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Preface

This volume includes a selection from the contributions presented at the first
Bayesian Young Statistician Meeting (BAYSM 2013). The conference was held at
the Institute of Applied Mathematics and Information Technology (IMATI) of the
National Research Council of Italy (CNR) in Milan, Italy, on June 5 and 6, 2013.

This conference provided an opportunity for M.S. students, Ph.D. students,
postdoctoral scholars, and young researchers dealing with Bayesian statistics to
connect with the Bayesian community at large, to exchange ideas, and to know
people working in the same field for creating future networks. The aim was to
create a scientific forum for the next generation of researchers in Bayesian statistics.
In fact, the workshop encouraged discussion and promoted further research in
all those fields where Bayesian statistics may be employed. The conference had
about 100 participants from 20 different countries and 44 accepted contributions.
The conference was divided into 6 talk sessions and 1 poster session, and it was
opened by 2 keynote lectures. Finally, the presence of 7 senior discussants allowed
participants to get advices and comments to their current researches. Thanks to
the great success and interest of participants, BAYSM 2013 became the first of
a series of conferences, devoted to young students and researchers dealing with
Bayesian statistics. As an example, the second edition will hold in Vienna, Austria,
in September 2014. Any other information can be found at the permanent website
of the conference www.mi.imati.cnr.it/conferences/BAYSM2013.

This volume is structured in five parts, each one dealing with one of the main-
streams treated within the sessions: theoretical methods, computational methods,
application of Bayesian statistics to real cases from industry and other applicative
contexts, application to life sciences and healthcare, stochastic processes, and
models for finance and economics. Finally, the sixth chapter is devoted to one of
the keynote lectures, dealing with the publishing process of papers in statistics and,
more in general, of scientific papers.

v
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We wish to thank all of the authors who made the conference and this volume
possible. We wish to Thanks are also due to reviewers, to senior discussants, and
to keynote speakers for their help, their valued suggestions, and their fundamental
contributions. Finally, we thank our colleagues at CNR-IMATI and Politecnico di
Milano for supporting us in this exciting experience.
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Chapter 1
A Nonparametric Model for Stationary
Time Series

Isadora Antoniano-Villalobos and Stephen G. Walker

Abstract We present a family of autoregressive models with nonparametric
stationary and transition densities, which achieve substantial modelling flexibility
while retaining desirable statistical properties for inference. Posterior simulation
involves an intractable normalizing constant; we therefore present a latent
extension of the model which enables exact inference through a trans-dimensional
MCMC method. We argue the capacity of this family of models to capture time
homogeneous transition mechanisms, making them a powerful tool for predictive
inference even when the process generating the data does not have a stationary
density. Numerical illustrations are presented.

1.1 Introduction

The mixture of Dirichlet process (MDP) model, introduced by Lo [5], is a very
popular model, which has benefitted from the advances in simulation techniques, so
that the model is now able to cover more complex data structures, such as regression
models and time series models [3].

In the context of time series, there is a need for flexible models which can
accommodate complex dynamics, observed in real-life data. While stationarity
is a desirable property, which facilitates estimation of relevant quantities, it is
difficult to construct stationary models for which both the transition mechanism

I. Antoniano-Villalobos (�)
Department of Decision Sciences, Bocconi University, Milan, Italy
e-mail: isadora.antoniano@unibocconi.it

S.G. Walker
Department of Mathematics, University of Texas, Austin, USA
e-mail: s.g.walker@math.utexas.edu

E. Lanzarone and F. Ieva (eds.), The Contribution of Young Researchers
to Bayesian Statistics, Springer Proceedings in Mathematics & Statistics 63,
DOI 10.1007/978-3-319-02084-6__1, © Springer International Publishing Switzerland 2014
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and the invariant density are sufficiently flexible. Many attempts have been made,
often resulting in a compromise between flexibility and statistical properties (see,
e.g., [2, 6–9]).

We propose a model with nonparametric transition and stationary densities,
which enjoys the advantages associated with stationarity, while retaining the
necessary flexibility for both the transition and stationary densities. We demonstrate
how posterior inference via MCMC can be carried out, focusing on the estimation
of the transition density, both for stationary and non-stationary data-generating
processes. For ease of exposition, we only consider first-order time series data and
models, but the construction we propose can be adapted for higher-order Markov
dependence structures.

1.2 The Model

We construct a nonparametric version of the usual autoregressive model by defining
a nonparametric, i.e., infinite, mixture of parametric bivariate densitiesKθ(y, x), for
with both marginals, Kθ(y) and Kθ(x) are the same. We then define the transition
density as the conditional density for y given x, therefore preserving the stationarity.

The transition mechanism can be expressed as a nonparametric mixture of
transition densities with dependent weights,

fP (y|x) =
∞∑

j=1

wj(x)Kθj (y|x), (1)

where

wj(x) =
wj Kθj (x)∑∞

j′=1 wj′ Kθj′ (x)
. (2)

Clearly, the expression in the denominator, namely

fP (x) =

∞∑

j=1

wj Kθj(x), (3)

constitutes the invariant density for such transition.
Therefore, both the transition and the stationary densities for the model are

defined as nonparametric mixtures.
To our knowledge, the only other fully nonparametric Bayesian model for

stationary Markov processes developed so far is due to Martínez-Ovando and
Walker [6]. No applications to real data are currently available in the literature,
probably due to the complex nature of their model construction.

The model we propose has a simple structure. However, it has been, until now,
considered intractable due to the infinite mixture appearing in the denominator of
the dependent weight expression. We therefore propose a latent variable extension
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Fig. 1.1 Inference via MCMC estimation for two data sets of size n = 1, 000. The dashed
lines correspond to the true densities, which are accurately captured by point-wise estimates,
represented by the gray-scale map, with highest posterior probability in white. (a) Mixture model
data: transition density. (b) Mixture model data: stationary density. (c) Brownian motion data:
transition density. (d) Brownian motion data: the marginal point estimate (solid line) provided by
the model captures the variability of the data histogram, enabling transition density estimation even
in the absence of a true stationary density

which enables posterior inference for the model via MCMC, involving slice
sampling [4] and a trans-dimensional MCMC method [1]. Future work should
include applications to real data.

1.2.1 Illustrations

We present some examples, all of them involving simulated data: form the mixture
model itself, a stationary diffusion process, standard Brownian motion and a
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non-stationary diffusion. They illustrate how our model can be used for transition
and invariant density estimation simultaneously, when the stationary density exists,
yet remaining suitable for transition density estimation, even when the data is not
generated by a stationary process (Fig. 1.1).
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Chapter 2
Estimation of Optimally Combined-Biomarker
Accuracy in the Absence of a Gold Standard
Reference Test

Leandro Garcia Barrado, Elisabeth Coart, and Tomasz Burzykowski

Abstract The reference diagnostic test used to establish the discriminative proper-
ties of a combination of biomarkers could be imperfect. This may lead to a biased
estimate of the accuracy of the combination. A Bayesian latent-class mixture model
is proposed to estimate the area under the ROC curve (AUC) of a combination of
biomarkers. The model allows selecting the combination that maximizes the AUC
and takes possible errors in the reference test into account. A simulation study
was performed based on 400 data sets. Sample sizes from 100 to 600 observations
were considered. Informative as well as non-informative prior information for the
diagnostic accuracy of the reference test was considered. In addition, a controlled
prior specification is proposed. The obtained average estimates for all parameters
were close to the true values; some differences in efficiency were observed. Results
indicate an adequate performance of the model-based estimates.

2.1 Introduction

Biomarkers can be used for developing a diagnostic test for a disease. Often, to
increase the diagnostic accuracy of the test, a combination of several biomarkers
is considered [6]. To assess the diagnostic performance of a biomarker-based test,
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Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat),
Hasselt University, Agoralaan building D, 3590 Diepenbeek, Belgium
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a so-called reference test, establishing disease status of an individual, is needed.
Depending on the disease of interest, the reference test may be imperfect, i.e., it may
misclassify the control and diseased individuals. In such a case, the estimate of the
diagnostic accuracy of a biomarker could be biased [4]. Therefore, when developing
a biomarker-based diagnostic test, the possibility of an imperfect reference test has
to be taken into account.

2.2 Methods

We use the area under the ROC curve (AUC) as a measure of the diagnostic accuracy
and a model to derive the linear combination of biomarkers maximizing the AUC
[3]. In particular, a Bayesian latent-class mixture model is fitted to obtain estimates
of the distributional parameters of the multivariate distributions for the biomarkers
that form the mixture components for the diseased and control populations. By
estimating the latent true disease status and component parameters through a
mixture model with both reference test and biomarker values contributing to the
likelihood, the misclassification probabilities of the reference test are taken into
account [2].

A simulation study was performed to investigate the performance of the model
under several settings for 400 simulated data sets. Sample sizes of 100, 400, and
600 observations were considered, split equally between the diseased and control
groups. The prior distributions for the sensitivity and specificity of the reference test
were varied from non-informative to informative.

Priors for the remaining parameters were set as standard non-informative priors
[1]. This “naive” approach does not enable control of the prior distributions for the
variances, correlations, and the AUC. Therefore, an alternative prior specification
is proposed. Re-parametrization of the variance-covariance matrices allows a more
direct specification of the prior information for variances and correlations [5]. By
putting a prior distribution on the difference of the mixture component means, scaled
by the sum of the variance-covariance matrices, prior information for the AUC can
be precisely specified.

2.3 Results

Table 2.1 presents the results of the simulation study for the three considered sample
sizes. The table contains the average of the median posterior AUC estimates over
the 400 data sets for each of the different simulation settings. The rows marked
Naive correspond to the “naive” approach, which leads to the AUC prior as in
Fig. 2.1a. The rows marked Controlled correspond to the re-parametrized approach,
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Table 2.1 Mean (standard error) of the median posterior AUC of all 400 fits for all considered
settings

Prior Se/Sp True Sample size

formulation prior AUC N = 100 N = 400 N = 600

Naive Non-Inf 0.8786 0.9241 (0.0279) 0.8890 (0.0279) 0.8836 (0.0262)
Naive Inf 0.8786 0.9068 (0.0344) 0.8827 (0.0286) 0.8785 (0.0263)
Controlled Non-Inf 0.8786 0.8907 (0.0347) 0.8803 (0.0290) 0.8773 (0.0271)
Controlled Inf 0.8786 0.8728 (0.0388) 0.8741 (0.0292) 0.8722 (0.0269)
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Fig. 2.1 Simulated implied priors for AUC based on mixture component priors. (a) Implied prior
for the naive prior specification. (b) Implied prior for the proposed controlled prior specification

with the AUC prior shown in Fig. 2.1b. Within each parametrization approach, the
rows indicated by Non-Inf and Inf represent the results for the non-informative and
informative prior for the accuracy of the reference test, respectively.

Considering the naive approach, the results point to overestimation and decreas-
ing efficiency of posterior estimates with decreasing sample size. Increasing the
amount of prior information for the accuracy of the reference test resolves, or at
least reduces, the bias observed for small data sets. Counterintuitively, the increase
of the prior information leads to a decrease in efficiency of the AUC estimates.

It appears that the consequence of assuming non-informative priors for the
parameters of the biomarker-related distributions is that the prior for the AUC
essentially becomes a point mass distribution at one (see panel A of Fig. 2.1). This
explains the overestimation of the AUC as due to the highly informative AUC
prior distribution. Changing the parametrization of the model allows specifying the
prior distribution for the AUC as in Fig. 2.1b. As a consequence, introducing this
less informative prior reduces the bias. Increasing sample size or the amount of
information in the prior for the accuracy of the reference test does not alter the
results substantially, as shown in Table 2.1.
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2.4 Conclusions

The results indicate that the model does provide unbiased estimates of the accuracy
of the optimal combination of diagnostic biomarkers, but care has to be taken in the
specification of the prior information, especially for the AUC. Under the “naive”
approach, an informative prior for the accuracy of the imperfect reference test may
overcome the informative prior for the AUC in small data sets.
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Chapter 3
On Bayesian Transformation Selection: Problem
Formulation and Preliminary Results

E. Charitidou, D. Fouskakis, and I. Ntzoufras

Abstract The problem of transformation selection is thoroughly treated from a
Bayesian perspective. Several families of transformations are considered with a
view to achieving normality: the Box-Cox, the Modulus, the Yeo and Johnson and the
Dual transformation. Markov Chain Monte Carlo algorithms have been constructed
in order to sample from the posterior distribution of the transformation parameter
λT associated with each competing family T . We investigate different approaches
to constructing compatible prior distributions for λT over alternative transformation
families, using the power-prior and the unit-information prior approaches. In
order to distinguish between different transformation families, posterior model
probabilities have been calculated. Using simulated datasets, we show the usefulness
of our approach.

3.1 Introduction

In the literature, the term transformation selection so far pertains to the choice
of an optimal value for the transformation parameter within a given family. We
introduce a two-step approach where a transformation family is selected at an initial
level, while at a second level the value of the transformation parameter is specified
given the family. Working within the Bayesian context requires careful choice of
prior distributions. In our case, this becomes even more complex since the prior
distribution for the transformation parameter λT under each family T needs to be
compatible to account for the different interpretation of λT given T .
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3.2 Bayesian Formulation

Four uniparametric families of transformations are considered and compared with
each other: Box-Cox [1], Modulus [4], Yeo and Johnson [6] and Dual [5].

Each family is indexed by T and involves a transformation parameter λT .
Let us denote by y = (y1, . . . , yn)

T the observed data and by y(λT ) =(
y
(λT )
1 , . . . , y

(λT )
n

)T
the transformed data for a given value of the parameter λT

within a particular transformation family T . We aim for y(λT ) to be a sample from
a Normal distribution N(μT , σ

2
T ) with unknown parameter vector

(
μT , σ

2
T

)
under

some appropriate value of λT .
Regarding the prior probability of each of the six transformation families

(including the identical and the log transformation), no special prior weight is
assigned to any family, i.e., π(T ) = 1

|T | =
1
6 . As to the prior on the transformation

parameters, it has a hierarchical form π(θT |T ) = π(μT , σ
2
T |λT , T )π(λT |T ).

The main parameter of interest within a family is λT while (μT , σ
2
T ) are

regarded as nuisance parameters; therefore, we employ an independent Jeffreys
prior (reference prior) for those.

On the grounds of the different interpretation of λT among families, the concept
of the power-prior [3] is adopted in order to construct compatible prior distributions.
The power-prior for λT is formed as the posterior distribution of a set of imaginary
data y∗ under a reference baseline prior π0(λT |T ) ∝ 1:

π (λT |y∗, T ) =
f (y∗|λT , T )1/n

∗

∫
f (y∗|λT , T )1/n∗

dλT
. (1)

In addition, a unit-information Normal prior setting is used, based on the
same imaginary data y∗, which theoretically approximates the former power-prior
setting. The variance of the latter prior is determined through the observed Fisher
information given y∗. Approximations of the intractable integrals included in the
process are achieved through Chib’s estimator [2] incorporating the output of a
random-walk Metropolis-Hastings algorithm simulating from the marginal posterior
distribution of λT .

3.3 Results

In order to illustrate our approach, we have simulated data from a variety of
distributions. The Student distribution t2, having non-centrality parameter equal to
−1, is an example of particular interest since symmetry is accompanied by fat tails.
The latter characteristic usually induces failure of transformation to normality under
most families. Looking at the figures in Table 3.1, we observe that the supremacy of
the Modulus family for this distribution is unquestionable for both medium and large
sample sizes (n = 100 and n = 1000) under both power-prior and unit-information
Normal prior.
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3.4 Conclusions

The compatibility issues in transformation selection have been addressed through
the power-prior approach. By and large, there is more than adequate convergence
of results under both prior settings. The fat-tailed Student distribution is optimally
associated to the Modulus transformation. The latter result has been verified for
other fat-tailed distributions such as the Laplace.

Acknowledgements This work has been partially funded by the Research Committee of the
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Chapter 4
A Simple Proof for the Multinomial Version
of the Representation Theorem

Marcio A. Diniz and Adriano Polpo

Abstract In this work we present a demonstration for the multinomial version of
de Finetti’s Representation Theorem. We use characteristic functions, following his
first demonstration for binary random quantities, but simplify the argument through
forward operators.

4.1 Introduction

In 1928, Bruno de Finetti presented a contribution at the International Congress
of Mathematicians: Funzione caratteristica di un fenomeno aleatorio, but it was
published only in 1932, when the sixth and last volume of the annals of that congress
was released. In 1930, a more detailed version was published, as a memoir, by the
Accademia dei Lincei, with the same title.1

De Finetti used an analytic argument and characteristic functions, alongside with
the exchangeability hypothesis, to prove his famous Representation Theorem. In
this work we use his arguments with forward operators to present a new proof for
the multinomial case.

1See [1, 5, 6].
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4.2 De Finetti’s Method for Multinomial Trials

Let an infinite sequence of random quantities that assume any of k values or
categories considered to be exchangeable. We want to study some subsequence of
n of such quantities. In order to do this, we consider the vector (S1, . . . , Sk−1) that
displays the number of quantities that assumed value 1, 2, . . . , k−1. The probability-
generating function (p.g.f) of such vector is, for z ∈ C

k:

Ωn(z1, . . . , zk−1) =
∑

Δ

ω
(n)
h1,...,hk−1

zh1
1 . . . z

hk−1

k−1 (1)

in which Δ = {(x1, . . . , xk−1) ∈ Z
k−1
+ : x1 + · · ·xk−1 ≤ n}, n ∈ N and

ω
(n)
h1,...,hk−1

is the probability that we observe, in n trials, h1 of category 1, . . . , hk−1

of category k−1, regardless of the order. We also denote by ω(0)
0 = 1, t =

∑k−1
i=1 hi

and

ω
(t)
h1,...,hk−1

= ωh1,...,hk−1
.

Exchangeability makes it possible to write

ω
(n)
h1,...,hk−1(

n
h1,...,hk−1

) = δn−t ωh1,...,hk−1
≥ 0 (2)

in which the δ operator is defined after [3] by

δωh1,...,hk−1
= ωh1,...,hk−1

−ωh1+1,...,hk−1
−ωh1,h2+1,...,hk−1

−. . .−ωh1,...,hk−1+1.

Now we define the forward operators. Let us denote

F kj ωh1,...,hk−1
= ωh1,...,hj+k,...,hk−1

then it follows that

F ri F
k
j ωh1,...,hk−1

= F kj F
r
i ωh1,...,hk−1

= ωh1,...,hi+r,...,hj+k,...,hk−1

and that

δn−tωh1,...,hk−1
= (1− F1 − . . .− Fk−1)

n−tωh1,...,hk−1
.

Using (2), implied by the exchangeability hypothesis and forward operators, the
p.g.f (1) may be written as
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Ωn(z1, . . . , zk−1) =
∑

Δ

ω
(n)
h1,...,hk−1

zh1
1 . . . z

hk−1

k−1

=
∑

Δ

(
n

h1, . . . , hk−1

)
zh1
1 . . . z

hk−1

k−1 (1 − F1 . . .− Fk−1)
n−h1...−hk−1ωh1,...,hk−1

=
∑

Δ

(
n

h1, . . . , hk−1

)
(z1F1)

h1 . . . (zk−1Fk−1)
hk−1(1 − F1 . . .− Fk−1)

n−tω0

= [1 + F1(z1 − 1) + · · ·+ Fk−1(zk−1 − 1)]nω0. (3)

Following de Finetti’s approach, we define the characteristic function of S =
(S1/n, . . . , Sk−1/n) which, using (3), may be written as

ΨS(t1, . . . , tk−1) = Ωn(e
it1/n, . . . , eitk−1/n)

= [1 + F1(e
it1/n − 1) + · · ·+ Fk−1(e

itk−1/n − 1)]nω0

and study its limit when n→ ∞. It is possible to show2 that

ΨΘ(t1, . . . , tk−1) = exp[i(F1t1 + F2t2 + · · ·+ Fk−1tk−1)]ω0 (4)

and, by Levy’s continuity theorem, it is known that (4) is the characteristic function
of only one random vector, Θ, that assumes value in the k − 1 simplex and whose
distribution function3 is denoted Φ. Given the properties relating moments and
characteristic functions, we can rewrite (1) once more, through the multinomial
theorem

Ωn(z1, . . . , zk−1) =

∫

Sk−1

[1 + θ1(z1 − 1) + · · ·+ θk−1(zk−1 − 1)]ndΦ(θ)

=
∑

Δ

(
n

h1, . . . , hk−1

)
zh1
1 . . . z

hk−1

k−1

∫

Sk−1

θh1
1 θh2

2

. . . (1−θ1− · · · −θk−1)
n−tdΦ(θ),

where θ ∈ Sk−1, the (k − 1)-simplex, and from it follows that

ω
(n)
h1,...,hk−1

=

(
n

h1, . . . , hk−1

)∫

Sk−1

θh1
1 θh2

2 . . . (1− θ1 − · · · − θk−1)
n−tdΦ(θ)

that is de Finetti’s Representation Theorem for multinomial sequences of exchange-
able random quantities.

2The limits with forward operators are well defined because the set of polynomial operators induces
an algebra that is isomorphic to the algebra of polynomials in real or complex variables. See [4].
3It is possible to find the distribution function inverting the characteristic function.
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De Finetti [7] does not provide a proof for the multinomial case but only
asymptotical arguments that, starting from the finite binomial case, it is possible
to derive the infinite multinomial case. For the binomial case, Bernardo and Smith
[2] provide a proof based on [8], but for the multinomial case the proof is reported
as “a straightforward, albeit algebraic cumbersome, generalization of the proof of
(Representation theorem for binary random quantities)”. The proof given by [8] can
be considered as, essentially, de Finetti’s proof with a limit argument not involving
characteristic functions.

The results presented here provided a simple and clean demonstration of de
Finetti’s Representation Theorem for infinite sequences of multinomial random
quantities.
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Chapter 5
A Sequential Monte Carlo Framework
for Adaptive Bayesian Model Discrimination
Designs Using Mutual Information

Christopher C. Drovandi, James M. McGree, and Anthony N. Pettitt

Abstract In this paper we present a unified sequential Monte Carlo (SMC) frame-
work for performing sequential experimental design for discriminating between a
set of models. The model discrimination utility that we advocate is fully Bayesian
and based upon the mutual information. SMC provides a convenient way to estimate
the mutual information. Our experience suggests that the approach works well
on either a set of discrete or continuous models and outperforms other model
discrimination approaches.

5.1 Introduction

The problem of model choice within a Bayesian framework has received an
abundance of attention in the literature. Therefore, when a set of competing models
is proposed a priori, it is important to determine the optimal selection of the
controllable aspects (when available) of the experiment for discriminating between
the models. A sequential experimental design allows experiments to be performed
in batches, so that adaptive decisions can be made for each new batch.

In this paper we adopt a unified sequential Monte Carlo (SMC) framework for
performing model discrimination in sequential experiments. We consider as a utility
the mutual information between the model indicator and the next observation(s) [1].
SMC allows for convenient estimation of posterior model probabilities [3] as well
as the mutual information utility, both of which are generally difficult to calculate.
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In SMC, new data can be accommodated via a simple re-weighting step. Thus, the
simulation properties of various utilities can be discovered in a timely manner with
SMC compared with approaches that use Markov chain Monte Carlo to recompute
posterior distributions (see [5]).

From our experience we have found the approach to be successful on several
diverse applications, including models for both discrete (see [4]) and continuous
(see [7]) data. The purpose of this paper is to collate [4, 7] into a single source
describing the SMC mutual information for model discrimination calculation for
applications involving a set of discrete or continuous models. Section 5.2 develops
the notation, Sect. 5.3 details SMC under model uncertainty and Sect. 5.4 describes
the mutual information calculation. Section 5.5 describes the examples our approach
has been tested on while Sect. 5.6 concludes the paper.

5.2 Notation

We use the following notation. We consider a finite number of K models, described
by the random variable M ∈ {1, . . . ,K}. We assume one of the K models is
responsible for data generation. Each model m contains a parameter, θm, with a
likelihood function, f(yt|m, θm,dt), where yt represents the data collected up to
current time t based on the selected design points, dt. We place a prior distribution
over θm for each model, denoted by π(θm|m). π(m) and π(m|yt,dt) are the prior
and posterior probability of model m, respectively.

5.3 Sequential Monte Carlo Incorporating
Model Uncertainty

SMC consists of a series of re-weighting, re-sampling and mutation steps. For a
single model, we use the algorithm of [2]. For sequential designs involving model
uncertainty, we run SMC algorithms in parallel for each model and combine them
after introducing each observation to compute posterior model probabilities and the
mutual information utility. We denote the particle set at target t for the mth model
obtained by SMC as {W i

m,t, θ
i
m,t}Ni=1, whereN is the number of particles. It is well

known that SMC provides a simple way to estimate the evidence for a particular
model based on importance weights, which can be converted to estimates of the
posterior model probabilities. The reader is referred to [4] for more details on the
algorithm.
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5.4 Mutual Information for Model Discrimination

For model discrimination, we advocate the use of the mutual information utility
between the model indicator and the next observation, first proposed in [1]. This
utility provides us with the expected gain in information about the model indicator
introduced by the next observation. In general it is difficult to calculate; however,
SMC allows efficient calculation. One can show that the utility for the design d to
apply for the next observation z is given by

U(d|yt,dt) =
K∑

m=1

π(m|yt,dt)

∫

z∈S

f(z|m,yt,dt, d) log π(m|yt,dt, z, d)dz,

(1)

where S is the sample space of the response z. Below, we denote SMC estimates of
predictive distributions and posterior model probabilities with a hat. If z is discrete,
a summation replaces the integral

Û(d|yt,dt) =

K∑

m=1

π̂(m|yt,dt)
∑

z∈S

f̂(z|m,yt,dt, d) log π̂(m|yt,dt, z, d), (2)

[4]. When z is continuous, the integral can be approximated using the SMC particle
population for each model

Û(d|yt,dt) =

K∑

m=1

π̂(m|yt,dt)

N∑

i=1

W i
m,t log π̂(m|yt,dt, z

i
m,t, d), (3)

[7] where zim,t ∼ f(z|m, θim,t, d) if the observations are independent.

5.5 Examples

The SMC algorithm for designing in the presence of model uncertainty together
with the use of the mutual information utility function has been tested on a variety
of discrete and continuous model examples spanning several application areas.
The SMC algorithm facilitated faster assessment of different utility functions for
model discrimination purposes. Drovandi et al. [4] considered binary and count
data examples. The applications included memory retention models, dose-response
relationships in the context of clinical trials and models for neuronal degeneration.
In all cases the mutual information utility led to a more rapid identification of the
correct model compared to a random design. McGree et al. [7] applied the algorithm
to continuous model examples. The methodology was illustrated on competing
models for an asthma dose-finding study, a chemical engineering application and
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a pharmacokinetics example. The mutual information utility was compared to a
random design and the total separation criterion (see, e.g., [6]), which is another
model discrimination utility. We found that the mutual information utility led to
designs that were more robust for detecting the correct model across applications.

5.6 Conclusion

Here we have brought together the findings of [4, 7] into a single source for
performing adaptive Bayesian model discrimination under discrete or continuous
model uncertainty. The methodology relies on SMC, which has already proven
to be useful in sequential designs [5] and furthermore provides a convenient
estimate of the mutual information utility we advocate for model discrimination.
The combination of the SMC algorithm and mutual information utility has been
successfully tested on a wide range of applications.
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Chapter 6
Joint Parameter Estimation and Biomass
Tracking in a Stochastic Predator–Prey System

Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone,
Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, and Diego P. Ruiz

Abstract A Rao–Blackwellized particle filter for estimating the behavioral param-
eter of the functional response and tracking the biomass of each population in a
stochastic predator–prey system is presented in this paper. We consider a predator–
prey model with a Lotka–Volterra functional response and small sets of field data.
A first validation of the approach has been carried out using synthetic data.

6.1 Introduction

Successful establishment of biological control strategies is difficult because the
current abundance of pest population and properties of the predator functional
response, i.e., the per capita rate of predation, should be known, but this information
is not always available. Moreover, the decision on time and amount of predator
released has to be taken into the dynamical framework of predator–prey interaction.
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In this paper, we propose a method for the joint estimation of the dynamical
biomass of each population and the feeding rate during the time evolution of
population interactions.

6.2 Method

6.2.1 State-Space Model

We consider the nonlinear state-space model, obtained by the Euler discretization
of a stochastic Lotka–Volterra type of model based on [4],

xk+1 = xk + τ [rxk(1− xk)− q0xkyk]− σxkytΔw
(1)
k+1 + εxkΔw

(2)
k+1,

yk+1 = yk + τ [cq0xkyk − uyk] + cσxkykΔw
(1)
k+1 + ηykΔw

(3)
k+1,

oxk+1 ∼ Γ (xk+1, d
2
x),

oyk+1 ∼ Γ (yk+1, d
2
y), (1)

where xk+1 and yk+1 are the biomass of prey and predator, respectively, at time k+1
per habitat unit normalized with respect to the prey carrying capacity per habitat unit
(plant), oxk+1 and oyk+1 are noisy biomass observations defined as Gamma variables
with mean equal to xk+1 and yk+1 and variance equal to d2x and d2y , respectively,
τ is the time step used in the Euler approximation, and k = 0, 1, . . . , S denotes
the discrete time instants. The parameters r, c and u are species-specific and have
been estimated in [4]. The increments of the Wiener processes,Δw(1)

k+1,Δw(2)
k+1 and

Δw
(3)
k+1 are independent Gaussian variables with zero mean and variance τ , and the

parameters σ, ε, and η have been estimated in [4].
Assume that the parameter q0 in the functional response q0xtyt is unknown

and the goal is the joint estimation of this behavioral parameter and the biomass
variables xk+1 and yk+1.

6.2.2 Rao–Blackwellized Particle Filter

We apply a practical particle filter (PF) to approximate the sequence of posterior
probability distributions of the biomass of each population with unknown parameter
q0 given the observations. The proposed algorithm is an example of a Rao–
Blackwellized particle filter (RBPF) [2, 3]. Conditional on the sequences x0:k and
y0:k, the estimation of q0 is solved numerically using a simple Kalman filtering
algorithm [1, 5]. The RBPF handles a set of M particles in the two-dimensional
space of the prey and predator biomass and a bank of M Kalman filters running in
parallel.
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This particle filter method is adapted to small observation datasets, updating
importance weights and resampling the particle set only when experimental obser-
vations become available.

6.3 Experimental Results

6.3.1 Dataset Simulation

We consider the acarine predator–prey system studied in [4], the prey mite
Tetranychus urticae, and the predator mite Phytoseiulus persimilis. The population
dynamics is described by Eq. (1) where all parameters are defined in [4] and the
behavioral parameter q0 is unknown.

In order to generate a synthetic dataset, we set q0 = 1.9, a time period τ = 1
day, and a final time S = 69 days. Then we use the model in Eq. (1) to generate
sequences of normalized prey x1:S and predator y1:S population biomass values.
From these complete sequences, we generate eight noisy observations with variance
d2x = d2y = 10−4.

6.3.2 Validation of the RBPF Algorithm

We apply the RBPF algorithm with M = 105 particles to jointly estimate the
unknown parameter q0 and track the prey and predator biomass given the available
set of eight synthetic observations. All particles are initialized in the same way,
x0 = 0.1 and y0 = 0.01 are set, and a Gaussian distribution1 is assumed for the
prior density of q0 with zero mean and variance equal to one.

Figure 6.1 shows the online evaluation of the posterior mean of q0 generated
by the RBPF method. At the final time S = 69, the value of the posterior mean
converges to 1.946 and the posterior variance is 0.025.

For the same simulation, Fig. 6.1 also displays the true (synthetic) sequences x0:S
and y0:S together with the online biomass estimates. It can be seen that the estimates
are accurate at the times where observations are processed, but there is a drift (the
error increases) when data are not available, especially for k < 40. We also see that
for k ≥ 40 the estimates of q0 are more accurate, and this also affects the accuracy
of the biomass estimation.

1The proposed methods demand that the prior of q0 be Gaussian for formal consistency. However,
even with the mean of q0 at k = 0 equal to zero, the inference algorithm performs well; hence, we
have chosen to use this prior to illustrate the robustness of the method.
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Fig. 6.1 Estimates of the unknown parameter q0 over time and comparison of the true synthetic
biomass sequences (dash-dotted lines) and the online biomass estimates (continuous lines)
generated by the RBPF algorithm. The points for which observations are available are displayed
with stars

6.4 Conclusions

Within the adaptive management framework in Integrated Pest Management (IPM),
the predator–prey model we propose can undergo changes leading to improved
predictive and explicative capabilities as more information becomes available.
Differently from MCMC methods, the PF method does not present restriction on the
dataset. In fact, it can be applied also during the period of data collection without
waiting up to the end of at least one cycle of the population like in [4].

Compared to standard particle filters, the proposed method reduces both the
dimension of the state space and the variance of the resulting estimates [2, 3].

The use of the Lotka–Volterra model implies an unsaturated capability of prey
biomass intake for the predator. However, the intrinsic limitation in the model is
outpaced by the advantages offered by the availability of prompt and progressively
improved estimation of the predator functional response.
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Finally, the experimental results confirm the goodness of the proposed method.
As future work, an application to collected field data will be considered.
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Chapter 7
Adaptive Bayes Test for Monotonicity

Jean-Bernard Salomond

Abstract We study the asymptotic behavior of a Bayesian nonparametric test of
qualitative hypotheses. More precisely, we focus on the problem of testing mono-
tonicity of a regression function. Even if some results are known in the frequentist
framework, no Bayesian testing procedure has been proposed; at least none has
been studied theoretically. This paper proposes a procedure that is straightforward to
implement, which is a great advantage compared to those proposed in the literature.

