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Preface

Twenty years ago, the first Statistical Challenges in Modern Astronomy (SCMA)
conference was held at Penn State University. Serving as a gathering of two
scholarly communities with common interests, SCMA meetings have been held
every 5 years for cross-disciplinary discussions of methodological issues arising
in astronomical research. These are the proceedings of the fifth SCMA conference
held in June 2011. While some of the topics are the similar as those in the 1991
meeting, the level of sophistication and accomplishment has enormously increased.
Astronomers and statisticians worldwide have developed collaborations to address
some of the most challenging and important problems facing astronomy today.
These involve data mining enormous datasets from widefield surveys obtained
with major new telescope systems, fitting of cosmological and other astrophysical
models to complex datasets, and studying the temporal behaviors of innumerable
variable objects in the sky. Bayesian inference has gained considerable momentum
in astrophysical model fitting. These advanced methods are gaining attention outside
of the world of expert astrostatisticians, as the broad astronomical community
realize that twenty-first century science goals can not be achieved with nineteenth
and twentieth century statistical methods. At SCMA V, both young and experienced
astrostatisticians presented work and engaged in discussions on how these problems
can be best addressed.

The proceedings are divided into six sections; most invited talks are followed
by invited commentaries by scholars in the other field. The volume begins with
five talks on Statistics in Cosmology demonstrating significant recent accom-
plishments in this most-important field of astronomy and astrophysics. Modern
accomplishments of modern quantitative cosmology rely heavily on sophisticated
statistical analysis of large datasets. Topics reviewed include likelihood-free es-
timation of quasar luminosity functions (Schaefer and Freeman), estimation of
galaxy photometric redshifts and quantification of voids in galaxy Large-Scale
Structure (Wandelt), inference based on comparing data to cosmological simulations
(Higdon), likelihood estimation of gravitational lensing of the cosmic microwave
background (CMB) radiation (Anderes), and application of needlets to cosmic
microwave background studies (Marinucci).
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The second section provides a sampling of the growing applications of Bayesian
Analysis Across Astronomy. Here we have both invited reviews by senior re-
searchers, and a sampling of the many works by younger researchers. The reviews
discuss Bayesian models constructed to model galaxy star formation histories
(Weinberg), model selection within the consensus ΛCDM cosmological model
family (Trotta), and measurement errors in astronomical regression and density
estimation problems (Kelly). The shorter talks treat asteroseismology (Benomar),
event detection in time series (Blocker and Protopapas), reverberation mapping in
active galactic nuclei (Brewer), modeling of Poisson images (Guglielmetti et al.),
treatment of instrument calibration errors (Kashyap et al.), modeling of Type Ia
supernova data (Mandel), and faint source flux estimation (Switzer et al.). Advanced
methods for hierarchical modeling and Monte Carlo Markov Chain computational
techniques are discussed in many of these talks and associated commentaries.

The third section of the proceedings address the use of modern techniques
techniques of Data Mining and Astroinformatics for the analysis of massive datasets
emerging from many new observatories. Compressive sensing, an extension of
wavelet analysis, is very promising for many problems (Starck). Diffusion maps
can treat non-linear structures in high-dimensional datasets (Lee and Freeman).
Nearest neighbor techniques are used for outlier detection in megadatasets (Borne
and Vedachalam). Bayesian approaches can help cross-identification of sources
between astronomical catalogs (Budavári). Likelihood-based data compression can
assist parameter estimation in large datasets (Jimenez).

The fourth section considers challenges arising in astronomical Image and Time
Series Analysis. Techniques of mathematical morphology are applied to classifying
sunspots (Stenning et al.). Realistic images are simulated using knowledge of
celestial populations and telescope characteristics (Connolly et al.). Structure
recognition algorithms are discussed for three-dimensional astronomical datacubes
(Rosolowsky). The problem of locating faint transient sources in multiepoch image
datasets is addressed by controlling the False Discovery Rate (Clements et al.).
Wavelets are a valuable tool for modeling irregularly spaced time series (Mondal
and Percival).

The fifth section provides perspectives on The Future of Astrostatistics. The field
is gaining a presence in international organizations (Hilbe). The public domain R
statistical computing environment is a very promising new software environment to
implement existing and develop new statistical analyses for astronomical research
(Tierney). A Panel Discussion discusses various aspects of astrostatistical practice
and research for the coming decade (van Dyk, Feigelson, Loredo, Scargle). The final
section of the proceedings gives brief presentations of the contributed posters. Many
fascinating problems and sophisticated statistical methods are described.

The work of many individuals and organizations contributed to the success of the
SCMA V conference. The invited speakers and cross-disciplinary commentators
were the central pillar of the conference, and we are grateful for their presenta-
tions and manuscripts. Staff in the Departments of Statistics and Astronomy and
Astrophysics provided administrative support. Funding support for the conference
was provided by the two departments, Penn State’s Eberly College of Science,
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and the National Science Foundation through grant AST-1113001. Finally, we are
appreciative of our families’ support during the many phases of this conference
organization.

Pennsylvania State University, PA, USA Eric D. Feigelson
Pennsylvania State University, PA, USA G. Jogesh Babu
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and J. Newman

51 Multi-component Analysis of a Sample of Bright X-Ray
Selected Active Galactic Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Dirk Grupe

52 Applying the Background-Source Separation Algorithm
to Chandra Deep Field South Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
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Attila Mészáros Faculty of Mathematics and Physics, Charles University, Prague
8, Czech Republic



xx Contributors

Brendan Miller Department of Astronomy, University of Michigan, Ann Arbor,
MI, USA

H.J. Mo Department of Astronomy, University of Massachusetts, Amherst, MA,
USA

Debashis Mondal Department of Statistics, University of Chicago, Chicago, IL,
USA

Adam N. Morgan Department of Astronomy, University of California, Berkeley,
CA, USA

Kellen Murphy Department of Physics and Astronomy, Ohio University, Athens,
OH, USA

J. Newman Department of Physics and Astronomy, University of Pittsburgh,
Pittsburgh, PA, USA

Tim Naylor School of Physics, University of Exeter, Exeter, UK

Mark Neyrinck Department of Physics and Astronomy, Johns Hopkins University,
Baltimore, MD, USA

Fabio Noviello CNRS and Université Paris-Sud, Orsay, France
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Dejan Slepćev Department of Mathematics, Carnegie Mellon University,
Pittsburgh, PA, USA

Kunlaya Soiaporn School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY, USA

Jean-Luc Starck Service d’Astrophysique, Centre d’Études Atomiques de Saclay,
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Statistics in Cosmology



Chapter 1
Likelihood-Free Inference in Cosmology:
Potential for the Estimation of Luminosity
Functions

Chad M. Schafer and Peter E. Freeman

Abstract Statistical inference of cosmological quantities of interest is complicated
by significant observational limitations, including heteroscedastic measurement
error and irregular selection effects. These observational difficulties exacerbate
challenges posed by the often-complex relationship between estimands and the
distribution of observables; indeed, in some situations it is only possible to simulate
realizations of observations under various assumed cosmological theories. When
faced with these challenges, one is naturally led to consider utilizing repeated
simulations of the full data generation process, and then comparing observed
and simulated data sets to constrain the parameters. In such a scenario, one
would not have a likelihood function relating the parameters to the observable
data. This paper will present an overview of methods that allow a likelihood-free
approach to inference, with emphasis on approximate Bayesian computation, a
class of procedures originally motivated by similar inference problems in population
genetics.

1.1 Introduction

The ever-increasing efforts to build catalogs of astronomical objects, and to measure
key properties of these objects, is, in large part, motivated by the goal of inferring
unknown constants that characterize the Universe. This paper seeks to present an
example of such a problem, and to describe some of the features of the data and
their collection that complicates what is otherwise a standard statistical inference
problem. To an outsider of this field, it can be surprising the extent to which
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Table 1.1 Examples of key cosmological parameters

Parameter Description In Fig. 1.1a

Ωm Ratio of total matter density to that needed for a flat Universe 0.266
ΩΛ Similar to Ωm, but for dark energy density 0.734
H0 Hubble constant: the current expansion rate of the Universe 71.0 km/s/Mpc
a Estimates based on WMAP7 [2]
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Fig. 1.1 Power spectrum, a function of cosmological parameters, of fluctuations in the tempera-
ture of photons that comprise the cosmic microwave background (CMB). The parameter values are
fixed to those shown in Table 1.1

many questions regarding the nature of Universe have been boiled down to the
estimation of a relatively small number of cosmological parameters. Table 1.1 gives
some examples of these physical constants. Carefully-derived cosmological theory
posits relationships between these parameters and the distribution of observables. In
(relatively) simple situations, the distribution of the data is of a “standard” form, and
the likelihood function can be derived. This allows for utilization of well-established
methods of inference, including finding maximum likelihood estimates or exploring
the posterior distribution of these parameters given the observed data.

One of the most important inference problems that fits into this framework is the
estimation of cosmological parameters using fluctuations in the temperature of pho-
tons that comprise the cosmic microwave background (CMB). These photons are
remnants of the time, only 300,000 years after the Big Bang, when the temperature
of the Universe had cooled sufficiently for light to travel freely. The slight variation
in the temperature of these photons encodes important information regarding the
nature of the early Universe; the amount of correlation on different angular scales
has been characterized as a function of cosmological parameters. Figure 1.1 shows
the power spectrum that describes the Gaussian process on the sphere used to model
the process; this power spectrum corresponds to the parameter values shown in
Table 1.1. A succession of experiments has observed this background radiation to
greater precision, and hence has achieved stronger constraints on the unknowns. The
estimates in Table 1.1 are based on the recent WMAP 7 data release [2].
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The relationship between the cosmological parameters and the power spectrum
of the CMB fluctuations is complex: It is highly nonlinear, and there are strong
degeneracies between some the parameters. The complexity of this relationship
presents its own challenges. Bayesian methods dominate in cosmology, and MCMC
is feasible in this situation; one only needs to make small steps in the cosmological
parameter space, and the parameter vectors are mapped into the corresponding
power spectrum, which in turn defines the likelihood function for the data. Schafer
and Stark [3] presents a Monte Carlo method for constructing confidence regions
of optimal expected size that is specifically motivated by this type of situation.
Yet, both of these methods rely upon knowledge of the likelihood function of the
data. Increasingly, we are faced with situations in which this is not a reasonable
assumption. This may be because the distribution of the data is inherently complex,
or it may be because of data corrupted by irregular truncation effects and/or
heteroscedastic measurement error with complex dependence structure.

This paper describes likelihood-free approaches to inference, in particular,
approximate Bayesian computation (ABC). The term “likelihood-free” is not
intended to imply that a likelihood function does not exist in these applications;
instead, it is the case that the likelihood function is too complex to admit a form that
can be evaluated reliably for different values of the parameters of interest. These
procedures will instead be built upon repeated simulation of the data-generating
process (allowing for the incorporation of any complex computer models, data
contamination, or selection effects) and then comparing simulated with observed
data. Implementation of these approaches presents their own set of challenges.
The difficulty of deriving an appropriate likelihood function is replaced with that
of finding an approximate sufficient statistic for the parameter of interest. There
are also computational challenges to implementing these procedures, but these can
be mitigated via the design of efficient algorithms. This paper will present a brief
introduction to some techniques and directions for addressing these challenges.

Another objective of this paper is to allow a reader familiar with statistical
inference, but not with astronomy, the chance to learn some background on
a relatively simple cosmological inference problem that possesses some of the
aforementioned challenges. In the next section we will present two examples, with
background information. The first is a stylized example of estimating cosmological
parameters using observations of Type Ia supernovae. This example serves largely to
introduce important concepts and methods. The second is the problem of estimating
a bivariate luminosity function, the distribution of astronomical objects of interest
as a function of their distance and the amount of light they emit. We will utilize the
quasar catalog of [4] to motivate a promising approach to estimating the bivariate
luminosity function which relies upon forward simulation of the full data generation
process.
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1.2 Examples and Astronomical Background

In this section we will present two examples of statistical inference using
astronomical data. The first is relatively simple and will serve only to demonstrate
basic likelihood-free techniques. The second application possesses the type of
complications that motivate the consideration of these approaches. Both of these
build upon the same astronomical background, including the following key
quantities described below.

Key Quantities in the Examples

1. Redshift (often denoted z)—Because the Universe is expanding, light
emitted by an astronomical object is shifted to longer wavelengths prior
to reaching the observer: the ratio of the wavelength at which the light is
observed to the wavelength when emitted equals 1+z. Since the magnitude
of this shift increases as a function of the time since the light was emitted,
redshift is often taken as a (nonlinear) proxy for time (or distance). For the
current epoch, z = 0; for quasars, z ≤ 7; and for the CMB, the most distant
structure yet observed in the Universe, z ≈ 1089.

2. Apparent magnitude (m)—The brightness of the object as measured by
the observer. Magnitudes are measured on a logarithmic scale such that
decreasing the magnitude by five corresponds to changing the brightness
by a factor of 100. The root of the magnitude system was the classification
of stars by the Greek astronomer Hipparchus, who used one for the
brightest stars and six for the faintest.

3. Absolute magnitude (M)—The apparent magnitude of that an object
would have if it were located 10 pc (or about 32 light-years) from Earth.
The relationship between m and M in a flat Universe can be written as

M = m− (1+ z)
c H0

∫ z

0

(
Ωm(1+ u)3 +ΩΛ

)−0.5
du, (1.1)

where c is the speed of light, and H0, Ωm, and ΩΛ are among the
cosmological parameters shown in Table 1.1.

Equation 1.1 establishes a relationship between a measurable property of astro-
nomical objects (the apparent magnitude), and a scientifically useful quantity (the
absolute magnitude). Note how this transformation depends not only on the redshift
of the object, but on the values of unknown physical constants. In the examples that
follow, this expression will be utilized in different ways. In the first case, Type Ia
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Fig. 1.2 Plot of distance modulus vs. redshift for a sample of 182 SNe Ia [5]. The curve is the
predicted relationship when H0 = 72.76 km/s/Mpc and Ωm = 0.341, the MLE under a simple
model

supernovae, for which both M and m are known, are used in order to constrain the
cosmological parameters. In the second example, values for these parameters are
assumed in order transform m into M for a sample of quasars.

1.2.1 Demonstration Example: Estimation with Type
Ia Supernovae

A white dwarf star that accumulates matter from a companion star will not remain
stable once its mass exceeds the Chandrasekhar limit of approximately 1.38 times
the mass of the sun. The resulting thermonuclear explosion is called a Type Ia
supernova (SN Ia). The uniformity in mass of these stars at the time of their
demise implies uniformity in their absolute magnitudes (M) and hence SNe Ia
are approximate standard candles, in that variation in their apparent magnitude
(m) (measured from Earth) is attributable primarily to variation in the differences
in their distance from us. Thus, the distance modulus (denoted μ), defined to be
the difference between the apparent and absolute magnitudes, is a proxy for the
space-time distance to the SN Ia. Redshift (z) can also be considered a proxy for
space-time distance and estimates of the redshifts are also available for each of the
SNe Ia. Equation 1.1 establishes a direct relationship between distance modulus and
redshift as a function of cosmological parameters H0, Ωm and ΩΛ , and hence these
observations can be used to constrain these parameters.

Figure 1.2 shows measurements of these quantities for each of 182 SNe Ia [5].
The error bars depicted for each distance modulus reflect the uncertainty in the mag-
nitude measurements. These uncertainties are typically taken to be “known,” derived
from properties of the observing conditions and the scientific instrument in use.
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For the purposes of this example, we will assume that the errors are normally
distributed with mean zero, and are independent. We will also assume that Ωm +
ΩΛ = 1. The result is a simple, two-parameter model, one for which it is not difficult
to write out the full likelihood function.

The Statistical Model

Assume observe realizations of pairs (zi,Yi) for i = 1,2, . . . ,n such that

Yi =
(1+ zi)

c H0

∫ zi

0

(
Ωm(1+ u)3+(1−Ωm)

)−0.5
du+σiεi

where the εi are independent, identically distributed standard normal random
variables, and the σi are known.

In what follows we will use these data and this model to make comparisons
between the between standard and likelihood-free methods for estimating H0 and
Ωm. The solid line in Fig. 1.2 is the case where H0 = 72.76 km/s/Mpc and Ωm =
0.341, the maximum likelihood estimate under this model. There are various ways
in which these assumptions could be relaxed, and hence make the results of more
scientific interest. As this is done, however, it will be increasingly difficult to derive
the likelihood function, and one would start to see the appeal of taking a likelihood-
free approach.

1.2.2 Motivating Example: Luminosity Function Estimation

Broadly stated, the luminosity function of a particular class of astronomical objects
is the distribution of the absolute magnitudes of those objects. For example, one can
seek to estimate the luminosity function of all galaxies, the luminosity function of
galaxies that are of a particular type, the luminosity function of galaxies at redshift
z = 2.0, and so forth. To a statistician, this is a familiar density estimation problem.
From a cosmological perspective, it is of interest to study how the luminosity
function evolves with redshift, setting up a bivariate density estimation problem
in the (z,M) plane. The underlying goal is to compare predicted evolution under
proposed theories with the observed evolution. Hence, we can view the luminosity
function as an important cosmological unknown, and an accurate estimate of the
luminosity function are of fundamental scientific interest. There are complications
in this estimation, namely the presence of heteroscedastic measurement error in the
key observables, and physical limitations on the objects we are able to view.
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Fig. 1.3 Redshift and absolute magnitude measurements for a subset of the quasars in [4]

Here we will consider the specific problem of estimating the luminosity function
of quasars. Quasars are ultra-luminous galactic nuclei powered by the infall of
matter into supermassive black holes. Because of their compactness, they appear
like stars, or “quasi-stellar,” hence the name. The rate of matter infall into supermas-
sive black holes, which dictates when a quasar is “on” or “off,” is directly tied to
the physics of galaxy formation and evolution. Thus the quasar luminosity function
provides a means by which to constrain theoretical models of these processes. We
will utilize a subset of 5,000 quasars taken from the catalog of [4]. The full catalog
consists of over 130,000 quasars; for the purpose of demonstrating our methods,
we will focus on the reduced sample. For the problem at hand, there are two key
measured quantities for each quasar: the redshift and the apparent magnitude. One
then calculates the absolute magnitude via (1.1).

Figure 1.3 shows the (z,M) pairs for each of the quasars in our sample. Outside
of the dashed region, quasars in the sample are truncated because of the difficulty
of observing quasars that are too dim. The curve in the truncation region arises
because the limit is in terms of apparent magnitude; the depicted bound corresponds
to truncating quasars with m > 18.4. As mentioned above, it is of interest to estimate
the bivariate luminosity function (the bivariate density in (z,M) space).
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1.2.2.1 Estimators for the Bivariate Luminosity Function

The irregular truncation boundary shown as the dashed line in Fig. 1.3 presents
challenges to the fitting of a bivariate density to this sample, even without the
presence of measurement error in the observations. If a well-motivated parametric
form for the density exists, then maximum likelihood estimation would be a natural
choice. But, lacking such a form, the focus has been on nonparametric estimators.
Lynden-Bell [6] introduced in the astronomy literature the nonparametric maximum
likelihood (NPMLE) estimator for the case of one-sided truncation of absolute
magnitude and [7] derived some of the asymptotic properties of this estimator. Efron
and Petrosian [8] extended the NPMLE to the case of double truncation of absolute
magnitude. Each of these papers assumes that absolute magnitude and redshift are
statistically independent (and, hence, that the luminosity function does not evolve
with redshift.) The density estimate (or distribution function estimate) which results
from a NPMLE procedure places all of the probability on observed data values, but
even smoothing this estimate may not be sufficient to remove artifacts: An estimate
can suffer from what [9] referred to as “large jumps,” where lone data points can
greatly influence the estimator. Efron and Petrosian [8] also developed a permutation
test for independence of the two variables. Independence of absolute magnitude and
redshift is a strong assumption, and not justified in most applications. In practice,
one of these methods is applied to a narrow bin of observations in redshift.

In [10], a method is presented for fitting bivariate luminosity functions of the
semiparametric form

log(φ(z,M)) = f(z)+ g(M)+ τzM. (1.2)

Thus, the log density is additive in functions, estimated nonparametrically, of only
z and M, plus a term that accounts for the evolution of the luminosity function
with redshift. This first-order approximation to the true form for the evolution does
appear to fit to observed data well; Schafer [10] makes comparisons between the
results from the fitting procedure and those built on “binning,” and there is good
agreement; see Fig. 1.4. This form for the bivariate luminosity function will be a
key ingredient to our likelihood-free approach.

1.2.2.2 A Further Complication: Redshift Estimation

Our reduced sample from [4] consists of 5,000 quasars which each have two
estimates of the redshift. The first is the high-quality spectroscopic estimate of
the redshift, constructed from the full emission spectrum of the quasar. Figure 1.5
shows such a spectrum; by matching this spectrum with a template spectrum of a
quasar, one is able estimate to good accuracy the redshift of the observed quasar.
Unfortunately, such spectroscopic data is difficult to obtain, and many experiments
only provide photometric magnitudes accumulated over wide ranges of wavelength.
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Fig. 1.4 A comparison of the evolution of the quasar luminosity function as estimated by Schafer
[10] and that obtained by unbiased estimators built on binning

The left plot of Fig. 1.5 depicts the situation. Instead of observing the full spectrum,
one can only observe the spectrum integrated against each of the five bands (Z, Y,
J, H, and K). Then, estimation of redshift becomes a regression problem. There is a
training set, consisting of quasars for which there are both spectra and photometric
observations; these are used to fit a model relating the two. This model is applied to
the quasars for which there are only photometric observations in order to predict
their redshift. The relationship is highly nonlinear, and extensive work on this
problem only has served to demonstrate the difficulty of the challenge. See the right
plot of Fig. 1.5 for the results of performing such an analysis on the data of [4].

1.2.2.3 From True Bivariate Luminosity Function to Observable Data

Consider the aggregate effects of the use of photometric data:

1. Redshift (z) has measurement error
2. The distribution of this error depends on true redshift
3. Conversion from apparent to absolute magnitude (M) has error
4. There will be strong dependence between errors in z and M
5. The truncation will be performed on error-filled data

It would be difficult to construct an adequate likelihood function that takes into
account the above features of the model for the observable data. When faced with
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Fig. 1.5 Left: The spectrum of a quasar, with the filters of photometric bands superimposed. Right:
Plot of spectroscopic redshift versus photometric redshift for 5,000 quasars in [4]

such a challenging situation, one is naturally led to consider the forward process
that generated these data. If one is able to adequately simulate the individual steps,
it would be possible to generate data sets under conditions similar to those that led
to the observed data, varying only the parameters to be estimated. These simulations
could then be compared to the observed data. This is the fundamental idea behind
likelihood-free inference.
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1.3 Likelihood-Free Inference

Standard techniques for statistical inference are built upon knowledge of (a good
approximation to) the likelihood function for the data as a function of the parameters
of interest. This relationship between parameters and distribution for the data,
denoted fθ (x), can be complex, but as long as one can evaluate this expression for
different values of θ and x, proper implementations of well-established algorithms,
such as MCMC, will lead to accurate constraints on the unknowns. A likelihood-
free approach to inference is necessary when fθ (x) is not available; as stated above,
in this paper we concern ourselves with the case where the effect of contamination
of the observations by measurement error makes (even approximate) derivation of
the likelihood function impossible.

Frequentist likelihood-free approaches to inference are built upon the following,
simple approximation: To estimate fθ (x), the likelihood evaluated at data x when
θ is the truth, sample B data values x1,x2, . . . ,xB under the model implied by θ .
Then use

fθ (x)≈ K
B

∑
i=1

1Δ (x,xi)≤ε (1.3)

for some ε > 0, constant K and choice of distance metric Δ . In other words, the
proportion of simulated data values that are “close” to x (as measured by the metric
Δ ) is proportional to the likelihood function evaluated at the pair (x,θ ). Diggle
and Gratton (1984), for example, approximate the likelihood surface by applying
nonparametric density estimators to likelihoods approximated in this way, and then
proceed to find the maximum likelihood estimator. The primary challenge in such
an approach is the difficulty encountered when θ is of high dimension.

Bayesian approaches are appealing because, just as with MCMC, one can
generate a sample from the high-dimensional posterior and still estimate most
integrals over the posterior, including marginal distributions for parameters, via
Monte Carlo approximations. Approximate Bayesian computation (ABC) refers to
a class of methods used to approximate the posterior distribution in cases where
a functional form for the likelihood is not available. The development of these
methods was motivated by estimation problems in population genetics, but recent
work is expanding the areas of application. In this section we describe a simple
algorithm utilized in this growing field of research.

The basic ABC algorithm is the ABC Rejection Algorithm outlined below.

The ABC Rejection Algorithm

First, define a distance metric Δ and a tolerance ε . Then, repeat the following
until sample of size N is generated:

1. Choose θ ∗ from prior π(θ ).
2. Generate xsim ∼ fθ∗ .

(continued)
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Fig. 1.6 Left: An application of the ABC Rejection method to the SNe example. Gray points
correspond to rejected proposals, while black points are accepted. Right: Same situation, except
using the ABC SMC method

(continued)
3. If Δ(xsim,xobs) > ε , then return to step 1; otherwise, accept this θ ∗ into the

posterior sample.

This algorithm works because the pair (θ ∗, xsim) that results from steps one and two
are a draw from the distribution with density fθ (x)π(θ ) and, if this θ ∗ is accepted
in step three, the probability of θ ∗ being in set A is

∫
A

∫
N(xobs,ε)

fθ (x)π(θ )dx dθ ≈ K
∫

A
fθ (xobs)π(θ )dθ =

∫
A
π(θ | xobs)dθ

where N(xobs,ε) is the collection of all x values that are within ε of xobs, and K is a
constant that does not depend on θ or xobs. Hence, the accepted θ ∗ is approximately
distributed as a draw from the posterior π(θ | xobs). The left plot of Fig. 1.6 depicts
the result of application of this method to the two parameter estimation problem
using Type Ia SNe described above. One notes that in this case 5,633 proposed θ ∗
were rejected in order to generate a collection of 100 accepted parameter values,
and yet the tolerance ε is still not sufficiently small for the posterior estimated from
the draws (gray contours) to be a good approximation to the true posterior (black
contours).

Thus, although conceptually and (typically) computationally simple, the ABC
rejection algorithm can be incredibly inefficient, rejecting a high proportion of the
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proposed θ ∗, especially if the parameter space is of high dimension. Sequential
Monte Carlo (SMC) [11] methods were developed to address such challenges. These
approaches migrate a family of N particles through a sequence of steps; at each step
the target distribution for the particles is a little closer to the primary objective:
the posterior. This allows one to start with a generous amount of tolerance, and
hence not reject such a large proportion of the proposals, and then subsequently
tighten the standards to the point where the distribution of the particles is similar to
a sample from the posterior. In [12], a version of SMC was developed that operated
in the absence of a likelihood function, again motivated by complex genetics models
that did not yield a tractable form for the likelihood. This is described below.

The ABC SMC Algorithm [12]

First, define a distance metric Δ and a sequence ε0 > ε1 > · · ·> εT .
At main iteration t = 0, for each of i = 1,2, . . . ,N:

1. Choose θ ∗
i from prior π(θ ).

2. Generate xsim ∼ fθ∗i .

3. If Δ(xsim,xobs)> ε0, then return to step 1; otherwise, accept this θ (t)
i .

4. Set wi = 1/N.

At main iteration t = 1,2, . . . ,T , for each of i = 1,2, . . . ,N:

1. Choose θ ∗
i from among the θ (t−1)

j with probabilities w(t−1)
j

2. Generate θ (t)
i by perturbing θ ∗

i using kernel K(θ ∗
i , ·)

3. Generate xsim ∼ f
θ (t)i

4. If Δ(xsim,xobs)> εt , then return to step 1; otherwise, accept this θ (t)
i

5. Calculate the new weight as

w(t)
i =

π
(
θ (t)

i

)

∑N
j=1 w(t−1)

j K
(
θ ∗

j ,θ
(t)
i

)

Note that, when using the algorithm, the θ (t)
i are a sample from the distribution

g(θ ) =
N

∑
j=1

w(t−1)
j K(θ ∗

j ,θ ) fθ ,εt (xobs).

The weights w(t)
i can be viewed as importance sampling weights
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w(t)
i =

π
(
θ (t)

i

)
f
θ (t)i ,εt

(xobs)

∑N
j=1 w(t−1)

j K
(
θ ∗

j ,θ
(t)
i

)
f
θ (t)i ,εt

(xobs)
.

This collection of parameter values can then be used as a sample from the
(approximated) posterior, and then be used much in the same way as would
the output of an MCMC implementation (with the small added complication of
incorporating the weights). When applied in the SNe example, the improvement in
the estimation of the posterior distribution can be seen in the right plot of Fig. 1.6.

1.3.1 Quantifying the Distance Between Data Sets

Both of the aforementioned algorithms are built upon the same crucial ingredient
unique to the ABC approach: a distance metric Δ capable of assessing the degree
of similarity between the observed data and a simulated data set. In practice, this
comparison is not made between the raw data objects, but instead between summary
statistics, either a smoothed version or a low-dimensional representation of the
original data. The resulting compression is an important step; if done appropriately,
the summary statistic will preserve the information useful for constraining the input
parameters and throw out the useless ancillary information. Indeed, the better this
summary statistic approximates a minimal sufficient statistic, the better the ABC
procedure will mimic the results that would have been obtained with full knowledge
of the likelihood function.

As a result, current research is focused on procedures for constructing such
a statistic. A method for assessing the value of proposed summary statistics is
proposed in [13]. In [14, 15], an approach of indirect inference is utilized. An
auxiliary model is fit to the data that incorporates not only the parameters of interest
θ , but also ancillary parameters that make the model flexible enough to fit to the
real data. This model is chosen to take a sufficiently simple form that estimation
of all of the parameters is feasible. The vector consisting of the MLE of these
parameters serves as a summary statistic. In cosmology applications, however, it
may not generally be feasible to construct such an auxiliary model. The general
concept, however, is relevant: The amount of compression performed on the data
to create the summary statistic should be equivalent to the compression performed
when the MLE of θ is found.

For instance, in the SNe example, the summary statistic is chosen to be the fit
of a smoother through the simulated redshift and absolute magnitude data. Ideally,
the amount of smoothing would be equivalent to the smoothness of the set of curves
found when varying H0 and Ωm. Of course, without knowledge of the likelihood
function, one would need to utilize a more extensive set of simulations to explore
the nature of how the distribution of the data changes as θ is varied. Returning again
to the SNe example, repeated simulations of data sets for fixed θ would reveal the
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smooth relationship between redshift and the distance modulus; repeating this for
many different values of θ would reveal that the shape of this curve does not change
much over the parameter space. In this way, with enough simulations, one could
uncover the true low-dimensional structure present in the relationship between θ
and the distribution of the observable data. Such a procedure is described in [16].
This seems to be a very promising direction for the practical implementation of
ABC approaches in cosmology.

1.3.2 Luminosity Function Estimation

Finally, we will briefly outline how we are implementing a likelihood-free approach
to estimating luminosity functions, specifically to analyze the quasar sample of [4].
First, we assume that the true form of the bivariate luminosity function (i.e., the
bivariate density) takes the form given in (1.2). As already mentioned, previous
studies have justified this choice. It is further assumed that the functions f(·) and
g(·) are quadratic; the result is that there are seven parameters in the model once τ
is included. A normal prior is assumed for each of these parameters. Once values are
chosen for each of these parameters, once can then run the “forward process” shown
below to generate data that has been subjected to the same effects as the observed
data.

• Draw true z and M values
• Convert to true apparent magnitude m
• Simulate photometric redshift by drawing from joint distribution
• Calculate estimated absolute magnitude M
• Apply truncation to error-filled observations

Once generated, a data set is converted into a “summary statistic” by fitting a
bivariate density to the observations; this is again using the form given in (1.2). The
distance is then calculated using simple L2 distance between the two (observed and
simulated) bivariate densities. Although this is a challenging implementation, some
of the preliminary results are promising. Figure 1.7 show an estimated luminosity
function when the ABC SMC method was applied to a case where the data were
subjected to errors and truncation identical to those present in the sample of [4], but
the truth was fixed and shown as the dashed line.

1.4 Conclusion

This article presents an overview of approaches to approximate Bayesian computa-
tion, which are likelihood-free statistical inference procedures. These could prove
to be useful in a range of cosmological inference problems. Here, the framework for
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Fig. 1.7 Quasar luminosity function estimate based on simulations. The dashed line is the known
truth. The inner band is the 68% credible region, while the larger, outer region is the 95% credible
region

the application of these methods to luminosity function estimation is motivated. Of
particular relevance is how these procedures could allow for adequate incorporation
of the significant observation limitations that are present, including the reality of
the limitations of photometric estimates of redshifts. If successful, these approaches
will make full use of the flood of data to be gathered by photometric surveys.
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Chapter 2
Commentary: Likelihood-Free Inference
in Cosmology: Potential for the Estimation
of Luminosity Functions

Martin A. Hendry

Abstract The identification, diagnosis and removal of systematic biases, due to e.g.
measurement errors and observational selection effects, has become a key challenge
for the so-called ‘era of precision cosmology’. In this commentary I will describe
some specific examples of where and how this challenge may arise in the analysis of
astronomical surveys, thus illustrating ways in which the construction of an explicit
likelihood function is rendered complicated in this field. These various examples
therefore provide further motivation for the potential usefulness of the likelihood-
free inference approach which Schafer has proposed.

2.1 Introduction

The 20 years since the first SCMA conference have seen rapid growth in the reach
and impact of astrostatistics—particularly in the field of cosmology. The application
of physically well-motivated cosmological probes such as Type Ia supernovae
(SNIe) and the cosmic microwave background radiation has placed strong con-
straints on the parameters which define our cosmological model, leading to the
emergence of the so-called “Concordance Cosmology”, supported by observations
across a range of astrophysical phenomena. While there remain serious unresolved
issues with the Concordance model, the quantity and quality of the data that emerged
in the late 1990s prompted the label “the era of precision cosmology” to enter
common use [1].

The appropriateness of this label is undermined, however, by the potential
impact of systematic errors. These may arise for a variety of reasons, including
instrumental or atmospheric effects, measurement errors and observational selection
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due to e.g. truncation or censoring, and may be strongly correlated, non-Gaussian,
non-stationary or otherwise problematic. Their identification and diagnosis can
present significant challenges for the analysis of astronomical surveys via traditional
likelihood-bases methods. In this brief commentary I will describe some specific
examples of where and how these challenges may arise—thus providing further
motivation for the potential usefulness of the likelihood-free inference approach
which Schafer has proposed.

2.2 Systematic Effects in Astronomical Surveys

The surveying of astronomical populations is commonplace across a wide range of
scales, from the statistics of nanoflares on the Sun to the demographics of distant
quasars. As Schafer has noted in the preceding article, the approach adopted to
date in studying astronomical populations has generally been likelihood based. For
instance in estimating the galaxy luminosity function (LF) a range of maximum
likelihood methods—both parametric and robust—has been developed, many of
which explicitly account for the impact of observational selection (see [2] for a
recent and comprehensive review) and the semi-parametric method of [3] is a
powerful recent addition to these techniques.

In this context however, and as the preceding article also discusses, a significant
complication in this field is the growing prevalence in very large survey datasets of
photometric redshifts. These have hugely increased the volume and size of redshift
surveys and the efficiency with which they may be carried out but at the cost of
introducing a significant measurement error on the redshift of each source. The
trend towards extremely large photometric redshift surveys is firmly set to continue
as we approach the era of ‘petascale’ datasets promised by the Large Synoptic
survey Telescope [4]. Consequently the impact of photometric redshift errors on
likelihood-based approaches to survey analysis, and the exploration of alternative
methodologies, appears to be an important future research direction—a conclusion
which was also reached at SCMA4 in the context of the report presented there on
the work of the astronomical surveys group within the 2006 Astrostatistics program
at SAMSI [5]. This conclusion would appear to be equally relevant, if not more
so, today.

A common feature shared by likelihood-based methods to probe survey luminos-
ity functions is the adoption of a simple, approximate form for the sample selection
function—for example a step function to describe the flux limit(s) of the survey [6].
While these approximations may be necessary to make the problem analytically
tractable, the reality may be considerably more complicated, particularly when
objects (such as distant SNIe or high redshift galaxies) are being detected in
crowded fields, where issues of blended sources and source misclassification can be
important [7]. These effects can render the flux limit of selected sources strongly
dependent on environment, sky direction and ‘seeing’ conditions at the time of
observation—all of which may not easily be reducible to a simple step function
of flux alone.
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Another common problem with flux limited surveys is where the sources are
originally selected in the optical—based on a historical catalogue of e.g. B-band
galaxy apparent magnitudes—but the survey involves observations made in another
waveband, for example I-band photometry for the purpose of estimating galaxy
distances and peculiar velocities via the Tully-Fisher relation [8]. In this situation
the intrinsic correlation between galaxy luminosity and colour means that the B-
band selection to which the original catalogue was subject will translate into an
I-band selection function in the Tully-Fisher survey. However, since the correlation
between B-band luminosity and B− I colour is not perfect but has an appreciable
scatter, the I-band selection function will be blurred even if the original B-band
selection is well described by a sharp apparent magnitude limit [9].

A further complication when observing the very distant Universe is that surveys
of e.g. quasars or high redshift galaxies may be subject to complex and poorly
understood evolutionary effects (indeed probing this source evolution is often the
main object of the survey in the first place!). In addition the application of so-called
‘k-corrections’ is required because the spectral energy distribution emitted by a
high redshift source in its rest frame will be observed redshifted towards longer
wavelengths by the expansion of the Universe [10, 11].

Other surveyed sources such as radio pulsars, gamma ray bursts or active
galactic nuclei may be affected by geometrical selection effects, where the emitted
radiation is strongly anisotropic [12]. These effects can impact significantly on the
detectability of sources and influence their apparent brightness due to e.g. relativistic
beaming, as well as introducing strong degeneracies between source parameters
such as inferred distance and inclination to the line of sight. Similar issues are now
being confronted in the nascent field of gravitational-wave astronomy [13], where
the selection function of e.g. observed inspiralling binary neutron star sources will
be the result of a complex interplay between the underlying cosmological model,
the intrinsic star formation rate and a sky sensitivity pattern which is strongly
dependent on direction, source orientation and frequency of the emitted gravitational
waves [14].

Another very common and important source of systematic error in survey data is
the effect of extinction: the wavelength dependent absorption of light by dust either
in the environs of the source itself or within our own Milky Way galaxy. Extinction
effects are often dealt with by carrying out multi-wavelength observations and
correcting for their impact by fitting a (usually parametric) extinction law as a
function of wavelength. This technique has been used extensively for example to
infer extinction-free estimates of the distance to Cepheid variable stars in external
galaxies observed by the Hubble Space Telescope [15].

Multiwavelength observations are also a key feature of the methodology used to
harness SNIe as cosmological distance indicators. The multiwavelength approach is
employed both to diagnose and correct for extinction and to improve the precision of
the distance indicator itself by exploiting empirical correlations between the shape
of the SNIe light curves and their intrinsic luminosity at different wavelengths. For
more than 15 years advanced Bayesian methods have been applied for calibrating
these relations to derive SNIe distance estimates [16]. Recently Mandel [17] has
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presented a sophisticated multilevel Bayesian model that addresses simultaneously
extinction, intrinsic light curve shape, possible source evolution and cosmological
parameter extraction. While this treatment is certainly ‘state of the art’ it shares with
many of the other survey examples listed here the requirement of a complicated
likelihood function, perhaps featuring a significant number of nuisance parameters,
to fully capture the intrinsic characteristics of the source population and the
observational selection effects to which they are subject.

2.3 The Case for a Likelihood-Free Approach

All of the complicating factors listed in the previous section—crowded fields, colour
correlations, evolutionary effects, k-corrections, source orientation and beaming,
extinction—are relatively straightforward to simulate, i.e. to model numerically via
Monte Carlo simulation, but are not so easy to explicitly include in a likelihood
model without potentially rendering that model unwieldy. In contrast, therefore,
to the traditional methodology whereby adopts a likelihood function model that
is as simple as possible and estimates the parameters of that model (see e.g. the
VELMOD approach of [18] as a good archetype, in the area of peculiar velocity
reconstruction), one can envisage instead a “forward modelling” approach in which
one constructs sophisticated “mock” datasets that can simulate faithfully some or all
of the above factors that would influence the journey of a real photon (or graviton!)
from source to detectors. As described in the preceding article, one would draw
inferences about the source population by comparing these mock datasets with the
real survey data—analogous to the approach that has been adopted for many years
in generating mock galaxy catalogues from high resolution n-body simulations of
large scale structure [19].

As the preceding article has recognised, the key challenge in this approach is
identifying a suitable metric for comparing the mock and real datasets, or some
appropriate summary statistic constructed therefrom. The ABC algorithms which
Schafer presents appear to offer a useful and practical solution to this challenge—
particularly the sequential Monte Carlo algorithm which largely overcomes the
problem of inefficient sampling of the Rejection algorithm. This is a crucial
improvement since, as we have seen in Sect. 67.2, the complexity of simulations
required to capture adequately the details of many future cosmological data sets
may be considerable.

In a similar vein the preceding article underlines the importance of identifying
and constructing useful summary statistics that efficiently measure the degree of
similarity between the observed and simulated datasets. He proposes, for example,
fitting a low-dimensional smoother through the real and simulated supernovae
redshift and magnitude data to represent the luminosity distance-redshift relation.
This is an approach that has already been explored—using a variety of different
basis functions [20–22]—as an efficient method for representing non-parametrically
the luminosity distance-redshift relation and its integral relationship to the cosmic
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equation of state. An approach of this form, applied to a variety of other cosmo-
logical datasets, would appear to hold promise for the efficient implementation of
likelihood-free inference methods in the future.
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Chapter 3
Robust, Data-Driven Inference in Non-linear
Cosmostatistics

Benjamin D. Wandelt, Jens Jasche, and Guilhem Lavaux

Abstract We discuss two projects in non-linear cosmostatistics applicable to
very large surveys of galaxies. The first is a Bayesian reconstruction of galaxy
redshifts and their number density distribution from approximate, photometric
redshift data. The second focuses on cosmic voids and uses them to construct
cosmic spheres which allow reconstructing the expansion history of the Universe
using the Alcock-Paczynski test. In both cases we find that non-linearities enable
the methods or enhance the results: non-linear gravitational evolution creates voids
and our photo-z reconstruction works best in the highest density (and hence most
non-linear) portions of our simulations.

3.1 What is Cosmostatistics?

Cosmostatistics is the discipline of using the departures from homogeneity observed
in astronomical surveys to distinguish between cosmological models. It therefore
plays a central role in the cosmological agenda for the coming decade, which is to
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Fig. 3.1 Cosmostatistics uses the stochastic departures from homogeneity on all observable scales
to distinguish between cosmological models

• Learn about the cosmic beginning;
• Understand the cosmic constituents, in particular Dark Matter and Dark Energy;

and
• Understand cosmological evolution from initial seed perturbations to current

observations

One of the challenges for cosmostatistics is that any given observable (maps of the
cosmic microwave background, galaxy survey, etc.) is informative about all these
goals in some way (Fig. 3.1).

We are fortunate to live in a time when the cosmic microwave background
(CMB)is being mapped with high precision from space (by the WMAP [7] and
Planck [9] missions), and ground-based and space-based missions are mapping
out sizable fractions of the observable Universe in exquisite detail and in three
dimensions, across large swaths of the electromagnetic spectrum. Between these
two approaches we expect the CMB to have much more signal on very large scales,
whereas in principle, probes of density should win overall, simply since there are
vastly more modes in a three-dimensional data set which greatly reduces sample
variance.

How do we realize the immense promise of large scale structure surveys for
constraining cosmological models? A number of known and unknown systematics
stand between where we are now and the dream of accessing the vast number of
perturbation modes sampled by tracers of the underlying density field. Many of
these systematics complicate the relationship between the distribution of tracers and
the mass distribution we would actually like to probe.
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These complications arise either due to the intricate physics of galaxy formation
or through incomplete information in the data (e.g. having access only to
approximate photometric redshift information instead of the much more expensive
spectroscopic redshifts). In addition, the mass density has undergone non-linear
dynamical evolution on length scales less than ∼20 Mpc/h, which has coupled
the perturbation modes in ways that are non-trivial to model. Non-linear mode
coupling erases information that the mode amplitudes carried about the state of the
early Universe from whence they arose. On the largest scales the limits are set by
causality and hence the finite volume of the observable Universe.

Most people would agree on the impracticality of incorporating fully non-linear
gravitational evolution into cosmological inference, let alone a fully physical model
of galaxy formation. So the challenge is to find ways of looking at the data that are
robust to these systematics.

When it comes to dealing with incomplete information, the challenge is to
produce a joint analysis with uncontroversial prior information that allows recon-
stituting some of the information that has not been captured in the data.

In this talk we will highlight two recent papers which give examples of these
two approaches. In one case [3], we develop a Bayesian approach to improving
photometric redshift estimates (and simultaneously estimate the density of the
tracers). The prior information we assume to achieve this information recovery is
local isotropy of the tracer distribution.

In the second paper [5] we define a new observable to prove the physical
properties of dark energy: stacked voids. In this case we choose a very specific pre-
processing step to extract features of the data which should be robust to galaxy bias
and to non-linearity. The approach explicitly projects out the details of the tracer
distribution in the non-linear density field to obtain nearly spherical objects that
nearly co-move with the expansion which serve as the basis of a powerful and purely
geometrical test of the expansion history of the Universe. Again, local isotropy
underlies this approach which posits that underdense regions are not preferentially
oriented with respect to an observer’s line of sight.

