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To my mentors, who taught me more than I realized



Preface

Statistical design is one of the fundamentals of our subject, being at the core of
the growth of statistics during the previous century. Design played a key role in
agricultural statistics and set down principles of good practice, principles that
still apply today. Statistical design is about understanding where the variance
comes from, and making sure that is where the replication is. Indeed, it is
probably correct to say that these principles are even more important today.
Fisher (1947) compared a dataset to a sample of gold ore. The finest analysis
could only extract the proportion of gold contained in the ore. But a good
design could produce a sample with more gold.

There are plenty of “Design of Experiments” books available, many of
which do a fine job of describing not only how to design experiments, but
also how to analyze them. So why bother with another book? There were two
main reasons.

The first reason is the observation that many of our “standard” analyses
have become driven by the default setting of one’s favorite computer package
and, unfortunately, many times these default settings provide an incorrect
analysis. More frightening is the fact that sometimes such default analyses
have found their way into textbooks.

The second reason is that, although design books have gotten broader
in coverage of designs and often have much to say about analysis, the basic
theoretical underpinnings are not always covered, and if they are, they are
not covered in sufficient detail to understand how to construct the correct
analysis and to understand why the computer package default analysis may
be incorrect. Without fully understanding what the correct analysis should be,
it is impossible to design a good experiment.

So ... the goal is to describe the principles that drive good design, which
are also the principles that drive good statistics. Moreover, this will be done
with detail and attention paid to the theoretical background – only by having
more than a passing familiarity with the fundamental theory can one truly
understand statistical design.
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This book is not an encyclopedia of designs. There is no attempt to cover
all designs, and no attempt to teach data analysis at all. Although we will
analyze many datasets, we will usually use common anova techniques and not
preach about transformations, heterogeneity, missing data, and all the other
good stuff that a good data analyst needs to know. We assume that the design
has been run with enough success so that rescue techniques are not needed
for the analysis. We also assume that the student has been exposed to such
data analysis strategies.

We will cover the most popular designs in depth, both with theory and
examples, and datasets from consulting sessions and research publications. We
emphasize basic principles and careful modeling and, armed with such tools,
the student should be able to apply these principles in any situation

This book grew out of a course on Statistical Design taught at Cornell
during the 1990s, and at Florida in the 2000s. Most of the examples and
datasets are from consulting sessions with graduate students writing theses
or professors writing papers, and the subjects span everything from planting
alfalfa in the field to harvesting brain stem cells. (Most of my career has been
spent at Colleges of Agriculture – Rutgers, Cornell, and split between Arts
and Sciences and Agriculture at Florida. This will show in the examples.) I
have found that although the data and the lab techniques have changed, the
statistical principles remain quite constant.

Now, for the more important details:

◦ The level of the text is for first or second year graduate students. The
students should be familiar with standard statistical methodology (anova,
blocking, multiple regression) that one would get from a typical one-year
methods sequence (from books such as Ott and Longnecker 2000, Rawlings
et al. 1998).

◦ The material in the text is about right for a one-semester course. There
is probably a bit more than can be comfortably covered, so some picking
and choosing will be necessary. However, marching through the text is a
reasonable strategy.

◦ The chapters cover, for the most part, the standard material of a design
book, with mostly real examples, and applications of design in real sit-
uations. Although we cover many microarray designs, we do not have a
special section, instead treating them as the topics apply. The only un-
usual chapter is Chapter 4, where the concept of blocking is explored
further, and the effect of a random factor is examined. To me, blocks are
not about being samples from a larger population (which can be difficult
to justify) but rather about the correlation structure that they induce.

◦ Most chapters have a section Technical Notes, which contains the under-
lying theory in detail. The level in these notes is “anything goes”; we
use a lot of matrix algebra, some calculus, and also some statistical con-
cepts such as likelihood and sufficiency. These are in-depth looks that will
enhance the understanding of the advanced student, but skipping these



Preface IX

sections will not hamper the beginner. To fully appreciate these sections it
would be good if the student has had a course from a book like Statistical
Inference by Casella and Berger (2001).

◦ The exercises are divided into “Essential” and “Accompaniment”. Every-
one should do the essentials. The accompaniments tend to be more of
a theoretical nature, going into the details of the procedures. I strongly
suggest that, if the students are able, they should do these exercises too.
I have always found that, for me, true understanding only comes from
slogging through the details.

◦ The datasets are on the book web page found at

www.stat.ufl.edu/∼casella

and, for most datasets in the examples there will be an accompanying R
program. These will not be sophisticated analyses, but rather will serve
as a starting point. I make no guarantees about the R programs. Smaller
datasets may only appear in text.

My best advice is that if you really want to understand statistical design,
read (or even better, reread) Fisher. His ideas, especially about blocking, have
greatly influenced my thinking. In fact, what I perceived as mishandling of
the randomized complete block design was one of the driving forces behind
the text. Fisher, of course, got it right.

There are many gray areas in design – when to pool, how to replicate, etc. –
some of which cannot be fully answered with statistical fact. This is where
we enter the realm of opinions, where judgments are made more on anecdotal
evidence and experience rather than formal calculations. After doing this stuff
for over 20 years opinions form about how to do things – I have taken the
liberty of sharing those thoughts.

Finally, thanks to all of my mentors. First there was Leon Gleser, my PhD
advisor, who taught me to work hard and try to learn as much as possible.
My design mentors were many, starting with Virgil Anderson at Purdue, and
Walt Federer at Cornell, who not only made me really understand split-plot
designs, but also taught me to say “a model” and never “the model”. And Carl
Lowe, the Plant Breeding Professor at Cornell who taught the course “Field
Plot Techniques”, and knew more about field plot layouts than anyone on
the planet. When he retired he gave me all of his notes and examples, many
of which appear as examples and exercises (and in the Appendix). I also
thank the students and colleagues who suffered through my learning process,
who listened as I thought through all of this, read through notes, and solved
problems: Mihai Giurcanu, Jamie Jarabek, David Lansky, Michael Meredith,
Deborah Reichert, and Andy Scherrer.

My most special mentor was Myra Samuels. A true sadness in my life is
that she died in 1992. She taught me to always ask questions until you really
understand. Thanks, Myra.
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And to all of my other mentors – you have all helped me more than you
know – Bob Bechhoffer, Jim Berger, Larry Brown, Shanti Gupta, Jean-Pierre
Habicht, George McCabe, Doug Robson, Bill Strawderman. And all of the
others that I have learned from. Thanks.

George Casella
Gainesville, Florida

February 18, 2008



You may be right
I may be crazy
But it just may be a lunatic you’re looking for.

Billy Joel
You may be right

I finally fixed it because I had, and still have, persistence.
Richard P. Feynman

Surely You’re Joking, Mr. Feynman
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1

Basics

The statistician cannot evade the responsibility for understanding the
processes he applies or recommends.

R. A. Fisher
The Design of Experiments

Give me problems, give me work, give me the most abstruse cryp-
togram, or the most intricate analysis, and I am in my own proper
atmosphere.

Sherlock Holmes
The Sign of Four

This is a book about design, and is typically not concerned with analysis.
Most designs, unless they are complete disasters, will result in a reasonably
straightforward analysis. However, as the purpose of a good design is to result
in an efficient analysis, it is important to be familiar with the types of analysis
that will be done. Thus, we will spend some time discussing the important
parts of analyses, and how the design can impact them. We will also do many
analyses and somewhat address what to do when the design does not go as
planned.

Throughout the book analyses will typically be presented in an anova
framework, complete with anova tables, sums of squares and degrees of free-
dom. This is done not because the anova is the best way to analyze data, but
rather because the anova is the best way to think about data and plan de-
signs. Fisher (1934) first called the anova “a convenient method of arranging
the arithmetic”, but then explained that it is quite a bit more than that, as
rigorously demonstrated by Speed (1987). The ideas of partitioning variation,
counting degrees of freedom correctly, and identifying the correct error terms,
are fundamental to any data analysis. Focusing on the anova helps us focus
on these ideas, and ultimately helps us plan a better design.
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This first chapter is a collection of “basics”, topics which should seem
a bit familiar, but the explanations and interpretations may be somewhat
different from what was previously seen. However, since we are assuming some
familiarity with these topics, the review will be brief and a little disjointed.
1.1 Introduction

We start with some examples of the basic oneway model

Yij = µ + τi + εij , i = 1, . . . , t; j = 1, . . . , r,(1.1)

where Yij is the response, µ is the overall mean, τi is the effect of treatment
i, and εij is the error, often taken to be N(0, σ2), independent and identically
distributed (iid).

Example 1.1. Oneway model Suppose that plants are grown in pots, and
three different types of fertilizer are applied to the pots. After a period of time
the dry weight of the plants is recorded. The data are in Table 1.1.

Table 1.1. Dry weight, in grams, of Geranium “Dilys”, subject to three fertilizer
treatments.

Fertilizer
A B C

1.02 1.00 0.99
0.79 1.21 1.36
1.00 1.22 1.17
0.59 0.96 1.22
0.97 0.79 1.12

For this experiment, a reasonable model is (1.1) with

µ = true overall dry weight
τi = true change in dry weight due to fertilizer i

yij = observed yield of plant j in treatment i

εij = unobserved error

Note that we use a lowercase yij here, while in (1.1) we used upper case Yij .
This is the distinction between the random variable Yij which is unobserved,
and the observed realized value, the data yij . ‖

Model (1.1) is overparameterized, in that without further assumptions we
cannot separate the effects µ and τi. (Formally, such a model is nonidenti-
fiable.) It is typical to impose a restriction on the parameters to make the
model identifiable, with the most common being the restriction

∑
i τi = 0.
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Alternatively, we can use the cell means model

Yij = µi + εij , i = 1, . . . , a; j = 1, . . . , r(1.2)

in which the µi are identifiable and the theory is somewhat easier. However,
model (1.1) tends to be more popular. Here we will typically use the over-
parameterized model (1.1) but will not always implicitly assume

∑
i τi = 0.

Rather, we will sometimes keep track of the parameters so it is clear exactly
what parameters can be estimated.

Note: Define the “dot” notation by yi· =
∑

j yij , so the “·” signifies summing
over that index. The “bar” means averaging, so that ȳi· = (1/r)

∑
j yij . If there

is no chance for confusion, for the sake of simplicity we will write ȳi instead of
ȳi·.

Then, for example, from (1.1)

E Ȳi· =
1
r
E

⎛

⎝
∑

j

µ + τi + εij

⎞

⎠ = µ + τi,

(1.3)

E Ȳ =
1
rt

E

⎛

⎝
∑

ij

µ + τi + εij

⎞

⎠ = µ + τ̄ ,

showing that the parameters µ+τi and µ+ τ̄ are estimable and that they have
unbiased estimators. From here, a number of interpretations are possible:

(1) First note that E(Ȳi· − Ȳi′·) = τi − τi′ , so treatment differences are always
estimable.

(2) We can always assume, without loss of generality, that τ̄ = 0, so then µ
and τi are estimable.

(3) Equivalent to (2), define µ∗ = µ + τ̄ and τ∗
i = τi − τ̄ and use the model

Yij = µ∗ + τ∗
i + εij with

∑
i τ∗

i = 0.

Thus, these are all reparameterizations, and are equivalent. What is im-
portant is that the experimenter is aware of the parameterization, knows what
is being estimated or tested, and can make a meaningful conclusion.

Perhaps the most important concept in statistical design is the experimen-
tal unit.

Definition 1.2. The experimental unit is the unit (subject, plant, pot, ani-
mal) that is randomly assigned to a treatment.
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The experimental unit, as the name implies, is the basic unit of the exper-
iment, and defines the unit to be replicated to increase degrees of freedom.

Note: In the definition of experimental unit the phrase “randomly assigned” is
of crucial importance.

Example 1.3. Experimental unit Using model (1.1),

(1) In Example 1.1, the treatment (fertilizer) is applied to the pots, which are
the experimental units. The plants are not the experimental units.

(2) An experimenter investigating the effect of different food for a species of
fish (τi) places the food in tanks containing the fish. The weight increase
of the fish is the response (yij). The experimental unit is the tank, as the
treatment is applied to the tank, not to the fish. (If the experimenter had
taken the fish in hand, and placed the food in the fish’s mouth, then the
fish would have been the experimental unit – as long as each fish got an
independent scoop of food!)

(3) In a microarray experiment (see Miscellanea 1.9.1), RNA from two groups
of people (with and without a certain disease) are applied to the microar-
ray (“chip”), with the response being gene expression. The experimental
unit is the person. (See also Section 1.6.)

Replicate the
experimental
unit to
increase df

In (3), no treatment is actually applied, as the “treatment”
is the group membership, and the members of the group be-
come the experimental unit. In (1) and (2), a treatment is
actually applied to a unit. We do not dwell too much on
this distinction, as it becomes less important as long as we
correctly identify the experimental unit.

See Miscellanea 2.9.2 for more on this.
For example, in (1), if the experimenter mixes one batch of fertilizer, and

applies it to five pots, there is only one experimental unit, not five. This
is because the effect of using one batch of fertilizer five times will induce a
correlation in the five responses. There would only be five experimental units
if the fertilizer for each pot were mixed independently. In (2), if the food is
placed directly in the fish’s mouth, the food must be prepared independently
for each fish. ‖

Definition 1.4. A sampling unit is the object that is measured in an experi-
ment. It may be different from the experimental unit.

Definition 1.5. Replication is the repetition of the experimental situation by
replicating the experimental unit.
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In any design, we must be aware of the consequences of the planned repli-
cation. The importance of identifying, and replicating the experimental unit
becomes apparent if we look at an anova table.

Example 1.6. Replication Referring to Example 1.3

(a) In (1), replication is obtained by using more pots. Increasing the plants
per pot has no effect.

(b) In (2), as an illustration, suppose there are 3 different diets, 4 tanks per
diet, and 6 fish per tank. The anova table is

Source df Mean Square F -ratio
Diets 2 MS(Diet) MS(Diet)/MS(Tank)
Tanks (in Diets) 9 MS(Tank)
Fish (in Tanks) 60 MS(Fish)
(subsampling)

so the F -test on diets has 9 degrees of freedom from the replication of
the tanks. The fact that there were 6 fish per tank does not bear at all
on the estimation and testing of diets, and the response (weight gain) is
summed over the experimental unit. Replicating the fish is subsampling
or pseudoreplication, and does not affect the main test.
This is an example of a nested design, where Tanks are nested in Diets and
Fish are nested in Tanks. In such designs the testing is straightforward –
the nested factor provides the error mean square for the factor in which it
is nested. (See Section 1.5.) Of course, we can test the significance of tanks
using MS(Tank)/MS(Fish), but this is wasted effort. There is typically no
interest in assessing the significance of tanks; they are merely there to
hold the fish! (but see Exercise 1.5).

(c) In (3), replication is obtained by having RNA from more people. Just
using more chips, or splitting one person’s RNA across two chips, is again
wasted effort. See Section 1.6.

‖

Example 1.6 illustrates a key principle of experimental de-
sign – knowing the correct denominator in the F -test. If
the experimenter comes to us at the design stage, and is
interested in getting the “best” test on diets, that would
typically mean maximizing the df for the test on

It’s all
about the
denominator!

diets. From the ANOVA above we see that increasing the number of fish per
tank has no effect on the test statistic for diets. To increase df in that test, we
must increase the number of tanks. Thus, if resources can be allocated between
fish and tanks, it is best to maximize the number of tanks in the experiment.
This is just another way of saying that to increase the df (and hence the
power of a test) we need to increase the replications of the experimental unit
– which, for the test on diets, is the tank.
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Example 1.7. Fish one last time The fish weight gain data for Example
1.6 is in the dataset FishTank. A default anova statement, in some computer
packages, could give the anova

df Sum Sq Mean Sq F -value

Diet 2 21247.7 10623.9 10623.9
51.4 = 206.606

Tank 9 107.8 12.0 12.0
51.4 = 0.233

Within 60 3085.3 51.4
(Fish in Tanks)

which is incorrect. The correct anova will test Diet against Tank, yielding

df Sum Sq Mean Sq F -value

Diet 2 21247.7 10623.9 10623.9
12.0 = 886.85

Tank 9 107.8 12.0 0.233
Within 60 3085.3 51.4
(Fish in Tanks)

The test of Tank against “Residuals” (or, more precisely, fish within tanks) is
correct, as the fish are giving replications of the measurement corresponding
to the tank.

Unless otherwise specified, computer packages will use the last line of the
anova table as the denominator for all tests. This example is typical, in that
if you do not specify the error term, the default analysis may get it wrong. ‖

As mentioned, the fish tank design illustrates nested factors. The tanks
are nested within diets, and the fish are nested within tanks. When a factor
is clearly nested in another, then the F -ratio is always the ratio of the mean
square of the top factor divided by the nested factor. Thus, in the fish tank
experiment, all of the tests are clear (Exercise 1.8).

If the same four tanks had been used in each level of diet, then tanks would
have been crossed with diets, and the anova would have been

df Sum Sq Mean Sq F -value

Diet 2 21247.7 10623.9 206.606
Tank 3 91.5 30.5 0.233
Diet × Tank 6 16.3 2.7
Within 60 3085.3 51.4
(Fish in Tanks)

Note that here, with tanks crossed with diets, the anova would become a
randomized complete block design (RCB) with tanks as blocks. Diet is then
tested against the Diet × Tank interaction. And again, the within error due
to fish is not of much use. (See Chapter 3.)
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1.2 Variance and Covariance

We have already seen the calculation of an expected value in (1.3), and now
we review some basics of calculating means, variances, and covariances. As the
statistics in this book are mainly based on linear models with normal errors,
an example being model (1.1), we restrict our treatment to those cases.

In model (1.1), the random variable Yij is related to the random variable
εij , which has the property that

E(εij) = 0, Var(εij) = σ2.

As Yij = µ + τi + εij , it then follows that

E(Yij) = E(µ + τi + εij) = µ + τi + E(εij) = µ + τi,

which shows that Yij is an unbiased estimator of µ + τi, as it equals µ + τi in
expectation. Also,

Var(Yij) = E [Yij − E(Yij)]
2

= E [(µ + τi + εij) − (µ + τi)]
2

= E(εij)2 = Var(εij) = σ2,

where, in both calculations, we have used the fact that µ and τi are constants.
When data are collected according to model (1.1), we usually estimate µ

and τi with their least squares estimators (Exercise 2.5). These are the means
Ȳi· and have expected value

E
(
Ȳi·

)
=

1
r

r∑

j=1

EYij = µ + τi

and

E( ¯̄Y ) =
1
tr

t∑

i=1

r∑

j=1

EYij = µ + τ̄ ,

showing that an unbiased estimator of the treatment effect is Ȳi·− ¯̄Y , that is,

E
(
Ȳi· − ¯̄Y

)
= τi − τ̄ .(1.4)

It is typical to assume that τ̄ = 0, modeling τi as deviations from the overall
mean level µ. Doing that, the variance of our estimator is

Var
(
Ȳi· − ¯̄Y

)
= Var(Ȳi·) − 2 Cov(Ȳi·,

¯̄Y ) + Var( ¯̄Y ) =
σ2

r

(

1 − 1
t

)

.(1.5)

Recall that the covariance of two random variables Y and X is

Cov(Y,X) = E[(Y − EY )(X − EX)]
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(see Section 1.8). Evaluation of this final expectation is a bit lengthy and is
left to Exercise 1.7.

So, from (1.4) and (1.5) we have an estimate of τi and the variance of
the estimate. What remains is to be able to estimate the variance of Ȳi· − ¯̄Y ,
which means that we have to estimate σ2. In the oneway anova this is usually
done with an unbiased estimator that comes from the within variation. Note
that the variables inside a treatment all have the same mean, so if we only
work with those variables, differences will be free of τi.

Within cell i we have that EYij = EȲi· = µ + τi. Thus, we can actually
apply (1.5) within a cell to establish that

E(Yij − Ȳi·)2 = Var(Yij − Ȳi·) = σ2

(

1 − 1
r

)

and hence
r∑

j=1

E(Yij − Ȳi·)2 = r × σ2

(

1 − 1
r

)

= (r − 1)σ2.(1.6)

If we do a similar calculation for each cell and sum, and recognize that

t∑

i=1

r∑

j=1

(Yij − Ȳi·)2 = SS(WithinTrts),

and we have that

E(SS(WithinTrts)) = t(r − 1)σ2

and(1.7)

E
(

SS(WithinTrts)
t(r − 1)

)

= E(MS(WithinTrts)) = σ2,

showing that MS(WithinTrts) is an unbiased estimator of σ2.
Thus, we can estimate τi with the unbiased estimator Ȳi· − ¯̄Y with esti-

mated variance ((r − 1)/rt)MS(WithinTrts), and use this to construct tests
and confidence intervals (see, for example, Section 2.4).

One important message here is that to estimate the variance of our treat-
ment estimate, we use the within SS. What we will see is that in all designs,
the variance estimate comes from the mean square in the denominator of the
anova F -test, which is found through calculation of Expected Mean Squares
(EMS). As we will see in the coming chapters, calculation of EMS is very
important.

1.3 Partitioning Variation

An analysis of variance (anova) done on data collected according to model
(1.1) is a partitioning of the variation in the data into pieces that can be
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attributed to different factors. Next, in our introductory mode, let us calculate
the sums of squares for the data layout of Table 1.1. The total sum of squares
is partitioned as

SS(Total) = SS(Trt) + SS(Within Trts),
(1.8)

t∑

i=1

r∑

j=1

(yij − y)2 =
t∑

i=1

r(yi· − y)2 +
t∑

i=1

r∑

j=1

(yij − yi·)
2.

We see that the total sum of squares measures the variation in the data where
the treatment is not accounted for, and is partitioned into the variation that
the treatment can account for (the variation in treatment means) and the
variation that the treatment cannot account for (the variation within the
treatment levels). This latter within variation is a true experimental error in
that we have replications of the experimental unit under the same treatment
conditions. If there were no experimental error, these replications should give
the same value.

Equation (1.8) is related to an identity between unconditional and condi-
tional variance. If X and Y are two random variables, then

Var(Y ) = Var[E(Y |X)] + E[Var(Y |X)].(1.9)

A most
important
identity

If Y is the response variable and X is the treatment level, then
the left side of (1.9) is the variability in Y without accounting for
X, analogous to the total sum of squares. The quantity E(Y |X)
is the expected value of Y conditional on the treatment level,
analogous to the treatment mean,

and the treatment sum of squares measures this variability. The average vari-
ability of Y inside each treatment level, the within variability, is the term
E[Var(Y |X)]. (See Exercise 1.9.)

We next take a look at the partition of variance in a Randomized Complete
Block Design (RCB), to illustrate the contrast with the Completely Random-
ized Design (CRD). We typically do not calculate the “within treatment” sum
of squares in an RCB, but it is useful to see it and to explicitly see where we
get SS(Blocks) and SS(T × B).

Example 1.8. Strawberry blocks A field experiment is conducted to
study the adaptability of three varieties of strawberries to Venezuelan soil,
which are blocked on four different plots of land. The data are given in
Table 1.2. ‖

We now calculate the sums of squares for the data layout of Table 1.2. The
total sum of squares can first be partitioned as
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Table 1.2. Yields in kilograms from four blocks of land over a 2-week period

Blocks
1 2 3 4

A 10.1 10.8 9.8 10.5
Variety of
Strawberry B 6.3 6.9 5.3 6.2

C 8.4 9.4 9.0 9.2

SS(Total) = SS(Trt) + SS(“Within Trts”),
(1.10)

t∑

i=1

b∑

j=1

(yij − y)2 =
t∑

i=1

b(yi· − y)2 +
t∑

i=1

b∑

j=1

(yij − yi·)
2,

and

SS(“Within Trts”) = SS(Blocks) + SS(T × B),
(1.11)

t∑

i=1

b∑

j=1

(yij − yi·)
2 =

b∑

j=1

t(y·j − y)2 +
t∑

i=1

b∑

j=1

(yij − yi· − y·j + y)2.

Comparing this partition to that of the oneway anova (1.8) should clarify
the relationships of the sums of squares.

In the RCB
the interaction
always tests
treatments

Equation(1.11) is sometimes interpreted as showing a pos-
sible advantage to blocking, that is, the sum of squares
used for estimating within error is reduced, possibly lead-
ing to a smaller error estimate and hence more significant
results.

The reduction is not certain, however, because it is the mean squares that are
used and the error degrees of freedom have been reduced from t(b − 1) in a
oneway anova to (t − 1)(b − 1) in a RCB. So, even though from (1.11) it is
always true that

SS(Within Trts) > SS(T × B),

it does not necessarily follow that

SS(Within Trts)
t(b − 1)

>
SS(T × B)

(t − 1)(b − 1)
.

However, realize that (1.11) is just a “what if” scenario, as the design of the
two experiments are different, and the design is typically a function of the
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physical setup or limitations. So (1.11) just relates numbers and cannot be
used to decide how to analyze a particular anova. The oneway anova and the
RCB anova are quite different in a most fundamental way. The oneway anova
is a special case of a completely randomized design; the data are collected
in a random order throughout the experiment. By its very nature, a block
design restricts randomization to within the blocks and, hence, cannot be a
completely randomized design. Any attempt to analyze it as such can only
create bias in the analysis.

1.4 Contrasts

Typically, the goal in a statistical experiment is to understand the effect of a
treatment, or to compare and contrast treatment effects. With good design,
we strive to optimize the variance that we use for our comparisons, but we
also need to understand how to make these comparisons of interest. We use
contrasts and, if possible, orthogonal contrasts to compare treatment effects.
We review these concepts in this section.

Definition 1.9. For parameters θ1, . . . , θt and constants a1, . . . , at, the
quantity

t∑

i=1

aiθi

is a linear combination. If
∑t

i=1 ai = 0, it is a contrast.

Contrasts allow us to compare parameters corresponding to treatments.
The simplest contrast is a1 = 1, a2 = −1, and all other ai = 0, which measures
the difference between treatments 1 and 2.

Example 1.10. Simple contrasts Consider the following contrasts am-
ong four means:

µ1 µ2 µ3 µ4

1 −1 0 0
0 0 1 −1
1 1 −1 −1

These three contrasts allow us to compare the four means by (1) comparing
the first and second means, (2) comparing the third and fourth means, and
(3) comparing the average of the first two to the average of the last two.

Contrasts are not unique; there are an infinite number of them. In any
particular experiment they should be chosen to reflect the questions that are
of interest.

Another simple set is
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µ1 µ2 µ3 µ4

1 −1/3 −1/3 −1/3
0 1 −1/2 −1/2
0 0 1 −1

Here, the first contrast compares µ1 to the average of the others. This can be
a comparison of interest if µ1 is a control and the others are treatments, so
(1,−1/3,−1/3,−1/3) contrasts the control with the average treatment effect.
This set of contrasts is called Helmert contrasts. ‖

The two sets of contrasts in Example 1.10 are sets of orthogonal contrasts.

Definition 1.11. For parameters θ1, . . . , θt, two contrasts

t∑

i=1

aiθi and
t∑

i=1

biθi

are orthogonal contrasts if
∑t

i=1 aibi = 0.

Note: Both Definitions 1.9 and 1.11 are about parameters. We now estimate
these contrasts by using the data ȳi, and then there can be confusion between
orthogonal and uncorrelated, a difference that is important to understand.

Although this distinction is often glossed over, it can have very important
implications for inference.

Definition 1.12. Two contrasts
∑t

i=1 aiȳi and
∑t

i=1 biȳi are orthogonal if∑
i aibi = 0. The same two contrasts are uncorrelated

∑
i aibi/ri = 0, where

Var(Yi) = σ2 and Ȳi is based on ri observations.

If an anova has the same number of observations per cell (ri = r), then,
under the usual assumptions, orthogonality and uncorrelated are exactly the
same. However, if this is not the case, then we must be more careful. Some
details are given in Technical Note 1.8.2

We start with an example.

Example 1.13. Rehabilitation time In a study of the relationship be-
tween physical fitness prior to knee surgery and rehabilitation time, data were
collected on 24 men, aged 18-30 years who had similar corrective surgery, all
within the same year. The data are in dataset RehabTime and look like
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Physical Condition
Poor Below Above Excellent

Condition Average Average Condition
42 29 28 26
...

...
...

...
42 31 33 22

r 6 6 6 6

An anova table for these data is

df Sum Sq Mean Sq F -value p-value

Condition 3 861.0 287.00 25.28 < .0001
Within 20 227.0 11.35

To further partition the variation we can break down the treatment sums of
squares into components that are attributable to contrasts. If the contrasts
are orthogonal, we can completely partition the treatment sum of squares,
with no overlap, into additive components that represent the variation due to
the contrasts. This is the advantage of having orthogonal contrasts.

df Sum Sq Mean Sq F -value p-value

Condition 3 861.0 287.0 25.28 < .0001
Poor vs. Others 1 512 512 45.11 < .0001
Below vs. Above/Exc. 1 132.25 132.25 11.65 .0028
Excellent vs. Above 1 216.75 216.75 19.09 .0003

Within 20 227.0 11.35

These are the Helmert contrasts as shown in Example 1.10. Note that the
sums of squares of the three contrasts add to the treatment sum of squares,
so the variation in treatment is partitioned into three nonoverlapping pieces.
‖

The formula for the contrast sum of squares may not, at first sight, be
intuitive, but it is the way to partition the total sum of squares (see Technical
Note 1.8.2).

Definition 1.14. For a contrast
∑

i aiθi that is estimated with
∑

i aiȳi,
where ȳi is based on ri observations, the sum of squares due to the contrast∑

i aiȳi is
(
∑

i aiȳi)
2

∑
i a2

i /ri
.

Note that the formula involves ri. This has the unfortunate consequence that
orthogonal contrasts, such as Helmert contrasts, will not partition the treat-
ment sum of squares orthogonally unless ri = r.
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Example 1.15. Rehabilitation time continued Suppose that the data
are unbalanced; that is, the four groups have unequal number of subjects.
These data are in dataset RehabTime2 and have cell sizes

Physical Condition
Poor Below Above Excellent

Condition Average Average Condition
r 5 8 7 4

There are still 23 total degrees of freedom, split as 3 for treatments and 20
for within error, but the Helmert contrasts no longer partition the treatment
sum of squares into nonoverlapping pieces. Here is a set of contrasts that are
uncorrelated and partition the treatment sum of squares, but they are not
orthogonal.

µ1 µ2 µ3 µ4

1 −8/19 −7/19 −4/19
0 1 −4/11 −7/11
0 0 1 −1

Although these look vaguely similar to the Helmert contrasts, they no longer
have a nice interpretation. We have kept the same third contrast, but cannot
preserve the other two.

Note: In general, we can always start with one contrast of interest and parti-
tion the treatment sum of squares into two nonoverlapping pieces, one due the
contrast of interest and one due to everything else.

This is usually the more meaningful course, rather than to try to make
sense of the uncorrelated contrasts when there is unequal ri.

Alternatively, we can just look at the sums of squares and F -ratios for
the orthogonal set of contrasts and realize that we are not partitioning the
treatment sum of squares orthogonally, and interpret these more meaningful
contrasts in that light. (See Exercise 1.13.) ‖

There are many different sets of orthogonal contrasts, each having different
interpretations and, depending on the experiment, some are more appropriate
than others. Here is an example with polynomial contrasts.

Example 1.16. Fish microarray experiment The goal of this exper-
iment was to find the optimum combination of two treatments, Tissue Mass
and presence or absence of hCG (an endogenous stimulant of hormone syn-
thesis) for gene expression in gonadal tissue in fish. The treatment design is
the twoway crossed design
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Tissue Mass (mg)
50 100 150 200

hCG Yes x x x x
No x x x x

The quantitative levels of Tissue Mass suggest using polynomial contrasts.
For a factor with 3 levels we can take out linear and quadratic trends with
the contrasts1 given by

linear : −1 0 1
quadratic : 1 −2 1

A full set of orthogonal contrasts for this experiment is given by

Linear Tissue
Mass (mg)

−3 −1 1 3
hCG 1 −3 −1 1 3

−1 3 1 −1 −3

Quadratic Tissue
Mass (mg)

1 −1 −1 1
hCG 1 1 −1 −1 1

−1 −1 1 1 −1

Cubic Tissue
Mass (mg)

−1 3 −3 1
hCG 1 −1 3 −3 1

−1 1 −3 3 −1

The dataset FishTissueMass has the data for this experiment. The fol-
lowing anova table can be constructed:

Source df
Tissue Mass 3

Linear 1
Quadratic 1
Cubic 1

hCG 1
Tissue Mass × hCG 3

Linear × hCG 1
Quadratic × hCG 1
Cubic × hCG 1

Within 4
Total 11

The details of the analysis are left to Exercise 1.15. ‖

1 Many texts, such as Dean and Voss (1999) have tables of polynomial contrasts.
Contrasts can also be generated in R with statements such as contr.poly or
contr.helmert. Note that R automatically scales the contrasts so that

∑
i
a2

i = 1.
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1.5 Randomization, Layouts, and Designs

In this section we discuss some fundamentals in the collection of experimental
data, and clarify a number of terms relating to the actual data that we see.
We must be aware of what information we will need to be able to fully analyze
the data. For example:

(1) In an agricultural field, we must take account of how treatments are as-
signed to plots.

(2) If our experimental unit is a subject, are treatments applied in a totally
random order? Are groups of subjects treated in a similar way?

(3) In a laboratory experiment, are all treatments run in one day? If not, do
conditions change enough between days that we need to account for this
factor as a block?

(4) In a microarray experiment, are the microarrays acting as blocks? That
is, is there more than one treatment on a microarray?

Randomization

Perhaps the most fundamental principle of design is randomization, that is,
obtaining the observations (or, more precisely, the experimental units) in a
random manner that is as free from bias as possible. Consider the following
example.

Example 1.17. Problematic inference A researcher in Forestry re-
ceived a grant to investigate five newly developed varieties of pine trees. She
carefully and painstakingly planned an elaborate greenhouse experiment to
determine which variety has the greatest annual growth. After 4 years, she
analyzed the results of her experiment and recommended variety B as the
best (for maximum annual growth). Her results were so overwhelming that 10
lumber companies planted the recommended variety on half of their replace-
ment acreage. After 4 years, 8 of the companies complained that variety B
pine trees were only 75% as tall as “an old standby variety”. What happened?
‖

There are many possible explanations. Some are

(1) This all happened by chance.
(2) Somehow the trees were not randomly assigned in the greenhouse, and

variety B received more light, or better soil, or optimal temperature.
(3) The greenhouse experiment was properly done, but the soil used was not

representative of that in the replacement acreage.

Although randomization cannot do much about (1) or (3), which reflects a
Block×Treatment interaction, proper randomization should guard against (2).
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The basic idea of randomization is that, given a design, the actual assign-
ment of experimental units to treatments should be chosen at random, with
equal probability, from all possible assignments. Such a strategy would result
in a simple random sample. Although, in practice, we do not list out all pos-
sible arrangements, the point is that the assignment of experimental units to
treatments can never be based on any subjective information, and must be
left to a random mechanism.

Example 1.18. A random assignment Recall Example 1.1. There are 15
potted plants, which are the experimental units. These must be randomized
to the three fertilizer treatments. Formally, there are 15!

5!5!5! = 756756 ways of
assigning the pots to the fertilizers. To obtain a random sample, we could list
all of these assignments, then draw a random number between 1 and 756756,
and choose that arrangement. In practice, we would choose a pot at random
(using a random number generator2) and then assign it to one of the three
fertilizers at random.

If the 15 potted plants are on a greenhouse bench, then the actual place-
ment of the plants on the bench should entail another random assignment. (If
there is a known gradient, for example a light or temperature gradient, this
also could be accounted for by blocking.) ‖

The random assignment of experimental units to treatments should result
in the following desirable outcomes.

(1) Elimination of systematic bias. Bias comes in many forms, and some
of it is unknown. In addition to gradients of light or temperature, we could
have things like dye bias in microarray experiments, interviewer bias in
surveys, and other unaccountable occurrences. Randomization is one way
to break any systematic effect.

(2) Obtaining a representative sample. Since our ultimate goal in any
experiment is to make a valid inference to a population, our data must
be representative of that population. Randomization is needed to obtain
a representative sample.

(3) Accounting for extraneous (unknown) confounding variables.
Confounding variables exist in all experiments. In Example 5.1 we will
look at the effect of diets on blood pressure, measured on 12 subjects. Al-
though the subjects are to be of similar health status, confounders such as
lifestyle, race, genetic disposition, or many other factors, could influence
the results. Although it many be possible to control for some factors, such

2 It was common for statistics texts to include tables of random numbers, but
these have been replaced by the ubiquity of computer-generated random (or, more
precisely, pseudo-random) numbers. Most established statistical software has such
generators built in, and they can produce streams of deterministic numbers that
are impossible to distinguish from random. For more details, see Robert and
Casella (2004, Section 2.1).
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as race, other factors are uncontrollable, even unknown, such as genetic
disposition. Randomization will help to distribute this unknown variation
throughout the experiment, breaking the confounding influence.

Fisher (1971, Section II.9) wisely noted that “...the uncontrolled causes
which may influence the result are always strictly innumerable”. This reflects
the fact that, in any experiment, there will be confounding factors that we
will not be aware of, and randomization is our only method of obtaining a
valid inference in the face of these confounders.

Treatment Design

The title of this book, “Statistical Design”, was chosen purposefully. Note
that the title of this book is not “Experimental Design”. The reason for this
is that there are two pieces to a design, which we separate into Treatment
Design and Experiment Design. A Statistical Design contains both of these
pieces.

Definition 1.19. A treatment design is the manner in which the levels of
treatments are arranged in an experiment. Typically, treatments are either
crossed or nested, and this relationship can be either complete or incomplete.

Example 1.20. Crossed or nested Treatments are crossed, or in a fac-
torial arrangement, if each level of one treatment appears with each level of
the others. If Treatment A has 6 levels and Treatment B has 3 levels, here is
a crossed treatment design:

A
1 2 3 4 5 6

1 x x x x x x
B 2 x x x x x x

3 x x x x x x

which might also be portrayed as

A
1 2 3 4 5 6
B

1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

If both A and B are crossed with C, at two levels, this could look like



1.5 Randomization, Layouts, and Designs 19

C
1 2
A

1 2 3 4 5 6
B

1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

A
1 2 3 4 5 6
B

1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

Alternatively, we could represent this as a three-dimensional rectangle with
sides of 2, 3, and 6, where each of the 2 × 3 × 6 = 36 cells is a treatment
combination.

Treatment B is nested in Treatment A if different levels of B appear with
the levels of A; for example,

A
1 2 3 4
B

1 2 3
x x x

B
4 5 6
x x x

B
7 8 9
x x x

B
10 11 12
x x x

Here B, with 12 levels, is nested in the 4 levels of A. This nesting could be
unbalanced if, for example, level 3 of A only had 2 levels of B, and the other
levels of A all had 3 levels of B. ‖

With B nested in A, we are only able to compare the levels
of B in a particular level of A, which limits our inferences.
Thus, it is a good general principle that factors of interest
should be crossed rather than nested, to allow for better
comparisons of treatments and interactions.

Nested factors
have no
interaction

In practice, nested factors are usually random – for example, subjects could
be nested in a treatment; and with a random factor the interest is rarely about
comparisons of means.

Example 1.21. Crossing subjects and treatments Crossing a ran-
dom factor and a fixed factor, as in the case of subjects and treatments,
results in correlation in the observations. This is because when we draw the
subject at random and apply the treatment, we have used up that experimen-
tal unit. The only way we can “cross” subjects and treatments is to apply all
of the treatments to the same subject (if possible). If we did this with, for
example, 3 treatments and 5 subjects, we could display the data as

Treatment
1 2 3

Subject
1 2 3 4 5
x x x x x

Subject
1 2 3 4 5
x x x x x

Subject
1 2 3 4 5
x x x x x
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which “looks like” a oneway anova on treatments. However, we know that we
do not have 15 independent experimental units. However, if we display the
data as

Subject
1 2 3 4 5

1 x x x x x
Treatment 2 x x x x x

3 x x x x x

it should be clear that this is a RCB design. Thus, the treatment design of
an RCB is a twoway crossed design. This distinction is explored further in
Exercise 3.7. ‖

Note: The treatment design shows us how to count degrees of freedom and
calculate sums of squares in the anova table. But we need more information
before F -ratios can be formed. That information comes from the experiment
design.

Layouts

The treatment design is reflected in the data layout.

Example 1.22. Data layout The following data were collected on three
hybrids of corn subjected to four different fertilizer treatments:

Hybrid
M4 G10 M15

a 70.8 57.1 54.2
Fertilizer b 73.9 68.1 75.4

Type c 56.8 56.8 67.5
d 92.9 84.3 90.4

The treatment design is a twoway crossed layout or factorial arrangement –
every level of one treatment appears with every level of the other. This is
reflected in the data layout given above, which is the data file that is given to
the computer. Note that the treatment design does not take account of any
error structure or distributional assumptions. ‖

Example 1.23. Field layout Although the treatment design of Example
1.22 is apparent from the data layout, the data could have come from many
different experiment designs. If the field layout of the data are
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M15 M4 M4 M15 G10 M15 G10 M4 G10 M15 G10 M4
a c d c d b c b a d b a

54.2 56.8 92.9 67.5 84.3 75.4 56.8 73.9 57.1 90.4 68.1 70.8

this would correspond to a design in which each of the treatments was com-
pletely randomized to the 12 plots; randomization was complete throughout
the data layout and the field layout. Thus, the experiment design is a com-
pletely randomized design.

Contrast this field layout to an alternative such as

G10 M4 M15 M15 G10 M4 G10 M15 M4 M15 G10 M4
c c c a a a d d d b b b

56.87 56.8 67.5 54.2 57.1 70.8 84.3 90.4 92.9 75.4 68.1 73.9

In this field layout the treatments are not randomized throughout, but rather
the randomization is carried out in blocks of the fertilizer treatment. So, al-
though the data layout is the same, and the treatments are still in a twoway
crossed arrangement, the field layout is totally different. So we can have the
same treatment design (data layout) corresponding to different experiment
designs.

As the fertilizer is applied to three adjacent plots simulta-
neously, this block places a restriction on the randomization
and induces a correlation structure. This randomization re-
striction is actually

Implications
of fixed
vs. random

the defining difference between fixed factors and random factors. See the dis-
cussion in Section 3.2. ‖

Experiment Design

Note that the term “field layout” is somewhat historical, as much of statistical
design originated with agricultural field experiments. However, this term really
refers to all restrictions imposed on the collection of the data.

Example 1.24. Field layout continued For both field layouts from
Example 1.23, an anova table looks like

df Sum Sq
Fertilizer 3 1656.44
Hybrid 2 107.22

Fertilizer × Hybrid 6 195.19

However, unless we know how the treatments were assigned and how the
randomization of treatments was done, we cannot correctly analyze this data.
‖
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Definition 1.25. The experiment design is the manner in which the random-
ization of experimental units to treatments is carried out and how the data
are actually collected. The error structure of the experiment is a consequence
of the experiment design.

In a twoway anova, there are many “choices” of how to form F -ratios;
however, only one “choice” is the correct one for any given experiment design.
One of the main goals of this book is to make this idea clear, so we will
always know the proper F -ratio and, hence, the proper variance estimate for
treatment comparisons.

Example 1.26. Twoway F -ratios For the twoway crossed treatment de-
sign, we can have the following choices for F -ratios: The three different choices
of F -ratios correspond to three different experiment designs which would re-
sult in three different field layouts. Referring to the columns of Table 1.3

Column (a): These tests could result from a completely randomized
design, in which the treatment combinations are randomly allocated
throughout the design.
Column (b): These tests could result from a randomized block design, in
which the levels of A are randomized within the levels of B, so B restricts
the randomization of A.
Column (c): These tests could result from a design in which the random-
ization of both factors are restricted. Note that B is randomized in the
columns and A is randomized in the rows (see Section 5.6.1).

Look carefully at the layouts in Table 1.4. These (and almost all layouts)
will often be dictated by physical constraints. For example, in (c), the A
treatment is constant in rows and the B treatment is constant in columns
(see Exercise 1.17). ‖

Table 1.3. Possible anovas corresponding to (a) complete randomization, (b) re-
striction of randomization of one factor, and (c) restriction of randomization of both
factors.

Choices

F -ratio
Source Df Mean Square (a) (b) (c)

A a − 1 MS(A) MS(A)
MS(Within)

MS(A)
MS(Within)

MS(A)
MS(AxB)

B b − 1 MS(B) MS(B)
MS(Within)

MS(B)
MS(AxB)

MS(B)
MS(AxB)

A × B (a − 1)(b − 1) MS(A × B) MS(AxB)
MS(Within)

MS(AxB)
MS(Within)

MS(AxB)
MS(Within)

Within ab(r − 1) MS(Within)
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Table 1.4. Corresponding to Table 1.3, possible field layouts for (a) complete ran-
domization, (b) restriction of randomization of one factor, and (c) restriction of
randomization of both factors.

(a) (b) (c)

A1B1 A2B1 A1B3
A1B2 A3B3 A3B2
A3B1 A2B2 A2B3

A2B1 A3B2 A1B3
A1B1 A2B2 A3B3
A3B1 A1B2 A2B3

A1B1 A1B2 A1B3
A3B1 A3B2 A3B3
A2B1 A2B2 A2B3

The three layouts in Table 1.4 are well-known designs:

(a) Completely Randomized Design (CRD)
(b) Randomized Complete Block Design (RCB)
(c) Strip Plot Design

1.6 Replication: True and Technical

In Example 1.3(3) we saw an example where RNA from two groups of people
(with and without a certain disease) are applied to a microarray. Here we
give a number of detailed examples of experiments to discuss the difference
between true replication, where the experimental unit is replicated, and tech-
nical replication, where the experimental unit is subsampled. We will not be
very rigorous here, but will leave that to later sections (for example, Section
3.5).

Example 1.27. Irradiation microarrays In an experiment described
by Tusher et al. (2001), RNA was harvested from wild-type human lym-
phoblastoid cell lines, designated 1 and 2. They were then grown in an unir-
radiated state (U) or in an irradiated state (I), where cell lines and irradiated
state are crossed treatments. RNA samples were labeled and divided into two
identical aliquots for independent hybridizations, denoted A and B. Thus,
data for 6,800 genes on the microarray were generated from 8 hybridizations
(U1A, U1B, U2A, U2B, I1A, I1B, I2A, and I2B) according to the treatment
design.

The analysis done by Tusher et al. (2001) interpreted the design for one
gene as

Treatment
U I
x x
x x
x x
x x

Anova
Source df

Treatments(U/I) 1
Within 6
Total 7
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which treats the design as a two-sample t-test (a oneway CRD).
The six degrees of freedom for error are a fiction here. There were only two

cell lines used, which are the experimental units, and here they act as blocks.
This reasoning leads to the analysis

Treatment
U I
x x

Line 1 x x
x x

Line 2 x x

Anova
Source df

Blocks(Lines) 1
Treatments(U/I) 1
B × T 1
Subsampling 4
Total 7

The two lines are blocks, and to each one the two treatments are ap-
plied. The aliquots are not a replication of the experimental unit, but rather
a subsample of the RNA lines on the same experimental units. Although sub-
sampling can increase the precision of the experiment, it does not increase the
degrees of freedom for the treatment test.

In the first analysis, as a oneway CRD, the observations within a treatment
group are correlated, as two of them come from the same line. This is a surefire
red flag that the design may not be appropriate, and a signal that a blocking
factor may be overlooked. ‖

In the above experiment the replications actually come from the same RNA
line - it is merely split in two. Thus, at the lowest level of the experiment, we
can expect correlation in the cells.

In the following experiment there appears to be true replication at the cell
level - the observations in the cell are conditionally independent. However, it
is still subsampling, so we will see that the replication still does not produce
usable replication. (A more detailed treatment of these models is given in
Section 3.5.)

Example 1.28. Pseudoreplication

An experiment was done to assess the effect of shipping and
storage on the acceptability of avocados. Three shipping
methods (increasingly expensive) and two storage meth-
ods (also increasingly expensive) were used. Three different
shipments (which act as blocks) were used in the experi-
ment. Within each shipment, for each Shipping × Storage
combination, four crates of avocados were measured for the

An RCB with
treatments
in a factorial
arrangement

percent acceptable. A schematic of the data is
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Shipment
1 2 3

Storage Storage Storage
1 2 1 2 1 2

Shipping 1
x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

Method 2
x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

3
x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

This is a threeway crossed design, and it was decided that it was reasonable
to assume that there were no interactions. The design was analyzed according
to the following anova table:

Anova
Source df

Blocks (Shipments) 2
Shipping Method 2
Storage 1
Shipping × Storage 2
Residual 64
Total 71

and all tests were done against the “residual”.
This analysis again treats subsamples, or technical replicates, as true repli-

cations. Note that the treatment (Shipping Method × Storage) is applied to
the group of four crates, which constitute the experimental unit. Thus, the
four individual members are subsamples, and all that matters in the analysis
is their average.

Moreover, even if there is a Block × Treatment interaction, these interac-
tion terms still provide the correct errors for the treatment tests. The residual
term above can be decomposed into the appropriate pieces as follows:

Source df
Blocks(Shipments) 2
Shipping 2
Storage 1
Shipping × Storage 2
Residual 64

B × Ship 4
B × Stor 2
B × Ship × Stor 4
Within 54

Total 71
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Where the treatment tests are done against the appropriate interac-
tion with blocks, for example, to test H0: no shipping effect, we use F =
MS(Shipping)
MS(BxShip) . If there is truly no block by treatment interaction, we can pool

the three interaction terms to get one error term with 10 degrees of freedom
that can be used for all treatment tests. We want to emphasize a few points
about this:

(1) Pooling the three interaction terms to get one error term with 10 degrees
of freedom results in conservative tests;, that is, the nominal α level tends
to be an overestimate and the tests are less powerful. This means that
rejection of H0 carries a lot of weight. This is because the denominator of
the test tends to be an overestimate.

(2) Pooling the interaction terms with the within error, to get an error term
with 64 degrees of freedom yields anticonservative tests – tests where the
nominal α level is an underestimate – and rejection of H0 does not carry
much weight. This is because the denominator of the test tends to be an
underestimate.

(3) No matter what, the 54 degrees of freedom for within error do not con-
tribute to, and cannot be used for, the tests on treatments without some
unpleasant assumptions.

The replication in the cells is somewhat of a wasted effort. It is possible
that virtually the same precision can be obtained with fewer crates per cell.
On the other hand, a superior design would be attained if the number of
blocks were increased, without increasing the total number of crates. ‖

A last point to make is about the other kind of pooling – pooling of
experimental units, that is, combining more than one experimental unit and
obtaining one observation. This practice has become more popular because of
microarray experiments, where RNA from different subjects is mixed together
and the combined sample is then hybridized (see Miscellanea 1.9.1). This is
sometimes unavoidable in some experiments because not enough RNA can
be obtained from one subject, but sometimes pooling is employed as a cost-
cutting measure, as the microarray chips can be expensive.

The effect of pooling is to change the experimental unit from the subject
to the pool of subjects. This has two consequences:

(1) The experimental error (the between subject variation) is reduced
(2) The degrees of freedom are based on the number of pools, not the number

of subjects

So there is a positive effect, but it can be somewhat minimal. Suppose that
we have a model where the between-subject variance is σ2 and the observation
is made on a pool of p subjects. A model is then

Yij = µ + τi + εij , i = 1, . . . , t, j = 1, . . . , r, εij ∼ N

(

0,
σ2

p

)

.(1.12)
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The anova for this model has t(r − 1) degrees of freedom for error; the fact
that p subjects were pooled does not change the anova: There is no effect
on the degrees of freedom for error. The positive effect of pooling, which is
somewhat hidden, is in the variance of a treatment mean, Var(Ȳi·) = σ/rp. So
we expect that the variance in the pooled experiment would be smaller than
the variance if there were no pooling. However, we still estimate the variance
with MS(Within) with t(r − 1) degrees of freedom.

Note also the effect of technical replication. The variance of a subject, σ2,
is composed of two pieces; one for the between subject variation and one for
the within subject variation; that is,

σ2 = σ2
B + σ2

W ,

where σ2
B and σ2

W represent between- and within-subject variation, respec-
tively. Now, the effect of true replication, pooling and technical replication
can be summarized as follows. If the experimental unit is composed of a pool
of p subjects, and this is replicated r times (true replication), and each ex-
perimental unit is subsampled s times (aliquot or technical replication), then
the variance of a treatment mean is

Var(Ȳi··) =
1
rp

(

σ2
B +

σ2
W

s

)

.

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

The effect
of replication
on variance

(1.13)

So the effect of the technical replication is to cut down σ2
W , which we expect

to be much smaller than σ2
B, as there is almost always less variability within

a unit than between units. We also see that pooling and true replication have
a similar effect, but remember that we do not gain error degrees of freedom
from pooling.

The moral of the story is that, whenever possible, increase the true repli-
cation at the expense of all other types of replication. (See Exercise 1.21.)

1.7 Exercises

Essential

1.1 Describe a simple experiment and explain what is the experimental unit.
1.2 Consider an experiment that was designed and performed as an RCB but

analyzed as a CRD. If the blocks are effective, would the standard errors of
estimates from the CRD analysis be too large or too small?

1.3 Give an example of a twoway layout that is an RCB. Give an example of a
twoway layout that is not an RCB. For each example use two replications per
cell. Provide a plan or schematic of each example and write the anova table.

1.4 Referring to Examples 1.3 and 1.6:
(a) Write out the anova table for part (1) assuming that there are 6 fertilizers

and 4 pots per fertilizer.
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(b) Analyze the dataset FishTank to produce the anova table in part (2).
Make sure the test on diets has the correct denominator.

(c) Write out the anova table for part (3) assuming that there are 10 people
in each group.

1.5 Referring to (b) of Example 1.6, some may disagree with the statement “There
is no interest in assessing the significance of tanks; they are merely there to
hold the fish”, arguing that we should want to make sure that there are truly
no differences in the tanks. Here are two sides to this argument:
(1) We should be aware of any large tank effect, as that could mask the effect

of the diets
(2) The size of the tank effect is immaterial. If it is so large as to mask the

diet effect, then the size of the diet effect is of no practical significance.
Now suppose that you have available 144 fish and 24 tanks to test the three
diets:
(a) Design an experiment, setting up an anova table as in Exercise 1.6, that

addresses the concerns in (1).
(b) Do the same, but now address the concerns in (2).
(c) Take a stand. Do you agree with the sentiment in (1) or (2)? Which design

would you suggest to the experimenter? (You might want to look at the
data in FishTank to help your argument.

Note: In reality, the limiting factor is money. The experimenter will have some
amount of funds to spend and you must advise him or her how to allocate the
money between fish and tanks.

1.6 (a) Establish the identity for the partitioning of the sums of squares in (1.8).
(Add ±ȳi· inside the square on the left side, expand, and verify that the
cross term is zero.)

(b) Write out the complete anova table, demonstrating the partitioning of the
sums of squares, for the dataset SmogOzone, the record of an experiment
done to measure the effects of ozone, a component of California smog. The
data look like

Controls (0 ppm) Ozone (.3 ppm) Ozone (.6 ppm)

41.0 26.6 −9.0
...

...
...

21.4 6.1 −9.0
where a group of 45 rats were kept in one of three ozone environments for
seven days, with their weight gains (in grams) recorded.

(c) Partition the treatment sums of squares into two orthogonal components
in two different ways:

(i) Compare control vs. treatments, and also compare treatments.
(ii) Test the shape of the Ozone curve: Linear? Quadratic?

1.7 Referring to Section 1.2:
(a) Verify (1.4).
(b) Verify (1.5) by showing

(i) Var
(
Ȳi· − ¯̄Y

)
= Var(Ȳi·) − 2 Cov(Ȳi·,

¯̄Y ) + Var( ¯̄Y ),

(ii) Var(Ȳi·) = σ2/r, Var( ¯̄Y ) = σ2/rt,
(iii) Cov(Ȳi·,

¯̄Y ) = 1
t
E
[
(Ȳi· − µ − τi)

∑t

i′=1
(Ȳi′· − µ − τi′)

]
= σ2/rt, where

the first part of the calculation uses the fact that
∑

i
τi = 0 and the

second part uses the fact that Cov(Ȳi·, Ȳi′·) = 0 if i �= i′.
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(c) Verify (1.6) and that MS(Within) is an unbiased estimator of σ2.
1.8 (a) The anova table shown in Example 1.6 is a nested design, but the parti-

tioning of the sums of squares still holds. If yijk is the weight gain of Fish
k in Tank j eating Diet i, show that

SS(Total) = SS(Diets) + SS(Tanks within Diets)

+SS(Fish within Tanks within Diets),

that is,

t∑

i=1

b∑

j=1

r∑

k=1

(yijk − ¯̄y)2 = br

t∑

i=1

(ȳi·· − ¯̄y)2 + r

t∑

i=1

b∑

j=1

(ȳij· − ȳi··)
2

+

t∑

i=1

b∑

j=1

r∑

k=1

(yijk − ȳij·)
2.

(b) If Tanks were crossed with Diets, the partitioning of the sum of squares
still holds. It is perhaps easiest to see by showing that

SS(Tanks within Diets) = SS(Tanks) + SS(Tank × Diet),

that is,

r

t∑

i=1

b∑

j=1

(ȳij· − ȳi··)
2 = rt

b∑

j=1

(ȳ·j· − ¯̄y)2 + r

t∑

i=1

b∑

j=1

(ȳij· − ȳi·· − ȳ·j· + ¯̄y)2.

1.9 Referring to (1.9):
(a) Show that

Var(Y ) = E[Y − E(Y )]2 = E[Y ± E(Y |X) − E(Y )]2

= E[Y − E(Y |X)]2 + E[E(Y |X) − E(Y )]2,

by verifying that the cross term is zero.
(b) Interpret the final two terms in (a) to arrive at (1.9)
(c) Suppose that, given X = x, the random variable Y takes on values

yx1, . . . , yxr, each with probability 1/r, and P (X = x) = 1/t, x = 1, . . . , t.
By calculating Var(Y ), Var[E(Y |X)], and E[Var(Y |X)], show that the par-
titioning of the sums of squares in (1.8) is a special case of (1.9).

1.10 Partitioning sums of squares.

(a) Illustrate the partitioning of the sums of squares in the RCB anova by
calculating the complete anova table for the data of Example 3.6, which
can be found in dataset Anticoagulant.

(b) Analytically verify the partitioning of the RCB anova sums of squares by
verifying (1.10) and (1.11). (For (1.11), add ±(y·j − y) inside the square
on the left-hand side, expand, and show that the crossterm is zero.)

1.11 A researcher brings you the following set of contrasts of interest. Assume equal
replication of all treatments:
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Treatments
Contrasts A B C D E F

1 3 0 3 −2 −2 −2
2 1 0 −1 0 −1 1
3 0 4 0 −4 0 0
4 0 0 0 2 −1 −1

(a) Are contrasts 1 and 2 orthogonal?
(b) Are contrasts 1 and 3 orthogonal?
(c) Give a fifth contrast that is orthogonal to contrast 4. It cannot be one of

the first three, but may be orthogonal to any of the first three.

1.12 A plant scientist investigated plant uptake of heavy metals (for example,
nickel) when four rates of sludge applications were used. For a single variety
of sweet corn, a total of 20 plants were established. The plants were individu-
ally potted and 5 were randomly chosen to receive each rate of sludge. After
a designated period of time following the sludge application, the leaves were
taken from each plant and analyzed for presence of the heavy metal.

(a) Identify the experimental unit and specify a model equation. Identify all
terms.

(b) Set up the anova table (sources and df).
(c) Identify a contrast that the experimenter might be interested in testing.

Explain how to estimate the contrast and its variance.
(d) In addition to differences in uptake due to different rates of sludge, there

was interest in variation among plants treated alike as well as variation
among leaves of the same plant. How are these concerns answered by the
analysis?

(e) Before the data were collected, the experimenter’s assistant misplaced four
of the plants from the high rate of sludge. Redo parts (b) and (c) using
this information.

1.13 Contrasts.
(a) Verify the partitioning of the treatment sum of squares into orthogonal

contrasts given in Example 1.13 (dataset RehabTime)
(b) Show that for Example 1.15, the original Helmert contrasts are not uncor-

related, but the variation given in that example are. Use these contrasts
to partition the treatment sum of squares for the dataset RehabTime2.

(c) We can always preserve one contrast and find an uncorrelated set. If we
want to preserve the first Helmert contrast, an uncorrelated set is

µ1 µ2 µ3 µ4

1 −1/3 −1/3 −1/3
5

203
− 208

203
1 0

1 − 6872
1795

− 6223
1795

2260
359

Verify that these contrasts are uncorrelated and partition the treatment
sum of squares using these contrasts.

(d) Comparethepartitions in(b)and(c)tothatobtainedfordatasetRehabTime2
using the original Helmert contrasts. Decide on how you would explain the
results to an experimenter, and decide which set of contrasts you believe
would give the more meaningful conclusion.



1.7 Exercises 31

1.14 More on contrasts.
(a) Verify the covariance in (1.15)
(b) Show that, in the usual oneway anova, two contrasts are uncorrelated if∑

i
aibiσ

2/ri = 0.
1.15 The data for the experiment described in Exercise 1.16 can be found in dataset

FishTissueMass. Using these data, complete the anova table that was started
in the exercise. Note that the data are unbalanced, so orthogonal contrasts
are not uncorrelated.
(a) Complete the anova table using the orthogonal contrasts, which will not

partition the sums of squares.
(b) Complete the anova table using the first orthogonal contrast, then using

uncorrelated contrasts, so the sums of squares will be partitioned.
(c) Discuss the differences in interpretations of the analyses of parts (a) and (b)

1.16 Here we will look at different ways of obtaining a random assignment of treat-
ments.
(a) Referring to Example 1.1, also discussed in Section 1.5, detail a plan of

assigning 15 pots to 3 fertilizer treatments, arranging the pots at random
on a greenhouse bench. Use a random number generator to carry out one
such assignment.

(b) An experiment is conducted to test the effect of ozone on plants. The
researcher assigned two environmental chambers to each of four levels of
ozone (a total of eight chambers). Twelve plants were placed in each cham-
ber. Explain how to randomly assign the chambers to the ozone treatments
and the plants to the chambers.

(c) An agronomist wanted to compare the effect of five different sources of
nitrogen on the dry matter yield of barley used as a forage crop. Because
he wanted the results to apply over a range of conditions, he decided to
conduct the experiment on four types of soil. He located six plots on each
of the four soil types, then randomly assigned the treatments to the plots
within types. Explain how to carry out such a randomization.

1.17 Consider the following two experiments:
(1) Treatment A, three varieties of alfalfa, is crossed with treatment B, three

types of fertilizer. The response variable is dry weight.
(2) Blood pressure of human subjects is measured. Classification A, consisting

of three age classes, is crossed with classification B, consisting of three
weight classes.

These experiments, and the resulting randomization, can be carried out in
many ways. For each of these experiments, describe three ways to perform
them, where each way would correspond to one of the field layouts in Table 1.4.

1.18 A biologist was interested in the effect of different colors of light on the growth
of bacteria. She had 40 lights with filters to allocate to various treatments. An
equal amount of bacteria was placed on each of 40 Petri dishes and the dishes
were randomly allocated using the following treatments:
A: “White” or unfiltered light for 30 hours,
B: Blue light for 30 hours,
C: Green light for 30 hours,
D: Blue light for 15 hours and Green light for 15 hours.
The contrasts of interest are
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A B C D
White Blue Green Blue/Green

0 1 1 −2

0 1 −1 0

3 −1 −1 −1

Although the original allocation put 10 dishes in each treatment, when chang-
ing the filters in treatment D two dishes were upset. The data are

A B C D
White Blue Green Blue/Green

r 10.0 10.0 10.0 8.0
ȳ 9.4 6.8 5.8 8.2

with MS(Within) = 0.725.
(a) Explain, in words, the meaning of each contrast.
(b) Show that these contrasts are orthogonal but that the estimated contrasts

are not uncorrelated under the usual anova model.
(c) Show that the following set of contrasts are not orthogonal, but are un-

correlated under the usual anova model.

A B C D
White Blue Green Blue/Green

0 1 1 −2

0 1 −1 0

28 −10 −10 −8

(d) The contrasts in part (c) are constructed to be “close” to the original ones.
Estimate both sets of contrasts and their standard errors.

(e) Discuss the differences in the estimates in part (d), and decide which set
of contrasts you would advise the experimenter to use.

1.19 Refer to the experiment in Example 1.28. The data can be found in dataset
Avocado.
(a) Analyze the data according to the first anova, using the “residual” term

for the error.
(b) Analyze the data according to the second anova, using the correct error

terms for each treatment test. Show that the sum of squares for “residual”
decomposes as indicated in Example 1.28. Compare the conclusions from
analyses (a) and (b).

(c) Analyze the data according to the second anova, but now pool the block
interactions to get one error term. Compare the conclusions from analyses
(a), (b) and (c).

(d) Write out an anova table (Source and df) for an experiment with the same
number of crates, but with six shipments. Do the same for an experiment
with three shipments and half the number of crates. Comment on these
designs.

1.20 For the data of Example 1.22, assume that the experiment was done according
to the first field layout, that is, a completely randomized design (the data are
in dataset DataLayout).
(a) Reproduce the anova table in the example and carry out the F -tests.
(b) The fertilizer treatments were composed of nitrogen (N) and potassium

(K) in the following factorial arrangement:
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Levels
of K
0 60

Levels 60 x x
of N 200 x x

This suggests an anova decomposition
df

Fertilizer 3
N 1
K 1
N × K 1

Hybrid 2
Fertilizer × Hybrid 6

Fill in the sums of squares for this table.
(c) The experimenter is particularly interested in the nitrogen response and

wants the anova table
df

Fertilizer 3
Between K 1
Within K 2

Between N in K=0 1
Between N in K=60 1

Hybrid 2
Fertilizer × Hybrid 6

Fill in the sums of squares in this table and explain how they are related
to the ones in (b).

1.21 A microarray experiment is to be conducted, and there are only funds for
eight chips. The RNA is to come from mice, and there are enough subjects
available. The design will be of the form

Treatment Control

where each square represents a microarray. There are three options to consider:
(1) Use eight mice, one for each chip.
(2) Use four mice, splitting the RNA of each mouse onto two chips.
(3) Use 16 mice, pooling the RNA of 2 mice on each chip.

(a) Referring to (1.13), for σ2
B = 1 and σ2

W = 1/4, for each of the three options,
calculate the power to detect a difference in means3 of 1 at α = .05.

(b) Comment on the results of (a), and how you would advise an experimenter.
(c) Verify (1.13).

1.22 Researchers are developing a more virulent strain of a virus that infects cabbage-
eating insects. They have three strains under investigation: a wild type, a more
virulent type (HOB), and a crippled type (1A). An important question for the

3 It is common in microarray experiments to look for “twofold differences”, which
is interpreted as µ2/µ1 = 2. It is also typical to transform the expression-level
data using the log2 scale, and since log2(2) = 1, we have δ = 1.
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researcher is: Even though the HOB strain kills more rapidly when it infects
an insect, is it equally infective?
As a first step in answering this question, we must examine the virus/insect
biology. This is an occluded virus; this means that many virions (infective
particles) are enclosed in a protein body (occlusion body). The insects ingest
occlusion bodies, which then dissolve in their gut, liberating virions that ac-
tually cause the infection. Other work has shown that the various strains of
the virus have similar infectivity as virions. The question is: Do the different
strains of the virus have similar numbers of virions/occlusion body?
Data were collected from the three types of virus. For each one, counts of
virions on two replicates slides were obtained. The data are

Wild Slide 1A Slide HOB Slide
I II I II I II

51 38 42 34 46 41
48 39 47 41 76 49
27 23 53 40 48 105
51 28 30 37 34 53
47 24 47 31 83 53
39 31 58 42 62 31
51 57 36 64 29
29 41 52 59

(a) Construct a model and an anova, testing for a difference in virions. (The
count data should probably be transformed with a log or square root.)

(b) Using your estimate of treatment variance from the data, perform a power
analysis to find out how many counts of virions/occlusion bodies must the
researcher collect to detect a difference between the wild and HOB types.
Fill in the following table.

Power desired
.80 .90

Minimum difference 15%
they wish to detect 10%
as % of mean 5%
of wild type 1%

Accompaniment

1.23 Referring to Section 1.8.1:
(a) Verify the expression for the likelihood function (1.14).
(b) Show that the likelihood estimators of µ + τi are ȳi·
(c) Show that if we restrict

∑
i
τi = c, we can write the likelihood estimator

of µ + c as ȳ and τ̂i = ȳi· − ȳ + c.
1.24 For the general partitioning of sums of squares into contrasts:

(a) Verify that A∗ of (1.18) is idempotent if the set of contrasts satisfy (1.17),
and hence the uncorrected treatment sum of squares can be written as a
sum of uncorrelated contrasts.

(b) Verify that A∗∗ of (1.19) is idempotent if the set of contrasts satisfy (1.17),
and hence the corrected treatment sum of squares can be written as a sum
of uncorrelated contrasts. You will need the condition that a′

i1 = 0, i ≥ 2.
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1.25 Often in dose-response studies researchers expect to find a threshold or min-
imum effective dose. Consider a set of k doses plus a control dose that are
equally spaced on some scale, for example on a log dose scale. One approach
to locating the threshold data is to use a set of contrasts among the dose lev-
els. Here we will look at three sets of contrasts, closely following the approach
taken by Ruberg (1989).
A direct approach uses Helmert contrasts, as first seen in Exercise 1.10. These
can be constructed by the following rule: We get the contrast coefficient apq

for the qth dose in the pth contrast by

apq =

{−1 if q < p
p if q = p
0 if q > p,

where
q = 0, 1, . . . , k − 1 and p = 1, 2, . . . , k.

For example,

Coefficient (q)
Contrast (p) 0 1 2 3

1 -1 1 0 0
2 -1 -1 2 0
3 -1 -1 -1 3

Another approach uses step contrasts. These are constructed by the rule that
set spq, the coefficient for the qth dose in the pth contrast, is given by

spq =

{
p − k − 1 if q < p

p if q ≥ p,

where
q = 0, 1, . . . , k − 1 and p = 1, 2, . . . , k.

For example,

Coefficient (q)
Contrast (p) 0 1 2 3

1 -3 1 1 1
2 -2 -2 2 2
3 -1 -1 -1 3

The third approach we will consider uses Basin contrasts. These are con-
structed using the rule

bpq =

{
−2(k − p + 1)/(k − p + 2) if q < p,
bp(q−1) + k + 1 if q ≥ p,

where
q = 0, 1, . . . , k − 1 and p = 1, 2, . . . , k.

For example:,
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Coefficient (q)
Contrast (p) 0 1 2 3

1 -6 -2 2 6
2 -3 -3 1 5
3 -1 -1 -1 3

(a) For each of the three types of contrast, describe, in words, the effects tested
by the first and second contrast (p = 1, 2) in each set.

(b) In the three examples given, if the cell sizes are equal, are the contrasts
orthogonal?

(c) Consider the hypotheses

H0 : µ0 = µ1 = · · · = µk,

H1 : µ0 ≤ µi, 1 = 1, 2, . . . , k,

H2 : µ0 = µ1 = · · · = µi < µj , j = i + 1, . . . , k,

H3 : µ0 ≤ µ1 ≤ · · · ≤ µk.

Which pair of hypotheses are most appropriate for the threshold dose
problem. Would you suggest a different hypothesis?

(d) Referring to the hypotheses in (c), which contrast or set of contrasts is
most appropriate for testing

(i) H0 vs. H1, (ii) H0 vs. H2, (iii) H0 vs. H3.

(e) Here is the data in Table 3 of Ruberg (1989),

Dose(mg/kg/day) Mean ± Std. Dev.

