kT for 1 = 
2(l) lO,  n = 2(1)30,40,50,60,70,80,90,100,300,500,1000, p = 0.90,0.95,0.99 
and 1 - a = 0.90,0.95,0.99. These are given in Table B5, Appendix B. 

Remark 2.5.1 Mee (1990a) also provided a way of finding approximate toler- 
ance factors k l ,  ..., kl (from the listed table values of ky for the equal sample size 
case) when the sample sizes are unequal. For example, when 1 = 4, n1 = 10, 
122 = n g  = 15 and n 4  = 50, p = 0.90 and 1 - a = 0.95, the approximate toler- 
ance factors k l ,  k2, kg and kq can be obtained from the table values of kT listed 
under p = 0.90,l - a = 0.95 and 1 = 4. Specifically, kl  is the value of k: when 
n = 10, k2 = k~ is the value of ky when n = 15, and kq is the value of kT when 
n = 50. From Table B5, Appendix B, we obtained the approximate values as 
kl = 2.181, k2 = kg = 1.989 and k4 = 1.646. Mee's numerical studies showed 
that these approximate tolerance factors are satisfactory as long as the degrees 
of freedom N - 1 is large. 

2.5.2 Simultaneous Tolerance Intervals 

To construct ( p ,  1 - a )  simultaneous tolerance intervals for 1 normal populations 
with common variance a2, we need to determine the tolerance factors k i ,  ..., ki 
so that 

Px, ,..,, x,,s, { P ( X i  - klSc 5 X i  5 Xi + k:SclXi, Sc) 2 p,i = 1, ..., 1 )  = 1 - 

where X I ,  ..., Xl are independent random variables with X i  - N ( p i ,  a2), i = 
1, ..., 1. - Furthermore, XI, ..., X l ,  X I ,  ..., Xl and S are mutually independent. Let 
Y,  = e, i = 1, ..., 1 and U 2  = 3. In terms of these variables, we can write 
the above equation as 

x.- 

Py, ,.,_, X , U 2  { P ( K  - k p  5 22 5 y,  + kLUIY,, U 2 )  2 p,i = 1, . . ' , I }  = 1 - a, 
(2.5.4) 

where 21, ..., Zl are standard normal random variables, Y,  N N 0, - , i = 

1, ..., 1, and X I ,  ..., Xl and Yl, ..., are all independent. Thus, we need to deter- 
mine the factors k i ,  ..., ki such that 

( 3 

Notice that the left-hand side of (2.5.5) involves an 1 dimensional integral, and 
so the above equation is difficult to  solve. If it is assumed that ki = ... = ki = k', 
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then (2.5.5) simplifies to 

Ey  {Pu2[@(Y + k’U) - @(Y - k’U)] 2 p l y }  = 1 - a, 

where Y = max(lY11, ..., 1x1). Furthermore, if it is assumed that n1 = ... = nl = 

n, then following the lines of the proof of Result 1.2.1(ii) in Chapter 1, we can 
write the above equation as 

(2.5 .S) 

where T is the solution of the equation @(Y + T )  - @(Y - T )  = p and U 2  A &. 
If Y is fixed then r2 = x:;,(Y2). Notice that Y N max{lZ1l/fi, ..., I,Zl/fi}, 
where Zi’s are independent standard normal random variables, and the proba- 
bility density function of Y is given by 

Using g(y): we can write (2.5.6) as 

or equivalently 

(2.5.7) 

Equation (2.5.8) is obtained from (2.5.7) using the transformation y& = z .  

Mee (1990a) has tabulated the values of k’ satisfying (2.5.8) for several values 
of n ranging from 2 to 1000, 1 = 2,3,4,5,6,8,10, p = .90, .95, .99 and 1 - Q: = 

0.90,0.95,0.99. We computed the factors k‘ for 1 = 2(1)10, n = 2(1)30,40,50,60, 
70,80,90,100,300,500,1000, p = 0.90,0.95,0.99 and 1 - (Y = 0.90,0.95,0.99, and 
these are given in Table BS, Appendix B. 

Bonferroni Intervals 

As described in Result 1.2.3 of Chapter 1, this approach essentially uses tlie one- 
sample tolerance factors but with a higher confidence level. The siniultaneous 
tolerance intervals are constructed such that the i th interval would contain at 
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least a proportion p of the i th normal population with confidence 1 
leads to the tolerance factor for simultaneous one-sided limits as 

Using the Bonferrnoi inequality, we then have 

P(X2 + k~2SP 2 pz + Z P a ,  i = 1, ..., 1 )  2 1 - a. 
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This 1 '  

(2.5.9) 

Similarly, the ( p ,  1 - 7) factor for the one-sample tolerance interval can be used 
to construct conservative simultaneous two-sided tolerance intervals. Let k!ji 
denote the factor for a ( p ,  1 - 7 )  tolerance interval when the sample size is 712.  

Then, simultaneously the interval Xi f k!jiS contains at least a proportion p of 
the ith population, i = 1, ..., I ,  with confidence at least 1 - a. 

Example 2.9 (Tensile strengths of bars from castings) 

The data in Table 2.7 represent tensile strengths (psi) of samples of bars from 
three different castings (Hahn and Ragunathan, 1988). The pooled standard 

Table 2.7: Tensile strength of bars from three different castings 
Castings 

1 2 3 
88.0 85.9 94.2 
88.0 88.6 91.5 
94.8 90.0 92.0 
90.0 87.1 96.5 
93.0 85.6 95.6 
89.0 86.0 93.8 
86.0 91.0 92.5 
92.9 89.6 93.2 
89.0 93.0 96.2 
93.0 87.5 92.5 

%i 90.37 88.43 93.80 
S; 2.869 2.456 1.786 

deviation s ,  = 2.412. Mee (1990a) used the above data to find (0.95, 0.95) one- 
sided simultaneous lower tolerance limits for the tensile strengths of bars from 
the three different castings. Noting that 1 = 3, n1 = ... = 723 = 10, p = 0.95 
and 1 - a = 0.95, we find k;  = 2.635 from Table B5, Appendix B. Thus, the 
lower tolerance limits are Zi - 2.635(2.412), i = 1,2,3.  This leads to lower 
confidence limits (84.01, 82.07, 87.44), and we conclude that at least 95% of the 
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bars from castings 1, 2 and 3 have tensile strength exceeding 84.01, 82.07 and 
87.44 psi, respectively, with confidence level 95%. The factor for constructing 
(0.95, 0.95) two-sided simultaneous tolerance intervals is k’ = 2.825 (from Table 
B6, Appendix B). The tolerance intervals are Zi f 2.825(2.412), i = 1,2,3, or 
90.37 f 6.81, 88.43 f 6.81 and 93.80 f 6.81. 

If we use Bonferroni’s simultaneous one-sided intervals, then the limits are 
given by Zi - tN-3;1p-05 (zP&)sP, i = 1,2,3.  Noting that t27;0.983(5.202) = 

2.671, we have Zi - 2.671(2.412) = Zi - 6.442, i = 1,2,3.  Thus, (0.95, 0.95) 
simultaneous Bonferroni lower tolerance limits are 83.93, 81.99 and 87.3. As 
expected, these limits are slightly less than the exact ones given in the pre- 
ceding paragraph, but they are in good agreement. To construct simultaneous 
two-sided tolerance intervals based on the Bonferroni approach, we found the 
(0.95, 0.983) factor as 2.929. This factor can be obtained using StatCaZc by 
Krishnamoorthy (2006) (normal one-sample factor for tolerance interval) with 
n = 10 and df = 27. Using this factor, we computed conservative tolerance 
intervals as 90.37 f 7.06, 88.43 f 7.06 and 93.80 f 7.06. Again, as expected, 
these intervals are slightly wider than the corresponding exact ones given in the 
preceding paragraph. One should certainly expect the Bonferroni procedure to 
produce even more conservative tolerance intervals as the number of populations 
become large. 

2.6 Exercises 

2.6.1. Let tmia(6) denote the a quantile of t m ( 6 ) ,  a noncentral t distribution with 
df = m and the noncentrality parameter 6. Using the representation that 

Z + S  t m ( S )  = - 6’ 
where Z - N ( 0 , l )  independently of x&, show that t,;l-,(6) = -tnLp(-6). 

2.6.2. Using the representation of the noncentral t random variable in the above 
exercise, show that x - k l S  is a ( p ,  1 - a)  lower tolerance limit for a 
N ( p , a 2 )  distribution, where X and S2 are respectively the mean and 
variance based on a sample of size n from the N ( p , a 2 )  distribution and 
the factor Icl is given in (2.2.3). 

2.6.3. Let Z and s be observed values of the mean and standard deviation of 
a random sample of size n from a normal distribution. Let Z N N ( 0 , l )  

independently of V - &. A 1 -a  lower confidence limit for P ( X  > t )  
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is given by the solution (with respect to p )  of 2 - L t n - l ; l - a ( z p f i ) s  = t .  
(5-t)V z Let Q = - - - fi. 

6 is given by the solution (with respect to p )  of 2 - L t n - l ; l - a ( z p f i ) s  = t .  
(5-t)V z Let Q = - - - fi. 

6 

(a) Using the representation of the noncentral t random variable in Ex- 
ercise 2.6.1, show that @(Qa) ,  where Qa is the cy quantile of Q, and 
@ is the standard normal cdf, is a 1 - a lower confidence limit for 

(b) Using the above method, find a 95% lower confidence limit for the 
exceedance probability in Example 2.1. Notice that the percentile Qcy 

can be estimated by Monte Carlo simulation. 

P ( X  > t ) .  

2.6.4. Show that a ( p ,  1 - a)  upper tolerance limit for N ( p ,  02) is always larger 
than the usual 1 - a upper limit for p when p > 0.5. 

2.6.5. Explain why a two-sided ( p ,  1 - a)  tolerance interval for N ( p ,  g2)  may not 
in general contain the interval p - zl+pc, p + zl+pg . 

( 2  2 )  

2.6.6. Suppose the interval X f 2 s  is to be used as a two-sided tolerance interval 
for N ( p ,  02) for a given sample size n and for a specified value of p .  

(a) Show that the corresponding confidence level is given by 

Pz,,u (@(Zn + 2U) - @(Zn - 2U) > P> > 

where 2, and U are as defined below equation (2.3.2). 
(b) Explain how you will numerically determine the confidence level using 

the representation given above. 
(c) Explain how you can determine the confidence level approximately, 

using an approximation similar to (1.2.5). 
(d) For n = 20 and p = 0.90, determine the approximate Confidence level 

using the procedure in (c). Repeat for n =30 and n = 50 and n = 
100. Explain the pattern you notice. 

2.6.7. Suppose some machine parts should have a diameter of 1 cm with spec- 
ification limits of 1 f 0.03cm. To assess the actual percentage of parts 
that meet the specification, a sample of 25 parts are measured with the 
following diameters: 

0.9810 1.0102 0.9881 0.9697 0.9970 0.9836 0.9745 0.9793 
1.0213 0.9876 0.9935 1.0168 1.0114 0.9914 0.9963 0.9862 
1.0103 1.0204 0.9845 0.9840 1.0086 1.0025 0.9776 0.9940 
0.9842 

The mean 2 = 0.99415 and the standard deviation s = 0.01479. 
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(a) Verify that the data fit a normal distribution. 

(b) Show that the exact (0.90,0.95) two-sided tolerance interval is (0.96139, 

(c) Estimate the percentage of parts that fall within the specifications 

(d) What percentage of parts that have diameters more than 1.03 cm? 

(e) What percentage of parts have diameters less than 0.97 cm? Estimate 

1.02691). 

with confidence 0.95. 

Estimate with 95% confidence. 

with 95% confidence. 

2.6.8. Consider the data in Exercise 2.6.7. 

(a) Show that the (0.90, 0.95) equal-tailed tolerance interval is (0.95827, 
1.03003). 

(b) Why is the tolerance interval in part (a) wider than the tolerance 
interval in part (a) of Exercise 2.6.7? Explain. 

(c) If we have to use an equal-tailed tolerance interval, then what per- 
centage of machine parts meet the specifications? [That is, find the 
maximum value of p so that J: f Ices is close to 1.0 f 0.03, where IC,  is 
defined in (2.3.10)]. 

2.6.9. Let - X I ,  ..., X ,  be a sample from a N ( p ,  02)  distribution. Furthermore, let 
X and S2 denote, respectively, the mean and variance of a future random 
sample of size m from ~ ( p ,  02).  

(a) Find a ( p ,  1 - a )  two-sided tolerance interval for the distribution of 
X, and interpret its meanings. 

(b) Let (L1, U1) be a ( p ,  1 - a )  tolerance interval for the N ( p ,  02) dis- 
tribution, and let (L2, U2) denote the tolerance interval in part (a), 
both based on X I ,  ..., X,. Show that the expected width of (L2, U2) 

approaches zero as m + 00, while that of (L1, U I )  approaches a, fixed 
quantity as n --+ 00. 

(c) Find a ( p ,  1 - a )  lower tolerance limit for the distribution of S2, and 
interpret its meanings. 

I 

2.6.10. Compute the expected value of the ( p ,  1 - a )  upper tolerance limit for 
N ( p , 0 2 ) ,  given in (2.2.4). 

(a) Suggest an iterative procedure for determining the sample size n so 
that the expected value is a specified quantity, for given values of p ,  
1 - a ,  p and o . 2 
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(b) Suppose the observed values J: and s corresponding to the log- 
transformed data in Example 2.1 can be assumed to be the true val- 
ues of ,u and IT. Determine the sample size n so that a (0.95,0.90) 
upper tolerance limit for the log-transformed data has an expected 
value equal to 6.5. 



Chapter 3 

Univariate Linear Regression Model 

3.1 Notations and Preliminaries 

Regression models are used to model the relationship between a response variable 
and one or more covariates. Consider a group of n individuals or items, and let 
Y,  denote the response variable for the i th individual or item, and x, denote 
the corresponding rn x 1 vector of covariates. The univariate linear regression 
model assumes that the mean of Y,  is x$?, where p is an rn x 1 vector of 
unknown parameters. In this chapter, we shall consider the univariate linear 
regression model where we also assume that the yZ’s are normally distributed 
with a common variance a’. If Y = (Yl, Y2, ...., Y,)’ denotes the n x 1 vector of 
observations and X denotes the n x m matrix whose ith row is xi, the univariate 
linear regression model, under the normality assumption, can be represented 
using the usual notation as 

Y = XP + e ,  e N N ( O ,  a 2 m ) ,  (3.1.1) 

where e is an error vector, and o2 > 0 is also an unknown parameter. We 
assume that the covariates are non-random. If the model contains an intercept 
term, then the first component of can be taken as the intercept and, in this 
case, the first column of X will be a vector of ones. Throughout, we shall assume 
that rank(X) = rn. 

Now let Y ( x )  denote a future observation corresponding to a covariate vector 

(3.1.2) 

where Y ( x )  is also assumed to be independent of Y in (3.1.1). For a fixed 

x. Assume that 
Y ( X >  = x’p + e,  e - N ( O ,  a2) ,  

59 
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rn x 1 vector x, a ( p ,  1 - a)  tolerance interval for Y(x) is an interval that 
will contain at least a proportion p of the Y(x)-distribution with confidence 
1 - a. The tolerance interval is constructed using the vector of observations 
Y in (3.1.1). Note that here x is a given vector, i.e., x is a fixed value of the 
covariates in the regression model. In some applications, the construction of a 
simultaneous tolerance interval is required. A simultaneous tolerance interval 
is motivated by the fact that future observations may correspond to different 
values of x. A simultaneous tolerance interval satisfies the following condition. 
Suppose the same vector of observations Y. following the model (3.1.1), is used 
a large number of times in order to construct tolerance intervals for a sequence of 
future observations Y(x): corresponding to possibly different values of x. With 
a confidence level of 1 - a ,  at least a proportion p of the Y(x)-distribution is to 
be contained in the corresponding tolerance interval, simultaneously for every 
x. In other words, for a simultaneous tolerance interval, the minimum content 
(with respect to x) is at least p ,  with confidence level 1 - a. 

Let p denote the least squares estimator of P and S2 denote the residual 
mean square under the model (3.1.1). Then 

( Y  - X p ) y  Y - xp) 
= (X’X)-’X’Y and S2 = , n - m  

(3.1.3) 

where we recall that rn is the dimension of P and is also the rank of the n x rn 
matrix X. A two-sided tolerance interval for Y(x) will be taken to be of the 
form x’p&k(x)S, where k(x) is the tolerance factor to be determined subject to 
the content and confidence level requirements. Let C(x; 3, S )  denote the content 
of this tolerance interval, given P and S. Then 

A 

and the tolerance factor k(x) satisfies the condition 

P- (C(x; p, S) 2 p )  = 1 - a. (3.1.5) 

On the other hand, if x’p f k ( x ) S  is a simultaneous tolerance interval, then the 
condition to be satisfied is 

P s  

(3.1.6) 

A function k(x)  that satisfies (3.1.6) is called a simultaneous tolerance factor. 
We note that in practice, the vector x will be a bounded quantity with known 
bounds. In (3.1.6), the minimum of C(x;p,S) with respect to x has to be 
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computed subject to the known bounds for x. One-sided tolerance intervals and 
one-sided simultaneous tolerance intervals can be similarly defined. For example, 
an upper tolerance limit for Y(x) can be taken as x‘3 + k(x)S, and a lower 
tolerance limit for Y (x) can be taken as x’3 - k(x)S, where the tolerance factor 
k(x) is once again determined subject to a specified content and confidence level 
requirement. The corresponding one-sided tolerance intervals are (-30, x’p + 
k(x)S] and [x’3 - k(x)S ,  GO), respectively. 

h 

Another related problem that is of practical interest is statistical calibration. 
The inclusion of this topic in this chapter is motivated by the fact that the 
derivation of a multiple use confidence interval in the calibration problem can 
be accomplished using a simultaneous tolerance interval. To explain the ideas, 
consider the special case of (3.1.1) and (3.1.2), where we have the simple linear 
regression model. Thus, let Yl, ..., Y, be independently distributed with 

Y,  = Po + Pixi + ei ,  ei N N ( o , o ~ ) ,  i = 1, ..., n, (3.1.7) 

where the xi’s are known values of a covariate. Also, let 

Y(x) = Po + Pix + e ,  e N N ( O ,  2) (3.1.8) 

denote a future observation corresponding to the value 2 of the covariate. Now 
suppose is unknown. The calibration problem consists of statistical inference 
concerning 2 .  Here we shall discuss the problem of constructing confidence in- 
tervals for x. More specifically, we shall discuss the construction of multiple 
use confidence intervals. The problem arises when the Y,’s in (3.1.7). referred 
to as the calibration data, are used repeatedly to construct a sequence of confi- 
dence intervals for a sequence of unknown and possibly different 2-values after 
observing the corresponding Y (x), following the model (3.1 3). Multiple use 
confidence intervals are derived subject to the following coverage and confidence 
level requirements: given that the confidence intervals are constructed using 
the same calibration data, the proportion of confidence intervals that include 
the corresponding true 2-values is to be at least p .  The probability that the 
calibration data will provide such a set of confidence intervals is to be at least 
1 - a. (The confidence regions that we derive for the calibration problem need 
not always be intervals; however, we shall simply continue to refer to them as 
confidence intervals). It turns out that a simultaneous tolerance interval can be 
used for computing a multiple use confidence interval in the calibration problem. 
Essentially, a multiple use confidence interval for z is obtained by inverting the 
simultaneous tolerance interval. For reviews and discussions on the calibration 
problem, see the paper by Osborne (1991) and the book by Brown (1993). 
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3.2 One-sided Tolerance Intervals and Simultaneous 
Tolerance Intervals 

Let k(x) denote the tolerance factor to be computed to obtain one-sided tol- 
erance intervals of the form (-00,x’p + k(x)S] and [x’p - k(x)S, 00). Thus 
x’3 + k(x)S is the upper tolerance limit and x’p - k(x)S is the lower tolerance 
limit. We shall first consider the derivation of k(x) for obtaining a One-sided tol- 
erance interval for the distribution of Y(x) for a fixed x. This will be followed 
with the derivation of the factor necessary to obtain simultaneous one-sided 
tolerance intervals. 

3.2.1 One-sided Tolerance Intervals 

The derivation that follows is similar to the derivation in Section 2.2 of Chapter 
2 (the “Classical Approach”). The content of the tolerance interval (-00, x’p + 
k(x)S], given and S ,  is 

and the factor k(x) should be determined so that 

P- PS ( c l ( X ; a : s ) r P )  = 1 - a .  

Notice that 

(3.2.1) 

(3.2.2) 

where x: denotes a central chi-square random variable with T degrees of free- 
dom, and all the random variables are independent. In terms of these random 
variables, we can write the content as 

G(x ;  p, S )  = Pz (2 5 x’zx + k(X)U 1 zx, u) . (3.2.3) 

Note that x’Zx - N ( 0 ,  x’(X’X)-lx). Let 

X‘ZX 
d2 = x’(X’X)-~X and V = ~ 

d ’  
(3.2.4) 
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so that V - N(0,l) .  Using these variables, the content of the tolerance interval 
can be expressed as 

C ~ ( X ; ~ , S )  = @ ( d V + k l ( d ) U )  = C l ( d ; V , U ) ,  (3.2.5) 

where @ denotes the standard normal cdf, and we have used the notation k l ( d )  
instead of k(x), since k(x) depends on x only through d defined in (3.2.4). The 
notation C1 ( d ;  V, U )  in the place of C1 (x; 3, S )  should not cause any confusion. 
The fact that k(x) depends on x only through the scalar d is an important and 
useful simplification. Thus, using (3.2.5) and (3.2.1), we see that the factor k l ( d )  
satisfies 

Pv,,v ((a (dV  + k l ( d ) U )  2 p )  = 1 - a. 

Setting X = dV - N(0 ,d2)  and Q = U 2  - n--m, X i - ,  and then applying Result 
1.2.1(i) in Chapter 1, we get 

where tr iT(q)  denotes the y quantile of a noncentral t distribution with T degrees 
of freedom and noncentrality parameter q. It is easily verified that for both of 
the one-sided tolerance intervals (-00, x’p + k ( x ) S ]  and [X’B - k(x)S ,  oo), the 
tolerance factor k(x) is given by k l ( d )  given in (3.2.6). Note also that for the 
simple linear regression model d2 can be simplified: 

(x - 2)2 

C;=l((.z - 2)2‘  
(3.2.7) 

Example 3.1 (Viscosity data) 

This example is taken from Montgomery (2009, p. 394), and deals with a 
study of the relationship between the viscosity of a polymer and two process 
variables: reaction temperature and catalyst feed rate. For 16 samples, Table 
3.1 gives the data on Y = viscosity (centistokes at 100°C), x1 = temperature in 
Celsius, and 2 2  = catalyst feed rate (lb/hour). 

The regression equation relating the viscosity Y to the temperature q, and 
feed rate 2 2  is given by 

Y = 1566.078 + 7.62121 + 8.585~2, (3.2.8) 

with a squared correlation of 0.927. Furthermore, the residual mean square S2 
has value 267.604. The model diagnostics reported in Montgomery (2009, Chap- 
ter 10) show that it is reasonable to assume normality. However, the variability 
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Table 3.1: The viscosity data 
Catalyst 

Observation Temperature Feed Rate Viscosity 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

93 
100 
82 
90 
99 
81 
96 
94 
93 
97 
95 
100 
85 
86 
87 

9 
10 
12 
11 
8 
8 
10 
12 
11 
13 
11 
8 
12 
9 
12 

2340 
2426 
2293 
2330 
2368 
2250 
2409 
2364 
2379 
2440 
2364 
2404 
2317 
2309 
2328 

in the viscosity appears to increase with temperature. We shall ignore this for 
the purpose of our analysis, and assume that the variance is a constant. Here 
a tolerance interval for the viscosity is an interval that will contain at least a 
specified proportion of the viscosity values with a certain confidence level, for 
a fixed pair of values of the temperature and catalyst feed rate. On the other 
hand, a simultaneous tolerance interval for the viscosity is an interval that will 
contain at least a specified proportion of the viscosity values with a certain con- 
fidence level, regardless of the (temperature, catalyst feed rate) values, where 
these values are assumed to be within reasonable bounds resulting from the 
physical constraints on these variables. 

For this example, let us compute the (0.90, 0.95) one-sided upper tolerance 
limit for the distribution of Y ( x )  at x’ = (1,88,9). We first note that n = 16 
and m = 3, and the fitted model is given in (3.2.8). Other necessary quantities 
to compute the tolerance limits are 

- 0.00143 -0.00005 (3.2.9) 
14.176 -0.1297 -0.2235 

- - 0.02222 
(x’x)-l = 

d = (x’(X’X)-lx)+ = 0.33289 and S = 16.3585. (3.2.10) 
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h 

Furthermore, x'p = 2314.02, 20.9 = 1.2816 and tn-m;l--a(~p/d) = t13;.95(3.850) = 

6.6023. Thus, the (0.90, 0.95) tolerance factor kl(d) = d x t13;.95(3.850) = 2.1977 
and the corresponding upper tolerance limit is given by 

x'B + kl(d)S = 2314.02 + 2.1977 x 16.3585 = 2349.97. 

That is, with confidence 95%, at least 90% of the Y(x)-measurements are at 
most 2349.97 when x' = (1,88,9). 

Example 3.2 (Blood alcohol concentration) 

This example is based on a study that was conducted at Acadiana Crimi- 
nalistic Laboratory, New Iberia, Louisiana, to compare the breath estimates of 
blood alcohol concentration (obtained using a breath analyzer) with those de- 
termined by a laboratory test. This example is described in Krishnamoorthy, 
Kulkarni and Mathew (2001). A sample of 15 subjects was used. In Table 3.2, 
we present the breath estimates Y obtained using Breathalyzer Model 5000 and 
the results of the laboratory test, denoted by s. These numbers are percentages 
of alcohol concentration in blood. It turns out that a simple linear regression 

Table 3.2: Blood alcohol concentrations data 
Blood alcohol Breath 

Subject concentration (x) estimate ( Y )  
1 ,160 .145 
2 ,170 .156 
3 ,180 ,181 
4 ,100 ,108 
5 .170 .180 
6 .loo ,112 
7 ,060 ,081 
8 . loo .lo4 
9 .170 .176 
10 .056 .048 
11 ,111 .092 
12 .162 .144 
13 .143 .121 
14 .079 ,065 
15 .006 .ooo 

model fits well with a squared correlation of 0.9293. The fitted model is 

Y = 0.00135 + 0.958s. (3.2.11) 

The normal probability plot of the residuals is reasonably linear and hence the 
distribution of Y can be assumed to be normal. 
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In many states in the USA the legal maximum limit of blood alcohol concen- 
tration while driving is 0.1%. Instead of directly measuring the alcohol concen- 
tration in the blood, it is certainly much easier to obtain the breath estimates. 
Thus the problem is to estimate the blood alcohol concentration z after obtain- 
ing the corresponding breath estimate Y, based on the model given above. In 
other words, we have the calibration problem. A lower or upper confidence limit 
for the unknown blood alcohol concentration could be of interest. For example, 
an upper confidence limit can be used to ascertain whether the blood alcohol 
concentration is below the limit of 0.1%. 

Here we shall compute a (0.90, 0.95) lower tolerance limit for the distribution 
of Y(x) when x’ = (1,O.lO). The fitted model is Y = 0.00135 + 0.9582, and the 
necessary quantities to compute the tolerance limit are 

(3.2.12) 
Also, x’B = 0.00135 + 0.958(0.10) = 0.0971 and S = 0.01366. The critical value 
tn-m;l-a(~p/d) = tl~;.g5(4.6833) = 7.7365, and the (0.90, 0.95) tolerance factor 
is d x tn-m;l-a(~p/d) = 2.1172, where zp  = 20.9 = 1.2816. The (0.90, 0.95) 
one-sided lower tolerance limit is given by 

x’B - k l ( d ) S  = 0.0971 - 2.1172 x 0.01366 = 0.068. 

That is, with confidence 95%, at least 90% of the breath alcohol estimates exceed 
0.068 when the blood alcohol level is 0.10. 

3.2.2 One-sided Simultaneous Tolerance Intervals 

We shall now describe the derivation of one-sided simultaneous tolerance in- 
tervals of the form (-m, x‘p + k(x)S]  and [x’3 - k ( x ) S ,  m), where k ( ~ )  is the 
simultaneous tolerance factor to be determined. The development that follows is 
taken from the work of Odeh and Mee (1990). Note from (3.1.4) that C(x; B, S) 
is a function of X’ZX and U ,  where Zx and U are defined in (3.2.2). Now 
suppose the first rnl components are common to all the rows of X. Let xi be a 
1 x rnl vector denoting this common part. This is the case, for example, when 
we have models with an intercept term so that the first component of x’ is one. 
Hence the vectors x‘ under consideration are such that x‘ = (xi,xL), where xi 
is the fixed common part, and xi is a 1 x (rn - rnl) vector that could be differ- 
ent among the different vectors x’. Now partition the vector Zx in (3.2.2) as 
( Z i ,  2;)’ similar to the partitioning of x’, and partition X as (XI, X2), where 
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X1 is an n x ml matrix. Furthermore, let 

d: = x;(X;X1)-’x1, d; = d2 - d:, and W: - xmPm,, 2 (3.2.13) 

where the chi-square random variable W i  will be defined later. The derivat,ion 
that follows is for the one-sided interval (--00, x’B+k(x)S]; those for the interval 
[x’B - k ( x ) s ,  m) are similar. 

Using the expression for C1 (x; B, S) in (3.2.3), along with the following in- 
equality (to be proved later in this section) 

xi21 + x;z2 L dlZ1 - d2W2,  (3.2.14) 

where dl and d2 are as defined in (3.2.13), W .  is a chi-square randoin variable 
to be defined later, and 2 1  N N ( 0 ,  l), we conclude that 

C1(x;P, S) L 
= Q, (421 - d2W2 + kl,(d)U),  (3.2.15) 

Pz (2 I dl21  - d2W2 + kls(d)U I 21, W2, Lr)  

where we have assumed that k(x) is a function of d,  denoted by k l , (d )  in (3.2.15). 
Odeh and Mee (1990) have computed kl,(d) satisfying the condition 

r 1 

Equivalently, 

Since 21 N N ( 0 ,  l), this simplifies to 

- z p  - d2W2 + kl,(d)U )] = l - Q ,  
EW2,U [ m p  ( dl 

(3.2.17) 

where U 2  - -, independently of W; N xiL-,, . Since the functional form of 
kl,(d) that satisfies (3.2.17) is not unique, Odeh and Mee (1990) assumed the 
following functional form 

kl , (d)  = X[Z, + (VL - m i  + 3)”2d], (3.2.18) 

X being a scalar to be determined. Thus the problem is to compute X so that 
k ~ , ( d )  in (3.2.18) satisfies (3.2.17), where the minimum in (3.2.17) is computed 
with respect to suitable bounds on d. Assuming 
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Odeh and Mee (1990) have tabulated the numerical values of X for rn - nzl = 1, 
2, 3, ‘T = 2,3,4, p = 0.75,0.90,0.95,0.99 and 1 - a  = 0.90,0.95,0.99. The values 
of X are reproduced in Table B7, Appendix B, for the case m - rnl = I .  The 
table values indicate that 

Proof of (3.2.14). Note 

X is rather insensitive to the value of 7 .  

that X’X has the partitioned form 

x’x = (3.2.19) 

Using the expression for the invcrse of a partitioned matrix (see Rao (1973, p. 
3 3 ) ) ,  we can write 

where B2.1 = B 2 2  - Bi2B;:B~2. Since ZX = (Z;,Zl,>’ - N(0,B-’), it is 
readily verified that 

21 + B 3 3 1 2 2 2  - N (0, B;;) , (3.2.21) 

and is independent of 2 2 .  Hencc 

x: (21 + B3312Za) = 421, (3.2.22) 

where 21 - N(0, l ) .  We next note that 

= 

= 

= dlZ1 + (x2 - B:2Bl,’~l)’B,:’2B~/22 

2 

x (2~B2.122)1’2. 

x:z1+ 4 2 2  xi (21 + BT:B1222) + (x’,Z~ - x:BF:B~~Z~) 
dlZ1 + (x; - x;BT;B12)22 

1’2 dlZ1 - “x2 - B:2B;;Xl)’B;:(X2 - B:2B;:xl)] 

The last inequality was obtained using the Cauchy-Schwartz inequality. Now 
the inequality (3.2.14) follows from the relation that 

(3.2.23) 
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Example 3.2 (continued) 

We shall now compute a one-sided simultaneous lower tolerance limit for 
Y(x) at thevaluex’ = (1, .lo). We have already computed d = (x’(X’X)-’X)~ = 

0.273643, x’p = 0.0971 and S = 0.01366. Furthermore, note that m-ml = 1 for 
the simple linear regression model. Thus, using n = 15, p = 0.90, 1 - a = 0.95 
and 7 = 2, we get the value of X from Table B7 in Appendix B as 1.2618, and 

1 

so 

kl,(d) = A[+ + (m - ml + 3)’/’d] = 1.2618[1.2816 + 0.54731 = 2.3077. 

Thus, a (0.90, 0.95) one-sided simultaneous lower tolerance limit is given by 

x’P - kl,(d)S = 0.0971 - 2.3077 x 0.01366 = 0.066. 

3.3 Two-sided Tolerance Intervals and Simultaneous 
Tolerance Intervals 

Recall that in the set up of (3.1.1) and (3.1.2), a two-sided tolerance interval is 
assumed to be of the form x’p f k(x)S, where p and S2 are defined in (3.1.3). 
We begin with the derivation of such an interval for the distribution of Y(x) for 
a fixed x. 

3.3.1 Two-sided Tolerance Intervals 

For a fixed x, the tolerance factor k(x)  is to be determined subject to the 
condition (3.1.5), i.e., k(x) satisfies 

P- (C2(x;P,S) 2 p )  = 1 - 
0,s 

(3.3.1) 

where C;(x;P,S) is the content of the tolerance interval given 
defined in the right hand side expression (3.1.4). 

and S, as 
Let 2, Zx and U be as 
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defined in (3.2.2). In terms of these variables, we can write 

C2(x; 3, S )  = Pqx) (X’P - k(X)S 5 Y(x) 5 X’P + k(x)S I P ,  s)  

( c s l  U ) S 
= Pz x’zx - k(x)-  5 2 5 x’zx + k(x)- zx, s 

Pz (x ’zx  - k(x)U 5 2 5 x’zx + k(X)UI zx, u) . = 

(3.3.2) 

X’ZX N N(0 ,d2)  and V = 9 N N(O,1). Recall that d2 = x’(X’X)-Ix, 
Using these variables, we can simplify C ~ ( X ;  B, S) in (3.3.2) as 

C2(x;P, S )  = Pz ( d V  - k2(d)U 5 2 5 d V  + k2(d)U I v, U )  
cp (dV + k:!(d)U) - cp ( d V  - k 2 ( d ) U ) ,  = (3.3.3) 

where denotes the standard normal cdf, and we have used the notation k2(d)  
for k(x) .  From (3.3.1) and (3.3.3), we see that k2(d)  is to be chosen so as to 
satisfy 

Pv,u (cp (dV + k2(d )U)  - cp (dV - k2(d)U)  2 p )  = 1 - a. (3.3.4) 

Setting X = dV - N ( 0 , d 2 )  and Q = U N &, and noting that X and Q are 
independent, we can apply Result 1.2.1 (ii) of Chapter 1. Using Result 1.2.1, 
we see that k2(d)  is the solution of the integral equation 

A program due to Eberhardt, Mee and Reeve (1989) can be used for com- 
puting the tolerance factor k2(d) .  Nevertheless, it is certainly desirable to have 
analytic approximations. We shall now describe three approximations for k:! (d ) .  

Wallis’ Approximation 

The Wallis (1951) approximation is an extension of the approximation due to 
Wald and Wolfowitz (1946) for the univariate normal distribution and can be 
obtained using Result 1.2.1(iii) in Chapter 1. Using Result 1.2.1(iii), we get 

(3.3.6) 
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where we have used the notation k2w(d)  to emphasize that the above approx- 
imation is due to Wallis (1951). In (3.3.6), x?;,(6) denotes the y quantile of a 
noncentral chi-square distribution with df v and noncentrality parameter 6, and 
x ? ; ~  denotes the y quantile of a central chi-square distribution with df v. Wallis 

(1951) further used an approximation for , / x f i P ( d 2 )  due to Bowker (1946), and 
this approximation is given by 

L 

where zy denotes the y quantile of the standard normal distribution. Using the 
above approximation in (3.3.6), we finally get the approximate tolerance factor 

(3.3.7) 

It should be noted that (3.3.7) is obtained using two approximations, and as 
a result it is less accurate than the one in (3.3.6). Note however that there is 
no longer any need to use the approximation for x l ; , (d2 ) ,  since rioncentral 
chi-square percentiles are now readily available in standard software packages. 

P-- 

Lee and Mathew’s Approximation 

Lee (1999) and Lee and Mathew (2004) proposed the following approximation 
which is a special case of two approximations given for the multivariate linear 
regression model (see Section 10.2, Chapter 10). The approximation is given by 

where 

1 3d2 + d9d4 + 6d2  + 3 
2d2 + 1 

i r = d  [ (1 + d2)2  d2  
e =  d4 ’ f=,., 

and Fml,mn;Y is the y quantile of an F distribution with df (ml, m2). 

Approximation Based on One-sided Tolerance Factors 

(3.3 .S) 

A one-sided tolerance factor with an adjustment to the confidence level can 
be used as an approximation to the factor for constructing two-sided tolerance 
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limits. In particular, we consider the one-sided tolerance factor (3.2.6) with 
confidence level (1 - 4 )  as an approximation to k 2 ( d ) .  The resulting tolerance 
factor will be denoted by k2,(d). That is, 

(3.3.9) 

Comparison of the Approximations 

Since approximations were used in order to arrive at k . ~ ~ ( d )  in (3.3.6), k z ~ ~ ( d )  
in (3.3.8) and k2,(d) in (3.3.9), a natural question concerns the accuracy of 
these approximate tolerance factors. Notice that these approximate tolerance 
factors and the exact ones based on (3.3.5) depend only on p ,  1 - a ,  7~ - m 
and d2 .  In practical applications, d2 is bounded and typically it will not exceed 
1. Krishnamoorthy and Mondal (2008) compared these approximate tolerance 
factors with the exact one based on (3.3.5) for n - m = 10,20 and 40, and d2 = 
0.1,0.3,0.5,0.8,0.9. To demonstrate the accuracies of these approximations, we 
compare them with the exact one based on (3.3.5) when n - m = 10 and d2 
ranging from 0.1 to 4. The computed tolerancc factors are given in Table 3.3 
for all possible pairs of ( p ,  1 - a )  from {0.90,0.95,0.99}. 

The conclusions from the numerical results is that the Wallis (1951) ap- 
proximation k 2 w ( d )  in (3.3.6) can be substantially below the exact tolerance 
factor, especially when d2 is large (i.e., c2 in (3.2.7) is large). On the other 
hand, k 2 ~ ~ ( d )  is somewhat larger than the exact ones most of the time. It is 
interesting to note that the approximation kz,(d) based on the one-sided factors 
coincide with the exact ones for large values of d2. This approxirnation is not 
only simple but also very satisfactory for all combinations of content and confi- 
dence level considered, as long as d2 2 0.3. Thus if an approximation needs to 
be used, we recommend Wallis’ or Lee-Mathew’s approach for small values of 
d 2 ,  and the approximate factor kzo (d )  for d2 2 0.3. 

Example 3.1 (continued) 

We shall now compute the (0.90, 0.95) tolerance interval for the distribution 
of Y ( x 1  when x’ = (1,88,9). From (3.2.10), we get d2  = 0.11801, S = 16.3585 
and x’p = 2314.02. To compute the Lee and Mathew tolerance factor in (3.3.8), 
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we computed e = 100.49, f = 0.011054, and 6 = 0.2064, and the factor 

( 100.49) (0 .O 1 1054) (3.2642) (2.2611)) 
= ( 1.2064 
= 2.607. (3.3.10) 

The approximation based on the one-sided tolerance factor is given by 

d x tn-m;l-F (2) = 0.33289 x t13; .~~~(3.850)  = 2.426. 

The Wallis approximation is given by 

a - - ((13)(3.0061)) f = 2.575. 
5.8919 kzw(d) = 

The exact factor using (3.3.5) is evaluated as 2.603. Using these factors, we 
get the following tolerance intervals. The exact one is 2314.02 k 42.58; the 
one based on the approximate one-sided factor is 2314.02 f 39.69; Lee-Mathew 
approximation is 2314.02f42.65 and the Wallis approximation is 2314.02f42.12. 
Recall that these tolerance intervals are obtained using x'B f factor x S .  

Example 3.2 (continued) 

For this example, let us compute a (0.90, 0.95) tolerance interval for the 
breath alcohol level Y ( x )  when the blood alcohol level is 0.10. That  is, when x' = 

(1, . lo).  From (3.2.12), we get d2 = 0.07489, S = 0.01366 and x'B = 0.09715. 
To compute the Lee and Mathew tolerance factor in (3.3.8), we computed e = 

206.05, f = 0.005216, and 

k 2 L M ( d )  = 

- - 

- - 

6 = 0.1365, and the factor 

2.549. (3.3.11) 

The approximation based on the one-sided tolerance factor is given by 

d x t n -m; l -~  ( z p / d )  = 0.27364 x t13,.975(4.6835) = 2.328. 
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The Wallis approximation is given by 

k2W(d) = ’ - - ((13)(2.9086)) 5.8919 = 2.533. 

The exact factor using (3.3.5) is evaluated as 2.548. Using these factors, we get 
the following tolerance intervals. The exact one is 0.0971 f 0.035; the one based 
on the approximate one-sided factor is 0.0971 f .032; Lee-Mathew approximation 
is 0.0971 f 0.035 and the Wallis approximation is 0.0971 f 0.035. Notice that 
all the tolerance intervals, except the one based on the approximate one-sided 
factor, are nearly the same. As pointed out earlier, the approximate one-sided 
factor works satisfactorily only when d2 2 0.3. 

3.3.2 Two-sided Simultaneous Tolerance Intervals 

We once again assume that a two-sided simultaneous tolerance interval is of the 
form x’3 f k(x)S, where k(x), the simultaneoiis tolerance factor, satisfies the 
condition (3.1.6). Several articles have appeared, addressing the computation of 
a two-sided simultaneous tolerance factor k(x). These include Lieberman and 
Miller (1963), Lieberman, Miller and Hamilton (1967), Wilson (1967), Miller 
(1981, Chapter 4), Limam and Thomas (1988a) and Mee, Eberhardt and Reeve 
(1991). Among the solutions available for the computation of k(x), the proce- 
dure due to  Mee, Eberhardt and Reeve (1991) appears to  provide the narrowest 
simultaneous tolerance interval; a conclusion based on the numerical results re- 
ported by these authors. In this section, we shall describe the Mee, Eberhardt 
and Reeve (1991) procedure. Note from (3.3.3) that C(x; 3, S) is a function of 
X’ZX and U ,  where Zx  and U are defined in (3.3.2). As in Section 3.2.2, we 
once again assume that the first ml components are common to all the rows of 
X, and for all the vectors x‘ under consideration, and this common part will be 
denoted by the 1 x ml vector xi. Thus we can write x‘ = (x~,x;) .  Note that 
C(x; 3, S) can also be expressed as 

C(x; 3, S )  = Pz ( lx’zxl - k(x )U 5 2 5 IX’Z, I + k(x)U I zx, u)  
Pz (Ix;z1 +x;z21 - k(X)U I 2 

I IX’1Zl+ x;z21+ k(X)U I zx, u) , 
= 

(3.3.12) 

where 2, Zx and U are as defined in (3.2.2), and Zx  = ( Z i ,  2;)’ is a partition- 
ing similar to  the partitioning of x. Let X = (XI, X,), where X1 is n x 7111. We 
shall now use the following result concerning the distribution of the maximum 
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Table 3.3: The exact values of k 2 ( 4  and the values of the approximate factors 

n - m = l O  
k2W(d) ,  k 2 L M ( 4  and k 2 0 ( 4  

p = .90 p = .95 p = .99 
1 - C t  1 - C t  1 - 0  

2.49 2.77 3.45 2.95 3.29 4.09 3.86 4.30 5.35 
d2 Methods .90 .95 .99 .90 .95 .99 .90 .95 .99 
.1 

.3 

.5 

.8 

1 

2 

4 

- 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

2.29 2.56 3.21 
2.49 2.77 3.45 
2.47 2.75 3.41 

2.73 3.08 3.90 
2.64 2.99 3.82 
2.77 3.11 3.93 
2.69 2.99 3.71 

2.96 3.36 4.31 
2.90 3.31 4.28 
3.02 3.43 4.38 
2.88 3.20 3.97 

3.25 3.72 4.85 
3.22 3.70 4.84 
3.33 3.82 4.97 
3.13 3.48 4.31 

3.42 3.94 5.17 
3.40 3.93 5.16 
3.50 4.05 5.31 
3.28 3.64 4.52 

3.81 4.42 5.85 
3.80 4.41 5.85 
3.87 4.53 6.04 
3.59 3.99 4.96 

5.18 6.11 8.27 
5.18 6.11 8.27 
5.18 6.21 8.55 

2.83 3.15 3.92 
2.96 3.29 4.10 
2.94 3.27 4.06 

3.21 3.60 4.55 
3.15 3.54 4.48 
3.25 3.65 4.60 
3.18 3.54 4.39 

3.44 3.88 4.95 
3.40 3.85 4.92 
3.49 3.96 5.07 
3.39 3.76 4.67 

3.73 4.24 5.47 
3.70 4.22 5.46 
3.78 4.35 5.65 
3.64 4.05 5.03 

3.90 4.46 5.78 
3.88 4.44 5.77 
3.95 4.57 5.99 
3.79 4.22 5.23 

4.60 5.33 7.03 
4.60 5.32 7.03 
4.62 5.44 7.34 
4.39 4.87 6.05 

5.63 6.60 8.84 
5.63 6.60 8.84 
5.59 6.69 9.22 
5.23 5.81 7.21 

3.87 4.28 5.30 
3.87 4.31 5.36 
3.86 4.29 5.33 

4.14 4.62 5.80 
4.13 4.61 5.77 
4.15 4.66 5.88 
4.14 4.60 5.70 

4.36 4.89 6.18 
4.35 4.88 6.16 
4.37 4.96 6.35 
4.35 4.84 6.00 

4.64 5.24 6.67 
4.64 5.23 6.66 
4.64 5.33 6.93 
4.62 5.13 6.37 

4.81 5.44 6.96 
4.80 5.44 6.96 
4.79 5.54 7.27 
4.77 5.30 6.58 

5.49 6.29 8.16 
5.49 6.28 8.16 
5.41 6.38 8.60 
5.36 5.96 7.40 

6.50 7.53 9.94 
6.50 7.53 9.94 
6.35 7.61 10.49 

4.70 5.23 6.49 6.20 6.89 8.55 - 

1. Exact tolerance factor based on (3.3.5); 2. the approximate tolerance factor k20(d)  

in (3.3.9); 3. Lee and Mathew’s approximation ~ ~ L I z . I ( ~ )  in (3.3.8); 4. Wallis Approxi- 
mation k 2 ~ ( d )  in (3.3.6) 
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(with respect to x2) of IxiZ1 + xLZ21, subject to the conditions that x1 is a 
specified vector and x’(X’X)-lx = d2 is fixed: 

maxlxiZ1+ xkZ2l - dlW1+ d 2 ~ 2 ,  
2 2  2 2 where d: = x;(XiX1)-’xl, d i  = d - d,, W: - xl,  W; - x ~ - ~ , ,  

(3.3.13) 

and W1 and W2 are independently distributed. A proof of (3.3.13) is given later 
in this section, where the definitions of W; and Wz are also given. We shall 
assume that the simultaneous tolerance factor k(x)  is a function of d, to be 
denoted by kzs(d). Then it follows from (3.3.12) and (3.3.13) that 

C(x; 3, S )  2 

= Co(d; w1, w2, U ) ,  say, (3.3.14) 

where W: and W l  have the chi-square distributions given in (3.3.13), U 2  has 
the chi-square distribution given in (3.2.2), and W1, W2 and U are independent 
random variables. Thus kz,(d) has to be computed subject to the condition 

Pz (dlW1 + d2W2 - k2s(d)U I z 
5 dlW1 + d2W2 + k2s(d)U I w1, W2, U )  

If we do not have the information that the first few components are common to 
all rows of X (or if we do not use this information), then instead of (3.3.14), we 
have 

C(x; 3, S )  2 Pz (dW - kzs(d)U I z 
I dW + k2s(d)U I W, U )  

= G ( d ; W , U ) ,  say, (3.3.16) 

where d2 = x’(X’X)-lx and W 2  - x&. Mee, Eberhardt and Reeve (1991) have 
computed kzs(d)  satisfying the condition 

where, similar to (3.2.18), they also assumed that kzs(d)  has the functional form 

kzs(d)  = x [a++? + (rn + 2)’%] , (3.3.18) 

A being a scalar to be determined. As in the case of a one-sided simultaneous 
tolerance interval, the minimum in (3.3.17) is computed with respect to d sat- 
isfying reasonable bounds. Mee, Eberhardt and Reeve (1991) have numerically 
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computed X so that k2,(d) in (3.3.18) satisfies (3.3.17). The nunierical results 
reported in their paper are for the simple linear regression model so that the 
expressions in (3.2.7) are valid, and they also assumed n-i 5 d 5 d w ,  
for the values 7 = 2, 3, 4. In Table B8, Appendix B, we have reported values 
of the factor A; these values are reproduced from Mee, Eberhardt and Reeve 
(1991). From thc table values we note that X is rather insensitivc to the value 
of T. Note that the values in Table B8 correspond to m = 2 in (3.3.18), since 
the values are for a simple linear regression model. 

Quoting Oden (1973), Mee, Eberhardt and Reeve (1991, p. 219) have com- 
mented that in the case of simple linear regression, even though the first row 
of X is a vector of ones, ignoring this aspect makes very little difference in the 
value of kz,(d). In other words, whether we consider (3.3.15) or (3.3.17) for the 
determination of Ic2,(d), the solution appears to  be nearly the same. In view 
of this, and in view of the somewhat involved computation, the table values we 
have reported (Table B8, Appendix B) correspond to  X in (3.3.18) satisfying 
the condition (3.3.17)) as tabulated in Mee, Eberhardt and Reeve (1991). In 
other words, we did not carry out the computation and prepare table values 
corresponding to  the condition (3.3.15). 

Proof of (3.3.13). It follows from (3.2.22) that 

In other words, 

IXi(Zl + (x’,xl)-’Xix222) I = dlW1, 

where d l  = x;(X;Xl)-’xl as defined in (3.3.13). Let Bij’s be as defined in 
(3.2.19) for the partitioned form of the matrix X’X. Now note that 

Thus, (3.3.13) will be established once we show that (i) W i  = ZkB2.122 N 

xg-ml and (ii) [(xz - Bi2B;:xl)’B;i(x2 - B;,Bc;xl)] = d2 - d:. Since 
2 2  - N (0, Bz:), (i) is obvious, and (ii) is already established in (3.2.23). 
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Example 3.2 (continued) 

We shall now compute a (0.90, 0.95) two-sided simultaneous tolerance in- 
terval for Y(x) when X I  = (1,O.lO). Recall that d = (x'(X'X)-IX)~ = 

0.273643, x'3 = 0.0971 and S = 0.01366. Furthermore, n-3 = 0.25820 and Jm = 0.57735 when T = 2. Thus, referring to Table B8, Appendix B 
for (n,p,  1 - Q, T) = (15,0.90,0.95, a),  we get X = 1.2405. So the simultaneous 
tolerance factor 

1 

k&(d)  = X[zl+, + (m + 2)1'2d] 
= 

= 2.7194. 
1.2405[1.6449 + 2 x 0.2736431 

Thus, the desired (0.90, 0.95) simultaneous tolerance interval at XI = ( 1 , O . l O )  
is 0.0971 f 2.6285 x 0.01366 = 0.0971 f 0.0359. 

3.4 The Calibration Problem 

This section is on the computation of multiple use confidence intervals for the 
calibration problem. It turns out that two-sided simultaneous tolerance intervals 
can be inverted to obtain a conservative solution to this problem. The results 

in this section are for the simple linear regression models (3.1.7) and (3.1.8). 
We shall first describe the condition to be satisfied by multiple use confidence 
intervals in the calibration problem. 

Suppose x in the model (3.1.8) is unknown, and a confidence interval is to 
and p1 denote the least squares 

and PI ,  based on the yZ's in (3.1.7) and let S2 denote the residual 

h 

be computed for x after observing Y(x). Let 
estimators of 
mean square. Then 

h .4 - c;="=1(yZ - Y ) ( x z  - 2 )  - 2 1 7L 

, = F-&% and S = - C ( y Z  - Po - 
n - 2  PI = 

c;=l(z:i - 2)2 i=l 

where Y and 2 denote the averages of the yZ's and the xi's ( i  = 1, 2, ...., 
n).  Essentially, it is required to construct confidence intervals for the unknown 
x-values corresponding to an unliniited sequence of observations Y (x), following 
the model (3.1.8). The sequence of confidence intervals will be constructed using 
the same calibration data (or equivalently, using the same estimates of 3 0 ,  PI 
and c2, namely, &, and S2,  respectively). We shall assume that the interval 
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is of the form 

where k(x) is a factor to be determined subject to the requirements of a multiple 
use confidence interval. Let C ( x ;  PO, P I ,  S )  denote the coverage of the confidence 
interval (3.4.1), given that the same calibration data will be used, i.e., condi- 
tionally given 30, 

A h  

and S. Then 
h h  

We want the sequence of confidence intervals (3.4.1), corresponding to an un- 
limited sequence of observations Y ( x ) ,  to have the following property: the pro- 
portion of intervals that will contain the corresponding true z-value is to be 
at least p ,  with confidence level 1 - a. In other words, the factor k ( z )  is to be 
chosen so as to satisfy the condition 

(3.4.2) 

for every N and for every sequence {xi}. 

The condition (3.4.2) is a rather difficult condition to work with. A sufficient 
condition for (3.4.2) to hold is 

which is the condition satisfied by a simultaneous tolerance interval. Thus, 
one approach for deriving a multiple use confidence interval is the following. 
Obtain the function k ( x )  so that PO + PIX  - k ( z ) S :  PO + ,&z + k ( z ) S  is a 
simultaneous tolerance interval for Y (x). After observing Y (x), the interval 
(3.4.1) can be obtained, which will provide a multiple use confidence interval for 
2 .  This approach has been exploited by several authors for computing multiple 
use confidence intervals in the calibration problem: in particular, see Lieberman, 
Miller and Hamilton (1967), Scheffe (1973), Oden (1973), Mee, Eberhardt and 
Reeve (1991) and Mee and Eberhardt (1996). 

[ 1 

Mee and Eberhardt (1996) conjectured that if k ( x )  is the tolerance factor 
(and not a simultaneous tolerance factor), then the confidence interval (3.4.1) 
computed using such a k ( x )  will satisfy the condition (3.4.2) required of multiple 
use confidence intervals. The limited numerical results in Mee and Eberhardt 
(1996) support this. More extensive numerical computations carried by Lee 
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(1999) also support the above assertion, even though no theoretical proof is 
available for this. The above conjecture is clearly of interest since multiple use 
confidence intervals constructed based on a tolerance factor will be less conser- 
vative compared to those constructed using a simultaneous tolerance factor. 

If one-sided multiple use confidence intervals are required for z, one can think 
of using 

{z : Y ( z )  5 /Go + p̂ 1z + k ( z ) S } ,  

or 
{z : Y ( z )  2 Po + &z - k ( z ) S } .  

However, it appears that the sign of p1 needs to be known before we can compute 
such intervals. For example, suppose it is known that p1 > 0. Then we expect 
/31 > 0, and a multiple use lower confidence limit for z can be obtained as 
h 

{x : Y ( z )  I Po + P1z + k ( z ) S } .  

This will be illustrated in the following example. It should be noted that 
while addressing hypothesis testing for calibration problems in a multiple use 
scenario, Krishnamoorthy, Kulkarni and Mathew (2002) developed procedures 
that require a knowledge of the sign of p1. In practical applications, it is certainly 
realistic to assume that the sign of /31 is known. 

Example 3.2 (continued) 

For this example, we shall find (0.90, 0.95) one-sided multiple use lower con- 
fidence limit for the unknown z-values. We computed PO = 0.00135, = 0.958, 
Z = 0.1178, sxx = Cy=l(zi - 2)2  = 0.03859 and S = 0.01366. Furthermore, 
when (n,m - ml ,p ,  1 - a)  = (15,1,0.90,0.95) and T = 2, the value of X in 
(3.2.18) can be found in Table B7, Appendix B, and it is 1.2618. The one-sided 
upper simultaneous tolerance limit from Section 3.2 is given by 

,. 

Let us consider the observed value Y ( z )  = 0.12. Using this Y(x)-value in (3.4.3), 
and solving the inequality for z, we get the (0.90, 0.95) one-sided multiple use 
lower limit for z as 0.091; when Y ( z )  = 0.10, this limit is 0.067, and when 
Y ( z )  = 0.08 it is 0.043. 
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To compute two sided (0.90, 0.95) multiple use confidence intervals for the 
z-values, we need to  find the set of values of z that satisfies 

El + zF1 - [Zp + 2 4  I Y ( z )  I + $1 + x [ Z p  + 2 4  (3.4.4) 

When ( n , p ,  1 - a )  = (15,1,0.90,0.95) and 7- = 2, the value of A in (3.3.18) can 
be found in Table B8, Appendix B, and it is 1.2405. For a given Y( Ic ) ,  the set of 
values of IC, for which the inequality in (3.4.4) holds is a multiple use confidence 
set for the unknown z-value. Solving the inequality numerically, we obtained the 
(0.90, 0.95) multiple use confidence interval as (0.084, 0.166) when Y ( x )  = 0.12, 
(0.061, 0.143) when Y ( z )  = 0.10 and (0.036, 0.121) when Y ( z )  = 0.08. 

3.5 Exercises 

3.5.1. Consider the simple linear regression model 

Y,  = Po + Pizi + ei,  ei - N ( O ,  02) ,  i = I, ..., n. 

Let Y ( x )  = Po + Plz + e, where e - N ( 0 , a 2 )  independently of the ei’s. 
Construct a 1 - a equal-tailed tolerance interval for the distribution of 
Y ( x )  following the approach in Section 2.3.2 of Chapter 2. 

3.5.2. Suppose Y1, ..., Y, are independent following the simple linear regression 
model 

Y,  = + ~1.i + ei ,  ei - N ( O ,  02 ) ,  i = 1, ..., n, 

where the xi’s are known values of a covariate. Also, let 

j = 1, 2, ...., no, denote no future observations corresponding to the known 
values q j ,  j = 1, 2, ...., no, of the covariate. Suitably modify the pro- 
cedures in Section 2.5 of Chapter 2 for computing simultaneous one-sided 
and two-sided tolerance intervals for Y(zoj), j = 1, 2, ...., no. 

3.5.3. For a simple linear regression model, it is decided to compare the responses 
Y(z01) and Y(zo2) corresponding to two values 201 and 202. 

(a) Explain how you will compute one-sided and two-sided tolerance in- 

(b) Explain how you will compute an upper confidence limit for P[Y (201)  > 
tervals for Y(zo1) - Y(zo2). 

Y(xo2)l 
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3.5.4. Consider the regression models 

where the eli’s and e2i’s are all independent, and the zli’s and z2i’s denote 
values of a covariate. Let Y1 and Y2 denote future observations based on 
the first regression model and the second regression model, corresponding 
to the same value z of the covariate. Explain how you will compute a 
( p ,  1 - a )  upper tolerance limit for Yl - Y2 using the generalized confidence 
interval methodology. 

3.5.5. Derive the approximation (3.3.8) [Hint: Follow the proof of Lemnia 10.1 
in Chapter lo]. 

3.5.6. (Fieller’s theorem) Consider the models (3.1.7) and (3.1.8), and suppose a 
single observation Y ( z )  is available corresponding to an unknown 2. Let 
bo, /$ and S2 be as defined in Section 3.5. Show that 

(a) Use the above result to obtain a 1 - N confidence region for J’. 

(b) Show that the region so obtained is a finite interval if the hypothesis 
Ho : p1 = 0 is rejected by the t test, at significance level a. 

3.5.7. (Fieller’s theorem for polynomial regression) Let Y1, ..., Y, be indepen- 
dently distributed with 

(3.4.5) 2 
9 

K = PO + C~jzj + ei, ei - N ( o , ~  1, i = 1, ..., n, 
j = 1  

where the xi’s are known values of a covariate. Also, let 

denote a future observation corresponding to the value z of thc covariate. 
Explain how you will extend the result in the previous problem to con- 
struct a confidence interval for J’, based on a pivot statistic that has a t 
distribution. 
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3.5.8. In the set up of the polynomial regression model given in the previous 
problem, explain how you will construct a tolerance interval for Y(Lc) .  
Also explain how you will construct a multiple use confidence interval for 
LC, based on the tolerance interval, as explained in Section 3.4. 

3.5.9. Suppose Y1, ..., Y, are independent following the linear regression model 

2 
Y, = Po + Pizi + ei ,  ei - N ( o , ~  xi), i = 1, ..., n, 

so that the variance is a multiple of the corresponding L C ~ .  Also. let 

(a) Explain how you will compute one-sided and two-sided tolerance in- 

(b) Suppose zo is unknown. Explain how you will compute a multiple 
tervals for Y ( 2 0 ) .  

use confidence interval for zo. 

3.5.10. In the following data, Y represents the electric conductivity measurements 
corresponding to L C ,  which represents the amount of sodium chloride so- 
lution in dionized water. Here the values of LC are controlled, and the 
corresponding electric conductivity measurements were obtained using the 
Fisher conductivity meter. The purpose is to estimate the sodium chlo- 
ride solution based on the corresponding electric conductivity measure- 
ment. The data are taken from Johnson and Krishnamoorthy (1996) who 
showed that a linear regression model gives a good fit to the data. 

Y 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 
x 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

Y 3.9 4.1 4.3 4.5 4.6 4.8 5.0 5.1 5.3 5.6 6.0 6.3 
z 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0 13.0 

Y 6.6 6.9 7.2 7.5 7.7 8.2 9.1 
z 14.0 15.0 16.0 17.0 18.0 20.0 24.0 

(a) Verify that the fitted linear regression model is Y = 1.8904+0.3264~. 

(b) Let Y (z) denote an electric conductivity measurement corresponding 
to an amount x of the sodium chloride solution. Find a (0.90,0.95) 
lower tolerance limit for the distribution of Y ( z )  when z = 5.3. 

(c) Construct a (0.95,0.95) tolerance interval for the distribution of Y ( z )  
when x = 6.5, and interpret its meaning. 
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(d) Construct a (0.95, .095) simultaneous tolerance interval for Y ( x )  when 

(e) Find multiple use confidence intervals for IC when Y ( z )  = 1.8 and 
IC = 6.5, and interpret its meaning. 

Y ( x )  = 3.7. Use p = 0.95 and 1 - Q = 0.95. 



Chapter 4 

The One-way Random Model with 
Balanced Da ta  

4.1 Notations and Preliminaries 

Consider an experiment involving a single factor having a levels (assumed to be 
randomly chosen from a population of levels), with n observations corresponding 
to each level; i.e., we have balanced data. Let K j  denote the j t h  observation 
corresponding to the i th level, assumed to follow the one-way random model: 

y Z j = p + ~ i + e i j ,  j = l , 2  ,...., n, i = 1 , 2  ,...., a ,  (4.1.1) 

where p is an unknown general mean, q 7 s  represent random effects. and e i j ’ s  

represent error terms. It is assumed that q ’ s  and e i j ’ s  are all independent having 
the distributions 7i - N(0 ,  P!)  and e i j  - N(O,o,”). Thus, y Z j  - N ( p ,  0: + Q:), 

and 0; and a: represent the two variance components in the model. Further- 
more, y Z j  and y Z j ,  are correlated for j # j ’ ;  in fact the covariance between y Z j  

and y Z j ,  is simply the variance component 0:. Note that the “true value” associ- 
ated with the ith level is simply p + ~ i ,  having the distribution p + q  - N ( p ,  0:). 

Clearly, the distribution N ( p ,  0: + a:) corresponds to the observable random 
variables, namely the x j ’ s .  On the other hand, the distribution N ( p ,  G:) corre- 
sponding to the unobservable true values, namely the ( p  + 7 i ) ’ s .  The problems 
addressed in this chapter are the following: 

(i) The computation of lower or upper tolerance limits and two-sided tol- 
erance intervals for the distribution N ( p ,  u: + a:), corresponding to the 
observed values. 
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(ii) The computation of lower or upper tolerance limits and two-sided tolerance 
intervals for the distribution N ( p ,  a?), corresponding to the unobservable 
true values. 

A lower or upper tolerance limit for N ( p ,  a:+az), or for N ( p ,  a:), is obviously a 
confidence limit for the appropriate percentile of the corresponding distribution. 
Thus if p denotes the content and 1 - a denotes the confidence level of the 
tolerance interval, then a ( p ,  1 - a)  lower tolerance limit for N ( p ,  a: + a:) is 
simply a 1 - (u lower confidence liniit for p -- z p d m ,  where zp  denotes 
the p quantile of the standard normal distribution. Similarly, a (p .  1 - 0) lower 
tolerance limit for N ( p ,  a?) is simply a 1 - a lower confidence limit for p - +aT. 

The corresponding ( p ,  1 - a )  upper tolerance limits are 1 - a upper confidence 
limits for p + z p , / w  and p + +or, respectively. 

Define 

a n  

and SS, = yx(Y,j - z.)2. (4.1.2) 

Table 4.1 gives the ANOVA and the expected mean squares under the model 
(4.1.1). 

Table 4.1: ANOVA table for the model (4.1.1) 
Expected 

Source Sum of squares (SS) df Mean square (MS) mean square 
Factor ss, a - 1  MST  = 2 no: + 0," 

Error sse a ( n -  1) M S  - - 0: e - a ( n - 1 )  

We note that Y . ,  SS, and SS, are independently distributed with 

Z = & E  ( Y .  - 
N N(0 ,  I ) ,  d w  

(4.1.3) 
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where x: denotes the chi-square distribution with r degrees of freedom. The 
ANOVA estimators of a: and 02, say 2: and 32, respectively, are given by 

(4.1.4) 

where M S ,  and MSe are the mean squares in Table 4.1. The tolerance limits 
that we shall construct will be functions of Y., SS, and SS,, or equivalently, 
functions of Y., 3: and 2,". 

4.2 Two Examples 

Example 4 .2  (Tensile strength measurements) 

This example is taken from Vangel (1992), and is on the tensile strength 
measurements made on different batches of composite materials, used in the 
manufacture of aircraft components. Lower tolerance limits for the strength 
distribution are clearly of practical interest. Since the tensile strength can vary 
from batch to batch, the batch variability needs to be taken into account while 
computing the tolerance limits. This calls for the use of a model that involves 
random effects. 

The data given below are measurements made on five batches of composite 
materials, where each batch consists of five specimens. Thus we have a = 5 and 
n = 5 .  The coded tensile strength data are given in Vangel (1992, Table 4), and 
are reproduced in Table 4.2. Table 4.3 gives the corresponding ANOVA table. 

Table 4.2: The tensile strength data 
Batch Observations 

1 379 357 390 376 376 
2 363 367 382 381 359 
3 401 402 407 402 396 
4 402 387 392 395 394 
5 415 405 396 390 395 

Reprinted with permission from Technometncs. Copyright [ 19921 
by the American Statistical Association. 

Referring to the model (4.1.1), the y Z j  represents the tensile strength mea- 
surement of the j t h  specimen from the ith batch, i , . j  = l, ..., 5, and the q's 
represent the random batch effects. It is required to compute a lower tolerance 
limit for the tensile strength; i.e., for the distribution N ( p ,  a:+az). One can also 
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Table 4.3: ANOVA table for the tensile strength data in Table 4.2 
Source DF SS MS F-ratio P-value 
Factor 4 4163.4 1040.8 13.19 0.000 
Error 20 1578.4 78.9 
Total 24 5741.8 

compute a lower tolerance limit for the true value ,LL + q of the tensile strength; 
i.e., for the distribution N ( p ,  a:). 

Example 4.2 (Breaking strengths of cement briquettes) 

This example is taken from Bowker and Lieberman (1972), and is on the 
study of breaking strengths (pounds tension) of cement briquettes. Five mea- 
surements each were obtained on nine batches of briquettes. Thus a = 9, n = 5. 
The data are given in Bowker and Lieberman (1972, p. 439), and Table 4.4 gives 
the corresponding ANOVA table. 

For this example, y Z j  represents the breaking strength measurement on the 
j t h  briquette from the ith batch, i = 1, ..., 9, j = 1, ..., 5, and the q’s  represent 
the random batch effects. It is required to compute an upper tolerance limit or 
a two-sided tolerance interval for the distribution of the breaking strength, i.e., 
for the distribution N ( p ,  a: + a:), or for the distribution of the true breaking 
strength ,LL + q, i.e., for the distribution N ( p ,  CT:). 

Later in the chapter, we shall return to both of these examples. 

Table 4.4: ANOVA table for the breaking strength data (Bowker and Lieberman, 
1972, p. 439) 

Source DF SS MS F-ratio P-value 
Factor 8 5037 630 1.20 0.328 
Error 36 18918 526 
Total 44 23955 

4.3 One-sided Tolerance Limits for N ( p ,  0: + a:) 

A motivation for deriving one-sided tolerance limits under the model (4.1.1) 
is evident in Fertig and Mann (1974), who discuss the point estimation of the 
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percentiles of the y Z j .  The application considered by Fertig and Mann (1974) 
deals with the strength of a material when sampling from various batches of the 
material, and the one-way random model is appropriate. The first attempt to 
formally derive a lower tolerance limit for the distribution N ( p ,  02 + 02) appears 
to be due to Lemon (1977). The tolerance limit due to  Lemon (1977) turns out 
to  be quite conservative, as noted by Mee and Owen (1983), who also derived a 
less conservative tolerance limit. Further work in the same direction is due to 
Vangel (1992), and Krishnamoorthy and Mathew (2004). More recently, Chen 
and Harris (2006) proposed a numerical approach to  compute tolerance limits. 
A few of the available solutions are reviewed below. 

4.3.1 The Mee-Owen Approach 

Suppose we are interested in a ( p ,  1 - a )  lower tolerance limit for N ( p ,  0: + g:), 
i.e., a 1 - cy lower confidence limit for p - z p d m ,  where z p  denotes the 
p quantile of the standard normal distribution. Assume that such a tolerance 
limit is of the form Y .  - k d m ,  where $2 and $2 are the ANOVA estimators 
given in (4.1.4) and k is the tolerance factor to be determined. Thus, k should 
satisfy the condition 

We now use the Satterthwaite approximation to  get an approximate chi-square 
distribution associated with G? + $2. Write 

(4.3.2) 

Note that 

'', and have the independent chi-square distributions given in 
(4.1.3). Using the Satterthwaite approximation in Result 1.2.2 of Chapter 1, 
we conclude that 

and r e  

$2 +3,2 x; 
02 +0,2 f ' 

N -  

where 
( R  + 1)2 

t -  (4.3.3) 
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Thus $? + 8," is distributed as (0: + o,")x;/ f ,  approximately, and using the 
definition of 2 in (4.1.3), equation (4.3.1) can be approximately expressed as 

(4.3.4) 

Ro being the quantity in (4.3.2). Since Z+tpm follows a noncentral t- 

distribution (approximately) with f degrees of freedom, and noncentrality pa- 
rameter z , J a ,  k satisfying (4.3.4) is given by 

x: If 

(4.3.5) 

where t,;,-,(6) denotes the 1 - a quantile of a noncentral t-distribution with T 

degrees of freedom and noncentrality parameter 6. The derivation of (4.3.5) is 
of course similar to that of (2.2.3) in Chapter 2. Note that Ro in (4.3.2) is a 
function of R, which is usually unknown; thus the above tolerance factor needs 
modification before it can be used in practice. Mee and Owen (1983) recommend 
to replace R with a 1 - y upper confidence limit, where y is to be determined 
so that coverage probability is at least 1 - a. Since 

1 M S ,  
a - 1  SSe/a,2 n R + l M S e  

follows a central F-distribution with degrees of freedom (u  - l , u ( n  - I ) ) ,  a 

Fa-l,u(n-l);y denotes the y quantile of a central F-distribution with (u - 1, u(n  - 
1)) degrees of freedom, and M S ,  and MSe denote the mean squares in Table 
4.1. Noting that R 2 0, a 1 - y upper confidence limit for R is thus given by 

~- - - 
a(n - 1) ss,/(na; + 0,") 

X 

1 - y upper confidence limit for nR + 1 is given by (Fu-l,u(n-l);y) -1 MS, nrs,, where 

R* =max{O,k ( 1 ".-l)}. 
Fu-l.u(n-l);y MSe 

(4.3.6) 

Once a value of y is decided and R* is computed using (4.3.6), the Mee-Owen 
(1983) tolerance factor, say k ~ o ,  can be determined from (4.3.5) as 

R* + (4.3.7) 
1 ( z p d q )  , where Ri = 

nR* + 1'  k M 0  = d q  x t f*, l-a 

and f *  is an estimate of f that can be obtained by replacing the R in (4.3.3) 
by R*. The value of y depends on p and 1 - Q, and Mee and Owen (1983) 
have provided a table of values of 1 - y, numerically determined, and they are 
reproduced in Table 4.5. 
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Table 4.5: Values of 1 - y for computing R* in (4.3.6) for p = 0.90, 0.95 and 
0.99, and 1 - ci = 0.90, 0.95 and 0.99 

Once the tolerance factor I C M O  is computed as in (4.3.71, the Mee-Owen 

Y. - ICMOJ-. (4.3.8) 

(1983) lower tolerance limit for N ( p ,  c? + o,") is given by 

The corresponding upper tolerance limit is given by 

Y .  + knnod-. (4.3.9) 

The values of 1 - y in Table 4.5 have been determined by Mee and Owen 
(1983) so that the tolerance limits are least conservative for a wide range of 
values of a ,  n and R. 

4.3.2 Vangel's Approach 

In order to obtain less conservative tolerance limits, Vangel (1992) uses a differ- 
ent representation for (4.3.2), avoiding the Satterthwaite approximation. Note 
that 

- - 
3: + 3: 
o; + oz 

an 
- - 

- - 

- - 

where U: and U: are the chi-square random variables given in (4.1.3), and R is 
the variance ratio given in (4.3.2). Note that 

) , (4.3.10) 
2 '  2 

u: 
u,z + u,z U: + Uz - ~ 2 ~ - ~ ,  and B = 
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and U: + U: and B are independently distributed. The left hand side of (4.3.1) 
can be simplified as 

r 1 

(4.3.11) 

where Ro is defined in (4.3.2), B denotes the beta random variable in (4.3.10), 
FT(z;S) denotes the cdf of a noncentral t random variable with T degrees of 
freedom and noncentrality parameter S, and we have also used the fact that 

tan-1 (Z,daG) . JS 
z + Z P J G z i  

Vangel’s (1992) procedure consists of obtaining k as a function of n/f S,/MS, so 
that the last expression in (4.3.11) is equal to 1-a, approximately. Towards this, 
Vangel (1992) first provides an approximate solution for the tolerance factor k ,  
and then provides a further improvement. The approximate solution is obtained 
by considering an asymptotic approximation to the tolerance factor as a function 
of s, and then approximating it further using the expression k v l  given helow: 

AfST > 1 

hfs7 5 1, 

k a n - h  +(ka-lCan)W 

(4.3.12) for - 6 
M Se 1- & { kan for hls, 

kv1 = 

where 
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and 
1 

k - - L I ; l - a ( z p f i )  r - f i  

is the tolerance factor computed for a simple random sample of size T from a 
normal population (see (2.2.3) of Chapter 2). In (4.3.12) it is worth noting that 
when MS,/MS, 5 1, this can be taken as evidence to support the conclusion 
a: = 0. When this is the case, the yZj’s form a simple random sample from 
N ( p , a z ) .  Consequently, the tolerance factor is taken to be k,,, the tolerance 
factor for N ( p ,  0:) based on a random sample of size an. 

A more accurate tolerance factor has been provided by Vangel (1992) by 
setting up k as a solution to an integral equation, and then solving it using an 
iterative scheme based on an approach due to Trickett and Welch (1954), with 
kvl serving as a starting value. Vangel (1992) has noted that the solution so 
obtained can be well approximated by a cubic polynomial in the quantity W 
defined below equation (4.3.12). This gives us the tolerance factor kv2 given by 

kv2 = a1 + a2W + a3W2 + a4W3, (4.3.13) 

where the coefficients a l ,  a2, a3 and a4 (obtained by least squares fit) are tab- 
ulated in Vangel’s paper for ( p ,  1 - a )  = (0.90, 0.95) and (0.99, 0.95). We have 
reproduced the coefficients in Table B9 in Appendix B. The lower tolerance liniit 
due to Vangel is thus given by 

Y. - k d W ,  (4.3.14) 

and the corresponding upper tolerance limit is given by 

p. + k d W ,  (4.3.15) 

where the factor Ic is determined as kvl or kv2 ,  given in (4.3.12) or (4.3.13), 
respectively. The numerical results in Vangel (1992) show that the use of kv2 
results in a less conservative tolerance limit compared to the Mee-Owen (1983) 
tolerance factor. 

4.3.3 The Krishnamoorthy-Mathew Approach 

The generalized confidence interval idea is used in Krishnamoorthy and Mathew 
(2004) in order to derive a 1 -a lower confidence limit for p- zpd=, which 
in turn gives a ( p ,  1 - a )  lower tolerance limit for N ( p ,  0: + a:). We shall now 
develop this procedure following the ideas in Section 1.4. Recall that in order to 
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develop a generalized confidence interval, we have to  define a generalized pivotal 
quantity (GPQ) that is a function of the underlying random variables and the 
corresponding observed values. The random variables of interest to  us are Y . ,  
SS, and SS,; the associated distributions are specified through the quantities 2, 
U: and U:, defined in (4.1.3). Let g,, ,  ss,  and ss, denote the observed values of 
Y . ,  SS, and SS,, respectively. We shall now define a GPQ for p - z p d m .  
Let 

= 3,. + H ,  

-zE - 5 [$ + (n - 1)- . (4.3.16) 
u: 

where H = u, 

From the second expression in (4.3.16), it is clear that the distribution of GI is 
free of any unknown parameters, for fixed values of Z,,, ss, and ss,. We also see 
from the first expression of (4.3.16) that the value of GI when (y . ,  SS,, SSe) = 

( ~ . . , s s , , s s , )  is p - . z p d m ,  the parameter of interest. In other words, 
G1 satisfies the two conditions in ((3.1) of Section 1.4. Thus, if GI, denotes 
the Q quantile of GI ,  then GI, is a 1 - Q generalized lower confidence limit 
for p - z p d m ,  and hence is also a ( p ,  1 - a)  lower tolerance limit for 
N(P, 4 + 0,"). 

The percentile GI, can be estimated by simulation using the following algo- 
rithm: 

Algorithm 4.1 

1. Once the data are obtained, compute the observed values g,, ,  ss,, and ss,. 

2. Let K denote the number of simulation runs. For i = 1 ,2 ,  ...., K ,  perform 
the following steps. 

3. Generate independent random variables Zi - N(O,l), U:,i - xE-l and 
2 u:,z - X n ( d ) .  
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4. Compute 

The a quantile of the G1,i values (i = 1, 2, ..., K )  gives an estimate of the a 
quantile of G I ,  which in turn gives an estimate of the required ( p ,  1 - a)  lower 
tolerance limit for ~ ( p ,  a3 + 02). 

It is also possible to compute Tla by numerical integration. Towards this, 
note from (4.3.16) that 

G I ,  = 3.. +the  a quantile of H 

The quantity H in (4.3.16) can be expressed as 

where B is the beta random variable defined in (4.3.10). Note that B is indepen- 
dent of U:+lJi N x:,-~. Thus, conditionally given B, H has the representation 

(n  - l )B  x ss,: 

(1 - B) x ss, 
tu7L-1(S(B)) with S(B) = -zp& 

ss, 
H =  ( 

an(an  - l)B 

and tun-l(S(B)) denotes the noncentral t random variable with a n  - 1 df and 
noncentrality parameter 6(B).  Let c be the solution of the equation 

It is also possible to develop an approximation for GI,, and this should be of 
considerable interest from the computational point of view. Towards developing 
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an approximation for Glar note that H in (4.3.16) can also be expressed as 

where F = u?/(a- l )  follows an &distribution with ( a  - 1, a ( n  - 1)) degrees 
U , 2 / ( 4 n - I ) )  

of freedom, and f o  = ssT’(a-l) is the observed mean square ratio. Ba.sed on 
ss,/(a(n-1)) 

numerical results, we approximate H in (4.3.17) by replacing the random vari- 
able F with F(apl),a(n-l);cu, the Q quantile of F .  Using such an approximation, 
and after doing straightforward algebra, we get 

r 7 

(4.3.18) 

d where N denotes “approximately distributed as,” and 

(4.3.19) 

This approximation to H has a noncentral &distribution with a - 1 df, and 
noncentrality parameter -61. Hence from (4.3.16) and (4.3.18) it follows that 
the Q quantile of GI is approximately equal to 

Y.. + /-=- a(a - 1)” h ; a (  -61 ). 

Since ta-l;a(-61) = -ta-l;1-a(61) an approximate ( p ,  1 - Q) lower tolerance 
limit is 

(4.3.20) 

where 61 is given in (4.3.19). Note that the approximation is exact in the limiting 
case of large CT:; this can be seen by letting the observed mean square ratio 
ss,/ss, become infinite in (4.3.19). 

g.. - ta-l;l-a(Jl) \i“i a(a  - 1)n’ 

A ( p ,  1 -a )  upper tolerance limit for N ( p ,  0: +a:) can be similarly obtained, 
and has the approximate expression g.. + ta-~;~-a(6~) , , /&.  
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4.3.4 Comparison of Tolerance Limits 

The authors who have investigated the derivation of one-sided tolerance limits 
reported above, have also numerically investigated the performance of the pro- 
posed limits. In fact most of the relevant articles include extensive numerical 
results on the coverage of the respective tolerance intervals; in some cases they 
also include the expected values of the tolerance limits. We note that for a lower 
tolerance limit, the larger the expected value, the better. For an upper toler- 
ance limit, the converse is true. Numerical results on the performance of the 
different tolerance limits are very often reported as a function of a ,  n and the 
value of the intra-class correlation a:/(a? + 02) = p (say). It is easily verified 
that the performance of the tolerance limits does not depend on the value of p. 
Numerical results indicate that the different tolerance limits exhibit rather sim- 
ilar performance, except the approximate limit (4.3.20). The approximate limit 
(4.3.20) does not perform satisfactorily for smaller values of p, especially when 
a and/or n is somewhat large. The corresponding tolerance interval tends to be 
liberal in this case; see the numerical results in Krishnamoorthy and Mathew 
(2004). The findings in Krishnamoorthy and Mathew (2004) indicate that the 
approximate limit (4.3.20) is quite satisfactory for p 2 0.5. 

The examples given below also support the above conclusions. Varigel (1992, 
pp. 181-182) notes that “For the most part, the differences in the tolerance- 
limit factors are not large”. 

4.3.5 Examples 

Example 4.1 (continued) 

As noted earlier, there are a = 5 batches, and each batch consists of n = 5 
specimens. From the ANOVA Table 4.3, we have ss, = 4163.4 and ss, = 1578.4. 
We also have the observed values 

g.. = 388.36, m s ,  = 1040.8, m s ,  = 78.9, C; = 192.36, and 5: = 78.90, 

where ms, and ms, are the observed values of M S ,  and M S e ,  respectively. 

The Mee-Owen approach From Table 4.5, we get the value of y as 0.85 when 
( p ,  1 - a )  = (0.90,0.95). The required F critical value to compute R* in (4.3.6) 
is F4.20:1-.85 = 0.33665. Using this critical value, and using the observed values 
msT and rris,, we evaluated R* = 7.6367. This gives the value Rz in (4.3.7) as 
0.22042. The value o f f*  in (4.3.7) is 4.8482. Noting that 2.90 = 1.2816, we found 
the nonceritrality parameter in (4.3.7) as 3.0083, and the noncentral t critical 
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value t4.8482;.95 (3.0083) = 7.2118. Using these values, we computed the tolerance 
factor kMo in (4.3.7) as 7.2118/J5 x 5 x 0.22042 = 3.0722. Thus, the (0.90, 
0.95) lower tolerance limit is 1J.. - ~ M o J ~  = 388.36 - 3.0722 x 16.4706 = 
337.76. 

Vangel’s Approach We first note that 
we compute the tolerance factor as (see 4.3.12) 

k,, - k, + ( k a  - k,,)W 

= 13.19 > 1 and W = 0.87595. So, 

fi 
kv1 = 1 

1-F 
1.8381 - __ 3.4066 + (3.4066 - 1.8381) x 0.87595 - & 

= 3.0546. 

1 
- 

l-z 

Thus, the (0.90,0.95) lower tolerance limit is 1J.. - k v 1 J m  = 388.36 - 
3.0546J192.38 + 78.9 = 338.05. 

To compute the factor kv2 in (4.3.13), the coefficients a1, u2, a3 and a4 can 
be found from Table B9 in Appendix B, and 

kva = 1.598 - 0.638W + 3.984W2 - 1.537W3 = 3.0630. 

This factor leads to the lower tolerance limit 388.36 - 3.0630J192.38 + 78.9 = 

337.91. 

The Krishnamoorthy-Mathew Approach: To compute the (0.90, 0.95) lower 
tolerance limit using the generalized variable approach, we need to evaluate 
the 5th percentile of H in (4.3.17); we evaluated it using Algorithm 4.1 with 
K = 10,000, and 5th percentile of H is estimated as -50.56. Thus, the lower 
tolerance limit is 388.36 - 50.56 = 337.80. 

To compute the approximate (0.90, 0.95) lower tolerance limit using (4.3.20), 
= 6.4524. Thus, we evaluated 61 = 2.9396, t4;.95(2.9396) = 7.7772 and 

the required tolerance limit is 388.36 - 7.7772 x 6.4524 = 338.18. 
$-- 

We note that all approaches produced lower tolerance limits that are prac- 
tically the same. 

Example 4.2 (continued) 

For this example, note that we have a = 9 batches, and each batch consists of 
n = 5 specimens. &om ANOVA Table 4.4, we have ssT = 5037 and ss,  = 18918. 
Other summary statistics are 
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y.. = 543.2, ms, = 630, ms, = 526 and d m  = 23.3838. 

For this example, let us compute (0.95, 0.95) lower tolerance limits using the 
various approaches. 

The Mee-Owen approach: The required y-value to construct (0.90, 0.95) one- 
sided tolerance limits is obtained from Table 4.5 as 0.85. The F critical value in 
(4.3.6) is F8,36;1-.85 = 0.49726. Using this critical value, and the observed values 
msT and ms,, we evaluated R* = 0.28173. This gives the value of 0.53214 for RG 
in (4.3.7). The value o f f *  in (4.3.7) is 35.11. Noting that z.90 = 1.2816, we found 
the noncentrality parameter in (4.3.7) as 6.2713, and the noncentral t critical 
value t35.11;.95(6.2713) = 8.6779. Using these values, we computed the tolerance 
factor k ~ o  in (4.3.7) as 8.6779/J9 x 5 x 0.53214 = 1.7734. Thus, the (0.90, 
0.95) lower tolerance limit is g.. - k M o d m  = 543.2 - 1.7734 x 23.3838 = 

501.73. 

Vangel’s Approach We first note that 
compute the tolerance factor as (see (4.3.12)) 

= 1.2 > 1 and W = 0.4804. So, we 

1 - A  
fi 

1.6689 - 2.4538 + (2.4538 - 1.6689) x 0.4804 
- A 

= 1.7160. 

- 
1 

I - z  

Thus, the (0.90, 0.95) lower tolerance limit is g.. - k v l d w  = 543.2 - 
1.7160 x 23.3838 = 503.07. 

To compute the factor kv2 in (4.3.13), the coefficients nl, 122, a3 and a4 can 
be found from Table B9 in Appendix B, and we get 

kvz  = 1.569 - 0.490W + 1.970W2 - 0.596W3 1 1.7222. 

This factor leads to the lower tolerance as 543.2 - 1 . 7 2 2 2 d m  = 502.93. 

The Krishnamoorthy-Mathew Approach To compute the (0.90, 0.95) lower 
tolerance limit using the generalized variable approach, we need to evaluate 
the 5th percentile of H in (4.3.17); we evaluated it using Algorithm 4.1 with 
K = 10,000, and the value is -41.72. Thus, the lower tolerance limit is 543.2 - 
41.72 = 501.48. 

To compute the approximate (0.90, 0.95) lower tolerance limit using (4.3.20), 
we evaluated 61 = 5.5619, t8;0.95(5.5619) = 10.1076 and = 3.7405. Thus, 
the required tolerance limit is 543.2 - 10.1076 x 3.7405 = 505.39. 
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Notice that all the tolerance limits are approximately the same except the one 
based on the Krishnamoorthy-Mathew approximate approach, which is larger 
than the other limits. This is anticipated because this approximate approach 
works satisfactorily only when the intra-class correlation p = a?/(a? + a,") is 
somewhat large; otherwise, it provides tolerance limits that are liberal. For 
this example, the estimated intra-class correlation p̂  = l?;/(l?? + 5:) = 0.0383, 
which is rather small, indicating that p is likely to be small. Thus this method 
produced a tolerance limit that turned out to be lasger than the tolerance limits 
based on the other approaches. 

4.3.6 One-sided Confidence Limits for Exceedance Probabilities 

In the context of the one-way random model, an exceedance probability is simply 
the probability that a random variable Y that follows the one-way random model 
will exceed a specified limit, say L. Thus if Y N N ( p ,  a: + a:), then t,he ex- 
ceedance probability q is given by q = P(Y > 15). The parameter q is obviously 
a function of the parameters p, o$ and a: associated with the one-way random 
model. Here we shall address the problem of computing an upper confidence 
limit for 77. We shall do this using an upper tolerance limit for N(p ,a?  + a:). 
We are actually using the approach outlined in Section 1.1.3 of Chapter 1; we 
have already applied this in Chapter 2 in the context of the usual univariate 
normal distribution N ( p ,  0 2 ) .  

Inference concerning an exceedance probability is important in industrial 
hygiene applications. In the area of industrial hygiene, applications of the one- 
way random effects model for assessing personal exposure levels for a group 
of workers have been well demonstrated in the literature on occupational expo- 
sure assessment; see Krishnamoorthy and Mathew (2002b) and Krishnamoorthy, 
Mathew and Ramachandran (2007) for references. If multiple measurements are 
made on each worker, then one should use the random effects model in order 
to account for the between- and within-worker variability. Inference concerning 
an exceedance probability is quite important in such applications, since personal 
exposure levels can be assessed based on the probability that an individual expo- 
sure measurement exceeds an occupational exposure limit. In other words, what 
is required is interval estimation and hypothesis tests concerning an exceedance 
probability. 

Now consider the one-way random model (4.1.1) where we have balanced 
data Y , j ;  j = 1, 2, ...., n, i = 1, 2, ...., a. For Y N N ( p ,  0; +a:), the exceedance 
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probability simplifies to 

where denotes the standard normal cdf. Here we shall address both the 
interval estimation and hypothesis testing for 7 .  Suppose we want to test 

H o : q > A  vs H i : q < A ,  

for a specified A. Testing this hypothesis is easily seen to be equivalent to testing 
the following hypotheses concerning the 1 - A quantile of N ( p ,  0; + 0,"): 

As noted in Section 1.1.3, the above hypothesis can be tested by comparing an 
upper tolerance limit for N ( p ,  o$+az) with L ,  where the content of the tolerance 
interval is to be p = 1 - A, and the confidence level is to be 1 - a. We reject Ho 
if such an upper tolerance limit is less than L. Thus the upper tolerance limits 
derived earlier in this chapter can be used for carrying out a test for the above 
hypotheses. 

A 1 -a upper confidence bound for rl can be obtained by identifying the set of 
values of A for which the null hypothesis in (4.3.21) will be accepted. Specifically, 
the maximum value of A for which the null hypothesis in (4.3.21) is accepted is 
an upper confidence bound for 7. The computation of the upper confidence limit 
becomes particularly easy for situations where the approximation for the upper 
tolerance limit, specified in Section 4.3.3 (see equations (4.3.17)-(4.3.19), and 
the material following these equations), is satisfactory. For a 1 - A content and 
1 - (Y confidence level upper tolerance limit for N ( p ,  o$ +a:), the approximation 
is given by 

Notice that 61 given above is a decreasing function of A. Furthermore, 
tu-l;l-cr(61) is an increasing function of 61. As a result, the approxirnate upper 
tolerance limit in (4.3.22) is a decreasing function of A. In general, from the 
definition of the upper tolerance limit, it should be clear that such a limit should 
be an increasing function of the content (and a lower tolerance limit should be a 
decreasing function of the content). Thus the required upper confidence bound 
for 7 is obtained as the solution (to A)  of the equation 

Y.. + L l ; l - a ( 6 l )  $"~ = L ,  
a(a - 1). 

(4.3.23) 
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where 61 is a function of A; see (4.3.22). We note that the above equation can be 
solved for 61, and then for A using the PC calculator StatCalc by Krishnamoor- 
thy (2006). 

A 100( 1 - a)% lower confidence bound for can be similarly obtained as the 
value of A for which a lower tolerance limit for N ( p ,  IT: + IT:), having content A 
and confidence level 1 - a, is equal to L.  

If the approximation to the upper tolerance limit is not used, then trial and 
error is necessary in order to numerically obtain the value of A for which the 
(1 - A, 1 - a)  upper tolerance limit is equal to L.  The value of A obtained based 
on the approximate upper tolerance limit can be used as a starting value for this 
purpose. The value can be adjusted and the (1 - A, 1 - a )  upper tolerance limit 
can be recomputed until the tolerance limit is approximately equal to the value 
of L.  

Example 4.3 (Styrene exposures at a boat manufacturing plant) 

We shall now illustrate the computation of a confidence limit for an ex- 
ceedance probability using data on styrene exposures (mg/m3) on laminators at 
a boat manufacturing plant. The data given below are reproduced from Table 
C. l  in Lyles, Kupper and Rappaport (1997a); the data reported are the natural 
logarithm of the exposure measurements. It is of interest to estimate the propor- 
tion of workers for whom the exposure exceeds an occupational exposure limit 
(OEL). For Styrene exposure, the OEL reported in Lyles, Kupper and Rappa- 
port (1997a) is 213 rng/m3, i.e., 5.3613 on the log-scale. Thus our problem of 
interest is computation of a lower confidence limit for the exceedance probabil- 
ity P(Y > 5.3613), where Y is the log-transformed exposure measurement that 
follows a one-way random model. Note that the data reported in Table 4.7 is 
for a = 13 workers, with n = 3 observations per worker. The random effect in 
the model now represents an effect due to the worker. Computations based on 
the data gave the observed values g.. = 4.810, ssT = 11.426 and ss, = 14.711. 
Choosing cy = 0.05, we found F12,26;.05 = 0.4015, and computed 61 in (4.3.22) as 
61 = 4.401 x Z I - A .  Using these quantities in (4.3.23), we see that 

L - g,, 5.3613 - 4.810 
= 3.5272. 

0.1563 t12;.95(4.40121-A) = 
a(a-1)n 

Solving the above equation for the noncentrality parameter (StatCalc, Krish- 
namoorthy, 2006), we have 4 . 4 0 1 ~ 1 - ~  = 1.450 or Z ~ - A  = 0.3295. Thus, 1 - A = 

Q(0.3295) or A = 1 - Q(0.3295) = 1 - 0.6291 = 0.3709, where Q is the standard 
normal cdf. Thus, the probability that an exposure measurement cxceeds the 
OEL is at least 0.3709 with confidence 0.95. 
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Worker Observations 
1 3.071 3.871 2.965 
2 4.319 4.396 5.045 
3 5.221 4.876 5.058 
4 4.572 5.116 5.578 
5 5.351 3.925 4.217 
6 5.889 4.893 4.775 
7 5.192 4.457 5.097 

Table 
Worker O bservat ions 

8 4.477 4.807 5.345 
9 5.060 5.271 5.454 
10 5.188 4.499 5.340 
11 5.970 5.660 5.175 
12 5.619 1.843 5.545 
13 4.200 5.294 4.945 

1.6: Styrelic cxposures 011 lwiniiiators a t  il Imat ~ i i a ~ i u f i i c . t i i i ~ i ~ i ~  plant 

Reprinted with permission from Journal of Agrzcultural, Bzologzcal and Environmental 
Statzstzcs. Copyright [1997] by the American Statistical Association. 

Table 4.7: ANOVA table for the styrene exposure data in Table 4.6 
Source DF SS MS F-ratio P-value 
Factor 12 11.426 0.952 1.68 0.129 
Error 26 14.711 0.566 
Total 38 26.136 

4.3.7 One-sided Tolerance Limits When the Variance Ratio 
Is Known 

In most practical applications, the variance ratio R is unknown; thus a solution 
for the case of a known R is not of much interest. Nevertheless, it is possible 
to give a simple exact solution when R is known, and we shall now give such a 
solution. The situation of a known R is actually addressed by Mee and Owen 
(1983), Vangel (1992) and Bhaumik and Kulkarni (1996). We simply note that 
when R is known, the problem can be reduced to that of computing a tolerance 
factor for a univariate normal distribution, and the solution can then be obtained 
as discussed in Chapter 2. The solution so obtained is also the solution given in 
Bhaumik and Kulkarni (1996). 

Note that we want to find tolerance intervals for N(p ,u :  + a:) = 

N ( p , u z ( R  + l)), and from (4.1.4), we see that y .  N N ( p ,  z ( n R  + 1)) = 

ss=- ssr + SS,, 
nR+1 

it is clear that 3 N xanPl. 2 Thus, an-l SS(R+l) is an unbiased estimator of &R+ 1). 
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Based on the independent quantities F, and S S ,  and their distributions, we can 
now derive a lower or upper tolerance limit for N ( p ,  oz(R + l)), following the 

procedures in Chapter 2. Specifically, identifying (Y,, dw, ~72 ( R  + 1) as 

(X, S,  c2) in (2.2.5), we get a ( p ,  1 - a )  lower tolerance limit for N ( p ,  &R+ 1)) 
as 

1 

A ( p ,  1-a) upper tolerance limit for N ( p ,  o:(R+1)) can be obtained by replacing 
the - tan- l ;~-a in the above expression by +tan-ppa. 

4.4 One-sided Tolerance Limits for N ( p ,  0:) 

Recall that a lower tolerance limit for N(p ,a ; )  is a lower tolerance limit for 
the distribution of the true values, namely p + q in (4.1.1). Such a problem 
was considered by Jaech (1984), Mee (1984a) and Wang and Iyer (1994). More 
recently, Krishnamoorthy and Mathew (2004) have provided a solution based 
on generalized confidence intervals, and this solution is presented below. 

In order to obtain a ( p ,  1 - a )  lower tolerance limit for N ( p ,  Q:), we need 
to obtain a 1 - Q lower confidence limit for p - zpa,. Similar to G I  given in 
(4.3.16), it is easily verified that G2 given below is a GPQ for p - zpcT:  

(4.4.1) 

where the random variables 2, U: and U: are as defined in (4.1.3). and for any 
scalar c, c+ = max(c, 0). Then G2a, the Q: quantile of G2, is our ( p ,  1 - a )  lower 
tolerance limit for N ( p ,  0;). An algorithm similar to Algorithm 4.1 can be used 
to estimate Gas. 

As in the previous section, it is possible to develop an approximation for 
G2,. Towards this, note that 
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Arguing as before, the approximate tolerance limit is given by 

where 

(4.4.2) 

(4.4.3) 

and {x}+ = max{x,O}. 

Example 4.2 (continued) 

Let us compute a (0.90,0.95) lower tolerance limit for the distribution of true 
unobservable values p + q using the data in Example 4.2. Recall that a = 9, 
n = 5 and from the ANOVA Table 4.4, we have ss, = 5037 and ss, = 18918. 
Other table values are 2.90 = 1.2816 and F8,36;.05 = 0.327324. Using these values 
in (4.4.3), we get 

I 

62 = 1.2816 (9 - !! x 18918 x 0.327324) ' = 3.2778. 
4 5037 

The noncentral critical value in (4.4.2) is 28,.95(3.2778) = 6.47964, and ,/& = 

3.7405. Using these quantities in (4.4.2), we computed the (0.90. 0.95) lower tol- 
erance limit as 

543.2 - 6.47964 x 3.7405 = 518.96. 

4.5 Two-sided Tolerance Intervals for N ( p ,  0: + 02) 

The ( p ,  1 - a )  two-sided tolerance interval is assumed to be of the form Y. f 
k d m ,  where k is the tolerance factor to be determined. If we consider a 
random variable Y that follows N ( p ,  0: + a:), the condition to  be satisfied by 
k is 

or equivalently, 

pz, L?:, 

- @ (  

1 - a ,  (4.5.1) 



106 4 The One-way Random Model with Balanced Data 

where Ro is defined in (4.3.2), and @ denotes the standard normal cdf. 

The Mee-Owen (1983) approach has been extended by Mee (198410) to arrive 
at a two-sided tolerance interval for N ( p ,  o: + 0,"). Later, Beckman and Tiet- 
jen (1989) derived a two-sided tolerance interval after replacing the unknown 

and is an parameter & by an upper bound. Note that & = an(u2+;2), 

upper bound for this quantity. As noted in Beckman and Tietjen (1989), this 
results in a conservative tolerance interval, unless & is close to  the upper 
bound, namely, i. More recently, Liao and Iyer (2004), and Liao, Lin and Iyer 
(2005) have derived approximate two-sided tolerance intervals using the gener- 
alized confidence interval idea. The approximation used in Liao, Lin and Iyer 
(2005) appears to  be an improvement over that used in Liao and Iyer (2004). It 
should be noted that the two-sided tolerance interval problem does not reduce 
to a confidence interval problem concerning percentiles; thus, the Liao, Lin and 
Iyer (2005) approach is not a straightforward application of the generalized con- 
fidence interval idea, even though they succeed in eventually using generalized 
confidence intervals for a suitable linear combination of the variance components 
CT? and 0:. Here we shall discuss the solutions due to Mee (198413) and Liao, 
Lin and Iyer (2005). 

nu: +a2 

4.5.1 Mee's Approach 

Mee (198413) once again uses the Satterthwaite approximation 

c: +c: x; 
o: +o,2 f ' 

N -  

where f is given in (4.3.3). Thus, as an approximation, (4.5.1) can be written 
as 

If R, and hence Ro, are known, then (4.5.2) is the same as equation (1.2.3) 
in Chapter 1 for a normal distribution. Specifically, an approximate tolerance 
factor is given by (1.2.5) where c in (1.2.5) is replaced with A, m is replaced 
with f ,  and y in (1.2.5) is replaced with 1 - a. 

However, since R is unknown, Mee (198413) recommends using a 1 - y level 
upper confidence bound in the place of R, just as in the case of the lower or 
upper tolerance limit discussed in Section 4.3. Based on numerical results, the 
recommended values of 1 - y are 0.85, 0.905 and 0.975, corresponding to  1 - a 
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= 0.90, 0.95 and 0.99, respectively. A 1 - y level upper confidence bound for R 
is the quantity R* given in (4.3.6), and let RG be as defined in (4.3.7). Then k 
is computed from 

This equation is the samc as the one in (1.2.3), and so applying Result 1.2.1 
(iii), we can get an approximate value of k ,  say k ~ ,  given by 

(4.5.3) 

where f* is as defined for (4.3.7). This factor leads to an approximate two-sided 
t,olerance interval for N(pL:  a? + a:), given by 

Y. * k M J W .  (4.5.4) 

4.5.2 The Liao-Lin-Iyer Approach 

Note that in order to derive a two-sided tolerance interval, we have to obtain a 
margin of error statistic D1, a function of C: and G:, or equivalently a function 
of SS, and SS,, so that 

PY., SS,, sse [Py {Y. - D1 L Y 5 Y. + DllY . ,  ss,, SS,,} 2 PI = 1 - a ,  
(4.5.5) 

where Y - N ( p ,  a? + a:). Once D1 is obtained, the tolerance interval is given 
by Y. f D1. Write 

(4.5.6) 2 2  2 
0 1  = 0, + a:, and a2 = (no: + az)/ (an) ,  

so that 2 = 

can equivalently be expressed as 
- N(O,1); see (4.1.3). Similar to (4.5.1), the condition (4.5.5) 

For a fixed u, consider thc equation 

q u  + k )  - .(u - k )  = p ,  
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and suppose we want to obtain a solution to k .  The following relation has been 
obtained by Howe (1969): 

Notice that (4.5.7) is the same as equation (1.2.3). In the proof of Result 1.2.3 
(ii), it was noted that @(u + k )  - @(?I ,  - k )  is an increasing function of k .  Thus 
the condition 

@ ( D1) - @ (““‘nT 0 1 )  2 p 

is equivalent to 

Thus, (4.5.7) is equivalent to 

Following Liao, Lin and Iyer (2005), we replace the powers of 2 by their expected 
values, and keep only two terms. Thus, as an approximation, (4.5.8) can be 
expressed as 

P q  { Df L Z& (a1 2 2  + a,,> = 1 - a. (4.5.9) 

The above equation implies that D; is a I - a upper confidence limit for 
z2* (a: + a;). 

LFrom the definition of a: and a; in (4.5.6), we note that 

A 1 - Q upper confidence limit for a: + 022 can be obtained using the generalized 
confidence interval idea. A GPQ for a: + 022 is easily seen to be 

(4.5.10) 
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where U: and Uz are the chi-square random variables defined in (4.1.3), and 
ss, and ss, denote the observed values of SS, and SS,, respectively. The 1 - cy 
quantile of the above GPQ will provide a 1 -a upper confidence limit for af+a;. 
The square root of this upper confidence limit, multiplied by zl+p, provides a 
margin of error statistic D1 required for computing the approximate ( p ,  1 - a )  
two-sided tolerance interval F, f D1. 

2 

We note that it is also possible to use the Satterthwaite approximation to 
obtain a confidence limit for at + a;. The unbiased estimator of at + a; is 

q+s; = (l+!)S?+ (1+&)at 

where MST and M S ,  are the mean squares given in Table 4.1. Since the above 
estimator is always nonnegative, we can approximate the distribution of (C; + 
Z;)/(af + a;) with a scalar multiple of a chi-square; see Section Result 1.2.2 in 
Chapter 1. Yet another option to  compute a confidence limit for af + a; is to 
use the modified large sample procedure described in Section 1.3 of Chapter 1. 

Liao and Iyer (2004) have derived a margin of error statistic D1, using a 
slightly different approximation than the one given above. However, based on 
coverage studies, Liao, Lin and Iyer (2005) conclude that the niargin of error 
statistic derived in this section provides a tolerance interval that exhibits some- 
what improved performance, compared to the one in Liao and Iyer (2004). 

Example 4.1 (continued) 

We shall now construct ( p ,  1 - a )  = (0.90,0.95) two-sided tolerance intervals 
for the examples in Section 4.1 using the different approaches. For Example 4.1, 
a = 5, n = 5, ss, = 4163.4, ss, = 1578.4. 

Mee's Approach  Since 1 - a = 0.95, we choose 1 - y = 0.905. The F crit- 
ical value to compute RT, is F4,2oiY = F4,20;.ogF, = 0.252042, R* = 10.2671, 
RT, = 0.21528. Furthermore, f* = 4.8482, (anRT,)-' = 0.1858, ~ ~ ; , ~ ~ ( 0 . 1 8 5 8 )  = 

3.20884 and xi,8182;,05 = 1.0755. Thus, the tolerance factor 

4.8482 x 3.20884 
= 3.8033, 

k M  = ( 1.0755 

and the (0.90, 0.95) tolerance interval is W.. f k m d m  = 388.36 f 3.8033 x 
16.4706 = 388.36 f 62.64. 
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The Liao-Lin-Iyer Approach To apply this approach, we first estimated a 95% 
generalized upper confidence limit for af+a: as 1471.57. Monte Carlo simulation 
consisting of 100,000 runs was applied to (4.5.10) to get this limit. Noting that 
z- = 2.95 = 1.6449, we found D1 = 2.95 x v ' m  = 63.1. Thus, the (0.90, 
0.95) tolerance interval is given by g,, f D1 = 388.36 f 63.1. 

2 

We note that the results based on both methods are in good agreement. 

We can also use the Satterthwaite approximation, or the MLS methodology 
in order to compute an upper confidence limit for CT+O; .  We shall now illustrate 
the application of the MLS methodology. Note that nl?; + i?: = ss,/(a - 1) = 

1040.85 and $2 = ss,/u(n - 1) = 78.92. Using the definitions of cf and a:, we 

We shall now apply formula (1.3.3) of Chapter 1 to get the 95% MLS upper 
confidence limit for af +a: (note that the notation c: used in (1.3.3) is different 
from the notation 0: and a: used above). The MLS upper confidence limit is 
given by 

For 1 - ct. = 0.95, a = 5 and n = 5, we have X B - ~ , ,  = 0.7107 and x$n-ll;, - - 
10.8508. The above expression for the 95% MLS upper confidence limit simplifies 
to 1474.94. We note that this upper limit is very close to the 95% generalized 
upper confidence limit given above, and hence the resulting tolerance limits are 
also very close. 

Example 4.2 (continued) 

Mee's Approach: We shall compute (0.90, 0.95) tolerance intervals for this 
example. Note that here a = 9, n = 5, ss, = 5037 and ss, = 18918. The F 
critical value to compute RT, is F8,36;.095 = 0.413907, R* = 0.37894, Rz = 0.47636 
and f *  = 31.864. Furthermore, (anRT,)-l = 0.04665, x:. /.. ,,(0.04665) = 2.83198 
and x31.864;,05 = 19.9641. Thus, the tolerance factor 2 

31.864 x 2.83198 
= 2.1260, 

kM = ( 19.9641 
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and the (0.90, 0.95) tolerance interval is g.. f l c n ~ d w  = 543.2 zk 2.1260 x 
23.3838 = 543.2 f 49.71. 

Liao-Lin-Iyer Approach: A 95% generalized upper confidence limit for a? + 022 
is 932.497. Monte Carlo simulation consisting of 100,000 runs was applied to 
(4.5.10) to get this limit. Noting that zl+p = 2.95 = 1.6449,we found D1 = 

2.95 x v ‘ m  = 50.23. Thus, the (0.90, 0.95) tolerance interval is given by 
2 

g,, 41 D1 = 543.2 f 50.23. 