7.1 Introduction

Shape-constrained models are of growing interest in the nonparametric field. Among
them monotonicity constrains are very popular. There is a wide literature on the
problem of estimating a function under monotonicity constrains. Groeneboom [7]
and [14, 15] among others study the nonparametric maximum likelihood estimator
of monotone densities; Brunner et al. [5, 10, 11, 18] study the properties of a
Bayesian estimator. Barlow et al. [3] and [12] proposed a shape constrain estimator
of monotonic regression functions. These methods are widely applied in practice.
Bornkamp and Ickstadt [4] consider monotone function when modeling the response
to a drug as a function of the dose and Hussain et al. [9] use a monotone
representation for environmental data.

In this work, we propose a procedure to test for monotonicity constrains. We
consider the Gaussian regression model

Yi = f(i/n) + εi, εi
iid∼ N

(
0, σ2

)
, σ2 > 0, i = 1, . . . , n, (1)
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and, with F being the set of all monotone function, we test

H0 : f ∈ F , versus H1 : f 	∈ F . (2)

Thus both the null and the alternative are nonparametric hypotheses. The problem
of testing for monotonicity has already been addressed in the frequentist literature
and a variety of approaches have been considered. Baraud et al. [2] use projections
of the regression function on the sets of piecewise constant function on a collection
of partition of support of f . Their test rejects monotonicity if there is at least one
partition such that the estimated projection is too far from the set of monotone
functions. Another approach, considered in [6, 8] among others, is to test for
negativity of the derivative of the regression function. However this requires some
assumptions on the regularity of the regression function under the null hypothesis
that could be avoided. In a recent paper Akakpo et al. [1] propose a procedure that
detects local departure from monotonicity and study very precisely its asymptotic
properties.

Here, we consider a Bayesian approach to this problem, which to the author’s
knowledge has not been studied. We only consider the case where F is the set
of monotone nonincreasing functions, but a similar approach could be used when
considering the set of monotone increasing or simply monotone functions. The most
common approach to testing in a Bayesian setting is the Bayes factor. Here, however,
we see that this method has drawbacks and seems to have poor performances.

Since monotone nonincreasing densities are well approximated by piecewise
constants (see [7] or [18]), it is natural to build a prior on such functions. The
standard approach to test for monotonicity of f in a Bayesian setting would be to
consider the Bayes factor

B0,1 =
π (f ∈ F |Y n)

π (f 	∈ F |Y n)

1− π (F )

π (F ) ,

where π has the form for all k ≥ 2 and all f written as

f =
k∑

i=1

I[(i−1)/k,i/k)ωi, dπ(f) = π(k)π(ω1, . . . , ωk|k).

However, this approach yields poor results in practice. The use of noninformative
priors when considering the Bayes factor is not recommended as pointed out in [19].
We thus use a different approach and test

Ha
0 : d̃(f,F ) ≤ τn versus Ha

1 : d̃(f,F ) > τn, (3)

where d̃(f,F ) is a distance between f and the set of monotone nonincreasing
function F and τn a threshold, which can be calibrated a priori given some
knowledge the tolerance to approximate monotonicity. However, such a knowledge
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may not be available; we thus propose an automatic calibration of τn such that our
test has good asymptotic properties. To perform such a test we consider the γ0 − γ1
loss with fixed γ0, γ1 > 0 and thus our procedure can be defined as

δπn :=

⎧
⎨

⎩
0 if π

(
d̃(f,F ) ≤ τn|Xn

)
≥ γ0

γ0+γ1

1 otherwise.
(4)

This idea is similar to the one proposed in [16] and to the approximation of a
point null hypothesis by an interval hypothesis testing; see also [20]. This test is
straightforward to implement and will only require sampling under the posterior.

7.2 Theoretical Results

The following theorem gives a calibration for τkn . It also gives an upper bound for
the minimal separation rate with respect to the distance dn(·, ·) defined as

d2n(f, g) = n−1
n−1∑

i=0

(
f

(
i

n

)
− g

(
i

n

))2

.

We define a prior π on f, σ similarly to before by considering

fω,k(·) =
k∑

i=1

ωiI[(i − 1)/k, i/k)(·)

and

dπ(ω, σ, k) = πk(k)πσ(σ)

k∏

i=1

g(ωi),

where g and πσ are density function. We consider the following conditions on the
prior

C1 The densities g and πσ are continuous, g(x) > 0 for all x ∈ R and πσ(σ) > 0
for all σ ∈ (0,∞).

C2 πk is such that there exists positive constants Cd and Cu such that

e−CdkL(k) ≤ πk(k) ≤ e−CukL(k), (5)

where L(k) is either log(k) or 1.

The condition C1 is mild as it is satisfied for a large variety of distributions. C2
is a usual condition when considering mixture models with random number of
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components (see, e.g., [17]) and is satisfied by Poisson or Geometric distribution,
for instance. Similarly to what is done in the frequentist literature, we consider
Hölderian alternatives H (α,L) with 0 < α ≤ 1 defined as

H (α,L) = {f, ∀x, y ∈ [0, 1], |f(y)− f(x)| ≤ L|y − x|α} .

Under the previous conditions, Theorem 1 gives us some insight on how to
choose τkn .

Theorem 1. Under the assumptions C1 and C2, if M0 > 0, setting τkn =
M0

√
k log(n)/n and δπn the testing procedure

δπn = I
{
π
(
H(ω, k) > τkn |Y n

)
> γ0/(γ0 + γ1)

}

then there exists some M > 0 such that for all α ∈ (0, 1]

sup
f∈F

Enf (δ
π
n) = o(1)

sup
f,dn(f,F)>ρ,f∈H (α,L)

Enf (1− δπn) = o(1)
(6)

for all ρ > ρn =M(n/ log(n))−α/(2α+1)
√
log(n)/L(n).

Note that neither the prior nor the hyperparameters depend on the regularity α of
the regression function under the alternative. Moreover, for all α ∈ (0, 1], the
separation rate ρn(α) is the minimax separation rate up to a log(n) term. Thus
our test is almost minimax adaptive. The log(n) term seems to follow from our
definition of the consistency where we do not fix a level for the type I or type II
error contrariwise to the frequentist procedures. The conditions on the prior are
quite loose and are satisfied in a wide variety of cases. The constant M0 does not
influence the asymptotic behavior of our test but has a great influence in practice
for finite n. However, it could easily be calibrated and our procedure leads to good
results in practice.

7.3 Conclusion

We propose a Bayesian testing procedure that is consistent and is minimax adaptive
up to a log(n) term. Furthermore our procedure is easy to implement and yield
good results in the finite sample case. This is a great advantage as the existing
frequentist procedures require in general heavy computations. Our approach can
easily be adapted to testing other types of shape constrains such as convexity for
instance.
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Chapter 8
Bayesian Inference on Individual-Based Models
by Controlling the Random Inputs

Michael Spence and Paul Blackwell

Abstract Complex models are becoming increasingly popular in ecological mod-
elling. However, quantifying uncertainty, estimating parameters and so on for a
model of this sort are complicated by the fact that their probabilistic behaviour
is often implicit in its rules or programs rather than made explicit as in a more
conventional statistical or stochastic model.

In a complex stochastic model, the output is dependent on both the parameters
and the random inputs, i.e. the random numbers used to resolve decisions or generate
stochastic quantities within the model. By treating these random inputs as nuisance
parameters, often we can turn the model into a deterministic model where small
movements in the parameter space result in small changes in the model output.
When this is the case it will allow us to use Approximate Bayesian Computation
methods with MCMC in order to perform parameter estimation. Controlling the
random inputs allows us to move better in the parameter space and improves the
mixing of the Markov chain.

We will use these methods to estimate parameters in an individual-based model
which is used to model the population dynamics of a group-living bird, the
woodhoopoe.

8.1 Introduction

In ecology the need for answering the question “what makes something happen?”
as opposed to “what actually happens?” is becoming increasingly popular. These
questions lead to building complex models where the different aspects of the system
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are modelled separately and give rise to the collective behaviour of the system.
A natural approach in ecology is to model each individual separately in the system.
These are called individual-based models (IBMs) [5].

IBMs generally model behaviour through a series of rules or algorithms rather
than describing it in a formal mathematical way. They are developed with algorithms
that are not well tuned from the beginning but require parameters that are either
not precise enough in the literature or simply not concretely measurable [6]. As
the probabilistic behaviour of the model is implicit in the rules of the model, the
likelihood is generally intractable.

Using pattern-oriented methods [7], parameter values can be found indirectly by
changing a number of parameters at once and seeing if the model output matches
some observed data [9, 10]. As IBMs have many parameters that can have complex
and interacting effects on the output, this approach may be unproductive [2] so other
methods of parameter estimation are required.

Current methods for performing parameter estimation for a model of this kind
involve tuning the parameters and trying to match the model output to observed
patterns. A range of potential parameter values are proposed and then tested by
dividing the potential parameter space up and seeing if the output matches the
observed data.

A more probabilistic version of this is ABC. In ABC parameter values are
proposed from a distribution, usually the prior, and the model is run using these
parameters. If the model output is similar to the realized data, then that parameter is
accepted. This is continued until n parameter values have been accepted. Although
this is more probabilistic it can be computationally very inefficient if the prior is not
very informative.

We propose a method of examining the model by controlling the random inputs
in the model which will allow us to turn the stochastic model into a deterministic
one. We use this method, coupled with Approximate Bayesian Computation (ABC)
methods, to perform parameter estimates on these types of models.

8.2 Controlling Random Inputs

Given a stochastic model M with input parameters θ and output

X ∼M(·|θ), (1)

X is drawn from a random distribution. However, if we condition on the parts that
cause the stochasticity, the random inputs u, then

X ∼M(·|θ,u) (2)

will be deterministic.
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By controlling the random inputs we aim to ensure that small changes in the
parameters result in small changes in the model output. However, depending on
how the inputs are used, a change in a parameter may cause a submodel to require
a different number of random inputs to what it required before that could result in a
large change in the output.

For example, consider a model where only the annual numbers of births and the
weights at birth are generated. Let parameter θ control the number of births and ui,
(i = 1, 2, . . .) be the sequence of random inputs. Suppose when θ = α, using u1,
there is only one birth. The weight of the birth is determined by u2. The next time
the number of births will be determined using u3. Now suppose that when θ = α+ε,
where ε is small, using u1, there may now be two births whose weights involve u2
and u3. The next time the number of births will be determined using u4. This causes
all of the random inputs to be out of sequence which could result in a large change
in the output. This change in output is caused by the change in sequence of random
inputs not the parameter θ.

One way to get round this is to control all of the inputs individually so that each
submodel will have its own sequence of inputs and then the inputs for each submodel
will remain the same regardless to what happened in earlier submodels.

Another example is the queuing model described by Fearnhead and Prangle [3],
Blum and François [1] and Heggland and Frigessi [4]. In this model the customers
arrive at intervals determined by an exponential distribution with parameter θ3
and are served one at a time with the service time being sampled from a uniform
distribution on the interval [θ1, θ1 + θ2]. The output of the model is the inter-service
times for the first 50 customers.

The stochastic inputs determine the arrival time and the service time denoted u
and w, respectively, with

ui ∼ U(·|0, 1)

and

wj ∼ U(·|0, 1)

for i = 1, 2, . . . and j = 1, . . . , 50. The ith arrival will be

− log(1− ui)

θ3

after the (i− 1)th arrival and the jth service time will be

θ1 + θ2wj .

Given u and w, the model is then deterministic.
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8.3 Woodhoopoe Model

Woodhoopoes are birds that can be found in sub-Saharan Africa [7]. They live in
groups just like wolves, with one dominant pair which are the only ones that breed.
Neuert et al. [8] used an individual-based model in order to model the population
and group dynamics of the woodhoopoes which was simplified by Railsback and
Grimm [7] for use as examples in their recent book.

In the model individual woodhoopoes live in groups with one dominant male and
one dominant female. Each woodhoopoe’s aim is to become a dominant animal in
one of the groups. Each month, each woodhoopoe dies with a probability of θ1.
When a dominant dies the eldest subordinate, if there is any, will become the
dominant animal. Younger subordinates will leave their group in order to try and
become a dominant in another group with probability θ2, but if they leave the safety
of the group, they become more vulnerable to predators and have a predication
mortality probability of θ3.

8.4 Summary of the Talk

In the talk we will introduce this method of controlling the random inputs, show a
few examples of how to do it on toy models and then, along with ABC methods,
use it to perform parameter estimation on Railsback and Grimm’s [7] woodhoopoe
model.
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Chapter 9
Consistency of Bayesian Nonparametric
Hidden Markov Models

Elodie Vernet

Abstract We are interested in Bayesian nonparametric hidden Markov models.
More precisely, we are going to present the consistency of these models under
appropriate conditions on the prior distribution, when the number of states of the
Markov chain is finite and known. Our approach is based on exponential forgetting
and usual Bayesian consistency techniques.

9.1 Introduction

Hidden Markov models are much used in practice as in econometrics, speech
recognition, genomics (see [2] for some applications), etc. Since the 1960s,
algorithms to estimate the parameters or the hidden states of these models have
been developed without many theoretical results. Since the 1990s, statisticians have
studied the frequentist asymptotic properties of hidden Markov model. Namely
they have proved consistency and then the asymptotic normality of the maximum
likelihood estimator in general parametric cases [2]. In the nonparametric case the
problem of identifiability is not trivial. It has been solved recently in [5] in the
case we are going to study here. The authors also exhibit frequentist estimators
which have good asymptotic and non-asymptotic properties in the semi-parametric
and nonparametric case. As to the Bayesian asymptotic results, there were recently
studied and only in the parametric case [6, 7]. To our knowledge, there is no result
in the Bayesian nonparametric case. Yet Yau et al. in [8] noticed that using a
nonparametric model can improve the estimations a lot. In this paper we will prove
that under some assumptions, the posterior is consistent for some nonparametric
Bayesian hidden Markov model.
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Fig. 9.1 The model

9.2 The Model

We are interested in hidden Markov models. Let S1, . . . , ST be a Markov chain with
a finite and known number of states k, an initial probability ν, and transition matrix
Q ∈ Mk,k.

With hidden Markov chain, we cannot access these states (they are hidden).
But we observe Y1, . . . , YT which are the noisy signals of the states of the chain,
given S1, . . . , ST ; Y1, . . . , YT are independent and Yt is equal to a parameter mSt

depending on the corresponding state St plus a noise εt. We assume that ε1, . . . , εT
are iid, distributed according to a probability F and independent of the Markov
chain (Fig. 9.1).

The parameters of this model are ν, Q, m and F . We assume that F has a
density f with respect to a reference measure λ. Let θ = (ν,Q,m, f) and pTθ be
the associated joint density of Y1, . . . YT with respect to λ.

As usual in Bayesian statistics, we put a prior μ on the parameters. We assume
that this prior is a product of probability measure of each parameter sets. Then we
take a “frequentist point of view” by wondering if the posterior puts asymptotically
the mass on the neighborhood of the true density. In other words, we study the
consistency of the posterior.

9.3 Consistency

Consistency is the first thing we may ask. Here we will work with neighbor-
hood with respect to the l1 distance between two joint densities of order l. For
two parameters θ and θ′ the pseudo-metric between the two of them will be∫ |pθ(y1, . . . , yl)− pθ′(y1, . . . , yl)|λ(dy1) . . . λ(dyl).
Theorem 1. Under some assumptions on the set of parameters and the prior, if
the true parameter θ∗ = (ν∗, Q∗,m∗, f∗) is such that the associated Markov
chain mixes enough then the posterior is consistent with respect to the previously
described pseudo-metric.

The assumptions on the set of parameters are usual. We mostly ask that the
Markov chain mixes enough. The assumptions on the prior consist on trivial
assumptions on the prior on the parametric part and more complex ones on the
nonparametric part. These last assumptions are checked for some mixtures of
Gaussians on f .
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This result is proved using Barron method [1]. That is to say we have to prove
that the parameter set is not too big by proving the existence of tests. This task
can be achieved by the construction made in [6]. Secondly, we have to prove that
the posterior puts enough mass in the Kullback–Leibler neighborhood of the true
density. For this purpose, we need to control a nasty Kullback–Leibler divergence
by controlling the parameters. We did it thanks to existing results on hidden Markov
chains [3, 4].

Acknowledgements I want to thank Elisabeth Gassiat and Judith Rousseau for their precious
help.
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Chapter 10
Bayesian Methodology in the Stochastic Event
Reconstruction Problems

Anna Wawrzynczak, Piotr Kopka, and Mieczyslaw Borysiewicz

Abstract In many areas of application it is important to estimate unknown model
parameters in order to model precisely the underlying dynamics of a physical sys-
tem. In this context the Bayesian approach is a powerful tool to combine observed
data along with prior knowledge to gain a current (probabilistic) understanding of
unknown model parameters. We have applied the methodology combining Bayesian
inference with sequential Monte Carlo (SMC) to the problem of the atmospheric
contaminant source localization. The algorithm input data are the on-line arriving
information about concentration of given substance registered by the downwind
distributed sensor’s network. We have proposed the different version of the hybrid
SMC along with Markov chain Monte Carlo (MCMC) algorithms and examined
its effectiveness to estimate the probabilistic distributions of atmospheric release
parameters.

10.1 Introduction

Accidental atmospheric releases of hazardous material pose great risks to human
health and the environment. Examples like Chernobyl nuclear power plant accident
in 1986 in Ukraine, chemical plants producing or storing dangerous materials (e.g.
Seveso disaster in 1978) or transportation accidents (bromine release on the train
in Chelyabinsk in 2011) prove that it is necessary to have properly fast response to
such incidents. In this context it is valuable to develop the emergency action support
system, which based on the concentration measurement of dangerous substance
by the network of sensors can identify probable location and characteristics of the
release source.
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It is obvious that if we are able to create the model giving the same point
concentration of registered substance, as we get from the sensors’ network, we
could say that we understand the situation we face up. However, to create the model
realistically reflecting the real situation based only on a sparse point-concentration
data is not trivial. This task requires specification of set of models’ parameters,
which depends on the applied dispersion model’s characteristics.

In general, the stated inverse problem for the dispersion of released materials
in the air is ill-posed. Given concentration measurements and knowledge of the
wind field and other atmospheric air parameters, finding the location of the source
and its parameters is ambiguous. This problem has no unique solution and can
be considered only in the probabilistic frameworks. In the case of gas dispersion,
the unknowns to be determined are the gas source distribution of strengths and
locations, given the measured gas concentrations at measurement locations for the
associated wind field and other weather data (e.g. weather stability pattern). In fact,
our aim is to find the source parameter’s distributions that will generate predicted
concentrations closest to those actually measured.

In this paper we present the developed stochastic dynamic data-driven event
reconstruction model which couples data and predictive models through Bayesian
inference to obtain a solution to the inverse problem, i.e. based on the succes-
sively arriving information about concentration of given substance registered by
distributed sensor network find the most probable source location and its strength.

10.2 Theoretical Preliminaries

Bayes’ theorem, as applied to an emergency release problem, can be stated as
follows:

P (M |D) ∝ P (D|M)P (M), (1)

where M represents possible model configurations or parameters and D are
observed data. For our problem, Bayes’ theorem describes the conditional probabil-
ity P (M |D) of certain source parameters (model configuration M ) given observed
measurements of concentration at sensor locations (D). This conditional probability
P (M |D) is also known as the posterior distribution and is related to the probability
of the data conforming to a given model configuration P (D|M) and to the possible
model configurationsP (M), before taking into account the sensors’ measurements.
The probabilityP (D|M), for fixedD, is called the likelihood function, whileP (M)
is the prior distribution [3].

Value of likelihood for a sample is computed by running a forward dispersion
model with the given source parameters M . To achieve the rapid-response event
reconstructions and limit the computational time we have adopted the fast-running
Gaussian plume dispersion model [4] as the forward dispersion model. The model
predicted concentrations M in the points of sensor location are compared with
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actual data D. The closer the predicted values are to the measured ones, the higher
is the likelihood of the sampled source parameters. This function is taken as

ln[P (D|M)] = ln[λ(M)] = −
∑N
i=1[log(C

M
i )− log(CEi )]

2

2σ2
rel

(2)

where λ is the likelihood function, CMi are the predicted by the forward model
concentrations at the sensor locations i, CEi are the sensor measurements, σ2

rel is the
standard deviation of the combined forward model and measurement errors and N
is the number of sensors.

We use a sampling procedure with the Metropolis-Hastings algorithm to obtain
the posterior distribution P (M |D) of the source term parameters given the con-
centration measurements at sensor locations. This way we completely replace the
Bayesian formulation with a stochastic sampling procedure to explore the model
parameters’ space and to obtain a probability distribution for the source location
[1,2]. The scanned model’s parameter space is M ≡M(x, y, q, ζ1, ζ2) where x and
y are the spatial location of the release, q is release rate and ζ1, ζ2 are stochastic
terms in the turbulent diffusion parameters.

10.3 Methods and Results

In this paper we examine the application of the sequential Monte Carlo (SMC)
methods combined with the Bayesian inference to the problem of the localization of
the atmospheric contamination source. We present the possibility to connect MCMC
and SMC to provide additional benefit in the process of event reconstruction. Based
on the synthetic release experiment we have proposed and tested the following
version of the hybrid SMC with MCMC algorithms in effectiveness to estimate the
probabilistic distributions of searched parameters:

1. Classic MCMC. In this algorithm, the parameter space scan in each time
step t is independent from the previous ones. So, in this case we do not
use information from past calculations. Classic MCMC algorithms do not use
sequential mechanism.

2. MCMC Prior to SMC. The SMC algorithm uses the set of samples generated
by K iterations of classic MCMC algorithm as a prior distribution, but in sub-
sequent SMC iterations do not use information from SMC results from previous
time step.

3. SMC Via Maximal Weights. In subsequent SMC calculations algorithms use
the results obtained by SMC in the previous time steps to run calculation with
the use of the new measurements. As the first location of Markov chain M t

0 it
selects the set of M parameters for which weight in previous time step was the
highest. So, for t > 1:
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Fig. 10.1 Posterior distribution as inferred by the Bayesian event reconstruction for all applied
algorithms for x parameter. Vertical lines represent the target x value

M t
0 ∼ arg (M ∈ {M t−1

0 , . . . ,M t−1
n

}
) max w(M t−1

i ). With this approach, we
always start with the best values of the model (previously found) and correct the
result with new information from sensor.

4. SMC Via Rejuvenation and Extension. In contrast to the SMC via maximal
weights this algorithm as the first location of Markov chain M t

0 at the time
t > 1 chooses the set of parameters M selected randomly from previous
realization of resampling procedure in t− 1 with use of the uniform distribution:
M t

0 ∼ U(M t−1
0 ,M t−1

1 , . . . ,M t−1
n ) a uniform distribution {1, . . . , n}. Applying

the new knowledge (new measurements) the current chain is “extended” starting
from selected position with use of the new data in the likelihood function
calculation.

We have shown the advantage of the algorithms that in different ways use the
source location parameter’s probability distributions obtained basing on available
measurements to update the marginal probability distribution. As the most effective
we pointed the modifications of MCMC prior to SMC (see Fig. 10.1).
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Chapter 11
Efficient Fitting of Bayesian Regression Models
with Spatio-Temporally Varying Coefficients

Mark Bass and Sujit Sahu

Abstract Bayesian regression models with spatio-temporally varying coefficients
are gaining popularity among researchers who are looking to model the spatio-
temporal processes that are ubiquitous in the environmental and physical sci-
ences. The fitting of these highly overparameterised and non-stationary models
is challenging and computationally expensive. By combining existing ideas of
reparameterisation, marginalisation and interweaving we develop a number of
hybrid fitting strategies. We use the MCMC output to compare these methods
in terms of convergence rates and effective sample sizes per second and thus
identify the most efficient fitting strategy for models of this type. Implementation
of the optimal strategy achieves faster convergence rates and significant savings in
computation time, illustrated here with a simulation example and also a real data
example modelling daily ozone concentration data.

11.1 Introduction

Given that large data sets are now prevalent in many areas of statistics, it is important
to efficiently implement any Markov chain Monte Carlo (MCMC) algorithm. It
has long been understood that the parameterisation of a hierarchical model affects
the performance of the MCMC method used for inference. In particular, high
posterior correlations between model parameters can lead to poor mixing and slow
convergence.

Papaspiliopoulos et al. [5] develop a framework for the parameterisation of
hierarchical models applied to a range of statistical contexts. They focus on two
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parameterisations, namely centred and noncentred, terms introduced by Gelfand
et al. [3]. Where a model can be parameterised in these two ways Yu and Meng [8]
promote the use of an interviewing strategy to reduce Markovian dependence.

One might also consider marginalising over any latent variable, thus reducing the
dimension of the posterior parameter space. This practice is adopted for the fitting
of spatial models in the R package spBayes [2].

To illustrate these ideas consider the following simple hierarchical model [4]

Y = W + σyε,

W = θ + σwε, (1)

where Y is the observed datum, W is a latent variable and θ is the parameter of
interest. Independent errors ε follow a standard normal distribution and σy and σw
are assumed to be known. We refer to this parameterisation as centred, Y is centred
on W and W is centred on θ. Assuming an improper uniform prior for θ, we get the
following conditional posterior distributions for W and θ:

W |θ, y ∼ N

(
σ2
yθ + σ2

wy

σ2
y + σ2

w

,
σ2
yσ

2
w

σ2
y + σ2

w

)
, (2)

θ|W, y ∼ N(W,σ2
w). (3)

A standard algorithm iterates between (2) and (3) by drawing W (t) ∼ π(W |θ(t), y)
and then drawing θ(t+1) ∼ π(θ|W (t), y).

If we consider the random variable W̃ = W − θ, then we can rewrite model (1)
in its noncentred form:

Y = W̃ + θ + σyε,

W̃ = σwε. (4)

Under this parameterisation the conditional posterior distributions for W̃ and θ are

W̃ |θ, y ∼ N

(
σ2
w(y − θ)

σ2
y + σ2

w

,
σ2
yσ

2
w

σ2
y + σ2

w

)
(5)

θ|W̃ , y ∼ N(y − W̃ , σ2
w). (6)

Using the noncentred parameterisation we iterate between (5) and (6). Therefore,
each parameterisation gives us a different algorithm and although they have the
same target distribution, π(θ|y), they typically have different convergence rates.
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Where the joint distribution of π(W, W̃ |θ, y) is well defined we can implement
the interweaving algorithm [8]. Given θ(t), we obtain a value for θ(t+1) as follows:

Step 1. Draw W (t) ∼ π(W |θ(t), y).
Step 2. Draw θ(t+0.5) ∼ π(θ|W (t), y).
Step 2̃. Draw W̃ (t+1) ∼ π(W̃ |θ(t+0.5),W (t), y).
Step 3. Draw θ(t+1) ∼ π(θ|W̃ (t+1), y),

where θ(t+0.5) is an intermediate draw which can be discarded. 0ften,W and W̃ are
related via some deterministic function and step 2̃ requires a trivial transformation.
In this example, W̃ (t+1) = W (t) − θ(t+0.5).

However, we need not sample from W at all if it is integrated out of the likelihood.
For both the centred and noncentred parameterisations we get a marginalised
likelihood for Y as Y |θ ∼ N(θ, σ2

y + σ2
w), and thus we get a marginal posterior

distribution for θ as θ|y ∼ N(y, σ2
y + σ2

w).
In this paper we aim to develop the most efficient way to implement a non-linear

model which involves spatio-temporally correlated latent stochastic processes. We
investigate how the ideas of reparameterisation, marginalisation and interweaving
can be used to develop an efficient fitting strategy.

11.2 A Spatio-Temporal Model

Let Y (s, t) denote an observation at site s and at time t. Further, let x(s, t) be the
value of a single predictor for Y , again at site s and at time t. Consider the following
spatio-temporal model [1] written in its noncentred form:

Y (si, t) = β0 + β̃0(si, t) + {β1 + β̃1(si, t)}x(si, t) + ε(si, t), (7)

for i=1,. . . ,n, t=1,. . . ,T, where ε(si, t)
ind∼ N(0, σ2

ε ). We take β0 to be the fixed
intercept and β1 as the fixed regression coefficient. These are locally perturbed by
β̃0(si, t) and β̃1(si, t), respectively, which are both modelled as zero mean Gaussian
processes. Note that we could consider model (7) to be a multivariate spatial model
where data is collected for T variables at each site s.

Denote by x the vector containing all nT values of x(si, t) and let Dx = diag(x);
then with matrix X̃ = (1, I,x,Dx), we can write the likelihood as

Y ∼ N(X̃β̃,Σ), (8)

where Σ = σ2
ε I. We represent by I the nT × nT identity matrix and let β̃ =

(β0, β̃0, β1, β̃1)
′, where β̃k = (β̃k(s1, 1), . . . , β̃k(sn, T ))

′ ∼ N(0,Σk), k = 0, 1.
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11.2.1 Parameterisation, Marginalisation and Interweaving

A different parameterisation of the model can be found by centering the spatio-
temporal processes on the fixed parameters in the mean. Let βk(s, t) = β̃k(s, t)+βk,
k = 0, 1, then we can rewrite model (7) in its centred form to get

Y (si, t) = β0(si, t) + β1(si, t)x(si, t) + ε(si, t), i = 1, . . . , n, t = 1, . . . , T,
(9)

where β0(si, t) has mean β0 and β1(si, t) has mean β1. For the centred parameteri-
sation we have

Y ∼ N(Xβ,Σ), (10)

where X = (I,Dx) and β = (β0,β1)
′.

Each parameterisation of the model defines a fitting strategy and we will label
these with respect to their likelihood functions. Where likelihood (8) is used the
method will be referred to as full noncentred (Fnc) and where likelihood (10) is
used we label the method full centred (Fc). Given these parameterisations, we can
also use the interweaving algorithm to obtain a third fitting method (IF).

As the spatio-temporal processes are given Gaussian priors, we can easily
integrate them out of the model. Taking the noncentred likelihood and marginalising
over β̃0 gives

Y ∼ N(β01 + β1x+ Dxβ̃1,Σ+ Σ0)

and achieves a reduction in the dimension of the parameter space of nT . If we fit the
model in this way we label the method M0nc. Alternatively, if we reparameterise
and then marginalise over β0, we have Y ∼ N(β01 + Dxβ1,Σ + Σ0), and
this method we label M0c. Further, we can interweave M0nc and M0c to obtain
another fitting method, IM0. Similarly, we could have considered β̃1 and β1 to get
fitting methods M1nc, M1c and IM1. Finally, the tenth strategy we consider is to
marginalise over both β̃0 and β̃1 (or β0 and β1). Regardless of the parameterisation
the resulting likelihood is

Y ∼ N(β01 + β1x,Σ+ Σ0 + DxΣ1D
′
x),

which will be called M2.
By combinations of parameterisation, marginalisation and interweaving we

obtain ten strategies for fitting the same model.
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11.2.2 Model Specifications

A separable covariance structure is placed on the β̃k(s, t)’s, given by

Cov{β̃k(si, tl), β̃k(sj , tm)} = σ2
kρs(|si − sj |;φsk)ρt(|tl − tm|;φtk), k = 0, 1,

where ρs and ρt are valid isotropic covariance functions from the Matérn family.
Here, an exponential covariance functions is used, i.e., ρs(ds;φ) = exp(−φ|ds|)
and ρt(dt;φ) = exp(−φ|dt|). Each of the φ is given a uniform prior. These
parameters control the rates of decay of the spatial and temporal correlation between
the random effects. Variance parameters σ2

ε , σ2
0 and σ2

1 are modelled on their inverse
scales and are given gamma priors, i.e., 1/σ2

ε ∼ Ga(a, b), where the gamma
distribution has mean a/b. Fixed mean parameters β0 and β1 are given vague normal
priors.

11.3 Results

As a simulation exercise, we generate data for T=7 time points at n=20 sites,
randomly chosen over the unit square. The model is fitted by each of the ten
strategies described in Sect. 11.2.1, running the chains for N = 10, 000 iterations
and discarding the first M = 2, 500. Algorithms are written in the C programming
language and performed on a single 2.4 Ghz Intel Westmere processor on the IRIDIS
high performance computing facility. Run times (in seconds) for the Fnc, Fc and IF
were 111. For the semi-marginalised methods M0nc, M0c and IM0 run times were
454 and for M1nc, M1c and IM1 they were 459. For the fully marginalised method
the run time was 704. Clearly these times are machine and programmer dependent,
but indicate the additional computing time required if marginalisation is considered.

The effective sample sizes for each parameter are computed in the R package
coda [6], by dividing the number of samples, N − M , by an estimate of the
autocorrelation time, κ = 1 + 2

∑∞
k=1 ρ(k), where ρ(k) is the autocorrelation at

lag k. For a fair comparison, effective sample sizes are divided by run times to give
effective sample sizes per second (ESS/s). This is repeated for 100 data sets and we
plot the average ESS/s for each model parameter, Fig. 11.1.

