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Preface 

Fascination with nitric oxide dates back only a few years to 
when scientists discovered that this, the smallest known 
molecule with biological functions, has many properties. A 
wide range of activities attributed to nitri"c oxide, which is a 
product of the two enzyme constituent nitric oxide synthase 
and induced nitric oxide synthase, have been intensely studied 
by scientists throughout the world. 

The present volume contains papers presented at a 
workshop on "The Role of Nitric Oxide in Physiology and 
Pathophysiology" at Thomas Jefferson University, Philadel­
phia, Pennsylvania, on October 25, 1993. The authors came 
from different parts of the world to participate in the workshop 
and presented up-to-date results of their research into nitric 
oxide. The editors would like to express their thanks for 
these contributions which will enrich the literature on the 
importance of nitric oxide in physiology and pathology. 

HILARY KOPROWSKI 

HIROSHI MAEDA 
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Inducible Nitric Oxide Synthase: 
Regulation Subserves Function 
C. NATHAN 

1 Inducible Isoform of Nitric Oxide Synthase Is a Distinct Gene Product ................. . 

2 Inducible Nitric Oxide Synthase Binds Calmodulin Without Dependence 
on Elevation of Calcium ....................................................... 2 

3 Synergistic Transcriptional Induction of Inducible Nitric Oxide Synthase 
Is Mediated Through an Upstream Regulatory Region Rich in Transcription Factor 
Binding Site Consensus Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

4 Antiviral Activity of Inducible Nitric Oxide Synthase: 
Potential Explanation for Widespread Inducibility of an Autotoxic Enzyme. . . . . . . . . . . . . . . . 3 

5 Inducible Nitric Oxide Synthase Is Also Suppressible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

References ................................................................... 4 

1 Inducible Isoform of Nitric Oxide Synthase 
Is a Distinct Gene Product 

Nitric oxide synthase (iNOS) was purified (STUEHR et al. 1991) and cloned (XIE et al. 
1992) from interferon-'Y (I FNy)- and lipopolysaccharide (LPS)-activated mouse 
macrophages. The primary structure, deduced from the cDNA and confirmed by 
HPLC-electrospray ionisation mass spectrometry, established that this inducible 
enzyme differs from the constitutive NOSs (cNOSs) cloned from cerebellar and 
endothelial libraries. Western blotting detected a highly similar enzyme in a wide 
variety of cell types after activation, including cardiac myocytes, where NO 
appeared to suppress rhythmicity (ROBERTS et al. 1992). Southern blotting and 
genomic cloning (CHARTRAIN et a1.1994) strongly suggest that there is a single 
iNOS gene. Thus, iNOS is a unique gene that can be expressed widely following 
activation. 

Comell University Medical College, Box 57,1300 York Ave, New York, NY 10021, USA 



2 C. Nathan 

2 Inducible Nitric Oxide Synthase Binds Calmodulin 
Without Dependence on Elevation of Calcium 

Catalysis by cNOSs depends on binding of calmodulin (CaM), which in turn 
depends on an elevation of Ca2+ (EC50 ;::: 200 nM) above the levels typically found 
in resting cells (~ 100 nM). In contrast pure iNOS functions without addition 
of exogenous CaM or Ca2+, despite containing a canonical CaM-binding motif 
(amino acid residues 503-532). This paradox was explained by the ability of iNOS 
to bind CaM as a subunit at trace levels of Ca2+ (39 nM). CaM was identified in 
pure iNOS by reactivity with anti-CaM mAb, migration on SDS-PAGE, reverse 
phase-HPLC retention time, tryptic map, partial amino acid sequence, and 
electrospray ionization mass spectrometry (CHO et al. 1992). 

3 Synergistic Transcriptional Induction 
of Inducible Nitric Oxide Synthase Is Mediated 
Through an Upstream Regulatory Region Rich 
in Transcription Factor Binding Site Consensus 
Sequences: Key Role of Nuclear Factor-KB 

Instead of being regulated by agonist-induced Ca2+ transients, iNOS is controlled 
chiefly by transcription, as shown by the dependence of iNOS enzyme activity, 
iNOS mRNA synthesis, and iNOS antigen expression on exposure of 
macrophages to a synergistic combination of signals, such as IFNy and LPS, and 
the sensitivity of each of these processes to nontoxic concentrations of 
actinomycin D. Induction of iNOS in mouse peritoneal macrophages by IFNy and 
LPS required synthesis of an intermediary protein(s) and may involve tyrosine 
phosphorylation (XIE et al. 1993). From a mouse genomic library, we cloned a 
1749 base pairfragment from the 5' flanking region of the iNOS gene and used S 1 
nuclease mapping and primer extension to identify the mRNA transcription start 
site within it. The mRNA initiation site is preceded by a TATA box and at least 22 
oligonucleotide elements homologous to consensus sequences for the binding 
of transcription factors involved in the inducibility of other genes by cytokines or 
bacterial products. These include ten copies of IFNy response element (y-IRE); 
three copies of y-activated site (GAS); two copies each of nuclear factof-lcB (NF­
KB), IFN-a-stimulated response element (ISREl. activator protein~ 1 (AP-1), and 
tumor necrosis factor response element (TNFRE); and one X box. Plasm ids in 
which all or the downstream one-half or one-third of this region of iNOS were 
linked to a reporter gene encoding chloramphenicol acetyltransferase were 
transfected into RAW264.7 macrophage-like cells. All these constructs conferred 
inducibility of the iNOS promoter by LPS, but only the construct containing all 
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1749 base pairs conferred synergistic inducibility by IFNy plus LPS (XIE et al. 
1993). Analysis of further constructs indicates that the downstream NF-KB site in 
the iNOS promoter, NF-kBd, is necessary to confer inducibility by LPS. A nuclear 
protein which binds to NF-kBd after LPS-induction was identified as an NF-kB 
heterodimer by competition, supershift, and UV cross-linking, and induction of 
iN OS mRNA was blocked by the NF-kB inhibitor, pyrollidine dithiocarbamate (XIE 
etaI.1994). 

4 Antiviral Activity of Inducible Nitric Oxide Synthase: 
Potential Explanation for Widespread Inducibility 
of an Autotoxic Enzyme 

It is a mystery why evolution has conferred on so many types of cells the capacity 
to respond to immune or inflammatory signals with the induction of an enzyme 
that, once tnanslated, can function for days to generate large amounts of a 
potentially toxic radical. We reasoned that NO may defend against a class of 
pathogens by which many cells types can be infected and may be a toxin against 
which it is difficult for pathogens to evolve to a resistant state. Consistent with 
this view, KARUPIAH et al. (1993) demonstrated that iNOS can account for a major 
portion of the antiviral activity of IFN-y in mouse macrophages infected with 
ectromelia, herpes simplex or vaccinia viruses and is critical to the recovery of 
mice from ectromelia. The mechanism has not been defined, but one key target 
molecule may be ribonucleotide reductase (KWON et al. 1991). 

5 Inducible Nitric Oxide Synthase Is Also Suppressible 

The potential autotoxicity of iNOS for the host is exemplified by its critical role in 
experimental arthritis (MCCARTNEy-FRANCIS et al. 1993). Thus, it is not surprising 
that the widespread capacity to induce iNOS is balanced by an equally 
widespread ability of host cells to produce cytokines that can antagonize its 
induction. These include transforming growth factor-/3 (TGF-/3l. interleukin-4, and 
macrophage deactivation factor (DING et al. 1990; VODOVOTZ et al. 1993; BOGDAN 
et al. 1994). The potency of TGF-J3 in this regard may result from the multiplicity 
of levels at which it suppresses iNOS, including decreased stability and 
translation of iNOS mRNA and decreased stability of iNOS protein (VODOVOTZ et 
al. 1993). 

In summary, the fact that iNOS is regulatable at transcriptional and multiple 
post transcriptional levels may reflect the important dual role of this enzyme in 
host defense and autotoxicity. 
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Diffusible Messengers and Intercellular Signaling: 
Locally Distributed Synaptic Potentiation 
in the Hippocampus 
D.V. MADISON and E.M. SCHUMAN 

Diffusible messengers like nitric oxide (NO) have been proposed to act as 
intercellular signals in the production of long term potentiation (LTP; for review, 
see SCHUMAN and MADISON 1993). The postsynaptic generation of such a diffusible 
messenger leads to the prediction that synapses in the vicinity of the messenger­
producing synapse will also be influenced. We have tested this prediction directly 
by recording simultaneously from two postsynaptic CA 1 neurons and recording 
synaptic strength in response to Schaffer collateral stimulation before and after 
L TP induction (by pairing 1 Hz stimulation with postsynaptic depolarization) in one 
neuron (see also BON HOEFER et al. 1989). In experiments where we impaled two 
pyramidal neurons in close proximity (132.9 ± 39.6 ~M intersomatic distance, 
ISDl, the paired cell exhibited robust LTP (186.0 ± 15.6 mean percentage of 
baseline) and the nearby neighboring neuron also exhibited a significant increase 
in synaptic strength (130.6 ± 9.5%; n=19). Postsynaptic injection of the NO 
synthase inhibitor L-Me-Arg into the paired cell blocked L TP production in that cell 
(95.8 +/- 6.9%) as well as in the nearby cell (102.2 ± 10.1 %; ISD = 143.3 ± 43.6 
~M; n=18). This spreading of potentiation was spatially restricted as it was not 
obseNed when the neighboring cell was> 500 ~M away (paired cell LTP, 170.1 
± 11.8%; distant neighbor, 97.6 ± 0.7%; ISD = 674.0 ± 38.3 ~M; n=15). Since 
previous findings showed that L TP can be blocked by various postsynaptic 
manipulations, we were interested in whether these processes are also im­
portant in the neighboring cell. We found that a combination of dialysis, Ca2+ 

chelators, and membrane hyperpolarization in the nearby neighboring cell 
blocked the spreading of enhancement usually obseNed (paired 195.7 ± 43.1 ; 
neighbor, 105.6 ± 24.7; n=8). These results suggest that the neighboring cell may 
play an active role in the enhancement described, either as a target site for a 
diffusible signal, or perhaps for the generation of an additional messenger(s). 

No matter what the exact molecular mechanisms underlying the intercellular 
communication of potentiation, these data suggest that the formation of synaptic 
changes previously thought to be restricted to synapses onto a single cell, can 
also result in synaptic changes at nearby synapses (see also GALLvet al. 1980). As 

Beckman Center. Department of Molecular and Cellular Physiology. School of Medicine. Stanford 
University Medical Center. Stanford. CA 94305-5426. USA 
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such, diffusible signals may act as retrograde synaptic signals or alternately may 
serve the function of amplifying synaptic transmission at synapses in close 
proximity to the site of messenger generation. These results may help to 
understand processes both in the developing and adult brain. During develop­
ment, locally distributed potentiation may be important in the formation of 
functional arrays of neurons analogous to anatomically segregated anatomical 
structures such as cortial columns (MILLER et al. 1989). Thus, distribution of 
potentiation could serve to induce temporary functional domains in regions 
where no such anatomical specialization exists. To the extent that neurons in 
anatomical proximity frequently share common output targets, this type of 
enhancement may also serve the general purpose of locally amplifying synaptic 
signals which underlie common neuronal functions. 
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1 Introduction 

Numerous investigations have indicated that in both health and diseas~ the short­
lived radical nitric oxide (NO) is a key effector in the vascular system (Fig. 1). NO 
is generated by a five-electron oxidation of one of the terminal guanidino nitrogen 
atoms of L-arginine, catalyzed by NO synthases, and reaches the surrounding 
target cells by simple diffusion. The principal physiological source of NO in the 
vascular system is the endothelium, which constitutively expresses a NO 
synthase. The most important functions of endothelium-derived NO are the 
control of blood flow, and hence the supply of oxygen to organs, and the control 
of blood cell interaction with the vascular wall. Under certain pathophysiological 
conditions, endothelial cells are no longer the main source of NO. Indeed, in most 
types of vascular cells (e.g., vascular smooth muscle cells, macrophages, 
fibroblasts and endothelial cells) a NO producing pathway is induced following 
exposure to cytokines, such as interleukin-1[3 (I L-1(3) and tumor necrosis factor-a 
(TNF-al. the levels of which are elevated in response to infection and injury. NO 
generated by this pathway in large amounts may account, at least in part, for the 
cytotoxic effect of macrophages and thus playa crucial role in host defense. The 
finding that NO can have such contrasting effects, i.e., to be protective and yet 
also cytotoxic, may be explained by the involvement of two NO-generating 
systems regulated by distinctly different mechanisms. 

Zentrum der Physiologie, Klinikum der JWG-Universitiit, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, 
Germany 
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2 Nitric Oxide Biosynthetic Pathways in the Vascular Wall 

2.1 Constitutive Nitric Oxide Synthase 

The constitutive endothelial NO synthase displays binding sites for NADPH, flavin 
adenine dinucleotide, flavin mononucleotide and (6R)-5,6,7,8-tetrahydrobiopterin 
(BH4 ) (LAMAS et al. 1992; SESSA et al. 1992; MARSDEN et al. 1992) and is strictly 
regulated by binding of the Caz+/calmodulin complex (BUSSE and MULSCH 1990a; 
FORSTERMANN et al. 1991). Calmodulin, in contrast with its role in other enzymes, 
has been shown to facilitate the reduction of the prosthetic heme group in NO 
synthase by transmitting electrons derived from NADPH (ABU-SOUD and STUEHR 
1993). 

NO synthase activity can be detected in the cytosol but activity is 
predominantly associated with the plasma membrane (HECKER et al. 1994; 
FORSTERMANN et al. 1991). The preferential association of the enzyme with 
membranes is likely to be a consequence of the myristoylation of the NHz 
terminal region of NO synthase (BUSCONI AND MiCHEL 1993; SESSA et al. 1993). 
Localization of the enzyme in the plasma membrane may be of critical importance 
for the transduction mechanisms by which physical forces such as shear stress 
and pulsatile stretch elicit the formation of NO. 

In situ, endothelial cells continuously produce low amounts of NO (GRIFFITH 
et al. 1984; MARTIN et al. 1986). This "basal" production can also be detected in 
cultured endothelial cells but decreases with increasing time in culture. It has 
recently been demonstrated that this phenomenon is paralleled by a decreased 
expression of the endothelial NO synthase (BUSSE et al. 1994). Expression of NO 
synthase mRNA and protein can, however, be up-regulated following the 
exposure of endothelial cell cultures to shear stress in vitro (BUSSE et al. 1994). 
Moreover a shear stress-responsive element in the promotor of the endothelial 
NO synthase gene has recently been identified, suggesting that a continuous 
physical stimulus such as shear stress transcriptionally regulates the expression 
of NO synthase in vivo (MARSDEN et al. 1992). 

In addition to its basal release, both receptor-dependent and -independent 
mechanisms significantly enhance the release of NO from endothelial cells (for 
review see FURCHGOTI and VANHOUTIE 1989) (Fig. 2). Among the physiologically 
important receptor-dependent agonists are bradykinin, adenine nucleotides, 5-
hydroxytryptamine (serotonin), substance P, and thrombin. These compounds 
activate specific receptors at the endothelial cell surface leading to a rapid 
increase in the intracellular concentration of free Caz+ and, as a consequence of 
the Caz+/calmodulin dependency of the NO synthase, increase NO formation. 

It is important to note, however, that the time course of the agonist-induced 
increase in NO synthase activity is significantly longer than that of the increase in 
intracellular Caz+. Thus, although a transient Caz+ peak may be responsible for the 
initial increase in NO synthase activity, a second intracellular mechanism may be 
responsible for ensuring the maintained production of NO. Most of the 
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Fig. 2. The principal pathways by which 
nitric oxide (NO) can be formed in 
endothelial cells 

physiologically relevant, receptor-dependent agonists activate the Na+/W 
exchanger leading to an increase in intracellular pH and it would appear that a 
sustained increase in NO formation can be observed following intracellular 
alkalinization. Indeed not only was the constitutive NO synthase found to be 
highly pH-sensitive in the physiological range but inhibition of the Na+/W 
exchanger significantly decreased bradykinin-stimulated NO formation (FLEMING 
et al. 1994). 

2.2 Inducible Nitric Oxide Synthase(s} 

An inducible NO synthase can be expressed in most types of vascular cells (see 
above) following their exposure to various inflammatory mediators such as 
cytokines (e.g., IL-1/3, TNF-a) and bacterial lipopolysaccharides (for review see 
NATHAN 1992) (Table 1). 

The inducible NO synthase is a predominantly cytosolic enzyme with 
essentially the same cofactor requirements as the constitutive enzyme. The 
major difference between this and the constitutive isoenzyme is that in the 
inducible NO synthase calmodulin is tightly bound in a Ca2+-independent and 
noncovalent manner (CHO et al. 1992) and can be considered as an enzyme 
subunit, thus rendering its activity independent of changes in intracellular Ca2+. 

Table 1. Agents which influence expression of the inducible nitric oxide synthase 

Inducers Enhancers Inhibitors 

IL-1~ cAMP TGF~ 
TNF-a EGF PDGFAB 

IFN-r Basic FGF PDGFBB 

LPS Plasmin IGF 
Thrombin 

IL-1~, interleukin-1~; TGF~, transforming growth factor~; TNF-a, tumor necrosis 
factor-a; EGF. epidermal growth factor; PDGF, platelet-derived growth factor; IFN­
y. interferon-r; FGF. fibroblast growth factor; IGF. insulin-like growth factor; LPS. 
bacterial lipopolysaccharide. 
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Once expressed, the enzyme is therefore always maximally activated. This 
observation may explain why the inducible L-arginine-NO pathway is associated 
with sustained production of large amounts of NO (IYENGAR et al. 1987) 

The induction process requires a time lag of 4-6 h and involves activation of 
tyrosine kinases (MARCZIN et al. 1993; CORBED et al. 1993), mRNA transcription 
and initiation of protein synthesis (for review see NATHAN 1992). In parallel with 
the initiation of inducible NO synthase synthesis, cytokines, by inducing the 
expression of guanosine triphosphate cyclohydrolase 1, also increase the de novo 
formation of the essential cofactor BH4 (WERNER et al. 1989; FLEMING et al. 1991; 
GROSS and LEVI .1992). Inhibition of BH4 synthesis prior to the exposure of 
vascular cells to cytokines completely prevents subsequent NO production, 
demonstrating that BH4 synthesis is an absolute requirement for induction of NO 
synthesis. 

Furthermore, NO synthase induction is facilitated by growth factors (such as 
basic fibroblast growth factor and epidermal growth factor, and the major 
fibrinolytic enzyme plasmin) which alone are without effect on inducible NO 
synthase expression (ScoD-BuRDEN et al. 1992; DURANTE et al. 1993). I ncreases in 
intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP) have a 
similar effect in that they enhance expression of the inducible NO synthase (KOIDE 
et al. 1993). The mechanisms underlying such an effect are unclear but may be 
due to activation of a cAMP regulatory element in the promotor of the inducible 
NO gene. It has, however, become apparent that the promotor of the gene 
encoding the murine inducible NO synthase does not contain a cAMP-responsive 
element (XIE et al. 1993), thus suggesting that cAMP exerts its effect by other, 
indirect, mechanisms. For example, cAMP has been reported to stabilize 
inducible NO synthase mRNA, prolonging its half life, rather than influencing its 
transcriptional activation (KUNZ et al. 1994). 

The activation of many types of mammalian cells by a single cytokine and/or 
lipopolysaccharide is sufficient to cause the expression of the inducible NO 
synthase, but the combination of two or more stimuli leads to a synergistic 
enhancement of expression (KILBOURN and BELLONI 1990). Such findings suggest 
that the presence of threshold concentrations of several different cytokines at 
sites of vascular injury may result in the local generation of NO in amounts 
sufficient to elicit biological responses in neighboring cells. Although NO pro­
duction by the inducible NO synthase is, at first glance, a process which is not 
subjected to any cellular regulation, it would appear that its expression can indeed 
be controlled by a variety of mechanisms. Platelets appear to playa significant 
role in the regulation of vascular NO formation, since substances released from 
aggregating platelets, such as platelet-derived growth factor, transforming 
growth factor-/3 and insulin-like growth factor, efficiently prevent expression of 
the inducible NO synthase in cultured vascular smooth muscle cells (SCHINI et al. 
1992; DURANTE et al. 1994). I n addition to these growth factors, the major 
coagulation protease thrombin prevents the induced formation of NO in vascular 
smooth muscle cells (SCHINI et al. 1993). Therefore, local activation of platelets 
and the coagulation cascade may prevent excessive formation of NO in vascular 
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smooth muscle following injury, thus avoiding the cytotoxic effects of large 
amounts of NO. 

