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Preface

Along the past ten years the IWFOS meetings went hand-in-hand with the develop-
ments in Functional Data Analysis. After the success of the first editions (Toulouse
2008, Santander 2011 and Stresa 2014), this fourth one has been organized in A
Coruña in June 2017. This volume presents a wide scope of works presented during
this event. By following the orientation started along the last edition in Stresa, this
meeting has been opened to contributions in other related fields in modern statistics
such as Big Data Analysis and High Dimensional Statistical Modeling.

Diversity has always been an important tradition in IWFOS meetings, and this is
appearing at different levels along this volume. First of all, the scope of contributions
covers most of the challenging questions arising in Infinite and/or High Dimensional
Statistical problems. Secondly, diversity appears through the nature of the contribu-
tions going from the most theoretical developments to the most applied ones. Finally,
diversity is also in the contributors themselves, who include both high level senior
statisticians and promising young active researchers coming from different parts of
the world.

We would like to thank very much all the authors that presented their work in
IWFOS 2017 -not only those appearing in this book- and also those who attended
the workshop. This list would be very long, so we just mention them collectively.
Our special gratitude is for John Aston (Cambridge, UK), Alexander Aue (Davis,
USA), Antonio Cuevas (Madrid, Spain), Aurore Delaigle (Melbourne, Australia),
Jeff Goldsmith (Columbia, USA), Stephan Huckemann (Göttingen, Germany), Alicia
Nieto-Reyes (Santander, Spain), Victor Panaretos (Lausanne, Switzerland), Paula
Raña (A Coruña, Spain) and Laura Sangalli (Milano, Italy) for having kindly accepted
to take part in our conference as Invited Speakers. Also, the efforts of all the members
of the Scientific Committee, both for promoting the meeting and for their scientific
expertise along the reviewing process of the abstracts, are particularly appreciated.
We wish to address special thanks to Ana Aguilera (Granada, Spain), Graciela
Boente (Buenos Aires, Argentina), Pedro Delicado (Barcelona, Spain), Aldo Goia
(Novara, Italy), Wenceslao González-Manteiga (Santiago de Compostela, Spain),
Sonja Greven (München, Germany), Siegfried Hörmann (Bruxelles, Belgium), Marie
Hušková (Prague, Czech Republic), Steve Marron (North Carolina, USA), Juhyun

vii



viii Preface

Park (Lancaster, UK), Dimitris Politis (San Diego, USA), Juan Romo (Madrid,
Spain), Piercesare Secchi (Milano, Italy), Han Lin Shang (Camberra, Australia) and
Sara van de Geer (Zürich, Switzerland). Our gratitude is also extended to the current
Editors-in-Chief of the Journal of Multivariate Analysis and Computational Statistics,
who kindly accepted our proposal for special issues on Functional Data Analysis and
related topics.

We also would like to thank all the institutions that have supported IWFOS 2017:
the University of A Coruña (UDC), the Foundation Pedro Barrié de la Maza, Springer
International Publishing, the International Society for Non Parametric Statistics
(ISNPS), the Spanish Society for Statistics and Operations Research (SEIO), the
Galician Society for Promotion of Statistics and Operations Research (SGAPEIO),
the Université Franco-Italienne / Università Italo-Francese, the Galician Network
on Cloud and Big Data Technologies -funded by Xunta de Galicia-, the Research
Center for Information and Communication Technologies (CITIC), the Institut de
Mathématiques of Toulouse, and the Research Group on Modeling, Optimization
and Statistical Inference (MODES).

Nothing would have been possible without the hard work of many people. Our last
thanks go to Rubén Fernández-Casal, Mario Francisco-Fernández, Salvador Naya,
Paula Raña, Javier Tarrı́o-Saavedra, José Antonio Vilar and Juan Manuel Vilar from
A Coruña, to Ernesto Salinelli from Novara and to Sylvie Viguier-Pla from Toulouse
for their active participation in the Organizing Committee, and to Veronika Rosteck
and Alice Blanck from the Springer’s team.

A Coruña Germán Aneiros
June 2017 Enea G. Bongiorno

Ricardo Cao
Philippe Vieu
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Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France
e-mail: boudou@math.univ-toulouse.fr

Isabel Caballero
ICMAN-CSIC, Cádiz, Spain
e-mail: isabel.caballero@icman.csic.es

Alejandra Cabaña
Universidad Autónoma de Barcelona, Barcelona, Spain
e-mail: acabana@mat.uab.cat

Rebeca Campos-Sánchez
Centro de Investigacin en Biologa Celular y Molecular, Universidad de Costa Rica,
Costa Rica
e-mail: rcamposs@cariari.ucr.ac.cr

Ricardo Cao
Research group MODES, INIBIC, CITIC, Departamento de Matemáticas, Facultade
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da Coruña, Mendizábal s/n, Ferrol-España
e-mail: salva@udc.es

Alicia Nieto-Reyes
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Chapter 1

An introduction to the 4th edition of the

International Workshop on Functional and

Operatorial Statistics

Germán Aneiros, Enea G. Bongiorno, Ricardo Cao and Philippe Vieu

Abstract The aim of this introductory chapter is to present the various contributions
to the fourth edition of the International Workshop on Functional and Operatorial
Statistics (IWFOS 2017) held in June 2017 in A Coruña, Spain. These contributions
are put into the context of the recent developments on Functional Data Analysis and
related fields.

1.1 Functional Data Analysis along the last decade

The idea of organizing international meetings in Europe concerning the various
features of Infinite Dimensional Statistics grew a decade ago with the first edition of
the International Workshop on Functional and Operatorial Statistics (IWFOS), which
took place in Toulouse (June 2008). At that stage, this field of Statistics was not so
much developed but its popularization was starting, mainly thanks to the book [7].

Less than ten years later, and after two more editions of the IWFOS conference
(Santander, Spain, 2011 and Stresa, Italy, 2014), the situation turns out to be com-
pletely different. The number of scientific publications in the field has exponentially
increased and most of international statistical conferences have now several contri-
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butions and/or specialized sessions on this topic. A wide scope of general books
on Functional Data Analysis (FDA) is now available, illustrating how most of the
standard statistical ideas (standard in the sense of multivariate) can be efficiently
adapted to this new kind of data. The books [15, 21, 33, 10, 16] present various
methodological statistical advances for FDA, while [8] is more devoted to applied
issues and [22] is concerned with the mathematical background necessary to the
study of infinite dimensional statistical problems.

Undoubtedly, by bringing together statisticians coming from all parts of the world,
the IWFOS conferences have been important events in this evolution, each of them
being a moment for sharing experiences on FDA and for developing cooperations
between researchers. While the first two editions (Toulouse 2008 and Santander 2011)
were exclusively devoted to Infinite Dimensional Statistics, the third edition (Stresa
2014) intended to promote collaborations with people working on High Dimensional
Statistics because of the existence of evident common features between both fields.
The Special Issue of the Journal of Multivariate Analysis (see [17]) is illustrating the
success of this opening strategy. For this fourth edition, it has again been decided to
open to other scientific communities, including again High Dimensional Statistics
but also new related fields like Big Data.

Of course, contributions on FDA take a major part in this volume and they are
presented soon after a brief tribute to Professor Peter Hall in Section 1.2. Precisely,
Section 1.3 is devoted to new methodological advances on FDA, while Section 1.4
is discussing contributions on mathematical background and Section 1.5 is devoted
to applied issues. Contributions concerning related fields such as High Dimensional
Statistics and Big Data are gathered all together in Section 1.6.

1.2 On Peter Hall’s impact on IWFOS conferences

At the moment of writing this presentation it is worth being noted that the success
of all the IWFOS conferences would have never been possible without the support
of many people who took major role as well as participants and members of the
various Scientific or Organizing Committees. Naming of all them would be a long
and tedious task, but among all of them we wish to stress on the high role played by
Professor Peter Hall in the success of these meetings. From a scientific point of view,
his numerous contributions in Statistics (see [5]) meet naturally FDA (see [6]) and
his mark is fully crossing many contributions in this volume. Moreover, by being an
invited speaker of the first edition in 2008 at a moment when there were no evidence
for organizing such events and by participating as Scientific Committee member of
the second edition in 2011, Peter has highly contributed to the success of all IWFOS
editions. At the moment of opening this 2017 edition our thanks to Peter are mixed
with our sadness for his death. We would like to dedicate this IWFOS 2017 to the
memory of Peter.
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1.3 Methodological contribution for Statistics with Functional

Data

This volume contains methodological contributions on many features of Statistics for
Functional Data, including:

- Clustering (see Chapter 33 for a proposal based on the envelopes of the curves).
- Data Registration (see Chapter 35 for curves alignment based FPCA).
- Depth (see Chapter 25 for an overview on consistency results and Chapter 26 for

a discussion on the adaptation of the notion of depth to the functional context).
- Dimension reduction (see Chapter 22 for PCA of functional data on manifolds,

Chapter 31 for FPCA and FPC regression in grouped multivariate functional time
series forecasting and Chapter 36 for random functional variables and fourier
series).

- Functional conditional mode estimation (see Chapter 23 for a nonparametric
proposal).

- Functional time series (see Chapters 4 and 30 for autoregressive models and
Chapter 8 for invertible time series).

- Multifunctional variables (see Chapter 32 for tests on covariance of multifunc-
tional variables and Chapter 19 for two–sample tests for multivariate functional
data).

- Regression (see Chapter 14 for parametric regression, Chapters 21 and 20 for
nonparametric regression and Chapters 29 and 34 for semiparametric regression).

- Robustness (see Chapter 2 for combination of estimators from different subsam-
ples by robust fusion procedures).

- Small–ball probability (see Chapter 7 for small–ball probability factorization).
- Spatial data (see Chapter 6 for space–time regression with PDE penalization).
- Testing (see Chapter 11 for permutation tests, Chapter 13 for ANOVA methodol-

ogy, Chapter 16 for outlier detection, Chapter 27 for differential interval–wise
test and Chapter 28 for Hotelling statistic in Hilbert spaces).

- Variable selection (see Chapter 15 for variable selection in functional nonpara-
metric additive regression models).

1.4 Contribution on Mathematical background for Infinite

Dimensional Statistics

A few contributions are devoted to mathematical background for developing theory
on Statistics with infinite dimensional variables. This includes:

- Analytical developments (see Chapter 18 for PCA in non–euclidean spaces).
- Operatorial developments (see Chapter 32 for testing separability of covariance

operator and Chapter 10 for commutator of projectors and of unitary operators).
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1.5 Applied Functional Data Analysis contributions

This volume also contains a few contributions fully devoted to applied case studies
(see Chapter 3 for an analysis of the turbidity in a coastal zone from satellite data,
Chapter 9 for detecting complexity of financial time series, Chapter 12 for a study
on the effects of genomic landscape features on the integration and fixation of
endogenous retroviruses and Chapter 24 for predicting the physiological limits of
sport stress tests), but it is worth being noted that most of other contributions also
propose interesting real data applications, including applications to:

- Economics (see Chapters 34).
- Energy (see Chapter 15).
- Environmetrics (see Chapter 11).
- Medicine (see Chapters 6 and 22).
- Mortality curves (see Chapters 17 and 31).
- Phonetic curves (see Chapters 32, 27 and 33).
- Physical activity (see Chapters 13 and 35).
- Traffic (see Chapter 8).

1.6 Contributions on related fields

This includes contributions on:

- Big Data (see Chapter 2 for the combination of estimators obtained from different
subsamples).

- High- and Infinite-Dimensional Statistics (see Chapter 5 for impact points selec-
tion in sparse models)

- High Dimensional Statistics (see Chapter 17 for the case of functional time series
forecasting).

1.7 Concluding comments

Before closing this introductory presentation, it is worth stressing that the Journal of
Multivariate Analysis has still been an important support for us. Once again, we have
the chance to combine this fourth edition of IWFOS with the launching of a new
special issue of this journal. Each participant whose contribution is exhibiting a high
degree of methodological novelty as well as any other researcher (not necessarily
taking part in IWFOS 2017) having new advances in FDA or related topics, are
strongly encouraged to submit their work to this special issue. The novelty for this
fourth edition is that it will also serve as starting point for an other special issue in the
journal Computational Statistics for which we encourage any researcher (participant
or not in IWFOS 2017) in submitting works with high computational and/or applied
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novelty. These two special issues are a sample of the continuous evolving of IWFOS
editions.
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Chapter 2

Robust fusion methods for Big Data

Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman and Badih Ghattas

Abstract We address one of the important problems in Big Data, namely how to
combine estimators from different subsamples by robust fusion procedures, when we
are unable to deal with the whole sample.

2.1 Introduction

Big Data covers a large list of different problems, see for instance [10, 11], and
references therein. We address one of them, namely how to combine, using robust
techniques, estimators obtained from different subsamples in the case where we are
unable to deal with the whole sample. In what follows we will refer to this as Robust
Fusion Methods (RFM).

To fix ideas, we start by describing one of the simplest problems in this area
as a toy example. Suppose we are interested in the median of a huge set of iid
random variables {X1, . . . ,Xn} with common density f , and we split the sample into
m subsamples of length l, n = ml. We calculate the median of each subsample and
obtain m random variables Y1, . . . ,Ym. Then we take the median of the set Y1, . . . ,Ym,
i.e. we consider the well known median of medians. It is clear that it does not coincide
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with the median of the whole original sample {X1, . . . ,Xn}, but it will be close. What
else could we say about this estimator regarding efficiency and robustness?

The estimator is nothing but the median of m iid random variables but now with a
different distribution given by the distribution of the median of l random variables
with density fX . Suppose for simplicity that l = 2k+ 1. Then, the density of the
random variables Yi is given by

gY (y) =
(2k+1)!
(k!)2 FX (t)k(1−FX (t))k fX (t). (2.1)

In particular, if fX is uniform on (0,1), (2.1) is given by

hY (y) =
(2k+1)!
(k!)2 tk(1− t))k1[0,1](t), (2.2)

a Beta(k+1,k+1) distribution.
On the other hand, we have that asymptotically, for a sample of size n the empirical

median θ = med(X1, . . . ,Xn) behaves as a normal distribution centred at the true
median θ with variance 1

4n fX (θ)2 , while the median of medians behaves asymptotically
as a normal distribution centred at θ , the median of the median distribution, and
with variance 1

4mgY (θ)2 . For the uniform case, both are centred at 1/2, fX (0.5) = 1

and gY (0.5) = (1/2)2k(2k + 1)!/(k!)2, so we can explicitly calculate the relative
efficiency.
In Section 2.2 we generalize this idea and study the breakdown point, efficiency,
and computational time of the robust fusion method. In Section 2.3 we tackle, as a
particular case, the robust estimation of the covariance operator and show, in Section
2.3.3, the performance throughout a simulation study.

2.2 A general setup for RFM.

In this short note we present briefly a general framework for RFM methods for several
multivariate and functional data problems. We illustrate our procedure considering
only the problem of robust covariance operator estimation, based on a new simple
robust estimator. Our approach is to consider RFM methods based on data depth
functions. The idea is quite simple: given a statistical problem, (such as multivariate
location, covariance operators, linear regression, principal components, among many
others), we first split the sample into subsamples. For each subsample we calculate
a robust estimator for the statistical problem considered. We will use them all to
obtain an RFM estimator that is more accurate. More precisely, the RFM estimator is
defined as the deepest point (with respect to the appropriate norm associated to the
problem) among all the estimators obtained from the subsamples. Since we need to
be able to calculate depths for large sample sizes and eventually high dimensional
and infinite dimensional data, we will consider the spatial median corresponding to
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maximizing the spatial depth function

D(x,P) = 1−
∥∥∥∥EP

(
X − x
‖X − x‖

)∥∥∥∥ , (2.3)

where P is a probability in some Banach space (E,‖ · ‖) and x ∈ E, introduced by
[2], formulated (in a different way) by [9], and extended to a very general setup by
[1]. We want to address the consistency, efficiency, robustness and computational
time properties of the RFM proposals.

To be more precise, the general algorithm is as follows. a) We observe X1, . . .Xn
iid random elements in a metric space E (for instance E =R

d), b) we split the sample
into subsamples {X1, . . .Xl},{Xl+1, . . .X2l}, . . . ,{X(m−1)l+1, . . .Xlm} with n = ml, c)
we solve our statistical problem on each subsample with a robust procedure (for
example, estimate a parameter θ on each subsample, obtaining θ̂1, . . . , θ̂m), d) we
take the fusion of the results at each subsample, (for instance ˆ̂θ can be the deepest
point among θ̂1, . . . , θ̂m.

2.2.1 Breakdown point

Breakdown point for the RFM. Following [4] we consider the finite-sample break-
down point.

Definition 2.1. Let θ̂n = θ̂n(x) be an estimate of θ defined for samples x = {x1, . . .
,xn}. Let us assume that θ takes values in Θ ⊂ R

d (it can be Θ = R
d). Let Xp be

the set of all data sets y of size n having n− p elements in common with x:

Xp = {y : card(y) = n, card(x∩y) = n− p},

then ε∗n (θ̂n,x) =
p∗
n , where p∗ = max{p ≥ 0 : θ̂n(y) is bounded and also bounded

away from ∂Θ ∀y ∈Xp}.
Let us consider, for n=ml, the random walk Sn with S0 = 0, and S j =B1+ . . .+B j

for j = 1, . . . ,n, Bi being iid Bernoulli(p) for i = 1, . . . ,n, where a one represents
the presence of an outlier, while a zero represents no presence of an outlier. Then to
compute the breakdown point for the median of medians, we need to count how many
times the sequence {Sl ,S2l −Sl , . . .Sn−Sn−l} is larger than k (recall that l = 2k+1).
Let us define, Um,n := card{1≤ j ≤ m : S jl −S( j−1)l ≤ k}/m, since the median has
breakdown point 0.5 the fusion will break down if Um,n is greater than 0.5.

This will also be true if we take the median of any robust estimate with breakdown
point equal to 0.5 calculated at each subsample.

To have a glance at the breakdown point, we performed 5000 replicates of the
vector S30000 and calculated the percentage of times the estimator breaks down for
p = 0.45,0.49,0.495 and 0.499. The results are in the following table.
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Table 2.1: Percentage of estimator breakdowns for 5000 replications and different
values of m for n = 30000; p is the proportion of outliers

m p = 0.45 p = 0.49 p = 0.495 p = 0.499
5 0 0.0020 0.0820 0.3892
10 0 0.0088 0.1564 0.5352
30 0 0.0052 0.1426 0.5186
50 0 0.0080 0.1598 0.5412
100 0 0.0192 0.2162 0.6084
150 0 0.0278 0.2728 0.6780

Since the number Y of outliers in the subsamples of length l follows a Binomial
distribution, Binom(l, p), as a direct application of Theorem 1 in [8] we can bound
the probability, q = P(Y > l/2), of breakdown.

2.2.2 Efficiency of Fusion of M-estimators

In this section we will obtain the asymptotic variance of the RFM method, for
the special case of M-estimators. Recall that M-estimators can be defined (see
Section 3.2 in [6]) by the implicit functional equation

∫
ψ(x,T (F))F(dx) = 0, where

ψ(x;θ) = (∂/∂θ)ρ(x;θ), for some function ρ . The estimator Tn is given by the
empirical version of T , based on a sample Xn = {X1, . . . ,Xn}. It is well known
that

√
n(Tn−T (F)) is asymptotically normal with mean 0, variance σ2, and can

be calculated in general as the integral of the square of the influence function. The

asymptotic efficiency of Tn is defined as Eff(Tn) =
σ2

ML
σ2 , where σ2

ML is the asymptotic
variance of the maximum likelihood estimator. Then, the asymptotic variance of a
M-estimator built from a sample T 1

n , . . . ,T
p

n of p M-estimators of T can be calculated
easily.

2.2.3 Computational time

We want to calculate the computational time of our robust fusion method for a
sample Xn = {X1, . . . ,Xn} iid of X , where we have split Xn into m subsamples of
length l, then apply a robust estimator to every subsample of length l, and fuse them
by taking the deepest point among the m subsamples. If we denote by compRE(l)
the computational time required to calculate the robust estimator based on every
subsample of length l, and compDeph(m) the computational time required to compute
the deepest robust estimator based on the m estimators, then the computational time
of our robust fusion method is m×compRE(l)+compDeph(m).
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2.3 Robust Fusion for covariance operator

The estimation of the covariance operator of a stochastic process is a very important
topic that helps to understand the fluctuations of the random element, as well as to
derive the principal functional components from its spectrum. Several robust and
non-robust estimators have been proposed, see for instance [1], and the references
therein. In order to perform RFM, we introduce a computationally simple robust
estimator to apply to each of the m subsamples, that can be performed using parallel
computing. It is based on the notion of impartial trimming applied on the Hilbert–
Schmidt space, where covariance operators are defined. The RFM estimator is the
deepest point among the m estimators corresponding to each subsample, where the
norm in (2.3) is given by (2.4) below.

2.3.1 A resistant estimate of the covariance operator

Let E = L2(T ), where T is a finite interval in R, and X ,X1, . . .Xn, . . . iid random
elements taking values in (E,B(E)), where B(E) stands for the Borel σ -algebra
on E. Assume that E(X(t)2) < ∞ for all t ∈ T , and

∫
T
∫

T ρ2(s, t)dsdt < ∞, so the
covariance function is well defined and given by ρ(s, t) = E((X(t)−μ(t))(X(s)−
μ(s))), where E(X(t)) = μ(t).

For notational simplicity we assume that μ(t) = 0,∀t ∈ T . Under these condi-
tions, the covariance operator, given by S0( f ) = E(〈X , f 〉X), is diagonalizable, with
nonnegative eigenvalues λi such that ∑iλ 2

i < ∞. Moreover S0 belongs to the Hilbert–
Schmidt space HS(E,E) of linear operators with square norm and inner product
given by

‖S‖2
HS =

∞

∑
k=1

‖S(ek)‖2 < ∞, 〈S1,S2〉F =
∞

∑
k=1
〈S1(ek),S2(ek)〉, (2.4)

respectively, where {ek : k ≥ 1} is any orthonormal basis of E, and S,S1,S2 ∈
HS(E,E). In particular, ‖S0‖2 = ∑∞

i=1λ 2
i , where λi are the eigenvalues of S0. Given

an iid sample X1, . . . ,Xn, define the Hilbert–Schmidt operators of rank one,

Wi : E → E, Wi( f ) = 〈Xi, f 〉Xi(.), i = 1, . . .n.

Let φi = Xi/‖Xi‖. Then, Wi(φi) = ‖Xi‖2φi =: ηiφi.
The standard estimator of S0 is just the average of these operators, i.e. Ŝn =

1
n ∑n

i=1 Wi, which is a consistent estimator of S0 by the Law of Large Numbers in
the space HS(E,E). Our proposal is to consider an impartial trimmed estimate as a
resistant estimator. The notion of impartial trimming was introduced in [5], while
the functional data setting was considered in [3], from were it can be obtained the
asymptotic theory for our setting. In order to perform the algorithm we will derive an
exact formula for the matrix distances ‖Wi−Wj‖, 1≤ i≤ j ≤ n.
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Lemma 1 We have that

d2
i j := ‖Wi−Wj‖2

HS = ‖Xi‖4 +‖Xj‖4−2〈Xi,Xj〉2 for 1≤ i≤ j ≤ n. (2.5)

2.3.2 The impartial trimmed mean estimator

Following [3], we define the impartial trimmed covariance operator estimator, which
is calculated by the following algorithm.

Given the sample X1(t), . . . ,Xn(t) (which we have assumed with mean zero for
notational simplicity) and 0 < α < 1, we provide a simple algorithm to calculate
an approximate impartial trimmed mean estimator of the covariance operator of the
process S0 : E → E, S0( f )(t) = E(〈X , f 〉X(t)), that will be strongly consistent.

STEP 1: Calculate di j = ‖Wi−Wj‖HS, 1≤ i≤ j ≤ n, using Lemma 1.

STEP 2: Let r = �(1−α)n�+1. For each i = 1, . . .n, consider the set of indices
Ii ⊂ {1, . . . ,n} corresponding to the r nearest neighbours of Wi among {W1, . . .Wn},
and the order statistic of the vector (di1, . . . ,din), d(1)

i < .. . < d(n)
i .

STEP 3: Let γ = argmin{d(r)
1 , . . . ,d(r)

n }.

STEP 4: The impartial trimmed mean estimator of S0 is given by Ŝ = the aver-
age of the m nearest neighbours of Wγ among {W1, . . . ,Wn}, i.e the average of the
observations in Iγ .

This estimator corresponds to estimating ρ(s, t) by ρ̂(s, t) = 1
r ∑ j∈Iγ Xj(s)Xj(t).

Observe that Steps 1 and 2 of the algorithm can be performed using parallel comput-
ing.

2.3.3 Simulation results for the covariance operator

Simulations were done using a PC Intel core i7-3770 CPU, 8GO of RAM using 64
bit version of Win10, and R software ver. 3.3.0.

We vary the sample size n within the set {0.1e6,1e6,5e6,10e6} and the number
of subsamples m ∈ {100,500,1000,10000}. The proportion of outliers was fixed to
p = 13% and p = 15%. We replicate each simulation case K = 5 times and report a
mean average of the results over these replicates.

We report the average time in seconds necessary for both a global estimate
(time0, over the whole sample), and time1 the estimate obtained by fusion (including
computing the estimates over subsamples and aggregating them by fusion).
We compare the classical estimator (Cov), the mean of the classical estimators
obtained from the subsamples (AvCov), the Fusion estimate of the classical estimator
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(Cov.RFM), the global robust estimate (CovRob), the robust fusion estimate RFM,
and the average of the robust estimates from the subsamples AvRob.

To generate the data, we have used a simplified version of the simulation model
used in [7]:

X(t) = μ(t)+
√

2
10

∑
k=1

λkak sin(2πkt)+
√

2
10

∑
k=1

νkbk cos(2πkt)

where νk =
( 1

3

)k
,λk = k−3, and ak and bk are random standard Gaussian independent

observations. The central observations were generated using μ(t) = 0 whereas for
the outliers we took μ(t) = 2−8sin(πt). For t we used an equally spaced grid of
T = 20 points in [0,1].
The covariance operator of this process was computed for the comparisons:

Cov(s, t) = ∑10
k=1 Ak(s)Ak(t) + Bk(s)Bk(t), where Ak(t) =

√
2λk sin(2πkt) and

Ak(t) =
√

2νk cos(2πkt).
The results are shown in the following two tables for two proportions of outliers,

p = 0.15 and p = 0.2.

Table 2.2: Covariance operator estimator in presence of outliers. Using the classical
and robust estimators over the entire sample, and aggregating by average or fusion of
m subsamples estimates. p = 0.15, T=20

n m time0 time1 Cov AvCov Cov.RFM CovRob AvRob RFM
0.05 20 553 18.20 24.3 24.3 24.7 5.16 5.21 5.52
0.05 50 543 7.81 24.3 24.3 24.9 5.20 5.24 5.60
0.05 100 528 4.79 24.3 24.3 25.2 5.20 5.17 5.58
0.05 1000 459 19.40 24.3 24.3 27.0 5.13 5.54 6.58
0.10 20 2300 69.00 24.2 24.2 24.4 5.14 5.22 5.43
0.10 50 2300 28.10 24.2 24.2 24.6 5.04 5.09 5.13
0.10 100 2290 15.20 24.2 24.2 25.0 5.06 5.15 5.43
0.10 1000 1850 21.60 24.3 24.2 26.1 5.21 5.35 6.13
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Table 2.3: Covariance operator estimator in the presence of outliers. Using classical
and robust estimators over the entire sample, and aggregating by average or fusion of
m subsamples estimates. p = 0.2, T=20

n m time0 time1 Cov AvCov Cov.RFM CovRob AvRob RFM
0.05 20 572 17.90 30.5 30.5 30.9 0.879 3.96 1.45
0.05 50 649 7.88 30.5 30.5 31.3 0.876 7.34 2.10
0.05 100 633 4.61 30.5 30.5 31.6 0.839 8.86 2.43
0.05 1000 478 19.50 30.5 30.5 32.3 0.864 13.10 7.08
0.10 20 1970 69.10 30.4 30.4 30.6 0.914 3.83 1.36
0.10 50 2030 28.10 30.4 30.4 31.1 0.921 4.32 1.55
0.10 100 2020 15.10 30.4 30.4 31.3 0.840 8.44 2.35
0.10 1000 1840 21.60 30.4 30.4 32.9 0.961 12.10 5.20

If the proportion of outliers is moderate p = 15%, the average of the robust
estimators still behaves well, better than RFM, but if we increase the proportion of
outliers to p = 0.2, RFM clearly outperforms all the other estimators.
Acknowledgements We thank an anonymous referee for helpful suggestions on a first version.
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Chapter 3

Functional linear regression models for scalar

responses on remote sensing data: an application

to Oceanography

Nihan Acar-Denizli, Pedro Delicado, Gülay Başarır and Isabel Caballero

Abstract Remote Sensing (RS) data obtained from satellites are a type of spectral
data which consist of reflectance values recorded at different wavelengths. This type
of data can be considered as a functional data due to the continous structure of the
spectrum. The aim of this study is to propose Functional Linear Regression Models
(FLRMs) to analyze the turbidity in the coastal zone of Guadalquivir estuary from
satellite data. With this aim different types of FLRMs for scalar response have been
used to predict the amount of Total Suspended Solids (TSS) on RS data and their
results have been compared.

3.1 Introduction

Functional Data Analysis (FDA) concerns with the data sets measured on a continuum
such as a dense time interval, space or a spectrum. The data gathered from Remote
Sensing (RS) sensors via transmission of electromagnetic energy is also a kind of
spectral data. RS data are collected from the earth’s surface in terms of reflectance
values recorded at different number of wavelengths. They inform us in a fast and
economical way about the environment. Therefore, they are used in many fields such
as land-use mapping, agriculture, forestry and oceanography to make predictions
[2, 3, 5, 11]. In oceanography, RS data are used to estimate ocean characteristic
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Gülay Başarır
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parameters such as Sea Surface Temperature (SST), Chlorophyll-a content (Chl-a)
and Total Suspended Solids (TSS) [2, 3]. Recently, FDA gain importance in analyzing
remote sensing sensor data sets [1, 4]. Although, there are many applications of
multivariate analysis techniques on RS data in oceanography [2, 3, 10, 11], there are
few studies that use FDA approach in this field [9].

The importance of this study is to propose FLRMs alternative to classical statistical
methods to predict TSS parameter from RS curves at different time periods. In
previous studies, mostly regression models with a combination of different band
values or the band values which are most correlated to TSS measurements have
been used to predict TSS parameter [2, 3]. FLRMs allows us to use the information
recorded at all the bands rather than selecting single band or taking combination of
the bands. In this study, the Remote sensing reflectance (Rrs) values, recorded in a
spectrum that consists of eight different bands have been considered as functional
predictors and TSS content, that are measured from collected in-situ samples have
been taken, as scalar response vector. In order to determine the best prediction model
several FLRMs for scalar responses have been constructed and their performances
have been compared with the performance of classical statistical methods used
in the literature. A 10 year data set has been constituted by matching the in-situ
measurements with the satellite data recorded between the years 2002-2011. The
work exhibits an approach of how to conduct analysis for processing and interpreting
large-scale volume of heterogeneous data to improve the present knowledge as an
essential piece of the future Big Earth Observation Data monitoring systems.

3.2 Methods

The general form of a functional scalar response model can be expressed by

Y =
∫

T
χ(t)β (t)dt + ε, (3.1)

where Y indicates the scalar response vector, ε is the error term, χ(t) and β (t) define
respectively the functional predictor and the parameter function that are defined on a
continuous interval T .

To solve this problem, different techniques based on basis functions, eigenfunc-
tions or nonparametric smoothing have been proposed to assess an interpretable
estimate of the parameter function [6, 5, 22]. In this study we will focus on two
different approaches. The first approach is to use B-Spline basis expansions to define
the functional predictor and the model parameter function. The latter approach is
based on dimension reduction method functional principal components analysis so
that it is named as Functional Principal Components Regression (FPCR). The idea
of FPCR is to predict scalar response vector Y on the functional predictors that are
expanded in terms of the eigenfunctions of the empirical covariance operator which
form an orthonormal basis in L2(T ) [12, 6].
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The main problem here is to determine the number of basis functions or compo-
nents that will be used to expand data. In this study, Cross Validation (CV) criterion
is preferred to choose the optimal number of basis functions. The estimates of the
models are found by minimizing the Sum of Square Errors (SSE) as in the classical
linear regression problem.

To compare the predictive performance of the mentioned models, an Adjusted ver-
sion of Mean Error of Prediction (AMEP) based on Leave-One-Out Cross Validation
(LOOCV) has been defined by the equation (3.2).

AMEP =
∑n

i=1(yi− ŷi)
2

∑n
i=1(yi− ȳ−i)2 . (3.2)

The term ȳ−i in this equation indicates the mean after removing the ith observation
from the data set.

3.3 Data

The data set consists of two parts. The in-situ data set is composed of TSS concen-
trations measured from the collected samples and the satellite data set is composed
of the Remote sensing reflectance (Rrs) values recorded by MEdium Resolution
Imaging Spectrometer (MERIS), one of the main instruments on board the European
Space Agency (ESA)’s Envisat platform between the years 2002-2011. The data set
has been constituted by matching the filtered satellite data with the in-situ considering
the coordinate and the time that the sample has been collected. The coordinates have
been matched considering the exact pixels that the sample is collected and the time
difference between in-situ and satellite data has been constrained up to 1.5 hours.

3.3.1 In-Situ Data

The in-situ data consist of the records of TSS concentration which are obtained from
the samples collected by the station of Junta de Andalucı́a and by the cruises of
Reserva and Fluctuaciones in the Guadalquivir estuary. The surface samples taken
into analysis were collected with a rosette sampler (5 m below water surface) with a
distance from coast from 1km to 25 km offshore.

The samples were collected during different time periods. The sampling carried
out by Junta de Andalucı́a covers the period between April 2008 and May 2011
where the samples of Reserva and Fluctuaciones were collected within the periods
July 2002 - September 2004 and May 2005 - May 2007 respectively. Each sample is
collected by one of the campaigns from a determined coordinate. The coordinate of
the station Junta de Andalucı́a was fixed with the lattitude 36.78◦ N and longitude
6.37◦ W where the coordinates of the stations Reserva and Fluctuaciones were
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chosen according to the campaign planning. The amount of TSS concentration in
each sample has been measured according to the protocols mentioned in [3].

3.3.2 Satellite Data

The study area corresponds to the coastal region of the Gulf of Cadiz in the southwest
coast of the Iberian Peninsula (35.5◦ − 37.5◦ N latitude and 1◦ − 10◦ W longi-
tude). The satellite data included within the Region Of Interest (ROI) was down-
loaded from the Ocean Colour Website (http://oceancolor.gsfc.nasa.gov) in hdf
format. SeaDAS image analysis software (SeaWifs Data Analysis System, version 6,
http://seadas.gsfc.nasa.gov/) and the interface VMware Workstation 12 Player
(https://www.vmware.com/) were used to convert data from hdf format to ascii
format. The RS data set consists of Level-2 Remote Sensing Reflectance (Rrs) (sr−1)
recorded at eight different wavelengths (413 nm, 443 nm, 490 nm, 510 nm, 560
nm, 620 nm, 665 nm, 681 nm) with 300 m full spatial resolution between the years
2002-2011. The data has been passed through a quality control process corresponding
to the L2 flags given in [3] to remove the suspicious and low-quality data points. This
filtering process is done by using MATLAB 7.12.0-R2011a software. Considering
that the resolution of images is 300 m, the data set consists of 740× 3330 pixel
images which is equivalent to have 2464200 element vectors for each wavelength.

Statistical validation of satellite-derived products is an essential issue to verify the
accuracy provided by the sensor. In this work, data match ups were made by matching
the coordinates of Rrs values with the coordinates of the field measurements. Careful
consideration of scales is critical when comparing remotely-sensed data with in
situ observations, particularly because of the large spatio-temporal heterogeneity of
estuarine and coastal water properties influencing those measurements [8]. In this
sense, time difference between satellite overpasses and in situ sampling was reduced
by a filter of < 1.5 hours from acquisition, thus preventing temporal biases to further
evaluate the results of each data set; notwithstanding less number of match-up for
validation purposes are available. If we use a wider time window of 4 or 5 hours,
we get a major number of match-ups but more variability is encountered with the
inconvenience of greater discrepancies between in-situ and RS observations.

3.4 Results

As a result of matching in a time window of 1.5 hour, totally 31 observations are
obtained. 5 of them have been excluded from the analysis due to the measurement
errors, 6 of them have been removed due to missing values at some wavelengths
and 2 of them have not been included into the analysis due to their outlyingness.
The analysis have been conducted on 18 observations: 8 observations from Junta
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Fig. 3.1: The Rrs curves.

de Andalucı́a station, 7 observations from Reserva cruise and 3 observations from
Fluctuaciones cruise.

The Rrs values at eight different wavelengths have been converted to a functional
data object as given in Figure 3.1. Firstly, FLRM with B-Spline approach has been
used to predict the TSS parameter. In this case, both the functional predictor and the
functional parameter estimate has been smoothed by using B-Spline basis functions.
The optimal number of basis functions has been chosen as 5 by the CV criterion [6].

The number of components that will be included in FPCR has been chosen based
on their variability. The first 5 components for which the cumulative variance exceeds
95% have been taken into analysis.

The results of FLRMs have been compared with the results of classical approaches
in the literature. As offered by [3], exponential regression models have been con-
structed between TSS and the Rrs values at the band most correlated with the response.
The most correlated bands were found as 665 nm (r=0.65) and 681 nm (r=0.66).
Therefore, two different single band exponential regression models have been used.

All the functional and exponential regression models were found significant (p
< 0.05). The coefficient of determination (R2), Standard Error (Std. Err.) and AMEP
values based on LOOCV of the related models are given in Table 3.1.

Regarding R2 values, FLRMs explain higher amount of variability of the response
comparing to exponential regression models.
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Table 3.1: R2, Std. Err. and AMEP values of the models

Models R2 Std. Err. AMEP

FLRM with B-Spline Basis 0.78 0.32 0.42

FPCR with the first 5 components 0.82 0.30 0.71
Exponential Regression with 665 nm 0.42 0.46 0.71
Exponential Regression with 681 nm 0.43 0.45 0.70

Among all the models, FLRM using 5 number of B-Spline basis functions has
predicted TSS parameter better since the AMEP value of this model is the lowest.
Although the AMEP value of FPCR with 5 components is not that low, we see that
the predictive performance of the model is as good as the exponential regression
models.

3.5 Conclusions

In this study, the performance of FLRMs to predict TSS on RS data has been
compared to single band exponential regression models. The data set has been
constituted under spatio-temporal filtering by matching exact coordinates in the time
window of 1.5 hour difference. Although, the limited number of wavelengths and
observations, it is seen that the FLRMs on RS data predict TSS content better than the
classical exponential regression models offered in the literature. The best prediction
model has been found as FLRM with B-Spline basis approach using 5 basis functions.
To conclude, FLRMs estimate the TSS content in Guadalquivir estuary better than
other classical approaches that have been used earlier in RS community.

There are several ways to explore in order to improve the prediction ability of
the considered models. First, Figure 3.1 suggests the existence of two clusters of
curves (well differentiated by Rrs values at wavelengths larger than or equal to 550
nm). These clusters may correspond to clear or low turbid to turbid water conditions
in each scene. Then a dummy variable indicating if a day is considered clear or
turbid could be included in the regression models. More observations with different
concentrations of TSS will be required to have reliable estimations. Second, the
studied observations present (as many environmental data) spatial and temporal
dependence (observations from the same boat trip have been taken in close times and
close sites). To take into account these dependence in the regression models could
lead to more accurate predictions.

Acknowledgements This research was partially supported by the Spanish Ministry of Economy
and Competitiveness, and European Regional Development Fund grant MTM2013-43992-R.
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Chapter 4

A diagonal componentwise approach for ARB(1)

prediction

Javier Álvarez-Liébana and M. Dolores Ruiz-Medina

Abstract This paper extends to the Banach-valued framework previous strong-
consistency results derived, in the context of diagonal componentwise estimation of
the autocorrelation operator of autoregressive Hilbertian processes, and the associated
plug-in prediction. The Banach space B considered here is B = C ([0,1]) , the space
of continuous functions on [0,1] with the supremum norm.

4.1 Introduction.

Functional time series theory emerges as a powerful tool in the statistical analysis of
high dimensional data correlated in time. In the Hilbert-valued context, we refer to
the reader to the book by Bosq [6], and the papers by Mas [14]; Guillas [9]; Kargin
and Onatski [10], among others; and, more recently, to the papers [1, 2, 8, 18, 19]. In
particular, in the autoregressive Hilbertian framework (ARH(1) framework), Álvarez-
Liébana, Bosq and Ruiz-Medina [2] prove weak-consistency results, in the space of
Hilbert-Schmidt operators, for a diagonal componentwise estimator of the autocorre-
lation operator, and its associated plug-in predictor (in the underlying Hilbert space
H). For the same type of diagonal componentwise estimator of the autocorrelation
operator, and its associated ARH(1) plug-in predictor, strong-consistency results in
the space of bounded linear operators, and in the underlying Hilbert space H, are
respectively obtained in Álvarez-Liébana and Ruiz-Medina [3].

Estimation and prediction in the context of Banach-valued autoregressive pro-
cesses of order one (ARB(1) processes) have also been widely developed, when
B = C ([0,1]) . In the estimation of ARC(1) processes, and its associated ARC(1)
plug-in prediction, strong-consistency results are derived in Pumo [16, 17] and Bosq
[6], under suitable regularity conditions. In Labbas and Mourid [13], Kuelb’s Lemma
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plays a key role to extend the results presented in [6, 16, 17]. The formulation of the
previous results to the case of weakly dependent innovation process is considered in
Dehling and Sharipov [7]. The estimation of ARB(p) processes, with p greater than
one, is addressed, for example, in Mourid [15].

Here, we adopt the approach presented in [6, 13] in the framework of ARC(1)
processes. Specifically, the extension, from a Banach space to a separable Hilbert
space, of the autocorrelation operator of an ARB(1) process (in particular, ARC(1)
process) is achieved. The diagonal formulation of the componentwise estimator of
the extended autocorrelation operator is considered in this paper, as given in Álvarez-
Liébana, Bosq and Ruiz-Medina [2]. A key feature of the diagonal design is the
important dimension reduction achieved, with a better or equivalent performance in
relation to the approaches presented in [4, 5, 6, 9], as shown in the simulation study
undertaken in Álvarez-Liébana, Bosq and Ruiz-Medina [2]. The outline of this work
is as follows. Preliminaries section describes the ARB(1) framework. A diagonal
component-wise estimator of the extended autocorrelation operator is introduced in
Section 4.2. Strong-consistency results, in the space of bounded linear operators on
a Hilbert space, are detailed in Section 4.3. The formulation of such results in the
Banach-valued context, considering the case of estimation of ARC(1) processes, in
the norm of bounded linear operators over C ([0,1]), is analyzed in Section 4.4. Final
comments and open research lines are given in Section 4.5.

4.2 Preliminaries: ARB(1) general framework and estimator of

autocorrelation operator.

Let us consider (B,‖ · ‖B) as a real separable Banach space, and let X = {Xn, n ∈ Z}
be a zero-mean ARB(1) process, associated with (μ,ε = {εn, n ∈ Z} ,ρ), satisfying
the following equation (see [6], p. 148):

Xn = ρ (Xn−1)+ εn, n ∈ Z, (4.1)

where ρ is the autocorrelation operator of X , belonging to the space L (B) of bounded
linear operators on the Banach space B, such that ‖ρ‖L (B) < 1. The innovation
process ε is assumed to be a strong white noise, and to be also uncorrelated with
the random initial condition, with σ2

ε = E
[‖εn‖2

B
]
< ∞, for all n ∈ Z. Note that

E
[
‖Xn‖2

B

]
< ∞, for all n∈Z, under the above conditions assumed in the introduction

of equation (4.1) (see [6], Theorem 6.1).
The autocovariance and cross-covariance operators of X , denoted as CX and DX ,

respectively, are defined as follows, for all f ,g ∈ B∗:

CX ( f )(g) = E [ f (Xn)g(Xn)] , DX ( f )(g) = E [ f (Xn)g(Xn+1)] , n ∈ Z, (4.2)

where B∗ denotes the dual space of B.

Assumption A1. The operator CX , defined in (4.2), is a nuclear operator given by

CX ( f ) =
∞

∑
j=1

f (x j)x j,
∞

∑
j=1

∥∥x j
∥∥2

B < ∞, ∀ f ∈ B∗, (4.3)
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where
{

x j, j ≥ 1
}

denotes a sequence in B.

Following the approach presented in [13], Kuelb’s Lemma is now introduced (see
[11, 12] for more details). This lemma plays a key role in the ARB(1) framework,
leading to a dense embedding of B into H, where, as before, H denotes a real
separable Hilbert space.

Lemma 4.1. (Kuelb’s Lemma) Let (B,‖·‖B) be a real separable Banach space. Thus,
there exists an inner product 〈·, ·〉0 on B such that ‖·‖0 is weaker than ‖·‖B . Here,
‖·‖0 represents the norm generated by 〈·, ·〉0, and H denotes the completion of B
under ‖·‖0 , with (H,‖·‖H := ‖·‖0) being a real separable Hilbert space.

In the following, H represents the real separable Hilbert space derived from
Lemma 4.1. Let us associate to X a zero-mean ARH(1) process X ′ = {X ′

n, n ∈ Z}:
X ′

n = ρ ′
(
X ′

n−1
)
+ ε ′n, X ′

n, ε
′
n ∈ H, n ∈ Z, (4.4)

where H-valued processes X ′ = {X ′
n, n ∈ Z} and ε ′ = {ε ′n, n ∈ Z} are given by

X ′
n =

∞

∑
j=1
〈Xn,e j〉He j, ε ′n =

∞

∑
j=1
〈εn,e j〉He j, n ∈ Z, (4.5)

with
{

e j, j ≥ 1
}

being an orthonormal basis of H. Hence, equation (4.5) is well de-
fined, since Xn,εn ∈ B ↪→H, with ↪→ denoting the continuous embedding or inclusion
of B into H. The following assumptions are imposed concerning the autocovariance
and autocorrelation operator of ARH(1) process X ′, defined in equation (4.4).

Assumption A1B. The autocovariance operator CX ′ = E [X ′
n⊗X ′

n] , for each n ∈ Z,
is a positive self-adjoint operator in the trace class, admitting the diagonal spectral
decomposition:

CX ′( f )(g) =
∞

∑
j=1

C′
j
〈
φ j, f

〉
H

〈
φ j,g

〉
H , ∀ f ,g ∈ H, (4.6)

in terms of a complete orthonormal system of eigenvectors
{
φ j, j ≥ 1

}
, such that

∞

∑
j=1

C′
j < ∞, C′

1 > .. . >C′
j >C′

j+1 > .. . > 0. (4.7)

Assumption A2. The extended autocorrelation operator ρ ′ is self-adjoint and Hilbert-
Schmidt operator, admitting the following diagonal spectral decomposition:

ρ ′( f )(g) =
∞

∑
j=1

ρ ′j
〈
φ j, f

〉
H

〈
φ j,g

〉
H , ∀ f ,g ∈ H, (4.8)

with
{
ρ ′j, j ≥ 1

}
being the eigenvalues of ρ ′ associated with the system of eigen-

vectors
{
φ j, j ≥ 1

}
. In addition,

ρ ′ ∈L (H) ,
∥∥ρ ′∥∥

L (H)
= sup

j≥1

∣∣ρ ′j∣∣< 1. (4.9)

Under Assumption A2, the operator ρ ′ satisfies
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ρ ′( f )(g) =
∞

∑
j=1

ρ ′j
〈
φ j, f

〉
H

〈
φ j,g

〉
H ,

∞

∑
j=1

(
ρ ′j
)2

< ∞, ∀ f ,g ∈ H. (4.10)

As usual, DX ′ = E
[
X ′

n⊗X ′
n+1
]

is the cross-covariance operator of X ′, for any
n ∈ Z, and then DX ′ = ρ ′CX ′ . Under Assumptions A1B and A2, we obtain

DX ′( f )(g) = ρ ′CX ′( f )(g) =
∞

∑
j=1

D
′
j
〈
φ j, f

〉
H

〈
φ j,g

〉
H , ∀ f ,g ∈ H, (4.11)

where
{

D′
j = ρ ′jC′

j, j ≥ 1
}

is the system of eigenvalues of DX ′ , with respect to the

eigenvectors
{
φ j, j ≥ 1

}
. In an analogous way as done in [2, 3] approaches, under

Assumptions A1B and A2, we may project (4.4) into
{
φ j, j ≥ 1

}
, obtaining:

X ′
n, j = ρ ′jX

′
n−1, j + ε ′n, j, ρ ′j ∈ R,

∣∣ρ ′j∣∣< 1, (4.12)

where X ′
n, j =

〈
X ′

n,φ j
〉

H and ε ′n, j =
〈
ε ′n,φ j

〉
H , for any j ≥ 1 and n ∈ Z.

Remark 4.1. As noted in [13], p. 769, the restriction to B of CX ′ and ρ ′ respectively
coincides with CX and ρ, as well as X coincides with X ′, considered as element
of B, with the last one providing the continuous extension of X to H, since B is
continuously embedded in H. Therefore, the diagonal spectral decomposition of
CX ′ and ρ ′, under Assumptions A1 and A2, as operators on H, also holds for their
restrictions to B, in the weak-sense, but in the norm of H. The convergence results
should be proved in the norm of B. That is the case of the strong-consistency results
of diagonal componentwise ARB(1) predictors in this paper, when B = C ([0,1]),
under the assumption that the diagonal spectral representation in H also holds in
the norm of B. Note also that AB = B∩AH , where AB and AH denote the Borel
σ -algebras on B and H (see [11], Lemma 2.1).

For simplicity, in the current abstract, it is only addressed the case of
{
φ j, j ≥ 1

}
are unknown, which, on the other hand, it is the case of interest in practice. From The-
orem 4.1, on pp. 98–99, and Corollary 4.1, on pp. 100–101, in [6], under Assumption

A1B, for n sufficiently large,

C′
n =

1
n

n−1

∑
i=0

X ′
i ⊗X ′

i =
∞

∑
j=1

C′
n, jφn, j⊗φn, j, C′

n, j =
1
n

n−1

∑
i=0

(
X̃ ′

i, j

)2
, X̃ ′

i, j = 〈X ′
i ,φn, j〉H , j≥ 1,

(4.13)
where C′

n denotes the empirical estimator of the autocovariance operator CX ′ , with

C′
n,1 ≥ . . . ≥ C′

n,n ≥ 0 = C′
n,n+1 = C′

n,n+2 = . . . Recall that Cn = 1
n

n−1

∑
i=0

f (Xi)Xi, for

any f ∈ B∗ and n ≥ 2, represents the empirical covariance operator of B-valued
process X . On the other hand, since

{
φn, j, j ≥ 1

}
is a complete orthonormal system

of eigenvectors on H,

D′
n =

1
n−1

n−2

∑
i=0

X ′
i ⊗X ′

i+1 =
∞

∑
l=1

∞

∑
j=1

D∗
n, j,lφn, j⊗φn,l , n≥ 2, (4.14)
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where D∗
n, j,l = 〈D′

n (φn, j) ,φn,l〉H = 1
n−1

n−2

∑
i=0

X̃ ′
i, jX̃

′
i+1,l , for each j, l ≥ 1 and n≥ 2. In

particular, we denote D′
n, j = D∗

n, j, j, for any j ≥ 1 and n≥ 2.

Assumption A3. The random initial condition in (4.4) satisfies E
[∥∥X ′

0

∥∥4
H

]
< ∞.

Assumption A4. C′
n,kn

> 0 a.s., for a truncation parameter kn < n, with lim
n→∞

kn = ∞.

Under Assumptions A1B and A2-A4, the following empirical component-wise
estimator of operator ρ ′ on H is then established:

ρ̃ ′kn
=

kn

∑
j=1

ρ̃ ′n, jφn, j⊗φn, j =
kn

∑
j=1

D′
n, j

C′
n, j
φn, j⊗φn, j, n≥ 2, (4.15)

where kn is the truncation parameter introduced in Assumption A4.

In Section 4.3, the strong-consistency results derived in Álvarez-Liébana and
Ruiz-Medina [3] are presented, which can directly be applied to the diagonal compo-
nentwise estimator of ρ ′, and its associated ARH(1) plug-in predictor for X ′ in the
norm of H, as given in Álvarez-Liébana and Ruiz-Medina [3].

4.3 Strong-consistency results: ARH(1) framework.

The following auxiliary results are considered in [3] (see also [6], Lemma 4.2 on
p. 103 and Theorem 4.8 on pp. 116–117) to derive strong-consistency results in the
ARH(1) framework:

Lemma 4.2. Let us set Λ ′
k = sup

1≤ j≤k
(C′

j −C′
j+1)

−1, for any k ≥ 1, where ‖X ′
0‖H is

bounded. If {kn, n ∈ Z} is a sequence of integers such thatΛ ′
kn
= o
(
n1/4(ln(n))β−1/2

)
,

when n→ ∞, then, under Assumptions A1B and A3,

n1/4

(ln(n))β
sup

1≤ j≤kn

‖φ ′n, j−φn, j‖H →a.s. 0, n→ ∞, β > 1/2, (4.16)

where φ ′n, j = sgn〈φ j,φn, j〉Hφ j, for any j ≥ 1 and n ≥ 2, with sgn〈φn, j,φ j〉H =
1〈φn, j ,φ j〉H≥0−1〈φn, j ,φ j〉H<0 and 1 being the indicator function.

Lemma 4.3. Under Assumption A2 and the conditions of Lemma 4.2, for β > 1
2 and

n large enough,

n1/4

(ln(n))β
sup
j≥1

∣∣D′
n, j−D′

j
∣∣→a.s. 0, n→ ∞. (4.17)

Hence, strong-consistency of ρ̃ ′kn
, in the norm of L (H), is now provided in

Proposition 4.1, under Assumptions A1B and A2-A4.

Proposition 4.1. Let kn a sequence of integers such that knC′
kn
< 1, for any n ≥ ñ0

and ñ0 an integer large enough, such that, for β > 1/2,
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Λ ′
kn
= o
(

n1/4(ln(n))β−1/2
)
,

1
C′

kn

kn

∑
j=1

a′j =O
(

n1/4 (ln(n))−β
)
, n→∞, (4.18)

where a′1 = 2
√

2 1
C′1−C′2

and a′j = 2
√

2max

(
1

C′
j−1−C′

j
,

1
C′

j−C′
j+1

)
, for any j ≥ 2.

Then, under Assumptions A1B and A2-A4,∥∥ρ̃ ′kn
−ρ ′

∥∥
L (H)

−→ 0 a.s. (4.19)

4.4 Strong-consistency results: ARC(1) framework.

In this section, we study the particular framework of ARC(1) processes. That is,
we consider the case of B = C ([0,1]) , and the norm L (C ([0,1])) of the bounded
linear operators on C ([0,1]) , that will be denoted in the following as L (C) . For this
particular case, the following lemma builds H associated with that class of ARC(1)
processes.

Lemma 4.4. (See [13], Lemma 1, p. 769, for more details). Let B be the Banach
space C ([0,1]), with its associated uniform norm, and the measure ς = ∑n∈N znδtn ,
such that {zn, n ∈ N} is a positive real sequence, with ∑n∈N zn = 1, and {tn, n ∈ N}
is a real dense sequence in [0,1]. Thus, H = L 2

(
[0,1] ,β[0,1],ς

)
is the Hilbert space

constructed according to Lemma 4.1, such that H is the continuous extension of
C ([0,1]) .

As done in [6], from Lemma 4.4, the Lebesgue measure λ is adopted, with H =
L 2
(
[0,1] ,β[0,1],λ

)
, denoted as L2. The following particular assumption concerning

ρ is established:

Assumption C1. Let X be the ARB(1) process given by (4.1), consider that ρ satisfies

ρ (x)(t) =
∫ 1

0
r(s, t)x(s)ds = 〈r(·, t),x〉L2 , x ∈ C ([0,1]) , (4.20)

where r (·, ·) is a continuous kernel with ‖·‖C ([0,1]2) < 1. Thus, ‖ρ‖L (C) < 1.