We see that IF gives the greatest ESS/s for β0, σ2
0 and σ2

ε . Although M0nc and
IM0 return the greatest ESS/s for β1, they perform badly for σ2

1 , φs1 and φt1.
One might consider M2 as a candidate for ‘preferred fitting method’, but it

should be noted that with longer running times and variance and phi parameters
all requiring metropolis updates, it is more difficult to tune than the other methods
and more so with increasing nT . Hence, we promote the use of the IF method.
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Fig. 11.1 Effective sample size per second for model parameters under each fitting method

11.4 Summary

By combining the procedures of reparameterisation, marginalisation and interweav-
ing, we have developed ten hybrid strategies for fitting a spatio-temporal model.
Although no one method returns the greatest ESS/s for all model parameters, the IF
method has an advantage in implementation. Metropolis updates are only required
for the decay parameters. A reduction in computing time is possible if one considers
letting φs0 = φs1 and φt0 = φt1. In applications decay parameters are often fixed, see,
e.g., [1,7]. If this modelling decision is made, then we have fully Gibbs scheme, and
a further saving in run times is achieved.
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Chapter 12
PAWL-Forced Simulated Tempering

Luke Bornn

Abstract In this short note, we show how the parallel adaptive Wang–Landau
(PAWL) algorithm of Bornn et al. (J Comput Graph Stat, to appear) can be used to
automate and improve simulated tempering algorithms. While Wang–Landau and
other stochastic approximation methods have frequently been applied within the
simulated tempering framework, this note demonstrates through a simple example
the additional improvements brought about by parallelization, adaptive proposals,
and automated bin splitting.

12.1 A Parallel Adaptive Wang–Landau Algorithm

The central idea underlying Wang–Landau [6] and related algorithms is that instead
of generating samples from a target density π, it is sometimes more efficient to
instead sample a strategically biased density π̃. In the case of Wang–Landau, the
goal is to sample

π̃(x) = π(x) × 1

d

d∑

i=1

IXi(x)∫
Xi

π(x)dx
, (1)

where IXi(x) is equal to 1 if x ∈ Xi and 0 otherwise. Interestingly, this biased
target ensures each of the partitions of the space (Xi)

d
i=1 are visited equally:∫

Xi
π̃(x)dx =

∫
Xj

π̃(x)dx, ∀i, j ∈ (1, . . . , d). Additionally, the restriction of
the modified distribution π̃ to each set Xi coincides with the restriction of the
target distribution π to this set up to a multiplicative constant, namely for all i,
π̃(x) ∝ π(x), ∀x ∈ Xi.
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While the biased density π̃(x) has desirable properties, an obvious problem is
that calculating

∫
Xi

π(x)dx is not straightforward. As such, the Wang–Landau
algorithm creates estimates θt of these quantities at each step t. Algorithm 1
provides psuedo-code for the algorithm. In the full version of the algorithm, the step

Algorithm 1 Simplified Wang–Landau algorithm
1: Partition the state space into d regions {X1, . . . ,Xd} along a reaction coordinate ξ(x).
2: First, ∀i ∈ {1, . . . , d} set θ(i)← 1.
3: Choose a decreasing sequence {γt}, typically γt = 1/t.
4: Sample X0 from an initial distribution π0.
5: for t = 1 to T do
6: Sample Xt from Pθt−1

(Xt−1, ·), a transition kernel with invariant distribution π̃θt−1
(x).

7: Update the bias: log θt(i)← log θt−1(i) + γt(IXi
(Xt) − d−1).

8: Normalize the bias: θt(i)← θt(i)/
∑d

i=1 θt(i).
9: end for

size γt is only reduced when all of the regions {X1, . . . ,Xd} have been uniformly
explored as measured by the flat histogram criterion maxi∈[1,d] |ν(i)− d−1| < c/d
where ν(i) is the proportion of samples within Xi since the last time the flat
histogram criterion was met. Here c is a user-specified threshold. The reader is
referred to [3] for a full description and discussion of the algorithm, as well as details
on stabilizing the algorithm through parallelization, introducing adaptive proposals,
and automating the partitioning of the space. These three improvements, applied to
simulated tempering, will be the focus of this work.

12.2 Simulated Tempering

The use of stochastic approximation algorithms, including Wang–Landau, within
simulated tempering has been suggested by various authors (see, e.g., [1,4]). In this
note, we further examine the improvements proposed in [3], namely parallelization,
adaptive proposals, and automatic partitioning of the space. The primary idea of
simulated tempering is to sample from a tempered distribution πT (x) = π(x)1/T

for some temperature T . The algorithm proceeds by setting a temperature ladder
T = 1, . . . , Tmax and running a Markov chain on the pair (x, T ). As such, the
chain explores the state space X while moving up and down the temperature ladder.
Readers are referred to [4, 5] for further details. Of note for our purposes, however,
is that one is able to specify pseudo-priors on the different steps of the ladder to
ensure equal occupation numbers—time spent in each step of the ladder—which is
a task well suited for stochastic approximation.

To test these (potential) improvements to simulated tempering, we employ a
small bimodal density. Specifically, we set π(x) to be an equally weighted mixture
of two standard normal distributions, one centered at −15 and the other at 15.
As such, the distribution has two modes (at x = −15 and x = 15) with a large
low-density valley separating them. As a result, estimating the mean (0) is a natural
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Fig. 12.1 RMSE for estimating the mean in the bimodal density for various simulated tempering
configurations. We see that Wang–Landau (provided c is small) and stochastic approximation with
deterministic step size decreases (provided t0 is large) both perform well

challenge for any sampler. We run 1, 000 chains each of length N (for various N )
and calculate the root mean squared error (RMSE) between the posterior mean
(calculated from all states with T = 1) and the true mean of 0. We compare
standard simulated tempering using Metropolis–Hastings with uniform pseudo-
priors (using a Gaussian random walk with standard deviation 10, and temperatures
T = 1, 2, . . . , 9, 10) to that using stochastic approximation adjusted such that the
pseudo-priors ensure equal occupation numbers. See [1] for details. We use standard
stochastic approximation with step sizes γt = t0/max(t0, t) for t0 = 1, N/4, N/2.
In other words, the step size starts decreasing after 1 iteration, N/4 iterations, or
N/2 iterations, respectively. We also explore Wang–Landau, which automatically
decreases the step size after a flat histogram criterion is met. We look at three values
of the user-specified tuning parameter c, namely c = 0.01, 0.1, 0.5. Figure 12.1
displays the RMSE as a function of N for each algorithm. We see that all of the
stochastic approximation algorithms (including Wang–Landau) perform similarly in
this simple example. It has been argued, however, that in more complex situations,
Wang–Landau will outperform stochastic approximation with deterministically
decreasing step size [1].

In Fig. 12.2 we similarly compare the simple Metropolis–Hastings simulated
tempering algorithm to the Wang–Landau version (using c = 0.1) with and without
adapting the proposal standard deviation (set to target an acceptance ratio of 0.234);
see [3] for specifics. It is clear that adaptation in the proposal mechanism provides
significant gains to both the standard simulated tempering algorithm as well as
the Wang–Landau version. Further improvements might be made by considering
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Fig. 12.2 RMSE for estimating the mean in the bimodal density for various simulated tempering
configurations with and without adaptive proposals

mixture proposals tailored to each step on the temperature ladder, rather than being
optimized to create a given acceptance rate across all temperatures. Figure 12.2 also
displays the adaptive Wang–Landau algorithm in parallel with 10 and 100 particles,
demonstrating vastly improved convergence of the algorithm. With M particles, the
approximate improvement in RMSE is

√
M , which is roughly equivalent to if we

were to run a single chain for M ×N iterations. However, due to vectorization, the
parallel version does not takeM times as long to run. In our examples,M = 10 and
M = 100 particles took 1.8 and 6.2 times longer than the single chain, respectively.

We also explored automatic setting of the temperature ladder using the bin-
splitting method proposed in [3] (not shown). However, in this small example,
the advanced binning method performed similarly to simply fixing the temperature
ladder to the integers 1, . . . , 10. We suspect that in more complicated settings
where the results are more sensitive to the temperature ladder the automatic binning
approach will bring additional benefit.

12.3 Conclusion

This brief note has employed a simple bimodal example to demonstrate the benefits
of embedding adaptive proposals, parallelization, and automatic bin splitting within
the simulated tempering framework. Due to space limitations, many pertinent
references and ideas have been excluded, though the interested reader might follow
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the citation trail to further explore these algorithms. If there is a single takeaway,
it is that sometimes “stacking” multiple computational techniques can lead to
significant improvements in performance. In this case, parallelization and adaptive
proposals provide significant improvements to simulated tempering with the Wang–
Landau algorithm; additionally, they are straightforward to implement through the
R package PAWL, available online.

Ongoing work involves applying these simulated tempering methods to learn
latent dimensions in nonstationary spatial models [2], which due to partial iden-
tifiability of the parameter space show particular promise for benefiting from the
ideas presented herein. Specifically, as this class of models is new and as yet
poorly understood, it is unclear a priori how to determine the scale of the proposal
distribution as well as set the temperature ladder.
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Chapter 13
Approximate Bayesian Computation
for the Elimination of Nuisance Parameters

Clara Grazian

Abstract We propose a novel use of the approximate Bayesian methodology. ABC
is a way to handle models for which the likelihood function may be considered
intractable; this situation is closely related to the problem of the elimination of
nuisance parameters: the model may contain a high-dimensional latent structure,
so any elaboration of the likelihood function could be difficult or even impossible
when the analysis is focused just on few parameters. We propose to use ABC to
approximate the likelihood function of the parameter of interest.

13.1 Introduction

Recent developments allow Bayesian analysis also when the likelihood function
L (θ; y) is intractable; that means it is analytically unavailable or computationally
prohibitive to evaluate, for instance, because of a too high dimension of a latent
structure that is part of the model. These methods are known as “approximate
Bayesian computation” (ABC) or likelihood-free methods and are characterized
by the fact that the approximation of the posterior distribution is obtained without
explicitly evaluating the likelihood function. This kind of analysis was first proposed
in genetics by [6], but it is now applied in a wide variety of settings, for instance, in
finance, biology, physics, and signal processing.

The idea underlying likelihood-free methods is to propose a candidate θ′ and
to generate a data set from the working model with parameter set to θ′. If the
observed and the simulated data are similar “in some way,” then the proposed value
is considered a good candidate to have generated the data and becomes part of the
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sample which will form the approximation to the posterior distribution. Conversely,
if the observed and the simulated data are too different, the proposed θ′ is discarded.

The basic version of the algorithm includes in the posterior sample all the
proposal parameters that lead to a distance ρ between a suitable summary statistics
η (·) computed on both the observed and the simulated data smaller than a tolerance
level ε > 0. If η (·) is a sufficient statistics, then

lim
ε→0

πε (θ; η(y)) = π (θ; η(y)). (1)

The basic ABC may be inefficient; therefore, ABC algorithms are often linked
with other methods, for instance, with Markov chain Monte Carlo (MCMC) or
sequential Monte Carlo (SMC) methods. For a survey on the possible extensions to
the original ABC algorithms and some applications, the reader may refer to [4, 5].

13.2 The Elimination of Nuisance Parameters

In a non-Bayesian setting, the problem of eliminating the nuisance parameters
has no general solution. The idea underlying the available procedures (see [2]) is
to accept a partial loss of data information: for instance, marginal or conditional
experiments, in general, neglect a part of the likelihood which depends on the
parameter of interest and the profile likelihood does not account uncertainty on
the nuisance parameter; in general, they require the complete likelihood to be not
too complex: partial experiments need to identify a function only dependent on
the parameter of interest and the integrated likelihood [3] is based on an integral
that may be neither analytically computed nor numerically approximated if the
likelihood function is intractable.

Since the marginal posterior distribution for θ in the presence of a nuisance
parameter φ is defined as

π(θ; y) = c π(θ)L(θ; y) = c

∫

Φ

π(θ; φ)π(φ)L(θ, φ; y)dφ (2)

the likelihood function for the parameter θ may be rewritten as

L (θ; y) ∝ π (θ; y)

π (θ)
=

∫
Φ π (θ, ϕ; y) dϕ∫

Φ
π (ϕ) π (θ; ϕ) dϕ

. (3)

Using ABC we can obtain an approximation of π (θ; y) constituted by a set of
values which may be considered a sample from the (marginal) posterior distribution.
In addition, provided the prior is proper, we are always able to simulate from it.
With both a sample from the posterior distribution and a sample from the prior
distribution, we can compute an approximation of the likelihood through the ratio
of their density estimates.
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13.2.1 Examples

In our work, we discuss some applications of the proposed method. In all of them,
we have used simulated data and chosen as ABC parameter the Euclidean distance
to compare sufficient statistics of the data and the data generated in the ABC step.
We have always compared different tolerance levels.

First, we have analyzed the ABC approximation of the likelihood in situations
where other solutions exist: one case where the parameter of interest is a transforma-
tion of the parameters of two independent Poisson distributions and one case from
the class of Neyman and Scott, from [3]; the results are always good approximations
of the integrated likelihood function. In general, the tolerance level seems to be a
matter of computational power: when ε becomes smaller, the approximation is closer
to the integrated likelihood; nevertheless smaller values are associated to higher
computational costs.

Finally, we have used the ABC methodology to handle a class of problems
with no straightforward solution, that is, the pseudo-likelihood for the quantiles
of a distribution. In particular, we have analyzed one kind of quantile distribution:
this is a class of distributions defined by their quantile functions that are nonlinear
transformations of the quantiles of a standard normal distribution. For example, the
quantile function of the g-and-k distribution presented in [1] is

Qgk = (u; A, B, g, k)=A+B

[
1+c

1− exp {−g z (u)}
1+ exp {−g z (u)}

]{
1+z (u)

2
}k

z (u) ,

(4)

where z(u) is the uth standard normal quantile and A, B, g, and k represent location,
scale, skewness, and kurtosis parameters, respectively.

This is a class of distributions characterized by a great flexibility of shapes
obtained by varying parameters’ values, which may model kurtotic or skewed data
with the great advantage that they have a small number of parameters, unlike
mixture models which are usually adopted to describe this kind of data. It is
clear that the density function and then the likelihood function are unavailable;
therefore any approach but ABC is difficult to implement. In this application, we
have compared the basic ABC with ABC-MCMC; these algorithms have different
computational costs, but it is evident from Fig. 13.1 that the algorithm with the
MCMC step leads to a better approximation and is more efficient; however, they
both lead to approximations concentrated around the true values of the considered
quantiles. Again, the effect of choosing smaller tolerance levels is to obtain
approximations closer to the true values of the quantiles of interest.
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Fig. 13.1 Likelihood approximations of the quantiles of a g-and-k distribution for simulated data,
obtained with both basic ABC (dotted lines) and ABC-MCMC with Gaussian transitional kernel
(solid lines) algorithms and tolerance levels equal to 2 (black lines) and 0.5 (red lines). The
parameter of interest θ is the quantile of level p

13.3 Conclusions

ABC is a very useful tool to handle a wide range of models, for which no other
solution exists. In particular, it could be seen as a simple computational solution
to the problem of eliminating nuisance parameters when the likelihood function is
intractable and, therefore, classical solutions may not be used.

Nevertheless there remain many operational questions linked to the use of ABC
algorithms regarding the choice of the summary statistics to use and how to perform
the posterior approximations in the most efficient way. There are some recent
suggestions to avoid the choices of ABC parameters: for instance, [7] proposes to
use ABC linked with the empirical likelihood. ABC methods are currently under
analysis to find both theoretical and practical advances.

A possible extension on which further research may be focused is an application
of the proposed method in a nonparametric setting: in this case, ABC allows to
manage highly flexible (and realistic) models with the only requirement to be able
to simulate from them.
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Chapter 14
Reweighting Schemes Based on Particle Methods

Reinaldo Marques and Geir Storvik

Abstract Sequential Monte Carlo methods are widely used to deal with the
intractability of complex models including state space models. Their aim is to
approximate the distribution of interest by a set of properly weighted samples.
To control the weight degeneracy, the resample step has been proposed as an
inexpensive alternative to avoid the collapse of particle filter algorithms. When the
sample becomes too poor with successive use of resample steps, MCMC moves
have been added in particle filter algorithms in order to make the identical samples
diverge. In this work we consider strategies where we first perform a moves step,
and then we update the weights for reweighting the particles. The validity of
this approach is based on the commonly used trick of working on an artificial
extended distribution having the target distribution as marginal combined with the
use of backwards kernels. By updating the weights via a diversification step, this
approach can make their empirical distribution less skewed increasing the effective
sample size.

14.1 Introduction

State space models provide flexible representations for stochastic dynamical sys-
tems in which they can encapsulate many real problems (in time or space-time).
This class of models is expressed in terms of an initial distribution, x1 ∼ πθ(x1),
a state Markov model, xt|x1:t−1 ∼ πθ(xt|xt−1), and the observation model,
yt|y1:t−1, x1:t ∼ πθ(yt|xt). All static parameters are represented by θ ∈ Θ,
and for simplicity of notation we assume each xt to have a common sample space
X ⊂ Rpx .
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Given the data y1:t up to time t and assuming θ is known, inference focuses on
the posterior distribution

πt(x1:t) ≡ πθ(x1:t|y1:t) ∝ πθ(x1)πθ(y1|x1)

t∏

k=2

πθ(xk|xk−1)πθ(yk|xk). (1)

When πt(x1:t) is intractable, sequential Monte Carlo methods can be applied to
carry out an approximate inference. Their respective algorithms—called particle
filters (PF)—are exhaustively used to deal with the computational intractability of
general state space models (see [1,2,7] and the references therein). The goal of such
algorithms is to approximate the posterior by a set of properly weighted samples.
The population of samples are called particles, and they are typically generated
sequentially from some low-dimensional conditional distributions:

qt(x1:t) = q(x1)

t∏

k=2

q(xk|xk−1). (2)

Assuming that qt(x1:t) > 0 for all x1:t with πt(x1:t) > 0, then based on sequential
importance sampling ideas, particle weights are defined as

wt(x1:t) ≡ πt(x1:t)

qt(x1:t)
∝ wt−1

πθ(xt|xt−1)πθ(yt|xt)
q(xt|xt−1)

(3)

allowing for recursive computation. Estimation is usually based on normalized
weights, making the proportionality constant unnecessary to compute.

A well-known problem in SMC methods is weight degeneracy, also called
sample impoverishment. This problem is related to the increasing variance of
the particle weights over time. In order to attenuate the degeneracy problem, [5]
suggested to add resampling steps. Later, [4] proposed to add MCMC moves
after the resampling step to reduce the sample impoverishment. This approach is
called the resample-move (RM) algorithm, and the main idea is to create a greater
diversity in the sample by rejuvenating the particles via a combination of sequential
importance resampling and MCMC sampling steps. For this scheme, a Markov
kernel Kt(.|x1:t) with πt(x1:t) as the stationary distribution is designed to draw
samples after the resample steps.

14.2 Particle Move-Reweighting Strategies

Assume x1:t ∼ qt(x1:t) is followed by a move x�1:t ∼ Kt(x
�
1:t|x1:t) where Kt

is πt-invariant. As suggested by [3, 8] define an extended target distribution as
π̄t(x

�
1:t,x1:t) ≡ πt(x

�
1:t)ht(x1:t|x�1:t), where ht is an artificial density/backward

kernel that integrates to one. Following ordinary importance sample theory working
on the enlarged space, we obtain the following result:
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Proposition 1. Let {(xi1:t, wt(xi1:t)), i = 1, . . . , N} be a properly weighted sample
with respect to πt where the particles are generated from qt. Assume we make a move
by a πt-invariant MCMC kernel Kt to x�1:t and update the weights by

w̄t(x1:t;x
�
1:t) = wt(x1:t)× rt(x1:t;x

�
1:t),

where

rt(x1:t;x
�
1:t) =

πt(x
�
1:t)ht(x1:t|x�1:t)

πt(x1:t)Kt(x�1:t|x1:t)
,

and ht is a density such that {(x�1:t,x1:t) : πt(x
�
1:t)ht(x1:t|x�1:t) > 0} is a subset of

{(x�1:t,x1:t) : qt(x
�
1:t)Kt(x1:t|x�1:t) > 0}. Then

{(x�i1:t, w̄t(xi1:t;x�i1:t)), i = 1, . . . , N}

becomes proper with respect to πt.

For a proof, see [6].
By adding the MCMC move and updating the particle weights, we have that, for

any density h, w̄t is a proper weight for x�1:t with respect to πt. Even though we are
working with an extended space, the MCMC move does not modify the unbiased
property. The main point of this sampling scheme is to highlight the multiple choices
of proper weight functions w̄t(x1:t;x

�
1:t) for any given kernel Kt. For specific

choice of ht, w̄t reduces to wt. Also, for clever choices of the artificial density, we
can obtain that V ar[w̄t] < V ar[wt] allowing us to reduce the weight degeneracy
and simultaneously to create sample diversity. Some special choices of the artificial
density and moves from arbitrary transitions kernels are discussed in [6].

When we have a properly weighted sample, there are some interesting SMC
schemes to design, taking into different types of moves. In short, we can adduce
at least four strategies for (re)weighting the particles in an SMC framework:

s.1 Start with an equally weighted sample, move the particles via an MCMC kernel,
and keep the equal particle weights (the resample-move approach).

s.2 Start with a properly weighted sample, move the particles via an MCMC kernel,
and keep the same particle weights.

s.3 Start with a properly weighted sample, move the particles via an MCMC kernel,
and update the particle weights.

s.4 Start with a properly weighted sample, move the particles via an arbitrary
kernel, and update the particle weights.

The Table 14.1 summarizes results for the following spate space model: yt ∼
Poisson(ebxt+λ) and xt ∼ N (Fxt−1, Σ). All static parameter we assume to
be known. The table shows that updating the weights via a MCMC move, we can
obtain a considerable increase in the effective sample size and an improvement in
the predictive performance.
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Table 14.1 Results of
resample-move (RM) and
move-reweighting (MR)
algorithms

Algorithms ESS (%) RMSE

RM 26 94.54
MR 67 84.40
MR-RM 70 83.38

The table shows the average over time of
the effective sample size (ESS) and root
mean square root (RMSE) for 50 particles
and sample size equal to 200

14.3 Closing Remarks

In this work, we propose a flexible strategy that allows for MCMC moves without
the need of a preliminary resampling step. Following the MCMC moves, we update
the particle weight taking into account the diversification step and that MCMC
moves give particles closer to the target distribution. Our approach allows a great
flexibility to reweight the particles using a proper weight with respect to the right
distribution. The main effect of this is that we can increase the effective sample size;
consequently the resample stages can be delayed.

Acknowledgements We gratefully acknowledge financial support from CAPES-Brazil and
Statistics for Innovation Center in Norway.

References

1. Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J Roy
Stat Soc Ser B (Stat Methodol) 72(3):269–342

2. Chopin N, Jacob P, Papaspiliopoulos O (2012) SMC2: an efficient algorithm for sequential
analysis of state space models. J Roy Stat Soc Ser B (Stat Methodol). doi:10.1111/j.1467-
9868.2012.01046.x

3. Del Moral P, Doucet A, Jasra A (2006) Sequential Monte Carlo samplers. J Roy Stat Soc Ser B
(Stat Methodol) 68(3):411–436

4. Gilks W, Berzuini C (2001) Following a moving target: Monte Carlo Inference for dynamic
Bayesian models. J Roy Stat Soc Ser B (Stat Methodol) 63(1):127–146

5. Gordon N, Salmond D (1993) Novel approach to nonlinear/non-Gaussian Bayesian state
estimation. Radar Signal Process, IEE Proc F 140(2):107–113

6. Marques R, Storvik G Online inference for dynamical models: the move-reweighting particle
filter (in preparation)

7. Robert C, Casella G (2004) Monte Carlo statistical methods. Springer, New York
8. Storvik G (2011) On the flexibility of metropolis–hastings acceptance probabilities in auxiliary

variable proposal generation. Scand J Stat 38(2):342–358



Chapter 15
A Bayesian Nonparametric Framework
to Inference on Totals of Finite Populations

Juan Carlos Martínez-Ovando, Sergio I. Olivares-Guzmán,
and Adriana Roldán-Rodríguez

Abstract In this chapter we sketch a Bayesian model-based framework to inference
on totals of finite populations. Our formulation takes into account a population that
is partitioned into planned domains or strata. The inferential framework is based
on the decomposition of the population total into sampled and unsampled parts.
Inference on the unsampled part of the total is made using Bayesian nonparametric
methods, in the absence of design information on unsampled individuals.

15.1 Introduction

In this chapter we sketch a novel model-based framework to addressing an
inferential problem frequently appeared in finite population studies. That is to make
inference on totals of a finite population. In our formulation, it is assumed that the
population of interest is being divided into planned domains or strata. It is also
assumed that the characteristic to be measured in each individual is random and
continuous.

The population of interest is being denoted by P . It is assumed that P is
partitioned into J planned domains, {Pj}Jj=1. It is also assumed that the number
of individuals belonging to each planned domain is known. Accordingly, the total
of P can be decomposed as the sum of J independent partial totals,

T =
∑

j

Tt, (1)

J.C. Martínez-Ovando (�) • S.I. Olivares-Guzmán • A. Roldán-Rodríguez
Dirección General de Investigación Económica, Banco de México, México D. F., México
e-mail: juan.martinez@banxico.org.mx; solivares@banxico.org.mx; aroldan@banxico.org.mx

E. Lanzarone and F. Ieva (eds.), The Contribution of Young Researchers
to Bayesian Statistics, Springer Proceedings in Mathematics & Statistics 63,
DOI 10.1007/978-3-319-02084-6__15, © Springer International Publishing Switzerland 2014

77

mailto:juan.martinez@banxico.org.mx
mailto:solivares@banxico.org.mx
mailto:aroldan@banxico.org.mx


78 J.C. Martínez-Ovando et al.

where Tj =
∑Nj

l=1 Yjl, and Yjl is the characteristic of the lth individual. Here,
Nj stands for the number of individuals in Pj . Given the above decomposition,
inferences on T are made aggregating inferences of each partial total Tj .

15.2 Inference on Planned Domains

Our formulation makes use of an intuitive decomposition of each Tj into sampled
and unsampled parts, as

Tj = TS
j + T S̃

j , (2)

where Sj and S̃j stand for the sampled and unsampled parts of Pj , respectively.
Once the sampled part Sj is being observed, inference on the unsampled part is
made using Bayesian nonparametric methods, see [1,3,8] for previous formulations
of the problem based on Dirichlet processes and mixtures of Dirichlet processes,
respectively. They implicitly assume no design information on unsampled individu-
als. In our formulation, we preserve that assumption under the auspice of the notion
of exchangeability within planned domains (see, e.g. [5]).

The Bayesian nonparametric component we choose for our formulation belongs
to the class of species-sampling models (SSMs); see [6]. Under the marginalization
property, SSMs express the individual predictive distribution as a weighted average
of the sampled data and a baseline distribution function. See [2]. The predictive
distribution induced by SSMs is thus interpretable and analytically tractable.

15.2.1 Posterior Point Estimates

Under SSMs, predictive point estimates of totals on planned domains have a simple
and intuitive expression, as

T̂j =
∑

l∈Sj

yjl +N S̃
j ·

⎡

⎣
Uj∑

k=1

(
ρk(mj) · y∗jk

)
+ φ(mj) · μ̂j0

⎤

⎦ , (3)

where Uj is the number of unique measurements (or ties) in Sj , y∗
j = {y∗jk :

k = 1, . . . , Uj} is the collection of those sampled ties, N S̃
j is the number of

unsampled individuals in Pj , and μ̂j0 = EGj0{Yjl|θj0} is the prior expectation
of an individual measurement Yjl in S̃j . This expectation is computed with respect
to the baseline distribution Gj0, with θj0 being its indexing parameter.

In the above expression, mj denotes the vector of sampled frequencies attained
to the collection of ties, y∗

j . Additionally, (ρk) and φ are positive functions, such

that
∑Uj

k=1 ρk(mj) + φ(mj) = 1.
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As [1] noticed before, (3) encompasses traditional weight-based stratified and
post-stratified point estimates (see [7]). However, our formulation allows us to
produce full posterior distribution of each Tj and relevant aggregations of them.

15.2.2 Full Posterior Inference

Full posterior inferences on Tj are obtained in terms of the distribution of the

unsampled part of the total, T S̃
j . The predictive distribution for each Tj is obtained

as a shifted N S̃
j -fold convolution distribution,

Pr(Tj ≤ t|Sj) = Ĝ
∗N ˜S

j

j

(
T

˜S
j ≤ t+ TS

j

)
, (4)

with shifting constant TS
j =

∑
l∈Sj

yjl. Notice that the above convolution is

computed in terms of Ĝj , the individual predictive distribution induced by the SSM.
Although the analytic expression for (4) may be intricate, it is possible to

reproduce it using stochastic simulation techniques. It is worth to mention, as well,
that inference on the total of any aggregation of planned domains can be easily
produced through simulation.

15.3 Simulation Results

Figure 15.1 displays the results of a simulation study consisting of augmenting
sampling schemes of a simulated population with two planned domains. Actual
totals are indicated with the red-coloured vertical lines. Uncertainty surrounding
the planned domain totals dissipates as the sample size increases.

Fig. 15.1 Prediction on disaggregated and population totals for samples of variable sizes. Panels:
(a) planned domain 1, (b) planned domain 2 and (c) whole population
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15.4 Discussion

In this chapter we have sketched a Bayesian nonparametric framework to make
inference on totals of finite population, based on individual continuous measure-
ments. A key distinction of our framework with regards to traditional design-based
alternatives is that the characteristic of interest of each individual is assumed as
random. Thus full and interpretable posterior inferences on totals using convolution-
type distributions are doable. The results presented here are part of a broader
research agenda to make Bayesian nonparametric inference on finite populations,
assuming non-informative sampling schemes. Further and more detailed results are
reported in [4].
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Chapter 16
Parallel Slice Sampling

Teresa Pietrabissa and Simone Rusconi

Abstract To draw a sample of a continuous variable B from a finite measure g,
using a Markov chain Monte Carlo (MCMC) method, there is an easy algorithm
named slice sampling. The two main problems of this algorithm are the solution of
a inequality, involving the measure density g, which can be hard to find due to the
irregularities g can be affected by, and the high dimensionality of the support of the
density itself.

Our aim is to create a library, using the slice sampling, to draw an MCMC sample
from any density g, in particular to get a realization from the posterior density of
a Bayesian model. We will present and discuss a solution and some statistical test
applications, using a GPU parallel language, which is, nowadays, becoming more
and more commonly employed in the context of Bayesian statistical models.

16.1 Introduction

MCMC methods provide a general approach for approximating integrals with
respect to a wide range of complex distributions.

In a typical Bayesian analysis, the integration measure is the posterior distribu-
tion. Let β ∈ Rk be the argument of the posterior, i.e., the variable of integration.
The posterior distribution usually has a density with respect to the Lebesgue
measure (for instance) and is proportional to a measure density:

g(β) = L(β|X)π(β), (1)

where L(β|X) is the likelihood, seen as function of β and evaluated in the data
X , and π(β) is the prior density of the model. Our purpose is to create a library
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that takes as input a generic g(β) and returns an MCMC sample from the posterior
density:

β(i) with i = 1÷G. (2)

Finally, as applications, we will compute posterior distributions in some “bench-
mark” Bayesian models using parallel slice sampling. In particular we will test
the goodness of our algorithm on some conjugate models comparing theoretical
posterior distribution density with the resulting sample; moreover, we will use it to
study the well-known dataset “quakes” available in the R software.

16.2 The Algorithm

The algorithm that we are going to follow is the slice sampling. This is a simple
Gibbs-Sampler, which adds to the variables space the continuous scalar random
variable U . The Gibbs-Sampler full conditionals are

(U |B = β) ∼ U (0; g(β)) (3)

(B|U = u) ∼ U (S) where S = {β : g(β) > u} . (4)

So the algorithm can be summarized as follows:
After initializing β(0) as a suitable value:

1. Sample u(i) from U (0; g(β(i))).

2. Sample β(i+1) from U (S(i)), where S(i) :=
{
β ∈ Rk|g(β) > u(i)

}
.

Repeat steps 1 and 2 for i = 0÷G− 1 to obtain the sample desired.

MCMC methods are sequential methods as their structure requires it. The same
is for the slice sampling where, as briefly shown, we get a new realization from the
previous one. Indeed, we are sampling a Markov chain, which is time dependent by
definition.

However, each evaluation of the new realization β(i+1) can be split into simple
steps. Step 1 is easily computable in a sequential way on CPU, but step 2 requires
the grate computing power of GPU architectures.

More details on the two main steps are given in the following subsections.

16.2.1 First Step

The first step requires to sample from U (0; g(β(i))), with β(i) known. This is the
easiest step of the algorithm as it consists in sampling from a probability distribution



16 Parallel Slice Sampling 83

which is simple to generate from. Moreover, this is a one-dimensional random
number generation and, for this reason, it becomes easier to run it with libraries
that fully support one-dimensional random number generation itself.

16.2.2 Second Step

The second step consists in sampling β(i+1) from U (S(i)), which requires res-
olution of inequality g(β) > u(i). Based on the computing power of GPU
programming, we follow these simple steps:

1. In a parallel way, sample β(i)

(j)
from U (R), where j = 1 ÷ K , K is as big as

needed, i is the fixed main step index,R ⊂ D is a k-dimensional hyper-rectangle,
and D ⊆ R

k is the domain of the function g(β).

2. In a parallel way, check if some β(i)

(j)
make the value of g(β(i)

(j)
) overcome the

value of u(i).
3. Repeat steps 1 and 2 until at least one of the β(i)

(j)
verifies the condition required

at previous step.
4. The new realization β(i+1) is equal to one of the β(i)

(j)
found at step 2.

