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Preface

Twenty years ago, the first Statistical Challenges in Modern Astronomy (SCMA)
conference was held at Penn State University. Serving as a gathering of two
scholarly communities with common interests, SCMA meetings have been held
every 5 years for cross-disciplinary discussions of methodological issues arising
in astronomical research. These are the proceedings of the fifth SCMA conference
held in June 2011. While some of the topics are the similar as those in the 1991
meeting, the level of sophistication and accomplishment has enormously increased.
Astronomers and statisticians worldwide have developed collaborations to address
some of the most challenging and important problems facing astronomy today.
These involve data mining enormous datasets from widefield surveys obtained
with major new telescope systems, fitting of cosmological and other astrophysical
models to complex datasets, and studying the temporal behaviors of innumerable
variable objects in the sky. Bayesian inference has gained considerable momentum
in astrophysical model fitting. These advanced methods are gaining attention outside
of the world of expert astrostatisticians, as the broad astronomical community
realize that twenty-first century science goals can not be achieved with nineteenth
and twentieth century statistical methods. At SCMA V, both young and experienced
astrostatisticians presented work and engaged in discussions on how these problems
can be best addressed.

The proceedings are divided into six sections; most invited talks are followed
by invited commentaries by scholars in the other field. The volume begins with
five talks on Statistics in Cosmology demonstrating significant recent accom-
plishments in this most-important field of astronomy and astrophysics. Modern
accomplishments of modern quantitative cosmology rely heavily on sophisticated
statistical analysis of large datasets. Topics reviewed include likelihood-free es-
timation of quasar luminosity functions (Schaefer and Freeman), estimation of
galaxy photometric redshifts and quantification of voids in galaxy Large-Scale
Structure (Wandelt), inference based on comparing data to cosmological simulations
(Higdon), likelihood estimation of gravitational lensing of the cosmic microwave
background (CMB) radiation (Anderes), and application of needlets to cosmic
microwave background studies (Marinucci).
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The second section provides a sampling of the growing applications of Bayesian
Analysis Across Astronomy. Here we have both invited reviews by senior re-
searchers, and a sampling of the many works by younger researchers. The reviews
discuss Bayesian models constructed to model galaxy star formation histories
(Weinberg), model selection within the consensus ACDM cosmological model
family (Trotta), and measurement errors in astronomical regression and density
estimation problems (Kelly). The shorter talks treat asteroseismology (Benomar),
event detection in time series (Blocker and Protopapas), reverberation mapping in
active galactic nuclei (Brewer), modeling of Poisson images (Guglielmetti et al.),
treatment of instrument calibration errors (Kashyap et al.), modeling of Type Ia
supernova data (Mandel), and faint source flux estimation (Switzer et al.). Advanced
methods for hierarchical modeling and Monte Carlo Markov Chain computational
techniques are discussed in many of these talks and associated commentaries.

The third section of the proceedings address the use of modern techniques
techniques of Data Mining and Astroinformatics for the analysis of massive datasets
emerging from many new observatories. Compressive sensing, an extension of
wavelet analysis, is very promising for many problems (Starck). Diffusion maps
can treat non-linear structures in high-dimensional datasets (Lee and Freeman).
Nearest neighbor techniques are used for outlier detection in megadatasets (Borne
and Vedachalam). Bayesian approaches can help cross-identification of sources
between astronomical catalogs (Budavari). Likelihood-based data compression can
assist parameter estimation in large datasets (Jimenez).

The fourth section considers challenges arising in astronomical Image and Time
Series Analysis. Techniques of mathematical morphology are applied to classifying
sunspots (Stenning et al.). Realistic images are simulated using knowledge of
celestial populations and telescope characteristics (Connolly et al.). Structure
recognition algorithms are discussed for three-dimensional astronomical datacubes
(Rosolowsky). The problem of locating faint transient sources in multiepoch image
datasets is addressed by controlling the False Discovery Rate (Clements et al.).
Wavelets are a valuable tool for modeling irregularly spaced time series (Mondal
and Percival).

The fifth section provides perspectives on The Future of Astrostatistics. The field
is gaining a presence in international organizations (Hilbe). The public domain R
statistical computing environment is a very promising new software environment to
implement existing and develop new statistical analyses for astronomical research
(Tierney). A Panel Discussion discusses various aspects of astrostatistical practice
and research for the coming decade (van Dyk, Feigelson, Loredo, Scargle). The final
section of the proceedings gives brief presentations of the contributed posters. Many
fascinating problems and sophisticated statistical methods are described.

The work of many individuals and organizations contributed to the success of the
SCMA V conference. The invited speakers and cross-disciplinary commentators
were the central pillar of the conference, and we are grateful for their presenta-
tions and manuscripts. Staff in the Departments of Statistics and Astronomy and
Astrophysics provided administrative support. Funding support for the conference
was provided by the two departments, Penn State’s Eberly College of Science,
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and the National Science Foundation through grant AST-1113001. Finally, we are
appreciative of our families’ support during the many phases of this conference
organization.

Pennsylvania State University, PA, USA Eric D. Feigelson
Pennsylvania State University, PA, USA G. Jogesh Babu
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Part I
Statistics in Cosmology



Chapter 1

Likelihood-Free Inference in Cosmology:
Potential for the Estimation of Luminosity
Functions

Chad M. Schafer and Peter E. Freeman

Abstract Statistical inference of cosmological quantities of interest is complicated
by significant observational limitations, including heteroscedastic measurement
error and irregular selection effects. These observational difficulties exacerbate
challenges posed by the often-complex relationship between estimands and the
distribution of observables; indeed, in some situations it is only possible to simulate
realizations of observations under various assumed cosmological theories. When
faced with these challenges, one is naturally led to consider utilizing repeated
simulations of the full data generation process, and then comparing observed
and simulated data sets to constrain the parameters. In such a scenario, one
would not have a likelihood function relating the parameters to the observable
data. This paper will present an overview of methods that allow a likelihood-free
approach to inference, with emphasis on approximate Bayesian computation, a
class of procedures originally motivated by similar inference problems in population
genetics.

1.1 Introduction

The ever-increasing efforts to build catalogs of astronomical objects, and to measure
key properties of these objects, is, in large part, motivated by the goal of inferring
unknown constants that characterize the Universe. This paper seeks to present an
example of such a problem, and to describe some of the features of the data and
their collection that complicates what is otherwise a standard statistical inference
problem. To an outsider of this field, it can be surprising the extent to which
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Table 1.1 Examples of key cosmological parameters

Parameter ~ Description In Fig. 1.1%
Q, Ratio of total matter density to that needed for a flat Universe 0.266

Q\ Similar to £2,,, but for dark energy density 0.734

Hy Hubble constant: the current expansion rate of the Universe 71.0 km/s/Mpc

4 Estimates based on WMAP7 [2]
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Fig. 1.1 Power spectrum, a function of cosmological parameters, of fluctuations in the tempera-
ture of photons that comprise the cosmic microwave background (CMB). The parameter values are
fixed to those shown in Table 1.1

many questions regarding the nature of Universe have been boiled down to the
estimation of a relatively small number of cosmological parameters. Table 1.1 gives
some examples of these physical constants. Carefully-derived cosmological theory
posits relationships between these parameters and the distribution of observables. In
(relatively) simple situations, the distribution of the data is of a “standard” form, and
the likelihood function can be derived. This allows for utilization of well-established
methods of inference, including finding maximum likelihood estimates or exploring
the posterior distribution of these parameters given the observed data.

One of the most important inference problems that fits into this framework is the
estimation of cosmological parameters using fluctuations in the temperature of pho-
tons that comprise the cosmic microwave background (CMB). These photons are
remnants of the time, only 300,000 years after the Big Bang, when the temperature
of the Universe had cooled sufficiently for light to travel freely. The slight variation
in the temperature of these photons encodes important information regarding the
nature of the early Universe; the amount of correlation on different angular scales
has been characterized as a function of cosmological parameters. Figure 1.1 shows
the power spectrum that describes the Gaussian process on the sphere used to model
the process; this power spectrum corresponds to the parameter values shown in
Table 1.1. A succession of experiments has observed this background radiation to
greater precision, and hence has achieved stronger constraints on the unknowns. The
estimates in Table 1.1 are based on the recent WMAP 7 data release [2].
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The relationship between the cosmological parameters and the power spectrum
of the CMB fluctuations is complex: It is highly nonlinear, and there are strong
degeneracies between some the parameters. The complexity of this relationship
presents its own challenges. Bayesian methods dominate in cosmology, and MCMC
is feasible in this situation; one only needs to make small steps in the cosmological
parameter space, and the parameter vectors are mapped into the corresponding
power spectrum, which in turn defines the likelihood function for the data. Schafer
and Stark [3] presents a Monte Carlo method for constructing confidence regions
of optimal expected size that is specifically motivated by this type of situation.
Yet, both of these methods rely upon knowledge of the likelihood function of the
data. Increasingly, we are faced with situations in which this is not a reasonable
assumption. This may be because the distribution of the data is inherently complex,
or it may be because of data corrupted by irregular truncation effects and/or
heteroscedastic measurement error with complex dependence structure.

This paper describes likelihood-free approaches to inference, in particular,
approximate Bayesian computation (ABC). The term “likelihood-free” is not
intended to imply that a likelihood function does not exist in these applications;
instead, it is the case that the likelihood function is too complex to admit a form that
can be evaluated reliably for different values of the parameters of interest. These
procedures will instead be built upon repeated simulation of the data-generating
process (allowing for the incorporation of any complex computer models, data
contamination, or selection effects) and then comparing simulated with observed
data. Implementation of these approaches presents their own set of challenges.
The difficulty of deriving an appropriate likelihood function is replaced with that
of finding an approximate sufficient statistic for the parameter of interest. There
are also computational challenges to implementing these procedures, but these can
be mitigated via the design of efficient algorithms. This paper will present a brief
introduction to some techniques and directions for addressing these challenges.

Another objective of this paper is to allow a reader familiar with statistical
inference, but not with astronomy, the chance to learn some background on
a relatively simple cosmological inference problem that possesses some of the
aforementioned challenges. In the next section we will present two examples, with
background information. The first is a stylized example of estimating cosmological
parameters using observations of Type Ia supernovae. This example serves largely to
introduce important concepts and methods. The second is the problem of estimating
a bivariate luminosity function, the distribution of astronomical objects of interest
as a function of their distance and the amount of light they emit. We will utilize the
quasar catalog of [4] to motivate a promising approach to estimating the bivariate
luminosity function which relies upon forward simulation of the full data generation
process.
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1.2 Examples and Astronomical Background

In this section we will present two examples of statistical inference using
astronomical data. The first is relatively simple and will serve only to demonstrate
basic likelihood-free techniques. The second application possesses the type of
complications that motivate the consideration of these approaches. Both of these
build upon the same astronomical background, including the following key
quantities described below.

Key Quantities in the Examples

1. Redshift (often denoted z)—Because the Universe is expanding, light
emitted by an astronomical object is shifted to longer wavelengths prior
to reaching the observer: the ratio of the wavelength at which the light is
observed to the wavelength when emitted equals 1+ z. Since the magnitude
of this shift increases as a function of the time since the light was emitted,
redshift is often taken as a (nonlinear) proxy for time (or distance). For the
current epoch, z = 0; for quasars, z < 7; and for the CMB, the most distant
structure yet observed in the Universe, z ~ 1089.

2. Apparent magnitude (m)—The brightness of the object as measured by
the observer. Magnitudes are measured on a logarithmic scale such that
decreasing the magnitude by five corresponds to changing the brightness
by a factor of 100. The root of the magnitude system was the classification
of stars by the Greek astronomer Hipparchus, who used one for the
brightest stars and six for the faintest.

3. Absolute magnitude (M)—The apparent magnitude of that an object
would have if it were located 10 pc (or about 32 light-years) from Earth.
The relationship between m and M in a flat Universe can be written as

(14+z) [? —0.5

where c¢ is the speed of light, and Hy, €,, and Q, are among the
cosmological parameters shown in Table 1.1.

Equation 1.1 establishes a relationship between a measurable property of astro-
nomical objects (the apparent magnitude), and a scientifically useful quantity (the
absolute magnitude). Note how this transformation depends not only on the redshift
of the object, but on the values of unknown physical constants. In the examples that
follow, this expression will be utilized in different ways. In the first case, Type Ia
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Fig. 1.2 Plot of distance modulus vs. redshift for a sample of 182 SNe Ia [5]. The curve is the
predicted relationship when Hyp = 72.76 km/s/Mpc and €2, = 0.341, the MLE under a simple
model

supernovae, for which both M and m are known, are used in order to constrain the
cosmological parameters. In the second example, values for these parameters are
assumed in order transform m into M for a sample of quasars.

1.2.1 Demonstration Example: Estimation with Type
Ia Supernovae

A white dwarf star that accumulates matter from a companion star will not remain
stable once its mass exceeds the Chandrasekhar limit of approximately 1.38 times
the mass of the sun. The resulting thermonuclear explosion is called a Type la
supernova (SN Ia). The uniformity in mass of these stars at the time of their
demise implies uniformity in their absolute magnitudes (M) and hence SNe Ia
are approximate standard candles, in that variation in their apparent magnitude
(m) (measured from Earth) is attributable primarily to variation in the differences
in their distance from us. Thus, the distance modulus (denoted ), defined to be
the difference between the apparent and absolute magnitudes, is a proxy for the
space-time distance to the SN Ia. Redshift (z) can also be considered a proxy for
space-time distance and estimates of the redshifts are also available for each of the
SNe Ia. Equation 1.1 establishes a direct relationship between distance modulus and
redshift as a function of cosmological parameters Hy, €2, and €24, and hence these
observations can be used to constrain these parameters.

Figure 1.2 shows measurements of these quantities for each of 182 SNe Ia [5].
The error bars depicted for each distance modulus reflect the uncertainty in the mag-
nitude measurements. These uncertainties are typically taken to be “known,” derived
from properties of the observing conditions and the scientific instrument in use.
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For the purposes of this example, we will assume that the errors are normally
distributed with mean zero, and are independent. We will also assume that €2, +
Q4 = 1. The result is a simple, two-parameter model, one for which it is not difficult
to write out the full likelihood function.

The Statistical Model

Assume observe realizations of pairs (z;,Y;) fori = 1,2,... n such that

I+z) (4 -0.5
YF(C—HO’)/O (@n(1+u)’ + (1= Q)" du+oie;

where the & are independent, identically distributed standard normal random
variables, and the o; are known.

In what follows we will use these data and this model to make comparisons
between the between standard and likelihood-free methods for estimating Hy and
€,,. The solid line in Fig. 1.2 is the case where Hy = 72.76 km/s/Mpc and €2, =
0.341, the maximum likelihood estimate under this model. There are various ways
in which these assumptions could be relaxed, and hence make the results of more
scientific interest. As this is done, however, it will be increasingly difficult to derive
the likelihood function, and one would start to see the appeal of taking a likelihood-
free approach.

1.2.2 Motivating Example: Luminosity Function Estimation

Broadly stated, the luminosity function of a particular class of astronomical objects
is the distribution of the absolute magnitudes of those objects. For example, one can
seek to estimate the luminosity function of all galaxies, the luminosity function of
galaxies that are of a particular type, the luminosity function of galaxies at redshift
7 =2.0, and so forth. To a statistician, this is a familiar density estimation problem.
From a cosmological perspective, it is of interest to study how the luminosity
function evolves with redshift, setting up a bivariate density estimation problem
in the (z,M) plane. The underlying goal is to compare predicted evolution under
proposed theories with the observed evolution. Hence, we can view the luminosity
function as an important cosmological unknown, and an accurate estimate of the
luminosity function are of fundamental scientific interest. There are complications
in this estimation, namely the presence of heteroscedastic measurement error in the
key observables, and physical limitations on the objects we are able to view.
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Fig. 1.3 Redshift and absolute magnitude measurements for a subset of the quasars in [4]

Here we will consider the specific problem of estimating the luminosity function
of quasars. Quasars are ultra-luminous galactic nuclei powered by the infall of
matter into supermassive black holes. Because of their compactness, they appear
like stars, or “quasi-stellar,” hence the name. The rate of matter infall into supermas-
sive black holes, which dictates when a quasar is “on” or “off,” is directly tied to
the physics of galaxy formation and evolution. Thus the quasar luminosity function
provides a means by which to constrain theoretical models of these processes. We
will utilize a subset of 5,000 quasars taken from the catalog of [4]. The full catalog
consists of over 130,000 quasars; for the purpose of demonstrating our methods,
we will focus on the reduced sample. For the problem at hand, there are two key
measured quantities for each quasar: the redshift and the apparent magnitude. One
then calculates the absolute magnitude via (1.1).

Figure 1.3 shows the (z, M) pairs for each of the quasars in our sample. Outside
of the dashed region, quasars in the sample are truncated because of the difficulty
of observing quasars that are too dim. The curve in the truncation region arises
because the limit is in terms of apparent magnitude; the depicted bound corresponds
to truncating quasars with m > 18.4. As mentioned above, it is of interest to estimate
the bivariate luminosity function (the bivariate density in (z,M) space).
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1.2.2.1 Estimators for the Bivariate Luminosity Function

The irregular truncation boundary shown as the dashed line in Fig. 1.3 presents
challenges to the fitting of a bivariate density to this sample, even without the
presence of measurement error in the observations. If a well-motivated parametric
form for the density exists, then maximum likelihood estimation would be a natural
choice. But, lacking such a form, the focus has been on nonparametric estimators.
Lynden-Bell [6] introduced in the astronomy literature the nonparametric maximum
likelihood (NPMLE) estimator for the case of one-sided truncation of absolute
magnitude and [7] derived some of the asymptotic properties of this estimator. Efron
and Petrosian [8] extended the NPMLE to the case of double truncation of absolute
magnitude. Each of these papers assumes that absolute magnitude and redshift are
statistically independent (and, hence, that the luminosity function does not evolve
with redshift.) The density estimate (or distribution function estimate) which results
from a NPMLE procedure places all of the probability on observed data values, but
even smoothing this estimate may not be sufficient to remove artifacts: An estimate
can suffer from what [9] referred to as “large jumps,” where lone data points can
greatly influence the estimator. Efron and Petrosian [8] also developed a permutation
test for independence of the two variables. Independence of absolute magnitude and
redshift is a strong assumption, and not justified in most applications. In practice,
one of these methods is applied to a narrow bin of observations in redshift.

In [10], a method is presented for fitting bivariate luminosity functions of the
semiparametric form

log(¢(z,M)) =£(z) +g(M)+ tzM. (1.2)

Thus, the log density is additive in functions, estimated nonparametrically, of only
z and M, plus a term that accounts for the evolution of the luminosity function
with redshift. This first-order approximation to the true form for the evolution does
appear to fit to observed data well; Schafer [10] makes comparisons between the
results from the fitting procedure and those built on “binning,” and there is good
agreement; see Fig. 1.4. This form for the bivariate luminosity function will be a
key ingredient to our likelihood-free approach.

