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Preface

Diabetes is a major public health and economic problem worldwide. Alarmingly,
both the prevalence and incidence of the disease continue to escalate globally, even
in low- and middle-income countries. The major cause of both morbidity and mor-
tality in patients with diabetes is vascular complications of the disease. Patients with
diabetes are at a higher risk of vascular disease in all the vessel walls of the human
body.

In Mechanisms of Vascular Defects in Diabetes Mellitus, we bring together a
panel of experts in the field of vascular biology and diabetology from different parts
of the world to integrate the current understanding of the pathogenesis and patho-
physiology of vascular diseases in diabetes mellitus.

This book has 24 chapters divided into six sections. These consider the global
burden, pathogenesis, molecular mechanisms, hemostatic factors, metabolic fac-
tors, and pharmacological therapies. In Chap. 1, Viswanathan Mohan and Rajendra
Pradeepa present the current global burden of diabetes and its vascular complica-
tions. Dwaipayan Bharadwaj and Anjali Singh in the next chapter survey the
approaches to identify genetic risk factors for diabetes and discuss the results of the
genetic studies in type 2 diabetes, identification of genetic factors for coronary
artery disease, as well as epigenetics of complications in patients with diabetes.

Diabetes causes vascular remodeling through multiple pathways. How diabetes
causes these changes is not well understood. Srikanth Vallurupalli and Jawahar
L. Mehta in Chap. 3 review the mechanisms of vascular remodeling in diabetes mel-
litus. In the chapter that follows, Devendra Agrawal and colleagues critically ana-
lyze the effect of hyperglycemia in the pathogenesis of the atherosclerotic plaque
and its rupture.

The trigger for initiation and then progression of vascular disease is injury to the
vascular endothelium. S. Chandel, R. Tiwari, and Madhulika Dixit summarize in
Chap. 5 the present knowledge on the molecular mechanisms that contribute to
endothelial dysfunction in diabetes. Uma Siakia and Suvradeep Mitra in the follow-
ing chapter describe the morphological changes in the vascular smooth muscle cells
and the basis for vascular smooth muscle cell proliferation in the diabetic milieu and
their significance. Surya Ramachandran, M.R. Pillai, and C.C. Kartha delineate in
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Chap. 7 the role of monocyte-associated cytokines in early atherogenesis and vas-
cular disease in diabetes. They also comment on the current approaches to repress
atherosclerosis by modulating cytokine action. In Chap. 8, Adriana Georgescu and
colleagues highlight the significance, mechanisms, and therapeutic implications of
dysfunction of endothelial progenitor cells in diabetes and its vascular complica-
tions. Saumik Biswas and Subrata Chakrabarti in the subsequent chapter provide
insights into the cellular and molecular mechanisms, including epigenetic altera-
tions that are associated with the development and progression of diabetic retinopa-
thy. In Chap. 10, Anita Mahadevan and S. K. Shankar detail the pathological features
of diabetic neuropathy and discuss metabolic, inflammatory, and ischemic mecha-
nisms involved in its pathogenesis. They also analyze various clinical manifesta-
tions and their pathologic bases and treatment prospects.

Section 3 on molecular mechanisms begins with a report by Ana Cristina Simdes
e Silva, R. N. Ferreira, and A. S. Miranda on clinical and experimental evidences for
(i) the role of angiotensin-converting enzyme-2—angiotensin-(1-7)-Mas axis in gly-
cemic control, diabetic nephropathy, and cardiovascular complications in diabetes
and (ii) Mas receptor agonists as possible therapeutic targets. In the following chap-
ter, Camille M. Balarini draws attention to how adipokines influence the develop-
ment of vascular disease in diabetes. In Chap. 13, Madhu B. Anand-Srivastava
dwells upon the changes in heterodimeric G proteins and associated signal trans-
duction systems which regulate vascular function in hyperglycemic conditions and
their role in vascular remodeling in diabetes.

Recent evidences suggest that deacetylation/acetylation of histones contributes
to vascular dysfunction. Ashok Srivastava and Paulina Pietruczk in Chap. 14 evalu-
ate the role of histone deacetylases in the regulation of vasoactive peptides and
growth factor genes and in the pathogenesis of vascular disease. In Chap. 15, Sumi
Surendran and C.C. Kartha review the dysregulation of ncRNAs associated with
vascular complications in diabetes and their likely role for use as biomarkers and
therapeutic targets.

Section 4 deals with hemostatic factors. In the first chapter of this section,
Kanjaksha Ghosh delineates the pathways through which diabetes induces a hyper-
coagulable and thrombophilic environment. In Chap. 17, Etheresia Pretorius scruti-
nizes how diabetes and associated inflammation affect the coagulation system and
how this in turn contributes to aberrant clot lysis and impaired vascular function.
They also narrate new methods to monitor the signs of both hypercoagulability and
hypofibrinolysis in diabetes. Gundu H. R. Rao in Chap. 18 provides an overview of
the physiological function of platelets and its relation to vascular dysfunction and
how the altered platelet function in diabetes contributes to cardiovascular complica-
tions of diabetes.

In Sect. 5, there are three articles on metabolic factors. Accumulation of advanced
glycation end products (AGEs) is implicated in the development of insulin resis-
tance and in the pathogenesis of complications in diabetes. Mahesh Kulkarni and
colleagues discuss the mechanisms of formation of AGEs, their degradation, and
their role in inflammatory signaling as well as vascular complications of diabetes.
They also remark on both chemical and natural product inhibitors of AGEs for
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prevention of complications of diabetes. Krishnan Venkitaraman and colleagues in
Chap. 20 focus on the derangements in lipid and lipoprotein metabolism in diabetes
and the contribution of lipotoxicity to the progression of atherosclerosis and vascu-
lar complications. The next chapter by Pankaj Chaturvedi is a description of the role
of homocysteine in the pathogenesis of vascular disease.

The final section in this volume contains three articles on therapeutic targets in
the mechanisms that lead to vascular complications of diabetes. Hina Nizami and
Sanjay K. Banerjee provide an extensive analysis of a large number of drugs that are
used to prevent or treat endothelial dysfunction in diabetes and the mechanisms of
their action. They also consider nutritional therapies and probiotics which have
promise as remedies. Zahra Bahadoran, Parvin Mirmiran, and Asghar Gahsemi in
Chap. 23 assess the potential of inorganic nitrate and nitrite as a supplement to treat
vascular dysfunction and hypertension in patients with diabetes.

Myeloperoxide-mediated oxidants are considered to play a significant role in
inflammatory response. As atherosclerosis is an inflammatory process, myeloperox-
ide could be a target to attenuate atherosclerotic process. In the concluding chapter,
Sampath Parthasarathy and colleagues debate on the development of small organic
molecules, organometallic scaffolds, and aptamers as myeloperoxide inhibitor.

In summary, this text provides a comprehensive update on the current knowledge
pertaining to cellular and molecular mechanisms for the pathogenesis of various
forms of vascular complications linked to diabetes and also on known and potential
targets for therapeutic intervention to mitigate macrovascular and microvascular
diseases in patients with diabetes.

We thank all the contributing authors and the staff at Springer for their support in
the compilation and production of this compendium. We are also grateful to
Professor Naranjan S. Dhalla, series editor for Advances in Biochemistry in Health
and Disease, for inviting us to plan and assemble this volume.

Thiruvananthapuram, Kerala, India C.C. Kartha
Surya Ramachandran
Radhakrishna M. Pillai
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Introduction



Chapter 1
The Global Burden of Diabetes and Its

Vascular Complications

Viswanathan Mohan and Rajendra Pradeepa

Abstract Diabetes, one of the most common metabolic disorders, is no longer a
disease of affluent nations. The prevalence rates of diabetes are rising steeply in low
and middle-income nations that have rapidly improved their economy and adopted
a ‘westernized’ life style. The worldwide explosion of diabetes also increases the
propensity for developing both micro and macro vascular complications and this
result in a huge burden due to mobility and mortality in addition to increasing the
costs of therapy. As both micro and macrovascular complications share common
pathophysiological mechanisms, several studies have shown a strong association
between the various vascular complications. Thus, screening for all diabetic compli-
cations simultaneously is recommended. If the burden due to diabetes and its com-
plications is to be reduced, there is need for a multi-prolonged strategy involving
early diagnosis of diabetes, screening for its complications and offering optimal
therapy at all levels of care. Luckily, effective interventions are available, making
such efforts justifiable.

Keywords Diabetes  Disease burden * Epidemiology ¢ Cardiovascular diseases ®
Vascular complications ¢ Microvascular complications ¢ Macrovascular
complications

1.1 Introduction

The alarming increase in prevalence and incidence of diabetes has made it a major
global public health, and economic, problem. Diabetes is no longer a disease of
affluent developed nations, as the prevalence of diabetes is steadily increasing

V. Mohan, M.D., Ph.D., D.Sc. (0<) ¢ R. Pradeepa

Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialties Centre,
WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control &
ICMR Centre for Advanced Research on Diabetes, Chennai, Tamil Nadu, India
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globally [1, 2]. Indeed, nearly two thirds of the world’s population with diabetes
currently lives in low- and middle-income regions [2]. Nations that have rapidly
improved their economy and adopted a westernized life style have seen the steepest
rises in diabetes rates [3]. While type 1 diabetes and other types account for 5-10%
of all cases of diabetes, type 2 diabetes remains by far, the most common form of
diabetes. Type 2 diabetes which was earlier considered as a mild disorder of the
aged, has now a changed profile and now affects young adults and even children in
whom the disease course also appears to be more aggressive [4].

Several developing countries have experienced rapid transitions in social struc-
tures, economics, nutrition and lifestyles and these have largely contributed to the
global diabetes epidemic. While some risk factors eg. ageing and genetic makeup
are non-modifiable, there are also several modifiable risk factors including physical
inactivity, unhealthy diet, obesity, tobacco use, excess alcohol use, lack of sleep, and
depression which if controlled can decrease the incidence of diabetes [5].
Unfortunately, the greatest impact of these behavioural risk factors are observed in
developing countries, which probably reflects the underlying socioeconomic deter-
minants such as poverty, illiteracy, social inequality and poor health infrastructure.
Moreover, these countries are still grappling with the unfinished agenda of commu-
nicable diseases, thereby their focus on non-communicable disease like diabetes
still quite limited.

Unfortunately the worldwide explosion of diabetes also parallely increases the
propensity for developing micro and macrovascular complications [6]. The vascular
complications of diabetes can have a devastating effect on quality of life and can
increase the mobility and mortality. Vascular alterations associated with diabetes
include anatomic, structural, and functional changes leading to multiorgan dysfunc-
tion [7-9]. Complications of diabetes can be broadly divided into small vessel
(microvascular) and large vessel (macrovascular) disease and these are seen in both
type 1 and type 2 diabetes. This chapter will deal with the current global burden of
diabetes (which is predominantly type 2 diabetes) and its complications.

1.2 Global Burden of Diabetes

Globally, the number of people with diabetes started to perceptibly rise in the 1990s
and from the year 2000 onwards, there has been an explosion in the number of
people with diabetes [10—13]. The global burden of diabetes has been estimated by
various groups. McCarty et al. [10] estimated the global burden of diabetes using
data from population-based epidemiological studies and reported that 110 million
people had diabetes in 1994 and predicted that it would double to 239 million by
2010. King et al. [11] estimated the global burden at 135 million in 1995, and pro-
jected that the number would reach 299 million by the year 2025. In 1997, the
global burden of diabetes was estimated to be 124 million people and the projected
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number was 221 million people by the year 2010 [12]. However recent studies have
shown that these numbers were all gross under estimates as the numbers of people
with diabetes worldwide rose from 194 million in the year 2003 [14] to 415 million
in 2015 [15]. According to the IDF, there would be 642 million people with diabetes
by the year 2040, with three-quarters of these people be occurring in low- to middle-
income countries [15].

Of the top ten countries in terms of the number of individuals with diabetes,
listed by IDF in 2015, eight are developing countries: China, India, Brazil, the
Russian Federation, Mexico, Indonesia, Egypt and Bangladesh [15]. The highest
number of people with diabetes in the world currently is in China (109.6 million)
where these numbers are expected to increase to 150.7 million by 2040. The cor-
responding numbers for India are 69.2 million and 123.5 million respectively. An
overview of the burden of diabetes (absolute numbers and prevalence percentage)
in the seven IDF Regions — Africa (AFR), Europe (EUR), Middle East and North
Africa (MENA), North America and Caribbean (NAC), South and Central
America (SACA), South-East Asia (SEA) and Western Pacific (WP) over the past
15 years is presented in Fig. 1.1 [14-20]. The figure shows that the largest
increases will take place in the regions dominated by developing nations.
Undoubtedly the increase in absolute numbers of people with diabetes is primar-
ily driven by the larger population sizes in these regions. However, the rates at
which diabetes is increasing is also higher in the developing nations most proba-
bly due to rapid epidemiological and a nutritional transition. This is substantiated
by the Global Burden of Disease Study, which noted that the absolute growth in
number of people with diabetes was partially explained by population growth and
aging in the world’s largest countries (e.g., India and China) [21]. Indeed Asians
both resident and migrant comprise about ~4 billion out of the world’s 6.95 bil-
lion inhabitants [22].

A recently published pooled analysis of 751 population-based studies with 4-4
million participants from 146 countries [3] reported that global age-standardised
prevalence of diabetes increased from 4.3% in 1980 to 9.0% in 2014 in men, and
from 5.0 to 7.9% in women respectively. This group also reported that the number
of adults with diabetes in the world increased from 108 million in 1980, to 422 mil-
lion in 2014. This study, for the first time, tries to explain the causes of these
increases and concludes that 28.5% of the increase in diabetes was due to the rise in
prevalence, 39.7% due to population growth and ageing, and 31.8% due to interac-
tion of these two factors.

There have been few national studies on prevalence of diabetes in India. The
Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study is
being conducted in all states and union territories of India, in a phased manner [23].
In 2011, the prevalence of diabetes in four regions of the country was reported and
it was found to be 10.4% in Tamil Nadu, 8.4% in Maharashtra, 5.3% in Jharkhand,
and 13.6% in Chandigarh. [23].
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Fig. 1.1 Prevalence of diabetes in IDF regions (2000-2015) Refs. [14-20]

Unfortunately a large percentage of people with diabetes still remain undiag-
nosed — 46.5% according to the recent IDF atlas report [15]. The rate of undiag-
nosed diabetes is higher in developing countries due to less developed health care
systems. Unfortunately, many people with undiagnosed diabetes already have com-
plications associated with diabetes [24]. Moreover, undiagnosed diabetes can sub-
stantially increase the risk of developing complications in the future.
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1.3 Vascular Complications

Microvascular complications affect the body’s most intricately vascularized organs,
in particular, the retina (diabetic retinopathy-DR), kidney (diabetic nephropathy)
and the peripheral nerves (diabetic neuropathy). The macrovascular complications
encompass disorders of large blood vessels which affect the heart (cardiovascular
disease), brain (cerebrovascular disease) and the peripheral arteries (peripheral vas-
cular disease) [9]. The prevalence of both micro and macrovascular complications
are related to the type and duration, of diabetes. Vascular complications are usually
progressive. For example nephropathy, retinopathy and neuropathy, begin insidi-
ously, but over time, may result in severe damage to the organs and this contributes
significantly to morbidity and mortality. The increasing epidemic of type 2 diabetes
in low and middle income nations thus portend that unless effective strategies are
taken up to control diabetes effectively, there could be huge increases in the burden
due to these complications [15].

Globally, several epidemiological studies have been conducted to assess the
prevalence (and incidence) of diabetic complications. However, due to lack of stan-
dardized methods used to assess the complications associated with diabetes, com-
parison between different populations is difficult. The rest of this renew with deal
with the published literature on the various diabetes related complications.

1.3.1 Microvascular Complications
1.3.1.1 Diabetic Retinopathy (DR)

DR is considered as the most specific complication of diabetes. It is clinically
defined by the presence of visible opthalmoscopic retinal microvascular lesions in
individuals with diabetes, which results from a combination of systemic and ocular
abnormalities. Prevalence of DR among type 2 diabetic subjects has been reported
to range from 7.6% in Brazil to 50.3% in USA (Table 1.1) [25-52]. The landmark
studies which assessed the prevalence of DR, include the WESDR (USA) [25], the
Barbados Eye Study (West Indies) [26], Beaver Dam Eye Study (USA) [34], Blue
Mountains Eye Study (Australia) [31], Liverpool Diabetic Eye Study (UK) [32],
Los Angeles Latino Eye study (USA) [29], Chennai Urban Rural Epidemiology
study (CURES) Eye Study (India) [39], Multi-Ethnic Study of Atherosclerosis
(MESA,USA) [40] and the Singapore Malay Eye Study [41] among others.

DR is increasingly recognized as one of the most important causes for visual
impairment and blindness. A recent meta-analysis conducted from 1990 to 2010 to
estimate the prevalence and number of persons visually impaired specifically by DR
reported that globally the number of persons with visual impairment due to DR is ris-
ing. DR represents an increasing proportion of all cause blindness/moderate
and severe vision impairment (MSVI). Age-standardized prevalence of DR-related
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Table 1.1 Prevalence rates of diabetic retinopathy in different populations Refs. [25-52]

Prevalence
Participants of
Author (year) Place with diabetes | Age retinopathy
() (years) (%)
Klein et al. (1984) [25] Southern Wisconsin, | 1313 >40 50.3
USA
Haffner et al. (1988) [26] San Antonio, Texas 351 >40-74 443
Hamman et al. (1989) [27] Colorado,USA 360 >40-74 |35.3
Chen et al. (1992) [28] Taiwan, China 527 >40 35.0
Klein et al. (1992) [29] Wisconsin, USA 410 43-86 35.1
Nagi et al. (1997) [30] Wakefield, UK 991 >15 37.8
Mitchell et al. (1998) [31] Blue Mountain, 252 >50 29.0
Australia
Broadbent et al. (1999) [32] | Liverpool, UK 395 13-92 33.6
Leske et al. (1999) [33] Barbados, West 615 >40 28.8
Indies
McKay et al. (2000) [34] Melbourne, Australia | 233 >40 27.5
West et al. (2001) [35] Arizona, USA 899 >40 44.3
Tapp et al. (2003) [36] Australia 703 >25 13.7
Varma et al. (2004) [37] Los Angeles, USA 1,217 >40 46.9
Hanley et al. (2005) [38] Ontario, Canada 133 14-79 23.3
Rema et al. (2005) [39] Chennai, India 1,715 >20 17.6
Wong et al. (2006) [40] USA 778 45-85 332
Wong et al. (2008) [41] Singapore 757 40-79 35.0
Xie et al. (2008) [42] China 362 >45 27.9
Raman et al. (2009) [43] Chennai, India 1,414 >40 18.0
Zhang et al. (2010) [44] USA 1,006 >40 28.5
Chiang et al. (2011) [45] Singapore 401 >24 25.4
Jee et al. (2013) [46] Korea 1,678 >40 15.8
Papali’i- Curtin et al. (2013) | Northland, New 5,647 9-97 19.0
[47] Zealand
Schellini et al. (2014) [48] Sao Paulo, Brazil 407 >30 7.62
Win Tin et al. (2014) [49] Pacific Island 459 >35 47.1
countries
Dutra Medeiros et al. Portugal 52,739 >45 16.3
(2015) [50]
Papakonstantinou et al. Iran 529 40-80 29.6
(2015) [51]
Thomas et al. (2015) [52] UK 91,393 >30 324
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blindness/MSVI was higher in sub-Saharan Africa and South Asia. One out of 39 blind
people was due to DR, and 1 out of 52 visually impaired people was due to DR [53].
A pooled analysis using data from 35 population-based studies around the world
reported that the prevalence rates of DR, proliferative DR, diabetic macular edema,
and vision-threatening DR among individuals with diabetes were 34.6 %, 7.0 %,
6.8 %, and 10.2 %, respectively. In absolute numbers, there were approximately 93
million people with DR, 17 million with proliferative DR, 21 million with diabetic
macular edema, and 28 million with VITDR worldwide in the year 2011 [54].
However, there are some limitations as the data pooled are from studies performed at
different time points, using different methodologies and the population characteris-
tics may differ widely. Zheng et al. [55] extrapolated these findings to the global
number of individuals with diabetes and estimated that the number of people with DR
will grow from 126.6 million in 2011 to 191.0 million by 2030, and the number of
people with vision-threatening DR will increase from 37.3 million to 56.3 million.

1.3.1.2 Diabetic Nephropathy

Diabetic nephropathy (DN) has a number of functional and structural abnormalities.
Functional changes include initial renal hyperfiltration / hyperperfusion with subse-
quent development of microalbuminuria which is defined as urinary excretion of
albumin in the range of 30-300 mg/day. Microalbuminuria is not only an important
predictor of risk of developing overt DN, but also a marker of endothelial dysfunc-
tion. Progression from microalbuminuria to overt nephropathy occurs in 20-40%
within a 10-year period with approximately 20% of these patients progressing to
end-stage renal disease (ESRD) [56]. Clinically, DN is generally characterized by a
progressive increase in proteinuria and decline in glomerular filtration rate, hyper-
tension, and a high risk of cardiovascular morbidity and mortality both from renal
failure as well as from cardiovascular disease.

Earlier studies have shown that individuals with type 1 diabetes were at higher
risk of DN, compared with those with type 2 diabetes [57]. Recent, studies have
shown that diabetic nephropathy is probably more frequent in type 2 than in type 1
diabetes [58, 59]. However, the prevalence/incidence of DN and the rates of its pro-
gression are less clear in type 2 compared with type 1 diabetes, mainly due to the
more insidious nature of onset of diabetes in type 2 diabetes which makes accurate
estimation of the duration of the disorder difficult to determine. According to Ritz
[60], the reasons for the increase in the prevalence of nephropathy in type 2 diabetes
are increasing prevalence, ageing population and improved survival. The United
Kingdom Prospective Diabetes Study (UKPDS), reported that after a median
15 years of follow-up, 38% of participants developed microalbuminuria, while
reduced GFR occurred in 29% of participants [57]. In the Pima Indian population
type 2 diabetes cohort [61], the cumulative incidence of macroproteinuria was
reported to be 50% at 20 years’ duration.

In a systematic review conducted among individuals with self reported diabetes,
the incidence rates of end-stage renal disease (ESRD) due to all causes ranged from
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Table 1.2 Prevalence of micro and macroalbuminuria in people with diabetes in different
population based studies Refs. [49, 67-76]

No: of
diabetic Prevalence of Prevalence of
Author, year Place subjects microalbuminuria | macroalbuminuria
(%) (%)

Gatling et al. 1988 Poole, UK 450 - 7.0
[67]
Neil et al. 1993 [68] | Oxford, UK 246 15.0 4.0
Klein et al. 1993 [69] | Wisconsin, 798 259 16.0

USA
Wirta et al. 1995 [70] | Finland 188 29.0? 4.0

27.0° 7.0°

Collins et al. 1995 Western Samoa | 162 22.0* 3.92
[71] 17.2 6.3"
Bruno et al. 1996 Italy 1574 32.1 17.6
[72]
Atkins et al. 2004 Australia 832 24.9* 4.6*
[73] 15.9° 1.3
Unnikrishnan et al. Chennai, India 1716 26.9 2.2
2007 [74]
Pedro et al. 2010 [75] | North-East of 8187 17.8 6.7

Spain
Lee et al. 2014 [76] Korea 971 19.3 5.5
Win et al. 2014 [49] Nauru 100 71.0 -
Win et al. 2014 [49] Solomon 160 36.0 -

Islands
Win et al. 2014 [49] Vanuatu 199 51.0 -

ANDD New detected diabetes
"KD Known diabetes

132.0 to 167.0 per 100,000 person-years, whereas the incidence rates of ESRD due
to diabetic nephropathy varied from 38.4 to 804.0 per 100,000 person-years [62]. In
most cross sectional studies of type 2 diabetes populations, the prevalence of kidney
disease at any point in time is estimated to 30-50% [63].

The Third National Health and Nutrition Examination Survey conducted among
the US population reported that prevalence of microalbuminuria was 28.8% in per-
sons with previously diagnosed diabetes [64]. Earlier studies on migrant Asian
Indians had suggested a high prevalence of microalbuminuria and kidney disease
compared to the white European population [65, 66]. Table 1.2 provides the preva-
lence of micro and macroalbuminuria in type 2 diabetes in different population
based studies [49, 67-76]. The prevalence ranges from 15% in the UK to 71% in the
Nauru population. The CURES study from India reported that the overall prevalence
of overt nephropathy was 2.2% while that of microalbuminuria was 26.9% [74].
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1.3.1.3 Diabetic Neuropathy

Neuropathy, is a descriptive term meaning a demonstrable disorder of peripheral
nerves, either clinically evident or sub clinical, that occurs in the setting of diabetes
mellitus without other obvious causes for peripheral neuropathy. Diabetic neuropa-
thy is not a single entity, but a group of disorders classified by the affected organ
[77]. The neuropathic disorders include manifestations in the somatic and/or auto-
nomic parts of the peripheral nervous system. It affects nearly 50% of all diabetic
subjects and is considered to be the main cause for morbidity. The most common
among the neuropathies are chronic sensorimotor distal symmetric polyneuropathy
and autonomic neuropathy [77]. Severity and duration of diabetes play an important
role in the extent of the functional and anatomical abnormalities of diabetic neu-
ropathy. It is estimated that at the time of diagnosis, neuropathy is present in 10% of
diabetic patients and over 50% of patients may develop neuropathy after 25-year
duration of the disease [78, 79].

Table 1.3 shows the wide variation in prevalence rates of diabetic neuropathy in
population based surveys [80-93]. In the Rochester Diabetic Neuropathy Study [81]
conducted in late 1980s, 66% of the type 1 and 59% of the type 2 diabetic individu-
als had some form of neuropathy. The prevalence of peripheral neuropathy was
reported to be 11.5% in the National Health and Nutrition Examination Survey [94].
The Diabcare Africa project, which was conducted across six sub-Saharan African
countries reported that 48% of the study population had neuropathy [95]. These dif-
ferences could be because of different diagnostic criteria used in assessing
neuropathy.

Neuropathy significantly increases the risk for amputation among patients with
diabetes [96]. A review of global variability in incidence of lower extremity amputa-
tions reported that in the population with diabetes, the incidence of all forms of
lower extremity amputation ranged from 46.1 to 9600 per 10° while major amputa-
tion ranged from 5.6 to 600 per 10° [97].

1.3.2 Macrovascular Complications
1.3.2.1 Cardiovascular Disease

Cardiovascular diseases (CVD) account for increased morbidity and mortality in
individuals with type 2 diabetes [98]. CVD is not only frequently observed in indi-
viduals with diabetes compared to those without diabetes, but it also occurs about 2
decades earlier among [99, 100]. Women with diabetes are equally, or possibly even
at higher risk, of CVD than men in contrast to the general population where the
reverse holds good. Women with type 2 diabetes, have a five to sevenfold higher rate
of CVD death, compared with age-matched women without diabetes, with an event
rate comparable to that seen in men with type 2 diabetes [101]. According to Laakso
et al. [102], more than 70% of individuals with type 2 diabetes die of CVD causes.
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Participants Prevalence of
with diabetes neuropathy
Author, year Place Neuropathy diagnosis (n) (%)
Walters et al. UK Symptoms + signs 1,077 17.2
1992 [80]
Dyck et al. 1993 | Rochester, Symptoms, NCS and 278 45
[81] Minnesota sensory examination
Harris et al. USA Symptoms 2,405 38
1993 [82]
Franklin et al. Colorado, History and neurologic | 277 27.8
1994 [83] Arizona examination
Herman et al. Cairo, Egypt VPT? 384 21.9
1998 [84]
Shaw et al.1998 | Mauritius VPT® 433 12.7
[85]
Tapp et al. 2003 | Australia NNS,NDS, PPT and 398 13.1
[86] Postural BP drop
Gregg et al. USA Symptoms and 419 28.5
2004 [87] monofilament test
Pradeepa et al. Chennai, India | VPT 1629 26.1
2008 [88]
Karvestedt et al. | Sweden Monofilament, tuning 152 43
2011 [89] fork, and VPT
Katulanda et al. | Srilanka Monofilament, tuning 528 24
2012 [90] fork
Kiani et al. 2013 | Hamadan, Iran | NSS and NDS 521 493
[91]
Wang et al. Saudi Arabia NSS, VPT 552 19.9
2014 [92]
Jane et al. 2016 | Taiwan MNSI 628 30.6
[93]

NSS Neuropathy symptom score, NDS Neuropathy disability score, NCS Nerve conduction
Studies, VPT Vibratory Perception Threshold, PPT Pressure perception test, MNSI Michigan neu-
ropathy screening instrument
*Compared to locally derived age specific normal values

*Compared to locally derived values for healthy young adults

A population study of 3.3 million individuals in Denmark reported that there was a
substantial increase in risk of myocardial infarction (MI) and coronary death in
individuals with diabetes (without previous MI) and this was almost same as non-
diabetic individuals with a previous MI [103]. After an acute MI, a considerable
number of diabetic subjects die within the first year [104].

The longitudinal, multigenerational cohort of the Framingham Heart Study
(FHS), which assessed CVD and its risk factors has shown that the absolute risk of
CVD decreased by 35% between the 1950s and 1990s in individuals without diabe-
tes and by 49% in those with diabetes. However, the study also reported that the
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Table 1.4 Prevalence rates of peripheral vascular disease in diabetes Refs. [86, 87, 113-117]

Age Participants with | Prevalence of
Author, year Place (years) diabetes (n) PVD (%)
Beach et al. 1988 Washington, DC | 50-70 252 22
[114]
Katsilambros et al. Greece All age 193 42
1996 [115] groups
Premalatha et al. 2000 | Chennai, India >20 631 6.3
[116]
Tapp et al. 2003 [86] Australia >25 2436 13.9
Gregg et al. 2004 [87] | USA >40 419 9.5
Tavintharan et al. 2009 | Singapore 40-80 634 10.4
[117]
Pradeepa et al. 2014 Chennai, India >20 1755 8.3
[113]

relative risk among those with diabetes to develop CVD has persistently remained
approximately two fold higher compared with those without diabetes [105]. The
FHS has also reported that the rising prevalence of type 2 diabetes, combined with
a increased risk for CVD, translated into a 60% increase in the attributable risk ratio
for CVD associated with diabetes [106].

1.3.2.2 Peripheral Vascular Disease

Peripheral vascular disease (PVD) is caused by the narrowing of blood vessels that
carry blood to the arms and legs. It is characterized by a gradual reduction in the
blood flow to one or more limbs secondary to atherosclerosis [107]. Disability and
mortality associated with PVD has increased over the last two decades in develop-
ing regions of the world and exceeds the increases in developed nations. In addition,
the burden of PVD is no longer confined to the elderly population, but now occurs
at younger age groups [108]. While PVD is a major risk factor for lower extremity
amputation, it often coexists with cerebrovascular disease and/or CVD, and there-
fore, it is associated with poor prognosis and increased risk of morbidity and mor-
tality [109]. PVD occurs almost three times more frequently in individuals with
diabetes compared to age and gender matched individuals without diabetes [110].
Subjects with asymptomatic PVD not only have a higher risk for developing gan-
grene and amputations but also an increased risk for cardiovascular deaths [111].
Women with type 2 diabetes also have a higher prevalence/incidence of PVD and
the risk of PVD is increased by age, duration of diabetes, and presence of peripheral
neuropathy [112, 113].

Table 1.4 presents the prevalence of PVD in diabetic population [86, 87, 113—
117]. Earlier prevalence estimates for PVD among diabetic individuals from the
U.S. and Europe have reported to be 9.5% and 42% respectively [87, 115]. In con-
trast, the prevalence of PVD in Asian diabetic populations has been reported to be
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lower than that in Western populations [112, 117]. A systematic review conducted
in 34 population studies conducted between 1990 and 2010, including 112,027 par-
ticipants reported that the prevalence of PVD in high-income nations was 5-:3% in
women and 5-4% in men at age 45—49 years, and while it was 18-4% in women and
18-8% in men at age 85-89 years. Prevalence of PVD in low-income nations among
men was 2-9% at 45—49 years and 14-9% at 85-89 years). In LMIC, rates were
higher in women than in men, especially at younger ages (6:3%). This review
estimated that in 2010, there could be globally, 202 million people with PVD, with
the majority (69.7%) in low-income nations which includes 54-8 million in south-
east Asia and 45-9 million in the western Pacific Region [118].

1.3.2.3 Cerebrovascular Disease

Strokes are the commonest cause of mortality in diabetic and represent a major
health burden. Individuals with diabetes, are at least twice as likely to have a stroke
than those without diabetes [119]. They are more likely to suffer from increased
morbidity and mortality after a stroke. Moreover, diabetes dramatically increases
the risk of stroke at younger ages as well as women. The mechanism of develop-
ment of stroke secondary to diabetes may be due to cerebrovascular atherosclerosis,
cardiac embolism, or rheologic abnormalities. According to international Diabetes
Federation (IDF), the prevalence estimates of stroke among individuals with type 2
diabetes ranges from 4 to 12% in clinic-based studies and between 4% and 5% in
population-based studies [15]. The Framingham Study reported that the incidence
of stroke was 2.5- to 3.5-times higher among subjects with diabetes compared to
those without [120].

1.3.3 Overlap Between Micro and Macrovascular
Complications

Numerous studies have shown an association between micro and macrovascular
complications among individuals with diabetes as they share common pathophysi-
ological mechanisms. For example, DR has been shown to be associated with car-
diovascular disease and mortality [121]. An association between DR and the intimal
medial thickness of the internal carotid artery has been demonstrated in an urban
south Indian type 2 diabetic population [122]. Cross-sectional [123] and longitudi-
nal studies [124, 125] report a relationship between microalbuminuria, proteinuria
and retinopathy. Another study reported that both diabetes and ESRD synergisti-
cally increase the risks of CV events [126]. A population-based study from South
India showed that the risk of nephropathy and neuropathy was five times, and three
times higher, among the subjects with sight-threatening DR compared to those
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without DR [127] This suggest that all three diabetic microvascular complications
should be simultaneous screened for [128].

1.4 Mortality Due to Diabetes Associated Complications

Globally, the excess mortality attributable to diabetes in adults was estimated to be
controllable to 3.8 million deaths [129]. Nearly 50% of type 2 diabetic patients die
prematurely of a CVD cause and approximately 10% die of renal failure. The results
of the Nurses’ Health Study indicate that among women, diabetes is associated with
dramatically increased risks of death from all causes and fatal CVD. The combina-
tion of prior CVD and a duration of diabetes >15 years was associated with a 30-fold
increased risk of fatal CVD [130]. The National Health Interview Surveys (NHIS)
reported that individuals with diabetes have significantly higher risk of death from
all-cause and CVD than those without diabetes [131]. Eschol et al. [112], reported
that among individuals with diabetes, prevalent PVD was associated with 3 fold
increased mortality compared to those without PVD.

Risk of stroke-related dementia and recurrence, as well as stroke-related mortal-
ity, is elevated in patients with diabetes [132]. A meta-analysis which assessed the
relationship between cardiovascular autonomic neuropathy and risk of mortality
among individuals with diabetes reported that cardiovascular autonomic neuropathy
was associated with significantly increased mortality [133]. A follow-up of 4,713
participants from ten centres in the WHO Multinational Study of Vascular Disease
in Diabetes (WHO MSVDD) showed that CVD was the most common underlying
cause of death, accounting for 44% of deaths in type 1 diabetes and 52% of deaths
in type 2 diabetes while, renal disease accounted for 21% and 11% of deaths respec-
tively [134].

1.5 Conclusions and the Way Forward

As the epidemic of diabetes continues to grow globally, the rate of its complications
is also parallely increasing. These complications not only significantly contribute to
the excess morbidity and mortality associated with diabetes, but also to the ever-
increasing costs due to diabetes. As diabetes is largely asymptomatic, early screen-
ing for, and detection of, diabetes is crucial to reduce its vascular complications.
Treatment of diabetes related complications, is far most expensive than treating
diabetes itself. This underscores the need for a multi-pronged approach at all levels
of care, namely Primary, Secondary and Tertiary prevention of diabetes. The time to
act is NOW!
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Chapter 2
Genetic Basis for Increased Risk for Vascular
Diseases in Diabetes

Dwaipayan Bharadwaj and Anjali Singh

Abstract Over the last several decades, the global incidence and prevalence of
diabetes mellitus has increased significantly. The raised incidence rate is projected
to continue as greater numbers of persons adopt a western lifestyle and diet. Patients
with diabetes mellitus are at heightened risk of both adverse microvascular and
macrovascular complications. Moreover, once cardiovascular disease develops, dia-
betes mellitus exacerbates progression and worsens outcomes. The risk of cardio-
vascular diseases associated with diabetes is probably due to genetic determinants
influencing both glucose homeostasis and development of atherosclerosis. Although
many genetic factors for both CAD and diabetes have been discovered, bringing
important insights towards pathogenesis of these diseases. But there is compara-
tively less progress in our understanding of genetic basis of diabetic vascular com-
plications. Genome wide association studies are beginning to expand our horizon of
understanding of genetic architecture relating to diabetic complications that might
offer an opportunity for improved risk prediction along with development of new
therapies.
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2.1 Introduction

As the incidence of diabetes is on rise, there is a proportionate rise in the complica-
tions that are associated with diabetes as well. The devastating complications of
diabetes mellitus are linked to several vascular diseases divided mainly into macro-
vascular and micro-vascular complications. Diabetic complications can be either
due to damage to small blood vessels (micro vascular) or damage to larger blood
vessels (macro vascular). Microvascular complications include damage to eyes (ret-
inopathy), to kidneys (nephropathy) and to nerves (neuropathy) and diabetic foot
disorders. Atherosclerosis, stroke, peripheral artery disease (PAD), myocardial
infarction and congestive heart failure etc. are few cardiovascular diseases encom-
passed under macrovascular complications. These vascular complications of type 2
diabetes account for majority of social and economic burden among patients and
society. Though the number of vascular diseases related to diabetic complications is
huge this chapter aims to comprehensively discuss genetic basis for increased risk
of diabetic cardiovascular complications only.

Diabetes is a group of metabolic diseases growing alarmingly as a potential epi-
demic with 415 million globally and 78 million in the South-East Asian Region;
India being home to more than 69,1 million people (2015) currently, compared to
50.8 million in 2010 as per statistics of International Diabetes Federation (IDF) [1].
Worldwide, the number of people with diabetes has risen from 108 million in 1980
to 422 million in 2014 [2].

Reports from different parts of India have suggested a rising trend in prevalence
of Diabetes [3—12]. The ICMR-INDIAB that is first of its kind in India to provide
National and Regional counts of diabetes, pre-diabetes and also of cardiovascular
factors covering all Indian states, National Capital Territory of Delhi and two Union
Territories projected 62.4 million people with diabetes and 77.2 million people with
pre-diabetes for whole of India in 2011 [13].

Several factors contribute to accelerated diabetes epidemic as the “normal-
weight metabolically obese” phenotype; high prevalence of smoking and heavy
alcohol use; high intake of refined carbohydrates (e.g., white rice); and dramatically
decreased physical activity levels. Poor nutrition in utero and in early life combined
with over nutrition in later life may also play a role in diabetes epidemic [14].

Also an upsurge in number of early-onset diabetes cases is responsible for the
development of various diabetic complications due to longer disease duration, how-
ever data on prevalence of diabetic complications across the whole of India is scarce
[5, 6]. An international study in 2013 stated that diabetes control in individuals
worsened with longer duration of the disease (9.9 = 5.5 years) [5], with neuropathy
the most common complication (24.6%) followed by cardiovascular complications
(23.6%), renal issues (21.1%), retinopathy (16.6%) and foot ulcers (5.5%) [9].
These investigations are strongly similar with the prevalence of diabetic retinopathy
(17.6%), diabetic neuropathy (26.1%), coronary artery diseases (21.4%) and periph-
eral vascular diseases (6.3%) to the results from South Indian population [8, 10—12].
But, in a latest study on central Indian population there was highest prevalence of
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nephropathy (47%) followed by retinopathy (30%) followed by neuropathy (23%)
[16]. Furthermore, this trend may translate to millions of people in India with each
of the complications of diabetes and many with multiple complications.

Furthermore, Indians are more prone to progression of complications of diabetes
at an early age (20—40 years) compared to Caucasians (>50 years) as they are genet-
ically predisposed to the development of coronary artery diseases due to dyslipid-
emia and low levels of high density lipoproteins; emphasizing the need for careful
screening and monitoring of patients regardless of their age within India [7]. As the
age (40 years or more) increases the prevalence of diabetes also, gets higher com-
pared to IGT (Impaired glucose Tolerance) that is significantly more prevalent in
younger generation (under 40 years of age) [9]. In Indian diabetic population, poor
glycemic control has also been observed as a factor that is responsible for micro-
and macro-vascular changes related with diabetes [8].

This major lifestyle disease is undoubtedly the most challenging public health
problem of twenty-first century mainly driven by sustenance, lifestyle and demo-
graphic evolution, increasingly changing diets and physical inactivity, in the back-
ground of genetic predisposition. India currently faces an uncertain future in relation
to potential burden that diabetes may impose upon the country with meteoric
increase in numbers of patients and related complications and create significant
healthcare burden on family and society both. At this very crucial stage awareness
and education on part of people and administration about diabetes is very essential.
Expenditures apart, there is large requirement for government interventions such as
funding community programs for public awareness about the diabetes risk reduc-
tion, availability of diagnostic services, medicines to all and one of community
along with combined efforts of doctors, podiatrists and trained workforce paramedi-
cal workers [15].

The implementation of screening and early detection programs for pre-diabetes,
diabetes prevention, self-management counseling, therapeutic management of dia-
betes, continuing education programs for general practitioners may yield positive
health outcomes if rendered in society at ‘grass roots’ level to confront the new-age
diabetes pandemic in our country. Interestingly, this has been proved by a study
done a decade ago in a residential area in Chennai through mass awareness pro-
grams like public lectures, video clippings and distribution of educational pam-
phlets for 3 years continuously [17]. A follow up study was done 7 years after
baseline study showing tremendous (277%) increase in proportion of walkers from
baseline to follow up. The proportions of individuals who exercised increased from
14.2 t0 58.7% [18].

2.2 Clinical Presentations of Type 2 Diabetes

Type 2 diabetes is most rampant form of diabetes in adults (>90%) and typically
makes its appearance later in life. It is characterized by hyperglycemia resulting
from insulin resistance or impairment in insulin-mediated glucose disposal and
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malfunctioned secretion of insulin by pancreatic -cells that are primary metabolic
causes of type 2 Diabetes. The majority of patients are asymptomatic and hypergly-
cemia is noted on routine laboratory evaluation, prompting further testing. Classic
symptoms of hyperglycemia include polyuria, polydipsia, nocturia, blurred vision
and, infrequent weight loss that are usually noted in retrospect, after a blood glucose
value has been shown to be elevated.

The Expert Committee on Diagnosis and Classification of Diabetes Mellitus in
2003, classified group of individuals whose glucose levels do not meet criteria for
diabetes, and are higher than those considered normal as having impaired fasting
glucose (IFG) [fasting plasma glucose (FPG) levels 100 mg/dl (5.6 mmol/l) to
125 mg/dl (6.9 mmol/1)], or impaired glucose tolerance (IGT) [2-h values in the oral
glucose tolerance test (OGTT) of 140 mg/dl (7.8 mmol/I) to 199 mg/dl (11.0 mmol/1)]
[19]. It should be noted that the World Health Organization (WHO) and numerous
diabetes organizations define the IFG cutoff at 110 mg/dl (6.1 mmol/l) [20].

Individuals with IFG and/or IGT have been referred to as having pre-diabetes,
indicating the relatively high risk for future development of diabetes. IFG and IGT
should not be viewed as clinical entities in their own right but rather risk factors for
diabetes as well as cardiovascular disease. IFG and IGT are associated with obesity
(especially abdominal or visceral obesity), dyslipidemia with high triglycerides
and/or low HDL cholesterol, and hypertension. Indians are generally having higher
levels of LDL and triglycerides. Also, HDL levels are very low when compared to
western population attributable to traditionally starch rich Indian diet that have been
associated with higher levels of fats or triglycerides [21].

2.3 Vascular Diseases

2.3.1 Microvascular Diseases

Microvascular abnormalities and dysfunctions are systemic disease in diabetes. The
microvascular diseases of diabetes beset long-term complications classically
divided into nephropathy, neuropathy and retinopathy. In diabetic nephropathy, an
increase in both intra-glomerular pressure and extracellular matrix proteins in glom-
erulus results in basement-membrane thickening, mesangial expansion, and glo-
merular hypertrophy. These changes reduce glomerular filtration area and function,
and can progress to glomerulosclerosis. Diabetic retinal and glomerular vascular
changes differ substantially from vasculopathies associated with ageing—which
suggests their mechanisms are dissimilar. Roughly about 35% of patients of 18 years
duration with type 1 diabetes will have signs of diabetic renal involvement [22].
Beginning of dialysis therapy in up to 35% of new patients was further diagnosed
with type 2 diabetes [23]. Diabetic nephropathy can be divided into four phases:
microalbuminuria, macroalbuminuria, nephrotic syndrome, and chronic renal failure.
Microalbuminuria being a risk marker for atherothrombosis can be interestingly
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explained by endothelial dysfunction in both Type I and Il diabetes. Microalbuminuria
(urine albumin 30-300 mg/day or <300 mg/g creatinine) is first clinical sign of
diabetic damage to kidney [25]. Not only is microalbuminuria an indication of pro-
gressive kidney damage, but its existence also reflects an elevated risk for CVD [24,
25]. Macroalbuminuria (urine albumin >300 mg/day or >300 mg/g creatinine) typi-
cally denotes significant diabetic nephropathy and will be supervened by a decline
in glomerular filtration rate (GFR). The majority of patients with diabetes who have
macroalbuminuria also have hypertension [26]; in these patients, control of hyper-
tension slows the decline in GFR [27]. Some diabetic patients develop nephrotic
syndrome (urine protein >3 g/day); diabetic dyslipidemia in such patients often is
compounded by nephrotic dyslipidemia, most notably by higher cholesterol levels.
The nephrotic syndrome usually heralds progressive renal insufficiency; thereafter,
ESRD (End-stage renal disease) ensues and dialysis and/or transplantation become
necessary to sustain life. Mortality rates in patients with diabetes who are on renal
dialysis probably exceed 20% per year [23]. CVD is the leading cause of death
among patients with ESRD if diabetes is present [28, 29]. The prevalence of
nephropathy in India was less (8.9% in Vellore [30], 5.5% in Chennai [31]) when
compared with the prevalence of 22.3% in Indians living in UK though in European
population it was 12.6% [32].