The hyper-rectangle R can be obtained in different ways and in general we will
ask the user to provide it. Once we have defined R, we can sample from k one-
dimensional uniforms, one for each dimension. This way we are able to sample β(i)

(j)

from U (R).
Summarizing, we try to solve the inequality g(β) > u with a brute-force attack.

In this approach are needed two contrasting features: K , the number of attempts,
must be very large, but the computational time should remain low. A way to
reconcile these two aspects is to take advantage of the great computing power of
GPU architectures.

16.3 A Simple Example

We present here a simple example on how to use our program and what is the
output obtained. To do so we tried to get an MCMC sample from a beta-binomial
distribution, as we already know that the prior density

π(β) = Beta(a, b)

is conjugate with respect to the binomial likelihood, generating the posterior density:

pi(β | X) = Beta

(
a+

n∑

i=0

Xi, b+ n−
n∑

i=0

Xi

)
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Fig. 16.1 Traceplot for the
posterior sample, obtained
from the beta-binomial model
with burning = 50,
thinning = 3

Fig. 16.2 Comparison in
between theoretical
distribution (in red) and the
histogram of the posterior
sample

Using R software we drew a sample from the likelihood:

X | β ∼ Bi(n, β) where n = 200 and β = 0.3

The prior density for the model, as already introduced, is the beta distribution

β ∼ π(β) = Beta(a, b) where a = b = 1.2

so that our prior is uninformative with respect to the parameter β.
Using our library, we got the posterior sample of the model and obtained what

was expected from theoretical analysis.
As shown in the traceplot, the posterior sample has a very good behavior and it

seems not to have any particular shape. If we compare the theoretical distribution
with the histogram of the posterior sample, we find a very good match which states
the goodness of the algorithm (Figs. 16.1 and 16.2).



Chapter 17
Approximate Bayesian Computation
in Quantile Regression

Antonio Pulcini

Abstract We propose an approximate Bayesian approach to estimate the joint
distribution of the response variable Y and the set of covariates X based on the
notion of quantile distribution. We focus on cases where the quantile regression
framework is necessary, but the unknown form of the regression function and the
large number of quantiles suggest to directly estimate the conditional distribution.
In these cases, the use of very flexibly shaped distributions may be of interest.
In this context, we adopt the multivariate g-and-h distribution, a member of
the quantile distribution family. Due to the lack of the likelihood function in a
closed and manageable form, the estimation proceeds via an approximate Bayesian
computation (ABC) algorithm that allows us to easily estimate all the parameters.
The performance of the proposed approach is evaluated via simulated data sets.

17.1 Summary

The usual assumptions of the standard linear model imply that the conditional
distribution of the response variable is, at least approximately, Gaussian. In practice,
this assumption is rarely acceptable. In many observational studies, the conditional
distribution is not symmetric and, even worse, its shape depends on the value of
the covariates [7]. For these situations, methods based on quantile regression are
common alternatives [4]. Nevertheless when influence concerns more than one
quantile, it may be convenient to consider the problem of directly estimating the
conditional distribution of the response variable given the explanatory variables [5].
In this context quantile distributions, due to their flexibility and the small number
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of parameters, may represent a valid choice. Field and Genton [3] have proposed a
generalization of the univariate g-and-h distribution to the multivariate case.

We exploit the use of the multivariate g-and-h distribution for the estimation of
the joint distribution of the response variable Y given a vector of covariates X =
(X1, . . . , XK).

A drawback of quantile distributions, which has represented an obstacle to their
use, is the lack of a closed-form expression of the likelihood function. On the other
hand, the problem of generating random values from them is an easy task. These
issues suggest the estimation via the approximate Bayesian computation (ABC)
approach [1, 6].

ABC allows to produce a sample from an approximate version of the posterior
distribution. No likelihood evaluation is required, only a way to sample from the
model distribution.

Briefly, we assume data, D , arise from the multivariate g-and-h distribution:

W = Σ1/2Rg,h(Z) + μ, (1)

where:

- μ ∈ RK+1 is the location,
- Σ is the variance covariance matrix,
- g = (g1, g2, . . . , gK+1) ∈ RK+1 controls the skewness,
- h = (h1, h2, . . . , hK+1) ∈ RK+1

+ controls the kurtosis,
- Z ∼ NK+1(0, I), and
- Rg,h(Z) = (Rg1,h1(Z1), Rg2,h2(Z2), . . . , RgK+1,hK+1(ZK+1))

T ,

with Rg,h(z) =
(

exp(gz)−1
g

)
exp

(
hz2

2

)
.

In order to estimate all the parameters in the model we propose the following
ABC-MCMC algorithm:

1. Being at θt, propose a move to θ′ according to a normal transition kernel
q(θt → θ′).

2. Generate M samples, D ′
1, . . . ,D

′
M , from the model with parameters θ′.

3. Calculate α = min
(
1,

1
M

∑M
m=1Kε(ρ(S(D),S(D′

m)))π(θ′)q(θ′→θt)
1
M

∑M
m=1Kε(ρ(S(D),S(D′

m;t)))π(θt)q(θt→θ′)

)
.

4. Accept θ′ with probability α; otherwise stay at θt.
5. Update the variance of q(·) through an Adaptive MCMC scheme, then return to 1.

Specifically, S(·) is a multivariate quantile [2], ρ(·) the Euclidean norm, and Kε(·)
a multivariate Gaussian kernel centered on S(D ′) = S(D) with variances ε’s.

The performance of the proposed method is evaluated with simulated datasets.
Secondly we apply our approach to estimate the joint distribution of price and
demand in the Italian day-ahead electricity market.
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Chapter 18
Spatiotemporal Model for Short-Term
Predictions of Air Pollution Data

Francesca Bruno and Lucia Paci

Abstract Recently, the interest of many environmental agencies is on short-term
air pollution predictions referred at high spatial resolution. This permits citizens
and public health decision-makers to be informed with visual and easy access to air-
quality assessment. We propose a hierarchical spatiotemporal model to enable use
of different sources of information to provide short-term air pollution forecasting.
In particular, we combine monitoring data and numerical model output in order
to obtain short-term ozone forecasts over the Emilia Romagna region where the
orography plays an important role on the air pollution; thus, the elevation is
also included in the model. We provide high-resolution spatial forecast maps and
uncertainty associated with these predictions. The assessment of the predictive
performance of the model is based upon a site-one-out cross-validation experiment.

18.1 Introduction

Recently, several environmental agencies are interested to provide the public
and experts with visual and easy access to air-quality information. Short-term
air pollution predictions are usually needed as high-resolution spatial patterns.
Numerical models devoted to estimate air pollution or meteorological variables
are usually available in short-time frames at grid-cell spatial resolution. However,
these forecasts are often biased and not equipped by any uncertainty measure.
Conversely, measurements at monitoring stations give the “true” air pollution level.
The joint consideration of the two sources of information can improve air pollution
forecasting [5, 6].
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In this work, ozone data from the monitoring network and numerical model
are fused to obtain accurate short-term predictions of ozone level in the Emilia
Romagna region, in Italy. We employ the downscaling approach described in [1]
where point and grid-referenced data are combined via a linear regression model
with spatiotemporally varying coefficients [4].

The monitoring data we use are collected on hourly basis at n = 41 stations
during August, 2012. Moreover, two numerical models are available: the first one
is the multi-scale Chimere chemistry-transport model which estimates the ozone
level (and other pollutants) for gridded cells (at 5 km resolution) over successive
time periods up to 72 h in the future. Also, the weather numerical model Cosmo is
available. This is a non-hydrostatic atmospheric model developed by the Consortium
for small-scale modeling. Cosmo model is run every day producing 72 h forecasts
at 7 km spatial resolution for several meteorological variables. Here, we consider
the hourly temperature forecasts produced by Cosmo at the grid cells spanning the
region, since the temperature influences directly the kinetics of reactions producing
ozone [2]. Finally, the orography of the region will be taken into account since the
ozone level changes according to the elevation. This information is available at both
point-level and grid-cell spatial resolution.

18.2 Data-Fusion Model

Let Yt(s) denote the hourly ozone concentration at a location s, A(s) be the altitude
of site s, and Ct(B) define the numerical model output over the grid cell B (i.e.,
Chimere or Cosmo output). Following [1], we address the spatial misalignment
between monitoring data and numerical model output, by associating to each site
s the grid cellA(s) that contains s. Then, the model links the observational data and
the numerical model output as follows:

Yt(s) = β0 + β0,t(s) +
(
β1 + β1,t(s)

)
Ct(B) + β2A(s) + εt(s), (1)

where εt(s) is a white noise pure error process with nugget variance τ2. The
spatiotemporally varying coefficients β0,t(s) and β1,t(s) have a multiplicative form
in temporal and spatial effects leading to independent zero-mean processes with
separable covariance functions. However, this will not imply space-time separability
of dependence structure for the Y’s [3].

Predictions at new site s′ and future hour t′ are based upon the predictive
distribution of Yt′(s′). Model (1) is fitted using a Gibbs sampler, using both the
air-quality model output (Chimere) and the weather model output (Cosmo).

18.3 Analyses and Results

We illustrate by modeling data of 48-h running windows starting at each hour
from 10 AM on August 10th to 9 AM on August 11th, 2012. A site-one-out
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Table 18.1 MSPE for 3-h ahead ozone forecasts obtained
from model (1) with Chimere, with Cosmo, and with
Cosmo excluding elevation

1-h 2-h 3-h

Chimere 364.81 568.92 825.93
Cosmo 278.97 350.47 461.14
Cosmo without A(s) 394.26 479.18 624.99

50 60 70 80 90 100 110 120 14 16 18 20 22

Fig. 18.1 The 1-h ahead ozone forecast map (left panel) and the standard deviation map (right
panel) at 12 PM on 12th August in μg/m3. Black dots represent monitoring sites

cross-validation experiment is performed to produce 1-h, 2-h, and 3-h ahead
forecasts of ozone level for 24 consecutive windows. For example, we model data
from 10 AM on August 10th to 9 AM on August 12 using n − 1 monitoring sites.
Forecasts of ozone level are obtained at the validation site for 10 AM (1-h ahead),
11 AM (2-h ahead), and 12 PM (3-h ahead) on August 12th. This is repeated such
that each monitoring station is used once as validation site.

Table 18.1 provides a comparison of out-of-sample 1-h, 2-h, and 3-h ahead ozone
predictions. In terms of mean squared prediction error (MSPE), the model with
Cosmo output as covariate outperforms the one fitted using the Chimere output.
This is due to the high degree of smoothness of the air-quality model output. The
inclusion of the altitude,A(s), in model (1) improves the ozone forecasting. We also
note that the MSPE tends to increase as the length of the forecast period increases,
as we expected. Other indexes such as the normalized mean bias factor, the weighted
normalized mean square error, and the correlation coefficient lead to similar results.

Finally, Fig. 18.1 (left panel) shows the 1-h ahead forecast map at 12 PM on
August 12th, obtained as posterior predictive mean under model (1) fitted using
the Cosmo output. The posterior standard deviation map in the right panel gives a
measure of the uncertainty associated with the predictions.



94 F. Bruno and L. Paci

Model (1) is simple, very flexible, and computationally efficient. Accurate ozone
forecasts are obtained in short-time frames along with associated uncertainty.
Therefore, it represents an attractive strategy for environmental agencies which
usually do not adopt stochastic approaches.
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Chapter 19
Predicting Rainfall Fields from Lightning
Records: A Hierarchical Bayesian Approach

Edmondo Di Giuseppe, Giovanna Jona Lasinio, Massimiliano Pasqui,
and Stanislao Esposito

Abstract Mixed models (linear and nonlinear) belong to a class of models in which
some of the effects are fixed and some are random; formalization of these models is
easily achieved in a hierarchical Bayesian framework. Here we propose a space-time
mixed model to link rain measures and lightning counts in a given area of Central
Italy.

19.1 Introduction

In this paper we aim at formulating a model for predicting the 15-min cumulated
precipitation at unknown locations and time given lightning counts. In particular,
we assume that the cumulated precipitation at time t in cell p of a 10 × 10 km
regular grid is generated by a fixed component related to lightnings and a random
W term structured in space and time. We refer to events during convective storms.
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Table 19.1 Frequency distribution of observed values and discretization of the latent rainfall field

Rain classes
(mm) [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1) ≥ 1

Cases 9,328 861 353 258 199 1,173
Discretization

values
λ0 = log(0.1) λ1 = log(0.3) λ2 = log(0.5) λ3 = log(0.7) λ4 = log(0.9)

We use lightning records in the fixed component of the model. The study area is
located in Central Italy; we analyze an event of 68 time units (May 9, 2006). The
database is composed of lightning records (instant-point fields) cumulated over a
grid with 10× 10 km cells and 179 rain gages. When two or more rain gages belong
to the same grid cell we take their median over the cell ending with 111 spatial
measurements at each time point.

Data are affected by several problems; on one hand, a very large number of zero
values are recorded, and on the other hand the rain gage precision (about 0.2mm)
implies an almost discrete measurement of cumulated rain as shown in Table 19.1.

19.2 The Model

Let X(t, p) be the latent rainfall field at cell p and time t. Lt,p denotes the number
of lightnings in cell p at time t. Given the partially discrete nature of the dataset,
following [5, 6], we discretize the latent process X(t, p) below 1mm assuming that
there exist five values λi, i = 0, . . . , 4 described in Table 19.1, that occur with
positive probability whenever X(t, p) belongs to one of the interval reported in the
same table.

Let Y (t, p) be the latent rainfall field on the log scale. Y (t, p) is modeled as the
sum of a fixed effect and a space-time random effect W:

y(t, p) = μ(t, p) + w(t, p) + ε(t, p), (1)

where μ(t, p) is as in Eq. 3 andw(t, p) is the (t, p) element of W, a separable space-
time random field such that w(t, p) = T (t) + S(p) with T (t) = αT (t− 1) + η(t),
η(t) ∼ N(0, σ2

η), and

S ∼ MN(0, σ2
s(I− ρsB)−1), (2)

where I is the identity matrix and B an adjacency matrix describing the spatial
neighborhood structure. ε(t, p) ∼ N(0, τ2) are independent, identically distributed
random variables.
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19.2.1 The Fixed Effect

The fixed component of the model relates precipitations and lightnings starting
from the well known Tapia–Smith–Dixon relation [7]. More precisely, we assume
that the number of lightnings in cell p depends on the number of lightnings
occurring in neighboring cells. We adopt a queen neighboring structure [3], and

ωi,p =
Li,p

Lp
+ 1

8

Li,Np

Lp
are the corresponding spatial weights where Li,p and

Li,Np =
∑
Ps∈Np

Li,Ps are the number of lightnings in predicting cell p and in

its neighborhood at time i, respectively, and Lp =
∑T

i=1

(
Li,p+Li,Np

)
. Moreover,

we assume that the number of lightnings at time t is a function of storm propagation
speed V with two different parametrization depending on the stage of the event.
In fact, the life of lightning pattern inside a rainfall convective event is composed
of three stages: Charging phase (Ch), Mature state (Ma), and Dissipating phase
(Dis). Consequently, the event duration interval can be partitioned into [t0, TCh),
[TCh, TMa), and [TMa, T ]. Thus, the fixed effect can be described as follows:

μ(t, p) = log

(
C ∗

T∑

i=1

Li,p ∗
(
exp

{
− (a+ bV )

A
1/2
p

|t− Ti|2
}
I[TCh,T ](t)

+ exp

{
− (a+ bV )

A
1/2
p

|t− Ti|
}
I[0,TCh](t)

)
+ C ∗

T∑

i=1

ωi,p

)
, (3)

where C is a mass-to-volume conversion factor which is linked to the rainfall
lightning ratio [7], I[t′,t′′](·) is the indicator function of the time interval [t′, t′′],
and Ap is the area of a single cell. Here, t is a general time point and Ti is the
observed time.

19.2.2 The Spatial Component

The spatial component S is modeled using a conditional autoregressive model
(CAR) [2]. Let D = {1, . . . , p, . . . , n} be the spatial domain, Np the neighborhood
of cell p such that Np ≡ {p∗ ∈ D : p∗ 	= p is a neighbor of p} p, p∗ ∈ D, and
St = (S1, . . . , Sp, . . . , Sn) the space random field at each time t. For the sake of
simplicity, let us omit the t notation. The CAR model is a Markov random field, then
the knowledge of the set of conditional distributions identifies the joint distribution
(under very general conditions); furthermore, conditional distributions depend only
on the neighborhood structure. Details can be found for example in [1, 3] or [2].

Our choice of neighborhood structure is a second-order nearest-neighbor struc-
ture where at least k = 2 neighbors are selected (the resulting graph is in Fig. 19.1b).
The maximum number of neighbors is 4. We randomly select 88 cells for estimation
and 23 cells for validation purposes.
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Fig. 19.1 Spatial domain. (a) the whole 111 cells (orange) and 88 selected cells for estimation
(black crosses). (b) neighborhood graph of the estimation cells. The remaining 23 cells in panel (a)
(red crosses) as well as light grey points in panel (b) are the selected validation cells

19.3 Estimation of Parameters and Preliminary Results

The hierarchical formulation of the model derives from Eq. 1 conditioning the

latent variable on the space-time random processW =
(
w(t1, p1), . . . , w(tT , pn)

)T

such that

Y|θ,W ∼MN(μ+w, τ2I). (4)

The complete set of parameters of our model is θ = {a, b, α, τ2η , τ2S , ρS , τ2} where
σ2
η = 1/τ2η and σ2

S = 1/τ2S . Assuming that W is a stationary Gaussian process,
the Yt,p are conditionally independent Gaussian random variable given W and
follow a linear mixed model with expectations E(Yt,p|W ) = μt,p + wt,p and
common variance τ2. Thus, we formulate the data likelihood conditional on the
Gaussian spatiotemporal random effects W at level 1; we define the space-time
auto-regressive structure at level 2, and we choose the priors at level 3:

Level 1 Y|θ,W ∼ MN
(
μ+w, τ2I

)

Level 2 w = T + S; T (t)|α, τ2η ∼ N
(
αT (t − 1),

σ2
η

1−α2

)
; S|τ2S , ρS ∼

MN
(
0, σ2

s(I− ρsB)−1
)
; μ = f(L, a b;V, TCh)

Level 3 a ∼ Γ (a0, b0), b ∼ Γ (a1, b1); α ∼ N(μα, σ
2
α),; τ

2
η ∼ InvΓ (aη, bη);

τ2S ∼ InvΓ (aS, bS); ρS ∼ N(0, σ2
ρ)I(0,1/4); τ

2 ∼ InvΓ (aτ , bτ )

The model is implemented in JAGS [4] using R2jags [8] to run the simulation
within R. The MCMC converges rapidly; we run two chains with dispersed starting
points for 20,000 iterations, with a burn-in of 5,000, and we retain the last 1,000
iterations of each chain for estimation. Convergence was inspected both graphically
and from several statistics. Simulations summaries are reported in Table 19.2.
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Table 19.2 Simulation summaries and posterior inference

Parameters Mean sd 2.5% 25% 50% 75% 97.5% R̂ n.eff

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.26 13.00

α 1.00 0.01 0.97 0.99 1.00 1.01 1.02 1.00 1000.00

b 106.73 10.25 87.94 99.29 106.48 113.24 128.83 1.00 1000.00

ρS 0.08 0.05 0.00 0.03 0.07 0.11 0.19 1.00 1000.00

τ2η 52.79 6.85 40.34 48.16 52.57 57.33 67.37 1.00 1000.00

τ2S 16.23 2.37 11.93 14.62 16.14 17.81 20.81 1.00 620.00

τ2 10.19 0.19 9.79 10.08 10.19 10.30 10.55 1.00 1000.00

From this first series of simulations we compute, as a preliminary check,
predicted values at validation sites as posterior plug-in estimates from the model.
We check prediction quality by RMSE. Results are very encouraging as the obtained
RMSE is around 1 mm.
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Chapter 20
Bayesian Approach to Environmental Problem
Based on PFLOTRAN Package

Orest Dorosh, Henryk Wojciechowicz, and Piotr Kopka

Abstract Presented result of applying Bayes inference for searching an isolated
source of contamination in soil using program PFLOTRAN.

20.1 Introduction

Due to the progress in the development of computing clusters and computational
algorithms quite widely is used dedicated software for modelling problems related
to the transport and dispersion of contamination in the environment [1], allowing
for simulation physical processes in big domains and high-resolution grids.

In particular, for the dispersion of contamination in the porous media, we have
used program PFLOTRAN, a massively parallel 3-D reservoir simulator [2] (http://
ees.lanl.gov/pflotran/), developed at LANL/ORNL, USA. PFLOTRAN can model
multiphase reactive flows in geologic formations based on continuum scale mass
and energy conservation equations. It employs the PETSc (Portable, Extensible
Toolkit for Scientific Computation), a numerical modular package and efficient
Newton–Krylov solver framework.

We present here a computational problem related to the identification of source of
contamination in porous media, by solving inverse problem, basing on the Bayesian
approach.
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20.2 Problem

Our goal is to localize source of contamination in soil with underground water
flow using information from data of set of sensors. For this inverse problem we
use statistic method [3] coupled with software package PFLOTRAN.

The area of calculation is a rectangular parallelepiped of size 5, 000× 2, 500×
100m. For our inverse problem we generated synthetic data by PFLOTRAN. Then
statistic methods are applied for localization of source comparing data in sensor
position.

20.3 Bayesian Approach

As “experimental data” we used the results of calculations with position of the
well (the contamination source) at place (x, y) = (1050 m, 1350 m). The map of
contamination concentration is presented on Fig. 20.1a. The contamination is spread
from lower part of well in depth from 20 to 65 m below level of ground. The values
of contaminate concentration taken in eight different points of calculation domain
are considered as “experimental data” (in Fig. 20.1, a sensors are marked as crosses).

Fig. 20.1 (a) XY plane of calculation domain. S is a position of actual source of contamination.
The crosses are the position of the sensors. The scale of relative concentration of contaminants.
(b) Three components of posterior distribution. The dashed lines—actual values of source position
components
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The algorithm of source searching consists of the following steps:

1. For prior distribution choose set of possible well positions. The probability for
choosing the position of well is proportional to prior probability distribution for
the position.

2. Perform simulation with PFLOTRAN for each of well positions.
3. Compare the data from sensors set with the “experimental data” in “sensors”

location, and take some subset (ten in our case) locations of sources that have
lowest value of fitting function.

4. Update and normalize posterior distribution and use it as a prior distribution for
the next stage.

For every stage we performed 50 simulations with different locations of contam-
ination source. With fitting function f =

∑8
i=1(η

i
obs. − ηicalc.)

2 (where η is a
concentration of contaminants and summation is by sensors) we choose ten source
locations to calculate posterior distribution, according to the formula:

ρposteriors(r) =

10∑

i=1

ρprior(r)·exp
(
− (x− xi)

2

2σ2
x

− (y − yi)
2

2σ2
y

− (z − zi)
2

2σ2
z

)
, (1)

where (xi, yi, zi) is the location of source from ten best. The variances are: σx =
500m, σy = 500m, and σx = 10m. For the first stage we used uniform prior
distribution.

20.4 Results and Discussion

The resulting distribution (after 11 iteration steps) gives the most probable values
for source position (x, y, z) =(1640 m, 1180 m, 40 m) (Fig. 20.1b). The difference
with actual source location Δr = (590m,−170m, 20m). The big difference for
the X component can be explained by the symmetry of the problem. Some sensors
are out of the contamination flow (Fig. 20.1a) and do not contribute in the process
of the distribution recalculation. But information from simulation we performed can
be helpful in putting sensors in new places for better collecting measurement data.
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Chapter 21
Bayesian Hierarchical Modeling of Growth via
Gompertz Model: An Application in Poultry

Emre Karaman, Ebru Kaya, Dogan Narinc, and Mehmet Z. Firat

Abstract Estimation of growth curves of poultry species is of particular importance
in animal science. This study aims at fitting hierarchical Gompertz growth curve
to Japanese quail’s body weight data obtained from hatching to 56 days of age
weekly. The model involved a random animal effect as well as sex and line effects
in asymptotic weight parameters. Model parameters were estimated via Bayesian
methodology. The results of the present study indicated a higher asymptotic weight
for selection line quail than that of control line. Moreover, as expected, female quails
had a higher asymptotic weight than males.

21.1 Introduction

To date, the use of mixed models, which include both fixed (e.g., sex, line) and
random (individual) effects, is scarce in modeling the growth of poultry [1–3]. It is
also natural to assign a hierarchy to this type of data, such that the response variable
body weights can be regarded as nested within individuals [4]. Although Bayesian
analysis of hierarchical linear models was considered by various researchers [5, 6],
in fitting nonlinear models, particularly to growth data of poultry, the use of
Bayesian approach is rare [7]. In the present study, widely used Gompertz growth
model was fitted to Japanese quail’s data using Bayesian approach.
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21.2 Material and Method

Weekly body weight measurements of 206 male and female Japanese quail from
hatching to 56 days of age were formed the basis of this study. Data involves the
measurements of a selected line, which was obtained by selecting the quail for 4th-
week high body weight over 4 generations, and a control line.

Consider the following fixed effects Gompertz growth model:
yj = β0exp[−β1exp(−β2tj)],

where yj is the body weight at time tj , β0 is the final (asymptotic) weight, β1 is the
time-scale parameter, and β2 is the growth rate. In this function, any combination
of the parameters can be assumed as random or fixed. Assume a Gompertz model
where only the asymptotic weight, β0, is allowed to vary among birds in each
line and sex group. The model, in terms of fixed and random effects, can now be
written as
yij = [β0 + g1(line)i + g2(sex)i + ui]exp(−β1exp(β2tij)).

Here, the fixed effect parameters to be estimated are β0, β1, β2, g1, and g2, whereas
the random effect to be estimated is ui ∼ N(0, σ2

u), the random animal deviation.
Assuming independence among individuals, the conditional distribution of the

data vector y given the other parameters is as follows:

f(y|.) =
N∏

i=1

ni∏

j=1

(
1√

(2π)σe
×

exp
{
− [yij − [(β0 + g1(line)i + g2(sex)i + ui)exp(−β1exp(−β2tij))]]2

2σ2
e

})
.

Following prior distributions were assigned to the model parameters:
β0 ∼ N(0, 0.0001), β1 ∼ N(0, 0.0001), β2 ∼ N(0, 0.0001)
g1 ∼ N(0, 0.0001), g2 ∼ N(0, 0.0001)
σ2
u = 1

τu
and τu ∼ U(0, 1000)

σ2
e = 1

τe
and τe ∼ U(0, 1000).

Three chains of 100,000 cycles were considered with a burn-in period of 10,000 for
each. Thinning intervals were set to 270 cycles.

21.3 Results

Estimates of asymptotic weight parameter for each sex and line group are plotted
in (Fig. 21.1). It can be clearly seen from the figure that the asymptotic weight
parameter of Gompertz model was affected by sex and line. Asymptotic weight
parameter of females was slightly higher than that of males while the selection line
quail also had a higher parameter estimate than that of control line. According to the
results of the present study, it can be concluded that selection for the 4th-week high
body weight produces quail with an improved asymptotic (maximum, potential)
body weights.
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Fig. 21.1 Estimates of asymptotic weight parameter for each sex and line group
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Chapter 22
Bayesian Prediction of SMART Power
Semiconductor Lifetime with Bayesian Networks

Kathrin Plankensteiner, Olivia Bluder, and Jürgen Pilz

Abstract In this paper Bayesian networks are used to predict complex semicon-
ductor lifetime data. The data of interest is a mixture of two lognormal distributed
heteroscedastic components where data is right censored.

To understand the complex behavior of data corresponding to each mixture com-
ponent, interactions between geometric designs, material properties, and physical
parameters of the semiconductor device under test are modeled by a Bayesian
network. For the network’s structure and parameter learning the statistical toolboxes
BNT and bayesf Version 2.0 for MATLAB have been extended. Due to censored
observations MCMC simulations are necessary to determine the posterior density
distribution and evaluate the network’s structure. For the model selection and
evaluation goodness of fit criteria such as marginal likelihoods, Bayes factors,
predictive density distributions, and sums of squared errors are used.

The results indicate that the application of Bayesian networks to semiconductor
data provides useful information about the behavior of devices as well as a reliable
alternative to currently applied methods.

22.1 Introduction

In automotive industry, end-of-life tests are necessary to verify that semiconductor
products operate reliable. To save resources, accelerated stress tests [6] in combina-
tion with statistical models are commonly applied to predict the lifetime measured in
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cycles to failure (CTF). Previous investigations [1,10] have shown that the currently
applied Bayesian Mixtures-of-Experts extended Coffin–Manson (MoE) model is
sufficient for interpolation. In case of extrapolation, it cannot describe the complex
behavior of the data and leads to inaccurate results. It is assumed that this lack
of accuracy may be based on the fact that the model does not include physical
parameters reflecting interactions between different geometric designs or material
properties of the device under test (DUT) [10]. Hence, a Bayesian network including
these factors is proposed.

22.2 Data Characteristics and Available Information

For this paper lifetime data obtained under different electrical and thermal stress
conditions from a cycle stress test system [6] is investigated.

The stress test conditions are thereby defined by current (I), pulse length (tp),
repetition time (trep), and the device-specific voltage (V ). Additionally, parameters
considering the geometric design of the device, e.g., current density (J), are
available. The main reasons for the failing of the devices are electrothermal and
thermomechanical effects caused by repetitive stress. To capture these effects,
temperature simulations as well as thermal and mechanical stress parameters [3,13]
are included. Altogether 18 covariates for the Bayesian network are available.

Since lifetime data is a mixture of two lognormal distributed components
representing two different failure mechanisms [2], the dataset is divided into two
subsets. For the model 169 and 867 data points for the first and second component,
respectively, tested under 65 different stress conditions are used. Both components
include censored data.

22.3 Model Development and Evaluation Results

For modeling lifetime data, Bayesian networks (BN) [7, 8, 12] are used. The
nodes were assigned to be either discrete or continuous. To define the conditional
probability distributions (CPDs), root and gaussian nodes are applied [9].

Different approaches using the automatic relevance determination (ARD) algo-
rithm [11] (see Fig. 22.1) and priors on edges are investigated, because it is assumed
that the number of data is too small for such a large network. The marginal
likelihood is approximated with the method proposed by Draper [4]. The largest
marginal likelihood value indicates the best BN for the first and second component,
which is then used for lifetime modeling.

Bayesian structure and parameter learning is performed in MATLAB using an
enhance version of the BNT [9] and extended MoE toolbox [1, 5] with MCMC
methods. For the simulation of the posterior density distribution of the parameters
normal and inverse-Gamma priors are applied.
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Fig. 22.1 ARD selected covariates for each component. The application of different covariates for
different components is proposed

Table 22.1 Mean SSEPs

Model Device A Device B Device C Device D Device E

# Tests 33 3 5 4 6
MoE 6.08 3.88 0.89 2.44 0.52
BN 3.83 4.12 0.96 5.26 0.22

For an evaluation, cross-validation using posterior predictive distributions and
sum of squared errors of predictions (SSEPs) are compared. Furthermore, predicted
outcomes are compared with the results gained by the currently applied MoE model.
Since the MoE model was developed based on a subset of data, the same subset
is used to learn the BNs and, thus, to provide a direct comparison between the
predictive power of the two different approaches. Predicting the lifetime with BNs,
the posterior predictive distribution for each component is sampled independently
and mixed by estimated mixture weights. It was shown [10] that the mixture weights
can be modeled by a cumulative beta distribution function.

Since it is infeasible to determine SSEPs for tests with no fails, they are neglected
for this evaluation. Thus, the number of tests is reduced to 51. Table 22.1 shows
the mean SSEP for the five evaluated device types. Overall, the MoE model achieves
a mean SSEP of 2.76, whereas the BN model gives a mean SSEP of 2.88. The MoE
model is slightly more accurate for two device types (B and C) and significantly
more accurate for device type D. The BN gives significantly better results for device
types A and E. Overall, the results of the MoE and BN model are comparable.

22.4 Summary

In this paper different BN have been proposed to model mixture distributed
semiconductor lifetime data and to provide a reliable alternative to currently applied
methods. For the model 18 covariates were available and the network’s structure



112 K. Plankensteiner et al.

was supposed to be too complex for the amount of data. Therefore, the model
complexity had to be reduced. This was achieved by the ARD algorithm, which
provided plausible results. Furthermore, prior knowledge for edges was available
which was additionally used for the structure learning.

Based on the selected network, the posterior distributions of the model param-
eters were simulated. The posterior densities of the model parameters show small
variations and indicate therefore a good fit.