1.2.2.2 A Further Complication: Redshift Estimation

Our reduced sample from [4] consists of 5,000 quasars which each have two
estimates of the redshift. The first is the high-quality spectroscopic estimate of
the redshift, constructed from the full emission spectrum of the quasar. Figure 1.5
shows such a spectrum; by matching this spectrum with a template spectrum of a
quasar, one is able estimate to good accuracy the redshift of the observed quasar.
Unfortunately, such spectroscopic data is difficult to obtain, and many experiments
only provide photometric magnitudes accumulated over wide ranges of wavelength.
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Fig. 1.4 A comparison of the evolution of the quasar luminosity function as estimated by Schafer
[10] and that obtained by unbiased estimators built on binning

The left plot of Fig. 1.5 depicts the situation. Instead of observing the full spectrum,
one can only observe the spectrum integrated against each of the five bands (Z, Y,
J, H, and K). Then, estimation of redshift becomes a regression problem. There is a
training set, consisting of quasars for which there are both spectra and photometric
observations; these are used to fit a model relating the two. This model is applied to
the quasars for which there are only photometric observations in order to predict
their redshift. The relationship is highly nonlinear, and extensive work on this
problem only has served to demonstrate the difficulty of the challenge. See the right
plot of Fig. 1.5 for the results of performing such an analysis on the data of [4].

1.2.2.3 From True Bivariate Luminosity Function to Observable Data

Consider the aggregate effects of the use of photometric data:

. Redshift (z) has measurement error

. The distribution of this error depends on true redshift

. Conversion from apparent to absolute magnitude (M) has error
. There will be strong dependence between errors in z and M

. The truncation will be performed on error-filled data

O N O B S R

It would be difficult to construct an adequate likelihood function that takes into
account the above features of the model for the observable data. When faced with
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Fig. 1.5 Left: The spectrum of a quasar, with the filters of photometric bands superimposed. Right:
Plot of spectroscopic redshift versus photometric redshift for 5,000 quasars in [4]

such a challenging situation, one is naturally led to consider the forward process
that generated these data. If one is able to adequately simulate the individual steps,
it would be possible to generate data sets under conditions similar to those that led
to the observed data, varying only the parameters to be estimated. These simulations
could then be compared to the observed data. This is the fundamental idea behind
likelihood-free inference.
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1.3 Likelihood-Free Inference

Standard techniques for statistical inference are built upon knowledge of (a good
approximation to) the likelihood function for the data as a function of the parameters
of interest. This relationship between parameters and distribution for the data,
denoted fy(x), can be complex, but as long as one can evaluate this expression for
different values of 0 and x, proper implementations of well-established algorithms,
such as MCMC, will lead to accurate constraints on the unknowns. A likelihood-
Jree approach to inference is necessary when fy(x) is not available; as stated above,
in this paper we concern ourselves with the case where the effect of contamination
of the observations by measurement error makes (even approximate) derivation of
the likelihood function impossible.

Frequentist likelihood-free approaches to inference are built upon the following,
simple approximation: To estimate fg(x), the likelihood evaluated at data x when
0 is the truth, sample B data values x,x3,...,xp under the model implied by 6.
Then use

B
fox) =K Y a(cn)<e (1.3)
i=1

for some € > 0, constant K and choice of distance metric A. In other words, the
proportion of simulated data values that are “close” to x (as measured by the metric
A) is proportional to the likelihood function evaluated at the pair (x,0). Diggle
and Gratton (1984), for example, approximate the likelihood surface by applying
nonparametric density estimators to likelihoods approximated in this way, and then
proceed to find the maximum likelihood estimator. The primary challenge in such
an approach is the difficulty encountered when 6 is of high dimension.

Bayesian approaches are appealing because, just as with MCMC, one can
generate a sample from the high-dimensional posterior and still estimate most
integrals over the posterior, including marginal distributions for parameters, via
Monte Carlo approximations. Approximate Bayesian computation (ABC) refers to
a class of methods used to approximate the posterior distribution in cases where
a functional form for the likelihood is not available. The development of these
methods was motivated by estimation problems in population genetics, but recent
work is expanding the areas of application. In this section we describe a simple
algorithm utilized in this growing field of research.

The basic ABC algorithm is the ABC Rejection Algorithm outlined below.

The ABC Rejection Algorithm

First, define a distance metric A and a tolerance €. Then, repeat the following
until sample of size N is generated:

1. Choose 6* from prior 7(6).
2. Generate xg,, ~ fo*.
(continued)
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Fig. 1.6 Left: An application of the ABC Rejection method to the SNe example. Gray points
correspond to rejected proposals, while black points are accepted. Right: Same situation, except
using the ABC SMC method

(continued)
3. If A (X, %) > €, then return to step 1; otherwise, accept this 6* into the
posterior sample.

This algorithm works because the pair (6%, x,,,) that results from steps one and two
are a draw from the distribution with density fy(x)7(6) and, if this 6* is accepted
in step three, the probability of 6* being in set A is

/A/M)f o (x)7(0)dxd6 ~ K '/A'fe (x)7(6) d6 = /A 7(8 | x,) d6

where N (x,,, €) is the collection of all x values that are within € of x,,, and K is a
constant that does not depend on 6 or x,,,. Hence, the accepted 0* is approximately
distributed as a draw from the posterior 7(6 | x,,). The left plot of Fig. 1.6 depicts
the result of application of this method to the two parameter estimation problem
using Type Ia SNe described above. One notes that in this case 5,633 proposed 6*
were rejected in order to generate a collection of 100 accepted parameter values,
and yet the tolerance € is still not sufficiently small for the posterior estimated from
the draws (gray contours) to be a good approximation to the true posterior (black
contours).

Thus, although conceptually and (typically) computationally simple, the ABC
rejection algorithm can be incredibly inefficient, rejecting a high proportion of the
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proposed 0%, especially if the parameter space is of high dimension. Sequential
Monte Carlo (SMC) [11] methods were developed to address such challenges. These
approaches migrate a family of N particles through a sequence of steps; at each step
the target distribution for the particles is a little closer to the primary objective:
the posterior. This allows one to start with a generous amount of tolerance, and
hence not reject such a large proportion of the proposals, and then subsequently
tighten the standards to the point where the distribution of the particles is similar to
a sample from the posterior. In [12], a version of SMC was developed that operated
in the absence of a likelihood function, again motivated by complex genetics models
that did not yield a tractable form for the likelihood. This is described below.

The ABC SMC Algorithm [12]

First, define a distance metric A and a sequence & > € > --- > €r.
At main iteration t = 0, for each of i=1,2,...,N:

1. Choose 6;" from prior 7(0).
2. Generate xg,, ~ fgi*.

3. If A(Xm, %) > €0, then return to step 1; otherwise, accept this Gl-(t).
4. Setw; = 1/N.

At main iterationt = 1,2,....T, for eachofi=1,2,... ,N:

. Choose 6; from among the GJQ_]) with probabilities wy_l)

. Generate 9,-(’) by perturbing 6; using kernel K(6;",-)
. Generate x., ~ f, )

. If A(Xgm, Xons) > &, then return to step 1; otherwise, accept this 9,-(’)

. Calculate the new weight as

0 _ ”(ei(t)>

wy’ =

i z]]y:lwy—l)K(ej’ei(t))

[ W N =

Q)

Note that, when using the algorithm, the 6,"’ are a sample from the distribution

2(0)= Y W' VK(67,6) foz (xa)-

()

The weights w; "’ can be viewed as importance sampling weights
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™ (Gim) So g, ()

—1 " :
-1 WY 5% (6]- , ei(’)) fef’),& (Xons)

) _

w; =

This collection of parameter values can then be used as a sample from the
(approximated) posterior, and then be used much in the same way as would
the output of an MCMC implementation (with the small added complication of
incorporating the weights). When applied in the SNe example, the improvement in
the estimation of the posterior distribution can be seen in the right plot of Fig. 1.6.

1.3.1 Quantifying the Distance Between Data Sets

Both of the aforementioned algorithms are built upon the same crucial ingredient
unique to the ABC approach: a distance metric A capable of assessing the degree
of similarity between the observed data and a simulated data set. In practice, this
comparison is not made between the raw data objects, but instead between summary
statistics, either a smoothed version or a low-dimensional representation of the
original data. The resulting compression is an important step; if done appropriately,
the summary statistic will preserve the information useful for constraining the input
parameters and throw out the useless ancillary information. Indeed, the better this
summary statistic approximates a minimal sufficient statistic, the better the ABC
procedure will mimic the results that would have been obtained with full knowledge
of the likelihood function.

As a result, current research is focused on procedures for constructing such
a statistic. A method for assessing the value of proposed summary statistics is
proposed in [13]. In [14, 15], an approach of indirect inference is utilized. An
auxiliary model is fit to the data that incorporates not only the parameters of interest
0, but also ancillary parameters that make the model flexible enough to fit to the
real data. This model is chosen to take a sufficiently simple form that estimation
of all of the parameters is feasible. The vector consisting of the MLE of these
parameters serves as a summary statistic. In cosmology applications, however, it
may not generally be feasible to construct such an auxiliary model. The general
concept, however, is relevant: The amount of compression performed on the data
to create the summary statistic should be equivalent to the compression performed
when the MLE of 6 is found.

For instance, in the SNe example, the summary statistic is chosen to be the fit
of a smoother through the simulated redshift and absolute magnitude data. Ideally,
the amount of smoothing would be equivalent to the smoothness of the set of curves
found when varying Hy and €2,,. Of course, without knowledge of the likelihood
function, one would need to utilize a more extensive set of simulations to explore
the nature of how the distribution of the data changes as 0 is varied. Returning again
to the SNe example, repeated simulations of data sets for fixed 6 would reveal the
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smooth relationship between redshift and the distance modulus; repeating this for
many different values of 8 would reveal that the shape of this curve does not change
much over the parameter space. In this way, with enough simulations, one could
uncover the true low-dimensional structure present in the relationship between 0
and the distribution of the observable data. Such a procedure is described in [16].
This seems to be a very promising direction for the practical implementation of
ABC approaches in cosmology.

1.3.2 Luminosity Function Estimation

Finally, we will briefly outline how we are implementing a likelihood-free approach
to estimating luminosity functions, specifically to analyze the quasar sample of [4].
First, we assume that the true form of the bivariate luminosity function (i.e., the
bivariate density) takes the form given in (1.2). As already mentioned, previous
studies have justified this choice. It is further assumed that the functions f(-) and
g(+) are quadratic; the result is that there are seven parameters in the model once T
is included. A normal prior is assumed for each of these parameters. Once values are
chosen for each of these parameters, once can then run the “forward process” shown
below to generate data that has been subjected to the same effects as the observed
data.

e Draw true z and M values

e Convert to true apparent magnitude m

e Simulate photometric redshift by drawing from joint distribution
e Calculate estimated absolute magnitude M

e Apply truncation to error-filled observations

Once generated, a data set is converted into a “summary statistic’ by fitting a
bivariate density to the observations; this is again using the form given in (1.2). The
distance is then calculated using simple L, distance between the two (observed and
simulated) bivariate densities. Although this is a challenging implementation, some
of the preliminary results are promising. Figure 1.7 show an estimated luminosity
function when the ABC SMC method was applied to a case where the data were
subjected to errors and truncation identical to those present in the sample of [4], but
the truth was fixed and shown as the dashed line.

1.4 Conclusion

This article presents an overview of approaches to approximate Bayesian computa-
tion, which are likelihood-free statistical inference procedures. These could prove
to be useful in a range of cosmological inference problems. Here, the framework for
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Fig. 1.7 Quasar luminosity function estimate based on simulations. The dashed line is the known
truth. The inner band is the 68% credible region, while the larger, outer region is the 95% credible
region

the application of these methods to luminosity function estimation is motivated. Of
particular relevance is how these procedures could allow for adequate incorporation
of the significant observation limitations that are present, including the reality of
the limitations of photometric estimates of redshifts. If successful, these approaches
will make full use of the flood of data to be gathered by photometric surveys.
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Chapter 2

Commentary: Likelihood-Free Inference
in Cosmology: Potential for the Estimation
of Luminosity Functions

Martin A. Hendry

Abstract The identification, diagnosis and removal of systematic biases, due to e.g.
measurement errors and observational selection effects, has become a key challenge
for the so-called ‘era of precision cosmology’. In this commentary I will describe
some specific examples of where and how this challenge may arise in the analysis of
astronomical surveys, thus illustrating ways in which the construction of an explicit
likelihood function is rendered complicated in this field. These various examples
therefore provide further motivation for the potential usefulness of the likelihood-
free inference approach which Schafer has proposed.

2.1 Introduction

The 20 years since the first SCMA conference have seen rapid growth in the reach
and impact of astrostatistics—particularly in the field of cosmology. The application
of physically well-motivated cosmological probes such as Type Ia supernovae
(SNIe) and the cosmic microwave background radiation has placed strong con-
straints on the parameters which define our cosmological model, leading to the
emergence of the so-called “Concordance Cosmology”, supported by observations
across a range of astrophysical phenomena. While there remain serious unresolved
issues with the Concordance model, the quantity and quality of the data that emerged
in the late 1990s prompted the label “the era of precision cosmology” to enter
common use [1].

The appropriateness of this label is undermined, however, by the potential
impact of systematic errors. These may arise for a variety of reasons, including
instrumental or atmospheric effects, measurement errors and observational selection
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due to e.g. truncation or censoring, and may be strongly correlated, non-Gaussian,
non-stationary or otherwise problematic. Their identification and diagnosis can
present significant challenges for the analysis of astronomical surveys via traditional
likelihood-bases methods. In this brief commentary I will describe some specific
examples of where and how these challenges may arise—thus providing further
motivation for the potential usefulness of the likelihood-free inference approach
which Schafer has proposed.

2.2 Systematic Effects in Astronomical Surveys

The surveying of astronomical populations is commonplace across a wide range of
scales, from the statistics of nanoflares on the Sun to the demographics of distant
quasars. As Schafer has noted in the preceding article, the approach adopted to
date in studying astronomical populations has generally been likelihood based. For
instance in estimating the galaxy luminosity function (LF) a range of maximum
likelihood methods—both parametric and robust—has been developed, many of
which explicitly account for the impact of observational selection (see [2] for a
recent and comprehensive review) and the semi-parametric method of [3] is a
powerful recent addition to these techniques.

In this context however, and as the preceding article also discusses, a significant
complication in this field is the growing prevalence in very large survey datasets of
photometric redshifts. These have hugely increased the volume and size of redshift
surveys and the efficiency with which they may be carried out but at the cost of
introducing a significant measurement error on the redshift of each source. The
trend towards extremely large photometric redshift surveys is firmly set to continue
as we approach the era of ‘petascale’ datasets promised by the Large Synoptic
survey Telescope [4]. Consequently the impact of photometric redshift errors on
likelihood-based approaches to survey analysis, and the exploration of alternative
methodologies, appears to be an important future research direction—a conclusion
which was also reached at SCMA4 in the context of the report presented there on
the work of the astronomical surveys group within the 2006 Astrostatistics program
at SAMSI [5]. This conclusion would appear to be equally relevant, if not more
so, today.

A common feature shared by likelihood-based methods to probe survey luminos-
ity functions is the adoption of a simple, approximate form for the sample selection
function—for example a step function to describe the flux limit(s) of the survey [6].
While these approximations may be necessary to make the problem analytically
tractable, the reality may be considerably more complicated, particularly when
objects (such as distant SNIe or high redshift galaxies) are being detected in
crowded fields, where issues of blended sources and source misclassification can be
important [7]. These effects can render the flux limit of selected sources strongly
dependent on environment, sky direction and ‘seeing’ conditions at the time of
observation—all of which may not easily be reducible to a simple step function
of flux alone.
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Another common problem with flux limited surveys is where the sources are
originally selected in the optical—based on a historical catalogue of e.g. B-band
galaxy apparent magnitudes—but the survey involves observations made in another
waveband, for example /-band photometry for the purpose of estimating galaxy
distances and peculiar velocities via the Tully-Fisher relation [8]. In this situation
the intrinsic correlation between galaxy luminosity and colour means that the B-
band selection to which the original catalogue was subject will translate into an
I-band selection function in the Tully-Fisher survey. However, since the correlation
between B-band luminosity and B — I colour is not perfect but has an appreciable
scatter, the /-band selection function will be blurred even if the original B-band
selection is well described by a sharp apparent magnitude limit [9].

A further complication when observing the very distant Universe is that surveys
of e.g. quasars or high redshift galaxies may be subject to complex and poorly
understood evolutionary effects (indeed probing this source evolution is often the
main object of the survey in the first place!). In addition the application of so-called
‘k-corrections’ is required because the spectral energy distribution emitted by a
high redshift source in its rest frame will be observed redshifted towards longer
wavelengths by the expansion of the Universe [10, 11].

Other surveyed sources such as radio pulsars, gamma ray bursts or active
galactic nuclei may be affected by geometrical selection effects, where the emitted
radiation is strongly anisotropic [12]. These effects can impact significantly on the
detectability of sources and influence their apparent brightness due to e.g. relativistic
beaming, as well as introducing strong degeneracies between source parameters
such as inferred distance and inclination to the line of sight. Similar issues are now
being confronted in the nascent field of gravitational-wave astronomy [13], where
the selection function of e.g. observed inspiralling binary neutron star sources will
be the result of a complex interplay between the underlying cosmological model,
the intrinsic star formation rate and a sky sensitivity pattern which is strongly
dependent on direction, source orientation and frequency of the emitted gravitational
waves [14].

Another very common and important source of systematic error in survey data is
the effect of extinction: the wavelength dependent absorption of light by dust either
in the environs of the source itself or within our own Milky Way galaxy. Extinction
effects are often dealt with by carrying out multi-wavelength observations and
correcting for their impact by fitting a (usually parametric) extinction law as a
function of wavelength. This technique has been used extensively for example to
infer extinction-free estimates of the distance to Cepheid variable stars in external
galaxies observed by the Hubble Space Telescope [15].

Multiwavelength observations are also a key feature of the methodology used to
harness SNIe as cosmological distance indicators. The multiwavelength approach is
employed both to diagnose and correct for extinction and to improve the precision of
the distance indicator itself by exploiting empirical correlations between the shape
of the SNIe light curves and their intrinsic luminosity at different wavelengths. For
more than 15 years advanced Bayesian methods have been applied for calibrating
these relations to derive SNIe distance estimates [16]. Recently Mandel [17] has
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presented a sophisticated multilevel Bayesian model that addresses simultaneously
extinction, intrinsic light curve shape, possible source evolution and cosmological
parameter extraction. While this treatment is certainly ‘state of the art’ it shares with
many of the other survey examples listed here the requirement of a complicated
likelihood function, perhaps featuring a significant number of nuisance parameters,
to fully capture the intrinsic characteristics of the source population and the
observational selection effects to which they are subject.