3 Effector Pathways of Nitric Oxide 

Nitric oxide is a multifunctional effector molecule in the vascular system which 
readily diffuses through lipid membranes and, in the presence of oxygen, is 
(within seconds) inactivated by conversion to nitrite and/or nitrate. Thus, the short 
half-life of NO constrains its biological action only to the generator cell itself and 
cells in its immediate vicinity. The major effector pathways mediating the action 
of NO in vascular cells have been summarized in Fig. 3. 

The best characterized target for NO is the soluble guanylyl cyclase (CRAVEN 
and DERuBERTIS 1978). NO binds to the iron present in the heme of the catalytic 
domain of the enzyme and by increasing its activity leads to an enhanced 
formation of cyclic guanosine 3',5'-monophosphate (KATSUKI et al. 1977). This 
biochemical pathway accounts for the vasodilatory properties of NO in all types of 
blood vessels studied to date and also for its ability to prevent platelet activation 
(GRUETTER et al. 1979; MELLION et al. 1981). These responses are eventually due to 
an attenuation of Ca2+ signaling (BussE et al. 1987; KARAKI et al. 1988). 

NO can also react with non-heme iron in target cells and such a reaction has 
been involved in host defense against infection. Cytotoxic activated macro­
phages, by releasing large amounts of NO, precipitate the loss of intracellular iron 
resulting in the inhibition of certain vital enzymes which require iron as an 
essential cofactor. Such enzymes include the NADH: ubiquinone oxidoreductase 
and succinate: ubiquinone oxidoreductase (both of which are involved in 
mitochondrial respiration), the critic acid cycle enzyme aconitase and 
ribonucleotide reductase (the rate limiting enzyme in DNA replication) (DRAPIER 
and HIBBS 1986; HIBBS et al. 1988). 

inhibition of 
Ca2 + signalling 

dinitrosyHron­
proteins 

t 
NO-buffer 

ADP-ribosylation NOi + OW inactivation of gene 
of GAPDH ~ Fe-dep. enzymes expression 

~ cytostasis /' 
cytotoxicity 

Fig. 3. The effects of nitric oxide (NO). NFtcB, nuclear factor lCB; Fe dep, non-heme iron-dependent 
enzymes 
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Other important cellular targets for NO are sulfhydryl (SH)-containing 
proteins. NO derivatives, such as the nitrosonium ion (NO+)' interact with these 
SH groups to produce biologically active S-nitrosoproteins (STAMLER et al. 1992b) 
(see following chapter by J.S. Stamler, pp 19-36). S-nitrosylation appears to be 
implicated in both the beneficial and non beneficial actions of NO. Among the 
thiol-containing proteins of potential physiological significance for S-nitrosylation 
are serum albumin and tissue-type plasminogen activator (STAMLER et al. 1992a,b). 
These S-nitrosylated proteins, like NO, are potent vasodilators and inhibitors of 
platelet aggregation, effects mediated via the activation of soluble guanylyl 
cyclase in the target cells. However, the half-lives of these compounds are 
significantly longer (>30 min) than that of NO (STAMLER et al. 1992b; KEANEY et al. 
1993). These NO-containing compounds may therefore serve as adducts, which 
by stabilizing the highly reactive NO prolong its activity and/or facilitate its 
biological action thus extending its sphere of influence. In addition, NO, by S­
nitrosylating the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 
decreases its activity and increases its auto-ADP-ribosylation (MOLlNA-Y-VEDIA 
et al. 1992; DIMMELER et al. 1992). The impairment of this glycolytic enzyme by NO 
may, in association with the inhibition of iron-sulfur enzymes like aconitase and 
electron transport proteins of the respiratory chain (see above), contribute to the 
cytotoxic effects of NO. 

Furthermore, NO may also modulate vascular functions by controlling the 
expression of genes encoding certain vasoactive proteins. Indeed, in cultured 
endothelial cells NO has been shown to down-regulate the expression of the 
chemoattractant MCP-1 (monocyte chemoattractant protein) (SCHRAY-UTZ et al. 
1993), the potent vasoconstrictor endothelin-1, and the chemoattractant and 
vascular smooth muscle growth factor platelet derived growth factor 
(KOUREMBANAS et al. 1993). The demonstration that NO is able to modulate the 
expression of certain genes underlines the significance of endothelium-derived 
NO, both in short-term and long-term vascular homeostasis. 

4 Role of Nitric Oxide in Vascular Physiology 
and Pathophysiology 

In humans and experimental animals, the administration of structural analogues 
of L-arginine, which competitively inhibit NO synthase, results in a rapid and 
sustained increase in arterial blood pressure and a decrease in blood flow (REES 
et al. 1989a; AISAKA et al. 1989; VALLANCE et al. 1989). This pressor effect, which is 
associated with the constriction of several peripheral vascular beds, can be 
reversed by the infusion of L-arginine (REES et al. 1989a; AISAKA et al. 1989; 
GARDINER et al. 1990; GALLE et al. 1993) and is a consequence of the inhibition of 
basally released endothelium-derived NO. The augmentation of contractile 
responses in isolated preconstricted arteries following removal of the endo­
thelium or incubation with NO synthase inhibitors suggests that vascular tone is 
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a net effect of constrictor and dilator influences (REES et al. 1989b; MULscH and 
BUSSE 1990; MOORE et al. 1990). Taken together, these observations indicate that 
NO derived from endothelial cells regulates the tone of the underlying vascular 
smooth muscle, and hence contributes to the control of regional blood flow. The 
most important physiological stimulus for the basal release of NO from the 
endothelium is the fluid shear stress imposed on the luminal surface of 
endothelial cells by the streaming blood. Indeed, in vitro investigations in the 
intact coronary vascular bed and in arterial segments under biossay conditions 
have shown that an increase in fluid shear stress triggers the release of 
endothelium-derived NO (HECKER et al. 1993; LAMONTAGNE et al. 1992) (Fig. 4). 
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Fig. 4a, b. The relationship between fluid shear stress h) and the endothelial cell surface. Shear stress 
in rabbit femoral artery segments was increased either by a increasing flow through the vessel or b by 
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artery segments. NO production was determined by stimulation of soluble guanylyl cyclase (sGC) and 
expressed as net increase in enzyme activity over basal values. Shear was estimated under the 
simplifying assumption of a parabol ic velocity profile 
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Shear stress-stimulated NO formation by endothelial cells, which is associated 
with an enhanced expression of the endothelial NO synthase, may contribute to 
the beneficial effects of physical exercise on the cardiovascular system (NISHIDA 
et al. 1992; SESSA et al. 1994). The physiologial significance of this enhanced 
formation of NO may be considered as a means of acutely increasing local blood 
flow, and thus supply of oxygen, in response to the greater metabolic 
requirements of tissues under working conditions (POHl et al. 1994). In addition to 
this "fundamentally vital " basal release of endothelium-derived NO, its formation 
is enhanced by physiologically relevant mediators such as hormones, neurotrans­
mitters, and platelet-derived substances (see above). This additional release may 
playa significant role in the prevention of excessive vasoconstriction and ab­
normal coagulation following trauma to the blood vessel wall. NO may also 
contribute to the regulation of vascular growth and the remodeling of the blood 
vessel wall following trauma, since low levels of NO have been shown to 
effectively inhibit the proliferation of cultured vascular smooth muscle cells (GARG 
and HASSID 1989; Scon-BuRDEN et al. 1992). 

Since NO exerts a variety of effects on vascular function, it follows that a 
reduction as well as an increase in vascular NO formation has wide ranging 
consequences. For example, a decrease in NO production by a dysfunctional 
endothelium has been implicated in the pathogenesis of hypertension. The loss 
of the antiproliferative effect of NO may contribute to the vascular hypertrophy 
which characterizes a number of pathological states including atherosclerosis (for 
review see BUSSE and FLEMING 1993). An overproduction of NO, such as that 
observed during endotoxic shock, following the induction of the inducible NO 
synthase in vascular smooth muscle cells (BUSSE and MUlSCH 1990b), may at first 
glance be desirable for defense against the invading pathogen. However, it 
eventually results in an unrelenting hypotension and hyporeacivity to vaso­
constrictor agents (THIEMERMANN and VANE 1990; JULOU-SCHAEFFER et al. 1991). 

In summary, it appears that the release of endothelium-derived NO, a potent 
antagonistic agent counteracting the development of local vasospasm, coagu­
lation and aberrant proliferation of the underlying smooth muscle cells, plays an 
essential role in the short- and long-term homeostasis of the blood vessel wall. 
The induction of nonendothelial NO forming pathways in the vascular wall may be 
Janus-like, in that whereas an excessive and uncontrolled widespread production 
within the vasculature may be lethal, a more confined induction of NO synthase 
at sites of endothelial injury may be beneficial and compensate for the loss of 
endothelium-derived NO. 
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1 History and Overview 

Chemists have long been aware of the red color that develops upon treatment of 
thiols with nitrous acid. Shortly after the turn of the last century, TASKER and JONES 
(1909) reported on the synthesis of benzene thionitrite, which exhibits a red color. 
The authors further noted that the compound was highly unstable and rapidly 
decomposed to (biphenyl) disulfide and nitric oxide (NO') gas. Thermal and 
photolytic decomposition of thionitrites was later shown to involve homolytic 
fission, as inferred from these early experiments (LECHER and SIEFKEN 1926; RAO 
et al. 1967; JOSEPHY et al. 1984). TASKER and JONES (1909) also described the thionitrite 
(or S-nitrosothiol; RS-NO) formed from ethane-thiol treatment with nitrosyl 
chloride (NOCI). This compound was shown to be significantly more stable than 
the corresponding benzene thiol derivative, but also disappeared with evolution of 
nitric oxide. Thus, the well documented importance of the electron withdrawing 
effect of the thiyl (RS) group in hastening the homolytic.decomposition of RS-NO 
had been appreciated well over 50 years ago. In 1969, MIRNA and HOFMAN provided 
additional insight into the physical properties of biological RS-NOs, These studies 
demonstrated the trend for greater stability of thionitrites' at low pH. At the 
same time, differences in the stability of thionitrites derived from cysteine and 
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glutathione were noted. While S-nitroso-cysteine rapidly decomposes 
through homolytic fission, the S-nitroso adduct of glutathione remains stable over 
a wide (physiological) pH range (MIRNA and HOFMANN 1969). Shortly thereafter, 
FIELD and colleagues, isolated the highly stable thionitrite derivative of 
N-acetylpenicillamine (FIELD et al. 1978). More importantly, this work also 
demonstrated that disappearance of RS-NO can follow heterolytic pathways, 
specifically, reactions in which RS-NO formally transfers NO+ (or NO-). Additional 
reactions, persumed to be heterolytic in mechanism, were subsequently 
reported by MASSEY and colleagues (1978) and OAE and coworkers (1978) and 
supported the growing use of thionitrites in organic synthesis as effective 
nitrosating agents. The notable stability of protein thionitrites has been apprecia­
ted most recently, and heterolytic fission of the S-N bond appears to predominate 
in many biological systems (STAMLER et al. 1992a,b,c; LIPTON et al. 1993; STAMLER 
1994). 

In a series of papers in the early 1980s, IGNARRO and coworkers demonstrated 
the smooth muscle relaxant and antiplatelet properties of RS-NO (IGNARRO and 
GRUETTER 1980; GRUETTER et al. 1981; IGNARRO et al. 1981). These newer bio­
chemical functions were attributed to activation of the enzyme guanylate cyclase, 
which catalyzes the transformation of guanosine triphosphate (GTP) to cyclic 
guanosine monophosphate (cGMP) (lGNARRO and GRUETTER 1980; GRUETTER et al. 
1981). The later discovery that cyclic GMP (cGMP) acted as a signal transduction 
mechanism for the L-arginine: NO' pathway in mammalian cells, in which NO' is 
conceived to activate guanylate cyclase by interaction with its heme center, 
strengthened the resolve that nitric oxide (NO') itself is the bioactive moiety in RS­
NO (lGNARRO 1989). This line of reasoning, taken together with an early focus on 
the biochemistry of S-nitroso-cysteine, which readily undergoes homolysis to 
yield NO' in vitro (MIRNA and HOFMANN 1969; KANNER 1979; MYERS et al. 1990), led 
to the common view that all RS-NOs are inherently unstable molecules which 
decompose to liberate nitric oxide. It is clear from the above cited literature, 
however, that many of these recent views do not encompass the larger 
chemistry of thionitrites. Moreover, as will become more evident, the (rapid) 
homolytic liberation of NO' by RS-NO is, in part, an artifact of in vitro systems 
containing contaminant metals, which mediate this pathway. In this perspective 
I will attempt to integrate the broader chemistry of RS-NO in a review of their 
biological properties in order to explain their diverse biological actions. 

2 Physical Properties and Chemistry of 5-Nitrosothiols 

S-nitroso derivatives of primary aminothiols are usually red (lGNARRO et al. 1980; 
OAE and SHINHAMA 1983; STAMLER and LOSCALZO 1992). Tertiary thionitrites are 
green colored (FIELD et al. 1978; OAE and SHINHAMA 1983). Solutions of protein RS­
NOs are orange or rose colored (STAMLER et al. 1992a). The stability of thionitrites 
varies as a function of the thiyl group (RS). With an increase in electron 
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withdrawing effect of R, or the proximity of a primary amino group, the stability of 
RS-NO tends to decrease (TASKER and JONES 1909; MORRIS and HANSEN 1981; J.S. 
Stamler, personal obseNation). This may be a consequence of a change in thiol 
pK incurred by the adjacent group (in which heterolytic fission is governed by the 
basicity of RS-), or the role the amino group may play in catalyzing the decom­
position of RS-NO by way of a thionitrite to nitosamine rearrangement. Recent 
studies suggest that contaminant metals, and in particular copper ions, facilitate 
thionitrite decomposition (RAMDEV et al. 1993; McNAINLY and WILLIAMS 1993); this 
affect may involve the intermediate formation of Cu-complexes (McNAINLY and 
WILLAMS 1993), which are almost certain to involve copper amine coordination. 
The finding that moderate acidity (pH 1-5) markedly increases the stability of RS­
NO may be explained, in part, by the pH limiting affects on metal complexation. 
However, RS-NOs exhibit very complex pH-dependent stability profiles in which 
acid catalyzed hydrolysis of RS-NO is balanced by product (NO+) mediated 5-
nitrosation (Eq. 1), and alkaline conditions lend to heterolytic fission (Eq. 2) 

RS-NO + W~ RSH + NO+, (1) 

RS-NO + OH-~ NO~ + RS- + W. (2) 

The importance of metals in decomposition reactions may also rationalize the 
much higher stability of homocysteine thionitrite than of its cysteine homologue 
(STAMLER et al. 1993; RAMDEV et al. 1993), as the sulfur is distanced from the 
terminal amine by one extra methylene, perhaps limiting Cu2+ coordination. 
Further, modification of the amino group of cysteine by N-acetylation, 
dramatically stabilizes the derivative RS-NO (WILLIAMS 1988); in this case, 
however, internal stabilization may also derive from ring isomerization. 

Bulky protecting groups also stabilize thionitrites. Examples include the 
thionitrite derivatives of N-acetyl-penicillamine and t-butyl-thionitrite (FIELD et al. 
1978; OAE and SHINHAMA 1983). Further, protein RS-NOs are often more stable 
than the S-nitroso derivatives of amino acids and small peptides (STAMLER et al. 
1992a). In the latter case, the local microenvironment of the protein'thiol may 
stabilize the thionitrite by supporting an acidic millieu, through intramolecular 
interactions and/or by limiting the access of reactive nucleophiles. Although it 
may be easy to envision unstable protein nitrosothiols, those tested to date, i.e. 
derivatives of albumin (STAMLER et al. 1992a), tissue plasminogen activator 
(STAMLER et al. 1992a,d,e), cathepsin B (STAMLER et al. 1992a,e), and soybean 
extract (MASSEY et al. 1978) form comparatively stable S-nitroso derivatives at 
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physiologic pH. Disproportionation of RS-NO is accelerated by O2 and slowed by 
excess thiol (RSH); not only is the latter true for highly stable thionitrites such as 
S-nitroso-glutathione but also for unstable compounds such as S-nitroso-cysteine 
(RAMDEV et al. 1993). Thiols may stabilize RS-NO by scavenging reactive oxygen 
species and/or complexing metals, to limit their respective roles in thionitrite 
disproportionation. Indeed, the critical importance of (contaminant) metals in the 
mechanism of homolytic fission of RS-NO (RAMDEV et al. 1993; McNAINLV and 
WILLIAMS 1993), taken with the relative resistance of thionitrites to hydrolysis 
(STAMLER et al. 1992c), indicates that the apparent "instability" of these species 
in vitro is largely artifactual: truly physiological systems contain millimolar 
concentrations of thiol and free metals are sparse. 

RS-NOs exhibit ultraviolet absorption peaks at approximately 200 nm (e ~ 
10 000 M-1 cm-1J, 335 nm (e ~ 1000 M-1 cm-1), approximately 500 nm (e ~ 
5 M-1 cm-1J, and 550 nm (e ~ 5 M-1 cm-1), (OAE and SHINHAMA 1983; BVLER et al. 
1983; STAMLER et al. 1993). The extinction coefficients of protein RS-NO at ~ 330 
nm and 550 nm are on the order to three fold greater than RS-NOs (STAMLER et al. 
1992a,d). The absorption maxima at ~ 500 and 550 nm are unique to S­
nitrosothiols while alkyl nitrites and nitrosoamines absorb in the lower ranges as 
well. Thionitrites possess infrared NO stretching frequencies in the range of 
1490-1700 cm-1 and bending frequencies in the ranges of 610-660 cm-1 (OAE 
et al. 1978; OAE and SHINHAMA 1983; MASON 1969). The corresponding alkyl nitrites 
exhibit NO stretching vibrations at smaller wavelengths, which may be explained 
by the greater electronegativity of oxygen vs sulfur. 15N-NM R spectra show shifts 
for RS-NO in the 750-790 ppm range as compared against an internal 15N natural 
abundance spectrum of NaN02 at 587 ppm (BoNNEn et al. 1975). Protein RScNO 
exhibit 15N-NMR shifts in the same range (STAMLER et al. 1992a,d). 

The synthesis of thionitrites most commonly involves S-nitrosation chemis­
try (i.e., involving reaction or transfer of NO+, the nitrosonium ion) (ALDRED and 
WILLIAMS 1982; STAMLER et al. 1992c) 

RSH + XNO ? RSNO + HX. 

The synthesis has been best characterized in acidic aqueous solution (pH :s 1) 
with nitrous acid (HN02) (STAMLER et al. 1992a,d; WILLIAMS 1988; STAMLER and 
LOSCALZO 1992); however, treatment of thiols with N20 4 in inert solvents such as 
CHCI3 or CCI4 is a very convenient alternative method (OAE et al. 1977). 
Nitrosation has also been carried out with NOCI, alkyl nitrites (RONO) and 
dinitrogen trioxide (NP3) (OAE and SHINHAMA 1983). Nitrosation of thiols with nitric 
oxide gas requires the presence of oxygen in vitro (PRVOR et al. 1982). This 
reaction is presumed to occur by way of reactive intermediates su.ch as N20 3 and 
N20 4 (PRVOR et al. 1982; STAMLER et al. 1992c; WINK et al. 1993) and likely serves as 
one pathway for RS-NO formation in vivo. Direct S-nitrosation of thiols by metal 
(Fe or CuI nitrosyl compounds has also been reported and is consistent with an 
eletrophilic attack by NO+, donated by the metal nitrosyl compound (STAMLER et al. 
1992c). Metal nitrosyl form effectively under neutral physiological conqitions in 
the presence of nitric oxide, and may account, in part, for the presence of 
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thionitrites in biological systems (STAMLER et al. 1992c). Nitrosoamines also fall 
into the catagory of biological nitrosonium (NO+) equivalents (STAMLER et al. 1992c) 
and directly effect S-nitrosation, as exemplified in the well studied case of 
thiourea (WILLIAMS 1988 

Thionitrites may also form in a radical reaction between nitric oxide and thiyl 
radical (RS·) (WILLIAMS 1988). There is one report of RS-NO formation in the 
reaction involving nitroxyl (NO-) and disulfide (RINDEN et al. 1989); however, the 
mechanistic details have not been worked out. There is also evidence for thiol 
nitrosation mediated by peroxynitrite (OONO-) (Wu et al. 1994; MOHR et al. 1994), 
which is produced in the diffusion-limited reaction of NO· and superoxide. This 
pathway may help rationalize the high concentrations of RS-NO produced with 
inflammation (GASTON et al. 1993). 