Since the aim of this work was to provide reliable predictions, cross-validation
using posterior predictive distributions has been performed and evaluated. The
results show that the application of a BN represents a reliable alternative to currently
applied methods.
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Chapter 23
Consumer-Oriented New-Product Development
in Fruit Flavor Breeding: A Bayesian Approach

Lebeyesus M. Tesfaye, Ivo A. van der Lans, Marco C.A.M. Bink,
Bart Gremmen, and Hans C.M. van Trijp

Abstract Taking consumer quality perceptions into account is very important for
new-fruit product development in today’s competitive food market. To this end,
consumer-oriented quality improvement models like the quality guidance model
(QGM) have been proposed. Implementing such models in the agro industry is
challenging. We propose the use of Bayesian structure equation modeling (SEM)
for parameterizing the quality guidance model, allowing for the integration of
elicited expert knowledge. Such casual modeling would furnish important insights
for determining the optimal fruit product in terms of consumer flavor-quality per-
ceptions. In the context of tomato breeding, where we have data about metabolites,
sensory-panel judgments, and consumer flavor-quality perceptions, we estimated
a benchmark Bayesian SEM using non-informative priors, starting from an initial
causal model derived from the data with a score-based Bayesian network (BN)
learning algorithm. The results so far have given some indication of the importance
of accounting for consumer heterogeneity in the modeling process.
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23.1 Introduction

Improving flavor-quality traits in fruit breeding calls for innovative consumer-
oriented product development models. However, the wide gap in the agro sector
between consumer or marketing data on the one hand side and metabolite and
genomics data on the other hand side pose a great challenge to implement such
modeling. In our research, we aim to link consumer flavor-quality perceptions,
trained sensory-panel judgments, and various flavor-affecting metabolites in the
context of tomato breeding. To address the challenge we have proposed [8] to
use food-quality improvement models like the quality guidance model (QGM) of
Steenkamp and Van Trijp [7] and to parameterize it using Bayesian SEM [2, 4].
This would enable us to integrate elicited expert knowledge on the degree of causal
associations between metabolites and different flavor-quality perceptions in the
estimation to obtain more valid and robust estimates of the strength of the different
causal relations in the model. This could help flavor researchers to pin down the
optimum concentration of flavor-affecting metabolites, which further can be used
as phenotypes for marker association studies. Such a consumer-based process is
also termed as reverse engineering. The QGM adapted for tomato-flavor quality is
shown in Fig. 23.1. The perceived quality cues and attributes as well as the (overall)
quality expectation and experience constitute the consumer data, while on the left we
have the metabolite and the trained sensory-panel data. So far we have conducted a
benchmark Bayesian SEM analysis with non-informative priors. We plan to conduct
an elicitation from experts in the next stage. Section 23.2 explains the materials and
methods that we used in our study.

23.2 Material and Methods

Structural equation modeling can be considered as models involving several regres-
sions with latent variables [2], which can be represented in path diagrams. They
have been used in causal theory testing and confirmation studies. SEM is a
general modeling framework and hence could be estimated with different statistical
methods like maximum likelihood estimation, least squares, and Bayesian methods.
SEM models have essentially two key components: a measurement model that
interrelates observed indicator variables (x and y indices) to underlying exogenous
and endogenous latent variables (ξ and η) and a structural model that interrelates
the latent variables. The regression coefficients between the indicators and the latent
variables are known as factor loadings (λ). The regression coefficients between the
latent variables are formally known as path coefficients (β and γ) and they represent
the causal links in the model. The basic Bayesian SEM formulation is shown in Eq. 1
and is based on the formulation in Palomo et al. [4]. In Eq. 1 we have made explicit
the prior representation for the latent variables:

p(θ, ξ, η|x, y) ∝ L(x, y, ξ, η|θ)p(θ; ξ; η) (1)
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Fig. 23.1 The QGM for tomato-flavor improvement

In Eq. 1, θ is a vector that includes all the SEM model parameters, i.e., λ, β,
γ, and other parameters like error terms in the measurement and structural models
and variance and covariance of the latent variables. p(θ; ξ; η) represents the prior
distributions for θ and the latent variables (ξ and η). L(y, x, ξ, η|θ) is the likelihood
which combines with the prior to give the posterior p(θ, ξ, η|x, y). It has to be noted
that this formulation allows the inferences of the latent variable scores alongside
the other SEM model parameters [2]. MCMC methods like Gibbs sampling are
applied to simulate observations from the complex posterior distribution by drawing
samples iteratively from the conditional distributions of the parameters and the
latent variables. Further details on this Bayesian approach to SEM could be read
in [2]. Note that for our objective we are mostly interested in the path coefficients
(β and γ).

In our analysis, we included non-averaged consumer ratings of 54 round tomato
cultivars on 7-point Likert-scale items (from very much disagree to very much
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agree). The ratings were on various flavor-quality cues and attributes consisting
of color, aroma, taste as well as (overall) quality expectation and experience
indicators. Trained sensory-panel judgments were measured on 1–100 line scale.
In our analyses, we used averaged ratings on various sensory characteristics, such
as scent, taste, and aftertaste, for the same set of round tomato cultivars. From
the literature and feedback from an expert, we got a short list of 31 metabolites
(consisting of acids, sugars, volatiles, and some carotenes) that are suspected to
affect tomato-flavor quality. Measurements of these metabolites were extracted from
a metabolite profile database on the same set of tomatoes. For a more complete
description of the nature of the data and how it was generated, see Van Den Heuvel
et al. [9]. We standardized the scores for all variables.

Before conducting the Bayesian SEM analysis we needed to have an initial,
estimable causal model. As the available findings in the literature were not sufficient
for constructing such an initial model, we derived it from our data, using a
score-based Bayesian networks algorithm (hill climbing with AIC network score,
implemented in the R package bnlearn [5]). In the BN learning we only used the
quality-cue and quality-attribute perceptions from the consumer data. The (overall)
quality expectation and quality experience latent constructs were included again in
the subsequent SEM model. During the BN structure learning, we allowed only
causal relations in the directions of the dark blue arrows shown in Fig. 23.1.

After learning a BN structure from the data using a score-based algorithm, we
needed a way to still further reduce the relations between the metabolite and sensory
variables to obtain an initial, estimable Bayesian SEM. Hence we first fitted the
learned network with MLE estimation provided in the bnlearn package and deleted
some relations on the basis of those results. An upper (0.5) and a lower (0.25)
threshold value were used on the estimated regression weights to select the to-be-
included relations between the metabolites and sensory variables. Both threshold
values yielded a rather large SEM models having up to 400 path coefficients for the
most extensive model (larger model).

WinBugs/R2WinBugs were used in the Bayesian SEM analysis and two MCMC
chains were run up to 20 K draws with adequate burn-in for each of the two models.
Non-informative priors were used using the recommendation in Lee [2]. After
selecting parameters so that different parts of the model are represented (out of
thousands of SEM model parameters including path coefficients, error terms, and
latent scores), convergence was checked for the representative parameters by both
observing the trace plots as well as the Brooks–Gelman–Rubin (bgr) diagnostic
[1]. The deviance information criterion (DIC) [6] was used for model comparison
and the more comprehensive model (DIC = −50,607) was selected over the more
restricted model (DIC = − 50,580). Model adequacy for the selected model was also
checked using a posterior predictive check and most of the data falls within the 95%
credible interval of the posterior predictive distribution.
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Table 23.1 WinBugs output showing the path coefficient estimates for consumer and sensory-
panel sweet taste feature and the path coefficient estimates within the consumer data

From To Mean s.d. MC Err. 2.5 p Median 97.5 p

Scent-sweet Taste-sweet 0.664 0.043 0.001 0.559 0.645 0.727
Scent-smoky Taste-sweet −0.471 0.081 0.003 −0.628 −0.473 −0.309
2-methylbutanal Taste-sweet 0.053 0.087 0.003 −0.121 0.055 0.222
1-penten-3-one Taste-sweet 0.827 0.131 0.006 0.558 0.828 1.074
3-methylbutanol Taste-sweet −0.318 0.104 0.004 −0.524 −0.316 −0.117
2-methylbutanol Taste-sweet −0.387 0.102 0.004 0.189 0.386 0.592
Cis-3-hexenal Taste-sweet −0.808 0.089 0.004 −0.984 −0.808 −0.634
Hexanal Taste-sweet 0.479 0.069 0.002 0.339 0.479 0.614
Trans-2-heptenal Taste-sweet −0.242 0.091 0.003 −0.420 −0.243 −0.059
Methylsalicylate Taste-sweet 0.619 0.082 0.003 0.455 0.623 0.775
1-penten-3-ol Taste-sweet −0.267 0.081 0.003 −0.424 −0.269 −0.107
Beta-ionone Taste-sweet −0.115 0.059 0.001 −0.227 −0.115 0.001
Hexanol Taste-sweet 0.142 0.055 0.001 0.035 0.142 0.254
Scent-smoky Sweet-tasteC 0.010 0.151 0.006 −0.298 0.012 0.297
Taste-sweet Sweet-tasteC −0.166 0.081 0.002 −0.328 −0.165 −0.010
Aftertaste-salt Sweet-tasteC 0.091 0.096 0.003 −0.099 0.090 0.277
Taste-tomato Sweet-tasteC 0.171 0.103 0.004 −0.031 0.171 0.374
Aftertaste-chemical Sweet-tasteC 0.108 0.079 0.001 −0.047 0.107 0.266
Pleasant-smell(cut) Sweet-tasteC 0.144 0.056 0.000 0.033 0.144 0.257
2-methylbutanal Sweet-tasteC 0.206 0.129 0.005 −0.051 0.206 0.451
1-penten-3-one Sweet-tasteC −0.002 0.161 0.007 −0.323 −0.016 0.310
Cis-3-hexenol Sweet-tasteC −0.009 0.148 0.006 −0.289 −0.011 0.281
2-izobutylthiazol Sweet-tasteC −0.123 0.095 0.003 −0.308 −0.124 0.064
Phenylethanol Sweet-tasteC 0.160 0.095 0.004 −0.024 0.160 0.352
Methylsalicylate Sweet-tasteC 0.015 0.133 0.005 −0.238 0.012 0.288
Beta-damascenone Sweet-tasteC −0.057 0.117 0.005 −0.285 −0.060 0.178
3-methylbutanal Sweet-tasteC −0.144 0.146 0.007 −0.434 −0.144 0.140
1-penten-3-ol Sweet-tasteC 0.011 0.131 0.005 −0.241 0.011 0.268
Hexanol Sweet-tasteC 0.030 0.133 0.005 −0.237 0.030 0.290
Aspartic-acid Sweet-tasteC 0.227 0.141 0.006 −0.055 0.227 0.500
Glutamate Sweet-tasteC −0.274 0.161 0.008 −0.582 −0.275 0.051
Glucose1 Sweet-tasteC −0.078 0.104 0.004 −0.283 −0.078 0.128
Citric-acid Sweet-tasteC −0.079 0.092 0.003 −0.258 −0.079 0.102
MyoInositol Sweet-tasteC 0.204 0.095 0.002 0.021 0.204 0.392
Sucrose Sweet-tasteC −0.043 0.084 0.002 −0.205 −0.043 0.121
Pleasant Smell QexpctC 0.809 0.077 0.001 0.661 0.809 0.964
colorC QexpctC 0.283 0.043 0.000 0.198 0.284 0.367
QexpctC QexprncC 0.369 0.050 0.000 0.269 0.37 0.469
Pleasant-smelC(cut) Qexprnc 0.057 0.045 0.000 −0.029 0.056 0.146
Bitter-tasteC QexprncC −0.011 0.046 0.000 −0.099 −0.011 0.081
Sour-tasteC QexprncC −0.039 0.047 0.000 −0.130 −0.039 0.052
Watery-tasteC QexprncC −0.032 0.041 0.000 −0.113 −0.032 0.047
Fresh-tasteC QexprncC 0.309 0.044 0.000 0.220 0.309 0.395
Sweet-tasteC QexprncC 0.201 0.040 0.000 0.123 0.200 0.282
colorC(cut) QexprncC 0.174 0.045 0.000 0.085 0.175 0.263
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23.3 Results

The results show many significant estimates of higher magnitude not only from
metabolites to sensory-panel data but also within the consumer data (i.e., from
cues/attributes to quality expectation and quality experience). We also observe many
significant estimates of higher magnitude within the sensory-panel data. However,
we observe many nonsignificant and/or very small estimates of the paths towards
the consumer quality-cue and quality-attribute perceptions (see Table 23.1). As
presenting all the output is not practical, Table 23.1 shows only a small portion
of the WinBugs output taking sweet taste as representative attribute. In the table, to
distinguish the consumer data from the sensory-panel data, the variables from the
consumer data end with the letter “C”. Hence, the label sweet-tasteC refers to the
sweet taste as perceived by consumers, whereas taste-sweet refers to the judgment
of sweet taste by the sensory panel. The color and smell features associated with
“cut” refer to evaluations made after cutting the fruit. The metabolites are given
in their full names. The table also shows all the estimates of the path coefficients
from consumer cues and attributes towards the quality expectation (QexpctC) and
quality experience (QexprnC). Besides the mean and median, we have also included
the standard deviation (s.d.), Monte Carlo error (MC Err.), and the 95% credible
interval. The underlined values are nonsignificant judged from whether the credible
interval includes zero [3]. Furthermore, adjusted R2 (not shown in the table) are
higher for both the sensory-panel variables and the consumer quality expectation
and quality experience, while for the consumer cues and attributes they are very
small. We postulated that heterogeneity among consumers was a major cause for
the mostly nonsignificant and/or small magnitude path coefficients towards the
consumer cue and attributes of the QGM. This was supported by an additional
Bayesian SEM analysis using an averaged consumer data that showed an increase
in the values of these path coefficients.

23.4 Concluding Remarks

Based on the results, in a future research, we aim to account for consumer hetero-
geneity using a finite mixture Bayesian SEM [2] or by first clustering the consumer
data and conducting separate standard SEM models to the different consumer
segments and comparing and checking whether we have increased significant and/or
higher magnitude estimates. Once this yields a suitable benchmark model, we will
start to specify informative priors on the basis of elicited expert knowledge.
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Chapter 24
Bayesian Layer Counting in Ice-Cores:
Reconstructing the Time Scale

J.J. Wheatley, P.G. Blackwell, N.J. Abram, and E.W. Wolff

Abstract The concentrations of various chemicals, particles and gasses in ice-
cores hold a continuous record of climatic and environmental information dating
back hundreds of thousands of years. In order to interpret these data we must first
learn about their underlying, unobserved time scale. We present a fully Bayesian
univariate approach to obtaining a marginal posterior distribution for the time of
year, as well as the date, at each depth.

24.1 Introduction

Environmental signals are measured from ice-cores either by cutting them into
sections—indexed by depth—and analysing the melt-water to provide a piecewise
average or via continuous flow analysis (CFA); see [1]. Some high-resolution
signals, those with multiple measurements per year, have annual cycles which
show as quasi-periodic seasonality in the depth series. Layer counting uses this
periodicity to count back in time, year by year, and is currently achieved by eye,
at considerable effort; see [1]. Using a simple, flexible model for one such signal
we develop a Markov chain Monte Carlo (MCMC) approach to reconstructing the
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underlying periodic process. The latent chronology is sampled directly in a way
that allows the number of cycles in the reconstruction to be changed without the
need for dimension-changing algorithms such as reversible jump. We allow for the
dependence in observation error and the lack of stationarity by modelling means,
amplitudes and errors as continuous functions of depth.

24.2 The Model

The signal is modelled as

xi = αi sin(2πτi) + βi,

where τi is the latent time scale of interest at depth i ∈ (1, 2, . . . , n). The
reconstruction of the signal is described by the parameters: θ = {τ ,α,β}.
Figure 24.1 shows the model fitted to a short stretch of ammonium signal, around 11
cycles, from the NGRIP ice-core (Greenland) [2], measured at 1 mm intervals via
CFA. The reconstruction is shown as a dotted black line where the data is missing,
elsewhere it matches exactly to the signal.

24.2.1 Priors

The elapsed times over each depth increment are independently Gamma distributed
with shape ψ and rate λ,

τi − τi−1 ∼ G(ψ, λ),

1451.1 1451.2 1451.3 1451.4 1451.5 1451.6 1451.7
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Fig. 24.1 Posterior mean reconstruction of the NGRIP ammonium signal: (top) the mean recon-
struction, with β as a dotted blue line and β ±α as a dotted red line; (bottom) sin(2πτ )
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α and β, the amplitude and mean level of the signal, are intended to be slow-moving
processes and their prior takes the form of two independent Gaussian random walks,
for i ∈ (2, 3, . . . , n):

αi ∼ N(αi−1, σ
2
α), βi ∼ N(βi−1, σ

2
β).

24.3 MCMC Implementation

θ is updated in intervals, I = {i | s < i < f}, chosen uniformly at random. This is
achieved using two types of Metropolis–Hastings step. The reconstruction within I
is updated conditionally on that outside of I .

24.3.1 Updating θ: Maintaining the Cycle Count

The conditional distribution of α in I given α outside of I is

αI | α−I ∼ N(μα, Σα),

where

μα,j = αs +
j(αf − αs)

m+ 1
, j ∈ (1, 2, . . . ,m),

and

Σα,jk = σ2
α

(
min(j, k)− jk

m+ 1

)
, j, k ∈ (1, 2, . . . ,m),

I containing m data points, similarly for βI . The signal in I is xI = SαI + βI ,
where S is a matrix containing sin(2πτI) along the diagonal. Thus

xI | τI ,α−I ,β−I ∼ N(Sμα + μβ , SΣαS
T + Σβ).

τ ′
I is proposed from its prior, conditioned on τ−I , by sampling u from a Dirichlet

distribution with constant shape ψ and setting

τ ′I,j = τs + (τf − τs)

j∑

k=1

uk, j ∈ (1, 2, . . . ,m).

This proposal has acceptance probability

p(xI |τ ′
I ,α−I ,β−I)

p(xI |τI ,α−I ,β−I)
.
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If τ ′
I is accepted, S is set to S′, and (SαI)

′ is drawn from

SαI | xI , τ ′
I ,α−I ,β−I ∼ N(μSα, ΣSα),

where

μSα = Sμα + SΣαS
T (SΣαS

T +Σβ)
−1(xI − Sμα − μβ)

and

ΣSα = SΣαS
T − SΣαS

T (SΣαS
T +Σβ)

−1SΣαS
T .

Then α′ is set to S−1(SαI)
′ and β′

I to xI − (SαI)
′.

24.3.2 Updating θ: Changing the Cycle Count

To add a cycle into I the proposal, τ ′
I , is conditioned to run between τs and τf + 1.

This adds a term to the acceptance probability,

p(τ ′
I)q(τI)

p(τI)q(τ ′
I)

=
(Δ + 1)(m+1)(ψ−1)e−λ(Δ+1)

Δ(m+1)(ψ−1)e−λΔ
,

where Δ = τf − τs, which compares Δ and Δ + 1 with respect to the
G ((m+ 1)ψ, λ) distribution. If this step is accepted, τ to the right of I are
incremented by 1. Cycles can be removed in a similar manner.

24.3.3 Hyper-parameters

σα and σβ are given uninformative inverse-gamma priors and updated via Gibbs
steps. λ is given an uninformative Gamma prior and updated via a Gibbs step. ψ is
updated via a Metropolis–Hastings step with a flat, improper, prior.

24.4 Conclusions

Our approach automates the layer-counting process, providing information about
the time of year, as well as the date, at each depth. The updates can be easily
adapted for missing values—the reconstruction filling the gaps as seen in Fig. 24.1.
A different approach to this problem can be found in [3]; the method presented here
has the advantages that it is fully Bayesian and provides a more detailed chronology.
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Chapter 25
Bayesian Analysis and Prediction of Patients’
Demands for Visits in Home Care

Raffaele Argiento, Alessandra Guglielmi, Ettore Lanzarone,
and Inad Nawajah

Abstract Home care (HC) providers are complex structures which include med-
ical, paramedical, and social services delivered to patients at their domicile. High
randomness affects the service delivery, mainly in terms of unplanned changes in
patients’ conditions, which make the amount of required visits highly uncertain.
In this paper, we propose a Bayesian model to represent the HC patient’s demand
evolution over time and to predict the demand in future periods. Results from the
application to a relevant real case validate the approach, since low prediction errors
are found.

25.1 Introduction

Home care (HC) refers to any type of care provided to a patient at his/her own
home. The main benefit of HC is the reduction of the hospitalization rate, which
significantly increases the quality of life for the assisted patients and determines
a relevant cost saving for the entire health care system [1]. Appropriate resource
planning is required in HC for avoiding process inefficiencies and overloaded
operators; in addition, many random events affect the service delivery and mine
the feasibility of plans [5, 6]. The most frequent and critical event is a variation
in patient’s condition, which makes the demand for visits different from the
planned one.
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In the literature, several studies deal with stochastic models for representing
patient conditions in health care systems, and, among them, Bayesian approaches
are also considered. As an example, Bayesian models have been used to predict
patient traffic from their home to hospital in order to facilitate reconfigurations
of the emergency hospital services [2]. However, to the best of our knowledge,
Bayesian approaches have not been considered in the HC context so far. See [4]
for a frequentist stochastic model.

The aim of this work is to propose a Bayesian model that represents and predicts
the demand evolution of HC patients.

25.2 Bayesian Model

We consider m HC patients over a time period divided into discrete slots. Each
patient i enters the service at time slot TL(i) and exits at TU (i). Data observed for
each patient i at t ∈ [TL(i), TU (i)] are:

• Ni,t: number of visits required to nurses by patient i at slot t (count data).
• CPi,t: care profile of patient i at slot t. This is a categorical covariate (values

1, . . . , ns), evolving in time, assigned by the provider based on the specific
requirements and the costs associated with the provided services. Usually, a care
profile is monthly confirmed or changed; however, it can be modified in advance
in case of sudden variations in patient’s conditions.

Moreover, patient i is characterized by sexi (gender – categorical variable) and
agei (age in years at t = TL(i) – discrete positive variable). We model each
Ni,t as a discrete Poisson distribution with expected value λi,t. The evolution of
the latent variable λi,t over t is determined according to a Markov chain. Let
Ni =

(
Ni,TL(i), Ni,TL(i)+1, Ni,TL(i)+2, . . . , Ni,TU (i)

)
for each i, and assume that

N1, . . . ,Nm are conditionally independent. We propose the following generalized
linear model (similar to [3]):

Ni,t|λi,t ∼ Pois (λi,t) , TL(i) ≤ t ≤ TU (i)

log (λi,t) ∼ N
(
α[CPi,t] log (λi,t−1) + β [CPi,t] , σ

2
)
, TL(i) < t ≤ TU (i)

log
(
λi,TL(i)

) ∼ N
(
γ1agei + γ2sexi + γ3

[
CPi,TL(i)

]
, σ2

0

)
.

The latent variable λi,t represents the health status of patient i in time slot t,
which is responsible for his/her demand for visits (the bigger the parameter λi,t
is, the worse the patient’s conditions are), while parameters αs = α[CPi,t = s],
βs = β[CPi,t = s] and γ3s = γ3[CPi,t = s] describe the random effects for
patient with CPi,t. In this paper,CPi,t is assumed to be a fixed covariate. Parameters
θ = (α,β, γ1, γ2,γ3, σ

2, σ2
0) are a priori conditionally independent and their prior

marginal densities are:
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αs
iid∼ N (0, σ2

α), βs
iid∼ N (0, σ2

β), γ3s
iid∼ N (0, σ2

γ3), s = 1, . . . , ns,

(γ1, γ2)
iid∼ N2(0, 1000), σ2 ∼ U(0, 5),

where σ2
0 has a fixed value equal to three. Moreover, σα ∼ U(0, 5), σβ ∼ U(0, 2),

and σγ3 ∼ U(0, 15) are also independent. This formulation allows for predicting
the future demand for visits by means of the predictive distribution of the number
of nurse visits Ni,t+1 from patient i at time slot t+ 1:

L (Ni,t+1 = k|covariate,N1, . . . ,Nm) =

=

∫
L (Ni,t+1 = k|λi,t+1)L (dλi,t+1|λi,t)π (dλi,t|N1, . . . ,Nm) . (1)

Then, the estimation N̂i,t+1 of the number of visits is assumed as the mode of
its predictive distribution (1). This information is very important for HC decision
makers, who are interested in assigning nurses to patients over a future planning
horizon while taking into account patients’ demand variability. The accuracy of the
predictions for a set of m patients is evaluated in terms of the mean absolute error
(MAE):

MAEt+1 =

∑m
i=1 |ni,t+1 − N̂i,t+1|

mt
, (2)

where mt is the number of patients in charge at week t, and ni,t+1 is the observed
number of nurse visits from patient i at time slot t+ 1.

25.3 Application to a Real Case

We apply and validate the model considering one of the largest Italian HC providers.
The provider consists of three divisions and we refer to patients of the largest one.
Patients are grouped in two categories (palliative and non-palliative patients), and
each category includes a certain number of CPs. A total of 15 CPs are present in the
provider. However, in this study, similar CPs are joined together and the number is
reduced to 9 (Table 25.1). A more detailed description of the provider and the CPs is
reported in [4]. The week is considered as the time slot, and 252 weeks (from 2004
to 2008) are included in the study. Moreover, we only consider patients who enter
and exit the service once within the time window. In this way, the resulting dataset
consists of 2,401 patients.
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Table 25.1 Classification of CPs

Type of care CPs of the provider Our group

Extemporary care with a very low frequency of visits 1 1
15 9

Integrated home care characterized by a medium–high
care intensity (CPs are listed in increasing order of
expected number of weekly visits)

2, 12 2

3, 13 3
4, 14 4
5 5
9 7
10 8

Palliative care for terminal patients generally affected
by oncological diseases (CPs are listed in increasing
order of expected number of weekly visits)

6,7,8 6
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Fig. 25.1 95% credible intervals of αs, βs, and γ3s, with s = 1, . . . , 9

25.4 Results

The model was implemented in Jags [7], with 250000 iterations, burn-in equal to
5000, and thinning equal of 50. The standard convergence tests were passed. The
posterior credibility intervals of the main parameters are reported in Fig. 25.1.



25 Bayesian Analysis and Prediction of Patients’ Demands for Visits in Home Care 133

Table 25.2 MAEt+1 at
4 weeks considered for
validation

t+ 1 100 150 176 235

MAEt+1 0.52 0.63 0.65 0.55

In particular, the estimated values of βs are clearly negative when CP is 1 or
9, clearly positive for CP= 6, and closer to 0 for the other CP values, leading
to a subdivision coherent with the one described in Table 25.1. The validation is
conducted in terms of the MAEt+1 at 4 different weeks t + 1 in the observed
period, i.e., t + 1 = 100, t + 1 = 150, t + 1 = 176, and t + 1 = 235. Results are
reported in Table 25.2. The largest MAE is 0.65 at week 176, showing a very good
fit of the model to the analyzed data and a good prediction capability.

25.5 Conclusion

In this work, we first explored the application of a Bayesian model to the HC
context, in order to predict the demand for visits of the assisted patients. The
approach fits well the HC context, and the results from the application to a relevant
real case validate the approach, since low prediction errors are found. Hence, the
applicability of the proposed model in the practice seems to be guaranteed. Future
work will deal with a more complete modeling approach and, in particular, we will
consider the joint estimation of the number of visits and the CPs in future periods.
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Chapter 26
Exploiting Adaptive Bayesian Regression
Shrinkage to Identify Exome Sequence Variants
Associated with Gene Expression

E.M. Boggis, M. Milo, and K. Walters

Abstract Using Bayesian adaptive shrinkage in the form of the normal-gamma
prior we show that causal DNA sequence variants associated with a change in gene
expression can be successfully detected. Taking a fully Bayesian approach allows
our model to be developed to include uncertainty in gene expression and SNP calls
and to include biological information from online databases.

26.1 Introduction

Next-generation exome sequencing identifies thousands of DNA sequence variants
in each individual. Methods are needed that can effectively identify which of these
variants are associated with changes in gene expression, a measure of the activity of
the gene. As we expect only a few SNPs (single DNA base changes) to be causal, i.e.
to cause disease, we need methods that induce sparse models. The normal-gamma
prior has been shown to induce adaptive shrinkage within the Bayesian linear model
framework (large effects are shrunk proportionally less than small effects) [1]. Using
simulated data we assess the efficacy and limitations of this Bayesian shrinkage
method in comparison to other published methods in parsimoniously identifying
such sequence variants. The model is then validated using publicly available human
and yeast data sets. We further develop the model to include the uncertainty in gene
expression; SNP functional information (information on the known biological effect
of the single point mutation) obtained from online databases; and the uncertainty in
the DNA base calls.
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26.2 Modelling Using the Normal-Gamma Prior

The normal-gamma hierarchical prior [1] is given by:

π(βi|ψi) ∼ N(0, ψi)

π(ψi|λ, γ) ∼ Ga

(
λ,

1

2γ2

)

which has var(β|λ, γ) = 2λγ2 which we assign an IG(2,M) prior. Consider the
standard linear model

yij =

pj∑

k=1

βjkxijk + εij ,

where i, j, and k represent individual, gene, and SNP, respectively, and pj represents
the number of SNPs in the model for gene j. βjk is the effect size of the kth SNP in
gene j.

26.2.1 Including Uncertainty in Gene Expression (y)

To account for the uncertainty in gene expression (y) we use a more complex error
structure. We propose to decompose the error variance to include the technical
variance of the gene expression due to differences in non-biological aspects and
a covariance matrix of errors representing the other unmeasurable error. The
technical gene expression variance can be obtained from PUMA [2]. This method
of variance decomposition estimates the variability due to technical effects and to
other sources, for example, environmental and epigenetic effects (changes affecting
gene expression that are not related to changes in the DNA).

26.2.2 Including Uncertainty in SNP Calls (X)

Exome sequence base calls have associated Phred-based quality scores (Q) which
are a function of the base calling error probability (P ), where P = 10

−Q
10 (high Q

means high certainty in allele call). We are looking to incorporate this uncertainty
using the MCMC iterations with the aim of improving detection of causal SNPs with
low quality scores that might otherwise be discarded if a quality score threshold is
applied.
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26.2.3 Including Functional Annotation Information

Functional annotation information is increasingly widely available in online
databases. Novel SNPs, SNPs that have not previously been found and recorded,
are not annotated, and the only information obtainable is whether the SNP is
synonymous, has no change on the protein it codes for, or non-synonymous, causes
a change in the protein it codes for. Using the FS score [3], which combines a given
set of biological parameters on annotated SNPs into one score, we hope to be able
to prioritise more likely causal SNPs.

26.3 Preliminary Results

Our preliminary results use simulated data where confounding factors are not
included. In real data sets confounding factors such as age, gender and population
structure will be a problem. To avoid having to incorporate confounding in our
model, we use PANAMA [4] to deconfound the gene expression signal (y).

In the initial simulation study 8 causal β (ranging from 2 to 0.4 in magnitude) are
fixed and non-causal β are simulated to have an effect sampled from a N(0, 0.01)
with gene expression given by a linear sum of the weighted SNPs plus a N(0, 1)
error.

In comparison with the least-squares estimates (see Fig. 26.1), the standard
normal-gamma [1] prior with no modifications detects all truly causal SNPs at a
lower false-positive rate. This is due to comparatively less differential shrinkage
across all βjk . Comparing with the HyperLasso [5], which enforces similar shrink-
age, and piMASS [6], which uses Bayesian selection, the normal-gamma model has
similar performance (Fig. 26.1).

26.4 Conclusion

Our developments to the normal-gamma prior provide a suitable framework, which
has been shown via simulation, to successfully identify causal DNA sequence
variants (SNPs) affecting the gene expression level. Taking a fully Bayesian
approach, permitted by the normal-gamma prior, allows for the various sources of
uncertainty to be incorporated in a coherent manner.
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Fig. 26.1 ROC curves generated from the least squares, standard normal-gamma [1], piMASS [6],
and HyperLasso [5] on simulated data
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Chapter 27
Randomized Phase II Trials: A Bayesian
Two-Stage Design

Matteo Cellamare, Valeria Sambucini, and Federica Siena

Abstract Single-arm two-stage designs are commonly used in phase II of clinical
trials. However, the use of randomization in phase II trials is currently increasing.
We propose a randomized version of a Bayesian two-stage design due to Tan
and Machin [4]. The idea is to select the two-stage sample sizes by ensuring a
large posterior probability that the true response rate of the experimental treatment
exceeds that of the standard agent, assuming that the experimental treatment is
actually more effective. This optimistic assumption is realized by fixing virtual
outcomes.

27.1 Introduction

Phase II trials are typically conducted as single-arm studies based on a binary
endpoint, where the patients are recruited in two stages to let the trial stop if the
observed response rate is unacceptably low. In this context the most popular two-
stage designs developed under a frequentist framework are due to Simon [2]. Among
the Bayesian two-stage designs proposed in the literature, we in particular focus on
the single threshold design (STD) presented by Tan and Machin [4].

Let us denote by pX the unknown response probability of an experimental
treatment and define the treatment promising if pX exceeds a target of clinical
interest, p∗. The STD selects the two-stage sample sizes by ensuring a large posterior
probability that pX > p∗, under the assumption that the observed response rate is
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slightly larger than the target. The results are strongly affected by the choice of
p∗ that is typically defined a priori from historical data on the expected efficacy
of the best available treatment. The use of historical response rates is one of the
main criticisms moved to single-arm studies and the introduction of randomization
in phase II of clinical trials is widely debated in the recent literature [5, 6].

A general scheme to conduct a randomized two-stage design is provided by Jung
[1]. Let X and Y be the experimental and the standard arm, respectively. At the
first stage, n1 patients are enrolled in each arm. Let us denote by x1 and y1 the
observed number of responders for X and Y , respectively. If x1 − y1 ≥ a1, where
a1 ∈ [−n1, n1], the trial continues to the second stage; otherwise it stops. At the
second stage we accrue n2 additional patients to each arm and observe the number
of responders, x and y, out of the total of n = n1 + n2 patients. Then if x− y ≥ a,
where a ∈ [a1 − n2, n], we proceed to phase III; otherwise the trial terminates. In
particular, Jung [1] suggests to select the values (n1, a1, n, a) by minimizing either
the maximum sample size or the expected sample size under the null hypothesis
of no treatment difference, subject to prespecified restrictions on type I and type II
error probabilities. These proposals represent randomized versions of the single-arm
“minimax” and “optimal” designs due to Simon [2].