3.2 Bayesian Inference from Photometric Redshift Surveys

The vast majority of ongoing and future surveys (CFHTLS, DES, Pan-STARRS,
LSST) are or will be photometric. This is a simple consequence of the cost of taking
a galaxy spectrum with current technology. Photometric redshift errors of Δz 0.03,
the current state-of-the-art, translate into smearing along the line of sight on scales
of ∼200 Mpc. Such errors are not detrimental to certain kinds of science but will
cause any structure smaller than 100 Mpc to be wiped out, as illustrated in Fig. 3.2.

Looking at the trivial density estimate calculated binning photometric tracers
shown in Fig. 3.2 it is immediately clear that the line-like finger-of-god artifacts
introduced by photo-z smearing are very recognizable, since they break local
isotropy, a core element of our cosmology. Since they stand out so visibly, we
wondered if they could be removed.
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Fig. 3.2 From an n-body simulation to the simulated photo-z survey: the particle density in
the simulation (left), after application of the mask (center), and after simulation of photo-z
uncertainties (right)

In the following we will often refer to the tracers as galaxies, but the nature of
the tracer is of no importance to the functioning or implementation of the algorithm.

3.2.1 A Simple Model of a Photo-z Catalogue

First we build a hierarchical model for the distribution of tracers. A simple approach
is to consider the points an inhomogeneous Poisson process. The intensity function
of the Poisson process is the underlying number density field, which in turn is a
correlated, statistically isotropic, log-normal random field. For the purposes of this
exercise we will assume that the correlation function (or equivalently the power
spectrum P(k)) is known. Relaxing this assumption will be subject of a future study.

The third level in the model hierarchy: photo-z distortions modify the galaxy
positions along the radial lines of sight. It is assumed that the redshift uncertainties
are specified in terms of a pdf for each tracer. These photo-z pdfs are assumed to
be the output of an earlier analysis step which uses any information available, except
the spatial distribution of the tracers in the catalog. All photometric information for
the galaxy including any morphological features that can be discerned in the images
are fair game.

3.2.1.1 Implementation

This hierarchical model can be straightforwardly implemented. The challenge is
to explore the posterior density in an efficient manner since the parameter space
is enormous: approximately 16 million parameters for the number density and 20
million galaxy redshifts. We choose a block Gibbs sampling approach with the
following steps:
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Fig. 3.3 Constrained realizations of the reconstructed density field. The data was simulated using
an n-body simulation and the reconstruction assumes the Poisson-lognormal prior with isotropic
correlations

Sample the number density given the current galaxy redshifts. We draw from the
conditional posterior of the number density assuming that the current “guess” of
the galaxy redshift is correct. This is a solved problem [4]; it uses a Hamiltonian
sampling approach to update the number density field using the galaxy positions
and incorporating the correlated log-normal prior.

Sample the galaxy redshifts given the number density. The redshift posteriors for
the galaxies are conditionally independent given the number density field. This
feature allows parallelizing this step over the number of galaxies. Each galaxy
performs one step of a Metropolis-Hastings Markov Chain Monte Carlo along
the line of sight. The conditional posterior for each galaxy is the product of the
input photo-z pdf for this galaxy and the number density.

Conditional independence is the key feature that allows this algorithm to scale to
tens of millions of galaxies. From the perspective of the message passing paradigm
of Bayesian inference, the number density field communicates the information about
all the other galaxies to each individual one.

3.2.2 Results

Figures 3.3 and 3.4 illustrate our approach. Even within a few steps the samples
of the number density isotropize. As the sampler progresses, individual galaxies
explore along their line of sight in a number density field which in turn fluctuates in
response to the changing galaxy positions.

Figures 3.3 and 3.4 illustrate our approach. The first figure shows that even
within a few steps the samples of the number density become isotropized. In the
second figure we track the redshift of an example galaxy as the sampler explores
the range of possible reconstructions. The galaxies explore along their line of sight
in a number density field that, in turn, fluctuates in response to the changing galaxy
positions.
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Fig. 3.4 Constrained realizations of the reconstructed density field. The data was simulated using
an n-body simulation and the reconstruction assumes the Poisson-lognormal prior with isotropic
correlations

The results are encouraging. In high density regions galaxy redshift uncertainties
reduce by a factor of several. When a galaxy could reside in one of several
concentrations lying along the line of sight the output pdf is multi-modal. Even
so, the reconstructed redshift posteriors of the galaxies are generally far more
informative than the inputs coming from photometric redshift estimators.

In order to summarize the result of the reconstruction we form the posterior mean
estimator, the average of the number density field realizations that are explored by
the sampler. We can compare this reconstruction to assess its capability to reproduce
features of the input map. Figure 3.5 shows the k-space cross-correlations between
the reconstructed and the input field. It is clear that the method is very successful in
the high density parts of the sky.

3.2.3 Discussion and Conclusions

The first main point of this talk is that we demonstrated the technical achievement
of running a fully Bayesian analysis of a simulated data set with tens of millions of
galaxies, and density fields represented on tens of millions of grid zones. The scale
of this application corresponds to that of the current generation of available surveys,
so it should be feasible to apply this approach to existing data.

The second key issue is to test whether our analysis is sensitive to model
misspecification, since the real data will not follow the correlated log-normal
Poisson model. Our initial tests (of code correctness) used simulations that were
consistent with the prior assumptions. These tests were passed. We do not show
these tests here because the prior produces density fields that clearly not realistic,
missing much of the filamentary structure which is characteristic of the cosmic web.

The work we present in this talk (and described in detail in Jasche and
Wandelt) uses simulated from an n-body simulation. Our results demonstrate that
the reconstruction is successful in spite of using an approximate model.
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Fig. 3.5 The reconstructed density recovers the small scale features of the input density very
well in high density regions. The figure shows the cross-correlation between the input field and
the reconstructed density as a function of wave number. Different lines correspond to different
thresholds of overdensity

The key feature underlying the reconstruction is clearly the ability to build in the
prior assumption of isotropic correlations in the underlying cosmological number
density field of the tracers. A secondary feature is the assumption of the shape of
the correlations. What we show is that modeling those two aspects of the data results
in acceptable reconstructions, that improve the redshift information for each galaxy
significantly. It is also true that a better model including the morphological features
of realistic gravitationally evolved number density would likely improve upon our
results, since the differences between a correlated Poisson log-normal sample and a
physical sample drawn from an n-body simulation are easily visible by eye. But it
is clear that the reconstructions are not highly sensitive to the details of the assumed
prior as long as two salient features of correlation and isotropy are included for
the density field and we posit a simple statistical relationship of the tracers to the
underlying density, in this case the inhomogeneous Poisson model.

Our approach is completely independent of and complementary to the means by
which the photometric redshift is derived. The method is ready for tests on realistic
data where the photoz pdfs will be specified in terms of a different pdf for each
galaxy.

As a consequence the method will be able to benefit from those tracers
whose redshifts are better determined that others. In particular we can merge the
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advantages of a large number of galaxies in photometric samples and the accuracy
of spectroscopic samples! We will explore this idea further in follow-up studies.

This inference problem is of particular interest because it is an example where
combining millions of noisy measurements with a physical prior, namely the
assumption of isotropic correlations produces a decisive gain in information.

In the second part of the talk we will see another application of the notion of
statistical isotropy—this time to the construction of an estimator for the expansion
history of the Universe.

3.3 Precision Cosmography with Cosmic Voids

Understanding the physical properties of dark energy is a major goal of modern
cosmology. There are essentially two distinct approaches to reaching this goal:
cosmography and tracing structure formation.

Cosmography. The cosmography approach, which constrains dark energy prop-
erties using precision measurements of the expansion geometry of the Universe.
Einstein’s equation relates the geometrical properties of our Universe to its content.
Since “dark energy” is just a placeholder for the terms in Einstein’s equation that
drive the observed accelerated expansion of the Universe, precision comographical
measurements can tell us about the time dependence of these terms and hence about
the value, and rate of change of the equation of state parameter.

Tracing structure formation. The expansion of the universe has an impact
on the rate at which primordial perturbations amplify. These perturbations then
form structures through non-linear gravitational evolution, galaxy formation etc.
Observing the statistical properties (number, size etc) of these structures as a
function of redshift constrains the growth of structure, and hence the expansion
history, which is informative about the properties of dark energy.

It is clear from this description that geometrical approaches are more direct.
In addition, approaches relying on the statistical measures of the amount of
structure in the universe inevitably require a detailed understanding of the processes
that relate the formed structures to the underlying perturbation amplitude. These
processes (e.g. galaxy formation) can be highly complex and deeply non-linear and
are research areas in themselves.

Geometrical approaches function by constructing standards out of observables
(or combinations of observables) that can be modeled reliably such as standard
candles (as in the case of type Ia supernovae), standard rulers (as in the case of
Baryon Acoustic Oscillations (BAO)) or time standards (such as the (differences of)
ages of galaxies).



3 Inference in Non-Linear Cosmostatistics 35

3.3.1 The Stacked Voids Alcock-Paczynski Test

The Alcock-Paczynski (AP) test [2] requires a different standard: “standard,
co-expanding spheres.” One way to construct such standard spheres is through
appealing to the statistical isotropy of the cosmological perturbations. In that case,
correlations should depend only on the length, but not the direction of the vector
connecting the two points being correlated. If the tracers that are being correlated
did not move, any anisotropy in the correlation function could be interpreted as
being due to the cosmological expansion at the redshift of the correlated objects.

The key difficulty in constructing standard spheres are peculiar velocity effects.
Any tracers that happen to lie in gravitationally bound structure will have velocities
of the order of the depth of the gravitational potential well of the structure. For
clusters or groups of galaxies the resulting finger of god effect in redshift space
dominates the cosmic expansion signal by an order of magnitude. To construct an
Alcock Paczyski test would therefore require a separate high precision measurement
of the depth and shape of the potential well of any structures whose parts were used
in the construction of the test.

So far the main work-around has been to only use very long range correlations of
order 100 h−1Mpc where peculiar velocity effects become sub-dominant compared
to cosmic expansion effect and where the baryon sound speed at radiation drag
leads to a peak in the correlation function. The downside of this limiting oneself
to such large scales is that the statistical constraints will depend on the number
of independent correlation volumes in survey volume, which limits the number of
perturbation modes that can be used to arrive at the dark energy constraints and
therefore leads one to consider extremely large surveys.

In this talk we propose a new way of constructing standard spheres: stacking
cosmic voids. While the AP test had been discussed for especially spherical
individual voids [10] stacking many voids guarantees spherical symmetry since
isotropy prevents cosmic voids from pointing at us (or away from us) preferentially.
Finding voids in redshift shells, extracting them from the survey, co-centering them
and stacking them, therefore gives rise to spherically symmetric underdensities.

There are several advantages to using cosmic voids:

• Voids are simple: peculiar velocities in and around voids are small compared to
the cosmic expansion. We find that they give a 16% systematic effect on our
reconstructed Hubble diagram, with a very mild dependence on void size and
redshift.

• Voids are small: A typical void size is 10 h−1 Mpc—for a dense enough survey
the number of voids per unit volume that can be detected is therefore of order
1,000 times larger than the number of BAO correlation volumes.

• Voids remember: we find that voids have a well-ordered phase space—all they
do is empty themselves out.

We use the term cosmic voids not to describe regions that are entirely empty, but
regions that are underdense basins of repulsion in the cosmic density field.
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Fig. 3.6 The results of our void finder in a slice of an n-body simulation. The void finder constructs
a hierarchical structure of voids. Each patch is a void, colored according to the level in the void
hierarchy. When collecting voids in a size bin during the stacking procedure the algorithm traverses
the tree in a depth first algorithm and marks and returns the first void it finds which satisfies the
size criterion

In order to demonstrate the promise of stacked voids for constructing a powerful
AP test we solved the following problems:

1. Create a suitable void definition: a modified ZOBOV algorithm [8] (see Fig. 3.6);
2. Define a method to add voids into stacks labeled by size and redshift, which both

enhances signal to noise and sphericalizes them (see Fig. 3.7);
3. Determine the number of voids that would be available to this method in an

observed cosmological volume (see Fig. 3.8); and
4. Measure their stretch along the line of sight in order to obtain the expansion

history of the universe (see Figs. 3.9 and 3.10).

Details can be found in our main paper [5].
We tested these methods in a series of three pure dark matter N-body simulations

with different realizations of the initial conditions but the same cosmology. The
volume of each simulation is given by a cube of side L = 500 h−1 M�. Each
simulation had N = 5123 particles. We adopted aΛCDM-WMAP7 cosmology with
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Fig. 3.7 A void stack for 8 h−1 Mpc voids. Left: the stack after fitting removing the cosmic
expansion effect, but without including peculiar velocities in the simulation. We find our profile
agrees well with that found in [13]. Right: The stack when peculiar velocities are included. The
same cosmic expansion has been removed as in the left panel. Careful inspection shows that
peculiar velocities lead to a small net compression of the void stack along the line of sight

Fig. 3.8 Our simulation results for numbers densities of cosmic voids as a function of redshift for
voids of different sizes. These simulation results agree with the model described in [11]
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Fig. 3.9 The measured void stretch as a function of redshift for voids of 6, 8, and 14 h−1Mpc
(from left to right and top to bottom) for three simulations. The long-dashed line shows the result
for the simulated cosmology. No peculiar velocities were included in the mock catalogs used for
these plots. The lower right panel shows the result for 8 h−1 Mpc voids for mocks with peculiar
velocities and without any correction for peculiar velocity effect. The lack of redshift dependence
of the resulting bias is clear. The same plot after debiasing is shown in Fig. 3.10

the following parameters: Ωbh2 = 0.02258,Ωch2 = 0.1108, H = 71 km s−1 Mpc−1,
w = −1, nS = 1, AS = 2.34× 10−9. This corresponds to Ωb = 0.045, ΩM = 0.264,
σ8 = 0.84. Each particle had a mass mp = 2.051011 h−1 M�. The transfer function
for density fluctuations for this cosmology was computed using CAMB [6]. The
initial conditions were generated using ICGEN,1 a code which uses the transfer
function to generate a density field from the primordial power spectrum.

1Available from http://www.iap.fr/users/lavaux/

http://www.iap.fr/users/lavaux/
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Fig. 3.10 Stretch inferred for 8 h−1 Mpc voids after the correction of a peculiar velocity bias.
There is no evidence for residual bias at the level of our simulations

3.3.2 Discussion and Conclusion

Based on these results we performed a Fisher matrix forecast of the statistical
constraints on dark energy equation of state parameter wa and its rate of change
wp that we would expect from Euclid. We quantify the answer in terms of the figure
of merit defined by the Dark Energy Task Force [1], i.e. the relative reduction in
the area of the uncertainty ellipse for these two quantities. The result is exciting—
we find that the stacked void Alcock-Paczynski test has the potential significantly
to enhance the power of the proposed (and now selected) Euclid space craft to
constrain dark energy phenomenology.

On the fact of it cosmic voids have the potential to provide a far more powerful
constraint on dark energy than measurements of the Baryonic Acoustic Oscillation
scale, by up to an order of magnitude. This large increase of information is easily
understood in comparing the number of modes probed by voids compared to BAOs,
which scales roughly as the third power of the ratio of the BAO scale to the scale
of the smallest usable voids ∼1,000. The area of parameter constraints scales as
the square root of the number of modes ∼30. When projected into the wa,wp

plane using the Fisher matrix formalism for the EUCLID wide survey, we find the
improvement over BAO on those parameters by a factor of ∼10.
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We expect our stacked void shape measurements to be robust to galaxy bias as
it is purely geometrical and relies on the topology of the density field [12]. In fact,
it is possible that biased tracers of the density enhance the contrast of voids and
therefore enhance the void detection rate. These expectations remains to verified on
more realistic mock catalogs and real data.

Based on our Fisher matrix forecasts, the stacked voids technique promises a
remarkable increase to the figure of merit from EUCLID when compared to the
combined results from all other probes using EUCLID data (BAO, weak lensing,
type Ia supernovae, cluster counts). The Alcock-Paczinsky test using stacked voids
is therefore potentially a significant addition to the portfolio of major dark energy
probes which merits further detailed studies focused on additional real-world
systematics and optimal survey design.
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Chapter 4
Simulation-Aided Inference in Cosmology

David Higdon, Earl Lawrence, Katrin Heitmann, and Salman Habib

Abstract In this paper we describe two Bayesian statistical approaches for
combining large-scale computational models with physical observations to make in-
ferences about cosmological parameters. The first method is a Bayesian calibration
approach adapted from Kennedy and O’Hagan (J R Stat Soc B 68:425–464, 2001)
and Higdon et al. (J Am Stat Assoc 103:570–583, 2008). It makes use of a response
surface model that approximates the simulation output at untried input settings. The
second approach uses the ensemble Kalman filter (Evensen, IEEE Control Syst Mag
29:83–104, 2009), which makes use of an ensemble of simulations and physical
observations to update the prior parameter distribution using standard equations
from Kalman filtering. We apply these methods to large-scale structure simulations
and observations from the Sloan Digital Sky Survey.

4.1 Introduction

In this paper we combine computationally intensive simulation results with mea-
surements from the Sloan Digital Sky Survey (SDSS) to infer a subset of the
parameters that control the ΛCDM model, cosmology’s standard model. We
describe two Bayesian approaches for carrying out this analysis. First, we describe
a statistical framework adapted from Kennedy and O’Hagan [7] and Higdon et al.
[4] to determine a posterior distribution for these cosmological parameters given
the simulation output and the physical observations. Second, we show how to use
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the ensemble Kalman filter [1] to estimate these cosmological parameters. We
briefly contrast these two basic approaches for model calibration (i.e. parameter
estimation).

4.2 Simulations and Physical Observations

The SDSS, shown in the left panel of Fig. 4.1 maps out the spatial location of
galaxies around the Milky Way Galaxy. A key feature of the spatial distribution
of galaxies is the combination of voids and high density filaments of matter. This

Fig. 4.1 Top left: Physical observations from the Sloan Digital Sky Survey (Credit: Sloan Digital
Sky Survey). Top right: Simulation results from an N-body simulation. Bottom: Power spectra for
the Matter density fields. The gray lines are from 128 simulations; the black lines give spectrum
estimates derived from the physical observations
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Table 4.1 ΛCDM
parameters with their lower
and upper bounds

Param Explanation Lower Upper

n Spectral index 0.8 1.4
h Hubble constant 0.5 1.1
σ8 Galaxy fluctuation amplitude 0.6 1.6
ΩCDM Dark matter density 0.0 0.6
ΩB Baryonic matter density 0.02 0.12

peculiarity is a result of the cumulative effect of gravity (and other forces) acting on
slight matter density fluctuations present shortly after the big bang, as evidenced by
the cosmic microwave background (CMB).

Predicting the current spatial distribution of matter in the universe, given the
parameters of the ΛCDM model, requires substantial computing effort. For a
given parameter setting, a very large-scale N-body simulation is carried out. The
simulation initializes dark matter tracer particles according to the CMB and then
propagates them according to gravity and other forces up to the present time. The
result of one such simulation is shown in the middle frame of Fig. 4.1. Different
cosmologies (i.e. cosmological parameter settings) yield simulations with different
spatial structure. We would like to determine which cosmologies are consistent with
physical observations of our universe, such as the power spectra in the right frame
of Fig. 4.1.

It is difficult to directly compare the simulation output and the SDSS data. The
simulations move dark matter particles over a periodic cube of space, while the
SDSS data give a censored, local snapshot of the large scale structure of the universe.
We can simplify the comparison by summarizing the simulation output and physical
observations with their power spectra, describing the spatial distribution of matter
density at a wide range of length scales, shown in the right frame of Fig. 4.1.
Note that the wave number k on the x-axis of these spectra is given in h/Mpc. A
megaparsec (Mpc) is a length scale; two galaxies are separated by about 1 Mpc
on average. The gray lines in right hand plot of Fig. 4.1 show a number of matter
power spectra produced by carrying out simulations using different cosmological
parameter settings.

Computing the matter power spectrum is trivial for the simulation output since
the output resides on a periodic, cubic lattice. Determining the matter power
spectrum from the SDSS data has many difficulties: nonstandard survey geometry,
redshift space distortions, luminosity bias and noise, just to name a few. Because
of these challenges, we use the data and likelihood of Tegmark et al. [16], which is
summarized in right hand plot of Fig. 4.1. This is chosen for demonstration purposes
only as the spectra from the dark matter simulations are not directly comparable
with the spectrum computed from luminous red galaxies. These data correspond to
22 independent pairs (yi,ki) with the two standard deviation bars shown in Fig. 4.1.

For the N-body simulations, we consider five ΛCDM parameters show in
Table 4.1. Since we assume a flat universe and a constant dark energy equation of
state, we expect that any variation in the unused ΛCDM parameters will not affect
the resulting matter power spectra.
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Fig. 4.2 128 input parameter settings over the 5-dimensional parameter space

The dark matter simulations are computationally demanding, requiring the com-
putation of force interactions for over two million particles. Simulation accuracy
is particularly important for the smaller length scales (k ≥ 0.2 h Mpc−1), where
the gravitational effects become strongly nonlinear. For this demonstration, we
use m = 128 simulations. For the Bayesian computer model calibration (BCMC)
approach, a response surface is built to estimate power spectra at untried input
settings. Experience indicates a preference for spreading the 128 inputs to fill in
the 5-dimensional parameter space (see Fig. 4.2). For a survey of statistical designs
for computer experiments, see Santner et al. [14], Chaps. 5 and 6. For the ensemble
Kalman filter (EnKF) approach, this simulation output is treated as a sample from
the prior distribution for the cosmological parameter settings.
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4.3 Statistical Formulation

In this section we describe the statistical methodology for combining physical
observations and simulation output to infer unknown model parameters. We use
observations y from the matter power spectrum (Fig. 4.1) and matter power spectra
derived from physical simulations.

Generally, the simulation models requires p-vector t of input parameters to
produce a matter power spectrum η(t). The simplest model to consider is that the
vector of physical observations y is a noisy version of a simulation η(θ ) at the true
setting θ

y = η(θ )+ ε, (4.1)

where the observation error vector is normal, with mean 0 and variance Σy. Given
a prior distribution π(θ ) for the true parameter vector θ , the resulting posterior
distribution π(θ |y) for θ is given by

π(θ |y) ∝ L(y|η(θ )) ·π(θ ), (4.2)

where L(y|η(θ )) comes from the normal sampling model for the data

L(y|η(θ )) = exp

{
1
2
(y−η(θ ))′Σ−1

y (y−η(θ ))
}

(4.3)

and π(θ ) is uniform over the 5-dimensional rectangle C given by the lower and
upper bounds in Table 4.1. Note that we use the notation t to represent a generic
input vector and the notation θ to represent the value or distribution of values for
the input at which the simulator best matches physical observations.

This basic Bayesian formulation is the starting point for both the BCMC and
EnKF approaches. If the computational model could be evaluated quickly, it could
be directly incorporated in the likelihood and the posterior distribution could
be explored via MCMC. However, each simulation requires hours or days of
computation, thus a direct MCMC-based approach is infeasible.

Note that here we consider Σy to be known, accounting for the error in the
physical observations. More generally, Σy could also incorporate error due to the
mismatch between computational model and reality. This paper does not discuss
the important topic of modeling this discrepancy, but more information can be
found in Kennedy and O’Hagan [7], Kaipio and Somersalom [5] and Goldstein and
Rougier [2], along with their accompanying discussions.

4.3.1 Bayesian Computer Model Calibration

The BCMC approach deals with the computational bottleneck by treating η(·)
as an unknown function to be estimated from a fixed collection of simulations
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η(t1), . . . ,η(tm) carried out at input settings t1, . . . , tm. This approach requires a
prior distribution for the unknown function η(·), and treats the simulation output
η∗ = (η(t1), . . . ,η(tm))′ as data for the analysis. Because we are trying to estimate
the function, as well as the input settings, there is an additional component of the
likelihood obtained from the sampling model for η∗ by L(η∗|η(·)).

For this case, the resulting posterior distribution has the general form

π(θ ,η(·)|y,η∗) ∝ L(y|η(θ )) ·L(η∗|η(·)) ·π(η(·)) ·π(θ ), (4.4)

which has traded direct evaluations of the simulator model for a more complicated
form which depends strongly on the prior model for the function η(·). Under this
model, the marginal distribution for the cosmological parameters θ will be affected
by uncertainty regarding η(·).

In the following subsections, we describe a particular formulation of (4.4) in the
context of this large scale structure application. This formulation has been useful in
a variety of physics and engineering applications which combine field observations
with detailed simulation models for inference. We start with a description of the
how to build an emulator, the model for η(·) at untried parameter settings. We then
describe how the observed data is combined with the simulations and the emulator
to give the posterior distribution.

4.3.1.1 Emulating the Simulator Output

In this section, we describe the probability model, which we call an emulator, for
the simulator output at untried settings. For a given input t in the standardized input
space [0,1]p, the simulator produces a matter power spectrum of length nη , as shown
in Fig. 4.1. The emulator models the simulation output using a q-dimensional basis
representation:

η(t) =
q

∑
i=1

φiwi(t)+ ε, t ∈ [0,1]p, (4.5)

where {φ1, . . . ,φq} is a collection of orthogonal, nη -dimensional basis vectors, the
wi(t) are weights depending on the input, and ε is an nη -dimensional error term.
This formulation reduces the problem of building an emulator that maps [0,1]p to
Rnη to building q independent, univariate models for each wi(t). Separate Gaussian
processes (GP) are used to model each of the weight functions. The details of this
model specification are given below.

Output from each of the m simulation runs prescribed by the input parameter
design results in nη -dimensional vectors which we denote by η1, . . . ,ηm. Since the
simulation outputs have no missing data, they can be efficiently represented via
principal components [12]. We first center the simulations by subtracting the mean
( 1

m ∑m
j=1η j) from each output vector. Depending on the application, some alternative

standardization may be preferred. Whatever the choice of the standardization, the
same standardization is also applied to the experimental data.
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Fig. 4.3 Simulations (top left), mean (top right), and the first five principal component bases
(bottom) derived from the simulation output

We define Ξ to be the nη ×m matrix (nη >> m) obtained by column-binding
the (standardized) output vectors from the simulations We apply the singular value
decomposition (SVD) to the simulation output matrix Ξ giving

Ξ = [η1; · · · ;ηm] =UDV ′, (4.6)

where U is a nη ×m orthogonal matrix, D is a diagonal m×m matrix holding the
singular values, and V is a m×m orthonormal matrix. To construct a q-dimensional
representation of the simulation output, we define the principal component (PC)
basis matrixΦη to be the first q columns of [UD

√
m]. For the matter power spectrum

application we take q = 5; the basis functions φ1, . . . ,φ5 are shown in Fig. 4.3.
Note that the φi are functions of log wave number.
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We use the basis representation of (4.5) to model the nη -dimensional simulator
output over the input space. Each vector of basis weights wi(t), i = 1, . . . ,q, is
modeled as a zero mean GP

wi(t)∼ N(0,λ−1
wi R(t;ρi)), (4.7)

where λwi is the marginal precision of the process and R(t;ρi) is a correlation matrix
with entries dependent on the inputs and a set of parameters given by the correlation
function

Corr(wi(t),wi(t
′)) =

p

∏
k=1

ρ4(tk−t′k)
2

ik (4.8)

This is the Gaussian covariance function, which gives very smooth realizations,
and has been used previously by Kennedy and O’Hagan [7] and Sacks et al. [13]
to model computer simulation output. An advantage of the product form is that
only a single additional parameter is required per additional input dimension, but
the fitted GP response still allows for rather general interactions between inputs.
We use the Gaussian form for the covariance function because the simulators we
handle tend to respond very smoothly to changes in the inputs. The parameter ρik

controls the spatial range for the kth input dimension of the process wi. Under this
parameterization, ρik gives the correlation between wi(t) and wi(t ′) when the input
conditions t and t ′ are identical, except for a difference of 0.5 in the kth component.
Note that this interpretation makes use of the standardization of the input space
to [0,1]p.

Restricting to the m input design settings , we define the m-vector wi to be wi =
(wi(t1), . . . ,wi(tm))′ for i = 1, . . . ,q. In addition we define R(t;ρi) to be the m×m
correlation matrix resulting from applying (4.8) to each pair of input settings in
the design. The p-vector ρi gives the correlation distances for each of the input
dimensions. At the m simulation input settings, the mq-vector w = (w′

1, . . . ,w
′
q)

′
then has prior distribution

⎛
⎜⎝

w1
...

wq

⎞
⎟⎠∼ N

⎛
⎜⎝
⎛
⎜⎝

0
...
0

⎞
⎟⎠ ,

⎛
⎜⎝
λ−1

w1 R(t;ρ1) 0 0

0
. . . 0

0 0 λ−1
wq R(t;ρq)

⎞
⎟⎠
⎞
⎟⎠ , (4.9)

which is controlled by q precision parameters held in λw and q · p spatial correlation
parameters held in ρ . The prior above can be written more compactly as w ∼
N(0,Σw), where Σw, controlled by parameter vectors λw and ρ , is given by the block
diagonal covariance matrix in (4.9).

We specify independent Gamma priors for each λwi and independent Beta priors
for the ρik,

π(λwi) ∝ λ aw−1
wi e−bwλwi , i = 1, . . . ,q,

π(ρik) ∝ ρaρ−1
ik (1−ρik)

bρ−1, i = 1, . . . ,q, k = 1, . . . , p. (4.10)
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We expect the marginal variance for each wi(·) process to be close to one due to
the scaling of the basis functions. For this reason we specify that aw = bw = 5,
encouraging each λwi to be close to 1. In addition, this informative prior helps
stabilize the resulting posterior distribution for the correlation parameters which
can trade off with the marginal precision parameter. Because we expect only a
subset of the inputs to influence the simulator response, our prior for the correlation
parameters reflects this expectation of effect sparcity. Under the parameterization
in (4.8), input k is inactive for PC i if ρik = 1. Choosing aρ = 1 and 0 < bρ < 1
will give a density with substantial prior mass near one. We take bρ = 0.1, which
makes Pr(ρik < 0.98)≈ 1

3 a priori. In general, the selection of these hyperparameters
should depend on how many of the p inputs are expected to be active. Alternatively,
the prior could be specified to have some point mass at one as in Linkletter et al. [8].

Define η = vec(Ξ), where vec(Ξ ) produces a vector by stacking the columns of
matrix Ξ . Taking the error vector in (4.5) to be independent Gaussian with common
precision λη , we get the sampling model for η :

η |w,λη ∼ N

(
Φw,

1
λη

I

)
, (4.11)

where Φ = [Im ⊗ φ1; · · · ; Im ⊗ φq], and the φi are the q basis vectors previously
computed via SVD. A Gamma prior with parameters (aη ,bη) is specified for the
error precision λη .

Multiplying (4.9)–(4.11) and the Gamma prior for λη yields the posterior. After
integrating out w, the posterior distribution for the unknown parameters becomes

π(λη ,λw,ρ |η) ∝
∣∣(ληΦ ′Φ)−1 +Σw

∣∣− 1
2 exp{− 1

2 ŵ′([ληΦ ′Φ]−1 +Σw)
−1ŵ}×

λ a∗η−1
η e−b∗ηλη ×

q

∏
i=1

λ aw−1
wi e−bwλwi ×

q

∏
i=1

p

∏
j=1

(1−ρi j)
bρ−1, (4.12)

where

a∗η = aη +
m(nη − q)

2
,

b∗η = bη + 1
2η

′(I −Φ(Φ ′Φ)−1Φ ′)η , and

ŵ = (Φ ′Φ)−1Φ ′η . (4.13)

This posterior distribution is a milepost on the way to the complete formulation
incorporating experimental data. However, it is worth considering this intermediate
posterior distribution for the simulator response. It can be explored via MCMC using
standard Metropolis updates and we can view a number of posterior quantities to
illuminate features of the simulator. Oakley and O’Hagan [10] use posterior of the
simulator response to investigate formal sensitivity measures of a univariate sim-



50 D. Higdon et al.

Fig. 4.4 Boxplots of posterior samples for each ρik for the large scale structure application

Fig. 4.5 Posterior mean surfaces for wi(θ ), i = 1,2,3. Here the other three parameters were held
at their midpoints as σ8 and ΩCDM vary over the design range

ulator; Sacks et al. [13] consider sensitivity from a non-Bayesian perspective. For
example, Fig. 4.4 shows boxplots of the posterior distributions for the components
of ρ . From this figure it is apparent that PCs 1 and 2 are most influenced by σ8 and
ΩCDM. Figure 4.5 shows the resulting posterior mean surfaces for w1(·), w2(·) and
w3(·) as a function of σ8 and ΩCDM.

Given the posterior realizations from (4.12), one can generate realizations from
the process η(·) at any input setting t�. Since

η(t�) =
q

∑
i=1

φiwi(t
�), (4.14)

realizations from the wi(t�) processes need to be drawn given the MCMC output.
For a given draw (λη ,λw,ρ) a draw of w� = (w1(t�), . . . ,wq(t�))′ can be produced
by using the fact

(
ŵ
w�

)
∼ N

((
0
0

)
,

[(
(ληΦ ′Φ)−1 0

0 0

)
+Σw,w�(λw,ρ)

])
, (4.15)
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Fig. 4.6 Changes to the posterior mean simulator predictions obtained by varying one input,
while holding others at their central values, i.e. at the midpoint of their range. The light to dark
lines correspond to the smallest parameter setting to the biggest, for each parameter

where Σw,w� is obtained by applying the prior covariance rule from (4.8) to the
augmented input settings that include the original design and the new input setting
t�. Recall that ŵ = (Φ ′Φ)−1Φ ′η . Application of the conditional normal rules then
gives

w�|ŵ ∼ N(V21V−1
11 ŵ,V22 −V21V

−1
11 V12), (4.16)

where

V =

(
V11 V12

V21 V22

)
=

[(
(ληΦ ′Φ)−1 0

0 0

)
+Σw,w�(λw,ρ)

]
(4.17)

is a function of the parameters produced by the MCMC output. Hence, for each
posterior realization of (λη ,λw,ρ), a realization of w� can be produced. The above
recipe easily generalizes to give predictions over many input settings at once.

Figure 4.6 shows posterior means for the simulator response η where each of
the inputs is varied over its prior (standardized) range of [0,1] while the other four
inputs are held at their midpoints. The posterior mean response conveys an idea
of how the different parameters affect the highly multivariate simulation output.
Other marginal functionals of the simulation response can also be calculated such
as sensitivity indicies or estimates of the Sobol decomposition [10, 13]. Note that a
simplified emulator can be constructed by taking plug in estimates for (λη ,λw,ρ).

4.3.1.2 Incorporating Physical Data

Given the model specifications for the simulator η(·), we can now consider the
sampling model for the experimentally observed data. The data are contained in
an ny-vector y. For the matter power spectrum application ny = 22, corresponding
to different wave numbers as shown in Fig. 4.1. As previously stated, the data are
modeled as a noisy version of the simulated spectrum η(θ ) run at the true, but
unknown, parameter setting θ . Thus

y = η(θ )+ ε, (4.18)
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where the errors are assumed to be N(0,Σy). For notational convenience we
represent the precision Σ−1

y as λyWy, leaving open the option to estimate a scaling
of the error covariance with λ−1

y . Using the basis representation for the simulator
this equation becomes

y =Φyw(θ )+ ε (4.19)

where w(θ ) is the q-vector (w1(θ ), . . . ,wq(θ ))′. Because the wave number support
of y is not necessarily contained in the support of the simulation output, the basis
vectors in Φy may have to be interpolated over wave number from the columns of
Φ . Since the simulation output over wave number is quite dense, this interpolation
is straightforward.

We specify a Gamma prior with parameters (ay,by) for the precision parameter
λy resulting in a normal-gamma form for the data model

y|w(θ ),λy ∼ N(Φyw(θ ),(λyWy)
−1), λy ∼ Ga(ay,by). (4.20)

The observation precision Wy is fairly well-known for the SDSS data, so we
encourage λy to be near one with informative prior parameters ay = by = 5.

We can now write out the entire posterior distribution for all of the parameters
and the best fitting inputs θ . First, let

ŵy = (Φ ′
yWyΦy)

−1Φ ′
yWyy,

a∗y = ay + 1
2 (n− q),

b∗y = by + 1
2 (y−Φyŵy)

′Wy(y−Φyŵy),

Λy = λyΦ ′
yWyΦy,

Λη = ληΦ ′Φ, (4.21)

Iq = q× q identity matrix,

Σwyw =

⎛
⎜⎝
λ−1

w1 R(θ ,θ ∗;ρ1) 0 0

0
. . . 0

0 0 λ−1
wq R(θ ,θ ∗;ρq)

⎞
⎟⎠ ,

ẑ =

(
ŵy

ŵ

)
,

Σẑ =

(
Λ−1

y 0
0 Λ−1

η

)
+

(
Iq Σwyw

Σ ′
wyw Σw

)
.
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The posterior distribution has the form

π(λη ,λw,ρ ,λy,θ |ẑ) ∝

|Σẑ|− 1
2 exp

{− 1
2 ẑ′Σ−1

ẑ ẑ
}×λ a∗η−1

η e−b∗ηλη ×
q

∏
i=1

λ aw−1
wi e−bwλwi ×

q

∏
i=1

p

∏
k=1

ρaρ−1
ik (1−ρik)

bρ−1 ×λ a∗y−1
y e−b∗yλy × I[θ ∈C], (4.22)

where C denotes the p-dimensional rectangle defined in Table 4.1.
Realizations from the posterior distribution are produced using standard, single

site MCMC. Metropolis updates [9] are used for the components of ρ and θ with
a uniform proposal distribution centered at the current value of the parameter.
The precision parameters λη , λw and λy are sampled using Hastings updates [3].
Here the proposals are uniform draws, centered at the current parameter values, with
a width that is proportional to the current parameter value. In a given application the
candidate proposal width can be tuned for optimal performance.

The resulting posterior distribution estimate for θ is shown in Fig. 4.7 on the
original scale. The posterior values can also be propagated through the emulator to
produce realizations of the posterior spectrum. The right hand plot of Fig. 4.7 shows
the posterior mean and pointwise 90% ranges for the power spectrum.

4.3.2 Ensemble Kalman Filter for Parameter Estimation

The ensemble Kalman filter (EnKF), a Monte Carlo extension of the Kalman filter,
uses an ensemble of model runs that are updated as additional data are made
available [1]. Unlike the Kalman filter [6], the EnKF does not require a linear model
and doesn’t assume Gaussian distributions. The EnKF can be easily extended to
estimate model parameters by appending the parameter vector as an unobserved part
of the state vector. To date, this approach has primarily been used in applications in
oil recovery [11, 15], even though it seems applicable to a wide variety of inverse
problems.

Below we briefly describe two basic variants of the EnKF for parameter
estimation, differing in how they use the ensemble of model runs to approximate
the resulting posterior distribution. One estimates the joint prior distribution for
the states and parameters by computing a multivariate normal approximation to the
ensemble of model runs and then uses the traditional Kalman updates to the mean
and covariance to compute the posterior. The other uses the ensemble directly with
EnKF updates to each ensemble member. In both cases, an ensemble of draws
from the prior distribution of the model parameters θ are paired with the resulting
simulation output to produce an ensemble of (η(θ ),θ ) pairs, from which the sample
covariance is used to produce an approximation to the posterior distribution. Hence
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Fig. 4.7 Comparison of posteriors between the Bayesian computer model calibration (BCMC)
approach (blue) and the ensemble Kalman filter (EnKF, green). Top: Estimated posterior distri-
bution of the parameters θ = (n,h,σ8,ΩCDM,ΩB). The diagonal shows the estimated marginal
posterior pdf for each parameter; the off-diagonal images give estimates of bivariate marginals;
the contour lines show estimated 95% hpd regions. The lower triangle and green lines give the
posterior under the EnKF approach; The upper triangle and blue lines give the posterior under the
BCMC approach. Bottom: Posterior median and 95% uncertainty bounds for the posterior power
spectrum. Green lines correspond to EnKF; blue lines correspond to BCMC
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we treat the input parameter settings t1, . . . , tm as m draws from the prior distribution
π(θ ). Note that even though the distribution of the simulator response η(θ ) is
completely determined by the distribution for θ , the covariance estimate used by
the EnKF ignores this.

4.3.2.1 Gaussian Prior Approximation

The first approach fits a multivariate normal distribution to the prior ensemble
for (η(θ ),θ ). Implicitly, it uses a linear approximation for η(θ ) to produce the
posterior distribution for θ . The recipe:

1. For each of the m = 128 simulations form the pη + p-vector
(
η(tk)

tk

)
, k = 1, . . . ,m. (4.23)

Here nη = 88 and p = 5. With these m vectors, compute the sample mean vector
μpr and the (nη + p)× (nη + p) sample covariance matrix Σpr. Treat (η(θ ),θ )′
as though it has N(μpr,Σpr) prior distribution.

2. In our large-scale structure example, the physical observations y correspond to
an interpolation of the nη elements of η(θ ). Let H be the matrix for the that
interpolates η(θ ) and ignores θ in the combined state-parameter vector. In this
case the likelihood can be rewritten as

L(y|η(θ )) ∝ exp

{
−1

2

(
y−H

(
η(θ )
θ

))′
Σ−1

y

(
y−H

(
η(θ )
θ

))}
. (4.24)

3. Combining the normal approximation to the prior with the normal likelihood
results in an updated, or posterior, distribution for (η(θ )),θ ) for which

(
η(θ )
θ

)
|y ∼ N(μpost,Σpost), (4.25)

where

Σ−1
post = Σ−1

pr +H ′Σ−1
y H (4.26)

and

μpost = Σpost
(
Σ−1

pr μpr +H ′Σ−1
y y

)
. (4.27)

Note that the posterior mean can be rewritten in form more commonly used in
Kalman filtering

μpost = μpr +ΣprH
′(HΣprH

′+HΣyH ′)−1(y−Hμpr) (4.28)

where ΣprH ′(HΣprH ′+HΣyH ′)−1 is the Kalman gain matrix.
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The joint normal computations used here effectively assume a linear plus Gaussian
noise relationship between η(θ ) and θ , inducing a normal posterior for θ .

4.3.2.2 Ensemble Representation

The second approach is basically the usual EnKF for one time step. The goal is
to perturb member each of the ensemble (η(tk), tk), in order to produce an updated
member (η∗

k ,θ
∗
k ) which is an approximate draw from the posterior distribution. This

updated member is not produced with the simulator so that η∗
k will not be equal to

the simulator evaluated at updated parameter value η(θ ∗
k ). The general recipe:

1. Construct the (nη + p)× (nη + p) sample covariance matrix Σpr as in Step 1 of
the previous algorithm.

2. For k = 1, . . . ,m do:

(a) Draw a perturbed data value yk ∼ N(y,Σy).
(b) Produce the perturbed ensemble member

(
η∗

k
θ ∗

k

)
= Σpost

(
Σ−1

pr

(
η(tk)

tk

)
+H ′Σ−1

y yk

)
. (4.29)

where Σpr and Σpost are defined in the previous algorithm. Note this
perturbation of the ensemble member can be equivalently written using the
more standard Kalman gain update:

(
η∗

k
θ ∗

k

)
=

(
η(tk)

tk

)
+ΣprH

′(HΣprH
′+HΣyH ′)−1(yk −η(tk)) (4.30)

3. Treat this m = 128 member ensemble

(
η∗

k
θ ∗

k

)
, k = 1, . . . ,m. (4.31)

as draws from the updated, posterior distribution for (η(θ ),θ ).

Note that this approach uses an update of two normal forms, just like the previous
version, but updated separately for each ensemble member. Only, here the normal
prior is centered at the ensemble member, and the normal likelihood is centered at
the perturbed data value, rather than at the ensemble mean and the actual data value.

This produces a posterior ensemble for the distribution of θ , along with a
posterior ensemble for the power spectrum. The green lines in the left panel of
Fig. 4.7 show the posterior densities for the parameters—a kernel density estimator
was used to produce the density plots. The green lines in the right panel show
the posterior median and 95% uncertainty bounds for the power spectrum. For
comparison, the blue lines show the same quantities estimated using the BCMC
approach.
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4.4 Discussion

The two methods yield somewhat similar results for the posterior distributions
of the parameters and the spectrum, but there are differences. The EnKF uses a
Gaussian simplifying assumption in order to include data, which basically uses a
linear plus noise (i.e. regression) relationship between θ and η . As such, the BCMC
approach is likely to produce more accurate results for both the parameters and
the predicted spectrum since it gives a more accurate representation of the simulator
response. Another advantage of the BCMC approach is that the emulator can be used
for secondary purposes such as assessing parameter sensitivity. These advantages
come at a cost. The BCMC approach requires considerably more computation
than the EnKF’s simple linear updating equation. Further, for high-dimensional
parameter spaces the BCMC approach may experience difficulty with estimating
the response surface without huge numbers of runs. In this case, the assumptions
and the efficiency of the EnKF may produce a superior result.
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Chapter 5
Commentary: Simulation-Aided Inference
in Cosmology

Carlo Graziani

Abstract Higdon’s use of Gaussian Process (GP) emulation to analyze SDSS
data using simulated power spectra from N-body simulations supplies a textbook
case study of a set of techniques that are likely to become a standard part of the
astrostatistics toolbox. The problems addressed by these techniques models based
on expensive computer simulations that run on high-performance computing (HPC)
platforms, which can only sparsely sample a large-dimensional input parameter
space are likely to be of interest to a growing community of computational astro-
physicists wishing to compare models to data, as this style of computing becomes
“democratized” by the increasing availability of HPC platforms in University
research settings. We comment here on the computational challenges of Gaussian
Process modeling, the fidelity of model hierarchies, and strategies for the adaptive
design of numerical experiments.