2.3 The Case for a Likelihood-Free Approach

All of the complicating factors listed in the previous section—crowded fields, colour
correlations, evolutionary effects, k-corrections, source orientation and beaming,
extinction—are relatively straightforward to simulate, i.e. to model numerically via
Monte Carlo simulation, but are not so easy to explicitly include in a likelihood
model without potentially rendering that model unwieldy. In contrast, therefore,
to the traditional methodology whereby adopts a likelihood function model that
is as simple as possible and estimates the parameters of that model (see e.g. the
VELMOD approach of [18] as a good archetype, in the area of peculiar velocity
reconstruction), one can envisage instead a “forward modelling” approach in which
one constructs sophisticated “mock” datasets that can simulate faithfully some or all
of the above factors that would influence the journey of a real photon (or graviton!)
from source to detectors. As described in the preceding article, one would draw
inferences about the source population by comparing these mock datasets with the
real survey data—analogous to the approach that has been adopted for many years
in generating mock galaxy catalogues from high resolution n-body simulations of
large scale structure [19].

As the preceding article has recognised, the key challenge in this approach is
identifying a suitable metric for comparing the mock and real datasets, or some
appropriate summary statistic constructed therefrom. The ABC algorithms which
Schafer presents appear to offer a useful and practical solution to this challenge—
particularly the sequential Monte Carlo algorithm which largely overcomes the
problem of inefficient sampling of the Rejection algorithm. This is a crucial
improvement since, as we have seen in Sect. 67.2, the complexity of simulations
required to capture adequately the details of many future cosmological data sets
may be considerable.

In a similar vein the preceding article underlines the importance of identifying
and constructing useful summary statistics that efficiently measure the degree of
similarity between the observed and simulated datasets. He proposes, for example,
fitting a low-dimensional smoother through the real and simulated supernovae
redshift and magnitude data to represent the luminosity distance-redshift relation.
This is an approach that has already been explored—using a variety of different
basis functions [20-22]—as an efficient method for representing non-parametrically
the luminosity distance-redshift relation and its integral relationship to the cosmic
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equation of state. An approach of this form, applied to a variety of other cosmo-
logical datasets, would appear to hold promise for the efficient implementation of
likelihood-free inference methods in the future.
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Chapter 3
Robust, Data-Driven Inference in Non-linear
Cosmostatistics

Benjamin D. Wandelt, Jens Jasche, and Guilhem Lavaux

Abstract We discuss two projects in non-linear cosmostatistics applicable to
very large surveys of galaxies. The first is a Bayesian reconstruction of galaxy
redshifts and their number density distribution from approximate, photometric
redshift data. The second focuses on cosmic voids and uses them to construct
cosmic spheres which allow reconstructing the expansion history of the Universe
using the Alcock-Paczynski test. In both cases we find that non-linearities enable
the methods or enhance the results: non-linear gravitational evolution creates voids
and our photo-z reconstruction works best in the highest density (and hence most
non-linear) portions of our simulations.

3.1 What is Cosmostatistics?

Cosmostatistics is the discipline of using the departures from homogeneity observed
in astronomical surveys to distinguish between cosmological models. It therefore
plays a central role in the cosmological agenda for the coming decade, which is to
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Primordial perturbations as seen

in the Cosmic Microwave Background
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Fig. 3.1 Cosmostatistics uses the stochastic departures from homogeneity on all observable scales
to distinguish between cosmological models

e Learn about the cosmic beginning;

* Understand the cosmic constituents, in particular Dark Matter and Dark Energy;
and

* Understand cosmological evolution from initial seed perturbations to current
observations

One of the challenges for cosmostatistics is that any given observable (maps of the
cosmic microwave background, galaxy survey, etc.) is informative about all these
goals in some way (Fig.3.1).

We are fortunate to live in a time when the cosmic microwave background
(CMB)is being mapped with high precision from space (by the WMAP [7] and
Planck [9] missions), and ground-based and space-based missions are mapping
out sizable fractions of the observable Universe in exquisite detail and in three
dimensions, across large swaths of the electromagnetic spectrum. Between these
two approaches we expect the CMB to have much more signal on very large scales,
whereas in principle, probes of density should win overall, simply since there are
vastly more modes in a three-dimensional data set which greatly reduces sample
variance.

How do we realize the immense promise of large scale structure surveys for
constraining cosmological models? A number of known and unknown systematics
stand between where we are now and the dream of accessing the vast number of
perturbation modes sampled by tracers of the underlying density field. Many of
these systematics complicate the relationship between the distribution of tracers and
the mass distribution we would actually like to probe.
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These complications arise either due to the intricate physics of galaxy formation
or through incomplete information in the data (e.g. having access only to
approximate photometric redshift information instead of the much more expensive
spectroscopic redshifts). In addition, the mass density has undergone non-linear
dynamical evolution on length scales less than ~20Mpc/h, which has coupled
the perturbation modes in ways that are non-trivial to model. Non-linear mode
coupling erases information that the mode amplitudes carried about the state of the
early Universe from whence they arose. On the largest scales the limits are set by
causality and hence the finite volume of the observable Universe.

Most people would agree on the impracticality of incorporating fully non-linear
gravitational evolution into cosmological inference, let alone a fully physical model
of galaxy formation. So the challenge is to find ways of looking at the data that are
robust to these systematics.

When it comes to dealing with incomplete information, the challenge is to
produce a joint analysis with uncontroversial prior information that allows recon-
stituting some of the information that has not been captured in the data.

In this talk we will highlight two recent papers which give examples of these
two approaches. In one case [3], we develop a Bayesian approach to improving
photometric redshift estimates (and simultaneously estimate the density of the
tracers). The prior information we assume to achieve this information recovery is
local isotropy of the tracer distribution.

In the second paper [5] we define a new observable to prove the physical
properties of dark energy: stacked voids. In this case we choose a very specific pre-
processing step to extract features of the data which should be robust to galaxy bias
and to non-linearity. The approach explicitly projects out the details of the tracer
distribution in the non-linear density field to obtain nearly spherical objects that
nearly co-move with the expansion which serve as the basis of a powerful and purely
geometrical test of the expansion history of the Universe. Again, local isotropy
underlies this approach which posits that underdense regions are not preferentially
oriented with respect to an observer’s line of sight.

3.2 Bayesian Inference from Photometric Redshift Surveys

The vast majority of ongoing and future surveys (CFHTLS, DES, Pan-STARRS,
LSST) are or will be photometric. This is a simple consequence of the cost of taking
a galaxy spectrum with current technology. Photometric redshift errors of Az 0.03,
the current state-of-the-art, translate into smearing along the line of sight on scales
of ~200Mpc. Such errors are not detrimental to certain kinds of science but will
cause any structure smaller than 100 Mpc to be wiped out, as illustrated in Fig. 3.2.

Looking at the trivial density estimate calculated binning photometric tracers
shown in Fig.3.2 it is immediately clear that the line-like finger-of-god artifacts
introduced by photo-z smearing are very recognizable, since they break local
isotropy, a core element of our cosmology. Since they stand out so visibly, we
wondered if they could be removed.
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Fig. 3.2 From an n-body simulation to the simulated photo-z survey: the particle density in
the simulation (left), after application of the mask (center), and after simulation of photo-z
uncertainties (right)

In the following we will often refer to the tracers as galaxies, but the nature of
the tracer is of no importance to the functioning or implementation of the algorithm.

3.2.1 A Simple Model of a Photo-z Catalogue

First we build a hierarchical model for the distribution of tracers. A simple approach
is to consider the points an inhomogeneous Poisson process. The intensity function
of the Poisson process is the underlying number density field, which in turn is a
correlated, statistically isotropic, log-normal random field. For the purposes of this
exercise we will assume that the correlation function (or equivalently the power
spectrum P(k)) is known. Relaxing this assumption will be subject of a future study.

The third level in the model hierarchy: photo-z distortions modify the galaxy
positions along the radial lines of sight. It is assumed that the redshift uncertainties
are specified in terms of a pdf for each tracer. These photo-z pdfs are assumed to
be the output of an earlier analysis step which uses any information available, except
the spatial distribution of the tracers in the catalog. All photometric information for
the galaxy including any morphological features that can be discerned in the images
are fair game.

3.2.1.1 Implementation

This hierarchical model can be straightforwardly implemented. The challenge is
to explore the posterior density in an efficient manner since the parameter space
is enormous: approximately 16 million parameters for the number density and 20
million galaxy redshifts. We choose a block Gibbs sampling approach with the
following steps:
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Fig. 3.3 Constrained realizations of the reconstructed density field. The data was simulated using
an n-body simulation and the reconstruction assumes the Poisson-lognormal prior with isotropic
correlations

Sample the number density given the current galaxy redshifts. We draw from the
conditional posterior of the number density assuming that the current “guess” of
the galaxy redshift is correct. This is a solved problem [4]; it uses a Hamiltonian
sampling approach to update the number density field using the galaxy positions
and incorporating the correlated log-normal prior.

Sample the galaxy redshifts given the number density. The redshift posteriors for
the galaxies are conditionally independent given the number density field. This
feature allows parallelizing this step over the number of galaxies. Each galaxy
performs one step of a Metropolis-Hastings Markov Chain Monte Carlo along
the line of sight. The conditional posterior for each galaxy is the product of the
input photo-z pdf for this galaxy and the number density.

Conditional independence is the key feature that allows this algorithm to scale to
tens of millions of galaxies. From the perspective of the message passing paradigm
of Bayesian inference, the number density field communicates the information about
all the other galaxies to each individual one.

3.2.2 Results

Figures 3.3 and 3.4 illustrate our approach. Even within a few steps the samples
of the number density isotropize. As the sampler progresses, individual galaxies
explore along their line of sight in a number density field which in turn fluctuates in
response to the changing galaxy positions.

Figures 3.3 and 3.4 illustrate our approach. The first figure shows that even
within a few steps the samples of the number density become isotropized. In the
second figure we track the redshift of an example galaxy as the sampler explores
the range of possible reconstructions. The galaxies explore along their line of sight
in a number density field that, in turn, fluctuates in response to the changing galaxy
positions.
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Fig. 3.4 Constrained realizations of the reconstructed density field. The data was simulated using
an n-body simulation and the reconstruction assumes the Poisson-lognormal prior with isotropic
correlations

The results are encouraging. In high density regions galaxy redshift uncertainties
reduce by a factor of several. When a galaxy could reside in one of several
concentrations lying along the line of sight the output pdf is multi-modal. Even
so, the reconstructed redshift posteriors of the galaxies are generally far more
informative than the inputs coming from photometric redshift estimators.

In order to summarize the result of the reconstruction we form the posterior mean
estimator, the average of the number density field realizations that are explored by
the sampler. We can compare this reconstruction to assess its capability to reproduce
features of the input map. Figure 3.5 shows the k-space cross-correlations between
the reconstructed and the input field. It is clear that the method is very successful in
the high density parts of the sky.

3.2.3 Discussion and Conclusions

The first main point of this talk is that we demonstrated the technical achievement
of running a fully Bayesian analysis of a simulated data set with tens of millions of
galaxies, and density fields represented on tens of millions of grid zones. The scale
of this application corresponds to that of the current generation of available surveys,
so it should be feasible to apply this approach to existing data.

The second key issue is to test whether our analysis is sensitive to model
misspecification, since the real data will not follow the correlated log-normal
Poisson model. Our initial tests (of code correctness) used simulations that were
consistent with the prior assumptions. These tests were passed. We do not show
these tests here because the prior produces density fields that clearly not realistic,
missing much of the filamentary structure which is characteristic of the cosmic web.

The work we present in this talk (and described in detail in Jasche and
Wandelt) uses simulated from an n-body simulation. Our results demonstrate that
the reconstruction is successful in spite of using an approximate model.
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Fig. 3.5 The reconstructed density recovers the small scale features of the input density very
well in high density regions. The figure shows the cross-correlation between the input field and
the reconstructed density as a function of wave number. Different lines correspond to different
thresholds of overdensity

The key feature underlying the reconstruction is clearly the ability to build in the
prior assumption of isotropic correlations in the underlying cosmological number
density field of the tracers. A secondary feature is the assumption of the shape of
the correlations. What we show is that modeling those two aspects of the data results
in acceptable reconstructions, that improve the redshift information for each galaxy
significantly. It is also true that a better model including the morphological features
of realistic gravitationally evolved number density would likely improve upon our
results, since the differences between a correlated Poisson log-normal sample and a
physical sample drawn from an n-body simulation are easily visible by eye. But it
is clear that the reconstructions are not highly sensitive to the details of the assumed
prior as long as two salient features of correlation and isotropy are included for
the density field and we posit a simple statistical relationship of the tracers to the
underlying density, in this case the inhomogeneous Poisson model.

Our approach is completely independent of and complementary to the means by
which the photometric redshift is derived. The method is ready for tests on realistic
data where the photoz pdfs will be specified in terms of a different pdf for each
galaxy.

As a consequence the method will be able to benefit from those tracers
whose redshifts are better determined that others. In particular we can merge the
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advantages of a large number of galaxies in photometric samples and the accuracy
of spectroscopic samples! We will explore this idea further in follow-up studies.

This inference problem is of particular interest because it is an example where
combining millions of noisy measurements with a physical prior, namely the
assumption of isotropic correlations produces a decisive gain in information.

In the second part of the talk we will see another application of the notion of
statistical isotropy—this time to the construction of an estimator for the expansion
history of the Universe.

3.3 Precision Cosmography with Cosmic Voids

Understanding the physical properties of dark energy is a major goal of modern
cosmology. There are essentially two distinct approaches to reaching this goal:
cosmography and tracing structure formation.

Cosmography. The cosmography approach, which constrains dark energy prop-
erties using precision measurements of the expansion geometry of the Universe.
Einstein’s equation relates the geometrical properties of our Universe to its content.
Since “dark energy” is just a placeholder for the terms in Einstein’s equation that
drive the observed accelerated expansion of the Universe, precision comographical
measurements can tell us about the time dependence of these terms and hence about
the value, and rate of change of the equation of state parameter.

Tracing structure formation. The expansion of the universe has an impact
on the rate at which primordial perturbations amplify. These perturbations then
form structures through non-linear gravitational evolution, galaxy formation etc.
Observing the statistical properties (number, size etc) of these structures as a
function of redshift constrains the growth of structure, and hence the expansion
history, which is informative about the properties of dark energy.

It is clear from this description that geometrical approaches are more direct.
In addition, approaches relying on the statistical measures of the amount of
structure in the universe inevitably require a detailed understanding of the processes
that relate the formed structures to the underlying perturbation amplitude. These
processes (e.g. galaxy formation) can be highly complex and deeply non-linear and
are research areas in themselves.

Geometrical approaches function by constructing standards out of observables
(or combinations of observables) that can be modeled reliably such as standard
candles (as in the case of type Ia supernovae), standard rulers (as in the case of
Baryon Acoustic Oscillations (BAO)) or time standards (such as the (differences of)
ages of galaxies).
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3.3.1 The Stacked Voids Alcock-Paczynski Test

The Alcock-Paczynski (AP) test [2] requires a different standard: ‘“‘standard,
co-expanding spheres.” One way to construct such standard spheres is through
appealing to the statistical isotropy of the cosmological perturbations. In that case,
correlations should depend only on the length, but not the direction of the vector
connecting the two points being correlated. If the tracers that are being correlated
did not move, any anisotropy in the correlation function could be interpreted as
being due to the cosmological expansion at the redshift of the correlated objects.

The key difficulty in constructing standard spheres are peculiar velocity effects.
Any tracers that happen to lie in gravitationally bound structure will have velocities
of the order of the depth of the gravitational potential well of the structure. For
clusters or groups of galaxies the resulting finger of god effect in redshift space
dominates the cosmic expansion signal by an order of magnitude. To construct an
Alcock Paczyski test would therefore require a separate high precision measurement
of the depth and shape of the potential well of any structures whose parts were used
in the construction of the test.

So far the main work-around has been to only use very long range correlations of
order 100h~'"Mpc where peculiar velocity effects become sub-dominant compared
to cosmic expansion effect and where the baryon sound speed at radiation drag
leads to a peak in the correlation function. The downside of this limiting oneself
to such large scales is that the statistical constraints will depend on the number
of independent correlation volumes in survey volume, which limits the number of
perturbation modes that can be used to arrive at the dark energy constraints and
therefore leads one to consider extremely large surveys.

In this talk we propose a new way of constructing standard spheres: stacking
cosmic voids. While the AP test had been discussed for especially spherical
individual voids [10] stacking many voids guarantees spherical symmetry since
isotropy prevents cosmic voids from pointing at us (or away from us) preferentially.
Finding voids in redshift shells, extracting them from the survey, co-centering them
and stacking them, therefore gives rise to spherically symmetric underdensities.

There are several advantages to using cosmic voids:

* Voids are simple: peculiar velocities in and around voids are small compared to
the cosmic expansion. We find that they give a 16% systematic effect on our
reconstructed Hubble diagram, with a very mild dependence on void size and
redshift.

* Voids are small: A typical void size is 10h~! Mpc—for a dense enough survey
the number of voids per unit volume that can be detected is therefore of order
1,000 times larger than the number of BAO correlation volumes.

* Voids remember: we find that voids have a well-ordered phase space—all they
do is empty themselves out.

We use the term cosmic voids not to describe regions that are entirely empty, but
regions that are underdense basins of repulsion in the cosmic density field.
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X (R7' Mpc)

Fig. 3.6 The results of our void finder in a slice of an n-body simulation. The void finder constructs
a hierarchical structure of voids. Each patch is a void, colored according to the level in the void
hierarchy. When collecting voids in a size bin during the stacking procedure the algorithm traverses
the tree in a depth first algorithm and marks and returns the first void it finds which satisfies the
size criterion

In order to demonstrate the promise of stacked voids for constructing a powerful
AP test we solved the following problems:

1. Create a suitable void definition: a modified ZOBOV algorithm [8] (see Fig. 3.6);

2. Define a method to add voids into stacks labeled by size and redshift, which both
enhances signal to noise and sphericalizes them (see Fig. 3.7);

3. Determine the number of voids that would be available to this method in an
observed cosmological volume (see Fig. 3.8); and

4. Measure their stretch along the line of sight in order to obtain the expansion
history of the universe (see Figs. 3.9 and 3.10).

Details can be found in our main paper [5].