The kinetics of thionitrite formation are reasonably well characterized in the 
reaction between RSH and nitrite in acid solutions (BYLER et al. 1983; ALDRED and 
WILLIAMS 1982; AL-KAABI et al. 1982). This reaction exhibits a first order 
dependence on thiol. nitrous acid, and W. The forward reaction is interpreted as 
one involving S-nitrosation by NO+ (or HPNO+) at pH less than 1, and N20 3 at pH 
of greater than 2 (ALDRED and WILLIAMS 1982; RIDD 1978; WILLIAMS 1988). The rate 
expression for this reaction is as follows: 

Rate = k2 [HN021 [Wl [RSH]. 

Much less is known about the mechanistic details of nitrosation reactions in 
biological systems. The transnitrosation reactions afforded by thionitrites, 
including those with secondary amines, alkylamides and alcohols, have not been 
studied mechanistically; however, it is likely that the nitrosation occurs directly 
and not by way of alternative nitroso intermediates (ALDRED and WILLIAMS 1982). 

Thionitrites can disproportionate both homolytically and heterolytically. For 
example, both low molecular weight and protein thiol may participate in 
transnitrosations (reaction or transfer of NO+) with other thionitrites (SIMON et al. 
1993; BUTLER and ASKEW 1993; PARK 1988; STAMLER et al. 1992c). Moreover, some 
hydrolysis of thionitrites is to be expected under the acidic conditions found in 
lysosomal compartments of the gastrointestinal tract. That such reactions could 
lead to formation of carcinogenic nitrosoamines has been a source of some 
concern. Alternatively, very high excess of thiol (or vicinal thiols on proteins) may 
promote the liberation of nitroxyl anion (NO-) (STAMLER et al. 1992c; BYLER et al. 
1983; PARK 1988). The heterolytic mechanism involved can be rationalized by the 
existence of a thionitrite resonance form in which the NO group accomodates the 
negative charge; by "activating" the derivatized sulfur atom, this pathway may 
also serve to potentiate disulfide formation 

H+ -
RS-N=O ~ [RS+ = N-O- (W)J ~ RSSR + HNO. 
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The long forgotten report of hydroxylamine isolation from RS-NO (TASKER and 
JONES 1909) provides further support for this mechanism, as it is a major product 
of the reaction of singlet NO- and thiol (TURK and HOLLOCHER 1992) 

HNO + 2RSH ~ RSSR + NH20H. 

What are the biological implications of this isomerism (RS-N=O ~ RS+=N-O-)? In 
light of many vicinal SH groups essential for protein activity, the formation of RS­
NO suggests a mechanism by which "nitric oxide" may regulate protein function 
by potentiating disulfide formation. Moreover, the propensity of RS-NO for 
transnitrosation reactions and disulfide formation, taken together with the strong 
thiol reducing environment in cells, suggests that heterolytic cleavage 
mechanisms may contribute significantly to RS-NO metabolism in biological 
systems (STAMLER et a1.1992a; SIMON et al. 1993; BUTLER and ASKEW 1993; STAMLER 
1994). Thionitrites are also susceptible to oxidation, the latter process leading to 
formation of thionitrates (RS-N02) (OAE and SHINHAMA 1983). Nevertheless, the 
ease by which thionitrites are reduced suggests that reductive pathways are 
more likely in vivo. 

3 Biological Actions of S-Nitrosothiols 

The inhibition of bacterial growth is an essential function of nitrite during the food 
curing process. Early studies on the mechanism of bacterial inhibition show that 
an activation of nitrite is required and that thiol supports such activation 
(CASTELLANI and NIVEN 1955; JOHNSTON and LOYNES 1971). Independent studies of 
Mirna and Hoffman indicate that thionitrites form in nitrite-cured meats and that 
such reactions are very dependent on pH (MiRNA and HOFFMAN 1969). These 
observations led to the hypothesis that RS-NO may account for the bacteriostatic 
action of nitrite (KANNER 1979). In a series of important studies INCZE and 
colleagues (1974) and MORRIS and HANSEN established inhibitory effects of RS-NO 
on Streptococcus faecium, Salmonella strains, Clostridium sporogenes and 
Bacillus cereus, also learning much about the mechanism of action (MORRIS et al. 
1984; MORRIS and HANSEN 1981). In particular, the inhibitory actions of RS-NO on 
spore outgrowth are correlated with the electron withdrawing effects of the thiyl 
group (MORRIS and HANSEN 1981) and were shown to be independent of RS-NO 
size, shape, charge, hydrophobicity and membrane permeability. In light of the 
above discussion on the chemistry of these compounds, these data suggest a 
mechanism of action independent of spontaneous homolytic cleavqge of the RS­
NO to yield NO·. In fact, reports by MORRIS and HANSEN firmly establish that the 
antimicrobial action of RS-NO results from covalent modification of bacterial 
membrane sulfhydryl groups (MORRIS et al. 1984; MORRIS and HANSEN 1981), and 
direct inhibition of sulfhydryl-dependent enzymes, such as glyceraldehyde 
phosphate dehydrogenase, may further contribute to their bacteriostatic activity 
(O'LEARY and SOLBERG 1976). Moreover, cell impermeable RS-NO potently inhibits 
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growth of the malarial parasite, Plasmodium falciparum, whereas a saturated 
solution of NO' does not (ROCKETT et al. 1991). These data support the 
interpretation of NO+ transfer to critical membrane and cellular thiols leading to 
formation of protein RS-NO (not excluding subsequent evolution to disulfide), 
thereby disrupting vital microbial functions. Approximately 20 years later, Fung 
and coworkers would report that the vasodilatory effects of RS-NO could not be 
correlated with size, shape, charge, hydrophobicity or lipophilicity and were 
entirely independent of the rate of NO generation (KOWALUK and FUNG 1990); we 
have since reported the same for airway smooth muscle relaxation (GASTON et al. 
1994b). Moreover,we and others have now shown that RS-NOs react with the 
cell membrane, both with enzymes that are poorly defined (KOWALUK and FUNG 
1990; RADOMSKI et al. 1993) and in chemical reactions with surface thiol groups 
(SIMON et al. 1993; BUTLER and ASKEW 1993; LIPTON et al. 1993; STAMLER 1994). 
Notwithstanding these cogent observations, there remains a consensus of 
opinion that the actions of RS-NO occur solely through" spontaneous" liberation 
of nitric oxide, the effects of which are in turn mediated through activation of 
cytosolic guanylate cyclase. 

Ignarro and coworkers are to be credited with the first demonstrations that 
RS-NO are likely intermediates in the metabolism of organic nitrites, nitrates and 
perhaps nitroprusside (lGNARRO and GRUETTER 1980; GRUETTER et al. 1981; IGNARRO 
et al. 1980, 1981; IGNARRO 1989). Notwithstanding current controversy on the 
metabolism of organic nitrates, there are several lines of reasoning supporting the 
role of RS-NO: (a) incubation of nitroglycerin, organic nitrites, and nitroprusside 
with thiol all lead to formation of thionitrites under physiological conditions 
(lGNARRO et al. 1981; FEELISCH 1991); (b) thionitrites markedly activate guanylate 
cyclase and elevate cyclic GMP in tissue (lGNARRO 1989; STAMLER et al. 1992c); (c) 
thiols potentiate vasodilatory (lGNARRO et al. 1981) and antiplatelet (LOSCALZO 1985; 
STAMLER et al. 1988; STAMLER and LOSCALZO 1991) effects of organic nitrites and 
nitroprusside and these effect can be mimicked by infusion of the corresponding 
RS-NO in animals (SCHARFSTEIN et al. 1993a; KEANEY et al. 1993); (d) RS-NOs are 
potent relaxants of vascular smooth muscle in vitro and decrease systemic 
arterial pressure when infused in animal models; further, they exhibit 
hemodynamic profiles that closely resemble those of nitroglycerin and 
nitroprusside (lGNARRO et al. 1981; KEANEY et al. 1993), and finally, (e) activation of 
purified guanylate cyclase by nitroglycerin, nitroprusside, and nitrite shows a 
critical dependence on the presence of thiol, under conditions promoting the 
formation of RS-NO (FEELISCH and NOACK 1987; IGNARRO 1989; STAMLER and 
LOSCALZO 1991). These findings certainly suggest that RS-NOs, at the very least, 
can act as intermediates in the activation of guanylate cyclase. A more <;lirect role 
is certainly not excluded. 

Interestingly, very few studies have actually examined the reaction between 
organic nitrates and sulfhydryl compounds. In early work, IGNARRO reported on the 
formation of S-nitroso-cysteine, when nitroglycerin was incubated with excess 
cysteine for prolonged periods (lGNARRO and GRUETTER 1980; IGNARRO et al. 1981). 
The mechanism involved was not studied, but formation of RS-NO occurs only 
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with cysteine and N-acetylcysteine and not with other thiols (lGNARRO and 
GRUETTER 1980; FEELISCH and NOACK 1987). The most plausible first step in this 
reaction involves nucleophilic attacks by RS- (thiolate) on the positively charged 
N-atom of the nitrate leading to formation of a thionitrate (RS-N02) (YEATES et al. 
1985; LIPTON et al. 1993). This intermediate would then be subject to further 
reduction yielding a thionitrite. An interesting possibility might involve 
isomerization of the thionitrate to form a sulfonyl nitrite (RSONO) through mi­
gration of the oxygen atom from nitrogen to sulfur. This species would then be 
susceptible to further nucleophilic attack by thiol yielding RS-NO; nitration of RSH 
by OONO- may lead to RS-NO by the same pathway (Wu et al. 1994; MOHR et al. 
1994). Notwithstanding these possibilities, other mechanisms of reduction may 
occur in cells or in plasma to explain the thiol-mediated catalysis of RS-NO 
formation reported in biological systems (FUNG et al. 1988; GASTON et al. 1993). The 
mechanism of RS-NO formation from nitroprusside and organic nitrites (lGNARRO 
and GRUETTER 1980; FEELISCH and NOACK 1987) is easier to reconcile and likely 
involves direct nucleophilic attacks on the positively charged nitrogen of the NO 
group present in both compounds. 

It is the general consensus of opinion that nitroso-vasodilators mediate their 
vascular smooth muscle relaxant effects by activation of cytosolic guanylate 
cyclase (lGNARRO 1989). The mechanism of activation of guanylate cyclase has 
been rationalized through formation of the common active species nitric oxide, 
which interacts with the heme center of the enzyme in the pathway of activation 
(lGNARRO 1989). In actuality, the molecular details of this mechanism are scanty 
and poorly understood. In particular, the assumption that RS-NO undergoes 
homolytic cleavage yielding NO· to activate the enzyme (IGNARRO and GRUETTER 
1980) has been invalidated in certain experiments (KOWALUK and FUNG 1990; 
WILLIAMS 1988). Moreover, there is an extensive literature on the importance of 
enzyme thiol groups for its activity. The oxidation of protein thiols can lead directly 
to activation of guanylate cyclase, and, in concert with the reaction of the NO 
group at the heme center, leads to maximal enzyme activation (STAMLER et al. 
1992c) NIROOMAND et al. 1989; KAMISAKI et al. 1986). Further, studies with 
nitroprusside reveal that activation of guanylate cyclase with nitroprusside 
promotes mixed disulfide formation involving thiol groups at the enzyme active 
site (NIROOMAND et al. 1989; KAMISAKI et al. 1986). Taken together, these observa­
tions suggest that S-nitrosation of guanylate cyclase may serve a role in activating 
the enzyme by facilitating the formation of disulfide. While this hypothesis 
remains to be tested, it is difficult to imagine-under most assay conditions in 
which thiol is included at millimolar concentrations-that NO group transfer to 
functional groups distinct from the heme iron would not be taking place. 

The pharmacological effects of RS-NOs have been aescribed in 
other tissues. 5-nitroso-glutathione, 5-nitroso-cysteine, 5-nitroso-homocysteine, 
5-nitroso-penicillamine and 5-nitroso-albumin are all potent relaxants of both 
guinea pig and human airway smooth muscle (JANSEN et al. 1991; GASTON et al. 
1994b). As reported in vascular tissue, potency in no way correlates with 
lipophilicity, size or rate of nitric oxide generation (GASTON et al. 1994b). The role of 
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guanylate cyclase in the mechanism of airway relaxation is less clear than in 
vascular smooth muscle (GASTON et al. 1994a,b). RS-NOs activate airway 
guanylate cyclase; however, the lack of effect of guanylate cyclase inhibitors in 
preventing RS-NO relaxation and temporal discrepancies between the rise in 
cyclic GMP and relaxation responses have resulted in much controversy in this 
area. RS-NOs have also been shown to relax smooth muscle in the 
gastrointestinal tract (SLIVKA et al. 1994) and corpus cavernosum of the penis 
(Saenz de Tejada, personal communication). In the last regard, there is evidence 
implicating RS-NO as the bovine retractor penis inhibitory factor (KERR et al. 1992). 

4 S-Nitrosothiols in Control of Protein Function 

In the early studies described above, the reaction of NO with protein thiol groups 
was envisioned as an adverse consequence of food curing with nitrite (MASSEY et al. 
1978; O'LEARY and SOLBERG 1976). Renewed interest in the reaction of NOx with the 
SH groups of proteins has been stimulated by the discovery of endogenous nitrogen 
oxide production in mammalian cells. We have recently focused on the possibility 
that posttranslational modification of proteins by NO, through reaction with SH 
groups, may regulate theirfunction (STAMLER et al. 1992a,c,d,e; LIPTON et al. 1993). In 
a series of studies we demonstrated that proteins of diverse nature and function can 
be S-nitrosylated, that the derivatized proteins are quite stable at neutral pH, and that 
this modification confers on proteins smooth muscle (vascular and airway) relaxant 
and antiplatelet bioactivity (STAMLER et al. 1992a,d,e; SIMON et al. 1993; GASTON et al. 
1993, 1994b). S-nitroso-albumin was subsequently identified in plasma as a 
reservoir of NO and is envisioned to serve a buffer-like function regulating levels of 
free nitric oxide for the determination of vasomotor tone (STAMLER et al. 1992b). 
When given by intravenous administration, S-nitroso-albumin markedly reduces 
mean arterial pressure and inhibits ex vivo platelet aggregation, supporting its 
potential biological role in modulating vasomotor tone (KEANEY et al. 1993). By 
comparison with nitroglycerin and nitroprusside, S-nitroso-albumin exhibits 
prolonged vasodilatory effetcs consistent with the notable stability of S­
nitrosoproteins in general (KEANEY et al. 1993). More recently, S-nitrosoproteins were 
identified in human airway lining fluid in disease states associated with impairment 
of alveolar-capillary membrane integrity (GASTON et al. 1993). This finding is 
consistent with the presence of albumin and cysteine-rich mucus proteins in the 
airways. Although their biological role remains to be ascertained, RS-NO possesses 
bronchodilator activity and may limit the putative toxicity of NO' in 'the 02-rich 
environment of the lung (GASTON et al. 1993). 

The idea that protein function may be regulated by NO has early support from 
several groups of investigators. As detailed above, MORRIS and HANSEN (1981) 
showed that the bacteriostatic effects of nitrogen oxides resulted from 
S-nitrosation of protein membrane thiols. In our earliest experiments we directly 
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studied the effects of S-nitrosylation on the activity of two enzymes: tissue-type 
plasminogen activator (tPA) an endothelium derived fibrinolytic agent with a 
single free thiol in a domain distant from the active site, and cathepsin B, a 
sulfhydryl protease in which the thiol is critical for enzyme activity (STAMLER et al. 
1992a,d,e). In the case of tPA (STAMLER et al. 1992d), S-nitrosylation enhanced 
enzyme activity, albeit slightly, while conferring vasodilatory and antiplatelet 
activity on the native protein. Most importantly, the fibrin specificity of tPA is 
preserved, providing a means by which NO can be selectively delivered to a fibrin 
clot, at which site a deficit of NO would be predicted because of endothelial 
damage. In contrast, the enzymatic activity of cathepsin B is inhibited by S­
nitrosylation of active site thiol (STAMLER et al. 1992e). Similar NO-dependent 
inhibitory effects have been observed with other enzyme. These include 
aldolase (O'LEARY and SOLBERG 1976)' alcohol dehydrogenase (PARK 1988), y­
glutamylcysteinyl synthetase (HAN et al. 1994) and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) (O'LEARY and SOLBERG 1976; MOLINA Y VEDIA et al. 1992; 
MOHR et al. 1994), the latter event also associated with an ADP-ribosylation-like 
modification (MOLINA Y VEDIA et al. 1992; STAMLER 1994) in vivo. Studies on the 
mechanism of GAPDH modification reveal that S-nitrosylation of an active site 
thiol is requisite for subsequent modification by nicotine adenine dinucleotide 
phosphate (NAD+) (MOHR et al. 1994). Thus, the formation of protein RS-NO 
serves a catalytic function. Interestingly, the S-NO intermediate of GAPDH 
formed during labelling with NAD is devoid of enzymatic activity (MOLINA Y VEDIA 
et al. 1992), analogous to cathepsin B. That only a fraction of S-nitrosylated protein 
undergoes covalent modification, taken together with the reversible nature of the 
S-NO modification, suggests that enzyme activity is regulated by S-nitrosylation 
(MOLINA Y VEDIA et al. 1992; McDONALD and Moss 1993; STAMLER et al. 1992a,c); 
nonenzymatic NAD-dependent modification of cysteine residues may represent 
a biological marker for intracellular protein S-nitrosylation. Intriguingly, other 
proteins such as actin and albumin undergo similar covalent modification of active 
site thiol, on treatment with NO (CLANCY et al. 1993; DIMMLER and BRUNE 1992). 

These ideas have been recently extended to a cell system in which the thiol 
groups under study comprise the "redox modulatory" site of the N-methyl-D­
asparte (NMDA)-type glutamate receptor and determine its ligand-gated activity 
(LIPTON et al. 1993). Conditions supporting S-nitrosylation of receptor thiol were 
shown to decrease the calcium influx induced by NMDA binding and the 
consequent toxicity to surrounding cells. It is not clear from these studies 
whether S-nitrosylation is sufficient to modulate the activity in the system or 
whether subsequent oxidation of protein RS-NO to disulfide is required. 
However, the finding that the reversal of inhibition of NMDA occ;:urs in a two­
phase process (LEI et al. 1992) suggests that both direct modification by NO 
(rapidly reversible) and the promotion of disulfide formation (long-lasting 
inhibition) occur to modulate the response. Analogous activation of a Ca+ 
dependent potassium channel on smooth muscle that facilitates relaxation was 
recently reported (BOLOTINA 1994). That S-nitrosylation of critical thiols on the 
receptor produced an effect discordant from alkylation suggests that the 
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molecular mechanism of activation involves disulfide formation. Specifically, only 
the NO group can accommodate a negative charge, and thereby promote the 
activation-associated oxidation that leads to a conformational switch. The 
presence of critical thiol groups on other proteins, enzymes-including guanylate 
cyclase-and surface receptors suggests a common mechanism by which NO 
can modulate protein function that also shares analogy with the more classical 
cellular signal transduction pathways. Thus, for example, S-nitrosylation of 
proteins may act as a rapid reversible signal transduction mechanism, akin, 
perhaps, to phosphorylation. If true, NO group transfer reactions may be 
enzymatically controlled in addition to the chemically controlled processes 
described here. 