A strong familial clustering of diabetic nephropathy in Indian type 2 diabetic
patients was noted [33]. The study showed that proteinuria was present in 50% and
microalbuminuria in 26.7% of the siblings of probands with diabetic nephropathy.
In contrast, the prevalence of proteinuria and microalbuminuria among the siblings
of probands with normoalbuminuria was 0 % and 3.3 % respectively. Diabetic
nephropathy is one of the leading causes of chronic renal failure in India. Among
4,837 patients with chronic renal failure seen over a period of 10 years, the preva-
lence of diabetic nephropathy was 30.3% followed by chronic interstitial nephritis
(23%) and chronic glomerulonephritis (17.7%) [34].

Diabetic neuropathy is a group of conditions characterized by nerve dysfunction.
The classification of neuropathy includes focal, diffuse, sensory, motor and auto-
nomic neuropathy according to the nerves affected. Clinically, diabetic microangi-
opathy leads to retinopathy and glomerular dysfunction, and possibly contributes to
neuropathy. Globally the estimates on prevalence of neuropathy vary widely from
13.1t0 45.0% [35, 36] that could be attributed to different types of diabetes, demog-
raphy of the study population and different diagnostic criteria employed such as
pin-prick perception, clinical signs and symptoms, quantitative sensory tests or
electrodiagnostic tests [35]. A cross-sectional population-based study among urban
south Indian Type 2 diabetic subjects showed 26.1% prevalence of Diabetic
Neuropathy and is significantly associated with in addition to time-related variables
as age, duration of diabetes [11].

Another microvascular complication, diabetic retinopathy occurs when diabetes
damages the tiny blood vessels in the retina. Non-proliferative retinopathy and pro-
liferative retinopathy are two main categories of Diabetic retinopathy. Proliferative
retinopathy sometimes serves as a progression of non-proliferative retinopathy.
Non-proliferative retinopathy is associated with pericyte loss trailed by formation of



32 D. Bharadwaj and A. Singh

micro aneurysms thus increased vascular permeability, development of retinal hem-
orrhages, capillary closure, venous loops, hard exudates, and soft exudates. These
anomalies can lead to areas of non- perfusion and ischemia. Proliferative retinopa-
thy on the other hand is defined as existence of new blood vessels with or without
vitreous hemorrhage. Almost two-third of all Type 2 and almost all Type 1 diabetics
are expected to develop diabetic retinopathy (DR) over a period of time [37, 38].
Prevalence of retinopathy among the South Indian type 2 diabetic subjects is 34.1%
[39] that is higher than some studies done later on in South Indian population where
the prevalence of diabetic retinopathy ranged from 10.6 to 26.2% [10, 40-43]. The
global prevalence as per recent systematic analysis of 35 population-based studies
showed the prevalence of DR, proliferative diabetic retinopathy (PDR), diabetic
macular edema (DME), and VTDR among individuals with diabetes as 34.6 %,
7.0 %, 6.8 %, and 10.2 %, respectively [44].

2.3.2 Macrovascular Diseases

Macrovascular diseases include coronary artery disease, cerebrovascular disease,
peripheral artery disease, non-significant carotid stenosis and polyvascular disease.
Alarmingly, globally about 50-80% of all individuals with diabetes die of cardio-
vascular and cerebrovascular disease [45, 46]. In India also almost same trend pre-
vails with more than 65% of patients with T2DM die of cardiovascular diseases; of
these, nearly 80% are attributable to coronary artery diseases (CAD) [47]. The pres-
ence of T2DM seems to confer a three to four times higher risk of cardiovascular
disease to Indian individuals [48] as compared to Europeans and mortality after an
acute coronary event is also 40% higher in Indian patients [49].

This higher prevalence of cardiovascular disease in diabetic patients might be
due to clustering of the patients together as a heterogeneous group with CVD, with-
out separation into subgroups according to the macrovascular disease type. In fact,
in a scientific statement released on ahajournals.org, the AHA (American Heart
Association) asserts that from cardiovascular medicine point of view, it may be
appropriate to say, “Diabetes is a cardiovascular disease.”

Peripheral vascular disease (PVD) is another macrovascular complication that is
fortunately rare among patients with diabetes mellitus in India. Younger age of
onset and relatively low prevalence of smoking are perhaps responsible for low
prevalence of PVD. In the CURES cohort [50], the prevalence of PVD was 8.6%,
compared with 23.5% among patients with T2DM in UK [51] and 20-30% in USA
[52]. Increased age, female sex and duration of disease were all related to increased
incidence of PVD [50].

Some previous studies in urban Indians exhibited central adiposity, obesity,
hyperinsulinaemia, dyslipidaemia, hypertension and glucose intolerance along
with diabetes as the factors that are involved in aetiology of macrovascular diseases
[53, 54]. These are the central features accelerating athero-thrombotic cardiovas-
cular disease (CVD). Atherosclerosis is the central pathological mechanism in
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macrovascular disease. It leads to narrowing of arterial walls throughout the body.
In response to endothelial injury and inflammation, oxidized lipids from LDL par-
ticles accumulate in the endothelial wall of arteries. Angiotensin II may promote the
oxidation of such particles. Monocytes then infiltrate the arterial wall and differenti-
ate into macrophages that accumulate oxidized lipids to form foam cells. Once
formed, foam cells stimulate macrophage proliferation and attraction of
T-lymphocytes. T-lymphocytes, in turn, induce smooth muscle proliferation in the
arterial walls and collagen accumulation. The net result of this process is the forma-
tion of a lipid-rich atherosclerotic lesion with a fibrous cap. Rupture of the lesion
leads to acute vascular infarction [55]. Besides, this general pathogenesis of athero-
sclerosis some factors specific to diabetes are worth mentioning here. Clinically,
dyslipidemia is highly correlated with atherosclerosis, and up to 97% of patients
with diabetes are dyslipidemic [56]. In addition to the characteristic pattern of
increased triglycerides and decreased HDL cholesterol found in the plasma of
patients with diabetes, abnormalities are also seen in the structure of lipoprotein
particles. In diabetes, the predominant form of LDL cholesterol is the small, dense
form. Small LDL particles are more atherogenic than large LDL particles because
they can more easily penetrate and form stronger attachments to the arterial wall,
and they are more susceptible to oxidation [57]. Because less cholesterol is carried
in the core of small LDL particles than in the core of large particles, subjects with
predominantly small LDL particles have higher numbers of particles at comparable
LDL cholesterol levels [57].

2.4 Pathophysiology of Diabetic Complications

The pathophysiology of the link between diabetes and cardiovascular disease
(CVD) is complex and multifactorial. Understanding these profound mechanisms
of disease can help clinicians to identify and treat CVD in patients with diabetes, as
well as help patients prevent these potentially devastating complications. Micro-
and macrovascular disease pathways in type 2 diabetes are likely to share “common
soil” hypothesis (Fig. 2.1). Both insulin resistance and hyperglycemia lead to oxida-
tive stress and mitochondrial overproduction of superoxide and activate damaging
pathways of protein kinase C, formation of glycation end-products and accumula-
tion of sorbitol through aldose reductase pathway leading to diabetes complications
[58, 59]. A unifying hypothesis has been proposed, with generation of reactive
oxygen species (ROS) as a key central theme linking these different pathogenetic
mechanisms [60]. Reactive oxygen species (ROS) are produced by glucose auto-
oxidation, glucosamine formation, oxidative phosphorylation and can directly
damage endothelial cells as well as by oxidizing LDL and AGEs. ROS formed by
hyperglycaemia inhibits nitric oxide (NO) production, leading to elevated FFA (free
fatty acids) levels and in course prevents the migration of vascular smooth muscle
cells into plaques that is the necessary step for stabilization of the plaque. The unsta-
bilized plaques are more vulnerable to rupture leading to thrombosis and hence
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Fig. 2.1 ‘Common Soil” hypothesis of diabetic complications

atherosclerosis. Advanced glycation end products formed as a result of non-
enzymatic reaction between glucose and arterial wall protein accelerate atheroscle-
rosis by directly interfering in the arterial wall.

There are other important mechanisms implicated in the development of diabetic
complications, including, for example, in relation to coexisting hypertension and
hyperlipidemia, activation of renin—angiotensin system, adipokines production,
protein folding and post-translational modifications, such as O-Glc-NAc modifica-
tions, inflammation and growth factors [59, 61].

In addition to pathways activated by hyperglycemia, recent studies have high-
lighted the importance of endogenous protective pathways such as insulin, platelet-
derived growth factor, vascular endothelial growth factor and activated protein C
that could provide new candidate genes for studying genetic factors protective
against diabetic complications, as well as being targets for potential therapies to
reduce diabetic vascular complications [62].

2.5 Risk Assessment in the Diabetic Patient

Risk estimation in diabetic patients must consider major risk factors as hyperglyce-
mia, dyslipidemia, elevated blood pressure, cigarette smoking, and predisposing
risk factors such as excess body weight, abdominal obesity, physical inactivity and
family history of CVD along with ethnic origin. Identification of risk factors is a
major first step for developing a plan for risk reduction in persons with diabetes.
This should include a thorough medical history, careful physical examination, and
appropriate laboratory measurements. Lipoprotein analysis should draw a clear
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distinction between elevated LDL cholesterol concentrations and atherogenic or
diabetic dyslipidemia as manifested by elevated triglycerides and small LDL and
low HDL cholesterol levels. Even borderline-high-risk LDL cholesterol levels
(130-159 mg/dL) are of concern in patients with diabetes and warrants aggressive
intervention. A fasting triglyceride level of >150 mg/dl (>1.70 mmol/l) is one of
five accepted criteria for defining individuals at high risk for cardiovascular disease
and type 2 diabetes, arguably termed the “metabolic syndrome” [63]. The quality of
glycemic control can best be assessed by periodic measurement of hemoglobin Alc.

Though there is dearth of nationwide, comprehensive, prevalence data focusing
on obesity as risk factor for diabetes from India [3] but interestingly, in spite of
having lower overweight and obesity rates India has a higher prevalence of diabetes
compared to western countries suggesting that diabetes may happen at a much
lower body mass index (BMI) in Indians compared to Europeans [3, 4]. Hence,
comparatively lean Indian adults with a lower BMI may be at equal risk as those
who are obese in western countries. These types of findings have led to the concept
of a specific ‘Asian Indian Phenotype or Paradox’, a collection of clinical and bio-
chemical features that dispose Indian people to a higher risk of T2DM [64, 65].
Although genetic factors undoubtedly predispose Indian people to the development
of T2DM but the environmental factors seem to have a far more important role in
the development and propagation of the T2DM epidemic in India.

Several studies [66—69] indicated that the predisposing cardiovascular risk
factors like cigarette smoking (Patients with diabetes who are smokers are at double
risk), obesity and high serum cholesterol—continue to act as independent contribu-
tors to CVD in patients with diabetes thus acting as covariate risk factors. Thus,
suggesting that the predisposing factors exacerbate the major risk factors: dyslipid-
emia, hypertension, and glucose tolerance; and they may cause CVD and diabetes
mellitus through other pathways as well. To a large extent, both CVD and diabetes
may be prevented through control of predisposing risk factors. Modification of life
habits is at the heart of public health strategy for prevention of CVD and diabetes
mellitus. High priorities are prevention (or treatment) of obesity and promotion of
physical activities. Thus interventions to alter BMI, lipid levels, and blood pressure
may decrease incident of diabetes and cardiovascular diseases [70].

2.6 Risk Factors for Development of Diabetic Vascular
Complications

2.6.1 Insulin Resistance

Insulin resistance is defined as decrease in ability of insulin to promote glucose
uptake in skeletal muscle and adipose tissue and to suppress hepatic glucose output
that may be present for many years before development of any abnormality in
plasma glucose levels [71]. It is associated with a number of classical risk factors for
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cardiovascular diseases like central and general obesity, elevated blood pressure,
elevated levels of triglycerides, activation of rennin-angiotensin system, increased
reactive oxygen species (ROS) production, low levels of high density lipoprotein
(HDL) cholesterol and glycotoxicity; each of them is an independent cardiovascular
risk factor [72, 73]. In various multi-ethnic cross-sectional studies, significant rela-
tionships have been shown between insulin resistance and individual cardiovascular
disease risk factors and markers of inflammation. Such as, insulin resistance is
related to dyslipidemia in Indians [74] and Japanese adults [75], to blood pressure
in Indians [74] and Chinese adults [76], to markers of inflammation in Caucasian
[77], Hispanic, and African American adults [78], and to central obesity in Caucasian
[79] and Japanese [75] adults. Insulin resistance advances from obesity and physical
inactivity, acting on a substrate of genetic susceptibility [80]. It usually predates
onset of type 2 diabetes and is accompanied by other cardiovascular risk aspects
such as hypertension, dyslipidemia and prothrombotic factors [81]. Insulin secre-
tion declines with advancing age [82] that may further be accelerated by genetic
factors [83].

2.6.2 Atherogenic Dyslipidemia

Atherogenic dyslipidemia is characterized by three lipoprotein abnormalities: ele-
vated very-low-density lipoproteins (VLDL), small LDL particles, and low high-
density-lipoprotein (HDL) cholesterol (the lipid triad). The lipid triad occurs
frequently in patients with premature coronary heart disease (CHD) and appears to
be an atherogenic lipoprotein phenotype independent of elevated LDL cholesterol
[84, 85]. Most patients with atherogenic dyslipidemia are insulin resistant [85, 86]
thus is often called as diabetic dyslipidemia. Many patients with atherogenic dyslip-
idemia also have an elevated serum total apolipoprotein B [87]. Together they rep-
resent a set of lipoprotein abnormalities besides elevated LDL cholesterol that
promote atherosclerosis. An elevated concentration of serum LDL cholesterol is a
major risk factor for CHD. In fact, some elevation of LDL cholesterol appears to be
necessary for initiation and progression of atherosclerosis. In population having
very low LDL cholesterol levels, clinical CHD is relatively rare, even when other
risk factors—hypertension, cigarette smoking, and diabetes—are common [88]. In
contrast, severe elevations in LDL cholesterol can produce full-blown atherosclero-
sis and premature CHD in complete absence of other risk factors.

In Indians, triglyceride/HDL ratio of 3 has been proposed to be used as a surro-
gate marker for small LDL particles as these are associated with both CAD and
diabetes [89]. Thrombus formation and dissolution of plaque are the most danger-
ous steps in CAD, resulting from the defect in various fibrinolytic and coagulation
factors. The fibrinolytic and coagulation cascade consisting of activators and inhibi-
tors play a major role in pathological mechanisms leading to CAD [90]. Finally,
studies have also documented significantly higher prevalence of atherogenic small,
dense LDL-C in Indians as compared to white Caucasians [91]. The higher
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prevalence of atherogenic dyslipidemia in Indians can be attributed to environmen-
tal as well as genetic factors [92]. Not only the prevalence of dyslipidemia is high
among Indians, it has been increasing steadily over past few decades. Degree of
dyslipidemia increases with increase in age in both genders. Female are more prone
to diabetic dyslipidemia and hence, have more risk of developing atherosclerosis
with increasing age [93].

2.6.3 Hypertension

Hypertension is a well-established major risk factor for cardiovascular disease
(CVD) and metabolic disorder [94]. Hypertension accounts for an estimated 54% of
all strokes and 47% of all ischemic heart disease events globally [95]. Various inves-
tigators [96, 97] have reported a positive association between insulin resistance and
hypertension suggesting elevated blood pressure to be listed among the components
of metabolic syndrome. A reasonable justification could be the role of insulin resis-
tance; its onset brings out clinical hypertension in a person who is genetically pre-
disposed to elevated blood pressure [98]. When hypertension coexists with overt
diabetes that it commonly does, the risk for CVD, including nephropathy, is doubly
increased. A systematic review on prevalence of HTN (hypertensionin India, for
studies published between 1969 and July 2011, reported a range between 13.9—
46.3% and 4.5-58.8% in urban and rural areas of India, respectively [99]. A region-
specific systematic review and meta-analysis in 2014 showed pooled prevalence of
hypertension for rural and urban north Indian population 14.5% (13.3-15.7) and
28.8% (26.9-30.8), east Indian population 31.7% (30.2-33.3) and 34.5% (32.6—
36.5), west Indian population 18.1% (16.9-19.2) and 35.8% (35.2-36.5) and south
Indian population 21.1% (20.1-22.0) and 31.8% (30.4-33.1), respectively conclud-
ing that about 33% urban and 25% rural Indians are hypertensive [100].

2.6.4 Elevated Plasma Glucose

Typically, after onset of insulin resistance for many years, fasting and postprandial
glucose levels are normal. As during this period, pancreatic pB-cells are able to
increase insulin secretion in response to insulin resistance and thereby maintain
normal plasma glucose levels. But hyperglycemia develops when insulin secretory
capacity declines and serum insulin falls to a level at which it cannot adequately
overcome peripheral insulin resistance. Not only does increased peripheral insulin
resistance promote hyperglycemia, but chronic overstimulation of pancreatic f cells
that is typical of insulin resistance, may impair the capacity to secrete insulin. But
in few individuals may be due to genetic factors insulin secretion reduces with
aging, and elevated glucose concentrations appear. Hyperglycemia, which is char-
acteristic of noninsulin-dependent diabetes, appears to be an independent risk factor
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for coronary artery disease. Thus, hyperglycemia resulting from prolonged insulin
resistance can be added to the list of mechanisms whereby insulin resistance
increases the risk for coronary artery disease [98]. The first abnormality in plasma
glucose in patients with insulin resistance is impaired fasting glucose (IFG) [fasting
plasma glucose (FPG) levels 100 mg/dl (5.6 mmol/l) to 125 mg/dl (6.9 mmol/l)], or
impaired glucose tolerance (IGT) [2-h values in oral glucose tolerance test (OGTT)
of 140 mg/dl (7.8 mmol/l) to 199 mg/dl (11.0 mmol/)] [101]. But further analyses
that assessed diabetic complication retinopathy, helped to inform a new diagnostic
cut point of >126 mg/dl (7.0 mmol/l) for FPG and confirmed the long-standing
diagnostic 2-h PG value of >200 mg/dl (11.1 mmol/l) because certain cross-
sectional epidemiologic studies demonstrated glycemic levels below that there was
little prevalent retinopathy and above that the prevalence of retinopathy increased in
an apparently linear fashion among the population [101].

Individuals with IFG and/or IGT have been referred to as having pre-diabetes,
indicating the relatively higher risk for future development of diabetes and its pres-
ence usually accompanied with long-standing insulin resistance. Several studies
[102, 103] display IFG as a risk factor for CVD; the degree of independence as a
risk factor, however, is uncertain, because IGF usually coexists with other compo-
nents of metabolic syndrome. Nonetheless, a patient with IFG must be considered
at risk for both CVD and type 2 diabetes. As already indicated, once categorical
hyperglycemia develops, it counts as an independent risk factor for CVD [94].

2.6.5 Inflammatory Mediators

There is increasing evidence that inflammatory processes and specific immune
mechanisms are involved in atherogenesis, and inflammatory markers are reported
to be higher among subjects with insulin resistance and diabetes [104]. Inflammation
is considered to be a part of insulin resistance syndrome [105], and this, at least
partly, explains the higher risk for CAD among diabetic subjects. Inflammatory
changes could take place near the rupture of plaque, leading to instability in fibrous
tissue in the plaque. One key inflammatory marker is C-reactive protein. C-reactive
protein is main human acute phase protein produced in liver that is an extremely
sensitive marker of systemic inflammation and tissue damage [107]. More recently,
Serum concentration of hs-CRP is a good biomarker of chronic low-grade inflam-
mation and is an established prognostic marker in acute coronary syndrome. Mild
elevations of C-reactive protein within the normal range have been observed in sub-
jects with confirmed atherosclerosis, impaired fasting glucose, impaired glucose
tolerance, insulin resistance, diabetes, and metabolic syndrome [106, 107]. Low-
grade systemic inflammation is associated with type 2 diabetes as indicated by ele-
vated high-sensitivity C-reactive protein levels in Indian population [108].
Furthermore, hsCRP predicts the risk of MetS, independent of obesity and insulin
resistance [109]. Elevated hsCRP level is again found to be associated with risk of
pre-diabetes (IFG and IGT) in Indians and is independent of effect of traditional risk
factors of hyperglycemia [110].
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Some observational studies showed that elevations in plasma C-reactive protein
are associated with increased incidence of diabetes and increased cardiovascular
risk [106, 111]. C-reactive protein levels seem to be higher in migrant Indians com-
pared to other ethnic groups [112]. CRP levels were 17% higher in Indians com-
pared with white Europeans. C-reactive protein also had a strong association with
cardiovascular risk factors like obesity, insulin resistance, and lipids [103]. Also,
hs-CRP is found to be related with silent myocardial ischemia, and might help to
detect silent myocardial ischemia in diabetic patients [113].

Besides CRP, studies on pro-inflammatory markers have revealed that cytokines
like tumor necrosis factor o (TNF- a) and interlukin-6 are also strongly associated
with CAD. In T2D, activation of inflammation results from obesity and insulin
resistance. Due to this a large number of inflammatory and pro-inflammatory cyto-
kines are released from adipose tissue [105, 114]. Adipocytes release cytokines
(TNF-a, IL-6, PA-1), adipokines (adiponectin and leptin) that are associated with
CVD. Among them adiponectin has anti- inflammatory role and hence protects
against atherosclerosis [114].

2.6.6 Homocysteine

Hyperhomocysteinaemia is associated with both micro- and macro-vascular dis-
ease, and with death in people with the condition [115]. Homocysteine hits hard in
people with diabetes and is known as an independent risk factor for atherosclerosis
[116]. Like many other vascular risk factors, it seems to be a stronger risk factor in
people with diabetes than in those without the condition. Several cross-sectional
and case control studies have pointed towards a clear correlation between total
serum homocysteine and the incidence of coronary, carotid, and peripheral vascular
disease [117]. Homocysteine can mediate the formation of cardiovascular disease
by several different mechanisms such as its adverse effects on vascular endothelium
and smooth muscle cells with resultant alterations in subclinical arterial structure
and function [118]. Given the high cardiovascular risk in diabetes, and the fact that
hyperhomocysteinaemia can easily and safely be improved by folic acid, people
with diabetes in particular should be considered for screening and treatment of
hyperhomo-cysteinaemia.

2.7 Approaches to Identify Genetic Factors for Diabetes

Strategies to search for genetic susceptibility factors such as candidate gene
approach and Genome wide association studies (GWAS) for type 2 diabetes and
diabetic complications have evolved over years with improved molecular technol-
ogy as well as better understanding of the genetic architecture. During earlier times
the approach mainly utilized linkage analysis in families with clustering of cases,
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and examined the co-segregation of parts of the genome (marked by microsatellite
markers) with the disease of interest such as diabetic complications. Identification
of linked loci found through linkage analysis is usually followed up by fine-map-
ping of the confirmed loci and examining candidate genes within that linked region
in functional studies. Earlier candidate gene studies rely on prior knowledge and
understanding of pathogenesis of diabetic complications to look for an association
between genetic variants in genes implicated in these pathways and presence of
diabetic complications. Although a large number of candidate-gene association
studies have been published, many of these studies have been plagued by relative
lack of replication for reported association. More recently, publication of the
HapMap and advances in manufacturing of genotyping arrays have made possible a
hypothesis-free approach utilizing genome—wide association studies (GWAS).
GWAS have been highly successful globally in identification of common genetic
variants for complex diseases, and in case of type 2 diabetes, have led to identifica-
tion of over 100 genetic variants [119], including a study in Indian population sug-
gesting that common susceptibility variants for T2D are largely the same across
population and also revealed a newly identified population-specific locus (2q21
mapped toTMEM163) thus providing further insights into genetic architecture and
etiology of T2D [120].

This approach is now also beginning to bear fruit on search for genetic factors for
diabetic complications. There are also ongoing studies using other technologies,
such as next-generation sequencing, and relative merits of different techniques in
discovery process will partly depend on the frequency and effect size of the risk
alleles being sought.

For candidate gene analysis, candidate genes of known sequence and locations
are identified that may be involved in disease pathogenesis and these are often
selected on basis of their physiological functions. In contrast, genome-wide screens
are more powerful approach that can be used to screen whole human genome for
gene linkage or association with a disease without making any assumptions regard-
ing disease pathogenesis [121, 122]. These types of approaches have been used
successfully to identify susceptibility genetic loci for diabetic cardiovascular com-
plications (DCC). Genetic linkage analysis often consists of following steps: iden-
tifying linked loci, confirming linked loci in another set of independent population,
fine mapping of confirmed loci and then testing genes in the linked region in func-
tional studies [123].

2.8 Genetics of Type 2 Diabetes

There is strong evidence for a genetic component of T2D risk. First, the observation
of a wide range of diabetes prevalence in different ethnic groups, from very low
levels of around 1% in some population, such as tribes of Mapuche Indians or
Chinese that live in rural areas, to extremely high levels, as found in Nauru and
Pima Indians in Arizona [124]. A part of this ethnic variability can be attributed to



2 Genetics of Vascular Disease in Diabetes 41

non-genetic environmental and cultural factors. However, the observation that dis-
ease prevalence varies substantially among ethnic groups who share same environ-
ment, supports the hypothesis that genetic factors contribute to disease predisposition
[125]. Familial aggregation studies that compared the disease prevalence within
family members of a proband according to that expected in general population
showed the importance of the genetic factors. A greater prevalence in family mem-
bers is thought to be due to an increased number of genes shared among them,
including genes that play a role in disease predisposition [125]. According to
Swedish registry that recorded 21,004 twins born between 1886 and 1925 and
examined major independent variable, age at death from CHD there is a 13.4-fold
increase in relative hazard of CHD death. Twin studies clearly show that genes play
a major role. They do not isolate which genes are involved in CHD susceptibility,
but this methodology is very powerful for assessing the presence of genetic factors
[126].

T2D occurs more frequently among individuals who have first-degree relatives
with diabetes: data from the Framingham Offspring Study reveal that children of
one parent with T2D have a 3.5 times greater risk of developing the disease com-
pared with an individual from the general population, and 6.1 times, when both
parents have T2D [127]. The Isfahan Diabetes Prevention Study found a 10.3%
higher diabetes prevalence among first-degree relatives of T2D patients compared
with 6.0% for a control population of the same age [128]. Also, there is significant
concordance in twin studies [129]. In addition, studies conducted in past few years
have reported that the incidence of T2DM in Indian people is among the highest in
the world, exceeded only by some isolated and homogenous population such as
Pima Indian people and Pacific Islanders of Nauru [130].

Several lines of evidences suggest that genetic factors might be implicated in
heritability of diabetic microvascular, as well as macrovascular complications. An
estimate of heritability for ischemic heart disease in diabetes is approximately 50%
[131], whereas a heritability estimate of carotid intima-medial thickness, a well-
validated marker of subclinical atherosclerosis, was reported to be 0.41 in type 2
diabetes [132]. Collectively, these and earlier studies support a role for genetic fac-
tors in pathogenesis of both diabetic microvascular and macrovascular
complications.

2.8.1 Current Status in Indian Population

There is significantly higher genetic diversity within India, compared with Europe
and East Asia [133] due to diverse caste and tribal groups, with intergroup gene flow
impeded by a hierarchical caste system, geographical dispersal, and subdivision of
the country into different linguistic regions [134]. Well powered GWASs had pro-
vided novel insights into genetic effects underlying T2D susceptibility in highly
differentiated Indian population. The first T2D-GWAS ever conducted exclusively
in 12,535 Northern- Indians revealed a new type 2 diabetes associated locus at 2q21,
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with the lead signal being rs6723108 (odds ratio 1.31; P = 3.3 x 10-9) [120].
Imputation analysis refined the signal to rs998451 (odds ratio 1.56; P=6.3 x 10—12)
within TMEM 163 that encodes a probable vesicular transporter in nerve terminals.
TMEM163 variants also showed association with decreased fasting plasma insulin
and homeostatic model assessment of insulin resistance, indicating a plausible
effect through impaired insulin secretion. Forty-nine of 56 previously reported sig-
nals showed consistency in direction with similar effect sizes in Indians and other
previous studies, and 25 of them were also found to be associated (P < 0.05) to
T2D. Known loci and the newly identified 2q21 locus altogether explained 7.65%
variance in the risk of T2D in Indians [120]. The associated single-nucleotide poly-
morphisms (SNPs) also showed association with fasting plasma insulin levels in
same population but were not associated with T2D in a large European sample,
potentially due to differences in risk allele frequency or linkage disequilibrium. A
novel locus at 13q12 in the SGCG gene (rs9552911, P = 1.82 x 10—8) was identified
as associated with T2D susceptibility in the GWAS and multistage meta-analysis
done in Punjabi Sikhs from Northern India. Thus, provided new information on
previously unknown regions associated with T2D and also demonstrated a putative
population-specific association that could lead to additional biological insights into
T2D pathogenesis that to in spite of low obesity rates, ~50% vegetarianism, and
strict tobacco abstinence [135]. A current study provided a strong evidence for inde-
pendent association between T2D and SNPs for in TCF7L2 (rs7903146) and
SLC30A8 (rs13266634). MDR analysis showed statistically significant interactions
among four SNPs of SLC30AS8(rs13266634), IGF2BP2 (rs4402960), HHEX
(rs1111875) and CDKN2A (rs10811661) genes demonstrating that independently
non-significant variants may interact with one another resulting in increased disease
susceptibility in Indian population [136].

Also, replication of Type 2 Diabetes candidate genes variations in three geo-
graphically unrelated Indian population groups has been conducted. The study sug-
gests TCF7L2, HHEX, IDE, ENPPl and FTO as commonly associated T2D
susceptibility genes in the three Indian populations. Interaction analyses have shown
an increased effect in associations suggesting the importance of gene and pathway
based interaction between multiple functionally important genes [137].

2.9 Link Between CAD and Diabetes

T2D and CAD share remarkable relationship in their pathogenesis, due to co-
existence of common effectors. Thus, hypothetically all candidate genes for diabe-
tes are potential candidate genes for CAD. There are numerous studies on association
of various genes with T2D but it is not clear that how many of them are responsible
for increased CAD risk. Apart from genes related to insulin resistance and hyper-
glycemia, genes from other pathways are also important as various metabolic
derangements are common between both conditions. Patients with diabetes have
approximately two to fourfold increased risk of coronary heart diseases [72]. The
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association between diabetes and incident of cardiovascular disease was most nota-
ble in a meta-analysis, for peripheral artery disease, ischemic stroke, stable angina,
heart failure and coronary heart disease [138].

In United Kingdom Prospective Diabetes Study, elevated low-density lipoprotein
cholesterol, reduced high-density lipoprotein (HDL) cholesterol, elevated triglycer-
ide, glycated hemoglobin, systolic blood pressure, fasting blood glucose and smok-
ing are main clinical risk factors found associated with the development of CHD in
diabetes [139]. Though in studies from Asia, the major predictors of CHD in diabe-
tes among Hong Kong Chinese were increasing age, male sex, smoking status, dura-
tion of diabetes, lowered estimated glomerular filtration rate (eGFR), increasing
albuminuria and non-HDL cholesterol [140]. In Japanese Diabetes Complications
Study, the main predictors for cardiovascular complications among patients with
type 2 diabetes were identified as non-HDL cholesterol, total cholesterol/HDL-
cholesterol ratio and low-density lipoprotein cholesterol [141], and elevated triglyc-
eride was noted to be a particularly important risk factor for incident CHD [142].

Although hyperglycemia plays an important role in development of vascular com-
plications in patients with both type 1 and type 2 diabetes but recent insights from
clinical trials suggest a different risk—benefit ratio with regard to the role of intensive
glucose lowering and the prevention of cardiovascular complications just proving the
link. Meta-analysis of glucose-lowering trials in type 2 diabetes suggested a small
reduction in CHD with intensive glucose lowering [143], and beneficial effects of
glucose lowering on CHD might only emerge after a prolonged period of follow up
[144]. Recent data from Look AHEAD Trial, whereby participants were randomized
to intensive lifestyle intervention group had 31% lower incidence of chronic kidney
disease (CKD), but no reduction in CHD, suggest that although strategies to reduce
cardio-metabolic risk factors are important, the benefit in reducing cardiovascular
complications could take a long time to occur [145, 146]. Many genes have been
studied comprehensively both in diabetes and cardiovascular diseases across the
globe to find out the genetic relationship between coronary artery diseases and Type
2 diabetes based on candidate gene analysis. They are as follows:

2.9.1 PPARy

Peroxisome proliferator activated receptor gamma (PPARy or PPARG) present on
3p25 is a transcription factor. It is highly expressed in adipose tissue and macro-
phages, where it is involved in adipocyte differentiation, triglyceride synthesis, glu-
cose homeostasis and fatty acid trapping [147]. It also regulates the release of
various adipokines including tumour necrosis factor «, angiotensinogen (AGT),
interleukin- 6(IL6) and plasminogen activator inhibitor 1(PA-1) [148]. It also has an
effect on vasculature by its expression in endothelial cells (decrease in endothelin 1,
lox-1, NOrelease), vascular smooth muscle cells (decrease in MMP-9), Macrophages
(increase in cholesterol efflux, decrease in cytokines and matrix metalloproteinases:
MMP-9), and T cells (decrease of cytokines) [149]. Prol2Ala and C1431T are most
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extensively studied polymorphisms in various population with conflicting reports
for their association with T2D. Ala 12 allele for Pro12Ala polymorphism was found
to confer protection in Japanese [150], Iranian [151], Danish [152] and American
Caucasian [153] population. Risk reduction was highest in Asia with association of
Prol2Ala being the strongest predictor of T2D as confirmed in Indian Sikhs [154].
CI1431T has been studied less extensively in relation with T2D and metabolic syn-
drome. T allele has been reportedly associated with reduced risk of CAD [155].

2.9.2 TCF7L2

TCF7L2 (Transcription factor 7 like 2) is one of the most important candidate genes
present on chromosome 10g25.3. It plays a major role in blood-glucose homeostasis
and P cell function. It is expressed in various tissues including placenta, lung, brain,
kidney, pancreas, heart and adipocytes and has a very important role in Wnt signal-
ling pathway [156]. Strong association of TCF7L2 with T2DM was initially found in
Icelandic population which has been subsequently replicated in Danish, U.S Indian
population [157]. The three TCF7L2 SNPs (rs7390146, rs12255372 and rs11196205)
that were strongly associated with T2DM in this study were consistently replicated
in along with other SNPs of TCF7L2, in a huge meta-analysis [158] and various
European and non-European population (including Indian and Japanese population)
[159-161]. Association of TCF7L2 with type 2 diabetes to the largest effect size was
confirmed in a study on Indian population [162]. Consistent with these observations,
a strong association of TCF7L2 with HOMA-B and a nominal association with FPG
and 2-h PPG confirmed the physiological role of TCF7L2 in glucose homeostasis
[162]. Further combined analysis of Indo-European samples revealed strongest sig-
nal at rs7903146 of TCF7L2 [120]. Polymorphisms rs7903146 and rs680 were found
independently to be significantly associated with T2DM risk in Indian adults [163].

In Indian population the replicative studies of this candidate gene were confined
to Pune, Punjab, Haryana, Himachal Pradesh, Delhi, Jammu and Kashmir and
Chennai and showed strong association of TCF7L2 with T2DM, but given vast eth-
nic, cultural, geographic, genetic heterogeneity, large population size and relatively
high prevalence of diabetes, very small and insignificant number/proportion of
Indian population were hitherto studied [160, 162, 164—166]. Polymorphisms in
TCF7L2 and near CDKN2A/B genes seem to be of great importance since they
appear to modulate both conditions T2D and CAD, and they are not necessarily
related to insulinemia, or hyperglycemia, for CAD development [167].

2.9.3 ACE (Angiotensin 1 Converting Enzyme)

ACE gene is located on long arm of chromosome 17q23. It is a zinc metallopepti-
dase distributed widely on surface of endothelial and epithelial cells and has a very
important role in rennin-angiotensin system, making it a strong candidate gene for
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CAD and T2D both. Among all variants in this gene insertion (I)/deletion (D) [1/D]
polymorphism has been extensively studied in context of T2D. In a meta-analysis,
including 24 studies in 15,166 subjects, the D allele was associated with 14%
increased risk of T2D relative to I variant [168]. When subgroup analysis was done,
a significant association in Caucasian and East Asians was observed, however lack
of association was observed in Turkish Groups. In another meta- analysis, of 14
studies it was found that presence of D allele conferred a significant increased risk
for T2D [169]. Indian studies, reported a strong association of ACE gene polymor-
phisms with T2DM in northern India [170] and southern India [171, 172].

294 TNF a

It is a pro-inflammatory cytokine, present on chromosomal location 6p21.3 within
the MHC region [173]. It has a very important role in lipid metabolism and is widely
implicated in insulin resistance as it is involved in down regulation of genes involved
in insulin signalling, induction of elevation of free fatty acids and negative regula-
tion of PPAR y [174]. Among reported genetic variations in TNF o promoter region
such as —238, —308, —857 and —1,031, the —308 and —238 polymorphisms have
been extensively studied. Most of the meta- analysis failed to show any significant
association with T2D [175, 176]. But a TNF-induced protein 3 (TNFAIP3, a nega-
tive regulator of NFkB) polymorphism was identified to modulate the risk for coro-
nary artery disease in type 2 diabetics [177]. In Indian population also the variants
of type 2 receptor for TNFa (TNFR2) are not associated with T2D. Hence conclud-
ing that TNFRSF 1B (encoding TNFR?2) gene though being an important biological
candidate, the polymorphisms studied are not a major contributing factor to the
genetic risk of type 2 diabetes, its associated peripheral neuropathy and hyperten-
sion and related metabolic traits in North Indians [178] and Indo-Europeans from
North India [179].

2.9.5 Adiponectin

It is one of the most abundant proteins derived from adipose tissue and encoded by
adiponectin gene (ADIPQQ) located on chromosome 3q27. It has protective role in
T2D and CVD as it has anti-atherogenic, anti-inflammatory and insulin sensitizing
properties. The serum concentrations of adiponectin are heritable [180, 181] thus,
making it a strong candidate gene for T2D and CAD. The in vitro bioactivity of
APN as an anti-inflammatory adipocytokine in atherosclerotic process is supported
by increase of total APN or globular APN that attenuates progression of atheroscle-
rosis in apoE knockout mice [182, 183]. Further, in a few reports APN knockout
mice showed enhanced cardiac fibrosis following permanent ligation of left anterior
descending artery or angiotensin II infusion [184, 185]. A study on role of 45 T/G
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polymorphism [186] revealed that individuals with TG/GG genotype were at nearly
fourfold increased risk of T2D in accordance with reported results in Iranian popu-
lation [187]. Furthermore, the studies on association of Adiponectin gene in CAD
indicate association of SNP 45 T>G with increased risk and +276 G>T with
decreased risk.

2.9.6 IRSI

Insulin receptor substrate-1(IRS-1) is located on 2q36 and is found to have an
important role in insulin action in skeletal muscle, adipose tissue and pancreatic f3
cells [188]. It has also been found to be associated with regulation of insulin secre-
tion by pancreatic f cell [189]. Further investigations in 2013 explained whether
genetic variation at 2q36.3 locus might also affect CHD risk via subclinical athero-
sclerosis in a sample of 2,740 participants in Framingham Heart Study [190].
Interestingly, compelling evidence exists for the association between cardiovascular
events and the candidate functional variant /RS/G972R (rs1801278) [191].

2.9.7 Other Genes

Apart from the above mentioned major candidate genes of CAD and T2D, some
other genes that are found to be widely associated with T2D have also been studied
as candidate genes for CAD. These are Calpainl0, FAB4, GST, IL-6, IL-10 and
Paraoxonase. Paraoxonase is a glycoprotein; coded for by the PON set of genes—
PONI, PON2 and PON3—Iocated on the long arm of chromosome 7 in humans. It
is bound to high-density lipoproteins (HDL) that prevents oxidative modification of
low-density lipoproteins (LDL) in vitro was identified as a genetic risk factor for
cardiovascular disease (CVD) [192]. A strong association was found between
Met54Leu polymorphism of PON1 and diabetic retinopathy in adolescents with
Type 1 diabetes [193]. Genetic variants in calpain-10 might affect insulin sensitivity
[194], or insulin secretion [195], or relation between the two [196]. Also, single
nucleotide polymorphism (SNP) in the gene for calpain-10 (CAPNI0), a non-
lysosomal cysteine protease of unknown function, has been demonstrated to be
related to insulin resistance and subclinical atherosclerosis as defined by carotid
intimal thickening [197]. Genetic variation near or in P2-promoter of MODY-1 gene
or HNF4a gene (chromosome 20q) has been proposed to relate to common type 2
diabetes [198]. Also, for the first time HNF4a genetic variants were found to be
associated with MetS and metabolic parameters in French Canadian children and
adolescents suggesting HNF4a as an early marker for the risk of developing type 2
diabetes mellitus [199]. However, there is scarcity of reports for their association
with CAD.
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Furthermore, potential biomarkers such as CD36, PPAR-y and YKL-40 may also
play significant roles in insulin resistance and atherosclerosis in patients with
T2DM. CD36 also known as Fatty Acid Translocase (FAT) is a multi-ligand scaven-
ger receptor present on the surface of monocyte/macrophages. It binds and endocy-
toses oxidized LDL, and is implicated in formation of foam cells. Thus, CD36 plays
a critical role in the development of atherosclerotic lesions [200]. Expression of
scavenger receptor CD36 is increased in presence of peroxisome proliferator acti-
vated receptor y (PPAR-y) [201]. It is well documented that patients with coronary
artery disease (CAD) express significantly higher levels of both PPAR-y protein
(approximately tenfold) and mRNA (approximately 60-fold) compared to healthy
volunteers [202]. Several studies had showed that high levels of CD36 present in
pre-diabetics, overt diabetics, polycystic ovary syndrome (PCOS), and impaired
glucose tolerance strongly suggest that CD36 is involved in diabetes [203] and ath-
erosclerosis pathogenesis and acts as inflammation biomarker [200, 204].

YKL-40 is a novel biomarker expressed and secreted by macrophages. YKL-40
mRNA expression is highly up-regulated on macrophages specifically those that
infiltrate deeper in atherosclerotic lesion [205]. Recent studies have reported that
elevated levels of plasma YKL-40 are proportional with HOMA-IR in T2DM sub-
jects. This indicates that YKL-40 shows some correlation with insulin resistance
and dyslipidemia.

Apart from these a-hydroxybutyrate (a-HB) [206], leptin [207], resistin [208],
interleukin-18 [209], retinol binding protein-4 (RBP4) [210], Chemerin [211] are
investigated potential biomarkers for Insulin Resistance in T2DM Patients with
Coronary Artery Disease. Independently of genome wide association studies, the
haptoglobin gene (HP) has been shown to play a role in diabetic atherosclerosis [212].

2.10 Genetic Factors for Coronary Heart Diseases in Type 1
Diabetes

There are relatively few studies that have investigated the role of genetic factors in
development of CHD in type | diabetes. An early study that investigated the role of
two functional polymorphisms in promoter of RAGE gene (—429T/C and —374T/
A) and one in advanced glycation end-products binding domain (G82S) in 996
Finnish type 1 diabetic patients noted a reduced risk of coronary heart disease and
myocardial infarction, as well as peripheral vascular disease in patients with AA
genotype of —374 T/A polymorphism compared with those with TT+ TA genotype
[213]. Another candidate gene study that examined the roles of genetic variants in
renin—angiotensin system found that carriers of TT genotype in angiotensinogen
(AGT) gene M235T polymorphism, the insertion/deletion (I/D) polymorphism at
angiotensin converting enzyme (ACE) gene and AA/AC genotype in angiotensin
type 1 receptor are at a significantly higher risk of progression of coronary artery
calcification [214]. Many efforts are going on to utilize GWAS to advance the
understanding of genetic factors underlying CHD in type 1 diabetes.
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2.11 Genetic Factors for Coronary Heart Diseases in Type 2
Diabetes

2.11.1 Linkage Studies

Previous linkage studies have identified a few linked regions for cardiovascular
disease-related traits in type 2 diabetes, including linkage signal in chromosome
19q region with elevated levels of triglyceride [215] and total cholesterol [216]. In
Diabetes Heart Study, linkage of a locus on chromosome 3 with CVD in type 2
diabetes was noted [217].