From Lemmas 4.1 and 4.4, and equations (4.4)-(4.5), the following ARH(1) could
be associated to X , under Assumptions A1B and A2:

X ′
n = ρ ′

(
X ′

n−1
)
+ ε ′n, X ′

n, ε
′
n ∈ H, n ∈ Z,

∥∥ρ ′∥∥
L (L2) < 1, (4.21)

X ′
n =

∞

∑
j=1

(∫ 1

0
Xn(s)e j(s)ds

)
e j, ε ′n =

∞

∑
j=1

(∫ 1

0
εn(s)e j(s)ds

)
e j, (4.22)

where
{

e j, j ≥ 1
}

is an orthonormal basis on H such that the empirical estimator
C′

n, given in (4.13), is also defined as an integral operator (see [6], p. 223):

C′
n(x)(t) =

∫ 1

0
cn(s, t)x(s)ds, cn(s, t) =

1
n

n−1

∑
i=0

Xi(s)Xi(t), 0≤ s, t ≤ 1, (4.23)



4 New ARB(1) estimation developments: diagonal component-wise approach 29

where
{
φn, j, j ≥ 1

}
and
{

C′
n, j, j ≥ 1

}
are defined in equation (4.13) above. From

(4.23), C′
n can operate in L2 as well as in C ([0,1]).

Assumption C2. The eigenvectors
{
φn, j, j ≥ 1

}
given in (4.13) are assumed to

verify
sup
j≥1

∥∥φ j
∥∥

C ([0,1]) < ∞, sup
j≥1

∥∥φn, j
∥∥

C ([0,1]) < ∞, (4.24)

sup
‖x‖C ([0,1])<1

∥∥∥∥∥ρ(x)− kn

∑
j=1

ρ ′j〈x,φ j〉L2φ j

∥∥∥∥∥
C ([0,1])

−→ 0, as k → ∞. (4.25)

The following diagonal component-wise estimator of ρ, as an operator on
C ([0,1]) , is then defined, under Assumptions A1, A2, A3-A4 and C1-C2:

ρ̃kn =
kn

∑
j=1

ρ̃ ′n, jφn, j⊗φn, j =
kn

∑
j=1

D′
n, j

C′
n, j
φn, j⊗φn, j, n≥ 2. (4.26)

Remark 4.2. Note that condition (4.25) in Assumption C2 could be supplied by

sup
‖x‖C ([0,1])<1

∥∥∥∥∥ρ(x)− kn

∑
j=1

ρ ′n, j〈x,φn, j〉L2φn, j

∥∥∥∥∥
C ([0,1])

k→∞−−−→ 0,
kn

∑
j=1

∥∥φn, j−φ j
∥∥

C ([0,1])
k→∞−−−→ 0.

(4.27)
where ρ ′n, j = 〈ρ ′,φn, j〉L2 , for any j ≥ 1 and n≥ 2.

Under Assumptions A1B, A2-A4 and C1-C2, the strong-consistency of ρ̃kn , in
the norm of L (C) is now derived.

Proposition 4.2. Let {kn, n ∈ N} a sequence of integers satisfying knC′
kn
< 1, for

any n ≥ ñ0 and ñ0 an integer large enough, such that, for β > 1/2, Λ ′
kn

=

o
(
n1/4(ln(n))β−1/2

)
and

1
C′

kn

kn

∑
j=1

a′j = O
(

n1/4 (ln(n))−β
)
, n→ ∞, (4.28)

where a′1 = 2
√

2 1
C′1−C′2

and a′j = 2
√

2max

(
1

C′
j−1−C′

j
,

1
C′

j−C′
j+1

)
, for any j ≥ 2.

Then, under Assumptions A1B, A2-A4 and C1-C2,

‖ρ̃kn −ρ‖L (C) −→a.s. 0. (4.29)

4.5 Final comments and open research lines.

As noted in the Introduction, the current abstract only focuses on the case where
the eigenvectors of the autocovariance operator CX ′ are unknown, as it often occurs
in practice. Strong-consistency of the plug-in predictor associated with ρ̃kn follows
straightforwardly from Proposition 4.2, since, in general, for a Banach space B, the
following inequality holds:
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‖(A −B)(Xn−1)‖B ≤ ‖A −B‖L (B) ‖Xn−1‖B , A , B ∈L (B) .

Both cases, when
{
φ j, j ≥ 1

}
are known and unknown, will be addressed in the

presentation of this work, as well as weak-consistency results in different function
spaces. A simulation study will also be undertaken. Currently, different particular
spaces beyond C ([0,1]) are being considered.
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Chapter 5

A general sparse modeling approach for

regression problems involving functional data

Germán Aneiros and Philippe Vieu

Abstract This presentation aims to introduce an approach for dealing with sparse
regression models when functional variables are involved in the statistical sample.
The idea is not to restrict to any specific variable selection procedure, but rather
to present a two-stage methodology allowing to adapt efficiently any multivariate
procedure to the functional framework. These ideas can be applied to any kind of
functional regression models, including linear, semi-parametric or non-parametric
models.

5.1 Difference and similarities between High Dimensional and

Functional problems in Statistics

In the recent years a wide scope of new statistical problems had emerged because
of an increasing amount of situations in which larger and larger data are collected
and stored. Usually, one can distinguish two kinds of problems according to the
fact that the data come from a high dimensional variable X = (X1, . . . ,X p) or from
a continuously indexed one χ = {χ(t), t ∈ I}. The former situation is often called
High Dimensional Statistics (HDS) or Big Data Analysis while the second one is
known in the literature as Infinite Dimensional Statistics or Functional Data Analysis
(FDA). A selective sample of general presentations on HDS involves [8], [29], [19]
and [30], while a sample of books in FDA involves [33], [15], [21] and [22].

From a naı̈ve point of view, one could have in mind that any functional variable
χ = {χ(t), t ∈ I} is in fact observed on a finite grid t1, . . . , tp in such a way that its
study turns to be just the analysis of the high dimensional vector {χ(t1), . . . ,χ(tp)}.
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But of course there are so many specifities for such a high dimensional vector
(because of the underlying continuous structure) that FDA cannot be seen as a sub-
field of HDS as this naı̈ve point of view would suggest. This has been commonly
accepted in the statistical community until a few years ago and both fields, HDS and
FDA, have been widely developed independently one from each other. However, the
naı̈ve point of view cannot be rejected so directly, because without seeing one field
as a sub-field of the other one, both have to front the same key question: is all the
information in the data really useful? and if not, how to extract the most informative
part of the data? In the last few years there has been some attention paid to the need
for developing methods crossing both fields in order to capture advantages of each of
them. Important steps in this direction were the 3rd issue of IWFOS meeting in Italy
(see [7]) and the companion special issue of the Journal of Multivariate Analysis [17]
(see also the discussion in the review paper [10]).

In the next Section 5.2 we will provide a discussion based on a necessarily short
and selective set of works devoted to the specific question: how can we use/adapt
the existing variable selection techniques widely studied in HDS for the important
question arising in FDA of deciding which points among the discretization t1, . . . , tp
have to be selected for the analysis? Then, in Section 5.3 we will present a two-stage
procedure whose main aims is not to construct a new discretized points selection
method but rather to give a tool allowing direct and efficient adaptation to FDA of
any existing selection method developed in HDS.

5.2 A short discussion on sparse functional regression models

Taking the point of view of looking at a random functional element χ as its dis-
cretized version {χ(t1), . . . ,χ(tp)}, the question is to detect which (S ) among the
real variables X j = χ(t j) are informative for some statistical purpose, as for instance
for predicting some response Y . The natural idea is to construct models in which
only a few (let say s) among the p variables are informative (that is, #S = s). In
this framework people call the elements of S impact points (see [31] or [26]) or
most predictive points (see [14]). Usually, one lets these parameters on n (that is,
s = sn and p = pn) and for main purpose one has pn >> n and sn << pn. This is
called sparse regression modeling1, and most often the properties of the associated
statistical methods depend in a crucial way on the parameters pn and sn. Once again,
a fast naı̈ve approach would consist in seeing this search of informative points just a
special variable selection problem from a multivariate vector. However, the nature
of both problems exhibit at least one strong structural difference: in standard multi-
variate problems an increasing dimension pn means a wider scope of information
(some/most of it being probably unuseful) while in the functional setting an increas-
ing dimension pn just means a more precise information (just because it is linked
with finer grid). In counterpart, the naı̈ve point of view cannot be rejected totally

1 Note that sparsity is a phenomenon that can affect functional data in many other ways than
modeling. We will not enter here in this discussion (see for instance [5])
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since despite of these strong structural differences the aims of both problems are
similar.

There is a very extensive literature on sparse multivariate linear regression (see e.g.
[11], [12] and [25] for SCAD-penalized estimators) with a few semi-linear extensions
(see e.g. [18] for an adaptive penalized CQR approach, and [20], [23] and [1] for
SCAD-penalized estimators) and a few nonparametric ones (see e.g. [32], [24], [6]
and [35] for type-Lasso proposals; see also [36], [34], [28]) and [9] for other kinds of
procedures). Since a few years, there has been various works aiming to adapt some of
these multivariate selection procedures to the functional setting, most of them being
concerned with functional linear regression (see [31] for estimation of an impact
point in a continuous process; [27] for a proposal where principal components are
included as additional explanatory variables in an augmented regression model, the
corresponding parameters being estimated by means of selection procedures; [37]
for penalized-Lasso estimators; and [26] for a recent contribution for estimating the
number and locations of points of impact).

In the next Section 5.3, the aim is to present a general two-stage procedure which
is able to take into account the functional specificity of the problem. These ideas are
of double interest. Firstly, they are not linked with any specific selection approach and
will be therefore applicable to any type of methods (LASSO, Dantzig, . . .). Secondly,
they are not linked with any specific regression model and will be therefore usable as
well in linear, as in nonparametric or in semiparametric problems. The presentation
will be restricted to methodological ideas; theoretical asymptotics as well as real data
analysis will be only quickly discussed and referred to relevant additional literature.

5.3 The two-stage splitting ideas for impact points selection in

functional regression

Consider a regression problem in which the covariate is a functional variable {χ =
χ(t), t ∈ I} and with some response Y :

Y = r(χ)+ ε.

Suppose that χ is observed on a finite grid {t1, . . . , tpn} and denote the corresponding
observed vector X = (X1, . . . ,X pn) = {χ(t1), . . . ,χ(tpn)}. The question is to know
which among the X j are of interest for predicting Y . At this stage, we do not specify
what is the model for the operator r(·) nor the nature of the response Y , since the
ideas developed below are independent of these two points.

5.3.1 Splitting the data and first rough selection

The grid is split into several pieces in the following way



36 Germán Aneiros and Philippe Vieu

{1, . . . , pn}= ∪wn
k=1Ek with Ek = {(2k−1)qn/2+m, m =−qn

2
+1, . . . ,

qn

2
},

where wn and qn are integer sequences such that wnqn = pn. Because of the continu-
ous structure of the data, two variables X j and Xk corresponding to close indexes j
and k may have similar effects on the response, and so one may consider to select
impact points only among the isolated covariates

S1 = {X ((2k−1)qn+1)/2}wn
k=1.

5.3.2 Sharpening the procedure

Let say that, after this first rough procedure, one has selected some subset of variables
{X ((2k−1)qn+1)/2}k∈K0 , where K0 ⊂ {1, . . . ,wn}. Of course, there is the risk that the
splitting procedure does not have some information between two of these selected
points. To overcome this possible effect, it is possible to sharpen the method by per-
forming again a second variable selection procedure among the new set of variables
S2 defined to be those previously selected and their neighbours:

S2 = {X j, j ∈ ∪k∈K0Ek}.

After this sharpening stage one has at hand a selected set of impact points S̃ .

5.3.3 Summary of the procedure

The interest of this general way of thinking is double: firstly, it can be developed for
any kind of models for r(·) and, secondly, it may involve any kind of strategy for
performing variable selection at each stage. Of course such a variable selection is
linked with the model considered for the operator r(·). As a matter of conclusion the
two-stage functional impact points selection procedure can be summarized in the
following way:

i) Choose a specific model for the operator r(·) (see examples in Section 5.4);
ii) Choose a pilot variable selection procedure adapted to the model chosen in i);

iii) Apply the pilot procedure to the set S1 to get K0. Construct S2;
iv) Apply again the pilot procedure to the set S2;
v) Get the final selected set of impact points S̃ .
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5.4 About the properties of the functional two-stage selection

procedure

Roughly speaking, in HDS literature the mathematical properties of a variable selec-
tion procedure are strongly depending on the dimension of the data: an increasing
value of the parameter pn has negative effects both on the rate of convergence of
the method and on the restrictivity of the conditions needed to work. So, because
the two-stage procedure acts on subsets of the original data, one may expect it to
have much better rates of convergence and also to need less restrictive conditions for
working. Of course these general ideas have to be deeply studied for each situation,
that means for each specific model taken in i) and for each pilot procedure chosen in
ii). To fix the ideas, we just discuss here three kinds of regression models including
linear, semi-parametric and non-parametric situations. Precisely we consider the
usual sparse linear model in which α j are scalar parameters:

Y = α0 +
pn

∑
j=1

α jX j + ε with S = { j = 1, . . . , pn, α j �= 0}, (5.1)

its nonparametric additive version in which f j are smooth functional parameters:

Y = α0 +
pn

∑
j=1

f j(X j)+ ε with S = { j = 1, . . . , pn, f j �= 0}, (5.2)

and the partial linear one combining all together the four effects: linear, nonpara-
metric, continuous and discretized, in which the α j are scalar parameters, m(·) is a
smooth operator and ζ is a covariate of functional nature:

Y = α0 +
pn

∑
j=1

α jX j +m(ζ )+ ε with S = { j = 1, . . . , pn, α j �= 0}. (5.3)

Models (5.1), (5.2) and (5.3) are studied in [2], [3] and [4], respectively. Asymptotic
results are stated showing how (pending to suitable conditions on the sequences
qn and wn, and on the smoothness of the curves χ (and ζ , for the case of model
(5.3))) the selected impact points S̃ tends to the true one S . Convergence for the
coefficients of the models (that are the α j or the f j) are also stated. Because the
two-stage selection procedure does not act directly on the whole pn-dimensional
vector, it is shown that the rates of convergence improve, in general, the usual ones.

For instance, focusing first on the sparse linear model (5.1), [25] obtained that
the SCAD-penalized least squares estimator of α = (α1, . . . ,α pn)T converges at a
rate n−1/2 p1/2

n , assuming that pn = o(n1/2). Then, if one uses such SCAD method
as pilot variable selection in our two-stage procedure, the corresponding rate of
converge improves to n−1/2s1/2

n , while the condition on the dimensionality of the
model changes to pn = o(qnn1/2). It is worth noting that these are not minor im-
provements since in practice (i) sn is always very much smaller than pn and, (ii) the
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fact that qn could converge to ∞ allows to apply our procedure in scenarios of major
dimensionality (this being of much interest because the technological progress for
collecting and storing data provides curve datasets which are measured in more and
more fine grids, leading to very high values of pn). The case of variable selection
in the sparse nonparametric additive model (5.2) was dealt in [24], among others.
Because B-spline bases were used to approximate the additive components f j, the
group Lasso procedure was considered for variable selection, obtaining a rate of
convergence n−2/3 log(mn pn), under pn = exp(o(n2/3)) (mn denotes the truncation
algorithm in the B-spline representations). The rate of convergence of our two-stage
proposal when uses such procedure as pilot variable selector is n−2/3 log(mn), under
the weaker assumption pn = qn exp(o(n2/3)). Again, the improvement from our pro-
posal against the standard one is apparent. Finally, we focus on the more complex
model (5.3). As far as we know, the only variable selection method for the sparse
partial linear model (5.3) can be seen in [1]. Given the complexity of such model,
and in the sake of simplicity, we will compare the behaviour of both the standard
procedure and the proposed two-stage one restricted to fixed sn = s < ∞. Then, when
SCAD-based penalized estimators are considered, and assuming pn = o(n1/2), [1]
proved that the rate of convergence for the standard method is n−1/2. Although the
proposed two-stage procedure maintains that same rate of convergence, the condition
on the dimensionality is weaker (pn = o(qnn1/2)).

5.5 Future work

This presentation has introduced an approach for selecting covariates coming from a
discretized functional variable. Although it was explicitly studied and applied only
on three particular cases (sparse linear, nonparametric and partial linear regression
models), the main idea of splitting is also expected to work in other regression models
(as single index [16] and projection pursuit [13] models, . . .). In addition, such idea
could be also used in other problems dealing with functional data, as it is the case,
for instance, of classification. These challengers (and other related ones) will be dealt
in future researches.
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[8] Bühlmann, P., van de Geer, S.: Statistics for High-Dimensional Data. Methods,
Theory and Applications. Springer, Heidelberg (2011)

[9] Comminges, L., Dalalyan, A.: Tight conditions for consistency of variable
selection in the context of high dimensionality. Ann. Stat. 40, 2667–2696
(2012)

[10] Cuevas, A.: A partial overview of the theory of statistics with functional data.
J. Stat. Plann. Inference 147, 1–23 (2014)

[11] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its
oracle properties. J. Amer. Statist. Assoc. 96, 1348–1360 (2001)

[12] Fan, J., Peng, H.: Nonconcave penalized likelihood with a diverging number
of parameters. Ann. Stat. 32, 928–961 (2004)

[13] Ferraty, F., Goia,A., Salinelli, E., Vieu, P.: Functional projection pursuit regres-
sion. Test 22, 293-320 (2013).

[14] Ferraty, F., Hall, P., Vieu, P.: Most-predictive design points for functional data
predictors. Biometrika 97, 807–824 (2010)

[15] Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer-Verlag,
New York (2006)

[16] Goia, A., Vieu, P.: A partitioned single functional index model. Comput. Stat.
30, 673-692 (2015)

[17] Goia, A., Vieu, P.: An introduction to recent advances in high/infinite dimen-
sional statistics. J. Multivariate Anal. 46, 1–6 (2016)

[18] Guo, J., Tang, M., Tian, M., Zhu, K.: Variable selection in high-dimensional
partially linear additive models for composite quantile regression. Comput.
Statist. Data Anal. 65, 56–67 (2013)
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Chapter 6

A time-dependent PDE regularization to model

functional data defined over spatio-temporal

domains

Eleonora Arnone, Laura Azzimonti, Fabio Nobile and Laura M. Sangalli

Abstract We propose a method for the analysis of functional data defined over
spatio-temporal domains when prior knowledge on the phenomenon under study is
available. The model is based on regression with Partial Differential Equations (PDE)
penalization. The PDE formalizes the information on the phenomenon and models
the regularity of the field in space and time.

6.1 Space-Time Regression with PDE Penalization

We propose a new method for the analysis of functional data defined over spatio-
temporal domains. These data can be interpreted as time evolving surfaces or spatially
dependent curves. The proposed method is based on regression with differential
regularization and extends the models proposed in [16, 10, 3, 4]. We are in particular
interested to the case when prior knowledge on the phenomenon under study is
available. Analogously to [4], the prior knowledge is described in terms of a PDE.
But, with respect to [4], we here also include the temporal dimension, considering
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a time-dependent PDE that jointly models the spatial and temporal variation of the
phenomenon.

Recently, various methods have been proposed to deal with spatially dependent
functional data [12]. Starting from the pioneering work in [9], kriging prediction mod-
els for stationary spatial functional data have been developed in [7, 15, 8]. Universal
kriging approaches have been presented in [6, 13, 14] and kriging with external drift
in [10]. Moreover, methods based on differential regularizations has been recently
developed in [2, 11, 5, 1]. In these works, the authors consider two roughness penal-
ties that account separately for the regularity of the field in space and in time, using
a tensor product approach. Differently from the latter works, we here use a unique
regularizing term that jointly model the space-time variation of the phenomenon,
on the base of problem-specific prior information. Specifically, the regularization
involves the misfit of a time-dependent parabolic PDE modeling the phenomenon
behavior, ḟ +L f = u, where ḟ is the time derivative of the spatio-temporal function
f , and L is a differential operator in space. We consider various samplings designs,
including geo-statistical and areal data. We show that the corresponding estimation
problems are well posed and can be discretized in space by means of the Finite
Element method, similarly to [16, 10, 3, 4], and in time by means of the Finite Differ-
ence method. The model can handle data distributed over domains having complex
shapes such as domains with strong concavities and holes. Moreover, various types of
boundary conditions can be considered, with a very flexible modeling of the behavior
of the spatio-temporal field and the boundaries of the domain of interest.

6.2 Motivating application

As a motivating example, we want to study the blood flow velocity field in the
common carotid artery, using data from Echo-Color Doppler (ECD). These data were
analyzed for a single time instant, the systolic peak, in [4]. The echo doppler scan
provides a time-dependent measure of the velocities of blood flow particles sampled
within a bean in an artery section. Figure 6.1 shows the ECD signal registered in a
centrally located bean at the cross-section of the common carotid artery located 2 cm
before the artery bifurcation. The lower part of the ECD image displays the acquired
velocity signal during the time lapse of about three heart beats. This signal represents
the time-evolving histogram of the measured velocities in the beam: the gray-scaled
intensity of pixels is proportional to the number of blood-cells in the beam moving at
a certain velocity for any fixed time. Starting from the ECD signals over multiple
beans, we would like to reconstruct the time-varying mean velocity of the blood-flow
over the whole carotid section. A fundamental constraint in this application is given
by the so-called no-slip boundary conditions; indeed the physics of the problem
implies that, because of the friction between blood cells and arterial wall, blood-flow
velocity is zero at the arterial wall. Including the prior knowledge about the blood
fluid dynamics and appropriate boundaries conditions is in this context fundamental
to achieve meaningful and physiological estimates.



6 Space-Time Regression with PDE Penalization 43

Fig. 6.1: ECD image corresponding to the central point of the carotid section located
2 cm before the carotid bifurcation.
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Chapter 7

An asymptotic factorization of the Small–Ball

Probability: theory and estimates

Jean-Baptiste Aubin, Enea G. Bongiorno and Aldo Goia

Abstract This work reviews recent results on an asymptotic factorization of the
Small–Ball Probability of a L 2

[0,1]–valued process, as the radius of the ball tends
to zero. This factorization involves a volumetric term, a pseudo–density for the
probability law of the process, and a correction factor. Estimators of the latter two
factors are introduced and some of their theoretical properties considered.

7.1 Introduction

Since the seminal works of [9, 14], functional data analysis continues to massively
attract the attention of researchers as proven by the recent monograph [5], special
issues [8, 11] and activities [4] on the topic. In this framework, the Small–Ball
Probality (SmBP) theory has been playing (and still now plays) an important role. It
refers to the study of the asymptotic behaviour of P(X ∈ B(x,ε)) as ε vanishes, where
X is a random element taking its values in some topological space and B(x,ε) denotes
a suitable ball in such topology. From a theoretical point of view, researchers have
mainly focused on different Gaussian processes and in providing the convergence
rate (refer to the small tails probability theory; see [12, 13] and references therein). In
functional regression, SmBP is a technical instrument used to express the convergence
rate of estimators (see [9]). Recently, in the context of L 2

[0,1]–valued random elements,
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18, 28100, Novara, Italy e-mail: aldo.goia@uniupo.it

Contributions to Statistics, DOI 10.1007/978-3-319-55846-2_7

45© Springer International Publishing AG 2017
G. Aneiros et al. (eds.), Functional Statistics and Related Fields,



46 Jean-Baptiste Aubin, Enea G. Bongiorno and Aldo Goia

the SmBP has been used to derive a concept of surrogate density and to introduce
some non–parametric estimators for it (see [3, 6]). In particular, in [3] it has been
shown that, for a fixed number d and as the radius ε of the ball tends to zero, the
SmBP is asymptotically proportional to (a) the joint density of the first d principal
components (PCs) evaluated at the center of the ball, (b) the volume of the d–
dimensional ball with radius ε , and (c) a correction factor weighting the use of a
truncated version of the process expansion. Under suitable assumptions on the decay
rate of the eigenvalues of the covariance operator of the process, it has been shown
that the correction factor in (c) tends to 1 as the number of considered dimension
increases (see [3]). This fact provides a clear advantage in modelling the SmBP since
justifies the use of the lonely term (a) as a surrogate density of the process.

In this work, after recalling in Section 7.2 the theoretical conditions that lead to
the mentioned factorization, we illustrate in Section 7.3 how to estimate the terms
(a) and (c) providing asymptotic properties. The model advantages and potential
applications are discussed in the last Section 7.4.

7.2 Framework and Notations

Let (Ω ,F ,P) be a probability space and L 2
[0,1] be the Hilbert space of square inte-

grable real functions on [0,1] endowed with the inner product 〈g,h〉= ∫ 1
0 g(t)h(t)dt

and the induced norm ‖g‖2 = 〈g,g〉. A Random Curve (RC) X is a measurable
map defined on (Ω ,F ) taking values in (L 2

[0,1],B), where B denotes the Borel
sigma–algebra induced by ‖ · ‖. Suppose E‖X‖2 <+∞ and denote by

μX = {E [X (t)] , t ∈ [0,1]} , and Σ [·] = E [〈X −μX , ·〉(X −μX )]

its mean function and covariance operator respectively. Consider the Karhunen–
Loève expansion of X : denoting by

{
λ j,ξ j

}∞
j=1 the decreasing to zero sequence of

positive eigenvalues and their associated orthonormal eigenfunctions of Σ , it holds

X (t) = μX (t)+
∞

∑
j=1

θ jξ j (t) , 0≤ t ≤ 1, (7.1)

where θ j =
〈
X −μX ,ξ j

〉
are the so–called principal components (PCs) of X satisfy-

ing
E [θ j] = 0, Var (θ j) = λ j, E

[
θ jθ j′

]
= 0, j �= j′.

From now on and without loss of generality, suppose that μX = 0. Moreover, assume
that

(A-1) the first d PCs θθθ = (θ1, . . . ,θd)
′ admit a strictly positive joint probability density

fd ;



7 An asymptotic factorization of the Small–Ball Probability: theory and estimates 47

(A-2) there exists a strictly positive constant C such that x2
j ≤Cλ j for any j ≥ 1, with

x j = 〈x,ξ j〉;
(A-3) fd is sufficiently smooth (differentiable p times) and there exists a strictly positive

constant C for which, for any d ∈ N

sup
i, j∈{1,...,d}

√
λiλ j

∣∣∣∣∂ 2 fd(ϑϑϑ)
∂ϑi∂ϑ j

∣∣∣∣≤C fd(x1, . . . ,xd), for any ϑϑϑ ∈ D,

where D =
{
ϑϑϑ ∈ R

d : ∑ j≤d (ϑ j− x j)
2 ≤ ρ2

}
for some ρ ≥ ε;

Now, consider the small ball probability of the process X defined by

ϕ (x,ε) = P(‖X − x‖< ε) , for ε > 0.

In [3], authors have proven that, for a given d ∈ N and under assumptions (A-1),. . . ,
(A-3),

ϕ(x,ε)∼ fd(x1, . . . ,xd)
εdπd/2

Γ (d/2+1)
C(x,ε,d), as ε → 0, (7.2)

where

C(x,ε,d) = E

[
(1−Sd)

d/2 1I{Sd≤1}
]
,

Sd = S(x,ε,d) =
1
ε2 ∑

j≥d+1
(θ j− x j)

2,

and 1IA is the indicator function of the event A. Roughly speaking, (7.2) means that,
for a given positive integer d and as ε → 0, the SmBP ϕ(x,ε) behaves as the usual
first order approximation of the SmBP in a d–dimensional space (i.e. the probability
density function of the first d PCs evaluated at (x1, . . . ,xd) times the volume of the
d–dimensional ball of radius ε) up to the scale factor C(x,ε,d) that balances the use
of a truncated version of the process expansion (7.1).

To fully split the dependence on x and ε in factorization (7.2), the following
assumption can be considered:

(A-4) The eigenvalues {λ j} j∈N decay hyper–exponentially, that is d ∑ j≥d+1λ j =
o(λd), as d → ∞.

Under (A-1),. . . ,(A-4), it can be proven that, as d tends to infinity and for a
suitable choice of ε = ε(d),{

C(x,ε,d)→ 1,
ϕ(x,ε)∼ fd(x1, . . . ,xd)

εdπd/2

Γ (d/2+1) ,
(7.3)

see [3]. A practical choice for ε is
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ε2(d) =

√
dλd

∞

∑
j=d+1

λ j. (7.4)

To take advantage of the above factorizations, in the next section some estimators
for fd and C are introduced and their basic properties stated. Further discussions and
applications are discussed in the last section.

7.3 Estimates

Consider (X1, . . . ,Xn) a sample of RCs distributed as X , Xn and Σ̂n the empirical
versions of μX and Σ from which it is possible to estimate the empirical eigensystem
{λ̂ j, ξ̂ j} j∈N and {θ̂i, j = 〈Xi,ξ j〉} j∈N the estimated scores associated to Xi for any
i = 1, . . . ,n. It is known that such estimators are consistent; see, for instance, [5].

For what concerns the surrogate density fd , for a fixed d, let us introduce the
kernel density estimate:

f̂d,n

(
Π̂dx
)
= f̂n (x) =

1
n

n

∑
i=1

KHn

(∥∥∥Π̂d (Xi− x)
∥∥∥) (7.5)

where KHn (u) = det(Hn)
−1/2 K(H−1/2

n u), K is a kernel function, Hn is a symmet-
ric semi-definite positive d× d matrix and Π̂d denotes the projector onto the d–
dimensional space spanned by {ξ̂ j}d

j=1. Under regularity assumptions on fd and on
the kernel K, if one takes Hn = hnI with hn → 0 and nhd

n/ logn→ ∞ as n→ ∞, the
following result has been proven in [3].

Proposition 7.1. Take the optimal bandwidth c1n−1/(2p+d) ≤ hn ≤ c2n−1/(2p+d) and
p > max{2,3d/2}. Thus

E[( fd (x)− f̂n (x))2] = O
(

n−2p/(2p+d)
)
,

as n goes to infinity and uniformly in R
d.

Regarding the corrective factor C(x,ε,d) an estimator is provided by the empirical
one:

Ĉn,d = Ĉn(x, ε̂,d) =
1
n

n

∑
i=1

(
1− Ŝi(x, ε̂,d)

)d/2
1I{Ŝi(x,ε̂,d)≤1},

with Ŝi(x, ε̂,d) = ε̂−2 ∑ j≥d+1

(
θ̂i, j− x̂ j

)2
, θ̂i, j = 〈Xi, ξ̂ j〉, x̂ j = 〈x, ξ̂ j〉 and where ε̂ is

the empirical version of (7.4). Asymptotics on such estimator have been provided in
[1] and collected in the following proposition.

Proposition 7.2. As n tends to infinity, ε̂2 and Ĉn,d are consistent estimator in the
L1[Ω ,F ,P;R] metric. Moreover,

√
n(Ĉn,d −C) is asymptotically normal distributed.
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7.4 Conclusions

This work collects some theoretical results concerning the factorization of the SmBP.
These clarify those conditions under which it is possible to separate by means of
distinct factors the spatial and volumetric components. The asymptotic (7.3) provides
a modelling advantage: for d large enough, it justifies the use of factorized version of
the SmBP since the corrective factor C(x,ε,d) will be close to 1.
On the one hand, such approximation yields fd a surrogate density of the process
whose estimation can be tackled in a non–parametric manner (see [3, 6]) or para-
metrically (see [10] in the Gaussian mixture case). In [2], the estimate (7.5) is the
starting point to build a pseudo–density oriented clustering algorithm where clusters
are identified by the largest connected upper–surfaces containing only one mode.
This technique was applied to different real datasets.
On the other hand, the convergence to 1 of C(x,ε,d) holds theoretically only for
d → ∞. From the practical point of view, when d is fixed and in order to assess the
goodness of fd as a surrogate density, it is useful to evaluate how close to 1 is this
correction factor C. This qualitatively suggests the dimension d to be used in practice
(see [1]).
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Chapter 8

Estimating invertible functional time series

Alexander Aue and Johannes Klepsch

Abstract This contribution discusses the estimation of an invertible functional time
series through fitting of functional moving average processes. The method uses
a functional version of the innovations algorithm and dimension reduction onto
a number of principal directions. Several methods are suggested to automate the
procedures. Empirical evidence is presented in the form of simulations and an
application to traffic data.

8.1 Introduction

Functional time series have come into the center of statistics research at the con-
fluence of functional data analysis and time series analysis. Some of the more and
most recent contributions in this area include Aston and Kirch [1, 2] and Aue et al.
[7] who dealt with the detection and estimation of structural breaks in functional
time series, Chakraborty and Panaretos [9] who covered functional registration and
related it to optimal transport problems, Horváth et al. [13] and Aue and van Delft [8]
who developed stationarity tests in the time and frequency domain, respectively,
Hörmann et al. [12] who introduced methodology for the detection of periodicities,
Hörmann et al. [11] and Aue et al. [5] who proposed models for heteroskedastic
functional time series, van Delft and Eichler [20] who defined a framework for locally
stationary time series, Kowal et al. [16] who developed Bayesian methodology for a
functional dynamic linear model, Raña et al. [18, 19] who discussed outlier detection
in functional time series and provided methodology for the construction of bootstrap
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confidence intervals for nonparametric regression under dependence, respectively,
and Paparoditis [17] who introduced a sieve bootstrap procedure.

A general framework for functional time series allowing for elegant derivations
of large-sample results was put forward in Hörmann and Kokoszka [10]. This paper
introduced a concept to measure closeness of functional time series to certain func-
tional moving average processes. It was then exploited that the latter have non-trivial
autocovariance operators only for finitely many lags in order to derive large-sample
results concerning the validity of functional principal components analysis in a de-
pendent setting and change-point analysis (see [4]), among others. The focus of
Aue and Klepsch [6] was not on theoretical properties but on the more practical
question of how to estimate an invertible functional time series. This was achieved by
functional moving average model fitting. The fitting process involved an application
of the functional innovations algorithm, whose population properties were derived in
Klepsch and Klüppelberg [14]. This algorithm can be used to estimate the operators
in the causal representation of a functional time series. The consistency of these
estimates is the main result. For practical purposes, the proposed method requires the
selection of the dimension reduction space through both model selection and testing
approaches. Several methods are proposed and then evaluated in a simulation study
and in an application to vehicle traffic data.

The remainder is organized as follows. Section 8.2 introduces the setting and the
method for estimating functional moving average processes. Several algorithms for
practical implementation are discussed in Section 8.3. Section 8.4 gives a glimpse on
large-sample theory. Section 8.5 briefly covers empirical aspects.

8.2 Estimation methodology

Let H = L2[0,1] be the Hilbert space of square-integrable functions on [0,1] equipped
with the standard norm ‖ · ‖ defined by the inner product 〈x,y〉= ∫ 1

0 x(s)y(s)ds, for
x,y ∈ H. Let (Ω ,A ,P) be a probability space and denote by L2

H = L2(Ω ,A ,P) the
space of square integrable random functions taking values in H, noting that L2

H is a
Hilbert space with inner product E[〈X ,Y 〉], for X ,Y ∈ L2

H . A functional linear process
with values in L2

H is given by the series expansion

Xj =
∞

∑
�=0

ψ�ε j−�, j ∈ Z, (8.1)

where (ψ� : � ∈ N0) is a sequence in the space of bounded linear operators acting
on H and (ε j : j ∈ Z) a sequence of independent, identically distributed random
functions in L2

H . A functional time series (Xj : j ∈ Z) is invertible if it admits the
series expansion

Xj =
∞

∑
�=1

π�Xj−�+ ε j, j ∈ Z, (8.2)
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where (π� : �∈N) is a sequence of bounded linear operators such that ∑∞
�=1 ‖π�‖L <

∞, with ‖A‖L = sup‖x‖≤1 ‖Ax‖ for A bounded and linear.
If X ∈ L2

H with E[X ] = 0, then its covariance operator exists and admits a spectral
representation; that is,

CX (y) = E[〈X ,y〉X ] =
∞

∑
i=1

λi〈y,νi〉νi, y ∈ H, (8.3)

where (λi : i ∈ N) and (νi : i ∈ N) denote the eigenvalues and eigenfunctions, respec-
tively. If X ,Y ∈ L2

H with E[X ],E[Y ] = 0, the cross covariance operator exists and is
given by

CXY (y) = E[〈X ,y〉Y ], y ∈ H. (8.4)

Introducing x⊗ y(·) = 〈x, ·〉y for x,y ∈ H, the lag-h autocovariance operator of a
stationary functional time series (Xj : j ∈ Z) may be written as CX ;h = E[X0⊗Xh],
for h ∈ Z.

Let Vd = sp{ν1, . . . ,νd} be the subspace generated by the first d principal direc-
tions and let PVd be the projection operator from H to Vd . For an increasing sequence
(di : i ∈ N)⊂ N define Xd, j = PVdi

Xj, j ∈ Z, i ∈ N and denote by F̃n,k the smallest
subspace containing Xdk,n, . . . ,Xd1,n−k that is closed with respect to bounded, linear
operators. The best linear predictor of Xn+1 given F̃n,k is then

X̃n+1,k = PF̃n,k
(Xn+1) =

k

∑
i=1

θk,i(Xdk+1−i,n+1−i− X̃n+1−i,k−i), (8.5)

where X̃n−k,0 = 0. This is the form required for the innovations algorithm developed
in Klepsch and Klüppelberg [14] that provides a solution to recursively compute the
coefficients θk,1, . . . ,θk,k on the population level. However, for practical purposes, an
estimated version of (8.5) is needed. Define

V̂di = sp{ν̂1, . . . , ν̂di} and P̂(k) = diag(PV̂dk
, . . . ,PV̂d1

),

where ν̂i denotes the ith eigenfunction of the sample covariance operator ĈX . The
best linear predictor can now be computed with the functional innovations algorithm
given in Section 8.3. The large-sample behavior is presented in Section 8.4.

8.3 Algorithms

The following algorithm details how an estimate of the best linear predictor may be
computed by recursion. Denote by A∗ the adjoint of an operator A.

Functional innovations algorithm. The best linear predictor X̃n+1,k of Xn+1 given
F̃n,k can be computed by the recursions
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X̃n−k,0 = 0 and V̂1 = PV̂d1
ĈX PV̂d1

,

X̃n+1,k =
k

∑
i=1

θ̂k,i(Xdk+1−i,n+1−i− X̃k−i
n+1−i),

θ̂k,k−i =

(
PV̂dk+1

ĈX ;k−i PV̂di+1
−

i−1

∑
j=0

θ̂k,k− jV̂jθ̂ ∗i,i− j

)
V̂−1

i , i = 1, . . . ,k−1,

V̂k = ĈXdk+1
−X̃n+1,k

= ĈXdk+1
−

k−1

∑
i=0

θ̂k,k−iV̂iθ̂ ∗k,k−i. (8.6)

Application of the algorithm requires the selection of the di and and also the
FMA order q. The selection of the former can be achieved through the following
portmanteau test for independence. Here all di are set to the same value.

Determining the principal subspace by testing for independence.

(1) Given functions X1, . . . ,Xn, estimate λ̂1, . . . , λ̂n and ν̂1, . . . , ν̂n. Select d∗ such
that

TVE(d∗) = ∑d∗
i=1 λ̂i

∑n
i=1 λ̂i

≥ P

for some prespecified P ∈ (0,1).

(2) Let fh(�,�
′) and bh(�,�

′) denote the (�,�′)th entries of C−1
X∗;0CX∗;h and CX∗;hC−1

X∗;0,
respectively, and (X∗

j : j ∈ Z) the process consisting of the d + 1st to d + lth
principal directions of CX . If

Qd∗
n = n

h̄

∑
h=1

d∗+l

∑
�,�′=d∗+1

fh(�,�
′)bh(�,�

′)> qχ2
d∗2 h̄

,

set d∗ = d∗+1.
(3) If Qd∗

n ≤ qχ2
d∗2 h̄

, apply the functional innovations algorithm with di = d∗.

Once d is selected, the order of the resulting VMA process can be determined
with a Ljung–Box test or an AICC criterion. Both are described next.

(I) Order selection with Ljung–Box test.

(1) Test the null hypothesis H0 : CX;h = 0 for all h ∈ [h,h] with the test statistic

Qh,h = n2
h

∑
h=h

1
n−h

tr
(
Ĉ�

X;hĈ−1
X;0ĈX;hĈ−1

X;0

)
,

which is asymptotically χ2
d2(h−h−1)

-distributed.

(2) Iteratively compute Q1,h,Q2,h, . . . and select q as the largest h such that Qh,h is
significant but Qh+h,h is insignificant for all h.
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(II) Order selection with AICC criterion.

(1) Choose the order of the FMA process as the minimizer of

AICC(q) =−2lnL(Θ1, . . . ,Θq,Σ)+
2nd(qd2 +1)
nd−qd2−2

whereΘ1, . . . ,Θ1 are the VMA matrices and Σ the covariance matrix.

Another option is provided by the following FPE-type criterion that selects d and
q jointly. Is is an adaptation of a similar criterion for FAR processes put forward in
Aue et al. [3].

Determination of principal subspace and order selection with FPE criterion.

(1) Select (d,q) as minimizer of

fFPE(d,q) =
n+qd

n
tr(V̂n)+ ∑

i>d
λ̂i,

where V̂n is the matrix version of V̂n in (8.6).

8.4 Large-sample properties

The following theorem states that Γ̂k is a consistent estimator for Γk.

Theorem 8.1. If (Xj : j ∈ Z) defined in (8.1) is such that ∑∞
m=1 ∑∞

�=m ‖ψ�‖L < ∞
and E[‖ε0‖4]< ∞, then (n− k)E[‖Γ̂k−Γk‖2

N ]≤ kUX , where ‖ · ‖N denotes nuclear
norm and UX a constant that does not depend on n.

To discuss the consistency of the estimators in the causal and invertible represen-
tations, further conditions are needed. As n→ ∞, let k = kn → ∞ and dk → ∞ such
that

k1/2(n− k)−1/2α−2
dk

→ 0,

k1/2α−1
dk

(
∑
�>k

‖π�‖L +
k

∑
�=1

‖π�‖L ∑
i>dk+1−�

λi

)
→ 0,

k3/2α−2
dk

n−1
( dk

∑
�=1

δ−2
�

)1/2

→ 0, (8.7)

where αdk is related to the spectral gaps of CX and αdn is the infimum of the eigen-
values of the spectral density operator of ((〈Xn,ν1〉, . . . ,〈Xn,νdn〉)T : n ∈ N).

Theorem 8.2. Under the assumptions of Theorem 8.1 and the above conditions, for
all x ∈H and i ∈N as n→ ∞, ‖(β̂k,i−πi)(x)‖ p→ 0, and ‖(θ̂k,i−ψi)(x)‖ p→ 0. If the
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Fig. 8.1: Model selection for different FAR(1) processes. The left three plots in each
small figure give the d chosen by total variation explained with P = 0.8 (TVE), the
test for independence (IND) and the functional FPE criterion (FPEd). The right three
plots in each small figure give the selected order q by AICC, Ljung–Box and fFPE.

operators (ψ� : � ∈ N) and (π� : � ∈ N) are Hilbert–Schmidt, then the convergence is
uniform.

Detailed proofs of both theorems may be found in Aue and Klepsch [6].

8.5 Empirical results

As an illustration of the proposed fitting method, a simulation is provided in which
an FAR(1) process is approximated through an FMA(q) process, where the process is
generated as outlined in Aue et al. [3], choosing various norms κ of the FAR operator
and fast and slow decays of eigenvalues of the covariance operator. Model selection
results for the different methods are provided in Figure 8.1, noting that FMA models
are fit to an FAR time series.

Figure 8.2 displays 1440 curves of average velocity per minute obtained at a fixed
measurement station on A92 Autobahn in southern Germany. Klepsch et al. [15]
indicate that this functional time series is stationary and that an FMA fit may be
appropriate. Applying the functional innovations algorithm together with any of the
proposed procedures to select d and q leads to a first-order dynamics. Additional
information is provided in Aue and Klepsch [6].
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Fig. 8.2: Discrete velocity observations (left) and corresponding velocity functions
(right).
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Chapter 9

On the Geometric Brownian Motion assumption

for financial time series

Enea G. Bongiorno, Aldo Goia and Philippe Vieu

Abstract The Geometric Brownian Motion type process is commonly used to de-
scribe stock price movements and is basic for many option pricing models. In this
paper a new methodology for recognizing Brownian functionals is applied to finan-
cial datasets in order to evaluate the compatibility between real financial data and the
above modeling assumption. The method rests on using the volumetric term which
appears in the factorization of the small–ball probability of a random curve.

9.1 Introduction

Modeling stock prices represents an important task in finance since this is the starting
point for evaluating derivatives and other contracts, which have these prices as
underlying. The most famous approach, dating back to Black and Scholes [1], states
that the dynamic of prices behaves as a Geometric Brownian motion (GBM), with
constant coefficients of drift and volatility. In the time, many variants have succeeded
(see [5] for a review): in general, in such literature, it is common to assume that the
prices follow a GBM, with drift and volatility which evolve during the time.

The problem to verify the compatibility of observed data with the GBM assump-
tion is still an open problem: only indirect empirical evidences have been provided to
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support that modeling (for instance, by testing marginal Gaussianity, serial correlation
of increments, and so on; see among many others, [7] and [8]).

In [2] a new approach to explore the nature of functional data has been introduced
and discussed: starting from the possibility to factorize the small–ball probability of
a random curve in a spatial factor and a volumetric one, the authors use this latter
as the leading term to characterize the nature of the underlying process which has
generated the observed curves.

The aim of this paper is to apply such new methodology to financial time series
in order to verify the compatibility with the GBM assumption: after introducing in
Section 9.2 the notation and summarize some important steps of the methodology
introduced in [2], in Section 9.3 an application to real datasets is provided and the
main results are illustrated.

9.2 Recognizing some Brownian functionals

Consider a random element X defined on a suitable probability space and mapping
in L 2

[0,1], the space of square integrable functions on [0,1], equipped with its natural

inner product 〈g,h〉 = ∫ 1
0 g(t)h(t)dt, and the induced norm ‖g‖2 = 〈g,g〉, g,h ∈

L 2
[0,1]. In order to characterize the probability distribution of X , it is useful to known

the behaviour of the small-ball probability of X , that is P(‖X − x‖< ε), as ε tends
to zero. The results on this topic available in the literature concern essentially some
special classes of Gaussian processes and are presented in the form

P(‖X − x‖< ε)∼ ψ (x)φ (ε) as ε → 0,

where ψ (x) is a positive constant depending on x, which plays the role of the surro-
gate density of X , and φ (ε) representing the volumetric term independent on x. For
some processes, the latter can be asymptotically approximated by εα exp

(−γε−β ),
with α , β and γ non–negative constants; in particular, it is known that when X is a
Brownian bridge process, α = 0, γ = 1/8 and β = 2 (see [6]).

Suppose now to dispose of a sample {Xi, i = 1, . . . ,n} of i.i.d. copies of X , from
which one can obtain an estimate φ̂ (ε) of φ (ε). The comparison of φ̂ (ε) and φ (ε)
by a suitable dissimilarity measure allows to evaluate the parameters involved, as the
ones which minimize that dissimilarity. This idea has been developed in [2] where
the goodness of the approach is shown by a simulations study.

In particular, if one assumes that the sample comes from a Brownian bridge, once
φ̂ (ε) is computed for ε ∈ E , a suitable subset of R+, it is possible to estimate β as
the minimizer β̂ of the centered cosine dissimilarity (ccd) between log φ̂ (ε) and ε−β

over E , where the ccd between g and h is defined by 1−〈g�,h�〉(‖g�‖‖h�‖)−1, with
g� = g− ∫ g(t)dt and all integrals are computed on E . If β̂ is close to 2, then this
represents an empirical evidence in favour of the correctness of assumption that the
process is a Brownian bridge, whereas if β̂ is far from 2, there is not compatibility
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with that specification. To have an idea about the variability of β̂ , one can refer to
confidence intervals estimated, by means of Monte Carlo approach, in [2] for various
sample sizes.

The latter approach can be extended directly to other Gaussian processes which
are functionals of the Browian bridge (as, for instance, the Wiener process and the
Geometric Brownian Motion): in fact, it is enough to apply a suitable tranformation
to the data to obtain a Brownian bridge.

9.3 Analysis of financial time series

In this Section we apply the methodology illustrated above to some time series of
stock prices, in order to evaluate the compatibility of the data with the assumption
that the ones come from a Geometric Brownian Motion.

To do this, we concentrate our attention on four well known financial indexes,
used as underlying for a lot of derivatives, futures and other contracts: Dow Jones
Industrial Average, NASDAQ composite, NIKKEI 225 and S&P 500.

Time series consist in daily closing prices from 12 March 1985 to 1 December
2016 for Dow Jones, from 5 June 1984 to 1 December 2016 for NIKKEI index, and
from 13 April 1977 to 1 December 2016 for NASDAQ and S&P 500 indexes. Hence,
overall we have 8 thousand daily prices for Dow Jones and NIKKEI indexes, and 10
thousand for NASDAQ and S&P 500. The plots of these time series are reported in
Figure 9.1.

9.3.1 Modeling

Denote by S (t) the price of a stock observed at time t. From the time series{
S (t j) , j = 1, . . . ,N

}
it is possible to build a sample of n discretized functional

data Xi by dividing the interval T = [t1, tN ] in n disjoint intervals Ti with constant
width τ (positive and integer, so that N = nτ) and cutting the whole trajectory as
follows:

Xi (t j) = S ((i−1)τ+ t j) t j ∈ [0,τ) , i = 1, . . . ,n.

Accordingly with the financial literature (see e.g. [3], [5]) we assume that the under-
lying continuous process, from which data come, follows the GBM model:

Xi (t) = Xi (0)exp
{(

μi− 1
2
σ2

i

)
t +σiW (t)

}
t ∈ [0,τ)

where μi and σi are the specific drift term and the specific volatility rate of the period
Ti and W (t) is a Wiener process. In this way, we take into account the fact that
volatility rate vary with time over T , but can be considered constant over suitable
subintervals.
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Fig. 9.1: Time series of daily prices of Dow Jones (left, top), NASDAQ (right, top),
NIKKEI (left, bottom) and S&P 500 (rigth, bottom) indexes.

Since
W (t) =

[
log(Xi (t)/Xi (0))−

(
μi−σ2

i /2
)

t
]
/σi (9.1)

and W (t)− tW (τ) is a Brownian Bridge, the methodology illustrated in Section 9.2
applies to verify the compatibility of data with the assumption.

9.3.2 Estimates and main results

The first step to operationalize the methodology is to cut the time series in order
to obtain the samples of functional data: we decided to divide the whole intervals
in subintervals of d days each one, with d = 25,50,80,100 in order to evaluate the
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Table 9.1: Estimated values of β for the the different stock prices indexes varying d.
Into brackets the sample size.

d Dow Jones NASDAQ NIKKEI S&P 500
100 2.18 [159] 1.62 [199] 2.16 [159] 2.14 [199]
80 2.24 [199] 1.68 [249] 2.24 [199] 2.22 [249]
50 2.20 [160] 1.80 [200] 2.14 [160] 2.24 [200]
25 2.16 [320] 1.88 [400] 2.08 [320] 2.12 [400]

results with respect to the cutting criterion. In this way we should obtain samples of
n = 10000/d curves for NASDAQ and S&P 500 and of n = 8000/d curves for Dow
Jones and NIKKEI. Since, the larger d is, the smaller n is, for d = 100,80 we add to
the sample some curves built with the same cutting criterion but with starting point
shifted by d/2 ahead. In this way we guarantee more accurate estimations.

For each sample the terms μi and σi are estimated from each curve by using the
maximum likelihood estimates as follows:

μ̂i =
1
d

d

∑
j=1

Xi (t j) and σ̂2
i =

1
d

d

∑
j=1

(Xi (t j)− μ̂i)
2 .

These values are used to transform the samples by means of (9.1). To the sake of
illustration, the samples of curves when d = 80 are drawn in Figure 9.2.

For each case (varying d and the stock index), the volumetric part φ (ε) is esti-
mated using the k–NN approach in [4]: here we used the box kernel (see Corollary
5.2 in [4]), and the number of neighbours equals the integer part of n/2. Finally,
by means of the method described in Section 9.2, we get estimates of β which are
reported in Table 9.1.

It is worth to noticing that β̂ is strictly positive: we can deduce that the log–
volumetric part log(φ) is proportional to ε−β . Moreover, all the values are quite close
to 2, that corresponds to the most of the Brownian functionals, and the smaller the
length d of Ti is, the closer β̂ is to 2; this turns out to be coherent with the literature:
the BGM can be used as a model for stock prices whenever the observation window
is short enough to assume that drift and volatility terms are constant over that period.
Indeed, if one has high–frequency data instead of daily ones (for instance observed
at each 5 minutes), the effect of non–constant drift and volatility would be further
relaxed and β̂ is very closed to 2. This is shown empirically in [2].
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Fig. 9.2: The samples of functional data, derived from original time series, for stock
prices Dow Jones (left, top), NASDAQ (rigth, top), NIKKEI (left, bottom) and S&P
500 (right, bottom) indexes, when d = 80.

References

[1] Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. J. Polit.
Econ. 81 (3), 637–654 (1973)

[2] Bongiorno, E. G., Goia, A., Vieu, P.: Evaluating the complexity of functional
data. Preprint (2017)

[3] Campbell J. Y., Lo A. W., MacKinlay A.C.: The Econometrics of Financial
Markets. Princeton University Press (2012)

[4] Ferraty, F., Kudraszow, N., Vieu, P.: Nonparametric estimation of a surrogate
density function in infinite-dimensional spaces. J. Nonparametr. Stat. 24 (2),
447–464 (2012)



9 On the Geometric Brownian Motion assumption for financial time series 65

[5] Fusai, G., Roncoroni, A.: Implementing Models in Quantitative Finance: Meth-
ods and Cases. Springer Finance (2008)

[6] Li, W. V., Shao, Q. M.: Gaussian processes: inequalities, small ball probabili-
ties and applications. In: Stochastic processes: theory and methods. Vol. 19 of
Handbook of Statist. North-Holland, Amsterdam, 533–597 (2001)

[7] Marathe R. R., Ryan S. M.: On The Validity of The Geometric Brownian Motion
Assumption. The Engineering Economist. 50 (2), 159–192 (2005)

[8] Yen G., Yen E. C.: On the Validity of the Wiener Process Assumption in Option
Pricing Models: Contradictory Evidence from Taiwan, Rev. Quant. Finance
Account. 12 (4), 327–340 (1999)



Chapter 10

Commutator of projectors and of unitary

operators

Alain Boudou and Sylvie Viguier-Pla

Abstract We define and study the concept of commutator for two projectors, for a
projector and a unitary operator, and for two unitary operators. Then we state several
properties of these commutators. We recall that projectors and unitary operators
are linked with the spectral elements of stationary processes. We establish relations
between these commutators and some other tools related to the proximity between
processes.

10.1 Introduction

This work relates to the field of the operatorial domain, dealing with projectors and
unitary operators. These operators take a large place in the statistics of stationary
processes. For example, the shift operator is a unitary operator, and a unitary op-
erator is a linear combination of projectors. We define and study the concepts of
commutator for two projectors, for a projector and a unitary operator, and for two
unitary operators. These concepts are developped in the Hilbertian frame, and when
the C−Hilbert space H is of the type L2(Ω ,A ,P), our results apply to stationary
processes. The commutativity of two stationary processes is a generalization of the
notion of stationary correlation. When there is not a complete commutativity, we may
extend the notion of commutativity, asking how to retrieve the part of each process
which commutes. The commutator proposes an answer to this question. We recall
that the product of convolution of spectral measures, such as defined in Boudou and
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Romain [5], needs an hypothesis of commutativity. Our work uses tools defined in
Boudou and Viguier-Pla [8], such as the r−convergence and a distance-like measure
of the gap between projectors.

Obviously, the commutator of two projectors is linked with the canonical analysis
of the spaces generated by these projectors. When these spaces are complex, the
practical interest of it is the domain of stationary processes, as seen above. Several
authors work on spectral elements of processes, as, for example, in the large deviation
field (Gamboa and Rouault [11]), the autoregressive processes (Bosq [2]), and for
reduction of dimension (Brillinger [9], Boudou [3]). The joint study of two processes
may lead to the comparison of these processes, by the way of the commutators. When
these spaces are real, applications may be forseen by the search of common and
specific subspaces of two spaces. Such problematics have been largely developped
with other tools, as, for example, in the works of Flury and Gautschi [10], Benko and
Kneip [1], or Viguier-Pla [12].

10.2 Prerequisites, recalls and notation

In this text, H is a C−Hilbert space, (E,ξ ) a measurable space, and B the Borel
σ−field of Π = [−π;π[. We note S the measurable application (λ ,λ ′) ∈Π ×Π �→
λ +λ ′ − 2π

[
λ+λ ′+π

2π

]
∈ Π , where [x] denotes the integer part of x. When H ′ is a

C−Hilbert, P(H ′) denotes the set of the orthogonal projectors of H ′.
Let us examine the notions of stationarity and of correlated stationarity.

Definitions 10.2.1. A series (Xn)n∈Z of elements of H is said to be stationary when,
for any pair (n,m) of elements of Z, we have < Xn,Xm >=< Xn−m,X0 >.
Two stationary series (Xn)n∈Z and (Yn)n∈Z are said to be stationarily correlated
when < Xn,Ym >=< Xn−m,Y0 >, for any pair (n,m) of elements of Z.