5.1 Gaussian Process Emulation

The relation of a computer model’s output to its input has a term of art: the Response
Surface, essentially the function that maps the input parameter manifold to the
output space (usually a vector space). The input parameter space is often high-
dimensional.

The fact that the dense probing of input parameter space is unaffordable creates
a new situation with respect to statistical inference. In effect, the response surface
must be interpolated to general parameter values based on a limited sampling of
the parameter space corresponding to a limited number of simulations. This means
that a new source of uncertainty, separate from instrumental noise (AKA “statistical
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error”) and model inadequacy (AKA “systematic error”) must be factored into the
error budget: the uncertainty introduced by the interpolation. This uncertainty is
represented by building an emulator—a stochastic representation of the simulator
“trained” using the available model evaluations [2–5].

The stochastic nature of the response surface representation is frequently im-
plemented using a Gaussian Process (GP) model [1]. Briefly, this is a methodology
whereby a prior Gaussian distribution is specified on a space of functions describing
the response surface, and then updated using data to produce a posterior summary
of what is known about the surface. The result is an interpolation of the response
surface to arbitrary points not sampled by simulations, with the interpolation
uncertainty encoded as a Gaussian covariance. One benefit of this style of emulation
is that if the simulations are to be compared with measurement data with Gaussian
measurement uncertainties, those uncertainties may be naturally convolved with the
GP interpolation uncertainty in a simple analytic manner [3, 6, 7].

In effect, the interpolation performed by the emulator allows us to transition to
a new view of the problem: we regard the model output as data from a family
of models (the code, at all possible parameter settings). The comparison of the
computer model to measurement data is carried out by joint model fitting to
the computer data and the measurement data to simultaneously estimate the full
response surface and the “true” model parameters.

5.2 Computational Challenges

A difficulty that must be overcome in GP emulation (as in most GP modeling
of large systems) is that the evaluation of likelihoods requires the inversion of
large, symmetric, positive-definite covariance matrices (or rather, the solution of
their associated linear problem), and the computation of the determinants of those
matrices. In GP emulation, the dimension N of the space in which the covariance
matrix operates is N = Nsim × Nout put , where Nsim is the number of simulations
and Nout put is the dimensionality of the output space. Since the computational cost
of inversion scales as O(N3), direct approaches (such as Cholesky factorization)
rapidly lose their usefulness.

Higdon partly abates this problem through a data-reduction strategy, using a
Principal Components Analysis (PCA) on the model output to create a manageable
representation of the simulation output. By keeping only Ncomponents of the singular
values (the largest ones, representing the “most active” components), and placing
a GP model on each parameter weight function in the resulting decomposition,
Higdon reduces the problem to one with a computational cost that scales as
O(Ncomponents ×N3

sim).
This is a substantial savings, but it leaves in place an important O(N3

sim) scaling,
which has the extremely galling consequence that the very act of performing more
simulations to improve our knowledge of the response surface can quickly result
in an infeasible computational cost. For problems with high input parameter space
dimensionality, and with complex response surface structure, there is simply no
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alternative to growing Nsim to the point where the structure can be resolved, at least
in parameter space regions corresponding to high posterior density. It is therefore
necessary to consider approximation schemes that control the cost of GP emulation.

Gibbs and MacKay [8], adapt methods due to Skilling [9] to exhibit approxima-
tions to linear problem solutions that involve only matrix-vector multiplications,
and which scale as N2. These methods are related to approaches that note the
equivalence of the required inversion problem to a quadratic form minimization, and
adopt conjugate gradient minimization as the minimization strategy. By terminating
the minimization at an adequate level of accuracy, but well before formal exact
convergence, such methods achieve N2 complexity cost [10].

In addition, it is possible to adopt covariance models based on kernels of
compact support—that is to say, covariances that vanish when the distance between
points exceeds a certain limit. Such kernels give rise naturally to sparse covariance
matrices, which can then be handled at costs approaching N for operations
such as matrix-vector multiplication in the case of expanding domain asymptotic
regime. For a discussion of a family of such kernels, see p. 88 of Rasmussen and
Williams [1]. Compact-support kernels may also be combined in Schur products
with more general kernels, a technique called “tapering” [11], which can provide
the benefits of sparse matrices with the more complex covariance structure of
non-compact kernels.

5.3 Model Fidelity Hierarchies

Even if one has abated the curse of dimensionality problem by some approximation
scheme, one often still confronts a computational cost issue associated with
running the simulations themselves. Complex, high-fidelity, multi-physics, multi-
scale simulations may require so much computational time on an HPC platform
that they may simply not be available in the required abundance for an adequate
resolution of the response surface.

This circumstance may be addressable by supplementing the highest-fidelity
simulations with cheaper—and more abundant—lower-fidelity simulations, at the
cost of some inaccuracy which we may hope to cross-calibrate against the high-
fidelity simulations. Examples include simulations of lower spatial resolution, or
including approximate physics, or excluding computationally-expensive physics,
or using spatial symmetry assumptions (such as cylindrical, planar, or spherical
symmetry) to reduce the dimensionality of the problem.

It is noteworthy that it is not necessarily the case that the quantitative accuracies
of the available types of simulations fall into a natural hierarchical rank-ordering. It
may be the case that some simulations are more accurate than others in some input
parameter regimes, but less so in others. In addition, it may occur that some types of
approximations leading to faster simulations in some parameter regimes may simply
fail in some parameter regimes—the code may crash, or numerical instabilities may
develop, or the approximation may simply break down, leading to results bearing no
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relation to the true physical situation. In such a circumstance, levels of the fidelity
hierarchy may simply go missing in certain parameter regimes. Therefore, while it is
usually clear that there exists a maximum-fidelity level of simulation corresponding
to the highest computational cost, in general the remaining levels of the hierarchy
may not be strictly ordered by accuracy.

The research efforts that I am aware of to fit such multi-fidelity level simulations
into a GP emulator scheme [12–14] make some relatively strong assumptions about
the nature of the relationship between the levels of the hierarchy. These are spelled
out in [12], and include a strictly-ordered hierarchy of fidelity levels, a Markov-like
assumption on the relative informativeness of neighboring levels, and stationarity
(i.e. translational invariance) of the underlying GP over the parameter space. In view
of the considerations above, and of the desirability of generalizing GP emulation
away from stationary models, it seems worth exploring somewhat more agnostic
schemes for connecting the simulation fidelity levels.

5.4 Adaptive Numerical Experiment Design

At what parameter values are we to run the simulations? This is the issue of numer-
ical experimental design. When potentially expensive computations are invoked to
probe a response surface over a potentially high-dimensional input parameter space,
it is urgent that simulations not be wasted on parameter space regions that neither
illuminate interesting structure of the response surface nor reside in neighborhoods
where the surface closely resembles the measurement data. It seems hopeless to
accomplish this sort of optimization efficiently with ab initio designs such as Latin
Hypercubes. Existing information from analysis of the data and the response surface
using the current design must be used to guess parameter choices for future runs that
are, in some sense, optimal.

The two objectives of globally characterizing response surface structure
and of using what is already known about the response function for specific
inference goals (e.g., modeling measurement data) are in a tension that is known
from the global optimization and adaptive learning literatures by a term of art:
the “Exploration-Exploitation Tradeoff”, wherein (in the current instance) the
“exploration” imperative to understand the response surface everywhere competes
with the “exploitation” necessity of focusing on regions appearing to resemble the
experimental situation under study. Both activities are essential, and their reconcil-
iation is necessarily an important objective of adaptive experimental design theory.

The efforts that have been dedicated to adaptive numerical experiment design
have been largely focused on the exploration aspect of the tension [13,15,16]. There
is more to be learned about the full tension from the literature of physical experiment
design. In particular, Loredo [17] exhibited a Bayesian experimental design scheme
wherein observations currently “in the can” can be used to calculate the expected
information gain—negative Shannon entropy—from a future observation with
selected experimental parameters, and to choose those parameters so as to maximize
that information.
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This scheme is generalizable to numerical experimental design. Suppose we
have measurement data y corresponding to an unknown true parameter setting θT .
Suppose also that the existing design of Nsim simulations at parameter settings
Θ =(θ1, . . . ,θNsim ) with outputs Y =(y1, . . . ,yNsim) is to be augmented by a proposed
simulation with parameters θ+. Let the GP posterior predictive of the augmented
design be π(y+|θ+,Θ ,Y ) and have Shannon entropy H(θ+,Θ). Also, let the GP
posterior predictive of the augmented design conditioned on the data and on the true
parameter values be π ′(y+|θ+,Θ ,Y,θT ,y), with Shannon entropy H ′(θ+,Θ ,θT ).
Then it can be shown [18] that the expected information gain from the proposed
new simulation is

EI(θ+) = H(θ+,Θ)−
∫

dθT P(θT |y,Y,Θ)H ′(θ+,Θ ,θT ). (5.1)

The first term in (5.1) embodies exploration (by itself, it yields Maxent sam-
pling). The second term embodies exploitation, rewarding smaller predictive un-
certainty near best-fit parameter point. The expected information gain may thus be
used to drive a “Simulation-Inference-Design” cycle analogous to the “Observation-
Inference-Design” cycle described in [17].
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Chapter 6
The Matter Spectral Density from Lensed
Cosmic Microwave Background Observations

Ethan Anderes and Alexander van Engelen

Abstract We use local likelihood estimates of gravitational shear and convergence
from lensed cosmic microwave background observations to estimate the projected
mass spectral density. Typically there is an additive bias when using a plug-
in estimate of the spectral density from a noisy estimate of the random field.
We explore the possibility of adjusting this bias by subtracting an approximate
power spectrum of the noise in the reconstruction using unlensed simulations. We
demonstrate some empirical results that suggest the remaining biases complement
those seen in the quadratic estimate developed by Hu and Okamoto (ApJ 557:L79–
L83, 2001; ApJ 574:566–574, 2002; Phys Rev D 67:083002, 2003). We finish
the paper with a discussion regarding the potential scientific applications and the
challenges associated with estimating the noise spectrum from simulations.

6.1 Introduction

Over the past decade the cosmic microwave background (CMB) has emerged as
a fundamental probe of cosmology and astrophysics. In addition to the primary
fluctuations of the early Universe, the CMB contains signatures of the gravitational
bending of CMB photon trajectories due to matter, called gravitational lensing.
Mapping this gravitational lensing is important for a number of reasons including,
but not limited to, understanding cosmic structure, constraining cosmological
parameters [10, 16] and detecting gravitational waves [11, 12, 15]. In this paper
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we investigate the possibility of using simulations to correct a bias when using a
plug-in estimate of the matter spectral density from local likelihood estimates of
gravitational lensing.

Two estimates have emerged for reconstructing the gravitational potential: the
quadratic estimator (developed in [8, 9, 14]) and a global maximum likelihood
estimate (developed in [6, 7]). The quadratic estimator, which is arguably the most
popular, uses a first order Taylor approximation to establish mode coupling in
the Fourier domain which can be estimated to recover the gravitational potential
(real space analogs to these estimators can be found in [2, 3]). The maximum
likelihood estimate, on the other hand, uses likelihood approximations to find an
MLE for estimating the lensing potential. A new estimate developed in [1] uses a
local Bayesian approach that avoids the computational difficulties associated with
a full scale likelihood approach. This approach estimates the local curvature of
the gravitational potential on sliding local neighborhoods of the observed CMB
temperature and polarization fields. A low pass filter of the true gravitational
potential is then constructed by stitching together local curvature estimates. The
local analysis allows one to avoid using the typical first order Taylor expansion
for the quadratic estimator and avoids the likelihood approximations used in global
estimates. Moreover, the likelihood is computed in position space and therefore
can easily deal with point source foregrounds, masking, nonstationary noise and
nonstationary beams.

In [1] the local Bayesian method is shown to accurately reconstruct the gravi-
tational potential under nearly ideal experimental conditions when observing both
the temperature and the polarization field. In this paper, we consider the temperature
fluctuations only. For more realistic experimental conditions the estimated projected
mass can be noisy, especially at high frequency. However, using the isotropic
assumption one can radially average the squared modulus of the Fourier transform
of the estimate to approximate the spectral density. In doing so, one potentially gets
accurate estimates of the mass spectral density even with small signal-to-noise ratios
at each individual frequency of the mapping estimate.

There are two difficulties that arise when using locally estimated maps to
estimate the spectral density. First, the observational noise weakens the amount of
local information for gravitational shear and convergence. This has the impact of
shrinking the local Bayes estimates toward the prior mean (at zero). The alternative,
a local MLE estimate, is not as regularized and can have large estimation noise in the
presence of weak local information. Using either of these estimates for estimating
the spectral density yields significant biases: high bias for local MLE and low bias
for local Bayes. In Fig. 6.1 we show the plug-in estimates of spectral density using
the local MLE and Bayes estimates from one simulation of a lensed temperature
field on a 10◦ × 10◦ patch of the flat sky observed on 1 arcmin pixels with 2-μK
noise and beam FWHM of 4 arcmin. The dashed line with stars shows the plug-in
estimate from the local Bayes technique, which is clearly shrunk toward zero. The
dashed line with triangles shows the local MLE technique, which has a high bias
from the estimation error.



6 Matter Spectral Density from Lensed CMB 67

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5
x 10−7

frequency

sp
ec

tr
al

 p
ow

er
Local MLE
Local Bayes
Bias corrected local MLE
True spectrum

Fig. 6.1 Solid line shows the input theoretical spectrum; triangles show a local MLE estimate of
the spectrum; stars show the local Bayes estimate of the spectrum; circles show the bias corrected
local MLE estimate of spectral density. The simulation is on a 10◦ × 10◦ patch of the flat sky
observed on 1 arcmin pixels with 2-μK noise and beam FWHM of 4 arcmin

In an attempt to mitigate these biases we work with the overly noisy MLE
estimate but correct the resulting bias in the plug-in spectral density estimate using
simulations. The dashed line with circles in Fig. 6.1 shows this new estimate. It is
clear that this technique has significantly less bias than either the local MLE or
the Bayes estimate. However, to make this new technique scientifically useful one
needs a theoretical understanding of the behavior of the local MLE estimate in both
the lensed and unlensed case (since unlensed simulations are used to correct the
bias). There are two main difficulties in deriving such an understanding. First, the
estimates are implicitly defined as a maximizer of the local likelihood and, as such,
there is no closed form. Secondly, the typical asymptotic arguments used for MLE
estimates hold as the signal-to-noise ratio approaches infinity. Since the signal-to-
noise ratio is very low on each local neighborhood one might expect the estimates
to behave differently than their asymptotic cousins.

The remainder of the paper is organized as follows. In Sect. 6.2 we give a detailed
account of the local MLE and Bayesian estimates. Then in Sect. 6.3 we discuss how
estimation error propagates to biases in plug-in estimates of spectral density and
how to estimate the bias with simulations. We present numerical evidence that one
can subtract this estimated bias to produce estimates of spectral density that are
comparable to the quadratic estimator found in the current literature. Finally, in
Sect. 6.5, we discuss the challenges associated with local estimates of lensing and
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the resulting estimates of spectral density. We emphasize that the goal of this paper
is to partly give some hints at the success of a new method but primarily to illuminate
the challenges associated with local likelihood estimates in general.

6.2 Local Estimates of Shear and Convergence

The CMB radiation measures temperature fluctuations of the early Universe some
400,000 years after the big bang. Let T (xxx) denote these fluctuations (measured in
units μK) on the observable sky. In this paper we work with the small angle limit
and use a flat sky approximation so that xxx ∈ R

2. Instead of directly observing T
we observe a remapping of the CMB due to the gravitational effect of intervening
matter. This lensed CMB can be written T (xxx + ∇φ(xxx)) where φ denotes the
gravitational potential (see [4], for example).

To describe the local estimate of φ from the lensed CMB, developed in [1], first
consider a small circular observation patch with diameter δ in the flat sky centered
at some point xxx0, denoted Nδ (xxx0) ⊂ R

2. Over this small region we decompose φ
into an overall local quadratic qφ and error term ε so that

φ = qφ + ε.

The global estimate of φ is based on stitching together local estimates of qφ , denoted
q̂φ , from the lensed CMB observed on Nδ (xxx0). Notice that as δ → 0 the expected
magnitude of the error ε approaches zero. This has the effect of improving the
following Taylor approximation

T (xxx+∇φ(xxx)) = T (x̃xx)+∇ε(xxx) ·∇T (x̃xx)+ · · · (6.1)

for xxx ∈ Nδ (xxx0), where we use the notation x̃xx ≡ xxx+∇qφ (xxx). Notice that x̃xx depends
not only on xxx but also the unknown coefficients of the quadratic term qφ . Now when
δ is sufficiently small we can truncate the expansion in (6.1) to get

T (xxx+∇φ(xxx))≈ T (xxx+∇qφ(xxx)) (6.2)

on the local neighborhood Nδ (xxx0). By regarding qφ as unknown we can use the
right hand side of (6.2) to develop a likelihood for estimating the coefficients of
qφ . Nominally qφ has six unknown coefficients for which to estimate. However, we
can ignore the linear terms in qφ since the CMB temperature and the polarization are
statistically invariant under the resulting translation in∇qφ . Therefore, one can write
qφ as c1(x− x0)

2/2+ c2(x− x0)(y− y0)+ c3(y− y0)
2/2 for unknown coefficients

c1 = qφxx,c2 = qφxy,c3 = qφyy.
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6.2.1 The Local Likelihood

Using the Gaussian approximation of the CMB along with the quadratic potential
approximation given by (6.2) one can construct the likelihood as a function of
the unknown quadratic coefficients in qφ . Let xxx1, . . . ,xxxn denote the observation
locations of the CMB within the local neighborhood Nδ (xxx0) centered at xxx0. Using
approximation (6.2), the CMB observables in this local neighborhood are well
modeled by white noise corruption of a convolved (by the beam) lensed intensity
field T . Let ttt denote the n-vector of observed CMB values at the corresponding
pixel locations in Nδ (xxx0) for the intensity T . Let ϕ denote the instrumental beam
so that the kth entry of ttt is modeled as

tk ≈
∫
R2

d2xxxϕ(xxx)T (x̃xxk − x̃xx)+σT nk (6.3)

where the nk’s are independent standard Gaussian random variables, x̃xxk = xxxk +
∇qφ (xxxk) and x̃xx = xxx+∇qφ (xxx). Note that this is an approximate model for tk based
on (6.2). In actuality, the kth temperature measurement is

∫
R2 d2xxxϕ(xxx)T (xxxk − xxx+

∇φ(xxxk − xxx))+σT nk, but the linearity of ∇qφ allows us to write xxxk − xxx+∇φ(xxxk −
xxx) ≈ constant+ x̃xxk − x̃xx on the small neighborhood Nδ (xxx0). Since one can write
xxx+∇qφ (xxx) = Mxxx where the M is a 2× 2 real matrix, the sheared temperature T (x̃xx)
is a stationary random field with spectral density given by CT T

M−1���
detM−1. After

adjusting for the beam (which is applied after lensing) the covariance between the
observations in ttt can be written

〈
tkt j
〉

T
≈ σ2

T δi j +

∫
R2

d2���

(2π)2 ei���·(xxxk−xxx j)|ϕ(���)|2 CT T
M−1���

detM
. (6.4)

Remark. We use the notation 〈·〉T to denote expectation, or ensemble average, with
respect to both the CMB temperature field T (xxx) and the observational noise nk.
Conversely, we use the notation 〈·〉φ to denote expectation with respect to the large
scale structure φ and for brevity we write 〈·〉 ≡ 〈〈·〉T〉φ where the expectations are
done under the assumption that T and φ are independent.

Now, using Gaussianity of the full vector of CMB observables the log likelihood
(up to a constant), as a function of the quadratic fit qφ , can be written

L (qφ |ttt) =−1
2

ttt†
(
Σqφ +σ2

T I
)−1

ttt − 1
2

lndet
(
Σqφ +σ2

T I
)

(6.5)

where Σqφ +σ2
T I is the covariance matrix of the observation vector ttt containing the

covariances
〈
tkt j
〉

T
given in (6.4) and σ2

T I is the noise covariance structure where I
is the n× n identity matrix. Notice that the noise structure does not depend on the
unknown quadratic qφ . In addition, one can utilize a single FFT to quickly compute
the integral (6.4) for sufficient resolution in the argument xxxk − xxx j to recover

〈
tkt j
〉

T

for all pairs k, j.
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6.2.2 The Local Posterior

In [1] it is argued that the local estimates of qφ are modeled by a lowpass filter of the
true gravitational potential. In particular, the quadratic function qφ can be modeled
by

qφ (xxx)≈
∫

d2���

2π
eixxx·���φ lp(���)

over xxx ∈ Nδ (xxx0), where φ lp(���)≡ ϕδ (���)φ(���), with low-pass filter defined by

ϕδ (���)≈ min
{

1,
[
2− δ

π
|���|
]+}

. (6.6)

Therefore a natural candidate for the prior on the coefficients of qφ is the distribution

of the random variables ∂ 2φ lp(0)
∂xk∂x j

. These are mean zero and Gaussian with variances

obtained by the corresponding spectral moments of φ lp. Letting this prior be denoted
by π(qφ ) the posterior distribution on qφ , which we maximize to estimate qφ in the
local Bayesian case, is

p(qφ |zzz) ∝ eL (qφ |zzz)π(qφ ). (6.7)

6.2.3 Stitching Together the Local Curvatures

The local MLE estimates of qφ are found by maximizing (6.5) whereas the local
Bayesian estimates are found by maximizing (6.7). These estimates give local
quadratic fits to the true potential φ , i.e. local curvature estimates: φ̂ lp

xx , φ̂ lp
xy, φ̂ lp

yy . The
global estimate of φ lp is found by stitching together these local the estimates. This is
done in [1] by performing a gradient fit to (φ̂ lp

xx, φ̂ lp
xy) which gives φ̂ lp

x and a gradient

fit to (φ lp
xy ,φ lp

yy) which gives an estimate φ̂ lp
y . A final gradient fit is then fit to the

vector field (φ̂ lp
x , φ̂ lp

y ) to obtain an estimate φ̂ lp. The result of this iterated gradient
fit is shown in Fig. 6.2 for a simulated lensed temperature field.

6.3 Spectral Density Estimates of Projected Mass

In this section we discuss the plug-in estimate of spectral density and show how
estimation error propagates to biases in the spectral density estimate. We discuss
this in the context of estimating the projected mass spectral mass density Cκκ

� where
κ denotes the convergence field (which is a tracer for mass fluctuations) and is
defined by

κ ≡−(φxx +φyy)/2
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Fig. 6.2 Estimated gravitational potential from simulated lensed CMB: input gravitational po-
tential (top); local Bayes estimate (bottom left); local MLE estimate (bottom right). The lensed
temperature simulation was observed on a 10◦ × 10◦ patch of the flat sky with 1 arcmin pixels,
2-μK noise and a beam FWHM of 4 arcmin

using the shear notation given in [17]. The spectral density Cκκ
� is defined as the

Fourier transform of the autocovariance function:

Cκκ
� =

∫
d2xxxe−i���·xxx〈κ(xxx)κ(000)〉φ .

Notice that 〈κ(xxx)κ(000)〉φ gives the autocovariance since 〈κ(xxx)〉φ = 0.
To develop the estimate of Cκκ

� we need the following identity when κ :

〈κ(���)κ(���′)∗〉φ = δ���−���′C
κκ
�

This follows directly from the definition of spectral density, the assumption that
κ(xxx) is isotropic and the definition δ��� ≡

∫ d2xxx
(2π)2 eixxx·���. Notice that κ(���) is technically

a generalized process which behaves like
√

Cκκ
� W (���) where W (���) is white noise.

Therefore when working with finite sky observations of κ(xxx) one can produce
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a discrete version of κ(���) (using discrete Fourier transform) which satisfies〈|κ(���)|2〉
φ
≈ Cκκ

�
Δ��� where Δ��� ≡ Δ�1Δ�2 is the grid area in Fourier space. For the

remainder of this paper we work with this discrete version of κ .
If one knew the convergence field κ then one can estimate Cκκ

� by

Ĉκκ
�0

=
Δ���

#A�0
∑

���∈A�0

∣∣κ(���)∣∣2 (6.8)

where Δ��� denotes the area of the observation grid in ���; A�0 denotes a gridded
annulus with radius �0; #A�0 denotes the number of grid points in A�0 . Notice that

this estimate is unbiased: 〈Ĉκκ
� 〉φ =Cκκ

� .

In the case of the local MLE or Bayes estimates one has—φ̂ lp
xx , φ̂ lp

yy and φ̂ lp
xy—

the estimates of the mixed partial derivative as a function of local neighborhood
midpoint. This leads to an estimate of κ as

κ̂(���)≡−(φ̂ lp
xx(���)+ φ̂ lp

yy(���))/(2ϕδ (���))

where ϕδ is the band pass filter, defined in (6.6), which approximates the local
neighborhood effect discussed in [1]. One can then use κ̂ to construct a plug-in
estimate of Cκκ

� defined as

Ĉκ̂ κ̂
�0

≡ “plug-in estimate” =
Δ���

#A�0
∑

���∈A�0

∣∣κ̂(���)∣∣2. (6.9)

The main problem with the plug-in estimate (6.9) is that estimation error from κ̂
propagates to biases in Ĉκ̂ κ̂

� . In the local Bayesian case, the estimation error results
in a multiplicative shrinking bias as is seen in Fig. 6.1. Conversely there is a large
additive bias for the local MLE plug-in estimate shown in Fig. 6.1. This bias has a
simple explanation. If one lets N denote the κ estimation error (so that κ̂ = κ +N)
then by assuming isotropy Δ���〈|κ̂(���)|2〉 ≈Cκκ

� +CκN
� +CNκ

� +CNN
� so that

〈
Ĉκ̂κ̂
�

〉
≈Cκκ

� +
(
CκN
� +CNκ

� +CNN
�

)
︸ ︷︷ ︸

additive bias

(6.10)

where CNN
� is the spectrum for N (assuming isotropy) and CκN

� is the cross spectrum
between κ and N so that 〈κ(���)N(���′)∗〉 ≡CκN

� δ���−���′ . For the local Bayes estimate the
dominant source of bias is from the first two terms CκN

� +CNκ
� which is from the

multiplicative shrinkage bias. Conversely, it seems the dominant source of bias for
the local MLE estimate is from the last term, CNN

� , which causes the upward bias
seen in the dashed line with triangles in Fig. 6.1.
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6.3.1 Bias Correcting Local MLE Spectral Estimates
with Simulations

In the previous section we used φ̂ lp
xx , φ̂ lp

yy and φ̂ lp
xy to approximate the convergence

κ and construct the plug-in estimate Ĉκ̂ κ̂
� . We argued that estimation error results

in spectral density estimation bias which is quantified by CκN
� +CNκ

� +CNN
� . The

two terms CκN
� +CNκ

� dominate the bias when using a local Bayesian estimate.
Conversely, we will see that the dominant source of bias when using a local MLE
estimate is from CNN

� . The advantage of this scenario is that CNN
� has potential to be

estimated using unlensed simulations (i.e. where κ = 0) whereas one must simulate
κ under some fiducial model to approximate CκN

� +CNκ
� . It is for this reason that

we choose to use the noisy local MLE estimates, but correct the resulting bias in the
plug-in spectral density estimate by approximating the noise spectrum CNN

� from
unlensed simulations. In particular, we use the following bias-adjusted local MLE
estimate of Cκκ

�

C̃κκ
� ≡ Ĉκ̂ κ̂

� − ĈNN
� (6.11)

where κ̂ is the local MLE estimate of κ and ĈNN
� is approximated using simulations.

To construct ĈNN
� we use the local MLE estimation procedure for κ̂ and run it on

multiple realizations of unlensed CMB (with noise and beam) on the same pixel
configuration of the observations. Since these simulations are done with κ = 0, the
result is pure noise N. A spectral density estimate, based on N, is computed for each

realization, which are then averaged over multiple realizations to construct ĈNN
� .

Remark. In this paper we assume the noise spectrum is radially symmetric so that

ĈNN
� is estimated by the same radial averaging as done in (6.9). If the beam or noise

is asymmetric this assumption is unlikely to be true. However, one can still estimate

the noise spectrum from simulations and subtract the resulting bias in Ĉκ̂κ̂
� .

6.4 Simulation

We use four types of simulations in this section, each summarized in Table 6.1. The
lensed simulations (with additional noise and beam) are used to generate estimates
of κ , using both the local MLE and quadratic estimates, which are then used to

construct the plug-in estimates Ĉκ̂ κ̂
� given in Sect. 6.3. The unlensed simulations

(also with additional noise and beam) are used to estimate the error spectrum,

ĈNN
� , derived in Sect. 6.3.1 for both the quadratic estimates and the local MLE

estimates. We use periodic boundary conditions for the quadratic estimates to
avoid complicated appodization issues inherent in the quadratic estimate based on



74 E. Anderes and A. van Engelen

Table 6.1 The four types of simulations used to compare the bias adjusted local MLE and
quadratic estimates of Cκκ

�

Simulation Boundary type Useage Number of simulations

T (xxx+∇φ (xxx)) Periodic Ĉκ̂ κ̂
� (using the quadratic estimate) 100

T (xxx) Periodic ĈNN
� (using the quadratic estimate) 100

T (xxx+∇φ (xxx)) Non-periodic Ĉκ̂ κ̂
� (using local MLEs) 35

T (xxx) Non-periodic ĈNN
� (using local MLEs) 35

non-periodic sky cuts. Due to computational time constraints only 35 simulations
were made for the local MLE estimates (verses 100 simulations for the quadratic
estimate).

The non-periodic lensed CMB fields are simulated1 by generating a high
resolution simulation of T (xxx) and the gravitational potential φ(xxx) on a periodic
17◦ × 17◦ patch of the flat sky with 0.25 arcmin pixels . The lensing operation is
performed by taking the numerical gradient of φ , then using linear interpolation to
obtain the lensed field T (xxx+∇φ(xxx)). We down-sample the lensed field, every 4th
pixel, and restrict to a 10◦× 10◦ patch to obtain the desired arcmin pixel resolution
for the simulation output. A Gaussian beam with a FWHM of 4 arcmin is applied in
Fourier space using FFT of the lensed fields. Finally white noise is added in pixel
space with a standard deviation of 2 μK-arcmin. A similar procedure is performed
for the periodic lensed CMB fields, except the initial high resolution simulation of
T (xxx) and φ(xxx) are done on a periodic 10◦×10◦ patch of the flat sky with 0.25 arcmin
pixels.

The top plot of Fig. 6.3 summarizes the results using the local MLE estimates
with a non-periodic cut sky. The bottom plot of Fig. 6.3 summarizes the corre-
sponding results using the quadratic estimate on a periodic cut sky. Both show
the ensemble average of the bias adjusted spectral density estimates C̃κκ

� (blue)
compared to the true spectral density Cκκ

� (black) and the ensemble averaged

spectrum Ĉκκ
� one would obtain if one had access to the true κ field for each

simulation (red). The bars denote standard deviation error bars. The reason we
include Ĉκκ

� is to show the pixelization and appodization bias which is present
irrespective of estimation procedure for κ .

Both estimates of C̃κκ
� based on the quadratic estimate and the local MLE

estimate do a good job of tracking the true spectral density. It appears there is more
variability in the local MLE estimate, especially at low �. However, at low � the
local MLE estimate looks nearly unbiased. The observed power suppression bias

1The fiducial cosmology used in our simulations is based on a flat, power lawΛCDM cosmological
model, with baryon density Ωb = 0.044; cold dark matter density Ωcdm = 0.21; cosmological
constant density ΩΛ = 0.74; Hubble parameter h = 0.71 in units of 100kms−1 Mpc−1; primordial
scalar fluctuation amplitude As(k = 0.002Mpc−1) = 2.45 × 10−9; scalar spectral index ns(k =
0.002Mpc−1) = 0.96; primordial helium abundance YP = 0.24; and reionization optical depth τr =
0.088. The CAMB code is used to generate the theoretical power spectra [13].
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Fig. 6.3 Top: The simulation results for the bias adjusted local MLE estimate of Cκκ
� . The blue

dots show the ensemble mean of the estimates (1σ error bars). The red dots shows the mean of
the estimates Ĉκκ

� if one had access to the true κ . Bottom: The corresponding results for the bias
adjusted (with simulations) quadratic estimate of Cκκ

� (See Sect. 6.4 for the simulation details)

at low � and power amplification bias at high �, for the quadratic estimator, is well
documented in [5, 11]. It is interesting that the power amplification bias at high ell
is opposite to the bias in the local MLE estimate. This may be due to a different
Taylor truncation error used to derive the two different estimates. Irrespective of
where the bias comes from, it is potentially scientifically useful that the biases are
complementary.

Note: The ensemble averaged spectrum Ĉκκ
� based on the true κ (red) is different

at low � in the top plot versus the bottom plot in Fig. 6.3. This is presumably do to
the appodization effect which is present in the local MLE simulations, since we are
using non-Periodic sky cuts, but not present for the period sky simulations used for
the quadratic estimator.
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6.5 Challenges

The main challenge for the local MLE procedure is the difficulty in deriving
global properties of the noise structure. Since the local MLE estimate is based
on a different Taylor truncation it may provide an important complement to the
quadratic estimator. Indeed, the spectral density bias in the frequency range 300–
600 seems entirely complimentary to the bias in the quadratic estimator. Moreover,
the estimation variability also seems comparable in this range. However, the bias and
variance most likely depends on the true, but unknown, spectrum Cκκ

� . It remains
to be seen if the bias remains complementary under alternative models for Cκκ

� .
Therefore, before it can be used in conjunction with the quadratic estimator, one
must get some theoretical quantification of the nature of bias and variance.

It is clear from the results given in Sect. 6.4 that simulations can provide a partial
answer to the quantification of bias and variance of the spectral density estimation.
Unfortunately, the local MLE estimate is somewhat computationally expense. Each
local estimate on a small neighborhood can be done quickly. However, these local
estimates are required at a sufficient resolutions to get adequate coverage in Fourier
space. Therefore a complete understanding of bias and variance seems unattainable
through simulation.

One potential advantage of the local MLE estimate is the apparent unbiasedness
at low �. This contrasts with the situation for the quadratic estimate, where the bias at
low � has been quantified by Hanson et. al. [5]. They present a method for correcting
the low � bias in the quadratic estimator. However, this method depends on a fiducial
model for Cκκ

� . Indeed, this problem persists when the quadratic estimator is applied
to non-periodic sky cuts where quantification of the appodization effect is usually
done with simulations under a fiducial model for Cκκ

� . The advantage of the local
MLE estimates, in this case, is that it does not require a fiducial model for first
order bias correction or appodization. The cost of this unbiasedness, it seems, is the
apparent increase in variability at low �.

Acknowledgements We thank Lloyd Knox for numerous helpful discussions.
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Chapter 7
Commentary: ‘The Matter Spectral Density
from Lensed Cosmic Microwave Background
Observations’

Alan Heavens

Abstract Weak gravitational lensing of the Cosmic Microwave Background
(CMB) by the intervening clumpy Universe is an important effect which affects
parameter estimation in cosmology if not correctly accounted for, and which limits
our ability to measure primordial gravitational waves from inflation. Quantifying
its effects is an important task, and one which is challenging in practice. In this
commentary, I give some physical context and describe the statistical properties
of the CMB and lensing fields, and argue that in principle it is an ideal topic for
statisticians to get involved with. In practice, there are several challenges which
make detailed study quite challenging, and the accompanying paper addresses one
of these with a novel approach. This is the effect of non-uniform sky coverage, due
to regions of the sky being masked by, for example, point sources. The paper by
Drs. Anderes and van Engelen addresses this with a new idea—a local maximum
likelihood estimator of the lensing potential, stitching together the estimates to give
a global lensing map. It discusses the challenges inherent in the approach, and offers
some possibilities to meet the challenges.

7.1 The Cosmological and Statistical Appeal of the CMB

Ethan Anderes and Alexander van Engelen address one of the most important topics
in cosmology today. They analyse the effects of gravitational lensing—the bending
of light by gravity—on the CMB radiation. The CMB photons give a snapshot of
the Universe at recombination, about 300,000 years after the Big Bang; the photons
have travelled largely unimpeded since then, being subject to relatively few physical
processes, one of which is the deflection due to the gravitational influence of the
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increasingly clumpy intervening Universe. There are a number of observational
probes of cosmology, but it is fair to say that the CMB is the prime source of
information about the Universe, for two main reasons. The first is that the detailed
statistical properties of the fluctuating radiation field depend quite sensitively on
the key parameters of the Universe, such as its expansion rate, matter content and
so on, as well as giving us a window into the early Universe, where a period of
rapid accelerating expansion, known as inflation, is thought to have provided the
seeds for subsequent structure formation. These early fluctuations can be detected
in the temperature field of the Universe, and also yield a small polarisation due
to Thomson scattering of the radiation from free electrons at the recombination
era. The second reason is that the physics of the CMB is rather well understood,
as at the time of emission (in the standard cosmological model, which is a very
successful description of the Universe), the Cosmos was an almost uniform mixture
of photons, ordinary matter and dark matter, with a small component of dark energy.
This is a simple system to analyse, so the confrontation of observation with theory
is very robust, and firm conclusions can be drawn with high confidence. From a
statistical point-of-view, the CMB is also a very appealing hunting ground, as its
statistical properties are simple, principally as a result of the central limit theorem,
so we know pretty much what we are dealing with. In practice, there are important
complications, and subtle effects which may indicate new physics. Lensing is one
known physical effect, and as it changes the power spectrum of the observed
CMB, including its effects is important to get accurate estimation of cosmological
parameters. Apart from using the statistical properties of the temperature field to
determine cosmological parameters, a very exciting future opportunity is to look
for rather direct evidence for inflation, the process in the early Universe which
is thought to be responsible for the present expansion of the Universe. This manifests
itself through polarisation signals in the CMB as a result of gravitational waves
generated during inflation. These give rise to so-called B-mode perturbations, at
a level which depends on the energy scale of inflation, manifested in the tensor-
to-scalar ratio r. Measurement of primordial B-modes is enormously challenging as
the expected level is very low, and furthermore, gravitational lensing of the polarised
emission caused by Thomson scattering (which produces E modes) causes a B-mode
polarisation signal which dominates the power spectrum on scales less than about a
degree. For these reasons, understanding the effect of lensing on the CMB is of vital
importance.

7.2 Gravitational Lensing of the CMB

Gravitational lensing of the CMB causes deflection of the photon direction, whilst
preserving surface brightness (through Liouville’s theorem). The deflection can be
described in terms of a lensing potential φ , which is an integral along the line-of-
side of the gravitational potential, weighted with a lensing kernel. The CMB map
is therefore distorted in a way which depends on the distribution of matter along
the line-of-sight. The deflections are typically rather small, of the order of a few
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arcminutes, but the distortions of the map are correlated over scales of around 10◦.
An excellent review of the subject appears in [1]. From a statistical point-of-view,
this is an (almost) ideal situation, since the CMB is (almost) a random gaussian field,
and the lensing potential is (almost) another gaussian random field, the exception
being on the smallest scales, where nonlinear collapse makes the field slightly
nongaussian. Thus in principle it is open to a full Bayesian treatment, a necessary
ingredient of which is that one can predict the probability of the data vector given
the parameters of the model. Unfortunately in practice this is computationally too
demanding. This provides additional motivation for the accompanying paper.

The effect of lensing is as follows: the deflection means that at angular position
x the temperature is given by the unlensed temperature at x +∇φ(x), which is
normally expanded as:

T (x+∇φ(x)) = T (x)+∇μφ∇μT (x)+
1
2
∇μφ∇νφ∇μ∇νT (x)+ . . . (7.1)

It is known that truncation of this series as shown is a good approximation, but is
inaccurate at the level of about 10% on arcminute scales. Analysis of this expansion
allows a quadratic estimator for the lensing potential to be written down, via its
Fourier transform:

φl ∝
∫

d2l′

2π
Tl′ Tl−l′g(l, l

′) (7.2)

where g is a known function. The details can be found in [1] or in the original
references contained there, but the point is here that this is evaluated in Fourier
space, so this is effective if we have all-sky coverage (actually flat-sky is assumed
here), but this becomes problematic when the CMB has holes due to bright point
sources, or if the noise in the map is non stationary. Both of these are normal, so in
practice this is rather difficult to do.

7.3 Anderes and Van Engelen’s Method

The method proposed by Anderes and van Engelen reconstructs the lensing potential
locally, not using the Fourier analysis which represents a global method. For a
sufficiently small patch, they approximate the lensing potential as a quadratic
function of the coordinates, qφ (x), and estimate the quadratic coefficients using a
local maximum-likelihood method. This has the obvious and attractive advantage
that it is immune to the effects of holes elsewhere in the map, and one can
approximate the noise as stationary across each patch. The estimation of the lensing
potential can be done with Bayesian methods (which may drive the solution to zero
because of noise), or MLE estimators, for which the noise bias has a different form.
In the accompanying work, correction of the MLE bias is effected using simulations.

There is no doubt that this is a rather challenging problem, and this work
is to a certain extent exploratory, highlighting the issues which will need to be
addressed very well, but not yet providing a full solution. The main innovation is
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to approximate the lensing potential as a quadratic function of the coordinates; this
must be a good approximation on sufficiently small scales; the important question of
course is whether it is adequate on the minimum scales on which it can be applied.
The lensed temperature field is then approximated by

T (x+∇φ(x))� T (x+∇qφ(x)). (7.3)

By simplifying the lensing potential, it is possible to use standard MLE techniques
to estimate the three independent coefficients of the quadratic form, exploiting the
gaussianity in the problem. Notice that the lensing potential is slightly nongaussian
on the very smallest scales, due to nonlinear evolution of the matter density field
along the line-of-sight, but the effects are at the percent level on arcminute scales;
they are probably unimportant, but this would need checking. Two approaches are
taken at this point, either using a MLE or computing the mode of the posterior in
a Bayesian analysis. The prior in the Bayesian treatment tends to bias the potential
towards zero, so the authors concentrate on the MLE, which seems to have the
advantage of an additive, noise-dominated bias which is correctable, compared with
a lensing-dependent multiplicative bias which is harder to deal with. There is an
immediate issue to contend with, and that is how to patch together the different
MLE of the potential in different areas of sky. A variety of gradient fits is employed,
to give a potential reconstruction which is visually good, but naturally one would
want to know to what extent this patching introduces artefacts in the reconstruction.
Perhaps in order to assess how good the constructions are, the authors analyse the
power spectrum of the recovered convergence field and compare in simulations
with the input. This seems natural, although if this was the main goal, then the
reconstruction step may be unnecessary and there may be more direct ways to work
only with statistical quantities. The bias corrections are rather large, but the authors
show that after correction both the MLE and Bayesian methods yield reasonable
estimates of the convergence power spectrum. Given that at some level the bias
correction may depend on the true convergence power spectrum, and the authors
have yet to test the sensitivity of the correction to this.

With some analyses of lensing of the CMB, computational expense is an issue,
and this is no exception, but on the positive side the problem of large-scale biases in
the power spectrum which besets other methods appears to be absent. In summary
the novel approach which is presented here is an interesting addition to the list of
techniques which can be applied to the challenging problem of accurate analysis of
the lensed CMB. It is a work in progress, and it will be interesting to see whether
the challenges which are identified in this work can be met in practice. If so, the
scientific gains are very worthwhile, so one hopes so.
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Chapter 8
Needlets Estimation in Cosmology
and Astrophysics

Domenico Marinucci

Abstract Needlets are a form of spherical wavelets which has recently drawn a
lot of interest in the cosmological and astrophysical literature. We shall briefly
recall the most important features of the needlets construction, and explain why
their properties make possible a succesful application to several issues of interest
in the analysis of Cosmic Microwave Background data. Many of these possibilities
have been exploited already, and we review some results. We shall then explore the
role of needlets in adaptive estimation, with a focus on cosmic rays experiments
and future weak gravitational lensing and polarization observations on spin random
fields.

Dedicated to the memory of Daryl Geller. Much of what is
presented here is based upon the contributions of Daryl Geller
(1951–2011). In particular, besides developing Mexican
needlets (with A.Mayeli), he is to be credited for most of the
work on spin needlets/mixed needlets: very little of the
mathematical theory behind these developments would exist
without him.

8.1 Introduction

Over the last decade, wavelet techniques have become a well-established tool for
the analysis of cosmological and astrophysical data, see for instance [51] and the
references therein. In particular, a growing interest has been devoted in the last
5 years to the application in a cosmological environment of a new form of spherical

D. Marinucci (�)
Department of Mathematics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1,
Roma, Italy,
e-mail: marinucc@mat.uniroma2.it

E.D. Feigelson and G.J. Babu (eds.), Statistical Challenges in Modern Astronomy V,
Lecture Notes in Statistics 209, DOI 10.1007/978-1-4614-3520-4 8,
© Springer Science+Business Media New York 2013

83



84 D. Marinucci

wavelets, called needlets. Needlets were introduced in the mathematical literature
by Narcowich et al. [41, 42], see also [20–22] for extensions and generalizations.
The investigation of the stochastic properties of needlets when implemented on
spherical random fields is due to [2, 3, 35, 36, 40], where applications to several
statistical procedures are also considered. Several applications to experimental data
have already been implemented: for instance [44] have focussed on estimation of
cross-power spectrum from CMB and large scale structure data provided by the
NVSS catalogue; [38] have given an overview of the method and various possible
applications to CMB; [45] considered search for asymmetries and local estimators
of the angular power spectrum; [6, 35, 46, 48, 49] have focussed on the analysis of
the needlets bispectrum, non-Gaussianities, estimation of the nonlinearity parameter
fnl and its directional variations; [8, 12, 23, 24] discussed the numerical properties
of the needlets and exploited them for map-making and angular power spectrum
estimation; [14, 15] considered the search for bubble as a test of eternal inflation.