27.2 A Bayesian Two-Stage Design

To avoid the use of a historical control, we propose a randomized version of the
STD. Let pY be the efficacy probability of the standard therapy. The criterion we
suggest to select n1 and n is based on the control of the posterior probability that
pX > pY , under the assumption that the observed response rate for the standard
treatment is equal to the target p∗, while the one for the experimental treatment is
equal to the target plus a small quantity ε > 0.

More formally, let us denote by Pr(pX > pY |X1 = x1, Y1 = y1) and Pr(pX >
pY |X = x, Y = y) the posterior probabilities that pX > pY at the end of the first
and the second stage, respectively. We select the smallest sample size n1, such that

Pr(pX > pY |X1 = n1(p
∗ + ε), Y1 = n1p

∗) ≥ λ1, (1)

where λ1 ∈ (0, 1) is a prespecified threshold. Since the data arise from a binomial
distribution, we introduce independent beta prior densities for the parameters, i.e.
π(pj) = Beta(αj , βj), for j = X,Y , where

αj = n0
jp

0
j + 1 and βj = n0

j(1 − p0j) + 1.

With this choice of the hyperparameters, the beta prior π(pj), for j = X,Y , has
mode at p0j and is based on an implicit prior sample size, n0

j , such that the larger
its value, the more concentrated is the prior distribution (see Sambucini [3]). As it
is well known, the corresponding independent posterior densities for pX and pY
are still beta with updated parameters. Then, the posterior probability in (1) can be
easily computed using, for instance, Monte Carlo simulation techniques.
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Analogously, at the second stage, we choose the smallest n that satisfies

Pr(pX > pY |X = n(p∗ + ε), Y = np∗) ≥ λ2, (2)

for a suitable λ2 ∈ (0, 1). Once the optimal sample sizes have been determined
and the trial started, following Tan and Machin [4], at the end of each stage, we
compute the posterior probability of interest corresponding to the observed outcome
and check whether it exceeds the prespecified threshold (λ1 or λ2) in order to make
a go/no-go decision.

Finally, it is important to point out that statistical considerations about the
irrelevance of stopping rules in Bayesian inference let us conclude that the posterior
probability in (2) is not affected by the first-stage results. Moreover, the behavior of
Pr(pX > pY |X1 = n1(p

∗ + ε), Y1 = n1p
∗) as a function of n1 is the same as that

of Pr(pX > pY |X = n(p∗ + ε), Y = np∗) as a function of n, and we need to set
λ2 > λ1 in order to obtain n > n1. Then, since the posterior distributions involved
in both criteria (1) and (2) are actually the same, in the following, we will use the
first-stage notation in describing the numerical results related to both stages.

27.3 Numerical Results

The proposed design has been implemented and applied to some reasonable prior
scenarios. Table 27.1 provides the optimal sample sizes for different values of p∗

and λ1, when ε = 0.05, and we consider informative prior distributions that express
skepticism or enthusiasm about the efficacy of the experimental treatment. In
particular we obtain a skeptical prior by specifying the prior modes p0x = p∗ − 0.05
and p0Y = p∗+0.05, while an enthusiastic prior is obtained by setting p0x = p∗+0.05
and p0Y = p∗−0.05. Different values of the prior sample sizes are also considered in
order to take into account different levels of skepticism or enthusiasm expressed by
the prior densities. As expected, larger values of λ1 determine higher values for the
optimal sample size. We can also note that, when we adopt skeptical prior densities

Table 27.1 Optimal sample sizes for different values of the prior sample sizes, p∗ and λ1, when
ε = 0.05, and we elicit skeptical and enthusiastic prior distributions

n0
X = n0

Y = 1 n0
X = n0

Y = 5 n0
X = n0

Y = 10

λ1 λ1 λ1

p∗ Prior 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

0.2 Skeptical 15 45 106 28 61 124 42 79 144
Enthusiastic 8 38 98 1 25 86 1 6 69

0.3 Skeptical 17 55 131 31 72 149 46 90 170
Enthusiastic 10 47 123 1 35 111 1 17 95

0.4 Skeptical 18 60 145 32 77 163 47 96 185
Enthusiastic 11 52 137 1 40 125 1 23 109

Prior modes of skeptical prior distributions: p0x = p∗ − 0.05 and p0Y = p∗ + 0.05
Prior modes of enthusiastic prior distributions: p0x = p∗ + 0.05 and p0Y = p∗ − 0.05
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Fig. 27.1 Optimal sample size as a function of ε, when λ1 = 0.75 and p∗ = 0.3, using skeptical,
enthusiastic and noninformative prior distributions

about the effectiveness of the new treatment, we need larger sample sizes with
respect to those obtained when we use enthusiastic priors. Of course, the differences
are more relevant as we increase the values of n0

X and n0
Y .

Figure 27.1 represents the behavior of the optimal sample size as a function of
ε, when p∗ = 0.3 and λ1 = 0.75, under the skeptical and the enthusiastic scenarios
considered in Table 27.1 for n0

X = n0
Y = 5 (see left panel) and n0

X = n0
Y = 15 (see

right panel). The case of noninformative priors is also considered by setting n0
X =

n0
Y = 0, so that π(pj) = Beta(1, 1), for j = X,Y . As ε increases, the fixed virtual

results used in the criteria (1) and (2) express a larger level of optimism about the
efficacy of the experimental treatment and the design requires smaller sample sizes.
Moreover, since the larger the prior sample size, the higher the weight assigned to
the prior opinions, the difference in the optimal sample sizes under the skeptical and
the enthusiastic scenarios is more evident in the right panel of Fig. 27.1.
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Chapter 28
Bayesian Matrix Factorization for Outlier
Detection: An Application in Population
Genetics

Nicolas Duforet-Frebourg and Michael G.B. Blum

Abstract We present a new Bayesian hierarchical model based on matrix fac-
torization for detecting outliers in high-dimensional data. Outliers are explicitly
modeled using both a shift-in-mean and variance inflation approach. The Bayesian
framework provides intrinsic probabilities of being an outlier for each element in
the sample. Posterior replicates of the parameters are simulated using a MCMC
algorithm. In population genetics where many genetic markers are typed in different
populations, we show that this model can be used to detect genes targeted by
Darwinian selection.

28.1 Introduction

Matrix factorization aims at decomposing a high-dimensionaln×p data matrix into
a product of two lower rank K matrices called the factor and loading matrices [4].
Matrix factorization provides a useful framework to model outliers in the lower-
dimensional space generated by the low-rank approximation [3]. Detecting outliers
in high-dimensional data sets is of interest in population genetics in order to detect
genes under selective pressures [1]. The proposed approach provides an intrinsic
probability of being an outlier so that we can estimate false discovery rate (FDR)
and q-values, which are two important quantities in whole-genome scans [6].

We provide a MCMC algorithm to sample replicates from the posterior distribu-
tion and we show how the method can detect genes under selection in population
genetics data.
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28.2 Bayesian Matrix Factorization for Outlier Detection

28.2.1 Model

The probabilistic model of matrix factorization—also known as factor or probabilis-
tic PCA model—for a design n × p matrix Y relies on a product between a factor
matrix F and a loading matrix Λ:

Y = FΛ+ ε, (1)

where F is an n×K matrix, Λ is a K × p matrix, and ε is an n× p residual matrix
where each row εi ∼ N (0p, σ

2Ip). Here, we choose a Gaussian prior for Λ

p(Λ|σΛ) = Πp
j=1N (Λj ; 0K , σ

2
ΛIK). (2)

To specify the prior of F , we explicitly model outliers using the shift-in-mean
approach [5] for one of the K factors of the low-rank approximation

p(F |A,Z,ΣF ) = Πn
i=1N (Fi; 0K +A

(Zi)
i , ΣF ), (3)

where ΣF is a diagonal matrix with values σ2
Fk

. We specify improper priors for
variances p(σ2

Λ) ∝ 1
σ2
Λ

and p(σ2
Fk
) ∝ 1

σ2
Fk

. Shift vector Ais are zero-valued vectors

with nonzero component at index Zi. For i = 1, . . . , n, Zi is an integer between 0
and K , indicating that the ith line is either an outlier for the factor Zi if Zi > 0 or
not an outlier if Zi = 0. We add priors for A and Z such as

p(A|τ,ΣF ) = Πn
i=1N (Ai; 0K , τ

2ΣF ). (4)

p(Zi = k) = πk =

{
α/K if k > 0

1− α if k = 0
(5)

where α is the expected proportion of outliers with Beta prior, α ∼ Beta(β1, β2),
and variance inflation parameter τ ∼ U (1, 10).

28.2.2 Posterior Inference and Algorithm

To obtain replicates from the posterior p(Z,A|Y ), we use Gibbs updating steps
based on the conditional distribution of (Zi, Ai) provided below:

p(Zi = k,Ai|Fi, ΣF , τ2) = p(Zi = k|Fi, ΣF , τ2)p(Ai|Zi = k, Fi, ΣF , τ
2) (6)
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Table 28.1 MCMC algorithm of Bayesian Matrix Factorization for detecting outliers

• Setup values of K,β1, β2.

• Initialize σ, σΛ, ΣF , Λ, F,A,Z, α, τ2.

• for s = 1..ns do: j = 1..p,Λ
(s)
j ← N (( 1

σ
2(s−1)
Λ

IK + 1
σ2(s−1) (F

(s−1))tF (s−1))−1

1
σ2(s−1) F

(s−1)Yj , ( 1
σ2(s−1) F

(s−1)tF (s−1) + 1

σ
2(s−1)
Λ

IK)−1)

σ
(s)
Λ ← IG(Kp

2
, 1
2

∑K
i=1 Λ

(s)
i Λ

(s)t
i )

i = 1..n,Z
(s)
i ← sample(Z

(s)
i , p(Zi = k|π, F (s−1)

i , Σ
(s−1)
F , τ2(s−1)))

i = 1..n, if Z(s)
i > 0 then, A(s)

i,Zi
← N ( τ2(s−1)

τ2(s−1)+1
F

(s−1)
i,Zi

,

τ2(s−1)

τ2(s−1)+1
σ
2(s−1)
FZi

)

i = 1..n,F
(s)
i ← N ((Σ

−1(s−1)
F + 1

σ2(s−1) Λ
(s)Λt(s))−1

(Σ
−1(s−1)
F A

(s)
i,Zi

+ 1
σ2(s−1) Λ

(s)Y ), (Σ
−1(s−1)
F

+ 1
σ2(s−1) Λ

(s)Λt(s−1))−1)

i = 1..K,σ
(s)
Fi
← IG(n

2
, 1
2

∑n
j=1(F

(s)
ij − A

(s)
ij )(F

(s)
ij − A

(s)
ij )t)

α← Beta(β1 + noutliers, β2 + n− noutliers)

σ(s) ← IG(np
2
, 1
2

∑n
i=1

∑p
j=1 |Yi,j − F

(s)
i Λ

(s)
j |))

Metropolis-Hastings step: τ2∗ ← N (τ2(s−1), .5)

where

p(Zi = k|Fi, ΣF , τ2) ∝ πk

√
σ2
Fk
e

τ2

(τ2+1)

F2
i,k

σ2
Fk (7)

p(Ai,k|Zi = k, Fi, ΣF , τ
2) ∝ N (

τ2

τ2 + 1
Fi,k,

τ2

τ2 + 1
σ2
Fk
) if k > 0. (8)

Other parameters have more usual conditional distributions that are also useful when
performing Bayesian linear regression. Samples are simulated using the MCMC
algorithm provided in Table 28.1.

28.3 Results

To illustrate the potential of the method, we simulate population genetics data where
the outliers correspond to the markers located in genomic regions under Darwinian
selection. The data contain 400 individuals from 4 populations that split according
to a tree model (see Panel A in Fig. 28.1) and are typed at 200 genetic markers
called SNPs, among which 12 are under various selective pressures in one of the 4
populations. Posterior probabilities to be outliers are enriched for genes targeted by
selection (see Panel B in Fig. 28.1), and a Precision-Recall (see Panel C in Fig. 28.1)
curve can be used to evaluate the property of the method under various evolutionary
scenario.
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Fig. 28.1 Panel A: population divergence model used to simulate population genetics data. Panel
B: posterior probability of being outlier. Panel C: Precision-Recall curve

28.4 Conclusions

We introduced a hierarchical Bayesian model of matrix factorization for detecting
outliers in high-dimensional data. The probabilistic model provides probabilities for
each observation to be an outlier and indicates the direction or factor under which
the observation is atypical. We showed that this approach can be used to detect genes
targeted by selection in population genetics. The method is implemented in the C
software PCAdapt. The method can be more widely used in population genetics to
uncover geographic direction in which selection happened since in spatially struc-
tured populations, factors are closely correlated to geography. A potential extension
of the model would be to include spatial autocorrelation between individuals using
model of spatial decay of correlation as in [2].

References

1. Beaumont MA, Balding, DJ (2004) Identifying adaptive genetic divergence among populations
from genome scans. Mol Ecol 13(4):969–980

2. Duforet-Frebourg N, Blum MGB Non-stationary patterns of isolation-by-distance: inferring
measures of local genetic differentiation with Bayesian Kriging (submitted)

3. Polasek W (1997) Factor analysis and outliers: A Bayesian approach. Wirtschaftswis-
senschaftliches Zentrum der Universitt Basel



28 Bayesian Matrix Factorization for Outlier Detection. . . 147

4. Salakhutdinov, R, Mnih A (2008) Bayesian probabilistic matrix factorization using Markov
chain Monte Carlo. In Proceedings of the 25th international conference on Machine learning
pp. 880–887. ACM.

5. Verdinelli I, Wasserman L (1991) Bayesian analysis of outlier problems using the Gibbs
sampler. Statist Comput 1(2):105–117

6. Wakefield J (2007) A Bayesian measure of the probability of false discovery in genetic
epidemiology studies. Am j Hum Genet 81(2):208



Chapter 29
Noise Model Selection for Multichannel
Diffusion-Weighted MRI

Edward Knock, Theodore Kypraios, Paul Morgan,
and Stamatios Sotiropoulos

Abstract We examine the use of various diagnostics for model choice for multi-
channel diffusion-weighted MRI, which is important for inferring the correct
tractography, as noise properties can differ between reconstruction techniques and
scanners. These are calculated for image data obtained under various different
settings of a Philips Achieva 3T scanner. A simulation study was carried out which
showed these to be reasonably effective at identifying the true model.

29.1 Introduction

It is well known that the application of multichannel receiver arrays and new
image reconstruction techniques, such as parallel imaging, can influence the noise
properties in magnetic resonance imaging (MRI) [4]. It has been recently shown that
different image reconstructions (which also differ between scanners) of the same
multichannel raw data can significantly influence the estimation of fibre orientations
from diffusion-weighted MRI [6] and therefore tractography. This is due to their
different noise properties and the nature of the DW signal; the signal attenuation is
of interest and therefore the signal can be very close to the noise floor. Any changes
in the noise properties can directly influence the estimation process.
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29.2 Background

29.2.1 Data

The raw data were acquired using a Stejskal-Tanner diffusion-weighted (DW)
pulse sequence within a single-shot EPI (echo planar imaging) protocol. One b=0
s/mm2 and 61 DW volumes at b=1000 s/mm2 were acquired in a Philips Achieva
3T scanner. In-plane spatial resolution was 2x2 mm2 and slice thickness 2mm.
A similar protocol was repeated with the DW volumes being acquired at b=3000
s/mm2. Both acquisitions were first performed using an 8-channel receiver coil and
were repeated using a 32-channel coil. Magnitude images were reconstructed from
the raw multichannel data in two different ways, provided by the vendor, CLEAR On
(Con) and CLEAR Off (Coff). For the 8-channel and 32-channel data, respectively,
these images are composed of 112x112x32 voxels and 112x112x8 voxels, from
which a subset of 5914 and 2859 voxels were chosen from the midbody of the
corpus callosum.

29.2.2 Models

We are interested in fitting the following ball-and-sticks model [3] for the diffusion
signal for the ith acquisition:

Si = S0

⎛

⎝(1−
N∑

j=1

fj) exp {−bid}+
N∑

j=1

fj exp
{−bidg�

i vj
}
⎞

⎠ , (1)

where the unknown parameters are: d, the diffusivity; S0, the signal with no
diffusion gradients applied; fj (j = 1, . . . , N ), the proportion of signal described by
fibre direction vj ; (θj , φj) (j = 1, . . . , N ), spherical polar coordinates describing
fibre direction vj = (sin θ cosφ, sin θ sinφ, cos θ). The b-value and gradient
direction associated with the ith acquisition, bi and gi, respectively, are known.

This model features a mixture of tensors consisting of N perfectly anisotropic
tensors (the ‘sticks’), each of which depicts one fibre orientation, and a perfectly
isotropic tensor (the ‘ball’), which captures the rest diffusion processes (Fig. 29.1).

(i) fibre crossing (ii) single fibre orientation (iii) no fibre
Fig. 29.1 Some examples of
a ball-and-sticks model
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Here we are interested in fitting N = 3, in which N = 1 and N = 2 are nested
by setting f2 = f3 = 0 and f3 = 0, respectively.

We consider five noise models for the reconstructed signal Yi (with their
parameters):

1. Gaussian/Normal, Yi ∼ N
(
Si, τ

−1
)

2. Rician, Yi ∼ Rice (Si, τ)
3. Noncentral Chi with fixed number of channels (n = 8/n = 32), Yi ∼

NCχn (Si, τ)
4. Noncentral Chi with unknown number of (independent) channels, Yi ∼

NCχn (Si, τ)
5. Gaussian/Normal modified by accounting for higher noise floor, Yi ∼

N
(
Si, τ

−1
)

with

Si = S0

⎛

⎝f0 +

⎛

⎝1−
N∑

j=0

fj

⎞

⎠ e−bid +
N∑

j=1

fj exp
{−bidg�

i vj
}
⎞

⎠ (2)

29.2.3 Methods

We consider three diagnostics for model choice: Akaike information criterion (AIC)
[1], Bayesian information criterion (BIC) [5] and deviance information criterion
(DIC) [7]. The AIC and BIC are (maximum likelihood) point estimates, and hence
can be quick to calculate, though in practice finding the true maximum may be
difficult. The BIC places a higher penalty on each additional parameter. The DIC
requires estimation of the likelihood at the mean and the mean of the log-likelihood.
In practice this requires a full Bayesian approach using an MCMC algorithm.
For speed, we use an MCMC sampler using an adaptive multivariate normal random
walk proposal [8] and fit the ball-and-three-sticks model with automatic relevance
determination (ARD) priors [2] proportional to 1

f on f2 and f3. This sparsity-
inducing prior should force these to zero except when they are in truth sufficiently
large. This is done to effectively fit three models at once and reduce overfitting.

29.3 Result Summary

It is found that 32 channels, b-values of 3000 and Coff reconstruction tend
to favour noncentral Chi noise with degrees of freedom much lower than 32
(indicating correlation between channels), while 8 channels, b-values of 1000 and
Con reconstruction favour Gaussian or Rician noise (see Table 29.1).

A simulation study carried out showed ARD priors do a good job in reducing
overfitting the number of sticks though generally an ill-fitting noise model leads to
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Table 29.1 Percentage of voxels for which each noise model yields lowest AIC/BIC/DIC (across
all numbers of sticks)

Normal Rice
NCχ
(n = 8/32)

NCχ
(n unknown) Mod. Norm.

8ch/b1k/Coff AIC 49.98 21.98 21.03 2.65 4.35

BIC 52.65 23.79 22.39 0.61 0.56

DIC 21.54 24.28 10.57 21.37 22.24

8ch/b1k/Con AIC 49.02 19.92 23.96 2.79 4.31

BIC 51.34 21.66 25.75 0.64 0.61

DIC 21.86 23.03 11.24 20.53 23.33

8ch/b3k/Coff AIC 6.53 50.59 0.12 31.32 11.45

BIC 5.83 70.46 0.30 18.26 5.14

DIC 10.74 39.74 0.34 30.86 18.33

8ch/b3k/Con AIC 7.73 52.42 0.57 26.90 12.38

BIC 7.14 70.41 0.90 15.84 5.72

DIC 10.69 39.75 0.66 28.88 20.02

32ch/b1k/Coff AIC 50.79 27.95 14.17 2.97 4.13

BIC 53.17 30.95 13.85 1.36 0.66

DIC 23.05 24.38 6.44 18.96 27.18

32ch/b1k/Con AIC 53.17 23.26 16.23 3.50 3.85

BIC 54.56 26.27 17.10 1.29 0.77

DIC 22.25 25.11 7.56 18.78 26.30

32ch/b3k/Coff AIC 8.53 23.57 0.03 52.61 15.25

BIC 8.43 36.10 0.07 45.33 10.07

DIC 9.58 22.84 0.07 35.47 32.04

32ch/b3k/Con AIC 13.92 38.89 0.03 33.89 13.26

BIC 13.61 52.29 0.07 25.39 8.64

DIC 13.05 32.00 0.28 25.88 28.79

overfitting and, hence, incorrect tractography. The diagnostics are seen to identify
the true noise model reasonably well.
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Chapter 30
Analysis of Hospitalizations of Patients Affected
by Chronic Heart Disease

Alice Parodi, Francesca Ieva, Alessandra Guglielmi, and Raffaele Argiento

Abstract In this paper we present a Bayesian model to analyze sequences of hos-
pitalizations of patients affected by chronic heart disease, focusing not only on the
sequence but also on the times between two next events; considering covariates and
time, the model is able to identify the most relevant factors influencing the evolution.

30.1 Introduction

In this paper we present a preliminary analysis of the evolution of chronic heart dis-
ease [Sect. 30.2] considering as variables of interest the sequence of hospitalizations
of patients affected by this illness and the times between two next hospitalizations
(see [1] for an overview on event history analysis). Data refers to patients admitted
to hospitals in Regione Lombardia.

In particular we introduce a Bayesian model [Sect. 30.3] with a twofold scope:
the evaluation of factors that are relevant in the evolution of the sequences of the
hospitalizations process, and then the inference on inter-hospitalizations’ times.

30.2 The Dataset

The dataset contains information about recurrent hospitalizations of patients
affected by chronic heart disease. In particular, for each patient j = 1, . . . G,
we consider the sequence of hospitalizations and the times between two
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successive events. The analysis is carried out for G = 26, 618 patients examined
from 1/1/2006 to 31/12/2010. For each of them we know the number nj(i =

1, . . . , nj) of events Aji (hospitalization or death) occurred and the sequence of
times between two next events (T ji is the time between Aji−1 and Aji ). We are also
informed about covariates that may influence the occurrence of events, i.e., clinical
covariates like status (0 healthy, 1 not), age, and sex (1 female, 0 male).

30.3 The Model

We assume patients to be conditionally independent. Further assumptions are the
following:

h1: There is at least one hospitalization for each patient, i.e., Aj1 = 1.
h2: Any event after the first can be hospitalization or death, i.e.,Aji = i orAji = M

with i ∈ {2, . . . , nj}.
h3: The occurrence of event Aji depends only on the last past event.
h4: The distribution of time T ji depends on all the previous waiting times and on

the last event only, i.e., T ji is independent from Ajk ∀k < i− 1.
h5: If a patient is still alive at the end of the analysis, we define T jnj+1 as the time

of the first event occurred after the end of the study; this is a right censored
random variable.

Remark. For this analysis we considered only patients experiencing at mostN = 10
hospitalizations, in order to guarantee that data would include enough information
for all events, so that all parameters can be properly inferred.

Then we define the likelihood of the model, where ρ = (β,γ,λ, a, q,p) is the
vector of parameters:

L (T ,A|ρ) =
G∏

j=1

L ((T j1 , A
j
1), (T

j
2 , A

j
2), . . . , (T

j
nj
, Ajnj

), T jnj+1|ρ)

and, for each patient j ∈ {1, . . . , G}:

L (T j ,Aj |ρ) = L (T j1 |ρ) ×
L (Aj2|T j1 , T j2 , Aj1 = 1,ρ) L (T j2 |T j1 , Aj1 = 1,ρ) ×
L (Aj3|T j1 , T j2 , T j3 , Aj2,ρ) L (T j3 |T j1 , T j2 , Aj2,ρ) ×
L (Aj4|T j1 , . . . , T j4 , Aj3,ρ) L (T j4 |T j1 , T j2 , T j3 , Aj3,ρ) ×
. . . . . . ×
L (Ajnj

|T j1 , T j2 , . . . , T jnj
, Ajnj−1,ρ) ×

L (T jnj
|T j1 , . . . , T jnj−1, A

j
nj−1,ρ) ×

L (T jnj+1|T j1 , . . . , T jnj
, Ajnj

,ρ).
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Now, defining each term above, we have:

• (T j1 |ρ) ∼ Weibull(λ1, μ
j
1) being μj1 = exp{zTj γ} and zj = (1, agej , sexj);

γ = (γ0, γ1, γ2).

• L (Aj2|T j1 = t1, T
j
2 = t2, A

j
1 = 1,ρ) =

{
p2 if Aj2 = 2

1− p2 if Aj2 = M.

• (T j2 |T j1 = t1, A
j
1 = 1,ρ) ∼ Weibull(λ2, μ

j
2) where μj2 = exp{βTxj2} and

xj2 = (1, agej , sexj , covj2, t1), β = (β0, β1, β2, β3, β4). Note that we introduce
the explicit dependence on the past here, through the parameter β4.

• L (Aji |T j1 = t1, T
j
2 = t2, . . . , T

j
i = ti, A

j
i−1 = i−1,ρ) =

{
pi if Aji = i

1− pi if Aji =M

∀i ∈ {3, . . . , nj}. According to the meaning of each state Aji we specify only
Aji−1 = i− 1; if Aji−1 = M the eventAji will not occur. In fact for each patient
j we know the total number of events nj .

• (T ji |T j1 = t1, . . . , T
j
i−1 = ti−1, A

j
i−1 = i − 1,ρ) ∼ Weibull(λi, μ

j
i )

where μji = exp{βTxji}, xji = (1, agej , sexj , covji , t1 + . . . + ti−1),
β = (β0, β1, β2, β3, β4).

• (T jnj+1|T j1 = t1, . . . , T
j
nj

= tnj , A
j
nj

= nj ,ρ) ∼ Weibull(λnj
,μj

nj
)

S(T−∑nj
i=1 ti)

×
I
(T−∑nj

i=1 ti;+∞)

{
T jnj+1

}
where μjnj

= exp{βTxjnj
} and xjnj

= (1, agej , sexj ,

covjnj
,
∑nj

k=1 tk), β = (β0, β1, β2, β3, β4).

To complete the definition of the model we introduce the prior distribution of the
parameter ρ; in particular we assume:

π(ρ) = π(p)π(β)π(γ)π(λ)π(a)π(q)

where π(p) =
∏N
k=2 π(pk); pi ∼ Beta(αi(t1, . . . , ti)qi(t1, . . . , ti), αi(t1, . . . , ti)

(1− qi(t1, . . . , ti)) and then αi = a/{(t1 + . . .+ ti−1)ti} and qi(t1, . . . , ti) = qi
π(β) =

∏4
k=0 π(βk) and marginally βk ∼ N(0, 1000) ∀k ∈ {0, 1, . . . , 4}

π(γ) =
∏2
k=0 π(γk) and marginally γk ∼ N(0, 1000) ∀k ∈ {0, 1, 2}

π(λ) =
∏N−2
k=1 π(λk) and marginally λk ∼ Gamma(η, ν) and η = 10, ν = 5;

∀k ∈ {1, 2, . . . , N − 1} and λN = λN−1 = λN−2

π(a) = Gamma(2, 4)
π(q) =

∏N−2
k=2 π(qk) and marginally qk ∼ U(0, 1), ∀k ∈ {2, 3, . . . , N − 1}

and qN = qN−1 = qN−2.

30.4 Posterior Inference

In this section we present the analysis of the posterior inference obtained with a
Gibbs sampling algorithm run over 100,000 iterations with thinning of 10 iterations,
discarding 1000 iterations as burn-in (model fitting was implemented in JAGS
[2, 3]).
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Fig. 30.1 Posterior analysis of β1

Table 30.1 Posterior summaries of β

Mean SD 2.5% 50% 97.5%

β0 −35.10 27.67 −89.91 −34.88 19.04

β1 −1.15 0.40 −1.91 −1.15 −0.36
β2 −21.82 13.06 −47.34 −21.85 3.50

β3 −16.14 4.03 −27.06 −16.17 −8.27
β4 67.55 7.18 53.70 67.53 81.87

The trace plots of parametersβ, γ andλ confirm convergence, even starting from
different initial points. In Fig. 30.1 we report trace, autocorrelation, and posterior
distribution plots for β1.

The shape parameters {λi} of the Weibull distributions are not reported here,
but they are concentrated around 1. On the other hand, Table 30.1 and Table 30.2
report the posterior summaries of the β and γ parameters; in particular we can see
that women (sex=1) and unhealthy (clinical=0) patients have shorter times between
hospitalizations (great evidence for β2 < 0 and β3 < 0) and that the longer is
the time from first hospitalization to the last event, the longer will be the waiting
time for the new event (β4 > 0). After performing Bayesian model selection, we
concluded that age can be excluded from the likelihood.
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Table 30.2 Posterior summaries of γ

Mean SD 2.5% 50% 97.5%

γ0 −15.62 27.97 −70.00 −15.45 39.89

γ1 −1.08 0.42 −1.89 −1.08 −0.26
γ2 −3.20 17.87 −38.06 −3.29 31.85

Considering the law of the sequence of events, instead, we observe that neither
the chain of a nor the chains of {qi} converge well; further work is needed to better
represent the conditional law of Aji , given ρ.

30.5 Conclusion

We believe that this model describes the evolution in time well enough, also taking
into account the relevant covariates in the hospitalization process. As a further work,
we could consider a different model, where, for example, we could define the {pi}
in the likelihood as decreasing in i, ignoring the dependence on time.
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Chapter 31
A Semiparametric Bayesian Multivariate Model
for Survival Probabilities After Acute
Myocardial Infarction

Elena Prandoni, Alessandra Guglielmi, Francesca Ieva,
and Anna Maria Paganoni

Abstract In this work, a Bayesian semiparametric multivariate model is fitted
to study data related to in-hospital and 60-day survival probabilities of patients
admitted to a hospital with ST-elevation myocardial infarction diagnosis. We
consider a hierarchical generalized linear model to predict survival probabilities
and a process indicator (time of intervention). Poisson-Dirichlet process priors,
generalizing the well-known Dirichlet process, are considered for modeling the
random-effect distribution of the grouping factor which is the hospital of admission.

31.1 Introduction

The disease we are interested in is ST-elevation myocardial infarction (STEMI):
it is caused by an occlusion of a coronary artery which causes an ischemia that,
if untreated, can damage heart cells and make them die (infarction). It is very
important that a reperfusion therapy could be done as quickly as possible, because
its benefits decrease with delay in treatment; in our case, patients are treated with
percutaneous transluminal coronary angioplasty. We consider data collected in the
STEMI Archive [1], a multicenter observational prospective clinical study planned
within the Strategic Program of Regione Lombardia. Data is recorded in a registry
collecting clinical and process indicators, outcomes, and personal information on
patients admitted to all hospitals of Regione Lombardia with STEMI diagnosis.

The regression model we introduce is multivariate, where the response has three
components: door to balloon time (DB), i.e., the time between the admission to
the hospital and angioplasty, on the logarithmic scale, in-hospital survival, and
survival after 60 days from admission. The first term is an important indicator of
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the efficiency of the health providers and plays a key role in the success of the
therapy; the second one is the basic indicator of success or failure of the treatment,
while the third one is a very important outcome, since doctors believe that it is in
a 60-day period the effectiveness of the treatment in terms of survival and quality
of life can be truly evaluated. We include the hospital random-effect parameters in
the model and assume they are a sample from a Poisson-Dirichlet process a priori
in order to eventually cluster the hospitals.

The main statistical aim of this work is prediction of both survival probabilities
of new patients.

31.2 The Bayesian Model in a Nutshell

For each patient (i = 1, . . . , 697) let Yi := (Yi1, Yi2, Yi3) be the response, where
Y1 is the logarithm of DB, Y2 is the in-hospital survival, and Y3 is the long-
term survival. We assume that observations, given parameters and covariates, are
independent and the law of the response can be factorized into three parts:

L (Yi|par, cov) = L (Yi1|par1, cov1)L (Yi2|Yi1, par2, cov2)L (Yi3|Yi2, par3, cov3).

The likelihood can be expressed as

Yi1|μi, σ ind∼ N (μi, σ
2), μi =

4∑

l=1

βluil + β5xi5 + β6xi6 (1)

Yi2|pi, Yi1 ind∼ Be(pi), logit(pi) = α1zi1 + α2zi2 + α3Yi1 +
7∑

l=4

αlvil + bφk[i]k[i]

(2)

Yi3|ri, Yi2 ind∼
{

Be(ri) se Yi2 = 1

δ0 se Yi2 = 0
, logit(ri) =

4∑

j=1

γjsij + tφk[i]k[i]. (3)

Here k[i] denotes the hospital where the patient i is admitted to, while covariates
include the type of rescue unit sent to the patient (uil, l = 1, . . . , 4), the time of
the first ECG (xi5), the age (zi1), the Killip class (vil, l = 1, . . . , 4, which quantify
in four categories the severity of infarction), other covariates measuring the health
status of the patient, or if the treatment was successful or not. The indexes φk[i] of
the random-effect parameters in (2) and (3) assume values 1 or 0, if the hospital is
in Milano or not.