5 5-Nitrosothiols and NO' Mediated Toxicity 

There is a great deal of concern over the potential toxicity of nitric oxide. Several 
mechanisms have been described by which NO may exert its cytotoxic effects. 
Nitric oxide may participate in nitrosative reactions leading to deamination of DNA 
and mutagenesis (WINK et al. 1991). and reactions of nitric oxide with superoxide 
lead to the formation of the highly toxic oxidant peroxynitrite (BECKMAN et al. 1990). 
In addition, the direct reaction of nitric oxide with iron sulfur centers in proteins 
may lead to the inhibition of their activity (HIBBS 1991). These concerns are 
supported by data showing that nitric oxide exposure can cause severe lung injury 
(WORLD HEALTH ORGANIZATION 1977; GASTON et al. 1994a). promote the formation of 
tumors (WORLD HEALTH ORGANIZATION 1977), and enhance neuronal destruction in 
stroke and other neurodegenerative disorders (SNYDER 1993). The reaction of 
nitrogen oxides (NO.1 with thiols may provide insights into divergent protective 
responses. Certainly, one of the main functions of biological thiols is to detoxify 
oxygen-derived free radicals and peroxides. By extension, thiols may play an 
important protective role in disarming nitric oxide. Levels of glutathione rise in 
lung tissue in response to oxidant stress, such as exposure to high levels of NO 
contained in cigarette smoke, and endogenous RS-NO levels increase in the lung 
in response to immune activation and inflammation (GASTON et al. 1993, 1994a). 
Moreover, the relative stability of these endogenous RS-NO (on the order of 
hours) may serve to limit the reactions of NO· with oxygen and superoxide that are 
associated with nitric oxide mediated toxicity (GASTON et al. 1993, 1994a; STAMLER 
et al. 1992c). The added finding that RS-NO possesses bronchodilator activity 
suggests a means by which the NO group is packaged in biological systems to 
preserve its bioactivity (GASTON et al. 1993, 1994b). Recent work indicates that NO 
can inhibit glutathione synthesis by inactivation of y-glutamylcysteinyl synthetase 
(HAN et al. 1994), which catalyses the initial and rate-limiting step. Thus, the 
potential for regulation of cellular functions influenced by redox status 
notwithstanding, excessive NO may facilitate oxidative injury by depleting the 
thiol pool. 
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In the central nervous system, similar protective effects of RS-NO have been 
observed. Nitric oxide mediated toxicity has been attributed to the formation of 
peroxynitrite by way of reaction with superoxide (LIPTON et al. 1993). In contrast, 
formation of RS-NO provides a mechanism for limiting the reaction of NO· with 
0;·. As discussed above, S-nitrosation reactions may have additional protective 
effects by down-regulating NMDA receptor activity, which is a prerequisite for 
nitric oxide synthesis (LIPTON et al. 1993; SNYDER 1993). These findings suggest 
that, with excessive generation of nitric oxide by neurons, the molecule may 
feedback to inhibit its own production (MANZONI et al. 1992). 

Paradoxically, biological thiols may exert toxic effects as well. Homocysteine, 
for example, will readily reduce oxygen, resulting in formation of superoxide and 
hydrogen peroxide (STAMLER et al. 1993; STARKEBAUM and HARLAN 1986); metal ions 
such as Cu2+ and Fe2+ may serve as catalysts in these reactions, possibly forming 
thiol-metal complexes (JOCELYN 1972) 

Fe(ll) (SR)2 + O2 -+ Fe(lll) (SR)2 + 0;·, 

0;· + RS- -+ 0; + RS·, 

Fe(lll) (SR)2 + RS- -+ Fe(ll) (SR)2 + RS·, 

2 RS·-+ RSSR 

Reduced oxygen species are highly toxic to endothelial cells and are believed to 
play an important role in the vascular related morbidity seen in patients with 
hyperhomocysteinemia (STAMLER et al. 1993; STARKEBAUM and HARLAN 1986). an 
independent risk factor for atherosclerosis. Under normal physiological 
circumstances the interaction between endothelium-derived relaxing factor 
(EDRF) and homocysteine results in the formation of 5-nitroso-homocysteine, a 
potent vasodilator and antiplatelet agent (STAMLER et al. 1993). With the thiol group 
"blocked" by NO, homocysteine is also prevented from generating hydrogen 
peroxide (STAMLER et al. 1993). However, with elevated levels of homocysteine 
incurred through an acquired or inborn alteration of metabolism, the cytotoxic 
properties of the molecule may embarrass EDRF production, setting a cycle in 
motion in which the antithrombotic, cytoprotective mechanism of S-nitrosation is 
increasingly compromised. Thus, S-nitrosation may represent a protective cell 
regulatory mechanism which simultaneously confers upon biological thiols 
EDRF-like bioactivity. 

6 S-Nitrosothiols In Vivo 

5-nitrosothiols have been identified in biological systems by several groups of 
investigators. Fung and coworkers identified low molecular weight RS-NOs in the 
plasma of human subjects treated with nitroglycerin (FUNG et al. 1988). These 
experiments also showed that metabolism of nitroglycerin was dependent, in 
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part, on the thiol group of albumin, suggesting that protein RS-NOs may also form 
(FUNG et al. 1988; CHONG and FUNG 1990). We have extended these findings by 
showing that 5-nitroso-proteins are present in the plasma of normal subjects 
(STAMLER et al. 1992b) and in the exudate of airway lining fluid in selected disease 
states (GASTON et al. 1993). In normal airways, 5-nitroso-glutathione has been 
identified in concentrations sufficient to influence basal airway tone (GASTON et al. 
1993). 5-nitroso-glutathione also forms intracellularly in neutrophils on exposure 
to NO gas and with cell activation (CLANCY et al. 1994). Interestingly, Ribeiro and 
colleagues identified nitrosovasodilator activity in the salivary gland of Rhodnius 
prolixus, of which approximately 10%-20% was attributed to 5-nitrosothiol 
(RIBEIRO et al. 1993). Finally, it has been estimated that a significant percentage of 
NOx in the gastrointestinal tract exists in the form of RS-NO (MIRNA and HOFMANN 
1969; KANNER 1979; MASSEY et al. 1978). 

The hemodynamic effects of RS-NOs have received recent attention. In early 
reports, Ignarro's group showed vasodilator effects in the cat (lGNARRO et al. 
1981). 5-nitroso-N-acetylpenicillamine, 5-nitroso-cysteine, 5-nitroso-mercapto­
ethylamine and 5-nitroso-3-mercaptopropionic acid each decreased systemic 
arterial pressure in a dose-related fashion (lGt-/ARRO et al. 1981). The onset of action 
was immediate in each case and the reported duration of action on the order of 
approximately 1-3 min. 5-nitroso-cysteine was the most potent of the RS-NOs 
with a dose-response curve also lying to the left of that of nitroglycerin and 
nitroprusside. The potency of 5-nitroso-cysteine has been confirmed by KEANEY 
and colleagues (1993). 5-nitroso-cysteine caused marked changes in blood 
pressure when given by intravenous bolus infusion and very dramatic changes in 
coronary flow, indicative of its vasodilator effects on microvessels. In the same 
study, the authors investigated the effects of 5-nitroso-albumin, which also 
exhibited vasodilator and antiplatelet properties reminiscent of ERDF. However, 
the kinetic profile and hemodynamic response was unique. 5-nitroso-albumin had 
a greater duration of action than either nitroglycerin or 5-nitroso-cysteine when 
given by intravenous infusion and a much longer duration of action on coronary 
blood flow when infused directly into the coronary artery. It appears that the 
actions of 5-nitroso-albumin are mediated by way of NO groups transfer to more 
reactive, low-molecular weight thiol pools in plasma (STAMLER et al. 1992b; 
SCHARFSTEIN et al. 1993b), which in turn, may target the NO group to the vascular 
(or platelet) surface (FUNG et al. 1988; SIMON et al 1993; RADOMSKI et al. 1993). 
SCHAFER and coworkers (1991) studied the hemodynamic effects of 5-nitroso­
captopril in the anesthetized dog. Interestingly, the nitrovasodilator effect was 
ten- to 30-fold less potent than nitroglycerin when administered by bolus, but 
significantly more effective than the former when given by continuous infusion. 
The duration of action of 5-nitroso-captopril was also significantly greater than 
that of nitroglycerin, which for unclear reasons, significantly exceeded the half-life 
of the drug. The attenuated pressure response to angiotensin in these animals 
indicates that this agent also manifests angiotensin converting enzyme inhibitor 
activity, which contributes to its mechanism of action. Recently, Vallance and 
coworkers infused 5-nitroso-glutathione into the forearm of humans (Vallance, 
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personal communication). The anti platelet effects of the drug was significantly 
more impressive than its vasodilator response implicating different pathways of 
metabolism in the platelet and vascular wall. 

The effects of RS-NOs on human gastrointestinal motility (SLIVKA et al. 1993) 
and airway tone (GASTON et al. 1993, 1994a, 1994b) have also been recently 
studied. When applied topically to the duodenum and colon, S-nitroso-N­
acetylcysteine causes profound inhibition of intestinal motility (SLIVKA et al. 1994). 
Application directly to the sphincter of Oddi lowers sphincter of Oddi pressure 
and inhibits the intrinsic frequency of contraction. At the concentration of 100 J.1M 
applied in 10 ml of saline, the onset of action occurs in minutes and the duration 
of action was estimated on the order of 10-20 min. Studies examining the 
bronchodilator action of S-nitroso-N-acetylcysteine are currently underway. As in 
the gastrointestinal tract, topical administration (nebulized in saline) was not 
associated with systemic side effects. Early results in subjects with mild asthma 
should become available in the near future. RS-NOs have also been used on 
ureteral smooth muscle and corpus cavernosum, suggesting their potential uses 
in the treatment of ureteral spasm and erectile dysfunction (Saenz de Tejeda, 
personal communication). 

7 Summary 

The reactivity of selected RS-NOs has led to the misconception that these 
compounds are uniformly unstable under physiological conditions. Moreover, 
current evidence supports the notion that biological responses elicited by RS­
NOs may result from either liberation of nitric oxide or from NO group transfer 
chemistry involving either NO+ or NO-. Some evidence suggests that such 
reactions may be enzymatically controlled. The data supporting the potential 
biological relevance of RS-NOs include: (1) evidence that these compounds form 
under physiological conditions; (2) their identification in insects, lower mammals, 
and several human biological systems; and (3) findings that RS-NOs possess a 
wide range of biological activities, including antimicrobial effects, vasodilation, 
platelet inhibition, bronchodilation and inhibition of intestinal motility, while being 
relatively resistant to reactions with O2 and O2' associated with NO' toxicity. It is 
further noteworthy that biological activity of RS-NO is often not related to the 
propensity to liberate NO', and these adducts are generally more potent and 
selective in their action than NO' itself (STAMLER et al. 1989; COOKE et al. 1990; 
ROCKETI et al. 1991; JANSEN et al. 1991; LIPTON et al. 1993). 

The data presented here support the idea that RS-NO may be involved in 
stabilizing nitric oxide-like bioactivity, in transporting and targeting the NO group 
to specific (thioregulatory) effector sites, in mitigating the cytotoxic effects of 
nitric oxide that result from reaction with oxygen species, and may serve to 
regulate protein function in a posttranslational modification akin, perhaps, to 
phosphorylation. The recently demonstrated NO group transfer reactions to 
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plasma membrane proteins containing reactive sulfhydryls (LIPTON et al. 1993; 
STAMLER 1994) also raises the possibility of signal transduction initiated through 
more traditional "agonist-receptor" mediated pathways. 
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1 Introduction 

The increased appreciation of nitric oxide (NO) as an important molecule in 
biology and medicine has been accompanied by an unprecedented interest in 
inhibitors of NO synthesis and NO scavengers. L-Arginine analogues (Fig. 1) have 
been used widely as competitive inhibitors of NO synthase (NOS), thus inhibiting 
the function of NO indirectly. Some of these analogues have even been used in 
human trials, although there are potential problems with in vivo use. L-Arginine 
analogues may interfere with the urea cycle and protein synthesis, and long-term 
suppression of both the constitutive (eNOS) and the induced forms (iNOS) of the 
enzyme might result in impairment of the neural and circulatory systems. 
Although L-arginine analogues can suppress the biological effect of endothelium­
derived relaxing factor (EDRF) stimulators, such as acetylcholine, proof that NO is 
an EDRF awaits the demonstration of chemical entrapment of NO at the site of 
action with simultaneous disappearance of its vasorelaxing activity. Meanwhile 
NO gas or dilute NO solutions have been shown to relax vascular tone, and the 
identity of EDRF with NO appears essentially unambiguous. 

, Department of Microbiology. Kumamoto University School of Medicine. Honjo 2-2-1. Kumamoto 860. 
Japan 
2 Department of Urology. Kumamoto University School of Medicine. Honjo 2-2-1. Kumamoto 860, Japan 
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Fig. 1. Structure of L-arginine and various L-arginine analogues, that inhibit nitric oxide synthase 

We have recently described an imidazolineoxyl N-oxide (PTIO) compound 
that selectively reacts with NO by converting it to N02, while simultaneously and 
completely abrogating the biological effect of NO. This prompted a detailed 
investigation of the chemical mechanism by which NO interacts with PTIO, 
focusing on unique electron spin resonance (ESR) signals, and further functional 
analysis of NO in vitro and in vivo. We investigated two pathological conditions, 
endotoxic shock and vascular permeability enhancement in solid tumors, in 
which NO seems to be involved. Both of these pathological situations are clearly 
inhibited by PTIO, suggesting the direct causal role of NO and ,the potential 
usefulness as a therapeutic strategy based on the administration of PTIO. We 
have also studied the controversial cytotoxic effect of NO using the bacteria 
Staphy/occus aureus and Cryptococcus neoformans. 

The biological function of NO has been analyzed primarily through its inhibi­
tion of NOS, which has been achieved using glucocorticoids to inhibit NOS 
induction, (MONCADA et al. 1992), trifluoperazine to inhibit calmodulin-dependent 
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function (for neuronal and endothelial cNOS) (BREDT and SNYDER 1990), and 
diphenylene iodonium, di-2-thienyliodonium, or iodoniumdiphenyl to inhibit 
NADPH, an essential electron donorfor NOS (STUEHR et al. 1991). However since 
NADPH is required in many biochemical reactions, such inhibitors have only 
limited value in an in vivo setting (GATLEY and SHERRATI 1976). Compounds such 
as 2,4-diamino-6-hydroxyprimidine and N-acetylserotonin, which inhibit biosyn­
thesis of tetrahydrobiopterin, a cofactor of NOS, might selectively inhibit iNOS 
activity in vivo (GROSS and LEVI 1992; SAKAI et al. 1993), but all of these reagents 
have potential drawbacks. 

Other compounds such as SH- or iron-containing compounds, including 
glutathione (STAMLER et al. 1992), albumin or hemoglobin (KANNER et al. 1992), 
might compete with the target molecules of NO or serve as an NO carrier in 
biological phenomena in which NO is crucially involved. This possibility is 
discussed in the chapter by Stamler. Here, we focus on PTIO derivatives and 
functional analyses of NO using PTIOs in vitro, ex vivo, and in vivo. 

2 Selective Reaction of Imidazolineoxyl N-Oxide 
Derivatives with Nitric Oxide 

Figure 2 shows the chemical structure of PTIO and the proposed reaction 
equation, in which R can be replaced with various groups. Synthesis of these 
PTIO derivatives has been described (AKAIKE et al. 1993). The derivatives 2-
phenyl-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO), carboxy-PTIO and 
carboxymethoxy-PTIO are the most well studied. Figure 3 shows changes in the 
electron spin resonance (ESR) spectra obtained from PTIO alone before reaction 
with NO, the purified reaction product, i.e. 2-phenyl-4,4,5,5-tetramethyl­
imidazoline-1-oxyl (PT\), and the reaction mixture of PTIO and NO. Computer 
simulation resolves the latter spectrum into two components similar to the 
spectra in (a) and (b). Thin-layer chromatography revealed a single spot of PTI after 
complete reaction of PTIO and NO, with a different mobility from PTIO. The Rf 
value of the PTI product was 0.48, with a yellow color, whereas Rf of the original 
PTIO was -0.30, with a blue color as determined in an-hexane/chloroform/ 
methanol system (10:5:1, v/v). The amount of PTI formed was equal to that of 
PTIO consumed, and NO reacted with PTIO stoichiometrically under anaerobic 

Fig. 2. Structures of imidazolineoxyl N-oxide (PTlO) derivatives (left) and reaction scheme of PTIOs 
with nitric oxide (NO) (R.H:2-phenyl-4.4.5.5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO); R.COOH: 
carboxy-PTIO; R.OCH2CHOOH. carboxymethoxy (CM)-PTIO) 
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Fig. 3. Electron spin resonance spectra of imidazolineoxyl N-oxide (PTlO) reaction product (PTI) and 
reaction mixture of PTIO and nitric oxide (NO). a, PTIO; b, PTI; c, spectrum of the reaction mixture of 
PTIO and NO; d and e, computer simulation of c. (From AKAIKE et al. 1993, with permission) 

condition. The results of mass spectroscopy and NMR studies of PTIO and PTI 
were consistent with the reaction scheme (Fig. 2). The reaction can be quantified 
either by ESR signal or by spectroscopy of PTIO (Amax 358 nm, Emol 6130; Amax 562 
nm, Emo1 760) and PTI (Amax432 nm, Emo, 585) (AKAIKE et al. 1993; and our 
unpublished data). The minimum sensitivity of ESR spectroscopy for NO 
detection is - 0.1 11M. 
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3 Generation of Nitric Oxide from Rabbit Aorta 
by Stimulation with Vascular Relaxing Agents 
and Inhibition of Vascular Relaxation 
with Imidazolineoxyl N-Oxide: Ex Vivo Study 

We investigated whether PTIOs react with NO to inhibit its biological function as 
an EDRF in aortic smooth muscle from rabbits, Stimulation by vascular relaxing 
agents such as acetylcholine or ATP is known to mediate generation of EDRF, i.e., 
NO, during this vasorelaxation. Female New Zealand white rabbits weighing 2.5-
3 kg, were anesthetized with sodium pentobarbiturate and exsanguinated. The 
thoracic aorta was removed from the chest and, after removal of excess fat and 
connective tissue, cut into 5 mm wide rings. The rings were mounted vertically in 
a 20 ml organ bath filled with Krebs solution, and isometric tension development 
was recorded with an ink-writing recorder. The medium was maintained at 37°C 
and aerated with a mixture of 95% O2 and 5% CO2 , Tissues were precontracted 
with 0.15 mM phenylephrine, and acetylcholine- or ATP-induced relaxation was 
measured, as were the effects of a series of PTIOs, PTI, N"-nitro-L-arginine 
(L-NNA), and NCD-monomethyl-L-arginine (L-NMMA) on the induced relaxation. 
The vascular tone of aortic rings was studied in the presence of 3.0 mM 
indomethacin after phenylephrine"induced contraction of the smooth muscle. 