More recently, a few papers have focussed on the use of needlets to develop
estimators within the thresholding paradigm, in the framework of directional data.
Thresholding estimates were introduced in the statistical literature by Donoho et al.
in [10], where it was proved that nonlinear wavelet estimators based on thresholding
techniques achieve nearly optimal minimax rates (up to logarithmic terms) for
a wide class of nonparametric estimation of unknown density and regression
functions. The theory has been enormously developed ever since—we refer to [25]
for a textbook reference. In an astrophysical context, needlet-based thresholding
algorithms are discussed by Baldi et al. [4] and Kerkyacharian et al. [29, 30];
applications to cosmic rays data analysis are provided for instance by Faÿ et al. [13]
and Iuppa et al. [27, 28]. Earlier results on minimax estimators for spherical data,
outside the needlets approach, are due to Kim and coauthors (see [31, 32, 34]).
Another very active area involves the use of needlets for the analysis of spin data,
i.e. those arising when considering the polarization of CMB data and/or future
weak gravitational lensing experiment such as the projected mission Euclid [5,33]).
Some results in this area have been provided by Geller and Marinucci [18] and
Gelleret al. [16], with further developments discussed by Geller et al. [17], Geller
and Marinucci [19], and Durastanti et al. [11].

In this presentation, we shall first review briefly the main features of the needlet
construction, and explain how its properties make it a suitable tool for data analysis
in many area of cosmological interest. After reviewing briefly applications to CMB,
we shall discuss adaptive properties and their importance in the framework of
gamma rays, weak gravitational lensing and polarization of the CMB.

8.2 Needlets Construction and Main Properties

Consider any function f defined on the sphere S2, and such that f ∈ L2(S2), that is
to say

∫
S2 f 2(x)dx < ∞. It is well known that the following spectral representation

holds:
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f (x) =∑
lm

almYlm(x), (8.1)

alm =

∫
S2

f (x)Y lm(x)dx, (8.2)

where the set {Ylm} represents the array of so-called spherical harmonics on the
sphere, defined to be the eigenfunctions of the spherical Laplacian

ΔS2Ylm =−l(l + 1)Ylm , ΔS2 =
1

sinϑ
∂
∂ϑ

(
sinϑ

∂
∂ϑ

)
+

1

sin2ϑ
∂ 2

∂ϕ2 .

When the function f (x) is random, as in the case of the CMB temperature data
(which is assumed to be the realized of an isotropic, finite variance random field)
we have also that

Ealm = 0 , Ealmal′m′ =Clδ l′
l δ

m′
m ,

where the bar denotes complex conjugation and Cl the so-called angular power
spectrum of the random field.

In the presence of a partially observed sky (as happens for CMB, where some
regions are masked by the presence of the Milky Way and other foreground
contaminants), the evaluation of the inverse Fourier transform (8.2) becomes
unfeasible. Moreover, localization in both the real and the harmonic space is indeed
necessary when searching for localized features, such as for instance the highly
debated Cold Spot [7]. In view of these considerations, the double localization
properties of spherical wavelets become most valuable. Among spherical wavelets,
we shall be concerned with needlets, whose construction we review as follows.

Let b(.) be a weight function satisfying three conditions, namely

• Compact support: b(t) is strictly larger than zero only for t ∈ [B−1,B], some
B > 1

• Smoothness: b(t) is C∞

• Partition of unity: for all l = 1,2, . . . we have

∞

∑
j=0

b2
(

l
B j

)
= 1 .

Recipes to construct a function b(.) that satisfy these conditions are easy to
find and are provided for instance by Marinucci et al. [38] and Marinucci and
Peccati [39].

Next step in the construction is the introduction of a set of cubature points and
weights, namely a grid of points

{
ξ jk
}

on the sphere and a grid of weights λ jk such
that

∑
jk

λ jkYl1m1(ξ jk)Y l2m2(ξ jk) =

∫
S2

Yl1m1(x)Y l2m2(x)dx , for B j−1 ≤ l1, l2 ≤ B j+1.
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In other words, cubature points provide a grid of pixels such that the integrals of
spherical harmonics are equal to the corresponding Riemann sums on this grid.
In practice, cubature points can be identified with the pixel centres of a standard
package such as HealPix, and cubature weights can be taken to be equal to the pixel
areas, with a very minor numerical approximation.

We have now all the background material to introduce the needlet system, which
is defined by

ψ jk(x) =
√
λ jk

B j+1

∑
l=B j−1

l

∑
m=−l

b

(
l

B j

)
Ylm(x)Y lm(ξ jk) ,

with the corresponding needlet coefficients provided by

β jk =
∫

S2
f (x)ψ jk(x)dx =

√
λ jk

B j+1

∑
l=B j−1

l

∑
m=−l

b

(
l

B j

)
almYlm(ξ jk) . (8.3)

The coefficients
{
λ jk
}

are such that cB−2 j ≤ λ jk ≤CB−2 j, with c,C ∈ R, and Nj =

card
{
ξ jk
}≈ B2 j, see for instance [3] for more details.

It is now well-known that needlets enjoy quite a few important properties that
make them very suitable for spherical data analysis (see for instance [38]). Indeed,

1. Numerical implementation: Needlets have important numerical advantages: they
do not rely on any tangent plane approximation, but they are naturally embedded
in the manifold structure of the sphere and perfectly adapted to standard
packages, such as HealPix.

2. Localization: Needlets are compactly supported in the harmonic space, i.e. at
each scale j needlets are supported on a finite number of multipoles which are
perfectly controlled by the data analyst. As far as real space is concerned, for
every M = 1,2,3 . . . , there exist some constant cM such that

∣∣ψ jk(x)
∣∣≤ cMB2 j

{
1+B jd(x,ξ jk)

}M , for all x ∈ S2,

where d(., .) denotes the standard geodesic distance on the sphere. In other
words, for any fixed angular distance the tail of the needlets decay faster than
any polynomial, i.e. quasi-exponentially as the frequency increases.

3. Reconstruction property: As established by Narcowich, Petrushev and Ward,
needlets make up a tight frame system, meaning that for any (random or
deterministic) function f ∈ L2(S2) we have

∫
S2

f 2(x)dx =∑
l

2l + 1
4π

Cl =∑
jk

β 2
jk ,
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a sort of conservation of energy condition. This property yields many important
consequences: the first and most important is the following reconstruction
property, again in the L2 sense:

f (x) =∑
jk

β jkψ jk(x) , (8.4)

so that the pair (8.3)–(8.4) makes a sort of analogue of standard results in Fourier
analysis such as (8.1)–(8.2).

4. Asymptotic uncorrelation: In the random case, the needlet coefficients β jk are
random variables, with correlation such that for all M = 1,2, . . . , there exist c̃M

ensuring that

Corr(β jk,β jk′)≤ c̃M{
1+B jd(x,ξ jk)

}M , for all x ∈ S2.

5. Flexible implementation: as discussed by Scodeller et al. [50], needlets can be
adapted to specific problems by suitable tuning in the choice of the weight
function b(.) and the bandwidth parameter B.

More recently, the needlet idea has been extended by Geller and Mayeli with
the construction of so called Mexican needlets, see [20–22] for the definition and
discussion of their properties and [50] for numerical analysis and implementation in
a cosmological framework. Loosely speaking, the idea is to replace the compactly
supported kernel b( l

B j ) by a smooth function of the form

b

(
l

B j

)
=

(
l

B j

)2p

exp

(
− l2

B2 j

)
,

for some integer parameter p. Because the function b(.) is not compactly supported,
an exact reconstruction function cannot hold; Geller and Mayeli show, however,
that the corresponding error can be made arbitrary small by a suitable choice of
(approximate) cubature points and weights. Apart from that, Mexican needlets un-
deniably enjoy some very interesting properties: in particular, they have extremely
good localization properties in real space, they allow for flexible and numerical
convenient implementation, and for p = 1 they provide at high frequencies a good
approximation to the so-called Spherical Mexican Hat Wavelet construction. Their
statistical properties are also encouraging: although the uncorrelation property does
not hold for arbitrary angular power spectra, it does hold for the parameter range
of interest in the analysis of CMB data, and indeed in these circumstances the
numerical evidence in [50] suggest that they may even outperform standard needlets.
Most of the analysis we report below in a CMB-related environment have been
duplicated with Mexican needlets, with very positive results.

In the following Section, we review briefly some applications of needlets to CMB
data analysis where these properties have been fully exploited.
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8.3 Applications to CMB Data Analysis

Uncorrelation was first established by Baldi et al. [2], and then used to derive
statistical properties of several estimators of interest for CMB data analysis. For
instance, consider the statistic

Γ̂j :=∑
k

β 2
jk ;

it is immediate to see that Γ̂j provides an unbiased estimator for (a binned form of)
the angular power spectrum,

EΓ̂j = Γj =∑
l

b2
(

l
B j

)
2l+ 1

4π
Cl ;

moreover Γ̂j is also consistent, that is Γ̂j/Γj converges in probability to one as
the frequency diverges, and asymptotically Gaussian, i.e. it is possible to construct
standard confidence intervals. These properties were established by Baldi et al. [2],
and then used by Pietrobon et al. [44] to supply an estimator for cross-spectra
between background radiation and large scale structure data, when investigating
the Integrated Sachs-Wolfe effect. By the same approach it is possible to search
for asymmetries in the power spectra of CMB data, for instance between the
Northern and Southern hemisphere, an idea introduced by Baldi et al. [3] and then
implemented by Pietrobon et al. [45], or to supply estimators of the angular power
spectra in CMB temperature data, see [12].

Several other applications focussed for instance on using analogous arguments
to construct needlet-based estimators of the bispectrum and/or the nonlinearity
parameter fnl , see for instance [46–49]. Here the idea can be summarized as follows.
It is well-known that, under isotropy and Gaussianity, the angular power spectrum
provides full information on the dependence structure of a random field. To search
for non-Gaussianity, it is necessary to consider higher order statistics, for instance
the so-called bispectrum, defined by

Eal1m1al2m2al3m3 = Bl1m1l2m2l3m3 =

(
l1 l2 l3
m1 m2 m3

)
bl1l2l3 . (8.5)

The second equality in (8.5) is a crucial consequence of isotropy, entailing that
the physical information is concentrated in the reduced bispectrum bl1l2l3 , while
isotropy is enforced by the appearance of the Wigner-s 3j symbols on the left,
see [26,37,39] for more discussion and details. A natural question to ask is then how
to estimate bl1l2l3 , especially in the presence of missing data. The following needlet
bispectrum estimator was introduced by Lan and Marinucci [35] and applied on real
data by Pietrobon et al. [46, 47] and Rudjord et al. [48, 49]:

I j1 j2 j3 = ∑
k1k2k3

β̂ j1k1 β̂ j2k2 β̂ j3k3 h j1 j2 j2
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EIj1 j2 j3 = ∑
l1l2l3

b

(
l1

B j1

)
b

(
l2

B j2

)
b

(
l3

B j3

)
bl1l2l3 ,

where h j1 j2 j2 is a normalizing factor; we refer to the previous references for more
details. In short, needlet coefficients provide a computationally very convenient
estimator for a binned form of the bispectrum, with the added bonus of localization
in real space. The latter property makes it possible to investigate not only possible
non-Gaussianities, but also their variation over the CMB sky, a task carried over
by Pietrobon et al. [47] and Rudjord et al. [49]. We refer to these and the previous
references for results on applications of these procedures to WMAP data, in
particular estimated values of the fundamental nonlinearity parameter fnl .

In a CMB related framework, needlets have become popular for other applica-
tions as well. For brevity’s sake, we avoid to report each of them here—we simply
recall, for instance, various approaches to map-making (the so-called Needlet
Internal Linear Combination method is now the standard procedure in the Planck
pipeline, see [1,8,23,54]), and very recently the use of needlets to search for bubbles
as a test of eternal inflation [14, 15]. Rather than going further into these issues, we
prefer to consider more recent developments, such as those concerning polarization
and/or weak gravitational lensing data, and those related to directional data and
cosmic rays.

8.4 Directional Data

We shall now consider the analysis of directional data, i.e. those emerging from
large area surveys for cosmic rays detections. Examples of this setting include the
search for ultra high energy cosmic rays considered by experiments such as AUGER,
gamma rays as investigated by satellites AGILE and Fermi-LAT, and ground-based
observatories such as ARGO-YBJ. Many other examples could also be considered.

In each of these cases, the statistical problem can be formulated as observing
independent directions {X1, . . .Xn}, each Xi ∈ S2 representing an incoming direction
on the sky, possibly observed with error. We shall consider the case where we are
interested to reconstruct the density of observed data.

The idea which we shall discuss here follows from classical approaches to
wavelet-based density estimation, as discusses on the real line by Donoho et al. [10]
and Hardle et al. [25] and many following references. Let f (x) denote the population
density of incoming cosmic rays; we have the expansion

f (x) =∑
jk

β jkψ jk(x) , β jk =

∫
S2

f (x)ψ jk(x)dx .

Consider the needlet coefficient estimator

β̂ jk =
1
n

n

∑
i=1

ψ jk(Xi) ; (8.6)
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we have easily

Eβ̂ jk =
1
n

n

∑
i=1

Eψ jk(Xi) =
1
n

n

∑
i=1

∫
S2

f (x)ψ jk(x)dx = β jk .

An immediate idea to estimate cosmic rays density is then to implement the so-
called linear wavelet estimator [25]

f̂n(x) =∑β̂ jkψ jk(x) . (8.7)

A more refined approach is to rely instead on needlet based thresholding
estimates, as discussed for instance by Baldi et al. [4], and then extended and
generalized by Kerkyacharian et al. [29, 30] and Faÿ et al. [13]. The idea of
thresholding is now classical in statistics (see [10, 25]) and can be intuitively
explained as follows. Start from the linear estimate (8.7); the smallest coefficients
are expected to be dominated by noise, and hence can be dropped, keeping just those
coefficients which are above a given threshold.

More precisely, we can consider the nonlinear estimate

f̂ ∗n (x) =∑β̂ ∗
jkψ jk(x) , β̂ ∗

jk = β̂ jkI(|β̂ jk|> ctn) ,

where tn is a threshold level and I(A) denotes the indicator function of the event A,
taking value 1 if A is verified, 0 otherwise. Such estimates can be shown to be nearly
optimal (in the minimax sense) over a wide class of density functions (described by
Besov spaces) and different loss functions, i.e. norms by which to measure when the
estimate is “close” to the density to be estimated. We refer to the above mentioned
papers for discussion and technical details; results on data collected by the ARGO-
YBJ collaboration will be released soon.

8.5 Spin Nonparametric Regression

8.5.1 Background

Another generalization of the needlet approach has been recently advocated
by Geller and Marinucci [18]; applications to statistics can be found in [17].
In particular, we recall that the CMB satellite missions WMAP and Planck are
currently collecting data also on the so-called polarization of CMB. The latter can
be loosely described as observations on random ellipses living on the tangent planes
for each location on the celestial sphere. Mathematically, this can be expressed
by defining random sections of so-called spin fiber bundles, a generalization of
the notion of scalar random fields (see [17–19] and below for much more details
and discussion). Quite interestingly, exactly the same mathematical framework
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describes the so-called weak gravitational lensing induced on the observed shape
of distant galaxies by clusters of matter (see for instance [5, 33] and the references
therein). Huge amount of observational data are expected in the next decade, by
means of satellite missions in preparations such as Euclid.

The applications of spin needlets to CMB polarization data is discussed in [16];
in [11] spin nonparametric regression was introduced, with a view to applications to
polarization and weak lensing data. We refer also to [52] and the references therein
for alternative approaches to wavelets analysis in this framework.

We shall then be concerned with the regression model:

Yi;s = Fs (Xi)+ εi;s , (8.8)

where Fs (·) is an spin function, to be discussed below; for instance, for s = 2 Fs can
be taken to represent the geometric effect of the gravitational shear. On the other
hand, we assume the εi;s are i.i.d. spin random variables, which can be viewed as
an observational error (to be interpreted, for instance, as the intrinsic shape of the
galaxy).

The concept of a spin function was introduced in the 1960s by Newman and
Penrose in [43], while working on gravitational radiation. Loosely speaking, a
function F represents a spin s quantity if, whenever a tangent vector at point x ∈ S2

is rotated by an angle ψ under a coordinate change, F transforms as F ′ = eisψF
(see [18] for mathematical formalization). Note that for s = 0 we are back to the
usual scalar functions.

It is also possible to introduce the system of spin spherical harmonics Ylm;s as
the eigenfunctions of a second-order differential operator which generalizes the
spherical Laplacian (refer again to [18, 53] for more details).

The spin spherical harmonics are themselves an orthonormal system, i.e. they
satisfy

∫
S2

Ylm;sY lm;sdx =
∫ 2π

0

∫ π

0
Ylm;s(ϑ ,ϕ)Y lm;s(ϑ ,ϕ)sinϑdϑdϕ = δ l′

l δ
m′
m .

As for the scalar case, the following representation holds

Fs (x) =∑
l
∑
m

alm;sYlm;s(x) .

Here, the spherical harmonics coefficients alm;s :=
∫

S2 FsY lmdx are such that

alm;s = alm;E + ialm;M ,

where {alm;E} ,{alm;M} are the coefficients of two standard (scalar-valued) spherical
functions, which in the physical literature are labelled the electric and magnetic
components of the spin function Fs, see again [18, 19] for more discussion.
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8.5.2 Spin and Mixed Needlets

The construction of spin needlets (as provided by Geller and Marinucci [18]) is
formally similar to the scalar case, although as we discuss below it entails deep
differences in terms of the spaces involved. Indeed, spin needlets are defined as
follows:

ψ jk;s (x) =
√
λ jk∑

l

b

(√
el,s

B j

) l

∑
m=−l

Y lm;s
(
ξ jk
)

Ylm;s (x), (8.9)

where
{
λ jk,ξ jk

}
are, as before, cubature weights and cubature points, b(·) ∈C∞ is

nonnegative, it is compactly supported in [1/B,B] and satisfies the partition of unity
property. Note, however, that the mathematical meaning of (8.9) is rather different
from the scalar case; indeedψ jk;s (x) is to be viewed as a spin s function with respect
to rotations of the tangent plane Tx, and a spin −s function with respect to rotations
of the tangent plane Tξ jk

. The spin needlet operators acts on spin s functions to
produce spin s coefficients

∫
S2

Fs(x)ψ jk;s (x)dx =
√
λ jk∑

lm

b

(√
el,s

B j

)
alm;sYlm;s

(
ξ jk
)
=: β jk;s . (8.10)

We report some important properties for spin needlets, very similar to those in scalar
case (see [41, 42]). The following reconstruction formula holds:

Fs (x) =∑
j
∑
k

β jk;sψ jk;s (x).

Also, from the previous discussion it follows easily that
∣∣ψ jk;s

∣∣2 is a well-defined

scalar quantity (It is simple to check that also the squared coefficients
∣∣β jk;s

∣∣2 are
scalar). The following localization property is hence well-defined (see [18]): for any
M ∈N, there exists a constant cM > 0 such that for every x ∈ S2:

∣∣ψ jk;s (x)
∣∣≤ cMB j

(
1+B j arccos

(〈ξ jk,x〉
))M .

As an alternative construction, [19] have considered so-called mixed needlets,
defined as

ψ jk;sM (x) =
√
λ jk ∑

l≥|s|
b

(√
els

B j

)
∑
m

Ylm;s (x)Y lm
(
ξ jk
)

.

The construction is similar to the one discussed earlier, the main difference being
the fact that the resulting needlet coefficients β jk;sM are scalar, rather than spin,
quantities. We refrain from a full comparison here for brevity’s sake; it suffices to
say that the procedures we shall discuss below can be implemented with both kind
of needlets.
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Spin and mixed needlets can actually be used for polarization data analysis much
the same way as we have seen for the scalar case. In particular, they can be used
to derive angular power spectrum estimators for the so-called E and B modes of
polarization, they can be implemented to test non-Gaussianity, they can be exploited
to search for asymmetries and local features. In the section below, however, we shall
discuss a different application, i.e. their exploitation to obtain adaptive estimation
for fields observed with errors.

8.5.3 Nonparametric Regression on Spin Runctions

We start by recalling the regression formula (8.8):

Yi;s = Fs (Xi)+ εi;s .

As discussed earlier, we envisage a situation where it is possible to collect data
which can be viewed as measurements on a spin field, i.e. for instance the polar-
ization of the Cosmic Microwave Background (see [9]), or the Weak Gravitational
Lensing effect on the images of distant Galaxies (see [5]).

The procedure we are going to investigate can be viewed again as a form
of needlet thresholding in the spin fiber bundles case. Our approach could be
implemented for both mixed and spin needlets. We start by defining, as usual, an
unbiased estimator for needlet coefficients. More precisely, we define

β̂ jk;s :=
1
n

n

∑
i=1

Yiψ jk;s (Xi) , i = 1,2, . . . ,n .

We have immediately:

E
(
β̂ jk;s

)
=
∫

S2
ψ jk;s (Xi)Fs (Xi) = β jk;s . (8.11)

The thresholding estimator is then defined, as usually, (see for instance [10, 25])

F∗
s (x) =

Jn

∑
j=1

Nj

∑
k=1

β ∗
jk;sψ jk;s (x). (8.12)

In (8.12), Jn represents a cut-off frequency, which we shall fix at BJn =
√

n
logn ,

whereas Nj is the cardinality of the cubature point set at frequency j; it is known
(see for instance [3]) that there exist positive constants c1,c2 such that c1B2 j ≤ Nj ≤
c2B2 j (written N j ≈ B2 j). It is then possible to show (see [11]) that thresholding
estimates achieve ‘nearly optimal’ (up to logarithmic factors) rates with respect to
general loss functions.
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Theorem 8.1. Let Fs ∈ Br
πq;s(G), the “Besov ball” such that ‖Fs‖Br

πq;s
≤ G < ∞,

r− 2
π > 0, and consider F∗

s defined by (8.12). For 1 ≤ p <∞, there exist κ > 0 such
that we have

sup
Fs∈Br

πq;s

E ‖F∗
s −Fs‖p

Lp
s
≤Cp {logn}p

[
n

logn

]−α(r,π ,p)
,

α(r,π , p) =

⎧⎪⎨
⎪⎩

rp
2r+2 for π ≥ 2p

2r+2 (regular zone)

p(r−2( 1
π− 1

p ))

2(r−2( 1
π − 1

2 ))
for π ≤ 2p

2r+2 (sparse zone)
.

Also, for p = ∞

sup
Fs∈Br

πq;s

E ‖F∗
s −Fs‖L∞s

≤C∞

[
n

logn

]−α(r,π ,∞)
, α(r,π ,∞) =

(r− 2
π )

2(r− 2( 1
π − 1

2))
.

Remark 8.1. The definitions of “regular” and “sparse” zones are classical, and so
are the rates obtained, which indeed correspond (for instance) to those presented
by Baldi et al. [4] for density estimation. The results are basically saying that
over a broad class of functions thresholding estimates converge (up to logarithmic
factors) as fast as any other possible estimator, even without prior knowledge on the
regularity of the (spin) function to be estimated. This is exactly the sort of robustness
property we were looking for. Of course α(r,π , p)< 1

2 , limr→∞α(r,π , p) = 1
2 . This

is to say that for “very regular” functions, thresholding estimates converge as fast as
the pure parametric case.

Remark 8.2. For s = 0, the previous results cover adaptive nonparametric regres-
sion for complex-valued, scalar functions. Again, the rates correspond to the usual
nearly minimax bounds.
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Bayesian Analysis Across Astronomy



Chapter 9
Parameter Estimation and Model Selection
in Extragalactic Astronomy

Martin D. Weinberg

Abstract Astronomy is rife with multi-instrument, multiple wave band data sets
and complex physical theories. An astronomer, therefore, needs to (1) infer the
parameters of models from multiple hypotheses; (2) inter-compare hypotheses; and
(3) test that the data is sufficiently well explained by the models. Most often,
all three needs are inseparably linked. The Bayesian approach allows these to be
addressed simultaneously and consistently. Although Bayesian inference is well-
suited to problems of inference in astronomical science, the most commonly used
tools best treat idealized or specialized models. Here, I describe our experience
based on two such problems in extragalactic science—testing models based on
galaxy images and exploring recipes galaxy evolution using semi-analytic models—
using the UMass Bayesian Inference Engine (BIE), a parallel-optimized software
package for parameter inference and model selection. The BIE is designed as a
collaborative platform for Bayesian methodology for astronomical problems.

9.1 Introduction

Inference is fundamental to the scientific process. We may broadly identify two
categories of inference problems: (1) estimation—finding the parameter of a theory
or model from data; and (2) hypothesis testing—determining which theory, indeed
if any, is supported by the data. These are computationally difficult problems in
practice. The different data characteristics for each survey and engenders varied
selection effects and inhomogeneous error models. Moreover, the information
content of large survey databases can in principle determine models with many
parameters but exhaustive exploration of parameter space is infeasible. In brief,
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astronomers increasingly rely on numerical data analysis, but most cannot take
full advantage of the power afforded by present-day computational statistics for
attacking the inference problem owing to a lack of tools.

These classes of estimation problems are readily posed by Bayesian inference
(BI), which determines model parameters while allowing for straightforward
incorporation of heterogeneous selection biases. Combined with the modern
theory of probability and Monte Carlo computation, Bayes theorem provides a
rich framework for the quantitative investigation of a wide variety of inference
problems, such as classification and cluster analysis, that broadly extends and unifies
the two categories described above. Unfortunately, the computational complexity
of BI grows quickly with the number of model parameters and becomes intractable
before the volume of currently available large data sets is reached. Beginning in
2000, a multi-disciplinary investigator team from the Departments of Astronomy
and Computer Science at UMass designed and implemented the Bayesian Inference
Engine,1 a Markov chain Monte Carlo (MCMC) parallel software platform for
performing statistical inference over very large data sets. This presentation is a
research ‘travel log’, describing our experience in applying BI to complex problems
with current algorithms using the BIE. Please see our companion posters for
additional details on two of our projects.

9.2 What do Astronomers Want and Need?

9.2.1 Parameter Estimation

Many astronomical data analysis problems are posed as parameter estimates.
For example: one observes the flux profile of a disk galaxy and would like to
estimate its scale length. In this problem, we are asserting that the underlying
model is true and testing the hypothesis that the parameter, a scale length, has a
particular value. BI approaches these problems with the following steps, reflecting
standard practice of scientific method: (1) numerically quantify a prior belief in the
hypothesis; (2) collect data that will either be consistent or inconsistent with the
hypothesis; (3) compute the new confidence in the hypothesis given the new data.
These steps may be repeated to achieve the desired degree of confidence. A clever
observer will design campaigns that refine confidence efficiently (i.e., that makes
the confidence high or low).

A prime motivation for the BIE project is our thesis that the power of expensive
and large survey data sets is underutilized by targeting parameter estimation
through maximum likelihood (ML) as the goal. For example, let us consider our

1Previously funded by NASA’s Applied Information and System Research (AISR) Program. For
further information see http://www.astro.umass.edu/bie.

http://www.astro.umass.edu/bie
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example above. We determine the posterior probability distribution for scale lengths
for some subset of survey images. Alongside scale length, we determine other
parameters such as luminosity, axis ratios or inclination, and possibly higher-
moments such as asymmetry of the disk. We use the scale length with maximum
probability as the best estimate. We then attempt to correlate the scale lengths
with some other parameter of interest, luminosity or asymmetry, say. Then, if a
correlation exists, we attempt to interpret the correlation in the context of theories
of galaxy formation and evolution. Observe, that in the first step, we are throwing
out much of the information implicit in the posterior distribution. In particular,
the luminosity estimate is most likely correlated with the scale-length estimate.
If we were to plot the posterior distribution in these two parameters, we might find
that the distribution is elongated in the scale-length–asymmetry plane, possible in
the same sense as the putative correlation! In other words, the confidence in the
hypothesis of a correlation should include the full posterior distribution of parameter
estimates, not just the maximum probability estimate. See Sect. 9.4.2 and Fig. 9.2 for
an example.

9.2.2 Which Model Is Right?

This leads naturally to the following question: which model is right one? This
question is a critical piece of the scientific method. Astronomers typically do not
address it quantitatively but need to do so. I will separate the general question
“which model is right?” into two: (1) “does the model explain the data?”, the
goodness-of-fit problem; and (2) “which of two (or more) models better explains
the data?”, the model selection problem. Let us begin with (1) and describe (2) in
the next section.

Suppose we have performed a parameter estimation and determined the
parameter region(s) containing a large fraction of the probability. We may compute
the predicted models for each parameter vector in the region and assess the fit to the
data. This is often done by eye. But, model checking, or assessing the fit of a model,
is a crucial part of any statistical analysis. Before making any conclusions from the
application of a statistical model to a data set, an investigator should assess the fit of
the model to make sure that the model can explain adequately the important aspects
of the data set. Serious misfit (failure of the model to explain important aspects of
the data that are of practical interest) should result in the replacement or extension
of the model. Even if a model has been assumed to be final, it is important to assess
its fit to be aware of its limitations before making any inferences.

The posterior predictive check (PPC) is a commonly-used Bayesian model
evaluation method. It is simple and has a clear theoretical basis. To apply the
method, one first defines a set discrepancy measures, T (D,θθθ). A discrepancy
measure, like a classical test statistic, measures the difference between an aspect of
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the observed data set and the theoretically predicted or replicated data set. That is,
the predicted distribution of some future data Drep after having observed the data
D is

p(Drep|D) =

∫
p(Drep,θθθ |D)dθθθ =

∫
p(Drep|θθθ ,D)p(θθθ |D)dθθθ (9.1)

(e.g. [1]). Practically, a number of replicated data sets are generated from
P(D|θθθ ,M ) with θθθ selected from posterior distribution. Any systematic differences
between the observed data set and the replicated data sets indicate potential failure
of the model to explain the data. For example, one may use the distribution of a
discrepancy measure conditional of the replicated data set to generate estimate a
Bayesian p-value for the true data:

pB = P[T (Drep,θθθ )≥ T (D,θθθ )|D]

=
∫ ∫

IT(Drep,θθθ)≥T(D,θθθ)p(Drep|θθθ)p(θθθ |D)dDrepdθθθ (9.2)

where Iq is the indication function for the condition q. This incorporates both the
variance of the observations D and the distribution of parameter values θθθ . If pB is
in the tails of the distribution for the DM, one rejects the fit. The critical region has
the usual meaning here. If probability is too small, the analysis model is regarded
as invalid for the given statistic.

Another approach attempts to fits a non-parametric model to the data. If the
non-parametric model better explains the data than the fiducial model, we reject
the fiducial model as a good fit. A naive implementation of this idea is difficult,
requiring a second high-dimensional MCMC simulation to infer the posterior
distribution for the non-parametric model and a careful specification of the prior
distribution. A clever scheme for doing this, described in [19], is based on the
following observation: if a cumulative distribution function is strictly increasing
and continuous, the inverse F−1(u) for u ∈ [0,1] is the unique real number θ such
that F(θ ) = u. In the multivariate case, the inverse will not be unique generally, but,
instead, we may define

F−1(u) = inf
θ∈Rd

{F(θ )≥ u} (9.3)

for a parameter vector θ of rank d. Then, rather than defining a general class of
densities in R

d to propose the alternative, Verdinelli and Wasserman consider a
functional perturbation to F , G(F(θ )) say, such that G maps the unit interval onto
itself. The identity, G(u) = u, is the unperturbed probability distribution. Then, the
test evaluates the uniformity of the distribution of probabilities under the hypothesis.

Intuitively, this development is closely related to the probabilistic interpretation
of the marginal likelihood. To see this, consider the one-dimensional case for
simplicity: let f (D|θ ) = P(θ )L(D|θ ) and F0(θ ) =

∫ θ
−∞ dθ f (D|θ ) and therefore

P(D) = F0(∞). If the distribution of F0(θi) for {θi} is not uniform in [0, 1], we
can perturb f (D|θ ) by moving some density from a region of under sampling to a
region of over sampling and, thereby, increase P(D).
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9.2.3 Model Selection and Bayes Factors

We often have doubts about our parametric models, even those that appear to fit
the data. This is especially true when the models are phenomenological rather
than the results of first principle theories. Therefore, we need to estimate which
competing model better represents the data. Astronomers are becoming better
versed in the more traditional statistical rejection tests but astronomers often
really want acceptance tests. Bayes factors provide this: one can straightforwardly
evaluate the evidence in favor of the null hypothesis rather than only test evidence
for rejecting it. Rather than using the posterior extremum as in ML, one marginalizes
over the parameter space to get the marginal probability of the data under each
model or hypothesis, and their ratio that provides evidence in favor of one model
specification over another [15]. Bayes factors are very flexible, allowing multiple
hypotheses to be compared simultaneously or sequentially. The posterior probability
for competing models can be evaluated over an ensemble of data and used to decide
whether or not a particular family of models should be preferred. Similarly, common
parameters can be evaluated over a field of competing models with appropriate
posterior model probabilities assigned to each. A tutorial illustrating this may be
found in the BIE documentation.

Given all of these advantages, why are Bayes factors not more commonly used?
There are two main difficulties. First, multidimensional integrals are difficult to
compute. To compute the factor, we need the marginal likelihood integral: P(D) =∫
π(θθθ)P(D|θθθ)dθθθ . For a real world model, the dimensionality of θθθ is likely to be

>10. Such a quadrature is infeasible using standard techniques. On the other hand,
a typical MCMC calculation has generated a large number of evaluations of the
integrand at considerable expense. Can we use the posterior sample to evaluate the
integral?

Raftery [14] suggests a “Laplace-Metropolis” estimator which uses the MCMC
posterior simulation to approximate the marginal density of the data using Laplace’s
approximation (see Raftery op. cit. for details). As part of the BIE development, [20]
describes two new approaches evaluating the marginal likelihood from the MCMC-
generated posterior sample and both of these are implemented in the BIE as
secondary analysis routines (see Sect. 9.3.3). In short, we believe that BIE together
with recent advances for computing marginal likelihood makes the wholesale
computation of Bayes factors feasible, at least in some cases of interest.

A second well-known difficulty is the sensitivity of Bayes factors to the choice
of prior. This may be tested through direct sensitivity analyses, such as resimulation
with chains at different resolutions and approximate priors. We believe that the BIE
project currently provides a useful platform for investigating the use of Bayesian
model comparison and hypothesis testing and we hope it helps pave the way for
new applications. In some cases, computing the Bayes factor will be infeasible.
For these, the BIE includes an MCMC algorithm that selects between models as
part of the posterior simulation. This is described in Sect. 9.3.4.
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9.2.4 Observational Requirements

The likelihood function—the probability of the data given the parameter vector
and model P(D|θ ,M)—is fundamental to any inference, Bayesian or otherwise.
The more direct the construction of the likelihood given a parameter vector from the
physical theory, that is, the smaller the information loss, the easier the calculation
and the higher the quality of the result. In other words, the more the data is ‘reduced’
through summary statistics and ‘cleaned’ by applying complex matched filters, the
less information remains, the more cumbersome the error model, and the greater
the affect of difficult-to-model correlations. This is somewhat contrary to standard
practice in astronomy.

Moreover, astronomers often quote their error models in the form of uncorrelated
pseudo-standard errors. The cultural interpretation is that the data, typically a data
bin or pixel, should be within the range specified by the error bar most of the time.
Quoted error bars are often inflated to make this condition obtain. This leads to a
number of fundamental flaws that makes the error model (and therefore the data)
unsuitable for BI:

1. Binned and pixelated data are nearly always correlated. For example, a flat-field
correction correlates the pixels of an image over its entire scale. Sky brightness
removal has similar effects. There are many additional sources of indirect
correlations. Parameter estimations are often sensitive to these correlated ex-
cursion in the data values and ignoring strongly correlations will lead to
erroneous inferences. Data archivers can enable accurate inference by providing
correlation matrices for all error models.

2. Selection effects must be modeled in the likelihood function, and therefore these
effects must be well specified by the archivist and chosen to be straightforwardly
computable whenever possible. For example, consider a multiband flux-limited
source catalog. A color-magnitude or Hess diagram in two flux bands will have
a non-rectangular boundary owing to the flux limit. Although this is a simple
example, selection effects may be terribly difficult to model; consider spatial
variation in source completeness to the diffraction spikes from bright stars.

3. Astronomers tend to use traditional summary data representations that
inadvertently complicate computation of P(D|θ ,M). For a simple example,
the magnitude-magnitude diagram contains the same information as the color-
magnitude diagram but the selection effects lie along data coordinate boundaries.
For a more complicated example, consider the Tully-Fisher diagram. The input
data set may contain flux limits, morphology selection, image inclination cuts,
redshift range limits, to name a few.

By way of example, [9] describes the parameter inference for a semi-analytic
model of galaxy formation conditioned on a galaxy mass function with both
correlated and uncorrelated data bins. The differences in the posterior distributions
for these two cases is dramatic (see Sect. 9.4.1). When the error model is in doubt,
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the sensitivity of the inference to the error model may be investigated in the
Bayesian paradigm using hierarchical models. Although this is expensive and rarely
done, we should consider performing such sensitivity analyses regularly.

9.3 Solutions Provided by the Bayesian Inference Engine

Our experience suggest that there is no single best MCMC algorithm for all
applications. Rather, each choice represents a set of trade offs: more elaborate
algorithms with multiple chains, augmented spaces, etc., are more expensive to
run but may be the only solution for a complex posterior distribution. Moreover,
combinations of MCMC algorithms in multiple-chain schemes are often useful.
For example, we have found DE (Sect. 9.3.2) to be very helpful because of its
adaptive tuning of the proposal function, but DE does not efficiently explore the
parameter space. The exploration happens early on in the simulation and depends
on the number of chains and the prior distribution of the state particles. However,
a DE chain ensemble may be combined with parallel tempering (see Sect. 9.3.1) to
circumvent this limitation. This application has been explored in [9].

The BIE provides extensible support for convergence testing. For multiple
chains, the work horse is the commonly used Gelman and Rubin [2] statistic.
For single-chain algorithms, we have had good success with a diagnostic method
that assesses the convergence of both marginal and joint posterior densities
following [4].

9.3.1 Simulated and Parallel Tempering

Metropolis-Hastings is one of the fundamental MCMC algorithms [6, 10] and is
stated as follows. Let P(θθθ ) be the desired distribution to be sampled and q(θθθ ,θθθ ′)
be a known easy-to-compute transition probability between two states. Let a(θθθ ,θθθ ′)
be the probability of accepting state θθθ ′ given the current state θθθ . One can show
that if the detailed balance condition holds then the chain will sample P(θθθ) and it
is straightforward to show that a(θθθ ,θθθ ′) = min

{
1, [P(θθθ ′)q(θθθ ′,θθθ )/P(θθθ)q(θθθ ,θθθ ′)]

}
solves this equation (see [8] for additional discussion).

However, for complex and high-dimensional posteriors, the state easily gets
trapped in isolated modes, between which the Markov chain moves only rarely.
There are a number of techniques for mitigating the mixing problem. For the BIE,
we adopted a synthesis of Metropolis-coupled Markov chains [3] and a simulated
tempering method proposed by [11] called tempered transitions. To sample from a
distribution P0(θθθ ) with isolated modes, one defines a series of n auxiliary distribu-
tions, P1(θθθ ), . . . ,Pn(θθθ ), with Pk being easier to sample than Pk−1. For example, one

may choose Pk(θθθ ) ∝ Pβk
0 (θθθ) with 1 = β0 > β1 > · · · > βn−1 > βn > 0. Then, the
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method defines a pair of base transitions for each k, T̂k and Ťk, which both have Pk

as an invariant distribution and satisfy the following mutual reversibility condition
for all θθθ and θθθ ′: Pk(θθθ )T̂k(θθθ ,θθθ ′) = Ťk(θθθ ′,θθθ)Pk(θθθ ′). A tempered transition first
finds a candidate state by applying the base transitions in the sequence T̂1 · · · T̂n.
After each upward transition, new states are sampled from a broader distribution.
In most cases, this liberates the candidate state from confinement by the mode of
the initial state. This is then followed by a series of downward transitions Ťn · · · Ť1.
This candidate state is then accepted or rejected based on ratios of probabilities
involving intermediate states.

The parallel tempering algorithm inverts the order of the previous solution: it
simultaneous simulates n chains, each with target distribution Pj and proposes to
swap states between adjacent members of the sequence at predefined intervals.
After each interval, a pair of adjacent simulations in the series is chosen at random
and a proposal made to swap their parameter states. The swap is accepted with a
Metropolis-Hastings criterion. Final results are based on samples from the β0 = 1
chain. As in the previous algorithm, the high-temperature states will mix between
modes more efficiently and subsequent swapping with lower-temperature chains
will promote their mixing. We have found that some tempering is an essential
ingredient for many of our problems.

9.3.2 Differential Evolution

Real-world high-dimensional likelihood functions often have complex topologies
with strong anisotropies about their maxima (see Sect. 9.4.1, Fig. 9.1). Difficulty
in tuning the Metropolis-Hastings proposal function to achieve a good acceptance
rate and good mixing plagues high-dimensional MCMC simulations of the posterior
probability. This affects all of algorithms discussed up to this point. Recently [18]
introduced an approach based on a genetic algorithm called Differential Evolution
(DE) [13, 16, 17]. The DE uses an ensemble of chains, run in parallel, to adaptively
compute the Metropolis-Hastings proposal function. In addition, Ter Braak suggests
a combination of proposals that facility exploring within and jumping between
modes.

Assume that our ensemble has n chains to start, for example, initialized from the
prior probability. The DE algorithm [13] proposes to update member i as follows:
πp = πR0 + γ(πR1 − πR2) where πR0, πR1 and πR2 are randomly selected without
replacement from the population withoutπi. The proposal vector replaces the chosen
one if the fitness of πp is higher than the fitness of πi. Ter Braak [18] shows that with
minor modifications the proposal function and acceptance condition for DE obeys
detailed balance. The new algorithm takes the form πp = πi + γ(πR1 − πR2) + ε
where ε is drawn from a symmetric distribution with a small variance compared to
that of the target, but with unbounded support, e.g. ε ∼ Nd(0,σ2) for very small
variance σ2. The random variate ε is demanded by the recurrence condition: the
domain for non-zero values of the posterior P must be reached infinitely often for
an infinite length chain.
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9.3.3 Computation of Bayes Factors and Marginal Likelihoods

Weinberg [20] presents two computationally-modest families of quadrature
algorithms that use the full generality sample posterior but without the instability
of the harmonic mean approximation [12] or the specificity of the Laplace
approximation [7]. The Laplace approximation works well when the posterior
distribution appears as a multivariate normal distribution, but this is a rare
occurrence in my experience.

The first algorithm begins with the normalized Bayes theorem: Z ×P(θθθ |D) =
π(θθθ)L(D|θθθ ). Dividing by L(D|θθθ ) and integrating over θθθ we have

Z ×
∫
Ω

dθθθ
P(θθθ |D)

L(D|θθθ ) =
∫
Ω

dθθθ π(θθθ) (9.4)

where Ω is the domain of θθθ , often Ω ⊂ R
k. Since the Markov-chain samples the

posterior, P(θθθ |D), the computation of the integral on the left from the chain appears
as an inverse weighting with respect to the likelihood. This is poorly conditioned due
to the inevitable small values of L(D|θθθ ). The second approach is a direct numerical
integration of

Z =

∫
Ω

dθθθ P(θθθ |D) =

∫
Ω

dθθθ π(θθθ)L(D|θθθ ). (9.5)

For weakly informative prior distributions, the entire domain of support is not
sampled by the Markov chain. However, if the integrals in (9.4) are dominated by
the domain sampled by the chain, the integrals may be approximated by quadrature
over a truncated domain, Ωs, that eliminates a small number of values L(D|θθθ ) in
the sample.

To evaluate the r.h.s. of (9.4), we may use the sampled posterior distribution itself
to tessellate the sampled volume in Ωs ⊂ Ω . This may be done straightforwardly
using a space-partitioning structure. A computationally efficient structure is a binary
space partition (BSP) tree, which divides a region of parameter space into two
exclusive sub regions at each node. The most easily implemented tree of this type
for arbitrary dimension is the kd-tree (short for k-dimensional tree). The kd-tree
algorithms split Rk on planes perpendicular to one of the coordinate system axes.
The implementation provided for the BIE uses the median value along one of
axes (a balanced kd-tree). We have also implemented a hyper-octree. The hyper-
octree generalizes the octree by splitting each n-dimensional parent node into 2n

hypercubic children. Unlike the kd-tree, the hyper-octree does not split on point
location and the size of the cells is not strictly coupled to the number of points
in the sample. This helps provide a better representation of the volume containing
sample points. In addition, the cells in the kd-tree maybe have extreme axis ratios.
See [20] for additional details, tests, and discussion.

In summary, the choice between the various algorithms depends on the problem
at hand. The Laplace approximation will be a good choice for posterior distribu-
tions that are unimodal with light tails. I continue to investigate performance of
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algorithms in [20] for high-dimensional distributions. For dimension n < 10, the
direct volume tessellation gives higher-accuracy smaller-variance results. However,
as n increases, the sample-size requirement also increases exponentially with n.
A paper describing additional strategies is in preparation.

9.3.4 Reversible Jump Simulation

When large sample sizes are impractical, one may aggregate a number of models
with an additional indicator variable to designate the active model. This results in a
general state space consisting of the discrete range of the indicator and continuous
ranges for each parameters for each model. Green [5] showed that the detailed
balance equation can be formulated in such a general state space. This allows one to
propose models of different dimensionality and thereby incorporate model selection
into the probabilistic simulation itself. This requires a transition probability to and
from each subspace. For model comparison, we are interested in the posterior
probabilities of different models k to draw some conditional or marginal conclusions
about different models. Such estimates follow directly from the simulated posterior.
For example, an estimate of the marginal probability for each model follows directly
from the occupation frequency in each subspace. We have found that this approach
is very hard to tune.