As far as the fixed-effects parameters are concerned, we considered a parametric
prior; for the random-effect parameters we assume Poisson-Dirichlet process priors
with parameters (f, g) [2]. This choice helps us to avoid dependency on parametric
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assumptions and to increase flexibility in the prior and more robust inferences.
We obtained posterior estimates of all the parameters through a Gibbs sampler
algorithm implemented in JAGS [3] and with the support of R [4]; for this purpose
we used a truncated stick-breaking representation of the nonparametric prior, which
is a generalization of the well-known Dirichlet process [5].
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Chapter 32
Particle Learning Approach to Bayesian Model
Selection: An Application from Neurology

Simon Taylor, Gareth Ridall, Chris Sherlock, and Paul Fearnhead

Abstract An improved method is sought to accurately quantify the number of
motor units that operate a working muscle. Measurements of a muscle’s contractive
potential are obtained by administering a sequence of electrical stimuli. However,
the firing patterns of the motor units are non-deterministic and therefore estimating
their number is non-trivial. We consider a state-space model that assumes a fixed
number of motor units to describe the hidden processes within the body. Particle
learning methodology is applied to estimate the marginal likelihood for a range of
models that assumes a different number of motor units. Simulation studies of these
systems, containing up to 5 motor units, are very promising.

32.1 Introduction

We are interested in accurately quantifying the number of motor units (MUs)
that supply a working muscle. A MU consists of a single motor neuron and the
muscle fibres it governs. An electrical study of a muscle provides insight into
the neuromuscular processes by measuring the compound muscle action potential
(CAMP) for a range of stimuli. The ability to partition each CAMP into the
contributions from each MU, a single motor unit potential (SMUP), is central
to motor unit number estimation (MUNE). However, this is complicated by the
occurrence of “alternation” [1]: where different MU combinations activate under
identical conditions.
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32.2 The Neuromuscular Model

We propose an adaptation to the state-space neuromuscular model [3] that describes
the relationship between the applied stimulus, st for t = 1, . . . , T , and the
corresponding CAMP, yt, through the biological processes. The state variable is
defined to be the firing index vector, kt = (k1,t, . . . , kj,t, . . . , ku,t)

′, where each
element describes a single MU’s reaction to the stimulus and the vector length,
u, denotes the assumed known quantity of MUs within the system. The individual
firing events are assumed to be independent Bernoulli random variables with a
probability that depends on the administered stimulus via a non-decreasing link
function, F (·; ·), with parameters specific to the MU, φj :

kj,t|st,φj ∼ Bernoulli ( F (st;φj) ) . (1)

Each firing MU generates a SMUP that is assumed to be Gaussian with a unique
mean, μj , but a common variance, σ2. Denoting the mean vector of SMUPs as
μ = (μ1, . . . , μj , . . . , μu)

′, the recorded CAMP is the sum of the generated SMUPs
plus a Gaussian baseline measure that has its own mean, μb, and variance, σ2

b. We
use the calibration data to approximate σ2

b and assume that σ2
b � σ2. Hence, an

indicator function, I{·}, may be introduced on the baseline event in defining the
observation process:

yt|kt, μb, σ
2
b,μ, σ

2 ∼ N
(
μb + k′

tμ, σ
2
bI{kt=0} + σ21′kt

)
. (2)

32.3 Methodology

The neuromuscular model is used to conduct MUNE via Bayesian model selection,
requiring reliable marginal likelihood estimates for a range of proposed models
that assume a different number of MUs. Our approach to estimating the marginal
likelihood, for a specific model, is to consider its predictive factorisation, where
each term expresses the probability for a CAMP given the currently available data:

Pr (y1:T |s1:T , u) = Pr (y1|s1, u)
T∏

t=2

Pr (yt|y1:t−1, s1:t, u) . (3)

Estimates of these terms are obtainable from independent applications of the
particle learning methodology [2] to each considered model. This procedure is an
extension of the auxiliary particle filter that constructs the particle set with the
essential state vector (ESV), which contains the sufficient information necessary
for the two-stage sequential procedure:

1. Resample the particles with weights proportional to the marginal predictive of yt
with all unknown parameters and state variables marginalised.



32 Particle Learning Approach to Bayesian Model Selection 167

Table 32.1 Simulation study summaries from 100 hypothetical neuro-
muscular systems

Number of Motor Units (u)

Summary 1 2 3 4 5

û = u a 100% 100% 100% 100% 100%
95% Coverageb 100% 100% 100% 100% 100%
Mean Interval Widthc 0.00 0.05 0.05 0.05 0.10
a Proportion of cases where the posterior mode estimate is the true value
b Proportion of cases where the “at least” 95% higher posterior density
interval contains the true value
c Mean width of the “at least” 95% higher posterior density interval

2. Propagate the particles either deterministically or by generating appropriate
random samples.

The marginal predictive terms are thereby estimated by Monte Carlo integration
over the ESV within the procedure before the propagation stages.

32.4 Discussion

Our procedure has been applied to simulated data from 100 hypothetical neuro-
muscular systems that contain up to 5 MUs. The results, Table 32.1, illustrate that
the posterior modal estimate correctly identified the true scenario for all data sets.
The increase in the average interval width for larger systems illustrates that such
systems are harder to analyse because there is a greater chance of incurring a period
of alternation which involves multiple MUs, thus requiring more information to
decipher the underlying structure.

Our aim is to adapt this procedure to analyse larger neuromuscular systems.
However, the event space for kt increases exponentially as larger models are
considered. This substantially increases the computational complexity due to the
need to marginalise all unknowns, parameters and states, within the algorithmic
procedure.
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Chapter 33
Analysis of Italian Financial Market via
Bayesian Dynamic Covariance Models

Daniele Durante

Abstract The attempt to provide a quantitative view on the evolution of the
temporal and geo-economic relations between the Italian Stock Market Index FTSE
MIB and the major financial markets before and during the global financial crisis of
2007–2012 motivates the search for statistical methodologies able to accommodate
flexible dynamic structure of dependency among assets and to answer the main
issues of multivariate financial time series analysis. This work compares, through
an application study, some recent advances in Bayesian covariance regression, with
a particular interest in the local adaptive smoothing of the stochastic processes under
investigation in order to allow the covariances among returns to vary flexibly over
continuous time.

33.1 Bayesian Covariance Regression for Financial Data

Spurred by the recent growth of interest in the dynamic dependence structure
between financial markets in different countries and in its features during the crises
that have followed in recent years, we focus our attention in the temporal evolution
of the conditional correlations between the Italian Financial Market and those of the
main countries involved during the recent crises.

To address this applicative problem we analyze the multivariate weekly time
series of the main 33 National Stock Indices from 12/07/2004 to 25/06/2012,
placing ourselves in the financial context where large datasets and high-frequency
data motivate the search for a formulation able to handle high-dimensional data
through tractable computations and simple online updating and prediction proce-
dures. Besides these issues, it is important that the model allows for the presence
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of missing values and takes also into account the possibility that covariances and
variances can change rapidly during times of financial crisis, revealing different
associations among assets and countries than occur in a healthier economic climate.

There is a rich literature on univariate stochastic volatility modeling, with an
increasing emphasis on multivariate generalizations. Two recent answers from a
Bayesian perspective are provided by the Bayesian Nonparametric Covariance
Regression (BCR) model [3] and the Locally Adaptive Bayesian Covariance
Regression (LBCR) [2]. Both approaches define the covariance matrix of a vector of
p variables at time ti, as a regularized quadratic function of time-varying loadings in
a latent factor model, characterizing the latter as a sparse combination of a collection
of unknown dictionary functions. More specifically given a set of p × 1 vectors of
observations yi ∼ Np(μ(ti), Σ(ti)) where i = 1, . . . , T indexes time, both models
define

cov(yi|ti = t) = Σ(t) = Θξ(t)ξ(t)TΘT +Σ0, t ∈ T ⊂ �+, (1)

where Θ is a p×L matrix of coefficients, ξ(t) is a time-varyingL×K matrix with
unknown continuous dictionary functions entries ξlk : T → �, and finally Σ0 is
a positive definite diagonal matrix. The previous equation for Σ(t) results from the
marginalization of ηi in the latent factor model

yi = Θξ(ti)ηi + εi, (2)

with the latent factors ηi ∼ NK(0, IK) and εi ∼ Np(0, Σ0). A further general-
ization of the model allows also for the possibility of including the nonparametric
mean regression by assuming

ηi = ψ(ti) + νi, (3)

where νi ∼ NK(0, IK) and ψ(t) is aK×1 matrix with unknown continuous entries
ψk : T → � that can be modeled in a related manner to the dictionary elements
in ξ(t). The induced mean of yi conditionally on ti = t and marginalizing out νi
is then

μ(t) = Θξ(t)ψ(t). (4)

Although the two approaches are the same in terms of model formulation and
specification of the priors ΠΘ , ΠΣ0 for the parametric components of the model
Θ and Σ0, they differ substantially with respect to the choice of the priors Πξ

and Πψ for ξT = {ξ(t), t ∈ T }, and ψT = {ψ(t), t ∈ T }, respectively.
Fox and Dunson [3] consider the dictionary functions ξlk and ψk as independent
Gaussian processes (GP) GP(0, c) with c as the squared exponential correlation
function having c(x, x′) = exp(−k||x−x′||22). This approach provides a continuous
time and flexible model that accommodates missing data and scales to large p, but
the proposed prior for the dictionary functions assumes a stationary dependence
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structure and hence induces priors distributionsΠΣ andΠμ onΣT and μT through
(1) and (4) that tend to under-smooth during periods of stability and over-smooth
during periods of sharp change.

To answer this issue, Durante, Scarpa, and Dunson [2] develop a covariance
stochastic process with locally varying smoothness by replacing GP prior for
ξT = {ξ(t), t ∈ T } and ψT = {ψ(t), t ∈ T } with nested Gaussian process
(nGP) priors [4], with the goal of maintaining simple computation and allowing both
covariances and means to vary flexibly over continuous time. The nGP provides
a highly flexible prior on the dictionary functions whose smoothness, explicitly
modeled by their derivatives via stochastic differential equations, is expected to be
centered on a local instantaneous mean function, which represents a higher-level
GP, that induces adaptivity to locally varying smoothing.

Restricting our attention on Πξ (the same holds for Πψ), the Markovian
property implied by the stochastic differential equations allows a simple state space
formulation of nGP in which the prior for ξlk(t) along with its first-order derivative
ξ′lk(t) and the locally instantaneous mean Alk(t) = E[ξ′lk(t)|Alk(t)] follow the
approximated state equation:

⎡

⎣
ξlk(ti+1)

ξ′lk(ti+1)

Alk(ti+1)

⎤

⎦ =

⎡

⎣
1 δi 0

0 1 δi
0 0 1

⎤

⎦

⎡

⎣
ξlk(ti)

ξ′lk(ti)
Alk(ti)

⎤

⎦+

⎡

⎣
0 0

1 0

0 1

⎤

⎦
[
ωi,ξlk
ωi,Alk

]
, (5)

where [ωi,ξlk , ωi,Alk
]T ∼ N2(0, Vi,lk), with Vi,lk = diag(σ2

ξlk
δi, σ

2
Alk

δi) and
δi = ti+1 − ti. This formulation allows the implementation of an online updating
algorithm and facilitates the definition of a simple Gibbs sampling for posterior
computation which alternates between a simulation smoother step [1] to update the
nGP prior and standard Gibbs sampling steps for the parametric component of the
model.

33.2 Application to National Stock Indices (NSI)

To compare LBCR and BCR in applicative settings we consider, for both of them,
the heteroscedastic model for the log returns yi ∼ N33(μ(ti), Σ(ti)) with i =
1, . . . , 415 and ti in the discrete set To = {1, 2, . . . , 415}, where mean μ(ti) and
covariance matrix Σ(ti) of the National Stock Indices at time t = ti are given in
(4) and (1), respectively. We run 10,000 Gibbs iterations with a burn-in of 2,500,
choosing diffuse but proper priors.

The time-varying estimated correlations with respect to Italy FTSE MIB in
Fig. 33.1 show the presence of an evident geo-economic structure in world markets,
which is more evident in LBCR than in BCR. Note also that the latter, as expected,
tends to over-smooth the dynamic dependence structure during the financial crisis,
proving to be not able to model the dramatic change in the correlations between
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Fig. 33.1 Black line: For ITA FTSE MIB median of correlations with the other 32 NSI based on
posterior mean of {Σ(ti)}415i=1. Red lines: 25%, 75% (dotted lines), and 50% (solid line) quantiles
of correlations between ITA FTSE MIB and European countries (we included also the USA). Green
lines: 25%, 75% (dotted lines), and 50% (solid line) quantiles of correlations between ITA FTSE
MIB and the Asian Tigers

Italy and Economic Tigers during the late 2008, and the two peaks representing,
respectively, Irish and Portugal debt crisis at the beginning of 2011. In general,
correlations among financial markets increase significantly during the crises, show-
ing a clear international financial contagion effect in agreement with other theories
on financial crises. LBCR highlights the persistence of high levels of correlation
during the global financial crisis between the late 2008 and end 2009, with further
rapid changes in correspondence of Greek crisis at the beginning of 2010, and in
mid-2011 with the worsening of European sovereign-debt crisis and the rejection of
US budget.
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Chapter 34
Bayesian Model Selection of Regular
Vine Copulas

Lutz F. Gruber and Claudia Czado

Abstract Regular vine copulas can describe a wider array of dependency patterns
than the multivariate Gaussian copula or the multivariate Student’s t copula. We
present reversible jump Markov chain Monte Carlo algorithms to estimate the
joint posterior distribution of the density factorization, pair copula families, and
parameters of a regular vine copula. A simulation study shows that our algorithms
outperform model selection methods suggested in the current literature and succeed
in selecting the true model when other methods fail. Furthermore, we present an
application study that shows how a vine copula-based approach can improve the
pricing of exotic financial derivatives.

34.1 Introduction

Multivariate data with rich patterns of dependence are found in many fields in
business and science. Copulas, the tool of choice to model these patterns of
dependence, are multivariate distributions with uniform margins [9]. The Gaussian
copula, possibly the most widely known copula, even appears in the mainstream
media as “The Formula That Killed Wall Street” [8]. The signature feature of
copulas is that they allow dependence characteristics to be modeled separately
from the marginal distributions. This provides the added benefit that copulas can be
introduced to existing models that do not yet incorporate measures of dependence,
but feature established models for the margins.

L.F. Gruber (�) • C. Czado
Technische Universität München, Zentrum Mathematik, Lehrstuhl für Mathematische
Statistik, München, Germany
e-mail: lutz.gruber@ma.tum.de; cczado@ma.tum.de

E. Lanzarone and F. Ieva (eds.), The Contribution of Young Researchers
to Bayesian Statistics, Springer Proceedings in Mathematics & Statistics 63,
DOI 10.1007/978-3-319-02084-6__34, © Springer International Publishing Switzerland 2014

177

mailto:lutz.gruber@ma.tum.de
mailto:cczado@ma.tum.de


178 L.F. Gruber and C. Czado

34.2 Regular Vine Copulas

While many classes of bivariate copulas, also called pair copulas, are well known
[6], there are only a limited number of multivariate copulas available with a closed-
form analytical expression. However, these multivariate copulas cover only limited
patterns of dependence. As a pair copula construction with arbitrary pair copulas,
regular vine copulas can describe a much wider array of multivariate dependencies.

Specifically, regular vine copulas are set up in two steps. First is the construction
of an n-dimensional copula density from (conditional) pair copula densities. These
pair copulas are organized in a sequence of linked trees V = (T1, . . . , Tn−1), which
is called the regular vine. Each of the n − j edges of tree Tj , 1 ≤ j ≤ (n − 1),
corresponds to a bivariate copula density that is conditional on j − 1 variables.
Secondly, a copula family is selected for each of these (conditional) bivariate
building blocks from a set of bivariate (parametric) candidate families B. We denote
the mapping of the pair copulas to the regular vine by BV (θBV ), where we write
θBV for the parameters of the pair copulas.

34.3 Model Selection Algorithm

We present a reversible jump MCMC sampler [2] for Bayesian model selection of
regular vine copulas. Our priors enforce model sparsity, but do not make structural
assumptions about the vine copula. More specifically, we assume

V ∼ discrete Uniform(·),
BV | V ∼ exp(−λdBV ), λ ≥ 0,

θBV | V ,BV ∼ Uniform(·),

where dBV denotes the number of parameters of the regular vine copula
V (BV (θBV )) or, equivalently, the dimension of the parameter vector θBV . The
prior density π(V (BV (θBV ))) of a regular vine copula then follows

π(V (BV (θBV ))) ∝ exp(−λdBV ).

Our algorithm to sample from the posterior distribution of the regular vine
copula V (BV (θBV )) given observed data follows the general outline below [3].
Furthermore, we developed a tree-by-tree version of this model selection algorithm
that allows for faster computation times [4]. The tree-by-tree approach achieves
a significant reduction in computational complexity by reducing the model search
space by many orders of magnitude.
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Fig. 34.1 Log likelihood trace plots of a simulation study with known 5-dimensional and
6-dimensional regular vine copulas

General Reversible Jump MCMC-Based Model Selection

1: Choose an arbitrary regular vine copula as the starting value.
2: for each MCMC iteration r = 1, . . . , R do
3: Perform a within-model move: perform a Metropolis–Hastings update [5, 7]

of the parameters θBV .
4: Perform a between-models move: update the regular vine V along with, or

only, the pair copulas BV (θBV ).
5: end for
6: return the Bayesian posterior sample

(
V r(Br

V (θrBV
))
)
r=1,...,R

.

34.4 Simulation Study and Application Study

The proposal mechanisms of our sampling algorithms are designed to achieve rapid
convergence of the MCMC sampling chain (Fig. 34.1). Depending on the strength of
the shrinkage prior, our algorithm recovers 98% to 100% of the log likelihood of the
“true” models used in our simulation studies. This represents a major improvement
over existing model selection methods whose recovery rates are in the 75% to 85%
range.

Additionally, we estimated the expected payout of an exotic option on a basket
of nine securities. First, we strip the return time series of their time dependencies
using GARCH(1,1) models [1]. Then we estimate a regular vine copula to the
approximately independent Uniform(0,1) data using our reduced tree-by-tree model
selection algorithm. We calculate Monte Carlo estimates of the payouts by drawing
from the estimated copula’s distribution for different barrier prices of the option
(Fig. 34.2). Current best practice is to model dependencies in financial data with the
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Fig. 34.2 Density estimates of the option payout with density modes. The solid line shows the
bootstrapped observed data; the dashed and dotted lines correspond to the estimated vine copula
and Student’s t copula, respectively

Student’s t copula. Our comparison of the payout estimates demonstrates that vine
copulas are superior dependence models for financial data.

Reference

1. Fan J, Yao Q (2001) Nonlinear time series: nonparametric and parametric methods. Springer,
New York

2. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82:711–732

3. Gruber LF, Czado C (2013) Bayesian model selection of regular vine copulas. Working paper
4. Gruber LF, Czado C (2013) Sequential bayesian model selection of regular vine copulas.

Submitted to Bayesian Analysis
5. Hastings, WK (1970) Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika, 57:97–109
6. Joe H (2001) Multivariate models and dependence concepts. Chapman & Hall, London
7. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E(1953) Equation of state

calculations by fast computing machines. J Chemical Physics 21:1087–1092
8. Salmon F (2009) Recipe for disaster: the formula that killed wall street. Wired Magazine

17(3):74–79, 112
9. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut

de Statistique de l’Université de Paris 8:229–231



Chapter 35
Analysis of Exchange Rates via Multivariate
Bayesian Factor Stochastic Volatility Models

Gregor Kastner, Sylvia Frühwirth-Schnatter, and Hedibert F. Lopes

Abstract Multivariate factor stochastic volatility (SV) models are increasingly
used for the analysis of multivariate financial and economic time series because they
can capture the volatility dynamics by a small number of latent factors. The main
advantage of such a model is its parsimony, as the variances and covariances of a
time series vector are governed by a low-dimensional common factor with the com-
ponents following independent SV models. For high-dimensional problems of this
kind, Bayesian MCMC estimation is a very efficient estimation method; however, it
is associated with a considerable computational burden when the dimensionality of
the data is moderate to large. To overcome this, we avoid the usual forward-filtering
backward-sampling (FFBS) algorithm by sampling “all without a loop” (AWOL),
consider various reparameterizations such as (partial) noncentering, and apply an
ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation
at a univariate level, which can be applied directly to heteroskedasticity estimation
for latent variables such as factors. To show the effectiveness of our approach, we
apply the model to a vector of daily exchange rate data.
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35.1 Introduction

In the recent years, factor SV models have been progressively applied to important
problems in financial econometrics such as asset allocation and asset pricing. These
models extend standard factor pricing models such as the arbitrage pricing theory
and the capital asset pricing model. As opposed to factor SV models, standard
factor pricing models do not attempt to model the dynamics of the volatilities of
the asset returns and usually assume that the covariance matrix Σt ≡ Σ is constant.
Empirical evidence suggests that multivariate factor SV models are a promising
approach for modeling multivariate time-varying volatility, explaining excess asset
returns, and generating optimal portfolio strategies. Following [1], the model reads

yt = Λft +Σ
1/2
t εt, εt ∼ Nm (0, Im) , (1)

ft = V
1/2
t ut, ut ∼ Nr (0, Ir) , (2)

where for t = 1, . . . , T , the vector yt = (y1t, . . . , ymt)
′

consists of (potentially
demeaned) log returns of m observed time series, Σt = Diag(exp(h1t), . . . ,
exp(hmt)), Vt = Diag(exp(hm+1,t), . . . , exp(hm+r,t)), and Λ is an unknown
m × r factor loading matrix with elements Λij . The standard assumption is that
ft, fs, εt, and εs are pairwise independent for all t and s. Both the latent factors
and the idiosyncratic shocks are allowed to follow different stochastic volatility
processes, i.e.,

hit = μi + φi(hi,t−1 − μi) + σiηit, ηit ∼ N (0, 1) . (3)

In the following, we identify the model by imposing a lower-triangular structure for
Λ with unconstrained diagonal elements and therefore set μi = 0 for i ∈ {m +
1, . . . ,m + r}. Clearly, this introduces an order dependence among the responses
and makes the appropriate choice of the first r variables an important modeling
decision.

35.2 Factor SV Estimation

After fixing T (m+ 2r) +mr+ 4m+ 3r, in our application 81763, starting values
for (the elements of) μ,φ,σ,h,f ,Λ, we repeat the following steps:

(a) Performm+r univariate SV updates for hi0, . . . , hiT , φi, σi andm updates for
μi. We do this by sampling the latent variables AWOL as in [4]; thus, no FFBS
methods are required, there is no need to invert the tridiagonal information
matrix of the joint conditional distribution of the latent log volatilities and
computations are fast due to the availability of band back-substitution already
implemented in practically all widely used programming languages. Moreover,
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we employ several variants of ASIS [5] by moving the parameters of interest
from the state equation (3) in its centered parameterization to the augmented
observation equation (1) or (2) and perform an extra update for these parameters
in the noncentered parameterization. Doing so is very cheap in terms of
computation—only around 2 % extra CPU time is needed—and nevertheless
has substantial effect on sampling efficiency. The actual sampler is written in C
and made accessible through the R package stochvol [2], publicly available
on CRAN. More details about efficient univariate SV estimation can be found
in [3].

(b) Sample the factor loadings, constituting m independent r-variate regression
problems, from the T -dimensional Gaussian distribution Λi·|f ,yi,hi.

(c) Sample the latent factors, constituting T independent r-variate regression
problems, from the m-dimensional Gaussian distribution ft|Λ,y·t,h·t.

35.3 Application

We apply a three-factor SV model to EUR exchange rates, quoted indirectly. The
data stems from the European Bank’s Statistical Data Warehouse and comprises
T = 3140 observations of 20 currencies ranging from January 3, 2000, to
April 4, 2012. Figure 35.1 depicts the proportions of the variance which can be
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Fig. 35.1 Median posterior proportions of variances explained by the common latent factors given
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Fig. 35.2 Estimated median univariate volatilities in percent (after 2007) for daily EUR exchange
rates (top) and median posterior correlation matrices as implied by cov(yt) = ΛVtΛ′ + Σt,
exemplified for the first trading days in 2008, 2009, and 2010 (bottom)

explained through the common factors over the time period 2008–2012. Note that
the explanatory power of the common factors varies strongly over currencies as well
as time. In the top panel of Fig. 35.2, the individual latent volatilities are displayed
for the same time period. They exhibit pronounced heteroskedasticity as well as
considerable co-movement, providing more empirical evidence for multivariate
modeling through common latent factors. The bottom panel of Fig. 35.2 features
three examples of instantaneous correlation matrices. It stands out that practically
all correlations are positive but again substantially time varying. Moreover, some
clusters of highly correlated currencies (such as the “Asian Tigers”) can be spotted,
while continental European currencies show little correlation.
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Chapter 36
On Some Stationary Models: Construction and
Estimation

Consuelo R. Nava, Ramsés H. Mena, and Igor Prünster

Abstract We propose a simple yet powerful method to construct strictly stationary
Markovian models with given, but arbitrary, invariant distributions. The idea is
based on a Poisson transform modulating the dependence structure in the model.
An appealing feature of our approach is that we are able to fully control the
underlying transition probabilities and therefore incorporate them within standard
estimation methods. We analyze some specific cases in both discrete and continuous
time. Given our proposed representation of the transition density, a Gibbs sampler
algorithm, based on the slice method, is proposed and implemented. In particular,
the resulting methodology is of interest for the estimation of certain continuous time
models, such as diffusion processes.

36.1 Markovian Models with Given Marginal Distributions

Stationary processes represent a key component in several modeling approaches
used in probability and statistics, mainly because estimation and prediction proce-
dures are more accessible than those for not stationary models. It is worth noting
that by appropriately relaxing the distributional assumptions of the underlying
stationary and transition distributions, then data features typically associated to
nonstationary sequences can also be captured through stationary models, e.g.,
think of a Markovian model with bivariate stationary distribution. When consid-
ering random phenomena evolving in time a natural starting point is to consider
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Markovian processes and thus look for transition mechanisms that retain a particular
distribution invariant over time. This is the approach followed by many of the
constructions available in the literature, in both discrete and continuous time. Most
of these approaches start from a stochastic equation describing the dynamics in
time. Unfortunately, the availability of analytic expressions for the corresponding
transition probabilities is not always immediate. However, a full control of the
transition probabilities driving a Markovian process is desirable, especially for
the conveyed advantages in estimation and prediction procedures. In [10] the
reversibility property characterizing Gibbs sampler Markov chains is exploited to
propose strictly stationary AR(1)-type models with virtually any choice of marginal
distribution. In particular, they demonstrate that various general approaches, such
as the one by [2], can be seen as a particular case. Being such a general approach,
concrete choices of dependence should be made to accommodate specific modeling
needs. Indeed, examples of this construction, meeting some specific dependency or
distributional features, can be found in [1, 4, 6–8]. Of particular interest here is the
approach to continuous time Markovian models studied in [9]. The idea presented in
[3], and summarized in this note, aims at constructing stationary Markovian models
using a Poisson transform. The resulting specific dependence structure is general
enough. In particular, it allows to construct models with invariant distributions on
R+, which can also be extended to processes supported on other state spaces.

36.2 Poisson Weighted Density

Let f be a continuous density function supported on R+. For any y ∈ {0, 1, 2, . . .}
and φ > 0, we define the Poisson weighted density as

f̂(x; y, φ) :=
xye−xφf(x)
ξ(y, φ)

where ξ(y, φ) :=

∫

R+

zye−zφf(z)dz (1)

Notice that (1) constitutes a well-defined probability density on R+, provided the
above integral exists. For φ ↓ 0, it reduces to the size-biased density of f and,
when y = 0, it reduces to the Esscher transform of f . To construct a stationary
Markovian process, (Xn)n∈Z+ , with invariant distribution having density f , we
use the Poisson weighted density, defining the time-homogeneous one-step ahead
Markovian density as follows:

p(xn−1, xn) = exp{−φ(xn + xn−1)}f(xn)
∞∑

y=0

(xnxn−1φ)
y

y!ξ(y, φ)
(2)

which clearly satisfies p(xn−1, xn)f(xn−1) = p(xn, xn−1)f(xn) for all
xn−1, xn ∈ R+, leading to a time-reversible Markovian process.
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Definition 1. We term the stationary Markovian process, driven by transition
density (2) and stationary density f , an f -stationary Poisson-driven Markov process.

Cases of interest, including constructions of diffusion models with gamma,
generalized inverse gaussian, and generalized extreme value (GEV) marginals, are
presented in [3].

36.2.1 Estimation

The availability of a tractable expression for the transition density is appealing in the
analysis and estimation of Markov processes. In particular if the choice of f leads to
a manageable analytic expression in (2), the maximum likelihood estimator (MLE)
can be easily determined. Alternatively, one could make use of such a representation
for the transition density and obtain an MLE via the expectation-maximization (EM)
algorithm based on the augmented likelihood or a Gibbs sampler algorithm for
Bayesian estimation. In particular, using some slicing ideas from [5], we propose a
Gibbs sampler algorithm, under the assumption of a continuous time process, with
the following representation of the augmented transition density:

pt(x0, xt, u, y) = I(u ≤ ψy) exp{−φt(xt + x0)} f(xt; θ) (xt x0 φt)
y

y!ψy ξ(y, φt; θ)
(3)

where y �→ ψy is an N-valued function with known inverse ψ∗, e.g., e−ηy , for
0 ≤ η ≤ 1. The use of these latent variables allows us to construct the augmented
likelihood for a set of observations x = (x1, . . . , xN ) at times (t1, . . . , tN ). When
the time function φ does not depend on the parameters in the stationary distribution,
we could separate the parameters of interest as θ = (θ(s), θ(t)). Therefore, together
with the assumption of independent priors, e.g., π(θ(s)) and π(θ(t)), the full
conditionals can be obtained from following the log-posterior distributions:

log π(θ(s) | · · · ) ∝ log π(θ(s)) +

N∑

n=1

log(f(xn; θ
(s)))−

N∑

n=2

log(ξ(yn, φτn ; θ))

log π(θ(t) | · · · ) ∝ log π(θ(t)) +
N∑

n=2

yn log(φτn)−
N∑

n=2

φτn(xn + xn−1)

−
N∑

n=2

log(ξ(yn, φτn ; θ)),

where τn := tn − tn−1, u = (u2, . . . , uN) and y = (y2, . . . , yN). Simulation
from these posterior distributions can be done via the adaptive rejection Metropolis
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Fig. 36.1 Simulated data from a GEV I-stationary Poisson-driven Markov process. The top
plots show the simulated time series (left) and the data histogram together with stationary GEV
distribution (right). The bottom plots show the posterior estimates for θ1 = (c, μ, σ), with modes
located at (1.86, 1.09, 3.964), respectively

sampling (ARMS) algorithm. Furthermore, the full conditional distributions for the
latent variables can be obtained via

π(un | · · · ) = U(un; 0, ψyn)

π(yn | · · · ) ∝ [xn xn−1 φτn ]
yn

yn! ξ(yn, φτn ; θ)ψyn
I(un ≤ ψyn)

for n = 2, . . . , N . Notice that the above distribution has support yn =
0, . . . , �ψ∗(un)�. This is the advantage of the slice method, i.e., that we only need
to sample from a finite distribution. Figure 36.1 shows the posterior estimates of the
above MCMC scheme for a GEV I-stationary Poisson-driven Markov process. The
data were generated from the model with parameters (c, μ, σ) = (2, 1, 4). See [3].
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Chapter 37
Claim Sizes in the Compound Poisson Process
from a Bayesian Viewpoint

Gamze Özel

Abstract The typical assumption of independence among claim size distributions
is not always satisfied in risk modelling. In this study, the exchangeable claim sizes
are considered aggregated claims that are obtained via compound Poisson process.
Exchangeability of the claim size is obtained by the conditional independence,
using parametric and nonparametric measures for the conditioning distribution.
A Bayesian analysis of the proposed model is illustrated with Turkish Earthquake
Insurance Claims Data between 2000 and 2003.

37.1 Introduction

In risk modelling, when the number of claims follows a Poisson process, the
aggregated claims amount can be modelled by the CPP which is denoted by
{Xt, t ≥ 0} and defined as follows:

Xt =

Nt∑

i=1

Yi (1)

where {Nt, t ≥ 0} is a homogeneous Poisson process with parameter λ > 0
and Yi, i = 1, 2, . . . are independent and identically distributed random variables
independent of Nt. In risk theory, {Nt, t ≥ 0} is the number of claims performed
to the company during the time interval (0, t) and Yi, i = 1, 2, . . . is the ith claim
size. Hence, Xt is the aggregated claims up to time t [5, 6].

Bayesian methods are very useful in actuarial science since it yields to learn
about the whole distributions of quantities rather than just obtain an expected value
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for each parameter. These methods allow to include many levels of randomness
in the analysis through the use of prior distributions for each parameter, which
highlights the uncertainty regarding individual distributions or parameters [1].
In addition, the posterior distribution can be updated and obtained when new
information becomes available. The existing literature on the Bayesian analysis of
CPP includes, but is not limited to, works by [7, 8] and [2].