Let us recall the notion of integral with respect to a random measure (r.m.).
Definition 10.2.2. A r.m. Z is a vector measure, defined on B and taking values in
H, such that < ZA,ZB >= 0, for any pair (A,B) of disjoint elements of B.

Proposition 10.2.1. If Z is a r.m., then the application μZ : A ∈B �→ ‖ZA‖2 ∈R
+ is

a bounded measure. There exists one and only one isometry IZ from L2(Π ,B,μZ)
onto HZ = vect{ZA;A ∈B} which, with A, associates ZA, for any A of B.

Definition 10.2.3. If Z is a r.m., for any ϕ of L2(Π ,B,μZ), IZϕ is named integral
of ϕ with respect to the r.m. Z, and is denoted

∫
ϕdZ.

Let us now examine the association “stationary series−r.m.”.
Proposition 10.2.2. If Z is a r.m., then (

∫
ei.ndZ)n∈Z is a stationary series. Conversely,

with any stationary series (Xn)n∈Z of elements of H, we can associate a r.m. Z, and
only one, defined on B, taking values in H, such that Xn =

∫
ei.ndZ, for any n of Z.

A spectral measure (s.m.) is a projector-valued application, defined on a σ−field,
as any measure.
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Definition 10.2.4. A spectral measure (s.m.) E , on ξ for H, is an application from ξ
in P(H) such that
i) E E = IH,
ii) E (A∪B) = E A+E B, for any pair (A,B) of disjoint elements of ξ ,
iii) limnE AnX = 0, for any sequence (An)n∈N of elements of ξ which decreasingly
converges to /0 and for any X of H.

With a s.m., we can associate an infinity of r.m.’s.
Proposition 10.2.3. If E is a s.m. on B for H, then the application ZX

E : A ∈B �→
E AX ∈ H is a r.m..

Just like the product of two probability measures is defined, we can define a
product for two s.m.’s, with an hypothesis of commutativity.
Definition 10.2.5. Two s.m.’s E1 and E2 on B for H commute when E1A1E2A2 =
E2A2E1A1, for any A1 and A2 of B.

Proposition 10.2.4. If the s.m.’s E1 and E2 commute, then there exists a s.m., and
only one, denoted E1⊗E2, on B⊗B for H, such that E1⊗E2A1×A2 = E1A1E2A2,
for any pair (A1,A2) of elements of B.

Proposition 10.2.5. If the s.m.’s E1 and E2 commute, then the application E1 ∗E2 :
A ∈B �→ E1⊗E2S−1A ∈P(H) is a s.m. on B for H named product of convolution
of the s.m.’s E1 and E2.

With any s.m. on B for H, we can associate a unitary operator (u.o.).
Proposition 10.2.6. If E is a s.m. on B for H, then the application X ∈ H �→∫

ei.1dZX
E ∈H is a u.o.. Conversely, if U is a u.o. of H, then there exists one, and only

one, s.m. E , on B for H, such that UX =
∫

ei.1dZX
E , for any X of H.

From a u.o., we can generate a family of stationary series.
Proposition 10.2.7. Assume that U is a u.o. of H of associated s.m. E , then (UnX)n∈Z
is a stationary series of associated r.m. ZX

E .

When two o.u.’s commute, we can easily express the s.m. associated with their
product.
Proposition 10.2.8. Two u.o.’s U1 and U2, of respective associated s.m.’s E1 and E2,
commute if and only if E1 and E2 commute. In that case, E1 ∗E2 is the s.m. associated
with the u.o. U1U2.

For developments of these notions, the reader can refer to Boudou [4], Boudou
and Romain [5], and Boudou and Romain [6].

We will end this section by recalls concerning a relation of partial order defined
on P(H).
Definition 10.2.6. We say that a projector P is smaller than a projector Q, and we
note P� Q, when P = PQ = QP.

Proposition 10.2.9. If P and Q are two projectors such that P � Q, then ‖PX‖ ≤
‖QX‖, for any X of H.

The relation� is of partial order, but it has the advantage that any family {Pλ ;λ ∈
Λ} of projectors, finite or not, countable or not, has got a larger minorant, that is
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a lower bound, denoted inf{Pλ ;λ ∈ Λ}, and a smaller majorant, that is an upper
bound, denoted sup{Pλ ;λ ∈Λ}. Then we have the following properties.
Proposition 10.2.10. Let {Pλ ;λ ∈Λ} be a family of projectors. Then
i) Iminf{Pλ ;λ ∈Λ}= ∩λ∈Λ ImPλ ;
ii) (sup{Pλ ;λ ∈Λ})⊥ = inf{P⊥λ ;λ ∈Λ};
iii) (inf{Pλ ;λ ∈Λ})⊥ = sup{P⊥λ ;λ ∈Λ};
iv) if P1 and P2 are two projectors which commute, then inf{P1;P2}= P1P2.

We can then obtain some properties which are similar to those existing in the
classic analysis of sequences.
Definition 10.2.7. Let (Pn)n∈N be a sequence of projectors. If sup{inf{Pm;m ≥
n};n ∈ N} = inf{sup{Pm;m ≥ n};n ∈ N}, we say that (Pn)n∈N r−converges to P,
and we note it limr

nPn = P.

The r−convergence implies the point by point convergence, but the converse is
not true.

From the relation �, we can measure the gap between two projectors.
Definition 10.2.8. For any(P1,P2) of P(H)×P(H), we define
d(P1,P2) = sup(P1,P2)− inf(P1,P2).

Proposition 10.2.10. For any(P1,P2) of P(H)×P(H), we have Im(d(P1,P2))
⊥ =

Ker(P1−P2).

This notion evoques the notion of distance, however, it is not a distance, as
d(P1,P2) is a projector. Its interest lies on the following property.
Proposition 10.2.10. A sequence (Pn)n∈N of projectors r−converges to P if and only
if limr

nd(Pn,P) = 0.
Finally, let us define the notion of maximal equalizator of two u.o.’s.

Definition 10.2.11. We name maximal equalizator of the u.o.’s U1 and U2 the projec-
tor, denoted RU1,U2 , on ∩n∈ZKer(Un

1 −Un
2 ).

These notions are developped in Boudou and Viguier-Pla [8].

10.3 Commutator of two projectors

Let us first define this notion of commutator.
Definition 10.3.1. A projector K is a commutator of the projectors P1 and P2 when it
commutes with P1 and P2 and when P1KP2 = P2KP1.

We can establish the following properties.
Proposition 10.3.1. Let P1 and P2 be two projectors. Then
i) the upper bound of a family of commutators of the projectors P1 and P2 is a
commutator of the projectors P1 and P2;
ii) 0 is a commutator of the projectors P1 and P2;
iii) the upper bound of the family of the commutators of the projectors P1 and P2 is
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the projector on Ker(P1P2−P2P1), that is inf{P1,P2}+ inf{P1,P⊥2 }+ inf{P⊥1 ,P2}+
inf{P⊥1 ,P⊥2 }.

So we have the following definition.
Definition 10.3.2. Let P1 and P2 be two projectors. We call maximal commutator of
the projectors P1 and P2 the projector CP1,P2 on Ker(P1P2−P2P1).

Of course, it is easy to establish that CP1,P2 = I if and only if P1 and P2 commute.
The maximal commutator is a tool for measuring the degree of commutativity of

the projectors P1 and P2. The larger it is, the larger Ker(P1P2−P2P1) is. It is clear
that when X belongs to Ker(P1P2−P2P1) = ImCP1,P2 , ‖C⊥

P1,P2
X‖= 0. So what can

we speculate when X is close to Ker(P1P2−P2P1), that is when ‖C⊥
P1,P2

X‖ is small?
We will bring an answer to this question, with the following property.
Proposition 10.3.2. For any pair (P1,P2) of projectors, and for any X of H, we have
‖P1P2X −P2P1X‖ ≤ 2‖C⊥

P1,P2
X‖.

So when X is close to Ker(P1P2−P2P1), then P1P2X is close to P2P1X .

10.4 Commutator of a projector and of a unitary operator

In the same way as we have defined a commutator of two projectors, we can define a
commutator of a projector and of a u.o..
Definition 10.4.1. A projector K is a commutator of the projector P and of the u.o.
U when it commutes with P and U, and when PKU =UKP.

We have got similar properties as those of the previous section.
Proposition 10.4.1. Let P be a projector and U a u.o.. We can affirm that
i) the upper bound of a family of commutators of the projector P and of the u.o. U is
a commutator of the projector P and of the u.o. U;
ii) 0 is a commutator of the projector P and of the u.o. U;
iii) the upper bound of the family of commutators of the projector P and of the u.o. U
is the projector on ∩n∈ZKer(PUn−UnP).

The following definition is a consequence of these properties.
Definition 10.4.2. Let P be a projector and U a u.o.. We name maximal commu-
tator of the projector P and of the u.o. U, and we note it CP,U , the projector on
∩n∈ZKer(PUn−UnP).

Of course, it is easy to verify that P and U commute if and only if CP,U = I. The
association “u.o.-s.m.” being biunivocal, all these properties can express by means of
the s.m. which is associated with a u.o.. We get then a relation between a commutator
of a projector and of a u.o. and a family of commutators of two projectors.
Proposition 10.4.2. If P is a projector and U a u.o. of associated s.m. E , we can
affirm that
i) a projector K is a commutator of the projector P and of the u.o. U if and only if,
for any A of B, K is a commutator of the projectors P and E A;
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ii) ImCP,U = ∩A∈BKer(PE A−E AP);
iii) CP,U = inf{CP,E A;A ∈B}.

The last two points come from the fact that ∩n∈ZKer(PUn−UnP) = ∩A∈B Ker
(PE A−E AP), and that ImCP,E A = Ker(PE A−E AP).

If we remark that {U−nPUn;n ∈ Z} is a family of projectors and that Ker(PUn−
UnP) = Ker(U−nPUn−P) = (Imd(U−nPUn,P))⊥, we can give to CP,U an ergodic
definition.
Proposition 10.4.3. For any projector P and for any u.o. U, we have

CP,U = inf{(d(U−nPUn,P))⊥;n ∈ Z}.

This last result can have the following interpretation. If all the elements of the
family {U−nPUn;n ∈ Z} are close to P, that is, if for any n of Z, d(U−nPUn,P) is
small, or even more, for any n of Z, (d(U−nPUn,P))⊥ is large, then it is the same
for the lower bound CP,U . This means that P and U are near to commute.

Proposition 10.4.3 lets us write d(U−nPUn,P)�C⊥
P,U , so

‖(PUn−UnP)X‖= ‖U−nPUnX −PX‖ ≤ 2‖d(U−nPUn,P)X‖ ≤ 2‖C⊥
P,U X‖,

because for any pair of projectors (P,P′), we have ‖PX −P′X‖ ≤ 2‖d(P,P′)X‖ (cf.
Boudou and Viguier-Pla [8]).

Thanks to a similar approach, Propositions 10.3.2 and 10.4.2 let us affirm that
‖PZX

E A−ZPX
E A‖= ‖PE AX −E APX‖ ≤ 2‖C⊥

P,E AX‖ ≤ 2‖C⊥
P,U X‖.

Then the following stands.
Proposition 10.4.4. For any projector P and for any u.o. U of associated s.m. E , for
any X of H, we have
i) ‖PUnX −UnPX‖ ≤ 2‖C⊥

P,U X‖, for any n of N;
ii) ‖PZX

E A−ZPX
E A‖ ≤ 2‖C⊥

P,U X‖, for any A of B.

So, if X is close to ImCP,U , that is if ‖C⊥
P,U X‖ is small, then the series (PUnX)n∈Z

is “almost stationary”, in such a way it is close to the stationary series (UnPX)n∈Z.
As for the application P◦ZPX

E , it is almost a r.m., close to ZPX
E , r.m. associated with

the stationary series (UnPX)n∈Z.
Let us end this section by the resolution of the following problem.
Let (Xn)n∈Z be a stationary series, of associated r.m. Z, and P be a projector. We

wish to define all the stationary series, stationarily correlated with (Xn)n∈Z, included
in ImP. Such series will be named “solution series”. Then we have the following.
Proposition 10.4.5. If U is a u.o. whose associated s.m. E is such that ZX0

E = Z,
then, for any X of ImCP,U , we can affirm that (UnPX)n∈Z is a “solution series”. Any

“solution series” is of this type.

Let us recall that when Z is a r.m. defined on B, taking values in H, there exists at
least one s.m. E on B for H such that ZX0

E = Z, where X0 =
∫

ei.0dZ (cf. Boudou [4]).
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10.5 Commutator of two unitary operators

When two u.o.’s U and V commute, the s.m. which is associated with the u.o. UV
is the product of convolution of the s.m.’s respectively associated with U and V .
But what happens when UV �=VU? The maximal commutator will bring a partial
solution to this question.
Definition 10.5.1. A projector K is a commutator of the u.o.’s U and V when it
commutes with U and V , and when UKV =V KU.

Then we can establish the following properties.
Proposition 10.5.1. Let U and V be two u.o.’s. We can affirm that
i) the upper bound of a family of commutators of the u.o.’s U and V is a commutator
of the u.o.’s U and V ;
ii) 0 is a commutator of the u.o.’s U and V ;
iii) the upper bound of the family of commutators of the u.o.’s U and V is the projector
on ∩(n,m)∈Z×ZKer(UnV m−V mUn).

So we can define the following.
Definition 10.5.2. Let U and V be two u.o.’s. We name maximal commutator of the
u.o.’s U and V , and we note it CU,V , the projector on the space∩(n,m)∈Z×ZKer(UnV m−
V mUn).

Of course, it is easy to verify that U and V commute if and only if CU,V = I.
The reader will notice the similarities between Definitions 10.3.1, 10.4.1 and 10.5.1,
between Propositions 10.3.1, 10.4.1 and 10.5.1, and between Definitions 10.3.2,
10.4.2 and 10.5.2.

The commutator of two u.o.’s can be defined from the associated s.m.’s.
Proposition 10.5.2. If U and V are two u.o.’s of respective associated s.m.’s E and
α , we can affirm that
i) a projector K is a commutator of U and V if and only if, for any pair (A,B) of
elements of B, K is a commutator of the projectors E A and αB;
ii) ImCU,V = ∩(A,B)∈B×BKer(E AαB−αBE A);
iii) CU,V = inf{CE A,αB;(A,B) ∈B×B}= inf{CαB,U ;B ∈B}.

To establish the last two points, we must notice that
∩(n,m)∈Z×ZKer(UnV m−V mUn) = ∩(A,B)∈B×BKer(E AαB−αBE A).

Point iii) provides a relation between the three types of maximal commutators
which we study. We can also establish a relation between the maximal commutator
of two u.o.’s and the maximal equalizator of two u.o.’s.
Proposition 10.5.3. Let U and V be two u.o.’s. We have CU,V = inf{RV,U−nVUn ;n ∈
Z}.

For the proof, we have just to notice that
ImCU,V = ∩n∩m Ker(UnV m−V mUn) = ∩n∩m Ker(V m−U−nV mUn)

= ∩n∩m Ker(V m− (U−nVUn)m) = ∩nImRV,U−nVUn = Iminf{RV,U−nVUn ;n ∈ Z}.
We can now approach the questions suggested at the beginning of the section. Let

us recall some results that we can find in Boudou and Viguier [8].
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Proposition 10.5.4. Let U and V be two u.o.’s of associated s.m.’s E and α , and L
be the application X ∈ ImCU,V �→ X ∈ H. We have
i) L∗(X) = CU,V X, for any X of H; L∗L = IImCU,V

; LL∗ = CU,V ; L∗CU,V = L∗;
CU,V L = L;
ii) U ′ = L∗UL and V ′ = L∗V L are u.o.’s of ImCU,V ;
iii) for any A of B, E ′A = L∗E AL and α ′A = L∗αAL are projectors of ImCU,V ;
iv) the applications E ′ : A ∈ B �→ E ′A ∈ P(ImCU,V ) and α ′ : A ∈ B �→ α ′A ∈
P(ImCU,V ) are the s.m.’s respectively associated with the u.o.’s U ′ and V ′.

From the fact that
U ′V ′ = L∗ULL∗V L = L∗UCU,VV L = L∗VCU,VUL = L∗V LL∗UL =V ′U ′,

we can consider the s.m. E ′ ⊗α ′ on B⊗B for ImCU,V (as the s.m.’s E ′ and α ′
commute). For any pair (A,B) of elements of B, we have

E ′ ⊗α ′(A×B) = E ′Aα ′B = inf{L∗E AL,L∗αBL}= L∗inf{E A,αB}L.
If we notice that U ′V ′ = L∗UV L = L∗VUL, we have the following.
Proposition 10.5.5. There exists one and only one s.m., E ′ ⊗α ′, on B⊗B for
ImCU,V , such that E ′ ⊗α ′(A×B) = L∗inf{E A,αB}L, for any pair (A,B) of elements
of B. Its image by S is the s.m. associated with the u.o. L∗UV L = L∗VUL.

Of course, when U and V commute, that is when CU,V = I, we have L = L∗ = I,
U ′ = U , V ′ = V , E ′ = E , α ′ = α and E ⊗α(A×B) = inf{E A,αB} = E AαB, for
any (A,B) of B×B.

Finally, we establish a link between the commutator and the equalizator of a same
pair (U,V ) of u.o.’s.
Proposition 10.5.6. Let U and V be two u.o.’s, and J be the application X ∈ ImR⊥ �→
X ∈ H. Then
i) J∗UJ and J∗V J are u.o.’s of ImR⊥U,V ;
ii) CU,V = JCJ∗UJ,J∗V JJ∗+RU,V .
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Chapter 11

Permutation tests in the two-sample problem for

functional data

Alejandra Cabaña, Ana M. Estrada, Jairo Peña and Adolfo J. Quiroz

Abstract We propose two kind of permutation tests for the two sample problem for
functional data. One is based on nearest neighbours and the other based on functional
depths.

11.1 Introduction

Let X1(t), · · · , Xm(t) denote an i.i.d. sample of real valued curves defined on some
interval J. Let L (X) be the common probability law of these curves. Likewise, let
Y1(t), · · · ,Yn(t), be another i.i.d. sample of curves, independent of the X sample and
also defined on J, with probability law L (Y ).

We want to test the null hypothesis, H0 : L (X) = L (Y ) against the general
alternative L (X) �= L (Y ).

We discuss three different permutation tests: a functional Schilling test, Wilcoxon
type test, and another test based on depths, that uses meta analysis ideas to assess
significance. We compare their performance with the classical test by Kokoszka and
Horváth, based on the principal components of the pooled covariance operator of the
two samples in a simulated experiment and with real data.
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11.2 Schilling’s type test

This is an adaption to functional data of the k -nearest neighbours multivariate
two-sample test of Schilling’s tests based on nearest neighbors [10].

Let N = m+n and Z1, . . . ,ZN be the combined sample obtained by concatenating
the X and Y samples.

Define the indicator function Ii(r) = 1 if Zi and its r-nn belong to the same sample
and else, Ii(r) = 0. Nearest neighbours are based on L2 distance, and with probability
1 the are uniquely defined. In case of ties, we would decide at random.

In practice, if the functions have been registered in a common grid, say 0 = t0 <
t1 < .. . tL = T , a reasonable approximation to the distance between functions Zi and
Z j is

di, j =
L

∑
l=1

Δl(Zi(tl)−Z j(tl))2, whereΔl = tl − tl−1

If the grid used is equally spaced, Δl can be omitted and the curves can be treated as
points in RL in order to compute faster the k-nearest-neighbours. When no common
grid is available, represent the functions in the joint sample in terms of local polyno-
mials, or some other basis functions, and the k-nearest-neighbours are identified by a
quadratic algorithm (in the joint sample size N).

Define the statistic:

TN,k =
1

Nk

N

∑
i=1

k

∑
r=1

Ii(r)

Under H0 we expect TN,k to be small.
Observe that the expected value ETN,k = e Ii(r) =

m(m−1)+n(n−1)
N(N−1) while the vari-

ance depends on the amount of pairs of points that are mutual neighbours and the
amount of pairs that share a common neighbour.

Under the null hypothesis of equal distribution of {Xm(t)} and {Yn(t)}, permuta-
tions on the labelling of the Zi do not alter the distribution of TN,k and hence can be
computed with a standard permutation procedure.

Algorithm

1. For the concatenation of the samples Z, keeping the natural ordering, compute
the m×n matrix of distances between its elements.

2. Assume the number of neighbours is fixed to k. Build a N× k matrix that in the
i-th row contains the indices of the k nearest elements to the curve Zi.

3. In order to compute the statistic it is enough to count how many of the indices in
each of the first m rows are equal or less than m, (i.e. are originally X) and how
many of the indices corresponding to m+1, . . . ,N are greater than m.

4. Obtain the distribution of TN,k using the permutation procedure.
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11.3 Depths-based tests

Another way of approaching the functional data analysis is introducing the notion of
depth, that is related to a generalisation of the concept of ordering for functional data.
The idea is to assign an order to each element of the sample related to its centrality
within the whole set.

There are many measures of depth, and there is no agreement about their advan-
tages. We will concentrate on the Fraiman-Muñiz depth [2].

Consider first a univariate sample U1, ...,Un and U(1), ...,U(n) be the corresponding
order statistics. Assuming there are no ties, the natural depth of Ui is said to be
Dn(Ui) =

1
2 −
∣∣∣ 12 −( j

n − 1
2n

)∣∣∣. This notion of depth assigns minimal and equal depth
to the two extreme values of the sample, maximum to the innermost point(s) and
changes linearly with the position the datum occupies in the sample.

For the case of functional data, consider the sample X={Xi(t)} defined in a
common interval J. For each t we can compute the natural depth, Dn(Xi(t)), and then
the depth for each Xi(t) is:

I(Xi,X) =
∫

J
Dn(Xi(t))dt,

where, in practice, the integral is replaced by a sum over t for the time grid.
A Wilcoxon test based on this ordering is a natural option, and has been suggested

by López-Pintado and Romo in [6], [7] based on their band-depth. Observe that for
univariate samples, the Wilcoxon test statistic defined in terms of Fraiman-Muñiz
depth corresponds to Ansay-Bradley’s statistic, and hence is suitable for detecting
differences in dispersion between the samples.

11.3.1 Meta-analysis based tests

Let X = {X1, . . . , Xm} denote the functional X sample and Y = {Y1, . . . ,Yn} the
functional Y sample. For each Xi ∈ X , we consider its depth with respect to the
Y sample with the curve Xi added. We denote this depth I(Xi,Y ∪{Xi}). This is a
measure of how outlying the curve Xi is with respect to the Y sample. If “many” of
the Xi turn out to be outlying with respect to Y , that would be evidence against the
null hypothesis of equality of distributions. Similarly we can measure how outlying
is each curve Yj with respect to the X-sample, X , by computing I(Yj,X ∪{Yj}).
The first question is how to combine the values of I(Xi,Y ∪{Xi}), for all i≤ m, in a
single number that combines the information in all these depths. For this purpose,
we rely in an idea coming from Meta-Analysis.

To the depth I(Xi,Y ∪{Xi}) we associate an empirical p-value, Let pi be an
empirical p-value related to the centrality of the variable Yi on the sample X ,
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p̂∗ =
∑m

j=1 I (D(Xj|X)≤ D(Y∗|X))

m+1

{
pi = p̂i if p̂i �= 0
pi =

1
m+1 if p̂i = 0

Under H0 (ignoring ties), each pi is uniformly distributed in {1/m,2/m, . . . ,1}, but
they are not independent.

For symmetry, we consider as well the qi p-values related to the centrality of the
variable Xi on the sample Y .

q̂∗ =
∑n

j=1 I (D(Yj|Y )≤ D(X∗|Y ))
n+1

{
qi = q̂i if q̂i �= 0
qi =

1
n+1 if q̂i = 0

Observe that when H0 does not hold, the depth of a curve in a family where it
does not belong will be very low, and so would be its associated p-value. In that case
the corresponding statistic will be very big.

Consider, as described in [4],

SY =
m

∑
i=1
− ln(pi) SX =

n

∑
i=1
− ln(qi)

We want to associate a p-value to the pair (SX ,SY ).

MA1: Meta-Analysis method 1

When the two samples display a difference in “scale”, most, of the curves of the (say)
X sample, turn out to be central with respect to the Y sample and SX will not show a
significant value. In such a situation, typically, several curves of the Y sample will
turn out to be clearly outlying respect to the X sample, and the maximum will reach
a significant value.

We propose the use of S = max{SX ,SY} as test statistic, and the use of a permuta-
tion procedure to obtain its distribution.

MA2: Meta-Analysis method 2

Better empirical performance is obtained using following result:

Lemma 1 combining p-values Let pX (pY ) denote the p-value of SX (SY ), under the
null permutation distribution, as obtained from procedure p-value if all subsets of
size m were used (instead of just a sample of size B) and assuming the null hypothesis.
Then

1. Pr(pX ≤ t)≤ t for any t ∈ (0,1), and the same holds for pY .
2. Pr(2min(pX , pY )≤ t)≤ t for any t ∈ (0,1).
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Proof. The null permutation distribution of SX is a discrete distribution that can not
be assumed uniform on its range (some values of SX can appear more frequently
than others when subsets are chosen at random). This is why part (i) of the Lemma is
not obvious. Let F denote the null permutation c.d.f. of SX and let SX ,obs denote the
observed value of SX . Recall that large values of SX are considered significant. Then,
clearly, pX = 1−F(S−X ,obs) and, for t ∈ (0,1),

Pr(pX ≤ t) = Pr(F(S−X ,obs)≥ 1− t) = ∑
{s:F(s)>1−t}

Pr(SX = s)≤ t,

by definition of F .
Since pX and pY are not independent, to prove (ii) we can use (i) together with

the usual union bound:

Pr(min(pX , pY )≤ t/2)≤ Pr(pX ≤ t/2)+Pr(pY ≤ t/2)≤ t/2+ t/2 = t.

Part (2) of the Lemma tells us that an appropriate p-value for 2min(pX , pY ) is the
observed value of this statistic itself.

Thus, our second way of getting a p-value from SX and SY is the following:
Compute, approximately, pX and pY for SX and SY , respectively, using the permuta-
tion procedure and use 2min(pX , pY ) as p-value.

11.4 Empirical comparison of powers and real data applications

In order to fix a standard, we have also computed the empirical power for Horvàth
and Kokoszka’s test for equality of mean functions. The null hypothesis is rejected
for large values of the the statistic

Um,n =
mn

m+n

∫ (
X̂m(t)− Ŷn(t)

)2 dt

Under some regularity conditions, the asymptotic distribution of X̂m(t)− Ŷn(t) is a
Gaussian process Γ whose covariance can be approximated by the pooled covariance
operator of the two samples, hence, the distribution of Um,n can be approximated by
the first d terms in the Karhunen-Loève expansion of

∫ 1
0 Γ 2(s)ds≈ ∑d

i=1λiN2
i , λi are

the (ordered) eigenvalues of the pooled covariance estimator, and Ni are i.i.d. N(0,1).

11.4.1 A simulation experiment

We have simulated samples of functional data as realisations from a geometric Brow-
nian motion process f (t) = X0 exp

{
rt− tσ2

2 +σwt

}
where r and σ are, respectively,
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the trend (drift) and volatility coefficients, wt is a standard Wiener process and X0 is
the initial value.

We have tested H0 : L (X) = L (Y ), against L (X) �= L (Y ) where X was
simulated with r = 1,σ = 1,X0 = 0 and Y is any of the ‘contaminated’ samples with
only one of the parameters variying at a time.

From Figure 11.1, we see that Wilcoxon’s statistic performs very well against
volatility variations but fails noticeably for the other alternatives considered in the
experiment. On the other hand, Horvàth and Kokoszka’s test (HK), being a test
conceived for changes in the mean, shows the best performance against changes in
the drift parameter, while its power numbers against changes in the origin (initial
level) are good too. But HK results ineffective in picking the volatility changes.

The Meta Analysis methods have a power similar to HK against changes in the
origin, while their power, although reasonable, is inferior to HK’s when it comes to
changes in drift. On the other hand, both Meta Analysis procedures display excellent
power against the volatility alternatives, where HK fails. Schilling’s statistic (with
k = 5 and K = 10), shows very good power against all the alternatives considered in
our experiment. Overall, Schilling’s statistic displays the best performance in terms
of power among the methods evaluated.

11.4.2 NO2 Contamination in Barcelona

We have hourly measurements of nitrogen dioxide (a known pollutant formed in most
combustion processes using air as the oxidant) in four neighbourhoods in Barcelona,
namely Eixample, Palau Reial, Poblenou and Sants. The measurements were taken
along the years 2014 and 2015 in automatic monitoring stations1

We have split the data sets into working days (≈220 curves) and non-working
days (≈120 curves), each year.

There are many questions of interest, for instance, to assess whether the level
of pollutants significantly different during working and non-working days, or if the
levels of NO2 changed from one year to the next in each of the neighbourhoods, or
comparing the pollution levels among the different neighbourhoods. We include here
the results of one of these many comparisons.

All tests show evidence of differences between working and non-working days
in all four neigbourhoods, with Wilcoxon and Schilling-10 showing the strongest
evidence of differences. Figure 11.2 shows the levels of contaminants in the neigh-
bourhood of Sants in the years 2014 and 2015. The tests show that the level of
pollutants did not change noticeably on non-working days, but significant changes
are found from one year to the next on working days, with the Wilcoxon and Schilling
procedures being the ones that find stronger evidence of change.

1 available from http:// dtes.gencat.cat/icqa.
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Fig. 11.1: Empirical power of the tests against changes of origen, drift and volatility
in Geometric Brownian motion data; level α = 5%.
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[6] López-Pintado, S., Romo, J.: Depth-based inference for functional data. Com-
put. Statist. Data Anal. 51, 4957–4968 (2007)
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Chapter 12

Functional data analysis of “Omics” data:

how does the genomic landscape influence

integration and fixation of endogenous

retroviruses?

Marzia A. Cremona, Rebeca Campos-Sánchez, Alessia Pini, Simone Vantini,
Kateryna D. Makova and Francesca Chiaromonte

Abstract We consider thousands of endogenous retrovirus detected in the human and
mouse genomes, and quantify a large number of genomic landscape features at high
resolution around their integration sites and in control regions. We propose to analyze
this data employing a recently developed functional inferential procedure and func-
tional logistic regression, with the aim of gaining insights on the effects of genomic
landscape features on the integration and fixation of endogenous retroviruses.

12.1 Introduction and motivations

Functional Data Analysis (FDA) has been instrumental to advances in many scientific
domains. In recent years, FDA has also been applied to “Omics” research. One
example are functional linear models used to screen variants (e.g., SNPs; single
nucleotide polymorphisms) genome-wide, possibly accounting for a number of
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covariates, to identify effects on a complex phenotype quantitated as a response
curve (see [9]). Another example are analyses of the shapes of peaks produced by
ChIP-seq experiments, which indicate the putative binding locations of proteins
interacting with the genome under certain conditions or in certain tissues/cell types.
Clustering of peak shapes can be used to identify meaningful groups or types of
binding sites genome-wide (see [5]). While these examples demonstrate that FDA
can lead to important novel insights in genetics and genomics, applications of FDA
in this context are still very limited in number.

Here we present a functional inferential procedure for “Omics” data – the Interval
Testing Procedure (ITP) – and its extension – the Interval-Wise Testing for functional
data (IWT) – developed in [10] and [8], respectively, and generalized for our study.
An R package implementing this generalized version of IWT is available on the
Bioconductor website (see [3, 4]). We show an application of ITP/IWT and functional
logistic regression to investigate features of the genomic landscape that may affect the
integration and fixation of endogenous retroviruses (ERVs), based on their profiles
around ERVs integration sites.

ERVs are the remnants of retroviral infections in the germ line. They occupy a
large portion of many mammalian genomes (∼8% and ∼10% of the human and
mouse genomes, respectively) and distribute unevenly along them – contributing to
shape genomic structure, evolution and function. Understanding whether a character-
istic genomic landscape exists in the neighborhood of these elements is of utmost
importance to unveil the biological mechanisms that govern them and the conse-
quences they have on genome function and evolution, as well as on diseases (see e.g.
[6, 2]). This entails quantitating a number of genomic features (e.g. non-B DNA struc-
tures, recombination rates or histone marks) in such neighborhoods and in control
regions. Prior studies of this kind have produced important insights, but have been
limited by the relatively low resolution at which data was available for some genomic
features. As improved technologies and additional large-scale experiments make it
possible to quantitate more features at higher resolution, it becomes paramount to use
statistical methods that exploit high resolution information to learn how the genomic
landscape affects the presence of ERVs on the genome. In this context, we propose
to use FDA to extract signal from high resolution feature profiling, considering their
local shapes. The biological results presented here are a selection of those published
in our recent article [1].

12.2 Data

We consider a large collection of the most recently active ERVs in the human and
mouse genomes, composed by fixed and in vitro HERV-Ks in human, and fixed and
polymorphic ETns and IAPs in mouse. Importantly, we consider ERVs of different
evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) with the
aim of disentangling integration vs. fixation preferences. After pre-processing (we
filter out elements with genome gaps and/or other elements in their 64-kb flanks), our
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Fig. 12.1: Pointwise boxplot of the genomic feature “introns” in the 64-kb flanking
regions of fixed ETns and in mouse control regions. The continuous lines represent
the average signals in the two groups, while the dashed lines represent the quartiles
in each window in the two groups of regions. Shaded areas between dashed lines
correspond to the box between the first and third quartiles.

dataset comprises 826 fixed and 1,005 in vitro HERV-Ks in human, and 1,296 fixed
and 217 polymorphic ETns, as well as 3,255 fixed and 1,788 polymorphic IAPs, in
mouse.

In the ±32kb flanking regions of these ERVs, we measure over 40 human and
mouse genomic landscape features (e.g. DNA conformation, non-B DNA motifs,
chromatin openness/modifications, gene expression) at 1-kb resolution. Similarly, we
construct control sets of 1,142 mouse and 1,543 human regions, selecting contiguous
64-kb sequences that do not intersect the ERVs flanks nor other Long Terminal
Repeats (LTR), and measuring the genomic landscape features over these regions.
The genomic features we consider correspond to different types of “Omics” data
and are quantitated in different ways (e.g. counts or coverages). Some are derived
directly from the genomic sequences (e.g. microsatellites and CpG islands); others
are generated by different high throughput techniques such as ChIP-seq or RNA-seq.
Figure 12.1 shows, as an example, the pointwise boxplot of the genomic feature
“introns” (measured in each 1 kb window as the share of the window occupied by
introns) in the flanks of fixed ETns and in control regions. Additional details about
the dataset can be found in [1].
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Fig. 12.2: Comparisons employed to disentangle integration and fixation effects.

12.3 Methods

For each genomic feature and each ERV flanking region (or control region), we
consider the 64 measurements in consecutive 1-kb windows as a curve. We consider
the set of all the curves corresponding to a particular type or ERVs, or to controls, as
a random sample from a stochastic curve. This approach has the advantage that the
consecutive ordering of the measurements along the genome is naturally embedded
by the curves. We then compare the different stochastic curves using an extended
version of the Interval Testing Procedure (ITP – developed in [10]) or the successive
Interval-Wise Testing (IWT – [8, 3, 4]), as well as with functional logistic regression.
In order to disentangle integration and fixation preferences of ERVs, we consider
three different comparisons for each type of ERV and each genomic feature, as
depicted in Figure 12.2.

Interval Testing Procedure (ITP) The ITP is a functional hypothesis test to assess
differences between the distributions of two stochastic curves, that can detect the
specific components of the curves that lead to reject the null hypothesis. As a first step,
the ITP decomposes the curves on a truncated functional basis, thus representing
each of them with K coefficients. Then, it performs a univariate non-parametric
(permutation) test on each coefficient, as well as a multivariate test on each possible
set of consecutive coefficients. Finally, the p-value for each component is adjusted in
order to control the familywise error rate over sets of contiguous components, i.e.
the probability of wrongly rejecting the null hypothesis over each set of successive
coefficients where it is true. The resulting adjusted p-values allows one to attribute
observed differences to specific coefficients, which translates into a selection of
specific locations when the employed basis functions have compact support.

Interval-Wise Testing (IWT) The IWT is another functional inferential procedure
representing an extension of the ITP. Indeed, similarly to the ITP, the IWT is able
to select the subregions where the differences between two curve distributions are
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significant. However, the IWT does not rely on any functional basis representation; it
tests the curves directly. The IWT performs a functional permutation test on every
subinterval of the domain of the curves. Then it computes an adjusted p-value curve
that controls the interval-wise error rate, i.e. the probability of wrongly rejecting the
null hypothesis over each subinterval where it is true, allowing the identification of
the locations where the stochastic curves differ.

Generalization of ITP/IWT Exploiting the non-parametric nature of the tests, the
generalized version of the ITP and IWT allows different test statistics to be employed
in the permutation test, in order to highlight different characteristics of the curve
distributions. In particular, we consider test statistics based on the mean difference,
the median difference, the multi-quantile difference or the variance ratio. For example,
the multi-quantile statistics employed by the IWT is defined for each subinterval S as

Tmulti−quantile(S) = ∑
q∈Q

1
|S|
∫

S

(
yq

1(t)− yq
2(t)
)2 dt,

where yq
1(t) and yq

2(t) are the pointwise quantiles of order q of the curves in the two
groups. In addition, we generalize the ITP and IWT to be able to detect not only the
locations, but also the scales where the differences between the curves are significant.
To this end, we compute adjusted p-value curves at all possible scales – from the
smallest scale represented by a single component in the ITP and by a single position
in the IWT (i.e. raw p-value curves, no correction), to the largest scale possible
represented by the entire curve domain (i.e. correcting across the whole domain, like
in the original version of ITP/IWT).

Functional logistic regression We employ single functional logistic regression to
quantify the discriminatory power of the different genomic features identified in each
of the comparisons in Figure 12.2. Then, multiple functional logistic regression is
used to evaluate the predictive power of all the features simultaneously.

12.4 Results

Performing the functional test independently on each feature, we find that some of
them show significant differences on the whole 64-kb region analyzed, while others
present only localized differences, usually near the insertion site of the ERV (the
center of the region) or everywhere but the insertion site. Moreover, some of the
features appear to have an effect at all the considered scales (up to 64-kb), while
others display significant differences especially at small scales. Interestingly, the
three families of ERVs considered in the study show many common discriminatory
features, but some features appear to be specific to a particular type of ERVs.

Functional logistic regression highlights few very strong, dominant predictors.
For example, microsatellites are strongly overrepresented in the flanking regions of
fixed and polymorphic ERVs compared to control regions (deviance explained up to
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89%). In addition, even excluding these strong predictor from the multiple functional
logistic regression (the ones with deviance explained >20%), we observe that the
simultaneous predictive power of the remaining features is still quite high for the
comparisons between ERVs and controls, with a deviance explained ranging from
24% to 79%.

These analyses provide important biological insights. In particular, we find that
ERVs integrate preferentially in late-replicating, AT-rich regions with abundant
microsatellites, mirror repeats, and repressive histone marks. Moreover, ERVs fixate
preferentially in regions depleted of genes and evolutionarily conserved elements,
and with low recombination rates – likely reflecting the fact that purifying selection
and ectopic recombination act to remove ERVs from the genome. Interestingly, in
addition to a negative effect on fixation of high recombination rates in both human
and mouse genomes, there is a positive association between recombination hotspots
and ERVs fixation in human, and one between hotspots and ERVs integration in
mouse. A more detailed discussion of the biological implications of this study can be
found in [1].

12.5 Conclusion

We proposed a novel approach for the analysis of diverse “Omics” data using FDA
techniques, and we showed an application to the study of the genomic landscape of
ERVs in the human and mouse genomes. Our analysis pipeline based on the ITP/IWT
and the functional logistic regression allowed us to identify genomic scales and
locations where various features display their influence, and to understand how they
work in concert to provide signals essential for integration and fixation of ERVs. We
expect the FDA techniques employed here to be very useful in several other “Omics”
studies.
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Chapter 13

Functional data analysis in kinematics of

children going to school

Manuel Escabias, Ana M. Aguilera, Jose M. Heredia-Jiménez and Eva
Orantes-González

Abstract Traditionally gait analysis has examined discrete measures as descriptors
of gait to compare different experimental situations. Functional data analysis (FDA)
uses information from the entire curves and trajectories, thus revealing the nature
of the movement. The aim of our study is to develop some repeated measures
FDA methodologies to analyze kinematics of children’s trunks while transporting a
backpack and a trolley with different loads.

13.1 Introduction

As we can read in dictionary.com (http://www.dictionary.com/browse/kinematics),
kinematics is the branch of mechanics that deals with pure motion, without reference
to the masses or forces involved in it. With the name of gait analysis we identify
the part of kinematics related with human motion. One of the main research areas
of Sport Sciences is kinematics and gait analysis. Motion is characterized by the
angular position of the different parts of the body along the gait cycle, providing one
trajectory for each part of the body.

Recent advances in technology have automated much of the processes of cap-
turing motion data electronically and then extracting the two or three-dimensional
trajectories. Such technology and software allow to reconstruct the motions of body
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segments and joints so that differences in motion patterns can be readily identified. As
a result the most natural statistical methods to analyze this type of data are functional
data analysis methods.

In spite of the continuous nature of trajectories, traditionally gait analysis has
examined discrete measures such as angles at heel strike (HS), peak angles and range
of motion (ROM) obtained during stance, or the timing of specific events (Donoghue
et al., 2008). Research commonly uses these parameters as descriptors of gait to
compare different experimental situations. Given the huge amount of information
that a fully comprehensive gait analysis can provide, studies reduce data to these
descriptors to allow a more convenient and efficient analysis. However, these discrete
values do not fully describe the relative movements of the limbs in attaining these
positions. Functional data analysis uses information from the entire curves and
trajectories, thus revealing the nature of the movement.

Ramsay and Silverman used gait data to explain some FDA methods as functional
canonical correlation and functional principal component analysis in their classical
book (Ramsay and Silverman, 2005). From then to now, FDA has been used in
Biomechanics with different proposals. For example Ryan et al. (2006) used FDA
to study vertical jump. Donoghue et al. (2008) used functional principal component
analysis to compare different experimental situations in Running Kinematics in
Chronic Achilles Tendon Injury. Several authors have used various PCA approaches
as Sadeghi et al (1997) and Sadeghi (2003) to examine lower limb symmetry in
several studies involving subjects with osteoarthritis and healthy subjects, or Deluzio
et al. (1997). Daffertshofer et al. (2004) recognized the potential solution that a PCA
approach could provide in analyzing coordination and human movement.

The aim of our study is to use existing FDA methods and propose some new
approaches to analyze kinematics of children in their commuting to and from school.
Children often use school trolleys or backpacks in their daily transportation to school.
Recently a controversy exists about if it is better to use trolleys or backpacks, and
also about the weight of them in order to avoid possible back pain. Some studies
show that the use of the school trolleys allowed children to avoid supporting the
load on their backs and also provided an easier mode of transportation but has an
asymmetrical effort, and its use was related with a higher risk for children to suffer
scoliosis (Ortega et al., 2014) and forced postures of the shoulder and spine (Bort
and Sim, 2002). Spatiotemporal gait parameters analysis is important to drive these
kind of studies in order to determine the changes produced in the gait depending on
the type of transportation (trolley or backpack) and the weight of them.

Some authors have studied kinematics of children’s trunks while transporting a
backpack and a trolley in different experimental situations (see for example Orantes-
Gonzalez et al. (2015) or Schmidt and Docherty (2010)). Ir order to analyze the
kinematics of gait while pulling a school trolley or by carrying a backpack with
different loads in elementary school subjects, functional data analysis methods can
be used instead of the classical ones that take into account only one measure instead
of the whole observation.
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13.2 Data

The experimental study to get the data was developed in the biomechanics laboratories
of the Sport and Health Institute of the University of Granada (IMUDS). The data
were provided by 53 participants (25 boys and 28 girls) between the ages of 8
and 11. Six experimental situations were considered: trolley and backpack used
with different loads (10, 15, and 20% of body weight). 3D motion capture system
(Qualisys AB, Göteborg, Sweden) was used to get the kinematics of gait based on
the Calibrated Anatomical System Technique (Cappozzo et al., 1995). Twenty six
reflective markers were placed with adhesive tape on the children’s skin on both sides
of the lower body and the trunk following the recommendations proposed by van Sint
Jan (2007). Nine infrared high-speed cameras at a capture rate of 250 Hz were used
to collect the reflective markers. Markers were situated according to (Figure 13.1).
Visual3D software (C-Motion Inc., Germantown, USA) was used to compute the
gait kinematics. Each child walked one minute per condition along a 15 m walkway.
The coordinate based algorithm (Zeni et al., 2008) computed by Visual 3D, was used
to calculate the spatiotemporal gait parameters. Velocity (m/s), cadence (steps/seg)
and stride length (m) were normalized using the subject’s height by following the
equations proposed by Hoff (1996). In addition, stance phase, single support phase
and double support phase were measured and expressed as a percentage of the gait
cycle and step width was also computed as heel-to-heel distance.

Fig. 13.1: Representation of used markers. Figure adapted from Marker Set Guide-
lines, C-Motion’s Visual3D biomechanics research software.

The flexion/extension, adduction/abduction and internal/external rotation of tho-
rax, pelvis, hip, knee and ankle were recorded. Pelvis angles were expressed as the
absolute angles of the segments with regard to a global reference coordinate system.
The hip angle was defined by the pelvis and femur; the knee angle was computed by
the tight and shank; the ankle angle was computed by the foot and shank; and the hip
and thorax segments were used to compute the thorax angle. The three dimensional
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kinematic parameters were obtained at the data mean of both legs and normalized
relative to the duration of the walking cycle of each subject.

Each subject completed 3 cycles walking over the platform and registered the angle
for each join (ankle, foot progress, hip, knee, pelvis, thorax), each axis direction (X,
Y and Z, except in foot progress that only has one direction) and each experimental
condition (walk, backpack with 10% of the body weight of the subject, backpack
with 15%, backpack with 20%, trolley with 10% of the body weight of the subject,
trolley with 15% and trolley with 20%). For each subject the mean curve of the three
cycles was calculated and selected as representative observation for the gait cycle of
that subject in each join, axis direction and experimental condicion. The resulting
data were 53 discretely observed curves for each join, axis direction and experimental
condition. Functional data analysis was used in order to determine differences among
gait curves in each one of the 3 axis directions (and possibly in the resultant) and
each one of the 6 joins (18 comparisons) for the seven experimental conditions. We
used basis expansion methods in terms of B-spline functions to turn the discrete
observations of each curve into the proper curve. Mean curves for each join, direction
and experimental condition can be seen in Figure 13.2.

The main purpose of this work is to find differences and possible relationships
among the gait cycle under the different loads for each angle and join independently.
Let us observe that we have repeated measures of the gait cycle under each experi-
mental condition because the same children are considered to take the measures for
all of them. The comparison of the means under each condition have been historically
made by using a single measure as representative of the mean curve instead of the
complete curve: sometimes the mean on the discrete values, the maximum, the mini-
mum, etc. By using the complete curve, we can find differences in the whole curve
or maybe parts of the curve that can detect periods of the cycle that may produce
pain in that join. Figure 13.2 shows comparisons of mean curves among the different
experimental conditions for each one of the joins and angles considered. We can
visually observe differences in the mean curves for the case of X-axis for pelvis and
thorax and Z-axis for hip, knee, pelvis and thorax.

In addition to the curves, we have scalar observations of related variables for each
subject obtained from a questionnaire. Among the available variables we have: age,
gender, degree, backpack (trolley) weight, subject height and weight, body mass
index, fat percentage, back pain, and many others. The relationship between these
variables and gait curves could be studied by using functional regression models.

13.3 Functional data analysis with repeated measures

Let us observe that for each join and angle direction (as for example X), we have
n× J sample curves

{Xi j(t) : t ∈ T, i = 1, . . . ,n, j = 1, . . . ,J},
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Fig. 13.2: Mean curves for each join, angle direction and experimental condition.
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from n random subjects (in our experiment n = 53 children), drawn from a stochastic
process {Xj(t) : t ∈ T} representing the gait cycle under each one of the J = 6
considered conditions. Let us assume that these stochastic processes are second order,
continuous in quadratic mean and with squared integrable trajectories on L2(T ).
The general aim of this research project is using FDA methodologies to explain the
behaviour of gait cycle among the different conditions.

Next, different methodological possibilities to explore variability and testing the
equality of the means curves for each join and angle direction under the different
loading conditions are addressed. Let us take into account that it is an initial work
and the results obtained so far are not definitive.

13.4 Functional principal component analysis

The main modes of variability in the functional data set could be studied by adapt-
ing different approaches for functional principal component analysis (FPCA) with
longitudinal data to the case of functional data with repeated measures (Guo, 2004,
Müller, 2005, Greven, 2011). The most basic way is developing a Functional PCA
for the subjects of each condition so that for each fixed j we have

Xj(t) = μ j(t)+∑
k
ξ j

k f j
k (t) t ∈ T,

with the principal components ξ j
k being zero mean uncorrelated random variables

with maximum variance given by

ξ j
k =

∫
T
(Xj(t)−μ j(t)) f j

k (t)dt.

That is, E[ξ j
k ] = 0, Var[ξ j

k ] = λ j
k , and for any j, k1 �= k2,E(ξ j

k1
,ξ j

k2
) = 0, and

{( f j
k ,λ

j
k )} being the eigenfunctions and eigenvalues of the covariance function in

the j-th group Cj(s, t) = cov{Xj(s),Xj(t)}.
Then, principal components under different conditions would be related for inter-

preting important differences in the gait cycle. A more sophisticated multilevel FPCA
could also be obtained by a ”total” subject decomposition of variability based on the
”between” and ”within” subject principal component decompositions as proposed in
Crainiceanu et al. (2009).

13.5 ANOVA modelling

Let us consider the classical one-way ANOVA problem for functional data. As we
have said before this research is motivated by a gait analysis where the problem is to
compare the mean curves of the gait cycle measured in J samples (seven different
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loading conditions for walking) for each of the three angle directions (X, Y, Z) and
joins. The hypothesis to test is given by

H0 : μ1 = · · ·= μJ ,

where μ j = E[Xj].
Literature has boarded this aim from different points of view by giving different

proposals of ANOVA methods for functional data. Ramsay and Silverman (2005)
illustrated the use of a pointwise ANOVA method to find differences in mean curves
among different climate zones in their classical example of weather data. An asymp-
totic version of the well known ANOVA F-test to detect differences in the whole
curve was proposed in Cuevas et al. (2004) and Cuesta-Albertos and Febrero-Bande
(2010). Recently, Zhang (2014) has summarized different ANOVA methods for
functional data in a very useful and illustrative book. The case of repeated measures
which deals with the k-sample problem when the data are from the same subjects
was investigated from both, the parametric and the nonparametric point of view, in
Martı́nez-Camblor and Corral (2011).

The above mentioned methods will be adapted in this work to the case of testing
the equality of means of dependent samples of functional data. The aim is to find
those methods that better fit to our objective of finding global or local differences
in mean curves that help analysts to detect possible problems in children, as, for
example, back pain.

The starting point will be a direct analog of the classical F statistic for the one-way
ANOVA model with repeated measures given by

Fn =
∑J

j=1 n||X̄. j− X̄..||2/(J−1){[
∑J

j=1 ∑n
i=1 ||Xi j− X̄. j||2

]
− [J ∑n

i=1 ||X̄i.− X̄..||2]
}
/(n−1)(J−1)

where

X̄i.(t) =
1
J

J

∑
j=1

Xi j(t), X̄. j(t) =
1
n

n

∑
i=1

Xi j(t), X̄..(t) =
1

J×n

n

∑
i=1

J

∑
j=1

Xi j(t),

and ||x||2 = ∫T x2(t)dt.
Similar to the classical ANOVA F statistic for repeated measures, the numerator

represents the “external” variability between the different samples or groups, and
the denominator measures de “internal” variability within the samples minus the
“subjects” variability due to the treatment of each subject as a level of an independent
factor.
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Chapter 14

Parameter estimation of the functional linear

model with scalar response with responses

missing at random

Manuel Febrero-Bande, Pedro Galeano and Wenceslao González-Manteiga

Abstract This contribution considers estimation of the parameters of the functional
linear model with scalar response when some of the responses are missing at random.
We consider two different estimation methods of the functional slope of the model
and analyze their characteristics. Simulations and the analysis of a real data example
provides some insight into the behavior of both estimation procedures.

14.1 Introduction

The functional linear model with scalar response is one of the most widely studied
model in the literature on functional data analysis. The model establishes a linear
relationship between a real response variable and a functional predictor variable.
There exist several estimators of the functional slope of the model being the method
based on functional principal components the most popular approach. The idea
behind this method is that of expanding the functional predictor as well as the
functional slope of the model in terms of the eigenfunctions linked to the largest
eigenvalues of the functional predictor covariance operator, that allows the response
to be written as a finite linear combination of the functional principal components
scores. The associated coefficients are then estimated by least squares.
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Several papers have analyzed the properties of the functional principal components
estimation method including [1, 2, 3, 4, 7, 9, 5], among others. See also [6], for a
recent overview on the topic.

This contribution considers the case in which some of the responses are missing
at random. This case has been little studied in the literature. [10] investigated the
asymptotic properties of a kernel type estimator of the regression operator when
there are responses missing at random, while [5] considered an imputation method
of the missing responses. Here, we propose two estimators of the functional slope
of the model. The first one is simplified estimator that only considers the complete
pairs of observations. The second one is an imputed estimator that takes into account
both the complete pairs and pairs completed with imputed responses.

The rest of this contribution is structured as follows. Section 14.2 presents the
functional linear model with scalar response and the estimation method based on the
functional principal components approach. Section 14.3 considers the problem of
estimating the parameters of the model when there are responses that are missing at
random and presents the two estimators that we propose of the functional slope of
the model. Properties of the estimators, simulations and the analysis of real data are
presented somewhere else.

14.2 The functional linear model with scalar response

Let L2 (T ), the separable Hilbertian space of squared integrable functions defined on
the closed interval T = [a,b]⊂ R. Let χ be a functional random variable valued in
L2 (T ) and let χ (t) be the value of χ at any point t ∈ T . We assume, for simplicity,
that the functional random variable χ has zero mean function and a covariance
operator Γ such that:

Γ (η) = E [(χ⊗χ)(η)] = E [〈χ,η〉χ]

for any η ∈ L2 (T ), where,

〈χ,η〉=
∫

T
χ (t)η (t)dt

is the usual inner product in L2 (T ). We also assume that E
[
‖χ‖2

]
< ∞, where

‖·‖ denotes the usual norm in L2 (T ). Consequently, Γ has a sequence of non-
negative eigenvalues, denoted by a1 > a2 > · · ·> 0, such that ∑∞

k=1 ak <∞, associated
with a sequence of orthonormal eigenfunctions, denoted by ψ1,ψ2, . . ., such that
Γ (ψk) = akψk, for k = 1,2, . . .

The functional linear model with scalar response relates a real random variable y,
defined on the same probability space that χ , with mean 0 and variance σ2

y , with χ
as follows:

y = 〈χ,β 〉+ e =
∫

T
χ (t)β (t)dt + e, (14.1)
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where β ∈ L2 (T ) is the functional slope of the model, and e is a real random variable
with mean 0, finite variance σ2

e , and uncorrelated with χ . In other words, we assume
that the mean and variance of y conditional on χ are given by Eχ [y] = 〈χ,β 〉 and
Varχ [y] = σ2

e , respectively.
As mentioned in the introduction, the functional principal components estimation

method is the most popular approach to estimate the functional slope β of the model
in (14.1). This is because the functional principal components allows the functional
linear model to be more easily written. The functional principal components scores,
given by sk = 〈χ,ψk〉, for k = 1,2 . . ., are uncorrelated univariate random variables
with mean 0 and variance ak that allows the Karhunen-Loève expansion of the
functional random variable χ to be written as follows:

χ =
∞

∑
k=1

skψk. (14.2)

Similarly, the functional slope β can be also written in terms of the eigenfunctions
ψ1,ψ2, . . . as:

β =
∞

∑
k=1

bkψk, (14.3)

where bk = 〈β ,ψk〉, for k = 1,2 . . . are constant coefficients. Now, (14.2) and (14.3)
allows the functional linear model with scalar response to be written as:

y =
∞

∑
k=1

bksk + e,

which shows that the coefficients bk can be written as:

bk =
Cov [y,sk]

ak
, (14.4)

for k = 1,2 . . . where Cov [y,sk] = E [ysk] is the covariance between the real response
y and the k-th functional principal component score sk.