9.4 Case Studies

9.4.1 Semi-analytic Galaxy Formation Models: BIE-SAM

Many of the physical processes parametrized in semi-analytical models of galaxy
formation remain poorly understood and under specified. This has two criti-
cally important consequences for inferring constraints on the physical parameters:
(1) prior assumptions about the size of the domain and the shape of the parameter
distribution will strongly affect resulting inference; and (2) a very large parameter
space must be fully explored to obtain an accurate inference. Moreover, both
must be done together. Both of these issues are naturally tackled with a Bayesian
approach that allows one to constrain theory by data in a probabilistically rigorous
way. We have presented [9] a semi-analytic model (SAM) of galaxy formation
in the framework of BI and illustrated its performance on a test problem using
BIE; we call the combined approach BIE-SAM. Our 16-parameter semi-analytic
model incorporates the most commonly used parametrizations of important physical
processes from existing SAMs including star formation, SN feedback, galaxy
mergers, and AGN feedback.
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Fig. 9.1 Marginal posterior distribution for 3 out of 13 parameters in the BIE-SAM: the star-
formation threshold surface density fSF , the star-formation efficiency power-law index αSF , and
the supernova feedback energy fraction αSN . The blue (red) surfaces enclose approximately 10%
(67%) of the density (See [9] for additional detail)

To demonstrate the power of this approach, we used the observationally derived
stellar mass function of galaxies to constrain a number of important model
parameters. We find that the posterior distribution has very complex structure
and topology, indicating that finding the best fit by tweaking model parameters
is improbable. As an example, Fig. 9.1 describes isosurfaces of the marginalized
posterior distribution. The surfaces have complex geometry and are strongly
inhomogeneous in parameter direction. Moreover, the posterior clearly shows that
many model parameters are strongly covariant, and therefore the inferred value of
a particular parameter can be significantly affected by the priors used for other
parameters. As a consequence, one may not tune a small subset of model parameters
while keeping other parameters fixed and expect a valid result. With the use of
synthetic data to mimic systematic uncertainties in the reduced data, we have shown
that resulting model parameter inferences can be significantly affected by the use
of an incorrect error model. This fact will be obvious to the statisticians but is not
well-appreciated by the astronomers.

The method developed here can be straightforwardly applied to other data
sets and to multiple data sets simultaneously. In addition, the Bayesian approach
explicitly builds on previous results by incorporating the constraints from previous
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inferences into new data sets; the BIE is designed to do this automatically.
For many processes in galaxy formation, competing models have been proposed
but not quantitatively compared. Bayes factor analyses (see Sect. 9.3.3) or ex-
plicit model comparison techniques such as the reversible jump algorithm ([5],
see also Sect. 9.3.4) provide a quantitative comparison of different models for
given data.

9.4.2 Galphat

A recent paper [21] describes Galphat (GALaxy PHotometric ATtributes), a
Bayesian galaxy image analysis package built for the BIE, designed to efficiently
and reliably generate the posterior probability distribution of model parameters
from an image. Using the various tempering algorithms available in the BIE, our
tests have demonstrated that we can achieve a steady-state distribution and the
simulated posterior will include nearly all possible multiple modes consistent with
the prior distribution. Given the posterior distribution, we may then consistently
estimate the confidence levels. We show that the surface-brightness model will
often have correlated parameters. Any hypothesis testing that uses the ensemble
of posterior information will be affected by these correlations. The full posterior
distributions from Galphat identify these correlations and incorporate them in
subsequent inferences.

As an example, Fig. 9.2 shows the size–Sérsic index relation inferred from a
synthetically-generated sample of elliptical galaxy images. The left-hand panel
shows the traditional scatter diagram of maximum posterior parameter values while
the right-hand panel shows the inferred distribution based on the full posterior
distribution of the ensemble. The left-hand panel incorrectly suggests that smaller
galaxies are less concentrated while the right-hand panel correctly reveals that the
size and concentration are uncorrelated.

9.5 BIE: Technical Overview

At the core is a software library of inter-operable components necessary for
performing Bayesian computation. The BIE classes are available as both C++
libraries and as a stand-alone system with integrated command-line interface.
The command-line interface is well tested and is favored by most users so far.
A user does not need to be an expert or even an MPI programmer to use the
system; the simple user interface is similar to MatLab or gnuplot. In addition to
the engine itself, the BIE package includes a number of stand-alone programs
for viewing and analyzing output from the BIE and for testing the components.
Although source code is available, we recommend using one of the pre-compiled
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Fig. 9.2 Top: Scatter plot using the best-fit parameters. Bottom: marginal posterior density for the
same parameters

Debian or Ubuntu packages,2 if possible, to avoid library version dependencies.
We use SVN version management (autoconf, automake), GNU coding standards,
and DejaGNU regression testing.

The researcher needs to be able to stop, restart, and possibly refocus inferential
computations for both technical and scientific reasons. The BIE was designed
with these scenarios in mind. The BIE’s persistence system is built on top of the
BOOST3 serialization library. The BIE classes inherit from a base serialization
class that provides the key serialization members and a simple mnemonic scheme
to mark persistent data. The most common use of BIE persistence to date is

2http://www.astro.umass.edu/bie.
3http://www.boost.org.

http://www.astro.umass.edu/bie
http://www.boost.org
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checkpointing and recovery, Checkpointing guards against loss of computation
by saving intermediate data to support recovery in the middle of long-running
computational steps; and it allows one to “freeze” or “shelve” a computation and
pick it up later. It also provides the basic support needed to interrupt a computation,
do some reconfiguring, and resume, as when machines need to be added to or
removed from a cluster, etc.

9.6 Discussion and Summary

This presentation reports our experience in applying MCMC methods to
observational and theoretical Bayesian inference problems in astronomy using
the UMass Bayesian Inference Engine (BIE).

We began by outlining our motivation. Most researchers are well-versed in the
identifying the “best” parameters for a particular model for some data using the
maximum likelihood method (ML). For example, consider the fit of a surface bright-
ness model to galaxy images. Parameters from the ML solutions are typically plotted
in a scatter diagram and trends are interpreted physically. Section 9.2.1 describes the
pitfalls of this approach. Rather, this is a complex hypothesis test: the astronomer
wants to test the hypothesis that the data is correlated with a coefficient larger
than some predetermined value α . However, without incorporating the correlations
imposed by both the theoretical model, the error model and selection process, the
significance of the apparent correlation is uncertain. Moving on, combining plotting
scatter diagrams from multiple data sources inadvertently mixes error models and
selection effects which further complicates a quantitative interpretation. Similarly,
the astronomer needs methods of assessing whether a posited model is correct.
I have divided these needs into two: goodness-of-fit tests (Sect. 9.2.2) and model
Sect. 9.2.3. As an example of the former, the astronomer may have found the best
parameters using ML, but does the model fully explain all of the features of the
data? If it does not, one must either modify or reject the model before moving
on the next step. As an example of the latter, suppose an inference results in two
parameter regions or multiple models that explain the data. Which model best
explains the data?

All of these wants and needs—combining data from multiple sources, estimating
the probability of model parameters, assessing goodness of fit, and selecting
between competing models—are naturally addressed in a single probabilistic
framework known as Bayesian inference (BI). In particular, BI provides a data-
first discipline that demands the error model and selection effects are specified
by the probability distribution for the data given the model M , P(D|θθθ ,M ),
colloquially known as the likelihood function L(D|θθθ ,M ). Prior results including
quantified expert opinion are specified in the prior probability function P(θ |M ).
The inferential computation may be incremental: the data may be added in steps and
new or additional observations may be motivated at each step, true to the scientific
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method. In the end, this approach may be generalized to locating the most likely
models in the generalized space of models; this leads to goodness-of-fit and model
comparison tests.

With these advantages comes a major disadvantage: BI is expensive!
Nonetheless, the elegance and promise of BI motivated us to attempt a
computational solution and this became the BIE project. The algorithms and
techniques described here are available in the BIE have proved useful in address the
complications found in research problems. In short, the BIE fills a gap between tools
developed for small-scale problems or those designed to test new algorithms and a
computational platform designed for production-scale inference problems typical
of present-day astronomical survey science. Its primary product is a sample from
a posterior distribution to be used form parameter estimation and model selection.
Other Bayesian applications, such as non-parametric inference and clustering,
should be possible with little modification, but have not been investigated so far.
The BIE is designed to run on HPC-class clusters, although it will also run on
workstations and laptops. The open object-oriented architecture allows for cross-
fertilization between researchers and groups with both mathematical and scientific
interests, for example, those both developing new algorithms and astronomical
models for different applications.

Acknowledgements This work was supported in part by NSF IIS Program through award
0611948 and by NASA AISR Program through award NNG06GF25G. I thank Neal Katz and
Eliot Moss for comments on an early draft of this manuscript.
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Chapter 10
Commentary: Bayesian Model Selection
and Parameter Estimation

Philip C. Gregory

Abstract Bayesian model selection and parameter estimation is attracting a lot of
interest in the astronomical community because of its power and logical consis-
tency. Markov chain Monte Carlo provides the computational power for Bayesian
parameter estimation problems in large parameter spaces but needs to be supported
with other numerical techniques for efficient exploration of multi-modal probability
distributions. Bayesian model selection is easy in concept but remains a difficult
challenge for large parameter spaces. My comments here on the paper by Roberto
Trotta are based on lessons learned from developing a controlled statistical fusion
approach to some of these issues.

10.1 Introduction

Martin Weinberg reports on using the UMass Bayesian Inference Engine (BIE)
package for model selection and parameter estimation in extragalactic astronomy.
I have independently developed a Bayesian approach to accomplish similar goals
with particular emphasis in the arena of exoplanets. This conference provides an
opportunity to exchange lessons learned. Not surprisingly, because of the large
number of model parameters involved, both groups employ a Markov chain Monte
Carlo (MCMC) integration engine. The BIE philosophy is that there is no single
best MCMC algorithm and develop a variety of MCMC algorithms augmented by
different tools like parallel tempering, simulated annealing and differential evolution
depending on the complexity of the problem. My approach has been to attempt
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to fuse together the advantages of all of the above tools together with a genetic
crossover operation in a single MCMC algorithm to facilitate the detection of a
global minimum in χ2.

My latest algorithm is called fusion MCMC [10]. This fusion has only been
possible through the development of a unique adaptive control system to automate
the choice of an efficient set of MCMC proposal distributions even if the parameters
are highly correlated. The control system also supervises the operation of the
different components. Figure 10.1 shows two schematics on the operation of an
eight parallel chain fusion MCMC and the control system. In applications to real
precision radial velocity data the algorithm has proved highly effective [5–8, 10].
The Mathematica based parallel code is run on a 8 core PC and requires 10 h for a
6 planet model with 37 parameters and one million iterations. The execution time
scales with the number of planets.

10.2 Some Useful Lessons

10.2.1 Highly Correlated Parameters

For some models the data is such that the resulting estimates of the model
parameters are highly correlated and the MCMC exploration of the parameter
space can be very inefficient. One solution to this problem is Differential Evolution
Markov Chain (DE-MC) [2]. DE-MC is a population MCMC algorithm, in which
multiple chains are run in parallel, typically from 15 to 40, although Weiner’s
experience suggests that 64 chain would be the bare minimum. DE-MC solves an
important problem in MCMC, namely that of choosing an appropriate scale and
orientation for the jumping distribution.

For the fusion MCMC algorithm, I developed and tested a new method [9],
in the spirit of DE, that automatically achieves efficient MCMC sampling in
highly correlated parameter spaces without the need for additional chains. The
block in the lower left panel of Fig. 10.1 automates the selection of efficient
proposal distributions when working with model parameters that are independent
or transformed to new independent parameters. New parameter values are jointly
proposed based on independent Gaussian proposal distributions (‘I’ scheme), one
for each parameter. Initially, only this ‘I’ proposal system is used and it is clear that if
there are strong correlations between any parameters the σ values of the independent
Gaussian proposals will need to be very small for any proposal to be accepted and
consequently convergence will be very slow. However, the accepted ‘I’ proposals
will generally cluster along the correlation path. In the optional third stage of the
control system (see right panel of Fig. 10.1) every second accepted ‘I’ proposal is
appended to a correlated sample buffer. There is a separate buffer for each parallel
tempering level. Only the 300 most recent additions to the buffer are retained.
A ‘C’ proposal is generated from the difference between a pair of randomly selected
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Fig. 10.1 Two schematics on the operation of the adaptive fusion MCMC algorithm. The right
panel illustrates the automatic proposal scheme for handling correlated parameters
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samples drawn from the correlated sample buffer for that tempering level, after
multiplication by a constant. The value of this constant (for each tempering level)
is computed automatically [9] by another control system module which ensures that
the ‘C’ proposal acceptance rate is close to 25%. With very little computational
overhead, the ‘C’ proposals provide the scale and direction for efficient jumps in a
correlated parameter space.

The final proposal distribution is a random selection of ‘I’ and ‘C’ proposals
such that each is employed 50% of the time. The combination ensures that the
whole parameter space can be reached and that the FMCMC chain is aperiodic.
The parallel tempering feature operates as before to avoid becoming trapped in a
local probability maximum.

Because the ‘C’ proposals reflect the parameter correlations, large jumps are
possible allowing for much more efficient movement in parameter space than can be
achieved by the ‘I’ proposals alone. Once the first two stages of the control system
have been turned off, the third stage continues until a minimum of an additional 300
accepted ‘I’ proposals have been added to the buffer and the ‘C’ proposal acceptance
rate is within the range≥0.22 and ≤0.28. At this point further additions to the buffer
are terminated and this sets a lower bound on the burn-in period.

Figure 10.2 shows the autocorrelation functions of post burn-in MCMC samples
for two highly correlated parameters χ and ω . The solid black trace corresponds to
a search in χ and ω using only ‘I’ proposals. The light gray trace corresponds to a
search in χ and ω with ‘C’ proposals turned on. The dashed trace corresponds to a
search in the transformed orthogonal coordinates ψ = 2πχ+ω and φ = 2πχ −ω
using only ‘I’ proposals. It is clear that a search in χ andω with ‘C’ proposals turned
on achieves the same excellent results as a search in the transformed orthogonal
coordinates ψ and φ using only ‘I’ proposals.

10.2.2 Noise Model

Based on their results, Weinberg concludes that a data-model comparison without
an accurate error model is likely to be erroneous. I have found it very useful to
incorporate an extra noise parameter, s, that can allow for any additional noise
beyond the known measurement uncertainties.1 We assume the noise variance is
finite and adopt a Gaussian distribution with a variance s2. Thus, the combination
of the known errors and extra noise has a Gaussian distribution with variance
= σ2

i + s2, where σi is the standard deviation of the known noise for ith data point.

1In the absence of detailed knowledge of the sampling distribution for the extra noise, we pick an
independent Gaussian model because for any given finite noise variance it is the distribution with
the largest uncertainty as measured by the entropy, i.e., the maximum entropy distribution [1, 11].
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Fig. 10.2 The two panels
show the MCMC
autocorrelation functions for
two highly correlated
parameters χ and ω . The
solid black trace corresponds
to a search in χ and ω using
only ‘I’ proposals. The light
gray trace corresponds to a
search in χ and ω with
‘C’ proposals turned on. The
dashed trace corresponds to a
search in the transformed
orthogonal coordinates
ψ = 2πχ+ω and
φ = 2πχ−ω using only
‘I’ proposals

In general, nature is more complicated than our model and known noise terms.
Marginalizing s has the desirable effect of treating anything in the data that can’t
be explained by the model and known measurement errors as noise, leading to
more conservative estimates of the parameters. See Sects. 9.2.3 and 9.2.4 of [1] for
a tutorial demonstration of this point. If there is no extra noise then the posterior
probability distribution for s will peak at s = 0.

Incorporating an extra noise parameter also results in an automatic annealing
operation whenever the Markov chain is started from a location in parameter space
that is far from the best fit values. When the χ2 of the fit is very large, the Bayesian
Markov chain automatically inflates s to include anything in the data that cannot
be accounted for by the model with the current set of parameters and the known
measurement errors. This results in a smoothing out of the detailed structure in the
χ2 surface and, as pointed out by [3], allows the Markov chain to explore the large
scale structure in parameter space more quickly. The chain begins to decrease the
value of the extra noise as it settles in near the best-fit parameters. An example of
this is shown in Fig. 10.3. This is similar to simulated annealing, but does not require
choosing a cooling scheme.
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Fig. 10.3 The top panel is a
plot of the Log10[Prior ×
Likelihood] versus MCMC
iteration. The bottom panel is
a similar plot for the extra
noise term s. Initially s is
inflated and then rapidly
decays to a much lower level
as the best fit parameter
values are approached

10.2.3 Model Selection

One of the great strengths of Bayesian analysis is the built-in Occam’s razor. More
complicated models contain larger numbers of parameters and thus incur a larger
Occam penalty, which is automatically incorporated in a Bayesian model selection
analysis in a quantitative fashion (see [1] for example, p. 45). Bayesian model
selection relies on the ratio of marginal likelihoods where the marginal likelihood is
the weighted average of the conditional likelihood, weighted by the prior probability
distribution of the model parameters and any unknown additional noise parameter.
At the last SCMA conference Clyde et al. [2] reviewed the state of techniques for
model selection from a statistics perspective and Ford and Gregory [4] evaluated the
performance of a variety of marginal likelihood estimators in the exoplanet context.
The bottom line is that Bayesian model selection is easy in concept but becomes
progressively more difficult to compute as the number of model parameters increase.
Here we compare recent results obtained from two different methods: (1) nested
restrictive Monte Carlo (NRMC), and (2) the ratio estimator (RE).

Nested restrictive Monte Carlo (NRMC) is a recent improvement [8, 10] on the
RMC method. In RMC [4], the volume of parameter space sampled is restricted
to a region delineated by the outer borders (e.g., 99% credible region) of the
MCMC marginal parameter distributions for the dominant mode. In principle, the
contribution from a secondary mode can be computed in a like fashion.
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Fig. 10.4 The top panel
shows the contribution of the
individual nested intervals to
the NRMC marginal
likelihood for the three planet
model (17 parameters) for
five repeats. The bottom
panel shows the integral of
these contributions versus the
parameter volume of the
credible region

In NRMC integration, multiple boundaries are constructed based on credible
regions ranging from 30% to ≥99%, as needed. The contribution to the total integral
from each nested interval is computed. For example, for the interval between the
30% and 60% credible regions, we generate random parameter samples within
the 60% region and reject any sample that falls within the 30% region. Using the
remaining samples we can compute the contribution to the NRMC integral from that
interval.

The left panel of Fig. 10.4 shows the contributions from the individual intervals
for five repeats of the NRMC evaluation for a three planet model fit to the Gliese
581 [10] exoplanet system. The right panel shows the summation of the individual
contributions versus the volume of the credible region. The credible region listed
as 9995% is defined as follows. Let XU99 and XL99 correspond to the upper and
lower boundaries of the 99% credible region, respectively, for any of the parameters,
with XU95 and XL95 similarly defined. Then XU9995 = XU99 + (XU99 − XU95) and
XL9995 = XL99 +(XL99 −XL95). Similarly, XU9984 = XU99 +(XU99 −XU84).

Table 10.1 shows a comparison of the NRMC method to a second marginal
likelihood estimator called the Ratio Estimator [4] (RE), for three planet (17 pa-
rameters) and four planet (22 parameters) exoplanet models for three different
stars HD 11964, 47 UMa, and Gliese 581. The RE method employed a mixture
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Table 10.1 The ratio of the
NRMC and RE marginal
likelihoods estimates for three
planet (17 parameters) and
four planet (22 parameters)
exoplanet models

NRMC estimator

Star # planets RE estimator (improved version)

HD 11964 3 0.9
47 UMa 3 0.75
Gliese 581 3 1.01

Gliese 581 4 0.016

of 150 multivariate Normals [7] to approximate the MCMC samples. The latest
version improves the handling of wrap around angular parameters in the calculation
of the covariance matrix of each multivariate Normal. For the three planet models
the NRMC and RE methods agree within 25%. In the case of HD11964, one of the
three signals is a suspected artifact but this is of no consequence for the present
comparison of marginal likelihood estimators. At sufficiently high dimensions, the
NRMC method is expected to underestimate the marginal likelihood and the factor
by which it underestimates is expected to grow with increasing dimension. Thus
NMRC estimated Bayes factor should not falsely support a more complicated model
and in this sense the NRMC method is expected to fail in a conservative fashion. On
the other hand, the RE method has the potential to pay too much attention to the
mode as each integrand in the ratio involves the square of the posterior density and
is expected to overestimate the marginal likelihood at sufficiently high dimensions.
As the table indicates, by the time we reach a four planet model (22 parameters) one
or both of these methods is failing.

Acknowledgements The author would like to thank Wolfram Research for providing a comple-
mentary license for gridMathematica.

References

1. Gregory, P. C.: Bayesian Logical Data Analysis for the Physical Sciences: A Comparative
Approach with Mathematica Support, Cambridge University Press (2005)

2. Clyde, M. A., Berger, J. O., Bullard, F., Ford, E. B., Jeffreys, W. H., Luo, R., Paulo, R.,
Loredo, T.: Current Challenges in Bayesian Model Choice. In ‘Statistical Challenges in Modern
Astronomy IV,’ G. J. Babu and E. D. Feigelson (eds.), ASP Conf. Ser., 371, 224–240 (2007)

3. Ford, E. B.: Improving the Efficiency of Markov Chain Monte Carlo for Analzing the Orbits
of Extrasolar Planets. ApJ, 620, 481 (2006)

4. Ford, E. B., & Gregory, P. C.:Bayesian Model Selection and Extrasolar Planet Detection. In
‘Statistical Challenges in Modern Astronomy IV,’ G. J. Babu and E. D. Feigelson (eds.), ASP
Conf. Ser., 371, 189–204 (2007)

5. Gregory, P. C.: A Bayesian Analysis of Extrasol Planet Data for HD 73526. ApJ, 631,
1198–1214 (2005)

6. Gregory, P. C.: A Bayesian Kepler Periodogram Detects a Second Planet in HD 208487.
MNRAS, 374, 1321–1333 (2007)

7. Gregory, P. C.: A Bayesian Periodogram Finds Evidence for Three Planets in HD 11964.
MNRAS, 381, 1607–1619 (2007)



10 Commentary: Bayesian Model Selection and Parameter Estimation 125

8. Gregory, P. C., and Fischer, D. A.: A Bayesian Periodogram Finds Evidence for Three Planets
in 47 Ursae Majoris. MNRAS, 403, 731–747, (2010)

9. Gregory, P. C.: Bayesian Exoplanet Tests of a New Method for MCMC Sampling in Highly
Correlated Parameter Spaces. MNRAS, 410, 94–110 (2011)

10. Gregory, P. C.: Bayesian Re-analysis of the Gliese 581 Exoplanet System. MNRAS, in press
(2011)

11. Jaynes, E. T., 1957, Stanford University Microwave Laboratory Report 421, Reprinted in
‘Maximum Entropy and Bayesian Methods in Science and Engineering’, G. J. Erickson and C.
R. Smith, eds, Dordrecht: Kluwer Academic Press, p.1 (1988)



Chapter 11
Cosmological Bayesian Model Selection: Recent
Advances and Open Challenges

Roberto Trotta

Abstract The cosmology community has been increasingly focusing on Bayesian
model selection as a tool to discriminate between competing theories to explain a
large amount of data about our Universe. In this paper, I summarize the conceptual
underpinnings and the algorithmic implementations of Bayesian model comparison.
I then discuss two representative applications of Bayesian model comparison to
cosmological problems: determining whether the Universe is infinite and selecting
the “best” model of inflation. I conclude by offering some reflections about open
challenges and interpretational issues. Help and suggestions from the statistics
community would be appreciated in further developing the field.

11.1 Introduction

In the last decade, cosmology has been revolutionized by a large amount of highly
accurate data, which have allowed physicists to test in unprecedented ways our
current concordance cosmological model. As we enter the second decade of the
twenty-first century, our vanilla cosmological model is remarcably simple, and in
excellent agreement with most data sets. This model is called “the ΛCDM model”,
as it contains both a cosmological constant (usually represented by the symbol Λ )
and cold dark matter (CDM) particles, both of which have yet to be discovered in
laboratory experiments. The ΛCDM model rests on two fundamental assumptions:
(a) that the expansion of the Universe is described by Einstein’s theory of General
Relativity and (b) that the Universe obeys the cosmological principle, i.e., that on
sufficiently large scales it is statistically homogeneous and isotropic. The simplest
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version of the model contains six free parameters, which will be denoted collectively
by Θ . The values of those quantities are not predicted by the theory but have to be
constrained from observation:

• Parameters describing the matter-energy content of the Universe (density of
baryonic—i.e., “normal”—matter, density of cold dark matter, cosmological
constant).

• Parameters describing the spatial distribution of primordial density fluctuations
emerging from the Big Bang.

• One parameter describing the effect of ionizing radiation being injected into the
Universe at a later time (e.g., by a first generation of stars).

The data d being used to infer the value of Θ span a wide range of scales,
both spatially and temporally, in the Universe. Broadly speaking, they can be
classified as observations of the primordial fluctuations in the cosmic microwave
background (CMB), the relic radiation from the Big Bang; observations of the
growth of structures in the Universe (galaxies and clusters); observations of standard
candles (e.g., supernovae type Ia) and/or standard rulers (e.g., baryonic acoustic
oscillations); observations of the gravitational bending of light (strong and weak
gravitational lensing). All of those phenomena can be predicted (often to very high
accuracy, as is the case for the CMB) from the ΛCDM model, as a function ofΘ .

Bayes Theorem is ubiquitously used in cosmology (see e.g. [11]) to obtain the
posterior pdf p(Θ |D,M ) forΘ :

p(Θ |D,M ) =
p(D|Θ ,M )p(Θ |M )

p(D|M )
. (11.1)

Here, p(Θ |M ) is the prior, p(D|Θ ,M ) the likelihood and p(D|M ) the Bayesian
evidence (or model likelihood). We have made explicit the conditioning on a specific
cosmological model, M , for example the ΛCDM model sketched above. Posterior
constraints on Θ are nowadays typically at the percent or sub-percent level, and
the prior influence is often minimal for parameter inference. A recent example
of cosmological data from CMB observations is shown in Fig. 11.1. The ensuing
constraints on some of the cosmological parameters Θ from a combination of data
sets are displayed in Fig. 11.2.

Having largely solved the parameter inference problem, in recent years the
focus of the cosmological community has been increasingly shifting towards model
selection questions [17, 19, 35]. A typical problem is to decide whether there is
evidence in the data for extra parameters in the ΛCDM model, beyond the vanilla
ones. There are however also alternative models (e.g., Bianchi models or modified
gravity models) which are not extension of ΛCDM, and whose parameter space
is largely or completely disjoint. This question is being addressed by the use of
Bayesian model selection techniques, to which we now turn our attention.
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Fig. 11.1 Example of cosmological data sets. Top: WMAP 5-year all sky map of the cosmic
microwave background temperature fluctuations (from [10]). Bottom: temperature power spectrum
measurements (i.e., the harmonic transform of the 2-point correlation function) extracted from the
map (from [18]) (notice that data points are correlated); along the x-axis, the multipole moment
is inversely proportional to the angular separation on the sky. Black errorbars give statistical
errors, while the shaded gray band gives the sampling error (cosmic variance). The red line is
the (remarkably good) best-fit from the ΛCDM model after the cosmological parameters Θ have
been fitted to the data

11.2 Cosmological Model Selection

11.2.1 Shaving Theories with Occam’s Razor

When there are several competing theoretical models, Bayesian model comparison
provides a formal way of evaluating their relative probabilities in light of the data
and any prior information available. The “best” model is then the one which strikes
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Fig. 11.2 Example of constraints on cosmological parameters Ωm (describing the fractional
energy density of matter) and ΩΛ (the fractional energy density in a cosmological constant). The
red contours are 68%, 95% marginalized posterior constraints from cosmic microwave background
data (such as the ones displayed in Fig. 11.1), the green contours from Baryonic Acoustic
Oscillations data, the blue contours from supernovae type Ia data. The combined constraints from
all three data sets are given by the filled contours. The star denotes the best-fit parameters value
(From [25])

an optimum balance between quality of fit and predictivity. In fact, it is obvious that
a model with more free parameters will always fit the data better (or at least as good
as) a model with less parameters. However, more free parameters also mean a more
“complex” model (a precise definition of “model complexity” can be found in [16]).
Such an added complexity ought to be avoided whenever a simpler model provides
an adequate description of the observations. This guiding principle of simplicity
and economy of an explanation is known as Occam’s razor—the simplest theory
compatible with the available evidence ought to be preferred.

An important feature is that an alternative model must be specified against
which the comparison is made. In contrast with frequentist goodness-of-fit tests,
Bayesian model comparison maintains that it is pointless to reject a theory unless an
alternative explanation is available that fits the observed facts better (for more details
about the difference in approach with frequentist hypothesis testing, see e.g. [22]).
In other words, unless the observations are totally impossible within a model,
finding that the data are improbable given a theory does not say anything about
the probability of the theory itself unless we can compare it with an alternative.
A consequence of this is that the probability of a theory that makes a correct
prediction can increase if the prediction is confirmed by observations, provided
competitor theories do not make the same prediction.

In the context of model comparison it is appropriate to think of a model as a
specification of a set of parameters Θ and of their prior distribution, p(Θ |M ). It
is the number of free parameters and their prior range that control the strength of
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the Occam’s razor effect in Bayesian model comparison: models that have many
parameters that can take on a wide range of values but that are not needed in the
light of the data are penalized for their unwarranted complexity. Therefore, the
prior choice ought to reflect the available parameter space under the model M ,
independently of experimental constraints we might already be aware of. This is
because we are trying to assess the economy (or simplicity) of the model itself, and
hence the prior should be based on theoretical or physical constraints on the model
under consideration. Often these will take the form of a range of values that are
deemed “intuitively” plausible, or “natural”. Thus the prior specification is inherent
in the model comparison approach.

11.2.2 The Bayesian Evidence

The evaluation of a model’s performance in the light of the data is based on
the Bayesian evidence (as it is usually called in the cosmology and astrophysics
community), which in the statistical literature is often called marginal likelihood or
model likelihood. The evidence is the normalization integral on the right-hand-side
of Bayes’ theorem, (11.1):

p(D|M )≡
∫

p(D|Θ ,M )p(Θ |M )dΘ . (11.2)

Thus the Bayesian evidence is the average of the likelihood under the prior for a
specific model choice. From the evidence, the model posterior probability given the
data is obtained by using Bayes’ Theorem to invert the order of conditioning:

p(M |D) ∝ p(M )p(D|M ), (11.3)

where p(M ) is the prior probability assigned to the model itself. Usually this is
taken to be non-committal and equal to 1/Nm if one considers Nm different models.
When comparing two models, M0 versus M1, one is interested in the ratio of the
posterior probabilities, or posterior odds, given by

p(M0|D)

p(M1|D)
= B01

p(M0)

p(M1)
(11.4)

and the Bayes factor B01 is the ratio of the models’ evidences:

B01 ≡ p(D|M0)

p(D|M1)
(Bayes factor). (11.5)

A value B01 > (<) 1 represents an increase (decrease) of the support in favour of
model 0 versus model 1 given the observed data. From (11.4) it follows that the
Bayes factor gives the factor by which the relative odds between the two models
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Table 11.1 Empirical scale for evaluating the strength of evidence when comparing two models,
M0 versus M1 (so-called “Jeffreys’ scale”). Threshold values are empirically set, and they occur
for values of the logarithm of the Bayes factor of | lnB01| = 1.0, 2.5 and 5.0. The right-most
column gives our convention for denoting the different levels of evidence above these thresholds.
The probability column refers to the posterior probability of the favoured model, assuming non-
committal priors on the two competing models, i.e. p(M0)= p(M1)= 1/2 and that the two models
exhaust the model space, p(M0|D)+ p(M1|D) = 1

| lnB01| Odds Probability Strength of evidence

< 1.0 ∼<3:1 < 0.750 Inconclusive

1.0 ∼3:1 0.750 Weak evidence
2.5 ∼12:1 0.923 Moderate evidence
5.0 ∼150:1 0.993 Strong evidence

have changed after the arrival of the data, regardless of what we thought of the
relative plausibility of the models before the data, given by the ratio of the prior
models’ probabilities.

Bayes factors are usually interpreted against the Jeffreys’ scale [13] for the
strength of evidence, given in Table 11.1. This is an empirically calibrated scale,
with thresholds at values of the odds of about 3 : 1, 12 : 1 and 150 : 1, representing
weak, moderate and strong evidence, respectively.

Bayesian model comparison does not replace the parameter inference step (which
is performed within each of the models separately). Instead, model comparison
extends the assessment of hypotheses in the light of the available data to the space
of theoretical models, as evident from (11.4).

11.3 Numerical Evaluation of the Evidence

The computation of the Bayesian evidence, (11.2), is in general a numerically
challenging task, as it involves a multi-dimensional integration over the whole
of parameter space. Fortunately, several methods are now available, each with its
own strengths and domains of applicability. Some of them have been developed by
astronomers/cosmologists and are rapidly finding applications in other domains.

1. The numerical method of choice until recently has been thermodynamic in-
tegration, whose computational cost can however be fairly large. In typical
cosmological applications [2,3,33], thermodynamic integration can require up to
∼107 likelihood evaluations, two orders of magnitude more than MCMC-based
parameter estimation. Recently, population Monte Carlo algorithms have been
used successfully to compute the evidence [14].

2. Skilling [30, 32] has put forward an elegant algorithm called “nested sampling”,
which has been implemented in the cosmological context by Bassett et al. [1],
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Mukherjee [27], Shaw [31], and Feroz and Hobson [7] (for a theoretical
discussion of the algorithmic properties, see [4]). The gist of nested sampling
is that the multi-dimensional evidence integral is recast into a one-dimensional
integral that is easy to evaluate numerically. This technique allows to reduce
the computational burden to about ∼105 likelihood evaluations. Recently, the
development of what is called “multi-modal nested sampling” has allowed to
increase significantly the efficiency of the method [7, 37], reducing the number
of likelihood evaluations by another order of magnitude.

3. Useful approximations to the Bayes factor, (11.5), are available for situations
in which the models being compared are nested into each other, i.e. the more
complex model (M1) reduces to the original model (M0) for specific values of
the new parameters. This is a fairly common scenario in cosmology, where one
wishes to evaluate whether the inclusion of the new parameters is supported by
the data. For example, we might want to assess whether we need isocurvature
contributions to the initial conditions for cosmological perturbations, or whether
a curvature term in Einstein’s equation is needed, or whether a non-scale invariant
distribution of the primordial fluctuation is preferred. Writing for the extended
model parameters Θ = (α,β ), where the simpler model M0 is obtained by
setting β = 0, and assuming further that the prior is separable (which is usually
the case in cosmology), i.e. that

p(α,β |M1) = p(β |M1)p(α|M0), (11.6)

the Bayes factor can be written in all generality as

B01 =
p(β |D,M1)

p(β |M1)

∣∣∣∣
β=0

. (11.7)

This expression is known as the Savage–Dickey density ratio (SDDR, see [35,
40]). The numerator is simply the marginal posterior under the more complex
model evaluated at the simpler model’s parameter value, while the denominator
is the prior density of the more complex model evaluated at the same point. This
technique is particularly useful when testing for one extra parameter at the time,
because then the marginal posterior p(β |D,M1) is a 1-dimensional function and
normalizing it to unity probability content only requires a 1-dimensional integral,
which is simple to do using for example the trapezoidal rule.

4. An instructive approximation to the Bayesian evidence can be obtained when
the likelihood function is unimodal and approximately Gaussian in the param-
eters [9]. Expanding the likelihood around its peak to second order one obtains
the Laplace approximation

p(D|Θ ,M )≈ Lmax exp

[
−1

2
(Θ −ΘML)

tL(Θ −ΘML)

]
, (11.8)
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where ΘML is the maximum-likelihood point, Lmax the maximum likelihood
value and L the likelihood Fisher matrix (which is the inverse of the covari-
ance matrix for the parameters). Assuming as a prior a multinormal Gaussian
distribution with zero mean and Fisher information matrix P one obtains for the
evidence, (11.2)

p(D|M ) = Lmax
|F |−1/2

|P|−1/2
exp

[
−1

2
(ΘML

tLΘML −Θ t
FΘ)

]
, (11.9)

where the posterior Fisher matrix is F = L+P and the posterior mean is given
byΘ = F−1LΘML.

From (11.9) we can deduce a few qualitatively relevant properties of the
evidence. First, the quality of fit of the model is expressed by Lmax, the best-fit
likelihood. Thus a model which fits the data better will be favoured by this term.
The term involving the determinants of P and F is a volume factor, encoding
the Occam’s razor effect. As |P| ≤ |F|, it penalizes models with a large volume
of wasted parameter space, i.e. those for which the parameter space volume
|F |−1/2 which survives after arrival of the data is much smaller than the initially
available parameter space under the model prior, |P|−1/2. Finally, the exponential
term suppresses the likelihood of models for which the parameters values which
maximise the likelihood,ΘML, differ appreciably from the expectation value under
the posterior,Θ . Therefore when we consider a model with an increased number of
parameters we see that its evidence will be larger only if the quality-of-fit increases
enough to offset the penalizing effect of the Occam’s factor.

On the other hand, it is important to notice that the Bayesian evidence does not
penalize models with parameters that are unconstrained by the data. It is easy to see
that unmeasured parameters (i.e., parameters whose posterior is equal to the prior)
do not contribute to the evidence integral, and hence model comparison does not act
against them, awaiting better data.

11.3.1 Cosmological Applications

There is a rapidly growing literature in cosmology applying the above ideas to
cosmological model selection, some of which is surveyed in [36]. Here we present
but two recent examples, as this will serve to highlight some of the open questions
in the next section.

11.3.1.1 Is the Universe Infinite?

One of the key cosmological parameters Θ is a quantity, usually denoted by Ωκ ,
characterizing the spatial curvature of the Universe. A Universe with Ωκ = 0 is
spatially flat (i.e., its geometry is Euclidean, and parallel lines meet at infinity) and
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infinite in extent; forΩκ > 0 the Universe is finite and closed (its geometry is the 3D
analogous of a sphere and parallel lines converge), while for Ωκ < 0 the geometry is
hyperbolic (so-called “open” Universe, where parallel lines diverge from each other)
and the Universe is infinite. Models predicting the curvature of the Universe are
rooted in fairly well understood physics, a feature which helps in setting physically
motivated priors on Ωκ . For example, the possibility of a flat, Ωκ ∼ 0 Universe
has long been favoured by theoretical prejudice, as a flat or close-to-flat Universe is
a generic prediction of the inflationary scenario, which is in good agreement with
observations of the CMB. Parameter inference on the value of Ωκ delivers posterior
constraints of the order Ωκ =−0.0057+0.0066

−0.0068 (68 % region) [15].
As there are only three possibilities (i.e., models) for the curvature in a Universe

obeying the cosmological principle, the question of whether the Universe is finite
(closed) or infinite (open or flat) is well suited to be tackled with Bayesian model
selection techniques. A detailed analysis can be found in [38]. Here we just
summarize the main results. Starting from a non-committal prior on the three models
under consideration, p(Mi) = 1/3 (i = 1,2,3), the posterior probability for the
Universe being infinite is evaluated using (11.3), for two different choices for the
prior on Ωκ (as the flat model is nested within the non-flat ones, the only relevant
prior for the model comparison is the one on the extra parameter of the more
complex models, namely Ωκ , as can be seen from (11.7)). The prior selection is
motivated by different physical considerations: the “Astronomer’s prior” (a uniform
prior in the range −1 ≤Ωκ ≤ 1) is motivated by basic consistency with observable
properties of the Universe, such as the age of the oldest objects, while the “Curvature
scale prior” (a uniform prior in the range −5 ≤ log |Ωκ | ≤ 0) is based on theoretical
considerations of the inflationary scenario.

The resulting posterior probability for an infinite Universe is (for the most
constraining data combination and the simplest parameterization of the dark energy
sector) is 98% from the Astronomer’s prior, but only 69% for the Curvature scale
prior. This reflects the stronger Occam’s razor effect implied by the Astronomer’s
prior. Although in both cases the posterior probability for an infinite Universe has
increased from the a prior proabability of ∼67%, it is clear that the amount by which
this scenario is preferred by the data is strongly dependent on the theoretical prior
assumptions one makes.

11.3.1.2 Inflationary Model Comparison

The second example I would like to discuss is the inflationary model comparison
carried out in Ref. [26]. Although the technical details are fairly involved, the
underlying idea can be sketched as follows.

The term “inflation” describes a period of exponential expansion of the Universe
in the very first instants of its life, some 10−32 s after the Big Bang, during
which the size of the Universe increased by at least 25 orders of magnitude. This
huge and extremely fast expansion is required to explain the observed isotropy
of the cosmic microwave background on large scales. It is believed that inflation
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was powered by one or more “scalar fields”. The behaviour of the scalar field
during inflation is determined by the shape of its potential, which is a real-valued
function V (φ) (where φ denotes the value of the scalar field). The detailed shape
of V (φ) controls the duration of inflation, but also the spatial distribution of
inhomogeneities (perturbations) in the distribution of matter and radiation which
emerge from inflation. It is from those perturbations that galaxies and cluster form
out of gravitational collapse. Hence the shape of the scalar field can be constrained
by observations of the large scale structures of the Universe and of the CMB
anistropies.

Theories of physics beyond the Standard Model motivate certain functional
forms of V (φ), which however typically have a number of free parameters, Ψ .
The fundamental model selection question is to use cosmological observations to
discriminate between alternative models for V (φ) (and hence alternative fundamen-
tal theories). The major obstacle to this programme is that very little if anything
at all is known a priori about the free parameters Ψ describing the inflationary
potential. What is worse, such parameters can assume values across several orders
of magnitude, according to the theory. Hence the Occam’s razor effect of Bayesian
model comparison can vary in a very significant way depending on the prior choices
for Ψ . Furthermore, a non-linear reparameterization of the problem (which leaves
the physics invariant) does in general change the Occam’s razor factor, and hence
the model comparison result.

In Ref. [26] a first attempt was made to tackle inflationary model selection from a
principled point of view. The main result of the analysis is shown in Fig. 11.3, which
presents the Bayes factors between models (suitably normalized w.r.t. a reference
model, here the so-called LFI2 model). Two classes of models for V (φ) have been
considered, namely so-called Small Field Inflation (SFI) models and Large Field
Inflation (LFI) models. The two classes of model differ in the parameterized form
of V (φ), and have different sets of parameters, differing in dimensionality, as well.
Within each class of models, sub-classes are defined (denoted by subscripts in
Fig. 11.3) based on theoretical considerations, e.g. by fixing some of the parameters
to certain values. The priors on the models’ parameters have been chosen based on
theoretical considerations of possible values achievable under each class of models.
Typical priors are uniform on the log of the parameter (to reflect indifference w.r.t.
the characteristic scale of the quantity), within a range chosen as a reflection of
physical model building. The models’ priors are chosen in such a way to lead to
non-committal priors for the two classes as a whole, i.e. p(SFI) = p(LFI) = 1/2.

Figure 11.3 shows that some models in the LFI class are fairly strongly
disfavoured by the data (e.g., LFI3 and LFI4), while the model comparison is
inconclusive in most other cases. One finds that the posterior probability for the
SFI model class evaluates to p(SFI|d)≈ 0.77. Therefore, the probability of the SFI
class has increased from 50% in the prior to about 77% in the posterior, signalling a
weak preference for this type of models in the light of the data.
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Fig. 11.3 Results of Bayesian model comparison between nine inflationary models (vertical axis),
subdivided in two categories (SFI models and LFI models), from Ref. [26]. Errorbars reflect the
68% uncertainty on the value of the Bayes factor from the numerical evaluation

11.4 Interpretational Challenges and Open Questions

I conclude by listing what I think are some of the open questions and outstanding
challenges in the application of Bayesian model selection to cosmological model
building.

• Is Bayesian model selection always applicable? The Bayesian model com-
parison approach as applied to cosmological and particle physics problems has
been strongly criticized by some authors. E.g., George Efstathiou [6] and Bob
Cousins [5] pointed out (in different contexts) that often insufficient attention
is given to the selection of models and of priors, and that this might lead to
posterior model probabilities which are largely a function of one’s unjustified
assumptions. This draws attention to the difficult question of how to choose priors
on phenomenological parameters, for which theoretical reasoning offers poor or
no guidance (as in the inflationary model comparison example above). In the
statistics literature, several approaches are available, e.g. nonsubjective, intrinsic
and fractional Bayes factors [8]. It would be interesting to learn about real-
data experience in using such methods, and to investigate whether they can be
useful in the cosmological context. Also, a thorough investigation of approximate
criteria for model selection (BIC, AIC, DIC, etc. [12, 19]) in cosmology would
be desirable.
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• How do we deal with Lindley’s paradox? It is simple to construct examples
of situations where Bayesian model comparison and classical hypothesis testing
disagree (Lindley’s paradox [21]). This is not surprising, as frequentist hypoth-
esis testing and Bayesian model selection really ask different questions of the
data [29]. As Louis Lyons aptly put it: “Bayesians address the question everyone
is interested in by using assumptions no-one believes, while frequentists use
impeccable logic to deal with an issue of no interest to anyone” [23]. However,
such a disagreement is likely to occur in situations where the signal is weak,
which are precisely the kind of “frontier science” cases which are the most
interesting ones (e.g., discovery claims). Is there a way to evaluate e.g. the loss
function from making the “wrong” decision about rejecting/accepting a model?