Control 6.20 ± 3.08
10 6.14 ± 2.32
20 6.54 ± 2.77
30 7.67 ± 2.32
40 9.37 ± 1.87

Construct all three sets of contrasts and determine the threshold dose
using each type of contrast. Use α = .05 for a one-tailed test.

(f) Ruberg also provides cutoff points to control the experimentwise error rate
(see Section 2.9.1). Redo part (e) using these experimentwise cutoff points,
and compare the conclusions to those in part (e).

1.26 Referring to Theorem 2.21
(a) Fill in the details to show that SS(Trt)/σ2 ∼ χ2

t−1, and that the ratio of
mean squares has an F -distribution.

(b) Suppose we have a twoway anova

Yijk = µ + αi + βj + (αβ)ij + εijk

with i = 1, . . . , a, j = 1, . . . b, k = 1, . . . , r and εijk ∼ N(0, σ2), inde-
pendent. Show that SS(A)/σ2 and SS(B)/σ2 are independent χ2 random
variables, and verify their degrees of freedom.
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(c) Show that SS(Within)/σ2 is also χ2, independent of the Sums of squares
in part (b), and hence establish the validity of the usual F -test on main
effects.

Note also that SS(A × B)/σ2, where SS(A × B) is the interaction sum of
squares, is also χ2, independent of everything else. See Exercise 3.26.

1.8 Technical Notes

1.8.1 Estimability
Although it is typical, especially in design books, to talk about estimabil-
ity in terms of unbiasedness, as we have done, this is quite a limiting view.
The essential point about a nonidentifiable model is that there is no unique
likelihood estimator. Thus, from (1.1), the likelihood function is

L(µ, τ |y) =

t∏

i=1

r∏

j=1

1√
2πσ2

e
− 1

2σ2 [yij−(µ−τi)]
2

=

(
1√

2πσ2

)tr

e
− 1

2σ2

∑
ij

(yij−ȳi·)
2

e
− r

2σ2

∑
i
[ȳi·−(µ+τi)]

2
,(1.14)

showing that if we translate µ → µ+δ and τi → τi−δ, the likelihood function
remains constant. This is why the overparameterized model is nonidentifiable.
If we restrict

∑
i
τi to any fixed value, identifiability is restored.

Also, we note that “estimability” really has nothing to do with unbiasedness.
Whether a parameter has an unbiased estimator has no bearing on its es-
timability. The only thing that matters is that the likelihood function is not
overparameterized. In fact, there are many cases in which biased estimators
are preferred over unbiased estimators, as they could trade a small amount
of bias for a large variance reduction. (For an introduction to such ideas, see
Casella and Berger 2001, Section 7.3.)

1.8.2 Orthogonality and Covariance
Definition 1.11, which defines orthogonal contrasts, is nothing more than a
statement about trigonometry; that the cosine of the angle between two vec-
tors is zero, and so the angle is 90◦. For two vectors

a = (a1, a2, . . . , ap)′ and b = (b1, b2, . . . , bp)′,

the cosine of the angle between the vectors a and b is

cos(a,b) =

∑
i
aibi

√∑
i
a2

i

∑
i
b2
i

,

so the definition of orthogonality is that the cosine is equal to zero, which
makes the angle between the vectors 90◦. Realize that this is a geometric
property, not a statistical property.
In statistics, we want to partition variation, and contrasts are a means of do-
ing this. However, it is very important to understand the difference between
orthogonal and uncorrelated. To partition variation, it turns out that what
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is important is for contrasts to be uncorrelated. This can become tricky be-
cause, unlike orthogonality, which is an inherent geometric property, correla-
tion is a property of a model. So a pair of contrasts may be uncorrelated in
one model and correlated in another model, all of the time being orthogonal!

Note: Perhaps the easiest way to understand the distinction between orthogonal
and uncorrelated is realize that we should only use orthogonal (or nonorthogo-
nal) for contrasts in parameters, and we should only use correlated (or uncor-
related) for contrasts in statistics.

When we are in the case of a oneway anova, with independent cell means
and both equal variance and equal cell sizes, then uncorrelated and orthogo-
nal are the same (see Section 1.4).
As was stated in Definition 1.12, two contrasts

∑t

i=1
aiȳi and

∑t

i=1
biȳi are

orthogonal if their defining vectors are at 90o, so
∑

i
aibi = 0. The same two

contrasts are uncorrelated if Cov(
∑

i
aiYi,

∑
i
biYi) = 0. We can calculate

Cov

(
∑

i

aiȲi,
∑

i

biȲi

)

=
∑

i

aibiVar(Ȳi) + 2
∑

i>i′

aibi′Cov(Ȳi, Ȳi′),(1.15)

so the contrasts are uncorrelated if Cov(Ȳi, Ȳi′) = 0 and
∑

i
aibiVar(Ȳi) = 0.

The former occurs if the means are uncorrelated, and the latter can occur if
Var(Ȳi) = σ2/ri and

∑
i
aibi/ri = 0, which is the case in the oneway anova.

Orthogonal contrasts are important because they give us a means of parti-
tioning variation, in that we can break up sums of squares in the following
way.4 Suppose we have a full set of p orthogonal vectors a1,a2, . . . , ap where
ai = (ai1, ai2, . . . , aip) and

a′
iai = 1 and a′

iai′ = 0 for all i and i′.

Define the matrix A =
∑

i
aia

′
i, the sum of the outer products of the vectors

ai. Then direct matrix multiplication will verify that

A2 =

(
∑

i

aia
′
i

)2

=
∑

i

∑

i′

aia
′
iai′a

′
i′ =

∑

i

aia
′
i = A

because a′
iai′ = 1 if i = i′ and 0 if i �= i′. Recall that a matrix A satisfying the

condition A2 = A is called idempotent5. For this matrix A, however, there is
more. Since the set of contrasts are all orthogonal, the matrix A has full rank.
Moreover, by construction it is symmetric, and the only full rank symmetric
idempotent matrix is the identity matrix. Thus, A = I.
If we have data y = (y1, y2, . . . , yp), then the total variation in the data (total
uncorrected sum of squares) is

∑

i

y2
i = y′y = y′Ay

4 Unfortunately, to adequately deal with this, we need to resort to the use of matrix
algebra.

5 An idempotent matrix also satisfies rank(A) = trace(A)
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= y′

(
∑

i

aia
′
i

)

y =
∑

i

y′aia
′
iy(1.16)

=
∑

i

(
∑

j

aijyj

)2

,

showing that the total sum of squares can be broken down into sums of squares
of orthogonal contrasts.
We typically use “corrected” sums of squares, that is, we center at the mean.
In matrix notation, define 1 = (1, 1, . . . , 1), then the mean of the elements of
y can be written ȳ = (1/p)1′y, and we form our matrix A from the outer
products of

1√
p
1, a2, . . . ap,

where all of the contrasts ai are orthogonal to 1 (since their components sum
to zero). We then have

∑

i

y2
i =

1

p
(1′y)2 +

p∑

i=2

(a′
iy)2 = pȳ2 +

p∑

i=2

(a′
iy)2,

or
∑

i

(yi − ȳ)2 =

p∑

i=2

(a′
iy)2.

Finally, if we are partitioning a treatment sum of squares, each of the yi will
be means. If they are all based on the same number of observations, then the
above algebra does not change. However, if the means have differing numbers
of observations, then orthogonal and uncorrelated become two different things.
So suppose that we have a vector of means ȳ = (ȳ1, ȳ2, . . . , ȳp), where ȳi is
based on ri observations. The uncorrected total sum of squares is now

∑

i

riȳ
2
i = ȳ′Dȳ.

where D is a p×p diagonal matrix D = diag(r1, r2, . . . , rp). The presence of the
matrix D complicates the construction of the idempotent matrix of contrasts,
as in (1.16). What we want to do is write ȳ′Dȳ = (D1/2ȳ)′(D1/2ȳ), where
the elements of D1/2 are the square roots of the elements of D. However, if
we use the same matrix as in (1.16), the presence of D will stop it from being
idempotent. This is why, in the unequal ri case, we need the condition that∑

i
aibi/ri = 0.

We construct our idempotent matrix as follows. Our set of p orthogonal vec-
tors a1,a2, . . . , ap now must satisfy

∑

j

aijai′j/rj = a′
iD

−1ai′ = 0

and(1.17)
∑

j

a2
ij/rj = 1 (this is just a matter of scaling).
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The matrix

A∗ =
∑

i

D−1/2aia
′
iD

−1/2(1.18)

then satisfies

A∗2 =
∑

i

∑

i′

D−1/2ai

[
a′

iD
−1/2D−1/2ai′

]
a′

i′D
−1/2 =

∑

i

D−1/2aia
′
iD

−1/2=A∗,

because the term in square brackets is equal to zero if i �= i′ and equal to
1 otherwise. Thus A∗ is a full rank idempotent matrix and is equal to the
identity. We then have

ȳ′Dȳ = ȳ′D1/2A∗D1/2ȳ =
∑

i

ȳ′D1/2D−1/2aia
′
iD

−1/2D1/2ȳ =
∑

i

(a′
iȳ)2,

and the total sum of squares has been partitioned into nonoverlapping pieces.
The ais are not orthogonal, but they result in linear combinations of ȳ that
are uncorrelated and partition the sum of squares.
The corrected treatment sum of squares is

∑
i
ri(ȳi− ¯̄y)2, where ¯̄y =

∑
i
riȳi/∑

i
ri. We can partition this by using the vector 1, in a variation of what we

did in the equal ri case. Start with the vector D1/
√

1′D1, and for i ≥ 2,
choose the remaining p − 1 vectors ai so that the entire set satisfies (1.17).
Note that this requires that a′

i1 = 0, i ≥ 2. We now form the matrix A∗∗

analogous to (1.18), obtaining

A∗∗ =
D1/211′D1/2

1′D1
+

p∑

i=2

D−1/2aia
′
iD

−1/2.(1.19)

which is again idempotent and equal to the identity, and gives the decompo-
sition ∑

i

riȳ
2
i = N ¯̄y2 +

p∑

i=2

(a′
iȳ)2.(1.20)

See Exercise 1.24.

1.9 Miscellanea

1.9.1 Microarray Design I
In a microarray experiment6RNA from a subject is placed on a microarray (a
glass slide) that contains genetic material, which we refer to as genes, from an
organism. Depending on the organism, there can be over 54, 000 genes on a
microarray. The RNA is “hybridized” to the microarray, and gene expression
level is measured through fluorescence. The more the gene is expressed (that
is, the more it reacts to the subject RNA) the higher the level of fluorescence.
Thus, for one subject (experimental unit) we can have up to 54, 000 data points.

6 My knowledge of molecular biology is at the kindergarten level. This section
represents my understanding of these processes, and the statistical consequences.
Do not be surprised if I confuse DNA and RNA (although I do know that RNA
is reversed-transcribed into cDNA for the spotted arrays, whatever that means!)
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Although this data flood presents a large problem for inference, as there must
be many guards for multiple testing, there is really no added problem from a
design point. In designing a microarray experiment, we should concentrate on
getting it right for one gene. As the other 53, 999 data points are measured on
subsamples of the experimental unit(!), they have no bearing on constructing
a good design.
One thing that has large implications in the statistical design is the fact that
there are distinct kinds of microarray platforms. There is the complementary
DNA (cDNA) platform, which is a two-dye system, as well as other two-dye
chips made by companies such as Agilent. There is also the oligonucleotide
microarray, a single-dye system made by Affymetrix and Nimblegen. The
Affymetrix microarray, or “chip” has become the standard in human exper-
iments, while the other arrays are more popular in plant and animal studies
because of their greater flexibility in the design of the chip (what genes to
include).
As mentioned, the measurement from a microarray is a fluorescence, or a
count of stimulated pixels. As it is typically right skewed, the measurement is
almost always log transformed. There are also heterogeneity of variance prob-
lems, with measurements both at the low end and high end having decreased
variance. These problems can be mitigated through transformations.
In the two-dye system, two RNA samples (typically from two different treat-
ments or experimental units) are hybridized to the same microarray. Each
sample is labelled with a fluorescent dye (either Cy3 or Cy5), which gives a
color to its fluorescence (red or green). What is then measured is the relative
fluorescence of the red/green RNA samples.
It is the relative florescence that is important, for another problem with
microarray data is that the amount of RNA that is hybridized cannot be
tightly controlled, and the more RNA the more florescence. There is much
pre-processing of microarray data to address this problem, as well as the
other problems mentioned above.
Note that the microarray, the chip, is in fact a block. The fact that, from a
statistical design view, it is no different from a plot of land in the field makes
our job easy. In fact, procedures that were developed for field plot data can
be applied to microarray data without much change.
For a single gene, we can model a microarray experiment as

yij = µ + τi + βj + εij ,

where yij is the log expression level, τi is the treatment, and βj is the mi-
croarray (block). This can now be analyzed as a randomized complete block
design.
The two dye system poses other problems, and there are other concerns if we
model more that one gene at a time. We will return to both of these questions.
The companies mentioned above, as well as many others, market (somewhat
pricey) software for microarray analysis. There is also some fine software that
is freely available: Array Tools is available as a free download from NIH, and
Bioconductor is an R package available from the R webpage.
This section drew on the work of Kerr and Churchill (2001ab), Schulze and
Downward (2001), and Simon et al. (2003), which are a good start for further
reading.
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Completely Randomized Designs

And so it was ... borne in upon me that very often, when the most
elaborate statistical refinements possible could increase the precision
by only a few percent, yet a different design involving little or no ad-
ditional experimental labour might increase the precision two-fold, or
five-fold or even more

R. A. Fisher (1962)

If the idea looked lousy, I said it looked lousy. If it looked good, I said
it looked good. Simple proposition.

Richard P. Feynman
Surely You’re Joking, Mr. Feynman

2.1 Introduction

The terminology Completely Randomized Design (CRD) refers to the exper-
iment design, not the data layout. In a CRD the treatments can be either
crossed or nested,
but the key feature is that the randomization must be car-
ried out throughout the data layout. One important impli-
cation of this is that all factors in a CRD must be fixed
factors – as a random factor

CRDs have
only fixed
factors

is necessarily a restriction on randomization, there are no random factors in
a CRD.

A theoretical consequence of the fact that all factors in a CRD must be
fixed factors is that we can study the theory for all CRD simply by looking
at the oneway CRD. This follows because of the simple error structure of the
CRD, and the fact that any effect can be built up through contrasts. However,
this fact is only useful as a theoretical tool, say when we are trying to develop
some distributional properties, as the data layout and the treatment structure
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always play an important practical role. But the oneway CRD is the place to
start.

Most importantly, the randomization structure of the CRD implies that
there is only one error term, the within error, and all effects are tested against
it.

2.1.1 A Oneway CRD Model

Example 2.1. Oneway CRD An experiment was done to assess in vitro
digestibility (IVD) of dried forage samples for alfalfa grown at different tem-
peratures. The object is to determine if growing temperatures affected the
feeding quality of alfalfa. There are four observations for each temperature,
with data layout:

Growing Temperatures
(Celsius)

17o 22o 27o 32o

x x x x
IVD x x x x

Values x x x x
x x x x

The data are in dataset IVD. This experiment was done as a oneway CRD,
which means that treatments were assigned at random to the different units.
In particular, the four IVD values measured at 17o were not taken from
four plots exposed together to the same 17o temperature. They were four
separate trials, with independent exposure to the 17o temperature. That is, a
treatment is selected at random, an the experimental unit is then subjected
to the treatment. If 22o is selected twice in a row, the temperature must be
reset! ‖

The test on treatments is

F =
MS(Treatments)

MS(Within)
,

which, under H0 has an F -distribution. The validity of this test can be justified
with Cochran’s Theorem (see the discussion following Theorem 2.20).

2.1.2 CRD and the Two-sample t-test

The oneway anova is a generalization of the two sample t-test, and by building
on the theory of contrasts, gives us an effective way of comparing many means.
If we had just two growing conditions, say 17o and 22o, we could then do a
two sample t-test to check if the responses are significantly different. If we
denote the means, variances, and cell sizes by
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Growing Temperatures
(Celsius)

17o 22o 27o 32o

ȳ1 ȳ2 ȳ3 ȳ4

IVD s2
1 s2

2 s2
3 s2

4

Values n1 n2 n3 n4

the t-test is

tcalc =
ȳ1 − ȳ2

s
√

1
n1

+ 1
n2

= 1.399, p = .211,

where s2 = [(n1 − 1)s2
1 + (n2 − 1)s2

2]/[n1 + n2 − 2] is the pooled variance. We
see that there is no significant difference in response between the 17oC and
22oC growing temperature. We compare this t-test to a oneway anova using
only treatments 17oC and 22oC.

Source df Sum Sq Mean Sq F p
Trt 1 0.211 0.211 1.957 0.211
“Residuals” 6 0.647 0.107

The anova table is taken from R output. Like all computer packages, R calls
the last line of the anova “residuals”. However, for us it is very important to
actually keep track of what this is: within? interaction? technical replication?
Here, in the oneway CRD, we have “within” error.

Within error, sometimes called “pure” error, is very differ-
ent from a “residual”. As the name implies, a residual is
something that is left over. In statistics, the residual is left
over from the model fit.

A digression
on “residual”
error

For example, if a higher-order interaction term is used as an error term, it is
left over from a model fit, and its validity as an error estimate depends on the
validity of the model. In contrast, the validity of a within error as an error
estimate is not dependent on the fit of the model. Regardless of the model,
each experimental unit within the cell receives exactly the same treatment,
and hence any difference between the observations is not dependent on the
model, and only reflects the inability of the experiment to replicate itself.

Example 2.2. IVD Oneway CRD continued

Returning to the IVD anova, we know that the oneway anova on two treat-
ments is identical to the two sample t-test. We can continue, and if we (for
example) use the simple contrasts of Exercise 1.10, we could run three t-tests
and find the results in Table 2.1.

Although in this example the results are, qualitatively, about the same, it
is important to realize that the anova uses the pooled MSE for its estimate
of error, so the contrast tests have 12 degrees of freedom rather than 6. In
the anova we get to use an error estimate based on pooling the within error
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Table 2.1. Two-sample t tests and anova contrast t tests corresponding to IVD
simple contrasts

Two-Sample t Anova contrasts

Test df tcalc p df tcalc p

17oC vs. 22oC 6 1.399 0.211 12 1.181 .260

27oC vs. 32oC 6 −.160 .878 12 −.181 .858

17oC + 22oC
vs. 6 −5.851 .001 12 −6.102 < .0001
27oC + 32oC

from all four treatments, even if those treatments are not being tested in the
contrast.

Orthogonal contrasts
do not guarantee
independent tests

It is also important to remember that even though
we are using orthogonal contrasts, which are inde-
pendent in this case, the tests are not independent
because they share the same denominator.

If we apply the formula for contrast sums of squares (Definition 1.14) to
Table 2.1, we see that the contrast sums of squares will add to the anova
treatment sum of squares. Moreover, the contrast t-statistics are a breakdown
of the anova F -test in that (referring to Table 2.1)

(1.181)2 + (−0.181)2 + (−6.102)2

3
= 12.89

which is the F -statistic from the complete anova (Exercise 2.3). ‖

2.1.3 CRD Anova

The oneway anova F -test is summarized in Table 2.2, which reflects the par-
titioning of the sums of squares according to (1.8)

The CRD design, of course, does not stop at the oneway. As we will see,
the treatment design in a CRD can take many forms, the defining feature
being that the randomization is unrestricted throughout the table, and there
in no correlation between any two observations.

Example 2.3. Red clover twoway CRD To investigate the effect of
sulfur and nitrogen on the growth of red clover, a plant scientist conducted a
greenhouse experiment using a CRD with the treatments in a crossed layout.
The sulfur levels were applied at rates of 0, 3, 6, and 9 pounds/acre, and
the rate of nitrogen application was either 0 or 20 pounds/acre. Greenhouse
pots were prepared with uniform soil, allowing for r = 3 pots per treatment
combination. The data are given in Table 2.3 ‖
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Table 2.2. Oneway anova table.

Source of Degrees of Sum of Mean F -Statistic
Variation Freedom Squares Square

SS(Trt) = MS(Trt) = F =
MS(Trt)

MS(Within)
Treatments t − 1

∑
i
r(yi· − y)2

SS(Trt)
t−1

SS(Within) = MS(Within)=

Within t(r − 1)
∑

i

∑
j
(yij − yi·)

2 SS(Within)
t(r−1)

SS(Total) =
Total rt − 1

∑∑
(yij − y)2

Table 2.3. Dry matter yields, in grams/pot, of red clover.

Sulfur
0 3 6 9

0
4.48
4.52
4.63

4.70
4.65
4.57

5.21
5.23
5.28

5.88
5.98
5.88

Nitrogen −−−−−−−

20
5.76
5.72
5.78

7.01
7.11
7.02

5.88
5.82
5.73

6.26
6.26
6.37

The partitioning of the sums of squares for the twoway anova is a straight-
forward generalization of the oneway partition, giving

SS(Total) = SS(Treatment A)+SS(Treatment B)+SS(A × B)+SS(Within),

where, here, the interaction term measures the nonadditivity of the treat-
ments, and the within serves as the error for all estimation and tests. The
details of the partitioning are

t∑

i=1

g∑

j=1

r∑

k=1

(yijk − ¯̄y)2 =
t∑

i=1

rb(yi·· − ¯̄y)2 +
g∑

j=1

ra(y·j· − ¯̄y)2

+
t∑

i=1

g∑

j=1

(yij· − yi·· − y·j· + ¯̄y)2(2.1)

+
t∑

i=1

g∑

j=1

r∑

k=1

(yijk − yij·)
2,

which results in the anova table given in Table 2.4.
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Table 2.4. Twoway anova table

Source of Degrees of Sum of Mean F -statistic
Variation Freedom Squares Square

SS(T) = MS(T)) = F =
MS(T)

MS(Within)T t − 1
∑

i
rg(yi·· − ¯̄y)2

SS(T)
t−1

SS( G) = MS( G) = F =
MS (G)

MS(Within)
G g − 1

∑
j

rg(y·j· − ¯̄y)2
SS(G)

g−1

SS( T × G) = MS( T × G) = F =
MS ( T × G)

MS(Within)
T × G (t − 1)(g − 1)

∑
ij

r(yij· − yi··
SS( T x G)
(t−1)(g−1)

−y·j· + ¯̄y)2

SS(Within) = MS(Within)=

Within tg(r − 1)
∑

ijk
(yijk − yij·)

2 SS(Within)
tg(r−1)

SS(Total) =

Total tgr − 1
∑

ijk
(yijk − ¯̄y)2

Remember that the treatment design, which is a twoway
factorial, is all that is needed to determine all of the anova
table except the last column. The F -ratios can only be prop-
erly formed with knowledge of the experiment design, and
those in Table 2.4 reflect the fact that we have a CRD.

The treatment
design gives
the anova
table

The error term in the CRD anova is a true “within” error. It comes from
true replication of the experimental unit within the smallest cell of the ex-
periment. All of the units in the cell are subjected to exactly (we hope!)
the same treatment combination, so any differences in the response is model-
independent true error. In the CRD all tests are done against this term.

There is often discussion about how to perform tests on main effects, T
and G, in the presence of interaction, and how to interpret these effects. We
will address this topic later in Section 2.4, when we look at expected mean
squares.

Example 2.4. Twoway CRD continued The anova for the data of Ex-
ample 2.3 is given in Table 2.5. The data can be found in dataset RedClover.
All tests are done against the within MSE, and all terms are wildly signifi-
cant, showing that there are effects due to Sulphur and Nitrogen, and they
also interact. To understand what is going on we need some further analysis.
We will return to this example in Section 2.5. ‖

2.2 Model and Distribution Assumptions

The IVD experiment (Example 2.1) is a oneway CRD with model (1.1), that
is
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Table 2.5. Twoway CRD anova for the red clover data.

Source df Sum Sq Mean Sq F -statistic p

Sulfur 3 3.06 1.02 285.53 < .00001
Nitrogen 1 7.83 7.83 2185.63 < .00001
Sulphur × Nitrogen 3 3.76 41.25 349.78 < .00001
Within 16 0.06 0.0036

Yij = µ + τi + εij , i = 1, . . . , t; j = 1, . . . , r,(2.2)

where Yij is the observed response, µ is an overall mean, τi is the treatment
effect, and εij is the error. For identifiability we can assume that τ̄ = 0;
otherwise we can consider the treatment effect to be τi − τ̄ and the overall
mean to be µ + τ̄ (see the discussion in Section 1.1). We also assume

(i) The random variables εij ∼ N(0, σ2) for i = 1, . . . , t, and j = 1, . . . , r
(normal errors with equal variances).

(ii) Corr(εij , εi′j′) = 0.

It is somewhat more common to assume that the εij are iid, from which
(ii) would follow. Under normality, this is equivalent to the assumption of zero
correlation. We think it is most important to emphasize correlation structure,
however, and thus present the assumptions in this way.

The mean and variance of Yijs are

E(Yij) = µ + τi, Var (Yij) = σ2.(2.3)

Building on the oneway CRD, more complicated CRD experiments will
tend to have a factorial structure for the treatment design. We will mainly
emphasize twoway factorials in our development, for most of the theoretical
development is straightforward for higher-order factorials (see Exercise 2.23
and Section 2.5.2).

A model for the twoway CRD is

Yijk = µ + τi + γj + (τγ)ij + εijk,(2.4)
i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , r,

where Yijk is the observed response, µ is an overall mean, τi is one treatment
effect, and γj is the other treatment effect. The term (τγ)ij represents the
interaction of the two factors, a deviation from an additive response. Finally,
εijk is the error.

We further assume

(i) The random variables εijk ∼ N(0, σ2) for i = 1, . . . , t, and j = 1, . . . , g, k =
1, . . . , r (normal errors with equal variances).

(ii) Corr(εijk, εi′j′k′) = 0.
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Note that without loss of generality we can assume

τ̄ = γ̄ = ¯(τγ) = 0,(2.5)

for this is equivalent to redefining the mean level µ as µ + τ̄ + γ̄ + ¯(τγ) and
has no effect on interpretation of the parameters. However, for identifiability,
it is necessary to go further, and it is typical to also assume that

¯(τγ)i· = ¯(τγ)·j = 0 for all i, j

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

Restrictions
for
identifiability

(2.6)

This is because the data from such an experiment will be in an g × t table,
with the parameter estimates coming from the cell means. Losing 1 degree of
freedom for the overall mean, that leaves tg−1 degrees of freedom to estimate
the parameters. Since we have g + t + tg effect parameters in model (2.4), the
restrictions (2.6) ensure identifiability.

To estimate the parameters in the CRD, we use least squares. We give
some details for the twoway CRD, and leave other cases for exercises. Under
model (2.4), least squares is quite straightforward in the CRD design. The
least squares estimates satisfy

min
µ,τi,γj ,(τγ)ij

t∑

i=1

g∑

j=1

r∑

k=1

(yijk − µ − τi − γj − (τγ)ij)2.(2.7)

Under (2.5), the solution (see Exercise 2.7) is given by

¯̄y = µ̂

ȳij· − ¯̄y = τ̂i + γ̂j + ˆ(τγ)ij(2.8)

ȳi·· − ¯̄y = τ̂i + ˆ̄(τγ)i·

ȳ·j· − ¯̄y = γ̂j + ˆ̄(τγ)·j

where we see that, due to the identifiability constraint, the parameter estimate
contains two pieces - for example - τi + ¯(τγ)i·, where τi is often interpreted as
a “main effect”, an effect that is constant across the levels of γ, while ¯(τγ)i·
is an average effect. That is, the effect may be different in the levels of γ, and
we are just estimating the average.

It is important to understand that we cannot separate these effects, main
and average, without an additional assumption, such as ¯(τγ)i· = 0.

Note: It is very important to understand the difference between the identifia-
bility constraint (2.6) and the assumption that ¯(τγ)i· = 0.
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The identifiability constraint gets us a set of parameters to estimate. It
does not imply that ¯(τγ)i· = 0, but rather has the effect of redefining the pa-
rameters. That is, the effect of (2.6) is equivalent to redefining the parameters
as

τ ′
i = τi + ¯(τγ)i·,

γ′
j = γj + ¯(τγ)·j ,

(τγ)′ij = (τγ)ij − ¯(τγ)i· − ¯(τγ)·j .

Thus, the average interaction effect does not go away, it just relocates.
In our calculations we will assume that τ̄ = γ̄ = ¯(τγ) = 0 or, equivalently,

the overall mean is µ + τ̄ + γ̄ + ¯(τγ). Also, to keep notation manageable, we
will also assume that ¯(τγ)i· = ¯(τγ)·j = 0. Thus, a treatment effect will be
written as τi, but this should always be interpreted as τi + ¯(τγ)i·.

2.3 Expected Squares and F -tests

The calculation of expected values of mean squares (EMS) is an important
part of any design, as it indicates the correct denominators for F -tests in
the anova and the correct error terms for testing and estimating contrasts.
Moreover, it helps us to see which replication helps control different sources
of variation, and thus helps us in setting up a better design.

Although the direct calculation of EMS can be painful, it is important to
carry it our carefully, and not rely on so-called “EMS algorithms”, which can
sometimes give incorrect results unless used very carefully. Moreover, after
doing a few of the calculations, the procedure becomes fairly transparent and
the actual calculations can go quite smoothly.

We will do the calculations for the twoway CRD of model (2.4), leaving
the other CRDs for exercises (see Exercises 2.11 and 2.23). Calculation of the
EMS is the first step in justifying the F -tests in Table 2.4.

Starting with the first treatment sum of squares, we have

E(SS(T)) = E
∑

i

rg(Y i·· − ¯̄Y )2

= E
∑

i

rg
(
[µ + τi + ¯(τγ)i· + εi··] − [µ + ε···]

)2

=
∑

i

rgτ2
i + E

∑

i

rg (ε̄i·· − ε̄···)
2
,

where the cross term in zero in the last line. From Lemma 2.16 it follows that

E
∑

i

rg (ε̄i·· − ε̄···)
2 = rg

(

1 − 1
t

)∑

i

Var(ε̄i··) = (t − 1)σ2(2.9)
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and thus
E(SS(T)) = (t − 1)σ2 + rg

∑

i

τ2
i .

Continuing in this fashion, we can produce Table 2.6 (see Exercises 2.22 and
2.20).

Table 2.6. Expected Mean Squares for twoway CRD anova.

Source df EMS

Treatment T t − 1 σ2 + rg
t−1

∑
i
τ2

i

Treatment G g − 1 σ2 + rt
g−1

∑
j
γ2

i

T × G (t − 1)(g − 1) σ2 + r
(t−1)(g−1)

∑
ij

(τγ)2ij

Within tg(r − 1) σ2

The null hypothesis of no effect of treatment T is

H0 : τi = 0 for all i(2.10)

and is tested by

Ft−1,tg(r−1) =
MS(Treatment T)

MS(Within)
.

The other tests are formed similarly. Note that all tests are against the
within error – a very simple situation. Justification of the tests comes through
Cochran’s Theorem, which we relegate to Technical Note 2.8.3.

There is sometimes discussion about the interpretation of “main effects” in
the presence of interaction. That is, if there is interaction, which means that
one treatment acts differently depending on the levels of the other treatment,
then there is sometimes concern about the interpretation of the “treatment
effect”.

However, upon close examination of the parameterization of the model,
there is really no complication here. Without restricting the parameters, the
interaction test is of the hypothesis

H0 : (τγ)ij − ¯(τγ)i· − ¯(τγ)·j = 0 for all i, j,

Interpreting
treatment
effects

and whether this is true has no bearing on the sizes of
¯(τγ)i· and ¯(τγ)·j . Furthermore, as we cannot separate τi and
¯(τγ)i· without further assumptions (that are unverifiable),

the treatment effect is “always” an average effect. The treat-
ment hypotheses, such as (2.10), are concerned with the sizes
of the average effects.
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2.4 Estimating Contrasts

Under model (2.4) we have already derived the least squares estimates of
the parameters. Since contrasts in these parameters are the typical focus of
inference, we now develop those inferences.

Point Estimates

As least squares estimates are unbiased, it follows immediately that, for ex-
ample,

E
(
Ȳi·· − ¯̄Y

)
= τi,(2.11)

and a contrast
∑

i ai

(
Ȳi·· − ¯̄Y

)
is an unbiased estimator of

∑
i aiτi with vari-

ance

Var

(
∑

i

ai(Ȳi·· − ¯̄Y )

)

= Var

(
∑

i

ai(ε̄i·· − ¯̄ε)

)

=
σ2

rg

∑

i

a2
i ,(2.12)

with analogous formulas for the other effects (see Exercise 2.8).
For the oneway CRD it follows immediately that

E(Ȳi· − Ȳ ) = τ̂i, Var

(
∑

i

aiτ̂i

)

=
σ2

r

∑

i

a2
i ,(2.13)

see Exercise 2.6.
Note that in the estimation of contrasts, the term involving ¯̄Y cancelled.

Thus, the variance calculation only involved independent terms. If we had
estimated τi alone, with Ȳi· − Ȳ , we would have to deal with a covariance
term (see Exercise 2.8).

Variance Estimates

The residuals from the least squares fit of the model (2.4) are

yijk − µ̂ − τ̂i − γ̂j − ˆ(τγ)ij = yijk − ȳij· = εijk − ε̄ij·,

which represents the within variance. The within sum of squares has expected
value

E[SS(Within)] = E

⎛

⎝
∑

ijk

(εijk − ε̄ij·)2

⎞

⎠ = rtg

(

1 − 1
r

)

σ2,

making MS(Within) = 1
tgr(r−1)

∑
ijk(yijk − yij·)2 an unbiased estimate of σ2,

and, for example, we can estimate a contrast variance

V̂ar

(
∑

i

aiτ̂i

)

=
MS(Within)

rg

∑

i

a2
i .(2.14)
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Inference in the CRD

The main objects of interest in an anova are treatment contrasts, which are
usually tested following an anova. Inference for contrasts can be based on
multiple comparison procedures (Miscellanea 2.9.1), or on individual tests
and intervals. In either case, the inferential distribution is built up from the
model (2.4)

Under model (2.4)

Yijk ∼ N
(
µ + τi + γj + (τγ)ij , σ

2
)
, Cov(Yijk, Yi′j′k′) = 0,

and using results from Sections 1.8 and 2.4 we can build up the distribution
of any contrast. For example,

∑

i

aiYi·· ∼ N

(
∑

i

aiτi,
σ2

rg

∑

i

a2
i

)

(2.15)

and hence ∑
i aiYi·· −

∑
i aiτi

√
σ2

rg

∑
i a2

i

∼ N (0, 1) .

We now can apply Theorem 2.23 to replace σ2 with σ̂2 =MS(Within)/(tg(r−1)
to get ∑

i aiYi·· −
∑

i aiτi
√

σ̂2

rg

∑
i a2

i

∼ ttg(r−1).

2.5 Deeper into Factorials

In this section we look a little closer at the interpretations of interaction
in factorial experiments. There is often the urge to get as much as possible
out of an experiment and, in doing so, to include many different treatments.
However, interpretations of treatment effects, in the face of many interactions,
can be difficult. We look at a number of examples of types of interactions that
can be expected, and try to better understand them through contrasts.

2.5.1 Investigating Interactions

The existence of an interaction means that the effect of one treatment is
dependent on the levels of another. This makes interpretation more difficult,
and also can cause problems if the experimenter is looking to control future
responses by setting treatment levels.

One overall distinction in interactions is between qualitative and quanti-
tative interactions. In the first case, although the treatment response differs
according to the levels of another factor, the response is only changed in
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quantity. In the second case there is a change in quality, that is, the “better”
treatment changes according to the level of another treatment.1

Example 2.5. Fish microarrays revisited As an example, we revisit
Example 1.16, where the experimenter measured gene expression level in fish
tissue as a function of two treatments. Figure 2.1 shows a plot of the cell
means, often called an “interaction plot”. There is can be seen that there is a
qualitative interaction - the lines cross - and the effect of hCG is different at
the different levels of tissue. ‖

Fig. 2.1. Interaction plot for log expression-level data from the fish tissue experi-
ment. The solid line corresponds to the absence of hCG, and the dashed line to the
presence of hCG.
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Example 2.6. Red clover revisited We next revisit another experi-
ment seen in Examples 2.3 and 2.4. The interaction plot for the two treat-
ments is shown in Figure 2.2, where there is a strong quantitative interaction.
1 Procedures that test for qualitative interactions have been developed, especially in

the biostatistics literature. See, for example, Gail and Simon (1985) or Piantidosi
and Gail (1993).
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Although the lines do not cross, there seems to be a strong elevation of yield
at one combination of Sulfur and Nitrogen. The anova, summarized in Table
2.7 shows that all effects are significant.

The fact that all the polynomial trends are significant does not really tell
us much - in terms of using this information we see that Nitrogen = 20 is
preferred. Because everything is so significant we suspect that the peak at
Sulfur = 3 is real, which seems to point to an optimal combination. ‖

Table 2.7. Breakdown of interaction effect for the red clover data

Source df Sum Sq Mean Sq F -statistic p

Sulfur × Nitrogen 3 3.76 1.25 349.78 < .00001
Linear Sulfur × Nitrogen 1 1.40 1.40 388.2 < .00001
Quadratic Sulfur × Nitrogen 1 0.72 0.72 199.33 < .00001
Cubic Sulfur × Nitrogen 1 1.64 1.64 456.95 < .00001

Within 16 0.057 0.0036

Fig. 2.2. Interaction plot for yield from the red clover experiment. The solid line
corresponds to Nitrogen=0, and the dashed line to Nitrogen=20.
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Before leaving the subject of interpretation of interactions, we look at one
more example that arose in a QTL experiment2, where the experimenter was
investigating the interaction of two QTL, known in the genetics literature as
epistasis.

Example 2.7. QTL epistasis Data were collected in an experiment to ex-
amine the main effects and interactions of two QTL. The data look like

QTL1
AA Aa aa

BB x x x x x x
QTL2 Bb x x x x x x

bb x x x x x x

In QTL experiments there are a number of interaction patterns that are
expected, and one researcher at the University of Florida wondered if, simply
due to the interaction, could it happen that the mere presence of QTL2 in the
experiment could increase the power to detect an effect due to QTL1. That
is, for typical interaction patterns such as those shown in Figure 2.3, does
increasing the difference in the means of QTL1 result in an increase in the
means of QTL2?

To answer this question we examine the EMS of the effects, which are given
in Table 2.6 for the twoway analysis. The EMS are important because they
are the noncentrality parameters corresponding to the treatment hypothesis
tests (Technical Note 2.8.4).

If H0 : τi = 0 for all i is true, then the usual ratio of mean squares has a
central F distribution and, under the alternative, the distribution is noncen-
tral F with noncentrality parameter

∑
i τ2

i . The F -statistic is stochastically
increasing in its noncentrality parameter, which implies that the ratio of mean
squares will tend to be large if this parameter is larger. Thus, the larger this
value is, the more power we have to reject H0 and detect QTL differences.
Now we look more closely at the pattern of means in Figure 2.3, and show
that by increasing the marginal mean difference in QTL1, we automatically
increase the marginal mean difference in QTL2.

First, we show that when there is no interaction the values of one factor
cannot influence the other, but when there is any interaction whatsoever, the
levels of one factor can cause higher values in the other.

If there is no interaction, then (τγ)ij = 0, so the margins control the cells,
and when computing any marginal mean the effect of the other parameter
disappears because of the restrictions (2.5). So in this case the effects are
independent of one another, and no matter what happens in the means of one
parameter, it can have no effect on the marginal means of the other parameter.
This case is shown in the left panel of Figure 2.3.
2 Quantitative Trait Loci (QTL) are regions on the genome that can be linked to

quantitative traits. For example, one may find a certain region on the corn genome
to be linked with yield.
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Fig. 2.3. The left panel shows no interaction between two QTL, while the right
panel shows a typical interaction pattern between two QTL.
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We now illustrate a pattern of cell means that look like the right panel.
The cell entries are the cell mean parameters and the marginal entries are the
marginal mean parameters. We use two free parameters, a and b, to arrive at
the pattern in Table 2.8.

Table 2.8. Cell means that correspond to the pattern displayed in the right panel
of Figure 2.3.

QTL1 Average

a + 4
3
b 4

3
b −a − 2

3
b 2

3
b

QTL2 a + 1
3
b 1

3
b −a − 2

3
b 0

a − 2
3
b − 2

3
b −a − 2

3
b − 2

3
b

Average a + 1
3
b 1

3
b −a − 2

3
b 0

Since Table 2.8 adds to zero for any choice of a and b, any values represent
a legitimate set of QTL parameters.
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This is really
an interesting
occurrence

Now the main point is that if the main effect of QTL2 in-
creases, that is, if b increases, because of the interaction this
has the effect of increasing the main effect of QTL1. That is,
as b increases, the marginal means of QTL1 separate more,
giving us more power to detect a difference in QTL1, solely
due to the interaction with QTL2.

‖

Thus, the presence of interaction can make one marginal factor seem signifi-
cant simply due to the presence of the other factor!

2.5.2 Higher-Order Factorials

Optimizing resources in experimentation would suggest that putting more
treatments in one experiment is a good thing – we can argue that:

(1) With many treatments in one experiment, we get simultaneous informa-
tion. This allows better comparisons.

(2) With more treatments to explain variation, the error will be reduced.
(3) Running one experiment saves resources and time.

These are all excellent arguments, but in practice big factorials, except in
certain situations, are not a good thing to do. What we saw in the previous
section is that in the presence of interaction, effects can get muddled together
and precise inferences become problematic. And this problem worsens when we
move to higher-order factorial; threeway, fourway, ten-way! (Just take a look
at the EMS from the threeway in Exercise 2.23, and the formal conclusions
from the hypothesis tests.)

Having said this, we need to understand how to deal with higher-order
factorials for at least two reasons: (i) Experimenters do them, and (ii) They
are good for exploration.

Although many-way designs can be run with treatments having many lev-
els, in such designs we run into the problem of interpretation of factors with
many degrees of freedom. A significant threeway interaction with 18 degrees
of freedom is difficult to make sense of - there are 18 contrasts to think about!

Higher order exploratory factorials are best run with treatments having
two levels – the levels are typically chosen to span the range of possible treat-
ment levels, representing a “high” and “low” setting. This gives the greatest
chance of finding an effect. (See Section 6.3.) Also, since the treatment has only
two levels and 1 degree of freedom, it is represented by one contrast, making
interpretation easy. Moreover, all interactions between two-level treatments
have 1 degree of freedom, making their interpretation easy

Another circumstance that sometimes arises in higher-order factorials is
the lack of within error. Although sometimes the experimental conditions are
replicated to get a within error, sometimes they are not. In such cases it
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is typical to use the higher-order interactions (threeway and higher) as error
terms. The thinking is that these higher-order factors do not carry much main
effect information and are mostly error anyway. Whether this is true, to use
these are errors means that we assume that their contribution to the EMS is
only through σ2, and there is no contribution from the interaction. This leads
to conservative tests, meaning that it is harder to reject H0, so if we do reject
we have some confidence that a true effect has been found.

Example 2.8. 2 × 2 factorial A 2 × 2 factorial can be represented by
the four cell means

Factor A

Factor B θ11 θ12

θ21 θ22

and each effect can be represented by a contrast

A effect
1 −1
1 −1

B effect
1 1

−1 −1

A × B
1 −1

−1 1

where the contrasts merely account for the mean differences. Note, in partic-
ular, that the interaction contrast is the “difference of the differences”. ‖

Example 2.9. Interaction contrasts If factor A has four levels and
factor B has three levels, then there are 6 interaction contrasts for A×B, each
with 12 coefficients. These can be obtained as all products of three orthogonal
contrasts in A and two orthogonal contrasts in B:

A
1 0

B −1/2 1
−1/2 −1

1 −1/3 −1/3 −1/3
0 1 −1/2 −1/2
0 0 1 −1

The six interaction contrasts are now obtained as the products of the coeffi-
cients, and the interpretation is a bit more straightforward. For example, the
first B contrast compares the first level of B with the average of the other
two, and the first A contrast compares the first level of A with the average of
the other three. The product of these contrasts is an interaction contrast.

A
1 −1/3 −1/3 −1/3

B −1/2 1/6 1/6 1/6
−1/2 1/6 1/6 1/6
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This interaction contrast compares the B contrast applied to level 1 of A with
the average B contrast in the other levels of A. In other words, it is as if we
collapsed the above table into a 2 × 2 table

A

Level 1 Average of
Levels 2-4

B Level 1

Average of
Levels 2-3

and did an interaction contrast here.
So we see that it is possible to interpret interactions using contrasts, but

the task is not simple and the interpretations may not be meaningful. And
we have only done twoway interactions – adding a third factor complicates
things even more (see Exercise 2.15). ‖

Example 2.10. A social science experiment To examine the effect of
different factors on a citizenship test performance, a factorial experiment was
set up with the following factors:

(1) Education: Three levels (less than high school, high school, greater than
high school),

(2) Home Environment: Four levels,
(3) Country of Origin: Seven countries.

The response variable was Y = score on a citizenship aptitude test.
The twoway interaction of Education × Home Environment would be of

interest, but the other twoway interactions are of less interest. Moreover, the
threeway interaction, with 36 degrees of freedom, would be very difficult to
interpret.

‖

Finally, we look at the classical higher-order factorial design (see Section
6.3 for another treatment of these designs), the 2n design, where we have
n factors, each at two levels. Things are actually quite simple here because
everything has two levels – all effects are contrasts and all contrasts are easily
obtainable as products.

It is common to specify the two levels of each factor, low and high, in the
following way. The high level of A is denoted by a, and the low level is denoted
by the absence of a. Thus the treatment combination ab has A and B at their
high level and C at the low level, while ac has A and C high and B low. The
treatment combination with all factors at their low level is denoted by (1).
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Example 2.11. A 24
factorial A 24 factorial design would have 24 =

16 treatment combinations, and the full anova would specify 15 factors: 4
main effects,

(
4
2

)
= 6 twoway interactions,

(
4
3

)
= 4 threeway interactions,

and 1 fourway interaction. Each effect has one degree of freedom, and all
contrasts are obtainable as products. This makes for easy interpretation. A is
the difference, AB is the difference of the differences, ABC is the difference
of the AB differences, etc.

The following table shows some of the effects in the 24 design. The low
level is −1 in the contrast and the high level is 1. The interaction contrasts
are all products; for example the AD contrast is obtained by multiplying the
A contrast by the D contrast, and the ABD contrast comes from AB×D (or
AD × B or A × B × D).

Treatment A B D AD ABD
(1) −1 −1 −1 1 −1
d −1 −1 1 −1 1
c −1 −1 1 −1 1
...

...
...

...
...

...
abc 1 1 −1 −1 −1
abcd 1 1 1 1 1

Unless there was express interest in the threeway and higher interactions, it
would be typical to pool these terms for an error estimate (Exercise 2.16) ‖

2.6 Adjusting for Covariates

The analysis of covariance (ancova) in some sense has no business being in a
design book, as it is more of an analysis tool than a design tool. However, its
function is to reduce variance of the treatment means, so from that view it is
a design strategy.

Here we look at a few examples of ancova, and do some variance calcu-
lations to understand how ancova works, and how it may benefit (on not!) a
design.

Example 2.12. Some ancova examples

(1) In agriculture, an experiment is done to examine the effect of treatments
on yield. However, it is known that the density/plot of the plants could
affect yield, and this variable is used as a covariate.

(2) In a nutrition experiment where the growth of laboratory rats is tracked,
the initial weight of the rats influences their growth rate, and could be
used as a covariate.

(3) In a microarray experiment with a spotted array, the florescence of a spot
is related to the size of the spot, which could vary from gene to gene.
Thus, spot size is a possible covariate.

‖
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In each of the above examples the candidate covariate satisfies two condi-
tions:

(1) The covariate is related to the response, and can account for variation in
the response.

(2) The covariate is not related to the treatment.

Note: We will see in (2.23) that the second condition is extremely important,
and if it is not satisfied it can erase all the benefits of using a covariate.

A covariate functions somewhat like a block, in that it removes variation.
However, it may not be a planned part of the experiment (it may be noticed
after the design is set up) and it is typically continuous, so it really cannot be
blocked over. If the covariate is recognized during the design phase, we could
stratify over it, effectively using it to balance the observations by having a
range of the covariate in each treatment.

Example 2.13. Corn yield covariance When trying to compare yields
of different varieties of corn, the response is confounded due to the fact that
the number of plants in a plot may vary. Since the number of plants clearly
influences yield, and should not be related to any treatment, it is an ideal
covariate. The following data are the yield (Y ) (dry weight) of four varieties
of corn, along with a covariate (X) measuring the number of plants per plot.

Varieties
Cornell Robson Ohio Ohio

M-4 360 K-24 M-15
Obs. X Y X Y X Y X Y

1 20 12.8 20 12.2 20 14.1 13 8.6
2 17 11.0 20 10.0 20 13.1 18 10.2
3 20 10.9 16 9.8 20 12.8 17 8.7
4 15 9.1 20 9.8 20 11.8 14 7.3
5 20 9.6 19 9.8 20 10.8 15 9.3
6 15 9.3 20 12.1 13 7.8 11 8.2

Examining the data suggests that, regardless of the variety, the yield is in-
creased if the number of plants per plot is increased (Figure 2.4). ‖

Here we will concentrate of the design effect of the covariate, in particular
looking at the effect of the covariate on the variance of a treatment contrast,
and attempting to document when the use of a covariate will be beneficial.
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We will only look at models with one covariate, and stay with CRDs. The
design effect in more complicated situations should be clear, and for details
of more complex ancova models there are data analysis books that treat this.
(A more advanced treatment can be found in Mead 1988; see also Federer and
Meredith 1992.)

Recall the oneway anova model (2.2)

Yij = µ + τi + εij , i = 1, . . . t, j = 1, . . . , r.

If there is a covariate, xij , we can use an ancova model

Yij = µ + τi + β(xij − x̄) + εij , i = 1, . . . t, j = 1, . . . , r,(2.16)

where εij ∼ N(0, σ2), independent, and we add to the anova model a “regres-
sion” piece that adjusts for the covariate. Although it is not immediately clear
how to estimate the treatment means in this model, we can appeal to least
squares to obtain

̂µ + τi = ȳi − β̂1(x̄i − x̄),(2.17)

where

β̂1 =

∑
ij(xij − x̄i·)(yij − ȳi·)
∑

ij(xij − x̄i·)2
.

If we restrict
∑

τi = 0, then µ̂ = ¯̄y and we can estimate the effects τi. However,
this breaks down if the cell sizes are unequal (Exercise 2.29).

Fig. 2.4. Least squares line fit to the four varieties of corn in Example 2.13. Re-
gardless of the treatment, there is a positive relationship between yield and number
of plants per plot.
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The crucial
covariance
assumption

Note that the means are adjusted to by covariate mean with
the assumption that, in each group, the slope is the same.
This assumption is both crucial and bothersome. Without it,
the mean comparisons could be very sensitive to where they
are adjusted – look at Figure 2.4. There it seems that the
equal slope assumption may be violated,

but if we fit different slopes then, depending on where we adjust the means,
they may be far apart or close together. It seems best to try to live with the
equal slope assumption if covariance analysis is to be performed, unless there
is a good reason to adjust each mean by a specific covariate value.

Since the least squares estimate is unbiased, we have E( ̂µ + τi) = µ + τi

with variance

Var( ̂µ + τi) = Var(Ȳi − β̂1(x̄i − x̄))

= Var(Ȳi) + (x̄i − x̄)2Var(β̂1)(2.18)

= σ2

(
1
r

+
(x̄i − x̄)2

∑
ij(xij − x̄i·)2

)

,

where we use the fact that Ȳi and β̂1 are independent.
There are two ways we can interpret (2.16), neither of which is formally

correct as an ancova model, but each of which lends some insight:

(1) If we write (2.16) as

Yij − µ − τi = β(xij − x̄) + εij ,

then the left side of the equation are the anova residuals, so we can think
of ancova as doing a regression on the anova residuals. Note that in this
interpretation we see that the variation due to regression will come out of
the anova residual, and thus should decrease experimental error.

(2) If we write (2.16) as

Yij − β(xij − x̄) = µ + τi + εij ,

then we can think of ancova as an anova on the regression residuals. In
this case the observations have been adjusted, and their variance has been
decreased, so the anova error should be decreased.

Although both of these interpretations are useful, the ancova actually does
things simultaneously, and fits the model

Yij − Ȳi· = β(xij − x̄i·) + εij ,(2.19)

where we adjust the means in each treatment. Notice that the total sum of
squares for this regression is, in fact, the within sum of squares from the
oneway anova, that is,
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SS(Regression Total) =
∑

ij

(yij − ȳi·)2 = SS(Within from anova),

and thus the ancova adjustment does come out of the anova “residual”.

Partitioning the Sums of Squares

Model (2.19) actually leads to two different partitioning of the sums of squares.
Since the regression comes out of the anova within, the ancova table can be
written

Source df SS

Treatments t − 1 r
∑

i(ȳi − ¯̄y)2

Within Treatments t(r − 1)
∑

ij(yij − ȳi·)2

Regression 1 β̂1

∑
ij(xij − x̄i·)(yij − ȳi·)

(Covariate after Trt)
Residual t(r − 1) − 1

∑
ij [(yij − ȳi·) − β̂1(xij − x̄i·)]2

where β̂1 is given at (2.17). Here we have partitioned the sum of squares by
first fitting the anova, and then pulling out the effect of the covariate from
the regression, as in interpretation (1) above. This table allows us to do the
usual anova test, and see if the regression is significant by forming the F -ratio
MS(Regression)/MS(Residual).

Although this test may be interesting, it does not get at the heart of the
ancova rationale, in that we want to see if the adjusted yields are significantly
different. To do this, we first partition the sums of squares by doing the
regression, and then removing the treatment variability from the residuals, as
in interpretation (2) above. The resulting ancova table is

Source df SS

Regression 1 β̂0

∑
ij(xij − x̄)(yij − ¯̄y)

Residual from Regression tr − 2
∑

ij [(yij − ¯̄y) − β̂0(xij − x̄)]2

Treatment 1 SS(Residual from Regression)
(after Covariate) −SS(Residual)
Residual t(r − 1) − 1

∑
ij [(yij − β̂1xij) − (ȳi· − β̂1x̄i·)]2

where

β̂0 =

∑
ij(xij − x̄)(yij − ¯̄y)
∑

ij(xij − x̄)2
,

and it is easiest to get the adjusted treatment sum of squares by subtrac-
tion. The SS(Residual from Regression) becomes the total sum of squares for
the adjusted treatment anova, and SS(Residual) is actually a within sum of
squares of the adjusted data yij − β̂1xij ; we have written it this way in the
second table. However, realize that the bottom-line residual is the same in
both tables.
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Example 2.14. Corn yield covariance continued The two anova ta-
bles for the corn data are

Covariate After Treatment Treatment After Covariate

Source df SS MS

Varieties 3 27.955 9.318
Within 20 46.765 2.338

Plants 1 21.729 21.729
(after Var.)
Residual 19 25.036 1.318

Source df SS MS

Plants 1 43.916 43.916
Residual 22 30.804 1.400
(from Reg.)

Varieties 3 5.768 1.923
(after Plants)
Residual 19 25.036 1.318

where the test statistic for varieties, after adjusting for the covariate, is

F3,19 =
1.923
1.318

= 1.459,

which is not significant. ‖

Testing Treatments

The ancova test on treatments, done in the above example, is a test of the
adjusted treatments. Formally, we test the hypotheses

H0 : Yij = µ + β(xij − x̄) + εij vs. H1 : Yij = µ + τi + β(xij − x̄) + εij ,

where the null hypothesis specifies only a regression relationship, and the
alternative specifies a treatment effect in addition to the regression. To test
these hypotheses note that the H0 model is a special case of the H1 model (we
also say that the H0 model is nested in the H1 model), and thus the H1 model
will always provide a better fit (since it has more parameters). To measure if
this fit is better, we can use the F -ratio

F =
[SS(Residual from H0) − SS(Residual from H1)]/(dfH0 − dfH1)

SS(Residual from H1)/dfH1

,(2.20)

where dfH0 and dfH1 are the residual degrees of freedom under the respective
models. This is the test done in Example 2.14. Specifically, from the above
ancova tables we have

Ft−1, t(r−1)−1

=

(∑
ij [(yij−¯̄y) − β̂0(xij−x̄)]2−

∑
ij [(yij − ȳi·) − β̂1(xij − x̄i·)]2

)
/(t − 1)

(∑
ij [(yij − ȳi·) − β̂1(xij − x̄i·)]2

)
/(t(r − 1) − 1)

.
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Fig. 2.5. Adjusted and unadjusted treatment means for the data of Example 2.13.
The fitted lines are from model (2.16). The ancova adjusts the means to their co-
variate mean (left panel), and the anova (unadjusted) is equivalent to adjusting the
means to the overall covariate mean (right panel).
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Note: The strategy to get the F -statistic in (2.20) is a general one for linear
models.

If the H0 model is nested in the H1 model, then (2.20) provides a valid test
of whether the richer model H1 is a significant improvement.

Estimating Contrasts

Building on (2.18), the variance of a contrast is given by

Var

(
∑

i

ai( ̂µ + τi)

)

= Var

(
∑

i

aiȲi

)

+ Var(β̂1)

(
∑

i

ai(x̄i − x̄)

)2

=
σ2

r

∑

i

a2
i +

σ2

∑
ij(xij − x̄i·)2

(
∑

i

aix̄i

)2

,(2.21)

where we use the independence of Ȳi and β̂1 and the fact that
∑

i ai = 0. We
then estimate σ2 with the MS(Residual) from the ancova.
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Example 2.15. Contrasts for corn yield experiment Returning to
Example 2.13, we calculate the estimated treatment means and their standard
errors. Figure 2.5 illustrates the covariance adjustment of the means. There it
can be seen that the adjustment increases the mean estimate as the number of
plants increases, and results in a spreading out of the treatment means. The
ancova also reduces the treatment variances, as the following table shows.

Varieties

360 K-24 M-15 M-4

Unadjusted Mean 10.617 11.733 8.717 10.450
Std. Error 0.624 0.624 0.624 0.624

Adjusted Mean 11.447 12.384 7.124 10.562
Std. Error 0.496 0.486 0.563 0.469

Note, in particular, the adjustment for M-15, which had fewer plants per plot.
The ancova tells us that the yield of M-15 is, in fact, lower than the others
even after adjusting for the number of plants.

If we test the contrast H0 : τM−15 = 1
3 (τ360 + τK−24 + τM−4), we find

Unadjusted: t20 = −4.100,

Adjusted: t19 = −6.659,

both wildly significant. Thus, even though the ancova gave greater separation,
this differences was large enough so that the original anova would find it. See
Exercise 2.13 for more. ‖

Variance of a Treatment Difference

We close this section with a deeper look at the variance of a treatment differ-
ence, which may add some insight as to when the ancova can be expected to
improve things. From (2.21), the estimated variance of the difference of two
adjusted means is

Var
(
( ̂µ + τi) − ( ̂µ + τi′)

)
=

2σ̂2

r
+

σ̂2

∑
ij(xij − x̄i·)2

(x̄i − x̄i′)
2
,

where σ̂2 is the MS(Residual) from the ancova and we recognize the sum in the
denominator as the within sum of squares from an anova of X on Treatments;
we denote it by SS(Withinx). An idea that goes back to Finney (1946) is
to replace this variance with a common one that can be used for all of the
differences. To do this, we can replace the term (x̄i − x̄i′)

2 with its average
over all pairs.

First, it can be verified that for any numbers b1, b2, . . . , bn we have
n∑

i=1

n∑

i′=1

(bi − bi′)2 = 2n
n∑

i=1

(bi − b̄)2.(2.22)
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There are t(t− 1) nonzero terms in the x̄i − x̄i′ pairs, and applying (2.22) we
obtain

Var
(
( ̂µ + τi) − ( ̂µ + τi′)

)
≈ 2σ̂2

r
+

σ̂2

∑
ij(xij − x̄i·)2

[
2

t − 1

∑

i

(x̄i − x̄)2
]

=
2σ̂2

r

(

1 +
1

t − 1
SS(Trtx)

SS(Withinx)

)

,(2.23)

where SS(Trtx) is the treatment sum of squares from the anova of X on
Treatments. From (2.23) we see two things very clearly

(1) The variance of a treatment difference is reduced as the regression of Y
on X in (2.19) improves, as σ̂2 will decrease.

(2) The variance of a treatment difference is increased if the covariate X is
related to the treatment, that is, if SS(Trtx)/SS(Withinx) increases. This
is a clear message that it is never advantageous to use a covariate that is
related to the treatment.

2.7 Exercises

Essential

2.1 Referring to Example 2.1
(a) For this experiment to be a CRD, explain how the data would need to be

collected.
(b) Complete the anova table:

Source df SS MS F

Temp - 5.86 - -
Within - - -
Total - 7.67

(c) The experimenter is trying to decide which of two different temperature
contrasts to test (i) (−3, 1, 1, 1) or (ii) (−3,−1, 1, 3). Give the experi-
menter an interpretation of each of these contrasts.

(d) For contrast (i) of part (c), find two others that are orthogonal.
(e) Calculate the t-statistic for testing H0: −3τ1 − τ2 − τ3 + 3τ4 = 0, and find

the proportion of variation in Temperature that is not explained by the
contrast (−3,−1, 1, 3).

2.2 Referring to Section 1.2 of Chapter 1:
(a) Write Ȳi· − ¯̄Y as a contrast in Yij .
(b) Use the contrast formulas to find the mean and variance of Ȳi·− ¯̄Y . Check

that they agree with those in Section 1.2
(c) Write Yij − Ȳi· as a contrast in Yij and then verify (1.6) and (1.6).

2.3 Referring to the IVD data of Example 2.1:
(a) Describe, in words, the conclusions that you would draw from the results

of Table 2.1.
(b) Produce the complete anova table for the IVD data.
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(i) Break down the treatment sum of squares into the contrast sum of
squares corresponding to Table 2.1.

(ii) Reproduce the t-statistics for the contrasts.
(iii) Verify that the average squared t-statistic is the anova F -ratio.

(c) Use another set of orthogonal contrasts, those that correspond to the
linear, quadratic and cubic trend, to break down the treatment sum of
squares. Test the significance of each contrast and describe the conclu-
sions that can be made.

2.4 Here we look more closely at parameter restrictions.
(a) Referring to model (2.4), show that the restriction τ̄ = γ̄ = (̄τγ)i·· =

(̄τγ)·j· = 0 results in exactly tg − 1 parameters to be estimated.
(b) Extend the results of (a) to a threeway CRD with all interactions.
(c) For a general factorial with T different treatments, each at ti levels, i =

1, . . . T , show that there are
∏

i
ti−1 degrees of freedom to estimate effect

parameters. Describe a restriction on the parameters that will result in
identifiability, that is, that will reduce the parameters space to

∏
i
ti − 1

elements.
2.5 For the oneway model (2.2),

(a) Show that under the assumption that τ̄ = 0, which makes the τi estimable,
the least squares estimates in the oneway CRD are given by

τ̂i = ȳi· − ¯̄y , µ̂ = ¯̄y .

Derive the variances of τ̂i and τ̂i − τ̂i′ .
(b) For the following oneway CRD, provide the anova table and estimates of

the parameter effects and their variances. To determine diet quality, male
weanling rats were fed diets with various protein levels. Fifteen rats were
randomly assigned to one of three diets, and their weight gain in grams
was recorded. The data are (also in dataset Protein).

Diet Protein Level

Low Medium High

3.89 8.54 20.39
3.87 9.32 24.22
3.26 8.76 30.91
2.70 9.30 22.78
3.82 10.45 26.33

2.6 Show the following for the oneway CRD (1.1):
(a) E(Ȳi· − Ȳ ) = τ̂i.
(b) A contrast

∑
i
ai

(
Ȳi·· − ¯̄Y

)
is an unbiased estimator of

∑
i
aiτi with vari-

ance σ2

r

∑
i
a2

i .
(c) If there are ri observations per treatment, then (a) and (b) hold with

variance σ2
∑

i
a2

i /ri.
2.7 For the twoway CRD (2.4):

(a) Verify the derivation of the least squares estimators and their variances.
(Hint: First add ±yij· and show that the estimates will only depend on
yij·. Then write τi + γj + (τγ)ij = γij and show that the least squares
estimate of γij is yij·.)
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(b) For the data of Example 2.4, found in dataset RedClover, estimate all of
the treatment effects and their variances.

2.8 Calculation of variances in the twoway CRD.
(a) Show that the estimator Ȳi·· − ¯̄Y has variance

Var
(
Ȳi·· − ¯̄Y

)
= Var (εi·· − ¯̄ε) =

(
1 − 1

t

)
σ2

rg
.

Note that εi·· and ¯̄ε are correlated, which has to be accounted for in the
variance calculation. Justify the application of Lemma 2.16 with Wi = εi··.

(b) Verify (2.12) by showing
∑

i

ai(Ȳi·· − ¯̄Y ) =
∑

i

ai(εi·· − ¯̄ε) =
∑

i

aiεi··

and then use the fact that εi·· are independent with variance σ2/rg.
(c) Find the expectation and variance for contrasts in the other effect esti-

mates in (2.8).
(d) Repeat (b) and (c) for the case of unequal cell sizes, where there are rij

observations per cell. As a guide, first verify that

Var

(
∑

i

ai(Ȳi· − Ȳ )

)

= σ2
∑

i

a2
i∑

j
rij

2.9 For the following experiment
(i) specify the model equation

(ii) set up the anova table (source, df and EMS)
(iii) specify two hypotheses and how they would be tested
The cathode warm-up time in seconds was determined for three different tube
types using eight observations on each tube type. The order of the experiment
was completely randomized. The results were

Tube Type

A B C

Warm-up 19 20 20 40 16 19
Time 23 20 20 24 15 17
(Seconds) 26 18 32 22 18 19

18 35 27 18 26 18

2.10 (Finding an Optimal Region)3

If we are looking for maximum yield it would be wasteful to examine regions
of low yield. Typically, the main features of such regions are first-order, that
is, they are main effects rather than interactions. Thus, in a first search for
such regions, we would be willing to use interaction terms as a denominator.
Moreover, we consider this the first of a series of experiments; after we ap-
proximately locate a region of optimal response we will continue with a more
precise experiment.

3 Methods for finding optimal regions are called Response Surface methods. Al-
though we are not treating these methods in detail, they are an important topic.
The textbooks of Mead (1988) and Dean and Voss (1999) contain chapter length
treatments; a thorough introduction is the book by Khuri and Cornell (1996).
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As a particular example, an experimenter is rearing beneficial insects and is
trying to find the conditions that produce insects most rapidly. The researcher
has four large environmental chambers that can be used to control tempera-
ture, photoperiod, and humidity. There are other factors, for example, diet,
but these will not be considered at this time.
We consider four possible designs, where photoperiod is hours of light and
dark in a 24-hour period; for example, 16:8 is 16 hours of light and 8 hours of
dark. The designs are given below.

Relative
(1) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 16:8
One factor 2 25 60 16:8
at a time 3 30 60 16:8

4 35 60 16:8

Relative
(2) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 16:8
One factor 2 20 60 16:8
at a time 3 25 60 16:8

4 25 60 16:8

Relative
(3) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 16:8
Factorial, 2 20 60 14:10
ignore 3 25 60 16:8
humidity 4 25 60 14:10

Relative
(4) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 14:10
Fraction 2 25 60 16:8

3 20 80 14:10
4 25 80 16:8

(Experiment (4) is an example of a fractional factorial. See Section 6.3.)
(a) Construct the anova table (just source and df ) for each design.
(b) Recall that the major goal of these experiments is to locate the condition

for optimal growth. List at least one advantage and one disadvantage of
each design.

(c) Which design would you use for locating the region with the fastest insect
growth?

2.11 Here we calculate expected mean squares to justify the F -test in Table 2.2.
(a) Show that

E(SS(Trts)) = rE

t∑

i=1

[ȳi· − ¯̄y ]2 = rE

t∑

i=1

[(τi − τ̄) + (ε̄i· − ¯̄ε)]2
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= r

t∑

i=1

τ2
i + r

t∑

i=1

E(ε̄i· − ¯̄ε)2 [cross term is zero]

= r

t∑

i=1

τ2
i + (t − 1)σ2 [Lemma 2.16] .

(b) Calculate the other EMS and produce the anova table

Source df EMS

Treatments t − 1 σ2 + r
t−1

∑
i
τ2

i

Within r(t − 1) σ2

(c) For model (2.2), suppose j = 1, . . . ri, so there are unequal numbers of
experimental units per treatment. Produce the anova table analogous to
that in part (b).

2.12 Kuehl (1994) reported data on weight gain (mg) of shrimp cultured in aquaria,
subjected to different levels of temperature (T ), density of shrimp populations
(D), and water salinity (S). The factors were crossed, and the experiment was
run as a threeway CRD. Here is a schematic of the data, given in dataset
Shrimp.

T = 25oC T = 35oC
D

80 160

10% x, x, x x, x, x
S 25% x, x, x x, x, x

40% x, x, x x, x, x

D

80 160

10% x, x, x x, x, x
S 25% x, x, x x, x, x

40% x, x, x x, x, x

(a) Produce the anova table and do the appropriate F -tests.
(b) You should find that, at the .05 level, the T × D and S × D interactions

are not significant. Provide interpretations of this.
(c) You should find that, at the .05 level, the T × S and T × S × D interac-

tions are significant. Provide interpretations of this.
(d) Explore the interactions in part (c) further. Look at interaction with the

linear and quadratic contrasts of S. Can you refine your conclusions from
part (c)?

(e) Suppose you were asked to design a second experiment to further explore
the treatments that result in large weight gain. Based on what you have
learned in parts (a)-(d), what would you suggest?

2.13 Referring to Example 2.5, look further into the interaction term to see if there
is any significant effects.
(a) Get the contrast coefficients for the three orthogonal (in the parameters)

interaction contrasts for linear, quadratic and cubic tissue × hCG.
(b) Calculate the contrast sums of squares for each contrast, and perform the

anova F -tests. Note that the estimated contrasts are correlated, and the
sums of squares do not add to that of the 3 df interaction.

(c) Perform the same linear, quadratic, and cubic breakdowns for the main
effect of tissue.
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(d) What can you conclude about the effects and interactions?
2.14 Referring to Example 2.7:

(a) Produce a table like Table 2.7 for the left panel of Figure 2.3, where there
is no interaction. Show that the marginal effect parameters act indepen-
dently.

(b) The following figure has two more possible QTL interactions patterns.

QTL1

Q
TL

2

bb

Bb

BB

aa Aa AA

QTL1

Q
TL

2

bb

Bb

BB

aa Aa AA

Show that, by constructing tables similar to Table 2.8, the left panel results
in the marginal means of one QTL affecting the other, while for the second
panel (where there is interaction) the marginal QTLs act independently
(in fact, one has no effect).

2.15 Referring to Example 2.9:

(a) Fill in the table with the six interaction contrasts for A × B.
(b) Make a similar table using polynomial contrasts.
(c) Verify, using the cell means, that the contrast from the collapsed 2 × 2

table is exactly the same as the contrast with all twelve cells.
(d) Suppose that a third factor C, with three levels, was crossed with A and B.

Obtain the coefficients of the A×B×C interaction contrast that compares
the first level of B with the average of the other two, the first level of A
with the average of the other three, and a linear trend in C. Also, give the
collapsed table, and attempt to interpret the contrast in words.

2.16 Referring to Example 2.11:
(a) Fill in the table with all of the effect contrasts.
(b) Give the anova table, source, df, and EMS, where we pool the threeway

and fourway interactions to get an error estimate. Specify the assumptions
needed for this pooling.

2.17 Referring to Example 2.13:
(a) Verify the analysis of covariance, the adjusted treatment means and their

standard errors.
(b) Test the significance of the pairwise differences, using both adjusted and

unadjusted means. Do the conclusions change from the anova to the an-
cova?