Assume now that we are given a random sample of independent pairs, given
by {(χi,yi) , i = 1, . . . ,n}, drawn from the random pair (χ,y). Then, the functional
slope β in the model (14.1) can be estimated with the functional principal component
estimation method as follows. Let χC = {χ1, . . . ,χn} and yC = {y1, . . . ,yn} be the
complete sequences of predictors and responses, respectively. Then, the sample
covariance operator of the complete sample χC, that converts any function η ∈ L2 (T )
into another function in L2 (T ) given by:

Γ̂χC (η) =
1
n

n

∑
i=1
〈χi,η〉χi,

is an estimate of the covariance operator of χ , Γ . The sample covariance operator
Γ̂χC also has a sequence of non-negative eigenvalues, denoted by â1,C ≥ â2,C ≥ ·· · ,
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such that âk,C = 0, for k > n, and a set of orthonormal eigenfunctions, denoted
by ψ̂1,C, ψ̂2,C, . . ., such that Γ̂χC

(
ψ̂k,C
)
= âk,Cψ̂k,C, for k = 1,2, . . . Additionally, the

k-th sample functional principal component score of χi, i = 1, . . . ,n, based on the
complete sample χC, is given by ŝi,k,C =

〈
χi, ψ̂k,C

〉
, for k = 1,2, . . . The set of sample

functional scores ŝ1,k,C, . . . , ŝn,k,C has sample mean 0 and sample variance âk,C. Now,
the functional principal components estimate of the functional slope β is given by:

β̂kC ,C =
kC

∑
k=1

b̂k,Cψ̂k,C, (14.5)

where b̂k,C is an estimate of the coefficient bk in (14.4) given by:

b̂k,C =

⎧⎨⎩ 1
nâk,C

n
∑

i=1
yiŝi,k,C for k = 1, . . . ,kC

0 for k = kC +1, . . .

and kC is a certain threshold such that âkC ,C > 0. Consequently, given a new value
χ , say χn+1, the prediction of the corresponding response under the model (14.1),
denoted by yn+1, is given by:

ŷn+1,kC ,C =
〈
χn+1, β̂kC ,C

〉
.

See [9], [7] and [6], for finite sample properties of the slope estimate (14.5).

14.3 Estimation and prediction with responses missing at

random

Assume now the situation in which we are given a random sample of independent
triplets {(χi,yi,ri) , i = 1, . . . ,n} drawn from the random triplet (χ,y,r), where r is
a Bernoulli variable that acts as an indicator of the missing responses. Thus, for
i = 1, . . . ,n, ri = 1, if yi is observed, and ri = 0, if yi is missing. Specifically, we
assume a missing at random (MAR) mechanism, i.e.:

Pr(r = 1|y,χ) = Pr(r = 1|χ) = p(χ) ,

where p(χ) is an unknown function operator of χ . As a consequence, the response y
and the binary variable r are independent given the predictor χ .

Now, the goal is to estimate the functional slope β in (14.1) using the sample
{(χi,yi,ri) , i = 1, . . . ,n}. For that, let rC = (r1, . . . ,rn)

′ be the complete sequence of
missing indicators. Two different estimates are introduced next based on the missing
indicators rC.

The first estimate is the simplified functional principal component estimate, that
uses only the complete pairs, i.e., those pairs with ri = 1, for i = 1, . . . ,n. Then, let
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IS = {i : ri = 1, i = 1, . . . ,n}, i.e., the indices of the complete pairs and let nS = #IS,
i.e., the number of observed complete pairs. Additionally, let χS = {χi : i ∈ IS}
and yS = {yi : i ∈ IS}, i.e., the sequences of predictors and responses, respectively,
corresponding to the complete pairs. Then, the sample covariance operator of χS,
that converts any function η ∈ L2 (T ) into another function in L2 (T ) given by:

Γ̂χS (η) =
1
nS

n

∑
i=1

ri 〈χi,η〉χi =
1
nS

∑
i∈IS

〈χi,η〉χi,

is an estimate of Γ . As in the complete case developed in Section 14.2, Γ̂χS has a
sequence of non-negative eigenvalues, denoted by â1,S ≥ â2,S ≥ ·· · , such that âk,S = 0,
for k > nS, and a set of orthonormal eigenfunctions, denoted by ψ̂1,S, ψ̂2,S, . . ., such
that Γ̂χS

(
ψ̂k,S
)
= âk,Sψ̂k,S, for k = 1,2, . . . Additionally, the k-th sample functional

principal component score for χi, i ∈ IS, based on the simplified sample χS, is given
by ŝi,k,S =

〈
χi, ψ̂k,S

〉
, for k = 1,2, . . . The set of sample functional components scores{

ŝi,k,S : i ∈ IS
}

have sample mean 0 and sample variance âk,S. Now, the simplified
functional component estimate of the functional slope β is given by:

β̂kS,S =
kS

∑
k=1

b̂k,Sψ̂k,S, (14.6)

where b̂k,S is an estimate of the coefficient bk in (14.4) given by:

b̂k,S =

{ 1
nSâk,S

∑
i∈IS

yiŝi,k,S for k = 1, . . . ,kS

0 for k = kS +1, . . .

and kS is a certain threshold such that âkS,S > 0. Prediction of the response yn+1
corresponding to a new predictor χn+1 under the model (14.1), is given by:

ŷn+1,kS,S =
〈
χn+1, β̂kS,S

〉
.

The second estimate is the imputed functional principal component estimate,
that uses both the complete pairs and the pairs obtained after imputing the missing
responses with the estimate (14.6). Then, let II = {i : ri = 0, i = 1, . . . ,n}, i.e., the
indices of the pairs with missing responses and let nI = #II , i.e., the number of pairs
with missing responses. Additionally, let χI = {χi : i ∈ II} and yI = {yi : i ∈ II}, i.e.,
the sequences of predictors and responses, respectively, corresponding to the pairs
with missing responses. Therefore, imputation of the missing responses using the
simplified estimate β̂kS,S in (14.6) can be done as follows:

ŷi,I =
〈
χi, β̂kS,S

〉
,

for i ∈ II . Now, given the set of pairs {(χi,yi,I) , i = 1, . . . ,n} where:
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yi,I = riyi +(1− ri) ŷi,I ,

for i= 1, . . . ,n, the imputed functional principal component estimate of the functional
slope β is given by:

β̂kI ,I =
kI

∑
k=1

b̂k,Iψ̂k,C, (14.7)

where b̂k,I is an estimate of the coefficient bk in (14.4) given by:

b̂k,I =

⎧⎨⎩ 1
nâk,C

n
∑

i=1
yi,I ŝi,k,C for k = 1, . . . ,kI

0 for k = kI +1, . . .

and kI is a certain threshold such that âkI ,C > 0. Two important comments are in order.
First, β̂kI ,I depends on the eigenfunctions and eigenvalues of the sample covariance
operator Γ̂χC based on the complete set of predictors χC. Second, the threshold kI in
(14.7) does not necessarily coincides with the threshold kS in (14.6). Prediction of
the response yn+1 corresponding to a new predictor χn+1 under the model (14.1), is
given by:

ŷn+1,kI ,I =
〈
χn+1, β̂kI ,I

〉
.
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Chapter 15

Variable selection in Functional Additive

Regression Models

Manuel Febrero-Bande, Wenceslao González-Manteiga and Manuel Oviedo de la
Fuente

Abstract This paper considers the problem of variable selection when some of the
variables have a functional nature and can be mixed with other type of variables
(scalar, multivariate, directional, etc). Our proposal begins with a simple null model
and sequentially selects a new variable to be incorporated into the model. For the
sake of simplicity, this paper only uses additive models. However, the proposed
algorithm may assess the type of contribution (linear, non linear, ...) of each variable.
The algorithm have showed quite promising results when applied to real data sets.

15.1 Introduction

The variable selection problem tries to find the best subset of covariates that better
predicts or explains a response. In the classical approach, the covariates and the
response are scalar (or multivariate) and the model established among them is linear.

The Stepwise regression, the most widely-used model selection technique through-
out the 80’s and the 90’s, is rooted in the classical papers by [1], [12], [16] and [17].
The main idea is to use some diagnostic tools, directly derived from the linear model,
to assess whether a new covariate must be included in the model or whether its
contribution to the model is valuable. Usually, the construction of the final subset
is done using mainly two strategies: the forward selection that begins with a simple
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null model and tests at each step the inclusion of a new covariate in the model; and
the backward one that starts with the full model including all candidate variables and
at each step removes the most insignificant one. Also, it is possible to mix both strate-
gies, testing at each step which variables can be included or excluded in the optimal
regression subset of covariates. In any case, the stepwise regression is anchored in
the diagnostics of the linear model; it is therefore blind to detect contributions other
than the linear one among the covariates and the response.

The work by [19] proposing the LASSO estimator opens a new direction on
variable selection procedures. The main innovation of the LASSO estimator is that it
includes a l1-type constraint for the coefficient vector β to force some parameters
(components of β ) to be equal to zero and thereby obtains the optimal subset of
covariates such as those with non-zero coefficients. The effect of the constraint also
helps in the optimization step and satisfactorily deals with the sparsity phenomenon.
See [22] for a revision of the oracle properties of LASSO. In the literature we
can find interesting examples following the same line but using different penalties
or constraints: LARS ([4]), SCAD ([5]), COSSO ([9]), Additive models ([21]) and
extensions to partial linear, additive or semiparametric models like PLM ([3]), APLM
([10]) or GAPLM ([20]). All these works have two common characteristics: each
paper is based on a specific model and all the covariates must be included in the
model at once. The latter leads to a highly demanding computing algorithms that are
sometimes hard to implement. In particular, for high-dimensional or functional data
problems, the previous steps commonly including variable standardization and/or
variable representation may notably increase the complexity and the cost of the
algorithms. See [8] for a nice review of some of the aforementioned methods.

Another type of strategy is a pure feature selection where the covariate is selected
without a model. This is the approach employed in mRMR (minimum Redundancy
Maximum Relevance, [14]). To enter into the model, a new candidate covariate must
have a great relevancy with the response while maintaining a lower redundancy with
the covariates already selected in the model. The main advantage of this approach is
that it is an incremental rule; once a variate has been selected, it cannot be deselected
in a later step. On the other hand, the measures for redundancy and relevancy must
be chosen according to the regression model to be applied, to ensure good predictive
results in the final model. The FLASH method proposed in [15] is a modification of
the LASSO technique that sequentially includes a new variate changing the penalty
at each step. This greedy increasing strategy is also employed by Boosting (see, for
example, [2] or [7] in a functional data context). Boosting is not a purely feature
selection method but rather a predictive procedure that selects at each step the best
covariate/model respect to the unexplained part of the response. The final prediction
is constructed as a combination of the different steps. All the previous solutions are
not completely satisfactory in a functional data framework specially when the number
of possible covariates can be arbitrarily large. In particular, we are interested in a
automatic regression procedure capable of dealing with a large number of covariates
of different nature, possibly with many closed relationships among them.

Our motivating example comes from the energy market. In Figure 15.1 the daily
profile of Price and Energy (Electricity) Market Demand (both measured hourly) at
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the Iberian Energy Market for 630 days of 2008 and 2009 are shown with a color
code considering three groups (TWT (Tue, Wed & Thu), WEnd (Sat & Sun) and
MF (Mon & Fri)). We are interested in predicting the price or the demand at certain
hours of the following day. For doing that, we have a lot of different sources of
information. These sources can include other variables related with energy market or
generation, meteorological information, calendar effects or any transformation/filter
of the preceding. Figures 15.2 and 15.3 show a small sample with some possibly
covariates. Note that, in this case, the number of variables that can be included in the
model is pretty high (over 150).

Fig. 15.1: Price and Energy Market Demand curves negotiated in the Iberian Energy
Market. Period: 2008-2009 (Source omie.es).

The curves in Figure 15.2 are the components of the energy pool by generation
type, which may be useful for predicting price or demand. Due to the Iberian market
regulations, not all types of energy have the same chance to become part of the final
energy pool consumed due to its price or availability. For instance, hydroelectric
energy is only offered to the market when the price is high or when there are founded
expectations on refilling the reservoir (using the weather forecasts).

The possible scalar covariates for our prediction problem can be related with
calendar effects (like month or day-of-week), meteorological information (like Tem-
perature or Wind Speed) and transformations from the functional variables (such
as the market demand at midday X(t)�{t=12h}). This means we can create a lot of
new variables from the original ones (for instance, using derivatives or considering
certain subintervals), many of which may certainly be closely related.

Our aim is to select the covariates that are important for our additive regression
model with scalar response:
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Fig. 15.2: Daily profile curves of amount of generated energy by type. Period: 2008-
2009.

Fig. 15.3: Examples of available scalar covariates for the energy prediction problem.
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Yi = α+
K

∑
j=1

f j

(
X ( j)

i

)
+ εi, i = 1, . . . ,n

where the covariates are chosen from the possibly huge set S =
{

X1,X2, · · · ,Xk, · · ·}.
As the number of variates can be extraordinarily large, our idea is to construct the
regression model in a sequential way, i.e. from the trivial model up to the one that
includes all the useful information provided by the covariates in the set.

The rest of this paper is structured as follows. Section 15.2 presents our proposal
and Section 15.3 includes the applications to our motivating example.

15.2 The procedure

Our proposal borrows some ideas from other variable selection methods. As in the
case of pure feature methods, we separate the selection process from the estimation
step picking the possible candidates using a measure not based in a concrete model.
The method for selecting the covariate must be impartial in the sense that scalar,
multivariate, directional or functional covariates can be comparable. Then, a model
is chosen among those in a catalog that are applicable to the selected covariates and
the response, ensuring that the model is correct i.e. the structural hypothesis of the
model are fulfilled and its performance is superior to its competitors. Then, a test is
performed to compare the new tentative model with the previous one to decide if
the new covariate is definitely incorporated into the model. Finally, as in the case of
Boosting, the incorporation of a subsequent covariates is done using the residuals of
the actual model trying to capture the information not chosen by the previous ones.
This sharply constrast with the rules of a pure feature method. This design is easy to
implement and can be easily distributed along parallel machines.

As aforementioned, the key idea for the selection of a feature is to find a tool that
can be homogeneously applied to variates of different nature. This paper is based on
the exhaustive use of the distance correlation, R, proposed by [18] that fulfills the
following two conditions:

i) R(X ,Y ) is defined for X and Y in arbitrary finite dimensions.
ii) R(X ,Y ) = 0 characterizes independence of X and Y .

These conditions mean that there is a way to measure the relationship among
X and Y homogeneously for arbitrary dimensions of these vectors. Indeed, the
work by [11] extends the properties for metric spaces of a certain type (strong
negative type). In particular, Hilbert spaces or any space that can be embedded in a
Hilbert space are of strong negative type. Also, as R characterizes independence, the
distance correlation can detect relationships among variables other than the linear
one. Finally, the computation is quite straightforward because only depends on the
distances among data. Specifically, being akl = d(X j

k ,X
j

l ), the distance in X j among
cases k and l, and Akl = akl − āk· − ā·l + ā·· and respectively, bkl = d(Yk,Yl), and
Bkl = bkl − b̄k· − b̄·l + b̄··, the distance correlation is simply computed as:
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R(X ,Y ) =
∑k ∑l AklBkl√

∑k ∑l A2
kl

√
∑k ∑l B2

kl

An example of the application can be found in the Table 15.1 applied to the
classical Tecator dataset. The second derivative has the highest R among the possible
functional covariates (X , X ′, X ′′ using in all cases the L2 distance) with respect to
the content of Fat. In the scalar covariates, Water has the highest distance correlation
although the two dimensional variable (Water, Protein) is clearly the best one because
the triplet (Fat, Water, Protein) conforms a compositional vector.

Table 15.1: Distance correlation R computed for the classical tecator dataset includ-
ing the first and second derivative of the absorbance curves and the scalar covariates.

R Fat X (L2) X ′(L2) X ′′(L2)

Fat 1 0.196 0.785 0.914
X (L2) 0.196 1 0.434 0.231
X ′(L2) 0.785 0.434 1 0.860
X ′′(L2) 0.914 0.231 0.860 1

Water 0.967 0.232 0.792 0.881
Protein 0.717 0.052 0.532 0.717

(Water, Protein) 0.976 0.224 0.795 0.898

15.2.1 The algorithm

1. Let Y the response and S =
{

X1, . . . ,X p
}

the set of all possible variables that
can be included in the model.

2. Set Ŷ = Ȳ , and let M(0) = /0 the inital set of the variates included in the model.
Set i = 0.

3. Compute ε̂ = Y − Ŷ .
4. Choose X j ∈ S �= /0 such that R

(
ε̂,X j

)≥R
(
ε̂,Xi

)
,∀i �= j and the p-value of

the test of dependence among
{

X j
}

and ε̂ is significant. IF NOT, END.
5. Update the sets M and S: M(i+1) = M(i)∪{X j

}
, and S = S\{X j

}
.

6. Compute the new model of Y using M(i+1) choosing the best one in the catalog
of all possible correct models with the variates in M(i+1).

7. Analyze the contribution of X j:
IF this contribution is not relevant (typically comparing with the previous model)
THEN M(i+1) = M(i+1)\{X j

}
ELSE Ŷ = Ȳ +∑#M

k=1 f̂k
(
Xk
)

8. Set i = i+1 and go to 3
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15.3 Real data application

We have applied our proposal to the forecast of the Market Demand Energy in
the Iberian Market and its Price using all the available information from different
sources. All the information included as a functional variable is also included as
scalar covariates (each discretization point is a new covariable). We have employed
the FSAM/FAM model in all cases given its flexibility and availability not only for
multivariate variables, but also for functional ones (see, for instance, [13] or [6]).

15.3.1 Energy Market Demand

We have information about n = 635 days during 2008 and 2009 of the Market
Demand Energy at day t and hour H (Ent(H)) in the IntraDay Electricity Iberian
Market. Our aim is to forecast this variable with the following possible information
up to day t−1:

• Energy Market Variables (source:www.omie.es): Daily profiles of Energy (En),
Load (Lo) and Price (Pr) at t−1 and t−7.

• Generated energy type (source:demanda.ree.es): Daily profiles of Nuclear (Nu),
Fuel/Gas (Fu), Carbon (Ca), Combined Cycle (Cc), Solar (So), Eolic (Eo),
Hydroelectric (Hy), Cogeneration (Co), Rest (Re).

• Meteorological information at Madrid-Barajas airport (source:aemet.es): Tem-
peratures (TMax, TMin, TMed , TA = TMax−TMin), Speed Wind, Precipitation,. . ..

• Every discretization value of the functional variates (t−1 and t−7).
• Categorical: Year(YY), Month(MM), Day-of-Week:

{
�{Mon}, . . . ,�{Sun}

}
The results of this application are summarized in Table 15.2 for four specific hours

along the day. In all those models, the deviance is mostly explained by the effect
of the two first variables. As an example, the evolution in deviance of the model
for Ent(22) as the covariates enter into the model were (63.5%, 80.6%, 88.1% and
88.4%).

Table 15.2: Summary of models for energy with its selected variables (in order of
entering)

Response Covariates (in order) Dev. expl. σε
Ent(3) Ent−1, MM, Prt−1 91.6% 723.96
Ent(12) Ent−7, Ent−1, MM, �{Sun}, �{Sat}, �{Mon} 91.1% 1159.67
Ent(18) Ent−7, Ent−1(23), MM, �{Sun}, �{Sat}, �{Mon} 91.1% 1238.152
Ent(22) Ent−7, Ent−1(22), �{DoW}, Ent−1(7) 88.4% 1015.829
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In these models, the first contributor tends to be the information of a week before
rather than the one from the previous day except for the consumption in the early
morning hours (03:00). This suggests a strongly weekly pattern in the market demand
profile. The different behavior of the 03:00 model comes from the fact that the energy
demand at that hour is quite regular and has no dependence on the activity of a given
day of the week. The effect of the month enters in all models, except for 22:00 in
which it is substituted by the information of the same hour of the preceding day.

15.3.2 Energy Price

The second application example corresponds to the negotiated price at day t and hour
H (Prt(H)) in the Iberian Energy Market. The set of possible covariates are the same
as in the previous example.

Table 15.3: Summary of models for price with the selected variables (in order of
entering)

Response Covariates (in order) Dev. expl. σε
Prt(3) Prt−1, �{Sat}, �{Sun}, Tmax, Tmed , Eot−1 88.6% 0.475

Prt(12) Prt−1, �{Sun}, �{Sat}, Tmax, MM 96.0% 0.359
Prt(18) Prt−1, Lot−7, Prt−7, TA 96.2% 0.387
Prt(22) Prt−1(22), Prt−7, Eot−1, Hyt−7, Cct−1 96.5% 0.562

The main contributor in all price models (see the results in Table 15.3) is the price
of the preceding day with values of distance correlation over 0.80 which indicates
a strong persistence of this variable. Surprisingly now, the variables related with
demand or generation have distance correlations with price below 0.16, contrary what
is expected from the classical economic theory. The calendar effects (day-of-week,
month), the meteorological information and the type of energy generated are all
minor contributors of the model. In the case of meteorological variates this can be
explained by the use of the information of a particular site to summarize the weather
of the whole country. Surely, meteorological information is useful for predicting
demand in small regions but its contribution for price (without demand) is quite
unexpected.

Acknowledgements The authors acknowledge financial support from Ministerio de Economı́a y
Competitividad grant MTM2013-41383-P.



15 Variable selection in FARM 121

References

[1] Akaike, H.: Maximum likelihood identification of Gaussian autoregressive
moving average models. Biometrika 60(2), 255–265 (1973)
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Chapter 16

Functional data analysis approach of Mandel’s h
and k statistics in Interlaboratory Studies

Miguel Flores, Salvador Naya, Javier Tarrı́o-Saavedra and Rubén Fernández-Casal

Abstract In this work, functional versions of Mandels’s h and k statistics for outlier
laboratory detection in interlaboratory studies (ILS) are presented. The critical val-
ues of h and k outlier test are approximated using bootstrap resampling, and their
characteristic graphics are obtained. Thermogravimetric data are simulated to study
the performance of the proposed dH and dK functional test statistics.

16.1 Introduction

The Interlaboratory Studies (ILS) are defined as the statistical quality control process
used to evaluate the consistency (homogeneity) of laboratory experimental results,
obtained using a well-defined experimental procedure. They are performed using
the same specific controlled material and tested by different laboratories. The im-
plementation of outlier detection test that identify the measurements or laboratories
results that should be discarded is a necessary practice in analytical chemistry, biol-
ogy, medicine an physics. To identify the inhomogeneous laboratories that provide
results significantly different from the others, the use of h and k Mandel’s statistics is
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Guevara E11-253, Quito-Ecuador, e-mail: miguel.flores@epn.edu.ec

Salvador Naya
Department of Mathematics, Higher Polytechnic University College, Universidade da Coruña,
Mendizábal s/n, Ferrol-España, e-mail: salva@udc.es

Javier Tarrı́o-Saavedra
Department of Mathematics, Higher Polytechnic University College, Universidade da Coruña,
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proposed by the ASTM E691 in the univariate or scalar case [9, 13, 7]. The h statistic
measures the inter-laboratories consistency by comparing the replicate averages
with the overall average. Moreover, the k statistic provides information about the
intra-laboratory consistency by comparing the replicate standard deviations with
respect to the repeatability standard deviation [9, 13, 7]. Higher h and k involves a
less consistency.

Many types of experimental results in analytical chemistry are functional, thus, if
h and k scalar statistics are applied, important information could be obviated [8]. This
is the case of experimental results (curves) obtained by thermal analysis techniques
such as thermogravimetry (TG), differential scanning calorimetry (DSC), dynamic
mechanical analysis (DMA), thermomechanical analysis (TMA), and dielectric
analysis (DEA).

The application of functional approaches prevents the typical information loss
associated to the dimension reduction processes. A new FDA methodology for ILS
has been proposed in [8]. The intra and inter-laboratory variability are estimated
from a functional perspective, and they are compared to the results obtained in
traditional reproducibility an repeatability studies. The FDA data depth concept was
applied to detect the atypical TG and DSC curves (outlier detection). This procedure
(combined with functional ANOVA) has identified the laboratories that provided
non consistent (inhomogeneous) results. If data are functional, the drawback of
scalar h and k application is that we need to extract a representative feature from
curves. Depending on the extracted feature, the test result could be different [8].
Therefore, the use of FDA techniques is justified, the non-consistent laboratories can
be identified using the whole curves.

In the present study, a FDA approach of h and k statistics is proposed to deal
with reproducibility and repeatability studies. It allows to estimate the intra and
inter-laboratory variability and location from a functional perspective. The results are
obtained through the software R [10] and their packages, such as fda.usc library,
used [4] for outlier detection based on functional data depth.

The FDA concepts and techniques used in this work can be consulted in the
monographs of Ramsay and Silverman [12] and Ramsay and Silverman [11] can be
consulted. In both cases all the techniques included are restricted to the space of L2
functions (the Hilbert space of all square integrable functions over a certain interval).
The book by Ferraty and Vieu [5] is another important reference incorporating non-
parametric approaches as well as the use of other theoretical tools such as semi-norms
and small ball probabilities that allow us to deal with normed or metric spaces.

This work is organized as follows. In Section 16.2, the main concepts of functional
data are presented, the H(t) and K(t) statistics are defined for the functional case. In
addition, the dH and dK test statistics are shown and described. Section 16.3 accounts
for the description of bootstrap methodology applied to estimate the test critical
values in the functional case. In Section 16.4, the performance of the proposed FDA
procedure is analyzed by a simulation study.
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16.2 H(t) and K(t) statistics for functional data

In the present section, the H(t) and K(t) statistics, as well the corresponding dH

and dK test statistics, are introduced to detect laboratories that provide no consistent
data in a ILS. Some notes are also included about the functional norm and the
functional depth. These measures are used in FDA for the computation of location
and dispersion functional estimates and for outlier detection [3, 1, 6].

16.2.1 Functional Data

Assume that the functional dataset {X1(t),X2(t), . . . ,Xn(t)}} was obtained as iid
observations from a stochastic process X(t), with continuous trajectories on the
interval [a,b], being μ(t) the functional mean and σ2(t)> 0 the functional variance.
We will consider the L2-norm:

‖X‖=
(∫ b

a
X(t)2dt

) 1
2

,

defining the distance between two functions as:

d(X(t),Y (t)) = ‖X(t)−Y (t)‖=
(∫ b

a
(X(t)−Y (t))2dt

) 1
2

.

16.2.2 Data depth and outlier detection

The data depth concept explains how a datum is centered with respect to a set of
observations from a given population. Therefore, the deepest datum will be that
surrounded by the highest number of neighbors. In FDA context, deeper curves are
identified as those closer to the center, which are usually estimated by the median
[1]. Three of the most common approaches to calculate the functional depth are the
depth of Fraiman and Muniz (or median depth) [6], the mode depth [1], and the depth
based on random projections [2].

The functional data depth can be used for outlier detection. Febrero-Bande et
al. [3] identify outliers in functional datasets, taking into account that depth and
outlyingness are inverse notions (an outlier curve will have a significantly low depth).
Therefore, a way to detect the presence of functional outliers is to look for curves
with lower depths. In the present study, we use two procedures, proposed in [4] and
included in the R package fda.usc, for detecting outliers: The first one is based on
weighting, outliers.depth.pond(), and the second one is based on trimming,
outliers.depth.trim().
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16.2.3 Functional statistics for ILS

In the ILS, a set of observations
{

Xl
1(t), . . . ,X

l
n(t)}

}
are obtained for each lab

l, l = 1, . . . , p. Each laboratory experimentally test n samples, obtaining n differ-
ent curves. The functional Hl(t) and Kl(t) statistics are estimated for each laboratory
and considering the null hypothesis that there is no statistical difference between
laboratory measurements. The null hypotheses for R & R studies are described below:

The null hipothesis of reproducibility states that

H0 : μ1(t) = μ2(t) = · · ·= μp(t), (16.1)

where μl(t), l = 1 . . . p are the populational functional mean for each laboratory l.
To test reproducibility of the laboratory results, the previous calculation of the

H(t) statistic is necessary. It is defined as

Hl(t) =
Xl

i (t)− X̄(t)
Sl(t)

; l = 1, . . . , p,

where X̄l(t) y Sl(t) are the mean and functional variance pointwise calculated for the
l laboratory.

The null hipothesis of repeatability states that there are not differences in the
laboratory variability:

H0 : σ2
1 (t) = σ2

2 (t) = · · ·= σ2
p(t), (16.2)

where σl(t), l = 1 . . . p are the theoretical functional variances corresponding to each
laboratory l.

The repeatability test is based on the K(t) statistic, defined as

Kl(t) =
Sl(t)√
S̄2(t)

; l = 1, . . . , p,

where, S̄2(t) = 1
p ∑p

l=1 S2
l (t).

On the one hand, in order to test the reproducibility hypothesis, we define the dH

test statistic as

dH
l = ‖Hl(t)‖=

(∫ b

a
Hl(t)2dt

) 1
2

,

considering that dH values corresponding to inhomogeneous laboratories will
tend to be high. On the other hand, to test the repeatability hypothesis, we also
define dK

l =
∥∥K(t)

∥∥, taking into account that higher values of dK correspond to non
consistent laboratories.
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16.3 Bootstrap algorithm

A bootstrap algorithm to test if the dH
l and dK

l are significantly high is proposed. The
proposed bootstrap procedure pretends to reproduce the distribution of these statistics
under corresponding null hypothesis, (16.1) and (16.2) respectively. Assuming that
a significance level α was fixed (typically α = 0.01), the algorithm consist on the
following steps:

1. Remove atypical observations, grouping all the curves in a single set (null
hypothesis), and applying the procedure described in Manuel Febrero et al. [3].

2. Using the smoothed bootstrap proposed in [1], generate bootstrap samples of
size p · n from the overall dataset without outliers. In each bootstrap sample,
randomly assign the bootstrap observations to the laboratories.

3. For each bootstrap sample, compute the H∗
l (t) and K∗

l (t) functional statistics, and
the corresponding dH∗

l and dK∗
l test statistics, for each laboratory l = 1, . . . , p.

4. Approximate the critical values cH and cK as the as the empirical 100(1−α)/p
percentile of the distribution of the corresponding p ·B bootstrap replicates of
the test statistic.

5. Finally, compute the confidence bands for the H(t) and K(t)statistics, determined
by the envelope of bootstrap samples with a less norm than the corresponding
critical value.

For each laboratory, the null hypotheses of reproducibility (16.1) (or repeatability
(16.2)) will be rejected if dH

l =
∥∥H(t)

∥∥ (dK
l ) exceed the critical value cH (cK).

16.4 A simulation study

Each scenario is composed by p laboratories (each one has tested n samples). The
results of each lab are simulated from a Gaussian process Y (t) = μ(t)+σ(t)ε(t),
where t ∈ [0,1] with μ(t) = 1

(1+exp(10(t−m))) is the trend functions (generalized lo-

gistic model) and σ(t)2 = c110−6(1+(1− ( t
0.5 −1)2)3), the deterministic variance.

Moreover, ε is a second order stationary process wit 0 mean and exp(−|s− t|/0.3)
covariance.

Two scenarios are simulated in order to evaluate the performance of test statistics.
The first one consists on varying the m parameter of μ(t), in order to evaluate the H
statistic. For this purpose, 6 labs are simulated under the null hpothesis defined by
m = 0.5 and the alternative defined by m = 0.5+δH . In the same way, the second
scenario consists on varying the c1 parameter of σ(t), in order to evaluate the H
statistic. For this purpose, 6 labs are simulated under the null hpothesis defined by
c1 = 5 and the alternative defined by c1 = 5+δK .

The TG curves accounts for the mass of a material depending on time or tem-
perate when the temperature. They provide information of the thermal stability of
materials. TG curves where simulated taking into account real data retrieved from [8]
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Fig. 16.1: The output for the δ = 1%,α = 1% simulation scenario is summarized.
Panel a: The simulated TG curves are shown. Panel b: Histogram of ch distribution
obtained in bootstrap resampling. The median is highlighted in dotted line. Panel c:
Graphical output for dH (for a specific sample of the simulation scenario). The dH

statistic for each laboratory is calculated and compare with the median of critical
values (ch) shown in panel b. Panel d: Functional H statistic corresponding to each
laboratory (for a specific sample of the simulation scenario) is shown and compared
to the limits that accounts for the 99% of resampled curves.

(Figure 16.1a), assuming similar variance structure (Figure 16.2a). In order to show
an illustrative example of the ILS proposal, the simulated samples corresponding
to δ = 1%,α = 1% scenario are presented (Figures 16.1 and 16.2). Figure 1a show
the case where the Lab 7 provides inhomogeneous results. In fact its m parameter is
varied 1% with respect to the other labs. In the case of dK study, the c1 parameter
corresponding to Lab 7 is varied 1%. In Figures 16.1 and 16.2, the graphical outputs
for dH and dK are shown. Figure 16.1c and 16.1d shows that the proposed FDA
approach detect the Lab 7 as an outlier when it is compared with critical values.
Nevertheless, in Figures 16.2c and 16.2d, the changes in variance of Lab 7 are not
detected. This is related to the lower power of dK . It would need higher changes to
detect a Lab 7 as an outlier (see Figure 16.3).
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Chapter 17

High-dimensional functional time series

forecasting

Yuan Gao, Hanlin L. Shang and Yanrong Yang

Abstract In this paper, we address the problem of forecasting high-dimensional
functional time series through a two-fold dimension reduction procedure. Dynamic
functional principal component analysis is applied to reduce each infinite-dimension
functional time series to a vector. We use factor model as a further dimension
reduction technique so that only a small number of latent factors are preserved.
Simple time series models can be used to forecast the factors and forecast of the
functions can be constructed. The proposed method is easy to implement especially
when the dimension of functional time series is large. We show the superiority of our
approach by both simulation studies and an application to Japan mortality rates data.

17.1 Introduction

Functional data are considered as realizations of smooth random curves. When curves
are collected sequentially, they form functional time series Xt(u),u ∈ I . To deal
with infinite dimensional functions, there is a demand for efficient data reduction
techniques. Functional principal component ananlysis (FPCA) is the most commonly
used approach that serves this purpose. FPCA performs eigendecomposition on the
underlying covariance functions. Most of the variance structures captured in a vector
called principal component scores (see [13] for details). Existing FPCA method has
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been developed for independent observations, which is a serious weakness when we
are dealing with time series data. In this paper, we adopt a dynamic FPCA approach
([10],[15]), where serial dependence between the curves are taken into account. With
dynamic FPCA, functional time series are reduced to a vector time series, where
the individual component processes are mutually uncorrelated principal component
scores.

It is often the case that we collect a vector of N functions at a single time point t. If
these N functions are assumed to be correlated, multivariate functional models should
be considered. Classical multivariate FPCA concatenates the multiple functions into
one to perform univariate FPCA ([13]). [9] suggested normalizing each random
function as a preliminary step before concatenation. [6] studied functional version
of principal component ananlysis, where multivariate functional data are reduced
to one or two functions rather than vectors. However, existing models dealing with
multivariate functional data either fail to handle data with a large N (as in the classical
FPCA approach), or are hard to implement practically (as in [6]).

We propose a two-fold dimension reduction model to handle high-dimensional
functional time series. By high-dimension, we allow that the dimension of the
functional time series N to be as large as or even larger than the length of observed
functional time series T . The dimension reduction process is straightforward and
easy to implement:

1) Dynamic functional principal component analysis is performed on each set
of functional time series, resulting in N sets of principal component scores of low
dimension K (typically less than 5);

2) The N first principal component are fitted to a factor model, and is further
reduced to a dimension of r (r � N). The same is done for the second principal
component scores and thus K factor models are fitted. The vector of N functional
time series is reduced to r×K vector time series.

Factor models are frequently used for dimension reduction. Some early application
of factor analysis to multiple time series include [1], [16] and [7]. Time series in
high-dimensional settings with N → ∞ together with T are studied in [8], [4] and
[11]. Among these, we adopt the method considered in [11], where the model is
conceptually simple and asymptotic properties are established.

17.2 Research methods

In this section, we introduce dynamic FPCA and factor model for the two-fold
dimension reduction process. Estimation and asymptotic properties are discussed.
We also suggest methods for forecasting.
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17.2.1 Dynamic functional principal component analysis

We consider stationary N-dimensional functional time series XXXt : t ∈ Z, where XXXt =
(X1

t (u), . . . ,X
N
t (u))�, and each Xt(u) takes values in the space H := L2(I ) of real-

valued square integrable functions on I .
The space H is a Hilbert space, equipped with the inner product 〈x,y〉 :=∫

I x(u)y(u)du. For each i = 1, . . . ,N, we assume Xi
t has a continuous mean function,

μ i(u) and an auto-covariance function at lag h, γ i
h(u,v), where

μ i(u) = E[Xi(u)],

γ i
h(u,v) = cov[Xi

t (u),X
i
t+h(v)] (17.1)

The long-run covariance function is defined as

ci(u,v) =
∞

∑
h=−∞

γ i
h(u,v) (17.2)

Using ci(u,v) as a kernel, we define the operator C by:

Ci(x)(u) =
∫

I
ci(u,v)x(v)dv, u,v ∈I (17.3)

The kernel is symmetric, non-negative definite. Thus by Mercer’s Theorem, the
operator C admits an eigendecomposition

Ci(x) =
∞

∑
k=1

λk〈x,υk〉υk, (17.4)

where (λl : l ≥ 1) are C’s eigenvalues in descending order and (υl : l ≥ 1) the
corresponding normalized eigenfunctions. By Karhunen-Loève Theorem, X can be
represented with

Xi
t (u) =

∞

∑
k=1

β i
t,kυ

i
k(u) (17.5)

where β i
t,k =

∫
I Xi

t (u)υ i
k(u)du is the kth principal component score at time t. The

infinite dimensional functions can be approximated by the first K principal component
scores:

Xi
t (u) =

K

∑
k=1

β i
t,kυ

i
k(u)+ ε i

t (u) (17.6)

17.2.2 Factor model

With the first step dimension reduction, we now have principal component scores
β i

t,k, where i = 1, . . . ,N. Following the early work by [10] and [5], we consider the
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following factor model for βββ i,t = (β 1
t,k, . . . ,β

N
t,k)

�. For each k = 1, . . . ,K, let

βββ t,k = AAAkωωω t,k + eeei,t , t = 1, . . .T, (17.7)

where βββ t,k is the vector that contains the kth principal component score of all N
functional time series. ωωω t,k is an r×1 unobserved factor time series. AAAk is an N× r
unknown constant factor loading matrix, and eeet,k is idiosyncratic error with mean 0
and variance σ2

i,t . K factor models are fitted to the principal component scores.
With two-fold dimension reduction, the original functional time series can be

approximated by

Xi
t (u) =

K

∑
k=1

[AAAkωωω t,k]iυ i
k(u)+θ i

t (u), (17.8)

where [AAAkωωω t,k]i is the ith element in the vector AAAkωωω t,k, and θ i
t (u) is the error term

from two steps of approximation.

17.2.3 Estimation

We want to estimate AAAkkk, ωωω t,k and υ i
k(u) in (17.8). In the dynamic FPCA step, the

long-run covariance function ci(u,v) can be estimated by

ĉi(u,v) =
∞

∑
h=−∞

W (
h
q
)γ̂ i

h(u,v) (17.9)

where

γ̂ i
h(u,v) =

{
1
T ∑T−h

j=1 (X
i
j(u)− X̄ j(u))(Xj+h(v)− X̄(v)), h≥ 0

1
T ∑T

j=1−h(X
i
j(u)− X̄ j(u))(Xj+h(v)− X̄(v)), h < 0

where W is a weight function with W (0) = 1,W (u) =W (−u),W (u) = 0 if |u|> m
for some m > 0, and W is continuous on [−m,m]. Some possible choices include
Bartlett, Parzen, Tukey-Hanning, Quadratic spectral and Flat-top functions ([2, 3]).
q is a bandwidth parameter. [14] proposed a plug-in procedure to select q. ĉi(u,v)
is used as the kernel of the operator Ĉ, with which we can estimate υ̂ i

k(u) by per-
forming eigendecomposition on Ĉ. υ̂ i

k(u) is the normalized eigenfunction that cor-
responds to the kth largest eigenvalue. The empirical principal component scores
β̂ i

t,k =
∫
I Xi

t (u)υ̂ i
k(u)du, can be calculated by numerical integration.

The estimates β̂ i
t,k are fitted to a factor model. The estimation of latent factors

for high-dimensional time series can be found in [11]. A natural estimator for AAAk is
defined as ÂAAk = (âaa1, . . . , âaar), where âaa j is the jth eigenvector of Q̂QQk, and

Q̂QQk =
h0

∑
h=1

Σ̂ΣΣ h,kΣ̂ΣΣ
�
h,k, Σ̂ΣΣ h =

1
T −h

T−h

∑
h=1

(β̂ββ t+h,k− β̃ββ k)(β̂ββ t,k− β̃ββ k)
�, (17.10)
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where β̃ββ k =
1
T ∑T

t=1 β̂ββ t,k. Thus we estimate the kth factor by

ω̂ωω t,k = ÂAA
�
k β̂ββ t,k (17.11)

The estimator for the original function Xi
t (u) is

X̂ i
t (u) =

K

∑
k=1

[ÂAAkω̂ωω t,k]iυ̂ i
k(u), i = 1, . . . ,N, t = 1, . . . ,T (17.12)

where [ÂAAkω̂ωω t,k]i is the ith element of the vector ÂAAkω̂ωω t,k.

17.2.4 Forecasting

With two-fold dimension reduction, information of serial correlation is contained
in the factors ωωω t,k. To forecast N-dimensional functional time series, we could
instead make forecast on the estimated factors. Scalar or vector time series models
could be applied. We suggest univariate time series models, autoregressive moving
average (ARMA) models, for instance, since the factors are mutually uncorrelated.
Consequently, we need to fit r×K ARMA models on the factors. The prediction of
the functions could be calculated:

E[X̂ i
t+h|t(u)] =

K

∑
k=1

[ÂAAkω̂ωω t+h|t,k]iυ̂ i
k(u), i = 1, . . . ,N, t = 1, . . . ,T, (17.13)

where X̂ i
t+h|t(u) is h-step ahead forecast at time t.

17.3 Empirical studies

Japanese sub-national mortality rates in 47 prefectures is used to demonstrate the
effectiveness of our proposed method. Available at [12], the data set contains yearly
age-specific mortality rates in a span of 40 years from 1975 to 2014. The dimension
of the functional time series is 47, which is greater than the sample size 40. With
the two-fold dimension reduction model, we use the first three principal component
scores for each population, and the first three factors. The problem of choosing the
appropriate number of scores and factors will be discussed in detail.

We compare the forecast accuracy of our proposed method with the independent
functional time series model, where each sub-national population is forecast individu-
ally. Both point forecast and interval forecast errors are calculated and it is found that
the proposed method outperforms the independent model in most of the prefectures.
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Chapter 18

Essentials of backward nested descriptors

inference

Stephan F. Huckemann and Benjamin Eltzner

Abstract Principal component analysis (PCA) is a popular device for dimension
reduction and their asymptotics are well known. In particular, principal components
through the mean span the data with decreasing residual variance, as the dimension
increases, or, equivalently maximize projected variance, as the dimensions decrease,
and these spans are nested in a backward and forward fashion – all due to Pythago-
ras Theorem. For non-Euclidean data with no Pythagorian variance decomposition
available, it is not obvious what should take the place of PCA and how asymptotic
results generalize. For spaces with high symmetry, for instance for spheres, back-
ward nested sphere analysis has been successfully introduced. For spaces with less
symmetry, recently, nested barycentric subspaces have been proposed. In this short
contribution we sketch how to arrive at asymptotic results for sequences of random
nested subspaces.

18.1 Introduction

From the early days of statistics of non-Euclidean data, Procrustes analysis proposed
by [3] for shape data as a generalization of PCA, has been a successful device of
choice. In essence, data are mapped to a tangent space of a Fréchet mean and PCA is
performed in that tangent space. Notably, in that setting, not only the PCs but also the
base point of the tangent space is random. Because all tangent spaces are the same
in a Euclidean space, this complication is non-existent for asymptotics of classical
PCA, derived by [1, 10, 9] and others.

Beyond lacking a general asymptotic theory, one may view this and similar
methods (e.g. [2]) also as non-satisfactory, because these tangent space PCs neither
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minimize residual variance nor maximize projected variance with respect to an
invariant distance. To this end geodesic PCs that are geodesics minimizing intrinsic
residual variance have been considered by [6, 5]. These are non-nested in the sense
that the intrinsic mean μ is in general not located on the first PC, cf. [6]. From a
dimension reduction viewpoint, however, nestedness appears as a desirable feature,
where one seeks a sequence of subspaces {p j}m

j=0 of the data space Q, where each
subspace approximates the data best, in a certain sense, over a family of admissible
subspaces, that is nested.

{μ}= p0 ⊂ p1 ⊂ . . .⊂ pm = Q . (18.1)

On a sphere, if all the subspaces are small subspheres, this is realized by principal
nested sphere (PNS) analysis by [7]. For general spaces, if each subspace is a
barycentric center of an nested sequence of points, this is realized by barycentric
subspaces (BS) by [8].

In the following we formulate a general setup for (18.1) and state asymptotic
results from which inferential bootstrap procedures can be derived, as detailed in [4].
In particular we have shown that the geometric assumptions below are satisfied for
PNS and for the intrinsic mean on a first principal component geodesic, cf. [4, 6, 5].
It is still an open problem, to explore under which conditions these assumptions hold
also for barycentric subspaces.

18.2 Setup

In the following, smooth refers to existing continuous 2nd order derivatives.
For a topological space Q we say that a continuous function d : Q×Q→ [0,∞)

is a loss function if d(q,q′) = 0 if and only if q = q′. We say that a set A ⊂ Q is
d-bounded if supa,a′∈A d(a,a′)< ∞. Moreover, we say that B⊂ Q is d-Heine Borel
if all closed d-bounded subsets of B are compact.

Definition 18.1. A separable topological space Q, called the data space, admits
backward nested families of descriptors (BNFDs) if

1. there is a collection Pj ( j = 0, . . . ,m) of topological separable spaces with loss
functions d j : Pj×Pj → [0,∞);

2. Pm = {Q};
3. every p ∈ Pj ( j = 1, . . . ,m) is itself a topological space and gives rise to a

topological space /0 �= Sp ⊂ Pj−1 which comes with a continuous map

ρp : p×Sp → [0,∞) ;

4. for every pair p ∈ Pj ( j = 1, . . . ,m) and s ∈ Sp there is a measurable map called
projection

πp,s : p→ s .
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For j ∈ {1, . . . ,m} and k ∈ {1, . . . , j} call a family

f = {p j, . . . , p j−k}, with pl−1 ∈ Spl , l = j− k+1, . . . , j

a backward nested family of descriptors (BNFD) from Pj to Pj−k. The space of all
BNFDs from Pj to Pj−k is given by

Tj,k =
{

f = {p j−l}k
l=0 : pl−1 ∈ Spl , l = j− k+1, . . . , j

}
⊆

k

∏
l=0

Pj−l .

For k ∈ {1, . . . ,m}, given a BNFD f = {pm−l}k
l=0 set

π f = πpm−k+1,pm−k ◦ . . .◦πpm,pm−1 : pm → pm−k

which projects along each descriptor. For another BNFD f ′ = {p′ j−l}k
l=0 ∈ Tj,k set

d j( f , f ′) =

√√√√ k

∑
l=0

d j(p j−l , p′ j−l)2 .

In case of PNS, the nested projection π f is illustrated in Figure 18.1 (a).

Definition 18.2. Random elements X1, . . . ,Xn
i.i.d.∼ X on a data space Q admitting

BNFDs give rise to backward nested population and sample means (abbreviated as
BN means)

{E f j
: j = m, . . . ,0}, {E f j

n
n : j = m, . . . ,0}

recursively defined via Em = {Q}= Em
n , i.e. pm = Q = pm

n and

E f j−1
= argmins∈Sp j

E[ρp j(π f j ◦X ,s)2], f j = {pk}m
k= j

E f j−1
n

n = argmins∈S
p j
n

n

∑
i=1

ρp j
n
(π f j

n
◦Xi,s)2, f j

n = {pk
n}m

k= j .

where p j ∈ E f j
and p j

n ∈ E f j
n is a measurable choice for j = 1, . . . ,m.

We say that a BNFD f = {pk}m
k=0 gives unique BN population means if E f j

=
{p j} with f j = {pk}m

k= j for all j = 0, . . . ,m.

Each of the E f j−1
and E f j−1

n
n is also called a generalized Fréchet mean.

Note that by definition there is only one pm = Q ∈ Pm. For this reason, for
notational simplicity, we ignore it from now on and begin all BNFDs with pm−1 and
consider thus the corresponding Tm−1,k.

Definition 18.3 (Factoring Charts). Let j ∈ {0, . . . ,m− 1},k ∈ {1, . . . , j}. If Tj,k

and P j−k carry smooth manifold structures near f ′ = (p′ j, . . . , p′ j−k) ∈ Tj,k and
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p′ j−k ∈P j−k, respectively, with open W ⊂ Tj,k, U ⊂P j−k such that f ′ ∈W , p′ j−k ∈U ,
and with local charts

ψ : W → R
dim(W ), f = (p j, . . . , p j−k) �→ η = (θ ,ξ ), φ : U → R

dim(U), p j−k �→ θ

we say that the chart ψ factors, if with the projections

πP j−k
: Tj,k → P j−k, f �→ p j−k, πR

dim(U)
: Rdim(W ) → R

dim(U), (θ ,ξ ) �→ θ

we have

φ ◦πP j−k |W = πR
dim(U) |ψ(W ) ◦ψ .

18.3 Assumptions

For the following assumptions suppose that j ∈ {1, . . . ,m−1}.

Assumption 18.1 For a random element X in Q, assume that E[ρp j(π f ◦X ,s)2]< ∞
for all BNFDs f ending at p j, s ∈ Sp j .

In order to measure a difference between s ∈ Sp and s′ ∈ Sp′ for p, p′ ∈ Pj define
the orthogonal projection of s ∈ Sp onto Sp′ as

Ss
p′ = argmin

s′∈Sp′
d j−1(s,s′) .

In case of PNS this is illustrated in Figure 18.1 (a).

Assumption 18.2 For every s ∈ Sp there is δ > 0 such that

|Ss
p′ |= 1

whenever p, p′ ∈ Pj with d j(p, p′)< δ .

For s ∈ Sp and p, p′ ∈ Pj sufficiently close let sp′ ∈ Ss
p′ be the unique element.

Note that in general

(sp′)p �= s .

In the following assumption, however, we will require that they will uniformly not
differ too much if p is close to p′. Also, we require that sp′ and s be close.

Assumption 18.3 For ε > 0 there is δ > 0 such that

d j−1(sp′ ,s)< ε and d j−1
(
(sp′)p,s

)
< ε ∀s ∈ Sp

whenever p, p′ ∈ Pj with d j(p, p′)< δ .
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(a) Nested projection (b) Projection of descriptors

Fig. 18.1: PNS illustration. Left: Projection of X (filled diamond) in Q = S
2 onto

small circle p and further onto s (filled circle). Right: Projection sp′ (on the top
circle) onto Sp′ (which is p′ in this case) of s (on the lower circle) on Sp (which is p
in this case).

We will also require the following assumption, which, in conjunction with As-
sumption 18.3, is a consequence of the triangle inequality, if d j−1 is a metric.

Assumption 18.4 Suppose that d j(pn, p)→ 0 and d j−1(sn,s)→ 0 with p, pn ∈ Pj
and s ∈ Sp,sn ∈ Spn . Then also

d j−1(sn,spn)→ 0

Moreover, we require uniformity and coercivity in the following senses.

Assumption 18.5 For all ε > 0 there are δ1,δ2 > 0 such that∣∣∣ρp
(
π f (q),s

)−ρp′
(
π f ′(q),s

′)∣∣∣< ε ∀q ∈ Q

for all BNFDs f , f ′ ∈ Tm−1,m− j−1 ending in p, p′ ∈Pj, respectively, with d( f , f ′)< δ1
and s ∈ Sp,s′ ∈ Sp′ with d j−1(s,s′)< δ2.

Assumption 18.6 If pn, p ∈ Pj and sn ∈ Spn ,s ∈ Sp with d j−1(sn,s)→ ∞, then for
every C > 0 we have that

ρpn(π fnq,sn)→ ∞

for every q ∈ Q with ρp(π f q,s)<C and BNFDs f , fn ∈ Tm−1,m− j−1 ending at p, pn
respectively.

Remark 18.4 Due to continuity, Assumptions 18.1 and 18.5 hold if Q is compact
and Assumption 18.6 if each Pj is compact.
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Again, let j ∈ {1, . . . ,m−1}.

Assumption 18.7 Assume that Tm−1,m− j carries a smooth manifold structure near
the unique BN population mean f ′ j−1 = (p′m−1, . . . , p′ j−1) such that there is an open
set W ⊂ Tm−1,m− j , f ′ j−1 ∈W and a local chart

ψ : W → R
dim(U), f j−1 = (pm−1, . . . , p j−1) �→ η .

Further, assume that for every l = j, . . . ,m the mapping

η �→ f l−1 �→ ρpl (π f l ◦X , pl−1)2 := τ l(η ,X)

has first and second derivatives, such that for all l = j, . . . ,m,

Cov
[
gradητ

l(η ′,X)
]
, and E

[
Hess ητ l(η ′,X)

]
exist and are in expectation continuous near η ′, i.e. for δ → 0 we have

E

[
sup

‖η−η ′‖<δ

∥∥∥gradητ
l(η ,X)−gradητ

l(η ′,X)
∥∥∥] → 0 ,

E

[
sup

‖η−η ′‖<δ

∥∥∥Hess ητ l(η ,X)−Hess ητ l(η ′,X)
∥∥∥] → 0 .

Finally, assume that the vectors E
[
gradητ j+1(η ′,X)

]
, . . . ,E

[
gradητm(η ′,X)

]
are

linearly independent.

18.4 Asymptotic Theorems

The proofs of the two asymptotic theorems can be found in [4].

Theorem 18.8. Let k∈ {0, . . . ,m−1} and consider random data X1, . . . ,Xn
iid∼ X on a

data space Q admitting BN descriptor families from Pm to Pk, unique BN population

means {pm, . . . , pk} and BN sample means {E f m
n

n , . . . ,E f k
n

n } due to a measurable

selection p j
n ∈ E f j

n
n giving rise to BNFDs f j

n = {pl
n}m

l= j , j = k, . . . ,m. If Assumptions

18.1 – 18.6 are valid for all j = k, . . . ,m− 1, and every ∪∞
n=1E f j

n
n is a.s. d j-Heine

Borel ( j = k, . . . ,m) then {E f m
n

n , . . . ,E f k
n

n } converges a.s. to {pm, . . . , pk} in the sense
that ∃Ω ′ ⊂Ω measurable with P(Ω ′) = 1 such that for all j = k, . . . ,m, ε > 0 and
ω ∈Ω ′, ∃N = N(ε,ω) with

∞⋃
r=n

E f j
r

r ⊂ {p ∈ Pj : d j(p j, p)≤ ε} ∀n≥ N, ω ∈Ω ′ . (18.2)
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Remark 18.5 In fact, for the proof we require that the “distances” d j vanish on the
diagonal d j(p, p) = 0 for all p ∈ Pj; they need not be definite, i.e. it is not necessary
that d j(p, p′) = 0⇒ p = p′.

Moreover, note that the d j-Heine Borel property holds trivially in case of unique
sample descriptors.

Theorem 18.9. Let j ∈ {1, . . . ,m− 1} and consider random data X1, . . . ,Xn
iid∼ X

on a data space Q admitting BNFDs from Pm−1 to Pj−1, a unique BN population

mean f ′ j−1 = {p′m−1, . . . , p′ j−1} and BN sample means {E f m−1
n

n , . . . ,E f j−1
n

n } due to

a measurable selection pl
n ∈ E f l

n
n , f j−1

n = {pm−1
n , . . . , p j−1

n }, l = j−1, . . . ,m−1.

(i) Assuming that Assumption 18.7 hold as well as (18.2) for all j ∈ { j−1, . . . ,m−
1}, we have that

√
nHψ

(
ψ−1( f j−1

n )−ψ−1( f ′ j−1
)
)→N (0,Bψ)

with a chart ψ as specified in Assumption 18.7 as well as

Hψ = E

[
Hess ητ j(η ′,X)+

m

∑
l= j+1

λ l Hess ητ l(η ′,X)

]
and

Bψ = Cov

[
gradητ

j(η ′,X)+
m

∑
l= j+1

λ l gradητ
l(η ′,X)

]
,

with the notation from Assumption 18.7 where λ j+1, . . .λm ∈R are suitable such
that

gradη E
[
τ j(η ,X)

]
+

m

∑
l= j+1

λ l gradη E
[
τ l(η ,X)

]
vanishes at η = η ′.

(ii) If additionally Hψ > 0, then f j−1
n satisfies a Gaussian

√
n-CLT

√
n
(
ψ−1( f j−1

n )−ψ−1( f ′ j−1
)
)→N (0,Σψ), Σψ = H−1

ψ BψH−1
ψ .