• How do we assess the completness of the set of known models? Bayesian
model selection always returns a best model among the ones being compared,
even though that model might be a poor explanation for the available data. Is
there a principled way of constructing an absolute scale for model performance in
a Bayesian context? Recently, the notion of Bayesian doubt, introduced in [24],
has been used to extend the power of Bayesian model selection to the space
of unknown models in order to test our paradigm of a ΛCDM cosmological
model. It would be useful to have feedback from the statistics community about
the validity of such an approach, and whether similar tools have already been
developed in other contexts.

• Is Bayesian model averaging useful? Bayesian model averaging can be used to
obtain final inferences on parameters which take into account the residual model
uncertainty (examples of applications in cosmology can be found in [20,28,39]).
However, it also propagates the model selection problems discussed above to the
level of model-averaged parameter constraints. Is it useful to produce model-
average parameter constraints, or should this task be left to the user, by providing
model-specific posteriors and Bayes factors instead?

• Is there such a thing as a “correct” prior? In fundamental physics, models
and parameters (and their priors) are supposed to represent (albeit in an idealized
way) the real world, i.e., they are not simply useful representation of the data
(as they are in other statistical problems, e.g. as applied to social sciences).
In this sense, one could imagine that there exist a “correct” prior for e.g. the
parameters Θ of our cosmological model, which could in principle be derived
from fundamental theories such as string theory (e.g., the distribution of values of
cosmological parameters across the landscape of string theory [34]). This raises
interesting statistical questions about the relationship between physics, reality
and probability.

11.5 Conclusions

I have briefly surveyed the status and recent advances in the application of Bayesian
model selection in cosmology. I am sure that the input of the statistics community
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will be invaluable in further advancing the topic. A discussion forum such as
the SCMA conference is an extremely useful way of promoting cross-disciplinary
dialogue between the two communities, and as such should be taken as a blueprint
for future initiatives in Astrostatistics.
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Chapter 12
Commentary: Cosmological Bayesian Model
Selection

David A. van Dyk

Abstract Model selection methodology is an active field of discussion among
statisticians, particularly for disjoint, non-nested models. Roberto Trotta has re-
viewed the issue in the context of model selection within the context of ΛCDM
cosmological models. I briefly discuss the issue from both frequentist and Bayesian
perspectives, expressing cautions about use of priors, Bayes factors, and p-values.
There are no silver bullets, but Bayes factors seem most promising.

12.1 Introduction

Doctor Trotta is to be congratulated for his lucid summary of recent advances
in Bayesian fitting of cosmological models and of the outstanding challenges in
the more difficult problem of model selection. This situation is not unique to
cosmology. Differences among statistical paradigms such as frequency-based or
Bayesian methods are generally much more pronounced in model checking and
selection than in fitting. Indeed no consensus exists even among Bayesians or among
frequentists as to the best way forward in model selection. As such this remains
an active area of statistical research where the experience of cosmologists may
lead to insight with impact on more general statistical methodology. It is also a
subtle area where one must be wary of all-purpose solutions. As Doctor Trotta
points out, model selection in cosmology is not confined to nested models (e.g.,
adding “extra parameters in the ΛCDM beyond the vanilla ones”) but includes
the more technically challenging case of comparing non-nested models “whose
parameter spaces are largely or completely disjoint”. Such seemingly innocuous
differences may be highly consequential and lead to subtle technical issues.

D.A. van Dyk (�)
Statistics Section, Department of Mathematics, Imperial College London,
London SW7 2AZ, UK
e-mail: dvandyk@imperial.ac.uk

E.D. Feigelson and G.J. Babu (eds.), Statistical Challenges in Modern Astronomy V,
Lecture Notes in Statistics 209, DOI 10.1007/978-1-4614-3520-4 12,
© Springer Science+Business Media New York 2013

141



142 D.A. van Dyk

I hope to illustrate some of the subtleties involved and the advantages of a mixed
approach that considers and compares various methods in the context of a specific
model selection problem.

12.2 Methods for Model Selection and Checking

Model checking problems often begin with a default or presumed model,

Null Hypothesis: E.g., the Universe is “Flat”.

The scientist asks whether the model is consistent with the data or if it is plausible
that the data were generated under the model. If not, we aim to characterize the
inconsistency, improve the model, and recheck the improved model. In principle
this cycle of model improvement can be iterated, perhaps with the acquisition of
new data, until a satisfactory model is obtained.

We may also have a model that we suspect or hope is better than the null model,

Alternative Hypothesis: E.g., the Universe is “Hyperbolic”.

With a competing model in hand, we typically aim to decide between or weigh
the evidence for the two (or more) models. These procedures are known as model
selection and model comparison. In some situations we may wish to assume the null
hypothesis until we have substantial evidence it is implausible. This is analogous to
assuming a defendant is innocent, until proven guilty in a court of law. Similarly
we may not wish to overturn a long standing standard model without truly solid
evidence. In other situations we may not have any particular reason to favor one
model over another and may wish to simply weigh the relative evidence for each.

These are surprisingly subtle problems and despite decades of research, discus-
sion, and sometimes heated arguments, little consensus exists among statisticians
as how to best tackle them. This is especially concerning because competing
methods may lead to very different conclusions. Part of the difficulty is that
model selection is somewhat ill-posed. Statisticians view models as parsimonious
mathematical summaries of complex phenomena. They are not meant to capture
the full complexity of that which they summarize. As such different models can be
viewed as approximations with various tradeoffs between simplicity and detail, no
one of which may be ‘true’ or even better than the others; they are simply different.
Nonetheless we may wish to investigate how a particular model differs from reality
(i.e., model checking) or which of a set of models better approximates a particular
aspect of reality (i.e., model comparison). Remembering that models are not meant
to be perfect, however, it is no surprise that there is no completely general theory for
model selection nor is there always a clear cut answer to model selection problems.
Model checking, comparison, and selection are nuanced endeavors into the shades
of grey.
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Frequency-Based Methods. The standard frequency based method begins with a
statement of a null and an alternative hypothesis,

H0: E.g., the Universe is Flat: Ωκ = 0, and
H1: E.g., the Universe is not Flat: Ωκ �= 0,

and computes a test statistic, T , with known distribution under H0. A
threshold, T � is then computed as, e.g., the smallest value such that Prob(T >
T �|Ωκ=0,other parameters) ≤ α , where α is the significance level of the test.
Under the assumption that H0 holds, T is greater than T � with probability less than
α . This is an infrequent occurrence if α is small. Thus, we typically choose a small
value of α and if we observe T > T � conclude that there is sufficient evidence to
declare H0 implausible. In this example, we would conclude that the Universe is
not flat.

This paradigm is generally advocated on the basis of its control of the probability
of false positive. That is, we will wrongly conclude that H0 is implausible with
probability less than α , when H0 actually holds. On the other hand the method offers
no characterization of the strength of evidence, a task left to the notorious p-value,
see below. Another important sticking point lies in the derivation of a test statistic
with known distribution under H0. This can be a difficult if not impossible task in
complex models that have numerous unknown parameters.

Bayesian methods. Because Bayesian methods treat parameters as random
quantities there is no problem in principle with unknown parameters under either H0

or HA. In particular the prior predictive distribution, given in Trotta’s equation (2)
specifies how likely the data, d, is under model i ∈ {0,1}. In a Bayesian paradigm
the model consists of a specification of both the likelihood and the prior distribution
and both are compared together. The typical method for comparing two models
involves the Bayes Factor, or the posterior probability of H0. Unlike standard
frequency-based methods, both the Bayes Factor and p(H0|M ) treat H0 and H1

essentially symmetrically. There is no need to treat H0 as the default or a priori
assumed model.

A typical criticism of Bayesian methods in general is their requirement that
one specifies a prior distribution. Of course, when informative prior information
is available, Bayesian methods offer a principled method of combining this in-
formation with the current data. In many situations, these concerns are of little
practical importance because the posterior distribution, parameter estimates, error
bars, and interval estimates are quite insensitive to the choice of prior distribution.
Unfortunately, the same is not true of prior predictive distributions and Bayes factors
which can be quite sensitive to the choice of prior distribution. As an example,
suppose we observe a Gaussian variable with mean μ and variance one, use a
Gaussian prior distribution on μ with mean zero and variance τ2, and are interested
in testing H0 : μ = 0 against H1 : μ �= 0. Using (2) we can compute the prior
predictive distribution of d which is a Gaussian distribution with mean zero and
variance 1+ τ2 and is plotted in the lefthand panel of Fig. 12.1 for several values
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Fig. 12.1 The dependence of the prior predictive distribution and the Bayes factor on the choice
of prior distribution. The lefthand panel plots the prior predictive distribution for the Gaussian
example describe in the text with five choices of the prior distribution. The righthand plot shows
the effect of the prior variance, τ2, on the Bayes factor. Results are highly dependent on the
prior distribution and the prior must be chosen with care to accurately represent available prior
information

of τ2. The prior predictive distribution is highly dependent on the prior distribution
and p(d|M ) can be made arbitrarily small for any value of d by choosing τ2 large
enough. The righthand panel of Fig. 12.1 illustrates the effect on the log Bayes
factor, which varies from indifference between H0 and H1 to strong support for H1

to strong support for H0 as τ2 increases.
Reflecting on Fig. 12.1, it is clear that we must think carefully about our choice of

prior distribution and it is critical that the prior distribution accurately summarizes
available prior information. The typical strategy of using “non-informative” prior
distributions with large variances clearly effects the Bayes factor. In fact “improper”
prior distributions (e.g., with infinite variance) result in improper prior predictive
distributions and undefined Bayes factors. There is no simple default prior dis-
tribution available when computing Bayes Factors. This is especially problematic
when the parameter space is large and in particular when the HA and H0 are either
not nested or the dimension of the parameter space under HA is much larger than
that under H0. Specifying subjective prior distributions in large multivariate spaces
involves careful consideration of the correlations and likely relationships among the
parameters. In model selection problems, the hypothesized models may be rather
speculative and little prior information about the values of the parameters may be
forthcoming. Thus, we may have little information for a the choice of prior and the
prior may heavily influence results. In such situations, it is absolutely critical that
the choice of prior distribution be reported along with the Bayes factor.

I worry about the application of Bayes factors in cosmology, just as I generally
worry about their use by scientists and statistician alike. Doctor Trotta mentions
the “Astronomer’s Prior” (Ωκ ∼ Unif(−1,1)) and the “Curvature Scale Prior”
(log |Ωκ | ∼Unif(−5,0)). In the inflationary model he notes that “little if anything is
known a priori about the free parameterΨ . . .” and that “non-linear transformations
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. . . in general change . . . the model comparison results.” Understandably convenient
prior distributions are used in the absence of well quantified substantive prior
knowledge. Unfortunately, Bayes factors based on such priors lead to questionable
results.

P-values. In the context of frequency based hypothesis testing, the p-value is
often reported to quantify the degree of evidence, p-value=prob(T >T �|Ωκ=0,
otherparameters). Although they are endemic in data analysis, there is a large
literature on the difficulties of interpreting p-values, especially when testing precise
null hypotheses (e.g., [2]). When compared to Bayes factors and the posterior
probability of H0, p-values vastly overstate the evidence for H1, even when
compared to Bayesian methods that use the prior most favorable to H1 from a
large class of priors. This is because p-values are computed given data as extreme
or more extreme than d. This is much stronger evidence for H1 than d. (In some
cases p-values agree with Bayesian measures computed with “as extreme or more
extreme’ data [4]). P-values cannot be simply recalibrated to agree with Bayesian
measures because the magnitude of the discrepancy depends on the sample size, the
model, and the precision of H0. In short p-values should be avoided because they
are difficult to interpret, have questionable frequency properties, and bias inference
in the direction of false discovery.

12.3 The Bottom Line

There are other statistical paradigms and hybrid methods that aim to evaluate models
and decide between them, e.g., posterior-predictive-p-values [6], conditional error
probabilities [1], decision theory (e.g., [5, 7]), etc. Still there are no silver bullets.
Most statisticians agree that model selection should be rephrased into model fitting
problems whenever possible. In the case of nested models, it is often possible to
fit the larger model and report interval for the parameters that are free in the larger
but not the smaller model. The added value of the larger model can be assessed by
examining the likely values of these parameters. This avoids the problem of model
selection, but may not adequately address the scientific question. In such cases,
I agree with Doctor Trotta that Bayesian methods are most promising. Despite their
dependence on the choice of prior distribution, Bayes factors represent a principled
probability-based assessment of the relative evidence for H0 and H1. Unlike
p-vales, they aim to answer the right questions and like other Bayesian methods,
they have no problem with nuisance parameters. Various strategies exist for
mitigating their dependence on the prior distribution. For example, Berger and
Delampady [2] recommends optimizing the Bayes factor over a class of priors and
Berger and Pericchi [3] review methods that use a subset of the data to construct
an informative prior distribution and the remainder to compute the Bayes factor.
Overall, I view Bayes factors as the most promising method for model selection.
Clearly care must be taken when selecting prior distributions and sensitivity
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analyses must be conducted. But at a fundamental level Bayes factors answer the
questions of most interest to scientists.
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Chapter 13
Measurement Error Models in Astronomy

Brandon C. Kelly

Abstract I discuss the effects of measurement error on regression and density
estimation. I review the statistical methods that have been developed to correct for
measurement error that are most popular in astronomical data analysis, discussing
their advantages and disadvantages. I describe functional models for accounting
for measurement error in regression, with emphasis on the methods of moments
approach and the modified loss function approach. I then describe structural models
for accounting for measurement error in regression and density estimation, with em-
phasis on maximum-likelihood and Bayesian methods. As an example of a Bayesian
application, I analyze an astronomical data set subject to large measurement errors
and a non-linear dependence between the response and covariate. I conclude with
some directions for future research.

13.1 Introduction

Measurement error is ubiquitous in astronomy. Astronomical data consists of
passive observations of objects, whereby astronomers are able to directly measure
the flux of an object as a function of wavelength, its location on the sky, and the time
of the observation. Because the number of photons detected from an astronomical
object follows a Poisson process, this makes the measurement of a source’s intensity
intrinsically subject to measurement error, even if none is introduced from the
detector. Therefore, the very nature of astronomical data makes measurement error
unavoidable. Moreoever, quantities that are derived from an object’s observed
emission, either by fitting a model to the spectral energy distribution (SED) or by
employing scaling relationships, are also ‘measured’ (derived) with error. Examples
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include mass, metallicity, and distance. Often the measurement error on the derived
quantities is significant. This is unfortunate as inference on the derived quantities is
often the goal of astronomical data analysis. Therefore, there has been considerable
interest in how to perform statistical inference in the presence of measurement error.

Measurement error is a problem that affects, at various levels, all scientific
research. Because of this, numerous methods for handling measurement errors have
been developed ([6, 7, 9] are good references). In this contribution, I will present a
survey of methods for handling measurement error that have been developed and
used in astronomical data analysis. Because astronomical measurement errors are,
in general, heteroskedastic (having different variances), I will limit my discussion
to methods developed for heteroskedasticity. I will focus on situations where a
deterministic relationship is not assumed between the variables, but where all
variables of interest are random and are measured with error. Because of this, I will
ignore situations where the measurement error is the only source of randomness in
one’s data. An example of this type of situation is fitting a model to an observed
spectrum, where the measurement error is the only source of randomness; i.e., in
the absence of measurement error a deterministic relationship is assumed between,
say, flux density and wavelength. Methods for handling measurement error in this
case are relatively well-established, and typically one simply minimizes the usual χ2

statistic (e.g., [3]). However, it is worth pointing out that many complications may
still exist, and more sophisticated methods may be needed, especially when dealing
with low-count X-ray and γ-ray data (e.g., [24]) or when incorporating calibration
unceratinties [14]. Instead, I will focus on methods for analyzing data from
astronomical samples, where the variables are a random sample from an underlying
distribution. Within the context of regression, this implies that intrinsic scatter
(referred to as equation error in the statistics literature) exists in the relationship
among the variables, and thus a deterministic relationship is not assumed between
the variables even without the presence of measurement error.

Most of the techniques I will discuss focus on accounting for measurement
error in regression. The goal of regression is often to understand how one variable
changes with another. For example, how does the mass of a black hole change as
a function of the stellar velocity dispersion of the host galaxy’s bulge? Typically
one simply estimates how the average value and dispersion of one variable depends
on another. Measurement error statistical models are typically divided into two
types: ‘functional’ and ‘structural’ models. In functional modeling, one assumes that
the unknown true values of the variables are fixed, whereas in structural modeling
the unknown true values of the variables have their own intrinsic distribution. As a
result, in structural modeling one must parameterically model the distribution of the
true values of the variables, whereas in functional modeling one does not. Density
estimation is another important technique in astronomical data analysis, being the
foundation for luminosity and mass function estimation. The methods I will discuss
for handling measurement error in structural models are also applicable to density
estimation, as in this case regression and density estimation are based on the same
formalism. When discussing regression methods, I will refer to the ‘dependent’
variable as the response, and the ‘independent variables’ as the covariates.
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13.2 Notation and Error Model

Throughout this work I will denote the measured response for the ith data point
as yi, and the measured covariate for the ith data point as xi. I will denote the true
values as ηi and ξi, respectively. If there are p > 1 covariates, then I will use the
vectors xi and ξi. I will use y to denote the set of values of yi for each of the n data
points, y = [y1, . . . ,yn]. To denote the set of xi, I will use x = x1, . . . ,xn if there is
one covariate, and the n× p matrix X = [x1, . . . ,xn] if there are multiple covariates.
I assume the classical additive error models throughout this review, unless otherwise
specified:

ηi = f (ξi,θ )+ εi (13.1)

xi = ξi + εx,i (13.2)

yi = ηi + εy,i. (13.3)

The function f (ξ ,θ ) describes how the mean value of η depends on ξ as a function
of the parameters, θ . For example, for linear regression f (ξ ,θ ) = α +β Tξ with
θ = (α,β ) denoting the slopes and intercept. The terms εi,εx,i, and εy,i are random
variables denoting the intrinsic scatter in η at fixed ξ (i.e., the equation error), the
measurement error in xi, and the measurement error in yi, respectively. The random
variables εi,εx,i, and εy,i are assumed to have zero mean and variances Var(εi) =
σ2,Var(εy,i) = σ2

y,i, and Var(εx,i) = Σx,i. As is typical in astronomy, the parameter
σ2 is assumed to be unknown and a free parameter in the model, while the variances
in the measurement errors, σ2

y,i and Σx,i, are assumed known. The measurement
errors are assumed to be independent of εi. In addition, for simplicity I also assume
that the measurement errors in yi and xi are independent, unless otherwise specified.
However, this is not always true, and many methods are able to handle correlated
measurement errors, see the references for individual techniques for further details.

Following Gelman et al. [10], I will also typically use the notation p(·) to denote
the probability density of the argument. For example, p(x) denotes the marginal
probability density of x, p(y|x) denotes the conditional probability density of y
given x, and p(y,x) denotes the joint probability density of y and x. It should be
understood that p(·) will not always have the same functional form, and that this
must be inferred from context, i.e., it is not necessarily true that p(x) = p(y) even
if x = y. When this may be confusing, I use different symbols to denote different
probability densities.

13.3 Effects of Measurement Error

Measurement error has the effect of blurring and broadening the distribution of
quantities, similar to the blurring of astronomical images by a point spread function.
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This makes statistical inference based on the measured values biased, and smears out
any trends in the data. The distribution of the measured quantities is obtained as

p(y,x) =
∫ ∫

p(y,x|η ,ξ )p(η ,ξ ) dη dξ . (13.4)

Under the additive error model of Sect. 13.2, (13.4) simplifies to

p(y,x) =
∫

f (y−η)
∫

g(x− ξ )p(η ,ξ ) dξ dη , (13.5)

where f (·) and g(·) denote the probability distributions of the measurement errors
εy and εx, respectively. Equation 13.5 shows that under additive measurement error,
the observed distribution of a set of quantities is the convolution of the intrinsic
distribution with the measurement error distribution. Convolution has the effect of
broadening distributions, which biases density estimation and masks trends.

Some of the effects of measurement error are illustrated in Fig. 13.1. Here,
I simulated a sample of covariates from a bimodal distribution, and simulated the
response assuming a nonlinear relationship between η and ξ . I then added large
measurement error to both η and ξ . As can be seen, measurement error has blurred
out many of the features in the data set, and broadened the distributions.

To further see how measurement error biases statistical inference for regression,
consider the additive error model for linear regression, assuming one covariate.
In addition, for simplicity assume that the measurement errors are homoskedastic
(having the same variance) for both the response and covariate. If one were to ignore
measurement error and proceed through the usual ordinary least-squares (OLS)
analysis, then one would obtain the following estimates for the slope, variance in
the intrinsic scatter, and uncertainty in the estimated slope (assume the intercept, α ,
is known):

β̂OLS =
Cov(x,y)
Var(x)

=
Cov(ξ ,η)

Var(ξ )+σ2
x

(13.6)

σ̂2
OLS = Var(y−α− β̂OLSx)

= (β 2 − β̂ 2
OLS)Var(ξ )+ β̂ 2

OLSσ
2
x +σ2

y +σ2 (13.7)

Var(β̂ols) =
σ̂2

OLS

Var(x)
=

σ̂2
OLS

Var(ξ )+σ2
x
, (13.8)

where β and σ2 are the true values of the slope and variance in intrinsic scatter.
From (13.6) to (13.8) we can deduce the following:

• Equation 13.6 shows that measurement error in the covariate attenuates the
regression slope, biasing it toward zero. Therefore, trends between the response
and the covariate will appear weaker than they really are. If the measurement
error in the covariate is negligible, then there is no bias in the slope even if the
measurement errors in the response are large.
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Fig. 13.1 Illustration of the effect of measurement error on regression and density estimation,
using a simulated sample. The true distribution of the response and covariate (upper left),
compared with the measured distribution (upper right). The error bars in the center plot denote the
standard deviation of the Gaussian measurement errors. The measurement errors have effectively
washed out any visual evidence for a tight non-linear relationship between the response and
covariate. The lower plot shows the distribution of the true and measured values of the covariate.
The measurement errors have washed out any evidence for bimodality in the distribution, and
significantly broadened it

• Equation 13.7 shows that measurement error in both the response and covariate
bias the estimate of σ2 upward. Therefore, the variance in the response about the
regression line will appear larger than it really is.
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• Equation 13.8 show that measurement error in the covariate causes one to un-
derestimate the error in the estimated slope. Thus, if the covariate is significantly
contaminated by measurement error, then one would incorrectly conclude that
the slope is precisely estimated to be ≈0, and therefore conclude that there is no
relationship between the response and covariate!

Clearly measurement error can have a significant effect on one’s data analysis,
and ignoring it can lead to erroneous conclusions. Luckily, a number of statistical
methods have been developed for handling measurement errors.

13.4 Functional Methods for Accounting for Measurement
Error in Regression

A variety of functional models have been proposed for handling measurement errors
in regression, and here I summarize the methods that are commonly used in the
astronomical literature. Since heteroskedastic measurement errors are the norm in
astronomy, I only discuss methods that allow the variances in the measurement
error to vary among the observations. Moreover, as discussed earlier, I focus on
methods that incorporate intrinsic scatter in the relationship between the response
and covariate. The reader is referred to Carroll et al. [6] for a more thorough and
general discussion of methods developed for handling measurement error.

13.4.1 Method of Moments Approach for Linear Regression

In linear regression the least-squares estimates of the intercept, slope, and intrinsic
dispersion are obtained from the moments of the data. In the previous section
I showed that the moments of the observed data are biased estimates of the
moments of the intrinsic distribution when the data are measured with error.
Therefore a simple method of accounting for measurement error in linear regression
is to estimate the moments of the true values of the data, and then use these
estimated moments to estimate the regression parameters. This is the idea behind
the method of moments (MM) estimators, where the moments of the observed data
are ‘debiased’ by removing the contribution from the measurement errors.

Akritas and Bershady [1] describe a methods of moments approach for linear
regression that handles heteroskedastic measurement error in both the response
and covariate, intrinsic scatter, and correlation between the response and covariate
measurement error. Akritas and Bershady used their method to characterize the
color-luminosity and Tully-Fisher relationships for galaxies. Their estimators, as
is typical for the method of moments, assume the additive error model of Sect. 13.2
with the mean value of η depending linearly on ξ : f (ξ ,θ ) = α + βξ . They do
not assume a particular distribution for the measurement errors, the covariate, or
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the intrinsic scatter. However, their approach does assume that the variance in the
measurement errors and correlation between the measurement errors are known.
They call their estimator the BCES estimator, for bivariate correlated errors and
intrinsic scatter.

Denote the covariance between the measurement errors in the response and
covariate as Cov(εy,i,εx,i) = σyx,i. Also, denote the sample average for x as X̄ , the
sample average for y as Ȳ , the sample variance for x as Vx, the sample variance for
y as Vy, and the sample covariance between x and y as Vxy. Then, the methods of
moments estimators are

β̂MM =
Vxy − σ̄yx

Vx − σ̄2
x

(13.9)

α̂MM = Ȳ − β̂MMX̄ (13.10)

where σ̄yx = ∑n
i=1σyx,i/n and σ̄2

x = ∑n
i=1σ2

x,i/n. Akritas and Bershady [1] show
that the MM estimators are asymptotically unbiased, that the sampling distribution
of the MM estimators is asymptotically normal, and describe how to estimate
the asymptotic covariance matrix of α̂MM and β̂MM . Patriota and Bolfarine [18]
derive the asymptotic covariance matrix of the MM estimators under the additional
assumption that the measurement errors are normally distributed, creating more
powerful hypothesis testing when this is true. In addition, Cheng and Riu [8] give
the MM estimator for the variance in the intrinsic scatter:

σ̂2
MM =Vy − β̂MM(Vxy − σ̄yx)− σ̄2

y , (13.11)

where σ̄2
y is the sample average of σ2

y,i.
The main advantage of the MM estimators are that they do not make any

assumptions about the distribution of the measurements errors, about the distribution
of the covariate, nor about the distribution of the intrinsic scatter. This is attractive, is
it makes the MM estimators robust. One of the disadvantages of the MM estimators
is that they are not as precise as some other methods, such as structural models,
when the distributions of εx,εy,ε, and ξ are known, or at least when they can
be accurately modeled parameterically, as the MM estimators do not impose prior
assumptions about the distributions. Another disadvantage is that the MM estimators
tend to be highly variable when the sample size is small, and/or the measurement
errors are large. This is on account of the term Vx − σ̄2

x in the denominator of the
equation for β̂MM . When the sample size is small, then Vx is more variable, and it is
possible that Vx ∼ σ̄2

x . This is also possible when measurement errors are large, as
the variance in x becomes dominated by the measurement errors. When this occurs,
the estimate for the slope can become very large, or change sign. Similarly, if the
measurement errors in y are large, then the MM estimator for the intrinsic dispersion
can become negative, which is impossible. Therefore, despite the robustness of the
MM estimators, more stable estimators should be used when the sample size is
small, or when the measurement errors make up a significant component to the
variance in the data.
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13.4.2 Modified Loss Function Approach

Modified loss function methods modify the figure of merit function (i.e., the
‘loss’ function), to incorporate measurement error. The weighted squared error
loss function is the most common loss function used in astronomy. A weighted
least squares (WLS) estimator for linear regression was proposed by Sprent [22] to
minimize the following loss function for the special case of no intrinsic scatter:

QWLS(α,β ) =
n

∑
i=1

(yi −α−βxi)
2

σ2
y,i +β 2σ2

x,i

. (13.12)

The weights in (13.12) reflect the contribution of the measurement errors to the
squared error. Here I have used the notation QW LS(α,β ) instead of the more
commonly used χ2 to emphasize the fact that (13.12) is a loss (or figure of merit)
function, and will not necessarily follow a χ2 distribution even if the errors are
Gaussian (although one can still use (13.12) regardless of the distribution of the
measurement errors). Note that this implies that one cannot derive uncertainties in
the parameters by looking for regions of constant ΔQW LS(α,β ). As with the method
of moments estimators, the WLS estimators do not make any assumptions about the
distribution of the measurement errors, covariate, or intrinsic scatter.

The loss function defined by (13.12) assumes that there is no intrinsic scatter in
the relationship between the response and covariate. How then to modify (13.12) to
include the intrinsic scatter? Motivated by their work on characterizing the MBH–σ∗
relationship, Tremaine et al. [23] suggested using the following modified WLS loss
function:

Q̃WLS(α,β ,σ2) =
n

∑
i=1

(yi −α−βxi)
2

σ2 +σ2
y,i +β 2σ2

x,i

. (13.13)

While the addition of σ2 to the denominator of (13.13) is intuitive, as it reweights
the loss function to incorporate the intrinsic scatter, the unknown value of σ2

creates difficulties for the WLS estimator based on Q̃W LS(α,β ,σ2). As discussed
in Kelly [13], (13.13) can only be minimized with respect to α and β at fixed σ2,
as the minimum of (13.13) occurs at σ2 →∞ for any value of α and β . Clearly, one
cannot estimate the regression parameters by minimizing Q̃W LS(α,β ,σ2). Instead,
the most common approach (as suggested by Tremaine et al. [23]) is to initially
use σ2 = 0, and then find the values of α and β which minimize (13.12). Then,
using these best-fit values for α and β , σ2 is estimated by finding the value
such that Q̃WLS(α,β ,σ2)/(n− 2) = 1. Unfortunately, the properties of the WLS
estimator based on this procedure, such as its bias and asymptotic distribution,
are unknown. Kelly [13] performed simulations to study the behavior of the WLS
estimator based on (13.13) when the data are contaminated by large measurement
error, and compared with the MM estimator and a maximum-likelihood estimator
(see Sect. 13.5.1). In general, the WLS estimator gave biased values for the slope,
while the MM estimator for the slope was approximately unbiased except in
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the limit of extreme measurement error, and the maximum-likelihood estimator
was approximately unbiased except in the limit of a small sample with extreme
measurement error. Therefore, based on the problems associated with the WLS
estimator based on (13.13), I do not recommend its use.

While the modification to the least squares loss function by (13.13) exhibits
some problems, it is still possible to derive consistent estimators for the regression
parameters by modifying the least squares loss function. Instead, consider the
following modified loss function:

Q(α,β ,σ2) =
1
σ2

n

∑
i=1

[
(yi −α−βxi)

2 −σ2
y,i−β 2σ2

x,i

]
. (13.14)

Equation 13.14 corrects the usual least-squares loss function by subtracting off the
contribution to the squared error from the measurement errors, and is therefore
an estimate of the loss function that would have been obtained if there was no
measurement error. Minimization of (13.14) with respect to (α,β ,σ2) results in
the MM estimators given by (13.9)–(13.11) [7]. Therefore, the method of moments
estimators can be understood as resulting from a corrected least squares loss
function.

Thus far I have focused on linear regression. However, there are cases where a
non-linear relationship may exist between the average value of the response and the
covariate, and one desires to use a functional model. Patriota and Bolfarine [17] de-
scribe a corrected score method for polynomial regression under the heteroskedastic
additive error model (Sect. 13.2), which they applied to an astronomical data set. The
reader is referred to their work for further details.

13.5 Structural Methods for Regression and Density
Estimation

Structural models for regression are those that make assumptions about the dis-
tribution of the covariate. As such, they are also applicable to density estimation.
I will focus on structural models that rely on the construction of a likelihood
function,1 therefore requiring one to specify a parameteric model for the distribu-
tions of the measurement errors, intrinsic scatter, and covariates. These methods
include both maximum-likelihood estimators and Bayesian methods. Likelihood-
based techniques have the advantage that they are flexible and may be applied
to a variety of problems, including those requiring non-linear forms for f (ξ ,θ ),

1The likelihood function is the probability of observing the data, given some parameters. It requires
assuming a parameteric form for the sampling distribution of the data.
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variance in intrinsic scatter that depends on the covariate, and data sets that include
censoring2 and truncation. However, they have the disadvantages that they are
computationaly expensive, and that one must assume a parameteric form for all
distributions involved, decreasing their robustness. That being said, it is possible to
use highly flexible parameteric forms, increasing the robustness of likelihood based
methods [11]. Moreover, the additional assumptions involved in the parameteric
modeling typically buys one an increase in efficiency, providing smaller standard
errors for the maximum-likelihood and Bayesian estimators when the parameteric
statistical model is a good description of the data.

13.5.1 Constructing the Likelihood Function

The basic idea behind likelihood-based methods is to treat the measurement errors
as a missing data problem. Little and Rubin [15] describe methods for handling
missing data, while Gelman et al. [10] describe Bayesian approaches to the missing
data problem. First, one formulates the likelihood function for the complete data,
i.e., the likelihood function for both the measured and true values of the data. In
general, for regression we have the following hierarchical model:

ξ i ∼ p(ξ |ψ) (13.15)

ηi|ξ i ∼ p(η |ξ ,θ ) (13.16)

yi,xi|ηi,ξi ∼ p(y,x|η ,ξ ). (13.17)

The notation z∼ p(z) means that the random variable z is drawn from the probability
distribution p(z). The distributions p(ξ |ψ), p(η |ξ ,θ ), and p(y,x|η ,ξ ) are the
distributions for the covariates, the response given the covariate, and the measured
data, respectively. The distribution for the covariate is parameterized byψ , while the
distribution for η at a given ξ is parameterized by θ ; note that here I have absorbed
the parameter describing the variance in the intrinsic scatter into θ , whereas in
the previous sections I have kept σ2 seperate from θ . For simplicity, I assume
that the distribution of the measurement errors is considered known, as is typi-
cally the case in astronomy. If additional parameters are needed to describe the
distribution of the measured data, e.g., if the variance in the measurement errors is
unknown, then these should be included in (13.17). Most of the interest in regression
lies in inference on θ , which describes how the response depends on the covariates.
If, instead of regression we are interested in density estimation, then there is no
response variable and only (13.15) and (13.17) are used.

2Data are said to be censored when only an upper or lower limit is available.
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Under the statistical model given by (13.15)–(13.17), the complete data
likelihood function for the ith data point is

p(yi,xi,ηi,ξ i|θ ,ψ) = p(yi,xi|ηi,ξi)p(ηi|ξ i,θ )p(ξ i|ψ). (13.18)

In order to calculate the observed data likelihood function for the ith data point, we
integrate out the missing (and thus unknown) data from the complete data likelihood
function:

p(yi,xi|θ ,ψ) =

∫ ∫
p(yi,xi|η ,ξ )p(η |ξ ,θ )p(ξ |ψ) dη dξ (13.19)

When the data points are statistically independent, as is almost always the case, the
observed data likelihood function for the entire data set is the product of (13.19) over
the i = 1, . . . ,n data points. Further details on this procedure can be found in Carroll
et al. [6]. Once one has chosen parameteric forms for the distributions involved in
(13.15)–(13.17), one can use (13.19) to compute the maximum-likelihood estimate
for the parameters (θ ,ψ) and use the likelihood ratio to estimate confidence regions
for the parameters. That’s it! Of course, in practice this is not so simple, as
computing the integrations involved in (13.19) and performing the optimization of
(13.19) can be numerically difficult. The Expectation-Maximization (EM) algorithm
is often helpful, and additional numerical techniques are described in, for example,
Press et al. [19] and Robert and Casella [20].

As an example of the likelihood approach, consider the following simple model.
Assume the measurement errors to be normally distribution with zero mean and
known variances, as described in Sect. 13.2. For the regression model, assume
that the response (η) at fixed covariate (ξ ) is normally distributed with mean
f (ξ ,θ ) = α+β Tξ and variance σ2; this is the usual linear regression model with
Gaussian intrinsic scatter. The distribution of the covariates is assumed to be a p-
dimensional multivariate normal density with mean μ and covariance matrix T .
Under this model, the parameters are θ = (α,β ,σ2) andψ =(μ ,T ). For this model,
the integrals in (13.19) can be done analytically. Denoting zi = (yi,xi), the measured
data likelihood is

p(y,X |θ ,ψ) =
n

∏
i=1

1

(2π)(p+1)/2|Vi|1/2
exp

{
−1

2
(zi − ζ )TV−1

i (zi − ζ )
}

(13.20)

ζ = (α+β Tμ ,μ) (13.21)

Vi =

(
β T Tβ +σ2 +σ2

y,i β T T
Tβ T +Σx,i

)
. (13.22)

The Gaussian likelihood model described here is commonly used, but it is
not robust and can be subject to considerable systematic error due to model
mispecification (e.g., [11]). Motivated by this, several authors have proposed using
a mixture of Gaussian functions as a model for the distribution of the covariates
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(e.g., [5,13,21]). Bovy et al. [4] describe a mixture of Gaussian functions model for
density estimation when some of the measurements are missing at random. Kelly
et al. (2008) describe a mixture of Gaussian functions model for density estimation
of a truncated sample, with emphasis on luminosity function estimation. The mix-
ture of Gaussian functions model inherits much of the mathematical simplicity of
the Gaussian model, enabling an analytic calculation of the observed data likelihood,
while still being flexible enough to model most realistic astrophysical distributions.
In addition, Andreon [2] describe a model for incorporating contamination from a
background distribution, and model the distribution of the covariates as a mixture of
Schechter functions.3

13.5.2 Bayesian Methods and an Example

Bayesian methods build on the likelihood methods described in Sect. 13.5.1 and
compute the probability distribution of the parameters, given the observed data;
this is called the ‘posterior’ distribution. This is done by first assuming a ‘prior’
distribution on the parameters, p(θ ,ψ), where the prior distribution quantifies our
information on the parameters θ andψ before we take any of the data. The posterior
distribution is then related to the prior and the likelihood by

p(θ ,ψ |y,X) = p(θ ,ψ)p(y,X |θ ,ψ). (13.23)

For example, for the Gaussian model described by (13.20)–(13.22), and assuming a
uniform prior on the parameters (p(α,β ,σ2,μ ,T ) ∝ 14), the posterior distribution
for (α,β ,σ2,μ ,T ) is proportional to (13.20) as a function of these parame-
ters. Bayesian methods differ from the frequentist likelihood methods, such as
maximum-likelihood, in that the inclusion of the prior distribution enables one to
calculate the probability of the parameters, given the observed data. This implies
that, in theory, the posterior distribution is exact, and therefore uncertainties on
the parameters are reliable and easy to interpret regardless of the sample size and
complexity of the statistical model. In contrast, the maximum-likelihood methods
compute a point estimate of the parameters, and then use various methods (e.g., the
likelihood ratio or bootstrap) to estimate the sampling distribution of the parameters,
from which confidence regions are derived. The maximum-likelihood methods are
useful, but it can become difficult to estimate the sampling distribution when the
sample size is small, or for highly complex and difficult models.

3The Schechter function is an unnormalized Gamma distribution. It is commonly used in
astronomy as a model for the number density of galaxies in the universe as a function of their
luminosity.
4Technically this is uniform subject to the conditions that σ 2 > 0 and |T |> 0.



13 Measurement Error Modens 159

Bayesian methods have become increasingly popular in astronomy, as well as
in other scientific disciplines. The primary driver of this increase in popularity
has been the advancements in statistical computing that have enabled Bayesian
inference, namely the use of Markov Chain Monte Carlo (MCMC) methods. Details
of MCMC methods may be found in Gelman et al. [10] and Liu [16], and for
an example of an MCMC algorithm under linear regression and heteroskedastic
measurement errors, see Kelly [13]. One of the primary advantages of MCMC
methods is that they are modular, and we can divide the computational problem
up into smaller computational problems that are easier to solve. Because the true
values of the data are not known, they are treated as additional parameters, and thus
can also be updated via MCMC. We can also incorporate upper and lower limits
in a straightforward manner through this approach by treating their true values
as missing data [13], although the definition of upper limit in astronomy is not
always straightforward [12]. These properties of MCMC samplers are a significant
advantage of the Bayesian approach, as we avoid the integration over the true values
of the data required in (13.19) for the maximum-likelihood approach, and we obtain
improved estimates for the true values of the data. In fact, often it is easier to
program a MCMC sampler and perform Bayesian inference than it is to do the
optimization and numerical integration required for maximum-likelihood.

As an illustration of the Bayesian approach, I consider a data set from Constantin
et al. (2011, in prep) comparing the X-ray photon index, ΓX , with the luminosity
relative to the Eddington limit (i.e., the Eddington ratio, L/LEdd) for a sample of
Active Galactic Nuclei (AGN).5 The measured data are shown in Fig. 13.2a. The
X-ray photon index provides a measure of how much energy is being released
through soft X-rays as opposed to hard X-rays, and the Eddington Luminosity is
the luminosity at which outward radiation and inward gravitational pressure balance
for a spherical geometry. This data set provides a good illustration of the power of
the Bayesian approach, as the average value of the response exhibits a non-linear
and non-monotonic dependence on the covariate, and the measurement errors are
very large in both the response and covariate. The values of the Eddington ratio
(i.e., the covariate) where the X-ray photon index (i.e., the response) changes its
dependence on L/LEdd are of particular interest, as models of black hole accretion
flows suggest that the accretion flow geometry changes at certain critical values of
the Eddington ratio. Because of this, and the non-linear appearance in the data,
I have chosen to model the data using a segmented line with two knots, where
the slope of the line changes at the knots. I modeled the intrinsic distribution
of logLX/LEdd as a mixture of three Gaussian distributions. To make the model
robust against outliers, I assume that the both measurement errors and the intrinsic
scatter follow a Student’s t-distribution with eight and four degrees of freedom,
respectively. I used the MCMC algorithms described in Chap. 9 of Carroll et al. [6]
and Kelly [13] as the basis for my MCMC sampler under this model, and include

5AGN are believed to be supermassive black holes that are accreting gas and are located in the
center of a galaxy.
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Fig. 13.2 The measured
values of ΓX and logLX/LEdd
compared with the region
containing 68% of the
posterior probability for the
mean value of ΓX at fixed
LX/LEdd (left). The data point
with error bars is not real and
only used to illustrate the
typical size of the error bars.
Also shown are the posterior
mean values for the true
values of ΓX and logLX/LEdd ,
compared with the best-fitting
segmented line (right). A
non-linear trend is apparent in
both the segmented line
model and in the estimated
distribution of ΓX and
logLX/LEdd using the
segmented line as a prior

an ancillarity-sufficiency interweaving strategy for increased efficiency [26]. This
MCMC algorithm produces both random draws of the parameters for the segmented
line model from their posterior distribution, but also random draws of the true values
of the Eddington ratio and photon index from their posterior distribution.

The region containing 68% of the posterior probability on the mean value of
ΓX as a function of LX/LEdd is also shown in Fig. 13.2a. The location of the knots
are estimated to be logLX/LEdd = −6.65± 0.25 and −3.91± 0.21, respectively.
The segmented line model of ΓX at fixed LX/LEdd is preferred over a simple line
model, illustrating the complex dependence of ΓX on LX/LEdd . In Fig. 13.2b I show
the posterior mean values of ΓX and logLX/LEdd , as well as the segmented line
computed from the posterior mean for its parameters. The posterior mean estimates
for the true (i.e., not measured) values of ΓX and logLX/LEdd represent a more
model-independent estimate of the dependence of the photon index on LX/LEdd .
This represents a real advantage of the Bayesian approach, as not only are we
able to estimate the probability distribution of the parameters of interest, but we
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can also estimate the probability distribution of the true values of the data as well,
conditional on our assumed statistical model, the measured values of the data, and
the amplitude of the measurement errors. The non-linear trend is also apparent
from the values of ΓX and LX/LEdd estimated from the Bayesian method. The
knot at LX/LEdd ∼ 2× 10−7 may represent the increasing prevalence of additional
astrophysical components to the X-ray spectrum as the AGN becomes faintier, such
as hot gas not associated with the AGN, while the knot at LX/LEdd ∼ 10−4 may
represent a change in the accretion flow geometry. Figure 13.2b suggest that the
scatter in ΓX at fixed LX/LEdd increases near the knot at LX/LEdd ∼ 10−4, which
may be indicative of instabilities when the accretion flow changes geometry, or of
uncorrected intrinsic absorption. Further analysis of this data set will be discussed
in Constantin et al. (2011, in prep).

13.6 Outstanding Issues in Measurement Error Models for
Astronomical Data: Directions for Future Research

I will conclude by listing a couple of unsolved problems in dealing with measure-
ment errors in astronomical data analysis, which I hope will lead to further research
in this area.

• Data subject to large, non-Gaussian measurement errors. Non-gaussian
errors are common in astronomical data, especially when one is analyzing a
set of derived quantities. Often, the most physically-interesting quantities are
those derived by fitting an astrophysical model to the measured flux values at
various wavelengths. Often the unertainties in these derived quantities are large,
skewed, or exhibit multiple modes. There is currently no well-established method
for handling the measurement errors in this case, although Bayesian hierarchical
models such as that proposed by van Dyk et al. [25] hold promise.

• Handling measurement errors in massive astronomical data sets. Current and
planned astronomical surveys will provide an explosion of data, allowing one
to construct data sets with millions to billions of objects, each with multiple
quantities measured. Many powerful methods developed for data mining will
be applied to these data, potentially providing a powerful route to knowledge
discovery. Unfortunately, all of the quantities obtained from these data sets
will be measured with error, and most methods developed for data mining of
massive data sets do not incorporate measurement error. This is especially a
problem when dealing with derived quantities, which will likely require a more
careful statistical analysis on account of their sometimes highly irregular error
distributions. Currently, algorithms, such as MCMC, that allow one to perform
reliable statistical inference on complicated statistical models do not scale well
to massive data sets. If we want to perform inference on massive data sets subject
to measurement error using more complicated and realistic statistical models, we
will need advances on the computational side.
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Chapter 14
Commentary: “Measurement Error Models
in Astronomy” by Brandon C. Kelly

David Ruppert

Abstract Bayesian analysis offers a general approach to measurement error that
has many advantages—it focuses attention on careful modeling, is widely appli-
cable, and provides efficient estimators. Bayesian analysis is relatively easy using
WinBUGS software. We discuss here the paper by Brandon Kelly, and present an
example of fitting a quadratic regression model with WinBUGS called from R, with
the WinBUGS and R code provided.