We tested these methods in a series of three pure dark matter N-body simulations
with different realizations of the initial conditions but the same cosmology. The
volume of each simulation is given by a cube of side L = 500 h~! M. Each
simulation had N = 5123 particles. We adopted a ACDM-WMAP?7 cosmology with
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4 (h™" Mpc) d (v Mpc)

Fig. 3.7 A void stack for 8h~! Mpc voids. Left: the stack after fitting removing the cosmic
expansion effect, but without including peculiar velocities in the simulation. We find our profile
agrees well with that found in [13]. Right: The stack when peculiar velocities are included. The
same cosmic expansion has been removed as in the left panel. Careful inspection shows that
peculiar velocities lead to a small net compression of the void stack along the line of sight

107 . . . .
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Fig. 3.8 Our simulation results for numbers densities of cosmic voids as a function of redshift for
voids of different sizes. These simulation results agree with the model described in [11]
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Fig. 3.9 The measured void stretch as a function of redshift for voids of 6, 8, and 14 hflMpc
(from left to right and top to bottom) for three simulations. The long-dashed line shows the result
for the simulated cosmology. No peculiar velocities were included in the mock catalogs used for
these plots. The lower right panel shows the result for 8h~! Mpc voids for mocks with peculiar
velocities and without any correction for peculiar velocity effect. The lack of redshift dependence
of the resulting bias is clear. The same plot after debiasing is shown in Fig. 3.10

the following parameters: Quh?> = 0.02258, Q.h> =0.1108, H = 71km s~ Mpc !,
w=—1,ng=1,Ag =2.34 % 10~°. This corresponds to €2, = 0.045, Q2 = 0.264,
oy = 0.84. Each particle had a mass m, = 2.0510'' h~! Mg, The transfer function
for density fluctuations for this cosmology was computed using CAMB [6]. The
initial conditions were generated using ICGEN,! a code which uses the transfer
function to generate a density field from the primordial power spectrum.

! Available from http://www.iap.fr/users/lavaux/
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Fig. 3.10 Stretch inferred for 8h~' Mpc voids after the correction of a peculiar velocity bias.
There is no evidence for residual bias at the level of our simulations

3.3.2 Discussion and Conclusion

Based on these results we performed a Fisher matrix forecast of the statistical
constraints on dark energy equation of state parameter w, and its rate of change
w,, that we would expect from Euclid. We quantify the answer in terms of the figure
of merit defined by the Dark Energy Task Force [1], i.e. the relative reduction in
the area of the uncertainty ellipse for these two quantities. The result is exciting—
we find that the stacked void Alcock-Paczynski test has the potential significantly
to enhance the power of the proposed (and now selected) Euclid space craft to
constrain dark energy phenomenology.

On the fact of it cosmic voids have the potential to provide a far more powerful
constraint on dark energy than measurements of the Baryonic Acoustic Oscillation
scale, by up to an order of magnitude. This large increase of information is easily
understood in comparing the number of modes probed by voids compared to BAOs,
which scales roughly as the third power of the ratio of the BAO scale to the scale
of the smallest usable voids ~1,000. The area of parameter constraints scales as
the square root of the number of modes ~30. When projected into the w,,w),
plane using the Fisher matrix formalism for the EUCLID wide survey, we find the
improvement over BAO on those parameters by a factor of ~10.
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We expect our stacked void shape measurements to be robust to galaxy bias as
it is purely geometrical and relies on the topology of the density field [12]. In fact,
it is possible that biased tracers of the density enhance the contrast of voids and
therefore enhance the void detection rate. These expectations remains to verified on
more realistic mock catalogs and real data.

Based on our Fisher matrix forecasts, the stacked voids technique promises a
remarkable increase to the figure of merit from EUCLID when compared to the
combined results from all other probes using EUCLID data (BAO, weak lensing,
type Ia supernovae, cluster counts). The Alcock-Paczinsky test using stacked voids
is therefore potentially a significant addition to the portfolio of major dark energy
probes which merits further detailed studies focused on additional real-world
systematics and optimal survey design.
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Chapter 4
Simulation-Aided Inference in Cosmology

David Higdon, Earl Lawrence, Katrin Heitmann, and Salman Habib

Abstract In this paper we describe two Bayesian statistical approaches for
combining large-scale computational models with physical observations to make in-
ferences about cosmological parameters. The first method is a Bayesian calibration
approach adapted from Kennedy and O’Hagan (J R Stat Soc B 68:425-464, 2001)
and Higdon et al. (J Am Stat Assoc 103:570-583, 2008). It makes use of a response
surface model that approximates the simulation output at untried input settings. The
second approach uses the ensemble Kalman filter (Evensen, IEEE Control Syst Mag
29:83-104, 2009), which makes use of an ensemble of simulations and physical
observations to update the prior parameter distribution using standard equations
from Kalman filtering. We apply these methods to large-scale structure simulations
and observations from the Sloan Digital Sky Survey.

4.1 Introduction

In this paper we combine computationally intensive simulation results with mea-
surements from the Sloan Digital Sky Survey (SDSS) to infer a subset of the
parameters that control the ACDM model, cosmology’s standard model. We
describe two Bayesian approaches for carrying out this analysis. First, we describe
a statistical framework adapted from Kennedy and O’Hagan [7] and Higdon et al.
[4] to determine a posterior distribution for these cosmological parameters given
the simulation output and the physical observations. Second, we show how to use
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the ensemble Kalman filter [1] to estimate these cosmological parameters. We
briefly contrast these two basic approaches for model calibration (i.e. parameter
estimation).

4.2 Simulations and Physical Observations

The SDSS, shown in the left panel of Fig.4.1 maps out the spatial location of
galaxies around the Milky Way Galaxy. A key feature of the spatial distribution
of galaxies is the combination of voids and high density filaments of matter. This
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Fig. 4.1 Top left: Physical observations from the Sloan Digital Sky Survey (Credit: Sloan Digital
Sky Survey). Top right: Simulation results from an N-body simulation. Bottom: Power spectra for
the Matter density fields. The gray lines are from 128 simulations; the black lines give spectrum
estimates derived from the physical observations
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Table 4.1 ACDM

. . Param Explanation Lower Upper
parameters with their lower -
and upper bounds n Spectral index 0.8 1.4
h Hubble constant 0.5 1.1
O3 Galaxy fluctuation amplitude 0.6 1.6
Qcpm Dark matter density 0.0 0.6
Qp Baryonic matter density 0.02 0.12

peculiarity is a result of the cumulative effect of gravity (and other forces) acting on
slight matter density fluctuations present shortly after the big bang, as evidenced by
the cosmic microwave background (CMB).

Predicting the current spatial distribution of matter in the universe, given the
parameters of the ACDM model, requires substantial computing effort. For a
given parameter setting, a very large-scale N-body simulation is carried out. The
simulation initializes dark matter tracer particles according to the CMB and then
propagates them according to gravity and other forces up to the present time. The
result of one such simulation is shown in the middle frame of Fig.4.1. Different
cosmologies (i.e. cosmological parameter settings) yield simulations with different
spatial structure. We would like to determine which cosmologies are consistent with
physical observations of our universe, such as the power spectra in the right frame
of Fig.4.1.

It is difficult to directly compare the simulation output and the SDSS data. The
simulations move dark matter particles over a periodic cube of space, while the
SDSS data give a censored, local snapshot of the large scale structure of the universe.
We can simplify the comparison by summarizing the simulation output and physical
observations with their power spectra, describing the spatial distribution of matter
density at a wide range of length scales, shown in the right frame of Fig.4.1.
Note that the wave number k on the x-axis of these spectra is given in A//Mpc. A
megaparsec (Mpc) is a length scale; two galaxies are separated by about 1 Mpc
on average. The gray lines in right hand plot of Fig.4.1 show a number of matter
power spectra produced by carrying out simulations using different cosmological
parameter settings.

Computing the matter power spectrum is trivial for the simulation output since
the output resides on a periodic, cubic lattice. Determining the matter power
spectrum from the SDSS data has many difficulties: nonstandard survey geometry,
redshift space distortions, luminosity bias and noise, just to name a few. Because
of these challenges, we use the data and likelihood of Tegmark et al. [16], which is
summarized in right hand plot of Fig. 4.1. This is chosen for demonstration purposes
only as the spectra from the dark matter simulations are not directly comparable
with the spectrum computed from luminous red galaxies. These data correspond to
22 independent pairs (y;, k;) with the two standard deviation bars shown in Fig. 4.1.

For the N-body simulations, we consider five ACDM parameters show in
Table 4.1. Since we assume a flat universe and a constant dark energy equation of
state, we expect that any variation in the unused ACDM parameters will not affect
the resulting matter power spectra.
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Fig. 4.2 128 input parameter settings over the 5-dimensional parameter space

The dark matter simulations are computationally demanding, requiring the com-
putation of force interactions for over two million particles. Simulation accuracy
is particularly important for the smaller length scales (k > 0.2h Mpc~!), where
the gravitational effects become strongly nonlinear. For this demonstration, we
use m = 128 simulations. For the Bayesian computer model calibration (BCMC)
approach, a response surface is built to estimate power spectra at untried input
settings. Experience indicates a preference for spreading the 128 inputs to fill in
the 5-dimensional parameter space (see Fig.4.2). For a survey of statistical designs
for computer experiments, see Santner et al. [14], Chaps. 5 and 6. For the ensemble
Kalman filter (EnKF) approach, this simulation output is treated as a sample from
the prior distribution for the cosmological parameter settings.
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4.3 Statistical Formulation

In this section we describe the statistical methodology for combining physical
observations and simulation output to infer unknown model parameters. We use
observations y from the matter power spectrum (Fig. 4.1) and matter power spectra
derived from physical simulations.

Generally, the simulation models requires p-vector ¢ of input parameters to
produce a matter power spectrum 1) (). The simplest model to consider is that the
vector of physical observations y is a noisy version of a simulation 17(6) at the true
setting 6

y=1n(0)+e, (4.1)

where the observation error vector is normal, with mean 0 and variance X,. Given
a prior distribution 7(0) for the true parameter vector 6, the resulting posterior
distribution 7(0|y) for 0 is given by

(81y) = L(y[n(6))-7(6), 4.2)

where L(y|1(6)) comes from the normal sampling model for the data

Loin(0) = exp {36~ n(@)%; - (o)} @3)

and 7(0) is uniform over the 5-dimensional rectangle C given by the lower and
upper bounds in Table 4.1. Note that we use the notation ¢ to represent a generic
input vector and the notation 6 to represent the value or distribution of values for
the input at which the simulator best matches physical observations.

This basic Bayesian formulation is the starting point for both the BCMC and
EnKF approaches. If the computational model could be evaluated quickly, it could
be directly incorporated in the likelihood and the posterior distribution could
be explored via MCMC. However, each simulation requires hours or days of
computation, thus a direct MCMC-based approach is infeasible.

Note that here we consider X, to be known, accounting for the error in the
physical observations. More generally, X, could also incorporate error due to the
mismatch between computational model and reality. This paper does not discuss
the important topic of modeling this discrepancy, but more information can be
found in Kennedy and O’Hagan [7], Kaipio and Somersalom [5] and Goldstein and
Rougier [2], along with their accompanying discussions.

4.3.1 Bayesian Computer Model Calibration

The BCMC approach deals with the computational bottleneck by treating 1(-)
as an unknown function to be estimated from a fixed collection of simulations
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n(t),...,n(ty) carried out at input settings #1,...,%,. This approach requires a
prior distribution for the unknown function 1(-), and treats the simulation output
n*=M(n),...,n(tm)) as data for the analysis. Because we are trying to estimate
the function, as well as the input settings, there is an additional component of the
likelihood obtained from the sampling model for n* by L(n*|n(-)).

For this case, the resulting posterior distribution has the general form

(8, n()ly,n") =< Lyn(6))-L(n*|n () -=(n(-)) - 7(6), (4.4)

which has traded direct evaluations of the simulator model for a more complicated
form which depends strongly on the prior model for the function 1(-). Under this
model, the marginal distribution for the cosmological parameters 6 will be affected
by uncertainty regarding 1(-).

In the following subsections, we describe a particular formulation of (4.4) in the
context of this large scale structure application. This formulation has been useful in
a variety of physics and engineering applications which combine field observations
with detailed simulation models for inference. We start with a description of the
how to build an emulator, the model for 11(-) at untried parameter settings. We then
describe how the observed data is combined with the simulations and the emulator
to give the posterior distribution.

4.3.1.1 Emulating the Simulator Output

In this section, we describe the probability model, which we call an emulator, for
the simulator output at untried settings. For a given input ¢ in the standardized input
space [0, 1]7, the simulator produces a matter power spectrum of length ny;, as shown
in Fig.4.1. The emulator models the simulation output using a g-dimensional basis
representation:

q
Tl(t) = Z¢[W,‘(l)+8, re [071]177 (4’5)

i=1
where {¢1,...,¢,} is a collection of orthogonal, ny-dimensional basis vectors, the

wj(t) are weights depending on the input, and € is an ny-dimensional error term.
This formulation reduces the problem of building an emulator that maps [0,1]7 to
R™ to building g independent, univariate models for each w;(¢). Separate Gaussian
processes (GP) are used to model each of the weight functions. The details of this
model specification are given below.

Output from each of the m simulation runs prescribed by the input parameter
design results in ny-dimensional vectors which we denote by 1y, ..., 7. Since the
simulation outputs have no missing data, they can be efficiently represented via
principal components [12]. We first center the simulations by subtracting the mean
(% 2;-”:1 7n;) from each output vector. Depending on the application, some alternative
standardization may be preferred. Whatever the choice of the standardization, the
same standardization is also applied to the experimental data.
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Fig. 4.3 Simulations (top left), mean (top right), and the first five principal component bases
(bottom) derived from the simulation output

We define = to be the ny x m matrix (ny >> m) obtained by column-binding
the (standardized) output vectors from the simulations We apply the singular value
decomposition (SVD) to the simulation output matrix = giving

E=[m;iNm) =UDV/, (4.6)
where U is a ny x m orthogonal matrix, D is a diagonal m x m matrix holding the
singular values, and V is a m x m orthonormal matrix. To construct a g-dimensional
representation of the simulation output, we define the principal component (PC)
basis matrix @y, to be the first ¢ columns of [UD+/m]. For the matter power spectrum

application we take g = 5; the basis functions ¢y,. .., ¢5 are shown in Fig. 4.3.
Note that the ¢; are functions of log wave number.
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We use the basis representation of (4.5) to model the ny-dimensional simulator
output over the input space. Each vector of basis weights w;(¢), i = 1,...,q, is
modeled as a zero mean GP

wi(t) ~ N(0,,,'R(t: 1)), “.7)

where A,,; is the marginal precision of the process and R(t; p;) is a correlation matrix

with entries dependent on the inputs and a set of parameters given by the correlation
function

My T 4’
Corr(wi(1),wi(t")) = [T pye* 4.8)
k=1

This is the Gaussian covariance function, which gives very smooth realizations,

and has been used previously by Kennedy and O’Hagan [7] and Sacks et al. [13]

to model computer simulation output. An advantage of the product form is that

only a single additional parameter is required per additional input dimension, but

the fitted GP response still allows for rather general interactions between inputs.

We use the Gaussian form for the covariance function because the simulators we

handle tend to respond very smoothly to changes in the inputs. The parameter pj

controls the spatial range for the kth input dimension of the process w;. Under this

parameterization, p; gives the correlation between w;(¢) and w;(¢') when the input

conditions 7 and ¢’ are identical, except for a difference of 0.5 in the kth component.

Note that this interpretation makes use of the standardization of the input space
to [0, 1]7.

Restricting to the m input design settings , we define the m-vector w; to be w; =
(wi(t1),...,wi(ty)) fori=1,...,q. In addition we define R(;p;) to be the m x m
correlation matrix resulting from applying (4.8) to each pair of input settings in
the design. The p-vector p; gives the correlation distances for each of the input
dimensions. At the m simulation input settings, the mg-vector w = (wy,...,w,)’
then has prior distribution

wi 0 A R(t;p1) O 0
SN 0 0 , (4.9)
Wy 0 0 0 Ay R(t:pg)

which is controlled by ¢ precision parameters held in A,, and g - p spatial correlation
parameters held in p. The prior above can be written more compactly as w ~
N(0,Z%,), where X, controlled by parameter vectors A,, and p, is given by the block
diagonal covariance matrix in (4.9).

We specify independent Gamma priors for each A,,; and independent Beta priors
for the pj,

T(Awi) o= Ay~ e PR =1, g,

-1 — .
n(pik)“pi(zp (I_Pik)bp 17 lzla"'qukzla"'ap' (4.10)
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We expect the marginal variance for each w;(-) process to be close to one due to
the scaling of the basis functions. For this reason we specify that a,, = b,, =5,
encouraging each A,; to be close to 1. In addition, this informative prior helps
stabilize the resulting posterior distribution for the correlation parameters which
can trade off with the marginal precision parameter. Because we expect only a
subset of the inputs to influence the simulator response, our prior for the correlation
parameters reflects this expectation of effect sparcity. Under the parameterization
in (4.8), input k is inactive for PC i if p; = 1. Choosing ap =1 and 0 < by < 1
will give a density with substantial prior mass near one. We take b, = 0.1, which
makes Pr(p;, < 0.98) =~ % a priori. In general, the selection of these hyperparameters
should depend on how many of the p inputs are expected to be active. Alternatively,
the prior could be specified to have some point mass at one as in Linkletter et al. [8].

Define 11 = vec(Z), where vec(Z) produces a vector by stacking the columns of
matrix =. Taking the error vector in (4.5) to be independent Gaussian with common
precision A, we get the sampling model for n:

n|w, A ~N(d>w, ! ) @.11)
lTl

where @ = [I,, @ ¢1;--- ;1, ® ¢y], and the ¢; are the g basis vectors previously
computed via SVD. A Gamma prior with parameters (ay,by) is specified for the
error precision Ay.

Multiplying (4.9)-(4.11) and the Gamma prior for A;; yields the posterior. After
integrating out w, the posterior distribution for the unknown parameters becomes

”(lnakvaM)“
|(Ag@'@) '+ 3, ? exp 19 (A @' @]+ 5,) 1} x
o B q »p
2 b T AG et [TTT(1 = pip) ", (4.12)
i=1 i=1j=1
where
a; = ay +—m(n,72— q),

by =by+in'(I—@(®'®) '@')n, and
W= (d'®) 'd'n. (4.13)

This posterior distribution is a milepost on the way to the complete formulation
incorporating experimental data. However, it is worth considering this intermediate
posterior distribution for the simulator response. It can be explored via MCMC using
standard Metropolis updates and we can view a number of posterior quantities to
illuminate features of the simulator. Oakley and O’Hagan [10] use posterior of the
simulator response to investigate formal sensitivity measures of a univariate sim-
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Fig. 4.5 Posterior mean surfaces for w;(0), i = 1,2,3. Here the other three parameters were held
at their midpoints as og and Q2cpm vary over the design range

ulator; Sacks et al. [13] consider sensitivity from a non-Bayesian perspective. For
example, Fig. 4.4 shows boxplots of the posterior distributions for the components
of p. From this figure it is apparent that PCs 1 and 2 are most influenced by og and
Qcpm. Figure 4.5 shows the resulting posterior mean surfaces for wy (), wa(+) and
wi3(+) as a function of og and Qcpy.