(iii) If additionally the chart ψ factors as in Definition 18.3, then also p j−1
n satisfies

a Gaussian
√

n-CLT

√
n
(
φ−1(p j−1

n )−φ−1(p′ j−1
)
)→N (0,Σφ ), Σφ =

(
Σψ ik

)dim(Pj−1)

i,k=1

with the notation of Definition 18.3.
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Chapter 19

Two-sample tests for multivariate functional

data

Qing Jiang, Simos G. Meintanis and Lixing Zhu

Abstract We consider two–sample tests for functional data with observations which
may be uni– or multi–dimensional. The new methods are formulated as L2–type
criteria based on empirical characteristic functions and are convenient from the
computational point of view.
Keywords: Functional data, Empirical characteristic function, Two–sample problem

19.1 Introduction

Suppose that we observe data X1i j and X2i j arising from two different groups. For
each fixed i, X1i j, is viewed as realization of a curve x1i(t) observed at distinct time
points t1i j, j = 1, ...,m1i, and we index the curves by i = 1, ...,n1, for the first group.
Likewise suppose that X2i j is realization of a curve x2i(t), observed at times t2i j,
j = 1, ...,m2i, and indexed by i = 1, ...,n2, for the second group. The observation
times t1i j, t2i j are assumed to belong to some closed bounded interval T, and we often
take T= [0,1]. Although we work under the assumption of independence between
groups, we allow for noise in the observations. Specifically we consider the model

X1i j = x1i(t1i j)+ ε1i j, X2i j = x2i(t2i j)+ ε2i j, (19.1)
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where x11(t), ...,x1n1(t), are independent and identically distributed as x1(t), and
independent of the the errors ε1(t), for t ∈ T, and likewise x21(t), ...,x2n2(t) are
iid as x2(t), and independent of ε2(t). The errors are also assumed to be mutually
independent with zero means. We wish to test the null hypothesis

H0 : x1(t)
d
= x2(t), for each t ∈ T, (19.2)

where d
= stands for equality in law.

Earlier works for the two–sample problem with functional data include testing for
common location ([6, 5, 16]), and for common covariance matrix ([11, 8]), while [1]
considers the more general problem of testing for common principal components.
The framework of the current paper though is much in the spirit of [4] where the two–
sample problem was first studied in its full generality of the null hypothesis (19.2);
see also [12]. However we deviate from this paper by proposing procedures which
instead of the empirical distribution function, utilize the empirical characteristic
function (ECF). Apart from other favorable features which will become apparent
along the paper, note that ECF–based procedures for scalar data are readily extended
to multidimensional observations which is not always true if one employs classical
procedures based on the empirical distribution function.

19.2 Test Statistics

19.2.1 Univariate case

Our approach for testing the null hypothesis H0 in (19.2) will be based on the fact
that H0 is tantamount to the identity

ϕx1(t)(u) = ϕx2(t)(u), ∀ u ∈ R, and each t ∈ T, (19.3)

and vice versa. Here, as well as elsewhere below, ϕz(t)(u) := E(eιuz(t)), (ι =
√−1),

will denote the characteristic function (CF) of the stochastic quantity z(t). Based on
this fact, [10] and [9] develop two–sample testing procedures for multivariate data.
Here we follow this approach and in line with [4], we assume that the curves x1i(t)
and x2i(t) may be recovered following non–parametric techniques and write x̂1i(t)
and x̂2i(t) for the resulting curve estimators. Consider the corresponding ECFs

ϕ̂1t(u) =
1
n1

n1

∑
i=1

eιux̂1i(t), ϕ̂2t(u) =
1
n2

n2

∑
i=1

eιux̂2i(t), (19.4)

computed from x̂11(t), ..., x̂1n1(t) and x̂21(t), ..., x̂2n2(t), respectively. Then in view of
(19.3) we suggest the test statistic
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Dw =
∫
T

∫
R

δt(u)w(u)dudt, (19.5)

where
δt(u) = |ϕ̂1t(u)− ϕ̂2t(u)|2 , (19.6)

and w > 0 denotes a weight function satisfying
∫
R

w(u)du < ∞.

19.2.2 Multivariate case

The latent curves xk(t) = (χk1(t), ...,χkp(t))′, k = 1,2, may also be multidimensional.
This is a new area where functional data are observed over time t, but realizations are
complex geometrical structures in dimension p > 1; see [3], [7], and [2], for recent
contributions on statistical techniques for multivariate functional data. Following the
lines of the previous section for testing the null hypothesis (19.2) we will consider
a criterion analogous to that in (19.5). However, in order to avoid nonparametric
estimation which is problematic in high dimension we will have to modify our
assumptions regarding model (19.1). Specifically we adopt the model

X1i(t) = x1i(t)+ ε1i(t), X2i(t) = x2i(t)+ ε2i(t), (19.7)

and we assume that observations are collected over time t := t j, j = 1, ...,m, for both
groups, with m being large, i.e., we have a common sampling design between the two
groups which is dense. Moreover we assume that sampling noise is equidistributed
between the two groups, ε1(t)

d
= ε2(t), with a common CF that never vanishes. Under

these assumptions and using the Fourier identities ϕXk(t)(u) = ϕxk(t)(u)ϕεk(t)(u), k =
1,2, resulting from model (19.7), we conclude that the null hypothesis H0 in (19.2)
holds if and only if

ϕX1(t)(u) = ϕX2(t)(u), ∀ u ∈ R
p, and each t ∈ T. (19.8)

In view of this fact we propose the test statistic

ΔW =
∫
Rp
δ (u)W (u)du, (19.9)

with W : Rp �→ (0,∞) and satisfying
∫
Rp W (u)du < ∞, where

δ (u) =
1
m

m

∑
j=1

∣∣φ1 j(u)−φ2 j(u)
∣∣2 , (19.10)

with

φ1 j(u) =
1
n1

n1

∑
i=1

eιu
′X1i j , φ2 j(u) =

1
n2

n2

∑
i=1

eιu
′X2i j , (19.11)
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being the ECFs computed directly from the observed data Xk1 j, ...,Xknk j, and which
correspond to the CFs ϕX1(u) and ϕX2(u), respectively, considered at fixed time
points t j, for each j = 1, ...,m.

19.3 Computations and Interpretations

19.3.1 Univariate case

Our procedures enjoy the advantage of computational simplicity. To see this we first
proceed from (19.6) and by using simple algebra and trigonometric identities we get

δt(u) =
1
n2

1

n1

∑
i,�=1

cos(u(x̂1i(t)− x̂1�(t)))+
1
n2

2

n2

∑
i,�=1

cos(u(x̂2i(t)− x̂2�(t)))

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

cos(u(x̂1i(t)− x̂2�(t))) (19.12)

Then by making use of the previous equation in (19.5) we conclude that the test
statistic can be written as

Dw =
1
n2

1

n1

∑
i,�=1

Iw,T(x̂1i, x̂1�)+
1
n2

1

n2

∑
i,�=1

Iw,T(x̂2i, x̂2�)− 2
n1n2

n1

∑
i=1

n2

∑
�=1

Iw,T(x̂1i, x̂2�)

(19.13)
where

Iw,T(z1,z2) =
∫
T

∫
R

cos(u(z1(t)− z2(t)))w(u)dudt. (19.14)

The weight function w(·) in (19.14) may be chosen in a way that avoids numerical
integration in the inner integral

∫
cos(u(z))w(u)du but for further details on this

we refer to the next subsection. Then again having computed
∫

cos(u(z))w(u)du :=
g(z(t)), say, one also has to compute the outer integral

∫
g(z(t))dt, over T. However

even in the simplest case of local linear smoothers[4], the closed form obtained for
x̂ki(t) is quite complicated and therefore one needs to resort to numerical integration.
Despite this, integration in closed bounded domains is a well studied numerical
problem and there exist several routines available for this purpose. Hence we do
not expect any complications to be associated with this part of our procedure. For
simplicity we take T= [0,1]

The choice for the weight function w(·) is usually based upon computational
considerations. In fact if w(·) integrates to one (perhaps after some scaling) and
satisfies w(−u) = w(u) then the inner integral in (19.14) can be interpreted as the CF
of a symmetric around zero random variable having density w(·). In this connection
w(·) can be chosen as the density of any such distribution. Typically we consider
a fixed family of weight functions, say w := wγ indexed by a parameter γ > 0. For
instance a weight function wγ(u) which is proportional to e−γu2

, corresponds to the
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Gaussian density, but for computational purposes any density with a simple CF will
do. In fact, one might wonder whether there is a weight function which is optimal
in some sense. The issue is still open but based on earlier results it appears that the
issue of the choice of the weight function is similar to the corresponding problem of
choosing a kernel and a bandwidth in nonparametric estimation: the asymptotics of
the test are qualitatively invariant with respect to wγ . Moreover most weight functions
(kernels) render similar finite–sample behavior of the resulting test statistic, which is
very competitive compared to classical procedures based on the empirical distribution
function. Nevertheless there is some sensitivity of the ECF–tests with respect to the
“bandwidth” parameter γ ; see [10] and [9]. This is a highly technical problem that has
been tackled only under the restrictive scenario of testing goodness–of–fit for a given
parametric distribution, and even then a good choice of γ depends on the direction
away from the null hypothesis; see [15]. Thus in our context the approach to the
weight function is in some sense pragmatic: we use the Gaussian weight function
which has become a standard, and investigate the behavior of the criterion over a grid
of values of the weight parameter γ . However in our Monte Carlo study, alternative
weight functions will also be tried.

19.3.2 Multivariate case

We proceed from (19.10) and by using (19.12) we obtain

δ (u) =
1
m

m

∑
j=1

δ j(u), (19.15)

where

δ j(u) =
1
n2

1

n1

∑
i,�=1

cos(u′(X1i j−X1� j))+
1
n2

2

n2

∑
i,�=1

cos(u′(X2i j−X2� j))

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

cos(u′(X1i j−X2� j)) (19.16)

Consequently the test statistic can be written as

ΔW =
1
m

m

∑
j=1

( 1
n2

1

n1

∑
i,�=1

IW (X1i j−X1� j)+
1
n2

1

n2

∑
i,�=1

IW (X2i j−X2� j)

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

IW (X1i j−X2� j)
)

(19.17)

where
IW (x) =

∫
Rp

cos(u′x)W (u)du. (19.18)



150 Qing Jiang, Simos G. Meintanis and Lixing Zhu

As already mentioned, the weight function W (·) in (19.18) may be chosen in a way
that avoids numerical integration, which is problematic in higher dimension. To see
this recall that the CF of any spherical random variable Z is given by ϕZ(u) =Ψ(‖u‖),
for some, family specific, scalar functionΨ(·), where ‖u‖ denotes the usual Euclidean
norm. Hence if fZ(z) denotes the density corresponding to ϕZ(u) we have∫

Rp
cos(u′z) fZ(z)dz =Ψ(‖u‖).

The last equation implies that if fZ(·) is used as weight function W (·) in (19.18),
then the resulting test statistic, say ΔΨ , reduces to

ΔΨ =
1
m

m

∑
j=1

( 1
n2

1

n1

∑
i,�=1

Ψ(‖X1i j−X1� j‖)+ 1
n2

1

n2

∑
i,�=1

Ψ(‖X2i j−X2� j‖)

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

Ψ(‖X1i j−X2� j‖)
)
. (19.19)

The test criterion in (19.19) is further advanced by considering specific families of
spherically symmetric distributions with a simple CF. Such a family of distributions
is the family of spherical stable distributions withΨ(u) = e−uα , where 0 < α ≤ 2,
stands for the characteristic exponent. Interesting special cases of spherical stable
distributions are the multivariate Cauchy and normal distributions corresponding
to α = 1 and α = 2, respectively. Other convenient choices are the multivariate
Laplace distribution withΨ(u) = (1+u2)−1 and some special cases of the family of
multivariate Kotz–type distributions.

We will elaborate here on the case of the spherical stable distribution as weight
function in (19.18). Note that if this function is used in (19.19), it yields the test
criterion

Δα =
1
m

m

∑
j=1

( 1
n2

1

n1

∑
i,�=1

e−‖X1i j−X1� j‖α +
1
n2

2

n2

∑
i,�=1

e−‖X2i j−X2� j‖α

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

e−‖X1i j−X2� j‖α
)
. (19.20)

Interestingly there is a connection between (19.20) and another two–sample test
statistic in the literature. To see this let Z follow a spherical stable distribution with
characteristic exponent α and choose the density of the random variable Z/γ1/α as
weight function in (19.17)–(19.18), for some γ > 0. To get a formula for the resulting

criterion recall that the CF of the last random variable is given by e−
‖u‖α
γ which yields

a test statistic, say Δ̃α,γ , analogous to the criterion in (19.20) but with ‖ · ‖α being
replace by ‖ · ‖α/γ throughout eqn. (19.20). Now if we take a two–term expansion
e−‖x‖α/γ = 1−‖x‖α/γ+o(γ−1), γ → ∞, in the new test statistic Δ̃α,γ , this will lead
after some algebra to
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lim
γ→∞

γΔ̃α,γ =
1
m

m

∑
j=1

( 2
n1n2

n1

∑
i=1

n2

∑
�=1

‖X1i j−X2� j‖α − 1
n2

1

n1

∑
i,�=1

‖X1i j−X1� j‖α

− 1
n2

2

n2

∑
i,�=1

‖X2i j−X2� j‖α
)
. (19.21)

The criterion in the r.h.s. of (19.21) is the so–called energy statistic of [13] adapted
to the functional context. We mention in this connection that energy statistics have
gained considerable popularity lately as they have been employed not just for two–
sample testing but also for testing for independence as well as in nonparametric
analysis of variance. The reader is referred to the review of [14] for more information
on energy statistics.

19.4 Resampling procedures

The null distribution of the test statistics considered depends, among other things,
on the underlying stochastic properties of the random variables x1(t) and x2(t)
involved. In order to deal with this issue we apply appropriate resampling procedures
for computing critical points and actually carrying out the tests. To this end, let
D =D(ξ1, ...,ξn) be a generic notation for a test statistic which depends on a sample
of size n of observations ξ j, 1 ≤ j ≤ n. Clearly in our case n = n1 + n2. We will
apply the permutation procedure whereby we randomly generate a permutation
b = {b1, ...,bn} of {1, ...,n}, and compute the test statistic Db = D(ξb1 , ...,ξbn). The
procedure is repeated a number of times b = 1, ...,B, and the critical point of the test
of size α is determined as the corresponding (1−α) quantile D((1−α)B) of the values
Db, b = 1, ...,B. The null hypothesis is then rejected if D > D((1−α)B).

Suppose that data Xk1 j, . . . ,Xknk j are observed at fixed time points t j, for each j =
1, . . . ,m. For univariate data, the critical point of the test statistic in (19.5) is computed
as in [4], i.e., by permuting {x̂11, ..., x̂1n1 , x̂21, ..., x̂2n2}. In turn with multivariate data,
permutations for the criterion in (19.9) are performed on {X11 j, ..., X1n1 j, X21 j, ...,
X2n2 j}, for each j = 1, ...,m.

In the univariate case, we generate data {(tki j,xki(tki j)) : j}nk
i=1,k = 1,2, mainly as

in [4]. For completeness we describe the data as follows: the sampling design for the
curves is assumed balanced (m1i = m2i = m),∀i, and regular. Specifically, suppose
that tki·,k = 1,2, i = 1, . . . ,nk are discrete uniform fixed time points on [0,1]. It is
assumed that x1i(t) = ∑15

k=1 e−k/2Nk1iψk(t) and

x2i(t) =
15

∑
k=1

e−k/2Nk21iψk(t)+δ
15

∑
k=1

k−2Nk22iψ∗
k (t)

where Nk1i,Nk21i,Nk22i are i.i.d. standard normal variables, δ ≥ 0 controls the
deviation from the null hypothesis (δ = 0 under H0). Here ψ1(t) ≡ 1,∀t and
ψk(t) =

√
2sin{(k−1)πt} are orthonormal basis functions. Also
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ψ∗
k (t) =

⎧⎪⎨⎪⎩
1 if k = 1√

2sin{(k−1)π(2t−1)} if k is odd and k > 1√
2cos{(k−1)π(2t−1)} if k is even

are orhonormal basis functions. Two scenarios are considered: i) m = 20 points
per curve, and ii) m = 100 points per curve. Figure 19.1 (without sampling noise)
illustrates the ECF test results for significance level a = 0.05. The simulation results
are based on 500 samples, and the critical values of the test are obtained from 1000
permutation samples.

Figure 19.1 illustrates that the level is well respected under the null hypothesis and
the power increases for larger values of m,n and δ in two conditions. The number
of observations per curve, m, has limited impact on the power and the conclusion
is consistent with [4]. However, compared with their results, the empirical power
of the ECF test increases at a faster rate than the CVM test of [4]. This should not
be surprising, as we do not need to estimate all basis functions by smoothing the
data when observations are without noise or sampling noise is equidistributed. When
observations are without noise, we can directly estimate the test statistic Δα in (19.20).
Also the Fourier identities makes it consistent to transform the null hypothesis (19.2)
to equation (19.8) when sampling noise is equidistributed.

19.5 Conclusion

We suggest a new procedure for testing the two–sample null hypothesis with func-
tional data. The procedure is an adaptation to the functional– data set up of earlier
methods for the same problem with perfectly observed i.i.d. data. Here we present
only the main ideas of the new methods and a small Monte Carlo study. A detailed
study of the asymptotic as well as the finite–sample behavior of the methods is
currently under investigation and will be reported elsewhere.

References
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[5] Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications.
Springer Series in Statistics, Springer, New York (2012)



19 Two-sample tests for multivariate functional data 153

Fig. 19.1: Rejection frequencies of the ECF test for data without noise when n = 15
(dashed line) and n = 25 (solid line) corresponding to level of significance is a = 5%
for the test statistic in (20) with characteristic exponent α . The thin lines correspond
to m = 20, the thick lines to m = 100.
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[13] Székely G., Rizzo, M.: Hierarchical clustering via joint between–within dis-
tances: Extending Ward’s minimum variance method. J. Classif. 22, 151–183
(2005)



154 Qing Jiang, Simos G. Meintanis and Lixing Zhu
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Chapter 20

Functional quantile regression: local linear

modelisation

Zoulikha Kaid and Ali Laksaci

Abstract A nonparametric local linear estimator of the conditional quantiles of a
scalar response variable Y given a random variable X taking values in a semi-metric
space. We establish the almost complete consistency and the asymptotic normality of
this estimate. We prove that the asymptotic proprieties of this estimate are closely
related to some topological characteristics of the data. Finally, a Monte Carlo study
is carried out to evaluate the performance of this estimate.

20.1 Introduction

In the last two decades the statistical analysis of functional random variable has
attracted considerable interest (see [17, 21, 11, 13], for an overview on this topic).
In this context the conditional quantiles estimation has received extensive attention
in the literature. See, for instance [4], [14] for some parametric approach or [10],
[5] for the nonparametric modeling. Noting that most of nonparametric studies for
functional quantiles regression are based on the classical kernel estimation method.
In this paper we consider an alternative approach based on the local linear method.
Recall that the local linear modeling has various advantage over the classical kernel
method. In particular, the local linear method has superior bias properties than the
kernel method (cf. [9] for more discussions on this subject). Moreover, the kernel
method can be treated as particular case of the local linear method. Precisely, the
classical kernel method is so-called local constant method. In functional data anal-
ysis, the local linear estimation has been introduced by [3]. They studied the L2
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BP. 89, Sidi Bel-Abbès 22000, Algeria , e-mail: kaedzoulekha@yahoo.com

Laksaci Ali ( )
Laboratoire de Statistique et Processus Stochastiques, Université Djillali Liabès, Sidi Bel-Abbès,
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consistency of a local linear estimator of the regression operator when the covariates
are Hilbertian. [1] proposes an alternative regression local linear estimator which can
be used for more general functional regressor. The authors show the almost complete
convergence (with rate) of the proposed estimate. Another local linear estimate of the
regression operator was considered by [2]. The latter estimate is obtained by inverting
the local covariance operator of the functional explanatory variable. [7] provides
pointwise and uniform almost consistency of the functional local linear estimate
of the conditional density function. They applied their results to develop a local
linear estimate of the conditional mode function. We return to [8] for the local linear
estimating of the functional cumulative distribution function. Recently, Messaci et
al. [16] have constructed a local linear estimator of the conditional quantile function
obtained by inverting the estimator proposed by [8]. However, unlike to the local
constant estimate, the inverse of the local linear estimate of the functional cumulative
distribution function is is very difficult to obtain in practice. Thus, to avoid this
problem we construct an alternative estimate based on the L1 approach. Specifically,
we use the functional local linear procedure proposed by [1] to construct the local
linear estimate of the quantile regression function. Our estimator keeps the robustness
of the quantile regression function and the advantages of the local linear approach.
As asymptotic results we show the almost complete consistency and the asymptotic
normality of the constructed estimator. We specify for both results the convergence
rate of the estimate. The convergence rates of this estimate are expressed by means
of some functional probability function such as the small probability function and the
variation function. It should be noted that the quntile regression function is one of the
most studied models in nonparametric regression analysis (see for instance [19], and
[18] for previous results and [12], [6] and [20] for recent advances and references).

This contribution is organized as follows: In the following section, we present the
steps that allow us to construct our local linear estimator. The main results is given in
Section 3.

20.2 The model and the estimator

Let (X ,Y ) be a couple of random variables in F × IR, where F is a semi-metric
space, of eventually infinite dimension. In this context, X can be a functional random
variable. We denote by d the semi-metric on F . We assume that the regular version
of the conditional probability of Y given X exists and has a continuous, bounded
density with respect to Lebesgue measure over IR. For all x ∈F , we denote by Fx

the conditional distribution function of Y given X = x (resp. by f x the conditional
density of Y given X = x).
In the following, we fix a point x in F and we denote by Nx a neighbor of this point.
For α ∈]0,1[, the conditional quantile of order α , denoted tα(x) is solution with
respect to (w.r.t.) t of the following equation
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IE [Lα(Y − t) |X = x] = 0 (20.1)

where Lα(x) = 1Ix>0− (1−α) and 1I is indicator function.
As previously indicated, our main purpose of this work is to study the functional local
linear estimate of the quantile regression. Recall that the local polynomial smoothing
method is based on the assumption that is the functional operator is smooth enough
to be locally well approximated by a polynomial. In functional statistics, there are
several ways for extending this approach (see, [3] or [1] for some examples). In this
work we adopt the fast version proposed by [1] for which the regression function
tα(x) is approximated by

tα(z) = a+bβ (x,z)

where a and b are estimated by â and b̂ solution of

min
(a,b)∈IR2

n

∑
i=1

Lα(Yi−a−bβ (Xi,x))K(h−1δ (x,Xi)) (20.2)

where β (., .) is a known function from F 2 into IR such that, ∀ξ ∈F , β (ξ ,ξ ) = 0,
with K is kernel and h = hK,n is a sequence of positive real numbers and δ (., .) is a
function of F ×F such that d(., .) = |δ (., .)|. It follows that

tα(x) = a and t̂α(x) = â.

We point out that if b = 0 then we obtain from (20.2) the functional Nadaraya-Watson
estimator studied by [15]. It is worth to pointing out that unlike the local linear
regression model this estimator cannot explicitly determined. So, the establishment
of the asymptotic proprieties of our estimate is very difficult, it requires the Bahadur
representation of tα(x).

20.3 Main results

In order to derive the almost complete convergence (a.co.) and the asymptotic
normality of the local linear estimate t̂α(x) of tα(x). For this, we denote by
φx(r1,r2) = IP(r2 ≤ δ (x,X)≤ r1) and we assume the following hypotheses:

(H1) For any r > 0, φx(r) := φx(−r,r) > 0 and there exists a function χx(·) such
that:

∀t ∈ (−1,1), lim
h→0

φx(th,h)
φx(h)

= χx(t)

(H2) There exists δ > 0, ∀(t1, t2) ∈ [tp(x)−δ , tp(x)+δ ]2, ∀(x1,x2) ∈N 2
x ,

|Fx1(t1)−Fx2(t2)| ≤C0

(
db(x1,x2)+ |t1− t2|k

)
, for C0,b,k > 0.

(H3) The function β (., .) is such that:
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∀z ∈ F , C1 |δ (x,z)| ≤ |β (x,z)| ≤C2 |δ (x,z)|, where C1 > 0,C2 > 0,

sup
u∈B(x,r)

|β (u,x)−δ (x,u)|= o(r)

and h
∫

B(x,h)
β (u,x)dP(u) = o

(∫
B(x,h)

β 2(u,x)dP(u)
)

where B(x,r) = {z ∈F : |δ (x,z)| ≤ r} and dP(x) is the probability distribution
of X .

(H4) The kernel K is a positive, differentiable function which is supported within
(−1,1) such that⎛⎝ K(1)− ∫ 1

−1 K′(t)χx(t)dt K(1)− ∫ 1
−1 tK′(t)χx(t)dt

K(1)− ∫ 1
−1 tK′(t)χx(t)dt K(1)− ∫ 1

−1 t2K′(t)χx(t)dt

⎞⎠
is a positive definite matrix.

(H5) The bandwidth h satisfies: there exists an integer n0, such that

∀n > n0, − 1
φx(h)

∫ 1

−1
φx(zh,h)

d
dz

(
z2K(z)

)
dz >C3 > 0,

lim
n→∞

logn
nφx(h)

= 0.

Conditions (H1)-(H5) are are rather classical in this context of functional local linear
analysis. More precisely, (H1) and (H3)-(H5) are the same as those used by [1] for
the nonparametric regression operator. The mild condition (H2) is also similar to
condition (A1) in [15] for the multivariate local linear quantile regression.

Our main results is given in the following Theorem

Theorem 20.1. Under hypotheses (H1)-(H5) and if f x(tα(x))> 0 then

|t̂α(x)− tα(x)|= O
(

hb
)
+O

((
logn

nφx(h)

)1/2
)

a.co.

and (
nφx(h)
σ2(x)

)1/2 (
t̂α(x)− tα(x)

) D−→N (0,1) as n→ ∞

where D−→ denotes the convergence in distribution, σ2(x) =
α(1−α)a2(x)

( f x(tα(x)))2a2
1(x)

with

a j(x) = K j(1)−
∫ 1

−1
(K j)′(s)χx(s)ds for j = 1, 2. (20.3)
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Chapter 21

Uniform in the smoothing parameter consistency

results in functional regression

Lydia Kara-Zaı̈tri, Ali Laksaci, Mustapha Rachdi and Philippe Vieu

Abstract This paper focuses on uniform in bandwidth and uniform in nearest neigh-
bors consistencies of both kernel and kNN type estimators involving functional data.
We established in previous works results in this topic for a selection of nonparametric
conditional operators. Our interest here is to adapt that approach for studying the
generalized nonparametric regression function.

21.1 Introduction

The main tool for studying a response variable given an explanatory one is certainly
the regression operator. The investigations on the asymptotic behavior of estimators
of such an operator over functional data have been popularized for some decades
now, mainly by:[21] for linear models, and [10] for non-parametric ones. There have
been considerably progresses since then. For a selection of recent general books, we
can mention those by [11, 23, 12]. In addition, there is a large list of contributions on
kernel type estimators through various statistical papers, like [9] for general aspects,
[18] for dependent data, [20, 1] for bandwidth choice, [7, 8] for uniform convergence
and [4] for adaptive estimation. Another type of kernel regression estimator that
is less studied, namely the k nearest neighbors estimator, has been adapted in the

Lydia Kara-Zaı̈tri ( )
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functional framework with [3]. Whereas [2] developed its rate of convergence, [16]
established asymptotic results when the response variable is also functional, and [15]
studied its uniform convergence.

Recently, a new asymptotic aspect caught our attention, namely estimator uni-
formity on the smoothing parameter. This aspect has been rather treated in the
multivariate case this last decade. We refer to [6, 17, 5] for general results in classical
kernel type estimators, and [19] for kNN ones. In our functional framework, we
brought in [13, 14] new almost complete 1 uniform in bandwidth/nearest-neighbors
convergence results with rates to kernel type estimators. Four nonparametric operator
models were processed: classical regression, conditional distribution, conditional
density and conditional hazard functions. In this paper, we extend our work to the
study of the generalized regression operator. The theoretical results that this sort of
convergence generates are very significant, since they allow to choose data-driven
bandwidths.

The paper is organized as follows. We first set up in Section 21.2 the trail frame
and present our model. Then, we study in Section 21.3 the traditional kernel estimator
of the generalized regression function. The asymptotic properties of its kNN type
estimator are presented in Section 21.4. Finally, we devote Section 21.5 to general
comments and open issues. We do mention that our assumptions unify both cases of
finite and infinite dimension models. In fact, our results are established under general
topological properties and smoothness condition for the regression operator. The
technical difficulties due to uniform aspect considerations are overcome by means of
Kolmogrov’s entropy properties defined bellow.

Definition 21.1. Let (C,d) be a subset of a normed space of real functions.
The covering number N (ε,C,d) is the minimal number of open balls of radius ε
(with respect to the measure d) needed to cover the set C. The centers of the balls
need not belong to C.
The quantity log(N (ε,C,d)) is called the Kolmogorov’s ε-entropy of the set C. It
can be considered as a tool that allows measuring the complexity of sets in the sens
that high entropy means that a large amount of information is needed to describe the
set.

21.2 Study framework

Consider a semi-metric space (F,d) where F is not necessarily of finite dimension.
Let {(Xi,Yi)}i=1,...,n be n pairs of independent and identically distributed as (X ,Y )

1 Let (Zn)n∈N be a sequence of real random variables. We say that (Zn) converges almost-completely
(a.co.) towards zero if for all ε > 0, ∑∞

n=1 P(|Zn|> ε)< ∞. The rate of convergence is of order un
(with un → 0) and we write zn = Oa.co.(un) if there exists ε > 0 such that ∑∞

n=1 P(|Zn|> εun)< ∞.



21 Uniform in the smoothing parameter consistency results in functional regression 163

which is a random vector valued in F×R, and take a fixed point x in F .

We are concerned on the generalized regression function defined for a known
real-valued Borel function L by :

m(x) = E (L(Y )/X = x) , (21.1)

Note that this model includes many important variants of regressors. Indeed,
one obtains the classical regression operator when take L(Y ) = Y . If one replaces
L(Y ) by 1]−∞,y](Y ) one has the conditional distribution function, whereas taking
L(Y ) = 1]y,+∞[(Y ) gives the conditional survival function.

In all our approaches, instead of assuming X to admit a density function, we will
use small ball probability considerations to control the concentration of the data. So
we would assume that :

P(X ∈ B(x,r)) =: φx(r)> 0 , (21.2)

where B(x,r) = {x′ ∈ F,d(x,x′)≤ r}.
This condition on the concentration function, widely commented in [10], is a funda-
mental tool in the infinite dimensional setting. It ensures that data are not scattered in
F , which guarantees a certain regularity for the estimator.

In order to control the bias, we need first to ensure a regular variation to this
concentration function around zero. We then suppose that:

For all s ∈ (0,1), lim
r→0

φx(sr)
φx(r)

=: τx(s)< ∞. (21.3)

The nature of the regression operator has also an impact on the bias, since the
more it is regular and the less its estimator is biased. So we suppose that for Nx, fixed
neighborhood of x, there exists β > 0 and C1 > 0 such that :

for all x1,x2 ∈ Nx , |mL(x1)−mL(x2)| ≤C1dβ (x1,x2), (21.4)

Furthermore, we assume that there exist m≥ 2 and C2 > 0, such that:

E[|L(Y )|m|X ]<C2 < ∞, almost-surely. (21.5)

Those four assumptions are common to all studies on the asymptotic behavior of
nonparametric regression estimators, and aren’t very restrictive conditions.

21.3 Generalized regression kernel estimator

In this section, we consider the kernel estimator proposed by [7] defined as:
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m̂h(x) =
∑n

i=1 K{h−1d(x,Xi)}L(Yi)

∑n
i=1 K{h−1d(x,Xi)} (21.6)

where K is an asymmetric kernel, and h = hn is a sequence of positive real numbers
belonging to an interval [an,bn] which may decrease in length to zero when n tends
to infinity.

In order to establish the uniform in bandwidth convergence, we need also some
conditions on the kernel K. So assume that :

• The kernel K is a decreasing function supported within [0,1/2] which has a
continuous derivative, such that:

There exist 0 <C3 ≤C4 < ∞ : 0 <C31[0,1/2](·)≤K(·)≤C41[0,1/2](·) (21.7)

and

K(1/2)−
∫ 1/2

0
K′(s)τx(s)ds > 0. (21.8)

• The class of functions:

K = {· �→ K(γ−1d(x, ·)),γ > 0} is a pointwise measurable class2 (21.9)

such that

sup
Q

∫ 1

0

√
1+ logN (ε‖F‖Q,2,K ,dQ)dε < ∞, (21.10)

where the supremum is taken over all probability measures Q and Q(F2)< ∞,
where F is the envelope3 function of the set K . Here, dQ is the L2(Q)-metric,
‖ · ‖Q,2 the L2(Q)-norm, and N (ε,K ,dQ) the covering number defined in
Section21.1.

Assumptions (21.7) and (21.8) are a necessary condition for the construction of
an efficient estimator. To facilitate the calculations we chose support interval [0,1/2],
but any other choice of the support would lead to the same results.
Assumptions (21.9) and (21.10) are typically used for uniform in bandwidth aspects.
For more details refer to [22, 6, 5].

Theorem 21.1. Suppose that assumptions (21.2)-(21.5), (21.7)-(21.10) hold, and
that the sequence of numbers (an) satisfies :

logn
nmin(an,φx(an))

→ 0.

2 A class of functions C is said to be a pointwise measurable class if there exists a countable subclass
C0 such that, for any function g ∈C, there exists a sequence of functions (gm)m∈N in C0 such that:
|gm(z)−g(z)|= o(1).
3 An envelope function G for a class of functions C is any measurable function such that:
supg∈C |g(z)| ≤ G(z), for all z.
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Then we have :

sup
an≤h≤bn

|m̂h(x)−m(x)|= O
{

bβn
}
+Oa.co.

{√
logn

nφx(an)

}
.

21.4 Generalized regression kNN type estimator

The uniform in bandwidth feature provided in Theorem 21.1 allows to control both
the bias and the variance terms of estimator regardless of its bandwidth shape. Indeed,
such results assert that the estimator efficiency no longer depends on the smoothing
parameter, which may just as well be random.
Considering this result, we can now study the asymptotic behavior of kNN-type
estimator without encountering the technical difficulties that its random bandwidth
usually generates.

Consider in this section the kNN-type estimator of the generalized regression
function studied in [15] and defined bye :

m̂k(x) =
∑n

i=1 K{H−1
k,x d(x,Xi)}L(Yi)

∑n
i=1 K{H−1

k,x d(x,Xi)}
(21.11)

where

• K is an asymmetric kernel,
• k = kn is a sequence of natural numbers belonging to an interval [k1,n,k2,n] which

may decrease in length to zero when n tends to infinity,
• and Hk,x is a positive real random variable depending on k and the sample

X1,X2, . . . ,Xn defined by :

Hk,x = min

{
h ∈ R

+ ;
n

∑
i=1

1B(x,h)(Xi) = k

}
.

Since the variable Hk,x takes the kth highest value of the quantities d(x,Xi) for
i = 1, · · · ,n, the kernel takes into account only Yi whose correspondent Xi belong to
the k nearest neighbors. So, the random feature of H allows to choose a more suitable
neighborhood for x than the standard parameter.

Theorem 21.2. Suppose that assumptions (21.2)-(21.5) hold, that the kernel K satis-
fies (21.7)-(21.10), and that the sequence of numbers (k1,n) is such that :

logn

min
{

nφ−1
x

(
k1,n

n

)
,k1,n

} → 0.

Then we have :
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sup
k1,n≤k≤k2,n

|m̂k(x)−m(x)|= O

{
φ−1

x

(
k2,n

n

)β}
+Oa.co.

{√
logn
k1,n

}
.

21.5 Conclusion and prospects

Our work shows that the consistency of estimators given functional explanatory
variable is uniform in bandwidth. Furthermore, it shows that the consistency of kNN
estimators is uniform in the number of neighbors. Our contribution is pioneering
since that, as long as we know, the asymptotic uniformity in the bandwidth has
been treated so far only in the multidimensional case. All results are brought under
classical assumptions that are not very restrictive, and that are substantially similar
to those assumed for pointwise convergence results.

An optimal bandwidth is a one that depends on the local structure of the data
and their concentration. So its selection refers automatically to a random bandwidth,
hence the interest to use the kNN estimators. The impact of our uniform in nearest
neighbors results in practice is very significant since it allows an easy choice of
data-driven number k of neighbors which is a crucial parameter for the behavior of
the estimator.

We conclude that, we may also foresee possible extensions to dimension reduction.
As far as we know, the semi-parametric models are not sufficiently studied, in
particular with kNN type estimators, and uniform in bandwidth ideas should be also
interesting in this setting.
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Chapter 22

Functional data analysis of neuroimaging signals

associated with cerebral activity in the brain

cortex

Eardi Lila, John A. D. Aston, Laura M. Sangalli

Abstract We consider the problem of performing principal component analysis of
functional data observed over two-dimensional manifolds. The method is illustrated
via the analysis of neuroimaging signals associated with cerebral activity in the brain
cortex.

22.1 Motivating application

We are interested in the analysis of neuroimaging signals referred to the cerebral
cortex, the highly convoluted thin sheet of neural tissue that constitutes the outer-
most part of the brain and where most neural activity is focused. In particular we
study hemodynamic signals recorded by functional magnetic resonance imaging
(fMRI), that offer an indirect measure of the activity in the cortex based on the
changes in deoxy-hemoglobin concentration related to energy use by brain cells.
When analyzing these signals, neglecting the morphology of the cortex may lead to
totally inaccurate estimates, since functionally distinct areas, that are far apart along
the cortex, may in turn be close in 3D space, due to its highly convoluted nature.
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Fig. 22.1: Left: Triangulated surface approximating the left hemisphere of a cerebral cortex. Right:
functional connectivity map obtained from fMRI signal. Figure adapted from [8].

Classical tools such as non-parametric smoothing models have already been adapted
to deal with this kind of data, see e.g. [4, 2, 12, 1, 6, 13].

Here we consider the problem of exploring the variability across multiple neu-
roimaging signals, corresponding to different subjects, that is key to unveil common
activation patterns and connectivity patterns. The considered dataset comes from
the Human Connectome Project Consortium [5] and consists of resting state fMRI
scans from about 500 healthy volunteers. The data of the various subjects are all
mapped to a common template cortical surface, to allow multi-subject statistical
analysis. The left panel of Figure 22.1 shows a triangulated surface that approximates
the smooth two-dimensional Riemannian manifold representing the left hemisphere
of the template cerebral cortex, where all subjects data are projected. We focus our
analysis on functional connectivity maps that can be computed from the fMRI scans.
For each subject, the functional connectivity map highlights the areas of the cortex
that are functionally connected to a selected region of interest; see right panel of
Figure 22.1.

22.2 Principal component analysis of functional data observed

over two-dimensional manifolds

In [8] we propose a method for principal component analysis (PCA) of functional
signals defined over two-dimensional manifold domains. The method is inspired by
approaches based on regularized functional PCA, developed for the case of functional
data observed over one-dimensional domains by, e.g. [9, 11, 7]. In particular, we
consider a smoothing penalty coherent with the geodesic distance over the manifold,
and involving the Laplace-Beltrami operator associated with the manifold. The
method leverages on the regression techniques over two-dimensional manifolds de-
veloped in [6, 3, 13], and can be applied to data observed over any two-dimensional
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Fig. 22.2: From top to bottom, the first, second and third principal component
functions estimated respectively by multivariate PCA (left), smoothing on manifolds
followed by multivariate PCA (center) and the proposed regularized fPCA (right).
Figure adapted from [8]

Riemannian manifold topology. The problem is made numerically tractable by the
use of surface finite elements.

Extensive simulation studies [8] show that the proposed method outperform
standard multivariate PCA and also provides superior estimates to those that can be
obtained following a classical pre-smoothing approach, where each functional datum
is smoothed previous to performing the multivariate PCA.

Figure 22.2 shows the first three estimated principal components of the functional
connectivity maps computed on the dataset from the Human Connectome Project.
The figure compares the estimates provided by standard multivariate PCA (in the first
column), the pre-smoothing approach (center column) and the proposed regularized
fPCA on manifold (last column). As highlighted by the figure, especially by the
estimate of the third principal component, the proposed method combines the desired
smoothness with the ability to capture the strongly localized features of the main
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modes of variability, that are apparent with the multivariate PCA, but are instead lost
in the pre-smoothing approach.
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Chapter 23

On asymptotic properties of functional

conditional mode estimation with both

stationary ergodic and responses MAR

Nengxiang Ling, Yang Liu and Philippe Vieu

Abstract This contribution deals with functional conditional mode estimation given a
functional explanatory variable with both stationary ergodic and responses missing at
random (MAR). More precisely, we propose the estimators for functional conditional
density and conditional mode respectively in this case. The main results of the work
are the establishment of the asymptotic properties of such estimators.

23.1 Introduction

Over the past few years, the progress of the computing techniques, both in terms
of memory and computational capacities, allows us to deal with increasing bulky
data which is regarded as observations of curve, surface or image, etc. or called
functional data. Functional data analysis (FDA) has received considerable interest in
the statistical literature.
In this work, we pay attention to the estimation of nonparametric conditional mode
via the functional conditional density. This problem has been interesting in the last
few years. For example, [7] focused on kernel methods and almost sure convergence
with rate was stated. This precursor work has been extended in many directions,
including asymptotic properties (see [5, 6]), local linear estimation (see [16]) or
semi-parametric extensions to single index setting (see [14]). For more discussions
on nonparametric functional estimation context via some conditional features includ-
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ing the estimation of conditional mean, conditional median and conditional mode,
one can refer to the monograph by [9] and the references therein. The aims of our
contribution in this paper is double.
Firstly, it is worth being pointed that all the results involved in the whole nonpara-
metric literature (and not only on conditional mode) are concerned with completely
observed samples. However, in many practical works including for instance sampling
survey, pharmaceutical tracing or reliability, data are often uncompletely observed
and part of the responses are missing at random (MAR). The literature in multivariate
setting for MAR samples is rather developed (see, among other, [2]; [15]; [4] and
references therein). When the explanatory variable is infinite dimensional, as far as
we know the only contribution dealing with MAR sample is by [8] and concerns the
simple (parametric) problem of estimating the reponse mean. The first aim of our
contribution is to develop a functional methodology for dealing with MAR samples
in nonparametric problems (namely in conditional mode estimation).
The second aim of our contribution is to allow for high dependence between the
sample data. In the usual nonparametric literature, dependence is often modelled
by some kind of mixing assumption (see [10], for large discussion on multivariate
situations and [9], for first advances on functional setting). Mixing is some kind of
asymptotic independence assumption which is commonly used for seak of simplicity
but which can be unrealistic in situations where there is strong dependence betwen
the data. Extending nonparametric functional ideas to general dependence structure is
a rather underdeveloped field. Some interesting contributions involve those by [1] for
long memory structure and those of [11, 12] for ergodic sequences, but these papers
were only based on fully observed samples. The second novelty of our contribution is
to develop our nonparametric conditional mode methodology by using the erodicity
ideas developed in [11, 12] but with suitable adaptation to the MAR situation.

23.2 Model and methodology

23.2.1 Modelling with responses MAR and estimators

Let {(Xi,Yi) ,1≤ i≤ n} be a sequence of stationary ergodic functional samples with
identically distribution as (X ,Y ), where X takes values in a some semi-metric abstract
space H with a semi-metric d(., .) and Y takes values in R. In the case of response
MAR, one has incomplete sample of size n from (X ,Y,δ ) which is classically denoted
by {(Xi,Yi,δi),1≤ i≤ n}, where δi = 1 if Yi is observed, and δi = 0 otherwise. The
Bernoulli random variable δ is supposed to be such that

P(δ = 1|X = χ,Y = y) = P(δ = 1|X = χ) = p(χ), (23.1)

here p(χ) is a functional operator. This last condition models the fact that the
censoring process δ is, conditionally on X , independent of the response Y . As
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motivated for instance in [17] and [3] in the finite dimensionality case, the new
functional estimator of f (y|χ) adapted to response MAR can be defined as

f̂n(y|χ) =

n
∑

i=1
δiK( d(χ,Xi)

h ) 1
g H( 1

g (y−Yi))

n
∑

i=1
δiK( d(χ,Xi)

h )
:=

r̂n (χ,y)
�n (χ)

, (23.2)

where

r̂n(χ,y) =
1

nEΔ1(χ)

n

∑
i=1

δiλi(y)Δi(χ) (23.3)

and

�n (χ) =
1

nEΔ1(χ)

n

∑
i=1

δiΔi(χ), (23.4)

with Δi(χ) = K
(

d(χ,Xi)
h

)
and λi(y) = 1

g H
(

1
g (y−Yi)

)
.

Of course, as a matter of consequence, a new estimate of the conditional mode θ(χ)
can be constructed by:

θ̂n(χ) = argsup
y∈S

f̂n(y|χ). (23.5)

where S is a fixed compact subset of R.

23.2.2 Some notations and assumptions

Suppose that Fi and Gi are the σ -fields generated by ((X1,Y1) , ...,(Xi,Yi)) and
((X1,Y1) , ...,(Xi,Yi) ,Xi+1) respectively, and write Fχ(h) = P(d(χ,X)≤ h) = P(X ∈
B(χ,h)) and FFi−1

χ (h) = P(d(χ,X)≤ h|Fi−1) = P(X ∈ B(χ,h)|Fi−1) for any fixed
χ ∈ H and h > 0, where B(χ,h) = {y|d(χ,y) ≤ h,y ∈ H }. Our results are shown
under some assumptions that we gathered below for making the reading easier.
(A1) K is a nonnegative bounded kernel of class C 1 over its support [0,1]. The
derivative K′(t)< 0,

∣∣∣∫ 1
0 (K j)′(u)du

∣∣∣< ∞ for j = 1,2.
(A2) There exists a sequence of nonnegative random functional ( fi,1(χ))i≥1 a.s.
bounded by a sequence of deterministic quantities (bi(χ))i≥1 accordingly, a sequence
of random functions (gi,χ)i≥1, a deterministic nonnegative bounded functional f1
and a nonnegative real function φ tending to zero as its argument tends goes to zero,
such that
(i) Fχ(h) = φ(h) f1 (χ)+o(φ(h)), as h→ 0.
(ii) For any i ∈ N, FFi−1

χ (h) = φ(h) fi,1(χ)+gi,χ(h) with gi,χ(h) = oa.s(φ(h)) as

h→ 0, gi,χ (h)
φ(h) a.s. bounded and n−1

n
∑

i=1
g j

i,χ(h) = oa.s(φ j(h)) as n→ ∞, j = 1,2.

(iii) n−1
n
∑

i=1
f j

i,1(χ)→ f1
j(χ) a.s. as n→ ∞ , j=1,2.
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(iv) There exists a nondecreasing bounded function τ0 such that, uniformly in t ∈
[0,1],
φ(ht)
φ(h) = τ0(t)+o(1) as h ↓ 0 and

∫ 1
0 (K j)′(t)τ0(t)dt < ∞ for j ≥ 1.

(v) n−1 ∑n
i=1 bi(x)→ D(x)< ∞ as n→ ∞ .

(A3) For any m≥ 1, E(|λ (l)
i (y)|m|Gi−1) = E(|λ (l)

i (y)|m|Xi), a.s. for l = 0,2.
(A4) Let Nχ be a fixed neighborhood of χ ∈ H, ∃C > 0,∃βi > 0, i = 1,2 such that∣∣∣ f ( j)(y1|χ1)− f ( j)(y2|χ2)

∣∣∣≤C(d(χ1,χ2)
β1 + |y1− y2|β2),

for ∀(χ1,χ2) ∈ Nχ ×Nχ , ∀(y1,y2) ∈ S×S and j = 0,2.
(A5) (i) ∃ξ > 0 and only y0 ∈ S such that f (.|χ) is strictly increasing on (y0−ξ ,y0)
and strictly decreasing on (y0,y0 +ξ ).
(ii) f (.|χ) is twice continuously differentiable around θ(χ) with | f (2)(θ(χ)|χ)| �= 0,
where f (q)(θ(χ)|χ)(q = 1,2) is the qth derivative of f (y|χ) with respect to y.
(iii) p(χ) is continuous in a neighborhood of χ .
(A6) The kernel H is a positive bounded with twice differentiable function such that
(i)
∫

H2(t)dt < ∞ and
∫ |t|β2H(t)dt < ∞.

(ii) H(1)(t) is bounded with
∫
(H(1)(t))2dt < ∞.

(iii) H(2)(t) is Hölder continuous of order one.

23.3 Asymptotic properties

23.3.1 Preliminary propositions for conditional density estimation

Proposition 3.1 Assume that the assumptions (A1)-(A3) and(A4) hold true. If

logn
ng2φ(h)

→ 0 as n→ ∞, (23.6)

and
∃ζ > 0, nζg2 → ∞, as n→ ∞, (23.7)

then, we have

sup
y∈S

∣∣∣ f̂n(y|χ)− f (y|χ)
∣∣∣= Oa.s.(hβ1 +gβ2)+Oa.s.

(
logn

ng2φ(h)

) 1
2
. (23.8)

Proposition 3.2 Suppose that the assumptions (A1)-(A4), (A6)(i), (3.1) and
(3.2) hold true, if in addition√

ngφ(h)(hβ1 +gβ2)→ 0, as n→ ∞, (23.9)
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then we have√
ngφ(h)

(
f̂n(y|χ)− f (y|χ)

)
D→N(0,σ2(χ,y)), as n→ ∞, (23.10)

where “
D→” means convergence in distribution and σ2(χ,y)= M2

M2
1
· f (y|χ)

p(χ) f1(χ)
∫

H2(t)dt

with Mj = K j (1)− ∫ 1
0
(
K j
)′
(t)τ0(t)dt for j = 1,2.

23.3.2 Asymptotic properties of conditional mode estimate

Theorem 3.3 Under the conditions of Proposition 3.1, if (A5) holds true, then, we
have ∣∣∣θ̂n(χ)−θ(χ)

∣∣∣= Oa.s.
(
hβ1 +gβ2

) 1
2 +Oa.s.{ logn

ng2φ(h)
} 1

4 . (23.11)

Theorem 3.4 Under the conditions of Proposition 3.2, (A5) and (A6), if, in addition,
ng3φ(h)→ ∞, then we have√

ng3φ(h)
(
θ̂n(χ)−θ(χ)

)
D→N
(
0,γ2(χ,θ(χ))

)
, as n→ ∞, (23.12)

where

γ2(χ,θ(χ)) =
M2

M2
1
· f (θ(χ)|χ)

p(χ) f1 (χ)
(

f (2)(θ(χ)|χ))2

∫
(H(1)(t))2dt.

23.4 Further research

This contribution has investigated conditional mode prediction in functional setting
by adapating the nonparametric methodology in two directions: strong dependent
(i.e. ergodic) and missing at random (i.e. MAR) data. Based on the experience of this
work on conditional mode, our guess is that most of techniques using nonparametric
functional kernel smothers could be efficiently extended to ergodic and/or MAR
settings. For more details in this direction, one can see [13] and its references.
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Chapter 24

Predicting the physiological limits of sport stress

tests with functional data

Marcos Matabuena, Mario Francisco-Fernández and Ricardo Cao

Abstract This work aims at illustrating the enormous potential of continuous monito-
ring of the athlete, jointly with the application of statistical techniques for functional
data in the analysis and control of sports performance. It is shown that using low
intensity exercise, one can predict the performance of a group of athletes without
forcing them to fatigue. This is the first indirect methodology proposed in the sci-
entific literature that allows to estimate in a precise way physical fitness without
producing fatigue. The areas of application of this procedure are not only limited to
sport science. They are diverse and include, among others, medicine and education.

24.1 Introduction

The increase in the accuracy of the current electronic devices allows the collection
of data in continuous time. The functional nature of these observations suggests
avoiding the use of classical multivariate techniques and requires assuming that the
data are realizations of stochastic processes in continuous time. Functional data
analysis (FDA) [26, 29] studies this type of observations.

In sport science, new electronic devices capable of recording significant amounts
of athletes data appear every day. Some examples are accelerometers, heart rate
meters, and respiratory and blood variable meters.
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Nowadays, one of the main goals of the sport training science is to use all this
available information to be able to control the subject’s sport training correctly or
even, being more ambitious, to design algorithms to recommend appropriate training
routines. For this, the goals of the subject, his current condition and individual
features would be taken into account. A thorough review of the current state of
the art of the application of machine learning, statistics and artificial intelligence
techniques in sports can be found in [13] and [17]. Additionally, some proposals
from a statistical and mathematical point of view to predict the effects of training
sessions on physical fitness changes are presented in [2], or more recently in [20].

However, having a large amount of data is not a guarantee of success regardless of
the statistical techniques used. It is especially important to develop methodologies to
organize and use the information correctly. In sports, for example, it is necessary to
use new metrics to measure the athlete’s activity, to study with caution the influential
variables in the physical activity and to establish mechanisms that predict the physical
fitness of the athlete. Some studies and proposals on the topics above can be found in
[1, 3, 4, 8, 14, 19, 23], but they are still insufficient.

In sport science, the main methodological difficulty is to predict the physical
fitness using indirect mechanisms that do not cause fatigue to the athlete. This
is perhaps the most important open issue in sport training science. Solving this
problem, coaches and athletes could know the individual effect of training sessions on
fitness, something only possible to achieve through experience. They can also have a
valuable tool to control the accumulated fatigue, thus avoiding possible conditions of
overtraining and estimating the appropriate intensities of the training or competition.
This leads to optimize the performance achieved by the athlete in each moment. If
this problem is not solved, we will never know the actual effects of the training loads
on the subject, independently of the available amount of data. Therefore, without
solving the previous issue, any analysis and applied decision-making procedure will
not select the best combination of possible trainings.

The problem of predicting physical fitness by indirect mechanisms also has special
interests outside the framework of sports. For example, it is very important for patients
undergoing rehabilitation treatments after illness [6, 28]. It is also useful in schools
to evaluate students’ physical fitness consistently, in the general population, in the
control of healthy habits [5, 24], or in public examinations where the tests used are
usually exhausting and often unassuming due to the large amount of events that the
participants have to overcome.

In the field of sports, only two applications of functional data are highlighted: a
descriptive analysis of the lactic acid curves and an analysis of knee coordination in
vertical jumps. For more information, see [16], [22].

In this work, a new practical application of FDA using data associated with sport
stress tests is presented. A procedure to predict the maximal oxygen consumption
is designed. This is one of the best indicators of sport performance in endurance
sports [30]. To do this, a low intensity and progressive test on a treadmill, where
some functional variables are observed, is carried out.
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24.2 Material and methods

The population of the study is made up of 341 subjects with heterogeneous charac-
teristics, coming from different sports: athletics, badminton, handball, basketball,
cycling, football, judo, wrestling, canoeing, rowing, squash, taekwondo, tennis,
triathlon and sailing.

The test procedure is as follows: It starts at a speed of 6 km/h and the speed is
increased 0.25 km/h every 15 seconds during 6 minutes. In those 6 minutes of effort,
some multivariate functional variables are measured every 5 seconds:

• Speed
• EqCO2
• EqO2
• O2/HR
• HR
• V E in L/min
• VO2 in ml/min
• VCO2 in ml/min
• RER
• VO2 per kg of body weight

A functional regression model was used to predict the maximal oxygen consump-
tion. For this purpose, the available functional observations of the first 6 minutes of
the sample of the individuals previously described were used. These same individuals
continued the effort to exhaustion with the same speed increases as those established
up to the minute 6, and their VO2 max was measured.

The average duration of the stress test was around 13 minutes. The maximal
intensity obtained in the first 6 minutes compared to the maximal speed reached by
athletes in the test is on average the 61%, which represents an insignificant effort.
This percentage approximately corresponds to the intensity that the athletes can
withstand if they were prepared to compete for a walking\running race of 100 km.

24.3 Statistical procedure

The statistical software R, namely the fda.usc library [10], was used to perform the
statistical data analysis.