14.1 Introduction

Dr. Kelly has written an excellent introduction to measurement error, and I have no
disagreements with anything in his paper. In these comments, I will expand upon
what I believe are some key points.

There are many special-purpose methods for handling measurement error for
particular sets of models. Some of these methods are suitable only for linear
regression models, but of course many astrophysical models are nonlinear. Other
methods such as regression calibration and SIMEX [2] are widely applicable but use
approximations which, though often valid, are not guaranteed to produce accurate
inference. SIMEX in particular can be inefficient for many models.

An astrostatistician who is not widely read in the measurement error literature
would benefit from a single approach to measurement errors that is widely
applicable, is not unduly complicated, needs no approximations, and is efficient.
Such an approach exists: Bayesian analysis. Dr. Kelly’s has one section on Bayesian
methods, and the intent of these comments is to feature them more prominently.
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14.2 Advantages of Bayesian Modeling

There are many advantages to a Bayesian approach to measurement errors or, in
fact, to any statistical problem.

A Bayesian analysis focuses attention on careful modeling. Section 14.4 dis-
cusses an example of a non-Bayesian estimator, orthogonal regression, that is easily
misapplied because it is simple to use, but practitioners do not always understand
the restrictive conditions under which it is valid. This type of misapplication is less
likely if one takes a Bayesian approach where one can focus on the model, since
estimation is straightforward once a satisfactory model is found—one generates
a Monte Carlo sample from the posterior, say by MCMC, and then computes
the posterior mean or posterior quantiles. In contrast, a non-Bayesian approach
requires one to develop an estimator which may then require a careful theoretical or
Monte Carlo study to make sure that it is consistent and reasonably efficient. This
concentration on estimation draws attention away from modeling.

In Bayesian measurement error modeling, the unknown true covariate values are
just another set of unknowns and are treated in the same way as the parameters. To a
Bayesian, anything unknown is random, one conditions on whatever is known, and
then finds the conditional distribution of whatever is unknown. If MCMC is used,
this means that the unknown true values of mismeasured covariates are multiply
imputed. The analysis is conditional on the mismeasured values.

There are some strong theoretical reasons for using Bayesian methods. Under
fairly general conditions, Bayesian estimators are competitive with the best frequen-
tist estimators even if one takes a frequentist perspective. For example, Bayesian
estimators are asymptotically efficient and they are optimal in a decision theoretic
framework. In particular, under weak assumptions, all admissible estimators are
Bayesian. This means that to avoid using a Bayesian estimator, one must use an
inadmissible estimator, that is, one that is dominated by some other estimator.

A newcomer to Bayesian analysis may be daunted by the need for priors.
However, it is usually easy to specify “non-informative” priors to cover situations
where one has little prior information. In other cases, strong prior information
does exist. For example, in astronomy it is often assumed that measurement error
variances are known. However, it may be that they are only known up to a small
amount of uncertainty. In such situations, the use of informative priors is natural
and will account for the uncertainty about the variances. In contrast, a non-Bayesian
analysis that assumes that the variances are known exactly will underestimate
uncertainty.

A Bayesian analysis is applicable to virtually any parametric statistical problem
and to many nonparametric problems. If one is confronted with a challenging astro-
statistical problem, there may be no known frequentist estimator. The only generally
applicable frequentist technique is maximum likelihood estimation. However, with
a measurement error problem, computation of the likelihood can be difficult because
the unknown covariate values must be integrated out of the likelihood. A Bayesian
can perform this integration as part of a MCMC computation. Often the MCMC
computations can be easily done using the BUGS software, e.g., with WinBUGS.
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Fig. 14.1 A simulated sample from a quadratic regression model with measurement error. The
circles are a scatterplot of the data without measurement error, that is, of (Xi,Yi), and the solid line
is a quadratic polynomial least-squares fit to these data. The asterisks are a scatterplot of observed
data, (W i,Yi), and the dotted line is a quadratic least-squares fit to those data. The dashed-and-
dotted line is the Bayes estimate using the observed data and is close to the least-squares fit using
the correctly measured data. The fourth data point is of particular interest (see text) so it is marked

14.2.1 An Example: Quadratic Regression

The purpose of this example is to illustrate the components of a measurement error
model and to show how such a model can be fit using the WinBUGS software and
the R2WinBUGS package in R.

A measurement error model has three components: the regression model, the
measurement model, and the model for the distribution of the true covariate values.
The regression model specifies the conditional distribution of the response Y given
the covariates X . In this example, the regression model is Yi = α +βXi + γX2

i + εi

where Xi is scalar and εi
iid∼ N(0,σ2

ε ). The measurement model is Wi j = Xi +Ui j,

j = 1,2, where Ui j
iid∼ N(0,σ2

u ) independently of X1g, . . . ,Xn, and σ2
U is unknown.

Define W i = (Wi1 +Wi2)/2. The model for the distribution of the true covariate

values is Xi
iid∼ N(μx,σ2

x ). Here “
iid∼” means “independent and identically distributed

as”.
A random sample of size 50 was generated from this model and plotted in

Fig. 14.1. With simulated data we can, of course, compare the estimates with and
without measurement error. The least-squares fits using the data without error (solid)
and the mismeasured data (dotted) are quite different. In particular, the estimate of
γ is much smaller with the mismeasured data because of bias.

An interesting feature here is that W 4 is approximately 3, but the plots suggest
that X4 is near either −1 or 6. In fact, X4 = 5.8. The Bayes estimator is able to use the
values of both W 4 and Y4 as well as the quadratic shape of the regression function
to impute X4. In contrast, the commonly used frequentist method of regression
calibration [2] uses only W 4 to impute X4 and will be less accurate than the Bayes
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estimator. It is the ability of the Bayes estimator to use all information in the data
and in the likelihood that is the basis for its efficiency.

The BUGS program for this model is:

1. model{
2. for(i in 1:N){
3. w1[i] ˜ dnorm(x[i],tauw)
4. w2[i] ˜ dnorm(x[i],tauw)
5. x[i] ˜ dnorm(mux,taux)
6. y[i] ˜ dnorm(muy[i],taue)
7. muy[i] <- alpha + beta*x[i]+ gamma*x[i]*x[i]
8. }
9. mux ˜ dnorm(0.0,1.0E-6)
10. alpha ˜ dnorm(0.0,1.0E-6)
11. beta ˜ dnorm(0.0,1.0E-6)
12. gamma ˜ dnorm(0.0,1.0E-6)
13. tauw ˜ dgamma(0.1,0.01)
14. taux ˜ dgamma(0.1,0.01)
15. taue ˜ dgamma(0.1,0.01)
16. }

Lines 3 and 4 specify the measurement error model, line 5 the model for the
distribution of the true covariate values, and lines 6 and 7 the regression model.
Lines 9–15 specify the prior. The symbol “˜” means “is distributed as.” dnorm
is the normal distribution and its arguments are its mean and precision (reciprocal
of the variance). Similarly, dgamma is the gamma distribution with arguments the
shape and scale parameters. We see that μ , α , and β are given normal priors with
mean 0 and variance 106. The variances σ2

X , σ2
U , and σ2

ε are given inverse-gamma
priors with shape parameter 0.1 and scale parameter 0.01. These priors are intended
to be noninformative, that is, they should have little influence on the posterior
distribution.

One of the advantages of using WinBUGS is that it is easy to vary the model. In
this example, the measurement error variances are equal but unknown. As Dr. Kelly
mentions, in astronomy the measurement error variances are typically unequal but
often treated as known. In that case, tauw would not be a scalar parameter as here
but would instead be a data vector of known precisions.

The Bayesian analysis was done in R with the following program:

1. library(R2WinBUGS) # to call bugs
2. library(coda) # for output analysis
3. dat = read.csv("eiv.csv",header=TRUE)
4. attach(dat)
5. wbar = (w1+w2)/2
6. N = length(w1)
7. data=list("N","w1","w2","y") # data list for bugs
8. inits=function(){list(mux=2,tauw=1,taux=1,x=wbar,
9. alpha=0,beta=0,gamma=1,taue=1)}
10. eiv.sim = bugs(data,inits,model.file="eiv.bug",
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11. parameters=c("alpha","beta","gamma","x[4]"),
n.chains = 5,

12. n.iter=35000,n.burnin=5000,n.thin=100,
bugs.seed="8877",

13. bugs.directory="c:/Program Files/WinBUGS14/",
codaPkg=T)

14. mcmcout = read.bugs(eiv.sim) # read.bugs()
is in coda

15. options(digits=3)
16. summary(mcmcout) # gives summary of MCMC output
17. effectiveSize(mcmcout) # effectivesize() is

in coda
18. postscript("traceDensity.ps",width=7,height=5)
19. par(mfrow=c(2,4))
20. plot(mcmcout,auto.layout=F) # trace and

density plots
21. graphics.off()

Line 1 loads the R2WinBUGS package which contains the bugs command
calling WinBUGS in lines 10–13. Line 2 loads the coda package used to analyze
the MCMC output. Lines 3–6 prepare the data and line 7 creates the data list that
is passed to WinBUGS on line 10. Line 11 creates a function that generates initial
values. For simplicity, deterministic starting values are used but random starting
values are an option and are recommended in practice. Lines 14–21 produce output
(not shown) and the plots in Fig. 14.2. We see in line 12 that there are five chains,
each of 35,000 iterations with the first 5,000 discarded as burn-in. The chains are
thinned so that only every 100th iteration is saved, and therefore each saved chain
has 300 iterations.

Figure 14.2 contains trace plots and kernel estimates of the marginal posterior
densities of the deviance and of X4. The trace plots are plots of the MCMC samples
of the parameters versus iteration number, one curve for each chain. One can see
that X4 has a bimodal posterior distribution with modes at approximately −1 and
6, which agrees with what is seen in Fig. 14.1. The chains move between the two
modes but only occasionally.

14.3 Structural Models

I prefer structural to functional modeling for a number of reasons. First, a Bayesian
approach requires a structural model, since anything unknown is modeled as
random. Practitioners rightly worry about model misspecification when a simple
structural assumption is used, for example, that the true covariate values are
normally distributed. However, the true covariate values will always have an
empirical distribution, and the use of a structural model should be satisfactory
provided the model includes distributions close to the empirical distribution. This
is insured if one of the flexible structural models mentioned by Dr. Kelly is used.
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Fig. 14.2 Trace plots and
kernel density estimates for
the deviance (left) and X4
(right)

14.4 The Need for Careful Modeling

If one is focused on estimators instead of modeling, then there is the danger of
using an estimator whose underlying assumptions do not hold. Doing this can lead
to serious biases. For example, Carroll and Ruppert [1] discuss how easy it is to
misapply orthogonal regression (OR). The OR model is ytrue = β0+β1X , Y = ytrue+
ε , and W = X +U . Here ε is the measurement error in Y , and U is the measurement
error in X . It is assumed that there is no equation error. It is assumed further that
we know, or at least have an estimate of, η = var(Y |X)/var(W |X) = σ2

ε /σ2
U . This

assumption is reasonable if one knows the precision of the measurements so that
both σ2

ε and σ2
U are known or if, instead, one knows that the measurements have

equal precisions so that η = 1. The assumption of no equation error is crucial.
Unfortunately, equation error is common and this create a trap for the unwary.

The OR estimator can be viewed as a functional estimator that treats X1, . . . ,Xn

as unknown parameters, so that β0,β1,X1, . . . ,Xn are estimated by minimizing
∑n

i=1

{
η−1(Yi −β0 −β1Xi)

2 +(Wi −Xi)
2
}

over (β0,β1,X1, . . . ,Xn).
The danger is that it is easy to misapply OR in the presence of equation error.

This leads to overcorrection if one uses η = σ2
ε /σ2

U as if there were no equation
error. Instead one should use

ηEE :=
var(Y |X)

var(W |X)
=

σ2
Q +σ2

ε

σ2
U

(14.1)

where σ2
Q is the equation error variance. Of course, this requires an estimate of σ2

Q.
There are techniques for estimating σ2

Q; see Carroll and Ruppert [1] for references.
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However, if one plugs an estimate of σ2
Q into (14.1) and treats it as known, then

the uncertainty in the estimates of the other parameters will be underestimated.
A Bayesian approach is recommended instead.
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Chapter 15
Asteroseismology: Bayesian Analysis
of Solar-Like Oscillators

Othman Benomar

Abstract Asteroseismology is gaining momentum nowadays. The unprecedent
data quality obtained by the CoRoT and Kepler space-borne instruments allows
us to probe the stellar physics with a precision never achieved before. Thanks
to that, new discoveries have been raising new challenges requiring the use of
robust new statistical approaches. F stars (i.e. hot solar-like stars) are among the
most complicated solar-like oscillators to analyze. In this paper, we summarize the
difficulties the asteroseismic community has faced with F stars and how Bayesian
approaches help to solve the issues encountered.

15.1 Introduction

Space-borne instruments such MOST [12], CoRoT [3] and Kepler [7] allow us to
observe stellar oscillations in stars all over the HR diagram. The study of these
oscillations enable us to estimate stellar characteristics such the age, mass and the
radius with a typical precision of 50%, 10% and 2% respectively. Historically, star’s
pulsations have been noticed since at least the seventeenth century on Mira and
their study permitted significant discoveries. For example, measurements of solar
pulsations in the 1980s showed that the core of the Sun was hotter than suggested by
the neutrino flux. Many explanations were proposed including a revision of stellar
physics models by introducing new Weakly Interacting Massive Particles (WIMPs),
or the neutrino oscillations. Over time, as the amount of helioseismic data increased,
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the neutrino problem stood unsolved. Finally in 1998, the Super-Kamiokande
experiment was able to measure the flavor change between neutrinos and confirm
the neutrino oscillation hypothesis, and ruling out the other possibilities.

Solar-like oscillators are among the most challenging to study because of the low
amplitude of their oscillations [9]. Moreover, like it has been the case for the Sun
decades ago, their study could unlock key concepts related, for example, to their
evolution and their internal structure.

Pulsation modes in solar-like oscillators are known to be excited by the convec-
tion into their upper convective layer and correspond to pressure modes (p-modes).
In the Sun these oscillations can be observed at frequencies in the range 2–
4 mHz [8] in the power spectrum. In fact, a fine spectral structure of Lorentzian
peaks is observed and identified as the eigenmodes of the Sun. Each eigenmode is
characterized by three integer (n, �,m) into a base of spherical harmonics, with n
being the number of nodes along the radius of the star (radial order), � the number
nodal line at the surface (degree of the mode) and m, the number of nodal lines
intersecting the equator (azimuthal order). Pulsation frequencies vary as a function
of the age, mass and effective temperature of the star and depends on its internal
structure.

15.2 The Difficult Case of F Stars

Continuously observed during 60 days, HD49933 was the first star observed by
CoRoT. High quality photometric data1 had never been achieved before for another
star than the Sun, showing clear resolved p-modes oscillations. HD 49933 is an F
star for which pulsations had been detected from ground based observations [11],
but without being able to resolve the individual p-modes. Like in the Sun, HD 49933
has a signature of the surface convective motion at low frequency and a very rich
spectrum of p-modes at higher frequency. But while in the Sun, one can clearly
identify the low degree modes into the power spectrum (degree � up to 3), in the
case of HD 49933, we are not able to separate the odd pairs from the even pairs
of modes (Fig. 15.1) and thus we are unable to identify the degrees of the p-modes
by visual inspection of the power spectrum [2, 5]. Three main reasons explained
this. First, the signal to noise is much lower than for the Sun, mainly because the
granulation noise level is higher, the sign of an active star. As a consequence, the
�=3 is too weak to be extracted. Second, mode lifetimes are a function of the stellar
temperature. F stars being hotter than G stars, modes are wider in HD 49933 than
in the Sun (by a factor 4) and pairs of modes of same parities overlap (e.g. � = 0
and � = 2). Finally, the rotational splitting is about ten times higher than in the Sun
(rotation in approximatively 3.4 days), thus increasing the overlapping. Almost all
F stars suffer from these problems, the so-called ‘HD 49933 syndrome’.

1Luminosity variations at a level of few ppm are detected by CoRoT.



15 Asteroseismology: Bayesian Analysis of Solar-Like Oscillators 173

Fig. 15.1 A sample of the power spectrum of HD 49933. The two possible identifications of the
modes are shown with a black line. Dotted lines represent the l = 0 and the l = 2 individual mode
profiles

Faced with the HD 49933 syndrome and in order to extract the parameters of
the p-mode pulsations (frequency, height and mode lifetime), the asteroseismology
community involved in CoRoT used a recipe similar to the one successfully applied
to the Sun. The initial approach presented in [2] consists of fitting of a sum
of Lorentzian profiles to the power spectrum, based on a Maximum Likelihood
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Estimation (MLE). If one assume that only the three lowest degrees (i.e. � = 0,
�= 1 and �= 2) are significant in the power spectrum of HD 49933, then two mode
identifications are possible, depending on how the power excesses exhibited by the
power spectrum can be tagged. Reference [2] compared the significance of these
mode identifications on the basis of the maximum likelihood ratio test. The most
likely mode identification, hereafter called, identification A (the other one being
identification B), was significant to more than 99.99%. Doubts about the degree
to which we could trust such a result came up very quickly, mainly because such
likelihood ratio tests had never been done by the asteroseismic community with
such a low signal-to-noise ratio and with a relatively large number of parameters
(around 80 parameters). In such conditions, the likelihood function is likely to
possess several local maxima and convergence issues may arise, since it will become
hard to find the absolute maximum of the likelihood function.

A more robust method had to be used in order to verify this mode identification
and confirm the inferred values of the pulsation parameters, such as a Bayesian
approach coupled with Markov Chain Monte Carlo algorithm [5, 6]. The Bayesian
approach is well suited to extract as much as information as possible from a
given data set, by including a priori knowledge from other data sets or theoretical
assumptions. This approach becomes even more powerful if it utilizes all of the
information contained in the posterior probability distribution function and not only
on the determination of its maximum. To do so, one needs to sample the posterior
probability distribution function and this can be achieved by using a Markov Chain
Monte Carlo algorithm. A model comparison then relies on the computation of the
so-called Bayes factor. Such an approach is far more reliable than MLE but requires
intensive computation.

We used a Bayesian analysis, previously validated on simulated data [5], on HD
49933 that gave different results than [2]. While [2] have assumed that �= 0, �= 1
and � = 2 were present in the power spectrum, our approach was unable to show
evidence of the presence of � = 2 modes. Moreover, no clear mode identification
was possible.

In order to solve this critical problem of mode identifications, an additional
observation of 137 days was carried out by CoRoT, and we proceeded to a combined
analysis of the two data sets [6], in a similar fashion. The total observation duration
is thus approximatively three times higher than the first observation. The new
observation has substantially modified the odds and this time, � = 2 are clearly
identified with odds strongly in favor of the identification B (opposite to [2]).
Nowadays, several analysis of HD 49933 have been carried out and confirm the
identification B [4, 10, 13]: the asteroseismic community finally has reached a
consensus about the mode identification of this star and on the recipes to analyze
stars affected by HD 49933 syndrome.

The difficult analysis of HD 49933 has paved the way for other F stars. Since its
analysis, several Bayesian approaches have been carried out successfully on several
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tens of Kepler F stars [1]. Kepler was launched in March 7, 2009 and long duration
observation2 of the stars in the Kepler field render unlikely a wrong identification of
the modes: odds ratio are always decisively in favor of one identification.

15.3 New Challenges

The mode identifications problem in F stars is now settled but the asteroseismic
community is facing new challenges. The most problematic one concerns the
number of observed stars. The asteroseismology is gaining momentum these last
years and with the Kepler mission, we are overwhelmed by data. The present stellar
signal analysis tools need human supervision in order to return a reliable result that
render difficult the analysis of all the observed stars, in reasonable time. Moreover,
in the forthcoming years, many asteroseismic programs allowing global sky-surveys
(such as the SONG3 network or the PLATO4 mission) will probably be in place and
we will need to find how to analyze several hundred thousands of power spectrum,
while stars behaviors vary a lot and sometimes in an unexpected way.
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Chapter 16
Semi-parametric Robust Event Detection
for Massive Time-Domain Databases

Alexander W. Blocker and Pavlos Protopapas

Abstract The detection and analysis of events within massive collections of
time-series has become an extremely important task for time-domain astronomy.
In particular, many scientific investigations (e.g. the analysis of microlensing and
other transients) begin with the detection of isolated events in irregularly-sampled
series with both non-linear trends and non-Gaussian noise. We outline a semi-
parametric, robust, parallel method for identifying variability and isolated events
at multiple scales in the presence of the above complications. This approach
harnesses the power of Bayesian modeling while maintaining much of the speed and
scalability of more ad-hoc machine learning approaches. We also contrast this work
with event detection methods from other fields, highlighting the unique challenges
posed by astronomical surveys. Finally, we present results from the application of
this method to 87.2 million EROS-2 sources, where we have obtained a greater
than 100-fold reduction in candidates for certain types of phenomena while creating
high-quality features for subsequent analyses.

16.1 Introduction

The analysis of massive time-domain astronomical surveys poses growing challenge
within astrostatistics that demands both statistical rigor and computational effi-
ciency. While such data provides a wide range of opportunities, the detection of
isolated events is one ubiquitous problem that generally takes on a given outline:
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We are presented with a massive (10–100+ million) database of time series, possibly
spanning multiple spectral bands. Our goal is to identify and classify time series
containing events. How do we define an event? We are not interested in isolated
outliers (as is the case in anomaly detection). Instead, we are looking for groups of
observations that differ significantly from those nearby (i.e. “bumps” and “spikes”).
In our applications of interest, such groups are differentiated from trends by their
time scale—that is, they have structure at a higher frequency than we would consider
a trend, but with a lower frequency than isolated outliers. Additionally, we would
like to distinguish globally-variable light curves from isolated events, as they have
very different scientific interpretations. This flavor of problem arises in many fields,
but the case of astronomical time-domain surveys is particularly challenging.

There is an acute need for statistical methods that scale to these volumes
of data throughout modern astronomy. This demands that we carefully manage
the trade-off between statistical rigor and computational efficiency. In general,
principled statistical methods yield better performance with messy, complex data,
but scale poorly to massive datasets. In contrast, more ad-hoc machine learning
methods handle clean data well, but often choke on issues we confront with
complex astronomical data (outliers, nonlinear trends, irregular sampling, unusual
dependence structures, etc.). Our approach is to inject probability modeling into
our analysis in the right places, gaining much of the power of probability modeling
without incurring its computational penalties.

We demonstrate the utility of this approach using a multi-stage technique
for event detection. By combining a principled, flexible probability model with
a discriminative classifier, we obtain excellent performance and computational
efficiency analyzing the MACHO and EROS-2 surveys.

16.2 Previous Approaches and Unique Challenges

The astronomical literature contains a variety of approaches, among which scan
statistics are prevalent. These have seen use in astronomical surveys [1, 2], but
they often discard information by working with ranks and account for neither
trends nor irregular sampling. Equivalent width methods (a scan statistic based
upon local deviations) are also common in astrophysics. However, these typically
rely upon Gaussian assumptions and relatively simple multiple testing corrections;
the latter can unnecessarily decrease detection power. Numerous other approaches
have been proposed in the literature, the vast majority of which rely upon Gaussian
distributional assumptions, stationary, and/or regular sampling.

This problem also has a long history within the statistical community, often
under the moniker of “change-point” or “regime-switching”. Some recent examples
include the work of Smyth and his collaborators [3, 4], who have used hidden
Markov models to model deviations from learned baselines in sensor count data.
There is a strong Bayesian lines of research on this topic; [5–7] are representative
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examples of this work. On the econometrics side, [8] and more recent work by
Perron and collaborators [9,10] are only a small part of the literature. Our setting is
differs greatly from those seen in the vast majority of previous work.

Most preceding work has dealt with single, long time series which provide a
high degree of internal replication. This allows methods to reliably ascertain what
behavior is “typical” and find deviations from it with little outside information.
In analyzing massive time-domain surveys, we have large sets of time series that are
less informative individually. We must therefore rely on replication across series and
prior scientific knowledge to find deviations from “typical” behavior. Furthermore,
we must handle the additional complications of astronomical data.

These complications arise from both the measurement processes used in
astronomical studies and the nature of the phenomena we study. The distribution of
measurement errors from ground-based observations is typically fat-tailed (extreme
outliers are prevalent). The resulting data requires more sophisticated noise models
than the typical Gaussian. Non-linear, low-frequency trends are also common due
to long-period variation in source intensity and/or calibration. Such trends render
naı̈ve, trend-free methods less effective; in particular, their specificity diminishes in
this setting. The related but distinct problem of non-event light curves with variation
at the time scale of interest also complicates our analysis and demands tools that
can discriminate between these cases. Finally, irregular sampling is ubiquitous in
astronomical surveys due to changes in the earth’s orientation throughout the year
and other factors. Irregular sampling can create artificial events in analyses that
discard observation times; therefore, our method must take this information into
account to maintain both high specificity and high sensitivity.

16.3 Models and Methods

Our analysis consists of two stages. First, we use a Bayesian probability model
to detect of sources with variation at a time scale of interest (i.e. the time scale
of events) and to reduce the dimensionality of our time series (using posterior
summaries). Second, we employ a classifier based on these posterior summaries
to discriminate among different types of variability. In the application described
in Sects. 16.5 and 16.6, these types correspond to periodic and temporally-isolated
(event-like) variability.

Formally, let V be the set of all time series with variation at a given time scale
of interest (e.g., the range of lengths for isolated events), and let S be a subset of V
corresponding to the time series of interest (events). For a given light curve Yi, we
want to estimate P(Yi ∈ S); that is, the probability that it is an event.

We decompose this probability as

P(Yi ∈ S) = P(Yi ∈V ∩S) = P(Yi ∈V ) ·P(Yi ∈ S|Yi ∈V ) (16.1)

estimating or bounding each probability separately using the techniques described
above. This decomposition allows us to employ generative techniques in the first
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stage while harnessing discriminative techniques in the second. We provide details
of the models underlying these techniques below and cover the corresponding
inference algorithms in Sect. 16.4.

16.3.1 Semi-parametric Model for Variable Light Curves

To flexibly model both non-linear trends and events at the time-scale of interest, we
turn to wavelets. Their localization in both time and frequency allows us to separate
event-like variation (characterized by a higher frequency) from trends (characterized
by a lower frequency) while preserving local structure of our light curves.

We begin by specifying a linear model for each time series with a “split”
incomplete wavelet basis:

y(t) = β0φ0(t)+
kl

∑
i=1

βiφi(t)+
M

∑
j=kl+1

β jφ j(t)+ ε(t) (16.2)

Here, y(t) is the observed magnitude at time t. We define (φ1, . . . ,φkl ) as the kl

lowest-frequency components of a discrete-frequency wavelet basis, and (φkl+1, . . . ,
φM) as the higher-frequency components. The idea is for (φ1, . . . ,φkl ) to model
structure due to trends, and (φkl+1, . . . ,φM) to model structure at the scales of interest
for events. We use an incomplete basis (excluding the highest frequencies) as we
are not interested in modeling variation at time scales below those of interest for our
events.

This basis formulation explicitly addresses irregular sampling as well. We simply
evaluate the basis functions at the observation times to obtain a valid model for
our light curve. This is simpler and more adaptable than, for example, using a
continuous time autoregressive model.

To stabilize our inferences and regularize our estimates in under-sampled time
periods (gaps), we impose a N(0,σ2 · τ) prior on (β1, . . . ,βM). This is conditionally
conjugate to an augmented form of our model, which allows for efficient inference.
The prior parameter τ is also readily interpretable: it is the number of artificial
observations we are introducing for each coefficient. We set τ = 1

100 for our
inference to reflect a diffuse prior; it is, however, sufficient to regularize our
estimates in under-sampled periods.

To account for the extreme outliers observed in our light curves, we assume
that our residuals ε(t) are distributed as independent tν(0,σ2) random variables.
This allows our inference to ignore isolated outliers, focusing on variation with
more structure. We fix ν for our model at 5; it is possible, although computationally
expensive, to infer ν as well.

Selection of the wavelet basis φ is an important consideration for this method.
It determines the trade-off between time and frequency localization for our in-
ference, and it also constrains (due to incompleteness) the types of variation we
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can approximate well. In general, this choice depends upon the scientific context.
We select the Symmlet 4 (a.k.a. Least Asymmetric Daubechies 4) wavelet basis for
this work for its high degree of time localization, reasonable frequency localization,
and quality of approximation for the phenomena of interest.

The final remaining choices are interval over which the basis is defined (to
which our observation times are rescaled), the dimensionality of our basis M,
and the number of “trend” components kl . All three of these are interrelated and
must be selected based on the time-scale of interest for events (as opposed to
trends). We scale our basis to an interval of length 2,048 and set M = 128, kl = 8.
This provides enough resolution to capture events at the scale of interest while
removing low-frequency trends and isolated outliers.

16.3.2 Screening for Variation at Frequencies of Interest

We screen light curves for further examination by testing H0 : βkl+1

= βkl+2 = . . . = βM = 0 against the alternative that any of these coefficients differs
from zero. This procedure will select many light curves that do not contain isolated
events, but its primary purpose is to provide a high-quality set of candidate light
curves of manageable size for further investigation and classification. These non-
event light curves contain variation at the scale of interest, but this variation may
be temporally diffuse. Our test statistic is 2(�̂1 − �̂0), where �̂0 is the log-likelihood
of the null model evaluated at the MAP estimates; �̂1 is the analogous quantity for
the alternative model. We use a χ2 approximation for the reference distribution
of this test statistic. Although this approximation is technically incorrect given
the use of an informative prior, it provides a reasonable approximation that holds
empirically. With this approximation, we employ a modified Benjamini-Hochberg
FDR procedure with a maximum FDR of 10−4 to set the critical region for our test
statistic [11, 12]. We present our validation for this technique in Sect. 16.6.2.

16.3.3 Classification Model for Isolated Variation

We engineered two features based on the model in Sect. 16.3.1 to discriminate
between diffuse and isolated variability in the light curves selected by our screening
procedure. Both are based on the normalized output of the preceding model, as this
allows us to remove the nonlinear trends and isolated outliers. We thus obtain a
high-quality, detrended and denoised representation of each light curve. We define
for each light curve

ỹ(t) =
M

∑
j=kl+1

β̂ jφ j(t) ; z(t) =
ỹ(t)−Mean(ỹ(t))

SD(ỹ(t))
(16.3)
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Our first feature is a monotonic transformation of a conventional CUSUM
statistic, defined as CUSUM via

S(t) =∑
s≤t

(z(s)2 − 1) ; CUSUM = log

(
1+

maxt S(t)−mint S(t)√
n

)
(16.4)

This captures the degree of temporal concentration for the variation in our fitted
values—larger values will correspond to localized deviations from the baseline,
while low values will correspond to deviations spread over a greater duration. It is
maximized for a single spike with a flat baseline.

Our second feature is “directed variation”. Our goal is for it to capture deviation
from symmetric variation (as would be observed in periodic or quasi-periodic light
curves). Letting zmed be the median of z(t), we define:

DV =
1

#{t : z(t)> zmed} ∑
t:z(t)>zmed

z(t)2 − 1
#{t : z(t)< zmed} ∑

t:z(t)<zmed

z(t)2 (16.5)

We tested a variety of classifiers including SVM (with linear and radial kernels),
kNN, and LDA. However, in the end, we obtained our best performance from
regularized logistic regression. We used a “weakly informative” prior as developed
by Gelman et al. [13] to stabilize the estimates from this model. We describe its
training and evaluation in Sect. 16.4.2.

16.4 Computation

Speed and scalability are the core goals of our computational strategy. We require a
method that scales to databases of 200 million or more light curves (for the EROS-2
survey). As a result, our inference is optimization-based (as opposed to simulation)
and highly-tuned for efficiency. We also manage the scale of training data where
possible, preventing the computational cost of inference from scaling poorly with
database size. We lay out the particulars of our algorithms below.

16.4.1 Efficient EM Inference for Semi-parametric Model

To obtain estimates of β0, . . . ,βM and σ2 in our semi-parametric model, we first
augment our model with a set of observation-specific variances. Let z(t) ∼ N(0,1)
independent of w(t) ∼ InvGamma( ν2 ,

ν
2 ). Then, we can represent ε(t) as ε(t) ∼

z(t) ·√w(t). This allows us to consider the set of w(t) as missing data, opening our
model to tools such as the EM algorithm [14].
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Following this approach, we employ an EM algorithm with the optimal data
augmentation scheme of [15] to obtain MAP estimates for the parameters of our
semi-parametric model. Compared to a naı̈ve EM implementation, we have found
that this scheme offers a five to tenfold reduction in the iterations required for
convergence.

We implemented this procedure in C with a direct interface to an optimized
BLAS/LAPACK implementation. This allowed us to obtain an average time per
complete estimation procedure (including EM estimation for both the null and alter-
native models, as specified in Sect. 16.3.2) of approximately 0.15–0.2 s, including
file I/O, using a single processor on Harvard’s Odyssey cluster. Memory usage was
below 16 MB per light curve, and this algorithm is embarrassingly parallel across
light curves. This combination allows our technique to scale to extremely large
sets of time series.

16.4.2 Training the Classification Model via Simulation

We train our classification model on a combination of simulated data and curated,
labeled light curves. Before descending into the details, we emphasize that this
model must distinguish between local and global variation in light curves that have
already passed the first-stage screen. Thus, our training data includes only such light
curves.

The training data consisted of 12,365 labeled variable light curves from
the MACHO dataset (periodic and quasi-periodic) and 9,170 simulated events
(microlensing) that passed the given screening procedure. We obtained maximum
a posteriori (MAP) estimates for this model via numerical maximization and
performed tenfold cross-validation to assess its predictive ability. This validation
showed excellent performance, with a mean cross-validated AUC of 0.991 on our
training data.

16.5 Data

We used data from the MACHO survey for training and testing. The knowledge and
information gained from this data was then used to analyze the EROS-2 survey.

The MACHO database consists of approximately 38 million LMC (Large
Magellanic Cloud) sources, each observed in two spectral bands [16–18]. Data
was collected from 1992 through 1999 on 50-inch telescope at Mount Stromlo
Observatory, Australia on 94 43×43 fields in two bands, using eight 2,048×2,048
pixel CCDs. This data contains substantial gaps in observations due to seasonality
and competing priorities for transient events.

The EROS-2 database consists of approximately 87.2 million sources, each
observed in two spectral bands. Imaging was conducted with a 1m telescope at ESO,
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La Silla between 1996 and 2003, each camera consisting of mosaic of eight 2K× 2K
LORAL CCDs. There are typically 800–1,000 observations per source, and irregular
observations are prevalent (although less so than in the MACHO data).

16.6 Results

16.6.1 Semi-parametric Model: Empirical Properties

The semi-parametric model provided reasonable fits for both MACHO and
EROS-2 data. It captured both non-linear trends (including changes in baseline
between observing periods). We provide examples of fits for both the null and
complete model on null and event light curves in Fig. 16.1.

16.6.2 Screening

To assess how well our LLR statistic and overall screening procedure performs
on the data of immediate interest, we simulated 50,000 events from a physics-
based model (for microlensing) and 50,000 null time series based on the observed
properties of the MACHO data. We obtain approximate power of 80% with an FDR
of 10−4 based on this simulated data.

Running this on the EROS-2 data, we obtain a reduction of approximately 98%
(from 87.2 million candidate light curves to approximately 1.5 million) from our
screening procedure. This greatly eased the computational burden of subsequent
analyses.

16.6.3 Classification of Isolated Events

Our classifier selected approximately 49,000 of the screened light curves as likely
isolated events (P ≥ 0.5). Of these, approximately 17,000 survived a final round
of screening before further investigation. This final screen consisted of removing
all fields with 20 or more identified events, as such clusters were not of scientific
interest for the current investigation. One major example of this from EROS-2 is
the supernova SN1987a, which affected light curves from the Large Magellanic
Cloud. For other investigations, however, such screening may not be appropriate or
necessary. We show the distribution of features for MACHO and EROS-2, with the
estimated classification boundary, in Fig. 16.2.
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Fig. 16.1 Examples of fits for null and event MACHO light curves. Null model is in blue;
complete model is in red



186 A.W. Blocker and P. Protopapas

Fig. 16.2 Distribution of classification features for MACHO (left) and EROS-2 (right) databases.
DV on the horizontal axis, CUSUM on the vertical axis

Within the events detected for EROS-2, we have found 68 known microlensing
events, 42 known supernovas, and 25 known Cepheids with an (admittedly in-
complete) database search (VizieR only). We have also identified several hundred
previously unidentified transient phenomena that we are investigating further. These
have been validated as previously unlabeled against a thorough database search
(VizieR, Simbad, and VO).

16.7 Remarks

The method we have demonstrated combines the power of principled probability
modeling with the speed and flexibility of more ad-hoc machine learning ap-
proaches. It scales to the analysis of massive astronomical time-domain surveys and
can be adapted to detect a variety of temporally-isolated phenomena. It does not
provide a final, scientific classification or analysis for light curves in these surveys;
rather, we want to predict which time series are most likely to yield phenomena
characterized by events (e.g. microlensing, blue stars, flares, etc.). Our technique is,
at its core, a tool for rigorously-grounded discovery rather than approximate final
analysis.

This, in turn, allows for the use of more complex, physically-motivated model
on massive databases by pruning the set relevant data to a manageable size.
We accomplish this while providing assessments of uncertainties at each stage of our
screening and detection, and we provide a sufficiently rich framework to incorporate
relevant domain knowledge.

We look forward to the application of this technique to more surveys and
phenomena; in particular, we are currently investigating data from Pan-STARRS.
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The approach demonstrated here can be applied to many other massive data
challenges within astronomy and beyond, bringing the power of Bayesian
probability modeling to massive data while maintaining computational tractability.
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Chapter 17
Bayesian Analysis of Reverberation Mapping
Data

Brendon J. Brewer

Abstract Reverberation mapping is a powerful technique for studying the broad
line regions (BLR) and the masses of the central black holes in distant active galactic
nuclei (AGN). By monitoring the temporal variations of the continuum emission
and the broad emission lines, it is possible to measure the size of the broad line
region, and combining this with velocity information from the line widths yields an
estimator for the black hole mass. However, this estimator depends on an unknown
dimensionless proportionality constant called the virial coefficient. Recently, we
have developed an alternative, direct approach to analyzing reverberation mapping
data that infers details of the astrophysical situation from the data, bypassing
the need for a virial coefficient and providing information about the physical
configuration of the BLR. In this contribution I will outline the method and discuss
how it differs from traditional reverberation mapping analysis.

17.1 Introduction

Reverberation Mapping is an important technique for measuring the masses of
the black holes that power Active Galactic Nuclei (AGN). The distribution of
matter surrounding the black hole can also be studied, yielding constraints on AGN
physics [3]. The measurement of black hole masses enables the study of the relations
between supermassive black holes and their host galaxies [9]. The method makes
use of the variability of the central continuum source [11], and the subsequent
response of the broad lines, emitted by orbiting gas (Fig. 17.1). In the traditional
method, the typical time delay, or lag, τ between the continuum variations and the
broad line response is measured by cross correlating the continuum light curve
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Fig. 17.1 The distribution of extra path lengths the light must travel from the central engine to
a BLR cloud and then to the observer is the cause of the delayed response of the emission-line
flux, and the variations in line shape. The distribution of BLR gas in this diagram corresponds to a
probable configuration inferred from the Arp 151 data [5]

with the line flux light curve. The time delay τ measures the size of the broad
line region (BLR), and the width of the broad lines, σl gives their typical orbital
velocities. These measurements combined can give an estimate of the black hole
mass, according to the formula [16]:

MBH = f
σ2

l cτ
G

(17.1)

Here, the black hole mass is given in terms of physical constants and measurable
quantities, but also depends on the dimensionless virial coefficient f . The virial
coefficient is meant to encode the effect of the geometrical configuration of the
BLR: for example, whether it is spherically symmetric, disky and face-on (this
would imply a high value for f ), disky and edge-on (implying low f ), or whatever.
However, if the value of f for any individual system is unknown, the black hole
mass inherits this uncertainty. Typically, the distribution of f values for a population
of AGN is used to indicate the uncertainty, implying that the uncertainty in an
individual black hole mass is influenced by the diversity of f values across all
systems, rather than on the data for that particular system.

The standard reverberation mapping procedure has been used with great suc-
cess [1, 2, 7, 17], and has provided the basis for the calibration of less costly
methods [8]. However, reverberation mapping data do not really arrive to us in the
form of a value for τ and σl . These numbers are the results of procedures performed
on the full data set, and there is no reason to think that they are sufficient statistics.
The full data set consists of time series of the observed continuum flux, and spectral
time series of the broad line response (i.e. the shape and flux of the chosen broad
emission line, over time). To make the most of the data, we should perform an
inference calculation based on the full data set (Fig. 17.2). For more details about
our approach, please see [15] and [5].



17 Bayesian Analysis of Reverberation Mapping Data 191

Fig. 17.2 Continuum flux time series for Arp 151, observed as part of the Lick AGN Monitoring
Project (LAMP), and the corresponding Hβ flux time series. Note that the full Hβ data set actually
consists of a spectrum at each time. i.e. there is also shape information, in addition to the flux
plotted here

17.2 An Inference Approach

To best exploit the data, we should directly answer the question “what possible
physical situations are plausible, in light of the data?”. We begin by defining a
hypothesis space and prior probabilities over that space, describing possible physical
scenarios that might describe the physical system. By Bayes’ rule, the posterior
distribution for the parameters given the data is then given by:

p(θ |D = D∗) ∝ p(θ )p(D|θ )|D=D∗ (17.2)

where D∗ is the actual data set that was observed. The posterior distribution
describes what is known about the parameters after taking into account the data,
and suitable summaries can be derived from the full distribution (best estimates and
error bars, credible intervals, etc.).

In our method, we numerically represent the geometry and kinematics of the BLR
by a large number of point-like clouds (although we also have an implementation
that describes the density function on a spatial grid). We do not aim to infer the
position and velocity of every cloud. Instead we parameterize the distribution of the
clouds by a small number of hyperparameters, and infer those hyperparameters. To
generate a description of a 3D distribution of BLR clouds, we start by generating an
axisymmetric distribution in the x-y plane, and then apply rotations to “puff up” the
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model into a 3D configuration. Finally, we weight the clouds by a non-axisymmetric
illumination function to model non-axisymmetric distributions of gas. See [5] for
details on how we parameterize the position and velocity distribution of the BLR
gas.

Before we take into account a data set, we must describe our prior knowledge of
the parameters. The parameter list is

{
MBH ,μ ,F,β ,φopen,φinc,κ ,q,λ ,ycont(t)

}
(17.3)

These are the black hole mass, the mean radius of the BLR, the fraction of the mean
radius that is caused by a lower cutoff, the shape parameter of the radial BLR profile,
the opening angle of the BLR, the inclination angle, the strength of the front/back
asymmetry, the fraction of inflowing clouds, the departure from circularity of the
orbits, and the continuum light curve at all times.

The prior distribution for ycont(t), before conditioning on the continuum data, is
assigned to be a Gaussian process with mean y0 and covariance function

C(Δ t) = σ2 exp

(
−
∣∣∣∣Δ t

L

∣∣∣∣
α)

(17.4)

which introduces additional hyperparameters σ (the typical variation amplitude),
L (the typical variation timescale) and α ∈ [1,2] (describing the smoothness
of the variations). This Gaussian process model, in the case α = 1, has been
studied extensively in the context of AGN variability [11–13] and reverberation
mapping [19]. This expands the full parameter list to

{
MBH ,μ ,F,β ,φopen,φinc,κ ,q,λ ,ycont(t),y0,σ ,L,α,A

}
(17.5)

where we have also added a response coefficient A. The priors for all of these
parameters are generic ignorance priors, uniform either in the parameter or its
logarithm (where appropriate).

The sampling distributions p(D|θ ) can be assigned by considering mock data.
Specifically, if we knew all of the details of the physical situation, we would be able
to predict mock noise-free spectra. The sampling distribution can then be assigned
as a multivariate normal distribution, with mean values equal to the simulated noise-
free data, and variances given by the supplied “error-bars” on the data. Of course, in
reality, our model does not account for all effects apart from noise, but this common
assumption provides a useful starting point.