Given the posterior realizations from (4.12), one can generate realizations from
the process 1(+) at any input setting *. Since

q
n() =Y oiwi(t), (4.14)
i=1

realizations from the w;(¢*) processes need to be drawn given the MCMC output.
For a given draw (Ay, Ay, p) a draw of w* = (wy(t*),...,w,(r*))" can be produced
by using the fact

(vzv*) NN<<8) : K(lnqj(;(p)l 3) +2W7W*(M7P)])a 4.15)
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Fig. 4.6 Changes to the posterior mean simulator predictions obtained by varying one input,
while holding others at their central values, i.e. at the midpoint of their range. The light to dark
lines correspond to the smallest parameter setting to the biggest, for each parameter

where X,,,~ is obtained by applying the prior covariance rule from (4.8) to the
augmented input settings that include the original design and the new input setting
t*. Recall that W = (@' @) ! @'n. Application of the conditional normal rules then
gives

W ~ N (Va1 Vi ', Vas = Var Vi 'Vin), (4.16)

where

(Vi Vi [ @' D) 0) ) ]
' <V21 V22> B [( 0 0 + Zwr (A, P) (4.17)

is a function of the parameters produced by the MCMC output. Hence, for each
posterior realization of (A, A,,p), a realization of w* can be produced. The above
recipe easily generalizes to give predictions over many input settings at once.
Figure 4.6 shows posterior means for the simulator response 17 where each of
the inputs is varied over its prior (standardized) range of [0, 1] while the other four
inputs are held at their midpoints. The posterior mean response conveys an idea
of how the different parameters affect the highly multivariate simulation output.
Other marginal functionals of the simulation response can also be calculated such
as sensitivity indicies or estimates of the Sobol decomposition [10, 13]. Note that a
simplified emulator can be constructed by taking plug in estimates for (A, Ay, p).

4.3.1.2 Incorporating Physical Data

Given the model specifications for the simulator 1(-), we can now consider the
sampling model for the experimentally observed data. The data are contained in
an ny-vector y. For the matter power spectrum application n, = 22, corresponding
to different wave numbers as shown in Fig.4.1. As previously stated, the data are
modeled as a noisy version of the simulated spectrum 7(6) run at the true, but
unknown, parameter setting 6. Thus

y=n(0)+e¢, (4.18)
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where the errors are assumed to be N(0,X,). For notational convenience we
represent the precision X Ias AyW,, leaving open the option to estimate a scaling
of the error covariance with /'Ly’l. Using the basis representation for the simulator
this equation becomes

y=dw(6)+& (4.19)

where w(0) is the g-vector (w;(8),...,w,(6))". Because the wave number support
of y is not necessarily contained in the support of the simulation output, the basis
vectors in @, may have to be interpolated over wave number from the columns of
®. Since the simulation output over wave number is quite dense, this interpolation
is straightforward.

We specify a Gamma prior with parameters (ay, by) for the precision parameter
Ay resulting in a normal-gamma form for the data model

y|w(8), 4y ~ N(@yw(8), AW,) 1), A, ~ Ga(ay,by). (4.20)

The observation precision W, is fairly well-known for the SDSS data, so we
encourage A, to be near one with informative prior parameters a, = by, = 5.

We can now write out the entire posterior distribution for all of the parameters
and the best fitting inputs 6. First, let

Wy = (¢;Wy¢)f)7l¢;m7yv

a; =ay+;(n—q),

by =by+3(y— Dyiy) Wy (v — @yvy),
Ay = ly(p;Wy(Dw

Ap = @' @, (4.21)
I, = q x g identity matrix,
A,'R(6,06%p1) O 0
Zwyw = 0 0 )
0 0 A, R(6,6%:p,)
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The posterior distribution has the form
7 (s Ao Aoy, O]2) o=

| 2|~

q
1 - )~ —_ .
zexp{ /2 Z} X A an e hAn XHAZ? 1y—buui

P *_ "
[T1Tpy (1 —pa) ' x A" e B 1[0 € ), 4.22)
1 k=1

:a

where C denotes the p-dimensional rectangle defined in Table 4.1.

Realizations from the posterior distribution are produced using standard, single
site MCMC. Metropolis updates [9] are used for the components of p and 6 with
a uniform proposal distribution centered at the current value of the parameter.
The precision parameters A, A, and A, are sampled using Hastings updates [3].
Here the proposals are uniform draws, centered at the current parameter values, with
a width that is proportional to the current parameter value. In a given application the
candidate proposal width can be tuned for optimal performance.

The resulting posterior distribution estimate for 6 is shown in Fig.4.7 on the
original scale. The posterior values can also be propagated through the emulator to
produce realizations of the posterior spectrum. The right hand plot of Fig. 4.7 shows
the posterior mean and pointwise 90% ranges for the power spectrum.

4.3.2 Ensemble Kalman Filter for Parameter Estimation

The ensemble Kalman filter (EnKF), a Monte Carlo extension of the Kalman filter,
uses an ensemble of model runs that are updated as additional data are made
available [1]. Unlike the Kalman filter [6], the EnKF does not require a linear model
and doesn’t assume Gaussian distributions. The EnKF can be easily extended to
estimate model parameters by appending the parameter vector as an unobserved part
of the state vector. To date, this approach has primarily been used in applications in
oil recovery [11, 15], even though it seems applicable to a wide variety of inverse
problems.

Below we briefly describe two basic variants of the EnKF for parameter
estimation, differing in how they use the ensemble of model runs to approximate
the resulting posterior distribution. One estimates the joint prior distribution for
the states and parameters by computing a multivariate normal approximation to the
ensemble of model runs and then uses the traditional Kalman updates to the mean
and covariance to compute the posterior. The other uses the ensemble directly with
EnKF updates to each ensemble member. In both cases, an ensemble of draws
from the prior distribution of the model parameters 6 are paired with the resulting
simulation output to produce an ensemble of (1(6), 0) pairs, from which the sample
covariance is used to produce an approximation to the posterior distribution. Hence
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Fig. 4.7 Comparison of posteriors between the Bayesian computer model calibration (BCMC)
approach (blue) and the ensemble Kalman filter (EnKF, green). Top: Estimated posterior distri-
bution of the parameters 6 = (n,h, 03, Q2cpm, £25). The diagonal shows the estimated marginal
posterior pdf for each parameter; the off-diagonal images give estimates of bivariate marginals;
the contour lines show estimated 95% hpd regions. The lower triangle and green lines give the
posterior under the EnKF approach; The upper triangle and blue lines give the posterior under the
BCMC approach. Bottom: Posterior median and 95% uncertainty bounds for the posterior power
spectrum. Green lines correspond to EnKF; blue lines correspond to BCMC
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we treat the input parameter settings ¢, . .. ,#,, as m draws from the prior distribution
7(6). Note that even though the distribution of the simulator response 71(8) is
completely determined by the distribution for 6, the covariance estimate used by
the EnKF ignores this.

4.3.2.1 Gaussian Prior Approximation

The first approach fits a multivariate normal distribution to the prior ensemble
for (n(6),6). Implicitly, it uses a linear approximation for 11(8) to produce the
posterior distribution for 6. The recipe:

1. For each of the m = 128 simulations form the py + p-vector

<”(t’<)) k=1,....m. (4.23)

Tk

Here ny = 88 and p = 5. With these m vectors, compute the sample mean vector
Upr and the (ny + p) X (ny + p) sample covariance matrix Xp,. Treat (1(6),0)’
as though it has N(Upr, Xpr) prior distribution.

2. In our large-scale structure example, the physical observations y correspond to
an interpolation of the ny elements of 1(6). Let H be the matrix for the that
interpolates 11(0) and ignores 6 in the combined state-parameter vector. In this
case the likelihood can be rewritten as

L(y|n(6)) < exp{—% (y—H (n(69)>)/2y1 (y—H(n(ee)>> } (4.24)

3. Combining the normal approximation to the prior with the normal likelihood
results in an updated, or posterior, distribution for (11(0)), 0) for which

0
(n(e )> |y ~ N(.upostazpost)a (4.25)
where
Soos = Zy +H'E'H (4.26)
and
Hpost = Zpost (Zpr tpr + H'Zy). 4.27)

Note that the posterior mean can be rewritten in form more commonly used in
Kalman filtering

Hpost = Hpr + ZpcH'(HZpcH' + HEH') ™! (y — Hityr) (4.28)

where X, H'(HZyH' + HZ,H') ! is the Kalman gain matrix.
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The joint normal computations used here effectively assume a linear plus Gaussian
noise relationship between 1(60) and 6, inducing a normal posterior for 6.

4.3.2.2 Ensemble Representation

The second approach is basically the usual EnKF for one time step. The goal is
to perturb member each of the ensemble (1) (#), %), in order to produce an updated
member (1, 6;) which is an approximate draw from the posterior distribution. This
updated member is not produced with the simulator so that 17, will not be equal to
the simulator evaluated at updated parameter value 11(6;’). The general recipe:

1. Construct the (ny + p) x (ny + p) sample covariance matrix X, as in Step 1 of
the previous algorithm.
2. Fork=1,...,mdo:

(a) Draw a perturbed data value y;, ~ N(y,Zy).
(b) Produce the perturbed ensemble member

; _ 1 _
<z§ ) = Shost (zprl (”( ")> +H'S, lyk) . (4.29)
k Ik

where X, and X, are defined in the previous algorithm. Note this
perturbation of the ensemble member can be equivalently written using the
more standard Kalman gain update:

(”if) — (”(tk)> + I H (HEZpH' + HIH) (e —1(1)  (4.30)

9]: 1y

3. Treat this m = 128 member ensemble

("’;) k=1,...,m. 4.31)
6k

as draws from the updated, posterior distribution for (1(6), ).

Note that this approach uses an update of two normal forms, just like the previous
version, but updated separately for each ensemble member. Only, here the normal
prior is centered at the ensemble member, and the normal likelihood is centered at
the perturbed data value, rather than at the ensemble mean and the actual data value.

This produces a posterior ensemble for the distribution of 6, along with a
posterior ensemble for the power spectrum. The green lines in the left panel of
Fig. 4.7 show the posterior densities for the parameters—a kernel density estimator
was used to produce the density plots. The green lines in the right panel show
the posterior median and 95% uncertainty bounds for the power spectrum. For
comparison, the blue lines show the same quantities estimated using the BCMC
approach.
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4.4 Discussion

The two methods yield somewhat similar results for the posterior distributions
of the parameters and the spectrum, but there are differences. The EnKF uses a
Gaussian simplifying assumption in order to include data, which basically uses a
linear plus noise (i.e. regression) relationship between 6 and 1. As such, the BCMC
approach is likely to produce more accurate results for both the parameters and
the predicted spectrum since it gives a more accurate representation of the simulator
response. Another advantage of the BCMC approach is that the emulator can be used
for secondary purposes such as assessing parameter sensitivity. These advantages
come at a cost. The BCMC approach requires considerably more computation
than the EnKF’s simple linear updating equation. Further, for high-dimensional
parameter spaces the BCMC approach may experience difficulty with estimating
the response surface without huge numbers of runs. In this case, the assumptions
and the efficiency of the EnKF may produce a superior result.
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Chapter 5
Commentary: Simulation-Aided Inference
in Cosmology

Carlo Graziani

Abstract Higdon’s use of Gaussian Process (GP) emulation to analyze SDSS
data using simulated power spectra from N-body simulations supplies a textbook
case study of a set of techniques that are likely to become a standard part of the
astrostatistics toolbox. The problems addressed by these techniques models based
on expensive computer simulations that run on high-performance computing (HPC)
platforms, which can only sparsely sample a large-dimensional input parameter
space are likely to be of interest to a growing community of computational astro-
physicists wishing to compare models to data, as this style of computing becomes
“democratized” by the increasing availability of HPC platforms in University
research settings. We comment here on the computational challenges of Gaussian
Process modeling, the fidelity of model hierarchies, and strategies for the adaptive
design of numerical experiments.

5.1 Gaussian Process Emulation

The relation of a computer model’s output to its input has a term of art: the Response
Surface, essentially the function that maps the input parameter manifold to the
output space (usually a vector space). The input parameter space is often high-
dimensional.

The fact that the dense probing of input parameter space is unaffordable creates
a new situation with respect to statistical inference. In effect, the response surface
must be interpolated to general parameter values based on a limited sampling of
the parameter space corresponding to a limited number of simulations. This means
that a new source of uncertainty, separate from instrumental noise (AKA “statistical
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error”’) and model inadequacy (AKA “systematic error”’) must be factored into the
error budget: the uncertainty introduced by the interpolation. This uncertainty is
represented by building an emulator—a stochastic representation of the simulator
“trained” using the available model evaluations [2-5].

The stochastic nature of the response surface representation is frequently im-
plemented using a Gaussian Process (GP) model [1]. Briefly, this is a methodology
whereby a prior Gaussian distribution is specified on a space of functions describing
the response surface, and then updated using data to produce a posterior summary
of what is known about the surface. The result is an interpolation of the response
surface to arbitrary points not sampled by simulations, with the interpolation
uncertainty encoded as a Gaussian covariance. One benefit of this style of emulation
is that if the simulations are to be compared with measurement data with Gaussian
measurement uncertainties, those uncertainties may be naturally convolved with the
GP interpolation uncertainty in a simple analytic manner [3, 6,7].

In effect, the interpolation performed by the emulator allows us to transition to
a new view of the problem: we regard the model output as data from a family
of models (the code, at all possible parameter settings). The comparison of the
computer model to measurement data is carried out by joint model fitting to
the computer data and the measurement data to simultaneously estimate the full
response surface and the “true” model parameters.

5.2 Computational Challenges

A difficulty that must be overcome in GP emulation (as in most GP modeling
of large systems) is that the evaluation of likelihoods requires the inversion of
large, symmetric, positive-definite covariance matrices (or rather, the solution of
their associated linear problem), and the computation of the determinants of those
matrices. In GP emulation, the dimension N of the space in which the covariance
matrix operates is N = Ny X Noyspur, Where Ny, is the number of simulations
and Ny i 1s the dimensionality of the output space. Since the computational cost
of inversion scales as ¢'(N?), direct approaches (such as Cholesky factorization)
rapidly lose their usefulness.

Higdon partly abates this problem through a data-reduction strategy, using a
Principal Components Analysis (PCA) on the model output to create a manageable
representation of the simulation output. By keeping only Neomponents Of the singular
values (the largest ones, representing the “most active” components), and placing
a GP model on each parameter weight function in the resulting decomposition,
Higdon reduces the problem to one with a computational cost that scales as
o (Ncomponems X N ?,m)

This is a substantial savings, but it leaves in place an important & (N:lm) scaling,
which has the extremely galling consequence that the very act of performing more
simulations to improve our knowledge of the response surface can quickly result
in an infeasible computational cost. For problems with high input parameter space
dimensionality, and with complex response surface structure, there is simply no
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alternative to growing Nj;,, to the point where the structure can be resolved, at least
in parameter space regions corresponding to high posterior density. It is therefore
necessary to consider approximation schemes that control the cost of GP emulation.

Gibbs and MacKay [8], adapt methods due to Skilling [9] to exhibit approxima-
tions to linear problem solutions that involve only matrix-vector multiplications,
and which scale as N>. These methods are related to approaches that note the
equivalence of the required inversion problem to a quadratic form minimization, and
adopt conjugate gradient minimization as the minimization strategy. By terminating
the minimization at an adequate level of accuracy, but well before formal exact
convergence, such methods achieve N> complexity cost [10].

In addition, it is possible to adopt covariance models based on kernels of
compact support—that is to say, covariances that vanish when the distance between
points exceeds a certain limit. Such kernels give rise naturally to sparse covariance
matrices, which can then be handled at costs approaching N for operations
such as matrix-vector multiplication in the case of expanding domain asymptotic
regime. For a discussion of a family of such kernels, see p. 88 of Rasmussen and
Williams [1]. Compact-support kernels may also be combined in Schur products
with more general kernels, a technique called “tapering” [11], which can provide
the benefits of sparse matrices with the more complex covariance structure of
non-compact kernels.

5.3 Model Fidelity Hierarchies

Even if one has abated the curse of dimensionality problem by some approximation
scheme, one often still confronts a computational cost issue associated with
running the simulations themselves. Complex, high-fidelity, multi-physics, multi-
scale simulations may require so much computational time on an HPC platform
that they may simply not be available in the required abundance for an adequate
resolution of the response surface.

This circumstance may be addressable by supplementing the highest-fidelity
simulations with cheaper—and more abundant—Ilower-fidelity simulations, at the
cost of some inaccuracy which we may hope to cross-calibrate against the high-
fidelity simulations. Examples include simulations of lower spatial resolution, or
including approximate physics, or excluding computationally-expensive physics,
or using spatial symmetry assumptions (such as cylindrical, planar, or spherical
symmetry) to reduce the dimensionality of the problem.

It is noteworthy that it is not necessarily the case that the quantitative accuracies
of the available types of simulations fall into a natural hierarchical rank-ordering. It
may be the case that some simulations are more accurate than others in some input
parameter regimes, but less so in others. In addition, it may occur that some types of
approximations leading to faster simulations in some parameter regimes may simply
fail in some parameter regimes—the code may crash, or numerical instabilities may
develop, or the approximation may simply break down, leading to results bearing no
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relation to the true physical situation. In such a circumstance, levels of the fidelity
hierarchy may simply go missing in certain parameter regimes. Therefore, while it is
usually clear that there exists a maximum-fidelity level of simulation corresponding
to the highest computational cost, in general the remaining levels of the hierarchy
may not be strictly ordered by accuracy.

The research efforts that I am aware of to fit such multi-fidelity level simulations
into a GP emulator scheme [12—14] make some relatively strong assumptions about
the nature of the relationship between the levels of the hierarchy. These are spelled
out in [12], and include a strictly-ordered hierarchy of fidelity levels, a Markov-like
assumption on the relative informativeness of neighboring levels, and stationarity
(i.e. translational invariance) of the underlying GP over the parameter space. In view
of the considerations above, and of the desirability of generalizing GP emulation
away from stationary models, it seems worth exploring somewhat more agnostic
schemes for connecting the simulation fidelity levels.

5.4 Adaptive Numerical Experiment Design

At what parameter values are we to run the simulations? This is the issue of numer-
ical experimental design. When potentially expensive computations are invoked to
probe a response surface over a potentially high-dimensional input parameter space,
it is urgent that simulations not be wasted on parameter space regions that neither
illuminate interesting structure of the response surface nor reside in neighborhoods
where the surface closely resembles the measurement data. It seems hopeless to
accomplish this sort of optimization efficiently with ab initio designs such as Latin
Hypercubes. Existing information from analysis of the data and the response surface
using the current design must be used to guess parameter choices for future runs that
are, in some sense, optimal.

The two objectives of globally characterizing response surface structure
and of using what is already known about the response function for specific
inference goals (e.g., modeling measurement data) are in a tension that is known
from the global optimization and adaptive learning literatures by a term of art:
the “Exploration-Exploitation Tradeoff”, wherein (in the current instance) the
“exploration” imperative to understand the response surface everywhere competes
with the “exploitation” necessity of focusing on regions appearing to resemble the
experimental situation under study. Both activities are essential, and their reconcil-
iation is necessarily an important objective of adaptive experimental design theory.