Proceeding as with the previous example, a 95% MLS upper confidence limit 
for a: +a; comes out to be 986.63. This results in D1 = 20.95 x d m  = 51.67. 
Thus, the (0.90, 0.95) tolerance interval is given by g.. f D1 = 543.2 f 51.67 

We note again that the results are in good agreement. 

4.6 Two-sided Tolerance Intervals for N ( p ,  0:) 

We shall use the Liao, Lin and Iyer (2005) approach for deriving a tolerance 
interval for N(p ,a?) .  We shall take the tolerance interval to be of the form 
Y ,  f D2, where 0 2  is a margin of error statistic to be determined. D2 will be a 
function of SS,  and SS, and satisfies 

PY., ss,, ss, [p. { Y .  - D2 I p + ?- I y .  + DnIY., SS,, SS,,} 2 PI = 1 - a ,  
(4.6.1) 

where p + 7 N N ( p ,  a:). Following the derivations in the previous section, we 
conclude that an approximate condition to be satisfied by D2 is 

(4.6.2) 

where a; is defined in (4.5.6). The above equation implies that D i  is a 1 - a 
upper confidence limit for ,z:+~ - (a: + a;). 

2 

iFrom the definition of a: in (4.5.6), we note that 

1 na: +a;  a; 
- _ _  

a:+a;= (l+--) n 

A 1 - cy upper confidence limit for a? + a; can be obtained using the generalized 
confidence interval idea. A GPQ for a: + a; is easily seen to be 

(4.6.3) 
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where for any scalar c, we define c+ = max{c,O}. The 1 - a quantile of the 
above GPQ will provide a 1 - a upper confidence limit for a: + a;. The square 
root of this upper confidence limit, multiplied by z*, provides a margin of 
error statistic 0 2  required for computing the approximate ( p ,  1 - a )  two-sided 
tolerance interval Y. f 0 2  for the distribution N ( p ,  a:). 

2 

Note that an unbiased estimator of a: + a; is given by (1 + :)AMST - 
LMSe,  which can assume negative values. Hence its distribution cannot be 
approximated using a scalar multiple of a chi-square. In other words, it is 
not appropriate to use the Satterthwaite approximation to obtain an upper 
confidence limit for 0: + a;. However, the MLS procedure can be used to obtain 
such a confidence limit. 

TL 

Example 4.1 (continued) 

We shall illustrate the above method of constructing a tolerance interval 
for the distribution N ( p ,  a?) using Example 4.1. Recall that, for this example, 
a = 5, n = 5, ssr = 4163.4, ss, = 1578.4. To compute a (0.90, 0.95) tolerance 
interval, we estimated the 95% generalized upper confidence limit for a: + a; as 
1391.7; Monte Carlo simulation consisting of 100,000 runs was applied to (4.3.6) 
to get this limit. The value of 0 2  can be obtained as z . 9 5 d m  = 61.4. Thus, 
the desired tolerance interval is 388.36 f 61.4. 

can assume negative values, it, is not 
appropriate to use the Satterthwaite approximation to obtain an upper confi- 
dence bound for a$ + a;. However, the MLS procedure is applicable. Using the 
formula (1.3.4) of Chapter 1, the MLS upper bound for a: + a; is given by 

1 nGq+z,2 3 
n Since C: +a2 - 2 -  - ( 1 +  ,) 

a; ( a ( n -  1) - 1)2}1’2 
2 + -  

n2 &(n-1);l-a 

For 1 - a = 0.95, a = 5 and n = 5, we have = 0.7107 and x:(n-l);l-a 
= 31.410. Since n?? + a: = ss,/(a - 1) = 1040.85 and 2: = ss,/u(n - 1) = 

78.92, the above expression for the 95% MLS upper confidence limit simplifies 
to 1390.19, which is almost the same as the 95% generalized upper confidence 
limit given above. Thus the resulting tolerance limits are also practically the 
same. 
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Example 4.2 (continued) 

For this example, a = 9, n = 5, ss,  = 5037, ss,  = 18918. To compute a (0.90, 
0.95) tolerance interval, we estimated the 95% generalized upper confidence 
limit for a: + 022 as 302.1; Monte Carlo simulation consisting of 100,000 runs 
was applied to (4.3.6) to get this limit. The value of 0 2  can be obtained as 
2 . 9 5 v ' ' m  = 28.6. Thus, the desired tolerance interval is 543.2 f 28.6. The MLS 
procedure gives the 95% upper confidence limit for a? + a; as 293.61, which is 
not very different from the above generalized upper confidence limit. 

As already noted, in the context of computing two-sided tolerance intervals 
for N ( p ,  a: + 0%) and for N ( p ,  c?), for obtaining the margin of error statistic 
D1 or D2, the required upper confidence limit can be computed using the gener- 
alized confidence interval procedure, or using the MLS procedure. However, the 
numerical results in this section, and in the previous section show that the two 
upper confidence limits are nearly the same. Thus the MLS procedure can be 
recommended for practical use since the upper confidence limit has an explicit 
analytical form, and hence is easily computed, whereas the generalized upper 
confidence limit has to be estimated by Monte Carlo simulation. 

4.7 Exercises 

4.7.1. Consider the one-way random model with balanced data. 

(a) Suppose it is desired to construct a confidence interval for a: + 02, 
which is also the variance of xj. Derive a generalized confidence 
interval for a? + a:. 

(b) Derive a generalized confidence interval for the ratio $/a,". Show 
that the interval reduces to the exact confidence interval that can he 

MS, obtained using the F statistic u$& x -  M S , .  

4.7.2. Use the results in the previous problem to compute a 95% upper confidence 
limit for a$+a; based on the cement briquette breaking strength data given 
in Table 4.4. Use 10,000 simulated values of the GPQ. 

4.7.3. For the one-way random rnodel with balanced data, suppose the variance 
ratio R = a?/a: is known (see Section 4.3.7). Use the relevant results in 
Chapter 2 to derive the following: 

(a) a two-sided tolerance interval for N ( p ,  a: + a:). 
(b) one-sided and two-sided tolerance intervals for N ( p ,  a?). 
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(c) equal-tailed tolerance intervals for N ( p ,  a: + a:) and N ( p ,  02). 

4.7.4. For the one-way random model with balanced data, where the variance 
ratio R = o:/az is known, explain how you will estimate the expected 
value of the upper tolerance limits for N(p ,a :  + 02) and N(p,a: ) ,  by 
Monte Carlo simulation. For p = 0.90, 1 - Q: = 0.95, a = 10, n = 5, and a; 
= 1, estimate the above expected values for various values of R = a:/.:. 
Are the expected values increasing in R'? Should we expect this? 

4.7.5. For the one-way random model with balanced data, derive an upper con- 
fidence bound for the exceedance probability concerning the true values, 
namely P ( p  + 7 > L ) ,  where 7 - N(O,az) and L is a specified limit. 

4.7.6. Consider the one-way random models Y1ij = p l+q i+e l i j ,  j = 1,2,  ...., n l ;  

i = 1 ,2 ,  ...., a1 and Y2ij = p2 + 7 2 i  + esij, j = 1,2 ,  ...., n2; i = I,, 2, ...., a2, 

where 7ii N N ( o ,  a:,), elij - N ( O ,  a&) ,  72i N N ( O ,  a:2), e2ij - N ( O ,  d2), 
and all the random variables are independently distributed. 

(a) Describe procedures for computing one-sided and two-sided tolerance 
intervals for the distribution of Yl  - Y2, where Y1 and Y2 have the 
distributions of Y1ij and Y2ij, respectively. 

(b) Describe procedures for computing one-sided and two-sided tolerance 
intervals for the distribution of the difference between the true values 
( p i  + 7 1 )  - (p2 + 7 2 ) ,  where 71 N N(0 ,  a:l) and 7 2  - N(0 ,  aT2 1. 

(c) Explain how you will compute upper confidence limits for the prob- 
abilities P(Y1 > Y2) and P [ ( p 1  + T I )  > (p2 +q)] ,  where Yl, Y2, 7 1  

and 7 2  have the distributions specified in part (i) and part (ii). 

2 

4.7.7. The following data is from a study to compare two musical programs (Pro- 
gram I and Program 11) in terms of promoting efficiency among factory 
workers. Two groups of 8 workers each is selected for administering the 
programs. For the 8 workers who were administered Program I (labeled 
A, B, ...., H), the number of units produced were recorded for 10 days. 
For those administered Program I1 (labeled I, J ,  ...., P), the number of 
units produced were recorded for 8 days. The following data give the 
means and variances of the observations for each worker; for Program I, 
the means and variances are for the 10 observations per worker, and for 
Program 11, the means and variances are for the 8 observations per worker. 
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Worker 
Mean 

Variance 

Worker 
Mean 

Variance 
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Means and variances per worker in Program I 
A B C D E F G H 

93.2 98.1 89.6 88.4 96.2 95.0 99.6 97.9 
23.4 27.6 18.6 22.1 15.4 26.2 33.1 29.8 

Means and variances per worker in Program I1 
I J K L M N  0 P 

90.3 85.1 99.4 98.4 86.2 82.5 103.9 96.7 
32.4 26.3 16.8 23.7 18.4 25.6 34.1 28.3 

For the workers who were administered Program I, let Yltj, denote the 
number of units produced by ith worker on the j t h  day, j = 1, 2, ...., 10; 
i = 1, 2, ...., 8. Similarly, let Yzij denote the observations for the workers 
administered Program 11, j = 1, 2, ...., 8;  i = 1, 2, ...., 8. Suppose the data 
can be modeled using the one-way random effects models in the previous 
problem, where the q i ’ s  and the q i ’ s  denote random effects due to the 
workers (here we assume that there is no significant variability among the 
different days). 

Using the given data, compute the two sums of squares, say SS,, and 
SS,,, due to the workers in Program I and Program 11. 
By pooling the given sample variances, compute the two error sums 
of squares for the two groups, say SS,, and SS,,. 

In order to compare the two programs, it is decided to compute a 
(0.90, 0.95) two-sided tolerance interval for the distribution of YI -Y2, 
where YI and Yz have the distributions of Y1ij and Y2i j ,  respectively. 
Apply the procedure developed in the previous problem, and obtain 
such a tolerance interval. 
Suppose we want to compute a (0.90, 0.95) two-sided tolerance in- 
terval for the distribution of the difference between the true values 
(PI + T I )  - (pz +n), where 71 - N ( 0 ,  g:,) and 7 2  N N ( 0 ,  g:,). Apply 
the procedure developed in the previous problem, and obtain such a 
tolerance interval. 

4.7.8. Consider the Styrene exposure data in Table 4.7, where the one-way ran- 
dom model is appropriate. 

(a) Compute two-sided (0.90, 0.95) tolerance intervals for the distribution 
N ( p ,  0: + g,”) using Meek approach and the Liao-Lin-Iyer approach 
described in Section 4.5.1 and Section 4.5.2. For the Liao-Lin-Iyer 
approach, compute the required upper confidence limit for a: + cri 
using the generalized confidence interval method, Satterthwaite ap- 
proximate method and the MLS method. How different are the re- 
sulting tolerance intervals? 
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(b) Compute two-sided (0.90, 0.95) tolerance intervals for the distribution 
N ( p ,  $) using the Liao-Lin-Iyer approach described in Section 4.6. 
Compute the required upper confidence limit for n: + cr; using the 
generalized confidence interval method and the MLS method. How 
different are the resulting tolerance intervals? 



Chapter 5 

The One-way Random Model with 
Unbalanced Data  

5.1 Notations and Preliminaries 

The model considered in this chapter is the same as that in the previous chap- 
ter, corresponding to  a single factor ex6eriment, except that now we have ni 

observations corresponding to the i th level of the factor, where not all the n,’s 
are equal. Thus we have 

Kj = p + ~i + e i j ,  j = 1 , 2 ,  ...., ni, i = 1 , 2 ,  ...., a ,  (5.1.1) 

where p is an unknown general mean, T ~ ’ S  represent random effects and e i j ’ s  

represent error terms. It is assumed that q’s and eij’s are all independent having 
the distributions ~i - N(0,aZ)  and e i j  - N(O,a:), so that y Z j  - N(p,a:  +a:). 
The problems to be addressed are once again on the computation of tolerance 
intervals for the distribution N ( p ,  a: + a:), corresponding to the observable 
random variables (i.e., the yZj’s), and the distribution N ( p ,  a:) corresponding 
to the unobservable true values (i.e., the ( p  + q ) ’ s ) .  

If we define E. = CyL, Y,j/ni, and SS, = x:=l CyL,(Kj - x.)2, then 

a 

~ , 2  = sse/a,2 N xk-,, where N = Eni. (5.1.2) 
i=l 

However, if we define SS,  = C:=l ni(%. - Y . ) 2 ,  it is not true that SS, is 
distributed as a scalar multiple of a chi-square random variable, unlike in the 
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Statistical Tolerance Regions: Theory, Applications and Computation 
by K. Krishnamoorthy and Thomas Mathew 
Copyright 0 2009 John Wiley & Sons, Inc. 
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balanced case. Also, in the balanced case, the average of all the observations, 
namely Y . ,  is known to be the uniformly minimum variance unbiased estimator 
(umvue) of p. Such a umvue does not exist in the unbalanced case. All these 
aspects complicate the computation of tolerance intervals in the unbalanced case. 

For the distributions N(p ,o :  + 0,") and N(p,a: ) ,  Krishnamoorthy and 
Mathew (2004) have investigated the computat,ion of one-sided tolerance lim- 
its in the unbalanced case, using iC:=L=lE. as an estimator of p, and using 
SS, along with another sum of squares (different from SS, given above) that 
has an approximate chi-square distribution. The generalized confidence inter- 
val idea was once again used and the limited simulation results showed good 
performance. Later, Liao, Lin and Iyer (2005) have obtained another solution, 
once again based on the generalized confidence interval idea. These authors have 
succeeded in deriving one-sided as well as two-sided tolerance intervals. Com- 
putationally, the Liao, Lin and Iyer (2005) approach is slightly more involved. 
Also, the numerical results reported by these authors show that their solution 
for the one-sided tolerance limit, and the solution due to Krishnamoorthy and 
Mathew (2004) show nearly identical performance. Earlier, Bhaumik and Kulka- 
rni (1991) also addressed the computation of a one-sided tolerance interval for 
N ( p ,  a; + a:) in the unbalanced case. Their approach consists of obtaining the 
tolerance limit for a known variance ratio R, and then replacing R with an upper 
confidence limit, similar to the work of Mee and Owen (1983) and Mee (1984b) 
in the balanced case. However, no guidelines are given in Bhaumik and Kulkarni 
(1991) regarding the choice of the confidence level. 

In this chapter, we shall describe the procedures due to Krishnamoorthy and 
Mathew (2004), and that due to Liao, Lin and Iyer (2005) for obtaining lower or 
upper tolerance limits for N ( p ,  a: + o,") and N ( p ,  a?). For obtaining two-sided 
intervals for both of these distributions, we shall present the Liao, Lin and Iyer 
(2005) approach. All of the procedures use the generalized confidence interval 
idea. 

5.2 Two Examples 

Example 5.1 (Moisture content in white pine lumber) 

This example taken from Ostle and Mensing (1975) is on a study of the 
effect of storage conditions on the moisture content of white pine lumber, and 
the relevant data are given in Ostle and Mensing (1975, p. 296). Five different 
storage conditions (u  = 5) were studied with varying number of sample boards 
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Storage 
condition 

1 
2 
3 
4 
5 

stored under each condition. The example is also considered in Bhaumik and 
Kulkarni (1991), and the data are given in Table I1 of their paper. The data are 
reproduced below. 

Moisture content (%) 
7.3, 8.3, 7.6, 8.4, 8.3 
5.4, 7.4, 7.1 
8.1, 6.4 

7.1 
7.9, 9.5, 10.0 

Reproduced with permission from Taylor and 
Francis, Ltd.; http://www.informaworld.com 

Assuming a one-way random model, Bhaumik and Kulkarni have considered 
the problem of obtaining an upper tolerance limit for N ( p ,  cr: + cr,"). One can 
also think of constructing an upper tolerance limit for the distribution of the 
true moisture content, i.e., the distribution N ( p ,  0:). 

Example 5.2 (Sulfur content an bottles of coal) 

In this example taken from Liao, Lin and Iyer (2005), measurements were 
obtained on the sulfur content of each of 6 bottles of coal, so that a = 6. A 
balanced version of this example is given in Wang and Iyer (1994), and the 
unbalanced case is discussed in Liao, Lin and Iyer (2005). The observed value 
of the yZj's, i.e., the sulfur contents (weight %), are given in Table 5.2; the data 
are taken from Table 2 of Liao, Lin and Iyer (2005). The data are unbalanced 
since on four bottles, two observations each were obtained, and on two bottles 
only one observation each was obtained. 

Table 5.2: The sulfur content data 
Bottle I Observations (weight %) 

4.57 

Reprinted with permission from Technometrzcs. 
Copyright [2005] by the American Statistical Association. 

In Liao, Lin and Iyer (2005), a one-way random model was used for the above 
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data, and a two-sided tolerance interval was constructed for N ( p , $ ) ,  i.e., for 
the distribution of ,LL + ~ i .  Here the T ~ ' S  represent random effects due to  the 
bottles. In the balanced version of this example considered in Wang and Iyer 
(1994), a two-sided tolerance interval was once again constructed for the same 
distribution. The same balanced version was also considered by Bhauniik and 
Kulkarni (1996), who computed a lower tolerance limit for N ( p ,  0: + 0,"). 

5.3 One-sided Tolerance Limits for N ( p ,  0: + 0:) 

In order to  compute a ( p ,  1 - a )  lower tolerance limit for N ( p ,  0; + cr,"), we 
shall obtain a 1 - a lower confidence limit for ,LL - , z p d m .  Here we shall 
describe the approaches due to  Krishnamoorthy and Mathew (2004) and Liao, 
Lin and Iyer (2005). Krishnamoorthy and Mathew (2004) use approximations 
that permit the direct use of the results in the balanced case. The generalized 
confidence interval idea is used in both of the above articles; the generalized 
pivotal quantity (GPQ) constructed by Liao, Lin and Iyer (2005) is based on 
ideas similar to that in Iyer, Wang and Mathew (2004). Recall that in the 
case of balanced data, GPQs for p and u; can be easily constructed using the 
distributions of Y., SS, and SS,, and the corresponding observed values. In the 
unbalanced case, the construction of GPQs for p and 0; are not very clear; in 
fact, it is possible to  come up with several such constructions. Krishnanioorthy 
and Mathew (2004) use an approximate distribution to construct the GPQs; 
Liao, Lin and Iyer (2005) construct GPQs in an implicit manner. 

5.3.1 The Krishnamoorthy and Mathew Approach 

Recall that for SS, = E:=l Cyil(yZj -%.J2, we have the chi-square distribution 
given in (5.1.2). Define 

U 

(5.3.1) 
l a  l a  

f i  = - n i l ,  y = - 
a a 

z,, and SS, = c(%. - Y ) 2 .  
i=l i=l i=l 

Then 

By direct calculation, it can be verified that E(SS,) = (a - l)(a; + fin:). An 
approximate chi-square distribution associated with SS, has been obtained by 
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Thomas and Hultquist (1978); the result states that 

(5.3.2) 

It can also be verified that Y and SS, are independently distributed, and SSg 
and SS,  are independently distributed. However, Y and SS, are not, indepen- 
dent (except in the balanced case). We shall ignore this dependence while devel- 
oping the tolerance limit. The performance of the tolerance limit so developed 
can be assessed based on numerical results. 

Using Y ,  SSg and SS,, we shall now imitate the derivation for the balanced 
case (given in Section 4.3.3) to obtain a lower tolerance limit for N ( p ,  CT? + 0:). 

Let 5, ssy and sse denote the observed values of Y ,  SS, and SS,, respectively. 
Following equation (4.3.16) in the balanced case, let 

and 

d where - means 'approximately distributed as', xi-l denotes a chi-square ran- 
dom variable with a - 1 degrees of freedom, U: is given in (5.1.2), b; is given 

in (5.3.2), N = x:=l ni, and 2 = d'(y-pL) N N(0,l). The quantity G,g is a 

GPQ for& and G, and G,g are approximate GPQs for p and CT?, respectively. 
Define 

~ 
~ 

4- 

ss- Recall once again that the actual distribution of Uy = ,g+l,z will depend on 
the unknown variance components, and the chi-square distribution is only an 
approximation. Furthermore, 2 and U, are not independent. Thus the actual 
distribution of G3 does depend on unknown parameters, even though the second 
expression in (5.3.5) has a distribution free of any unknown parameters. How- 
ever, as an approximation, we shall use the second expression in (5.3.5). The a 
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quantile of the random variable given in the second expression in (5.3.5) is our 
( p ,  1 - a )  lower tolerance limit for N ( p ,  02 + 0,") when the data are unbalanced. 
We shall denote this percentile as G3,CY. Thus G3,cu is an approximation for the 
a quantile of the first expression in (5.3.5). An algorithm similar to Algorithm 
4.1 can be used to compute G3,CY. 

An approximation similar to that in equation (4.3.20) can be developed for 
the unbalanced case also; the derivation is similar to  that of equation (4.3.20). 
The approximate lower tolerance limit is given by 

) . (5.3.6) 
a(a - 1)(1 - 7%) ss,  

where 63 = i+ (a + -Fu-l,N-a;cu N - a  ssg 

It is readily verified that (5.3.6) reduces to the approximation in equation 
(4.3.20) when we have balanced data; simply use the relations that in the bal- 
anced case, N = an ,  fi = l and SS, = 5. 

A ( p ,  1 - a )  upper tolerance limit for N ( p ,  0: +a:) can be similarly obtained 
as the 1 - a quantile of 

ssg and has the approximate expression y + t,-1;1-~~(63),/=. 

In the work of Bhaumik and Kulkarni (1991), the authors derive the toler- 
ance limit when the variance ratio R = $/a," is known, and then replace the 
unknown variance ratio by a confidence limit. Their suggestion is to use an 
upper confidence limit for R when fi < 1 and a lower confidence limit for R 
when 6 > 1. However, note that 6 is always less than 1, and hence R should be 
replaced by an upper confidence limit. No guideline is provided in Bhaumik and 
Kulkarni (1991) regarding the choice of the confidence level to be used. How- 
ever, if we replace R by its l O O a %  upper confidence limit constructed in Thomas 
and Hultquist (1978), the Bhaumik and Kulkarni (1991) tolerance limit actually 
coincides with the approximation (5.3.6). In order to see this, we note that if 
R = o:/a: is known, the ( p ,  1 - a )  lower tolerance limit derived by Bhaumik 
and Kulkarni (1991) is given by 

5 - Ll ; l -cu(6BK) JF. a(a - 1) where 6 g K  = zp  Juo. 
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The 100a% upper confidence limit for R due to Thomas and Hultquist (1978) 
is 

Let ~ B K  denote SBK with R replaced by the above upper limit. Then, it can 
be readily verified that ~ B K  coincides with 63 given in (5 .3 .6) ,  and hence the 
tolerance limit 5 - t a - 1 ; 1 - a ( 8 ~ ~ ) d z  coincides with the limit in (5.3.6). 

5.3.2 The Liao, Lin and Iyer Approach 

. 71; 
Note that 

1 -  E. = - El’& - N ( p , v i ) ,  where 
ni J=1 

Write 
Y = (Yl,, Yz., ..., Ya.)’ and V = diag(v1, v2, ...., u,). (5.3.8) 

y - w & , V ) >  (5.3.9) 

Then we have the distribution 

where 1, is an a x 1 vector of ones. If the variance components a; and a: are 
known, so that the vi’s are known, the umvue of p, say Y, is 

Y, = (1;v-lla) -l 1Lv-I Y 

The second expression for Y, in (5.3.10) is obtained by direct simplification. The 
residual sum of squares SSo under the model (5.3.9) is given by 

sso = ( Y  - Yvl,)’v-l( Y - Y,la) 
a -  

1 
= c -(E. - Y,)2 

v i  i= 1 

The second expression in (5.3.11) is obtained by direct simplification using the 
expression for Y,, given in (5.3.10). Note that SSo - xaP1. 2 
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Recall that G,z in (5.3.3) is an exact GPQ for a:, and G,, and Gu2 in (5.3.3) 
and (5.3.4) are adproximate GPQs for p and g:, respectively. W:shall now 
derive exact GPQs for p and CT:, where we shall continue to use the notation G, 
and G,g for the exact GPQs to be derived. When the notation G, and G,g is 
used in this chapter, it will be clear from the context whether we are referring 
to the exact GPQs, or the approximate ones in (5.3.3) and (5.3.4). For deriving 
the exact GPQs for p and o:, let Yl., Yz., .... Ya. ,  and ss, denote the observed 
values of Y l , ,  vz., .... Fa,, and SS,, respectively. Once G,p is obtained: a GPQ, 
say Gut,  for zli (defined in (5.3.7)) is given by 

(: 5.3.1 2) 

Motivated by (5.3.11), an exact GPQ G,g is obtained as the solution of the 
equation 

where U i  - x:-~. Note that the right hand side of (5.3.13) is a function of G,?, 
since Gu, (given in (5.3.12)) is a function of G,?. Solving (5.3.13) for G,?, we 
get the GPQ for CT:. It can be shown that the right hand side of (5.3.13) is a 
monotone decreasing function of G,?, with limiting value 0 as G,? + 00. For 
this, it is enough to show that SSo given in (5.3.11) satisfies a similar property 
as a function of CT?, since the right hand side of (5.3.13), as a function of G,?, 
is similar to the right hand side of SSo in (5.3.11), as a function of 0:. A proof 
of this monotonicity property of SSo is given following equation (5.3.16) below. 
In view of this monotonicity property, there exists a unique G,; that solves 
(5.3.13), provided G,? is not restricted to be nonnegative. 

Thus we have constructed GPQs G,:, Gut and G,g with observed values 
CT:, zli and u?, respectively, where zli = g: + (g:/ni) .  Furthermore, given the 
observed data, the distribution of (G,2, Gut,  Go:) is free of unknown parameters. 
Now we shall construct a GPQ G, for p. This is given by 

(5.3.14) 
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where x+ = max(0,x) and 2 = r; -p - N(O,1); see (5.3.10). Be- 
J ( C L  qT1 . .  

cause we allow Gg? to be negative, C:=l Gv,' could be negative, and so we take 

[ (C:==, Gv,')-'] under the radical sign. + 
Now we are ready to compute a ( p , l  - Q) lower tolerance limit for 

N ( p ,  o-: + o,"), i.e., 1 - Q lower confidence limit for p - z p d m .  A GPQ for 
p - z p d m ~ ,  say G4, is given by 

(5.3.15) 

G4,cu, the Q quantile of Gq, gives a 1 - Q generalized lower confidence limit for 
p - z p d m ,  and hence a ( p ,  1 - a )  lower tolerance limit for N ( p .  CJ? + 0-2). 

Remark 5.1 Note that an iterative procedure is necessary to solve the equation 
(5.3.13) to find the exact GPQ Ga2. Instead, we could use the approximate GPQ 
G,g defined in (5.3.4). This way we can eliminate the iterative procedure for 
root finding. As will be seen in the sequel, our examples show that both methods 
of obtaining Go: produce practically the same result. 

The following algorithm can be used for estimating the Q: quantile of G4. 

Algorithm 5.1 

1. Once the data are obtained, compute the observed values yl. ,  p~., ...., ya.,  
and ss,. 

2. Let K denote the simulation sample size. For k = 1, 2, ...., I(, perform 
the following steps. 

3. Generate independent random variables Uz,k - xk-,, Ui,k - xu-', 2 

4. Compute Ggz,k = sse/U,,k. 2 

arid 
ZI, N ( 0 ,  1). 

5. (Use either Step a or b.) 

a. Solve the following equation to get 
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b. Compute = - 6% where 6 is defined in (5.3.1) and ssg 
xa-1 u,2 ’ 

is the observed value of SS, in (5.3.1).  

. Compute G&k 6. Let Guz,k = G+,k + 7 

The lOOath percentile of the G 4 , k  values ( k  = 1, 2, ..., K )  gives an estimate 
of the a quantile G4,0i of Gq, which in turn gives an estimate of the required 
( p ,  1 - a )  lower confidence limit for N ( p ,  u$ + a:). 

If a ( p ,  1 - a)  upper tolerance limit is required, we consider 

and the 1 - a quantile G5,lPcr of G5 gives the ( p ,  1 - a )  upper tolerance limit. 
The limit can obviously be estimated as before. 

Proof that SSO in (5.3.11) is a decreasing function of u: 

We shall give an alternative representation for SSo given in the first expres- 
sion in (5.3.11). Towards this, we first note that 

SSO = ( Y  - Yu1,)’V-l( Y - Yul,) 

where the second expression above is obt.ained from the first by using the ex- 
pression for Yu, given in (5.3.10). Now let H be an u x (u  - 1) matrix of rank 
a - 1 satisfying H’l, = 0. Using a theorem in Searle, Casella and McCulloch 
(1992, p. 451), we can rewrite SSO as 

ssO = Y’H(H’VH)-~H/Y = Y;(H’VH)-~ yo, (5.3.17) 

Note that H’VH is an where YO = H’Y N N(O,H’VH), using (5.3.9). 
(a  - 1) x (u  - 1) positive definite matrix. 
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Now suppose > Furthermore, let SSol and SSo2 denote the ex- 
and a;,2, respectively. We shall show that pressions for SSo, when a; = 

SSOl < SSoz. 

Let 

2 2 
‘uz1 = aT,l + (a: /%),  VZZ = QT,2 + (&%) 
V1 = diag(vl1 ,v21, ...., val) ,  and V2 = diag(v12,v22, ..... 7 1 ~ 2 )  

2 Since aT,l > a;,2, we have vzl > ua2 for i = 1, 2, ...., a. Thus the matrix V1 -V2 

is positive definite. Hence H’V1H - H’V2H is positive definite; consequently, 
(H’V2H)-’ - (H’VlH)-l is positive definite. It now follows from (5.3.17) that 
SSo2 > SSol. This establishes the assertion that SSo is a decreasing function of 
a;. Also, since H’VH -+ 00 as 0; -+ 00, we conclude that SSo -+ 0 as a; + 00. 

This proof also appears in Lin, Liao and Iyer (2008, Appendix B). 

Numerical results on the performance of the lower tolerance limits G3,cu and 
G+, as well as the approximate lower tolerance limit (5.3.6), are reported in 
Krishnamoorthy and Mathew (2004) and in Liao, Lin and Iyer (2005). These 
authors have reported the simulated confidence levels corresponding to the dif- 
ferent tolerance limits for various sample size and parameter configurations. The 
overall conclusion in Krishnamoorthy and Mathew (2004) is that the approx- 
imate tolerance limit (5.3.6) is unsatisfactory when the intraclass correlation 
a;/(a: + a:) is small; in this case the actual confidence levels are smaller than 
the assumed nominal level 1 - a. In general, the approximate tolerance limit 
(5.3.6) is satisfactory when the intraclass correlation is at least 0.5. Recall that 
we had the same conclusion in the balanced case. The tolerance limit G s , ~  turns 
out to be quite satisfactory in maintaining the confidence level, even though it 
can be slightly conservative in some cases. The numerical results in Liao, Lin 
and Iyer (2005) show that the tolerance limit G4,@ resulting from Algorithm 
5.1 exhibits performance very close to that of G s , ~ .  Our recommendation is to 
use the approximate tolerance limit (5.3.6) if there is reason to believe that the 
intra-class correlation is at least 0.5 (i.e., if a; >. a:). If no such information is 
available, one should either use the limit G s , ~ ,  or the limit G+. 

Example 5.1 (continued) 

Based on the moisture content data in Table 5.1, let us compute a 
(0.90, 0.95) upper tolerance limit for the moisture content. Here a = 5 and 
N = 14. The observed values are: 

jj1. = 7.98, jj2. = 6.63, jj3. = 7.25, jj4. = 9.13, j j5,  = 7.10, 5 = 7.62, S S ~  

= 3.80, and ss, = 7.17. 
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For p = 0.90 and 1 -a  = 0.95, we have zp  = 1.282 and Fa-l,~-o,;cr = Fq;o.o5 
= 0.1667. Since ii = 0.4733. we have 

= 2.9703 
a(a - 1)(1 - i i )  sse 

~ Fa- 1, N -a;a N - a  ssg 

Using the approximation developed in Section 5.3.1, a (0.90,0.95) upper toler- 
ance limit for the moisture content distribution N ( p ,  a; + a:) is given by 

= 7.62 + 7.8437 x 
a(a - 1) 5 f ta-l;l-a(63) 

Instead of using the approximation, let us compute the upper tolerance limit as 
the 95th percentile of 

The estimate of the 95th percentile, based on 10,000 simulations, turned out to 
be 11.12. We note that this is very close to the approximation obtained above. 

We shall now use the Liao, Lin and Iyer (2005) approach as described in 
Algorithm 5.1. Using Monte Carlo simulation with K = 10,000 runs and Step 
5a, we estimated the (0.90,0.95) upper tolerance limit as 11.35; using Step 5b, 
we obtained 11.31. As noted in Remark 5.1, both Steps 5a and 5b produced 
practically the same limit. 

5.3.3 One-sided Confidence Limits for Exceedance Probabilities 

In this section, we shall extend the results in Section 4.3.6 to the case of unbal- 
anced data. Thus the problem is the computation of an upper or lower confidence 
limit for q = P(Y > L ) ,  where Y N N(p ,a?  + o,"), and L is a specified limit, 
and unbalanced data are available on Y ,  as specified in (5.1.1). Following the 
arguments in Section 4.3.6, we need to equate L to an upper tolerance limit for 
N ( p ,  a: + a:), having content 1 - A and confidence level 1 - Q, and then solve 
for A. The solution so obtained is a 1 - Q: upper confidence limit for q. 

If we use the approximation to the upper tolerance limit given in Section 
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5.3.1, then the solution to A is to  be obtained from the equation 

a(a  - 1)(1 - f i )  ss, 
N - a  ssg 

where 63 = Z1-A (a + 
~ Fa- 1, N - a;cy 

If the approximation to the upper tolerance limit is not used, then trial and 
error is necessary in order to numerically obtain the value of A for which the 
(1 - A, 1 - a)  upper tolerance limit is equal to L. The value of A obtained based 
on the approximate upper tolerance limit can be used as a starting value for 
this purpose, as noted in the balanced case. The value can be adjusted and the 
(1 - A, 1 - a)  upper tolerance limit can be recomputed until the tolerance limit 
is approximately equal to the value of L. 

A l O O ( 1  - a)% lower confidence bound for q can be obtained as t,he value 
of A for which a lower tolerance limit for N ( p ,  cr? + a:), having content A and 
confidence level 1 - a,  is equal to L. 

Example 5.3 (Nickel dust exposures at a nickel-producing complex) 

This example and the relevant data are taken from Lyles, Kupper and Rap- 
paport (1997b, Table D2). The data are measurements (mg/m3) on nickel dust 
exposure on maintenance mechanics at a nickel producing complex. The log- 
transformed data, reproduced in Table 5.3, consist of measurements obtained 
from 23 mechanics. The data are obviously unbalanced, and the total number 
of observations is N = 34. In Lyles, Kupper and Rappaport (199713) as well 
as in Krishnamoorthy, Mathew and Ramachandran (2007), the data were ana- 
lyzed using a one-way random effects model, where the random effect represents 
the effect due to the mechanic. The problem of interest is the estimation of the 
proportion of exposure measurements that exceed the occupation exposure limit 
(OEL) of 1 mg/m3 for nickel exposure. Thus on the logarithmic scale, we are 
interested in estimating P(Y > 0), where Y - N ( p ,  a; + a:). 

0.855, ssy = 16.081 and ss, = 2.699. Thus 
Computations based on the data in Table 5.3 resulted in y = -3.683, f i  = 

112 

(0.4428)) 
a(a - 1)(1-- 6 )  sse 112 73.37 2.699 

- F,~,N-,;,,) = (23 + ~ - 
a +  N - a  ssy 34 - 23 16.081 

= 4.0112. 

yielding 63 = 4.9112 x z ~ - A .  Since L = 0, the equation to be solved to get a 
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Table 5.3: Log-transformed nickel dust exposures on mechanics at a nickel- 
producing complex 

Worker Observations I Worker Observations 
1 -2.900 I 13 -3.244 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

-6.215 
-4.423, -4.906, -4.828 
-3.907 
-3.772, -3.540 
-4.320 
-4.423 
-4.343, -4.962, -3.772, -4.129 
-2.937 
-3.817 
-2.882 
-3.689 

14 

15 
16 
17 
18 
19 
20 
21 
22 
23 

-2.617, -1.772, 
-3.352, -3.026 
-3.037 
-2.375 
-3.817, -4.510, -3.689 
-3.863 
-4.465 
-3.378 
-3.576 
-2.577 
-3.730 

Reprinted with permission from Annals  of Occupational Hygiene. 
University Press. 

Copyright [ 19971 by the Oxford 

95% upper confidence limit for P(Y > 0) is 

where we need to solve for A. That is 

Using the PC calculator StatCalc by Krishnamoorthy (2006), we get 4.9112 x 
Z ~ - A  = 15.1994, i.e., Z ~ - A  = 3.0948. The last equation implies that A = 0.0010. 
Thus, a 95% upper confidence limit for P(Y > 0) is 0.001. This means that less 
than 0.1% of exposure measurements exceed the OEL, with 95% confidence. 

Inference concerning exceedance probabilities have important applications in 
industrial hygiene. Such problems in the context of a one-way random model 
with unbalanced data are addressed in Krishnamoorthy and Guo (2005). 

5.4 One-sided Tolerance Limits for N ( p ,  0:) 

The procedure developed by Krishnamoorthy and Mathew (2004), and the one 
due to Liao, Lin and Iyer (2005) described in the previous section, can be easily 
adapted to derive one-sided tolerance limits for N ( p ,  0:). What follows is a brief 
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development of this. We once again use the fact that a ( p ,  1 - a)  lower tolerance 
limit for N ( p ,  09) is a 1 - a lower confidence limit for p - zpa, and a ( p ,  1 - a)  
upper tolerance limit for N ( p ,  0;) is a 1 - a upper confidence limit for p + zpa,. 

5.4.1 The Krishnamoorthy and Mathew Approach 

Similar to G3 in (5.3.5), define 

(5.4.1) 

where for any real number c, c+=max{c,O}, and the other notations in (5.4.1) 
are the same as those in (5.3.5). Let G G , ~  denote the 100ath percentile of the 
second expression in (5.4.1). Then GG,, gives a ( p ,  1 - a)  lower tolerance limit 
for N(p ,o?) .  Similar to (5.3.6), an approximation for this percentile is given by 

(5.4.2) 
a(a - 1)ii ss, 

where 64 = zp  (a - -Fa-l,N-a;cu N -a S S ~  

A ( p ,  1 - a )  upper tolerance limit for N ( p ,  a?) can be similarly obtained, and 
has the approximate expression 5 + t a - p - a ( 6 4 ) d s ,  where 64 is as given 
above. 

The numerical results in Krishnamoorthy and Mathew (2004) show that 
the above approximations are quite satisfactory, even though the approximate 
limit is somewhat conservative for small values of the intra-class correlation 
0;/(0; + 02). 

5.4.2 The Liao, Lin and Iyer Approach 

Similar to G4 in (5.3.15), define 

G7 = G, - zp\/[GIT:l+, (5.4.3) 

where the notations are as in Section 5.3.2. Note that G7 is a GPQ for p - zpcrT. 
The 100ath percentile of G7, say G7,a, gives a ( p ,  1 - a )  lower tolerance limit 
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for N ( p ,  0;). Furthermore, G7,ff can be estimated using an algorithm similar to 
the one given in Section 5.3.2. We also note that for Go:, we can use either the 
approximate GPQ or the exact GPQ. 

Liao, Lin and Iyer (2005) have compared their limit G7,ff with Gfi,a, and have 
noted very similar performance. It appears that for obtaining a lower tolerance 
limit for N ( p ,  n:), the simple approximation (5.4.2) can be recommended. The 
similar approximation given below equation (5.4.2) can be recommended for 
computing an upper tolerance limit for N ( p ,  a:). 

Example 5.1 (continued) 

Based the moisture content data in Table 5.1, let us compute a (0.90, 0.95) 
upper tolerance limit for the distribution N(p,o: )  of the “true” moisture con- 
tent. The summary statistics are given in Section 5.3.2. 

We now have 

= 2.7702 
a(a - 1)fi ss,  

N - a ssg -Fa-l ,N-a;c~ 

Using the approximation developed in Section 5.4.1, a (0.90,0.95) upper toler- 
ance limit for the “true” moisture content distribution N ( p ,  a:) is given by 

f + h-i;i-a(d4)/T a(a - 1) = 7.62 + 7.4121 x = 10.85. 

Instead of using the approximation, suppose we compute the upper tolerance 
limit as the 95th percentile of 

3.80 3 80 
= 7.62 + L& + 1.282 [ % - 

dz x4 

The estimate of the 95th percentile, based on 10,000 simulations, turned out to 
be 10.94, very close to the approximation obtained above. 

As mentioned earlier, to obtain an upper tolerance limit using the Liao, Lin 
and Iyer (2005) approach, we can use Algorithm 5.1 without G,z. In particular, 
using Algorithm 5.1 with K = 10,000 and Step 5a, we found (0.90,0.95) upper 
tolerance limitas 10.98; the same limit was also obtained using Step 5b. 
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5.5 Two-sided Tolerance Intervals 

In this section, we shall describe the computation of a two-sided (p,l  - a )  
tolerance interval for N ( p ,  a: + a:) and for N ( p ,  a:). The procedures described 
in this section are due to Liao, Lin and Iyer (2005). 

5.5.1 A Two-sided Tolerance Interval for N(p. ,  0: + a:) 

Let f i  denote an estimator of p (to be determined), where f i  follows a normal 
distribution with mean p. As in the balanced case discussed in Section 4.4.1, we 
need to determine a margin of error statistic 0 3  so that f i  f 0 3  is a ( p ,  1 - a)  
tolerance interval for N ( p ,  a$ + a:). The quantities f i  and 0 3  are functions of 
Y (defined in (5.3.8)) and SS,, and are required to satisfy the tolerance interval 
condition 

py, ss, [PY { f i  - 0 3  5 y 5 fi  + 0 3 1  y ,  SS,, } 2 p ]  = 1 - a ,  (5.5.1) 

where Y - N(p ,a :  + a:). Suppose we take f i  = Yv, defined in (5.3.10). Ob- 
viously we cannot use this as an estimator of p since E, depends on unknown 
parameters; we shall address this issue shortly. Following a derivation similar to 
that in Section 4.4.1, we can conclude that 0 3  can be taken to be a 1 - a upper 
confidence limit of the parametric function 

Such a confidence limit can be obtained as the 1 - Q quantile of 
I -  

) -/Gvz -'I : 
where the quantities Go:, Go:, and Gvi are defined in Section 5.3.2, and z+ = 

max(0,z). Once the confidence limit 0 3  is obtained, a ( p ,  1 - a )  tolerance in- 
terval for N ( p ,  a$ + 02) is given by f i  f 0 3 .  

We now discuss the choice of f i .  Since Y, depends on unknown parameters, 
one possibility is to consider the GPQ G, given in (5.3.14), and take f i  to be the 
mean (or the median) of G,. This mean (or median) can be easily estimated 
based on the realizations G,,k of G,; see Step 6 of the Algorithm 5.1. 

The following algorithm can be used to implement the above procedure to 
compute a ( p ,  1 - a )  tolerance interval for ~ ( p ,  a: + a:): 
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Algorithm 5.2 

1. Once the data are obtained, compute the observed values GI., Yz., ...., Ya. ,  
and sse. 

2. Let K denote the simulation sample size. For k = 1, 2, ...., K ,  perform 
Steps 3-6 of Algorithm 5.1 in Section 5.3.2. 

4. Compute j i ,  the mean of the Gp,k values. 

5. Compute D3, the 1-a quantile of z a  [G,:,k + G,,z,k + (x:=l G,i,)-'] :, 
6. A ( p ,  1 - a)  tolerance interval for N ( p ,  g: + c,") is given by j i  f &. 

where x+ = max(0, x } .  

5.5.2 A Two-sided Tolerance Interval for N ( p ,  CT:) 

A ( p ,  1 - a )  tolerance interval for N ( p ,  03) is given by j i  & D4, where fi  is as 
defined before and the margin of error statistic 0 4  is such that 0 4  is a 1 - a 

upper confidence limit of the parametric function "I++, (09 + (C:& v i  ) ) ' .  
The quantity j i  can be computed as in Step 4 of Algorithm 5.2, and 0 4  can be 
obtained proceeding similar to Step 5 of Algorithm 5.2. 

1 -1 z 

Extensive numerical results are reported in Liao, Lin and Iyer (2005) re- 
garding the performance of the two-sided tolerance intervals in this section for 
the distributions N ( p ,  uz + 0:) and N ( p ,  g:). Slight conservatism has been 
noted when the intra-class correlation - is small. Otherwise, the tolerance 
intervals maintain the confidence level quite satisfactorily. 

Example 5.2 (continued) 

Based on the sulfur content data in Table 5.2, let us compute a (0.99, 0.95) 
two-sided tolerance interval for the sulfur content distribution N ( p ,  CT: + o,"), 
and for the "true" sulfur content distribution N ( p , g : ) .  Here a = 6 and N = 
10. The observed values are: jj1. = 4.670, jj2. = 4.685, jj3. = 4.640, j j4. = 

4.695, g 5 .  = 4.570, yfj. = 4.740, and ss, = 0.0419. Using simulation consisting 
of 100,000 runs, j i  is computed as 4.67, and the tolerance interval for the sulfur 
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content distribution is obtained as (4.22,5.12). The tolerance interval for the 
true concentration is obtained as (4.43, 4.91). The tolerance intervals (for both 
distributions) were obtained using Step 5b, that is, using G+ in (5.3.4). 

5.6 Exercises 

5.6.1. For the one-way random model with unbalanced data, let E. = CyL, Y,j/ni, 
i = 1, 2, ...., a ,  and define Y = (Y,,, Yz., .... , Fa.)’, so that Y has a multi- 
variate normal distribution. 

(a) Derive the mean vector and the variance-covariance matrix of Y .  

(b) Express U l  in (5.3.2) as a quadratic form in Y .  

(c) Obtain a condition under which U i  has a chi-square distribution (use 
the results on the distribution of quadratic forms; see Rao (1973) or 
Searle (1971)). 

(d) Show that the condition in (c) will always hold in the case of balanced 
data. 

(e) Show that U$ in (5.3.2) reduces to U: in (4.1.3) in the case of balanced 
data. 

5.6.2. When the data are balanced, show that 

(a) the GPQ in (5.3.5) reduces to the GPQ in (4.3.16), and the approxi- 
mate tolerance limit in (5.3.6) reduces to that in (4.3.20). 

(b) The GPQ in (5.4.1) and the approximate tolerance limit in (5.4.2) 
reduce to the corresponding quantities in (4.4.1) and (4.4.2), respec- 
t ively. 

5.6.3. For the one-way random model with unbalanced data, show that Y and 
SS, are independently distributed, and SS, and SS, are also indepen- 
dently distributed. Show also that Y and SS, are not independently dis- 
tributed. unless the data are balanced. 

5.6.4. Consider the log-transformed nickel dust exposure data in Table 5.3. 

(a) Compute (0.95, 0.95) upper tolerance limits for the distributions 
N ( p ,  a: + a:) and N ( p ,  a?), by estimating the percentiles of the re- 
spective approximate GPQs. Also compute the upper tolerance limits 
using approximations similar to those in (5.3.6) and (5.4.2). Do the 
results based on the approximations agree with that obtained by es- 
timating the percentiles of the respective approximate GPQs? 
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(b) Compute (0.95, 0.95) two sided tolerance intervals for the distribu- 
tions N ( p ,  a? + a,") and N ( p ,  a:). Use Algorithm 5.2. 

5.6.5. Modify the Mee-Owen approach described in Section 4.3.1 to  the case of 
unbalanced data by using the approximate chi-square distribution of U i  
in the place of the exact chi-square distribution of U: (given in Chapter 
4). Follow the derivations in Section 4.3.1 to  arrive at an approximate 
tolerance factor for the case of unbalanced data, similar to  the one in (4.3.5) 
for the case of balanced data. Using the solution so obtained, compute a 
(0.90, 0.95) upper tolerance limit for the distribution N ( p ,  a: + a:) of the 
moisture content, in the context of Example 5.1. Does the result agree 
with those obtained in Section 5.3.2? 

5.6.6. Follow the suggestion in the previous problem to derive a two-sided toler- 
ance interval for N ( p ,  a: + a:) in the case of unbalanced data , by imitat- 
ing Mee's approach given in Section 4.5.1. Using the solution so obtained, 
compute a (0.99, 0.95) two-sided tolerance interval for the sulfur content 
distribution N ( p ,  a? + a,"), in the context of Example 5.2. Does the result 
agree with those obtained in Section 5.5.2? 

5.6.7. For the one-way random model with unbalanced data, proceed as in Sec- 
tion 5.3.3 to  derive an upper confidence bound for the exceedance probabil- 
ity concerning the true values, namely P ( p  + T > L ) ,  where 7 - N(0,a:)  
and L is a specified limit. Apply the procedure to derive a 95% upper 
confidence limit for P ( p  + T > 0) using the log-transformed nickel dust 
exposure data in Table 5.3. 

5.6.8. For the one-way random model with unbalanced data, suppose the variance 
ratio, R = a?/a," is known. Use the relevant results in Chapter 2 to derive 
the following: 

(a) one-sided and two-sided tolerance intervals for N ( p ,  a: + a:). 

(b) one-sided and two-sided tolerance intervals for N ( p ,  a:). 

(c) equal-tailed tolerance intervals for N ( p ,  02 + a,") and N ( p ,  (T?). 

5.6.9. Explain how you will address parts (a)-(.) of Problem 4.7.6 of Chapter 
4, in the case of two one-way random models with unbalanced data. 



Chapter 6 

Some General Mixed Models 

6.1 Notations and Preliminaries 

When we have a general mixed effects model with the normality assumption 
and balanced data, it is possible to derive tolerance intervals (one-sided or two- 
sided) by suitably applying the generalized confidence interval idea. The problem 
becomes tractable in the case of balanced data since a set of sufficient statistics 
can be found consisting of independent normal and scaled chi-square random 
variables. In the case of one-sided tolerance limits, the generalized confidence 
interval procedure can be directly applied, since the problem reduces to that 
of computing a confidence limit for a percentile. For computing a two-sided 
tolerance interval, an approximate margin of error statistic can be found as the 
square root of a generalized upper confidence limit for a linear combination of 
the variance components. In other words, the generalized confidence interval 
based procedures in Chapter 4, developed for the one-way random model with 
balanced data, can be easily extended for a general mixed effects model with 
balanced data; this has been carried out by Liao, Lin and Iyer (2005). 

For a random vector Y ,  a general mixed effects model can be written as 

Y = C X ~ , B ~ + X Z ~ ~ ~  + e 
V1 VZ 

i= l  i=l 

(6.1.1) 
i=l 

where the vectors pi’s represent fixed effects, 6i’s are the random effects, Xi’s 
and Zi’s are design matrices, e is the error vector, X = (X1,Xz, ...., X,,), and 
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= (pi,&,....,@&)’. In (6.1.1), it is assumed that there are v1 factors whose 
effects are fixed, and v2 factors whose effects are random. The dimensions of pi 
and 6i are simply the number of levels of the ith fixed factor, and the ith random 
factor, respectively. We make the usual normality assumptions: Si N N ( 0 ,  a;%I), 
e N N ( 0 ,  o ~ I ) ,  and all the random variables are independent. If the above model 
is an ANOVA model with mixed effects and balanced data, a set of coniplete 
sufficient statistics consists of the ordinary least squares estimators of the fixed 
effect parameters, along with the v2 + 1 sums of squares corresponding to the 
v2 random effects, and that corresponding to the error. Furthermore, these 
quantities are all independent, and each sum of squares is distributed as a scaled 
chi-square. In particular, if SS, denotes the error sum of squares, then SS,/az 
is distributed as a chi-square. We shall not elaborate on these properties in a 
general balanced data setting; the interested reader may refer to Searle (1971), 
Khuri (1982), Khuri, Mathew and Sinha (1998) and Montgomery (2009). For 
illustration, we shall provide the details for just one special model. 

A Two-way Nested Model 

Consider two factors A and B with the levels of B nested within the levels of 
A. Suppose A has a levels, and b levels of B are nested within each level of A, 
with n observations obtained on each level combination. Let y Z j l  denote the Ith 
observation corresponding to the j t h  level of B nested within the ith level of A. 
We then have the model 

y.. 231 - - P + Ti + Pj(2) + % j l ,  (6.1.2) 

i = 1, 2, ...., a;  j = 1, 2, ...., b; I = 1, 2, ...., n, where p is a general mean, 
q is the main effect due to the ith level of A, [ j j ( i )  is the effect due to the 
j t h  level of B nested within the i th level of A, and eijl’s are the error terms 
with eijl N N(0,a:).  If the levels of A are fixed, and the levels of B are 
randomly selected, we are in the mixed model set up, and we assume that 
C,’=l ri = 0, /3j(i) N N ( 0 ,  a;), where the pj(i)’s and eijl’s are assumed to be 
independent. If the levels of A are also randomly selected, then we have a ran- 
dom effects model, and in addition to the above distributional assumptions, we 
also assume q N N(O,a;),  independent of the /3 j ( i ) ’s  and eijl’s. Writing Y = 

(ylll, Yll2, .-.., ylln,Y121, y122, ...., Y12n, ...., Yabl, Yab2, ...., Yabn)’, e defined simi- 
larly, 7 = (71,72,....,Ta)’, a n d p  = (Pl(l),Pz(l),....,iOb(l),....,Pl(a),P2(a) ,...., Pb(a))’, 
the model (6.1.2) can be written as 
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where 8 denotes the Kronecker product, and 1, denotes an T x 1 vector of ones. 
Let Kj. = c:=~ Cj=1 b Cy=1 ~ j i ,  
and let 

~ y = ~  ~ j l ,  K.. = & C=, ~ y = ~  ~ j l ,  Y . .  = 

U. 

i=l 

a b  

(6.1.4) 
i=l j=1 1=1 

When the pj(i)’s are random, having the normal distribution mentioned above, 

where the above chi-squares are also independent. When the q’s are fixed effects, 
define pi = p + q. Then an estimator of pi is 

(6.1.6) 

independent of the chi-square random variables in (6.1.5). A set of‘ sufficient 
statistics for the mixed model (6.1.2) consists of the E..’s (i = 1, 2, ..,.., a), along 
with SSp and SS,. Suppose a tolerance interval is required for an observation 
corresponding to the ith level of A ,  i.e., for the distribution N(pi ,a;  + a:). In 
Section 6.3, we shall show how such a tolerance interval can be computed. We 
shall also develop a procedure for computing a tolerance interval for the true 
value pi + p j ( i )  corresponding to the ith level of A ,  i.e., for the distribution 
N b i ,  .;I. 

If the q’s are also random in the model (6.1.2), having the normal distribu- 
tion mentioned above, we also have 

2 SS,  2 u, = 
(bnaz + nag + 0:) Xa-1,  (6.1.7) 

independent of the chi-square distributions in (6.1.5), where SS, is defined in 
(6.1.4). Now the only fixed parameter in the model is p, and we have the 
estimator 

(6.1.8) 
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independent of the chi-square random variables in (6.1.5) and (6.1.7). A set of 
sufficient statistics for the random effects model (6.1.2) consists of Y,, along with 
SS,, SSp and SS,. Now a tolerance interval for an observation corresponding 
to any level combination of A and B is a tolerance interval for the distribu- 
tion N ( p , a ;  + o$ + 0,"). Furthermore, a tolerance interval for the true value 
p + ~i + pj(i) is a tolerance interval for the distribution N ( p ,  a: + a;). The re- 
sults in Section 6.3 can once again be applied to derive such tolerance intervals. 
Further details concerning the distributional results mentioned above for the 
nested model can be found in Montgomery (2009) or Searle (1971). Also, the 
derivation of tolerance intervals under the model (6.1.2) is addressed in Fonseca 
et al. (2007), in the random effects as well as in the mixed effects scena.rios. 

In Section 6.3, we shall derive one-sided and two-sided tolerance intervals in 
a very general setting applicable to mixed and random models with balanced 
data. In our general setting, the problem consists of constructing a tolerance 
interval for the distribution N ( 8 ,  C:==, cia:), given the independent statistics 8 
and SSi ( i  = 1, 2 ,  ...., q ) ,  having the distributions 8 - N ( 8 ,  C;='=, &a:), and 
SSi/o: - x ; ~ .  Here the cj's and di 's are known constants. For example, in the 
context of the model (6.1.2) where the T ~ ' S  are fixed and the & ( i ) ' s  are random 
(having the normal distribution mentioned earlier), suppose we want a tolerance 
interval for the distribution of the Y , j l  for a fixed i ,  i.e., for the distribution 
N ( p i ,  ai-to,'), where pi = p + q .  Define SS1 = SSp, SS2 = SS,, a: = na i fa , " ,  
o2 - oe, f l  = a ( b  - I) ,  and f 2  = ab(n - 1). Then SS,/a: - x ; ~ ,  i = 1, 2; see 
(6.1.5). Furthermore, taking 8 = pi, 8 = j i i follows a normal distribution; see 
(6.1.6). From (6.1.6), it is readily verified that the variance of f i i  is a linear 
combination of the o;'s; in fact, it is just a multiple of a?. Furthermore, in 
the distribution N(pi ,o$  + a:), for which a tolerance interval is required, the 
variance o$ + 0," is also a linear combination of the o:'s. In other words, this 
tolerance interval problem is a special case of the general problem of constructing 
a tolerance interval for the distribution N ( 0 ,  C;='=l cia:), mentioned above. This 
is also true for computing a tolerance interval for the distribution N ( p i ,  a;), and 
also for computing tolerance intervals for the distributions N ( p ,  o? + o$ + a,") 
and N ( p ,  0; + a;) in the context of t'he model (6.1.2) with all effects random. 
Our results on this general tolerance interval problem, described in Section 6.3, 
are due to Liao, Lin and Iyer (2005), and are generalizations of several results 
in Chapter 4. 

2 -  2 

In Section 6.4, we shall consider a general model with exactly one random 
effect, and hence two variance components: the random effect variance compo- 
nent and the error variance component. The model is thus a special case of 
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(6.1.1) with v2 = 1, and can be written as 

Y = X p + Z S + e ,  (6.1.9) 

where is a fixed unknown parameter vector, S is a vector of random effects 
having the distribution 6 N N(0 ,  .,"I), independent of e N N(0 ,  .:I). The one- 
way random model with balanced or unbalanced data is a special case of such a 
model with two variance components. We also note that the model (6.1.2) with 
mixed effects is also a special case of such a model, even if the data are unbal- 
anced. Another special case of (6.1.9) is a two-way crossed classification model 
without interaction and with mixed effects. For the model (6.1.9) with exactly 
one random effect, one-sided and two-sided tolerance intervals are derived in 
Section 6.4, generalizing the results in Section 5.3.2, Section 5.4.2, and Section 
5.5. The examples in the next section will be used to illustrate our results. 

Bagui, Bhaumik and Parnes (1996) have made an attempt at constructing 
one-sided tolerance limits in a general unbalanced random effects model with 
more than two variance components. They have computed an upper tolerance 
limit assuming that the variance components are known, and then replaced the 
unknown variance components by estimates. The actual confidence levels of 
the resulting tolerance limit can be quite different from the assumed nominal 
level. This is also noted in Smith (2002), who has addressed the computation 
of one-sided tolerance limits under a two-way crossed classification model with 
interaction, with random effects, and with unbalanced data, relevant to some 
applications in environmental monitoring and regulation. Our results in Section 
6.4 deal with general models with two variance components only. In Section 
6.5, we shall describe the computation of tolerance intervals for a one-way ran- 
dom model with covariates and heteroscedastic error variances. The topic of 
bioequivalence testing is discussed in Section 6.6, and tolerance intervals are 
proposed for testing individual bioequivalence. For general mixed effects or ran- 
dom effects models with unbalanced data, a unified methodology is currently 
not available for computing tolerance intervals. 

6.2 Some Examples 

Here we shall give a couple of motivating examples. These and a few other 
examples will be taken up later in this chapter. 

Example 6.1 ( A  glucose monitoring meter experiment) 

This example is on a glucose meter experiment and was first considered 
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by Liao and Iyer (2001) and later by Liao and Iyer (2004) and Liao, Lin and 
Iyer (2005). The application deals with a gauge study for comparing the quality 
between a test meter and a reference meter. The test meter is a newly developed 
glucose monitoring meter for in-home use by diabetes patients, and the reference 
meter is an already marketed glucose monitoring meter. Suppose n replicate 
measurements each are obtained with strips that come from L lots, on B blood 
samples, using ml test meters and m2 reference meters. In the models introduced 
below, the effects due to the lots, blood samples and meters will all be random 
effects. 

In order to describe the model and the tolerance interval problem, let Wijl, 

denote the r th  measurement using a strip from the Zth lot, on the j t h  blood 
sample, using the ith test meter, T = 1, 2, ...., E ;  1 = 1, 2, ...., L; j = 1, 2, ...., 
B; i = 1, 2, ...., ml. Also let Y , j l r  denote the corresponding observation for the 
ith reference meter; r = 1, 2, ...., E ;  1 = 1, 2, ...., L;  j = 1, 2, ...., B ;  i = 1, 2, 
...., m2. The models are given by 

Wiji, 

xjlr = p~ + MRi + Bj + Ll + ei j lr ,  (6.2.1) 

where p~ and p~ represent expected readings when using a test meter and a 
reference meter, respectively, M T ~  and M R ~  represent the effects due to the i th 
test meter and the ith reference meter, respectively, Bj denotes the effect due to 
the j t h  blood sample, Ll denotes the effect due to the lth strip lot, and ei j l ,  and 
eij l ,  denote the error terms. Here p~ and p~ are fixed unknown parameters, and 
the rest are all random effects. We assume M T ~  - N(O,a$), hfRi  N N(O,a;), 
Bj N N(O,ag),  Ll - N(O,a;), eijl, - N(0,a;) and e i j l r  - N(O,a;), where all 
the random variables are assumed to be independent. Note that eijlr and eijlr 
are assumed to have the same variance. The true average reading for the ith test 
meter, based on the j t h  blood sample and Zth strip lot is p~ + M T ~  + B,j + Ll. 
The average reference reading for the same blood sample and strip lot, averaged 
over all the reference meters, is p~ + Bj + L1. In order to assess the quality of 
individual test meters, the mean value p~ + M T ~  + Bj + Ll is to be compared 
against the reference value p ~ + B j + L l .  This can be accomplished by computing 
a tolerance interval for the difference ( p ~  + M T ~  + Bj + Ll) - ( p ~  + Bj + Ll) 
= PT - ,LLR + M T ~  N N(PT - p ~ ,  a$).  In other words, what is required is a 
tolerance interval for the distribution N ( ~ T  - p ~ , o $ ) .  Later we shall see that 
this is a special case of the general set up considered in the next section. If a 
(0.95, 0.90) tolerance interval for N ( ~ T  - p ~ , a $ )  is within [-5, 51, we conclude 
that the quality requirements have been met by a batch of test meters; see Liao 
and Iyer (2001, 2004). 

= p~ + M T ~  + Bj + Ll + ei j l ,  

The relevant data for this example are based on blood samples that were 
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prepared so that the true glucose was 50. Furthermore, the data corresponded 
to ml = 44, m2 = 20, and B = L = E = 3. Part of the data are reported 
in Table A l ,  Appendix A. The full data can be accessed at the Wiley ftp site 
provided at the bottom of Table A l .  

Example 6.2 (Strength measurements from 8 batches) 

This is one of the example data sets distributed along with the FORTRAN 
program RECIPE (due to Mark Vangel) available at the National Institutes of 
Standards and Technology (NIST) website*. The data set that we shall use is 
from the file ex4.dat posted at the above site. This example is also discussed 
in Liao, Lin and Iyer (2005). The example is on strength measurements from 8 
batches obtained at two fixed temperatures within each batch: 75°F and -67°F. 
Let U , j l  denote the Zth strength measurement obtained at the j t h  temperature 
for the ith batch; 1 = 1, 2, ...., nij; j = 1, 2, and i = 1, 2, ...., 8. The data are 
given in Table 6.1 with the temperature labeled as 1 and 2, corresponding to 
75°F and -67”F, respectively. 

From the data, we see that n11 = 5, 7221 = 6, 7231 = 5, 7241 = 5, ~ ~ 5 1  = 5, 
n 6 1  = 5, n 7 1  = 0, n81 = 0, n 1 2  = 6, 7222 = 6, 7232 = 6, 7242 = 6 , r  7252 = 6, n62  = 

0, 7272 = 6, n82 = 5. We shall model the above data using the following simple 
linear regression model with a random effect; see the above NIST site, and see 
also Liao, Lin and Iyer (2005): 

Y , j l  = PO + PIX + .ri + eijl, (6.2.2) 

where J: represents the temperature (taking only two values 75’F and -67’F, 
labeled as 1 and 2 in Table 6.1), Po and p1 are the slope and intercept parameters, 
respectively, q ’ s  represent the random batch effects, and eijl’s are the error 
terms. We assume 7-i - N(0,a;) and eijl - N(O,az), where the q ’ s  and eijl’s 

are all assumed to be independent. We shall now exhibit the model (6.2.2) 
as a special case of the general model (6.1.9). Note that E!=l nil = 31 and 
E:=l ni2 = 41. Write 

with e defined similarly consisting of the eijl’s, r = ( ~ 1 ~ 7 2 ,  ...., Q)’, p = (Do, PI)’, 
and 

where 1, denotes an r x 1 vector of ones, and we have also used the fact that 
the temperature z can take the two values 75 and -67, labeled as 1 and 2 in 

* http://www.itl.nist.gov/div898/software/recipe/homepage. html. 
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Table 6.1. In order to define the matrix Z ,  let us denote by 0, an T x 1 vector 
of zeros. Now define 

Z =  

With the above notation, the model (6.2.2) is a special case of the general model 
(6.1.9) with 6 = r. 

If we are interested in computing a tolerance interval for the distribution of 
the strength measurements at a specific temperature 20, the problem reduces 
to computing a tolerance interval for the distribution N ( p ,  u: + a:), where p = 

Po + P1.o. 
We note that a general model of the type (6.1.9) can also come up in the 

context of certain mixed or random effects models involving fixed covariates. 
A one-way random model with a fixed covariate is discussed in Liniam and 
Thomas (1988b), and is a special case of the model (6.1.9). The model (6.2.2) 
corresponding to Example 6.2 is in fact a one-way random model with a fixed 
covariate. Such models will be taken up again in Section 6.5 when t,he errors are 
heteroscedastic. 

6.3 Tolerance Intervals in a General Setting Appli- 
cable to Models with Balanced Data 

As pointed out in Section 6.1, we shall now describe procedures for constructing a 
tolerance interval for the distribution N(O, C:=’=l cia:), based on the independent 
statistics 6 and SSi (i = 1, 2, ...., q ) ,  with 

2 Ssi 
2 (6.3.1) Ui = - 

N xfz. 
L O  - N ( 0 , l )  and 

af 

Here the ti's and di’s are known constants, not necessarily nonnegative. We shall 
first consider the one-sided tolerance limit problem, followed by the construction 
of two-sided tolerance intervals. Generalized confidence intervals will be used in 
both cases. 
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Table 6.1: The strength measurement data 
Strength I Strerigt h 

Temperature Batch measurement 
1 1 328.1174 
1 1 334.7674 
1 1 347.7833 
1 1 346.2661 
1 1 338.7314 
1 2 297.0387 
1 2 293.4595 
1 2 308.04 19 
1 2 326.4864 
1 2 318.1297 
1 2 309.0487 
1 3 337.0930 
1 3 3 17.731 9 
1 3 321.4292 
1 3 3 17.2652 
1 3 291.8881 
1 4 297.6943 
1 4 327.3973 
1 4 303.8629 
1 4 313.0984 
1 4 323.2769 
1 5 312.9743 
1 5 324.5192 
1 5 334.5965 
1 5 314.9458 
1 5 322.7 194 
1 6 291.1215 
1 6 309.7852 
1 6 304.8499 
1 6 288.0 184 
1 6 294.1995 
2 1 340.8 146 
2 1 343.5855 
2 1 334.1746 
2 1 348.6610 
2 1 356.3232 

TemDerature Batch 
2 1 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 
2 4 
2 4 
2 4 
2 4 
2 4 
2 4 
2 5 
2 5 
2 5 
2 5 
2 5 
2 5 
2 7 
2 7 
2 7 
2 7 
2 7 
2 7 
2 8 
2 8 
2 8 
2 8 
2 8 

measurement 
344.1524 
308.6256 
315.1819 
317.6867 
313.9832 
309.3132 
275.1758 
321.4128 
316.4652 
331.3724 
304.8643 
309.6249 
347.8449 
331.5487 
316.5891 
303.7171 
320.3625 
3 15.2963 
322.8280 
340.0990 
348.9354 
331.2500 
330.0000 
340.9836 
329.4393 
330.9309 
328.4553 
344.1026 
343.3584 
344.4717 
351.2776 
331.0259 
322.4052 
327.6699 
296.8215 
338.1995 

6.3.1 One-sided Tolerance Intervals 

Suppose a ( p ,  1-a) lower tolerance limit is required for N ( 0 ,  C:x'=l cia:). That is, 

we need to compute a l O O ( 1 -  a)% lower confidence limit for 19 - zp Cy='=, c p i  , 7 



146 6 Some General Mixed Models 

where zp denotes the p percentile of the standard normal distribution. Let cobs 
and ss i ,  respectively, denote the observed values of 4 and SSi (i = 1: 2; ...., q ) ,  
and define 

ss, 2 IS. 
ss .  - - G .  = Z 

ss, - u; 

(6.3.2) 
i = l  

where 2 and the U?'s are defined in (6.3.1). We note that given the observed 
data, the distribution of (GQ, G I ,  Gz, ...., Gq) is free of unknown parameters. 
Furthermore, the observed value of G, is IS; and that of Go is 6'. In other words 
Gi is a generalized pivotal quantity (GPQ) for IS:, and GQ is a GPQ for 6'. Thus 
a GPQ for 6' - zp 

(6.3.3) 

and the 100ath perccntile of Gg gives a 100( 1 -a)% generalized lower confidence 

for N ( 0 ,  C:==, c~cJ;). The following algorithm can be used for estimating the 
100ath percentile of Gg: 

which in turn gives a ( p ,  1 - a )  lower tolerance limit 

Algorithm 6.1 

1. Once the data are obtained, compute the observed values ss1, ss2, 
...., ssq. 

2. Let K denote the simulation sample size. For k = 1, 2, ...., K ,  perform 
the following steps. 

3. Generate independent random variables 2, N N(0 ,  l), and U:, N x ; ~ ,  i = 

1 , 2  ,...., q. 

4. Compute Gi,k = + and  GO,^ = Oobs - 2, x d m .  
U i , k  
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5. Compute 

1 G8,k  = G0,k - zp 

147 

The lOOath percentile of the G 8 , k  values ( k  = 1, 2, ..., K )  gives an estimate 
of the 100ath percentile of G8, which in turn gives an estimate of the required 
( p ,  1 - a)  lower confidence limit. 

In order to compute a ( p ,  1 - a )  upper tolerance limit for N(8 ,  C:=’=, GO,”), 

consider 

(6.3.4) 

The l O O ( 1  - a ) th  percentile of Gg gives a l O O ( 1  - a)% generalized upper confi- 
i=l 

dence limit for O+z, which in turn gives a ( p ,  1 -a)  upper tolerance 
limit for N ( 8 ,  C:==, cicrp). This limit can obviously be estimated using an algo- 
rithm similar to the one given above. 

6.3.2 Two-sided Tolerance Intervals 

The procedure to be described here, due to Liao, Lin and Iyer (2005), is an 
immediate extension of the approach described in Section 4.5.2 and Section 4.6. 
Thus we shall obtain a margin of error statistic 0 5  that is a function of the 
SSi’s, so that 

where Y - N(8 ,  C:=’=, cig,”). Thus the tolerance interval is 8 f 0 5 .  Write 

(6.3.6) 
i=l i=l 

so that 2 = (8 - 8)/od - N(0 , l ) ;  see (6.3.1). Similar to (4.5.7), the condition 
(6.3.5) can equivalently be expressed as 

Arguing as in Section 4.5.2, we conclude that as an approximation, D5 should 
satisfy 

(6.3.8) 
2 
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The above equation implies that 052 is an upper l O O ( 1  - a)% confidence limit 
for z2+ (a," + 0 2 ) .  

From the definition of a: and 0: in (6.3.6), we note that 

i= 1 

A l O O ( 1  - a)% upper confidence limit for a," + a; can be obtained using the 
generalized confidence interval idea. A GPQ for a: + 0; is easily seen to he 

4 Q 

C ( c i  + di)Gi = C(ci + di)?, 

where U f ' s  are the chi-square random variables defined in (6.3.1) and Gi is the 
GPQ defined in (6.3.2). The l O O ( 1  - a ) t h  percentile of the above GPQ will 
provide a 100( 1 - a)% upper confidence limit for 0," + a;. The required margin 
of error statistic 0 5  is simply the product of zl+p and the square root of the 
l O O ( 1 -  a)% upper confidence limit for a: + a;. A ( p ,  1 - a )  two-sided tolerance 
interval for N ( 8 ,  C:='=, cia:) is finally obtained as 6 f- Ds. An algorithm for the 
required computations is given below. 

(6.3.9) 
i=l i=l 

2 

Algorithm 6.2 

1. Once the data are obtained, compute the observed values jobs, ss1, ss2, 

...., ssq. 

2. Let K denote the simulation sample size. For k = 1, 2, ....: K ,  perform 
the following steps. 

3. Generate independent random variables U& N x2f,, i = 1, 2, ...., q. 

4. Compute Gi,k = ssi/U&. 

5. Compute C:='=,(ci + di)Gi.k 

6. Compute the l O O ( 1  - a ) t h  percentile of the values C:='=,(ci + di)Gi,k, k = 
1, 2, ...., K ;  take the square root of the percentile so obtained and multiply 
with z~++ to obtain Dg. 

A ( p ,  1 - a )  two-sided tolerance interval for N ( 8 ,  C:=l c i ~ : )  can then be com- 
puted as Oobs * Dg. 
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A 1 - a upper confidence limit for a: + a: can also be computed using the 
Satterthwaite approximation (Result 1.2.2 in Chapter l),  provided ci + di 2 0, 
so that a: + a; is a linear combination of the 022’s with nonnegative coefficients. 
The modified large sample (MLS) procedure in Section 1.3 of Chapter 1 provides 
another easy and convenient way to  compute an upper confidence limit €or a:+a; 
without requiring the condition ci + di 2 0. 

Let’s now consider the two-way nested model (6.1.2) and assume that all the 
effects are random. Suppose a tolerance interval is required for N ( p ,  aF+o:+a:). 
Define SS1 = SS,, SS2 = SS6, SS3 = SS,, a? = bna:+nai+a:, a; = no;+,:, 

1, 2, 3; see (6.1.5) and (6.1.7). With j2 in (6.1.8) taking the place of e, we thus 
have a special case of (6.3.1). Furthermore, 

a3 2 -  - a,, 2 f l  = a - 1, f 2  = a(b - l), and f 3  = ab(n - 1). Then SSi/a: N &, i = 

2 2 2 2 1 2 1  1 2  1 2  
UT + 0 6  + 0, = -01 + -(1 - -)a2 + (1 - -)a3 oc = 

bn n b 72 

(6.3.10) 

where the expression for 02 is the expression for the variance given in (6.1.8). 
We note that + o; is a linear combination of a:, 022 and a$ with positive 
coefficients; thus the generalized confidence interval approach, the Satterthwaite 
approximation method, or the MLS procedure can be used to compute an upper 
confidence limit for az+a;. A ( p ,  1-a) tolerance interval for N ( p ,  o:+ai+az) is 
y... f Dg, where 0 5  is the product of zl+p and the square root of the 100( 1 -a)% 

upper confidence limit for oz + a;. 
2 

Now suppose we require a tolerance interval for the distribution of the true 
value p + 7i + Sj(i) corresponding to the j t h  level of B nested within the ith level 
of A ;  i.e., for the distribution N ( p ,  a$ + a:). Now 

2 2 2 1 2 1  1 2  1 2  ac = oT + 0 6  = -01 + -(1- -)a2 - -o3, 
bn n b n 

(6.3.1 1) 

and a: is as given in (6.3.10). Now a: + a: is a linear combination of c;, a; and 
a$, but the coefficient of a$ is negative. Thus the generalized confidence interval 
approach or the MLS procedure (but not the Satterthwaite approximation) can 
be used to compute an upper confidence limit for a: + a;, which can then be 
used to compute a ( p ,  1 - a)  tolerance interval for N ( p ,  o$ + 0,”). 

If (6.1.2) has mixed effects, we can similarly derive tolerance intervals for 
2 N h i ,  06 + 0:) and N ( p i ,  o,”), where pi = p + T ~ .  
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Example 6.1 (continued) 

We now consider the glucose monitoring meter experiment described in Ex- 
ample 6.1, where we have the models in (6.2.1) for the observations Wi,jlT made 
on the test meters ( r  = 1, 2, ...., E ;  1 = 1, 2, .... , L;  j = 1, 2, ...., B ;  i = 1, 
2, ...., ml) and the observations Xj lr  made on the reference meters ( r  = 1, 2, 
...., E ;  1 = 1, 2, ...., L; j = 1, 2, ...., B ;  i = I, 2, ...., m2), where m l  = 44, m2 

= 20, and B = L = E = 3. Under the model (6.2.1), a (0.95, 0.90) tolerance 
interval is required for N ( ~ T  - ~ R , c T $ ) .  If the tolerance interval is within [-5, 
51, we conclude that the quality requirements are met by the test meters. 

Let 

- 3 3 3  m 1 3 3 3  

and define z,, and Y similarly. Also define 

i=l i=l 
ol 2 = BLEoF +a:, CT; = BLE& +a: and o3 2 2  = u,, 

Furthermore, let SS,l and SS,, be the error sums of squares based on the models 
for Wijlr and X j l T ,  respectively, and define SS, = SS,1+ SS,2. Thus SS, is the 
pooled error sum of squares from both the models (since we are assuming that 
the errors have a common variance). Then we have the independent distributions 

SSR/Q; N x k Z p l ,  and SS,/o: N x:, 
where v = (ml + m2)(BLE - 1) - 2B - 2L + 4. 

Based on the data for Example 6.1, the above quantities have the observed values 

W - Y = -1.3791, SST = 718.9790, SSR = 280.3167, and SS, = 8376.4525. 

Also, since m1 = 44, m2 = 20, and B = L = E = 3, the df for SST,  SSR,  and 
SS, are ml - 1 = 43, m2 - 1 = 19 and = 1656, respectively. Recall that a 
(0.95, 0.90) tolerance interval is required for N ( ~ T  - p ~ ,  g?). We can use the 
definitions of of and a: given above to  write 
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Thus our tolerance interval problem is in the set up introduced in the beginning 
of this section, where Q = w - Y has the observed value cobs = -1.3791, and 
the quantities in (6.3.6) are 

The required (0.95, 0.90) tolerance interval for N ( ~ T  - p ~ ,  0;) is then given by 
8&s f D5, where 0 5  is the product of 2,975 and the square root of a 90% upper 
confidence limit for ~2 + 05 (given above). 

We used the MLS procedure to compute a 90% upper confidence limit for P:+ 

02, and the limit is 0.70191. Since 2.975 = 1.96, 0 5  = 1.96 x d m  = 1.6505. 
Since Oobs = -1.3791, the tolerance interval simplifies to (-3.0296,0.2713). 
Since the tolerance interval is within [-5, 51, we conclude that the quality re- 
quirements have been met by the test meters. 

6.4 A General Model with Two Variance 
Components 

In this section, we shall consider the model (6.1.9) involving just two variance 
components, and derive one-sided and two-sided tolerance intervals. Since we 
are considering a general set up of such a model, the derivation of the tolerance 
intervals in this section is a bit more involved compared to what we have seen 
so far. The model is given by 

Y = X p + Z 6 + e ,  (6.4.1) 

where Y is an N x 1 vector of observations, p is a fixed unknown parameter 
vector, 6 is a vector of random effects having the distribution 6 - N(O,oiI), 
independent of e - N(0,a:I). We shall assume that rank(X,Z) = T .  We 
shall also assume that X is an N x b matrix of full column rank; otherwise a 
reparametrization can be carried out so that X becomes a matrix of full column 
rank. 

Let xb and zb be fixed design vectors corresponding to the fixed effect and 
random effect, respectively, and let Yo be the corresponding observation. In view 
of the above assumptions concerning the model (6.4.l), we get the distribution 

Yo N N (xbp, (z;zo)a; + 02) . (6.4.2) 
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In this section, we shall consider the problem of computing one-sided and two- 
sided tolerance intervals for YO, i.e., for the distribution N(x#, (zbzo)ai + 02). 
We shall also consider the problem of computing tolerance limits for the true 
value x@ + zb6, i.e., for the distribution N(xb,B, (zbzo)~;). The results in this 
section are generalizations of those in Section 5.3.2, Section 5.4.2 and Section 
5.5. 

Let 
P(X,Z) = (X, Z)  [(X, Z)’(X, Z)] - (X, Z)’; 

where, for any matrix A, A- denotes a generalized inverse. Thus P(x,z) is the 
orthogonal projection matrix onto the r-dimensional vector space spanned by 
the columns of (X, Z) .  The error sum of squares SS,, under the model (6.4.1), 
is then given by 

(6.4.3) 

Let F be an N x r matrix such that 

P(x,z) = FF’ and F’F = I,. 

In other words, the columns of F form an orthonormal basis for the vector space 
spanned by the columns of (X, Z).  Now consider the model for F’ Y ,  obtained 
from (6.4.1): 

F’Y - N(F’XP,V), 
where V = CT;F’ZZ‘F+O,”I,. (6.4.4) 

We note that since the columns of F span the vector space generated by the 
columns of (X, Z),  and since X is of full column rank, so is F’X, with rank equal 
to the rank of X. It can also be shown that SS, and F’Y are independently 
distributed. As an illustration of the model obtained in (6.4.4), consider the 
one-way random model with unbalanced data; the model (5.1.1) in Chapter 5. 
After writing the model using vector-matrix notation, it can be checked that 

With this 
choice of F, F’Y and V are equivalent to the quantities given in (5.3.8). 
the matrix F can be taken to be diag( &lnl, - Jn21,2, 1 ...., xina). 1 

If 062 and 02 are known, so that V is known, the best linear unbiased esti- 
mator of p, say Bv is given by 

P V  = (x’Fv-~F’x)-~x’Fv-~F’Y 

and & N N ( P ,  (X’FVplF’X)-l). (6.4.5) 
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Also, the residual sum of squares, say SSo, under the model (6.4.4) is given by 

sso = (F’Y - F’x&)’v-~(F’Y - F’x~ , )  
= Y’F [V-’ - Vp’F’X(X’FVp1F’X)-’X’FV-’] F’ Y.  (6.4.6) 

Note that SSo N x:-~; the degrees of freedom is obtained using the observations 
that F’Y is an T x 1 vector, and the matrix X (and hence FIX) is assumed to be 
of full column rank equal to b. We would like to emphasize that cannot be 
used to estimate p, since it depends on the unknown variance components; see 
the expression for V in (6.4.4). In fact both pV and SSo depend on the unknown 
variance components. These quantities have been defined only to facilitate the 
development of the required GPQs. 

We shall now derive GPQs for x#, a: and a:, to be denoted by Gxbp, Go; 

and Go;, respectively. Let Y and sse denote the observed values of Y and SS,, 
respectively. Let 

VG = Go; F’ZZ‘F + Go: I,, (6.4.7) 

where U: is the chi-square random variable defined in (6.4.2), and Go2 is the 
GPQ for a:, to be obtained. It is clear that G,2 is a GPQ for a:. Furthermore, 
once Go; is determined, VG is a “matrix GPQ” for V. Motivated by (6.4.6), 
consider the equation 

6 

U: = Y’F [VG1 - VGIF’X(X’FVGIF’X)-lX’FVG1] F’Y, (6.4.8) 

where U i  N &b, Y is the observed value of Y, and VG is defined in (6.4.7). 
The right hand side of (6.4.8) is a function of Go;. It can be shown that the 
right hand side of (6.4.8) is a monotone decreasing function of G,2, and the 
limit is zero as G 2 --+ 00. For this, it is enough to show that Sdo given in 
(6.4.6) is a decreasing function of a:, and the limit is zero as 062 --+ 00. A proof 
of this monotonicity is given following equation (6.4.14), and is similar to the 
corresponding proof in Section 5.3.2. Once we show that the right hand side 
of (6.4.8) is a monotone decreasing function of G Z ?  we can conclude that the 
solution to (6.4.8) exists uniquely, even though the solution Go; so obtained 
need not be nonnegative. Note that even though the matrix V in (6.4.4) is 
positive definite, the matrix GPQ VG in (6.4.7) need not be so, when G 2 takes 
a negative value. 

,6 

O6 
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In order to define Gxbp, note from (6.4.5) that 

- N(0 , l ) .  X b B v  - xbP z= 
xb (X’FV- F’X) -lx0 

Now define 

(6.4.9) 

= x~(X’FV;’F’X)-’X’FVG,~F’ Y - ZJ[X~(X’FV;’F’X)-’XO] +, 
(6.4.10) 

where VG is defined in (6.4.7), Y is the observed value of Y ,  and for any real 
number z, we define z+ = max{z,O}. It can be directly verified that given the 
observed data, the distribution of Gxbp is free of any unknown parameters, and 
the observed value of Gxbp is xbp. In other words GXbp is a GPQ for xbp. 

N(x@, ( Z ~ Z O ) C T ;  + a:), and for N(xbP, ( z b z o ) ~ ~ ~ ) .  
We are now ready to derive one-sided and two-sided tolerance intervals for 

6.4.1 One-sided Tolerance Limits 

Recalling that a ( p ,  1 - a )  lower tolerance limit for N(x#, ( Z ~ Z O ) C J ;  + a:) is a 

l O O ( 1 -  a)% lower confidence limit for x# - ~ y d m ,  a GPQ for this 
is given by 

(6.4.11) 

The lOOath percentile of Glo gives the required ( p ,  1 - a )  lower tolerance limit 
for N(xbP, (Z~ZO>CT:  + a:). Here is the algorithm for performing the relevant 
calculations: 

Algorithm 6.3 

1. Once the N x 1 data vector Y is observed, compute the observed value 
ss,. 
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2. Let b = rank(X) and T = rank(X, Z). Compute an N x T matrix F whose 
columns are orthonormal and form a basis for the vector space spanned 
by the columns of (X, Z). 

3. Let K denote the simulation sample size. For k = 1, 2, ...., K ,  perform 
the following steps. 

4. Generate independent random variables U$ N &-,, U& N x ~ - ~ ,  2 and 
ZI, N N(0,l). 

5. Compute G,2,k = SS, /U, ,~ .  2 

6. Let V G , ~  = G,i,,F’ZZ’F + GOz er k I T .  Now solve the following equation to 
get Go;&: 

7. Compute 

8. Compute 

The 100ath percentile of the GlO,k  values ( k  = 1, 2, ..., K )  gives an estimate 
of the 100ath percentile of Glo, which in turn gives an estimate of the required 
( p ,  1 - a )  lower confidence limit for N(xbP, (zbz0)o; + 02). 

A ( p ,  1 - a )  upper tolerance limit for N(xbP, (zbz0)o; + 0:) can be obtained 
as the l O O ( 1  - a ) th  percentile of the following GPQ: 

(6.4.12) 

Similarly, a ( p ,  1-a) lower tolerance limit for N(xbP, ( Z ~ Z O ) ~ ; )  is the 100ath 
percentile of the GPQ 

(6.4.13) 
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Finally, ( p ,  1 -a )  upper tolerance limit for N(xbP, (zbz0)a;) can be obtained 
as the l O O ( 1  - a ) th  percentile of the following GPQ: 

G13 = Gxbp + ~p (6.4.14) 

Proof that SSo in (6.4.6) is  a decreasing funct ion o f o g  

The proof is similar to the corresponding proof in Section 5.3.2. We shall first 
give an alternative representation for SSo. Recall that F’X is an r x b matrix of 
rank b. Let H be an r x ( r  - b )  matrix of rank r - b satisfying H’F’X = 0. Using 
a theorem in Searle, Casella and McCulloch (1992, p. 451), we can rewrite SSo 
in (6.4.6) as 

where Yo = H’F’ Y.  The proof can now be completed following the arguments 
in the corresponding proof in Section 5.3.2. 

sso = Y ~ ( H ’ v H ) - ~  yo, 

6.4.2 Two-sided Tolerance Intervals 

Following the arguments in Sections 4.4.1 and 5.5.1, a ( p ,  1 - a )  two-sided toler- 
ance interval for N(x#, (zbzo)a i  +a:) can be taken to be of the form xbpkD,, 
where xbP is an estimator of ~ $ 3 ,  to be determined, and D6 is a margin of error 
statistic. The quantity 062 can be taken to be a l O O ( 1  - a)% upper confidence 
limit of z!+, - ( ( Z ~ Z O ) ~ ~  + a: + xb(X’FV-’F’X)-’xo). Such a confidence limit 
can be obtained as the l O O ( 1  - a ) th  percentile of 

2 

2 x [(zLzo)G,; + G,g + X~(X’FV;’F’X)~’X~] + , 

where VG is given in (6.4.7). 

Regarding the choice of xbP, we can consider the GPQ G p given in 
(6.4.10), and take xbP to be the mean (or the median) of G ,p.  This mean 
(or median) can be easily estimated based on the realizations G , P , ~  of Gx6p; 
see Step 7 of Algorithm 6.3 given above. Note that xb& defined in (6.4.5) 
cannot be used as an estimator of x# since V (and hence xb&) depends on 
the unknown variance components. 

xb 

XO 

XO 

Similar to Algorithm 5.2, the following algorithm can be used to conipute a 
( p ,  1 - a )  two-sided tolerance interval for N(x#, (zbzo)ag + a:). 
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Algorithm 6.4 

Step 1. Once the N x 1 data vector Y is observed, compute the observed value 
ss,. 

Step 2. Let K denote the simulation sample size. For k = 1, 2, ...., K ,  perform 
steps 2-7 of Algorithm 6.3. 

Step 3. Compute (zbzo)Go; + G,z + xb(X’FVG’F’X)-’xo, where VG is given 
in (6.4.7). 

Step 4. Compute xbfi, the mean of the Gxl;p,, values. 

Step 5. Compute 062 = z2* x the l O O ( 1  - a ) t h  percentile of 

[ (zIzo)G,; + G,: + x(i(X’FVG’F’X)-’xo] t 

2 

Step 6. A ( p ,  1 - a )  two-sided tolerance interval for N(x#, (zbzo)~; 
then given by xbfi f D6. 

In order to obtain a ( p ,  1-a) two-sided tolerance interval for N(x@, 
we compute 0; = z2* x the l O O ( 1  - a ) t h  percentile of 

2 

[(zbzo)G,,; + xb(X’FV;’F’X)-’xo] + . 

The interval is then given by xbfi f D7. 

Example 6.2 (continued) 

We already noted that for the data in Table 6.1, the model (6.2.2) can be 
expressed in the form (6.4.1) ; see the discussion below (6.2.2). With X and Z as 
given below (6.2.2), it can be verified that the matrix F consists of the columns 

of Z along with the second column of X, namely the column 

after an orthonormalization of these columns. Thus F is a 72 x 9 matrix of rank 
9. For the data in Table 6.1, we also have the observed value sse = 8663.776. 

( -:2:’ ), 

Let us now compute a (0.90, 0.95) lower tolerance limit for the strength 
distribution corresponding to the temperatures -50 degrees and 50 degrees. In 
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other words, we need a lower tolerance limit for the distribution N(Po + P,zo) 
when zo = -50 and when zo = 50. Applying Algorithm 6.3, the (0.90, 0.95) 
lower tolerance limits turned out to  be 312.216 and 302.392, corresponding to 
the temperatures -50 degrees and 50 degrees, respectively. 

6.5 A One-way Random Model with Covariates and 
Unequal Variances 

A one-way random model with heteroscedastic variances is very common in 
applications, most notably in the context of inter-laboratory studies; for details 
and further references, see Rukhin and Vangel (1998), Vangel and Rukhin (1999) 
and Iyer, Wang and Mathew (2004). If covariates are present in a study, ob- 
viously they have to be incorporated into the model. In fact the model (6.2.2) 
corresponding to Example 6.2 is a one-way random model that also includes a 
covariate; however, the errors are assumed to be homoscedastic. Such a model 
was also considered by Limam and Thomas (1988b), once again assuming ho- 
moscedasticity. A one-way random model that contains several covariat,es and 
having heteroscedastic error variances has recently been considered by Lin, Liao 
and Iyer (2008); they have addressed the problem of constructing one-sided and 
two-sided tolerance intervals. These problems are addressed in this section based 
on the work of Lin, Liao and Iyer (2008). In the presence of b covariates and 
heteroscedasticity, the one-way random model can be written as 

j = 1, 2, ...., ni; i = 1, 2, ...., a ,  where the xi’s (i = 1, 2, ...., u )  are b x 1 vectors 
of covariates (whose values are known), ~i N N(O,o;), e i j  - N(O,crzi), and all 
the random variables are assumed to be independent. In this section, we shall 
assume that b < a; the need to  have this assumption will become clear later. The 
b x 1 vector p and the variances o: and the 02~’s are all unknown parameters. 
Note that we are allowing the variances c&’s to  be unequal. Now consider an 
observation YO that corresponds to the covariate vector XO, and suppose the 
observation is also based on the same process or phenomenon that generated 
Y , 1 ,  Yi2, ...., Y,,,, for a fixed i. Thus we have the distribution 

(6.5.2) 

We shall address the problem of computing tolerance intervals for the distribu- 
tion N(x@, o: +a:i), and also for the distribution N ( x # ,  cr:), where the latter 
distribution corresponds to  the true values, free of the error term. 
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Define 
ni ni 

j=1 j=1 

(6.5.3) 

We shall assume that the a x b matrix X has rank b (recall our assumption 
b < a) .  Then 

Y N N(XP,V), and U:, = SSez/~~, N xn,-1, 2 (6.5.4) 

i = 1, 2, ...., a. The best linear unbiased estimator of p, say pv is given by 

pv = (x’v-lx)-lx’v-l Y N N ( P ,  (x’v-lx)-l). (6.5.5) 

Also, the residual sum of squares, say SSo, under the model (6.5.4) for Y is 
given by 

sso = ( Y - x&)’v-l( Y - X&) 
= Y’ [v-1- v-’x(x’v-’x)-’x’v-’] y .  (6.5.6) 

Note that SSo - x:-~.  
Since upper and lower tolerance limits for N ( x @ ,  a:+azJ, and for iV(x#, a:), 

are confidence limits for the appropriate percentiles, we shall follow the approach 
that should be familiar by now: first derive GPQs for the percentiles, which will 
permit the computation of generalized confidence limits, which in turn will pro- 
vide the required tolerance limits. Towards this, we shall now derive GPQs for 
x@, a: and a:,, to be denoted by Gxbp, Go: and G 2 , respectively (i = 1, 2, 

...., a) .  Let Y and ss, denote the observed values of Y and SS,, respectively. 
Let 

c c z  - 

, (6.5.7) 
1 1 1 

G 2 ’ ““” G 2  
Go7 + Il.a a e 2  Gog + 7 

VG = diag 
G,g + 

where Uei is the chi-square random variable defined in (6.5.4), and Go2 is the 
GPQ for a?, to be obtained. It is clear that Go;% is a GPQ for a:a. Mitivated 
by (6.5.6), consider the equation 

u; = Y’ [VGl - VG1X(X’VG1X)-1X’VG1] Y ,  (6.5 .S) 
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- 
where U i  N &,, Y is the observed value of Y ,  and VG is defined in (6.5.7). 
The right hand side of (6.5.8) is a function of Gug. It can be shown that right 
hand side of (6.5.8) is a monotone decreasing function of Gug, and the limit is 
zero as Gug + 00. The proof of this is similar to the corresponding proof in 
Section 6.4. Thus the solution Gug of the equation (6.5.8) exists uniquely, even 
though the solution need not be nonnegative. 

Having obtained Gun, and Gu+, it now remains to construct a GPQ for xbp, 
ez 

say G x p .  For this, note from (6.5.5) that 

Now define 

Gx;p = xb(X’V;1X)-1X’V;1 Y 

(6.5.9) 

= xb(x’v;1x)-1x’vz’ Y - z~[x;(x’v~lx)-lxo] +, 
(6.5.10) 

where VG is defined in (6.5.7) and Y is the observed value of Y .  It can be 
directly verified that given the observed data, the distribution of Gx6p is free 
of any unknown parameters, and the observed value of G,;p is xbp. In other 
words Gx6p is a GPQ for xbp. 

Once the GPQs have been derived as given above, one-sided and two-sided 
tolerance intervals for the distributions N(x$?, a: + aZi) and N(xb,B, a:) can be 
easily constructed. The 100pth percentiles of N(x#, a: + a;i) and N(xbP, a:) 

are x$ + zp  and xbP + zpar, respectively. GPQs for these quanti- 

ties are Gxbp + zp  ,/- G,g + G,,E and Gxbp + z P , / m ,  respectively. The 

l O O ( 1 -  a ) t h  percentiles of these GPQs provide ( p ,  1 - a )  upper tolerance limits 
for N(x@, and N(x#, a:), respectively. An algorithm similar to Algo- 
rithm 5.1 or Algorithm 6.3 (with obvious modifications) can be used to compute 
these tolerance limits. 

a: + d--- 

In order to obtain two-sided tolerance limits for N(xbP, and N(xbP, a:), 
we shall assume that the two sided ( p ,  1 - a )  tolerance limit for N(xbP, a: +a&) 
is of the form x@ * Dlo and that for N(x#, a:) is of the form x$ f Dll, 
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where X@ is an estimator of xbp, to be determined, and Dlo and Dll are mar- 
gin of error statistics. The quantity LITo can be taken to be a 100( l - a)% upper 
confidence limit of z2+, ((zbzo)~: + a]4, + X{~(X’V- ’X) -~X~) .  Such a confidence 
limit can be obtained as the l O O ( 1  - n)th percentile of 

2 

where VG is given in (6.5.7). Similarly, Of1 can be taken to be a l O O ( l - a ) %  up- 
per confidence limit of z!+, - ( ( z ~ z o ) ~ ?  + ~b(X’V-~X)-lxb).  Such a confidence 
limit can be obtained as the l O O ( 1  - n)th percentile of 

2 

~4, ,  x [(zbzo)G,: + xb(X’vG,’X)-’xb]+, 

The estimator x ~ P  can be taken to be the mean (or the median) of the GPQ 
Gxbp. This mean (or median) can be easily estimated based on the realizations 
G x ; ~ , k  of G,;p. An algorithm similar to Algorithm 5.2 or Algorithm 6.4 (with 
obvious modifications) can be used to compute the above two-sided tolerance 
intervals. 

Example 6.4 (Sea urchin density and algae data) 

This example is taken from Lin, Liao and Iyer (2008), who quote Andrew 
and Underwood (1993) for further details and the data. The data consist of the 
percentage cover of filamentous algae in 16 patches of reef in a shallow subtidal 
region in Australia. The sea urchin density was a covariate, taking four values: 
0%, 33%, 66% and 100%. The data are reproduced in Table 6.2, where the mean 
and standard deviation are reported for the square root transformed data. 

Lin, Liao and Iyer (2008) analyzed the data using the one-way random model 
for y Z j ,  the square root transformed percentage cover of filamentous algae: 

y Z j  = PO + Plxi + ri + eij, (6.5.11) 

j = 1, 2, ...., ni; i = 1, 2, 3, ...., 16, where xi’s represent the density, q - N ( 0 ,  a:), 
eij N N(O,aii) .  Following Lin, Liao and Iyer (2008), we assume that the o:~’s 
corresponding to the same xi are equal. Thus, 02’ = aZ2 = = a$ (since they 
correspond to xi = 1.00, for i = 1, 2, 3 ,  4), and the next four are equal, and 
so on. In the notations introduced for the model (6.5.1), we have u = 16, b = 2, 
and all the ni’s are equal to 5, except rig = 4 and 7216 = 3. Note that the observed 
values ssei’s are obtained by pooling the four variances corresponding to each 
density xi, since there are only four heterogeneous variances to be estimated. 
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Table 6.2: Data on sea urchin density along with the sample mean and standard 
deviation of percentage cover of filamentous algae (square root transformed) 

Patch Size Density Mean SD 
Sample 

1 5 1.00 0.773 1.1196 
2 5 1.00 0.000 0.0000 
3 5 1.00 0.600 0.8944 
4 5 1.00 0.721 1.6125 
5 5 0.66 4.637 2.9366 
6 5 0.66 5.275 3.3486 
7 5 0.66 0.447 1.0000 
8 4 0.66 3.500 4.0329 
9 5 0.33 1.013 1.4027 
10 5 0.33 0.000 0.0000 
11 5 0.33 5.865 2.0023 
12 5 0.33 4.985 3.7000 
13 5 0.00 5.704 1.4419 
14 5 0.00 7.861 0.4971 
15 5 0.00 0.937 1.2854 
16 3 0.00 8.800 0.4145 

We shall denote the pooled sum of squares by ssi, i = 1, 2, 3, 4. Their values 
are 

ss1 = 18.6144, ss2 = 132.1386, ss3 = 78.6652,and ssq = 16.2573. 

Also note that in the matrix V defined in (6.5.3), the 02~’s are equal for i = 1, 
2, 3, 4, and they are also equal for the next groups of four each. Consequently, 
in the definition of VG in (6.5.7), the GPQs G,,zZ’s are equal for i = 1, 2, 3, 4, 
and they are also equal for the next groups of four each. The chi-square random 
variable U i  has df = a - b = 14, and there are four independent chi-square 
random variables U:z in (6.5.4), to be denoted by U:, i = 1, 2, 3,  4, having df 
16, 15, 16 and 14, respectively. 

The procedures discussed in this section can be applied to compute one-sided 
tolerance limits and two-sided tolerance intervals for the distributions N(@o + 
Plzo, Q? + o,”,) and N(Po + Plzo, Q?), for a specified value of the density 20. For 
zo = 50, Lin, Liao and Iyer (2008) have reported a (0.90, 0.95) upper tolerance 
limit for the distribution N(Po+Plzo, o:), and the limit is 8.0055. Also, a (0.90, 
0.95) two-sided tolerance interval for N(@o++Plzo, o:) is (-2.8901,8.8864). Since 
the random variable of interest is nonnegative, we shall take the lower limit to 
be zero. Thus the tolerance interval is (0,8.8864). 
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6.6 Testing Individual Bioequivalence 

In this section, we shall address the role of tolerance intervals in the problem of 
bioequivalence testing. Bioequivalence trials are carried out in order to compare 
the bioavailabilities of two formulations of the same drug, or two drug prod- 
ucts. The bioavailability of a drug is defined as the amount of the active drug 
ingredient that gets into the bloodstream, and becomes available at the site of 
drug action. Two drug products are said to be bioequivalent if they have similar 
bioavailabilities, where similarity is to be assessed based on appropriate criteria. 
Bioequivalence testing is the statistical procedure for assessing bioequivalence 
between two formulations of the same drug or between two drug products: usu- 
ally a brand-name drug and a generic copy. The discussion that follows is very 
brief, and our goal in this section is to illustrate the application of tolerance in- 
tervals for the assessment of bioequivalence. For more information on the topic 
of bioequivalence, we refer to the books by Chow and Liu (2000), Patterson and 
Jones (2006) and Hauschke, Steinijans and Pigeot (2007). 

The data for bioequivalence studies are generated using cross-over designs 
where the subjects in the study are healthy volunteers. Thus each individual in 
the study is administered both drug products, separated by a washout period 
that is long enough to guarantee that very little (or none) of the effect of the pre- 
vious drug administration is left in the bloodstream. After each administration 
of the drug, the concentration of the active drug ingredient in the bloodstream 
is measured at several time points. Note that the blood concentration of the 
active drug ingredient will gradually increase over time, eventually reaching a 
peak, and will then gradually decline. A plot of the blood concentration versus 
timc can then be obtained, and three responses are typically measured: (i) the 
area under the curve, denoted by AUC, (ii) the maximum blood concentration, 
denoted by C,,,, and (iii) the time to reach the maximum concentration, de- 
noted by Tmm. Usually the AUC and C,, are the responses of interest, and 
these quantities typically follow a lognormal distribution. In our discussion in 
this section, we shall assume that the lognormality assumption is valid. Thus it 
is the log-transformed data that are modeled and analyzed for the assessment 
of bioequivalence. Average bioequivalence holds between two drug products if 
the difference between the average responses (corresponding to ln(AUC), say) is 
within a narrow interval, usually taken to be the interval (- ln(1.25), ln(l.25)). 
Two drug products are said to be individually bioequivalent if the responses from 
the same individual corresponding to the two drug products are close, according 
to a suitable criterion. For the assessment of individual bioequivalence, the use 
of tolerance intervals has been investigated by Esinhart and Chinchilli (1994), 
Brown, Iyer and Wang (1997) and Liao and Iyer (2004). A brief discussion of 
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the application of tolerance intervals for testing individual bioequivalence also 
appears in Chow and Liu (2000, Sectlion 15.4.3). 

Here we shall consider only four period cross-over designs. Let R denote 
the reference drug or the brand-name drug, and T denote the test drug or the 
generic copy. Thus R and T denote the two formulations to be compared. A 
two-sequence and four-period cross-over design (or a 2 x 4 cross-over design) is 
given by 

Period 

A four-sequence and four-period crossover design (or a 4 x 4 cross-over design) 
is given by 

Sequence 1 
2 
3 

4 1  

Period 
1 2 3 4  
R R T T  
R T T R  
T T R R  
T R R T  

In the case of a 2 x 4 cross-over design, the subjects in the study are ran- 
domly assigned to the two sequences. In a 4 x 4 cross-over design, the subjects 
are randomly assigned to the four sequences. Thus each subject receives the 
reference drug and test drug twice each, separated by washout periods. 

Conceptually, the tolerance interval idea proposed by Brown, Iyer and Wang 
(1997), and Liao and Iyer (2004) is as follows. Denote by p~ and p~ the popu- 
lation mean responses (based on the log-transformed data) corresponding to the 
two formulations T and R, respectively, and let q i j ~  and q i j ~  denote random 
subject effects corresponding to T and R, respectively, for the j t h  subject in the 
ith sequence. Thus the true responses based on T and R, for the j t h  subject 
in the i th sequence, are p~ + q i j ~  and p~ + q i j ~ .  We conclude individual bioe- 
quivalence if p~ + 7 i . j ~  and p~ + q i j ~  are close, i.e., if a tolerance interval for 
p~ - p~ + q i j ~  - q i j ~  is narrow. In their articles, Brown, Iyer and Wang (1997) 
and Liao and Iyer (2004) used the interval (ln(0.75), ln(l.25)) to decide if the 
tolerance interval is narrow enough to conclude individual bioequivalence. The 
interval is to be constructed in such a way that at least 75% of the individuals 
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will have their true response differences, i.e., the quantities p~ - p ~ + q , ~ ~  - q Z g ~ ,  
contained in the interval (ln(0.75), ln(l.25)) with 95% confidence. That is, con- 
clude individual bioequivalence if a (0.75, 0.95) two-sided tolerance interval for 
p~ - p~ + q Z J ~  - q z J ~  is a subset of (ln(0.75), ln(l.25)). A similar approach 
developed by Esinhart and Chinchilli (1994), and described in Chow and Liu 
(2000. Section 15.4.3), constructs a tolerance interval for the differences in the 
responses, including the within subject error terms as well. These authors use 
the interval (- ln(1.33), ln(1.33)) to decide whether the tolerance interval is 
narrow enough to conclude individual bioequivalence. 

We shall now give the model for the responses, and then describe the proce- 
dure for constructing the required tolerance intervals. Consider an s x 4 cross- 
over design, and let n, be the number of subjects in the i th sequence. Thus there 
are s sequences in the design; for example, s could be two or four. Furthermore, 
let Xgrl  be the Ith response (AUC or C,,,,, log transformed) corresponding 
to drug formulation T for the j t h  subject in the i th sequence; i = 1,2 , .  . . s, 
j = 1,2 , .  . . n,, T = T ,  R, I = 1,2.  A mixed effects model for XJr l  has been 
proposed by Chinchilli and Esinhart (1996), and is given by 

Kjrl = pr + Y' zrl + qijr  + t i j r l ,  (6.6.1) 

where p~ and p~ are the population mean responses, 7irl is a fixed effect satisfy- 
ing C:=l 7iyirl = 0, for T = T ,  R, qijr is a random subject effect correspond- 
ing to formulation T for subject j in sequence i, and the eijrl7s are within-subject 
errors. We assume that 

2 

Thus We also assume that 
( q i j ~ ,  q i j ~ ) '  follows a bivariate normal distribution with zero means and variance- 

and okR are the within subject variances. 

covariance matrix , n  

Thus C B  is the between-subject covariance matrix. The above model is also 
given in the U. S. Food and Drug Administration's guidance document, U S .  
FDA (2001). Note that the quantity p~ - p~ + q i j ~  - q i j ~  for which a tolerance 
interval is required has the distribution 

PT - p R  + VijT - Vi jR  

aD = Var(qijT - q i j ~ )  = CSBT + oBR - ~ ~ B T R .  

N ( p T  - p R ,  a;), 
2 2 2 where (6.6.2) 

The variance component a$ is referred to as the subject-by-formulation inter- 
action. Instead of looking at the true difference p~ - p~ + q i j ~  - rlijR, if the 
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within-subject errors are also to be included, then a tolerance interval is required 
for the quantity ,UT - ,UR + q i j ~  - q i j ~  + ~ i j ~ l  - EijRp having the distribution 

CLT - ,UR + q i j ~  - q i j ~  + ~ i j ~ i  - ~ i j ~ i i  - N ( ~ T  - P R ,  0; + c$T + &R) ,  (6.6.3) 

where 1 and 1’ take the values 1 or 2 (since each subject receives two adminis- 
trations each, of T and R).  

We shall now show that for obtaining tolerance intervals for the distributions 
in (6.6.2) and (6.6.3), we are in the set up described in Section 6.3. Towards 
this, define 

l S 1  
s2 ni 

s n., 

S 

c2=->:-, v=>:n i - s ,  
i=l i=l 

1 
and SSw, = - x(Eijr - Ei.r)2, r = T ,  R. 

2 
(6.6.4) 

It can be verified that 

where the random variables D,  SSD,  SSWT and SSWR are also independently 
distributed. We note that SSWT and SSWR, respectively, are the error sum of 
squares obtained from an ANOVA based on the model for xj~l, and the model 
for Y , j ~ l .  