(c) Redo part (b) using the average standard error of the difference give in
(2.23). How do the results compare to part (b)? Based on your assessment
of SS(Trtx) was the ancova worthwhile?
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2.18 An experiment described in Snedecor and Cochran (1989) (same Cochran4)
concerned treatment of leprosy in the Philippines. On each patient, six sites
were examined for leprosy bacilli, with the abundance of the bacilli being mea-
sured. The covariate, X, is a score representing the abundance before treat-
ment, and the response Y is the same score after several months of treatment
with antibiotics A and B or a control C. The data are in dataset Antibiotic.
(a) Run both an anova on Y and an ancova with covariate X. Explain the

results with respect to the significance of the treatments.
(b) The treatment design suggests testing the two orthogonal contrasts A +

B − 2C and A−B. Do this both for the adjusted and unadjusted means.
Describe your conclusions.

(c) Is the initial measurement X a good covariate? Explain. You may want
to look at the anova of X on treatment.

(d) Plot the individual regression lines for each drug, along with the over-
all regression (from the covariance analysis) and the unadjusted means.
Explain the plot in terms of the results of the analysis.

Accompaniment

2.19 A Useful Identity:

(a) Show that for numbers xij ,

t∑

i=1

t∑

j=1

(xij − x̄i − x̄j + x̄)2 =
∑

ij

x2
ij − b

∑

i

x̄2
i − t

∑

j

x̄2
j + btx̄2.

(b) If Xij are random variables with EXij = 0, show that

E

[
t∑

i=1

t∑

j=1

(Xij − X̄i − X̄j + X̄)2

]

=
∑

ij

VarXij −b
∑

i

VarX̄i − t
∑

j

VarX̄j + btVarX̄.

2.20 (a) Show how to apply Lemma 2.16 to establish (2.9).
(b) Finish the calculations to fill in Table 2.6. To calculate the EMS for the

interaction term you might first want to establish that

ε̄ij· − ε̄i·· − ε̄·j· + ε̄··· ∼ N

(

0,
(t − 1)(g − 1)

r
σ2

)

.

2.21 (Some anova theory: the t-F relationship)
(a) Referring to Example 2.2, there it was demonstrated numerically that the

oneway CRD anova F -statistic is equal to the average squared t-statistics
from uncorrelated contrasts. Show, analytically, that this is true for any
set of orthogonal contrasts.

4 This is really a famous pair. You know some of what Cochran did. Among the
accomplishments of Snedecor is the derivation of the anova F -statistic, which has
sometimes been called “Snedecor’s F”. Snedecor named it “F” in honor of Fisher.
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(b) Another way to derive the anova F -statistics is as a maximum of t-
statistics. In a oneway CRD with t treatments and ni observations per
treatment, we test contrast hypotheses by

reject H
(a)
0 :

∑

i

aiµi = 0 if |t(a)| =

∣
∣
∑

i
aiȳi

∣
∣

√
MSE

∑
i
a2

i /ni

> tα/2.

(i) The union-intersection principle (see Casella and Berger 2001, Sections
8.3.3 and 11.2) tells us that H0 : µ1 = µ2 = · · · = µt is true if and

only if H
(a)
0 is true for every set of contrasts (a1, a2, . . . , ak). Prove this.

(Thus, H0 is the intersection of H
(a)
0 .)

(ii) Building on (i), show that H0 will be rejected if at least one H
(a)
0 is

rejected. (Thus, the rejection region of H0 is a union of the individual
rejection regions.)

(iii) Finally, argue that H0 will be rejected if and only if maxa |t(a)| exceeds
its critical point, and establish that

max
(a1,a2,...,ak):

∑
i

ai=0

(
∑

i
aiȳi)

2

∑
i
a2

i /ni
=
∑

i

ni(ȳi − ¯̄y)2,

showing that the maximum of the squared t-statistics is the anova F .
(This is a difficult maximization.)

2.22 Complete the calculations to produce the EMS in Table 2.6. In particular,
apply the identity in Exercise 2.19 to show

E
∑

ij

(Ȳij − Ȳi − Ȳj + ¯̄Y )2 = bt [Varεij − Varε̄i − Varε̄j + Var̄ε̄] .

2.23 For a threeway CRD, all factors fixed, a model is

yijkl = µ + αi + δj + γk + (αδ)ij + (αγ)ik + (δγ)jk + (αδγ)ijk + εijkl,

where i = 1, . . . , t,j = 1, . . . , b, k = 1, . . . , c, l = 1, . . . , r, and εijkl ∼ N(0, σ2),
independent, and we have the identifiability restrictions

ᾱ = δ̄ = γ̄ = ¯(αδ) = ¯(αγ) = ¯(δγ) = ¯(αδγ) = 0,

¯(αδ)i = ¯(αδ)j = ¯(αγ)i = ¯(αγ)k = ¯(δγ)j = ¯(δγ)k = 0,

¯(αδγ)i = ¯(αδγ)j = ¯(αδγ)k = ¯(αδγ)ij = ¯(αδγ)ik = ¯(αδγ)jk = 0.

(a) Verify that the EMS for factor A is given by

E(MS(A)) = σ2 +
1

t − 1

t∑

i=1

α2
i .

(b) Verify that the EMS for the A × B interaction is given by

E(MS(A × B)) = σ2 +
1

(t − 1)(b − 1)

t∑

i=1

b∑

j=1

(αδ)
2

ij .
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(c) Based on what you learned in (a) and (b) fill in the complete threeway
anova table (Source, df, EMS). (You do not need to do any more calcula-
tions – you should be able to deduce what the other EMS will be.)

(d) An experimenter will typically state a hypothesis in words. For the two
hypothesis

H0 : No B effect and H0 : No BC effect

state each hypothesis in terms of the appropriate parameter values.
2.24 Refer to Miscellanea 2.9.2. If the treatment is applied, we assume that either

δij ∼ iid N(0, σ2
δ ), or δi ∼ iid N(0, σ2

δ ), in both cases independent of εij ∼
N(0, σ2

ε).
(a) Show that, if we have the case where δi ∼ iidN(0, σ2

δ ), then Cov(Yij , Yij′)=
σ2

δ , and in the other cases the Yij are all independent.
(b) Show that the following table summarizes the EMS for the case of mod-

eling the error due to applying the treatment, and that if δij = δi there is
no test on treatments.

EMS for Attributes

Source df EMS EMS EMS

δij = 0 δi ∼ iid N(0, σ2
δ ) δij ∼ iid N(0, σ2

δ )

Treatments t − 1 σ2
ε + r

t−1

∑
i
τ2
i σ2

ε + rσ2
δ + r

t−1

∑
i
τ2
i σ2

ε + σ2
δ + r

t−1

∑
i
τ2
i

Within t(r − 1) σ2
ε σ2

ε σ2
ε + σ2

δ

(This table once again illustrates the importance of true replication. In the
middle EMS column the treatment is not truly replicated, and the result is no
test on treatments!)

2.25 Here we see that a single contrast has a chi-squared distribution.
(a) Verify that the matrix aa′ in (2.24) is idempotent.
(b) Show that (a) implies that for Yi ∼ N(0, σ2) and any contrast, we have

(∑
i
aiYi

)2

σ2
∑

i
a2

i

∼ χ2
1

2.26 Referring to Technical Note 2.8.3:
(a) Show that A1 is idempotent and SS(Within) = Y′A1Y.
(b) Show that A2 is idempotent and SS(Within) = Y′A2Y.
(c) Show that A1A2 = A2A1 = 0, and hence A1 + A2 is idempotent and the

assumptions of Cochran’s Theorem are satisfied.
(d) Prove Theorem 2.21.

2.27 Referring to Technical Note 2.8.3, here we will prove Theorem 2.22.
(a) Establish (1)-(3) of Theorem 2.22, using arguments similar to those in

Exercise 2.26.
(b) To prove (4), we need to find the matrix A3 that satisfies YA3Y =

SS(T × G), and show that A3 is idempotent and satisfies A1A3 = A3A1 =
0, where A1 satisfies YA1Y = SS(Within). Cochran’s Theorem can then
be applied to get the F -test. (The matrix A3 is constructed in a manner
similar to the interaction matrix in Technical Note 3.8.2.)

2.28 Prove Theorem 2.23 by showing that, under model (2.4):
(a) Cov(Ȳi, Yi′jk − Ȳi′j) = 0 for all i, i′, j, k.



2.8 Technical Notes 79

(b) Cov(Ȳj , Yij′k − Ȳij′) = 0 for all i, j, j′, k.
(c) Cov(Ȳij − Ȳi − Ȳj , Yi′j′k − Ȳi′j′) = 0 for all i, i′, j, j′, k.
(d) Use the normality assumption to go from uncorrelated to independence

in (a)-(c), and use the properties of the t-distribution (Section 2.8.2) to
complete the proof.

2.29 Referring to Section 2.6:
(a) Use model (2.16) to derive the least squares estimators (2.17) and show

that the least squares estimator of µ + τi is unbiased.
(b) Show that, in (a), if

∑
i
τi = 0, then we can estimate τi. If the cell sizes

are unequal (ri instead of r), derive the least squares estimates. How can
we now estimate τi?

(c) Derive the variance of the least squares estimate of µ + τi in the case of
unequal ri.

2.30 For the variance of an ancova contrast:
(a) Verify the variance (2.21).
(b) Prove the identity (2.22) and use it to verify the variance approximation

(2.23). (Add ±b̄ on the left side and expand.)
(c) Suppose that, in (2.22), each bi is a mean based on ri observations. For-

mulate and prove an analogous identity to (2.22), and then establish an
analogous average variance to (2.23).

2.31 The following data are measurements on the strength index of three varieties of
cotton, where the treatments are pounds of potassium oxide per acre (dataset
Imbalance). Here we want to see the effect of imbalance on the anova.

Strength Index of Cotton
Varieties

Treatment 1 2 3

36 7.06 7.75, 8.22 7.95, 8.59
60 7.51, 7.5 8.08, 8.18 8.69, 8.39
84 7.27, 7.49 7.9 8.04
108 6.55, 6.47 7.26, 7.06 7.35
132 6.97, 7.14 7.52, 7.83 7.63, 7.2

(a) Verify the anova tables in Miscellanea 2.9.3.
(b) Produce one anova table that contains the partial sums of squares. (You

can do this by combining the two tables from part (a) or by using the R

command drop1.)
(c) In terms of the analysis of these data, explain why the table in part (b) is

most appropriate.
(d) Calculate the contrast sum of squares for the linear effect of potassium

oxide and test its significance.
(e) Estimate the contrast and its standard error, and give a 95% confidence

interval.

2.8 Technical Notes

2.8.1 Helpful Lemma I

The following lemma is helpful in calculating expected sums of squares in
CRD designs.
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Lemma 2.16. Suppose that W1, W2, . . . , Wn satisfy EW = 0, VarW = σ2, and
Cov(Wi, Wi′) = 0. Then

(1) E
∑n

i=1
(Wi − W̄ )2 =

∑n

i=1
VarWi − nVarW̄ =

(
1 − 1

n

)∑n

i=1
VarWi,

(2) Cov(Wi − W̄ , Wi′ − W̄ ) = − 1
n
σ2,

(3) Var(Wi − W̄ ) = E(Wi − W̄ )2 =
(
1 − 1

n

)
σ2.

If the Wi are normal, then

(4) Wi − W̄ ∼ N
(
0,
(
1 − 1

n

)
σ2
)
.

2.8.2 Anova Theory
In this section we outline the statistical theory behind anova, which leads
us to t-tests and F -tests, as well as confidence intervals. Many of the details
that we suppress here can be found in Casella and Berger (2001), especially
in Section 5.3.

Theorem 2.17 (Independence of Linear Combinations). Let Yi ∼
N(µi, σ

2
i ), i = 1, 2, . . . , r, be jointly normal, with Cov(Yi, Yi′) = φii′ , and let

Wj =
∑r

i=1
aijYi, j = 1, 2, . . . , m be any collection of linear combinations.

Then
(1) The random variables Wj, j = 1, 2, . . . , m, are jointly normal, with

Wj ∼ N

(
r∑

i=1

aijµi,

r∑

i=1

a2
ijσ

2
i + 2

∑

i>i′

aijai′jφii′

)

.

(2) If Cov(Wj , Wj′) = 0, Wj and Wj′ are independent.
(3) If Cov(Wj , Wj′) = 0 for all j �= j′, then the Wj are all independent.

The proof follows from the properties of the normal distribution and some
algebra. It uses the fact that, because of the special form of the normal distri-
bution, if the covariances are zero the density function factors into products.

Theorem 2.18 (From normals to χ2 random variables). Let χ2
p denote

a chi squared random variable with p degrees of freedom.
(1) If Z ∼ N(0, 1), then Z2 ∼ χ2

1.
(2) If Wi, i = 1, 2, . . . , r are independent, each distributed as χ2

pi
, then∑

Wi ∼ χ2∑
pi

.

So the degrees of freedom of independent χ2 random variables sum. Of course,
Wi could be the square of a standard normal or, more generally, if Yi ∼
N(µi, σ

2
i ), i = 1, 2, . . . , r are independent, then

r∑

i=1

(
Yi − µi√

σ2
i

)2

∼ χ2
r.

Now, we take the final step to the t and F distributions.
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Theorem 2.19 (t and F distributions).
(1) If Z ∼ N(0, 1) and V ∼ χ2

p, independent of Z, then

Z
√

V/p
∼ tp,

where tp is Student’s t distribution with p degrees of freedom.
(2) If W ∼ χ2

q and V ∼ χ2
p, independent, then

W/q

V/p
∼ Fq,p,

where Fq,p has an F distribution with q numerator degrees of freedom and
p denominator degrees of freedom.

2.8.3 Cochran’s Theorem for CRDs
Thus far, we have reached the t and F distributions when starting from inde-
pendent normal random variables. However, we need more, as we will often be
dealing with variables of the form Yi−Ȳ , and these are not independent. More
generally, in anova, we are typically interested in the distributions of sums
of squares that are built up from linear combinations (actually contrasts)
of normal variables. (For more details about anova theory see Graybill and
Hultquist 1961, Albert 1976, Khuri 1982. Speed (1987) gives a very detailed
derivation of this decomposition.)
For example, from Theorem 2.17, consider a linear combination

∑
i
aiYi

with
∑

i
a2

i = 1. Write
∑

i
aiYi = a′Y, where a = (a1, a2, . . . , ap) and

Y = (Y1, Y2, . . . , Yp). Then

(
∑

i

aiYi

)2

= (a′Y)2 = Y′(aa′)Y,(2.24)

where the matrix (aa′) satisfies (aa′)2 = (aa′). Recall that a matrix A that
satisfies the condition A2 = A is called idempotent, and there is a strong
connection between idempotent matrices and the chi squared distribution.
The major result that we need is known as Cochran’s Theorem, which dates
back to Cochran (1934)5.

Theorem 2.20 (Cochran’s Theorem). Let Y ∼ N(0, Σ), and let Ak, k =
1, 2, . . . , m satisfy

∑m

k=1
Ak = A, where AΣ is idempotent. If

AkΣ is idempotent for every k and AkΣAk′ = 0, k �= k′,

then
(1) Y′AkY ∼ χ2

tr(AkΣ) for every k,
(2) Y′AkY and Y′Ak′Y are independent for k �= k′,
(3) Y′AY ∼ χ2

tr(AΣ).

5 A complete treatment of Cochran’s Theorem can also be found in Stuart and Ord
1987, Chapter 15 or Scheffé1959 Appendix VI.
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If Σ = σ2I, a scalar multiple of the identity matrix, it follows from the pre-
vious discussion that Y′Y/σ2 =

∑
Y 2

i /σ2 ∼ χ2
p. Using Cochran’s theorem,

if A is an idempotent matrix then we can write

Y′Y = Y′AY + Y′(I − A)Y,

and, when divided by σ2, both quadratic forms on the right side are indepen-
dent χ2 random variables, with degrees of freedom equal to the trace of the
matrix in the quadratic form. That is, for Y ∼ N(0, σ2I) and idempotent A
we have

Y′AY/σ2 ∼ χ2
tr(A) and Y′(I − A)Y/σ2 ∼ χ2

tr(I−A),

where tr(A) is the sum of the diagonal elements. Since A(I−A) = 0, we have
partitioned χ2

p = χ2
tr(A) + χ2

tr(I−A).
As we have seen, many of the sums of squares that we deal with in anova
are built up from contrasts in normal random variables. We now look at the
oneway CRD anova

Yij = µ + τi + εij , εij ∼ N(0, σ2), independent, i = 1, . . . t, j = 1, . . . , r,

and work our way to the F distribution for the test on treatments.
Within cell i, we have observations Yi1, Yi2, . . . , Yir and we can write the
deviations from the mean as

⎛

⎜
⎜
⎝

Yi1 − Ȳi·
Yi2 − Ȳi·

...
Yir − Ȳi·

⎞

⎟
⎟
⎠ =

(
I − 1

r
J
)

⎛

⎜
⎜
⎝

Yi1

Yi2

...
Yir

⎞

⎟
⎟
⎠ ,

where I is the identity matrix and J is a matrix of ones. Now we note that

(
I − 1

r
J
)(

I − 1

r
J
)

=
(
I − 1

r
J
)

is an idempotent matrix. The entire set of deviations can be written as

⎛

⎜
⎜
⎝

Y11 − Ȳ1·
Y12 − Ȳ1·

...
Ytr − Ȳt·

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

(
I − 1

r
J
)

0 · · · 0

0
(
I − 1

r
J
)

· · · 0
...

...
...

...

0 0
(
I − 1

r
J
)

⎞

⎟
⎟
⎟
⎠

tr×tr

⎛

⎜
⎜
⎝

Y11

Y12

...
Ytr

⎞

⎟
⎟
⎠

def
= A1Y.

It can be shown that A1 is idempotent and SS(Within) = Y′A1Y. Similarly,
we can write the deviations for the treatment sum of squares as

⎛

⎜
⎜
⎜
⎝

Ȳ1· − ¯̄Y

Ȳ2· − ¯̄Y
...

Ȳt· − ¯̄Y

⎞

⎟
⎟
⎟
⎠

=
(
I − 1

t
J
)

⎛

⎜
⎜
⎝

Ȳ1·
Ȳ2·
...

Ȳt·

⎞

⎟
⎟
⎠=

(
I − 1

t
J
)

1

r

⎛

⎜
⎜
⎝

1r×1 0 · · · 0
0 1r×1 · · · 0
...

...
...

...
0 0 1r×1

⎞

⎟
⎟
⎠

t×tr

Y,
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however, the matrix multiplying Y is not square and cannot be idempotent.
To remedy this we take t copies of it (this is why there is a t multiplying the
treatment sum of squares) and define

A2 =

⎛

⎜
⎜
⎜
⎝

(
I − 1

t
J
)

(
I − 1

t
J
)

...(
I − 1

t
J
)

⎞

⎟
⎟
⎟
⎠

tr×t

1

r

⎛

⎜
⎜
⎝

1r×1 0 · · · 0
0 1r×1 · · · 0
...

...
...

...
0 0 1r×1

⎞

⎟
⎟
⎠

t×tr

and then A2 is idempotent and SS(Treatments) = Y′A2Y. We are now in
the position to apply Cochran’s Theorem to get the following, whose proof is
left to Exercise 2.26.

Theorem 2.21 (Oneway CRD F -distribution). For the oneway CRD

Yij = µ + τi + εij , εij ∼ N(0, σ2), independent, i = 1, . . . t, j = 1, . . . , r,

(1) SS(Within)/σ2 ∼ χ2
t(r−1).

(2) Under H0 : τi = 0 for all i, SS(Trt)/σ2 ∼ χ2
t−1, independent of SS(Within).

(3) Under H0 : τi = 0 for all i, F = SS(Trt)/(t−1)
SS(Within)/(t(r−1))

∼ Ft−1,t(r−1).

A similar theorem holds for the twoway (and higher) CRDs, with the compli-
cation that we have to deal with the matrices for the interaction terms. We
leave that pleasant task to Exercise 2.27, and simply state the theorem here.

Theorem 2.22 (Twoway CRD F -distributions). For the twoway CRD of
model (2.4),
(1) SS(Within)/σ2 ∼ χ2

tg(r−1).

(2) Under H0 : τi = 0 for all i, SS(T)/σ2 ∼ χ2
t−1, independent of SS(Within)

and F = SS(T)/(t−1)
SS(Within)/(tg(r−1))

∼ Ft−1,tg(r−1).

(3) Under H0 : γj = 0 for all j, SS(G)/σ2 ∼ χ2
g−1, independent of SS(Within)

and F = SS(G)/(g−1)
SS(Within)/(tg(r−1))

∼ Fg−1,tg(r−1).

(4) Under H0 : (τγ)ij = 0 for all i, j, SS(T × G)/σ2 ∼ χ2
(t−1)(g−1), independent

of SS(Within) and F = SS(TxG)/((t−1)(g−1))
SS(Within)/(tg(r−1))

∼ F(t−1)(g−1),tg(r−1).

Finally, the distribution of contrasts in the CRD is also straightforward. We
state the theorem here and leave the proof to Exercise 2.28.

Theorem 2.23 (Contrasts in the twoway CRD). For the twoway CRD
of model (2.4), let σ̂2 = MS(Within)/(tg(r − 1)). Then for any contrast
(1)

√
gr

∑
i
ai(Ȳi − τi)/σ̂ ∼ ttg(r−1).

(2)
√

tr
∑

j
aj(Ȳj − γij)/σ̂ ∼ ttg(r−1).

(3)
√

r
∑

ij
aij(Ȳij − Ȳi − Ȳj + ¯̄Y − (τγ)ij)/σ̂ ∼ ttg(r−1).

There has been much research in answering the question “When is a sum of
squares an analysis of variance”, the title of Albert (1976). What is meant is,
under what conditions can we partition the total sum of squares into orthogonal
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pieces, and get out the usual F -tests. This was first addressed by Graybill and
Hultquist (1961), who investigated the connections between such a decompo-
sition and minimal sufficiency, which implies that the inference would then be
based on the likelihood function. The most general treatment of this problem
can be found in Speed (1987). On a related note, Bradley (1973) gives conditions
for the equivalence of likelihood and least squares estimates in linearmodels (see
Berger and Casella 1992 for a more elementary treatment of this equivalence).

2.8.4 Noncentral Distributions

In the anova, if we set up the ratio of mean squares correctly, then under
the appropriate H0 their ratio will have an F distribution. More precisely, it
is a central F distribution as described in Theorem 2.19. If H0 is false, and
the appropriate parameter is nonzero, then the ratio of mean squares has a
noncentral F distribution. This noncentral distribution, and its properties,
is related to the power of the anova tests, and a good understanding of the
behavior of the F -statistic under the noncentral distribution will be helpful
in better evaluating anova strategies. Here we discuss the oneway and twoway
CRD; extensions to other designs should be clear.
The central F distribution (we usually omit the adjective unless we need to be
very clear) is obtained from the ratio of two independent central χ2 random
variables. The noncentral F comes from the noncentral χ2 distribution.

Definition 2.24. If X1, X2, . . . , Xp are independent normal random variables,
Xi ∼ N(θi, σ

2), then

W =

∑
i
X2

i

σ2
∼ χ2

p(λ),

a noncentral χ2 random variable with p degrees of freedom and noncentrality
parameter λ =

∑
i
θ2

i . If V ∼ χ2
q (central), independent of W , then

W/p

V/q
∼ Fp,q(λ),

a noncentral F with degrees of freedom p and q and noncentrality parameter
λ =

∑
i
θ2

i /σ2.

The density function of the noncentral χ2 is quite imposing, being an infinite
sum of weighted central χ2 densities. We will not display it here, but rather
share a more useful characterization of the noncentral χ2: If

K ∼ Poisson(λ) and W |K ∼ χ2
p+2K , then W ∼ χ2

p(λ),

which also tells us that the weights in that infinite sum are Poisson proba-
bilities. The important property about these noncentral distributions is that
they are stochastically increasing in the noncentrality parameter. That is, for
a fixed value a

W ∼ χ2
p(λ) ⇒ Pλ(W > a) is an increasing function of λ

T ∼ Fp,q(λ) ⇒ Pλ(T > a) is an increasing function of λ.

Thus, if W or T are test statistics, and we reject H0 for large values of the
statistic, then the power of the test increases with λ, since the probability of
the statistics exceeding the cutoff point increases in λ.
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Oneway CRD

In the oneway CRD of model (2.2), with EMS given in Exercise 2.11, we
test H0 :

∑
i
τ2

i = 0 with F = MS(Treatments)/MS(Within), calculated as in

Table 2.2. If H0 is violated, then E(Ȳi− ¯̄Y ) = τi, the numerator sum of squares
is noncentral χ2 with noncentrality parameter

∑
i
τ2

i /σ2, and the F -statistic
has the corresponding noncentral F distribution. The power of the F -test
increases with

∑
i
τ2

i . Thus the power increases no matter which τi increases,
and the power is constant on spheres where

∑
i
τ2

i is constant. Note also that
the denominator of the F -statistic remains an independent central χ2.

Twoway CRD

Similar conclusions hold for the twoway CRD of model (2.4) with respect to
the tests of the main effects and the interactions, with denominator mean
square MS(Within). That is, the power of the respective tests is increasing
in
∑

i
τ2

i ,
∑

i
γ2

i , and
∑

i
(τγ)2i (see Table 2.6). There is an interesting occur-

rence, however, if we look at the practice of pooling error terms.
In Definition 2.24, if V is an independent noncentral χ2, say V ∼ χ2

q(δ), then
T = (W/p)/V/q) has a doubly noncentral F distribution, Fp,q(λ, δ). More-
over, it should be clear that Pλ,δ(T > a) is increasing in λ for fixed δ, and
decreasing in δ for fixed λ (see Scheffé1959, Section 4.8).
Now, in the twoway CRD, suppose that we, for example, test H0 :

∑
i
τ2

i = 0
using a denominator that is obtained by pooling the interaction and within
sum of squares. (Possibly based on first accepting the null hypothesis that
there is no interaction.) If, in fact there is an interaction, so

∑
i
(τγ)2i > 0, then

we have increased the noncentrality parameter in the denominator of the F -
ratio, which has a doubly noncentral F distribution. Thus, we have decreased
the probability of the test statistic exceeding the cutoff or, in other words,
we have decreased the power of the test. This is what is called a conservative
test, where it is more difficult to reject H0 because the distribution of the de-
nominator of the statistic has been inflated. This procedure is more prone to
making the Type I error, and a rejection is usually greeted with enthusiasm.

2.9 Miscellanea

2.9.1 Multiple Comparisons and Error Rates
Post-anova analysis will often involve many inferences, typically on contrasts
or pairwise differences. Of course, we know that the simultaneous inference
from many α level tests is not necessarily at level α, so the question is how
do we control this in a meaningful way.
This is actually a difficult and important question, especially in light of mi-
croarray experiments where we might be faced with thousands of hypothesis
tests. In such cases, we must intelligently balance power and false detection
rates.

Classical Error Rate Control

First, there are many definitions of Type I Error for multiple comparisons, so
exactly what is meant by “α level” is not always clear. Some of the types of
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error rates considered are experimentwise error rate or comparisonwise error
rate. Miller (1981) and Hsu (1996) are good references for this topic.

Experimentwise error rate: Controls the error rate of the entire experiment,
so a 5% experimentwise α level means that if all nulls are true, there will be
a false rejection in 5% of experiments, no matter how many tests are done.
This is a very conservative criterion and is virtually useless for exploratory
studies (no power)

Comparisonwise error rate: Controls the error rate of comparisons, so a
5% comparisonwise α level means that if all nulls are true, there will be a
false rejection in 5% of comparisons. So if you do 1000 comparisons you can
expect 50 false rejections. This is a very liberal criterion with high power,
and is good for exploratory studies. It will produce a lot of false rejections,
however.

There is also a familywise error rate, which is the experimentwise error applied
to a smaller group of comparisons, a “family”.
Note that, if we are combining results of independent tests, then things are
simple in the following sense: If we do m tests, each at level α, and if all of the
null hypotheses are true, then the overall Type I error rate (experimentwise)
error is 1− (1−α)m, so 20 independent .05 tests have an overall Type I error
rate of .64 and 20 independent .01 tests have an overall Type I error rate of .18.
Simultaneous coverage of the 20 intervals would be .36 and .82, respectively.
However, this is not a realistic situation, as we will seldom find independent
tests in any experiment. For example, if we have a set of uncorrelated contrasts
under normality, and we know the variance, or we use an independent variance
estimate for each contrast, then we have independent tests. In almost any
other situation, such as correlated contrasts or the use of pooled variances,
the tests are dependent.
As a more realistic example, if we want to make a simultaneous 1−α statement
about the coverage of m confidence sets, then, from the Bonferroni Inequality,
we can construct each confidence set to be of level 1− α

m
. If we do each test at

level α/m then we are controlling the experimentwise error at level α. If we do
each test at level α, then we are controlling the comparisonwise error at level
α. In an anova with k treatments, simultaneous inference on all k(k − 1)/2
pairwise differences can be made with confidence 1 − α if each t interval has
confidence 1 − 2α/[k(k − 1)].
An alternative to Bonferroni, which also controls the experimentwise error,
is the Scheffé procedure, which provides simultaneous confidence intervals
on all contrasts. The procedure states that simultaneously for all contrasts
(a1, . . . , ak),

k∑

i=1

aiȲi· − M

√
√
√
√σ̂2

k∑

i=1

a2
i /ni ≤

k∑

i=1

aiθi ≤
k∑

i=1

aiȲi· + M

√
√
√
√σ̂2

k∑

i=1

a2
i /ni,

where M =
√

(k − 1)Fk−1,n−k,α and σ̂2 has n − k degrees of freedom.
One of the real strengths of the Scheffé procedure is that it allows legitimate
“data snooping”, and we can test hypotheses that have been suggested by
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the data. Suggested hypotheses can bias the results and, hence, invalidate
the inference, but intervals or tests that are valid for all contrasts, whether
they have been suggested by the data, have already have been taken care of
by the Scheffé procedure. So the bias is eliminated. Of course, we pay for this
data snooping privilege because the confidence intervals are very wide, and
the tests are not very powerful.
There is a plethora of other simultaneous inference procedures, most con-
cerned with pairwise comparisons. A method due to Tukey gives simultaneous
confidence intervals on all pairwise differences, not all contrasts.
Other types of multiple comparison procedures, which deal with pairwise dif-
ferences, are more powerful than the Scheffé method or the Tukey method.
Some procedures are the LSD (Least Significant Difference) Procedure, Pro-
tected LSD, Duncan’s Procedure, and Student–Neumann–Keuls’ Procedure.

These last two are multiple range procedures, where
the cutoff point to which comparisons are made
changes between comparisons. (These should be
avoided, as they can lead to contradictory inferences.)

Avoid multiple
range procedures

False Discovery Rate Control

There are many other error rate definitions, but we will only mention one
more here, one that has become very popular in recent years, and has seen
much use in microarray analysis. Table 2.9 is adapted from Benjamini and
Hochberg (1995).

Table 2.9. Number of errors committed when testing m hypotheses,
where m0 nulls are true

Declared Declared Total
Significant Nonsignificant

True Null Hypothese V m0 − V m0

False Null Hypotheses S m − m0 − S m − m0

R m − R m

Note that the only numbers that we know in Table 2.9 are m and R, but
error rates can be obtained as probabilities and expected values.

E
(

V

m

)
= Comparisonwise Error Rate

P (V ≥ 1) = Familywise Error Rate

and testing each hypothesis at α/m guarantees that P (V ≥ 1) ≤ α, while
testing each hypothesis at α guarantees that E(V/m) ≤ α.
Benjamini and Hochberg (1995) suggest that we should control another error
rate

E
(

V

R

)
= False Discovery Rate,
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which is the proportion of discoveries (rejections of H0) that are false (H0

is true). They note that if all the nulls are true, this is equivalent to the
familywise error rate, but is a smaller number once m0 < m.
A procedure for controlling the false discovery rate (FDR) at a set value q∗

is the following:
(1) For testing m hypotheses, obtain the p-values and order them p(1) <

p(2) < · · · < p(m). (Note that p(i) is not the p-value for the ith hypothesis.)
(2) Let k be the largest i for which p(i) < (i/m)q∗.
(3) Reject all nulls with a p-value less than p(k).
Controlling the FDR has almost become a standard in microarray analysis,
partially due to the popularity of a procedure known as SAM (Statistical
Analysis of Microarrays, Tusher et al. 2001). The SAM procedure is essen-
tially multiple t-tests processed using the FDR control.
There has been much other work done in estimating the FDR (Storey and
Tibshirani 2003) and on other variations of FDR. A large literature on FDR is
developing, and good entries are Storey (2002, 2003), Genovese and Wasser-
man (2002, 2004), and Genovese et al. (2006).

2.9.2 Application or Attribute?

The question has sometimes come up about whether a treatment that is
applied is different from a treatment that is an attribute. For example, a
treatment could be a certain level of nitrogen in a fertilizer that is applied to
a plot of land, or a treatment could be an age group, which is an attribute.
Statistically, is there a difference?
This discussion could be about the difference between designed experiments
and observational studies, but it is not. We are here dealing with designed
studies, but could include, as treatments, factors that are attributable to the
experimental units rather than applied to the experimental units. A possible
way to understand the difference is with the following model, a variation on
the oneway CRD (2.2):

Yij = µ + τi + δij + εij ,

where we add δij as the error in applying treatment i to the jth unit in that
treatment group. The error δij can have one of three forms

δij =

{
0 if the treatment is an attribute
δi if the treatment is applied once to the group
δij if the treatment is applied independently to each unit.

This model says that there is no error in the application of the treatment
if the treatment is an attribute. So, for example, if τ1 is the application of
a fertilizer with 10% nitrogen, and the batch is mixed with 12%, that error
is reflected in δ. (This is in contrast to ε, which would reflect the different
responses in yield to the same treatment of 10% nitrogen.)
If we assume that the errors are independent, then there is no discernable
difference between the first and third cases, that is, whether the treatment
is an attribute, or applied independently to each unit, results in the same
analysis. The only difference arises is if δij = δi, for then a correlation is
introduced and the analysis cannot proceed as a oneway CRD. In fact, in a
formal sense the analysis cannot proceed at all (Exercise 2.24).
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2.9.3 Imbalance

In this book we are dealing almost exclusively with balanced designs. When
looking at the experiment from the design viewpoint, it would be silly to
design an unbalanced experiment, as too many things are given up. Dealing
with imbalance in data is a topic that is better treated in a book devoted to
analysis rather than design (see, for example, Rawlings et al. 1998).
A design is balanced if there are the same number of observations in each cell.
Imbalance only becomes a serious problem in twoway and higher designs, as
the oneway CRD can handle imbalance pretty well (although it wreaks havoc
with contrasts, as we have seen in Chapter 1; see Exercise 1.18).
Imbalance is a fact of life. Rats or plants can die, microarray wells may not
be correctly read, data may be lost. Sometimes we have the luxury of having
extra observations in each cell to plan for this- which might be one of the only
valid reasons for have within observations in an RCB. However, discarding
data for any reason is typically a bad idea.6

For example, if every cell but one in a twoway design has 5 obser-
vations, and one has four observations, balance can be achieved
by discarding, at random, one observation from each of the cells
with 5 observations. Never, never do this. Never throw away data
unless there is a really good reason to do so. Each data point has
information, and discarding information is never good.

Data are
sacred!

There is a fundamental difference between unbalanced data and missing data.
We take the approach that our analysis should always be based on the like-
lihood for the data. In the balanced case this agrees with the anova-based
analysis, but in the unbalanced case things differ.

◦ In the unbalanced (but not missing) case, we can write down a model
and a likelihood, and estimate and test based on the likelihood. In fact,
this is regression analysis! There are problems, however, with identifiability
constraints and estimability, but these can be handled.

◦ In the case where there is missing data, so we have empty cells, things get
a bit more complicated. If the parameter for the cell is in the model then,
formally, the likelihood function is calculated by averaging over all possible
values that could have been in that cell. This is not a simple calculation,
but can be handled by modern missing data techniques such as the EM
algorithm (see, for example, Little and Rubin (2002). Alternatively, we can
do an observed case analysis using the likelihood for the observed data, but
this can sometimes be a difficult calculation, and may sometimes require
discarding data.

The main problem caused by imbalance is that, under the usual models, effects
are no longer orthogonal. For example, consider model (2.4) with unequal cell
sizes where, for simplicity, we assume no interaction:

Yijk = µ + τi + γj + εijk, i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , rij ,

andtherij arenotnecessarilyequal. Ifwedenotethetotalnumberofobservations
by n =

∑
ij

rij , and the marginal totals by ri· =
∑

j
rij and r·j =

∑
i
rij ,

6 If there is a nonstatistical reason to believe that a data point is an outlier, an
analysis with and without it can show if it is unduly affecting the inference.
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then

E(Ȳi − ¯̄Y ) = τi −
1

n

∑

i

ri·τi +
1

ri·

∑

j

rijγj −
1

n

∑
r·jγj .

The identifiability constraints
∑

i
τi =

∑
j
γj = 0 do not do much here,

and thus there are “pieces” of extraneous parameters in this expected value
no matter what we do. This means that the sums of squares will not be
orthogonal – they will not add to the total – and we must be more careful
if we do an anova. Specifically, we must decide between sequential or partial
sums of squares.
The data in Exercise 2.31 is an unbalanced twoway. We can produce two
different anova tables depending on which factor we fit first:

Treatments Before Varieties Before
Varieties Treatments

Source df SS

Treatments 4 4.253
Varieties 2 3.004
Residual 19 1.023

Source df SS

Varieties 2 3.563
Treatments 4 3.694
Residual 19 1.023

Since the sums of squares are not orthogonal, fitting one will account for
some variation in the other, so the order matters. In each of these tables we
see the sequential sums of squares, which add to the total. Note that in the
second table, where varieties are fit first, the sum of squares for treatments
is smaller.
The second line of each table gives the partial sum of squares for that
factor and this is the sum of squares that should be used for evaluating
the effect. For example, if we want to evaluate the effect of treatment, it
should be done after the variation due to varieties is removed, resulting in
SS(Treatments After Varieties) = 3.694. These partial sums of squares can
be presented in one anova table, where the sums of squares will not add to
the total sum of squares. Also note that in each table, since the residual is fit
last, its sum of squares is the same.
So, in general, what to do? The nonorthogonality problem, which leads to
problems with the identifiability constraints, does not go away even if we
calculate least squares means. However, it should be clear that this problem
grows worse if the imbalance grows worse. Thus, if the imbalance is minimal,
we can forge ahead with partial sums of squares and, for the most part, ignore
the imbalance in our effect estimates. If the imbalance is great, or if there are
cells without data, then it is probably best to turn to a cell means model,
which we first saw in (1.2), and here would be

Yijk = θij + εijk, i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , rij ,

where θij is the mean of cell (i, j), and EȲij = θij . We can then estimate
treatment effects with contrasts in the Ȳij .
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Complete Block Designs

We shall need to judge of the magnitude of the differences introduced
by testing our treatments upon the different plots by the discrepancies
between the performances of the same treatment in different blocks.

R. A. Fisher
The Design of Experiments, Section 26

I thanked him for the explanation; now I understood it. I have to un-
derstand the world, you see.

Richard P. Feynman
Surely You’re Joking, Mr. Feynman

3.1 Introduction

Just as a oneway anova is a generalization of a two-sample t-test, a randomized
complete block (RCB) design is a generalization of a paired t-test. In this first
section we review some basics and do a small example, and show how to build
up an RCB from pairwise t-tests.

In this book we discuss two types of block effects, fixed and random. In
most textbooks blocks are treated as a random effect without much discussion
of options, but there are clear instances where blocks are not random (see
Example 4.1). However, in such cases these factors are still blocks because
of the randomization pattern they induce and, in particular, the covariance
structure they induce. We focus on this, and look very carefully at how to
model the covariance, which we find is the overwhelmingly important con-
cern. Whether the block is fixed or random is a function of the particular
experiment, as long as the covariance is correctly accounted for then valid
inferences can be drawn.

In this chapter we will mainly concentrate on the classical approach with
the blocks considered as random, leaving details of fixed blocks models and
implications to Chapter 4.
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3.1.1 An RCB Model

A block (or blocking factor) is a categorization that is inherently different from
a treatment in that a block is usually in an experiment for the express pur-
pose of removing variation, not because there is any interest in finding block
differences. The practice of blocking originated in agriculture, where experi-
menters took advantage of similar growing conditions to control experimental
variances. For example, blocks could represent field plots in an agricultural
experiment; while in an experiment with human subjects, the subjects them-
selves can be blocks.

Example 3.1. Strawberry blocks revisited Recall Example 1.8, the
field experiment about the adaptability of three varieties of strawberries to
Venezuelan soil. The data are repeated in Table 3.1, which just gives the data
layout, and does not tell us about the randomization or the field layout. Since
this is an RCB, a possible field layout is

A C B
10.1 8.4 6.3

B C A
6.9 9.4 10.8

C A B
9.0 9.8 5.3

A C B
10.5 9.2 6.2

‖

The blocks are called complete blocks if every treatment appears in every
block, so that the data are in a rectangular array. In the classical RCB there
is one observation for each treatment – block combination and the data are
observed according to the additive model

Yij = µ + τi + βj + εij , i = 1, . . . , t, j = 1, . . . , b,(3.1)

where µ is an overall mean, τi are treatment effects, βj are block effects, and
εij are error random variables.

Table 3.1. Yields in kilograms from four blocks of land over a two-week period.

Blocks
1 2 3 4

A 10.1 10.8 9.8 10.5
Variety of
Strawberry B 6.3 6.9 5.3 6.2

C 8.4 9.4 9.0 9.2
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Table 3.2. Data from an RCB anova with one observation/cell

Blocks

1 2 3 . . . b

1 y11 y12 y13 . . . y1b

2 y21 y22 y23 . . . y2bTreatments ...
...

...
...

...
...

k yk1 yk2 yk3 . . . ykb

Notice that we are again using an overparameterized model, as discussed in
Section 1.1 (see also Section 2.4 for CRD). As was previously mentioned, when
there is more than one factor, the overparameterized model seems easier to
understand. Remember that with the overparameterized model the treatment
and block effects represent deviations from an overall mean level.

Schematically, the data, yij , from an RCB anova is shown in Table 3.2
Note that there is only one observation for each treatment – block combina-
tion so, unlike the oneway anova, no observations were taken under the same
experimental conditions. However, this version of an RCB is a most efficient
design, and provides all of the necessary information to give valid inferences.

The remaining term in RCB to be defined is randomized. This term refers
to the way that the observations are taken in each block, and is perhaps the
most important term in the name, especially from a design standpoint. In
each block, the treatments are run in a completely random manner, using a
randomization restricted to take place within blocks. By way of contrast, the
anovas of Chapter 2 are completely randomized designs, since the observations
are taken in a manner that is random throughout the data, with no blocks to
restrict randomization.

Example 3.2. Blocks as a fixed factor A new development in cake
mixes is microwavable mixes. An experiment was done to assess the texture
of microwave brownies when compared to traditional oven-baked brownies.
Three brands of brownie mix (A, B, C) were used, with three cooking times
(T), (2.5, 3 and 3.5 minutes) and two power settings (P), (600 and 800 watts)
on the microwave.

The factors P and T were crossed, and for each brownie mix 12 packages
were used. The data layout is

Brand A Brand B Brand C
T

x x x
P x x x

x x x
x x x

T
x x x

P x x x
x x x
x x x

T
x x x

P x x x
x x x
x x x
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Here, the three brands represent the brands of interest. Thus, all three factors
are fixed. However, the factor “brands” is a block in the sense that it imposes
a correlation structure. The packages from the same brand are correlated, and
this must be accounted for in the analysis. ‖

In contrast to Example 3.1, here we have a case of fixed blocks. In the
previous example we can argue that the four blocks (plot of land) are a random
sample from all plots on which strawberries will be plants. But in this example
there are only three brands of cakes, so we cannot argue that the three brands
are a sample from a larger lot. This is what we will discuss in Chapter 4; see
also Exercise 4.3.

3.1.2 RCB and the Paired t-test

Just as the CRD anova can be viewed as an extension of a two-sample t-test
(Section 2.1.2), the RCB anova is a direct extension of the paired t-test. We
look at this connection in detail, with a main purpose of better understanding
the appropriate error terms.

Example 3.3. Strawberry blocks – RCB analysis We can apply the
twoway anova sums of squares to the RCB design (see (1.10) and (1.11)) to
arrive at the anova table

Source df Sum Sq Mean Sq F p

Block 3 1.722 0.574
Trt 2 35.582 17.791 147.235 < .0001
T × B 6 0.725 0.121

Note that the test on treatments is

F =
MS(Treatments)

MS(T × B Interaction)
,(3.2)

and it is important to note that this is always the correct test for treatments in
an RCB. As Fisher said at the beginning of this chapter, we test the treatment
variation by measuring the performance of the treatments on different blocks,
which is measured by the interaction.

We will continue, in the spirit of Fisher, and reconstruct the RCB analysis
from t-tests, and then it will become crystal clear that the interaction is the
correct error term.

First, suppose that there we only have treatments A and B in the data of
Table 3.1. Since the observations are then paired by the blocks, the correct
analysis is clearly a paired t-test. We take the differences d = A−B (that is,
dj = y1j − y2j and calculate

tcalc =
d̄

√
σ̂2

d/4
= 24.9694, p = 0.00014,
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where σ̂2
d = (1/3)

∑
j(dj − d̄)2. We compare this paired t-test to an RCB using

only treatments A and B:

Source df Sum Sq Mean Sq F p

Block 3 1.724 0.575
Trt 1 34.031 34.031 623.473 0.00014
T × B 3 0.164 0.055

and note that t2calc = 623.473, which is the F -statistic from the anova. This
is, of course, no coincidence, but look what this implies:

t2calc =
d̄2

σ̂2
d/4

=
2(ȳ1· − ȳ2·)2

σ̂2
d/2

=
SS(Trt)

MS(TxB)
,

where SS(Trt) and MS(T × B) are from the RCB using only treatments A
and B. Note that this shows that MS(T × B)= σ̂2

d/2, illustrating that the
interaction term is the correct variance of a treatment contrast in an RCB.

To go a bit further, we can also do an RCB anova on the contrast or-
thogonal to A − B, namely 1

2A + 1
2B − C. To do this we create variables

y∗
1j = 1

2y1j + 1
2y2j and y∗

2j = y3j and produce the anova

Source df Sum Sq Mean Sq F p

Block 3 1.001 0.334
Trt 1 1.163 1.163 8.287 .0636
T × B 3 0.421 0.140

and the paired t-test on y∗
1j − y∗

2j gives t2calc = 8.287.
Thus, we have broken up the full RCB table into two orthogonal t-tests,

where is was clear how to calculate the error, and it was clear that the inter-
action provides the proper error term for tests on treatment contrasts. ‖

Although Example 3.3 illustrates the proper tests for the case of two treat-
ments, it may not be clear how to extend the example to the case of an ar-
bitrary number of treatments in an RCB. The answer, which is explained by
Fisher, is that the error term for treatments is formed from all of the error
contrasts. What we have actually done here is to exploit the partitioning of
sums of squares into contrast sums of squares (recall Definition 1.14) where
we have

SS(Trt) = b
(ȳ1· − ȳ2·)2

2
+ b

( 1
2 ȳ1· + 1

2 ȳ2· − ȳ3·)2

3/2
,

(3.3)

SS(T × B) =
1
2

∑

j

[(y1j − y2j) − (ȳ1· − ȳ2·)]2

+
2
3

∑

j

[(
1
2
y1j +

1
2
y2j − y3j

)

−
(

1
2
ȳ1· +

1
2
ȳ2· − ȳ3·

)]2

.
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The t-tests come from using the components as numerator and denomina-
tor, but it is also the case that each component of SS(T × B) has the same
expectation, and they all can be pooled for a common error term, which is the
MS(T × B) in the RCB anova. (See Exercise 3.4 for a numerical illustration,
and Exercise 3.27 for the full blown algebra.)

Thus, the “interaction” term in the RCB anova can be understood as a
sum of error terms for all treatment contrasts, and is the correct pooled error
estimate for any treatment contrast. As Fisher and Wishart (1930) remarked
when analyzing an RCB with 6 blocks and 5 treatments, and hence 20 df for
T × B (my italics)

There are, therefore, 20 degrees of freedom which represent the dif-
ferences among the different blocks of the comparisons between treat-
ments. These may be regarded as the discrepancies, or errors, of our
experiment, and if the treatments have been assigned their places in
the different blocks wholly at random it may be shown that these 20
degrees of freedom do in fact supply a valid estimate of error for the
treatment comparisons which the experiment was designed to make.

3.1.3 The RCB Anova

In the RCB the error comes from the variation of treatment contrasts across
blocks, not from within a cell. It is possible to have a within error term
in an RCB anova, which would happen if replications were taken within the
treatment – block combinations. The model would look like (compare to (3.1))

Yijk = µ + τi + βj + (τβ)ij + εijk,(3.4)
i = 1, . . . , t, j = 1, . . . , b, k = 1, . . . , r.

In such a case there would be a “within” row added to the anova tables in
Section 3.1.2, and the RCB anova table would look like Table 3.3.

We refer to Table 3.3 as an RCB anova table with subsampling, to indicate
that the extra samples taken are typically subsamples of the experimental unit,
and are not contributing degrees of freedom to the main contrasts of interest.
That is, the test on treatments is exactly the same regardless of the presence
of the within sum of squares term, in that the error degrees of freedom are
the same. In this sense, the extra bt(r−1) observations taken in Table 3.3 are
a waste of effort with respect to the test on treatments.

The term
yij − yi· − y·j + y

is a “residual” in the sense that it is variation in the cell that is unexplained
by the marginal means. However, this is exactly the definition of interaction,
and this is the name that should be used. So, we do not refer to the error
term as “residual,” but rather as the “T × B” interaction. Although it is fine
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to call it “residual”, we want to constantly emphasize that the correct error
term comes from the T × B interaction.

Moreover, although this term can be called “residual”, it is never a “within
error”, as in the CRD anova.

Example 3.4. Alfalfa blocks - RCB analysis Four varieties of al-
falfa (Ladak, Narragansett, DuPuits and Flamand) were tested in an RCB
with four blocks. The response variable was yield, in tons of dry hay per acre.
For each Variety × Block cell there were three subsamples. The data are in
Alfalfa, and are schematically given in Table 3.4 with anova table

Source df Sum Sq Mean Sq F p
Block 3 3.982 1.327
Variety 3 37.201 12.400 26.068 .000
Variety × Block 9 4.281 0.476 1.880 .092
Within 32 8.100 0.253

Note that the test on treatments (Variety) is still against the Variety ×
Block interaction. The fact that there are three observations in each cell does
nothing to improve the treatment test (well, almost nothing).

We sometimes gain the ability to test the interaction term, but this test is
really of lesser interest. This is because whether or not there is an interaction
between Treatments and Blocks is somewhat of an academic question since,

Table 3.3. RCB anova table with subsampling.

Source of Degrees of Sum of Mean F -statistic
Variation Freedom Squares Square

SS(Blocks) =
Blocks b − 1

∑
j
t(y·j· − y)2

SS(Trt) = MS(Trt) = F =
MS(Trt)

MS(T × B)
Trts. t − 1

∑
i
b(yi·· − y)2 SS(Trt)/(t − 1)

SS(T × B) = MS(T × B)=

T × B (b − 1)(t − 1)
∑

i

∑
j
(yij· − yi··

SS(T x B)
(b−1)(t−1)

−y·j· + y)2

Sub- SS(Within) = MS(Within)=

sampling bt(r − 1)
∑

i

∑
j

∑
k
(yijk

SS(Within)
bt(r−1)

(Within) −yij·)
2

SS(Total) =
Total rbt − 1

∑∑
(yijk − y)2
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Table 3.4. Alfalfa RCB data with three observations/cell

Blocks

1 2 3 4

1 y111 y121 y131 y141

y112 y122 y132 y142

y113 y123 y133 y143

Treatments ...
...

...
...

...

4 y411 y421 y431 y441

y412 y422 y432 y442

y413 y423 y433 y443

by their very nature, we cannot control blocks (see Section 3.5). So, if there
is an interaction and a significant treatment effect, we know that this is an
average effect, and we cannot expect the same treatment ordering in each
block.

‖

Take
note!

The design lesson to be learned from Example 3.4 is that subsam-
pling in an RCB can be a waste of time and effort. If more observa-
tions can be added, if at all possible the number of blocks should be
increased. This is the one surefire way to increase the error degrees
of freedom for the treatment variance estimate.

3.2 Model and Distribution Assumptions

Blocking serves many purposes. Within a block there is homogeneity, so treat-
ment comparisons are very precise. Between blocks there is heterogeneity, so
treatment comparisons are made across a wide variety of situations, and thus,
if we see treatment differences we can have some assurance that the differences
are significant even in the face of block variability.

There is a distinction between fixed and random effects. With a fixed effect,
all of the treatments (or levels of a treatment) of interest are included in the
experiment, so what we designate as “Treatments” is always a fixed effect.
(This is the case in a CRD.) Indeed, any factor for which the inference on
means is of interest is a fixed effect.

In contrast, with a random effect, all of the levels of interest are not in
the experiment. For example, in Example 3.3, although we are interested in
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inferring about treatment differences regardless of the type of soil (block), we
certainly cannot have all types of soil in the experiment. Therefore, we regard
the blocks in the experiment as representative of a population of blocks (for
example, all soil types). If the blocks are a random sample from a population
of blocks, they are a particular case of a random effect (or random factor).

Definition 3.5. A factor is a variable defining a categorization, in particular
in an anova. A factor is a fixed factor if all the levels of interest are included
in the experiment. A factor is a random factor if all the levels of interest are
not included in the experiment and those that are can be considered to be
randomly chosen from all the levels of interest.

In an anova, the treatments are always a fixed factor, as all of the levels of
interest are in the experiment. Blocks are typically a random factor since not
all levels of interest can be in the experiment. However, blocks are a special
type of random factor. There is really no interest in random blocks; they are
there only because we know that the treatments will behave differently on
different blocks.

Note: Realize that blocks are only effective if they span a wide variety of
situations and result in a large sum of squares.

Look back at (1.11), but interpret it like this:

SS(Total) − SS(Treatments)) = SS(Blocks) + SS(T × B).

So the more variation that blocks can remove, the greater the efficiency of the
design.

The right side of the above equation is leftover from the treatments. The
more of this variation that blocks can remove, the smaller the unexplained -
residual - error (interaction) will be.

The classical analysis on the RCB model given in (3.1) goes as follows.
If we assume that the blocks are random, then the actual block means in
the experiment, β = (β1, . . . , βb), are a realization of a random variable, and
random variables Yij are observed according to the model

Yij = µ + τi + βj + εij , i = 1, . . . , t, j = 1, . . . , b,

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

The classical
RCB model

(3.5)

where

(1) The random variables εij ∼ iid N(0, σ2
ε) for i = 1, . . . , t, and j = 1, . . . , b

(normal errors with equal variances).
(2) The random variables β1, . . . , βb, are iid N(0, σ2

β) and are independent of
εij for all i, j.



100 3 Complete Block Designs

The mean and variance of Yij , conditional on the βjs are

E(Yij) = µ + τi + βj , Var (Yij) = σ2
ε .(3.6)

If we now take expectations over both the εijs and the βjs we have

EYij = µ + τi, Var Yij = σ2
β + σ2

ε .(3.7)

(See Exercise 3.21 for details.)
Remember that (3.5) describes the Yij conditional on the blocks, and con-

ditionally they are independent. From (3.5),

Cov(Yij , Yi′j′ |βj , βj′) = Cov(µ + τi + βj + εij , µ + τi′ + βj′ + εi′j′)
= Cov(εij , εi′j′) = 0, [property of covariance](3.8)

because here we are conditioning on the βjs. However, the important calcu-
lation is the unconditional covariance between observations, that is, when we
also take expectations over the blocks. We then have, for Yij and Yi′j in block
j, with i �= i′,

Cov(Yij , Yi′j) = Cov(µ + τi + βj + εij , µ + τi′ + βj + εi′j)
= Cov(βj + εij , βj + εi′j). [property of covariance]

Now we use the fact that the βjs and εijs are independent to write

Cov(βj + εij , βj + εi′j) = Cov(βj , βj) = σ2
β(3.9)

showing that not only does the model imply that there is correlation in the
blocks, but that it is positive correlation. This is a consequence of the additive
model (3.5) and the assumption that the εs and βs are independent. (See
Exercise 3.21.)

Conditional vs.
unconditional
inference

Note the difference between (3.8) and (3.9). If we decide to
make inferences conditional on the observed blocks, the Yijs
are uncorrelated, and the inference is only to those blocks
in the experiment. If we infer to the population of blocks,
using the unconditional model, we have a wider inference. 1

In addition, the unconditional correlation between Yij and Yi′j is

Corr(Yij , Yi′j) =
Cov(Yij , Yi′j)√

(Var Yij)(Var Yi′j)
=

σ2
β

σ2
β + σ2

ε

,(3.10)

a quantity called the intraclass correlation (see Exercise 3.6). Note also that
there is no correlation between observations in different blocks, as those ob-
servations are independent from the model assumptions.

1This distinction is examined by McLean et al. (1991), who characterize “narrow”
and “broad” inference space.
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Models such as (3.5), which can be referred to as mixed models (since
there are both fixed and random factors) is somewhat problematic to address
in terms of parameter estimates. This is because, by the very nature of a
random factor, we are not really interested in estimating the levels of the
factor that are in the experiment. Why? Because if the factor is truly random,
the levels in the experiment are nuisance parameters, and only the variance of
the factor is meaningful for inference. There are methods of estimating these
random effects, however, that are typically referred to as prediction rather
than estimation. See Technical Note 3.8.4 for some details.

Example 3.6. Estimation of random effects The effectiveness of
three anticoagulant drugs in dissolving blood clots was studied. Each of five
subjects (blocks) received all three drugs (in random order with adequate
washout time in between), and the length of time (in seconds) required for
a cut of specified size to stop bleeding was recorded. The data are given in
Table 3.5. This is clearly a case in which blocks must be modeled as random.

Table 3.5. Time (seconds) for bleeding to stop after the administration of an
anticoagulant drug.

Anticoagulant drug

A B C

1 127.5 129.0 135.5

Person 2 130.6 129.1 138.0

(Block) 3 118.3 111.7 110.1

4 155.5 144.3 162.3

5 180.7 174.4 181.8

The five subjects in the experiment are to represent a random sample of all
subjects; that is where we want to inference to apply. To model the blocks as
fixed, where the inference only applies to the five subjects in the experiment,
does not make sense. ‖

3.3 Expected Squares and F -tests

We first look at EMS calculations for the case of one observation per
treatment-block combination, considering the blocks to be random. Contrast
the results here with those in Section 4.3. Although the overall conclusions
and inferences are virtually the same, there are important differences in the
details.



102 3 Complete Block Designs

Table 3.6. Expected Mean Squares for RCB anova with random blocks and no
subsampling.

Source df EMS

Blocks b − 1 σ2
ε + tσ2

β

Treatments t − 1 σ2
ε + b

t−1

∑
i
[τi − τ̄ ]2

TxB (t − 1)(b − 1) σ2
ε

Here we calculate expected means squares, and look at potential F -tests,
for the RCB model with blocks random. We note that there are many ways of
specifying an RCB with random blocks, and many names have been attached
to different models (see Miscellanea 3.9.1). However, here we will stay with
model (3.5), one of the more commonly used models (see, for example, Dean
and Voss 1999, Section 17.9).

As an illustration of an EMS calculation, consider

ESS(Blocks) = E
∑

j

t(Ȳj − Ȳ )2 = tE
∑

j

[
βj − β̄ + ε̄j − ε̄

]2

= tE
∑

j

[
βj − β̄

]2 + tE
∑

j

(ε̄j − ε̄)2,

where we have used the fact that the βj and εij are independent of one another.
Since they are also iid, each term above is the respective variance component,
and we have from Lemma 3.16,

ESS(Blocks) = (b − 1)
(
tσ2

β + σ2
ε

)
.(3.11)

Continuing in this fashion we can produce the anova in Table 3.6
The test on treatments is of the null hypothesis

H0 : τi − τ̄ = 0 for all i .(3.12)

We see that under H0, MS(Trts) and MS(T × B) have the same expectation,
and the F -test comes to us from Cochran’s Theorem

Theorem 3.7 (F -test for RCB anova). Under model (3.5) with hypoth-
esis (3.12),

SS(Trts)
σ2

ε

∼ χ2
t−1,

SS(T × B)
σ2

ε

∼ χ2
(b−1)(t−1),

independently, and thus

MS(Trts)
MS(T × B)

∼ Ft−1,(b−1)(t−1).
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Proof: See Technical Note 3.8.2

The theory here is rather simple, only complicated by the fact that the
Yij are correlated, so the application of Cochran’s Theorem takes a little bit
of work. But the important point is that there is a valid F -test against the
“residual”, with no need for a within sum of squares.

What is sometimes of direct interest is to assess the treatment-block in-
teraction, that is, to see whether treatment effect patterns are different in
different blocks. From Table 3.6 there is no obvious way to do this, but we
will revisit this question in Section 3.5.

Example 3.8. RCB interaction plots The anticoagulant data in
Table 3.5 is plotted in Figure 3.1. The plot suggests an interaction between
the Subjects (Blocks) and the treatment. Treatments A and C swap places
as taking the longest time for bleeding to stop, and B sometimes takes longer
than A. The implications of such an interaction are that different treatments
may be more effective for different subjects. However, the treatment effects
are not significant (Example 3.9), so there is no significant difference in the
average effects ‖

Fig. 3.1. Interaction plot of the anticoagulant data of Table 3.5.
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3.4 Estimating Contrasts

We next turn to estimating treatment contrasts and their variances. To start,
we estimate the treatment effects using least squares, which provides us with
unbiased estimates. It is important to realize, however, that the actual tech-
nique of least squares is a mathematical minimization, and does not take
into account any error structure. Thus least squares estimates are the same
whether blocks are fixed or random.

Note: The technique of ordinary least squares derives estimates based only on
the treatment design of an experiment, and ignores the experiment design.

Although it is typical to use ordinary least squares to get these estimates,
blindly applying least squares can vary from problematic to nonoptimal. Es-
timates of error variances can change depending on whether we have fixed or
random effects, and whether we have covariances. Alternatives such as gen-
eralized or weighted least squares may be reasonable. Here we will outline a
typical estimation strategy based on ordinary least squares. More details are
given in Technical Note 3.8.4.

Point Estimates

Using the treatment design of (3.5), the least squares estimates of µ, τi and
βj satisfy

min
µ,τi,βj

t∑

i=1

b∑

j=1

(yij − µ − τi − βj)2.(3.13)

The solution (see Exercise 3.2) is given by

ȳi· − ¯̄y = τi − τ̄ ,

ȳ·j − ¯̄y = βj − β̄,(3.14)
¯̄y = µ + τ̄ + β̄.

It is typical to require τ̄ = β̄ = 0 to make the τi and βj estimable. Recall that
this is merely a convenience, amounting to redefining the parameters as

τ ′
i = τi − τ̄ , β′

j = βj − β̄,

and simply makes the interpretation of the parameters a bit more straightfor-
ward.

A
consequence
of random
blocks

However, if the βj is modeled as a random variable with mean
β̄, then the restriction that β̄ = 0 is impossible to force (we
have Eβj = 0, but not β̄ = 0), but just dealt with naturally in
calculations. In fact, as we have previously mentioned, since
βj is random, there is usually little interest in the effect esti-
mate β̂j , rather the interest is in the variance estimate.
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Least squares estimation does not take into account the fact that there
is correlation in the blocks. To do so we could turn to generalized least
squares. Such estimates, in theory, have smaller variance than the ordinary
least squares estimators of (3.14), but accounting for the covariance in these
point estimates can bring along another set of problems. Thus, we will use the
least squares estimates of (3.14), which are unbiased, and examine their vari-
ances and the variance of contrast estimates. (See Exercise 3.2 and Technical
Note 3.8.4 for details.)

As least squares estimators are unbiased, they are so under model (3.5),
and we have

E(Ȳi· − Ȳ ) = E τ̂i = τi,(3.15)
E(Ȳ·j − Ȳ ) = E(βj − β̄) = 0.

Thus a contrast estimate
∑

i aiτ̂i is an unbiased estimate of the contrast∑
i aiτ̂i and has variance

Var

(
∑

i

aiτ̂i

)

= Var

(
∑

i

ai(Ȳi· − ¯̄Y )

)

= Var

(
∑

i

ai(ε̄i − ε̄)

)

[from (3.5)]

= Var

(
∑

i

aiε̄i

)

[
∑

i aiε̄ = 0] .

Notice that the term involving β̄, which occurs in both Ȳi· and ¯̄Y cancels out
– a result of the balance of the design. Finally, using the fact that the ε̄i are
all independent with variance σ2

ε/b,

Var

(
∑

i

aiτ̂i

)

=
σ2

ε

b

∑

i

a2
i .(3.16)

Variance Estimates

From (3.5) and (3.14) the residuals from the model are

yij − µ̂ − τ̂i − β̂j = yij − ȳi· − ȳ·j + ¯̄y = εij − ε̄i· − ε̄·j + ¯̄ε def= ε̂ij ,

and we would typically base our variance estimate on the residual mean
square,

SS(Res) =
∑

ij

(εij − ε̄i· − ε̄·j + ¯̄ε)2 =
∑

ij

ε̂2
ij .(3.17)
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This should be the basis of our variance estimate, and we now look at its
expectation. A relatively straightforward calculation (see Exercise 3.23) will
show that

ESS(Res) = (b − 1)(t − 1)(1 − ρ)σ2
ε .

Of course, we realize that SS(Res) is exactly SS(T × B) from the anova in
Table 3.3. Thus, the mean square σ̂2

ε = MS(T × B) is an unbiased estimator
of the treatment variance, and for any contrast we can estimate its variance
with

V̂ar

(
∑

i

aiτ̂i

)

=
MS(T × B)

b

∑

i

a2
i .(3.18)

Example 3.9. Pairwise comparisons Continuing with Example 3.6, the
anova is

Source df SS MS F p-value

Subjects 4 7162.9 1790.7 43.55
Treatment 2 112.9 56.5 1.38 0.31
S × T 8 328.9 41.1

giving us a variance estimate of σ̂2
ε = 41.1. To compare the difference of any

two treatment means, the contrast would have variance 41.1
5 (12 + (−1)2) =

16.44. ‖

Inference

The most important inference from a RCB anova concerns the treatments
and, in particular, the estimation of contrasts between the treatments. We do
all calculations under the RCB model (3.5). The parameter of interest is the
treatment contrast

∑k
i=1aiτi, whose estimator

∑k
i=1aiY i· satisfies (Technical

Note 3.8.4)

E

(
t∑

i=1

aiY i·

)

=
k∑

i=1

aiτi and Var

(
t∑

i=1

aiY i·

)

=
σ2

ε

b

∑

i

a2
i .(3.19)

Since the Yijs are normal, we have

k∑

i=1

aiY i· ∼ N

(
k∑

i=1

aiτi,
σ2

ε

b

∑

i

a2
i

)

and, therefore,
∑k

i=1 aiY i· −
∑k

i=1 aiτi
√

σ2
ε

b

∑
i a2

i

∼ N(0, 1).(3.20)
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From (3.18) we can estimate σ2
ε with MS(T × B), and it remains to es-

tablish the distribution of
∑k

i=1 aiY i· −
∑k

i=1 aiτi
√

MS(TxB)
b

∑
i a2

i

.(3.21)

That this, in fact, has Student’s t-distribution with (t − 1)(b − 1) degrees of
freedom follows from Cochran’s Theorem (Section 1.8) and a bunch of algebra
with SS(T × B). We get the following theorem, whose proof is left to Exercise
3.26.

Theorem 3.10 (Distribution of Contrasts). For the RCB model (3.5):

(1) The quantities Ȳi′· and Yij − Ȳi· − ¯̄Y ·j + ¯̄Y are independent for all i and
i′

(2) SS(T × B) = SS(Res) of (4.16) satisfies

SS(T × B)
σ2

ε

∼ χ2
(t−1)(b−1),

(3)
∑k

i=1 aiY i· −
∑k

i=1 aiτi
√

MS(TxB)
b

∑
i a2

i

∼ t(t−1)(b−1).

Thus, using Theorem 3.10, to test

H0 :
t∑

i=1

aiτi = 0 vs. H1 :
t∑

i=1

aiτi �= 0

at level α, we have

reject H0 if

∣
∣
∣
∣
∣
∣

∑t
i=1 aiȲi·

√
MS(TxB)

b

∑t
i=1 a2

i

∣
∣
∣
∣
∣
∣
> t(b−1)(t−1),α/2.(3.22)

More importantly, we get an interval estimator of
∑

aiτi. With probability
1 − α,

t∑

i=1

aiY i· − t(b−1)(t−1),α/2

√
√
√
√MS(T × B)

b

t∑

i=1

a2
i(3.23)

≤
t∑

i=1

aiτi ≤
t∑

i=1

aiY i· + t(b−1)(t−1),α/2

√
√
√
√MS(T × B)

b

t∑

i=1

a2
i .
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Implications of Complete Blocking

Realize that the fact that the blocks are complete plays an important role in
freeing treatment contrasts from block effects. If blocks are incomplete, that is,
if not every block contains every treatment, then the treatment contrasts will
not, in general, be independent of block effects. In complicated situations, an
incomplete block design (Chapter 6) may be preferred (or necessary) and the
resulting anova is more complicated than those considered here. Furthermore,
even if an incomplete design is not preferred, it may be dictated by data-
gathering problems.

A reasonable question to wonder about is what inference can be made
about blocks, that is, can block effects be tested or estimated? This is an area
where statisticians do not generally agree – it is almost a matter of taste.
The formal mathematical statistics can be done in different, correct, ways
and different, correct, answers can be obtained. In particular, the complete
answer to this question is tied to the parameterization used for the model (see
Miscellanea 3.9.1).
Looking at (1.11), also see the note above equation (3.5), it
is clear that if the block sum of squares is very small, then
blocking has increased the error estimate (since the degrees
of freedom used for calculating the error mean square will
have decreased). In other words, blocking pays off only if
the blocks are significant.

This is
why we
block

Thus, if we are in a situation where the blocks can be chosen, it makes
sense to choose them as disparate as possible. This also makes good common
sense, in that we want to verify our treatment comparisons on as wide a
variety of situations as possible. And it also makes statistical sense, in that
by increasing the block sum of squares we reduce the error sum of squares.

If the variation in blocks is not controllable, as in Example 3.6 where we
block on subjects, but their use is dictated by the inherent design, then we
just hope that the variation removed due to blocking is a large piece (and it
typically is).

3.5 Modeling the Interaction

In the preceding section the RCB model did not explicitly contain an interac-
tion term, indeed, the interaction (τβ)ij is confounded with the error εij . Or,
stated in another way, in the preceding section we could everywhere replace
εij with (τβ)ij + εij and the analyses would be unchanged.

However, if we want to learn about the block-treatment interaction, we
must somehow replicate it. One way to do this is to have a model of the form

yijk = µ + τi + βj + (τβ)ij + εijk,
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where the term (τβ)ij represents an interaction, that is, an effect in the (i, j)
cell that is beyond the effect of µ + τi + βj . Another way of replicating the
interaction is to replicate the entire experiment; we will address that approach
in Section 3.6.1.

We first look a little closer at the error term εijk, recalling from Section 1.6
the difference between “true” replication and “technical” replication (the lat-
ter also going under the names “subsampling” or “pseudo-replication”). The
important difference is that a true replication is the independent replication
of the experimental unit, while the technical replication is subsampling within
the same experimental unit. So, for example:

(1) In a microarray experiment, if RNA from the same subject is used in two
different microarrays, this is a technical replication. A true replication
would have RNA from different subjects on each microarray.