2.11.2 Candidate Gene Studies

Several candidate-gene studies have been conducted exploring the link between the
renin—angiotensin system and the adiponectin pathway. The D allele of ACE gene
was first shown to be associated with increased risk of CHD in type 2 diabetes back
in 1994 [218], with several studies also supporting this association, though a study
in Chinese did not observe an association between the D allele and later risk of CHD
in a prospective cohort [219]. Adiponectin secreted by adipocytes has anti-
atherogenic effect, and is believed to be an important link between obesity and
cardiovascular diseases [220]. In a meta-analysis of four studies, with 827 type 2
diabetes cases with CVD and 1,887 CVD-free control participants, +276T homozy-
gote was significantly associated with a 45% reduction in the risk of CVD [221].
Several studies have examined the role of peroxisome proliferator-activator receptor
y (Prol2Ala) polymorphism in CHD risk, though results appear inconclusive [222,
223]. In a study on prospective cohort of Chinese patients with type 2 diabetes, vari-
ants in SCYA11 (eotaxin), PON2 (paroxonase 2) and ADRB3 (f3-adrenergic recep-
tor) were independently associated with incident cardiac events including CHD
and/or heart failure [224]. Variants in many candidate genes were extensively stud-
ied over past two decades, such as Gly972Arg polymorphism in IRS1, Gly1057Asp
polymorphism in IRS2, Trp64Arg polymorphism in 33 adrenergic receptor, —308
G/A promoter variant in TNF a, or variants in adiponectin gene.

Many candidate association studies have been completed to identify genes linked
to cardiovascular disease (CVD) and/or diabetes mellitus and some gene associa-
tions have been consistently reported [225]. Such as, polymorphisms in genes
related to lipid metabolism or fibrinolysis, including APOE, APOB, APOC, PON,
CETP, and PAIl, have displayed increased risk of ischemic vascular disease in dia-
betic patients. Further, it is known that lipid factors and their oxidation effect the
progression of diabetic metabolic syndrome and CVD. Also APOE, APOB, or
APOC gene polymorphisms have been reported to associate with macrovascular
complications of diabetes [131, 226], although these results have yet to be
replicated.
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Interestingly, an association between polymorphisms in Paraoxonase that is
associated with high density lipoprotein (HDL) and risk of CVD has been consis-
tently described in patients with T2DM from different ethnic backgrounds [227-
230] and three polymorphisms (rs662, rs854560 and Q191R have been linked with
the risk of CVD in patients with T2DM [231-233].

Patients with diabetes carrying the G allele of the rs662 polymorphism have been
found to have more than doubled the risk of myocardial infarction (MI) than patients
with other alleles [231]. Furthermore, the Q191R polymorphism was previously
identified as an independent risk factor for CVD in patients with diabetes [233].
There is now a large body of evidences implicating this polymorphism as a genetic
determinant for risk of ischemic vascular disease in T2DM [231-233]. An evidence
of a weak association between rs662 and ischemic stroke risk, similar in magnitude
to the corresponding association of the variant with coronary disease has been found
[234].

CETP plays a key role in the metabolism of HDL that regulates uptake of choles-
terol by hepatocytes, and TagIB polymorphism of the CETP gene is a strong genetic
predictor of macrovascular complications in type 2 diabetes [235]. Interestingly, the
CETP rs1800774 polymorphism has been reported to associate with macrovascular
disease in male T2DM patients independently of lipid levels [236-238]. It is well
known that PAI-1 is main circulating inhibitor of fibrinolysis that causes thrombus
dissolution. A single base insertion/ deletion polymorphism of rs1799889 in pro-
moter of PAI-1 gene can partially determine the levels of PAI-1 [239] and a possible
association between this polymorphism and risk of CVD in patients with T2DM has
been reviewed in a meta-analysis [240]. In addition, two studies show apparently
contradictory results regarding rs2227631 (—455G/A) polymorphism of fibrinogen
gene. In one study, this allele was found to be associated with higher levels of fibrin-
ogen and an increased risk of coronary disease in Chinese diabetic patients [241].
However, a second study conducted in an English T2DM population suggested that
G allele was associated with an increased risk of coronary artery disease (CAD),
without affecting circulating fibrinogen levels [242].

2.11.3 GWAS for Coronary Heart Diseases in Type 2 Diabetes

Results from several GWAS for CHD conducted in general population showed a
potential relation to diabetic subjects [243, 244]. Twelve loci with genome-wide
significance have been found to associate with either CAD or MI in general popula-
tion. Two of 12 genes—LDLR and PCSK9 are mutated in Mendelian forms of
hypercholesterolemia [245], as are genes in SLC22A3-LPAL2-LPA cluster, which
includes the gene for atherogenic lipoprotein (Lp)(a). Moreover, variations at chro-
mosome 9p21 have been found to significantly associate with CVD in general popu-
lation [246, 247]. A previous, smaller study in patients with T2DM concluded that
the 9p21 signal had a more marked influence on CAD risk among those with poor
diabetic control [248]. For example, haplotype analyses have found an interesting
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CVD association with a group of SNPs residing in a 60 kb region that includes
ANRIL [249, 250]. A decreased risk associated with long to short variant ratio has
been reported for this allele [251, 252]. ANRIL links to the CDKN2A and CDKN2B
genes that are involved in controlled cell proliferation, cell aging and apoptosis
[253, 254]. It is thought that several others of these 12 genes identified in general
population can also influence the risk of CAD in diabetic population [255]. In addi-
tion, the chromosome 6p24 locus, which includes the PHACTR1 gene, has been
found to promote CAD with a strong effect, second only to that of 9p21 locus [256].
Interestingly, receptor for advanced glycation end products (RAGE) gene has been
found to associate with both diabetic nephropathy (DN) and diabetic retinopathy
(DR); advanced glycation end products (AGE) gene associate with both diabetic
nephropathy (DN) and diabetic cardiovascular complications (DCC), and vascular
endothelial growth factor (VEGF) gene associate with diabetic retinopathy (DR)
and diabetic cardiovascular complications (DCC). Unfortunately, no shared gene
has been found to associate with the three complications.

First GWAS in patients with T2D of 1,517 CHD cases and 2,671 CHD controls
were included in a three-stage genome-wide analysis, including subjects from the
Nurses” Health Study and Health Professionals Follow-up Study, the Joslin Heart
Study and the Gargano Heart Study. One novel variant in the vicinity of gluta-
mateammonia ligase (GLUL) gene (rs10911021) associated with CHD at genome
wide significance level was identified showing a significant association in all three
stages and also genome-wide significance when all three stages were combined,
with combined odds ratio (OR) 1.36 (95% confidence interval [CI] 1.22-1.51)
[257]. Furthermore, carriers of the risk allele of GLUL showed decreased expres-
sion of the gene in endothelial cells and demonstrated lower plasma pyroglutamic-
to glytamic acid ratio suggesting gamma-glytamic cycle as a mechanism by which
variants the GLUL gene contribute to the risk for CHD [257]. Intergenic variants
between GLUL and ZNF648 have been associated with CAD in patients with
T2DM and an interaction with T2DM status has also been reported [257].
Preliminary findings obtained by combining data from SUMMIT and
CARDIoGRAMplusC4D have provided early evidence that the effects of known
variants for CAD at chromosome 9p21 near CDKN2A and at ADAMTS7 showed
evidence for interaction with diabetes status [258]. One of the strongest signals that
influences predisposition to PAD, first identified in samples not stratified for diabe-
tes status, maps near CHRNA3 locus encoding one of several nicotinic receptors
and is thought to act through its impact on smoking behavior [259]. The same vari-
ant is associated with smoking status and quantity [259]. Some evidence suggests
that association between PAD and variants near CHRNA3 is less marked in subjects
with diabetes [258]. One interpretation is that the potent direct impact of diabetes on
the risk of PAD dilutes the indirect effect of CHRNA3 variants whose effects are
mediated by differences in smoking behavior.

Interestingly, no association was found between rs10911021 and CHD for 737
non- diabetic CHD cases and 1,637 non-diabetic CHD-negative controls. This was
consistent with the results of the interaction analysis, suggesting that the association
between this variant and CHD appeared specific for type 2 diabetes patients.
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Furthermore, among 22,233 CHD cases and 64,762 controls from general popula-
tion included in the Coronary ARtery DIsease Genome-Wide Replication and Meta-
Analysis (CARDIOGRAM) Study, this variant showed only a nominal significant
association with CHD (OR 1.04, 95% CI 1.01-1.07, P = 0.01) and likely represent-
ing an association driven by small proportion of patients with type 2 diabetes
included in CARDIOGRAM [257].

The variant was not associated with the risk of type 2 diabetes or insulin resis-
tance, but instead was associated with plasma markers of glutamic acid metabolism
and the y-glutamyl cycle, thereby providing novel insights into the pathogenesis of
CHD in patients with type 2 diabetes. Whether this variant is also associated with
the risk of CHD in type 1 diabetes mellitus remains to be established.

A peculiar possibility is the relation of diabetes to imprinted genes—i.e., genes
for which expression varies depending on the sex of the transmitting parent. The
class III allele of the variable number tandem repeat near the insulin gene (Insulin
gene variable number tandem repeat: chromosome 11p15) might relate to type 2
diabetes [260]. The class III allele is associated with decreased amounts of insulin
mRNA. Only paternally transmitted class III alleles were found to be associated
with diabetes in one study [261].

Interestingly, as per joint effort undertaken by CARDIoGRAM-CAD Consortium
in 2013 the number of loci known to be associated with coronary heart disease at
genome-wide significance level have reached 45 [262]. Also this study confirmed
previous findings and discovered 15 new genome-wide significant loci and tested
them by a thorough association analysis with traditional CHD risk factors [250,
263]. Out of that twelve loci (APOB, ABCG5-ABCGS8, PCSK9, SORT1, ABO,
LDLR, APOE and LPA) showed genome-wide significance for association with at
least one lipid trait in the expected direction. Still, the overall spectrum of 65 T2D
and 45 CHD genome-wide associated common variants explain only a small frac-
tion (~10% each) of disease heritability, thus leaving a large unfilled space under the
umbrella of the common variant/common disease hypothesis [264]. So the need of
the hour is to fill in some unfilled spaces under the umbrella of the genetic basis of
T2D and CHD by identifying less common or regulatory variants under these
diseases. Figure 2.2 shows the metabolic pathways and genes involved in pathogen-
esis of diabetic complications.

In the Indian scenario as soon as National Human Genome Research Institute’s
GWAS database was made available, validation studies were initiated for most rep-
licating and significant GWAS-identified SNPs specific to these complex diseases
on Indians and Indian migrants living in the Western countries. The prominent find-
ings of GWAS such as association of TCF7L2 gene with T2DM and CDKN2A/2B
with both T2DM and CAD were replicated among them [265, 266]. However, some
of the major T2DM genes of GWAS such as IGF2BP2 and SLC30AS, consistently
replicated in other ethnic groups were not found to be associated with the disease in
South Indians while they were in the case of North Indians [267]. These results sug-
gest a lack of consistency in the pattern of association of disease-specific SNPs
among the ethnic groups, both within India and elsewhere. The unique genetic pre-
disposition toward complex diseases of Indians could be due to their unique genetic
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Fig. 2.2 Metabolic pathways and genes involved in the pathogenesis of coronary artery disease as
a complication in diabetes

constitution as suggested by an earlier study [268], which observed a common
MYBPC 25 bps deletion variant only in South Asians with chronic risk of heart
failure [268].

2.11.3.1 Insights from GWAS for CHD

Recent GWAS have identified more than 40 variants associated with coronary artery
disease [269, 270]. Among these, several regions appear to harbor variants that are
also associated with type 2 diabetes [271]. For example, in chromosome 9p21
region identified to be associated with CHD [272], the cell cycle genes CDKN2A
and CDKNZ2B have also been implicated in a GWAS for type 2 diabetes [273, 274].
In fact, in a genome search meta-analysis to look for shared genetic susceptibility
between type 2 diabetes, CHD and obesity, two loci in 9p21.1-a21.32 region were
identified to be shared by type 2 diabetes, CHD and obesity [273]. Other genetic
factors associated with CHD in general population, such as variants in PCSK9 have
also been found to be associated with CHD in type 2 diabetes [275].

Early replication studies of these GWAS-identified variants for CHD have sug-
gested heterogeneity in genetic effects among individuals with or without diabetes.
For example, it has been suggested that variants at the 9p21 locus have a larger
effect on risk of CHD in patients with type 2 diabetes (compared to subjects without
diabetes), particularly showing an interaction with poor glycemic control [248].
Furthermore, in a study in type 2 diabetes patients of variants associated with CHD
(in non-diabetic individuals), just 5 out of 15 variants from 12 loci were found to
show consistent association with CHD in type 2 diabetes. A genetic risk score
(GRS) >8 composed of risk variants at rs4977574 (CDKN2A/2B), rs12526453
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phosphatase and actin regulator 1 (PHACTR1), rs646776 cadherin EGF LAG
seven-pass G-type receptor 2/praline/serine-rich coiled-coil 1/sortilin 1 (CELSR2-
PSRCI1-SORTY1), rs2259816 hepatocyte nuclear factor 1 homeobox A (HNF1a) and
rs11206510 proprotein convertase subtilisin/kexin type 9 (PCSK9) were associated
with twofold increase in the risk of CHD in type 2 diabetes [275]. Another recent
study that examined a GRS consisting of 13 or 30 SNPs identified from GWAS for
CHD in general population noted an association between GRS score and prior car-
diovascular disease, coronary artery calcification, and cardiovascular mortality in a
cohort predominantly of African American descent [276].

Other than the SNPs mentioned above, SNPs from the following genes also
reached the significance levels required in GWAS: WD repeat domain 12 (WDR12),
LDL-receptor (LDLR), mitochondrial ribosomal protein S6/solute carrier family 5/
potassium voltage-gated channel subfamily E member 2 (MRPS6-SLC5A3-
KCNE2) [252], melanoma inhibitory activity family, member 3 (MIA3), chemo-
kine (C-X-C motif) ligand 12 (CXCL12) [244, 250, 252], Ras-related protein M
(MRAS) [243]. Also, two haplotypes from the SLC22A3-LPAL2-LPA gene cluster
are associated to CAD [277]. Interestingly, most genes discovered in GWAS, and
that appears to be involved with CAD, were not previously implicated in the etiol-
ogy of atherosclerosis. Notable exceptions are: LDLR, which codes for the LDL
receptor, PCSK9, which codes for a serine protease that is mutated in Mendelian
forms of hypercholesterolemia [244], and the SLC22A3-LPAL2-LPA cluster that
includes the gene for atherogenic lipoprotein Lp(a).

Several important insights have emerged from these studies. They highlighted
some important differences in the genetic factors associated with risk of CHD in
patients with diabetes compared to general population, although there is some
important overlap. Therefore, there is the need to carry out studies to identify sus-
ceptibility genes for CHD specifically among patients with type 2 diabetes in order
to identify susceptibility factors in diabetes, given the heterogeneity of effects when
compared with studies carried out in non-diabetic individuals.

2.12 Epigenetics and Diabetic Complications

Epigenetics refers to the study of heritable patterns of gene expression and subse-
quent phenotypic changes that occur without alterations in DNA sequence [278].
Gene-environment interactions may play an important role in many common human
diseases, such as diabetes and its complications, which might be due to epigenetic
changes [279]. It would be worthwhile to assess whether lifestyle modifications
such as exercise and healthy diets can reduce diabetic complications by altering
epigenetic marks. A study showed the beneficial effects of exercise on epigenetic
marks related to diabetes [280].

Epigenetic changes in chromatin that provides a crucial interface between genet-
ics and environment, such as DNA methylation and histone modifications, have
been linked to gene transcription [278]. Covalent marks on histones are preserved
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even after cell division and changes in activating or inactivating histone marks
represent a dynamic epigenetic mechanism by which glucose could influence
expression of potentially damaging genes in target tissues [281, 282]. Exposure of
cells to high levels of glucose can lead to epigenetic changes that affect the expres-
sion of genes and microRNAs leading to development of diabetic complications and
the concept of metabolic memory that refers to persistence of diabetic vascular
complications after glucose normalization [283]. Several studies have conferred
that metabolic memory of vascular complications can be pre-dominantly due to
harmful effects of hyperglycemia elucidated in cell culture and experimental animal
models [284, 285].

Changes in DNA methylation and PTMs of histones have been related to coro-
nary artery disease (CAD), heart failure, hypertrophic cardiomyopathy, dilated car-
diomyopathy, arrhythmias, and other cardiovascular pathologies in general
population [286]. Epigenetic modifications affect the expression of genes related to
the extracellular matrix, TGF— signalling pathway, and the renin—angiotensin sys-
tem in glomeruli that have been implicated in pathogenesis of Diabetic Kidney
Diseases (DKD) [287]. Also, there is evidence of hypermethylation of the UNC13B
promoter region in epithelial cells isolated from patients with TIDM [288]. In large
cohorts of patients that also include patients with diabetes miRNAs have been
proposed as potential prognostic biomarkers for CAD [289-291], implying its role
in diabetic CAD. For instance, miR-4513 rs2168518 polymorphism has been asso-
ciated with higher prevalence of traditional CV risk factors such as fasting glucose,
incidence of T2D, and poor survival of CAD patients [289]. Zampetaki et al.
reported that miR-126 was a strong predictor of myocardial infarction in a 10-year
follow-up of 832 patients [290]. Motawae et al. recently showed that miR-9 and
miR-370 were significantly elevated in patients with CAD and T2D versus patients
with diabetes or CAD separately [292]. Interestingly, miR-126 levels were low in
circulating endothelial microparticles of diabetic patients with CAD [293].

Experimental studies have suggested that Histone methyl transferases including
the activating Set7 and repressive Suv39hl1 are responsible for metabolic memory
as well has protective roles both for H3K9me3 and Suv39hl against pre-activated
state of diabetic vascular smooth muscle cells (VSMC) [294]. Dysregulation of
epigenetic histone modifications may be a major underlying mechanism for
metabolic memory and sustained pro-inflammatory phenotype of diabetic cells
[294]. A Finnish study has also suggested an association of an exonic SNP in
SUV39H1 histone methyltransferase gene with DR, and a trend toward an associa-
tion with Diabetic DN and CVD [295]. Additionally, histone acetyltransferases
(HATSs) and histone deacetylases (HDACs) have been implicated in regulation of
several key genes linked to diabetes and its complications [296].

Data on DNA methylation or histone acetylation in diabetic peripheral artery
disease (PAD) is lacking [297]. Nevertheless, the potential of miRNAs for the
diagnosis of PAD has recently been demonstrated. Initially, miR503 has been high-
lighted as a regulator of diabetic PAD in experimental studies as it is increased in
ischemic limb of diabetic mice [298]. Of late, 12 different circulating miRNAs were
identified and characterized in peripheral blood of patients with T2D and PAD
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[299]. Although these findings were replicated in two separate samples of patients,
the study was not designed to test the prognostic utility of the identified miRNAs in
a longitudinal follow-up of diabetic patients with atherosclerotic PAD [299].

Because epigenetic changes are potentially reversible in nature, combination
therapies with epigenetic drugs (epidrugs) [300] and antagomirs (miRNA inhibi-
tors) [284] could be considered to supplement the current treatments for complica-
tions. Conversely, there are key challenges also, as epigenetic patterns are cell
specific, data from heterogeneous tissue samples and biopsies could have problem-
atic interpretation. Furthermore, apart from hyperglycaemia, other factors associ-
ated with diabetes, including insulin resistance, obesity, dyslipidaemia, environment,
lifestyles and genetics, can work independently or co-operatively to also promote
epigenetic changes in various affected target tissues. Thus evaluation of epigeno-
types by epigenome-wide association studies (EWAS) can provide critical new
information about the pathogenesis of diabetic complications and metabolic mem-
ory that in turn could identify futuristic newer therapeutic modalities and diagnostic
biomarkers for early intervention.

2.13 Conclusions

Advancements in genotyping and DNA sequencing technologies have revolution-
ized the genetics of complex disorders by allowing identification of rare and com-
mon genetic variations that influence an individual’s risk for these diseases.
Worldwide, the high-throughput genomic approaches have resulted in the identifi-
cation of over 2600 associated common risk alleles in more than 350 different com-
plex traits [301]. Following the track investigations so far have identified a number
of genetic variants related with cardiovascular complications, diabetic nephropathy,
retinopathy and neuropathy, the number of variants associated with diabetic compli-
cations are rather limited compared with studies for genetic variants for type 2 dia-
betes or type 2 diabetes-related traits [119].This may be moderately related to
scarcity of large well-characterized prospective studies to expedite identification of
genetic variants for diabetic complications. The present GWAS approach to identify
genetic factors, although successful in identifying genetic polymorphisms with
association to disease of interest, are also limited by the incompetence to confer
causality because of difficulty in finding the causal functional variants. Re-sequencing
studies will help to identify functional variants within identified regions. Finally, the
need for larger sample size of well-phenotyped subjects and the current costs asso-
ciated with whole-genome genotyping or whole genome sequencing remain limita-
tions for genetic studies, though these are likely to become less of a barrier in near
future as sequencing costs are decreasing every day.

Additionally, a major limitation of genetic studies in diabetic complications
relate to different classifications used and complications relating to case ascertain-
ment. Diverse phenotypic criteria have been used for classification and diagnosis of
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diabetic complications of coronary artery diseases, resulting in failure to differentiate
between associated phenotypes and actual disease.

Though the potential source of variable findings is gene-gene or gene-environment
interactions that differ between population but at the same time a better understand-
ing of complex mechanisms like (Gene- gene, Gene- environment interaction)
would give a clear picture of common variants in T2D and CAD [167]. Because if
the effect of a variant were only manifest in population with a particular genetic or
environmental background, then association would only be seen in population or
subgroups with the appropriate genetic or environmental characteristics. This expla-
nation is commonly invoked to explain differing results of association studies but is
less frequently supported by direct evidences. Given the interrelationship between
diabetes and cardiovascular complications, future genetic studies should also
consider the potential overlap between these in terms of their underlying pathogenesis.
Future studies utilizing trans-ethnic mapping might also help to narrow down func-
tional variants within candidate gene regions identified through GWAS, as shown
by the recent success utilizing this approach in studies of genetic variants for type 2
diabetes [302, 303].

Dissecting the precise functional role of these genetic factors in manifestation of
complex diseases would help in developing better disease management strategies.
Presently, much of the interest surrounding genetic association studies centers
on the potential clinical application of polymorphisms that serve as markers for
disease. This will further determine crucial genotypes accurately and predicting
future health thus reducing the burden of diabetic complications.
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Chapter 3
Vascular Remodeling in Diabetes Mellitus

Srikanth Vallurupalli and Jawahar L. Mehta

Abstract Vascular complications of diabetes are a major source of morbidity and
mortality. Diabetes induces vascular remodeling through various mediators and
multiple pathways resulting in profound changes in the structure and function of all
layers of the arterial wall. Vascular remodeling causes endothelial dysfunction,
increased extracellular matrix formation, vascular smooth muscle cell proliferation
and vascular calcification. This results in reduced vascular compliance and reduced
perfusion while promoting atherosclerosis, a closely related complication. Despite
the ubiquity of diabetes, precise knowledge of how diabetes causes these changes
remains unknown. This remains a major obstacle to the development of targeted
therapies to prevent vascular remodeling and its associated clinical complications.

Keywords Diabetes mellitus * Vascular remodeling * Oxidative stress e Nitric
oxide synthase * Endothelial dysfunction ¢ Vascular smooth muscle cell * Vascular
calcification

3.1 Introduction

Cardiovascular disease is the leading cause of death in patients with diabetes mel-
litus (DM). The presence of DM is associated with a fourfold increase in the inci-
dence of coronary artery disease, a tenfold increase in peripheral vascular disease,
and a three to fourfold higher mortality rate [1]. Accordingly, diabetes mellitusboth
type I and II are considered coronary artery disease equivalent. The vascular effects
of DM are seen in many organs including the brain, mesentery and kidney. The
effects of diabetes on the vasculature starts with endothelial dysfunction and lead to
changes in the structure of large and small blood vessels, a change which is referred
to as vascular remodeling(VRM). While VRM shares some common pathways with
atherosclerosis, VRM and atherosclerosis are interlinked yet separate processes.
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Despite the high incidence of vascular disease in DM, not all patients with DM
develop vascular disease despite exposure to the same metabolic milieu. Genetic
and epigenetic factors play an important though as yet undefined role in DM induced
VRM. For example, in the 50 year medalist study, many survivors of 50 years of
DM type 1 did not show evidence of vascular disease suggesting that metabolic fac-
tors alone cannot explain the pathogenesis of vascular disease [2]. It also under-
scores the fact that our knowledge of diabetes and its impact on vascular disease
remains incomplete.

Despite the ubiquity of DM and its vascular complications, the mechanisms of
DM induced vascular changes remain poorly understood. This is reflected in the
lack of targeted therapies to fight DM induced vascular disease. In this chapter we
will review the possible mechanisms of vascular remodeling in DM.

3.2 Overview of Vascular Remodeling

The term “vascular remodeling” (VRM) was originally coined to describe a com-
plex set of vascular (arterial) changes induced by chronic hypertension, including
altered phenotype and function of endothelial cells (ECs) and vascular smooth mus-
cle cells (VSMCs), as well as the extracellular matrix (ECM) structure and compo-
sition, leading to altered vessel wall-to-lumen ratio [3]. However, VRM is not
exclusive to HTN. It occurs due to both physiological (aging) and other pathological
processes such as DM and chronic inflammatory disorders and can affect specific
vascular beds from local diseases (such as pulmonary vasculature in COPD). The
vessel wall changes due to remodeling can be classified based on two major
aspects — change in vessel wall mass (hypotrophic, eutrophic and hypertrophic) and
the change in lumen diameter (outward or inward). Diabetic vascular remodeling is
typically hypertrophic and ofteninward. In inward hypertrophic remodeling, outer
lumen diameter is increased, however since the media/lumen ratio is increased, the
inner lumen diameter is decreased.

Under normal conditions, vascular structure is maintained through the closely
regulated equilibrium of production and degradation of various mediatorsthat influ-
ence the vascular tone and matrix. The normal vascular endothelial liningand base-
ment membrane function as a barrier against the passage of cells, lipids, AGEs and
other molecules from the lumen into the vessel wall. Vascular smooth muscle cells
regulate vascular tone and maintain perfusion in response to tissue oxygen demands.
Various extracellular matrix components promote vessel integrity. Abnormalities in
blood flow, transmural pressure and metabolic factors force the vessel to adapt and
remodel. By altering this delicate balance among these regulatory forces, pathologi-
cal conditions such as DM and HTN cause abnormal VRM.

There are several key differences between VRM caused by DM compared to that
by hypertension [5]. First, while mechanical factors (flow and pressure) play a
major role in HTN-related VRM, metabolic factors such as hyperglycemia and oxi-
dative stress play a major role in diabetic VRM. The major driver of VRM in DM is
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Fig. 3.1 Diabetes causes vascular remodeling through various biochemical and mechanical fac-
tors which are finally modulated by genetic factors. This explains why similar severity of diabetes
causes different effects on vascular remodeling in human subjects. AGE advanced glycation end
products

EC dysfunction and the complex signaling pathways that it activates, resulting in
changes in all layers of the vessel wall. Second, concomitant remodeling risk factors
such as HTN often co-exist in patients with DM type II. Thus DM represents a pro-
totypical VRM state where flow, pressure and metabolism all play a role (Fig. 3.1).
This results in a complex interplay of mechanisms resulting in VRM in DM which
poses several challenges. Firstly, this impairs our ability to tease out the importance
of each individual factor which then stymies effects to develop targeted therapies.
Secondly, this complex interplay explains why VRM in DM cannot be completely
attenuated by control of metabolic factors such as hyperglycemia alone. A final fac-
tor involves the importance of genetic and epigenetic influences on how these
abnormalities produce VRM alone.

Despite multiple animal models of diabetes and increasing prevalence of the
disease, there are several challenges in teasing out the exact mechanisms of diabetes
induced remodeling. First, as mentioned above, various vascular remodeling factors
such as hypertension and low shear stress co-exist. Secondly, diabetes produces a
variety of metabolic abnormalities while many cell-based and animal studies focus
on high glucose alone. This limits our understanding of vascular changes in this
metabolic disorder in which hyperglycemia is just one marker. Thirdly, it is difficult
to differentiate the effects of atherosclerosis and vascular remodeling since they
share common pathways and occur simultaneously in DM. Finally, the widespread
use of medications such as HMG-CoA reductase inhibitors, ACE inhibitors and
anti-diabetic agents such as metformin, DPP four inhibitors interferes with our
study of human diabetic vascular remodeling.
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3.3 Mediators of DM Induce VRM

DM induces a number of metabolic and flow mediated abnormalities that activate
biochemical pathways that result in vascular remodeling. (Fig. 3.1). Several inter-
linked pathways lead to the morphological and functional changes inherent to
DM. High glucose levels itself is involved in the pathogenesis of DM induced
VRM. Glucose metabolites, insulin resistance, increased free fatty acids and other
DM associated abnormalities such as low shear stress, hyperlipidemia, hypertension
and increased angiotensin II (Ang II) and endothelin 1 also play an important roles
[5]. Here it is important to understand that though it is easy to study the effect of
individual mediators in the in vitro setting, it is quite difficult to study their indepen-
dent effect in animals or humans. It is likely that many of these mediators produce
effects simultaneously and likely synergistically to mediate VRM.

3.3.1 Hyperglycemia and Related Metabolic Abnormalities

The most important metabolic abnormality is hyperglycemia which occurs in both
DM type I and II. Excess glucose is toxic to a variety of cells in the body especially
the vascular endothelium. Hyperglycemia-induced generation of superoxide anion
(Oy7) leads to DNA damage and activation of poly (ADP ribose) polymerase
(PARP) as a reparative enzyme [5]. PARP-induced ADP ribosylation of glyceralde-
hyde phosphate dehydrogenase (GAPDH) then diverts glucose from its glycolytic
path into alternative biochemical pathways leading to increase in advanced glyca-
tion end products (AGEs), hexosamine and polyol flux, and activation of classical
isoforms of protein kinase C, that are considered major mediators of hyperglycemia-
induced cellular injury.

3.3.1.1 Polyol and Hexosamine Pathway

Normally, most glucose is metabolized through the glycolytic and pentose shunt
pathways [6]. Under conditions of hyperglycemia, the polyol and hexosamine path-
ways are activated. In the polyol pathway, sorbitol is produced through aldose
reductase, the first and rate limiting step which leads to conversion of NADPH to
NADP+. NADPH is an essential cofactor in glutathione production which is com-
promised by the polyol pathway. Sorbitol’s conversion to fructose (through sorbitol
dehydrogenase) results in increased NADH/NAD+ ratio which drives production of
advanced glycation endproducts as well the de novo production of diacyglycerol
(DAG). When excess glucose is shunted through the hexosamine pathway,
glucosamine-6-phosphate and uridine diphosphate (UDP)-N acetyl glucosamine
are produced (rate limiting enzyme — L-glutamine: D-fructose-6-phosphate amido-
transferase (GFAT). Activation of the hexosamine pathway drives vascular
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remodeling through its effects on inhibition of endothelial eNOS activity (through
decrease in o-linked serine phosphorylation at residue 1177) as well as its effect on
transcription factor Splwhich causes increased expression of transforming growth
factor f and plasminogen activator inhibitor type I (PAI-I). TGFp is a powerful
mediator of fibrosis while PAI-I inhibitsfibrinolysis.

3.3.1.2 Diacyglycerol (DAG)

An increase in the glycolytic intermediate dihydroxyacetone phosphate occurs dur-
ing hyperglycemia which is then reduced to glycerol-3-phosphate, which subse-
quently increases de novo synthesis of DAG [7, 8]. DAG activates protein kinase C
which is considered a major unifying pathway in DM induced VRM [9] (see below).

PKC belongs to the serine-threonine kinase family and is an important player in
cellular signal transduction for various cytokines [10]. There are three major classes
of PKC isoforms- conventional (PKC-a, -p1, -f2, and -y; activated by phosphatidyl-
serine (PS), calcium, and DAG or phorbol 12-myristate 13-acetate (PMA), novel
(PKC-9, -¢, -0 and -n; activated by PS, DAG or PMA, but not by calcium) and atypi-
cal (aPKC; PKC-C and -1/A;; activated by neither PMA, DAG or calcium) [11].

PKC activation has been proposed as a final common pathway for diabetic VRM
with DAG as a major (but not isolated) activator. PKC activationaffects multiple
pathways (Fig. 3.2). By virtue of phosphorylation of threonine 497/495 at the
calmodulin binding peptide of eNOS, PKC activation reduces NO production and
causes endothelium dependent vascular dysfunction. In addition, it promotes vascu-
lar endothelial growth factor (VEGF) excess increasing the production of throm-
boxane, other cyclogenase-dependent vasoconstrictors and endothelin-1 (ET-1)
while decreasing and decreases production of prostacyclin, a vasodilator. PKC acti-
vation directly increases the permeability of albumin and other macromolecules
through barriers formed by EC via the expression of growth factors, such as VEGF/
vascular permeability factor (VPF). Activation of PKC isoforms affects activity of
various other intracellular signaling pathways such as MAPKs and early growth
response 1 (Egrl) which is an important redox sensitive gene which mediates ath-
erosclerosis. Severe PKC inhibitors have been tested in animals and humans to pre-
vent various complications of diabetes. In one study, ruboxistaurin, a PKCp inhibitor
was found to improve brachial artery mediated flow dilation [11]. However, no
single agent has been shown to improve clinical outcomes.

The effect of PKC in DM is modified by calpains which are nonlysosomal Ca
2+—dependent cysteine proteases expressed in a variety of cell types, including ECs.
Calpains have been known to mediate endothelial dysfunction in DM [12]. One
mechanism is oxidative stress which increases mu- Calpain; this acts as a cleavage
activator of PKC especially in the presence of hyperhomocysteniemia (which com-
monly occurs in DM); this results in reduction of NO and endothelial dysfunction.
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Fig. 3.2 A simplified diagram of the diacyl glycerol-protein kinase C pathway which has been
proposed as a major mechanism of diabetes induced Vascular remodeling. AGE advanced glyca-
tion endproducts, ROS reactive oxygen species, NO nitric oxide, NOS nitric oxide synthase, VEGF
vascular endothelial growth factor, TGF tissue growth factor

3.3.2 Advanced Glycation End Products (AGE)

AGEs are a large and heterogeneous group of compounds that in their classic form
originate when the reactive carbonyl group of a sugar reacts with the nucleophilic
amino group of an amino acid (the classic “Maillard reaction’) [13]. We now recog-
nizethat non-sugar entities such as the byproducts of lipid and protein degradation
can provide the carbonyl group. The first, reversible step in their formation is the
generation of an unstable “Schiff base” which then undergoes structural irreversible
re-arrangements, to form stable keto-amines, called Amadori products. These
Amadori products undergo further changes through oxidation and degradation to
yield highly stable AGEs. Low molecular weight carbonyl compounds, such as the
alpha-ketoaldehydes methylglyoxal (MGO) and glyoxal (GO), are formed under
hyperglycemic conditions and behave as advanced glycation end product (AGE)
precursors.

AGEs form under hyperglycemic conditions and chronically accumulate in the
body. They likely mediate “glycemic memory” whereby glycemic control over many
years rather than acute changes in blood glucose influences vascular complications.
Though most research has concentrated on endogenously produced AGE’s, the role
of exogenous AGEs is now being recognized [13]. The two most common causes of
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exogenous AGEs are the Western diet (processed foods and meats exposed to high
heat) and tobacco smoke. Exogenous AGE intake correlates with endogenous AGE
levels and is increasingly being recognized as a cause of vascular dysfunction. Here,
it is interesting that the same diet that predisposes to the development of DM II can
also propagate the adverse effects of diabetes even after it is established.

AGEs induce vascular remodeling by two different mechanisms.

3.3.2.1 Receptor Mediated Mechanisms

AGEs activate intracellular signals through several receptor- and nonreceptor-
mediated mechanisms, leading to an increased production of reactive oxygen spe-
cies and inflammatory cytokines [14]. One of the best-studied AGE receptors is
RAGE. RAGE is a member of the immunoglobulin multi ligand receptor family
involved in intracellular signal transduction. As a pattern recognition receptor,
RAGE recognizes a diversity of ligands such as S100 calgranulins (expressed dur-
ing tissue injury and inflammation) and modified LDL in addition to AGEs. RAGE
activation promotes inflammatory responses, apoptosis, prothrombotic activity,
expression of adhesion molecules, and oxidative stress. RAGE signaling activates
several central transcription factors such as nuclear factor (NF)-kB, cAMP-response-
element-binding protein (CREB)-1 (mediating vascular calcification), Egrl and
activator protein (AP)-1.

RAGE increases ROS and oxidative stress by multiple pathways. It suppresses
eNOS phosphorylation and expression via the Pi3K/AKt/eNOS pathway as well as
via NAD(P)H oxidase. Activation of the RhoA-ROCK pathway by AGEs regulates
various pathways that eventually lead to vascular remodeling. Rho-associated pro-
tein kinase (ROCK) also belongs to the serine threonine kinase family and is the
main downstream effector of RhoA, a small GTPase molecule. It plays a major role
in the organization of the actin cytoskeleton and regulating cell movement [15, 16].
Adverse effects include oxidative stress leading to reduced NO production (via
eNOS) as well as its effects on VSMC via actin polymerization and NF-kB activa-
tion [17]. Fasudil, a ROCK inhibitor is approved in some countries for treatment of
angina but has not been clinically tested in diabetes.

RAGE also signals via MAPK pathwayswhich activate the redox-sensitive tran-
scription factor NF-kB. Since RAGEs are present on the surface of different cell
types: macrophages, adipocytes, ECsand VSMC, their activation produces profound
remodeling effects throughout the vascular wall. In ECs, RAGE activation also trig-
gers expression of adhesion molecules suchas VCAM-1 which promotes attach-
ment and transendothelial migration of monocytes across the EC layer. RAGEs
increase proliferation and migration of VSMCs via activation of ERK1/2 and sup-
pression of adenosine monophosphate kinase (AMPK) activation.
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3.3.2.2 Non-receptor Mediated Mechanisms

AGE:s crosslink proteins directly thereby altering their structure and function.
Glycation of extracellular matrix proteins such as collagen VI, laminin and vitro-
nectin leads to increased thickening and fibrosis. Modification of the cell-binding
domains of type VI collagen decreases endothelial cell adhesion to the basement
membrane thus altering stability of the vessel.

3.3.3 Insulin Abnormalities

Insulin has many biochemical and physiological effects on the vascular wall. These
effects are mostly mediated by its effect on the insulin receptor which results in
activation of two different pathways: (a) PI3K/Akt — which results in increased
eNOS activation (acutely) and production (chronically) and resultant increased NO,
and (b) MAPK pathway — which mediates VSMC proliferation and synthesis of
ECM proteins. Mitogen associated protein kinases (MAPK) mediate cellular
response to extracellular stimuli, and play an important role in inflammation, cell
development, cell differentiation and senescence. There are four distinct subgroups
of MAPK: (1) extracellular signal-regulated kinases (ERKs), (2) c-jun N-terminal
or stress-activated protein kinases (JNK/SAPK), (3) ERK/big MAP kinase 1
(BMK1), and (4) the p38 group of protein kinases. Of these, p38 and ERK mediated
vascular effects of DM (mediated by upregulation of transcription factors such as
NF-kB, AP-1 and others) are well recognized. High levels of plasma free fatty acids,
pro-inflammatory cytokines, and/or glucose among other mediators activate p38
and ERK1/2 MAPKSs which activate and injure vascular components — such as ECs,
VSMC:s and fibroblasts.

Under normal conditions, the effects of PI3K/Akt may be considered beneficial
while that of the MAPK pathway detrimental to vascular health. PI3K/Akt pathway
is active only at normal insulin concentrations. With excess insulin levels, activation
of PI3K/Akt is reduced while MAPK is unaffected [18]. Similarly, with lack of
insulin, lack of the beneficial anti-remodeling effects of PI3K/Akt are lost. This may
explain the presence of VRM in both DM type 1 (insulin deficiency) and DM type
2 (insulin excess).

Recently, the role of Tribble 3 (Trb3), a cytosolic pseudokinase, in mediating
hyperinsulinemia induced vascular remodeling has been studied. Trb3 is upregu-
lated by insulin excess which causes decreased phosphorylation of Akt while acti-
vating the JNK/MAPK pathway [19]. Trb3 silencing restored Akt/MAPK balance
and reduced aortic vascular remodeling in diabetic rats.
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3.3.4 Excess Free Fatty Acid Production

DM type II is associated with excess production of free fatty acids (FFAs). FFAs
cause mitochondrial dysfunction through oxidation of fatty acyl-COA and result in
increased ROS and oxidative stress [20]. It also activates various cell signaling path-
ways (such as p38 MAPK) which influence VRM. In addition, it appears to cause
increased formation of ox-LDL and activates LOX-1 and other scavenger receptors.

3.3.5 Increased Angiotensin II and Endothelin-1

Diabetes is associated with upregulation of renin angiotensin system (RAS) and
elevated tissue Ang II. Ang II is a potent vasoconstrictor and inducesoxidative stress
through generation of superoxide radicals. In addition, through upregulation of
MAPKS, it activatesNF-kB. Plasma ET-1 is increased in patients with diabetes mel-
litus and ET-1 exaggerates diabetes-induced endothelial dysfunction. This is medi-
ated by decrease in eNOS expression, increase in vascular oxidative stress, and
decrease in antioxidant capacity. When diabetes is induced in mice overexpressing
human ET-lin the endothelium, endothelial nitric oxide synthase (eNOS) and
superoxide dismutase expression is reduced compared to wild type mice [21].

3.3.6 DM Associated Hyperlipidemia and Hypertension

Hypertension and dyslipidemia commonly co-exist with DM. Hypertension causes
VRM due to increased transmural pressure and flow related abnormalities while
dyslipidemia mediates VRM through lipids and their modified lipid fractions.
Modified LDL especially ox-LDL plays an important role in mediating oxidative
stress mediated endothelial dysfunction as well as abnormalities in VSMCs includ-
ing vascular calcification [22].

Ox-LDL and the activation of lectin like oxidized LDL receptor-1 (LOX 1)
appears to play a major role in DM induced VRM especially vascular calcification.
LOX-1 as a scavenger receptor is activated by multiple ligands including AGE. AGE
upregulates LOX-1 likely through the PI3k/Akt pathway.

3.3.7 Abnormal Shear Stress

Though most research efforts have concentrated on its metabolic effects, diabetes
mellitus has long been recognized as a low shear stress state [23]. The low shear
stress is caused by a combination of reduced erythrocyte deformability and increased
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erythrocyte aggregation as well as changes in plasma proteins due to abnormal glu-
cose metabolism. Endothelial cells (ECs) are the lining on the inside surface of
vasculature and are capable of perceiving shear stress as a mechanical signal which
is then transduced into various biomolecular responses. Mechanosensors in the
endothelium include various ion channels and receptors and the glycocalyx. The
endothelium interacts with circulating blood through the surface glycocalyx layer,
which serves as a mechanosensor/transducer of fluid shear forces leading to biomo-
lecular responses. Hyperglycemia impairs mechanotransduction in bovine aortic
endothelial cells (BAEC). Heparan sulfate content is reduced and this coincides
with a significantly lower activation of eNOS after exposure to shear, and reduced
cell alignment with shear stress [24].

Low shear stress is a potent mediator of endothelial dysfunction. It reduces NO
availability while upregulating prostacyclin and endothelin which are potent vaso-
constrictors. Low shear stress induces MMP-9 expression through integrins-p38
MAPK and ERK1/2-NF-«B signaling pathways which in turn alter the extracellular
matrix (Fig. 3.3). In addition, low shear stress promotes VSMC apoptosis and pro-
liferation. Atherosclerosis localizes typically in regions of low or disturbed shear-
stress, but in diabetics, the distribution is more diffuse, suggesting that low shear
stress is a generalized phenomenon in DM and that there could be a fundamental
difference in the way diabetic cells sense shear forces.

—— Diabetes induced low
——
EE— sheamstness

Activation of EKT1/2,Akt

! ! !

. . . *  Matrix degradation VSMC proliferation
Endothelial dysfunction + VSMC migration

Fig. 3.3 Effects of low shear stress, an important mechanical trigger of vascular remodeling in
diabetes. NO nitric oxide, MMP matrix metalloproteinases, VEGF vascular endothelial growth
factor, TGF tissue growth factor, PDGFR platelet derived growth factor receptor
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3.4 Pathophysiological Mechanisms of Diabetes Induced
Vascular Remodeling

The mechanisms by which DM induces VRM remain incompletely understood. Of
all the described mechanisms, oxidative stress and production of ROS is probably
the most important pathway.