In this study, the CPP is used for the aggregate claim and a variety of loss
distributions to model the size of individual claims. Bayesian methodology is used
to fit distributions to the claim sizes. This approach assumes that all parameters in
the distribution are variables. The results derived by using Bayesian methodology
with those from classical statistics are compared to see which had the best fit with
the data.

37.2 Estimation of the Claim Count and Claim
Amount Distribution

In classical risk theory, it is very common to assume a homogeneous Poisson
process for the claim arrival process since this assumption simplifies the derivation
of the total claim amount distribution [3]. Also, a gamma distribution model is
frequently assumed to describe the usual right-skewed shape of the claim size
distributions. In this section, the Bayesian estimation of the total claim count and
the total claim amount in a future time period are given [4]. A Bayesian estimation
of the CPP is obtained by calculating the posterior means of their cumulative
distributions, also called their predictive cumulative distribution functions. In order
to set ideas, started with CPP model with independent claim sizes, Yij ∼ f(y|θ) for
i = 1, 2, . . . , Ntj . Due to the independence of the Poisson processes Ntj and the
claim sizes Yij , inference for λ and θ is done separately. The number of events Ntj
follows a homogeneous Poisson process independent of the expenditures sizes Yij
which are gamma distributed with parameters a and b. We then start by assuming
that Xtj is a CPP with independent claims, that is, Yij are all independent for
i = 1, . . . , nj and j = 1, . . . ,m. If the prior knowledge on (a, b) can be represented
by π(a) = Ga(a|αa, βa) and π(b) = Ga(b|αb, βb) independently, then the posterior
distribution, given the sample, is characterized by the conditional distributions.

An illustration based on Turkish Earthquake Insurance Claims Data between
2000 and 2003 is given. Posterior inference for the insurance data is carried out
by implementing Gibbs samplers for the CPP model. For sampling from each
of the conditional distributions random walk Metropolis-Hastings steps are used.
This proposal distribution is centered at the previous value of the chain and has
a variation coefficient of one. The Gibbs sampler was run for 100, 000 iterations
with a burn-in of 200, 000 keeping every 10th observation after burn in to reduce
the autocorrelation in the chain. Finally, a predictive analysis for the aggregated
expenditures of a patient in a year is carried out. For that the information about
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the frequencies of occurrence of the claims is needed, modelled by the Poisson
processes and in particular by the intensity λ. Considering that we observed 1, 342
claims in the year, then the posterior distribution for the intensity of the claims per
year, λ, is Ga(1341; 10.658). Therefore, the posterior mean rate is 12.42 claims per
person per year. With the posterior distribution for λ and the posterior predictive
distribution for the whole sequence of claims, we obtain the posterior predictive
distribution for the aggregated claims in a year for one individual.
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Chapter 38
Land Rental Market and Agricultural
Production Efficiency: A Bayesian Perspective

Haoran Yang

Abstract In this study we used a generalized true random effect (GTRE) stochastic
frontier model to estimate the impact of land rental market on agricultural produc-
tion efficiency in rural Chongqing, China. After we provide a complete description
of land institutions and land rental market environment in the study area, we
employed Bayesian methods of inference in estimation to investigate this impact.
In practice we used Metropolis-within-Gibbs sampler to do the inference because
it is straightforward to impose regularity conditions on production function implied
by economic theory in this process. We also used cross entropy (CE) to facilitate
our choice of candidate-generating density. Empirical results showed that the land
rental market has the potential to transfer land from less efficient farm household to
more efficient farm household, but hardly has impact on the management level of
farm household who participates in the market.

38.1 Introduction

The share of agricultural sector in China’s GDP is declining over the last thirty
years, while people who used to live on agriculture didn’t decrease proportionally,
which is one of the reasons of persistent rural-urban inequality in China.

Economic theory suggests that a functioning land rental market can improve
agricultural production efficiency and raise income of farmers, whereas land rental
market in developing countries like China never functions properly. This leaves us
the questions if land rental market can promote agricultural productivity in China
and which factors may affect the functioning of land rental market. The impact
of land rental market on agricultural production efficiency is twofold: one is that
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if land rental market can transfer land from less efficient farm households (LFHs)
to more efficient farm households (MFHs); another is that if land rental market can
improve technical efficiency of a typical farm household. These are the two research
questions we are going to investigate in this study.

38.2 Research Methodology

We used stochastic frontier model to analyze the impact of land rental market on
agricultural productivity. The GTRE model can incorporate time-varying technical
efficiency and persistent technical efficiency in a systematical way [3].

We use Bayesian statistics in estimation, because it is straightforward to impose
curvature constraints suggested by economic theory [4] and it holds good property
for small sample size [5] in Bayesian procedure. The GTRE model has the form

yit = f(xit;β) + αi + vi + uit − zi

where yit is the output of farm i (i = 1, . . . , I) at year t(t = 1, . . . , T ), xit
denotes the input vector, β is the parameter vector of production function which
we assume as a multivariate normal distribution, αi represents farm-specific effect
which is time persistent, vit denotes stochastic error of production, both αi and vit
distributed normally, vit is time-varying technical efficiency, and zi is time persistent
inefficiency term, both vit and zit distributed exponentially.

Economic theory suggests that the production function f(xit;β) should be a
monotonic, concave, and homogeneous of degree one in xit [2]. We employ the
translog production function in empirical study which has the form

ln yit = αi+

N∑

j=1

βi lnxit+
1

2

N∑

j=1

N∑

k=1

βjk lnxjk lnxjk+γtt+γttt
2+vi+uit−zi

(1)

Homogeneity of degree one in inputs implies that
∑N
j=1 βi = 1 and

∑N
j=1 βjk =

0. Based on these two conditions homogeneity can be imposed explicitly by
normalization. f(xit;β) is monotonic in xitimplies the first partial derivative of
f(xit;β) on the element of xit is nonnegative; f(xit;β) is concave in xit if and
only if the Hessian matrix H of f(xit;β) is negative semi-definite. We can answer
the first question by comparing the willingness to pay for additional unit of land
(i.e., the value of marginal product of land) between LFHs and MFHs. If the
willingness to pay for MFHs is higher than LFHs, a competitive land rental market
can transfer land from LFHs to MFHs because MFHs can bid for the land at higher
rent. To answer the second question, we can estimate the impact of participation
in land rental market on technical efficiency of production of farm households.
This means we are trying to explain E(uit) + E(zit) by a set of explanatory
variables in which participation in land rental market is the interested variable.
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Denote θit = E(uit) +E(zit); the corresponding technical efficiency level is given
by TEit = exp(−θit). The efficiency function can be elaborated as

TEit = δ1i + δ1Hit + δ2Pit + δ3AGEit + δ4Mit + δ5Fit + δ6Dm + ωit

where Hit is Herfindahl index which measures crop diversity, Pit is the proportion
of net rented land in total operational land area, Fit is the number of plots which
measures land fragmentation, and AGEit denotes age of household’s head. Mit =
FMit/(FMit + APit), where FMit denotes expenditure on farm machine and
APit denotes expenditure on animal power. Dm is village dummy variable which
measures village effect on technical efficiency, ωit ∼ N(0, σ2

ω). We assume the
constant terms δ1i(i = 1, . . . , I) have the same normal distribution; the distribution
of slope parameters of efficiency function has a multivariate normal form.

38.3 Data and Estimation Strategy

The data we used in this study is from the fixed observation point of Research Center
of Rural Economy of Ministry of Agriculture of China.

Metropolis-within-Gibbs sampler was used in posterior inference of (1). Except
for the parameter vector β, all other parameter posterior conditional densities have
the standard form, exhibiting either Gamma distribution or normal distribution. The
posterior conditional density of β is given as follows:

β|h, u, z, γ, η ∼ N(β, V )1(β ∈ M) (2)

where V = (h
∑I

i=1Xi
′Xi)

−1, β = (
∑I

i=1Xi
′Xi)

−1(
∑I

i=1Xi
′[yi+ui+ ziιT ]),

and 1(β ∈ M) is the indicator function which equals to one if β satisfy the
monotonic and concave conditions and zero otherwise.

We use the independent China Metropolis and Hastings algorithm to generate
random draw from (2). To implement this procedure, we need to find an appropriate
candidate-generating density. Here CE can be employed to do this job. In the first
step, we estimate the stochastic frontier without constraints (without the indicator
function) by using Gibbs sampler. We get the posterior density function for β in
which parameter vectors that satisfy monotonic and concave conditions can be
regarded as “rare event.” In this case CE method can be used to explore this “rare
event” and formulate a proper candidate-generating density [1]. Then we reestimate
the function’s parameters in the constraint model by using Metropolis-within-Gibbs
sampler in which inference of posterior conditional density of β in (2) is based on
independence chain Metropolis-Hastings algorithm using the candidate-generating
density we obtained in step one. After we draw a random parameter vector from
candidate-generating density we calculate an acceptance probability and accept this
draw randomly.

A hierarchical Bayesian model can be set up for the efficiency function, and
Gibbs sampler can be used for posterior inference.
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38.4 Empirical Results

We calculated the value of marginal product of land (shadow price of land). Then
we group farm households into three categories according their efficiency score
at mean: LFHs, moderate efficient farm households, and MFHs. The results of
ANOVA show that the shadow price of land for MFHs is significantly higher than
LFHs, which imply that in a competitive land rental market, land will be transferred
to more efficient farm households and land-use efficiency will be improved. But the
market transactions we observed are not consistent with the prediction of theory,
because farm households which rent in land are significantly different from farm
households in the MFH group.

Participating in land rental market can improve farm management level of farm
household by adjusting their farm size from marketplace, but the gain is negligible,
based on the results of efficiency function. These results may suggest that participa-
tion in land rental market can improve technical efficiency of agricultural production
either by enhancing land-use efficiency or by promoting farm management level, but
the land rental market environment which is characterized by high transaction cost,
informative asymmetry, and opportunism of landlord can’t provide enough incentive
for farmers to fully use the potential of land rental market.

38.5 Conclusions

Land rental market indeed has the potential to improve agricultural production
efficiency in the research area. But the potential of land rental market is not fully
realized because of incomplete market environment.

CE method can be used to formulate candidate-generating density in Metropolis-
within-Gibbs algorithm and improve posterior inference efficiency.
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Chapter 39
The Point Is. . . to Publish?

Fulvia Mecatti

Abstract Writing papers is an essential part of the research process. Researchers
have a professional obligation of disseminating their results, making them available
for others to use to enhance common scientific knowledge. Besides the fun of
sharing their own ideas and views, to publish is essential in order to actually have
a scientific career. Although scientific writing certainly has its own conventions and
standards, I suspect there is no a unique true recipe making the trick. As a matter of
fact I do not have any. However my quite long time in the academic arena has given
me a pretty clear idea about how I do and do not like things done. In this paper I will
be giving my personal view and rules, in the hope that sharing my own experience
would do some good to others as it did for me.

39.1 From the Big Technical Rules to My WHW Rules

Shortly after being asked to give this talk I realized I said yes a bit too quickly and
started having second thoughts. Of course I was grateful since addressing young
statisticians is certainly a part of my job that I do love. I thought I could give them
a good nice recipe for disseminating effectively the results of their research.

Except, I did not have any. I needed preparation.
So I started the easy way, surfing the Internet and in fact finding a huge amount of

material: big technical rules “Do this and that,” “Go this way not that,” “The right
thing to do is...is not,” and on and on along these lines. Sadly, they also contradict
slightly too often. For instance somewhere in the process I came across this really
convincing statement:

Make sure to do all the research before start writing
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and a couple of Web pages after that I found myself totally disoriented in front of
the following assertion:

Start writing early and often. Don’t leave all the writing to the end and then try and write it
all out in one go.

Trying not to be discouraged I went on and I was really starting to believe in this

Pack all the good ideas in the first pages of your manuscript, even into the abstract: readers
are busy people and get bored quickly

only to stumble shortly after upon this

Disclose ideas slowly and leave the best results until the last: you will capture reader’s
attention from the beginning to the end

Should I choose the one to be trusted best and feed that to my young audience as the
truth? Would you go and try to decide which one is the correct way to do things? I
would not and in fact I did not. Thus, no big help over the Internet, except perhaps
a raising suspect that there might not be such a thing as the big technical rules.
Besides I knew for a fact that I was about to face much better net-surfers than I am.
They were so not needing me that I decided to leave that to them.

Second in my list were books.
So I went to the library and in a couple of my favorite bookshops: shelves after

shelves after shelves of confident books about what to do and do not, and how to
make it work, in your mother language or in a second language. Tons and tons of
literature, there already. They could go and help themselves, they did not need me
either. In the end I made my decision: I would have left all that to them and gone
personal. I would have made it clear that they were not going to be given some tight
big truly rules about how to do or not to do things, for I was not sure I could do that
or even it would exist. Instead I was pretty sure I could tell them how I like or I do
not like things done, hoping my experience would do some good to them too as it
did for me.

Thus it will be my view and my rules and only occasionally a few basic technical
rules, so basic it would be impossible not to agree with. And in this case it will be
no more than a couple of them. Mostly they will be Why, How, and Where, namely
WHW rules. I will be talking about that in different contexts and declinations of the
subject of disseminating the results of scientific research, statistical research indeed.

39.2 The Point Is to Publish

In my opinion, there is little point in having good ideas if you cannot com-
municate them to others. Besides teaching, being a researcher is the fun of a
scientific/academic career. In the everyday life this translates being always in (at
least) one of the following three statuses:
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1. You have an article nearly finished.
2. You have an article about to be started (or two, three, etc., no actual limit here).
3. You are stuck somewhere in the middle of an article.

As a matter of fact writing articles is an essential part of the research process. But it
is not the end. There is also the dark side, those gory details leading to the publish or
perish paradigm. I am sure you know what I am talking about here, both despite of
and due to your young academic age. As scientific authors you do write for the fun
and pure joy of communicating ideas. However you also need to write for tenure and
promotions. In order to actually have a scientific career, you do need to be published.
When the goal is to go through the steps of an academic career you are essentially
what you have published.

So the point is to publish and it is time for some WHW rules, assuming
that something to publish already does exist. That is, we are not talking about
the research process, instead we have already some nice research results worth
disseminating. Thus why to publish? To publish is the main way to communicate
your ideas and at the same time it is functional to your academic career. It is essential
to be aware about that and to find soon your own balance between these two sides
of the very same moon. Besides, research is a shared matter and it has its own ethic.
Researchers have a professional obligation to both perform research and disseminate
the results of that research, as objectively and as accurately as possible.

Science is not an individual experience. It is shared knowledge based on a common
understanding of some aspect of the physical or social world. During the birth of modern
science in the latter half of the 17th century, many scientists sought to keep their work
secret so that others could not claim it as their own. Prominent figures of the time,
including Isaac Newton, often avoided announcing their discoveries for fear that someone
else would claim priority. The solution to the problem of making new discoveries available
to others while assuring their authors credit was worked out by the secretary of the Royal
Society of London, Henry Oldenburg. He won over scientists by guaranteeing both rapid
publication in the society’s Philosophical Transactions and the official support of the society
if the author’s priority was questioned. Oldenburg also pioneered the practice of sending
submitted manuscripts to experts who could judge their quality. Out of these arrangements
emerged both the modern scientific journals and the practice of peer review. Once results are
published, they can be freely used by others to extend knowledge. But until the results are
so widely known and familiar that they have become common knowledge, people who use
them are obliged to recognize the discoverer by means of citations. In this way, researchers
are rewarded by the recognition of their peers for making results public. [1]

Although digital technologies are creating new forms of publication, publication in a
peer-reviewed journal remains the most important way of disseminating a complete
set of research results. The importance of publication accounts also for the fact that
the first to publish a view or a finding—not necessarily the first to discover it—tends
to get most of the credit for the discovery.
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39.3 How to Share and the RELUKE Rule

The leading tool for disseminating research results is a paper. A paper is an
organized description of the research—from conjectures and hypotheses to
conclusions—intended to instruct the reader. A statistical paper is on average
8–15 pages long. Of course there are also thesis and textbook. However, in
statistical research, book writing is rare. It is mostly subsequent to a long research,
summarizing and perhaps concluding a wide research project. This is also the case
of a final thesis, each of us has at least a couple of experiences about. Let us keep it
for another occasion since they are quite a different story; let us focus over papers
and the key ways to share a paper. There are two main ways for academic authors
to disseminate a paper

1. By presenting it as a talk or as a poster at a conference or at a seminar
2. By publication in a peer-reviewed journal

In Stats—where almost all my experience is—these are certainly the most frequent
medium and also the most rated for both the bright high goal of disseminating
scientific ideas and the dark dirty goal of making a living and getting promoted
in academia.

How to do it is the major challenge.
A way to start that makes sense to me is to think and state what my objectives

are, what I want from what I am doing, whether writing a paper for publishing or
preparing a presentation for a talk. First I do not want to waste everybody’s time:
the author’s, audience’s, referees’, and readers’. And second is the RELUKE rule.
That is the re(ad), l(isten), u(nderstand), and (lu)ke rule: I want people to listen/read
me till the end of my presentation/paper. I want people to understand what I am
saying/wrote. And I want people to like it. Presenting or writing it is of course about
you but not you alone. As already mentioned, a paper is a description of the research
and is intended to instruct the reader. Never forget about the audience. Whatever you
are doing for your research dissemination, whether preparing a talk or a manuscript,
you are talking or writing for someone. The process is a constant in and out: it is
about you the author, your results, and what you want to share (in); at the same
time it is about your audience/readers, someone else who is going to listen/read you
(out). Whatever the way you chose to share, it essentially means: know the focus of
your paper and be clear of your intended audience, working out what you believe
they already know and what they might not know. As a conclusion I would like to
share another good rule I was given when I was a young researcher myself:

If you did want to learn how to write: read a lot.

If you did want to learn how to prepare and give a talk: go to conferences, attend seminars
and listen a lot.

A golden rule indeed.
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39.4 Presenting a Paper in a Talk: My WHW Rules

Why presenting a paper in a talk? Many journal articles do begin as talks presented
in professional meeting such as a conference, a workshop, and a seminar. Public
presentation is often the first step toward writing an article and trying to publish it.
It is a good way to present intermediate results of a larger research. It certainly is
a valuable opportunity for getting criticism and suggestion so that to refocus your
research. It is an occasion for networking and meeting other people interested in the
topic and researching in the same field. For me, presenting intermediate results at a
conference helps in meeting deadlines and imposing discipline to my work.

How? A presentation with slides is the usual option. The challenge here is how
to make it work, according to the RELUKE rule. You do have this precious thing
of an audience; what you want is to make them listen to your talk, understand it,
and like it. Assuming you have nice results to present, first of all: time. You are
always allotted a well-defined time for your presentation, which you are going to
meet out of respect for your audience, for the speakers scheduled after you, and for
the organizers. Conference slots are usually no longer than 15 min; it might be 10,
rarely 20. For a seminar the time is longer but still constrained, usually 45 min or 1 h.
Thus you cannot put everything into your presentation, into your slides, into your
talk. Maybe you are so lucky that your audience includes the guru(s) very experts of
your subject. Except possibly them, no one else will have the time to do the mental
process that costed you so long to produce your results. Be aware of your time
and careful in selecting what you can give people in no more than those minutes.
Secondly, speak up and discuss spontaneously your own slides. In Stats, reading a
prepared talk is a rare practice. It might seem comforting, you may think to be better
in control, but you will just result as boring. Not worth the effort! Third, control your
speech speed. Speak slowly and loud, making your words clear, especially if English
is your second language. Avoid sounding rushed or breathless. If you realize you are
not going to make it in saying all you would have wanted to say, cut something from
your talk. Less yet clear is far better than more yet incomprehensible. A good deal
of rehearsal will do the trick here.

Where? You may be giving your talk at a seminar or at a conference. To give a
seminar you are normally invited by the organizer, usually at a different institution
from your own. In choosing a conference you should consider a basic classification.
A conference may be general as for a periodic meeting of a statistical society;
some examples are the biannual scientific meeting of the Italian Statistical Society
every even year; the annual Joint Statistical Meeting of the American Statistical
Association, every August joint with 6 other societies; the biannual meeting of
the International Statistical Institute every odd year. Usually you do not need to
be a member of the society to attend the meeting; however if you are going to
present a paper it can be requested for a membership of at least one of the authors.
Any statistical paper, concerning any fields of statistical research, submitted to the
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Table 39.1 Top ten tips for a really hideous presentation

1. Present slides very dense and in text size no greater than 10
2. Pack your slides with many horrible formulae
3. Abound in different text fonts and colors
4. Use many acronyms and technicality that only you (and

possibly some very experts in the field) can understand
5. Take your cell calls in the middle of your speech
6. Avoid originality and personality
7. Read your slides instead of a spontaneous discussion
8. Speak in a low voice and make a lot of ehm-ehmming
9. Speak unclear and very quick
10. Pass your slides fast and furious

scientific committee of the conference, will be considered for the presentation.
Otherwise a conference may be specific, meaning focused upon a special subject
such as this very conference primarily intended for young Bayesians. In this case,
before submission you need to be checking carefully if the subject of your paper
meets the areas of interest for that specific conference. A conference, either general
or specific, is usually organized in sessions that we can classify in 4 main categories:

1. Keynote or plenary session, where a senior speaker is invited for a lecture on a
topic he/she is supposed to be an expert.

2. Invited or specialized session, where an organizer is in charge to think to a special
topic, usually innovative or where research is very active, and to collect a small
group of invited speakers who have published on that topic. It is common practice
to add a discussant to the session, who is another speaker not presenting his/her
own paper but in charge to start and animate the discussion with questions and
comments over the papers presented in that session.

The remaining two types of sessions are probably more interesting and more
likely for young statisticians.

3. Contributed session, which is a set of spontaneously submitted papers, some-
times gathered around a common topic but not necessarily.

4. Poster session, which is alternative to an oral presentation of your paper. You are
allowed a space where to post your paper, displayed as a poster of fixed size, and
you are requested to guard your own poster for all the session and be available to
interested people for face-to-face discussion.

There is great variability in the review-acceptance-refusal process of a conference
and each conference committee usually has its own rules. However any committee
will state very tight deadlines for submission of title, abstract, short paper, long
paper, and revised versions.
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39.5 Writing a Manuscript for Submission: My WHW Rules

With a written paper, people has of course more time to read as compared with
listening a 15 min talk. Sadly this not necessarily implies to pay attention. Readers
are busy people. Assuming you have something to write about, writing a manuscript
needs per se special care and skills. And it always takes far more time than planned.

Why? To think that your main objective is to publish is in fact a limited thinking.
For me, the worst thing that could happen to my manuscript is not rejection. It would
be to get published and then lay there unread and uncited. Still the reluke rule! We
are all very busy (and sometimes slightly arrogant). As a consequence to pay time
and attention to a paper not strictly related to our current research is a tough yet
quick decision. I myself have the habit to decide to go on and read a paper on the
basis of title, abstract, and author(s). This essentially means that if you are not yet
an affirmed author—and you need to work hard and long to become one of them,
presenting and writing a lot—chances are that you will get to be read on the basis
of title and abstract. My suggestion is to put quite a lot of cure on those. Still, even
if I decide to actually give the paper a go and read through it, I would start with the
beginning and the end. That is, I would read the Introduction and the Conclusions.
After that I normally would go through the entire paper as long as I was clear it
would be potentially useful to the very research I am working on or I am interested
in at that particular time (and in that case chances are I will be needing to read and
reread several times and always spend over it more time than initially planned). My
point here is you do put a lot of care into the Introduction and the Conclusions also.
These are the parts I myself usually find most difficult to write.

How? Statistical scientific writing of course has its own formal conventions about
article writing. We will be articulating this a bit but very quickly. Because the
good news is if you accomplished the golden rule read a lot you will be absorbing
subliminally such rules and conventions. Papers are mostly organized the same way,
the key composing parts being summarized in Table 39.2. The Title is a challenge: it
should be short but clearly telling the reader what your article is about. The Title and
Keywords are fundamental for having your paper properly indexed and showing up
in computer searches. A simulation is intended as an exercise carried on in a wholly
controlled environment, usually a large set of Monte Carlo runs over artificially

Table 39.2 Standard
components of a statistical
paper

Title
Abstract and Keywords
Introduction
Notation
Method and Theoretical Results
Simulation and Application
Conclusions
Acknowledge
References
Appendix
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Table 39.3 Top ten tips for writing truly boring dull papers [3]

1. Avoid focus
2. Avoid originality and personality
3. Make the article really really long
4. Do not indicate any potential implications, applications, and developments
5. Leave out illustrations (too much effort to draw a sensible drawing)
6. Omit necessary steps of reasoning
7. Use abbreviations and technical terms that only you and some specialists

in the field can understand
8. Make it sound unnecessary serious with no significant discussion
9. Focus only on data
10. Quote numerous references for trivial statements

generated data. On the other hand an Application is performed by means of a real
data set. Application results might be the main objective of the whole research as
well as the way to show that the proposed method is actually applicable and able
to produce an outcome of use. Both Simulation and Application are intended to
offer clear empirical evidence to your claim and many journals rate both crucial for
a manuscript to be considered for publication. Conclusions are meant to help the
reader reorganize ideas. The Reference, as well as citation in text, must be double-
checked: you do not want to give the reader ground to doubt your reliability. Finally
your manuscript might need an Appendix for boring proofs and tricky analytical
details.

As for some tips on writing well, I have just one: keep it simple and specific.
Readers—especially the intelligent ones—have higher probability to be impressed
by ideas and clear expressions rather than by elaborate constructions and excess of
words. Rather say it once clearly, than several times verbosely. Vague and murky
statistical writing is perfect ground for just one suspect: reduced to simple it does
make little sense or it is too banal to be worth saying. On the other hand, simple does
not mean trivial or superficial. You do not need to be wordily in order to be deep and
accurate. Simple and specific serves both the author and the reader: it saves reader’s
time and author’s reputation. Here are my personal rules to implement the simple
and specific writing:

1. Avoid superlatives and go easy with adjectives: “excellent", “the best and the
most", “very useful", and the like.

2. Be careful with adverbs and judging: “the right thing to do", “obviously", “of
course", “rather", “certainly", and so on. Here the question is: who for?

You do not need much of that to be precise and meaningful. You can delete most of
that with no sacrifice to meaning and sounding. My first drafts are usually heavily
judgmental, stuffed of superlatives, and of adding things such as adjectives and
adverbs. In revising I simply cut it away and very rarely I have finally found my
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paper missing any of them. If English is not your mother language—as it is not for
me—my main advice is: go and get a good spell and grammar checker, either in your
editing software or over the Internet. Moreover, I have two preferred suggestions
[2]

1. Prefer active verb over an excess of nominalization. For example, in

We conducted a review of the evolution of the method

review and evolution and method is an overload of nominalization. Reexpressing
as active verb the statement is clearer, isn’t it?

We reviewed how the method evolved;

2. Prefer active verb (if available) over a generic verb like to do, to get, and the like.
For instance in

Modeling of the random-effects distribution nonparametrically has not yet been done

done is a generic, empty verb. How about rewording as

The random-effects distribution has not been modeled nonparametrically.

Enough, right? Also . . . don’t you think that try and write keeping in mind all those
how to, avoiding, do and do not would distract you from writing the ideas and
results? Surely it does for me. So my hint is: first have a first draft done. Write for
writing, just put down all the ideas and results, trying not to worry over the form,
the good language, the embellishment. Only then, you do remember all the good
writing tips and start revising your first draft. This basically means a lot of rereading
and reworking your paper. For me this is the stage where time is at maximum risk of
spinning out of control. Be careful and do not be carried away by obsessive revising:
perfection is not to be reached in this world. And of course I have developed my own
two tricks to stop obsessing over the rereading and reworking of a manuscript:

1. Be patient and leave the draft there for a while. Go for a walk, distract yourself
with stuff. After some time, a couple of days or possibly a week, you go back
to your manuscript for another reading with fresh attention. You will be amazed
about how packed of overlooked details and typos to fix and rearranging your
draft still needs. Of course this should not stop the submission forever, my
suggestion here is: once it is enough. If you are lucky enough of not being a
compulsive reviewer, be patient as well: try and not to submit the very second
after writing the last word.

2. Look for a second pair of eyes (even a third could do). Ask one or two of your
colleagues, advisors, or seniors to read your manuscript before submission. Be
prepared for criticism and accept it graciously. If you bothered to ask, you should
bother to listen. If you were just looking for a pat on your back or uncritical
encouragement, shouldn’t you have asked your pet?
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39.6 . . . and the Grand Final: Submission
and the Publishing Process

We tend to think that having the paper written and submitted is the heavy part
of the process. This is only the lucky case. Scientific publishing is a long and
interconnected team effort, involving the journal, the author(s), and the reviewers.

How to choose the journal where to try and publish that very paper, with its
peculiarity? A big name, an excellent reputation, mainstream, and a high impact
factor are indisputable classic criteria. They usually do but not always. Maybe you
need to fly lower, having a nice manuscript which is not first-class statistics and
still worth publishing. For me the average time for that journal from submission till
acceptance and publication is an important selection factor. This is why in my own
reviewing activity I always do my best to meet deadlines. The acceptance/rejection
rate of the journal, when known, is my second important selection factor. In case you
have no idea where to start, look into your own paper and consider journals you are
citing at your turn. Go navigating its Web page and check the journal editorial policy
and board. Have a look at the latest issue, it is often available online; otherwise go
to the library. In my experience I occasionally considered to start from the top,
submitting to a major journal, in the hope of trying and getting a reputable high-
level review, even if along with almost sure rejection. Nevertheless it helped both
in revising the manuscript and targeting the journal where resubmit. First choices,
even the most carefully made, happen to be wrong: be prepared to submit more
than once, to more than one journal. However contemporary multiple submission is
usually a big sin, which is either not tolerated or forbidden by most journals. Except
for some e-journals that clearly declare permission of multi-submission and multi-
publishing, you will be honestly submitting to one journal at a time. You will not
be risking that the very same manuscript will be sent to the same reviewer from two
different journals. That would damage unnecessarily your reputation.

And what will they do with your submission? After submitting a paper, be
prepared to wait. Your submission has triggered a delicate interconnected serial
process. First the editor in chief will be passing the manuscript to his/her associate
editor with competence on that specific subject. Then two referees will be asked
to peer-review the manuscript and will be given adequate time to fit this further
commitment into their agenda, normally no less than 5 weeks. The peer-review
process is usually but not always double-blinded: the referees are always anonymous
to the author, not necessarily the other way round. The reviewers will motivate
their own recommendation in a report to the associate editor which is in charge
of the final decision about your manuscript. A third reviewer might enter the picture
to disentangle two conflicting recommendations. Only at this point the submitting
author is notified the final decision, normally alongside a report of comments and
suggestions. It thus might take a while for the entire process to conclude. Wait
patiently, but not forever. After a three/four months time of silent waiting you
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should write a polite email to the editor asking when you may expect a response.
The dreaded-looked forward final decision will be one and only one of three:

1. Rejected—often with a polite encouragement to resubmit
2. Accepted conditionally on major/substantial revision
3. Accepted with minor revision—the lucky case

A fourth option

Accepted as it is, no revision required

is a non-impossible event with probability close to zero. It can happen.
As a matter of fact, reviews tend to come with a lot of disappointment

they did so NOT get it!

and much Charlie Brown thinking

nobody understands me . . . nobody appreciates my work . . .

going back and forth between the two with different and personal intensity. We
love statistics and we are passionate authors, that is, human and very Italian.
Anyway, sooner or later you gotta get over it. So first take a good breath and
some days to overcome the shock. Be sure to be over the emotional though natural
part of the process before going back to rework your paper. That is, be sure you
are just working on the paper (not making them see or making them be sorry).
Talking as a reviewer myself, after all they did an effort. Peer review is a totally
volunteer activity. Reviewers are experts, but human beings, they can be wrong (and
sometimes even unnecessarily nasty). However, in most cases, they just did their
job looking for weak points, obscure methodologies, and unconvincing statements,
offering constructive criticism even when suggesting rejection, giving advice for
moving a manuscript from the unacceptable class to the publishable status. If a
reviewer misunderstood a point, that point probably needs to be made clearer. In
every review (even in the wrong and gratuitously rude ones) there is some good for
your manuscript and your research. The whole point of the refereeing saga is: it is
a service and it is there for you to use. Find out of the reviewers’ job how you can
make your manuscript stronger and acceptable for publication. Look for the good in
the review and use it.

When considering resubmission, revision should be always the case, whether or
not you are going to choose a different journal after a rejection. In my experience,
trying to submit to another journal without any revision normally does not change
the final result, ending in another rejection and very similar reviewers’ comments.
Of course I know that for a fact . . . for having tried myself. Also, you cannot exclude
that the second journal would send your manuscript to the very same reviewers
as the first journal did. And this would be very unrespectful of the reviewer job,
no matter he/she was right or wrong. If you are resubmitting upon a conditional
acceptance, my suggestion is to accompany the revised manuscript with a clear
report about the revision you made; according to another WHW rule, you should be
reporting about What, HW, and Why you did or did not in reworking the manuscript.
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This may or may not include a point-by-point answer to the reviewers. After
resubmission, some more waiting. But now you know what to expect. It will be
the editor’s decision to ask the reviewers if they were totally satisfied and if you had
been addressing all the comments. The report just mentioned will be useful in that
phase.

So, it might require quite a while and a lot of work, still the saga generally has
its happy end: the editor congratulating you and asking for proofreading your galley
proof.
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