(2) In a block, if the treatment is variety of plant, and we have independent
replicates of each variety, then we have true replication. If the treatment
is fertilizer applied to a subplot with 5 plants of the same variety, then
the 5 plants are a technical replication.

The important difference comes out in how we model the covariance (as
always!). Technical replication (Section 1.6) means that the treatment was
applied in a common way, which induces correlation, while true replication
results in independent application of the treatment to different experimental
units, and no correlation is induced. Thus, we model for k �= k′

The action
is in the

covariance
Corr(εijk, εi′jk′) =

{
ρε for technical replication
0 for true replication.

A similar distinction is made by Gates (1995), and he allows having both
true and technical replication simultaneously in the same experiment. Here
we will mainly be concerned with whether the within error term arises from
true or technical replication, and we will do our calculations with correlation
ρε, and can set ρε = 0 for true replications. (Although we maintain that in
most cases technical replication is a waste of time, so replications should only
be done if they are true replications.)

In the RCB model with blocks random, the natural extension of model
(3.5) is somewhat elusive, as it is not clear how to categorize the interaction,
which will now be a mix of a fixed effect (treatment) and a random effect
(blocks). There has been much written on such models; see the discussion in
Miscellanea 3.9.1.

Here we will use the following model, which is a variation of the so-called
Model II. (This can be found in, for example, Hocking 1973, 1985 Chapter 15;
Dean and Voss 1999 Section 17.9)

Yijk = µ + τi + βj + (τβ)ij + εijk,

i = 1, . . . , t, j = 1, . . . , b, k = 1, . . . , r,(3.24)
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where

(1) The random variables εijk ∼ N(0, σ2) for i = 1, . . . , t,, j = 1, . . . , b and
k = 1, . . . , r (normal errors with equal variances), with

Corr(εijk, εi′jk′) = ρε

(2) The random variables (τβ)11, . . . , (τβ)tb, are N(0, σ2
τβ) are independent of

βj and εij for all i, j, k , and satisfy

Corr((τβ)ij , (τβ)i′j) = ρτβ .

(3) The random variables β1, . . . , βb, are iid N(0, σ2
β) and are independent of

εijk for all i, j.

The variation on the standard Model II is that we add the assumption
of correlation between interaction effects within the same block, and between
errors within the same cell. A consequence of the model is

Corr(Yijk, Yi′j′k′) = 0 unless j = j′,

Corr(Yijk, Yijk′) =
σ2

β + σ2
τβ + ρεσ

2
ε

σ2
β + σ2

τβ + σ2
ε

[inside T × B] ,(3.25)

Corr(Yijk, Yi′jk′) =
σ2

β + ρτβσ2
τβ

σ2
β + σ2

τβ + σ2
ε

[inside B] .

The standard Model II has all (τβ)ij and εijk independent, which implies
that ρτβ = ρε = 0. Except in special cases, this does not make good sense.
That is, once we have chosen the random block, the interactions must take
place within that block, so the interaction effects should, in fact, be correlated.
(See Section 3.9.1 for a discussion of the difference between a block and a
random factor, where the standard Model II makes sense for the latter.) Of
course, Cov(Ȳij·, Ȳi′j·) �= 0 even if we assume ρτβ = 0, (Exercise 3.10) but this
is a reflection of the intraclass correlation in a block design.

Note: The Yijks are correlated even if ρε and ρτβ are both zero. The question
is whether we should model the error random variables to be correlated.

Now we take the expected values of the effects in (3.24) under these as-
sumptions, using some of the details given in Exercise 3.30. As an illustration,
consider

E SS(Blocks) = E
∑

j

rt(Ȳj − Ȳ )2 = rtE
∑

j

[
βj − β̄ + ¯(τβ)j − ¯(τβ) + ε̄j − ε̄

]2

= rt(b − 1)σ2
β +r(b − 1)σ2

τβ [1 + (t − 1)ρτβ ] + (b − 1)σ2
ε [1 + (r − 1)ρε],
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Table 3.7. Expected Mean Squares for RCB anova with random blocks and repli-
cation.

Source df EMS

Blocks b − 1 σ2
ε [1 + (r − 1)ρε] + rσ2

τβ [1 + (t − 1)ρτβ ] + rtσ2
β

Treatments t − 1 σ2
ε [1 + (r − 1)ρε] + rσ2

τβ [1 − ρτβ ] + rt
t−1

∑
i
(τi − τ̄)2

T × B (t − 1)(b − 1) σ2
ε [1 + (r − 1)ρε] + rσ2

τβ [1 − ρτβ ]

Within bt(r − 1) (1 − ρε)σ
2
ε

where we have used the fact that the βj , (τβ)ij and εijk are all independent
of one another, but we have carefully kept track of the correlation in the (τβ)
and ε. Similarly,

E SS(Trts) = E
∑

i

rb(Ȳi − Ȳ )2 = rbE
∑

j

[
τi − τ̄ + ¯(τβ)i − ¯(τβ) + ε̄i − ε̄

]2

=rt
∑

i

(τi − τ̄)2 + r(t − 1)σ2
τβ [1 − ρτβ ] + (t − 1)σ2

ε [1 + (r − 1)ρε],

and continuing in this fashion we can produce the anova in Table 3.7. By
examining the expected mean squares, we see that Treatments are again to
be tested against the T × B interaction. It turns out that formal justification
of this is quite straightforward (Technical Note 3.8.3), as the same argument
used in the no-interaction model works here.

F -test on treatments

The test on treatments is against MS(T × B) with no other assumptions
needed. Formally, the null hypothesis of no treatment effect is

H0 : τi − τ̄ = 0 for all i

and is tested by

Ft−1,(b−1)(t−1) =
MS(Trts)

MS(T × B)

Again, treatments are never tested against MS(Within), in fact, here again
SS(Within) is of no use unless we assume that ρε = 0, that is, the replications
are true replications.

Other F -tests

From Table 3.7, to get a valid F -test on interactions we need to assume that
ρε = 0, meaning we have true replication and not just technical subsampling.
If ρε = 0 we can test the hypothesis of no interaction
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Table 3.8. Expected Mean Squares for RCB anova with random blocks and repli-
cation, assuming that ρε = ρτβ = 0.

Source df EMS

Blocks b − 1 σ2
ε + rσ2

τβ + rtσ2
β

Treatments t − 1 σ2
ε + rσ2

τβ + rt
t−1

∑
i
(τi − τ̄)2

T × B (t − 1)(b − 1) σ2
ε + rσ2

τβ

Within bt(r − 1) σ2
ε

H0 : σ2
τβ = 0 or ρτβ = 1(3.26)

with

F(b−1)(t−1),r(b−1)(t−1) =
MS(T × B)
MS(Within)

.

We also note that under the assumption ρε = 0 there is a test on blocks,
but there is usually little reason to care about this.

Note: We again see that unless there is true replication, which implies that
ρε = 0, the within sum of squares in an RCB is of almost no use.

Finally, we note that the most commonly used RCB model assumes that
ρε = ρτβ = 0, resulting in the anova given in Table 3.8 with all tests being
straightforward. Thus, if enough assumptions can be made, things become
simple.

3.6 Variations on a Theme

Here we discuss some strategies and designs that build from the RCB. There
are fewer details here, as all of the substantive theory has already been covered
in the previous sections.

3.6.1 Replicating the Experiment

In Section 3.5 we saw that if there is true replication of the experimental unit,
then we get a valid test of the Treatment × Block interaction. Another way
to obtain replication is to repeat the entire experiment, a strategy that we
examine in this section.

Although it is somewhat of a luxury to be able to replicate an experiment,
there are often good reasons to do so. For example, an agricultural experi-
ment may be replicated in different years to allow for such variation when
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Table 3.9. RCB replicated with blocks nested in replications.

Replications

1 2 · · · · · · · · · r

Block

Trt 1 · · · b

1 x · · · x
...

...
...

...
t x · · · x

Block

Trt 1 · · · b

1 x · · · x
...

...
...

...
t x · · · x

· · · · · · · · ·

Block

Trt 1 · · · b

1 x · · · x
...

...
...

...
t x · · · x

looking at treatment differences; a microarray experiment may be repeated
by different labs to allow for laboratory variation. We look at RCB models
that are replicated, perhaps over years or over locations. We find, somewhat
surprisingly (although maybe less so after reading Section 3.6.2) that we will
need some further assumptions to get valid tests!

There are two kinds of models to look at, depending on whether blocks
are nested in or crossed with replications. We treat the nested case here, and
leave the crossed case for Exercise 3.15.

If an RCB is replicated in such a way that the blocks are nested in repli-
cations, we can model this as

Yijk = µ + Rk + τi + βjk + (τR)ik + (τβ)ijk + εijk,(3.27)
i = 1, . . . , t, j = 1, . . . , b, k = 1, . . . , r,

where

Yijk = the response,
Rk = replications, N(0, σ2

R),
τi = treatments, crossed with replications,

βjk = blocks, nested in replications, N(0, σ2
β),

(τR)ik = Trt × Rep interaction, N(0, σ2
τR),

(τβ)ijk = Trt × Block interaction, nested in Reps, N(0, σ2
τβ),

εijk = the experimental error, N(0, σ2
ε),

and all of the error terms are independent. A schematic of this design is in
Table 3.9, where the blocks are assumed to be different in each replication.
Here is an example.

Example 3.11. Replicated RCBs, nested Five varieties of alfalfa were
arranged in an RCB with five blocks, with the goal of finding the variety with
maximum yield. The RCB was replicated at three different locations and, for
each variety the yield, in tons of dry hay per acre, was recorded. The data
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Table 3.10. Expected mean squares for a replicated RCB design, blocks nested in
replications.

Source df EMS

Replications r-1 σ2
ε + σ2

τβ + tσ2
β + bσ2

τR + btσ2
R

Blocks (in Reps) r(b-1) σ2
ε + σ2

τβ + tσ2
β

Treatments t-1 σ2
ε + σ2

τβ + bσ2
τR + rb

t−1

∑
i
τ2

i

Trt × Rep (t-1)(r-1) σ2
ε + σ2

τβ + bσ2
τR

Trt × Block (in Rep) r(t-1)(b-1) σ2
ε + σ2

τβ

Total btr-1

(in dataset AlfalfaTrial-1) were analyzed according to model (3.27), and
resulted in the following anova:

Source df SS MS

Location 2 3.119 1.559
Blocks(in Locations) 12 17.017 1.418

Variety 4 4.516 1.129
Variety × Location 8 1.702 0.213
Variety × Block (in Location) 48 5.843 0.122

Now it would be wonderful to use those 48 degrees of freedom for the treatment
test, but things are not that straightforward. ‖

The expected mean squares for model (3.27) are given in
Table 3.10, where we see that the test on treatments does
not come from the interaction with blocks, but from the
interaction with reps. Thus, in Example 3.11, the F -test on
treatments has 8 degrees of freedom in the denominator,
rather than 48.

Here is
the bad
news

Note: To use the Trt × Block (in Rep) mean square to test treatments, we
need to assume that σ2

τR = 0, that is, there is no interaction of the treatments
with the replications.

If the replications truly represent a repeat of the experiment, then this may
be a tenable assumption.

Example 3.12. Replicated RCBs, nested, continued Here, the loca-
tions are functioning as bigger blocks, and there is no basis for the assumption
that σ2

τR = 0. In fact, the test of H0 : σ2
τR = 0 yields
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Table 3.11. Expected mean squares for a replicated RCB design, blocks crossed
with replications.

Source df EMS

Replications r − 1 σ2
ε + σ2

τβR + tσ2
βR + bσ2

τR + btσ2
R

Blocks b − 1 σ2
ε + σ2

τβR + tσ2
βR + rσ2

τβ + rtσ2
β

Blocks × Reps (b − 1)(r − 1) σ2
ε + σ2

τβR + tσ2
βR

Treatments t − 1 σ2
ε + σ2

τβR + bσ2
τR + rσ2

τβ + rb
t−1

∑
i
τ2

i

Trt × Rep (t − 1)(r − 1) σ2
ε + σ2

τβR + bσ2
τR

Trt × Block (t − 1)(b − 1) σ2
ε + σ2

τβR + rσ2
τβ

Trt × Block × Rep (t − 1)(b − 1)(r − 1) σ2
ε + σ2

τβR

Total btr − 1

F8,48 =
0.213
0.122

= 1.746 with p-value = .112.

Although this is not significant at the magic levels, this is hardly strong evident
of no interaction. Pooling the error terms, or using the Trt × Block (in Rep),
to test treatments, may not be a good idea (see Exercise 3.16). ‖

The situation does not improve (in fact, it worsens) if, instead of being
nested in replications, the blocks are crossed with replications. A model for
that situation is

Yijk = µ + Rk + τi + βj + (τβ)ij + (τR)ik + (βR)jk + (τβR)ijk + εijk,(3.28)

and with R and β random, as well as the interactions with these terms, the
EMS is given in Table 3.11.

Even more
bad news

In Table 3.11 we see that there is no straightforward test on
treatments unless we make assumptions about the interac-
tions (alternatively, we could use Satterthwaite’s approxima-
tion; see Technical Note 5.8.1).

In particular, if either σ2
τβ = 0 or σ2

τR = 0, or both, then we can test
treatments. We of course can test these interactions, but then we are back
in the situation of basing on test on the outcome of another, which is never
pleasant (see Exercise 3.15).

3.6.2 Crossed Blocks

The crossed blocks model is a straightforward extension of the RCB, where we
have two blocking factors that are crossed, and within this blocking structure
treatments are randomized. Do not confuse this design with the strip plot
design of Section 5.6.1.
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Table 3.12. Crossed blocks design. Factors B and C are blocks. The treatment T
is randomized on the intersection of B and C.

Blocks B
1 2 · · · b

1

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

· · ·

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

2

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

· · ·

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

Blocks
C

...
...

... · · ·
...

g

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

· · ·

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

A schematic of this design is given in Table 3.12. This is another design
that has its origins in agriculture, where it was sometimes noticed that a field
plot has two gradients running in perpendicular directions - typically having
to do with soil composition, moisture level, light levels, etc.

Example 3.13. Crossed blocks A plant breeder conducted an exper-
iment to compare the yields of 3 new varieties and a standard variety of
peanuts. The varieties were assigned to the plots where it was known that
land had a slight sloping from east to west and differences in available nitro-
gen from north to south.

Thus, to account for this variability it was decided to block in the east-
west direction and in the north-south direction, and assign the four varieties
randomly in each intersection of the blocks. ‖

A model for the crossed blocks design is

Yijk = µ + τi + βj + γk + (βτ)ij + (βγ)jk + (τγ)ik + (βτγ)ijk + εijk,(3.29)

where i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g, τ is the treatment, β and γ are
the blocks, and

βj ∼ N(0, σ2
β), γk ∼ N(0, σ2

γ), εij ∼ N(0, σ2
ε),
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all independent. The interactions with B and G are also random normal with
the appropriate error variances, and all random effects are independent.

Although this looks like an innocuous extension of the RCB, it turns out
that this is an awful design, as will be evident by looking at Table 3.13.

We see from the EMS in Table 3.13 that there is no test on treatments un-
less we make some assumptions about the interactions (or try a Satterthwaite
approximation). In particular, if we assume that either σ2

τγ = 0 or σ2
τβ = 0,

we can then test treatments against a twoway interaction.
We do have tests on the twoway interactions, however, and it might be

tempting to first do these tests and then, based on their outcomes, move on
to a treatment test if we accept the hypothesis that one of σ2

τγ or σ2
τβ is zero.

But we are never happy to base a test on the outcome of another test, as error
terms get compounded.

Notice that if we could do the design and analysis as a typical RCB with
bg blocks having no structure, there would be no problem with any of the
tests. The problem arises when there is some structure in the blocking that
precludes the ordinary RCB approach.

The trouble
with crossed
blocks

The point of this section is to show what complications arise
when blocks are crossed, and that to use such a design the
only reasonable course is to assume that the Treatment ×
Block interactions are all zero. Once this is done we then
have a straightforward analysis.

And what is typically done with crossed blocks is not to do the full factorial
of model (3.29), but to only do a piece of the design in a clever way. Such a
design is called a Latin square.

3.6.3 Latin Squares

A Latin square is a design in which two gradients are controlled with crossed
blocks, but in each intersection there is only one treatment level. Moreover,

Table 3.13. Expected mean squares for a crossed block design.

Source df EMS

Blocks B b − 1 σ2
ε + σ2

βτγ + tσ2
βγ + gσ2

τβ + tgσ2
β

Blocks C g − 1 σ2
ε + σ2

βτγ + tσ2
βγ + rσ2

τγ + trσ2
γ

T t − 1 σ2
ε + σ2

βτγ + gσ2
τβ + rσ2

τγ + rg
t−1

∑
i
τ2

i

B × T (b − 1)(t − 1) σ2
ε + σ2

βτγ + gσ2
τβ

C × T (g − 1)(t − 1) σ2
ε + σ2

βτγ + rσ2
τγ

B × C (b − 1)(g − 1) σ2
ε + σ2

βτγ + tσ2
βγ

B × C × T (b − 1)(g − 1)(t − 1) σ2
ε + σ2

βτγ

Total bgt-1
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each row contains exactly one level of each treatment, and each column con-
tains exactly one level of each treatment.

Example 3.14. Peanut Latin square The experiment of Example 3.13
was actually run as a Latin square. If we denote the four treatments by T1,
T2, T3, T4, the field layout of the experiment was

Blocks B East-West
1 2 3 4

Blocks 1 T3 T1 T2 T4

C 2 T1 T2 T4 T3

North-South 3 T2 T4 T3 T1

4 T4 T3 T1 T2

Note that necessarily, if there are t levels of the treatment, we must have
t rows and t columns. So the design is a square. For obvious reasons, this
design is sometimes referred to as a Row-Column design. The anova for this
experiment (dataset Peanut) is

Source df SS MS F p-value

Row 3 9.427 3.142
Column 3 245.912 81.971
Treatment 3 23.417 7.806 1.953 .223
Residuals 6 23.984 3.997
Total 15 302.74

where here we really mean residuals. Comparing this design to the full crossed
blocks design in Section 3.6.2, it should be clear that the residual terms con-
tains pieces of many different factors - all of the twoway and threeway inter-
actions.

Note that if we did not have a categorization for treatments, then the
anova would have been

Source df SS MS

Row 3 9.427 3.142
Column 3 245.912 81.971
Row × Column 9 47.401 5.267
Total 15 302.74

and so the SS(Treatments) gets pulled out of the Row × Column effect and
we have

SS(Residual) = SS(Row × Column) − SS(Treatments),

which reinforces why it is essential that there is no Row × Column effect, that
is, that the residual is only measuring experimental error. ‖
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The F -test in the Latin square anova can only be formally justified if we
assume that there are no twoway or threeway interactions. Then from Table
3.13 the residual MS is an estimate of σ2

ε , and will provide the denominator for
the test on treatments. But note that if the assumptions about no interactions
are violated, this will lead to conservative tests, as the denominator will tend
to be bigger than expected (Technical Note 2.8.4).

A model for the Latin square design is

Yijk
= µ + τi + βj + γk + εjk,(3.30)

where τ is the treatment, β and γ are the blocks, j = 1, . . . , t, k = 1, . . . , t,
and

ijk ∈ Ii = {(j, k) : Yijk
is from Treatment i}.

We need to define this more complex index set in order to keep exact track
of the observations. If we just say that i = 1, . . . , t, then we are indexing t3

observations where there are only t2 observations. Finally, we assume that

βj ∼ N(0, σ2
β), γk ∼ N(0, σ2

γ), εjk ∼ N(0, σ2
ε),

all independent.
Compare this to the crossed blocks model (3.29). The models are quite

similar; the differences being that here we assume all of the interaction vari-
ances are zero, and there is not a complete set of treatments within each
intersection of rows and columns.

However, the Latin square is balanced in the following sense. Since each
treatment is in exactly one row and one column, when we calculate treatment
means the row/column effects are balanced and, in fact, under model (3.30)
they cancel out. Consider the parameter arrangement corresponding to the
Peanut Latin square:

Blocks B East-West
1 2 3 4

Blocks 1 τ3 + β1 + γ1 τ1 + β2 + γ1 τ2 + β3 + γ1 τ4 + β4 + γ1

C 2 τ1 + β1 + γ2 τ2 + β2 + γ2 τ4 + β3 + γ2 τ3 + β4 + γ2

North-South 3 τ2 + β1 + γ3 τ4 + β2 + γ3 τ3 + β3 + γ3 τ1 + β4 + γ3

4 τ4 + β1 + γ4 τ3 + β2 + γ4 τ1 + β3 + γ4 τ2 + β4 + γ4

If we sum over the cells corresponding to any particular τi, we see that we
bring along all the βs and γs in a balanced way. For example,

Ȳ1 =
1
t

∑

(j,k)∈I1

Y1jk
= µ + τ1 + β̄ + γ̄ + ε̄1,

¯̄Y =
1
t2

∑

i

∑

(j,k)∈I1

Yijk
= µ + τ̄ + β̄ + γ̄ + ¯̄ε,
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and thus
Ȳ1 − ¯̄Y = τ1 − τ̄ + ε̄1 − ¯̄ε,

where ε̄i = (1/t)
∑

(j,k)∈Ii
εjk. Thus the least squares estimates of the treat-

ment effects are free of all row/column effects. If we restrict τ̄ = 0 then

E(Ȳi − ¯̄Y ) = τi and Var(Ȳi − ¯̄Y ) =
(

1 − 1
t

)
σ2

ε

t
,(3.31)

free of all blocking effects. In fact, under model (3.30), Ȳi − ¯̄Y is the least
squares estimate of τi (Exercise 3.18).

Finally, contrasts are also free of block effects since for any set of contrast
coefficients (a1, . . . , at),

E

(
∑

i

aiȲi

)

=
∑

i

aiτi

Var

(
∑

i

aiȲi

)

=
σ2

ε

t

∑

i

a2
i .(3.32)

The Latin square is quite restrictive in that we need to have t rows, t
columns, and t treatments and, therefore, there are only (t− 2)(t− 1) degrees
of freedom for the residual. One way to alleviate this problem, if possible, is
to replicate the Latin squares.

Example 3.15. Replicating Latin squares Consider an extension of
Example 3.13 where the experiment is replicated three times:

Replications
1 2 3

1 2 3 4

1 T3 T1 T2 T4

2 T1 T2 T4 T3

3 T2 T4 T3 T1

4 T4 T3 T1 T2

1 2 3 4

1 T1 T2 T3 T4

2 T2 T3 T4 T1

3 T3 T4 T1 T2

4 T4 T1 T2 T3

1 2 3 4

1 T4 T1 T2 T3

2 T3 T4 T1 T2

3 T1 T2 T3 T4

4 T2 T3 T4 T1

In general, if there are t treatments and r replications, the anova for the Latin
Square is
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Crossed Nested
Source df

Replications r − 1
Rows t − 1
Columns t − 1
Treatments t − 1
Rows × Reps (r − 1)(t − 1)
Columns × Reps (r − 1)(t − 1)
Residual (t − 1)(rt − r − 1)

Total rt2 − 1

Source df

Replications r − 1
Rows (in Reps) r(t − 1)
Columns (in Reps) r(t − 1)
Treatments t − 1
Residual (t − 1)(rt − r − 1)

Total rt2 − 1

and we have slightly different anovas depending on whether the Rows and
Columns are crossed or nested with Replications (the Treatments are always
crossed). Depending on the situation, either configuration is possible, but note
that in either case the residual term is the same (Exercise 3.17), giving us an
increase in residual degrees of freedom, and keeping the treatment effects
balanced across the rows and columns.

For the crossed Latin squares we have implicitly assume that the rows
and the columns are the same in each replication. A slight variation produces
a Latin Rectangle. Suppose that the rows are crossed, but the columns are
different in each replication, labeled 1, . . . , rt, so we essentially have Latin
squares lined up next to each other. The analysis is almost the same as the
crossed anova above, except that the degrees of freedom for Reps, Columns
and their interaction get combined, that is (r−1)+(t−1)+(r−1)(t−1) = rt−1.
‖

We close this section with a number of observations about Latin squares

(1) If rows are ignored, the Latin square is an RCB, similarly it is an RCB
if columns are ignored. With both blocking factors the Latin square is
balanced in the sense that the treatment contrasts are free of confounding
with block effects. However, it is also important to realize that the Latin
square really has nothing to do with blocking – it is a treatment design
that balances a treatment against rows and columns - which may be other
treatments (see Example 6.20).

(2) It is called a Latin square because, typically, the treatments are denoted
by the Latin letters A, B, C, D, ... . The Latin Square whose first row
is ABCDE and first column is ABCDE is called a standard square. Note
that we can always write down the standard square with a cyclic plan;
first row is ABCDE, second row is BCDEA, third row is CDEAB, etc.
This will work for any size square.

(3) Formally, the Latin square that we choose in an experiment should be
chosen at random from all possible Latin squares. For example, there are
12 3 × 3 Latin squares, 576 4 × 4 Latin squares and 161, 280 5 × 5 Latin
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Fig. 3.2. Relationship of full factorial crossed blocks design with a Latin square.
For t = 4 the full factorial would need 64 observations, while the Latin square uses
16. This is, formally, a fractional replication; see Section 6.3.
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X
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X
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X
X
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Full Factorial

squares. However, choosing one or two at random is not a straightfor-
ward task. What can be easily done is to write down the standard square
and then randomly permute rows and columns, which preserves the Latin
square. In Example 3.15, the middle square is standard and the third
square is a row-column permutation. (This is, of course, not the same as
choosing a square at random from the entire set.)

(4) We do the Latin square to save observations (money) and (we hope) still
get good information. Figure 3.2 shows the relationship of the Latin square
to the full factorial with crossed blocks. The Latin square needs 1/4 the
number of observations, and gives treatment effect estimates that are free
of block effects.
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Of course, we pay for this in that we need to make
assumptions about the interactions in order to get
good error estimates and valid tests. (We are also
gambling that no observations will be missing or un-
usable. If there is missing data in the Latin square
all the balance is lost.

Remember –
the assumption
is NO
interactions

(5) When using more than one Latin square, such as in Example 3.15, there is
some thought that orthogonal squares should be used. Two Latin squares
are orthogonal if, on superposition of one square on the other, each of the
t2 ordered pairs of treatment levels occurs exactly once. The mathematics
of orthogonal Latin squares is very interesting, leading one into advanced
group theory and there are advantages to using orthogonal Latin squares
in designs (Morgan 1998). However, on this topic we tend to side more
with Mead (1988, p. 181) who says, when discussing this topic, “At various
points ... the mathematical ideas involved in the construction of useful
designs offer a temptation to divert from the path of usefulness” (but
see Section 6.4 for a specialized design that depends on orthogonal Latin
squares).

3.7 Exercises

Essential

3.1 Referring to Example 3.3:
(a) Recreate the anova tables and the t-tests
(b) Break down the sums of squares of the RCB anova according to (3.3).
(c) Show how to calculate the t-statistics using the component sums of

squares in (3.3).
(d) Show that under model (3.1), each component of SS(T × B) in (3.3) has

the same expectation.
3.2 For the model (3.5):

(a) Show that the solution to (3.13) gives the least squares estimates (3.14).
(b) Show that the restriction τ̄ = β̄ = 0 is equivalent to defining τ ′

i = τi − τ̄ ,
β′

j = βj − β̄, µ′ = µ + τ̄ + β̄ and fitting the model yij = µ′ + τ ′
i + β′

j + εij .
(c) Restricting τ̄ = β̄ = 0 is one of many possible restrictions to get a solution.

Another common one is to set τt = βb = 0. Derive the least squares
estimates under this constraint.

(d) Show that the least squares estimates are unbiased and find the variance
of the estimators.

3.3 Referring to Example 3.4 and using dataset Alfalfa:
(a) Verify the anova table given in the example.
(b) Show that the test on treatments remains the same if the three observa-

tions in each Variety × Block cell are replaced by their mean, creating a
new dataset consisting of sixteen observations.

(c) Suppose that 48 observations could be taken. Write out the anova table for
experiments with 4 blocks, 8 blocks, and 12 blocks. Comment on situations
when each design would be preferred.
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3.4 In Section 3.1.2 we split the 2 degrees of freedom for treatments in the
Strawberry dataset using two orthogonal contrasts A−B and 1

2
A + 1

2
B −C,

and saw that each of the two resulting RCB anovas was equivalent to the
analogous paired t-test. Here we want to show that the individual anova sums
of squares for treatment and residual add up to those in the full anova table
given in Example 3.3. But we have to be careful about constants.
Suppose that we have b blocks, and take a treatment contrast

∑k

i=1
aiȳi and

split it into two pieces

w̄1 =

m∑

i=1

aiȳi and w̄2 = −
k∑

i=m+1

aiȳi

(note the negative sign) where m < k is arbitrary. If we define w̄1 and w̄2 to
be the means of two treatment groups show that
(a) SS(Treatments) = b[(w̄1 − w̄)2 + (w̄2 − w̄)2] = b

2
(
∑k

i=1
aiȳi)

2, (note that
the choice of m is irrelevant) and hence

(b) SS(Treatments)/SS(Contrast) = (1/2)
∑

i
a2

i .
(c) Use the information in (b) to adjust the contrasts A−B and 1

2
A+ 1

2
B−C

to produce the two anova tables
Modified
A − B

Source df Sum Sq

Block 3 1.724
Trt 1 34.031
T × B 3 0.164

Modified
1
2
A + 1

2
B − C

Source df Sum Sq

Block 3 1.335
Trt 1 1.550
T × B 3 0.561

and show that the treatment and residual sums of squares for these table
add to the full table given in Example 3.3.

3.5 To investigate the effect on potato yields of water loss due to transpiration,
a horticulturist used shade covers on plots at various stages of their growth
and development. Plots were shaded to reduce solar input (to the plants) by
0, 1/3, or 2/3. Each of the 3 shadings were applied to 4 plots for a one-month
period during “early”, “middle” and “late” stages of growth. The design was
an RCB. Yields per plot (in lbs) were

Growth Stage
Block Shading Early Middle Late

0 60 65 62
1 1/3 54 57 58

2/3 41 53 56

0 53 68 70
2 1/3 46 53 62

2/3 42 58 54

0 64 58 54
3 1/3 48 59 63

2/3 36 50 60

0 50 61 57
4 1/3 42 52 60

2/3 50 49 51



3.7 Exercises 125

(a) Construct the complete anova table. Be specific about your assumptions
about blocks and include expected mean squares in your table.

(b) Construct and test an appropriate set of contrasts.

3.6 A variation of the RCB model (3.5) is used in the social sciences to measure
the magnitude of a characteristic possessed by a person, when there are mul-
tiple (possibly subjective) measurements of the characteristic. Winer (1971)
explores such models in detail; we give a small example. To fix the idea, look
at the following data where 6 people were rated by 4 judges on a specific
characteristic.

Person Judge 1 Judge 2 Judge 3 Judge 4

1 1 4 3 3

2 5 7 5 6

3 1 3 1 2

4 7 9 9 8

5 2 4 6 1

6 6 8 8 4

Notice that the people are the blocks. It is now standard to assume that there
is no treatment effect (judge effect), so that τi = 0 in model (3.5) and we now
have the model

Yij = µ + Pj + εij , εij ∼ N(0, σ2
ε), Pj ∼ N(0, σ2

P ), independent,

with 1, . . . , t, j = 1, . . . , b.
(a) Show that the EMS for this model is

Source df EMS

Between People b − 1 σ2
ε + tσ2

P

Within People b(t − 1) σ2
ε

(b) The reliability of the mean of t measurements is defined as

ρt =
σ2

P

σ2
P + (σ2

ε/t)
.

Show that ρ1 is the same as the intraclass correlation, and that we can
write ρt = tρ1/(1+ (t− 1)ρ1). Show that ρt is an increasing function of t.

(c) Show how to estimate σ2
P and σ2

ε using mean square from an anova, and
hence show how to estimate ρk.

(d) Estimate ρ1 and ρk for the above data.
(The quantity ρt is known as the Spearman-Brown prediction formula in the
psychometric literature. Winer (1971) also shows how to estimate reliability
without the assumption that τi = 0, which is know as adjusting for anchor
points)

3.7 A small city in the Midwest was considering purchasing some outside sculpture
pieces to complement its downtown. There were a total of 40 pieces of art that
were under consideration, which were grouped into four categories (energetic,
pastoral, spiritual, and representational), where each category contained 10
pieces of art. A total of 12 judges were available, and each judge rated each
piece of art on a 7-point scale (from 1=dislike to 7=like very much). The data
can be laid out in the following way:
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Category
1 2 3 4

Art Art Art Art
1 2 · · · 10 11 12 · · · 20 21 22 · · · 30 31 32 · · · 40

Judges

1
...

12

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

There are a total of 4 × 10 × 12 = 480 observations.
(a) The original analysis was a fully nested design, as seems to be indicated

by the data layout. Show the anova for this design (source and df) and
indicate the tests. Also explain why this design is incorrect (other than the
fact that with a 7-point ordinal scale the normality assumption is suspect).

(b) Explain why the correct design is an RCB. Show the anova for this design
(source and df) and indicate the tests.

(c) Reconcile the designs in (a) and (b) in the following sense. Compare the
error terms for the test on Art, and explain why the error term in (b) is
the more appropriate one.

3.8 For the following experiment: (i) Specify the model equation (ii) Set up the
anova table (source, df and EMS) (iii) Specify two hypotheses and how they
would be tested.
An accounting firm, prior to introducing a wide-spread training in statistical
sampling of auditing, tested three training methods: (1) study at home with
programmed training methods, (2) training sessions at local offices conducted
by local staff, and (3) training sessions in Chicago conducted by national
staff. Thirty auditors were put into 10 groups of three, according to time
elapsed since college graduation, and the auditors in each group were randomly
assigned to the three training methods. At the end of the training each auditor
was asked to analyze a complex case; a proficiency measure based on this
analysis was obtained for each auditor.

3.9 Lake trout deposit their eggs on reefs in late fall and the young trout (fry)
have developed enough to leave the reef by the following spring. Research in
one large reef in Lake Ontario has clearly shown that almost all fry are in a
small section of the reef in early spring, where past data indicate that most
eggs are deposited.
The biologists are trying to understand the characteristics of this section of
the reef that and important to the lake trout, and have listed several charac-
teristics:

1. large-sized rocks 2. a deep rocky layer above the sand
3. location near the edge of a dropoff 4. location near the middle of the reef
5. strong currents

The experimenters constructed three “subreefs”, each of which had large rocks
in deep layers. One was near the edge of a dropoff, one was near the upper part
of the reef, and the third was at the bottom of the dropoff. On each subreef five
egg traps were placed, and were each checked four times throughout the fall
(four trapping periods). When checked, the traps were reset. The biologists
were interested in the total catch for the season.
After collecting data for one year, the biologists want to analyze the data:
(a) Describe the experiment; explain the factors, blocks (if any), what is

nested and crossed.



3.7 Exercises 127

(b) Construct and anova table (Source, df, and EMS) that corresponds to
your answer in (a).

(c) According to your EMS, what is the variance for the mean number of
eggs collected near the edge of the dropoff?

(d) If the variance due to cages is three times larger than the error variance,
what would have a greater effect on reducing the variance in part (c) -
doubling the number of cages or doubling the number of trapping periods?

3.10 For the RCB model with interaction (3.24):
(a) Show that

EYijk = µ + τi, VarYijk = σ2
ε + σ2

τβ + σ2
β ,

and the covariances are given by (3.25).
(b) The cell means Ȳij satisfy

EȲij = µ + τi, VarȲij =
σ2

ε

r
(1 + (r − 1)ρε) + σ2

τβ + σ2
β ,

and

Cov(Yij , Yi′j) =

{
0 j �= j′

σ2
τβ + σ2

β j = j′.

3.11 Starting with the RCB model (3.5):

Yij = µ + τi + βj + εij , i = 1, . . . , t, j = 1, . . . , b,

suppose that the treatments have a factorial structure, that is, the treatment
effects τ1, . . . , τt arise from the cells of two crossed factors C and D in a CRD,
so that the model could be written

Yijk = µ + γi + δk + (γδ)ik

+βj + (γβ)ij + (δβ)jk + (γδβ)ijk + εijk.

(a) Write out the EMS for this model, and show that each treatment effect
is tested against its corresponding interaction with blocks, that is, test C
with C × B, etc.

(b) What assumptions are needed to pool the three Trt × Block interactions
into one error term? (Recall Section 1.6.)

3.12 A microarray experiment was planned to determine if human brain stem cells
can be turned into neurons. The stem cells can be converted to neurons chem-
ically, or by treating them with GFP(Green Florescence Protein) and then
transplanting them into mice. There are four treatment conditions that the ex-
perimenters are interested in: Control, Chemical, GFP, and GFP+transplant.
Brain stem cells from six subjects are available.
(a) It is suggested that for each subject, the stem cells should be divided into

four groups and randomly assigned to the four treatments. A microarray
will be run for each Subject × Treatment combination. What design is
this? Write down the model, assumptions, and anova table.

(b) The experimenter thinks that two microarrays can be run for each sub-
ject/treatment condition. That is, the stem cells for each subject could
be divided into eight groups, and two groups of cells would be given each
treatment. Write down the model and anova for this design, and comment
on whether this is a good use of resources.
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(c) It turned out that there was another twist to this experiment, which was
not mentioned at first. Apparently the transplanting into mice of the stem
cells was thought to be quite variable, and the experimenter wanted to
transplant the cells from each human subject into more than one mouse.
Write out the model and anova for the part (a) experiment where the
stems cells of each subject are transplanted into three mice. Show how the
tests are done, and comment on any problems (variance assumptions?).

3.13 Another microarray project involving stem cells was done at the University
of Florida. A hematologist was interested in measuring gene expression in
subjects before and after the administration of the drug G-CSF (granulocyte-
colony stimulating factor), a growth factor that stimulates the bone marrow
to make more white blood cells. Before the treatment, RNA from each of five
subjects was hybridized to an Affymetrix chip; after treatment with G-CSF
RNA was again collected and hybridized. For each of the 54, 000+ genes1, the
expression level, a measure of genomic activity, was measured. The dataset
StemCell contains data for 250 genes, and looks like (for four genes)

Genes

Subject Trt AFFX- AFFX- AFFX- AFFX-
BioB-5-at BioB-M-at BioB-3-at BioC-5-at

1 Post 961 1734.3 825.7 2746.8
1 Pre 734.8 1239.7 607.3 2425
2 Post 1737.2 2926.7 1602.2 5256.6
2 Pre 755.5 1215.3 670.9 2306.3
3 Post 777.4 1597.8 750.3 2723.9
3 Pre 791.1 1349.7 711.2 2134.3
4 Post 1022.5 1761.7 871.8 2958.9
4 Pre 706.6 1145.8 596.1 2189
5 Post 754.9 1374.1 637.2 2334.4
5 Pre 809.8 1262.9 629.1 2100.7

(a) Write a model for this analysis. As mentioned in Miscellanea 1.9.1, when
considering a microarray design we only need consider the response of one
gene.

(b) Analyze the data using the response of the first gene. (It is best to log
transform the response.)

(c) A complete analysis of the dataset would repeat part (b) for all the genes.
Do this, and list the genes that are significant at a False Discovery Rate
(FDR) of 5% (See Miscellanea 2.9.1). For another approach to the analysis
of microarray data see Miscellanea 5.9.1.

3.14 There are three parental lines of Persea americana, or avocado, known as Bacon,
Fuerte, andZutano.Experimenters are interested in assessing genetic differences
between these lines (treatments) and interactionswith environment.These trees
have been cloned, and four genetically identical trees were created. The trees
are growing in California in two locations (environments) where two clones are
randomly placed in each environment. Note that, since the same clone is used in
both environments, clones are crossed with environments within parents. Four

1 The chip actually does not have genes but “probe sets”, which are segments of
the genome that make up a gene.
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genotypes from each parent are used in an experiment where the response is
dry weight of fruit, and the anova table for the treatment design is

Source df

Env 1
Parent 2
E × P 2
Genotype (in P) 9
G × E (in P) 9
Clones 24

Total 47

(a) Explain why this is an RCB, identify the blocks, and write down a model
for the analysis.

(b) Calculate the EMS.
(c) Can we use Genotype (in Parents) to test the significance of Parents?

Explain.
(d) Can G × E (in Parents) test Env and the Env × Parents interaction?

Explain.
(e) Can we test the G × E (in P) interaction using the error term derived

from the clone replicates? Explain.

3.15 Referring the Section 3.6.1, another variety trial was conducted with four
varieties and 4 blocks, but here the replications were not locations but years
(the same experiment was done in three successive years). In each year the
same blocks were used, and thus replications (Years) are crossed with blocks.
The data are in dataset AlfalfaTrial-2

(a) Construct an anova table based on model (3.28).
(b) Test the significance of the interactions with treatment. Based on those

tests, and what you know about the experiment, are you willing to assume
that one or both of the interactions is zero so that you can get a test of
treatments?

(c) Discuss the consequences of an incorrect assumption about the interac-
tions and the test on treatments with regard to Technical Note 2.8.4.

(d) As best as you can, estimate the treatment differences and their standard
errors. What further conclusions can you make?

3.16 Referring to Example 3.11:
(a) Verify the anova table, and perform the F - tests as indicated by the EMS.
(b) If it is assumed that σ2

τR = 0, and error terms for the treatment test
are pooled based on this assumption, discuss the consequences if this
assumption is incorrect (recall Technical Note 2.8.4).

(c) Estimate the treatment differences and their standard errors. What fur-
ther conclusions can you make?

3.17 Referring to Examples 3.14 and 3.15:
(a) In Example 3.14:

(i) Verify the anova table (dataset Peanut)
(ii) Treatment 1 is the control treatment. Even though the anova F is not

significant, do any of the other treatments have a significantly higher
yield?
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(iii) Using the current variance estimate, what power do you have to detect
a .5 yield increase at α = .05. How can you design another experiment,
based on Latin squares, that would increase the power? Can you attain
a power of .9 to detect a .5 yield increase at α = .05?

(b) In Example 3.15, the peanut experiment was blocked at different locations
in the field, but in each location the north-south/east-west gradients were
identified. Analyze the blocked peanut data (dataset Peanut2) giving an
anova table and seeing which pairwise differences are significant. Justify
why this should be analyzed taking the Rows and Columns to be nested
in replications.

(c) For the blocked case the residual is

SS(Row × Column) + SS(Rep × Row × Column) − SS(Treatment)

and for the nested case it is

SS(Row × Column in Rep) − SS(Treatment).

Show that these must be the same.
3.18 Referring to Section 3.6.3:

(a) Verify the mean and variance given in (3.31).
(b) Show that Ȳi − ¯̄Y are the least squares estimates of τi and ¯̄Y is the least

squares estimate of µ.
(c) Defining Ȳj and Ȳk in the obvious way, show that Ȳj − ¯̄Y and Ȳk − ¯̄Y are

the least squares estimates of βj and γk, respectively (although this is of
lesser interest).

(d) Verify the contrast mean and variance in (3.32). In particular show that

Var(Ȳi) =
1

t
(σ2

ε + σ2
β + σ2

γ), Cov(Ȳi, Ȳi′) =
1

t
(σ2

β + σ2
γ).

3.19 A poultry science professor used diets with low, medium, and high concen-
trations of protein to see if there were effects on the amount of food intake
in leghorn chickens. Space limitations were such that the cages had to be
stacked on top of one another and in front of each other (but with some space
in between). This arrangement introduced two blockings; (i) the height of a
cage was important because of a temperature differential (temperature affects
food intake), and (ii) the depth of a cage was important because there were
windows only on the front side of the cages (the amount of light affects food
intake also). Therefore, cages were stacked 3 high and 3 deep (with spacers)
and 10 chickens were randomly assigned to each cage. Treatments were then
assigned to the cages according to the Latin square design below. After one
week, total food intake of each cage was measured with the results given in
the table (in ounces):

Height
Depth Bottom Row Middle Row Top Row

Front Row M(96) H(81) L(106)
Middle Row H(94) L(116) M(114)
Top Row L(100) M(91) H(89)

(a) Give the complete anova table.
(b) Test equality of mean food intakes for the concentrations of protein.
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(c) Find two meaningful 1 df contrasts. Estimate the contrasts and give 90%
confidence intervals.

3.20 (From Mead 1988, Chapter 10) A trial to compare four varieties of Brussels
sprouts was designed as a 4×4 Latin square. Unfortunately, the experimental
area was partially waterlogged during the course of the experiment, which
produced at least one plot that was clearly not comparable with the other
yields. Yields and scores of the extent of waterlogging (recorded for possible
future use) are given below. Analyze the data, adjusting for the effect of
waterlogging by covariance. Present the ancova table, with relevant tests, and
the adjusted mean yields with standard errors.

Yields

98(B) 100(D) 127(A) 142(C)
141(C) 91(A) 110(D) 124(B)
98(D) 102(C) 103(B) 127(A)
34(A) 71(B) 119(C) 118(D)

Waterlogging Score

0 0 0 0
0 0 0 0

.12 0 0 0

.45 .09 0 0

Accompaniment

3.21 Show details for the following calculations in Section 3.2.
(a) Verify (3.6) and (3.7).
(b) Verify (3.8), showing that the Yij are conditionally uncorrelated within a

block.
(c) In (3.9), show that

Cov(βj + εij , βj + εi′j) = E(β2
j ) − 2E(βj + εij) + E(εijεi′j),

and hence that Cov(Yij , Yi′j) = Var(βj) = σ2
β .

(d) Verify the EMS calculations in Table 3.6.
3.22 For the RCB model of (3.24),

(a) Show that the least squares estimates are the solutions to the equations

Ȳ = µ + τ̄ + β̄ + ¯(τβ),

Ȳi = µ + τi + β̄ + (τβ)i,

Ȳj = µ + τ̄ + βj + (τβ)j ,

Ȳij = µ + τi + βj + (τβ)ij .

(b) Show how the estimates of the treatment effects follow from the least
squares estimates.

(c) Comment on the desirability of having the parameters add to zero.
3.23 Refer to Section 3.4. To establish the expectation of (3.17), use Exercise 2.19,

to show that
∑

ij

(εij − ε̄i· − ε̄·j + ¯̄ε)2 =
∑

ij

ε2
ij − b

∑

i

ε̄2
i· − t

∑

j

ε̄2
·j + bt̄ε̄2.

Then establish that

E ε2
ij = σ2

ε , E ε̄2
i· =

σ2
ε

b
, E ε̄2

·j =
σ2

ε

t
, E ¯̄ε2 =

σ2
ε

bt
,

and combine everything to calculate the expectation of (3.17).
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3.24 This exercise will establish some of the properties of the matrices needed in
the application of Cochran’s Theorem in the RCB anova, model (3.5), and in
establishing Lemma 3.17.
(a) Establish the following properties of B1, B2, and B3 (defined in Technical

Note 3.8.2):
(i) Show that B1, B2, and B3 are all idempotent matrices.

(ii) Show that B1J = B2J = B3J = J.
(iii) Show that B1B2 = B2B3 = B1B3 = B3.

(b) Use the properties established in part (a) to prove Lemma 3.17.
3.25 Here we will prove Theorem 3.18.

(a) Show that under (3.5), the vector Y = {Yij} is multivariate normal with
covariance matrix Σ = σ2

εI + σ2
βJ .

(b) If we order the vector Y as in (3.36), show that Ȳi· = B1Y , Ȳ·j = B2Y ,
¯̄Y = B3Y , and that we can write the sums of squares as

SS(Trts) = Y ′(B1 − B3)Y, SS(T × B) = Y ′(I − B1 − B2 + B3)Y,

with B1 −B3 and I −B1 −B2 + B3 idempotent and (B1 −B3)(I −B1 −
B2 + B3) = 0.

(c) Referring to Exercise 3.24, show that the matrices

A∗
1 =

1

σ2
ε
(B1 − B3) and A∗

2 =
1

σ2
ε
(I − B1 − B2 + B3)

satisfy the assumptions of Cochran’s Theorem (Theorem 2.20) with Σ =
σ2

εI + σ2
βJ .

(d) Show that, under H0 : τi − τ̄ = 0, we have

Y ′A∗
1Y ∼ χ2

t−1 and Y ′A∗
2Y ∼ χ2

(b−1)(t−1),

independently, and thus finish the proof of Theorem 3.18. Note that you
must argue that, without loss of generality, for the test we can assume
that µ = 0 in (3.5).

3.26 Here we finish the proof of Theorem 3.18 with regard to the t-distribution of
contrasts, and thus prove Theorem 3.10.
(a) Show that B1(I − B1 − B2 − B3) = 0, and thus argue that the vector

Ȳi′· is uncorrelated with (I − B1 − B2 − B3)Y. Equivalently, establish
Cov(Yi′j′ − Yi′·Yi′· − Y·j′ + ¯̄Y , Y i·) = 0 for every i, i′, j′, that is, the
covariance between treatment means and residuals is zero.

(b) Use the results of part (a) to show that, under normality, SS(T × B) is

independent of
∑k

i=1
aiY i·, and use the properties of the t-distribution

(Section 2.8.2) to complete the proof.
3.27 Although Theorem 3.10 and Exercise 3.26 show that SS(T × B) has the

proper distributional properties, they do not fully illustrate the quote of Fisher
at the end of Section 3.1.2. This exercise will show the full treatment. (See
also Exercise 3.4 for a numerical demonstration.)
From (3.17) we know that

SS(T × B) =

t∑

i=1

r∑

j=1

ε̂2
ij
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and here we will show that the sum can be written as the sum of squares of
(r − 1)(k − 1) uncorrelated contrasts.
We construct our contrasts as a linear combination

∑t

i=1

∑r

j=1
aij ε̂ij , where

the aijs satisfy:
(1)

∑t

i=1

∑r

j=1
aij = 0,

(2)
∑r

j=1
aij = 0 for each i,

(3)
∑t

i=1
aij = 0 for each j.

(4) Any two contrasts
∑t

i=1

∑r

j=1
aij ε̂ij and

∑t

i=1

∑r

j=1
a′

ij ε̂ij will be uncor-

related (hence independent under normality), and satisfy
∑t

i=1

∑r

j=1
aija

′
ij

= 0

We will construct (r − 1)(t − 1) sets of constants whose corresponding con-
trasts are all independent, are each distributed as a σ2χ2

1, and sum to∑t

i=1

∑r

j=1
ε̂2

ij . Note that conditions (2) and (3) are not required of inter-
action contrasts. They do make the argument easier, and are a natural result
of the product construction used here. However, see the discussion in Section
5.2.3.
Refer to Table 3.14 for the construction. We start with the t − 1 sets of
contrasts defined by the rows. Each row sums to zero so each row can be
used to define a contrast between treatments. Similarly, we also define the
r − 1 sets of contrasts by the columns. There, every column sums to zero
and defines a contrast. We now construct our set of uncorrelated contrasts by
taking products. For example, from row l and column m, we form a rectangular
array of constants. Write row l across the top and column m down the left
side. Now an element in the array is the product of the value on the top line
and the value in the left column.
If we denote this set of constants by alm

ij (normalized so that
∑

i,j
(alm

ij )2 = 1)

and define Tlm =
∑t

i=1

∑r

j=1
alm

ij ε̂ij , establish the following properties:

(a) For each l, m, Tlm ∼ n(0, σ2).
(b) For each l, m, l′, m′, l �= l′, m �= m′, Cov(Tlm, Tl′m′) = 0.
(c)

1

σ2

t−1∑

l=1

r−1∑

m=1

(Tlm)2 =
1

σ2

t∑

i=1

r∑

j=1

ε̂2
ij .

Note that, by construction, there are only (r − 1)(t − 1) quantities Tlm.
(This requires a tedious amount of algebra.)

(d) Finally, show that (a)-(c) imply that the residual sum of squares is dis-
tributed σ2χ2

(r−1)(t−1).

3.28 Referring to Technical Note 3.8.3:
(a) Verify the expression for Cov(Ȳij , Ȳi′j′).
(b) Prove Theorem 3.19.

3.29 Here we will establish properties of the matrices

A1 = B′
4(I − B1 − B2 + B3)B4 and A = I − 1

r
B′

4B4,

in order to prove Lemma 3.20.
(a) Using the properties of B1, B2, and B3, along with the facts that

B4B
′
4 = rI, B′

4B4J = rJ, B′
4B4J

(p) = rJ(p),

establish the following propertied of A1 and A2:
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Table 3.14. Product construction of residual contrasts

1 2 3 4 . . . t − 1 t

1 t − 1 −1 −1 −1 . . . −1 −1

2 0 t − 2 −1 −1 . . . −1 −1

3 0 0 t − 3 −1 . . . −1 −1

...
...

...
...

...
... −1 −1

t − 1 0 0 0 0 . . . 1 −1

1 2 3 . . . r − 1

1 r − 1 0 0 . . . 0

2 −1 r − 2 0 . . . 0

3 −1 −1 r − 3 . . . 0

4 −1 −1 −1 . . . 0

...
...

...
...

...
...

r − 1 −1 −1 −1 . . . 1

r −1 −1 −1 . . . −1

0 0 0 . . . 0 t − l −1 . . . −1

0 0 0 0 . . . 0 0 0 . . . 0

0 0 0 0 . . . 0 0 0 . . . 0

· . . . . . . 0 0 0 . . . 0

0 0 0 0 . . . 0 0 0 . . . 0

r − m 0 0 0 . . . 0 (r − m)(t − l) −(r − m) . . . −(r − m)

−1 . . . . . . 0 −(t − l) 1 . . . 1

. . . . . . . 0 . 1 . . . 1

−1 0 0 0 . . . 0 −(t − l) 1 . . . 1

(i) A1 and A2 are idempotent.
(ii) Y′A1Y = SS(T × B) and Y′A2Y = SS(Within).

(iii) A1A2 = 0.
(iv) A1J = 0 and A1J

(p) = rA1.
(v) A2J = 0 and A2J

(p) = 0.
(b) For Σ of (3.33), show that

A1Σ = (σ2
ε + (1 − ρτβ)σ2

τβ)A1, A2Σ = σ2
εA2.

(c) We have now established enough properties of A1 and A2 to prove Lemma
3.20 and Theorem 3.21. Do so.

3.30 For the RCB model specified in (3.24):
(a) Verify the variances given in Technical Note 3.8.1.
(b) Verify the expected mean squares in Table 3.7.
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3.31 (a) For the Scheffémodel (3.41), show that Corr(γij , γi′j) = −1/(t − 1).
(b) For the RCB model (3.24), show that if ρτβ = −1/(t−1), then

∑
i
(τβ)ij =

0 for every j. (Evaluate Var(
∑

i
(τβ)ij).)

3.32 (a) In the usual version of model (3.24), the correlation ρτβ is taken to be
zero. Produce an anova table (source, df, EMS) with this assumption, and
compare it to the anova table without this assumption.

(b) Do the anova table (source, df, EMS) for the Scheffémodel (3.41), and
compare it to the ones in part (a), in terms of what are the possible tests.

3.33 Referring to Technical Note 3.8.4:
(a) Verify that V ∗ = σ2

βZZ′ + σ2I, and has all row sums equal.
(b) Show that both the ordinary and generalized least squares estimates of θ

are equal to the vector of cell means.
(c) Verify the expression for the prediction of β given in (3.40).
(d) For the joint distribution (3.39), verify the covariance of Y and β. (Note

that Cov(Y, β) = EY β′, a bt× b matrix with entries of the form EYijβj′ .)
3.34 Referring to Section 3.6.1:

(a) Verify the EMS in Table 3.10.
(b) Verify the EMS in Table 3.11.
(c) For each of the two models in Section 3.6.1, calculate the variance of a

treatment contrast and discuss how to estimate it.
3.35 Referring to Miscellanea 3.9.2:

(a) Show that σ̂2
ε and σ̂2

β are unbiased estimators of σ2
ε and σ2

β .

The remainder of this problem refers to Example 3.4.
(b) Using model (3.5), which only has variance components σ2

ε and σ2
β , derive

the anova estimates for the variance components by equating mean squares
with EMS. Use the anova table in Example 3.4 to get numerical values.

(c) Since the anova estimates in part (b) are nonnegative, they will agree
with the REML estimates. Demonstrate this by calculating the REML
estimates directly (see the code in Miscellanea 3.9.2).

(d) Since the data of Example 3.4 has replication, we can also use the model
(3.24), which has three variance components, σ2

ε , σ2
β , and σ2

τβ . Using the
EMS in Table 3.8, derive the anova estimators of the variance components
and calculate the numerical values.

(e) Under the setup of part (d), do you expect the REML estimates to agree
with the anova estimates. Calculate the REML estimates directly and
discuss the outcome.

3.8 Technical Notes

3.8.1 Helpful Lemma II
When calculating variances of contrasts and effect estimates, and expected
mean squares, we need the distribution of the errors, and sometimes also the
differences of the errors. These follow from (3.24), and also get a little help
from the following lemma, an extension of Lemma 2.16.

Lemma 3.16. Suppose that W1, W2, . . . , Wn satisfy EW = 0, VarW = σ2, and
Cov(Wi, Wi′) = ρσ2. Then

(1) Cov(Wi − W̄ , Wi′ − W̄ ) = − 1
n
(1 − ρ)σ2.
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(2) Var(Wi − W̄ ) = E(Wi − W̄ )2 =
(
1 − 1

n

)
(1 − ρ)σ2.

If the Wi are normal, then

(3) Wi − W̄ ∼ N
(
0,
(
1 − 1

n

)
(1 − ρ)σ2

)
.

3.8.2 Cochran’s Theorem for RCBs – No Replication
Theorem 2.20 is quite general, applying to a multivariate normal distribution
with covariance matrix Σ. Here we show how it applies to the sums of squares
in an RCB. Define the matrices

B1 =
1

b

⎛

⎜
⎝

It

...
It

⎞

⎟
⎠

tb×t

(It · · · It)t×tb ,

B2 =
1

t

⎛

⎜
⎜
⎝

1t×1 0 · · · 0
0 1t×1 · · · 0
...

...
...

...
0 0 · · · 1t×1

⎞

⎟
⎟
⎠

tb×b

⎛

⎜
⎜
⎝

1′
1×t 0 · · · 0
0 1′

1×t · · · 0
...

...
...

...
0 0 · · · 1′

1×t

⎞

⎟
⎟
⎠

b×tb

, B3 =
1

tb
Jtb,

where Im is the m×m identity matrix, Jm is the m×m matrix of ones, and
1m×1 is the m × 1 vector of ones (note that 1m1′

m = Jm).
Lemma 3.17. Let Y ∼ N(0, Σ), where Σ = σ2

1I + σ2
2J . Then

A∗
1 =

1

σ2
1

(B1 − B3) and A∗
2 =

1

σ2
1

(I − B1 − B2 + B3)

satisfy the assumptions of Theorem 2.20 (Cochran’s Theorem). That is

(1) A∗Σ is idempotent, where A∗ = A∗
1 + A∗

2.
(2) A∗

1Σ and A∗
2Σ are idempotent.

(3) A∗
1ΣA∗

2 = 0.

Using this lemma we can establish the following theorem.

Theorem 3.18 (Cochran’s Theorem for RCBs – No Replication). Un-
der the RCB anova model (3.5), Y = {Yij} is multivariate normal with
Σ = σ2

εI + σ2
βJ . Under H0 : τi − τ̄ = 0,

(1) Y′A∗
i Y ∼ χ2

ri
for i = 1, 2.

(2) Y′A∗
1Y and Y′A∗

2Y are independent.
(3) Y′A∗Y ∼ χ2

r1+r2 , where r1 = tr(B1 − B3) and r2 = tr(I − B1 − B2 + B3).
Thus,

MS(Trts)

MS(T × B)
=

σ2
εY

′A∗
1Y/r1

σ2
εY′A∗

2Y/r2
∼ Fr1,r2 .

Moreover, for any contrast (a1, . . . , ak),

∑k

i=1
aiY i· −

∑k

i=1
aiτi

√
MS(TxB)

b

∑
i
a2

i

∼ tr2 .
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3.8.3 Cochran’s Theorem for RCBs – With Replication
We now consider Cochran’s Theorem for the RCB with replication, where we
can separate the interaction from the error, given by model (3.24). We first
need a bit more notation, and here we define the data vector Y by

Y′ = {Y ijk}′

= (Y111, · · · , Y11r, · · · , Yt11, · · · , Yt1r, · · · , Y1b1, · · · , Y1br, · · · , Ytb1, · · · , Ytbr),

the matrix B4 by

B4 =

⎛

⎜
⎜
⎝

11×r 0 · · · 0
0 11×r · · · 0
...

...
...

...
0 0 · · · 11×r

⎞

⎟
⎟
⎠

tb×tbr

,

and note that 1
r
B4Y = {Ȳij}, the vector of cell means.

From Table 3.3 we see that the test on treatments is only a function of {Ȳij},
so to apply Cochran’s Theorem we only have to deal with the cell means.
Under model (3.24) is it straightforward to verify

Cov(Ȳij , Ȳi′j′) =

⎧
⎨

⎩

0 if j �= j′

σ2
β + ρτβσ2

τβ if j = j′, i �= i′

σ2
ε
r

(1 + (r − 1)ρε) + σ2
β + ρτβσ2

τβ if j = j′, i = i′.

Therefore, if we identify

σ2
1 =

σ2
ε

r
(1 + (r − 1)ρε), σ2

2 = σ2
β + ρτβσ2

τβ ,

we can apply Lemma 3.17 to establish the following result.

Theorem 3.19 (Cochran’s Theorem for RCB Treatment Test – With
Replication). For model (3.24), under H0 :

∑
i
(τi − τ̄)2 = 0,

MS(Trts)

MS(T × B)
∼ Ft−1,(b−1)(t−1).

We next derive the test of the interaction in model (3.24). From the expected
mean squares in Table 3.7, we see that unless we assume that ρε = 0 there
will be no test on the interaction. Thus, we make this assumption, that we
have true replication.
Since the blocks are independent, Cov(Yijk, Yi′j′k

′) = 0 unless j = j′. We
have Var(Yijk) = σ2

β + σ2
τβ + σ2

ε and, within a block,

Cov(Yijk, Yi′jk′) =

{
σ2

β + σ2
τβ if i = i′

σ2
β + ρτβσ2

τβ if i �= i′,
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and thus {Yijk} has covariance matrix

Σ = σ2
εI + (σ2

β + ρτβσ2
τβ)J + (1 − ρτβ)σ2

τβJ(p),(3.33)

where

J(p) =

⎛

⎜
⎜
⎝

Jr×r 0 · · · 0
0 Jr×r · · · 0
...

...
...

...
0 0 · · · Jr×r

⎞

⎟
⎟
⎠

tbr×tbr

.

We then have the following results.

Lemma 3.20. Let Y ∼ N(0, Σ), where Σ is given by (3.33). Then

A∗
1 =

1

σ2
ε + (1 − ρτβ)σ2

τβ

(B′
4(I−B1−B2+B3)B4) and A∗

2 =
1

σ2
ε

(
I − 1

r
B′

4B4

)
,

satisfy the assumptions of Theorem 2.20 (Cochran’s Theorem). That is
(1) A∗Σ is idempotent, where A∗ = A∗

1 + A∗
2.

(2) A∗
1Σ and A∗

2Σ are idempotent.
(3) A∗

1ΣA∗
2 = 0.

As before, the lemma lets us establish the following theorem.

Theorem 3.21 (Cochran’s Theorem for RCB Interaction Test). Under
the RCB anova model (3.24) with ρε = 0, Y = {Yijk} is multivariate normal
with Σ given by (3.33). Under H0 : σ2

τβ = 0:
(1) Y′A∗

i Y ∼ χ2
ri

for i = 1, 2.
(2) Y′A∗

1Y and Y′A∗
2Y are independent.

(3) Y′A∗Y ∼ χ2
r1+r2 , where r1 = tr(I−B1−B2+B3) and r2 = tr(I− 1

r
B′

4B4).
Thus,

MS(T × B)

MS(Within)
=

σ2
εY

′A∗
1Y/r1

σ2
εY′A∗

2Y/r2
∼ Fr1,r2 .

3.8.4 Estimating Fixed and Random Effects I
The distinction between fixed and random effects is, in some cases, a conve-
nient fiction. Whether “all levels of interest” are in the experiment, or the
levels in the experiment are “a random sample from a larger population” is of
lesser statistical consequence. What does matter is that the covariance struc-
ture of the experiment is adequately modeled. In fact, the assumption of a
random effect is sometimes made just to get the covariance structure correct,
not because the effects are necessarily random.
Of course, there are legitimate experiments in which certain effects should
be modeled as random, as in Example 3.6. The consequences of modeling an
effect as random are:

(1) There is an implied correlation structure, as once a random block (subject)
is obtained, all observations are then taken within that subject.
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(2) The parameter of interest is a variance, as there are no mean parameters to
estimate. In a model like (3.34), if the βj are random, we are only interested
in estimating σ2

β .

Perhaps one of the most important consequences is:

(3) Since the βj are random variables, there is no sense in having them in a least
squares equation. The proper estimation strategy is to used mixed models
and estimate the other fixed effects while taking account of the variance in
the random effects.

It seems to be common, in designing experiments, to ignore this implica-
tion and use least squares throughout. Although we will ultimately use least
squares estimation, we want to understand the implications of our action.
We look at the RCB model

yij = µ + τi + βj + εij = θi + βj + εij , i = 1, . . . , t, j = 1, . . . , b,(3.34)

where, for convenience, we define θi = µ+τi, producing the cell means model.
This will make the algebra a bit easier (but not much!). Also, we are not going
to directly work with the interaction model, but the techniques here can be
extended to that case. For more details see Searle et al. (1992, Section 4.9
and Chapter 7).
In matrix form (3.34) is

Y = Xθ + Zβ + ε,(3.35)

where X and Z are the incidence matrices associated with the model. In more
general regression problems X and Z contain covariate estimation - most of
what we do here extends to those cases.
Note that we write the matrices in a particular order, where the treatment
index moves first, giving

Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y11

...
yt1

...
y1b

...
ytb

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

X =

⎛

⎜
⎜
⎝

It

It

...
It

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

b times ,

Z =

⎛

⎜
⎜
⎝

1t 0 0 · · · 0
0 1t 0 · · · 0

...
0 0 · · · 0 1t

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

b times ,

(3.36)

where It is the t × t identity matrix, 1t is a t × 1 vector of ones, Y is bt × 1,
X is bt × t and Z is bt × b.
Now to our RCB models. Here we consider the case of random blocks, leaving
the (easier!) fixed blocks case to Technical Note 4.8.2. The assumption that
the blocks are random puts us in the realm of the mixed model, a model that
has both fixed and random effects. The estimation here is a bit more complex.
We work with model (3.34), and assume as in (3.5),

βj ∼ N(0, σ2
β), εij ∼ N(0, σ2

ε), independent.(3.37)
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Under (3.37), model (3.35) is a linear model with a different error structure:

Y = Xθ + (Zβ + ε) = Y = Xθ + ε∗,(3.38)

where
V ∗ = Cov(ε∗) = Cov(Zβ + ε) = σ2

βZZ′ + σ2
εI.

The generalized least squares estimator of θ is then

θ̂ = (X ′V ∗−1X)−1X ′V ∗−1Y.

Now, to “estimate” β, which is a random variable under this formulation, we
can predict it from the joint distribution of Y and β (see Searle et al. 1992,
Chapter 7, for other options). The joint distribution is

(
Y
β

)

∼ N

((
Xθ
0

)

,

(
V ∗ σ2

βZ
σ2

βZ′ σ2
βI

))

,(3.39)

and the conditional distribution of β|Y is

β|Y ∼ N
(
σ2

βZ′V ∗−1(Y − Xθ), [σ2
βI − σ2

βZ′V ∗−1σ2
βZ]−1

)
,

showing that the estimate (or prediction) of the random β is the mean

β̂ = σ2
βZ′V ∗−1(Y − Xθ̂).

Evaluating this expression shows that

β̂ =
tσ2

β

tσ2
β + σ2

ε

⎛

⎜
⎜
⎝

ȳ·1 − ¯̄y
ȳ·2 − ¯̄y

...
ȳ·t − ¯̄y

⎞

⎟
⎟
⎠ ,(3.40)

where we can also write

tσ2
β

tσ2
β + σ2

ε
=

ρt

1 − ρ + ρt
,

where ρ is the intraclass correlation. Thus, to use the mixed model prediction
of β requires knowing σ2

β or ρ, or having estimates. On this latter point, if ρ
needs to be estimated then the optimal variance properties of the estimates
may be lost. (See Harville 1976 and Kacker and Harville 1984.)

3.9 Miscellanea

3.9.1 Models for Random Blocking
The literature contains many variations on models for the RCB with random
blocking, mostly dealing with how to model the correlations and the interac-
tions. In this section we will illustrate some of the concerns, without going
into great detail. The material in this section draws from Hocking(1973, 1985),
Scheffé(1959, Section 8.1) and Samuels et al. (1991, 1993). Hocking(1973) de-
fines Models I, II, and III as variations on the RCB model, and Samuels et al.
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(1991) are concerned with the modeling of the interaction term, and differ-
entiating between a “block” and a “random factor”. The real differences lie
between Model I, which is the model developed by Scheffé(1959), and Model
II, which is essentially (3.24).
The Scheffé model is constructed as follows. We start with

Yikj = m(i, j) + εijk,

where m(i, j) represents the true response of treatment i in block j. We think
of i as a finite index, i = 1, . . . , t, and j as an infinite index, going over
the infinite population of the random blocks. From the m(i, j) we define the
treatment and block effects as follows. The overall mean is calculated by
summing over all treatments and taking the expectation over all levels of j,
that is,

µ = m(·, ·) =
1

t

t∑

i=1

Ejm(i, j).

Similarly, we define all of the effects as follows:

Treatment Effect τi = m(i, ·) − m(·, ·),
Block Effect βi = m(·, j) − m(·, ·),

Interaction Effect γij = m(i, j) − m(i, ·) − m(·, j) + m(·, ·)
= m(i, j) − τi − βj + µ.

So the Scheffémodel is

Yikj = µ + τi + βj + γij + εijk,(3.41)

where, by construction,

1

t

t∑

i=1

τi = 0, Ejβj = 0, and
1

t

t∑

i=1

γij = 0, Ejγij = 0.

Here, the interaction terms γij are defined as residual parameters, so the
above constraints immediately follow. Note that the randomness in γij comes
directly from the randomness in the blocks, making this model substantially
different from (3.24).
Finally, if we define

Var m(i, j) = σ2
m,

Cov(m(i, j), m(i′, j)) = ρBσ2
m,

then direct calculation shows

Var βj =
σ2

m
t

[1 + (t − 1)ρB ], Cov(γij , γi′j) =
σ2

m
t

(1 − ρB),

Var γij =
(t−1)σ2

m
t

(1 − ρB), Cov(γij , βj) = 0.
(3.42)

Scheffémotivates this model by supposing that m(i, j) is the effect of machine
i, one of a finite set of machines, when run by a randomly chosen worker j,
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selected from an infinite population of workers. The multivariate random
variable that is the basis of the model is

m(j) = (m(1, j), m(2, j), . . . , m(t, j)).

This is an interesting and useful model. Although it does put strong con-
straints on the parameters, it should be considered as an alternative to (3.24).
One of the major differences between (3.24) and the Scheffémodel is the fact
that in the latter model the interaction terms sum to zero, while in the for-
mer they do not. Of course, the construction of the Scheffémodel forces this
to happen, but we can also ask if it can happen in (3.24). The answer is
quite interesting. If the interaction terms in (3.24) sum to zero, that is, if∑

i
(τβ)ij = 0, then

∑

i

(τβ)ij = 0 → Var

(
∑

i

(τβ)ij

)

= 0 → ρτβ = − 1

t − 1
,

which is exactly the correlation in (3.42). Thus, the Schefféconstruction im-
poses a certain value for this correlation, and assuming that value in model
(3.24) results in the Schefféinteraction constraint (Exercise 3.31).