3.4.1 Oxidative Stress and Endothelial Dysfunction

In normal physiology, the key mediator of endothelial cells (EC) regulated vascular
homeostasis is nitric oxide (NO) [25]. NO is an important mediator of cell signaling
and cell-cell communication. Due to its low molecular weight and its lipophilic
properties it diffuses easily across cell membranes. NO is produced by the action of
nitric oxide synthases (NOS) on L-arginine in the presence of tetrahydrobiopterin
(BH4) as a cofactor converting it to L-citrulline. Of the three known NOS isoen-
zymes, constitutive endothelial NOS(eNOS) and inducible NOS (iNOS, expressed
in macrophage and endothelial cells due to the effect of pro-inflammatory cyto-
kines) play an important role in vascular endothelial function. eNOS, the predomi-
nant NOS isoform in the vasculature, is responsible for most NO production under
normal conditions. NO crosses the endothelial intima and reaches VSMC where it
causes cGMP mediated smooth muscle cell vasodilation. NO also plays a key role
to maintain the vascular wall integrity by inhibition of inflammation, cellular prolif-
eration, and thrombosis. This is mediated in part by the s-nitrosylation of cysteine
in various proteins including the transcription factor NF-xB. iNOS is activated
under situations of stress and inflammation and produces NO in concentrations that
are thousands of times higher than eNOS; this excess NO by itself is toxic.

NO is inactivated by reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS). The most common ROS are superoxide (O,”), hydrogen peroxide
(H,0,) and hydroxyl radical (OH") while the most common RNS is peroxynitrite
(ONOO-). Under normal conditions, ROS such as superoxide ion (O,~) are formed
in minute quantities in the mitochondria during electron transport which is crucial
in the process of ATP generation to sustain the ongoing needs of living cells in min-
ute amounts and are buffered by native anti-oxidant defense mechanisms such as
superoxide dismutase, catalase and glutathione. In normal conditions, electron
transfer through complexes I, III, and IV extrudes protons outward into the inter
membrane space, which generates a proton gradient that drives ATP synthase (com-
plex V). Excess electrons are donated to molecular oxygen resulting in the forma-
tion of superoxide ion. Superoxide inactivates NO to form ONOO~ a reactive
nitrogen species (RNS). ONOO™ oxidizes BH4 and also activates Rho-ROCK path-
way, thus mediating endothelial dysfunction.

O,7is a relatively short-lived species; it dismutates to hydrogen peroxide, a step
mediated by superoxide dismutase (SOD) enzyme). H202 is a more stable ROS and
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high levels promote vasoconstriction and cause oxidative damage to vasculature.
Intracellular H,O, levels are tightly regulated through (i) a direct involvement of
catalase, peroxiredoxin and thioredoxin enzyme networks, and (ii) an indirect
involvement from uncoupling proteins and Nrf-2 expression. Therefore, endothelial
function is regulated though a complex network of regulation in NO production,
O, production and dismutation, and peroxide clearance.

Three major mechanisms play a role in DM induced ROS damage: (a) derange-
ment of electronic transport (b) induction of various enzymes such as NAD(P)H
oxidase family enzymes (NOX), xanthine oxidase, uncoupledeNOS (due to reduced
GTP cyclohydrolase I causing reduced BH4), induction of iNOSand (c) depleted
antioxidant mechanisms such as reduced glutathione (Fig. 3.4).

Under conditions of hyperglycemia, electron donors (NADH and FADH?2) are
available in excess, this results in a block in the electron transport chain at complex
IIT and donation of excess electrons to O2 through coenzyme Q. Another major
source of superoxide ion and hydrogen peroxide (H202) occurs through
membrane-bound, nicotinamide-adenine-dinucleotide- (NADH-) dependent oxi-
dase (NOX). NOX generates superoxide by electron transfer from NADPH to
molecular oxygen to yield O2~. In addition, it leads to uncoupling of eNOS(due to
dissociation of the ferrous-dioxygen complex) which then produces O2- instead of
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Fig. 3.4 Different NOS mediated oxidative stress mechanisms in diabetes. In addition to reducing
NO bioavailability and production by reducing eNOS, induction of iNOS and eNOS uncoupling
(by reducing tetrahydrobiopterin4) occur. PARP poly ADP ribose polymerase, DAG diacylglyc-
erol, AGE advanced glycation endproducts, PKC protein kinase C, ROS Reactive oxygen species,
eNOS endothelial nitric oxide synthase, iNOS inducible nitric oxide synthase, GTPCH GTP cyclo-
hydrolase I, BH4 tetrahydrobiopterin, KEAP I Kelch-like-ECH-associated protein 1, Nrf2 Nuclear
factor-like 2, NO nitric oxide
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NO. Caveolin-1 (Cav-1), an anchoring protein in the plasma membrane caveolae in
ECs and vascular smooth muscle cells (VSMCs), attenuates endothelial NO produc-
tion by occupying the calcium/calmodulin (Ca2+/CaM) binding site of eNOS.
Diabetes leads to increased Cav-1 expression; Cav-1 then binds and inactivates
eNOS resulting in reduced NO production [26].

An example of DM related depletion of antioxidant mechanisms is its effect on
the KEAP1-Nrf2 pathway [27]. The redox sensitive transcription factor nuclear fac-
tor erythroid 2-related factor 2 (Nrf2) protects against oxidative stress via the induc-
tion of phase II and antioxidant enzymes. Under low oxidative stress conditions,
Nrf2 is sequestered by its cytosolic binding protein Kelch-like ECH Associated
Protein 1 (Keapl) and targeted for proteasomal degradation. Keap 1 levels are
increased in DM resulting in reduced Nrf2 and unchecked ROS production.
Activators of Nrf2(such as sulforaphane) are being tested in diabetes and its related
complications though their effect on VRM are unknown.

The effects of oxidative stress are felt far beyond the endothelium. Oxidative
stress causes increased matrix production through its effect on matrix metallopro-
teinases which reduce elastin and increase collagen production. ROS also increase
proliferation and migration of vascular smooth muscle cells likely through induction
of cyclophilin A [28]. Finally ROS causes activation of pro-inflammatory cytokines
which potentiate several remodeling pathways and accelerate atherosclerosis.

3.4.2 Endoplasmic Reticulum Stress and Autophagy

The endoplasmic reticulum (ER) plays essential roles in physiologic regulation of
many cellular processes such as protein folding, lipid synthesis, and regulation of
the intracellular calcium balance. Perturbations of the normal function of the ER
trigger a signaling network called the Unfolded Protein Response (UPR) pathways.
Three UPR sensors namely, activating transcription factor-6 (ATF6), inositol requir-
ing protein-1 (IRE1), and protein kinase RNA-like ER kinase (PERK) sense mis-
folded proteins and initiate UPR. UPR can be adaptive in acute ER stress and
apoptotic in chronic ER stress.

Secretory and membrane proteins, which are synthesized in ER, undergo proper
folding in the ER lumen. A key ER chaperone that is essential for proper protein
folding is BiP or glucose-regulated protein 78 kDa (GRP78). In normal conditions,
BiP is bound to the molecules of the three UPR sensors. In ER stress, BiP dissoci-
ates from and activates the UPR sensors and results in induction of UPR. Excessive
and prolonged ER stress mediated by hyperglycemia and ox-LDL is associated with
increased inflammation and apoptosis [29].

Autophagy is a crucial cell maintenance mechanism which involves degradation
of abnormal proteins and cell organelles. It appears to play a key role in mediating
normal endothelial function. In DM, preliminary studies underscore the importance
of normal autophagy in protection of endothelial cells against high glucose induced
injury [30, 31].
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3.4.3 Inflammation

Diabetes is a pro-inflammatory state. Systemic inflammation plays an important
role in activation of various adverse remodeling pathways both by itself and by
potentiating the effects of other mediators.

3.4.4 Vascular Calcification

Vascular calcification of the medial (VCm) is a characteristic feature of diabetes
mellitus and is caused the deposition of highly crystallized calcium hydroxyapatite
in the tunica media. These crystals bind to the extracellular matrix (specifically to
elastin). The prevalence of VCm in patients with newly diagnosed T2D was 17%
and among patients with established T2D receiving oral anti-diabetics, the preva-
lence of VCm was as high as 41.5% [32]. Vascular calcification is a well-recognized
marker for cardiovascular complications and has several functional implications.
Arterial wall stiffening causes an increase in pulse wave velocity and increase in
pulse pressure. This can affect organ perfusion and mediate end organ damage.
Augmented afterload due to vascular stiffening results in left ventricular hypertro-
phy and could result in development of heart failure with preserved ejection
fraction.

3.4.4.1 Mechanisms of Vascular Calcification

Long considered a passive degenerative process, we now recognize that vascular
calcification is an active process which involves the interplay between multiple
molecular cascades which are regulated by genetic and metabolic factors.
Hyperglycemia, AGEs and ox-LDL appear to be major mediators of DM induced
VCm. High glucose levels enhance BMP activity (BMP-2 and 4) in endothelial
cells. Bone morphogenetic protein-2 (BMP-2) appear to be the key initiator of vas-
cular calcification; it increases expression of core binding factor alpha-1 (CBFA-1,
or RunX2) which upregulates the production of osteoblast proteins within vascular
smooth muscle cells (VSMCs) promoting a phenotypic switch of contractile VSMCs
to an osteoblast-like phenotype. Alkaline phosphatase (ALP) and bone sialoprotein
(BSP) have been demonstrated to be early markers of osteoblast activity, while
markers, such as osteopontin (OPN) and osteocalcin, are upregulated later in VCm.
Their primary function is to enhance the formation and deposition of hydroxyapa-
tite, which is composed of type I collagen and other noncollagenous proteins. ALP
cleaves pyrophosphate to phosphate to promote hydroxyapatite deposition and min-
eralization within the bone. BSP is responsible for the nucleation of hydroxyapatite
mineral. OPN is also linked to hydroxyapatite deposition and can serve as a media-
tor of cell attachment and signaling. OPN up regulated in medial VSMCs also
enhances adventitial myofibroblast (osteoprogenitor) migration, proliferation and
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matrix metalloproteinase (MMP)-dependent matrix turnover. Hydroxyapatite size
and shape are mediated by osteocalcin through a vitamin K dependent mechanism.

Oxidative stress in diabetes increases VCm via upregulation of NF-xB which in
turn activates CBFA1An emerging regulatory pathway for vascular calcification in
diabetes involves the receptor activator for nuclear factor kB (RANK), RANK
ligand (RANKL) and osteoprotegerin (OPG). RANKL increases vascular smooth
muscle cell calcification by binding to RANK and increasing BMP4 production
through activation of the alternative NF-kB pathway. OPG (member of the TNF-
related family) binds to RANKL as a soluble decoy receptor and prevents calcifica-
tion. Inactivation of OPG in miceleads to profound vascular calcification [33]. In
diabetes, increased RANKL and decreased OPG levels lead to increased vascular
calcification.

Another intriguing mechanism by which diabetes effects VCm is through matrix
Gla protein (MGP). MGP, a vitamin K dependent protein, is a calcification inhibitor
expressed by many cell types including VSMC. Activation of MGP requires post-
translational carboxylation and serine phosphorylation. Though the mechanism is
not completely understood, diabetes effects MGP phosphorylation which in turn
could potentiate VCm [34].

Substantial evidence also supports the role of AGEs as the major mediator of DM
induced vascular calcification [35]. Mechanisms include upregulation of various
pathways including BMP2 and through increased oxidative stress.

The role of ox-LDL in promoting VCm is increasingly being recognized.
Diabetes promotes the increased formation of oxidized LDL whose role in mediat-
ing VC in DM is not completely understood but is being recognized. The major
mechanism appears to be through (a) promotion of oxidative stress and upregulation
of NF-xB which inturn activates CBFA1 and (b) upregulation of BMP2 which acti-
vates CBFA1 via the Smads pathway. Other mechanisms include the upregulation
of vascular peroxidase 1 (via the production of hypochlorous acid) [36] and activa-
tion of PI3K/AKT, ERK1/2, and P38 MAPK/Runx2 pathways) and calpain 1
(through disordered pyrophosphate metabolism).

3.4.5 Genetic and Epigenetic Effects on Diabetic VRM

Despite widespread advances in genomics, genetic markers of accelerated diabetic
VRM remain poorly understood. Among the epigenetic modifications, the role of
microRNA (miRNA) is increasingly being recognized in DM. miRNAs are a family
of small (18-25 nucleotide), noncoding single-strand RNA molecules that modulate
various physiological and pathological pathways via post-transcriptional inhibition
of target gene expression. They bind to messenger RNA (mRNA) leading to mRNA
degradation or suppression of translation. There is an explosion of knowledge of
miRNAs but their role in DM induced VRM is unclear. They appear to modulate
endothelial a functional and angiogenesis which is important in wound healing. In
vascular smooth muscle cells (VSMCs) cultured from T2DM db/db mice, miR-125b
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appears to be upregulated by hyperglycemia, this downregulates of its predicted
target Suv39hl, a histone-lysine N-methyltransferase and causes enhanced inflam-
matory gene expression [37]. In human subjects, microarray profiling has shown an
altered profile of miRs expression in subjects with T2DM [38]. For example, the
pro-angiogenicmiR 126 is significantly downregulated in DM. Hyperglycemia and
AGEs downregulate miR221 and mIR222 with impaired endothelial and endothelial
progenitor cell (EPC) proliferation and angiogenesis, which are important in
response to vascular injury [39]. As knowledge accumulates, one hopes that target-
ing specific miRNAs would help alleviate vascular remodeling.

3.5 Overview of Morphological Changes in DM Induced
VRM

The normal artery consists of the following layers- endothelium, intima, the internal
elastic lamina, the media, the external elastic lamina and the adventitia. The endo-
thelial cell layer is probably the most important and dynamic structure in the vessel
wall that serves as the interface between circulating blood and the vessel itself. It
senses different physical or chemical stimulus that occur inside the vessel, and
endothelium is capable of producing a large variety of molecules that maintain vas-
cular function.

As aresult of the various mechanisms illustrated above, DM results in ultrastruc-
tural changes in all components of the arterial wall which include (a) macroscopic
changes such as increase in intimal thickness, vascular smooth muscle cell hyper-
trophy and calcification and adventitial inflammation and thickening and (b) func-
tional changes such as reduced vasomotor contractility and reduced arterial
compliance (Fig. 3.5).

3.5.1 Endothelial Cell Alterations

The initial target of DM induced VRM appears to be the endothelium whose mor-
phology and function are effected. There are fourmajor of DM on endothelial cells
(a) Increased endothelial cell layer permeability due to reduced density of tight and
adherence junctions which can occur as soon as 4-6 weeks after initiation of diabe-
tes (b) Cell death via senescence and apoptosis and (c) Abnormal signaling resulting
in increased inflammation and resultant effects on the rest of the vascular wall (d)
Impaired vascular relaxation through reduction in NO production. In addition,
impaired endothelial cell migration prevents neovascularization in response to
injury and leads to impaired wound healing.
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Fig. 3.5 This figure illustrates the major morphological changes in arterial wall due to diabetes.
All layers of the wall are effected and cell-cell interactions play a major role in initiation and
propagation of remodeling. EC endothelial cell, NO nitric oxide, VSMC vascular smooth muscle
cell, ECM extracellular matrix, /EL internal elastic lamina, EEL external elastic lamina

3.5.2 Extracellular Matrix (ECM) Alterations

ECM displays a very dynamic equilibrium where there is constant synthesis, degra-
dation and reorganization of various components. Turnover of vascular ECM pro-
teins such as collagen type 1 and 3, fibronectin and thrombospondins is regulated by
matrix metalloproteinases (MMPs) and its inhibitors (TIMPs) [40]. Matrix metal-
loproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that
degrade various components of ECM and mediate ECM remodeling in both physi-
ological and pathological processes. Though different pathways (oxidative stress,
activation of ERK and p28 MAPK by shear stress and Ang II), diabetes causes vari-
ous changes in the ECM through MMPs and TGF f. Increased levels of MMP-2 and
MMP-9 are present in DM along with reduced TIMP 2. Thebasement membrane
and ECM thicken and this leads to vessel wall rigidity.
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3.5.3 Vascular Smooth Muscle Cell Alterations

Vascular smooth muscle cells form the bulk of the vascular wall and are important
in maintaining vascular tone. The four major alterations of VSMC in DM include
cell proliferation, cell migration into the tunica intima, conversion to osteoblasts
leading to vascular calcification and abnormal vascular tone (inability to relax).

In DM, vascular smooth muscle cells proliferate and contribute to vascular
hypertrophy. VSMC migrate to the tunica intima where they contribute to athero-
genesis. Diabetic vascular smooth muscle cells display abnormal contractile
responses which is mediated by the activation of the Rho-ROCK pathway and sub-
sequent PKC/CPI-17 (C-kinase potentiated Protein phosphatase-1 Inhibitor Mr =
17 kDa) phosphorylation [41]. Phosphorylated CPI-17 inhibits myosin phosphatase
which in turn, increases myosin phosphorylation and smooth muscle contraction in
the absence of increased intracellular Ca** concentration.

3.5.4 Adventitial Alterations

Long considered mere scaffolding for the artery, the adventitial layer is now known
to be effected by DM [42]. Adventitial fibroblasts express adventitial NADPH oxi-
dase and contribute to ROS formation and cytokines. Under their influence, adven-
titial fibroblasts to undergo a phenotypic switch into myofibroblasts, which migrate
to the medial and intimal layer where they mediates monocyte migration and ath-
erogenesis. In addition, BMP2 expression in adventitial myofibroblasts also medi-
ates VCm along with increased cell proliferation and thickening.

Thus even though diabetic VRM is long considered an “inside out” phenomenon
(endothelium initiated), increasing evidence of the role played by the adventitia has
led to an “outside in” hypothesis where adventitial ROS generation and its effects
can be considered the initiating factor.

3.6 Impaired Vascular Healing

Diabetes is associated with impaired and abnormal vascular healing [4]. This leads
to a variety of clinically important complications such as a higher rate of restenosis
after coronary artery stenting to a higher rate of lower extremity amputations. VEGF
plays an important role in neovascularization. DM impairs healing through various
effects on VEGF. For example, AGEs appear to reduce endothelial angiogenesis
RAGE-mediated, peroxynitrite-dependent and autophagy-induced vascular endo-
thelial growth factor receptor 2 (VEGFR2) degradation.

Diabetes also effects the function of endothelial progenitor cells (EPC) which are
produced by the bone marrow and recruited to areas of vascular injury where they
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mediate endothelial proliferation and repair. Multiple studies have shown reduced
number and impaired number of circulating EPCs in patients with DM. High glu-
cose impairs cell cycling and migration while increasing apoptosis in EPCs. [43].

3.7 Future Directions

While tremendous progress has been made in delineating the molecular mecha-
nisms of DM, a lot remains unlearned in the area of VRM. Our knowledge of the
mechanisms of VRM is limited by evidence that is mostly from cell and animal
studies which may or may not be applicable in human subjects. The complex inter-
play of metabolic, flow and vessel pressure abnormalities inherent to DM make it
tough to assess the importance of each individual factor in causing VRM and thus
develop targeted therapies. In addition, commonly used drugs (antidiabetic agents,
HMG-CoA reductase inhibitors) affect pathways that modulate vascular remodel-
ing. These competing effects make it challenging to understand the mechanisms
involved in VRM. In spite of these difficulties, studies in humans should be pursued.
Noninvasive imaging (especially molecular imaging such as positron emission
tomography) is crucial in understanding long term effects of VRM as well as the
modifying effect of various therapies such as control of glucose and lipid lowering.
Continued investigation into the pathophysiology of VRM is important to improve
our ability to develop such therapies.
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Chapter 4
Pathogenesis of the Plaque Vulnerability
in Diabetes Mellitus

Vikrant Rai and Devendra K. Agrawal

Abstract Atherosclerosis leads to narrowing of vessels and acute coronary syn-
drome resulting in ischemic events due to either vasospasm or decreased blood flow.
Atherosclerosis and acute coronary syndrome are more common in diabetes melli-
tus. Hyperglycemia and hypercholesterolemia in diabetes predispose the arteries to
plaque development. Smoking, hypertension, male sex, and family history or
genetic susceptibility are other predisposing factors for plaque development.
Depending on the size, morphology, and symptoms of the patients, plaques can be
classified as stable and unstable plaques. Unstable plaques are characterized by the
presence of thin fibrous cap, necrotic core, and proliferation of vascular smooth
muscle cells, angiogenesis and calcification. Plaque formation initiates with fatty
streak and progresses through atheroma, atheromatous plaque to fibroatheromatous
plaque. Fibroatheromatous plaques with thick fibrous cap are stable plaques.
Thinning of the fibrous cap makes a plaque unstable, prone to rupture and thrombus
formation. Mechanisms such as increased inflammation, foam cell deposition,
impaired repair mechanism, endothelial cell dysfunction, vascular smooth muscle
cell proliferation, angiogenesis, intra-plaque hemorrhage, and calcification which
facilitate the plaque rupture are increased in diabetes mellitus. Thus, diabetes mel-
litus increases the prevalence of plaque formation and rupture. Diabetes mellitus
affects various cellular and molecular effectors involved in plaque development and
rupture. Understanding these cellular and molecular effectors and involved mecha-
nisms in association with diabetes mellitus is essential for the development of
potential therapeutic strategies. This review is a critical overview on the effect of
hyperglycemia in diabetes mellitus on the pathogenesis of plaque formation and
rupture.

Keywords Atherosclerosis ¢ Stable and unstable plaque ¢ Diabetes mellitus
Hyperlipidemia ¢ Hyperglycemia ¢ Fibrous cap ¢ Plaque rupture

V. Rai ¢ D.K. Agrawal, Ph.D., M.B.A.,, M.S., EA.H.A. (I<)

Department of Clinical & Translational Science, Creighton University School of Medicine,
CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178, USA

e-mail: dkagr@creighton.edu

© Springer International Publishing AG 2017 95
C.C. Kartha et al. (eds.), Mechanisms of Vascular Defects in Diabetes Mellitus,

Advances in Biochemistry in Health and Disease 17,

DOI 10.1007/978-3-319-60324-7_4


mailto:dkagr@creighton.edu

96 V. Rai and D.K. Agrawal

4.1 Introduction

The luminal narrowing due to plaque formation or precipitating thrombus in athero-
sclerosis results in adverse cardiac events (myocardial infarction, angina), brain
injury (ischemic stroke) and peripheral vascular disease. Coronary artery disease
(CAD) is the most common of all these, resulting in myocardial infarction and
angina pectoris. An increased serum level of low-density lipoprotein (LDL) is suf-
ficient to induce the atherosclerotic changes. The facilitating factors such as smok-
ing, hypertension, diabetes mellitus, male sex, and family history or genetic
susceptibility further add nuances to the disease presentation [1]. Coronary arteries,
carotid bifurcations, abdominal aorta, iliofemoral arteries, the branch points of
arteries, and the artery near the curvature are the common sites for atherosclerotic
lesion due to the presence of low or oscillatory endothelial shear stress [2].
Depending on the clinical symptoms, the atherosclerotic plaques may be asymp-
tomatic (subclinical disease), obstructive (stable angina, transient ischemic attack,
amaurosis fugax), and symptomatic (acute thrombosis leading to acute coronary
syndrome, stroke) [1, 3].

CAD is more common in diabetes mellitus type II (T2DM), or the individuals
with persistent hyperglycaemia are more prone to CAD due to increased blood glu-
cose and atheroma formation [4]. Further, it has also been documented that elevated
glycosylated haemoglobin [5] and genetically driven hyperglycemia distinctly from
T2DM also increases the risk of CAD [6], suggesting hyperglycemia as a major risk
factor for CAD and can affect the pathogenesis as well as the stability of the plaque.
Obesity is a chronic inflammatory disease and results in obesity-induced insulin
resistance or impaired insulin secretion resulting in hyperglycemia, which further
leads to functional and structural alterations of the vessel wall and culminates with
diabetic vasculopathies [7]. Hyperlipidemia is another major risk factor for athero-
sclerosis. Deposition of LDL in the intima initiates the process of atherosclerosis.
T2DM is associated with elevated triglycerides, decreased high density lipoprotein
(HDL) and increased low density lipoprotein levels collectively characterizing the
hyperlipidemia [8].

Hyperlipidemia and hyperglycemia are the risk factors for atherosclerosis, and
increased deposition of lipids and inflammatory cells resulting in necrotic core
within the atherosclerotic plaque renders the plaque vulnerable. Nearly 75 % of all
acute coronary events and 90 % of all carotid plaques causing ischemic stroke
results due to atherosclerotic plaque rupture [9]. Increased infiltration of inflamma-
tory cells, thin fibrous cap, large necrotic core, and increased angiogenesis are the
mechanisms involved in plaque rupture [10]. Since hyperglycemia and hyperlipid-
emia, both associated with T2DM causes the functional and structural alterations of
the vessel wall, the core morphological alteration behind atherosclerosis, diabetes
mellitus can affect the pathogenesis and process of atherosclerotic plaque formation
and rupture. This chapter is focused on the effect of hyperglycemia on the various
aspects of plaque pathogenesis and vulnerability.
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4.2 Pathogenesis of Plaque Formation and Plaque Rupture

The process of plaque formation consists of adaptive intimal thickening with smooth
muscle cell (SMC) proliferation, lipoprotein retention, intimal inflammation with
inflammatory cell recruitment, foam cell formation, apoptosis and necrosis,matrix
synthesis, calcification, angiogenesis, and arterial remodelling. Fibrous cap rupture
results in thrombus formation and ischemic events [1]. LDL binding with the pro-
teoglycans in the intima is important for initiation of the plaque formation [11]. The
oxidation and aggregation of LDL lead to chronic innate and adaptive immune
response resulting in induction of endothelial and smooth muscle cells. This results
in expression of various adhesion molecules, chemo-attractants, and growth factors
leading to enhanced homing, migration, and differentiation of the monocytes into
macrophages and dendritic cells [12, 13]. Oxidized LDL also aids in pro-
inflammatory macrophage (M1) predominance [14]. Further, macrophage and den-
dritic cells act as the deposits of the LDL. Deposition of LDL and foam cell
formation leads to xanthoma formation, which further progresses to atherosclerotic
lesion with the pathological intimal thickening involving deposition of acellular
lipid-rich material in intima [15]. Deposition of collagen and extracellular lipid
pools results in formation of fibroatheroma, characterized by the presence of a
necrotic core, angiogenesis and fibrous cap. Calcification occurs in progressive ath-
erosclerotic lesions which increase with age, and apoptotic cells, extracellular
matrix, and necrotic core material in fibroatheroma act as nidus for calcification
increasing the calcium deposits [16, 17] (Fig. 4.1).

The precipitating factor for acute coronary syndrome (ACS) is luminal thrombus
or a sudden plaque hemorrhage within the atherosclerotic plaque. The ACS is not
necessarily accompanied with concomitant vasospasm. Plaque rupture is the most
frequent cause of thrombosis. Plaque rupture results in the exposure of highly
thrombogenic, red cell-rich necrotic core material to the blood [18]. Plaque rupture
mainly occurs in thin-cap fibroatheromas having an extremely thin fibrous cap.
Infiltration of the foam cells or macrophages in the intima results in thinning of the
fibrous cap, mainly in the cap margin or shoulder region. Thinning of the fibrous cap
is mediated by gradual loss of SMCs from the fibrous cap and degradation of the
collagen in fibrous cap via infiltrating macrophages/foam cells secreting proteolytic
enzymes such as plasminogen activators, cathepsins, and matrix metalloproteinases
(MMPs). Thrombus formation can also occur in the areas of plaque erosion, most
often in the areas of pathological intimal thickening. Coronary vasospasm is the
frequent event responsible for plaque erosion and rupture [19]. Emotional stress or
increased physical activity may be the precipitating event in plaque rupture [1, 18,
19]. Thin fibrous cap, thrombus formation, large necrotic core, neovascularisation,
hemorrhage within the plaque, adventitial or perivascular inflammation, and spotty
calcification characterize the vulnerable plaque (Fig. 4.1).
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Fig. 4.1 Pathogenesis of plaque formation and plaque rupture. Deposition of the lipids in the
intima leads to fatty streak formation and adaptive intimal thickening. Infiltration of inflammatory
cells, lipid deposition, and vascular smooth muscle cells (VSMCs) proliferation results in progres-
sion of the fatty streak to atheroma and atheromatous plaque. Formation of the necrotic core due
to increased apoptosis and necrosis in plaque; increased lipid deposition and angiogenesis and
thinning of the fibrous cap results in the development of vulnerable fibroatheromatous plaque

4.3 Diabetes Mellitus and Atherosclerosis

Diabetes mellitus is one of the major risk factors for atherosclerosis and cardiovas-
cular disease in the United States. Hyperglycemia increases the risk for atheroscle-
rosis by a cumulative effect of various mechanisms (Fig. 4.2) discussed elaborately
in the literature [7, 8]. Briefly, oxidized LDL enhances the oxidative stress in the
intima which leads to activation of inflammatory cascade involving inflammatory
receptors [receptor for advanced glycosylation end products (RAGEs), toll-like
receptors (TRLs), and triggering receptor expressed on myeloid cells (TREMs)],
downstream signaling kinases [protein kinase C (PKCs), c-Jun NH,-terminal kinase
(JNK), ERK, mitogen-activated protein kinase (MAPK) etc.] and pro-inflammatory
cytokines [interlekin (IL)-6, tumor necrosis factor (TNF)-a]. This leads to increased
monocytic infiltration, M1 macrophage predominance and foam cell formation,
which further enhances the inflammation and vascular smooth muscle cells
(VSMCs) proliferation resulting in atherosclerosis (Figs. 4.2 and 4.3) [3]. Further,
research studies have also demonstrated the involvement of inflammatory surface
markers (TREMs and TLRs) [20-22] and pro-inflammatory cytokines (IL-6 and
TNF-a) [22] in plaque vulnerability.The increased secretion of these pro-
inflammatory cytokines [23], and increased expression of the inflammatory surface
marker [24, 25] involved in the pathogenesis of atherosclerotic plaque formation
and rupture suggest that persistent hyperglycemia in diabetes have a potential role
in plaque formation and rupture.
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Fig. 4.2 Pathogenesis of atherosclerosis and plaque vulnerability in diabetes mellitus. Persistent
hyperglycemia in diabetes mellitus potentiate several mechanisms such as hyperlipidemia,
increased angiogenesis, intra-plaque hemorrhage, proliferation of vascular smooth muscle cells
(VSMCs), infiltration of inflammatory cells, foam cell formation, necrotic core formation due to
oxidative stress, and hypercoagulability enhancing the thrombus formation along with thinning of
the fibrous cap by altering the collagen content. These mechanisms make the plaque prone to rup-
ture and thereby prevalence of acute coronary syndrome

4.4 Diabetes and Plaque Vulnerability

4.4.1 Diabetes and Fibrous Cap

Fibrous cap of the plaque faces the lumen of the vessel and is responsible for the
integrity of the plaque. Normally, fibrous cap is composed of VSMCs embedded in
a collagen type I and III rich matrix. Thinning of the fibrous cap is associated with
the plaque rupture and ACS. Studies have suggested the role of MMPs and macro-
phages in autolysis of the matrix content resulting in thinning of the fibrous cap,
however, the exact mechanism underlying the MMP activity in under research. It
has been found that symptomatic plaques have increased macrophage density,
higher expression of MMPs, decreased VSMCs density, and decreased expression
of collagens compared to asymptomatic plaques, and increased expression of MMPs
with a decreased collagen expression is associated with plaque vulnerability [3,
20-22, 26]. Further, the association of diabetes with a higher prevalence of macro-
phage infiltration and thin-cap fibroatheroma suggest the proneness of plaque
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Fig. 4.3 Schematic representation of the factors involved in the development of atherosclerosis in
diabetes mellitus. Hyperglycemia in diabetes mellitus leads to increased free fatty acid (FFA)
accumulation and oxidation. This results in increased oxidative stress due to the generation of reac-
tive oxygen species (ROS) and the decreased availability of nitric oxide (NO). This leads to activa-
tion of various inflammatory pathways resulting in increased prevalence of atherosclerosis.
Advanced glycosylation end products (AGEs); diabetes mellitus type 2 (T2DM); extracellular
matrix (ECM); interleukin (IL)-6; Intercellular Adhesion Molecule (ICAM) I;monocytes che-
moattractant protein (MCP)-1; nuclear factor-kappa beta (NF-kB); protein kinase C (PKC); recep-
tor for advanced glycosylation end products (RAGE);toll-like receptors (TLRs); triggering receptor
expressed on myeloid cells (TREM); transforming growth factor (TGF)-alpha (x)-beta (); tumor
necrosis factor (TNF)-a; vascular cell adhesion protein (VCAM)-1;vascular smooth muscle cells
(VSMCs)

rupture in T2DM, as well as the role of persistent hyperglycemia in thinning of
fibrous cap [27] (Fig. 4.2).

The mechanisms involving and promoting the thinning of the fibrous cap remains
incompletely understood. The alteration of ECM matrix, impaired collagen content,
and accumulation of lipids remains the cornerstone of the plaque rupture and thin-
ning fibrous cap forming the rupture-prone plaque. A study on the diabetic and
hypercholesterolemic swine reported that coronary regions exposed to low endothe-
lial shear stress favour the collagen-poor, thin-capped fibrous plaque formation
compared to high endothelial shear stress. This thinning of the fibrous cap was
accompanied by reduced intimal SMC content; decreased procollagen-1 gene
expression; increased (MMP)-1, -8, -13, and -14 expression; and reduced collagen
content [28]. Increased collagen loss in the fibrous cap suggests increased activity
of MMPs in the symptomatic plaque whose prevalence is high in diabetics.
Upregulated expression of IL-6, IL-8, and monocytes chemoattractant protein
(MCP)-1 and the activities of MMP-2 and MMP-9 and downregulated expression of
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tissue inhibitor of metalloproteinase (TIMP)-2 with hyperglycemia via
hyperglycemia-induced glycosaminoglycans alterations in the cell surface perlecan
as well as in the extracellular matrix (ECM) have been reported [29], however,
lower concentration of MMPs (MMP-2 and MMP-9) in T2DM has also been docu-
mented suggesting the complexity of the role MMPs [30]. Similarly, Fiaschi et al.
[31] reported that hyperglycemia in association with angiotensin II enhances the
collagen I production and deposition in ECM involving signal transducer and acti-
vator of transcription (STAT)3 in cardiac fibroblasts.

4.4.2 Diabetes and Lipid Deposition

T2DM and insulin resistance has been associated with reduced HDL cholesterol, a
predominance of small dense LDL particles, and elevated triglyceride levels [8].
Deposition of the lipids in the intima initiates the process of atherosclerosis, and a
large deposition of lipids (lipid core) within the fibroatheroma characterizes the
vulnerable atherosclerotic plaque [26] (Fig. 4.2). Increased lipid deposition and
larger lipid index have been reported in coronary plaques of diabetics compared to
non-diabetics [27]. These results suggest that increased LDL levels are associated
with increased atherosclerosis and plaque rupture. However, elevated plasma tri-
glyceride levels but not the elevated plasma cholesterol levels have been reported
with diabetes in hyperlipidemic pigs in association with increased atherosclerosis
[32]. This suggests that diabetes is associated with hyperlipidemia (hypertriglyceri-
demia but not hypercholesterolemia) and increased prevalence of atherosclerosis,
however, it has also been reported that isolated hypertriglyceridemia alone in not
associated with increased CAD, but hypertriglyceridemia in association with hyper-
cholesterolemia have a synergistic effect on CAD development [33]. Thus, increased
LDL in diabetes is associated with increased prevalence of atherosclerosis, and
increased lipid deposition in plaque is associated with plaque rupture correlates
increased prevalence of plaque rupture with T2DM.

4.4.3 Diabetes and Inflammation

Infiltration of the inflammatory cells (monocytes, macrophages, dendritic cells etc.)
is a key mechanism involved in fibroatheromatous plaque development (Figs. 4.2
and 4.3). Studies have suggested the association of increased infiltration and density
of these cells in symptomatic plaque compared to asymptomatic plaque [21, 22, 26].
Further, it has also been suggested that inflammation not only enhances atheroscle-
rosis and plaque formation but also the thrombus formation by affecting platelet
function, coagulating factors and clotting mechanism, potentiated by diabetes being
a chronic inflammatory disease [34]. Increased inflammation in the atheroma is also
associated with hyperlipidemia in diabetic patients suggesting the synergism
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between hyperlipidemia and inflammation in diabetes resulting in enhanced vulner-
ability of plaque [1].

4.4.4 Diabetes and Calcification

Calcification is a histological feature of fibrous atherosclerotic plaque. Minimally
oxidized LDL and T2DM are the risk factor for increased calcification in the patho-
genesis of plaque development. Hyperglycemia influences the calcification in the
vessel wall through ROS production. Increased expression of Cbfal (transcription
factor for bone formation) and bone morphogenetic protein (BMP)-2 and enhanced
calcification of VSMC:s is associated with high serum glucose. Increased levels of
BMP-2 exert pro-inflammatory and proatherogenic effects of BMP-2 induce the
oxidative stress and endothelial dysfunction, leading to enhanced plaque calcifica-
tion by inducing osteogenic phenotype in VSMCs [35, 36]. Avogaro et al. [37] have
discussed various mechanism in association with diabetes such as upregulation of
runt-related transcription factor 2 (Runx2), osterix, osteopontin (OPN), osteocalcin,
and downregulation of smooth muscle-specific genes in VSMCs trans-differentiating
it to more bone-forming cells. Increased calcification and higher prevalence of cal-
cification have been reported in coronary plaques of diabetics compared to non-
diabetics [27]. These studies suggest that diabetes is associated with increased
calcification in the intima, which in turn is associated with increased prevalence of
plaque rupture.

4.4.5 Diabetes and Thrombus Formation

Diabetes is a hypercoagulable disease due to an imbalance of pro- versus anticoagu-
lation, and is associated with increased numbers of endogenous pro-coagulant trig-
gers bearing circulating microparticles. Hypercoagulability in diabetes increases
the risk of atherosclerosis and peripheral vascular disease [38]. Increased associa-
tion of inflammation and oxidative stress with hypercoagulability state in diabetes
has been established which leads to endothelial dysfunction, plaque formation, pro-
gression and rupture [39]. Further, increased thrombus formation in diabetes due to
inflammation by affecting the platelet function, coagulating factors and clotting
mechanism has been reported [34]. Higher prevalence of thrombus formation has
been reported in coronary plaques of diabetics compared to non-diabetics [27].
These studies suggest that hypercoagulable state of diabetes promotes inflammation
and thrombus formation (Fig. 4.2).
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4.4.6 Diabetes and Intra-plaque Hemorrhage

The structural type I collagen, the predominant structural collagen, in the vessel
wall is produced by smooth muscle cells and fibroblasts in the vascular media and
intima. Type III collagen is present as a minor component in vessels. However,
Purushothaman et al. [40] while comparing the diabetic and non-diabetic subjects
reported that diabetes is associated with increased type III collagen instead of type
I collagen, a feature of progressive atherosclerotic plaque, accompanied with
inflammation, neovascularization, and intraplaque hemorrhage (IPH). Similar
trends in collagen reversal in association with diabetes have been documented by
various other studies [41-43]. Further mature plaques have a rich network of small
vessels called as ‘vasa vasorum’ within the matrix of plaque, and rupture of these
vessels within the plaque leads to IPH. Higher prevalence of IPH has been associ-
ated with symptomatic plaques [44], and plaque rupture [45] (Figs. 4.2 and 4.3).

4.4.7 Diabetes and Angiogenesis

Angiogenesis is a morphological feature of fibroatheroma. Lipid deposition and
inflammation causes oxidative stress and increased ROS. Increased oxidative stress
is a precursor for angiogenesis and arteriogenesis. Similarly, the toxic metabolites
in metabolic syndrome and diabetes induce angiogenesis via oxidative stress, which
further accelerates the progression of atherosclerosis [46]. Increased infiltration of
inflammatory cells and angiogenesis increases the size of the necrotic core and IPH
rendering the plaque prone to rupture [47]. A greater degree of plaque intimal neo-
vascularization and inflammatory infiltrate leading to plaque vulnerability has been
reported in diabetic subjects compared to non-diabetic subjects [48]. Although, the
distribution, density and the role of vasa vasorum have been discussed in the context
of plaque progression, atherosclerosis, and IPH, the causative or the only reactive
role of vasa vasorum in atherogenesis needs to be elucidated (Figs. 4.2 and 4.3).

4.4.8 Diabetes and Impaired Endothelial Repair

Inflammation of the atheroma and plaque rupture is the cornerstone of the ACS.
Plaque rupture occurs at the thinnest part of the fibrous cap, which is due to ECM
and collagen loss. ECM and collagen loss leading to thin fibrous cap occurs due to
impaired repair mechanism. Edsfeldt et al. [10] studied the carotid endarterectomy
specimens in T2DM and non-diabetic patients analyzing the plaque structure, con-
nective tissue proteins, inflammatory cells, and inflammatory markers, and reported
the increased proneness of the atherosclerotic plaques to rupture in subjects with
T2DM because of impaired repair responses rather than to increased vascular
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inflammation. The plaques in T2DM patients had lower collagen and elastin con-
tent, decreased levels of the VSMC growth factor, platelet-derived growth factor
(PDGF), decreased levels of inflammatory cells and decreased levels of MMP2.
However, Ruiz et al. [49] reported the increased proliferation of VSMCs and
decreased apoptosis leading to enhanced arterial remodeling in diabetic patients
with upregulated expression of Bcl-2 gene with glucose (Figs. 4.2 and 4.3).

4.5 Conclusion

Unstable plaques and plaque rupture precede the acute coronary syndrome. Unstable
plaque is characterized by the presence of necrotic core, lipid deposition, angiogen-
esis and thin fibrous cap. Inflammation in the atheroma, infiltration of inflammatory
cells, angiogenesis and collagen loss renders a stable plaque to unstable plaque.
Diabetes mellitus is a chronic inflammatory disease, associated with increased
inflammation, oxidative stress, hyperlipidemia and increased angiogenesis, thereby
increasing the prevalence of atherosclerosis as well as plaque vulnerability. Higher
prevalence of atherosclerosis and plaque vulnerability has been reported in various
studies along with the improved modalities of imaging to assess the plaque volume
and its proneness to rupture. Although, there are reports about the most common
arteries involved in atherosclerosis, diabetes induced structural changes in intima
and intimal thickening, predominance of collagen Il instead of collagen I, and pres-
ence of vasa vasorum and IPH, still further studies are needed to elucidate the
molecular mechanism more clearly underlying these changes in diabetes to develop
a potential therapy for plaque stability in diabetes mellitus.
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Chapter 5
Endothelial Dysfunction in Diabetes

Shivam Chandel, Rakesh Kumar Tiwari, and Madhulika Dixit

Abstract Cardiovascular diseases (CVD) are a leading cause of mortality and mor-
bidity world-wide. The instances of CVD are multi-fold higher in type -2 diabetic
patients. The initiating cause of these diseases is endothelial dysfunction, due to
presence of multiple risk factors such as, insulin resistance, dyslipidemia, inflam-
mation and hyperglycemia. This chapter summarizes our current understanding of
molecular mechanisms that contribute to endothelial dysfunction in diabetes.

Keywords Diabetes ¢ Endothelial dysfunction ® Hyperglycemia ¢ Inflammation ¢
Dyslipidemia ¢ Insulin resistance

5.1 Introduction

Endothelium, the innermost lining of a blood vessel which is in direct contact with
the flowing blood, by virtue of its position, plays an indispensable role in vascular
homeostasis. It strikes a balance between fibrinolysis and coagulation, leukocyte
diapedesis and inflammation; in addition to regulating the vessel tone, nutrient per-
meability and tissue perfusion [1-4]. Endothelial cells covering the entire span of
vasculature, starting from endocardial lining of the heart, through aorta, all the way
to tissue capillaries, veins and the valvular linings, account for a 7m? worth of
surface area for nutrient exchange in adults. Hence, it is not surprising to note that
they exhibit versatility in terms of their phenotype as well as function [5].
Endothelial cells work through a complex, but, a robust and, an interconnected
system of molecular cross-talk with other cell types, to bring about vascular homeo-
stasis. For instance, by secreting gaso-transmitters such as nitric oxide (NO), they
bring about relaxation of underlying smooth muscle cells and thus, increase the
local diameter of the blood vessel independent of the neuronal regulation [6-8].
Additionally, NO acts on circulating immune cells to prevent their adherence to
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the vessel wall [4, 9]. Endothelium derived NO is also anti-atherogenic as it pre-
vents migration and proliferation of smooth muscles. In contrast, endothelium
derived endothelin-1 (ET-1) brings about vaso-constriction [3, 10, 11]. It is worth
noting that endothelial cells also respond to other circulating, paracrine, autocrine
and endocrine mediators, such as thrombin, bradykinin, angiopoietins and vascular
endothelial growth factor (VEGF). Among these, angiopoietins and VEGF mem-
bers play a crucial role in vessel remodelling and angiogenesis [12—14]. Hence,
under normal physiological conditions, a tight balance between regulatory and
counter-regulatory endothelium-derived mediators is of paramount importance for
vascular homeostasis. Any deviation in their levels or modes of action, and/or sens-
ing of these agonists by the endothelium, leads to endothelial dysfunction. The best
characterized among these, is the decreased secretion or availability of endothelium
derived NO in the vasculature. In this chapter we summarize our current
understanding of endothelial function and how it is compromised in type 2 diabetes,
in order to get an insight on diabetic vasculopathy.