The efforts that have been dedicated to adaptive numerical experiment design
have been largely focused on the exploration aspect of the tension [13,15,16]. There
is more to be learned about the full tension from the literature of physical experiment
design. In particular, Loredo [17] exhibited a Bayesian experimental design scheme
wherein observations currently “in the can” can be used to calculate the expected
information gain—negative Shannon entropy—from a future observation with
selected experimental parameters, and to choose those parameters so as to maximize
that information.
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This scheme is generalizable to numerical experimental design. Suppose we
have measurement data y corresponding to an unknown true parameter setting Or.
Suppose also that the existing design of Nj;, simulations at parameter settings
0 =(6y,...,6y,,) withoutputs Y = (y1,...,yn,, ) is to be augmented by a proposed
simulation with parameters 8. . Let the GP posterior predictive of the augmented
design be m(y4|604,0,Y) and have Shannon entropy H(6;,0). Also, let the GP
posterior predictive of the augmented design conditioned on the data and on the true
parameter values be 7’'(y|0+,0,Y,0r,y), with Shannon entropy H'(6.,0,0r).
Then it can be shown [18] that the expected information gain from the proposed
new simulation is

EN6:) =H(0:,0) ~ [d0r P(Ory.Y.0)H'(6,.0.6r).  (5.D)

The first term in (5.1) embodies exploration (by itself, it yields Maxent sam-
pling). The second term embodies exploitation, rewarding smaller predictive un-
certainty near best-fit parameter point. The expected information gain may thus be
used to drive a “Simulation-Inference-Design” cycle analogous to the “Observation-
Inference-Design” cycle described in [17].
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Chapter 6
The Matter Spectral Density from Lensed
Cosmic Microwave Background Observations

Ethan Anderes and Alexander van Engelen

Abstract We use local likelihood estimates of gravitational shear and convergence
from lensed cosmic microwave background observations to estimate the projected
mass spectral density. Typically there is an additive bias when using a plug-
in estimate of the spectral density from a noisy estimate of the random field.
We explore the possibility of adjusting this bias by subtracting an approximate
power spectrum of the noise in the reconstruction using unlensed simulations. We
demonstrate some empirical results that suggest the remaining biases complement
those seen in the quadratic estimate developed by Hu and Okamoto (ApJ 557:L79—
L83, 2001; ApJ 574:566-574, 2002; Phys Rev D 67:083002, 2003). We finish
the paper with a discussion regarding the potential scientific applications and the
challenges associated with estimating the noise spectrum from simulations.

6.1 Introduction

Over the past decade the cosmic microwave background (CMB) has emerged as
a fundamental probe of cosmology and astrophysics. In addition to the primary
fluctuations of the early Universe, the CMB contains signatures of the gravitational
bending of CMB photon trajectories due to matter, called gravitational lensing.
Mapping this gravitational lensing is important for a number of reasons including,
but not limited to, understanding cosmic structure, constraining cosmological
parameters [10, 16] and detecting gravitational waves [11, 12, 15]. In this paper
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we investigate the possibility of using simulations to correct a bias when using a
plug-in estimate of the matter spectral density from local likelihood estimates of
gravitational lensing.

Two estimates have emerged for reconstructing the gravitational potential: the
quadratic estimator (developed in [8, 9, 14]) and a global maximum likelihood
estimate (developed in [6, 7]). The quadratic estimator, which is arguably the most
popular, uses a first order Taylor approximation to establish mode coupling in
the Fourier domain which can be estimated to recover the gravitational potential
(real space analogs to these estimators can be found in [2, 3]). The maximum
likelihood estimate, on the other hand, uses likelihood approximations to find an
MLE for estimating the lensing potential. A new estimate developed in [1] uses a
local Bayesian approach that avoids the computational difficulties associated with
a full scale likelihood approach. This approach estimates the local curvature of
the gravitational potential on sliding local neighborhoods of the observed CMB
temperature and polarization fields. A low pass filter of the true gravitational
potential is then constructed by stitching together local curvature estimates. The
local analysis allows one to avoid using the typical first order Taylor expansion
for the quadratic estimator and avoids the likelihood approximations used in global
estimates. Moreover, the likelihood is computed in position space and therefore
can easily deal with point source foregrounds, masking, nonstationary noise and
nonstationary beams.

In [1] the local Bayesian method is shown to accurately reconstruct the gravi-
tational potential under nearly ideal experimental conditions when observing both
the temperature and the polarization field. In this paper, we consider the temperature
fluctuations only. For more realistic experimental conditions the estimated projected
mass can be noisy, especially at high frequency. However, using the isotropic
assumption one can radially average the squared modulus of the Fourier transform
of the estimate to approximate the spectral density. In doing so, one potentially gets
accurate estimates of the mass spectral density even with small signal-to-noise ratios
at each individual frequency of the mapping estimate.

There are two difficulties that arise when using locally estimated maps to
estimate the spectral density. First, the observational noise weakens the amount of
local information for gravitational shear and convergence. This has the impact of
shrinking the local Bayes estimates toward the prior mean (at zero). The alternative,
alocal MLE estimate, is not as regularized and can have large estimation noise in the
presence of weak local information. Using either of these estimates for estimating
the spectral density yields significant biases: high bias for local MLE and low bias
for local Bayes. In Fig. 6.1 we show the plug-in estimates of spectral density using
the local MLE and Bayes estimates from one simulation of a lensed temperature
field on a 10° x 10° patch of the flat sky observed on 1 arcmin pixels with 2-uK
noise and beam FWHM of 4 arcmin. The dashed line with stars shows the plug-in
estimate from the local Bayes technique, which is clearly shrunk toward zero. The
dashed line with triangles shows the local MLE technique, which has a high bias
from the estimation error.
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Fig. 6.1 Solid line shows the input theoretical spectrum; triangles show a local MLE estimate of
the spectrum; stars show the local Bayes estimate of the spectrum; circles show the bias corrected
local MLE estimate of spectral density. The simulation is on a 10° x 10° patch of the flat sky
observed on 1 arcmin pixels with 2-uK noise and beam FWHM of 4 arcmin

In an attempt to mitigate these biases we work with the overly noisy MLE
estimate but correct the resulting bias in the plug-in spectral density estimate using
simulations. The dashed line with circles in Fig. 6.1 shows this new estimate. It is
clear that this technique has significantly less bias than either the local MLE or
the Bayes estimate. However, to make this new technique scientifically useful one
needs a theoretical understanding of the behavior of the local MLE estimate in both
the lensed and unlensed case (since unlensed simulations are used to correct the
bias). There are two main difficulties in deriving such an understanding. First, the
estimates are implicitly defined as a maximizer of the local likelihood and, as such,
there is no closed form. Secondly, the typical asymptotic arguments used for MLE
estimates hold as the signal-to-noise ratio approaches infinity. Since the signal-to-
noise ratio is very low on each local neighborhood one might expect the estimates
to behave differently than their asymptotic cousins.

The remainder of the paper is organized as follows. In Sect. 6.2 we give a detailed
account of the local MLE and Bayesian estimates. Then in Sect. 6.3 we discuss how
estimation error propagates to biases in plug-in estimates of spectral density and
how to estimate the bias with simulations. We present numerical evidence that one
can subtract this estimated bias to produce estimates of spectral density that are
comparable to the quadratic estimator found in the current literature. Finally, in
Sect. 6.5, we discuss the challenges associated with local estimates of lensing and
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the resulting estimates of spectral density. We emphasize that the goal of this paper
is to partly give some hints at the success of a new method but primarily to illuminate
the challenges associated with local likelihood estimates in general.

6.2 Local Estimates of Shear and Convergence

The CMB radiation measures temperature fluctuations of the early Universe some
400,000 years after the big bang. Let T'(x) denote these fluctuations (measured in
units LK) on the observable sky. In this paper we work with the small angle limit
and use a flat sky approximation so that x € R?. Instead of directly observing T
we observe a remapping of the CMB due to the gravitational effect of intervening
matter. This lensed CMB can be written 7'(x + V¢(x)) where ¢ denotes the
gravitational potential (see [4], for example).

To describe the local estimate of ¢ from the lensed CMB, developed in [1], first
consider a small circular observation patch with diameter 6 in the flat sky centered
at some point xg, denoted .#5(xy) C R2. Over this small region we decompose ¢
into an overall local quadratic ¢ and error term £ so that

p=q’+e.

The global estimate of ¢ is based on stitching together local estimates of ¢?, denoted
G?, from the lensed CMB observed on .#5(xo). Notice that as § — 0 the expected
magnitude of the error € approaches zero. This has the effect of improving the
following Taylor approximation

T(x+Vé(x)) =T (%) + Ve(x) VT (&) + - - 6.1)

for x € #5(xo), where we use the notation ¥ = x + V¢?(x). Notice that ¥ depends
not only on x but also the unknown coefficients of the quadratic term ¢?. Now when
0 is sufficiently small we can truncate the expansion in (6.1) to get

T(x+V¢(x)) ~T(x+Vq®(x)) (6.2)

on the local neighborhood .#5(xy). By regarding ¢ as unknown we can use the
right hand side of (6.2) to develop a likelihood for estimating the coefficients of
¢?. Nominally ¢ has six unknown coefficients for which to estimate. However, we
can ignore the linear terms in g since the CMB temperature and the polarization are
statistically invariant under the resulting translation in V¢?. Therefore, one can write
g% as ¢1(x —x0)%/2 + ca(x — x0) (y — yo) + ¢3(y — y0)? /2 for unknown coefficients

Cl1 = {4xx,C2 = {4xy,C3 = {yy-
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6.2.1 The Local Likelihood

Using the Gaussian approximation of the CMB along with the quadratic potential
approximation given by (6.2) one can construct the likelihood as a function of
the unknown quadratic coefficients in ¢®. Let x,...,x, denote the observation
locations of the CMB within the local neighborhood #5(x) centered at x¢. Using
approximation (6.2), the CMB observables in this local neighborhood are well
modeled by white noise corruption of a convolved (by the beam) lensed intensity
field T. Let t denote the n-vector of observed CMB values at the corresponding
pixel locations in .45 (xg) for the intensity 7. Let @ denote the instrumental beam
so that the k™ entry of ¢ is modeled as

f /dezx(p(x)T(ick—i)—i-GTnk 6.3)

where the n;’s are independent standard Gaussian random variables, X; = x; +
Vg% (x;) and ¥ = x + Vg% (x). Note that this is an approximate model for 7 based
on (6.2). In actuality, the k™ temperature measurement is [pod?x @ (x)T (x; —x +
Vo (x; —x)) + ormn, but the linearity of Vg? allows us to write x; —x + Vo (x; —
X) & constant + X, — X on the small neighborhood .#5(xp). Since one can write
x+Vq®(x) = Mx where the M is a 2 x 2 real matrix, the sheared temperature T (¥)
is a stationary random field with spectral density given by CAT/IZ 1pdetM —L After
adjusting for the beam (which is applied after lensing) the covariance between the
observations in ¢ can be written

25 - d (%) | (0 2Citig 6.4
N~ .. - J - .
(utj), ~ of ”+./Rz @2m)2° 2O Gem ©4)

Remark. We use the notation (-), to denote expectation, or ensemble average, with
respect to both the CMB temperature field T(x) and the observational noise 7.
Conversely, we use the notation (-), to denote expectation with respect to the large
scale structure ¢ and for brevity we write (-) = ((-);), where the expectations are
done under the assumption that 7 and ¢ are independent.

Now, using Gaussianity of the full vector of CMB observables the log likelihood
(up to a constant), as a function of the quadratic fit g%, can be written

1 S
Z(g*) = ~5t' (3o +0t1) - S Indet (2,0 +0t1) 6.5)

where Xy + 0# is the covariance matrix of the observation vector ¢ containing the
covariances <tktj>T given in (6.4) and G%I is the noise covariance structure where /
is the n x n identity matrix. Notice that the noise structure does not depend on the
unknown quadratic ¢®. In addition, one can utilize a single FFT to quickly compute
the integral (6.4) for sufficient resolution in the argument x; — X; to recover <tktj>T
for all pairs k, j.
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6.2.2 The Local Posterior

In [1] it is argued that the local estimates of ¢? are modeled by a lowpass filter of the
true gravitational potential. In particular, the quadratic function ¢® can be modeled
by
d*e
o) [ L5
q° (x) P

over x € A5(xo), where ¢'P(£) = @5(£)¢(£), with low-pass filter defined by

ix-l¢lp (f)

(pg(l)xmin{l, [2—g|e|r}. (6.6)

Therefore a natural candidate for the prior on the coefficients of ¢? is the distribution

924 (0)
axka)(j

obtained by the corresponding spectral moments of ¢'P. Letting this prior be denoted
by 7(¢?) the posterior distribution on ¢?, which we maximize to estimate ¢ in the
local Bayesian case, is

of the random variables . These are mean zero and Gaussian with variances

p(q°|2) = eZ "B n(g?). 6.7)

6.2.3 Stitching Together the Local Curvatures

The local MLE estimates of ¢? are found by maximizing (6.5) whereas the local
Bayesian estimates are found by maximizing (6.7). These estimates give local
quadratic fits to the true potential @, i.e. local curvature estimates: .7, .2, ;2. The
global estimate of ¢'P is found by stitching together these local the estimates. This is
done in [1] by performing a gradient fit to ( 3}5, }g) which gives (ﬁip and a gradient
fit to ( iyp, q)yl‘y) ) which gives an estimate qSy‘P. A final gradient fit is then fit to the
vector field ( A)l(p, (ﬁylp ) to obtain an estimate ¢'P. The result of this iterated gradient
fit is shown in Fig. 6.2 for a simulated lensed temperature field.

6.3 Spectral Density Estimates of Projected Mass

In this section we discuss the plug-in estimate of spectral density and show how
estimation error propagates to biases in the spectral density estimate. We discuss
this in the context of estimating the projected mass spectral mass density C/* where
K denotes the convergence field (which is a tracer for mass fluctuations) and is
defined by

K=—(0u+0y)/2
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Fig. 6.2 Estimated gravitational potential from simulated lensed CMB: input gravitational po-
tential (fop); local Bayes estimate (bortom left); local MLE estimate (bottom right). The lensed
temperature simulation was observed on a 10° x 10° patch of the flat sky with 1 arcmin pixels,
2-uK noise and a beam FWHM of 4 arcmin

using the shear notation given in [17]. The spectral density C/* is defined as the
Fourier transform of the autocovariance function:

Cr — / Pxe O (i(x)K(0)),.

Notice that (k(x)k(0)), gives the autocovariance since (x(x)), = 0.
To develop the estimate of C;* we need the following identity when x:

(K(O)Kk()*)y = 8 _pCr™

This follows directly from the definition of spectral density, the assumption that

K (x) is isotropic and the definition &; = [ %e"’“l . Notice that k(£) is technically

a generalized process which behaves like /CF*W (£) where W (£) is white noise.
Therefore when working with finite sky observations of k(x) one can produce
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a discrete version of x(£) (using discrete Fourier transform) which satisfies

KK
(Ix(OF), = %- where AL = Al1Al, is the grid area in Fourier space. For the
remainder of this paper we work with this discrete version of k.
If one knew the convergence field k then one can estimate C/* by

EEC— Al

. Y k(o)) (6.8)

#Au, teay,

where A£ denotes the area of the observation grid in £; Ay denotes a gridded
annulus with radius £o; #4,, denotes the number of grid points in A;,. Notice that

this estimate is unbiased: (Cf*), = C[*.
In the case of the local MLE or Bayes estimates one has—aﬁ}&, Al‘y) and (ﬁiyp—

the estimates of the mixed partial derivative as a function of local neighborhood
midpoint. This leads to an estimate of K as

k(€)= —(6R(0) +,3(0))/ (295())

where @g is the band pass filter, defined in (6.6), which approximates the local
neighborhood effect discussed in [1]. One can then use K to construct a plug-in
estimate of C;* defined as

C}f) = “plug-in estimate” = o

Y [k 6.9)

lo eeay,

The main problem with the plug-in estimate (6.9) is that estimation error from K

propagates to biases in Cf’%. In the local Bayesian case, the estimation error results
in a multiplicative shrinking bias as is seen in Fig.6.1. Conversely there is a large
additive bias for the local MLE plug-in estimate shown in Fig. 6.1. This bias has a
simple explanation. If one lets N denote the x estimation error (so that K = K + N)
then by assuming isotropy A£(|&(£)[*) ~ Cf* + CN + C)* + C)'V so that

(Ci) mers + (e +c + ) (6.10)

additive bias

where C?’N is the spectrum for N (assuming isotropy) and Cll‘N is the cross spectrum
between k and N so that (k(£)N(£')*) = CFN,_,. For the local Bayes estimate the
dominant source of bias is from the first two terms Cll‘N + C?’ X which is from the
multiplicative shrinkage bias. Conversely, it seems the dominant source of bias for
the local MLE estimate is from the last term, C/IZVN , which causes the upward bias
seen in the dashed line with triangles in Fig. 6.1.
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6.3.1 Bias Correcting Local MLE Spectral Estimates
with Simulations

. . Alp 21 21 .
In the previous section we used @7, qbyg and q)x?, to approximate the convergence

K and construct the plug-in estimate Ctl"( We argued that estimation error results
in spectral density estimation bias which is quantified by CZKN + Cév K+ C?]N . The
two terms CEN + Cév ¥ dominate the bias when using a local Bayesian estimate.
Conversely, we will see that the dominant source of bias when using a local MLE
estimate is from Cév N The advantage of this scenario is that Cév N has potential to be
estimated using unlensed simulations (i.e. where Kk = 0) whereas one must simulate
Kk under some fiducial model to approximate CZKN + Cév K. It is for this reason that
we choose to use the noisy local MLE estimates, but correct the resulting bias in the
plug-in spectral density estimate by approximating the noise spectrum CéVN from
unlensed simulations. In particular, we use the following bias-adjusted local MLE
estimate of C}*

CFx = CFF — YV 6.11)

where K is the local MLE estimate of k and CéVN is approximated using simulations.

To construct CQ’N we use the local MLE estimation procedure for K and run it on
multiple realizations of unlensed CMB (with noise and beam) on the same pixel
configuration of the observations. Since these simulations are done with x = 0, the
result is pure noise N. A spectral density estimate, based on N, is computed for each
realization, which are then averaged over multiple realizations to construct Cév N

Remark. In this paper we assume the noise spectrum is radially symmetric so that
Cév N is estimated by the same radial averaging as done in (6.9). If the beam or noise
is asymmetric this assumption is unlikely to be true. However, one can still estimate

the noise spectrum from simulations and subtract the resulting bias in Cf k

6.4 Simulation

We use four types of simulations in this section, each summarized in Table 6.1. The
lensed simulations (with additional noise and beam) are used to generate estimates
of Kk, using both the local MLE and quadratic estimates, which are then used to

construct the plug-in estimates CZ"% given in Sect.6.3. The unlensed simulations
(also with additional noise and beam) are used to estimate the error spectrum,

CéVN , derived in Sect.6.3.1 for both the quadratic estimates and the local MLE
estimates. We use periodic boundary conditions for the quadratic estimates to
avoid complicated appodization issues inherent in the quadratic estimate based on
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Table 6.1 The four types of simulations used to compare the bias adjusted local MLE and
quadratic estimates of C/*

Simulation Boundary type ~ Useage Number of simulations
T(x+V¢$(x)) Periodic C/‘,’a (using the quadratic estimate) 100
T(x) Periodic Cj\’m (using the quadratic estimate) 100
T(x+V¢$(x)) Non-periodic CF¥ (using local MLEs) 35
T(x) Non-periodic E[Aﬁv (using local MLEs) 35

non-periodic sky cuts. Due to computational time constraints only 35 simulations
were made for the local MLE estimates (verses 100 simulations for the quadratic
estimate).