It is clear that (6.6.5) is a special case of the set up (6.3.1). Let 
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Following the derivations in Section 6.3.2, we conclude that a ( p ,  1 - a )  two- 
sided tolerance interval for the distribution N ( ~ T  - p ~ ,  a;) is given by D f &, 
where the margin of error statistic 0 5  is such that 0; is an upper 100(1 - a)% 

confidence limit for z f + ,  [ (1 + c2)af - $(a: + a;)] . Similarly, a ( p ,  1 - a )  two- 

sided tolerance interval for the distribution N ( ~ T  - p ~ ,  a; + a&T + a&,) is 
given by D f 0 5 ,  where the margin of error statistic 0 5  is such that 0; is an 
upper 100( 1 - a)% confidence limit for z& [ (1 + c2)af + (1 - $)(a;  + a;)] . 

2 

Example 6.5 (Bioequivalence study based on  a 2 x 4 crossover design) 

We shall now illustrate the above results with an example. The data for the 
example is taken from the U. S. FDA website.' The drug under consideration is 
Monamine Oxidase (MAO) inhibitor, a drug used for treating depression. Data 
on C,,, were recorded for 38 subjects, obtained based on a 2 x 4 crossover 
design with 18 subjects assigned to sequence TRRT and 20 subjects assigned to 
sequence RTTR. The data are reproduced in Table A2, Appendix A. 

The log-transformed C,, data were analyzed using the model (6.6.1), and 
gave the following observed values of D, S S D ,  SSWT and SSWR, denoted by d ,  
S S D ,  SSWT and S S W R ,  respectively. 

d =  -0.00501, S S D  = 0.6804, SSWT = 1.1904, S S W R  = 1.29563. 

Note that the degrees of freedom u ,  given in (6.6.4) and appearing in (6.6.5), 
simplifies to %r = 36. We shall use the MLS method to compute an upper 
confidence limit for (1 + c2)af - $(a: + a:). This will permit the computation 
of the margin of error statistic Dg, which is such that 0; is an upper 100(1 -a)% 

confidence limit for zT+p [(l + .')of - $(a22 + a:)]. LFrom the definition of c2 

in (6.6.4), we have 
2 

"=ff:< = 1 4 (1 18 + &) = 0.026388. 
%=1 

Using the given values of S S D ,  SSWT and S S W R ,  we also have the estimates 

= 0.033066, d2 - S S W R  = 0.035988. 2 S S D  -2 S S W T  

3-36 
= 51. Using the expression 

dl = - = 0.0189, = ~ 

36 36 

For 36 df, we also have x~s;o,os = 23.27 and x36;o,95 2 

(1.3.4) in Section 1.3, the a 95% upper confidence limit for (1+c2)o~-$?(o:+a:), 
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based on the MLS procedure, simplifies to  0.0291. For p = 0.75, z1+1, = 1.5035. 
Hence 052 = 1.5035 x 0.0291 = 0.043751, and the margin of error statistic 0 5  has 
the value 0.20916. The (0.75,0.95) two-sided tolerance interval D f 0 5  for the 
distribution N ( ~ T  - p ~ ,  0;) now simplifies to the interval (-0.2142,0.2042). 
Since (ln(0.75),ln(1.25) = (-0.2877,0.2231), it is clear that the interval D f 
0 5  is a subset of (ln(0.75),ln(1.25)). In other words, we conclude individual 
bioequivalence. 

2 

Let us now construct a two-sided tolerance interval for the distribution 
N ( ~ T  - ~ R , o ;  + ahT + oh,), corresponding to  p~ - p~ + q i J ~  - ~ l i j ~  + 
~ i j ~ l  - E ~ ~ R L ’ ,  and verify if it is contained in the interval (-ln(1.33),ln(1.33)), 
as recommended in Chow and Liu (2000, Section 15.4.3). As noted earlier, 
ok + akT + a&& = (1 + cz)of + (1 - $)(a,” + o,”), and our tolerance interval is 
of the form D f D5, where the margin of error statistic 0 5  is such that 052 is an 

2 1 upper l O O ( 1  - a)% confidence limit for z!,, [(1+ c 2 2  )ol + (1 - $)(a;  + a:) . 

Applying the formula (1.3.3) of Section 1.3, the 95% MLS upper confidence 
limit for (1 + c2)oI + (1 - $)(o,” + a:) simplifies to  0.11597. Thus 0,” = 

1.5035 x 0.11597 = 0.17436. Consequently 0 5  = 0.4176 and the (0.75,0.95) 
two-sided tolerance interval D f 0 5  for N ( ~ T  - p ~ ,  o& + ahT + oh,) simplifies 
to  (-0.4226,0.4126). Since (- ln(1.33), ln(1.33)) = (-0.2852,0.2852), it is clear 
that the interval Df05 is not a subset of (- ln(1.33),ln(1.33)). In other words, 
now we cannot conclude individual bioequivalence. 

Since the two approaches have resulted in opposite conclusions, what should 
we conclude regarding individual bioequivalence? In their article, Brown, Iyer 
and Wang (1997, p. 805) comment that “Any individual bioequivalence cri- 
terion should itself be stated independently of the magnitude of measurement 
error variances.” If we accept this, then conclusion regarding individual bioe- 
quivalence should be based on a two-sided tolerance interval for the distribution 

our conclusion will be in favor of individual bioequivalence. We shall not com- 
ment on this further; for more information and alternative criteria for individual 
bioequivalence, we refer to Chow and Liu (2000, Chapter 15) and Patterson and 
Jones (2006, Chapter 6). 

N ( ~ T - ~ R ,  aD) ,  2 and not for the distribution N ( ~ T - ~ R ,  Thus 
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6.7 Exercises 

6.7.1. Consider two independent two-way nested models with random effects 
given by 

Y l r J k  = + 71% + pi3(%) f e l z 3 k r  k = 1, 2, ..., nl, 3 = 1, 2 ,  ...., b l ,  Z = 1, 2, ..., a1 

YzzJ1c = pz + ~ 2 %  + /?z~(~) + e z t J k ,  k = 1,2 ,  ..., 112, j = 1 , 2 ,  ...., b z ,  z = 1 , 2 ,  ..., a2 

where for I = 1, 2, it is assumed that q i  - N ( 0 ,  o:,), /3 l j ( i )  - N ( 0 ,  aZl), 

el i jk  - N ( 0 ,  a$) ,  and all the random variables are independent. 

(a) Explain how you will compute one-sided and two-sided tolerance in- 
I tervals for the difference Y1 - Y2, where 

= 1, 2. 

(b) Explain how you will compute one-sided and two-sided tolerance in- 
tervals for the difference between the true values (p1 +TI +PI) - (p2 + 
72 + /32), where rl and @l have the same distributions as those of q i  

and pl j ( i ) ,  respectively, 1 = 1, 2. 

- N ( p l ,  a:l + o-& + 

6.7.2. Suppose the models given above are mixed effects models; that is, the q i ’ s  

and the 72i’s are fixed effects, and the rest of the quantities are random 
having the distributions specified in the previous problem. 

(a) Explain how you will compute one-sided and two-sided tolerance in- 
tervals for the difference Yli - Y2i for a fixed i, where Ki  - N(pl  + 

(b) Explain how you will compute one-sided and two-sided tolerance in- 
tervals for the difference between the true values (p1 + ~ 1 i  + PI) - 
(p2 + 7-22 + P 2 )  for a fixed i, where /3l has the same distribution as 
that of Pljci), 1 = 1, 2. 

2 2 
7 1 2 ,  gpl + gel) ,  1 = 1, 2. 

6.7.3. An experiment was carried out at the U.S. Army Ballistic Research Lab- 
oratory, Aberdeen Proving Ground, Maryland, to compare a new tube 
(NT) with a control tube (CT) to be used for firing ammunition from 
tanks. Twenty new tubes and twenty control tubes were randomly se- 
lected for the experiment with 4 tanks each for mounting the new tubes 
and the control tubes. Five new tubes were mounted on each of 4 tanks 
and 5 control tubes were mounted on each of the other 4 tanks. Three 
rounds were fired from each tube and the observations consisted of a miss 
distance (the unit used was 6400 mils per 365 degrees). Let CTij and NTij, 
respectively, denote the j t h  control tube and the j t h  new tube mounted 
on the ith tank ( j  = 1,2 ,3 ,4 ,5 ; i  = 1,2,3,4) .  The three measurements 
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Tank CT,1 CT,2 CT,3 CT,4 CT,5 
2.76 1.83 1.60 1.53 2.20 

1 2.10 1.65 1.56 '2.29 2.59 
1.61 1.76 1.73 2.06 1.91 
1.35 1.15 1.68 1.70 1.34 

2 1.64 1.83 1.71 1.26 1.26 
1.56 1.92 1.63 1.64 1.69 
1.33 1.65 1.94 1.72 1.81 

3 1.28 1.76 1.86 1.56 2.13 
1.40 1.81 2.00 1.91 1.86 
1.64 1.77 1.01 1.04 1.27 

4 1.80 1.63 1.63 1.78 1.38 
1.89 1.51 1.46 1.86 1.55 

(the miss distances) corresponding to each CTij and NTij given below are 
reproduced from Zhou and Mathew (1994). 

NT,I NT,2 NT,3 NT,i NT,5 
1.92 1.98 2.28 1.52 1.28 
1.77 1.56 1.90 1.82 1.61 
1.37 1.83 2.10 1.7!) 1.48 
1.70 1.61 1.78 1.60 1.69 
1.82 1.71 2.31 1.65 1.72 
1.65 1.28 1.73 1.26 1.76 
1.79 1.64 1.84 1.80 1.73 
1.39 1.88 1.67 1.4!1 1.83 
1.52 1.60 1.64 1.92 1.79 
1.49 1.88 1.77 1.46 2.10 
1.60 1.60 1.56 1.2!1 1.46 
1.63 1.61 1.62 1.72 1.60 

Let Y ~ i j k  and Y 2 i j k ,  respectively, denote the kth observation corresponding 
to CTij and NTij, 71i denote the effect due to the ith tank on which a 
control tube was mounted, r2i denote the effect due to the ith tank on 
which a new tube was mounted, Pljci) denote the effect due to CTij and 
&( i )  denote the effect due to NTij. All these effects are assumed to be 
random, and the random effects models in Problem 6.7.1 will bc used to 
analyze the data. In order to compare the miss distances resulting from 
the new tube and the control tube, it is decided to compute (0.95, 0.95) 
two-sided tolerance intervals for the differences mentioned in part (i) and 
part (ii) of Problem 6.7.1. Using the data given above, compute such 
tolerance intervals. 

6.7.4. Consider the one-way random model with a single covariate given by 

j = 1, 2, ...., n, i = 1, 2, ...., a ,  where /3 is an unknown parameter, and 
the xi's denote the values of a covariate (assumed to be non-random). We 
also make the usual assumptions: ~i N N ( 0 ,  n$), e i j  N N ( 0 ,  n,"), and all 
the random variables are independent. 

(a) Express the model in the form (6.4.1). 

(b) Explain how you will compute one-sided and two-sided tolerance in- 
tervals for the distribution N ( p  + iIjz0, n$ + n,"), and for the distribu- 
tion N ( p  + PQ, n:), for a fixed value 20 of the covariate. 
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6.7.5. In a breeding experiment, genetically superior sires are bred for improved 
milk production in cows. Sires are evaluated based on their daughter’s 
milking performance, where each sire has a large number of daughters 
through artificial insemination. Data are collected on the daughter’s yearly 
milk production; however, each sire’s breeding value is a covariate. The 
data given below are the yearly milk production (measured in kg) on each 
of five daughters for four sires, along with the breeding value (the xi’s) for 
four sires; the data are taken from Liniani and Thomas (1988b). 

22 y z j  I 22 y z j  

780 8566 1 650 8240 
8586 
8528 
8540 

8288 
8328 
8312 

8876 9290 
9310 

8836 9318 
Reproduced with permission from Taylor and 
Francis, Ltd.; http://www.informaworld.com 

Assuming the model in the previous problem, compute (0.95, 0.95) one- 
sided and two-sided tolerance intervals for the distribution N(p+pzo,  ~7: + 
c:), arid for the distribution N ( p  + PZO, o?), for the breeding value 20 = 

1000. 

6.7.6. In the previous problem, suppose it is decided to compare the daughters’ 
milk yields from two different sires having the breeding values ~ 0 1  = 1100 
and 202 = 1000. Let Yo1 and Yo2 be random variables representing the 
corresponding milk yields. 

(a) Suppose the comparison is to be made based on a (0.90, 0.95) lower 
tolerance limit for the difference Yo1 - Yo2. Explain the procedure for 
computing such a lower tolerance limit. 

(b) Apply the procedure to the data in the previous problem, and corn- 
pute the lower tolerance limit. Based on the lower tolerance limit, can 
you conclude that daughters’ milk yields are expected to be higher for 
sires with breeding value 201 = 1100, compared to sires with breeding 
value 202 = 1000? 

(c) Explain how you will compute a lower confidence limit for 
W O l  2 Y 0 2 ) .  
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6.7.7. In the bioequivalence problem, a large value of the subject-by-formulation 
interaction CJ; is sometimes taken as evidence against individual bioequiv- 
alence; see Chow and Liu (2000, Chapter 15). A value of CJ; bigger than 
0.30 is sometimes taken to be large. 

(a) Explain how you will use the three sums of squares SSD,  S S ~ T  
and SSWR, having the distributions in (6.6.5), to compute an upper 
confidence limit for 0;. Use the generalized confidence interval idea, 
as well as the MLS procedure. 

(b) For the data in Example 6.5, compute a 95% upper confidence limit 
for CJ;, applying both the generalized confidence interval idea, and 
the MLS procedure. How different are the results? Based on the 
confidence limits so obtained, can you conclude that the value of 0; 

can be significantly larger than 0.30? 

6.7.8. In the bioequivalence problem, suppose a two-sided (0.90, 0.95) tolerance 
interval is required for the distribution of 0, given in (6.5.5). Explain how 
you will compute such an interval. Also explain how you will compute 
a two-sided (0.90, 0.95) tolerance interval for the distribution N ( ~ T  - 

p ~ ,  c’P;), where the various quantities are as defined in Section 6.6. 



Chapter 7 

Some Non-Normal 
Distributions 

7.1 Introduction 

All the methods discussed in earlier chapters for constructing tolerance regions 
and other related problems are based on the normality assumption. It has been 
now well recognized that there is nothing inherently normal about the normal 
distribution, and its common use in statistics is due to its simplicity, or due to 
the fact that it very often is a good approximation. Indeed, in many practical 
applications the normality assumption is not tenable. In particular, exposure 
data, lifetime data (time to event data), and other data such as personal in- 
come data that are typically skewed, do not satisfy the normality assumption. 
A strategy for handling non-normal data is to transform the sample so that 
the transformed sample fits a normal distribution at least approximately. For 
example, if X follows a lognormal distribution, then In(X) follows a normal dis- 
tribution exactly; if X has a gamma distribution, then X i  has an approximate 
normal distribution (Wilson and Hilferty, 1931). Therefore, normal based ap- 
proaches given in Chapter 2 can be used to construct tolerance intervals for a 
lognormal distribution after taking logarithmic transformation of the data, and 
for a gamma distribution after taking cube root transformation of the samples. 

In the following sections, we describe methods for constructing tolerance 
limits and setting lower confidence limits for a survival probability for lognormal, 
gamma, two-parameter exponential, Weibull and other related distributions. For 
lognormal and gamma distributions, we describe the procedures for obtaining 

173 

Statistical Tolerance Regions: Theory, Applications and Computation 
by K. Krishnamoorthy and Thomas Mathew 
Copyright 0 2009 John Wiley & Sons, Inc. 



174 7 Some Non-Normal Distributions 

tolerance limits using the aforementioned transformations. For a two-parameter 
exponential distribution, an exact method and a generalized variable method 
are presented. For the Weibull distribution, tolerance limits and other related 
problems are addressed using the generalized variable method. 

7.2 Lognor ma1 Distribution 

A random variable Y is said to be lognormally distributed, i.e., Y - lognormal(p, u p ) ,  
if X = ln(Y) - N ( p , a 2 ) .  The pdf of Y is given by 

Let Y1, ..., Y, be a sample from a lognormal(p, c?) distribution. Then X1 = 
ln(Y1), ..., X ,  = ln(Y,) is a sample from a normal distribution with mean ,u 
and variance u2. Thus, normal based approaches described in Chapter 2 can 
be readily applied to construct one-sided tolerance limits, tolerance interval or 
equal-tailed tolerance interval based on the sample XI, ..., X,. In order to illus- 
trate this. let 

1 ,  l n  
X = - X X i  and S2 = - X ( X i  - X)’ 

n n - 1  
i= 1 i=l 

Recall that X + k l f = ,  where the tolerance factor kl is defined in (2.2.3), is a one- 
sided upper tolerance limit for the normal distribution or for the distribution of 
the log-transformed samples. So, exp X -t kl-$=) is a one-sided upper tolerance 
limit for the sampled lognormal population. Tolerance intervals or equal-tailed 
tolerance intervals can be obtained similarly. Furthermore, in order to assess 
the survival probability at a time point t ,  we note that P ( Y  > t )  = P(ln(Y) > 
ln(t)) = P ( X  > ln(t)), and so the results of Section 1.1.3 with t replaced by ln(t) 
can be used. Specifically, we can obtain a lower confidence limit for P ( Y  > t )  
(see Example 2.1). 

( 

Tolerance Limits for Yl/Y2 

Let Yl and Yz be independent lognormal random variables, and it is desired 
to find tolerance limits for the distribution of 2. We note that In (2) = 

ln(Y1) - ln(Yp), and so In (2) is distributed as XI - Xp,  where X1 and X p  



7.3 Gamma Distribution 175 

are independent normal random variables. Thus, we can simply apply the pro- 
cedures in Sections 2.4.1 and 2.4.2 (after taking log-transformation of samples 
on Yl and Yz) to get tolerance limits. Furthermore, one-sided lower tolerance 
limits for 3 can be used to find lower confidence limits for the stress-strength 
reliability P(Y1 > Y2). For constructing tolerance lirnit for the ratio 2 when 
(Y1, Y2) is bivariate normally distributed, see Section 12.3. 

7.3 Gamma Distribution 

The pdf of a gamma distribution with shape parameter a and scale parameter 
b, say gamma(a, b ) ,  is given by 

(7.3.1) 

There is no exact method available for constructing tolerance intervals for a 
gamma distribution. Several approximate methods are proposed in the litera- 
ture. Bain, Engelhardt and Shiue (1984) have obtained approximate tolerance 
limits by assuming first that the scale parameter b is known and the shape 
parameter a is unknown, and then replacing the scale parameter by its sam- 
ple estimate. Ashkar and Ouarda (1998) developed an approximate method 
of setting confidence limits for the gamma quantile by transforming the toler- 
ance limits for the normal distribution. The transformed distribution, however, 
is not independent of the parameters, and eventually the unknown parameters 
have to be replaced by their sample estimates to obtain approximate tolerance 
limits. Reiser and Rocke (1993) compared several approximate methods, and 
concluded that the delta method on logits and the bootstrap percentile method 
are the best. Aryal et. al. (2007) argued that the distribution of Y can be 
approximated by a lognormal distribution for large values of a. Their sugges- 
tion is to use normal based tolerance limits if the maximum likelihood estimate 
2 > 7. For 0 < 2 5 7, they provided table values to construct tolerance fac- 
tors. Recently, Krishnamoorthy, Mathew and Mukherjee (2008) have proposed 
approximate tolerance limits based on a suitable normal approximation. 

Among all the approximate methods, the one proposed by Krishnamoorthy 
et al. (2008) seems to be not only simple to use, but also very satisfactory for 
practical applications. These authors considered two approximate methods, one 
based on the normal approximation to the cube root of a gamma random variable 
(Wilson and Hilferty, 1931) and the other based on the fourth root of a gamma 
random variable (Hawkins and Wixley, 1986). Krishnamoorthy, Mathew and 
Mukherjee’s (2008) extensive numerical studies showed that the results based 
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on the cube root transformation are in general better than those based on the 
fourth root transformation, and so we shall describe the procedure on the basis 
of the cube root transformation. 

7.3.1 Normal Approximation t o  a Gamma Distribution 

Wilson and Hilferty (1931) provided a normal approximation to the cube root 
of a chi-square random variable using moment matching method. Let Y, be a 
gamma(a, 1) random variable. As Y, is distributed as ;xi,, we shall explain the 
moment matching approach for approximating the distribution of a chi-square 
variate raised to the X power. Towards this, we note that the mean and variance 
of Y: are respectively given by 

(7.3.2) 

1 

Wilson and Hilferty's (1931) choice for X is 5 ,  and in this case Y," - N p i ,  oI 

approximately. Hawkins and Wixley (1986) argued that the approximation can 
be improved for smaller values of a by using X = i. 

L 9 

For the reasons noted earlier, we shall use the Wilson-Hilferty cube root 
approximation for constructing tolerance limits for a gamma(a, b )  distribution. 
We first note that if Y,,b denotes such a gamma random variable, then Y,,b is 

distributed as by,. The Wilson-Hilferty approximation now states that Yo$ is 
approximately normal with mean and variance 

1 

respectively. It turns out that the functional forms of p and u2 (as functions of 
a and b)  can be ignored for constructing tolerance limits, with negligible loss of 
accuracy. If Yl, ..., Y,, is a sample from a gamma(a, b)  distribution, we simply 
consider the transformed sample X1 = Y13, ..., X ,  = Yn3 as a sample from a 
normal distribution with an arbitrary mean p and arbitrary variance g2, and 
then develop tolerance intervals, and procedures for other related problems, as 
though we have a sample from a normal distribution. 

1 1 
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7.3.2 Tolerance Intervals and Survival Probability 

Let Yl, . . . , Y, be a sample from a gamma(a, b)  distribution. In order to apply 

the Wilson-Hilferty approximation, let Xi  = y3, i = 1,. . . , n, and define 
1 

l n  C ( X Z  - X ) 2 .  (7 .3 .3)  1 "  2 x=-CXi and Sx=- 
ri - 1 n 

i=l i=l 

If U is a ( p ,  1 - a )  upper tolerance limit based on X and Si, then U 3  is an 
approximate ( p ,  1 - a )  upper tolerance limit for the gamma(a, b)  distribution. 
Recall that for a normal distribution, a ( p ,  1 - a )  upper tolerance limit U is 
given by (see Section 2.2) 

1 
U = X + klS,, with kl = -tn fi - 1.1 , & p f i ) ,  (7.3.4) 

where zp  is the p quantile of a standard normal distribution, and tm;a(6)  denotes 
the a quantile of a noncentral t distribution with df = m and noncentrality 
parameter 6. Also note that U 3  is an approximate 1 - a upper confidence 
limit for the p quantile of the gamma(a, b )  distribution. Similarly, a ( p ,  1 - 
a)  lower tolerance limit is also a 1 - Q lower confidence limit for the (1 - p )  
quantile. Thus, in particular, the upper and lower tolerance limits derived above 
also provide approximate confidence limits for the appropriate percentiles of 
the gamma distribution. Here and elsewhere for the gamma distribution, if an 
approximate tolerance limit comes out to be negative, the limit is taken to be 
zero. 

To obtain an approximate two-sided tolerance interval for a ganima(a, b)  dis- 
tribution, let L = X - k z S ,  and U = X+k,S, ,  where k2 is determined by (2.3.4), 
and the values of k2 are given in Table B2, Appendix B. The interval ( L 3 , U 3 )  
is a ( p ,  1 - a )  two-sided tolerance interval for the gamma(a, b)  distribution. 

Assessing Survival Probability 

Suppose we want to estimate the survival probability (reliability) at time t based 
on a sample of lifetime data Yl, ..., Y, from a gamma distribution. As the survival 
probability St = P(Y > t )  = P ( Y i  > t f )  = P ( X  > t i ) ,  approximately, where 
X is a normal random variable, the normal approximation method can be used 
to make inferences about St. Indeed, an approximate lower confidence limit for 
St can be obtained as the solution (with respect to p )  of the equation 

(7.3.5) 
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where X and S, are as defined in (7.3.3). Once n, 1 - a and the quantity on 
the right hand side of (7.3.5) are given, the above equation can be solved using 
the PC calculator StatCalc by Krishnamoorthy (2006). Notice that the above 
equation (7.3.5) is the same as the one for the normal survival probability in 
(2.2.6) with t replaced by t i .  

Using Monte Carlo simulation, Krishnamoorthy et al. (2008) evaluated the 
acciiracy of the above approximate procedures for computing tolerance limits 
for the gamma distribution. Their simulation studies indicate that, for one- 
sided tolerance limits, the Wilson-Hilferty approximation provides satisfactory 
coverage probabilities except when a is very small. For two-sided tolerance 
intervals, the Wilson-Hilferty approximation is entirely satisfactory regardless 
of the value of a. 

7.3.3 Applications with an Example 

The gamma distribution is one of the waiting time distributions that inay offer 
a good fit to time to failure data. However, this distribution is not widely used 
as a lifetime distribution model, but it is used in many other important prac- 
tical problems. Gamma related distributions are used to model the amounts of 
daily rain fall in a region (Das, 1955 and Stephenson et al., 1999), and to fit 
hydrological data sets (Ashkar and Bobite, 1988, Ashkar and Ouarda, 1998 and 
Aksoy, 2000). In particular, Ashkar and Ouarda (1998) used a two-parameter 
gamma distribution to fit annual maximum flood series in order to construct 
confidence intervals for a quantile. Two-parameter gamma tolerance limits and 
predictions limits are used in monitoring and control problems. For example, 
in environmental monitoring, upper tolerance limits are often constructed based 
on background data (regional surface water, ground water or air monitoring 
data) and used to determine if a potential source of contamination (for exam- 
ple, landfill by a waste management facility, hazardous material storage facility, 
factory, etc.) has adversely impacted the environment (Bhaumik and Gibbons, 
2006). The gamma distribution has also found a number of applications in oc- 
cupational and industrial hygiene. In a recent article, Maxim et al. (2006) have 
observed that the gamma distribution is a possible distribution for concentra- 
tions of carbon/coke fibers in plants that produce green or calcined petroleum 
coke. In a study of tuberculosis risk and incidence, KO et al. (2001) have noted 
that the gamma distribution is appropriate for modeling the length of time spent 
in the waiting room at primary care sites. We shall now illustrate the approx- 
imate procedures that we have developed using an environmental monitoring 
application. 
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Example 7.1 (Alkalinity concentrations in ground water) 

The measurements in Table 7.1 represent alkalinity concentrations (mg/L) 
in ground water obtained from a “greenfield” site (the site of a waste disposal 
landfill prior to disposal of waste). The data are taken from Gibbons (1994, 
p. 261). Probability plots of original measurements and cube root transformed 
measurements are given in Figure 7.1. Notice that these two probability plots 
are almost identical, and they indicate that a gamma distribution fits the data 
very well. 

Table 7.1: Alkalinity concentrations in ground water (mg/L) 
Y :  28 32 39 40 40 42 42 42 49 51 

51 52 54 54 55 58 59 59 60 63 
66 70 79 82 89 96 118 

In order to apply the Wilson-Hilferty approximation, the mean and standard 
deviation of the cube root transformed samples are computed as x = 3.8274 
and S, = 0.4298. 

Tolerance Limits: 
two-sided tolerance intervals along with the corresponding tolerance factors. 

In Table 7.2, we present 95% one-side tolerance limits and 

Table 7.2: Tolerance limits based on the Wilson-Hilferty approximation 
Factor for Lower Upper Factor for Two-sided tolerance 

( p ,  1 - a )  one-sided limit limit two-sided interval 
(.9,.95) 1.8114 28.341 97.7129 2.1841 (24.104, 108.27) 

(.95,.95) 2.2601 23.296 110.507 2.6011 (19.890, 120.95) 
(.99,.95) 3.1165 15.400 137.94 3.4146 (13.141, 148.46) 

Probability of Exceeding a Threshold Value: Suppose we want to find a 95% 
lower limit for the probability that a sample alkalinity concentration exceeds 41 
mg/L, that is, P(Y > t )  = P ( X  > 41:). Using (7.3.5), we get 

3.8274 - 41: 

. 4 2 9 8 / m  
= 4.584. t 2 6 ; . 9 5 ( Z p J 2 7 )  = 

Solving for the noncentrality parameter (using StatCalc), we get xPm = 2.601. 
This implies that zP = 0.5006 or p = @(0.5006) = 0.692. Thus, the probability 
that the alkalinity concentration exceeds 41 mg/L in a sample is at least 0.692 
with confidence 95%. 
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Figure 7.1: Probability plots of alkalinity concentrations 
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7.3.4 Stress-Strength Reliability 

Let Yl N gamma(a1, b l )  independently of Y2 - gamma(a2, bz). If Yl is a strength 
variable and Y2 is a stress variable, 

R = P(Y1 > Y2) 

where Fm,n denotes the F random 

then the reliability parameter is given by 

( 7.3.6) 

variable with df = (m,n).  If a1 and a2 are 
known: then inferential procedures can be readily obtained (see Kotz et. al. 
2003, p. 114). No exact procedure is available if a1 and a2 are unknown. 

Suppose we are interested in testing 

Ho : R 5 Ro VS. Ha : R > Ro, (7.3.7) 

where Ro is a specified probability. In order to use the Wilson-Hilferty approx- 
imation, we note that R = P(X1 - X2 > 0), where XI = Yl' and X2 = Y2' are 
independent normal random variables. Thus a level a test rejects the null hy- 
pothesis when a (Ro, l -  a )  lower tolerance limit for the distribution of XI - X2 
is positive; see Section 1.1.3. As XI and X2 are approximately normally dis- 
tributed, normal based tolerance limits for XI - X2 can be used to t,est the above 
hypotheses. 

1 1 

Approximate methods for constructing one-sided tolerance limits (or esti- 
mating the stress-strength reliability involving two independent normal random 
variables) are given in Section 2.4.2. These methods can be readily applied to 
find a lower tolerance limit for the distribution of XI -X2 based on the cube root 
transformed data. The accuracy study by Krishnamoorthy et al. (2008) shows 
that these approximate procedures are very satisfactory provided both sample 
sizes (samples on Yl and Y2) are 10 or larger. Such a sample size condition is 
required in view of the approximations used in Section 2.4.2. 

Example 7.2 (Simulated data)  

We shall use the simulated data given in Basu (1981) to illustrate the com- 
putation of a lower confidence limit for the stress-strength reliability parameter 
R. The data are reproduced here in Table 7.3. 

After taking cube root transformation, we computed the means and variances 
as XI = 1.02135, X 2  = 0.35363, St = 0.110025, and Sz = 0.006823. Now, we 
shall use the normal based methods for constructing lower tolerance limits for 
the distribution of XI - X2 given in Section 2.4.2. The required quantities are 
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Table 7.3: Basu’s (1981) simulated data 
Yi 1.7700 0.9457 1.8985 2.6121 1.0929 0.0362 1.0615 2.3895 

0.0982 0.7971 0.8316 3.2304 0.4373 2.5648 0.6377 

0.0793 0.0072 0.0245 0.0251 0.0469 0.0838 0.0796 
Y2 0.0352 0.0397 0.0677 0.0233 0.0873 0.1156 0.0286 0.0200 

h 

n1 = 15, <I = 13.82174, 6 1  = 15, fl = 16.01525, 
h 

722 = 15, <2 = 0.053155, $2 = 15, and f 2  = 15.4841. 

A 95% lower confidence limit for R can be obtained by setting (2.4.9) equal to 
zero, and then solving the resulting equation for p .  This yields t16.0153,.95(2$\/15) = 

7.565. Solving this equation for the noncentrality parameter, we get 2,- = 

4.7611. This implies that zp = 1.2293 or R ~ L  = p = 0.891. Similarly, using 
(2.4.11), we get Rzr, = 0.889. Therefore, min{RIL,Rzl} = 0.889 is our 95% 
lower confidence limit for R. Reiser and Rocke (1993) computed the lower lim- 
its using two recommended procedures; they are 0.898 (delta method on logits) 
and 0.904 (bootstrap percentile). Note the closeness of our lower limit with 
these two values. 

7.4 Two-Par amet er Exponential Distribution 

A two-parameter exponential distribution has the probability density function 
(pdf) given by 

1 (-PI 

0 
f ( x ; p , 0 )  = -e 0 , II: > p ,  p > O ,  0 > 0, (7.4.1) 

where p is the location parameter and 0 is the scale parameter. In lifetime data 
analysis, p is referred to as the threshold or “guarantee time” parameter, and 0 
is the mean time to failure. 

The results that we shall describe for the two-parameter exponential distri- 
bution are applicable to Pareto and power distributions because of the one-one 
relations among them. In particular, if X follows a Pareto distribution with pdf 

(7.4.2) 

then Y = ln(X) has the pdf in (7.4.1) with p = ln(0) and 0 = 1/X. If X follows 
a power distribution with pdf 

( 7.4.3) 
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then Y = ln ( l /X)  has the pdf in (7.4.1) with p = ln ( l /a )  and 8 = 1/X. There- 
fore, the methods of obtaining tolerance limits, and solutions to other related 
problems involving two-parameter exponential distribution, can be readily ex- 
tended to Pareto and power distributions. 

7.4.1 Some Preliminary Results 

Let XI, ..., Xn be a sample of observations from an exponential distribution with 
the pdf in (7.4.1). The maximum likelihood estimators of p and 8 are given by 

(7.4.4) 

where X(l) is the smallest of the Xi's.  It is known that (see Lawless, 1982, 

Section 3.5) ,G and $ are independent with 

2 
h 

X z  and - 8 X2n-2  . 
N- 

O 2 n  O 2 n  
(7.4.5) 

Generalized Pivotal Quantities for p and O 

Let ,Go and $0 be observed values of @ and g, respectively. A GPQ for p is given 
by 

(7.4.6) 

To get the last step, we used the distributional results in(7.4.5). To verify that 
G, is a valid GPQ, we first note that the value of G, at (,G,$) = (,GO,&) is p; 
secondly, we see from the second equation of (7.4.6) that the distribution of G,, 
when and 80 are fixed, does not depend on any parameter. Thus, G, satisfies 
the two conditions in (C.l) of Section 1.4.1. 

h 

A GPQ for 8 is given by 

(7.4.7) 
0 - an& Go = -An80 = - 

2nd X 2 n - 2  

It is easy to check that Go satisfies the two conditions in (C.l) of Section 1.4.1. 

2 .  
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7.4.2 One-sided Tolerance Limits 

Exact Methods for Computing Tolerance Factors 

Guenther (1971) has investigated one-sided tolerance limits of the form j l  + 
k S ,  where S = no and k is the tolerance factor to  be determined. Here we 
shall present the methods of finding lower and upper tolerance factors due to  
Guenther, Patil and Uppuluri (1976). 

h 

Let us consider an upper tolerance limit of the form j l  + kaS,  where k2 is to  
be determined so that 

pp,S {p (x 5 + k2Sl@, s) 2 P }  = 1 - a ,  

where X is an exponential(p, 0) random variable independent of j l  and S. It is 
easy to  check that the above equation simplifies to  

( 7.4.8) 

Similarly, it can be easily checked that the ( p ,  1 - a )  lower tolerance factor kl is 

(7.4.9) 

As the tolerance factors could be negative, it follows from (7.4.8) and (7.4.9) 
that the distributions of the quantities 

and 
y = - -  G - p  2, x > o ,  

8 8 

(7.4.10) 

(7.4.11) 

are required to determine the tolerance factors kl and k2. Using the distribu- 
tional results in (7.4.5), we see that 

u v  u v  
2n 2 2n Z--+A- and Y - - -  AT, (7.4.12) 

where U - X: independently of V - x ~ ~ - ~ .  2 

To express the distributions of 2 and Y ,  as given in Guenther et al. (1976), 
let us denote the cdf of x;v by 

(7.4.13) 
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The distributions of 2 and Y can be written in terms of H as given in the fol- 
lowing theorem. 

Theorem 7.4.1 Let 2 and Y be as defined in (7.4.10) and (7.4.11). Then the 
cdf of 2 is given by 

(l-nx)"-l H2n-2 [%(I - ,A)] + H2n-2 (%) , 7 d  < 1, 

nX = I ,  H2n (2n.4 
(7.4.14) 

Y 2 0, 

e-ny (7.4.15) 
(l+nX)"-' 

and 

[-%(I + n ~ ) ] }  , y I 0. 

The one-sided upper tolerance factor k2 is the solution of the equation 
1 - Fz(-  ln(1 - p ) )  = 1 - cr (with X replaced by k2) and lower tolerance factor 
Icl is the solution of Fy(-ln(p)) = 1 - Q (with X replaced by k l ) .  Since H ,  
is the x: cdf, the required expressions can be evaluated using software pack- 
ages that compute the chi-square cdf. Later we shall comment further on the 
computation. 

A Closed Form Lower Tolerance Limit 

Guenther et a]. (1976) and Engelhardt and Bain (1978) provided a closed form 
expression for Icl under a special case where k1 will come out as negative. This 
requires a condition on the sample size n ,  and this condition will be obtained 
shortly. Using (7.4.9) and (7.4.12), we see that kl is the solution of 

or equivalently, the solution of 

(7.4.16) 
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In order to derive a closed form expression for kl in situations where kl will be 
negative, we note that U N x; with the cdf 1 - e p X I 2 ;  thus kl will be negative 
if and only if 

U + 2n I+) l - a = P  

o r n < - -  Substituting X = -k l  and y = -ln(p) in the first equation of W P )  . 
(7.4.15), we get 

which yields 

(7.4.17) 

Thus, a ( p ,  1 - a)  lower tolerance limit for an exponential(p, 19) distribution is 

Notice that no table value is required to find a ( p ,  I - a )  lower tolerance limit 
using the above formula, but for a given p and a,  n should satisfy the above 
condition. For example, when p = 0.90 arid 1 - cx = 0.95, n 5 28, and for 
( p ,  1 - a )  = (0.95,0.99), n 5 89. 

Remark 7.1 Suppose we seek a negative value of k2 so that i.̂  + k2S is a 
( p ,  I - a )  upper tolerance limit. Then, the solution of (7.4.8) is given by (see 
Exercise 7.6.2) 

(7.4.19) 

which is not satisfied for The above k2 is negative if and only if ri < -, 
conventional choices of p and 1 - a. Thus, for practical choices of p and 1 - a, 
k:! is usually positive for i.̂  + k2S to be a ( p ,  1 - a )  upper tolerance limit. 

ln(1-a) 

Generalized Variable Approach 

The p quantile of a two-parameter exponential distribution is given by qp = 
p - Bln(1 - p ) .  Thus a GPQ for qp can be obtained by replacing the parameters 
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by their GPQs, and is given by 

G,, = G, - Go ln(1 - p )  

] $0, 
2n In( 1 - p )  

2 
X 2 n - 2  

(7.4.20) 

h 

where ( 6 0 , O o )  is the observed value of (G, @). Let denote the a quantile of 
. Then E - X;+2n1n(1-p) 

h 
- X L 2  

Go - Ep;,Qo (7.4.21) 

is a 1 - 01 upper confidence limit for qp,  which in turn is a ( p ,  1 - a )  upper 
tolerance limit for the exponential(p, 0) distribution. Similarly, we see that 

h 

(7.4.22) 

is a 1 - 01 lower confidence limit for ql-p = p - 8 ln(p), or equivalently, a ( p ,  1 -a )  
lower tolerance limit for the exponential(p, 19) distribution. 

h 

Po - El-p,l-aQO 

Interestingly, it can be shown that the upper and lower tolerance limits 
obtained using the generalized variable approach are actually exact. In other 
words, j& - Ep;,80 is an exact upper confidence limit for qp, and Go - E1-p.~--cuO~ 
is an exact lower confidence limit for qlPp.  That is, their coverage probabilities 
are equal to 1-a. The proof of this observation is quite simple, and is taken from 
Roy and Mathew (2005). Here we shall give the proof to  show that Go - Ep;cyOo 
is an exact upper confidence limit for qp. Let x ; , ~  and x ; ~ - ~ , ~  denote observed 
values of a x; random variable and a xgnP2 random variable, respectively. In 
view of the distributional results (7.4.5), we have the following represent,ations 
for the observed values ,GO and &: 

h ,-. 

h 

2 
h X Z  0 - X2n-2,O0.  
p0 = p + -0, and 00 = ~ 

2n 2n 
h 

Since 
probability associated with the upper confidence limit 

- Ep,,OO is the 1 - 01 quantile of G,, given in (7.4.20), the coverage 
- EpiN00 for qp is given 

h 

by 
PA pO,oO - {px;,x;,2 (G,, 5 ClPll?o:A^,) 5 1 - a } .  

h 

Using the representation for 
G,, given in (7.4.20), the expression for the coverage probability simplifies to 

and 80 given above, and using the expression for 
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where we have also used the expression qp = p - 6' In( 1 - p ) .  Rearranging terms, 
the coverage probability can be written as 

, it is clear that as a X;,o+2n ln(1-p) &+2n In( 1-p)  ince - S' 

function of the random variable - 

is an observed value of - 
X i n - 2 , 0  X i n - 2  

, the cdf x:,o+an W - P )  
X L 2 , o  

has a uniform distribution. Hence the coverage probability is equal to 1 - a. 

Once we obtain - E I - ~ , ~ - ~  and -Ep3a, it can be easily checked that the lower 
tolerance factor kl  that satisfies (7.4.16) is -E1;p.l-D , and the upper tolerance 
factor k2 that satisfies (7.4.8) is 71. -Ep;<r 

Computation of Tolerance Factors 

For a given n, p and 1 - cy, one-sided upper tolerance factor k2 is the solution 
of the equation 1 - Fz( -  ln(1 - p ) )  = 1 - a,  and lower tolerance factor k1 is 
the solution of Fy( -  ln(p)) = 1 -a ,  where Fz( . )  and Fy( . )  are given in (7.4.14) 
and (7.4.15), respectively. Guenther et al. (1976) computed factors kl  and k2 
for n = 2(1)30,40,50, p = 0.80,0.90,0.95,0.99,0.999 and 1 - cy = 0.90,0.95. 
These factors are given in Tables B10 and B11, Appendix B. Our own expe- 
rience suggests that computational skills are necessary to find the roots of the 
aforementioned equations, and one may encounter some convergence problems if 

E1 - p ; l  -a  and k2 = -%, where Ep = 
n x:n2 

n is large. Note that kl  = - > 

and the distribution of Ep does not depend on any unknown parameters. So 
Monte Carlo simulation can be used to approximate the values of kl  and k2. 
Our own Monte Carlo simulation estimates of --% based on 100,000 runs 
turned out to be almost identical to those exact factors listed in Tables BlO and 
B11, Appendix B. 

~;+2nln(l-p) 
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7.4.3 Estimation of Survival Probability 

Suppose we want to find a 1 - a lower confidence limit for St = P ( X  > t )  based 
on a sample from an exponential(p, 0) distribution. Setting the lower tolerance 
limit in (7.4.18) to t ,  and solving the resulting equation for p (see Section 1.1.3), 
we get 

n-1 

a;  [1+ t - F  7 
(7.4.23) 

as a 1 - a lower confidence limit for St when n 5 -. We recall that the 

condition n 5 1Ilo is needed here, since the exact closed form lower tolerance 
limit given above is derived under this condition; see (7.4.18). 

W P )  

To apply the generalized variable method, we first note that 
St = exp(-(t - p) /Q) .  Replacing the parameters by their GPQs, and after 
some simplification, we get 

1 t -Po  1 
Gs, = exp { -% [(a,> xi,-2 + x i ] }  = exp { - % A } ,  (7.4.24) 

where A = (9) xinp2 + xz. If A, is the a quantile of A,  then exp (-kA,) 
is a 1 - Q upper confidence limit for St, and exp ( -&Al- , )  is a 1 - a lower 
confidence limit for St. This lower confidence limit is also exact, as proved in 
Roy and Mathew (2005). The proof is similar to the corresponding proof given 
earlier for the lower tolerance limit. 

It is also possible to develop an accurate approximation for the lower confi- 
dence limit for St obtained using the generalized variable method. The approx- 
imation is obtained by noting that in the expression for Gs, given in (7.4.24), 
the quantity ( y) x ; ~ - ~  + x; is a linear combination of two independent chi- 
squares; thus the distribution of this quantity can be approximated by that of a 
multiple of a chi-square, whenever the coefficient k@Q is nonnegative. Here we 
shall simply give the approximation; a detailed derivation is given in Roy and 
Mathew (2005). Note that what is required is an approximation for Gs,;,, the 
a quantile of Gs,. In order to describe the approximation, let 

00 

1 (t - /!io)2(n - 1) + e; 
z& (t - jio)(n - 1) + e, a1 = X 

a2 = 
(t - / ! io)2(n - 1) + 8; 

' (7.4.25) 
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Furthermore, let 

Note that the second part of the expression for A, involves a mult,iple of the 
1 - a quantile of a chi-square distribution with a2 df, where the df a2 and the 
multiple a1 are given in (7.4.25). The approximation for Gs~;,, the (Y quantile 
of Gs,, is given by 

GS,;, = exp { -A,} , (7.4.27) 

where A, is given in (7.4.26). The numerical results in Roy and Mathew (2005) 
show that the above approximation is very accurate. 

Example 7.3 (Failure mileages of military careers) 

We shall use thc data given in Grubbs (1971) that represent the failure 
mileages of 19 military carriers. The failure mileages given in Table 7.4 fit a 
two-parameter exponential distribution (see Figure 7.2). 

Table 7.4: Failure mileages of 19 military carriers 
162 200 271 302 393 508 539 629 706 777 
884 1008 1101 1182 1463 1603 1984 2355 2880 

Reproduced with permission from Technometrics. Copyright [1971] by the American 
Statistical Association. 

h h 

For these data, the estimates are j2 = X(1)  = 162, 6' = 835.21, and S = no = 

15869. To compute a (0.90, 0.95) lower tolerance limit given in (7.4.22) based 
on the generalized variable method, we estimated E1-p;l-, = E.10,.95 using 
Monte Carlo simulation with 100,000 runs as 0.0568. This yields 162 - 0.0568 x 
835.21 = 114.56. To apply the exact method, we found Icl = -0.0030 (Table 
B10, Appendix B) and the exact lower tolerance limit is 162 - 0.0030 x 15869 = 
114.39. Even though the upper tolerance limit is not of interest here, for the 
sake of illustration we shall also compute a (0.90,0.95) upper tolerance limit. 
To use the generalized confidence limit (7.4.21), we computed Eo.g~~,0.05 using 
Monte Carlo simulation as -3.8620, and the upper tolerance limit is 162 + 
3.8620 x 835.21 = 3237.24. Applying the exact method, we get + k2S = 

162 + 0.1937 x 15869 = 3235.83. We see that the solutions are practically the 
same. 
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Figure 7.2: Exponential probability plot of failure mileages of military carriers 

Suppose we want to find 95% lower limit, for the survival probability at 
t = 200 miles. Using the exact formula in (7.4.23), we have 

= ( .05)z I - = 0.817. [ 835.21 

To apply the generalized variable approach, the quantity A in (7.4.24) simplifies 
to 

Using siniiilation with 100,000 runs, we est,imated A.95  as 7.6690, and so 
exp(-7.6690/38) = 0.817 is a lower confidence limit for St at t = 200. In 
order to apply the approximation (7.4.27), we note that the observed values 
are = X(l) = 162, 80 = 835.21. Using (7.4.25), we get a1 = 0.015006 and 
a2 = 6.3795. Since t > 60, we have A.95 = alXi,;.g5 = 0.1974. Hence the 
approximate lower confidence limit is given by Gs , ; . gS  = exp(-A.g:,) = 0.821. 
Notice that we get essentially the same result by all the approaches. 
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7.4.4 Stress- Strength Reliability 

Let X - exponential(p1,131) independently of Y - exponential(p2,Oz). That is, 
the pdf of X is f(z;p1,0,) and the pdf of Y is f ( y ; p 2 , & ) ,  where f is given 
in (7.4.1). Then the stress-strength reliability parameter can be expressed as 
follows. 

If p1 > p2, the reliability parameter R is given by 

If p1 5 p2, then R is given by 

Thus, the reliability parameter R can be expressed as 

where I ( . )  is the indicator function. 

An Asymptotic Approach 

An approximate confidence interval for R in (7.4.28) is based on an asymptotic 
distribution of the MLE of R. Specifically, Kotz et al. (2003) proposed this 
approach by deriving an asymptotic mean squared error (MSE) of R. Let w1 = 

nl/(nl + n2) and define 

h 



7.4 Two-Parameter Exponential Distribution 193 

where i =J 2 if j = 1 and i = 1 if j = 2. Using these terms, an estimate of the 
asymptotic MSE of is given by 

Using this estimate, we have 

for large n1 + 722. A 1 - a lower limit for R based on the above asymptotic 
distribution is given by - _. 

gR h 

d*’ 
R - Z I - ~  

where xp denotes the p quantile of the standard normal distribution. 

(7.4.29) 

Generalized Confidence Limits for R 

Let (Gio,  &) be the observed value of the MLE (Gi ,  &) based on a sample of 
size ni from an exponential(pi, 0 i )  distribution, i = 1,2. Define 

(7.4.30) 

where U l ,  U Z ,  Vl and Vz are independent random variables with Ui - x; and 
2 v, N XPni-2, i = 1,2. 

A GPQ for R can be obtained by replacing the parameters by their GPQs in 
(7.4.28). Suppose the location parameters are unknown, but equal, i.e., p1 = p2. 
Then the reliability parameter R simplifies to & = (1 + 2)-’. In this case, 
it is enough to find a confidence limit for 02/01. A GPQ for 2 is given by 

where Fm,n denotes the F random variable with dfs rn and n,. Let Fm,n;a be - 
82on2(n1-1) 1 
elon1 (n2 -1) 

the a quantile of F,,,, and let la. = ,. F2nl-2,2n2-2;1-u. Then, 1+Ea 
is a 1 - a lower confidence limit for R. This generalized confidence limit is 
equal to the exact one [see Bhattacharyya and Johnson (1974, Section 5)] for 
the reliability parameter. 
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If the location parameters are unknown and arbitrary, then a GPQ for R can 
be obtained by replacing the parameters in (7.4.28) by their GPQs. Denoting 
the resulting GPQ by GR, we have 

h (7.4.31) 
In particular, for given @lo ,  j i 2 0 ,  810 and 0 2 0 ,  the distribution of GR does not 
depend on any unknown parameters. So, the Monte Carlo method given in 
Algorithm 7.1 can be used to find confidence limits for R. 

h 

Algorithm 7.1 

h h 

1. For a given data set, compute the MLEs j i 1 0 , 8 1 0 ,  j i 2 0 , 8 2 0  using the formulas 
in (7.4.4). 

3. Compute G,, , G,,, Gel , GeZ and GR (see (7.4.30) and (7.4.31)). 

4. Repeat the steps 2 and 3 a large number of times, say, 10,000 

5. The lOOa percentile of the generated GR’S is a 1 - a lower limit for the 
reliability pararneter R. 

Krishnamoorthy, Mukherjee and Guo (2007) evaluated the coverage prob- 
abilities of the asymptotic lower confidence limits (7.4.29) and the generalized 
confidence limits for R, using Monte Carlo simulation. These authors observed 
that the asymptotic approach is very liberal even for samples as large as 100. 
The coverage probabilities of the asymptotic confidence limits go as low as 0.77 
when the nominal level is 0.95. So the asymptotic approach is not recommended 
for applications. On the other hand, the generalized confidence limits for R are 
slightly conservative for small samples, and their coverage probabilities are very 
close to the nominal level for moderate to large samples. In general, the gener- 
alized limits can be recommended for practical applications. 

Example 7.3 (Simulated data) 

In order to illustrate the procedures for obtaining a lower bound on the 
stress-strength reliability parameter R, we shall use the simulated data given in 
Krishnamoorthy, Mukherjee and Guo (2007). The data on X were generated 
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from exponential(4, 5) and on Y were generated from exponential(1, 2). The 
value of the reliability parameter R is 0.936. The ordered data are given in Table 
7.5. 

Table 7.5: Simulated data from two exponential distributions 
X 4.21 4.88 5.17 5.64 6.31 7.42 7.89 8.14 8.27 9.92 

10.45 10.59 11.37 12.98 13.94 14.18 14.19 14.94 18.83 20.91 
Y 1.07 1.09 1.16 1.17 1.65 1.98 2.12 2.13 2.54 3.18 

3.19 3.30 3.33 3.40 3.62 4.29 5.80 5.95 6.39 6.74 

The MLEs are computed as 
h h h 

~ I O  = 4.21, 810 = 6.298, c 2 0  = 1.07, 820 = 2.138 and R = 0.942. 

Using Algorithm 7.1 with 100,000 simulation runs, we computed the 95% lower 
confidence limit for R as 0.849. Thus, we conclude that the true stress-strength 
reliability is at least 0.849 with confidence 95%. 

7.5 Weibull Distribution 

Before we address the tolerance interval problem for the Weibull distribution, we 
shall provide some distributional results for the maximum likelihood estimators 
(MLEs) along with some pivotal quantities, and some details on the numerical 
computation of the MLEs. 

7.5.1 Some Preliminaries 

For a Weibull distribution with scale parameter b and the shape parameter c, 
denoted by Weibull(b, c), the pdf is given by 

(7.5.1) 

The statistical problems involving Weibull distributions are usually not simple, 
since the MLEs of the parameters b and c do not have closed form, and they 
have to be obtained numerically. Therefore, exact analytical procedures were 
obtained only for a few problems (e.g., Lawless, 1973, 1978), and these are also 
not simple to implement. Some approximate results and Monte Carlo procedures 
were developed by Thoman, Bain and Antle (1969), based on the distributions 
of certain pivotal quantities involving the MLEs. These distributional results are 
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given in Lemma 7.1 in the following section. These results for the MLEs allow us 
to find the distributions of some pivotal quantities empirically, based on which 
inferential procedures for Weibull parameters, and other related problems can 
be developed. Using this approach, Thoman et al. (1970) developed methods for 
setting confidence limits for reliability, and for constructing one-sided tolerance 
limits. These procedures are exact except for simulation errors. 

Several approximate methods have been proposed until late 1980s, which do 
not require simulation (e.g., Mann and Fertig, 1975, 1977; Engelhardt and Bain, 
1977; Bain and Engelhardt, 1981). These procedures also require some table 
values to compute confidence limits for a parameter, or to compute tolerance 
limits. Nowadays, as computing technologies and software are widely available, 
the Monte Carlo procedures certainly have an edge over the approximate meth- 
ods. Thus here we will describe Monte Carlo procedures for computing one-sided 
tolerance limits, for estimating a survival probability, and for constructing lower 
limits for the stress-strength reliability involving Weibull distributions. 

7.5.2 The Maximum Likelihood Estimators and Their 
Distributions 

Let X I , .  . ., X ,  be a sample from a Weibull(b, c)  distribution. The MLEs for b 
and c can be obtained from Cohen (1965) as follows. The MLE C of c is the 
solution to the equation 

( 7.5.2) 
ILi 

i=l 
i=l 

- I/? and the MLE of b is given by 
following lemma we exhibit some pivotal quantities. 

= ($ ELl xf) (see Exercise 7.6.7). In the 

Lemma 7.1 Let X I ,  ..., X ,  be a sample from a Weibull(b, c) distribution, and 
let % and C be the MLEs based on this sample. Then, C/c and Cln (i) are pivotal 
quantities. 

Proof. Thoman et al. (1969) argued that C/c can be viewed as the solution 
of the likelihood equation (7.5.2) based on a sample from a Weibull(1, 1) dis- 
tribution, and so its distribution does not depend on any parameters. Arguing 
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similarly, they showed the distribution of Eln also does riot depend on b 

and c. 

This lemma can also be proved using Result 1.4.1 for the location-scale fam- 
ily. Toward this, we note that if X N Weibull(b, e), then Y = ln(X) N extreme- 
value(p, a )  distribution having the pdf 

f(y; p, a )  = - 1 exp ( y ) exp (- exp (y)) , (7.5.3) 
0 

where p = ln(b) is the location parameter, and a = c-' is the scale param- 
eter. Thus, Y,  = ln(X,), i = 1, ..., n,  can be regarded as a sample from the 
extreme-value(p, a )  distribution given in (7.5.3), and = ln(b) and C = E-' are 
the MLEs of p and a ,  respectively. Also, it can be verified that and Z are 
equivariant estimators, and so it follows from Result 1.4.1 that @, and 9 
are pivotal quantities. Replacing (p ,  cr, jl, C) by (ln(b), f ,  lnfi), 6 , we see that 

2 and Eln (i) are pivotal quantities. 

The distributions of the aforementioned pivotal quantities are parameter free 
but still their distributions are difficult to find, and they can be obtained only 
empirically. For instance, 5 is distributed as i.* and Eln b is distributed as 

2 In b* , where t* and b* are the MLEs based on a sample from the Weibull(1,l) 
distribution. That is, E* is the solution of the equation (7.5.2) with XI, ..., X, 
being a sample from the Weibull(1,l) distribution. Note that b = 1 and c = 1 
is a choice, and in fact one can choose any positive values for b and c to study 
the distributions of the pivotal quantities empirically. 

Computation of the MLEs: Let X I , .  . ., X, be a sample from a Weibull(b, c) 
distribution. Let Y,  = ln(X,), i = 1, ..., n. Menon (1963) showed that the 
estimator 1 

h 

A 1 

(J 
(- 1 

( 7.5.4) 

is asymptotically unbiased, having the asyniptotic N ( c ,  1.1c2/n) distribution. 
Using Eu as an initial value, the Newton-Raphson iterative method given in the 
following algorithm can be applied to find the root of the equation (7.5.2). As 
noted in the literature (Thoman et al., 1969), this iterative method is stable and 
converges rapidly. 
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Algorithm 7.2 

1. For a given sample 21, ..., x,, let yi = ln(xi), i = 1, ..., n, and compute ZU 

2. Compute s1 = 

3. Set zi = 27, i = 1, ..., n. 

5. Set f = l/co + s1 - sg/s2. 

6. Set co = co + f/(l/c: + ( ~ 2 . ~ 4  - s:)/sz).  
7. Repeat the steps 2 through 6, until f is zero. 

using (7.5.4). Let the computed value be co. 
xy=l yi. 

4. Compute s2 = Crzl zi, s3 = Cy=l ziyi and s4 = C:=l ziyi. 2 

The final value of co is the MLE of c; the MLE of b is   AS^)^'^^. 

7.5.3 Generalized Pivotal Quantities for Weibull Parameters 

Krishnamoorthy, Lin and Xia (2008) and Lin (2009) considered inferences based 
on the GPQs for the Weihull parameters, and showed that the results based on 
the GPQs and the Monte Carlo procedures given in Thoman and Bain (1969), 
and Thoman, Bain and Antle (1969) are the same for the one-sample as well 
as some two-sample problems. Furthermore, unlike the Monte Carlo approach, 
GPQs can be used to develop inferential procedures €or any real valued function 
of b and c in a straightforward manner. We shall first describe GPQs on the 
basis of the distributional results in Lemma 7.1. 

Let go and 20 be the observed values of the MLEs based on a sample of n 
observations from a Weibull(b, c) distribution. A GPQ for the scale parameter 

(7.5.5) 

where i.* and b* are the MLEs based on a sample from the Weibull(1,l) distribu- 
tion. The second expression in (7.5.5) is obtained by recalling (from Lemma 7.1) 
that Zln b is a pivotal quantity. We shall now verify that Gb satisfies the two 

conditions in (C.l) of Section 1.4.1. First of all, the value of Gb at (b,E) = (bo, 20) 
is b. Secondly, for a given (&,ZO), we see from the second expression in (7.5.5) 
that the distribution of Gb does not depend on any unknown parameters. 

(J h h 

A GPQ for c can be obtained as 

(7.5.6) 
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It can be easily checked that the GPQ G, satisfies the conditions in (C.l) of 
Section 1.4.1. 

7.5.4 One-sided Tolerance Limits 

The cdf of a Weibull(b, c) distribution is given by 

{- (37 Fx(zlb,c)  = 1 - exp (7.5.7) 

Using the above cdf, we see that the p quantile of a Weibull(b, c) distribution is 
given by qp = b (- ln(1 - p ) ) ;  = b@, where 0, = - ln(1 - p ) .  By substituting 
the GPQs for the parameters, a GPQ for qp can be obtained as 

1 

( 7.5.8) 

where and 2 are the MLEs based on a sample from a Weibull(1, 1) distribu- 
tion. It is easy to see that G,, satisfies the two conditions in (C.l)  of Section 
1.4.1. Appropriate percentiles of G,, give confidence limits for qp. To find a 
1 - a percentile of Gqp, we write 

ln(G,,) = (Eo)-l  [?(- l n p )  + ln(Q,))] + In(&) (7.5.9) 

Notice that, for a given 6o ,Eo) ,  the joint distribution of the terms inside the 
square brackets does not depend on any unknown parameters, and so its per- 
centiles can be estimated using Monte Carlo simulation. Let wp;y be the y 
percentile of 2(- l n p )  + ln(0,)). For a given p ,  a 1 - a upper confidence limit 
for qp is given by 

bo exp (wp;l--cu/~o) (7.5.10) 

which is a ( p ,  1 - a)  upper tolerance limit for the Weibull(b, c)  distribution. 
Recall that a ( p ,  1 - a)  lower tolerance limit is a 1 - a lower confidence limit for 
q l P p .  A 1 - a lower confidence limit for 

h 

is given by 
h 

bo exp ( W 1 - p ; c Y l ~ o )  , (7.5.11) 

which is a ( p ,  1 - a )  lower tolerance limit for the Weibull(b, c) distribution. This 
lower tolerance limit is the same as the one given in Equation (13) of Thoman et 
al. (1970). This procedure of obtaining confidence limits for qp is exact except 
for simulation errors. For other approaches, see Lawless (1975). 
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The distribution of w = 2(- 1 n P )  + ln(0,)) in (7.5.9) depends only on the 
sample size n, p and 1 - a. We computed the percentiles of wp and those of 
wlPp for values of p and 1 - cv from the set {0.90,0.95,0.99} using Monte Carlo 
simulation. Due to the increase in the computational complexity for large values 
of the sample size n, we used simulation consisting of 100,000 runs when T L  5 25, 
and 10,000 runs for n > 25. These values are presented in Table B12, Appendix 
B, for constructing upper tolerance limits, and in Table B13, Appendix B, for 
constructing lower tolerance limits. 

7.5.5 A GPQ for a Survival Probability 

We shall now develop a GPQ for the survival probability 

(7.5.12) 

As In[-ln(S(t))] = cln (g) = S’(t), say, it is enough to find a GPQ for S’(t). 
Replacing b and c by their GPQs, we get 

- - E+’ In(- ln(S^(t)) + 1nci;t,, ( 7.5.13) 

where 2 and 2 are the MLEs based on a sample from the Weibull(1,l) distri- 
bution, and s^(t) is the MLE of S ( t ) ,  which can be obtained by substituting the 
MLEs for the parameters in (7.5.12). Thus, for a given s^(t), the distribution 
of Gs/(t) does not depend on any unknown parameters, and so Monte Carlo 
simulation can be used to find a confidence limit for S’(t), from which a bound 
for S ( t )  can be obtained. Specifically, if U is a 1 - Q upper limit for S’( t ) ,  then 
exp(-exp(S’(t))) is a 1 - Q lower limit for S( t ) .  

The above GPQ is similar to the one in Thoman et al. (1970), and so 
the generalized confidence limits based on (7.5.13) are exact. Indeed, Equation 
(7.5.13) is a version of Equation (4c) of Thoman et al. (1970). Furthermore, 
Thoman et al. provided lower confidence limits for S ( t )  for values of S( t )  ranging 
from .5(.02).98, y = .75, .90, .95, .98 and for some selected sample sizes ranging 
from 8 to 100. 

Example 7.4 (Number of million revolutions before failure for ball bearings) 

The data in Table 7.6 represent the number of million revolutions before 
failure for each of 23 ball bearings. The data were analyzed by Thoman et al. 
(1969) using a Weibull distribution. 
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Table 7.6: Number of million revolutions of 23 ball bearings before failure 
17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84 
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12 
93.12 98.64 105.12 105.84 127.92 128.04 173.40 

The MLEs are 20 = 2.103 and SO = 81.876. 

Tolerance Limits: To compute a (0.90, 0.95) lower tolerance limit using (7.5.11), 
we obtained w, = w.05 = -3.350; this value is obtained from Table B12, Ap- 
pendix B, using p = 0.90, 1 - a = 0.95 and R = 23. Thus, the (0.90, 0.95) lower 
tolerance limit is given by bo exp (wl-p; , /E~)  = 81.876exp(-3.350/2.103) = 
16.65. Hence we can conclude with confidence 95% that at least 90% of ball 
bearings survive 16.65 million revolutions. 

Estimating Survival Probability: We shall now find a 95% lower confidence 
limit for the probability that a bearing will last at least 50 million revolutions. 
Substituting the MLEs ZO and Eo, we obtained s(50)  = 0.701. Using this value 
in (7.5.13)), and using Monte Carlo simulation with 10,000 runs, we computed 
a 95% upper limit for S'(50) as -0.499. Thus, a 95% lower limit, for S(50) as 
exp(- exp(-.499)) = 0.545. 

h 

7.5.6 Stress- S t rengt h Reliability 

Let XI N Weibull(b1, el)  independently of X2 - Weibull(b2, cg). If X1 is a 
strength variable and X2 is a stress variable, then the stress-strength reliability 
parameter is given by 

The integral in (7.5.14) can be evaluated analytically as an infinit,e series ex- 
pression, but it is quite complex to obtain a lower confidence limit. Here we 
consider only the case of c1 = c2, since a simple expression for R can be ob- 
tained if c1 = c2. In this case, 

(7.5.15) 
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bC where R* = -4. To get a GPQ for the common shape parameter c, we note that 
the MLE of the common shape parameter is the solution 2 of the equation 

b,  

(7.5.16) 

where z k 1 ,  ..., xknk is a sample from the Weibull(bk,ck) distribution, Ic = 1,2.  
The MLEs of the scale parameters are given by 

(7.5.17) 

The above equations are generalizations of the log-likelihood equations for the 
case n1 = 722 given in Schafer and Sheffield (1976). These authors also argued 
that the distributions of E, z ln  ( i i / b l )  and z ln  (&/b2)  do not depend on any 
parameters, i.e., they are pivots. 

and % be the MLEs based on independent samples from a 
Weibull(1,l) distribution, and let A h  (&,&,$20) be the observed value of @. b l ,  b2). 
In terms of these MLEs and F ,  b;, b;) ,  we get a GPQ for c as ?OF. Replacing 
the parameters in (7.5.15) by their GPQs, we get a GPQ for R* as 

,-. 

Let 7 ,  
h h  

(7.5.18) 

or equivalently, 

For a given 20, the distribution of l n ( G p )  does not depend on any unknown pa- 
rameters, and so Monte Carlo simulation can be used to estimate the percentiles 
of l n (Gp) .  If d p  denotes the p quantile of ln(GR*), then (1 + exp(dl-,,))-' is 
a 1 - Q lower confidence limit for the stress-strength reliability parameter in 
(7.5.15). 

Notice that the expression (7.5.19) enables us to compute confidence limits 
for R for given values of the confidence level, n and Ro. Krishnamoorthy and 

h 
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Lin (2009) computed 95% lower confidence limits of R for = .50(.02).98 and 
for some selected values of n, ranging from 8 to 50. These lower limits are given 
in Table B14, Appendix B. 

Remark 7.2 All the results for the Weibull distribution can be extended to 
an extreme-value distribution in a straightforward manner. We simply apply 
the methods for the Weibull distribution to log-transformed samples from an 
extreme-value distribution. For example, to find a ( p ,  1 - a )  one-sided toler- 
ance limit based on a sample Y1, ..., Y, from an extreme-value distribution, we 
apply the method for the Weibull distribution to the log-transformed sample 
ln(Yl), ..., ln(Y,). The antilog of the resulting tolerance limit is the tolerance 
limit for the sampled extreme-value distribution. 

Example 7.5 (Comparison of electrical cable insulations) 

The data are taken from Example 5.4.2 of Lawless (2003), and they represent 
failure voltage levels of two types of electrical cable insulation when specimens 
were subjected to an increasing voltage stress in a laboratory test. Twenty 
specimens of each type were tested and the failure voltages are given in Table 
7.7. Krishnamoorthy and Lin (2009) used the data for illustrating the preceding 
generalized variable approach for constructing a confidence limit for the stress- 
strength reliability parameter, and their results are given below. 

Table 7.7: Fatigue voltages (in kilovolts per millimeter) for two types of electric 
cable insulation 

Type I ( X I )  39.4 45.3 49.2 49.4 51.3 52.0 53.2 53.2 54.9 55.5 
57.1 57.2 57.5 59.2 61.0 62.4 63.8 64.3 67.3 67.7 

Type I1 ( X , )  32.0 35.4 36.2 39.8 41.2 43.3 45.5 46.0 46.2 46.4 
46.5 46.8 47.3 47.3 47.6 49.2 50.4 50.9 52.4 56.3 

h h 

The MLEs are = 9.141, bl = 59.125, E2 = 9.383, and b2 = 47.781. Closeness 
of and i3 indicates that the assumption of c1 = c2 is tenable, and so our 
approach can be used to set confidence bound for the stress-strength reliability 
parameter R = P ( X  > Y ) .  To estimate R, we computed the MLEs using 
(7.5.16) and (7.5.17), and the solutions a r e &  = 9.261, blo = 59.161 and b2o = 

47.753. Using these MLEs, we obtained & = 0.88. For this value of ko and for 
n = 20, we get the 95% lower confidence limit for R from Table B14, Appendix 
B, as 0.778. That is, with 95% confidence, we can assert that the probability 
that a Type I electrical cable insulation lasts longer than a Type I1 electrical 
cable insulation is at least 0.778. 

h h 
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7.6 Exercises 

7.6.1. Let Y , 1 ,  ..., be a sample from a lognormal(pi, a:) distribution, i = 1,2. 
Assume that Yij’s are mutually independent. Give a procedure for finding 
a ( p ,  1 -a)  lower tolerance limits for the distribution of In (3) using Hall’s 
method in Section 2.4.2. 

7.6.2. Let kl be a ( p ,  1 - a)  lower tolerance factor for a sample of size n from 
an exponential(p, 0) distribution. Write kl  as kl (n, p ,  1 - a) .  Let k2 be a 
( p ,  1 - a )  upper tolerance factor for the same sample size. 

(a) Show that k2(n ,p ,  1 - a )  = k l ( n ,  1 -p ,cu) .  

(b) Consider a ( p ,  1 -a)  upper tolerance limit of the form G+k,S. If k2 is 
negative, then show that k2 that satisfies (7.4.8) is given by (7.4.19). 
Aslo, show that for many conventional choices of 1 - a and p (such 
as 0.90, 0.95, 0.99), no positive integer value of n yields a negative 
value for k2. 

7.6.3. A random vector Y is said to have bivariate lognormal distribution if 
the joint distribution of logarithm of components Y is bivariate normal. 
Let Y1, ..., Y ,  be a sample on Y .  Describe a procedure for constructing 
a tolerance interval for the distribution of 3, where Y1 and Y2 are the 
components of Y (see also Bebu and Mathew, 2008). 

7.6.4. The data in the following table represent vinyl chloride concentrations col- 
lected from clean upgradient monitoring wells, and are taken from Bhau- 
mik and Gibbons (2006). The Q-Q plot by these authors showed that a 
gamma distribution provides an excellent fit to this data. 

5.1 2.4 .4 .5 2.5 .1 6.8 1.2 .5 .6 
5.3 2.3 1.8 1.2 1.3 1.1 .9 3.2 1.0 .9 
.4 .6 8.0 .4 2.7 .2 2.0 .2 .5 .8 

2.0 2.9 .1 4.0 
Reprinted with permission from Technometrics. Copyright [2006] 
by the American Statistical Association. 

Assuming a gamma distribution, 

(a) find (0.90,0.95) and (0.95, 0.95) lower tolerance limits for the vinyl 

(b) Find a 95% lower confidence limit for the probability that the vinyl 

chloride concentration. 

chloride concentration of a sample exceeds 5pg /L .  
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(c) Krishnamoorthy, Lin and Xia (2008) observed that a Weibull model 
also fits the data very well. Assuming a Weibull distribution, verify 
that the MLEs are E =  1.010 and% = 1.884. Answer parts (a) and (b), 
and compare the results with those based on a gamma distribution. 

7.6.5. Let XI, ..., X, be a sample from a gamma(a, b)  distribution with known 

c5"1 xi 

shape parameter a. 

(a) Find the distribution of b. 
(b) Using the distributional result in part(a), find a 1 - a confidence 

(c) Let YI - gamma(a1, b l )  independently of Y2 - gamma(a2, bz),  where 
a1 and a2 are known. Assume that a sample of n1 observations on YI 
and a sample of 722 observations on Y2 are available. Find a 1 --a lower 
confidence limit for the stress-strength reliability parameter P(Y1 > 
Y2) given in (7.3.6). 

interval for b. 

7.6.6. Let XI, ..., X ,  be a sample from a two-parameter exponential distribution 
with known threshold parameter p. Give methods for constructing one- 
sided tolerance limits. 

7.6.7. Let XI, ..., X, be a sample from a Weibull(0, c)  distribution wit,h the pdf 

Cxc-l -x / 
- e c 8 ,  X L O ,  C > 0 ,  0 > 0 .  
B 

(a) Show that the MLEs are determined by the equations 

(b) Using part (a), show that the MLEs for a Weibull(b,c) distribution 
are as given in Section 7.5.2. 

7.6.8. Let XI, ..., X, be a sample from a Weibull(b, c )  distribution. Assume that c 
is known. Find ( p ,  1-a) one-sided tolerance limits for the Weibull(b, c) dis- 
tribution. [Hint: Find the distribution of Y = Xc, where X N Weibull(b, c)] 

7.6.9. Give procedures for finding ( p ,  1 - a)  one-sided tolerance limits, and for 
finding a 1 - a lower confidence limit for a survival probability P(X > t ) ,  
for the power distribution with the pdf (7.4.3). 
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7.6.10. The following is a sample of 30 observations simulated from a Pareto dis- 
tribution with o = 4 and X = 1.2 (see the pdf in (7.4.2)). 

6.43 37.58 4.27 5.97 4.02 5.58 4.28 12.28 18.33 9.56 
19.73 10.93 6.51 11.45 23.79 4.09 4.15 7.84 4.06 9.30 
14.69 12.20 5.86 12.28 19.62 4.89 29.99 23.30 6.07 7.85 

(a) Find a (0.90,0.95) lower tolerance limit for the Pareto distribution. 
(b) Find the 0.10 quantile of the Pareto distribution, and check if the 

(c) Find a (0.95,0.99) upper tolerance limit for the Pareto distribution. 
(d) Find the 0.95 quantile of the Pareto distribution, and check if the 

above tolerance limit is less than this quantile. 

above tolerance limit is greater than this quantile. 



Chapter 8 

Nonparametric Tolerance Intervals 

8.1 Notations and Preliminaries 

If a sample is from a continuous population, and does not fit a parametric 
model, or fits a parametric model for which tolerance intervals are difficult to 
obtain, then one may seek nonparametric tolerance intervals for an intended 
application. The nonparametric procedures that we shall describe in this chapter 
are applicable to find tolerance limits for any continuous population. However, 
for a given sample size, a nonparametric tolerance interval that satisfies specified 
content and coverage requirements may not exist. Furthermore, nonparametric 
tolerance intervals are typically wider than their parametric counterparts. The 
nonparametric methods are based on a result due to Wilks (1941) which states 
that if a sample is from a continuous distribution, then the distribution of the 
proportion of the population between two order statistics is independent of the 
population sampled, and is a function of only the particular order statistics 
chosen. Thus, nonparametric tolerance intervals are based on order statistics, 
arid the intervals are defined as follows. Let X = ( X I ,  ..., X,) be a random 
sample from a continuous distribution Fx(z), and let X(1) < ... < X ( n )  be 
the order statistics for the sample. Recall that a ( p ,  1 - a )  tolerance interval 
( L ( X ) ,  U ( X ) )  is such that 

Px { Px ( L ( X )  5 x 5 U ( X )  x >. p = 1 - a ,  I> 1 
where X also follows the same continuous distribution F' independent of the 
sample X. Wilk's result allows us to choose L ( X )  = X ( T )  and U ( X )  = X ( s ) ,  

207 
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r < s, and the problem is to determine the values of r and s so that 

A one-sided tolerance limit is similarly defined based on a single order statistic. 
In the following section, we shall give some preliminary results on the distribu- 
tion of order statistics; results that are useful to find the values of r and s that 
satisfy (8.1.1), and also useful to find one-sided tolerance limits. 

8.2 Order Statistics and Their Distributions 

Let XI, ..., X, be a sample from a population with a continuous distribution 
function Fx(z). Let X(i) denote the i th smallest of XI, ..., X,. Then 

X(1) < X(2) < ... < X ( n )  

are collectively referred to as the order statistics for the sample. Notice that the 
above arrangement is unique, because Fx is continuous, and so the probability 
that any two random variables assume the same va.lue is zero. The statistic X(r) 
is called the r th  order statistic. 

Given below are the distributional results for order statistics, required to 
construct tolerance limits. For more details and results, see the book by David 
and Nagaraja (2003). 

Result 8.1 (Probability Integral Transform) 

Let X be a random variable with a continuous distribution function Fx(z) .  
Let Y = Fx(X) .  Then Y N uniform(0,l) distribution. 

Proof. Note that the inverse of the distribution function is defined by 

~ i ' ( y )  = infix : P(X I z) 2 y}, o < y < 1. 

Also, for a uniform(0,l) random variable li, Fu(u) = u. For any 0 < y < 1, 

PY(Y 5 Y)  = PX(FX(X) I y) = PX(X I F&l)) = F X ( F i l ( Y ) )  = Y, 

and so Y N uniform(0,l). 

As an obvious consequence of Result 8.1, we have 

Result 8.2 If XI, ..., X, is a sample from a continuous distribution Fx, then 
U1 = Fx(X1), ..., U, = Fx(X,) is a sample from a uniform(0,l) distribution. 
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Furthermore, if X(l) < X(z) < ... < X(,) are the order statistics for the sample 
XI, ..., X,, then 

U(1) = F X ( X ( l ) ) ,  ” ’ >  U(n) = FX(X(,)) 

can be regarded as order statistics for the sample U l ,  ..., U ,  from a 
uniform(0, 1) distribution. That is, Fx(X(,.)) is distributed as U(,). 

Result 8.3 (Empirical Distribution Function) Let XI, ..., X ,  be a sample from 
a continuous distribution Fx . Consider the empirical distribution function given 

h number of Xi’s 5 ic 
n 

by 

F,(x) = 

Then nFn(z) N binomial(n, F x ( z ) ) .  

Proof. Let Qi = 1 if Xi 5 L C ,  0 otherwise. As Xi’s are independent and iden- 
tically distributed, Qi’s are independent Bernoulli random variables with the 
“success probability” Fx(z ) .  Hence &,(Lc) = Cy=l Qi - binomial(n, Fx(z)). 

Result 8.4 Let X ( r )  be the r t h  order statistic for a sample of n observations 
from a continuous distribution F x .  The pdf of X(r) is given by 

where f x ( z )  is the pdf of X. 

Proof. The cdf of X(r) is given by 

= 2 ~)Fx(Lc)~(~ - F~(ic))~-’ [Result 8.31 
k=r 

Equality of the last two expressions can be established using integration by parts. 
Differentiating the last expression with respect to  L C ,  we get the pdf in (8.2.1). 

Using the pdf in (8.2.1), we get 
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Corollary 8.1 If U(l) < ... < U(n, are order statistics for a sample from a 
uniform(0,l) distribution, then U(.) follows a beta(r, n - T +  1) distribution with 
the pdf 

where B ( w )  = r(sfy) r(z)r(y) is the usual beta function. 

n n  

i=T j = s  

P(i  of the X’s  5 x, j of the X ’ s  5 y)  
n n  

= 
. .  z = r  3=s 
n n  

= xxP(i of the X ’ s  5 x, x < ( j  - i) of the X ’ s  5 y,  
. .  
Z=T J = S  

n - j of the X ’ s  2 y) 

x [l - F(y)]”-j  for 5 < y. (8.2.4) 

Notice that the probability expression in (8.2.4) is the probability mass function 
of a trinomial distribution. The above expression can also be written as (see 
Exercise 8.8.1) 
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By differentiating with respect to (n:,y), we get (8.2.3). 0 

Using the above result, we see that if U(.) and U(.) are respectively the 
r th  and the sth order statistics for a sample of size n from a uniform(0,l) 
distribution, then 

n! zr-l[y - z]s-~-l  

fU,,),U(,, (2, Y> = ( r  - l)!(s - T - l)!(n - s)! 
x [l - y]"-", 0 < n: < y < 1. (8.2.6) 

The following relation between the beta and binomial distributions is re- 
quired in the sequel. 

Result 8.6 Let X be a binomial(n, p )  random variable, and U be a beta(k, 
n - k + 1) random variable. Then, for a given k,  

P(X 2 kln,p) = P(U 5 p ) ,  k = 1, ..., n. 

Further more, 

P ( X I k - l l n , p ) = P ( U > p ) ,  k = l ,  ..., n. 

8.3 One-sided Tolerance Limits and Exceedance 
Probabilities 

Let XI, ..., X, be a sample from a continuous distribution Fx. In order to 
construct a nonparametric ( p ,  1 - a )  lower tolerance limit, we need to find the 
positive integer k so that 

P X ( / )  Px(X 2 X(k) IX(k)) 2 PI = 1 - a. 

P X ( k )  [1 - F(X(k)) 2 PI = P X ( k )  [F(X(k)) < - 1 - p ]  = P(U(k) I 1 - P ) ,  

The probability on the left-hand side can be expressed as 

where U ( k )  = F(X(k)) - beta(k,n - k + 1) distribution (see Result 8.2). Using 
Result 8.6, we see that 

P(U(k )  5 1 - p )  = 1 - P(U(k) 2 1 - P )  

= l - P ( Y ~ k - l ~ n , l - - p )  

= P ( n  - Y 5 n - kin, 1 - p )  

= P(W I n - kln,p), 

= P ( Y  2 kJn, 1 - p )  

(8.3.1) 
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where Y is a binomial(n, 1-p) random variable, and W = n-Y is a binoniial(n,p) 
random variable. Thus, if Ic is the largest integer for which 

P(Y 2 kin, 1 - p )  2 1 - a ,  (8.3.2) 

then X ( k )  is the desired ( p ,  1 - a )  lower tolerance limit. 

To construct a ( p ,  1 - a )  upper tolerance limit, we need to find the positive 
integer rn so that 

Proceeding as in the case of the lower tolerance limit, it can be shown that 
X(n-k+l) is a ( p ,  1 - a )  upper tolerance limit, where Ic is the largest integer 
satisfying (8.3.2); see Exercise 8.8.2. 

For any fixed sample size, there may not exist order statistics that satisfy 
the requirements of one-sided tolerance limits. The sample size issue will be 
addressed in Section 8.6. 

Lower Limits for an Exceedance Probability: For a continuous random variable 
X ,  suppose it is desired to estimate P ( X  > t ) ,  where t is a specified number. If 
t 5 X ( n ) ,  then a conservative 1 - a lower limit for P ( X  > t )  can be obtained 
as follows (see Section 1.1.3). Let X ( T )  be the smallest order statistic which is 
larger than t .  Let p be such that X ( T )  is a ( p ,  1 - a)  lower tolerance limit. Since 

P ( X  > t )  2 p holds with probability at least 1 - a. 

Therefore, we need to find the value of p so that X ( T )  is ( p ,  1 - a )  lower toler- 
ance limit for the distribution of X .  In view of (8.3.1), we see that p is to be 
determined so that 

t X(T) ,  

where W is a binomial(n,p) random variable, and U is a beta(n-r+1, r )  random 
variable. The above probability relation was obtained using Result 8.6. Thus p 
is given by beta(a; n - r + 1, r ) ,  the a quantile of a beta(n - r + 1, r )  distribution. 
That is, a 1 - a lower confidence limit for P ( X  > t )  is beta(a; n - r + 1,r). 

8.4 Tolerance Intervals 

As mentioned earlier, to construct a ( p ,  1 - a )  nonparametric tolerance interval 
for a continuous distribution, we have to determine a pair of order statistics 
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X(,) and X(s), T < s ,  so that the interval (X(,),X(sj) would contain at least 
a proportion p of the population with confidence 1 - a. That is, we have to 
determine the values of T < s so that 

PX(+X(,) {PX[X(,) I x 5 x(s)Ix(T),x(s)l 2 P} = 1 - a .  (8.4.1) 

Because of the discreteness of T and s, we need to  determine them so that s - T 

is minimum, and the coverage probability is a t  least 1 - a ,  and as close to  1 - a 
as possible. Note that the inner probability is 

PX[X(,) I x I X(S))l = F ( X ( s ) )  - P(X(T)), 

Thus we can write (8.4.1) as 

PX(.),X(,) { W q s ) )  - F(X(,)) L P} = 1 - a, 

or equivalently, 
PU(.),U(.j { q s )  - U(T) L P }  = 1 - a. (8.4.3) 

The pdf of U(.) - U(.) can be obtained from the joint pdf of U(T)  and U(.) given in 
(8.2.6). Let u = y - z and u = y so that the inverse transformation is J: = u - u 
and y = u, 0 < u < u < 1. The Jacobian of the transformation is one. Using 
these observations in (8.2.6), we obtain 

(8.4.2) 

fu,y(u, u )  = C('U - u)T-lus-T-l(l - u)n--s, 0 < u < u < 1, 

which is the constant term in (8.2.6). Thus, the 71 ! where c = ,-I !(s-,-l)!(n-s)! > 

marginal p A 1  f o U = U(s)  - U(., is given by 
1 

fu(u)  = cus-T-l s, (u - u),-l(1 - u)n-sdu. 

This is actually a beta distribution. In order to see this, let u - u = t(1 - u), 
0 < t < 1. This implies (1 - u) = (1 - u)  - t ( l  - u)  = (1 - u)( l  - t ) .  Also, 
du = (1 - u)dt. In terms of the new variables, we can write the pdf as 

fr;(u) = CuS-r-l il(l - u)T-ltr-l(l - u y - y 1  - t y ( 1  - ,u)dt 

Notice that so 1 tr-'(l - t )n-sdt  = B(r ,n  - s + 1) = rY7-)l-(n,-s+1) r(n-s+r+l) . Substituting 
this expression in the above equation, we get 

- - 1 u s - ~ - l ( l  - U)n-s+r , 0 < u < 1. (8.4.4) 
B(s - r, n - s + T + 1) 
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Thus, U = U(.) - U(,) is distributed as a beta random variable with shape 
parameters s - r and n - s + r + 1. Using Lemma 8.3.1, we now conclude that 

where X N binomial(n,p). Notice that the above probability depends only on 
the difference s - r ,  and not on the actual values of s and r .  Let k = s - r be 
the least value for which 

P ( X  5 5 - 7 -  - 1) 2 1 - a .  (8.4.6) 

Then any interval (X( , ) ,  X(.)) is a ( p ,  1 - a )  tolerance interval, provided 1 5 r < 
s 5 n and s - r  = k .  

It is customary to take s = n - T + 1, so that (X,,), X(n-,+l)) is a ( p ,  1 - a )  
tolerance interval (see Wilks, 1941 and David, 1981, p. 19). Wilks referred to 
this interval as the truncated sample  range as it is formed by the r th  smallest and 
the r th  largest observations from a sample of n observations. However, a shorter 
interval is possible if we ignore this convention. For example, when n = 38 and 
( p ,  1 -a )  = (20,  .go), the only shortest interval of the form (X( , ) ,  X(n-,+l)) that 
satisfies the probability requirement in (8.4.6) is ( X ( z )  , X ( 3 7 ) )  with true coverage 
probability 0.9613. It can be checked that ( X ( z ) ,  x(36)) is also a (30,  .90) toler- 
ance interval with actual coverage probability 0.9014. Similarly, when n = 69 
and ( p ,  1 - a )  = (.80, .99), the only shortest interval of the form (X( , ) ,  X(n-,+l)) 
that satisfies (8.4.6) is ( X ( 3 ) ,  X (67) )  with actual coverage probability 0.9968 while 
(X(3)  , x(66)) has coverage probability 0.9908. We shall describe a method of de- 
termining order statistics that form a shortest tolerance interval in Section 8.6. 

8.5 Confidence Intervals for Population Quant iles 

Let / cp  denote the p quantile of a continuous distribution F x ,  and let X(1) ,  ..., X(rL)  
be a set of order statistics from 8’’. For 0 < p < 1, let r = n p  if n p  is an integer, 
and T = [np] otherwise, where [z] is the largest integer not exceeding :c. The 
order statistic X ( r )  is the sample pth quantile, which is a point estimator of K ~ .  

To construct a 1 - Q confidence interval for / c p  based on order statistics, we 
need to determine the values of r and s ,  r < s ,  so that P(X(,)  5 /cp  5 = 

1 - a. Notice that the event X ( r )  5 /cp  5 X(.) is equivalent to “the number of 
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= 1 - a .  (8.5.1) 

Thus, ( X ( r ) ,  X ( s ) )  is a 1 - a confidence interval for K~ provided T and s satisfy 
(8.5.1). Ideally, T and s have to be determined so that they satisfy (8.5.1) and 
s - T is as small as possible. For a given n and 1 - a, there may not exist T and 
s so that P(X(, ,  < K~ < X ( s ) )  2 1 - a. 

Recall that a 1 - a one-sided confidence limit for K~ is also the ( p ,  1 - a )  
one-sided tolerance limit for Fx. In particular, the order statistic X ( k ) ,  where k 
is determined by (8.3.2), is a 1 - a lower confidence limit for K I - ~  and X(n-k+l) 

is a 1 - a upper confidence limit for K ~ .  

8.6 Sample Size Calculation 

For any fixed sample size, there may not exist order statistics that provide 
the required ( p ,  1 - a)  tolerance intervals. So, for a given p and 1 - a ,  it is 
important to determine the sample size so that the required order statistics 
exist for computing a tolerance interval. In the following, we shall determine 
the sample size in various scenarios. 

8.6.1 Sample Size for Tolerance Intervals of the Form 
( X ( 1 ) )  X(n)> 

We first determine the sample size n so that ( X ( , ) ,  X ( n ) )  would contain at least 
a proportion p of the population with confidence level 1 - a. That is, 

PX(l,,X(,) { P X [ X ( , )  F x F X ( n ) I X ( l ) , X ( n ) l  2 P} = 1 - Q. (8.6.1) 

Substituting s = n and T = 1 in (8.4.6), we see that the above probability 
requirement simplifies to 

P ( X  L n - 2) 2 1 - a * (n - l ) p n  - npnP1 + 1 2 1 - a ,  (8.6.2) 
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where X is a binomial(n,p) random variable. Let no be the least value of n that 
satisfies (8.6.2). Then, the smallest order statistic X(l) and the largest order 
statistic X(no) ,  from a sample of size no, form a ( p ,  1 - a )  tolerance interval. 
Furthermore, for any sample of size n 2 no, there is at least a pair of order 
statistics that form a ( p ,  1 - a)  tolerance interval. 

Now consider the case of a one-sided upper tolerance limit (that is, one-sided 
upper confidence limit for K ~ ) .  Such a limit can be obtained by finding the least 
value of n for which 

Using (8.5.1) with T = 0 and s = n, we see that 

(8.6.3) 

Thus X ( n )  is a ( p ,  1 - a )  upper tolerance limit when the sample size n is the 
least value for which 

To ensure the coverage probability, we choose n = [u] , where [XI+ is the 
smallest integer greater than or equal to IC. Also, for this choice of n, X(l), the 
smallest order statistic in a sample of size n is a ( p ,  1 - a )  lower tolerance limit, 
or equivalently, X(l) is a 1 - a lower confidence limit for K I - ~ .  

I 4 P )  + 

It should be noted that, because of the discreteness of the sample size, the 
true coverage probability will be slightly more than the specified confidence level 
1 - a. For example, when p = 0.90 and 1 - a = 0.90, the required sample size 
for the two-sided tolerance interval is 38. Substituting 38 for n, and 0.90 for p 
in (8.6.2), we get the actual coverage probability as 0.9047. 

Values of n are given in Table 8.1 so that the extreme order statistics form 
( p ,  1 - a)  one-sided tolerance limits; also, values of n are provided so that 
(X(l), X ( n ) )  is a ( p ,  1 - a)  two-sided tolerance interval. As an example, if a 
sample of 5 observations is available from F x ,  then the interval ( X p ) ,  X(5)) will 
include at least 50% of the population with confidence 0.80. If a sample of 459 
observations is drawn from a population, then at least 99% of the population 
exceed X(l) with confidence 0.99. 
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Interval 
P type 

0.50 one-sided 
two-sided 

0.75 one-sided 
two-sided 

0.80 one-sided 
two-sided 

0.90 one-sided 
two-sided 

0.95 one-sided 
two-sided 

0.99 one-sided 
two-sided 

217 

1-Cu 
0.80 0.90 0.95 0.99 

3 4 5 7 
5 7 8 11 
6 9 11 17 

11 15 18 24 

8 11 14 21 
14 18 22 31 
16 22 29 44 
29 38 46 64 

32 45 59 90 
59 77 93 130 

161 230 299 459 
299 388 473 662 

8.6.2 Sample Size for Tolerance Intervals of the Form 
( X ( r )  , X ( s ) )  

As noted earlier, for a pair of order statistics to form a ( p ,  1 - a)  tolerance 
interval, the sample size n should satisfy 

(n - l)pn - npn-l + 1 2 1 - a. (8.6.4) 

If no is the least value of n that satisfies the above inequality, then (X(1), X ( n o ) )  
is a ( p ,  1 - a)  tolerance interval. Furthermore, for a given ( p ,  1 - a)  and n 2 no, 
there is a pair of order statistics that form a ( p ,  1 - a )  tolerance interval. Thus, 
our goal is to find the least sample size so that a pair of order statistics form a 
tolerance interval, and for any n larger than the least sample size, determine the 
order statistics that form a ( p ,  1 - a )  tolerance interval with coverage probability 
not much in excess of 1 - a. 

We computed the least sample size n so that for m = 1(1)50, p = .50, .75,.80, 
.90, .95, .99 and 1 - a = .90, .95, .99, the interval (X,,,, X(n , )  is a ( p ,  1 - a )  
tolerance interval. These sample sizes are presented in Table B15, Appendix B. 
For a given m, the sample size n is computed as the least value that satisfies 

P ( X  5 n - m - l ln ,p)  L 1 - a. (8.6.5) 

Table 8.1: Values of n so that (a) (X(l), X ( n ) )  is a two-sided ( p ,  1 - a)  tolerance 
interval, (b) X(1) is a ( p ,  1 - a)  one-sided lower tolerance limit; equivalently, 
X ( n )  is a ( p ,  1 - a)  one-sided upper tolerance limit 
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Any pair of order statistics, say X ( l )  and X ( o ) ,  then form a ( p ,  1 - a )  tolerance 

interval provided 1 - 0  = n-m. Furthermore, ( X ( ? ) ,  X ( n - f ) )  if m is even, and 

( X ( w ) ,  X ( ? -  IrL;l I ,) if m is odd, are ( p ,  1 - a )  tolerance intervals. Obviously 
the sample size n obtained subject to (8.6.5) depends on m. Notice that for a 
given ( p ,  1 - a) ,  if n,, is the sample size obtained when m = ml and n,,+1 
is the sample size for m = ml + 1, then ( X ( w L 1 ) , X ( n n * ) )  is a ( p ,  1 - a)  tolerance 
interval for any n* satisfying nml 5 n* < n,,+1. As an example, suppose 
one wants to compute a (0.90,0.95) tolerance interval based on a sample of 
245 observations. The immediate value smaller than 245 under the column 
(0.90, 0.95) in Table B15, Appendix B, is 239, and the corresponding value of 
m is 16. Therefore, ( X ( 1 6 ) ,  X(245)) and ( X ( 8 ) ,  X(237)) are (0.90, 0.95) tolerance 
intervals when n = 245. Using (8.4.6), it can be readily verified that the coverage 
probability of these tolerance intervals is 0.9616, and for any value of m greater 
than 16, the coverage probability will be less than 0.95. The sample sizes listed 
under the column (0.90, 0.95) are ranging from 46 to 627, and so order statistics 
for constructing (0.90, 0.95) tolerance intervals can be obtained for any sample 
size between them. Thus, Table B15, Appendix B, is preferable to the one that 
provides order statistics for a given sample size. For example, Somerville (1958) 
provides table values for a given sample size so that ( X ( T ) ,  X ( s ) )  is a ( p .  1 - a )  
tolerance interval. However, such a table is of limited use, as the order statistics 
for the sample sizes that are not listed cannot be obtained from the table. 

S a m p l e  S i ze  for One-s ided  Tolerance L i m i t s :  Table B15 can also be used to 
find ( p ,  1 - a )  one-sided tolerance limits. To construct a ( p ,  1 - a )  one-sided 
lower tolerance limit, we need to find the positive integer k so that 

) 

As noted earlier (see 8.3.2), this probability requirement simplifies to 

P ( X  5 n - ( k  - 1) - l [ n , p )  2 1 - a ,  (8.6.6) 

where X N binomial(n,p). It follows from (8.6.5) and (8.6.6) that if m satisfies 
(8.6.5) then k - 1 = m or k = m + 1 satisfies (8.6.6). Thus, it is interesting 
to note that, if ( X ( m ) ,  X(.)) is a ( p ,  1 - a )  tolerance interval, then X(m+l)  is a 
( p ,  1 - a )  one-sided lower tolerance limit and X(n-,) is a ( p ,  1 - a )  one-sided 
upper tolerance limit. As an example, we see from Table B15, Appendix B, 
that ( X ( , 2 ) , X ( 8 6 ) )  is a (0.80, 0.90) tolerance interval when n = 86, X ( 1 3 )  is a 
(0.80,0.90) one-sided lower tolerance limit, and X(74)  is a (0.80,0.90) one-sided 
upper tolerance limit. So, Table B15, Appendix B, can also be used to determine 
the order statistics that serve as one-sided tolerance limits. 
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Example 8.1 (Example 7.1 continued) 

We shall construct some nonparametric tolerance intervals for the alkalinity 
concentration data given in Table 7.1 of Example 7.1. Recall that the mea- 
surements represent alkalinity concentrations in ground water obtained from a 
“greenfield” site. Here we have a sample of size n = 27. Let’s first compute a 
95% upper confidence limit for the population proportion of alkalinity concen- 
trations contained in the interval ( X ( , ) ,  X ( n ) ) .  Since the left hand side of (8.6.4) 
is a decreasing function of p ,  this amounts to finding the maximum value of p 
that satisfies the inequality (8.6.4). That is, the maximum value of p so that 

2 6 ~ ~ ~  - 27p27-1 + 1 2 0.95. 

By trying a few values of p ,  it can be found that the largest value of p that satisfies 
the above inequality is 0.836. Note that for the alkalinity data X ( , )  = 28 and 
X(TL)  = 118. So we can conclude that at most 83.6% of the population alkalinity 
concentrations are between 28 and 118, with confidence level 0.95. 

For this example, there is no pair of order statistics that would form a 
(p,O.95) tolerance interval when p > 0.836. Let’s now compute a (0.75, 0.95) 
tolerance interval. Examining the column under ( p ,  1 - a )  = (0.75,0.95) in Ta- 
ble B15, we see that the listed sample size immediately smaller than n = 27 
is 23, and the value of m = 2. So the interval ( X ( 2 ) , X ( r L ) )  = (32,118) or 
( X ( , ) ,  X ( T L - l ) )  = (28,96) is a (0.75, 0.95) tolerance interval. The one-sided lower 
tolerance limit is given by X(m+ll = X ( 3 )  = 39 and the one-sided upper tolerance 
limit is X(n-ml = X(25)  = 89. 

We shall now construct normal based (0.75,0.95) tolerance limits as de- 
scribed in Example 7.1. For the cube root transformed data., the mean y = 
3.8274 and the standard deviation S, = 0.4298. The two-sided tolerance fac- 
tor from Table B2, Appendix B, is 1.529. Thus, (3.8274 * 1.529 x 0.4298)3 = 
(31.87,90.18). As anticipated, the parametric tolerance interval is narrower than 
both nonparametric tolerance intervals given in the preceding paragraph. The 
factor for constructing (0.75,0.95) one-sided tolerance limits can be found from 
Table BI,  Appendix B, and is 1.083. Thus, (3.8274- 1.083 x 0.4298)3 = 38 is the 
desired one-sided lower tolerance limit, and (3.8274 + 1.083 x 0.4298)3 = 79.11 
is the one-sided upper tolerance limit for the alkalinity concentrations. Observe 
that the normal based lower tolerance limit of 38 is smaller than the nonpara- 
metric limit of 39 (for lower tolerance limit, larger is better), and the normal 
based upper tolerance limit of 79.11 is smaller than the nonparametric limit of 
89 (for upper tolerance limit, the smaller is better). 

Probability of Exceeding a Threshold Value: Suppose we want to find a 95% 
lower limit for the probability that a sample alkalinity concentration exceeds 41 
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mg/L, that is, P(X > 41). Notice that the smallest order statistic that is larger 
than 41 is X(q .  So it follows from Section 8.3 (see the result that follows (8.3.3)) 
that 

P(X > 41) 2 beta(cu; n - k + 1, k )  = beta(0.05; 22,6) = 0.649. 

Note that the lower confidence limit for P(X > 41) based on a gamma distri- 
bution is 0.692 (see Example 7.1) which is larger than the nonparametric lower 
confidence limit 0.649. 

Remark 8.1. So far we have considered nonparametric tolerance intervals that 
are computed based on order statistics. Another option is to use a tolerance 
interval having a given form, and then estimate its content nonparametrically. 
For example, consider the interval X f IcS, where k is the factor determined 
as if the sample is from a normal distribution. That is, for a given content p 
and coverage 1 - Q, k is the factor determined by (2.3.4) of Chapter 2. Here X 
and S2, respectively, denote the mean and variance based on a sample of size n 
from the relevant population. If the sampled population is not normal, then the 
true content of such a tolerance interval need not be p .  Fernholz and Gillespie 
(2001) have suggested that the true content be estimated by the bootstrap. If 
p* denotes the estimate so obtained, then the interval X f IcS can be used as an 
approximate (p*,  1 - a )  tolerance interval for the sampled population. Fernholz 
and Gillespie (2001) refers to this as a content corrected tolerance interval. We 
refer to their paper for further details. 

8.7 Nonparametric Multivariate Tolerance Regions 

To describe multivariate nonparametric tolerance regions, we shall first explain 
the concept of equivalent blocks, due to Tukey (1947), for a univariate sample. 
Let X(l) < ... < X(n) be order statistics for a sample of size n from a continuous 
univariate distribution Fx. Define 

Let Cj denote the content level of the j t h  block. That is, 

Note that Fx(X(~))  is distributed as U ( j ) ,  the j t h  order statistic for a sample of 
size n from a uniform(0,l) distribution. Thus it follows from Corollary 8.1 that 
E(C1) = E(Cn+l) = A. Also, note that Cj is distributed as U ( j )  - U(j-l), 
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j = 2, ..., n, and its pdf is given by (8.4.4) with s = j and T = j - 1. That is, 

Using the above pdf, it can readily verified that E(Cj)  = A, j = 2, ..., n. Since 
the expected contents of the blocks are the same, Tukey referred to the non- 
overlapping intervals B1, ..., B,+l as equivalent blocks. A tolerance interval is 
composed of the union of a few consecutive blocks. For example, if the interval 
is chosen to be the union of the first r blocks, then the content is x;=l Cj. If r 
is chosen so that 

1 
xT-’(l - z ) ~ - ‘ ~ u  = 1 - a, (8.6.7) 

1 
B(r,n - r + 1) 1 

then the union of the first r blocks is a ( p ,  1 - a)  tolerance interval. 

The above construction principles can be extended to the multivariate case 
also. Tukey (1947) has pointed out that the sample space of a continuous Q 

dimensional random vector can be partitioned into n + 1 blocks on the basis 
of n realizations of that random vector. However, there is no unique way of 
partitioning a multivariate sample space into n + 1 equivalent blocks. We shall 
describe a procedure due to Murphy (1948) for the bivariate case, which is based 
on the abstract formulation by Tukey (1947). 

Let XI ,  ..., X, be a sample from a continuous bivariate distribution. Let 
fl, ..., fn be a set of real valued functions of a bivariate variable x. Let Xi1), ..., X(l) 

(n)  

be the arrangement of the Xi’s such that fl(Xiyl) > fl(Xil)), i = 1, ..., n - 1. 
The first block is defined by 

B1 = {x : fl(W < fl(xF))}f 

Xi’s are arranged in a sequence X ,  ( 2 )  , ..., X?Jl such that f2(Xj:)1) > f2(Xi2)), 

That is, on the (x,y) plane, the first block is bounded by the curve fl(X) - 
fl(Xy’) = 0. The observation Xy) is discarded, and the second block is detcr- 
mined on the basis of f2 and the remaining n - 1 of the Xi’s. The remaining 

and the second block is defined as 

B2 = {X : fl(Xil’) I fl(x) and f2(X) < f2(Xj2’)}. 

In other words, the second block is bounded by the curves fl(X) -fl(Xjl)) = 0 
and f2(X) - f2(Xr’) = 0. If the process of discarding and rearranging the 
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remaining Xi’s is continued until all the functions are used, we shall obtain a 
set of n + 1 non-overlapping blocks (the (n + 1)st block at the last step of the 
process). Furthermore, as in the univariate case, the proportion of the bivariate 
population that are covered by any r blocks has the beta(r, n - r + l )  distribution. 
Thus, if r is defined subject to (8.6.7), then the union of r consecutive blocks 
form a ( p ,  1 - a)  tolerance region. 

In general, there is no unique way of finding a nonparametric multivariate 
tolerance region. For example, the functions f l ,  ..., f ,  in Murphy’s approach 
are arbitrary, and no simple guideline is available to choose these functions. 
Certainly, different choices lead to different tolerance regions. We refer to Chat- 
terjee and Patra (1976) for an attempt to derive optimum choice of the functions 
f l ,  ..., f n ;  see also Chatterjee and Patra (1980). Rode and Chinchilli (1988) sug- 
gested the Box-Cox transformations to develop tolerance regions for non-normal 
distributions. Many methods proposed in the literature are not only difficult 
to apply, but also, a noted by Abt (1982), lead to irregular multiplanar shaped 
tolerance regions. Abt has also noted that some of the earlier procedures are 
not scale invariant, and proposed a “parallelogram method” to construct a scale 
invariant tolerance region. 

For more recent theoretical investigations on multivariate non-parametric 
tolerance regions, we refer to Bucchianico, Einmahl and Mushkudiani (2001) 
and Li and Liu (2008). 

8.8 Exercises 

8.8.1. Using integration by parts, show that (8.2.5) is equal to (8.2.4). 

8.8.2. Let k be the largest integer so that P ( X  2 kin, 1 - p )  2 1 - a, where X is 
a binomial(n, 1 - p )  random variable. Let m be the smallest integer such 
that P(W 5 m - l l n , p )  2 1 - a ,  where W is a binomial(n,p) random 
variable. 

(a) Show that m = n - k + 1. 

(b) Let X ( T )  denote the r th  order statistic for a sample X I ,  ..., X ,  from 
a continuous population. Show that X ( n - k + l )  is a ( p ,  1 - a )  upper 
tolerance limit for the sampled population. 

8.8.3. For alkalinity concentration data in Table 7.1 of Example 7.1, compute 
a 95% confidence interval for K . 6 ,  where K~ denotes the p quantile of the 
alkalinity concentration distribution. 
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8.8.4. The following data represent sodium contents (in mg) of a sample of 47 5g 
butter cookies. 

10 11 13 13 14 14 14 14 15 15 15 16 
16 16 16 17 17 17 17  18 18 18 18 18 
19 19 19 19 20 20 20 20 20 21 21 22 
22 22 23 23 24 26 26 26 26 28 28 

(a) Compute a 95% upper confidence limit for the population proportion 
of cookies with sodium contents that falls in the interval ( X ( l ) ,  X ( 4 q ) .  

(b) Find the values of T and s ,  T < s so that (X,,,, X(.)) is a (0.90,0.90) 
tolerance interval. 

(c) Find a (0.90,0.95) one-sided tolerance limit for the sodium content. 

(d) Construct a 95% confidence interval for median sodium concentration. 
(e) Compute a 95% lower confidence limit for the populat.ion proportion 

of cookies with sodium contents 24 mg or more. 

8.8.5. The following is a sample of 40 shaft holes diameters (in centimeters): 

3.20 3.08 2.77 2.86 2.68 2.93 3.10 2.92 
2.60 2.98 3.05 2.80 3.11 3.11 2.87 3.04 
3.30 2.93 2.86 2.80 3.13 2.76 3.04 3.19 
3.02 3.14 3.39 2.82 3.03 2.92 2.97 2.72 
3.07 3.05 2.86 3.22 2.97 3.16 3.16 2.72 

(a) Find a 95% confidence interval for the 80th percentile of the popula- 

(b) Find a (0.80, 0.90) tolerance interval for the shaft hole diameters. 
(c) Compute a 95% upper confidence limit for the population proportion 

tion shaft hole diameters. 

of measurements that falls below 3.1. 

8.8.6. Let X = (X1,Xz)’  be a continuous bivariate random vector, and let 
X I ,  ..., X ,  be a sample of realizations of X. Find a ( p ,  1 - a)  tolerance 
interval for the distribution of D = X1 - X ,  based on the sample. 



Chapter 9 

The Multivariate Normal Distribution 

9.1 Introduction 

In this chapter we generalize some of the results for the univariate normal dis- 
tribution given in Chapter 2, to arrive at tolerance regions for a multivariate 
normal population. As in the univariate case, a multivariate tolerance region 
can be used to assess whether a production process that can be described by 
a set of process variables is under control, or to assess whether the proportion 
of engineering products in a lot satisfies tolerance specifications. For example, 
characteristics (such as length, width and diameter) of engineering products are 
required to be within certain tolerance specifications so that they meet quality 
standards. Typically, the characteristics are measured on a sample of products 
drawn from a production lot (i.e., the population), and a multivariate tolerance 
region is constructed based on the sample. Decision regarding acceptance or 
rejection of the lot maybe made by comparing the tolerance region with the 
region determined by the tolerance specifications. If the latter region contains 
the tolerance region, we may conclude, with a high confidence, that the tol- 
erance specifications are met by most of the products in the lot. To check if 
a production process is under control, manufacturing plants initially produce 
items under a controlled or supervised environment (for example, using a group 
of highly skilled workers). The resulting data can be used to obtain a multi- 
variate tolerance region that can serve as a standard, or a reference region, for 
future products from other manufacturing facilities. In this context, see also the 
discussion on reference limits given in Chapter 12. 