5.2 Normal Endothelial Function

Endothelium derived chemical mediators include prostanoids, endothelin-1, NO,
endothelium derived hyperpolarizing factor (EDHF), von Willebrand factor (VWF),
Angiotensin-II (Ang-II), tissue plasminogen activator (tPA), plasminogen activator
inhibitor (PAI), cell adhesion molecules (ICAM-1, VCAM-1, E-selectin), cytokines
and, growth factors such as TNF-a and VEGF [2, 7, 11, 15]. Majority of these pro-
teins are not only synthesized in the endothelium, they are also stored in specialized
storage vesicles of the endothelium, referred to as Weibel-Palade bodies [16]. Upon
suitable trigger, these stored auto-coids are released in blood, such as angiopoietins
or histamine, to mediate required vascular effects. Similarly, stored cell adhesion
molecules in WBPs are exposed on to the endothelial cell surface, allowing anchor-
ing points to circulating immune cells to carry out routine regulatory functions.
Such a tethering of immune cells onto the endothelial surface, provides them with
an opportunity to invade the inflamed tissue for repair. Usually this is a transient
process which resolves upon repair of the damaged tissue.

Controlled and balanced production of tPA and its inhibitor PAI, or that of coag-
ulation cascade members thrombomodulin, protein C and tissue factor, ensures
maintenance of blood fluidity as well as vascular repair [2, 4]. Through the release
of other mediators such as Angll, platelet-derived growth factor (PDGF) or NO,
endothelium also modulates differentiation and proliferation of smooth muscle cells
present underneath, and thus, regulate vascular remodelling [7]. Endothelium is also
a good sensor of fluid shear stress exerted by the circulating blood onto the lateral
walls of the vessels [17]. So much so, that they can distinguish between magnitude,
as well as the profile of blood flow. In the linear arms of bigger blood vessels, these
cells largely experience laminar shear stress, and in response to it, produce NO, a
potent vasodilator. In contrast, at the points of vessel bifurcations or curvature, the
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Fig. 5.1 Functions of vascular endothelium

resident endothelial cells experience disturb flow [17-19]. In the microvasculature
or the tissue micro-capillaries, the endothelium provides adequate surface for nutri-
ent exchange between the incoming blood and the tissue fluid. Hence, endothelium
being the first line of cells in contact with the circulating blood, not only senses
biochemical or rheological changes in it, but, also responds appropriately to main-
tain vascular homeostasis and organ perfusion. These functions of the endothelium
are summarized in Fig. 5.1.

5.2.1 NO Generation by the Endothelium

Without a doubt, the best characterised endothelium derived vaso-mediator is nitric
oxide. In the endothelium it is predominantly produced through enzymatic conver-
sion of L-arginine to citrulline and NO, by constitutively expressed endothelial
nitric oxide synthase (eNOS) [20]. Functional eNOS is a dimer and its activity is
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regulated through multiple mechanisms such as, serine/threonine/tyrosine phos-
phorylation, sub-cellular trafficking, and through its interaction with other co-
factors and proteins (Fig. 5.2). For instance, a functional dimer exists in association
with calcium binding protein calmodulin (CaM), heat shock protein 90 (hsp90) and
tetrahydrobiopterin (BH4) [20-23]. Among the serine threonine kinases which pos-
itively enhance the eNOS activity, the most potent one is PI-3 Kinase dependent
Akt. This enzyme activates eNOS by phsophyrlating its Ser''”” residue [24]. Other
kinases which phosphorylate this residue are protein kinase A (PKA), adenosine
monophosphate-activated kinase (AMPK), protein kinase G (PKG) and CaM pro-
tein kinase II (CaMKII) [20]. Phosphorylation of eNOS at this residue increases its
calcium-CaM sensitivity, allowing NO production even in presence of low intracel-
lular calcium. In contrast phosphorylation of Thr*’, inhibits eNOS activity by inter-
fering with CaM interaction. The phosphorylation of this negative regulatory site is
largely mediated by protein kinase C (PKC). Among the tyrosine residues that regu-
late eNOS activity upon phosphorylation, are Tyr 83 and Tyr 657, which positively
and negatively regulate the enzyme respectively [25-28].

Displacement of CaM by caveolin-1 however decreases NO synthase activity,
and dissociates the dimer into individual monomers. These monomers in absence of
CaM and other co-factors such as BH4, instead, start producing reactive oxygen
species [20, 29]. Hence, coupling of two monomers of eNOS through appropriate
protein-protein interactions is a must for sufficient NO production. The other nega-
tive regulators of eNOS derived NO production are Arginases, which competes
with eNOS for their common substrate L-arginine due to greater V. [30, 31].

Stimulation of endothelial cells by receptor dependent agonists such as, acetyl-
choline, serotonin or insulin increases eNOS activity. Another activator of eNOS is
fluid shear stress exerted by the circulating blood on to the apical surface of the
endothelium [20, 24]. The NO thus generated being lipophilic in nature, readily dif-
fuses into the underneath layer of smooth muscle cells (SMC), where it activates
NO dependent guanylated cyclase/PKG axis, to cause SMC relaxation and thus
vasodilation. In this way at the local tissue level, endothelial derived NO regulates
blood flow and vessel tone. NO also exhibits anti-inflammatory, anti-proliferative,
anti-migratory, anti-platelet, anti-oxidant and anti-permeability properties [32]. By
decreasing the cell surface expression of cell adhesion molecules onto the endothe-
lial surface, NO prevents tethering of circulating immune cells to block vascular
inflammation. Additionally, by inhibiting cytoskeletal rearrangements through Rho
inhibition, it prevents migration of smooth muscle cells from media into lumen of a
vessel during atherosclerotic plaque formation. Similalry, inhibition of platelet acti-
vation allows for attenuation of thrombosis [2, 4, 17, 18, 32]. Thus, all in all, endo-
thelium derived NO exerts potent anti-atherosclerotic effects (Fig. 5.2) and any
dysregulation in its expression or biological activity, will accelerate occlusive vas-
cular diseases through promotion of endothelial inflammation, thrombosis, plaque
formation, increased arterial stiffness and impaired arterial tone.
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5.3 Endothelial Dysfunction, Its Assessment and Endothelial
Repair

Endothelial dysfunction is defined as impairments in functional ability of the endo-
thelium to maintain vascular homeostasis, be it for maintaining vessel tone or pre-
vention of pro-atherosclerotic events such as, inflammation and thrombosis. It is
largely attributed to either decreased production of endothelium derived NO or due
to decreased bioavailability of NO. The latter effect, refers to inactivation of free
NO, due to simultaneous presence of oxidative stress [33—35]. Superoxide anions
seen during oxidative stress for instance, react with NO to form detrimental per-
oxynitrite [36]. Peroxynitrite is a potent oxidant which effectively inactivates numer-
ous cellular enzymes. Alternatively, presence of other substrate analogues of eNOS,
such as, asymmetric dimethyl arginine (ADMA) or enhanced expression of argi-
nases, also reduces NO levels in circulation [20, 30, 37]. It should however be noted
that endothelial dysfunction also reflects aberrant production and secretion of other
vaso-active molecules by the endothelium such as increased levels of ET-1 [10].

In vivo estimation of circulating NO in blood is a challenging task due to its short
half-life of few seconds and, due to lack of sensitive NO detecting reagents which
can detect it in physiological range (pM). Hence, downstream vascular effects of
NO are measured, to assess endothelial function. Clinically relevant assays measure
endothelium-dependent vasodilatory effects, either through plethysmography, high
resolution ultrasonography or through arterial tonometry to measure blood flow
changes in peripheral circulation [3, 38]. In non-invasive flow mediated dilatation
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(FMD), local ischemia, followed by hyperemia in the brachial artery is induced by
inflating and deflating blood pressure cuff, to generate shear stress. The consequent
endothelium dependent increase in vessel diameter is measured through high reso-
lution Doppler ultrasonography [38]. Another emerging non-invasive tool to assess
vasodilatory endothelial function, is to measure digital peripheral artery tonometry
(Endo-PAT) [39, 40]. In contrast to these simpler assessments, non-invasive meth-
ods to assess coronary microvascular dilatations, are cost intensive such as Doppler
echocardiography, positron emission tomography and MRI. These laborious and
sometimes operator dependent assays have forced majority of the researchers to
resort to economical, but surrogate circulating markers of endothelial activation,
such as, SICAM-1, sVCAM-1, sE-selectin, ADMA, vWF, sTie2 and angiopoietins.
Unfortunately majority of them also reflect ongoing systemic inflammation and
thus, are poor in sensitivity and are rather non-specific. It is in this regard that
researchers have turned their attention to measurement of circulating endothelial
progenitor cells (EPCs) and endothelium derived micro-particles (EMPs) as likely
markers of endothelial dysfunction.

5.3.1 Endothelial Progenitor Cells

Mature endothelial cells are quiescent in nature with a very low proliferative poten-
tial. Hence, for a long time it baffled scientists and clinicians alike, as to what repairs
a damaged endothelium. The landmark discoveries by Ashara and others of bone
marrow derived CD34* cells capable of recovering blood flow in rodent model of
hind-limb ischemia, upon transplantation, through endothelial differentiation, chal-
lenged the long held dogma, that de novo formation of blood vessels is an embry-
onic event [41, 42]. Subsequently it was reported that numerous population of
circulating mono-nuclear cells exhibit angiogenic potential. Although the exact
marker definition of these progenitor cells is still unresolved, endothelial progenitor
cells (EPCs) are broadly classified as bone marrow derived rare population of hae-
matopoietic marker (CD34, CD133 or both) and VEGFR2 expressing circulating
mononuclear cells, which can mediate endothelial repair. These cells under physi-
ological conditions periodically mobilize from bone marrow into various tissues
and organs, in response to stimuli such as VEGF, chemokine SDF-1a, estrogen or
erythropoietin [43—45]. Some of these cytokines for instance, SDF-1a, are secreted
in ischemic tissues by the hypoxic endothelium. Upon reaching their destination,
EPCs repair the endothelium (Fig. 5.3), either by differentiating into endothelial
cells, or by modulating the angiogenic ability of the resident endothelial cells
through secretion of paracrine factors [46—48]. Intriguingly, mobilization of these
progenitors in response to cytokines, requires involvement of PI-3/Akt pathway and
eNOS derived nitric oxide [49]. Numerous studies have shown that in humans, cir-
culating counts of EPCs significantly correlate with endothelial health, with reduced
numbers of EPCs in blood predicting future cardiovascular events [50]. The
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molecular reasons for similar aberrations seen in diabetic patients will be discussed
in subsequent section of this chapter.

5.4 Diabetes and Mechanisms of Underlying Endothelial
Dysfunction

Components of metabolic syndrome such as abdominal obesity, hypertension, dys-
lipidemia, diabetes and insulin resistance; are classical risk factors of cardiovascular
diseases, with all of them being associated with endothelial dysfunction. Among
these, the worst clinical out-comes are seen in diabetic patients, as one or most of
the above listed risk factors are present in these patients. These risk factors not only
contribute to CVD individually, but when present along with others, tend to
potentiate each other’s influence on the endothelium.

Hyperglycemia mediated endothelial dysfunction is well-understood both in
humans and diabetic rodent models, however, recent clinical trials such as the
ACCORD, ADVANCE, UKPDS and the Framingham Heart study, have reported
disappointing results with regard to efficacy of combined therapy of insulin and
hypoglycemic agents on cardiovascular outcomes. It was observed that despite tight
glucose control, respite from macro-vascular complications was marginal, suggest-
ing that hyperglycemia is just one of the many other factors contributing to vascular
diseases [51-54]. This notion in part was also supported by the observations made
in Helsinki policemen study and the NHANES trial, both of which, observed posi-
tive correlations between circulating levels of insulin and incidences of heart attack
[55-58]. Similarly, Framingham and numerous others studies observed an inverse
correlation between insulin resistance and brachial artery FMD. In fact, use of insu-
lin sensitizers such as thiazolidinediones (TZDs) and metformin are consistently
shown to improve endothelial dysfunction, both in diabetic and non-diabetic sub-
jects having other risk factors such as dyslipidemia and hypertension [59-61]. These
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observations indicate that the onset of endothelial dysfunction or rather vascular
diseases is a pre-diabetic event, with the disease getting worse with subsequent
appearance of hyperglycemia. In the following section we will summarise molecu-
lar mechanisms which link the above mentioned individual risk factors with endo-
thelial dysfunction.

5.4.1 Insulin Resistance and Hyperinsulinemia

Prior to blood glucose levels spiking up in type 2 diabetic patients, the sensitivity of
the metabolic tissues (liver/skeletal muscle/adipose) towards insulin is blunted,
leading to insulin resistance. Insulin resistance is also characterized by increased
circulating levels of free fatty acids (FFAs), pro-inflammatory cytokines (TNF-a
and IL-6) and, compensatory hyperinsulinemia. On one hand the pro-inflammatory
mediators attenuate insulin signalling by impairing tyrosine kinase activity of the
insulin receptor, the ‘Compensatory hypothesis’, vouches for increased release of
insulin by the B-cells to over-come insulin resistance. Thus, both insulin resistance
and compensatory hyperinsulinemia co-exist during early stages of type 2 diabetes
and metabolic syndrome. It is worth noting that insulin is a vasoactive hormone, as
long as it is released periodically at physiological levels following meal intake,
however, it's sustained presence and increased circulating levels have detrimental
effects on the vasculature as reported in some of the recent findings.

Similar to its role in metabolic tissues, insulin activates the PI-3 kinase/Akt axis
in endothelial cells to activate eNOS through serine phosphorylations [24, 62, 63].
The consequent NO release, particularly in skeletal muscles, improves blood flow
for better glucose uptake. However, cell culture based studies performed on human
umbilical vein derived endothelial cells (HUVECS), have shown that chronic hyper-
insulinemia, promotes NFkB mediated surface expression of cell adhesion mole-
cules such as, VCAM-1, to promote adherence of monocytes [64, 65]. Our own
study has shown that sustained exposure of HUVECsS to even low levels of insulin,
promotes leukocyte adhesion, with the effect being enhanced multi-fold with
increasing concentration of insulin [66]. This increase in endothelial inflammation
was largely due to increased uncoupling of eNOS from a dimeric to a monomeric
form and, due to increased activity of arginase II. Although we presently do not
have a clear answer to what causes eNOS uncoupling in response to hyperinsu-
linemia in cell culture, the increase in arginase expression was due to insulin medi-
ated p38MAPK activation [66]. Even in heterozygous knock-out mice for insulin
receptor, which exhibit endothelial insulin resistance, despite normal glucose toler-
ance, eNOS uncoupling, decreased NO and increased ROS [67, 68].

As seen for mature endothelial cells, knock-out studies in mice have shown that
both PI-3 kinase/Akt and eNOS are necessary for mobilization, differentiation and
angiogenic ability of EPCs [47, 49, 69, 70]. Additionally cell culture studies dem-
onstrate that insulin enhances clonogenic ability of EPCs through IGF-1 receptor
dependent p38MPK and ERK1/2 pathways [71, 72]. Seminal observations were
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made by Fadini et al. with regard to progressive decrease in circulating counts of
fasting CD34*VEGFR* EPCs with increasing severity of glucose intolerance [73,
74]. They also observed inverse correlation between EPC counts and glucose levels,
following glucose challenge. Inverse association between EPCs and insulin resis-
tance is also seen in South Asian Men, who are far more insulin resistant compared
to western population [75]. In a pilot study performed by our group, although we
did not see a decrease in fasting counts of CD34*or CD133*CD34" progenitor cells
in pre-diabetic Asian Indian men, we did see abrogation of oral glucose nduced
increase in their circulating counts [76]. Additionally, we observed that the cells
obtained from the pre-diabetic subjects did show poor migratory potential towards
SDF-1a [77]. Although a detailed understanding on dysfunction of EPCs during
insulin resistance in humans is currently lacking, the existing clues point towards
defective mobilization and differentiation of these progenitors.

5.4.2 Obesity and Dyslipidemia

Imbalance in HDL- to LDL-cholesterol and presence of abdominal adiposity are
strongly associated with type 2 diabetes and consequent endothelial dysfunction.
Adipose tissue being an endocrine organ itself, secretes numerous vasoactive cyto-
kines and hormones, for example interleukin-6 (IL-6), TNFa, adiponectin, resistin,
angiotensin II and leptin. Among these, adiponectin exerts anti-inflammatory effects
on to the endothelium, by increasing NO production through AMPK and PKA medi-
ated eNOS activation [78]. However, its circulating levels are decreased in T2DM. In
contrast, angiotensin II causes endothelial dysfunction by decreasing PI-3 kinase
activation and increasing JNK and MAPK activation. Ang-II is also reported to
increase ROS production, endothelin-1 release, and surface expression of ICAM-1
[79]. Thus it is not surprising to observe that ACE inhibitors and Ang-II receptor type
I blockers (ARB blockers) exhibit beneficial cardiovascular effects [80—82].
Imbalance in lipid profile and increased postprandial triglycerides also induce
endothelial dysfunction by contributing to oxidative stress and by promoting endo-
thelial apoptosis. Numerous randomized placebo-controlled trials with statins, as
well as fenofibrates, have shown their beneficial effects on endothelial function as
assessed through brachial artery FMDs [38, 83]. These treatments are also reported
to mitigate endothelial inflammation by decreasing the expression of VCAM-1 and
E-selectin on endothelial cells. Additionally, statins are reported to improve the cir-
culating counts of endothelial progenitors [84]. However, other studies have not
observed any improvements in microvascular functions as recorded with skin blood
flow measurements. Readers are referred to an excellent review by Hamilton and
Watts on effects of various lipid lowering therapies on endothelial dysfunction [38].
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5.4.3 Inflammation

Occlusion of bigger vessels such as coronary artery or the carotids also referred to
as atherosclerosis, is an inflammatory disease. Numerous epidemiological studies
have shown that inflammation independently associates with endothelial dysfunc-
tion. Even acute inflammatory insults during vaccination or infusion of LDL parti-
cles, blunts endothelium function [85, 86]. These attenuations in endothelial
function are largely due to decreased production or bioavailability of endothelium
derived NO. Chronic inflammation in type 2 diabetic patients is characterized by
increased circulating levels of pro-inflammatory cytokines, such as, TNF-a, IL-6,
MCP-1, CRP and fibrinogen. Majority of these cytokines increase the adherence of
leukocytes to the endothelial surface due to NF-kB mediated increased surface
expression of cell adhesion molecules [E-selectin, ICAM-1 and VCAM-1] [2, 87,
88]. All these cytokines also decrease the expression of eNOS, thereby additionally
enhancing vascular permeability and thrombus formation [8§9]. Among these cyto-
kines, CRP decreases the expression of prostacyclin, while increasing the expres-
sion of vaso-constritor endothelin-1 [90]. Similarly, TNFa apart from promoting
endothelial inflammation, induces microvascular endothelial apoptosis in diabetic
patients. The latter effect of TNF-a, is associated with nephropathy and retinopathy
[91]. Intriguingly, TNF-a blocking therapy reverts microvascular endothelial dys-
function and capillary recruitment in spondylitis patients exhibiting vascular inflam-
mation [92]. Primed polymorphonuclear leukocytes (PMNs) also contribute to
vascular inflammation during diabetes. These cells release superoxide due to
decreased plasma glutathione levels [93]. These evidences suggest that anti-
inflammatory treatments may improve diabetic-cardiovascular complications and
currently two clinical trials (TINSAL-CVD and TINSAL-FMD) are underway to
check the same [94-96].

5.4.4 Hyperglycemia

Multiple clinical and epidemiological studies on diabetic patients have observed
association of hyperglycemia with increased oxidative stress and decreased bio-
availability of nitric oxide [33, 34]. The latter is in part due to increased expression
of caveolin-1, ADMA and enhanced arginase activity [20, 30, 37, 97]. All these
three, negatively affect eNOS activity. In contrast, the positive modulators of eNOS
such as Akt phosphorylation and Hsp90 mediated stabilization of eNOS dimer, are
blunted in diabetic arterial tissue [98]. Some of the responsible players in hypergly-
cemia mediated endothelial dysfunction are listed below.
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5.4.4.1 Ocxidative Stress

The most prominent player is increased oxidative stress characterized by enhanced
production of superoxide radicals. These radicals nullify the vasodilatory effect of
NO either by forming peroxynitrite or by oxidizing its cofactor tetrahydrobiopterin
[20]. In fact, supplementation of BH, improves endothelial dysfunction in type 2
diabetic patients [99]. Increased superoxide production also mediates lipid peroxi-
dation, which in turn, inhibits receptor dependent eNOS activation. The major
sources of reactive oxygen species in diabetes are: NADPH oxidase, the polyol/
sorbitol/aldose reductase pathway or the uncoupled eNOS itself [20, 33, 34, 100].
Apart from decreasing the bioavailability of nitric oxide, increased oxidative stress
also leads to increased production of methylglyoxal and advanced glycation end
products [101]. Unfortunately, despite sufficient evidence on the role of oxidative
stress and endothelial dysfunction, clinical trials with anti-oxidant therapies have
met with limited success [102, 103]. While ascorbic acid treatment seems to improve
blood flow, clinical trials with a-tocopherol were disappointing [104].

5.4.4.2 Diacylglycerol and PKC Pathway

Hyperglycemia induces activation of PKC-f isoform through generation of DAG
from glycolytic intermediates such as dihydroxyacetone phosphate and
glyceraldehyde-3-phosphate [105]. Enhanced PKC-f activity, inhibits PI-3kinase/
Akt pathway, thereby preventing Ser!!'”” mediated activation of eNOS [20]. In
humans, treatment with PKC-f inhibitor prevents glucose infusion mediated blunt-
ing of brachial artery flow mediated dilatation. Additionally, PKC- activates the
NFkB arm to promote endothelial inflammation. It also leads to increased gene
expression of ET-1 and PAI-1. By increasing the thickness of basement membrane
in response to hyperglycemia, the PKC-f} signalling axis decreases vessel compli-
ance [105].

5.4.4.3 Advanced Glycation Endproducts (AGEs)

These are formed through non-enzymatic glycation of proteins, through condensa-
tion of carbonyl group of free glucose with the amino groups of lysine or arginine
in proteins. The resulting Schiffs base intermediate, undergoes Amadori rearrange-
ment to form stable glycated proteins such as HbA,, or fructosamine. In the endo-
thelium, the major AGE is methylglyoxal, which leads to increased ROS generation
[101, 106]. AGEs also promote NFkB signalling through AGE receptors (RAGEs)
to promote endothelial inflammation. Modification of collagen in basement mem-
branes through AGE affects the elasticity of the blood vessels, and, by modifying
heparin sulphate, AGEs impair endothelial interaction with extracellular matrix and
thus induce endothelial leakage. Similar to proteins, glycation of lipids such as LDL
(gLDL) decreases their recognition by their cognate receptors, for uptake, and
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consequently expose them to further oxidation. Interestingly, gLDL prevents NO
production and L-arginine uptake in endothelial cells [107].

5.4.4.4 Hyperglycemia and Endothelial Repair

Similar to effects exerted on endothelial cells, hyperglycemia and observed oxida-
tive stress attenuates the reparative ability of EPCs [69, 108, 109]. EPCs obtained
from diabetic patients and rodents have decreased proliferative and chemotactic
response towards mobilizing agents such as SDF 1« [45, 47, 108]. Even the circulat-
ing levels of SDF 1o are reduced in the injured tissues in hyperglycemia. Furthermore,
the expression of CXCR4, the receptor responsible for sensing SDFla, is also
decreased in diabetes [110, 111]. It is worth noting that every aspect of EPC medi-
ated endothelial repair, be it their mobilization, homing or differentiation into
mature endothelial cells; are all dependent upon PI3-kinase/Akt/eNOS pathway
[47, 49]. Unfortunately in diabetes this PI-3 Kinase/Akt mediated NO generation
from eNOS is blunted due to concomitant presence of oxidative stress [69]. Although
insulin and adipokines such as leptin are known to enhance tubule formation and
colonogenic ability of EPCs, presence of chronic inflammation during diabetes
abrogates their ability to suitably respond to these hormones, making them either
insulin or leptin resistant [67, 112—114]. However, the molecular mechanisms alter-
ing the responses of EPCs towards these agonists are currently ill-characterized.

5.5 Conclusion

Endothelium, being in direct contact with circulating blood, is the ideal sensor of
changes in blood chemistry, in addition to being a key regulator of vascular homeo-
stasis. Any aberration in its physiological function is the triggering point for initia-
tion and progression of vascular diseases. Unfortunately, multiple risk factors
observed in diabetes, not only corrode the endothelium but, also attenuate the repar-
ative mechanisms of the endothelial progenitor cells (Fig. 5.4). Understanding of
molecular mechanisms contributing to endothelial dysfunction and blunted repair
will thus identify suitable drug targets for mitigation of vascular diseases in diabetes
and metabolic syndrome.
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Chapter 6
Smooth Muscle Cells in Diabetes Mellitus

Uma Nahar Saikia and Suvradeep Mitra

Abstract Diabetes mellitus is a multisystem systemic disease with significant mor-
bidity and mortality. The morbidity is often contributed by the microvascular disease
whereas the macrovascular disease is significantly associated with the mortality in
the diabetic patients. The macrovascular disease, also known as diabetes-accelerated
atherosclerosis is promoted by the interplay of multiple factors. These biochemical
and molecular parameters predominantly affect the endothelial cells and the
smooth muscle cells. Both these cells actively take part in the diabetes-accelerated
atherosclerosis. The smooth muscle cells evidently proliferate, accumulate and
show phenotype shift in diabetes-accelerated atherosclerotic lesions. These proper-
ties are studied mainly in the animal models and therapeutic drugs can be targeted
to reduce these complications.

Keywords Diabetes ¢ Atherosclerosis ® Smooth muscle cells ¢ Vascular disease ©
Hyperglycemia ¢ Dyslipidemia

6.1 Introduction

Diabetes mellitus is a disease of quantitative or qualitative deficit of insulin result-
ing in a state of chronic hyperglycemia. Type 1 diabetes mellitus is characterized by
the progressive destruction of the f cell population of the islets of Langerhans from
an immunological process leading to a quantitative deficit of insulin whereas type 2
diabetes mellitus results from insulin resistance and subsequent loss of the islets.
Different body systems are profoundly affected by diabetes, especially the vascular
bed. Both the types of diabetes affect both the microvascular and the macrovascular
compartments leading to significant morbidity and mortality. The microvascular
compartment includes renal glomerulus, vasa nervorum of the peripheral nerves and
retina leading to diabetic nephropathy, neuropathy and retinopathy or diabetic
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triopathy if all the three compartments are involved. Macrovascular disease neces-
sarily means diabetes-accelerated atherosclerosis involving the major vessels like
aorta and its major branches. Diabetes leads to accelerated formation/progression of
lesions of atherosclerosis affecting the vasculature. Myocardial ischemia and infarc-
tion, cardiovascular accident (stroke in common parlance) and limb ischemia or dry
gangrene leading to limb amputation is the life-threatening or limb-threatening
complications of the diabetic macrovascular disease. Needless to say that there has
been a flurry of research around diabetes-accelerated atherosclerosis in recent times.
The morphologic changes in the blood vessels followed by the pathobiology of the
disease is discussed to understand the role of diabetes on the smooth muscle cells
(SMCs).

6.2 Factors Affecting Smooth Muscle Cell Proliferation
in Diabetes

Many biochemical factors are implicated in the SMC pathobiology. The main bio-
chemical pathways involved are (1) polyol pathway, (2) hexosamine pathway, (3)
advanced glycation/lipoxidation end-product (AGE/ALE) pathway and (4) protein
kinase C (PKC) pathway [1]. These biochemical pathways portend in the generation
of the reactive oxygen species (ROS) which forms the final common pathway [1].
Different studies have also shown that multiple parameters including chronic hyper-
glycemia, insulin resistance, hyperlipidemia etc. can affect the SMCs individually
as well as concurrently. The basic pathogenetic scheme of the diabetes-accelerated
atherosclerosis is depicted in Fig. 6.1.

6.3 Morphological Changes of Smooth Muscle Cells
Secondary to Hyperglycemia and Dyslipidemia

The diabetic changes occur at a global scale. Variable research attempts have been
made to pinpoint the site of the major brunt of the injury. Endothelial cell is undoubt-
edly one of the major sites to be inflicted with ROS. In addition to the endothelial
cells, the micro and macrovasculature in the diabetic patients show smooth muscle
cell (SMC) proliferation and morphological changes which help in the progression
of atherosclerosis. The molecular biology of the SMCs in diabetes-accelerated ath-
erosclerosis has been studied in the experimental models. In small animal models,
infiltration of the monocytes followed by the activation and differentiation of these
cells into lipid-loaded macrophages is seen in areas without pre-existing intimal
thickening [2]. In culture, the most potent growth factors for SMCs are platelet
derived growth factor B chain homodimer (PDGF-BB) and fibroblast growth factor-
2 (FGF-2). SMC proliferation is also regulated by other factors i.e. components of
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Fig. 6.1 Basic biochemical pathway of atherogenesis in diabetes

the extracellular matrix, and O2 tension [3]. Although these factors stimulate prolif-
eration of cultured SMCs, one should bear in mind that in vivo and ex vivo effects
may differ.

In humans, lipid-loaded macrophages are seen in areas with intimal thickening
which is smooth muscle cell mass followed by an increased accumulation of lipid-
loaded macrophages and extracellular lipid called as atheroma [4]. Formation of
“atheroma” (type IV lesion) means the accumulation of lipid laden macrophages in
the intima at a subendothelial location [4, 5]. The next step for progression of the
lesion is increased accumulation of smooth muscle cells (SMCs) in the intima and
formation of a fibroatheroma. “Fibroatheroma” (type V lesion) is the formation of a
fibrous cap over the atheroma with a central core containing the lipid laden macro-
phages [4, 5]. Many of these lipid laden macrophages die releasing their content
extracellularly forming the lipid rich core. The dead cells and their debris accumulate
in the core due to ineffective clearance (efferocytosis) [6] making the core material
more thrombogenic. The fibrous cap may rupture exposing the highly thrombogenic
core and causing “plaque rupture” or may remain stable with accumulation of more
material in the core thereby causing “progressive occlusion” of the vessel [7]. These
lesions can become destabilized, possibly by thinning of the SMC-rich fibrous cap
and/or increased macrophage death, leading to plaque rupture, thrombosis (Fig. 6.2a,
b), and the acute clinical manifestations of atherosclerosis [2, 8].
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Fig. 6.2 (a) Scanner view of a medium sized artery (Left Anterior Descending Artery) in a patient
with diabetes-accelerated atherosclerosis (Hematoxylin and Eosin, 20x); The artery is near-totally
occluded. (b) The occlusion is because of the plaque rupture and thrombosis (Hematoxylin and
Eosin, 40x); Note the fibrous cap is thinned out at one edge and numerous needle shaped cholesterol
clefts in the atheroma core. (¢) Numerous subintimal foam cell accumulation associated with sprin-
kling of the lymphocytes (Hematoxylin and Eosin, 200x). (d) Some of the foam cells show myoid
type morphology with abundant deep eosinophilic cytoplasm (Hematoxylin and Eosin, 200x)

The atheroma formation necessarily begins with endothelial injury, a pro-
inflammatory milieu and subsequent accumulation of subendothelial macrophages
at the site of turbulence. The associated dyslipidemia promotes the accumulation of
the lipid material within these macrophages. The circulating low density lipoprotein
(LDL) particles in diabetes are small and dense. Diabetes associated hyper triglyc-
eridemia often contributes to the generation of these small, dense LDLs. They offer
higher penetration, increased susceptibility to oxidation and stronger avidity to the
endothelium rendering them more atherogenic than the larger LDL particles [9]. The
oxidation of the LDL particles is a crucial step as the oxidized LDL is antigenic and
incites a chronic low grade inflammation at the site of atheroma formation with
recruitment of the inflammatory cells which perpetuates the inflammation and sub-
sequent endothelial injury by degranulation. Moreover, glycation of LDL increases
the half life of LDL while the half life of the glycated high density lipoprotein (HDL)
becomes shorter. In short, it means overproduction and perpetuation of LDL choles-
terol and excess clearing of the protective HDL cholesterol. The atheroma formation
occurs with the accumulation of lipid laden macrophages with subsequent intimal
thickening. These macrophages recruit bone-marrow derived SMCs [10] as well as
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promote the migration and proliferation of the intra-intimal and medial SMCs [11,
12]. Moreover, there is evidence that the macrophages themselves can differentiate
and adopt myofibroblastic phenotype depending on the inflammatory milieu and the
autocrine and paracrine factors released by the macrophages themselves and the
endothelial cells. The increased accumulation of the SMCs in an atheroma portends
the beginning of a fibroatheroma. The general belief of the migration of the medial
SMC:s, their proliferation and lack of apoptosis in the formation of fibroatheroma
has been challenged by some authors in animal studies. Imperative to say, that dif-
ferent growth factors play roles in the formation of the fibrous cap.

The SMC:s secrete collagen required for the formation of the fibrous cap strength-
ening the cap architecture. The increased apoptosis of the SMCs promote plaque
rupture in two important ways. The first one is due to the relative lack of the colla-
gen which is produced and secreted by the SMCs. The other cause is due to the
release of pro-inflammatory cytokines related to the myocyte death which potenti-
ates the instability of the plaque. The monocyte-macrophage system plays a crucial
role in the plaque stabilization by influencing cell death of the SMCs. The advanced
atherosclerotic lesions can undergo remodeling by an increase in the SMC content
and reduction of the macrophage content as shown in the animal models. Also HDL
can bring about similar changes and stabilize an atherosclerotic plaque [13]. The
SMC:s are recruited from the media and they migrate and accumulate in the vicinity
of the plaque. The SMCs, native to the intima also undergo proliferation and accu-
mulate in the atheromatous plaque. Some of these SMCs take up and accumulate
the lipid within them similar to the foamy macrophages [14]. In fact, Katsuda et al.
showed that the majority of the cellularity in the early atherosclerotic plaque is con-
tributed by the SMCs. The foam cells also are mostly derived from the SMCs rather
than from the macrophages (Fig. 6.2c, d), as was demonstrated by the immunohis-
tochemistry [14]. These SMCs behave like the foamy macrophages and also undergo
apoptotic death releasing the lipid material extracellularly. The extracellular lipid
alongside the cellular debris forms the necrotic core. In addition, the SMCs also
tend to contain this necrotic core within the subintima by forming a fibrous cap over
it. This fibrous core is formed by the direct presence of the SMCs as well as by the
secretion of collagen and elastin by the SMCs [7, 15].

Functionally, the SMCs can be divided into resident SMCs and migrating SMCs.
The resident SMCs are native to the intima and is found normally within the intima,
whereas the migrating SMCs are derived from the media and can only be seen in
progressive atherosclerosis. The migration of the SMCs is stimulated by different
mitogenic factors. The migrating and resident SMCs also receive proliferating sig-
nal to cause progression of the atherosclerotic process. Morphologically or ultra-
structurally, these SMCs can be myofilament-rich or rough endoplasmic reticulum
(RER)-rich. The myofilament-rich SMC is RER-poor and vice versa. The former
serves a more contractile function and the later has synthetic functions. The contrac-
tile phenotype is also known as differentiated phenotype and is commonly found in
the healthy blood vessels whereas the non-contractile/synthetic phenotype predomi-
nates in the diseased blood vessels [16]. It has been shown in animal models that the
SMC:s in the diabetes-accelerated atherosclerosis show a synthetic phenotype rather
than a contractile phenotype along with a switch in the expression of the actin
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isoform [16, 17]. The contractile alpha smooth muscle isoform converts to a non-
muscle beta isoform in diabetes-accelerated atherosclerosis [17]. The advanced
lesions of atherosclerosis (type III onwards) show visible ultrastructural difference
[4, 5]. The basement-membrane around these SMCs is very thick giving it the name
of basement-membrane-rich or pancake-like cell [18]. The diabetic SMCs show an
abundance of cytoplasm and RERs on ultrastructure alongside an increased amount
of extracellular material [17]. These phenotypic switch in diabetes-accelerated ath-
erosclerosis is also termed as “phenotypic modulation” [17]. Moreover, studies
have also pointed out a vascular bed specific remodeling in diabetes and differential
phenotype of SMCs in different vascular beds in animal studies. As for example, the
coronary SMCs are found to down regulate the expression of the contractile pro-
teins with altered interaction with the extracellular matrix (ECM) as compared to
the aortic SMCs. The phenotypic variation of the diabetic SMC:s is also described in
other studies. One such study concluded that the human SMCs isolated from the
diabetic patients show a significantly higher rate of proliferation, adhesion and
migration in addition to abnormal morphology in the culture medium [19]. This
property of the SMC:s is termed as “vascular hyperreactivity” by some authors and
a change in the subcellular calcium ion distribution in activated SMCs has been
postulated as one of the causes to bring about these changes [20]. The enzyme con-
tent (endothelial Nitric oxide synthetase), intracellular guanosine monophosphate
(cGMP) levels also change in the diabetic SMCs leading to the hyperreactivity of
the SMCs in the diabetic patients [16]. Indeed, calmodulin-stimulated cyclic nucle-
otide phosphodiesterase gets accumulated in the SMCs of both the phenotypes and
takes part in the SMC proliferation and recruitment [21, 22].

It is also important to note that the SMCs in diabetic vessels do not show uniform
phenotypic and/or functional change. In a seminal study by Boor et al., the enzy-
matic activity of the SMCs in the plaque region or underlying the plaque had been
found to be different than the enzymatic activity in the vicinity. An isoenzyme of
glutathione-S-transferase (GST), known as hGSTA4-4 is known to be associated
with detoxification of the generated intracellular ROS [23]. Preferential expression
of this enzyme in the SMCs underneath the plaque substantiates the involvement of
SMCs in the pathogenesis of the diabetes-accelerated atherosclerosis. In addition,
the role of ROS in the pathogenesis is also highlighted.

6.4 Biochemical and Pathobiologic Basis of Smooth Muscle
Cell Proliferation in Diabetes

Despite the general and uniform agreement that SMCs proliferate and accumulate
in diabetes-accelerated atherosclerosis, the true pathobiology of SMC induction is
yet not elucidated. Many factors namely hyperglycemia, insulin, AGE, triglycerides
and non-esterified fatty acids, hypertension and renin-angiotensin system and dif-
ferent paracrine molecules are all implicated with contradictory results in different
studies. Similarly, the studies highlighting the factors affecting the stability of the
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plaque are also not met with consensus agreement. Probably the SMC induction and
plaque stability are the functions of multiple inter-related factors.

Different studies have concluded the effects of hyperglycemia on SMC prolifera-
tion differently. This ranges from stimulatory effect to no effect to inhibitory effect.
However, few studies have shown that the glucose consumption by the SMCs in
diabetes remains very high, so much so that they can be almost compared to the
tumour cells in terms of glucose hunger. However, unlike the endothelial cells, the
SMCs use glycolytic pathway for ATP generation even under aerobic condition, a
paradoxical condition known as “aerobic glycolysis”. Energetically infidel, aerobic
glycolysis protects the SMCs from the oxidative stress [24]. There are some studies
proposing the theory of induction of proliferation and accumulation of the SMCs by
chronic hyperglycemia [16, 25-27]. Application of different inhibitor drugs on ani-
mal subjects have shown consequent blockade of the SMC proliferation and accu-
mulation. For example, epalrestat, the inhibitor of aldose reductase enzyme (key
enzyme of polyol pathway) has abolished the proliferative and migratory pheno-
typic and functional switch in diabetic animals proving the role of polyol pathway
in the pathogenesis [27]. Similarly, the anti-insulin drugs are also found to nullify
the SMC chemokinesis substantiating the role of free radical pathway in SMC
pathobiology [26]. Advanced glycation end products (AGE)s are found to cause
oxidative stress in the SMCs by the AGE-RAGE (receptor of AGE) interaction and
the growth stimulatory effect of this ligand-receptor interaction. Also, the altered
cell-cell and cell-matrix interaction promoted by the AGEs or ALEs (advanced
lipoxidation end products) cause an aberrancy of cellular function. On the contrary,
the stimulatory effect of chronic hyperglycemia on SMC has been challenged by a
few authors [12, 28]. In this context, the study by Peiro et al. is noteworthy. These
authors had shown a death promoting effect of chronic hyperglycemia on the SMCs
by the activation of necrotic pathway. Moreover, hydrogen peroxide has been found
to play a pivotal role in this necrotic cell death, as catalase enzyme had been found
to abolish these effects. This necrotic cell death promotes the changes of diabetic
vasculopathy [28]. Morphologically, the changes of both diabetic vasculopathy and
accelerated atherosclerosis are well documented in the same organ. Hence, proba-
bly, chronic hyperglycemia has a complex interaction with the SMCs and the
smooth muscle changes are function of multiparametric interaction.

There is evidence of lesional triglyceride (TG) and non-esterified fatty acids
(NEFA) promoting SMC migration and proliferation in the recent literature. The
lipoprotein lipase, an essential enzyme in the degradation of the TG is increased in
atheromatous lesions and is released by the SMCs and the macrophages in an ath-
eromatous plaque. Recent evidence suggests that the insulin resistance has adverse
effects on both the endothelium and the platelets via the downregulation of the
PI3K/AKT and IRS-1/AKT pathways ultimately promoting an imbalance of nitric
oxide (NO) and reactive oxygen species (ROS). However, the role of insulin or
insulin-resistance on SMCs is not well established [11].

The nitrergic pathway, intracellular guanosine monophosphate (cGMP) and ROS
are considered to be the final common pathway linking all the other metabolic path-
ways in diabetes mellitus, namely the polyol, hexosamine, AGE and protein kinase
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C (PKC) pathways [1, 29]. Many studies including the study by Pandolfi et al. had
shown the upregulation of the intra-endothelial and intra-SMC nitric oxide synthe-
tase (NOS) activity along with a concurrent fall in cGMP and rise in superoxide
production in diabetic animals [16].

The renin-angiotensin pathway, hypertension and the paracrine factors may also
affect the SMCs, though convincing evidences are still lacking. Similarly, no such
factors can be implicated for the plaque instability [11].

From this discussion, it is evident that diabetes causes SMC dysfunction or dia-
betes is a state of altered function for SMCs. This SMC dysfunction is attributed to
variable factors but hyperglycemia, insulin resistance and dyslipidemia all play
roles in this. These factors are also keys to the vascular damage and subsequent
atherogenesis. All these three factors promote oxidative damage to the endothelium
bringing about a vasoconstrictive, pro-inflammatory and prothrombotic state all of
which stimulate atherogenesis independently or in a combined manner. So, in brief,
diabetes is a state of phenotypic modulation and dysfunction of the SMCs [30].

6.5 Significance of the Smooth Muscle Cell Changes
in Diabetes

Once the morphological and functional changes in SMCs occur, consequently the
imminent question that looms large is “Do these changes reflect mere research-
related jargon or they have any diagnostic, prognostic or therapeutic value”? In
simple words, what is the clinical relevance of these SMC changes in relation with
diabetes which is necessarily twofold in clinical practice. The first one is prognostic
and the second one is therapeutic. Currently, the diagnosis of diabetes-accelerated
atherosclerosis is more clinical and comes from the end-organ-damage related signs
and symptoms. The above-mentioned pathways are experimental studies either in
cell culture or in animal models.

The involvement of the SMCs dictate the development, progression and the com-
plications of the diabetes associated macrovascular disease. It is evident from the
above-mentioned discussion that the SMCs undergo a series of phenotypic and
functional changes in the diabetic setting. These changes may involve preferential
vascular beds and can have regional preferences as well. The basic underlying
change of the SMCs in diabetes is the proliferation and accumulation leading to the
formation of the atheroma. Moreover, the SMCs undergo foam cell transformation
in the early stage. The next step is progression of the atheroma into fibroatheroma
which is brought about by the secretion of collagen by the SMCs. The complica-
tions can occur either in the form of plaque rupture or plaque vulnerability or stabil-
ity of the plaque leading to luminal occlusion. Dissecting aneurysm and vasculopathy
are also known complications of diabetic macrovascular disease. Although the exact
mechanism of the plaque rupture is not well elucidated, it is probably caused by a
thinner fibrous cap. The thinner fibrous cap can be formed by a lesser collagen
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secretion by SMCs and this diminution of the collagen secretion could be because
of less proliferation and/or accumulation of the SMCs or their death by apoptosis or
a functional defect of the accumulated SMCs. The SMC apoptosis also promotes
dissecting aneurysm and diabetic vasculopathy.

The therapeutic significance of the SMC involvement is again twofold. According
to the previous concept, the endothelial cells are believed to be the key mediators in
the diabetic vascular diseases. However, the recent concept proves the fact that
SMCs play a major role in diabetic diseases independent of or dependent on the
endothelial injury. This necessitates targeting the SMCs with or without the endo-
thelial cell activation. As for example, the foam cells in early atherosclerosis are
experimentally targeted as their presence and trafficking promotes the progression.
As the foam cell population consists of both the macrophages and SMCs, they
become the natural therapeutic targets [31]. SMC proliferation and migration along
with the biosynthetic activity is also targeted for causing plaque regression [32].
Endoglin receptor modulator modulates the mural cell adhesion and their prolifera-
tion and is found to be beneficial in atherosclerosis [33, 34]. Secondly, the underly-
ing mechanisms of the endothelial dysfunction have been postulated. The individual
modulators of these postulated pathways are found to have beneficial effects (anti-
proliferative and anti-migratory) on the SMCs in the animal models. Targeting these
pathways in the human beings may prove to have therapeutic effects. Naturally, the
antioxidants and free radical scavengers, anti-PKC agents, aldose reductase inhibi-
tors are all effective [32]. The role of epigenetic modifiers and micro RNAs in this
aspect are also being evaluated [35, 36].