The non-periodic lensed CMB fields are simulated' by generating a high
resolution simulation of T'(x) and the gravitational potential ¢(x) on a periodic
17° x 17° patch of the flat sky with 0.25 arcmin pixels . The lensing operation is
performed by taking the numerical gradient of ¢, then using linear interpolation to
obtain the lensed field T'(x + V¢ (x)). We down-sample the lensed field, every 4th
pixel, and restrict to a 10° x 10° patch to obtain the desired arcmin pixel resolution
for the simulation output. A Gaussian beam with a FWHM of 4 arcmin is applied in
Fourier space using FFT of the lensed fields. Finally white noise is added in pixel
space with a standard deviation of 2 uK-arcmin. A similar procedure is performed
for the periodic lensed CMB fields, except the initial high resolution simulation of
T (x) and ¢ (x) are done on a periodic 10° x 10° patch of the flat sky with 0.25 arcmin
pixels.

The top plot of Fig. 6.3 summarizes the results using the local MLE estimates
with a non-periodic cut sky. The bottom plot of Fig. 6.3 summarizes the corre-
sponding results using the quadratic estimate on a periodic cut sky. Both show
the ensemble average of the bias adjusted spectral density estimates C;* (blue)
compared to the true spectral density C/* (black) and the ensemble averaged

spectrum EF\K one would obtain if one had access to the true x field for each
simulati(gl_\(red). The bars denote standard deviation error bars. The reason we
include Cf* is to show the pixelization and appodization bias which is present
irrespective of estimation procedure for x.

Both estimates of C;* based on the quadratic estimate and the local MLE
estimate do a good job of tracking the true spectral density. It appears there is more
variability in the local MLE estimate, especially at low ¢. However, at low ¢ the
local MLE estimate looks nearly unbiased. The observed power suppression bias

I The fiducial cosmology used in our simulations is based on a flat, power law ACDM cosmological
model, with baryon density €2, = 0.044; cold dark matter density Q.4 = 0.21; cosmological
constant density £, = 0.74; Hubble parameter 4 = 0.71 in units of 100kms~! Mpc~!; primordial
scalar fluctuation amplitude A, (k = 0.002Mpc~!) = 2.45 x 10~7; scalar spectral index ny(k =
0.002Mpc~!) = 0.96; primordial helium abundance Yp = 0.24; and reionization optical depth 7, =
0.088. The CAMB code is used to generate the theoretical power spectra [13].
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Fig. 6.3 Top: The simulation results for the bias adjusted local MLE estimate of C{*. The blue
dots show the ensemble mean of the estimates (1o error bars). The red dots shows the mean of

the estimates C"" if one had access to the true k. Bottom: The corresponding results for the bias
adjusted (with 51mulat10ns) quadratic estimate of C/’* (See Sect. 6.4 for the simulation details)

at low ¢ and power amplification bias at high ¢, for the quadratic estimator, is well
documented in [5, 11]. It is interesting that the power amplification bias at high ell
is opposite to the bias in the local MLE estimate. This may be due to a different
Taylor truncation error used to derive the two different estimates. Irrespective of
where the bias comes from, it is potentially scientifically useful that the biases are
complementary.

Note: The ensemble averaged spectrum C{F\K based on the true x (red) is different
at low ¢ in the top plot versus the bottom plot in Fig. 6.3. This is presumably do to
the appodization effect which is present in the local MLE simulations, since we are
using non-Periodic sky cuts, but not present for the period sky simulations used for
the quadratic estimator.
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6.5 Challenges

The main challenge for the local MLE procedure is the difficulty in deriving
global properties of the noise structure. Since the local MLE estimate is based
on a different Taylor truncation it may provide an important complement to the
quadratic estimator. Indeed, the spectral density bias in the frequency range 300—
600 seems entirely complimentary to the bias in the quadratic estimator. Moreover,
the estimation variability also seems comparable in this range. However, the bias and
variance most likely depends on the true, but unknown, spectrum C;*. It remains
to be seen if the bias remains complementary under alternative models for C;~.
Therefore, before it can be used in conjunction with the quadratic estimator, one
must get some theoretical quantification of the nature of bias and variance.

It is clear from the results given in Sect. 6.4 that simulations can provide a partial
answer to the quantification of bias and variance of the spectral density estimation.
Unfortunately, the local MLE estimate is somewhat computationally expense. Each
local estimate on a small neighborhood can be done quickly. However, these local
estimates are required at a sufficient resolutions to get adequate coverage in Fourier
space. Therefore a complete understanding of bias and variance seems unattainable
through simulation.

One potential advantage of the local MLE estimate is the apparent unbiasedness
at low £. This contrasts with the situation for the quadratic estimate, where the bias at
low ¢ has been quantified by Hanson et. al. [5]. They present a method for correcting
the low ¢ bias in the quadratic estimator. However, this method depends on a fiducial
model for C;*. Indeed, this problem persists when the quadratic estimator is applied
to non-periodic sky cuts where quantification of the appodization effect is usually
done with simulations under a fiducial model for C;*. The advantage of the local
MLE estimates, in this case, is that it does not require a fiducial model for first
order bias correction or appodization. The cost of this unbiasedness, it seems, is the
apparent increase in variability at low £.

Acknowledgements We thank Lloyd Knox for numerous helpful discussions.
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Chapter 7

Commentary: ‘The Matter Spectral Density
from Lensed Cosmic Microwave Background
Observations’

Alan Heavens

Abstract Weak gravitational lensing of the Cosmic Microwave Background
(CMB) by the intervening clumpy Universe is an important effect which affects
parameter estimation in cosmology if not correctly accounted for, and which limits
our ability to measure primordial gravitational waves from inflation. Quantifying
its effects is an important task, and one which is challenging in practice. In this
commentary, I give some physical context and describe the statistical properties
of the CMB and lensing fields, and argue that in principle it is an ideal topic for
statisticians to get involved with. In practice, there are several challenges which
make detailed study quite challenging, and the accompanying paper addresses one
of these with a novel approach. This is the effect of non-uniform sky coverage, due
to regions of the sky being masked by, for example, point sources. The paper by
Drs. Anderes and van Engelen addresses this with a new idea—a local maximum
likelihood estimator of the lensing potential, stitching together the estimates to give
a global lensing map. It discusses the challenges inherent in the approach, and offers
some possibilities to meet the challenges.

7.1 The Cosmological and Statistical Appeal of the CMB

Ethan Anderes and Alexander van Engelen address one of the most important topics
in cosmology today. They analyse the effects of gravitational lensing—the bending
of light by gravity—on the CMB radiation. The CMB photons give a snapshot of
the Universe at recombination, about 300,000 years after the Big Bang; the photons
have travelled largely unimpeded since then, being subject to relatively few physical
processes, one of which is the deflection due to the gravitational influence of the
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increasingly clumpy intervening Universe. There are a number of observational
probes of cosmology, but it is fair to say that the CMB is the prime source of
information about the Universe, for two main reasons. The first is that the detailed
statistical properties of the fluctuating radiation field depend quite sensitively on
the key parameters of the Universe, such as its expansion rate, matter content and
so on, as well as giving us a window into the early Universe, where a period of
rapid accelerating expansion, known as inflation, is thought to have provided the
seeds for subsequent structure formation. These early fluctuations can be detected
in the temperature field of the Universe, and also yield a small polarisation due
to Thomson scattering of the radiation from free electrons at the recombination
era. The second reason is that the physics of the CMB is rather well understood,
as at the time of emission (in the standard cosmological model, which is a very
successful description of the Universe), the Cosmos was an almost uniform mixture
of photons, ordinary matter and dark matter, with a small component of dark energy.
This is a simple system to analyse, so the confrontation of observation with theory
is very robust, and firm conclusions can be drawn with high confidence. From a
statistical point-of-view, the CMB is also a very appealing hunting ground, as its
statistical properties are simple, principally as a result of the central limit theorem,
so we know pretty much what we are dealing with. In practice, there are important
complications, and subtle effects which may indicate new physics. Lensing is one
known physical effect, and as it changes the power spectrum of the observed
CMB, including its effects is important to get accurate estimation of cosmological
parameters. Apart from using the statistical properties of the temperature field to
determine cosmological parameters, a very exciting future opportunity is to look
for rather direct evidence for inflation, the process in the early Universe which
is thought to be responsible for the present expansion of the Universe. This manifests
itself through polarisation signals in the CMB as a result of gravitational waves
generated during inflation. These give rise to so-called B-mode perturbations, at
a level which depends on the energy scale of inflation, manifested in the tensor-
to-scalar ratio r. Measurement of primordial B-modes is enormously challenging as
the expected level is very low, and furthermore, gravitational lensing of the polarised
emission caused by Thomson scattering (which produces E modes) causes a B-mode
polarisation signal which dominates the power spectrum on scales less than about a
degree. For these reasons, understanding the effect of lensing on the CMB is of vital
importance.

7.2 Gravitational Lensing of the CMB

Gravitational lensing of the CMB causes deflection of the photon direction, whilst
preserving surface brightness (through Liouville’s theorem). The deflection can be
described in terms of a lensing potential ¢, which is an integral along the line-of-
side of the gravitational potential, weighted with a lensing kernel. The CMB map
is therefore distorted in a way which depends on the distribution of matter along
the line-of-sight. The deflections are typically rather small, of the order of a few
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arcminutes, but the distortions of the map are correlated over scales of around 10°.
An excellent review of the subject appears in [1]. From a statistical point-of-view,
this is an (almost) ideal situation, since the CMB is (almost) a random gaussian field,
and the lensing potential is (almost) another gaussian random field, the exception
being on the smallest scales, where nonlinear collapse makes the field slightly
nongaussian. Thus in principle it is open to a full Bayesian treatment, a necessary
ingredient of which is that one can predict the probability of the data vector given
the parameters of the model. Unfortunately in practice this is computationally too
demanding. This provides additional motivation for the accompanying paper.

The effect of lensing is as follows: the deflection means that at angular position
x the temperature is given by the unlensed temperature at x + V¢ (x), which is
normally expanded as:

T(x+V(x)) = T(x) + VHOV, T (x) + %V“(DV"(DVHVVT(X) FNCAY

It is known that truncation of this series as shown is a good approximation, but is
inaccurate at the level of about 10% on arcminute scales. Analysis of this expansion
allows a quadratic estimator for the lensing potential to be written down, via its
Fourier transform:

by o /_T,,T, ve(L) (1.2)

where g is a known function. The details can be found in [1] or in the original
references contained there, but the point is here that this is evaluated in Fourier
space, so this is effective if we have all-sky coverage (actually flat-sky is assumed
here), but this becomes problematic when the CMB has holes due to bright point
sources, or if the noise in the map is non stationary. Both of these are normal, so in
practice this is rather difficult to do.

7.3 Anderes and Van Engelen’s Method

The method proposed by Anderes and van Engelen reconstructs the lensing potential
locally, not using the Fourier analysis which represents a global method. For a
sufficiently small patch, they approximate the lensing potential as a quadratic
function of the coordinates, q‘i’ (x), and estimate the quadratic coefficients using a
local maximum-likelihood method. This has the obvious and attractive advantage
that it is immune to the effects of holes elsewhere in the map, and one can
approximate the noise as stationary across each patch. The estimation of the lensing
potential can be done with Bayesian methods (which may drive the solution to zero
because of noise), or MLE estimators, for which the noise bias has a different form.
In the accompanying work, correction of the MLE bias is effected using simulations.

There is no doubt that this is a rather challenging problem, and this work
is to a certain extent exploratory, highlighting the issues which will need to be
addressed very well, but not yet providing a full solution. The main innovation is
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to approximate the lensing potential as a quadratic function of the coordinates; this
must be a good approximation on sufficiently small scales; the important question of
course is whether it is adequate on the minimum scales on which it can be applied.
The lensed temperature field is then approximated by

T(x+Vo(x)) ~ T(x+Vg®(x)). (7.3)

By simplifying the lensing potential, it is possible to use standard MLE techniques
to estimate the three independent coefficients of the quadratic form, exploiting the
gaussianity in the problem. Notice that the lensing potential is slightly nongaussian
on the very smallest scales, due to nonlinear evolution of the matter density field
along the line-of-sight, but the effects are at the percent level on arcminute scales;
they are probably unimportant, but this would need checking. Two approaches are
taken at this point, either using a MLE or computing the mode of the posterior in
a Bayesian analysis. The prior in the Bayesian treatment tends to bias the potential
towards zero, so the authors concentrate on the MLE, which seems to have the
advantage of an additive, noise-dominated bias which is correctable, compared with
a lensing-dependent multiplicative bias which is harder to deal with. There is an
immediate issue to contend with, and that is how to patch together the different
MLE of the potential in different areas of sky. A variety of gradient fits is employed,
to give a potential reconstruction which is visually good, but naturally one would
want to know to what extent this patching introduces artefacts in the reconstruction.
Perhaps in order to assess how good the constructions are, the authors analyse the
power spectrum of the recovered convergence field and compare in simulations
with the input. This seems natural, although if this was the main goal, then the
reconstruction step may be unnecessary and there may be more direct ways to work
only with statistical quantities. The bias corrections are rather large, but the authors
show that after correction both the MLE and Bayesian methods yield reasonable
estimates of the convergence power spectrum. Given that at some level the bias
correction may depend on the true convergence power spectrum, and the authors
have yet to test the sensitivity of the correction to this.

With some analyses of lensing of the CMB, computational expense is an issue,
and this is no exception, but on the positive side the problem of large-scale biases in
the power spectrum which besets other methods appears to be absent. In summary
the novel approach which is presented here is an interesting addition to the list of
techniques which can be applied to the challenging problem of accurate analysis of
the lensed CMB. It is a work in progress, and it will be interesting to see whether
the challenges which are identified in this work can be met in practice. If so, the
scientific gains are very worthwhile, so one hopes so.

Reference
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Chapter 8
Needlets Estimation in Cosmology
and Astrophysics

Domenico Marinucci

Abstract Needlets are a form of spherical wavelets which has recently drawn a
lot of interest in the cosmological and astrophysical literature. We shall briefly
recall the most important features of the needlets construction, and explain why
their properties make possible a succesful application to several issues of interest
in the analysis of Cosmic Microwave Background data. Many of these possibilities
have been exploited already, and we review some results. We shall then explore the
role of needlets in adaptive estimation, with a focus on cosmic rays experiments
and future weak gravitational lensing and polarization observations on spin random
fields.

Dedicated to the memory of Daryl Geller. Much of what is
presented here is based upon the contributions of Daryl Geller
(1951-2011). In particular, besides developing Mexican
needlets (with A.Mayeli), he is to be credited for most of the
work on spin needlets/mixed needlets: very little of the
mathematical theory behind these developments would exist
without him.

8.1 Introduction

Over the last decade, wavelet techniques have become a well-established tool for
the analysis of cosmological and astrophysical data, see for instance [51] and the
references therein. In particular, a growing interest has been devoted in the last
5 years to the application in a cosmological environment of a new form of spherical
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wavelets, called needlets. Needlets were introduced in the mathematical literature
by Narcowich et al. [41,42], see also [20-22] for extensions and generalizations.
The investigation of the stochastic properties of needlets when implemented on
spherical random fields is due to [2, 3, 35, 36, 40], where applications to several
statistical procedures are also considered. Several applications to experimental data
have already been implemented: for instance [44] have focussed on estimation of
cross-power spectrum from CMB and large scale structure data provided by the
NVSS catalogue; [38] have given an overview of the method and various possible
applications to CMB; [45] considered search for asymmetries and local estimators
of the angular power spectrum; [6, 35,46, 48,49] have focussed on the analysis of
the needlets bispectrum, non-Gaussianities, estimation of the nonlinearity parameter
fu and its directional variations; [8, 12,23, 24] discussed the numerical properties
of the needlets and exploited them for map-making and angular power spectrum
estimation; [14, 15] considered the search for bubble as a test of eternal inflation.

More recently, a few papers have focussed on the use of needlets to develop
estimators within the thresholding paradigm, in the framework of directional data.
Thresholding estimates were introduced in the statistical literature by Donoho et al.
in [10], where it was proved that nonlinear wavelet estimators based on thresholding
techniques achieve nearly optimal minimax rates (up to logarithmic terms) for
a wide class of nonparametric estimation of unknown density and regression
functions. The theory has been enormously developed ever since—we refer to [25]
for a textbook reference. In an astrophysical context, needlet-based thresholding
algorithms are discussed by Baldi et al. [4] and Kerkyacharian et al. [29, 30];
applications to cosmic rays data analysis are provided for instance by Fay et al. [13]
and Iuppa et al. [27,28]. Earlier results on minimax estimators for spherical data,
outside the needlets approach, are due to Kim and coauthors (see [31, 32, 34]).
Another very active area involves the use of needlets for the analysis of spin data,
i.e. those arising when considering the polarization of CMB data and/or future
weak gravitational lensing experiment such as the projected mission Euclid [5,33]).
Some results in this area have been provided by Geller and Marinucci [18] and
Gelleret al. [16], with further developments discussed by Geller et al. [17], Geller
and Marinucci [19], and Durastanti et al. [11].

In this presentation, we shall first review briefly the main features of the needlet
construction, and explain how its properties make it a suitable tool for data analysis
in many area of cosmological interest. After reviewing briefly applications to CMB,
we shall discuss adaptive properties and their importance in the framework of
gamma rays, weak gravitational lensing and polarization of the CMB.

8.2 Needlets Construction and Main Properties

Consider any function f defined on the sphere S, and such that f € L*(§?), that is
to say [q f2(x)dx < . It is well known that the following spectral representation
holds:
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Fx) = aimYim(x), (8.1)
Im
Ay = o F)Y u(x)dx, (8.2)

where the set {Y},,} represents the array of so-called spherical harmonics on the
sphere, defined to be the eigenfunctions of the spherical Laplacian

1 4 d 1 97
AoYy, = =114+ 1)Y,Ap = ——=— [ sind =— —_— .
525 im (L4 1)¥im » Age sin® 99 <sm >+ sin? ¥ d @2
When the function f(x) is random, as in the case of the CMB temperature data
(which is assumed to be the realized of an isotropic, finite variance random field)

we have also that
Eaj, = 0, Ealmal’m’ = C1511/6r’nn/ >

where the bar denotes complex conjugation and C; the so-called angular power
spectrum of the random field.