Some specific applications of tolerance regions for a multivariate normal pop- 
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ulation are given in Hall and Sheldon (1979) and F'uchs and Kenett (1987. 1988). 
Hall and Sheldon (1979) have discussed an application dealing with ballistic miss 
distances. Here, one is interested in estimating the probability that the impact 
point of a missile, or a shot, falls within a circle of given radius, or in estimating 
the radius of a circle that will contain a specified proportion of hits. Fuchs and 
Kenett (1987) have applied multivariate tolerance regions to two examples: one 
dealing with testing adulteration in citrus juice (where the data is six dimen- 
sional) and another dealing with the diagnosis of atopic diseases based on the 
levels of immunoglobulin in blood (where the data is three dimensional). In the 
citrus juice example, the six dimensional data consisted of measurements of six 
attributes of the juice: total soluble solids produced at 2OoC, acidity, total sug- 
ars, pctassium, forniol number and total pectin. The reference sample consisted 
of 80 specimens of pure juice. Once the tolerance region is computed, we can 
check if a new specimen to be tested falls in the tolerance region, in order to 
decide if it is adulterated or not. Fuchs and Kenett (1988) also used multivariate 
tolerance regions in a quality control application for deciding whet her ceramic 
substrate plates used in the microelectronics industry conform to an accepted 
standard. The five dimensional data used for this purpose consist of measure- 
ments of physical dimensions of individual substrates. A tolerance region for 
this problem is a region that covers a specified proportion of the target stan- 
dard population, with a certain confidence. Decision regarding conformity of 
the new substrates, to the accepted standard, is decided based on whether the 
corresponding five dimensional observations fall within the tolerancc region. 

9.2 Not at ions and Preliminaries 

Let XI ,  ..., X, be a sample from a q-variate normal distribution N q ( p ,  C),  hav- 
ing mean vector p and covariance matrix C. The sample mean vector X, the 
sample sums of squares and cross-product matrix A,  and the sample cova,riance 
matrix S ,  are defined as 

n l n  
n n-1 A.  (9.2.1) X = - x X i ,  A = C(Xi -%)(Xi - X)' and S = - 

i=l i=l 
Then X and ; A  are the maximum likelihood estimators of p arid C, and S is 
an unbiased estimator of C. Furthermore, 

where Wq(C,  m) denotes a q-dimensional Wishart distribution with scale matrix 
I= and df = m. Note that X and A are independently distributed, and so are 
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X and S.  Let X denote a future observation from N , ( p ,  E), where X is 
independent of XI, Xz, ...., X,. A tolerance region for N , ( p ,  E) is taken to be 
the region 

{X : ( X  - X)’s-l(x - X) 5 c},  (9.2.2) 

where c is the tolerance factor to be determined so that the region is a ( p ,  1 - a)  
tolerance region. Specifically, c satisfies 

(X - X ) ‘ S - ‘ ( X  - X) 5 c = 1 - a. (9.2.3) 

To begin with, we shall show that the tolerance factor c satisfying (9.2.3) 
does not depend on any unknown parameters. Let 

Y = x-i(x - p) ,  u = x-f(X - 
Note that Y ,  U and V are independent 

Y - N,(O, I , ) ,  u - Nq 

p )  and V = E-iSE-i. (9.2.4) 

with 

1 and V -  W q ( z I , , n - l  1 . 

(9.2.5) 
In terms of these transformed variables, (9.2.3) can be expressed as 

It is clear from (9.2.5) that the distributions of U ,  Y and V do not depend 
on any parameters. Thus the tolerance factor c satisfying (9.2.6) is also free of 
unknown parameters. An explicit analytic form is not available for computing 
c satisfying (9.2.3). Thus c has to be determined using Monte Carlo simulation 
or by a satisfactory approximate method; the representation (9.2.6) will be used 
for this purpose. 

The following expression is useful in finding an approximation to c that satis- 
fies (9.2.6). Let I’ be a Q x Q orthogonal matrix such that I?’ VI’ = diag(Z1, ..., l ,),  
where li’s are the eigenvalues of V .  We can assume that I1 > ... > I, > 0. Let 
2 = I” Y and Q = I” U .  Using this transformation, we can write (9.2.6) as 

where Z = (21, ..., Z,)’, Q = (QI,  ..., Q,)’ and 1 = ( l 1 , 1 2 ,  ...., &)’. Since Y - 
N,(O, I , )  and since I’ is orthogonal, we have 2 = I” Y - Nq(O, I , ) .  That is the 
Zi’s are independent N(0, l )  random variables. Hence, conditionally given Q, 
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we have (Zi - Qi)2 N x:(Q:), and are independent for i = 1, ..., 4 ,  where yk(6) 
denotes the noncentral chi-square random variable with df = m and noncen- 
trality parameter 6. The representation (9.2.7) will be exploited for developing 
approximations for c. 

9.3 Some Approximate Tolerance Factors 

In the following theorem, we present a general method for finding an approxi- 
mation to c satisfying (9.2.7). The method is due to  John (1963). 

Result 9.1 Let 1 = (11, ..., I,)’, 11 > ... > I,, where li’s are the eigenvalues of 
the Wishart matrix V given in (9.2.5), and let <(Z) be a real valued function of 
1 such that 1, < [ ( Z )  < 11. Furthermore, let x&,(6) denote the p quantile of a 
noncentral chi-square distribution with df = ‘m and noncentrality parameter 6, 
and let & ( I )  denote the a quantile of [(Z). Then, an approximate expression 
for c that satisfies (9.2.3) or (9.2.7) is given by 

(9.3.1) 

Proof. 
satisfies 

Since 11 > ... > 1, > 0, we see that the inner probability in (9.2.7) 

Since I ,  < [(Z) < 11, we also have 

Note from (9.2.5) that the Wishart distribution of V has a scale niatrix that is 
a multiple of the identity matrix. Thus for large n, the li’s are expected to  be 
nearly equal. Hence for large n, 
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Consequently, (9.3.3) implies 

Substituting the right side of (9.3.5) in (9:2.7), we conclude that c sat,isfies 

approximately. Since C;==,(Zi - Qi)2  - xi (Q’Q) for a fixed Q, (9.3.6) is equiv- 
alent to 

pQ,1 [c<(l) 2 xi;p (Q’Q)] = - a. (9.3.7) 

R.ecal1 that Q = F’U, where F is an orthogonal matrix, and so Q’Q = U’U. It 
now follows from the distribution of U in (9.2.5) that Q’Q = C:=’=, Qp N xi/n. 
Hence E(Q’Q) = :. As a further approximation, we replace xi;,(Q’Q) in (9.3.7) 
by xiip (E); John (1963) justifies this approximation for large n. With this 
approximation, (9.3.6) becomes 

(9.3.8) 

It is now clear that if I C y ( Z )  is the a quantile of ((Z), then 

or c is as given in (9.3.1). 0 

Note that the value of c in (9.3.1) depends on the [(Z) that we choose. Several 
choices are discussed below. 

As long as we choose the real valued function <(Z) such that 1, < [(Z) < 11, 

where 11 and I, are, respectively, the largest and the smallest eigeiivalues of 
the Wishart matrix V in (9.2.5), Theorem 9.1 can be used to find an approxi- 
mate tolerance factor. Several approximations are suggested in John (1963); see 
also Siotani (1964) and Chew (1966). Usual choices of [(Z) are the arithmetic 
mean, geometric mean and harmonic mean of the eigenvalues 11, ..., 1,. For these 
choices, the distribution of [( I )  is tractable. Krishnamoorthy and Mathew (1999) 
compared the approximate tolerance factors based on the arithmetic mean, ge- 
ometric mean, and the harmonic mean. Their extensive simulation studies 
indicated that none of these approximations is satisfactory for all configurations 
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of (n, q , p ,  1 - a).  In particular, the one based on the arithmetic mean is the 
worst and the one based on the harmonic mean is the best. However, these ap- 
proximate tolerance factors are crude, and cannot be recommended for practical 
applications. 

We shall now describe a better approximation, due to Krishnamoorthy and 
Mathew (1999). We begin with an approximation based on the harmonic mean 
of the Zi's. 

Harmonic Mean Approximation 

Let [(Z) be the harmonic mean of the eigenvalues Z1, ..., 1,. Then [(Z) = = 

+. We shall consider approximating the distribution of tr(V-') by that tr[V- 
2 = 1  2 

of ~3, where the constants a and b will be determined by equating the first and 

second moments of tr(V-') to the corresponding moments of +. Towards this, 
we note that, for n > q + 4, 

x b  

x b  

4 E[tr(V-')] = 
n - q - 2 '  

(9.3.9) q[(n - Y - 3)q + 21 
(n  - q - l)(n - q - 2)(n - q - 4) '  

E[{tr(V-1)}2] = 

The expression for E[tr(V-')I given above can be obtained using the result that 
E[V-l] = (n  - q - 2)-'Iq (e.g., see Anderson 1984, p. 270). The expression for 
E[{tr(V-')}2] can be obtained from von Rosen (1988, Corollary 3.1 (v)). Also, 

U '(2) = ( b - 2 ) '  

U 2  E[(32] = ( b  - 2)(b  - 4) '  
(9.3.10) 

Equating the first two moments in (9.3.9) to those in (9.3.10), and then solving 
the resulting equations for a and b, we get 

(9.3.11) 

Thus, &(I) can be approximated by the Q quantile of Ex:, where a and b are 
given in (9.3.11). This gives the following approximate tolerance factor, denoted 

q(n - q - 1)(n - q - 4) + 4(n - 2) 9(b - 2) b =  and a= 
n - 2  n - q - 2 '  

(9.3.12) 
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The above approximation is referred to  as a modified harmonic mean approxi- 
mation in Krishnamoorthy and Mathew (1999), hence the notation “rnhm”. 

An Approximation Based on V11.2 

Recall that, in order to use Theorem 9.1, ( ( 1 )  should satisfy 1, L < ( I )  511. We 
shall now consider a function of V ,  say (( V ) ,  that satisfies 1, L <( V )  L 11, 
where [( V) itself is not a function of 1 .  The choice that we shall make is 

< (V)  = v11.2, (9.3.13) 

where VG12 is the first element of V-’. More explicitly, suppose V is partitioned 
as 

(9.3.14) 

where V11 is a scalar, V21 is a ( q  - 1) x 1 vector, V12 = Vk1 and V22 is a 
( q  - 1) x ( q  - 1) matrix. Then V11.2 = V11 - V12 V;, V21. Since any diagonal 
element of a positive definite matrix is less than or equal to the largest eigenvalue, 
we get V11.2 5 V11 5 11. Furthermore, since VG,; is the first diagonal element of 
V-l, and 1/1, is the largest eigenvalue of V-l, we also have V,T12 5 1/lq, that 
is, V11.2 2 I,. In other words, I ,  Kl.2 5 ZI. Since Kl.2 - x:-, (see Anderson, 
1984, Theorem 7.3.6), the choice [(V) = V11.2 gives the following approximate 
tolerance factor 

(9.3.15) 

An Approximation Based on the Harmonic Mean and V11.2 

Monte Carlo studies by Krishnamoorthy and Mathew (1999) indicated that, 
in general, the tolerance factor C,hm in (9.3.12) is somewhat smaller than the 
actual tolerance factor, whereas c, in (9.3.15) is somewhat large. This suggests 
that a tolerance factor between Cmhm and c, may be quite satisfactory. Recall 
that c,hm is derived based on the choice < ( I )  = and c, is derived based 

on ,$( V )  = V11.2. We shall now consider a choice of [( V )  between 4 and 

V11.2. The choice that we shall make is the harmonic mean of and V11.2. 
Specifically, let 

tr(V-’) 

t r (V-l)  

tr(V-’) 
3 

(9.3.16) 
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The main reason for choosing the harmonic mean (as opposed to the arithmetic 
mean or geometric mean) is that we can easily approximate the distribution of 
2 with that of 4, where d and e are obtained by matching the first two E(V) X e  

moments. Krishnamoorthy and Mathew (1999) derived the first two moments 
of ~ and these are given by 

E(V) ’ 

The first two moments of 4 are similar to those in (9.3.10). Equating the two 
sets of moments we get 

X e  

4q(n - q - 1)(n - q )  - l2 (q  - 1)(n - q - 2) 
3(n - 2) + q(n - q - 1) 

e - 2  
n - q - 2  

e =  , d =  . (9.3.17) 

Thus, the a quantile of <( V) in (9.3.16), can be approximated by the a quantile 
of $, where d and e are given in (9.3.17). The resulting approximate tolerance 
factor will be denoted by C&m, and is given by 

(9.3.18) 

Remark 9.1 When q = 1, all the approximate tolerance factors, including 
the ones based on the usual averages of the eigenvalues of V, coincide with the 
approximate tolerance factor in (2.3.5). However, when q 2 2, these approxima- 
tions are quite different. 

9.4 Methods Based on Monte Carlo Simulation 

Even though the numerical results in Krishnamoorthy and Mathew (1999) show 
that the approximate factor in (9.3.18) is to be preferred over various other 
approximations available in the literature, it is not satisfactory for all sample 
size, content and confidence level configurations. An alternative approach is the 
Monte Carlo simulation on the basis of the distributional results in (9.2.5)’ and 
the representation (9.2.6). The following algorithm can be used to perform the 
required computations. 

Algorithm 9.1 
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For a given n, q ,  p and 1 - a: 

1. Generate a Ui - N, (0, ; I , )  and a Vi - W, n - 1 , i = 1, ..., ml. 

generate a Yj  - N,(O,I,), and compute ( Y j  - Ui) ’Vi l (  Yj  - U i ) ,  
j = 1, ..., mz. 

3 .  Set Ti = 100pth percentile of the ( Y j  - Ui) ’V i ’ (  Y j  - U i ) ,  j = 1, ..., mz. 

) 
2 .  For each i ,  

The 100(1 - a )  percentage point of the Ti’s is a Monte Carlo estimate of the 
tolerance factor c. To generate Wishart matrices in step 1, algorithm by Smith 
and Hocking (1972) can be used. 

The above Monte Carlo method is simple to implement, but it poses some 
problems while computing the tolerance factor. First, it needs a total of ml x m2 

simulation runs. For example, Hall and Sheldon (1979) and Krishnamoorthy and 
Mathew (1999) used ml = ma = 1200, which amounts to a total of 1,440,000 
runs. Even with these many runs, the final estimate of the tolerance factor 
depends on the initial seed used for the random number generators. In other 
words, for a given (n, q ,  p ,  1 - a ) ,  two different seeds may produce tolerance fac- 
tors that are appreciably different. This instability is severe when the sample 
sizes are small relative to the dimension. As a consequence, the coverage proba- 
bilities of the tolerance regions based on Monte Carlo estimates of the tolerance 
factors are sometimes quite different from the nominal level 1 - a. To overcome 
these shortcomings, Krishnamoorthy and Mondal (2006) approximated the in- 
ner probability in (9.2.7) using a chi-square approximation due to Imhof (1961), 
and then used simulation to compute the probability with respect to the joint 
distribution of ( U ,  V ) .  Because this approach use simulation with only one “do 
loop”, its accuracy can be increased by increasing the number of runs. 

To approximate the inner probability in (9.2.7), that is, the conditional prob- 
ability that C:=’=, Zil(Zi - Qi)2 5 c, conditionally given Qi’s and Zi’s, we need 
the following lemma, due to Imhof (1961, Section 4). 

Lemma 9.1 Let xgl (Sl), ..., x g k  (Sk) be independent noncentral chi-square ran- 
dom variables, and let W = C,”=, Xixg,(Si), where X i  > 0 for i = 1, ..., k .  Then 

P(W > w) p” P(X2 > Y), 

where 
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Furthermore, for 0 < a < 1, let x:;ff denote the a quantile of x:, then the a 
quantile of W is approximated by 

u )  + c1. (9.4.2) 

The above approximation was obtained by matching the moments. In par- 
ticular, letting R = % d m  + E ( W ) ,  we see that the first three central 
moments of W are equal to  those of R when u is as defined in (9.4.1). 

The approximation in Lemma 9.1 is remarkably accurate for computing the 
upper percentiles of W ;  however, it could be very crude for approximating the 
lower percentiles of W ,  as shown in Table 9.1. In pasticular, we observe from 
the table that there are discrepancies between the 5th percentiles (as well as the 
first percentiles) obtained by Monte Carlo simulation and by applying Lemma 
9.1, while the 95th percentiles (as well as the 99th percentiles) based on these 
two methods are in good agreement. 

Table 9.1: 100pth percentiles of Cf=l cix?(&) based on simulation (denot,ed by 
simul.) and based on the approximation in Lemma 9.1 (denoted by approx.) 

c1 c2 c:j 61 62 63 simul. approx. simul. approx. 
p = 0.05 p = 0.95 

19.58 24.68 22.00 0.02 2.20 0.15 16.52 14.72 304.6 304.0 
13.24 15.73 14.61 0.33 3.12 0.01 15.09 13.72 227.9 227.1 
8.32 19.44 37.29 0.19 0.63 3.18 24.42 20.47 488.8 486.6 
28.57 11.09 14.31 0.22 0.04 0.55 7.67 10.02 183.6 185.7 
24.97 10.23 14.64 3.45 0.03 0.25 18.38 16.04 334.0 339.5 
27.46 24.57 7.13 0.17 2.28 1.05 17.81 15.69 313.8 311.5 
22.43 16.53 22.77 0.74 0.21 1.82 17.45 15.53 297.3 296.5 

13.66 9.26 16.85 1.99 0.81 3.51 10.18 5.81 387.1 387.4 
15.88 10.03 13.12 1.23 0.66 4.99 12.11 7.59 364.6 364.5 
5.46 19.91 15.77 0.60 5.06 2.07 15.08 8.53 502.8 503.0 
14.78 16.49 9.28 1.85 1.95 1.53 8.00 4.04 340.2 342.8 
11.82 16.28 16.18 0.43 2.52 0.57 5.17 0.59 318.3 320.4 
14.33 11.19 27.28 1.64 0.95 4.14 15.71 9.20 593.6 596.8 
11.23 13.60 23.55 0.76 0.08 3.59 7.50 1.04 463.1 463.7 

p = 0.01 p = 0.99 

To approximate the inner probability in (9.2.7), we recall that, for fixed Q 
and I ,  W = C:='=, Zil(Zi -Qi)2 is distributed as C:='=, l;lx;(Qf). Therefore, the 
results of Lemma 9.1 can be readily applied with X i  = l i ' ,  mi = 1 and 6, = Qf, 
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i = 1, ..., q. In this case, we see that 

(9.4.3) 

Thus, it follows from (9.4.2) that 

5 (zi - Qi12 c3 2 
N -(xa - a) + c1 approximately. 

li c2 i=l 

(9.4.4) 

Using this approximation, we see that the inner probability inequality in (9.2.7) 

(9.4.5) 

where a, c1, c2 and c3 are given in (9.4.3). For fixed Q and I ,  the probability 
inequality in (9.4.5) holds if and only if c 2 ($(x%,, - a) + q) ,  where x;;, 
denotes the p quantile of the x: distribution. Using this relation in (9.2.7), we 
see that an approximation to the tolerance factor c satisfies 

(9.4.6) 

Noticing that Qi's are independent with Q: - 2 x 2  and li's are the eigenvalues of 
V ,  the following algorithm can be used to compute c satisfying (9.4.6). 

Algorithm 9.2 

For given n, q ,  p and 1 - a: 

, j  = 1 ,..., q and V - W, &14,n-  1 1. Generate Qj - $ ' 

2. Compute the eigenvalues 11, ..., I ,  of V 

3.  Compute el ,  c2, c3 and a using (9.4.3) 

4. Set T = ( Q(x2 cg a ; p  - 4 + Cl) 

5. Repeat the steps 1-4 a large number of times, say, 10,000 

( 

The l O O ( 1  - a ) t h  percentile of the simulated 5'"s is an estimate of the tolerance 
factor c. 

Krishnamoorthy and Mondal (2006) used Algorithm 9.2 with rnl = 100,000 
runs to compute the tolerance factors. The tolerance factors are presented in Ta- 
ble B16, Appendix B, for q = 2( l ) lO ,  p = 0.90,0.95,0.99, l -a = 0.90,0.95,0.99 
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and various sample sizes ranging from 2q + 1 to 1000. The tolerance factor for 
omitted sample sizes can be computed using the following interpolation: Sup- 
pose that the tolerance factor for the sample size n2 is not listed in the table, 
and the tolerance factors fi for n1 and f3 for n3 are listed, where nl < n2 < 713. 

Then, the factor f2  for 722 can be interpolated by (n3f1 + nlfs)/(nl + n3) if 
n2 is closer to n1 than it is to n3; by (nlfi + nsfs)/(nl + n3) otherwise. As 
an example, when q = 2, p = 0.90 and 1 - ai = 0.95, the reported tolerance 
factor for n = 37 is 6.99 (see Table B16, Appendix B, q = 2). The interpolated 
value for n = 37 using the tolerance factors for n = 35 and n = 40 is given by 
(40 x 7.09 + 35 x 6.84)/(40 + 35) = 6.97 which is very close to the reported value 
6.99. 

Example 9.1 (Lumber data) 

The data in Table 9.2 represent stiffness ( X I )  and bending strength (X2) for 
a sample of 30 pieces of a particular grade of lumber. The measurements are in 
pounds/inch2. The data are taken from Johnson and Wichern (1992, Table 5.6) 
who used them for illustrating confidence estimation procedure for the means 
of the stiffness and the bending strength. To apply our methods of constructing 
tolerance regions, we should first check the assumption of normality. A simple 
approach to check the bivariate normality assumption is to check if 

cij = (xj - X)’S- ’ (X~ - X), j = I ,  ..., n. 

fit a xi-l distribution (see Johnson and Wichern, 1992, Section 4.8). As q = 

2 for the present example, a xf distribution (gamma distribution with shape 
parameter 1 and scale parameter 2) is fitted for the dj ’s ,  and the plot is given 
in Figure 9.1. The plot indicates that the assumption of normality is tenable. 

The summary statistics are 

361673.4 3486334.0 
1860.47 124049.8 361673.4 

x = ( $: ) = ( 8354.13 ) l S  = ( 
and 

= (SZj),say. 1.155673 x -1.198899 x lop6 
-1.198899 x lop6 4.1120845 x 

s-1 = 

The reported tolerance factor corresponding to (n, q , p ,  1 -a)  = (30,2,0.90,0.95) 
in Table 16, Appendix, is 7.49. Thus, a (0.90, 0.95) tolerance region is the set 

{x : ( X  - X)’s-l(x - X) 5 7.49) (9.4.7) 
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Figure 9.1: Chi-square Q-Q plot for the lumber data 

Figure 9.2: The (0.90, 0.95) ellipsoidal tolerance region (the scatter plot) and 
the rectangular region formed by (0.90, 0.95) Bonferroni simultaneous tolerance 
intervals, for the lumber data 
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or 

Table 9.2: Data on the stiffness ( X I )  and the bending strength ( X 2 )  for a sample 
of lumber 

x1 x2 1 x1 x2 

1232 4175 1 1712 7749 
1115 6652 
2205 7612 
1897 10914 
1932 10850 
1612 7627 
1598 6954 
1804 8365 
1752 9469 
2067 6410 
2365 10327 
1646 7320 
1579 8196 
1880 9709 
1773 10370 

Reprinted with permission 

1931 6818 
1820 9307 
1900 6457 
2426 10102 
1558 7414 
1470 7556 
1858 7833 
1587 8309 
2208 9559 
1487 6255 
2206 10723 
2332 5430 
2540 12090 
2322 10722 

om Pearson Education, Inc. 

The (0.90, 0.95) tolerance region is plotted in Figure 9.2; the region corre- 
sponds to the scatter plot in the figure. The region is constructed by generating 
X’s from N z ( X , S )  and then plotting those X’s that satisfy the inequality in 
(9.4.7). The region is an ellipsoidal region with center a t  X and the length of 
the axes, and the directions, determined by the eigenvalues and the eigenvectors 
of S, respectively. We observe from Figure 9.2 that majority of the X’s are clus- 
tered around the mean (1860.47, 8354.13), which is the center of the ellipsoid. 
This means that if a future sample is really from the population from which the 
reference sample was drawn, then majority of the samples is expected to  fall 
near the center of the tolerance region. 

9.5 Simultaneous Tolerance Intervals 

We shall now address the problem of computing simultaneous tolerance intervals 
for the individual variables in a multivariate normal population. A motivation 
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for constructing such simultaneous tolerance intervals is the following. Suppose 
that a tolerance region is constructed based on a sample taken from a reference 
population. If a future observation falls outside the tolerance region, then we can 
conclude that the observation does not belong to the reference population. In 
this case it is of interest to identify the variable or variables that caused the ob- 
servation to fall outside the reference population. This can be done by examining 
simultaneous tolerance intervals for the individual variables. We describe two 
methods for constructing simultaneous tolerance intervals for the components 
of a multivariate normal random vector so that each interval includes at least 
a proportion p of the measurements with overall coverage probability 1 - a. 
Specifically, ( p ,  1 - a )  simultaneous tolerance intervals ( L ~ ( X ,  s), u ~ ( X ,  s)), 
i = 1, ...,q, are determined so that 

Px,s {Px ( L Z ( X , S )  5 xi 5 UZ(X,S)IX,  s) 2 p ,  i = 1, ..., q }  = 1 - a, 

where X and S = &A are the mean vector and variance-covariance ma- 
trix based on a sample of size n from a q-variate normal distribution, and 
X = ( X I ,  ..., X,)’ also follows the same normal distribution independently of 
the sample. A natural choice for (Li ,  Ui) is X i  f c * a ,  where Sii is the i th 
diagonal element of S ,  and c* is the factor to be determined to satisfy 

Px,s { Px, (Xi - c*& 5 xi I xi + c*&(X,  s) 2 p ,  i = 1, .”, q }  = l -a .  
(9.5.1) 

The factor c* is referred to as a simultaneous tolerance factor. A choice of c* on 
the basis of Scheffk’s principle is c: = &, where c is the multivariate tolerance 
factor satisfying (9.2.6). In general, simultaneous intervals based on Scheffk’s 
method are known to be very conservative. An alternative choice is based on 
the Bonferroni method (see Result 1.2.3 of Chapter l),  which produces results 
that are less conservative than those of the Scheff6 method. The simultane- 
ous tolerance factor c i  on the basis of Bonferroni’s approach is the univariate 
tolerance factor corresponding to content p and the coverage 1 - e .  

Q 

In order to assess the conservatism of both Scheffk’s and Bonferroni’s meth- 
ods, we shall evaluate their coverage probabilities using Monte Carlo evaluation. 
Let’s first compare the tolerance factors based on both approaches for a few 
values of (n,  q , p ,  1 - a) .  Recall that the Bonferroni factor c; is the univari- 
ate tolerance factor corresponding to and Scheffk’s factor is the 
square root of the multivariate tolerance factor corresponding to (n, q , p ,  1 - a )  
in Table B16. For ( n , q , p ,  1 - a )  = (10,2,0.9,0.9), we see that c: = 3.562 and 
c i  = 2.856; when (n, q , p ,  1 - a )  = (20,3,0.9,0.95), c: = 3.572 and c i  = 2.563; 
when (n, q , p ,  1 - a)  = (300,3,0.9,0.95), c: = 2.625 and c i  = 1.804. In gen- 
eral, it is expected that c: is larger than c; (except when q is very large), and 

n. q , p :  1 - ( ) 
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so Scheffk’s simultaneous intervals are more conservative than the Bonferroni 
intervals. 

As the Bonferroni procedure is invariant under the transformation X + 

AXSc, where A is a diagonal matrix and c is a vector, without loss of generality, 
we can take p = 0 and E to be a correlation matrix while evaluating its coverage 
properties. For n = 15 and q = 2, the coverage probabilities are plotted in Figure 
9.3 as a function of the correlation coefficient p. We observe from these plots 
that the Bonferroni procedure seems to be very satisfactory except for large p. 
In particular, the conservatism is less severe when the nominal coverage level 
is 0.95 or 0.99. The coverage probabilities of the Bonferroni tolerance intervals 
are also presented in Table 9.3 for several sample sizes no more than 30, q = 2 
and p = 0.6. These table values and the plots in figure 9.3 suggest that the 
Bonferroni method is quite satisfactory even for small n as long as p is not too 
large. 

Table 9.3: Bonferroni simultaneous tolerance factors and their coverage proba- 
bilities (in parentheses) 

= 2; p = 0.60 
1 - Q: = 0.90 1 - LY = 0.95 

P P P 

1 - Q: = 0.99 

n 0.90 0.95 0.90 0.95 0.90 0.95 
5 4.291(.91) 5.077(.91) 5.205(.95) 6.157(.95) 7.978(.99) 9.433(.99) 
7 3.390(.91) 4.020(.91) 3.904(.95) 4.628(.95) 5.296(.99) 6.275(.99) 
10 2.856(.91) 3.393(.91) 3.175(.95) 3.771(.95) 3.972(.99) 4.715(.99) 
13 2.601(.91) 3.093(.91) 2.837(.95) 3.374(.95) 3.405( .99) 4.046(.99) 
15 2.492(.91) 2.965(.91) 2.696(.95) 3.207(.95) 3.176(.99) 3.777(.99) 

30 2.145(.90) 2.555(.90) 2.255(.95) 2.685(.95) 2.497(.99) 2.973(.99) 
20 2.319(.91) 2.760(.91) 2.474(.95) 2.945(.95) 2.827(.99) 3.364(.99) 

Example 9.1 (continued) 

We compute (0.90, 0.95) simultaneous tolerance intervals for the lumber data 
in Table 9.2. The required univariate tolerance factor should be computed when 

( n , q , p ,  1 - 5) = (30,2,0.90,0.975), 

and its value is 2.255. The PC calculator StatCaZc by Krishnamoorthy (2006) 
can be used to get this factor. Hence for stiffness, we have the tolera.nce in- 
terval XI f 2 . 2 5 5 d m  = (1066.24,2654.69), and for the strength it is 
X23~2.255d- = (4143.7,12564.6). Thus, at least 90% of stiffness measure- 
ments fall in the interval (1066.24,2654.69) and at least 90% of strength measure- 
ments fall in the interval (4143.7, 12564.6) with confidence 95%. In other words, 
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Figure 9.3: Coverage probabilitics of ( p ,  1 - a)  Bonferroni tolerance intervals as 
a function of correlation coefficient p; n = 15 and q = 2 

the rectangle formed by ( z l , y l )  = (1066.2,4143.7), (z1,y’~) = (1066.2,12564.6), 
(33, yi )  = (2654.7,4143.7) and (z2, y2) = (2654.7,12564.6) would include at 
least 90% of the stiffness and strength measurements; see Figure 9.2 for a visual 
comparison of the ellipsoidal tolerance region (discussed in the previous section) 
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and the Bonferroni simultaneous tolerance region. 

9.6 Tolerance Regions for Some Special Cases 

There are applications where one needs to construct tolerance region for a bivari- 
ate normal population with known mean vector and unknown common variance. 
For example, ballistic experts are often interested in estimating the probability 
that a missile will fall within a circle of given radius (Hall and Sheldon, 1979). 
If we assume normality, then the known coordinates of the target are the means, 
and the square root of the common variance is the radius of the circle. 

In this section, we shall address the problem of constructing a tolerance 
region for a N2(p,C), where p = (pl,p2)’ is a known mean vector and the 
covariance matrix C = diag(a11, azz). That is, C is a 2 x 2 diagonal matrix. 
In the following, we shall describe the procedures for finding tolerance factors 
under various assumptions about the parameters. We shall denote by XI, ..., X, 
a sample from &(p, C), and write Xi = (Xli, X2i)’. 

The Mean p Is Known and 011 = a22 = o2 Is Unknown 

Now XI, ..., X, is a sample from a N2(p,0212) population. Define 
S2 = & [CT=L=l(Xli - ~ 1 ) ~  + C7=1(X2i - ~ 2 ) ~ ]  , where Xi = (Xli, X2i)’, i = 
1, ..., n. As the means are known, S2 is an unbiased estimator of the common 
variance a2, and - x;,. The ( p ,  1 - a) tolerance factor kl is to be deter- 
mined so that 

2nS2 

(Xl - P d 2  + (X2 - P2I2 I kllS2) 2 p }  = 1 - a ,  (9.6.1) 
S2 

where X = (X,,X2)’ - N2(p,0212) independently of the sample. Let 21 = v, 2 2  = and V = $. In terms of these variables, (9.6.1) can be 
written as 

(9.6.2) 

Using the fact that 2; + 2; N xz independently of V - $, it can be easily 
checked (see Exercise 9.7.2) that the factor kl satisfying (9.6.2) is given by 

-4n ln(1 - p )  

x2n;a 
2 kl = (9.6.3) 
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The Mean p Is Known and g11 and ~2 Are Unknown 

Let S: = $ C ~ = l ( X ~ j  - pi)2, i = 1,2. The tolerance factor k2 has to be deter- 
mined so that 

S? and V, = 6, , i = 1,2. 
(9.6.4) as 

x.- . where X - N z ( p ,  diag(all,o22)) independently of S: and S;. Let 2, = % 
In terms of these transformed variables, we can write 

(9.6.5) 

Notice that 21, 2 2 ,  Vl and V2 are mutually independent with Zi - N ( 0 , l )  and 
V, - $, i = 1 ,2 .  As the distributions of these random variables do not depend 
on any unknown parameters, the factor k2 satisfying (9.6.5) can be estimated 
using Monte Carlo simulation similar to the one in Algorithm 9.1. Using this 
approach, Hall and Sheldon (1979) provided values of k2 for some values of 
( n , p ,  1 -a). As mentioned earlier, this algorithm involves two nested “do loops” 
and may not be stable, and so we shall provide an approximate method similar 
to the one in Algorithm 9.2. 

To find an approximation to k2 satisfying (9.6.5), we first approximate the 

ax; distribution, where a and b are to be determined by matching the moments. 
Specifically, by matching the mean and variance of Vc’Zf + Vc’Zz with those 
of ax;, we determine 

conditional distribution of V, -1 2, 2 + VT’Z; given (V1, fi). A natural choice is 

(9.6.6) 

2 2  2 2  . Using this approximate distribution for + + $ in (9.6.5), an approximation to 
kz can be obtained as the solution of 

PVl,VZ { P  (ax!  I kZlK,fi) 2 P }  = 1 - Q, 

or equivalently, 
pv1,v2 {ax;;, I k2) = 1 - a!* (9.6.7) 

Thus Ic2 is the 1 - a quantile of ax;;,. Notice that ax&, where a and b are given 
in (9.6.6), is a function of (Vl, V2) whose joint distribution does not depend on 
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any unknown parameters, and so the 1 - a quantile of ax&, can be estimated 
using Monte Carlo simulation 

The coverage probabilities of ( p ,  1-a) tolerance regions based on k2 satisfying 
(9.6.7), along with the values of k2, are given in Table 9.4, when p = 0.90,0.95, 
1 - a = 0.90,0.95 for a few values of n. It is clear from the table values that 
the estimated coverage probabilities are very close to the nominal level 1 - a 
for all the cases considered. Thus, the approximate tolerance factors are very 
satisfactory even for sample size as small as 5. 

Table 9.4: Approximate tolerance factors satisfying (9.6.7) and their coverage 
probabilities (in parentheses) 

1 - a: = 0.90 1 - CY = 0.95 
P P P 

1 - Q = 0.99 

n 0.90 0.95 0.90 0.95 0.90 0.95 
5 14.06(.90) 18.83(.90) 18.59(.95) 25.39(.95) 34.39(.99) 49.58(.99) 
7 10.77(.91) 14.32(.90) 13.39(.95) 17.76(.95) 21.54(.99) 29.37(.99) 
10 8.89 (.91) 11.62(.91) 10.44(.95) 13.84(.95) 14.75(.99) 19.52(.99) 
13 7.91 (.90) 10.44(.90) 9.08 (.95) 11.94(.95) 11.96(.99) 16.07(.99) 
15 7.50 (.90) 9.92 (.90) 8.49 (.95) 11.17(.95) 10.93(.99) 13.56(.99) 
20 6.91 (.91) 9.05 (.go) 7.63 (.95) 10.00(.95) 9.38 (.99) 12.33(.99) 

The Mean and Variances Are Unknown 

In this case the ( p ,  1 - a )  tolerance factor ks should be determined so that 

( X ,  - X , ) 2  ( X ,  - X 2 ) 2  

s22 
+ 5 k ? / S ? ,  S:> 2 p }  = 1 - a,  (9.6.8) 

where X ,  = A C,”=, X t 3 ,  i = 1,2. Setting 2, = x”=.t”4, v - (n-l)s: , and 

Q, = e, i = 1 , 2 ,  we see that k3 is the solution of the equation 
6 a - u,, 

We also note that 21, 22, Q1, Q2, V1 and V2 are mutually independent with 
Zi N N(0 ,  l), Qi - N(O,l/n) and V,  - x i - , ,  i = 1,2. For a given Q1 and 
&a,  (21 - Q I ) ~  - xT(Q4) independently of (22 - Q2)2 - xf(Qi) .  Thus, the 
approximate approach due to Krishnamoorthy and Mondal (2006) can be readily 
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used to find the factor kS. Indeed, Algorithm 9.2 with q = 2 and li replaced by 
V,  can be used to estimate the tolerance factor k ~ .  

Approximate tolerance factors satisfying (9.6.9) are computed using Algo- 
rithm 9.2 for some values of (n ,  p ,  l -a),  and they are reported in Table 9.5 along 
with their actual coverage probabilities. As the reported coverage probabilities 
are very close to the nominal level 1 - a,  the approximate method based on Al- 
gorithm 9.2 is very satisfactory for computing the tolerance factor k:$ satisfying 
(9.6.8). 

Table 9.5: Approximate tolerance factors satisfying (9.6.8) and their coverage 
probabilities (in parentheses) 

1 - cr = 0.90 1 - a = 0.95 
P P P 

1 - N = 0.99 

n 0.90 0.95 0.90 0.95 0.90 0.95 
5 20.89(.91) 28.10(.91) 29.72(.95) 40.50(.95) 65.04(.99) 91.12(.99) 
7 13.67(.90) 18.31(.90) 17.55(.95) 23.88(.95) 29.81(.99) 41.63(.99) 
10 10.25(.90) 13.68(.90) 12.25(.95) 16.33(.95) 17.88(.99) 24.55(.99) 
13 8.74 (.90) 11.62(.90) 10.12(.95) 13.53(.95) 13.75(.99) 18.50(.99) 
15 8.18 (.90) 10.85(.90) 9.39 (.95) 12.41(.95) 12.23(.99) 16.27(.99) 
20 7.32 (.91) 9.66 (.90) 8.16 (.95) 10.75(.95) 10.03(.99) 13.40(.99) 

Example 9.2 (Mass distance data) 

Let us consider the miss distance data (in meters) given in Example 1 of 
Hall and Sheldon (1979). The data are reproduced here in Table 9.6, where 
X1 values represent the horizontal miss distances and X2 values represent the 
vertical miss distances. Suppose that the target is p = (0,0)’, 011 = 022 = o 2 

Table 9.6: Miss distance data 
X I  3.38 1.62 -5.83 -0.20 1.41 2.30 3.69 0.96 -0.58 -0.63 

X7 2.15 -2.17 0.21 1.94 0.92 -2.60 1.04 -0.79 -2.03 0.20 

and the correlation between XI and X2 is zero. Since Hall and Sheldon (1979) 
assume a common variance, this variance is estimated by 

CyZl Xf i  + Cy=l Xii s =  - 
70.6268 + 26.6121 

= 4.8619. - 
2n 20 
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Let us construct a (0.50,0.95) tolerance region for the miss distances. The 
-4n1n(1-p) - Z.22.E = 2.5552. The (0.50, 0.95) tolerance tolerance factor kl = 

region is enclosed by the circle centered at (0,O) with radius k l s  = 2.5552 x 
J4.8619 = 5.6341. Thus the tolerance region is { ( X I ,  X2)  : X ;  + X z  5 5.6341) 
(see (9.6.1)). We conclude that at least 50% of the hits fall in this region with 
95% confidence. 

- 10.8508 

For the sake of illustration, let us compute a (0.50,0.90) tolerance region for 
the distribution of miss distances when the variances are unknown and arbitrary. 
Noting that n = 10, we used Algorithm 9.2 to compute the tolerance factor k2 

an its value is 2.82 (see Section 9.4). Furthermore, Sf = ‘%=l n x12t = 7.0627 
and S2 2 - - C L X L  = 2.6612. Thus, the (0.50, 0.95) tolerance region for miss 
distances is the region enclosed by the ellipse & X 2  + z.sslz x22 = 2.82. 

9.7 Exercises 

9.7.1. Let A = (a i j )  be an m x m positive definite matrix, and let 11 > ... > 1, 

be the ordered eigenvalues of A. Partition A as ( T2 2:; ) , so that 

a is a scalar. Define ~ 1 1 . 2  = a11 - A12A;tAi2. Show that nii 5 11 for 
i = 1, ..., 4 ,  and ~ 1 1 . 2  2 1,. 

9.7.2. Let X be a continuous random variable, and let A denote the event that 
P(X 5 t )  2 p .  The event A occurs if and only if t 2 xp, where xp is 
the loop percentage point of X .  Using this fact, show that the tolerance 
factor kl that satisfies (9.6.2) is given by (9.6.3). 

9.7.3. Let X = ( X : , X 2 , X 3 ) ’  - N3(p,E). Give a procedure for constructing a 
tolerance region for the distribution of D = ( X I  - X2, X I  - X3)’. 

9.7.4. Let X i l ,  ..., Xi,, be a sample from N p ( p i ,  E), i = 1,2. Assume that both 
samples are independent. Construct a tolerance region for the distribution 
of XI - X2, where XI - N p ( p l ,  E) independently of X Z  - N p ( p 2 ,  C ) .  

9.7.5. Let X be 2q x 1 multivariate normal random vector. Partition X as 

X = ( :t ) so that X I  and X2 are of order q x 1. Let XI, ..., X ,  be a 

sample on X .  Construct a ( p ,  1 - a )  tolerance region for the distribution 
of XI - xp. 



9.7 Exercises 247 

9.7.6. Ballistic experts are often interested in estimating the radius of a circle cen- 
tered at the origin that will contain 50% of a bivariate normal distribution 
with equal variance 0’ and correlation coefficient zero (Hall and Sheldon, 
1979). Note that the radius is determined by P ( X 2  + Y 2  5 r 2 )  = 0.5, 
where ( X ,  Y )  has the above bivariate normal distribution. 

(a) Show that r = 1.1774a. 
(b) Find a 1 - a confidence interval for T based on a sample ( X I  Yl), ...7 

( X n ,  Yn). 



Chapter 10 

The M u I t  ivaria t e  Li near Regression 
Model 

10.1 Preliminaries 

A multivariate linear regression model is often used to model the relationship 
between a vector response variable and one or more explanatory variables or 
covariates. This chapter is on the computation of tolerance regions in the context 
of such models. The results in this chapter generalize those in Chapter 3 and 
Chapter 9. In particular, we shall give multivariate generalizations of all the 
results in Chapter 3, including the calibration problem. Following the approach 
in Chapter 9: we shall also discuss several approximations for the tolerance 
factor. We shall first introduce the model and define the criterion based on 
which tolerance regions will be computed. 

10.1.1 The Model 

Let Y1, Yz ,  . . .  , Y ,  be n independent q x 1 random vectors having the distri- 
bution 

yi - N(P, + B X i ,  q, ( 10.1.1) 

where the xi’s are known rn, x 1 vectors, representing values of a vector explana- 
tory variable, Po is a q x 1 intercept vector, B is a q x m matrix and C is a y x q 
positive definite matrix. Furthermore, Po, B and E are unknown parameters. 
Write 

y = ( Y l ,  YP,...  , Yn), x =  ( X l , X P , . . .  >X,) .  (10.1.2) 
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Then Y and X are q x n and m x n matrices, respectively, and 

Y N N(Po1; + B X ,  I ,  @I C), (10.1.3) 

where I ,  8 E is actually the variance covariance matrix of vec( Y ) ,  i.e., the 
vector obtained by writing the columns of Y as an nq x 1 vector. Now let Y ( x )  
denote another observation, independent of Y ,  and having the distribution 

Y ( X )  “ P o  + B x ,  El, (10.1.4) 

where x is a known value of the explanatory variable. Our problem is the 
construction of a tolerance region for Y ( x ) ,  using the data matrix Y having 
the distribution in (10.1.3). Throughout, we shall assume that the (m + 1) x n 
matrix ( l , ,  X’)’ has rank m + 1. 

Let Bo and g denote the least squares estimators of Po and B ,  under the 
model (10.1.3). Then 

1 

( 10.1.5) 

Note that the matrix 
X P , X ’  is nonsingular (in fact, positive definite) in view of our assumption 
that the matrix ( l n , X ’ )  has rank (m + 1). Also, 5 N N [ B ,  { X P , X ’ } - l  8 C ] .  
Let A denote the residual sum of squares and sum of products matrix computed 
based on the model (10.1.3). Then 

L >  h 

B = Y P , X ‘ [ X P , X ’ ] - l ,  with P ,  = I ,  - - 1 , l ;  

Po = Y -  BX, 
h h 

where Y = Yi and X = n C ; = l ~ i .  1 

h 

A = [Y - & l ; - Z l X ] [ Y  - p o l ; - B X ] ’  

= Y I , -  P,x’{xP,x’}-lxP, Y‘ 

(10.1.6) 

where f m  = n - m - 1 and Wq(C,  T )  denotes the q-dimensional Wishart distri- 
bution with df = T and scale matrix C. We also assume that f m  2 q, so that A 
is positive definite with probability one. Note that C = &A is an unbiased es- 
timator of E. For Y ( x )  having the distribution in (10.1.4), the tolerance region 
that we shall construct is of the form 

[ 1 
w & f m ) ,  

h 

1 { Y ( X )  : [ Y ( x )  -a, - 5 X ] ’ 9 [ Y ( X )  - B o  - 5x1 I k ( x )  

= { Y ( x )  : ( f m ) [ Y ( x )  - Y - 2 ( x  - x)]’ 

A-l[ Y ( x )  - Y - g ( x  - x ) ]  5 k ( x )  (10.1.7) 
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where k ( x )  is the tolerance factor to be determined. In order to define the 
criterion to be satisfied by tolerance regions, let 

‘y ,E,A(”)  = ‘ Y ( X ) {  ( f ’ ) [ y ( x )  - y - 6 ( x - x ) 1 ’  

A P 1 [ Y ( x )  - Y - 6 ( x - % ) ]  5 k ( x ) l Y , g , A  (10.1.8) 

Note that C -  (x) is the conditional content of the region (10.1.7), condi- 

tionally given Y ,  6 and A. The region (10.1.7) is a ( p ,  1 - a)  tolerance region 
if k(x) satisfies 

1 
y ,B ,A  

x )  > p ]  = 1 - a. (10.1.9) %, B ,A  1‘ y ,  B , A ( - 

In this chapter, we shall develop some approximations for the tolerance fac- 
tor, i.e., approximations for k ( x )  satisfying (10.1.9), similar to the approxi- 
mations developed in Chapter 9. Conclusions regarding the adequacy of the 
approximations are also reported, based on numerical results. Instead of us- 
ing approximations, the tolerance factor can also be estimated by Monte Carlo 
simulation. The necessary framework for this Monte Carlo estimation is also 
developed in this chapter. We would like to emphasize here that we consider 
the derivation of tolerance factors only, i.e., the derivation of k(x)  for a fixed x .  
The computation of simultaneous tolerance factors is not addressed here. Some 
limited results in this direction are available in Lee (1999). 

10.1.2 Some Examples 

In order to illustrate the concepts of tolerance regions in the context of a mul- 
tivariate linear regression model, we shall use an example dealing with blood 
glucose measurements given in Andrews and Herzberg (1985, p. 211). The 
problem and the data first appeared in O’Sullivan and Mahan (1966). Here the 
vector x = (XI, z 2 ,  ~ 3 ) ’  represents the fasting glucose measurenients of an indi- 
vidual on three occasions and (Yl , Y2, y3)’ are glucose measurenients one hour 
after sugar intake, on the three occasions. The data given in Table 35.2 of An- 
drews and Herzberg (1985) consist of measurements for 52 wornen. We shall 
denote these by (xi ,  Y i ) ,  i=1,2, ..., 52. We shall assume that a multivariate 
linear regression model explains the relationship between Yi and x i .  and Yi 

follows a multivariate normal distribution. That is 

yi - “P,,  + Bxz, C), ( 10.1.10) 

where Po,  B and C are unknown, and the Y i ’ s  are independent. Analysis of this 
data based on a multivariate linear regression model is also discussed in Rencher 
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(1995, Problem 10.15). Now suppose Y (x) is another observation, independent 
of the Y i ’ s  in (lO.l.lO), corresponding to a known value x of the fasting blood 
glucose measurement. Then 

Y (x) - N ( P ,  + Bx, X).  (10.1.11) 

A tolerance region in this context is a region that is expected to contain most 
of the Y (x)-distribution, i.e., most of the glucose measurements one hour after 
sugar intake, for those individuals having a fixed vector x of fasting blood glucose 
measurements. Later in this chapter, we will consider this example once again. 

Tolerance regions in the context of a multivariate growth curve model have 
been investigated by Bowden and Steinhorst (1973). The growth curve was 
assumed to be a polynomial in time, and the problem was to construct tolerance 
bands for the population mean growth curves. The model, though similar to 
(lO.l.lO), also contained random effects, and Bowden and Steinhorst (1973) also 
assumed X to be a multiple of the identity matrix. Their article also contains 
an example dealing with tolerance bands for the growth curves of fish, where 
the growth turned out to be linear in time. 

10.2 Approximations for the Tolerance Factor 

We shall now derive some approximations for k(x)  satisfying (10.1.9), using 
approaches similar to those described in Section 9.3. Along the way, we shall 
obtain a representation for the tolerance interval condition (10.1.9), which will 
facilitate the Monte Carlo estimation of the tolerance factor. An interesting and 
practically useful observation is that k(x) depends on x only through the scalar 
d2 given in (10.2.7) below. Recall a similar observation in the context of the 
univariate linear regression model; see Section 3.2 of Chapter 3.  

We shall first obtain a simplified expression for P-  y,fi,A[cy,g,A(x) 2 PI, 
(x) is defined in (10.1.8). Using (10.1.4) and the distributions 

and A - 
where C -  

Zr - N[B,{x(I, - :I,IL)X’}-~ @ XI,  Y - N ( P ,  + ~ x ,  
w& f m ) ,  we get 

y ,B ,A  

21 

GI 

= z-i [ Y (x) - Po - Bx] - N ( 0 ,  14),  

= E-i (S - B) - N(0 ,  {XP,X’}-l @ I 4 ) ,  

u1 = c - + ( Y - p , - B x ) - N  

(10.2.1) 
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where 21, G I ,  U1 and V are also independently distributed, and we also recall 
that P ,  = ( I ,  - ~ 1 , l ~ ) ;  see (10.1.5). Hence 

H l = U l + G l ( x - X ) - N  (10.2.2) 

where, 
c2 = ( x  - X)’{xP,x’}-1(x - x). (10.2.3) 

Straightforward algebra gives 

[ Y ( x ) -  Y - g ( x - X ) ] ’ A - l [  Y ( x ) -  Y - g ( x - x ) ]  = (2, -Hl)’V-’(ZI - H I ) ,  
(10.2.4) 

where 21 and V are defined in (10.2.1) and H1 is given in (10.2.2). Thus the 
condition (10.1.9) can be expressed as 

( 10.2.5) 
The equation (10.2.5) can be used for the Monte Carlo estimation of k(x); this 
will be discussed in the next section. 

In order to facilitate approximate calculation of the tolerance factor k ( x ) ,  
we shall now provide yet another simplification of the above condition. Let I? 
be an orthogonal matrix such that 

r ’Vr  = Lo = diag(ll,12,. . . , I,), (10.2.6) 

where 11 > 12 > . . . > I ,  denote the ordered eigenvalues of V .  Clearly, 

z = r’zl - N ( o , & ) ,  

H = r ’H1  - N(0,d21,),  where d 2 1 2  = - + c , (10.2.7) 
n 

and, from (10.2.4), 

[ Y ( x )  - Y - g ( x  - x)] ’  A-I [ Y ( x )  - Y - g ( x  - X ) ]  

= (2 - H)’LOl(Z - H )  

(10.2.8) 

where Z = (Z1,Z2,.. .  and H = ( H l , H 2 , . . .  , H p ) ’ .  Note that in the 
distribution of the statistic in (10.2.8), the vector x comes into the picture 
through the scalar quantity d2 in (10.2.7), since the distribution of H involves 
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d2;  see (10.2.7). Let L = ( 1 1 , 1 2 , .  . . , lp)’. Then the tolerance region condition 
(10.1.9) can be written as 

where we have used the notation k l ( d )  instead of k(x), and d2 is defined in 
(10.2.7). If we were to prepare tables of kl(d), estimated by Monte Carlo, fairly 
extensive tables will have to be prepared since kl  (d )  depends on several variables: 
q,  f m ,  p ,  1 - a and d .  Hence it is highly desirable to have good approxiniations 
for k l ( d ) .  Obviously, the purpose of the approximation is to come up with an 
analytic expression for k l ( d ) ,  so that k l ( d )  can be easily computed. Let [ ( V )  
be a scalar valued function of V satisfying 

1, < I (V)  < 11. (10.2.10) 

Some choices for [ ( V )  will be discussed later. As an approximation, we shall 
replace all the li’s in (10.2.9) by [ ( V ) .  In the sequel, we shall use the notation 
x: (q )  to denote a noncentral chi-square random variable with df = T and noncen- 
trality parameter q,  and x: to denote a central chi-square random variable with 
df = T .  Using the fact that conditionally given H ,  C:=’=l(Zi - Hi)2 N x ; ( H ’ H ) ,  
an approximate version of the condition (10.2.9) is 

I 1  PH,<(V, [ P  { ( f m ) @ q x : ( H ’ H )  I k l ( d ) l H , W )  L P = 1 - a. (10.2.11) 
1 

Note from (10.2.7) that 

H‘H N d2X:, where d 2 1  = - + c2,  ( 10.2.12) 
n 

as defined in (10.2.7). We shall now approximate the distribution of x ; ( H ’ H )  
with a scalar multiple of the product of a central chi-square random variable and 
a noncentral chi-square random variable. This is accomplished by equating the 
conditional first moments (conditionally given H )  and the unconditional second 
moments. The result is stated below. 

Lemma 10.1. Suppose H‘H has the distribution in (10.2.12). Then the dis- 
tribution of x ; ( H ’ H )  can be approximated by that of &xZx:(d), where 

q ( l  + d2)2 
d4 ’ e =  

d4 
f = -1 

. (10.2.13) 1 6 = d [  2 d 2 ( q  + 2) + J d 4 ( q  + + (2d2 + 1)q(q + 2) 
2d2 + 1 
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Fur thermore ,  xz depends  on ly  on H,  x i (&)  does n o t  depend o n  H a n d  xz and  
xi(6) are independent ly  dis tr ibuted.  

Proof: Approximating the distribution of x i ( H ‘ H )  by that of a,yi(b) ,  we get 
a = w, by equating the first moments, conditionally given H .  Here S is a 
non-random quantity to be determined. We thus have the approximation 

(10.2.14) 

Using the distribution of H’H in (10.2.12) and equating the unconditional sec- 
ond moments of the random variables on both sides of (10.2.14), we get 

[2 (q  + 2H’H) + ( 4  + H’H)2]  = E‘(q + H ’ H ) 2 1 [ 2 ( q  + 26)  + ( q  + s ) ~ ] .  
( 4  + R ) 2  

(10.2.15) 
Since E ( H ’ H )  = d2q and E[(H’H)2]  = 2d4q + ( d 2 q ) 2 ,  (10.2.15) gives 

Solving, we get 

1 d 2 ( q  + 2 )  + Jd4(q + 2 ) 2  + (2d2 + l ) q ( q  + 2 )  
2d2 + 1 

S = d2 

Finally, we approximate the distribution of q + H‘H by that of f x : ,  where f 
and e are determined by equating the first and second moments. This gives 

q( I + d 2 ) 2  
d4 ’ 

and e = 
d4 

f = m  ( 10.2.16) 

Thus we finally have the approximation x; (H’H)  M &xzx;(S), where f, e 
and 6 are as given above. This completes the proof of the lemma. 

It should be noted that it is not our intention to study the accuracy of the 
approximation in the above lemma. Our purpose is to use the above approxi- 
mation towards deriving an approximate tolerance factor. The accuracy of the 
approximate tolerance factor will then be investigated. 

( 10.2.17) 
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where W1 and W2 are also independent. In view of Lemma 10.1, along with the 
results in (10.2.11) and (10.2.17), we conclude that k l ( d )  satisfies 

The choices of [ ( V )  that we shall make will be such that 

( 10.2.19) 

at least as an approximation, for some positive constants el and e2. The con- 
stants el and eg can be determined by equating the first and second moments. 
Before we look at specific choices for [ (V) ,  and the values of el and e2, we 
shall show that when (10.2.19) holds, k l ( d )  satisfying (10.2.18) can be obtained 
analytically. Note that the distributions in (10.2.17) and (10.2.19), along with 
the independence of W1 and s(V) give 

(10.2.20) 

the central F-distribution with df =(e ,  e2) .  Using WO in (10.2.20), (10.2.18) can 
be expressed as 

wow2 I kl(d)(WcI 2 p = 1 - a. ( 10.2.2 1) > I  Pw, [ Pw, { 
w n ( q  + 6) 

k l ( d )  satisfying (10.2.21) can be derived explicitly and is given by 

( 10.2.22) 

where Frl,rz;Cu denotes the a quantile of a central F-distribution with 
(q l ,  q 2 )  df, and xf,,,, denotes the cy quantile of a noncentral chi-square dis- 
tribution with T df and noncentrality parameter q. Finally, k l ( d )  in (10.2.22) is 
our approximate tolerance factor. 

In order to  compute (10.2.22), the quantities required are f ,  e and S in 
(10.2.13), the constants el and e2 in (10.2.19) and the percentiles x;;,(b) and 
Fe,ez;l-a. Thus we need to  make an appropriate choice of <(V) so that (10.2.19) 
will hold at least approximately, and the constants el and e2 can be obtained. 
The following choices of ( ( V ) ,  to  be denoted by <1(V) and [2(V): are recom- 
mended in Chapter 9: 

< l ( V )  = v11.2 

(10.2.23) 
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where Vfi12 is the first element of V-l .  When &(V)  = l41.2, we have e l  = 1 and 
e2 = n - m - q in (10.2.19), since V11.2 - x ~ , - ~ ~ ~ ~ ;  see Anderson (1984. Theorem 
7.3.6). The value of Icl(d), say kll(d), resulting from the choice t ( V )  = V11.2 is 

2 

(10.2.24) 

Regarding the choice &(V) in (10.2.23), we shall conipute el and e2 so that 
(10.2.19) will hold approximately. Following the arguments in Chapter 9, we 
shall compute el and e2 in (10.2.19) by equating the first two moments of -!-- 

C2(V) 

to those of &. The first two moments of 

in Chapter 9 are: 

1 
E ( & )  = n - m - q - 2  

2q(n - m - q - 1) - 3(q - 1) 
2q(n  - m - q - 1)(n - m - 'I - 2)(n - m - q - 4) 

(10.2.25) 

1 Equating these The first two moments of 
two quantities to  the respective moments in (10.2.25), we get the values of el 

and e2, to be denoted by el2 and e22: 

e:(e2-2)(e2-4) ' 
and are elo 1 

4q(n - m - q - 1)(n - m - q )  - l2(q - l ) ( n  - m - 4 - 2) 
3(n - rn - 2) + q(n - m - q - 1) e22 = > 

n - m - a - 2  
e12 = 

e22 - 2 
(10.2.26) 

Thus the value of k l ( d ) ,  say kl2(d), resulting from the choice [ ( V )  = &(V) in 
(10.2.23) is given by 

( 10.2.27) 

where el2 and e22 are given in (10.2.26) 

10.3 Accuracy of the Approximate Tolerance Factors 

We compared the approximate tolerance factors kll(d) and kl2(d) in (10.2.24) 
and (10.2.27), respectively, with a Monte Carlo estimate of the actual tolerance 
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factor kl  ( d ) .  Recall that k l ( d )  satisfies (10.2.9). Equivalently, k l ( d )  satisfies 

where 

(10.3.2) 

We also obtained Monte Carlo estimates of the coverage probabilities of the 
tolerance regions obtained using k l l ( d )  and k l z ( d ) .  Note that this is simply an 
estimate of the left hand side of (10.3.1). When these estimates are close to 
1 - a, we conclude that the corresponding tolerance factor is accurate. The 
specific numerical results are not reported here; see Lee (1999) and Lee and 
Mathew (2004). The conclusions that emerge from the numerical results are as 
follows. 

For a fixed value of fm, the approximations k l l ( d )  and k12(d) become less 
satisfactory as the dimension q increases. In this regard, k l z ( d )  appears to be 
worse. If fm is not large, k l l ( d )  is a satisfactory approximation, provided that q 
is not large. In situations where the tolerance regions based on k l l ( d )  is liberal 
(i.e., the estimated coverage probability is less than the nominal level 1 - a ) ,  it 
is more so when p is large and 1 - a is small. In fact if p is not too big, k l l ( d )  
mostly provides a conservative tolerance region. The approximat’ion kl2 ( d )  is 
unsatisfactory unless f m  is large; it becomes a particularly poor approximation 
especially when p and the dimension q get large. However, k l l ( d )  is somewhat 
conservative in this case. When fm is rather big, both k l l ( d )  and k12(d) turned 
out to be very satisfactory. 

In situations where the approximate tolerance factors are unsatisfactory, the 
tolerance factor can be estimated by Monte Carlo simulation. The representation 
(10.3.1) can be conveniently used for this purpose. 

10.4 Methods Based on Monte Carlo Simulation 

The Monte Carlo simulation explained in Section 9.4 of the previous chapter 
can be easily adopted for computing k l ( d )  satisfying (10.2.5). We shall briefly 
explain this in this section, as described in Krishnamoorthy and Mondal (2008). 

To begin with, an algorithm similar to Algorithm 9.1 can be used for the 
estimation of kl  ( d ) ,  without using any further approximations. The random 
variables to be generated are specified in (10.2.1)-(10.2.3). The algorit,hm is 



10.4 Methods Based on Monte Carlo Simulation 259 

given below: 

Algorithm 10.1 

1. For a given n, m, q ,  p ,  1 - a, X, and for a specified value of the vector x, 
compute c2 given in (10.2.3), and d2 = i + c2. 

2. Generate Hli - N4 (0, d21,) and Vi - W4(14, f m ) ,  i = 1, ..., ml 

3. For each i, generate Z1j - Nq(0,14) 
compute Qj = ( f m ) ( Z l j  - H1)’V- ( z l j  - H I ) ,  j = I, ..., m 2 .  

4. Set Ti = 100pth percentile of the Qj’s, i = 1, ..., ml. 

The l O O ( 1  - a )  percentage point of the Ti’s is a Monte Carlo estimate of the 
tolerance factor Icl ( d ) .  

Algorithm 9.2 of Chapter 9 can be easily adopted to  get an accurate approx- 
imation for k l ( d ) .  For this, define 

1+jH: 4 
i=l 1; 4 

4 

cj =>: . , j =  1,2,3 and a =  -, (10.4.1) 

where d2 = i + c2, H: - d2X: (i = 1, 2, ..., q )  are independent chi-square 
random variables with one df each, and the li’s denote the ordered eigenvalues 
of V .  We now have the following algorithm similar to  Algorithm 9.2. 

Algorithm 10.2 

1. For a given n, m, q ,  p ,  1 - a, X, and for a specified value of the vector x, 
compute c2 given in (10.2.3): and d2 = i + c2. 

2. Generate Hf - d2X:, ..., H: - d2X: and V - W4(Iq ,  f m ) .  

3. Compute the eigenvalues Z1, ..., 1, of V .  

4. Compute C ~ , C ~ , C Q  and a using (10.4.1). 

5. Set T = (fm) ( f i ( x ; , a  - a )  + C l ) .  

6. Repeat Steps 2-5 ml times. 
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The 1007th percentile of the ml simulated 7”s is a Monte Carlo estimate of the 
tolerance factor Icl (d ) .  

The numerical results reported in Krishnamoorthy and Mondal (2008) show 
that the approximate tolerance factor obtained using Algorithm 10.2 practically 
coincides with the exact ones for the case of simple linear regression model. 
For q 2 2, their simulation studies showed that the factors based on Algorithm 
10.2 are very satisfactory. In the previous section we did identify the situations 
where the tolerance factors kll ( d )  and klz(d), having closed form expressions, are 
accurate enough for practical use. When this is not the case, the computation 
of the tolerance factor using Algorithm 10.2 appears to be the only practical 
solution that is easy to compute, and is also accurate. 

10.5 Application to the Example 

We shall now illustrate the construction of the tolerance region for the example 
in Section 10.1, dealing with blood glucose measurements. The data on the 
measurements of blood glucose levels for 52 women are given in Andrews and 
Herzberg (1985, Table 35.2). Here x = ( x ~ , Q , Q ) ’  represents fasting glucose 
measurements on three occasions and (Y1, Y2, Y3)’ represents glucose measure- 
ments one hour after sugar intake on the three occasions. We take p = 0.95, and 
1 - a = 0.99. The quantities needed for constructing the tolerance region are 

0.5933 -0.1378 0.5499 109.1346 

0.5245 -0.3815 0.8257 109.8462 
70.1154 13676.3931 12664.9718 13139.9057 

[ 13139.9057 12572.0367 13534.1261 

0.1046 0.7688 0.3043 ] , Y = [ 104.5769 ] , 
1 73.4231 , A  = 12664.9718 12317.8247 12572.0367 .(10.5.1) 

x =  [ 75.1154] 

Suppose we want to find a tolerance region when x = (103,103,100)’. From 
(10.2.3) and (10.2.7), we get d2=0.4752. From (10.2.24) and (10.2.27), we have 

(fm)ef ~ i ; ~ ( 6 ) J ’ ~ , ~ - ~ - ~ ; l - ~  = 24.3434, (10.5.2) 
kll(d) = (n  - m - q ) ( q  + 6) 

and 

Therefore, a tolerance region for Y(x) is 

(10.5.3) 

{ Y(x) : 48[Y(x)- Y - g ( ~ - x ) ] / A - l [ Y ( x ) -  Y-g(x-X)]  5 kl(d)}, (10.5.4) 
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where 2, Y ,  X and A are given in (10.5.1). In the place of k l ( d ) ,  we can 
use k l l ( d )  or k12(d) given in (10.5.2) and (10.5.3), respectively, when x = 

(103,103,100)’. Our numerical results showed that k12(d) is a more satisfac- 
tory tolerance factor in this situation; thus we recommend the tolerance region 
based on kla(d) .  Note also that Ic l2(d)  is smaller than k l l ( d )  in this example. 

10.6 Multivariate Calibration 

In Chapter 3 we discussed the computation of multiple use confidence intervals 
for the univariate calibration problem in a linear regression context. We now take 
up the same problem in the multivariate case. More specifically, we shall address 
the problem of computing multiple use confidence regions for the multivariate 
calibration problem. For reviews and discussions on the multivariate calibration 
problem, see the papers by Brown (1982), Brown and Sundberg (1987) and 
Sundberg (1994, 1999), and the book by Brown (1993). 

10.6.1 Problem Formulation and the Pivot Statistic 

In order to formulate the problem, consider the model (10.1.3)> and recall that 
we derived tolerance regions for the distribution of the random variable Y(x) 
as specified in (10.1.4), where the vector x consists of known values of the ex- 
planatory variables. In the calibration problem, we have an observation Y (x) 
corresponding to an unknown value x of the explanatory variable. The problem 
of interest is the computation of a confidence region for the unknown vector x 
using the data matrix Y having the normal distribution specified in (10.1.3), 
along with the observation Y ( x )  having the distribution in (10.1.4). 

While addressing the univariate calibration problem in Section 3.4 of Chap- 
ter 3, a multiple use confidence region was derived by inverting a simultaneous 
tolerance interval for the observation Y ( x ) .  In the same section, it was also 
noted that a multiple use confidence region can be derived by inverting a toler- 
ance interval, rather than a simultaneous tolerance interval. The justification for 
this observation came from numerical results only. It is this latter observation 
that we shall use for the derivation of multiple use confidence regions in the mul- 
tivariate calibration problem. Once again, this approach will be justified based 
on numerical results. In this context, we note that satisfactory simultaneous 
tolerance regions are not available in the multivariate regression set up. 
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Recall that our models are given by 

y “ P ( L  + BX, I , @  q, Y ( x )  - N ( P ,  + B x ;  C ) ,  (10.6.1) 

where the above quantities are as defined in Section 10.1.1, except that Y ( x )  
has been observed corresponding to an unknown x .  In the calibration problem, 
the data matrix Y is referred to as the calibration data. The dimensions of Y ,  
Y ( x )  and X are q x n, q x 1 and m x n, respectively, and those of the parameters 
Po,  B, C and x are q x 1, q x m, q x q and m x 1, respectively. In order that x 
be identifiable, we shall also assume that q 2 m. In the context of multiple use 
confidence regions, it is understood that there will be a sequence of independent 
Y ( x )  values corresponding to a sequence of possibly different x values having 
the distribution specified in (10.6.1); see also Section 3.4. 

Consider the least squares estimators 6 and 9, given in (10.1.5) and the 
Wishart matrix A given in (10.1.6). The pivot statistic that we shall use for 
constructing a confidence region for x is motivated by the following observation. 
From the model for Y ( x )  given in (10.6.1), it follows that if Po, B and X are 
known, the weighted least squares estimator of x is 2 = (B’X-’B)-lB’C-l ( Y ( x ) -  
Po) with covariance matrix (B%‘B)-’. Hence the quantity (x-x) ’B’X-’B(2-  
x )  is a natural pivot for constructing a confidence region for x .  Since Po, B and 
X are unknown, we shall replace them by the corresponding estimators, namely 
&,, 6 and L A .  Thus, let 2 = (g’A-’g)-’g’A-’( Y ( x )  - B0), and a pivot 
for constructing a confidence region for the m-dimensional vector x is f? 

n - m - q  
m 

T ( x )  = (2  - x ) ’ g ’ A - ’ g ( S  - x )  

[ Y ( x )  - Y - g(x - x)]’A-’6(6’A-’6)-’g’A-’ x 
n - m - q  

m 
[ Y (x) - Y - i 3 (x  - x ) ] .  

- - 

( 10.6.2) 

We note that if q = m, then the above pivot simplifies to 

n-2m 
m 

T ( x )  = ~ [ Y ( x )  - Y - 6 ( x - X ) ] ’ A - ’ [ Y ( x )  - Y - 6 ( x - x ) ] .  (10.6.3) 

The confidence region for x that we shall construct is given by 

where kz(x) ,  a function of x ,  is to be determined subject to appropriate coverage 
probability requirements. 
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10.6.2 The Confidence Region 

We shall now explain the coverage probability condition to be satisfied by mul- 
tiple use confidence regions. The condition is similar to the corresponding con- 
dition in Chapter 3, Section 3.4; thus we shall not elaborate upon tho interpre- 
tations of the condition. Let 

C2(x; Y , G . A )  = PY(,) { W )  5 kz(X)l Y , G , A } .  (10.6.5) 

Let {xj}, j = 1, 2, ...., Ad, denote a sequence of M values of x, and let {Y(xj)}, 
j = 1, 2, ...., M ,  denote the corresponding sequence of M independent Y(x)  
values. The function k2(x) is to be determined subject to the following condition: 

(10.6.6) 

for every sequence {xj}, j = I, 2, ...., M ,  and for every positive integer A l .  
Obviously, a sufficient condition for (10.6.6) to hold is that 

[minXc2(x; Y , ~ , A )  2 p ]  2 I - a ,  pY,B:A (10.6.7) 

where the minimum in (10.6.7) is to be computed subject to available bounds 
on x. 

The conditions given in (10.6.6) and (10.6.7) are both difficult to work with, 
and solutions based on them are currently not available. Thus we shall now ex- 
hibit a solution based on a tolerance region condition. This approach is pursued 
in Mathew, Sharma and Nordstrom (1998), who also report numerical results to 
verify if the solution so obtained satisfies the condition (10.6.6). The tolerance 
region condition that we shall work with is given by 

P -  y ,B ,A  [C2(x; Y ,  g ,  A )  2 p ]  2 1 - a. (10.6.8) 

It turns out that the left hand side of (10.6.8) depends on B.  Consequently, we 
shall obtain a conservative solution. That is, we shall derive k,(x) so that for the 
corresponding C ~ ( X ;  Y ,  6, A) defined in (10.6.5), the left hand side of (10.6.8) 
will be greater than or equal to 1 - a. We shall now give the theoretical result 
that shows the existence of a Ic2(x) that provides such a conservative solution. 
The computation of Ic~(x) will then be explained. Actually the k2(x) that we 
compute turns out to be a function of c2 defined in (10.2.3). Thus from now on, 
we shall use the notation k2(c2) instead of k2(x). We also recall the ideritifiability 
assumption q 2 rn. 
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Lemma 10.2. Let W1 - Wm(I,,,n - q - I) ,  W2 - Wq-m(Iq-m,fm), 
W - N(O,I ,  8 Iq-m) ,  and Wo - xt, where W1, W2, W and Wo are also 
independently distributed. For q > rn, let X = ( A l ,  A2, ...., A,)’ denote the eigen- 
values of ( I  + WWilW’)WT1, and for q = rn, let X = ( A l ,  As, ...., A,)’ denote 
the eigenvalues of W,’,  where it is assumed that A1 2 A2 2 .... 2 A,. Let 
k2(c2) satisfy 

m 

i=2  

(10.6.9) 

chi-square random variable with 

1 df and non-centrality parameter ((A + c2)W0), x$, i = 2, 3, ..., rn, denote 

central chi-square random variables each having 1 df, and ~ 2 , ~  (; + c2)Wo 

and x? are all independently distributed. Then 

( 10.6.10) 

In the statement of Lemma 10.2, we note that the non-central chi-square 

random variable ~ 2 , ~  ((n-l + c2)W0) has a non-centrality parameter that is 

also random, since Wo - x:. Also, recall that c2 is a function of x, the quantity 
for which a confidence region is required; see (10.2.3). The proof of Lemma 10.2 
is given in Mathew, Sharma and Nordstrom (1998). The proof is technically 
involved, and is not included here. 

10.6.3 Computation of the Confidence Region 

In order to implement the above confidence region for x the major practical 
problem is the computation of k2(c2)  satisfying (10.6.9). Note that the functional 
form of k2(c2)  is required. We shall now explain the numerical computation of 
k2 (c2 1. 

Note that in practical applications of calibration where the models (10.6.1) 
are applicable, the parameter of interest, namely x, represents a physical quan- 
tity and a parameter space for x will be known. In particular, an upper bound, 
say 6, will be available on c2. Thus we shall assume 

0 5 c2 5 6. (10.6.11) 
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Our numerical computation of k ( c 2 )  will be for c2 satisfying (10.6.11). It can be 
shown that k2(c2) is an increasing function of c2 (this follows from (10.6.9), along 
with the property that a noncentral chi-square random variable is stochastically 
increasing in the noncentrality parameter). Our approach for numerically ob- 
taining the functional form of k2(c2)  is as follows. Numerically evaluate the value 
of k2(c2) satisfying (10.6.9) for a few specified values of c2 satisfying (10.6.11) 
and try to fit a suitable function to the values of k2(c2 )  so obtained. The fitted 
function will approximately give the functional form of k2(c2) ,  which can be used 
to compute the region (10.6.10) for x. 

Thus, our problem is the numerical evaluation of k2(c2)  satisfying (10.6.9) 
for various values of c2 subject to (10.6.11), for specified values of p and 1 - a. 
For any given value of c2, say c:, we will need a starting value, say kz*(cf), 
for evaluating k2(c:). The starting value k2*(c:) that we shall use will be such 
that kp*(c:) < k2(cf) and its choice for any c: 2 0 will be exhibited shortly. 
Once kp*(c:) is chosen for a specified value of cf, such that kp*(c:) < k2(c:) ,  
we shall increase the value of k2*(cf) in steps, each time numerically evaluating 
the left hand side (111s) of (10.6.9), until the lhs of (10.6.9) is equal to 1 - a 
up to a desired level of accuracy. The lhs of (10.6.9) can be evaluated for a 
given value of c: and k2*(c:) in the following manner. Generate one set of 
values of the Wishart matrices W1 and W2, the normal matrix W and the chi- 
square random variable WO specified in Lemma 10.2, and compute the ordered 
eigenvalues A1 > A2 > . . . > A, of the matrix ( I ,  + WW;’W’)W,’. (If 
g = m, we need to generate only the Wishart matrix W1 and the Xi’s are the 
ordered eigenvalues of IVY’). For the value of X = ( A l , .  . . ,A,)’ and WO so 
obtained, let i ( X ,  Wo) be an indicator function that takes the value one if 

If (10.6.12) does not hold, assign the value zero to i(X,Wo). Note that the 
computation of i ( X ,  Wo) requires the computation of the lhs of (10.6.12), which 
is a probability involving linear combinations of independent chi-square random 
variables. For any specified value of X and WO, the lhs of (10.6.12) can be 
evaluated using simulation. The values of X and WO can be generated a large 
number of times, and the value of i(X,Wo) can be evaluated each time. The 
lhs of (10.6.9) is the proportion of times i(X,Wo) takes the value one. If this 
proportion is less than 1 - a ,  then kz*(cf) < kz(c5) and the value of k ~ * ( c : )  
has to be increased in order to get a better approximation of k2(cf).  As already 
pointed out, we increase the value of k2,(cf) in steps, each time computing 
the proportion of times i(X,Wo) takes the value one, until this proportion is 
approximately equal to 1 - a. Once k2(c2)  is thus computed for a few values 
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of c2,  an approximate functional form of k2(c2) can be obtained. Later in this 
section, we shall illustrate this procedure using an example. 

For c2 = 0, a starting value k2*(0) satisfying k2*(O) < k2(O) is exhibited in 
Mathew, Sharma and Nordstrom (1998), and is given by 

> Fm,n-m-q;p(l-cu) , (10.6.13) 1 k2* (0) = max 

where F,,,,,;, denotes the 100r percentile of an F-distribution with (ml, ma) df. 
The quantity k2,(0) given above can be taken as a starting value for computing 
k2(0). The value of kz*(O) can be increased in steps in order to arrive at k2(0) ,  
as already explained. Now consider a finite sequence of values 

2 (10.6.14) 2 2  0 < c1 < c g  < . . .  < c, = s. 

Since k2(c2)  is an increasing function of c2,  we have k2(O) < k2(c:). In other 
words, once k2(O) is numerically obtained, it can serve as a starting value for 
the evaluation of kz(c5). In general k2(cf) is a starting value for the evaluation 
of kz(cf+,) when cf < c?+~ .  The value of s and the choice of the cf’s in the 
interval [0,6] satisfying (10.6.14) are clearly subjective. If 6 is small, the interval 
[0, S] will be narrow and perhaps the numerical evaluation of k2(c:) for a small 
number of cf I s  may be enough to approximately determine the functional form 
of k2(c2). Hopefully, the example given later in this section will provide further 
insight into the various aspects of the above numerical procedure. 

Here is a summary of the numerical procedure for the evaluation of k2(c2). 

( i )  Start with k2*(O) in (10.6.13) for the evaluation of k 2 ( 0 ) .  Since k2*(0) 5 
k2(0), the value of k2*(0) can be increased in steps, each time evaluating the 
lhs of (10.6.12), until its value is approximately equal to 1 - a. The numerical 
evaluation of the lhs of (10.6.13) is already explained above. 

( i i )  Fix s values of c2 satisfying (10.6.14). For c : + ~  > cf, k2(c:) can be taken 
as a starting value for the computation of k z ( ~ f + ~ ) .  The value of k2(c,”) can 
be increased in steps, as mentioned before, in order to arrive at k2(6,”+1),i = 
0,1,2 , . . . ,  s-1.  

( i i i )  The pairs (c:,k2(c:)), i = 0,  1, 2, ..., s (where cg = 0) can be plotted 
and a suitable function can be fitted. Since we have a finite interval [O,S], a 
polynomial of appropriate degree should provide a good fit. 
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10.6.4 A Generalization 

A model that is more general than (10.6.1) is one where x in (10.6.1) is a 
nonlinear function of fewer unknown parameters, denoted by an r x 1 vector ( 
( r  5 m). Let h ( t )  denote this m x 1 vector valued function. Here the functional 
form of h(() is assumed to be known. We then have the model 

The columns of X are now the values of h( .) evaluated at known design point,s. 
The problem now is the construction of a confidence region for [. Note that 
the model (10.6.15) will arise when we have polynomial regression. We shall 
assume that the components of h(J) are differentiable functions of t .  Under 
this assumption, let H ( t )  be the q x r matrix defined as 

(10.6.16) 

where 2 is the least squares estimator defined in (10.1.5). We also assume that 
q 1 r ,  and that the H ( [ )  have rank r (with probability one) for all [ belonging 
to the appropriate parameter space. Now define 

n - m - q  
T(E) = [ Y (t) - Y - g(h(E) - X)]’A-lH(E) 

x ( H ( < ) ’ A - l H ( e ) ) - l H ( E ) ’ A - l [ Y ( E )  - Y - 6(h(e)  - X)], 
( 10.6.17) 

where A is the Wishart matrix defined in (10.1.6). We note that if q = r ,  then 
the above pivot simplifies to 

n - m - r  
T(E) = 

The confidence region for E that we shall construct is given by 

[Y(E) - Y - g(h([) - X)]’A-l[Y(<)  - Y - g(h(E) - X)]. 
(10.6.18) 

where the function k2(<)  is to be determined subject to the appropriate coverage 
probability requirement, similar to (10.6.8). 

Towards the computation of k 2 ( E ) ,  define 

1 
n 

c2 = (h(E) - X)’{X(In - -ln1;)X’}-’(h(6) - X). (10.6.20) 
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As before, k2(<) turns out to be a function of c2, to be denoted by k2(c2). Similar 
to Lemma 10.2, the following lemma gives the condition to be satisfied by k2(c2). 

Lemma 10.3. Let W1 - Wr(I r ,  n - q - m + T - l),  W2 - WqPr(Iqpr, f m ) ,  

W N N ( 0 ,  I ,  @I Iq-r), and Wo - xi, where W1, Wp, W and Wo are also inde- 
pendently distributed. For q > T ,  let X = (XI, X2, ...., A,)’ denote the eigenvalues 
of ( I  + WWTIW’)WT1, and for q = T ,  let X = (X1,Xz ,...., A,)’ denote the 
eigenvalues of W,’, where it is assumed that A1 2 A2 2 .... 2 A,. Let k2(c2)  
satisfy 

5 k2(C2) X,Wo 2 p = 1 - 0 .  (10.6.21) I > I  
The computation of k2(c2) satisfying (10.6.21) is similar to the computation of 
k2(c2) satisfying (10.6.9). However, the starting value kz*(O) given in (10.6.13) 
now becomes 

X r ; P  > Fr,n-m-q;p(l-a) . (10.6.22) I 2 n - m - q  
2 

Xr(n-q-m+r-l);cu 

k2*(0) = max 

10.6.5 An Example and Some Numerical Results 

The example is taken from Oman and Wax (1984) and deals with the estimation 
of gestational age (i.e., week of pregnancy) based on two fetal bone lengths. The 
model relating the bone lengths to the gestational age is given in Oman and Wax 
(1984) and the gestational age enters the model non-linearly so that the model 
(10.6.15) is applicable. The data that are available for this example consist 
of fetal bone length measurements for several women whose gestational ages 
are precisely known. This data can be used repeatedly in order to construct 
confidence regions for the unknown gestational age of women, after observing 
the corresponding fetal bone lengths. In other words, it is required to construct 
multiple use confidence regions. Herc T = I, i.e., the parameter E is a scalar 
(the gestational age), to be denoted by [. Furthermore, q = 2, and the bivariate 
observations consist of ultrasound measurements on two fetal bone lengths: the 
femur length ( F )  and the biparietal diameter ( B P D ) .  The model that relates 
the gestational age [ to the observation vector (F ,  BPD)’ is 

( t 5  1 1  

(F ,  BPD)’ - N(Po  + Bh([), C),  where h([) = 
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see Oman and Wax (1984). The parameter space for < (in weeks) is the interval 
[14,41], and the data analyzed in Oman and Wax (1984) consists of ( F ,  B P D )  
measurements for n = 1114 women for whom the value of was precisely known. 
Let Y be the 2 x 1114 matrix whose columns are the (F ,  BPD)’ measurements 
for these women. As in (10.6.15), we shall use Y ( J )  to denote the (F ,BPD)’  
measurement for a woman whose gestational age E is unknown. Then Y and 
Y (0 are independent following the models 

y - N(&1i114 + BX, 11114 8 c) ,  y(5) N(P0 + Bh(t), x). (10.6-23) 

The i th column of X in (10.6.23) is h(Ji), & being the known gestational age 
for the i th woman (i = 1 , 2 , .  . . ,1114). 

Based on the data in Oman and Wax (1984), we have 

= ( 52877.52 2878329 ) 
2878329 159145978 X ( 1 ,  - n A & ) X ’  

and = ( 28.410233 ) 
854.607720 ‘ 

In our computations, we have chosen p = 0.95 and 1 - a = 0.95. The pivotal 
quantity T ( J )  is given by (10.6.17) with r = 1,n - rn - q = 1110, and 

Since H ( < )  is a column vector, T ( J )  becomes 
2 

[( Y ( < )  - Y - g(h(E) - x)’A-’H(e)] 
T ( [ )  = 1110 x ( 10.6.24) 

[ H  ([)’A- H (01 
For the gestational age data, the matrices bo, 
p.182) are 

and A as given in Oman (1988, 

4900.48 14484.23 
8281.00 4900.48 , and A =  

4.514 -0.0402 
- 39.187 5.292 -0.0492 

Since q = 2 and r = 1, the Wishart matrices W1 and W2 in Lemma 10.3 are 
now scalars, to be denoted by W1 and W2, having the chi-square distributions 
WI N x:llo, W2 N x:lll. Furthermore, WO N xi, and W is a scalar, to be 
denoted by W ,  having a standard normal distribution. Thus X = XI, a scalar 
given by 

A1 = (1 + g) /Wl. 
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For c2 given in (10.6.20) and p = 1 - a = 0.95, we need to evaluate 
k2(c2) satisfying (see (10.6.21) 

1 Pxl,wo [ p { l l l O  x ((- 1 + c?)Wo) 5 k2(c2)lX1, Wo} 2 0.95 = 0.95. 1114 
(1 0.6.25) 

Here is a summary of the numerical procedure reported in Mathew, Sharma 
and Nordstrom (1998), for the computation of the function k2(c2). For several 
values of < E [14,41], c2 was calculated and k2(c2) was numerically obtained, 
as explained in Section 10.6.3. The starting value for the computation of kz (0 )  

X L 5  - = 1110 x 2 - 

4.1299. This value was used as a starting value for the computation of kz(c2)  for 
c2 = 0.00059, the smallest value of c2 that we considered (see Table 10.1 below). 
The computation was carried out as follows. To begin with, 100,000 pairs of 
values of ( X I ,  Wo) were generated. For a given value of c2 and k2(c2) and for a 
given pair of values of ( X I ,  Wo), the quantity 

was k2*(0) given in (10.6.22). Since X ? ; p  

X L - q + r - - l ) i a  XlllO; .OS 

1110 x a = 4.1299 and Fr,n-m-p;p(l--ru) = F1,1110;.9025 = 2.7506, k2*(0) 

was evaluated based on 100,000 simulations. The indicator variable i ( X 1 ,  Wo) 
was defined to  be one, if this probability was at least 0.95, following the notation 
in Section 10.6.3. Otherwise i ( X 1 ,  Wo) = 0. The value of i (X1 ,  Wo) was computed 
for each of the 100,000 pairs of values of ( X I ,  Wo). The lhs of (10.6.25) was then 
the proportion of times i ( X 1 ,  Wo) took the value one. Thc quantity k2(L2) was 
determined so as to  make this proportion equal to  0.95, approximately. In other 
words, for computing k2(0.00059), the lhs of (10.6.25) was computed, starting 
with the value Ic2*(0) = 4.1299. The value of k2*(0)  was adjusted suitably and 
the lhs of (10.6.25) was evaluated repeatedly, until a value of k2(c2) was obtained 
for which the lhs of (10.6.25) was 0.95, approximately. The value of k:!(e2) that 
was accepted was such that the lhs of (10.6.25) was between 0.9490 and 0.9510. 
The values so obtained are given in Table 10.1 below (the quantity &(c2) given 
in Table 10.1 is explained shortly). These values are reproduced from Mathew, 
Sharma and Nordstrom (1998). The value k2*(0) = 4.1299 turned out to be a 
very satisfactory starting value for the computation of k2 (0.00059), since, from 
Table 10.1, k2(0.00059) = 4.1418, which is very close to  k2,(O). A plot of the 
(c2, k2(c2)) values in Table 10.1 is given in Figure 10.1. 

The following function gave a good fit to the plot. 

IC2(c2) = 4.136977 + 8 . 6 2 4 3 7 ~ ~  + 295.4134c4, ( 10.6.26) 
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(F ,  B P D )  (14,271 

( F ,  B P D )  (56,751 
Region (10.6.27) (12.968, 16.008) 

Region (10.6.27) (27.563, 32.400) 

Table 10.1: Values of <, c2, Ic2(c2) satisfying (10.6.25), and k.2(c2) satisfying 
( 10.6.26) 

E c2 k&2) r&(C2) 

14 0.01033 4.2572 4.2576 
15 0.00747 4.2175 4.2180 
16 0.00530 4.1899 4.1911 
18 0.00257 4.1610 4.1611 
22 0.00096 4.1458 4.1456 
26 0.00102 4.1461 4.1461 
30 0.00073 4.1435 4.1435 
34 0.00059 4.1418 4.1422 
38 0.00357 4.1719 4.1716 
39 0.00539 4.1939 4.1921 
40 0.00784 4.2225 4.2229 
41 0.01105 4.2690 4.2684 

(32,471 (45,621 

(65,851 
(18.462, 21.955) (23.052, 27.107) 

(31.788, 37.763) 

where we use the notation i 2 ( c2 )  to  denote the fitted function. Figure 10.1 also 
gives a plot of i2(c2). The plot in Figure 10.1 and the values of i2 (c2)  given in 
Table 10.1 show that ,&2(c2) is a very good approximation to k2(c2) .  Thus the 
region (10.6.19) is given by 

{I : T ( I )  I i2(c2)>,  ( 10.6.27) 

where T(<) and i 2 ( c2 )  are given by (10.6.24) and (10.6.26), respectively. Recall 
that c2 (and hence k.2(c2)) is a function of (, the parameter of interest. 

For a few (F ,  BPD)’-values, the region (10.6.27) is given in Table 10.2. 

Note that our first interval in Table 10.2 extends beyond the interval 
Strictly speaking t.he region (14, 41), which is the parameter space for <. 
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Figure 10.1: Plots of Ic2(c2) and ,&2(c2) in Table 10.1 

should be (10.6.27) intersected with the parameter space, i.e., {[ : T ( [ )  5 
,&2(c2)} n (14,41). This will obviously bring all the intervals within the pa- 
rameter space. We note that intersecting with the parameter space will not 
affect the coverage probability. 

As in the univariate case, a natural question is whether the region derived 
using the tolerance region condition (10.6.8) will satisfy the condition (10.6.6) 
that is required for a multiple use confidence region. The numerical results re- 
ported in Mathew, Sharma and Nordstrom (1998) support this. Such numerical 
results are not reported here. 

The results in this section (and also in this chapter) are for the case of an 
unknown positive definite covariance matrix E. If E is known to be a multiple 
of the identity matrix, the calibration problem, and the construction of multi- 
ple use confidence regions are addressed in Mathew and Zha (1997). We also 
refer to Mathew and Sharma (2002) where the problem of obtaining multiple 
use confidence regions by combining information from different sources is ad- 
dressed, in the context of univariate calibration. It should also be noted that 
several authors have investigated the problem of constructing single use confi- 
dence regions for the multivariate calibration problem. If the pivot T ( x )  given 
in (10.6.2) or (10.6.3) is used for this purpose, then a l O O ( 1  - a)% single use 
confidence region is of the form {x : T ( x )  5 k3(x)}, where the function k3(x) 
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satisfies the condition 

xf < ks(x)]  = 1 - a. Y ( ~ ) , Y , B , A  I T (  - 
P 

We refer to the articles by Brown (1982), Fujikoshi and Nishii (1984), Brown 
and Sundberg (1987), Davis and Hayakawa (1987), Oman (1988), Mathew and 
Kasala (1994) and Mathew and Zha (1996), for results concerning single use 
confidence regions. 

10.7 Exercises 

10.7.1. 

10.7.2. 

10.7.3. 

10.7.4. 

Consider the multivariate regression model (10.1.3) and let Y ( X I )  and 
Y (x2) be two independent observations corresponding to the values X I  

and x2 of the explanatory variable, so that 

Y ( X I )  - N ( P o  + B X I ,  X) and Y (x2) - N(P0 + Bx2, x). 

Explain how you will compute a tolerance region for Y ( x 1 )  - Y ( x 2 ) .  
Develop approximations similar to those in Section 10.2 and Section 10.4. 

For the blood glucose measurement example discussed in Section 10.1.2 
and Section 10.5, let X I  = (103,103,100)’ and x2 = (106,105,101)’ denote 
the fasting glucose measurements on three occasions for two women. Use 
the data in Section 10.5 and compute a (0.95, 0.99) tolerance region for 
Y ( X I )  - Y (x2) ,  the difference between their blood glucose measurements 
on the three occasions, one hour after sugar intake. Use the methodologies 
developed in the previous problem. 

Consider the approximation &x:x;(S) for the distribution of $ ( H ’ H ) ,  
as stated in Lemma 10.1, where the notations are as in the lemma. For 
various values of q and d, estimate the 5th, loth, 50th, 90th and 95th 
percentiles of &x:x:(6) and that of x ; ( H ’ H ) ,  based 10,000 simulated 
values of these random variables. To what extent do the percentiles of 
-f-x2x2(6) qs-6 e Q and x ; ( H ’ H )  agree? Based on the simulated values of the 
percentiles, what can you conclude regarding the accuracy of the approx- 
imation mentioned in Lemma 10.1? 

Consider the multivariate regression model (10.1.3) and the model (10.1.4) 
for the observation vector Y ( x ) .  Suppose it is known that Z: = 021q, 
where o2 is an unknown scalar. Develop procedures and approximations 
for computing a tolerance region for Y ( x ) .  
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10.7.5. Let Y1, Y2, . . .  , Y, be n independent q x 1 random vectors having the 
distribution Yi - N(Po+Bxi ,  a2u(xi)Iq), where g2  is an unknown scalar, 
and .(xi) is a known function of xi. Now let Y (x) be another observation 
having the distribution Y(x)  - N(Po+Bx, a2v(x ) Iq ) ,  where x is a known 
value of the explanatory variable. Develop procedures and approximations 
for computing a tolerance region for Y (x). 

10.7.6. For the calibration problem (see Section 10.6.1), explain how confidence 
regions can be constructed for the two multivariate models in Exercises 
10.7.4 and 10.7.5. Establish analogues of Lemma 10.2, and also explain 
the computational procedure similar to what is outlined in Section 10.6.3. 

10.7.7. An example of the calibration problem where the models in Problem 10.7.5 
is applicable is described in Smith and Corbett (1987), dealing with the 
accurate measurement of marathon running courses. The method of mea- 
surement is known as the bicycle method. In this method, bicycles are 
fitted with revolution counters that accurately record the number of rev- 
olutions of the front wheel when the bicycles are ridden on the running 
course. The distance of the running course is arithmetically computed 
based on the number of revolutions of the front wheel as recorded on the 
revolution counter. The bicycles are first ridden over several standard dis- 
tances (that are precisely known) and the count’er readings are recorded. 
This information is used to set up a model that relates the counter readings 
to the true distances. In the application considered in Smith and Corbett 
(1987), there are 8 cyclists and 13 standard distances. If y Z j  denotes the 
counter reading by the j t h  cyclist on the it11 standard distance, and if zi 
denotes the true distance (known), then the model considered by Smith 
and Corbett (1987) is y Z j  - N(b j~ i ,a ’x i ) ,  where the bj’s are unknown 
regression coefficients and a2 > 0 is also unknown; i = 1, 2, ...., 13, j = 1, 
2, ..., 8. Express the model using the vector-matrix notation in Exercise 
10.7.5. Let IC denote the unknown distance of a marathon running course, 
and let q ( z )  denote the corresponding counter reading by the j t h  cyclist. 
Explain the construction of a multiple use confidence interval for 1:. Carry 
out the required computations using the data in Smith and Corbett (1987). 

(Mathew and Zha, 1997) 



Chapter 11 

Bayesian Tolerance Intervals 

11.1 Notations and Preliminaries 

This chapter is on the derivation of tolerance intervals in a Bayesian framework. 
We shall first give a brief sketch of the Bayesian approach, and then describe the 
procedure to derive tolerance intervals for a univariate normal distribution, and 
for a one-way random model with balanced data. Even though we take up only 
these models to illustrate the Bayesian methodology, the procedure explained in 
this section can be applied to obtain tolerance intervals in any parametric set 
UP. 

In order to introduce the basic idea, let X denote a random variable whose 
distribution depends on a parameter 8, and the realizations of X give the ob- 
served data. Here 8 could be a vector. Let z be a vector representing realizations 
of X (i.e., z is the observed sample), and let L(zl8)  be the likelihood function. 
If r(8) denotes a prior distribution for 8, then the posterior distribution of 8, 
say p(Olz), is given by 

(1 1.1.1) 

where 0 is the parameter space for 8. The posterior distribution of any function 
g ( 8 )  of 8 can obviously be derived from ~(81~). We shall also use the notation 
p ( g ( 8 )  lz) to denote the posterior distribution of g(8 ) .  Bayesian inference con- 
cerning g ( 8 )  is accomplished using the posterior distribution p ( g ( 8 ) l z ) .  For a 
more detailed discussion, along with examples, see, for example, the book by 
Gelman, Carlin, Stern and Rubin (2004). Here we shall concentrate only on the 
tolerance interval problem. 

275 
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To begin with, suppose we want to derive a ( p ,  1 - a)  upper tolerance limit 
for the distribution of the random variable X .  If g p ( 8 )  denotes the p quantile of 
X ,  then what is required is a 1 -a  upper confidence limit for g p ( 8 ) ,  based on the 
posterior distribution p(g,(8) Iz). Once this posterior distribution is obtained, 
the problem reduces to the computation of gpp:l-cu that satisfies 

P ( g p ( 8 )  I G,p;l-a) = 1 - a ,  (11.1.2) 

where the probability is computed with respect to the posterior distribution 
p(gp(8)1x). In situations where it is difficult to derive a convenient analytic 
form for p(gp(8)lx), a Bayesian simulation method can be used to obtain gpp; l -a ,  

provided one can generate data from the posterior distribution of 8, i.e., the 
distribution p(81x). The simulation method consists of first generating data 
from the posterior distributionp(8lz). Let the simulated data be denoted by 81, 
0 2 ,  ...., O M ,  where n/l denotes the size of the simulation sample. Now compute 
g,(&), g,(&), ....., gp(8,). The 100(1 - a ) t h  percentile of the gp(8,)-values 
provides an approximation to gPp,lpa.  

The Bayesian approach for the computation of a ( p ,  1-a) two-sided tolerance 
interval is not that straightforward, except in some simple models. However, 
the interval can be numerically obtained by performing a Bayesian simulation. 
The idea, as explained in Wolfinger (1998), is as follows. As before, let 81, 
8 2 ,  ...., 8~ be a simulation sample of size M ,  generated from the posterior 
distribution p(8lz). Similar to g,(O),  let gl+p (8) and g a ( 8 ) ,  respectively, 

denote the and 9 quantiles. Now consider the pairs (g- (OL), g v  ( B , ) ) ,  
i = 1, 2, ...., M ,  which form a simulation sample of size M from the bivariate 
posterior distribution of gl+p (O), gl--p (8)). Suppose we decide to construct a 
( p ,  1 -a)  two-sided tolerance interval that is symmetric about the mean 3, given 
by 

2 2 

( 2  

(11.1.3) 

Now consider a scatter plot of (g+ (H i ) ,g - (O i ) ) ,  i = 1, 2, ...., M ,  with 
g + ( O , )  on the vertical axis and gF(f3,L) on the horizontal axis, and draw the 
line 

g l -p (& )  = - g y ( O i )  + 29, (1 1.1.4) 

on the scatter plot. Let (gl,g2) be a point on the line with the property 
that l O O ( 1  - a)% of the points in the scatter plot satisfies g b ( f 3 i )  2 g2 and 
g - ( O i )  5 g ~ .  In other words, the two lines drawn through (gl,g2), parallel to 
the axes, are such that l O O ( 1 -  a)% of the points in the scatter plot are included 

2 

2 
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in the half rectangle open towards the upper left portion of the graph. The 
interval (gl, g 2 )  is the required ( p ,  1 - a )  two-sided Bayesian tolerance interval. 
Note that the symmetry point of the tolerance interval can be different from the 
mean gp given in (11.1.3). This approach will be graphically illustrated later 
in this chapter. We would like to  point out that when Wolfinger (1998) pro- 
posed this methodology for the one-way random model, he determined ( g ~ ,  g 2 )  
subject to the condition that 100a% of the points in the scatter plot satisfy 
g ! p ( O i )  5 g 2  and g '+p(Oi )  2 g 1 .  That is, 100a% of the points in the scatter 
plot are included in the half rectangle open towards the bottom right portion of 
the graph. However, the determination of (41, g 2 )  should be done subject to the 
requirement we have indicated above. 

2 2 

The above descriptions provide general recipes for obtaining one-sided and 
two-sided Bayesian tolerance intervals. We shall now follow the recipes to derive 
Bayesian tolerance intervals for some specific models. 

11.2 The Univariate Normal Distribution 

Let X and S2 denote the sample mean and sample variance based on a sample 
of size n from N ( p , a 2 ) .  Bayesian tolerance intervals for the univariate normal 
distribution N ( p ,  a2) was originally derived by Aitchison (1964, 1966), and the 
results are also given in Guttman (1970, Chapters 7-9). The relevant results 
are summarized in this section. Two prior distributions will be considered for 
(p,  a2) ,  where we use the notation ~ ( p ,  a2)  for the prior: 

(i) the non-informative prior distribution 

(ii) a family of conjugate prior distributions with 

- N ( Po,- :I) , and a2 - Inv-X2(mo, a,"), 

(11.2.1) 

(11.2.2) 

where Inv-X2(mo, a,") denotes a scaled inverted chi-square distribution with pa- 
rameters mo and a;, having the density 

(1 1.2.3) 
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(n  - l)s2 
and 

0 2  

It should be clear that a scaled inverted chi-square distribution is a special 
case of an inverted gamma distribution. Such a prior is a very common choice 
for estimating variances; see Searle, Casella and McCulloch (1992, Section 3.9) 
or Gelman et al. (2004, Section 3.3). It can be easily verified that if o2 N 

Inv-X2(rno, a:), then rnoo,”/a2 follows a chi-square distribution with m o  df. Note 
that under (11.2.2), the prior parameters are the quantities po, no, rno and o;. 
Also note that a conjugate prior is such that the posterior distribution has the 
same parametric form as the prior distribution. Under the prior given in (11.2.2), 
the joint prior density of (p ,02)  is thus given by 

2 s2 - 

11.2.1 Tolerance Intervals Under the Non-Informative Prior 

Let’s first consider the derivation of tolerance limits under the non-informative 
prior distribution (11.2.1). Let Z and s2 denote the observed values of -r and 
S2 ,  respectively. The posterior distribution of (p ,  02) is now given by 

x exp 

Under (11.2.1), we thus have the posterior distributions 

(1 1.2.6) 

Thus the posterior distribution of is N(0 ,  1), and f i b - 2 )  and (n  - 
l)s2/a2 are independently distributed. Suppose we want an upper tolerance 
limit for N ( p ,  02) ,  and let a1 = a l (E ,  s2)  denote the limit. The content of the 
corresponding one-sided tolerance interval is clearly @ (v) , where @ denotes 
the standard normal cdf. We want to choose a1 so that 

PP,02 { @ ( y) 2 .} = 1 - a, 

where we note that the probability is calculated with respect to the posterior 
distribution of (p ,n2 ) ,  given in (11.2.5). Note that the statement @ (v) 2 p 
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is equivalent to  p + zpa I a l ,  which can equivalently be expressed as 

( 11.2.7) 

Under the posterior distributions in (11.2.5), the quantity on the left hand side 
of the inequality (11.2.7) has a noncentral t-distribution with n - 1 df and 
noncentrality parameter z p f i .  Hence, from the inequality (11.2.7), we get the 
solution 

a1 = 5 + - t T L - p - & f i )  x s .  (11.2.8) 

We note that this is the same solution that was obtained by the frequentist 
approach in Chapter 2; see Section 2.2. It can similarly be shown that under 
the non-informative prior distribution given in (11.2.1), the Bayesian ( p ,  1 - a )  
two-sided tolerance interval also coincides with the tolerance interval in Section 
2.2.2 of Chapter 2. Note however that the two-sided interval obtained using the 
graphical procedure described towards the end of Section 11.1 will result in an 
equal-tail tolerance interval, as explained in Section 2.3.2 of Chapter 2; see also 
Problem 11.5.1. 

1 

fi 

11.2.2 Tolerance Intervals Under the Conjugate Prior 

Let's now consider the derivation of tolerance limits under the prior distribution 
(11.2.2). In order to  obtain the expression for the posterior distribution of 
(p ,a2) ,  let 

- - nopo + nJ: x =  
no + n 

+ (n  - 1)s 2 + ~ n0n (5  - p ~ ) ~ ]  . (11.2.9) 
m o + n - l  no + n 

q 2  = 

It can be shown that 

p[a2, 5,  s2 N N ( E ,  ~ noa: n )  , and a215, s2 N Inv-X2(mo + n - l , q 2 ) ,  (11.2.10) 

see Gelman et al. (2004, pp. 79-80). Thus the posterior distribution of (p,a2) 
is 

2 -  2 (11.2.1 1) 2 -  2 2 -  2 
P ( P , a  1x7s ) = P ( P l a  ,z ,S x P(" 1x7s )I 

where p(p la2 ,  5 ,  s2) and p(a215, s2) are, respectively, the normal distribution 
and the scaled inverted chi-square distribution specified in (11.2.10). Note that 
the posterior distribution of (mo + n - l)q2/a2 is a chi-square distribution with 
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mo + n - 1 df, and that of d*(p - .)/a is standard normal, and these two 
quantities are independently distributed. 

Suppose we want to compute a ( p ,  1 - a)  upper tolerance limit for N(’L, 02) ,  

and let a2 = a2(Z,s2) denote the limit. The content of the correspondiiig one- 
sided tolerance interval is @ (7). We want to choose a2 so that 

where the probability is calculated with respect to the posterior distribution 
of (p ,02 ) ,  given in (11.2.11). The statement (v) 2 p is equivalent to 
p + zpa 5 a2, which can equivalently be expressed as 

Hence, similar to the derivation of (11.2.8), we get 

(-11.2.13) 

where q2 is defined in (11.2.9). We note the similarity between (11.2.8) and 
(11.2.13); instead of n - 1, the df associated with the non-central t-distribution 
is mo+n-1, the factor J;I gets replaced with d G  and q2 defined in (11.2.9) 
takes the place of s2. A two-sided Bayesian tolerance interval can be similarly 
computed by making the same changes in the frequentist solution. 

Example 2.1 (continued) 

For the purpose of illustrating the calculation of Bayesian tolerance limits, 
let us consider the air lead level data given in Table 2.1. Here the sample size 
is n = 15, and 2 = 4.333 and s = 1.739, for the log-transformed data. For the 
distribution of the log-transformed air lead levels, the (0.95, 0.90) frequentist 
upper tolerance limit is 8.383. This is also the Bayesian (0.95, 0.90) upper 
tolerance limit, if we assume the non-informative prior in (11.2.1). Now suppose 
we assume the conjugate prior distribution in (11.2.2) with po = 2, no = nzo = 10 
and 02 = 3. From (11.2.9) we get E = 3.399, and q2 = 4.375. Furthermore, 
t m o + n - - l ; ~ - c u ( ~ p d G )  = t24;.90(1.645 x &) = 10.662. From (11.2.13), we get 
the Bayesian (0.95, 0.90) upper tolerance limit as 7.860. 

We note that the Bayesian (0.95, 0.90) upper tolerance limit under the con- 
jugate prior is smaller than that under the non-informative prior. The reason 
for this should be clear; the prior mean for p is po = 2, significantly smaller 
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than 2 .  Obviously the use of such a prior can be recommended only if such 
prior information is available, either based on expert opinion, or based on the 
analysis from previous data. If no such prior information is available, one has to 
resort to using the non-informative prior: in which case the tolerance intervals 
for N ( p , 0 2 )  coincide with the frequentist solutions. An alternative is to use 
an empirical Bayes approach, where the prior parameters (or the prior itself) is 
estimated using past data, or the current data. Here we shall not pursue this 
further; see Miller (1989) for the derivation of empirical Bayes tolerance intervals 
for a normal distribution. 

11.3 The One-way Random Model with Balanced 
Data 

The model and the notations are given in Chapter 4; see Section 4.1. Let p. be 
the mean, and SS, and SS, be the sum of squares defined in (4.1.2). Then Y., 
SS, and SS, are independently distributed with 

as specified in (4.1.3). The likelihood is taken to be the joint density of the 
above three random variables, to be denoted by L(y.., ss,, sselp,  cz, q?), where 
g,., ss, and ss, denote the observed values of Y., SS, and SS,: respectively. 

We shall illustrate the derivation of one-sided and two-sided Bayesian tol- 
erance intervals assuming the following non-informative prior for ( p  , o$, a:): 

(1 1.3.2) 

If we define 
qr = no, 2 + 02 and qe = o,, 2 (1 1.3.3) 

then the marginal posterior distributions of qT and qe can be easily worked out 
if we ignore the natural restriction q, 2 qe. These posterior distributions, and 
the conditional posterior distribution of p, are given by 

qrly.., ssr, sse N 1nv-x2(a - 1, rnsr), 

v ~ I Y . . ,  ssr, sse - 1nv-x2(a(n - r n ~ e ) ,  

and p ~ ~ . . , S S r , s ~ e , r / r , q e  N N ( g . . , Z )  : ( 11.3.4) 

where ms, = * and rns, = - sse denote the mean squares. Furthermore, if 
we ignore the restriction q, 2 q,, then q, and qe are independently distributed, 

a- 1 a(n-1) 
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and the joint posterior distribution of (p ,  qT, 7,) is the product of the three dis- 
tributions in (11.3.4). Subject to the restriction qT 2 qe, samples from the 
posterior distribution of (qT,  qe) can be generated using a rejection sanipling 
procedure; see Guttman and Menzefricke (2003) and Van der Merewe, Pretorius 
and Mayer (2006). The procedure consists of generating (q7, q,) from the inde- 
pendent scaled inverted chi-square distributions in (1 1.3.4), and retaining only 
those pairs (qT,  7,) that satisfy qr 2 q,. Once such a pair of values of (qT,  qe) is 
available, an observation from the conditional posterior distribution of p can be 
generated using the conditional normal distribution given in (11.3.4). 