6.6 Conclusion

In short, diabetes promotes a state of smooth muscle cell dysfunction and prolifera-
tion coexisting with its phenotypic changes. These changes probably occur as a
result of the complex interaction of multiple biochemical parameters. This consti-
tutes the effector mechanism of the formation, progression and the complications of
the atherosclerotic plaque. A detailed knowledge of such underlying pathogenesis
may help in the development of the newer targeted therapies in diabetes associated
accelerated atherosclerosis.
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Chapter 7
Monocyte Factors in Pathogenesis of Vascular
Lesions in Diabetes

Surya Ramachandran, Radhakrishna M. Pillai, and C.C. Kartha

Abstract Atherosclerosis in patients with diabetes is initiated by activation of the
endothelium by elevated glucose cholesterol and reactive oxygen species in blood.
The resulting recruitment of monocytes, their differentiation into a pro-inflammatory
phenotype and formation of foam cells in the sub endothelial space are the hallmark
of early atherogenesis. This process is orchestrated by a range of cytokines, chemo-
kines and chemoattractants, which influence all stages of the disease from monocyte
adhesion to the endothelium to lipid uptake by monocyte derived macrophages.
This chapter reviews the role of important cytokines associated with monocyte
function in early atherogenesis as well as in diabetic vascular disease. Current
approaches to modulate cytokine action to repress progression of atherosclerosis are
also discussed.
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CD 36 Cluster of differentiation 36

LOX-1 Lectin like oxidized LDL receptor
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EGR-1 Early growth response protein 1
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7.1 Introduction

The innate immune system is a major contributor to initiation and propagation of
atherosclerosis and monocytes are key players in this process. Monocytes represent
3-8 % of peripheral blood leukocytes in circulation [1]. They are mononuclear cells
with a large bilobed kidney shaped nuclei. They are the main component of the
innate immune system responsible for counteracting exogenous bacterial, viral and
fungal infections by the process of phagocytosis. Monocytes are also involved in
endogenous inflammatory processes. They have been implicated in various chronic
inflammatory conditions such as rheumatoid arthritis, pulmonary fibrosis, cancer
and atherosclerosis.

Chronic inflammatory processes in the vascular wall are initiated by recruitment
of monocytes from circulation to the intima of the vascular wall. Monocytes adhere
to endothelial cells (ECs) and subsequently migrate into the sub endothelial space
in response to activation by chemokines. This process occurs in the presence of low
density lipoproteins (LDL). As accumulation of lipids progresses, the lipids undergo
oxidation and glycation. The ECs recognize these signals as damage associated
molecular patterns (DAMPs) and initiate the body’s defense system. The adhesion
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molecules on ECs such as vascular cell adhesion molecules (VCAM-1), intercellu-
lar cell adhesion molecule-1 (ICAM-1) are upregulated facilitating monocyte adhe-
sion to the EC. Adhesion is followed by transmigration of monocytes resulting in
increased adhesion molecule expression, enhanced production and release of che-
mokines. Adhesion molecules and chemokines are important elements of monocyte
transmigration, differentiation into macrophages and formation of foam cells.
Hyperglycemia accelerates this process further by facilitating monocyte adhesion to
EC cells, monocyte — macrophage differentiation and thus promotes atherogenesis
and increases the risk of vascular disease. Increased oxidative stress in the vascular
wall promotes modification of LDL. Oxidized LDL (OxLDL) has been found in
human and mouse atheromas [2]. LDL oxidation in the artery wall is facilitated by
free radicals such as superoxide, hydrogen peroxide and nitric oxide. At this stage,
scavenger receptors are expressed by macrophages. Scavenger receptors such as
SR-A1, CD 36 (also known as platelet glycoprotein 4) and lectin like oxidized LDL
receptor (LOX-1) can bind to oxidized LDL and can increase foam cell formation
[3]. Deficiency of SR-A1 and CD 36 can reduce foam cell formation in ApoE-/-
mice. Mice deficient in SR-A1, CD 36 and ApoE have reduced signs of inflamma-
tion, macrophage apoptosis and secondary necrosis as well.

This chapter reviews the role of monocytes and macrophages and the cytokines
that these cells secrete and/or express under chronic inflammatory conditions in the
progression of atherosclerosis in diabetes mellitus. We have focused on the pivotal
roles of cytokines and chemoattractants activated by monocytes in early atherogen-
esis and not in late atherosclerosis. In addition the chapter also provides insight into
the molecules that need to be harnessed as drug targets to attenuate vascular inflam-
mation and augment vascular function.

7.2 Blood Monocytes and Their Subsets

Blood monocytes are bone marrow derived leukocytes. They have the ability to
phagocytose, produce cytokines and present antigens. Their identification was ini-
tially based on glass adherence and morphology [4] and cytochemical detection of
monocyte specific esterase [5, 6]; the current standard approach is based on the cells
physical properties such as light scatter.

Monocytes have a complex life cycle. Virchow and other pathologists of nine-
teenth century believed that macrophages were derived from mesenchymal tissue
rather than blood cells. Radioisotype labeling and bone marrow cells established
that circulating monocytes are the precursors for macrophages in all tissues.
Landmark studies by Lewis and Lewis [7], Cohn and Benson [8], van Furth and
Cohn [4], and Nichols et al. [9] threw light on mechanisms of monocyte develop-
ment and differentiation. Later work revealed that monocytes are not homogeneous;
there are at least two distinct subsets of mononuclear phagocytes [10-12].

When the monocyte migrates into tissues during inflammatory conditions, then
these cells are termed macrophages. The monocytes transform into larger cells and



144 S. Ramachandran et al.

rapidly lose their monocyte characteristics. Circulating blood monocytes increase in
number within minutes post exercise and in conditions of stress. Cell numbers
return to baseline levels also rapidly. These circulating monocytes form a “marginal
pool”. The adhesive properties of the marginal pool are distinct from monocytes in
blood at resting conditions.

7.2.1 Cell Surface Markers of Monocytes/Macrophages

Several monoclonal antibodies against cell surface markers of monocytes and mac-
rophages have been developed. In humans, CD14 and in mouse CD115, has been
used as markers. There is a question of specificity of these markers as human B cells
also express low levels of CD14; CD115 is downregulated in blood monocytes with
inflammation [13, 14]. It has been suggested that, in addition to the use of cell sur-
face markers such as CD14 and CD115, functional studies are needed to confirm the
identity of cells as monocytes. CD16 staining can also be used to exclude dendritic
cells in human blood.

7.2.2 Monocytes Subsets

Nomenclature of monocytes was established by International Union of Immunologic
Societies and the World Health Organization. There are three types of monocytes in
human blood:

1. The classical monocyte characterized by high level expression of CD14 cell sur-
face receptor, (CD14++CD16-);

2. The non classical monocyte showing low level expression of CD14 and addi-
tional co expression of CD16 receptor, (CD14+CD16++) and

3. The intermediate monocyte with high level of CD14 and low level expression of
CD16 (CD14++CD16+).

The classical monocytes represent 80-85% of total population of circulating
blood monocytes. They are considered inflammatory mediators and are the pre-
dominant subpopulation identified in atherosclerotic plaques [15]. These monocytes
express CCR2, CD62L and CD64. The non classical monocytes are also referred to
as CDI14+CDl16-cells. This subtype depends on fractalkine for attraction and
recruitment to endothelial cells. Fractalkine is expressed on activated endothelial
cell surface and attracts monocytes from the circulation into the atherosclerotic
plaque. The non classical monocytes have high expression of inflammatory
cytokines.

A third type of human monocyte subpopulation identified as “intermediate” are
CD14++CD16+cells. They express Tie-2, an angiopeotic receptor and are impli-
cated in angiogenesis. This subset also expresses MHC Class II complexes. It is not
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yet clear which monocytes subsets differentiate into various types of tissue macro-
phages and dendritic cells. Inside the intima, monocytes mature into DCs and mac-
rophages. Macrophages comprise of two types: the classically activated which is
proinflammatory in nature designated as M1 type and the anti inflammatory M2
type. The M1 macrophages promote inflammation and extracellular matrix degrada-
tion. M1 secretes IL-1P and induces MMP9 and TGF-f secretion stimulating fibro-
blast proliferation [16, 17]. The M2 macrophage promotes cell proliferation and
tissue repair.

7.3 Monocyte Derived Cytokines in Atherosclerosis

Cytokines are a diverse group of low molecular weight proteins. They are grouped
into different classes such as chemokines, interleukins (ILs), colony stimulating
factors (CSF), tumour necrosis factor (TNF), interferons (IFN) and transforming
growth factors (TGF). Cytokines are expressed in various forms during atherogen-
esis (Fig. 7.1). Most of the cells involved in atherosclerosis produce cytokines and
can elicit a response. Cytokines secreted from monocytes are of prime importance
as these are the sentinel signals which may provide information about vascular
injury and inflammation. Under normal conditions, a small number of monocytes
pass through the endothelial lining of the vascular wall to ensure maintenance of the
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Fig. 7.1 Cytokines, chemokines and scavenger receptors expressed during early stages of
atherosclerosis
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resident macrophages. On injury to the vessel wall, cytokines such as IL1, ILS,
TNFa, IFNy and chemoattractants such as C5a, leukotriene B4, N formyl peptides
(fMLP), monocyte chemoattractant protein (MCP-1) and platelet activating factor
(PAF) mediate the adhesion of monocytes to endothelial cells and their subsequent
transendothelial migration [18].

Monocytes prior to transmigration attach loosely to the vessel wall and roll over
the endothelium; stick and spread over the surface of endothelial cells on the vascu-
lar wall and then migrate through junctions between tightly held endothelial cells.
Interaction of various molecules is involved during this process. L Selectin on the
surface of monocytes interact with ligands such as P-Selectin and E selectin on
endothelial cells which are activated by TNF-a, an inflammatory mediator. Adhesion
of monocytes to endothelium depends on the activation of f,-Integrin which is facil-
itated by MCP-1 and their increased affinity for endothelial ligands such as ICAM-
1, 2; P integrin, VLA-4 and LPS receptor CD14 on monocytes. Transendothelial
migration involves the interaction of platelet endothelial cell adhesion molecule
(PECAM-1) on monocytes with PECAM-1 on endothelial cells [19].

Inside the arterial wall, monocytes differentiate to macrophages or dendritic
cells. Differentiation is facilitated by macrophage colony stimulating factor (MCSF),
which responds to cytokine signals [20]. The M1 macrophage phenotype produces
proinflammatory cytokines such as IL-6, IL-12 and TNF-a [20-23]. Alternatively
activated M2 phenotype produces anti-inflammatory cytokines such as IL-10 and
TGF-f which help in resolving inflammation. T — helper cytokines such as IFN-y
and Il-p are required for M1 differentiation, whereas Th2 cytokines such as IFN-y
and IL-f are necessary for M2 differentiation [20-22]. Studies have shown the inhi-
bition of atherosclerotic progression by administration of I1-3 in Ldlr-/- model sys-
tem as a result of M2 macrophage polarization [24, 25].

During foam cell formation, macrophages express pattern recognition receptors
(PRRs) such as scavenger receptors (SRs), Toll like receptors (TLRs) and nucleo-
tide binding oligomerisation domain (NOD) like receptors (NLR) [26]. The scaven-
ger receptors play a critical role in foam cell formation. SRs such as CD36 and
SR-A1 recognize modified LDL and aid uptake of these particles by macrophages
and their conversion into lipid laden foam cells [20]. As there is no feedback regula-
tion in this process uncontrolled uptake can occur. The cytokines, IFN-y and TNF-a
promote foam cell formation in vivo, whereas II-1RA and I1-33 are inhibitory [20].
Formation of foam cells involves malfunctioning of a system that controls the
uptake, intracellular metabolism and efflux of cholesterol by macrophages. Several
cytokines are involved in this process via regulation of the expression and/or activ-
ity of key genes implicated in these processes. IFN-y promotes modified LDL
uptake by inducing expression of SR that binds phosphatidyl serine and oxidized
lipoproteins. The cytokines induces expression of several SRs such as SR-A, CD 36
and SR-PSOX and decreased expression of ApoE, ABCA1 and ABCG1 [27, 28]. In
contrast, TGF-p1, IL-10 and IL-33 inhibit macrophage foam cell formation. In
ApoE-/- mice, IL-33 reduces foam cells by decreasing modified LDL uptake, reduc-
ing intracellular cholesterol esters and stimulating cholesterol efflux [29]. These
changes result in reduced expression of genes involved in uptake and intracellular
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storage of cholesterol esters such as SR A1, CD36, ADRP (adipocyte differentiation
related protein) and ACAT-1 and increased expression of genes involved in intracel-
lular trafficking and efflux of cholesterol [30].

A recent study by Bekkering et al. [31] suggests that macrophages derived from
monocytes and exposed to modified forms of LDL including OxLDL are of a long
term proinflammatory phenotype resulting from epigenetic reprogramming of his-
tones. The long lasting proinflammatory phenotype are characterized by increased
production of proinflammatory cytokines, chemokine augmented foam cell forma-
tion and increased production of MMPs. OxLDL induces cytokine and chemokine
production in macrophages by stimulation of membrane bound CD36 and TLR2,
TLR4 and TLR6 [32, 33]. OXxLDL also promotes secretion of IL-8 and MCP-1 by
increased acetylation of histones, H3 and H4 [34].

7.3.1 Monocyte Secreted Cytokines in Diabetes and Its
Vascular Complications

Inflammation and activation of monocytes are understood to be important for
enhancing insulin resistance in T2DM. Increases in inflammatory and oxidative
stress markers are found in conjunction with the development of complications of
diabetes. Vascular complications in patients with type 1 diabetes are associated with
increase in plasma levels of CRP as well as in concentration of soluble vascular cell
adhesion molecule 1 and nitrotyrosine [35]. Increase in inflammatory markers has
been detected in apparently healthy individuals who later on develop type 2 diabetes
[35]. Obesity and activation of adipose tissues may enhance the release of inflam-
matory factors and lead to the development of insulin resistance. Adipocytes on
activation, release abnormal levels of bioactive molecules such as lipids, fatty acids,
MCP-1 and various inflammatory cytokines such as CRP, PAI-1 and TNF-a. The
release of these cytokines and other mediators results in the local recruitment of
monocytes within adipose tissues. Differentiation of monocyte into macrophages
results in enhanced release of inflammatory factors and chemokines locally within
adipose tissues and the inflammatory responses spread to other tissues [36]. This
hypothesis fits well with the observation that MCP-1, a proinflammatory chemokine
mainly produced by macrophages are secreted by adipocytes as well.

In cardiovascular tissues, increased PKC and MAPK activity in the presence of
insulin resistance [37, 38] leads to vascular complications. Under normal conditions,
insulin interacts with insulin receptors to stimulate two main pathways: (i) a phos-
phoinositide-3 kinase (P13K) pathway that inhibits atherogenesis and has antiath-
erogenic effects and (ii) a MAPK activated pathway that promotes cell growth and
enhances atherogenesis. In the setting of insulin resistance and diabetes, the increase
in glucose and free fatty acids causes an increased release of inflammatory cytokines
and altered regulation of PKC and MAPK activity. PKC inhibits P13K pathway
resulting in progression of atherosclerosis through reduction in antiatherogenic
nitric oxide production and impaired endothelium dependent vasodilation [39].
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7.3.2 Major Cytokines in Diabetes Associated Vascular Disease

Major cytokines involved in vascular complications of T2D are IL-1f, TNF-a, IL-6,
leptin and MCP-1.

IL-1p is a proinflammatory cytokine and an early mediator of inflammation [40].
A common signaling pathway has been suggested between glucose and IL-1 induced
[-cell apoptosis [41, 42]. Elevated concentrations of both IL-6 and IL-f are associ-
ated with threefold increased risk of developing diabetes compared to control group
[43, 44]. As atherosclerosis is a chronic inflammatory condition, IL-1f has been
linked to this disease [45, 46]. Cholesterol crystals activate the NLRP3 inflamma-
some and generate IL-1p production. IL-B1 deficient mice have less atherosclerosis
[47]. The Canakinumab Anti inflammatory Thrombosis Outcomes study (CANTOS),
the first true test of the hypothesis that interrupting an inflammatory pathway
involved in atherosclerosis will reduce cardiovascular events is designed to test the
hypothesis that inhibitory IL-1p will reduce cardiovascular events. CANTOS trial
enrolls more than 17,000 subjects [48]. CANTOS is an event driven trial which
needs 1400 events for the study to reach an end point. The results are expected to be
published in a year.

TNF-a, a major adipocyte cytokine, [49] can impair insulin action by interfering
with insulin signaling [50-54]. TNF-a influences synthesis, secretion and activity
of other cytokines. TNF-a in combination with other cytokines accelerates dysfunc-
tion and destruction of the f cells [42]. TNF-a, has been shown to increase leuko-
cyte adhesion to endothelium and thus implicated in the pathogenesis of endothelial
dysfunction [55].

IL-6 cytokines have the IL-5Rf} receptor belonging to the type 1 cytokine recep-
tor family [56]. Other than monocytes and activated leukocytes the cells of the
immune system, endothelial cells, skeletal and smooth muscle cells, adipocytes,
islet B cells, hepatocytes, astrocytes and several other cell types also produce IL-6.
IL-6 stimulates cell growth and inflammation. It also affects glucose homeostasis
and metabolism both directly and indirectly by acting on various cells. IL-6 also
increases plasma concentration of fibrinogen, PAI-1 and CRP [57]. It has been sug-
gested that elevated levels of IL-6 may reduce insulin sensitivity by inhibiting
GLUT4. Circulating levels of IL-6 are elevated years before the onset of type 2
diabetes. IL-6 mRNA is elevated in insulin resistant humans. Elevated levels of IL-6
predict future risk of type 2 diabetes development [S8—60] even though CRP remains
a stronger predictor. Association between IL-6 and progression to diabetes develop-
ment may reflect an attempt to counter regulate low grade inflammation induced by
other inflammatory mediators. IL-6 participates in the initiation and accelerates
chronic inflammatory process and contributes to development of micro and
macrovascular complications in diabetes mellitus [61]. Lowe et al. in 2014 studied
the associations of CRP, fibrinogen and IL-6 with risk of major macrovascular
events in their Action in diabetes and vascular diseases: Preterax and Diamicron
modified release controlled evaluation (ADVANCE) study in a case-cohort study
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(n =3865) and demonstrated that of the three proteins only IL-6 was an independent
predictor of macrovascular events [62].

Leptin is a member of the IL-6 cytokine family encoded by the obese gene (Ob)
and mainly produced by adipocytes [63—67]. The co existence of insulin resistance
and obesity in humans has suggested a correlation between leptin and insulin sig-
naling [68-70]. In rodent islets, leptin induces B-cell proliferation and protects from
free fatty acid induced P cell apoptosis [71-74]. Chronic exposure of human islets
to leptin however, leads to p cell apoptosis by reducing levels of IL-1 receptor
antagonist and by increasing IL-1p synthesis and secretion. Ob/ob leptin deficient
mice are hyperglycemic and insulin resistant [75]. However, peripheral administra-
tion of leptin reverses hyperglycemia and hyperinsuliaemia before weight loss [75].
Leptin receptors are found on macrophages, foam cells, endothelium, platelets and
VSMCs. Leptin affects each of these cell types and has a proatherogenic role in
every step of atherogenesis. Circulating levels of leptin are shown as an independent
predictor of cardiovascular morbidity and mortality. Several clinical studies demon-
strate that hyperleptinemia predicts acute cardiovascular events, restenosis after
coronary injury such as angioplasty and cerebral stroke, independent of traditional
risk factors [76-78].

MCP-1 is a chemoattractant that attracts monocytes into vessel walls, promotes
synthesis and release of proinflammatory cytokines which enhances the attachment
of monocytes to the endothelium [79]. MCP-1 is also one of the key chemokines
that recruits monocytes into adipose tissues. It activates the resident macrophages to
secrete cytokines and chemokines to recruit additional monocytes and macrophages
thus amplifying inflammation. The proinflammatory states that enhance innate
immune signaling result in the activation of NFkB which activates transcription of
genes encoding chemoattractant factors such as MCP-1 resulting in monocyte
recruitment in the vessel walls during atherogenesis [40].

Cyclophilin A is a proinflammatory cytokine secreted by glucose activated
monocytes. It is a ubiquitously distributed protein belonging to the immunophilin
family [80]. In humans there are 16 family members of the cyclophilin family, the
most abundant member being cyclophilin A which makes up 0.1-0.6% of the total
cytosolic proteins. Cyclophilin has a beta barrel structure with two alpha helices and
a beta sheet. Cyclophilin A was first recognized as the host cell receptor for the
immunosuppressive drug cyclosporine A [81, 82]. It also possesses peptidyl prolyl
cis trans isomerase activity playing a role in protein folding [80, 83]. The other
cyclophilins are cyclophilin B, C and D. Cyclophilin B and C are localized in the
endoplasmic reticulum (ER) where it maintains redox homeostasis. Depletion of
these two cyclophilins leads to hyperoxidation of the ER. Cyclophilin D is localized
in the mitochondria and interacts with Bax to promote mitochondrial pore forma-
tion, thus releasing pro apoptotic factors such as cytochrome C and apoptosis induc-
ing factor (AIF).

Various studies have revealed that cyclophilin A can be secreted by cells in
response to inflammatory stimuli. Secreted form of cyclophilin A is a chemoattrac-
tant for monocytes, neutrophils, eosinophils and T cells in vitro. Cyclophilin A
functions as a chemokine in high glucose conditions promoting inflammation in the



150 S. Ramachandran et al.

presence of oxidized lipoproteins [84]. Cyclophilin A fulfils all the characteristics
properties of a chemokine. It is of small molecular weight (17 Kda) and contains
four cysteine residues [85]. It also has a known receptor, CD147 which has been
implicated in several diseases [86].

Cyclophilin A can be secreted from cells in response to inflammatory stimuli
such as hypoxia, infection, oxidative stress and high glucose [84, 87-90]. The
secreted cyclophilin A acts as a autocrine/paracrine factor and participates in inter-
cellular communication. Cyclophilin A in its extracellular form stimulates proin-
flammatory signals in endothelial cells and vascular smooth muscle cells.
Extracellular cyclophilin A also has a chemotactic effect on leukocytes, monocytes
and lymphocytes. It has a ubiquitous Ig like receptor CD147 which may be in part
responsible for the chemotactic activity of cyclophilin A.

Cyclophilin A has a potential role in several human diseases (Fig. 7.2). There is a
link between cyclophilin A expression and VSMC proliferation suggesting that VSMC
derived cyclophilin A is important for recruitment of inflammatory cells [91, 92].

7.4 Cyclophilin A in Diabetic Vascular Disease

Monocytes and their interactions with the host microenvironment may secrete and
shed proteins extracellularly into body fluids, particularly blood. It is thus possible
to detect proteins relevant to monocyte endothelial interactions in blood. Cyclophilin
A was first identified as a secretory protein of monocytes activated by high glucose
using proteomic technologies [93]. Given its role as a inflammatory mediator of
vascular tissue damage associated with inflammation and oxidative stress, plasma
levels of cyclophilin A in normal healthy volunteers were compared with patients
with type 2 diabetes with or without coronary artery disease [94]. The plasma
cyclophilin A levels were increased in patients with diabetes and CAD suggesting a
role for this protein in accelerating vascular disease in diabetes.

Cyclophilin A has been studied extensively in vascular disease such as athero-
sclerosis and coronary artery disease (CAD) as well as type 2 diabetes. Cyclophilin
A is known to stimulate LDL uptake in the vessel wall by regulating expression of
scavenger receptors [84]. Cyclophilin A increases EC activation and inflammation
by increasing VCAM-1 expression [95]. Cyclophilin A decreases endotheial NO
synthase (eNOS) expression through Kruppel like factor 2 (KLF2) transcriptional
expression in ECs. Cyclophilin A is also a key determinant for tumor necrosis factor
(TNF-a) induced apoptosis. Cyclophilin A enhances macrophage differentiation of
monocytes into macrophages in high glucose conditions by regulating the expres-
sion of scavenger receptors such as CD36 on its surface owing to the chaperone
activity of cyclophilin A. This accelerates accumulation of modified lipoproteins in
macrophages subsequently forming foam cells. This triggers an inflammatory
response increasing cytokine levels leading to secretion of the intracellular
cyclophilin A into the circulation in its extracellular form [84]. Cyclophilin A has
been shown to accelerate atherogenesis in diabetes by functioning as a cytokine and
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Fig. 7.2 Cyclophilin A in chronic inflammatory human diseases (starting from left to right in
clockwise direction): extracellular and intracellular forms of cyclophilin A are overexpressed dur-
ing atherogenesis in diabetes. Cyclophilin A is upregulated in various cancers and is a key deter-
minant for malignant transformation and metastasis. Cyclophilin A involvement in abdominal
aortic aneurysm has been demonstrated suggesting that extracellular cyclophilin A contributes to
the recruitment of inflammatory cells in abdominal aortic aneurysms and that cyclophilin A
induces ROS formation by a positive feedback loop. The activation of proinflammatory pathways
in pericytes of the brain by cyclophilin A leads to MMP activation, consequently degrading base-
ment membrane proteins and causing neurodegeneration. Cyclophilin A has been projected as a
valuable marker for predicting coronary revascularization in patients with CAD and severity of
acute coronary syndromes; predicting vascular inflammation in patients with diabetes associated
CAD. Cyclophilin A is also increased in urine of patients with diabetic nephropathy and increases
inflammatory processes during atherosclerosis

increasing adhesion and transmigration of monocytes and increasing levels of pro-
inflammatory cytokines such as TNF-a and MCP-1. Thus, cyclophilin A gains
clinical significance as a target for preventive strategy in vascular complications in
patients with diabetes.
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7.5 Advances and Shortcomings in Developing Monocyte
Activated Cytokines

Hyperglycemia through various pathways causes damage to the vascular wall. The
mechanisms include activation of protein kinase C isoforms, overactivation of hex-
osamine pathway, increased flux of glucose through the polyol pathway and
increased formalities of advanced glycation end products. All these pathways lead
to oxidative stress and increased permeability of the vascular wall.

Early atherogenesis involves the activation of endothelial cells, recruitment of
monocytes and formation of foam cells. Monocyte derived macrophages play an
important role in all these phases of atherogenesis. On exposure of macrophages to
high glucose, inflammation is induced [96, 97]. A means to reduce inflammation is
by blocking cytokine action. As described earlier in this chapter, various inflamma-
tory mediators are secreted or over expressed in the presence of activated mono-
cytes. Enhanced monocyte activation in diabetes induces activation of various
cytokines and chemokines as well as monocyte derived secretory proteins relevant
to the pathogenesis of atherosclerosis. These cytokines are interleukins, TNF-a,
leptin, MCP-1, scavenger receptors and cyclophilin A. These cytokines are involved
in the action of insulin to maintain an inflammatory response. These cytokines are
also involved in insulin resistance and development of atherosclerosis.

Numerous pharmaceutical and non-pharmaceutical interventions which target
cytokines and chemokines expressed during low grade chronic inflammation have
been investigated. Insulin sensitizers of the thiazolidinedione class have been shown
to exert an anti inflammatory effect in addition to their glucose lowering effects in
patients with diabetes, reducing TNF-a plasma levels [98]. Rosiglitazone also
reduces plasma MCP-1 in obese patients and patients with diabetes [99, 100].
However rosiglitazone does not reduce IL-6 levels in blood of patients [100]. The
drug also significantly potentiates TNF-oa induced production of I1-6 in epithelial
cells. Anti-lipedemic agents such as statins also have a reducing effect on TNF-«,
IL-8 and MCP-1 levels. Fenofibrate therapy decreases circulating levels of I1-6 and
significantly increases plasma adiponectin levels and insulin sensitivity [101]. In
patients with hypertension, Canderstan therapy, an angiotensin II receptor antago-
nist, significantly reduces plasma MCP-1 levels. Treatment with temocapril and
candesartan significantly increases adiponectin levels as well as insulin sensitivity.
Insulin can also be anti-inflammatory and therefore anti atherogenic, as it sup-
presses several proinflammatory transcription factors such as NFkB, Egr-1 and
AP-1 and also suppresses plasma concentration of ICAM-1 and MCP-1 [102, 103].
Hyperinsulineamia can be seen as a compensatory effort to suppress inflammation
and overcome insulin resistance [104]. Treatment of type 2 diabetes with insulin for
2 weeks results in reduction in MCP-1 levels in blood [105].

Metformin used as a first line therapy for managing type 2 diabetes has been
shown to mediate its atheroprotective effects by activation of the AMPK pathway.
The AMPK pathway can be activated by reactive oxygen species (ROS). As mono-
cytes migrate and differentiate into foam cells, the levels of TNF-a, MCP-1 and
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cyclophilin A substantially increases. Metformin at this stage activates AMPK,
reduces cyclophilin A levels and counter balances the over production of ROS thus
controlling redox activity (unpublished data). Arresting foam cell formation using
AMPK activators such as metformin and inhibiting proinflammatory cytokine lev-
els such as TNF-a, MCP-1 and cyclophilin A could thus be a preventive strategy for
limiting progression of atherosclerosis in diabetes.

New anti-inflammatory therapies aimed at manipulating cytokine action are in
the process of evaluation. The Cardiovascular Inflammation Reduction Trial (CIRT)
was initiated to evaluate the efficiency of low doses of methotrexate for secondary
prevention of myocardial infarction [106]. The CANTOS study mentioned earlier
has also reported lowering of several inflammatory markers [48, 107, 108]. A mono-
clonal antibody (MLN 1202) that targets CCL2 and interaction with its receptor
reduces CRP levels in blood [109].

Another approach is manipulating cytokine signaling using small molecule
inhibitors that attenuate the action of pro inflammatory components or enhancing
naturally occurring molecules to suppress inflammation. Molecules under develop-
ment include inhibitors of monocyte secreted proteins such as cyclophilin A, non
coding miRNA that suppress cytokine signaling, TNF-a antibody, antagonists for
IL-1 receptor and inhibitors of AMPK and JNK pathways.

As the role of each of these molecules has not been extensively clarified and their
undesirable effects are unknown, caution is warranted before their clinical use. We
should keep in mind that inflammatory genes, proteins or pathways implicated in
atherogenesis in diabetes also participate in the normal regulation of inflammation
and energy homeostasis such as insulin signaling.
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Chapter 8

Endothelial Progenitor Cell Dysfunction

in the Pathogenesis of Vascular Complications
of Diabetes

Nicoleta Alexandru, Irina Titorencu, Sabina Frunza, Emma Weiss,
Elisabeta Badila, and Adriana Georgescu

Abstract Diabetes mellitus, a metabolic disorder characterized by high blood
glucose, is one of the main risk factors in the development of vascular complications
affecting both large and small blood vessels. A major challenge is the discovery of
new mediators and biomarkers for diabetes-related vascular complications. In this
regard, accumulating evidence indicate that endothelial progenitor cells (EPCs),
derived from the bone marrow and peripheral blood, are critical for the maintenance
and regeneration of endothelial cells contributing to repair and restoration of vascu-
lar wall integrity. The studies reveal that the reduced number of circulating EPCs
under diabetic conditions can predict cardiovascular outcomes, and EPC dysfunc-
tion could contribute to the pathogenesis of diabetes — associated vascular disease.
This chapter discusses the EPC dysfunction in relationship to vascular complica-
tions of diabetes, highlighting the pathophysiology of diabetic vascular complica-
tions, mechanisms leading to EPC dysfunction in diabetes and diabetic vascular
complications, significance of EPCs in the pathogenesis of vascular complications
of diabetes and potential therapeutic implications of EPCs in diabetes-associated
vascular complications. In particular, to understand the EPC significance in diabe-
tes, the effects of hyperglycaemia, insulin resistance, insulin like growth factor 1,
nitric oxide, oxidative stress, PI3K/Akt signaling pathway, inflammation, and of
altered microRNA expression on the EPC dysfunctionality have been considered.
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A comprehensive knowledge of EPC role in all diabetic complications may help
to develop new research strategies to demonstrate and consolidate their clinical rel-
evance so that they become diagnostic biomarkers and pharmacological targets to
prevent and treat diabetes-related vascular complications. Increasing the number
and functional capacity of EPCs by different approaches may favorably modify the
risk for cardiovascular complications and survival for people suffering from
diabetes.

Keywords Endothelial progenitor cells ¢ Diabetes ¢ Cardiovascular disease ¢
Cerebrovascular disease * Vascular complications ¢ Endothelial dysfunction e
Hyperglycemia ¢ Insulin resistance

8.1 Introduction

Diabetes mellitus represents a very serious issue in every public health system. Its
worldwide prevalence is continuously increasing; recent statistics released by the
International Diabetes Federation reveal that 1 in 11 adults suffer from diabetes
(415 millions) and those numbers will increase to 1 in 10 adults (642 millions) by
the year 2040 [1]. The global rise in diabetes occurs due to population growth and
ageing, genetic susceptibility and to increasing trends towards an unhealthy diet,
obesity, and sedentary lifestyle. The vascular complications of diabetes are among
the most serious manifestations of the disease. Patients with type 2 diabetes (T2DM)
represent about 85-95% of the people with diabetes in developed countries and an
even higher percentage in developing countries [1]. The microvascular complica-
tions, like nephropathy, retinopathy or neuropathy, as well as the macrovascular
ones — atherosclerotic disease in all its forms: ischaemic heart disease, cerebrovas-
cular disease, or peripheral arterial disease (PAD) are usually irreversible and lead
to a decrease in life expectancy and to a higher mortality rate in these patients.

Despite the progress made in the last few years, vascular complications due to
diabetes mellitus still remain a huge problem, and identifying new mechanisms
involved in their development, like dysfunction of endothelial progenitor cells
(EPCs), could lead to new curative and preventive therapeutic options.

8.2 Pathophysiology of Diabetic Vascular Complications

8.2.1 Diabetes and Vascular Risk Factors

It is well known that diabetic patients are more frequently affected by cardiovascu-
lar disease (CVD) compared with those without diabetes. CVD increases the rate of
all-cause death nearly threefold and the rate of cardiovascular death nearly fivefold
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in subjects with diabetes [2]. Most of this excess risk is associated with an increased
prevalence of well-known traditional risk factors such as hypertension, dyslipidae-
mia, obesity (generalised or visceral), and smoking in these subjects. Hypertension
is more than twice as common in people with diabetes as in people with normal
blood glucose levels [3]. Premenopausal women who have diabetes have an
increased risk of heart disease because diabetes cancels out the protective effects of
estrogen. Nevertheless, these established risk factors do not fully explain the excess
risk for CVD associated with diabetes.

Therefore, other non-traditional risk factors may be important in people with
diabetes: insulin resistance and hyperinsulinemia; postprandial hyperglycaemia and
glucose variability; microalbuminuria; haematological and thrombogenic factors;
inflammation assessed by high-sensitivity C-reactive protein; homocysteine and
vitamins; genetics and epigenetics [4, 5].

Large clinical trials in type I diabetes mellitus (T1DM) and type II diabetes mel-
litus (T2DM) have demonstrated that hyperglycaemia plays an important role in the
pathogenesis of microvascular complications [6]. Although diabetic patients with
the most severe hyperglycaemia have the highest risk of microangiopathy, hypergly-
caemia, however, is a necessary, but not sufficient, cause of clinically important
microangiopathy. Hypertension, smoking, hypercholesterolaemia, dyslipidaemia,
obesity and hyperhomocysteinaemia are additional major causes of microangiopa-
thy. The risk of macroangiopathy does not appear to be strongly related to hypergly-
caemia, but is related to general risk factors for atherothrombosis, such as age,
smoking, hypertension, hypercholesterolaemia, dyslipidaemia, obesity and hyper-
homocysteinaemia. Cardiovascular risk factors such as hypertension, dyslipidae-
mia, obesity, insulin resistance, hyperinsulinaemia and impaired fibrinolysis cluster
in the metabolic syndrome [7]. All of the above-mentioned factors create a state of
constant and progressive damage to the vascular wall, manifested by a low-grade
inflammatory process and endothelial dysfunction [8].

8.2.2 Diabetes and Vascular Complications
8.2.2.1 Microvascular Complications

Diabetic Retinopathy This is one of the most important microvascular complica-
tions in diabetes mellitus and is a leading cause of visual impairment in working-
age adults [9]. Development of diabetic retinopathy in patients with T2DM was
found to be related to the severity of hyperglycemia, duration of diabetes, and pres-
ence of hypertension [10].

Retinopathy is classified as nonproliferative (background) or proliferative. The
most common early clinically visible manifestations of diabetic retinopathy
include microaneurysm formation and intraretinal hemorrhages. Microvascular
damage leads to retinal capillary nonperfusion, cotton wool spots, increased num-
ber of hemorrhages, venous abnormalities, and intraretinal microvascular abnor-
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malities. During this stage, increased vasopermeability can result in retinal
thickening (edema) and/or exudates that may lead to a loss in central visual acuity.
Proliferative retinopathy is characterized by the formation of new blood vessels on
the surface of the retina and can lead to vitreous hemorrhage. White areas on the
retina (“cotton wool spots”) can be a sign of impending proliferative retinopathy.
These new vessels then lead to traction retinal detachments and neovascular glau-
coma, respectively. Vision can be lost in this stage as a result of capillary nonperfu-
sion or edema in the macula, vitreous hemorrhage, and distortion or traction retinal
detachment [11].

Diabetic Nephropathy It is one of the most common complications of diabetes
mellitus. Among patients with TIDM, the incidence of diabetic nephropathy has
decreased to 10—-15% in more recent cohorts [12]. However, due to the increase in
T2DM, the absolute prevalence of diabetic nephropathy has increased over the past
two decades; in 2015, diabetic nephropathy was reported to be the cause of 43.9%
of all cases of end-stage renal disease (ESRD) in the United States [13].

Diabetic nephropathy is characterized by an expanded mesangial volume,
changes in the physical and biochemical properties of the glomerular basement
membrane, and a decreased glomerular filtration rate. Diabetic nephropathy is a
clinical syndrome characterized by the following: persistent albuminuria (>300 mg/
day or >200 pg/min) that is confirmed on at least two occasions, 3—6 months apart;
progressive decline in the glomerular filtration rate; elevated arterial blood pressure
[14]. It is preceded by lower degrees of proteinuria, or “microalbuminuria” defined
as albumin excretion of 30-299 mg/24 h. In the absence of an intervention, diabetic
patients with microalbuminuria typically progress to proteinuria and overt diabetic
nephropathy. This progression occurs in both TIDM and T2DM. As many as 7% of
patients with T2DM may already have microalbuminuria at the time they are diag-
nosed with diabetes [15]. The evidence suggests that early treatment delays or pre-
vents the onset of diabetic nephropathy or diabetic kidney disease.

The exact cause of diabetic nephropathy is unknown, but the main mecha-
nisms are: hyperglycemia (causing hyperfiltration and renal injury), advanced
glycation end-products (AGEs), and activation of cytokines. More recent
research highlights the role of toll-like receptors, regulatory T-cells (Treg),
and increased expression of transforming growth factor p (TGF-f) in the glom-
eruli [16]. TGF-P and vascular endothelial growth factor (VEGF) may contrib-
ute to the cellular hypertrophy and collagen synthesis and may induce the
vascular changes observed in persons with diabetic nephropathy. Hyperglycemia
also may activate protein kinase C (PKC), which may contribute to renal dis-
ease and other vascular complications of diabetes. Moreover, hypergyce-
mia was shown to induce renal artery dysfunction in streptozotocin-induced
diabetic mice [17]. This study has reported that the renal artery dysfunction is
the result of the reduction of nitric oxide (NO) bioavailability, endothelial
nitric oxide synthase (eNOS) expression, phospholipase C activity, and intra-
cellular free calcium concentrations [17].
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Diabetic Neuropathy It has become the most common complication of diabetes,
affecting as many as 50% of patients with TIDM and T2DM [18]. In T1DM, distal
polyneuropathy typically becomes symptomatic after many years of chronic pro-
longed hyperglycemia, whereas in T2DM, it may be apparent after only a few years
of known poor glycemic control or even at diagnosis. Chronic sensori-motor distal
symmetric polyneuropathy is the most common form of neuropathy in diabetes.
Diabetic autonomic neuropathy also causes significant morbidity in patients with
diabetes. Neurological dysfunction may occur in most organ systems and can mani-
fest by gastroparesis, constipation, diarrhea, anhidrosis, bladder dysfunction, erec-
tile dysfunction, exercise intolerance, resting tachycardia, silent ischemia, and even
sudden cardiac death [19].

Development of symptoms depends on many factors, such as total hyperglyce-
mic exposure and other risk factors such as elevated lipids, blood pressure, smok-
ing, increased height, and high exposure to other potentially neurotoxic agents such
as ethanol. Genetic factors may also play a role. Important contributing biochemical
mechanisms in the development of the more common symmetrical forms of diabetic
polyneuropathy likely include the polyol pathway, AGEs, and oxidative stress [20].

8.2.2.2 Macrovascular Complications

Atherosclerosis This is the central pathological mechanism in diabetic macrovas-
cular disease. CVD is the primary cause of death in people with either TIDM or
T2DM. T2DM is one of the components of metabolic syndrome which also includes
abdominal obesity, hypertension, hyperlipidemia and increased coagulability; these
factors act together to promote CVD.

Atherosclerosis results from chronic inflammation and injury to the arterial wall
in the peripheral or coronary vascular system. The result of the process is the forma-
tion of a lipid-rich atherosclerotic lesion with a fibrous cap. The rupture of this
lesion leads to acute vascular infarction [21]. Other mechanisms involved in macro-
vascular disease are: increased platelet adhesion and hypercoagulability, impaired
NO generation, increased free radical formation in platelets and increased levels of
plasminogen activator inhibitor type 1 (PAI-1) [22, 23].

Coronary Heart Disease Coronary heart disease (CHD) has been associated with
diabetes in numerous studies beginning with the Framingham study [24]. Other
studies have shown that the risk of myocardial infarction (MI) in people with diabe-
tes is equivalent to the risk in nondiabetic patients with a history of previous MI
[25]. These results have lead to the recommendations of the American Diabetes
Association and American Heart Association that diabetes should be considered a
coronary artery disease (CAD) risk equivalent rather than a risk factor [26].

Stroke and Cerebrovascular Disease Stroke and cerebrovascular disease have a
higher incidence in patients with diabetes, the later being a strong independent pre-
dictor factor for these conditions [27]. Risk of stroke-related dementia and recur-
rence, as well as stroke-related mortality, is elevated in patients with diabetes [22].
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Various subtypes of cerebrovascular diseases have been defined in T2DM. Lacunar
strokes or the occlusion of the penetrating arteries that provide blood to the brain
deep structures are the main subtypes of cerebrovascular disease in diabetic patients.
It is considered that 28-43% of lacunar strokes are due to diabetes [28]. Ischemic
stroke, caused by occlusion of the large cerebral vessels, and transient ischemic
attacks are found in a smaller percentage compared to lacunar strokes and are
mainly due to the strong association between diabetes mellitus and other cardiovas-
cular risk factors [29]. Hemorrhagic stroke is also frequent in diabetic patients as
several studies have assigned a relative risk for hemorrhagic stroke of 2.4 in diabetic
patients [30].

Diabetes is an independent predictor of poor outcomes [31]. Various studies have
highlighted the impact of hyperglycemia during the post-stroke phase. Apparently,
hyperglycemia >155 mg/dL in patients with stroke, with or without diabetes, is
associated with a higher risk of short-term mortality and a reduced chance of recov-
ery [32].

Diabetes contributes significantly and increasingly to the burden of stroke [33].
In the INTERSTROKE case—control study, diabetes increased the rate of stroke by
35% when comparing the top to the bottom tertile, and has been associated with 5%
of the population attributable risk for stroke [34]. The Emerging Risk Factors
Collaboration analysed 698 782 people from 102 prospective studies, finding that
diabetes was associated with a 2.27-fold increase in the risk of ischaemic stroke and
56% excess rate of haemorrhagic stroke [35]. Following stroke, diabetes attenuates
cognitive recovery, limits functional outcome, and increases mortality. Diabetes
increases the risk of recurrent stroke as well. In the Life Long After Cerebral isch-
emia (LiLAC) cohort study, diabetes increased the risk of recurrent fatal and non-
fatal stroke more than two-fold [36].

Peripheral arterial disease Peripheral arterial disease (PAD) is another macrovas-
cular complication in diabetic patients. Compared with patients without diabetes,
patients with diabetes had a higher prevalence of PAD (26.3 vs. 15.3%) and intermit-
tent claudication (5.1% vs. 2.1%) [37]. The rate of PAD in patients with diabetes also
increases with age, as it does in non-diabetic persons. The PAD occurs earlier and is
often more severe and diffuse [38]. In a multicentre cross-sectional study of patients
older than 70 years with diabetes, 71% had PAD when detected by abnormal ankle—
brachial index [39]. Diabetes increases the incidence of critical limb ischaemia (CLI)
four-fold in patients with peripheral artery disease; moreover, in diabetic patients
with CLI, 50% will develop CLI in the contralateral limb within 5 years [40].

Intermittent claudication occurs three times more often in men with diabetes and
almost nine times more often in women with diabetes than in their counterparts
without diabetes [41]. It is also important to note that diabetes is most strongly
associated with femoral-popliteal and tibial PAD, whereas other risk factors (e.g.
smoking and hypertension) are associated with more proximal disease in the aorto-
ilio-femoral vessels [33].

The true prevalence of PAD in people with diabetes has been difficult to deter-
mine, as most patients are asymptomatic, many do not report their symptoms as
pain perception may be blunted by the presence of peripheral neuropathy [42].
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Given the inconsistencies of clinical findings in the diagnosis of PAD in the diabetic
patient, the measurement of ankle-brachial pressure index (ABI) has emerged as the
relatively simple, non-invasive and inexpensive diagnostic tool of choice. An ABI
smaller than 0.9 is not only diagnostic of PAD in the asymptomatic patients, but it
is also an independent marker of increased morbidity and mortality from CVD [43].