First, the functional data have been smoothed using nonparametric methods [12].
Then, dimension reduction techniques, such as functional principal components
[27], have been applied. Finally, several functional regression models have been
employed: multiple linear regression model [7, 27], PLS regression [25], functional
generalized kernel additive models [9], functional regression with scalar response
using nonparametric kernel estimation [12, 11], and functional generalized spectral
additive models [21]. The functional generalized spectral additive model was the one
finally used since the best results were obtained.
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This model is briefly presented now. Let us assume that X = (X1, . . . ,Xp) is a
p-dimensional functional random variable in L2[a,b] and consider a response variable
Y . The relationship between the variables X and Y in a generalized spectral additive
model (GSAM) is

E(Y |X) = β0 +
p

∑
k=1

fk(Xk) (24.1)

where every fk is a smooth function.
On the other hand, using Karhunen-Loeve decomposition, every functional vari-

able Xk (with k = 1, . . . , p) can be expressed as follows:

Xk(t) = μ(t)+
∞

∑
j=1

xk jvk j(t),

where vk j(t) is the j-th eigenfunction for the k-th functional variable and xk j is a
score term. Consequently, an approximation of equation (24.1) can be easily found
(see [21] for details):

E(Y |X)≈ β0 +
p

∑
k=1

rk

∑
m=1

fk(xkm),

where xmk is the m-th principal component score of the k-th functional covariate and
rk is the number of principal components considered for the k-th functional covariate.

The estimation of the smooth functions is carried out using the technique known
as principal component analysis with conditional expectation (PACE). This method
selects, in an automatic way, the number of eigenfunctions to be chosen for every
functional covariate by means of the criterion AIC [21].

For our dataset, the response variable in the regression model is the oxygen
consumption (a scalar variable), while the explanatory variables have been the scalar
variables, maximal heart rate, weight, height, and two functional variables, oxygen
consumption (Figure 24.1) and heart rate (Figure 24.2). The variables have been
selected after performing several fits and analyzing the error obtained in each of
them.

24.4 Results

The results of the best regression model yield R2 = 0.846 and the average absolute
error is, in this case, 2.398. In Table 24.1 the adjusted R2 of all models are shown.
Additionally, Figure 24.3 presents a scatter plot of observed vs predicted values using
the functional generalized spectral additive model. The point cloud is very close
to the diagonal which shows that fit is very good. These results are satisfactory: in
comparison with other tests proposed in the literature to predict VO2, the error made
is very low. The other tests have errors larger than the one shown here. In addition,
they force the athlete to make a maximal effort, while here, only 6 minutes of the
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Fig. 24.1: Oxygen consumption in the first 6 minutes of the effort.

Fig. 24.2: Heart rate in the first 6 minutes of exercise.
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stress test are being used. This activity does not cause suffering and fatigue to the
athlete.

The test has been validated with a significant amount of individuals (341) of
different level, weight, size and age. This is very important because other tests are
validated with a set of students with similar characteristics and, therefore, can only
be applied to a restrictive set of individuals. Because of this, good fits are often
obtained: many authors select a sample with hardly any variability and, therefore,
any approximation will be good. This is observed, for instance, in the comparative
study shown in [15].

Our results show that with statistical techniques based on functional data and
using the athlete’s monitoring with continuous data, we can characterize the athlete’s
performance with indirect methods in a very reliable way. This is a real innovation in
sport training.

Table 24.1: Adjusted R2 for the regression models compared

Model R2 (adjusted)
Functional generalized kernel additive model 0.708

Functional generalized spectral additive model 0.846
Functional nonparametric kernel regression model with scalar response 0.603

Multiple linear regression model 0.726
PLS regression model 0.463

24.5 Conclusions

In this work, we have proven that with the joint use of techniques based on functional
data and continuous monitoring, we get a good fit in the proposed test.

The intensities of the test have been too low. However, the performance of our
proposal has been better than those of all tests proposed in the literature to predict
the maximal consumption of oxygen, in particular better than the Leger test [18, 19],
the most widely used and highly cited in the literature.

The use of techniques based on functional data represents a very hopeful way
to obtain indirect tests that measure the fitness of the subject without generating
fatigue and, therefore, can be used every day. In this case, the correlation between the
oxygen consumption reached in the first 6 minutes of effort and oxygen consumption
reached is 0.54. With a functional approach, the predictive capacity of the model
increases significantly, being, for example, the heart rate an unimportant variable if
we fit a regression model with scalar covariables, but not in the functional case. This
indicates the need of using functional models with this type of data if we want to
achieve precision in the final result.
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Fig. 24.3: Real values vs predicted values using the functional generalized spectral
additive model

In future studies, the optimal measurement intensities will be studied to obtain
the best results in the prediction of oxygen consumption, searching for the benefit
between the improved prediction (the higher intensity and duration of the test, the
better fit) and the athlete’s fatigue. In this work, we have been too conservative in this
regard, but we are still able to beat other existing tests to predict maximal oxygen
consumption, one of the best predictors of sports performance [30]. This makes us to
be optimistic about the potential of this research line.
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Chapter 25

An overview of consistency results for depth

functionals

Stanislav Nagy

Abstract Data depth is a nonparametric tool which may serve as an extension
of quantiles to general data. Any viable depth must posses the uniform strong
consistency property of its sample version. In this overview, a concise summary of
the available uniform consistency results for most of the depths for functional data is
given. Extensions of this theory towards random surfaces, imperfectly observed, and
discontinuous functional data are studied.

25.1 Functional Data Depth

In nonparametric analysis of functional data, the concept of data depth gained con-
siderable attention in the past years. Assume that M is a functional (or multivariate)
measurable space, and denote by P (M ) the space of all probability measures on
M . Data depth is a mapping D which to any x ∈ M and P ∈ P (M ), assigns a
number D(x;P) ∈ [0,1] indicating how much “centrally located” x is with respect
to (w.r.t.) P. Functions with high depth values form loci of points deeply inside the
mass of P, and may serve as “centre-outwards” analogues of quantile regions for
functional data. For instance, the function at which the depth D(·;P) is maximized
generalizes the median to M -valued data. On the other hand, functions whose depth
is close to zero may be considered as lying on the outskirts of the distribution, or
being potentially outlying w.r.t. P.

In recent literature, many depths for random curves have been proposed. Most of
them fall into three large groups of functionals:

• integrated depths ([5, 3]), taking the form of an integral
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FD(x;P) =
∫
Φ

D(φ(x);φ(P))dμ(φ) for x ∈M ,P ∈P (M ) , (25.1)

where Φ is a subset of the d-th Cartesian product of the dual of the sample space
M , D is a depth suitable for d-dimensional data, and μ is a measure on Φ ,

• infimal depths ([10]), where the integral in (25.1) is replaced by an infimum

ID(x;P) = inf
φ∈Φ

D(φ(x);φ(P)) for x ∈M ,P ∈P (M ) , (25.2)

• band depths ([8]), extending the so-called simplicial depth to functional data in
M = C , the space of continuous functions x : [0,1]→ R

BD(x;P) = P(x ∈ B(X1,X2)) for x ∈ C ,P ∈P (C ) . (25.3)

Here, (Ω ,F ,P) is the probability space on which all random variables are
defined, X1,X2 ∼ P are independent, and B(x1,x2) is the band of x1,x2 ∈ C
defined as

B(x1,x2) = {y ∈ C : min{x1(t),x2(t)} ≤ y(t)≤max{x1(t),x2(t)} for all t} .

For FD and ID, various choices of the depth D in (25.1) and (25.2) have been
proposed in the literature. Here, we focus only on the important halfspace depth (see
[4])

D(u;Q) = inf
H∈H (u)

Q(H), for u ∈ Rd ,Q ∈P
(

Rd
)
, (25.4)

where H (u) is the collection of all halfspaces in Rd that contain u. Analogous study
for other depths D in Rd is straightforward.

The first integrated depth was proposed in [5] for M = C . There, d = 1 and Φ
is the set of Dirac functionals φt(x) = x(t) for t ∈ [0,1]. The measure μ can then be
taken to be the Lebesgue measure on [0,1], and FD takes the basic form

FD(x;P) =
∫ 1

0
D(x(t);Pt)d t, for x ∈ C ,P ∈P (C ) , (25.5)

where by Pt ∈ P (R) we mean the marginal distribution of P at t ∈ [0,1]. For a
different choice of D in (25.5) one gets, for instance, the modified band depth in [8].

Likewise, the basic representative of infimal depths is the depth proposed in [10]

ID(x;P) = inf
t∈[0,1]

D(x(t);Pt), for x ∈ C ,P ∈P (C ) . (25.6)

In a natural extension of the functional depths from C , consider now the case of
multivariate functional data and continuous random surfaces. These are defined as
random variables taking values in C K , the space of continuous mappings x : U →RK

for U ⊂RL compact, where K,L≥ 1. The integrated depth (25.5) then translates into

FD(x;P) =
∫

U
D(x(t);Pt)d t, for x ∈ C K ,P ∈P

(
C K) , (25.7)
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for D the depth (25.4) in RK , x(t) ∈ RK and Pt ∈P
(
RK
)
, see also [2]. The infimal

depth (25.6) is also easily generalized to C K-valued random variables

ID(x;P) = inf
t∈U

D(x(t);Pt), for x ∈ C K ,P ∈P
(
C K) ,

for D as above. Finally, the band depth (25.3) may be extended to the multivariate
band depth ([9]) by considering the multivariate version of bands

B(x1, . . . ,xK+1) =
{

y ∈ C K : y(t) ∈ co(x1(t), . . . ,xK+1(t)) for all t ∈U
}
.

Here, by co we mean the closed convex hull mapping. This way, the band depth
naturally becomes

BD(x;P) = P(x ∈ B(X1, . . . ,XK+1)) , for x ∈ C K ,P ∈P
(
C K) ,

where X1, . . . ,XK+1 ∼ P are independent.
Let Pn ∈P (M ) denote the empirical measure of a random sample X1, . . . ,Xn

from P ∈P (M ), and let M ⊂M . We say that the functional depth D is uniformly
consistent for P over M, if

sup
x∈M

|D(x;Pn)−D(x;P)| a.s.−−−→
n→∞

0. (25.8)

If (25.8) is true for any P ∈P (M ), we say that D is universally consistent over M.
Any reasonable depth D must be at least uniformly consistent over compact sets in
M . Otherwise, the depth level sets, being the quantile-like regions of interest, may
not be consistently estimated using random samples from P.

Herein, we study the consistency properties of the elementary depths (25.3) in
Section 25.2, (25.6) in Section 25.3, and (25.5) in Section 25.4. In Section 25.5 we
focus on data depth in connection with imperfectly observed functional data, and
in the final Section 25.6 we provide a result on the consistency of integrated depths
for discontinuous random functions. It will be seen that most of these results can be
extended also to general depths for functional data of integrated, and infimal types.

25.2 Band Depth

Quite surprisingly, it can be shown that the renown band depth (25.3) with sample
version

BD(x;Pn) =

(
n
2

)−1

∑
1≤i1<i2≤n

P(x ∈ B(Xi1 ,Xi2)) for x ∈ C ,

is not uniformly consistent over compact subsets of C w.r.t. rather simple infinite-
dimensional distributions (see [7, 6], and [1]).
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In [6], one possible remedy for these issues has been proposed in the form of
the so-called adjusted band depth. This depth acts as a “smoothed version” of BD,
and for w : [0,∞)→ [0,1] non-increasing such that w(0) = 1, limt→∞ w(t) = 0, it is
defined as

aBD(x;P) = Ew
(

inf
y∈B(X1,X2)

‖x− y‖
)

for x ∈ C ,P ∈P (C ) ,

where B(x1,x2) and X1,X2 are as for BD, and ‖·‖ is the (uniform) norm on C . Instead
of computing the probability that x is inside the band B(X1,X2), the adjusted band
depth evaluates the expected distance of x from the band. For w the indicator of zero,
aBD ≡ BD. For w quickly decreasing to zero, aBD behaves very similarly to BD,
and in practice gives virtually the same results. An advantage of using aBD over BD
is its universal consistency.

Theorem 25.1 ([6, 12]). For w continuous aBD is universally consistent over C .

Continuity of w is crucial in the proof of Theorem 25.1. On the other hand, for
w continuous it is possible to generalize this result considerably also to C K-valued
random variables. The depth in this case takes the form

aBD(x;P) = Ew
(

inf
y∈B(X1,...,XK+1)

‖x− y‖
)

for x ∈ C K ,P ∈P
(
C K) , (25.9)

for ‖·‖ the (uniform) norm on C K , and the assertion of Theorem 25.1 holds true also
in C K . Furthermore, it is not necessary to restrict to the case of continuous functions,
or the uniform norm in (25.9). As demonstrated in [12], the adjusted band depth
(for w continuous) can be shown to be universally consistent also when the random
functions take values in L K

2 , the space of square-integrable functions x : U → RK .

25.3 Infimal Depth

For the infimal depths, theoretical results are rather scarce in the literature. As far as
we know, the only uniform consistency result is available for the depth (25.6).

Theorem 25.2 ([6]). Let P ∈P (C ) be a mixture of P(1) and P(2) such that

• all the marginal distributions P(1)
t of P(1) have continuous distribution functions,

and
• P(2) is concentrated in a finite-dimensional subspace of C .

Then, the depth ID in (25.6) is uniformly consistent for P over C .

Unfortunately, ID is not universally consistent. This can be seen on the example
of P being the standard Wiener measure in C . Note that P violates the conditions
imposed on P(1) in Theorem 25.2 only for t = 0. Though, it is easy to see that already
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for x ≡ 0, ID(x;P) = 1/2, but ID(x;Pn) = 0 almost surely for any n, and the depth
cannot be consistent for P.

Theorem 25.2 is based on a functional extension of the bracketing Glivenko-
Cantelli theorem for the empirical distribution function processes of the collection{

P(1)
t : t ∈ [0,1]

}
. Its generalization to C K-valued functional data appears to be

difficult, and out of reach using the current methodology. Reasonable extensions of
ID to spaces of integrable functions are obviously not possible, due to the fact that
the functional values x(t) are not well defined for x ∈L K

2 (recall that functions in
L K

2 are only equivalence classes of almost everywhere equal functions).

25.4 Integrated Depth

For integrated depths such as (25.5), most of the earlier consistency results rely on the
use of uniform central limit theorems in functional setups. This approach, however,
works only for compact subsets of C , and convoluted additional assumptions need to
be imposed on P in order to prove consistency.

In [14], a different method is used to resolve this problem. Following [3], simple
measure-theoretic tools are used in [14] to obtain the weak universal consistency

E sup
x∈C

|FD(x;Pn)−FD(x;P)|= E sup
x∈C

∣∣∣∣∫ 1

0
D(x(t);Pn,t)−D(x(t);Pt)d t

∣∣∣∣
≤ E

∫ 1

0
sup
x∈C

|D(x(t);Pn,t)−D(x(t);Pt)| d t

≤
∫ 1

0
Esup

u∈R

|D(u;Pn,t)−D(u;Pt)| d t

−−−→
n→∞

0.

The first inequality is of Jensen’s type1; the second involves Fubini’s theorem. The
universal consistency of D from (25.4) in R ([4]) along with the dominated conver-
gence theorem provide the final assertion. For the derivation above it is, however,
vital to verify the measurability of the integrand function

I : Ω × [0,1]→ [0,1] : (ω, t) �→ sup
x∈C

|D(x(t);Pn,t(ω))−D(x(t);Pt)| .

Note that the measurability of I, being a supremum of an uncountable set of discon-
tinuous functions, is by no means easy to show. Furthermore, the technique used
above provides only weak universal consistency of FD. Seemingly, the omission of
E from all the inequalities above would be enough to conclude that FD is (strongly)
universally consistent, using the same argument. This is, unfortunately, not true,
because of the last step when using the dominated convergence theorem. Indeed,

1 Of course, Pn,t ∈P (R) stands for the marginal distribution of Pn at t ∈ [0,1].
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here it is not true that the almost sure convergence of all the marginals I(·, t) of the
random process I implies the almost sure convergence of I at all points t ∈ [0,1].
For the special case of the integrated depths, it is possible to overcome all these
difficulties, and the following result can be stated.

Theorem 25.3 ([14]). The depth FD in (25.5) is universally consistent over C .

This result does not only resolve the question of consistency of integrated depths, it
is also extremely easy to generalize. As the most straightforward extension, it is easy
to show that also the integrated depth (25.7) for functions from C K is universally
consistent over C K . Moreover, integrals with respect to measures other than the
Lebesgue measure on U can be considered, and also for these depths the results apply
([14]). Finally, integrated depths for L K

2 -valued functional data, or even for general
Borel measurable random functions, can be considered, see Section 25.6.

25.5 Depth for Imperfectly Observed Random Functions

Consider a sequence X1,X2, . . . of independent random functions from P ∈P (C ).
In practice, the functional values of any single datum Xi are never observed at each
t ∈ [0,1], simply because this set is infinite. Instead, for each Xi the researcher is
usually provided only with

(Xi(Ti,1), . . . ,Xi(Ti,mi)) ∈ Rmi for Ti, j ∈ [0,1], j = 1, . . . ,mi, (25.10)

where Ti, j may be random, and the lengths mi vary across i = 1,2, . . . . For the
statistical analysis, some kind of reconstruction of the unobserved functional datum
Xi ∈ C must then be performed.

If it can be believed that the functional values (25.10) are observed without noise
(or if the noise present in the measurements is negligible), one simple reconstruction
method that can be used is the linear interpolation of the known functional values
(setting the curves to be constant near the endpoints of the domain). This way, we
obtain a sequence X̃1, X̃2, . . . of independent reconstructions of the random curves
that are observed only partially, and we may define an empirical measure P̃n ∈P (C )
as the uniform measure supported in the first n functions from this sequence. The
same technique can be used also for functions from C K , for U = [0,1].

Assume that as the sampling process continues (i.e. n → ∞), the largest span
between two adjacent points in the set {Tn,1, . . . ,Tn,mn}⊂ [0,1] vanishes in probability.
This is true if, for instance, the observation points for the n-th curve are a random
sample of size mn from a distribution on [0,1] with a density bounded away from 0,
and mn −−−→

n→∞
∞. Under these conditions, it can be shown that P̃n converges weakly

to P in space P (C ) (or P
(
C K
)
) with probability one ([13]). As a corollary, it is

possible to obtain that also if the true empirical measure Pn is replaced by P̃n in depths
(25.7), (25.6), or (25.9), the resulting functionals are still uniformly consistent.
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Theorem 25.4 ([13, 12]). Let P ∈P
(
C K
)

for U = [0,1]. Assume that the random
curves are observed as described above. Then

sup
x∈C K

∣∣∣aBD(x; P̃n)−aBD(x;P)
∣∣∣ a.s.−−−→

n→∞
0.

Assume further that Pt ∈P
(
RK
)

is absolutely continuous for each t ∈ [0,1]. Then

sup
x∈C K

∣∣∣FD(x; P̃n)−FD(x;P)
∣∣∣ a.s.−−−→

n→∞
0.

For any P ∈P (C ) such that the conditions of Theorem 25.2 are satisfied, also

sup
x∈C

∣∣∣ID(x; P̃n)− ID(x;P)
∣∣∣ a.s.−−−→

n→∞
0.

Further complications arise when the functional values (25.10) are observed in
presence of non-negligible additive noise. Then, we deal with the so-called noisy
functional data. Clearly, interpolation is not acceptable for such data. Instead, some
kind of approximation of the unknown curves Xi must be performed. For kernel
approximation, these problems are addressed in [12]. Therein, results in the spirit of
Theorem 25.4 are obtained also for noisy random functions, under some additional
mild assumptions. Furthermore, in that paper, a comprehensive treatment of the rates
of convergence of the depth FD under various scenarios is provided.

25.6 Depth for Discontinuous Random Functions

Finally, let us assume that the functional observations may contain discontinuities. In
this case, one may consider the data to live in

BK =
{

x : U → RK Borel measurable
}
.

This functional space is extremely large, and not many results can be found for data
from BK . To give a proper definition of a random variable in BK , one needs to resort
to the concept of Borel measurable function ([15]) defined as a mapping

X : Ω ×U → RK , jointly Borel measurable.

The amount of measurability required from X is greater than what is usually assumed
for stochastic processes (and random functions). Interestingly, this is still not enough
for X to be a measurable mapping from (Ω ,F ,P) to BK ([15]). However, if one
restricts to subspaces of BK such as that of semi-continuous functions, or càdlàg
functions for U = [0,1], a random variable X ∼ P ∈P

(
BK
)

can be defined (for de-
tails see [11]). Surprisingly, also at this great level of generality, universal consistency
of the integrated depth for BK-valued data given by
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FD(x;P) =
∫

U
D(x(t);Pt)d t, for x ∈BK ,P ∈P

(
BK) , (25.11)

can be shown, for D from (25.4).

Theorem 25.5 ([11]). The depth FD in (25.11) is universally consistent over BK.
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Chapter 26

Statistical functional depth

Alicia Nieto-Reyes and Heather Battey

Abstract This presentation is a summary of the paper [14], which formalizes the
definition of statistical functional depth, with some extensions on the matter.

26.1 Introduction

Depth functions assign order to elements in a space X based on a probability measure
P on X . The assignment of order is non-trivial beyond the case of X =R, yet order
statistics lay the foundation for a number of classical frequentist procedures, such as
rank-based inference and outlier detection. Particularly, in functional datasets outlier
detection provides a means to detect a fraudulent signature amongst a sample of
genuine signatures. Similar applications of functional outlier detection are abundant
in medical statistics, where for instance, the ability to detect abnormal time course
gene expression curves, electrocardiograms, etc. serves as a useful diagnostic tool.

In Figure 26.1, we elicit the essential idea of statistical depth of a distribution P
on univariate space, X = R, multidimensional space, X = R

p, and function space
X = F. Whilst the details are unimportant at this stage, the depth is discernible in
the colour, with the depth median in dark red and the observations with lowest depth
in dark blue. As is visually apparent from the plots in Figure 26.1, the depth induces
a centre outward ordering of the observations from the median, going from dark red
to dark blue through red, orange, yellow, green, cyan and blue.

For multivariate spaces, the notion of depth is formalized in [16], using some
properties defined in [10]. The most prominent example is the Tukey depth [15],
which has a computationally effective approximation: the random Tukey depth [3].
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Fig. 26.1: Top row: observations from a univariate normal distribution. Bottom row:
observations from a bivariate normal distribution (left), an example of univariate
functional data (middle) and bivariate functional data (right). In each case, the
observations are coloured according to the rank of their depth value.

Relatively recently there have been several extensions of examples of multivariate
depth to cover high dimensional spaces and functional spaces. In [14] the notion
is formalized for functional spaces, where six axiomatic properties are established
which are needed for a functional depth to be useful. The formalization of this
definition varies from multivariate to functionals spaces to recognise topological
features such as continuity, smoothness and contiguity of the functional space.

The properties that form the definition of functional depth provide not only a
sophisticated extension of those defining the multivariate depth, but also implicitly
address several common or inherent difficulties associated with functional data.
Particularly, we focus on the difference between the multivariate and functional
notions when handling a property that regards the depth value at the center of
symmetry of symmetric distributions (see Section 26.3).

The robustness of the empirical depth to the presence of outliers is commonly
considered one of its important characteristics, despite the absence of a formal guar-
antee in the multivariate definition of depth. As an incidental product, functional
depths satisfying this definition automatically produce a qualitatively robust estimator
of the population depth. Functional depth constructions adhering to these axioms
intrinsically address the delicate challenge of inherent partial observability of func-
tional data, providing a minimal guarantee on the performance of the empirical depth
counterpart beyond the idealised and practically infeasible case of full observability.
Another challenge, automatically dealt (when present) by the definition, regards
functional data with little variability and a big overlap over part of the domain. Intu-
itively, observations over such part of the domain should have less importance in the
assignment of depth than others.

Some functional depth proposals, the h-depth [5], the random Tukey depth [3, 4],
the band and modified band depth [11] and the half-region and modified half-region
depth [12], are discussed with reference to the aforementioned axioms in [14]. The
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literature on examples of functional depth is, however, wider, including among other
the integrated depth [8, 2], the integrated dual depth [6], the spatial depth [1], a depth
based on distances [13] and one based on tilting [9].

In Section 26.2 we include the notion of functional depth and in Section 26.3
we regard the importance of the proposed properties and its implications in the
application of the functional depth.

26.2 Definition

We provide here the axiomatic definition of statistical functional depth [14], where
minor clarifications are added to rule out pathological cases.

Definition 26.1. [Statistical functional depth] Let (F,A ,P) be a probability space.
Let P be the space of all probability measures on F. The mapping

D(·, ·) : F×P −→ R

is a statistical functional depth if it satisfies properties [P-1.] to [P-6.], below.

P-1. Distance invariance. D( f (x),Pf (X)) = D(x,PX ) for any x∈ F and f : F→ F such
that for any y ∈ F,

d( f (x), f (y)) = a f ·d(x,y),
with a f ∈ R\{0}.

P-2. Maximality at centre. For any P ∈P possessing a unique centre of symmetry
θ ∈ F with respect to some notion of functional symmetry,

D(θ ,P) = sup
x∈F

D(x,P).

P-3. Strictly decreasing with respect to the deepest point. For any P ∈P such that
D(z,P) = maxx∈F D(x,P) exists with D(z,P) = D(z′,P) implying d(z,z′) = 0,
D(x,P)< D(y,P)< D(z,P) holds for any x,y ∈ F such that

min{d(y,z),d(y,x)}> 0 and max{d(y,z),d(y,x)}< d(x,z). (26.1)

P-4. Upper semi-continuity in x. D(x,P) is upper semi-continuous as a function of x,
i.e., for all x ∈ F and for all ε > 0, there exists a δ > 0 such that

sup
y∈Fx : d(x,y)<δ

D(y,P)≤ D(x,P)+ ε, (26.2)

where

Fx :=
{

y ∈ F : d(y,x)< d(y,θ) or max{d(y,θ),d(y,x)}< d(x,θ)
}
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for θ = argsupx∈F D(x,P).

P-5. Receptivity to convex hull width across the domain. D(x,PX ) < D( f (x),Pf (X))
for any x ∈ C(F,P)\0 with D(x,P) < supy∈F D(y,P) and f : F→ F such that
f (y(v)) = α(v)y(v) with α(v)∈ (0,1) for all v∈ Lδ and α(v) = 1 for all v∈ Lc

δ .

Lδ := arg sup
H⊆V

{
|H| : sup

x,y∈C(F,P)
d(x(H),y(H))≤ δ

}
for any δ ∈ [infv∈V d(L(v),U(v)),d(L,U)) such that λ (Lδ )> 0 and λ (Lc

δ )> 0,
with |H| denoting the length of H.

P-6. Continuity in P. For all x ∈ F, for all P ∈P and for every ε > 0, there exists a
δ (ε)> 0 such that

|D(x,Q)−D(x,P)|< ε

P-almost surely for all Q ∈P with dP(Q,P)< δ P-almost surely, where dP

metricises the topology of weak convergence.

26.3 Implications of the functional depth properties

Here we give discussion the definition of statistical functional depth with implications.
A thorough discussion is given in [14].

P-1. Distance invariance.

This property concerns the fact that the depth of a dataset or space, with respect to
a distribution on that space, should remain the same under certain transformations
such as recentering around the deepest element.

It has implications when applying the functional depth, for instance, in that
,because of this property, the depth will not be altered if we change the units of
measurement.

P-2. Maximality at centre.

The existing notions of functional symmetry are pointwise and so direct extensions
of multivariate notions. Thus, to compare different existing examples of funtional
depth it is proposed in [14] to check the following property, named Maximality at
Gaussian process mean.

For P a zero-mean, stationary, almost surely continuous Gaussian process on V ,
D(θ ,P) = supx∈F D(x,P) �= infx∈F D(x,P), where θ is the zero mean function.

P-3. Strictly decreasing with respect to the deepest point.

This property is a generalization of two multivariate properties, monotonicity relative
to the deepest point and vanishing at infinity. Though it is more strict than the
multivariate monotonicity property. The reason is directly link with the fact that
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depth is commonly applied to classification problems and therefore ties in the depth
values are not recommended. See [7] for an analysis of the problem in multivariate
spaces.

P-4. Upper semi-continuity in x.

This property relates the depth to the cumulative distribution function and as a
consequence to the fact that is commonly attributed to the depth of being able to
show the characteristics of the underlying distribution; obtaining different depth
values when computed with respect to different probability distributions.

P-5. Receptivity to convex hull width across the domain.

This property is only considered in functional spaces. This is due to the fact that
is typical to find in functional spaces data that exhibit little variability in part of
the domain and the general fact that real data contain noise. Thus, if this property
were not satisfied the errors in the part of the image of the domain that exhibit little
variability would have a high influence in the result of the depth.

P-6. Continuity in P.

This property is important for different reasons. First, it regards that the empirical
depth converges to the population depth almost surely. As functional data are ob-
served only on a finite grid of time points, it is not possible to infer the empirical
depth but a reconstruction of it. However, by this property, the depth computed with
respect to the reconstructed empirical depth also converges to the population depth
almost surely, when the reconstructed empirical depth is close enough in Prohorov
metric to the theoretical distribution.

Acknowledgements Alicia Nieto-Reyes would like to thank the Scientific Committee of the
IWFOS 2017 for being invited to present her work at the workshop.

References

[1] Chakraborty, A., Chaudhuri, P.: The spatial distribution in infinite dimensional
spaces and related quantiles and depths. Ann. Statist. 42, 1203–1231 (2014)

[2] Claeskens, G., Hubert, M., Slaets, L., Vakili, K.: Multivariate Functional
Halfspace Depth. J. Amer. Statist. Assoc. 109, 411-423 (2014)

[3] Cuesta-Albertos, J. A., Nieto-Reyes, A.: The random Tukey depth. Comput.
Statist. Data Anal. 52, 4979–4988 (2008)

[4] Cuesta-Albertos, J. A., Nieto-Reyes, A.: Functional Classification and the
Random Tukey Depth. Practical Issues. Combining Soft Computing and Statis-
tical Methods in Data Analysis. Advances in Intelligent and Soft Computing.
Editors: Borgelt, C. et. al. Springer Berlin / Heidelberg. 77, 123–130 (2010)



202 Alicia Nieto-Reyes and Heather Battey

[5] Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification
for functional data via projection-based depth notions. Comput. Statist. 22,
481–496 (2007)

[6] Cuevas, A., Fraiman, R.: On depth measures and dual statistics. A methodology
for dealing with general data. J. Multivariate Anal. 100 (2009)

[7] Einmahl, J. H. J., Li, J., Liu, R. Y.: Bridging centrality and extremity: Refining
empirical data depth using extreme value statistics. Ann. Statist. 43, 2738–2765
(2015)

[8] Fraiman, R., Muniz, G.: Trimmed means for functional data. Test. 10, 419–440
(2001)

[9] Genton, M. G., Hall, P.: A tilting approach to ranking influence. J. R. Stat. Soc.
Ser. B Stat. Methodol.. 78, 77–97 (2014)

[10] Liu, R. Y.: On a notion of data depth based on random simplices. Ann. Statist.
18, 405–414 (1990)
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Chapter 27

Differential interval-wise testing for local

inference in Sobolev spaces

Alessia Pini, Lorenzo Spreafico, Simone Vantini and Alessandro Vietti

Abstract We present a local non-parametric inferential technique - namely, the
differential interval-wise testing, or D-IWT - able to test the distributional equality
of two samples of functional data embedded in Sobolev spaces. D-IWT can impute
differences between the two samples to specific parts of the domain and to specific
orders of differentiation. The proposed technique is applied to the functional data
analysis of a data set of tongue profiles.

27.1 Introduction

Inference is a lively area in the field of functional data analysis [12, 5, 7]. The
literature dealing with inference of functional data has pursued different approaches.
One one hand, literature has focused both on parametric methods - relying on
parametric distributional models to compute the distribution of the test statistic under
the null hypothesis - and on non parametric methods - relying on computationally
intensive re-sampling techniques (e.g., bootstrapping or permuting). On the other
hand, the testing methods proposed in the literature can be divides into global
methods - providing the analyst with a “simple” rejection or non-rejection of the null
hypothesis - and local methods - providing the analyst with portions of the domain
where the null hypothesis is rejected or not rejected.

The majority of works dealing with inference for functional data rely on global
parametric methods [4, 7, and references therein], but there is a consistent literature
pertaining also to global non-parametric methods (e.g., [2, 3, 6]). Recently, some
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works have been proposed in the framework of local parametric techniques (e.g., [1])
and local non-parametric techniques (e.g., [10, 11, 15]). In this work we focus on a
non-parametric local framework, and we consider as a starting point the interval-wise
testing procedure (IWT) proposed by [11]. The IWT is an inferential procedure for
functional data that selects the specific parts of the domain imputable for the rejection
of a functional null hypothesis.

The technique that we discuss in this paper - namely the differential interval-wise
testing (D-IWT) - is an extension of the IWT that jointly exploits the information of
the curves and of their derivatives, and can select the specific orders of differentiation
and parts of the domain imputable for the rejection of the null hypothesis. When
comparing two or more functional populations it is indeed natural – on the one
hand – to compute derivatives of the curves, which can convey a deep insight on the
data themselves and – on the other one – to localize along the domain the possible
differences between the functional populations under inspection.

27.2 Methodology

We embed the null hypothesis testing problem in the Sobolev space Hd(T ) of all
real-valued squared-integrable functions on the domain T with squared-integrable
derivatives up to order d (where T is an open interval of R).

Assume to observe two independent samples of functional data ξ ji, j = 1,2, i =
1, . . . ,n j taking values in the Sobolev space Hd(T ), d ≥ 1. Assume {ξ1i}i=1,...,n1 ∼
iid ξξξ 1 and {ξ2i}i=1,...,n2 ∼ iid ξξξ 2, where ξξξ 1 and ξξξ 2 are two independent random
functions. We aim at performing the following test:

H0 : ξξξ 1
d
= ξξξ 2 against H1 : ξξξ 1

d
�= ξξξ 2. (27.1)

In case of rejection of the null hypothesis, we aim at imputing the rejection to: (i)
specific parts of the domain of functional data, and (ii) specific characteristics of
functional data that can be naturally conveyed by one or more derivatives.

The D-IWT - which is fully described in detail in [12] - addresses the problem of
testing null hypothesis of equality in distribution of two functional populations taking
derivatives into account. To perform such a test, we replace the original test (27.1)
by the following family of tests, each focusing on a specific order of differentiation
k = 0, . . . ,d:

H0 : ξξξ 1
d
= ξξξ 2 against Hk

1 : E[Dkξξξ 1] �= E[Dkξξξ 2]. (27.2)

The outputs of the D-IWT procedure are:

• d +1 partial adjusted p-value functions p̃Dk : T → [0,1], one for each order
of differentiation, for testing separately the partial hypotheses (27.2);

• d + 1 multi-derivative adjusted p-value functions
≈
pDk : T → [0,1], one for

each order of differentiation, for testing jointly the partial hypotheses (27.2).
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The adjusted partial p-value functions are computed by applying the interval-wise
testing [11] to every test of the family (27.2). In details, for every k, test (27.2) is
performed by means of a non-parametric permutation test [9] on every interval of the
domain I ⊆ T . Let pI

Dk denote the p-value of such test. The adjusted p-value p̃Dk(t)
of order k = 0, . . . ,d and point t ∈ T is computed as the supremum of all p-values of
tests on intervals containing t:

p̃Dk(t) = sup
I t

pI
Dk . (27.3)

The adjusted multi-derivative p-value functions of the d + 1 orders of differ-
entiation are computed by adjusting the d + 1 partial p-value functions p̃Dk(t) by
means of a closed testing procedure [8]. In detail, for all possible combinations of
differentiation orders indexed by k = {k1,k2, . . . ,kQ} with ∀q : kq ∈ {0, . . . ,d} and
Q ∈ {2, . . . ,d +1}, a Q-variate IWT is performed to test hypotheses:

H0 : ξξξ 1
d
= ξξξ 2 against Hk

1 :
⋃
k∈k

E[Dkξξξ 1] �= E[Dkξξξ 2]. (27.4)

The tests (27.4) are performed by means of permutation tests based on Sobolev
norms (or semi-norms) on the corresponding orders of differentiation. The adjusted
p-value functions p̃Dk(t) are computed according to formula (27.3) based on the
obtained p-values of tests (27.4). Finally, the d + 1 adjusted multi-aspect p-value
functions

≈
pDk(t) are calculated by taking for each order of differentiation the point-

wise maximum of all adjusted p-value functions p̃Dk(t) involving that order:

≈
pDk(t) = sup

k k
p̃Dk(t) (27.5)

The p-value functions
≈
pDk(t) can be thresholded at level α to select the intervals of

the domain presenting significant differences between the two populations on the
corresponding order of differentiation.

The D-IWT is provided by a joint control of the family-wise error rate (FWER)
on each sub-interval of the domain T over the d + 1 orders of differentiation. For
every interval of the domain where the null hypothesis is not violated, the selection
procedure allows to control the probability that the interval is wrongly selected as
significant for at least one of the tested derivatives. Specifically, ∀α ∈ (0,1):

∀I ⊆ T : H0 true on I ⇒ P

(
∃t ∈I ,∃k ∈ {0,1, . . . ,d} s.t.

≈
pDk(t)≤ α

)
≤ α.

The D-IWT consistency is also proven. Proofs pertaining to both FWER control and
consistency, and extentions to more complex testing problems are shown in [12].
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Fig. 27.1: Left: functional data of sagittal tongue profiles corresponding to the five
groups of /R/ articulation: approximant (a), fricative ( f ), tap (t), trill (r), and vocalized
(voc). Center: first derivatives of the functional data. Right: second derivatives of
functional data.

27.3 Data Analysis

To better understand the potential of the D-IWT in the practice, we report in this
section the analysis of a data set of tongue profiles. The aim of the analysis is to
test the differences between five different manners of articulating the uvular /R/ in
terms of vertical position of the tongue, tongue slope, and tongue concavity. The five
groups that compose the data set can be described as follows:

f FRICATIVE: it is produced by constricting airflow through a narrow channel at
the place of articulation, causing turbulence. The fricative variant is produced
with a contact between the tongue and the palate.

a APPROXIMANT: it shares with f the way of transmission of the sound through
the air, although there is no contact between tongue and palate.

r TRILL: it is produced by directing the air over the tongue so that it vibrates.
There is a contact between the tongue and the palate.

t TAP: it is produced with a single contraction of the muscles so that the tongue
is thrown against the palate. There is a contact between the tongue and the
palate.

voc VOCALIZATION: the airstream proceeds along the sides of the tongue but it is
blocked by the tongue from going through the middle of the mouth. There is
no contact between the tongue and the palate.

Data are composed of 117 tongue profiles of five variants of uvular /R/ recorded
from one native speaker of Tyrolean, collected by ultrasound imaging techniques at
the Alpine Laboratory of Phonetic Sciences and Phonology of the Free University
of Bozen - Bolzano (Italy). For a detailed description of the data set, see [14]. The
functional data have been obtained by a penalized B-spline smoothing of order six.
The penalization parameter was computed via generalized cross-validation criterion
(see [12] for details). The obtained functional data of the five groups and their first
and second derivatives are displayed in Figure 27.1.
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Fig. 27.2: Scatter matrix of pairwise differences between the five groups. Groups
are identified in the diagonal. For each couple of groups: the upper-diagonal box
indicates the two sample means (upper part) and the significant intervals at 5% level
(lower part); the lower diagonal box indicates the three multi-aspect adjusted p-value
functions

≈
pD0(t) (black),

≈
pD1(t) (dark gray), and

≈
pD2(t) (light gray).

We perform a D-IWT-based inferential analysis of tongue profiles, in order to
identify the possible pairwise differences between the five variants in the curves and
the first two orders of differentiation (d = 2). Figure 27.2 displays the results of the
tests. In detail - for each pairwise comparison - the upper diagonal plots show the
two sample mean curves, and the lower diagonal panel shows the three multi-aspect
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adjusted p-value functions
≈
pD0(t) (black),

≈
pD1(t) (dark gray), and

≈
pD2(t) (light gray).

The three bars in the lower part of each upper diagonal plot indicate the intervals with
associated adjusted p-value lower than 5%. The color of the bars is consistent with
the one of the three adjusted p-value functions. Inference in terms of multi-derivative
adjusted p-value functions provides a highly informative and detailed representation
of the regions of the tongue where a significant difference is located. Looking at
Figure 27.2, we obtain indeed a clear representation of data differences.

As expected, we observe more pronounced differences when comparing a or voc
(produced without touching the palate) with f , t, or r (produced by touching the
palate), while there are less pronounced differences when comparing a with voc and
when comparing two variants of the group f , t, and r. For instance, we notice that
there are no significant difference between trill /R/ (r) and tap /R/ (t) in all orders
of differentiation. Conversely, we notice that at α = 1%, approximant /R/ (a) and
fricative /R/ ( f ) (second panel of the first row) are pointed out as not identically
distributed. They show significantly different vertical positions in the front part of the
tongue, different slopes in the very back, and no difference in the concavities, and
these findings can be interpreted in terms of the differences in articulation between
the two variants. Indeed, fricative /R/ is a consonant, and it is produced by touching
the palate, while approximant /R/ is produced without touching the palate. Coherently,
we observed significant differences in vertical position between the two variants,
with f reaching higher vertical positions than a. In addition, having a lower degree
of constriction, approximant /R/ has a lower slope in the back part of the tongue.
A more detailed analysis of the results, as well as a simulation study assessing the
performances of the D-IWT can be found in [12].

27.4 Conclusions

We presented a local testing procedure for testing differences between two functional
samples and selecting the specific intervals of the domain and the specific orders
of differentiation where the two functional populations are significantly different.
The proposed method, i.e., the D-IWT, is a fully non-parametric procedure based on
permutation tests. Hence, it is not based on parametric distributional assumptions
on the functional data, and it is provided with a control of the family-wise error
rate on each sub-interval of the domain for any (even very small) sample size. The
D-IWT hereby described can be readily extended to more complex models, such as
the comparison of variances between two populations, or the comparison of several
functional populations.

We applied the D-IWT to perform the pairwise comparison between five groups of
tongue profiles associated with five different variants of uvular /R/. The comparison
between the variants is performed in terms of vertical position, slope, and concavity
of the tongue. Inference in terms of multi-derivative adjusted p-value functions
provides a highly informative and detailed representation of the regions of the tongue
where a significant difference is located.
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The data analysis here reported pertains to the comparison of tongue profiles
on a specific instant during the articulation of the /R/. Our future work will focus
on extending the analysis in order to consider the whole time-varying articulation.
Such an extension can be performed by considering tongue profiles as functions of
both space and time, and hence defined on a bi-dimensional domain. In this case,
differential quantities include slope and concavity of the tongue on one hand and
velocity and acceleration of the tongue on the other one.
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Chapter 28

Hotelling in Wonderland

Alessia Pini, Aymeric Stamm and Simone Vantini

Abstract While Hotelling’s T 2 statistic is traditionally defined as the Mahalanobis
distance between the sample mean and the true mean induced by the inverse of the
sample covariance matrix, we hereby propose an alternative definition which allows
a unifying and coherent definition of Hotelling’s T 2 statistic in any Hilbert space
independently from its dimensionality and sample size. In details, we introduce the
definition of random variables in Hilbert spaces, the concept of mean and covariance
in such spaces and the relevant operators for formulating a proper definition of
Hotelling’s T 2 statistic relying on the concept of Bochner integral.

28.1 Introduction

Statisticians are more and more confronted with the analysis of complex data, where
complexity can take on various forms. For example, the advent and development of
technologies able to capture real-time and/or geolocalized information has provided
the statistician with data that can be viewed as functions with a certain degree of
smoothness which are the foundations of functional data analysis (FDA) [22, 5]. More
recently, the literature has moved in the direction of object-oriented data analysis
(OODA) [16, 18] which pertains to analyzing data that are represented with abstract
mathematical constructs, often belonging to some space on which a Hilbert structure
is assumed. While FDA and OODA are expending rapidly (see [1, 11] for excellent
recent reviews on contributions in these fields), the theoretical study of statistical
tools for making inference in such spaces is still a vibrant area of methodological
investigation [8, 25, 6, 24, 2, 12, 4, 5, 13, 3, 10, 17, 20].

In this work, we will focus on the inferential problem of constructing a statistical
test for the means of random variables belonging to Hilbert spaces of possibly infinite
dimension. Starting with Hotelling’s T 2 statistic widely used in multivariate data
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analysis (MDA) for testing the mean, we will first get the reader to realize that
not only it can be defined for high-dimensional data in which the dimensionality
p exceeds the sample size n but Hotelling’s T 2 statistic can be coherently defined
in any Hilbert space independently from its dimensionality and sample size. In
details, Section 28.2 reviews the traditional definition of the statistic and proposes an
alternative, more general, definition from which the generalization to Hilbert spaces
can be straightforwardly foreseen. In Section 28.3 we introduce the definition of
random variables in Hilbert spaces, the concept of mean and covariance in such
spaces and the relevant operators for formulating, at the end, our proposed general
definition of Hotelling’s T 2 statistic in Hilbert spaces.

28.2 Hotelling’s T 2 revisited

Given a sample X1, . . . ,Xn of n i.i.d R
p-valued random variables with mean m ∈

R
p and variance-covariance matrix Σ , one can open any textbook on multivariate

statistical analysis and reads that, if n > p, inference on the mean vector of this
population can be carried out using Hotelling’s T 2 statistic defined as:

T 2 := n(mn−m)�Σ−1
n (mn−m) , (28.1)

where mn and Σn are the sample counterparts of m and Σ respectively:

mn :=
1
n

n

∑
i=1

Xi and Σn :=
1

n−1

n

∑
i=1

(Xi−mn)(Xi−mn)
�. (28.2)

What is less known is the connection between Hotelling’s T 2 and the univariate
Student t statistic. In effect, one can make inference on the mean vector m by
computing a Student t statistic for any direction a ∈ R

p as follows:

ta =
√

n
a� (mn−m)√

a�Σna
.

It can then be shown that Hotelling’s T 2 defined in eq. (28.1) reads:

T 2 := max
a∈Rp\{0}

t2
a = n max

a∈Rp\{0}

[
a� (mn−m)

]2
a�Σna

. (28.3)

At this point, we can make four important remarks:

1. The sample variance-covariance matrix Σn is a.s. positive definite since n > p.
Hence, the maximum in eq. (28.3) can be searched over the space spanned by
the columns of Σn which coincides with R

p;
2. The scalar product between two elements of Rp, say a and b, is denoted by a�b

in eq. (28.3). It is actually nothing but the inner product 〈a,b〉Rp ;
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3. The dot product between two elements a and b of Rp is a rank-1 matrix denoted
by ab� in the above equations. It is nothing but the tensor product a⊗Rp b;

4. We can define a rank-1 matrix Dn = (mn−m)⊗Rp (mn−m) so that the numer-
ator in the maximization problem involved in eq. (28.3) reads 〈a,Dna〉Rp .

In definitive, the definition of Hotelling’s T 2 statistic provided by eq. (28.3) can
be equivalently stated as follows. Given a sample X1, . . . ,Xn of n i.i.d. Rp-valued
random variables with mean m and covariance matrix Σ , Hotelling’s T 2 statistic is
defined as:

T 2 := n max
a∈Im(Σn)\{0}

〈a,Dna〉Rp

〈a,Σna〉Rp
, (28.4)

where

Dn = (mn−m)⊗Rp (mn−m) ,

Σn =
1

n−1

n

∑
i=1

(Xi−mn)⊗Rp (Xi−mn).

This definition is more general and provides indeed a definition of Hotelling’s T 2

statistic that holds also in the case p≥ n ([23]). Moreover, it naturally opens to the
possibility of extending the definition beyond the Euclidean framework.

28.3 Hotelling’s T 2 in Hilbert spaces

The aim of this section is to show that eq. (28.4) is actually not restricted to the
Hilbert space Rp endowed with its natural inner product but can actually serve as the
definition of Hotelling’s T 2 statistic in any Hilbert space. To accomplish this goal,
we shall begin with introducing the notions of random variable on a generic Hilbert
space as well as the concepts of mean and covariance in such a space.

Let (H,⊕H,"H,〈·, ·〉H) be a generic vector space endowed with a Hilbert struc-
ture, where ⊕H, "H and 〈·, ·〉H are the addition, scalar multiplication and inner
product operations, respectively. For ease of notation, let also #H := ⊕H(−1)"H

be the subtraction operation. We further assume that H is separable. This last as-
sumption is key from a practical point of view: it guarantees indeed the possibility of
computing an accurate finite dimensional approximation of Hotelling’s T 2 statistic
in real applications [21].

An H-valued random variable χ defined on a probability space (Ω ,F ,P) is a
mapping χ : Ω →H such that 〈χ,h〉H is measurable for all h ∈H. In order to define
the expected value and covariance operator of χ , we need a proper definition of
integration on H w.r.t. the probability measure P. In the following, we will use the
Bochner integral ([15]) which can be viewed as the natural extension of the traditional
Lebesgue integration on R

p to the integration on Hilbert spaces. Its proper general
definition for any measurable function taking value in a separable Hilbert space
is outside of the scope of this work. We hereby rather give a simpler definition of
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the Bochner integral for H-valued random variables. Let χ be an H-valued random
variable on the probability space (Ω ,F ,P). The Bochner integral of χ with respect
to the probability measure P is the unique element EH[χ] of H such that

〈EH[χ], f 〉H = ER [〈χ, f 〉H] , for all f ∈H, (28.5)

with ER being the expectation operator for R-valued random variables.
Thanks to the Bochner integral [15], we can now introduce the definition of mean

and covariance for an H-valued random variable χ . It can be shown that these entities
exist and are finite if and only if ER[‖χ‖2

H
]<∞. Under this assumption, we define the

mean m of χ as its Bochner integral, i.e. m :=EH[χ]∈H and we define the covariance
operator K of χ as the Bochner integral of the Hilbert-Schmidt operator (χ #H

m)⊗H (χ #H m), i.e. K := EBHS(H)[(χ #H m)⊗H (χ #H m)] ∈ BHS(H), where
BHS(H) is the space of Hilbert-Schmidt operators on H. Note that the covariance
operator is perfectly well defined because the space of Hilbert-Schmidt operators
BHS(H) on a separable Hilbert space H is itself a separable Hilbert space.

Assume now that we collected a sample χ1, . . . ,χn of n i.i.d. H-valued random
variables with mean m and covariance operator K , such that ER[‖χi‖2

H
]< ∞, for all

i = 1, . . . ,n. Using standard algebraic operations, it can be shown that the following
estimators mn and Kn are unbiased estimators for the mean and covariance operator
respectively:

mn :=
1
n
"H

n⊕
i=1

χi and Kn :=
1

n−1
"H

n⊕
i=1

(χi#H mn)⊗H (χi#H mn). (28.6)

While mn and Kn naturally play the roles of mn and Σn in eq. (28.2) respectively,
looking back at eq. (28.4), the definition of Hotelling’s T 2 statistic requires the
introduction of a novel operator that captures the squared error loss of the sample
mean mn in estimating the true mean m for replacing Dn. We therefore define the
sample mean squared-error loss operator Dn as:

Dn := (mn#H m)⊗H (mn#H m).

The sample mean squared-error loss operator is a BHS(H)-valued random variable.
We now have all the components required for defining Hotelling’s T 2 statistic

in a generic separable Hilbert space. In details, given a sample χ1, . . . ,χn of n i.i.d.
H-valued random variables with mean m and covariance operator K , Hotelling’s T 2

statistic is defined as:

T 2 := n max
f∈Im(Kn)\{0}

〈 f ,Dn f 〉H
〈 f ,Kn f 〉H , (28.7)

where
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Dn := (mn#H m)⊗H (mn#H m),

Kn :=
1

n−1
"H

n⊕
i=1

(χi#H mn)⊗H (χi#H mn).

All the theoretical properties pertaining to Hotelling’s T 2 statistic as defined
above are discussed in details in [21]. Equation (28.7), contrary to common belief,
demonstrates that Hotelling’s T 2 statistic is actually well defined in separable Hilbert
spaces of infinite dimension. Famous examples of such Hilbert spaces are showcased
in [21]. An important application that follows from Equation 28.7 is the development
of new null hypothesis significance testing (NHST) procedures for making inference
on the mean element in Hilbert spaces. In [21], one- and two-population NHST
procedures based on Hotelling’s T 2 statistic in separable Hilbert spaces are proposed.
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Chapter 29

Confidence and prediction intervals in

semi-functional partial linear regression

Paula Raña, Germán Aneiros, Philippe Vieu and Juan Vilar

Abstract Semi-functional partial linear regression model allows to deal with a non-
parametric and a linear component within the functional regression. Naı̈ve and wild
bootstrap procedures are proposed to approximate the distribution of the estimators
for each component in the model, and their asymptotic validities are obtained in the
context of dependence data, under α-mixing conditions. Based on that bootstrap
procedures, confidence intervals can be obtained for each component in the model,
which can be also extended to deal with prediction intervals and prediction densities.

29.1 Introduction

Functional Data Analysis (FDA) is a relative recent field in Statistics, which has
been increasing its presence over the last years. In spite of its novelty, most statistical
techniques have been generalized to the functional context. One can find in [5] a nice
monograph on FDA, from the nonparametric point of view, and in [7], focused on
inference, or, more recently, in [8].
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Our interest is focused on functional regression. Specifically, this contribution
deals with the Semi-Functional Partial Linear Regression model (SFPLR), which has
been introduced in [1] in a context of independent data and then, it was analysed in
[2] under dependence conditions.

The objective of this study is to build confidence and prediction intervals for the
SFPLR model when dealing with functional time series, that is, for functional data
under dependence conditions. For that purpose, bootstrap procedures will be used
in order to approximate the distribution of the estimators in the SFPLR model, and
their asymptotically validity will be obtained. This kind of bootstrap procedures
have been proposed for functional linear regression in [6] and for Functional Non-
parametric Regression model (FNP) in [4], in a context of dependence data, which
has been extended in [11] to deal with functional time series. However, in the con-
text of partial linear models, one can only find in [9] and [12] some approximations
to this kind of procedures, but in a context of scalar models and not in functional data.

The rest of the paper is organized as follows. Section 29.2 presents the SFPLR
model and their estimators, while the bootstrap procedures, together with their asymp-
totic validity, are developed in Section 29.3. Section 29.4 contains the procedures to
build the confidence intervals, which can be extended to build also prediction inter-
vals (some general ideas are given in Section 29.5). Finally, Section 29.6 includes
some conclusions.

29.2 Semi-functional partial linear regression

The SFPLR model considered in this paper can be written as

Y = XTβ +m(χ)+ ε, (29.1)

where β = (β1, . . . ,βp)
T is a vector of unknown real parameters and m is an unknown

smooth real-valued operator. The explanatory random variables X and χ are valued
in R

p and some infinite-dimensional space H endowed with a semi-metric d(·, ·), re-
spectively, while the random error ε verifies E(ε|(X,χ)) = 0 and E(ε2|(X,χ))< ∞.

Throughout the paper we assume that the sample we have at hand,

S = {(X1,χ1,Y1), . . . ,(Xn,χn,Yn)},

comes from a sequence of random vectors that are α-mixing and identically dis-
tributed as (X,χ,Y ), while the corresponding random errors {εi}n

i=1 are independent.
Note that these assumptions especially fit to the particular case where Yi = G(χi+1)
(G(·) denotes a known operator), which plays a main role in prediction of func-
tional time series (see, for instance, [3] for the SFPLR context, or [11] for the pure
nonparametric setting).
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29.2.1 Estimators

Let us denote

X = (X1, . . . ,Xn)
T , Y = (Y1, . . . ,Yn)

T and Wh = (wh(χi,χ j))1≤i, j≤n

with

wh(·,χ j) =
K(d(·,χ j)/h)

∑n
i=1 K(d(·,χi)/h)

,

where K(·) is a kernel function and h > 0 is a smoothing parameter. In addition, for
any (n×q) matrix A (q≥ 1), we denote

Ãh = (I−Wh)A.

In this contribution, the vector parameter β and the functional operator m(·) in
the SFPLR model (29.1) will be estimated by means of

β̂b = (X̃T
b X̃b)

−1X̃T
b Ỹb and m̂h(·) =

n

∑
j=1

wh(·,χ j)(Yj−XT
j β̂h),

respectively. Both estimators are based on least squares estimation and kernel smooth-
ing, and they were studied, under α-mixing conditions, in [2].

29.3 Bootstrap in the SFPL model

Two bootstrap procedures are proposed in this section. The first one, called “naı̈ve
bootstrap”, is designed for homoscedastic models (σ2

ε (X,χ) := E(ε2|(X,χ)) = σ2
ε ).

The second one, called “wild bootstrap”, works under heterocedasticity.

The bootstrap procedures follow the following algorithms:

Naı̈ve bootstrap.
Step 1: Construct the residuals ε̂i,b = Yi−XT

i β̂b− m̂b(χi), i = 1, . . . ,n.
Step 2: Draw n i.i.d. random variables, ε∗1 , . . . ,ε

∗
n , from the empirical distribution

function of (ε̂1,b− ε̂b, . . . , ε̂n,b− ε̂b), where ε̂b = n−1 ∑n
i=1 ε̂i,b.