A ( p ,  1 - a )  Bayesian upper tolerance limit for N ( p ,  a? + 02) can be con- 
structed if we can generate samples from the marginal posterior density of 
p + z p d m .  The 1 - a quantile of the sample so generated will give an es- 
timate of the ( p ,  1 - a )  Bayesian upper tolerance limit. The following algorithm 
can be used to perform the required computation. Note that cr: = (rlT - v,)/n. 

Algorithm 11.1 

1. 

2. 

3 .  

4. 

Generate observations (qT,i, q,,i), i = 1, 2, ..., A&, from the distribution of 
(qT,qe)  specified in (11.3.4), where Mo is the simulation size. Retain the 
pairs that satisfy q7 2 7,. Suppose there are M such pairs, say i = 1, 2, 
...., M .  

Given each pair (qT,i,qe,i) satisfying qT,i 2 qe,i, generate pi from the con- 
ditional normal distribution given in (11.3.4). 

Compute /*.i + zp  

The l O O ( 1  - a ) t h  percentile of the M values pi + zp 

= 1, 2, ...., M ,  where a:,i = (qT,i - il,,i)/n 

and a& = qe,i. 

estimate of the Bayesian upper tolerance limit. 

We note that a plot of the M sample values gives an estimate of the marginal 
posterior distribution of p + zpd=. 

A ( p ,  1 - a)  Bayesian upper tolerance limit for the distribution of the true 
values, i.e., for the distribution N(p ,a : ) ,  can be similarly obtained by gener- 
ating sample values from the posterior distribution of p + zpaT,  where aT = 

dFiz i iF .  
Now suppose we want to compute a ( p ,  1 - a)  two-sided Bayesian tolerance 

interval for N(p,a:  + a:). For this, we shall follow the numerical procedure 
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explained towards end of the first section of this chapter. Here is an algorithm 
that will perform the necessary computations: 

Algorithm 11.2 

1. Generate a sample from the posterior distribution of (p ,  qT, q,) as described 
in Algorithm 11.1. Let the sample be (pi,71T,i, qe,i),  i = 1, 2, ..., M .  

2. Obtain a scatter plot of the points 

i = 1 , 2  ,..., M .  

1 M  3. Compute ,G = Ci=l pi, and plot the line 

on the scatter plot. 

4. Determine the point ( f i 1 , f i 2 )  on the line so that l O O ( 1  - a)% of points in 
the scatter plot satisfy 

Then ( f i 1 ,& )  is the required ( p ,  1 - a )  two-sided tolerance interval for 
N ( p ,  u: + 0,"). A ( p ,  1 - a )  two-sided Bayesian tolerance interval for N ( p ,  c?) 
can be similarly obtained. Note that the symmetry point of the tolerance inter- 
val can be different from the mean p,, for example, the symmetry point can be 
taken to be g.. . 

The above procedure is described and illustrated in Wolfinger (1998). Apart 
from the non-informative prior (1 1.3.2), Wolfinger has also considered an in- 
formative prior consisting of a normal distribution for p and scaled inverted 
chi-square distributions for 0: and a:. 

It is quite straightforward to adapt the above procedure for the derivation of 
Bayesian tolerance intervals for any mixed effects model with balanced data. We 
refer to Van der Merwe and Hugo (2007), where tolerance intervals are derived 
for a two-factor nested random effects model with balanced data. One of the 
examples discussed in the next section is taken from this paper. 

The procedures described in this section can also be adopted to the one-way 
random model with unbalanced data. The approaches are the same; however, 
the required computations are more involved, as expected. We refer to van der 
Merwe, Pretorius and Meyer (2006) for the details on such computation. 
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11.4 Two Examples 

Example 11.1 (Continuation of Example 4.2) 

We shall compute Bayesian lower tolerance limits and two-sided tolerance 
intervals for the distributions N (p ,  0; + 0:) and N (p ,  0;) in the context of 
the study of breaking strengths of cement briquettes, reported in Example 4.2 
of Chapter 4, using the non-informative prior distributions mentioned in the 
previous section; see (11.3.2). In this example, we have the one-way random 
model and balanced data, with a = 9 and n = 5. The observed values of Y., 
SS, and SS, are, respectively, 

g.. = 543.2, ss, = 5037 and ss,  = 18918. 

Using Algorithm 11.1, we computed a (0.90, 0.95) Bayesian lower tolerance limit 
for N (p,  0s + 0:) using 5000 simulated samples from the posterior distribution 
of (p,q,,q,), where q, and q, are defined in (11.3.3). Rejection sampling was 
employed to generate the samples, as pointed out earlier. The (0.90, 0.95) 
Bayesian lower tolerance limit came out to be 499.01. Algorithm 11.2 was fol- 
lowed to obtain a (0.90, 0.95) two-sided tolerance interval; the relevant plot is 
given in Figure 11.1. The interval was obtained as (485.14, 601.61). 

For the distribution N ( p , ~ ? )  of the true values, the (0.90, 0.95) Bayesian 
lower tolerance limit came out to be 517.42, and the (0.90, 0.95) two-sided 
tolerance interval came out to be (508.16, 578.24). We note that all of the 
Bayesian solutions obtained here are quite close to the corresponding frequentist 
solutions obtained in Chapter 4. 

Example 11.2 (Monitoring the quality of synthetic yarn) 

This example is taken from Van der Merwe and Hugo (2007), and deals with 
monitoring the quality of synthetic yarn. For this, data were obtained on t,he 
extension property of yarn, i.e., the percentage increase in the length of the 
yarn before breaking. The data were obtained at the SANS Fibres (Pty) Ltd., 
South Africa, a company that manufactures continuous filament polyester and 
nylon yarns. Samples of b = 8 packages were obtained per day at the manu- 
facturing plant, and data on the percentage increase in length before breaking 
were obtained on n = 5 samples per package. The data were thus collected for 
a = 15 days during January 1995. The problem of interest is the computation 
of a tolerance interval for the average percentage increase in length for a spec- 
ified number of packages, when a specified number of observations are made 
per package. For example, it could be of interest to compute a lower tolerance 
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95th quantile 

Figure 11.1: Computation of a two-sided (0.90, 0.95) tolerance interval for 
N (p ,  CJ: + a:) in Example 11.1; the intersection of the vertical and horizon- 
tal lines gives the lower and upper limits of the tolerance interval. 
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limit for the average percentage increase in length for b* = 8 packages obtained 
on a single day, when n* = 5 observations are made per package. One can of 
course compute a lower tolerance limit for a single observation on the percentage 
increase in length. 

Since the packages are nested within the days, the data can be analyzed using 
a two-fold nested model that accounts for day-to-day variation and package-to- 
package variation. Let x j k  denote the percentage increase in length, before 
breaking, for the kth sample from the j t h  package during the ith day. Following 
Van der Merwe and Hugo (2007)) we have the model 

y.. - 
z j k  - I-1 + Ti + pj(i) + eijk7 

i = 1, 2, ...., a; j = 1, 2, ...., b; and k = 1, 2, ..., n. Here ~ i ‘ s  represent the effects 
due to the days and 10j(i)’s represent the nested effects due to the packages. We 
make the usual assumptions: ri N N(O,a;),  p j ( i )  N N(O,a;), e i j k  - N(O,a:), 
and all the random variables are independent. Let 

and define 
U 

ss, = bnZ(E.. - Y . . ) 2 ,  
i=l 
h n  

j=1 k = l  

a b n  

and SSe = CxC(k;jk - y Z j , ) 2 .  (11.4.1) 
Z=l j = 1  k = ]  

Also define 

(1 1.4.2) 2 2 2  2 

Note that we have the restriction q e  5 q , ~  I 7,. Then we have the distributions 

%- = bnn, + nap + ne, q p  = nag + 02, and qe = ae. 

= Jabn (Y - P )  /% N ( 0 ,  l),  

(11.4.3) 
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where 2, U:, U$ and U: are also independently distributed. Let Y..., ssT,  ssp 

and SS,, respectively, denote the observed values of Y.., SS,, SSp and SS,. The 
likelihood function is given by 

a ( h - 1 )  a b ( n -  1) 

L(Y ... , ssT, ssp, SSeIp ,  T , , T ~ ,  ~ e )  O: (r/T)- '  ( T ~ ) - T  ( q e ) - ~  

+-+-+--  
TT TO T e  

abn(Y,,, - p)2 S S ,  S S ~  

TT 

We shall assume the non-informative prior distribution 

I 
(11.4.4) 

If we ignore the restriction 7, 5 
and q,, and the conditional posterior distribution of p are given by 

5 qT, the posterior distributions of qT, qp,  

~TIY...,  ST, S S ~ ,  sse - 1nv-x2(a - 1, ms,), 

q@/Y..., s s T ,  ssOo, ssf? - 1nv-X2(a(b - l),  m s O ) l  

VeIg...,  ST, ~ s p ,  sse N 1nv-x2(ab(n - 11, mse) ,  

and PIY ... , s s T , s s p , s s e , q T , T p , ~ e  N (Y ..., E) 1 ( 1 1.4.5) 

where ms,, msp and ms, denote the respective mean squares. Subject to the 
restriction 77, 5 qp 5 qT, a rejection sampling approach can be used to generate 
observations from the joint posterior distribution of (7,) qp, 7,). 

Now suppose we want to compute tolerance limits for the average percentage 
increase in length for b* packages, when n* observations are obtained on each 
package on a specific day. If Y* denotes such an average, then 

b*n*u? + n*u$ + 
b*n* 

Y* - N ( p ,  

Since 0: = (% - qp)/bn, O$ = (TO - qe)/n, and a: = q,, the above distribution 
can be expressed as 

In order to compute a ( p ,  1 - a)  Bayesian lower tolerance limit for the above 
distribution, we need to generate samples from the posterior distribution of 
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We can generate samples from the posterior distribution of (qT, qp ,  qe) using the 
posterior distributions of qT, qp ,  and qe given in (11.4.5), along with a rejection 
sampling approach. For each value of (q,, qp,  qe)  so generated, the conditional 
posterior distribution of p, given in (11.4.5), can be used to generate a sample 
value from the posterior distribution of p. Let ( p i , ~ ~ , i , q p , ~ , q ~ , i ) ,  i = 1. 2, ...., 
M ,  denote M sample values thus generated from the posterior distribution of 
( P I  r / T ,  V P ,  q e ) .  Now compute 

1 b*n* 
Pi - ZP [ b"lZ* { b n r / T , i  + n" n (1 - W) qp,i + (1 - ;) q e , 2 } ]  1 / 2  , 

i = 1, 2, ...., M .  The l0Oath percentile of these values gives an estimate of the 
required lower tolerance limit. 

In order to  compute a two-sided ( p , a  - (1) Bayesian tolerance interval for 
the distribution in (11.4.6), we can use an algorithm similar to  Algorithm 11.2. 
Thus, obtain a scatter plot of 

against 

i = 1, 2, ...., M .  On the scatter plot, plot the line 

4 1  = - q 2  + 2fi, 
1 M  where ,G = pi. Now determine the point (b2,jil) on the line so that 

100(1 - a)% of points in the scatter plot satisfy q 1 i  2 b1 and q 2 i  5 f i 2 .  Then 
( i l l ,  b 2 )  is the required ( p ,  1 - a )  two-sided tolerance interval. A ( p .  1 - a )  

bfn*u; fn*ug two-sided Bayesian tolerance interval for the distribution N p, b*7,* 

can be similarly obtained. Note that this is the distribution of the true average 
percentage increase in length for b* packages, when n* observations are obtained 
on each package on a specific day. 

1 ( 

Now let's perform the computations based on the data given in Van der 
Merwe and Hugo (2007). The observed values of F.., SS,, SSp and SSe are, 
respectively, 

g... = 20.96, ss, = 390.6720, ssp = 132.6570, and ss, = 395.4342. (11.4.9) 
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Let’s choose b* = b = 8 and n* = n = 5, so that the distribution in (11.4.6) 
becomes Y* N N (p ,  %) . Note that in order to compute a (0.90, 0.95) lower 
tolerance limit for the above distribution, we have to compute a 95% lower 
confidence limit for p - 1 . 2 8 6 .  For this we generated 5000 samples from 
the posterior distribution of ( p ,  qT, qp ,  qe) ,  and used the rejection sampling ap- 
proach. Following the numerical procedure indicated above, we obtained the 
(0.90, 0.95) lower tolerance limit as 14.80. In order to obtain a two-sided (0.90, 
0.95) tolerance interval, we obtained a scatter-plot of the samples (q l i ,  q2 i )  ob- 
tained from the joint posterior distribution of q1 and q 2 ,  the 5th percentile and 
the 95th percentile, respectively, of the distribution N (p,  g) .  The plot is given 
in Figure 11.2. Once again, adopting the numerical approach outlined above, 
the two-sided (0.90, 0.95) tolerance interval came out to be the interval (12.74, 
21.12). The interval was computed to be symmetric around p .  We also com- 
puted a (0.90, 0.95) lower tolerance limit, and a (0.90, 0.95) two-sided tolerance 
interval for the distribution of the true value N (p ,  9). The lower tolerance 
limit came out to be 14.788 and the two-sided tolerance interval was obtained 
as (12.75, 29.19). 

All the computations in this chapter were done using the R programming 
language (2008). 
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Figure 11.2: Computation of a two-sided (0.90, 0.95) tolerance interval for 
N (p ,  g )  in Example 11.2; the intersection of the vertical and horizontal lines 
gives the lower and upper limits of the tolerance interval. 
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11.5.1. 

11.5.2. 

11.5.3. 

11.5.4. 

For the univariate normal distribution N ( p ,  02) ,  suppose a tolerance in- 
terval is required for the distribution of the mean of b future observations. 

(a) Explain how you will derive one-sided and two-sided ( p ,  1-a) Bayesian 
tolerance intervals under the prior distributions given in (11.2.1) and 

(b) In the set up of Example 2.1, as considered in Section 11.2.2, compute 
a (0.95, 0.90) Bayesian upper tolerance limit for the mean of b = 
10 future observations under the prior distribution given in (11.2.2), 
where the prior parameters have the values specified in Section 11.2.2. 

(c) Repeat the above for the mean of b = 15 and b = 20 future observa- 
tions. 

(d) When the future sample size is increased from b = 10 to b = 15 and 
20, does the (0.95, 0.90) Bayesian upper tolerance limit for the mean 
increase or decrease? Should you expect this? 

(11.2.2). 

Consider the example on the breaking strengths of cement briquettes, given 
in Example 4.2. 

(a) Suppose we want to construct a (0.90, 0.95) Bayesian lower tolerance 
limit for the distribution of the average breaking strength of 10 ob- 
servations from a new batch. Compute such a lower tolerance limit 
under the non-informative prior distribution 11.3.2. 

(b) Suppose we want to construct a (0.90, 0.95) Bayesian lower tolerance 
limit for the distribution of the “true average breaking strength” of 
10 observations from a new batch. Compute such a lower tolerance 
limit under the non-informative prior distribution (1 1.3.2). 

In the set up of the previous problem, suppose we want to compare the 
breaking strengths of observations from two new batches. The comparisons 
will be done based on a (0.90, 0.95) two-sided Bayesian tolerance interval 
for the distribution of Yl - Y2, where Y1 and Y2 represent observations 
from two new batches. Conipute the required tolerance interval under the 
non-informative prior distribution (11.3.2). 

Let X I ,  X2,  ...., X ,  be a random sample from the one parameter expo- 
nential distribution 

1 
0 
-exp ( - f ) .  

Consider the prior distribution ~ ( 0 )  cx $. 
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(a) Derive the posterior distribution of 0. 

(b) Show that the posterior distribution of 2nx/8  is a chi-square with 211 

(c) Explain how you will compute a ( p ,  1 - a)  Bayesian lower toler- 
ance limit for the exponential distribution, under the above prior. 

[Guttman, 19701 

df. 

11.5.5. Consider the one parameter exponential distribution given in the previous 
problem, and suppose we have the prior distribution 

where no and 71 are the prior parameters. 

(a) Show that the above prior is a conjugate prior. 
(b) Derive the posterior distribution of 6 .  

(c) Show that the posterior distribution of 2 ( n Z  + q ) / 0  is a chi-square 

(d) Explain how you will compute a ( p ,  1 - a)  Bayesian lower tolerance 

[Gut t man, 19701 

11.5.6. The following data, taken from Proschan (1963), give the times between 
successive failures of the air conditioning equipment in a Boeing 720 air- 
plane: 74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, and 326. 
(This is only part of the data; the full data is given in Proschari (1963, 
Table 1)). The times between successive failures follows a one-parameter 
exponential distribution. Assuming t,he conjugate prior given in the pre- 
vious problem with prior parameters no = 100 and = 1500, compute a 
(0.95, 0.95) upper tolerance limit for the distribution of the times between 
successive failures. 

with 2(n + no) df. 

limit for the exponential distribution, under the above prior. 

11.5.7. Consider a two-way crossed classification model with interaction, and with 
random effects. Follow the arguments in Example 11.2 and outline proce- 
dures for computing one-sided and two-sided Bayesian tolerance intervals 
for the distribution of the observable random variable and the unobserv- 
able true values, under a non-informative prior distribution. 



Chapter 12 

Miscellaneous Topics 

12.1 Introduction 

This chapter deals with several topics related to tolerance intervals and toler- 
ance regions, not covered in the previous chapters. Some of the topics discussed 
in this chapter have been fairly well investigated in the literature (for exam- 
ple, P-expectation tolerance intervals, and sample size determination) , whereas 
some of the topics are based on very recent work (tolerance intervals for the 
ratio of normal random variables). This chapter also includes some important 
applications of tolerance intervals and regions. For example, a tolerance interval 
for the ratio of two normal random variables is motivated by a bioassay ap- 
plication related to an influenza vaccine. A number of applications involving 
censored data are included; environmental and exposure data are frequently of 
this nature, and so are lifetime data. Yet another important application of a 
tolerance interval is motivated by the possibility of using it as a reference inter- 
val, in order to characterize observations that belong to a reference population. 
We also note that all of the previous chapters dealt with the computation of 
tolerance intervals and regions for continuous populations. In this chapter, we 
shall also address the tolerance interval problem for two discrete distributions: 
binomial and Poisson. 

12.2 p-Expectation Tolerance Regions 

The tolerance intervals and regions that we have derived so far are p-content and 
(1 - a)-confidence tolerance intervals and regions. Another type of tolerance 
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intervals (regions) investigated in the literature is referred to as a P-expectation 
tolerance intervals (regions). A p-expectation tolerance interval or region is 
such that the average content is p. Such an interval or region is also a prediction 
interval or prediction region for a future observation. Wilks (1941) derived such 
an interval for the univariate normal distribution N ( p ,  a2) ;  see also Paulson 
(1943) and Guttman (1970). Later investigators have derived such intervals in 
the context of mixed and random effects models; see Mee (1984b) and Lin and 
Liao (2006). In this section, we shall derive such intervals (one-sided as well 
as two-sided) for the univariate normal distribution, followed by the derivation 
for the one-way random model with balanced data, as well as a general mixed 
model with balanced data. The one-way random model with unbalanced data 
will also be discussed. In terms of notation, in all the previous chapters we 
have used p to denote the content of a ( p ,  1 - a)  tolerance interval. However, 
in the present section, we shall use the terminology P-expectation tolerance 
interval, instead of a p-expectation tolerance interval, since the terminology 
,&expectation tolerance interval is now commonly used in the literature. 

12.2.1 P-Expectation Tolerance Intervals for the Normal 
Distribution 

Let X I ,  ..., X ,  be a sample from a N ( p ,  a2)  population with unknown mean ,u 
and unknown variance 02. Let 

l n  l n  
X = - X X i  and S2 = - c ( X i  - x ) 2 .  

If X - N(,u,a2), the interval X f kS is a p-expectation tolerance interval if 
the factor k satisfies the condition 

n n - 1  
i=l i=l 

EX,$ { P ( X  - k S  5 x 5 X + kSl X ,  s) } = p, (12.2.1) 

where E Z , ~  denotes expectation with respect to the distribution of ( X ,  S). We 
note that there is only one probability, namely p, associated with a &expectation 
tolerance interval. 

It is quite easy to derive the factor k satisfying the condition (12.2.1). The 
derivation becomes particularly simple once it is noted that a ,&expectation 
tolerance interval is simply a prediction interval that satisfies the condition 

PX,X,$ ( X  - kS 5 x 5 x + k S )  = p. (12.2.2) 

The proof of the above assertion is quite straightforward. A formal proof appears 
in Paulson (1943). In fact, Paulson (1943) proves a general result which states 
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that if ( L ( S ) , U ( S ) )  is a loOD% prediction interval for a future observation on 
a random variable X ,  based on a random sample S ,  then 

showing that the usual loop% prediction interval is also a P-expectation toler- 
ance interval. 

Since ( X - X ) /  ( S d z  ) follows a t  distribution with df = n-1, the factor 

1 + ;. k satisfying (12.2.2), or equivalently (12.2.1), is given by k = t , - l ; ~  

Thus a two-sided P-expectation tolerance interval for N ( p ,  g2) is given by 
2 F  

(12.2.3) 

A P-expectation upper tolerance limit is easily seen to be X + t , - , ; p d l  + A x S 

and a @-expectation lower tolerance limit is X - t , - p p d q  x S.  

Example 2.1 (continued) 

Let us consider Example 2.1 of Chapter 2 dealing with the air lead levels 
at a laboratory. The sample consists of 15 observations, and it was observed 
that the log-transformed data followed a normal distribution. The sample mean 
and standard deviation of the log-transformed data are computed as 4.333 and 
1.739, respectively. Let us compute a .95-expectation tolerance interval for the 
lead levels. With df = 14, we have t 1 4 ; y  = t14;0.975 = 2.145. Simplifying 
the formula (12.2.3), we get the required P-expectation tolerance interval for 
the logged data as (0.4805, 8.1855). Hence the corresponding interval for the 
lead levels is (1.617, 3588.537). Also, for @ = 0.95, since t14,0.95 = 1.761, a 
P-expectation upper tolerance limit for the lead levels simplifies to 1800.485, 
and a @-expectation lower tolerance limit is 3.223. 

12.2.2 &Expectation Tolerance Intervals for the One-way 
Random Model with Balanced Data 

For a one-way random model with balanced data, P-expectation tolerance inter- 
vals have been derived by Mee (198413) using the Satterthwaite approximation. 
The approximation was used in a manner similar to the derivation of a ( p ,  1 - a )  
tolerance interval due to Mee and Owen (1983); see Section 4.3.1 of Chapter 
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4. In a recent paper, Lin and Liao (2006) have derived P-expectation toler- 
ance intervals for a general mixed model with balanced data, which is the model 
considered in Section 6.3. In a later paper, Lin and Liao (2008) also derived si- 
multaneous prediction intervals in the context of a general random effects inodel 
with balanced data. Here we shall consider the solutions due to  Mee (198413) 
and due to Lin and Liao (2006) for the one-way random model with balanced 
data. 

We shall use the notations in Chapter 4. Thus we have a levels of a factor, 
randomly selected, with n observations per level. The model we shall consider 
is given in (4.1.1), involving the two variance components a: and a:. Let Y . ,  
SS,  and SS, be as defined in (4.1.2), with the distributions specified in (4.1.3). 
Furthermore, let 3: and L?: denote the ANOVA estimators of u: anti a,", re- 
spectively; see (4.1.4). When a random variable Y follows the one-way random 
model with the standard assumptions, we have Y N N ( p ,  0: + a,"). Since Y. is 
an estimator of p, we shall assume that the two sided P-expectation tolerance 
interval is of the form Y, * k d n ,  a + u where the factor k is to be determined. 

Mee's Approach 

In order to  describe the approach due to Mee (1984b), let R be the variance 
U 2  ratio f and Ro = B. We shall now use the Satterthwaite approxiniation to  
o e  

conclude that 

(12.2.4) 

as noted in Section 4.3.1. The condition to  be satisfied by k is 

naz+a,2 Since Y ,  N N ( p ,  ---) independently of Y N N ( p ,  u: + a:), we have 

Y - F. - N(0,l) .  
(no2-tff:) J(.? + a 3  + Ln 

The condition to be satisfied by k can be expressed as 
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In view of the Satterthwaite approximation, the random quantity in the above 
equation has an approximate t distribution with df = f .  Noting that 

where Ro = nR+1 R+l - - a:+u2 1 the factor k can tie obtained by following the 
corresponding derivation for N ( p ,  c2).  This gives 

I 1 

However, a P-expectation tolerance interval cannot be computed using the 
above factor k since it depends on Ro, which is a function of the unknown 
variance ratio 3. Mee (1984b) recommends replacing R by the estimate 

a e  

(12.2.5) 

where MS7 and MSe are the mean squares in the ANOVA table; see Table 4.1 
in Chapter 4. Thus an estimator of f is given by 

arid the estimated factor is 

1 
k = t - 1 + p  l+- d anEo ' f ; 7  
h 

(12.2.7) 

where 2, = k. The P-expectation tolerance interval is finally given by 
nR+1 

Similarly, the P-expectation upper tolerance limit is 

and the /?-expectation lower tolerance limit is 

(12.2.8) 
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The Lin-Liao Approach 

The idea proposed by Lin and Liao (2006) is for a general mixed linear model 
with balanced data. Here we shall adopt the procedure for the one-way random 
model with balanced data; the more general model will be taken up later. As- 
sume that the p-expectation tolerance interval is of the form Y .  f D1, where 
D1 is a margin of error statistic to be determined. The condition to be satisfied 
by D1 is 

p = P(-D1 I Y -v. I D1) 

= P ( -D1 I z /- (0; +0%) + 5 Dl) , (12.2.9) 

where 
Y - Y ,  

Z =  - N(0,l). 
(no? +0,2)  &+4 + a n  

has a distribution that is symmetric around zero, Since Z (0; +a:) + in 
D1 can be taken to be the (y) quantile of this random variable. For such a 

choice of D1, -DI will be the (9) quantile of the same random variable, and 
consequently (12.2.9) will hold. However, since 0; and a: are unknown, Lin and 
Liao (2006) recommend that they be replaced by generalized pivotal quantities 
(GPQs) before computing the ( y) quantile. Noting that 

(no2 +a: ) 

(03 + 0:) + 

a GPQ is given by 

(no? + 0:) 
an n 

n 

where ss, and sse denote the observed values of SS,  and SS,, respectively, and 
U: and U: denote independent random variables having chi-square distributions 
with a - 1 and a(n, - 1) df, respectively; see (4.1.3) in Chapter 4. The derivation 
of this GPQ should be clear from the derivations in Section 4.3.3. The margin 
of error statistic D1 is taken to  be the (y) quantile of the random variable 

z - 1 + -  -+ 1 - -  -. d : (  a> ;; ( :) ;; ( 12.2.10) 
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The percentile can be easily estimated by Monte Carlo simulation, and an algo- 
rithm (similar to Algorithm 4.1, for example) can be easily specified for doing 
this computation. The computation of one-sided P-expectation tolerance lini- 
its should be clear. For example, in order to obtain a @-expectation upper 
tolerance limit, we have to use the P quantile of the above random variable. 

The numerical results reported in Lin and Liao (2006) show that the above 
procedure provides coverages close to P and is more accurate compared to the 
solution due to Mee (198413). The solution obtained by Mee (1984b) appears to 
be somewhat conservative; see Table 2 in Lin and Liao (2006). However, from 
a practical point of view, the amount of conservatism appears to be somewhat 
insignificant. Note also that the approximate P-expectation tolerance interval 
due to Mee (198410) has an explicit analytic expression, and hence is easily 
computed. A major advantage of the Lin and Liao (2006) methodology is that it 
can be easily applied to obtain P-expectation tolerance intervals in the context 
of general models with balanced data; this will be discussed later. 

Let us also apply the Lin and Liao (2006) approach for computing a 15’- 
expectation tolerance interval for the true value p + r2 in the model (4.1.1). 
Following a derivation similar to what is given above, we conclude that such an 
interval is given by 
be the 100 ( y ) t h  

y ,  f Dz, where the margin of error statistic D2 is taken to 
percentile of the random variable 

(12.2.11) 

where for any scalar c, c+ = max{c, O}. Similarly, a P-expectation upper toler- 
ance limit, and a P-expectation lower tolerance limit can also be obtained. 

Example 4.1 (continued) 

As noted earlier, there are u = 5 batches, and each batch consists of n = 5 
specimens. From the ANOVA Table 4.3, we have ss, = 4163.4 and ss, = 1578.4. 
We also have the observed values 

g,. = 388.36, ms,  = 1040.8, ms, = 78.9, C: = 192.36, and C: = 78.90, 

where ms, and ms, are the observed values of M S ,  and M S e ,  respectively. 

P-Expectation Tolerance Intervals for N ( p ,  u: + uz): Let us first compute 0.95- 
expectation tolerance intervals using Mee’s (198413) approach. Towards this, we 
note that = 2.4383, = 0.2606, f = 6.6710 and tF;;.975 = 2.3885. Using 
these quantities in (12.2.8), we get the .95-expectation tolerance interval as 
388.36 4z 42.25 = (346.11,430.61). 

,.. 
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We shall now compute .95-expectation tolerance intervals using the Lin and 
Liao (2006) approach. The 95th and 97.5th percentiles of the quantity in 
(12.2.10) are, respectively, 36.50 and 46.52; these percentile are obtained us- 
ing a simulation consisting 10,000 runs. Thus, .95-expectation lower limit is 
g.. - 36.50 = 351.86 and the upper limit is g.. + 36.50 = 424.86. The 0.95- 
expectation tolerance interval is g,, f 46.52 = (341.84,434.88). 

P-Expectation Tolerance Intervals f o r  N ( p ,  0;): To apply the Lin-Liao (2006) 
approach, the 95th and 97.5th percentiles of the quantity in (12.2.11) are 32.93 
and 43.31 respectively. Thus, the 95% lower prediction limit for the distribution 
N ( ~ , D ? )  is g.. - 32.93 = 355.43. Furthermore, the upper prediction limit is 
431.67, and the 95% prediction interval is g.. f 43.31 = (345.05,431.67). 

12.2.3 @-Expectation Tolerance Intervals for the One-way 
Random Model with Unbalanced Data 

It should be clear that the derivations presented above in the context of the 
one-way random model with balanced data use many of the ideas and results 
in Chapter 4. Much the same way, some of the results obtained in Chapter 5 
can be used to derive P-expectation tolerance intervals for the one-way random 
model with unbalanced data. In fact it is quite convenient to use the approxima- 
tions described for the Krishnamoorthy and Mathew (2004) approach in Section 
5.3.1. The details are given below for the derivation of two-sided P-expectation 
tolerance intervals. A P-expectation upper tolerance limit, or a P-expectation 
lower tolerance limit can be similarly obtained. 

Consider the one-way random model with unbalanced data, given in [5.1.1) 
and let SSe denote the error sum of squares. Furthermore, let f i ,  Y and SS, be 
as defined in (5.3.1), and let U; be the approximate chi-square random variable 
defined in (5.3.2). Suppose we take a P-expectation tolerance interval for a 
random variable Y ,  following the one-way random model, to be Y f 0 3 ,  where 
0 3  is the margin of error statistic, to be determined. Using the results in Section 
5.3.1, and following the derivations for the case of balanced data, we conclude 
that 0 3  can be taken to be the (y) quantile of the random variable 

( I  2.2.12) 

where ssy and ss, denote the observed values of SSy and SS,, respectively, 
U: N x L - ~ ,  U$ - X Z - ~  and 2 N N(0 , l ) .  Here N = C:=l ni. Note from (5.3.1) 
that f i  < 1 and hence 1 - f i  > 0. Similarly, when we have unbalanced data, a 
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P-expectation tolerance interval for the true value p + ~i in the model (5.1.1) 
can be obtained as Y k D4, where the margin of error statistic 0 4  can be taken 
to be the (y) quantile of the random variable 

( 12.2.13) 

Example 5.1 (continued) 

Based on the moisture content data in Table 5.1, let us compute a .95- 
expectation upper tolerance limit for the moisture content. Here a = 5 and 
N = C:=l ni = 14. The observed values are: 

j j1.  = 7.98, fj2. = 6.63, jj3. = 7.25, y4. = 9.13, fj5. = 7.10, 5 = 762 . '  SS- Y 
= 3.80, and sse = 7.17. 

To find .95-expectation tolerance interval for the distribution N ( p .  CJ; + a:), 
the 95th and 97.5th percentiles of the quantity in (12.2.12) are computed as 
2.5797 and 3.2838, respectively. Using these, the .95-expectation lower tolerance 
limit is computed as 5-2.5797 = 5.04, and the upper tolerance limit is computed 
as 5 + 2.5797 = 10.20. The .95-expectation tolerance interval is computed as 
5 f 3.2838 = (4.34,10.90). 

To find .95-expectation tolerance interval for the distribution N ( p ,  CJ;), the 
95th and 97.5th percentiles of the quantity in (12.2.13) are computed as 2.0136 
and 2.7150, respectively. Using these percentiles, the .95-expectation lower tol- 
erance limit is computed as 5 - 2.0136 = 5.60, and the upper tolerance limit 
is computed as y + 2.0136 = 9.63. The .95-expectation tolerance interval is 
computed as 5 f 2.7150 = (4.90,10.33). 

12.2.4 P-Expectation Tolerance Intervals for a General Mixed 
Effects Model with Balanced Data 

As noted in Chapter 6, a general formulation of the problem consists of deriving 
a /?-expectation tolerance interval for the distribution N ( 0 ,  C:='=, ciof), based 
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on the independent statistics $and SS, (i  = 1, 2 ,  ...., q ) ,  with 

( 12.2.14) 

where the ti's and di’s are known constants. The derivation given here, due to 
Lin and Liao (2006), is similar to the derivation given earlier for the case of the 
one-way random model with balanced data. Thus a two-sided ,&expectation 
tolerance interval for the distribution N ( 8 ,  C:=’=, c i ~ p )  is given by I9 f Dg, where 
the margin of error statistic 0 5  can be taken to be the (9) quaritile of the 

A 

(12.2.15) 

with 2 - N ( 0 , l )  and ssi being the observed value of SSi (i = 1, 2 ,  ...., 4 ) .  

Example 6.1 (continued) 

Let’s now compute a P-expectation tolerance interval in the context, of the 
glucose monitoring meter experiment described in Example 6.1, Section 6.2. The 
model and the notations are given in Section 6.2, and a sample of data are given 
in Table A l ,  Appendix A. We shall obtain a P-expectation tolerance interval 
for the distribution N ( ~ T  - p ~ ,  OF), based on the independent random variables 
w - Y, SST,  SSR and SS,, specified in the solution to Example 6.1, as  given 
in Section 6.3. We shall choose /3 = 0.95. The observed values of w - Y. SST,  
SSR and SS,  are -1.3791, 718.9790, 280.3167, and 8376.4525, respectively. In 
the notations of the present section, 0 = I$’ - Y. In terms of the notations for 
Example 6.1 as given in Section 6.2 and Section 6.3, and using the notations 
in the present section, we have c1 + d l  = 132, c2 + d2 = -, c3 + d3 = -27. 
Furthermore, ss1 = observed value of SST = 718.98, ss2 = observed value of SSR 
= 280.32, and ss3 = observed value of SS, = 8376.45. Also, U f  - xi3, U; - xf9, 
and ui - x:656. Based on p = 0.95 and using the above quantities in (12.2.15), 
simulation consisting of 100,000 runs gave the 0.975 quantile of the random 
variable in (12.2.15) as 1.374. Since the observed value of 8 is -1.3791, the 
P-expectation tolerance interval for the distribution N ( ~ . T  - p ~ ,  0;) simplifies 
to the interval (-2.7531, -0.0051). 

5 1 1 
540 

A natural question that comes up is on the computation of P-expectation 



12.2 0-Expectation Tolerance Regions 303 

tolerance intervals for models with unbalanced data, other than the one-way 
random model. For example, in Section 6.4 of Chapter 6, ( p ,  1 - a)  tolerance in- 
tervals were derived for a general linear mixed model involving only one random 
effect, and hence only two variance components. There are two main difficul- 
ties in deriving P-expectation tolerance intervals for such models. The first 
difficulty is on the choice of the estimator for estimating the fixed effects pa- 
rameter vector. For the one-way random model with unbalanced data, we used 
the quantity Y defined in (5.3.1). The second issue is on defining an appropri- 
ate sum of squares (similar to SS, given in (5.3.1)) so that this sum of squares 
has an approximate distribution that is a scalar multiple of a chi-square, and 
furthermore, the sum of squares is also independent of the error sum of squares 
and also independent of the estimator of the fixed effects parameter. Since it 
is not clear how all of these can be achieved, we do not have a solution to the 
P-expectation tolerance interval problem for unbalanced data situations more 
general than the one-way random model with unbalanced data. 

12.2.5 Multivariate P-Expectation Tolerance Regions 

Let us consider the derivation of a niultivariate P-expectation tolerance region 
in the context of the multivariate linear regression model discussed in Chapter 
10. Thus we have the model (10.1.3) for the q x n data matrix Y ,  and we shall 
derive the P-expectation tolerance region using the independent quantities Y ,  
2, and A, having the distributions 

Y N  N n ) .'}-I 8 x] . 
and A - W,(C,n - m - 1); 

we refer to Section 10.1 of Chapter 10 for details. A tolerance region is required 
for the q x 1 vector Y(x) having the distribution in (10.1.4): 

Y (x) - N(0"  + Bx, E). 

The statistic we shall use to  construct the /3-expectation tolerance region is the 
quantity used in (10.1.7): 

[Y(x)  - Y - g(x - X)]'A-I[Y(x) - Y - 6 ( x  -X)]. (12.2.16) 

Note that 

Y(x) - Y - g ( ( ~  - X) - N (0, c(x)C) ,  

c(x) = 1 + - + (x - X)'{X(In - n-'ln1k)X'}-'(x - X).(12.2.17) 
1 
n 

where 
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Hence a Hotelling’s T 2  statistic can be constructed using (12.2.16), and can be 
used to obtain a P-expectation tolerance region for Y(x). The statist,ic, say 
T2(x), is given by 

n - m - 1  
T2(x) = [ Y ( x ) -  Y - g ( x - - x ) ] ’ A - ’ [  Y(x)-  Y-g(x-x)]. (12.2.18) 

C ( X >  

Let Fq,n-m-q;~ denote the /3 quantile of an F distribution with ( g , n  - m - q )  
df. Then the P-expectation tolerance region for Y(x )  is given by 

q(n - m - 1) 
n - m - q  

{ Y(x)  : T2(x) 5 

An optimum property of the above tolerance region is noted in Evans and 
Fraser (1980). A P-expectation tolerance region can be similarly defined for 
a q-variate multivariate normal distribution N q ( p ,  C); see Fraser and Guttman 
(1956). Let Y 1, ..., Y, be a sample from N q ( p ,  C) and define 

1 ,  n 

y = - n Yi and A = c( yi - y ) (  yi - y) ’ ,  
i= 1 i=l 

as defined in Chapter 9. If Y N N q ( p ,  C), then a P-expectation tolerance region 
for Y is given by 

12.2.6 Bayesian @-Expectation Tolerance Intervals 

So far, we have derived P-expectation tolerance intervals from a frequentist per- 
spective. Such intervals (and regions) can be obtained in the Bayesian framework 
as well. Here we shall give a very brief discussion of this. Using the notations 
in Section 11.1, let X denote a random variable whose distribution depends on 
a parameter 8, so that the realizations of X give the observed data. Let LL: 

represent the observed sample, and ~ ( 8 )  denote a prior distribution for 8. If 
X O  denote a future observation from the distribution of X ,  then the posterior 
predictive distribution of X O ,  denoted by ~ ( X O ~ L L : ) ,  is given by 

where p(zol8) is the distribution of X O ,  and p(8lx) is the posterior distribution 
of 8; see Gelman et al. (2003, p. 8). Bayesian P-expectation tolerance intervals 
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are obtained when the expectation is with respect to  the posterior predictive 
distribution p(z0  lx). 

For normal distributions, such tolerance intervals (one-sided as well as two 
sided) are given in Guttman (1970, Chapter 8). Bayesian simulation can be 
used to obtain such tolerance intervals in random effects models; see Wolfinger 
(1998), Van der Merwe and Hugo (2007) and Van der Merwe, Pretorius and 
Meyer (2006). Bayesian prediction intervals are constructed in Hamada et al. 
(2004) so that a specified proportion of observations in a finite sample will be 
contained in the interval, with a specified probability. The authors have also 
investigated the relationship of such intervals and tolerance intervals. 

12.3 Tolerance Limits for a Ratio of Normal Random 
Variables 

The procedure for computing a confidence interval for the ratio of two normal 
means is well known, and has important applications in bioassay. Here the means 
could be based on normal distributions that may or may not be independent. 
The computation of a tolerance interval for the ratio of two normally distributed 
random variables (independent or dependent) is a problem that has not received 
much attention in the literature, even though the problem does conie up in some 
pharmaceutical applications and in the context of bioassays. The first attempt 
at deriving a tolerance interval for the ratio of two independent normal random 
variables is due to Hall and Sampson (1973), who gave an approximate solution 
assuming that the coefficient of variations are small. The authors also gave an 
application related to drug development. The same tolerance interval problem 
also comes up in the context of testing parallelism in immunoassays; see Yang, 
Zhang and Cho (2006). (2009) have 
obtained upper and lower tolerance limits for the ratio of two independent or 
dependent normal random variables, using the generalized confidence interval 
idea. In this section, we shall describe the solution due to Zhang et al. (2009). 
We shall also discuss a bioassay application related to an influenza vaccine. 

In it very recent article, Zhang et al. 

Suppose X1 and X2 are independent normally distributed random variables, 
or ( X I ,  X2)’ follows a bivariate normal distribution. We shall address the prob- 
lem of computing an upper tolerance limit for X1/X2.  It appears that a simple 
or direct approach is not possible for solving such a tolerance interval problem. 
We already noted that a ( p ,  1 - a)  upper tolerance limit for any distribution is 
a 1 - cy upper confidence limit for the p quantile of the distribution. A further 
property we shall use in this section concerns the relation between one-sided 
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tolerance limits for a random variable, and one-sided confidence limits for the 
corresponding survival probability; see, for example, Section 1.1.3. That is, if 
we can compute a 1 - a lower confidence limit for the cumulative distribution 
function (cdf) of a continuous random variable, evaluated at a point t ,  then 
by equating the lower confidence limit so obtained to p ,  and solving for t ,  the 
solution provides the required ( p ,  1 - a)  upper tolerance limit for the random 
variable. For our problem of computing an upper tolerance limit for X l / X 2 ,  the 
use of this property is necessary because we do have a convenient representa- 
tion for the cdf of X l / X 2 ,  but not for the quantiles. Thus we shall compute a 
1 - a lower confidence limit for the cdf P ( X 1 / X 2  5 t ) ,  equate the lower confi- 
dence limit to p ,  and numerically obtain the solution to t. This will provide the 
required ( p ,  1 - a)  upper tolerance limit for X1 / X 2 .  

We shall first give a representation for the cdf P ( X l / X 2  5 t ) .  Suppose 
( X I ,  X2)’ N N2(p7 E), a bivariate normal distribution with mean p = (p l ,p2) ’  

and covariance matrix C = ( z:: ztz ) . It is well known that the conditional 

distribution of X1 given X2 is N (p1 + al2a;:(X2 - p a ) ,  ~ ~ 1 1 . 2 ) ~  where 011.2 = 

all - 2. Hence 

P (;; - 5 t  ) = Ex2 { P  (2 5 t I X 2 ) }  

= Ex2 ( P ( X 1  5 tX2)lX2 > 0 )  + P ( X 1  2 tX2)IX2 < 0 ) )  

Using this result, and using the standard normal cdf a, we get the following 
representation: 

= d P , V  say, (12.3.1) 

where f ( x z ; p a , a 2 2 )  is the normal density with mean p2 and variance a22, 

and 4 ( z )  is the standard normal density. To get the second representation 
above, we have used the transformation z = ( L C ~  - p 2 ) / J a 2 2 .  Note that in 



12.3 Tolerance Limits for a Ratio of Normal Random Variables 307 

the independent case, the representation for P ( X 1 / X 2  5 t )  can be obtained 
by putting 012 = 0 in (12.3.1). The cdf P ( X l / X z  5 t )  = g(p,C) is clearly 
a function of the parameters p and C. In order to  compute a 1 - Q lower 
confidence limit for the cdf, we shall first obtain a GPQ for the cdf; the a 
quantile of the GPQ will give the required lower confidence limit. In order to  
obtain the required GPQ, we shall actually exhibit a GPQ for the entire set of 
parameters (p ,  C). If (Gp, Gc)  is a GPQ for (p ,  C), then g(Gp, Gc) is a GPQ 
for the function g ( p ,  X). We shall now derive a GPQ for (p ,  C).  

Suppose ( X l j ,  X2j)’,j = 1,. . . , n, is a random sample from the bivariate 
normal distribution N2(p ,  C). Let ( X I ,  X2)’ denote the sample mean vector, 
and let 

n 
X l j  - x 1  xpj - x 1  

A = j=1 c ( x2j - x, ) ( x2j - x, )’ = ( ;;: ;;: ) . 
Clearly, ( X I ,  X2)’ - N2 (p ,  i C )  and A N W2(C, n - l), the bivariate Wishart 
distribution with scale matrix C and degrees of freedom n - 1. Let Zi denote 
the observed value of Xi, i = 1,2,  and let a denote the observed value of A .  
Since A - W2(C, n - 1), it follows that when the observed value a of A is fixed, 

H = a-1/2(a~a)-1/2(a~a)(a~a)-1/2a-1/2 w,(a-l, ri - 1). 

The value of H at A = a is easily seen to  be C - l .  Thus 

is a GPQ for C. In order to derive a GPQ for p,  let 

where 

(12.3.2) 

(12.3.3) 

and the matrix K is defined in (12.3.2). It is now easy to verify that Y = 
(Y1, Y2)’ given in (12.3.3) is a GPQ for p. Thus a GPQ for (p ,  C) is (Gp, Gc) = 

( Y ,  K ) .  We are now ready to  construct an upper tolerance limit for X1/X2 
based on a confidence limit for the cdf. 
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12.3.1 An Upper Tolerance Limit Based on an Approximation 
to the cdf 

A simple approximation can be obtained for the cdf P ( X , / X 2  5 t )  when it is 
known that p2 > 0 and the coefficient of variation of X2,  namely Jcr22/p2 is 
small; later we shall comment on how small &/p2 should be. Under the 
above conditions, we have 

and a(.) is the cdf of the standard normal distribution. This approximation is 
also discussed in Hinkley (1969). A similar approximation can also be developed 
when p2 < 0 and the CV of X z  is small. Here we shall discuss the ca.se of p2 > 0 ,  
along with the CV being small; the other case is similar. 

Now we need to find a 1 - a upper confidence limit for u ( p , C , t ) ,  say 
h(Zl ,Z2 ,a , t ) .  Then @(-h(Z1,22,a,t)) is a 1 - a lower confidence limit for the 
cdf @(-u(p,C,t)).  We can then solve @(-h(Z1,32,a,t)) = p ,  or equivalently 

h ( Z 1 , 2 2 ,  a, t )  = - z p ,  (12.3.4) 

to obtain t = y ( Z l , 2 2 , a ) ,  a ( p ,  1 - a )  upper tolerance limit for X l / X 2 .  

We shall now construct a 1 - a upper confidence limit for u(p ,  C, t )  using 
the generalized confidence interval idea. We shall use the GPQs (Gp,Gx)  = 
( Y ,  K )  defined earlier; see (12.3.2) and (12.3.3). In addition, define 

and let 

(12.3.6) 
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where 21 and 2 2  denote the observed values of X I  and X 2 ,  respectively, 21 is 
defined in (12.3.5), and the Kij’s are defined in (12.3.2). It is readily verified 
that G?L( p, C ,*) is a GPQ for u(p ,  C, t ) .  Keeping the observed valucs (21, 22 

and a )  fixed, we can easily estimate the percentiles of G 1 L ( p 2 ~ , t )  by Monte Carlo 
simulation. The 1 - a quantile of G u ( p , ~ , t )  so obtained gives a 1 - (li general- 
ized upper confidence limit for u(p, C, t ) ,  which in turn can be used to  obtain 
an approximate ( p ,  1 - a )  upper tolerance limit for X1/X2.  Note that in the 
independent case (i.e., when 012 = 0) we have u ( p , E , t )  = and a 

GPQ for u(p,  C, t )  is now given by 

pi-tp2 

V G P Z ’  

where 

(12.3.7) 

( 12.3.8) 

U11 and U22 being independent chi-square random variables, each having df n- 1. 
Here All and A22 are the diagonal elements of the sample sum of squares and 
sum of products matrix A defined earlier. Note that V11 and V 2 2  are GPQs for 
011 and 022,  respectively. 

Recall that after obtaining a 1 - Q generalized upper confidence limit (say, 
h(21, 2 2 ,  a ,  t ) )  for u(p,  C, t ) ,  we need to  solve for t from the equation 

h(21,22, a ,  t )  + zp  = 0 

to obtain the required upper tolerance limit; see (12.3.4). The half-interval 
method (also known as the bisection method) can be conveniently used for ob- 
taining the solution to t .  In order to implement this method, we obtain the 
lower confidence limit h(21,22, a ,  t )  for a sequence of t-values until we find two 
values, say tl and t 2 ,  such that 

Then h(21,22, a , t )+zp  must be zero for a value o f t  between tl and t 2 .  To locate 
such a value of t ,  let t3 be the average of tl and t 2 ,  and compute h(31,22, a ,  t 3 )  -t 
zp. If h(21,22, a,  t3)+zp > 0, then h(21,22, a ,  t )+zp must be zero for a t between 
t 3  and t 2 .  If h(lClr22,a,t3) + zp < 0, then h(z1,22, a , t )  + zp must be zero for a 
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t between t l  and t 3 .  Continuing in this way, we can identify smaller and smaller 
intervals on which h ( Z l , Z 2 ,  a,  t )  + zp must assume the value zero. When the 
interval is small enough, the process stops. 

12.3.2 Tolerance Limits Based on the Exact cdf 

The results in the previous section have been derived under the assumptions 
that p2 > 0 and the coefficient of variation of X2 is small. We shall now do 
away with this assumption. For this we shall use the representation for the 
actual cdf of X1/X2 given in (12.3.1). A GPQ for the cdf is now easily obtained 
by replacing p1 and p2 with their respective GPQs, namely the components of 
Y in (12.3.3), and by replacing the elements of C with their respective GPQs, 
namely the components of K in (12.3.2). We note that in order to implement 
this method, it is necessary to evaluate the integral in (12.3.1). This integral can 
be evaluated by using numerical methods such as Simpson’s rule, or by directly 
using the integration subroutines in standard software. 

When X I  and X2 are independent, g12 = 0. GPQs for g11 and ~722 are 
obviously given by V11 and V22 given in (12.3.8). GPQs for pi, i = 1, 2, are 
given by 

- 

xi - pi x i  - --Jvz2/n = xi - zoiJv,/n, 
d&F 

- x.- where Zoi = N N(0, l )  and are independent for i = 1, 2. Using these 

GPQs for p l ,  pa,  011 and 0 2 2 ,  we can easily obtain a GPQ for the cdf of X1/X2 
in the independent case. 

&z 

In order to study the performance of the approximate upper tolerance limits, 
it is enough to study the performance of the generalized lower confidence limit 
for P ( X l / X z  5 t ) .  (2009) have reported simulated coverage 
probabilities of the generalized lower confidence limit for P ( X 1 / X 2  5 t ) .  Their 
numerical results show that the approximation to the cdf (derived under the 
assumptions p2 > 0 and the coefficient of variation of X2 is small) is quite 
accurate if the coefficient of variation of X2 is no more than 0.30. In general, 
the coverage probabilities turned out to be satisfactory except when the sample 
size was somewhat small. Zhang et al. (2009) recommend that a bootstrap 
calibration be carried out to improve the coverage; we refer to their paper for 
details. 

Zhang et al. 
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12.3.3 An Application 

We shall now illustrate the computation of an upper tolerance limit for X1/X2 
using an application from bioassay. 

The reverse transcriptase (RT) assay is used as a screening tool to detect 
potential retroviral contamination in the raw materials used in the manufacture 
of certain influenza vaccines. Prior to the blending of the final vaccine product, 
the materials are subject to sterility testing, to determine if retroviruses are 
present. The presence of the Reverse Transcriptase or RT enzyme can be used 
as a reliable indicator for the detection of retroviruses. In the RT assay, the larger 
amount of this enzyme in the sample will induce a larger radioactivity count. In 
order to calibrate the radioactivity count resulting from the cell culture itself, a 
negative control is usually included in the assay. One necessary condition for a 
sample to be classified as negative is that the ratio of radioactivity count induced 
from the sample to radioactivity count induced from the negative control be less 
than some pre-specified limit. An upper tolerance limit is used to ensure that 
a given proportion (say, 95%) of the future assay results will be less than the 
limit with a given confidence level, if the process is in control. Historical in- 
control data show that the radioactivity count from the sample and that from 
the negative control follow a bivariate normal distribution. 

The historical data available to us consisted of forty five pairs of radioactivity 
counts of negative controls and samples, accumulated from RT assays. (Due to 
confidentiality issues, the actual data cannot be published). Based on the data, 
the observed values 21, 22 and a are given by 

( :::; ;;:: ) 21 = 38.1, 2 2  = 38.9, and 44 x a = 

We note that the estimated coefficient of variation for X z  is only 0.15. Thus 
we decided to use the approximation method in Section 12.3.1 to compute the 
upper tolerance limit using 1 - Q = 0.95. For this, we first computed a 95% 
generalized upper confidence limit for u(p,  C, t )  given in Section 12.3.1; we used 
5000 simulated values of the GPQ in order to obtain this upper confidence limit. 
Once the upper confidence limit was obtained, we solved the equation (12.3.4) 
by the half-interval method. For p = 0.95, the upper tolerance limit came out 
to be 1.230. Also, for p = 0.99, the limit came out as 1.343. 
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12.4 Sample Size Determination 

Sample size determination in the context of tolerance intervals has been ad- 
dressed by Wilks (1941), who considers both a non-parametric set up, as well as 
the parametric set up of a normal distribution. Wilks (1941) addressed the prob- 
lem in the context of P-expectation tolerance intervals. Typically, the criterion 
used to determine the sample size for a P-expectation tolerance interval is as 
follows. Determine the sample size so that the actual proportion of the popula- 
tion (say, N ( p ,  c2)) that is contained in the P- expectation tolerance int>erval is 
in some sense close to P ,  with a high probability. In the case of a p-content tol- 
erance interval, one can compute the sample size so that the probability is small 
that the interval covers too large a proportion of the population. This will guar- 
antee that the tolerance interval is not too wide. Such a criterion was proposed 
by Faulkenberry and Weeks (1968). In this section, we shall briefly address the 
sample size determination for a p-content and (1 - a)-confidence two-sided 
tolerance interval, and for a P-expectation two-sided tolerance interval, both in 
the context of a univariate normal distribution. 

12.4.1 Sample Size Determination for a ( p ,  1 - a )  Two-sided 
Tolerance Interval for a Normal Population 

Let X and S2 denote the sample mean and sample variance, respectively, based 
on a sample of size n from N ( p ,  g 2 ) .  A (p, 1 - a )  two-sided tolerance interval 
for N ( p ,  g2) is derived in Section 2.3.1 of Chapter 2, and is of the form X f k S ,  
where the tolerance factor k has the approximate expression (see (2.3.5)) 

Let C ( X ,  S )  denote the content of the tolerance interval, i.e., the proportion of 
the normal population that is contained in the tolerance interval, conditionally 
given X and S .  That is 

C ( X , S )  = Px ( X  - kS 5 X 5 X + k S l X , S ) ,  

where X N N ( p ,  g2). Obviously, the ( p ,  1 - a)  two-sided tolerance interval 
X f k S  is such that 

Px,s ( C ( X ,  S )  2 p )  = 1 - a. (12.4.1) 

A formulation of the sample size problem, due to Faulkenberry and Weeks (1968) 
is as follows. For a given p ,  1 - a ,  6 and a’, determine the sample size n so that 

PX,$ ( C ( X ,  S )  2 p + 6 )  = a/ .  
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Equivalently, 
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PX,S ( C ( X ,  S )  5 p + 6) = 1 - a’. (12.4.2) 

Here a’ is taken to be small, say 0.10, 0.05 or 0.01. Note that the tolerance 
interval is to be derived subject to (12.4.1) and the condition (12.4.2) is to be 
used to determine the sample size n. As already noted, the condition (12.4.2) 
implies that there is only a small probability a’ that the ( p ,  1 - a )  tolerance 
interval will have a content that exceeds p by a margin of 6. 

The above sample size problem is addressed in the articles by Faulkenberry 
and Weeks (1968), Faulkenberry and Daly (1970) and Guenther (1972). How- 
ever, they used inefficient approximations for the tolerance factor k .  Later, 
Odeh, Chou arid Owen (1987) addressed the same sample size problem. For 
some selected values of p ,  1 - a, 6 and a’, they have given a table listing the 
sample sizes, and the tables are reproduced in Table B17, Appendix B. 

For a given sample size n, it may also be of interest to determine the margin 
6 so that the ( p ,  1 - a )  two-sided tolerance interval X f kS will satisfy (12.4.2), 
for specified values of p ,  1 - a and a’. Tables of such 6-values are given in 
Odeh, Chou and Owen (1987); these are not reproduced here. 

Example 2.2 (continued) 

This example from Chapter 2 deals with the filling operation monitoring of 
a machine that is set to fill a liter of milk in plastic containers. Suppose a (0.90, 
0.95) two-sided tolerance interval is to be used to assess the accuracy of the 
filling machine. We shall determine the required sample size for S = 0.05, and 
a’ = 0.10. From Table B17, Appendix B, the required sample size is n = 145. 
In other words, if we compute a (0.90, 0.95) two-sided tolerance interval based 
on a sample of size 145, we can claim that the content of the tolerance interval 
will exceed p + 6 = 0.95 with a probability of only 0.10. 

The methodology described in this section can obviously be adopted to de- 
termine the required sample size in the context of one-sided tolerance limits. 
The sample size problem has also been addressed in the context of an equal- 
tailed tolerance interval for the normal distribution discussed in Section 2.3.2; 
see Chou and Mee (1984) for details. The article by Fountain and Chou (1991) 
address the sample size problem for finite populations. 
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12.4.2 Sample Size Determination for a @Expectation 
Two-sided Tolerance Interval for a Normal Population 

In order to introduce the sample size problem for a P-expectation two sided 
tolerance interval for a normal distribution, let C ( X ,  S) denote the content of 
the tolerance interval, defined earlier. Recall that the tolerance interval is once 
again of the form X k k S ,  where the factor k is to be determined subject to the 
condition 

E [ C ( X ,  S ) ]  = p. 

We then have k = t n - l ; w d l  + i; see (12.2.3). The sample size problem 
formulated by Wilks (1941) is that of determining the minimum sample size n 
so that 

P ( p  - 61 I C ( X ,  S) I p + 62) 2 1 - a’, (, 12.4.3) 

for specified values of 61 > 0, 62 > 0 and 1 - a’. The above condition states 
that with probability at least 1 - a’, the content of the p-expectation tolerance 
interval belongs to the interval (P  - 61, p - 62). 

2 

For 61 = 62 = 6, tables of the minimum sample size satisfying (12.4.3) are 
given in Odeh, Chou and Owen (1989). These are reproduced in Table B18, 
Appendix B. It is also possible to compute the value of 6 so that (12.4.3) will 
hold for 61 = 62 = 6, for a given sample size and for given values of /3 and 1 - a’. 
Such tables are also given in Odeh, Chou and Owen (1989). These authors also 
address the sample size problem when, instead of (12.4.3), we require 

P ( C ( X , S ) I / 3 + 6 )  2 1 - a ’ .  (12.4.4) 

In other words, the requirement is that with probability at least 1 - a’, the 
coverage of the P-expectation tolerance interval is no more than P + 6. Here we 
have given the tables of sample sizes corresponding to the criterion (12.4.3) only 
(with 61 = 62 = 6). Other tables, for example corresponding to the criterion 
(12.4.4), can be found in Odeh, Chou and Owen (1989). 

In an earlier article, Chou (1984) addressed the sample size problem for 
a P-expectation two sided tolerance interval for a normal distribution under 
the requirement that the proportion of the normal distribution below the lower 
tolerance limit, and the proportion above the upper tolerance limit are both 
suitably controlled. Clearly, the sample size problem can also be addressed in 
the context of one-sided &expectation tolerance limits. We also note that in 
this section we have discussed sample size determination only in the context of 
a univariate normal distribution; see Wang and Iyer (1996) for a discussion of 
sampling plans in the context of a one-way random model with balanced data. 
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Exumple 2.2 (continued) 

Suppose a P-expectation two-sided tolerance interval is to be used to assess 
the accuracy of the filling machine with ,Ll = 0.90. We shall determine the 
required sample size for 6 = 0.05, and 1 - a’ = 0.90. From Table B18, 4ppendix 
B, the required sample size is n = 161. Thus if we compute a @-expectation 
two-sided tolerance interval with = 0.90 based on a sample of size 161, we can 
claim that the content of the tolerance interval will be between 0.85 and 0.95, 
with a probability of 0.90. 

12.5 Reference Limits and Coverage Intervals 

Reference limits are widely used by clinicians to identify the measurement range 
expected from a reference population. For a reference population, the refer- 
ence interval typically contains the central 95% of the values of the population. 
The reference population may represent a selected healthy population, and the 
reference limits thus provide a standard range that can be used to interpret mea- 
surements obtained from new patients. We refer to the book by Harris and Boyd 
(1995) for a detailed treatment of the topic, along with a discussion of the basic 
issues. An excellent review is also given in the recent paper by Trost. (2006). 
Here we shall give a brief description of the topic, pointing out the relationship 
to tolerance intervals. 

Point estimates of the reference limits can be easily obtained by simply es- 
timating the 2.5th and 97.5th percentiles of the reference population. However, 
we cannot guarantee the intended coverage of 95% when we use a reference inter- 
val based on such estimated reference limits. If estimates with a certain desired 
coverage are desired, one possibility is to compute the estimated reference limits 
subject to the condition that the estimated reference limits contain at least a 
proportion p (say, p = 0.90) of the central values of the reference population, 
with confidence level 1 - a (say, 1 - a = 0.95). This requirement results in a 
p-content equal-tailed tolerance interval, with confidence level 1 - a. 

If the measurements from the reference population follow a univariate normal 
distribution N ( p ,  02), the reference limits that contain the central loop% of the 
population are p-zzl+po and p+zzl+p~. Simply replacing p and o with estimates 
will obviously result in a reference interval whose coverage could be much less 
than lOOp%. Thus we have to use an equal-tailed tolerance interval, namely, 
a tolerance interval that will contain the interval p - zl+l)o, p + Z - D )  with 
confidence level, say 1 -a .  A solution to this problem is given in Section 2.3.2 of 

2 2 

( 2  
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Chapter 2, and the interval is of the form (X-k ,S ,  X+k,S) ,  where X and S are 
the sample mean and standard deviation based on a sample of size n, and the 
computation of the tolerance factor k, is explained in Section 2.3.2. Depending 
on the purpose for which the reference limits will be used, one can also compute 
a @-expectation tolerance interval, to be used as a reference interval; see Harris 
and Boyd (1995, p. 110-111). Sometimes it is also required to have a coverage 
interval that is a @-expectation tolerance interval whose content belongs to the 
interval (@ - 6, /3 + S), with a high probability, say 1 - a’. Here 6 is a specified 
margin; see Poulson, Holst and Christensen (1997, p. 1604). We have already 
addressed the problem of determining the sample size necessary to meet this 
requirement. 

The importance of having statistically valid reference limits has been widely 
recognized in Clinical Chemistry and Metrology, where the terms coverage inter- 
val and statistical coverage interval are used; see Poulson, Holst and Christensen 
(1997), Chen and Hung (2006), Chen, Huang and Chen (2007) and Willink 
(2004, 2006). The literature on reference limits and coverage intervals address 
the problems non-parametrically, as well as parametrically in the set up of a 
normal distribution. 

Reference regions in the multivariate context can be similarly defined; see 
Harris and Boyd (1995, Chapter 4) and Trost (2006). Here we will have ( p ,  1 - 
a )  tolerance regions as well as P-expectation tolerance regions. The role of 
tolerance regions as reference regions for the assessment of clinical observations 
is also described in the recent article by Eaton, Muirhead and Pickering (2006). 

12.6 Tolerance Intervals for Binomial and Poisson 
Distributions 

The problem of constructing tolerance intervals for a discrete distribution has not 
received much attention in the literature. Tolerance intervals on the basis of a 
discrete model is useful to assess the magnitude of discrete quality characteristics 
of a product, for example, the number of defective components in a systern (see 
Example 12.1). To define a ( p ,  l-a) tolerance interval for a discrete distribution, 
let X be a sample from a discrete distribution, and let X follow the same 
distribution independently of X .  A ( p ,  1 - a )  one-sided upper tolerance limit 
U l ( X )  is defined so that 

(12.6.1) 
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A ( p ,  1 - a )  one-sided lower tolerance limit L1(X)  is defined similarly. Recall 
that these one-sided tolerance limits are also 1 - a confidence limits on ap- 
propriate quantiles. Let kp is the p quantile of the discrete distribution under 
consideration. A ( p ,  1 - a )  equal-tailed tolerance interval ( L e ( X ) ,  U e ( X ) )  is 
defined so that 

I - ~  and kl+,  < U e ( X ) )  2 1 - a .  (12.6.2) 

We shall now describe a method for constructing one-sided as well as equal- 
tailed tolerance intervals in a general set up. Consider a distribution Fx(zl8)  
that depends only on a single parameter 8, and is stochastically nondecreasing 
in 8. That is, for every t ,  P ( X  > tl81) 2 P ( X  > tl&) for all 81 > 82. Then thep  
quantile k p ( 8 ) ,  defined as the smallest value for which P ( X  5 kp(8)18) 2 p ,  is a 
nondecreasing function of 8. As a consequence, if 8, is a 1 - a upper confidence 
limit for 8, then kp(8,), defined as the smallest value so that 

P ( X  5 rc,(Q,)l~,> 2 P, (12.6.3) 

is a 1 -a upper confidence limit for k p ( 8 ) ,  and so it is a ( p ,  1 -a)  upper tolerance 
limit for the distribution. Similarly, if 81 is a 1 - a lower confidence limit for 8, 
then kl-p(Ol), defined as the largest number so that 

P ( X  L kl-p(QZ)I~I) 2 P ,  (12.6.4) 

is a ( p ,  1 - a)  lower tolerance limit for the distribution. If (81, 8,) is a 1 - a 
confidence interval for 8, then simultaneously the inequalities kl- ,  (01) 5 k? (8) 
and k+(H) 5 k1+,(8,) hold with probability 1 - a. Therefore, 

2 

2 

( k y ( 0 1 ) ,  k # U )  (12.6.5) 

is a ( p ,  1 - a)  equal-tailed tolerance interval. Note that kl-,(O,) is defined as 
the largest number for which 

2 

and k a ( 8 , )  is defined as the smallest number for which 
2 

As the binomial and Poisson distributions are stochastically increasing in 
their parameters, the above procedures can be used to obtain tolerance intervals. 
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Also, the above procedures with the exact confidence intervals for 0 produce 
exact tolerance intervals. To construct tolerance intervals for the binomial and 
Poisson distributions, Hahn and Chandra (1981) used the above procedures with 
the exact confidence intervals for the parameters due to Clopper and Pearson 
(1934) and Garwood (1936). 

12.6.1 Binomial Distribution 

It is clear from the discussion in the preceding section that a good confidence in- 
terval for a binomial parameter n could produce a satisfactory tolerance interval. 
It is now well understood that the exact confidence intervals for a binomial n or 
for Poisson mean are too conservative, and many authors (see Agresti and Coull, 
1998; Brown, Cai and Das Gupta, 2001) recommend approximate intervals for 
applications. There are several approximate confidence intervals available for 
a binomial n (see Brown, Cai and Das Gupta, 2001, and Cai, 2005, and the 
references therein). Among the approximate confidence intervals, the score con- 
fidence intervals seem to be satisfactory in terms of coverage probability and 
accuracy (see Agresti and Coull, 1998). Therefore, we shall consider tolerance 
intervals based on the exact confidence intervals and those based on the score 
confidence intervals. 

Exact Confidence Intervals for T 

The Clopper-Pearson (1934) approach for obtaining an exact confidence interval 
for a binomial proportion n is as follows. For a given sample size n and an 
observed number of successes m, the lower limit 7rl for n is the solution of the 
equation 

and the upper limit nu is the solution of the equation 

Using a relation between the binomial and beta distributions it can be shown 
that 

~ 5 7 1 ~  Bm,n-m+l;% and nu = Bm+l,n-m;l-y 7 (12.6.6) 

where Ba,b;q denotes the q quantile of a beta distribution with the shape param- 
eters a and b. The interval (nl,nu) is an exact 1 - Q confidence interval for n, 
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in the sense that the coverage probability is always greater than or equal the 
specified confidence level 1 - a. One-sided confidence limits for T L  and rTT, can be 
obtained by replacing f by a. For the extreme case of m = n, the upper limit 
is 1 and the lower limit is a;;  when m = 0, the lower limit is 0 and the upper 
limit is 1 - a;. 

Score Confidence Interval for T 

Let ?? = E, where X N binomial(n, T ) .  The score interval is on the basis of the 
asymptotic result that 

h 

T - T  
T(??,7r) = N N(0 , l ) .  

I h F 7 F  
Let c = 21-5 be the 1 - 5 quantile of the standard normal distribution. The 
endpoints of the score confidence interval are the roots of the quadratic equation 
T2(??, T )  = c2, which are given by 

(12.6.7) 

One-sided limits for T can be obtained by replacing zl-g by Z I - ~ .  

Binomial Tolerance Intervals 

Let m be an observed value of the binomial(n, T )  random variable X .  Let k p ( ~ )  
denote the p quantile; that is, kp(n) is the smallest integer so that 

P ( X  L k*(T)In,T) = c [ ? ) 7 r ( l -  7 y - i  2 p .  (12.6.8) 

If xu is a 1 - a upper confidence limit for T based on m, then kp(riT,) ,  defined 
as the smallest integer so that P ( X  5 kp(~u)ln,~u) 2 p ,  is a ( p ,  1 - a )  upper 
tolerance limit for the binomial(n, T )  distribution. Similarly, the largest number 
k ~ - ~ ( ~ i )  for which P ( X  2 kl-p(~l)ln, 71-1) 2 p ,  where ~1 is a l-a lower confidence 
limit for T ,  is a ( p ,  1 -a) one-sided lower tolerance limit. A ( p ,  1 -a )  equal-tailed 
tolerance interval is given by 

(12.6.9) 
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where (q, 7r,) is a 1 - a two-sided confidence interval for 7r. 

To find kp(7r,), we compute the right-tail probabilities P ( X  = n1n,7rU): P ( X  = 

n - l l n ,~ , ) ,  .... until the sum of these probabilities is greater than or equal to 
1 - p.  If this happens at X = n - j ,  that is, Cy="=,-j P ( X  = i (n ,  T,) 2 1 - p 
and cy="=,-j+l P ( X  = iln, 7r,) < 1 - p ,  then n - j is the ( p ,  1 - a )  upper tol- 
erance limit. Furthermore, it can be checked that P ( X  5 n - jln, T,) 2 p (see 
Exercise 12.8.12). Similarly, the ( p ,  1 - a )  lower tolerance limit k1-~(7rl) based 
on the 1 - a lower confidence limit 7rl can be computed by computing left-tail 
probabilities. 

Tolerance Intervals based on Approximate Quantiles 

Krishnamoorthy and Xia (2009) noted that tolerance intervals can be obtained 
by estimating normal based approximate quantiles of binomial(n, T ) .  On the 
basis of the normal approximation to the quantity *, the p quantile of 
a binomial(n,r) distribution is given by kp(i7) 'v nT + z p d m ,  where 
zp  is the p quantile of the standard normal distribution. Noting that the above 
quantile is an increasing function of 7r,  an approximate ( p ,  1 - a )  upper tolerance 
limit for the binomial(n,r) distribution obtained by replacing the 7r by it 1 - a 
upper confidence limit T,. More specifically, 

k p ( ~ u )  'v min { n, [ m u  + z p d G G G 1 }  , (12.6.10) 

where [y] is the nearest integer to y, is an approximate ( p ,  1 - a )  upper tolerance 
limit. Similarly, an approximate ( p ,  1 - a )  lower tolerance limit can be obtained 
as 

If ( T L ,  7ru)  is a 1 - a confidence interval for 7r,  then 

nq  - z y  J;-] } , min { n, [mu + 2 1  9 J;-]}) 
(12.6.12) 

is an approximate ( p ,  1 - a )  equal-tailed tolerance interval. 

Example 12.1 (Assessment of number of defective chips in a wafer) 

To illustrate the methods for constructing binomial tolerance intervals, we 
shall use the data set given in the NIST webpage'. This example concerns 
defective chips in a sample of 30 wafers. A chip in a wafer is considered defective 

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc332.ht1n 
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whenever a misregistration, in terms of horizontal and/or vertical distances from 
the center, is recorded. On each wafer, locations of 50 chips were measured and 
the proportions of defective chips are given in Table 12.1. The overall proportion 
of defective chips is ii = cz;,'""z = = 0.2313, where ni = 50, i = 1, ..., 30. 
We shall compute (0.90, 0.95) one-sided tolerance limits, arid (0.90, 0.95) equal- 
tailed tolerance intervals for the number of defective chips in a wafer using 
different methods described in the preceding sections. 

30 - 
C d  12% 

Table 12.1: Fractions of defective chim in 30 wafers 
Sample No. ??i 

1 .24 
2 .30 
3 .16 
4 .20 
5 .08 
6 .14 
7 .32 
8 .18 
9 .28 
10 .20 

Sample No. ?i 

11 .10 
1 2  .12 
13 .34 
14 .24 
15 .44 
16 .16 
17 .20 
18 .10 
19 .26 
20 .22 

Sample No. ??i 

21 .40 
22 .36 
23 .48 
24 .30 
25 .18 
26 .24 
27 .14 
28 .26 
29 .18 
30 .12 

Tolerance Intervals Based on the Exact Confidence Interrial The 95% exact 
confidence interval (12.6.6) is given by 7rl = &47,1154,.025 = 0.2102 and 7ru = 

B348,~153,.975 = 0.2535. Thus, (7rl ,7ru)  = (0.2102,0.2535) is a 95% confidence 
interval for 7r .  Furthermore, for these values of 7rl and 7ru, we have 

Note that both probabilities are greater than 9 = 0.95. It can be verified 
that 6 is the largest number for which the first sum is at least = 0.95, and 
18 is the smallest number for which the second sum is at least 0.95. Thus, the 
(0.90, 0.95) tolerance interval is (6, IS), and we can conclude that at least 90% of 
the wafers contain 6 to 18 defective chips with 95% confidence. To get the one- 
sided tolerance limits, we found 95% one-sided lower limit for 7r as 7rl = 0.2135 
and 95% upper limit as 7ru = 0.2500. Also, P ( X  2 7150,~l = 0.2135) = 0.9315 
and P ( X  2 8 1 5 0 , ~ ~  = 0.2135) = 0.8654. So, 7 is the (0.90, 0.95) one-sided 
lower tolerance limit. To find the upper tolerance limit, we computed P ( X  5 
1 6 1 5 0 , ~ ~  = 0.2500) = .9017 and P ( X  5 1 5 1 5 0 , ~ ~  = 0.2500) = 0.8369, so 16 is 
the (0.90, 0.95) one-sided upper tolerance limit. 
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Tolerance Intervals Based o n  the Score Interval: The 95% score Confidence inter- 
val (12.6.7) for T is (7rl,rU) = (0.2107,0.2533). Along the lines in the preceding 
paragraph, it can be seen that (6,18) is the (0.90, 0.95) tolerance interval. The 
one-sided 95% score confidence limits are 7rz = 0.2139 and 7ru = 0.2497. The 
one-sided lower tolerance limit based on 7rl = 0.2139 is 7, and the upper limit 
based on 7ru = 0.2497 is 16. 

Tolerance Intervals Based o n  the Approximate Quantiles: We shall now compute 
(12.6.10), (12.6.11) and (12.6.12) using the score confidence intervals given in 
the preceding paragraph. Using T Z  = 0.2139 and 2.90 = 1.282 in (12.6.11), we 
get 6.98 2 7. Using 7rTL = 0.2497 in (12.6.10), we get 16.41 rv 16. Using the 
95% confidence interval (q, 7ru)  = (0.2107,0.2533) and 2.95 = 1.645 in (12.6.12), 
we obtain (5.79,17.72) 2 (6,18) as an approximate (0.90, 0.95) equal-tailed 
tolerance interval. 

Because of the large sample size, we obtained the same tolerance limits based 
on all three methods. 

12.6.2 Poisson Distribution 

One-sided tolerance limits and equal-tailed tolerance intervals for a Poisson dis- 
tribution can be obtained using (12.6.3)’ (12.6.4) and (12.6.5). Let X I ,  ..., X ,  
be a sample from a Poisson(X) distribution. Let S = C;=l Xi  so that S - 
Poisson(nX). The maximum likelihood estimator of X is given by X = ;. 

h 

The Garwood (1936) exact confidence interval for X is given by 

(12.6.13) 

where s is an observed value of S and is the cy quantile of a chi-square 
distribution with m df. The above interval should be used with the convention 
that xiia = 0. One-sided lower (or upper) confidence limit can be obtained by 
replacing the 5 by cy in the lower (or upper) limit in (12.6.13). 

The score confidence interval is on the basis of asymptotic normality of the 
test statistic T ( X , X )  = X-X . Specifically, the roots of the quadratic equation 

T2(X, A) = c2,  where c = Z ~ - S L ,  form the score confidence interval, and they are 
given by 

A 
A 

Jxln 

( 12.6.14) 
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One-sided lower (or upper) confidence limit can be obtained by replacing c = 

~ 1 - a  by zlPa: in the lower (or upper) limit in (12.6.14). 

As in the binomial case, the ( p ,  1 - a )  upper tolerance limit is the smallest 
number kp(A,) so that P ( X  5 kp(A,)lA,) 2 p ,  where A, is a 1 - a upper 
confidence limit for A based on an observed value s of S ,  and X is a Poisson(A,) 
random variable. Similarly, a ( p ,  1 -a)  lower tolerance limit is the largest number 
k lPp(A l )  so that P ( X  2 kl-p(Al)IAl)  2 p ,  where A1 is the 1 - a lower confidence 
limit for A. If (A l ,  A,) is a 1 - a confidence interval A, then k a ( A l ) ,  k q ( A , ) )  

is a ( p ,  1 - a)  equal-tailed tolerance interval. 
( 2  

The equal-tailed tolerance intervals based on the normal approximation to a 
Poisson quantile are as follows: Let A1 (A,) be a 1 - a one-sided lower (upper) 
confidence limit for A. Then [A, + 2.4 is a ( p ,  1 - a )  upper tolerance limit, 
and max (0, [A l  - z,fi]} is a ( p ,  1-a) lower tolerance limit. If (A l ,  A,) is a 1-a 

confidence interval for A, then max 0, - Z* 

a ( p ,  1 - a )  equal-tailed tolerance interval. 
( { [  2 

Example 12.2 (Estimating the number of shutdowns of a system) 

We shall use the example given in Hahn and Chandra (1981) for illustrating 
the construction of tolerance intervals for a Poisson distribution. Suppose the 
number of unscheduled shutdowns per year in a large population of systems 
follows a Poisson distribution with mean A. Suppose there were 24 shutdowns 
over a period of 5 years, and we like to firid (0.90, 0.95) tolerance intervals for 
the population of system shutdowns per year. Here n = 5 and s = 24, which is 
the total number of shutdowns. The MLE of A is given by A = 

Tolerance Intervals Based on the Exact Confidence Intervals: The exact 95% 

(3.075,7.142). Further, for these values of A1 and A,, we have 

h 

= 4.8. 

confidence interval (12.6.13) is given by (Al,  A,) = ( & x i s ; , 0 2 5 ,  ~ i j x 2 ~ + 2 ; . 9 7 5 )  1 2  = 

12 e-XuAi 5 = 0.9538 and ----LL = 0.9691. 
a .  i! 

i=l i=O 

Also, it can be verified that 1 is the largest integer so that the first sum is at 
least 0.95, and 12 is the smallest integer so that the second sum is at least 0.95. 
So, (1, 12) is the desired (0.90, 0.95) equal-tailed tolerance interval. Thus, at 
least 90% of the population of systems shutdowns per year range from 1 to 12 
with confidence 95%. 

To find the (0.90, 0.95) one-sided tolerance limits, we obtained the exact 95% 
lower limit for A as A1 = 3.310, and the exact 95% upper limit as A,, = 6.750. 
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To find the lower tolerance limit, we note that P ( X  2 11x1 = 3.310) = 0.9635 
and P ( X  2 21x1 = 3.310) = 0.8426. Also, P ( X  I 101X, = 6.750) = 0.9183 
and P ( X  I 91X, = 6.750) = 0.8549. Thus, 1 is the (0.90, 0.95) one-sided lower 
tolerance limit, and 10 is the one-sided upper tolerance limit. Furthermore, the 
upper tolerance limit of 10 means that at least 90% of population of systems 
shutdowns are at most 10 with confidence 95%. 

Tolerance Intervals Based o n  the Score Intervals: Recall that MLE X = = 4.8. 
The 95% score confidence interval (12.6.14) for X is (3.226, 7.142). Proceeding 
as above, it can be readily checked that the (0.90, 0.95) equal-tailed tolerance 
interval based on (3.226, 7.142) is (1, 12). Thus, the equal-tailed tolerance 
intervals based on the exact and score confidence intervals are the same. The 
95% one-sided lower confidence limit for X is A1 = 3.437 which yields the (0.90, 
0.95) lower tolerance limit as 1; the 95% upper confidence limit is A, = 6.705 
which yields the (0.90, 0.95) upper tolerance limit as 10. 

Tolerance Intervals Based o n  the Approximate Quantiles: We shall use the 
score confidence limits for X to obtain confidence limits for the approximate 
quantiles. Using the one-sided confidence limit A1 = 3.437 and 2.90 = 1.282, 
we get X l  - 1 . 2 8 2 A  = 1.06 r" 1; using A, = 6.705, we get X u  + 1 . 2 8 2 6  = 

10.02 2i 10. Thus, the one-sided tolerance limits are 1 and 10. Using the two- 
sided confidence interval (Xl,  A,) = (3.226,7.142) and 2.95 = 1.645, we get 

A 

We once again observe that the results based on all the methods are in agree- 
ment, except that the equal-tailed tolerance interval based on the approximate 
quantile is slightly different from others. 

12.6.3 Two-sided Tolerance Intervals for Binomial and Poisson 
Distributions 

Note that the equal-tailed tolerance interval (L , (X) ,  U e ( X ) )  defined in (12.6.2) 
not only includes a proportion p of the distribution, but also controls the pro- 
portions of the population fall in both tails. As a result, the equal-tailed tol- 
erance interval is expected to be wider than the two-sided tolerance interval 
( L ( X ) ,  U ( X ) ) .  Recall that a ( p ,  l-a) two-sided tolerance interval ( L ( X ) ,  U ( X ) )  
includes at least a proportion p of the distribution with confidence 1 - a. That 
Is, 

(12.6.15) 

Furthermore, in applications, especially in discrete quality assessment, a two- 
sided tolerance interval could serve the intended purpose, rather than an equal- 

Px {Px ( L ( X )  I x I U ( X ) l X )  2 P }  2 1 - Qi. 
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tailed tolerance interval. A way to find a two-sided tolerance interval is to 
determine the value of a* so that the ( p ,  1 - a*) equal-tailed tolerance interval 
includes at least a proportion p of the distribution with coverage probability at 
least 1 - a. For a binomial or Poisson distribution with parameter 8, Wang and 
Tsung (2009) proposed a numerical approach to find the value of a* so that 

(12.6.16) 

where (el, 6,) is a 1 - a* confidence interval for 8 (0 is the binomial parameter 7r 

or the Poisson mean A), includes at least a proportion p of t,he population with 
minimum coverage probability close to the nominal level 1 - a. Krishnamoorthy 
and Xia (2009) noted that a ( p ,  1 - 2ai) score confidence interval for 6 could 
produce a tolerance interval of the form (12.6.16) with minimum content p and 
minimum coverage probability close to 1 - a. In general, for a moderate sample 
size, the tolerance intervals based on the approximate quantiles along with the 
score confidence intervals are satisfactory in both binomial and Poisson cases. 
For more details and accuracy studies, see Krishnamoorthy and Xia (2009). 

Example 12.1 (continued) 

We shall compute ( p ,  1 - a)  = (0.90,0.95) two-sided tolerance intervals for 
the data in Example 12.1. If we use Krishnamoorthy and Xia’s (2009) approach, 
then the required (0.90, 0.95) two-sided tolerance interval is simply a (p .  1-2ai) = 

(.go, .90) equal-tailed tolerance interval. Note that 95% one-sided lower and 
upper confidence limits form a 90% confidence interval for 7r. If we choose to 
use the 90% score confidence interval for 7r,  then the 90% confidence interval 
for the proportion of defective chips in Example 12.1 is (0.2139, 0.2497). So 
the left endpoint the two-sided tolerance interval is the largest k that satisfies 
P ( X  2 k in  = 5 0 , ~ ~  = 0.2139) 2 9 = 0.95, which is 6. Similarly, using 7ru = 
0.2497, we get the right endpoint as 18. Note that this two-sided tolerance 
interval is the same as the equal-tailed tolerance interval computed earlier. By 
estimating the approximate quantiles using the score confidence limits, we obtain 

n q  - 1.645d- = 5.93 2: 6, 

and 

n7ru + 1.645Jn.irU(l - 7 ~ ~ )  = 17.52 r~ 18. 

Thus, the (0.90, 0.95) two-sided tolerance interval is (6,18). 
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12.7 Tolerance Intervals Based on Censored Samples 

Censored samples commonly arise in life-time data analysis, and in environmen- 
tal and exposure data analysis. There are different types of censoring schemes, 
and we consider only the simple cases, namely, type I and type I1 singly censored 
samples. In a type I singly left-censored sample, a censoring value 20 is specified, 
and the measurements that fall below 20 are not included in the sample while 
in a type I right-censored sample the values above zo are not recorded. Type I 
left-censored samples are often encountered in exposure and pollution data anal- 
ysis where contaminant levels are observed or measured only if they are above 
a threshold value usually referred to as the detectzon lzmzt (of a sampling device 
or a laboratory method). In life-time studies, sample items are tested until a 
pre-specified period of time ZO, and the survival times of items that fail before 
zo are recorded, and the test will be stopped at time 20. This strategy of life 
testing leads to type I singly right-censored samples. If n items are subjected to 
a stress test until a fixed number of items fail, then the resulting measurements 
constitute a type I1 right-censored sample. A type I1 left-censored sample is 
similarly defined. Note that in a type I censored sample, the observed number 
of failures is a random variable, whereas it is a fixed number in a type 11 censored 
sample. 

A popular method for analyzing censored data is the likelihood approach. 
Specifically, using the asymptotic normality of the maximum likelihood esti- 
mators (MLEs), normal based approaches can be used to develop inferential 
procedures for the sampled population. Other finite sample approaches are 
based on available pivotal quantities, especially for distributions belonging to a 
location-scale family. To describe the pivotal based approach, let X I ,  ..., X,-l 
be a censored sample (1 observations are censored) from a location-scale distri- 
bution with the location parameter p and the scale parameter u. Let j 2  and C 
be the MLEs of p and u respectively. Furthermore, let us assume that these 
MLEs are equivariant (see Section 1.4.2). If the sample is type I1 censored, then 
it is known that 

(12.7.1) 

are pivotal quantities; see Lawless (2003, p. 562). Thus, exact methods for 
constructing confidence intervals (or hypothesis tests) for p and u can be readily 
obtained if a type I1 censored sample is from a location-scale distribution. If the 
sample is type I censored, then the distributions of the aforementioned quantities 
may depend on the parameters, and so they may no longer be valid pivotal 
quantities. Nevertheless, for some cases they can be used as approximate pivotal 
quantities to get satisfactory results, as will be seen in the sequel. 
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In the following, we use the MLEs and the generalized variable approach 
for setting tolerance limits for normal, exponential, Weibull and other related 
distributions. 

12.7.1 Normal and Related Distributions 

MLEs for Left-Censored Samples 

For a type I singly left-censored sample from a normal distribut,ion, Cohen (1959, 
1961) derived the MLEs for the mean p and variance n2; these can be computed 
numerically as solutions of the following equations. Let 1 denote the number of 
observations below the censoring value xo in a sample of size n, and let’ X i  (i = 
1, 2, ..., n - I) denote the observations above xg. Define 

where 4 and @ denote respectively the density function and the distribution 
function of a standard normal random variable, and h = A. Let 

(12.7.3) 

(12.7.4) 

y ( h ’ E )  
[Y(h,E)-El. 

Let J^be the solution of the third equation in (12.7.4). where X(h,<) = 

Then, the MLEs of p and n2 can be computed by substituting X(h, F) for X(h, <) 
in the first two equations of (12.7.4). Recall that h = i. 

If the sample is type I1 left-censored, then the MLEs can be obtained using 
the equations (12.7.4) with zo replaced by X(l), which is the smallest measured 
value. 

sl‘ A convenient approximation to the MLEs are as follows. Let g = - 
(xI-x0)2 . 

As ?is implicitly a function of g,  we can write the first two equations of (12.7.4) 
as 

F = Xl - (Xl  - xo)X(g, h)  and Z 2  = S; + (Xl - zo)2X(g, h).  (12.7.5) 
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Schmee, Gladstein and Nelson (1985) provided table values of X(g, h) for values 
of g up to 10, and h = Haas and Scheff (1990) developed an 
approximation to X that fits the table values of Schmee et. al. (1985) within 6% 
relative error. Letting y = l-h and 

= 1(.1).9. 

h 

0.182344 - 0.3756 
D =  + 0.10017g + 0.780799 

g + l  
- 

+ 0.001663g2y - 0.00086gy2 - 0.00653y3, (12.7.6) 
0.00581g2 - 0 . 0 6 6 4 2 ~ ~  - 0.02349~ + 0.000174.g3 

the approximation is given by X(g, h)  cx exp(D). Krishnamoorthy, Mallick and 
Mathew (2009) also found that the approximation is quite satisfactory. 

Pivotal Quantities and One-sided Tolerance Limits 

As mentioned earlier, 9 and are pivotal quantities, and so their distributions 
are free of the parameters p and 0 if the sample is type I1 censored. As the 
distributions of the pivotal quantities are free of the parameters, without loss 
of generality, we can assume p = 0 and 0 = 1 to evaluate their distributions 
by Monte Carlo simulation. In other words, 9 is distributed as and is 
distributed as C*, where jl* and C* are the MLEs based on a censored sample 
from N ( 0 , l )  distribution (that is, jl* and i?* are the solutions of the equations 
in (12.7.4) when X I ,  ..., Xn-l are from a N(0, l )  distribution; see Algorithm 12.1 
for the computational procedure). Thus, we can estimate the distributions of 
the pivotal quantities using Llonte Carlo simulation (see Algorithm 12.1). As an 
example, let c1 and c2 satisfy P c1 I 5 Q )  = 1 -a.  Then, (j2-c2i?,jl- cli?) 
is a 1 - a confidence interval for p. Notice that c1 and c2 can be obtained using 
Monte Carlo simulation. If the sample is type 11 censored, then this confidence 
interval is exact. Schmee et al. (1985) used such Monte Carlo approach for 
constructing confidence intervals for a normal mean and variance. 

( 

If the sample is type I censored, then the pivotal quantities in the preceding 
paragraph can be used as approximate pivotal quantities for making inference, 
and the results based on them seem to be satisfactory even for small samples; 
see Schmee et al. (1985) for constructing confidence intervals for a normal mean 
and variance based on a type I censored sample. 

Generalized Variable Approach 

As one-sided tolerance limits are confidence limits for appropriate quantiles, 
we shall develop a generalized pivotal quantity (GPQ) for the p quantile of a 
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N ( p ,  02) distribution, based on a type 11 singly left-censored data. Specifically, 
we shall describe a procedure for constructing 1 - a upper confidence limit for 
the p quantile Qp = 1-1 + zpa, where zp is the p quantile of the standard normal 
distribution. Let ( G O , ? ~ )  be an observed value of the MLE (@,?). A GPQ for 
Qp (see Section 1.4.2) is given by 

GQP = G,+zpG, 

= @o+Z,?o, (12.7.7) 

z p - p  where j7 = @, ?* = 

Then, 
and Zp* = T. Let z& denote the (3 quantile of 2;. 

(12.7.8) 

is a ( p ,  1 - a )  upper tolerance limit for the normal distribution. It is easy to 
check that 

(12.7.9) 

h * -  
Po + zp;l-#o 

h * -  
Po + ~ 1 - p ; C p o  

is a ( p ,  1 - a )  lower tolerance limit. 

The following algorithm describes a Monte Carlo method to estimate the 
percentiles of 2;. Recall that the sample is type I1 singly left-censored, and 
is from a normal distribution. Also, I observations are censored, and n - 1 
observations are uncensored. 

Algorithm 12.1 

1. Generate a sample 21, ..., 2, from a N ( 0 , l )  distribution, and sort them in 
ascending order as Z(l), ..., .Z(n) so that Z(l) is the smallest observation. 

2. Compute the MLEs @* and ?* based on 2(1+1), ..., 2(n). These MLEs are 
the solutions of the equations in (12.7.4) with 20 replaced by Z Z ( ~ + ~ ) .  

3. Compute 2; = T. 

4. Repeat steps 1 - 3, for a large number of times, say, 10,000. 

zp-i;* 

The l0Oa percentile of these 10,000 generated 2;’s is an estimate of z&. 

The percentiles of 2; are estimated using Algorithm 12.1, and they are 
reported in Table 12.2 for n = 10,20,30 and 50. As an example, if one wants 
to find a (0.90, 0.95) lower tolerance limit based on a sample of size n = 30 
with the number of censored values I = 10, then the required critical value 
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z T - ~ ; ~  = z , * ~ ~ ; , ~ ~  = -2.096, and @" - 2.09650 is the desired lower tolerance limit. 
If it is desired to find (0.90,0.95) upper tolerance limit when n = 30 and 1 = 10, 
then z;~;,.,~ = 1.867and @O + 1.86730 is the desired upper tolerance limit. 

If a sample is type I1 singly right-censored, then the procedure for a left- 
censored sample can be easily modified on the basis of the symmetry of a normal 
distribution. For example, in order to obtain a ( p ,  1 - a)  upper tolerance limit, 
we first multiply the data by -1, find a ( p ,  1 - a )  lower tolerance limit using the 
approach for a left-censored sample, and then multiply the lower tolerance limit 
so obtained by -1, to get the desired upper tolerance limit. This procedure 
leads to the ( p ,  1 - a )  upper tolerance limit as 

h * -  
Po - Zl-p;CPO, (12.7.10) 

where @o and 50 are the MLEs based on Algorithm 12.1. In other words, MLEs 
are computed as if the sample is left-censored, and the formula in (12.7.10) 
should be used to compute the upper tolerance limit. A ( p ,  1 -a)  lower tolerance 
limit for a type I1 right-censored sample can be similarly obtained, and is given 
by 

(12.7.11) 

In other words, to compute one-sided tolerance limits for a right-censored sam- 
ple, we can use the same algorithm that computes the MLEs for a left-censored 
sample. Furthermore, note that z T - ~ ; ~  (z;,~-,.) is used for computing lower (up- 
per) tolerance limit based on a left-censored sample whereas - Z T - ~ ) ; ~  ( - z & ~ )  is 
used to find the upper (lower) tolerance limit based on a right-censored sample. 

Approximate Pivotal Quantities for Type I Censored Samples 

As mentioned earlier, the pivotal quantities given for type I1 censored case 
are no longer valid if the sample is type I censored. However, as noted before, 
these pivotal quantities can serve as good approximations. Thus, the percentiles 
z ; ; ~  can be used to find approximate tolerance limits when the sample is type 
I censored. Specifically, if we have a type I censored sample of size n, with 
n - l uncensored observations above the censoring value 20, then we can find 
the MLEs by solving the equations in (12.7.4). Using the percentiles of 2; (or 
of Z;_,) corresponding to n and 1 for the given sample, we can find an approxi- 
mate one-sided tolerance limit. Recently, Krishnamoorthy, Mallick and Rilathew 
(2009) found that this approximate procedure for type I censored samples is 
quite satisfactory for constructing lower tolerance limits, whereas it is slightly 
conservative for constructing upper tolerance limits. 
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Table 12.2: Percentiles of 2; for constructing one-sided tolerance limits for a 
normal distribution ' '?05;.05 '.*1;.05 2;9;.95 2:95;.95 

10 1 -3.309 -2.674 2.577 3.184 
3 -4.105 -3.327 2.788 3.528 
6 -8.711 -7.266 3.596 4.905 

20 1 -2.504 -2.016 1.995 2.506 
3 -2.626 -2.120 2.013 2.529 
6 -2.899 -2.340 2.082 2.619 
10 -3.588 -2.935 2.184 2.786 
15 -7.350 -6.221 2.451 3.413 

30 1 -2.285 -1.813 1.809 2.279 
3 -2.327 -1.867 1.829 2.285 
6 -2.422 -1.958 1.856 2.320 
10 -2.644 -2.096 1.867 2.375 
15 -2.991 -2.439 1.928 2.458 
20 -3.877 -3.178 1.991 2.627 

50 1 -2.100 -1.667 1.676 2.093 
5 -2.132 -1.706 1.669 2.099 
10 -2.216 -1.751 1.685 2.123 
20 -2.403 -1.909 1.707 2.165 
25 -2.552 -2.073 1.727 2.192 
40 -4.220 -3.560 1.747 2.358 

A Likelihood Ratio Test for a Quantile 

Suppose we have a type I censored sample of size n with n - 1 uncensored 
observations above the censoring value xo. We shall now explain a likelihood 
based procedure for inference concerning the normal quantiles, based on such 
censored data. More specifically, we shall describe a procedure based on the 
directed likelihood or the signed likelihood ratio; see Barndorff-Nielsen arid Cox 
(1994, p. 82) or Brazzale, Davison and Reid (2007, p. 139). As is typical with 
likelihood based methodologies, large sample approximations will be used to 
implement the procedure described below. We shall use the notations q = p+zpg 
and X = u2. Our problem is that of testing HO : q = qo, for a specified qo. 

The log-likelihood function is given by 
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where ( is defined in (12.7.2) and (X l ,S ; )  is defined in (12.7.3). Let @ and 
X = l?’ denote the MLEs of p and o’, respectively. Then v = @ + z T , d  is the 
MLE of r j .  In order to develop the signed likelihood ratio test (SLRT), we need 
to find the constrained MLE, denoted by iqo, of X under Ho : r j  = 710. To find 
this constrained MLE, we write the log-likelihood function in terms of r j  and X 
as 

h 

where (A zo-11+ zp.  The constrained MLE of X is the solution of the equation 4 

+ 
= 0. ( 12.7.14) 

(n  - l)[S,2 + (XZ - 70)’ + Z P f i ( X Z  - rjo) - A] 

The SLRT is based on the asymptotic result that 
1 

h 

$+lo; 6 - 1  &lo) = sign(+ rjo) { 2(1(?, 9 - l(rlo,  i,,,)}5 - “O,1): (12.7.15) 

under Ho, where sign(z) is 1 if z 2 0 and is -1 if z < 0. Thus, the SLRT rejects 
h 

Ho : 77 = 770 if l $ (770;mqo) l  > z1-s .  

A confidence limit for r j  can be obtained by inverting the test. For example, 
a 1 - Q upper confidence set for r j ,  which is the acceptance region of the test for 
Ho : r j  2 rjo vs. Ha : r j  < rjo, is given by 

h { 770 : $ b o ;  v, A,,) 2 -&}. (1 2.7.16) 

Numerical evidence indicates that the above set is an interval. 

Notice that the above SLRT is described for a type I left-censored sample. 
It can be also used for a type I1 left-censored sample by replacing zo by X(1) ,  
the smallest order statistic among the ri - 1 uncensored observations. However, 
we do not recommend this SLRT for a type I1 censored sample since an exact 
method is available, as described earlier. 

Estimation of Survival Probabilities 

To find a lower confidence limit for the survival probability St = P ( X  > t )  = 

1 - <p (%), where t is a specified number, it is enough to find a suitable upper 
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confidence limit for S,* = $@. This can be done using the generalized variable 
approach (see Section 1.4). Specifically, replacing the parameters by their GPQs, 
we see that 

t -  g o - 2 -  
, ( 12.7.17) 

t - G ,  - ( a*Q) Gs; = ~ - 
5.2 Gc7 $* 

is a GPQ for GSZ;, where G, and G, are as defined in (12.7.7). Notice that, 
for a given (&,SO), the distribution of Gs; does not depend on any unknown 
parameters, and the percentiles of Gs; can be estimated using Monte Carlo 
simulation. 

For a right-censored sample, we first note that St = P(-X  < -t) = (e). Therefore, after multiplying the sample by -1, we can apply the 
generalized variable procedure described above. For instance, to find a lower 
confidence limit for S,, it is enough to find a lower confidence limit for *. 
The GPQ can be constructed using the MLEs based on the “negative trans- 
formed” data, and using j? and S* (the MLEs based on a sample from the 
standard normal distribution). It is easy to check that the resulting GPQ for 

is 9 
0 

00 a* 
, (1 2.7.18) 

where 
time X O .  

and $0 are the MLEs based on a left-censored data with censoring 

Example 12.3 (Survival times of mice) 

The following data, given in Schmee and Nelson (1977), represent the number 
of days to death of 10 mice after inoculation with a culture of human tubercu- 
losis. Out of these 10 mice, seven died at log-times 1.613, 1.643, 1.663, 1.732, 
1.740, 1.763, and 1.778, and three survived a log-time of 1.778; so these three 
observations are censored. In particular, we have a type I1 right-censored sample 
with n = 10 and I = 3. It was noted that a normal distribution gave a good fit 
to the uncensored lifetimes. 

To compute one-sided tolerance limits, the MLEs are obtained as go = 1.742 
and 0.0793. To find a (0.90,0.95) lower tolerance limit using (12.7.11), the 
percentile ,z>O;,95 has value 2.788 (see Table 12.2). The lower tolerance limit 
in terms of log-time is 1.742 - 2.788 x 0.0793 = 1.521. Thus, at least 90% 
of mice survived exp(1.521) = 4.577 days with confidence 95%. Similarly, to 
compute a (0.90, 0.95) upper tolerance limit, the percentile ,z:l;,05 is -3.327, and 
the upper tolerance limit in log-time is 1.742 + 3.327 x 0.0793 = 2.006. Since 
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exp(2.006) = 7.434, we conclude that at most 10% of the mice had survival 
times more that 7.434 days, with 95% confidence. 

Example 12.4 (Failure mileages of locomotive controls) 

The data in Table 12.3 represent failure mileages (in units of 1000 miles) of 
different locomotive controls in a life test involving 96 locomotive controls. The 
test was terminated after 135,000 miles, and by then 37 controls had failed. This 
example is discussed in Schmee and Nelson (1977), and also in Lawless (2003, 
Section 5.3). These authors noted that a lognormal distribution gives a good fit 
to the data. In this type of examples, it is of interest to find a lower tolerance 

Table 12.3: Failure mileages (in 1000) of locomotive controls 
22.5 37.5 46.0 48.5 51.5 53.0 54.5 57.5 66.5 68.0 
69.5 76.5 77.0 78.5 80.0 81.5 82.0 83.0 84.0 91.5 
93.5 102.5 107.0 108.5 112.5 113.5 116.0 117.0 118.5 119.0 
120.0 122.5 123.0 127.5 131.0 132.5 134.0 

limit to assess the reliability of the controls, and to estimate the lifetime at  
certain mileages. 

We shall first compute a (0.90, 0.95) lower tolerance limit. Notice that the 
sample is type I right-censored with censoring mileage of 135,000 or 20 = 135 (in 
1000 mile unit). Since the lognormal distribution is applicable here, the MLEs 
based on the log-transformed data were computed as = 5.117 and 30 = 0.705. 
To compute the tolerance limit using (12.7.11), the percentile z,\~;,.,~ is evaluated 
using Algorithm 12.1 (with n = 96 and 1 = 59) as 1.579. Thus, using (12.7.11), 
we have 5.117 - 1.579 x 0.705 = 4.004, and exp(4.004) = 54.82 is the desired 
(0.90,0.95) lower tolerance limit. Thus with 95% confidence we can assert that 
at least 90% of the controls survive 54,820 miles. 

To compute a (0.90,0.95) upper tolerance limit using (12.7.10), t,he percentile 
= z*1;.05 is evaluated using Algorithm 12.1 as -1.840. Substituting this 

percentile and the MLEs in (12.7.10), we get 5.117 - (-1.922) x 0.705 = 6.472, 
and exp(6.472) = 646.78. Thus we are 95% confident that at least 90% of 
locomotive controls fail before 646,780 miles; i.e., at most 10% survive 646,780 
miles. 

To find the 95% lower confidence limit for the lower 0.1 quantile (that is, to  
find the (0.90, 0.95) lower tolerance limit) using the SLRT approach, we have 
to find the 95% upper confidence limit for the upper quantile p + z.900 based 
on negative log-transformed data. That is, we need to find the value of 770 for 
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h 

which $( - ln(q0); G, A,,) = 2.05 = -1.645 (see (12.7.16)). Using the negative 
log-transformed data, we found that 

$(- ln(q0); ~ & + ~ o . ~ o G o ,  Arlo) = $(-4.021; -5.117+1.282~0.705,0.678) = -1.645. 
h 

Notice that GO = -5.117 since this is the MLE based on negative log-transformed 
data. Thus, qo = exp(ln(q0)) = exp(4.021) = 55.77 is the desired (0.90,0.95) 
lower tolerance limit. The value - ln(q0) that satisfies the above equation was 
found by trial-error using the generalized limit as a starting value. To compute 
the above statistic, the interested reader can verify that I(?, A) = -39.458 and 
1(- ln(qo), Avo) = -40.811. 

h 

h 

We now compute the (0.90,0.95) upper tolerance limit by inverting the 
SLRT. That is, we first find the 95% lower limit for the lower quantile p + z.100 
based on the negative log-transformed samples, and then take the inverse trans- 
formation to get the upper tolerance limit. Towards this, we computed 

h 

$(- h(qo); ~ ~ O + Z O . ~ O ~ O ,  A,,) = $(-6.413; -5.117- 1.282 x 0.705,0.764) = 1.645. 

Thus, the (0.90, 0.95) upper tolerance limit is exp(-(-6.413)) = 609.72. 

Notice that the lower tolerance limits based both approaches are in good 
agreement while the upper tolerance limit based on the approximate pivotal 
quantities is larger than the one based on the likelihood approach. 

Suppose it is desired to estimate the survival probability at the eighty thou- 
sandth mile, that is, ,980. Following (12.7.18), we find the GPQ based on the 
log-transformed data as 

- ln(80) + (5.117 + g0.705) 
0.705 ( 12.7.19) 
8* 

Using Monte Carlo simulation with 10,000 runs, the 2.5th and 97.5th quantiles 
of the above GPQ are estimated as 0.782 and 0.902, respectively. Thus, a 95% 
confidence interval for S ~ O  is given by (0.782,0.902). That is, the probability 
that a locomotive control survives 80,000 miles or more is between 0.782 and 
0.902, with 95% confidence. Lawless (2003, p. 234) found a 95% confidence 
interval for s 8 0  as (0.785,0.902) which is practically the same as the above 
generalized confidence interval. Lawless obtained the confidence interval using 
the asymptotic normality of the MLEs, and estimated Fisher information matrix. 

A 1 - cr confidence interval for a survival probability St can also be obtained 
by setting the appropriate one-sided tolerance limits to t ,  and then solving for 
the content; see Exercise 1.5.2. 
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Lognormal and Gamma Distributions 

The preceding procedures for censored-samples can be readily extended to a 
distribution that has one-one relation with the normal distribution. As seen in 
Examples 12.3 and 12.4, if a censored sample is from a lognormal distribution, 
then we simply apply the normal based methods to log-transformed samples. 
Similarly, if a censored sample is from a gamma distribution, tolerance limits 
can be obtained by applying the ones for the normal case to the cube root trans- 
formed sample; see Chapter 7. The results from the normal based procedures 
for a gamma distribution are only approximate, and as seen for the case of un- 
censored samples in Section 7.3.2, the results are expected to be satisfactory. 
An illustrative example for the gamma case is given below. 

Example 12.5 (Example 7.1 continued) 

Let us consider the alkalinity concentration data in Table 7.1, assuming that 
there is a detection limit 20 = 45. That is, we assume that the values below 
45 were undetected (or left-censored), and use the normal based procedures to 
develop one-sided tolerance limits. We first note that for this example with 
the above assumption, we have n = 27, and 1 = 8 observations are type I left- 
censored. Here is the remaining data, after cube root transformation. 

3.66 3.71 3.71 3.73 3.78 3.78 3.80 3.87 3.89 
3.89 3.91 3.98 4.04 4.12 4.29 4.34 4.46 4.58 4.90 

The MLEs for the cube root transformed samples are GO = 3.798 and Co = 

0.4663. The required percentile to compute a (0.90,0.95) lower tolerance limit is 
z~10;,05 = -2.115 and using (12.7.9) we get 3.798-2.115x0.4663 = 2.8118. Thus, 
(2.8118)3 = 22.23 is the desired (0.90,0.95) lower tolerance limit for alkalinity 
concentrations. It should be noted that the same lower tolerance limit based 
on the complete sample is 28.341 (see Example 7.1). To comput,e a (0.90, 0.95) 
upper tolerance limit, the percentile zlrgO;,95 is computed as 1.916, and GO + 
zp;l-apo = 3.798 + 1.916 x 0.4663 = 4.691. Thus, the desired upper tolerance 
limit is (4.691)3 = 103.23. The one based on the complete sample is 97.71 (see 
Example 7.1). 