3.9.2 Variance Component Estimation
Although a book about statistical design is necessarily concerned about vari-
ances, we have not directly addressed the problem of estimation of variance
components. For example, in the RCB of Example 3.4 there are two vari-
ance components, σ2

ε and σ2
β (see Table 3.6). In the split plot model (5.14) of

Chapter 5 there are four variance components: σ2
β , σ2

ε , σ2
βγ , and σ2

δ .
From the EMS in Table 3.6 we see that the expected mean squares can provide
unbiased estimates of some combinations of these variances, but this does not
directly get to the estimation of the individual components.
For most of our purposes, we mainly care about producing valid F -tests and
variances of treatment contrasts, leading to confidence intervals and inferences
about the contrasts. For this reason we have not discussed the estimation of
the individual variance components that, to do the topic justice, requires a
book-length treatment (see Searle et al. 1992 or Cox and Solomon 2003).
However, we will give a small illustration of variance component estimation.
Although we will only discuss RCB designs, the principles here will apply all
of the designs considered in this book, and beyond.
A first method of estimating variance components was to equate the observed
mean squares with the expected mean squares, and solve for the components,
a type of method of moments approach (sometimes called the anova method).
This can produce unbiased estimators of the variance components, but can
also get us into trouble. For example, from Table 3.6 we equate

MS(Blocks) = σ2
ε + tσ2

β and MS(T × B) = σ2
ε ,

leading to the estimators

σ̂2
ε = MS(T × B) and σ̂2

β =
1

t
[MS(Blocks) − MS(T × B)] ,

which are unbiased estimators of the variance components. Applying this to
Example 3.3 yields
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σ̂2
ε = .121 and σ̂2

β =
1

3
[.574 − .121] = .151,(3.43)

which are both reasonable estimates, and show that the variability due to
blocks is about at the same level as the residual variability.
However, unbiased estimates of variance components can have problems and,
as a general rule, we can expect problems with unbiased estimators of positive
quantities that can, possibly, take on negative values. Here, it can be the case
that MS(Blocks) < MS(T × B), which would result in a negative estimate of
σ2

β . For example, if the data of Table 3.1 were

Blocks
1 2 3 4

A 10.1 10.8 9.8 10.5
Variety of
Strawberry B 8.4 6.9 5.3 6.2

C 6.3 9.4 9.0 9.2

where only the values 8.4 and 6.3 were exchanged (which will increase the
interaction), the anova table is

Source df SS MS F p-value

Block 3 1.722 0.574
Trt 2 25.921 12.960 7.488 0.023
T × B 6 10.385 1.731

This leads to the estimates

σ̂2
ε = 1.731 and σ̂2

β = −0.386,

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Yikes! Negative
variance estimates!

(3.44)

which is clearly ridiculous. This is a fault of the estimation procedure, not the
model – the requirement of unbiasedness here can lead to negative estimates.
What is the solution? Some might say that this is indication that σ2

β = 0, but
there is really no compelling argument for this (unless a formal hypothesis test
can be derived). Rather, we should use a better estimation procedure, one
that will only give nonnegative estimates. The references mentioned above
detail many methods, but perhaps the most popular is REML (REstricted
Maximum Likelihood), a variation of the maximum likelihood method. REML
can be implemented in R, but with a bit of effort. To get the REML variance
estimates for the Strawberry data, we can use the commands
library(nlme)

strawmodel<-lme(yield ∼ 1+trt,strawdata,random= 1|block)

summary(strawmodel)

VarCorr(strawmodel)

which says that the intercept and treatment are fixed effects, and the blocks
are random. If we run this with the original data, which produced the estimates
(3.43), we see that the REML estimates are identical to the anova estimates.
This is a property of REML: When the anova estimates are nonnegative, they
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agree with the REML estimates. However, when we run REML on the second
data set, which produced the anova estimates (3.44), we obtain

σ̂2
ε = 1.345 and σ̂2

β = 0.00027,

which are much more sensible. This tells us that the block variance is small
(essentially negligible), but not negative!!
As mentioned above, in this book we are mainly concerned with estimation
of treatment contrasts and their variances, which we can accomplish here
with anova methods (giving nonegative answers), sometimes enhanced with
Satterthwaithe’s approximation (see Miscellanea 5.8.1). Exercise 3.35 looks
at REML estimation in other RCB models.



4

Interlude: Assessing the Effects of Blocking

The first principle is that you must not fool yourself...
Richard P. Feynman

Surely You’re Joking, Mr. Feynman

4.1 Introduction

In Chapter 3 we modeled blocks as a random factor, one in which the levels
that actually appear in the experiment are considered a random sample from
all levels. However, the concept of “random factor” can sometimes be puzzling,
as most of the time we do not actually take a random sample of blocks.
Rather, we choose blocks to represent a wide variety of situations. In a sense
the concept of a random factor is a fallacy (see Section 3.8.4). That is, the
important implication is that blocking induces a correlation in the design.
This only makes sense, as experimental units within a particular block should
behave similarly, and hence will be correlated. This correlation can be modeled
directly, or can arise as a byproduct of assuming that blocks are a random
effect. In either case we end up with the similar analyses.

Whether blocks are random or are fixed, the important point is that a cor-
relation structure is induced. As far as the model calculations go – variances,
covariances, etc, they are quite similar.
It is the correlation structure, either induced by the assump-
tion of randomness or modeled directly as a block correla-
tion, that is the important thing. Thus, we should make the
appropriate assumption about randomness of blocks, but
always take care to model the correlation structure.

Random
Factor
=
Correlation

It is thus our preference to model a factor according to what it really is,
as the following example shows.

Example 4.1. Fixed or random blocks Consider the following three
experiments:



146 4 Interlude: Assessing the Effects of Blocking

(a) Five varieties of tomato plant are subjected to different levels of light. The
experiment is done in a greenhouse, which is divided into four areas for
the experiment. The response variable is time to flowering.

(b) Eighteen subjects are recruited for an experiment that will measure their
ability to memorize as a function of distraction. They will be asked to
memorize a 10-digit number when subjected to various levels of distraction
(conversations, music, etc.). The response variable is the amount of time
needed to correctly recite the number.

(c) Within a school district, five elementary schools are used in an experiment
to assess three different methods of teaching. In each school three third-
grade classes are chosen, and the three teaching methods are used. The
response is the students’ scores on a pre-test and post-test.

In each of these experiments what are the blocks, and should they be consid-
ered fixed or random?

(a) Here, blocks = areas of the greenhouse. Unless we want to assume that
the greenhouse is a random sample from all greenhouses, and the areas are
selected at random, both of which are somewhat far-fetched assumptions,
these blocks are fixed. They represent four specific areas in a particular
greenhouse.

(b) Here, blocks = subjects. If the experiment is carefully done, and the sub-
jects are actually selected at random from some population, then blocks
are random.

(c) Here, blocks = schools. As in (a), the blocks are fixed. Unless we want
to make the somewhat unrealistic assumption that these five schools are
a representative sample of some larger population of schools, the only
sensible assumption is that they are a fixed factor.

‖

Fortunately, as we will see, whether the blocks are fixed or random does
not affect the calculation of treatment variances, nor the formation of tests
and confidence intervals. The scope of the inference will be affected, however,
as the breath of the treatment inference can only go to the blocks that are
assumed to be represented.

4.2 Model and Distribution Assumptions

The calculations of expectations and variances done in Section 3.2 remain
essentially the same if the blocks are assumed to be fixed, as long as we make
the assumption that the εij within a block are correlated. So, for the model
with fixed blocks, we observe random variables Yij according to a model just
like (3.5), where the βj are fixed values. That is,
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Yij = µ + τi + βj + εij , i = 1, . . . , t, j = 1, . . . , b,(4.1)

where

(1) The random variables εij ∼ N(0, σ2) for i = 1, . . . , t, and j = 1, . . . , b
(normal errors with equal variances).

(2)

Corr(εij , εi′j′) =
{

ρ if j = j′, i �= i′

0 otherwise

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

CORRELATION within blocks
but not between blocks

The mean and variance of Yijs are

E(Yij) = µ + τi + βj , Var (Yij) = σ2,(4.2)

and the correlation is Corr(Yij , Yi′j′) = ρ by the model assumption. Note
that these calculations are identical to those in Section 3.2 (see (3.10)) if we
identify

ρσ2 = σ2
β and σ2 = σ2

β + σ2
ε .(4.3)

Here, by specifying the covariance directly, the correlation in the blocks is
not necessarily restricted to be a positive correlation, as it must be when it
arises from random blocking.

4.3 Expected Squares and F -tests

Here we first look at EMS calculations for the case of one observation per
treatment-block combination, assuming the blocks are fixed. Although the
overall conclusions and inferences that we get here are virtually the same as
those in Section 3.3, there are important differences in the details.

Using the RCB model (4.1) with blocks fixed, the ordinary least squares
estimates (Exercise 3.22) are given by

Ȳi − Ȳ = τi − τ̄ and Ȳj − Ȳ = βj − β̄,(4.4)

where we set τ̄ = β̄ = 0. The residuals are

ε̂ij = Yij − Ȳi − Ȳj + Ȳ .

We now apply those results in the EMS calculations.

ESS(Blocks) = E
∑

j

t(Ȳj − Ȳ )2 = t
∑

j

β2
j + tE

∑

j

(ε̄j − ε̄)2

= t
∑

j

β2
j + (b − 1)σ2 (1 + (t − 1)ρ) ,(4.5)
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Table 4.1. Expected Mean Squares for RCB anova with fixed blocks and no sub-
sampling.

Source df EMS

Blocks b − 1 σ2 (1 + (t − 1)ρ) + t
b−1

∑
j
β2

j

Treatments t − 1 σ2(1 − ρ) + b
t−1

∑
i
τ2

i

T × B (t − 1)(b − 1) σ2(1 − ρ)

ESS(Trts) = E
∑

i

b(Ȳi − Ȳ )2 = b
∑

i

τ2
i + bE

∑

i

(ε̄i − ε̄)2

= b
∑

i

τ2
i + (b − 1)σ2 (1 − ρ) ,(4.6)

ESS(T × B) = E
∑

ij

(Yij − Ȳi − Ȳj + Ȳ )2 = E
∑

ij

(εij − ε̄i − ε̄j + ε̄)2

= bt [Varεij − Varε̄i − Varε̄j + Var̄ε̄](4.7)
= σ2 (1 − ρ) ,

where the simplification in the interaction term is a direct result of algebra
(see Exercise 2.19). Dividing the expected sums of squares by their degrees of
freedom yields the expected mean squares given in Table 4.1.

The null hypothesis of no treatment effect is

H0 : τi = 0 for all i

and, from Cochran’s Theorem (Exercise 4.13), H0 is tested by

Ft−1,(b−1)(t−1) =
MS(Trts)

MS(T × B)
.(4.8)

Note that, unless ρ = 0, there is no test on blocks, that is, there is no test
of the null hypothesis H0 : βj = 0 for all j. However, there is no cause for
concern about this, as the blocks are merely in the experiment to represent a
wide variety of experimental conditions, and are not of direct interest. If we
can make the assumption that ρ = 0, then we are, in effect, saying that the
design is not really a blocked design, and the analysis (and sampling) would
be the same as a twoway CRD.

Table 4.1 may appear more complicated than Table 3.6, but it is actually
quite similar. In fact, recall the intraclass correlation (3.10) and, using the
notation of Table 3.6, write

σ2
ε =

(
σ2

ε

σ2 + σ2
β

)

(σ2
ε + σ2

β) = (1 − ρ)(σ2
ε + σ2

β),(4.9)
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Table 4.2. A comparison of the assumptions of the two RCB models.

Blocks Fixed Blocks Random

εij Correlated within block Independent throughout design

Yij Correlated within block Correlated within block

ρ, intraclass −1 ≤ ρ ≤ 1 0 ≤ ρ ≤ 1
correlation

where ρ = σ2
β/(σ2

ε +σ2
β) is the intraclass correlation. Thus, if we identify σ2 of

Table 4.1 with σ2
ε + σ2

β of Table 3.6, the EMS calculations for treatments and
T × B are the same. Although the test for treatments is the same as (4.8), the
inference about blocks is different. In Table 3.6, the EMS tells us that there is
a test on blocks, but here we can only test the null hypothesis (Exercise 4.13)

H0 :
∑

j

β2
j = 0 and ρ = 0.(4.10)

In the random blocks case, the correlation becomes part of the variance σ2
β ,

and the EMS tells us there is a test. Here, things are both more clear and a
bit more complex, as the correlation is more apparent. If the null hypothesis
in (4.10) is true, the model would be equivalent to that of a a twoway CRD,
but the experiment design is different.

Note: Although we have been looking at similarities, it is important to realize
that the two tables, Table 3.6 and Table 4.1, come from models with very
different assumptions.

In any particular problem it is important to use the model that best describes
the process. Table 4.2 lists some of the differences.

4.4 Estimating Contrasts

As compared to the calculations in Section 3.4, here we find that point esti-
mation is a bit more straightforward, while variance calculation is somewhat
more involved. The point estimation is simpler because here all effects are fixed
effects, while the explicit covariance in (4.1) makes the variance calculations
more involved.

Point Estimates

We write the RCB model with no subsampling as

yij = µ + τi + βj + εij , i = 1, . . . , t, j = 1, . . . , b.(4.11)
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The least squares estimates of µ, τi and βj are just as in Section 3.4, given by

ȳi· − ¯̄y = τi − τ̄ ,

ȳ·j − ¯̄y = βj − β̄,(4.12)
¯̄y = µ + τ̄ + β̄.

Here, requiring τ̄ = β̄ = 0, or redefining the parameters as τ ′
i = τi − τ̄ and

β′
j = βj − β̄ is straightforward because all of the effects are fixed effects.

The least squares estimators are unbiased under model (4.11), and we have
that

E(Ȳi· − Ȳ ) = τ̂i, E(Ȳ·j − Ȳ ) = βj ,(4.13)

and a contrast estimate
∑

i aiτ̂i is an unbiased estimate of the contrast
∑

i aiτ̂i

with variance

Var

(
∑

i

aiτ̂i

)

= Var

(
∑

i

ai(Ȳi· − Ȳ )

)

= Var

(
∑

i

ai(ε̄i − ε̄)

)

= Var

(
∑

i

aiε̄i

)

[
∑

i aiε̄ = 0]

=
∑

i

a2
i Var(ε̄i) + 2

∑

i>i′

aiai′Cov(ε̄i, ε̄i′)

From the model, Var(ε̄i) = σ2/b, and we can get Cov(ε̄i, ε̄i′) from Technical
Note 4.8.1. However, for completeness we calculate

Cov(ε̄i, ε̄i′) = E (ε̄iε̄i′) = E

⎛

⎝ 1
b2

∑

j

εij

∑

j′

εi′j′

⎞

⎠ = E

⎛

⎝ 1
b2

∑

j

εijεi′j

⎞

⎠ ,

since, if j �= j′ the observations are in different blocks and the covariance is
zero. Recalling that Cov(εijεi′j) = ρσ2, we have Cov(ε̄i, ε̄i′) = ρσ2/b and

Var

(
∑

i

aiτ̂i

)

=
σ2

b

∑

i

a2
i + 2

ρσ2

b

∑

i>i′

aiai′ =
(1 − ρ)σ2

b

∑

i

a2
i(4.14)

where the last equality follows after a bit of algebra (Exercise 4.10).

This
is
very
important!

Thus we see that the variance of a contrast depends quite
strongly on the intrablock correlation, with a large positive cor-
relation yielding a decrease in the variance. However, the only
quantity that is directly under the experimenters control is b,
the number of blocks, and we see that increasing the number of
blocks is the surest way of decreasing the variance of a contrast
estimate.
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This message, about the effect of correlation, was also present in Section
3.4, but perhaps it was a bit more subtle. Recall the variance of a contrast in
the random blocks case (3.16),

Var

(
∑

i

aiτ̂i

)

=
σ2

ε

b

∑

i

a2
i .(4.15)

Now, from (4.9) we can write σ2
ε = (1−ρ)(σ2

β+σ2
ε) = (1−ρ)Var(Y ). Comparing

this last expression to (4.14) shows that the intraclass correlation impacts the
variance whether or not the blocks are modeled as random.

Variance Estimates

From (4.11) and (4.12) the residuals from the model are

yij − µ̂ − τ̂i − β̂j = yij − ȳi· − ȳ·j + ¯̄y = εij − ε̄i· − ε̄·j + ¯̄ε,

and we would typically base our variance estimate on the residual mean
square,

SS(Res) =
∑

ij

(εij − ε̄i· − ε̄·j + ¯̄ε)2.(4.16)

This should be the basis of our variance estimate, and we now look at its
expectation. A relatively straightforward, but somewhat lengthy calculation
(see Exercise 4.14) will show that

ESS(Res) = (b − 1)(t − 1)(1 − ρ)σ2.

Of course, we realize that SS(Res) is exactly SS(T × B). Thus, the mean
squared σ̂2 = MS(T × B) is an unbiased estimator of the treatment variance,
and for any contrast we can estimate its variance with

V̂ar

(
∑

i

aiτ̂i

)

=
MS(T × B)

b

∑

i

a2
i .(4.17)

Example 4.2. Greenhouse experiment A researcher is planning an ex-
periment to determine the effectiveness of four house plant fertilizers. The
researcher has arranged to use three benches (blocks) in different areas of a
greenhouse. There are four pots on each bench, and the fertilizers will be ran-
domly assigned to the pots. At the end of the experiment plant heights will
be recorded (in inches). The data are in dataset Greenhouse1, and result in
the following analysis:
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Source df SS MS F p-value

Bench 2 106.08 53.04 1.652
Fertilizer 3 915.69 305.23 9.508 0.011
Bench × Fertilizer 6 192.62 32.10

This is a case where there is reason to model the blocks as fixed, as they are
locations within a specific greenhouse. The variance of any contrast will come
from MS(Bench × Fertilizer) and (4.17). See Exercise 4.1. ‖

Inference

The most important inference from a RCB anova concerns the treatments
and, in particular, the estimation of contrasts between the treatments. We
do all calculations under the RCB model (4.1), where the βj are fixed values
and there is an intrablock correlation. We will be concerned with inference on
specific treatment contrasts.

Working under the RCB anova assumptions we have that,

Yij ∼ N(µ + τi + βj , σ
2), i = 1, . . . , t, j = 1, . . . , b

and(4.18)
Cov(Yij , Yi′j) = ρσ2.

The parameter of interest is the treatment contrast
∑k

i=1aiτi, whose esti-
mator

∑k
i=1aiY i· satisfies

E

(
t∑

i=1

aiY i·

)

=
k∑

i=1

aiτi and Var

(
t∑

i=1

aiY i·

)

=
(1 − ρ)σ2

b

∑

i

a2
i .(4.19)

Since the Yijs are normal, from (4.18) and (4.19) we have

k∑

i=1

aiY i· ∼ N

(
k∑

i=1

aiτi,
(1 − ρ)σ2

b

∑

i

a2
i

)

and, therefore,
∑k

i=1 aiY i· −
∑k

i=1 aiτi
√

(1−ρ)σ2

b

∑
i a2

i

∼ N(0, 1).(4.20)

From (4.17) we can estimate (1 − ρ)σ2 with MS(T × B), and it remains
to establish the distribution of

∑k
i=1 aiY i· −

∑k
i=1 aiτi

√
MS(TxB)

b

∑
i a2

i

.(4.21)
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That this, in fact, has Student’s t-distribution with (t − 1)(b − 1) degrees of
freedom follows from arguments similar to those establishing Theorem 3.18 in
Technical Note 3.8.2 (Exercise 4.13).

Thus, to test

H0 :
t∑

i=1

aiτi = 0 versus H1 :
t∑

i=1

aiτi �= 0

at level α, we

reject H0 if

∣
∣
∣
∣
∣
∣
∣
∣

∑t
i=1aiȲi·

√(
MS(T × B)

b

)∑t
i=1 a2

i

∣
∣
∣
∣
∣
∣
∣
∣

> t(b−1)(t−1),α/2.(4.22)

More importantly, we get an interval estimator of
∑

aiτi. With probability
1 − α,

t∑

i=1

aiȲi· − t(b−1)(t−1),α/2

√
√
√
√MS(T × B)

b

t∑

i=1

a2
i(4.23)

≤
t∑

i=1

aiτi ≤
t∑

i=1

aiȲi· + t(b−1)(t−1),α/2

√
√
√
√MS(T × B)

b

t∑

i=1

a2
i .

4.5 Modeling the Interaction

For fixed blocks with interaction, a model is

Yijk = µ + τi + βj + (τβ)ij + εijk,

εijk ∼ N(0, σ2),(4.24)
Cov(εijk, εijk′) = ρεσ

2 for k �= k′,

Cov(εijk, εi′jk′) = ρBσ2 for i �= i′,

where i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , r, and

τ̄ = β̄ = ¯(τβ)i = ¯(τβ)j = 0.

We distinguish between

(1) ρε, the correlation between two observations within the same treatment-
block combination, induced by technical replication,

(2) ρB , the correlation between two true replicates in the same block.
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Table 4.3. Expected Mean Squares for RCB anova with fixed blocks and replication.

Source df EMS

Blocks b − 1 σ2 [1 + (r − 1)ρε + r(t − 1)ρB ] + rt
b−1

∑
j
β2

j

Treatments t − 1 σ2[1 − rρB + (r − 1)ρε] + br
t−1

∑
i
τ2

i

TxB (t − 1)(b − 1) σ2[1 − rρB + (r − 1)ρε] + r
(b−1)(t−1)

∑
ij

(τβ)2ij

Within bt(r − 1) (1 − ρε)σ
2

If we have true within replication of the experimental units, then ρε = 0.
We will see that if ρε �= 0, then the within replication plays no essential role

in any of the analysis. This underscores, once again, the fact that subsamples
in an RCB do not contribute much to the information in the design.

As the treatment design is a twoway crossed design, the ordinary least
squares estimates are given by

Ȳi − Ȳ = τ̂i,

Ȳj − Ȳ = β̂j ,(4.25)

Ȳij − Ȳi − Ȳj + Ȳ = ˆ(τβ)ij .

Calculation of the EMS is straightforward, for example,

ESS(Within) = E
∑

ijk

(Yijk − Ȳij)2 = E
∑

ijk

(εijk − ε̄ij)2

= rbt(Varεijk − Varε̄ij) [Lemma 3.16]

= rbt

(

σ2 − σ2

r
(1 + (r − 1)ρε)

)

[(4.1)](4.26)

= bt(r − 1)(1 − ρε)σ2

ESS(Blocks) = E
∑

j

rt(Ȳj − Ȳ )2 = rt
∑

j

β2
j + rtE

∑

j

(ε̄j − ε̄)2

= rt
∑

j

β2
j + (b − 1)σ2 (1 + (r − 1)ρε + r(t − 1)ρB) ,

where we note that the cross terms all have zero expectation. We can continue
on like this, and calculate the expectation of all of the sums of squares for
the RCB anova (see Exercise 4.15). Dividing the expected sums of squares by
their degrees of freedom yields the expected mean squares given in Table 4.3.
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If r = 1 this reduces to Table 4.1. Also, from looking at the EMS there
is an implicit restriction in this model on the size of the correlations, notably
that

1 − rρB + (r − 1)ρε ≥ 0 and 1 + (r − 1)ρε + r(t − 1)ρB ≥ 0.

This is examined in Exercise 4.11.
To justify F -tests and contrast distributions, the theorems of Technical

Note 3.8.3 can be adapted. Sparing everyone the details, we have the following
observations about F -tests in the RCB anova with blocks fixed and replication.

F -test on treatments

The test on treatments is against MS(T × B) under the assumption that
(τβ)ij = 0. Formally, the null hypothesis of no treatment effect is

H0 : τi = 0 for all i

and is tested by

Ft−1,(b−1)(t−1) =
MS(Trts)

MS(T × B)
.

under the assumption that ¯(τβ)ij = 0 for all i and j. This means that we
must assume that the effect of the jth block is the same for every treatment.
If this assumption is violated, the F -test can still be done, but it becomes a
conservative test, since the denominator will tend to be larger, making the
statistic smaller and rejection more difficult. (See Technical Note 2.8.4.)

Treatments are never tested against MS(Within), in fact, SS(Within) is of
no use unless we assume either that ρε = 0 (and we have true replication) or
ρε = ρB , that the correlation within each treatment-block combination is the
same as the correlation between different treatments within the same block. In
general, this latter assumption does not seem reasonable, as we would expect
ρε > ρB if the replication is technical. (Note that ρε = ρB is trivially true if
r = 1.)

Although the assumptions needed to get a valid test on treatments may
seem both stringent and startling, they turn out to be similar to the assump-
tions needed if the blocks are modeled as random effects, as we will see in
Section 4.6.

Other F -tests

It is interesting that with this covariance structure, and with blocks fixed,
there is no straightforward way to test interactions. This is similar to the case
for blocks random, as we saw in Section 3.5.

From Table 4.3 to get a valid F -test we need to make more assumptions,
some of which see untenable. The within error can be used to test treatments
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or interaction if we assume that ρε = ρB , which is an unfounded assumption
as, again, we would expect ρε > ρB if the replication is technical.

If there is true replication then ρε = 0 and we can test the hypothesis

H0 : (τβ)ij = 0 for all i, j and ρB = 0(4.27)

with

F(b−1)(t−1),r(b−1)(t−1) =
MS(T × B)
MS(Within)

,

which seems to be a rather strange interaction hypothesis. However, this is
not very different from what we saw in Section 3.5 and display (3.26). There
the correlation term becomes part of the variance to be tested, so we do not
need to explicitly deal with it.

However, we should realize that everything we do is an arti-
fact of the model that we assume, and we must decide which
model, and hence which set of assumptions, are appropriate
for our design and analysis.

Its all
about
the model

We also note that under the assumption ρε = 0 there is a test on blocks,

H0 : βj − β̄ + ¯(τβ)j − ¯(τβ) = 0 for all j and ρB = 0,

but, again, there is usually little reason to care about this.

Note: One main message from this analysis is that unless there is true replica-
tion, which implies that ρε = 0, the within sum of squares in any RCB is almost
of no use.

Example 4.3. Fixed blocks with interaction A chemist wishes to
test the effect of four levels of a chemical agent on the strength of cloth.
There are five particular types of cloth that the agent will be used on, and
the performance is to be evaluated against those five types. For each of the
types of cloth, a roll is selected, and the chemist applies all four levels of the
chemical, in a random order, to each roll. Two observations are taken at each
cloth-chemical combination. The resulting tensile strengths are:

Cloth
Chemical 1 2 3 4 5

1 73, 74 68, 67 74, 80 71, 73 67, 70

2 73, 75 67, 70 75, 74 72, 71 70, 70

3 75, 75 68, 69 78, 72 73, 72 68, 68

4 73, 75 71, 69 75, 73 75, 72 69, 68
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The cloth is acting as a block here, but there are only five types so there
is no sampling from a larger population. The experimental unit is the roll of
cloth, and the two observations in each cell are subsamples. Referring to model
(4.24), we cannot assume that ρε = 0 and thus, from the EMS in Table 4.3
we can test the main effect of Chemical but not the interaction. (See Exercise
4.12.) ‖

4.6 Reconciliation

In general, attempting to reconcile two models, or two designs is usually futile
and often pointless, as the design, and hence the analysis, should be dictated
by the physical reality of the experiment under consideration. However, it
sometimes is useful to examine the effect of an assumption, in the hopes that
it will bring greater understanding and, if there is uncertainty in choosing
the appropriate model, we may better understand the consequences of the as-
sumption. Thus, we take a deeper look at the effect of modeling the interaction
when the blocks are fixed or random.

Although Table 3.7 appears simple compared to Table 4.3, it is based on
some additional assumptions. In particular, as a consequence of the interaction
being a random effect, two effects have a common expectation and end up
simplifying the EMS. In Table 4.4 the EMS for both the fixed blocks and
random blocks models are lined up, so we can see the relevant mean squares
for the test on treatments.

In the random blocks model the test is clear: Under H0 :
∑

i τ2
i = 0 the

two expected mean squares are the same, so we have a central F -distribution
under H0.

Table 4.4. Comparison of EMS from RCB anovas with fixed and random blocks
and replication.

Source Blocks Fixed

Treatment σ2[1 − rρB + (r − 1)ρε] + br
t−1

∑
i
τ2

i

Interaction σ2[1 − rρB + (r − 1)ρε] + r
(b−1)(t−1)

∑
ij

(τβ)2ij

Source Blocks Random

Treatment σ2
ε [1 + (r − 1)ρε] + rσ2

τβ [1 − ρτβ ] + br
t−1

∑
i
τ2

i

Interaction σ2
ε [1 + (r − 1)ρε] + rσ2

τβ [1 − ρτβ ]
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For the fixed blocks model this does not happen, and the EMS are not
equal unless we also assume that

∑
ij(τβ)2ij = 0. However, in a sense that will

be explained, this assumption is implicit in the random blocks test.
We examine the EMS for treatments and interactions in an extra careful

way, leaving some of the details to Exercise 4.18. Start with the model

Yijk = µ + τi + βj + (τβ)ij + εijk,

but, for now, we do not make any assumptions about whether (τβ)ij is fixed
or random. For the treatment EMS we have

EMS(Treatments) =
rb

t − 1
E

(
∑

i

(Ȳi − ¯̄Y )2
)

=
rb

t − 1
E
∑

i

(
τi + [ ¯(τβ)i − ¯(τβ)] + [ε̄i − ¯̄ε]

)2
,

and for the interaction EMS we have

EMS(T × B)

=
r

(t − 1)(b − 1)
E

⎛

⎝
∑

ij

(Ȳij − Ȳi − Ȳj + ¯̄Y )2

⎞

⎠

=
r

(t − 1)(b − 1)
E
∑

ij

(
[ ¯(τβ)ij− ¯(τβ)i− ¯(τβ)j + ¯(τβ)] + [ε̄ij − ε̄i − ε̄j + ¯̄ε]

)2

.

Now for either EMS, the terms involving εijk have zero cross terms with the
other factors. Moreover, under either the random blocks model (3.24) or the
fixed blocks model (4.24) we have

rb

t − 1
E
∑

i

(ε̄i − ¯̄ε)2 =
r

(t − 1)(b − 1)
E
∑

ij

(ε̄ij − ε̄i − ε̄j + ¯̄ε)2

= rVarε̄ij ,(4.28)

so these terms do not contribute to any discrepancy in EMS.
We next look at the remaining term in the interaction MS, and find

r

(t − 1)(b − 1)
E
∑

ij

[(τβ)ij − ¯(τβ)i − ¯(τβ)j + ¯(τβ)]2

=

⎧
⎨

⎩

r
(t−1)(b−1)

∑
ij(τβ)2ij blocks fixed

rVar(τβ)ij blocks random.
(4.29)

These are almost the same terms, in their fixed and random incarnations, each
calibrating the variation in (τβ)ij (in the fixed blocks model we set ¯(τβ) = 0
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for identifiability). So, thus far, there is no real discrepancy in the calculations.
This will change when we calculate the remaining term for the treatment mean
squares. We have

rb

t − 1
E
∑

i

[τi + ¯(τβ)i − ¯(τβ)]2

=

⎧
⎨

⎩

rb
t−1

∑
i τ2

i blocks fixed

rb
t−1

∑
i τ2

i + rVar(τβ)ij blocks random,
,(4.30)

and now we see the difference, and the implicit inequality that makes the
random block model work.

In the random blocks model we have

rb

t − 1
E
∑

i

[(τβ)i − ¯(τβ)]2 =

r

(t − 1)(b − 1)
E
∑

ij

[(τβ)ij − ¯(τβ)i − ¯(τβ)j + ¯(τβ)]2,(4.31)

which cannot happen in the fixed blocks model because the identifiability
constraint forces us to restrict the values of (τβ)ij , with the most common
restriction being ¯(τβ)i = ¯(τβ)j = ¯(τβ) = 0. Thus, in Section 4.5, when we
made the assumption that (τβ)ij = 0 in order to get a treatment test, we
were invoking the fixed blocks analog of (4.31).

The point of this section is not to decide which design is “better”, because
the comparison of designs is an academic, but not a practical, question. The
type of design is almost totally dictated by the actual experimental situation;
we do not have a choice of making blocks fixed or random, they are fixed or
random. Rather, the point of this section is to understand the differences, the
compromises, and hence the inferences. Here, we have seen that the major
difference in the models lies in the covariance assumption, and any inferences
must be made in light of this assumption.

4.7 Exercises

Essential

4.1 Referring to Example 4.2:
(a) Explain why, regardless of how many plants are in each pot, we only use

one number per pot.
(b) Verify the anova table
(c) Calculate the variance of the difference of two treatment means.
(d) Estimate the Helmert contrasts for these data, taking Fertilizer 1 to be

the control.
(e) Test the significance of the Helmert contrasts. What can you conclude?
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(f) Compute the variance for a difference in treatment means.
(g) The researcher wants to be able to detect a difference in means as small

as δ = 1.5cm at α = .05. What power does she have to do this?
4.2 Referring to Example 4.2, suppose instead that the researcher was able to use

two independent pots in each Bench × Fertilizer combination. These data are
in dataset Greenhouse2.
(a) Redo parts (b)-(e) of Exercise 4.1. Has anything changed?
(b) For her next experiment, the researcher would like to first do a power

calculation, and be able to detect a difference in means of 5in at α = .05.
What combination of blocks and plants per pot would guarantee a power
of at least (i)0.60 (ii)0.80?

4.3 This question refers to Example 3.2, with data in BrownieData.
(a) If “Brand” is considered a block, then the experiment is an RCB. Write

out the anova (source, df, and EMS) for this RCB. Analyze the data as
an RCB.

(b) A naive approach to this experiment would say that, since there are only
three brands of interest, and they are in the experiment, “brand” is there-
fore a fixed factor and the experiment is a CRD. Reanalyze the data as
a CRD. Clearly identify the denominator for testing all effects. Are the
conclusions from the RCB analysis different from the conclusions of the
CRD analysis?

(c) Another approach, which also denies the RCB structure, would be to have
a term representing “sample nested within brands” with 15 degrees of
freedom.
(i) How would you calculate the sum of squares for “sample nested within

brands”?
(ii) Construct the anova table for this experiment? In particular, where do

the degrees of freedom come from for “sample nested within brands”?
How can you test power and baking time?

4.4 For model (4.11), with Var(εij) = σ2 and Cov(εij , εi′j′) = ρ:
(a) Show that the least squares estimates are given by (3.14)
(b) Show that the restriction τ̄ = β̄ = 0 is equivalent to defining τ ′

i = τi − τ̄ ,
β′

j = βj − β̄, µ′ = µ + τ̄ + β̄ and fitting the model yij = µ′ + τ ′
i + β′

j + εij .
(c) Restricting τ̄ = β̄ = 0 is one of many possible restrictions to get a solution.

Another common one is to set τt = βb = 0. Derive the least squares
estimates under this constraint.

4.5 Continuing from Exercise 4.4:
(a) Show that the least squares estimates are unbiased.
(b) Find the variance of the estimators (see (4.14)).

4.6 This problem is similar to Exercise 3.11, but here we will start with the fixed
blocks model (4.1). Suppose that the treatments have a factorial structure,
that is, the treatment effects τ1, . . . , τt arise from the cells of two crossed
factors C and D in a CRD, so that the model could be written

Yijk = µ + γi + δk + (γδ)ik

+βj + (γβ)ij + (δβ)jk + (γδβ)ijk + εijk.

(a) Write out the EMS for this model, and indicate how each treatment effect
is to be tested.

(b) Compare the tests here to those found in Exercise 3.11.
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4.7 Consider an experiment that is intended to test the effect of ozone on plants.
The researcher assigned four environmental chambers to four different levels of
added ozone. Twelve plants were placed in each chamber. Fourteen days later
the plants were removed and analyzed. Data were recorded for each plant.
(a) Draw a schematic of the layout of the experiment
(b) What is the experimental unit? Explain why this should be considered an

RCB with fixed blocks. Write the model equation and state any assump-
tions.

(c) After the experiment began, the experimenter realized that he could not
analyze all 48 plants in one day. He could analyze 25 or 30 plants in one
day, so he has to break the plants up into groups for analysis. Should he
analyze all of the plants from two chambers on the first day, half the plants
from each chamber on the first day, or some other allocation? Discuss the
consequences.

4.8 The following data are a portion of the responses collected during an interlab-
oratory study involving several laboratories. Each laboratory was sent samples
from four different materials that would have a range of values on the char-
acteristic of interest. The laboratories were each sent three samples from each
type of material. The four materials were labeled A, B, C and D for the labo-
ratories. Assume that there is no laboratory by material interaction. The data
are in data set Laboratory.

Laboratory Material Measurements

1 A 12.20 12.28 12.16
B 15.51 15.02 15.29
C 18.14 18.08 18.21
D 18.54 18.36 18.45

2 A 12.59 12.30 12.67
B 14.98 15.46 15.22
C 18.54 18.31 18.60
D 19.21 18.77 18.69

3 A 12.72 12.78 12.66
B 15.33 15.19 15.24
C 18.00 18.15 17.93
D 18.88 18.12 18.03

(a) From the description above is the interest in this experiment on the com-
parison among laboratories or on the comparison among materials?

(b) Write the model equation and give assumptions needed for the analysis.
Explain why the laboratories should be considered fixed blocks.

(c) Construct the appropriate anova table, consistent with your answer in (a).
Include EMS.

4.9 Use the data of Exercise 4.8 here. The researchers were interested in the protein
content of the materials that they sent to the laboratories The materials are
actually different samples of grain of two species using two cultivation methods.
The A samples are from three fields of winter wheat, all from fields that have
been producing wheat for at least the two previous years. The B sample is
from three fields of winter wheat, all from fields that were planted to soybeans
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in the previous season. The C samples are from fields of triticale that have
been planted to wheat or triticale for at least the two previous years. The
D samples are from fields of triticale that were planted to soybeans in the
previous season.

(a) What set of orthogonal contrasts would be sensible for comparisons among
the four materials (answer in terms of population parameters)?

(b) Modify the anova table of Exercise 4.8 to include the tests on contrasts.
(c) Estimate the contrasts and their standard errors and summarize the results

of your analysis.

4.10 In (4.14) we derived the variance of a contrast as a function of the covariance,
but some gaps need to be filled.

(a) Show that Var
(∑

i
aiτ̂i

)
= σ2

b

(∑
i
a2

i + 2ρ
∑

i>i′ aiai′
)
.

(b) Using the fact that
∑

i
ai = 0, show that

∑

i

a2
i + 2ρ

∑

i>i′

aiai′ = (1 − ρ)
∑

i

a2
i ,

and hence derive (4.14).
(c) These calculations assumed that blocks are fixed. Show that if we instead

assume that blocks are random, as in Section 3.4, we get the same formula
for the variance of a contrast.

4.11 Referring to Table 4.3:
(a) Show that the inequality 1 − rρB + (r − 1)ρε ≥ 0 must be satisfied by

considering the correlation between ε̄ij and ε̄i′j .
(b) Show that the inequality 1 + (r − 1)ρε + r(t − 1)ρB ≥ 0 is always sat-

isfied if ρB ≥ 0, and find the smallest negative value of ρB that can be
accommodated.

4.12 Referring to Example 4.3:
(a) Produce the anova table corresponding to the model in the example. Ex-

plain why we lose no information by replacing the two observations per
cell with their average.

(b) Suppose that instead of subsampling the rolls, the two observations per
cell came from two different rolls. Explain how this would change you
assessment of the model (4.24) and the EMS of Table 4.3. Produce an
anova table and run all the tests that can now be done.

(c) Suppose that each observation had been taken from a different, randomly
selected roll. What is this design? Produce an anova table and run all of
the tests that can now be done.

Note: The data are in dataset Cloth, where replications are identified. For
part (a) that column in the dataset should be ignored.

Accompaniment

4.13 (a) Verify the EMS calculations in Table 4.1.
(b) Show that the ratio of mean squares in (4.8) has the stated F distribution

by applying Cochran’s Theorem. (The argument is almost exactly the
same as the one used to establish Theorem 3.18, as the covariance matrix
Σ of that theorem has the same form as the covariance matrix here (which
is given in (4.32)).
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(c) Show that MS(Blocks)/MS(T × B) can test the null hypothesis in (4.10).
(d) Show that the statistic in (4.21) has the indicated t-distribution by adapt-

ing Theorem 3.18.
4.14 Referring to Section 4.4, we will establish the expectation of (4.16) in two

separate ways.
(a) Using Exercise 2.19, show that

∑

ij

(εij − ε̄i· − ε̄·j + ¯̄ε)2 =
∑

ij

ε2
ij − b

∑

i

ε̄2
i· − t

∑

j

ε̄2
·j + bt̄ε̄2,

E ε2
ij = σ2, E ε̄2

i· =
σ2

b
, E ε̄2

·j =
σ2

t
[1+(t−1)ρ], E ¯̄ε2 =

σ2

bt
[1+(t−1)ρ],

and combine everything to calculate the expectation of (4.16).
(b) As an alternative derivation, expand SS(Res) as

SS(Res) =
∑

ij

(εij − ε̄i·)
2 +

∑

ij

(ε̄·j − ¯̄ε)2 − 2 ×
∑

ij

(εij − ε̄i·)(ε̄·j − ¯̄ε),

and use the results of Section 3.8 to calculate

E

(
∑

ij

(εij − ε̄i·)
2

)

= t(b − 1)σ2,

E

(
∑

ij

(ε̄·j − ¯̄ε)2

)

= (b − 1)σ2(1 + (t − 1)ρ),

E

(
∑

ij

(εij − ε̄i·)(ε̄·j − ¯̄ε)

)

= (b − 1)σ2(1 + (t − 1)ρ),

and combine everything to calculate the expectation of (4.16).
4.15 (a) Verify the variances and covariances in Technical Note 4.8.1. Although

the calculations are tedious, there is a pattern and after doing the first
two, you should see the pattern.

(b) Verify the expected mean squares in Table 4.3.
4.16 (For the strong-willed.) In Technical Note 4.8.1 we calculated variances and

covariances of the error means. Sometimes in calculating variances of treat-
ment effects we are also interested in the variances of error deviations. Explain
that all of the error deviations are again normal, and show that their variances
and covariances are given by

Var(εijk − ε̄ij·) =
(
1 − 1

r

)
(1 − ρε)σ

2
ε , Cov(εijk − ε̄ij·, εijk′ − ε̄ij·) = 1−ρε

r
σ2

ε

Var(εij − ε̄i) =
(
1 − 1

b

)
σ2

B , Cov(ε̄ij − ε̄i, εij′ − ε̄i) = −σ2
B
b

Var(ε̄ij − ε̄j) =
(
1 − 1

t

)
(1 − ρB)σ2

B , Cov(ε̄ij − ε̄j , ε̄i′j − ε̄j) = 1−ρB
t

σ2
B

Var(ε̄i − ε̄) =
(
1 − 1

t

)
(1 − ρB)

σ2
B
b

, Cov(ε̄i − ε̄, ε̄i′ − ε̄) = −(1 − ρB)
σ2

B
bt

Var(εj − ε̄) =
(
1 − 1

b

) σ2
B

(1+(t−1)ρB)

t
, Cov(ε̄j − ε̄, ε̄j′ − ε̄) = −σ2

B
(1+(t−1)ρB)

bt

Note that the first line above refers to the within cell variance, and is the only
place that the parameters ρε and σ2

ε appear. Also, the subsample size r only
goes to reduce the subsampling variance, and hence the impact on the design
is almost nothing.
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4.17 Referring to Technical Note 4.8.2,
(a) Show that the V matrix in (4.32) has all row sums equal.
(b) Show, by direct calculation that the two estimates of θ, ordinary and gen-

eralized least squares, yield the same estimates, the vector of cell means.
(c) Show, by direct calculation, that the two estimates of β, ordinary and

generalized least squares, yield the same estimates, the vector of mean
deviations.

(d) Verify the equality of V and V ∗ under (4.9), and the estimate of β given
in (4.35).

4.18 Referring to Section 4.6
(a) Verify (4.28), which works because there is independence between blocks

in both models.
(b) Verify (4.31), which also works because there is independence between

blocks.
4.19 Referring to Miscellanea 4.9.1:

(a) For the oneway CRD:
(i) Reproduce the anova table and perform the randomization test of H0:

no treatment effect. Do your results agree with Figure 4.1?
(ii) For a oneway CRD with t treatments and r observations per cell, the

randomization process can be summarized as follows. The observations
(experimental units) can be written y1, y2, . . . , yrt, and we have a per-
mutation random variable

δijk =

{
1 if yk is given subscript ij
0 otherwise.

Show that P (δijk = 1) = 1/rt.
(b) Repeat part (a) for the RCB of Example 4.4 of Miscellanea 4.9.1. Re-

member that here the permutation must respect the blocks, and with t
treatments and b blocks we will have P (δijk = 1) = 1/t.

(c) Referring to Example 4.2, run the usual anova and the randomization test.
Comment on the agreement of the results.

4.8 Technical Notes

4.8.1 Error Distributions – Fixed Blocks

Using Lemma 3.16, it can be shown that all of the error terms arising from
model (4.24) are normal, as are their sums and differences. Taking account
of their covariances, it is straightforward (Exercise 4.15) to verify that

Varε̄ij = σ2

r
(1 + (r − 1)ρε), Cov(ε̄ij , εi′j) = ρBσ2

ε ,

Varε̄i = σ2

rb
(1 + (r − 1)ρε), Cov(ε̄i, ε̄i′) = 1

b
ρBσ2

ε ,

Varε̄j = σ2

rt
(1 + (r − 1)ρε + r(t − 1)ρB), Cov(ε̄j , ε̄j′) = 0,

Varε̄ = σ2

rbt
(1 + (r − 1)ρε + r(t − 1)ρB),

where it also follows from models (3.24) and (4.24) that

σ2
B = Var(Ȳij·) =

σ2
ε

r
(1 + (r − 1)ρε).
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4.8.2 Estimating Fixed and Random Effects II
We continue our development of effect estimates, started in Technical Note
3.8.4, and develop the estimates in the case of fixed blocks. With blocks
fixed, there is no mixed model, and (3.35) is a standard linear model, with
estimation done through least squares. The ordinary least squares solution to
(3.35) is

(
θ̂

β̂

)

=

[(
X ′

Z′

)
(

XZ
)
]−1 (

X ′

Z′

)

Y =

(
(X ′X)−1X ′Y

(Z′Z)−1Z′(Y − Xθ̂)

)

.

If the error term ε has covariance matrix V , we might prefer the generalized
least squares solutions

(
θ̂

β̂

)

=

[(
X ′

Z′

)

V −1
(

XZ
)
]−1 (

X ′

Z′

)

V −1Y

=

(
(X ′V −1X)−1X ′V −1Y

(Z′V −1Z)−1Z′V −1(Y − Xθ̂)

)

,

which will have variance no larger than that of the least squares estimates.
Note that both the least squares and generalized least squares estimates are
unbiased.
With the correlation structure of (4.1), the error variance V has the form

V = Var ε =

σ2

⎛

⎜
⎜
⎝

(1 − ρ)It + ρJt 0 0 · · · 0
0 (1 − ρ)It + ρJt 0 · · · 0
...

...
...

...
0 0 0 · · · (1 − ρ)It + ρJt

⎞

⎟
⎟
⎠ ,(4.32)

where Jt is a t× t matrix of all ones. Substituting above, we can get the least
squares estimate for θ as

θ̂ = (X ′X)−1X ′Y = (X ′V −1X)−1X ′V −1Y =

⎛

⎜
⎜
⎝

ȳ1·
ȳ2·
...

ȳt·

⎞

⎟
⎟
⎠ ,(4.33)

the vector of treatment means. Note that in this case the least squares and
generalized least squares estimates agree; this is a special case of a result first
due to Zyskind (see Zyskind 1967, or Puntanen and Styan 1989 for a survey
of these types of results). For certain types of V matrices the two estimates
agree, the sufficient condition satisfied here is that the row sums of V are all
the same. The same occurs for the estimates of the block effects, where we
get (Exercise 4.17)

β̂ = (Z′Z)−1Z′(Y − θ̂) = (Z′V −1Z)−1Z′V −1(Y − θ̂) =

⎛

⎜
⎜
⎝

ȳ·1 − ¯̄y
ȳ·2 − ¯̄y

...
ȳ·t − ¯̄y

⎞

⎟
⎟
⎠ .(4.34)

These are the estimates that are typically used in an RCB anova, regardless
of the assumption about blocks being fixed or random. For the fixed blocks
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model they are unbiased, have the smallest variance among linear estima-
tors and, under normality are the maximum likelihood estimators and have
minimum variance among all unbiased estimators.
Comparing V ∗ to V of (4.32), we see that these two matrices are identical if
we use the relationship in (4.9), showing that the estimate of θ is the same
whether blocks are fixed or random (as is its variance - see Exercise 3.33).
However, it is not the same for the estimator of β. Evaluating β̂ with the
relationship in (4.9) yields

β̂ = σ2
βZ′V ∗−1(Y − Xθ̂) =

ρt

1 − ρ + ρt

⎛

⎜
⎜
⎝

ȳ·1 − ¯̄y
ȳ·2 − ¯̄y

...
ȳ·t − ¯̄y

⎞

⎟
⎟
⎠ .(4.35)

4.9 Miscellanea

4.9.1 Randomization Tests
Throughout this book we have used a type of inference known as model-based
inference. That is, for each experiment we have written down a model for
the population, such as (3.24) or (4.1), made assumptions about error distri-
butions, and then derived tests and confidence intervals. While this remains
a most popular approach, there is another approach to inference, based on
randomization or permutation of the data, that is an alternate strategy.
Randomization tests can be traced back, at least, to the famous example of
Fisher about “The Lady Tasting Tea”, explained in Chapter II of his Design
of Experiments. A lady claims that she can distinguish whether the milk or
the tea was first put in the teacup. Fisher designs an experiment, based on
randomization principles1, to test this declaration. (see also Hinkelmann and
Kempthorne 1994, Section 5.2)
An appeal of randomization tests is that the randomization plan of the ex-
periment is the driving force behind the inference. That is, the null distri-
bution, sometimes called the reference distribution, which is typically an F -
distribution in model-based inference, is derived directly from the form of
the randomization used to do the experiment. We illustrate this with the
following numerical example.

Example 4.4. Oneway CRD and RCB tests through randomization

Suppose that data were collected as a oneway CRD. The principle of random-
ization uses the fact that, under the null hypothesis of no treatment effect,
any random arrangement of the observations that are possible according to the
design, is equally likely. So we can have

1 Much of the original underlying theory of randomization tests was developed by
Kempthorne, and can be found in his 1952 book, and in the revised and updated
Hinkelmann and Kempthorne 1994.
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Observed Data One Possible Randomization

Treatment
1 2 3

14 18 27
11 26 31
18 9 24
18 22 34

Treatment
1 2 3

11 22 14
18 34 26
9 27 24

18 31 18

Notice that the randomization is carried out throughout the table – reflecting the
completely randomized design. So we are assuming that under H0: no treatment
effect, we could have observed any permutation of the data that respects the
randomization scheme.
Compare this to what would happen if the experiment were carried out as an
RCB. For illustration, we keep the same numbers and suppose we have

Observed Data One Possible Randomization

Treatment
1 2 3

1 14 18 27
Block 2 11 26 31

3 18 9 24
4 18 22 34

Treatment
1 2 3

1 27 18 14
Block 2 26 31 11

3 18 24 9
4 22 18 34

Notice that here the randomization must respect the block structure – and is
only carried out within the blocks. The randomization of the CRD is not an
allowable randomization for the RCB as it violates the block structure. ‖

When randomization tests were first developed, much effort was put into
showing that the randomization distribution could be approximated by the
usual F -distribution. (See, for example, Kempthorne 1952, Section 8.2 or
Hinkelmann and Kempthorne 1994, Section 9.2.) However, now we can di-
rectly calculate the randomization distribution and test the null hypothesis
of no treatment effect in the following way.

Example 4.5. Randomization tests continued Here we look at testing
for the treatment effect in the CRD of Example 4.4. To calculate the null dis-
tribution we do the following:
(1) For each of i = 1, 2, . . . , m permutations

(a) Obtain a random permutation of the data
(b) Calculate the F -statistic for the data

(2) Order the m F -statistics and obtain the upper α cutoff point, say Fcut
(3) Reject H0 if the calculated F statistic for the observed data, Fobs,satisfies

Fobs > Fcut.
This is illustrated in Figure 4.1, which shows a histogram of 10, 000 permutations
of the oneway CRD data of Example 4.4. The observed F -ratio is in the tail of
this histogram, which is the null distribution of the permutation test, above the
5% cutoff but not above the 1% cutoff. Of the 10, 000 F -ratios calculated from
the permutations, the observed F -ratio is greater than 9808 of them, giving a
p-value of 0.0192. Compare this analysis to the usual anova table:
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Fig. 4.1. Reference distribution for the oneway CRD randomization test of Example
4.4. The observed F -ratio is 7.31. The randomization distribution has the 5% cutoff
at 4.77 and the 1% cutoff at 8.73.
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Observed F

Source df SS MS F p-value

Treatment 2 408.50 204.25 7.31 .013
Residuals 9 251.50 27.94

A similar analysis can be done for the RCB of Example 4.4. This is left to
Exercise 4.19. ‖

We end this discussion with a few observations about randomization tests.

(1) Since the distribution of the test statistic is based on the actual random-
ization, this clearly ties the resulting inference to the experiment design. In
model-based inference this is done through the model, and this connection
is not as transparent (although it is there).

(2) Conversely, with the randomization test the actual scope of inference is not
as clear as in model-based inference, as there is no formal model tying the
observations to the population. It seems that if the blocks are considered to
be fixed, then the randomization inference is a bit clearer: The randomiza-
tion distribution is one observation on the true reference distribution, based
on the observed data. If we replicated the experiment we could obtain more
observations of the reference distribution, and improve our estimate of it.

(3) From the construction of the randomization distribution we see that it is
distribution free, that is, we have made no parametric assumptions about
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the error structure. However, we still need some assumptions about the per-
muted random variables to ensure the validity of the reference distribution.
If they are iid that is enough, but this can be relaxed to exchangeable.

Definition 4.6. The random variables Y1, . . . , Yn are exchangeable if any
permutation of any subset of them of size k (k ≤ n) has the same distribu-
tion.

For example, equicorrelated random variables are exchangeable.
(4) The randomization approach encounters some difficulty in testing interac-

tions, for example, the Treatment × Block interaction in an RCB. This
results from the violation of exchangeability (see, for example, Good 2005,
Chapter 7 or Hinkelmann and Kempthorne 1994, Section 9.6).

(5) One attraction of randomization tests is that they are always available (if we
have exchangeability) so they have found use in complex situations where
the models can be difficult to deal with. For example, the permutation tests
of Churchill and Doerge (1994) were a major breakthrough in inference in
QTL problems.

(6) An alternative to permutation based inference is the bootstrap (Efron and
Tibshirani 1993), which also provides a distribution-free approach to infer-
ence.

Book length treatments of randomization tests are Edgington and Onghena
(2007) and Good (2005).
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Split Plot Designs

“How absurdly simple!”, I cried.
“Quite so!”, said he, a little nettled. “Every problem becomes very
childish when once it is explained to you.”

Dr. Watson and Sherlock Holmes
The Adventure of the Dancing Men

5.1 Introduction

Split plot experiments are the workhorse of statistical design. There is a saying
that if the only tool you own is a hammer, then everything in the world looks
like a nail. It might be fair to say that, from now on, almost every design that
you see will be some sort of split plot.

A split plot design (or split unit design) is one in which there is more
than one type of experimental unit. Although split unit is probably the more
accurate term, this design also grew out of agriculture, and the historical term
seems to be the more popular one.

5.1.1 A Split Plot Model

Example 5.1. Dietary split plot In a study of dietary composition on
health, four diets were randomly assigned to 12 subjects, all of similar health
status. Baseline blood pressure was established, and one measure of health
was blood pressure change after two weeks. Blood pressure was measured in
the morning and the evening. The data layout is

Diet
1 2 3 4

Subject Subject Subject Subject
1 2 3 4 5 6 7 8 9 10 11 12

Morning x x x x x x x x x x x x
Evening x x x x x x x x x x x x
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Notice that although there are 12 subjects, which are the experimental units,
there are 24 numbers in the data. This is because the experimental unit was
split and two observations were taken on one experimental unit. The anova
for this design looks like

Source df
Diets 3
Subjects (in Diets) 8
Time 1
Time × Diet 3
Time × Subjects (in Diets) 8
Total 23

‖

There are a number of things to note about the split plot design that are
illustrated in this example.
(1) It is important to note that the split plot design is an experiment design,

not a treatment design. In Example 5.1 the treatment design is a twoway
crossed design; Diet and Morning/Evening are crossed (or in a factorial
arrangement). If we did not know the experiment design, we might just
see a data layout like

Diet
1 2 3 4

Morning x x x x x x x x x x x x
Evening x x x x x x x x x x x x

and (mistakenly) might presume that this is a twoway CRD.
(2) There is an implied correlation structure, as the multiple observations

taken on one unit are correlated. In the above data layout the two obser-
vations in each column (Morning-Evening) are correlated.

(3) The whole plots, the experimental units at the whole plot level (the Sub-
jects in Example 5.1) act as blocks for the split plot treatment (Morning-
Evening in Example 5.1).

(4) There are essentially two parts to the anova table - “above the line” for
the whole plots, or true experimental units, and “below the line” for the
split plots, or split units. The above anova table usually has the names:

Source df
Diets 3
Whole Plot Error 8
Time 1
Time × Diet 3
Split Plot Error 8
Total 23

which shows how to do the tests. Note that
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Subjects (in Diets) = Whole Plot Error
Time × Subjects (in Diets) = Split Plot Error

(5) Comparisons “below the line”, done with the split units,
tend to have greater precision. These comparisons are
within a subject, so each subject is his own control, and
there are more degrees of freedom. A general design rule
is, if possible, to put the treatment of greatest interest at
the split level (below the line).

The
split
plot
advantage

(6) Just as with blocks, the split plot is more about restricting randomization,
and the modeling is more about correlation. This is most evident when
we look at an example of the classical agricultural split plot experiment
(see Example 5.3).

A model for this split plot design is

Yijk = µ + τi + Sij + γk + (τγ)ik + εijk,

where

Yijk = the response to diet i of subject j at time k,

τi = the effect of diet i,

Sij = the effect of subject j in diet, i (whole plot error)
(τγ)ik = the interaction between diet i and time j,

εijk = the experimental error, N(0, σ2). (split plot error)

As we would clearly want subjects to be random, say Sij ∼ N(0, σ2
S), this

would be a classical model for a split plot analysis. The subjects provide the
whole plot error, and the residuals, estimated by Time × Subjects (in Diets),
estimate σ2

ε .

5.1.2 Dissecting the Split Plot

There are, in effect, two separate analyses in a split plot design but they are
intertwined, which allows for a better estimate of error. The data for the diet
experiment are

Diet
1 2 3 4

Subject Subject Subject Subject
1 2 3 4 5 6 7 8 9 10 11 12

Morning 123 120 122 117 125 122 114 109 115 140 141 138
Evening 135 136 129 139 136 142 123 132 132 150 147 154

and the full anova table is
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Source df SS MS F
Diets 3 1873.46 624.49 85.16
Subjects (in Diets) 8 58.67 7.33
Time 1 1190.04 1190.04 73.60
Time × Diet 3 53.13 17.71 1.10
Time × Subjects (in Diets) 8 129.33 16.17

where the correct tests are shown. The above the line tests are done against the
Subjects (in Diets) term, and the below the line tests are against the Time ×
Subjects (in Diets) mean square.

The “above the line” analysis on the whole plots is equivalent to a oneway
CRD on the blood pressure averages:

Diet
Average 129 128 125.5 128 130.5 132 118.5 120.5 123.5 145 144 146

with anova table
Source df SS MS F

Diets 3 936.73 312.24 85.16
Within 8 29.33 3.67

Note that the sums of squares are half of those in the split plot analysis
(Exercise 5.2), but the F -statistic is the same.

In the “below the line” analysis, each subject acts as a block for the treat-
ment Time, so we could analyze this as an RCB(see Exercise 5.2). However,
since there are only two levels to Time, we can actually do the below the line
analysis on the differences:

Diet
1 2 3 4

Difference −12 − 16 − 7 −22 − 11 − 20 −9 − 23 − 17 −10 − 6 − 16

with anova table
Source df SS MS F
Diets 3 106.25 35.42 1.10
Within 8 258.667 32.33

Note here that the ordinary oneway layout calculations give us this table.
But since we are working with differences, the sum of squares attributed to
diets (106.25) is actually the interaction between Diets and Time, and is
exactly the sum of squares for Time × Diet in the complete analysis (note
that the F -statistics match). Moreover, the “within” based on the differences
is exactly Time × Subjects (in Diets).

Finally, where is the sum of squares due to Time? It is simply the mean
of the differences squared (with an adjustment, see Exercise 5.2).

This highlights how the split plot works. Below the line we can analyze
treatment differences, so each subject is his/her own control. This gives us
greater precision in the below the line analysis.
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5.2 CRD on the Whole Plots

In the split plot design, the whole plot treatments effectively act as blocks
for the split plot treatments, so we would expect that the analysis “below the
line” would be largely unaffected by the design on the whole plot treatments.
However, this is not quite the case, and there are enough differences that it
makes sense to treat two separate cases for the whole plots: CRD and RCB.
We will see that with the whole plot treatments in a CRD the analysis is quite
straightforward, but if they are in an RCB we get an extra error term, and
need some extra assumptions to get the “classical” split plot analysis.

5.2.1 Model and Distribution Assumptions

The classical split plot model, with whole plot treatments in a CRD, is

Yijk = µ + τi + εij + γk + (τγ)ik + δijk,(5.1)

where i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g, and

Yijk = response,
µ = overall mean effect,
τi = whole plot treatment,

εij = whole plot error, εij
iid∼ N(0, σ2

ε),
γk = split plot treatments,

(τγ)ik = interaction,

δijk = split plot error, iid∼ N(0, σ2
δ ),

independent of εij .

Identifiability considerations lead us to make the parameter restriction

τ̄ = γ̄ = ¯(τγ)i = ¯(τγ)k = 0,(5.2)

where we recall again that this is merely a renaming of the effects, and does
not signify any change in the real parameter space. (These are the same re-
strictions needed for identifiability in any twoway crossed treatment design.)

The full anova for this model, identifying all terms, is given in Table 5.1,
where we see that the whole plot error comes from the replication of the whole
plot treatments, just as in any CRD. The split plot error, in this design, comes
from the interaction of the split plot treatment with the replications – just
like in a regular RCB. However, here this interaction is nested in the whole
plot treatments, which we must take into account. Look carefully at Table
5.2, and it should be clear that the design on the split plot treatment is an
RCB within each level of the whole plot treatment.
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Table 5.1. Anova for split plot design with CRD on whole plot treatments.
T=Whole Plot Treatment, G = Split Plot Treatment, R=Replication

Source df SS

Whole Plot (WP)Trt t − 1 rg
∑

i
(ȳi − ¯̄y)2

Replication (in WP) t(r − 1) g
∑

ij
(ȳij − ȳi)

2

(Whole Plot Error)

Split Plot (SP) Trt g − 1 rt
∑

k
(ȳk − ¯̄y)2

SP Trt × WP Trt (g − 1)(t − 1) r
∑

ik
(ȳik − ȳi − ȳk + ¯̄y)2

SP Trt × Rep (in WP) t(g − 1)(r − 1)
∑

i

[∑
jk

(yijk − ȳij − ȳik + ȳi)
2
]

(Split Plot Error)

Total grt-1

Realize that, without any trouble, we can have another treatment design
on either the whole plot or split plot treatments, for example, the whole
plot treatment many actually be a factorial arrangement of treatments, as
in Example 5.3 (see also Example 6.20). This extension does not change the
basic analysis.

Before we further analyze the model, there are some things to note:

(1) The whole plot analysis is based only on the ȳij , and thus can be done
in ignorance of what goes on below the line. Moreover, it should be clear
that the ȳij are independent.

(2) There is correlation below the line, which can be viewed as a consequence
of the random effects in model (5.1). However, we can see this directly,
as the split plot treatments are randomized within the levels of the whole
plot treatments. Thus, we should have

Table 5.2. Data Layout for split plot design with CRD on whole plot treatments.
T=Whole Plot Treatment, G = Split Plot Treatment, R=Replication

T

1 · · · t

Rep
1 2 · · · r

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x

· · ·

Rep
1 2 · · · r

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x
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Corr(Yijk, Yijk′) = ρ �= 0.(5.3)

This correlation will appear as a consequence of the model.
(3) The split plot error is a pooled interaction term; within each whole plot

treatment level we calculate the Split Plot × Rep interaction and sum.

The covariance structure of the split plot design is actually quite simple. From
(5.1) we see that the observations in different levels of the whole plot treatment
are independent, as are observations in different replications inside the whole
plot treatment. The only nonzero correlation is between observations within
a replication inside a whole plot (where there is the RCB on the split plot
treatment). Thus, from (5.1)

Cov(Yijk, Yijk′) = E(εij + δijk)(εij + δijk′) = σ2
ε ,

and

Corr(Yijk, Yijk′) =
σ2

ε

σ2
ε + σ2

δ

.

Two things about this correlation structure are worthy of note.

(1) As a consequence of the random effects model, this correlation is nonneg-
ative.

(2) The correlation between any two observations is the same – so we have
the same equicorrelation structure as in the RCB. The reason why this is
important is that the split plot design is often used for repeated measures
analysis, but doing so can result in difficulties. (See Section 5.6.3.)

5.2.2 Expected Squares and F -tests

Even though the split plot design is a somewhat complex design, it turns out
that estimation and testing is, for the most part, straightforward. We do run
into some trouble when the whole plots are in an RCB, but the trouble is
avoided when the whole plots are in a CRD. Since calculation of the expected
mean squares is straightforward in the split plot design, here we indicate the
calculations and leave some of the details to the exercises.

Under model (5.1), together with (5.2), the expected value of the whole
plot treatment sum of squares is

ESS(WP Trts) = rg
∑

i

E
(
τi + ε̄ij + δ̄i − ¯̄ε¯̄δ

)2

.

Now use the fact that all of the εs and δs are independent, which means that
when we expand the square there are no cross terms. We thus have

ESS(WP Trts) = rg

(
∑

i

τ2
i +

∑

i

E(ε̄ij − ¯̄ε)2 +
∑

i

E(δ̄i − ¯̄δ)2
)

.
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Finally, using Lemma 3.16, E(ε̄ij − ¯̄ε)2 = (1 − 1/t)(σ2
ε/r) and E(δ̄i − ¯̄δ)2 =

(1 − 1/t)(σ2
δ/rg) and we can write

ESS(WP Trts) = rg
∑

i

τ2
i + g(t − 1)σ2

ε + (t − 1)σ2
δ .

The calculation for the other expected sums of squares are similar, and some-
what routine (see Exercise 5.29), but we want to highlight one below the
line calculation. So, for example, consider the expected value of the split plot
treatment sum of squares. Again from (5.1), with a bit more detail, we have

ESS(SP Trts)

= rt
∑

k

E
[
(µ + τ̄ + ¯̄ε + γk + ¯(τγ)k + δ̄k) − (µ + τ̄ + ¯̄ε + γ̄ + ¯(τγ) + ¯̄δ)

]2

.

As expected, the fixed effects, other than γ cancel out. But the interesting
thing is that the random effect due to ε also cancels out.

Note: The random variables cancel each other out! This is not just in expec-
tation.

Because the split plot treatment is balanced across the whole plots in the
replications, under the model assumptions the average ε error is the same in
each split plot treatment level, and equal to the overall whole plot error. Thus,
the whole plot error “disappears” in the split plot part of the analysis.

Continuing the calculation gives

ESS(SP Trts) = rt
∑

k

E
[
γk + (δ̄k − ¯̄δ)

]2

= rt
∑

k

γ2
k + rt

∑

k

(δ̄k − ¯̄δ)2

= rt
∑

k

γ2
k + (s − 1)σ2

δ ,

as E(δ̄k − ¯̄δ)2 = (1 − 1/g)(σ2
δ/rt). Similarly, for all of the other split plot

factors, the whole plot effects and errors cancel out, resulting in the EMS in
Table 5.3.

The EMS in Table 5.3 are pleasingly simple, giving straightforward tests
from the anova. The null hypothesis of no whole plot treatment effect is

H0 : τi = 0 for all i

and is tested by

Ft−1,t(ri1) =
MS(WP Trts)

MS(Replication in WP)
.
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Table 5.3. Expected mean squares for a split plot design with the whole plots in
a CRD, with data layout as in Table 5.2

Source df EMS

Whole Plot (WP) Trt t − 1 σ2
δ + gσ2

ε + rg
t−1

∑
i
τ2

i

Replication (in WP) t(r − 1) σ2
δ + gσ2

ε

Split Plot (SP) Trt g − 1 σ2
δ + rt

g−1

∑
k

γ2
k

SP Trt × WP Trt (g − 1)(t − 1) σ2
δ + r

(g−1)(t−1)

∑
ik

(τγ)2ik
SP Trt × Replication (in WP) t(g − 1)(r − 1) σ2

δ

Total grt-1

At the split plot level, both the split plot main effect H0 : γk = 0 for all k
and the interaction H0 : (τγ)ik = 0 for all i, k are tested against the split plot
error.

Note that the split plot error here is very interesting. It is very reminiscent
of an RCB error in that it is an interaction, but there is a difference. The split
plot treatment is not fully crossed with replications, but rather is crossed with
the replications in a particular level of the whole plot. The fact that the split
plot treatment is not fully crossed with the replication is a major reason why
the tests are so straightforward here, as opposed to what we will find when
the whole plots are in an RCB.

Other things to note

(1) The design on the whole plots is a CRD with each experimental unit being
the sum over the split plot observations. Thus, any correlation structure
at the split plot level has no effect on the whole plot analysis.

(2) The split plot level will have more degrees of freedom that the whole plot
level, as there are more experimental units.

(3) The comparisons at the split plot level are more tightly controlled and
hence more precise; so the rule is to always put the most important factor
at the split plot level (if you can).

(4) Justification of the F -tests using Cochran’s Theorem is straightforward,
and somewhat similar to what was done for the RCB (although the algebra
becomes a bit more involved). See Technical Note 5.8.2.

5.2.3 Estimating Contrasts

Estimates of contrasts are also straightforward in the split plot, as unbiased es-
timates are provided by the analogous contrasts in the least squares estimates.
However, we do run into some difficulties when estimating the variances.

There are four types of contrasts to consider:

(1) Whole Plot Means:
∑

i aiτi, where
∑

i ai = 0.
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(2) Split Plot Means:
∑

k akγk, where
∑

k ak = 0.
(3) Interaction Means, Same Level of Whole Plot:

∑
k ak(τγ)ik, where

∑
k ak

= 0.
(4) Interaction Means, Different Whole Plot Level:

∑
ik aik(τγ)ik, where∑

ik aik = 0.

In each case, we estimate the contrast with the analogous least squares esti-
mate, giving an unbiased estimate.

As we will see, the first three cases turn out to be relatively simple, but
the fourth case will give us problems. These problems will be caused by the
fact that although

∑
ik aik = 0, it need not be the case that

∑
k aik = 0 or∑

i aik = 0.

Note: Using either model (5.1), or the RCB model (5.14), it is easy to obtain
the estimates of the effects.

This is because, as we have seen, if we use least squares, the estimation pro-
cedure only depends on the treatment design, not on the experiment design.
This is an important distinction.