Evidence of NO generation from the vascular rings was obtained using ESR 
spectroscopy to quantify PTI formed from the reaction with PTIO during 
stimulation with acetylcholine in the incubation medium. Generation of NO was 
inhibited in the presence of the NOS inhibitor, L-NMMA (Fig. 4) (see AKAIKE et al. 
1993 for details). All three PTIOs used inhibited this NO-related vasorelaxation 
induced by acetylcholine in a dose-dependent manner (Fig. 5). Similarly, 
vasorelaxation induced with ATP was also markedly inhibited by all PTIOs (data 
not shown). In contrast, virtually no inhibitory action was observed against 

20 

Fig. 4. Conversion of imidazolineoxyl N-oxide (PTIO) to 
reaction product (PTI) during vasorelaxation induced by 
acetylcholine (Ach). Aortic specimens, 5cm long, from 
rabbits were incubated with 0.5nM PTIO and Cu, Zn 
superoxide dismutase (SOD) (500 units/ml) in the 
presence or absence of 10 nMAchor 1 mM (L-NMMA) in 
Krebs solution (1.5 mil for 30 min at 37°C. Error bars 
indicate mean ±SEM. (From AKAIKE et al. 1993, with 
permission) 
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Fig. 5a-d. Effects of imidazolineoxyl N-oxide (PTlO) on acetylcholine (Ach) induced vasorelaxation of 
rabbit thoracic aorta. Tissues were precontracted with 0.15 nM phenylephrine after which Ach was 
added serially at concentrations of 0.001, 0.03, 0.1, 0.3 and 1.0 mM with or without PTIO and PT/. 
a Control without PTIO; b with 300 11M PTIO; c with 300 11M PTI; d effect of L-arginine (5 mMJ on 
inhibition by 100 11M PTIO (upper tracing) or 100 11M N"'-nitro-L-arginine (NNA) (lower tracing) of Ach­
induced vasorelaxation. (From AKAIKE et al. 1993, with permission) 

vasorelaxation with PTI, the reaction product of PTIO and NO. The inhibition of the 
smooth muscle relaxation by PTIOs was not abolished by the addition of L­
arginine, the precursor of NO biosynthesis, whereas L-arginine significantly 
reversed the inhibition of vasorelaxation by L-NNA (Fig. 6). These results indicate 
that the inhibition of vascular relaxation by PTIOs was not due to direct inhibition 
of NOS. More specifically, L-arginine analogues such as L-NNA and L-NMMA 
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Fig. 6, Effects of concentration of various imida­
zoline-N-oxide (PTlO) derivatives on vascular 
relaxation of rabbit thoracic aorta. Bioassay 
conditions were the same as in Fig.5. Data are 
shown as mean ± SE (n = 3-4). (From AKAIKE et al. 
1993, with permission) 

are competitive inhibitors of NOS and thus the presence of L-arginine 
can reverse these inhibitory effects (KILBOURN and GRIFFITH 1992). In contrast, 
PTIO reacts directly with EDRF (NO) generated by cNOS in the endothelium. 
EDRF-dependent relaxation could be reinduced when acetylcholine was again 
administered to aortic tissues pretreated with imidazoline compounds for up to 4 
hours after stimulation by acetylcholine or ATP, followed by washing out of these 
reagents. This observation suggests that the inhibitory effect of imidazolineoxyl 
N-oxide radicals on vasorelaxation did not result from cytotoxicity against 
endothelial cells of the aorta. The inhibitory potential of PTIOs is comparable to 
that of L-NMMA and L-NNA (Fig. 6) . 

4 Therapeutic Effect of Carboxy PTIO 
on Lipopolysaccharide-Induced Hypotension 
and Endotoxic Shock, In Vivo 

We tested the effect of a water-soluble derivative of PTIO, i.e. carboxy-PTIO, on 
endotoxic shock rats (Wistar male rats weighing 220-250 g) (YOSHIDA et al. 1994). 
The lower abdominal aorta was cannulated after abdominal incision to measure 
mean arterial blood pressure (MABP) and heart rate of the rats, and blood 
samples were obtained intermittently for ESR analyses to measure the level of 
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carboxy-PTIO and carboxy-PT!. Rats were given bolus intravenous injections of 
lipopolysaccharide (LPS), E. coli 026:B6 (Difco Laboratories, Detroit, MI). Blood 
pressure and heart rate were measured by a pressure transducer with a recorder 
unit. Soon after injection of LPS, at a dose of 10 mg/kg, MABP began to decline 
(Figs. 7, 8). After 3 h, it was lower than 60 mm Hg, and rats started to die. In 
contrast, when carboxy-PTIO was slowly infused via the left jugular vein, 
beginning at 90 min at 6 mllh (1.7 mg/min per kg) and continuing for 60 min 
the decrease in MABP was inhibited at a carboxy-PTIO dose of more than 
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(2mg) 
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+ 
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Carboxy-PTIO D.I.V. 
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Fig. 7. Effects of carboxy-immidazolineoxyl N-oxide (PTlO) on lipopolysaccharide (LPS)-induced 
hypotension in rats 
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Fig. 8. Therapeutic effect of carboxy-imidazolineoxyl N-oxide (PTlO) in rats with lipopolysaccharide 
induced endotoxic shock. MABP, mean arterial blood pressure 
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0.056 mg/kg per min. At a dose of 0.17 mg/kg per min or higher, carboxy-PTIO 
infusion completely rescued the endotoxic shock rats. 

ESR spectroscopy indicated decreased blood levels of carboxy-PTIO and 
increased levels of carboxy-PTI in the endotoxic shock rats (not shown). When the 
infusion was stopped, plasma levels of carboxy-PTIO declined gradually, and both 
carboxy-PTIO and -PTI were rapidly excreted in the urine (not shown). Total 
urinary recovery of carboxy-PTI and -PTIO was about 81 % in 3 h (not shown). 

These results indicate that NO is responsible for the hypotension induced by 
endotoxin and that carboxy-PTIO has potential therapeutic value against 
endotoxic shock tn animals. 

5 Vascular Permeability of Solid Tumors 
Mediated by Nitric Oxide and Inhibition 
by Imidazolineoxyl N-Oxide 

Tumor tissues have unique vascular characteristics, including extensive 
angiogenesis (FOLKMAN 1990), which usually results in hypervasculture, irregular 
morphology and defective architecture, and enhanced permeability (MATSUMURA 
and MAEDA 1986; SUZUKI et al. 1987; MAEDA and MATSUMURA 1989; SKINNER et al. 
1990; MAEDA 1991 ; MAEDA et al. 1992). This enchanced permeability is relevant 
in the selective delivery of macromolecules and lipids to tumor tissues, since 
such tissue exhibits much slower return of these substances into the lymphatics 
(lWAI et al. 1984; MATSUMURA and MAEDA 1986; MAEDA 1991; MAEDA et al. 1992). 
We have termed this phenomenon the "enhanced permeability and retention" 
(EPR) effect of solid tumors (MATSUMURA and MAEDA 1986; MAEDA and 
MATSUMURA 1989; MAEDA 1991; MAEDA et al. 1992). 

The enhanced vascular permeability of solid tumors, which facilitates tumor 
growth and perhaps metastasis, is now known to be mediated by a number of 
factors, including tumor vascular permeability factor (SENGER et al. 1983), 
bradykinin and hydroxyprolyl3 bradykinin (MAEDA et al. 1988; MATSUMURA et al. 
1988, 1991), tumor necrosis factor and interleukin-2 (EnINGHAM et al. 1988), and 
others. However, there appears to be no report on the effect of NO on vascular 
permeability of tumor tissues. Here we present evidence that vascular 
permeability is indeed mediated by NO (MAEDA et al. 1994). 

Figure 9 shows the levels of Evans blue dye relased from sarcona 180 (S-180) 
solid tumors in ddY mice in the presence or absence of PTIO. PTIO in an oil 
formulation (0.5 ml, 43 mM) was administered orally and plasma concentrations 
were determined by ESR spectroscopy. Since plasma levels can be maintained 
for about 2.5 h, PTIO was administered every 2 h, and Evans blue (0.2% in 
physiological saline, 0.2 ml) was injected intravenously into tumor-bearing mice. 
Tumors were more than 3 mm but less than 7 mm in diameter. The results clearly 
show significant suppression of extravasation by PTIO in two different size 
groups (Fig. 9). 
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Fig. 9. Inhibitory effect of imidazolineoxyl N-oxide (PTIO) 
on vascular permeability in solid tumors. Bar indicate SO 
(n = 6-8) 

We also tested the extravasating effect of NO in guinea pig skin, in which 
0.05 ml of an oil formulation of NO diluted to different concentrations was 
injected intradermally in animals that had already received Evans blue 
intravenously. Dye extraction was performed with formam ide at 60°C for 48 h, 
followed by spectroscopic quantification (620 nM). The results showed 
significant extravasation by NO, although the potency of NO is 1/100-1/1000 of 
bradykinin (not shown). Extravasation caused by bradykinin was effectively 
suppressed by PTIO given intraperitoneally (MAEDA et al. 1994). 

Data suggest that bradykinin stimulates the release of EDRF (NO) (PALMER 
et al. 1987; KELM et al. 1988; MYERS et al. 1992; TADJKARIMI et al. 1992). Our data 
show that NO plays a crucial role in extravasation in tumor tissue, and bradykinin 
may be an initiating trigger of this event, as discussed previously (MATSUMURA 
et al. 1988, 1991; MAEDA et al. 1988; MAEDA and MATSUMURA 1989). Further 
experiments will clarify whether the level of iNOS and for cNOS is elevated in 
tumor tissue. 

6 Microbiocidal Activity of Nitric Oxide 
Using Imidazolineoxyl N-Oxide 

It has been suggested that NO plays an important role in the killing of invading 
bacteria by macrophagesand polymorphonuclear cells (PMR) since their NO 
generation parallels that of oxygen radicals and cell killing (HIBBS .et al. 1987; 
DRAPIER 1991; STUEHR and NATHAN 1991). However, it remains controversial 
whether NO itself can kill bacteria. We therefore, investigated the effect of NO 
on Cryptococcus neoformans and Staphylococcus aureus 209P using PTIO 
(YOSHIDA et al. 1993). 

Staphylococcus aureus was routinely cultured in tryptosoy broth overnight 
and washed twice with phosphate-buffered saline (PBS; pH 7.3). Cultures were 
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Fig. 10a-c. Effect of imidazolineoxyl 
N-oxide (PTlO) on nitric oxide (NO)-in 
duced micro-biocidal action against a 
Staphylococcus aureus and Cryptococcus 
neoformans; b,c Bactericidal action of NO 
and PTIO. S. aureus (3 x 106 cells/ml) was 
reacted with NO (150 nM) in 0.01 M PBS 
(pH 7.3) in the presence or absence of 857 
mM PTIO at room temperature. b 
Bactericidal effect of NO generated in a 
system forming nitrous acid. C. neoformans 
(serotype D) was added to a reaction 
mixture containing 1 mM NaN02 in 80 mM 
succinate buffer (pH 4.0) in the presence or 

25 absence of PTIO, followed by incubation for 

10 

24 h at room temperature. Number of viable 
fungal cells was quantitated by colony­
forming assay on Sabouraud agar plates. 
Data represents the mean of triplicate 
plates. c Effects of authentic NO on C. 
neoformans serotype D in solutions at pH 
4.0. NO (gas)-saturated solution was added 
to the suspended C. neoformans cells in 
200 mM succinate buffer (pH 4.0) and the 
number of viable cells was measured as in 
a. No cell killing was seen at pH 7.0 and the 
A serotype showed a trend similar to that of 
the serotype D (YOSHIDA et al. 1993, with 
permission) 

suspended in PBS and incubated with an aliquot of NO-saturated solution in the 
presence or absence of PTIO for different time periods (Fig. lOa). Cell 
suspensions (1 x 106 cells/ml) of C. neoformans were prepared in 0.15 M NaCI 
with varying concentrations of NaN02 and the suspensions were brought to pH 
4.0 by the addition of succinic acid (Fig. lOb). At this pH, NO is known to be 
released from nitrite. C. neoformanswas exposed to an NO solution (Fig. 1 Oc) and 
the effect of PTIO was examined in the same manner as for S. aureus. In these 
assays PTIO alone did not show any cytotoxic activity. The number of viable cells 
in each reaction system was determined by colony-forming assay. 

These results showed that NO alone did not exhibit significant microbiocidal 
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Fig. 11. Interaction of nitric oxide (NO) and imidazolineoxyl N-oxide (PTlO). and various NO 
intermediates in the nitrite cycle. (From YOSHIDA et al. 1993) 

activity against either S. aureus or C. neoformans. Instead PTIO together with NO 
showed substantial cytotoxicity. Based on the known chemistry of NO and PTIO 
(Fig . 11), we speculate that one or more NO metabolites, such as N02 (N 20 4) and 
NP3' may be toxic but not NO per se. Another derivative, peroxynitrite [OONOL 
which is formed via the reaction of NO with O2 might be also a candidate 
responsible for NO-dependent microbiocidal action in vivo. 

7 Concluding Remarks 

The PTIO derivatives are a new class of NO scavenger. The chemistry of radical­
radical reactions was fully demonstrated and the product analyses, including 
mass spectroscopy and NMR studies (not shown here), confirmed this notion 
(AKAIKE et al. 1993). 

All arginine derivatives may have some drawbacks, especially ifl vivo. Heme 
derivatives are also known to react rapidly with NO, but they may also liberate NO 
and thus may not necessarily be a class of scavenger (RIBIEIRO et al. 1993). In this 
respect thiol-NO adducts may have the same problems as heme-NO adducts 
(STAMLER et al . 1992) 

Identity between EDRF and NO was fully established in our study in vitro, ex 
vivo and in vivo systems using PTIO, and these results are consistent with those 
obtained with the L-arginine analogue L-NMMA. i.e., PTIO can prevent endotoxin-
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induced hypotension and shock and can rescue rats from lethal dose of 
endotoxin (YOSHIDA et al. 1994). 

As was mentioned briefly, we found no real evidence that NO is 
microbiocidal; rather the reaction product(s) of NO and PTIO, e.g. N02 or N20 4 , 

seems to exhibit more microbiocidal activity (YOSHIDA et al. 1993) 
Using a solid tumor model in mice, we demonstrated that the vascular 

permeability enhancing activity of solid tumors appears to be mediated by NO, 
because PTIO formulated for slow release significantly suppressed the vascular 
permeability of Evans blue dye. In conjuction with this finding, PTIO also 
suppressed the vascular permeability enhancement induced by bradykinin in 
normal guinea pig skin (MAEDA et al. 1994). Our results indicate that the action of 
bradykinin on blood vessels is, at least in part, mediated by NO. PTIO will be a very 
useful reagent for the analysis of NO-mediated activities both in vitro and in vivo. 
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1 Introduction 

The mechanism by which virus infections of the central nervous system (CNS) 
cause neuronal damage are understood in only a few viral CNS diseases in which 
there is evidence that the virus directly destroys its target cells. In many other 
cases of virus-induced encephalopathy, the virus does not directly destroy neural 
tissue but causes indirect damage by altering neuronal functions (Fu et al. 1993; 
LIPKIN et al. 1988a,b) or by triggering cell-mediated responses within the CNS 
(BYRNE and OLDSTONE 1984; CARBONE et al. 1988; DOHERTY et al. 1976). Soluble 
factors such as proinflammatory cytokines, proteases, free radicals, and 
neurotoxins produced by immune cells are thought to play an important role in the 
process of neuronal destruction (SHANKAR et al. 1992; KOPROWSKI et al. 1993). It is 
believed that proinflammatory cytokines in particular are exceptionally important 
in the process of neuronal destruction (SELMAJ 1992). It has been shown that 
cytokines can have direct cytotoxic effects. For example, the intracisternal 
challenge of interleukin-1 (I L-1) or tumor necrosis factor (TNF) in rats induced 
meningitis and blood brain barrier damage (QUAGLIARELLO et al. 1991). Recently, 
attention has focused on the possibility that reactive nitrogen intermediates 
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generated by nitric oxide synthases (NOS) directly damage neural tissue. Both the 
constitutive form of NOS (cNOS), and the inducible calcium-independent NOS 
ONOS) are thought to playa role in the process of neuronal damage (KOPROWSKI 
et al. 1993; MURPHY et al. 1993). NO generated by cNOS in neurons has 
been proposed to initiate excitotoxicity through activation of guanylate cyclase 
(DAWSON et al. 1991). However, the involvement of cyclic GMP in NO-mediated 
neurotoxicity is questionable since inhibitors of guanylate cyclase failed to protect 
neuron cultures from the toxic effect of NMDA or the NO donor sodium 
nitroprusside (LUSTIG et al. 1992). In contrast, increasing evidence suggests a role 
for activated microglia or infiltrating macrophages in neuronal damage and white 
matter pathologies by a TNF-and iN OS-dependent process. It has been shown in 
several neurological diseases that the expression of proinflammatory cytokines, 
such as IL-1, TNF, and interferon (lFN)-y, which can prime macrophages and 
microglial cells for the production of reactive nitrogen intermediates (DING et al. 
1988; NATHAN 1992), correlates with the degree of inflammatory lesions in the 
CNS and with the severity of neurological signs (KOPROWSKI et al. 1993; MUPRHY 
et al. 1993). Furthermore, the observation that iNOS mRNA is present in the 
brains of virus-infected rats or rats with experimental allergic encephalitis (EAE) 
(KOPROWSKI et al. 1993), is very suggestive for the involvement of NO in neuronal 
damage. To further investigate the potential pathophysiological role of NO in 
virus-induced neuropathogenesis, we have determined the kinetics of iNOS and 
cNOS expression in rabies virus and Borna disease virus (BDV)-infected rat 
brains. Rabies virus and BDV were chosen in this study because both viruses are 
highly neurotropic. Infection with BDV results in a persistent CNS infection which 
is characterized by massive infiltration of inflammatory cells. Our results show 
that iNOS expression which is not detectable in normal brain tissue is strongly up­
regulated in the brain of rats infected with BDV or rabies virus and levels of iNOS 
activity correlate with clinical severity. In contrast, expression of neuronal cNOS, 
which is detectable in normal brain, is significantly decreased during BDV and 
rabies virus infection. 

2 Kinetics of Expression of Tumor Necrosis Factor-a 
and Inducible Nitric Oxide Synthase mRNA in Rat Brains 
Following Borna Disease Virus Infection 

Since it has been proposed that TNF-Cl, TNF-f3 and IFN-y can prime macrophages 
for production of inducible reactive nitrogen intermediates, we compared the 
kinetics of BOV-induced changes in the mRNA levels of iNOS and TNF-Cl. The 
results showed that iNOS and TNF-Cl mRNAs, normally nondetectable in the 
brain, were present in the brain after infection with BDV (ZHENG et al. 1993). 
Although reverse transcriptase-polymerase chain reaction analysis was used, 



The Role of Nitric Oxide in the Pathogenesis of Virus-Induced Encephalopathies 53 

which yields qualitative rather than quantitative results, highest levels of iNOS 
mRNA were detected 21 days postinfection (p.i.) when animals exhibited 
neurological signs such as seizures, convulsions, and tremore. Expression of 
TNF-a mRNA was at a maximum 17 days p.i. and decreased at 21 days p.i. (ZHENG 

et al. 1993) indicating that the expression of TNF-a precedes that of iNOS. This 
result is consistent with the notion that certain proinflammatory cytokines such as 
TNF-a, IL-1 and IFN-y might effect CNS damage by stimulating inflammatory cells 
to produce oxygen and nitrogen intermediates. 

3 Localization of Inducible Nitric Oxide Synthase 
Expression in the Borna Disease Virus-Infected Brain 

In situ hybridization experiments revealed that iNOS mRNA is expressed in 
brain areas that are preferentially infected by BDV, such as the hippocampus 
and basolateral parts of the cortex. However, unlike BDV RNA. which is 
evenly distributed among neuronal cell layers, iNOS mRNA exhibited a 
patchy distribution pattern. No iNOS mRNA could be detected in brains of 
normal rats. 

iNOS producing cells in the BDV infected brain were identified by 
immunohistochemistry using antibodies against iNOS, the macrophage/ 
monocyte marker ED1, and the astroglial marker GFAP. This analysis revealed a 
generalized astrogliosis accompanied by massive macrophage infiltration in 
brains of rats with Borna disease (E. Weihe, unpublished). However, cells 
expressing GFAP and those expressing ED1 were distinctly segregated. The 
distribution pattern of iNOS-positive cells was very similar to that of ED 1-positive 
cells, and the staining for iNOS was confirmed to the same type of cells as that 
stained for ED1. Conversely, iNOS-positive cells were absent in areas of intensive 
GFAP staining. The segregation of areas containing GFAP-stained cells and areas 
with an accumulation of cells stained for ED1 and iNOS may reflect the damaging 
effect of NO released by activated macrophages or activated microglia. It is likely 
that astrocytes, neurons, and oligodendrocytes located in areas where iNOS­
positive cells are present are functionally impaired or even destroyed. 
Furthermore, the observation that cells intensely stained for iNOS are present in 
areas where neurons were still morphologically intact, whereas iN OS expression 
is less prominent in areas of massive tissue destruction (ZHENG et al. 1993), 
suggests that the generation of NO by iNOS is an early event in the 'process of 
neurological damage. 
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4 Effect of Viral Infections on Neuronal Constitutive 
Nitric Oxide Synthase in the Brain 

Excessive amounts of NO in neurons generated by cNOS have been suggested 
to be involved in neurodegenerative processes such as excitotoxicity (OAWSON 
et al. 1991). However, determination of NOS activities in the brain indicated that 
activity of cNOS in the cerebrum decreased after infection with BOV (Table 1) or 
rabies virus (AKAIKE et al. 1994). In BO, the decrease in cNOS activity which could 
already be observed 16 days after infection, declined to 30% of the activity found 
in normal rat brain on day 22 after infection. 