Step 3: Obtain Y ∗
i = XT

i β̂b + m̂b(χi)+ ε∗i , i = 1, . . . ,n.
Step 4: Define

β̂ ∗b = (X̃T
b X̃b)

−1X̃T
b Ỹ∗

b and m̂∗
hb(·) =

n

∑
j=1

wh(·,χ j)(Y ∗
j −XT

j β̂
∗
b ),

Wild bootstrap.
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Change Step 2 in the naı̈ve bootstrap: define ε∗i = ε̂i,bVi (i= 1, . . . ,n), where V1, . . . ,Vn
are i.i.d. random variables that are independent of the sample S and that satisfy
E(V1) = 0, E(V 2

1 ) = 1 and E(V r
1 )≤C< ∞ for some r > 6. Maintain the other three

steps.

29.3.1 Validity of the bootstrap procedures

Several assumptions must be imposed in order to warranty the validity of the pro-
posed bootstrap procedures. Those assumptions have been proposed previously in
[2], related to the asymptotic distribution of the estimators in the SFPLR model,
and in [11], related to the bootstrap procedures applied to the FNP model. One can
see in those references, and also in [10], a detailed analysis and justification of the
considered assumptions, which are common in that context.

Let PS denote the probability conditionally on the sample S while we use a to
denote a constant vector in R

p. Assume that χ is valued in some given compact subset
C of H and denote by χ0 a fixed element of C . Denote Fχ0(l) = P(χ ∈ B(χ0, l))
for l > 0, where B(χ0, l) = {γ ∈H such that d(γ,χ0)≤ l}.

Theorem 29.1. Under the assumptions indicated above, for the wild bootstrap, one
has:

sup
y∈R

∣∣∣PS
(√

naT (β̂ ∗b − β̂b)≤ y
)
−P
(√

naT (β̂b−β )≤ y
)∣∣∣→P 0. (29.2)

In addition, if the model is homoscedastic, the result holds for the naı̈ve bootstrap.

Theorem 29.2. Under the assumptions indicated above, for the wild bootstrap, one
has:

sup
y∈R

∣∣∣PS
(√

nFχ0(h)(m̂
∗
hb(χ0)− m̂b(χ0))≤ y

)
−

P
(√

nFχ0(h)(m̂h(χ0)−m(χ0))≤ y
)∣∣∣→P 0. (29.3)

In addition, if the model is homoscedastic, the result holds for the naı̈ve bootstrap.

Theorems 29.1 and 29.2 establish the validity of the bootstrap procedures proposed
for the linear and the nonparametric component of the SFPLR model, respectively.
From the practical point of view, those results allow to perform statistical inference
on β and m using the bootstrap distribution. This can be useful, for instance, to build
confidence and prediction intervals, as in the following sections.
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29.4 Building the confidence intervals

Confidence intervals can be computed for each component in the SFPLR model. The
procedure to build the corresponding bootstrap confidence intervals is presented in
this section. Because of its generality, the wild bootstrap procedure will be considered.

Given the SFPLR model

Y = XTβ +m(χ)+ ε, (29.4)

an observation (X ,χ0) from (X,χ) and a sample

S = {(X1,χ1,Y1), . . . ,(Xn,χn,Yn)}

from model (29.4) satisfying the assumptions in this paper, bootstrap (1− α)-
confidence intervals for β , m(χ0) and the regression function r(X ,χ0) := XTβ +
m(χ0) can be built as follows:

• Bootstrap confidence interval for β (assuming, for simplicity, that β ∈ R):

Iβ ,∗1−α = (β̂b +qβ ,∗α/2, β̂b +qβ ,∗1−α/2).

• Bootstrap confidence interval for m(χ0):

Im,∗
χ0,1−α = (m̂h(χ0)+qm,∗

α/2(χ0), m̂h(χ0)+qm,∗
1−α/2(χ0)).

• Bootstrap confidence interval for r(X ,χ0):

Ir,∗
X ,χ0,1−α = (XT β̂b + m̂h(χ0)+qr,∗

α/2(X ,χ0),XT β̂b + m̂h(χ0)+qr,∗
1−α/2(X ,χ0)),

where the quantiles (qu,∗
p ) involved in the confidence intervals above can be computed

in the following way:

Bootstrap quantiles: qβ ,∗p , qm,∗
p (χ0) and qr,∗

p (X ,χ0).

1. Repeat B times the wild bootstrap algorithm (see Section 29.3) over S by using
iid random variables Vi drawn from the mixture of the two Dirac distributions

0.1(5+
√

5)δ(1−√5)/2 +0.1(5−
√

5)δ(1+√5)/2,

giving the B bootstrap estimates {β̂ ∗,tb }B
t=1 and {m̂∗,t

hb (χ0)}B
t=1.

2. Compute the sets of bootstrap errors (BE):

a. BE.β = {β̂b− β̂ ∗,tb }B
t=1.

b. BE.m = {m̂b(χ0)− m̂∗,t
hb (χ0)}B

t=1.
c. BE.r = {XT (β̂b− β̂ ∗,tb )+(m̂b(χ0)− m̂∗,t

hb (χ0))}B
t=1.
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3. Compute the bootstrap quantiles:

a. qβ ,∗p : is the quantile of order p of BE.β .
b. qm,∗

p (χ0): is the quantile of order p of BE.m.
c. qr,∗

p (X ,χ0): is the quantile of order p of BE.r.

Finally, the estimates β̂b, m̂b(χ0) and m̂h(χ0) used in the algorithms above are
obtained from the sample S .

This procedure can be seen as an extension of the algorithms presented in [11],
from the FNP to the SFPLR model, and taking into account the three possibilities of
considering β , m(χ0) or r(X ,χ0), separately.

29.5 Building the prediction intervals

From the practical point of view, if the objective relies on functional time series
forecasting (see, for instance [3] applied to electricity data), one may be interested in
prediction intervals instead of confidence intervals. It is of main importance to distin-
guish between confidence intervals and prediction intervals and so, their differences
will be analysed in the following paragraphs.

Consider the SFPLR model in (29.1), together with the estimators for β and m(·):

β̂b = (X̃T
b X̃b)

−1X̃T
b Ỹb and m̂h(·) =

n

∑
j=1

wh(·,χ j)(Yj−XT
j β̂h).

In the case of the confidence intervals, one may deal with the conditional expectation

E(Y |{X ,χ0}) = XTβ +m(χ0).

Then, one can obtain a confidence interval (level 1−α) for this conditional expecta-
tion based on the estimators β̂b and m̂h(·). This interval will be built as:

(XT β̂b + m̂h(χ0)+qα/2(X ,χ0),XT β̂b + m̂h(χ0)+q1−α/2(X ,χ0)),

where qα/2(X ,χ0) and q1−α/2(X ,χ0) are the quantiles from the distribution of

XT (β − β̂b)+ (m(χ0)− m̂h(χ0)), which can be approximated, as in the previous
section, by the bootstrap procedures.

This confidence interval is devoted to cover the true value of the regression opera-
tor, XTβ +m(χ0), and it deals only with the variability due to the estimations.

The procedure to obtain a prediction interval is similar, but changing its “philoso-
phy”. Prediction intervals are devoted to cover the response and not the regression
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operator and so, they include, not only the variability due to the estimation, but also
to the error in the model. That is, instead of working with the expectation of Y con-
ditionally on {X ,χ0}, one deals with the distribution of Y conditionally on {X ,χ0}.
One may consider that, in this context, the predictor for Y/{X ,χ0} is XT β̂b+m̂h(χ0).

The procedure to build a prediction interval follows the same idea as the confidence
interval, but now this variability due to the model error has to be added. The starting
point is that now, one looks for an interval (a,b) such that

P(Y |{X ,χ0} ∈ (a,b)) = 1−α,

which allows to obtain an interval for the conditional response of the regression
model, being of main importance from the practical usefulness of those procedures if
one deals with real data prediction problems.

The extension of the bootstrap procedures, developed to build confidence intervals
in Section 29.4, to deal now with the prediction intervals allows to estimate also
prediction densities, which are a nice complement for any prediction study.

29.6 Concluding remarks

This study proposes two bootstrap procedures to approximate the asymptotic dis-
tribution of the estimators in both components (linear and nonparametric) of the
SFPLR model, considering scalar response and functional predictor and in which
one adds linear effect of scalar covariates. The validity of these two procedures has
been established in the setting of dependent data, assuming α–mixing conditions on
the sample, and can be also applied to the setting of independent data as a particular
case.

By means of these two bootstrap procedures one can construct pointwise confi-
dence and prediction intervals for the SFPLR model. Procedures to build confidence
intervals have been developed in detail, while the extension to build not only predic-
tion intervals but also prediction densities has been proposed.
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Chapter 30

Linear causality in the sense of Granger with

stationary functional time series

Matthieu Saumard

Abstract In this paper, we investigate the causality in the sense of Granger for
functional time series. The concept of causality for functional time series is defined
and a statistical procedure of testing the hypothesis of non-causality is proposed.
This procedure is based on a test of equality of covariance operators for dependent
processes.

30.1 Introduction

Functional data analysis has become an important field of modern statistics, and now
there exists an abundant literature over this topic. Nevertheless, the case of dependent
observations between the functional objects is less studied. We extend the classical
notion of causality in the sense of Ganger (see [3]) to the case of functional time
series. This extension is important and useful to the statistical community. To the
best of our knowledge, there exists only one article dealing with the causality in the
sense of Granger adapted to the functional context, see [1]. In their proceedings, they
define one definition of the causality for signals. A test procedure is proposed but
a theoretical background is needed. We propose another procedure of testing the
causality in the sense of Granger adapted to the functional time series context.

Since the pioneering work of Wiener (1956) [8] and Granger (1969) [3], an abun-
dant literature is now available on causality of classical time series. There is nowadays
different tools to analyse dependency for functional data: Mixing, linear process
Bosq [2], Hörmann and Kokoszka [4] have proposed a definition of dependency for
functional data that generalize the m-dependency, they call it Lp−m−approximable
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sequences.

In Section 2, we introduce the definition of causality for functional time series and
an example in the autoregressive functional processes. In Section 3, we recall one
procedure of testing the equality of covariance operators for dependent functional
processes and one procedure of estimation of the autocorrelation operator. With these
procedures, we conclude this section by a procedure of testing the causality in the
model defined in Section 2.

30.2 Linear causality with two functional time series

30.2.1 Definition

Let H be a separable Hilbert space, with norm ‖ · ‖ and the inner product associated
〈·, ·〉. In the sequel, for every functional time series {Zt}t∈N valued in H, we make
the assumptions that E

[‖Zt‖2
]
<+∞ and E[Zt ] = 0, ∀t ∈ N, moreover we assume

that {Zt}t∈N is stationary. Define the operator of covariance ΓZ of the stationary time
series Zt by:

ΓZ(U) = E [〈Z,U〉Z] , ∀U ∈ H, (30.1)

where we omit the index t of time, due to stationarity. It is well known that this
operator is a self-adjoint, positive, nuclear operator.

Let Xt and Yt be two stationary functional time series valued in H. Let Ut be the
information accumulated since time t− 1, and Ut −Xt denote all this information
without the series Xt . Define the predictive error series by

εt(Y |U) = Yt −Pt(Y |U),

where Pt(Y |U) is the best linear predictor of Yt using the information Ut . Then, we
have the following definition.

Definition 30.1 (Causality). We say that X is causing Y if Γε(Y |U−X)−Γε(Y |U) is a
positive definite operator.

30.2.2 An example

Let Xt = (Yt ,Xt)
′ be an autoregressive process valued in H := L2[0,1]×L2[0,1]

associated with (ρ,ε) where ρ is a linear operator of H and ε is a H -strong white
noise. For more information on the definition of autoregressive process valued in
separable Hilbert space, see [2]. We have

Xt = ρ(Xt−1)+ εt . (30.2)
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We can rewrite the model as{
Yt = ρ11(Yt−1)+ρ12(Xt−1)+ ε1t ,
Xt = ρ21(Yt−1)+ρ22(Xt−1)+ ε2t ,

with ρ11 :=
(
ρ �L2[0,1]×0

)(1)
, ρ12 :=

(
ρ �0×L2[0,1]

)(1)
and the same idea for ρ21 and

ρ22. According to the definition 30.1, we say that (Xt) does not linear cause (Yt) if
and only if ρ12 = 0. In fact, if ρ12 = 0, the two covariance operators of the definition
are equals and then the operator can not be positive definite.

30.2.3 Extensions

Other functional time series models can be studied, like autoregressive processes of
order p, functional moving average processes of order q and FARMA(p,q) processes.
Let Xt = (Yt ,Xt)

′ be a FARMA(p,q) process valued in H such that

p

∑
j=0

ρ j(Xt− j) =
q

∑
j=0

θ j(εt− j), (30.3)

for ρ0 = θ0 = I, ρ j, θ j bounded linear operators and ε a strong white noise. Here,
we do not discuss about the existence, uniqueness of a stationary solution, we refer
to [2]. Now, we can rewrite the model as{

∑p
j=0ρ11, j(Yt− j)+∑p

j=1ρ12, j(Xt− j) = ∑q
j=0 θ11, j(ε1,t− j)+∑q

j=1 θ12, j(ε2,t− j),

∑p
j=1ρ21, j(Yt− j)+∑p

j=0ρ22, j(Xt− j) = ∑q
j=1 θ21, j(ε1,t− j)+∑q

j=0 θ22, j(ε2,t− j),

where we use the same idea as in the previous example. According to the definition,
we say that (Xt) does not linear cause (Yt) if and only if ∀ j, ρ12, j = 0 and ∀ j,
θ12, j = 0.

30.3 Testing linear causality in the autoregressive model

30.3.1 Weak dependence

The notion of dependence, we will use, is defined in the article of Hörmann and
Kokoszka (2010) [4]. Denoting by Lp

H , the space of H valued random variables X
such that νp(X) = (E[‖X‖p])1/p < +∞, we can state the definition, see [4] for the
properties of this notion.

Definition 30.2 (Lp−m−approximable sequence, see [4]). A sequence {Xt} ∈ Lp
H

is called
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Lp−m−approximable if each Xt admits the representation,

Xt = f (εt ,εt−1, . . .),

where the εt are S valued i.i.d. sequence and f is a mesurable function of S∞ to H.
Defining

X (m)
t = f (εt ,εt−1, . . . ,εt−m+1,ε ′t−m,ε

′
t−m−1, . . .),

where {ε ′t} is an independent copy of {εt}, we assume that

∞

∑
m=1

νp(Xm−X (m)
m )< ∞.

30.3.2 Test of equality of the covariance operators

Zhang and Shao (2015) [9] recently have proposed a test procedure to compare the
covariance operators of two mean zero stationary functional time series. We refer to
this article for the general procedure. Let us make a summary of this procedure in
the special case of equal number of the two samples. The null hypothesis is

H0 : ΓX = ΓY , (30.4)

against the alternative
H1 : ΓX �= ΓY ,

where X and Y are two mean zero stationary functional time series, {Xi}N
i=1, {Yi}N

i=1.
Define {λ̂ j

XY} and {φ̂ j
XY} the eigenvalues and eigenfunctions of

Γ̂XY =
1

2N

(
N

∑
i=1

Xi⊗Xi +Yi⊗Yi

)
.

Let Γ̂X ,m = 1/m∑m
i=1 Xi⊗Xi. Let {λ̂ j

X ,m} and {φ̂ j
X ,m} be the eigenvalues and eigen-

functions of Γ̂X ,m. Similar quantities are defined for the second sample. Let K be a
fixed user-chosen number and

ci, j
k = 〈(Γ̂X ,�k/2� − Γ̂Y,�k/2�)(φ̂ i

XY ), φ̂
j

XY 〉, 2≤ k ≤ 2N, 1≤ i, j ≤ K.

Denote by α̂k = vech(Ck), with Ck = (ci, j
k )K

i , j = 1. To take the dependence into
account, they introduce a self-normalized matrix:

V =
1

4N2

2N

∑
k=1

k2(α̂k− α̂2N)(α̂k− α̂2N)
′.

The test statistic is then
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G = 2Nα̂ ′2NV−1α̂2N .

Define Bq(r) as a q-dimensional vector of independent Brownian motion, Wq =
B′q(1)J−1

q Bq(1), where

Jq =
∫ 1

0
(Bq(r)− rBq(1))(Bq(r)− rBq(1))′dr.

The critical values of Wq have been tabulated by Lobato (2001) [5]. [9] have demon-
strated that the test statistic converges to WK(K+1)/2 under the null and diverges under
the alternative hypothesis.

Assumption 1 • Assume {(Xi(t),Yi(t))}+∞
i=1 ∈ L4

H×H is an L4−m−approximable
sequence.

• Assume λ 1
X > λ 2

X > > λm0+1
X and λ 1

Y > λ 2
Y > > λm0+1

Y , for some positive integer
m0 ≥ 2.

Zhang and Shao (2015) [9] consider the local alternative H1,N : ΓX −ΓY =
LΓ /

√
N, with Γ being a Hilbert-Schmidt operator, and L a constant different of

0. Let φ̃ i be the eigenfunctions of the operator (ΓX +ΓY )/2, whose empirical coun-
terpart are the φ̂ i

XY .

Assumption 2 Define Δ = (〈Γ φ̃ i, φ̃ j〉)K
i, j=1. Assume vech(Δ) �= 0 ∈ R

K(K+1)/2.

Theorem 30.1. Suppose Assumptions 1 and 2 hold with m0 ≥ K. Further assume
that the asymptotic covariance matrice is positive definite, see Lemma 6.3 of
Zhang and Shao (2015) [9]. Then under H0, G −→ WK(K+1)/2 and under H1,N,
lim|L|→+∞ limN→+∞G =+∞.

30.3.3 Estimation of ρ

First of all, we must have an estimate of ρ . We follow the general description of
Bosq (2000) [2]. For this task, define the covariance operator

Γ (x) = E[〈X0,x〉X0], x ∈H .

If X1, . . . ,Xn are observed, a natural estimator of Γ is the empirical covariance
operator, defined as

Γ̂ (x) =
1
n

n

∑
t=1
〈Xt ,x〉Xt ,x ∈H .

Let us denote the eigenelements of Γ and Γ̂ by (λk,φk)k=1,...,∞ and (λ̂k, φ̂k)k=1,...,n
respectively. Now, define the lag-1 empirical operator by

D̂(x) =
1

n−1

n−1

∑
t=1
〈Xt ,x〉Xt+1.
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Noting π pn the orthogonal projection on the space spanned by the (φ̂1, . . . , φ̂pn), the
estimator of ρ can be

ρ̂ = π pn D̂Γ̂−1π pn .

We can write this estimator in another form

ρ̂(x) =
pn

∑
l=1

ρ̂l(x)φ̂l ,

with

ρ̂l(x) =
1

n−1

n−1

∑
t=1

pn

∑
j=1

λ̂−1
j 〈x, φ̂ j〉〈Xt , φ̂ j〉〈Xt+1, φ̂l〉.

30.3.4 The test procedure

In the previous sections, we have recalled one procedure of testing the equality of
covariance operators and one procedure of estimation of the parameters. We are now
ready to state our result.

Testing procedure for the autoregressive model of order 1:

1. (Data) We dispose of (X1, . . . ,XN) and (Y1, . . . ,YN)

2. (Estimation of the parameters) We perform the estimation of ρ according to
the previous section. We separate the two different models, one estimation of ρ
without the Yi (nested model) and one which include them (pooled model).

3. (Estimation of the errors) ε1 is then estimated in the different models for t =
2, . . . ,N, by {

ε̂1
t = Yt − ρ̂11(Yt−1)+ ρ̂12(Xt−1), (pooled model),
ε̂2

t = Yt − ρ̂11(Yt−1), (nested model).

4. (Test the equality of operators based on the errors) We perform the proposed test
of Zhang and Shao on the estimated errors.
There are straigthforward extensions of this procedure to test the non-causality
in the other models mentioned in section 2. Possible alternatives to the test of
Zhang and Shao would be to perform a global F-test like in [7], or to test the
effect of the variable X on errors like [6]. Unfortunately these tests are studied in
the independent case.
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30.4 Conclusion

The notion of linear causality has been studied and we have proposed a definition
and a statistical procedure to test this concept in a special case i.e the autoregressive
model of order 1. An empirical analysis of the numerical performance of the test will
be the object of another article.

References

[1] Amblard, P.O., Michel, O.: Causalité de granger pour des signaux à valeurs
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Chapter 31

Grouped multivariate functional time series

method: An application to mortality forecasting

Han Lin Shang and Yang Yang

Abstract Age-specific mortality rates are often disaggregated by different attributes,
such as sex and state. Forecasting age-specific mortality rates at the sub-national
levels may not add up to the forecasts at the national level. Further, the independent
forecasts may not utilize correlation among sub-populations to improve forecast accu-
racy. Using Japanese mortality data, we extend the grouped univariate functional time
series methods to grouped multivariate functional time series forecasting methods.

31.1 Introduction

It is common to have multivariate functional time series that are ordered by a grouped
structure. For instance, we consider age-specific mortality rates observed annually
as an example of a functional time series, where the continuum is the age variable.
These age-specific mortality rates can be observed at the national level, and can be
disaggregated by various attributes such as sex or state. In practice, forecasts are
often required for national mortality, as well as sub-national mortality disaggregated
by different attributes. When a functional time series forecasting method is applied
to each series, the sum of the forecasts will not generally add up to the forecasts
obtained by applying the method to the national data. This is known as the issue of
forecast reconciliation (see, e.g., [5]).

In the multivariate functional time series literature, there has been few forecasting
methods that take account of aggregation constraints. Two noticeable exceptions
are [4] and [3], where the optimal combination method is proposed to reconcile
point forecasts of age-specific mortality, and potentially improve the point forecast
accuracy at different levels of a hierarchy. In these two works, each series in a group
is independently forecast by a univariate functional time series (FTS) forecasting
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method and then the forecasts are reconciled with respect to the group structure. To
further improve forecast accuracy, we consider a multivariate functional time series
(MFTS) forecasting method to jointly model the correlation among sub-populations
and forecast multivariate functional time series at each level.

Using the national and sub-national Japanese age-specific mortality rates from
1975 to 2014 in Sect. 31.2, we introduce the multivariate functional principal com-
ponent regression in Sect. 31.3 for producing point forecasts, and revisit grouped
functional time series forecasting methods in Sect. 31.4. We evaluate the point fore-
cast accuracy between independent and grouped functional time series forecasting
methods in Sect. 31.5.

31.2 Japanese data set

We study the Japanese age-specific mortality rates from 1975 to 2014, obtained
from the [2]. We consider age groups from 0 to 99 in single years of age, while the
last age group contains all ages at and over 100. The data structure is described as
follows: At the top level, we have total age-specific mortality rates for Japan. We can
split these total mortality rates by sex, by region, or by prefecture. Japan consists
of 8 regions which contain 47 prefectures as lower level administrative divisions.
The most disaggregated data arise when we consider the mortality rates for each
combination of prefecture and sex, giving a total of 47×2 = 94 series. In total, across
all levels of disaggregation, there are 1+2+8+16+47+94=168 series.

31.3 Multivariate functional principal component analysis

31.3.1 Nonparametric smoothing

Let y j
t (xi) be the log central mortality rates observed at the beginning of each year for

year t = 1,2, . . . ,n at observed ages x1,x2, . . . ,xp where x is a continuous variable, p
denotes the number of ages, and superscript j represents either male or female in the
case of two populations.

We assume there is an underlying continuous and smooth function f j
t (x) observed

at discrete data points with errors. That is

y j
t (xi) = f j

t (xi)+δ j
t (xi)ε j

t,i, (31.1)

where xi represents the center of each age group for i = 1, . . . , p, ε j
t,i is an independent

and identically distributed (i.i.d.) standard normal random variable for each age in
year t, and δ j

t (xi) measures the variability in mortality at each age in year t for the
jth population. Jointly, δ j

t (xi)ε j
t,i represents the smoothing error.
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31.3.2 Multivariate functional principal component analysis

Given our application has the same domain, we consider data where each observation
consists of ω ≥ 2 functions, [ f (1)(x), . . . , f (ω)(x)]� ∈ Rω .

The multivariate functional time series are combined in a vector with fff (x) =[
f (1)(x), . . . , f (ω)(x)

]
∈Rω . We assume that μ(x) :=

{
E
[

f (1)(x)
]
, . . . ,E

[
f (ω)(x)

]}
= 0. For s, t ∈ Γ , the covariance function is defined with elements

Cl j(s, t) := Cov
[

f (l)(s), f ( j)(t)
]
= E
{[

f (l)(s)−μ(l)(s)
][

f ( j)(t)−μ( j)(t)
]}

,

(31.2)

where μ(l)(t) denotes the mean function for lth sub-population. By assuming f is a
continuous and square-integrable covariance function, the function K induces the
kernel operator given by

(K f )( j)(t) =
ω

∑
l=1

∫
Γ

Cl j(s, t) f (l)(s)ds, f ( j) ∈ L2(Γ ). (31.3)

Via Mercer’s lemma, there exists an orthonormal sequence (φk) of continuous
function in L2(Γ ) and a non-increasing sequence λk of positive number, such that

Cl j(s, t) =
∞

∑
k=1

λkφ l
k(s)φ

j
k (t). (31.4)

By the separability of Hilbert spaces, the Karhunen-Loève expansion of a stochas-
tic process f (l)(x) can be expressed as

f (l)t (x) =
Kl

∑
k=1

β (l)
t,k φ

(l)
k (x), (31.5)

where Kl denotes the number of retained functional principal components in the lth

population, and its matrix formulation is

fff t(x) =ΦΦΦ(x)βββ�t , (31.6)

where fff t(x) =
[

f (1)t (x), . . . , f (ω)t (x)
]
, βββ t =

(
β (1)

t1 , . . . ,β (1)
tK1

, β (2)
t1 , . . . ,β (2)

tK2
, . . . ,

β (ω)
t1 , . . . ,β (ω)

tKω

)
being the vector of the basis expansion coefficients, and
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ΦΦΦ(x) =

⎛⎜⎜⎜⎜⎝
φ (1)

1 (x) · · · φ (1)
K1

(x) 0 · · · 0 0 · · · 0

0 · · · 0 φ (2)
1 (x) · · · φ (2)

K2
(x) 0 · · · 0

...
...

...
...

...
...

...
...

...
0 · · · 0 0 · · · 0 φ (ω)

1 (x) · · · φ (ω)
Kω (x)

⎞⎟⎟⎟⎟⎠
ω×∑ω

�=1 K�

.

(31.7)

31.3.3 Functional principal component regression

By using MFPCA, a time series of smoothed function fff (l)(x) = { f1(x), . . . , fn(x)} is
decomposed into orthogonal functional principal components and their associated
principal component scores, given by

f (l)t (x) = μ̂(l)(x)+
∞

∑
k=1

β̂ (l)
t,k φ̂

(l)
k (x) = μ̂(l)(x)+

Kl

∑
k=1

β̂ (l)
t,k φ̂

(l)
k (x)+ e(l)t (x), (31.8)

where μ̂(l)(x) = 1
n ∑n

t=1 f (l)t (x) denotes the estimated mean function for the lth sub-

population;
{
φ̂ (l)

1 (x), . . . , φ̂ (l)
Kl
(x)
}

is a set of the first Kl estimated functional principal

components; β̂ββ
(l)
1 =

(
β̂ (l)

1,1, . . . , β̂
(l)
1,n

)�
and {β̂ββ 1, . . . , β̂ββKl

} denote a set of estimated

principal component scores, β̂ (l)
k ∼ N(0, λ̂ (l)

k ) where λ̂ (l)
k is the kth estimated eigen-

value of the covariance function for the lth sub-population in (31.2); e(l)t (x) denotes
the model truncation error function with mean zero and finite variance.

Conditioning on the estimated functional principal components and historical data,
the forecast curves can be obtained by f̂ (l)n+h|n(x) = μ̂(l)(x)+∑Kl

k=1 β̂
(l)
n+h|n,kφ̂

(l)
k (x),

where β̂ (l)
n+h|n,k represents the forecast kth principal component scores, which can be

obtained from the autoregressive integrated moving average model.

31.4 Grouped functional time series forecasting techniques

31.4.1 Notation

The Japanese data follow a multi-level geographical hierarchy coupled with a sex
grouping variable. The geographical hierarchy is displayed in Figure 31.1, where
Japan is split into eight regions which can be further split into 47 prefectures.

The data can also be split by sex. Thus, each of the nodes in the geographical
hierarchy can be separated into one male series and one female series. We denote a
particular disaggregated series using the notation G×S meaning the geographical
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Japan

R1

P1

R2

P2 · · · P7

· · · R8

P40 · · · P47

Fig. 31.1: The Japanese geographical hierarchy tree diagram, with eight regions and
47 prefectures.

area G and the sex S, where G can take the values shown in any node of Figure 31.1
and S can take values M (males), F (females) or T (total). For instance, R1× F
denotes females in Region 1; P1× T denotes females and males in Prefecture 1;
Japan× M denotes males in Japan; and so on.

Let EG×S,t(z) denote the exposure-at-risk for series G× S in year t and age z,
and let DG×S,t(z) be the number of deaths for series G×S in year t and age z. Then
age-specific mortality rate is given by RG×S,t(z) = DG×S,t(z)/EG×S,t(z). To simplify
expressions, we will drop the age argument (z). For a given age, we can express
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RJapan*T,t
RJapan*F,t
RJapan*M,t
RR1*T,t
RR2*T,t

...
RR8*T,t
RR1*F,t
RR2*F,t

...
RR8*F,t
RR1*M,t
RR2*M,t

...
RR8*M,t
RP1*T,t
RP2*T,t

...
RP47*T,t
RP1*F,t
RP1*M,t
RP2*F,t
RP2*M,t

...
RP47*F,t
RP47*M,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

RRRt

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EP1*F,t
EJapan*T,t

EP1*M,t
EJapan*T,t

EP2*F,t
EJapan*T,t

EP2*M,t
EJapan*T,t

EP3*F,t
EJapan*T,t

EP3*M,t
EJapan*T,t

· · · EP47*F,t
EJapan*T,t

EP47*M,t
EJapan*T,t

EP1*F,t
EJapan*F,t

0
EP2*F,t

EJapan*F,t
0

EP3*F,t
EJapan*F,t

0 · · · EP47*F,t
EJapan*F,t

0

0
EP1*M,t

EJapan*M,t
0

EP2*M,t
EJapan*M,t

0
EP3*M,t

EJapan*M,t
· · · 0

EP47*M,t
EJapan*M,t

EP1*F,t
ER1,T,t

EP1*M,t
ER1,T,t

0 0 0 0 · · · 0 0

0 0
EP2*F,t
ER2,T,t

EP2*M,t
ER2,T,t

EP3*F,t
ER2,T,t

EP3*M,t
ER2,T,t

· · · 0 0

...
...

...
...

...
... · · ·

...
...

0 0 0 0 0 0 · · · EP47*F,t
ER8,T,t

EP47*M,t
ER8,T,t

EP1*F,t
ER1,F,t

0 0 0 0 0 · · · 0 0

0 0
EP2*F,t
ER2,F,t

0
EP3*F,t
ER2,F,t

0 · · · 0 0

...
...

...
...

...
... · · ·

...
...

0 0 0 0 0 0 · · · EP47*F,t
ER8,F,t

0

0
EP1*M,t
ER1,M,t

0 0 0 0 · · · 0 0

0 0 0
EP2*M,t
ER2,M,t

0
EP3*M,t
ER2,M,t

· · · 0 0

...
...

...
...

...
... · · ·

...
...

0 0 0 0 0 0 · · · 0
EP47*M,t
ER8,M,t

EP1*F,t
EP1,T,t

EP1*M,t
EP1,T,t

0 0 0 0 · · · 0 0

0 0
EP2*F,t
EP2,T,t

EP2*M,t
EP2,T,t

0 0 · · · 0 0

...
...

...
...

...
... · · ·

...
...

0 0 0 0 0 0 · · · EP47*F,t
EP47,T,t

EP47*M,t
EP47,T,t

1 0 0 0 0 0 · · · 0 0
0 1 0 0 0 0 · · · 0 0
0 0 1 0 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0 0
...

...
...

...
...

... · · ·
...

...
0 0 0 0 0 0 · · · 1 0
0 0 0 0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

SSSt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RP1*F,t
RP1*M,t
RP2*F,t
RP2*M,t

...
RP47*F,t
RP47*M,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

bbbt

or RRRt = SSStbbbt , where RRRt is a vector containing all series at all levels of disaggregation,
bbbt is a vector of the most disaggregated series, and SSSt shows how the two are related.

31.4.2 Optimal combination method

[1] proposed a method in which independent (also known as base) forecasts for
all aggregated and disaggregated series are computed independently, and then the
resulting forecasts are reconciled so that they satisfy the aggregation constraints. As
the base forecasts are independently generated, these forecasts will not generally be
“aggregate consistent”. The optimal combination methods combine the base forecasts
through linear regression by generating a series of revised forecasts that are not only
close to the base forecasts but also aggregate consistently within the group. The
method is derived by writing the base forecasts as the response variable of the linear
regression
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R̂RRn+h = SSSn+hβββ n+h + εεεn+h, (31.9)

where R̂RRn+h is a matrix of h-step-ahead base forecasts for all series, stacked in the
same order as for raw data; βββ n+h is the unknown mean of the forecast distributions
of the most disaggregated series; εεεn+h represents the reconciliation errors.

To estimate the regression coefficients, [1] proposed a weighted least squares
solution which we adapt to our problem as follows:

β̂ββ n+h =
(
SSS�n+hWWW−1SSSn+h

)−1SSS�n+hWWW−1R̂RRn+h, (31.10)

where WWW is assumed to be a diagonal matrix containing the one-step-ahead forecast
variances for each series. The revised forecasts can be given by

RRRn+h = SSSn+hβ̂ββ n+h = SSSn+h
(
SSS�n+hSSSn+h

)−1SSS�n+hR̂RRn+h. (31.11)

31.5 Results of the point forecasts

31.5.1 Forecast error criterion

Using the first 25 observations from 1975 to 1999 in the Japanese age-specific mor-
tality rates, we produce one- to 15-step-ahead point forecasts. Through an expanding
window approach, we re-estimate the parameters using the first 26 observations from
1975 to 2000. Forecasts from the estimated models are then produced for one to
14-step-ahead. We iterate this process by increasing the sample size by one year until
reaching the end of data period in 2014. This process produces 15 one-step-ahead
forecasts, 14 two-step-ahead forecasts, . . . , and one 15-step-ahead forecast.

To evaluate the point forecast accuracy, we use the root mean squared forecast
error (RMSFE). For each series k, it can be written as

RMSFEk(h) =

√√√√ 1
101× (16−h)

15

∑
ς=h

101

∑
j=1

[
f k
n+ς (x j)− f̂ k

n+ς (x j)
]2
, (31.12)

where f k
n+ς (x j) denotes the holdout sample for the jth age and ς th curve of the

forecasting period in the kth series, while f̂ k
n+ς (x j) denotes the point forecasts.

By averaging RMSFEk(h) across the number of series within each level of disag-
gregation, we obtain

RMSFE(h) =
1

mk

mk

∑
k=1

RMSFEk(h), k = 1, . . . ,K, (31.13)

where mk denotes the number of series at the kth level of disaggregation.
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31.5.2 Point forecast accuracy

Averaging over all series at each level of the Japanese data hierarchy, Table 31.1
presents RMSFE(h) values between the univariate and multivariate functional time
series forecasting methods, without forecast reconciliation.

Table 31.1: RMSFE (×100) in the holdout sample between the univariate and multi-
variate functional time series forecasting methods applied to the Japanese age-specific
mortality rates, without forecast reconciliation. The bold entries highlight the method
that performs best for each level of the hierarchy and each forecast horizon, as well
as summary statistics.

Total Sex Region Region + Sex Prefecture Prefecture + Sex
h FTS MFTS FTS MFTS FTS MFTS FTS MFTS FTS MFTS FTS MFTS

1 0.29 0.29 0.38 0.35 0.57 0.53 0.77 0.77 0.89 0.80 1.45 1.40

2 0.42 0.42 0.50 0.39 0.65 0.55 0.82 0.80 0.90 0.82 1.48 1.38

3 0.52 0.52 0.63 0.42 0.71 0.56 0.86 0.83 0.92 0.84 1.67 1.37

4 0.60 0.60 0.73 0.45 0.76 0.59 0.90 0.80 0.89 0.82 1.34 1.34
5 0.68 0.68 0.81 0.49 0.80 0.63 0.94 0.83 0.90 0.85 1.32 1.34
6 0.75 0.75 0.88 0.52 0.83 0.67 0.98 0.85 0.90 0.87 1.32 1.34
7 0.83 0.83 0.96 0.62 0.91 0.76 1.05 0.90 0.95 0.95 1.35 1.36
8 0.90 0.90 1.04 0.72 0.96 0.85 1.13 0.96 0.98 1.00 1.37 1.38
9 0.96 0.96 1.12 0.76 1.01 0.91 1.20 0.99 1.01 1.04 1.39 1.37

10 1.00 1.00 1.18 0.81 1.07 1.01 1.26 1.00 1.04 1.12 1.43 1.39

11 1.01 1.01 1.20 0.77 1.06 1.01 1.27 0.95 1.03 1.09 1.41 1.32

12 0.97 0.97 1.16 0.72 1.01 0.99 1.28 0.91 1.01 1.07 1.40 1.28

13 0.91 0.91 1.06 0.65 0.94 0.97 1.18 0.86 0.97 1.05 1.34 1.28

14 0.78 0.78 0.83 0.61 0.84 0.89 1.07 0.87 0.93 0.93 1.27 1.33
15 0.61 0.61 0.57 0.58 0.87 0.75 1.07 0.95 0.86 0.80 1.21 1.45

Mean 0.75 0.75 0.87 0.59 0.87 0.78 1.05 0.88 0.95 0.94 1.38 1.36

In Table 31.2, we demonstrate the superior forecast accuracy obtained from the
optimal combination method between the univariate and multivariate functional time
series forecasting methods.
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Table 31.2: RMSFE (×100) in the holdout sample between the univariate and multi-
variate functional time series forecasting methods applied to the Japanese age-specific
mortality rates, with the optimal combination method. The bold entries highlight the
method that performs best for each level of the hierarchy and each forecast horizon,
as well as summary statistics.

Total Sex Region Region + Sex Prefecture Prefecture + Sex
h FTS MFTS FTS MFTS FTS MFTS FTS MFTS FTS MFTS FTS MFTS

1 0.36 0.30 0.41 0.37 0.53 0.44 0.69 0.63 0.88 0.80 1.40 1.34

2 0.40 0.34 0.46 0.41 0.59 0.47 0.74 0.65 0.93 0.80 1.41 1.31

3 0.47 0.37 0.54 0.44 0.77 0.49 0.88 0.66 1.12 0.81 1.55 1.31

4 0.49 0.39 0.58 0.47 0.58 0.50 0.77 0.68 0.84 0.79 1.34 1.28

5 0.50 0.40 0.63 0.49 0.59 0.51 0.81 0.70 0.84 0.80 1.34 1.29

6 0.52 0.40 0.69 0.51 0.60 0.51 0.85 0.71 0.84 0.79 1.36 1.29

7 0.58 0.47 0.77 0.59 0.66 0.57 0.92 0.77 0.88 0.84 1.39 1.31

8 0.61 0.51 0.84 0.64 0.68 0.59 0.97 0.81 0.90 0.86 1.43 1.33

9 0.65 0.51 0.92 0.67 0.74 0.61 1.07 0.85 0.92 0.86 1.47 1.33

10 0.68 0.53 0.97 0.69 0.77 0.64 1.12 0.88 0.94 0.89 1.51 1.35

11 0.65 0.43 1.00 0.62 0.75 0.56 1.15 0.82 0.92 0.83 1.52 1.29

12 0.60 0.37 0.97 0.52 0.70 0.49 1.13 0.72 0.91 0.81 1.51 1.24

13 0.50 0.38 0.89 0.44 0.63 0.53 1.07 0.68 0.85 0.81 1.45 1.18

14 0.35 0.54 0.69 0.39 0.52 0.63 0.89 0.60 0.80 0.88 1.36 1.11

15 0.28 0.91 0.45 0.58 0.52 0.99 0.78 0.75 0.77 1.20 1.25 1.19

Mean 0.51 0.46 0.72 0.52 0.64 0.57 0.92 0.73 0.89 0.85 1.42 1.28
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Chapter 32

Tests for separability in nonparametric

covariance operators of random surfaces

Shahin Tavakoli, Davide Pigoli and John A. D. Aston

Abstract We consider the problem of testing for separability in nonparametric
covariance operators of multidimensional functional data is considered. We cast the
problem in a tensor product of Hilbert space framework, where the role of the partial
trace operator is emphasized, and the tests proposed are computationally tractable.
An applications to acoustic phonetic data is also presented.

32.1 Introduction

Many applications involve hypersurface data, data that is both functional data [as
in functional data analysis (FDA), see e.g. 11] and multidimensional, such as
images from medical devices such as MRI [8] or PET [17], spectrograms derived
from audio signals [10, and as in the application we consider in Section 32.3]
or geolocalized data [see, e.g., 13]. In these problems, the number of available
observations (hypersurfaces) is often small relative to the high-dimensional nature of
the individual observation, and not usually large enough to estimate a full multivariate
covariance function.

A way of circumventing this problem is by assuming that the covariance is sepa-
rable. This assumption greatly simplifies both the estimation and the computational
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cost in dealing with multivariate covariance functions, and allows for a positive
definite covariance to be specified.

In the context of space-time data X(s, t), for instance, where s ∈ [−S,S]d , S > 0,
denotes the location in space, and t ∈ [0,T ], T > 0, is the time index, the assumption
of separability translates into

c(s, t,s′, t ′) = c1(s,s′)c2(t, t ′), s,s′ ∈ [−S,S]d ; t, t ′ ∈ [0,T ], (32.1)

where c, c1, and c2, are respectively the full covariance function, the space covari-
ance function and the time covariance function. In words, this means that the full
covariance function factorises as a product of the spatial covariance function with the
time covariance function. The separability assumption [see e.g. 5] is a simplification
of the covariance structure of the process, and makes estimation of the covariance
easier. It can be argued that it introduces some bias in the estimator, for the benefit of
reduced variance.

The separability assumption can be very useful in practice, and is indeed often
implicitly made in many higher dimensional applications when using isotropic
smoothing [17, 8]. However, very little has been done to develop tools to assess its
validity on a case by case basis. In the classical multivariate setup, some tests for the
separability assumption are available [see 14, and references therein].

When the covariance is being non-parametrically specified, as will be the case
in this paper, estimation of the full covariance is at best computationally complex
with large estimation errors, and in many cases simply computationally infeasible.
Indeed, we highlight that, while the focus of this work is on checking the viability of a
separable structure for the covariance, this is done without any parametric assumption
on the form of c1(s,s′) and c2(t, t ′), thus allowing for the maximum flexibility. The
methods we develop here are aimed to applications typical of FDA, where replicates
from the underlying random process are available [see 16, for a recent review of
functional data analysis]. This is different from the spatio-temporal setting, where
usually only one realization of the process is observed. See also [3] for a likelihood
based approach to testing separability for functional data, [2] for an example of how
separability can be used for modeling function-valued stochastic processes, and also
[6] which illustrates how the concept of separability can be applied to matrix-variate
data arising from functional MRI imaging data.

In this paper—which is an extended abstract of [1]—we propose a class of tests
to verify if the data at hand are in agreement with a separability assumption. Our
test does not require the estimation of the full covariance structure, but only the
estimation of the separable structure (32.1), thus avoiding both the computational
issues and the diminished accuracy involved in the former. To do this, we rely on a
strategy from Functional Data Analysis, which consists in projecting the observations
onto a carefully chosen low-dimensional subspace. The key fact for the success of our
approach is that, under the null hypothesis, it is possible to determine this subspace
using only the marginal covariance functions. In the end, the proposed test checks
the separability in the chosen subspace, which will often be the focus of following
analyses. In Section 32.2, we define covariance separability in an abstract Hilbert



32 Testing Separability 245

space framework, introduce tests for separability and study their asymptotic behavior.
In Section 32.3 we show an application to acoustic phonetic data.

32.2 Separable Covariances: definitions, estimators and

asymptotic results

We start by introducing some definitions and notation about operators in a Hilbert
space [see e.g. 12]. Let H be a real separable Hilbert space (that is, a Hilbert space
with a countable orthonormal basis), whose inner product and norm are denoted by
〈·, ·〉 and ‖·‖, respectively. The space of bounded (linear) operators on H is denoted
by S∞(H). The space of Hilbert–Schmidt operators on H is denoted by S2(H),
and is a Hilbert space with the inner-product 〈S,T 〉S2

= ∑i≥1 〈Sei,Tei〉 and induced
norm |||·|||2, where (ei)i≥1 ⊂H is an orthonormal basis of H. The space of trace-class
operator on H is denoted by S1(H), and consists of all compact operators T with
finite trace-norm, i.e. |||T |||1 = ∑n≥1 sn(T ) < ∞, where sn(T ) ≥ 0 denotes the n-th
singular value of T . For any trace-class operator T ∈S1(H), we define its trace by
Tr(T ) = ∑i≥1 〈Tei,ei〉, where (ei)i≥1 ⊂ H is an orthonormal basis, and the sum is
independent of the choice of the orthonormal basis.

If H1,H2 are real separable Hilbert spaces, we denote by H = H1⊗H2 their
tensor product Hilbert space, which is obtained by the completion of all finite sums
∑N

i, j=1 ui⊗v j, ui ∈ H1,v j ∈ H2, under the inner-product 〈u⊗v,z⊗w〉 = 〈u,z〉〈v,w〉
for u,z ∈ H1,z,w ∈ H2 [see e.g. 7]. If C1 ∈ S∞(H1), C2 ∈ S∞(H2), we denote by
C1 ⊗̃ C2 the unique linear operator on H1⊗H2 satisfying(

C1 ⊗̃C2
)
(u⊗v) =C1u⊗C2v, for all u ∈ H1,v ∈ H2. (32.2)

It is a bounded operator on H. Furthermore, if C1 ∈ S1(H1) and C2 ∈ S1(H2),
then C1 ⊗̃C2 ∈S1(H1⊗H2) and

∣∣∣∣∣∣C1 ⊗̃C2
∣∣∣∣∣∣

1 = |||C1|||1|||C2|||1. We denote by Tr1 :
S1(H1⊗H2)→S1(H2) the partial trace with respect to H1. It is the unique bounded
linear operator satisfying Tr1(A ⊗̃ B) = Tr(A)B, for all A ∈ S1(H1),B ∈ S1(H2).
Tr2 : S1(H1⊗H2)→S1(H1) is defined symmetrically.

If X ∈ H is a random element with E‖X‖< ∞, then μ = EX ∈ H, the mean of
X , is well defined. Furthermore, if E‖X‖2 < ∞, then C = E [(X −μ)⊗2(X −μ)]
defines the covariance operator of X , where f ⊗2 g is the operator on H defined
by ( f ⊗2 g)h = 〈h,g〉 f , for f ,g,h ∈ H. The covariance operator C is a trace-class
hermitian operator on H, and encodes all the second-order fluctuations of X around
its mean.
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32.2.1 Separability

We recall now that we want to define separability so that the covariance function can
be written as c(s, t,s′, t ′) = c1(s,s′)c2(t, t ′), for some c1 ∈ L2

(
[−S,S]d × [−S,S]d ,R

)
and c2 ∈ L2 ([0,T ]× [0,T ],R). This can be extended to the covariance operator of a
random elements X ∈H = H1⊗H2, where H1,H2 are arbitrary separable real Hilbert
spaces. We call its covariance operator C separable if

C =C1 ⊗̃C2, (32.3)

where C1, respectively C2, are trace-class operators on H1, respectively on H2, and
C1 ⊗̃ C2 is defined in (32.2). Notice that though the decomposition (32.3) is not
unique, since C1 ⊗̃C2 = (αC1) ⊗̃ (α−1C2) for any α �= 0, this will not cause any
problem at a later stage since we will ultimately be dealing with the product C1 ⊗̃C2,
which is identifiable.

In practice, neither C nor C1 ⊗̃C2 are known. If X1, . . . ,XN
i.i.d.∼ X and (32.3) holds,

the sample covariance operator ĈN is not necessarily separable in finite samples.
However, we can estimate a separable approximation of it by

Ĉ1,N ⊗̃ Ĉ2,N , (32.4)

where Ĉ1,N = Tr2(ĈN)/

√
Tr(ĈN), Ĉ2,N = Tr1(ĈN)/

√
Tr(ĈN). The intuition behind

(32.4) is that
Tr(T )T = Tr2(T ) ⊗̃ Tr1(T ),

for all T ∈ S1(H1⊗H2) of the form T = A ⊗̃ B, A ∈ S1(H1),B ∈ S1(H2), with
Tr(T ) �= 0.

We stress again that we aim to develop a test statistic that solely relies on the
estimation of the separable components C1 and C2, and does not require the estimation
of the full covariance C. We can expect that under the null hypothesis H0 : C =
C1 ⊗̃ C2, the difference DN = ĈN − Ĉ1,N ⊗̃ Ĉ2,N between the sample covariance
operator and its separable approximation should take small values. We propose
therefore to construct our test statistic by projecting DN onto the first eigenfunctions
of C, since these encode the directions along which X has the most variability. If we
denote by C1 = ∑i≥1λiui⊗2 ui and C2 = ∑ j≥1 γ jv j⊗2 v j the Mercer decompositions
of C1 and C2, we have

C =C1 ⊗̃C2 = ∑
i, j≥1

λiγ j(ui⊗v j)
⊗

2
(ui⊗v j),

The eigenfunctions of C are therefore of the form ur⊗vs, where ur ∈ H1 is the r-th
eigenfunction of C1 and vs ∈ H2 is the s-th eigenfunction of C2. We define a test
statistic based on the projection

TN(r,s) =
√

N 〈DN(ûr⊗ v̂s), ûr⊗ v̂s〉 , r,s≥ 1 fixed, (32.5)
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where we have replaced the eigenfunctions of C1 and C2 by their empirical counter-
part, i.e. the Mercer decompositions of Ĉ1,N , respectively Ĉ2,N , are given by Ĉ1,N =

∑i≥1 λ̂iûi⊗ ûi, respectively Ĉ2,N = ∑ j≥1 γ̂ j v̂ j⊗ v̂ j. Notice that though the eigenfunc-
tions of Ĉ1,N and Ĉ2,N are defined up to a multiplicative constant α =±1, our test
statistic is well defined. The key fact for the practical implementation of the method is
that TN(r,s) can be computed without the need to estimate (and store in memory) the
operator DN , since TN(r,s) =

√
N
(

1
N ∑N

k=1
〈
Xk−XN , v̂i⊗ û j

〉2− λ̂r γ̂s

)
. In particu-

lar, the computation of TN(r,s) does not require an estimation of the full covariance
operator C, but only the estimation of the marginal covariance operators C1 and C2,
and their eigenstructure.

32.2.2 Asymptotics

The theoretical justification for using a projection of DN to define a test procedure is
that, under the null hypothesis H0 : C =C1 ⊗̃C2, we have |||DN |||1

p−→ 0 as N → ∞,
i.e. DN convergences in probability to zero with respect to the trace norm. In fact,
we will show in Theorem 32.1 that

√
NDN is asymptotically Gaussian under the

following regularity conditions:

Condition 1 X is a random element of the real Hilbert space H satisfying

∞

∑
j=1

(
E

[〈
X ,e j

〉4
])1/4

< ∞, (32.6)

for some orthonormal basis (e j) j≥1 of H.

Recall that ĈN = 1
N ∑N

j=1(Xi−X)⊗2(Xi−X), where X =N−1 ∑N
k=1 Xk. The following

result establishes the asymptotic distribution of DN = ĈN − Tr2(ĈN) ⊗̃ Tr1(ĈN)

Tr(ĈN)
:

Theorem 32.1. Let H1,H2 be separable real Hilbert spaces, X1, . . . ,XN ∼ X be i.i.d.
random elements on H1⊗H2 with covariance operator C, and TrC �= 0.

If X satisfies Condition 1 (with H = H1⊗H2), then, under the null hypothesis

H0 : C =C1 ⊗̃C2, C1 ∈S1(H1),C2 ∈S1(H2),

we have
√

N

(
ĈN − Tr2(ĈN) ⊗̃ Tr1(ĈN)

Tr(ĈN)

)
d−→ Z, as N → ∞, (32.7)

where Z is a Gaussian random element of S1(H1⊗H2) with mean zero, whose
covariance structure is given in [1].

Condition 1 is used here because we need
√

N(ĈN −C) to converge in distribution in
the topology of the space S1(H1⊗H2); it could be replaced by any (weaker) condi-
tion ensuring such convergence. The assumption TrC �= 0 is equivalent to assuming
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that X is not almost surely constant. We can now give the asymptotic distribution of
TN(r,s) under Gaussian assumptions on X . Recall that TN(r,s) is defined in (32.5)
as the (scaled) projection of DN in a direction given by the tensor product of the
empirical eigenfunctions ûr and v̂s. Note that the asymptotic variance-covariance of
(TN(r,s))(r,s)∈I can be entirely expressed in terms of the covariance operator C. The
asymptotic distribution is also derived without the Gaussian assumptions in [1], but
there the expression of the asymptotic covariance is more involved.

Corollary 32.1. Assume the conditions of Theorem 32.1 hold, and that X is Gaussian.
If I ⊂{(i, j) : i, j ≥ 1} is a finite set of indices such that λrγs > 0 for each (r,s)∈I ,
then

(TN(r,s))(r,s)∈I
d−→ N(0,Σ), as N → ∞.

where

Σ(r,s),(r′,s′) =
2λrλr′γsγs′

Tr(C)2

(
δrr′ Tr(C1)

2 + |||C1|||22− (λr +λr′)Tr(C1)
)

×
(
δss′ Tr(C2)

2 + |||C2|||22− (γs + γs′)Tr(C2)
)
,

and δi j = 1 if i = j, and zero otherwise. In particular, notice that Σ itself is separable.

The results presented in this Section allow one to construct asymptotically chi-
squared tests for covariance separability, and to approximate the finite sample distribu-
tion of the test by means of bootstrap techniques, which have very good performance
in simulations [1].

32.3 Application to acoustic phonetic data

An interesting case where the proposed methods can be useful are phonetic spectro-
grams. These data arise in the analysis of speech records, since relevant features of
recorded sounds can be better explored in a two dimensional time-frequency domain.

In particular, we consider here the dataset of 23 speakers from five different
Romance languages that has been first described in [9]. The speakers were recorded
while pronouncing the words corresponding to the numbers from one to ten in
their language and the recordings are converted to a sampling rate of 16000 sam-
ples per second. Since not all these words are available for all the speakers, we
have a total of 219 speech records. We focus on the spectrum that speakers pro-
duce in each speech recording xL

ik(t), where L is the language, i = 1, . . . ,10 the
pronounced word and k = 1, . . . ,nL the speaker, nL being the number of speak-
ers available for language L. We then use a short-time Fourier transform to ob-
tain a two dimensional log-spectrogram: we use a Gaussian window function w(·)
with a window size of 10 milliseconds and we compute the short-time Fourier
transform as XL

ik(ω, t) =
∫ +∞
−∞ xL

ik(τ)w(τ − t)e− jωτdτ. The spectrogram is defined
as the magnitude of the Fourier transform and the log-spectrogram (in decibel)
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is therefore SL
ik(ω, t) = 10log10(|XL

ik(ω, t)|2). The raw log-spectrograms are then
smoothed [with the robust spline smoothing method proposed in 4] and aligned
in time using an adaptation to 2-D of the procedure in [15]. The alignment is
needed because a phase distortion can be present in acoustic signals, due to dif-
ference in speech velocity between speakers. Since the different words of each
language have different mean log-spectrograms, the focus of the linguistic analysis—
which is the study cross-linguistics changes—is on the residual log-spectrograms
RL

ik(ω, t) = SL
ik(ω, t)− (1/ni)∑ni

k=1 SL
ik(ω, t). Assuming that all the words within the

language have the same covariance structure, we disregard hereafter the information
about the pronounced words that generated the residual log-spectrogram, and use
the surface data RL

j (ω, t), j = 1, . . . ,NL, i.e. the set of observations for the language
L including all speakers and words, for the separability test.

We thus apply the Studentized version of the empirical bootstrap test for
separability [1] to the residual log-spectrograms for each language individually.
Here, we take into consideration different choices for set of eigendirections to
be used in the definition of the test statistic G̃N(I ), namely I = I1 = {(1,1)},
I =I2 = {(r,s) : 1≤ r ≤ 2,1≤ s≤ 3}, I =I3 = {(r,s) : 1≤ r ≤ 8,1≤ s≤ 10}.
For all cases we use B = 1000 bootstrap replicates.

Table 32.1: P-values for the test for the separability of the covariance operators of
the residual log-spectrograms of the five Romance languages, using the Studentized
version of the empirical bootstrap.