If we look at (5.1) and ignore the error terms, we see that the least squares
estimates satisfy

min
µ,τi,γk,(τγ)ik

∑

ijk

[yijk − (µ + τi + γk + (τγ)ik)]2,(5.4)

which will lead to the same estimates as we got from the twoway CRD least
squares fit in (2.7) and (2.8)! There, the treatment design is a twoway crossed
design, as is the split plot (5.1), so using (2.8) we can immediately see that
the least squares estimates are given by

µ̂ = ¯̄y ,

τ̂i = ȳi − ¯̄y ,(5.5)
γ̂k = ȳk − ¯̄y ,

ˆ(τγ)ik = ȳik − ȳi − ȳk + ¯̄y .

Thus, the least squares estimates are based on the cell means and, of course,
are unbiased (Exercise 5.30).

Note that because these are contrasts, when we use τ̂ , etc., the ¯̄y piece
drops out, so we are only left with cell means.

Case (1): Whole Plot Comparisons

When we calculate Var(
∑

i aiȲi) we use the fact that Ȳi and Ȳi′ are indepen-
dent, so there is no covariance term in the variance of the sum. From (5.1),
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Var(Ȳi) = Var(ε̄i + δ̄i) = Var(ε̄i) + Var(δ̄i) =
σ2

ε

r
+

σ2
δ

rg
,

and thus

Var

(
∑

i

aiȲi

)

=
(

σ2
ε

r
+

σ2
δ

rg

)∑

i

a2
i .

Note that replication at the split plot level has less of an effect here, in that it
only cuts down a piece of the variance. Also note that the split plot variance
appears in the variance of a treatment contrast at the whole plot level.

From the anova EMS we see that E(MS(WP Error)) = gσ2
ε +σ2

δ , and thus
we estimate the variance of a whole plot contrast with

V̂ar

(
∑

i

aiȲi

)

=
MS(WP Error)

rg

∑

i

a2
i .

Realize that at the whole plot level we are essentially dealing with a CRD, so
calculation of contrast variances are relatively easy. Things get a little trickier
at the split plot level.

Case (2): Split Plot Comparisons

Next we look at the variance of
∑

k akȲk, a contrast in the split plot means,
first looking at the variance and covariances of the split plot means. We have

Var(Ȳk) = Var

(
1
t

t∑

i=1

Ȳik

)

=
1
t2

t∑

i=1

Var(Ȳik) [whole plot independence]

=
1

t2r2

t∑

i=1

r∑

j=1

Var(Yijk) [independence of reps in plots]

=
σ2

ε + σ2
δ

tr
.

Next look at the covariance between split plot means to find

Cov(Ȳk, Ȳk′) = Cov

(
1
t

t∑

i=1

Ȳik,
1
t

t∑

i=1

Ȳik′

)

=
1
t2

t∑

i=1

Cov
(
Ȳik, Ȳik′

)
[covariance = 0 if i �= i′]

and then
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Cov
(
Ȳik, Ȳik′

)
= Cov

⎛

⎝1
r

r∑

j=1

Ȳijk,
1
r

r∑

j=1

tȲij′k′

⎞

⎠

=
1
r2

r∑

j=1

Cov
(
Ȳijk, Ȳijk′

)
=

1
r
σ2

ε ,

[
since covariance = 0

if j �= j′

]

(5.6)

and putting it all together gives Cov(Ȳk, Ȳk′) = 1
rtσ

2
ε and, hence,

Var

(
∑

k

akȲk

)

=
σ2

ε + σ2
δ

tr

∑

k

a2
k + 2

σ2
ε

tr

∑

k>k′

akak′ .(5.7)

We can finally put everything together, rearranging (5.7) to get

Var

(
∑

k

akȲk

)

=
σ2

δ

tr

∑

k

a2
k +

σ2
ε

tr

(
∑

k

a2
k + 2

∑

k>k′

akak′

)

=
σ2

δ

tr

∑

k

a2
k,(5.8)

where we use the fact that

∑

k

a2
k + 2

∑

k>k′

akak′ =

(
∑

k

ak

)2

= 0(5.9)

since this is a contrast.

Note: So the use of the contrast eliminated the presence of σ2
ε , the whole plot

variance, from the comparison of the split plot means.

This is the advantage of the split plot design, and the reason why the treatment
of greatest interest should be at the split plot level if possible. Finally, since
E[MS(G × R (in T))] = σ2

δ , we have an estimate of the variance.
The most interesting, and typically the most important, case for variances

in the split plot designs is for the interaction mean comparisons. Above we
noted two cases (3) and (4), depending on whether the comparisons were in
the same level of the whole plots. This is a common way of presenting these
variances because, as we will see, variance estimation in Case (4) is more
difficult than in Case (3).

Case (3): Interaction Mean Comparisons: Same Whole Plot

Calculation of the variance of
∑

k akȳik, within the same level of the whole
plot treatment, is quite similar to that of Case (2), and is left to Exercise 5.34.
The result is
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Var

(
∑

k

akȲik

)

=
σ2

ε + σ2
δ

r

∑

k

a2
k + 2

σ2
ε

r

∑

k>k′

akak′ =
σ2

δ

r

∑

k

a2
k,(5.10)

where again we see that the whole plot variance σ2
ε does not appear in the

interaction contrasts within a whole plot.

Case (4): Interaction Mean Comparisons: Different Whole Plot

Finally we turn to Case (4), and calculate the variance of a contrast between
interaction means at different levels of a whole plot. The result here is very
interesting, and shows what comparisons can be made with greater accuracy.
Note that these are not the least squares estimates of (τγ)ik; see Section 5.4.

A general contrast among the interaction means is given by Case (4):∑
i

∑
k aikȳik, which is merely a sum of the type of contrasts considered in

Case (3). Using this fact greatly reduces the calculation load, and we have

Var

(
∑

i

∑

k

aikȲik

)

=
∑

i

Var

(
∑

k

aikȲik

)

[whole plot independence]

=
∑

i

(
σ2

ε + σ2
δ

r

∑

k

a2
ik + 2

σ2
ε

r

∑

k>k′

aikaik′

) [
using
(5.10)

]

(5.11)

=
σ2

δ

r

∑

ik

a2
ik +

σ2
ε

r

(
∑

i

[
∑

k

a2
ik + 2

∑

k>k′

aikaik′

])

,

where we rearrange as before, hoping to use something like (5.9) to get rid of
the whole plot variance. When we add the terms in the square brackets we get

Var

(
∑

ik

aikȲik

)

=
σ2

δ

r

∑

ik

a2
ik +

σ2
ε

r

∑

i

(
∑

k

aik

)2

,(5.12)

but this is as far as we can go because, in general, for the interaction contrast
we have

∑
ik aik = 0, and we cannot assume that

∑
k aik = 0 for every i.

Note the implications of these contrast variances:

(i) In Cases (2) and (3), we will typically have greater precision of compar-
isons, as the contrast variance only depends on the parameter σ2

δ , which
is estimated with the (presumably) smaller MS(Split Plot Error).

(ii) For Case (1), there is less precision in the comparison, as we must es-
timate the variance parameter σ2

δ + gσ2
ε with the (presumably) larger

MS(Whole Plot Error).
(iii) Case (4) is the most interesting, as depending on the particular contrast,

we sometimes can eliminate σ2
ε from the variance. If we cannot, we must
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use both σ2
δ and σ2

ε in the variance estimate. This entails the use of
Satterthwaite’s approximation (Technical Note 5.8.1) and is best used
with the variant of (5.12), whose derivation we leave to Exercise 5.33,

Var

(
∑

ik

aikȲik

)

=
σ2

δ

r

∑

ik

(aik − āi)2 +
σ2

δ + gσ2
ε

rg

∑

i

(
∑

k

aik

)2

.(5.13)

We continue with Example 5.1 to illustrate the contrast inferences

Example 5.2. Diet split plot continued

The anova for the data of Example 5.1 (dataset Diet) is

Source df SS MS F p-value

Diet 3 1873.46 624.49 85.16 < .0001
Subject(in Diet) 8 58.667 7.333
Time 1 1190.04 1190.04 73.611 < .0001
Diet × Time 3 53.13 17.71 1.095 0.405
Split Plot Error 8 129.33 16.17

where we see that both Diet and Time are significant, but there is no Diet ×
Time interaction. A closer examination of the interactions means may show
us more, however. The interaction means are

Time
AM PM

1 121.67 133.33
Diet 2 121.33 139.00

3 112.67 129.00
4 139.67 150.33

and we consider the following four interaction mean contrasts

Same WP Within WP Between WP Interaction
AM PM

1 1 −1
2 0 0
3 0 0
4 0 0

AM PM
1 1 −1
2 1 −1
3 0 0
4 0 0

AM PM
1 1 0
2 −1 0
3 0 0
4 0 0

AM PM
1 1 −1
2 −1 1
3 0 0
4 0 0

For the first two contrasts, where the comparisons are on the split plot treat-
ments within the levels of the whole plot, we have

∑
k aik = 0, so we are in

Case (3), and the error term for the contrast is given by (5.10), where we
estimate σ2

δ with 16.17 on 8 degrees of freedom. So, for example, for the first
contrast we have under H0: no contrast difference,

t8 =
121.67 − 133.33
√

2
3 × 16.17

= −3.55,
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which results in a two-sided p-value of .0075, suggesting a strong effect.
The third contrast is between cell means from different whole plots, and

we have
∑

k aik �= 0, so we are in Case (4). Using (5.13), we have the variance
of this contrast given by

MS(SP error)
r

∑

ik

(aik− āi)2+
MS(WP error)

rg

∑

i

(
∑

k

aik

)2

=
16.17 + 7.33

3
,

and the Satterthwaite approximation gives ν̂ = 14.01, so we test H0 with

t14 =
121.67 − 121.33

√
(16.17 + 7.33)/3

= 0.121,

which is not significant.
Finally, the fourth contrast is an interaction of cell means where we have∑

k aik = 0, so we are back again in Case (3). Thus, we must always use a bit
of care when calculating the variance of the split plot interaction means, and
we know that some interactions can be contrasted using only the split plot
error. ‖

5.3 RCB on the Whole Plots

Thus far, we have concentrated on split plot designs with a CRD on the whole
plots treatments. However, as we have mentioned earlier, there is no inherent
restriction to this whole plot treatment design. In fact, a somewhat more
popular setup, which we now address, is to have the whole plot treatments in
an RCB. (Recall that, by construction, the split plot treatments are already
in an RCB with the whole plots as blocks.) This variation from Section 5.2
does not change computations and inference too much, but it does have an
interesting effect on the split plot error terms.

Example 5.3. Variety split plot A classical split plot design was run
at the Cornell Experiment Station to compare alfalfa varieties and their
response to fertilizer treatments. There were six varieties (Narragannsut, On-
tario, Ranger, Grimm, K. Command and Atlantic) and four fertilizer treat-
ments, high and low levels of Potassium (k and K) and Phosphorus (p and P)
in a 2 × 2 factorial. The experiment was replicated twice, with field layout
given in Table 5.4 ‖

5.3.1 Model and Distribution Assumptions

A model for the split plot design with whole plots in blocks is

Yijk = µ + τi + βj + εij + γk + (τγ)ik + (βγ)jk + δijk,(5.14)
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Table 5.4. Field layout for split plot experiment of Example 5.3. Whole plots are in
an RCB; split plot treatments (varieties) are completely randomized in whole plot
treatments.

pK

N R A G O K

PK

G O A N R K

Pk

O N G R K A

pk

G K A O R N
Rep 1

PK

G O A K R N

pK

R K N G A O

pk

A R N G K O

Pk

O K A G N R
Rep 2

where i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g, and

Yijk = response,
µ = overall mean effect,
τi = whole plot treatment,

βj = whole plot block iid∼ N(0, σ2
β),

εij = whole plot error, εij
iid∼ N(0, σ2

ε),
γk = split plot treatments,

(τγ)ik = treatment interaction,

(βγ)ik = block-treatment interaction iid∼ N(0, σ2
βγ),

δijk = split plot error, iid∼ N(0, σ2
δ ),

where we assume that all error terms are independent. The big difference
between this model and the CRD split plot (5.1) is that with the addition of
the block structure we have two new random effects. This variation will result
in a more complicated split plot error term, which we will look at below.
Finally, note that the εij is the Block × Treatment interaction (which we
could have also designated as (τβ)ij).

Identifiability considerations again lead us to impose the parameter re-
strictions

τ̄ = γ̄ = ¯(τγ)i = ¯(τγ)k = 0,(5.15)

where we again recall that this is merely a renaming of the effects, and does
not signify any change in the real parameter space.

The full anova table for this model, identifying all terms, is given in Table
5.5. Comparing this anova table to the CRD split plot anova in Table 5.1, we
see two big differences. One, all of the factors are crossed, which should also
be evident from Table 5.6. Two, there are now two error terms below the line,
representing the Block-Treatment interactions at the split plot level.
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The correlation structure induced by the RCB split plot design is a bit
more complicated than that of the CRD split plot. Note that if j �= j′, then
since the blocks are independent Corr(Yijk, Yi′j′k′) = 0. However, within a
block, we can calculate from (5.14)

Cov(Yijk, Yi′jk) = σ2
β + σ2

βγ ,

the correlation between two observations in different WP treatments but the
same SP treatment (within a block). See Exercise 5.7 for the remainder of the
covariances.

We see from the anova table that “above the line”, at the whole plot level,
we have a simple RCB, with the WP error being the usual treatment by block
interaction. Below the line is a bit more complicated, as now we formally have
two split plot errors. When we calculate expected mean squares below, we
will see that the two split plot error terms provide the correct denominator
for their respective tests, keeping the rule that in an RCB, treatment effects
are tested against their interaction with blocks. Often, these two error terms
are pooled into one “ split plot error”, and we will look at the assumptions
needed for, and consequences of, this strategy.

Example 5.4. Variety split plot continued The anova for the data
of Example 5.3 (in dataset VarietySP), considering the WP treatments to be
the fertilizer and the SP treatment the variety, is given by

Table 5.5. Anova for split plot design with RCB on whole plot treatments.
T=Whole Plot Treatment, G = Split Plot Treatment, B=Blocks.

Source df SS

Blocks b-1 gt
∑

j
(ȳj − ¯̄y)2

Whole Plot Trt t-1 rg
∑

i
(ȳi − ¯̄y)2

B × WP (b-1)(t-1) g
∑

ij
(ȳij − ȳi − ȳj + ¯̄y)2

(Whole Plot Error)

Split Plot Trt g-1 bt
∑

k
(ȳk − ¯̄y)2

SP Trt × WP Trt (g-1)(t-1) b
∑

ik
(ȳij − ȳi − ȳj + ¯̄y)2

B × SP Trt (b-1)(g-1) t
∑

jk
(ȳjk − ȳj − ȳk + ¯̄y)2

B × SP Trt × WP Trt (b-1)(g-1)(t-1)
∑

ijk
(yijk − ȳij − ȳik − ȳjk

+ȳi + ȳj + ȳk − ¯̄y)2

Total grt-1
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Table 5.6. Data Layout for split plot design with RCB on whole plot treatments.
T=Whole Plot Treatment, G = Split Plot Treatment, R=Replication

Replication (Blocks)
1 · · · r

T
1 2 · · · t

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x

· · ·

T
1 2 · · · t

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x

Source df SS MS F p-value

Rep 1 6.961 6.961
Trt 3 14.775 4.925 19.811 0.018
Trt × Rep 3 0.746 0.2486

Variety 5 2.071 0.414 .414
0.369 = 1.122 .451

Trt × Variety 15 1.526 0.102 .102
.104 = 0.977 .518

Variety × Rep 5 1.849 0.369
Trt × Variety × Rep 15 1.562 0.104

The anova tells us that there are significant differences in the WP treat-
ments, but there is nothing going on at the split plot level. If we had pooled
the split plot error terms into one split plot error with 20 degrees of freedom,
the split plot tests would have showed us a slight significance in varieties
(Exercise 5.8)

Note that this design is most appropriate if we are more interested in
getting good information on the variety differences, and less interested in
the treatment differences, as there will be greater precision on the split plot
varieties than the whole plot treatments. However, this is also a case of rejoice -
you have no choice - since it would be very labor intensive to put the fertilizer
treatments at the split plot level. (The fertilizer is usually applied by machine
to larger plots. Also, if they were at the split plot level there would be concern
about the treatments (spreading fertilizer) being confined to their own plots.
‖

5.3.2 Expected Squares and F -tests

Calculation of the expected mean squares should, by now, be routine. There
are really no surprises in the calculations, so most of the details are left to an
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Table 5.7. Expected mean squares for a split plot design with the whole plots in
a RCB, with data layout as in Table 5.6.

Source df EMS

Blocks b − 1 σ2
δ + gσ2

ε + tσ2
βγ + gtσ2

β

Whole Plot Trt t − 1 σ2
δ + gσ2

ε + bg
t−1

∑
i
τ2

i

Blocks × WP Trts (b − 1)(t − 1) σ2
δ + gσ2

ε

Split Plot Trt g − 1 σ2
δ + tσ2

βγ + bt
g−1

∑
k

γ2
k

Split Plot Trt × Whole Plot Trt (g − 1)(t − 1) σ2
δ + b

(g−1)(t−1)

∑
ik

(τγ)2ik
Blocks × SP Trt (b − 1)(g − 1) σ2

δ + tσ2
βγ

Blocks × SP Trt × WP Trts (b − 1)(g − 1)(t − 1) σ2
δ

Total bgt-1

exercise. We do two calculations, however, to show how the split plot RCB
balances the treatments. Using model (5.14) and the definition of the sums of
squares, we have

E(SS(WP Trts)) = bg
∑

i

[τi + β̄ + ε̄i + ¯(βγ) + δ̄i − β̄ − ¯̄ε − ¯(βγ) − δ̄]2

= bg
∑

i

[τ2
i + (ε̄i − ¯̄ε)2 + (δ̄i − δ̄)2],

where we see that the terms involving β and (βγ) have cancelled. Note that
in Table 5.7 these variance terms do not appear above the line, except in the
sum of squares for blocks. Similarly, in the sum of squares for the split plot
treatment, the terms involving β also cancel (since these factors are crossed).
However,

E(SS(SP Trts)) = bt
∑

k

[̄ε̄ + γk + ¯(βγ)k + δ̄k − ¯̄ε − ¯(βγ) − δ̄]2

= bt
∑

k

[γ2
k + ( ¯(βγ)k − ¯(βγ))2 + (δ̄k − δ̄)2],

so the whole plot error disappears from the split plot treatment, but the
variance due to the interaction, σ2

βγ , remains.
Using the model (5.14) we obtain the expected mean squares of Table 5.7,

which are quite similar to those of Table 5.3 with two notable exceptions. Here
there are variances due to Blocks and the Block × SP treatment interaction,
the latter appearing below the line. (Note that σ2

β does not appear below the
line). Also recall that the whole plot error term here is, in fact, the Block ×
WP treatment interaction.

The presence of σ2
βγ results in two separate error terms below the line.

From the expected mean squares we see that there are two distinct F -ratios:

MS(Split Plot Trt)
MS(Blocks × SP Trt)

and
MS(Split Plot Trt × Whole Plot)
MS(Blocks × SP Trt × WP Trts)

,(5.16)
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which, unfortunately, could have the effect of reducing degrees of freedom and
hence power of these tests.

Note: Pooling Blocks × SP Trt with Blocks × SP Trt × WP Trts requires the
assumption that σ2

βγ = 0, that is, no interaction between blocks and the split
plot treatment.

If the plots are randomly assigned to the split plot treatments, the assumption
that σ2

βγ = 0 becomes more reasonable. If this assumption cannot be made,
one could adopt the strategy of first testing H0 : σ2

βγ = 0 and then pooling
if this test is accepted. However, then we are in the possible situation of
compounding the error terms.

The best strategy? If degrees of freedom are a concern, we
can pool the error terms and see from the expected mean
squares that we are being conservative. The presence of σ2

βγ

will result in an error term that is a bit larger than the
correct one; so if we do reject H0 we can be somewhat com-
fortable with the decision. Of course, we are sacrificing a bit
of power, which can result in the commission of a Type II
error (not finding a true difference).

Consequences
of
pooling
split plot
errors

The EMS in Table 5.7 show us how to do the remaining tests. The null
hypothesis of no whole plot treatment effect is

H0 : τi = 0 for all i

and is tested by

Ft−1,(b−1)(t−1) =
MS(WP Trts)

MS(Blocks × WP Trts)
.

At the split plot level, the split plot main effect H0 : γk = 0, for all k, and the
interaction H0 : (τγ)ik = 0, for all i and k, are tested, respectively, with the
mean square ratios in (5.16).

Note that if we actually pool the split plot error, and recalling what we
know about nested and crossed factors, we have

SS(Blocks × SP Trt) + SS(Blocks × SP Trt × WP Trts)
= SS(Blocks × SP Trt (in WP Trts)),

which is exactly the split plot error term in Table 5.3. Of course, there the
split plot treatment was not crossed with replication except in the whole plots,
so the error term could not be separated as above. In the RCB split plot, the
split plot treatment is crossed with blocks, which leads to the separation of
the error terms.
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5.3.3 Estimating Contrasts

We now turn to estimating the variances of the contrasts in the RCB split
plot. Most of the calculations are quite similar to those done in Section 5.2.3,
so we will suppress many of the details, leaving them to Exercise 5.35. As
before, we consider the four cases:

(1) Whole Plot Means:
∑

i aiτi, where
∑

i ai = 0.
(2) Split Plot Means:

∑
k akγk, where

∑
k ak = 0.

(3) Interaction Means, Same Level of Whole Plot:
∑

k ak(τγ)ik, where
∑

k ak

= 0.
(4) Interaction Means, Different Whole Plot Level:

∑
ik aik(τγ)ik, where∑

ik aik = 0.

Since the treatment design in the split plot RCB is the same as in the split
plot CRD, the least squares estimates of the treatment means are exactly the
same, and are given in (5.5).

Case (1): Whole Plot Comparisons

When we calculated Var(
∑

i aiȲi) for the CRD split plot design, we noted
that the whole plot means were independent. Here, the whole plot means in
the same block are correlated, and if we take this into account we have

Var

(
∑

i

aiȲi

)

=
σ2

δ + gσ2
ε

bg

∑

i

a2
i .(5.17)

Again, replication at the split plot level has less of an effect here, in that it
only cuts down a piece of the variance. From the anova EMS we see that
E(MS(WP Error)) = σ2

δ + gσ2
ε , giving us an estimate of this variance.

Case (2): Split Plot Comparisons

In calculating the variance of
∑

k akȳk, we again have to take account of the
correlation, and doing so results in

Var

(
∑

k

akȲk

)

=
σ2

δ + tσ2
βγ

bt

∑

k

a2
k,(5.18)

where, as in the CRD case, the contrast has eliminated the whole plot error
from the variance. From Table 5.7 we see that this variance can be estimated
with MS(Blocks × SP Trts) or, with the assumption that σ2

βγ = 0, we can
use a pooled error term.

We now look at Cases (3) and (4), the interaction contrasts within and
between levels of the whole plots. The calculations for the RCB split plot
turn out to be a bit trickier than those in the CRD split plot, and we will
have to work harder for variance estimates. Some of the details are left to
Exercise 5.35.
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Case (3): Interaction Mean Comparisons: Same Whole Plot

Calculation of the variance of
∑

k akȳik, within the same level of the whole
plot treatment, works out similarly to the CRD split plot, where we use the
fact that

∑
k ak = 0 to simplify the variance formula. The end result is

Var

(
∑

k

akȲik

)

=
σ2

δ + σ2
βγ

b

∑

k

a2
k,(5.19)

where, again, we see that the whole plot variance σ2
ε does not appear in the

interaction contrasts within a whole plot., but now we do see the appearance
of the variance due to the split plot treatment by block interaction.

Although the error variance calculation was rather straightforward, we
are in a bit of trouble in that, from Table 5.7 there is no obvious estimate of
σ2

δ + σ2
βγ . We will deal with this at the end of the section.

Case (4): Interaction Mean Comparisons: Different Whole Plot

Finally, we turn to Case (4) and calculate the variance of a contrast between
interaction means at different levels of a whole plot. Although the calculations
are straightforward (if arduous), we again run into trouble in the estimation
of the variance. The variance of a general interaction contrast is given by

Var

(
∑

ik

aikȲik

)

=
σ2

δ

b

∑

ik

a2
ik+

σ2
βγ

b

∑

k

(
∑

i

aik

)2

+
σ2

ε

b

∑

i

(
∑

k

aik

)2

.

(5.20)
This is a rather nasty expression, and again we cannot directly estimate the
variances using the mean squares in Table 5.7. Note that if we could assume∑

i aik =
∑

k aik = 0, then we would have no problem in estimating the
variance, but these terms will be zero only for certain contrasts (a product
construction will do it).

Estimating the Contrast Variances

We first make a few observations about the contrast variances that we have
just calculated Note the implications of these contrast variances:

(i) In (5.20), the multipliers of σ2
βγ and σ2

ε are zero if
∑

i aik = 0 and∑
k aik = 0, respectively. That is, if the aik define a contrast in the

whole plot means, then σ2
βγ disappears, while if they define a con-

trast in the split plot means, then σ2
ε disappears. We are then left

with a variance that only depends on σ2
δ , which can be estimated with

MS(Blocks × SP Trt × WP Trts).
(ii) If the aik come from a product construction, that is, start with ai and

ak satisfying
∑

i ai = 0 and
∑

k ak = 0, and the interaction contrast is∑
ik aiakȲik, then the variance only depends on σ2

δ
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(iii) In (5.20), if there is only one value of i, then the variance reduces to that
of Case (3), as it must.

(iv) Under the assumption that σ2
βγ = 0, the expressions for the contrast

variances in Cases (3) and (4) here become identical to the CRD case.

Finally, how do we proceed with estimation? Of course, the optimal route
would be to estimate the variance components in (5.19) and (5.20) and then
obtain (or approximate) the distribution. However, we are going to take a
simpler route and proceed in a manner similar to other texts.

Watch out
for
this
assumption

That is, we make the unjustified assumption that σ2
βγ = 0,

which does two things:

(1) The variance estimation is now identical to that in the
CRD split plot.

(2) From Table 5.7, we can pool the two error terms to get one
term with t(b−1)(g−1) degrees of freedom that estimates
σ2

δ .

The effect of this strategy may ultimately be conservative, in that the σ2
βγ

appears in the expected mean squares and, if not zero, would result in an
inflated variance. With the assumption that σ2

βγ = 0, the variance (5.20) can
be rewritten as (see (5.13) and Exercise 5.33)

Var

(
∑

ik

aikȲik

)

=
σ2

δ

b

∑

ik

(aik − āi)2 +
σ2

δ + gσ2
ε

bg

∑

i

(
∑

k

aik

)2

.(5.21)

which is a better form for use with Satterthwaite’s approximation.

We continue with Example 5.4 to illustrate the contrast inferences.

Example 5.5. Variety split plot concluded The anova for the data
of Example 5.3 (dataset VarietySP), identifying the factorial structure of the
treatments and pooling the split plot error, is

Source df SS MS F p-value

Rep 1 6.961 6.961
Trt 3 14.775 4.925 19.811 0.018
P 1 12.140 12.140 48.836 0.006
K 1 1.261 1.261 5.073 0.110
P × K 1 1.374 1.374 5.526 0.100

Trt × Rep 3 0.746 0.249

Variety 5 2.071 0.414 2.429 0.071
Trt × Variety 15 1.526 0.102 0.597 0.845
P × Variety 5 0.346 0.069 0.406 0.839
K × Variety 5 0.888 0.178 1.042 0.421
P × K × Variety 5 0.291 0.058 0.342 0.882

Split Plot Error 20 3.411 0.170
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Using the pooled split plot error gave a more significant test on Variety
than using separate errors, but other than that, the anova here is quite similar
to the previous one. The interaction means are

pk pK Pk PK
A 3.56 3.57 4.54 5.17
G 3.78 3.33 4.34 4.64
K 3.59 3.78 4.42 5.00
N 4.20 4.38 4.55 5.47
O 3.96 4.05 4.30 5.64
R 3.73 3.62 4.68 4.87

and two interactions of interest examine the effect of Potassium (K) on the A
and G varieties:

Main Effect of K
vs. A and G
pk pK Pk PK

A 1 −1 1 −1
G 1 −1 1 −1

Interaction of K
vs. A and G
pk pK Pk PK

A 1 −1 1 −1
G −1 1 −1 1

The first contrast, on the main effect, put us in Case (4), while the second
contrast, dealing with the interaction, is Case (3). See Exercise 5.8 ‖

5.4 Estimating Effects

We digress a bit here and examine the difference between estimating contrasts
of means (which we have been doing) and effects. That is, from (5.5) we see
that the interaction means are ȳik but the interaction effects (sometimes called
least squares means) are ˆ(τγ)ik = ȳik−ȳi−ȳk+¯̄y , and lead to different contrast
estimates.

First, note that for estimating µ, τi, or γk, contrasts in cell means or effects
are exactly the same (Exercise 5.11), but the interaction contrasts can differ.
That is

Cell mean contrast :
∑

ik

aikȳik,

Effect contrast :
∑

ik

aik
ˆ(τγ)ik,

where ȳik estimates EȲik = µ + τi + γj + (τγ)ik, the cell mean, and ˆ(τγ)ik

estimates E ˆ(τγ)ik = (τγ)ik, the cell effect. It is common to only give variances
for contrasts in the cell means, but we will see that there can be an advantage
to using the effect contrasts. (Note that if the aik satisfy

∑
i aik =

∑
k aik = 0,

as would happen if they came from a product construction, then the two
contrasts are identical.)
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The choice of whether to estimate the cell mean or the cell effect is one to
be left to the experimenter. What we are concerned with here is the resulting
inference; in particular, how do the variances differ between mean estimates
and effect estimates.

Note: We find that if we estimate the effects rather than the means we can
typically do this with greater precision.

We look at the case where the whole plot treatments are in a CRD which, as
we will see, also covers the RCB case (Exercise 5.36).

From (5.1), the variance of an interaction contrast using the least squares
estimates (5.5) is

Var

(
∑

ik

aik
ˆ(τγ)ik

)

=Var

(
∑

ik

aik(ȳik − ȳi − ȳk + ¯̄y)

)

=Var

(
∑

ik

aik(ȳik − ȳi − ȳk)

)

[since
∑

ik aik = 0](5.22)

=Var

(
∑

ik

aik(ε̄i+δ̄ik−ε̄i−δ̄i − ¯̄ε − δ̄k)

)

[from (5.1)] .

Notice that the terms with ε̄i cancel, and the term ¯̄ε vanishes because∑
ik aik = 0. Thus, there is no contribution from the whole plot error in

this contrast variance. Compare this to (5.12), where the whole plot error
contribution only vanishes if āi = 0. We do not need this condition for the
whole plot error to disappear from the variance (5.22), and it is in this sense
that we can say that the interaction effect is always estimated with greater
precision than the cell means.

Continuing, we have

Var

(
∑

ik

aik
ˆ(τγ)ik

)

= Var

(
∑

ik

aik(δ̄ik − δ̄i − δ̄k)

)

= Var

(
∑

i

[
∑

k

aik δ̄ik − gāiδ̄i

]

− t
∑

k

āk δ̄k)

)

.(5.23)

We now expand the variance and deal with each piece separately. The calcu-
lations are a bit painful and are summarized in Exercise 5.36. The result is

Var

(
∑

ik

aik
ˆ(τγ)ik

)

=
σ2

δ

r

[
∑

ik

a2
ik −

∑

i

∑

k

(āi + āk)2
]

=
σ2

δ

r

∑

ik

[aik − (āi + āk)]2.(5.24)
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Example 5.6. Diet split plot concluded The first interaction con-
trast looked at in Example 5.2 was

AM PM
1 1 -1 0
2 0 0 0
3 0 0 0
4 0 0 0

1
4 − 1

4

where the margins give the values of āi and āk. For this contrast we ob-
tain the value

∑
ik[aik − (āi + āk)]2 = 3/2, leading to an effect variance of

(16.17/3)(3/2), smaller than (16.17)(2/3), the variance of the contrast in cell
means. ‖

We have done all of our calculations for the case of having the whole plots
in a CRD. However, in one of the more fortuitous occurrences in statistical
design, if the whole plots are in an RCB the calculations are exactly the same.
To see this, from (5.14), the treatment design is a twoway crossed design (with
the fixed effects τi, γk and (τγ)ik, and everything else in error). Thus, the
least squares estimate of ˆ(τγ)ik is ȳik − ȳi − ȳk + ¯̄y . If

∑
ik aik = 0, it can be

shown (Exercise 5.36) that, under model (5.14), Var(
∑

ik aik
ˆ(τγ)ik) is given

by (5.24).

Note: One important difference about estimating interaction effect contrasts
rather than mean contrasts is that we do not run into the difficulty in estimating
the variance that occurred in Sections 5.2.3 and 5.3.3.

That is, since the variance is only a function of the parameter σ2
δ , we al-

ways have a mean square to estimate it and do not have to resort to using
Satterthwaite’s approximation.

5.5 Splitting Twice

In a split plot design one treatment (the split plot treatment) is randomized
in the levels of another treatment (the whole plot treatment). There is, of
course, no reason to stop at just one of these – we can randomize another
treatment to the levels of the split plot treatment, creating a split split plot
design. Some things to note:

(1) The split in the experiment should be dictated by the physical constraints
and perhaps the desire for greater accuracy in the measurement of a par-
ticular treatment.
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(2) We will be a little less formal here (and in much of what follows). Although
we will indicate tests with EMS and give many contrast variances, we will
not formally verify Cochran’s Theorem.

(3) Of course, we could split more than twice and, for example, have a split
split split plot design. But we will stop at two splits; the pattern should
be clear.

(4) We will look at two cases, one where the whole plots are in a CRD, and
another where they are in an RCB. There are surprises in both cases.

CRD on the Whole Plots

Example 5.7. Ozone split split plot An experiment is conducted to
test the effect of ozone gas on plants. The researcher assigned two environ-
mental chambers to each of four levels of ozone (a total of eight chambers). Six
varieties of plants were placed in each chamber. At the end of the experiment
the plants were removed and analyzed. Data were recorded for two locations
on each plant - one at the root (R) and one at the top (T). A schematic of
the data looks like

Ozone Level
1 · · · · · · 4

Chamber

1 2

Loc.
R T

1 x x
2 x x

Var. 3 x x
4 x x
5 x x
6 x x

Loc.
R T

1 x x
2 x x

Var. 3 x x
4 x x
5 x x
6 x x

· · · · · ·

Chamber

7 8

Loc.
R T

1 x x
2 x x

Var. 3 x x
4 x x
5 x x
6 x x

Loc.
R T

1 x x
2 x x

Var. 3 x x
4 x x
5 x x
6 x x

Here the whole plot treatments are the levels of ozone, which are in a CRD
with two observations per treatment (the two chambers). Variety is the split
plot treatment, as it is randomized in the levels of ozone. Finally, location is
the split split plot treatment, and here we are physically splitting the unit –
taking two observations from each plant. The anova for this experiment is
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Source df
Ozone 3
Whole Plot Error (Chambers in Ozone) 4
Variety 5
V × O 15
Split Plot Error (V × C in O) 20
Location 1
L × V 5
L × O 3
L × V × O 15
Split Split Plot Error (L × C in V × O) 24
Total 95

This is a split split plot design with the whole plots in a oneway CRD. Note
the following:

(1) The three treatments (L, V, O) are crossed.
(2) There is a nesting of the random factor (Chambers) within the whole plot

treatment.
(3) The first two error terms (WP and SP) are the same as in Section 5.2. The

split split plot error, formed from the residuals, reflect the interaction of
Location with the random factor Chambers, but this interaction is nested
in V × O.

‖

A model for the split split plot experiment with the whole plots in a CRD
is

Yijk	 = µ + τi + εij + γk + (τγ)ik + δijk(5.25)
+ψ	 + (τψ)i	 + (γψ)k	 + (τγψ)ik	 + ωijk	,

where i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g, � = 1, . . . , s and

Yijk = response,
µ = overall mean effect,
τi = whole plot treatment,

εij = whole plot error, εij
iid∼ N(0, σ2

ve),
γk = split plot treatments,

(τγ)ik = interaction (at split plot level),

δijk = split plot error, iid∼ N(0, σ2
δ ),

independent of εij ,

ψ	 = split split plot treatment,
(τψ)i	, (γψ)k	, (τγψ)ik	 = interactions (at split split plot level),
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Table 5.8. Anova for split plot design with RCB on whole plot treatments.
T=Whole Plot Treatment, G = Split Plot Treatment, R=Replication.

Source df SS

Whole Plot (WP) Trt t-1 srg
∑

i
(ȳi − ¯̄y)2

WP Error t(r-1) sg
∑

ij
(ȳij − ȳi)

2

(Replication in WP)

Split Plot (SP) Trt g-1 srt
∑

k
(ȳk − ¯̄y)2

SP Trt × WP Trt (g-1)(t-1) sr
∑

ik
(ȳik − ȳi − ȳk + ¯̄y)2

SP Error t(g-1)(r-1) s
∑

i

[∑
jk

(yijk − ȳij − ȳik + ȳi)
2
]

SP Trt × Reps in WP

Split Split Plot (SSP) Trt s-1 rgt
∑

�
(ȳ� − ¯̄y)2

SSP Trt × WP Trt (s-1)(t-1) rg
∑

i�
(ȳi� − ȳi − ȳ� + ¯̄y)2

SSP Trt × SP Trt (s-1)(g-1) rt
∑

k�
(ȳk� − ȳk − ȳ� + ¯̄y)2

SSP Trt × SP Trt × (s-1)(g-1)(t-1) r
∑

ik�
(ȳik� − ȳik − ȳi� − ȳkj�

WP Trt +ȳi + ȳk + ȳ� − ¯̄y)2

SSP Error (s-1)(r-1)tg
∑

ik

[∑
j�

(yijk� − ȳijk − ȳik� + ȳik)2
]

(SSP Trt × Reps)
in (SP Trt × WP Trt)

Total sgrt-1

ωijk	 = split split plot error, iid∼ N(0, σ2
ω),

independent of εij and δijk.

Here, for identifiability considerations we invoke the parameter constraints

τ̄ = γ̄ = ¯(τγ)i = ¯(τγ)k = 0,

ψ̄ = ¯(τψ)i = ¯(τψ)	 = ¯(γψ)k = ¯(γψ)	 = 0,
¯(τγψ)ik = ¯(τγψ)i	 = ¯(τγψ)k	 = 0,

where we recall again that this is merely a renaming of the effects and does
not signify any change in the real parameter space.

The full anova for the split split plot model, identifying all terms, is given
in Table 5.8. Note that the split split plot error is a pooling of the split split
plot × rep interactions – this is not a fourway interaction. Compare this to the
split plot error, which represents a pooling of the split plot × rep interaction
over the whole plots.

The whole plot error comes from the replication of the whole plot treat-
ments, just as in any CRD, and the split plot errors come from the respective
interactions – reminiscent of an RCB – but with an added nesting structure.
If either k = 1 or s = 1, the design collapses back to an ordinary split plot
design.
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Table 5.9. Expected mean squares for a split split plot design with the whole plots
in a CRD, with model (5.25).

Source df EMS

Whole Plot Trt t − 1 σ2
ω + sσ2

δ + sgσ2
ε + srg

t−1

∑
i
τ2

i

Replication (in WP) t(r − 1) σ2
ω + sσ2

δ + sgσ2
ε

Split Plot Trt g − 1 σ2
ω + sσ2

δ + srt
g−1

∑
k

γ2
k

SP Trt × WP Trt (g − 1)(t − 1) σ2
ω + sσ2

δ + sr
(g−1)(t−1)

∑
ik

(τγ)2ik
SP Trt × Reps (in WP) t(g − 1)(r − 1) σ2

ω + sσ2
δ

Split Split Plot Trt s − 1 σ2
ω + rgt

s−1

∑
k

ψ2
�

SSP Trt × WP Trt (s − 1)(t − 1) σ2
ω + rg

(s−1)(t−1)

∑
i�

(τψ)2i�
SSP Trt × SP Trt (s − 1)(g − 1) σ2

ω + rt
(s−1)(g−1)

∑
k�

(γψ)2k�

SSP Trt × SP Trt × (s − 1)(g − 1)(t − 1) σ2
ω + r

(s−1)(g−1)(t−1)

∑
ik�

(τγψ)2ik�

WP Trt
(SSP Trt × Reps) tg(s − 1)(r − 1) σ2

ω

in (SP Trt × WP Trt)

Total sgrt − 1

The expected mean squares for the split split plot experiment mimic those
of the split plot, and are given in Table 5.9. We suppress details of the cal-
culations, as they are quite similar to (but a bit more tedious than) previous
EMS calculations.

Example 5.8. Ozone split split plot continued The anova for the
Ozone chamber experiment is

Source df SS MS F p-value

Ozone 3 0.254 0.085 17.465 0.009
Whole Plot Error 4 0.019 0.005

Variety 5 0.153 0.031 1.045 0.419
Ozone × Variety 15 0.169 0.011 0.384 0.968
Split Plot Error 20 0.586 0.029

Location 1 0.026 0.026 0.645 0.429
Ozone × Location 3 0.185 0.061 1.532 0.232
Variety × Location 5 0.281 0.056 1.393 0.262
Ozone × Variety × Location 15 0.693 0.046 1.145 0.373
Split Split Plot Error 24 0.967 0.040

In this “classical” split split plot analysis, at each level of the design we use
the respective error term as the denominator in the test. From Table 5.9 we
see that these are the appropriate tests, with no further assumptions needed
on the effects. ‖
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Finally, we look at contrasts in this split split plot design. Suppressing the
details, which are similar to those in Section 5.2.3, we have:
(1) Interaction mean SSP × WP:

Var

(
∑

i	

ai	Ȳi	

)

=
σ2

ω

rg

∑

i	

a2
i	 +

σ2
δ + gσ2

ε

rg

∑

i

(
∑

	

ai	

)2

,

where we note that
∑

	 ai	 = 0 if we have a contrast within the level of
the whole plots, and, of course, this happens if we are comparing within
one level of the WP treatment. This variance can be estimated without
the need for the Satterthwaite approximation.

(2) Interaction mean: SSP × SP:

Var

(
∑

k	

ak	Ȳk	

)

=
σ2

ω

rt

∑

k	

a2
k	 +

σ2
δ

rt

∑

k

(
∑

	

ak	

)2

,

where the second term is zero if we are balanced in the SP treatment or are
in one level. The estimation of this variance may require the Satterthwaite
approximation.

(3) SSP means:

Var

(
∑

	

a	Ȳ	

)

=
σ2

ω

rtg

∑

	

a2
	 +

σ2
δ + gσ2

ε

rtg

(
∑

	

a	

)2

,

where the last term is always zero for a contrast. This variance can be
estimated without the need for the Satterthwaite approximation.

RCB on the Whole Plots

We next consider the case of having the whole plot treatments in an RCB. As
happened in Section 5.3, the error structure becomes a bit more complicated.

Example 5.9. RCB split split plot Three different washing solutions
are being compared to study their effectiveness in retarding bacteria growth
in 5-gallon milk containers. The analysis is done in three laboratories, which
act as blocks, and the bacteria in each container is measured on four different
days using two different assays. This is a split split plot design, but here
the whole plot treatments (solutions) are in an RCB. This brings on added
complications, as we saw in Section 5.3, because now the error terms are not
as straightforward.
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A schematic of the design is

Lab 1

Solution
1 2 3

Assay
1 2

1 x x
Day 2 x x

3 x x
4 x x

Assay
1 2

1 x x
Day 2 x x

3 x x
4 x x

Assay
1 2

1 x x
Day 2 x x

3 x x
4 x x

...
...

Lab 3

Solution
1 2 3

Assay
1 2

1 x x
Day 2 x x

3 x x
4 x x

Assay
1 2

1 x x
Day 2 x x

3 x x
4 x x

Assay
1 2

1 x x
Day 2 x x

3 x x
4 x x

Note that, in contrast to having the whole plots in a CRD, here all of the
treatments are crossed, and the chambers (the whole plot units) are nested
within the whole plot treatment. An anova (source and df) for this experi-
ment is

Source df
Lab (Blocks) 2
Solution 2
Whole Plot Error (Solution × Lab) 4
Day 3
D × S 6
D × Lab 6
D × S × Lab 12
Assay 1
A × S 2
A × D 3
A × S × D 6
A × Lab 2
A × S × Lab 4
A × D × Lab 6
A × S × D × Lab 12
Total 71

where we see that, through the split plot level, this looks like the designs of
Section 5.3. At the split split level, the error terms are even more abundant,
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and, as might be suspected, the formal test of any effect is with its interaction
with Lab (blocks). ‖

A model for the split split plot experiment with the whole plots in an RCB is

Yijk	 = µ + τi + βj + εij + γk + (τγ)ik + (βγ)jk + δijk

+ ψ	 + (τψ)i	 + (γψ)k	 + (τγψ)ik	(5.26)
+ (βψ)j	 + (βτψ)ij	 + (βγψ)jk	 + ωijk	,

where i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g, � = 1, . . . , s and

Yijk = response,
µ = overall mean effect,
τi = whole plot treatment,

βj = blocks, βj
iid∼ N(0, σ2

β),

εij = whole plot error, εij
iid∼ N(0, σ2

ε),
γk = split plot treatments,

(τγ)ik = fixed interaction (at split plot level),
(βγ)jk = random interaction (at split plot level),

(βγ)jk
iid∼ N(0, σ2

βγ),

δijk = split plot error, iid∼ N(0, σ2
δ ),

ψ	 = split split plot treatment,
(τψ)i	, (γψ)k	, (τγψ)ik	 = fixed interactions (at split split plot level),

(βψ)ij	, (βτψ)ij	, (βγψ)jk	 = random interactions (at split split plot level),

(βψ)ij	
iid∼ N(0, σ2

βψ), (βτψ)ij	
iid∼ N(0, σ2

βτψ), (βγψ)jk	
iid∼ N(0, σ2

βγψ),

ωijk	 = split split plot error, iid∼ N(0, σ2
ω),

where we assume independence between all errors. For identifiability consid-
erations we invoke the parameter constraints

τ̄ = γ̄ = ¯(τγ)i = ¯(τγ)k = 0,

ψ̄ = ¯(τψ)i = ¯(τψ)	 = ¯(γψ)k = ¯(γψ)	 = 0,
¯(τγψ)ik = ¯(τγψ)i	 = ¯(τγψ)k	 = 0.

The first thing that strikes us is the large number of error terms, which
we need to wind our way through. First note that the three terms that are
designated as error (ε, δ, and ω) are themselves interaction terms. For exam-
ple, εij is the WP × Block interaction, and could well have been designated
(τβ)ij .
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Table 5.10. Expected mean squares for a split split plot design with the whole
plots in a RCB, with model (5.26)

Source df EMS

Blocks (B) b − 1 σ2
ω + sσ2

δ + sgσ2
ε + stσ2

βγ + gtσ2
β

WP Trt (T) t − 1 σ2
ω + sσ2

δ + sgσ2
ε + sbg

t−1

∑
i
τ2

i

B × T (b − 1)(t − 1) σ2
ω + sσ2

δ + sgσ2
ε

SP Trt (G) g − 1 σ2
ω + sσ2

δ + stσ2
βγ + sbt

g−1

∑
k

γ2
k

G × T (g − 1)(t − 1) σ2
ω + sσ2

δ + sb
(g−1)(t−1)

∑
ik

(τγ)2ik
G × B (b − 1)(g − 1) σ2

ω + sσ2
δ + stσ2

βγ

G × T × B (b − 1)(g − 1)(t − 1) σ2
ω + sσ2

δ

SSP Trt (S) s − 1 σ2
ω + tσ2

βγψ + gσ2
βτψ

+tgσ2
βψ + rtg

s−1

∑
�
ψ2

�

S × T (s − 1)(t − 1) σ2
ω + gσ2

βτψ + rg
(s−1)(t−1)

∑
i�

(τψ)2i�
S × G (s − 1)(g − 1) σ2

ω + tσ2
βγψ + rt

(s−1)(g−1)

∑
k�

(γψ)2k�

S × G × T (s − 1)(t − 1)(g − 1) σ2
ω + r

(s−1)(g−1)(t−1)

∑
ik�

(τγψ)2ik�

S × B (s − 1)(b − 1) σ2
ω + tσ2

βγψ + gσ2
βτψ + tgσ2

βψ

S × T × B (s − 1)(t − 1)(b − 1) σ2
ω + gσ2

βτψ

S × G × B (s − 1)(g − 1)(b − 1) σ2
ω + tσ2

βγψ

S × G× T × B (s − 1)(t − 1)(g − 1)(b − 1) σ2
ω

Total bgts-1

The other random terms are all interactions with blocks, and it is impor-
tant to keep track of them so that we can deduce the proper error terms for
estimation and testing.

Typical analyses of these designs, and default computer analyses, will
present one error at each level. However, to do this requires some assump-
tions, which are evident from calculating the expected mean squares (Table
5.10), but are also evident if we recall the EMS of Section 5.3. There, we
could pool the errors at the split plot level only if there was no interaction
between the split plot treatment and the blocks. From Table 5.10, we see that
not only do we require no interaction at the split plot level (σ2

βγ = 0), in
order to have one split split plot error there must be no interaction involving
the split split plot treatment and the blocks, that is, we must assume that
σ2

βψ = σ2
βτψ = σ2

βγψ = 0. Note, however, that the individual tests result-
ing from Table 5.10 are valid without any assumptions about the interaction
terms.

Example 5.10. Solution data split split The standard anova for the
solutions data looks like
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Source df SS MS F p-value

Lab 2 81.492 40.746
Solution 2 402.82 201.41 88.426 0.0004
Whole Plot Error 4 9.11 2.28

Day 3 2023.75 674.58 42.210 < .0001
Solution × Day 6 118.23 19.71 1.233 0.3356
Split Plot Error 18 287.67 15.98

Assay 1 2720.64 2720.64 137.890 < .0001
Solution × Assay 2 186.96 93.48 4.738 0.0184
Day × Assay 3 1904.52 634.84 32.176 < .0001
Solution × Day × Assay 6 71.95 11.99 0.608 0.7210
Split Split Plot Error 24 473.53 19.73

where there is only one error at each level. We know that both the Split Plot
Error and Split Split Plot Error represent a pooled error term. At the split
level we must assume that there is no Day × Lab interaction, and at the split
split level we must assume that all interactions involving Assay and Lab are
zero (see Exercise 5.15). ‖

The variances of treatment contrasts in the RCB split split plot are also
a bit more complicated than their CRD counterparts. We have:

(1) Interaction mean SSP × WP:

Var

(
∑

i	

ai	Ȳi	

)

= V1

∑

i	

a2
i	 + V2

∑

i

(
∑

	

ai	

)2

,

where

V1 =
σ2

ω + gσ2
βτψ

rg
and V2 =

σ2
δ + σ2

βγψ + gσ2
βψ + gσ2

ε

rg

and we note that
∑

	 ai	 = 0 if we have a contrast within the level of
the whole plots. Of course, this happens if we are comparing within one
level of the WP treatment. If the interaction variance components are
assumed to be zero, this variance can be estimated without the need for
the Satterthwaite approximation.

(2) Interaction mean: SSP × SP:

Var

(
∑

k	

ak	Ȳk	

)

= V1

∑

k	

a2
k	 + V2

∑

k

(
∑

	

ak	

)2

,

where

V1 =
σ2

ω + tσ2
βγψ

rt
and V2 =

σ2
δ + σ2

βτψ + tσ2
βψ + tσ2

βγ

rg
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where the second term is zero if we are balanced in the SP treatment or are
in one level. The estimation of this variance may require the Satterthwaite
approximation.

(3) SSP means:

Var

(
∑

	

a	Ȳ	

)

= V1

∑

	

a2
	 ,

where

V1 =
σ2

ω + gσ2
βτψ + tgσ2

βγψ + tgσ2
βψ

rtg
,

where V1 can be estimated using the S × B interaction. If we assume
that the interaction variance components in V1 are all zero, then we can
estimate V1 using the Split Split Plot Error.

The split split plot design also implies a restriction on the randomization
in the experiment. To better understand this we look at the following example.

Example 5.11. Randomization patterns

Consider an experiment with three crossed factors, A, B, and C, each at
three levels. Keeping the treatment design as a crossed experiment, we can
have different experiment designs. In particular, we look at a CRD, a split plot,
and a split split plot. The following picture illustrates possible randomization
of the first nine observations.

A
1 2 3
B B B

1 2 3 1 2 3 1 2 3

1 3 5 4

C 2 8 1 7 9 CRD

3 2 6

1 4 9 7

C 2 1 6 5 A = Whole Plots
B × C = Split Plots

3 8 2 3

1 4 7 1

C 2 6 9 3
A = Whole Plots
B = Split Plots
C = Split Split Plots

3 5 8 2
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The complete randomization of the CRD allows the observations to be taken
in any order. In the split designs, once the whole plot is chosen, the randomiza-
tion proceeds in there. If B×C is the split plot treatment then randomization
is unrestricted within the whole plot. In the split split plot design the split
split treatment is randomized within the levels of the split plot treatment. ‖

5.6 Variations on a Theme

Here we briefly look at three variations of the split plot design. The strip
plot design reflects a specific type of randomization, one which originated in
agricultural situations, while the crossover design is a useful variation of the
split plot that is more common in experiments on human subjects. The third
variation, the repeated measures design brings in a new error structure and,
in this sense, should be considered a different design.

5.6.1 Strip Plots

The strip plot design, which also has other names, is an experimental design
with two crossed treatments. (It is different from the crossed blocks design,
discussed in Section 3.6.2.) Other names for this design are split block, which
may still be the most common but is somewhat of a misnomer, or crisscross,
which is descriptively the most accurate, but perhaps too whimsical for sta-
tisticians.

Example 5.12. Strip plot (split block) experiment A sugar planter
wanted to determine the effect of potassium and phosphorus fertilizers on the
yield of sugarcane. He established an experiment with the following factors:

Factor A = Potassium (K) Levels = 0, 25 kg/ha, 50 kg/ha,
Factor B = Phosphorus (P) Levels = 25 kg/ha, 50 kg/ha.

He decided to use a design with three blocks. Because he wanted to use
farm-scale equipment to apply the chemicals, he assigned the potassium rates
to 3 strips within blocks. He then assigned phosphorus to strips of 2 plots
at right angles to the potassium strips within the blocks. The field plan and
yields (kg/plot) are

Block
I II III

K3 K1 K2 K1 K3 K2 K2 K1 K3
P1 56 32 49 38 62 50 63 54 68
P2 67 54 58 52 72 64 54 44 51

In the strip plot design, within each block the potassium (K) is randomized
on the vertical strips, and the phosphorus (P) is randomized on horizontal
strips. The anova for the sugarcane experiment is
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Source df
Blocks 2
K 2
K x B 4
P 1
P x B 2
K x P 2
K x P x B 4
Total 17

Note the difference between this design and a split plot design. If, for
example, we ran this as a split plot with K as the whole plot treatment and
P as the split plot treatment, then we would have applied one level of K to
the entire plot, and then randomized P in the same way. ‖

The treatment design of the strip plot is a twoway crossed design, with
model

Yijk = µ + τi + βj + (βτ)ij + γk + (βγ)jk + (τγ)ik + (βτγ)ijk + εijk,(5.27)

where i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g, τ and γ are the treatments, and

βj ∼ N(0, σ2
β), εij ∼ N(0, σ2

ε),

all independent. The Treatment × Block interactions will be the respective
error terms. The anova and EMS for this experiment is given in Table 5.11.

where we see that the F -tests for the treatments are against the respective
interactions.

The strip plot design actually has three experimental units, which are illus-
trated in Figure 5.1. Each of the treatments is applied to distinct experimental
units, and the interaction treatment has the intersection as its experimental

Table 5.11. Expected mean squares for a strip plot design.

Source df EMS

Blocks b − 1 σ2
ε + σ2

βτγ + tσ2
βγ + gσ2

τβ + tgσ2
β

T t − 1 σ2
ε + σ2

βτγ + gσ2
τβ + rg

t−1

∑
i
τ2

i

Blocks × T (b − 1)(t − 1) σ2
ε + σ2

βτγ + gσ2
τβ

G g − 1 σ2
ε + σ2

βτγ + tσ2
βγ + rt

g−1

∑
k

γ2
k

Blocks × G (b − 1)(g − 1) σ2
ε + σ2

βτγ + tσ2
βγ

T × G (g − 1)(t − 1) σ2
ε + σ2

βτγ + r
(t−1)(g−1)

∑
ik

τγ2
ik

Blocks × T × G (b − 1)(t − 1)(g − 1) σ2
ε + σ2

βτγ

Total bgt-1
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Fig. 5.1. The three experimental units of a strip plot design. The treatments are
applied to rows and columns, and the interaction experimental unit is the intersec-
tion.

Block

Exp. Unit for T

Exp. Unit for T x G

Exp. Unit for G

unit. It is also the case that the correlation structure is different for the treat-
ments and interaction, with higher correlation in the interaction (since those
observations are in the same row and column (see Exercise 5.41).

Although strip plot designs were originally developed to accommodate
treatments applied with farm-scale equipment, the next example shows that
these designs have a place in the 21st century.

Example 5.13. Strip plot bioassay David Lansky, of Precision Bioas-
say, shares this experimental design. Companies use bioassays to measure the
functional activity of protein products because the chemical analytic methods
are not completely sufficient. Biological assays, which measure function, are
typically complex, slow, costly, and yield low-precision estimates of activity.
Imagine using a corn field to measure each batch of fertilizer!

Cells grown in culture are often sensitive to subtle features in the envi-
ronment, and may grow better on one side of the plate than another. Thus,
if a design such as a CRD is used, we must use randomization to control
this variation and avoid grouped dilution or serial dilution when constructing
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Fig. 5.2. One block of the strip plot bioassay experiment of Example 5.13 showing
the “field” layout. The rows indicate the samples (reference, half, double, or one),
and the columns indicate the serial dilution level (dose). Note that all samples in a
column have the same serial dilution level; this makes it a strip plot design.
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one2     

hlf2     
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ref1     
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1.48
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 : block C

the factorial Dose × Sample design used for a bioassay. However, this can be
handled in a strip plot design.

As samples (or dilutions) are often treated together with multichannel
pipettes, this places a solution simultaneously across a row or down a column.
This physical setup leads us naturally to the strip plot design.

Figure 5.2 shows the “field layout” of one block (a 96-well plate) of a three
block experiment from a cell culture bioassay run in a strip plot design us-
ing three blocks (96-well plates), four samples and 12 doses of each sample.
The response is a measurement of optical density, the color intensity of a dye,
and it is probably best to take logs before any analysis. The four samples are
reference, one, half, and dub. These are all sugar, and the samples one, half,
and dub are made from reference with relative concentrations of 1, 1/2, and
2. There are two rows on each assay plate randomly assigned to each dilution.
One column on each plate is randomly assigned to each of the 12 serial dilu-
tions. The serial dilutions are done using a multichannel pipette, separately
on each plate, which applies the dilution to the entire column simultaneously.

Note that there are 12 columns corresponding to the dilutions, and 8 rows
for two replications of the four treatments. The anova, as in Table 5.11, can
be partitioned in different ways, and here is one option.
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Source df

Blocks 2

Dilutions (Columns) 11
D × B 22

Rows 7
Samples 3
Rows(in Samples) 4

Rows × Blocks 14
S × B 6
Rows(in Samples) × B 8

D × Rows 77
D × S 33
D × Rows(in Samples) 44

D × Rows × B 154
D × S× B 66
D × Rows(in Samples)× B 88

Total 287

Note that this partitioning of the sum of squares implicitly assumes that rows
are nested in samples but crossed with blocks (see Exercise 5.18). ‖

5.6.2 Crossover Designs

The crossover design combines a bit of everything - RCB, Strip plot, Latin
square, and provides a means of getting tighter control on differences at the
cost of an assumption on the order of treatments. In this section we look at
two different crossover designs.

Simple Crossover Designs

The simplest case, which is the most popular implementation, is the two-
period (P1, P2) Simple Crossover Design (SCOD) with two groups (G1, G2)
and two treatments (T1, T2) which can be displayed as

G1 G2

P1 T1 T2

P2 T2 T1

or

T1 T2

P1 G1 G2

P2 G2 G1

From the picture the name of the design should be obvious. The groups are
“crossed over” to the other treatment so each group receives both treatments,
but in opposite orders. Thus, each group is its own control, allowing us to
use fewer subjects and still get good precision (which makes this design quite
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popular in drug studies involving human subjects). So we are saving obser-
vations but retaining tight comparisons (greater precision) for the treatment
differences – what did we give up?

The treatments are given in both orders to control for any order effect,
with a washout period between treatments. During this period, it is assumed
that the effect of the first treatment “washes out”, and the subject starts
the second period without any residual effect from the first treatment, an
assumption that there is no carryover effect. That is, we assume that the
groups start P2 equivalent to the start of P1. It is important to note that this
is an assumption about interactions, not main effects, as we will see below.

The SCOD is, in fact, a split plot design with the subjects as the whole
plots (subjects are the experimental units) and the treatment as the split plot
treatment. The whole plot treatment is the order in which the treatments are
given, and with s subjects in each group we have the anova

Source df

Order 1
Subjects (in Order) s − 2

Period 1
P × O (Treatments) 1
P × Subjects (in Order) s − 2

Note: This is a split plot design with a CRD on the whole plots.

The treatment test is totally confounded with the Period × Order interaction
(same sum of squares), so to use this design to test treatment, we need to
assume that this interaction is zero.

Example 5.14. Exercise crossover design The following study was
done by Belko et al. (1984) to study the effects of aerobic exercise and weight
loss on riboflavin requirements of moderately obese marginally deficient young
women. The study was conducted as a two-period crossover design with 12
subjects allocated to one of two exercise sequences (NE/E or E/NE, where
NE=no exercise, E=exercise in the form of 50 minutes of aerobics 5 days per
week) in a CRD with 6 subjects per sequence. A two week baseline period pre-
ceded the actual crossover. All subjects received a diet with 0.8 mg riboflavin
per 1000 kcal. One response variable of interest was the urinary excretion of
riboflavin (UrRibo) expressed as a percentage of intake. The data look like



5.6 Variations on a Theme 213

Order Subject UrRibo Order Subject UrRibo
NE 1 29.5 E 7 14.0

Period 1
...

...
...

...
6 20.4 12 15.0

E 1 31.6 NE 7 26.3

Period 2
...

...
...

...
6 11.3 12 27.8

and are given in dataset Riboflavin.
The anova is

Source df SS MS F p-value

Order 1 217.20 217.20 1.489 0.250
Subjects (in Order) 10 1457.95 145.79

Period 1 3.53 3.53 0.059 0.813
Period × Order (Trt) 1 835.44 835.44 14.034 0.004
Split Plot Error 10 595.28 59.53

where we see that the effect of order is not significant, so the effect of being
first was the same for each treatment. The Period × Order interaction is quite
significant, and this effect is the same as the Treatment effect. Thus, if we are
willing to assume that there is no Period × Order interaction, we can conclude
that there is a significant treatment effect. Of course, this is an assumption
that we must make, as there is no way to test these effects separately. ‖

Some observations about the SCOD:

(1) The test on order is testing the carryover effect. Both groups have received
both treatments, so the only difference is the order in which the treatments
are given. If order is significant, this means that the carryover from T1 is
different from the carryover from T2. (Nonsignificance does not mean there
is no carryover, but, rather, equal carryover.)

(2) The carryover, or order, test, is at the whole plot level, so it is the test of
lesser precision in this design.

(3) The conclusions about treatments are affected by order
(a) If order is not significant, then we can make conclusions about T1

versus T2.
(b) If order is significant, then we can only make conclusions about T1

after T2 versus T2 after T1. In this case, some have recommended
discarding Period 2 and doing a two-sample t-test, but this violates
our rule of never discarding data.

(4) All of the tests in the SCOD anova are, in fact, t-tests, so the entire SCOD
can be done this way (see Exercise 5.22).

There is a connection between crossover designs and Latin squares that is
really more about balancing the order than Latin squares. Suppose that we
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rewrote the data layout for the experiment of Example 5.14 in the following
way:

Subjects
1 7

Period 1 NE E

Period 2 E NE

Subjects
2 8

Period 1 NE E

Period 2 E NE

· · · · · ·

Subjects
6 12

Period 1 NE E

Period 2 E NE

Here we see that we can rearrange the data into 2 × 2 Latin squares. In fact,
as the periods are the same, this is a Latin rectangle (see the discussion at
Example 3.15). This, of course, gets us nothing as the analysis is the same as
before – identifying the squares just renames some variability but the analysis
is the same.

Remember, the analysis is dictated by the experiment design that was run.
Just because we can write the data layout as a Latin square does not mean
we should analyze it that way. In fact, unless it was run as a Latin square,
such an analysis would be wrong.

What this does show, however, is that the order is balanced in that the
same number of subjects get order NE-E as get order E-NE. Without this
balance we could not separate the order effect from the period effect, as well
as the treatment effect. Moreover, we could examine the partitioning of the
sums of squares to see, in each design (crossover with or without Latin square)
where the degrees of freedom go, and for future reference, what might be the
better way of running the experiment (see Exercise 5.21).

Three-Period Crossover

We briefly move out of the realm of the simple crossover design and discuss
three-period crossovers, where there are three treatments. As we will see, the
crossover design starts to get unwieldy here, and moving beyond three treat-
ments is probably not a good idea. The necessity of accommodating multiple
washout periods and the assumption of no carryover effect become tenuous as
the number of treatments increases. However, the three period crossover is a
reasonable extension.

The consideration of balancing for order becomes more important when
there are more than two treatments. In a crossover design with 3 treatments
there are 3 × 2 × 1 = 6 orders which, with six subjects, we could arrange as

Subjects

1 2 3 4 5 6

1 a b c c a b
Period 2 b c a b c a

3 c a b a b c
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Here we have balanced all six orders, by giving one to each subject. Note that
with four treatment there are 12 orders, and with 5 treatments there are 60
orders, so things quickly get out of hand.

Example 5.15. Three-period crossover

Six subjects have been recruited for an alcohol-drug study, in which three
drugs were investigated for mitigating effects of alcohol on reaction time The
three drugs (A,B,C) will be given to the subjects in three time periods, with
order balanced as in the above diagram. The data are in dataset Alcohol and
result in the following anova

Source df SS

Order 5 6252.4
Period 2 1053.8
Period × Order 10 13056.2

Drug 2 2276.8
Residual 8 10779.4

where we see that the effect of the treatment is now only a piece of the Period ×
Order interaction. Note that in this design Subjects and Order are completely
confounded and the design is, in fact, an RCB and not a split plot. ‖

Notice that the design on the first three subjects is a 3 × 3 Latin square,
as is the design on the second three subjects. Moreover, these Latin squares
are orthogonal (see Section 3.6.3). We can examine the effectiveness of using
Latin squares, as we did for the simple crossover, and we leave that to Exercise
5.23.

Whole plot treatments can also be accommodated in the three-period
crossover. If there are multiple subjects and the order is modeled as a whole
plot treatment, we are back in the case of a split plot design. Also, there can
be an actual whole plot treatment, and we again have a split plot design. See
Exercise 5.24 for these variations.

Note: For the inferences to be valid, the covariance structure of the crossover
designs must be the same as was assumed for the split plot.

That is, we assume that there is equicorrelation in the split plot treatment
responses (see Technical Note 5.8.2).

For the two-period crossover design this is satisfied, but seems less reason-
able assumption for the three-period crossover. This is because as the obser-
vations get further apart in time, we might expect the correlation to decrease.
As we look at the next variation, the equicorrelation assumption seems even
less reasonable.
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5.6.3 Repeated Measures

In a repeated measures design, we typically take multiple measurements on a
subject over time. If any treatment is applied to the subjects, they immediately
become the whole plots, and the treatment “Time” is the split plot treatment.

Example 5.16. Hypertension Levey et al. (1995) did an experiment
to compare the blood pressure responses of 22 white men with moderate
hypertension to two six-week metabolic diets. The diets were low in sodium
(Na), but varied in calcium (Ca) intake from food, with one diet averaging
1, 400 mg/day (High Ca) and the other averaging 400 mg/day (Low Ca). A
portion of these data are in dataset Hypertension, and look like

Treatment Subject Time
1 2 3

1 133 141 100

HighCa
...

...
...

...
5 171 142 128

6 104 139 153

LowCa
...

...
...

...
10 147 167 157

Blood pressure was measured at the beginning, midpoint, and end of the
six-week study.

It is clear that this is a split plot design with Subjects as the whole plots,
Diet being the whole plot treatment, and “Time” being the split plot treat-
ment. The 3 measurements on each subject are obviously correlated, however
it is difficult to assume that the correlation structure is as in Section 5.2.1,
that is, that the correlation between any two observations (within a subject)
are equicorrelated. ‖

For measurements over time, it is often more reasonable is to assume that
the correlation decreases over time, that is, if k indexes time, a plausible
correlation model is

Corr(Yijk, Yijk′) = ρ|k−k′| ,(5.28)

so the correlation decreases as the observations are further apart in time. This
is known as an AR(1) (Auto Regressive) correlation structure.

Although this is a plausible correlation structure for a time-dependent re-
sponse, this covariance structure is too general to satisfy Cochran’s Theorem,
and thus the ratios of mean squares do not have F -distributions. There are a
number of ways to approach this problem:

(1) Note that if there are only two repeated measures, then there is equicor-
relation (as there is only one correlation), Cochran’s theorem is satisfied,
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and the usual F -tests are valid. This suggests that if there are more than
two repeated measures, we can look at contrasts and obtain valid tests
(see Exercise 5.27).

(2) We can use an approximate F -test. Such tests are usually conservative,
but are quite simple to implement.

(3) The multivariate procedure known as Hotelling’s T 2 will provide a valid
test against any covariance structure. However, there is typically a sub-
stantial loss of power when moving to multivariate tests.

(4) The repeated measures can be summarized into one measurement such
as an average, or a slope of a regression line. Since there is now only one
measurement per subject, the correlation problem disappears.

(5) In the design of the experiment, different subjects could be used in each
time group. This eliminates the correlation problem as the observations
are now independent but can lead to a large variance increase, as each
subject is no longer his own control.

Huynh and Feldt (1970) have derived general conditions for valid F -ratios in
repeated measures designs, and we look at those and other F approximations
and tests in Miscellanea 5.9.2.

Example 5.17. Hypertension continued For the experiment of Exam-
ple 5.16, the anova is

Source df SS MS F p-value

Treatment 1 1153.2 1153.2 1.5981 0.2418
Whole Plot Error 8 5772.9 721.6

Time 2 343.3 171.6
Trt × Time 2 5028.2 2514.1
Split Plot Error 16 1771.9 110.7

The whole plot test is a valid F -test, as the design is a CRD on the whole
plots. Recall that the whole plot analysis is done on the sums over the split
plot treatment (see Section 5.1.2). At the split plot level, we can take one of
the approaches that is outlined above.

As an illustration, suppose that the experiment is most interested in as-
sessing the change in blood pressure over time, as a function of the treatments.
To summarize this, we can fit a linear regression to each subject and use the
slope coefficients as input. Note that we are not assuming that the response
is linear, but only using the linear regression to give a summary of the trend.

The ten slopes are

Slopes for each subject

HighCa LowCa

1 2 3 4 5 6 7 8 9 10

−16.5 −14.0 −3.5 −7.5 −21.5 24.5 25.5 18.5 22.0 5.0



218 5 Split Plot Designs

and the oneway CRD anova on the slopes yields

Source df SS MS F p-value

Treatments 1 2512.23 2512.23 41.619 0.0002
Within 8 482.90 60.36

This is a valid anova – the subjects are independent and the normality
assumption is not unreasonable. Slope estimates are averages, so we are a bit
more comfortable with this assumption although, in this case, we only have
three observations in each slope. The anova on the slopes is very significant,
showing that the responses to the diets, when measured in blood pressure
trend, are significantly different. ‖

5.7 Exercises

Essential

5.1 The whole plot factor A is allocated in a CRD (3 observations/treatment),
and the split plot factor B is in a CRD within A.