Western blot analysis using an antibody specific for cNOS revealed a 
reduction in neuronal cNOS in the brain after infection with BOV. The observation 
that cNOS mRNA also decreased in a time-dependent manner after BOV infection 
indicates that the decrease in neuronal cNOS activity is most likely due to a 
decrease in the expression of neuronal cNOS mRNA. 

The decrease in cNOS expression could be the result of extensive neuronal 
loss that might occur in virus-infected brains. However, the activity of choline 
acetyl; transferase remained unchanged after BOV or rabies virus infection. 
Furthermore, expression of several immediate-early response genes, such as c­
fos, jun B, egr-1, and the late response gene encoding proenkephalin is markedly 
increased in BOV-infected neurons of the cerebral cortex and the hippocampus 
(Fu et al. 1993). Therefore, it is unlikely that the decrease in cNOS activity is 
caused by a massive neuronal destruction. Selective damage of nitroxergic 
neurons is also unlikely because recent observations have shown that, in lesions 
of patients with Alzheimer's disease or in brains with experimentally induced 
ischemia, nitroxergic neurons are spared from destruction (HYMAN et al. 1992; 
UEMURA et al. 1990). Since BOV or rabies virus can induce the expression of 
transcription factors, it is possible that the decrease of cNOS expression is the 

Table 1. Inducible and Constitutive Nitric Oxide Synthase in Normal and Borna Disease Virus Infected 
Rat Brain' 

Days Postinfection 

Controls 
16 
18 
19 
20 
22 

Enzyme activity (IJM/20 min/g tissue) 

iNOS 

o 
0.39 ± 0.1 
1.92 ± 1.0 
1.78 ± 0.7 
2.17±0.4 
1.13 ± 0.5 

cNOS 

28.9 ± 1.1 
23.4 ± 1.2 
19.2 ± 0.7 
18.8 ± 1.0 
14.7 ± 1.4 
8.7±1.4 

• iNOS, inducible nitric oxide synthase; cNOS, constitutive nitric oxide synthase. 
NOS activity was measured radiochemically as described by BREDT and SNYDER (1989). To differentiate 
the activity of iNOS from cNOS, the calmodulin inhibitor trifluroperazine (final concentration: 100 IJM) 
was added to the assay in vitro 
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result of the down-regulation of cNOS mRNA transcription by some of these 
transcription factors, although it cannot be excluded that post-translational 
modifications of NOS such as phosphorylation (BREDT et al. 1992) or inhibition of 
NOS by soluble factors such as IL-4 and transforming growth factor (TGF)-j3 
(NATHAN 1992) contribute to the decrease of cNOS activity. 

NO generated by neuronal cNOS is thought to be an important neuro­
transmitter that plays a role in long-term potentiation and long-term depression 
(Buss and COLLINGRIDGE 1993). Since BDV and rabies virus replicate preferentially 
in the hippocampal formation, it is possible that the behavioral abnormalities seen 
in these virus infections could be partially due to the suppression of neuronal 
cNOS. 

5 Effect of Nitric Oxide Synthase Inhibitors 
on Borna Disease Virus-Induced Encephalopathy 

To determine whether NO, generated by macrophages, plays a major role in the 
development of neurological symptoms and neuropathology of BDV infection, 
rats were treated with NOS inhibitors such as L-N-monomethylarginine (L-NMMA) 
and L-nitroargininemethylester (L-NAME) (Table 2). However, none of these 
inhibitors exerted a therapeutic effect. Treatment with L-NMMA resulted in an 
exacerbation of clinical signs. These data suggest that NO by itself does not play 
a pivotal role in the neuropathogenesis of viral CNS infections. On the contrary, 
the exacerbation of clinical signs after treatment with NOS inhibitors suggests 
that reduced NO production, caused by the decrease in neuronal cNOS activity in 
BDV-infected rats, may actually contribute to the disease process. 

Table 2. Effect of Nitric Oxide Synthase Inhibitors and Scavenger on Borna Disease Virus Infected Rats 

Treatment' Rats with clinical Survivor Loss of body weight 
signs 10 days rate 25 days after 
after treatment infection (gm)b 

Control 4/5 5/5 11.26 ± 4.99 
L-NAME 5/5 4/5 18.95 ± 5.54 
L-NMMA 5/5 4/5 26.17 ± 2.81 

, Rats were treated beginning at day 15 postinfection (p.i.) for 10 days. All compounds were delivered 
via i.p. implanted Alzet pumps; L-NAME and L-NMMA at a rate of 140 ~/h/kg. Control animals received 
PBS via i.p. implanted Alzet osmotic pumps. 
b Data are mean ± SE of four or five rats that survived 25 days after Borna disease virus infection. Loss 
of body weight in control and L-NMMA-treated rats differed significantly (p < 0.05), two-tailed Hest. 
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1 Introduction 

Nitric oxide is a hydrophobic gas with chemical properties that make it uniquely 
suited as both an intra- and intercellular messenger. It is a relatively stable, charge­
neutral radical with a strong tendency to interact and react with other species 
possessing unpaired electrons such as superoxide, iron, and molecular oxygen. 
Thus, it has several potential toxic mechanisms; actual toxicity is highly 
dependent on nitric oxide concentration and the particular microenvironment in 
which it is produced. 

Nitric oxide has been reported to inhibit critical iron-sulfur-containing 
enzymes involved in mitochondrial respiration (WELSH et al. 1991), to inhibit 
ribonucleotide reductase (KWON et al. 1991; LEPOIVRE et al. 1991), and to damage 
DNA directly (NGUYEN et al. 1992; WINK et al. 1991). In addition, nitric oxide has 
been implicated in reoxygenation injury following ischemia (JAESCHKE et al. 1992; 
Masini et al. 1991), glutamate-mediated neuronal toxicity (CAZEVIEILLE et al. 1993; 
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DAWSON et al. 1993), inflammation (BERRAZUETA et al. 1990; KRONCKE et al. 1991; 
MULLIGAN et al. 1991), graft host disease (HOFFMAN et al. 1992; GARSIDE et al. 1992; 
LANGREHR et al. 1992), and as a major arm of host defense against viruses, bacteria, 
and other intracellular parasites (GREEN et al. 1990a,b). In many cases these 
findings were based on the ability of either nitric oxide synthase inhibitors or nitric 
oxide scavengers like hemoglobin to protect against a particular pathological 
change or, in the latter case, to inhibit parasite killing by activated macrophages. 
Conversely, compounds which release nitric oxide typically cause or exacerbate 
the change. The most reasonable extrapolation from these studies is that nitric 
oxide is directly toxic. 

Many investigators readily accept the notion that nitric oxide is toxic, given its 
reputation as a reactive radical with a short biological half-life. However, reactive 
is not synonomous with toxic. Nitric oxide is known to react with molecular 
oxygen to give nitrogen dioxide (the orange-brown gas in smog), which is a strong 
oxidant and potent toxin in any biological system, but significant nitrogen dioxide 
formation occurs only at nitric oxide concentrations far in excess of those seen in 
vivo. The reaction of nitric oxide with superoxide occurs very rapidly even at 
physiological concentrations of nitric oxide and offers a more plausible 
explanation for both the short biological half-life of nitric oxide and its participation 
in toxic reactions. 

An effort will be made in this chapter to examine the chemistry of nitric oxide, 
with particular attention to reactions which can and do occur in biological systems 
and those which are unlikely to occur. Major emphasis will be given to the reaction 
of nitric oxide with superoxide in vivo to form peroxynitrite, a potent oxidant with 
multiple reaction pathways. A strong case will be made for the participation of 
peroxynitrite in nitric oxide-mediated toxicity. Existing theories of oxygen radical­
mediated toxicity will first be examined and attempts will be made to account for 
older findings in light of newer hypotheses. 

2 The Superoxide Theory of Toxicity 

Molecular oxygen is readily reduced by one electron to give superoxide anion. 
The term "superoxide" was originally coined to describe its unusual electronic 
configuration rather than its reactivity (PAULING 1979). However, for many years, 
superoxide was taken to mean "superoxidizing". Reputable biochemistry 
textbooks still refer to superoxide anion as a "highly reactive and destructive 
radical". At physiological pH, superoxide has little potential to oxidize other 
molecules since this would require placing a second negative charge on 
superoxide (SAWYER and VALENTINE 1981; BAUM 1984). Neutralization of the first 
negative charge by protonation facilitates superoxide acting as an oxidant; 
however, the pKa for superoxide is 4.8 (BIELSKI 1978). Thus, superoxide acts as an 
oxidant only in a more acidic environment or when the molecule under attack is 
a good one-electron donor such as reduced iron in Fe (l1)-sulfur centers. I ron (III) 
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is readily reduced by superoxide; superoxides' abilityto carry out the one-electron 
reduction of iron (III) in cytochrome c serves as the basis for a frequently used 
assay (MCCORD and FRIDOVICH 1969). 

Superoxide dismutase (SOD) affords protection against oxidant stress and 
ischemic injury in many model systems (FLAHER1Y and WEISFELDT 1988; ZWEIER et al. 
1987). The mechanism by which SOD protects remains unclear since few specific 
biological targets for superoxide have been identified. Superoxide appears to 
reversibly inactivate mitochondrial Fe (I I)-sulfur enzymes in bacteria (GARDNER and 
FRIDOVICH 1991 a,b); the percent of dynamically inactivated aconitase has seen 
used to estimate the steady-state concentration of superoxide (GARDNER and 
FRIDOVICH 1992). However, the contribution of this ongoing inactivation/ 
reactivation to overt cellular toxicity is not clear. To account for the effects of SOD 
in the absence of clear direct toxicity of superoxide, the superoxide-driven Fenten 
reaction was proposed whereby superoxide reduces Fe+3 to Fe+2, which, in turn, 
reduces hydrogen peroxide resulting in the formation of the strongly oxidizing 
hydroxyl radical (see below). Numerous problems exist with this proposal, not the 
least of which is its inability to account for nitric oxide-dependent toxicity. 

3 Hydroxyl Radical Is Too Reactive To Be Highly Toxic 

For many years, the accepted explanation for superoxide-derived toxicity has 
been hydroxyl radical production via the iron-catalyzed Haber-Weiss reaction 
(HABER and WEISS 1934): 

Fe2++ H20 2 ~ ·OH + -OH + Fe3+ 

In this scheme, superoxide serves primarily as the reductant for iron. This seems 
unlikely when considering that the steady-state superoxide concentration is in the 
range of 10-1 OOpM (GARDNER and FRIDOVICH 1992) while other reductants like 
ascorbate are present in much higher concentrations in vivo and also reduce Fe3+ 
to Fe2+ quite effectively. On the other hand, if superoxide served primarily as the 
source of hydrogen peroxide, then SOD would not be protective (since hydrogen 
peroxide is formed from the reaction of superoxide with SOD). Superoxide may 
also serve to increase the pool of free iron by releasing it from ferritin (BIEMOND 
etal. 1984; THOMAS et al. 1985). However, even with a relatively large pool of Fe2+, 
the rate at which it reduces hydrogen peroxide to produce hydroxyl radical is 
quite slow (103-104 M-1s-1) (RUSH and KOPPENOL 1989). Thus, the iron-catalyzed 
Haber-Weiss reaction requires the interaction of three species present in low 
concentrations in vivo due to efficient scavenging systems (SOD, catalase, 
ferritin), making the rate of hydroxyl radical formation dependent on the product 
of three minuscule concentrations which react at relatively low rates. 
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Even if hydroxyl radical were efficiently formed in vivo, it is simply too reactive 
to do any specific damage. The ability of hydroxyl radical to react at near diffusion­
limited rates with virtually all biological molecules limits its effective diffusion 
radius to only a few angstroms. Thus, hydroxyl radical would have to be formed 
directly at critical sites (e.g., active sites of enzymes, bases of DNA, within 
membranes) to affect significant injury. Many such critical targets are capable of 
binding iron in vitro thereby promoting hydroxyl radical formation in close 
proximity. However, the rates of hydrogen peroxide reduction by bound iron can 
be even lower than with free iron due to nonoptimal coordination geometries. 
Overall, the slow rates of reactions leading to hydroxyl radical production and 
the low concentrations of the reactants suggest that other reactions may be 
important for understanding superoxide toxicity. 

4 The New Radical Era-Nitric Oxide 
as Cellular Messenger 

The discoveries of nitric oxide synthases and nitric oxide production in biological 
systems ushered in a new era of oxygen radical enthusiasm reminiscent of that 
seen previously with superoxide. A major biological difference between 
superoxide and nitric oxide is that cells have adapted to tolerate the inescapable 
production of superoxide, while a variety of isoenzymes have evolved to 
deliberately and specially produce nitric oxide. At present, there is no evidence for 
"a nitric oxide dismutase" to eliminate this newly discovered reactive radical. 
Important questions are naturally raised: what determines the half-life of nitric 
oxide in biological systems? How are its physiological effects terminated and 
how is toxicity avoided or minimized? Earlier data suggested that superoxide 
might be involved. 

5 Superoxide Dismutase Increases 
the Biological Half-Life of Nitric Oxide 

Prior to conclusive demonstration that endothelium-derived relaxing factor 
(EDRF) was indeed nitric oxide, SOD had been found to potentiate or prolong the 
vasorelaxant effects of EDRF (lGNARRO et al. 1989; HUTCHINSON et al. 1987). This led 
to the concept of superoxide as an endothelial-dependent contracting factor 
(EDCF) and later to the notion that superoxide simply detoxifies nitric oxide by a 
direct radical-radical annihiliation reaction. The concept of detoxification will be 
discussed later. Here, it is noteworthy that the reaction of superoxide with nitric 
oxide (HUIE and PADMAJA 1993) is three fold faster than the reaction of superoxide 
with SOD (KLUG et al. 1972) and 30-fold faster than the reaction of superoxide 
with the Escherichia coli iron-sulfur enzyme 6-phosphogluconate dehydratase 
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(GARDNER and FRIDOVICH 1991 b). Thus, to date, nitric oxide is the only identified 
target for superoxide which reacts fast enough and can exist at sufficient 
concentrations to effectively compete with SOD. The ability of SOD to affect the 
biological half-life of nitric oxide provides strong evidence that the reaction of nitric 
oxide with superoxide is significant in vivo. 

The reaction between nitric oxide and superoxide is directly analogous to a 
binary chemical bomb, in which two fairly innocuous substances are mixed to 
produce a potent toxin. Macrophages and neutrophils, cell types which 
simultaneously produce nitric oxide and superoxide, appear to utilize this strategy 
to kill invading parasites; accompanying inflammation of host tissues may also be 
a direct result of this programmed oxidant attack. Peroxynitrite is a strong oxidant 
and nitrating agent capable of producing tissue injury by targeting key cellular 
components. Formation of peroxynitrite in cell systems is inhibited by SOD in a 
dose-dependent manner and by inhibitors of nitric oxide synthase (lSCHIROPOULOS 
et al. 1992a). Tissues containing constitutive nitric oxide synthase would be 
primed during ischemic periods to produce both nitric oxide and superoxide 
during reoxygenation. Hyperoxic conditions would also promote sumultaneous 
production. Thus, many of the findings related to tissue injury (and protection) 
under conditions of oxidant stress, ischemia/reperfusion, and inflammation can 
be explained on the basis of peroxynitrite formation, without the need to invoke 
hydroxyl radical formation via sequential, concerted reactions that occur at 
relatively low rates. 

6 The Biological Chemistry of Nitric Oxide 

Nitric oxide is a radical by virtue of having one unpaired outer shell electron. 
However, this is not an inherently unstable state since nitrogen normally 
possesses an odd number of valence electrons (which is why the nitric oxide 
radical has no formal charge). Nitric oxide can undergo a one-electron reduction 
to give nitroxyl anion (NO-) which can also produce peroxynitrite via a direct 
reaction with molecular oxygen. However, it seems more likely that nitric oxide 
would react directly with other radicals or one-electron donors/acceptors such 
as the iron in heme, particularly considering the abundance of heme-containing 
proteins. Nitric oxide is unusual in that it reacts with both ferrous and ferric forms 
of heme iron. Signal transduction is accomplished by the binding of nitric oxide 
to the heme prosthetic group of guanylate cyclase (reaction 1) which activates 
the enzyme to produce cGMP 

GC-heme-Fe+2 + ·NO ~ GC-heme-Fe+2- NO. (reaction 1) 

The major sink for nitric oxide which diffuses to the vasculature is oxyhemo­
globin. This results in the formation of nitrate and methemoglobin (reaction 2) 

(reaction 2) 
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The most abundant, hydrophobic, small molecule containing an unpaired electron 
with which nitric oxide can readily react is oxygen. Nitric oxide reacts in a 2:1 molar 
ratio with molecular oxygen to form nitrogen dioxide (reaction 3), the orange gas 
seen when concentrated nitric oxide is released from a cylinder 

(reaction 3) 

The rate of nitrogen dioxide formation via this reaction is 2 x 106 M-2s-1 at 25°C 
(FORD et al. 1993) and since it requires the interaction of three molecules, the rate 
is dependent on the square of nitric oxide concentration (reaction 4). This has 
important biological implications 

(reaction 4) 

Concentrations of nitric oxide produced in vivo (-100 nM) (SHIBUKI 1990) are 
10 ODD-fold lower than the local concentrations atthe nozzle of a gas cylinder. The 
rate of reaction between nitric oxide and oxygen at their respective physiological 
concentrations WOUld, therefore, be 100000 000 times slower. Calculations 
based solely on reaction with oxygen reveal that 0.7 h would be required for 100 
nM nitric oxide to decrease to 50 nM (i.e., first half-life), 1.4 h to decrease from 50 
nMto 25 nMand so on. Clearly, the reaction of nitric oxide with molecular oxygen 
cannot account for its short (1-10 s) biological half-life. The rate constant for the 
reaction of nitric oxide with superoxide is 6.7 x 109 M-1s-1 (HUIE and PADMAJA 1993) 
and, since it is bimolecular, the rate is not dependent on the square of nitric oxide 
concentration (reaction 5) 

(reaction 5) 

The fact that SOD can potentiate or prolong the biological effects of nitric oxide 
provides strong evidence that reaction with superoxide is a major pathway for 
termination of nitric oxide. 

7 Formation, Decomposition, and Reactivity 
of Peroxynitrite 

For in vitro use, peroxynitrite is readily synthesized from hydrogen peroxide and 
nitrous acid; the reaction mixture is rapidly quenching with sodium hydroxide to 
yield peroxynitrite anion (REED et al. 1974). Peroxynitrite is stable in alkaline 
solutions for several weeks. Dilution of the alkaline stock solution into pH 7.4 
potassium phosphate results in protonation to give peroxynitrous·acid (pKa 6.8) 
which rapidly decomposes to yield nitrate; in the presence of other target 
molecules, multiple oxidation products are seen (see below). Peroxynitrite 
formation in vivo is almost certainly due to the reaction of nitric oxide with 
superoxide. This rate of formation is near the diffusion limit, which means that 
virtually every collision between molecules of nitric oxide and superoxide will 
result in a reaction to produce peroxynitrite. 
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At pH 7.4 and 37 DC the half-life of peroxynitrite is 1-2 s (BECKMAN et al. 1990). 
Peroxynitrous acid can decompose via three major pathways. Reaction of 
peroxynitrite with target molecules results in products characteristic of both 
nitrogen dioxide and hydroxyl radical (reaction 6). However, kinetic data and 
thermodynamic calculations indicate that no free hydroxyl radical is produced 
(KOPPENOL et al. 1992). We have proposed that peroxynitrous acid reacts as a 
vibrationally activated complex rather than via homolytic fission of peroxynitrous 
acid as depicted in reaction 6 (CROW et al. 1994) 

ONOO- + W ~ ONOOH ~ "·N02 + ·OH" . (reaction 6) 

Peroxynitrite will directly nitrate phenolic compounds (HALFPENNY and 
ROBINSON 1952; ISCHIROPOULOS et al. 1992b; BECKMAN et al. 1992). Nitration is 
catalyzed by transition metals and by CU,Zn-SOD and is thought to occur via 
formation of a reactive nitronium ion (reaction 7) (ISCHIROPOULOS et al. 1992b; SMITH 
et al. 1992). The primary consequence of this reaction in vivo is the modification 
of tyrosine residues in proteins, which we have detected using an antibody 
raised to peroxynitrite-treated keyhole limpet hemocyann (KLH, see below) 

ONOO- + Metal2+ ~ NO; ... 0- -MetaI1+ ~ 

protein -tyr-N02 + HO-MetaI1+ + Metal2+ + H20. (reaction 7) 

In the absence of target molecules, the primary decomposition product of 
peroxynitrite at neutral pH is nitrate (reaction 8) 

ONOO- + H+ ~ ONOOH ~ HN03 ~ N03" + H+ . (reaction 8) 

Reactions with target molecules compete with this relatively innocuous route of 
decomposition. Thus the variety and yield of products from peroxynitrite will vary 
depending on the relative abundance of specific targets and the presence or 
absence of transition metals or metalloproteins. 