8.2.3 Molecular Basis of the Vascular Dysfunction in Diabetes
and Diabetic Vascular Complications

A better understanding of the mechanisms underlying diabetic vascular disease is
mandatory because it may provide novel approaches to prevent or delay the devel-
opment of its complications. The common etiology link for the different types of
diabetes-associated vascular diseases is chronic hyperglycemia that evokes patho-
logic responses in the vasculature, which finally cause constitutive NO inhibition,
smooth muscle cell dysfunction, overproduction of vascular endothelial growth fac-
tor, chronic inflammation, hemodynamic dysregulation, impaired fibrinolytic abil-
ity and enhanced platelet aggregation [44].

8.2.3.1 Hyperglycemia, Oxidative Stress and Vascular Disease in Diabetes

Vascular dysfunction in diabetes is based upon endothelial and smooth muscle cells
dysfunction which eventually leads to atherothrombosis. Micro- and macrovascular
complications are mainly due to prolonged exposure to hyperglycemia and its fre-
quent association with other risk factors and genetic susceptibility [45]. Interestingly,
the endothelial, mesangial and retinal cells are equipped to handle high sugar levels
when compared with other cell types [46]. The detrimental effects of glucose
already occur with glycemic levels below the threshold for the diagnosis of diabe-
tes; this is explained by the concept of ‘glycemic continuum’ across the spectrum of
prediabetes, diabetes and cardiovascular risk [45, 47]. There is a strong relationship
between dysglycemia, obesity-related insulin resistance and impaired insulin secre-
tion that will determine functional and structural alterations of the vessel wall.
Endothelial dysfunction occurs as a consequence of the imbalance between the
accumulation of reactive oxygen species (ROS) and NO bioavailability, a decrease
in the latter being a strong predictor of cardiovascular events [48]. The overproduc-
tion of ROS by the mitochondria is considered one of the key triggers of vascular
complications in diabetes [49].

Schematically (Fig. 8.1), high concentrations of intracellular glucose determine
[45]:

e PKC activation, followed by:

— increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
levels [50], phosphorylate p66Shc at serine 36 [51], and oxidative stress and
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Fig. 8.1 Mechanisms of hyperglycemia-induced vascular damage

ROS generation; all of which quickly inactivate NO and facilitate peroxyni-
trite (ONOO~™) formation, a pro-oxidant compound responsible for protein
nitrosylation;

— eNOS deregulation with decreased activity, further reduction of NO availabil-
ity, and accumulation of free radicals [52]; furthermore, hyperglycemia
reduces eNOS activity by blunting activatory phosphorylation at Ser1177;

— increased synthesis of ET-1, favouring vasoconstriction and platelet aggrega-
tion [53];

— increased synthesis of vasoconstrictors and prostanoids by up-regulation of
cyclooxygenase-2 (COX-2) associated with increased thromboxane A,
(TXA,) synthesis and decreased prostacyclin (PGI,) release [54];

— structural and functional changes in the vasculature: alterations in cellular
permeability, inflammation, angiogenesis, cell growth, extracellular matrix
expansion and apoptosis [53].

e Overproduction of ROS by mitochondria is involved in:

— decreased NO bioavailability;

— up-regulation of proinflammatory genes encoding for monocyte chemo-
attractant protein-1 (MCP-1), selectins, vascular cell adhesion molecule-1
(VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1), via activa-
tion of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
kB) subunit p65 signalling; these factors cause monocyte adhesion, rolling
and diapedesis with foam cells formation in the sub-endothelial layer, thus
accelerating the atherosclerotic process [55];
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— increased synthesis of methylglyoxal (a glucose metabolite) leading to AGE
synthesis, accumulation and ultimately to endothelial dysfunction [56]; gen-
eration of AGEs leads to cellular dysfunction by activation of AGEs receptors
(RAGE); AGE-RAGE signalling activates ROS-sensitive biochemical path-
ways such as the pro-oxidant hexosamine flux [57];

— activation of the polyol pathway flux involved in vascular redox stress [49].

8.2.3.2 Insulin Resistance and Atherothrombosis

The main feature of T2DM, insulin resistance, often precedes its onset by many
years. Insulin resistance is critically involved in vascular dysfunction in subjects
with T2DM [58] and is strongly related with obesity, since the adipose tissue is the
main source for inflammatory mediators and free fatty acids (FFAs). Increased levels
of FFAs stimulate toll-like receptors (TLR) that cause, on one hand, the activation of
NF-kB nuclear translocation, with subsequent up-regulation of inflammatory genes
interleukin-6 (IL-6) and tumor necrosis factor (TNF-o), and, on the other hand, the
activation of c-Jun amino-terminal kinase (JNK) and PKC, phosphorylation of insu-
lin receptor substrate-1 (IRS-1), thus blunting its downstream targets phosphati-
dylinositol 3-kinase (PI3K) and Akt (a serine/threonine kinase also known as protein
kinase B). These results in down-regulation of glucose transporter GLUT-4 and,
hence, insulin resistance [45, 59]. In the vascular endothelium, a decrease in PI3K/
Akt levels leads to increased FFA oxidation and subsequent ROS generation, with
the aforementioned consequences: PKC activation, AGE synthesis, reduced PGI2
synthase activity and protein glycosylation; as a result, NO levels decrease dramati-
cally and endothelial dysfunction ensues [60]. The blood coagulation system is also
affected by insulin resistance, through alterations in IRS1/PI3K pathway leading to
Ca? accumulation and increased platelet aggregation. Furthermore, insulin resis-
tance facilitates atherothrombosis through increased cellular synthesis of PAI-1 and
fibrinogen and reduced production of tissue plasminogen activator (tPA) [61].

The tight bond between insulin resistance and atherosclerosis is further estab-
lished by the alterations in the lipid profile, such as high triglycerides, low HDL
cholesterol, increased remnant lipoproteins, elevated apolipoprotein B (ApoB) as
well as small and dense LDL cholesterol [62]. Accordingly, the experimental asso-
ciation of hyperlipemia with diabetes diminished the relaxation of the resistance
arteries to bradykinin by an NO-dependent and an NO-independent mechanism
(mediated via Ca** activated K* channels) [63]. Moreover, the simultaneous insult
of hyperlipemia-hyperglycemia has been associated with the highest contractility
of the resistance arteries to prostaglandin F2a and the highest circulating glucose
and cholesterol levels; the activation of PKC pathway, the alteration of cyclooxige-
nase and the Ca** dependent K* channels generate the augmented contractility [64].
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8.2.3.3 Micro RNA and Diabetic Vascular Disease

MicroRNAs (miRNAs) are a newly identified class of small non-coding ribonucleic
acids (RNAs); they regulate gene expression at the post-transcriptional level.
Alterations in miRNA expression occurring in T2DM play an important role in
hyperglicemia-induced vascular damage pathogenesis [65]. Thus, in endothelial
cells exposed to hyperglicemia, miR-320, miR-221, miR-503 are highly expressed,
while miR-222 and miR-126 are submitted to down-regulation. The alterations in
miRNA expression lead to decreased angiogenesis, generation of AGEs, decreased
EPC proliferation, migration and homing, endothelial dysfunction and impaired
vascular repair [45].

There is evidence that suggest that reduced miR-126 expression levels are par-
tially responsible for impaired vascular repair capacities in diabetes; in contrast,
restored expression of this miRNA promotes EPCs-related repair capacities and
inhibits apoptosis [66].

8.2.3.4 Thrombosis and Coagulation

Both diabetes and insulin resistance are associated with a prothrombotic status, as a
result of the alterations in clotting factors and platelet aggregation [67]. The most
frequent alterations consist of: increased PAI-1 and fibrinogen, reduced tPA levels,
increased expression of tissue factor (TF) with procoagulant activity and thrombin
generation, platelet hyperreactivity, up-regulation of glycoproteins Ib and IIb/Illa,
increased levels of microparticles (MPs) released in the circulation [45]. Platelet
hyperactivity and hyperaggregability in T2DM is induced by several factors includ-
ing oxidative stress, abnormal intracellular Ca’* homeostasis and hyperhomocyste-
inaemia. It has been showed that the endogenous production of ROS, Ca*
mobilization and platelet aggregation are significantly greater in platelets from dia-
betic patients than in controls, even though they have been exposed to the same
concentrations of homocysteine (Hcy), indicating that platelets from diabetic donors
are more sensitive to plasma Hcy levels [68]. Besides, the exogenous oxidative
stress, thrombin activation, and ageing lead to protein carbonyl formation in plate-
lets from diabetic patients [69]. Moreover, it has been shown that MPs from patients
with T2DM increase coagulation activity in endothelial cells. MPs carrying TF pro-
mote thrombus formation at the sites of injury, representing a novel and additional
mechanism of coronary thrombosis in diabetes [70]. On the other hand, it has been
reported that enoxaparin — a low molecular weight heparin, restores the altered vas-
cular reactivity of resistance arteries in aged and aged-diabetic hamsters [71]. The
author concludes that, these pharmacological effects supplement the anticoagulant
properties of enoxaparin and may be of relevance for improving perfusion/circula-
tion in the microvasculature of aged and of aged—diabetic persons [71].
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8.2.3.5 Vascular Hyperglycemic Memory

The “hyperglycemic memory” concept derived from large observational studies,
where adequate control of patients’ glucose blood levels acquired years after dis-
ease onset, failed to result in a lower cardiovascular risk [72]. However, in patients
with early-onset therapy, well-established benefits were obtained [73]. The persis-
tence of hyperglycemic stress despite blood glucose normalization has been defined
as “hyperglycemic memory” [45]. Transitory episodes of hyperglycemia activate
NF-kB, with a lingering effect even after blood glucose level become optimal.
Hyperglycemia induces endothelial dysfunction, vascular inflammation and apop-
tosis through Sirtuin 1 (SIRT1) downregulation, p53 and p665 activation, PKCII
activation, inhibition of eNOS activity, expression of inflammatory genes and
mitochondrial ROS accumulation, thus perpetuating a vicious circle that maintains
the vascular lesional status in patients with diabetes despite optimal glycemic
control [74].

8.3 Endothelial Progenitor Cell Biology

8.3.1 Definition of Endothelial Progenitor Cells

EPCs are a heterogeneous population of cells that reside in the bone marrow (BM)
in close association with hematopoietic stem cells (HSCs) and the stroma [75]. These
cells can be found (circulate) in the peripheral and umbilical cord blood and have
been first isolated using magnetic micro beads by Asahara et al. (1997) [76]. EPCs
represent between 1 and 5% of the total BM cells and less than 0.0001-0.01% of
peripheral circulating mononuclear cells [77]. EPCs are involved in the maintenance
of endothelial regeneration, vascular repair and in angiogenesis processes [78].

8.3.2 Ontogeny of Endothelial Progenitor Cells

In circulation two categories of EPCs can be found: a population with hematopoi-
etic origin, and another population named non-hematopoietic EPCs [79]. It is well
known that hematopoietic EPCs arise from a progenitor cell of mesodermal origin,
defined as hemangioblast [76, 80, 81]. This cell type is rare, slowly proliferating and
is described as a precursor for hematopoietic cells (myeloid and lymphocytic lin-
eages), and also for a part of EPCs [82, 83]. The angioblast (immature stage of
EPCs) and primitive HSCs present common hematopoietic stem cell markers as:
CD133, CD34, CD4S5 or Flk-1/KDR [80, 84-87] (Fig. 8.2). During the differentia-
tion process the angioblasts start to express new cell surface markers (CD) and
become primitive EPCs, an immature population of cells (Fig. 8.2). Some markers
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Fig. 8.2 The origin and differentiation of EPCs from hematopoietic and non hematopoietic stem
cells: the profile of cell surface markers (+: positive cells, —: negative cells)

(CD14 and CD45) are common with myeloid lineage suggesting the hematopoietic
origin of these EPCs [88]. In BM or in circulation, the hematopoietic EPCs begin to
express specific markers for endothelial cells (ECs): vascular endothelial growth
factor receptor 2 (VEGFR-2) and von Willebrand factor (vWf), in addition to
CD133 and CD34 [80, 82, 85]. Regarding CD133, its expression is downregulated
in non-hematopoietic cells and absent in mature ECs [85, 89, 90].

In vitro, hematopoietic EPCs generate the endothelial cell colony forming units
(CFU-ECs) [91] with spindle shape and low proliferative capacity, named also “early
endothelial colonies” or early EPCs (Table 8.1). These cells are able to incorporate
acetylated LDL (AcLDL) and to bind specific lectins (BS-1 and ulex europaeus)
which are usually considered endothelial specific [92, 93]. They are also character-
ized by the expression of vWf, VEGFR-2 and CD31 [88, 94]. However, early EPCs
do not generate vascular tubes in vitro, but they can induce the angiogenesis indi-
rectly by producing angiogenic factors and inflammatory cytokines/chemokines per-
mitting new vessels to form and to extend [95-99]) (Table 8.1).

Another EPC subtype is known as non-hematopoietic EPCs or late EPCs or
outgrowth endothelial cells (OECsS), because in the culture they generate the endo-
thelial colony forming cell (ECFC) that develop into monolayers with a typical
“cobblestone”” morphology [79, 85]. OECs have a higher proliferative potential and
they easily form tube-like structures in vitro [79]. These cells are present in
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Table 8.1 Differentiation of early compared with late EPCs (as two types of culture period-
dependent cells)

Early EPCs or Late EPCs or non-
hematopoietic EPCs | Ref. hematopoietic EPCs or (EOCs) | Ref.
In vitro Grown on fibronectin- | [76, 91, Grown on collagen type [97,102]
features coated surfaces 98, 101] I-coated surfaces
Appear in 3-5 days in Appear after 2-3 weeks in
culture culture
Are round cells Are elongated cells in culture
surrounded by (3-5 weeks), and form a
spindle-shaped cells cobblestone-shaped monolayer
Proliferate slowly Have a great proliferative
with a peak growth in potential
culture at 2-3 weeks Can be cultured until 15
passages
Angiogenic | Do not generate [96, 97] Generate tube-like structure in | [79, 103]
potential vascular tubes in vitro vitro
Secret angiogenic Have vasculogenic and
factors and induce angiogenic potential, processes
angiogenesis by underlying the generation of
paracrine mechanism new blood vessels
Form vascular networks de novo
Endothelial | VEGFR-2, CD31, [92, 93] VEGFR-2, CD31, CD105, [100, 103]
properties vWHT, ability to bind CD144, vWf, CD34, eNOS,
AcLDL and lectins Tie-2, VE-cadherin, ability to
bind AcLDL and lectins
Role and High cytokine release | [104, 105] | Low cytokine release [104, 106]
function Phagocytic function Incorporation and tube-
forming capability
No phagocytic function

peripheral and cord-blood and non-hematopoietic tissues [79]. Late EPCs do not
express hematopoietic marker CD45 or the monocyte markers CD14 and CD115,
but they express many EC antigens CD31, CD105, CD144, CD146, vWF, KDR,
and UEA-1 [100] (Table 8.1 and Fig. 8.2). It has been also observed that, in vivo,
these cells continue to differentiate and incorporate into the endothelium, and the
expression of CD31 and vWF increases [91].
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8.4 Endothelial Progenitor Cell Dysfunction, a Link
Between Diabetes and Vascular Disruption

Cardiovascular risk factors induce endothelial injury. The occurring damages repre-
sent a balance between the degree of injury and the capacity of various complex
mechanisms of repairing it. Diabetes mellitus is considered to be a clinical condi-
tion characterized by early and extended endothelial dysfunction. Hyperglycemia
impairs vascular endothelial function and contributes to the vascular damage in dia-
betic patients [107]. Current studies suggest there is a negative correlation between
the severity of diabetes and EPC count and function [108].

The complex pathophysiology of vascular damage in diabetes is not fully com-
prehended. Oxidative stress plays a crucial role in the pathogenesis of late diabetic
complications. EPC dysfunction in diabetic patients has been correlated to oxidative
stress and the generation of ROS [109]. Reduced extracellular superoxide dismutase
(SOD) activity, the major antioxidant enzyme system of the vessel wall, has been
associated with increased vascular oxidative stress and has been implicated in the
endothelial dysfunction. In patients with CAD, SOD activity was substantially
reduced [110].

NO is a biologically active unstable radical that is synthesized in vascular endo-
thelial cells by eNOS. EPC mobilization from bone marrow to the peripheral blood
and function requires NO [111]. Endothelial dysfunction is characterized by low
biovailability of endothelium-derived NO, witch is itself an independent predictor
of future cardiovascular events.

Chen et al. [112] have reported that prolonged exposure of early or late EPCs to
high glucose concentrations reduces their number and proliferative ability, NO bio-
availability, and the extent of phosphorylation of eNOS [112]. Exposure of EPC to
high glucose concentrations has increased NADPH oxidase activity which results in
increased O2- generation and reduced NO bioavailability because O2- inactivates
NO and uncouples eNOS [113]. Therefore, decreased NO bioavailability is one of
the determinants of vascular damage in diabetes.

On the other hand, ischemia induces neovascularization in diabetic patients. The
oxygen deficit is considered the strongest stimulus for EPC mobilization from the
bone marrow, through the up regulation of VEGF. It seems that EPC recruitment in
regenerating tissues is mediated by a hypoxic gradient by Hypoxic Inducible
Factor -1 (HIF-1) [114]. The expression of angiogenic factors, VEGF and HIF-1,
has been reduced in the hearts of diabetic patients during acute coronary syndromes
(ACS). In rats, myocardial infarct size has increased in hyperglycemic conditions
and has been associated with a reduced expression of the HIF-1 gene [115].
Lambiase et al. (2004) have shown that modest coronary collateral vessels develop-
ment, which is typical for diabetes, may be related to low levels of circulating EPCs
[116]. Diabetic EPCs have not been able to stimulate vascularization, even becom-
ing anti-angiogenic. Gill et al. [117] have reported that coronary artery bypass graft-
ing is followed by a marked increase in circulating EPCs that peaks at 6-12 h,
resembling very closely to VEGF increase effects [117].
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Nondiabetic patients with PAD alone and patients with uncomplicated diabetes
have had similar EPC reduction versus control subjects [118]. Patients with diabetes
and PAD have had a further significant decrease in circulating EPC levels, espe-
cially in the presence of ischemic foot lesions. EPC levels have been strongly cor-
related with the ankle-brachial index, the most objective diagnostic and prognostic
test for lower-extremity arterial disease.

In addition, hyperglycemia induces retinal ischemia and the release of angio-
genic factors that stimulate the proliferation of microvessels, leading to proliferative
retinopathy. EPCs may be involved in the development of proliferative retinopathy.
This is a paradox as, in diabetic patients, the vascular ischemia may coexist with a
condition of pathological neovascularization. Interestingly, the pericyte loss is an
early and selective event leading to endothelial activation and proliferation in the
retina, and CD34" progenitors of perivascular cells have been demonstrated in
peripheral blood [119]. Thus, depletion of generic CD34* progenitor cells may be
one cause of pericyte loss.

Another possible link between diabetes and EPC alterations is the effect of insu-
lin resistance per se. It has been demonstrated that patients with metabolic syn-
drome have decreased levels of CD34*KDR*EPCs compared with patients without
the syndrome [120].

Given the EPC effects revealed by ongoing clinical studies we may consider new
pathways of understanding and treatment of diabetic complications.

8.5 Mechanisms Leading to Endothelial Progenitor Cell
Dysfunction in Diabetes and Diabetic Vascular
Complications

EPCs from humans and animals with T2DM have multiple functional defects in
vitro, with biologically relevance in vivo, including decreased migration to chemo-
tactic stimuli, reduced proliferative potential and differentiation, diminished ability
to form vascular-like structures, which limit their regenerative capacity [121, 122].

In the following sections, we highlight the putative mechanisms by which meta-
bolic features of diabetes impair EPC functions.

8.5.1 Effect of Hyperglycaemia

The abnormalities of glucose regulation are associated with changes in EPC biol-
ogy, including reduced circulating EPC numbers, incorrect mobilization from bone
marrow, decreased functional properties, lowered capacity to mediate endothelial
repair, and altered differentiation propensity. These alterations of EPCs reduce their
potential to generate vascular regenerative cells favouring the development of pro-
inflammatory cells [123—-125].
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It has been shown that in both patients with T2DM or pre-diabetic states (mean-
ing impaired fasting glucose and reduced glucose tolerance) and animal models of
diabetes, the function and number of circulating EPCs are decreased compared to
normoglycemic conditions and these are correlated with disease severity [118, 125—
130]. EPCs have been negatively associated with glucose levels after a glucose
challenge, in individuals with impaired glucose tolerance [131], and also with serum
glucose and glycated haemoglobin Alc levels, in patients with T2DM [132].

The mechanisms by which hyperglycaemia influences EPC function involve the
formation of AGEs and oxidative stress with augmentation of ROS production
through the activation of NAPDH oxidase in mitochondrion, with role in EPC apop-
tosis [133]. Increased ROS generation could also stimulate the AGE production,
which further triggers ROS production. These activate nuclear factor-kappa B (NF-
B) and subsequently the target genes that encode inflammatory proteins inducing
interleukin 1 (IL-1p) and tumor necrosis factor-a (TNF-a). In parallel, NF-«B tran-
scription factor activates p53 accelerating cell senescence and inducible NOS (iNOS)
that further potentiates the ROS production [134—136]. Hyperglycaemia causes also
endoplasmic reticulum (ER) stress and excessive autophagy which further facilitate
EPC death and reduce their migration [137, 138]. Apart from that, high glucose con-
centrations influence the proliferative capacity of EPCs either via inhibition of Akt
phosphorylation followed by NOS activation or via activation of C-JunN-terminal
kinase (JNK) pathway [139-141]. It has been demonstrated that the exposure to high
levels of glucose, in vitro, induces decreased early and late EPC number and activity
by downregulation of eNOS expression and phosphorylation, suggesting that eNOS
is an important target for high glucose adverse effects [112]. However, it is still
unclear whether high glucose-associated eNOS damage causes oxidative stress or if
oxidative stress associated with high glucose causes eNOS deactivation [142].
Hamed et al. (2009) showed that in patients with T2DM an inverse relationship
between plasma glucose and reduced NO bioavailability in EPCs can be found, due
to enhanced oxidative stress which damages the protein signaling pathways that lead
to diminished NO generation [143]. The relationship between the NO signaling path-
way and EPC dysfunction will be discussed in detail below. High glucose levels also
induce EPC senescence by one of NF-«xB target genes, p53, and by the activation of
the p38 mitogen-activated protein kinase (MAPK) pathway [144] (Fig. 8.3).

A very recent study has shown that the main factors (AGE, oxidative stress) for
EPC apoptosis and dysfunction induced by hyperglycaemia are also potent inducers
for epigenetic changes in EPCs [145]. For example, ROS has been associated with
a series of histone changes in the promoter and enhancer of superoxide dismutase
(SOD) 2 gene in retinal endothelial cells isolated from diabetic rats with retinopathy
[146]. In human microvascular endothelial cells, hyperglycaemia has induced the
increase of H3K4mel expression and decreases of H3K9me2 and H3K9me3 levels
on the of NF-xB promoter leading to NF-«B activation [147]. Moreover, the histone
codes H3K9ac, H3K12ac, H3K4me2, and H3K4me3 suppress the eNOS transcrip-
tion conducting to decreased NO [148].

Taken together, these studies demonstrate the obvious and complex influence of
hyperglycaemia on impaired EPC levels and function.
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which diabetic hallmarks induce EPC dysfunction

8.5.2 Effect of Insulin Resistance and Insulin Like Growth

Factor 1

Insulin resistance, a key feature of T2DM and the metabolic syndrome, results in a
variety of metabolic and vascular phenomena such as dyslipidaemia, inflammation
and a pro-thrombotic tendency, which eventually promote the development of ath-
erosclerosis. Insulin resistance has been correlated with impaired downstream insu-
lin signal transduction that reduces the glucose uptake in metabolic tissues [124].
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The homoeostasis model assessment (HOMA) of insulin resistance (a method
used to quantify insulin resistance and beta-cell function), has been found to be
negatively correlated with EPCs, in patients with cardiovascular risk [120]. In addi-
tion, it has been shown that healthy men of South Asian descent, that are more
insulin resistant than Caucasian peoples, present a reduced EPCs number and func-
tion [149]. Also, in insulin receptor (IR)-null mice, the number of circulating EPCs
has been decreased [150]. Flow cytometric and cell culture analyses have revealed
lower levels of circulating EPCs across the spectrum of insulin-resistant states
[124]. Furthermore, the treatment with an insulin sensitizer, metformin, or thiazoli-
dinediones, such as rosiglitazone, restored circulating EPC levels in diabetes [151—
153]. The reduction of circulating EPC levels could be the result of a number of
factors, such as defective mobilization, diminished proliferation and shortened sur-
vival into the circulation [94, 154].

However, the direct effect of insulin on the mobilization and differentiation of
EPCs remains underexplored [155]. On this line, it has been shown that insulin
resistance is closely associated with abnormalities in NO bioavailability and PI3K/
Akt signaling, both playing an essential role in EPC mobilization from the bone
marrow [94, 156—159]. Furthermore, in diabetic patients, EPCs have reduced clono-
genicity and uncoupled eNOS mediated by ROS, which additionally contribute to
augmented oxidative stress and impaired vascular repair [113] (Fig. 8.3). In one
study on patients with poorly controlled T2DM, insulin significantly enhanced EPC
mobilizationin subjects with the stromal cell-derived factor 1 (SDF-1)-3’-A/G
allele, a polymorphism known to be correlated with increased EPC mobilization,
suggesting that this peptide plays a role in this EPC function [160, 161].

The mechanism by which insulin stimulates the in vitro outgrowth of EPCs from
patients with T2DM involved the insulin-like growth factor (IGF-I) receptor, the stim-
ulation of MAPKSs and extracellular-signal-regulated kinase (ERK1/2) signaling path-
ways, but not IR [162]. IGF-I has complementary activity to insulin, and low IGF-I
levels are recognized as an independent risk factors for CVD [163]. Treatment with
growth hormone, which increases circulating IGF-I levels induced, in middle-aged
humans, both the enhancement of circulating EPC levels and their incorporation into
tube-like structures, and eNOS expression followed by the improvement of EPC col-
ony forming and migratory capacity [157]. In vitro, IGF-I stimulates via the IGF-I
receptor the EPC differentiation, migratory capacity and ability to incorporate into
vascular networks [157]. Furthermore, it has been demonstrated that haploinsuffi-
ciency of the IGFI-receptor increases endothelial repair and favorably modifies
the angiogenic progenitor cell phenotype. This angiogenic trait accelerated the endo-
thelial regeneration in vivo, and increased the tube formation ability and adhesion
potential of progenitor cells in vitro, and in general enhanced vascular repair [164]. It
should be noted that a study has shown that IGF-I increases the eNOS expression,
phosphorylation and activity in a PI3K/Akt-dependent manner in EPCs [157] (Fig. 8.3).

The heterozygous mouse models for IR knockout (IRKO), although non-diabetic,
have revealed the presence of endothelial dysfunction and reduced EPC number and
function. The descendants of IRKO mice crossed with transgenic mice with
Tie-2-driven human IR expression in endothelial cells (HIRECO), have presented
restored insulin signaling in endothelial cells through IR, and improved blood pres-
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sure, endothelial function, NO bioavailability, and vascular repair in the setting of
global IR. This has not been related to glucoregulation or EPC abundance [165].
Insulin resistant, non-diabetic hemizygous mice for IRKO have presented a lower
number of circulating EPCs in peripheral blood, but not in bone marrow and
decreased EPC mobilization compared to wild-type mice [150]. Moreover, in IRKO
mice, after arterial injury, the endothelial regeneration was delayed, but it has been
restored after the transfusion of mononuclear cells or c-kit+bone marrow cells from
wild-type mice [150].

All these studies demonstrate that both insulin and IGF-I significantly influence
the EPC function, but more investigations are needed to understand their mode of
action.

8.5.3 Nitric Oxide as a Key Factor of Endothelial Progenitor
Cell Dysfunction

NO, a biologically active unstable free radical is synthesized from L-arginine in
vascular endothelial cells by eNOS, an enzyme which is constitutively expressed in
these cells. NO bioavailability depends on the balance between the rate of its gen-
eration and its inactivation, particularly by ROS [166, 167]. Moreover, NO and
eNOS play an important role in mobilization of EPCs from bone marrow stem cell
niches to the peripheral circulation [11, 168, 169]. NO bioavailability in sites of
active vascularization seems to be crucial for EPC biology and function. The admin-
istration of endogenous NOS inhibitors, such as asymmetric dimethylarginine
(ADMA), induces decreased EPC mobilization, differentiation, and proliferation in
patients with CVD, suggesting the essential role of this enzyme in EPC function
regulation [170].

Impaired NO bioavailability, the hallmark of endothelial dysfunction, is one of
the contributing factors to the vascular damage in T2DM. NO bioavailability may
be diminished either due to the lower overall systemic fraction of L-arginine that is
converted to NO, or due to the reduction of essential eNOS cofactor and (6R)-5,6,7,8-
tetrahydro-L-biopterin (BH4) [171, 172]. Reduced NO concentration contributes to
defective migratory activity in diabetic EPCs. It has been demonstrated that EPCs
isolated from diabetic patients have an impaired migration to stimulation with
SDF-1 due to defective cell deformability, and the NO treatment improves deform-
ability and normalizes the migration of these diabetic cells [173]. The EPC dysfunc-
tion in T2DM has been reported to be restored through NO-dependent mechanisms
by various ways: (i) treatment with a NO donor drug which normalized their migra-
tion [173]; (ii) treating wounds with SDF-la which reestablished their homing
[140]; (iii) inactivation of NADPH oxidase which improved their reendothelializa-
tion capacity, in vivo [174]; (iv) preservation of the NO bioavailability with SOD
which restored EPC proliferation [169]. Furthermore, since it has been demon-
strated that prostacyclin (PGL,), an vasorelaxant prostanoid, has a direct effect on
EPC functions and number in an autocrine or paracrine manner through an NO-
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dependent mechanism [175-177], it has been considered that PGI, may have a sub-
stantial therapeutic role in diabetes as well [142].

8.5.4 PI3K/Akt Signaling Pathway and Endothelial Progenitor
Cell Dysfunction

The phosphatidylinositol triphosphate kinase/protein kinase B (PI3K/Akt) path-
way has been suggested to be involved in the regulation of EPC recruitment, mobili-
zation, and proliferation [178]. Well-known activators of the PI3K/Akt pathway such
as hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins), erythropoietin,
estrogens, and VEGF, are able to increase circulating EPC levels, proliferation and
migration [156, 179]. Pharmacological inhibition of PI3K and the overexpression of
a dominant-negative Akt construct have been shown to abolish EPC proliferation and
differentiation induced by statin and VEGEF, in vitro and in vivo [156]. Moreover, Akt
is an upstream enzyme of the eNOS signaling pathway which, as we mentioned
above, is essential for EPC mobilization. Thus, perturbations in the PI3K/Akt/eNOS/
NO signaling pathway or in one of its members may result in EPC dysfunction [168].

8.5.5 Oxidative Stress Impairs the Function of Endothelial
Progenitor Cells

Oxidative stress is defined as an imbalance between ROS production and antioxi-
dant defences. ROS generation is promoted by the p66*™, an adaptor protein [180,
181], while the antioxidant protection is provided by catalase, SOD, and glutathione
peroxidase (GPx), which scavenge the excess of oxygen-free radicals and reduce
ROS action. Previous reports have shown that the oxidative stress has a pivotal dam-
aging effect on EPC functions [155, 182]. Thus, enhanced superoxide generation
reduces the EPC levels and impairs EPC function [113]. Dysregulations of p66'
expression and SOD activity have been detected in AGEs-stimulated late EPCs,
changes that are mediated by high mobility group box-1 (HMGB-1), a nonchromo-
somal nuclear protein [183, 184]. However, in the early-stage of diabetic EPCs,
increased levels of ROS are not found, owing to the enhanced expression of antioxi-
dant enzymes such as catalase [185].

Additionally to the indirect effects of ROS on EPCs it has been suggested that
ROS exert direct effects on EPCs. Hydrogen peroxide (H,O,) induces in EPCs the
increase of Forkhead box O3 (FOXO3a) protein expression, in a dose-dependent
manner, and thereafter the activation of pro-apoptotic protein, Bim, that leads to the
following effects: decreased viability, increased apoptosis, and the impairment of
tube formation [186]. Also, H,O, stimulates EPC apoptosis by the activation of
apoptosis signal-regulating kinase 1 (ASKI1), due to the oxidation of sulfhydryl
groups of multiple anti-oxidant proteins such as glutaredoxin and thioredoxin [187,
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188]. Moreover, H,O, produces the oxidation of important EPC proteins such as the
T-complex protein 1 subunit «, cofilin-1, peroxiredoxin-4, isoform A of prelamin--
A/C, and actin [189].

Under diabetic conditions, enhanced oxidative stress induces the excessive gen-
eration of oxidized low density lipoprotein (oxLDL) [142]. It has been shown that
the oxLDL reduces the number of viable EPCs in culture and induces the dysfunc-
tion of cultured EPCs isolated from healthy subjects [190-192]. These effects are
mediated by NADPH oxidase, NF-xB activation, or LOX-1 activation that subse-
quently inhibit the Akt/eNOS pathway [190, 192]. In T2DM patients, elevated lev-
els of circulating oxLDL contribute to cardiovascular symptoms [193]. OxLDL
accelerates the EPC senescence by the activation of the Akt/p53/p21 signaling path-
way [144, 190] and inhibits VEGF-mediated differentiation via LOX-1 receptors,
increasing the LOX-1 mRNA expression [194].

High-density lipoproteins (HDL), particles with antioxidant and anti-inflammatory
properties, have a positive impact on EPC physiology [195, 196]. In T2DM patients,
the HDL particles are dysfunctional, and the serum levels of oxidized HDL (oxHDL)
and myeloperoxidase (MPO) enzyme have been found to be elevated as well [197,
198]. The administration of reconstituted HDL to T2DM patients has improved cir-
culating EPC functions [199], while the treatment with HDL of cultured EPCs has
induced the intensifications in their proliferation, migration, adhesion, and tube for-
mation and also protected them from apoptosis [200]. In addition, HDL protects
EPCs from the deleterious effects of ox-LDL. On the other hand, high concentra-
tions of HDL (>400 pg/ml) seem to induce EPC senescence and to decrease their
tube formation ability via the activation of Rho kinase that inhibits the Akt and p38
MAPK signaling pathways [201]. Conversely, ox-HDL stimulates EPC apoptosis in
a dose-dependent manner, via the CD36 pathway. Interaction of ox-HDL with CD36
also enhances the NADPH oxidase activity, upregulates Nox2 mRNA (NADPH oxi-
dase subunit), and activates the MAPK/NF-xB pathway [202].

Other data have revealed that ROS induce the impairment of EPC function in
diabetes, but the mechanisms that explain this phenomenon have not yet been stud-
ied by these authors [155, 203]. One of the mechanisms of diabetes-induced oxida-
tive stress action has been recently investigated by Wu et al. (2016). This study has
indicated that HMGB-1 has a significantly involvement via a positive feedback loop
including the AGE/ROS/HMGB-1 pathway [203].

Regarding the antioxidant protection, it has been shown that EPCs from healthy
humans contain high intracellular expression levels of manganese SOD (MnSOD)
[204, 205], while EPCs from T2DM patients have increased SOD activity that neu-
tralizes the high levels of superoxide anions [142]. Moreover, it has been reported
that the antioxidant therapy with SOD in diabetic mice has reduced oxidative stress
and improved EPC levels and differentiation capacity [206]. The treatment with
SOD of glucose-stressed EPCs has restored their proliferation through an NO-
dependent mechanism suggesting that the interaction between NO and superoxide
anions has an important role in the development of EPC dysfunction and subse-
quently in CVD development in T2DM patients [169]. The augmentation of SOD
expression in human EPCs by shear stress can accelerate the neutralization of super-
oxide anions, preventing the peroxynitrite formation, and thus increasing NO bio-



180 N. Alexandru et al.

availability in EPCs [207]. Likewise, the MnSOD overexpression effectively
reversed the diabetic EPC dysfunction including tube formation, migration, while
the transplantation with MnSOD-overexpressed diabetic EPCs improved in vivo
wound healing ability [208]

8.5.6 Inflammation and Endothelial Progenitor Cells
Dysfunction

Inflammation affects both EPC number and function, and EPCs react in two differ-
ent ways to an inflammatory environment [208]: (1) at low concentrations of inflam-
matory cytokines, the number and function of EPCs are positively regulated,
meaning that the increased number of circulating EPCs adheres and is recruited to
the injured area; (2) at high concentrations of inflammatory cytokines, in a severe
and chronic inflammatory environment such as diabetes, EPC functions (mobiliza-
tion, adhesive capacity and proliferation) are impaired and the EPC number is
reduced, leading to deficiency in angiogenesis. Subclinical inflammation has been
shown to be a powerful predictor of cardiovascular events and T2DM [155]. In these
conditions, the systemic inflammation is characterized by elevated levels of
C-reactive protein (CRP), TNF-a, and many cytokines, such as interleukins (ILs):
IL-1, IL-6, IL-10 and IL-18 [209, 210]. The interaction of these factors with differ-
ent receptors results in the increase of oxidative stress and activation of NF-xB in
EPCs, which lead to their dysfunction (Fig. 8.3).

CRP has been reported to have the following effects, mediated through receptors
for AGE, on EPCs: (i) significantly disturbs migration, adhesion and proliferation;
(i1) reduces eNOS expression, increases apoptosis and necrosis [211, 212]. In addi-
tion, CRP increases mitochondrial ROS production, modulating the expression of
anti-oxidant enzymes, such as GPx and MnSOD [212]. There was no association
found between plasma levels of CRP and EPCs [213]. Regarding the effect of ILs,
it has been shown that IL-1p: (i) induces murine EPC viability, proliferation, and
migration both in vivo and in vitro, via ERK1/2 pathway activation [214]; (ii)
increases mRNA and protein levels of VEGF-A in EPCs, via the PI3K/Akt signal-
ing pathway [215]; (iii) reduces the number and proliferation of pig EPCs, and also
EPC migration, adhesion, and angiogenesis, through p38 MAPK pathway activa-
tion [216]. Also, IL-18 reduces the ability of EPCs from healthy individuals to dif-
ferentiate into mature endothelial cells [217] while IL-6 increases EPC migration,
proliferation, and differentiation in cell culture, by activating both the INK/STAT3
pathway and the ERK1/2 pathway [218]. Moreover, IL-10 alone has no effect on
EPC migration and differentiation, although it did augmente significantly the
expressions of VEGF and matrix metallopeptidase-9 (MMP-9) and potentiated the
negative effects of TNF-a on EPCs [219].

TNF-a serum levels are higher in diabetes and have been associated with various
complications of this disease [220, 221]. It has been shown that TNF-« influences
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the EPC function by different ways: (i) induces IL-18 expression that has negative
effects on EPC differentiation; (ii) decreases Akt phosphorylation mediated by insu-
lin and increases apoptosis through NF-xB pathway activation [222]; (iii) inhibits
migration and proliferation in a dose and time-dependent manner; (iv) mediates
downexpressions of VEGFR-1 and SDF-1 as well as of the iNOS and eNOS [223].
On the contrary, in another study it has been reported that TNF-a enhances EPC
migration, adhesion, and tube formation [219].

Regarding the effect of NF-«B, it has been indicated that its overexpression: (i)
improves EPC adherence to the endothelium by increasing the expressions of
E-selectin and P-selectin glycoprotein ligand-1 [224]; (ii) does not impair the migra-
tion or vasculogenesis, in murine embryonic EPCs. In addition, simultaneous stim-
ulation with TNF-a and NF-xB of EPCs isolated from insulin resistant ZO rats
induces apoptosis via caspase-3 [222]. The activation of NF-«B can mediate the
damage induced by Benzo[a]pyrene, an environmental toxin, on EPCs by increas-
ing ROS production, thus impairing their migration, proliferation, and vasculogen-
esis [225].

8.5.7 Altered Micro RNA Expression and Dysfunctionality
of Endothelial Progenitor Cells

The small noncoding molecules, microRNAs (miRNAs), are key regulators of
diverse cellular processes, and their expression reflects the disease pathology [226].
The miRNAs in the body fluid seem promising to be used as biomarkers to monitor
diabetes onset, and their number has been found to play a significant physiological
role in tissues where diabetes complications occur.

Regarding the involvement of miRNAs in diabetic EPC dysfunctions, there are
several data sustaining this aspect. For example, it has been shown that in T2DM,
the miRNA-126 expression has been downregulated in EPCs, inhibited EPC prolif-
eration/migration ability, and induced apoptosis, leading to diabetes-mediated
CVD [227]. The altered expressions of miRNA-126 as well as of miRNA-130a have
been involved in EPC dysfunction through extracellular signal-regulated kinase,
Ras/ERK/VEGF, and the PI3K/Akt/eNOS signaling pathway [227, 228]. In addi-
tion, dysregulated miR-130a has impaired EPC function by directly targeting
MAP3K12, a newly identified target gene of the JNK signaling pathway [141].
Alternatively, in TIDM patients the expression of miR-126 in EPCs has increased
compared to control subjects [229]. In primary cultured EPCs from diabetic patients,
an increased expression of miR-21 has been detected compared to that from control
individuals, and it was suggested that elevated levels of muR21 protect EPCs from
apoptosis via the regulation of downstream target DAXX [230]. Moreover, the over-
expression of miR-34a in EPCs results in an increase in EPC senescence with
impaired angiogenesis and SIRT1 expression [231] (Fig. 8.3). Also, augmented
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levels of miR-34a and miR-217 have induced the downregulation of some important
targets of SIRT1, such as FOXO1 and eNOS, thereby leading to premature endothe-
lial cell senescence and apoptosis [231, 232]. More recently, it was demonstrated
that in TIDM patients with diabetic retinopathy, the miR-221 expression in EPCs
has been significantly higher than in TIDM patients without diabetic retinopathy
and control subjects [229]. Thus, it was hypothesized that when retinal damage is
widespread with chronic hypoxia and nonperfusion, the EPCs would respond by
increases of miR-221 expression and specific chemokines, a process not activated in
earlier stages in noncomplicated diabetic patients.

The identification of miRNAs as diabetic biomarkers and pathogenic factors
would not only contribute to the detection of early complications and progressive
changes of diabetes, but also would provide targets for strategic therapeutic
approaches in diabetes mellitus.

8.6 Significance of Endothelial Progenitor Cells
in the Pathogenesis of Vascular Complications
of Diabetes

Several studies have revealed the innate complex mechanisms underlying changes
that occur in the vasculature during diabetes and lead to the cardiovascular risk
associated with macrovascular and microvascular complications of diabetes [233].
It is well known that EPCs play an essential role in endothelial repair, angiogeneo-
sis, neovascularization and attenuation of vascular dysfunction. Therefore, altera-
tions in EPC number and functions are considered markers of cardiovascular risk in
the general population and in diabetic patients, as well as a cause of diabetic vascu-
lar complications [120, 234, 235].

8.6.1 Endothelial Progenitor Cell Dysfunction
and Macrovascular Complications in Diabetes

The linkage between diabetes mellitus and macrovascular disease has been very
well established in many scientific studies [236]. It has been reported that diabetic
patients have a two to fourfold increased risk of developing CAD and PAD com-
pared with non-diabetic individuals [22]. Also, the severity of macrovascular com-
plications in diabetes has been attributed to a profoundly impaired collateralization
of vascular ischemic beds [237]. In addition, EPCs have been found to be involved
into the mechanisms that delay ischemia-induced neovascularization in diabetes. In
animal models of diabetic vasculopathy, it has been shown that diabetic EPCs are
not able to promote vascularization, becoming antiangiogenic [238, 239], while the
administration of EPCs from control animals has reduced defective
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collateralization. Consequently, a referenced study has established that EPCs play
an important role in the vascularization and also, in healing of diabetic wounds
[240]. Additionally, it has been demonstrated that the EPC reduction in diabetes is
strongly correlated with the severity of both carotid and lower-limb atherosclerosis,
suggesting that EPC number can be a valuable marker of atherosclerotic involve-
ment [115]. In agreement with these findings, other studies have indicated that the
lower circulating EPC number reflects the evolution of atherosclerotic disease both
in animal models [241-243] and in patients [244]. These papers have used for EPC
analyzing and quantification the flow cytometry technique. Furthermore, it has been
reported that the determination of EPC number, using flow cytometry, is sufficiently
reproducible to be used in the clinical practice, providing additional information
over the classical risk factor analysis. This EPC measuring reflects not only vascular
function and atherosclerotic changes, but also the endogenous vasculoregenerative
potential [120, 245, 246]. The CD34* KDR* EPC count has been showed to predict
the cardiovascular events independently of risk factors and hard indexes, such as left
ventricular ejection fraction [244, 245, 247].

These findings have indicated that both decreased levels and dysfunction of
EPCs play a significant role in enhanced cardiovascular risk and diabetes-related
complications.

8.6.1.1 Endothelial Progenitor Cells and Diabetic Coronary Artery
Disease

It is well known that diabetic patients die from CVD, diabetes representing the
major cause of death among this population and contributing to a shortening of
average life span by 5-10 years in these patients [248]. Diabetes increases the risk
of future MI more than any other risk factors, and the consequences of MI are
greater in these patients compared to the patients without diabetes mellitus [236].