A
0 1

Obs. 1 2 3 1 2 3

B
0
1

12
11

15
13

12
10

14
12

12
11

17
14

(a) Analyze the effects of A and B using a standard split plot analysis.
(b) Analyze the effects of A and B using the appropriate paired and two-

sample t-tests.
(c) Comment on the similarities or differences in parts (a) and (b).

5.2 Referring to Section 5.1.2:
(a) Recreate the three anova tables corresponding to the complete split plot

analysis, the above the line analysis, and the below the line analysis. The
data are in dataset Diet. In particular, explain why the sums of squares
in the oneway CRD are half of what they are in the complete split plot
analysis

(b) Show that the sum of squares due to Time is equal to nd̄2, where d̄ is the
mean of the differences and n = 24. Why should we use 24 when there are
12 differences?

(c) Calculate the anova table for an RCB where the subjects are blocks, and
Time is the treatment (so we ignore Diets). For this design the Time
× Subject interaction has 11 degrees of freedom. Show (numerically, or
algebraically if you really love algebra) that

SS(Time × Subject) = SS(Diets × Time)+SS(Time × Subjects(in Diets)).
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5.3 Brogan and Kutner (1980) analyze data from a prospective randomized surgi-
cal trial allocating cirrhotic patients to one of two treatments: to a nonselective
shunt (standard operation) or to a selective shunt (new operation). The re-
sponse variable is the maximal rate of urea synthesis, where low values are
associated with poor live function. The response was measured before and
after surgery. The data are given in dataset Shunt, and look like

Subject Treatment Pre Post

1 Selective 51 48
...

...
...

...
8 Selective 42 54

9 Nonselective 34 16
...

...
...

...
21 Nonselective 43 32

(a) Analyze these data in a split plot anova. Are you comfortable with the
assumptions?

(b) Each of the three anova tests can be done as a t-test (Section 5.1.2). Verify
the following:
(i) The whole plot test is equal to a two-sample t-test with response equal

to Pre + Post.
(ii) The interaction test is equal to a two-sample t-test with response equal

to Pre − Post.
(iii) The split plot test can be done as a two-sample t-test with response

equal to Pre − Post in one group and Post − Pre in the other group.
However, this is not equal to the anova test unless the group sizes are
equal. Explain the discrepancy.

5.4 The Federal Plant Soils Nutrition Laboratory conducted a study on zinc up-
take in nutrient solution culture under controlled greenhouse conditions. Four
covered tanks (large water baths) were maintained at constant temperature,
two tanks at 10oC and two tanks at 20oC. The top of the tank, and the top of
the pots, were covered so that the roots of the plants, growing in the nutrient
solution, were maintained at the 10o or 20o temperature. The air temperature
for all tops was maintained at a constant temperature for all tanks. Within
each tank there were six pots with four barley plants in each pot. The nutrient
solution in each pot was maintained at constant levels of all essential nutrients
except zinc (0, 0.03, 0.33 µM ZnSO4). The four barley plants in each pot were
harvested after 20 days and the fraction of total zinc in the plant that had
been translocated from the roots to the tops was determined.

(a) Write the model for a split plot analysis.
(b) Write the anova table (source, df and EMS), and indicate all tests.
(c) Describe a set of contrasts that address the factors under study.

5.5 An experimenter in the College of Medicine and the University of Florida was
interested in comparing the performance of a new type of catheter (a triple
lumin catheter) to the standard type. (A catheter is a tube that can be inserted
into a body cavity duct to allow drainage or injection of fluids). The response
to be measured is the pressure inside the catheter (measured in millimeters
of Hg), which is measured by sensors placed at two points along the catheter,
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Distal and Proximate. For each patient the measurements were to be taken
at two organ ducts, one near the pancreas and one in the biliary duct of the
liver.
For each patient, the treatment design is a 2 × 2 × 2 factorial: Organ Ducts ×
Catheter Type × Sensor Location. For the 30 patients available for the study,
each patient will have these 8 pressure measurements taken at each treatment
combination during their surgery. There are a number of ways to carry out
the randomization - here are three:

(1) Randomize throughout the 2 × 2 × 2 factorial.
(2) Choose an organ duct, then randomize throughout Catheter × Sensor

combinations.
(3) Choose a catheter type, randomize the organs within catheter, then ran-

domize sensor in organ.

(a) Identify each of the three designs.
(b) For each design, write the anova table and indicate all tests.
(c) Which design would you recommend if the experimenter is equally inter-

ested in all treatment effects? Explain.
(d) Which design would you recommend if the experimenter is mainly inter-

ested in sensor effects? Explain.
(e) In fact, the experimenter did method (3) (without consulting a statisti-

cian), and was mainly interested in the effect of catheters. Was this a good
choice of design? If not, suggest a better one and defend your choice.

5.6 Referring to Example 5.2, for each of the following four interaction contrasts,
give estimates of variance and 90% confidence intervals. Use Satterthwaite
where needed.

Different WP Interaction Interaction Different WP
AM PM

1 1 0
2 0 −1
3 0 0
4 0 0

AM PM
1 1 0
2 0 −1
3 −1 0
4 0 1

AM PM
1 1 −1
2 0 0
3 −1 1
4 0 0

AM PM
1 −1 −1
2 −1 −1
3 −1 −1
4 3 3

5.7 In Section 5.2.1 we saw the correlation structure for the split plot design with
whole plots in a CRD, and it is relatively simple. The correlation in the split
plot with an RCB on the whole plots is a bit more complicated. For that
design, show that:
(a) Cov(Yijk, Yij′k) = 0 unless j = j′.
(b) Verify the following table of covariances:

Same WP Different WP

Same SP – σ2
β + σ2

βγ

Different SP σ2
β + σ2

ε σ2
β

Which of these covariances do you expect to be greater? Explain.
5.8 Referring to Example 5.5:

(a) Verify the anova table.
(b) Perform the F -tests at the split plot level using the pooled split plot error.

Compare the results of your tests to those obtained in the example. Discuss
the assumptions that you need to do this.

(c) Test the null hypotheses corresponding to the contrasts given in the ex-
ample.
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(d) The variety “Narragannsut” is the most recently developed. Give the con-
trast coefficients for comparing Narragannsut against the average of the
other varieties, and give the contrast for testing whether this effect inter-
acts with the levels of P.

(e) Perform the tests for the contrasts in (c).
5.9 A dataset presented by Hicks (1993) has to do with the quality of electrical

components that are baked during manufacture. The data are

Oven Temp o F
Baking 580 620
Time 5 217, 188 229, 160

(minutes) 15 175, 195 155, 161

(a) The above data layout does not tell us the design. If this experiment were
done as a CRD, explain in detail how the observations would have to be
taken. For example, if the first observation was at Oven Temp = 620 and
Baking Time = 15, what has to be done before the next observation, at
Oven Temp = 580 and Baking Time = 15 is taken. Is this a good way to
run the experiment?

(b) A more informative data layout is
580 620

Rep 1 5 217 229
15 175 155

580 620
Rep 2 5 188 160

15 195 161

which suggests that the experiment was blocked. Explain how to take the
data if this is a (i) RCB or (ii) split plot. If the experiment were run as a
split plot, what is the better choice for the whole plot treatment (from a
practical standpoint).

(c) Write out the anova table (Source and df) for all three designs. Show the
correspondence between the terms in the anovas. What design would you
recommend and why?

(d) For each of the three designs (CRD, RCB, split plot) calculate the corre-
lation between (i) two observations in the same Time, different Temp (ii)
two observations in the same Temp, different Time. Does this information
change your answer in (b)?

5.10 A variation on the data in Exercise 5.9 results in the following split-split plot
design. Suppose that the experiment, detailed in part (b) of Exercise 5.9, was
run three separate times, once in each of three labs. The labs now become the
whole plot treatment, and Time and Temperature are now the split plot and
split split plot treatment, respectively.
(a) Write down the anova (source and df) for the experiment done in three

labs, where each lab does the experiment detailed in part (b) of Exercise
5.9. Are the whole plot treatments in a CRD or in an RCB? Indicate how
you would do the F -tests.

(b) Using dataset Oven, analyze the data. Give a confidence interval for the
Time × Temp interaction.

5.11 Referring to the discussion at the beginning of Section 5.4:
(a) Show that for estimating µ, τi, or γk, contrasts in cell means or effects are

exactly the same.
(b) Referring to Example 5.2, calculate the variance of all four contrasts

when using (i) cell means and (ii) effects. Are the effect variances always
smaller? Explain.
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(c) Referring to Example 5.5, calculate the variance of both contrasts when us-
ing (i) cell means and (ii) effects. Are the effect variances always smaller?
Explain.

5.12 Referring to Examples 5.7 and 5.8:
(a) Reproduce the anova table (the data are in dataset OzoneSSP).
(b) Show how to estimate the variance of a Ozone × Location interaction

contrast and a Variety × Location interaction contrast. Give examples of
contrasts that only use the split split plot error term.

(c) The split split plot error can also be calculated as a pooled split plot error.
For each level of Variety, the design is a split plot (WP = Ozone, SP =
Location). For each of these six designs, calculate the split plot error, and
show that pooling these errors yields the split split plot error of the original
design.

5.13 Recall that in a microarray experiment, the expression levels of genes are mea-
sured through the use of “probes” or “probe sets” (Exercise 3.13). The probes
are sections of the gene, and two probes within the same gene might display
different expression levels. An experimenter wants to exploit this phenomenon
in the following sense. If we measure the same genes on a number of different
species (or subjects or varieties), and detect a Variety × Probe interaction
within a gene, this may be evidence of an allele difference (for example, Aa
versus AA). Thus, an experiment was designed to test this effect.
The following schematic illustrates such a design, with varieties as the whole
plot treatment, genes as the split plot treatment, and probes at the split split
plot level.

Variety

1 · · · v

Array
1 2 · · · r

1

Gene 2

...
g

x x
x x

x x
x x

...

x x
x x

x x
x x

x x
x x

...

x x
x x

· · ·

x x
x x

x x
x x

...

x x
x x

· · ·

Array
1 2 · · · r

1

Gene 2

...
g

x x
x x

x x
x x

...

x x
x x

x x
x x

x x
x x

...

x x
x x

· · ·

x x
x x

x x
x x

...

x x
x x

We see that Variety is the whole plot treatment, applied to the arrays, which
are the whole plots. The Genes are the split plot treatment, as they are within
each array. Furthermore, the Probes, where the probe set for each gene is
represented by the small box with four xs, is nested within the genes (as each
gene has its own set of probes) but crossed with the varieties.
(a) If there are v Varieties, r Arrays, g Genes, and p Probes, a model for this

analysis is



5.7 Exercises 223

Yijk� = µ + Vi + εij + Gk + (V G)ik + δijk + Pk� + (V P )ik� + ξijk�

i = 1, . . . , v, j = 1, . . . , r, i = k, . . . , n, � = 1, . . . , p.

Show that the anova for this layout is
Source df

V v − 1
Whole Plot Error v(r − 1)

G g − 1
G × V (g − 1)(v − 1)
(G × A) in V (g − 1)(r − 1)v

P in G (p − 1)g
(P × V) in G (p − 1)(v − 1)g
(P in G) × (A in V) (p − 1)(r − 1)gv

Indicate how you would perform the tests (what are the appropriate de-
nominators?)

(b) The data can be found in dataset ArraySSP. Verify the following anova
table (recall that with expression data we typically take logs).

Source df SS MS F p-value

Variety 2 201.007 100.503 607.53 0.0001
Whole Plot Error 3 0.496 0.165

Gene 9 109.689 12.188 92.958 < .0001
Variety × Gene 18 75.953 4.220 32.184 < .0001
Split Plot Error 27 3.540 0.131

Probe 30 9.6115 0.3204 2.2834 0.0015
Variety × Probe 60 13.5920 0.2265 1.6145 0.0195
Split Split Plot Error 90 12.6281 0.1403

(c) The significance of the Variety × Probe interaction indicates that there
may be an allele difference for some genes. Derive the error term that
would be used for estimating an interaction contrast between probes in
two different varieties

(d) Calculate the expected mean squares for the anova, to justify the tests.
(They should be similar to Table 5.9.)

5.14 Referring to Example 5.8:
(a) Estimate the variance of a difference in two means (i) at the split split

plot level within, (ii) at the split split plot level within the same level of
the split plot treatment, (iii) at the split split plot level but different levels
of the split plot treatment

(b) Estimate the variance of a general contrast in the split split plot means,
and the interaction means (SSP × WP and SSP × SP). Give examples of
SSP × SP contrasts where Satterthwaite is and is not needed.

5.15 Referring to Example 5.9:
(a) Write out a model equation for the split split plot design.
(b) Analyze these data as in Example 5.10. That is, verify the anova table

(use the dataset SolutionSSP).
(c) Analyze these data according to the EMS of Table 5.10, That is, do not

pool the error terms but rather use the individual errors. Is the analysis in
part (b) justified, that is, are you willing to conclude that the appropriate
interaction terms are zero?
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5.16 Referring to Example 5.10:
(a) Estimate the variance of a difference in two means (i) at the split split

plot level within, (ii) at the split split plot level within the same level of
the split plot treatment, (iii) at the split split plot level but different levels
of the split plot treatment.

(b) Estimate the variance of a general contrast in the split split plot means,
and the interaction means (SSP × WP and SSP × SP). Give examples of
SSP × SP contrasts where Satterthwaite is and is not needed.

5.17 Referring to Example 5.12:
(a) Explain why if K is ignored, this is an RCB on P , and if P is ignored,

this is an RCB on K.
(b) Analyze the above data (in dataset Sugarcane) according to the strip plot

design. What are your conclusions?
(c) The experimenter would like to know which treatment combination gives

the highest yield. What is your answer? Can you justify it?
(d) If P were randomized within the levels of K this would be a split plot

design. Reanalyze the data as a split plot, producing the anova table and
relevant tests. Do any conclusions change?

5.18 Referring to Example 5.13 and using the data in dataset Bioassay:
(a) If we only identify Rows, and not Samples, this is a simple strip plot design.

Verify the following anova table. The data are in dataset Bioassay, and
logs should be take before any analysis.

Source df SS

Blocks 2 0.0295

Dilution (Columns) 11 12.8960
Block × Dilution 22 0.2684

Rows 7 0.2714
Block × Rows 14 0.1827

Dilution × Rows 77 0.2936
Dilution × Rows × Block 154 0.3387

Now identify the factor “Samples” and partition the sums of squares fur-
ther according to the table in Example 5.13.

(b) The second anova table in part (a) actually assumes that Rows are nested
in Samples, but crossed with Blocks. It is, perhaps, more realistic to as-
sume that Rows are nested in Samples × Blocks, which would result from
modeling Rows as a random factor. Under this assumption, the anova
table in Example 5.13 is incorrect, and the partitioning of the sums of
squares should be as follows:
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Source df

Blocks 2

Dilutions (Columns) 11
D × B 22

Samples 3
Samples × Blocks 6
Rows(in Samples × Blocks) 12

D × Samples 33
D × Samples × Blocks 66
D × Rows(in Samples × Blocks) 132

Total 287
To calculate the sums of squares for this table, verify (numerically or
algebraically) the relationships

SS(Rows(in S × B)) = SS(Rows(in S)) + SS(Rows(in S)× B),

SS(D×Rows(in S×B)) = SS(D × Rows(in S))+SS(D × Rows(in S)×B).

Explain why it is reasonable to refer to the term D × Rows(in Samples ×
Blocks) as a within error.

(c) Unfortunately, the response in this experiment is highly nonlinear, even
after taking logs, so the ordinary linear-type anova tests are not appro-
priate. However, we can do pairwise comparisons of the sample dilutions
1/2, 1, and 2, each against the reference. Do these tests and justify your
choice of error term.

(d) One appropriate analysis is to model the dilution effect with a four para-
meter logistic curve (see Ratkowsky and Reedy 1986 for an interpretation
of the parameters)

y = β0 +
β1

1 + exp(β2 − β3x)
.

The factor “Dilutions” is ordered in the amount of dilution. The dataset
Bioassay has the correct ordering of the dilutions from 1 to 12, but realize
that this will not match up with the data presented in Figure 5.2, which is
a field layout with the dilutions randomized. Fit the logistic curves to each
of the samples, and evaluate whether the asymptotes are the same (see
Miscellanea 5.9.2, but note that this is not a repeated measures design).

5.19 Referring to Example 5.14:
(a) Verify the anova table. Show that the sum of squares for Period × Order

is the same as the sum of squares for treatments.
(b) Is there any evidence of carryover effects?
(c) Is there any evidence of a trend due to time? Explain.
(d) Compare the mean effect of exercise versus no exercise on urinary ri-

boflavin. Discuss the reasonableness of the assumption that this compari-
son is free of carryover effects?

(e) Compute the comparison of exercise versus no exercise for the first period
only. Is this difference significant if we only use the error term from the
first period data?
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(f) Suppose 24 subjects had been available. Suggest an alternate design.
(g) Compare your alternative design to the one that was done (anova, tests).

List two advantages and two disadvantages.
5.20 Referring to Exercise 5.19, there were, in addition, baseline urinary riboflavin

values (UrRibo):

Subject 1 2 3 4 5 6 7 8 9 10 11 12

Baseline UrRibo 59.9 59.4 45.8 45.1 32.3 45.7 37.5 68.3 31.0 51.4 42.5 56.5

Subjects 1-6 and 7-12 correspond to Groups I and II (sequences NE/E and
E/NE)
(a) Do the two groups have similar baselines? Do you think this might affect

the analysis?
(b) Explain why baseline would be an appropriate covariate.
(c) Redo the analysis of Exercise 5.19 using Baseline UrRibo as a covariate.

Do the baseline observations improve your test for carryover effects?
5.21 Referring to Section 5.6.2:

(a) If the experiment of Exercise 5.14 were run in Latin squares, show that
the anova would be

Source df

Squares 5
Subjects (in Squares) 6

Period 1
Period × Square 5
Period × Subject (in Squares) 6

and use dataset Riboflavin to fill in in the sums of squares.
(b) Show that

SS(Squares) = SS(Order) + SS(Squares × Order)

and

SS(Period × Subject (in Squares)) = SS(Period × Order)

+SS(Period × Squares × Order)

with SS(Period × Order) = SS(Treatments). Construct an anova table
with sources, df and sums of squares that contains all of the sources and
shows how they are related.

(c) Based on the breakdowns of the degrees of freedom, discuss the conditions,
and the variabilities of the sources, that would make it more advantageous
to run the experiment in Latin squares.

5.22 Two drugs, A and B, are given to each of six subjects, with the goal of assessing
the availability of the drug in the blood. The response is AUC (Area Under
the Concentration curve). The data are

Order
1 2

Subjects Subjects
1 2 3 4 5 6

Period 1 A 51.9 35.1 38.6 B 50.8 41.1 39.1
Period 2 B 43.5 45.4 35.4 A 44.2 33.4 32.7
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(a) Give the anova table for the this design, and do the appropriate tests.
(Note that it is common to take logs of the AUC readings.)

(b) Show that the test on Order is the same as a two-sample t-test, where the
response is the sum of the responses of each subject on the two treatments.

(c) Show that the test on Period is the same as a two-sample t-test, where
the response is the difference of the responses of each subject on the two
treatments.

(d) Show that the test on Treatments (or P × O) is the same as a two-sample
t-test, where the response is the difference of the responses of each subject
on the two periods.

(e) One advantage of doing the analysis as a sequence of t-tests is that we can
accommodate the unequal variance situation. For each of (b)-(d) assess
the assumption of equality of variances and, if you think it necessary,
calculation an approximate t-statistics that does not use the equal variance
assumption.

5.23 Referring to the three-period crossover design of Section 5.6.2, we noted that
the orderings comprised two 3 × 3 Latin squares with data layout

Subjects Subjects
1 2 3 4 5 6

1 a b c c a b
Period 2 b c a b c a

3 c a b a b c

Use dataset Alcohol to produce the anova table for this data layout and
compare it to the anova in Exercise 5.15. Show how the sums of squares are
related, and where the test on treatments comes from in each design. Based
on the breakdowns of the degrees of freedom, discuss the conditions and the
variabilities of the sources, that would make it more advantageous to run the
experiment in Latin squares.

5.24 We also noted that in Example 5.15, Order and Subjects are confounded, and
this can be remedied by having more than one subject in an order. Moreover,
there could be a further whole plot treatment in the design.
(a) Consider adding Subjects 7-12 to the experiment under the following con-

ditions
(i) The design on Subjects 7-12 is a replication of that on Subjects 1-6,

so Order is now a whole plot treatment with two subjects per order.
(ii) In addition to what is done in (i), Subjects 1-6 receive one level of an

additional whole plot treatment, while Subjects 7-12 receive a differ-
ence level of the treatment, so we have

Treatments
1 2

Subjects

1 2 3 4 5 6

1 a b c c a b
Period 2 b c a b c a

3 c a b a b c

Subjects

7 8 9 10 11 12

1 a b c c a b
Period 2 b c a b c a

3 c a b a b c

For each of these designs give the anova table (source and df) and show
how to test treatments. Also show how the sums of squares are connected
– in particular – does the below the line analysis change?
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(b) We use data from Lee et al. (1998) to illustrate the designs in part (a).
They report a three-period crossover study on the drug Ondansetron,
which is used to prevent side effects from chemotherapy and other proce-
dures. Three variations (V1-V3) of the drug were used in healthy Korean
male subjects randomized to received the formulations. The plasma con-
centrations of Ondansetron were monitored over a period of 12 hours after
the administration, and the area under the curve (AUC)was reported. The
researchers were particularly interested in the bioequivalence of the varia-
tions, that is, that there is no difference in the response to the treatments.
Analyze the data, given in dataset Ondansetron, to see if the conclusion
of bioequivalence can be supported.

5.25 Frequently, a drug is given in combination with another drug or compound.
This co-administration may be done for a variety of reasons. For example,
the effects of the two drugs are additive or synergistic in their pharmacologic
or pharmacodynamic activity (e.g., beta blocker + diuretic for hypertension
– similar efficacy with fewer side-effects); a drug plus an adjuvant to speed
or improve the effects of the drug (acetaminophen/aspirin/ibuprofen + caf-
feine for improved analgesia); or just plain convenience as in many cold/flu
products (acetaminophen + dextromethorphan + pseudoephedrine + diphen-
hydramine for aches, cough, congestion, and runny nose). The question is
whether one compound affects the pharmacokinetics, say, of the other when
co-administered versus the administration of a single product (and vice versa,
possibly).
A typical design to address these questions for compounds A and B would be
a 3 period crossover with the arms A, B, and A + B may or may not all be of
interest. With three treatments there are 3! = 6 possible orderings. We have 12
subjects available, and can run three orders with 4 subjects per order. For each
of the following scenarios decide which orderings you would run and give the
anova table (source and df) indicating the tests and the possible confounding:
(a) There is no interest in B’s pharmacokinetics, only if A’s are altered in B’s

presence.
(b) There is interest in the pharmacokinetics of both entities.

5.26 (Switchback Reversal Design) A variation on the crossover design is the switch-
back reversal design, where in the simplest case we have two groups of exper-
imental units and three time periods. One group is assigned to the treatment
sequence A/B/A and the other group receives the sequence B/A/B. This de-
sign is particularly effective when the response of interest has a linear trend
through time. This trend would be eliminated from the within-unit variability,
which would be used to assess treatment effects. This is a consequence of the
fact that the treatment comparison is orthogonal to the linear component for
period effects.
The following data, found in dataset Cow, are taken from Brandt1 and represent
the results of an experiment designed to measure the effects of two diets on
milk production (in pounds) of cows. Care was taken to have the groups nearly
equal (weight, milk productions, weight, etc.), and the treatments consisted
of different diets. Treatment A was a diet of 1 part corn and cob meal to 1
part ground oats, while treatment B had 4 parts corn and cob meal to 1 part

1 Brandt, A. E. (1938). Tests of significance in reversal or switchback trials. Iowa.
Agric. Exp. Res. Bull. 234.
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ground oats. The three treatment periods covered 105 days, with 3 periods
of 35 days each. The yields of the first seven days of each period were not
considered because of possible carryover effects from the previous diet.

Group 1 Group 2

Period 1 2 3 1 2 3

Treatment A B A B A B

Cow Cow
1 433 413.7 362.9 6 671.3 610.3 596.8
...

...
...

...
...

...
...

...
5 655 616.1 494.6 10 764.4 717.6 717

The question of primary interest is whether diets A and B differ significantly
with regard to milk yield, which can be answered by the contrast that assesses
quadratic Period × Group interaction.

(a) Complete the following anova table (sums of squares and tests):
Source df

Groups 1
Cows(in Groups) 8
Periods 2
Periods × Group 2
Linear Period× Group 1
Quadratic Period× Group 1

Error = Period × Cows(in Groups) 16
(b) Explain why the quadratic Period × Group interaction yields the appro-

priate treatment comparison.

5.27 Referring to the experiment of Example 5.16:
(a) If interest is in the level of blood pressure over the duration of the ex-

periment, at the split plot level we could summarize the data with the
averages for each subject. Do this, and compare the results to those in
Example 5.17.

(b) Repeated measure split plot tests can also be done validly as sets of con-
trasts. Set up a reasonable set of orthogonal contrasts for the time treat-
ment and do the analysis.

(c) It was mentioned in Section 5.6.3 that if different group of subjects were
used in each time period, then the correlation problem would disappear.
If this were done in the experiment in Example 5.16 the design would be
a twoway CRD.

(i) Explain how to run the CRD, and give the anova table (source and df).
(ii) Compare the anova table in (i) to the one in Example 5.17. Show that

the 24 df for “Within” in the CRD is partitioned into the WP error
df and SP error df. Illustrate this with the numbers from the dataset
Hypertension.

(iii) Depending on the structure of the error, are there circumstances when
the CRD is preferred to the repeated measures design in terms of the
precision of the error estimate?

5.28 The delivery of a drug to the blood system is a function of the method of
administration. A typical drug can be given orally in either tablet or liquid
form, or can be administered by injection, inhalation, etc. The following data
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are blood concentration levels of a drug delivered by the standard control
method “C”, and two alternatives denoted by 1 and 2. A portion of the data
appear below, with the full dataset in Delivery. Each row represents one
subject, and the concentration level is measured over four equally spaced time
periods.

Time
Method 1 2 3 4

C 73 69 66 61
C 64 65 59 58
...

...
...

...
...

1 77 77 92 83
1 79 91 96 75
...

...
...

...
...

2 54 65 68 68
2 70 84 79 64

(a) Explain why it is incorrect to analyze these data as a oneway CRD on
delivery method.

(b) Write out the more appropriate split plot anova (source and df) indicating
the tests.

(c) What covariance structure seems reasonable for these data? Does this
violate the split plot assumptions?

(d) Run the anova, and partition the treatment sum of squares into orthogonal
polynomial contrasts. Test the contrasts and state any conclusions.

(e) Explain why the contrast tests are valid.
(f) Use the approximations of Miscellanea 5.9.2 to attach significance levels to

the usual split plot anova F -tests. How do these results agree with those
in part (d)?

Accompaniment

5.29 EMS calculations:
(a) Referring to Table 5.3, fill in the details to verify the expected mean

squares. (Recall Lemmas 2.16 and 3.16.)
(b) Finish the calculations of the expected mean squares started in Section

5.3.2 and verify the remaining EMS terms in Table 5.7.
5.30 Referring to the least squares criteria of (5.4):

(a) Verify that (5.30) are the least squares estimates of the effects and compare
them to those in (2.8).

(b) Although we know that least squares estimates are unbiased, verify the
unbiasedness of the estimates in (a) under model (5.1).

(c) Derive the least squares estimates and verify their unbiasedness using
model (5.14).

5.31 For the microarray design of (5.31), a comparison of major interest is the
interaction of genes and treatment. Specifically, for a given gene �, we want to
estimate the difference in expression levels for treatments i and i′, (GT )i� −
(GT )i′�.
(a) Show that the least squares estimate of (GT )i� − (GT )i′� is

(ȳi·� − ȳi··) − (ȳi′·� − ȳi′··).



5.7 Exercises 231

(b) Show that the variance of the estimate in part (a) is

g − 1

g

(
2

r

)
σ2,

where, here, σ2 is the split plot error. (Note that the number of genes in
the experiment has no effect on reducing variance; it is r, the number of
true replications, that counts.)

5.32 Referring to (5.23), verify the useful expected values: (a) Eδ̄ik δ̄k′ = σ2
δ/tr, if

k �= k′, (b) Eδ̄ik δ̄k = σ2
δ/tr, (c) Eδ̄iδ̄k = σ2

δ/r.

5.33 Some fun with the Satterthwaite approximation:
(a) Show how to go from (5.12) to (5.13) using the identity

n∑

i=1

(xi − x̄)2 =

n∑

i=1

x2
i − n(x̄)2.

Referring to Technical Note 5.8.1:
(b) Use the fact that for a χ2

ν random variable E(χ2
ν) = ν to verify (5.30).

(c) Show that straightforward matching of second moments yields

E

(
k∑

i=1

aiYi

)2

= E(
χ2

ν

ν
)2 =

2

ν
+ 1,

and hence ν̂ = 2/[(
∑k

i=1
aiYi)

2 − 1], which could be negative.

5.34 Referring to the calculations leading to (5.8) and (5.10), here we further ex-
plore the variance and correlation of the split plot means when the whole plots
are a CRD.
(a) Show that

Corr(Ȳk, Ȳk′) =
σ2

ε

σ2
ε + σ2

δ

def
= ρSP

and compare this correlation to the RCB intraclass correlation ρB (3.10).
(b) Show that an alternate expression for the split plot contrast variance is

Var

(
∑

k

akȲk

)

=
σ2

ε +σ2
δ

tr

[

(1 − ρSP )
∑

k

a2
k+ρSP

(
∑

k

a2
k+2

∑

k>k′

akak′

)]

,

and using the definition of ρSP show that this expression is the same as
(5.8).

(c) The variance of an interaction contrast within a whole plot is given in
(5.10). Using the independence of replicates within a whole plot, show
that

Var(Ȳik) =
σ2

ε + σ2
δ

r
,

and using (5.6) show that

Var

(
∑

k

akȲik

)

=
σ2

ε + σ2
δ

r

∑

k

a2
k + 2

σ2
ε

r

∑

k>k′

akak′ =
σ2

δ

r

∑

k

a2
k.
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5.35 Referring to Section 5.3.3 and the calculation of contrast variances in the RCB
split plot:
(a) At the whole plot level, show that

Var(Ȳi) =
σ2

ε + σ2
β

b
+

σ2
δ + σ2

βγ

bg
, Cov(Ȳi, Ȳi′) =

σ2
β

b
+

σ2
βγ

bg
,

and hence Var(
∑

i
aiȲi) is given by (5.17).

(b) At the split plot level, show that

Var(Ȳk) =
σ2

β + σ2
βγ

b
+

σ2
δ + σ2

ε

bt
, Cov(Ȳk, Ȳk′) =

σ2
β

b
+

σ2
ε

bt
,

and hence Var(
∑

k
akȲk) is given by (5.18).

(c) For the interaction contrast within the same whole plot level, show that

Var(Ȳik) =
1

b
(σ2

δ + σ2
βγ + σ2

ε + σ2
β), Cov(Ȳik, Ȳik′) =

1

b
(σ2

ε + σ2
β),

and hence Var(
∑

k
akȲik) is given by (5.19).

(d) For interaction contrasts with different whole plot levels, use the fact that

Var

(
∑

ik

aikȲik

)

=
∑

i

Var

(
∑

k

aikȲik

)

+2
∑

i>i′

Cov

(
∑

k

aikȲik,
∑

k

ai′kȲi′k

)

to use part (c) to calculate the first term. Then show that

Cov

(
∑

k

aikȲik,
∑

k

ai′kȲi′k

)

=
σ2

β

b

∑

kk′

aikai′k′ +
σ2

βγ

b

∑

k

aikai′k

and establish (5.20).

5.36 Referring to (5.23), show that
(a)

Var

(
∑

ik

aik
ˆ(τγ)ik

)

=
∑

i

Var

(
∑

k

aik δ̄ik − gāiδ̄i

)

+ Var

(

t
∑

k

āk δ̄k

)

−2Cov

(
∑

i

[
∑

k

aik δ̄ik − gāiδ̄i

]

, t
∑

k

āk δ̄k

)

= ({1}) + ({2}) − 2({3})

and that
(b)

{1} =
σ2

δ

r

[
∑

ik

a2
ik − g

∑

i

ā2
i

]

, {2} =
σ2

δ

r
t
∑

k

ā2
k,
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and

{3} =
σ2

δ

r

[

t
∑

k

ā2
k −

∑

i

∑

k

āiāk

]

=
σ2

δ

r
t
∑

k

ā2
k,

since
∑

i

∑
k

āiāk = 0 for a contrast.
(c) Therefore, show that

Var

(
∑

ik

aik
ˆ(τγ)ik

)

=
σ2

δ

r

[
∑

ik

a2
ik −

∑

i

∑

k

(āi + āk)2

]

=
σ2

δ

r

∑

ik

[aik − (āi + āk)]2,

where, to establish the final equality, show that
∑

ik

[aik − (āi + āk)]2 =
∑

ik

a2
ik −

∑

k

(āi + āk)2 + 4
∑

ik

āiāk.

(d) Show that Var
(∑

ik
aik

ˆ(τγ)ik

)
is given by (5.24), where the whole plots

are in an RCB.

5.37 Referring to Table 5.9, verify the expressions for the expected mean squares
that are given there.

5.38 Referring to Section 5.5:
(a) Verify the expressions for the variances of contrasts in the CRD split split

plot. (The calculations are similar to those in Section 5.2.3.)
(b) Verify the expressions for the variances of contrasts in the RCB split split

plot.
(c) (For the stouthearted) Verify the EMS in Table 5.10 for the RCB split

split plot (5.26).

5.39 Referring to Technical Note 5.8.2:
(a) Show that the covariance matrix, Σ, of the observation vector Y is block

diagonal with tr blocks of the form

σ2
δIg + σ2

εJg.

(b) Establish the following properties of A1, A2, and C:
(i) A1, A2, and C are idempotent (follows from the idempotency of B1 −

B3 and I −B1 −B2 + B3 and the facts that BiBj = B3 and B4B
′
4 =

rItg).
(ii) A1A2 = A1C = A2C = 0 and A = A1 + A2 + C is idempotent

(iii) A1Σ = σ2
δA1, A2Σ = σ2

δA2, CΣ = σ2
δC.

(c) Use the results in part (b) to prove Lemma 5.18.
5.40 (a) Use Lemma 5.18 to prove Theorem 5.19.

(b) Formulate and prove a version of Cochran’s Theorem for below the line
tests when the whole plots are in an RCB. You can assume that σ2

βγ = 0.

5.41 Referring to the strip plot design of Section 5.6.1, show that

(a) Cov(Yijk, Yi′j′k′) =

{
0 unless j = j′

σ2
β + σ2

τβ if j = j′, i = i′, k �= k′

σ2
β + σ2

βγ if j = j′, i �= i′, k = k′.
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(b) If there are replications within the crossed blocks, so the observations are
Yijk�, where the model is the same as (5.27) except now we have εijk�,
show that the covariance of observations within the same cell is

Cov(Yijk�, Yijk�′) = σ2
β + σ2

βγ + σ2
βτ + σ2

βτγ .

Referring to the strip plot design of Section 5.6.1:
(a) Verify the EMS of Table 5.11.
(b) Verify the variances of the treatment contrasts

(i) T: Var
(∑

i
aiȲi

)
=

σ2
ε+σ2

βτγ
+gσ2

τβ

rg

∑
i
a2

i

(ii) G: Var
(∑

k
akȲk

)
=

σ2
ε+σ2

βτγ
+tσ2

βγ

rg

∑
k

a2
k

(iii) T × G: Var
(∑

ik
aikȲik

)
=

σ2
ε+σ2

βτγ

r

∑
ik

a2
ik +

σ2
βγ

r

∑
k

(∑
i
aik

)2

+
σ2

τβ

r

∑
i

(∑
k

aik

)2
.

5.8 Technical Notes

5.8.1 Satterthwaite’s Approximation
From Technical Note 2.8.2 we have seen that the sum of independent χ2 ran-
dom variables is again χ2, and together with the developments in Cochran’s
Theorem this has lead to the F -tests and confidence intervals in the anova.
However, in obtaining contrast variances in the split plot design, we find that
the error variance is not a simple sum of χ2 random variables.
Specifically, from Theorem 2.18, we know that if Wi are independent χ2

random variables, then so is
∑

i
Wi. Now consider Case (4) of the CRD split

plot design, specifically (5.13). There we will estimate the variance with

MS(SP error)

r

∑

ik

(aik − āi)
2 +

MS(WP error)

rg

∑

i

(
∑

k

aik

)2

= A × MS(SP error) + B × MS(WP error),(5.29)

where

A =
1

r

∑

ik

(aik − āi)
2and B =

1

rg

∑

i

(
∑

k

aik

)2

and MS(SP error)/σ2
δ and MS(WP error)/(σ2

δ +gσ2
ε) are χ2 random variables

divided by their degrees of freedom.
Although

∑
i
Wi is χ2, this is not the case for

∑
aiWi, where the ais are

known (nonequal) constants, and that is what we have in (5.29). This dis-
tribution is, in general, quite difficult to obtain. It does seem reasonable,
however, to assume that a χ2

ν , for some value of ν, will provide a good ap-
proximation. Furthermore, the method of moments can be very useful in
obtaining approximations to such distributions of statistics.
For these situations, the approximation of Satterthwaite (1946) does a good
job, and is still used today. He was interested in approximating the denomi-
nator of a t-statistic, but solved a more general case which can best be stated
as follows: For given constants a1, . . . , ak and independent mean squares
M1, . . . , Mk with degrees of freedom ν1, . . . , νk, find a value of ν so that
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k∑

i=1

aiMi ∼
χ2

ν

ν
(approximately).

A first moment match yields the following (Exercise 5.33):

E

(
k∑

i=1

aiMi

)

=

k∑

i=1

aiE(Mi) =

k∑

i=1

ai,(5.30)

E(χ2
ν/ν) = 1,

which tells us that we need to have
∑k

i=1
ai = 1, which does not help us to

estimate ν (and, as we will see, is not really a constraint).
So next we match second moments, but Satterthwaite found that he had to do
this in a clever way. Straightforward matching of the second moments yields
a possibly negative estimate of ν, but the following argument succeeds. Write

E
(∑

aiMi

)2

= Var
(∑

aiMi

)
+
(
E
∑

aiMi

)2

=
(
E
∑

aiMi

)2
[

Var(
∑

aiMi)

(E
∑

aiMi)2
+ 1

]

.

Now use the fact that E
∑

aiMi = 1 on the expectation outside of the
square brackets, but not on the expectation inside the square brackets. Since
E(χ2

ν/ν)2 = (2/ν) + 1, equating these expressions we obtain

ν =
2(E

∑
aiMi)

2

Var(
∑

aiMi)
.

Finally, use the fact that M1, . . . , Mk are independent random variables to
write

Var
(∑

aiMi

)
=
∑

a2
i Var Mi = 2

∑ a2
i (EMi)

2

νi
,

where in the last equality we use the fact that Var Mi = 2(EMi)
2/νi. Sub-

stituting this expression for the variance and removing the expectations, we
obtain Satterthwaite’s estimator

ν̂ =

(∑
aiMi

)2

∑ a2
i

νi
M2

i

.

Finally, note that the constraint
∑

i
ai = 1 really does not matter, as we can

divide the numerator and denominator above by (
∑

i
ai)

2 without changing
the value of ν̂, and obtain

∑
i
ai = 1. This approximation is quite good as

long as all of the ai are positive.
For more details on the Satterthwaite approximation see Casella and Berger
(2001, Section 7.2).

5.8.2 Cochran’s Theorem for Split Plot Designs
In this section we give the details of how Cochran’s Theorem (Theorem 2.20)
applies to split plot designs.

We first note two things:
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(1) For a split plot with the whole plots in a CRD, above the line the tests
are from the CRD. Thus, we can apply Cochran’s Theorem for CRDs
(Technical Note 2.8.3) to justify those tests.

(2) Similarly, if the whole plot treatments are in an RCB, we can apply
Cochran’s Theorem for RCBs (Technical Note 3.8.3).

Thus, we only need give the details for the below the line tests, for the split
plot treatment and the split plot - whole plot treatment interaction. Here
we will give the details for the case of the whole plot treatments in a CRD,
leaving the RCB case to Exercise 5.40. We have model (5.1)

Yijk = µ + τi + εij + γk + (τγ)ik + δijk,

with
Var(Yijk) = σ2

δ + σ2
ε , Cov(Yijk, Yijk′) = σ2

ε ,

with all other covariances equal to zero (that is, there is only correlation
between the split plot observations within the same whole plot rep). To have
the covariance matrix in a nice form, we order the data vector y as

Y′ = {Y ijk}′

= (Y111, · · · , Y11g, · · · , Yt11, · · · , Yt1g, · · · , Y1r1, · · · , Y1rg, · · · , Ytr1, · · · , Ytrg),

which results in a block diagonal covariance matrix (which we write as
“BD(·)”) with tr blocks:

Cov(Y) = BD(σ2
δIg + σ2

εJg).

See Exercise 5.39.
We next define four matrices (note that these are not the same as the matrices
defined in Technical Note 3.8.2 because of the ordering of the Y vector)

B1 =
1

t

⎛

⎜
⎝

Ig

...
Ig

⎞

⎟
⎠

tg×g

(Ig · · · Ig)g×tg

B2 =
1

g

⎛

⎜
⎜
⎝

1g×1 0 · · · 0
0 1g×1 · · · 0
...

...
...

...
0 0 · · · 1g×1

⎞

⎟
⎟
⎠

tg×t

⎛

⎜
⎜
⎝

11×g 0 · · · 0
0 11×g · · · 0
...

...
...

...
0 0 · · · 11×g

⎞

⎟
⎟
⎠

t×tg

,

B3 =
1

tg
Jtg, B4 = BD(Ig · · · Ig)g×gr t times,

and now we write the sums of squares in terms of these matrices and Y.
Define the matrices

A1 =
1

r
B′

4(B1 − B3)B4, A2 =
1

r
B′

4(I − B1 − B2 + B3)B4,

and
C = BD(I − C1 − C2 + C3),

where
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C1 =
1

r

⎛

⎜
⎝

Ig

...
Ig

⎞

⎟
⎠

rg×g

(Ig · · · Ig)g×rg

C2 =
1

g

⎛

⎜
⎜
⎝

1g×1 0 · · · 0
0 1g×1 · · · 0
...

...
...

...
0 0 · · · 1g×1

⎞

⎟
⎟
⎠

rg×r

⎛

⎜
⎜
⎝

11×g 0 · · · 0
0 11×g · · · 0
...

...
...

...
0 0 · · · 11×g

⎞

⎟
⎟
⎠

r×rg

,

C3 =
1

rg
Jrg.

Then

Y′A1Y = SS(SP Trts), Y′A2Y = SS(SP Trts × WP Trts),

Y′CY = SS(SP Error).

Here is the application of Cochran’s Theorem to the split plot design. The
proofs are similar to the other Cochran results, and are left to an exercise
(Exercise 5.39).

Lemma 5.18. Let Y ∼ N(0, Σ), where Σ = BD(σ2
δIg + σ2

εJg). Then

A∗
1 =

1

σ2
δ

A1, A∗
2 =

1

σ2
δ

A2, C∗ =
1

σ2
δ

C, and A∗ = A∗
1 + A∗

2 + C∗

satisfy the assumptions of Theorem 2.20 (Cochran’s Theorem). That is,
(1) A∗Σ is idempotent.
(2) A∗

1Σ, A∗
2Σ, and C∗Σ are idempotent.

(3) A∗
1ΣA∗

2 = 0, A∗
1ΣC∗ = 0, A∗

2ΣC∗ = 0.

Using this lemma we can establish the following theorem.

Theorem 5.19 (Cochran’s Theorem for Split Plots - Whole Plots in
CRD). Under the split plot anova model (5.1), Y = {Yij} is multivariate
normal with Σ = BD(σ2

δI + σ2
εJ).

(1) Under H0 : γk − γ̄ = 0, for all k

MS(SP Trt)

MS(SP Error)
=

Y′A∗
1Y/r1

Y′C∗Y/rC
∼ Fr1,rC

where r1 = tr(A1) and rC = tr(C).
(2) Under H0 : (τγ)ik = 0 for all i and k

MS(SP × WP)

MS(SP Error)
=

Y′A∗
2Y/r2

Y′C∗Y/rC
∼ Fr2,rC

where r2 = tr(A2)
(3) For any contrast (a11, . . . , atg),

∑
ik

aikY ik −
∑

ik
aikτγik√

MS(SP Error)
r

∑
ik

a2
ik

∼ trC .
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5.9 Miscellanea

5.9.1 Microarray Design II
Here we go a bit further into the design of oligonucleotide microarrays, the
single-dye system made by Affymetrix. Recall that the experimental unit is
the RNA (actually the subject from which it was taken), as that is where the
treatment is applied. (For plants this could be growing conditions or varieties,
for humans this could be disease status.) On the chip are the genes, and here
we are splitting the experimental unit to get the expression level of all of the
genes. Thus, the genes are a split plot treatment, and the microarray design
is a simple split plot.
As in any split plot design, the whole plot treatments can have many different
design – this is the design on the subjects - and can be a CRD, RCB, or
something else. Assuming a oneway CRD for the whole plots, a model for the
analysis is

yijk = µ + Ti + Aij + Gk + (GT )ik + εijk,(5.31)

i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g,

where yijk is the log expression level of gene k on subject j in treatment i,
Ti is the treatment, Aijare the microarrays in the treatments, and Gk are
the genes. We assume that each treatment has r subjects (microarrays). The
anova is

Source df

Treatments t − 1
Whole Plot Error t(r − 1)

Genes g − 1
Gene × Treatment (t − 1)(g − 1)
Split Plot Error t(g − 1)(r − 1)

The whole plot error comes from the mean square for Arrays in Treatments,
and the split plot error is Gene × Array in Treatment. Note that the microar-
rays must be replicated otherwise there are no tests!
Typically, the factor of most interest is the Gene × Treatment interaction,
because that signifies that the genes are reacting differently to the treatments,
and this could help the experimenter find genes that are connected to a disease
state, or some other trait. It is fortunate that this test is at the split-plot level
and is thus more precise.

5.9.2 Beyond Cochran

As mentioned in Section 5.6.3 the covariance structures of the repeated mea-
sures anova are outside the assumptions of Cochran’s Theorem. As a result,
at the split plot level, the ratios of mean squares do not have an F distri-
bution under the appropriate null hypotheses. Here we look at a variety of
methods to address this problem.

Huynh/Feldt Conditions

Huynh and Feldt (1970) give necessary and sufficient conditions on the error
structure under which we can obtain valid F -ratios. They first give their
conditions for the case of one whole plot treatment and extend it to the split
plot model.
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Theorem 5.20. Huynh/Feldt Conditions
(1) (One Whole Plot Treatment) For the model

Yij = µ + τi + βj + εij , i = 1, . . . , t, j = 1, . . . b,

where Yj = (Yij , Y2j , . . . , Ytj) are the observations on subject (or block) j
over the treatments (time in a repeated measures design) and have a multi-
variate normal distribution. Let Σt×t = {σrs} denote the common covari-
ance matrix of the Yjs. Under the null hypothesis H0 : no treatment effect,
the ratio of mean squares MS(Trt)/MS(Trt × Block) has an F distribution
if and only if for some constants αr, αs, and λ > 0

σrs =

{
αr + αs if r �= s
αr + αs + λ if r = s.

(2) (Split Plot Design) In the split plot model, the F -tests at the split plot level
are valid F -tests if and only if the covariance matrix condition in (1) is
satisfied within each level of the whole plot treatment. The αs may differ,
but there must be a common λ

This theorem gives us a richer covariance structure than Theorem 5.19, which
would require αr = αs for all r and s. However, it does not get us to covariance
structures such as AR(1), which remain popular for modeling trends over
time.

Multivariate Analysis

The split plot model is very similar to the model used for the multivariate
technique of Profile Analysis, the only difference being the covariance struc-
tures. In profile analysis the covariance is allowed to be general. Thus, the
test statistic for profile analysis, Hotelling’s T 2, will provide an exact test in
the repeated measures case. (Indeed, Hotelling’s T 2 will provide an exact test
for any covariance structure, at the cost of a decrease in power.) For example,
for model (5.1), but allowing the covariance structure to be totally general,
we can test H0 : γk = 0 for all k with the statistic

T 2 = rtȲ ′M(M ′SM)−1M ′Ȳ ,

where Y ′ = the vector of split plot means, S is the sample covariance matrix
of the split plot means, that is, S = {skk′}, where

skk′ =
1

t(r − 1)

∑

i

∑

kk′

∑

j

(Yijk − Ȳi·k)(Yijk′ − Ȳi·k′),

and

M =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 · · · · · · 0
−1 1 · · · · · · 0

0 −1 1 · · · 0
...

...
...

...
...

0 0 · · · · · · −1

⎞

⎟
⎟
⎟
⎟
⎠

g×g−1

.

Under H0,
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rt − t − g + 2

t(r − 1)(g − 1)
T 2 ∼ Fg−1,rt−t−g+2.

Thus, we can get an exact test in the repeated measures design, but we give
up a lot. Since we are estimating the entire covariance matrix, with g(g+1)/2
parameters, we are losing a great deal of power. In the split plot model, or
in the AR(1) covariance model, we only have to estimate a two or three
parameters. In general, it is somewhat of a losing proposition to estimate the
entire covariance matrix; we typically want to model it with a small number
of parameters, otherwise too much power is lost. However, it is nice to know
that an exact test does exist.

Approximate F -tests

In the notation of Section 5.2, with similar approximations holding for the
other split plot designs,

MS(Split Plot Trt)

MS(Split Plot Error)

approx∼ F1,t(r−1))

and
MS(SP Trt × WP Trt)

MS(Split Plot Error)

approx∼ Ft−1,t(r−1).

Geisser and Greenhouse (1958) have shown that the approximation is conser-
vative, which implies that the cutoff points will be greater than those of the
true distribution (whatever it is) and thus rejection with the approximation
will imply rejection against the true cutoff. Thus, the approximate test will
maintain the nominal α -level (the Type I error rate will be ≤ α), but the
approximate test will be less powerful than using the true cutoff point.

Summarizing the Repeated Measure

As was illustrated in Example 5.17, another approach to testing repeated
measures is through the use of a summary statistic. This can be a most
powerful approach, but relies on both the expertise of the experimenter and
the existence of a summary measure that is meaningful.
Reducing the repeated measure to a summary statistic eliminates the cor-
relation problem as there is now only one split plot measurement for each
subject (whole plot). In addition, it effectively eliminates the split plot since,
with one observation per subject, the design is now only on the whole plot
treatments. However, if the summary measure is a good one, there will be a
variance reduction and a corresponding increase in power. Also, as the sum-
mary statistics are usually some sort of average, we would expect the Central
Limit Theorem to be on our side.
Typical summary statistics are:
(1) Means. Summarizing each subject with the mean over time reduces the

analysis to comparing average levels over time, which might be a quantity
of interest.

(2) Contrasts. We can do a full set of orthogonal contrasts or a few contrasts of
interest. Since the repeated measure is usually time, polynomial contrasts
are usually applicable.
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(3) Coefficient estimates. For each subject we could fit a curve such as y =
β0 + β1x, or a growth curve such as the logistic curve y = β0

1+β1 exp−β2x
,

and use the coefficient estimate of each subject as the dependent variable
in the regression. In the case of linear regression, β1 measures a rate of
change, which is often a meaningful quantity. The logistic curve is a bit
trickier, but could also be meaningful. For example, β0 is the asymptote,
which is the total growth, and β2 is a relative growth rate.

The drawback to this approach, other than the problem of finding a summary
measure, is that we may end up doing many analyses if we have a number
of summary measures. Thus, in such a situation, we will have to adjust the
conclusions to account for multiplicity of tests(Miscellanea 2.9.1).

For more details on Hotelling’s T 2 and the F approximations, see Morrison
(2005), and for the full picture on the analysis of repeated measures see Davis
(2002).
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Confounding in Blocks

Would you think me impertinent if I were to put your theories to a
more severe test?

Dr. Watson to Sherlock Holmes
The Sign of Four

It is easy to conduct an experiment in such a way that no useful in-
ferences can be made...

William Cochran and Gertrude Cox
Experimental Designs

6.1 Introduction

Thus far, all of the designs we have looked at have been complete in that
every treatment has appeared in every block. This is the best situation and
gives us the best information for treatment comparisons. However, there are
many situations where we cannot put every treatment in every block (often
due to time, money, or physical constraints of the experiment). For example,
a microarray experiment using a two-dye chip is restricted to two treatments
per block (microarray). In these cases the design becomes incomplete in that
not every treatment is in every block.

If the design is incomplete, then we immediately are faced with the fact
that treatment comparisons are confounded with block effects which, of course,
will cause problems. There is the obvious problem that the block difference
may affect treatment comparisons, and we also have the problem that block
variances could creep into the variance of a treatment comparison. The point
of this chapter is to see how to deal with incomplete designs so that we can
mitigate these problems.

Example 6.1. Diet and blood pressure A study was to be conducted
to assess the effects of diet on blood pressure in African-American males.
Three factors are to be measured:
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A = amount of fruits and vegetables in the diet (low/high),
B = amount of fat in the diet (low/high),
C = amount of dairy products in the diet. (low/high)

There are eight treatment combinations to be arranged in a 23 factorial, where
each treatment combination will be administered as follows: A subject will
have a baseline blood pressure reading taken, then will be fed (at a labora-
tory) according to one of the eight diet plans (treatments). After three weeks,
another blood pressure reading will be taken.

Unfortunately, administering the diet plans is very labor-intensive, and
only four treatment combinations can be run at one time. Thus, the experi-
ment will be run in two blocks, each lasting three weeks.

Notation
for
describing
treatment
combinations

Notation: For factors of two levels, we denote the “high”
level by the corresponding lower case letter, and the “low”
level by the absence of the letter. Thus the treatment com-
bination abc denotes the combination where each treatment
is at the high level, and bc denotes the combination where A
is at the low level and the other two are at the high level.
The treatment combination with all factors at the low level
is denoted by (1). (See also Example 2.11.)

The following design was decided upon:

Block
1 2

a b

c abc

(1) ab

ac bc

With eight subjects per treatment combination, the anova table looks like

Source df
Blocks 1
Trts 6
T × B 0
Within 56
Total 63

where there are only 6 degrees of freedom for treatments because of the con-
founding with blocks. Typically, the treatment tests are against the T × B
interaction, but there are no degrees of freedom to estimate it. Thus, our only
recourse is to use the within error, which brings along the assumption of no
T × B interaction.

Formally, we would consider the 56 degrees of freedom to be wasted be-
cause the within variation is only useful for testing the T × B interactions,
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which we are hoping is not significant. However, especially with human sub-
jects, we are often concerned with the size of the within variability, so there
is some merit to having eight subjects. However, a better design, if possible,
would be to use only four subjects for each treatment combination, run the ex-
periment twice, and thus be able to estimate the T × B interaction (Exercise
6.1).

If we break down the 7 degrees of freedom for treatments we can study the
confounding in blocks. We look at the treatment combinations corresponding
to the component main effects and interactions, and here is where we can see
the confounding. Writing out the contrasts we get

Effect
Block Trt. Comb A B C AB AC BC ABC

1 a + − − − − + +
1 b − + − − + − +
1 c − − + + − − +
1 abc + + + + + + +
2 (1) − − − + + + −
2 ab + + − + − − −
2 ac + − + − + − −
2 bc − + + − − + −

where we see that the ABC interaction is confounded with blocks, as Block 1
has all high levels and Block 2 has all low levels. Every other effect is balanced
between the blocks in that there are two high levels and two low levels in each
block, so no other effect is confounded with blocks. ‖

So we see why the above anova table has only 6 degrees of freedom for
treatments, as the block sum of squares is exactly the sum of squares due to
the threeway interaction. By moving from an RCB to the above incomplete
design, we are able to estimate all of the treatment effects except the threeway
interaction. Although this is not bad, in that we only lost information on one
contrast, this design is really not very good for two reasons: (i) We are wasting
a lot of degrees of freedom by having eight subjects per cell. (ii) We cannot
estimate the T × B interaction. The following design does better on these
points.

Example 6.2. Diet and blood pressure continued The design in
Example 6.1 confounded the ABC interaction with blocks, not allowing us
to estimate it. One way around this problem, assuming that we are still lim-
ited to running only four treatment combinations at one time, is to replicate
the experiment and confound another effect with blocks. That is, to run the
following experiment
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Run 1 Run 2

Block
1 2

a b

c abc

(1) ab

ac bc

Block
3 4

(1) a

bc abc

b c

ab ac

In the second run the BC interaction is confounded with Blocks (Exercise
6.2), and so if both runs are done, we can do the following anova (using four
subjects per treatment combination) and estimate all effects:

Source df
Runs 1
Blocks (Within Runs) 2

Block 1 vs. Block 2 (ABC) 1
Block 3 vs. Block 4 (BC) 1

Treatments 7
A 1
B 1
C 1
AB 1
AC 1
BC 1
ABC 1

T × B (Residual) 5
Within 48
Total 63

This pooling
can result
in error
underestimation

Note that the BC and ABC effects have only partial infor-
mation, as they are each estimated only with one run. The
sums of squares are adjusted for blocks (they are fitted
after blocks). Here we can actually use the more proper
error term, the T × B interaction, to test the treatment
effects. Of course, because of the small number of degrees
of freedom for this term, we would be looking to pool it
with the within error.

‖

Now for this second design we see that in each run we lost some information
on one of the factors (by confounding that factor with the blocks) . In Run 1 we
lost information on the threeway interaction, and in Run 2 we lost information
on the BC interaction. We lost the information because the block contrast
and the effect contrast were exactly the same, with the “+” in one block and
the “−” in the other. If we think about this a little harder, we might think
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of doing this for each of the treatment combinations, that is, set up pairs of
blocks so that each pair confounds one of the seven treatment effects.

The effects are
Effect

Trt. Comb A B C AB AC BC ABC
(1) − − − + + + −
a + − − − − + +
b − + − − + − +
c − − + + − − +
ab + + − + − − −
ac + − + − + − −
bc − + + − − + −
abc + + + + + + +

Example 6.3. Balancing the whole thing For each of the above seven
effects we can set up a pair of blocks that are confounded with that effect.
This would result in the following design:

Block Pair Confounded Effect

a ab ac abc

(1) b c bc
A

b ab bc abc ∗

(1) a c ac ∗ B

c ac bc abc ∗

(1) a b ab ∗ C

Block Pair Confounded Effect

a b ac bc

(1) c ab abc
AB

a c ab bc

(1) b ac abc
AC

b c ab ac ∗

(1) a bc abc ∗ BC

a b c abc

(1) ab ac bc
ABC

Although we have written the blocks in pairs, to better understand the
confounding pattern, the design to be run will randomize among the fourteen
blocks. If we could have run a complete design, an RCB, then we could put
all eight treatment combinations inside a block.

Note that if we could collapse each of the seven pairs into one block, each of
those seven blocks would be a complete block, and the experiment could be run
as an RCB. With 56 experimental units, one for each treatment combination,
in Table 6.1 we look at the anova tables from running the experiment in 14
blocks as above, in 7 complete blocks.

Comparing the anova tables in Table 6.1 we see that seven degrees of
freedom moved from the Trt × Block interaction in the RCB to blocks in the
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Table 6.1. The anova tables from running the experiment in Example 6.3 in 14
incomplete blocks (left) and seven complete blocks (right).

Fourteen Seven
Incomplete Blocks Complete Blocks

Source df

Blocks 13
Trts 7
Trts × Blocks 7 × 5 = 35

Total 55

Source df

Blocks 6
Trts 7
Trts × Blocks 7 × 6 = 42

Total 55

incomplete design. This can be explained by first looking at the six blocks that
are marked with a ∗ above. These are the only blocks that can be used to
estimate the A × Block interaction. This is the same for all of the treatment
effects – each can only be estimated from six blocks. Thus, the interaction
degrees of freedom are 7 × 5, since each effect only is estimated from 6 blocks
yielding 5 degrees of freedom for blocks to estimate interactions (see Exercise
6.3).

‖

The design in Example 6.3 is, in fact, a balanced incomplete block design,
the workhorse of incomplete designs and the subject of the next section.

6.2 Balanced Incomplete Block Designs

In the previous section we saw that if all treatments cannot appear in every
block, then confounding results in a loss of information. A Balanced Incomplete
Block Design (BIBD) addresses this problem by balancing the confounding so
that

Advantages
of the
BIBD

(1) Every treatment is estimated with the same variance
(2) Every contrast of treatments is estimated with the same

variance.
(3) The contrast variance is free of the block variance com-

ponent.

It is (2) and (3) that are most important, as the BIBD balances the con-
founding so that we still can get good estimates of contrasts. This is accom-
plished by balancing pairs of treatments in the incomplete blocks

Definition 6.4. A balanced incomplete block design (BIBD) with t treat-
ments and b blocks satisfies:

(1) Each block has k treatments (k < t).
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(2) Each treatment appears in r blocks (r < b).
(3) Every pair of treatments appears together λ times.

Note that every pair of treatments appears together the same number of times
in a BIBD. This requirement can be relaxed, but then all contrasts will not
have the same variance.

Example 6.5. Very simple BIBD If there are t = 4 treatments and we
only can have k = 3 treatments per block, we need

(
4
3

)
= 4 blocks for a BIBD.

If we denote the treatments A,B,C,D, the BIBD is

Block
1 2 3 4

A A A B
B B C C
C D D D

where every treatment is in r = 3 blocks and every pair of treatments appears
together λ = 2 times. ‖

The BIBD is characterized by the five numbers (t, k, b, r, λ), where

t > k, otherwise we could do an RCB,

λ < r < b, with equality if we have an RCB.

Note also that the requirements of the BIBD result in the following two equa-
tions, that every BIBD must satisfy:

rt = bk,
λ(t − 1) = r(k − 1).

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

BIBD
defining
equations

There is nothing mysterious about these equations, they merely reflect count-
ing the same thing in two different ways. That is,

rt = # blocks/trt × # trts = # Experimental Units,
bk = # blocks × # trts/block = # Experimental Units,

so the fact that rt = bk is just a result of counting the number of experimental
units two different ways. Similarly, but a bit more complicated, consider any
one treatment, say treatment A. Then, since A occurs in r blocks, each time
with k − 1 other treatments,

# of Exp. Units in blocks containing A = r(k − 1).

On the other hand, since A occurs λ times with each of t−1 other treatments,

# of Exp. Units in blocks containing A = λ(t − 1),

and so r(k − 1) = λ(t − 1).
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Example 6.6. Very simple BIBD continued If t = 4 and k = 3, then
4r = 3b. If we start looking for integer solutions of this equation, we see that
r = 1 or r = 2 does not work, but r = 3 does, with b = 4. We then have
λ × 3 = 3 × 2, so λ = 2, which is the design in Example 6.5. ‖

Note that, in an RCB, we have b = r and t = k, so all of these restrictions
are immediately satisfied (see Exercise 6.4).

6.2.1 Model and Distribution Assumptions

The model that we use for the BIBD is essentially equivalent to the RCB
model (3.5), that is

Yij = µ + τi + βj + εij ,(6.1)

where

(1) the random variables εij ∼ iid N(0, σ2
ε) (normal errors with equal vari-

ances),
(2) the random variables β1, . . . , βb, are iid N(0, σ2

β) and are independent of
εij for all i, j.

The difference between the BIBD model and the RCB model lies in the index
set. For the RCB model we had i = 1, . . . , t and j = 1, . . . , b. However, in
the BIBD we do not have every treatment in every block, so we have to be
more careful about how we define the index set (as we were for Latin square
designs in Section 3.6.3). Here, the index set for the BIBD can be defined in
two ways:

{i, j} : i = 1, . . . , t, j ∈ Ji = the blocks j that contain the treatment i
– there are r such indices

{i, j} : j = 1, . . . , b, i ∈ Ij = the treatments i that are in block j
– there are k such indices.

So, for example,

ȳi =
1
r

∑

j∈Ji

yij , ȳj =
1
k

∑

i∈Ij

yij , and ¯̄y =
1
rt

t∑

i=1

∑

j∈Ji

yij

are, respectively, the mean of treatment i, the mean of block j, and the grand
mean.

As the BIBD is not a balanced design, we do not expect the least squares
estimates to be the cell means. However, they are close to what we might
expect, given the unbalance of the design. The least squares estimates of τi

are (Exercise 6.29)

τ̂i =
k

λt

⎛

⎝rȳi −
∑

j∈Ji

ȳj

⎞

⎠(6.2)
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and, by virtue of being least squares, are unbiased estimators of τi.
This estimate is somewhat intuitive, as the first term in the parentheses is

the total response from treatment i, and what is subtracted is the total of the
blocks containing treatment i, which seems to be the appropriate centering
term. However, if we operated strictly on intuition, we might come up with
the estimate

τ̂ I
i = ȳi −

1
r

∑

j∈Ji

ȳj =
1
r

⎛

⎝rȳi −
∑

j∈Ji

ȳj

⎞

⎠ ,

where we use “I” for “intuition”. Although there is nothing terribly wrong
with this estimate, it is biased (but has a smaller variance than the least
squares estimate τ̂i).

Example 6.7. Simple estimates Hicks (1993) gave the following data
from a BIBD used to measure current flow through four different television
tubes (A,B,C,D), where the blocks are different days.

Treatment
A B C D

1 2 - 20 7
Block 2 - 32 14 3

3 4 13 31 -
4 0 23 - 11

Using these data, our estimates of the effect of treatment B are

τ̂B =
3

2 × 4

(

68 − 131
3

)

= 9.13,

τ̂ I
B =

1
3

(

68 − 131
3

)

= 8.11.

‖

To maintain unbiasedness, the least squares estimate uses the factor k/λt
rather than 1/r, which of course seems more natural since treatment i appears
r times. From the fact that λ(t − 1) = r(k − 1), we can write

λt

k
= r

[
k − 1

k

t

t − 1

]

,(6.3)

and it can be shown that, since k < t in a BIBD, the factor in square brackets is
always less than 1, yielding the larger magnitude of the least square estimates
(Exercise 6.30). Note that in an RCB k = t so there is equality in (6.3).

The anova table for a BIBD has the form
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Source df SS MS F

Blocks b − 1 SS(Blocks) MS(Blocks)

Treatments t − 1 SS(Trts) MS(Trts) MS(Trts)
MS(T × B)

T × B bk − b − t + 1 SS(T × B) MS(T × B)

Total bk − 1 SS(Total)

where we see that the test on treatments is the same as in the RCB. We also
note that under model (6.1), MS(T × B) is an unbiased estimator of σ2

ε .

6.2.2 Estimating Contrasts

Although the BIBD is an unbalanced design, it is sufficiently balanced so
that the variance of a treatment contrast is free from block effects. This is
an enormous advantage, and allows the BIBD to achieve good precision in
contrast estimation.

The variance of τ̂i is

Var(τ̂i) =
(

k

λt

)2

Var

⎛

⎝rȲi −
∑

j∈Ji

Ȳj

⎞

⎠

=
(

k

λt

)2

Var

⎛

⎝
∑

j∈Ji

⎡

⎣Yij −
1
k

∑

i′∈Ij

Yi′j

⎤

⎦

⎞

⎠

=
(

k

λt

)2 ∑

j∈Ji

Var

⎛

⎝Yij −
1
k

∑

i′∈Ij

Yi′j

⎞

⎠ ,

where we use the fact that observations in different blocks are independent.
It is then straightforward to show (Exercise 6.31) that

Var

⎛

⎝Yij −
1
k

∑

i′∈Ij

Yi′j

⎞

⎠ = r

(

1 − 1
k

)

σ2
ε(6.4)

and thus

Var(τ̂i) =
(

k

λt

)2

r

(

1 − 1
k

)

σ2
ε =

k

λt

(
t − 1

t

)

σ2
ε ,(6.5)

where we used the fact that r(k − 1) = λ(t − 1).

The
parameter
λ is very
important

Note the important role played by λ, the number of times
that the pairs appear together. It is in the denominator of
the variance estimate, so increasing λ leads to more precise
variance estimates. If this were an RCB, then k/λt = 1/b,
which would give the best precision.
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Note: As a consequence of the BIBD, the variance of τ̂i is free of σ2
β , the block

variance. This is the real advantage of this design.

Finally, using (6.5), we can derive the variance of a contrast. We start with

Var

(
t∑

i=1

aiτ̂i

)

=
t∑

i=1

a2
i Var(τ̂i) + 2

∑

i>i′

Cov(τ̂i, τ̂i′),

and using the fact that (Exercise 6.32)

Cov(τ̂i, τ̂i′) = − k

λt2
σ2

ε ,(6.6)

we have

Var

(
t∑

i=1

aiτ̂i

)

=
k

λt
σ2

ε

t∑

i=1

a2
i .(6.7)

As we have done in previous chapters, we can get the distribution of the
contrast estimate based on model (6.1), but here, due to the algebraic over-
load, we skip the details. The contrast

∑t
i=1 aiτ̂i satisfies

∑t
i=1 aiτ̂i −

∑t
i=1 aiτi

√
k
λtMS(T × B)

∼ tbk−b−t+1,(6.8)

from which we can get both tests of hypotheses and confidence intervals.

Example 6.8. Orthopedic BIBD Berkowitz et al. (2005) report the
results of a study done to assess the strength of self-tapping screws used in
surgical procedures on bone. In particular, there is interest in whether the
depth of insertion of the screw has a relationship to strength. Five treatments
(1-5) were considered, each corresponding to a relative depth of placement
of the screw (-1mm, 0mm, 1mm, 2mm, 3mm). The screws were inserted into
blocks of synthetic bone, called bone coupon and a machine known as an
Instron was used to measure the force (in Newtons) needed to extract the
screw. Because of the size of the bone coupon and the disruptive nature of the
extraction, only three screws could be inserted in a particular bone coupon.

The experiment was run as a BIBD with t = 5 and k = 3, with anova

Source df SS MS F p-value

Block 9 1,097,669 12,1963 13.892
Trt 4 2,033,580 508,395 57.906 < .0001
Residuals 16 140,474 8,780

The anova shows that the treatments (depth of screws) are significantly dif-
ferent. Berkowitz et al. (2005) report the cell means, and then use a multiple
comparison procedure to find the best treatment.
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Treatment Mean Pullout Strength (N)

1 2 3 4 5

1316.94 1503.11 1941.83 1928.41 2045.55

From the development in Section 6.2.2 it should be clear that the variance
of the cell means depends on σ2

β , the block variance, and comparisons should
be based on the least squares estimates, where contrast variances would only
depend on σ2

ε , estimated by the MS(Residual). This is pursued in Exercise
6.11. ‖

Generalizations

As a generalization of a BIBD, there is the PBIBD, the Partially Balanced
Incomplete Block Design. Here we will just give a very brief introduction;
more detail can be found in Dean and Voss (1999, Chapter 11), who discuss
PBIBDs and the more general group divisible designs.

In the BIBD, the parameter λ describes how many times a particular
treatment is paired with all others. As we have seen, this is a very important
parameter of the design, as it plays a key role in the variance of the treatment
effect estimate; see (6.7). In a PBIBD, there are two values of λ defining two
associate classes of treatments. If λ1 > λ2, then there is better information
on the treatments in the λ1 class.