8 Peroxynitrite: The Smart Bomb of Biological Oxidants 

Transition metals are not required for either the formation or the decomposition 
of peroxynitrite although metals like iron and copper will catalyze nitration 
reactions. Decomposition of one molecule of peroxynitrous acid yields the 
equivalent of two potent one-electron oxidants each capable of participating in a 
variety of reactions. Peroxynitrous acid can nitrate phenolic rings (HALFPENNY and 
ROBINSON 1952; ISCHIROPOULOS et al. 1992b; BECKMAN et al. 1992)' hydroxylate 
aromatic rings (HALFPENNY and ROBINSON 1952; HOGG et al. 1992), and oxidize lipids 
(RADI et al. 1991 a), proteins (MORENO and PRYOR 1992)' and DNA (KING et al. 1992). 
Under physiological conditions, peroxynitrite is sufficiently stable to diffuse 
several cell diameters to reach critical cellular targets before becoming 
protonated and decomposing. We have also seen that it can cross lipid 
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membranes, probably in the protonated (acid) form (J. Chen and J.S. Beckman, 
unpublished observations). While most oxidative species are derived from 
peroxynitrous acid, direct reactions of the otherwise stable peroxynitrite anion 
occur with nucleophiles like thiols (RADI et al. 1991 b) which effectively targets its 
oxidative capabilities. Thus, peroxynitrite may be considered the "smart bomb" 
of biological oxidants in that it is formed from two weak oxidants in a metal­
independent manner, it can deliver multiple reactivites (including hydroxyl radical­
like reactivity) over a relatively long distance, and the anionic form is stable 
except for its reactivity toward thiols. 

9 The Dark Side of Superoxide Dismutase-Catalysis 
of Nitration by Peroxynitrite 

Nitration of phenolic compounds by peroxynitrite is readily catalyzed by Cu, Zn­
SOD (lSCHIROPOULOS et al. 1992b). Removal of the copper atom from the active site 
abolishes both nitrating and dismutase activities and activities are restored by 
copper replacement (SMITH et al. 1992). Catalysis of nitration by SOD is faster and 
more efficient than with either free copper or EDDA-chelated copper, suggesting 
that the substrate binding region of SOD recognizes peroxynitrite. This seems 
reasonable based on the structural similarity between peroxynitrite and super­
oxide and fact that both are negatively charged. The ability of SOD to enchance 
nitration is modest in simple in vitro systems. However, in complex media such 
as brain homogenates or plasma, where competing side reactions would tend to 
decrease total nitration, the enhancement by SOD is pronounced and consistent 
with a direct reaction between peroxynitrite and SOD. Again, this difference 
suggests that the electrostatic field of SOD, which serves to attract the negatively 
charged superoxide anion, may also attract peroxynitrite anion. 

In the absence of suitable targets compounds (e.g., low molecular weight 
phenolics or tyrosine residues in proteins), bovine CU,Zn SOD will catalyze 
nitration of its own single tyrosine residue. The distance between the catalytic 
site and the affected tyrosine residue suggests that nitration is inter- rather 
than intra-molecular. Nitration renders the protein yellow at neutral pH but has no 
effect on dismutating or subsequent nitrating activity (SMITH et al. 1992). 

10 Biological Relevance: 
Evidence for Peroxynitrite Formation In Vivo 

Superoxide dismutase prolongs the biological half-life of either endogenous nitric 
oxide or authentic nitric oxide added to a tissue bath (lGNARRO et al. 1987, 1989; 
KELM and SCHRADER 1990; BATES et al. 1991; CHEN and LEE 1993). The most 
reasonable interpretation of this prolongation is that SOD scavenges superoxide, 
thereby preventing its reaction with nitric oxide. The transient, intermediate form 
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of SOD, Cu+ 1-SOD, has been reported to directly reduce nitric oxide to nitroxyl 
anion under anaerobic conditions (MURPHY and SIES 1991). However, it is not clear 
whether this would occurto any extent under physiological (aerobic) conditions in 
which the sole source of reductant for SOD is superoxide itself. Provided that no 
direct reaction occurs between nitric oxide and SOD, the ability of SOD to prolong 
the half-life of endogenous nitric oxide is consistent with ongoing formation of 
peroxynitrite even at low physiological concentrations of superoxide and nitric 
oxide. 

Using nitration of a more water-soluble tyrosine analogue (p-hydroxyphenyl­
acetic acid) as an index, we have shown that virtually all of the nitric oxide 
produced by activated macrophages is converted to peroxynitrite (lSCHIROPOULOS 
et al. 1992a). Peroxynitrite production by inflammatory cells may represent a 
programmed killing mechanism whereby two relatively non-toxic radical species 
are simultaneously and deliberately produced to form a potent oxidant directed 
against an invading microbe. Peroxynitrite formed outside the inflammatory cell 
would set up a concentration gradient favoring diffusion away from (and thereby 
protection of) the producing cell and toward the invader. The presence of SOD 
inside the microbial cell would offer no protection against preformed peroxynitrite 
and might actually serve to mediate injury by catalyzing nitration of microbial 
proteins. 

Under normal physiological conditions the concentration of SOD is 100- to 
1000-fold higher than nitric oxide and the rate constant for SOD's reaction with 
superoxide is only three fold lower (KLUG et al. 1972) than the rate constant for 
nitric oxide and superoxide (HUIE and PADMAJA 1993). Therefore, SOD effectively 
outcompetes nitric oxide for the available superoxide by approximately 30-fold 
and thereby provides the primary defense against host cell injury by limiting 
peroxynitrite formation. However, in inflammatory conditions (e.g., sepsis), in 
which nitric oxide production is increased by induction of a constitutively active 
isoenzyme of nitric oxide synthase, peroxynitrite formation would predominate 
and the role SOD may shift from prevention to promotion of injury by catalyzing 
nitration. This could account for the exacerbation of injury following exogenous 
administration of high doses of SOD in the same model systems in which lower 
doses of SOD were protective (PARKS et al. 1982; MATSUDA et al. 1991; OMAR et al. 
1990). 

Peroxynitrite readily nitrates tyrosine present as residues in proteins or as 
the free amino acid. SOD-catalyzed nitration by peroxynitrite occurs at a rate of 
105 M-1s-1 (BECKMAN et al. 1992). Nitrogen dioxide will nitrate tyrosine at a similar 
rate (3.2 x 105 M-1s-1) (PRUTZ et al. 1985), but relatively high concentrations are 
required and the overall reaction efficiency is at least 100-fold lower than for 
peroxynitrite (Crow and Beckman, unpublished observations). Nitrotyrosine has 
been measured in human urine (OHSHIMA et al. 1990, 1991)' indicating that it is 
stable as the free amino acid and suggesting that the nitro group is not subject to 
significant metabolic transformation. Thus, nitration of the phenolic ring of 
tryosine residues in proteins is a stable covalent modification which appears to be 
a specific biological marker of peroxynitrite. 



66 J.P. Crow and J.S. Beckman 

We have raised an antibody in rabbits that recognizes a number of proteins 
treated with peroxynitrite in vitro at a titer of 1/256,000. The antibodies do not 
cross-react with native albumin, hemoglobin, SOD, histone, lysozyme, lung 
surfactant proteins, rat brain homogenates or human CSF, but recognize such 
proteins after treatment with peroxynitrite in both ELISA assays or western blots. 
The presence of nitrotyrosine has been confirmed by amino acid analysis of 
hydrolyzed proteins (Crow and Beckman, unpublished). Preincubation of the 
antibody with 10 mM nitrotyrosine blocks subsequent binding to nitrated 
proteins whereas aminotyrosine and phosphotyrosine do not. Treatment of 
nitrated proteins or tissue sections with dithionite, which reduces nitrotyrosine to 
aminotyrosine, (Fig. 1) also blocks binding. 

We present immunohistochemical evidence (using this antibody) that lung 
tissue from a patient with adult respiratory distress syndrome (ARDS) (Figs. 2A, 
3A) and a lesion from an atherosclerotic human artery show discrete areas of 
heavy staining for nitrated proteins (Fig. 2B). In lung, staining appears to be most 
intense in regions immediately surrounding inflammatory cells but is not 
restricted to those areas; note that erythrocytes immediately adjacent to 
inflammatory cells do not stain. In the atheroscelerotic vessel, the endothelial 
lining stains heavily as does the plaque itself, where evidence of inflammatory cell 
infiltration is seen. Staining of lung is blocked by preincubation of the antibody 
with 10 mMnitrotyrosine (Fig. 3B) or by pretreatment of the tissue with dithionite 
(not shown). Using preimmune sera, a pattern of very light, homogeneous 
staining was seen which is essentially identical to that seen when the primary 
antibody is preincubated with nitrotyrosine (Fig. 3B). 

The immunohistochemical results strongly indicate enhanced peroxynitrite 
formation in inflammatory conditions. We have shown previously that activated 
macrophages produce relatively large amounts of peroxynitrite under conditions 
of simultaneous superoxide and nitric oxide production (lscHIROPOULOS et al. 
1992a). Thus, in the case of lung and atheroma macrophages and neutrophils are 
a likely source of peroxynitrite. 

OH OH OH 

¢ <rNO
, ::::,..1 <rNH

' ::::,..1 

GH2 GH2 GH2 
I I I 

H2N-GH- GOOH H2N-GH- GOOH H2N -GH- GOOH 

Tyrosine Nitrotyrosine Aminotyrosine 

Fig. 1. Structures of the naturally occurring amino acid tyrosine and its reaction product with 
peroxynitrite, 3-nitrotyrosine. Nitrotyrosine, either as the free amino acid or within a protein, can be 
chemically reduced with dithionite (sodium hydrosulfite) to 3-aminotyrosine. Under alkaline conditions, 
nitrotyrosine absorbs at 420 nm whereas aminotyrosine does not. Thus, reduction can be monitored 
spectrally at 420 nm. This procedure is used to tentatively identify and quantify nitrotyrosine in various 
assays 
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Fig. 2. a Lung tissue from a human patient with ARDS. b Atheromatous plaque in large vessel 
from human patient. Fixed tissues sections were treated with rabbit polyclonal antibody raised 
to peroxynitrite-treated KLH (1 :1000), washed, treated w ith anti-rabbit globulin conjugated to biotin, 
washed again, and treated with avidin-conjugated horse-radish peroxidase. Peroxidase substrate 
was added and allowed to react. The section was then washed and counterstained w ith hematoxylin 
and eosin 

11 Possible Mechanisms of Peroxynitrite-Mediated Injury 

Nitration of proteins by peroxynitrite may be injurious via multiple mechanisms; 
alteration of tyrosine phosphorylation, altered protein function, increased protein 
turnover due to enhanced proteolysis, and initiation of autoimmune reactions 



68 J.P. Crow and J.S. Beckman 

Fig. 3. a Lung section (low power) from same patient as in Fig. 2A stained with anti-nitrotyrosine 
antibody as in Fig. 2. b Same as a except that primary antibody was preincubated with 10 mM 
nitrotyrosine 

to antigenic haptens created by protein nitration. Nitration can alter protein 
conformation by decreasing the hydrophobicity of tyrosine and/or by introducing 
a negative charge into a previously charge-neutral region of the protein. The ability 
of nitration of mimic phosphorylation is currently under investigation; however, 
the ability of nitration to inhibit tyrosine phosphorylation has been demonstrated 
(MARTIN et al. 1990). 
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Tetranitromethane has been used for many years by biochemists to nitrate 
tyrosines in isolated proteins to investigate their role in protein or enzyme 
function. Most enzymes do not depend on tyrosines for catalytic activity and 
many tyrosines can be nitrated without dramatically affecting activity. However, 
tetranitromethane inactivates the C1 q binding capacity of human IgG (MCCALL 
and EASTERBROOK-SMITH 1989)' abolishes the inhibitory activity of a-1-proteinase 
inhibitor toward elastase (MORENO and PRYOR 1992), inhibits the activity of 
cytochrome P450 (JANIG et al. 1987, 1988), a-thrombin (SCULLY et al. 1992), and 
mitochondrial ATPase (Wu and FISHER 1982; GUERRIERI et al. 1984) and inhibits 
the binding of human high density lipoprotein to liver plasma membranes 
(DARLEy-USMAR et al. 1992; GRAHM et al. 1993). Even if the activity of a given protein 
were unaffected by nitration, it could alter protein conformation sufficiently 
to "tag" it for proteolysis or cause it to be recognized as foreign by the 
immune system. 

The technique of chemically linking dinitrophenol (which resembles 
nitrotyrosine) to proteins to make them more antigenic has been used for many 
years. This fact, together with our own experience of making an antibody to 
nitrated KLH protein, suggests that proteins nitrated in vivo may be highly 
antigenic and serve as the initiating stimulus for an autoimmune response. 

12 Nitric Oxide-The Molecular Chameleon 

The availability and widespread use of potent inhibitors of nitric oxide synthase 
has firmly established the fundamental role of nitric oxide in a wide range of 
physiological processes. Yet, the ability of these inhibitors to reduce or prevent 
injury in conditions normally associated with increased nitric oxide production 
(e.g., sepsis, ischemia/reperfusion) indicates that nitric oxide also has significant 
toxicities associated with its production. The relative lack of direct toxicity in most 
systems suggests that some reaction product of nitric oxide is responsible. The 
ability of nitric oxide to react instantaneously with superoxide, coupled with the 
ability of the reaction product, peroxynitrite, to permanently modify a variety of 
biological molecules, provides a plausible toxicological explanation and is 
totally consistent with the ability of SOD to prolong the biological half-life of 
nitric oxide and to protect against injury in response to oxidative stress. Indeed, 
the footprint of peroxynitrite, nitrotyrosine, is revealed in pathologic tissues by 
immunohistological techniques and confirmed be chemical analysis. 

A current debate centers around whether the predominant effect of nitric 
oxide is to cause injury or to prevent it. This is particularly germane given the 
clinical potential of inhaled nitric oxide as therapy for pulmonary edema and 
possibly ARDS. This question can only be approached by considering specific 
conditions in which the chemistry of nitric oxide may provide some clues. 
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Concentrations of 10-100 nM nitric oxide are produced in vivo for signal 
transduction; this obviously poses no real danger to humans since we produce it 
continuously for 70-80 years or longer. At these levels SOD would out-compete 
nitric oxide for superoxide by 340-fold (based on relative concentration times 
reaction rate), thereby limiting peroxynitrite formation. At higher nitric oxide 
concentrations such as seen in ischemic brain (2-4 ~M) and in the vicinity of 
macrophages (1-1 0 ~M) (lSCHIROPOULOS et al. 1992a), the ability of SOD to out­
compete nitric oxide for superoxide would be greatly diminished. However, 
tipping the balance in favor of nitric oxide toxicity almost certainly involves other 
mechanisms. For example, in studies involving ischemia/reperfusion, the ability of 
nitric oxide to dilate vessels and thereby increase colateral bloodflow may more 
than offset any toxicity related to nitric oxide overproduction per se. Within the 
vasculature, nitric oxide could reduce injury by inhibiting both neutrophil adhesion 
(KUBES et al. 1991) and platelet aggregation (MACDONALD et al. 1988). 

Other factors which may contribute to the observed toxicity/protection by 
nitric oxide relate to its site of production. The constitutive nitric oxide synthase in 
endothelial cells appears to be bound to the plasma membrane (POLLOCK et al. 
1991). The hydrophobic character of nitric oxide would favor its partitioning into 
the lipid membrane theraby preventing its reaction with the charged, hydrophilic 
superoxide molecule. Nitric oxide within the lipid bilayer would be positioned to 
react with lipid peroxyl radicals (rate constant = 3 x 109 M-'s-') (PADMAJA and HUIE 
1993). Formation of a stable organic nitrate (R-N03) could effectively terminate 
lipid peroxidation and thereby be protective. 

We have recently investigated the reaction between nitric oxide and peroxy­
nitrite. The products of this reaction have not been characterized, but the reaction 
is quite rapid and appears to destroy nitric oxide while enhancing the nitration yield 
from peroxynitrite (Crow and Beckman, manuscript in preparation). 

It has been suggested that since peroxynitrite decomposes to innocuous 
nitrate, the reaction of nitric oxide with superoxide to give peroxynitrite 
represents a detoxification mechanism. Two crucial points must be considered. 
(1) Peroxynitrite is a much stronger oxidant than is nitric oxide and is more 
damaging in every system which has been examined; thus, the idea of forming a 
potent oxidant to detoxify a weaker oxidant is unsound. (2) The products of 
peroxynitrite reactions are dependent on the targets present. Oxidative, hydroxy­
lating, and nitrating reactions of peroxynitrite with biological molecules compete 
with the decomposition pathway (to give nitrate); the primary determinants of 
product distribution are the relative concentrations of the reactants and the 
relative rate constants for the respective reactions. In a simple system in which 
the total concentration of all target molecules is extremely low, the predominant 
product of peroxynitrite would be nitrate simply because there are no other 
possible reaction pathways. This is analogous to comparing the results of an 
explosion which occurred in a crowded room with the same explosion in a empty 
room. Clearly, the total target concentration would be high inside or on the 
surface of a cell, where nitric oxide is most likely to encounter superoxide and 
form peroxynitrite. Thus, it is imperative that toxicity arguments be based on 
realistic physiological milieu and known reactivities of the species involved. 
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1 Introduction 

Mammalian cells synthesize nitric oxide (NO) from L-arginine by NO synthases 
(NOS), members of the cytochrome P450 gene family. NO represents the best 
understood member of a novel class of redox-active transmembrane and 
intracellular signaling molecules that may also include CO and oxygen radicals. 
When formed and released in nanomolar concentrations, the main biological 
effect of NO is to trigger the guanosine cyclic 3' ,5'-monophosphate signalling 
cascade by activating the cGMP-generating enzyme soluble guanylyl cyclase 
(SCHMIDT et al. 1993). 

2 Nitric Oxide Synthase Isozymes 

In mammalian cells, NO is enzymatically formed from a terminal guanidino­
nitrogen of L-arginine (HIBBS et al. 1987; PALMER et al. 1988; SCHMIDT at al. 1988 
a,b) by a family of at least three distinct NOS isozymes (E.C. 1.14.23) (SCHMIDT 
et al. 1991). All described NOSs yield L-citrulline as a coproduct of this reaction. 