* -  

12.7.2 Two-Parameter Exponential Distribution 

Consider failure times that follow a two-parameter exponential distribution with 
the pdf exp (-?), where x > ,u and 0 > 0. Suppose we have a type 
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I1 right-censored sample of size n, with m uncensored observations. Let the 
corresponding ordered observations be X(l), ..., X ( m ) ,  where X ( l )  is the smallest. 
We shall first describe the procedures for constructing one-sided tolerance limits. 

The MLEs are given by 

It is well-known that the MLEs are independent with 
2 

8 X 2 m - 2  and - - N  -. (iz-d x; 
- w -  e 2n 8 2m 

(12.7.20) 

(12.7.21) 

Since a one-sided tolerance limit is a confidence limit for a quantile, we first note 
that the p quantile of the exponential distribution is given by qp = p-8 In( 1 - p ) .  
A 1 - a upper confidence limit for qp is the desired ( p ,  1 - a)  upper tolerance 
limit. As the distributional results of the MLEs are similar to those for the 
uncensored sample case considered in Section 7.4, exact method and generalized 
variable approach can be readily obtained for constructing confidence limits for 
qp. We shall describe the generalized variable approach in the following. 

One-sided Tolerance Limits 

It follows from Section 7.4.1 that a generalized pivotal quantity for qp = p - 
8 In( 1 - p )  is 

= G, - Go ln( 1 - p )  GQP 

m -  
= - -E;8o, ( 12.7.22) 

where G, and Go are GPQs for p and 8 respectively, and x & , - ~  represent 
independent chi-square random variables with df 2 and 2m - 2, respectively, 

) . Let E;;. denote (Go, $0) is an observed value of (p, 5) and E; = ( x2+ 
the a quantile of E;. Then 

(12.7.23) 

n 

2 n I n ( l - p )  

X 2 m - 2  

m- 
n izo - E;;. -80 



338 12 Miscellaneous Topics 

is a 1 - cr upper confidence limit for Qp,  which is also a ( p ,  1 -a)  upper tolerance 
limit for the exponential(p, 0) distribution. Similarly, we see that 

m- 
(1 2.7.24) h 

Po - E;-P,l-a;QO 

is a ( p ,  1 - a )  lower tolerance limit for the exponential(p, 0) distribution. For 
n l -  it is not difficult (see Exercise 12.8.11) to show that W P )  ' 

( 12.7.25) 

As noted in Section 7.4, it can be shown that the one-sided tolerance limits 
obtained based on the GPQ are actually exact. 

Estimation of Survival Probability 

A 1 - cr lower confidence limit for the survival probability St = P ( X  > t )  can 
be deduced from the exact lower tolerance limit (see Section 7.4.3). Specifically, 
setting the exact lower tolerance limit j& - ET-p;.-a "00 71. to t ,  and solving the 
resulting equation for p (see Section 1.1.3), we get 

h 

m-1 

[1-;(!ji)I1 (12.7.26) 

as a 1 - Q lower confidence limit for St when n 5 W P )  . 
To apply the generalized variable method, we first note that S, = exp(-(t - 

,u)/0). Replacing the parameters by their GPQs, and after some simplification, 
we get 

where A* = 1 m (y) x$,-~+:x$. If AT, is the Q quantile of A*, then exp (-;A:) 

is a 1 - cr upper confidence limit for S,, and exp (-$A:-a) is a 1 - cr lower con- 
fidence limit for St. The lower confidence limits so obtained are also exact, as 
noted in Section 7.4. 

It is possible to develop an approximation for the percentiles of A*, similar 
to the approximation given in Chapter 7; see (7.4.26). The approximation is 
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due to Roy and Mathew (2005). In order to  describe the approximation, let 

1 (t  - #Go)2(k - 1) + ( y j ) 2  
a1 = - x  

2mBo (t  - #Go)(m - 1) + 
2 

2 [ ( t  - &o)(m - 1) + :go] 
a2 = 

(t - #Go)2(m - 1) + (?$0)2 . 

Then an approximation to the (1 - a percentile of A*, 

h 

:00 

I 

say AT-,, is given by 

if t > 60, 
where a1 and a2 are as defined above. For further details and a derivation of 
the above approximation, we refer to Roy and Mathew (2005). 

Example 12.6 (Failure mileages of military careers) 

Let us compute one-sided tolerance limits and a confidence limit for a survival 
probability using failure mileage data given in Example 7.3. For the sake of 
illustration, we shall assume that the data above the mileage 1182 are censored, 
and only the following mileages are observed. 

162 200 271 302 393 508 539 629 706 777 
884 1008 1101 1182 

h 

Thus, we have n = 19 and m = 14. The MLEs are #GO = 162 and 00 = 822.29. 
To find an exact (0.90,0.95) lower tolerance limit, we first check that n = 19 < 
~ ~ [ ~ : ~ ~ ~  = 28.43, and so the formula (12.7.25) for the tolerance factor is valid, and 
the tolerance factor simplifies to -0.0795. Substituting the relevant quantities 
in (12.7.24), we get 162 - 0.0795 x 14 x 822.29/19 = 114.10. It is interesting note 
here that the (0.90, 0.95) lower tolerance limit based on all n = 19 observations 
is 114.39 (see Example 7.3). To compute a (0.90, 0.95) upper tolerance limit, the 
required percentile is = E;,90;o,05 = -5.5717 (computed using simulation), 
and (12.7.23) simplifies to 162 + 5.5717 x 14 x 822.29/19 = 3537.88. We once 
again observe that the same upper tolerance limit based on all 19 observations 
is 3235.83 (see Example 7.3). 

A 95% lower confidence limit for the survival probability S200 = P ( X  > 200) 
based on the exact formula (12.7.26) is 

13 
19 200 - 162 19 0.0519 1 - - [ 14 ( 822.29 )]- = 0'817' 
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In order to compute the generalized lower confidence limit using (12.7.27), the 
percentile A;,,, = 0.4039, and exp(-0.4039/2) = 0.817. Thus, both exact and 
the generalized variable method produced the same 95% lower confidence limit 
for the survival probability ,5200. We note here that the exact 95% lower confi- 
dence limit based on all 19 observations is also 0.817 (see Example 7.3). 

12.7.3 Weibull and Extreme Value Distributions 

Let X I , .  . ., X ,  be a sample from a Weibull(b, c)  distribution with pdf 
c 17: c-1 

b b  
f(17:lh c> = - (-) exp{-[z]c},  1 7 : > 0 ,  b > ~ ,  c > o .  (12.7.28) 

Suppose that n-m observations are type I1 riglit-censored. Coheri (1965) derived 
the likelihood equations; the MLE of c can be obtained as the solution of 

n c X,"**n(Xi*) rn 

(1 2.7.29) 1 i=l 
_ _  h + - C ~ n ( x i , )  = O, 

m 5 x: i=l 
C 

i=l 

where Xi ,  = X ( Q  for i = 1, ..., m, Xi ,  = X(rn)  for i = m + 1, ..., n, and 
X ( l ) ,  ..., X(rn)  are ordered uncensored observations (see Exercise 12.8.15). The 
MLE of b is given by . The same formulas are used to find 
the MLEs when the samples are type I censored except that we take X , ,  = 20 

for i = m + 1, ..., n, where 20 is the censoring point. 

I/? 
= (xT=l X i / m )  

Generalized Variable Approach for Estimating Quantiles 

It follows from Lemma 7.1 that the pivotal quantities based on the MLEs are 2 
and Cln (i) . These pivotal quantities are valid if the sample is type I1 censored, 
and they car1 be used as approximate pivots if the sample is type I censored. As 
shown in Section 7.5.2, empirical distributions of these pivotal quantities can be 
obtained using Monte Carlo simulation. Specifically, from (7.5.5) and (7.5.6), 
we have the GPQs for b and c as 

^* 
h 

CO bo and G, = <, 
C 

(1 2.7.30) 

where 2 is the MLE satisfying (12.7.29) when Xi's are from a Weibull(1,l) 
1 /? distribution, and = (C;=2=1 X , T / m )  . Furthermore, (bo ,Eo)  is an observed 

value of (b ,  2). 
h 
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Confidence limits for a quantile can be readily obtained using the approach 
in Section 7.5.4 for the case of an uncensored sample. In particular, we note 

1 

that the p quantile is qp = b (- ln(1 - p ) ) :  = be:, where 0, = - ln(1 - p ) .  By 
substituting the GPQs for the parameters, a GPQ for qp can be obtained as 

(12.7.31) 

where @ and 2 are as defined above. The 1 - N quantile of G,, is a ( p ,  1 - a)  
upper tolerance limit. Furthermore, the a quantile of Gql--p is a ( p ,  1 - a )  lower 
tolerance limit. 

The one-sided tolerance limits can be expressed in simpler forms. Let w&, 
be they  quantile of w; = 2(- ln(b*)+ln(Op)). Then, a ( p ,  1-a) upper tolerance 
limit is given by 

bo exp (w;; l -a /6)  (12.7.32) 

which is a ( p ,  1 - a )  upper tolerance limit for the Weibull(b, c )  distribution. A 
( p ,  1 - a )  lower tolerance limit, i.e., a 1 - a lower confidence limit for q l P p ,  is 
given by 

bo exp (w;-p;a/&J . (12.7.33) 

h 

A 

The percentiles of w; are given in Table12.4 for a few values of n, and m. 

A GPQ for a Survival Probability 

A GPQ for the survival probability St = P ( X  > t )  = exp(-(t/b)c), where t 
is a specified number, can be readily obtained from Section 7.5.5. Let S*(t)  = 

In (- In St).  Then 
Gs*(t) = 2-l In(- ln(gt) + In@) (12.7.34) 

is a GPQ for S*( t ) ,  where gt is the MLE of St, which can be obtained by 
replacing the parameters in the expression for St by their MLEs. If U is a 1 - a 
upper confidence limit for S,*, then exp(- exp(U)) is a 1 - a lower confidence 
limit for St. Notice that, for a given gt, a confidence limit for S,* can be obtained 
using Monte Carlo simulation. 

All the procedures given above are applicable to find tolerance limits, and to 
find confidence limits for a survival probability, if the censored sample is from an 
extreme value distribution because of the one-one relation between the Weibull 
and extreme value distributions. Specifically, tolerance limits for an extreme 
value distribution can be obtained by applying the Weibull procedures after 
taking log-transformation of the sample from an extreme value distribution. 
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Table 12.4: Percentiles of 20; = 2(- In@) + ln(0,)) required for constructing 
one-sided tolerance limits for a Weibull Distribution 

w:05;.05 w*l;.05 wT9;.95 w:95;.95 
10 9 -5.962 -4.572 2.044 2.493 

7 
4 

20 19 
17 
14 
10 
5 

30 29 
27 
24 
20 
15 
10 

50 49 
45 
40 
30 
25 
10 

-6.760 
-10.07 

-4.561 
-4.706 
-4.934 
-5.373 
-7.010 

-4.151 
-4.213 
-4.312 
-4.444 
-4.674 
-5.089 

-3.805 
-3.856 
-3.917 
-4.043 
-4.141 
-4.610 

-5.088 
-7.038 

-3.511 
-3.608 
-3.762 
-4.019 
-4.749 

-3.195 
-3.240 
-3.283 
-3.376 
-3.506 
-3.672 

-2.920 
-2.956 
-2.986 
-3.069 
-3.112 
-3.262 

2.825 
7.672 

1.439 
1.561 
1.854 
2.612 
6.973 

1.270 
1.326 
1.423 
1.622 
2.052 
3.109 

1.139 
1.184 
1.247 
1.463 
1.643 
3.710 

3.428 
8.903 

1.781 
1.935 
2.260 
3.098 
7.831 

1.590 
1.654 
1.767 
1.996 
2.463 
3.601 

1.439 
1.491 
1.569 
1.812 
2.016 
4.230 

Example 12.7 (Number of million revolutions before failure for ball bearings) 

Let us consider the ball-bearing data given in Example 7.4. Assume that 
the test was terminated after the 16th failure. That is, we have a type I1 right- 
censored sample with n = 23 and m = 16. The observed numbers of millions of 
revolutions for these 16 ball bearings are given below. 

17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84 
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12 

The MLEs are 6 = 2.469 and 

Tolerance Limits: To compute a (0.90, 0.95) lower tolerance limit using (12.7.33), 
we obtained w T - ~ ; ,  = w*lo;,05 = -3.603; this value is obtained using Monte 
Carlo simulation consisting of 100,000 runs. Thus, the (0.90, 0.95) lower tol- 

= 76.694. 



12.8 Exercises 343 

erance limit is given by bo exp (~*1;,05/?0) = 76.694exp(-3.603/2.469) = 17.82. 
Hence we conclude with 95% confidence that at least 90% of ball bearings sur- 
vive 17.82 million revolutions. Notice that the same lower tolerance limit based 
on all 23 observations is 16.65. 

To compute a (0.90, 0.95) upper tolerance limit using (12.7.32), we obtained 
w&cx = w*90;,95 = 1.746. The (0.90, 0.95) upper tolerance limit is given by 
bo exp ( W ? ~ , , ; , ~ ~ / E ~ )  = 76.694exp(1.746/2.469) = 155.55. Hence we can conclude 
with 95% confidence that at most 10% of ball bearings survive 155.55 millions 
of revolutions. The same upper tolerance limit based on all 23 observations is 
154.42. 

h 

Estimation of Survival Probability: Let us compute a 95% lower confidence 
limit for the probability that a bearing will last at least 50 million revolutions. 
Substituting the MLEs & and 20, we obtained ,950 = 0.706. Using this value 
in (12.7.34), and using Monte Carlo simulation with 100,000 runs, we com- 
puted a 95% upper limit for S;, as -0.541. Thus, a 95% lower limit for S50 is 
exp(- exp(-0.541)) = 0.559. We here note that the 95% lower confidence limit 
for ,950 based on all 23 observations is 0.545. 

Results Under Type I Censoring: We now assume that the samples were cen- 
sored at 89 million revolutions, that is ICO = 89. For this censoring value, the 
uncensored observations are the same 16 observations given above. The MLEs 
are ? = 2.286 and b = 79.463. The required percentile w*10,,05 computed for 
the type I1 censoring case is -3.603. Thus, the (0.90, 0.95) lower tolerance 
limit is given by bo exp (w*10;,05/E0) = 79.463 exp(-3.603/2.286) = 16.39. To 
compute a (0.90, 0.95) upper tolerance limit, we note that w;90,.95 = 1.746, and 
79.463 x exp(1.746/2.286) = 170.56. 

h 

h 

To find a 95% lower confidence limit for the probability that a bearing will 
last at least 50 million revolutions, we note that ,950 = 0.707. Using this value 
in (12.7.34), and using Monte Carlo simulation with 100,000 runs, we com- 
puted a 95% upper limit for S:, as -0.542. Thus, a 95% lower limit for S50 is 
exp(- exp(-0.542)) = 0.559. 

h 

12.8 Exercises 

12.8.1. For N ( p ,  o’), is a P-expectation tolerance interval wider or narrower com- 
pared to a loop% confidence interval for p? Clearly explain. 

12.8.2. For X1 N N(p1,  of) and X z  N N(p.2, o,”), where X1 and X2 are also inde- 
pendent, explain how you will compute a P-expectation tolerance interval 
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for X1 - Xz. Compute a two-sided /3-expectation tolerance int,erval for 
X1 - X z  for ,!3 = 0.95, using the data in Table 2.6 of Chapter 2. 

12.8.3. Explain how you will use the Wilson-Hilferty normal approximation (see 
Chapter 7) to compute approximate one-sided and two-sided /3-expectation 
tolerance intervals for a gamma distribution. Estimate the coverage proba- 
bilities of the resulting procedures using simulation, and using the sample 
size-parameter combinations in Table 7.1, for ,I3 = 0.90, 0.95 and 0.99. 
Comment on the accuracy of the approximation for the purpose of com- 
puting P-expectation tolerance intervals for a gamma distribution. 

12.8.4. For the alkalinity concentration data in Table 7.3, compute a P-expectation 
upper tolerance limit using the Wilson-Hilferty normal approximation, for 
p = 0.95. 

12.8.5. For Example 4.2 dealing with the study of breaking strengths of cement bri- 
quettes, compute P-expectation lower tolerance limits for the observable 
random variable and the unobservable true values using Mee’s approach 
and using the Lin-Liao approach, for p = 0.90. 

12.8.6. Show that under the non-informative prior distribution (11.2.1), a Bayesian 
,&expectation tolerance intervals (one-sided as well as two-sided) for N ( p ,  a2) 
coincide with the frequentist solutions given in Section 12.1.1. 

12.8.7. Derive Bayesian ,&expectation tolerance intervals (one-sided as well as 
two-sided) for N ( p ,  g2) under the conjugate prior distribution (11.2.2). 
Compute such an upper tolerance limit based on the data in Example 2.1, 
for p = 0.95, and for the values of the prior parameters given in Section 
11.2.2. 

12.8.8. Let X l ,  ..., Xn-l be the uncensored measurements in a type 11 right-censored 
sample of size n from a normal distribution. Show that - &,â o in 
(12.7.10) is a ( p ,  1 - a )  upper tolerance limit for the normal distribution. 

12.8.9. Consider a sample of size n from a normal distribution with mean p and 
variance a’. Assume that the sample is type 11 left-censored with 1 cen- 
sored observations. That is, X(l), ..., X(z) are not observed. 

(a) Find a 1 - a generalized confidence interval for p. 

(b) Find a 1 - Q generalized confidence interval for 02. 

[Schmee et al. 19851 

12.8.10. Let Xil, ..., Xini be a sample from N(p i ,a2 )  distribution, i = 1.2, where 
the two populations are independent. Furthermore, let li be the number 
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of type I1 left-censored observations for the sample i, i = 1,2. Find a 
generalized confidence interval for p1 - p2. 

12.8.11. Let X ( 1 ) ,  ..., X(ml be a type I1 right-censored sample from an exponential 
distribution with the pdf exp (--w), z > p, 8 > 0. Show that the 
factor for constructing a ( p ,  l-a) lower tolerance limit is given by (12.7.25), 
provided n < In(a) 

12.8.12. Let X N binomial(n,O). Let j be such that P ( X  > n - j )  2 1 - p and 
P ( X  2 n - j + 1) < 1 - p .  Show that n - j is the smallest number so that 

P ( X  5 n - j )  > p .  

12.8.13. The following is a sample generated from a binomial(n, IT) distribut.ion 
with n = 50 and IT = 0.40 

14 19 19 16 17 15 22 16 17 15 
18 18 16 16 13 17 17 16 9 11 
17 11 23 23 11 13 19 13 19 17 

Compute the following tolerance intervals using the exact confidence in- 
tervals for T ,  score confidence intervals for IT, and using the approximate 
quantiles. 

(a) A (0.95, 0.95) one-sided lower and upper tolerance limits for the 
binomial(50, IT) distribution. Interpret their meaning. 

(b) A (0.90, 0.95) equal-tailed tolerance interval for the binomial(n, IT) 
distribution, and compare the endpoints of the tolerance interval with 
the appropriate one-sided limits in part (a). 

(c) A (0.90, 0.95) two-sided tolerance interval, and find its actual content. 

(d) Find the actual contents of the tolerance intervals in parts (a) and 
(b). 

12.8.14. The following data represent the reported number of automobile accidents 
per day in a sample 45 days from a city police record. 

5 4 3 8 1 2 3  8 1 0 1 0 7 1 0  8 10 7 14 
7 1 1 7  5 9 6 1 1 1 2  5 6 1 1 1 5  7 6 13 
8 5 7 1 0 1 1 5 1 0  8 3 4 1 1  8 5 10 3 

(a) Show that a Poisson model fits the data. 
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(b) Find (0.95, 0.95) one-sided lower and upper tolerance limits for the 
number of accidents per day in the city. 

(c) Compute a (0.90, 0.95) equal-tailed tolerance interval and compute 
a (0.90, 0.95) two-sided tolerance interval. Interpret the meanings of 
these two tolerance intervals. 

12.8.15. Consider a type I right-censored sample of size n (with censoring time ZO) 

from a Weibull distribution with the pdf 

, Z L O ,  y > o ,  0 > 0 .  7,y-l  - e - X Y / Q  

0 

Let X I ,  ..., X ,  be recorded measurements below ZO. 

(a) Verify that the likelihood function can be expressed as 

n-ni 
(n  - m)! i=l 

where F ( z )  is the cdf of the Weibull distribution. Let X: = X i ,  i = 
1, ..., m and X,* = xo for i = m + 1, ..., n. 

(b) Show that the MLEs are determined by the equations 

(c) Using part (b), show that the MLEs for a Weibull(b,c) distribution 
with the pdf (12.7.28) are as given in Section 12.7.4. [Cohen, 19651 

12.8.16. Consider the data in Exercise 7.6.10 of Chapter 7. Assume that t'he censor- 
ing value is 19.50. That is, the values above 19.50 are discarded to create 
the following type I right-censored sample from a Pareto distribution with 
o = 4 and X = 1.2. 

6.43 4.27 5.97 4.02 5.58 4.28 12.28 18.33 9.56 
10.93 6.51 11.45 4.09 4.15 7.84 4.06 9.30 14.69 
12.20 5.86 12.28 4.89 29.99 6.07 7.85 

(a) Find (0.90,0.95) lower tolerance limit for the Pareto distribution, and 
compare it with the one in part (a) of Exercise 7.6.10. 
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(b) Find (0.95,0.99) upper tolerance limit for the Pareto distribution, 
and compare it with the one in part (c) of Exercise 7.6.10. 

12.8.17. Give procedures for finding a ( p ,  1 - a )  one-sided tolerance limit, and for 
finding a 1 - a lower limit for a survival probability P ( X  > t )  for the 
power distribution (with the pdf (7.4.3) of Chapter 7) based on a type I1 
right-censored sample. 
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Meter Meter Blood 
type number sample Lot Responses 

T 1 44, 46, 47 

Table A l :  A sample of data from the glucose monitoring meter experinierit in 
Example 6.1 

Meter Meter Blood 
type number sample Lot Responses 

R 47, 47, 48 
53, 52, 47 
46, 49, 44 
47: 50, 49 
48, 49, 49 
49, 51, 47 
48, 47, 49 
48, 52, 52 
52, 47, 50 
45, 47, 47 
48, 51, 47 
47, 49, 42 
48, 48, 47 

48, 51, 49 
51, 49, 49 
52, 51, 52 
53, 46, 49 
47, 48, 48 
49, 53, 48 
47, 49, 43 
49, 51, 48 
50, 49, 50 
48, 52, 49 
49; 52, 47 
51, 50, 54 
51, 47, 51 

48, 49, 50 

1 1 1 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 1 
1 1 
1 2 
1 2 
1 2 
1 3 
1 3 
1 3 
2 1 
2 1 
2 1 
2 2 
2 2 
2 2 
2 3 
2 3 
2 3 
3 1 
3 1 
3 1 
3 2 
3 2 
3 2 
3 3 
3 3 
3 3 

2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

51, 53, 49 
47, 50, 46 
49, 50, 48 
47, 53, 52 
51, 52, 49 
51, 50, 50 
53, 52, 55 
52, 49, 50 
38, 49, 49 
50, 52, 48 
49, 50, 44 
52, 50, 48 
50, 48, 49 

50, 52, 51 

52, 47, 50 
47, 47, 50 
50, 51, 48 
46, 49, 42 
49, 47, 44 
49, 52, 50 
55, 51, 51 
49; 50: 50 
53, 52, 53 
55, 49, 50 

49, 53, 48 

53, 53, 53 

Courtesy: Hari K. Iyer 
To download the complete data, visit the Wiley ftp site 
ftp://ftp.wiley.com/public/sci-tech_med/statistical-toler~ce 
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RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 

1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
7 
8 
8 
8 
8 
9 
9 
9 
9 
10 
10 
10 
10 
11 

2 
1 
3 
4 
2 
1 
3 
4 
1 
2 
4 
3 
2 
1 
3 
4 
2 
1 
3 
4 
1 
2 
4 
3 
2 
1 
3 
4 
1 
2 
4 
3 
1 
2 
4 
3 
1 
2 
4 
3 
1 
2 

Table A2: Data from a bioequivalence study reported in Example 6.5 
Sequence Subject Period Treatment C,,, 

RTTR 13.448 1 m 
I 

R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 

12.0276 
14.6708 
21.7649 
16.2387 
14.5254 
16.1629 
17.0446 
14.7002 
16.4133 
13.0392 
12.5214 
16.4272 
17.0416 
17.2711 
14.3423 
21.2888 
18.495 1 
23.6546 
26.6882 
14.2801 
15.1318 
21.8449 
18.7057 
18.8196 
19.1911 
19.2031 
17.8359 
20.0005 
11.0799 
22.1917 
21.7314 
14.2437 
13.7229 
14.8358 
12.4715 
10.7469 
12.1024 
13.3457 
12.7732 
19.9780 

11 - R 21.1899 
Source: www.fda.gov/cder/bioequivdata/drugl4b.txt 



Table A2 continued 
Sequence Subject Period Treatment C,,, 

TRRT T 25.3532 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 

11 
11 
12 
12 
12 
12 
13 
13 
13 
13 
16 
16 
16 
16 
17 
17 
17 
17 
18 
18 
18 
18 
19 
19 
19 
19 
20 
20 
20 
20 
21 
21 
21 
21 
22 
22 
22 
22 
23 
23 
23 
23 

4 
3 
1 
2 
4 3 

4 3 

1 
2 

2 
1 
3 
4 
1 
2 
4 
3 
1 
2 
4 
3 
1 
2 
4 
3 
2 
1 
3 
4 
1 
2 
4 
3 
2 
1 
3 
4 
2 
1 
3 
4 

R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 

20.1001 
33.8299 
35.7511 
32.2236 
29.8041 
24.0893 
25.3548 
27.3516 
24.1224 
17.3160 
18.1459 
14.7359 
14.6257 
9.1800 

11.5268 
12.0653 
12.7756 
14.7935 
14.4807 
13.8565 
12.3518 
13.8787 
18.8532 
27.1953 
19.4058 
26.5864 
22.7744 
21.6330 
18.3490 
18.7630 
14.6189 
13.9584 
19.0528 
10.9703 
10.2247 
12.6435 
9.5695 

15.2883 
24.7679 
23.2319 
18.5578 
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TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 

24 
24 
24 
24 
25 
25 
25 
25 
26 
26 
26 
26 
27 
27 
27 
27 
28 
28 
28 
28 
29 
29 
29 
29 
30 
30 
30 
30 
31 
31 
31 
31 
32 
32 
32 
32 
33 
33 

1 
2 
4 
3 
2 
1 
3 
4 
1 
2 
4 
3 
2 
1 
3 
4 
2 
1 
3 
4 
1 
2 
4 
3 
2 
1 
3 
4 
2 
1 
3 
4 
1 
2 
4 
3 
2 
1 
3 

Table A2 continued 
Sequence Subject Period Treatment C,,, 

TRRT T 14.3020 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 
R 
T 

19.0388 
17.9381 
12.9558 
14.1964 
13.9130 
12.2957 
14.2661 
19.8866 
28.3235 
27.9804 
22.6038 
20.8374 
18.2589 
18.8469 
17.3252 
14.8162 
10.7835 
7.5955 

14.9183 
20.8129 
28.7001 
17.3599 
22.3080 
16.0436 
15.7004 
21.6636 
20.0429 
14.9095 
14.61 72 
14.4230 
13.4043 
14.4853 
26.4230 
23.4636 
13.4968 
13.8006 
10.5561 
8.1311 RTTR 33 



354 Appendix A 

RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
TRRT 
TRRT 
TRRT 
TRRT 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 
RTTR 

33 
34 
34 
34 
34 
35 
35 
35 
35 
36 
36 
36 
36 
37 
37 
37 
37 
38 
38 
38 
38 
39 
39 
39 
39 
40 
40 
40 
40 

4 R 
1 T 
2 R 
4 T 
3 R 
2 T 
1 R 
3 T 
4 R 
2 T 
1 R 
3 T 
4 R 
1 T 
2 R 
4 T 
3 R 
2 T 
1 R 
3 T 
4 R 
2 T 
1 R 
3 T 
4 R 
2 T 
1 R 
3 T 
4 R 

9.1687 
24.4197 
27.3871 
25.5714 
21.3814 
27.5151 
30.0800 
35.1856 
38.2588 
19.9215 
19.4226 
14.3518 
21.9982 
10.01 74 
13.0770 
11.5961 
9.3507 

20.6108 
24.7480 
25.3391 
21.2389 
17.0882 
19.6846 
13.6475 
14.3690 
12.7704 
13.9277 
12.2176 
14.2982 
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Table B1: The ( p ,  1 - a )  one-sided tolerance factors given in (2.2.3) for a normal 
distribution 

1 - a = 0.90 
P 

n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 

2.176 
1.089 
0.819 
0.686 
0.603 
0.544 
0.500 
0.466 
0.437 

0.414 
0.394 
0.376 
0.361 
0.347 
0.335 
0.324 
0.314 
0.305 
0.297 

0.289 
0.282 
0.275 
0.269 
0.264 
0.258 
0.253 
0.248 
0.244 
0.239 

0.235 
0.231 
0.228 
0.224 
0.221 
0.218 
0.215 
0.212 
0.209 

40 0.206 

5.842 
2.603 
1.972 
1.698 
1.540 
1.435 
1.360 
1.302 
1.257 

1.219 
1.188 
1.162 
1.139 
1.119 
1.101 
1.085 
1.071 
1.058 
1.046 

1.035 
1.025 
1.016 
1.007 
1.000 
0.992 
0.985 
0.979 
0.973 
0.967 

0.961 
0.956 
0.951 
0.947 
0.942 
0.938 
0.934 
0.930 
0.926 
0.923 

6.987 
3.039 
2.295 
1.976 
1.795 
1.676 
1.590 
1.525 
1.474 

1.433 
1.398 
1.368 
1.343 
1.321 
1.301 
1.284 
1.268 
1.254 
1.241 

1.229 
1.218 
1.208 
1.199 
1.190 
1.182 
1.174 
1.167 
1.160 
1.154 

1.148 
1.143 
1.137 
1.132 
1.127 
1.123 
1.118 
1.114 
1.110 
1.106 

10.25 
4.258 
3.188 
2.742 
2.494 
2.333 
2.219 
2.133 
2.066 

2.011 
1.966 
1.928 
1.895 
1.867 
1.842 
1.819 
1.800 
1.782 
1.765 

1.750 
1.737 
1.724 
1.712 
1.702 
1.691 
1.682 
1.673 
1.665 
1.657 

1.650 
1.643 
1.636 
1.630 
1.624 
1.618 
1.613 
1.608 
1.603 
1.598 

13.09 
5.311 
3.957 
3.400 
3.092 
2.894 
2.754 
2.650 
2.568 

2.503 
2.448 
2.402 
2.363 
2.329 
2.299 
2.272 
2.249 
2.227 
2.208 

2.190 
2.174 
2.159 
2.145 
2.132 
2.120 
2.109 
2.099 
2.089 
2.080 

2.071 
2.063 
2.055 
2.048 
2.041 
2.034 
2.028 
2.022 
2.016 
2.010 

18.50 
7.340 
5.438 
4.666 
4.243 
3.972 
3.783 
3.641 
3.532 

3.443 
3.371 
3.309 
3.257 
3.212 
3.172 
3.137 
3.105 
3.077 
3.052 

3.028 
3.007 
2.987 
2.969 
2.952 
2.937 
2.922 
2.909 
2.896 
2.884 

2.872 
2.862 
2.852 
2.842 
2.833 
2.824 
2.816 
2.808 
2.800 
2.793 

24.58 
9.651 
7.129 
6.1 11 
5.556 
5.202 
4.955 
4.771 
4.629 

4.514 
4.420 
4.341 
4.273 
4.215 
4.164 
4.119 
4.078 
4.042 
4.009 

3.979 
3.952 
3.927 
3.903 
3.882 
3.862 
3.843 
3.826 
3.810 
3.794 

3.780 
3.766 
3.753 
3.741 
3.729 
3.718 
3.708 
3.698 
3.688 
3.679 
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1 - 0. = 0.90 
P 

n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

0.204 
0.201 
0.199 
0.196 
0.194 
0.192 
0.190 
0.188 
0.186 
0.184 

0.182 
0.180 
0.178 
0.177 
0.175 
0.173 
0.172 
0.170 
0.169 
0.167 

0.166 
0.165 
0.163 
0.162 
0.161 
0.159 
0.158 
0.157 
0.156 
0.155 

0.154 
0.152 
0.151 
0.150 
0.149 
0.148 
0.147 
0.146 
0.145 
0.144 

0.919 
0.916 
0.913 
0.910 
0.907 
0.904 
0.901 
0.899 
0.896 
0.894 

0.891 
0.889 
0.887 
0.884 
0.882 
0.880 
0.878 
0.876 
0.875 
0.873 

0.871 
0.869 
0.868 
0.866 
0.864 
0.863 
0.861 
0.860 
0.858 
0.857 

0.855 
0.854 
0.853 
0.851 
0.850 
0.849 
0.848 
0.846 
0.845 
0.844 

1.103 
1.099 
1.096 
1.092 
1.089 
1.086 
1.083 
1.080 
1.078 
1.075 

1.072 
1.070 
1.067 
1.065 
1.063 
1.061 
1.059 
1.056 
1.054 
1.052 

1.051 
1.049 
1.047 
1.045 
1.043 
1.042 
1.040 
1.038 
1.037 
1.035 

1.034 
1.032 
1.031 
1.029 
1.028 
1.027 
1.025 
1.024 
1.023 
1.022 

1.593 
1.589 
1.585 
1.581 
1.577 
1.573 
1.570 
1.566 
1.563 
1.559 

1.556 
1.553 
1.550 
1.547 
1.545 
1.542 
1.539 
1.537 
1.534 
1.532 

1.530 
1.527 
1.525 
1.523 
1.521 
1.519 
1.517 
1.515 
1.513 
1.511 

1.509 
1.508 
1.506 
1.504 
1.503 
1.501 
1.499 
1.498 
1.496 
1.495 

2.005 
2.000 
1.995 
1.990 
1.986 
1.981 
1.977 
1.973 
1.969 
1.965 

1.962 
1.958 
1.955 
1.951 
1.948 
1.945 
1.942 
1.939 
1.936 
1.933 

1.931 
1.928 
1.925 
1.923 
1.920 
1.918 
1.916 
1.913 
1.911 
1.909 

1.907 
1.905 
1.903 
1.901 
1.899 
1.897 
1.895 
1.893 
1.892 
1.890 

2.786 
2.780 
2.773 
2.767 
2.761 
2.756 
2.750 
2.745 
2.740 
2.735 

2.730 
2.726 
2.721 
2.717 
2.713 
2.709 
2.705 
2.701 
2.697 
2.694 

2.690 
2.687 
2.683 
2.680 
2.677 
2.674 
2.671 
2.668 
2.665 
2.662 

2.660 
2.657 
2.654 
2.652 
2.649 
2.647 
2.644 
2.642 
2.640 
2.638 

3.670 
3.662 
3.654 
3.646 
3.638 
3.631 
3.624 
3.617 
3.611 
3.605 

3.599 
3.593 
3.587 
3.582 
3.577 
3.571 
3.566 
3.562 
3.557 
3.552 

3.548 
3.544 
3.539 
3.535 
3.531 
3.527 
3.524 
3.520 
3.516 
3.513 

3.509 
3.506 
3.503 
3.499 
3.496 
3.493 
3.490 
3.487 
3.484 
3.482 
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Table B1 continued 
1 - CY = 0.!)0 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 

275 
300 
350 
400 
450 
500 
600 
700 

1000 

0.140 
0.136 
0.132 
0.129 
0.115 
0.105 
0.097 
0.091 
0.086 
0.081 

0.077 
0.074 
0.069 
0.064 
0.061 
0.057 
0.052 
0.048 
0.041 

0.839 
0.834 
0.829 
0.825 
0.808 
0.796 
0.786 
0.779 
0.773 
0.767 

0.763 
0.759 
0.753 
0.747 
0.743 
0.740 
0.734 
0.729 
0.720 

1.016 
1.01 1 
1.006 
1.001 
0.983 
0.970 
0.960 
0.952 
0.945 
0.940 

0.935 
0.931 
0.924 
0.919 
0.914 
0.910 
0.904 
0.899 
0.890 

1.488 
1.481 
1.475 
1.470 
1.448 
1.433 
1.421 
1.411 
1.403 
1.397 

1.391 
1.386 
1.378 
1.372 
1.366 
1.362 
1.355 
1.349 
1.338 

1.882 
1.874 
1.867 
1.861 
1.836 
1.818 
1.804 
1.793 
1.784 
1.777 

1.770 
1.765 
1.755 
1.748 
1.742 
1.736 
1.728 
1.722 
1.709 

2.627 
2.618 
2.609 
2.601 
2.569 
2.546 
2.528 
2.514 
2.503 
2.493 

2.485 
2.477 
2.466 
2.456 
2.448 
2.442 
2.431 
2.423 
2.407 

3.468 
3.456 
3.445 
3.435 
3.395 
3.366 
3.343 
3.326 
3.311 
3.299 

3.289 
3.280 
3.265 
3.253 
3.243 
3.235 
3.222 
3.211 
3.191 
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Table B1 continued 
1 - CY = 0.95 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

4.464 
1.686 
1.177 
0.953 
0.823 
0.734 
0.670 
0.620 
0.580 

0.546 
0.518 
0.494 
0.473 
0.455 
0.438 
0.423 
0.410 
0.398 
0.387 

0.376 
0.367 
0.358 
0.350 
0.342 
0.335 
0.328 
0.322 
0.316 
0.310 

0.305 
0.300 
0.295 
0.290 
0.286 
0.282 
0.278 
0.274 
0.270 
0.266 

11.763 
3.806 
2.618 
2.150 
1.895 
1.732 
1.618 
1.532 
1.465 

1.411 
1.366 
1.328 
1.296 
1.268 
1.243 
1.220 
1.201 
1.183 
1.166 

1.152 
1.138 
1.125 
1.114 
1.103 
1.093 
1.083 
1.075 
1.066 
1.058 

1.051 
1.044 
1.037 
1.031 
1.025 
1.019 
1.014 
1.009 
1.004 
0.999 

14.051 
4.424 
3.026 
2.483 
2.191 
2.005 
1.875 
1.779 
1.703 

1.643 
1.593 
1.551 
1.514 
1.483 
1.455 
1.431 
1.409 
1.389 
1.371 

1.355 
1.340 
1.326 
1.313 
1.302 
1.291 
1.280 
1.271 
1.262 
1.253 

1.245 
1.237 
1.230 
1.223 
1.217 
1.211 
1.205 
1.199 
1.194 
1.188 

20.581 
6.155 
4.162 
3.407 
3.006 
2.755 
2.582 
2.454 
2.355 

2.275 
2.210 
2.155 
2.109 
2.068 
2.033 
2.002 
1.974 
1.949 
1.926 

1.905 
1.886 
1.869 
1.853 
1.838 
1.824 
1.811 
1.799 
1.788 
1.777 

1.767 
1.758 
1.749 
1.740 
1.732 
1.725 
1.717 
1.710 
1.704 
1.697 

26.26 
7.656 
5.144 
4.203 
3.708 
3.399 
3.187 
3.031 
2.911 

2.815 
2.736 
2.671 
2.614 
2.566 
2.524 
2.486 
2.453 
2.423 
2.396 

2.371 
2.349 
2.328 
2.309 
2.292 
2.275 
2.260 
2.246 
2.232 
2.220 

2.208 
2.197 
2.186 
2.176 
2.167 
2.158 
2.149 
2.141 
2.133 
2.125 

37.094 
10.553 
7.042 
5.741 
5.062 
4.642 
4.354 
4.143 
3.981 

3.852 
3.747 
3.659 
3.585 
3.520 
3.464 
3.414 
3.370 
3.331 
3.295 

3.263 
3.233 
3.206 
3.181 
3.158 
3.136 
3.116 
3.098 
3.080 
3.064 

3.048 
3.034 
3.020 
3.007 
2.995 
2.983 
2.972 
2.961 
2.951 
2.941 

49.276 
13.857 
9.214 
7.502 
6.612 
6.063 
5.688 
5.413 
5.203 

5.036 
4.900 
4.787 
4.690 
4.607 
4.535 
4.471 
4.415 
4.364 
4.318 

4.277 
4.239 
4.204 
4.172 
4.142 
4.115 
4.089 
4.066 
4.043 
4.022 

4.002 
3.984 
3.966 
3.950 
3.934 
3.919 
3.904 
3.891 
3.878 
3.865 
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Table B1 continued 
1 - Q: = 0.95 

n 0.50 0.75 0.80 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

0.263 
0.260 
0.256 
0.253 
0.250 
0.248 
0.245 
0.242 
0.240 
0.237 

0.235 
0.232 
0.230 
0.228 
0.226 
0.224 
0.222 
0.220 
0.218 
0.216 

0.214 
0.212 
0.210 
0.209 
0.207 
0.205 
0.204 
0.202 
0.201 
0.199 

0.198 
0.196 
0.195 
0.194 
0.192 
0.191 
0.190 
0.189 
0.187 
0.186 

0.994 
0.990 
0.986 
0.982 
0.978 
0.974 
0.971 
0.967 
0.964 
0.960 

0.957 
0.954 
0.951 
0.948 
0.945 
0.943 
0.940 
0.938 
0.935 
0.933 

0.930 
0.928 
0.926 
0.924 
0.921 
0.919 
0.917 
0.915 
0.913 
0.911 

0.910 
0.908 
0.906 
0.904 
0.903 
0.901 
0.899 
0.898 
0.896 
0.895 

1.183 
1.179 
1.174 
1.170 
1.165 
1.161 
1.157 
1.154 
1.150 
1.146 

1.143 
1.140 
1.136 
1.133 
1.130 
1.127 
1.125 
1.122 
1.119 
1.116 

1.114 
1.111 
1.109 
1.107 
1.104 
1.102 
1.100 
1.098 
1.096 
1.094 

1.092 
1.090 
1.088 
1.086 
1.084 
1.082 
1.081 
1.079 
1.077 
1.076 

P 
0.90 0.95 

1.691 
1.685 
1.680 
1.674 
1.669 
1.664 
1.659 
1.654 
1.650 
1.646 

1.641 
1.637 
1.633 
1.630 
1.626 
1.622 
1.619 
1.615 
1.612 
1.609 

1.606 
1.603 
1.600 
1.597 
1.594 
1.591 
1.589 
1.586 
1.584 
1.581 

1.579 
1.576 
1.574 
1.572 
1.570 
1.568 
1.565 
1.563 
1.561 
1.559 

2.118 
2.111 
2.105 
2.098 
2.092 
2.086 
2.081 
2.075 
2.070 
2.065 

2.060 
2.055 
2.051 
2.046 
2.042 
2.038 
2.034 
2.030 
2.026 
2.022 

2.019 
2.015 
2.012 
2.008 
2.005 
2.002 
1.999 
1.996 
1.993 
1.990 

1.987 
1.984 
1.982 
1.979 
1.976 
1.974 
1.971 
1.969 
1.967 
1.964 

0.99 

2.932 
2.923 
2.914 
2.906 
2.898 
2.890 
2.883 
2.876 
2.869 
2.862 

2.856 
2.850 
2.844 
2.838 
2.833 
2.827 
2.822 
2.817 
2.812 
2.807 

2.802 
2.798 
2.793 
2.789 
2.785 
2.781 
2.777 
2.773 
2.769 
2.765 

2.762 
2.758 
2.755 
2.751 
2.748 
2.745 
2.742 
2.739 
2.736 
2.733 

0.999 

3.854 
3.842 
3.831 
3.821 
3.811 
3.801 
3.792 
3.783 
3.774 
3.766 

3.758 
3.750 
3.742 
3.735 
3.728 
3.721 
3.714 
3.708 
3.701 
3.6!)5 

3.689 
3.684 
3.678 
3.673 
3.667 
3.662 
3.657 
3.652 
3.647 
3.643 

3.638 
3.633 
3.629 
3.625 
3.621 
3.617 
3.613 
3.609 
3.605 
3.601 
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Table B1 continued 
1 - LY = 0.95 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 

275 
300 
350 
400 
450 
500 
600 
700 

1000 

0.180 
0.175 
0.170 
0.166 
0.148 
0.135 
0.125 
0.117 
0.110 
0.104 

0.888 
0.881 
0.875 
0.870 
0.848 
0.832 
0.819 
0.809 
0.801 
0.795 

0.100 0.789 
0.095 0.784 
0.088 0.775 
0.082 0.769 
0.078 0.763 
0.074 0.758 
0.067 0.751 
0.062 0.745 
0.052 0.733 

1.068 
1.061 
1.055 
1.049 
1.025 
1.008 
0.995 
0.984 
0.976 
0.969 

0.962 
0.957 
0.948 
0.941 
0.935 
0.930 
0.922 
0.916 
0.904 

1.550 
1.542 
1.534 
1.527 
1.498 
1.478 
1.462 
1.450 
1.439 
1.431 

1.423 
1.417 
1.406 
1.398 
1.391 
1.385 
1.376 
1.368 
1.354 

1.954 
1.944 
1.935 
1.927 
1.894 
1.870 
1.852 
1.837 
1.825 
1.815 

1.807 
1.800 
1.787 
1.778 
1.770 
1.763 
1.752 
1.744 
1.727 

2.719 
2.706 
2.695 
2.684 
2.642 
2.611 
2.588 
2.570 
2.555 
2.542 

2.531 
2.522 
2.506 
2.494 
2.484 
2.475 
2.462 
2.451 
2.430 

3.583 
3.567 
3.553 
3.539 
3.486 
3.448 
3.419 
3.395 
3.376 
3.361 

3.347 
3.335 
3.316 
3.300 
3.288 
3.277 
3.260 
3.247 
3.220 
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Table B1 continued 

1 - Q = 0.99 
P 

n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

22.50 
4.021 
2.270 
1.676 
1.374 
1.188 
1.060 
0.965 
0.892 

0.833 
0.785 
0.744 
0.708 
0.678 
0.651 
0.627 
0.605 
0.586 
0.568 

0.552 
0.537 
0.523 
0.510 
0.498 
0.487 
0.477 
0.467 
0.458 
0.450 

0.441 
0.434 
0.426 
0.419 
0.413 
0.406 
0.400 
0.394 
0.389 
0.384 

58.94 
8.728 
4.715 
3.454 
2.848 
2.491 
2.253 
2.083 
1.954 

1.853 
1.771 
1.703 
1.645 
1.595 
1.552 
1.514 
1.481 
1.450 
1.423 

1.399 
1.376 
1.355 
1.336 
1.319 
1.303 
1.287 
1.273 
1.260 
1.247 

1.236 
1.225 
1.214 
1.204 
1. I95 
1.186 
1.177 
1.169 
1.161 

70.38 
10.11 
5.417 
3.958 
3.262 
2.854 
2.584 
2.391 
2.246 

2.131 
2.039 
1.963 
1.898 
1.843 
1.795 
1.753 
1.716 
1.682 
1.652 

1.625 
1.600 
1.577 
1.556 
1.537 
1.519 
1.502 
1.486 
1.472 
1.458 

1.445 
1.433 
1.422 
1.411 
1.400 
1.391 
1.381 
1.372 
1.364 

103.0 
14.00 
7.380 
5.362 
4.411 
3.859 
3.497 
3.240 
3.048 

2.898 
2.777 
2.677 
2.593 
2.521 
2.459 
2.405 
2.357 
2.314 
2.276 

2.241 
2.209 
2.180 
2.154 
2.129 
2.106 
2.085 
2.065 
2.047 
2.030 

2.014 
1.998 
1.984 
1.970 
1.957 
1.945 
1.934 
1.922 
1.912 

131.4 
17.37 
9.083 
6.578 
5.406 
4.728 
4.285 
3.972 
3.738 

3.556 
3.410 
3.290 
3.189 
3.102 
3.028 
2.963 
2.905 
2.854 
2.808 

2.766 
2.729 
2.694 
2.662 
2.633 
2.606 
2.581 
2.558 
2.536 
2.515 

2.496 
2.478 
2.461 
2.445 
2.430 
2.415 
2.402 
2.389 
2.376 

185.6 
23.90 
12.39 
8.939 
7.335 
6.412 
5.812 
5.389 
5.074 

4.829 
4.633 
4.472 
4.337 
4.222 
4.123 
4.037 
3.960 
3.892 
3.832 

3.777 
3.727 
3.681 
3.640 
3.601 
3.566 
3.533 
3.502 
3.473 
3.447 

3.421 
3.398 
3.375 
3.354 
3.334 
3.315 
3.297 
3.280 
3.264 

246.6 
31.35 
16.18 
11.65 
9.550 
8.346 
7.564 
7.014 
6.605 

6.288 
6.035 
5.827 
5.652 
5.504 
5.377 
5.265 
5.167 
5.079 
5.001 

4.931 
4.867 
4.808 
4.755 
4.706 
4.660 
4.6 18 
4.579 
4.542 
4.508 

4.476 
4.445 
4.417 
4.390 
4.364 
4.340 
4.317 
4.296 
4.275 
4.255 ~~ 1.154 1.356 1.902 2.364 3.249 



Appendix B 363 

Table B1 continued 
1 - cy = 0.99 

n 0.50 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

0.378 
0.374 
0.369 
0.364 
0.360 
0.356 
0.352 
0.348 
0.344 
0.340 

0.337 
0.333 
0.330 
0.326 
0.323 
0.320 
0.317 
0.314 
0.311 
0.309 

0.306 
0.303 
0.301 
0.298 
0.296 
0.294 
0.291 
0.289 
0.287 
0.285 

0.283 
0.280 
0.278 
0.276 
0.275 
0.273 
0.271 
0.269 
0.267 
0.265 

0.75 

1.147 
1.140 
1.133 
1.127 
1.121 
1.115 
1.110 
1.104 
1.099 
1.094 

1.089 
1.084 
1.080 
1.075 
1.071 
1.067 
1.063 
1.059 
1.055 
1.052 

1.048 
1.045 
1.041 
1.038 
1.035 
1.032 
1.028 
1.025 
1.023 
1.020 

1.017 
1.014 
1.012 
1.009 
l.OO6 
1.004 
1.002 
0.999 
0.997 
0.995 

- 

P 
0.80 0.90 

1.348 
1.341 
1.333 
1.327 
1.320 
1.314 
1.308 
1.302 
1.296 
1.291 

1.285 
1.280 
1.275 
1.270 
1.266 
1.261 
1.257 
1.253 
1.249 
1.245 

1.241 
1.237 
1.233 
1.230 
1.226 
1.223 
1.219 
1.216 
1.213 
1.210 

1.207 
1.204 
1.201 
1.198 
1.196 
1.193 
1.190 
1.188 
1.185 
1.183 

1.892 
1.883 
1.874 
1.865 
1.857 
1.849 
1.842 
1.835 
1.828 
1.821 

1.814 
1.808 
1.802 
1.796 
1.790 
1.785 
1.779 
1.774 
1.769 
1.764 

1.759 
1.755 
1.750 
1.746 
1.741 
1.737 
1.733 
1.729 
1.725 
1.722 

1.718 
1.714 
1.711 
1.707 
1.704 
1.701 
1.698 
1.694 
1.691 
1.688 

0.95 0.99 

2.353 
2.342 
2.331 
2.321 
2.312 
2.303 
2.294 
2.285 
2.277 
2.269 

2.261 
2.254 
2.247 
2.240 
2.233 
2.226 
2.220 
2.214 
2.208 
2.202 

2.197 
2.191 
2.186 
2.181 
2.176 
2.171 
2.166 
2.162 
2.157 
2.153 

2.148 
2.144 
2.140 
2.136 
2.132 
2.128 
2.125 
2.121 
2.117 
2.114 

3.234 
3.220 
3.206 
3.193 
3.180 
3.168 
3.157 
3.146 
3.135 
3.125 

3.115 
3.105 
3.096 
3.087 
3.078 
3.070 
3.061 
3.053 
3.046 
3.038 

3.031 
3.024 
3.017 
3.010 
3.004 
2.998 
2.991 
2.985 
2.980 
2.974 

2.968 
2.963 
2.958 
2.952 
2.947 
2.942 
2.938 
2.933 
2.928 
2.924 

0.999 

4.236 
4.218 
4.201 
4.184 
4.168 
4.153 
4.138 
4.124 
4.110 
4.097 

4.084 
4.072 
4.060 
4.049 
4.038 
4.027 
4.017 
4.007 
3.997 
3.987 

3.978 
3.969 
3.960 
3.952 
3.944 
3.936 
3.928 
3.920 
3.913 
3.906 

3.899 
3.892 
3.885 
3.878 
3.872 
3.866 
3.860 
3.854 
3.848 
3.842 
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Table €31 continued 
1 - cy = 0.99 

P 

- 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 

275 
300 
350 
400 
450 
500 
600 
700 

1000 

0.257 
0.250 
0.243 
0.236 
0.211 
0.192 
0.177 
0.166 
0.156 
0.148 

0.141 
0.135 
0.125 
0.117 
0.110 
0.104 
0.095 
0.088 
0.074 

0.984 
0.974 
0.965 
0.957 
0.924 
0.901 
0.883 
0.868 
0.856 
0.847 

0.838 
0.831 
0.819 
0.809 
0.801 
0.794 
0.783 
0.775 
0.758 

1.171 
1.161 
1.151 
1.142 
1.107 
1.082 
1.062 
1.047 
1.034 
1.024 

1.015 
1.007 
0.994 
0.984 
0.975 
0.968 
0.957 
0.948 
0.930 

1.674 
1.661 
1.650 
1.639 
1.596 
1.566 
1.542 
1.524 
1.509 
1.496 

1.485 
1.476 
1.461 
1.448 
1.438 
1.430 
1.416 
1.406 
1.385 

2.097 
2.082 
2.069 
2.056 
2.007 
1.971 
1.944 
1.923 
1.905 
1.891 

1.878 
1.868 
1.850 
1.836 
1.824 
1.814 
1.799 
1.787 
1.762 

2.902 
2.883 
2.866 
2.850 
2.786 
2.740 
2.706 
2.679 
2.656 
2.638 

2.622 
2.608 
2.585 
2.567 
2.553 
2.540 
2.520 
2.505 
2.475 

3.815 
3.791 
3.769 
3.748 
3.668 
3.610 
3.567 
3.532 
3.504 
3.481 

3.461 
3.443 
3.415 
3.392 
3.374 
3.358 
3.333 
3.314 
3.276 
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Table B2: The exact ( p ,  1 - a )  two-sided tolerance factors for a normal distri- 
bution 

1 - a = 0.90 
P 

n 0.50 0.75 0.80 0.90 0.95 0.99 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 

6.808 
2.492 
1.766 
1.473 
1.314 
1.213 
1.143 
1.092 
1.053 

1.021 
0.996 
0.974 
0.956 
0.941 
0.927 
0.915 
0.905 
0.895 
0.887 

0.879 
0.872 
0.866 
0.860 
0.855 
0.850 
0.845 
0.841 
0.837 
0.833 

0.829 
0.826 
0.823 
0.820 
0.817 
0.814 
0.812 
0.809 

11.17 
4.134 
2.954 
2.477 
2.217 
2.053 
1.938 
1.854 
1.788 

1.736 
1.694 
1.658 
1.628 
1.602 
1.579 
1.559 
1.541 
1.526 
1.511 

1.498 
1.487 
1.476 
1.466 
1.457 
1.448 
1.440 
1.433 
1.426 
1.420 

1.414 
1.408 
1.403 
1.397 
1.393 
1.388 
1.384 
1.380 

12.33 
4.577 
3.276 
2.750 
2.464 
2.282 
2.156 
2.062 
1.990 

1.932 
1.885 
1.846 
1.812 
1.783 
1.758 
1.736 
1.717 
1.699 
1.683 

1.669 
1.656 
1.644 
1.633 
1.623 
1.613 
1.604 
1.596 
1.589 
1.581 

1.575 
1.568 
1.562 
1.557 
1.551 
1.546 
1.541 
1.537 

15.51 
5.788 
4.157 
3.499 
3.141 
2.913 
2.754 
2.637 
2.546 

2.473 
2.414 
2.364 
2.322 
2.285 
2.254 
2.226 
2.201 
2.178 
2.158 

2.140 
2.123 
2.108 
2.094 
2.081 
2.069 
2.058 
2.048 
2.038 
2.029 

2.020 
2.012 
2.005 
1.997 
1.991 
1.984 
1.978 
1.972 

18.22 
6.823 
4.913 
4.142 
3.723 
3.456 
3.270 
3.132 
3.026 

2.941 
2.871 
2.812 
2.762 
2.720 
2.682 
2.649 
2.620 
2.593 
2.570 

2.548 
2.528 
2.510 
2.494 
2.479 
2.464 
2.451 
2.439 
2.427 
2.417 

2.406 
2.397 
2.388 
2.379 
2.371 
2.363 
2.356 
2.349 

23.42 
8.819 
6.372 
5.387 
4.850 
4.508 
4.271 
4.094 
3.958 

3.849 
3.759 
3.684 
3.620 
3.565 
3.517 
3.474 
3.436 
3.402 
3.372 

3.344 
3.318 
3.295 
3.274 
3.254 
3.235 
3.218 
3.202 
3.187 
3.173 

3.160 
3.148 
3.136 
3.125 
3.114 
3.104 
3.095 
3.086 

0.999 

29.36 
11.10 
8.046 
6.816 
6.146 
5.720 
5.423 
5.203 
5.033 

4.897 
4.785 
4.691 
4.611 
4.541 
4.481 
4.428 
4.380 
4.338 
4.299 

4.264 
4.232 
4.203 
4.176 
4.151 
4.128 
4.106 
4.086 
4.068 
4.050 

4.033 
4.018 
4.003 
3.989 
3.975 
3.963 
3.951 
3.939 



366 Appendix B 

Table B2 continued 
1 - a = 0.90 

n 0.50 0.75 0.80 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 

0.807 
0.805 
0.802 
0.800 
0.798 
0.797 
0.795 
0.793 
0.791 
0.790 
0.788 
0.787 

0.785 
0.784 
0.783 
0.781 
0.780 
0.779 
0.778 
0.777 
0.776 
0.775 

0.774 
0.773 
0.772 
0.771 
0.770 
0.769 
0.768 
0.767 
0.766 
0.765 

0.765 
0.764 
0.763 
0.762 
0.762 
0.761 
0.760 
0.759 
0.759 

1.376 
1.372 
1.368 
1.365 
1.362 
1.358 
1.355 
1.352 
1.350 
1.347 
1.344 
1.342 

1.339 
1.337 
1.335 
1.333 
1.331 
1.328 
1.326 
1.325 
1.323 
1.321 

1.319 
1.317 
1.316 
1.314 
1.313 
1.311 
1.309 
1.308 
1.307 
1.305 

1.304 
1.303 
1.301 
1.300 
1.299 
1.298 
1.296 
1.295 
1.294 
1.293 

1.532 
1.528 
1.524 

1.52 
1.517 
1.513 
1.510 
1.507 
1.504 
1.501 
1.498 
1.495 

1.492 
1.490 
1.487 
1.485 
1.482 
1.480 
1.478 
1.476 
1.474 
1.471 

1.470 
1.468 
1.466 
1.464 
1.462 
1.461 
1.459 
1.457 
1.456 
1.454 

1.453 
1.451 
1.450 
1.448 
1.447 
1.446 
1.444 
1.443 
1.442 
1.440 

P 
0.90 0.95 

1.966 
1.961 
1.956 
1.951 
1.946 
1.942 
1.938 
1.933 
1.929 
1.926 
1.922 
1.918 

1.915 
1.912 
1.908 
1.905 
1.902 
1.899 
1.896 
1.894 
1.891 
1.888 

1.886 
1.884 
1.881 
1.879 
1.877 
1.874 
1.872 
1.870 
1.868 
1.866 

1.864 
1.862 
1.860 
1.859 
1.857 
1.855 
1.854 
1.852 
1.850 
1.849 

2.343 
2.336 
2.330 
2.324 
2.319 
2.313 
2.308 
2.303 
2.299 
2.294 
2.290 
2.285 

2.281 
2.277 
2.274 
2.270 
2.266 
2.263 
2.259 
2.256 
2.253 
2.250 

2.247 
2.244 
2.241 
2.239 
2.236 
2.233 
2.231 
2.228 
2.226 
2.223 

2.221 
2.219 
2.217 
2.215 
2.213 
2.210 
2.209 
2.207 
2.205 
2.203 

0.99 

3.077 
3.069 
3.061 
3.053 
3.046 
3.039 
3.032 
3.026 
3.020 
3.014 
3.008 
3.003 

2.997 
2.992 
2.987 
2.982 
2.978 
2.973 
2.969 
2.964 
2.960 
2.956 

2.952 
2.949 
2.945 
2.941 
2.938 
2.934 
2.931 
2.928 
2.925 
2.922 

2.919 
2.916 
2.913 
2.910 
2.907 
2.905 
2.902 
2.900 
2.897 
2.895 

0.999 

3.928 
3.918 
3.908 
3.898 
3.889 
3.880 
3.872 
3.864 
3.856 
3.848 
3.841 
3.834 

3.827 
3.821 
3.815 
3.808 
3.803 
3.797 
3.791 
3.786 
3.781 
3.775 

3.771 
3.766 
3.761 
3.756 
3.752 
3.743 
3.743 
3.739 
3.735 
3.731 

3.728 

3.720 
3.717 
3.713 
3.710 
3.707 
3.703 
3.700 
3.697 

3.724 

80 0.758 
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Table B2 continued 

367 

1 - a = 0.90 
P 

n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 

300 
350 
400 
450 
500 
600 
700 

1000 

0.755 
0.752 
0.750 
0.748 
0.739 
0.732 
0.727 
0.723 
0.720 
0.718 
0.715 

0.714 
0.710 
0.708 
0.706 
0.704 
0.701 
0.699 
0.695 

1.288 
1.283 
1.279 
1.275 
1.260 
1.249 
1.240 
1.234 
1.228 
1.224 
1.220 

1.217 
1.211 
1.207 
1.204 
1.201 
1.196 
1.192 
1.185 

1.435 
1.430 
1.425 
1.421 
1.403 
1.391 
1.382 
1.375 
1.361) 
1.364 
1.359 

1.356 
1.350 
1.345 
1.341 
1.338 
1.332 
1.328 
1.320 

1.841 
1.835 
1.829 
1.823 
1.801 
1.785 
1.774 
1.764 
1.757 
1.750 
1.745 

2.194 
2.186 
2.179 
2.172 
2.146 
2.127 
2.113 
2.102 
2.093 
2.085 
2.079 

1.740 2.073 
1.732 2.064 
1.726 2.057 
1.721 2.051 
1.717 2.046 
1.710 2.038 
1.705 2.032 
1.695 2.019 

2.883 
2.873 
2.863 
2.855 
2.820 
2.796 
2.777 
2.763 
2.751 
2.741 
2.732 

2.725 
2.713 
2.703 
2.695 
2.689 
2.678 
2.670 
2.654 

3.683 
3.669 
3.657 
3.646 
3.603 
3.571 
3.548 
3.529 
3.514 
3.501 
3.490 

3.481 
3.465 
3.453 
3.443 
3.435 
3.421 
3.411 
3.390 
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Table B2 continued 
1 - o = 0.95 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

13.65 
3.585 
2.288 
1.812 
1.566 
1.415 
1.313 
1.239 
1.183 

1.139 
1.103 
1.073 
1.048 
1.027 
1.008 
0.992 
0.978 
0.965 
0.953 

0.943 
0.934 
0.925 
0.917 
0.910 
0.903 
0.897 
0.891 
0.886 
0.881 

0.876 
0.871 
0.867 
0.863 
0.859 
0.856 
0.852 
0.849 
0.846 
0.843 

22.38 
5.937 
3.818 
3.041 
2.638 
2.391 
2.223 
2.101 
2.008 

1.934 
1.874 
1.825 
1.783 
1.747 
1.716 
1.689 
1.665 
1.643 
1.624 

1.607 
1.591 
1.576 
1.563 
1.551 
1.539 
1.529 
1.519 
1.510 
1.501 

1.493 
1.486 
1.478 
1.472 
1.465 
1.459 
1.454 
1.448 
1.443 
1.438 

24.72 
6.572 
4.233 
3.375 
2.930 
2.657 
2.472 
2.337 
2.234 

2.152 
2.086 
2.031 
1.985 
1.945 
1.911 
1.881 
1.854 
1.830 
1.809 

1.789 
1.772 
1.755 
1.741 
1.727 
1.714 
1.703 
1.692 
1.682 
1.672 

1.663 
1.655 
1.647 
1.639 
1.632 
1.626 
1.619 
1.613 
1.607 
1.602 

31.09 
8.306 
5.368 
4.291 
3.733 
3.390 
3.156 
2.986 
2.856 

2.754 
2.670 
2.601 
2.542 
2.492 
2.449 
2.410 
2.376 
2.346 
2.319 

2.294 
2.272 
2.251 
2.232 
2.215 
2.199 
2.184 
2.170 
2.157 
2.145 

2.134 
2.123 
2.113 
2.103 
2.094 
2.086 
2.077 
2.070 
2.062 
2.055 

36.52 
9.789 
6.341 
5.077 
4.422 
4.020 
3.746 
3.546 
3.393 

3.273 
3.175 
3.093 
3.024 
2.965 
2.913 
2.868 
2.828 
2.793 
2.760 

2.731 
2.705 
2.681 
2.658 
2.638 
2.619 
2.601 
2.585 
2.569 
2.555 

2.541 
2.529 
2.517 
2.505 
2.495 
2.484 
2.475 
2.466 
2.457 
2.448 

46.94 
12.65 
8.221 
6.598 
5.758 
5.241 
4.889 
4.633 
4.437 

4.282 
4.156 
4.051 
3.962 
3.885 
3.819 
3.761 
3.709 
3.663 
3.621 

3.583 
3.549 
3.518 
3.489 
3.462 
3.437 
3.415 
3.393 
3.373 
3.355 

3.337 
3.320 
3.305 
3.290 
3.276 
3.263 
3.250 
3.238 
3.227 
3.216 

58.84 
15.92 
10.38 
8.345 
7.294 
6.647 
6.206 
5.885 
5.640 

5.446 
5.287 
5.156 
5.044 
4.949 
4.865 
4.792 
4.727 
4.669 
4.616 

4.569 
4.526 
4.486 
4.450 
4.416 
4.385 
4.356 
4.330 
4.304 
4.281 

4.259 
4.238 
4.218 
4.199 
4.182 
4.165 
4.149 
4.134 
4.119 
4.105 



Appendix B 

Table B2 continued 
1 - Q: = 0.95 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
85 
90 

0.840 
0.838 
0.835 
0.833 
0.830 
0.828 
0.826 
0.824 
0.822 
0.820 

0.818 
0.816 
0.815 
0.813 
0.811 
0.810 
0.808 
0.807 
0.805 
0.804 

0.803 
0.801 
0.800 
0.799 
0.797 
0.796 
0.795 
0.794 
0.793 
0.792 

0.791 
0.790 
0.789 
0.788 
0.787 
0.786 
0.785 
0.784 
0.783 
0.783 
0.779 

1.433 
1.429 
1.424 
1.420 
1.416 
1.412 
1.409 
1.405 
1.402 
1.398 

1.395 
1.392 
1.389 
1.386 
1.383 
1.381 
1.378 
1.376 
1.373 
1.371 

1.369 
1.366 
1.364 
1.362 
1.360 
1.358 
1.356 
1.354 
1.352 
1.350 

1.349 
1.347 
1.345 
1.344 
1.342 
1.341 
1.339 
1.337 
1.336 
1.335 
1.328 

1.596 
1.591 
1.587 
1.582 
1.578 
1.573 
1.569 
1.565 
1.561 
1.558 

1.554 
1.551 
1.547 
1.544 
1.541 
1.538 
1.535 
1.533 
1.530 
1.527 

1.525 
1.522 
1.520 
1.517 
1.515 
1.513 
1.511 
1.509 
1.506 
1.504 

1.502 
1.501 
1.499 
1.497 
1.495 
1.493 
1.492 
1.490 
1.488 
1.487 
1.479 

2.049 
2.042 
2.036 
2.030 
2.024 
2.019 
2.014 
2.009 
2.004 
1.999 

1.994 
1.990 
1.986 
1.982 
1.978 
1.974 
1.970 
1.967 
1.963 
1.960 

1.957 
1.953 
1.950 
1.947 
1.944 
1.941 
1.939 
1.936 
1.933 
1.931 

1.928 
1.926 
1.923 
1.921 
1.919 
1.917 
1.914 
1.912 
1.910 
1.908 
1.899 

2.44 
2.433 
2.425 
2.418 
2.412 
2.405 
2.399 
2.393 
2.387 
2.382 

2.376 
2.371 
2.366 
2.361 
2.356 
2.352 
2.347 
2.343 
2.339 
2.335 

2.331 
2.327 
2.324 
2.320 
2.317 
2.313 
2.310 
2.307 
2.304 
2.300 

2.297 
2.295 
2.292 
2.289 
2.286 
2.284 
2.281 
2.278 
2.276 
2.274 
2.262 

3.205 
3.196 
3.186 
3.177 
3.168 
3.160 
3.151 
3.144 
3.136 
3.129 

3.122 
3.115 
3.108 
3.102 
3.096 
3.090 
3.084 
3.079 
3.073 
3.068 

3.063 
3.058 
3.053 
3.048 
3.044 
3.039 
3.035 
3.031 
3.027 
3.023 

3.019 
3.015 
3.011 
3.008 
3.004 
3.001 
2.997 
2.994 
2.991 
2.988 
2.973 

4.092 
4.080 
4.068 
4.056 
4.045 
4.034 
4.024 
4.014 
4.004 
3.995 

3.986 
3.978 
3.969 
3.961 
3.953 
3.946 
3.939 
3.932 
3.925 
3.918 

3.912 
3.905 
3.899 
3.893 
3.887 
3.882 
3.876 
3.871 
3.866 
3.861 

3.856 
3.851 
3.846 
3.841 
3.837 
3.832 
3.828 
3.824 
3.820 
3.816 
3.797 

.. 0.775 1.322 1.473 1.890 2.252 2.959 3.780 
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Table B2 continued 

1 - O. = 0.95 

n 0.50 

95 0.772 
100 0.769 
125 0.757 
150 0.749 
175 0.742 
200 0.737 
225 0.733 
250 0.730 
275 0.727 

300 0.725 
350 0.721 
400 0.717 
450 0.715 
500 0.712 
600 0.709 
700 0.706 

1000 0.701 

0.75 0.80 

1.316 1.466 
1.311 1.461 
1.291 1.439 
1.277 1.423 
1.266 1.411 
1.258 1.401 
1.251 1.394 
1.245 1.387 
1.240 1.382 

1.236 1.377 
1.229 1.369 
1.223 1.363 
1.219 1.358 
1.215 1.354 
1.209 1.347 
1.204 1.342 
1.195 1.331 

P 
0.90 

1.882 
1.875 
1.846 
1.826 
1.811 
1.798 
1.789 
1.780 
1.773 

1.767 
1.757 
1.749 
1.743 
1.737 
1.729 
1.722 
1.709 

0.95 0.99 0.999 

2.242 
2.234 
2.200 
2.176 
2.157 
2.143 
2.131 
2.121 
2.113 

2.106 
2.094 
2.084 
2.077 
2.070 
2.060 
2.052 
2.036 

2.947 3.764 
2.936 3.750 
2.891 3.693 
2.859 3.652 
2.835 3.622 
2.816 3.598 
2.801 3.578 
2.788 3.561 
2.777 3.547 

2.767 3.535 
2.752 3.515 
2.739 3.499 
2.729 3.486 
2.721 3.476 
2.707 3.458 
2.697 3.445 
2.676 3.418 
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Table B2 continued 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 

- 

41) 

1 - Q1 = 0.99 

0.50 0.75 

68.32 
8.122 
4.028 
2.824 
2.270 
1.954 
1.750 
1.608 
1.503 

1.422 
1.357 
1.305 
1.261 
1.224 
1.193 
1.165 
1.141 
1.120 
1.101 

1.084 
1.068 
1.054 
1.042 
1.030 
1.019 
1.009 
1.000 
0.991 
0.983 

0.976 
0.969 
0.962 
0.956 
0.950 
0.944 
0.939 
0.934 
0.929 

112.0 
13.44 
6.706 
4.724 
3.812 
3.291 
2.955 
2.720 
2.546 

2.411 
2.304 
2.216 
2.144 
2.082 
2.029 
1.983 
1.942 
1.907 
1.875 

1.846 
1.820 
1.796 
1.775 
1.755 
1.736 
1.720 
1.704 
1.689 
1.676 

1.663 
1.651 
1.640 
1.629 
1.619 
1.610 
1.601 
1.592 
1.584 

P 
0.80 0.90 0.95 0.99 0.999 

123.7 
14.87 
7.431 
5.240 
4.231 
3.656 
3.284 
3.024 
2.831 

2.682 
2.563 
2.466 
2.386 
2.317 
2.259 
2.207 
2.163 
2.123 
2.087 

2.055 
2.026 
2.000 
1.976 
1.954 
1.934 
1.915 
1.898 
1.882 
1.866 

1.852 
1.839 
1.826 
1.815 
1.803 
1.793 
1.783 
1.773 
1.764 

155.6 
18.78 
9.416 
6.655 
5.383 
4.658 
4.189 
3.860 
3.617 

3.429 
3.279 
3.156 
3.054 
2.967 
2.893 
2.828 
2.771 
2.720 
2.675 

2.635 
2.598 
2.564 
2.534 
2.506 
2.480 
2.456 
2.434 
2.413 
2.394 

2.376 
2.359 
2.343 
2.328 
2.314 
2.300 
2.287 
2.275 
2.264 

182.7 
22.13 
11.12 
7.870 
6.373 
5.520 
4.968 
4.581 
4.294 

4.073 
3.896 
3.751 
3.631 
3.529 
3.441 
3.364 
3.297 
3.237 
3.184 

3.136 
3.092 
3.053 
3.017 
2.984 
2.953 
2.925 
2.898 
2.874 
2.851 

2.829 
2.809 
2.790 
2.773 
2.756 
2.740 
2.725 
2.710 
2.697 

234.9 
28.59 
14.41 
10.22 
8.292 
7.191 
6.479 
5.980 
5.610 

5.324 
5.096 
4.909 
4.753 
4.621 
4.507 
4.408 
4.321 
4.244 
4.175 

4.113 
4.056 
4.005 
3.958 
3.915 
3.875 
3.838 
3.804 
3.772 
3.742 

3.715 
3.688 
3.664 
3.640 
3.618 
3.598 
3.578 
3.559 
3.541 

294.4 
35.98 
18.18 
12.92 
10.50 
9.114 
8.220 
I d93 
7.127 

6.768 
6.481 
6.246 
6.050 
5.883 
5.740 
5.615 
5.505 
5.408 
5.321 

5.242 
5.171 
5.106 
5.047 
4.!393 
4.!)42 
4.896 
4.853 
4.812 
4.775 

4.739 
4.706 
4.675 
4.646 
4.618 
4.592 
4.567 
4.543 
4.520 

- r  

.. 0.925 1.576 1.756 2.253 2.684 3.524 4.499 
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Table B2 continued 
1 - ff = 0.99 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

0.920 
0.916 
0.912 
0.908 
0.905 
0.901 
0.898 
0.895 
0.892 
0.889 

0.886 
0.883 
0.880 
0.878 
0.875 
0.873 
0.871 
0.868 
0.866 
0.864 

0.862 
0.860 
0.858 
0.856 
0.854 
0.852 
0.851 
0.849 
0.848 
0.846 

0.844 
0.843 
0.841 
0.840 
0.839 
0.837 
0.836 
0.834 
0.833 
0.832 

1.569 
1.562 
1.555 
1.549 
1.543 
1.537 
1.531 
1.526 
1.520 
1.515 

1.510 
1.506 
1.501 
1.497 
1.493 
1.488 
1.484 
1.481 
1.477 
1.473 

1.470 
1.466 
1.463 
1.460 
1.457 
1.454 
1.451 
1.448 
1.445 
1.443 

1.440 
1.437 
1.435 
1.432 
1.430 
1.428 
1.425 
1.423 
1.421 
1.419 

1.748 
1.740 
1.732 
1.725 
1.718 
1.712 
1.705 
1.699 
1.694 
1.688 

1.683 
1.677 
1.672 
1.667 
1.663 
1.658 
1.654 
1.649 
1.645 
1.641 

1.637 
1.634 
1.630 
1.626 
1.623 
1.620 
1.617 
1.613 
1.610 
1.607 

1.604 
1.601 
1.599 
1.596 
1.593 
1.590 
1.588 
1.585 
1.583 
1.581 

2.242 
2.232 
2.223 
2.214 
2.205 
2.196 
2.188 
2.181 
2.173 
2.166 

2.159 
2.152 
2.146 
2.140 
2.134 
2.128 
2.122 
2.117 
2.111 
2.106 

2.101 
2.096 
2.092 
2.087 
2.083 
2.078 
2.075 
2.071 
2.067 
2.063 

2.059 
2.055 
2.052 
2.048 
2.045 
2.041 
2.038 
2.035 
2.032 
2.028 

2.671 
2.659 
2.648 
2.637 
2.627 
2.617 
2.607 
2.598 
2.589 
2.580 

2.572 
2.564 
2.557 
2.549 
2.542 
2.535 
2.528 
2.522 
2.516 
2.509 

2.503 
2.498 
2.492 
2.487 
2.481 
2.476 
2.472 
2.467 
2.462 
2.458 

2.453 
2.449 
2.444 
2.440 
2.436 
2.432 
2.428 
2.424 
2.421 
2.417 

3.508 
3.493 
3.478 
3.464 
3.450 
3.437 
3.425 
3.412 
3.401 
3.390 

3.379 
3.369 
3.359 
3.349 
3.339 
3.330 
3.322 
3.313 
3.305 
3.297 

3.289 
3.282 
3.274 
3.267 
3.260 
3.254 
3.248 
3.241 
3.235 
3.229 

3.223 
3.217 
3.212 
3.206 
3.201 
3.196 
3.190 
3.185 
3.181 
3.176 

4.478 
4.459 
4.440 
4.422 
4.405 
4.388 
4.372 
4.357 
4.342 
4.328 

4.3 14 
4.301 
4.288 
4.276 
4.264 
4.253 
4.241 
4.231 
4.220 
4.210 

4.200 
4.191 
4.181 
4.172 
4.164 
4.155 
4.148 
4.139 
4.132 
4.124 

4.1 16 
4.109 
4.102 
4.095 
4.088 
4.081 
4.075 
4.068 
4.062 
4.056 
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Table B2 continued 
1 - cy = 0.99 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 

0.826 
0.821 
0.816 
0.811 
0.794 
0.782 
0.772 
0.765 
0.759 
0.754 
0.750 

1.409 
1.400 
1.391 
1.384 
1.354 
1.333 
1.317 
1.305 
1.295 
1.286 
1.279 

1.569 
1.559 
1.550 
1.542 
1.509 
1.485 
1.468 
1.454 
1.442 
1.433 
1.425 

2.014 
2.001 
1.989 
1.979 
1.936 
1.906 
1.884 
1.866 
1.851 
1.839 
1.829 

2.400 
2.384 
2.370 
2.357 
2.307 
2.271 
2.244 
2.223 
2.206 
2.192 
2.179 

3.153 
3.133 
3.115 
3.098 
3.032 
2.985 
2.949 
2.922 
2.899 
2.880 
2.864 

4.027 
4.002 
3.978 
3.957 
3.873 
3.813 
3.768 
3.732 
3.703 
3.679 
3.659 

300 0.746 1.273 1.418 1.820 2.169 2.850 3.641 
350 0.740 1.263 1.407 1.806 2.152 2.828 3.612 
400 0.736 1.255 1.398 1.794 2.138 2.810 3.589 
450 0.732 1.248 1.391 1.785 2.127 2.795 3.571 
500 0.729 1.243 1.385 1.777 2.117 2.783 3.555 
600 0.724 1.234 1.375 1.765 2.103 2.763 3.530 
700 0.720 1.227 1.367 1.755 2.091 2.748 3.511 

1000 0.712 1.214 1.352 1.736 2.068 2.718 3.473 
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Table B3: The ( p ,  1 - a )  two-sided tolerance factors controlling both tails of a 
normal distribution 

1 - u: = 0.90 
P 

n 0.50 0.75 0.80 0.90 0.95 0.99 0.99!) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

9.847 
3.617 
2.557 
2.121 
1.879 
1.722 
1.611 
1.527 
1.461 

1.408 
1.364 
1.326 
1.294 
1.266 
1.241 
1.219 
1.200 
1.182 
1.166 

1.151 
1.137 
1.125 
1.113 
1.102 
1.092 
1.083 
1.074 
1.066 
1.058 

1.051 
1.044 
1.037 
1.031 
1.025 
1.019 
1.014 
1.009 
1.004 

13.64 
5.050 
3.600 
3.009 
2.683 
2.474 
2.327 
2.217 
2.131 

2.061 
2.004 
1.955 
1.914 
1.878 
1.846 
1.818 
1.793 
1.770 
1.750 

1.731 
1.714 
1.698 
1.683 
1.670 
1.657 
1.645 
1.634 
1.624 
1.614 

1.605 
1.596 
1.588 
1.580 
1.573 
1.566 
1.559 
1.553 
1.546 

14.68 
5.448 
3.890 
3.257 
2.908 
2.685 
2.527 
2.410 
2.318 

2.244 
2.183 
2.132 
2.087 
2.049 
2.015 
1.986 
1.959 
1.935 
1.913 

1.893 
1.875 
1.858 
1.843 
1.828 
1.815 
1.802 
1.791 
1.780 
1.770 

1.760 
1.751 
1.742 
1.734 
1.726 
1.718 
1.711 
1.704 
1.698 

17.57 
6.554 
4.700 
3.948 
3.535 
3.271 
3.086 
2.948 
2.840 

2.754 
2.682 
2.622 
2.571 
2.526 
2.487 
2.452 
2.421 
2.393 
2.368 

2.345 
2.324 
2.304 
2.287 
2.270 
2.254 
2.240 
2.226 
2.214 
2.202 

2.191 
2.180 
2.170 
2.160 
2.151 
2.143 
2.135 
2.127 
2.119 

20.08 
7.516 
5.405 
4.550 
4.082 
3.783 
3.574 
3.418 
3.296 

3.199 
3.118 
3.050 
2.993 
2.942 
2.898 
2.859 
2.825 
2.793 
2.765 

2.739 
2.715 
2.694 
2.674 
2.655 
2.638 
2.621 
2.606 
2.592 
2.579 

2.566 
2.554 
2.543 
2.533 
2.522 
2.513 
2.504 
2.495 
2.486 

24.99 
9.402 
6.788 
5.733 
5.156 
4.789 
4.531 
4.340 
4.192 

4.072 
3.974 
3.891 
3.821 
3.760 
3.706 
3.659 
3.616 
3.578 
3.544 

3.513 
3.484 
3.458 
3.433 
3.411 
3.390 
3.370 
3.352 
3.335 
3.319 

3.303 
3.289 
3.275 
3.263 
3.250 
3.239 
3.228 
3.217 
3.207 

30.67 
11.60 
8.398 
7.110 
6.407 
5.960 
5.647 
5.415 
5.235 

5.090 
4.971 
4.871 
4.7861 
4.712 
4.647 
4.590 
4.539 
4.493 
4.451 

4.413 
4.379 
4.347 
4.318 
4.291 
4.265 
4.242 
4.220 
4.199 
4.180 

4.161 
4.144 
4.128 
4.112 
4.098 
4.084 
4.070 
4.058 
4.045 

~. 0.999 1.540 1.692 2.112 2.478 3.197 4.034 
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Table B3 continued 
1 - CY = 0.90 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 

0.994 
0.990 
0.986 
0.982 
0.978 
0.974 
0.970 
0.967 
0.963 
0.960 

0.957 
0.954 
0.951 
0.948 
0.945 
0.943 
0.940 
0.937 
0.935 
0.932 

0.930 
0.928 
0.926 
0.923 
0.921 
0.919 
0.917 
0.915 
0.913 
0.911 

0.910 
0.908 
0.906 
0.904 
0.903 
0.901 
0.899 
0.898 
0.896 

80 0.895 

1.535 
1.529 
1.524 
1.519 
1.514 
1.510 
1.505 
1.501 
1.497 
1.493 

1.489 
1.485 
1.481 
1.478 
1.474 
1.471 
1.468 
1.465 
1.462 
1.459 

1.456 
1.453 
1.450 
1.448 
1.445 
1.442 
1.440 
1.438 
1.435 
1.433 

1.431 
1.428 
1.426 
1.424 
1.422 
1.420 
1.418 
1.416 
1.414 
1.412 

1.686 
1.680 
1.674 
1.669 
1.664 
1.659 
1.654 
1.650 
1.645 
1.641 

1.637 
1.633 
1.629 
1.625 
1.622 
1.618 
1.615 
1.612 
1.608 
1.605 

1.602 
1.599 
1.596 
1.593 
1.591 
1.588 
1.585 
1.583 
1.580 
1.578 

1.576 
1.573 
1.571 
1.569 
1.567 
1.565 
1.562 
1.560 
1.558 
1.557 

2.105 
2.099 
2.092 
2.086 
2.080 
2.075 
2.069 
2.064 
2.059 
2.054 

2.049 
2.045 
2.040 
2.036 
2.032 
2.028 
2.023 
2.020 
2.016 
2.013 

2.009 
2.006 
2.003 
1.999 
1.996 
1.993 
1.990 
1.987 
1.984 
1.982 

1.979 
1.976 
1.974 
1.971 
1.969 
1.966 
1.964 
1.962 
1.959 
1.957 

2.471 
2.463 
2.456 
2.450 
2.443 
2.437 
2.431 
2.425 
2.419 
2.414 

2.408 
2.403 
2.398 
2.394 
2.389 
2.385 
2.380 
2.376 
2.372 
2.368 

2.364 
2.360 
2.356 
2.353 
2.349 
2.346 
2.343 
2.339 
2.336 
2.333 

2.330 
2.327 
2.324 
2.322 
2.319 
2.316 
2.313 
2.311 
2.308 
2.306 

3.188 
3.179 
3.171 
3.162 
3.155 
3.147 
3.140 
3.133 
3.126 
3.119 

3.113 
3.107 
3.101 
3.095 
3.089 
3.084 
3.079 
3.074 
3.069 
3.064 

3.059 
3.055 
3.050 
3.046 
3.042 
3.038 
3.034 
3.030 
3.026 
3.022 

3.019 
3.015 
3.012 
3.008 
3.005 
3.002 
2.998 
2.995 
2.992 
2.989 

4.023 
4.012 
4.002 
3.992 
3.983 
3.973 
3.965 
3.956 
3.948 
3.940 

3.933 
3.925 
3.918 
3.911 
3.904 
3.898 
3.892 
3.886 
3.880 
3.874 

3.868 
3.863 
3.857 
3.852 
3.847 
3.842 
3.837 
3.833 
3.828 
3.824 

3.819 
3.815 
3.811 
3.807 
3.803 
3.799 
3.795 
3.792 
3.788 
3.784 
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Table B3 continued 
1 - cy = 0.90 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 
300 

350 
400 
450 
500 
600 
700 
800 

1000 

0.888 
0.881 
0.875 
0.870 
0.848 
0.832 
0.819 
0.809 
0.801 
0.795 
0.789 
0.784 

1.404 
1.396 
1.389 
1.382 
1.355 
1.336 
1.321 
1.309 
1.300 
1.292 
1.285 
1.279 

1.547 
1.539 
1.531 
1.524 
1.496 
1.476 
1.461 
1.448 
1.438 
1.430 
1.422 
1.416 

0.775 1.269 1.405 
0.769 1.261 1.397 
0.763 1.254 1.390 
0.758 1.249 1.384 
0.751 1.240 1.375 
0.745 1.233 1.368 
0.740 1.227 1.362 
0.733 1.219 1.353 

1.947 
1.937 
1.928 
1.920 
1.888 
1.865 
1.848 
1.834 
1.822 
1.812 
1.804 
1.797 

2.294 
2.284 
2.274 
2.265 
2.230 
2.204 
2.184 
2.169 
2.156 
2.145 
2.136 
2.128 

1.785 2.115 
1.775 2.104 
1.768 2.096 
1.761 2.088 
1.750 2.077 
1.742 2.068 
1.736 2.060 
1.726 2.049 

2.975 
2.963 
2.951 
2.940 
2.898 
2.867 
2.844 
2.825 
2.809 
2.797 
2.786 
2.776 

3.768 
3.752 
3.738 
3.726 
3.675 
3.638 
3.610 
3.587 
3.569 
3.554 
3.541 
3.529 

2.760 3.511 
2.748 3.495 
2.737 3.483 
2.729 3.473 
2.715 3.4.56 
2.704 3.443 
2.696 3.433 
2.682 3.418 
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Table B3 continued 
1 - Q: = 0.95 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

19.75 
5.214 
3.330 
2.631 
2.264 
2.035 
1.877 
1.760 
1.670 

1.598 
1.539 
1.489 
1.446 
1.409 
1.377 
1.349 
1.323 
1.300 
1.279 

1.260 
1.243 
1.227 
1.212 
1.199 
1.186 
1.174 
1.163 
1.153 
1.143 

1.133 
1.125 
1.116 
1.109 
1.101 
1.094 
1.087 
1.081 
1.074 
1.069 

27.34 
7.258 
4.663 
3.705 
3.206 
2.896 
2.684 
2.528 
2.408 

2.313 
2.234 
2.169 
2.113 
2.065 
2.023 
1.986 
1.953 
1.923 
1.897 

1.872 
1.850 
1.829 
1.811 
1.793 
1.777 
1.762 
1.748 
1.734 
1.722 

1.710 
1.699 
1.689 
1.679 
1.669 
1.660 
1.652 
1.644 
1.636 
1.628 

29.43 
7.826 
5.035 
4.007 
3.471 
3.139 
2.911 
2.744 
2.616 

2.514 
2.430 
2.360 
2.301 
2.250 
2.205 
2.165 
2.130 
2.099 
2.070 

2.044 
2.020 
1.999 
1.979 
1.960 
1.943 
1.927 
1.912 
1.898 
1.884 

1.872 
1.860 
1.849 
1.838 
1.828 
1.819 
1.810 
1.801 
1.793 
1.785 

35.23 
9.408 
6.074 
4.847 
4.209 
3.815 
3.546 
3.348 
3.197 

3.076 
2.978 
2.895 
2.825 
2.765 
2.713 
2.666 
2.625 
2.588 
2.555 

2.524 
2.497 
2.471 
2.448 
2.426 
2.406 
2.387 
2.370 
2.353 
2.338 

2.323 
2.310 
2.297 
2.285 
2.273 
2.262 
2.251 
2.241 
2.232 
2.223 

40.25 
10.79 
6.980 
5.582 
4.855 
4.407 
4.100 
3.876 
3.704 

3.568 
3.456 
3.363 
3.284 
3.216 
3.157 
3.104 
3.058 
3.016 
2.978 

2.944 
2.913 
2.884 
2.858 
2.833 
2.811 
2.790 
2.770 
2.752 
2.734 

2.718 
2.703 
2.688 
2.674 
2.661 
2.649 
2.637 
2.626 
2.615 
2.605 

61.47 
16.63 
10.83 
8.707 
7.606 
6.928 
6.465 
6.128 
5.869 

5.664 
5.497 
5.357 
5.239 
5.137 
5.049 
4.971 
4.901 
4.839 
4.783 

4.732 
4.686 
4.644 
4.604 
4.568 
4.535 
4.504 
4.474 
4.447 
4.422 

4.397 
4.375 
4.353 
4.333 
4.314 
4.295 
4.278 
4.261 
4.246 
4.230 

50.07 
13.48 
8.759 
7.025 
6.125 
5.571 
5.192 
4.915 
4.704 

4.535 
4.398 
4.284 
4.187 
4.103 
4.030 
3.966 
3.909 
3.858 
3.812 

3.770 
3.732 
3.697 
3.664 
3.634 
3.607 
3.581 
3.557 
3.535 
3.513 

3.494 
3.475 
3.457 
3.440 
3.424 
3.409 
3.395 
3.381 
3.368 
3.356 
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Table B3 continued 
1 - CY 10.95 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.991) 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

1.063 
1.057 
1.052 
1.047 
1.042 
1.038 
1.033 
1.029 
1.025 
1.021 

1.017 
1.013 
1.009 
1.006 
1.002 
0.999 
0.996 
0.993 
0.989 
0.986 

0.984 
0.981 
0.978 
0.975 
0.973 
0.970 
0.968 
0.965 
0.963 
0.961 

0.958 
0.956 
0.954 
0.952 
0.950 
0.948 
0.946 
0.944 
0.942 
0.940 

1.621 
1.614 
1.608 
1.602 
1.595 
1.590 
1.584 
1.579 
1.573 
1.568 

1.563 
1.559 
1.554 
1.550 
1.545 
1.541 
1.537 
1.533 
1.530 
1.526 

1.522 
1.519 
1.515 
1.512 
1.509 
1.506 
1.503 
1.500 
1.497 
1.494 

1.491 
1.488 
1.486 
1.483 
1.480 
1.478 
1.476 
1.473 
1.471 
1.469 

1.778 
1.770 
1.763 
1.757 
1.750 
1.744 
1.738 
1.732 
1.727 
1.722 

1.716 
1.711 
1.707 
1.702 
1.697 
1.693 
1.689 
1.685 
1.681 
1.677 

1.673 
1.669 
1.666 
1.662 
1.659 
1.655 
1.652 
1.649 
1.646 
1.643 

1.640 
1.637 
1.634 
1.631 
1.629 
1.626 
1.624 
1.621 
1.619 
1.616 

2.214 
2.206 
2.198 
2.190 
2.182 
2.175 
2.168 
2.162 
2.155 
2.149 

2.143 
2.137 
2.132 
2.126 
2.121 
2.116 
2.111 
2.106 
2.102 
2.097 

2.093 
2.088 
2.084 
2.080 
2.076 
2.072 
2.069 
2.065 
2.061 
2.058 

2.055 
2.051 
2.048 
2.045 
2.042 
2.039 
2.036 
2.033 
2.030 
2.027 

2.595 
2.586 
2.577 
2.568 
2.560 
2.552 
2.544 
2.536 
2.529 
2.522 

2.516 
2.509 
2.503 
2.497 
2.491 
2.485 
2.480 
2.474 
2.469 
2.464 

2.459 
2.454 
2.450 
2.445 
2.441 
2.436 
2.432 
2.428 
2.424 
2.420 

2.416 
2.413 
2.409 
2.405 
2.402 
2.399 
2.395 
2.392 
2.389 
2.386 

3.344 
3.332 
3.321 
3.311 
3.300 
3.291 
3.281 
3.272 
3.264 
3.255 

3.247 
3.239 
3.231 
3.224 
3.217 
3.210 
3.203 
3.197 
3.190 
3.184 

3.178 
3.173 
3.167 
3.161 
3.156 
3.151 
3.146 
3.141 
3.136 
3.131 

3.127 
3.122 
3.118 
3.113 
3.109 
3.105 
3.101 
3.097 
3.093 
3.089 

4.216 
4.202 
4.18!3 
4.176 
4.164 
4.152 
4.141 
4.130 
4.11!1 
4.10!) 