It has been shown that EPCs isolated from the peripheral blood (PB-EPCs) of sub-
jects with cardiovascular risk factors and previously diagnosed diabetic CAD, have
altered phenotypes [247, 249], while in patients with known CAD, these cells have
exhibited a reduced migratory capacity and weak proliferative response [250].
Additionally, lower levels of EPCs have been found in patients with severe atheroscle-
rosis or diabetes-related vasculopathy [251, 252], and it was concluded that the circu-
lating EPC levels predict cardiovascular events in patients with CAD [245, 253].

Most importantly, due to the EPC heterogeneity and the variable changes in the
EPC phenotype at different stages of CAD and diabetes development, there are
some limitations in establishing the predictive value of the number and functionality
of EPCs in cardiovascular risk calculation [233].

Moreover, modulating EPC levels in T2DM with known CAD using different
drugs is still under study. Regarding this aspect, it was found that valsartan, an
angiotensin-2 receptor blocker, in high doses, has a positive influence on bone
marrow-derived EPCs phenotyped as CD14* CD309* and CD14* CD309* Tie2* in
T2DM patients with known asymptomatic CAD [254]. Additionally, strong evi-
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dence has been provided to support that statins (atorvastatin and pravastatin) have a
favourable in vitro effect on functional parameters of EPCs derived from diabetic
patients with acute ST segment elevation MI (STEMI) [248]. These data indicate
that treatment with statins may be beneficial for EPC-driven vascular repair after an
acute MI (AMI) and may improve the cardiovascular outcome of diabetic patients.

8.6.1.2 Endothelial Progenitor Cells and Diabetic Peripheral Arterial
Disease

PAD is a common vascular complication in the diabetic population, diabetes increas-
ing the risk of developing PAD at least two-fold [255, 256]. Patients suffering from
both diabetes and PAD present poor lower extremity function and are at risk of
developing critical limb ischaemia and ulceration, potentially requiring limb ampu-
tation [257, 258]. Moreover, these patients respond poorly to the treatment of PAD
and exhibit a higher mortality [245, 246].

Regarding EPC involvement in this pathology, it has been shown that patients
with PAD alone and patients with uncomplicated diabetes had similar EPC decrease
versus control subjects, while patients with PAD and diabetes had a more signifi-
cantly reduction in circulating EPC levels, mainly in the presence of ischemic foot
lesions [115]. EPC levels are strongly correlated with the ankle brachial index, the
most objective diagnostic and prognostic test for lower extremity arterial disease
[118]. A recent study has demonstrated that ankle-brachial index is the determinant
of EPC population state in disease-affected groups, and EPCs could predict the
prevalence and severity of symptomatic PAD [259]. Moreover, EPCs isolated from
diabetic patients with PAD have exhibited impaired proliferation and adhesion
capacity to mature endothelium [260], while EPCs isolated from diabetic mice had
suppressed EPC mobilization following hindlimb ischaemia [261-265]. In isch-
aemic tissue the existence of an inverse relationship was proven between diabetes
duration and EPC number [266]. Furthermore, it has been reported that the admin-
istration of: (i) non-diabetic EPCs into diabetic hindlimbs, following ischaemia,
have accelerated the blood flow restoration [238]; (ii) vitamin B1 analogue, benfo-
tiamine or statins, have prevented the diabetes-induced reduction in circulating
EPCs in mice subjected to limb ischaemia [265, 267]; (iii) insulin and G-CSF (gran-
ulocyte colony stimulating factor) have partially restored the deficient EPC mobili-
zation in diabetic rats after ischaemia/reperfusion injury [268].

8.6.1.3 Endothelial Progenitor Cells and Diabetic Cerebrovascular
Disease

In diabetic patients, ischemic cerebral damage is exacerbated, and the outcome is
poor, but the responsible mechanisms are not well known. Likewise, there is less
information regarding the correlation of circulating EPCs with cerebral vascular
density (as an index of angiogenesis) and ischemic injury [269]. Information on
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ischemic stroke in diabetic animal models is also lacking. In a study using db/db
mice as a T2DM animal model for in vivo ischemic stroke it has been shown that
impaired circulating EPC number, reduced EPC production/function, and increased
generation of microparticles (MPs) might be the mechanisms responsible for
increased ischemic damage [269]. Moreover, these data suggest that circulating
EPCs and MPs could be used as predictive biomarkers for ischemic stroke compli-
cations in diabetes and might be thus targeted, offering new therapeutic possibilities
for diabetes and ischemic stroke. In another study it has been reported that EPC
transplantation alone had a modest effect on stroke recovery in diabetic mice in
terms of angiogenesis, neurogenesis, axonal remodeling, and neurological behavior.
These phenomena may be explained by the fact that only a small number of trans-
planted cells survived and successfully homed to the ischemic brain in these dia-
betic animals [270]. Recently, the same group has reported that EPC transplantation
combined with p38 mitogen-activated protein kinase inhibitor administration into
db/db diabetic mice, after ischemic stroke induction, have accelerated recovery, by
increasing levels of proangiogenic and neurotrophic factors [271].

As a result, EPC dysfunction is perhaps a promising target for diabetes treatment
strategies. Indeed, the improvement of EPC number and functionality seems to
reduce cardiovascular risk and diabetes-related macrovascular complications, but
the mechanisms underlying these outcomes are not fully clear, requiring more
investigations.

8.6.2 Endothelial Progenitor Cell Dysfunction
and Microvascular Complications in Diabetes

Patients with diabetes mellitus are at high risk for the development of microvascular
complications and major adverse cardiovascular events. The EPC dysfunction
related to the three manifestations of microvascular disease in diabetes: retinopathy,
nephropathy, and neuropathy, will be discussed in further detail below.

8.6.2.1 Endothelial Progenitor Cells and Diabetic Retinopathy

Diabetic retinopathy represents an important cause of visual deficiency in the
Western world [9]. In the United States this disease has been responsible for ~8% of
cases of legal blindness and ~12% of all new cases of blindness in each year in the
last decade of the twentieth century [236]. The majority of TIDM patients and more
than 60% of patients with T2DM develop background retinopathy. The severity of
hyperglycemia, duration of diabetes mellitus, insulin resistance and additionally,
hypertension, dyslipidemia, inflammation and smoking are important factors that
contribute to the development of microvascular disease [272, 273].
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The role of EPC in the development of diabetic retinopathy is controversial
[145]. EPC number has been reported as either decreased, increased or unchanged
in diabetic patients with severe retinopathy when compared to diabetic patients with
or without mild retinopathy, or to healthy subjects [229, 274-277]. Additionally,
there are studies showing that in patients with nonproliferative diabetic retinopathy
the circulating EPC number is reduced [127] compared to proliferative diabetic reti-
nopathy patients which have increased EPC levels [278]. In T1DM and
T2DM patients with diabetic retinopathy, it was found that although the EPC num-
ber is increased, their functions, such as migration, mobilization and homing, are
often impaired [277, 279]. Intravitreal delivery of cartilage oligomeric matrix
protein-angiopoietin 1 (COMP-Angl) recovers the endothelial integrity and ame-
liorates the vascular leakage by promoting incorporation of endothelial colony-
forming cells into retinal vasculature [280] in diabetic mice, and this way reverses
diabetic retinopathy. Moreover, it has been demonstrated in culture studies that the
early EPC (eEPCs) are responsible for ‘provisional repair’, first homing at the lesion
and attracting the CD34* cells, and later on attracting late outgrowth endothelial
progenitor cells (late EPCs) [281]. In nonproliferative diabetic retinopathy, eEPCs
are dysfunctional and they can not recruit late EPCs into the retina to repair the acel-
lular capillaries, while in proliferative diabetic retinopathy the eEPCs take a proin-
flammatory phenotype and recruit too many late EPCs leading to pathological
neovascularization. Correcting these dysfunctions may allow the use of a diabetic
patient’s own EPCs to repair their injured retinal and systemic vasculature, in both
the early and intermediate phase of vasodegeneration, to enhance vessel repair,
reverse ischemia, and prevent progression to the late stages of diabetic retinopathy
[281]. Thus, for durable repair and sustained correction of retinal ischemia the use
of these expanded in vitro cells (eEPCs and late EPCs) has been proposed as being
better than the use of the freshly isolated ones [282—284]. Nevertheless, more rigor-
ous investigations are needed to solve this problem.

8.6.2.2 Endothelial Progenitor Cells and Diabetic Nephropathy

Diabetic nephropathy is found at a rate of ~7% of patients already diagnosed with
T2DM. It occurs in less than 12% of patients with TIDM at 7 years after the diag-
nosis has been made, and in ~25% of patients with T2DM at 10 years after diagnosis
[236]. Diabetic nephropathy is characterized in the early stages by hyperperfusion
and hyperfiltration, due to the endothelial cell damage and abnormal angiogenesis,
and in the late stages by the development of glomeruli fibrosis that results in renal
failure. However, the exact mechanisms of nephropathy are not fully elucidated. At
the present time, it has been reported that AGEs, oxidative stress, and the activation
of the renin-angiotensin-aldosterone system (RAAS) are involved in these changes
partially through the activation of TGF-1 signaling and increased VEGF expression
in the kidney [285-287]. The negative correlation between EPC number and micro-
albuminuria or albumin excretion rate reported in both TIDM and T2DM patients,
has suggested that EPCs have a protective effect in the structure and function of
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glomeruli [179, 288]. The involvement of dysfunctional EPC has been described in
both endothelial damage and microcirculatory impairment that occurs in the early
pathogenetic events in diabetic nephropathy and also in defective glomerular repair
and renal disease progression in diabetes [115]. Moreover, it has been suggested
that EPCs, being pluripotent, have the ability to transdifferentiate into different phe-
notypes. Due to the kidney-derived hormone, erythropoietin, that has a major role
in the regulation of EPC mobilization and differentiation, the relations between
EPCs and renal function are more complicated [179]. In diabetes, the oxygen-
erythropoietin feedback that depends on the hypoxia-sensing system, hypoxia-
inducible factor 1-alpha (HIF-1a), is dysregulated. The erythropoietin response is
affected by microangiopathy and progressive tubulointerstitial fibrosis which
increase the latency of the erythropoietin system, and by ROS production and
hyperglycemia which themselves stabilize HIF-1a [289]. It has been demonstrated
that HIF-1a downregulation had a negative impact on EPC mobilization in diabetes
[268]. Another factor that has complicated the relationship between EPCs and renal
function is represented by ADMA. This endogenous NO inhibitor that is accumu-
lated in patients with chronic kidney disease (CKD) [290] and diabetes [291], is also
a potent inhibitor of EPC mobilization and function [170]. Thus, the disrupted
erythropoietin system and an excess of ADMA in CKD seem to inhibit EPC mobi-
lization, differentiation, and homing, while EPC alterations that occur in diabetes
impair the renal microvasculature. Due to this vicious circle, diabetic nephropathy
can be associated with a deficiency of EPCs rather than with CKD in general, which
would represent an additional risk for CVD and death [268].

It has been recently suggested that for treating diabetic nephropathy the endothe-
lial colony-forming cells (ECFCs) could be a promising and complimentary thera-
peutic target [145]. Another promising idea is to apply ECFC with higher level of
NO or angiopoietin 1 (Angl) that will be favorable for stabilizing capillaries by
reversing ‘uncoupled VEGF with NO’ balancing ‘Angl/Ang2 competition’ and
‘rendering Angl/VEGEF’. Alternatively, induced pluripotent stem cells (iPSC)-based
ECFCs would be one of the major strategies for diabetic microvascular abnormality
treatment. In this direction it has been disclosed that the endothelial progenitors
generated from human iPSCs derived from cord blood have a greater capacity for
homing and long term incorporation into injured retinal vessels [292, 293]. To
improve endothelial function and protect vessel from retinopathy as well as
nephropathy, ECFC administration has been proposed in the early stage of diabetes
for better efficacy [145].

8.6.2.3 Endothelial Progenitor Cells and Diabetic Neuropathy

The development of diabetic neuropathy is associated with vascular and nonvascu-
lar abnormalities. The neuropathy is characterized by basement membrane thicken-
ing, pericyte loss, reduced capillary blood flow to C fibers, resulting in attenuated
nerve perfusion and attendant endoneurial hypoxia, axonal thickening and eventual
loss of neurons [294]. There are two major types of clinical manifestations: (1)
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chronic, symmetrical, length-dependent sensorimotor polyneuropathy, that is asso-
ciated with the severity and duration of hyperglycemia [295]; (2) asymmetrical
polyneuropathies that develops at more unpredictable times during the development
of diabetes [296].

In the experimental diabetic neuropathy, the reduction of vasa nervorum is an
obvious characteristic of peripheral nerves, and decreased blood supply to periph-
eral nerves can accelerate disease progression [297]. It was hypothesized that EPCs
may have a crucial role in the homeostasis of the nutritive microvasculature, their
dysfunction contributing to the acceleration of disease. Due to the ability of these
cells to differentiate also toward the neural phenotype [298], it is possible that the
imbalance of immature circulating cells in diabetes influences this chronic compli-
cation, downregulating both endothelial and neuronal progenitors [268]. To support
this hypothesis it has been reported that the EPC intramuscular administration can
reverse the impairment of sciatic nerve conduction velocity and nerve blood flow in
diabetic rats [299]. Chavez et al. (2005) have demonstrated that the EPC dysregula-
tion in diabetic neuropathy may be attributed to a defective HIF-1a activation [300].
Other groups have shown that diabetic neuropathy can by delayed by the adminis-
tration of some EPC-modulating agents, such as erythropoietin and statins [301].
Consequently, the EPC alterations have contributed to the pathogenesis of diabetic
neuropathy, but future studies are needed to elucidate the involved mechanisms.

Taken together, these findings indicate that, although very important, the role of
EPCs in the pathogenesis of diabetic microvascular diseases is still uncertain and
future investigations are necessary to reveal the EPC mysterious nature for thera-
peutic applications.

8.7 Potential Therapeutic Implications of Endothelial
Progenitor Cells in Diabetes-Associated Vascular
Complications

8.7.1 Prognostic Value of Endothelial Progenitor Cells

In the recent years many studies have focused on an attempt to define the role of
EPCs in identifying patients with increased cardiovascular risk. Clinical studies
have demonstrated a correlation between the levels of circulating EPCs and the
increasing cardiovascular risk profile [250, 302]. Thus, the adjuvant potential of
EPCs as a cardiovascular risk biomarker has been proposed, based on the inverse
link between EPC number, their migratory/proliferative potential and risk factors
for CVD. Thereby, it has been demonstrated that the number of circulating EPCs
and their migratory activity are reduced in the presence of classic cardiovascular
risk factors such as smoking [94, 303-305], hypertension [306-308], hypercholes-
terolemia [250, 309], obesity [310, 311], TIDM and T2DM [115, 121, 128, 235]
(Fig. 8.4). These effects could be possibly explained by three different mechanisms,
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Fig. 8.4 The influence of physiological and pathological factors on EPC number and function

either separate or in combination: (a) an impaired mobilization of EPCs from the
bone marrow, (b) an increased uptake of EPCs at sites of vascular injury to induce
the endothelial repair; and (c) a decreased half-life of circulating EPCs by acceler-
ated senescence and apoptosis of the remaining cells [94, 312]. In this way the
reduction in mobilization, homing, and differentiation/survival of EPCs may limit
their ability to repair injured tissues. The endothelial dysfunction and alteration
have also determined the higher tissue request for EPCs and their increased turnover
[305]. On the other hand, with ageing there is a decrease in the production of EPCs
in BM [313].

In contrast, some pathologies such as ACS and acute myocardial infarction
(AMI) cause hypoxia and vascular injury determining increased levels of inflamma-
tory and hematopoietic cytokines, which induced a rapid mobilization of EPCs in
the circulation [314, 315] (Fig. 8.4). Also, it is well known that physical exercises,
hypoxia and some chemokines and growth factors (VEGF, SDF-1, angiogenin and
colony-stimulating factor-CSF) increase EPC number and improve their function
[106, 315, 316] (Fig. 8.4).
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Table 8.2 Effect of drug therapy on EPC number and function

Medication

‘ Response

Antihypertensive medication

Angiotensin Il receptor blockers

Candesartan — [Ref. 328]

1 EPC number in hypertensive patients

Telmisartan — [Ref. 329, 330]

1 EPC proliferative activity in vitro; T EPC number in
normotensive patients with CAD

Irbesartan — [Ref. 241]

1 EPC number in hypertensive-hypercholesterolemic animal
model

Irbesartan — [Ref. 244]

1 EPC number in patients with hypertension and
dyslipidemia

Angiotensin converting enzyme inh

ibitors

Ramipril — [Ref. 331]

1 EPC number and EPC migration, proliferation, adhesion
abilities in patients with stable CAD

Enalapril — [Ref. 332]

1 EPC number in hypertensive patients

Zofenopril — [Ref. 332]

1 EPC number in hypertensive patients

Calcium channel blockers

Nifedipine — [Ref. 333]

1 EPC number and function in stage I hypertensive patients

Barnidipine — [Ref. 334]

1 EPC number in mild essential hypertension patients

Nitrates

Nitroglycerin — [Ref. 335]

‘ 1 EPC number in vitro

Cholesterol lowering medication

Statins

Atorvastatin — [Ref. 250, 336,
337]

1 EPC number and migration in patients after cardiac
surgery and in patients with ischemic cardiomyopathy

Rosuvastatin — [Ref. 338]

1 EPC number in patients with chronic heart failure

Pravastatin — [Ref. 339]

1 EPC number in patients with essential hypertension

Simvastatin — [Ref. 340]

1 EPC adhesion in vitro

Valsartan — [Ref. 341]

| EPC senescence in chronic smokers

Rosiglitazone — [Ref.153]

1 EPC number and migratory activity in patients with
T2DM

Ramipril — [Ref. 342]

1 EPC number and EPC proliferation, migration, adhesion,
vasculogenesis capacity in vitro

Anti-diabetic medications

Insulin — [Ref. 162]

1 EPC number and clonogenic properties in vitro

Metformin — [Ref. 152]

1 EPC number in patients with T2DM

Pioglitazone — [Ref. 343]

1 EPC number in patients with T2DM

Metformin + Pioglitazone [Ref.
158, 344]

1 EPC number and EPC migration in patients with T2DM
and CAD

8.7.2 Pharmacological
Progenitor Cells

Manipulation of Endothelial

Besides their role as diagnostic and prognostic biomarkers, EPCs may be important
targets in the CVD therapy. Thereby, many cardiovascular pharmacotherapies have
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been used to improve the number and function of EPCs in patients with cardiovas-
cular risk (Table 8.2).

8.8 Conclusions

In diabetes mellitus, the hyperglycemia has profound detrimental effects on the vas-
cular endothelial cells, due to their anatomical location in the blood vessel, leading
to the emergence of endothelial dysfunction. The vascular complications, particu-
larly macrovascular (coronary artery disease, peripheral arterial disease, cerebro-
vascular disease) and microvascular (retinopathy, nephropathy, neuropathy), are
principal causes of disability and death in patients suffering from diabetes
mellitus.

Accumulating data evoke that the mechanisms which are involved in the patho-
genesis of vascular complications in diabetes have a well-defined role in the mobi-
lization and function of EPCs. Thus, hyperglycaemia, insulin resistance, insulin like
growth factor 1, nitric oxide, oxidative stress, PI3K/Akt signaling pathway, inflam-
mation, and altered microRNA expression can contribute to decreasing of circulat-
ing EPC levels and to EPC dysfunctionality in diabetes. Many studies have shown
that, in patients with diabetes and CVD, the number of EPCs from peripheral blood
is reduced and EPC function is impaired. On the other hand, the alterations in EPC
number and function may have a relevant role in the development of diabetes-related
vascular complications.

A better understanding of the mechanisms leading to impairment of EPC mobi-
lization and function in diabetes can further help in identifying the targets to prevent
or reduce the risk of disease progression towards vascular complications.

It is currently hoped that addressing EPCs as targets for diagnostic and therapy
in diabetes will favourably modify the risk for cardiovascular complications and
survival. The drug therapy on EPC number and function can enhance the protection
against vascular complications during diabetes. Therefore, EPCs could represent a
diagnostic biomarker and pharmacological target to conduct the preventive or thera-
peutic interventions in diabetes. Nevertheless, further studies need to elucidate the
exact role of EPCs in the pathogenesis of vascular complications in diabetes and
their potential therapeutic implications.
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Chapter 9

Pathogenetic Mechanisms in Diabetic
Retinopathy: From Molecules to Cells
to Tissues

Saumik Biswas and Subrata Chakrabarti

Abstract Diabetic retinopathy is a debilitating ocular condition that occurs as a
chronic microvascular complication of diabetes. The presence of distinct clinical
features categorizes diabetic retinopathy into different severity stages (mild to very
severe), where vision loss is eminent in the advanced stages of diabetic retinopathy.
Further, each stage of diabetic retinopathy is associated with unique pathological
features at the cellular level such as basement membrane thickening, pericyte and
endothelial cell dysfunction/loss, breakdown of the blood-retinal barrier, retinal
capillary non-perfusion, and retinal neovascularization. These cellular alterations
are the end products of various biochemical and molecular pathway abnormalities:
polyol pathway, protein kinase C activation, hexosamine pathway, advanced glyca-
tion end-products formation, retinal renin-angiotensin system, and neural-and-
immuno-inflammatory mechanisms. Although there are several metabolic pathway
alterations in a hyperglycemic environment, the heightened production of reactive
oxygen species may interconnect the foregoing pathways. Nevertheless, recent
advances in genetic technology have identified that a significant number of epigen-
etic alterations participate in the development and progression of diabetic retinopa-
thy: DNA methylation, histone modifications, and non-coding RNAs. This chapter
will first provide the reader with sufficient background on the clinical and patho-
logical features of diabetic retinopathy and then provide significant insight into the
current known pathogenic mechanisms implicated in the progression of diabetic
retinopathy.
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SIRT1 Sirtuin (silent mating type information regulation 2
homolog) 1

SOD2 Manganese superoxide dismutase gene
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TGF-p1 Transforming growth factor-betal
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9.1 Introduction

With nearly 642 million people projected to live with diabetes in the year 2040, the
risk for developing diabetes-related complications will drastically increase [1].
Diabetes mellitus (DM) is a chronic degenerative metabolic disease that is charac-
terized by sustained hyperglycemia. Hyperglycemia correlates with a number of
DM-related complications and is one of the preeminent factors for causing vascular
damage in the human body [2—4]. The majority of diabetic complications can be
viewed as either microvascular disease (small vascular injury) or macrovascular
disease (large vessel injury) [4, 5]. Diabetic retinopathy (DR) remains the most
prevalent chronic microvascular complication of DM [6, 7]. This debilitating ocular
condition is also the leading cause of blindness in the working-age population in
industrialized countries [7, 8]. The relationship between DR and diabetes has been
reported in several studies with the majority of type 1 diabetic patients and over
60% of patients with type 2 DM developing evidence of DR within 20 years of
diagnosis [9-14]. With the incidence of visual impairment due to DR strongly
related to the duration of diabetes, retinopathy remains asymptomatic until the
pathology significantly progresses [14, 15]. In this chapter, we will first highlight
both clinical and pathological features of DR and then discuss our current under-
standing of the mechanisms involved in the pathogenesis of DR in diabetes.

9.1.1 Clinical Features

To impede the progression of non-vision threatening DR to vision-threatening DR,
distinct clinical features must be noted in the early stages of DR in order to imple-
ment appropriate treatments plans.
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9.1.1.1 Non-proliferative DR

The earliest stage of disease progression in DR is known as non-proliferative DR
(NPDR). Although hyperglycemia-induced damage to endothelial cells and capil-
lary pericytes in the retinal microvasculature are associated with the preclinical
stages of DR, the loss of these cells underlies a number of clinical features in
NPDR. These clinical features are characterized by microvascular abnormalities
that consist of micro aneurysms, intra retinal hemorrhages (dot and blot), increased
retinal vascular permeability, nerve fiber layer infarcts (cotton wool spots), greater
presence of intra retinal lipid deposits (hard exudates), and venous beading [16—19].
NPDR can be categorized into mild, moderate, severe, or very severe stages based
upon the absence or presence of the aforementioned clinical features (Fig. 9.1). In
the natural course of DR, the severity of retinal vascular occlusion increases, which
in turn leads to impaired perfusion and retinal ischemia [19, 20]. The sequelae of
increasing ischemia include various venous abnormalities and considerable retinal
vascular leakage that is markedly distinguished by the increased presence of hard

_ ‘
Fig. 9.1 Respective clinical features of the various stages in diabetic retinopathy. Diabetic

macular edema, not depicted, can occur at any point during DR progression, which is characterized
by retinal thickening or hard intra retinal lipid exudates near the macula
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lipid exudates and retinal hemorrhages [20]. Once the progression of these features
surpasses clinically defined thresholds, severe NPDR is diagnosed. During this
stage, the risk of progression to proliferative diabetic retinopathy heightens. Among
the severe NPDR patients, nearly 50% will develop proliferative diabetic retinopa-
thy (PDR) within 1 year and 15% will develop high-risk PDR [21-23]. Whereas,
75% of patients classified with very severe NPDR are at risk of developing PDR
within 1 year and 45% will become high-risk PDR during this period [22, 23].

9.1.1.2 Proliferative DR

Once diabetic retinopathy advances to the proliferative stage, visual loss becomes
imminent if left untreated. In order to compensate for the sustained retinal ischemia,
one of the distinguishing clinical hallmarks of PDR is the presence of neovascular-
ization. The formation of abnormal vessels in the retinal circulation may occur
through both endothelial cell migration and proliferation on or near the optic disc
(neovascularization of the disk) or elsewhere in the retina (neovascularization else-
where), on the iris (neovascularization of the iris), or into the vitreous cavity of the
eye [24, 25]. Due to the fragility of the new vessels, the vessels become more sus-
ceptible to bleeding, leakage, fibrosis, and contraction, which can result in vitreous
hemorrhaging, retinal tears, and retinal detachment—crippling ocular complica-
tions that inevitably lead to vision loss [26-29]. Further, neovascularization of the
iris, also known as rubeosis iridis, and neovascularization of the anterior chamber
angle can lead to neovascular glaucoma, a painful ocular disease that usually neces-
sitates enucleation of the affected eye [30].

9.1.1.3 Diabetic Macular Edema

Diabetic macular edema (DME) represents a common vision-threatening complica-
tion of DR that is defined as retinal thickening in the macular area [31-34]. Although
DME has three severity levels, DME can occur at any point during DR progression
and promotes the breakdown of the blood-retinal barrier via microaneurysms and
hyperpermeability of capillaries—causing lipids and plasma to be leaked into the mac-
ula [31-33]. The increased presence of hard lipid exudates in close proximity or at the
center of the macula is associated with clinically significant macular edema [34].

9.2 Pathological Features of DR

There are five distinct vascular lesions underlying the DR response: dysfunctional
pericytes and endothelial cells, basement membrane thickening, retinal capillary
non-perfusion, retinal neovascularization, and breakdown of the blood retinal bar-
rier. Each vascular disorder associated with DR is initiated by the microangiopathic
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properties of the diabetic process, which mainly occurs through numerous growth
factors that are altered by the changing ocular environment [35]. In this section, we
will discuss the pathological features of DR in detail as the presence of one or more
of these vascular disorders will help us understand the pathogenic mechanisms
associated with DR.

9.2.1 Dysfunctional Endothelial Cells and Pericytes

One of the earliest pathological features that occur in DR are alterations in the micro-
vasculature, which consist of modifications in cellular structure [35, 36]. Two essen-
tial cell types in the microvasculature are pericytes and endothelial cells, and the
interaction between these cells is pivotal in the proper regulation of retinal hemody-
namics and vascular function [31, 36]. With endothelial cells comprising the endothe-
lium, which is the thin monolayer covering found in the interior surface of all blood
vessels, retinal endothelial cells must ensure that proper nutritional requirements and
protection of the ocular tissues, critical to vision are met [37, 38]. The general struc-
ture of the endothelium in the retinal microvasculature consists of adjoining endothe-
lial cells that are linked by adherens junctions and tight junctions, which constitute
much of the blood-retinal barrier (BRB) [39—41]. An essential prerequisite in the
development of diabetic retinopathy is the loss of endothelium integrity caused by
chronic hyperglycemic exposure. Following endothelial cell damage, the interendo-
thelial junctions are unable to maintain the precise permeable properties that neces-
sitate proper BRB function [42]. Therefore, the presence of dysregulated endothelial
cell-to-cell junctions in the BRB allows for the extravasation of plasma constituents
into the retina. Moreover, diabetic animal models have demonstrated that the apopto-
sis of retinal endothelial cells is enhanced by the activation of the Fas/Fas ligand
(FasL) pathway upon leukocyte adhesion to the vascular endothelium [181].

In the context of maintaining vascular homeostasis, pericytes are important mul-
tifunctional cells that serve to stabilize blood vessels, form the BRB, regulate blood
flow, and are involved in angiogenesis, endothelial proliferation, and leukocyte
recruitment [43—45]. Pericytes are situated on the abluminal surface of blood capil-
laries and are morphologically characterized as cells that possess finger-like projec-
tions, which extend along the capillary wall and wrap around endothelial cells [44,
46, 47]. While there are several intricate signalling pathways involved in the interac-
tion between pericytes, astrocytes, and endothelial cells, the intercellular
communication between endothelial cells and pericytes appears to determine the
presence of pericytes on retinal microvessels [48]. One prominent signal transduc-
tion pathway utilized between pericytes and endothelial cells is the platelet-derived
growth factor-BB-platelet-derived growth factor receptor subunit B pathway
(PDGF-BB-PDGFRS) [48, 49]. During angiogenic or hypoxic stress, endothelial
cells secrete PDGF-BB, which binds to the pericyte-specific PDGFRS with a strong
affinity [50, 51]. Upon binding, the receptor is dimerized, autophosphorylated, and
activated, which then further initiates the downstream cascade of PDGF-BB signal-
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ling, leading to pericyte survival, migration, proliferation, attachment, as well as
leukocyte trafficking [52, 53]. In the case of diabetic retinopathy, both in vitro and
in vivo studies have shown that hyperglycemic stress induces dysfunctional PDGF-
BB-PDGFRS& signalling, consequently leading to pericyte apoptosis and failure of
proper pericyte recruitment [53-55]. The inability to replace damaged retinal peri-
cytes will ultimately lead to aberrant retinal vascular morphologies, increased
development of microaneurysms, endothelial cell hyperplasia, and blood-retinal
barrier breakdown [56, 57]. Nevertheless, the loss of pericytes coupled with endo-
thelial cell apoptosis contributes to the formation of acellular, nonperfused capillar-
ies, which are tubes of basement membranes devoid of cell nuclei [181].

9.2.2 Basement Membrane Thickening

The vascular basement membrane (BM) is a thin extracellular sheet-like structure,
comprised of numerous components (including types IV and V collagen, laminin,
fibronectin (FN), nidogen, heparan and chondroitin sulfate proteoglycans), that
exists between pericytes and endothelial cells [58]. The methodical arrangement of
the BM components and molecular interactions between them manages cell sur-
vival and provides both a selective permeability barrier and physical support for cell
attachment [59-62]. Early induction of hyperglycemia can provoke BM thickening
in retinal capillaries through accelerated synthesis and decreased degradation of
BM components, which can contribute to the occlusion of capillaries [62, 63]. More
specifically, hyperglycemic conditions heighten the mRNA expression of FN, lam-
inin (subunits beta-1 and gamma-1), and types IV (alpha-1 and alpha-2), and V
collagen in the retinal BM of both diabetic animals and patients, which can be
detected long before the onset of morphological lesions due to DR [63—-66]. Further,
any alterations in the vascular BM structure or its components may have detrimental
effects on its ability to prevent vascular permeability, consequently leading to the
development of macular edema [67, 68]. Since the careful balance between synthe-
sis and degradation of BM components to sustain proper BM turnover is disrupted
in DR, an understanding of the mechanisms perpetuating BM thickening and accu-
mulation of BM components is essential and will be later described in this chapter.
The underlying mechanisms possibly include increases in protein kinase C (PKC)
activity, polyol pathway flux, inflammation, advanced glycation end-product (AGE)
accumulation, endothelin activity, and growth factor activity [69-76].

9.2.3 Breakdown of the Blood-Retinal Barrier

The preservation of the blood-retinal barrier (BRB) is a mandatory requirement for
proper vision. Compromised BRB integrity can result in numerous ocular patholo-
gies that can have irreparable damage to one’s visual perception; therefore,
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elucidation of the BRB structure is required. The BRB consists of both an inner and
outer retinal barrier that serves to maintain a specialized environment for the neural
retina [77]. In the inner BRB, retinal capillary endothelial cells form the inner lining
of microvessels and are accompanied by pericytes, astrocytes, and glial cells (Miiller
cells) (shown in Fig. 9.2) [78]. These endothelial cells are linked together via junc-
tional complexes that facilitate the transport of highly selective molecules between
the circulating blood and the neural retina through either transcellular or paracellu-
lar routes [79]. Retinal pericytes and astrocytes also interact with the endothelial
cells to provide vascular integrity [80]. On the contrary, the outer BRB is comprised
of retinal pigment epithelial cells that are connected by tight junctions; the primary
role of the outer BRB is to sustain homeostasis in the outer retina [81]. During DR,
however, hyperglycemic conditions result in both structural and functional altera-
tions to the barrier, which subsequently leads to both inner and outer BRB break-
down. Following BRB damage, large amounts of plasma protein begin to extravasate

Endothelial Cell

Fig. 9.2 (a) Anillustration depicting a stable inner blood-retinal barrier in a healthy patient.
The integrity of the endothelium is maintained by the presence of functional adherens junctions
and tight junctions. Gap junctions authorize the passage of small molecules, and are predominantly
located between pericytes and endothelial cells. Furthermore, Miiller cells provide mechanistic
support to the neural retina and also sustain balance of the extracellular environment in the retina.
While, retinal astrocytes are involved in neuronal signaling and assist in managing the barrier
properties of endothelial cells
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Fig. 9.2 (b) An illustration depicting an unstable inner blood-retinal barrier in a patient
with advanced proliferative diabetic retinopathy. Chronic hyperglycemia compromises BRB
integrity through numerous factors, which are depicted by letters in this figure: (A) Endothelial
dysfunction, (B) Pericyte degeneration/apoptosis, (C) Basement membrane thickening, (D) Retinal
capillary non-perfusion, (£) Neural inflammation and dysfunctional astrocytes, and (F) Retinal
neovascularization

into the neural interstitium, producing high oncotic pressures that will eventually
contribute to macular edema [82]. As a result of chronic hyperglycemia, several
known factors are implicated in BRB disruption: dysfunctional endothelial cells,
pericytes, Miiller cells, and astrocytes, increased levels of VEGF, hypoxia, oxygen-
free radicals, inflammatory mediators, advanced glycated end products, and protein
kinase C activity [83].

9.2.4 Retinal Capillary Non-perfusion

Satisfying the high metabolic demands of the retina requires the maintenance of
adequate tissue perfusion, which ultimately preserves retinal function. The cessa-
tion of blood flow to certain areas of the retina is known as capillary non-perfusion
(CNP) and this phenomenon is associated with occluded vessels, a consequence of
glucose-induced retinal vascular damage [84]. Chronic retinal ischemia is
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manifested as large areas of CNP, which is the underlying cause of retinal neovas-
cularization [85]. In the severe stages of non-proliferative DR (NPDR), the consid-
erable presence of hypoxic regions resulting from retinal microvascular abnormalities
can stimulate the retinal endothelial cells to release proinflammatory cytokines [86].
The subsequent release of cytokines perpetuates retinal hypoxia by recruiting and
activating leukocytes, which adhere to the vascular endothelium—contributing to
retinal capillary impedance [87, 88]. In the case of chronic retinal hypoxia, the
heightened activation of several abnormal biochemical pathways induces the
expression of numerous vasoactive factors [89]. These factors are instrumental in
capillary dropout and the development of retinal neovascularization—a distinctive
clinical feature of proliferative DR (PDR) [90]. Although the exact mechanisms of
how retinal ischemia elevates the expression of vasoactive factors still require fur-
ther elucidation, studies within the past decade have revealed that the activation of
specific transcription factors increase a variety of vasoactive mediators implicated
in the progression of DR [91-96].

9.2.5 Retinal Neovascularization

Angiogenesis is a critical physiological process in growth, development, and wound
repair that induces the neogenesis of blood vessels from pre-existing vessels.
However, in the case of DR, pathological retinal angiogenesis (retinal neovascular-
ization) is a detrimental complication to vision. As observed in the mid-to late-1900s,
retinal neovascularization (NV) transpires parallel to areas of CNP supporting the
notion that vasoactive factors released from ischemic tissues are pivotal in the devel-
opment of pathological angiogenesis [97-99]. The discovery of hypoxia-related tran-
scription factors and their role in mediating angiogenesis has shed more insight into
the complicated pathogenesis of DR. The hypoxia-inducible factor (HIF)-1a protein
is one such transcription factor that is significantly accumulated in the presence of
low oxygen levels and subsequently upregulates numerous hypoxia-regulated gene
products [100, 101]. Under normoxia, the tumor suppressor protein, von Hippel-
Lindau (VHL) binds to HIF-1a, targeting it for degradation through the ubiquitin-
proteasome pathway [102, 103]. In contrast, hypoxic conditions prevent HIF-1a and
VHL interaction, which subsequently results in HIF-1a to cumulate, dimerise with
HIF-1p, and translocate into the nucleus where it binds to the hypoxia-response ele-
ments in the promoters of vasoactive genes [104]. Following the activation of tran-
scription, multiple pro-angiogenic factors are then upregulated including vascular
endothelial growth factor (VEGF), placental growth factor (PLGF), stromal derived
growth factor (SDF-1), platelet-derived growth factor (PDGF-B), and their receptors,
and angiopoietin-2 (Ang-2) [105, 106]. In particular, VEGF not only stimulates the
development of endothelial cells, but it also induces both the disassembly of endo-
thelial cell-to-cell junctions, which drives vascular permeability, and the sprouting of
new vessels in combination with Ang-2 [106, 107]. Before sprouting vessels develop,
specific subsets of endothelial cells differentiate into either tip or stalk cells [108].
The sprouting process is controlled through the antagonistic actions of delta-like
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ligand 4 (D114) and Jagged] ligands in the hypoxia-induced Notch signalling path-
way [109-112]. As Notch-DIl4 and VEGF-induced signalling increases, the special-
ized endothelial tip cells direct the sprout vessel growth along a specific VEGF
gradient, comprised of VEGF-A that is detected by VEGF receptor-2 expressed on
the filopodia of these cells [113]. Although tip cells do not proliferate, the prolifera-
tive activity of stalk cells is driven by the availability of VEGF, Ang-2, and additional
growth factors [114]. Together, the interaction between tip and stalk cells and the
surrounding pro-angiogenic factors stimulate the growth of new blood vessels in the
retina. It is important to note that within the retina, several cell types can produce
VEGEF: endothelial cells, pericytes, Miiller cells, astrocytes, and retinal pigment epi-
thelial cells [148]. To further emphasize the role of VEGF in DR, current treatment
of DME using intravitreal injections of anti-VEGF agents have met with success.

9.3 Biochemical and Molecular Mechanisms Involved
in the Pathogenesis of DR

Hyperglycemic insult gives rise to a diverse number of biochemical pathways that
are implicated in the pathogenesis of DR. As our knowledge over the years has sig-
nificantly developed in regard to the molecular mechanisms attributed to DR, more
theories begin to emerge and therefore expand and enrich our knowledge of preex-
isting DR mechanisms. Currently, as shown in Fig. 9.3, several mechanisms/path-
ways that have an involvement in hyperglycemia-induced DR progression have been
proposed: polyol pathway, protein kinase C pathway, hexosamine pathway, advanced
glycation end-products formation, retinal renin-angiotensin system, and inflamma-
tory mechanisms that include neural-and-immuno-inflammatory responses.

9.3.1 Polyol Pathway

Under normal glucose concentrations in non-diabetic patients, glucose metabolism
utilizing the polyol pathway comprises only a small portion of total glucose use
[115]. However, the elevation of intracellular glucose concentrations under diabetic
conditions activates increased glucose flux through this pathway [116, 117]. Aldose
reductase, the initial and NAPDH-dependent enzyme present in the polyol pathway,
plays a critical role in the reduction of glucose to sorbitol [115—117]. Further metab-
olization of sorbitol is completed by sorbitol dehydrogenase, using NAD* as a cofac-
tor, which allows for the formation of fructose [118]. Hyperglycemic conditions
serve as a catalyst for enhancing aldose reductase activity, subsequently leading to
sorbitol agglomeration [117, 118]. Although the polyol pathway and its exact mech-
anism in DR pathogenesis still remains inconclusive, several hypotheses have been
reported that can ultimately commence and augment cellular damage mechanisms
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Fig. 9.3 Chronic hyperglycemia in DR gives rise to abnormalities in diverse biochemical
pathways, which ultimately contribute to and advance DR pathogenesis. The application of a
large initial stimulus, such as increased glucose levels, can activate a chain of reactions that incor-
porate unique pathways: polyol, hexosamine, neural -and-immuno-inflammatory, retinal renin-
angiotensin, advanced glycation end-products, and protein kinase C. The *“*” in this figure signifies
that reactive oxygen species (ROS) may regulate these pathways to some extent (please see
Fig. 9.4)

after the activation of the polyol pathway: changes in intracellular tonicity (osmotic
stress) via the accumulation of sorbitol and fructose, development of advanced gly-
cation end-product precursors (methylglyoxal, fructose-3-phosphate, and 3-deoxy-
glucosone), decreased Na*/K* ATPase activity, diminished cellular anti-oxidant
defense mechanisms as a consequence of reduced glutathione levels, protein kinase
C (PKC) activation by elevated diacylglycerol (DAG) formation, and increased gen-
eration of reactive oxidant species (ROS) through the hyperglycemic activations of
poly (ADP-ribose) polymerase and NADH oxidase [119-125].
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Fig. 9.4 The figure illustrates the effects of reactive oxygen species (ROS) on the retinal
endothelial cell and the association of ROS with other biochemical pathways implicated in
the pathogenesis of diabetic retinopathy. To summarize, the presence of high glucose stimulates
the increased production of mitochondrial ROS, which induces breaks in DNA strands and acti-
vates poly (ADP-ribose) polymerase (PARP). As a consequence of PARP activation, glyceralde-
hyde 3-phosphate dehydrogenase activity is significantly reduced due to its interactions with
PARP. Dysfunctional glyceraldehyde 3-phosphate dehydrogenase results in the accumulation of
glycolytic metabolites upstream of this enzyme, which ultimately activates several biochemical
pathways. Note, the endothelial junctional complexes, the retinal renin-angiotensin system, and
the neural -and-immuno-inflammatory mechanisms are not shown in this figure. Furthermore,
there are additional mechanisms of ROS generation that can subsequently contribute to cellular
dysfunction. This figure only illustrates one of the ROS mechanisms in retinal endothelial cells

9.3.2 Protein Kinase C (PKC) Pathway

As hyperglycemia elevates DAG levels via the de novo pathway, the subsequent eleva-
tion of this intracellular messenger activates several isoforms in the PKC family that
consists of serine/threonine kinases. More specifically, both in vitro and in vivo experi-
ments have shown that the hyperglycemic activation of PKC-f§ can mediate VEGF-A
levels and increase vascular permeability by phosphorylating endothelial cell tight
junction proteins. These tight junction proteins are then targeted for ubiquitin-mediated



9 Pathogenetic Mechanisms in Diabetic Retinopathy: From Molecules to Cells to Tissues 223

protein degradation—contributing to blood-retinal barrier breakdown [126, 127].
PKC-B is also involved in altering nitric oxide (NO) production, endothelial nitric
oxide synthase (eNOS) expression, and endothelin-1 (ET-1) that consequently supports
abnormal retinal hemodynamics [128, 129]. While, on the other hand, hyperglycemic
activation of PKC-6 and Src homology-2-domain-containing phosphatase-1 (SHP-1)
has been reported to induce retinal pericyte apoptosis through the nuclear factor-kappa
B (NF-xB) signalling pathway [130]. The combined effects of hyperglycemic stimulus
and PKC-9 activation can additionally provoke increased ROS generation, which will
have detrimental consequences on retinal function [128—131]. Furthermore, the link
between PKC activation and increased mitogen-activated protein kinase (MAPK)
activity has been established— suggesting that the interplay between several PKC iso-
forms and MAPK activity can lead to subsequent phosphorylation of numerous tran-
scription factors that heighten the expression of multiple stress-related genes associated
with DR pathogenesis [132].

9.3.3 Hexosamine Pathway

During intracellular glucose metabolism, the redirection of fructose-6-phosphate
from the glycolytic pathway to the hexosamine pathway (HSP) can ultimately
induce increased transcription of pro-inflammatory cytokines, insulin desensitiza-
tion, and oxidative stress— all of which are prominent features contributing to reti-
nalneuronal apoptosis [133—-136]. Glutamine:fructose-6-phosphate amidotransferase
(GFAT) is the first and rate-limiting enzyme present in the HSP that catalyzes the
conversion of fructose-6-phosphate and glutamine to glucosamine-6-phosphate and
glutamate, respectively—preparing their entry into the HSP [137]. After a series of
conversions, the major HSP end productis uridine diphosphate-N-acetylglucosamine,
which allosterically inhibits GFAT 