In the presence of a partially observed sky (as happens for CMB, where some
regions are masked by the presence of the Milky Way and other foreground
contaminants), the evaluation of the inverse Fourier transform (8.2) becomes
unfeasible. Moreover, localization in both the real and the harmonic space is indeed
necessary when searching for localized features, such as for instance the highly
debated Cold Spot [7]. In view of these considerations, the double localization
properties of spherical wavelets become most valuable. Among spherical wavelets,
we shall be concerned with needlets, whose construction we review as follows.

Let b(.) be a weight function satisfying three conditions, namely

 Compact support: b(t) is strictly larger than zero only for # € [B~!,B], some
B>1

o Smoothness: b(t) is C™

e Partition of unity: foralll = 1,2,... we have

o2 LY
be <BJ')_1'

Recipes to construct a function b(.) that satisfy these conditions are easy to
find and are provided for instance by Marinucci et al. [38] and Marinucci and
Peccati [39].

Next step in the construction is the introduction of a set of cubature points and
weights, namely a grid of points {5 jk} on the sphere and a grid of weights 4 j; such
that

> AikYim (&)Y tymy (Eji) = /52 Yy, my ()Y 1y, (x)dx , for B <1y, < B/
Jk
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In other words, cubature points provide a grid of pixels such that the integrals of
spherical harmonics are equal to the corresponding Riemann sums on this grid.
In practice, cubature points can be identified with the pixel centres of a standard
package such as HealPix, and cubature weights can be taken to be equal to the pixel
areas, with a very minor numerical approximation.

We have now all the background material to introduce the needlet system, which
is defined by

B/t

Wir(x) =/ Aj z z b(BJ)Ylm ()Y 1 (Ejk) »
|=B/—1m=—1
with the corresponding needlet coefficients provided by
B]+l
ﬁjk_/ f ll/jk dx_ \/ 1 % 1m§1b (Bj)alelm(‘gjk) (8.3)

The coefficients {Aj } are such that cB~%/ < A, < CB~%/, with ¢,C € R, and N; =
card {§ jk} ~ B%/ see for instance [3] for more details.

It is now well-known that needlets enjoy quite a few important properties that
make them very suitable for spherical data analysis (see for instance [38]). Indeed,

1. Numerical implementation: Needlets have important numerical advantages: they
do not rely on any tangent plane approximation, but they are naturally embedded
in the manifold structure of the sphere and perfectly adapted to standard
packages, such as HealPix.

2. Localization: Needlets are compactly supported in the harmonic space, i.e. at
each scale j needlets are supported on a finite number of multipoles which are
perfectly controlled by the data analyst. As far as real space is concerned, for
every M = 1,2,3..., there exist some constant cys such that

‘ < CMsz

< ‘ -, forall x € §%,
{1 —|—B/d(x,§jk)}

‘ vir(x)

where d(.,.) denotes the standard geodesic distance on the sphere. In other
words, for any fixed angular distance the tail of the needlets decay faster than
any polynomial, i.e. quasi-exponentially as the frequency increases.

3. Reconstruction property: As established by Narcowich, Petrushev and Ward,
needlets make up a tight frame system, meaning that for any (random or
deterministic) function f € L?(S?) we have

21+l
Jo =3 ~3ph
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a sort of conservation of energy condition. This property yields many important
consequences: the first and most important is the following reconstruction
property, again in the L? sense:

F) =Y Biwi(x) . (8.4)
I

so that the pair (8.3)—(8.4) makes a sort of analogue of standard results in Fourier
analysis such as (8.1)—(8.2).

4. Asymptotic uncorrelation: In the random case, the needlet coefficients f3;; are
random variables, with correlation such that for all M = 1,2,..., there exist ¢y
ensuring that

Corr(Bi,Biv) < v , forall x € 2.
(ﬁ,/k B}k ) = {1 —i—Bjd(x, éjk)}M

5. Flexible implementation: as discussed by Scodeller et al. [50], needlets can be
adapted to specific problems by suitable tuning in the choice of the weight
function b(.) and the bandwidth parameter B.

More recently, the needlet idea has been extended by Geller and Mayeli with
the construction of so called Mexican needlets, see [20-22] for the definition and
discussion of their properties and [50] for numerical analysis and implementation in
a cosmological framework. Loosely speaking, the idea is to replace the compactly
supported kernel b(%) by a smooth function of the form

! I\ 12
()= () (o)

for some integer parameter p. Because the function b(.) is not compactly supported,
an exact reconstruction function cannot hold; Geller and Mayeli show, however,
that the corresponding error can be made arbitrary small by a suitable choice of
(approximate) cubature points and weights. Apart from that, Mexican needlets un-
deniably enjoy some very interesting properties: in particular, they have extremely
good localization properties in real space, they allow for flexible and numerical
convenient implementation, and for p = 1 they provide at high frequencies a good
approximation to the so-called Spherical Mexican Hat Wavelet construction. Their
statistical properties are also encouraging: although the uncorrelation property does
not hold for arbitrary angular power spectra, it does hold for the parameter range
of interest in the analysis of CMB data, and indeed in these circumstances the
numerical evidence in [50] suggest that they may even outperform standard needlets.
Most of the analysis we report below in a CMB-related environment have been
duplicated with Mexican needlets, with very positive results.

In the following Section, we review briefly some applications of needlets to CMB
data analysis where these properties have been fully exploited.



88 D. Marinucci
8.3 Applications to CMB Data Analysis

Uncorrelation was first established by Baldi et al. [2], and then used to derive
statistical properties of several estimators of interest for CMB data analysis. For
instance, consider the statistic
ro._ 2.
Ij:= ZBjk ;
k

it is immediate to see that f, provides an unbiased estimator for (a binned form of)
the angular power spectrum,

~ [\ 21+1
Erj=rj=2bz(—-) oF
; BJ 4r

moreover f, is also consistent, that is ﬁ /T; converges in probability to one as
the frequency diverges, and asymptotically Gaussian, i.e. it is possible to construct
standard confidence intervals. These properties were established by Baldi et al. [2],
and then used by Pietrobon et al. [44] to supply an estimator for cross-spectra
between background radiation and large scale structure data, when investigating
the Integrated Sachs-Wolfe effect. By the same approach it is possible to search
for asymmetries in the power spectra of CMB data, for instance between the
Northern and Southern hemisphere, an idea introduced by Baldi et al. [3] and then
implemented by Pietrobon et al. [45], or to supply estimators of the angular power
spectra in CMB temperature data, see [12].

Several other applications focussed for instance on using analogous arguments
to construct needlet-based estimators of the bispectrum and/or the nonlinearity
parameter f;,;, see for instance [46—49]. Here the idea can be summarized as follows.
It is well-known that, under isotropy and Gaussianity, the angular power spectrum
provides full information on the dependence structure of a random field. To search
for non-Gaussianity, it is necessary to consider higher order statistics, for instance
the so-called bispectrum, defined by

Eaj m, Qlymy iymy = Blymybymylymy = <nl111 nlfz nl;) b b1, - (8.5)
The second equality in (8.5) is a crucial consequence of isotropy, entailing that
the physical information is concentrated in the reduced bispectrum by, ,;,, while
isotropy is enforced by the appearance of the Wigner-s 3j symbols on the left,
see [26,37,39] for more discussion and details. A natural question to ask is then how
to estimate by, ;,;,, especially in the presence of missing data. The following needlet
bispectrum estimator was introduced by Lan and Marinucci [35] and applied on real
data by Pietrobon et al. [46,47] and Rudjord et al. [48, 49]:

Ljjojs = 2 ﬁhhﬁjzkzﬁhhh/l/zjz
kikoks
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I I Iz
Eljjyjs = ”2; b (ﬁ) b (ﬁ) b (ﬁ) by »
113

where A}, j,;, is a normalizing factor; we refer to the previous references for more
details. In short, needlet coefficients provide a computationally very convenient
estimator for a binned form of the bispectrum, with the added bonus of localization
in real space. The latter property makes it possible to investigate not only possible
non-Gaussianities, but also their variation over the CMB sky, a task carried over
by Pietrobon et al. [47] and Rudjord et al. [49]. We refer to these and the previous
references for results on applications of these procedures to WMAP data, in
particular estimated values of the fundamental nonlinearity parameter f;;.

In a CMB related framework, needlets have become popular for other applica-
tions as well. For brevity’s sake, we avoid to report each of them here—we simply
recall, for instance, various approaches to map-making (the so-called Needlet
Internal Linear Combination method is now the standard procedure in the Planck
pipeline, see [1,8,23,54]), and very recently the use of needlets to search for bubbles
as a test of eternal inflation [14, 15]. Rather than going further into these issues, we
prefer to consider more recent developments, such as those concerning polarization
and/or weak gravitational lensing data, and those related to directional data and
cosmic rays.

8.4 Directional Data

We shall now consider the analysis of directional data, i.e. those emerging from
large area surveys for cosmic rays detections. Examples of this setting include the
search for ultra high energy cosmic rays considered by experiments such as AUGER,
gamma rays as investigated by satellites AGILE and Fermi-LAT, and ground-based
observatories such as ARGO-YBJ. Many other examples could also be considered.

In each of these cases, the statistical problem can be formulated as observing
independent directions {Xi,...X,}, each X; € S? representing an incoming direction
on the sky, possibly observed with error. We shall consider the case where we are
interested to reconstruct the density of observed data.

The idea which we shall discuss here follows from classical approaches to
wavelet-based density estimation, as discusses on the real line by Donoho et al. [10]
and Hardle et al. [25] and many following references. Let f(x) denote the population
density of incoming cosmic rays; we have the expansion

F&x) =Y Biwik(x) . Bjx = /52 F)wjk(x)dx .
ik
Consider the needlet coefficient estimator

~ 1
Bjx = - > wik(Xi) 5 (8.6)
-
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we have easily
~ 1 n 1 n "
EBj = - ziEllfjk(Xi) = ;.sz(x)‘”jk(x)dx =B -

An immediate idea to estimate cosmic rays density is then to implement the so-
called linear wavelet estimator [25]

Fo@) =Y Brwie(x) . (8.7)

A more refined approach is to rely instead on needlet based thresholding
estimates, as discussed for instance by Baldi et al. [4], and then extended and
generalized by Kerkyacharian et al. [29, 30] and Fay et al. [13]. The idea of
thresholding is now classical in statistics (see [10, 25]) and can be intuitively
explained as follows. Start from the linear estimate (8.7); the smallest coefficients
are expected to be dominated by noise, and hence can be dropped, keeping just those
coefficients which are above a given threshold.

More precisely, we can consider the nonlinear estimate

THOE 237ijk(x) , Bfk = Bjk1(|§jk| > cty)

where 7, is a threshold level and I(A) denotes the indicator function of the event A,
taking value 1 if A is verified, O otherwise. Such estimates can be shown to be nearly
optimal (in the minimax sense) over a wide class of density functions (described by
Besov spaces) and different loss functions, i.e. norms by which to measure when the
estimate is “close” to the density to be estimated. We refer to the above mentioned
papers for discussion and technical details; results on data collected by the ARGO-
YBJ collaboration will be released soon.

8.5 Spin Nonparametric Regression

8.5.1 Background

Another generalization of the needlet approach has been recently advocated
by Geller and Marinucci [18]; applications to statistics can be found in [17].
In particular, we recall that the CMB satellite missions WMAP and Planck are
currently collecting data also on the so-called polarization of CMB. The latter can
be loosely described as observations on random ellipses living on the tangent planes
for each location on the celestial sphere. Mathematically, this can be expressed
by defining random sections of so-called spin fiber bundles, a generalization of
the notion of scalar random fields (see [17—19] and below for much more details
and discussion). Quite interestingly, exactly the same mathematical framework
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describes the so-called weak gravitational lensing induced on the observed shape
of distant galaxies by clusters of matter (see for instance [5,33] and the references
therein). Huge amount of observational data are expected in the next decade, by
means of satellite missions in preparations such as Euclid.

The applications of spin needlets to CMB polarization data is discussed in [16];
in [11] spin nonparametric regression was introduced, with a view to applications to
polarization and weak lensing data. We refer also to [52] and the references therein
for alternative approaches to wavelets analysis in this framework.

We shall then be concerned with the regression model:

Vi = Fy (X;) + €5 (8.8)
where F; (+) is an spin function, to be discussed below; for instance, for s = 2 F; can
be taken to represent the geometric effect of the gravitational shear. On the other
hand, we assume the &;; are i.i.d. spin random variables, which can be viewed as
an observational error (to be interpreted, for instance, as the intrinsic shape of the
galaxy).

The concept of a spin function was introduced in the 1960s by Newman and
Penrose in [43], while working on gravitational radiation. Loosely speaking, a
function F represents a spin s quantity if, whenever a tangent vector at point x € §2
is rotated by an angle y under a coordinate change, F transforms as F' = ¢*¥F
(see [18] for mathematical formalization). Note that for s = 0 we are back to the
usual scalar functions.

It is also possible to introduce the system of spin spherical harmonics Yj,,.; as
the eigenfunctions of a second-order differential operator which generalizes the
spherical Laplacian (refer again to [18, 53] for more details).

The spin spherical harmonics are themselves an orthonormal system, i.e. they
satisfy

_ 2n @ _ . ’ ’
/52 Ylm;sYlm;sdx = /0 /0 Ylm;s(ﬁv (p)Ylm;S(ﬁv (P) Sin 19d19d(p = 6ll 6r’nn .
As for the scalar case, the following representation holds

Fi(x) = zzalm;sYlm;s (x) .
I m

Here, the spherical harmonics coefficients aj,,.s := [, 52 F,Y ,ndx are such that
Qs = A + ialm;M s

where {ajm:g } , {amm:m } are the coefficients of two standard (scalar-valued) spherical
functions, which in the physical literature are labelled the electric and magnetic
components of the spin function Fj, see again [18, 19] for more discussion.
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8.5.2 Spin and Mixed Needlets

The construction of spin needlets (as provided by Geller and Marinucci [18]) is
formally similar to the scalar case, although as we discuss below it entails deep
differences in terms of the spaces involved. Indeed, spin needlets are defined as
follows:

ll/jks \/72]9( BJ ) 2 Ylms(éjk) Ylms() (8.9)

where {A ks £ jk} are, as before, cubature weights and cubature points, b () € C* is
nonnegative, it is compactly supported in [1/B, B] and satisfies the partition of unity
property. Note, however, that the mathematical meaning of (8.9) is rather different
from the scalar case; indeed Wi (x) is to be viewed as a spin s function with respect
to rotations of the tangent plane T, and a spin —s function with respect to rotations
of the tangent plane Té,-k' The spin needlet operators acts on spin s functions to
produce spin s coefficients

/F OV i (¢ dx—\/72b<

We report some important properties for spin needlets, very similar to those in scalar
case (see [41,42]). The following reconstruction formula holds:

x)=3 %ﬁjk;s‘l/jk:s (x)-
J

) Alm, sYlms (éjk) =: ﬁjk;s . (8.10)

Also, from the previous discussion it follows easily that }l//jk;s}z is a well-defined

scalar quantity (It is simple to check that also the squared coefficients ‘[3 jk;s|2 are
scalar). The following localization property is hence well-defined (see [18]): for any
M € N, there exists a constant ¢y > 0 such that for every x € S2:

. cuB’ .
’ ~ (1+BJarccos (<§jk7x>))M

As an alternative construction, [19] have considered so-called mixed needlets,
defined as

Wik (%)

Wik 0=\ e T b (25 ) s (97 ()

I>]s|

The construction is similar to the one discussed earlier, the main difference being
the fact that the resulting needlet coefficients Bji.;. » are scalar, rather than spin,
quantities. We refrain from a full comparison here for brevity’s sake; it suffices to
say that the procedures we shall discuss below can be implemented with both kind
of needlets.
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Spin and mixed needlets can actually be used for polarization data analysis much
the same way as we have seen for the scalar case. In particular, they can be used
to derive angular power spectrum estimators for the so-called £ and B modes of
polarization, they can be implemented to test non-Gaussianity, they can be exploited
to search for asymmetries and local features. In the section below, however, we shall
discuss a different application, i.e. their exploitation to obtain adaptive estimation
for fields observed with errors.

8.5.3 Nonparametric Regression on Spin Runctions

We start by recalling the regression formula (8.8):
Yis =F (Xi) + &5 .

As discussed earlier, we envisage a situation where it is possible to collect data
which can be viewed as measurements on a spin field, i.e. for instance the polar-
ization of the Cosmic Microwave Background (see [9]), or the Weak Gravitational
Lensing effect on the images of distant Galaxies (see [5]).

The procedure we are going to investigate can be viewed again as a form
of needlet thresholding in the spin fiber bundles case. Our approach could be
implemented for both mixed and spin needlets. We start by defining, as usual, an
unbiased estimator for needlet coefficients. More precisely, we define

~ 1 n o .
ﬁjk;s = ;zYlek’q (Xt) , 1= 1327"'7’/1

i=1

We have immediately:

E (B ) /w,ks Fy(X:) = Bjes - 8.11)

The thresholding estimator is then defined, as usually, (see for instance [10, 25])

Bis Wis (%) (8.12)

S L

[ M\_

L.
logn?

whereas Nj; is the cardinality of the cubature point set at frequency j; it is known
(see for instance [3]) that there exist positive constants c1,¢; such that ¢ \B% < N; <
caB2/ (written N7 ~ B2/ ). It is then possible to show (see [11]) that thresholdlng
estimates achieve ‘nearly optimal’ (up to logarithmic factors) rates with respect to
general loss functions.

In (8.12), J, represents a cut-off frequency, which we shall fix at B/» =
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Theorem 8.1. Let Fy € %"

q:s(G), the “Besov ball” such that ”FS”%}L]-Y <G < oo,

r— E > 0, and consider F; defined by (8.12). For 1 < p < oo, there exist kK > 0 such
that we have

)

—o(rm,p)
sup B~ Flfy <y flogn)? | o

Fvegﬁq;x logn

2for T > 55 +2 (regular zone)

OC(r,n,p) = pr (%,l})) < 2
—L( 211 form < 575 +2 (sparse Zone)
Also, for p=oo
—ot(r,7,00) 2
sup E||F; — Byl < C. L" ] 7a(r,n7w):%_
FYE%;[L];S ogn 2(r— 2(; — j))

Remark 8.1. The definitions of “regular” and “sparse” zones are classical, and so
are the rates obtained, which indeed correspond (for instance) to those presented
by Baldi et al. [4] for density estimation. The results are basically saying that
over a broad class of functions thresholding estimates converge (up to logarithmic
factors) as fast as any other possible estimator, even without prior knowledge on the
regularity of the (spin) function to be estimated. This is exactly the sort of robustness
property we were looking for. Of course o(r, 7, p) < % imy e a(r,m, p) = % This
is to say that for “very regular” functions, thresholding estimates converge as fast as
the pure parametric case.

Remark 8.2. For s = 0, the previous results cover adaptive nonparametric regres-
sion for complex-valued, scalar functions. Again, the rates correspond to the usual
nearly minimax bounds.
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