4.09!) 
4.08!) 
4.080 
4.071 
4.063 
4.054 
4.046 
4.038 
4.031 
4.023 

4.016 
4.00!) 
4.002 
3.996 
3.989 
3.983 
3.977 
3.971 
3.965 
3.959 

3.953 
3.948 
3.943 
3.938 
3.932 
3.928 
3.923 
3.918 
3.913 
3.909 
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Table B3 continued 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 
300 

350 
400 
450 
500 
600 
700 
800 

1000 

0.931 
0.923 
0.916 
0.909 
0.883 
0.863 
0.848 
0.836 
0.827 
0.818 
0.811 
0.805 

1.458 
1.448 
1.439 
1.431 
1.398 
1.375 
1.357 
1.342 
1.330 
1.321 
1.312 
1.305 

1.605 
1.594 
1.585 
1.576 
1.542 
1.517 
1.498 
1.483 
1.471 
1.460 
1.451 
1.444 

0.795 1.293 1.431 
0.787 1.283 1.421 
0.780 1.275 1.412 
0.775 1.268 1.405 
0.766 1.258 1.394 
0.759 1.249 1.385 
0.753 1.243 1.378 
0.745 1.233 1.368 

2.014 
2.002 
1.991 
1.982 
1.942 
1.913 
1.891 
1.874 
1.860 
1.848 
1.838 
1.829 

1.815 
1.803 
1.793 
1.785 
1.773 
1.763 
1.755 
1.743 

2.371 
2.358 
2.346 
2.335 
2.290 
2.258 
2.234 
2.215 
2.199 
2.186 
2.174 
2.165 

2.148 
2.136 
2.125 
2.116 
2.102 
2.091 
2.082 
2.069 

3.072 
3.056 
3.041 
3.028 
2.974 
2.935 
2.906 
2.883 
2.863 
2.847 
2.834 
2.822 

2.802 
2.787 
2.774 
2.763 
2.746 
2.733 
2.722 
2.706 

3.887 
3.868 
3.850 
3.834 
3.769 
3.723 
3.687 
3.659 
3.636 
3.617 
3.601 
3.586 

3.563 
3.544 
3.529 
3.516 
3.495 
3.479 
3.466 
3.447 
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Table B3 continued 
1 - a = 0.99 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

98.83 
11.83 
5.891 
4.136 
3.323 
2.856 
2.551 
2.336 
2.174 

2.049 
1.948 
1.865 
1.795 
1.735 
1.683 
1.638 
1.598 
1.562 
1.529 

1.500 
1.474 
1.449 
1.427 
1.406 
1.387 
1.370 
1.353 
1.338 
1.323 

1.309 
1.297 
1.284 
1.273 
1.262 
1.252 
1.242 
1.232 
1.223 

136.7 
16.43 
8.203 
5.776 
4.655 
4.013 
3.596 
3.303 
3.084 

2.914 
2.778 
2.666 
2.573 
2.493 
2.424 
2.364 
2.311 
2.264 
2.221 

2.183 
2.148 
2.116 
2.087 
2.060 
2.036 
2.013 
1.991 
1.971 
1.952 

1.935 
1.918 
1.902 
1.888 
1.874 
1 .860 
1.848 
1.836 
1.824 

147.2 
17.71 
8.852 
6.238 
5.031 
4.340 
3.892 
3.577 
3.342 

3.160 
3.014 
2.894 
2.794 
2.708 
2.635 
2.570 
2.513 
2.463 
2.417 

2.377 
2.339 
2.305 
2.274 
2.246 
2.219 
2.195 
2.172 
2.150 
2.130 

2.111 
2.094 
2.077 
2.061 
2.046 
2.032 
2.019 
2.006 
1.994 
1.982 

176.2 
21.28 
10.66 
7.531 
6.084 
5.258 
4.723 
4.346 
4.066 

3.849 
3.675 
3.533 
3.414 
3.312 
3.225 
3.149 
3.081 
3.022 
2.968 

2.920 
2.876 
2.836 
2.799 
2.765 
2.734 
2.705 
2.678 
2.653 
2.629 

2.607 
2.586 
2.567 
2.548 
2.531 
2.514 
2.498 
2.483 
2.469 
2.455 

201.4 
24.39 
12.24 
8.660 
7.008 
6.063 
5.451 
5.021 
4.702 

4.454 
4.256 
4.094 
3.958 
3.843 
3.743 
3.657 
3.580 
3.512 
3.451 

3.396 
3.346 
3.301 
3.259 
3.221 
3.186 
3.153 
3.122 
3.094 
3.067 

3.042 
3.018 
2.996 
2.975 
2.955 
2.936 
2.919 
2.902 
2.885 
2.870 

250.5 
30.48 
15.35 
10.89 
8.827 
7.650 
6.888 
6.353 
5.955 

5.649 
5.403 
5.201 
5.033 
4.890 
4.767 
4.659 
4.564 
4.480 
4.405 

4.337 
4.275 
4.219 
4.168 
4.120 
4.077 
4.036 
3.998 
3.963 
3.930 

3.899 
3.870 
3.843 
3.817 
3.793 
3.769 
3.747 
3.727 
3.707 
3.688 

307.6 
37.58 
18.98 
13.48 
10.95 
9.503 
8.567 
7.909 
7.421 

7.045 
6.743 
6.496 
6.290 
6.114 
5.963 
5.831 
5.715 
5.612 
5.520 

5.436 
5.361 
5.292 
5.229 
5.171 
5.118 
5.068 
5.022 
4.979 
4.939 

4.901 
4.865 
4.832 
4.801 
4.771 
4.742 
4.716 
4.690 
4.666 
4.642 
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Table I33 continued 
1 - ff = 0.99 

n 0.50 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 

1.207 
1.199 
1.191 
1.184 
1.177 
1.170 
1.164 
1.158 
1.152 
1.146 

1.141 
1.135 
1.130 
1.125 
1.120 
1.115 
1.111 
1.106 
1.102 
1.098 

1.094 
1.090 
1.086 
1.082 
1.078 
1.075 
1.071 
1.068 
1.065 
1.061 

1.058 
1.055 
1.052 
1.049 
1.046 
1.043 
1.041 
1.038 
1.035 

80 1.033 

0.75 

1.803 
1.793 
1.783 
1.774 
1.765 
1.757 
1.749 
1.741 
1.733 
1.726 

1.719 
1.712 
1.705 
1.699 
1.693 
1.687 
1.681 
1.675 
1.670 
1.665 

1.660 
1.654 
1.650 
1.645 
1.640 
1.636 
1.631 
1.627 
1.623 
1.619 

1.615 
1.611 
1.607 
1.604 
1.600 
1.597 
1.593 
1.590 
1.586 
1.583 

P 
0.80 0.90 0.95 0.99 0.999 

1.971 
1.960 
1.950 
1.940 
1.931 
1.922 
1.913 
1.905 
1.897 
1.889 

1.882 
1.874 
1.867 
1.861 
1.854 
1.848 
1.842 
1.836 
1.830 
1.824 

1.819 
1.813 
1.808 
1.803 
1.798 
1.793 
1.789 
1.784 
1.780 
1.776 

1.771 
1.767 
1.763 
1.759 
1.756 
1.752 
1.748 
1.745 
1.741 
1.738 

2.442 
2.430 
2.418 
2.406 
2.395 
2.385 
2.375 
2.365 
2.355 
2.346 

2.338 
2.329 
2.321 
2.313 
2.305 
2.298 
2.291 
2.284 
2.277 
2.270 

2.264 
2.258 
2.252 
2.246 
2.240 
2.235 
2.229 
2.224 
2.219 
2.214 

2.209 
2.204 
2.200 
2.195 
2.191 
2.186 
2.182 
2.178 
2.174 
2.170 

2.855 
2.841 
2.828 
2.815 
2.802 
2.790 
2.779 
2.768 
2.757 
2.747 

2.737 
2.728 
2.718 
2.709 
2.701 
2.692 
2.684 
2.676 
2.669 
2.661 

2.654 
2.647 
2.640 
2.634 
2.627 
2.621 
2.615 
2.609 
2.603 
2.598 

2.592 
2.587 
2.582 
2.576 
2.571 
2.567 
2.562 
2.557 
2.552 
2.548 

3.669 
3.652 
3.636 
3.620 
3.604 
3.590 
3.576 
3.562 
3.549 
3.536 

3.524 
3.512 
3.501 
3.490 
3.480 
3.469 
3.459 
3.450 
3.440 
3.431 

3.422 
3.414 
3.406 
3.397 
3.390 
3.382 
3.374 
3.367 
3.360 
3.353 

3.346 
3.340 
3.333 
3.327 
3.321 
3.315 
3.309 
3.303 
3.298 
3.292 

4.620 
4.599 
4.579 
4.551) 
4.541 
4.523 
4.506 
4.489 
4.473 
4.458 

4.443 
4.429 
4.415 
4.401 
4.389 
4.376 
4.364 
4.352 
4.341 
4.330 

4.319 
4.308 
4.298 
4.288 
4.279 
4.270 
4.260 
4.252 
4.243 
4.234 

4.226 
4.218 
4.210 
4.203 
4.195 
4.188 
4.181 
4.174 
4.167 
4.160 
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Table B3 continued 
1 - N = 0.99 

P 
n 0.50 0.75 0.80 0.90 0.95 0.99 0.999 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 
300 

350 
400 
450 
500 
600 
700 
800 

1000 

1.021 
1.010 
1 .000 
0.990 
0.953 
0.927 
0.906 
0.890 
0.877 
0.866 
0.857 
0.848 

0.835 
0.824 
0.815 
0.807 
0.795 
0.786 
0.779 
0.767 

1.568 
1.554 
1.542 
1.530 
1.485 
1.452 
1.427 
1.408 
1.392 
1.378 
1.367 
1.357 

1.340 
1.327 
1.316 
1.307 
1.293 
1.282 
1.273 
1.259 

1.722 
1.707 
1.694 
1.682 
1.634 
1.599 
1.573 
1.552 
1.535 
1.521 
1.509 
1.498 

1.481 
1.467 
1.456 
1.446 
1.431 
1.420 
1.410 
1.396 

2.151 
2.134 
2.119 
2.105 
2.049 
2.009 
1.979 
1.955 
1.935 
1.919 
1.905 
1.893 

1.873 
1.857 
1.844 
1.833 
1.816 
1.802 
1.792 
1.775 

2.527 
2.508 
2.491 
2.475 
2.412 
2.367 
2.333 
2.306 
2.284 
2.266 
2.250 
2.237 

2.214 
2.197 
2.182 
2.170 
2.150 
2.135 
2.124 
2.105 

3.266 
3.243 
3.222 
3.203 
3.126 
3.071 
3.029 
2.996 
2.970 
2.947 
2.928 
2.912 

2.885 
2.863 
2.845 
2.830 
2.807 
2.789 
2.774 
2.752 

4.129 
4.101 
4.075 
4.051 
3.!)58 
3.891 
3.840 
3.800 
3.768 
3.741 
3.717 
3.697 

3.665 
3.638 
3.617 
3.599 
3.570 
3.548 
3.531 
3.504 
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Table B4: Critical values Jch satisfying (2.3.13) for testing hypotheses about the 
normal quaritiles p - 2-g and p + z ~ + p g ,  at level a 

2 2 

01 = 0.10 
P 

71 0.70 0.80 0.90 0.95 0.98 0.99 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

4.101 
2.026 
1.639 
1.481 
1.394 
1.339 
1.301 
1.273 
1.252 

1.235 
1.221 
1.209 
1.199 
1.190 
1.183 
1.176 
1.170 
1.165 
1.160 

1.156 
1.152 
1.149 
1.145 
1.142 
1.139 
1.137 
1.134 
1.132 
1.130 

1.128 
1.126 
1.124 
1.122 
1.121 
1.119 
1.118 
1.116 
1.115 
1.114 

5.853 
2.716 
2.153 
1.924 
1.799 
1.721 
1.666 
1.626 
1.595 

1.570 
1.550 
1.533 
1.519 
1.506 
1.496 
1.486 
1.478 
1.470 
1.463 

1.457 
1.451 
1.446 
1.441 
1.437 
1.433 
1.429 
1.425 
1.422 
1.419 

1.416 
1.413 
1.411 
1.408 
1.406 
1.403 
1.401 
1.399 
1.397 
1.396 

8.629 
3.779 
2.937 
2.597 
2.413 
2.297 
2.217 
2.157 
2.112 

2.075 
2.045 
2.020 
1.999 
1.981 
1.965 
1.950 
1.938 
1.927 
1.916 

1.907 
1.899 
1.891 
1.884 
1.877 
1.871 
1.866 
1.860 
1.855 
1.851 

1.846 
1.842 
1.838 
1.835 
1.831 
1.828 
1.825 
1.822 
1.819 
1.816 

11.11 
4.722 
3.629 
3.191 
2.953 
2.804 
2.700 
2.623 
2.564 

2.517 
2.479 
2.446 
2.419 
2.395 
2.374 
2.356 
2.340 
2.325 
2.312 

2.300 
2.290 
2.280 
2.270 
2.262 
2.254 
2.247 
2.240 
2.233 
2.227 

2.222 
2.216 
2.211 
2.206 
2.202 
2.198 
2.193 
2.190 
2.186 
2.182 

14.02 
5.830 
4.442 
3.887 
3.587 
3.397 
3.266 
3.169 
3.094 

3.034 
2.985 
2.944 
2.910 
2.880 
2.853 
2.830 
2.810 
2.791 
2.775 

2.760 
2.746 
2.733 
2.721 
2.711 
2.701 
2.691 
2.683 
2.674 
2.667 

2.659 
2.653 
2.646 
2.640 
2.634 
2.629 
2.624 
2.619 
2.614 

16.00 
6.589 
4.999 
4.364 
4.020 
3.803 
3.653 
3.542 
3.456 

3.388 
3.332 
3.285 
3.245 
3.211 
3.181 
3.154 
3.130 
3.109 
3.090 

3.073 
3.057 
3.043 
3.029 
3.017 
3.005 
2.995 
2.985 
2.975 
2.967 

2.958 
2.950 
2.943 
2.936 
2.930 
2.923 
2.917 
2.912 
2.906 
2.901 
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Table B4 continued 
(Y = 0.10 

P 
n 0.70 0.80 0.90 0.95 0.98 0.99 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 

1.113 
1.111 
1.110 
1.109 
1.108 
1.107 
1.106 
1.105 
1.105 
1.104 

1.103 
1.102 
1.101 
1.101 
1.100 
1.099 
1.098 
1.098 
1.097 
1.097 

1.096 
1.095 
1.095 
1.094 
1.094 
1.093 
1.093 
1.092 
1.092 
1.091 

1.091 
1.090 
1.090 
1.089 
1.089 
1.089 
1.088 
1.088 
1.087 

1.394 
1.392 
1.390 
1.389 
1.387 
1.386 
1.385 
1.383 
1.382 
1.381 

1.380 
1.378 
1.377 
1.376 
1.375 
1.374 
1.373 
1.372 
1.371 
1.370 

1.369 
1.369 
1.368 
1.367 
1.366 
1.365 
1.365 
1.364 
1.363 
1.362 

1.362 
1.361 
1.360 
1.360 
1.359 
1.359 
1.358 
1.357 
1.357 

1.813 
1.811 
1.808 
1.806 
1.804 
1.802 
1.800 
1.798 
1.796 
1.794 

1.792 
1.790 
1.789 
1.787 
1.785 
1.784 
1.782 
1.781 
1.780 
1.778 

1.777 
1.776 
1.774 
1.773 
1.772 
1.771 
1.770 
1.769 
1.768 
1.766 

1.765 
1.764 
1.763 
1.763 
1.762 
1.761 
1.760 
1.759 
1.758 

2.179 
2.176 
2.172 
2.169 
2.166 
2.164 
2.161 
2.158 
2.156 
2.154 

2.151 
2.149 
2.147 
2.145 
2.143 
2.141 
2.139 
2.137 
2.135 
2.133 

2.132 
2.130 
2.128 
2.127 
2.125 
2.124 
2.122 
2.121 
2.119 
2.118 

2.117 
2.116 
2.114 
2.113 
2.112 
2.111 
2.110 
2.108 
2.107 

2.605 
2.601 
2.597 
2.593 
2.589 
2.586 
2.582 
2.579 
2.576 
2.573 

2.570 
2.567 
2.564 
2.562 
2.559 
2.557 
2.554 
2.552 
2.549 
2.547 

2.545 
2.543 
2.541 
2.539 
2.537 
2.535 
2.533 
2.531 
2.530 
2.528 

2.526 
2.525 
2.523 
2.521 
2.520 
2.518 
2.517 
2.516 
2.514 

2.896 
2.891 
2.887 
2.882 
2.878 
2.874 
2.870 
2.866 
2.863 
2.859 

2.856 
2.852 
2.849 
2.846 
2.843 
2.840 
2.837 
2.835 
2.832 
2.829 

2.827 
2.825 
2.822 
2.820 
2.818 
2.816 
2.813 
2.811 
2.809 
2.807 

2.805 
2.804 
2.802 
2.800 
2.798 
2.796 
2.795 
2.793 
2.792 

80 1.087 1.356 1.757 2.106 2.513 2.790 
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Table B4 continued 
a = 0.10 

P 
n 0.70 0.80 0.90 0.95 0.98 0.99 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 
300 

350 
400 
450 
500 
600 
700 
800 

1000 

1.085 
1.084 
1.082 
1.081 
1.075 
1.072 
1.069 
1.066 
1.065 
1.063 
1.062 
1.060 

1.354 
1.351 
1.349 
1.347 
1.339 
1.334 
1.329 
1.326 
1.323 
1.321 
1.319 
1.317 

1.059 1.314 
1.057 1.312 
1.056 1.310 
1.055 1.309 
1.053 1.306 
1.052 1.304 
1.051 1.303 
1.049 1.300 

1.753 
1.750 
1.747 
1.744 
1.732 
1.723 
1.717 
1.712 
1.708 
1.704 
1.701 
1.699 

1.694 
1.691 
1.688 
1.686 
1.682 
1.679 
1.677 
1.673 

2.101 
2.097 
2.092 
2.089 
2.073 
2.062 
2.054 
2.047 
2.042 
2.037 
2.033 
2.030 

2.024 
2.020 
2.016 
2.013 
2.008 
2.005 
2.002 
1.997 

2.506 
2.500 
2.495 
2.490 
2.471 
2.457 
2.446 
2.438 
2.431 
2.425 
2.420 
2.416 

2.409 
2.403 
2.398 
2.394 
2.388 
2.383 
2.379 
2.374 

2.783 
2.776 
2.770 
2.764 
2.742 
2.726 
2.713 
2.704 
2.696 
2.689 
2.683 
2.678 

2.670 
2.664 
2.658 
2.654 
2.647 
2.641 
2.637 
2.630 
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Table B4 continued 
a = 0.05 

P 
n 0.70 0.80 0.90 0.95 0.98 0.99 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

8.239 
2.927 
2.133 
1.830 
1.670 
1.571 
1.503 
1.453 
1.415 

1.385 
1.360 
1.339 
1.322 
1.307 
1.294 
1.282 
1.272 
1.263 
1.255 

1.247 
1.240 
1.234 
1.228 
1.223 
1.218 
1.213 
1.209 
1.205 
1.201 

1.198 
1.194 
1.191 
1.188 
1.185 
1.183 
1.180 
1.178 
1.175 
1.173 

11.746 
3.913 
2.793 
2.371 
2.149 
2.012 
1.919 
1.850 
1.798 

1.757 
1.723 
1.695 
1.671 
1.650 
1.632 
1.617 
1.603 
1.590 
1.579 

1.569 
1.559 
1.551 
1.543 
1.536 
1.529 
1.523 
1.517 
1.511 
1.506 

1.501 
1.497 
1.492 
1.488 
1.485 
1.481 
1.477 
1.474 
1.471 
1.468 

17.308 
5.433 
3.801 
3.192 
2.875 
2.680 
2.547 
2.449 
2.375 

2.316 
2.268 
2.228 
2.194 
2.165 
2.140 
2.118 
2.098 
2.080 
2.064 

2.050 
2.037 
2.025 
2.013 
2.003 
1.994 
1.985 
1.977 
1.969 
1.962 

1.955 
1.948 
1.942 
1.937 
1.931 
1.926 
1.921 
1.916 
1.912 
1.908 

22.274 
6.783 
4.691 
3.916 
3.514 
3.266 
3.098 
2.975 
2.881 

2.806 
2.746 
2.695 
2.653 
2.616 
2.584 
2.556 
2.531 
2.508 
2.488 

2.470 
2.454 
2.438 
2.424 
2.411 
2.399 
2.388 
2.378 
2.368 
2.359 

2.350 
2.342 
2.335 
2.327 
2.320 
2.314 
2.308 
2.302 
2.296 
2.291 

28.101 
8.368 
5.738 
4.767 
4.263 
3.954 
3.743 
3.590 
3.473 

3.380 
3.304 
3.242 
3.188 
3.143 
3.103 
3.068 
3.037 
3.009 
2.984 

2.961 
2.940 
2.921 
2.904 
2.888 
2.873 
2.859 
2.846 
2.834 
2.823 

2.812 
2.802 
2.792 
2.783 
2.775 
2.767 
2.759 
2.752 
2.745 
2.738 

32.078 
9.454 
6.454 
5.349 
4.776 
4.424 
4.185 
4.011 
3.877 

3.772 
3.686 
3.615 
3.554 
3.502 
3.457 
3.417 
3.382 
3.350 
3.322 

3.296 
3.273 
3.251 
3.231 
3.213 
3.196 
3.180 
3.166 
3.152 
3.139 

3.127 
3.115 
3.105 
3.094 
3.085 
3.075 
3.067 
3.058 
3.050 
3.043 
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Table B4 continued 
a = 0.05 

P 
n 0.70 0.80 0.90 0.95 0.98 0.99 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 

1.171 
1.169 
1.167 
1.165 
1.163 
1.162 
1.160 
1.158 
1.157 
1.155 

1.154 
1.153 
1.151 
1.150 
1.149 
1.147 
1.146 
1.145 
1.144 
1.143 

1.142 
1.141 
1.140 
1.139 
1.138 
1.137 
1.136 
1.135 
1.134 
1.134 

1.133 
1.132 
1.131 
1.130 
1.130 
1.129 
1.128 
1.128 
1.127 

1.465 
1.462 
1.460 
1.457 
1.455 
1.452 
1.450 
1.448 
1.446 
1.444 

1.442 
1.440 
1.438 
1.436 
1.434 
1.433 
1.431 
1.430 
1.428 
1.427 

1.425 
1.424 
1.422 
1.421 
1.420 
1.419 
1.417 
1.416 
1.415 
1.414 

1.413 
1.412 
1.411 
1.410 
1.408 
1.408 
1.407 
1.406 
1.405 

1.903 
1.900 
1.896 
1.892 
I .889 
1.885 
1.882 
1.879 
1.876 
1.873 

1.871 
1.868 
1.865 
1.863 
1.860 
1.858 
1.856 
1.853 
1.851 
1.849 

1.847 
1.845 
1.843 
1.841 
1.840 
1.838 
1.836 
1.834 
1.833 
1.831 

1.830 
1.828 
1.827 
1.825 
1.824 
1.822 
1.821 
1.820 
1.818 

2.286 
2.281 
2.276 
2.271 
2.267 
2.263 
2.259 
2.255 
2.251 
2.248 

2.244 
2.241 
2.238 
2.234 
2.231 
2.228 
2.225 
2.223 
2.220 
2.217 

2.215 
2.212 
2.210 
2.208 
2.205 
2.203 
2.201 
2.199 
2.197 
2.195 

2.193 
2.191 
2.189 
2.187 
2.185 
2.183 
2.182 
2.180 
2.178 

2.731 
2.725 
2.719 
2.714 
2.708 
2.703 
2.698 
2.693 
2.689 
2.684 

2.680 
2.676 
2.672 
2.668 
2.664 
2.660 
2.656 
2.653 
2.650 
2.646 

2.643 
2.640 
2.637 
2.634 
2.631 
2.629 
2.626 
2.623 
2.621 
2.618 

2.616 
2.613 
2.611 
2.609 
2.606 
2.604 
2.602 
2.600 
2.598 
2.596 

3.036 
3.029 
3.022 
3.015 
3.009 
3.003 
2.998 
2.992 
2.987 
2.982 

2.977 
2.972 
2.968 
2.963 
2.959 
2.955 
2.951 
2.947 
2.943 
2.939 

2.935 
2.932 
2.928 
2.925 
2.922 
2.919 
2.916 
2.913 
2.910 
2.907 

2.904 
2.901 
2.899 
2.896 
2.894 
2.891 
2.889 
2.886 
2.884 
2.882 80 1.126 1.404 1.817 2.177 ~ ~~ 
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Tablc B4 continued 

a = 0.05 
P 

n 0.70 0.80 0.90 0.95 0.98 0.99 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 
300 

1.123 
1.120 
1.118 
1.115 
1.106 
1.099 
1.094 
1.090 
1.087 
1.084 
1.081 
1.079 

1.400 
1.396 
1.392 
1.389 
1.376 
1.367 
1.360 
1.354 
1.350 
1.346 
1.343 
1.340 

1.811 
1.806 
1.801 
1.796 
1.778 
1.765 
1.755 
1.747 
1.741 
1.736 
1.731 
1.727 

2.169 
2.162 
2.156 
2.150 
2.128 
2.111 
2.099 
2.089 
2.081 
2.074 
2.068 
2.063 

2.587 
2.578 
2.570 
2.563 
2.535 
2.514 
2.499 
2.487 
2.477 
2.468 
2.461 
2.455 

2.871 
2.861 
2.853 
2.845 
2.812 
2.789 
2.772 
2.758 
2.746 
2.737 
2.729 
2.722 

350 1.076 1.335 1.720 2.055 2.445 2.710 
400 1.073 1.332 1.715 2.049 2.436 2.701 
450 1.071 1.328 1.711 2.043 2.430 2.693 
500 1.069 1.326 1.707 2.039 2.424 2.687 
600 1.066 1.322 1.702 2.031 2.415 2.677 
700 1.064 1.319 1.697 2.026 2.408 2.669 
800 1.062 1.316 1.694 2.021 2.403 2.662 

1000 1.059 1.312 1.688 2.015 2.394 2.653 
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Table B4 continued 

389 

a! = 0.01 
P 

n 0.70 0.80 0.90 0.95 0.98 0.99 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41.27 
6.650 
3.770 
2.863 
2.430 
2.178 
2.013 
1.895 
1.808 

1.739 
1.685 
1.639 
1.602 
1.569 
1.542 
1.517 
1.496 
1.477 
1.459 

1.444 
1.430 
1.417 
1.405 
1.394 
1.384 
1.375 
1.367 
1.358 
1.351 

1.344 
1.337 
1.331 
1.325 
1.319 
1.314 
1.309 
1.304 
1.299 

58.80 
8.875 
4.922 
3.696 
3.117 
2.781 
2.561 
2.406 
2.290 

2.200 
2.127 
2.068 
2.018 
1.976 
1.939 
1.907 
1.879 
1.854 
1.832 

1.812 
1.793 
1.776 
1.761 
1.747 
1.734 
1.722 
1.710 
1.700 
1.690 

1.681 
1.672 
1.664 
1.656 
1.649 
1.642 
1.635 
1.629 
1.623 

86.62 
12.31 
6.681 
4.963 
4.157 
3.692 
3.389 
3.175 
3.016 

2.892 
2.793 
2.712 
2.644 
2.586 
2.536 
2.493 
2.454 
2.420 
2.389 

2.362 
2.337 
2.314 
2.293 
2.274 
2.256 
2.240 
2.224 
2.210 
2.197 

2.184 
2.172 
2.161 
2.151 
2.141 
2.131 
2.122 
2.114 
2.106 

111.46 
15.35 
8.237 
6.081 
5.074 
4.493 
4.116 
3.850 
3.652 

3.499 
3.376 
3.276 
3.191 
3.120 
3.058 
3.004 
2.957 
2.914 
2.877 

2.843 
2.812 
2.783 
2.758 
2.734 
2.712 
2.692 
2.673 
2.655 
2.639 

2.623 
2.609 
2.595 
2.582 
2.570 
2.558 
2.547 
2.536 
2.527 

140.61 
18.93 
10.07 
7.393 
6.148 
5.433 
4.968 
4.641 
4.398 

4.209 
4.059 
3.935 
3.832 
3.744 
3.668 
3.602 
3.544 
3.492 
3.446 

3.404 
3.366 
3.332 
3.300 
3.271 
3.244 
3.219 
3.196 
3.175 
3.155 

3.136 
3.118 
3.101 
3.085 
3.070 
3.056 
3.042 
3.030 
3.017 

160.61 
21.38 
11.32 
8.291 
6.884 
6.075 
5.551 
5.182 
4.907 

4.695 
4.525 
4.386 
4.269 
4.171 
4.085 
4.011 
3.945 
3.887 
3.835 

3.788 
3.745 
3.706 
3.671 
3.638 
3.608 
3.580 
3.554 
3.530 
3.507 

3.485 
3.465 
3.446 
3.429 
3.412 
3.396 
3.381 
3.366 
3.352 

1.295 1.617 2.098 2.517 3.006 3.339 
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Table B4 continued 
a = 0.01 

P 
n 0.70 0.80 0.90 0.95 0.98 0.99 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 

1.291 
1.287 
1.283 
1.279 
1.276 
1.273 
1.269 
1.266 
1.263 
1.260 

1.257 
1.255 
1.252 
1.250 
1.247 
1.245 
1.242 
1.240 
1.238 
1.236 

1.234 
1.232 
1.230 
1.228 
1.226 
1.224 
1.223 
1.221 
1.219 
1.218 

1.216 
1.215 
1.213 
1.212 
1.210 
1.209 
1.208 
1.206 
1.205 

1.612 
1.607 
1.602 
1.597 
1.592 
1.588 
1.584 
1.579 
1.576 
1.572 

1.568 
1.565 
1.561 
1.558 
1.555 
1.552 
1.549 
1.546 
1.543 
1.540 

1.537 
1.535 
1.532 
1.530 
1.528 
1.525 
1.523 
1.521 
1.519 
1.517 

1.515 
1.513 
1.511 
1.509 
1.507 
1.505 
1.503 
1.502 
1.500 

2.091 
2.083 
2.077 
2.070 
2.064 
2.058 
2.052 
2.047 
2.042 
2.036 

2.031 
2.027 
2.022 
2.018 
2.013 
2.009 
2.005 
2.001 
1.997 
1.994 

1.990 
1.986 
1.983 
1.980 
1.977 
1.973 
1.970 
1.967 
1.965 
1.962 

1.959 
1.956 
1.954 
1.951 
1.949 
1.946 
1.944 
1.941 
1.939 

2.508 
2.499 
2.491 
2.483 
2.475 
2.468 
2.461 
2.454 
2.447 
2.441 

2.435 
2.429 
2.423 
2.418 
2.413 
2.407 
2.402 
2.398 
2.393 
2.388 

2.384 
2.380 
2.375 
2.371 
2.367 
2.364 
2.360 
2.356 
2.353 
2.349 

2.346 
2.343 
2.339 
2.336 
2.333 
2.330 
2.327 
2.324 
2.321 

2.995 
2.984 
2.974 
2.964 
2.955 
2.946 
2.937 
2.929 
2.921 
2.913 

2.906 
2.898 
2.891 
2.885 
2.878 
2.872 
2.866 
2.860 
2.854 
2.849 

2.843 
2.838 
2.833 
2.828 
2.823 
2.818 
2.814 
2.809 
2.805 
2.801 

2.797 
2.793 
2.789 
2.785 
2.781 
2.777 
2.774 
2.770 
2.767 

3.327 
3.315 
3.303 
3.292 
3.282 
3.272 
3.262 
3.253 
3.244 
3.235 

3.227 
3.219 
3.211 
3.203 
3.196 
3.189 
3.182 
3.175 
3.169 
3.163 

3.157 
3.151 
3.145 
3.139 
3.134 
3.129 
3.123 
3.118 
3.114 
3.109 

3.104 
3.100 
3.095 
3.091 
3.087 
3.083 
3.079 
3.075 
3.071 

80 1.204 1.498 1.937 2.319 2.764 3.067 
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Table B4 continued 

39 1 

a: = 0.01 
P 

n 0.70 0.80 0.90 0.95 0.98 0.99 

85 
90 
95 

100 
125 
150 
175 
200 
225 
250 
275 

300 
350 
400 
450 
500 
600 
700 
800 

1000 

1.198 
1.192 
1.187 
1.183 
1.165 
1.152 
1.143 
1.135 
1.129 
1.123 
1.119 

1.115 
1.109 
1.104 
1.100 
1.096 
1.091 
1.086 
1.083 
1.078 

1.491 
1.484 
1.477 
1.471 
1.448 
1.431 
1.419 
1.409 
1.401 
1.394 
1.388 

1.383 
1.375 
1.369 
1.363 
1.359 
1.352 
1.346 
1.342 
1.335 

1.926 
1.917 
1.908 
1.900 
1.869 
1.847 
1.830 
1.816 
1.805 
1.796 
1.789 

1.782 
1.771 
1.762 
1.755 
1.749 
1.739 
1.732 
1.726 
1.717 

2.306 
2.294 
2.283 
2.274 
2.235 
2.208 
2.187 
2.170 
2.157 
2.146 
2.136 

2.128 
2.114 
2.104 
2.095 
2.087 
2.075 
2.066 
2.059 
2.048 

2.748 
2.734 
2.721 
2.709 
2.662 
2.628 
2.603 
2.583 
2.566 
2.553 
2.541 

2.531 
2.514 
2.501 
2.490 
2.481 
2.467 
2.456 
2.447 
2.434 

3.049 
3.033 
3.019 
3.005 
2.952 
2.915 
2.886 
2.864 
2.845 
2.830 
2.817 

2.806 
2.787 
2.772 
2.760 
2.750 
2.734 
2.721 
2.711 
2.696 
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Table B5: Factors Icr satisfying (2 .5 .3 )  to compute ( p ,  1 - a )  simultaneous one- 
sided tolerance limits for 1 normal populations 

p = 0.90, 1 ~ cy = 0.90 
1 

n 2 3 4 5 6 7 8 9 10 

2 5.419 4.485 4.111 
3 3.358 3.137 3.045 
4 2.800 2.705 2.668 
5 2.525 2.475 2.460 
6 2.356 2.329 2.323 

7 2.239 2.224 2.225 
8 2.152 2.145 2.149 
9 2.085 2.083 2.089 

10 2.030 2.032 2.040 
11 1.986 1.990 1.998 

12 1.948 1.954 1.963 
13 1.915 1.922 1.932 
14 1.886 1.895 1.905 
15 1.861 1.871 1.881 
16 1.839 1.849 1.860 

17 1.819 1.830 1.841 
18 1.801 1.812 1.823 
19 1.785 1.796 1.807 
20 1.770 1.782 1.793 
21 1.756 1.768 1.779 

22 1.744 1.756 1.766 
23 1.732 1.744 1.755 
24 1.721 1.733 1.744 
25 1.711 1.723 1.734 
26 1.701 1.714 1.724 

27 1.692 1.705 1.715 
28 1.684 1.696 1.707 
29 1.676 1.688 1.699 
30 1.668 1.681 1.691 
40 1.611 1.623 1.633 

50 1.573 1.585 1.594 
60 1.546 1.557 1.565 
70 1.525 1.535 1.543 
80 1.508 1.518 1.526 
90 1.494 1.504 1.511 

100 1.483 1.492 1.499 

3.914 3.795 3.716 3.661 3.621 3.591 
2.998 2.972 2.956 2.946 2.941 2.938 
2.652 2.646 2.644 2.644 2.646 2.649 
2.456 2.457 2.460 2.464 2.469 2.475 
2.325 2.329 2.335 2.341 2.347 2.353 

2.230 2.236 2.243 2.250 2.256 2.263 
2.156 2.163 2.171 2.178 2.185 2.192 
2.097 2.105 2.113 2.121 2.128 2.134 
2.04!) 2.057 2.065 2.073 2.080 2.087 
2.008 2.016 2.025 2.032 2.039 2.046 

1.973 1.981 1.990 1.997 2.004 2.011 
1.942 1.951 1.959 1.967 1.974 1.980 
1.915 1.924 1.932 1.940 1.947 1.953 
1.891 1.900 1.908 1.916 1.922 1.929 
1.870 1.879 1.887 1.894 1.901 1.907 

1.851 1.859 1.867 1.874 1.881 1.887 
1.833 1.842 1.850 1.857 1.863 1.869 
1.817 1.826 1.833 1.840 1.847 1.852 
1.802 1.811 1.818 1.825 1.832 1.837 
1.789 1.797 1.805 1.811 1.818 1.823 

1.776 1.784 1.792 1.799 1.805 1.810 
1.764 1.773 1.780 1.787 1.793 1.798 
1.753 1.762 1.769 1.775 1.781 1.787 
1.743 1.751 1.758 1.765 1.771 1.776 
1.734 1.742 1.749 1.755 1.761 1.766 

1.725 1.732 1.740 1.746 1.751 1.757 
1.716 1.724 1.731 1.737 1.743 1.748 
1.708 1.716 1.723 1.729 1.734 1.739 
1.700 1.708 1.715 1.721 1.726 1.731 
1.641 1.648 1.654 1.660 1.665 1.669 

1.601 1.608 1.614 1.619 1.623 1.627 
1.572 1.579 1.584 1.588 1.593 1.596 
1.550 1.556 1.561 1.565 1.569 1.572 
1.532 1.538 1.542 1.546 1.550 1.553 
1.517 1.523 1.527 1.531 1.534 1.537 
1.505 1.510 1.514 1.518 1.521 1.524 
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Table B5 continued 

p 10.95, 1 - CY = 0.90 
1 

393 

n 2 3 4 5 6 7 8 9 10 

2 6.496 5.275 4.786 4.527 4.369 4.263 4.188 4.132 4.090 
3 4.024 3.706 3.568 3.494 3.449 3.420 3.401 3.387 3.378 
4 3.365 3.210 3.144 3.110 3.091 3.080 3.074 3.070 3.069 
5 3.044 2.951 2.913 2.895 2.886 2.882 2.881 2.882 2.883 
6 2.848 2.786 2.762 2.752 2.749 2.748 2.750 2.752 2.755 

7 2.714 2.669 2.654 2.649 2.648 2.650 2.653 2.656 2.660 
8 2.614 2.581 2.571 2.569 2.571 2.574 2.577 2.581 2.586 
9 2.537 2.512 2.506 2.506 2.508 2.512 2.516 2.521 2.525 

10 2.476 2.456 2.452 2.454 2.457 2.461 2.466 2.471 2.475 
11 2.424 2.409 2.408 2.410 2.414 2.419 2.423 2.428 2.433 

12 2.381 2.370 2.369 2.372 2.377 2.382 2.387 2.392 2.396 
13 2.345 2.335 2.336 2.340 2.345 2.350 2.355 2.360 2.364 
14 2.313 2.305 2.307 2.311 2.316 2.321 2.326 2.331 2.336 
15 2.284 2.279 2.281 2.286 2.291 2.296 2.301 2.306 2.311 
16 2.259 2.255 2.258 2.263 2.268 2.274 2.279 2.284 2.288 

17 2.237 2.234 2.238 2.242 2.248 2.253 2.258 2.263 2.268 
18 2.217 2.215 2.219 2.224 2.229 2.235 2.240 2.244 2.249 
19 2.198 2.197 2.202 2.207 2.212 2.218 2.223 2.227 2.232 
20 2.182 2.181 2.186 2.191 2.197 2.202 2.207 2.212 2.216 
21 2.166 2.167 2.171 2.177 2.182 2.187 2.192 2.197 2.202 

22 2.152 2.153 2.158 2.163 2.169 2.174 2.179 2.184 2.188 
23 2.139 2.141 2.145 2.151 2.156 2.162 2.167 2.171 2.175 
24 2.127 2.129 2.134 2.139 2.145 2.150 2.155 2.159 2.164 
25 2.116 2.118 2.123 2.128 2.134 2.139 2.144 2.148 2.153 
26 2.105 2.108 2.113 2.118 2.124 2.129 2.134 2.138 2.142 

27 2.096 2.098 2.103 2.109 2.114 2.119 2.124 2.128 2.133 
28 2.086 2.089 2.094 2.100 2.105 2.110 2.115 2.119 2.123 
29 2.077 2.080 2.086 2.091 2.097 2.102 2.106 2.111 2.115 
30 2.069 2.072 2.078 2.083 2.089 2.094 2.098 2.102 2.106 
40 2.005 2.010 2.015 2.021 2.026 2.031 2.035 2.039 2.042 

50 1.963 1.968 1.974 1.979 1.984 1.988 1.992 1.996 1.999 
60 1.933 1.938 1.944 1.949 1.953 1.957 1.961 1.964 1.967 
70 1.910 1.915 1.920 1.925 1.929 1.933 1.937 1.940 1.943 
80 1.891 1.897 1.902 1.906 1.910 1.914 1.917 1.920 1.923 
90 1.876 1.881 1.886 1.891 1.895 1.898 1.901 1.904 1.907 

100 1.864 1.869 1.873 1.878 1.881 1.885 1.888 1.891 1.893 
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Table B5 continued 

p = 0.99, 1 - cy = 0.90 
1 

n 2 3 4 5 6 7 8 9 10 

2 8.547 6.776 6.069 5.692 5.459 5.302 5.188 5.103 5.037 
3 5.298 4.790 4.563 4.437 4.357 4.302 4.264 4.235 4.213 
4 4.447 4.175 4.051 3.981 3.938 3.909 3.889 3.875 3.864 
5 4.037 3.857 3.775 3.729 3.701 3.683 3.fi71 3.663 3.657 
6 3.789 3.657 3.597 3.564 3.544 3.532 3.524 3.519 3.516 

7 3.620 3.516 3.470 3.445 3.430 3.422 3.416 3.413 3.411 
8 3.496 3.411 3.374 3.354 3.343 3.336 3.333 3.331 3.330 
9 3.400 3.329 3.298 3.282 3.273 3.268 3.266 3.265 3.265 

10 3.323 3.262 3.236 3.222 3.215 3.212 3.210 3.210 3.210 
11 3.260 3.207 3.184 3.173 3.167 3.164 3.163 3.163 3.164 

12 3.207 3.160 3.140 3.130 3.126 3.124 3.123 3.124 3.125 
13 3.162 3.120 3.102 3.093 3.090 3.088 3.088 3.089 3.090 
14 3.123 3.084 3.068 3.061 3.058 3.057 3.057 3.058 3.060 
15 3.089 3.053 3.039 3.033 3.030 3.029 3.030 3.031 3.033 
16 3.058 3.026 3.013 3.007 3.005 3.005 3.005 3.007 3.008 

17 3.031 3.001 2.989 2.984 2.982 2.982 2.983 2.985 2.986 
18 3.006 2.978 2.968 2.963 2.962 2.962 2.963 2.964 2.966 
19 2.984 2.958 2.948 2.944 2.943 2.943 2.945 2.946 2.948 
20 2.964 2.939 2.930 2.927 2.926 2.926 2.928 2.929 2.931 
21 2.945 2.922 2.914 2.911 2.910 2.911 2.912 2.914 2.915 

22 2.928 2.906 2.898 2.896 2.895 2.896 2.897 2.899 2.901 
23 2.912 2.892 2.884 2.882 2.882 2.882 2.884 2.886 2.888 
24 2.898 2.878 2.871 2.869 2.869 2.870 2.871 2.873 2.875 
25 2.884 2.865 2.859 2.857 2.857 2.858 2.859 2.861 2.863 
26 2.871 2.853 2.847 2.846 2.846 2.847 2.848 2.850 2.852 

27 2.859 2.842 2.837 2.835 2.835 2.836 2.838 2.840 2.842 
28 2.848 2.832 2.826 2.825 2.825 2.826 2.828 2.830 2.832 
29 2.837 2.822 2.817 2.816 2.816 2.817 2.819 2.821 2.823 
30 2.827 2.813 2.808 2.807 2.807 2.808 2.810 2.812 2.814 
40 2.751 2.741 2.738 2.738 2.738 2.740 2.742 2.744 2.746 

50 2.701 2.693 2.691 2.691 2.693 2.694 2.696 2.698 2.700 
60 2.665 2.659 2.657 2.658 2.659 2.661 2.662 2.664 2.666 
70 2.638 2.632 2.631 2.632 2.633 2.635 2.637 2.638 2.640 
80 2.616 2.611 2.611 2.611 2.613 2.614 2.616 2.618 2.619 
90 2.598 2.594 2.593 2.594 2.596 2.597 2.599 2.600 2.602 

100 2.583 2.579 2.579 2.580 2.581 2.583 2.584 2.586 2.588 
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Table B5 continued 

p = 0.90, 1 - a = 0.95 
1 

n 2 3 4 5 6 7 8 9 10 

4.108 
3.219 
2.857 
2.644 
2.499 

4.045 
3.203 
2.851 
2.642 
2.500 

7.812 
4.160 
3.302 
2.902 
2.665 

5.828 
3.695 
3.079 
2.768 
2.573 

5.078 
3.494 
2.982 
2.709 
2.535 

4.691 
3.385 
2.929 
2.679 
2.516 

4.457 
3.318 
2.898 
2.662 
2.506 

4.301 
3.273 
2.878 
2.653 
2.501 

4.190 
3.242 
2.865 
2.647 
2.499 

7 
8 
9 

10 
11 

2.504 
2.386 
2.296 
2.224 
2.165 

2.437 
2.336 
2.256 
2.192 
2.138 

2.410 
2.316 
2.242 
2.181 
2.131 

2.398 
2.308 
2.237 
2.178 
2.129 

2.393 
2.306 
2.236 
2.179 
2.131 

2.391 
2.306 
2.237 
2.181 
2.133 

2.391 
2.307 
2.240 
2.184 
2.136 

2.392 
2.309 
2.242 
2.187 
2.140 

2.394 
2.312 
2.246 
2.190 
2.144 

12 
13 
14 
15 
16 

2.115 
2.072 
2.035 
2.003 
1.974 

2.093 
2.054 
2.020 
1.990 
1.964 

2.087 
2.050 
2.017 
1.989 
1.963 

2.087 
2.051 
2.019 
1.990 
1.965 

2.089 
2.053 
2.022 
1.994 
1.969 

2.092 
2.057 
2.026 
1.998 
1.973 

2.096 
2.061 
2.029 
2.002 
1.977 

2.100 
2.064 
2.033 
2.006 
1.981 

2.103 
2.068 
2.037 
2.010 
1.985 

1.958 
1.938 
1.919 
1.902 
1.886 

1.962 
1.942 
1.923 
1.906 
1.890 

17 
18 
19 
20 
21 

1.949 
1.926 
1.905 
1.886 
1.868 

1.940 
1.918 
1.898 
1.880 
1.864 

1.939 
1.918 
1.899 
1.882 
1.865 

1.942 
1.922 
1.903 
1.885 
1.869 

1.946 
1.925 
1.907 
1.889 
1.873 

1.950 
1.930 
1.911 
1.894 
1.878 

1.954 
1.934 
1.915 
1.898 
1.882 

22 
23 
24 
25 
26 

1.852 
1.837 
1.823 
1.811 
1.799 

1.848 
1.834 
1.821 
1.809 
1.797 

1.850 
1.837 
1.824 
1.812 
1.800 

1.854 
1.841 
1.828 
1.816 
1.804 

1.859 
1.845 
1.832 
1.820 
1.809 

1.863 
1.849 
1.836 
1.824 
1.813 

1.867 
1.853 
1.841 
1.829 
1.817 

1.871 
1.858 
1.845 
1.833 
1.821 

1.875 
1.861 
1.849 
1.836 
1.825 

27 
28 
29 
30 
40 

1.787 
1.777 
1.767 
1.757 
1.686 

1.786 
1.776 
1.766 
1.757 
1.688 

1.790 
1.779 
1.770 
1.761 
1.692 

1.794 
1.784 
1.774 
1.765 
1.696 

1.798 
1.788 
1.779 
1.770 
1.701 

1.803 
1.793 
1.783 
1.774 
1.705 

1.807 
1.797 
1.787 
1.778 
1.709 

1.81 1 
1.801 
1.791 
1.782 
1.712 

1.815 
1.804 
1.795 
1.786 
1.716 

50 
60 
70 
80 
90 

100 

1.638 
1.604 
1.578 
1.558 
1.541 
1.526 

1.641 
1.608 
1.582 
1.561 
1.545 
1.530 

1.646 
1.612 
1.586 
1.566 
1.549 
1.535 

1.650 
1.617 
1.591 
1.570 
1.553 
1.538 

1.654 
1.62 1 
1.594 
1.574 
1.556 
1.543 

1.658 
1.624 
1.598 
1.577 
1.561 
1.546 

1.662 
1.628 
1.601 
1.581 
1.564 
1.549 

1.665 
1.631 
1.605 
1.584 
1.566 
1.551 

1.868 
l.ti35 
1 .ti08 
1.586 
1.569 
1.554 
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Table B5 continued 

p = 0.95, 1 - 01 = 0.95 
1 

n 2 3 4 5 6 7 8 9 10 

2 9.349 6.839 5.897 5.412 5.117 4.920 4.780 4.675 4.593 
3 4.967 4.347 4.078 3.929 3.836 3.772 3.727 3.693 3.667 
4 3.951 3.638 3.498 3.420 3.371 3.339 3.316 3.299 3.287 
5 3.482 3.283 3.193 3.143 3.113 3.093 3.080 3.071 3.064 
6 3.205 3.063 2.998 2.964 2.943 2.930 2.921 2.916 2.913 

7 3.019 2.910 2.861 2.835 2.820 2.811 2.806 2.802 2.801 
8 2.883 2.796 2.757 2.737 2.726 2.720 2.716 2.714 2.714 
9 2.779 2.707 2.676 2.660 2.651 2.647 2.644 2.644 2.644 

10 2.697 2.635 2.609 2.596 2.590 2.587 2.585 2.585 2.586 
11 2.629 2.576 2.554 2.543 2.538 2.536 2.535 2.536 2.537 

12 2.572 2.526 2.507 2.498 2.494 2.493 2.493 2.493 2.495 
13 2.524 2.483 2.466 2.459 2.456 2.455 2.455 2.456 2.458 
14 2.482 2.445 2.431 2.424 2.422 2.422 2.422 2.424 2.426 
15 2.446 2.412 2.399 2.394 2.392 2.392 2.393 2.395 2.397 
16 2.413 2.383 2.371 2.367 2.365 2.366 2.367 2.369 2.371 

17 2.384 2.356 2.346 2.342 2.341 2.342 2.343 2.345 2.347 
18 2.358 2.333 2.323 2.320 2.320 2.320 2.322 2.324 2.326 
19 2.335 2.311 2.303 2.300 2.300 2.301 2.302 2.304 2.307 
20 2.313 2.291 2.284 2.281 2.281 2.282 2.284 2.286 2.289 
21 2.293 2.273 2.266 2.264 2.264 2.266 2.268 2.270 2.272 

22 2.275 2.256 2.250 2.248 2.249 2.250 2.252 2.254 2.257 
23 2.259 2.241 2.235 2.234 2.234 2.236 2.238 2.240 2.242 
24 2.243 2.226 2.221 2.220 2.221 2.222 2.224 2.227 2.229 
25 2.229 2.213 2.208 2.207 2.208 2.210 2.212 2.214 2.217 
26 2.215 2.200 2.196 2.195 2.196 2.198 2.200 2.202 2.205 

27 2.203 2.188 2.184 2.184 2.185 2.187 2.189 2.191 2.194 
28 2.191 2.177 2.174 2.173 2.174 2.176 2.179 2.181 2.183 
29 2.180 2.167 2.163 2.163 2.164 2.166 2.169 2.171 2.173 
30 2.169 2.157 2.154 2.154 2.155 2.157 2.159 2.162 2.164 
40 2.089 2.081 2.080 2.081 2.082 2.084 2.087 2.089 2.091 

50 2.036 2.031 2.030 2.032 2.034 2.036 2.038 2.040 2.042 
60 1.999 1.994 1.995 1.996 1.998 2.000 2.002 2.005 2.007 
70 1.970 1.967 1.967 1.969 1.971 1.973 1.975 1.977 1.981 
80 1.947 1.944 1.945 1.947 1.949 1.951 1.953 1.956 1.958 
90 1.928 1.926 1.927 1.929 1.931 1.933 1.936 1.938 1.940 

100 1.913 1.911 1.912 1.914 1.916 1.917 1.921 1.923 1.924 
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Table B5 continued 

p = 0.99, 1 - CY = 0.95 
I 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 

50 
60 
70 
80 
90 

100 

12.278 8.765 7.459 6.784 
6.515 5.596 5.193 4.967 
5.196 4.709 4.484 4.356 
4.594 4.269 4.116 4.028 
4.241 3.999 3.883 3.817 

4.005 3.812 3.720 3.667 
3.835 3.675 3.598 3.554 
3.704 3.567 3.502 3.464 
3.601 3.481 3.424 3.391 
3.517 3.410 3.359 3.330 

3.446 3.350 3.305 3.278 
3.386 3.299 3.257 3.234 
3.335 3.254 3.216 3.195 
3.290 3.215 3.180 3.160 
3.250 3.180 3.148 3.129 

3.214 3.149 3.118 3.101 
3.182 3.121 3.092 3.076 
3.153 3.096 3.068 3.053 
3.127 3.072 3.047 3.032 
3.103 3.051 3.026 3.013 

3.081 3.031 3.008 2.995 
3.060 3.013 2.991 2.979 
3.041 2.996 2.975 2.963 
3.024 2.980 2.960 2.949 
3.007 2.965 2.946 2.935 

2.992 2.952 2.933 2.923 
2.978 2.939 2.920 2.911 
2.964 2.926 2.909 2.899 
2.951 2.915 2.898 2.889 
2.854 2.826 2.814 2.807 

2.791 2.768 2.758 2.752 
2.746 2.726 2.717 2.713 
2.711 2.694 2.686 2.682 
2.684 2.668 2.661 2.658 
2.661 2.647 2.641 2.638 
2.643 2.630 2.624 2.621 

6.374 6.099 5.901 5.752 5.636 
4.823 4.723 4.651 4.595 4.552 
4.273 4.215 4.174 4.142 4.118 
3.971 3.932 3.903 3.882 3.866 
3.774 3.745 3.724 3.708 3.696 

3.633 3.610 3.593 3.581 3.572 
3.526 3.507 3.493 3.484 3.476 
3.440 3.424 3.413 3.405 3.399 
3.371 3.357 3.347 3.341 3.336 
3.312 3.300 3.292 3.286 3.282 

3.262 3.252 3.245 3.240 3.236 
3.219 3.210 3.203 3.199 3.196 
3.181 3.173 3.167 3.163 3.161 
3.148 3.140 3.135 3.132 3.130 
3.118 3.111 3.106 3.103 3.101 

3.091 3.085 3.080 3.078 3.076 
3.067 3.061 3.057 3.054 3.053 
3.044, 3.039 3.035 3.033 3.032 
3.024 3.019 3.015 3.014 3.012 
3.005 3.000 2.997 2.995 2.995 

2.988 2.983 2.980 2.979 2.978 
2.972 2.967 2.965 2.963 2.962 
2.956 2.952 2.950 2.949 2.948 
2.942 2.939 2.936 2.935 2.935 
2.929 2.926 2.924 2.922 2.922 

2.917 2.913 2.911 2.910 2.910 
2.905 2.902 2.900 2.899 2.899 
2.894 2.891 2.889 2.888 2.888 
2.884 2.881 2.879 2.878 2.878 
2.803 2.801 2.800 2.800 2.800 

2.750 2.748 2.748 2.748 2.748 
2.711 2.710 2.709 2.709 2.710 
2.681 2.680 2.680 2.680 2.680 
2.657 2.656 2.656 2.656 2.657 
2.637 2.636 2.636 2.637 2.637 
2.620 2.620 2.620 2.620 2.621 
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Table B5 continued 

p = 0.90, 1 - cy = 0.99 
I 

n 2 3 4 5 6 7 8 9 10 

2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

13 
14 
15 
16 
17 

18 
19 
20 
21 
22 

23 
24 
25 
26 
27 

28 
29 
30 
40 
50 

60 
70 
80 
90 

100 

17.729 
6.529 
4.616 
3.830 
3.394 
3.113 

2.914 
2.765 
2.648 
2.553 
2.475 

2.409 
2.352 
2.302 
2.259 
2.220 

2.185 
2.154 
2.126 
2.100 
2.076 

2.054 
2.034 
2.015 
1.998 
1.981 

1.966 
1.951 
1.938 
1.835 
1.769 

1.721 
1.685 
1.656 
1.633 
1.613 

10.289 7.943 6.837 
5.156 4.601 4.302 
3.981 3.705 3.551 
3.440 3.265 3.167 
3.120 2.995 2.925 
2.904 2.809 2.755 

2.747 2.671 2.628 
2.627 2.563 2.528 
2.530 2.477 2.447 
2.452 2.405 2.380 
2.385 2.345 2.323 

2.329 2.293 2.273 
2.280 2.247 2.230 
2.237 2.208 2.192 
2.199 2.172 2.158 
2.165 2.141 2.128 

2.134 2.112 2.100 
2.107 2.086 2.075 
2.081 2.062 2.052 
2.058 2.040 2.031 
2.037 2.020 2.012 

2.017 2.001 1.995 
1.999 1.984 1.978 
1.982 1.968 1.962 
1.966 1.953 1.948 
1.951 1.938 1.934 

1.937 1.926 1.921 
1.924 1.914 1.909 
1.911 1.902 1.897 
1.817 1.810 1.807 
1.755 1.750 1.748 

1.710 1.706 1.705 
1.675 1.672 1.671 
1.648 1.645 1.645 
1.625 1.623 1.623 
1.607 1.605 1.605 

6.199 5.786 5.499 5.287 5.125 
4.117 3.992 3.902 3.834 3.782 
3.455 3.389 3.341 3.306 3.278 
3.105 3.062 3.032 3.010 2.993 
2.880 2.851 2.830 2.815 2.803 
2.722 2.699 2.684 2.673 2.665 

2.601 2.584 2.572 2.564 2.558 
2.507 2.493 2.483 2.477 2.473 
2.429 2.418 2.410 2.405 2.402 
2.365 2.355 2.349 2.345 2.343 
2.310 2.302 2.297 2.294 2.293 

2.262 2.255 2.251 2.250 2.249 
2.221 2.215 2.211 2.211 2.210 
2.184 2.179 2.177 2.176 2.175 
2.151 2.146 2.145 2.144 2.144 
2.121 2.119 2.117 2.116 2.118 

2.094 2.092 2.091 2.090 2.090 
2.071 2.068 2.067 2.066 2.067 
2.049 2.046 2.045 2.045 2.045 
2.028 2.026 2.025 2.025 2.025 
2.009 2.007 2.006 2.006 2.007 

1.991 1.989 1.989 1.989 1.990 
1.975 1.973 1.973 1.973 1.974 
1.959 1.958 1.958 1.958 1.959 
1.945 1.944 1.943 1.944 1.945 
1.931 1.930 1.930 1.931 1.932 

1.918 1.917 1.918 1.918 1.91!) 
1.906 1.906 1.906 1.906 1.907 
1.895 1.894 1.894 1.895 1.896 
1.807 1.807 1.808 1.809 1.810 
1.748 1.748 1.749 1.750 1.752 

1.705 1.706 1.707 1.708 1.709 
1.672 1.673 1.674 1.675 1.677 
1.645 1.646 1.648 1.649 1.650 
1.624 1.625 1.626 1.627 1.629 
1.606 1.607 1.608 1.609 1.610 
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Table B5 continued 

p = 0.95, 1 - (Y zz 0.99 
1 

399 

n 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

1 2  
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 

50 
60 
70 
80 
90 

- 2 3 4 5 6 7 8 9 10 

21.194 
7.763 
5.491 
4.564 
4.052 

3.724 
3.492 
3.319 
3.184 
3.075 

2.985 
2.909 
2.844 
2.787 
2.737 

2.693 
2.654 
2.618 
2.586 
2.556 

2.529 
2.505 
2.482 
2.460 
2.441 

2.422 
2.405 
2.388 
2.373 
2.257 

2.182 
2.131 
2.090 
2.058 
2.032 

12.045 
6.036 
4.674 
4.051 
3.685 

3.439 
3.261 
3.125 
3.017 
2.928 

2.854 
2.790 
2.736 
2.688 
2.646 

2.608 
2.574 
2.543 
2.515 
2.489 

2.466 
2.444 
2.424 
2.405 
2.387 

2.371 
2.356 
2.341 
2.327 
2.223 

2.157 
2.107 
2.070 
2.040 
2.015 

9.201 
5.339 
4.316 
3.818 
3.514 

3.306 
3.152 
3.033 
2.937 
2.858 

2.791 
2.734 
2.684 
2.641 
2.602 

2.567 
2.536 
2.507 
2.482 
2.458 

2.436 
2.415 
2.397 
2.379 
2.363 

2.347 
2.333 
2.319 
2.306 
2.209 

2.144 
2.097 
2.061 
2.032 
2.008 

7.862 
4.964 
4.116 
3.686 
3.417 

3.229 
3.089 
2.980 
2.891 
2.818 

2.755 
2.702 
2.655 
2.614 
2.577 

2.544 
2.515 
2.488 
2.463 
2.440 

2.419 
2.400 
2.382 
2.365 
2.349 

2.334 
2.322 
2.309 
2.297 
2.201 

2.137 
2.091 
2.056 
2.028 
2.005 

7.091 
4.731 
3.989 
3.601 
3.354 

3.180 
3.049 
2.946 
2.862 
2.792 

2.733 
2.682 
2.637 
2.597 
2.562 

2.530 
2.502 
2.475 
2.451 
2.429 

2.409 
2.392 
2.375 
2.358 
2.343 

2.328 
2.315 
2.302 
2.290 
2.196 

2.133 
2.088 
2.053 
2.026 
2.003 

6.594 
4.571 
3.901 
3.542 
3.311 

3.147 
3.022 
2.923 
2.843 
2.775 

2.718 
2.668 
2.625 
2.586 
2.552 

2.521 
2.493 
2.468 
2.446 
2.425 

2.405 
2.386 
2.369 
2.353 
2.338 

2.323 
2.310 
2.297 
2.285 
2.193 

2.131 
2.087 
2.052 
2.025 
2.002 

6.246 
4.456 
3.837 
3.500 
3.280 

3.122 
3.002 
2.907 
2.829 
2.763 

2.708 
2.659 
2.617 
2.579 
2.545 

2.517 
2.490 
2.465 
2.441 
2.420 

2.401 
2.382 
2.365 
2.349 
2.334 

2.320 
2.307 
2.295 
2.283 
2.191 

2.130 
2.086 
2.052 
2.024 
2.002 

5.990 
4.369 
3.789 
3.468 
3.257 

3.104 
2.988 
2.895 
2.819 
2.755 

2.700 
2.653 
2.611 
2.574 
2.543 

2.513 
2.486 
2.461 
2.438 
2.417 

2.398 
2.380 
2.363 
2.347 
2.332 

2.318 
2.305 
2.293 
2.281 
2.191 

2.130 
2.086 
2.052 
2.024 
2.002 

5.793 
4.301 
3.751 
3.443 
3.239 

3.091 
2.977 
2.886 
2.811 
2.749 

2.695 
2.648 
2.609 
2.572 
2.540 

2.510 
2.483 
2.459 
2.436 
2.415 

2.396 
2.378 
2.361 
2.346 
2.331 

2.317 
2.304 
2.292 
2.280 
2.190 

2.130 
2.086 
2.052 
2.025 
2.002 

100 2.010 1.995 1.988 1.985 1.984 1.983 1.983 1.983 1.983 
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Table B5 continued 

p = 0.99, 1 - cy = 0.99 
1 

n 2 3 4 5 6 7 8 9 10 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 

50 
60 
70 
80 
90 

100 

27.789 
10.140 
7.178 
5.979 
5.321 

4.901 
4.606 
4.387 
4.216 
4.078 

3.965 
3.870 
3.788 
3.717 
3.655 

3.600 
3.551 
3.507 
3.467 
3.430 

3.397 
3.366 
3.338 
3.312 
3.287 

3.265 
3.243 
3.223 
3.204 
3.062 

2.971 
2.906 
2.857 
2.823 
2.791 
2.764 

15.401 
7.728 
6.007 
5.227 
4.772 

4.468 
4.249 
4.082 
3.950 
3.842 

3.752 
3.675 
3.609 
3.552 
3.501 

3.455 
3.414 
3.377 
3.344 
3.313 

3.285 
3.259 
3.235 
3.213 
3.192 

3.172 
3.154 
3.137 
3.120 
2.997 

2.916 
2.859 
2.820 
2.785 
2.756 
2.732 

11.598 9.818 8.798 8.135 7.674 7.333 7.070 
6.759 6.235 5.908 5.683 5.519 5.395 5.297 
5.492 5.201 5.015 4.884 4.788 4.715 4.657 
4.882 4.683 4.553 4.462 4.395 4.343 4.302 
4.512 4.361 4.262 4.193 4.141 4.101 4.070 

4.261 4.139 4.059 4.002 3.960 3.928 3.903 
4.076 3.973 3.906 3.858 3.823 3.796 3.775 
3.933 3.845 3.787 3.745 3.715 3.692 3.674 
3.819 3.741 3.690 3.654 3.627 3.606 3.591 
3.725 3.655 3.609 3.577 3.553 3.535 3.521 

3.646 3.583 3.541 3.512 3.490 3.474 3.461 
3.578 3.521 3.483 3.456 3.436 3.421 3.40!) 
3.520 3.467 3.431 3.407 3.389 3.375 3.364 
3.468 3.419 3.386 3.363 3.346 3.334 3.324 
3.423 3.377 3.346 3.325 3.309 3.297 3.288 

3.382 3.339 3.310 3.290 3.275 3.264 3.256 
3.346 3.304 3.277 3.258 3.245 3.234 3.231 
3.312 3.273 3.248 3.230 3.217 3.207 3.204 
3.282 3.245 3.221 3.204 3.191 3.186 3.17!) 
3.254 3.219 3.196 3.179 3.168 3.163 3.156 

3.229 3.195 3.173 3.157 3.146 3.142 3.135 
3.205 3.173 3.151 3.137 3.130 3.122 3.115 
3.183 3.152 3.131 3.117 3.112 3.103 3.097 
3.162 3.133 3.113 3.099 3.094 3.086 3.080 
3.143 3.115 3.096 3.083 3.077 3.070 3.064 

3.125 3.098 3.079 3.071 3.062 3.055 3.04!) 
3.109 3.082 3.064 3.056 3.047 3.040 3.035 
3.093 3.067 3.050 3.042 3.033 3.027 3.021 
3.078 3.053 3.036 3.029 3.020 3.014 3.009 
2.964 2.949 2.936 2.926 2.920 2.915 2.911 

2.894 2.877 2.866 2.858 2.852 2.848 2.845 
2.839 2.825 2.815 2.808 2.804 2.800 2.798 
2.798 2.785 2.776 2.770 2.766 2.763 2.761 
2.765 2.753 2.745 2.740 2.736 2.734 2.732 
2.738 2.727 2.720 2.715 2.712 2.709 2.708 
2.715 2.705 2.699 2.694 2.691 2.689 2.687 
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Table B6: Factors k’ satisfying (2.5.8) to compute ( p ,  1 - a )  simultaneous two- 
sided tolerance intervals for I normal populations 

p = 0.90, 1 - cy = 0.90 

1 

6 9 10 8 n 2 3 4 5 

5.187 4.637 4.353 
3.536 3.367 3.278 
3.015 2.923 2.876 
2.743 2.681 2.651 
2.572 2.526 2.504 

1 

4.182 
3.225 
2.850 
2.636 
2.493 

4.069 
3.192 
2.835 
2.627 
2.488 

3.929 
3.153 
2.820 
2.621 
2.486 

3.884 
3.142 
2.816 
2.621 
2.487 

2 6.626 
3 3.947 
4 3.238 
5 2.895 
6 2.689 

3.988 
3.169 
2.825 
2.623 
2.486 

7 2.549 
8 2.447 
9 2.369 

10 2.307 
11 2.257 

2.453 2.415 2.398 
2.365 2.332 2.318 
2.296 2.268 2.255 
2.242 2.215 2.204 
2.196 2.172 2.161 

2.390 
2.311 
2.249 
2.198 
2.156 

2.386 
2.309 
2.247 
2.197 
2.155 

2.385 
2.308 
2.247 
2.197 
2.155 

2.386 
2.309 
2.248 
2.198 
2.156 

2.388 
2.311 
2.250 
2.200 
2.158 

12 2.215 
13 2.180 
14 2.149 
15 2.123 
16 2.099 

2.159 2.136 2.126 
2.127 2.105 2.095 
2.099 2.078 2.069 
2.075 2.055 2.046 
2.054 2.034 2.025 

2.121 
2.091 
2.064 
2.041 
2.021 

2.119 
2.089 
2.063 
2.040 
2.019 

2.120 
2.089 
2.063 
2.039 
2.019 

2.121 
2.090 
2.063 
2.040 
2.019 

2.122 
2.092 
2.065 
2.041 
2.021 

17 2.079 
18 2.060 
19 2.044 
20 2.029 
21 2.015 

2.035 2.016 2.007 
2.018 2.000 1.991 
2.003 1.985 1.976 
1.989 1.972 1.963 
1.977 1.959 1.951 

2.003 
1.987 
1.972 
1.959 
1.947 

2.001 
1.985 
1.970 
1.957 
1.944 

2.001 
1.984 
1.969 
1.956 
1.944 

2.001 
1.985 
1.970 
1.956 
1.944 

2.002 
1.985 
1.970 
1.957 
1.944 

1.932 
1.922 
1.912 
1.904 
1.895 

1.933 
1.922 
1.913 
1.904 
1.895 

22 2.003 
23 1.991 
24 1.981 
25 1.971 
26 1.962 

1.965 1.948 1.940 
1.955 1.938 1.930 
1.945 1.929 1.920 
1.936 1.920 1.912 
1.928 1.912 1.904 

1.936 
1.925 
1.916 
1.907 
1.899 

1.933 
1.923 
1.914 
1.905 
1.897 

1.932 
1.922 
1.913 
1.904 
1.896 

1.920 1.904 1.896 
1.913 1.897 1.889 
1.906 1.891 1.883 
1.899 1.885 1.877 
1.852 1.839 1.831 

1.892 
1.885 
1.878 
1.872 
1.827 

1.889 
1.882 
1.876 
1.870 
1.824 

1.888 
1.881 
1.874 
1.868 
1.822 

1.888 
1.880 
1.874 
1.868 
1.821 

1.888 
1.880 
1.874 
1.867 
1.821 

27 1.954 
28 1.946 
29 1.938 
30 1.932 
40 1.880 

50 1.848 
60 1.825 
70 1.808 
90 1.784 

100 1.776 

1.823 1.810 1.803 
1.802 1.790 1.784 
1.787 1.776 1.769 
1.765 1.755 1.749 
1.758 1.748 1.742 

1.799 
1.779 
1.765 
1.745 
1.738 

1.796 
1.776 
1.762 
1.742 
1.735 

1.794 
1.774 
1.760 
1.740 
1.733 

1.792 
1.773 
1.758 
1.73!) 
1.732 

1.792 
1.772 
1.757 
1.738 
1.731 

1.685 
1.674 
1.664 

1.684 
1.673 
1.663 

1.687 
1.675 
1.665 

1.703 1.697 1.693 
1.688 1.683 1.680 
1.674 1.671 1.669 

1.690 
1.678 
1.667 

1.688 
1.676 
1.666 

300 1.714 
500 1.697 

1000 1.680 
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Table B6 continued 

p = 0.95, 1 - a = 0.90 

I! 

n 2 3 4 

5.320 
3.894 
3.401 
3.134 
2.961 

5 

4.974 
3.779 
3.337 
3.091 
2.929 

6 7 

4.623 
3.661 
3.274 
3.050 
2.900 

8 9 10 

2 7.699 
3 4.613 
4 3.800 
5 3.409 
6 3.172 

5.982 
4.109 
3.521 
3.216 
3.025 

4.764 
3.708 
3.299 
3.066 
2.911 

4.522 
3.628 
3.258 
3.041 
2.894 

4.447 
3.604 
3.247 
3.035 
2.890 

4.390 
3.586 
3.239 
3.031 
2.889 

7 3.012 
8 2.896 
9 2.806 

10 2.735 
11 2.678 

2.891 
2.792 
2.714 
2.652 
2.601 

2.839 
2.747 
2.675 
2.617 
2.569 

2.813 
2.725 
2.656 
2.600 
2.553 

2.799 
2.714 
2.646 
2.591 
2.545 

2.791 
2.707 
2.640 
2.586 
2.540 

2.787 
2.704 
2.638 
2.584 
2.538 

2.784 
2.702 
2.637 
2.583 
2.538 

2.784 
2.702 
2.637 
2.583 
2.538 

12 2.629 
13 2.588 
14 2.553 
15 2.523 
16 2.496 

2.559 
2.522 
2.491 
2.463 
2.439 

2.528 
2.494 
2.464 
2.437 
2.414 

2.513 
2.480 
2.450 
2.424 
2.401 

2.506 
2.472 
2.443 
2.417 
2.395 

2.502 
2.468 
2.439 
2.414 
2.391 

2.500 
2.467 
2.438 
2.412 
2.390 

2.499 
2.466 
2.437 
2.412 
2.389 

2.500 
2.467 
2.438 
2.412 
2.389 

17 2.472 
18 2.450 
19 2.431 
20 2.414 
21 2.398 

2.417 
2.398 
2.380 
2.365 
2.350 

2.393 
2.375 
2.358 
2.343 
2.329 

2.381 
2.363 
2.346 
2.331 
2.317 

2.374 
2.356 
2.340 
2.325 
2.311 

2.371 
2.353 
2.336 
2.321 
2.308 

2.369 
2.351 
2.335 
2.320 
2.306 

2.369 
2.351 
2.334 
2.319 
2.305 

2.369 
2.351 
2.334 
2.319 
2.305 

22 2.383 
23 2.370 
24 2.358 
25 2.346 
26 2.336 
27 2.326 

2.337 
2.325 
2.314 
2.303 
2.294 
2.285 

2.316 
2.304 
2.293 
2.283 
2.274 
2.265 

2.305 
2.293 
2.283 
2.273 
2.264 
2.255 

2.299 
2.287 
2.277 
2.267 
2.258 
2.249 

2.295 
2.284 
2.273 
2.263 
2.254 
2.246 

2.293 
2.282 
2.271 
2.261 
2.252 
2.244 

2.293 
2.281 
2.270 
2.260 
2.251 
2.242 

2.293 
2.281 
2.270 
2.260 
2.251 
2.242 

28 2.317 
29 2.308 
30 2.300 
40 2.239 
50 2.201 

2.276 
2.268 
2.261 
2.206 
2.171 

2.257 
2.250 
2.242 
2.189 
2.15fi 

2.247 
2.240 
2.232 
2.180 
2.147 

2.241 
2.234 
2.227 
2.174 
2.142 

2.238 
2.230 
2.223 
2.171 
2.138 

2.236 
2.228 
2.221 
2.168 
2.135 

2.234 
2.227 
2.220 
2.167 
2.134 

2.234 
2.226 
2.219 
2.166 
2.133 

60 2.174 
70 2.154 
80 2.139 

100 2.116 

2.147 
2.129 
2.115 
2.094 

2.133 
2.115 
2.102 
2.083 

2.124 
2.107 
2.094 
2.075 

2.119 
2.102 
2.089 
2.071 

2.115 
2.099 
2.086 
2.067 

2.113 
2.096 
2.083 
2.065 

2.111 
2.094 
2.082 
2.063 

2.110 
2.093 
2.080 
2.062 

300 2.042 
500 2.022 

1000 2.002 

2.029 
2.012 
1.995 

2.022 
2.006 
1.991 

2.017 
2.002 
1.988 

2.014 
2.000 
1.986 

2.011 
1.998 
1.985 

2.010 
1.996 
1.984 

2.008 
1.995 
1.983 

2.007 
1.994 
1.982 
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Table B6 continued 

p = 0.99, 1 - cy = 0.90 

I 

403 

n 2 3 4 5 6 7 8 9 10 

2 9.744 7.493 6.614 6.150 5.865 5.671 5.532 5.427 5.345 
3 5.888 5.199 4.898 4.730 4.624 4.551 4.498 4.459 4.428 
4 4.879 4.488 4.312 4.213 4.151 4.109 4.078 4.056 4.039 
5 4.395 4.122 3.997 3.928 3.884 3.855 3.835 3.820 3.809 
6 4.104 3.892 3.795 3.741 3.708 3.686 3.670 3.659 3.652 

7 3.906 3.731 3.651 3.607 3.580 3.562 3.550 3.542 3.536 
8 3.762 3.612 3.543 3.506 3.483 3.468 3.458 3.451 3.446 
9 3.652 3.519 3.459 3.425 3.405 3.392 3.384 3.378 3.374 

10 3.564 3.445 3.390 3.360 3.342 3.331 3.323 3.318 3.315 
11 3.492 3.383 3.333 3.306 3.289 3.279 3.272 3.268 3.265 

12 3.432 3.331 3.285 3.259 3.244 3.235 3.229 3.225 3.222 
13 3.381 3.287 3.243 3.220 3.205 3.197 3.191 3.187 3.185 
14 3.337 3.249 3.208 3.185 3.172 3.163 3.158 3.154 3.152 
15 3.299 3.215 3.176 3.155 3.142 3.134 3.129 3.126 3.124 
16 3.265 3.185 3.148 3.128 3.115 3.108 3.103 3.100 3.098 

17 3.235 3.159 3.123 3.103 3.092 3.084 3.080 3.077 3.075 
18 3.208 3.135 3.100 3.082 3.070 3.063 3.059 3.056 3.054 
19 3.184 3.113 3.080 3.062 3.051 3.044 3.039 3.037 3.035 
20 3.162 3.094 3.062 3.044 3.033 3.026 3.022 3.019 3.018 
21 3.142 3.076 3.045 3.027 3.017 3.010 3.006 3.003 3.002 

22 3.124 3.060 3.029 3.012 3.002 2.996 2.991 2.989 2.987 
23 3.107 3.044 3.015 2.998 2.988 2.982 2.978 2.975 2.973 
24 3.091 3.030 3.002 2.985 2.975 2.969 2.965 2.963 2.961 
25 3.077 3.018 2.989 2.973 2.964 2.957 2.953 2.951 2.949 
26 3.063 3.005 2.978 2.962 2.953 2.947 2.943 2.940 2.938 

27 3.051 2.994 2.967 2.952 2.942 2.936 2.932 2.930 2.928 
28 3.039 2.984 2.957 2.942 2.933 2.927 2.923 2.920 2.918 
29 3.028 2.974 2.948 2.933 2.924 2.918 2.914 2.911 2.909 
30 3.018 2.965 2.939 2.924 2.915 2.909 2.905 2.903 2.901 
40 2.940 2.895 2.872 2.859 2.851 2.845 2.842 2.839 2.837 

50 2.891 2.850 2.830 2.818 2.810 2.805 2.801 2.799 2.797 
60 2.856 2.819 2.800 2.789 2.782 2.777 2.773 2.770 2.768 
70 2.830 2.796 2.778 2.768 2.761 2.756 2.752 2.749 2.747 
80 2.810 2.778 2.761 2.751 2.744 2.739 2.736 2.733 2.731 

100 2.780 2.751 2.736 2.727 2.720 2.716 2.712 2.710 2.708 
300 2.684 2.667 2.657 2.651 2.647 2.643 2.641 2.639 2.637 
500 2.657 2.644 2.636 2.631 2.628 2.625 2.623 2.621 2.620 

1000 2.632 2.622 2.617 2.613 2.611 2.609 2.607 2.606 2.605 
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Table B6 continued 

1) = 0.90. 1 - cv = 0.95 

n 2 3 4 8 9 10 

4.357 
3.408 
3.015 
2.784 
2.627 

5 

5.195 
3.679 
3.155 
2.872 
2.689 

6 

4.890 
3.581 
3.103 
2.837 
2.663 

7 

4.689 
3.515 
3.068 
2.815 
2.648 

2 9.515 
3 4.851 
4 3.780 
5 3.291 
6 3.005 

6.711 5.703 
4.135 3.838 
3.403 3.242 
3.039 2.930 
2.814 2.732 

4.546 
3.468 
3.044 
2.801 
2.638 

4.439 
3.434 
3.027 
2.791 
2.631 

7 2.815 
8 2.679 
9 2.575 

10 2.494 
11 2.428 

2.660 2.593 
2.547 2.490 
2.460 2.410 
2.390 2.345 
2.333 2.292 

2.559 
2.461 
2.384 
2.322 
2.271 

2.539 
2.444 
2.370 
2.309 
2.259 

2.527 
2.434 
2.361 
2.302 
2.252 

2.519 
2.429 
2.356 
2.298 
2.249 

2.515 
2.425 
2.354 
2.295 
2.247 

2.512 
2.423 
2.353 
2.294 
2.246 

12 2.373 
13 2.327 
14 2.287 
15 2.253 
16 2.223 

2.286 2.247 
2.245 2.209 
2.211 2.177 
2.180 2.148 
2.154 2.123 

2.228 
2.191 
2.159 
2.131 
2.106 

2.217 
2.180 
2.149 
2.121 
2.097 

2.210 
2.175 
2.143 
2.116 
2.092 

2.207 
2.171 
2.140 
2.113 
2.089 

2.205 
2.170 
2.139 
2.111 
2.087 

2.205 
2.169 
2.138 
2.111 
2.086 

17 2.196 
18 2.173 
19 2.152 
20 2.132 
21 2.115 

2.130 2.100 
2.109 2.080 
2.090 2.062 
2.073 2.046 
2.057 2.031 

2.084 
2.065 
2.047 
2.031 
2.016 

2.075 
2.056 
2.038 
2.023 
2.008 

2.070 
2.051 
2.033 
2.018 
2.003 

2.067 
2.048 
2.030 
2.015 
2.000 

2.066 
2.046 
2.029 
2.013 
1.998 

2.065 
2.045 
2.028 
2.012 
1.997 

22 2.099 
23 2.084 
24 2.071 
25 2.058 
26 2.047 

2.043 2.017 
2.030 2.005 
2.018 1.993 
2.007 1.983 
1.997 1.973 

2.003 
1.991 
1.980 
1.969 
1.959 

1.995 
1.983 
1.971 
1.961 
1.951 

1.990 
1.978 
1.967 
1.956 
1.947 

1.987 
1.975 
1.963 
1.953 
1.943 

1.985 
1.973 
1.962 
1.951 
1.942 

1.984 
1.972 
1.961 
1.950 
1.940 

27 2.036 
28 2.026 
29 2.017 
30 2.008 
40 1.943 

1.987 1.963 
1.978 1.955 
1.970 1.947 
1.962 1.939 
1.903 1.883 

1.950 
1.942 
1.934 
1.927 
1.872 

1.943 
1.934 
1.926 
1.919 
1.865 

1.938 
1.929 
1.921 
1.914 
1.860 

1.934 
1.926 
1.918 
1.911 
1.857 

1.933 
1.924 
1.916 
1.909 
1.854 

1.931 
1.923 
1.915 
1.908 
1.853 

50 1.902 
60 1.873 
70 1.852 
80 1.835 

100 1.811 

1.866 1.848 
1.841 1.824 
1.822 1.806 
1.807 1.793 
1.786 1.773 

1.838 
1.814 
1.797 
1.784 
1.764 

1.831 
1.808 
1.791 
1.777 
1.759 

1.826 
1.803 
1.786 
1.773 
1.754 

1.823 
1.800 
1.783 
1.770 
1.751 

1.821 
1.797 
1.781 
1.768 
1.749 

1.819 
1.796 
1.779 
1.766 
1.747 

300 1.732 
500 1.711 

1000 1.690 

1.718 1.710 
1.700 1.693 
1.682 1.678 

1.705 
1.689 
1.675 

1.701 
1.686 
1.673 

1.698 
1.684 
1.671 

1.693 
1.679 
1.668 

1.696 
1.682 
1.670 

1.694 
1.681 
1.669 
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Table B6 continued 

p = 0.95, 1 - CY = 0.95 

1 

n 2 3 4 5 6 7 8 9 10 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 

50 
60 
70 
80 

100 

300 
500 

11.050 
5.663 
4.431 
3.870 
3.542 

3.324 
3.167 
3.048 
2.954 
2.878 

2.815 
2.761 
2.716 
2.676 
2.641 

2.610 
2.583 
2.558 
2.536 
2.516 

2.497 
2.480 
2.464 
2.450 
2.436 

2.424 
2.412 
2.401 
2.390 
2.314 

2.265 
2.231 
2.206 
2.186 
2.157 

2.064 
2.039 

7.732 
4.795 
3.967 
3.555 
3.303 

3.129 
3.002 
2.903 
2.825 
2.760 

2.706 
2.660 
2.621 
2.586 
2.556 

2.529 
2.505 
2.483 
2.463 
2.445 

2.429 
2.414 
2.400 
2.387 
2.375 

2.364 
2.353 
2.343 
2.334 
2.266 

2.223 
2.193 
2.170 
2.153 
2.128 

2.047 
2.025 

6.535 
4.430 
3.764 
3.416 
3.196 

3.042 
2.927 
2.838 
2.766 
2.707 

2.657 
2.614 
2.577 
2.545 
2.516 

2.491 
2.468 
2.448 
2.429 
2.412 

2.396 
2.382 
2.369 
2.357 
2.345 

2.335 
2.325 
2.315 
2.307 
2.242 

2.201 
2.173 
2.152 
2.136 
2.112 

2.038 
2.018 

5.927 
4.231 
3.651 
3.339 
3.137 

2.995 
2.887 
2.803 
2.734 
2.678 

2.630 
2.589 
2.553 
2.522 
2.495 

2.470 
2.448 
2.428 
2.410 
2.393 

2.378 
2.364 
2.351 
2.340 
2.328 

2.318 
2.309 
2.299 
2.291 
2.228 

2.188 
2.161 
2.140 
2.125 
2.102 

2.031 
2.013 

5.561 
4.106 
3.581 
3.291 
3.101 

2.966 
2.863 
2.781 
2.715 
2.660 

2.614 
2.574 
2.539 
2.509 
2.482 

2.457 
2.436 
2.416 
2.398 
2.382 

2.367 
2.354 
2.341 
2.329 
2.318 

2.308 
2.298 
2.290 
2.281 
2.219 

2.180 
2.153 
2.133 
2.117 
2.095 

2.027 
2.009 

5.318 
4.021 
3.534 
3.259 
3.078 

2.947 
2.847 
2.768 
2.703 
2.650 

2.604 
2.565 
2.530 
2.500 
2.473 

2.450 
2.428 
2.409 
2.391 
2.375 

2.360 
2.347 
2.334 
2.322 
2.311 

2.301 
2.292 
2.283 
2.275 
2.213 

2.174 
2.147 
2.127 
2.112 
2.090 

2.023 
2.006 

5.144 
3.960 
3.500 
3.237 
3.061 

2.934 
2.837 
2.759 
2.696 
2.643 

2.597 
2.559 
2.525 
2.495 
2.468 

2.445 
2.423 
2.404 
2.386 
2.370 

2.356 
2.342 
2.330 
2.318 
2.307 

2.297 
2.288 
2.279 
2.270 
2.208 

2.170 
2.143 
2.123 
2.108 
2.086 

2.021 
2.004 

5.015 
3.914 
3.475 
3.221 
3.050 

2.925 
2.830 
2.753 
2.690 
2.638 

2.593 
2.555 
2.521 
2.491 
2.465 

2.441 
2.420 
2.401 
2.383 
2.367 

2.353 
2.339 
2.327 
2.315 
2.304 

2.294 
2.285 
2.276 
2.267 
2.205 

2.167 
2.140 
2.120 
2.105 
2.083 

2.019 
2.003 

4.914 
3.879 
3.456 
3.209 
3.042 

2.919 
2.825 
2.749 
2.687 
2.635 

2.591 
2.552 
2.519 
2.489 
2.463 

2.439 
2.418 
2.399 
2.381 
2.365 

2.351 
2.337 
2.325 
2.313 
2.302 

2.292 
2.283 
2.274 
2.265 
2.203 

2.164 
2.138 
2.118 
2.103 
2.081 

2.017 
2.001 

1000 2.014 2.005 1.999 1.996 1.993 1.991 1.989 1.988 1.987 
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Table B6 continued 

p 10.99, 1 - 01 = 0.95 

1 

n 2 3 4 5 6 7 8 9 10 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 

50 
60 
70 
80 

100 

300 
500 

13.978 
7.220 
5.681 
4.982 
4.574 

4.303 
4.108 
3.961 
3.844 
3.749 

3.670 
3.604 
3.547 
3.497 
3.453 

3.415 
3.380 
3.349 
3.320 
3.295 

3.271 
3.250 
3.230 
3.211 
3.194 

3.178 
3.163 
3.149 
3.136 
3.037 

2.975 
2.931 
2.898 
2.872 
2.835 

2.713 
2.679 

9.675 
6.057 
5.046 
4.546 
4.240 

4.030 
3.876 
3.757 
3.662 
3.583 

3.518 
3.462 
3.414 
3.372 
3.334 

3.301 
3.271 
3.245 
3.220 
3.198 

3.178 
3.159 
3.141 
3.125 
3.110 

3.096 
3.083 
3.071 
3.060 
2.973 

2.918 
2.880 
2.851 
2.829 
2.796 

2.690 
2.662 

8.113 
5.558 
4.759 
4.345 
4.084 

3.902 
3.766 
3.660 
3.575 
3.504 

3.445 
3.394 
3.350 
3.311 
3.277 

3.246 
3.219 
3.194 
3.171 
3.150 

3.131 
3.114 
3.098 
3.083 
3.069 

3.056 
3.043 
3.032 
3.021 
2.940 

2.889 
2.853 
2.826 
2.805 
2.774 

2.678 
2.652 

7.316 
5.281 
4.596 
4.230 
3.995 

3.828 
3.703 
3.605 
3.525 
3.459 

3.403 
3.355 
3.313 
3.276 
3.243 

3.214 
3.188 
3.164 
3.143 
3.123 

3.105 
3.088 
3.072 
3.058 
3.044 

3.032 
3.020 
3.009 
2.999 
2.921 

2.871 
2.836 
2.810 
2.790 
2.761 

2.669 
2.645 

6.834 
5.105 
4.492 
4.156 
3.937 

3.781 
3.663 
3.569 
3.493 
3.430 

3.376 
3.330 
3.289 
3.254 
3.222 

3.194 
3.169 
3.145 
3.124 
3.105 

3.087 
3.071 
3.056 
3.042 
3.029 

3.016 
3.005 
2.994 
2.984 
2.908 

2.859 
2.825 
2.800 
2.780 
2.752 

2.663 
2.640 

6.511 
4.983 
4.419 
4.104 
3.897 

3.748 
3.635 
3.545 
3.472 
3.410 

3.358 
3.313 
3.274 
3.239 
3.208 

3.180 
3.155 
3.133 
3.112 
3.093 

3.076 
3.060 
3.045 
3.031 
3.018 

3.006 
2.995 
2.984 
2.974 
2.899 

2.851 
2.817 
2.793 
2.773 
2.745 

2.659 
2.637 

6.279 
4.894 
4.366 
4.067 
3.868 

3.725 
3.615 
3.528 
3.456 
3.396 

3.345 
3.301 
3.262 
3.228 
3.198 

3.171 
3.146 
3.124 
3.103 
3.085 

3.068 
3.052 
3.037 
3.023 
3.011 

2.999 
2.987 
2.977 
2.967 
2.892 

2.845 
2.812 
2.787 
2.768 
2.740 

2.655 
2.634 

6.105 
4.826 
4.325 
4.038 
3.847 

3.707 
3.600 
3.515 
3.445 
3.386 

3.336 
3.292 
3.254 
3.221 
3.191 

3.164 
3.140 
3.117 
3.097 
3.079 

3.062 
3.046 
3.031 
3.018 
3.005 

2.993 
2.982 
2.972 
2.962 
2.888 

2.840 
2.807 
2.783 
2.764 
2.736 

2.653 
2.632 

5.969 
4.773 
4.293 
4.016 
3.830 

3.694 
3.589 
3.505 
3.436 
3.378 

3.329 
3.286 
3.248 
3.21.5 
3.185 

3.159 
3.135 
3.113 
3.093 
3.074 

3.057 
3.042 
3.027 
3.014 
3.001 

2.989 
2.978 
2.968 
2.958 
2.884 

2.837 
2.804 
2.780 
2.761 
2.733 

2.650 
2.630 

1000 2.647 2.635 2.628 2.623 2.619 2.617 2.615 2.613 2.611 
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Table B6 continued 
p = 0.90, 1 - a = 0.99 

1 

n 2 3 4 5 6 7 8 9 10 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 

50 
60 
70 
80 

100 

300 
500 

1000 

21.528 
7.544 
5.219 
4.280 
3.766 

3.439 
3.211 
3.042 
2.911 
2.806 

2.720 
2.648 
2.587 
2.534 
2.488 

2.448 
2.412 
2.380 
2.351 
2.325 

2.301 
2.279 
2.259 
2.240 
2.223 

2.207 
2.192 
2.179 
2.166 
2.070 

2.010 
1.969 
1.938 
1.914 
1.880 

1.768 
1.738 
1.709 

11.793 
5.718 
4.350 
3.728 
3.365 

3.123 
2.949 
2.817 
2.712 
2.628 

2.558 
2.498 
2.448 
2.403 
2.365 

2.331 
2.300 
2.273 
2.248 
2.226 

2.205 
2.187 
2.169 
2.153 
2.139 

2.125 
2.112 
2.100 
2.089 
2.006 

1.954 
1.918 
1.892 
1.871 
1.841 

1.747 
1.722 
1.698 

8.877 
5.009 
3.986 
3.490 
3.188 

2.983 
2.832 
2.715 
2.623 
2.547 

2.483 
2.430 
2.383 
2.343 
2.307 

2.276 
2.248 
2.223 
2.200 
2.179 

2.160 
2.142 
2.126 
2.111 
2.097 

2.084 
2.072 
2.061 
2.051 
1.973 

1.925 
1.891 
1.867 
1.848 
1.820 

1.735 
1.712 
1.691 

7.530 
4.636 
3.788 
3.359 
3.091 

2.905 
2.767 
2.659 
2.573 
2.502 

2.442 
2.392 
2.348 
2.310 
2.276 

2.245 
2.218 
2.194 
2.172 
2.152 

2.134 
2.117 
2.101 
2.087 
2.074 

2.061 
2.050 
2.039 
2.029 
1.954 

1.907 
1.875 
1.852 
1.834 
1.807 

1.727 
1.706 
1.687 

6.764 
4.408 
3.665 
3.276 
3.030 

2.856 
2.726 
2.625 
2.543 
2.475 

2.418 
2.369 
2.326 
2.289 
2.256 

2.227 
2.200 
2.177 
2.155 
2.136 

2.118 
2.101 
2.086 
2.072 
2.059 

2.047 
2.035 
2.025 
2.015 
1.941 

1.896 
1.864 
1.841 
1.824 
1.798 

1.721 
1.702 
1.683 

6.272 
4.253 
3.581 
3.220 
2.989 

2.824 
2.700 
2.602 
2.522 
2.457 

2.401 
2.353 
2.312 
2.275 
2.243 

2.214 
2.189 
2.165 
2.144 
2.125 

2.107 
2.091 
2.076 
2.062 
2.049 

2.037 
2.026 
2.015 
2.006 
1.933 

1.888 
1.857 
1.834 
1.817 
1.792 

1.717 
1.698 
1.681 

5.931 
4.142 
3.520 
3.180 
2.959 

2.801 
2.681 
2.586 
2.509 
2.445 

2.390 
2.343 
2.302 
2.266 
2.235 

2.206 
2.181 
2.158 
2.137 
2.118 

2.100 
2.084 
2.069 
2.055 
2.042 

2.031 
2.019 
2.009 
1.999 
1.927 

1.882 
1.851 
1.829 
1.812 
1.787 

1.714 
1.695 
1.679 

5.680 
4.059 
3.475 
3.151 
2.938 

2.784 
2.667 
2.575 
2.499 
2.436 

2.382 
2.336 
2.296 
2.260 
2.229 

2.201 
2.175 
2.152 
2.132 
2.113 

2.095 
2.079 
2.064 
2.051 
2.038 

2.026 
2.015 
2.004 
1.995 
1.922 

1.878 
1.847 
1.825 
1.808 
1.783 

1.711 
1.693 
1.677 

5.488 
3.994 
3.440 
3.128 
2.921 

2.772 
2.658 
2.566 
2.492 
2.430 

2.377 
2.331 
2.291 
2.256 
2.224 

2.197 
2.171 
2.149 
2.128 
2.109 

2.092 
2.076 
2.061 
2.047 
2.034 

2.023 
2.011 
2.001 
1.991 
1.919 

1.874 
1.844 
1.821 
1.804 
1.780 

1.709 
1.691 
1.676 
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Table B6 continued 
p = 0.95, 1 - CY = 0.99 

1 

n 2 3 4 5 6 7 8 9 10 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 

50 
60 
70 
80 

100 

300 
500 

24.993 
8.796 
6.106 
5.021 
4.429 

4.052 
3.788 
3.593 
3.442 
3.321 

3.222 
3.138 
3.068 
3.007 
2.953 

2.906 
2.865 
2.827 
2.794 
2.763 

2.735 
2.710 
2.686 
2.665 
2.645 

2.626 
2.609 
2.592 
2.577 
2.465 

2.394 
2.345 
2.309 
2.281 
2.239 

2.107 
2.071 

1000 2.036 

13.576 
6.616 
5.055 
4.348 
3.936 

3.662 
3.464 
3.314 
3.196 
3.100 

3.021 
2.953 
2.896 
2.845 
2.801 

2.762 
2.727 
2.696 
2.668 
2.642 

2.618 
2.597 
2.577 
2.559 
2.542 

2.526 
2.511 
2.497 
2.484 
2.387 

2.326 
2.284 
2.253 
2.229 
2.194 

2.082 
2.052 
2.023 

10.156 
5.764 
4.609 
4.052 
3.714 

3.484 
3.315 
3.185 
3.082 
2.997 

2.926 
2.866 
2.814 
2.769 
2.729 

2.693 
2.662 
2.633 
2.607 
2.583 

2.562 
2.542 
2.523 
2.506 
2.491 

2.476 
2.462 
2.449 
2.437 
2.348 

2.291 
2.252 
2.224 
2.201 
2.169 

2.067 
2.040 
2.015 

8.575 
5.313 
4.364 
3.886 
3.589 

3.383 
3.231 
3.112 
3.017 
2.938 

2.873 
2.816 
2.767 
2.725 
2.687 

2.654 
2.624 
2.596 
2.572 
2.549 

2.529 
2.510 
2.492 
2.476 
2.461 

2.447 
2.434 
2.421 
2.410 
2.324 

2.270 
2.233 
2.205 
2.184 
2.153 

2.058 
2.033 
2.010 

7.675 
5.034 
4.209 
3.780 
3.509 

3.319 
3.177 
3.065 
2.976 
2.901 

2.839 
2.785 
2.738 
2.697 
2.661 

2.629 
2.600 
2.573 
2.549 
2.528 

2.508 
2.489 
2.472 
2.456 
2.442 

2.428 
2.415 
2.403 
2.392 
2.308 

2.256 
2.219 
2.193 
2.172 
2.142 

2.051 
2.028 
2.006 

7.096 
4.844 
4.102 
3.707 
3.454 

3.275 
3.140 
3.034 
2.948 
2.876 

2.816 
2.764 
2.718 
2.678 
2.643 

2.612 
2.583 
2.558 
2.534 
2.513 

2.493 
2.475 
2.459 
2.443 
2.429 

2.415 
2.403 
2.391 
2.380 
2.297 

2.246 
2.210 
2.184 
2.164 
2.134 

2.046 
2.023 
2.003 

6.693 
4.707 
4.024 
3.654 
3.414 

3.243 
3.113 
3.01 1 
2.928 
2.858 

2.799 
2.748 
2.704 
2.665 
2.631 

2.600 
2.572 
2.547 
2.524 
2.503 

2.483 
2.465 
2.449 
2.434 
2.420 

2.406 
2.394 
2.382 
2.371 
2.290 

2.238 
2.203 
2.177 
2.157 
2.128 

2.042 
2.020 
2.000 

6.396 
4.604 
3.966 
3.614 
3.384 

3.219 
3.094 
2.994 
2.913 
2.845 

2.787 
2.737 
2.694 
2.656 
2.622 

2.591 
2.564 
2.53!) 
2.516 
2.495 

2.476 
2.458 
2.442 
2.427 
2.413 

2.400 
2.387 
2.376 
2.365 
2.283 

2.233 
2.198 
2.172 
2.152 
2.124 

2.039 
2.018 
1.999 

6.169 
4.523 
3.920 
3.583 
3.361 

3.201 
3.079 
2.981 
2.902 
2.835 

2.778 
2.72!) 
2.686 
2.648 
2.6 15 

2.585 
2.557 
2.533 
2.510 
2.490 

2.471 
2.433 
2.437 
2.422 
2.408 

2.395 
2.383 
2.371 
2.360 
2.280 

2.229 
2.194 
2.168 
2.148 
2.120 

2.036 
2.015 
1.997 
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Table B6 continued 

p = 0.99, 1 - ff = 0.99 

1 

n 2 3 4 5 6 7 8 9 10 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 

23 
24 
25 
26 
27 
28 

29 
30 
40 
50 
60 

70 
80 

100 
300 
500 

1000 

31.602 
11.197 
7.810 
6.448 
5.705 

5.232 
4.903 
4.658 
4.469 
4.317 

4.192 
4.088 
3.999 
3.922 
3.855 

3.796 
3.743 
3.696 
3.654 
3.615 
3.580 

3.547 
3.517 
3.490 
3.464 
3.441 
3.419 

3.398 
3.378 
3.235 
3.144 
3.080 

3.033 
2.996 
2.942 
2.769 
2.722 
2.676 

16.968 
8.334 
6.407 
5.538 
5.032 

4.697 
4.456 
4.273 
4.129 
4.012 

3.914 
3.832 
3.761 
3.700 
3.645 

3.597 
3.554 
3.516 
3.481 
3.449 
3.420 

3.394 
3.369 
3.346 
3.324 
3.305 
3.286 

3.269 
3.252 
3.130 
3.053 
2.999 

2.959 
2.928 
2.882 
2.736 
2.696 
2.659 

12.587 
7.206 
5.802 
5.128 
4.722 

4.446 
4.244 
4.089 
3.965 
3.864 

3.779 
3.707 
3.644 
3.590 
3.542 

3.499 
3.461 
3.427 
3.395 
3.366 
3.340 

3.316 
3.293 
3.272 
3.253 
3.235 
3.218 

3.202 
3.187 
3.076 
3.005 
2.956 

2.919 
2.891 
2.849 
2.717 
2.681 
2.648 

10.561 
6.604 
5.465 
4.895 
4.543 

4.300 
4.121 
3.981 
3.869 
3.777 

3.699 
3.633 
3.575 
3.526 
3.481 

3.441 
3.405 
3.373 
3.343 
3.316 
3.292 

3.269 
3.248 
3.228 
3.210 
3.193 
3.177 

3.162 
3.148 
3.043 
2.976 
2.929 

2.894 
2.867 
2.828 
2.704 
2.672 
2.641 

9.405 
6.229 
5.249 
4.744 
4.427 

4.205 
4.039 
3.910 
3.806 
3.720 

3.647 
3.585 
3.530 
3.483 
3.440 

3.402 
3.368 
3.338 
3.309 
3.284 
3.260 

3.238 
3.218 
3.199 
3.182 
3.166 
3.150 

3.136 
3.122 
3.021 
2.956 
2.911 

2.877 
2.851 
2.813 
2.695 
2.665 
2.636 

8.661 
5.973 
5.099 
4.638 
4.345 

4.138 
3.982 
3.860 
3.762 
3.680 

3.610 
3.550 
3.498 
3.453 
3.412 

3.375 
3.343 
3.313 
3.286 
3.261 
3.238 

3.217 
3.197 
3.179 
3.162 
3.146 
3.131 

3.117 
3.104 
3.005 
2.942 
2.898 

2.865 
2.840 
2.803 
2.689 
2.659 
2.632 

8.142 
5.786 
4.988 
4.560 
4.284 

4.088 
3.940 
3.824 
3.729 
3.650 

3.583 
3.525 
3.475 
3.430 
3.391 

3.355 
3.324 
3.295 
3.268 
3.244 
3.221 

3.201 
3.182 
3.164 
3.147 
3.132 
3.117 

3.104 
3.091 
2.994 
2.932 
2.888 

2.856 
2.831 
2.795 
2.683 
2.655 
2.629 

7.759 
5.644 
4.903 
4.499 
4.237 

4.050 
3.908 
3.796 
3.704 
3.627 

3.562 
3.506 
3.457 
3.414 
3.375 

3.340 
3.309 
3.281 
3.255 
3.231 
3.209 

3.189 
3.170 
3.153 
3.136 
3.121 
3.107 

3.093 
3.081 
2.985 
2.923 
2.881 

2.849 
2.824 
2.788 
2.679 
2.652 
2.627 

7.465 
5.533 
4.836 
4.452 
4.200 

4.020 
3.883 
3.773 
3.684 
3.609 

3.546 
3.491 
3.443 
3.400 
3.363 

3.329 
3.298 
3.270 
3.244 
3.221 
3.199 

3.180 
3.161 
3.144 
3.128 
3.113 
3.098 

3.085 
3.073 
2.978 
2.917 
2.875 

2.843 
2.819 
2.783 
2.676 
2.649 
2.624 



410 Appendix B 

Table B7: Values of X for the simultaneous tolerance factor k l , ( d )  in (3.2.18) 

with m - ml = 1 and n-+ 5 d 5 (% + 

1 - ff = 0.90 
2) = 0.90 2) = 0.95 2) = 0.99 

- 
7 = 2  7 = 3  7 = 4  7 = 2  r = 3  r = 4  7 = 2  7 = 3  r = 4  n 

4 
5 
6 
7 
8 

9 
10 
11 
12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 

25 
30 
35 
40 
50 

55 
65 
75 
90 
120 

150 
200 
300 
400 
500 

- 

2.1352 
1.6448 
1.4524 
1.3505 
1.2874 

1.2444 
1.2133 
1.1897 
1.1711 
1.1561 

1.1437 
1.1334 
1.1245 
1.1169 
1.1102 

1.1044 
1.0992 
1.0945 
1.0903 
1.0866 

1.0800 
1.0676 
1.0590 
1.0525 
1.0435 

1.0403 
1.0352 
1.0314 
1.0273 
1.0220 

1.0187 
1.0153 
1.0116 
1.0096 
1.0083 

2.1553 
1.6589 
1.4641 
1.3608 
1.2968 

1.2533 
1.2216 
1.1976 
1.1787 
1.1634 

1.1508 
1.1402 
1.1312 
1.1234 
1.1166 

1.1106 
1.1053 
1.1005 
1.0962 
1.0923 

1.0855 
1.0728 
1.0638 
1.0571 
1.0477 

1.0443 
1.0390 
1.0350 
1.0306 
1.0250 

1.0214 
1.0177 
1.0136 
1.0113 
1,0099 

2.1658 
1.6664 
1.4704 
1.3665 
1.3021 

1.2582 
1.2263 
1.2021 
1.1830 
1.1676 

1.1549 
1.1442 
1.1350 
1.1272 
1.1203 

1.1142 
1.1088 
1.1040 
1.0996 
1.0957 

1.0888 
1.0759 
1.0667 
1,0599 
1.0503 

1.0468 
1.0413 
1.0372 
1.0327 
1.0268 

1.0231 
1.0191 
1.0148 
1.0124 
1.0109 

2.2370 
1.7108 
1.5041 
1.3943 
1.3261 

1.2796 
1.2458 
1.2200 
1.1997 
1.1833 

1.1697 
1.1583 
1.1485 
1.1400 
1.1326 

1.1261 
1.1203 
1.1151 
1.1105 
1.1062 

1.0988 
1.0848 
1.0749 
1.0674 
1.0569 

1.0530 
1,0470 
1.0425 
1.0375 
1.0309 

1.0267 
1.0223 
1.0174 
1.0146 
1.0128 

2.2530 
1.7222 
1.5136 
1.4027 
1.3339 

1.2868 
1.2526 
1.2266 
1.2060 
1.1893 

1.1756 
1.1639 
1.1540 
1.1454 
1.1379 

1.1313 
1.1254 
1.1201 
1.1153 
1.1110 

1.1034 
1.0891 
1.0789 
1.0712 
1.0604 

1.0564 
1.0501 
1.0454 
1.0402 
1.0333 

1.0289 
1.0242 
1.0190 
1.0161 
10141 

2.2615 
1.7284 
1.5189 
1.4075 
1.3383 

1.2910 
1.2566 
1.2304 
1.2097 
1.1929 

1.1790 
1.1673 
1.1573 
1.1487 
1.1411 

1.1344 
1.1284 
1.1231 
1.1183 
1.1139 

1.1062 
1.0917 
1.0814 
1.0736 
1.0626 

1.0585 
1.0521 
1.0473 
1.0420 
1.0349 

1.0304 
1.0255 
1.0201 
1.0170 
1.0150 

2.3832 
1.8062 
1.5788 
1.4576 
1.3820 

1.3302 
1.2924 
1.2635 
1.2407 
1.2221 

1.2067 
1.1937 
1.1826 
1.1729 
1.1644 

1.1569 
1.1502 
1.1442 
1.1388 
1.1338 

1.1252 
1.1087 
1.0969 
1.0880 
1.0753 

1.0706 
1.0631 
1.0575 
1.0512 
1.0428 

1.0374 
1.0316 
1.0250 
1.0213 
1.0188 
1.0129 

2.3948 
1.8146 
1.5859 
1.4639 
1.3878 

1.3357 
1.2976 
1.2685 
1.2454 
1.2267 

1,2ill 
1.1980 
1.1867 
1.1769 
1.1683 

1.1608 
1.1540 
1.1479 
1.1423 
1.1374 

1.1287 
1.1119 
1.0999 
1.0909 
1.0779 

1.0731 
1.0655 
1.0597 
1.0532 
1.0446 

1.0390 
1.0330 
1.0262 
1.0223 
1.0197 
1.0136 

2.4012 
1.8194 
1.5901 
1.4677 
1.3913 

1.3390 
1.3008 
1.2715 
1.2484 
1.2296 

1.2139 
1.2007 
1.1894 
1.1796 
1.1709 

1.1633 
1.1565 
1.1504 
1.1448 
1.1398 

1.1309 
1.1141 
1.1020 
1.0928 
1.0797 

1.0748 
1.0671 
1.0613 
1.0547 
1.0459 

1.0402 
1.0340 
1.0271 
1.0231 
1.0204 
1.0141 1000 1.0054 1.0066 1.0073 1.0087 1.0096 1.0102 

Reproduced with permission from Taylor and Francis, Ltd.; http://www.informaworld.com 
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Table B7 continued 

411 

1 - (Y = 0.95 
p = 0.90 p = 0.95 p = 0.9!3 

n r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4 

4 
5 
6 
7 
8 

9 
10 
11 
12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 

25 
30 
35 
40 
50 

55 
65 
75 
90 
120 

150 
200 
300 
400 
500 

3.0774 
2.1404 
1.7990 
1.6242 
1.5179 

1.4463 
1.3946 
1.3554 
1.3246 
1.2997 

1.2791 
1.2618 
1.2470 
1.2341 
1.2229 

1.2130 
1.2041 
1.1962 
1.1890 
1.1825 

1.1711 
1.1493 
1.1337 
1.1219 
1.1050 

1.0987 
1.0887 
1.0812 
1.0726 
1.0612 

1.0538 
1.0457 
1.0366 
1.0313 
1.0277 

3.1068 
2.1594 
1.8144 
1.6377 
1.5303 

1.4579 
1.4056 
1.3660 
1.3348 
1.3096 

1.2888 
1.2712 
1.2562 
1.2431 
1.2317 

1.2217 
1.2127 
1.2046 
1.1973 
1.1907 

1.1790 
1.1568 
1.1409 
1.1288 
1.1114 

1.1049 
1.0947 
1.0868 
1.0780 
1.0661 

1.0583 
1.0497 
1.0400 
1.0343 
1.0305 

3.1222 
2.1697 
1.8229 
1.6453 
1.5374 

1.4646 
1.4121 
1.3722 
1.3409 
1.3155 

1.2946 
1.2769 
1.2618 
1.2487 
1.2372 

1.2270 
1.2180 
1.2099 
1.2025 
1.1958 

1.1841 
1.1617 
1.1456 
1.1333 
1.1157 

1.1091 
1.0986 
1.0907 
1.0816 
1.0694 

1.0614 
1.0526 
1.0424 
1.0365 
1.0326 

1000 1.0192 1.0213 1.0229 

3.2190 
2.2202 
1.8565 
1.6702 
1.5567 

1.4802 
1.4250 
1.3831 
1.3501 
1.3234 

1.3013 
1.2827 
1.2668 
1.2530 
1.2409 

1.2303 
1.2207 
1.2122 
1.2044 
1.1974 

1.1851 
1.1616 
1.1448 
1.1320 
1.1137 

1.1069 

1.0879 
1.0786 
1.0662 

1.0582 
1.0494 
1.0394 
1.0337 
1.0299 
1.0207 

1-0961 

3.2424 
2.2357 
1.8692 
1.6813 
1.5670 

1.4898 
1.4341 
1.3918 
1.3585 
1.3316 

1.3093 
1.2905 
1.2744 
1.2605 
1.2482 

1.2374 
1.2278 
1.2191 
1.2113 
1.2042 

1.1917 
1.1678 
1.1506 
1.1376 
1.1189 

1.1119 
1.1009 
1.0924 
1.0829 
1.0701 

1.0617 
1.0526 
1.0421 
1.0361 
1.0321 
1.0223 

3.2549 
2.2443 
1,8763 
1.6878 
1 5730 

1.4956 
1.4397 
1.3972 
1.3638 
1.3367 

1.3143 
1.2954 
1.2793 
1.2653 
1.2530 

1.2421 
1.2324 
1.2237 
1.2158 
1.2086 

1.1960 
1.1720 
1.1547 
1.1415 
1.1226 

1.1155 
1.1043 
1.0957 
1.0860 
1.0729 

1.0644 
1.0550 
1.0442 
1.0379 
1.0338 
1.0236 

3.4237 
2.3374 
1.9417 
1.7387 
1.6150 

1.5314 
1.4710 
1.4251 
1.3889 
1.3596 

1.3353 
1.3149 
1.2973 
1.2821 
1.2688 

1.2570 
1.2465 
1.2370 
1.2285 
1.2207 

1.2071 
1.1810 
1.1623 
1.1481 
1.1276 

1.1200 
1.1080 
1.0988 
1.0884 
1 0745 

1.0655 
1.0556 
1.0444 
1.0380 
1.0337 
1.0233 

3.4407 
2.3488 
1.9511 
1.7470 
1.6226 

1.5386 
1.4778 
1.4316 
1.3952 
1.3657 

1.3412 
1.3206 
1.3029 
1.2876 
1.2742 

1.2623 
1.2517 
1.2421 
1.2335 
1.2256 

1.2119 
1.1855 
1.1665 
1.1521 
1.1314 

1.1236 
1.1114 
1.1020 
1.0914 
10772 

1.0680 
1.0578 
1.0463 
1.0396 
1.0351 
1.0244 

3.4502 
2.3554 
1.9567 
1.7521 
1.6274 

1.5432 
1.4822 
1.4358 
1.3993 
1.3697 

1.3452 
1.3245 
1.3068 
12914 
1.2779 

1.2660 
1.2553 
12457 
1.2370 
1.2291 

1.2153 
1.1888 
1.1697 
1.1551 
1.1342 

1.12fj4 
1.1140 
1.1045 
1.0938 
1.0794 

1.0699 
1.05'36 
1.0478 
1.0409 
1.0364 
1.0753 
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Table B7 continued 

1 - a = 0.99 
P = 0.90 v = 0.95 D = 0.99 

n 

4 
5 
6 
7 
8 

9 
10 
11 
12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 

25 
30 
35 
40 
50 

55 
65 
90 
100 
120 

150 
200 
300 
400 
500 

r = 2  7 = 3  7 = 4  7 = 2  7 = 3  r = 4  7 = 2  r = 3  r = 4  

6.9820 7.0493 7.0847 
3.7835 3.8184 3.8376 
2.8229 2.8489 2.8637 
2.3771 2.3993 2.4124 
2.1219 2.1421 2.1542 

1.9567 1.9756 1.9872 
1.8407 1.8588 1.8702 
1.7547 1.7722 1.7834 
1.6881 1.7052 1.7163 
1.6349 1.6517 1.6627 

1.5913 1.6079 1.6189 
1.5549 1.5713 1.5822 
1.5240 1.5402 1.5511 
1.4974 1.5134 1,5243 
1.4741 1.4900 1.5010 

1.4536 1.4694 1.4804 
1.4354 1.4511 1.4621 
1.4191 1.4347 1.4457 
1.4044 1.4199 1.4309 
1.3911 1.4065 1.4175 

1.3678 1.3830 1.3941 
1.3234 1.3383 1.3494 
1.2916 1.3063 1.3174 
1.2675 1.2819 1.2931 
1.2328 1.2469 1.2580 

1.2198 1.2337 1.2448 
1.1992 1.2127 1.2238 
1.1655 1.1784 1.1892 
1.1561 1.1687 1.1795 
1.1413 1.1535 1.1640 

1.1253 1.1369 1.1472 
1.1077 1.1185 1.1284 
1.0873 1.0970 1.1061 
1.0753 1.0842 1.0928 
1.0672 1.0756 1.0837 

7.2943 7.3482 
3.9139 3.9425 
2.9015 2.9230 
2.4323 2.4507 
2.1638 2.1806 

1.9900 2.0058 
1.8682 1.8832 
1.7777 1.7923 
1.7078 1.7220 
1.6520 1.6659 

1.6062 1.6199 
1.5680 1.5815 
1.5356 1.5489 
1.5076 1.5208 
1.4833 1.4963 

1.4618 1.4747 
1.4428 1.4556 
1.4257 1.4384 
1.4103 1.4229 
1.3964 1.4089 

1.3720 1.3844 
1.3257 1.3377 
1.2926 1.3043 
1.2675 1.2790 
1.2316 1.2427 

1.2182 1.2291 
1.1970 1.2076 
1.1625 1.1724 
1.1529 1.1626 
1.1379 1.1471 

1.1218 1.1305 
1.1041 1.1121 
1.0837 1.0909 
1.0720 1.0784 
1.0640 1.0700 
1.0448 1.0494 

7.3771 
3.9586 
2.9356 
2.4619 
2.1911 

2.0159 
1.8931 
1.8020 
1.7316 
1.6754 

1.6294 
1.5910 
1.5584 
1.5303 
1.5058 

1.4842 
1.4650 
1.4479 
1.4324 
1.4184 

1.3938 
1.3472 
1.3137 
1.2884 
1.2520 

1.2383 
1.2166 
1.1811 
1.1712 
1.1555 

1.1386 
1.1197 
1.0978 
1.0849 
1.0761 
1.0543 

7.7484 7.7876 7.8096 
4.1086 4.1298 4.1423 
3.0218 3.0378 3.0477 
2.5188 2.5325 2.5413 
2.2312 2.2436 2.2518 

2.0452 2.0568 2.0647 
1.9148 1.9258 1.9335 
1.8180 1.8286 1.8361 
1.7432 1.7535 1.7609 
1.6835 1.6935 1.7009 

1.6346 1.6445 1.6517 
1.5938 1.6035 1.6107 
1.5592 1.5686 1.5759 
1.5293 1.5387 1.6458 
1.5033 1.5125 1.5197 

1.4805 1.4895 1.4967 
1.4601 1.4691 1.4762 
1.4420 1.4508 1.4579 
1.4256 1.4344 1.4414 
1.4107 1.4194 1.4265 

1.3848 1.3934 1.4003 
1.3356 1.3438 1.3507 
1.3005 1.3084 1.3152 
1.2740 1.2817 1.2884 
1.2361 1.2434 1.2500 

1.2220 1.2292 1.2356 
1.1998 1.2066 1.2129 
1.1638 1.1700 1.1759 
1.1538 1.1599 1.1657 
1.1382 1.1440 1.1496 

1.1216 1.1270 1.1323 
1.1034 1.1083 1.1132 
1.0828 1.0870 1.0914 
1.0709 1.0747 1.0786 
1.0629 1.0664 1.0701 
1.0437 1.0463 1.0492 1000 1.0474 1.0540 1.0607 
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Table B8: Values of X for the simultaneous tolerance factor k2s(d)  in (3.3.18) 

1 - a = 0.90 
p = 0.90 p = 0.95 p = 0.99 

n r = 2  r = 3  r = 4  r = 2  r = 3  r = 4  r = 2  7 = 3  r = 4  

4 
5 
6 
7 
8 

9 
10 
11 
12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 

24 
25 
27 
29 
30 

35 
40 
45 
60 
80 
100 

150 
200 
300 
400 
500 

2.3683 
1.7710 
1.5341 
1.4069 
1.3272 

1.2723 
1.2322 
1.2014 
1.1771 
1.1573 

1.1410 
1.1272 
1.1154 
1.1053 
1.0964 

1.0886 
1.0817 
1.0755 
1.0700 
1.0650 

1.0604 
1.0563 
1.0491 
1.0431 
1.0404 

1.0295 
1.0217 
1.0159 
1.0053 
.9984 
,9950 

,9915 
,9905 
,9903 
.9906 
,9910 

2.3915 
1.7907 
1.5524 
1.4245 
1.3442 

1.2889 
1.2483 
1.2172 
1.1925 
1.1723 

1.1556 
1.1415 
1.1293 
1.1188 
1.1096 

1.1015 
1.0943 
1.0878 
1.0819 
1.0766 

1.0718 
1.0674 
1.0597 
1.0531 
1.0502 

1.0382 
1.0294 
1.0228 
1.0102 
1.0017 
.9972 

.9925 
,9911 
,9905 
,9907 
,9911 

2.4079 
1.8049 
1.5659 
1.4376 
1.3571 

1.3016 
1.2609 
1.2296 
1.2047 
1.1844 

1.1675 
1.1532 
1.1409 
1.1303 
1.1209 

1.1126 
1.1052 
1.0985 
1.0925 
1.0871 

1.0821 
1.0775 
1.0695 
1.0625 
1.0594 

1.0467 
1.0373 
1.0300 
1.0159 
1.0060 
1.0005 

,9944 
,9921 
,9909 
,9909 
,9912 

1000 .9926 ,9926 ,9926 

2.4688 
1.8423 
1.5936 
1.4600 
1.3762 

1.3184 
1.2760 
1.2436 
1.2178 
1.1969 

1.1794 
1.1647 
1.1521 
1.1412 
1.1317 

1.1232 
1.1157 
1.1090 
1.1030 
1.0975 

1.0925 
1.0879 
1.0799 
1.0731 
1.0700 

1.0575 
1.0483 
1.0413 
1.0278 
1.0182 
1.0128 

1.0063 
1.0034 
1.0009 
.9998 
,9993 
.9986 

2.4875 
1.8580 
1.6082 
1.4739 
1.3896 

1.3315 
1.2889 
1.2561 
1.2301 
1.2088 

1.1912 
1.1762 
1.1634 
1.1522 
1.1425 

1.1338 
1.1261 
1.1191 
1.1129 
1.1072 

1.1020 
1.0973 
1.0889 
1.0817 
1.0784 

1.0651 
1.0552 
1.0476 
1.0325 
1.0216 
1.0153 

1.0075 
1.0041 
1.0012 
1 .oooo 
,9994 
,9986 

2.5010 
1.8697 
1.6192 
1.4846 
1.4001 

1.3418 
1.2990 
1.2661 
1.2400 
1.2186 

1.2009 
1.1858 
1.1728 
1.1616 
1.1517 

1.1429 
1.1350 
1.1280 
1.1216 
1.1158 

1.1105 
1.1056 
1.0970 
1.0896 
1.0862 

1.0724 
1.0621 
1.0540 
1.0378 
1.0258 
1.0187 

1.0096 
1.0054 
1.0018 
1.0003 
,9996 
,9986 

2.6074 
1.9400 
1.6745 
1.5316 
1.4418 

1.3798 
1.3342 
1.2991 
1.2713 
1.2486 

1.2296 
1.2136 
1.1998 
1.1878 
1.1773 

1.1680 
1.1597 
1.1522 
1.1454 
1.1393 

1.1337 
1.1285 
1.1194 
1.1115 
1.1080 

1.0934 
1.0825 
1.0740 
1.0568 
1.0438 
1.0359 

1.0253 
1.0199 
1.0144 
1.0116 
1.0099 
1.0061 

2.6217 
1.9517 
1.6853 
1.5418 
1.4515 

1.3892 
1.3434 
1.3081 
1.2801 
1.2571 

1.2380 
1.2218 
1.2079 
1.1958 
1.1851 

1.1757 
1.1672 
1.1596 
1.1527 
1.1465 

1.1407 
1.1355 
1.1261 
1.1181 
1.1144 

1.0994 
1.0880 
1.0791 
1.0610 
1.0471 
1.0385 

1.0269 
1.0209 
1.0149 
1.0119 
1.0100 
1.0061 

2.6324 
1.9608 
1.6937 
1.5499 
1.4595 

1.3970 
1.3510 
1.3156 
1.2874 
1.2644 

1.2452 
1.2289 
1.2149 
1.2027 
1.1919 

1.1824 
1.1739 
1.1662 
1.1592 
1.1529 

1.1471 
1.1417 
1.1322 
1.1241 
1.1204 

1.1050 
1.0934 
1.0842 
1.0654 
1.0507 
1.0416 

1.0290 
1.0224 
1.0158 
1.0124 
1.0103 
1.0062 

Reproduced with permission from Technometrics. Copyright [ 19911 by the American St atistical 
Association. 
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Table B8 continued 