Department of Clinical Biochemistry and Pathobiochemistry, Medical University Clinic, Versbacher 
Strasse 5, 97078 WGrzburg, Germany 
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Table 1. Structural and Kinetic characteristics of nitric oxide synthase 

Parameter Type I Type II Type III 
binding site (brain) (macrophage) (endothelial) 

Structure 
Native Homodimer Homodimer ? 
Denatured, kDa 160 130 133 

Calmodulin 
Binds Reversible Copurifies Reversible 
Essential Yes ? Yes 
Regulation Free Ca2+ Constitutive Free Ca2 + 

L-Arginine 
Km(iJ m) 2-7 3-32 3 
Vm", (nmol!mg per min) ~300 :<:; 1600 15 

Co/posttranslational 
modifications 

Phosphorylation Yes ? Yes 
Myristoylation No No Yes 

Subcellular 
localization (1 00 000 x g) Soluble Soluble Posttranslationally 

regulated 

The original classification of NOS into NOS-I, II, and III (Table 1) was based on the 
physical and biochemical characteristics of the purified enzymes, i.e., subcellular 

location (soluble vs particulate fraction) and regulation by the free Caz+ concen­
tration (SCHMIDT et al. 1991), and has been confirmed by the recent molecular 

cloning and expression studies of three corresponding genes (BREDT et al. 1991; 

MARSDEN et al. 1992; XIE et al. 1992; NAKANE et al. 1993). Other current 
classifications group NOS isoforms according to their: (1) regulation of expression 

(constitutive and inducible NOS), (2) regulation by free Ca2+ (Ca 2+-dependent and 
Caz+-independent NOS; (NATHAN 1992)), or (3) primary source for purification 

(brain-, macrophage-, and endothelial-type NOS) (SNYDER and BREDT 1991; 

MARSDEN et al. 1992; NATHAN 1992; SESSA et al. 1992). However, NOS-I, for 

example, is not exlusively expressed in brain but also in the peripheral nervous 
system and in nonneuronal cells (SCHMIDT et al. 1992e; WILCOX et al. 1992), and 

its expression is not constitutive under all conditions (see below). Moreover, the 
terms "constitutive" or "Caz+-dependent" NOS do not differentiate between 

type I and type III, which derive from two distinct genes (see below). 

3 Nitric Oxide Synthase Structure 

Nitric oxide synthases are homodimers (NOSz) (SCHMIDT et al. 1991) of subunits 

which range between 130 and 160 kDa (BREDT et al. 1991; JANSSENS et al. 1992; 

LOWENSTEIN et al. 1992; L YSONS et al. 1992; MARSDEN et al. 1992; SESSA et al. 
1992; XIE et al. 1992; NAKANE et al. 1993). The COOH-terminal half of all NOS 
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? 
(arginine/H4biopterin) NADPH·CPR·llke domain 
r-----------~i ~i ------------~ 

P450·domain 
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Fig. 1. Consensus sequences for binding sites and protein domains of nitric oxide synthases (NOSs). 
Catalytic sites (filled boxes) include the cytochrome P450-like oxidase (heme binding site) and the P450 

reductase (CPRHike reductase domain (FMN, FAD, NADPH binding sites). Regulatory domains include 
the calmodulin binding site; several potential phosphorylation sites exist (not shown). The L-arginine and 
tetrahydrobiopterin (H4biopterin) binding sites may locate to a conserved region in the NH2-terminal half 
(open boxes). An in-frame deletion of this region and an NOS-I greatly reduced in activity and smaller by 
about 10 kDa has been described 

contains bindings motifs for NADPH, FAD and FMN, identical to NADPH­
cytochrome P450 reductase (CPR), one other flavin nucleotide reductase that 
contains both flavin nucleotides, FMN and FAD (Fig.1). In addition, the NOS heme 
moiety presents the typical CO difference spectrum of P 450-type enzymes. Due to 
its CPR-like domain NOS can, thus, be viewed as a mechanistically self-contained 
cytochrome P 45JCPR chimeric protein which combines both an oxidase and a 
reductase domain in a single polypeptide. All NOS bind calmodulin in a process 
which is either Ca2+-dependent (NOS-I and III) or Ca2+-independent (NOS-II) (CHO 
et al. 1992; SCHMIDT et al. 1992b). In the case of NOS-II, calmodulin and enzyme 
copurify, suggesting a native heterotetrameric structure (NOSicalmodulin2) of 
this isoform. Calmodulin is the key regulator of electron flow within NOS (HEINZEL 
et al. 1992; KLAn et al. 1992). Additional binding sites within the NOS polypeptide 
must be postulated fortetrahydrobiopterin (BH4) and L-arginine, but have not been 
identified. BH4 is utilized as a cofactor by several other amino acid hydroxylases. 
However, no other BH4 utilizing enzyme but NOS binds BH4 with an affinity that 
permits copurification of enzyme and cofactor (up to 2 mol per dimer). This fact 
and some of the effects of BH4 on NO catalysis (see below) suggest a novel BH4 
binding site in NOS. Moreover, dimerization of NOS is a prerequisite for L-arginine 
turnover and BH4-dependent (STUEHR et al. 1991). The NH2-terminal region C of 
NOS (Fig.2) is very likely to contain the domains for BH4 binding, L-arginine binding 
and possibly subunit dimerization. Hydrodynamic characterization of NOS 
suggests not only a homodimeric structure, but revealed also a frictional ratio 
indicative of an elongated tertiary structure hindering intramolecular contact 
between the oxidase domain (NH 2-terminal) and the oxidase domain (COOH­
terminal). A yet hypothetical head-to-tail arrangement of NOS at the C region 
would allow for intermolecular contact and electron flow between the oxidase 
domain of one monomer and the reductase domain of another monomer (Fig. 2). 
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Fig. 2. Hypothetical model for nitric oxide synthase (NOS) dimerization and electron flow. Native NOS 
monomers have the hydrodynamic characteristics of an elongated polypeptide. Dimerization in a 
hypothetical head-to-tail orientation would allow for electron flow between the oxidase and reductase 
domains. This tertiary structure of NOS may be regulated by calmodulin and region C (white box). which 
is conserved between all NOSs 

Interestingly a mutant of NOS-I mRNA bearing an in-frame deletion in region C 
has recently been reported in different neuroblastoma cell lines. A NOS-I 
truncated by about 10 kDa, but not originating from the same in-frame deletion, 
is expressed in embryonal rat brain and appears to have a greatly reduced 
specific activity. 

4 Mechanisms of Nitric Oxide Synthesis 

The oxidation of a terminal guanidino nitrogen of L-arginine to NO is broadly 
accepted as a working hypothesis to explain the mechanism of NOS catalysis 
(HEVEL et al. 1991; MAYER et al. 1992; SCHMIDT et al. 1992b; STUEHR and GRIFFITH 
1992), whereas considerable debate concerns additional reactions NO may 
undergo postsynthesis, leading to storage or transport forms of this messenger 
molecule. Three, possibly four, cofactors (heme, FMN, FAD and H4 biopterin) and 
two cosubstrates (02 and NADPH) participate in enzymatic NO formation. 
Electron flow is regulated by calmodulin binding. Dissociation of traces of OHArg 
from NOS were identified by HPLC and GC/MS. EPR data also suggest the 
formation of a N'"-hydroxY-L-arginine (OHArg) cation radical (PRONAI et al. 1991). 
Since OHArg is Litilized as an alternative substrate, it is believed to represent an 
intermediate of the NOS reaction. The stoichiometry of the electron transfer can 
fully be explained by the use of 1.5 mol NADPH per mol NO formed. It is not clear 
whether BH4 is required as an additional cofactor or NADPH-dependently 
recycled. In all other known BH4-utilizing enzymes, the quinoid form of dihydro­
biopterin (q-BH2) is the product of normal catalysis and is regenerated to BH4 by 
a NADH-dependent q-BH2 reductase (dihydropteridine reductase). Recyclable 
q-BH2 was not detected with catalytically active NOS. However, NOS copurifies 
with BH4 indicative of an inherent, NADPH-dependent biopterin reductase activity 
(ScHMIDTet al. 1992b). Alternatively, it was suggested that BH4 is not metabolized 
during normal catalysis but acts as an allosteric activator or stabilizer of the active 
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center (GIOVANELLI et al. 1991). The BH4 binding site of NOS also appears to be 
different from that in other known BH4-metabolizing enzymes as indicated by: 
(1) a uniquely small Ka value (CRAINE et al. 1972; FIRGAIRA et al. 1981), (2) high 
substrate specificity (KWON et al. 1989; TAYEH and MARLEnA 1989; GIOVANELLI 
et al. 1991) of NOS for BH4, and (3) the resistance of NOS to inhibition even 
by high concentrations of methotrexate, which inhibits dihydrofolate and 
dihydropteridine reductases (GIOVANELLI et al. 1991). 

The oxidase and reductase activities of NOS extend to other substrates 
(Table 2). Many of the reductions catalyzed by NOS are likely to be related to its 
CPR-like domain and generate an electron pressure towards the oxidase domain. 
As expected from the close similarity of NOS to CPR, NOS reduces cytochrome 
c in vitro. The mechanism of cytochrome c reduction by NOS is unclear. NOS 
forms superoxide anions (see above), as does CPR, but also interacts directly 
with cytochrome c by a highly affinity protein-protein interaction, whereas CPR 
does not bind to cytochrome c (KLAn et al. 1992). Furthermore, NOS also reduces 
cytochrome P450, as indicated by the fact that, in vitro, NOS supports the 
hydroxylation of N-ethylmorphine by cytochrome P450. This suggests that NOS 
may participate in similar electron transfer processes in vivo (KLAn et al. 1992) 
and NOSs may be viewed rather as isoforms of CPR, with L-arginine turnover 
being merely a side effect of their catalytic activities. The close similarity between 
NOS and the CPR/cytochrome P450 system is underscored by the fact that 
cytochrome P450 catalyzes the oxidation of OHArg to NO. 

While reduction of cytochromes by NOS is strictly calmodulin-dependent, 
several artificial electron acceptors, e.g., nitroblue tetrazolium (NBT) and 
dichlorphenon-indophenol (DCPIP), are calmodulin-independently reduced by 
NOS. This suggests that NOS has: (a) a single reductase domain that is partially 
dependent on calmodulin binding, depending on the substrate; (b) two reductase 
domains, one calmodulin-dependent (oxygen, cytochromes) and one calmodulin­
independent (biopterin, NBT, DCPIP). The electron acceptor NBT is converted to 
blue diformazan by NOS and many other dehydrogenases and reductases. Only 
in the case of NOS, however, is this so-called NADPH-diaphorase activity of NOS 
remarkably resistant to commonly used protein fixatives, thus enabling the 
convenient histochemical localization of NOS in paraformaldehyde-treated tissue 
sections (HOPE et al. 1991; SCHMIDT et al. 1992c). The utilization of NBT by NOS 
makes NBT also a potent noncompetitive NOS inhibitor, presumably by compet­
ing with molecular oxygen for reducing equivalents (SCHMIDT et al. 1992a,b) or by 
reacting with intermediate superoxide radicals. The aforementioned putative 
biopterin reductase activity of NOS may be closely related to the NADPH­
diaphorase domain of NOS (HOPE et al. 1991). 
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O2 t L-arginine 

NADPH _FA_D_I_F-I~ .. N P 450 

H20 

NQ)-OH -L-arginine 

cytochromes 

H20 

reduced cytochromes 

NBT fonnazan 'NO 
+ L-citrulline 

Fig. 3. Proposed reaction mechanisms for nitric oxide (NO) synthase. Molecular oxygen is incorporated 
into both NO and L-citrulline. The flavin cofactors FAD and FMN and the cytochrome P450 domain of NOS 
mediate part of or the entire electron transfer from NADPH to molecular oxygen (oxidase domain). 
Tetrahydrobiopterin (H4B) may be involved in this or regulate NOS allosterically. L-Arginine is 
hydroxylated to the intermediate N"'-hydroxy-L-arg OHArg. In the calcium-regulated NOS-I, two 
reductase activities can be distinguished by their mode of regulation: one that transfers electrons 
independently of calmodulin (filled circle) to artificial acceptors nitro blue tetrazolium (NBT) and 
dichlorphenol-indophenol (OCPIP) and may represent a putative biopterin reductase domain of NOS, 
and another one that transfers electrons in a calmodulin-dependent manner (open circles) to 
cytochromes either directly or via superoxide anions 

5 Regulation of Nitric Oxide Synthase Expression 
and Posttranslational Modification 

Types I and III NOS are constitutively expressed and in a very cell-specific manner 
(Table 3). whereas NOS-II is not constitutive but inducible in virtually every cell 
after appropriate immunological activation with different cytokines or endotoxins 

Table 3. Cells and tissues expressing nitric oxide synthase or nitric oxide synthase immunoreactivity 

Type I 

Neurons 
Macula densa 
Bronchial epithelium 
Gastric epithelium 
HIT-T15 pancreatic B cells 
Mast cells 
Human skeletal muscle 
Endothelium 
Testis 
Photoreceptors 

Type II 

Macrophages 
Cardiomyocytes 
Vascular smooth muscle 
Hepatocytes (Calmodulin-dependent) 
Intestinal epithelium 
Megakaryocytes 
Keratinocytes 

Type III 

Endothelium 

Not identified: Polymorphonuclear-leukocytes, platelets, bone, retina, olfactory epithelium. 
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Table 4. Physiological and pathophysiological regulation of nitric oxide synthase expression and activity 

Level Type I Type II Type III 

Expression 
Constitutive Yes No Yes 
I ncreased by Inflammation IFN-y, LPS, IL-1,2 Shear stress 
Decreased by IFN-y, LPS glucocorticoids, TGF~, IL-4, 10 TNF-a 
Mutations In-frame deletion ? 

Posttranslational modifications 
Dimerization Yes Yes (cofactor-dependent) 
Phosphorylation Yes ? Yes 
Myristoylation No No Yes 
Calmodulin binding Reversible (Ca2+) Irreversible Reversible (Ca2+) 

Activity 
Elevated free Ca2+ Essential No effect Essential 
Endogenous MeArg Inhibit Inhibit Inhibit 
Autoinhibition (NO) No/Yes No ? 
Intracellular pH Modulates 

IFN-y, interferon-y, LPS, lipopolysaccharide; IL, interleukin, TGF-J3, transforming growth factor-J3; 
TNF-a., tumor necrosis factor; MeArg, methyl-L-arginine; NO, nitric oxide. 

(Table 4). Once expressed, NOS-II binds calmodulin irreversibly, independently of 
Ca2+ and stays maximally active irrespective of the free Ca2+ concentration. The 
induction of NOS-II by cytokines is transcriptionally based. In control cells, mRNA 
for NOS-II is not detectable. 

Modulation of basal NOS-I and III expression may also take place. For 
example, the same cytokines which induce NOS-II in RAW macrophages have 
the reverse effect on basal expression of the constitutive type I NOS in this cell 
line. The mechanisms which lead to reduced expression and the patho­
physiological significance of this bidirectional, immunological regulation of NOS 
expression are unclear (SCHMIDT et al. 1992d; FORSTERMANN et al. 1993). 
Moreover, under physiological conditions, NOS-I expression is also not constant. 
We were recently able to show that during brain development enzymatically 
competent NOS-I is only expressed with the onset of synaptogenesis. Here, 
expression is dramatically increased within 1-2 days and returns to a lower 
steady state level at the end of synaptogenesis. The peak of expression is also 
different in different brain regions in pre- but not postnatal brain tissue. No NOS 
activity but a 150 kDa NOS-I immunoreactive protein was detected. Since the 
antibody that was used is monospecific for type I NOS, it is likely that this protein 
represents an embryonal NOS-I deletion mutant (Ogilvie et aI., ul1published). 

Further regulation of NOS expression takes place at the co- and 
posttranslational level. As mentioned before, the subcellular distribution of the 
various NOS isoforms is different. Even the same isoform may be distributed at 
varying ratios between soluble and particulate cell fractions in different species 
(SCHMIDT et al. 1992d). However, none of the described NOSs contain an amino 
acid sequence suggestive of a transmembrane domain (BREDT et al. 1991; LYONS 
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et al. 1992). Therefore, co- or posttranslational modifications such as myristoy­
lation (POLLOCK et al. 1992) and phosphorylation (MICHEL et al. 1993) are very likely 
to regulate the subcellular localization of NOS. These modifications may also 
represent an additional means to regulate enzyme activity (SCHMIDT et al. 1992a). 
The membrane-bound NOS-III is not only myristoylated but has also the lowest 
specific activity of all known NOSs (POLLOCK et al. 1991). At least for the types 
I and II isoforms there is considerable evidence that dimerization or an essential 
conformational change, as detected by gel permeation chromatography, 
depends on saturating concentrations of BH4 and possibly also of L-arginine and 
heme. NOS monomers appear to be inactive. 

6 Regulation of Nitric Oxide Synthase Activity 

Once expressed, binding of the Ca2+-binding protein calmodulin or phos­
phorylation is an established mechanism by which enzyme activity of different 
isoforms of NOS is regulated (Table 1). All NOSs bind calmodulin and have 
conserved consensus sequences for calmodulin binding. In the case of NOS-I and 
III, interaction with calmodulin depends on elevated intracellular free Ca2+ 
concentrations ([Ca2+]). At resting [Ca2+] « 1 00 nM ), these NOSs are inactive. 
They bind calmodulin and become fully active at increased [Ca2+]; (2 500 nM). 
Calmodulin antagonists, e.g., calmidazolium and trifluoperazine, block calmodulin 
binding and inhibit Ca2+-induced NO formation. Both compounds more potently 
inhibit NOS-I than NOS-III, which probably reflects differences in the respective 
calmodulin binding domains. In various systems, transmembrane Ca2+ flux is 
initiated by the binding of a receptor agonist to its membrane receptor. Thus, 
receptor occupation and increased [Ca2+], can be linked to increased NO formation 
in cells. 

Two forms of NOS-II have been isolated, one from liver (EVANS et al. 1992) 
and one from a macrophage cell line (HEVEL et al. 1991; STUEHR et al. 1991). At 
< 100 nM free Ca2+, the liver NOS-II is calmodulin-free and inactive. Similar to 
NOS-I and III, activity increases upon reconstitution of liver NOS-II with 
calmodulin, but, unlike NOS-I and III, this activation is Ca2+-independent. 
Macrophage NOS-II has calmodulin constitutively bound and is constitutively 
active. Three other proteins bind calmodulin also constitutively, i.e., in an 
apparently Ca2+-independent manner: phosphorylase kinase, a cyclic nucleotide 
phosphodiesterase, and Bordetella pertussis adenylyl cyclase (CHO et al. 1992). 
Thus, calmodulin binding represents a common activation principle for all NOSs, 
whereas their dependency on the free intracellular Ca2+ concentration 
distinguishes them. 

The predicted amino acid sequence of NOS-I contains consensus sites for 
phosphorylation by cAM P-dependent protein kinases (BREDT et al. 1991). 
Forskolin-induced increases in intracellular cAM P levels (SCHMIDT et a1.1992d) 
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and cAMP-dependent protein kinases (BRUNE and LAPETINA 1991) do not regulate 
NOS, whereas protein kinase C, Ca2+/calmodulin-dependent kinase (NAKANE et al. 
1991) and the phosphatase inhibitor okadaic acid (SCHMIDT et al. 1992d) do. In 
vitro, Ca2+/calmodulin-dependent protein kinase II phosphorylates NOS on both 
serine and threonine (NAKANE et al. 1991). Phosphorylation is Ca2+- and 
calmodulin-dependent and results in a marked decrease of NOS activity. Thus, 
frequent increases in [Ca2+1; and phosphorylation of NOS by Ca2+/calmodulin­
dependent kinase II may represent a negative feedback regulation of NOS 
activity. Since Ca2+/calmodulin kinase II becomes Ca2+-independent upon auto­
phosphorylation, it is conceivable that phosphorylation and inactivation of NOS 
proceed even after [Ca2+1; has returned to basal levels. However, these in vitro 
observations need to be confirmed at the in vivo level. 

Recent work has also focused on autoinhibition of NOS activity. Namely, 
several laboratories have identified circulating endogenous N"'-methyl-L­
arginine (MeArg) and Me2Arg, which accumulate during renal failure and will 
systematically inhibit NO biosynthesis, possibly explaining some of the 
immunological dysfunctions observed under this condition. Whether under 
other conditions tissue levels are high enough to affect NOSs remains to be 
established. Moreover, several laboratories have suggested that NO acts back on 
NOS in a negative autofeedback loop. At least for NOS-I, we were unable to 
observe effects on citrulline formation either by heme, a NO scavenger, or 
superoxide dismutase, which should increase the apparent half-life of NO and 
potentiate auto-inhibition (Hofmann and Schmidt, unpublished). Thus, modulation 
of NO biosynthesis may occur via endogenous arginine derivatives but possibly 
not through NO-mediated autoinhibition. 
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