This design is useful when a BIBD is too costly, or if some treatments are
more important than others. The analysis is a bit more complicated than the
BIBD.

6.3 Fractional Factorial Designs

At the beginning of this chapter we saw, in Example 6.3, how a BIBD cy-
cles through a design and confounds each effect with blocks, so in the end
we can recover information about each effect. If we run only a piece of the
design, however, there will be a loss of information in that some effects will
be confounded, and will not be estimable. This is the idea behind Fractional
Factorial Designs.

Introduction

In a fractional factorial design we purposely confound some effects in order to
run a smaller design. The key is to understand the confounding, so that the
important information is not lost.

Example 6.9. A simple fractional factorial For example, suppose
that we have the design of Example 6.3 and only run the first block
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a ab ac abc

Formally, this is a 1/2 replication of a 23 factorial. That is, the original treat-
ment design is a 23 factorial (three treatments each at 2 levels in a crossed
design), and the full factorial would require 23 = 8 observations. However, we
are only taking 23/2 = 4 observations in the 1/2 rep.

If we actually run this design, there is a massive amount of confounding
that we can summarize as follows:

Effect
Trt. Comb A B C AB AC BC ABC

a + − − − − + +
ab + + − + − − −
ac + − + − + − −
abc + + + + + + +

First note that the A effect is confounded with blocks, and cannot be esti-
mated. (This should be no surprise, as only the high level of A is in this block.)
However, note that there is confounding of pairs of effects, as they have the
same contrast. Thus, B and AB are confounded, C and AC are confounded,
and BC and ABC are confounded. This means that we can use the contrast
to estimate one of the confounded effects only if we assume that the other
effect is zero. ‖

In this section we will only deal with factorial designs in which each treat-
ment has two levels. More general cases, such as 3p designs, where each factor
has 3 levels, or 2p3r, where factors can have either two or three level, are
considerably more complex, and, in practical terms, somewhat less useful. See
Cox and Reid (2000, Section 6.3) for some of the theory and Dean and Voss
(1999, Chapter 14) for applications and examples.

For a 2p factorial, where p is any integer, we can take a fractional repli-
cation of size 1/2q, for q < p. This would result in 2p−q observations in one
block. Moreover, there are many ways to choose the composition of the blocks,
depending on which effects are to be confounded.

Example 6.10. A simple fractional factorial continued From Ex-
ample 6.9 it should be clear that it is very important to understand the con-
founding in a fractional replicate. For example, if there is interest in B, the
above design is only useful if we assume that the AB interaction is zero.
However, consider the fraction

(1) b ac abc

Here, the B effect is confounded with the ABC interaction, which we might
be more comfortable in assuming is equal to zero (Exercise 6.14). ‖

Some observations about fractional factorials:
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(1) It is important to understand the subject matter so that the effect of
confounding structure can be minimized.

(2) The statistical analysis must be carefully planned, so valid inferences can
be made in the face of the confounding.

(3) Often there is no within error estimate, and tests are done against higher-
order interactions. As we have seen (Section 2.5) this will lead to conser-
vative tests and confidence intervals.

Alias Sets and Modular Arithmetic

The confounding structure of a fractional factorial can be understood using
the idea of alias sets, which are generated through a use of modular arithmetic.

Definition 6.11. Treatment combinations that are confounded with each
other are called aliases. An alias set consists of all treatment combinations
that are estimated by the same contrast. The alias set containing the overall
mean is called the defining contrast.

Alias sets and blocks are easily found using modular arithmetic, in partic-
ular arithmetic mod 2, in which 0 and 1 are the only values we use, and we
invoke the modular identity 1 + 1 = 0.1

Now, with each effect we associate a variable xi, i = 1, . . . , p that can
only take on the values 0 (for the low level) and 1 (for the high level). So, for
example, if A is at the high level we would have x1 = 1, and if C is at the low
level we would have x3 = 0.

Example 6.12. A simple fractional factorial concluded To con-
found B with ABC, we simply write

x2 = x1 + x2 + x3, or x1 + x3 = 0,

The solutions to x1 + x3 = 0 generate the treatment combinations in one
block, and the solutions to x1 + x3 = 1 generate the treatment combinations
in the other block. Thus the blocks are

x1 + x3 = 0 x1 + x3 = 1

000
010
101
111

=

(1)
b
ac
abc

100
001
110
011

=

a
c
ab
bc

1 Modular arithmetic essentially replaces the sum with the remainder of the sum
when divided by the modular base. Thus, for mod 2 arithmetic, 1 + 1 = 2, but 2
has remainder 0 when divided by 2, so 1+1 = 0. This is an oversimplification, but
it is all that we need to deal with 2p designs. See Cox and Reid (2000, Appendix
B) for an introduction to modular arithmetic for fractional factorials.
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Note that the equation x1 + x3 = 0 is the defining contrast, as it is satisfied
by the overall mean, with low levels for all factors. The block containing this
defining contrast is sometimes known as the intrablock subgroup.

To find the alias sets, we can do as in Example 6.9 and write out the
contrasts. Although this is preferred, it could get unwieldy for large factorials.
Alternatively, we can cycle through the defining equation. To do this, start
with the defining contrast x1 + x3 = 0 and cycle through by adding xis to
each side. Thus,

x1 + x3 = 0, so {AC, I} is an alias set,
x1 + x1 + x3 = x1 + 0 ⇒ x3 = x1, so {A, C} is an alias set,

x2 + x3 = x2 + x1, so {BC, AB} is an alias set,
x3 + x2 + x3 = x3 + x2 + x1 ⇒ x2 = x3 + x2 + x1,

so {B, ABC} is an alias set.

‖

Note a few things about these calculations:

(1) We have repeated used the fact that 2xi = 0.
(2) We could use either block in running the 1/2 rep and we would get the

same information.
(3) There are, in fact, seven distinct pairs of blocks that comprise seven dis-

tinct 1/2 replicates, each with different alias sets (see Exercise 6.15).

Of course, we are not limited to running just one block. In fact, with smaller
factorials it is often the case that all of the blocks are run, so we do the
complete factorial in blocks.

Fig. 6.1. The full 23 factorial takes the observations at each corner of the cube
(a). Two possible fractions are shown in (b) and (c), corresponding to the blocks in
Example 6.13. Design (c) is also the fraction used in Example 6.14.

(a)

A

B

C

(b)

A

B

C

(1)

ab

ac

bc

(c)

A

B

C

a

b

abc

c
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Example 6.13. Complete factorial in blocks The design in Example
6.12 is really not very good, as it confounds main effects. A better design is
obtained from the defining contrast x1 +x2 +x3 = 0 or 1 which gives the two
blocks

(1)
ab
ac
bc

a
b
c

abc

The threeway interaction is confounded with blocks, and if we assume that
the twoway interactions are zero, we can get a residual term to estimate the
error. This results in the anova table

Source df

Blocks 1
A 1
B 1
C 1
Residual 3

Figure 6.1 shows the relationship between the full factorial and the two blocks.
‖
There are other options in running a fractional factorial, which we look at in
the following example.

Example 6.14. A classic fraction In a classic agricultural experiment,
a 23 factorial was planned where the three treatments were high and low levels
of fertilizer. The factors are CaO: Lime, P: Phosphorus, and K: Potassium.
A 1/2 rep was run with the following data (tons/acre):

Trt. Comb. Yield

c 27.4
p 17.0
k 22.0

cpk 24.3

Here the defining contrast is x1 +x2 +x3 = 0 and the alias sets are {I,ABC},
{A,BC}, {C,AB}, and {B,AC}. Thus, we can make inferences about the
main effects if we assume that the twoway interactions are zero.

We can estimate the effects with contrasts as follows:

CaO : c + cpk − p − k = 12.7,

P : p + cpk − c − k = −8.1,

K : k + cpk − c − p = 1.9.

The anova for these data is
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Source df SS

CaO 1 40.32
P 1 16.40
K 1 .90

so, unless we do something clever, we have no error estimate and hence no
tests. ‖

We have a number of choices in obtaining an error estimate

(1) We can run a second block with the same treatments, and estimate the
error from the residual. This would be a good option if there is no other ef-
fect that we would like to estimate, and are satisfied with our assumptions
about which effects can be assumed to be zero.

(2) We can run a second block with different treatments (using another defin-
ing equation) and estimate the error with the residual. This would be a
good option if there is another effect that we would like to estimate.

(3) We can replicate the experimental unit and have a within error. This
would maximize our error degrees of freedom.

Example 6.15. A classic fraction continued Here we look at the
three options described above for obtaining an error estimate. Consider the
three experiments:

Experiment
1 2 3

c 27.4
p 17.0
k 22.0

cpk 24.3

c 24.0
p 27.3
k 27.5

cpk 26.8

c 27.4
p 17.0
k 22.0

cpk 24.3

(1) 25.2
c 26.4
p 23.9
cp 26.7

c 27.4, 26.6
p 17.0, 26.8
k 22.0, 24.5

cpk 24.3, 23.4

Experiment 1 allows us to estimate the main effects, and have 3 degrees of
freedom for error. Experiment 2 uses a different block with defining contrast
x3 = 0, which confounds the CP interaction with CPK, and thus allows for
the estimation of the CP interaction under the assumption that the threeway
interaction is zero. That is, we can estimate the CP effect by

(cp − p) − (p − (1)),

which estimates the CP interaction if we assume that the CPK interaction
is 0, as both estimates have the same contrast. We pay for this additional
effect estimate by losing one degree of freedom in the residual, leaving us with
two degrees of freedom for error. Finally, Experiment 3 allows the estimation
of the main effects with 4 degrees of freedom for within error.

The anova for Experiment 1 is
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Source df SS MS F p-value

Blocks 1 27.75
C 1 9.461 9.461 0.576 0.503
P 1 3.781 3.781 0.230 0.664
K 1 3.001 3.001 0.183 0.699
Residual 3 49.324 16.441

where we see that none of the main effects are significant. For the other two
anovas see Exercise 6.16 ‖

Model and Distribution Assumptions

The fractional factorial design will typically be run as a CRD (if there is only
one block) or an RCB (if there is more than one block). Therefore, the model
and distribution assumptions are taken from those designs; see Section 2.2 for
the CRD and Section 3.2 for the RCB.

However, we will typically add assumptions about interactions, in partic-
ular that certain interactions are zero so that we can estimate the effects of
interest. The form of these assumptions will be dictated by the subject matter
and the design.

Typically, we will assume that most or all of the interactions are zero; this
will be necessary in order to get estimates of the main effects. For example,
suppose that we have the twoway model

yijk = µ + τi + βj + γk + εijk,(6.9)

where τi and γk are the treatments and βj are the blocks, and we run the 22

factorial in blocks of size 2:

(1) = y111

ab = y212

a = y221

b = y122

Our estimate of the A effect (τ in the model) is

high A − low A =
1
2
[(y212 + y221) − (y111 + y122)],

and, under model (6.9), we find that (Exercise 6.33)

E
(

1
2
[(Y212 + Y221) − (Y111 + Y122)]

)

= τ2 − τ1,(6.10)

where the βj actually cancel out in the contrast (not just in expectation). If
we were to only estimate the high level of A using (y212+y221)/2, this estimate
would also be unbiased, and the block effect would be zero in expectation. In
the contrast the effect actually cancels, making for a more precise comparison.
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We attach standard errors to these contrasts in the usual way, taking our
estimate of variance from the MS(Residual) in the anova. Thus, for example,

Var
(

1
2
[(Y212 + Y221) − (Y111 + Y122)]

)

=
(

1
4

+
1
4

+
1
4

+
1
4

)

σ2
ε .

Example 6.16. A classic fraction concluded Finishing Example
6.15, in Experiment 1 we can estimate the P effect by

1
4
[(17 + 24.3 + 27.3 + 26.8) − (27.4 + 22 + 24 + 27.5)] = −1.375,

with variance estimated by

8 ×
(

1
4

)2

16.441 = 8.2205.

Thus, to test H0: no P effect, we compare −1.375/
√

8.2205 = −0.479 to a t
distribution with 3 degrees of freedom. Of course, we accept H0. (Compare
the t-statistics to the F -statistics in the anova.) ‖

Larger Factorials, Smaller Fractions

For smaller fractions, which are more likely the case if the factorial is larger,
we will need more than one defining equation.

Example 6.17. Fractioning a 25
factorial For a 1/22 = 1/4 replica-

tion of a 25 factorial, we would take 25/22 = 8 observations. Since we are only
doing 1/4 of the design, the alias sets will contain four treatment combina-
tions. We construct these sets with two defining contrasts

For example, suppose that we confound the mean with the fiveway inter-
action and a fourway interaction, so we have

0 = x1 + x2 + x3 + x4 + x5 and 0 = x1 + x2 + x3 + x4.(6.11)

Each of the contrasts can be either 0 or 1, and we now can construct the
four blocks by equating the contrasts to the four combinations (0, 0), (0, 1),
(1, 0), and (1, 1). For example, the intrablock subgroup satisfies (6.11) and is
given by

(1), bc, bd, cd, abe, ace, ade, abcde.

Note that if each term in (6.11) is 0, the sum of the two terms will also
be zero, so the sum is immediately in the alias set. Since the sum is x5, to
construct the alias sets we then cycle through the equation
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0 = x1 + x2 + x3 + x4 + x5 = x1 + x2 + x3 + x4 = x5

by successively adding terms xi to each piece. For example, the first alias
set is {(1), ABCDE,ABCD,E}, and if we add x1 to each piece we get the
second alias set {A,BCDE,BCD,AE}. Continuing, we get the complete set
of aliases

{(1), ABCDE,ABCD,E} {A,BCDE,BCD,AE}
{AB,CDE,CD,ABE} {ABC,DE,D,ABCE}
{B,ACDE,ACD,BE} {BC,ADE,AD,BCE}
{C,ABDE,ABD,CE} {CD,ABE,AB,CDE}.

Note that (6.11) is not a particularly good defining contrast, as we have
confounded a main effect with the mean. For an alternative, see Exercise 6.17

‖

The pattern for even larger factorials, or smaller fractions, should now be
clear. If we were to do a 1/23 = 1/8 replication, we would start with three
terms, and the blocks would be formed by equating these terms to either 0 or
1 in the eight combinations (0, 0, 0), (0, 0, 1), (0, 1, 0), . . ., (1, 1, 1).

There is an alternate way of calculating the alias sets, based on a slight
variation of the modular arithmetic explained here. We have chosen not to
use that approach, as it is somewhat artificial and has the disadvantage of not
being able to give the composition of the blocks. See Exercise 6.18 for more
details.

6.4 Variations on a Theme

In this section we will look at a number of examples that go a little beyond
the designs that we have been discussing. Although many of the examples
here are in the context of microarray analysis, this merely reflects the fact
that we are dealing with designs that have blocks of size two. We start with
a specialized design that has some interesting properties.

Balanced Lattice Designs

As mentioned in Section 3.6.3, the existence of orthogonal Latin squares re-
sults in a specialized design which, if it can be applied, can be quite useful
in practice. We start with the following definition (see, for example, Kuehl
1994).

Definition 6.18. An incomplete block design with each treatment appear-
ing r times is resolvable if the blocks can be divided into r groups with each
group having a complete replication of the treatments.
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Table 6.2. A possible field layout for a balanced lattice square with t = 9 treat-
ments.

Rep 1

Row
1 2 3

1 6 4 5

Col. 2 3 1 2

3 9 7 8

Rep 2

Row
1 2 3

1 4 2 9

Col. 2 3 7 5

3 8 6 1

Rep 3

Row
1 2 3

1 8 4 3

Col. 2 6 2 7

3 1 9 5

Rep 4

Row
1 2 3

1 7 1 4

Col. 2 9 3 6

3 8 2 5

Complete designs, such as the RCB, are resolvable, while a BIBD is
typically not resolvable. The advantage of a resolvable design is that the
treatments are balanced across the blocks and it is then possible to estimate
treatment contrasts free of block effects. Lattice designs are constructed to be
resolvable.

We will look at two types of lattice designs. In this section we will see the
properties of the more restrictive balanced lattice square, and we look at the
less restrictive balanced lattice in Exercise 6.23. The major difference in these
designs is that the lattice square controls for both row and column effects,
while the lattice controls only one blocking factor.

Suppose that the number of treatments, t, is a square. If a set of
√

t + 1
orthogonal Latin squares of side t exist, then we can construct a balanced
lattice square design for t treatments. Such designs exist for t that are powers
of a prime number so, for example, we have these designs for t = 9, 16, 25, . . ..

The balanced lattice square design has the property that each pair of
treatments appears once in each row and once in each column.

Example 6.19. A balanced lattice square with t = 9 For t = 9 a
balanced lattice square can be constructed with four replications of the 9
treatments. Once such design is given in Table 6.2. Notice that each replication
contains all 9 treatments (resolvable). If we consider the rows as blocks, there
are 12 blocks forming a BIBD. However, for this design there is more. If
we consider the columns as blocks, there are 12 blocks forming a BIBD. As
these BIBDs come from an orthogonal Latin square construction, this is how
we obtain the property that each pair of treatments appears exactly once in
each row and once in each column. ‖

This highly structured design is attractive to experimenters (especially in
the field) because it allows the comparison of treatments in small, manageable
blocks. Moreover, if there is some incident that results in loss of data (the
tractor overturns on the plants), only that small block need be redone in
order to recover the entire design. There is also a variance advantage, which
we will soon see.
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A model for the analysis with t treatments is

Yij�m = µ + τi + βjm + γ	m + Rm + εj	m,
∑

i

τi = 0,(6.12)

where we have to be careful about indices. Defining k =
√

t and r =
√

t + 1,
we have

j = 1, . . . k, � = 1, . . . k, m = 1, . . . , r.

The index i is redundant, but we need to set it up to keep track of the
treatments. For each i = 1, . . . t, we define the index set

ij	m ∈ Ii = {(j�m) : the response at (j�m) is from treatment i}.

To complete the model specification, we assume that rows, columns, and repli-
cations are random effects with

βjm ∼ N(0, σ2
β), γ	m ∼ N(0, σ2

γ), Rm ∼ N(0, σ2
R), εj	m ∼ N(0, σ2

ε).

The anova table is
Source df

Reps r − 1
Columns r(k − 1)
Rows r(k − 1)
Treatments t − 1
Residual r(k − 1)(k − 1) − (t − 1)

Total rt − 1 = rk2 − 1

where we see that the degrees of freedom for treatments come out of the
“residual” from the rows and columns. In fact,

SS(Residual) = SS(Rows × Columns in Reps) − SS(Treatments),

and treatments are crossed with reps but are not crossed with rows or columns.
As usual, we estimate the treatment effect τi with least squares. Al-

though the derivation is straightforward, it does take effort to keep the indices
straight. Moreover, as we saw with the BIBD, it is important to do the least
squares derivation in order to get the correct divisor. The result is

τ̂i =
t − 1

(c − 1)2
(ȳi − ȳiR − ȳiC + ¯̄y),(6.13)

where

ȳi = mean of observations getting treatment i,

ȳiR = mean of observations in rows containing treatment i,

ȳiC = mean of observations in columns containing treatment i,

¯̄y = mean of all observations (grand mean),
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which, through virtue of being least squares, is an unbiased estimator of τi.
The least squares estimator looks somewhat like a residual, and that is what it
essentially is. Without the treatments, the Rows, Columns, and Replications
will use up all of the degrees of freedom, so (as the anova table shows) the
treatment effect comes out of the residual.

When evaluating a complex design such as this one, we should always ask
“What do I get for all of this effort?” with the expected answer, we hope,
having something to do with a variance reduction. Recall that the effort in
the BIBD resulted in least squares estimates that were free of block variances,
which we typically expect to be bigger than σ2

ε . Here, we are blocking in both
rows and columns, but because we have BIBDs in both directions, this results
in the variance of τ̂i being free of all variance components except σ2

ε (Exercise
6.35). Also, the variance of any contrast

∑
i aiτ̂i only depends on σ2

ε . So there
is a good return for our efforts.

Lattice designs were first introduced by Yates (1936, 1940). Cochran and
Cox (1957) have a detailed discussion and list a number of experimental plans,
although the most detailed discussion is in Federer (1955). There are more gen-
eral forms of this design, for example a rectangular lattice, which is related to
a PBIBD. Other developments in lattice designs can be found in Speed et al.
(1985) and Federer (1998).

Latin Squares and Fractional Factorials

In some situations, a Latin square (Section 3.6.3) turns out to be a fractional
factorial. When this is recognized it is then easy to understand the confounding
structure.

Example 6.20. A microarray Latin square

This is
also a
SCOD!

Kerr et al. (2000) describe the following experiment, a mi-
croarray experiment done as a Latin square. In the experiment
mRNA samples were obtained from human liver tissue, and were
compared to muscle tissue. The design used two arrays in a
two-dye system, and the colors were swapped according to the
following diagram:

Array
Dye 1 2
Red Liver Muscle
Green Muscle Liver

with model

log Yijkg = µ + Ai + Dj + Tk + Gg + (AG)ig + (TG)kg + εijkg,(6.14)
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where Yijkg is the log expression level, µ is the overall mean, Ai is the array
effect, Dj is the dye effect, Tk is the treatment effect and εijkg is the error.

With 4 treatments there are 16 total effects in the model: the mean, 4
main effects,

(
4
2

)
= 6 twoway interactions,

(
4
3

)
= 4 threeway interactions, and

1 fourway interaction. However, we cannot estimate these main effects because
all of the treatment combinations are not observed. Note that the index set
does not run through all values because the design is not complete. We have
g = 1, . . . , n, but

(i, j, k) ∈ {(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}.

This leads to the following confounding structure:

mean ∼ ADT
A ∼ DT
D ∼ AT
T ∼ AD

G ∼ ADTG
AG ∼ DTG
DG ∼ ATG
TG ∼ ADG

Note that G is crossed with all treatments, so the right table is just a rewrite
of the left table with the G effect included. Thus, the presence of G does
not impact the confounding. In each table, the effects in the left column are
the ones that appear in the model and are not confounded with each other.
All of the main effects are confounded with twoway or fourway interactions,
while the twoway interactions in the model are confounded with threeway
interactions.

To have valid inferences from this design we must assume that the effects
on the right side are all zero, because the sums of squares for each pair of effects
are the same. Also, note that the DG effect, the Dye × Gene interaction, is not
in model (6.14). This term becomes the residual error, under the assumption
that there is no Dye × Gene interaction.

The three treatments are each at two levels, and to better understand the
confounding we can write out the complete table of contrasts

Effect

Trt. Comb Array Dye Tissue D × T

1 R L∗ − − − +
1 R M − − + −
1 G L − + − −
1 G M∗ − + + +
2 R L + − − +
2 R M∗ + − + −
2 G L∗ + + − −
2 G M + + + +

where the treatment combinations marked with ∗ are the ones that were
run. These combinations are, in fact, a 1/2 rep of the 23 where the threeway
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interaction is confounded with blocks, and the confounding structure reflects
the alias sets. So this Latin square is, in fact, a fractional factorial.

Continuing with the analysis, in this microarray design the main interest
was in determining which genes are differentially expressed, that is, which
genes react differently to the different treatments. This effect is the Treatment
× Gene interaction, and for gene g it is estimated by

ˆ(TG)1g − ˆ(TG)2g =

1
2

log
(

y111gy221g

y122gy212g

)

− 1
2n

log

⎛

⎝
n∏

g′=1

y111g′y221g′

y122g′y212g′

⎞

⎠(6.15)

This design allows us to estimate this effect and its error, and to test signifi-
cance (see Exercise 6.24). ‖

Reference and Loop Designs

We have already seen that a microarray experiment can be viewed as a split
plot design. Now we look a bit deeper at designs for the two-dye systems, which
add another layer of complexity to the design at the whole plot level. The fact
that there are two dyes – measuring RNA from two experimental units on
one chip – automatically implies that the experiment is an incomplete block
design (unless there are only two treatments, in which case it is an RCB). And
it is a very simple incomplete block in that we are forced to have only two
treatments per block. Thus, if there are t treatments, to balance the design
we would need

(
t
2

)
microarrays.

As we know, to compare two varieties of plant, we want to grow them
as close to one another as possible so that we control for all other factors
in making the comparison. This is the basic principle of blocking. For the
microarray, by construction, we have this principle in force, allowing us to
have very good designs.

In the early days of microarray design there was much concern about dye
bias, that is, the red and green dyes might fluoresce at different rates. To
control for this, the experiment would include a dye swap, for example if
treatments A and B are on one microarray with dyes red/green respectively,
a second A/B microarray would be run with dyes green/red, that is, with dyes
swapped. This would be done for all treatment pairs. Happily, the technology
has progressed and dye bias is not the concern that it once was. However, if
the experimenter can afford, it would not hurt to control for it.

Unfortunately, instead of the BIBD, another two-dye design emerged,
called the reference design. It was much simpler that the BIBD, so it gained
popularity, even though it is quite wasteful of resources. Instead of comparing
two treatments on the same microarray, the reference design compares each
treatment to a “reference” pool of DNA. A reference design is compared to a
BIBD in Table 6.3. Reference designs probably became popular because the
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Table 6.3. Experimental designs to study three varieties of interest in three blocks
(microarrays) of size two. Varieties A, B, and C are of interest, while R represents
a fourth variety (not of interest) to serve as a reference. Kerr and Churchill (2001a)

Reference Design

Block 1 Block 2 Block 3

A B C
R R R

BIBD

Block 1 Block 2 Block 3

A B C
B C A

reference can be ignored and we can treat each microarray as an observation
on that treatment. But, as Kerr and Churchill (2001a) note, “Introducing
a reference as an intermediate step is unnecessary and generally inefficient
because it means that fully half of the data are dedicated to an extraneous
sample”. Also note that the BIBD gives us two observations on the varieties
of interest for the same effort, and also lowers the treatment variance (see
Exercise 6.34).

Example 6.21. Microarray BIBD As an example, consider this exper-
iment on the effect of Aluminum on Zebrafish. Three treatments are to be
compared: Control, AlCl3(aluminum chloride), and Nano (aluminum nano
particles). The treatments are applied to tanks holding the Zebrafish, RNA is
then extracted from their gill tissue and subject to microarray analysis using
a two-dye system.

Notice that the experimental unit is the tank, as in Exercise 1.3. The
RNA from all the fish in one tank will be combined (pooled) into one sample.
This, of course, does not lose degrees of freedom as the individual fish are
subsamples.

With these three treatments, two designs are considered. The first is the
reference design2 and the second is a “loop” design (Kerr and Churchill 2001b;
see also Simon et al. 2003), which allows the balancing of the dye effects. It
is called a loop design because it cycles through all of the treatments, with
each treatment being applied twice, once with the green dye (Cy3) and once
with the red dye (Cy5). Note that in the reference design we do not have to
worry about dye bias, as the bias will be constant throughout the experiment
2 One typical choice for the reference RNA is a pool of all the RNA in the experi-

ment.
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Fig. 6.2. Loop designs (a) using three blocks, balancing dyes, and (b) balancing
dyes with six blocks.

(as long as we label the treatments with the same color) and thus comparisons
will be free of the dye effect.

Dye Reference Loop
Green
Red

Ref.
Cont.

Ref.
AlCl3

Ref.
Nano

Cont.
Nano

Nano
AlCl3

AlCl3
Cont.

To see why they are called loop designs, look at Figure 6.2 which shows
the design as a loop. The point of the arrow represents Cy5 (red dye) and
the base of the arrow represents Cy3 (green dye). Figure 6.2(a) is equivalent
to the loop design above, and Figure 6.2(b) is a double loop, where all of the
dyes are reversed. This latter design is looked at further in Exercise 6.26

To analyze the designs, we can first look at a one-gene model

yijk = µ + τi + βj + Dk + εijk,(6.16)

where τi is the treatment effect, βj is the block effect, and Dk is the dye effect.
Note that for the reference design, we would not include the dye effect in the
model. If we were to run these designs taking six observations and calculate
the variance of a treatment difference, we would find

Reference Design : Var(τ̂i − τ̂i′) = 2σ2
ε + 2σ2

β ,(6.17)

Loop Design : Var(τ̂i − τ̂i′) = σ2
ε +

1
2
σ2

β nonumber(6.18)

which clearly shows the wastefulness of the reference design.
If we add the gene effect to the model, we have
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yijkg = µ + τi + βj + Dk + Gg + (τG)ig + (βG)jg + εijkg,(6.19)

where we include the Treatment × Gene interaction and the Block × Gene
interaction, leaving the others to the residual. If we have n genes and use this
model for an anova using either the reference design or the loop design, we
get the following surprise

Reference Loop

Source df

Blocks 2
Trts 3
Genes n − 1
T × G 3(n − 1)
B × G 2(n − 1)
Residual 0
Total 6n − 1

Source df

Blocks 2
Trts 2
Dye 1
Genes n − 1
T × G 2(n − 1)
B × G 2(n − 1)
Residual n − 1
Total 6n − 1

So in the reference design all of the residual degrees of freedom are
“wasted” in the T × G interaction, which has a good bit of it devoted to mea-
suring the effect of the unimportant reference treatment. Recall how the tests
would be run in this anova. The gene effect would be tested with the B × G
interaction, so that test is OK. However, the tests on treatment, including
main effects and the T × G interaction, would be tested against the inter-
actions of treatments and blocks. This is what would make up the residual
term, which would then be used for those tests. However, we have no degrees
of freedom left to estimate the residual because of the extra degrees of freedom
used by the T × G interaction.

In contrast, the loop design has one fewer treatment and, consequently,
there are degrees of freedom left over to test treatments and their interactions,
using the residual error term. See Exercise 6.26

We also note that there is some concern that pooling the error term over
all genes may not be optimal, as the genes may not all have the same variance.
Procedures for dealing with this are being developed. See, for example, Cui
et al. (2005). ‖

Beyond Loops to BIBDs

Loop designs have the advantage of (i) balancing dyes and (ii) providing
good comparisons between treatments that are adjacent. If there is interest
in getting good comparisons between treatments that are not adjacent in the
original loop, the design can be augmented. That is, blocks can be added to
obtain good comparisons between additional treatments, while maintaining
balance with respect to the dyes.
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Example 6.22. Avocado gene expression The experiment first descr-
ibed in Exercise 3.14 has a second part, which we now describe. For each
avocado plant, RNA was obtained from eight different tissues:

Number Name

1 medium bud
2 small bud
3 leaf
4 sepal

Number Name

5 petal
6 stamen
7 carpel
8 fruit

where the numbers refer to Figure 6.3, which displays the types of designs
that were considered. The goal of the experiment is to measure differential
gene expression in the tissues.

Fig. 6.3. Graphical display of the designs considered in Example 6.22. The outer
black arrows are a loop design, the outer black arrows plus the inner black arrows
are the design actually performed, and all arrows plus the gray dotted lines are a
BIBD. The point of the arrow represents Cy5 (red dye) and the base of the arrow
represents Cy3 (green dye).
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The outer black arrows are a loop design for this experiment. For treatment
comparisons in the loop design, using the one-gene model (6.16), the variance
of a difference is

Adjacent : Var(τ̂i − τ̂i′) = σ2
ε +

1
2
σ2

β ,(6.20)

Non-Adjacent : Var(τ̂i − τ̂i′) = σ2
ε + σ2

β .

The actual design that was done was the augmented loop, where the orange
and blue arrows were added to the original loop design. Adding these eight
blocks allows for better comparisons, and gives us three classes of comparisons:

(i) adjacent treatments,
(ii) non-adjacent treatments with a common block, such as τ2 − τ5,

(iii) non-adjacent treatments with no common block, such as τ2 − τ4.

As might be expected as we go from (i) → (iii) the variance of a difference
increases, so the augmented blocks should be chosen to decrease the variance
on the more important comparisons.

We could further augment this design with the gray dashed lines in Figure
6.3, adding 12 more blocks. This new design is, in fact, a BIBD, and will
provide even better (and equal) variances on all treatment contrasts. However,
the disadvantage is that the BIBD is not balanced for the dye effect, so if this
is a concern the BIBD may not be preferred. See Exercise 6.28 for more details.
‖

6.5 Exercises

Essential

6.1 Referring to Example 6.1
(a) Use the dataset BloodPressure to run the anova. Test all of the main

effects and interactions, and provide a confidence interval on the estimate
of the BC interaction.

(b) Show that the sum of squares due to blocks is exactly the contrast sum of
squares for the threeway interaction.

(c) Suppose that the experimenter used only four subjects per treatment com-
bination, and then ran the experiment twice. There are still 63 total de-
grees of freedom, but now the T × B interaction can be estimated. Write
out the anova table (source and df) for this experiment.

6.2 Referring to Example 6.2:
(a) Show that the design in Run 2 confounds the BC interaction with blocks.
(b) Use the dataset BloodPressure2 to run the complete anova and test all

main effects and interactions. Provide a confidence interval on the estimate
of the BC interaction.

(c) Compare you confidence interval in part (c) to that of Exercise 6.1. Explain
any differences.
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6.3 Referring to Example 6.3:
(a) The six blocks that could be used to estimate the A × Block interaction

were marked with an asterisk (*). For each of the other six treatment ×
block interactions, identify the six blocks that could be used to estimate it.

(b) This design is a BIBD with b = 14 and t = 8. What are the other para-
meters?

(c) With eight treatments, what other BIBDs can be run? Are any others to
be preferred?

6.4 Suppose that we have t = 5 treatments and we can only have blocks of size
three.
(a) Find the smallest BIBD (fewest number of blocks). Give the values of r

and λ
(b) If we could have blocks of size four, can we run a BIBD? Is there an

advantage over the design in part (a)?
(c) Write out the layout of the design from part (b) showing how to arrange

the treatments in blocks.
6.5 In general it can be somewhat tricky to find the layout of a BIBD. The fol-

lowing strategy can sometimes be used.
(a) Specific case.

(i) Write out a treatment design for a 7 × 7 Latin square.
(ii) Write rows 1, 2 and 4 of the 7 × 7 Latin square as its own treatment

design. Is this a BIBD? If so, what are the parameters of the design?
(iii) Write out the remaining rows of the 7× 7 Latin square (3,5,6,7). If this

is a BIBD what are the parameters?
(b) General case.

(i) Write out the layout of a p × p Latin square (Section 3.6.3).
(ii) Drop any column.

(iii) Ignore rows, take the columns as blocks. Show that this design is a
BIBD with t = b = p − 1, r = k = p − 1, and λ = p − 2.

6.6 A simpler version of the design in Example 6.3 occurs if we only have two
treatments A and B, each with two levels in a factorial arrangement.
(a) Find the parameters of a BIBD with blocks of size 2 (k = 2). Explain why

we must have b =
(
4
2

)
= 6.

(b) The six blocks are
1 2 3 4 5 6

(1)
ab

a
b

a
ab

(1)
b

b
ab

(1)
a

Each treatment combination, A, B, and AB, is confounded with a pair of
blocks. Identify which blocks are confounded with each treatment combi-
nation.

(c) The anova table is
Source df

Blocks 5
Trts 3
Trts × Blocks 3

which tells us that interactions A × Blocks, etc., are only estimated from
one pair of blocks. Identify these pairs. In particular, explain why the A ×
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Block interaction can only be estimated from the pair of blocks that are
confounded with B, and not from the other pairs. Can you use this infor-
mation to make a more general statement about estimating interactions?

6.7 An alternative to the design in Exercise 6.6 is to run the BIBD in blocks of
size three.
(a) Find the parameters of the design. In particular, show that we need only

four blocks.
(b) The four blocks are

1 2 3 4

(1)
a
b

(1)
a
ab

(1)
b
ab

a
b
ab

Write out the contrasts for A, B, and AB, and show that none of these
effects are confounded with blocks. Write out the anova table and identify
where the confounding is.

6.8 An alternative to the designs of Examples 6.1 and 6.2 is to use a split plot
approach, with one of the treatments moved up to the whole plot level. (This
would be considered if one factor is expected to have a big effect on the
response or if there is one of lesser importance.) Suppose that this is the case
for treatment C, and the experimenter is willing to trade off lesser precision
on C for greater precision on A and B. The following design could be run:

Run 1 Run 2

C
Low High

(1) a

b ab

(1) a

b ab

C
Low High

(1) a

b ab

(1) a

b ab

Note that this is a complete design – there is no confounding with blocks.
(a) Write out the anova table (source and df) and indicate how the tests will

be done. Also comment on whether you would consider pooling error terms
and how you would do it.

(b) Analyze the data in BloodPressure2 according to this design. Test all
main effects and interactions, and provide a confidence interval on the
estimate of the BC interaction.

(c) Compare you confidence interval in part (b) to those in Exercises 6.1 and
6.2. Which one “wins”?.

6.9 Three factors, A, B, and C were each run at two levels in a BIBD. The data
are

Rep 1 Rep 2 Rep 3 Rep 4
B1 B2 B3 B4 B5 B6 B7 B8

(1) 10 a 17 (1) 11 a 8 (1) 6 b 9 a 17 (1) 9
ab 17 b 12 b 9 ab 9 a 15 ab 14 b 13 ab 15
c 9 ac 19 ac 16 c 6 bc 8 c 7 c 9 ac 17
abc 10 bc 11 abc 16 bc 2 abc 1 ac 14 abc 16 bc 14

In Rep 1 the AB interaction is confounded with blocks, which can be seen
from the following contrast table:
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A B C AB

(1) − − − +
ab + + − +
c − − + +
abc + + + +

A B C AB

a + − − −
b − + − −
ac + − + −
bc − + + −

(a) For each of the other reps, find out which effect is confounded with blocks.
(b) Calculate the complete anova table and test the significance of the treat-

ments.
(c) Estimate the main effects and give 95% confidence intervals.

6.10 Refer to the data of Example 6.7:
(a) What are the parameters of this BIBD?
(b) Show that, for this design, the least squares estimate of τ1 (6.2) is unbiased.
(c) Verify the anova table

Source df SS F p-value

Blocks 3 6.17
Treatments 3 880.83 4.042 .083
Residuals 5 363.17

Note that these are the partial sums of squares, which can be produced in
R by using the drop1 command; see Exercise 2.31.

(d) Calculate the least squares estimates of τi and test the hypothesis H0 :
τ1 = τ2.

(e) Calculate the interblock estimates (see Miscellanea 6.6.1) of τi and com-
pare them to the least squares estimates. Is there agreement?

6.11 Referring to Example 6.8:
(a) Give the parameters of the BIBD and show the arrangement of treatments

in blocks. (Try to do this without looking at the data.)
(b) Verify the anova table. (The data are in dataset Bone, which is a repre-

sentation of the original data.)
(c) Obtain the least squares estimates of the treatment effects and their vari-

ance.
(d) By examining pairwise difference in the least squares estimates, which

treatment is the strongest? It also seems reasonable to test for a trend
in the treatments, using polynomial contrasts. Do this and report your
conclusion.

(e) Berkowitz et al. (2005) had 50 screws available and only 30 are needed
for one complete run of the BIBD. They allocated the extra screws to the
groups according to the following description:

A noticeable block-to-block variance was identified in the middle
of the study; therefore, the same number of trials was not run for
each group. It was necessary to run more trials for the groups with
similar data, whereas fewer trials were run for groups that were
clearly statistically different from all other groups.

Was this the best allocation of the extra observations? If so, explain why.
If not, suggest a better plan.

6.12 Blood pressure is typically measured with a sphygmomanometer (the inflat-
able cuff put on the upper arm), but there are other means for doing this.
When new blood pressure monitors are developed, their accuracy is tested
against standard methods. A recent development is the easy to use Dinamap
automated oscillometric device (see, for example, Chang et al. 2003 and the



276 6 Confounding in Blocks

references there). To assess this new method, we could compare it to the stan-
dard sphygmomanometer and to a method known as intra-arterial recording,
which is accurate but expensive. It is also known that blood pressure measure-
ments could vary from the right arm to left arm, so a good design would take
this into account. Therefore, we consider an experiment where the three types
of measurement (S, D, I) are crossed with arms (R, L), giving six treatment
combinations. Since we would consider each person a block, we necessarily are
restricted to two treatments per block.
Try to do parts (a) and (b) before looking at the dataset.
(a) The design we would like to use is a BIBD. We have t = 6 and k = 2.

Give the rest of the parameters for the smallest BIBD. List the treatment
combinations that appear in each block.

(b) This design is, in fact, resolvable, in that we can divide it into five reps,
where each rep contains all six treatment combinations. Do this.

(c) Data, systolic blood pressures of healthy subjects, are contained in dataset
BPMonitor using the following code:

Treatment
1 2 3 4 5 6

Monitor S I D S I D

ARM R L R L R L
The experimenters are particularly interested in whether the Dinamap
gives readings equivalent3 to the others and whether there is an interaction
between monitors and arms. What can you tell them about this?

(d) Since a person has two arms, we are limited to k = 2 in any design. If 12
more subjects became available, how would you use them? Justify your
choice.

Note: Cochran and Cox (1957) contain catalogs of design plans, including the
ones asked for in this exercise.

6.13 As part of a project to understand the relationship of different genes to sub-
stantiality of crops – in particular, potatoes – a researcher investigated the
effects of two factors, Photoperiod (P) and bioactive Tuber Inducing Factor
solution (TIF), on gene expression levels. Each factor is at two levels (2 = high
and 1 = low), and are crossed in a 2 × 2 factorial. Three separate experiments
are to be run; in each genes from different tissues (leaf, root, stolen) will be
used. The experiment uses an Agilent microarray chip, which is a two-dye
system. Thus, two treatments can be applied to each array. (One treatment
is labeled with red dye and the other with green dye.) With this chip there is
less concern about dye bias, so the experimenter chose not to swap dyes, as
in Examples 6.21 and 6.20.
For the following questions, just concentrate on one tissue, say leaf, as the
same experiment design will be applied to the other tissues.

(a) The four treatment combinations are (1), p, t, pt. Four blocks (Arrays) were
run as indicated. Here is a table of the effects, similar to that in Section
6.1. Finish the table.

3 Notice that we are actually looking to accept the null hypothesis here. This puts
us in the realm of bioequivalence testing, which can lead to a different type of
testing procedure. A nice introduction to bioequivalence is given by Berger and
Hsu (1996).
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Effect
Array Trt. Comb P T PT Confounded

1 (1) − − + T
p + − −

2 p
pt

3 (1)
t

4 (1)
pt

(b) A BIBD with two treatment combinations per block would need six arrays.
Give the parameters of the design and show how to estimate treatment
differences. Can you add two arrays to the design in part (a) to have a
BIBD?

(c) Sadly, we are stuck with the data collected according to the design in part
(a). How can we do damage control? For example, suppose that we assume
the model is of the form

Yijk = µ + Ai + Pj + Tk + εijk,

where Yijk is the log of the expression level of the gene, Ai is the array
(block) effect, and we assume that there is no interaction in the model.
We can estimate treatment effects as follows: Since there is no interaction
in the model, both pt − p and t − (1) estimate the effect of T , and these
treatment combinations appear in the same array. Show that the differ-
ences Y222 − Y221 and Y312 − Y311 are both estimates of T2 − T1 that are
free of array effects. Can you find other effect estimates that are free of
block effects?

(d) The dataset PotatoLeaf1Gene has log expression level data for one gene,
taken according to the design in part (a), and replicated three times. Verify
that the anova is given by

Source df SS MS

Rep 2 0.8647 0.4323
Treatments 3 2.0152 0.6717
Arrays 9 5.2162 0.5796
Rep × Trt 6 1.0071 0.1678
Residual 3 1.0877 0.3626

Use this information to get estimates and standard errors for the effects
in part (c).

(e) The experimenter actually ran 12 arrays (three replications of a four-array
experiment), and ended up with many confounded effects. If you had those
twelve arrays before the data were taken, with the restriction that there
can only be two treatment combinations per array, what design would you
recommend? Explain why your design is better. (The three replications
are for the three tissue types: leaf, root, stolen.) Can we run BIBDs?

(f) Each array actually had 11, 412 genes, and the design can be analyzed in
a manner similar to that described in Miscellanea 5.9.1. Use the dataset
PotatoLeaf to carry out such an analysis. (This dataset only has 150 of
the 11,412 genes.) In particular, can you locate genes that have a large P
or T effect?
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6.14 : Referring to Example 6.10,
(a) Show that B is confounded with ABC. List the contrast coefficients and

describe all of the confounding.
(b) Give a 1/2 replication of a 23 in which A is confounded with ABC, and

one in which C is confounded with ABC.
(c) Perhaps the best 1/2 replication of a 23 is the one given by x1 +x2 +x3 =

0 or 1, which confounds the mean with ABC. (Example 6.13 gives the
blocks.) Find the alias sets, and show that all main effects are confounded
with twoway interactions, and hence are estimable if we assume that these
interactions are zero.

(d) As an alternative design, we could do a 1/4 replicate of the 23. One par-
ticular design would be given by the defining contrasts

x1 + x2 + x3 = 0 or 1, x2 + x3 = 0 or 1.

Construct the four blocks and give the alias sets. Even if we run all four
blocks, is there any reason to ever do this design?

6.15 Referring to Example 6.12:
(a) Write out the defining equation, and find the blocks and alias sets for

designs that confound (i) A with ABC and (ii) C with ABC.
(b) Explain why there are seven distinct designs, each with its own unique

alias sets. (Recall Example 6.3.)
(c) For a 1/2 replicate of a 2p factorial, how many distinct fractions are there?
(d) For a 1/2q replicate of a 2p factorial, how many distinct fractions are

there?
6.16 Referring to Example 6.14:

(a) Verify that the defining contrast is x1 + x2 + x3 = 0, give the composition
of both blocks, and verify the alias sets.

(b) For Experiment 2, verify that the defining contrast for the second block is
x3 = 0, and that CP is confounded with the CPK interaction. Give the
composition of the two blocks and the alias sets.

(c) Give the anova for Experiment 2, which should have sums of squares for
the three main effects and the CP interaction, and 2 degrees of freedom
for the residual. Are the conclusions the same as for Experiment 1?

(d) Give the anova for Experiment 3. Are the conclusions the same as for
Experiments 1 and 2?

6.17 Referring to Example 6.17:
(a) Verify the intrablock subgroup and give the composition of the other three

blocks.
(b) Verify the alias sets.
(c) As mentioned in the example, (6.11) is not a particularly good defining

contrast as it confounds a main effect with the mean. Consider instead
confounding the mean with fourway interactions using

0 = x1 + x2 + x3 + x4 = x2 + x3 + x4 + x5.

For this defining contrast give the intrablock subgroup and the alias sets.
Is this design preferable to the one given by (6.11)?

6.18 In this exercise we look at an alternative to modular arithmetic, which is fairly
similar but based on multiplication rather than addition. In Example 6.10 we
confounded B with ABC. We write this
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B = ABC,

showing that the B effect is confounded with ABC. To determine the other
alias sets, we multiply both sides of the above equation by the other effects,
and use the restriction that any squared effect is equal to I, the identity. That
is, A2 = B2 = C2 = I. Thus, the first alias set is {B, ABC} and the next is
{AB, BC}.
(a) Verify that the other two alias sets are {I, AC} and {A, C}.
(b) Show that the defining contrast (6.11) is equivalent to

I = ABCDE = ABCD,

and use this method to obtain the alias sets for this design.
6.19 A researcher conducted a 1/2 replicate of a 25 factorial using x1 + x2 + x3 +

x4 + x5 = 0 as the defining contrast. The data were

c 26 b 25 abcde 36 bde 46

cde 29 acd 35 abe 23 a 32

abd 40 bcd 28 d 35 abc 27

ace 22 e 21 bce 37 ade 39

(a) Specify the alias sets.
(b) Estimate the effects and interactions under the assumption of no interac-

tions involving three or more factors.
(c) Give the anova table under the assumptions in (b).
(d) What treatment differences can be tested?

6.20 An animal nutrition experiment is to be performed, where the effects of four
dietary factors on the growth of baby lambs are to be examined. Each factor
is at two levels, high and low. They are A: vitamin A; B: protein; C: carbohy-
drate; and D: fat. The experimenter is restricted to only treating four lambs
at a given time, so the complete factorial (24) is to be run in the following
four blocks:

Blocks
1 2 3 4

(1) c
cd d
ab abc

abcd abd

(a) The blocks are generated by the defining contrasts x1 + x2 + x3 + x4 and
x1 + x2. Fill in blocks 3 and 4 to complete the factorial.

(b) Find the alias sets.
(c) What model will you use for the analysis? Based on that model run the

anova on the following data (also in dataset BabyLamb). Use the block
structure from part (a).

Weight Gain (lbs.)

(1) 17.23 a 15.69 b 17.56 c 22.99

d 31.76 ab 21.24 ac 17.2 ad 20.92

bc 8.3 bd 16.87 cd 3.7 abc 26.61

abd 35.19 acd 6.19 bcd 5.69 abcd 6.86
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(d) Write out the 1 df contrast that gives the A effect. Is it unbiased under
your model? Give an estimate of the standard error of the contrast.

6.21 The Youden square is a misnamed design, mainly because it is not a square.
This is a design with row blocks and column blocks, however, the column
blocks cannot accommodate all treatments. Formally, a Youden Square is a
design with

t treatment levels, c columns, r rows, and tr experimental units. Each
treatment occurs once in every row, and at most once in every column.

Typical data from a Youden square experiment, with treatments A, B, C, D
are

Column
1 2 3 4

1 13(A) 10(B) 11(C) 20(D)
Row 2 16(B) 12(A) 18(D) 15(C)

3 11(C) 17(D) 11(A) 14(B)

Note that every treatment is in every row, so treatment differences are free of
row effects. However, they are not free of column effects.
(a) Explain why, if we ignore columns, we have an RCB.
(b) Explain why, if we ignore rows, we have a BIBD. Identify the BIBD pa-

rameters.
(c) Write a model for the analysis identifying all terms.
(d) Which treatment contrasts are free of row effects? Which are free of column

effects. Find the variances of these contrasts.
(e) Show that if we append a fourth row with treatments D C B A then we

would have a BIBD. Give the parameters of the BIBD.
For more details on Youden squares see Dean and Voss (1999) or Cox and
Reid (2000).

6.22 Referring to Example 6.19
(a) Verify that, in Table 6.2, each pair of treatments occurs exactly once in a

row and once in a column.
(b) Verify that, if t is a square, then a BIBD exists with k =

√
t, r =

√
t + 1,

and b =
√

t(
√

t + 1). Relate this to the design in Table 6.2.
(c) For the anova table corresponding to the model (6.12), show that the

residual degrees of freedom can be obtained by subtracting the Rep, Row,
Column and Treatment df from the Total df.

6.23 A balanced lattice design is a special type of BIBD, controlling for one blocking
factor. It has the BIBD properties of increased precision due to smaller blocks,
and equal information on all treatment comparisons. A balanced lattice design
with k treatments per block satisfies
(i) The number of treatments is k2.

(ii)) The number of replications is k + 1.
(iii) Each treatment appears only once with other treatments in a sub-block.
A field layout for a balanced lattice design with 25 treatments is the following:
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Arrangement of 25 Alfalfa Varieties
in Six Replications, Each with Five Blocks

Block Rep 1

1 1 2 3 4 5
2 6 7 8 9 10
3 11 12 13 14 15
4 16 17 18 19 20
5 21 22 23 24 25

Block Rep 2

1 1 6 11 16 21
2 2 7 12 17 22
3 3 8 13 18 23
4 4 9 14 19 24
5 5 10 15 20 25

Block Rep 3

1 1 7 13 19 25
2 6 12 18 24 5
3 11 17 23 4 10
4 16 22 3 9 15
5 21 2 8 14 20

Block Rep 4

1 1 12 23 9 20
2 6 17 3 14 25
3 11 22 8 19 5
4 16 2 13 24 10
5 21 7 18 4 15

Block Rep 5

1 1 17 8 24 15
2 6 22 13 4 20
3 11 2 18 9 25
4 16 7 23 14 5
5 21 12 3 19 10

Block Rep 6

1 1 22 18 14 10
2 6 2 23 19 15
3 11 7 3 24 20
4 16 12 8 4 25
5 21 17 13 9 5

(a) Verify that the above design is a BIBD with t = 25 and k = 5. Show that,
in general, if we specify k treatments per block, then there is a BIBD (the
balanced lattice) with t = k2, r = k +1, b = k(k +1), and λ = 1 (so we do
not need orthogonal Latin squares here, as we did for the balanced lattice
square).

(b) Write out a model and the anova table (source and df) and indicate how to
test treatments. (Note that blocks are nested within reps, and treatments
are crossed with reps but not with blocks.)

(c) Show that treatment contrasts are not confounded with blocks.
(d) The data for this experiment are in dataset Lattice. Analyze the data

and estimate the variance of a treatment contrast.
(e) Use a multiple comparison procedure to find the variety with the greatest

yield. State your conclusion at α = .05.

6.24 For the Latin square microarray experiment of Example 6.20:
(a) Show that the Latin square is a 1/2 rep corresponding to the confounding

equation x1 + x2 + x3 = 0 or 1, and show that the alias sets give the
confounding of the example.

(b) Verify the following anova table using the dataset SynteniLS100. (This is
a portion of the actual data, using only 100 genes. The full dataset with
1286 genes is available at
http://www.jax.org/staff/churchill/labsite/datasets/index.html.)

Source df SS

Array 1 13.675
Dye 1 0.127
Treatment 1 5.577
Gene 99 87.908
A × G 99 21.550
T × G 99 46.873
Residual (D × G) 99 3.471

(c) Calculate the EMS for the anova in part (a) and indicate the tests.
(d) Run the tests and give conclusions4

4 Kerr et al. (2000) were suspicious of the normality assumption and obtained their
significance levels through bootstrapping. See Efron and Tibshirani (1993) for an
introduction to bootstrapping.
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(e) Verify that (6.15) is the least squares estimate of the Treatment × Gene
interaction for gene g.

(f) Estimate the variance of the estimate in (c) and construct a 95% confidence
interval.

6.25 Kerr et al. (2000) also analyzed a reference design in which mRNA samples
were obtained from human liver tissue and were compared to muscle tissue.
The design used two arrays in a two-dye system, but each treatment was
compared to a reference tissue “Placenta”. Liver and Muscle were always
assigned the green dye and Placenta was assigned the red dye. A schematic
of the treatment design is

Array

Dye 1 2

Red Placenta Placenta
Green Liver Muscle

(a) Based on the model

log Yijkg = µ + Ai + Tk + Gg + (TG)kg + εijkg,

where Yijkg is the log expression level, µ is the overall mean, Ai is the
array effect, Tk is the treatment effect, and εijkg is the error, calculate an
anova and perform the relevant tests.
Use the dataset SynteniRef100, a portion of the actual data, with 100
genes. The full dataset with 1286 genes is available at
http://www.jax.org/staff/churchill/labsite/datasets/index.html.

(b) Is it possible, with this design, to separate the treatment effect from the
dye effect? Explain. Calculate the sums of squares due to the dye effect.
What other name can this sum of squares have?

(c) Show that the Treatment × Gene interaction for gene g is estimated by

ˆ(TG)1g − ˆ(TG)2g = log

(
y121g

y222g

)

− 1

n
log

(
n∏

g′=1

y121g′

y222g′

)

,

(compare to (6.15)), and find the variance of the estimate.

6.26 Referring to Example 6.21:
(a) Verify the variances in (6.17). In the loop design with three treatments,

all of the treatments are adjacent, so that i and i′ will appear together in
the same block. In bigger loops, like the one described in Example 6.22,
the treatments may not be adjacent. For this case in the loop design,
show that Var(τ̂i − τ̂i′) = σ2

ε + σ2
β , which is still an improvement over the

reference design.

We have available six microarrays, so we can run six blocks. This will allow
us to run the loop design with a dye swap, as indicated in Figure 6.2. The
data for 15 genes can be found in dataset FishGill, where the response
is log expression level.

(b) Compute the anova table for these data and perform the F -tests. All
treatment comparisons are of interest. Set up confidence intervals for the
contrasts Control vs. the average of AlCl3 and Nano, and AlCl3 vs. Nano.
Pay attention to calculation of the variances.
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(c) Write out the anova (just source and df) for a reference design using six
microarrays. Is there any reason to prefer this design.

(d) With three treatments and blocks of size two, we can run a BIBD in three
blocks. Give the parameters of the design. Since we have six blocks we can
run two BIBDs with a dye swap. Describe this design and give the anova
table assuming there are 15 genes. Is this design preferred to the one in
part (b)? Explain.

6.27 Referring to Exercise 3.12, there was yet another surprise from the experi-
menter. When first questioned, he said that they would be using Affymetrix

microarrays, but at the end of the consulting session he said that maybe they
would use Agilent arrays, which are two-dye systems. This now suggests that
the experiment should be run as an incomplete block design, with each mi-
croarray being a block of size two.
(a) Since there are six treatment pairs, if a subject’s stem cells are divided

into six parts, each treatment pair could be run on a microarray (assume
one mouse per subject). Write out the anova table for this experiment.

(b) An alternative design might be a loop design. Show how this can be done.
Can this design be balanced for dye swap?

(c) Calculate the variance of a treatment mean for the designs in (a) and (b).
Which design is preferred?

6.28 Referring to Example 6.22:
(a) Verify the variances in (6.20), for the original eight-block loop design. Also

calculate these variances assuming model (6.19) with n genes.
(b) Show that, for model (6.16), if we do the augmented experiment, we have

Adjacent : Var(τ̂i − τ̂i′) =
1

2
σ2

ε +
3

8
σ2

β ,

Non-adjacent, common block : Var(τ̂i − τ̂i′) =
1

2
σ2

ε +
3

8
σ2

β ,

Non-adjacent, no common block : Var(τ̂i − τ̂i′) =
1

2
σ2

ε +
1

2
σ2

β .

(c) Show that if we add the 12 gray lines in Figure 6.3 we have a BIBD, and
give the parameters of the design. Explain why the BIBD cannot balance
the dye effects. How could you construct a BIBD, with a minimal number
of blocks, that would balance the dye effects?

(d) Assuming no dye effect, for the BIBD using 28 blocks give the variance of
a treatment contrast under model (6.16).

Accompaniment

6.29 The least squares estimate of the τi in (6.1) minimizes

∑

i

∑

j∈Ji

(yij − µ − τi − βj)
2.

(a) Show that the least squares estimate of τi is given by (6.2). (The calculation
is a bit easier if the sum is written as above for the τi differentiation and as∑

j

∑
i∈Ij

for the βj differentiation. Solve for the βj in terms of τi and then

solve for τi. Use the fact that
∑

j∈Ji

∑
i′∈Ij

τi′ = (r − λ)τi, which follows
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since treatment i is in all r blocks of Ji, treatment i′ is in λ blocks, and∑
i
τi = 0.)

(b) Show that (6.2) is unbiased for τi under model (6.1). In particular, show
that

E

(

rȲi −
∑

j∈Ji

Ȳj

)

= r(µ + τi) −
1

k

∑

j∈Ji

∑

i′∈Ij

(µ + τi′),

and again use the identity from part (a) about the double sum of τi. Then
combine all the terms and use the fact that r(k − 1) = λ(t − 1) to show
that E(τ̂i) = τi.

6.30 Referring to (6.3):
(a) Show that the equation is valid using the BIBD equations.
(b) Show that the factor in square brackets is less than 1 as long as k < t.

(Establish and use the fact that the function x/(x − 1) is decreasing in x
if x > 1.) Hence, show that it is always the case in a BIBD that λt/k < r.

(c) Explain why the naive estimator has smaller variance than the least
squares estimator.

6.31 Referring to Section 6.2.2, here we will fill in the details of the variance of τ̂i.
(a) Using (6.1), show that

∑

j∈Ji

Var

⎛

⎝Yij −
1

k

∑

i′∈Ij

Yi′j

⎞

⎠ =
∑

j∈Ji

Var

⎛

⎝βj + εij −
1

k

∑

i′∈Ij

(βj + εi′j)

⎞

⎠

=
∑

j∈Ji

Var (βj + εij − βj − ε̄·j) ,

where we see that the βj cancels!. Also note that the range of the dot (·)
is different for each ε̄·j , but this causes no problem.

(b) Using the fact that Var(εij) = σ2
ε , show that

∑

j∈Ji

Var (εij − ε̄·j) =
∑

j∈Ji

(
1 − 1

k

)
σ2

ε = r
(
1 − 1

k

)
σ2

ε

(c) Use the fact that λ(t − 1) = r(k − 1) to establish (6.5).
6.32 Here we will establish the variance of a contrast in a BIBD (6.7).

(a) Show that

Cov(τ̂i, τ̂i′)

=
(

k

λt

)2

Cov

⎛

⎝
∑

j∈Ji

⎡

⎣Yij −
1

k

∑

�∈Ij

Y�j

⎤

⎦ ,
∑

j∈Ji′

⎡

⎣Yi′j −
1

k

∑

�∈Ij

Y�j

⎤

⎦

⎞

⎠ .

(b) In (a) show that (i) if the js do not match the covariance is zero, (ii) the
js match exactly λ times, and (iii) i and i′ are together λ times, which
allows us to write for a particular i,

Cov(τ̂i, τ̂i′) =
(

k

λt

)2

λCov

⎛

⎝Yij −
1

k

∑

�∈Ij

Y�j , Yi′j −
1

k

∑

�∈Ij

Y�j

⎞

⎠ .
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(c) Next, show that

Yij −
1

k

∑

�∈Ij

Y�j = τi − τ̄·j + εij − ε̄·j

and hence

Cov(τ̂i, τ̂i′) =
(

k

λt

)2

λCov(εij − ε̄·j , εi′j − ε̄·j).

(d) Show that Cov(εij − ε̄·j , εi′j − ε̄·j) = −σ2
ε/k and hence establish (6.6) and

(6.7).
6.33 Referring to the discussion at (6.10):

(a) Show that E[(Y212 + Y221)/2] = τ2, with the block effect being zero in
expectation.

(b) Verify the expectation (6.10), showing that the block effect cancels. Also
give the estimate of the γ effect and show that it is also unbiased.

(c) For the threeway design in Example 6.13, show that, under a no interaction
model, the A effect can be unbiasedly estimated with

1

4
[(a + ab + ac + abc) − ((1) + b + c + bc)]

and that the block effect cancels out.
(d) Suppose that in Example 6.13 we do not assume that the AC interaction

is zero. Show that an unbiased estimate of this effect is

1

4
([(abc − bc) − (ab − b)] + [(ac − c) − (a − (1))]) .

(If we change the “+” to “−” we would have an unbiased estimate of the
ABC effect. However, in this design ABC is confounded with blocks.)

6.34 Referring to Table 6.3 and the surrounding discussion, show that the least
squares estimate of the yield difference for two varieties of interest will have
variance one-third as large for the BIBD compared to that of the reference
design.

6.35 Here we look into the properties of the least squares estimator (6.13) in the
context of Example 6.19. Using model (6.12) applied to Example 6.19:
(a) Show that in τ̂i the parameters Rk will always cancel, so we need not be

concerned with them.
(b) Using the design in Example 6.19, ignoring εj�m (for now), and recalling

that
∑

i
τi = 0, show that

τ̂1 =
1

4
[4τ1 + β21 + β32 + β33 + β14 + γ21 + γ32 + γ13 + γ24]

− 1

12

[

3τ1 + 3(β21 + β32 + β33 + β14) +
∑

�m

γ�m

]

− 1

12

[

3τ1 +
∑

jm

βjm + 3(γ21 + γ32 + γ13 + γ24)

]

+
1

36

[

4
∑

i

τi + 3
∑

jm

βjm + 3
∑

�m

γ�m)

]

,
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and hence show that (i) τ̂i is unbiased for τi and (ii) the variance of τ̂i is
free of σ2

β , σ2
γ , and σ2

R.
(c) We know that, in general, τ̂i is unbiased for τi, but we cannot yet make a

general statement about the variance only depending on σ2
ε . The proof is

a nightmare of keeping track of indices, but here is an argument that will
convince us that this is the case. From part (b):

(i) Argue that Var(τ̂i) will only be a function of the εj�m.
(ii) From (i), we can ignore the index i in the variance calculation, and

substitute the variance of a row-column residual for the variance of τ̂i,
that is, for any i, j and �,

Var(τ̂i) =
1

r2
Var

(
r∑

m=1

(εj�m − ε̄·�m − ε̄j·m + ε̄··m)

)

,

which can only depend on σ2
ε .

6.36 Referring to Miscellanea 6.6.1, here we will do a small example to illustrate
the unbiasedness of the interblock estimate τ̃i. Suppose that the following data
are collected according to model (6.1):

Treatments
1 2 3

1 y11 y21 –
Block 2 y12 – y32

3 – y23 y33

(a) What are the parameters of this design?
(b) Using model (6.1), ignoring the εij , show that

τ̃1 =
1

3
(y11 + y21 + y12 + y32) −

2

3
(y23 + y33) = τ1 +

2

3
(β1 + β2) −

4

3
β3,

and, thus, τ̃1 is an unbiased estimator of τ1

(c) Similarly, show that for the intrablock estimate

τ̂1 =
2

3
(y11 + y12) −

1

3
(y11 + y21 + y12 + y32) = τ1,

since all of the βjs cancel out. Why is this preferable to (b)?

6.6 Miscellanea

6.6.1 Interblock Information
In a BIBD we saw that the least squares estimate of τi is given by (6.2). There
is another estimate of τi, based on block means only, called the interblock
estimator. (To be precise, we should then refer to (6.2) as the intrablock
estimate.) We will see that the interblock estimate is not as desirable as the
intrablock estimate, but it can be used to improve the intrablock estimate.
The interblock estimate is based on the idea that we can estimate τi with

τ̃i =

(
effect in blocks
with treatment i

)

−
(

average
block effect

)

,
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leading to the estimate

τ̃i =
1

r − λ
(Bi − B̄),

with

Bi =
∑

j∈Ji

∑

i′∈Ij

yi′j , B̄ =
1

t

t∑

i=1

Bi,

so Bi is the sum of the observations in the blocks that contain treatment i.
The remarkable thing is that τ̃i is another unbiased estimator of τ̂i (see Ex-
ercise 6.36). However, the drawback is that

Var(τ̃i) =
k(t − 1)

t(r − λ)
(σ2

ε + kσ2
β).

Compare this to (6.5), where we were elated that the variance of τ̂i did not
contain the block variance. Here it does, so we expect the variance of τ̃i to
be greater (possibly much greater) than that of τ̂i.
It is not immediately clear how to use τ̃i. It seems reasonable to try to use a
linear combination of τ̃i and τ̂i to estimate τi, but we do not know what to
use as weights. The classically optimal weights are inversely proportional to
the variances, but the variances are unknown. Using estimated variances, it
may be the case that such a linear combination will have a higher variance
than just τ̂i alone. However, Brown and Cohen (1974), using techniques based
on the pioneering work of Stein (1956) (who also addressed the problem of
recovery of interblock information in Stein 1966), showed how to construct a
combined estimator that will always dominate τ̂i as long as b ≥ 4. Other work
on combining these estimates has been done by Graybill and Weeks (1959),
Shah (1970), and Bhattacharya (1980).
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Designs Illustrated

In this appendix we give a small catalog of designs, to be used as a quick
reference. We consider the case of two treatments A and B, each at two levels,
with 16 observations available. We use the notation of Chapter 6, and denote
the four treatment combinations by (1), a, b, and ab. The layouts indicate
a possible randomization of the treatments – notice the restrictions as we
move between designs. Note also that as we move between designs the error
structure, and hence the degrees of freedom for the tests, changes. But in the
end each design has 15 total degrees of freedom.

This appendix is based on the notes of Prof. Carl Lowe of Cornell Univer-
sity.

A.1 Completely Randomized Design (CRD)

Layout Anova

a (1) b a

b a ab b

a ab (1) ab

(1) b ab (1)

Source df

Treatments 3
A 1
B 1
A × B 1

Within Error 12

Total 15

Notes: The within error is a “pure error” in the sense that it represents the
variation in responses subjected to identical experimental conditions and gives
an error estimate that is not dependent on the model. This is a difficult design
to run as each treatment combination has to be an independent replication, so
the experimental conditions must be reconstructed each time. A disadvantage
is that there is only one “block”, that is, the entire experiment is run under
one condition (plot of land, time, etc.).
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A.2 Randomized Complete Block Design (RCB) - No Subsampling

Layout Anova

1 a (1) b ab

Block 2 b a ab (1)

3 a ab (1) b

4 (1) b ab a

Source df

Blocks 3
Treatments 3
T × B 9

Total 15

Notes: This design is typically easier to run than a CRD. Here we pooled all of
the treatment-block interactions into one term with 9 df. There is no test on
the interaction in this model.

A.3 Randomized Complete Block Design (RCB) - Subsampling

Layout Anova

Block 1 a (1) b ab a ab (1) b

2 b a ab (1) (1) b ab a

Source df

Blocks 1
Treatments 3
T × B 3
Within Error 8

Total 15

Notes: The test on treatments is not as good as Design A.2. The within error
can be used to teat the significance of T × B if the observations within a block
are true replications and not technical replications (see Section 3.5).

A.4 Latin Square

Layout Anova

Columns
1 2 3 4

1 (1) b a ab
Rows 2 ab a b (1)

3 b (1) ab a
4 a ab (1) b

Source df

Rows 3
Columns 3
Treatments 3
Residual 6

Total 15

Notes: The design controls two gradients, but assumptions of no interactions
are needed for a good test on treatments (it can be conservative – see Section
3.6.3).
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A.5 Split Plot - CRD on Whole Plots

Layout Anova

A
Low High

(1) b a ab

b (1) a ab

b (1) ab a

(1) b a ab

Source df

A 1
Reps (in A) 6

B 1
A × B 1
(B × Reps) in A 6

Total 15

Notes: The CRD is on the whole plot treatment A, with the split plot treatment
B randomized on the whole plots. The whole plot error, Reps (in A), tests A
while the split plot error, (B × Reps) in A, tests everything below the line.

A.6 Split Plot - RCB on Whole Plots

Layout Anova

A
Low High

1 (1) b a ab

Block 2 b (1) a ab

3 (1) b ab a

4 (1) b ab a

Source df

Blocks 3
A 1
A × Blocks 3

B 1
A × B 1
Split Plot Error 6

Total 15

Notes: This is an RCB on the whole plots (A), with B randomized within the
levels of A. Note that all factors are crossed, in contrast to Design A.5. Also
recall that to have one split plot error requires assumptions about the Block
× Split Plot interactions (Section 5.3), with the split plot error coming from
pooling B × Blocks and A × B × Blocks.

A.7 Strip Plot

Layout Anova

Block 1
b ab

(1) a Block 2
(1) a

b ab

Block 3
ab b

a (1) Block 4
ab b

a (1)

Source df

Blocks 3

A 1
A × Blocks 3

B 1
B × Blocks 3

A × B 1
A × B × Blocks 3

Total 15
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Notes: In each block A is randomized in columns and B is randomized in rows.
Separately, this is an RCB on each of A and B.

A.8 Confounding in Blocks - No Interaction Test

Layout Anova

I a b (1) ab

Reps II (1) ab b a

III a b ab (1)

IV b a ab (1)

Source df

Reps 3
Blocks (in Reps) 4
A 1
B 1
Residual 6

Total 15

Notes: This is not a great design unless there is no chance of the A × B
interaction being significant. In each rep the interaction is confounded with
blocks, so there is no test on interaction.

A.9 Confounding in Blocks - With Interaction Test

Layout Anova

I a b (1) ab

Reps II (1) ab a b

III (1) a b ab

IV (1) b a ab

Source df

Reps 3
Blocks (in Reps) 4
A 1
B 1
A × B 1
Residual 5

Total 15

Notes: In Reps I and II the interaction is confounded with Blocks. In Rep III,
B is confounded with blocks, and in Rep IV, A is confounded with blocks. The
interaction can be estimated with information from two Reps, while the main
effects use information from three Reps. Note that Reps II, III, and IV (or I,
III and IV) are a BIBD with t = 4, b = 6, λ = 1, and k = 2.
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