1 - o = 0.95 
p = 0.90 p = 0.95 p = 0.99 

72 r = 2  7 = 3  - r = 4  I r = 2  r = 3  r = 4  I r = 2  r = 3  7 = 4  

4 
5 
6 
7 
8 

9 
10 
11 
12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 

24 
25 
27 
29 
30 

35 
40 
45 
60 
80 
100 

150 
200 
300 
400 
500 

3.4009 
2.2908 
1.8860 
1.6778 
1.5506 

1.4644 
1.4020 
1.3545 
1.3171 
1.2868 

1.2617 
1.2405 
1.2224 
1.2068 
1.1931 

1.1810 
1.1703 
1.1607 
1.1521 
1.1442 

1.1371 
1.1306 
1.1192 
1.1094 
1.1051 

1.0873 
1.0742 
1.0643 
1.0451 
1.0315 
1.0238 

1.0143 
1.0099 
1.0059 
1.0040 
1.0029 

3.4356 
2.3184 
1.9112 
1.7018 
1.5739 

1.4872 
1.4243 
1.3764 
1.3385 
1.3078 

1.2822 
1.2607 
1.2422 
1.2261 
1.2120 

1.1995 
1.1884 
1.1784 
1.1694 
1.1612 

1.1537 
1.1468 
1.1346 
1.1241 
1.1195 

1.1001 
1.0856 
1.0745 
1.0524 
1.0364 
1.0272 

1.0158 
1.0107 
1.0061 
1.0041 
1.0029 

3.4602 
2.3385 
1.9300 
1.7201 
1.5919 

1.5051 
1.4420 
1.3940 
1.3560 
1.3252 

1.2995 
1.2778 
1.2591 
1.2429 
1.2286 

1.2160 
1.2046 
1.1945 
1.1852 
1.1768 

1.1691 
1.1620 
1.1495 
1.1386 
1.1337 

1.1133 
1.0980 
1.0859 
1.0616 
1.0432 
1.0324 

1,0186 
1.0123 
1.0068 
1.0044 
1.0031 

1000 1.0009 1.0009 1.0009 

3.5435 
2.3808 
1.9567 
1.7385 
1.6052 

1.5149 
1.4494 
1.3996 
1.3604 
1.3285 

1.3021 
1.2799 
1.2608 
1.2443 
1.2299 

1.2171 
1.2057 
1.1955 
1.1863 
1.1780 

1.1703 
1.1634 
1.1511 
1.1405 
1.1358 

1.1163 
1.1018 
1.0906 
1.0684 
1.0520 
1.0422 

1.0294 
1.0230 
1.0166 
1.0133 
1.0113 
1.0069 

3.5714 
2.4028 
1.9767 
1.7575 
1.6236 

1.5328 
1.4670 
1.4168 
1.3773 
1.3451 

1.3184 
1.2959 
1.2766 
1.2598 
1.2450 

1.2320 
1.2203 
1.2098 
1.2004 
1.1918 

1.1839 
1.1767 
1.1638 
1,1528 
1.1479 

1.1273 
1.1118 
1.0997 
1.0753 
1.0569 
1.0458 

1.0312 
1.0240 
1.0170 
1.0315 
1.0114 
1.0069 

3.5917 
2.4192 
1.9920 
1.7723 
1.6381 

1.5472 
1.4813 
1.4310 
1.3913 
1.3591 

1.3323 
1.3096 
1.2902 
1.2733 
1.2584 

1.2452 
1.2334 
1.2228 
1.2132 
1.2045 

1.1964 
1.1891 
1.1760 
1.1647 
1.1596 

1.1383 
1.1222 
1.1095 
1.0835 
1.0633 
1.0510 

1.0343 
1.0260 
1.0179 
1.0140 
1.0116 
1.0070 

3.7403 
2.5044 
2.0532 
1.8209 
1.6788 

1.5825 
1.5126 
1.4594 
1.4174 
1.3833 

1.3350 
1.3311 
1.3107 
1.2929 
1.2773 

1.2636 
1.2513 
1.2402 
1.2302 
1.2212 

1.2129 
1.2053 
1.1918 
1.1802 
1.1750 

1.1533 
1.1370 
1.1243 
1.0983 
1.0783 
1.0660 

1.0489 
1.0399 
1.0304 
1.0252 
1.0220 
1.0145 

3.7616 
2.5207 
2.0677 
1.8345 
1.6919 

1.5951 
1.5249 
1.4714 
1.4292 
1.3949 

1.3664 
1.3423 
1.3217 
1.3038 
1.2880 

1.2741 
1.2616 
1.2504 
1.2402 
1.2310 

1.2226 
1.2148 
1.2010 
1.1892 
1.1838 

1.1616 
1.1447 
1.1314 
1.1042 
1.0829 
1.0696 

1.0510 
1.0413 
1.0310 
1.0256 
1.0221 
1.0145 

3.7777 
2.5334 
2.0794 
1.8456 
1.7027 

1.6058 
1.5354 
1.4818 
1.4395 
1.4050 

1.3765 
1.3523 
1.3315 
1.3135 
1.2977 

1.2836 
1.2711 
1.2598 
1.2495 
1.2402 

1.2317 
1.2238 
1.2099 
1.1978 
1.1924 

I .  1697 
1.1525 
1.1388 
1.1106 
1.0883 
1.0742 

1.0542 
1.0435 
1.0322 
1.0263 
1.0226 
1.0146 
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a n  a1 a2 a:3 a4 

Table B9: Coefficients al ,  a 2 ,  a3 and a 4 ,  for the ( p ,  1-a) tolerance factor (4.3.13) 
for a one-way random model involving a levels of a factor with n observations 
per level 

3 2  1.783 8.360 -10.672 6.773 

3 4  1.369 1.499 5.960 -2.672 
3 3  1.355 2.839 2.725 - ,763 

3 5  1.403 1.051 6.880 -3.179 
3 6  1.444 ,843 7.118 -3.250 
3 7  1.450 ,925 6.843 -3.063 
3 8  1.442 ,995 6.714 -2.995 
3 9  1.443 ,981 6.748 -3.016 

3 0 3  1.255 1.960 5.233 -2.293 
4 2  1.820 -1.036 5.548 -2.170 

4 4  1.559 -.286 4.848 -1.960 
4 5  1.550 - ,307 4.946 -2.028 
4 6  1.542 -.305 4.986 -2.061 

4 8  1.520 -.241 4.934 -2.051 

4 10 1.484 -.077 4.702 -1.947 
4 0 0  1.281 ,940 3.148 -1.208 
5 2  1.860 -1.878 5.814 -2.389 

5 4  1.635 -.743 4.074 -1.559 

5 6  1.574 -.575 3.939 -1.531 

3 10 1.426 1.195 6.275 -2.741 

4 3  1.604 -.389 4.887 -1.940 

4 7  1.531 -.275 4.964 -2.059 

4 9  1.508 - ,190 4.868 -2.024 

5 3  1.710 -1.042 4.462 -1.723 

5 5  1.598 -.638 3.984 -1.537 

5 7  1.555 -.516 3.884 -1.516 
5 8  1.539 -.464 3.833 -1.501 
5 9  1.525 -.419 3.786 -1.485 
5 10 1.502 -.317 3.645 -1.423 
5 c o  1.286 ,707 2.125 -.712 
6 2  1.861 -2.064 5.431 -2.222 
6 3  1.721 -1.024 3.607 -1.298 
6 4  1.644 -.747 3.271 -1.162 
6 5  1.604 -.654 3.219 -1.163 
6 6  1.577 -.591 3.186 -1.165 
6 7  1.555 - ,533 3.145 -1.160 
6 8  1.537 -.486 3.107 -1.152 
6 9  1.523 --,447 3.077 -1.147 
6 10 1.507 -.381 3.005 -1.119 
6 0 0  1.287 ,613 1.564 - ,457 

Reproduced with permission from Technometrzcs. Copyright 

7 2  1.845 -1.974 4.808 

7 4  1.637 - ,682 2.682 
7 3  1.711 - ,911 2.926 

7 5  1.598 - ,609 2.671 
7 6  1.569 -.553 2.660 
7 7  1.547 - .504 2.637 
7 8  1.530 -.465 2.622 
7 9  1.515 -.426 2.589 

7 m  1.287 .558 1.222 
8 2  1.749 -1.136 2.979 

8 4  1.607 -.554 2.197 
8 5  1.578 -.530 2.254 
8 6  1.555 -.501 2.281 

8 8  1.520 -.431 2.263 

8 10 1.485 -.315 2.138 
8 0 0  1.286 ,520 ,996 
9 2  1.740 -1.068 2.640 

9 4  1.599 -.511 1.905 

9 6  1.546 -.463 2.001 

7 10 1.498 -.358 2.529 

8 3  1.660 -.668 2.260 

8 7  1.536 -.466 2.279 

8 9  1.506 -.394 2.236 

9 3  1.651 -.611 1.943 

9 5  1.569 - .490 1.970 

9 7  1.527 -.429 2.003 
9 8  1.510 -.395 1.990 
9 9  1.494 -.347 1.949 
9 10 1.480 -.308 1.912 
9 0 3  1.286 ,490 ,837 

10 2 1.730 --.992 2.343 
10 3 1.640 -.556 1.689 
10 4 1.590 - .471 1.676 
10 5 1.560 - ,452 1.748 
10 6 1.536 -.426 1.782 
10 7 1.517 - ,395 1.789 
10 8 1.501 -.363 1.779 
10 9 1.486 - ,322 1.749 
10 10 1.475 - ,301 1.740 
10 03 1.285 ,466 .720 

[ 19921 by the American Statistical 

-1.923 
-.970 
-.881 
-.go:, 
- .920 
- ,924 

-.923 
-.914 
-.311 

-1.010 
-.670 
-.668 
-.721 
- ,753 
- ,767 
-.771 
- ,766 
-.727 
P.220 
-.859 
- .529 
- ,539 
- ,596 
-.631 
- .647 

-.931 

-.652 
-.642 
-.631 
-.159 
-.727 

-.440 
-.501 
-.537 
-.556 
-.563 
P.557 
-.560 
-.117 

-.418 
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Table B9 continued 

p = 0.99, 1 - LY = 0.95 
a n  a1 a2 a3 a4 

3 2  
3 3  
3 4  
3 5  
3 6  
3 7  
3 8  
3 9  
3 10 
3 0 3  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
4 9  
4 10 
4 0 3  
5 2  
5 3  
5 4  
5 5  
5 6  
5 7  
5 8  
5 9  
5 10 
5 0 3  
6 2  
6 3  
6 4  
6 5  
6 6  
6 7  
6 8  
6 9  
6 10 

3.105 
2.554 
2.543 
2.552 
2.558 
2.555 
2.550 
2.501 
2.488 
2.269 
2.933 
2.608 
2.613 
2.648 
2.671 
2.681 
2.622 
2.622 
2.554 
2.310 
2.919 
2.608 
2.615 
2.655 
2.682 
2.696 
2.673 
2.606 
2.542 
2.323 
2.905 
2.587 
2.601 
2.637 
2.662 
2.676 
2.556 
2.592 
2.616 

4.815 
2.311 
2.021 
1.857 
1.743 
1.719 
1.717 
1.948 
2.480 
3.024 
- ,544 

,125 
-.082 
-.362 
-.543 
-.646 
-.391 
- ,074 
-.062 
1.071 

-1.441 
-.129 
-.310 
-.617 
-.830 
-.961 
- ,895 
--.314 

,192 
,634 

-1.421 
,036 

-.198 
-.505 
-.723 
-.868 
-.075 
-.350 
-.695 

2.357 
9.725 

10.472 
10.843 
11.104 
11.184 
11.214 
10.883 
9.619 
9.363 
7.263 
6.989 
7.464 
7.984 
8.324 
8.529 
8.201 
7.463 
7.712 
6.064 
6.702 
4.949 
5.339 
5.890 
6.283 
6.535 
6.477 
5.540 
4.248 
4.351 
5.433 
3.356 
3.827 
4.387 
4.794 
5.075 
3.805 
4.271 
4.918 

,276 
-4.038 
-4.484 
-4.699 
-4.852 
-4.904 
-4.928 
-4.778 
-4.014 
-4.104 
-2.610 
-2.680 
-2.952 
-3.228 
-3.410 
-3.523 
-3.390 
-2.970 
-3.162 
-2.403 
-2.439 
-1.687 
-1.902 
-2.187 

-2.529 
-2.393 

-2.514 
-2.090 
-1.241 
-1.567 
-1.856 
-0.917 
-1.168 
-1.457 
-1.671 
-1.822 
-1.224 
-1.451 
-1.777 

6 0 3  2.328 ,484 3.356 -1.106 

7 2  
7 3  
7 4  
7 5  
7 6  
7 7  
7 8  
7 9  
7 10 
7 0 3  
8 2  
8 3  
8 4  
8 5  
8 6  
8 7  
8 8  
8 9  
8 10 
8 0 3  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  
9 8  
9 9  
9 10 
9 0 3  

10 2 
10 3 
10 4 
10 5 
10 6 
10 7 
10 8 
10 9 
10 10 

2.833 -.830 
2.568 ,265 
2.588 -.042 
2.616 -.336 
2.635 -.542 
2.647 -.686 
2.575 -.041 
2.575 -.421 
2.562 -.265 
2.330 ,461 

2.557 .465 
2.576 ,103 

2.728 -.005 

2.595 -.174 
2.608 -.365 
2.617 -.503 
2.585 -.380 
2.624 -.671 
2.506 .535 
2.330 ,378 
2.642 .758 
2.551 ,620 
2.566 ,224 
2.578 -.038 
2.585 -.213 
2.573 -.264 
2.592 -.435 
2.558 -.218 
2.546 -.323 
2.330 ,354 
2.593 1.357 
2.549 ,735 
2.558 ,320 
2.562 ,075 

2.549 -.073 
2.563 -.085 

2.545 -.168 
2.544 -.171 
2.516 -.158 

3.638 -1.000 
2.138 -.330 
2.743 -.647 
3.300 -.939 
3.701 -1.152 
3.989 -1.307 
2.770 -.663 
3.664 -1.177 
3.317 -.972 
2.720 -.824 
1.697 -.067 
1.219 ,113 
1.941 -.267 
2.493 -.561 
2.881 -.770 
3.165 -.925 
3.006 -.857 
3.528 -1.127 

.822 ,492 

-.035 ,778 
.527 ,446 

1.338 ,014 

2.284 -.638 

1.883 -.280 
2.256 -.484 
2.416 -.583 
2.737 -.751 
2.390 -.588 
2.664 -.744 
1.968 -.509 

-1.453 1.485 
,001 ,697 
,878 ,225 

1.412 -.068 
1.769 -.266 
1.792 -.287 
2.031 -.427 
2.090 -.482 
2.123 -.500 

10 03 2.330 ,336 1.730 -.415 
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Table B10: ( p ,  1 - a )  lower tolerance factors for a two-parameter exponential 
distribution 

1 - a = 0.90 
P 

n 0.8 0.9 0.95 0.99 0.999 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 
50 

-2.7000 
-.4291 
-.1500 
-.0691 
-.0354 

-.0188 
-.0096 
- ,0042 
- .oooo 

.0010 

,0028 
,0037 
,0044 
.0048 
,0051 

,0052 
.0053 
,0054 
,0054 
,0054 

,0053 
,0052 
.0052 
,005 1 
,0050 

.0049 
,0049 
.0048 
,0047 
,0039 
,0033 

-3.5500 
-.5667 
-.2180 
-.1118 
-.0661 

- ,0426 
- ,0290 
- ,0205 
-.0149 
-.0110 

- ,0082 
- ,0062 
-.0047 
-.0035 
- ,0026 

-.0019 
-.0013 
- .0009 
- ,0005 
- ,0002 

.0000 
,0002 
,0004 
,0005 
,0007 

.0008 
,0008 
,0009 
,0010 
,0012 
,0012 

-4.0125 
- ,6427 
p.2530 
-.1336 
-.0817 

- ,0546 
- ,0388 
- ,0287 
-.0220 
-.0173 

-.0138 
-.0112 
- ,0093 
- .0077 
- ,0065 

-.0055 
-.0047 
- ,0040 
-.0035 
- ,0030 

- ,0026 
- ,0023 
-.0020 
-.0017 
-.0015 

-.0013 
-.0012 
-.0010 
- ,0009 
- ,0002 

,000 1 

-4.4005 
-.7050 
-.2814 
-.1512 
- ,0943 

-.0644 
-.0467 
- ,0354 
-.0277 
-.0223 

-.0183 
-.0153 
-.0129 
-.0111 
- ,0096 

- ,0084 
- ,0074 
- .0066 
- ,0058 
- ,0052 

-.0047 
- ,0043 
-.0039 
- ,0036 
- .0033 

- ,0030 
- ,0028 
- ,0026 
- ,0024 
-.0012 
-.0007 

- 4.4900 
-.7192 
- ,2879 
-.1552 
-.0972 

- .0666 
-.0485 
-.0369 
-.0290 
- ,0234 

-.0193 
-.0162 
-.0137 
-.0118 
-.0103 

- ,0090 
- ,0080 
-.0071 
- ,0064 
-.0058 

-.0052 
-.0047 
-.0043 
-.0040 
- ,0037 

- ,0034 
-.0031 
- ,0029 
-.0027 
-.0015 
-.0009 

Reproduced with permission from Technometrics. Copyright [ 19761 
by the American Statistical Association. 
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Table B10 continued 
1 - a = 0.95 

P 
n 0.8 0.9 0.95 0.99 0.999 

2 -5.9000 
3 - ,7333 
4 - ,2540 
5 -.1200 
6 - ,0655 

7 - ,0386 
8 - ,0236 
9 -.0146 

10 - ,0089 
11 -.0051 

12 - ,0024 
13 .0001 
14 ,0007 
15 ,0017 
16 .0023 

17 ,0029 
18 ,0032 
19 ,0035 
20 .0037 
21 ,0039 

22 .0040 
23 ,0040 
24 ,004 1 
25 .0041 
26 .0041 

27 ,0041 
28 ,0041 
29 ,0040 
30 .0040 
40 ,0035 
50 ,0031 

-7.6000 
- ,9395 
-.3397 
-.1708 
-. 1007 

-.0653 
-.0450 
-.0324 
-.0241 
-.0183 

-.0142 
-.0112 
- ,0089 
-.0071 
-.0057 

- ,0046 
- ,0037 
- ,0030 
-.0024 
-.0019 

-.0015 
-.0011 
- ,0009 
-.0006 
-.0004 

-.0002 
- .0000 

.0001 
,0002 
,0008 
.0009 

-8.5250 
- 1.0470 
-.3837 
-. 1967 
-.1186 

-.0788 
- ,0558 
-.0414 
-.0318 
- ,0250 

-.0201 
-.0165 
-.0137 
-.0115 
-.0098 

-.0083 
- ,0072 
- ,0063 
-.0055 
- ,0048 

- ,0042 
- .0037 
- ,0033 
- ,0030 
- ,0026 

-.0024 
-.0021 
-.0019 
-.0017 
- ,0006 
- ,0002 

-9.3010 
-1.1351 
-.4196 
-.2177 
-.1331 

- ,0898 
- ,0646 
-.0487 
-.0379 
- ,0304 

- ,0249 
-.0207 
-.0175 
-.0150 
-.0130 

-.0114 
-.0100 
- ,0089 
-.0079 
-.0071 

- ,0064 
- ,0058 
-.0053 
-.0048 
-.0044 

-.0041 
- .0038 
- ,0035 
- ,0032 
-.0017 
-.0010 

-9.4800 
-1.1551 
-.4277 
-.2224 
-. 1364 

-.0922 
-.0665 
-.0503 
- ,0393 
-.0316 

- ,0260 
-.0217 
-.0184 
-.0158 
-.0137 

-.0120. 
-.0106 
- ,0095 
-.0085 
-.0076 

-.0069 
- ,0063 
-.0057 
-.0053 
- ,0049 

- ,0045 
-.0041 
- ,0039 
- ,0036 
- ,0020 
-.0012 
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Table B11: ( p ,  1 - a )  upper tolerance factors for a two-parameter exponential 
distribution 

1 - u: = 0.90 
P 

n 0.8 0.9 0.95 0.99 0.999 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 
50 

10.636 
2.4500 
1.2544 
.8185 
.5995 

,4694 
,3840 
3239 
,2794 
,2453 

.2183 
,1965 
,1785 
,1634 
,1506 

,1396 
,1301 
,1217 
.1143 
,1077 

,1019 
,0966 
,0918 
,0875 
,0835 

,0799 
,0765 
,0735 
,0706 
.0508 
,0395 

17.092 
3.7333 
1.8760 
1.2123 

,8824 

,6880 
,5611 
,4721 
,4065 
,3563 

,3168 
,2848 
,2585 
,2365 
,2178 

,2018 
,1879 
.1757 
,1649 
,1554 

,1469 
.1392 
,1323 
,1260 
,1202 

,1150 
,1102 
,1057 
,1016 
,0729 
,0567 

23.650 
5.0276 
2.5014 
1.6077 
1.1662 

,9073 
,7386 
,6206 
.5339 
.4676 

,4153 
.3732 
,3386 
,3096 
,2850 

,2640 
,2457 
,2297 
,2156 
,2031 

.1919 
,1818 
,1728 
,1645 
,1570 

,1501 
.1438 
,1380 
,1326 
,0951 
,0739 

38.933 
8.0452 
3.9580 
2.5282 
1.8267 

1.4171 
1.1513 
.9659 
,8298 
,7260 

,6444 
,5786 
,5246 
.4795 
,4412 

.4084 
3800 
,3552 
,3333 
,3138 

,2965 
,2809 
.2668 
,2540 
.2424 

,2317 
,2219 
,2129 
,2046 
.1466 
,1139 

60.798 
12.370 
6.0451 
3.8467 
2.7725 

2.1472 
1.7421 
1.4602 
1.2535 
1.0960 

,9723 
,8726 
.7908 
,7225 
,6647 

,6152 
,5722 
,5347 
,5017 
,4723 

,4462 
,4226 
,4014 
,3821 
,3646 

,3485 
,3338 
,3202 
,3076 
,2203 
,1710 

Reproduced with permission from Technometrics. Copyright [1976] 
by the American Statistical Association. 



420 Appendix B 

Table B11 continued 
1 - CY = 0.95 

P 
n 0.8 0.9 0.95 0.99 0.999 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
40 
50 

21.9360 
3.6815 
1.6961 
1.0480 
.7418 

,5673 
,4559 
.3793 
,3237 
,2816 

.2487 
,2224 
,2009 
.1830 
,1679 

,1550 
,1439 
,1342 
,1257 
,1181 

.1114 
,1054 
,0999 
,0950 
,0905 

,0865 
,0827 
,0793 
,0761 
,0541 
,0418 

35.1770 
5.5984 
2.5327 
1.5502 
1.0907 

,8307 
,6657 
,5526 
,4706 
,4088 

,3607 
,3222 
,2908 
,2647 
.2427 

,2239 
,2078 
,1937 
,1813 
,1703 

,1606 
,1518 
,1440 
,1369 
,1304 

,1245 
,1190 
,1141 
,1095 

,0600 
,077-7 

48.63 10 
7.5331 
3.3747 
2.0547 
1.4410 

1.0950 
,8760 
,7262 
,6179 
,5363 

,4728 
,4221 
.3808 
,3465 
,3176 

,2929 
.2717 
,2532 
,2369 
,2226 

.2098 
,1983 
.1880 
,1787 
.1702 

,1625 
,1554 
,1489 
,1429 
,1013 
,0782 

80.0040 
12.0459 
5.3367 
3.2296 
2.2561 

1.7098 
1.3651 
1.1300 
,9603 
,8327 

,7335 
,6544 
,5899 
,5365 
,4915 

,4532 
,4202 
,3914 
,3662 
,3440 

,3241 
,3064 
,2904 
,2759 
,2628 

,2508 
,2398 
,2297 
,2204 
,1562 
,1204 

124.9040 
18.5165 
8.1490 
4.9129 
3.4237 

2.5903 
2.0655 
1.7080 
1.4504 
1.2569 

1.1066 
,9868 
,8892 
.8084 
,7405 

,6826 
,6327 
,5893 
,5513 
,5176 

,4877 
.4609 
,4368 
,4150 
,3952 

,3772 
,3606 
,3454 
,3314 
,2347 
,1809 
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Table B12: Values of u)p;l--cu for constructing (p , l  - a )  upper tolerance limit 
(7.5.10) for a Weibull distribution 

- 

1 - a = 0.90 1 - N = 0.95 
P P P 

1 - N = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

25 
27 
30 
35 
40 
45 
50 

60 
80 

100 
120 
140 
150 
175 
200 
225 
250 

2.328 
2.029 
1.841 
1.721 
1.624 
1.554 
1.497 
1.454 
1.413 
1.385 

1.349 
1.325 
1.299 
1.286 
1.270 
1.254 
1.241 
1.224 
1.216 
1.203 

2.837 
2.494 
2.280 
2.130 
2.023 
1.933 
1.858 
1.802 
1.761 
1.716 

1.687 
1.658 
1.632 
1.610 
1.591 
1.571 
1.555 
1.536 
1.525 
1.514 

3.732 
3.298 
3.010 
2.802 
2.669 
2.564 
2.469 
2.408 
2.344 
2.290 

2.257 
2.217 
2.183 
2.157 
2.121 
2.107 
2.087 
2.065 
2.052 
2.034 

1.191 1.500 2.015 
1.175 1.477 1.992 
1.151 1.454 1.962 
1.130 1.420 1.921 
1.094 1.385 1.876 
1.076 1.367 1.860 
1.064 1.352 1.836 

1.041 
1.009 
0.983 
0.973 
0.957 
0.955 
0.948 
0.935 
0.930 

1.319 
1.293 
1.262 
1.247 
1.237 
1.230 
1.219 
1.208 
1.203 

1.799 
1.763 
1.734 
1.710 
1.690 
1.684 
1.669 
1.661 
1.653 

2.978 
2.500 
2.225 
2.045 
1.903 
1.800 
1.722 
1.664 
1.607 
1.566 

1.512 
1.479 
1.449 
1.429 
1.409 
1.384 
1.365 
1.346 
1.335 
1.316 

3.606 
3.055 
2.728 
2.506 
2.352 
2.224 
2.117 
2.041 
1.977 
1.917 

1.881 
1.838 
1.803 
1.769 
1.745 
1.717 
1.699 
1.673 
1.659 
1.640 

4.695 
4.015 
3.567 
3.274 
3.094 
2.917 
2.795 
2.699 
2.617 
2.545 

2.495 
2.437 
2.397 
2.358 
2.312 
2.294 
2.261 
2.234 
2.219 
2.191 

1.301 1.627 2.169 
1.278 1.596 2.138 
1.248 1.563 2.092 
1.210 1.516 2.039 
1.175 1.472 1.982 
1.149 1.456 1.961 
1.135 1.427 1.919 

1.102 
1.061 
1.031 
1.013 
0.990 
0.989 
0.979 
0.964 
0.956 

1.391 
1.345 
1.314 
1.286 
1.280 
1.270 
1.253 
1.238 
1.235 

1.882 
1.831 
1.793 
1.764 
1.738 
1.727 
1.711 
1.699 
1.688 

4.904 
3.827 
3.225 
2.890 
2.585 
2.411 
2.259 
2.164 
2.058 
1.984 

1.891 
1.838 
1.789 
1.750 
1.718 
1.676 
1.647 
1.614 
1.582 
1.562 

5.856 
4.629 
3.885 
3.489 
3.157 
2.931 
2.753 
2.609 
2.505 
2.401 

2.334 
2.263 
2.185 
2.136 
2.089 
2.054 
2.026 
1.980 
1.957 
1.932 

7.606 
5.985 
5.132 
4.503 
4.141 
3.810 
3.587 
3.434 
3.282 
3.135 

3.049 
2.958 
2.884 
2.813 
2.746 
2.714 
2.674 
2.609 
2.581 
2.534 

1.540 1.902 2.504 
1.501 1.845 2.443 
1.453 1.798 2.372 
1.392 1.709 2.297 
1.332 1.657 2.216 
1.293 1.625 2.167 
1.280 1.567 2.091 

1.218 
1.165 
1.127 
1.090 
1.066 
1.056 
1.036 
1.018 
1.010 

1.524 
1.447 
1.413 
1.371 
1.361 
1.346 
1.323 
1.303 
1.294 

2.047 
1.971 
1.907 
1.861 
1.839 
1.821 
1.792 
1.785 
1.765 

~~ 0.926 1.198 1.645 0.953 1.225 1.678 1.012 1.276 1.752 
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Table B13: Values of wl-p;a: for constructing the ( p ,  1 - a)  lower tolerance limit 
(7.5.11) for a Weibull distribution 

1 - O1 = 0.90 1 - 01 = 0.95 1 - a: = 0.99 
P 

n 0.90 0.95 0.99 
5 -5.411 -7.037 -10.719 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
35 
40 
50 
60 

70 
90 

120 
150 
200 

-4.840 
-4.440 
-4.176 
-3.975 
-3.832 
-3.714 
-3.612 
-3.525 
-3.453 

-3.396 
-3.345 
-3.291 
-3.254 
-3.217 

-3.145 
-3.119 

-3.180 

-3.092 
-3.069 
-3.049 

-3.024 
-3.006 
-2.990 
-2.972 
-2.955 
-2.898 
-2.835 
-2.749 
-2.708 

-2.663 
-2.616 
-2.553 
-2.525 
-2.480 

-6.255 
-5.756 
-5.405 
-5.166 
-4.962 
-4.823 
-4.682 

-4.490 

-4.405 
-4.343 
-4.288 
-4.221 

-4.578 

-4.179 
-4.131 
-4.096 
-4.057 
-4.021 
-3.992 
-3.956 

-3.933 
-3.900 
-3.890 
-3.874 
-3.854 
-3.758 
-3.693 
-3.606 
-3.537 

-3.502 
-3.414 
-3.350 
-3.297 
-3.255 

-9.520 
-8.767 
-8.235 
-7.869 
-7.558 
-7.333 
-7.140 
-6.964 
-6.838 

-6.721 
-6.603 
-6.521 
-6.434 
-6.374 
-6.298 
-6.247 
-6.206 
-6.157 
-6.105 
-6.051 

-6.014 
-5.970 
-5.950 
-5.913 
-5.876 
-5.761 
-5.659 
-5.536 
-5.414 

-5.372 
-5.246 
-5.144 
-5.076 
-5.007 

250 -2.462 -3.216 -4.961 

P 
0.90 0.95 0.99 

-6.678 -8.695 -13.226 
-5.850 -7.448 
-5.235 -6.782 
-4.871 -6.282 
-4.581 -5.920 
-4.370 -5.634 
-4.209 -5.445 
-4.064 -5.239 
-3.935 -5.102 
-3.827 -4.988 

-3.752 -4.879 
-3.685 -4.787 
-3.618 -4.705 
-3.575 -4.612 
-3.524 -4.554 
-3.460 -4.499 
-3.418 -4.446 
-3.387 -4.394 
-3.350 -4.349 
-3.320 -4.306 
-3.288 -4.257 

-3.255 -4.229 
-3.230 -4.186 
-3.213 -4.164 
-3.191 -4.146 
-3.169 -4.118 
-3.098 -4.002 
-3.013 -3.901 
-2.901 -3.787 
-2.845 -3.704 

-2.786 -3.653 
-2.724 -3.541 
-2.649 -3.451 
-2.598 -3.391 
-2.551 -3.342 

-11.425 
-10.289 
-9.544 
-8.979 
-8.560 
-8.250 
-7.967 
-7.714 
-7.545 

-7.407 
-7.235 
-7.128 
-7.015 
-6.920 
-6.833 
-6.750 
-6.699 
-6.640 
-6.562 
-6.491 

-6.443 
-6.388 
-6.355 
-6.317 
-6.262 
-6.081 
-5.965 
-5.812 
-5.646 

-5.596 
-5.438 
-5.304 
-5.215 
-5.133 

-2.518 -3.286 -5.070 

P 
0.90 0.95 0.99 

-10.437 -13.518 -20.667 
-8.625 
-7.411 
-6.548 
-6.064 
-5.657 
-5.373 
-5.090 
-4.876 
-4.715 

-4.577 
-4.481 
-4.346 
-4.260 
-4.173 
-4.091 
-4.013 
-3.971 
-3.913 
-3.881 
-3.809 

-3.758 
-3.719 
-3.708 
-3.646 
-3.620 
-3.483 
-3.352 
-3.219 
-3.105 

-3.033 
-2.946 
-2.809 
-2.777 
-2.696 

-10.943 
-9.415 
-8.508 
-7.775 
-7.266 
-6.902 
-6.513 
-6.289 
-6.073 

-5.927 
-5.757 
-5.655 
-5.480 
-5.371 
-5.255 
-5.187 
-5.136 
-5.028 
-4.988 
-4.911 

-4.865 
-4.786 
-4.736 
-4.731 
-4.678 
-4.447 
-4.406 
-4.157 
-4.022 

-3.925 
-3.824 
-3.674 
-3.580 
-3.515 

-2.637 -3.421 

-16.729 
-14.257 
-12.846 
- 11.735 
-10.936 
-10.442 

-9.895 
-9.546 
-9.253 

-8.902 
-8.703 
-8.501 
-8.306 
-8.137 
-7.991 

-7.762 
-7.644 

-7.462 

-7.377 
-7.289 
-7.237 
-7.141 
-7.061 

-7.849 

-7.567 

-6.775 
-6.722 
-6.331 
-6.106 

-6.025 
-5.798 
-5.598 
-5.511 
-5.373 
-5.266 
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Table B14: Confidence limits for Weibull stress-strength reliability R; 
of R 

= MLE 

95% lower confidence limits 

n 
R 8 10 12 15 18 20 25 30 40 50 

.50 

.52 

.53 

.55 

.57 

.59 

.60 

.61 

.63 

.65 

.67 

.69 

.70 

.71 

.73 

.75 

.76 

.77 

.78 

.79 

.80 

.81 

.82 

.84 

.85 

.86 

.87 

.89 

.90 

.91 

.92 

.93 

.94 

.95 

.96 

.97 

.98 

.300 
,315 
,322 
.338 
,354 
,370 
,379 

,387 
,406 
,424 
,441 
,460 
.471 

,482 
,498 
,522 
,530 
,542 
,553 
,565 
,575 

,587 
,601 
,628 
,640 
,654 
,666 
,695 
,716 

,729 
,748 
,768 
. i90 
,810 
,834 
,857 
.891 

,320 ,335 
,334 ,352 
,344 .360 
,362 ,377 
379 ,394 
,394 ,413 
,402 ,423 

,412 ,432 
,432 ,449 
,450 ,470 
,469 ,488 
,489 ,508 
,497 ,521 

.510 .529 
,528 ,549 
.552 ,572 
.561 .584 
,573 ,595 
,584 ,607 
,597 ,617 
,607 .629 

,621 ,642 
,632 ,654 
,658 ,681 
,670 ,693 
,684 ,706 
.699 .721 
,728 ,748 
,744 ,765 

,761 ,781 
,779 ,798 
,796 ,816 
.815 ,834 
.835 ,853 
,858 ,873 
,881 ,896 
,909 ,922 

,351 
,370 
.379 
,396 
,415 
,433 
,441 

,452 
.471 
,490 
,512 
,532 
,541 

,553 
,573 
,595 
,606 
,616 
,630 
,641 
,654 

.664 
,677 
,704 
,716 
,730 
,744 
,771 
.787 

,801 
,818 
,835 
,851 
,870 
,889 
,910 
,933 

.365 
,383 
.391 
,410 
,428 
,446 
,457 

,467 
,486 
,506 
,526 
,545 
,557 

.568 
,589 
,611 
.622 
,635 
,644 
,656 
,669 

,682 
,693 
,718 
,733 
,745 
,759 
,785 
,801 

,816 
,831 
,847 
,863 
,881 
,899 
,919 
,940 

,371 ,384 ,395 
,391 ,404 ,412 
,399 ,412 ,422 
.418 ,432 ,442 
.436 ,451 ,461 
.454 .469 .481 
,464 ,479 ,491 

,476 .489 ,500 
,494 ,509 ,521 
,513 ,529 ,541 
,535 ,549 ,562 
,556 ,570 ,582 
,566 ,582 ,594 

,577 ,592 ,604 
,598 ,613 ,625 
,620 ,635 ,648 
,631 ,647 ,659 
.642 ,658 ,670 
.655 .671 ,682 
,667 ,681 ,693 
.677 ,694 ,704 

.690 ,705 ,716 
,701 ,718 ,728 
,727 ,742 ,752 
,740 ,754 ,764 
,752 .768 ,777 
,766 ,780 ,791 
,794 .807 ,816 
,808 ,821 ,831 

,823 ,835 ,845 
,838 .850 ,859 
,853 ,865 ,873 
,869 ,881 ,888 
,886 397 ,904 
,905 ,913 ,920 
.924 .931 ,936 
,944 ,950 ,954 

,408 
,428 
,438 
,457 
,477 
,495 
,506 

.514 
,536 
,557 
.576 
,599 
,610 

,619 
,641 
,663 
,674 
,686 
,698 
,708 
.720 

,732 
.743 
,766 
.779 
,791 
,804 
,829 
,843 

,856 
.869 
,883 
,897 
,912 
,927 
,943 
,959 

,417 
,437 
,447 
,487 
,486 
,507 
,517 

,526 
,546 
,588 
,588 
,609 
,620 

,630 
.652 
.674 
.684 
,696 
,708 
,718 
,730 

.74 1 
,752 
,777 
,788 
,800 
.812 
,838 
.850 

.8(15 

,876 
,889 
,903 
.9 17 
,932 
,947 
,962 
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Table B14 continued 

99% lower confidence limits 

n 
ii 8 10 12 15 18 20 25 30 40 50 

.50 

.52 

.53 

.55 

.57 

.59 

.60 

.61 

.63 

.65 

.67 

.68 

.69 

.70 

.71 

.73 

.75 

.77 

.78 

.79 

.80 

.81 

.82 

.84 

.85 

.86 

.87 

.89 

.90 

.91 

.92 

.93 

.94 

.95 

.96 

.97 

.98 

,225 
,239 
,249 
,265 
.274 
,289 
,297 

.306 
,321 
,334 
,349 
,361 
,367 
.375 

,386 
,404 
,425 
.446 
,454 
.468 
.477 

.488 

.502 
,527 
,539 
.557 
,567 
,596 
,616 

,633 
.651 
.674 
.698 
,727 
,742 
,779 
,823 

,254 
,269 
,273 
,290 
,308 
,322 
.331 

.335 
,354 
,371 
.387 
,396 
,406 
.413 

,423 
,445 
,462 
.489 
,500 
.513 
,520 

.533 

.542 
,573 
,586 
,599 
,619 
,647 
,662 

,684 
.698 
,725 
,739 
.764 
,791 
,822 
,858 

.272 

.285 
,294 
.311 
.327 
,343 
.353 

,361 
,378 
,396 
.414 
,423 
,433 
.439 

,453 
,474 
.495 
.517 
,528 
.537 
.551 

.566 

.579 

.602 
,615 
,630 
,646 
,678 
.694 

,713 
.731 
,752 
.773 
,795 
,817 
,848 
,880 

,295 
,309 
,318 
,336 
.351 
,369 
,380 

.387 
,406 
,422 
,444 
,451 
,460 
,476 

,485 
,507 
.525 
,548 
,561 
,575 
,585 

.596 
,609 
,638 
.651 
.667 
,678 
,709 
.726 

,747 
,763 
,781 
.804 
,823 
346 
,871 
,902 

,312 
,328 
,337 
,353 
,370 
,391 
,396 

,408 
.429 
,445 
.462 
,477 
,488 
.497 

,508 
,530 
,550 
,571 
,586 
.594 
,609 

,620 
,635 
,661 
,674 
,688 
,704 
,732 
,750 

,766 
.784 
,804 
.822 
,841 
,866 
,886 
,915 

,323 
,336 
,346 
,366 
,379 
.400 
,410 

,420 
.439 
.456 
,478 
.486 
,496 
,505 

,517 
,540 
,565 
.585 
,596 
,610 
,620 

,634 
,646 
.671 
,687 
,702 
,716 
,746 
,760 

,779 
,793 
.811 
,829 
.851 
.872 
,895 
,922 

,338 
,356 
.366 
.383 
,402 
.420 
,432 

,442 
,459 
,481 
,499 
,509 
,520 
,529 

,540 
,560 
,585 
,609 
,619 
,635 
,643 

,655 
,669 
,697 
,709 
,723 
,736 
,767 
.779 

,797 
,813 
,832 
,850 
368 
,886 
,907 
,932 

.352 
,368 
,379 
,398 
,415 
,436 
,443 

,455 
,478 
.497 
,516 
.527 
,537 
,548 

.558 

.578 
,603 
,625 
,635 
,648 
,661 

,673 
.685 
,713 
,724 
,738 
,753 
,781 
,794 

309 
,825 
,842 
,860 
378 
.897 
,917 
,939 

.371 
,391 
,399 
,419 
,438 
,455 
,467 

,476 
,498 
,516 
,537 
,548 
.559 
,571 

,581 
.603 
,626 
,648 
.659 
,672 
,685 

,696 
,709 
,734 
,747 
,759 
,771 
,800 
,815 

,829 
,845 
,860 
,875 
,892 
,909 
,928 
,948 

.384 

.404 
,412 
,432 
.452 
,470 
,482 

,491 
,514 
,532 
.553 
,564 
.574 
,585 

,595 
,619 
.639 
,662 
,676 
,686 
.697 

,711 
,721 
,747 
.759 
,772 
,785 
,813 
.826 

,841 
,854 
,869 
.884 
,901 
,917 
.935 
,953 
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Table B15: Values of n so that (a), (b), and (c) are ( p ,  1 - a )  nonparametric 
tolerance intervals 

for anv m 
p = 0.80 l=-"EO ,=-";I" I--cu 

m .90 .95 .99 .90 .95 .99 .90 .95 .99 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

7 
9 
12 
14 
17 
19 
21 
24 
26 
28 

31 
33 
35 
37 
39 
42 
44 
46 
48 
51 

53 
55 
57 
59 
62 
64 
66 
68 
70 
72 

75 
77 
79 
81 
83 
85 
87 
90 
92 

94 
96 
98 
LO0 
LO2 
LO5 
LO7 
LO9 
111 
113 

8 
11 
13 
16 
18 
21 
23 
26 
28 
30 

33 
35 
37 
40 
42 
44 
47 
49 
51 
53 

56 
58 
60 
62 
65 
67 
69 
71 
74 
76 

78 
80 
82 
85 
87 
89 
91 
93 
96 

98 
100 
102 
104 
106 
109 
111 
113 
115 
117 

115 119 

11 
14 
17 
19 
22 
25 
27 
30 
33 
35 

38 
40 
42 
45 
47 
50 
52 
54 
57 
59 

62 
64 
66 
69 
71 
73 
76 
78 
80 
82 

85 
87 
89 
92 
94 
96 
98 
101 
103 

105 
107 
110 
112 
114 
116 
119 
121 
123 
125 
128 

15 
20 
25 
30 
35 
40 
45 
50 
55 
59 

64 
69 
73 
78 
82 
87 
91 
96 
100 
105 

109 
114 
118 
123 
127 
132 
136 
141 
145 
149 

154 
158 
163 
167 
171 
176 
180 
184 
189 

193 
197 
202 
206 
210 
215 
219 
223 
228 
232 
236 

18 
23 
29 
34 
40 
45 
50 
55 
60 
65 

70 
74 
79 
84 
89 
93 
98 
103 
107 
112 

117 
121 
126 
130 
135 
139 
144 
149 
153 
158 

162 
167 
171 
176 
180 
185 
189 
193 
198 

202 
207 
211 
216 
220 
225 
229 
233 
238 
242 
247 

24 
31 
37 
43 
49 
54 
60 
65 
70 
76 

81 
86 
91 
96 
101 
106 
111 
116 
121 
126 

131 
136 
141 
145 
150 
155 
160 
164 
169 
174 

179 
183 
188 
193 
197 
202 
207 
21 1 
216 

221 
225 
230 
235 
239 
244 
248 
253 
257 
262 
267 

18 
25 
32 
38 
45 
51 
57 
63 
69 
75 

81 
86 
92 
98 
104 
109 
115 
121 
126 
132 

138 
143 
149 
154 
160 
166 
171 
177 
182 
188 

193 
199 
204 
210 
215 
221 
226 
232 
237 

243 
248 
253 
259 
264 
270 
275 
28 1 
286 
291 
297 

22 
30 
37 
44 
50 
57 
63 
69 
76 
82 

88 
94 
100 
106 
112 
118 
124 
129 
135 
141 

147 
153 
158 
164 
170 
176 
181 
187 
193 
198 

204 
210 
215 
221 
227 
232 
238 
243 
249 

255 
260 
266 
271 
277 
282 
288 
293 
299 
304 

31 
39 
47 
55 
62 
69 
76 
83 
89 
96 

102 
109 
115 
122 
128 
134 
141 
147 
153 
159 

165 
171 
177 
184 
190 
196 
202 
208 
213 
219 

225 
231 
237 
243 
249 
255 
261 
266 
272 

278 
284 
290 
296 
301 
307 
313 
319 
324 
330 

310 336 
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Table B15 continued 

p = 0.90 p = 0.95 p = 0.99 
1-a:  1 - C r  1 - C r  

m .90 .95 .99 .90 .95 .99 .90 .95 .99 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 

38 
52 
65 
78 
91 
104 
116 
128 
140 
152 

164 
175 
187 
199 
210 
222 
233 
245 
256 
267 

279 
290 
30 1 
312 
324 
335 
346 
357 
368 
379 

390 
402 
413 
424 
435 
446 
457 
468 
479 
490 

501 
511 
522 
533 
544 
555 
566 
577 
588 

46 
61 
76 
89 
103 
116 
129 
142 
154 
167 

179 
191 
203 
215 
227 
239 
251 
263 
275 
286 

298 
310 
32 1 
333 
345 
356 
368 
379 
391 
402 

413 
425 
436 
447 
459 
470 
481 
493 
504 
515 

526 
537 
549 
560 
571 
582 
593 
604 
615 

64 
81 
97 
113 
127 
142 
156 
170 
183 
197 

210 
223 
236 
249 
262 
275 
287 
300 
312 
325 

337 
350 
362 
374 
386 
398 
411 
423 
435 
447 

459 
471 
482 
494 
506 
518 
530 
542 
553 
565 

577 
589 
600 
612 
623 
635 
647 
658 
670 

77 
105 
132 
158 
184 
209 
234 
258 
282 
306 

330 
353 
377 
400 
423 
446 
469 
492 
515 
538 

561 
583 
606 
628 
651 
673 
696 
718 
740 
763 

785 
807 
829 
851 
873 
896 
918 
940 
962 
984 

1006 
1027 
1049 
1071 
1093 
1115 
1137 
1159 
1180 

93 
124 
153 
181 
208 
234 
260 
286 
31 1 
336 

361 
386 
410 
434 
458 
482 
506 
530 
554 
577 

601 
624 
647 
671 
694 
717 
740 
763 
786 
809 

832 
855 
877 
900 
923 
945 
968 
99 1 
1013 
1036 

1058 
1081 
1103 
1126 
1148 
1170 
1193 
1215 
1237 

130 
165 
198 
229 
259 
288 
316 
344 
371 
398 

425 
451 
478 
504 
529 
555 
580 
606 
631 
656 

68 1 
706 
730 
755 
779 
804 
828 
852 
877 
90 1 

925 
949 
973 
997 
1020 
1044 
1068 
1091 
1115 
1139 

1162 
1186 
1209 
1233 
1256 
1279 
1303 
1326 
1349 

388 473 662 
531 628 838 
667 773 1001 
798 913 1157 
926 1049 1307 
1051 1182 1453 
1175 1312 1596 
1297 1441 1736 
1418 1568 1874 
1538 1693 2010 

1658 1818 2144 
1776 1941 2277 
1893 2064 2409 
2010 2185 2539 
2127 2306 2669 
2242 2426 2798 
2358 2546 2925 
2473 2665 3052 
2587 2784 3179 
2701 2902 3304 

2815 3020 3429 
2929 3137 3554 
3042 3254 3678 
3155 3371 3801 
3268 3487 3924 
3380 3603 4047 
3492 3719 4169 
3604 3834 4291 
3716 3949 4412 
3828 4064 4533 

3939 4179 4654 
4050 4293 4774 
4162 4407 4894 
4272 4521 5014 
4383 4635 5133 
4494 4749 5252 
4604 4862 5371 
4715 4975 5490 
4825 5088 5608 
4935 5201 5727 

5045 5314 5845 
5155 5427 5962 
5264 5539 6080 
15374 5651 6197 
15483 5764 6314 
15593 5876 6431 
15702 5988 6548 
15811 6099 6665 
15920 6211 6781 

50 599 627 681 1202 1260 1372 16029 6323 6898 
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Table B16: Tolerance factors for q-variate normal distributions 
9 - 2  

1 - a: = 0.99 1 - a: = 0.90 1 - CY = 0.95 
P P P 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
30 

32 
35 
37 
40 
45 

50 
60 
70 
80 
90 

100 
150 
200 
300 
500 
103 

41.61 
26.00 
19.88 
16.31 
14.16 

12.69 
11.63 
10.82 
10.19 
9.70 

9.30 
8.91 
8.63 
8.41 
8.17 

7.99 
7.81 
7.66 
7.54 
7.40 

7.29 
7.20 
7.11 
7.03 
6.88 

6.74 
6.58 
6.48 
6.36 
6.20 

6.07 
5.87 
5.74 
5.62 
5.55 

5.48 
5.27 
5.15 
5.03 
4.92 
4.81 

57.10 95.62 
36.18 60.57 
27.23 45.17 
22.36 36.89 
19.36 31.56 

17.20 28.30 
15.67 25.73 
14.61 23.82 
13.75 22.28 
13.02 21.09 

12.45 20.18 
12.03 19.24 
11.56 18.57 
11.22 17.95 
10.92 17.48 

10.67 17.02 
10.43 16.62 
10.21 16.33 
10.01 15.94 
9.86 15.65 

9.72 15.39 
9.56 15.11 
9.43 14.94 
9.31 14.75 
9.09 14.37 

8.92 14.10 
8.71 13.70 
8.57 13.50 
8.40 13.18 
8.16 12.79 

7.99 12.47 
7.72 12.03 
7.52 11.69 
7.37 11.47 
7.26 11.25 

7.16 11.10 
6.87 10.62 
6.72 10.37 
6.56 10.10 
6.41 9.86 

66.81 
38.33 
27.27 
21.35 
17.94 

15.78 
14.12 
12.88 
12.01 
11.35 

10.77 
10.23 
9.89 
9.53 
9.24 

8.98 
8.71 
8.55 
8.34 
8.20 

8.02 
7.92 
7.81 
7.67 
7.49 

7.32 
7.09 
6.99 
6.84 
6.63 

6.45 
6.21 
6.02 
5.89 
5.79 

5.70 
5.43 
5.30 
5.14 
5.00 
4.87 

93.49 155.4 
53.36 89.96 
37.59 62.77 
29.46 48.77 
24.93 40.53 

21.40 34.93 
19.15 31.65 
17.52 28.85 
16.31 26.54 
15.27 24.83 

14.53 23.63 
13.86 22.35 
13.27 21.44 
12.75 20.61 
12.37 19.90 

12.08 19.33 
11.72 18.76 
11.38 18.30 
11.17 17.82 
10.91 17.45 

10.70 17.13 
10.56 16.78 
10.38 16.50 
10.22 16.25 
9.96 15.77 

9.70 15.36 
9.40 14.84 
9.25 14.58 
9.00 14.26 
8.72 13.68 

8.49 13.33 
8.14 12.74 
7.90 12.31 
7.72 11.99 
7.58 11.77 

7.46 11.60 
7.10 10.98 
6.91 10.67 
6.71 10.33 
6.51 10.03 

199.6 
90.53 
54.45 
37.93 
30.06 

24.51 
21.13 
18.77 
17.09 
15.53 

14.52 
13.55 
12.90 
12.31 
11.72 

11.33 
11.03 
10.71 
10.31 
10.04 

9.74 
9.61 
9.35 
9.18 
8.89 

8.59 
8.29 
8.11 
7.84 
7.50 

7.27 
6.89 
6.64 
6.42 
6.29 

6.15 
5.77 
5.57 
5.36 
5.17 
4.98 

289.4 
124.8 
76.82 
52.76 
41.70 

34.26 
29.49 
25.87 
23.44 
21.55 

20.02 
18.52 
17.56 
16.79 
16.04 

15.35 
14.82 
14.34 
13.93 
13.55 

13.17 
12.81 
12.60 
12.38 
11.84 

11.43 
10.99 
10.66 
10.38 
9.96 

9.59 
9.08 
8.72 
8.44 
8.23 

8.07 
7.55 
7.29 
6.99 
6.72 
6.49 

476.9 
209.2 
125.1 
87.86 
69.66 

57.48 
48.88 
43.43 
38.56 
35.25 

32.92 
30.51 
28.50 
27.25 
26.30 

25.18 
24.13 
23.22 
22.50 
21.89 

21.03 
20.72 
20.13 
19.72 
19.07 

18.34 
17.61 
17.14 
16.55 
15.71 

15.11 
14.27 
13.66 
13.14 
12.83 

12.56 
11.68 
11.25 
10.77 
10.35 
9.98 6.27 9.64 6.34 9.75 

m 4.61 5.99 9.21 4.61 5.99 9.21 4.61 5.99 9.21 
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Table B16 continued 

q = 3  

Appendix B 

1 - Ly = 0.90 1 - CY = 0.95 
P P P 

1 - a: = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

7 
8 
9 
10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
32 

34 
35 
37 
40 
45 

50 
60 
70 
80 
90 

100 
150 
200 
300 
500 
lo3 

44.05 
31.36 
25.27 
21.53 
18.94 

17.07 
15.75 
14.71 
13.90 
13.19 

12.70 
12.19 
11.81 
11.44 
11.15 

10.90 
10.65 
10.46 
10.28 
10.07 

9.91 
9.78 
9.65 
9.54 
9.33 

9.13 
9.07 
8.93 
8.73 
8.47 

8.26 
7.95 
7.75 
7.60 
7.48 

7.39 
7.09 
6.93 
6.77 
6.63 
6.50 

60.13 
42.92 
34.44 
28.98 
25.33 

22.72 
20.87 
19.38 
18.29 
17.34 

16.59 
15.91 
15.35 
14.89 
14.53 

14.12 
13.75 
13.44 
13.20 
13.01 

12.77 
12.62 
12.39 
12.24 
11.93 

11.73 
11.58 
11.38 
11.08 
10.77 

10.49 
10.07 
9.81 
9.58 
9.42 

9.29 
8.90 
8.70 
8.48 
8.29 
8.13 

99.03 
70.71 
55.51 
46.75 
40.49 

36.37 
33.13 
30.49 
28.70 
27.05 

25.74 
24.75 
23.76 
22.93 
22.22 

21.68 
21.14 
20.60 
20.16 
19.75 

19.42 
19.08 
18.74 
18.56 
18.08 

17.59 
17.40 
17.09 
16.63 
16.04 

15.61 
14.93 
14.49 
14.12 
13.87 

13.65 
13.02 
12.70 
12.36 
12.07 
11.81 

62.21 
42.31 
32.75 
26.76 
23.11 

20.49 
18.64 
17.03 
15.88 
15.12 

14.29 
13.77 
13.16 
12.76 
12.35 

12.01 
11.68 
11.46 
11.20 
10.95 

10.79 
10.60 
10.43 
10.29 
10.03 

9.79 
9.68 
9.48 
9.23 
8.94 

8.70 
8.32 
8.08 
7.90 
7.75 

7.64 
7.28 
7.08 
6.89 
6.72 

87.59 
58.47 
44.62 
36.77 
31.06 

27.50 
24.78 
22.79 
21.25 
19.88 

18.92 
17.98 
17.29 
16.61 
16.16 

15.62 
15.23 
14.87 
14.49 
14.17 

13.91 
13.65 
13.43 
13.26 
12.85 

12.55 
12.43 
12.18 
11.84 
11.39 

11.07 
10.59 
10.22 
9.98 
9.77 

9.62 
9.14 
8.89 
8.64 
8.40 

146.6 
97.34 
73.80 
59.42 
50.45 

44.04 
39.68 
36.29 
33.67 
31.40 

29.79 
28.29 
27.03 
25.92 
24.93 

24.19 
23.42 
22.82 
22.24 
21.68 

21.32 
20.90 
20.48 
20.08 
19.60 

19.05 
18.78 
18.32 
17.83 
17.10 

16.52 
15.70 
15.13 
14.71 
14.39 

14.13 
13.37 
12.99 
12.59 
12.24 

143.4 
84.29 
58.13 
43.66 
35.71 

30.16 
26.43 
23.60 
21.50 
20.06 

18.68 
17.50 
16.72 
15.80 
15.16 

14.61 
14.12 
13.70 
13.36 
12.95 

12.75 
12.43 
12.17 
11.92 
11.49 

11.20 
11.06 
10.72 
10.42 
9.99 

9.63 
9.10 
8.75 
8.48 
8.30 

8.14 
7.66 
7.40 
7.14 
6.90 

200.5 
114.9 
80.07 
60.54 
49.24 

41.42 
35.62 
31.87 
29.06 
26.78 

24.67 
23.17 
22.04 
21.02 
20.13 

19.31 
18.57 
18.00 
17.44 
17.16 

16.58 
16.18 
15.83 
15.51 
14.88 

14.47 
14.28 
13.88 
13.42 
12.79 

12.25 
11.59 
11.11 
10.77 
10.46 

10.27 
9.62 
9.28 
8.94 
8.64 

345.3 
196.1 
134.7 
99.65 
81.87 

68.30 
58.05 
52.30 
47.21 
42.99 

39.85 
37.69 
34.92 
33.10 
31.72 

30.58 
29.34 
28.10 
27.23 
26.56 

25.70 
25.10 
24.62 
23.97 
23.07 

22.24 
21.84 
21.12 
20.43 
19.35 

18.48 
17.27 
16.46 
15.92 
15.48 

15.13 
14.09 
13.57 
13.02 
12.55 

6.56 8.21 11.92 6.68 8.36 12.15 
00 6.25 7.81 11.34 6.25 7.81 11.34 6.25 7.81 11.34 
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Table B16 continued 

q = 4  

429 

1 - a = 0.90 1 - = 0.95 1 - a = 0.9'4 
P P P 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

9 
10 
11 
12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 

24 
25 
26 
27 
28 

29 
30 
31 
32 
34 

35 
37 
39 
40 
45 

50 
60 
70 
80 
90 

100 
150 
200 
300 
500 
lo3 

45.66 
35.42 
29.91 
25.78 
23.14 

21.16 
19.63 
18.36 
17.38 
16.59 

15.91 
15.33 
14.88 
14.42 
14.04 

13.70 
13.39 
13.13 
12.89 
12.67 

12.48 
12.30 
12.14 
11.96 
11.70 

11.58 
11.35 
11.17 
11.08 
10.71 

10.41 
9.99 
9.71 
9.49 
9.33 

9.19 
8.81 
8.61 
8.40 
8.22 
8.06 

61.37 
47.98 
39.58 
34.14 
30.48 

27.61 
25.52 
23.89 
22.45 
21.35 

20.47 
19.67 
18.92 
18.40 
17.86 

17.37 
16.98 
16.65 
16.34 
16.04 

15.74 
15.47 
15.26 
15.07 
14.66 

14.52 
14.21 
13.95 
13.81 
13.32 

12.94 
12.37 
11.99 
11.71 
11.49 

11.31 
10.80 
10.54 
10.27 
10.04 
9.84 

100.4 
76.80 
63.01 
53.89 
47.95 

43.16 
39.46 
36.67 
34.46 
32.70 

31.06 
29.70 
28.60 
27.53 
26.68 

26.02 
25.30 
24.70 
24.13 
23.66 

23.25 
22.81 
22.42 
22.13 
21.47 

21.28 
20.72 
20.33 
20.07 
19.27 

18.66 
17.75 
17.14 
16.68 
16.32 

16.07 
15.26 
14.84 
14.43 
14.08 
13.79 

60.55 
45.78 
36.95 
31.34 
27.49 

24.79 
22.52 
20.93 
19.69 
18.58 

17.71 
17.00 
16.33 
15.85 
15.30 

14.92 
14.54 
14.22 
13.91 
13.66 

13.41 
13.19 
12.9!1 
12.77 
12.48 

12.30 
12.06 
11.80 
11.71 
11.26 

10.91 
10.41 
10.07 
9.81 
9.61 

9.47 
9.01 
8.78 
8.53 
8.32 
8.13 

82.66 
61.74 
49.83 
41.86 
36.41 

32.63 
29.59 
27.40 
25.53 
24.10 

23.01 
21.95 
21.15 
20.33 
19.64 

19.06 
18.55 
18.10 
17.69 
17.33 

16.92 
16.65 
16.44 
16.17 
15.69 

15.44 
15.13 
14.78 
14.65 
14.07 

13.58 
12.91 
12.45 
12.11 
11.86 

11.65 
11.05 
10.75 
10.43 
10.15 
9.92 

137.3 
100.8 
80.79 
67.02 
57.85 

51.58 
46.44 
42.71 
39.87 
37.31 

35.27 
33.41 
31.99 
31.01 
29.65 

28.74 
27.83 
27.05 
26.43 
25.86 

25.21 
24.71 
24.28 
23.85 
23.12 

22.81 
22.19 
21.59 
21.38 
20.42 

19.62 
18.56 
17.81 
17.28 
16.87 

16.55 
15.62 
15.15 
14.67 
14.25 
13.90 

116.9 
79.56 
59.47 
47.50 
39.95 

34.42 
30.48 
27.76 
25.44 
23.75 

22.33 
21.09 
20.09 
19.14 
18.39 

17.64 
17.21 
16.79 
16.27 
15.86 

15.54 
15.19 
14.86 
14.65 
14.07 

13.92 
13.47 
13.24 
13.02 
12.40 

11.96 
11.26 
10.82 
10.47 
10.20 

10.02 
9.41 
9.11 
8.78 
8.50 
8.26 

162.0 
110.6 
81.04 
63.83 
54.29 

46.79 
41.23 
37.54 
34.01 
31.28 

29.06 
27.55 
26.32 
24.93 
24.11 

22.92 
22.21 
21.46 
20.91 
20.36 

19.73 
19.44 
18.91 
18.59 
17.93 

17.51 
17.07 
16.71 
16.36 
15.63 

14.98 
14.02 
13.43 
12.94 
12.61 

12.35 
11.54 
11.16 
10.73 
10.39 
10.07 

277.9 
182.6 
135.4 
106.3 
87.76 

76.57 
65.74 
59.81 
53.95 
49.67 

46.70 
43.45 
41.14 
38.69 
37.17 

35.44 
34.01 
33.01 
31.85 
30.97 

30.15 
29.29 
28.69 
28.00 
26.78 

26.24 
25.36 
24.71 
24.28 
22.87 

21.83 
20.27 
19.28 
18.60 
18.01 

17.59 
16.36 
15.76 
15.10 
14.58 
14.12 

co 7.78 9.49 13.28 7.78 9.49 13.28 7.78 9.49 13.28 
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Table B16 continued 

q = 5  

1 - cy = 0.90 1 - (2 = 0.95 
P P P 

1 - cy = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
34 
35 
37 

39 
40 
41 
43 
45 

47 
50 
60 
70 
80 

90 
100 
150 
200 
300 
500 
lo3 
70 

47.24 
38.87 
33.46 
29.75 
27.00 

24.90 
23.19 
21.89 
20.77 
19.88 

19.12 
18.43 
17.82 
17.34 
16.91 

16.48 
16.12 
15.80 
15.51 
15.26 

15.00 
14.81 
14.38 
14.23 
13.91 

13.61 
13.49 
13.40 
13.16 
12.99 

12.82 
12.61 
12.03 
11.65 
11.35 

11.14 
10.98 
10.47 
10.22 
9.96 
9.74 
9.56 
9.24 

62.95 
51.63 
44.15 
38.87 
35.10 

32.08 
29.85 
28.01 
26.55 
25.18 

24.18 
23.27 
22.44 
21.78 
21.15 

20.60 
20.17 
19.72 
19.33 
18.99 

18.67 
18.32 
17.80 
17.57 
17.15 

16.81 
16.65 
16.48 
16.19 
15.94 

15.72 
15.41 
14.67 
14.16 
13.77 

13.50 
13.29 
12.61 
12.30 
11.97 
11.69 
11.46 
11.07 

101.9 
81.56 
69.42 
60.59 
53.95 

49.30 
45.33 
42.20 
39.94 
37.82 

36.01 
34.57 
33.19 
32.05 
31.07 

30.15 
29.41 
28.64 
28.01 
27.46 

26.93 
26.49 
25.60 
25.20 
24.55 

23.93 
23.64 
23.43 
22.97 
22.59 

22.20 
21.71 
20.54 
19.74 
19.17 

18.73 
18.38 
17.38 
16.89 
16.40 
15.98 
15.64 
15.09 

59.!)8 
48.00 
40.30 
35.22 
31.37 

28.49 
26.22 
24.50 
23.24 
21.115 

20.07 
20.20 
19.47 
18.87 
18.28 

17.76 
17.35 
16.!39 
16.57 
16.26 

16.00 
15.77 
15.26 
15.07 
14.66 

14.37 
14.23 
14.10 
13.84 
13.62 

13.42 
13.13 
12.49 
12.02 
11.70 

11.46 
11.27 
10.69 
10.40 
10.10 
9.84 
9.63 
9.24 

81.75 
64.25 
53.53 
45.86 
41.01 

37.16 
34.22 
31.74 
29.87 
28.27 

26.81 
25.65 
24.67 
23.76 
23.02 

22.42 
21.78 
21.22 
20.81 
20.32 

19.94 
19.64 
18.97 
18.68 
18.19 

17.74 
17.55 
17.36 
17.03 
16.76 

16.47 
16.12 
15.24 
14.65 
14.23 

13.89 
13.64 
12.89 
12.52 
12.14 
11.82 
11.55 
11.07 

133.2 
104.7 
85.88 
73.40 
64.45 

57.62 
52.84 
48.56 
45.23 
42.63 

40.43 
38.38 
37.01 
35.48 
34.22 

33.07 
32.07 
31.22 
30.42 
29.62 

29.11 
28.50 
27.49 
26.99 
26.14 

25.45 
25.08 
24.86 
24.27 
23.80 

23.38 
22.84 
21.44 
20.49 
19.83 

19.32 
18.90 
17.75 
17.20 
16.63 
16.15 
15.76 
15.09 

104.1 
76.16 
59.84 
50.51 
43.32 

38.61 
34.67 
31.50 
29.40 
27.43 

25.74 
24.56 
23.28 
22.43 
21.68 

20.84 
20.26 
19.61 
19.13 
18.63 

18.29 
17.84 
17.16 
16.87 
16.41 

13.97 
15.73 
15.57 
15.25 
14.93 

14.67 
14.34 
13.41 
12.83 
12.44 

12.12 
11.87 
11.13 
10.75 
10.37 
10.04 
9.76 
9.24 

143.8 
107.5 
82.14 
67.97 
57.63 

50.67 
45.64 
41.58 
38.17 
35.77 

33.51 
31.71 
30.03 
28.71 
27.49 

26.71 
25.67 
24.85 
24.14 
23.59 

22.96 
22.53 
21.62 
21.20 
20.49 

19.88 
19.59 
19.35 
18.83 
18.43 

18.14 
17.64 
16.47 
15.69 
15.11 

14.71 
14.39 
13.42 
12.94 
12.48 
12.07 
11.71 
11.07 

23!9.0 
172.3 
134.6 
109.4 
93.16 

81.16 
7’2.26 
65.68 
59.65 
55.86 

51.46 
48.99 
4G.07 
43.80 
41.76 

40.13 
38.60 
37.39 
36.33 
35.00 

34.05 
33.24 
31.66 
31.14 
2!). 94 

28.88 
28.38 
27.96 
27.15 
26.56 

25.99 
25.17 
23.32 
22.09 
21.16 

20.52 
19.96 
18.50 
17.80 
17.10 
16.49 
15.98 
15.09 
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Table B16 continued 

q = 6  

1 - a = 0.90 1 - Q = 0.95 
P P P 

1 - t)r = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

13 
14 
15 
16 
17 

18 
19 
20 
21 
22 

23 
24 
25 
26 
27 

28 
29 
30 
31 
32 

33 
34 
35 
36 
37 

39 
40 
41 
43 
45 

47 
50 
60 
70 
80 

90 
100 
150 
200 
300 
500 
lo3 
00 

49.14 
42.00 
37.14 
33.37 
30.59 

28.41 
26.59 
25.21 
24.09 
23.03 

22.13 
21.45 
20.80 
20.20 
19.69 

19.24 
18.81 
18.45 
18.11 
17.81 

17.51 
17.24 
17.03 
16.78 
16.58 

16.22 
16.04 
15.90 
15.60 
15.36 

15.13 
14.83 
14.08 
13.57 
13.22 

12.95 
12.73 
12.10 
11.79 
11.49 
11.22 
11 .00 
10.64 

65.00 
55.04 
48.01 
42.97 
39.27 

36.28 
33.97 
31.84 
30.35 
28.91 

27.70 
26.75 
25.88 
25.10 
24.38 

23.77 
23.22 
22.75 
22.26 
21.87 

21.49 
21.15 
20.85 
20.52 
20.24 

19.75 
19.53 
19.33 
18.99 
18.63 

18.32 
17.94 
16.98 
16.32 
15.85 

15.51 
15.23 
14.42 
14.02 
13.62 
13.29 
13.03 
13.03 

102.9 
85.79 
74.38 
65.80 
59.46 

54.78 
50.80 
47.62 
44.96 
42.66 

40.62 
39.08 
37.56 
36.26 
35.15 

34.18 
33.33 
32.57 
31.75 
31.19 

30.54 
29.94 
29.45 
29.00 
28.57 

27.81 
27.43 
27.09 
26.54 
26.00 

25.50 
24.86 
23.38 
22.35 
21.65 

21.12 
20.68 
19.46 
18.87 
18.29 
17.81 
17.41 
16.81 

60.62 
50.67 
43.65 
38.75 
34.89 

31.96 
29.83 
28.04 
26.41 
25.28 

24.24 
23.33 
22.47 
21.79 
21.19 

20.61 
20.08 
19.69 
19.25 
18.90 

18.53 
18.31 
17.99 
17.71 
17.43 

17.04 
16.86 
16.66 
16.35 
16.05 

15.78 
15.46 
14.58 
14.00 
13.61 

13.30 
13.04 
12.34 
11.98 
11.63 
11.33 
11.08 
10.64 

80.55 
66.82 
57.03 
50.31 
45.17 

41.34 
38.19 
35.65 
33.63 
31.98 

30.45 
29.33 
28.24 
27.25 
26.33 

25.62 
25.01 
24.34 
23.89 
23.37 

22.89 
22.48 
22.08 
21.74 
21.40 

20.89 
20.60 
20.06 
19.93 
19.56 

19.17 
18.75 
17.61 
16.86 
16.32 

15.92 
15.61 
14.70 
14.25 
13.80 
13.42 
13.12 
13.03 

129.9 
105.9 
89.89 
78.30 
69.41 

63.03 
58.20 
53.96 
50.57 
47.42 

45.19 
43.20 
41.42 
39.88 
38.38 

37.23 
36.16 
35.22 
34.30 
33.56 

32.69 
32.18 
31.50 
31.00 
30.37 

29.43 
29.07 
28.59 
28.00 
27.36 

26.84 
26.07 
24.33 
23.15 
22.34 

21.73 
21.23 
19.84 
19.19 
18.53 
17.98 
17.54 
16.81 

93.69 
74.33 
61.79 
53.33 
46.81 

41.63 
37.68 
35.11 
32.89 
30.83 

29.08 
27.81 
26.62 
25.62 
24.49 

23.73 
23.01 
22.52 
21.96 
21.32 

20.95 
20.46 
20.10 
19.79 
19.48 

18.85 
18.59 
18.36 
17.91 
17.51 

17.12 
16.74 
15.62 
14.86 
14.36 

13.98 
13.69 
12.79 
12.35 
11.91 
11.54 
11.22 
10.64 

132.5 
103.3 
82.15 
70.23 
61.10 

55.03 
49.80 
45.75 
42.35 
39.54 

37.32 
35.69 
33.77 
32.28 
31.03 

30.01 
29.08 
28.13 
27.36 
26.71 

26.00 
25.52 
24.96 
24.44 
24.09 

23.22 
22.86 
22.64 
21.96 
21.41 

20.93 
20.35 
18.90 
17.95 
17.26 

16.77 
16.39 
15.25 
14.70 
14.14 
13.68 
13.28 
13.03 

211.6 
167.2 
135.4 
112.3 
98.40 

86.47 
78.08 
70.81 
65.01 
60.51 

57.11 
53.53 
50.78 
48.51 
46.16 

44.50 
43.17 
41.47 
40.40 
39.09 

37.89 
37.11 
36.14 
35.38 
34.75 

33.32 
32.76 
32.31 
31.35 
30.39 

29.67 
28.63 
26.34 
24.83 
23.79 

22.95 
22.35 
20.61 
19.82 
18.99 
18.31 
17.77 
16.81 
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Table B16 continued 

q = 7  

Appendix B 

1 - cy = 0.90 1 - N =z 0.95 
P P P 

1 - N = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

5 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
45 

47 
50 
60 
70 
80 

90 
100 
150 
200 
300 
500 
lo3 
co 

51.23 
44.97 
40.20 
36.84 
34.06 

31.77 
29.99 
28.47 
27.23 
26.10 

25.20 
24.37 
23.67 
23.07 
22.42 

21.94 
21.47 
21.06 
20.68 
20.34 

20.04 
19.69 
19.46 
19.20 
18.95 

18.74 
18.52 
18.32 
18.15 
17.83 

17.53 
17.15 
16.19 
15.55 
15.10 

14.75 
14.50 
13.73 
13.35 
12.98 
12.66 
12.41 
12.02 

66.65 
58.13 
51.78 
46.93 
43.07 

40.10 
37.66 
35.69 
34.00 
32.57 

31.26 
30.19 
29.26 
28.35 
27.60 

26.86 
26.29 
25.72 
25.23 
24.74 

24.31 
23.92 
23.55 
23.22 
22.88 

22.66 
22.36 
22.11 
21.86 
21.47 

21.05 
20.56 
19.33 
18.51 
17.93 

17.49 
17.16 
16.18 
15.71 
15.25 
14.85 
14.55 
14.07 

103.8 
89.60 
78.75 
70.77 
64.51 

59.81 
55.80 
52.25 
49.74 
47.29 

45.03 
43.41 
41.77 
40.47 
39.28 

38.18 
37.16 
36.31 
35.49 
34.75 

34.02 
33.44 
32.90 
32.37 
31.88 

31.40 
30.98 
30.58 
30.22 
29.55 

28.96 
28.16 
26.25 
25.02 
24.13 

23.49 
22.96 
21.50 
20.80 
20.13 
19.58 
19.13 
18.48 

61.40 
52.54 
46.46 
41.70 
38.16 

35.42 
33.07 
31.40 
29.73 
28.42 

27.25 
26.37 
25.41 
24.64 
24.03 

23.39 
22.82 
22.36 
21.91 
21.50 

21.15 
20.79 
20.46 
20.18 
19.93 

19.65 
19.40 
19.19 
18.97 
18.58 

18.24 
17.84 
16.73 
16.04 
15.49 

15.15 
14.84 
13.98 
13.55 
13.13 
12.78 
12.49 
12.02 

80.43 
68.46 
59.84 
53.98 
49.04 

45.23 
42.22 
39.58 
37.42 
35.63 

34.12 
32.73 
31.58 
30.51 
29.67 

28.78 
28.11 
27.43 
26.87 
26.30 

25.81 
25.32 
24.90 
24.57 
24.18 

23.83 
23.50 
23.24 
22.97 
22.46 

21.97 
21.43 
20.03 
19.08 
18.45 

17.95 
17.57 
16.47 
15.95 
15.42 
14.99 
14.64 
14.07 

128.3 
106.8 
93.27 
82.53 
74.68 

68.24 
62.69 
58.71 
55.32 
52.45 

49.90 
47.68 
45.88 
44.03 
42.58 

41.31 
40.15 
39.03 
38.09 
37.13 

36.44 
35.75 
35.02 
34.39 
33.83 

33.28 
32.76 
32.32 
31.86 
31.09 

30.40 
29.49 
27.32 
25.90 
24.86 

24.11 
23.55 
21.91 
21.14 
20.37 
19.76 
19.26 
18.48 

90.29 
74.08 
63.19 
55.89 
49.41 

44.43 
41.20 
38.49 
35.98 
33.84 

32.28 
30.76 
29.52 
28.63 
27.56 

26.77 
25.93 
25.22 
24.66 
24.16 

23.62 
23.07 
22.73 
22.28 
21.96 

21 5 7  
21.32 
21.07 
20.69 
20.26 

19.82 
19.25 
17.91 
16.96 
16.35 

15.85 
15.50 
14.44 
13.94 
13.43 
13.00 
12.64 
12.02 

122.9 
100.3 
84.16 
73.53 
65.17 

58.53 
53.23 
49.32 
46.22 
43.32 

40.96 
39.15 
37.24 
35.69 
34.46 

33.40 
32.33 
31.44 
30.56 
29.87 

29.08 
28.50 
27.96 
27.31 
26.87 

26.34 
26.03 
25.63 
25.30 
24.61 

24.00 
23.26 
21.44 
20.30 
19.47 

18.84 
18.40 
17.05 
16.41 
15.78 
15.25 
14.80 
14.07 

203.0 
161.6 
135.3 
116.3 
101.4 

91.20 
82.34 
76.21 
70.11 
65.76 

61.93 
58.21 
55.39 
52.57 
50.58 

48.85 
47.06 
45.56 
44.1.3 
42.84 

41.70 
40.75 
39.81 
39.19 
38.19 

37.35 
36.79 
36.16 
35.54 
34.54 

33.52 
32.20 
29.52 
27.70 
26.35 

25.43 
24.67 
22.73 
21.76 
20.86 
20.11 
19.48 
18.48 
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Table B16 continued 

q = 8  

433 

1 - N = 0.90 1 - CY = 0.95 
P P P 

1 - N = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
30 
31 
32 

33 
34 
35 
36 
37 

38 
39 
40 
43 
45 

47 
50 
55 
60 
65 

70 
75 
80 
90 
100 

150 
200 
300 
500 
lo3 

53.56 
47.7’2 
43.32 
39.98 
37.30 

35.09 
33.23 
31.67 
30.31 
29.18 

28.20 
27.28 
25.83 
25.24 
24.64 

24.15 
23.70 
23.29 
22.85 
22.50 

22.17 
21.85 
21.59 
20.85 
20.42 

20.03 
19.54 
18.89 
18.35 
17.93 

17.57 
17.26 
17.00 
16.59 
16.26 

15.34 
14.89 
14.45 
14.09 
13.80 

68.78 
60.86 
54.88 
50.30 
46.86 

43.79 
41.39 
39.22 
37.50 
35.93 

34.62 
33.43 
31.46 
30.69 
29.96 

29.26 
28.64 
28.08 
27.65 
27.13 

26.72 
26.33 
25.93 
24.98 
24.40 

23.95 
23.29 
22.43 
21.76 
21.20 

20.75 
20.37 
20.04 
19.51 
19.09 

17.94 
17.38 
16.83 
16.38 
16.03 

105.4 
92.02 
82.67 
75.07 
69.02 

64.29 
60.05 
56.96 
54.05 
51.52 

49.43 
47.58 
44.41 
43.14 
42.00 

40.86 
39.92 
39.14 
38.30 
37.55 

36.86 
36.22 
35.69 
34.09 
33.30 

32.57 
31.57 
30.28 
29.22 
28.41 

27.71 
27.15 
26.64 
25.86 
25.25 

23.54 
22.73 
21.94 
21.30 
20.80 

62.26 
54.69 
49.40 
44.87 
41.28 

38.69 
36.43 
34.43 
32.90 
31.57 

30.31 
29.31 
27.54 
26.83 
26.13 

25.61 
25.05 
24.55 
24.10 
23.69 

23.32 
22.95 
22.63 
21.76 
21.25 

20.87 
20.29 
19.56 
18.94 
18.48 

18.08 
17.74 
17.45 
17.00 
16.62 

15.60 
15.10 
14.61 
14.21 
13.88 

81.00 
70.45 
62.91 
57.24 
52.55 

48.85 
45.63 
43.09 
41.03 
39.18 

37.54 
36.18 
33.81 
32.80 
31.97 

31.12 
30.47 
29.77 
29.18 
28.65 

28.20 
27.65 
27.28 
26.13 
25.56 

24.99 
24.24 
23.29 
22.50 
21.89 

21.37 
20.96 
20.57 
19.99 
19.53 

18.24 
17.63 
17.02 
16.53 
16.13 

126.8 
109.1 
96.63 
86.43 
78.55 

72.38 
67.41 
63.19 
59.83 
56.91 

54.13 
51.97 
48.19 
46.64 
45.29 

43.95 
42.76 
41.82 
40.73 
39.95 

39.06 
38.54 
37.77 
36.00 
35.03 

34.11 
33.06 
31.56 
30.33 
29.42 

28.63 
27.98 
27.42 
26.56 
25.86 

23.96 
23.05 
22.19 
21.48 
20.93 

88.26 
74.26 
64.52 
57.52 
52.09 

47.63 
44.53 
41.50 
39.24 
36.99 

35.32 
33.83 
31.29 
30.38 
29.70 

28.86 
28.05 
27.39 
26.79 
26.22 

25.70 
25.19 
24.78 
23.72 
23.13 

22.56 
21.92 
20.91 
20.19 
19.61 

19.11 
18.69 
18.36 
17.77 
17.36 

16.10 
15.51 
14.93 
14.44 
14.03 

117.3 
100.1 
84.73 
75.15 
67.36 

61.25 
56.56 
52.77 
49.52 
46.91 

44.45 
42.63 
39.22 
37.62 
36.59 

35.37 
34.53 
33.72 
32.72 
32.11 

31.37 
30.73 
30.06 
28.83 
27.92 

27.18 
26.27 
25.04 
24.04 
23.28 

22.65 
22.15 
21.65 
20.95 
20.42 

18.86 
18.12 
17.40 
16.79 
16.31 

188.4 
157.9 
133.5 
119.2 
105.0 

95.05 
86.84 
80.32 
74.41 
69.88 

65.71 
62.72 
57.23 
54.81 
52.92 

51.16 
49.58 
47.86 
46.77 
45.77 

44.42 
43.21 
42.52 
40.09 
38.71 

37.70 
36.14 
34.22 
32.76 
31.47 

30.54 
29.71 
28.98 
27.91 
27.07 

24.79 
23.72 
22.68 
21.84 
21.16 

03 13.36 15.51 20.09 13.36 15.51 20.09 13.36 15.51 20.09 
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Tablc B16 continued 

q = s  

1 - N = 0.90 1 - N = 0.95 
P P P 

1 - N = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

19 
20 
21 
22 
23 

24 
25 
26 
27 
28 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
43 
45 
47 
50 

53 
55 
57 
60 
65 

70 
75 
80 
90 
100 

150 
200 
300 
500 
1 o3 

55.67 
50.24 
46.36 
42.98 
40.37 

38.22 
36.27 
34.74 
33.31 
32.24 

30.22 
29.38 
28.59 
27.97 
27.35 

26.77 
26.30 
25.81 
25.40 
25.00 

24.62 
23.68 
23.14 
22.66 
22.08 

21.55 
21.24 
20.97 
20.58 
20.06 

19.62 
19.27 
18.95 
18.44 
18.07 

16.95 
16.43 
15.91 
15.50 
15.17 

70.96 
63.78 
58.07 
53.99 
50.38 

47.28 
44.88 
42.74 
40.97 
39.28 

36.75 
35.61 
34.61 
33.78 
32.99 

32.26 
31.60 
31.02 
30.46 
29.95 

29.46 
28.24 
27.57 
26.93 
26.15 

25.50 
25.07 
24.76 
24.27 
23.59 

23.03 
22.57 
22.19 
21.55 
21.05 

19.68 
19.04 
18.40 
17.89 
17.49 

106.8 
95.05 
86.46 
78.89 
73.29 

68.60 
64.33 
61.19 
58.11 
55.79 

51.55 
49.89 
48.32 
47.05 
45.67 

44.61 
43.50 
42.60 
41.83 
40.97 

40.29 
38.37 
37.30 
36.37 
35.16 

34.13 
33.60 
33.05 
32.31 
31.27 

30.50 
29.81 
29.21 
28.30 
27.57 

25.55 
24.62 
23.72 
23.00 
22.44 

63.69 
56.96 
51.65 
47.77 
44.48 

41.67 
39.55 
37.58 
35.96 
34.47 

32.17 
31.18 
30.38 
29.58 
28.90 

28.28 
27.69 
27.10 
26.63 
26.20 

25.78 
24.71 
24.11 
23.57 
22.91 

22.32 
21.94 
21.65 
21.24 
20.67 

20.17 
19.77 
19.41 
18.86 
18.45 

17.23 
16.65 
16.08 
15.62 
15.25 

82.04 
73.48 
65.86 
60.58 
55.82 

52.48 
49.00 
46.73 
44.43 
42.57 

39.49 
38.10 
36.98 
35.92 
35.06 

34.12 
33.42 
32.77 
32.14 
31.56 

30.97 
29.55 
28.80 
28.08 
27.20 

26.48 
26.04 
25.60 
25.06 
24.32 

23.71 
23.18 
22.77 
22.06 
21.53 

20.01 
19.30 
18.61 
18.04 
17.59 

125.8 
110.6 
98.97 
89.66 
82.70 

76.86 
71.96 
67.61 
63.92 
61.20 

56.10 
53.98 
52.33 
50.46 
48.99 

47.70 
46.36 
45.37 
44.40 
43.43 

42.61 
40.46 
39.12 
38.12 
36.76 

35.61 
34.93 
34.36 
33.48 
32.39 

31.46 
30.70 
30.01 
28.98 
28.21 

26.00 
24.98 
23.97 
23.18 
22.57 

86.61 
75.73 
66.83 
59.96 
54.64 

50.42 
47.30 
44.44 
42.21 
40.00 

36.92 
35.58 
34.62 
33.33 
32.47 

31.53 
30.76 
30.10 
29.48 
28.92 

28.35 
26.92 
26.09 
25.48 
24.62 

23.92 
23.51 
23.06 
22.55 
21.87 

21.22 
20.80 
20.39 
19.72 
19.20 

17.76 
17.10 
16.41 
15.86 
15.40 

114.4 
97.05 
86.55 
77.31 
70.10 

64.76 
59.88 
56.33 
53.11 
50.23 

45.73 
43.91 
42.32 
41.05 
39.81 

38.71 
37.67 
36.67 
35.85 
35.07 

34.32 
32.48 
31.41 
30.55 
29.46 

28.42 
27.92 
27.42 
26.76 
25.80 

25.04 
24.45 
23.93 
23.10 
22.43 

20.64 
19.79 
18.98 
18.31 
17.78 

180.6 
154.4 
134.7 
120.5 
107.3 

97.92 
90.97 
83.92 
79.11 
73.83 

6ci.73 
63.68 
6 1.02 
58.62 
56.91 

54.71 
53.28 
51.75 
50 25 
49.07 

47.93 
44.90 
43.45 
41.99 
40.33 

38.76 
37.79 
37.06 
36.11 
34.63 

33.40 
32.49 
31.72 
30.49 
29.49 

26.89 
25.65 
24.46 
23.54 
22.80 

00 14.68 16.92 21.67 14.68 16.92 21.67 14.68 16.92 21.67 
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Table B16 continued 

q = 10 

435 

1 - N = 0.90 1 - N = 0.95 
P P P 

1 - CY = 0.99 

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

21 
22 
23 
24 
25 

26 
27 
28 
30 
31 

32 
33 
34 
35 
36 

37 
38 
39 
40 
43 

45 
47 
50 
53 
55 

57 
60 
63 
65 
67 

70 
75 
80 
90 
100 

150 
200 
300 
500 
lo3 

57.86 
53.09 
49.24 
46.06 
43.42 

41.24 
39.34 
37.69 
35.07 
33.98 

33.06 
32.13 
31.35 
30.68 
29.99 

29.47 
28.87 
28.35 
27.92 
26.71 

26.05 
25.47 
24.71 
24.05 
23.70 

23.35 
22.91 
22.50 
22.26 
22.06 

21.74 
21.31 
20.94 
20.33 
19.87 

18.56 
17.96 
17.36 
16.89 
16.52 

72.95 
66.50 
61.46 
57.17 
53.57 

50.75 
48.26 
46.13 
42.62 
41.18 

39.94 
38.76 
37.81 
36.80 
35.94 

35.20 
34.50 
33.88 
33.26 
31.77 

30.88 
30.13 
29.16 
28.35 
27.86 

27.45 
26.87 
26.36 
26.03 
25.77 

25.39 
24.84 
24.38 
23.61 
23.06 

21.44 
20.69 
19.96 
19.39 
18.94 

108.9 
98.19 
89.83 
82.67 
77.21 

72.42 
68.67 
65.21 
59.78 
57.64 

55.43 
53.67 
52.20 
50.72 
49.48 

48.18 
47.10 
46.14 
45.22 
42.92 

41.57 
40.47 
38.97 
37.70 
37.01 

36.34 
35.50 
34.77 
34.30 
33.92 

33.35 
32.51 
31.82 
30.74 
29.91 

27.58 
26.49 
25.47 
24.67 
24.05 

65.22 
59.10 
54.51 
50.67 
47.31 

44.72 
42.52 
40.64 
37.52 
36.23 

35.07 
34.07 
33.20 
32.38 
31.60 

30.90 
30.34 
29.75 
29.20 
27.89 

27.13 
26.46 
25.60 
24.91 
24.51 

24.13 
23.63 
23.16 
22.90 
22.66 

22.31 
21.85 
21.44 
20.78 
20.26 

18.85 
18.20 
17.54 
17.02 
16.60 

83.56 
74.95 
68.75 
63.55 
59.19 

55.61 
52.61 
49.96 
45.89 
44.13 

42.61 
41.39 
40.18 
39.05 
38.06 

37.20 
36.37 
35.69 
34.89 
33.22 

32.26 
31.38 
30.33 
29.39 
28.82 

28.39 
27.74 
27.19 
26.81 
26.51 

26.09 
25.52 
24.97 
24.16 
23.54 

21.79 
20.96 
20.16 
19.53 
19.03 

127.5 
112.5 
102.1 
93.82 
86.36 

80.65 
75.81 
71.61 
64.96 
62.34 

60.21 
57.67 
55.91 
54.25 
52.86 

51.39 
50.24 
48.94 
47.92 
45.17 

43.69 
42.37 
40.69 
39.29 
38.55 

37.77 
36.77 
36.00 
35.46 
35.00 

34.34 
33.44 
32.70 
31.49 
30.54 

28.04 
26.85 
25.74 
24.86 
24.18 

84.98 
75.72 
68.13 
62.31 
57.51 

53.74 
50.40 
47.62 
43.03 
41.17 

39.95 
38.58 
37.24 
36.13 
35.16 

34.33 
33.41 
32.72 
32.03 
30.43 

29.38 
28.62 
27.50 
26.59 
26.12 

25.68 
25.07 
24.52 
24.23 
23.92 

23.51 
22.89 
22.45 
21.66 
21.06 

19.42 
18.63 
17.88 
17.26 
16.76 

111.5 
98.22 
87.52 
79.21 
72.93 

67.53 
62.77 
59.54 
53.44 
51.44 

48.87 
47.12 
45.75 
44.15 
43.01 

41.78 
40.69 
39.68 
38.69 
36.43 

35.21 
34.00 
32.76 
31.65 
30.98 

30.36 
29.69 
28.83 
28.52 
28.10 

27.58 
26.83 
26.24 
25.27 
24.50 

22.43 
21.49 
20.56 
19.82 
19.23 

176.3 
151.6 
135.3 
121.5 
109.7 

101.3 
94.31 
87.26 
77.57 
73.88 

70.83 
67.81 
65.22 
62.70 
60.35 

58.66 
57.05 
55.19 
53.68 
50.30 

48.29 
46.69 
44.46 
42.70 
41.61 

40.77 
39.61 
38.49 
37.89 
37.32 

36.51 
35.48 
34.53 
33.02 
31.91 

28.91 
27.54 
26.26 
25.22 
24.42 

00 15.99 18.31 23.21 15.99 18.31 23.21 15.99 18.31 23.21 
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Table B17: Two-sided ( p ,  1 - a )  tolerance intervals for N ( p ,  02): sample size 
requirement to cover no more than p + 6 of the distribution with probability 
1 - a' 

p = 0.75 
1 - ff = 0.99 1 - = 0.95 1 - cy = 0.90 

Values of 1 - a' 

b 0.99 0.95 0.90 
0.240 20 16 15 
0.230 25 
0.220 30 
0.210 36 
0.200 42 
0.190 48 

0.180 56 
0.170 65 
0.160 76 
0.150 88 
0.140 104 
0.130 123 

0.120 147 
0.110 178 
0.100 219 
0.090 274 
0.080 352 
0.070 465 

0.065 542 
0.060 640 
0.055 766 
0.050 932 
0.045 1156 
0.040 1470 

0.035 1928 
0.030 2636 
0.028 3031 
0.026 3522 
0.024 4140 

0.022 4935 
0.020 5981 
0.018 7395 

20 
24 
28 
33 
38 

44 
50 
58 
68 
79 
93 

111 
134 
164 
205 
262 
345 

402 
474 
566 
688 
852 

1082 

1418 
1935 
2224 
2583 
3034 

3615 
4379 
5412 

18 
21 
25 
28 
33 

38 
43 
50 
58 
67 
79 

94 
113 
138 
172 
220 
289 

336 
396 
472 
573 
709 
900 

1178 
1606 
1845 
2141 
2515 

2995 
3627 
4481 

0.016 9374 6856 5675 
Reprinted with permission from Ta: 

0.99 0.95 0.90 
13 11 10 
16 
19 
22 
25 
29 

34 
39 
45 
53 
62 
74 

88 
107 
131 
164 
210 
278 

324 
383 
458 
557 
691 

1061 

1394 
1907 
2194 
2550 
2999 

3577 
4337 
5365 

14 
16 
19 
22 
25 

29 
34 
39 
46 
53 
63 

75 
90 

111 
139 
177 
234 

273 
322 
384 
467 
579 
879 

966 
1319 
1517 
1762 
2071 

2469 
2991 
3699 

12 
14 
16 
19 
21 

25 
28 
32 
38 
44 
52 

61 
74 
90 

112 
143 
188 

219 
258 
308 
374 
463 
736 

769 
1050 
1207 
1401 
1646 

1962 
2376 
2937 

6803 4688 3721 

0.99 0.95 0.90 
11 9 8 
14 
17 
20 
24 
28 

32 
37 
43 
51 
60 
71 

85 
103 
127 
160 
206 
273 

319 
377 
451 
550 
683 
587 

1144 
1567 
1803 
2096 
2466 

2942 
3568 
4415 

11 
13 
15 
17 
20 

23 
27 
31 
36 
42 
49 

59 
71 
87 

108 
139 
183 

214 
252 
302 
367 
455 
706 

760 
1039 
1195 
1389 
1633 

1946 
2359 
2918 

9 
11 
13 
14 
16 

19 
22 
25 
29 
33 
39 

47 
56 
68 
85 

109 
143 

167 
196 
235 
285 
353 
579 

587 
802 
922 

1071 
1258 

1500 
1817 
2246 

5601 3700 2847 
x & Francis, Ltd.; http://www.informaworlti.com 
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6 0.99 0.95 0.90 
0.095 33 28 

Table B17 continued 

p = 0.90 
1 - a = 0.99 1 - a = 0.95 1 - a = 0.90 

0.99 0.95 0.90 
29 22 19 

437 

38 
49 
61 
75 
93 

114 
141 
176 
222 
286 

375 
507 
712 
827 
971 

1153 
1387 
1697 
2118 
2709 

3576 

0.090 
0.085 
0.080 
0.075 
0.070 

0.065 
0.060 
0.055 
0.050 
0.045 

0.040 
0.035 
0.030 
0.028 
0.026 

0.024 
0.022 
0.020 
0.018 
0.016 

0.014 

4 1  
53 
66 
83 

103 

128 
159 
200 
255 
330 

436 
592 
837 
975 

1146 

1364 
1645 
2017 
2522 
3233 

4275 

41 
57 
74 
'34 

117 
145 

179 
223 
280 
356 
460 

606 
823 

1160 
1351 
1587 

1887 
2275 
2787 
3483 
446 1 

5896 

45 
57 
72 
89 

109 

135 
167 
210 
265 
341 

449 
608 
856 
995 

1168 

1388 
1671 
2046 
2556 
3269 

4317 

30 
39 
48 
60 
74 

91 
113 
142 
179 
231 

304 
413 
582 
677 
795 

945 
1139 
1395 
1743 
2232 

2949 

25 
32 
40 
49 
60 

74 
92 

114 
145 
186 

244 
330 
465 
540 
634 

753 
907 

1110 
1386 
1774 

2342 
0.012 8117 5939 4916 I 5889 4059 3223 

0.99 0.95 0.90 
24 17 
33 
43 
54 
67 
84 

104 
130 
163 
208 
269 

356 
485 
686 
799 
94 1 

1120 
1351 
1657 
2073 
2658 

3517 

24 
30 
38 
47 
58 

71 
88 

111 
141 
181 

239 
324 
457 
532 
626 

744 
897 

1099 
1374 
1760 

2326 

14 
1 !J 
24 
30 
37 
46 

56 
70 
87 

110 
142 

186 
252 
35 4 
412 
481 

575 
693 
848 

1059 
1356 

1791 
4848 3203 2465 
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6 .99 .95 .90 
0.048 56 43 37 
0.044 98 75 64 
0.040 149 112 95 
0.036 215 162 136 
0.032 309 231 194 

0.028 450 334 280 
0.024 671 497 414 
0.022 832 615 513 
0.020 1047 773 643 
0.018 1342 988 822 

0.016 1759 1294 1075 
0.014 2376 1745 1449 
0.012 3339 2449 2031 
0.010 4958 3632 3009 
0.008 7978 5837 4833 

Appendix B 

.99 .95 .90 .99 .95 
39 29 24 32 23 19 
70 51 42 57 40 32 

106 76 62 86 59 47 
154 109 89 125 85 67 
222 156 126 181 122 96 

323 226 182 264 177 139 
482 337 270 395 264 206 
599 418 334 491 328 255 
755 525 420 619 413 320 
968 672 537 794 529 409 

1271 881 702 1043 693 536 
1718 1189 947 1411 937 723 
2418 1671 1329 1987 1317 1015 
3593 2480 1971 2956 1956 1507 
5788 3990 3168 4764 3148 2423 

Table B17 continued 

p = 0.95 
1 - a = 0.99 1 - CY = 0.95 1 - a = 0.90 

Values of 1 - CY’ 
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Table B18: Two-sided P-expectation tolerance intervals for N ( p ,  02): minimum 
sample size requirement to cover no more than /3 f 6 of the distribution with 
probability at least 1 - a’ 

/3 = 0.95 
1 - 0’ 

/3 = 0.975 
1 - a’ 

6 .99 ,975 ,950 .90 6 .99 ,975 .950 .90 
,0450 109 75 50 28 ,0240 160 109 72 37 
,0400 133 92 62 38 .0200 216 148 99 59 
,0300 217 153 110 73 ,0160 315 219 154 100 
.0250 302 217 159 108 ,0120 526 377 276 187 
,0200 457 335 250 172 ,0100 738 537 399 274 
,0150 795 590 445 310 ,0090 901 661 493 341 
,0100 1,762 1,323 1,006 705 ,0080 1,129 834 626 434 
,0090 2,170 1,632 1,242 872 ,0070 1,462 1,086 819 570 
.0080 2,741 2,064 1.573 1,104 ,0060 1,976 1,475 1.117 780 
,0070 3,574 2,695 2,055 1,444 .0050 2,829 2,121 1,611 1,128 
,0060 4,857 3,666 2,798 1,967 ,0040 4,399 3,310 2,520 1,769 
,0050 6,985 5,278 4,030 2,835 ,0030 7,792 5,879 4,485 3,152 

/3 = 0.75 
1 - a’ 

p = 0.90 
1 - a’ 

6 .99 .975 ,950 .90 6 .99 ,975 ,950 .90 
,2400 16 12 9 6 ,0950 54 37 26 15 
,2200 18 
.2000 22 
,1800 26 
,1600 32 
,1400 41 
,1200 54 
.lo00 75 
,0800 119 
,0600 209 
,0500 300 
.0400 468 
,0300 829 
.0250 1,193 
,0200 1,863 
,0150 3,310 
.0100 7,444 

14 
16 
19 
24 
31 
41 
58 
90 

158 
227 
351 
628 
903 

1,410 
2,506 
5,636 

10 
12 
15 
18 
23 
31 
45 
69 

121 
174 
271 
480 
691 

1,079 
1,916 
4,310 

7 
9 

11 
13 
17 
23 
32 
49 
86 

123 
191 
339 
487 
760 

1,350 
3,036 

.0090 9.189 6.958 5.321 3.748 

,0900 
,0800 
,0700 
,0600 
,0500 
.0400 
,0300 
,0250 
.0200 
,0150 
,0100 
,0090 
,0080 
,0070 

59 
71 
89 

117 
163 
249 
251 
62 1 
964 

1,707 
3,828 
4,724 
5,976 
7,803 

41 
50 
63 
84 

119 
184 
324 
465 
725 

1,288 
2,894 
3,572 
4,521 
5,904 

28 
35 
45 
61 
88 

138 
245 
353 
552 
982 

2,211 
2,729 
3,454 
4,512 

17 
22 
30 
42 
61 
96 

172 
248 
388 
691 

1,556 
1,922 
2,432 
3.177 

Reproduced with permission from Technometrics. Copyright [ 19891 by the American 
Statistical Association. 
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see also tolerance interval; 
tolerance limit 

Beta distribution, 210, 211 
Binomial distribution, 211, 214 

score confidence interval, 319 
bioequivalence, 141, 163, 167, 172 

average, 163 
individual, 141, 163-165, 168, 172 

Bivariate lognormal, 204 
Bonferroni inequality, 10 
Bonferroni simultaneous tolerance in- 

Box-Cox transformation, 222 
Breakdown voltage, 48 
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Calibration, 61, 66, 78-80, 249, 261, 
262, 264, 272, 274 

multivariate, 261, 272 
univariate, 261, 272 

Calibration data, 61, 78, 79, 262 
Chi-square approximation, 233 
Clopper-Pearson method, 318 
Confidence interval, 1 
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normal quantile - censored case, 332 
quantile, 26 
Weibull quantile, 199 

difference of lognormal means, 22 
ratio of lognormal means, 22 

multiple use, 261-263, 268, 272, 274 
single use, 272, 273 

Conjugate prior, 277-280, 292 
Constrained MLE, 332 
Covariate, 59-61, 81, 82, 141. 144, 158, 

161, 170, 171, 249 
Cross-over design, 163-165 
Cube root approximation, 176 

Confidence inteval 

Confidence region 

Delta method, 175 
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Eigenvalues, 228 
Empirical distribution, 209 
Environmental monitoring, 178 
Equal-tailed tolerance interval, 4, 33, 
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for lognormal, 174 

Equivariant estimators, 16 
Exceedance probability, 5, 28, 100-102, 
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for gamma distribution, 179 
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probability density function, 197 Inverted chi-square, 277-279, 282, 283, 
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F-distribution, 22 Inverted gamma, 278 

Gamma distribution Laplace distribution, 24 
exceedance probability, 179 
stress-strength reliability, 181, 205 267 

Least squares estimator, 60, 250, 262, 

survival probability, 177 
tolerance intervals, 177 

Generalized confidence interval, 82, 93, 
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116, 137, 148, 149, 172 

Generalized inference, 13 
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exponential distribution, 183 
exponential quantile, 187 
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location parameter, 17 
normal mean, 18 
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normal variance, 18 
scale parameter, 17 

Generalized test variable, 14, 18 
Generalized upper confidence limit, 137, 

Generalized variable approach, 13, 98, 

Geometric mean, 229 

147 

99 
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124, 125, 131, 133, 135, 146, 
148, 153-156, 159-162 

Guarantee time parameter, 182 

Harmonic mean, 229 
Harmonic mean approximation, 230 
Heteroscedastic variances, 141, 158 
Heteroscedasticity, 158 
Hydrological data, 178 

Left-tail test, 44 
Linear regression 

multivariate, 249, 251, 261 
simple, 260 
univariate, 59, 252 

Location-scale family, 16 
Lognormal distribution, 25, 29 

stress-strength reliability, 175 
tolerance interval, 174 
tolerance interval for the ratio, 175 

Margin of error statistic, 107, 109, 111- 
113, 133, 134, 137, 147, 148, 
156, 161, 167, 168 

Maximum likelihood estimators 
exponential distribution, 183 
extreme-value distribution, 197 
normal censored case, 327 
Weibull distribution, 196 
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Mixed effects model, 137, 138, 141, 144, 

balanced data, 137, 138, 140, 301- 
165, 169 

303 

151, 167, 168, 172 

232, 234 

MLS, 11, 12, 109-113, 115, 116, 149, 

Moment matching method, 10, 176, 230, 

Monitoring and control, 178 
Multiple use confidence limit, 80 

NIOSH, 1, 28 
Non-informative prior, 277-281, 283, 284, 

Noncentral t distribution, 8 
287, 291, 292 
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definition, 54 Prediction interval, 1, 2, 4 
Prior distribution, 275, 277, 278, 291, Noncentral chi-square, 8, 228, 233 

Nonparametric 292 
confidence interval for quantile, 214 
sample size calculation, 215 

conjugate, 277-280, 292 
non-informative, 277-281, 283, 284, 

One-sided tests, 44 Quantile, 3 
One-sided tolerance limits confidence limit, 26 

exponential distribution, 337 
nonparameteric confidence interval, 

extreme-value distribution, 203 
Pareto distribution, 206 
power distribution, 205 214 
simultaneous, 50 
Weibull, 199 Random effects model, 141, 144 

Reference limits, 315 
102, 113-115, 119, 129, 141, Reference region, 225 
161 Rejection sampling, 287 

105 Right-tail test, 44 

141 Sample size, 312, 313 

114, 115, 117, 136 

136, 141, 152 

One-way anova, 31 
One-way random model, 85, 89, 100, 

balanced data, 140 

ANOVA table, 86-88, 97, 98, 102, Residual mean square, 60 

balanced data, 100, 113, 114, 137, 

true value, 85, 86, 88, 104, 105, 

unbalanced data, 122, 128-130, 135, 

with covariate, 141, 144, 158, 170 

for /3-expectation tolerance inter- 

for tolerance interval, 312. 313 

nonparameteric, 215 
one-sided tolerance limits, 218 

Satterthwaite approximation, 9, 40, 89, 
91, 106, 109, 110, 112, 115, 149, 
296 

Val, 314 

Sample size calculation 

Order statistics, 208 
OSHA, 29, 36 

Pareto distribution, 182, 206, 347 
Pivotal quantity Scheffk’s method, 239 

censored sample, 326 
type I censored Samples, 330 

confidence interval, 322 
tolerance intervals, 323 

Polynomial regression, 267 
Posterior distribution, 275, 276, 278- 

284, 287-289, 292 two-sided, 74 
Power distribution, 347 one-sided, 66 

Score confidence interval 
binomial, 319 

Poisson distribution Poisson, 322 
Signed likelihood ratio test, 332 
Simultaneous test, 34 
Simultaneous tolerance factor, 60, 76, 

78, 79 
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62, 64, 66, 74, 78, 79, 84 

one-sided, 62, 76, 81 
two-sided, 69, 78, 81 
Bonferroni, 53, 239 
one-sided, 50, 53, 61 
Scheffk’s method, 239 
two-sided, 53, 74, 78 

Simultaneous tolerance limit 
one-sided, 69, 80 
upper, 80 
lower, 69 

Standard device, 36 
Stress-strength reliability, 6 

exponential distribution, 192 
gamma distribution, 181 
normal, 41, 45 
Weibull, 201 

Survival probability, 5 
exponential distribution, 189 
gamma distribution, 177 
normal distribution, 28 
power distribution, 205 
Weibull distribution, 200 

Tensile strength, 53 
Tolerance factor 

exponential distribution, 184 
normal, 26 
one-sided, 71, 73 

Tolerance interval 
P-expectation, 293-302, 315 

Bayesian, 304, 305 
for general mixed effects model, 

for general mixed models, 296 
for normal, 294, 295 
for one-way random model, 295, 

30 1 

299-301, 303 
Bayesian, 275, 277, 291 

for univariate normal, 277 

one-sided, 276 
two-sided, 276, 277 
for one-way random model, 275, 

277, 283 
for two-fold nested model, 286 
one-sided, 281 
two-sided, 280-284, 288, 289, 291, 

under conjugate prior, 279 
under non-informative prior, 278, 

Bayesian, for one-way random model, 

distribution of mean, 56 
distribution of variance, 56 
empirical Bayes, 281 
extreme-value distribution 

censored case, 341 
for the difference between true val- 

for the true value, 140, 149 
lognormal distribution, 25 
lower, 286 
nonparameteric, 214 
two-sided, 60, 69, 81, 83, 86, 88, 

136, 137, 140, 141, 144, 147, 

292 

281 

281 

ues, 169 

105-107, 109, 111--116, 133, 134, 

148, 151, 152, 154, 156-158, 
160-162, 165, 167-172, 289 

Tolerance limit 
,&expectation, 295, 297, 299--301 
Bayesian, 280 

conjugate prior, 279 
lower, 284, 287, 289, 291, 292 
upper, 280, 282, 291, 292 

for ratio of normal, 305 
independent, 305 

for the true value, 152 
lower, 61, 62, 66, 69, 83, 85-89, 91, 

93-99, 101, 102, 104-106, 118, 
120-122, 125, 127, 129, 131, 
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132, 145, 146, 154, 155, 157- 
159, 171, 288, 289 

ratio of normal 

two-sided, 72, 85, 86, 160 
upper, 82, 85, 86, 88, 91, 93, 96, 97, 

bivariate, 308-310 

100-102, 104, 106, 114, 118, 
119, 122, 126-129, 131, 132, 
135, 136, 141, 147, 155, 156, 
159, 160, 162 

Tolerance region, 249-252, 254, 258, 260, 
261, 263, 272-274 

,&expectation, 303, 304 
simultaneous, 261 

Truncated sample range, 214 
Two-parameter exponential, 23 
Two-way nested model, 138 

mixed effects, 138 
random effects, 138, 149, 169 
true value, 139, 140 

Type I censored, 326 
Type I1 censored, 326 

Upper tolerance interval 
one-sided, 64 

Variance components, 85, 106, 137, 140, 
141, 151, 153, 156, 165 

Variance ratio, 103, 113, 114, 118, 122, 
136 

Weibull distribution 

205 
maximum likelihood estimators, 196, 

censored case, 340 
survival probability, 200 

Welch’s test, 21 
Wilson-Hilferty approximation, 176, 178, 

Wishart distribution, 226, 250 
Wishart matrix, 262, 265, 267, 269 
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