I French Italian Portuguese American Spanish Iberian Spanish
I1 0.65 < 0.001 < 0.001 < 0.001 < 0.001
I2 0.078 0.197 0.022 0.36 0.013
I3 0.001 0.002 0.001 0.001 < 0.001

The resulting p-values for each language and for each set of indices can be found
in Table 32.1. Taking into account the multiple testings with a Bonferroni correction,
we can conclude that the separability assumption does not appear to hold. We can
also see that the departure from separability is caught mainly on the first component
for the two Spanish varieties. In conclusion, a separable covariance structure is not a
good fit for these languages and thus, when practitioners use this approximation for
computational or modeling reasons, they should bear in mind that relevant aspects of
the covariance structure may be missed in the analysis.

References

[1] Aston, J. A. D., Pigoli, D., Tavakoli, S.: Tests for separability in nonparametric
covariance operators of random surfaces. Ann. Statist., in press, (2017)



250 Shahin Tavakoli, Davide Pigoli and John A. D. Aston

[2] Chen, K., Delicado, P., Müller, H.-G.: Modelling function-valued stochastic
processes, with applications to fertility dynamics. J. R. Stat. Soc. Ser. B Stat.
Methodol., 79(1):177–196, (2017)

[3] Constantinou, P., Kokoszka, P., Reimherr, M.: Testing separability of space–
time functional processes. ArXiv e-prints, September (2015)

[4] Garcia, D.: Robust smoothing of gridded data in one and higher dimensions
with missing values. Comput. Statist. Data Anal., 54(4):1167–1178, (2010)

[5] Gneiting, T., Genton, M. G., Guttorp, P.: Geostatistical space-time models, sta-
tionarity, separability, full symmetry. Monogr. Statist. Appl. Probab., 107:151,
(2007)

[6] Huang, L., Reiss, P. T., Xiao, L., Zipunnikov, V., Lindquist, M. A., Crainiceanu,
C. M.: Two-way principal component analysis for matrix-variate data, with
an application to functional magnetic resonance imaging data. Biostatistics,
kxw040, (2016)

[7] Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator
Algebras: Elementary theory. Number v. 1 in Fundamentals of the Theory of
Operator Algebras. American Mathematical Society, (1997)

[8] Lindquist, M. A.: The statistical analysis of fMRI data. Statist. Sci., 23(4):439–
464, (2008)

[9] Pigoli, D., J. A. D. Aston, Dryden, I. L., Secchi, P.: Distances and inference for
covariance operators. Biometrika, 101(2):409–422, (2014)

[10] Rabiner, L. R., Schafer, R. W.: Digital processing of speech signals, volume
100. Prentice-hall Englewood Cliffs, (1978)

[11] Ramsay, J. O., Silverman, B. W.: Functional data analysis. Springer Series in
Statistics. Springer, New York, second edition, (2005)

[12] Ringrose, J. R.: Compact non-self-adjoint operators. Van Nostrand Reinhold
Co., London, (1971)

[13] Secchi, P., Vantini, S., Vitelli, V.: Analysis of spatio-temporal mobile phone
data: a case study in the metropolitan area of Milan. Stat. Methods Appl.,
(2015) in press.

[14] Simpson, S. L., Edwards, L. J., Styner, M. A., Muller, K. E.: Separability tests
for high-dimensional, low-sample size multivariate repeated measures data. J.
Appl. Stat., 41(11):2450–2461, (2014)

[15] Tang, R., Müller, H.-G.: Pairwise curve synchronization for functional data.
Biometrika, 95(4):875–889, (2008)

[16] Wang, J.-L., Chiou, J.-M., Müller, H.-G.: Review of Functional Data Analysis.
Annual Review of Statistics and Its Application, (2016)

[17] Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., Evans, A. C.:
A unified statistical approach for determining significant signals in images of
cerebral activation. Human brain mapping, 4(1):58–73, (1996)



Chapter 33

Contribution of functional approach to the

classification and the identification of acoustic

emission source mechanisms

Oumar I. Traore, Paul Cristini, Nathalie Favretto-Cristini, Laurent Pantera, Philippe
Vieu and Sylvie Viguier-Pla

Abstract In a context of nuclear Reactivity Initiated Accident, we describe acoustic
emission signals, for which a problem of classification is open. As classical ap-
proaches with a reduced number of variables do not give satisfactory discrimination,
we propose to use the envelopes of the received signals. We perform a k-means
clustering and discuss the first results of this approach.

Introduction

Several non-destructive methods are used for the monitoring of nuclear safety ex-
periment reactors. Among them the acoustic emission (AE) technique is of major
interest. It has the advantage of being simple to adapt to nuclear-oriented purposes
and allows a quasi-real-time monitoring of experiments. One goal of the AE test-
ing is to process the AE signals recorded from the reactor in such a way that they
can be associated with specific physical source mechanisms occurring in the tested
structure or material. In general, this characterization is done by computing classical
AE variables from the received signal like the energy, the rise time, the duration...
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When the number of recorded signals to process becomes very important, classical
data-mining methods based on these variables are used to classify them and then
the physical source mechanism associated with each class is identified. However,
depending on the diversity of source mechanisms (cracks, fractures, delaminations
...) and the type of material (nuclear fuel, zircaloy, inox...) very different types of
variables constructed from the AE signals can be discriminant [4, 3, 2, 9]. In the
case of nuclear safety experiment which is of interest in this article, the test device is
composed of several types of materials and interact with a very complex environment,
leading to a difficulty to get enough discriminant variables for a very heterogeneous
sample of source mechanisms.

Unsupervised classification based on functional approaches has been, in literature,
widely of interest, as the problem on the overall curves shape, their origins and
regularity. Some authors use a basis expansion, and process a clustering based on
the coefficients of expansions (see for example Abraham et al. [1] for the use of
a B-spline basis or Giacofci et al.[6], for the use of wavelet basis). Other use the
scores of the functional principal components analysis (as for example, Peng and
Muller [12]).

In this work, we present a functional approach based on the envelopes of the
received signals. This choice rather than the use of the raw received signals has
been motivated by their more effectiveness and robustness to estimate the time-delay
between signals recorded from the same source mechanism at two different sensors,
a crucial variable for source mechanisms identification.

33.1 Context of the study and Raw data processing

Reactivity Iniatiated Accident (RIA) is a nuclear safety experiment which involves
an unexpected and very fast increase in fission rate and reactor power due to the
ejection of a control rod. The power increases may damage the fuel clad and the
fuel pellets of the reactor. The French Alternative Energies and Atomic Energy
Commission (CEA) operates a pool-type reactor dedicated to fuel behavior study
in RIA conditions. During these RIA experiments, the test device is equipped with
two AE sensors (microphones) allowing to record information about the fuel behavior.

Since 1993, fourteen RIA experiments have been operated by the laboratory in
charge of the preparation and the realization of the experiments, after each of them,
the raw microphone signals are processed in order to give to the experimentalists the
first estimations about the fuel behavior. This experiment result analysis process is
composed of several steps [11]. In the first one, the physical measurements performed
by the two sensors are converted into numerical signals (Figure 33.1).
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Fig. 33.1: Microphone numerical signals recorded during an experiment realized in
1994. Microphone 1 (left) and microphone 2 (right)

Then, a hits (events) detection function is used in order to isolate segments of
signal which are potentially associated with physical source mechanism of interest.
This hits detection strategy based on a moving variance consists, for each microphone,
in:

1. defining a learning sample of signal corresponding to the background noise of
the reactor and in fixing a threshold equal to the variance of this noise sample

2. computing the moving variance vector associated with the microphone signal
3. identifying the segments of the microphone signal corresponding to a threshold

violation.

After the realization of the hits detection for the two microphones, their results
are merged in order to get the same hits starts and ends times. At the end of this first
treatment, a certain number of hits, so of potential physical source mechanisms of
interest, are associated with the experiment (Figure 33.2).

In order to implement a statistical classification algorithm able to perform an
automatic source mechanism identification for the future experiments, the results of
the hits detection process for the fourteen first experiments have been gathered to
form a sample of 168 hits.
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Fig. 33.2: Representation of the first four hits detected after the application of the
moving variance strategy on the experiment signal presented in Figure 33.1

Functional dataset creation

The 168 hits resulting from the application of the hits detection strategy on the four-
teen experiments constituted a dataset of signal of very different duration (length).
In order to get a dataset with discretized curves of the same length and to cope with
some limitations due to changes on signal sampling ratio and differences of period
between the two microphone signals, we have chosen to perform the classification
on the re-sampled envelopes of the hit signals. The envelope of a signal has got the
advantage of being characteristic of a signal and smoother than the raw data. Here is
the method for the computation of this envelope [10].

Let x(t) be the real-valued signal associated with a given hit. The analytic signal
z(t) of x(t) is defined as follows:

z(t) = x(t)+ iy(t),

where y(t) is the Hilbert transform of x(t), that is

y(t) =
1
π

∫ +∞

−∞

x(t)
t− τ

dτ,

Then the signal z(t) can be written as follows:

z(t) = A(t)eiφ(t)

The function A(t) is named the envelope of the signal x(t). It can also be written
A(t) =

√
x2(t)+ y2(t).
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Then, the envelope based on the Hilbert transform of each hit is computed and its
length is coerced to 500 observation points by resampling (Figure 33.3).

Fig. 33.3: Illustration of hits envelopes dataset associated with the experiment signals
presented in Figure 33.1 and hits sample presented in Figure 33.2. Microphone 1
(left) and microphone 2 (right)

At the end of this raw data processing step, each hit can be considered as the
realization of a functional random variable written as:

X = {X(t), t ∈T }
where T is the interval of hit observation time.

Of course, this formulation is a misnomer as in practice we have a finite set of
observation points ∈ {1, . . . ,500}. Then, in practice, Xi the ith realization of X should
be written as:

Xi = {Xi j, j = 1, . . . ,500}
In order to transform the envelopes (discretized curves) into functional data,

several methods exist. According to Jacques and Preda [8], the most common solution
to this problem is to consider that sample paths belong to a finite dimensional space
spanned by some basis of functions. In our case, as the sampling rate of signal where
about 2.5μs, the observation grid is very fine, then we can consider each envelope as
a continuous curve [5].

33.2 Unsupervised classification method and parameters settings

Based on the classification of clustering methods for functional data proposed by
Jacques and Preda [8], we distinguish four principal approaches. Among them, the
non parametric one is a priori very well adapted to the envelopes. Let us consider
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the usual non parametric k-means clustering method for which a description can be
found in several articles (see for example [14, 7]). The key point when applying such
algorithm in non parametric functional context is of course the choice of a function
to measure the proximity between two curves. As the envelops are smooth curves,
semi-metrics are good candidates to do so [5].

Let X be the functional random variable associated with the envelopes taking
its values in an infinite dimensional semi-metric space (E,d). The semi-metric
considered in order to compute the proximity between two envelopes xi and xi′ is
defined as follows:

dl(xi,xi′) =

(∫
T
(x(l)i (t)− x(l)i′ )

2dt
)1/2

,

where T is the interval where X is defined, and x(l) is the l derivative of x.

Recalling that in our case the observation grid is fine enough to consider the dis-
cretized envelopes as good approximation of functional ones, dl(xi,xi′) is estimated
by

d̂l(xi,xi′) =

(
500

∑
t=1

(x(l)i (t)− x(l)i′ (t))
2

)1/2

i indexing the n realizations of X , and t indexing the T = 500 points of observation
of each realization.

Then performing a successful clustering is equivalent to choose the best value
of the order of derivative l of the curves, this is discussed by Ferraty and Vieu [5].
An over crucial parameter being of course the number of clusters. To do so, some
strategies are proposed in the literature among which the use of silhouette values [13].

Four our purpose we have given priority to physical considerations. Indeed, except
for non physical source mechanisms taking place out of the test device, the two
microphones are supposed to give the same signals. Then, the derivative order has
been chosen in order to get the closest possible classification result between the
two microphones. Furthermore, as experimentalists have a good a priori about the
characteristics of many source mechanisms, the number of clusters have been set
according to their appreciation and give the priority to physical interpretability of
each cluster.

33.3 Some analysis results

Figure 33.4 shows the result of the clustering in 6 clusters of the 168 envelopes of
the dataset by using derivative of order 2 of the curves. It highlights a very important
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closeness between envelopes belonging to the same cluster and a good concordance
between the two microphone results.

Fig. 33.4: Results of k-means clustering of the datasets of the two microphones.
Clusters from 1 to 6 to be read from top to bottom and left to right.

Back to physical source mechanisms

The natural continuation of the process is the identification of source mechanisms
associated with each cluster. For some clusters, this is very simple after a return to
the raw detected signals. For example, hits associated with cluster 4 are supposed to
correspond to fuel clad failure source mechanism as those of cluster 5 correspond to
noise (not associated with source mechanism of interest).

33.4 conclusion

In this work, we have study the opportunity of applying functional data clustering to
classify acoustic emission signals recorded from two microphones during nuclear



258 O. I. Traore et al.

safety experiments. A functional dataset construction process in several steps has
been presented. We propose a hit detection strategy based on moving variance. The
detected hits for two microphones are then merged and their resampled envelopes are
computed. A k-means classification algorithm has been performed, the number of
classes being chosen in order to get the best physical interpretabilty, we have chosen
the semi-metric taking into account the non regular character of the envelopes and
the necessity to get close the classification results for each microphone. The results
confirm the potential of the functional approaches for this kind of data. A natural
further work could be a multivariate classification process for the treatment of the
two microphones together.
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Chapter 34

Parameter regimes in partially functional linear

regression for panel data

Fabian Walders and Dominik Liebl

Abstract We introduce a novel semiparametric partially functional linear regression
model for panel data. The parametric model part is completely time varying, whereas
the functional non-parametric component is allowed to vary over a set of different
(functional) parameter regimes. These parameter regimes are assumed latent and
need to be estimated from the data additionally to the unknown model parameters. We
develop asymptotic theory for the suggested estimators including rates of convergence
as n,T →∞. Our statistical model is motivated from economic theory on asset pricing.
It allows to identify different risk regimes, governing the pricing of idiosyncratic risk
in stock markets. For our application we develop necessary theoretical ground and
offer a vast empirical study based on high-frequency stock-level data for the S&P
500 Index.

34.1 Introduction

This work contributes a novel semiparametric regression model for panel data. The
suggested approach allows a scalar response to be affected by a random function
as well as by real-valued predictors in a time varying manner. The nonparametric
functional parameter changes over time by switching between different parameter
regimes which have to be estimated from the data. The real-valued parametric
parameters are allowed to vary over time independently from the regimes. Estimation
relies on estimators from the functional data literature and a recent nonparametric
classification strategy that allows to identify the different parameter regimes. We
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develop asymptotic theory for the estimators as n and T diverge simultaneously.
Given a set of standard assumptions, we prove classification consistency and derive
rates of convergence.

Our approach relates to the recent literature on limited parameter instabilities in
panel data models. For instance, [3] consider regime varying parameters in a linear
panel model with unknown regime classes. Further important works are those of [11]
and [10] which postulate group structures governing dissimilarities between regres-
sion functions in the cross section. Another important reference is the contribution of
[9] who introduce the partially functional regression model in a cross section context.
Our work can be understood as an extension of that work to a panel data context
with additional unknown parameter regimes. A second important reference in the
functional data literature is the work of [6], introducing parameter instabilities in
classical functional linear regression.

The specific form of our suggested statistical model is motivated by relevant eco-
nomic theory. It is particularly well suited to identify pricing regimes of idiosyncratic
risk in stock markets. In our application we offer a combination of economic and
statistical theory. Beyond that we provide a vast empirical study for the US stock
market examining the idiosyncratic volatility puzzle (see, e.g., [2]).

The remainder of this paper is structured as follows. In Sections 2 and 3 we
introduce the model and present the estimation procedure. In Section 4 we present
the asymptotic theory, including rates of convergence. Subsequently, we provide
economic theory for the application as well as a glance at the corresponding empirical
work in Section 5. A last Section 6 briefly concludes.

34.2 Model

We suggest a linear regression model which is formally obtained as a partially
functional regression in a panel data context. Generically, the task is to model the
effect of a square integrable random function Xit ∈ L2[0,1] on a scalar response yit
in the presence of a real-valued random variable zit . Indexing the cross section and
time dimensions 1≤ i≤ N and 1≤ t ≤ T respectively, the ultimate statistical model
reads as

yit = α0,t +
∫ 1

0
αt(s)Xit(s)ds+βt zit + εit , (34.1)

with α0,t being a t-specific intercept parameter and εit being random disturbance. The
unknown functional parameters αt ∈ L2[0,1] differ across K different time regimes
G1, . . . ,GK which form a latent partition of the index set {1, . . . ,T}. These time
regimes are mutually exclusive, i.e., Gk ∩Gl = /0 for all k, l ∈ {1, . . . ,K}, form a
complete partition, i.e.,

⋃K
k=1 Gk = {1, . . . ,T}, and may consist of non-adjacent time

points t. Each regime Gk is associated with a square integrable parameter function
Ak ∈ L2[0,1] governing the effect of Xit on yit , i.e.,
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αt = Ak if t ∈ Gk.

Model (34.1) compromises two extreme specifications. On the one hand it might
be the case that K = 1 and hence G1 = {1, . . . ,T}. In this situation the effect of
the random functions Xit on the response yit is time invariant. On the other hand
the model nests complete heterogeneity if K = T and all regimes Gk are singletons
which turns (34.1) into a collection of T different cross section models. Further
purely functional or purely parametric specifications are possible in case βt = 0 or
αt = 0 for all 1≤ t ≤ T respectively.

34.3 Estimation

The objective is to estimate the parameters Ak, βt and α0,t as well as the regimes
G1, . . . ,GK from realizations of the random variables {(yit ,Xit ,zit) : 1≤ i≤ n, 1≤
t ≤ T}. Without loss of generality all variables are assumed to be centered (see As-
sumption 1). We suggest a four step estimation procedure which comprises an initial
auxiliary estimation (Step 1) that serves as a basis for the subsequent classification
(Step 2) of the regression functions. The two final estimation steps (Step 3 and 4)
re-estimate the model parameters borrowing strength from the identified regime
structure. In the following we give a detailed description:

Step 1 Estimate the parameters αt , βt and α0,t separately for each 1≤ t ≤ T using
the (modified) estimators in [9] as well as within-t-averages. For the intercepts simply
employ the estimators α̂0,t = n−1 ∑n

i=1 yit and use these in turn to form centered
responses y̆it = yit − α̂0,t . The estimators for αt and βt are based on cross section
estimates of the relevant covariance objects. Consider for a fixed t the cross section
{(yit ,Xit ,zit) : 1 ≤ i ≤ n}. For each t, the empirical covariance operator of the
{Xit : 1≤ i≤ n} is the integral operator Γ̂t : L2[0,1]→ L2[0,1] defined via its kernel,
namely, the empirical covariance function K̂X ,t(u,v) := n−1 ∑n

i=1 Xit(u)Xit(v). Let
(λ̂1,t , φ̂1,t), . . . ,(λ̂n,t , φ̂n,t) denote the eigenvalue-eigenfunction pairs of Γ̂t ordered
according to λ̂1,t ≥ ·· · ≥ λ̂n,t and 〈·, ·〉 the inner product in L2[0,1]. In a similar
t-wise fashion we define the following estimators:

K̂zx,t(s) := n−1
n

∑
i=1

zitXit(s), K̂yx,t(s) := n−1
n

∑
i=1

y̆itXit(s),

K̂z,t(s) := n−1
n

∑
i=1

z2
it , Φ̂t(g) :=

m

∑
j=1

〈K̂zx,t , φ̂ j,t〉〈φ̂ j,t ,g〉
λ̂ j,t

for g ∈ L2[0,1].

Given a truncation parameter m, with 1 ≤ m < n, one obtains least squares es-
timators for (a∗jt) 1 ≤ j ≤ m and βt in the approximate empirical model y̆it ≈
∑m

j=1〈Xit , φ̂ j,t〉a∗jt + zitβt + εit . These estimators read as
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β̂t =
[
K̂z,t − Φ̂t

(
K̂zx,t
)]−1 [

K̂zy,t − Φ̂t
(
K̂xy,t
)]

â j,t = λ̂−1
j,t

1
n

n

∑
i=1
〈Xit , φ̂ j,t〉(y̆it − β̂t zit), 1≤ j ≤ m,

where the final estimate for αt is obtained as α̂t = ∑m
j=1 â j,t φ̂ j,t . For the next step

we use the scaled estimator α̂(Δ)
t := ∑m

j=1
λ̂ 1/2

j,t
σ̂t,ε

â j,t φ̂ j,t , where σ̂2
t,ε is the empirical

residual variance from the above regression for time t.
Step 2 Classify the t-specific regression functions into K regimes using a thresh-

olding procedure along the lines of [11]. To do so, select a subset S⊂ {1, . . . ,T} and
some s∈ S. Suppose s is in some regime Gk. The squared L2 distances of the modified
estimators α̂(Δ)

t from other periods t ∈ S to α̂(Δ)
s are denoted as Δ̂ts := ||α̂(Δ)

t −α̂(Δ)
s ||22.

The corresponding order statistics Δ̂t(1) ≤ Δ̂t(2) ≤ ·· · ≤ Δ̂t(|S|) now form the basis for
classification.

Given a pre-selected threshold τnT , see discussion below, define the regime esti-
mate Ĝk as {(1), . . . ,( p̂)}, where ( p̂) is defined according to Δ̂t(p̂) ≤ τnT < Δ̂t(p̂+1).
Iteratively proceed with this procedure for the remaining points in time, i.e., for
t ∈ {1, . . . ,T}\ Ĝk. This naturally provides an estimate K̂.

Step 3 Re-estimate the t-specific parameters βt by borrowing strength from the
identified regime structure. For each 1 ≤ k ≤ K̂, the regime specific empirical co-
variance operator Γ̂k of the {Xit : 1≤ i≤ n, t ∈ Ĝk} is defined via its integral kernel
K̃X ,k(u,v) :=

(
n|Ĝk|

)−1
∑n

i=1 ∑t∈Ĝk
Xit(u)Xit(v). The eigenfunction-eigenvalue-pairs

of this operator are denoted by (λ̃ j,k, φ̃ j,k), 1 ≤ j ≤ n|Ĝk| ordered according to
λ̃1,k ≥ ·· · ≥ λ̃n|Ĝk|,k ≥ 0. Further, necessary regime specific quantities are obtained
according to

K̃zx,k(s) :=
(
n|Ĝk|

)−1
n

∑
i=1

∑
t∈Ĝk

zitXit(s), K̃z,k(s) :=
(
n|Ĝk|

)−1
n

∑
i=1

∑
t∈Ĝk

z2
it ,

Φ̃k(g) :=
m̃

∑
j=1

〈K̃zx,k, φ̃ j,k〉〈φ̃ j,k,g〉
λ̃ j,k

for g ∈ L2[0,1],

where m̃ denotes a regime specific truncation parameter with 1 ≤ m̃ < n|Ĝ|. From
these objects the final slope estimate is calculated according to

β̃t :=
[
K̃z,k− Φ̃k

(
K̃zx,k

)]−1 [K̂zy,t − Φ̃k
(
K̂xy,t
)]

for all t ∈ Ĝk.

Step 4 Estimate the regime specific parameter functions Ak. To do so, the response
variables need to be transformed for each t ∈ Ĝk according to ỹit = y̆it − β̃t zit . For
any 1 ≤ k ≤ K̂ the pairs {(ỹit ,Xit) : 1 ≤ i ≤ n, t ∈ Ĝk} are then pooled in order to
estimate Ak by the following regression:ỹit = 〈Xit ,Ak〉+ε∗it using the procedure in [5].
Here, the error term is composed according to ε∗it := ε+(βt − β̃t)zit . The resulting
estimator Ãk obtains as
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Ãk(s) =
m̃

∑
j=1

ã j,kφ̃ j,k(s), where ã j,k = λ̃−1
j,k

(
n|Ĝk|

)−1
n

∑
i=1

∑
t∈Ĝk

〈Xit , φ̃ j,k〉ỹit .

In summary, the final estimates are Ĝ1, . . . , Ĝk for the regimes as well as β̃t , Ãk and
α̂0,t for the regression parameters.

Practical choice of τnt . For large n and given m, it can be shown that the law of
2−1 ·n ·Δts can be reasonably well approximated by a χ2

m-distribution. For the actual
implementation we thus suggest to set the threshold to τ̂nT := 2 ·n−1 ·q0.99(χ2

m), with
q0.99(χ2

m) being the 99% quantile of a χ2
m-distribution.

34.4 Asymptotic Theory

Two types of problems add to the well understood estimation in functional linear
regression. The first one is the additional classification error contaminating the
estimation of Ak. The second one is that estimation of Ak suffers from the presence
of nuissance parameters α0,t and βt . For our asymptotic analysis we rely on a set of
standard assumptions present in the literature1. In the following we present a detailed
list of our assumptions.

Assumption 1. Suppose that

1. {(εit ,Xit ,zit) : 1≤ i≤ n, 1≤ t ≤ T} are centered and iid over i and t,
2. E

[||X ||42]< ∞, E
[
z4

it
]
< ∞, E

[
ε4

it
]
< ∞

3. εit is independent from Xjs and z js for any 1≤ i, j ≤ n and 1≤ t,s≤ T .

These conditions are even standard for analyzing classical regression models.
The next assumption contains the regularity conditions on the covariance struc-

ture of the functional regressor, on the complexity of the corresponding parameter
functions, and on the covariance between functional and scalar regressors.

Assumption 2. Suppose there exist constants 0 < Cλ ,C′
λ ,Cθ ,Ca,CzX ,Cβ < ∞,

such that

1. C−1
λ j−μ ≤ λ j ≤Cλ j−μ and λ j −λ j+1 ≥C′

λ j−(μ+1), j ≥ 1 for the eigenvalues
λ1 > λ2 > .. . of the covariance operator Γ of Xit and a μ > 1,

2. E
[〈Xit ,φ j〉4

]
< Cθλ 2

j for the eigenfunction φ j of Γ corresponding to the j-th
eigenvalue,

3. |〈Ak,φ j〉| ≤Ca j−ν for all 1≤ k ≤ K,
4. |〈KzX ,φ j〉| ≤CzX j−(μ+ν), where KzX := E[Xitzit ], and
5. sup1≤t≤T β 2

t <Cβ .

Statements 1 and 3 are traditional in the literature (see, e.g., [5] or [7] among others)
while [9] introduces (variant of) statements 2 and 3.

1 See, for instance, [9], [11], [6] and [5]
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The following assumption specifies the panel asymptotics we are considering.
Assumption 3. Suppose that

1. |Gk| ∝ T and
2. T ∝ nδ for some δ > 0.

By writing n,T → ∞ it is meant that n and T diverge simultaneously on the path
specified by the second point in Assumption 3. The only restriction on δ is indirectly
formulated in terms of ν and μ .

Assumption 4. Suppose that ν > max{r1,r2,r3}, where r1 := 3(1+ μ), r2 :=
(δ )−1(1+δ +μ/2) and r3 := ((1+δ )+(1+2δ )μ)/2.

Assumption 4 can be understood as setting an upper bound on the complexity of
the parameter functions Ak in terms of the complexity of the regressor X and the rate
at which nuisance parameters βt are added. Another issue which is generic to many
nonparametric problems is the specification of truncation, i.e., smoothing parameters,
addressed in the following Assumption.

Assumption 5. Suppose for the truncation parameters m = m(n) and m̃ = m̃(n,T )

that m ∝ n
1

μ+2ν and m̃ ∝ (n|Gk|)
1

μ+2ν . While m is the standard truncation parameter
as in the related literature on cross sections, m̃ is a logical extension to within-regime
observations.

The following assumption is borrowed from [9] and serves as the central regularity
condition in the estimation of β̂t in step 1.

Assumption 6. The random variables qit := zit−
∫ 1

0 X(u)
(

∑∞
j=1

〈KzX ,φ j〉
λ j

φ j(u)
)

du

are iid and E[qit |X1t , . . . ,Xnt ] = 0 as well as E[q2
it |X1t , . . . ,Xnt ]> 0.

A last assumption is designed to ensure identification of different the regimes
given the thresholding procedure.

Assumption 7.

1. The threshold parameter τnT → 0 satisfies P
(
maxt,s∈Gk Δ̂ts ≤ τnT

)→ 1 for all
1≤ k ≤ K.

2. There exists some CΔ > 0 such that for any 1≤ k ≤ K and any t ∈ Gk

||α(Δ)
t −α(Δ)

s ||22 =: Δts

{
≥CΔ if s �∈ Gk

= 0 if s ∈ Gk,

where α(Δ)
t := σ−1

ε ∑∞
j=1λ

1/2
j 〈αt ,φ j〉φ j and σ2

ε := E[ε2
it ].

Assumption 7 consist of the same ingredients as the corresponding requirements
in [11]. It ensures that different regimes have different parameter functions in the
relevant L2-metric and that the threshold tends to zero sufficiently slowly.

Based on the above assumptions we conclude with the following results starting
with a Lemma extending Theorems 3.1 and 3.2 in [9].
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Lemma 34.1. Given Assumptions 1,2,4,5 and 6 it holds for all 1≤ t ≤ T as n→ ∞
that

(α̂0,t −α0,t)
2 = Op

(
n−1) , (34.2)(

β̂t −βt

)2
= Op

(
n−1) , (34.3)

||α̂t −αt ||22 = Op

(
n

1−2ν
μ+2ν
)
. (34.4)

Based on the consistency of the α̂t for a fixed t our estimation procedure achieves
classification consistency in the sense of the following theorem.

Theorem 34.1. Given Assumptions 1–7 it holds that

P
({Ĝ1, . . . , ĜK̂} �= {G1, . . . ,GK}

)
= o(1) as n,T → ∞. (34.5)

The following result establishes rates of convergence for the suggested estimators.

Theorem 34.2. Given Assumptions 1–7 it holds for all 1≤ k ≤ K̂ that∣∣Ĝk
∣∣−1 ∑

t∈Ĝk

(α̂0,t −α0,t)
2 = Op

(
n−1) , (34.6)

∣∣Ĝk
∣∣−1 ∑

t∈Ĝk

(
β̃t −βt

)2
= Op

(
n−1) , (34.7)

∣∣∣∣Ãk−Ak
∣∣∣∣2

2 = Op
(
n−1) as n,T → ∞. (34.8)

Here, root-n consistency of Ãk is mainly a consequence of Assumption 4.

34.5 Regime Dependent Pricing of Idiosyncratic Risk

The specific form of our suggested statistical model is strongly motivated by eco-
nomic theory. According to a standard asset pricing approach, underdiversified
investors ask for a premium compensating for the idiosyncratic risk of an asset.
Proxying idiosyncratic risk with idiosyncratic volatility, our statistical model offers a
tailor-made tool to uncover dynamics in such premiums from price data2. In Section
34.5.1, we motivate our statistical model in (34.1) from a theoretical viewpoint and
argue how to construct suitable functional regressors from discrete data. We provide
a brief outline of the ongoing empirical study in Section 34.5.2.

2 See, e.g., [1] for the notion of time varying risk premiums.



268 Fabian Walders and Dominik Liebl

34.5.1 Economic Modeling and Volatility-Curve Estimation

Our approach is motivated by the stochastic volatility framework of [4]. Let us denote
the underlying probability space as (Ω ,A ,P), where randomness is emphasized by
making the dependence on an ω ∈Ω explicit. For a point in time s≥ 0 we suggest
considering the following differential equation

dlog(P(s,ω)) = μ(s,ω)ds+α(s)σ2(s,ω)ds+σ(s,ω)dWs (34.9)

to model the log returns corresponding to the asset price P, where μ and Ws denote
a stochastic drift and a Wiener process. The object σ(s,ω) is the stochastic instan-
taneous volatility and α a time varying risk premium. Model (34.9) generalizes the
log-price process in [4].

For our purpose it is of interest to deal with the returns between the beginning
and the end of a certain period such as a trading day, a week or a month. Choosing
without loss of generality a unit interval, the start and end points of the tth period are
given by t−1 and t. It follows then immediately from (34.9) that

yt := log
(

P(t,ω)

P(t−1,ω)

)
= γt +

∫ 1

0
αt(v)σ2

t (v)dv+ εt . (34.10)

with γt :=
∫ t

t−1 μ(v,ω)dv and εt :=
∫ t

t−1σ(v,ω)dWv. Further αt(v) and σ2
t (v) are

defined as αt(v) := α(t − 1+ v) and σ2
t (v) := σ2(t − 1+ v) to emphasize the t-

dependence of the two objects.
Beyond that we postulate that the drift term is at each time s > 0 proportional to

a stochastic process Z(s), describing pricing relevant market frictions. The propor-
tionality factor is a deterministic step function b(s) taking values βt in the interval
[t−1, t]. That is, we assume that μ(s) ∝ b(s)Z(s) which implies that γt = βt zt with
zt :=

∫ t
t−1 Z(v)dv. As a consequence (34.10) reads as

yt = βt zt +
∫ 1

0
αt(v)σ2

t (v)dv+ εt . (34.11)

Above, we implicitly operated on two time scales: the discrete time periods
indexed by t and the intra-period times over the generic interval [0,1]. The notation in
(34.11) indicates that the parameters (αt ,βt ) might change on the first time scale. We
postulate that the parameter of interest, αt , is regime-specific with different possible
parameter values A1, . . . ,AK , where each parameter Ak can be interpreted as the
regime specific idiosyncratic risk premium. Such regimes are then collections of
periods with similar investor’s perception of the asset-specific risk relevance.

As the Log-Volatility (LV)-trajectories σ2
t are latent, they need to be recovered

from observed discrete log-returns. Along the lines of [8] this proceeds as follows.
Without loss of generality, intraday trading time is indexed in the unit interval [0,1].
Denote the incremental log-return over an interval of length 0 < Δ � 1 for some
s≥ 0 as
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YΔ (s) :=Δ−
1
2 log

(
P(s+Δ)

P(s)

)
= βtΔ

1
2 Z(s)+Δ

1
2α(s)σ2(s)+σ(s)WΔ (s)+

3

∑
j=1

R j,Δ ,

where WΔ (s) := Δ−
1
2 (W (s)−W (s−Δ)) and R1,Δ ,R2,Δ ,R3,Δ are discretization er-

rors as described in the appendix . The latter are negligible in the following sense.

Theorem 34.3. Given Assumption 8 in the appendix, ∑3
j=1 R j,Δ = Op(Δ 1/2) as Δ →

0.

This justifies the central small-Δ approximation YΔ (s) ≈ σ(s)WΔ (s). From
this it can be concluded that log

(
YΔ (s)2

)
+ c0 ≈ X(s)+ es, where c0 ≈ 1.27 and

es := log
(
WΔ (s)2

)− c0 denotes an error term (for details see [8] and the references
therein). Most importantly the LV process is defined according to X(s) := log(σ(s)2).
Given returns are observed on an intraday grid D := {0,Δ ,2Δ , . . . ,1−Δ ,1}, it is rea-
sonable to understand log

(
YΔ (s)2

)
as discrete noisy observations of the LV-process,

provided one is willing to assume a suitable dependence structure for es, s ∈ D. As
a consequence the method from [8] to estimate X(s) from the discrete prices also
applies to our setup without further adjustment.

34.5.2 Empirical Study: Risk Regimes in the US Stock Market

Using the presented framework we examine risk pricing in the US stock market. Data
for the S&P 500 constituents is recorded over 100 trading days in 2016. Beyond
asset prices, which are sampled every 10 minutes, market frictions, e.g. illiquidity,
are proxied by a daily bid-ask spread. Using the estimation procedure indicated in
the previous section we are able to construct daily LV-trajectories for each (i, t)-
combination. These LV-trajectories are employed as functional regressors Xit , while
yit is the end-of-day price and zit the maximum bid-ask spread reflecting frictions
relevant for asset i at day t.

First estimation results indicate that the regimes and risk premiums distinguish
times of financial turmoil from tranquil days.

34.6 Conclusion

In this paper we present a novel regression framework, allowing to examine regime
specific effects of a random function on a scalar response in the presence of paramet-
ric nuissance terms. Our estimation procedure is designed for a panel data context.
We prove consistency and derive rates of convergence. The relevance of our semi-
parametric model is underlined by an application to idiosyncratic risk pricing in the
presence of frictions.
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[6] Horváth, L., Reeder, R.: Detecting changes in functional linear models. J.
Multivariate Anal., 111: 310–334, (2012)

[7] Kneip, A., Poss, D., Sarda, P.: Functional linear regression with points of
impact. Ann. Statist., 44 (1): 1–30, (2016)

[8] Müller, H.G., Sen, R., Stadtmüller, U.: Functional data analysis for volatility. J.
Econometrics, 165 (2): 233–245, (2011)

[9] Shin, H.: Partial functional linear regression. J. Statist. Plann. Inference, 139

(10): 3405–3418, (2009)
[10] Su, L., Shi, Z., Phillips, P.C.B.: Identifying latent structures in panel data.

Econometrica, 84 (6): 2215–2264, (2016)
[11] Vogt, M., Linton, O.: Classification of nonparametric regression functions

in longitudinal data models. Forthcomming in: J. R. Stat. Soc. Ser. B Stat.
Methodol. (2016)



Chapter 35

Registration for exponential family functional

data

Julia Wrobel and Jeff Goldsmith

Abstract We consider the problem of aligning curves from exponential family
distributions. The approach is based on the combination of alignment and functional
principal components analysis, and is facilitated by recent extensions of FPCA
to non-Gaussian settings. Our work is motivated by the study of physical activity
using accelerometers, wearable devices that provide around-the-clock monitoring of
activity and produce non-Gaussian measurements. We apply the proposed methods
to activity counts using a Poisson distribution, and to a binary “active” vs “inactive”
indicator using a binomial distribution. After alignment, the trajectories show clear
peaks of activity in the morning and afternoon with a dip in the middle of the day.

35.1 Introduction

Functional data are often observed with variation in both phase and amplitude. As
a result, registration or alignment of curves to remove phase variation is a basic
problem in functional data analysis (FDA) with a rich associated literature, and
serves either as a preprocessing step necessary to understand amplitude variation or
as a important modeling step in it’s own right.

An excellent overview of the importance of registration and the conceptual and
practical challenges in addressing phase variation in functional data is given in [11].
Early approaches to registration include dynamic time warping [13] and landmark
registration [3]. Later efforts focused on choosing smooth warping functions by
minimizing a loss or distance. The most natural loss function, the L
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between the observed function and the target, was considered in [12]; citing practical
concerns when combining this loss function with a flexible class of warping functions,
other losses were considered in [14, 18, 21], among others. In parallel, model-based
approaches that pose observed curves as warped versions of a common smooth mean
function have been developed by e.g. [2] and [19].

The FDA literature, including the preceding work for registration, has traditionally
focused on real-valued curves yi(t) ∈ R for subject 1 ≤ i ≤ I at time t ∈ [0,T ].
Recently this literature has expanded to include exponential family curves, for which
yi(t) is the realization of a random variable with an exponential family distribution.
Examples of such data include sparse longitudinal measurements of the presence
or absence of hepatomegaly in patients with primary biliary cirrhosis [7]; high
frequency measurements on the feeding behavior of pigs [5]; and binary indicators of
abstinence in studies of drug abuse and treatment [8]. In this work, we are motivated
by accelerometer data, which provides around-the-clock quantification of physical
activity through activity count measurements.

Methods for exponential-family curves has grown in parallel with the rise of this
data class. Models now exist for function-on-scalar regression [6, 15] and clustering
[8]. Importantly, methods for functional principal components analysis have been
extended to the exponential-family setting; these efforts take two distinct approaches.
Building on the covariance decomposition framework to functional principal com-
ponents analysis (FPCA) [22], [7] consider cross-sectional binary curves and [17]
consider multilevel spatial curves. Several papers have used probabilistic or Bayesian
approaches to FPCA, similar in spirit to the reduced rank approach of [9]. A vari-
ational Bayes approach for cross-sectional exponential-family functional data was
developed in [20], while a sampling-based approach to multilevel data was presented
in [6]. Comments on the interpretation of FPCA for exponential-family curves,
emphasizing issues that arise in the direct adaptation of covariance decomposition
methods to this setting, appear in [4].

Despite this growing literature for exponential-family functional data, there is a
gap for the registration of such data. The purpose of the present work is to address
this gap. Our approach is to extend FPCA-based registration methods, originally
developed exclusively for the Gaussian case [10], to the current setting. We describe
our methodology in Section 35.2 and apply the techniques to accelerometer data in
Section 35.3.

35.2 Methods

We begin by establishing our notation and goals. Suppose we observe functional
data yi(t∗) for subjects 1≤ i≤ I over time t∗ ∈ [0,1]. The argument t∗ represents the
originally observed domain, sometimes referred to as “clock time”; our goal is to
estimate warping functions hi(t∗) = t, where t ∈ [0,1] is the domain after alignment,
sometimes referred to as “system time”. Although t∗ and t are observed on the same
domains and curves yi(·) can be evaluated on both, they are conceptually different
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and our notation stresses that. The warping functions hi(t∗) characterize the phase
shift in the observed data and are the main target to be estimated.

After alignment, curves yi(t) follow an exponential family distribution with den-
sity

p[yi(t)|ηi(t)] = exp{(yi(t)ηi(t)−b[ηi(t)])/φ + c[yi(t),φ ]}
for each t ∈ [0,1], where E[yi(t)|ηi j(t)] = μi(t) = b′[ηi(t)] and Var[yi(t)|ηi(t)] =
b′′[ηi(t)]φ . For the binary and count response curves that are primarily discussed in
the paper, the dispersion parameter φ is known; for other distributions (or to allow
overdispersion) it may be necessary to model this parameter. The mean is related to
a linear predictor by a known link function g[μi j(t)] through

E[yi(t)|ccci] = μi(t)

g[μi(t)] = α(t)+
K

∑
k=1

cikψk(t). (35.1)

Model (35.1) generalizes FPCA to exponential family curves and includes the mean
α(t), basis functions ψk(t), and subject-specific scores cik which have mean zero
and variance λk. We generally use the canonical link αi j(t) = g[μi j(t)], although this
is not necessary for our methodology.

Given the mean α(t), basis functions ψk(t), and scores cik, we register the ob-
served curve yi(t∗) to the fitted value μi(t) given by model (35.1). The exponential
family distribution provides the mechanism through which warping functions hi(t∗)
can be estimated. Our estimate ĥi(t∗) is obtained my maximizing the log likelihood
of the observed data over candidate warping functions:

ĥi(t∗) = arg maxhi
− [�(hi;yi(hi(t∗)),μi(hi(t∗))] (35.2)

As an example, in the case of Bernoulli functions yi(t∗) our log likelihood is

�(hi;yi(hi(t∗)),μi(hi(t∗)) = yi(hi(t∗)) · log(μ̂i(hi(t∗))
+[1− yi(hi(t∗))] · log(1− μ̂i(hi(t∗)) (35.3)

In the Gaussian case, of course, maximizing the log likelihood in (35.2) is equivalent
the minimizing the usual L2 loss; in this sense our proposed approach generalizes
existing methods. In practice, estimation through (35.2) is augmented by constraints
that hi(0) = 0, hi(1) = 1, and hi(t∗) is monotone increasing.

The preceding steps suggest an iterative algorithm for the joint estimation of the
FPCA model and the warping functions. After obtaining initial estimates of the hi(t∗),
one iterates between the following steps:

• Given the current estimates ĥi(t∗), estimate the parameters in model (35.1).
• Given the current estimates μ̂i(t), estimate the warping functions through (35.2).

These steps are alternated until the change in successive iterations is negligible.
Because the approach to estimate the parameters in model (35.1) differs from

the usual covariance decomposition, we now provide a brief description. The mean
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function α(t) and the basis functions ψk(t) are expanded using a cubic B-spline
basisΘ(t) = {θ1(t), . . . ,θKθ (t)}. To ensure smoothness, the spline coefficients for
the mean and each basis function are assumed to be multivariate Normal with a
covariance structure that penalizes magnitude of the second derivative. Scores are
treated as random effects. The resulting parameters of this specification can be esti-
mated using an EM algorithm, sampling-based Bayesian approaches, or variational
Bayes; see [6] for details. Meanwhile, the warping functions hi(t∗) are also expanded
using a spline basis with coefficients estimated through constrained optimization.

35.3 Data Analysis

The motivation for this manuscript is to align patterns of physical activity measured
using accelerometers in a sample of elderly subjects enrolled in the Baltimore
Longitudinal Study on Aging (BLSA) [16]. Continuous monitoring of activity using
accelerometers has revolutionized the measurement of physical activity by providing
objective, unbiased, and detailed observation around the clock. Accelerometers
generally measure physical activity through “activity counts”, which are devised
by summarizing the voltage signals across a monitoring period, and exemplify
exponential-family functional data. In the BLSA, a study of normative human aging,
participants wore the Actiheart, a combined heart rate and physical activity monitor
adhesively placed on the chest [1]. Subjects were asked to wear the device at all
times other than bathing or swimming.

For 500 subjects, we observe activity count trajectories measured over 24 hours.
Binary “activity” vs “inactivity” trajectories are derived from these by thresholding
activity counts at 20. We apply the methods described in Section 35.2 to obtain
estimated warping functions for both binary and count trajectories; for the former
we assume a binomial distribution and logit link, and for the latter we assume a
Poisson distribution and log link. To estimate the parameters in model (35.1) we
use a B-spline basis of dimension Kθ = 10 and truncate the expansion to use K = 1
basis function. Warping functions hi(t∗) are estimated using a B-spline basis with 5
functions. To reduce the computational burden of the analysis, data were thinned to
one data point for every 10 minutes, giving 144 observations per subject.

Figure 35.1 illustrates our results for binary activity trajectories. In both panels,
we plot Gaussian kernel smooths with a narrow bandwidth of the observed binary
data, which can be loosely interpreted as trajectories showing the probability of
being active. The observed data show a diurnal pattern of binary activity, with lower
probability of activity in the nighttime and higher probability of activity during the
day. The right panel shows aligned data; after alignment, there are clear morning and
afternoon active periods, and a mid-day dip that was much less pronounced in the
observed data. Several subjects are highlighted in both panels to give a sense of the
phase shift in the observed data and the effect of registration.

Warping functions hi(t∗) obtained in the registration of binary activity trajectories
are shown in Figure 35.2. These suggest a non-trivial degree of misalignment in the
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Fig. 35.1: Analysis results for binary activity trajectories. The left panel shows
kernel smooths of binary activity against observed time; the right panel shows kernel
smooths of binary activity against aligned time.

observed data. Additional analyses to examine this source of variability may be of
interest. For reference, the subjects highlighted in Figure 35.1 are highlighted in
Figure 35.2

Fig. 35.2: Warping functions hi(t∗) obtained in the registration of binary activity
trajectories.

To demonstrate that our methods are applicable for a variety of data distributions,
we briefly present the results for activity count trajectories. Figure 35.3 shows the
observed activity count trajectories in the left panel. The data show a diurnal pattern
of activity similar to that for binary activity trajectories. A careful examination of the
observed data suggests somewhat higher activity in the morning than in the evening.
The results after alignment also suggest periods of increased activity intensity in the
morning and in the afternoon, and an obvious mid-day dip.
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Fig. 35.3: Analysis results for activity count trajectories. The left panel shows activity
counts against observed time; the right panel shows activity counts against aligned
time.
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Chapter 36

Random functional variable and Fourier series

Jiřı́ Zelinka

Abstract This paper presents how a functional random variable can be expressed
in the form of Fourier series. This expansion can be used for the definition of
components of the functional random variable and for the approximation of the
random curves as the partial sum of the Fourier series. Thus we can estimate the
distribution of the components, simulate the functional random variable with given
components and compute some characteristics of the distribution of its norm.

36.1 Introduction

Statistical methods are often based on the properties of distribution of random
variables or random vectors. We try to estimate their unknown distribution to obtain
important knowledge about the data. In the case of functional data analysis (FDA) we
do not work with random observation containing a finite random vector but the whole
function is one observation. We call it the functional random variable. It is clear
that the standard approach that used for instance cumulative distribution functions is
inapplicable in this case. Non-parametric methods, namely kernel smoothing, proved
far more useful (see [2], [1] and many citations inside).

Simulations are also very important for testing statistical methods. In FDA there
are infinitely many parameters that affect the observation. This fact makes it difficult
to simulate an observation of the functional random variable and the authors mostly
use only several parameters in simulations (see [4], for instance). Application of
the Fourier series in simulations allows to use of any number of parameters. So any
observation of the functional random variable can be approximated with arbitrary
accuracy.
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We will name the functional random variable as random function or random curve
for brevity. Let us suppose that random function χ is a measurable mapping of a
probability space (Ω ,A ,P) into a real separable Hilbert space H. In this case there
exists the complete orthonormal systemΨ = (ψn)

∞
n=0 in the Hilbert space H and for

every ω ∈Ω can be χ(ω) expressed by the Fourier series

χ(ω) =
∞

∑
n=0

Xn(ω)ψn, (36.1)

where
Xn(ω) = (χ(ω),ψn) (36.2)

and

‖χ(ω)‖2 =
∞

∑
n=0

Xn(ω)2 < ∞. (36.3)

We can call the one-dimensional random variables Xn, n = 0,1,2, . . . given by the
relationship (36.2) as components of the random function χ with respect to the
orthonormal systemΨ .

Stochastic independence of components of a random vector is very important. So
we can say that the components Xn, n = 0,1,2, . . . of the random function χ with
respect to the orthonormal systemΨ are (mutually) independent if every finite subset
of the components is (mutually) independent.

In functional data analysis the probability of small balls B(χ,h) is also an impor-
tant aim:

B(χ,h) = {η ∈ H;‖χ−η‖< h}.
If

χ =
∞

∑
n=0

xnψn

then the probability of the ball B(χ,h) is given by the probability of the set of all
ω ∈Ω for which

∞

∑
n=0

(xn−Xn(ω))2 < h2. (36.4)

It is clear that the information about the distributions of the components Xn can help
us to evaluate the probability of small balls. On the other had we can made simulations
using components of the random function with predetermined distributions and obtain
the exact values of some estimated quantities by this way.

36.2 Decomposition into components in L2

Let’s have the random sample of the random function χ in the sense that we have
observations of independent random functions χ1, . . . , χN . We can also take this
random sample as the values of χ in (unknown) points ω1,. . . .ωN , i.e. χ j = χ(ω j).
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Typically, the random function χ j is given only by its values in some discrete set of
nodes x1,. . . ,xM .

The spectrometric dataset cited in many publications (see for instance [2], [3])
can serve as the basic example of the random sample of random function. This data
are given as the sample of 210 random curves, each of them consists of values of
absorbance measured at 100 wavelengths from 850 to 1050 nm. First ten curves from
this dataset are displayed in Figure 36.1.

850 900 950 1000 1050
2.5

3

3.5

4

4.5

Fig. 36.1: Spectrometric data: first 10 curves

The scalar product Xn(ω) = (χ(ω),ψn) can be approximated for χ(ω)∈ L2(a,b)
by the value X̃n(ω) using some quadrature formula. Composite trapezoidal or Simp-
son’s rule are appropriate numerical methods for this purpose. Thus we evaluate
approximation of the Fourier series of the observation of the random function χ j

χ j = χ(ω j)≈
∞

∑
n=0

X̃n(ω j)ψn.

Figure 36.2 presents the partial sum of 4 or 11 members of the cosine Fourier series
(solid line) for the first random curve from the spectrometric data set (dashed line),
respectively. We can see that the second approximation of the random curve is good
enough.

The distributions of the components can be tested by many statistical tools. In the
Figure 36.3 we can see the histograms of components X0 and X1 for all 215 curves
from spectrometric dataset. The approximations X̃0 and X̃1 were used, of course.

A good view into the distributions of the components of the random function
is given by boxplot. The boxplots for random variables X0,. . . ,X10 are displayed in
Figure 36.4.
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Fig. 36.2: Approximations of random curve – sum of 4 and 11 members of cosine
series
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Fig. 36.3: Histograms for random variables X0 and X1.
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Fig. 36.4: Boxplots for X0,. . . ,X10

36.3 Simulations

The first idea how to simulate random function is simulate its components Xn, n =
0,1,2,dots and then create the random function χ in the form
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χ =
∞

∑
n=0

Xnψn

for given orthonormal systemΨ = (ψn)
∞
n=0. If we simulate the independent random

samples Xn,1, . . . ,Xn,N , n = 0,1,2, . . . , we obtain arbitrarily accurate approximation
of the random sample χ1, . . . ,χN as the partial sum of the Fourier series

χ j =
K

∑
n=0

Xn, jψn

for some K ∈ N.
We mustn’t forget the condition

∞
∑

n=0
Xn(ω)2 < ∞. This condition may not be met

for every ω ∈Ω , but just when the set where it is not fulfilled has probability equal
to zero. Or equivalently

P

(
∞

∑
n=0

X2
n < ∞

)
= 1. (36.5)

The validity of this condition have to be ensured by selecting the appropriate dis-
tributions of the components X0, X1, . . . . Sufficient condition can be derived using
Markov’s inequality

P(X ≥ a)≤ E(X)

a
for non-negative random value X and a > 0. Denoting

YN =
N

∑
n=0

X2
n

we get

P

(
N

∑
n=0

X2
n ≥ N

)
= P(YN ≥ N)≤ E(YN)

N
=

E
(

N
∑

n=0
X2

n

)
N

=

N
∑

n=0
E(X2

n )

N

for independent components X1,X2. . . .

Now, it can be easily seen that if
∞
∑

n=0
E(X2

n ) = σ2 < ∞ then the probability

P
(

N
∑

n=0
X2

n ≥ N
)

is arbitrarily small for N sufficiently large. So we have sufficient

condition for (36.5) in the form

∞

∑
n=0

E(X2
n )< ∞. (36.6)
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36.4 Normally distributed components

Now let us suppose independent and normally distributed components of random
function χ . For simplicity let us assume that the components Xn are of zero mean,
i.e. Xn ∼ N(0,σ2

n ). In the case E(Xn) = μn �= 0 the following considerations should
be applied to random values Xn−μn.

As it follows from the relationships in the section 36.1 the probability P(‖χ‖< h)

is equal to the probability P
(

∞
∑

n=0
X2

n < h2
)

. Due to this fact we focus on properties

of the distribution of
∞
∑

n=0
X2

n =: Y .

The random value X2
n has chi-squared distribution with 1 degree of freedom. Its

probability density function is

1
σn
√

1πx
e
− x

2σ2n

and E(X2
n ) = σ2

n ,
∞
∑

n=0
σ2

n < ∞.

The characteristic function of X2
n takes the form

ϕX2
n
(t) =

1√
1− i2σ2

n t
.

Now it is seen that the characteristic function of
∞
∑

n=0
X2

n is

ϕY (t) =
1√

∞
∏

n=0
(1− i2σ2

n t)
. (36.7)

We have to answer the question of convergence of the infinite product in (36.7). The
following theorem from the 15-th chapter of [5] solves this problem:

Theorem 36.1. Suppose {un} is a sequence of bounded complex functions on a set

S, such that
∞
∑

n=0
|un(t)| converges uniformly on S. Then the product

∞
∏

n=0
(1+ un(t))

converges uniformly on S.

The functions un(t) are equal to −i2σ2
n t and

∞
∑

n=0
|un(t)| converges uniformly on

any compact set S, because
∞
∑

n=0
|un(t)|= 2t

∞
∑

n=0
σ2

n . So the infinite product in (36.7)

converges uniformly on any compact set S. It is also clear that
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ϕY (t) =
1

∞
∏

n=0

√
1− i2σ2

n t
.

Theoretically, the cumulative distribution function of Y can be evaluated using the
formula (see [6])

FY (x) =
1
2
+

i
2π

p.v.
∞∫

−∞

e−itxϕY (t)
t

dt

where p.v. denotes the Cauchy principal value. The question of the practical applica-
tion of this relationship remains open but the characteristic function ϕY can be well
used for the calculation of the moments of Y k because of the equality

E(Y k) = (−i)kϕ(k)
Y (0).

Differentiation of ϕY gives

ϕ ′Y (t) =
∞

∑
n=0

1

∏
m�=n

√
1− i2σ2

mt
·
(
−1

2
−2iσ2

n

(1− i2σ2
n t)3/2

)
= ϕY (t)

∞

∑
n=0

iσ2
n

1− i2σ2
n t
.

This formula gives to us usable tool for computation of higher derivatives, e.g. for
the second derivation of ϕY we obtain

ϕ ′′Y (t) =−ϕY (t)

⎡⎣( ∞

∑
n=0

σ2
n

1− i2σ2
n t

)2

+
∞

∑
n=0

2σ4
n

(1− i2σ2
n t)2

⎤⎦ .
As ϕY (0) = 1 we have

E(Y ) = (−i)ϕ ′Y (0) =
∞

∑
n=0

σ2
n ,

E(Y 2) =−ϕ ′′Y (0) =
(

∞

∑
n=0

σ2
n

)2

+2
∞

∑
n=0

σ4
n

and the higher moments can be easily evaluated, too.
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