With any complex Bayesian Inference problem in more than a few dimensions,
the best way to summarise the posterior distribution is to generate random samples
from it. To implement our parameter space exploration, we used Diffusive Nested
Sampling [6] (DNS). DNS is an efficient MCMC-based version of Nested Sampling
that works by exploring a mixture of the prior and a sequence of more constrained
distributions that are created as the algorithm proceeds. For the purposes of
exploring the parameter space efficiently, the main advantage of DNS is that it
continually revisits the prior, “forgetting” its location along degeneracy curves.
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Fig. 17.3 The probability distribution for the black hole mass as a function of the compression
of parameter space. Each step along the x-axis corresponds to selecting the best 1/e ≈ 37% of the
remaining parameter space from the previous step, in terms of likelihood

17.2.1 Systematic Errors and Nested Sampling

In the application to the Arp 151 data [5], it was discovered that our BLR model
could not fit the data to within the very small supplied error bars. Of course,
the best solution to this is to develop more complex models with more freedom
and more realistic physics, so that the data could be fit more exactly. However,
the fit of this simple model to the data is still of some utility. In an attempt to
obtain reliable inference of the black hole mass from an oversimplified model,
we experimented with decreasing the constraining effect of the data, making the
posterior distribution more conservative, i.e. more like the prior. Figure 17.3 shows
the posterior distribution for the black hole mass as a function of compression. At
x = 0 in this plot, the prior for the black hole mass is shown. As the parameter
space is compressed by Nested Sampling (finding the best 1/e of the remaining
prior mass), the x-value advances by 1. After about 20 compressions, the posterior
inference on the black hole mass is remarkably insensitive to further compression.
We discovered that all models above a compression of 20 reproduce the major
qualitative aspects of the data, despite not fitting to within the error bars. However,
most models below a compression of 20 do not resemble the data at all. Therefore,
we selected models between a compression of 20 and 35 to form the posterior
distribution. Note that the effect of this selection is very similar to the effect of
raising the temperature of the likelihood function, or increasing the size of the error
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bars on the data. An important advantage of Nested Sampling over other sampling
techniques is that all values for the temperature or compression are obtained in
a single run, making it computationally trivial to consider the consequences of
weakening the effect of the data.

17.3 Conclusions

The median and 68% credible interval for the black hole mass in Arp 151 was
found to be 106.51± 0.28 M�. This is lower than, but overlaps with, the value
of 106.85± 0.07 M� obtained by [4] assuming log10 f = 0.74 based on requiring
active and inactive galaxies to obey the same correlation between MBH and host-
galaxy stellar velocity dispersion σ∗ [14], and neglecting uncertainty in f . Recent
measurements suggest that the intrinsic uncertainty in f from the standard method is
at least 0.4 dex [10, 18], 33% higher than our uncertainty. Reversing the traditional
argument, our measurement implies that log10 f = 0.40±0.28, a low value, for this
particular system. This low value agrees with the updated estimate of f̄ from [9],
although the low value may also just apply to this single system. Our method also
allows for the inference of more structural parameters of the BLR, not just the mean
radius and the black hole mass. Although the basic philosophy is sound, future
work is needed to improve the realism of the physics and the flexibility of the BLR
distribution in our model. This will result in more robust, and hopefully smaller,
black hole mass uncertainties, and a more detailed picture of the physics of AGN.
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Chapter 18
Bayesian Mixture Models for Poisson
Astronomical Images

Fabrizia Guglielmetti, Rainer Fischer, and Volker Dose

Abstract Astronomical images in the Poisson regime are typically characterized
by a spatially varying cosmic background, large variety of source morphologies and
intensities, data incompleteness, steep gradients in the data, and few photon counts
per pixel. The Background-Source separation technique is developed with the aim to
detect faint and extended sources in astronomical images characterized by Poisson
statistics. The technique employes Bayesian mixture models to reliably detect the
background as well as the sources with their respective uncertainties. Background
estimation and source detection is achieved in a single algorithm. A large variety
of source morphologies is revealed. The technique is applied in the X-ray part of
the electromagnetic spectrum on ROSAT and Chandra data sets and it is under a
feasibility study for the forthcoming eROSITA mission.

18.1 Introduction

One of the hot topics in X-ray (quantum energies > 0.1 keV) image analysis is the
detection of faint sources. Both point-like and extended faint sources may provide
important information about the Cosmos. For instance, a quantitative analysis of
the abundance of galaxy clusters and groups as a function of redshift allows one to
constrain cosmological parameters, to test the models for structure formation and

F. Guglielmetti (�)
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse,
D-85748 Garching, Germany
e-mail: fabrizia@mpe.mpg.de

R. Fischer • V. Dose
Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, Germany
e-mail: Rainer.Fischer@ipp.mpg.de; vod@rzg.mpg.de

E.D. Feigelson and G.J. Babu (eds.), Statistical Challenges in Modern Astronomy V,
Lecture Notes in Statistics 209, DOI 10.1007/978-1-4614-3520-4 18,
© Springer Science+Business Media New York 2013

197



198 F. Guglielmetti et al.

to provide the basis for follow-up studies of physical properties of these systems
[1,3]. The detection and characterization of faint sources require advanced statistical
methods.

18.1.1 The Data

X-ray images are characterized by few or no photon counts per pixel also for long
exposures. The data consists of a diffuse background with superposed celestial
objects, corrupted by Poisson noise and affected by instrumental complexities.
Poisson noise dominates the signal especially at high frequencies of the electro-
magnetic spectrum. The instrumental complexities are, e.g., exposure variations,
instrumental structures as detector ribs and charge-coupled device (CCD) gaps,
smearing and vignetting effects, CCD failures and instrumental calibrations. An
astronomical image is often a combination of several individual pointings, as for
deep observations and mosaics of images, and the effects due to steep gradients
in the data are cumbersome. Furthermore, the X-ray background is a composition
of instrumental, particle and cosmic emissions. The cosmic background is not
necessarily spatially constant. Celestial objects are characterized by a large variety
of morphologies and apparent brightnesses. Sources, especially extended ones, can
be superposed to both, smooth and highly, varying background.

18.1.2 Challenges in Image Analysis

The interpretation of observational data is a difficult task, especially when detecting
faint sources and their (complex) morphologies. Several approaches have been
developed so far. However, previous techniques do not jointly detect a large variety
of source morphologies and describe large variations in the background.

An ideal source detection method should be capable to, preserve the statistics
through the whole algorithm, detect faint sources, detect both point-like and ex-
tended sources, including complex morphologies, provide an accurate background
estimation, include the exposure map in the background model, and provide
uncertainties of estimates. Each of these desiderata entail a challenge in source
detection and background estimation. In fact, the nature of the data of X-ray images
is described by Poisson statistics and Poisson noise affects the data. Furthermore,
joint background estimation and source detection is essential for a reliable detection
of celestial objects and for a proper propagation of errors in background and source
estimates. Conventional methods employ a threshold level for separating the sources
from the background. Often, the threshold level is described in terms of the noise
standard deviation, then translated into a probability (p-values). An ideal source
detection method has to replace the threshold level by a measure of probability. In
the same line of arguments, parameters entering the models need to be estimated
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from the data. In addition, the detection of extended sources is commonly achieved
in several steps, e.g., reanalyzing the image after removing point sources from the
image. Consequently, uncertainties in the data are not properly accounted for. In
order to detect faint and extended sources, source features extending to the edge of
the field of view and for providing good estimates in object photometry, a stable
background model is essential. The estimation of a reliable background model
and its uncertainties is a demanding task. Many techniques subtract an estimated
background from the data, leading even to negative count rate values of the signal
of interest: See, e.g., [4]. Moreover, the background model has to incorporate the
exposure map. Exposure maps include also factors such as vignetting, defective
pixels and instrumental structures, resulting in lack of data. The missing data must
be handled consistently for the background estimation to prevent undesired artificial
effects. Hence, the challenge is to preserve the statistics while taking into account
the exposure map in the background model. The last demanding aspect for an ideal
source detection method is the proper quantification of uncertainties of estimates.

Note that the knowledge of the instrumental point-spread-function (PSF) is not
considered essential for source detection. A source detection algorithm designed
for the detection of a large variety of source morphologies should be able to operate
effectively without the PSF information. Source detection methods employing a PSF
or its functional form are designed for the detection of point-like objects regardless
of extended ones [5].

18.2 The Background-Source Separation Algorithm

The Background-Source separation (BSS) algorithm [2] is a probabilistic tool
capable to satisfy the desiderata and tackle the challenges described in Sect. 18.1.2.

The BSS algorithm employs the single observed data set (photon image and
exposure map) for source detection and background estimation. Bayesian proba-
bility theory (BPT) is the statistical tool used within the BSS technique, supplying a
general and consistent frame for logical inference. Hence, the BSS algorithm takes
advantage of all available information over a parameter set, which is described
by a probability density over the corresponding parameter space. For each image
pixel {i j} two complementary hypotheses are considered Bij : dij = bij + εij and
Bij : dij = bij + sij + εij. Hypothesis Bij specifies that the data dij consists only
of background counts bij spoiled with noise εij, i.e., the (statistical) uncertainty
associated with the measurement process. Hypothesis Bij specifies the case where
additional source intensity sij contributes to the background. Two assumptions are
taken into account: No negative values for sij and bij are allowed and bij is smoother
than sij. For modelling the structures arising in the background rate of the photon
image, the thin-plate spline (TPS) is chosen. A weighted combination of TPSs
centered about each supporting point gives the interpolation function that passes
through the supporting points exactly while minimizing the bending energy. The
TPS is not wavering between the supporting points, in opposite to cubic-splines,
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and is steady along the field, also where steep gradients in the data occurs, as at the
field edge. The background amplitude, instead, consists of the TPS multiplied with
the exposure map. Another important aspect of the technique is the likelihood for
the mixture models, that arises applying BPT with the mixture model technique. The
Bayesian mixture model is composed of two parts: a Poisson likelihood probability
density function (pdf) p(dij | Bij,bij), i.e., bij contribution only, and a marginal
Poisson likelihood pdf p(dij | Bij,bij,γ), i.e., bij plus sij components, where sij is
marginalized and a parameter γ is introduced. According to BPT, prior pdfs have
to be considered for both complementary hypotheses and for the source intensity
parameter. The prior probability for the two complementary hypotheses, i.e., to have
background only or additional source signal in a pixel or pixel cell,1 is chosen to be
β and 1−β . Two prior pdfs over the source signal have been considered and tested:
(1) an exponential prior pdf, (2) an inverse-Γ function prior pdf. Both prior pdfs of
the source signal introduce the parameter γ . The likelihood for the mixture models
results to be:

p(D | b,β ,γ) =∏
i j
[β · p(dij | Bij,bij)+ (1−β ) · p(dij | Bij,bij,γ)];

D = {dij}, b = {bij}. (18.1)

Equation 18.1 allows one to separate background and sources, considering all
pixels for the background spline estimation, even those containing additional source
contribution. It expresses our ignorance about the presence of background only or
an additional source contribution in a certain pixel or pixel cell. This allows us to
evaluate the posterior distribution over the background, p(b|D), and the probability
of having source contributions in pixels and pixel cells, p(Bij|dij) .

p(b|D) is the product of (18.1) and the prior pdf p(b), that is chosen constant
for positive values of b and null elsewhere. The maximum of the posterior pdf with
respect to b gives an estimate of the background (amplitude) map. The background
estimate is provided by the Gaussian approximation, where the Hessian matrix is
used to extract the uncertainties of the background for each image pixel. Note that
in (18.1) the model parameters γ and β appear. The values of γ and β and their
uncertainties are estimated from the marginal posterior pdf p(β ,γ|D), under the
assumption of the Laplace approximation.

The probability p(Bij|dij) for each pixel and pixel cells is approximated taking
into account the optimal values of the background amplitude and the model
parameters. p(Bij|dij) includes the Bayes factor. p(Bij|dij) estimated for varying
correlation lengths of pixels give rise to the multiresolution analysis. The multires-
olution analysis has the aim to analyze statistically source structures at multiple
scales. The scales are the correlation lengths employed to create pixel cells. Source
probability maps (SPMs) are created at different scales. SPMs allow one to separate

1We define pixels as the image finest resolution limited by instrumental design, while we define
pixel cell a group of correlated neighboring pixels.
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Fig. 18.1 Discovery of a cluster of galaxies and confirmed with optical sky surveys. Panel a: Soft
band image of the ROSAT All-Sky survey (RASS) field RS932209n00. The image accounts for
photon count/pixel in the range 0− 9. Panel b: POSS-II I plate with superposed X-ray contours
from RASS field RS932209n00 (panel a) corresponding to 2, 3 and 4σ above the local X-ray
background. This cluster of galaxies is known in the optical part of the electromagnetic spectrum
as ACO S 340
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point-like from extended sources. Note that background and sources are represented
in the mixture components, ensuring no need of background subtraction for source
detection. Furthermore, Poisson statistics is preserved also in the multiresolution
analysis.

The BSS algorithm allows also for a multiband analysis. When multiband images
are available, the information contained in each image can be statistically combined
in order to extend the detection limit of the data. Conclusive posterior pdfs are
provided for detected sources from combined energy bands.

The BSS algorithm is a general, powerful and flexible Bayesian technique for
background and source separation. The technique is general since it is applicable to
astronomical images coming from any count detector. The aim of providing more
reliable results, with respect to previous techniques, for faint and extended sources
is achieved: See, as example, in Fig. 18.1 the BSS detection of a new X-ray cluster
of galaxies. The technique is flexible, because it can easily be extended to other
statistics and astronomical problems in image analysis.
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Chapter 19
Systematic Errors in High-Energy Astrophysics

Vinay Kashyap

Abstract Systematic errors are a crucial component of astronomical inference.
In high-energy astrophysics, a great deal of effort is spent to minimize their effect,
and analysis methods have matured over the years to automatically include high-
quality calibration. However, calibration products are generally used as perfect
representations of the instruments, and inherent uncertainties in their generation,
both statistical and systematic, are ignored. We have developed a methodology
by which such errors can be incorporated into analyses, via a modification of
the MCMC process. Here we describe some recent developments by the Chandra
calibration team to define, construct, and communicate the magnitude and charac-
teristics of systematic calibration uncertainties. Our procedure can be generalized to
incorporate different methods of defining the uncertainties.

19.1 Introduction

Astronomers have fully grasped the necessity of providing statistical error bars
to parameter estimates. However, systematic errors are usually ignored while
estimating the error budget. Consider the general observational model, which
describes the translation from a known source model S(E,x, t;θ ) to its expected
signal in a detector,

M(E∗,x∗, t;θ ) =
∫

dE dx S(E,x, t;θ ) A(E,x∗;x, t)R(E,E∗;x∗, t) P(x,x∗;E, t) ,

(19.1)

where E is the intrinsic energy of the incoming photons and E∗ is the energy
measured in the detector, x is the location in the sky and x∗ is the detector
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location, t is the time, A(.) is the effective area (aka ARF), R(.) is the energy
redistribution matrix (aka RMF), and P(.) is the spatial redistribution matrix (aka
PSF). The observed signal is usually Poisson(M), though there can be some more
processing applied depending on the detector used. Calibration is defined by the
values of the ARF, the RMF, and the PSF, and are usually determined through
laboratory or in-flight measurements of objects with well-understood behavior.
None of these are perfectly known, but they are used in analyses as though
they are. Thus, when the data are analyzed to determine θ , given the nominal
calibration products, the resulting uncertainty on it is invariably underestimated.
In the following, we will consider how the errors on θ are affected and how they
may be accounted for. In the process, we will describe a method that has the potential
to take into account generally all types of systematic errors.

19.2 What is Systematic Error?

There are two forms of systematic error: First, it is the systemic, case-dependent
kind where the uncertainty does not decrease when sample size is increased, unlike
statistical error. This is manifested, for instance, in persistent deviations in fit
residuals. Second, it is the kind that is introduced due to choosing a single realization
of an underlying response function when in truth the response itself is subject to
statistical error.

The typical tactic in dealing with systematic uncertainty is to square-add the
errors, in analogy with error propagation in the Gaussian regime. But this is sub-
optimal for many reasons: the error bars may be asymmetrical, and there is no way
to incorporate biases and true systematics, and it is at best useful only in a strict
Gaussian regime. An excellent example of the systematic errors that are present
in the effective areas of current high-energy missions is shown by discrepancies
in the simultaneously measured fluxes of the same object in different instruments
(see, e.g., [4] in the case of the SNR G21.5, and [3] in the case of the SNR E0102).

19.3 Uncertainties in ACIS Effective Areas

A detector is a complex instrument, consisting of many subsystems. Each of
the subsystems are separately calibrated, and they interact in highly non-linear
ways. Analytical treatments of such systems are impossible to develop, and even
a complete numerical modeling is beyond our computational ability at this stage.

Drake et al. [1] devised a Monte Carlo scheme where the uncertainty in each
subsystem of the Chandra/ACIS-S detector was used to draw values that were then
folded together to generate a plausible effective area curve, Ai. A number of such
realizations of the effective area can be made, producing a sample of effective
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areas, A = {Ai, i = 1..M}. From a statistical viewpoint, A represents a black-box
sampling from the prior distribution on the effective area, p(A). The effective areas
thus generated demonstrate the complex nature of the calibration uncertainties. First,
that there is a bias between the mean of the sample and the nominal effective area A0

that is generated from the nominal values adopted for all the subsystems. Second,
even though the values at a given energy are distributed in a manner that appears
to be Gaussian, there are correlations across energy that preclude us from simply
adopting independent error estimates at each energy.

19.4 Incorporating Calibration Errors

Once the calibration sample, A , has been generated, the question becomes how to
use it within data analysis. Here we describe a modified Markov-Chain Monte Carlo
(MCMC) method that is flexible, robust, and fast (see [2]).

Consider an MCMC sample obtained by sampling the model parameters θ given
the data, Y , and the calibration product, A = A0,

θ (k) ∼ p(θ |Y,A0) ,

where θ (k) are the values of the parameters at iteration k. The set of parameter
values thus obtained is used to estimate the best-fit values and the error bars. When
calibration uncertainty is included, it is no longer possible to condition on A0.
Instead we add a new step that updates A according to the calibration uncertainties.
In particular, θ (k) is updated using the same iterative algorithm as above, with
an additional step at each iteration that updates A. Suppose at iteration k, A(k) is
the realization of the calibration product. Then the new algorithm consists of the
following two steps:

A(k) is sampled from p(A|Y ) and

θ (k) is sampled from p(θ |Y,A(k)).

If we assume that the data are not informative towards determining the values of
the calibration, which is a good assumption for the vast majority of the cases, we
can simplify the above by replacing p(A|Y ) with p(A):

A(k) is sampled from p(A) and (19.2)

θ (k) is sampled from p(θ |Y,A(k)). (19.3)

This independence assumption gives us the freedom not to estimate the posterior
distribution p(A|Y ) and simplifies the structure of the algorithm. It effectively
separates the complex problem of model fitting in the presence of calibration
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uncertainties into two simpler problems: (1) fitting a model with known calibration
and (2) the quantification of calibration uncertainties independent of the current
data Y .

19.5 Generalization

The Bayesian method we have developed to deal with systematic calibration errors
in the effective area (Sect. 19.4) can be generalized in two ways: first, to allow for
the calibration sample to be modified by the data, and second, to extend the methods
to other calibration products and other types of problems. These efforts are still in
progress.

Fully Bayesian Method: We had originally assumed that the calibration sample
A was invariant and that the data cannot be used to select a subspace in it that is
more probable than other subspaces. This assumption is valid when the data quality
is not as high as the data that was used to derive the calibration products in the
first place. There is also an implicit assumption made that the calibration products
are close to being correct. However, we can employ a fully Bayesian approach that
bases inference on the full posterior distribution p(θ ,A|Y ). To accomplish this, we
set up a two-step Gibbs sampler,

STEP 1: Sample A(k+1) ∼ p(A|θ (k),Y ).
STEP 2: Sample θ (k+1) ∼ K (θ |θ (k);Y,A(k+1)).

where K is the MCMC sampling kernel and k is the iteration step. Notice that
STEP 1 requires that A be updated given the current data and parameter value. This
is a computationally challenging step, and work is in progress to make the problem
tractable.

Other Calibration Products: As noted in (19.1), calibration is defined using the
ARF, RMF, and the PSF. Of these, the ARF is generally 1D, and the RMF and PSF
are at least 2D. Carrying or generating samples of these quantities for every analysis
can be prohibitive in both computational and storage costs. We have developed a
PCA-based method to compress the information in ARFs so that the sample size
can be reduced from O(103) to O(10). Preliminary analysis shows that a similar
approach may work for the RMF and PSF. However, current PC decompositions of
2D calibration products are not physically interpretable, thus making it difficult to
choose the number of components to compress the calibration sample. Nevertheless,
our analysis of the effective area calibration sample suggests that a mode of writing
the calibration sample that makes it feasible to generalize to any product,

Replicate Calibration Product = Mean

+Offset

+Explained Variability

+Residual Variability , (19.4)
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where the Mean is the mean of the calibration sample, the Offset is the shift
imposed on the center of the distribution of calibration uncertainty that accounts for
biases, the Explained Variability is the portion of the variability that summarize in
parametric and/or systematic way (e.g., using PCA), and the Residual Variability
is the portion of the variability left unexplained by the systematic summary.
This formulation allows a flexible presentation of the uncertainty:

1. When a large calibration sample is available, the random component may be
set by selecting an index chosen randomly at each iteration, with the calibration
product corresponding to that index used in that iteration. This process preserves
the weights of the initial calibration sample, and in this case the residual
component is identically zero.

2. In some cases, the calibration uncertainty is characterized by a multiplicative
polynomial or spline factor that modifies the source term in (19.1). In this case,
both the source model parameters θ and the modifying function parameters θcal

are fit to the data that are used to determine the calibration products. Then, the
Explained Variance component can be generated by sampling from the posterior
distribution for θcal , with the offset and residual terms identically zero.

3. Often, only a vague estimate of a bias over a small passband is available
to characterize the calibration uncertainty. This can be accounted for as a
randomized additive constant term.

19.6 Summary

We have developed a new method for describing and incorporating systematic errors
due to calibration uncertainties in high-energy data analysis. Our goal has been to
obtain realistic error bars on astrophysical source model parameters that include
both statistical and systematic errors. This work holds promise for generalizing the
treatment of instrumental uncertainties to high-dimensional analyses.
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Chapter 20
Hierarchical Bayesian Models for Type
Ia Supernova Inference

Kaisey S. Mandel

Abstract Type Ia supernovae (SN Ia) are the most precise cosmological distance
indicators and are important for measuring the acceleration of the Universe and the
properties of dark energy. Current cosmological analyses use rest-frame optical SN
Ia light curves to estimate distances, whose accuracy is limited by the confounding
effects of host galaxy dust extinction. The combination of broadband optical and
near-infrared (NIR) light curves and spectroscopic data has the potential to improve
inference in supernova cosmology. I describe a principled, hierarchical Bayesian
framework to coherently model the multiple random and uncertain effects underly-
ing the observed data, including measurement error, intrinsic supernova covariances,
host galaxy dust extinction and reddening, peculiar velocities and distances. Using
a new MCMC code, BAYESN, to compute probabilistic inferences for individual
SN Ia and the population, I applied these hierarchical models to the joint analysis
of the optical, near-infrared (NIR), and spectroscopic data from a large sample of
nearby SN Ia. The combination of optical and NIR data better constrains estimates
of the dust effects and approximately doubles the precision of cross-validated SN Ia
distance predictions compared to using optical data alone. The hierarchical model is
extended to include spectroscopic data to estimate significant correlations between
the intrinsic optical colors and ejecta velocities. These applications demonstrate the
power and flexibility of multi-level modeling in the analysis of SN Ia data.

20.1 Introduction

Although Type Ia supernovae (SN Ia) are generally thought to arise from the
thermonuclear explosions of degenerate carbon–oxygen white dwarf stars, the exact
nature of the progenitors and the mechanisms for the explosions are still uncertain.
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Despite the uncertainty in their astrophysical nature, SN Ia rest-frame optical light
curves have been of great utility for inferring the distances to galaxies and measuring
fundamental quantities of the universe. As standardizable candles, they were critical
to the detection of cosmic acceleration [37, 38]. The cosmic acceleration may be
caused by a dark energy component of the universe. Recent efforts constrain the
equation-of-state parameter w of dark energy to ∼10%, [1,2,11,21,26,28,45] using
SN Ia. SN Ia have also been used to establish the extragalactic distance scale and
measure the Hubble constant (recently [40–42]). Frieman et al. [12], Kirshner [27]
and Howell [22] provide recent reviews of the use of Type Ia supernovae to constrain
cosmology and dark energy.

The utility of SN Ia as distance indicators is based upon the standard candle
principle: if SN Ia all had a single peak luminosity, then their relative distances
can be determined from their observed apparent brightnesses. However, SN Ia are
not exactly standard candles, and there are variations between different events.
Statistical models for SN Ia as distance indicators exploit empirical correlations
between peak optical luminosities of SN Ia and distance-independent measures
such as light curve shape and color observed in the sample of nearby low-z SN
Ia [5, 13, 19, 20, 23, 39]. One of the largest systematic uncertainties limiting the
precision of distance estimates from rest-frame optical light curves is dust extinction
in the host galaxy and the confounding of dust reddening with the intrinsic color
variations of SN Ia [4]. Current approaches differ conceptually and practically on
how apparent colors, intrinsic colors, and dust effects are modeled. While most
methods make use of the optical luminosity-light curve width correlation, some
methods, such as MLCS [24,38,43], attempt to separately model the intrinsic colors
of the SN Ia and host galaxy dust reddening and extinction, whereas others model
both effects with a single factor (e.g. SALT2; [17, 18]).

A quite promising approach towards mitigating the dust extinction problem
is through the near-infrared (NIR). Observations of nearby SN Ia in the NIR
revealed that the peak NIR luminosities of SN Ia have a dispersion smaller than
0.20 mag [5, 6, 30, 31, 36, 44], and could be utilized to estimate distance with a
precision competitive with those derived from optical light curve shapes. The effect
of dust extinction is significantly diminished at NIR wavelengths, relative to the
optical. The combination of optical and NIR observations of SN Ia light curves
could lead to even better estimates of SN Ia distances [29].

To address some of the challenges in the statistical modeling of Type Ia super-
nova, I have introduced a fully Bayesian, hierarchical or multi-level, framework
for modeling the population of SN Ia and individual events. This is a natural,
intuitive, and principled statistical approach: our observed data arise from multiple
random and uncertain effects, such as measurement error, dust extinction, distances
and peculiar velocities, acting on individual supernovae, but we wish to ultimately
learn about the statistical characteristics, especially the intrinsic variations and
correlations, of the SN Ia and dust populations and how best to use them to make
predictions. I describe the conceptual framework and computational strategy in
Sect. 20.2, and describe the application to the data and results in Sect. 20.3. Further
details about this work can be found in Mandel et al. [34, 35] and Mandel [33].
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20.2 Statistical Inference with Type Ia Supernovae

An example of a set of broadband SN Ia light curve observations is shown in
Fig. 20.1. The left panel plots the time series of apparent magnitudes in the optical
(BVRI) and NIR (JH) broadband filters of a nearby SN Ia designated SN 2005eq.
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Fig. 20.1 (Top) Optical (BV RI from CfA3; [20]) and NIR (JH from PAIRITEL; [44]) light
curve data of nearby (z = 0.03) Type Ia SN 2005eq, as observed by the CfA supernova group,
are fitted with a non-parametric Gaussian process multi-band light curve model. (Bottom) Optical
and NIR light curves of SN 2005eq are used to infer the host galaxy dust extinction properties.
The hierarchical model enables coherent inference of host galaxy dust properties (AV ,RV ), while
marginalizing over the posterior uncertainties in the dust and SN light curve populations. The cross
indicates the marginal bivariate mode, and the two black contours contain 68% and 95% of the
posterior probability. The inferred NIR extinction AH is much smaller than the optical extinction
AV and has much smaller uncertainty
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Observing the time series over an extended period of time is important for measuring
and utilizing the population correlations between the shape of the light curves and
the intrinsic properties of the SN Ia. Furthermore, the multi-wavelength observations
provide constrains on the effects of the dust in the host galaxy of the SN Ia. The
spectroscopic redshift (z = 0.03) is measured from the host galaxy spectrum.

20.2.1 Multiple Random Effects

The utility of SN Ia for cosmology inference rests upon empirical relations seen
in the observed data of a sample of supernovae. The useful correlations between
luminosity, color, and light curve shape are captured by statistical models that are
learned from the data (as opposed to being set by theoretical models of supernova
explosion physics). As a consequence, useful and realistic statistical models for SN
Ia must deal with multiple sources of randomness and uncertainty.

The observed, apparent light curves of a SN Ia are the sum of its intrinsic,
absolute light curves at multiple wavelengths, the effect of dust, the distance
modulus and measurement error. The most obvious source of randomness is the
photometric error in measuring the apparent brightness of the SN Ia in a series
of images over time. The time series of measured brightnesses of each SN Ia in
each broadband filter and its measurement errors are reported by the observers. The
temporal or wavelength coverage of the data may not be uniform or complete for
each SN Ia.

In addition to measurement error, SN Ia light curves have a component of
intrinsic variation or randomness. The multi-wavelength absolute light curves of
different SN Ia have different luminosities, different light curve shapes, and different
colors. However, these properties of the supernovae are correlated in the population:
e.g. SN Ia with fast-declining light curves tend to be intrinsically dimmer. SN Ia
statistical models must capture and utilize these population-level correlations to
infer the luminosities and distances to SN Ia.

The light originating from the SN Ia is attenuated by a random amount of
interstellar dust in its host galaxy. The dust absorbs and scatters light to make
the SN Ia appear dimmer. Since the effect of distance is also to make the SN Ia
dimmer, these are partially confounding factors. They are not exactly degenerate
effects, however. Dust tends to absorb and scatter the photons at short wavelengths
more than at long wavelengths, and this causes a reddening effect in addition to the
dimming. Importantly, the physical effect of dust along the line of sight to the SN
is only to make it look dimmer and redder, not brighter and bluer, relative to the
intrinsic SN colors.

To learn the statistical characteristics and absolute properties of a sample of
nearby SN Ia, it is sufficient to constrain the distance by invoking the relation
between the distance and recession velocity (or redshift) of a galaxy (Hubble’s Law),



20 Hierarchical Bayesian Models for Type Ia Supernovae 213

for a given Ho, as it is relatively insensitive to the cosmological parameters in this
regime. However, the relationship between the measured redshift of a supernova’s
host galaxy and its distance is noisy due to the random motions of galaxies with
respect to the overall expansion. Hence, when “training” the model on a nearby
sample, the variance around the distance-redshift relation due to these peculiar
velocities must be accounted for in the likelihood function. When using the model to
predict the distances of high-z SN Ia from the light curves alone, the random peculiar
velocities must also be accounted for when fitting the distance-redshift relation as a
function of the cosmological parameters.

20.2.2 A Hierarchical Bayesian Approach

A hierarchical Bayesian, or multi-level modeling, strategy is an ideal framework
in which to express structured probability models describing multiple, physical
random effects latent in the observed data. It allows one to coherently model and
make inferences at both the level of an ensemble or population of objects as well
as at the level of individuals from the ensemble. This statistical approach is well-
known in the statistics literature (e.g. [14]) and has been discussed previously in the
astro-statistics literature (e.g. [32]).

I have applied the hierarchical Bayesian paradigm to the statistical modeling of
the multiple random and uncertain effects underlying the SN Ia data: measurement
error, intrinsic variation and correlation of absolute light curve properties, host
galaxy dust extinction and reddening, peculiar velocities, redshifts and distances.
This approach enables the coherent estimation of the populations and individuals
underlying the ensemble of SN Ia data, i.e. the parameters describing the intrinsic
properties, dust effects, and distances of individual SN Ia, and the hyperparameters
describing population of the intrinsic SN Ia and the dust distribution. Inference with
the hierarchical model may be thought of as a probabilistic deconvolution of the
observed SN data into the multiple latent random effects generating it.

The global posterior probability density, derived from the modeling assumptions
and Bayes’ Theorem, provides a unified measure of the joint uncertainties in the
unknowns given the observed data and a clear objective function for the analysis. It
quantifies the trade-offs and degeneracies in inference between competing effects,
for example, the intrinsic color and extrinsic dust effects, and allows one to
marginalize over these trade-offs between “nuisance” parameters when making
inferences and predictions of other parameters of interest, for example, distances.
The hierarchical approach naturally deals with the missing data problem (SN Ia
data is sometimes sparse, and incomplete!), and its modularity simplifies model
expansion.
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Fig. 20.2 Hierarchical framework for statistical inference with SN Ia light curves. The global
posterior density of the hierarchical model parameters given the full SN data set is represented
formally with a directed acyclic graph. Unknown parameters are represented by open nodes.
Observed data (redshifts z and measured light curves D ) are represented by shaded nodes. Each
arrow or link describes a relationship of conditional probability

20.2.3 A Generative Model

The hierarchical model I have developed can be visually expressed and intuitively
understood in the form of a probabilistic graphical model called a directed acyclic
graph. The overall structure of the hierarchical Bayesian model is depicted by
a directed acyclic graph shown in Fig. 20.2. The graph can be understood as a
generative model for the data. The hierarchical model coherently incorporates
randomness and uncertainties due to measurement error (purple), intrinsic SN
variations (green), dust extinction and reddening (red), peculiar velocities and
distances (blue) into inferences about individual SN and the population. “SN Ia
AbsLC Pop” represents hyperparameters describing the population of SN Ia light
curves, including intrinsic variations and correlations in shape, color and luminosity
across multiple wavelengths. From this population, each SN randomly draws a
set of multi-wavelength light curves “AbsLC.” The box “Dust Pop” represents
hyperparameters governing the population distribution of host galaxy dust values.
Each SN randomly draws dust parameters AV (the amount of dust extinction), RV

(the wavelength dependence of the extinction) from this distribution. These dust
parameters combine with the individual absolute light curves and distance modulus
μ to generate an apparent light curve “AppLC,” which is sampled with noise to
produce the observed multi-wavelength light curve data D . In the nearby universe,
the distance modulus is related to the observed recession velocity or redshift through
the Hubble law plus a noise term representing random peculiar velocities of host
galaxies. This generative process is conceptually repeated for each SN in the data
set. The difference between “training” and distance prediction is that the latter does
not condition on the redshift-distance likelihood information of the SN (bottom).
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20.2.4 Computing Inferences with the Hierarchical
Bayes Model

To compute estimates for the unknown parameters of the hierarchical model,
conditional on the observed data, I have constructed and implemented an MCMC
algorithm, BAYESN, designed for training statistical models for SN Ia light curves
and generating coherent probabilistic predictions. This code generates a Markov
chain that explores the parameter space of the properties of individual events
(the dust extinction AV , the slope of the dust-reddening law, RV , the distance
modulus μ , and the apparent magnitudes and light curve shape parameters) and
the hyperparameters describing the dust population and intrinsic, absolute SN Ia
light curve distribution. In the long run, the chains produce samples from the
global posterior probability density of the unknowns given the data described by
the graphical model in Fig. 20.2.

The BAYESN algorithm exploits the conditional independence structure of
the graphical model to produce efficient moves in the global parameters space
within a Gibbs sampling framework. A sketch and details of the implementation
are presented in [34]. Typically, four to eight chains, starting in different initial
locations, are run in parallel and convergence for each parameter is monitored using
the Gelman-Rubin statistic [15].

20.3 Application to SN Ia in the Optical and Near-Infrared

Mandel et al. [34, 35] applied this hierarchical Bayesian methodology to inference
with nearby SN Ia in observed the optical and NIR wavelengths. The data set
consisted of the apparent light curves and spectroscopic redshifts of 127 nearby
SN Ia observed by the CfA Supernova Group [20, 44], the Carnegie Supernova
Project [5], and others the literature.

Under “training,” the redshifts are used to constrain the nearby supernova
distances by invoking Hubble’s Law. In this phase, the quantities of interest are
the intrinsic and dust parameters of individual SN Ia as well as the hyperparameters
of their population distributions. In the hierarchical model, the intrinsic covariance
structure of SN Ia absolute light curves and colors over time from optical through
NIR wavelengths was explicitly modeled coherently with the dust population. By
examining the marginal posterior estimates of the population variances of the peak
absolute magnitudes of SN Ia, it was found that the intrinsic scatter of SN Ia peak ab-
solute magnitudes was small in the NIR (in the H-band, σ(MH) ≈ 0.11 mag, [35]),
confirming previous findings that SN Ia are good standard candles in the NIR. The
marginal posterior estimates of the population correlations between the absolute
magnitudes at different wavelengths indicated a low correlation between the optical
and NIR [34].
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Fig. 20.3 Cross-validated Hubble diagram computed with BAYESN for the low-z nearby training
set using CfA, CSP and literature SN. Red points indicate the SN with joint optical BV RI and
NIR JH data. Black points are SN with only optical data. The dashed (dotted) line indicates the
magnitude uncertainty in μ(z) for σpec = 150 (300) km s−1. We perform bootstrap cross-validation
to estimate the out-of-sample prediction error

The hierarchical model was used to test for a potential correlation between the
amount of dust extinction to SN Ia (AV ) and the slope of the reddening law as a
function of wavelength, RV . It was found that SN Ia with high dust extinction had
low values of the dust law slope RV ≈ 1.7, while those at low extinction favored
RV ≈ 2.8. This suggests that the light from the majority of SN Ia at low extinction
are affected by interstellar dust of a similar nature to Milky Way dust (RV = 3.1)
and the dust in nearby external galaxies (RV ≈ 2.8; [7,8]), while those at the highest
extinctions may be obscured by a peculiar type of dust with a steeper extinction
law. One possibility is that the low RV values indicate circumstellar dust though
which the SN photons undergo multiple scatterings, leading to a stepper effective
extinction profile as a function of wavelength [16]. This differential trend in RV vs.
AV contrasts with previous studies that assumed that one value of RV applied equally
to all SN Ia, and found peculiarly low values RV < 1.7 [4, 9, 21].

Using cross-validation, I found that the distance moduli to SN Ia with joint
optical and NIR data could be predicted with greater accuracy (rms= 0.11 mag)
than those with optical data only (rms= 0.15 mag, Fig. 20.3). This improvement,
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approximately a doubling of the precision (inverse variance), can be traced to
three features. First, the NIR luminosity (especially H-band) by itself has low
population variance and thus provides an excellent standard candle that is relatively
insensitive to dust extinction. Secondly, the intrinsic, absolute magnitudes in the
optical and NIR are nearly uncorrelated in the population, indicating that the NIR
provides additional, independent information about the SN Ia distance. Third, the
combination of the optical and NIR extends the wavelength span over which the
extinction law can be fit, improving the estimates of the extinction at both optical
and NIR wavelengths. By combining and properly weighting all these statistical
and physical effects in a single statistical model, the accuracy and precision of SN
Ia distances are improved over those obtained from the optical light curves alone, the
current standard. The improved distances to SN Ia from combining optical and NIR
data have significant consequences for obtaining the best cosmological inferences
about dark energy.

The constructed hierarchical model is conceptually and practically modular and
flexible, allowing one to easily change the assumptions about the model components
or incorporate additional information into the inference in a coherent way. For exam-
ple, Mandel [33] expanded the hierarchical model to include measurements of SN
Ia spectral features that have potential population correlations with the intrinsic SN
Ia properties. Applying the expanded hierarchical Bayesian model to light curve and
spectroscopic data for a sample of nearby SN Ia, I estimated significant population
correlations between the peak optical intrinsic colors and ejecta velocities, while
accounting for dust effects (Mandel et al., 2011, in preparation).

These applications demonstrate the power of the hierarchical Bayesian approach
for principled, coherent estimation and prediction with SN Ia data sets. Further
applications of these methods include the extension to spectral data (e.g. [3, 10]),
host galaxy properties (e.g. [25]), and the analysis of cosmologically distant, high-z
SN Ia.
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Chapter 21
Bayesian Flux Reconstruction in One
and Two Bands

Eric R. Switzer, Thomas M. Crawford, and Christian L. Reichardt

Abstract Astrophysical surveys in radio through sub-mm wavelengths have given
rise to a variety of statistical methods for photometry and counts analysis. Here, we
describe a Bayesian method for reconstructing the flux of individual astrophysical
point sources of emission subject to prior information about their abundance as a
function of flux and spectral properties.

21.1 Setting

We will consider the limit where the angular extent of the astrophysical sources of
emission is much smaller than the resolution of the survey, and refer to these sources
as “point sources”. A multi-band survey instrument produces maps of regions of the
sky with many such sources, typically. These maps report the intensity of radiation
averaged in bands around some set of wavelengths. Each source in the maps is
described by its position x and vector of fluxes in those wavelengths, S. The catalog
Θ = {Ns,{x1,S1},{x2,S2}· · ·{xNs ,SNs}} then describes the flux from Ns sources
in the survey. For the sake of argument, we will describe the single-band case
first where the survey produces a single map d, and sources are described by a
single flux, S. Let R(Δx) be the point spread function (PSF) of the instrument’s
response, in some direction Δx off of its central pointing, normalized such at
R(0) = 1. Let the observed map pixels d be indexed by j along pointings x j, and
represent the instrumental response due to a source at position xs as the vector
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[R(xs)] j = R(xs − x j). The observed map pixels are then the combination of signal
and noise maps, as

d = s+n =
Ns

∑
i=1

SiR(xi)+n. (21.1)

The Bayesian reconstruction problem is to find P(Θ |d) = L(d|Θ)π(Θ)/E(d),
identifying the likelihood L, prior π and evidence E which support the posterior P.
Prior knowledge of the abundance weighs the interpretation that the observed flux
is a bright source versus the interpretation that it is a dimmer source superimposed
on a positive noise fluctuation. In typical astrophysical settings, dim sources are
more common, favoring the second interpretation, thus “deboosting” the inferred
source flux. In a multi-band setting, the prior also represents our knowledge of the
correlations of flux between bands.

For an unknown number of sources (potentially in the thousands) this space
is too large to explore using MCMC or analytic approaches. Therefore, consider
the posterior of one source at a time, (Θ = {x,S}), rather than the joint posterior,
assuming for now that the detected sources have negligible influence on one
another’s parameters. Simplify further by assuming that the noise map is normally
distributed with covariance N = 〈nnT 〉, giving the log-likelihood

lnL =C− 1
2
(d− s)T N−1(d− s), (21.2)

where C is a constant that does not depend on source parameter choices. With the
signal model s = SR(x) and at a fixed position x, the maximum likelihood flux is
determined following Carvalho et al. [1]

dL
dS

= R(x)T N−1(d− SR(x))⇒ SML(x) =
R(x)T N−1d

R(x)T N−1R(x)
= FT (x)d, (21.3)

where we interpret the action on the map d as a linear filter F(x), which coincides
with the unbiased, minimum variance estimator common in literature (see e.g., [4]).
One then uses the effective solid angle of the filtered PSF for photometry. Interpret
the denominator as the noise variance in the filtered map at some position x, σ2

f (x)≡
[R(x)T N−1R(x)]−1.

21.2 Single-Band Flux Reconstruction

We would now like to find the posterior distribution by incorporating prior infor-
mation about the source population, namely, that one expects bright sources to be
rare. There are two outlooks in literature: (1) use the maximum likelihood approach
as a first pass to a fully Bayesian approach (see e.g., [1]) which incorporates
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prior information and explores Θ , (2) use the maximum likelihood approach to
measure the source flux, but then “de-boost” those fluxes in a one-dimensional
posterior setting.

The discussion here considers the latter and is based on the methods developed
in Crawford et al. [3] for the analysis of sources detected in the mm-wavelength
survey by the South Pole Telescope [7]. Begin by writing the likelihood in terms
of the difference between the posterior S and the maximum likelihood value, S =
SML+ΔS. In the context of matched filters, we will simply call SML the “measured”
flux Sm, and the posterior S the “intrinsic” flux Si that we would like to reconstruct.
Then, at fixed x

P(Si|Sm) ∝ L(Sm|Si)π(Si) ∝ exp

{
− (Si − Sm)

2

2σ2
f

}
π(Si). (21.4)

The interpretation of the likelihood is that the measured flux of a source is
simply the intrinsic flux of that source plus normally-distributed noise Sm = Si + n
(where n ∼ N[0,σ2

f (x)]), reflecting the assumption that sources are isolated on the
sky and can be modeled individually (e.g., assuming either infinite resolution or
rare sources). Yet, in practical radio to sub-mm astronomy, we need to revisit this
assumption. Consider a bright source with flux Si at position x. A nearby source at
position xs with flux Ss will contribute SsF(x)T R(xs) to measurement at x, which is
Ss times the convolution of PSF with the filter, giving an effective PSF R f . The flux
at x due to all sources at separations Δx is

Sm = Si +∑
j �=i

S jR f (Δx j)+ n = Si + Sb+ n, (21.5)

where we have identified the sum as the background flux of all other sources, Sb.
In the regime where sources can overlap, the reconstruction problem is not unique.

A common approach in the literature (see e.g., [2]) is to reconstruct the total flux
that contributes to a given pointing, rather than the flux of an individual source at that
pointing. That is, to let π(Si) be the distribution of flux in a pointing in a signal-only
realization, and use the posterior of (21.4). Another popular method, the “P(D)”
solves this problem by reconstructing the abundance of a population as a function
of flux which reproduces the measured probability distribution of Sm across the map
pixels (see e.g., [5]).

When the goal is to catalog and categorize individual sources, one can break the
ambiguity by writing a posterior distribution for the brightest individual source in a
given pointing, Smax, or

P(Smax|Sm) = L(Sm|Smax)π(Smax). (21.6)

The prior probability density that the brightest source in a pixel has flux Smax is
the probability of having that source times the probability that there are no brighter
sources, or
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π(Smax) ∝
dN
dS

∣∣∣∣
S=Smax

exp

(
−Ω

∫ ∞

Smax

dN
dS′

dS′
)
, (21.7)

where dN/dS is the differential counts of the source population per solid angle, and
Ω is the filtered PSF solid angle. The likelihood of measured flux given (21.5) is
then the convolution of the PDFs of the contributing pieces

L(Sm|Smax) = δ (Smax)∗FT−1{e[r(ω)−r(0)]} ∗ 1√
2πσ2

f

e−S2
m/2σ2

f , (21.8)

where r(ω) [6] is found from the characteristic function of the response-weighted
source counts truncated at Smax through the Fourier transform (FT ),

r(ω) = FTq

{∫
<Smax

dΩΔx

|R f (Δx)|n
(

q
R f (Δx)

)}
. (21.9)

Indeed, when there are many background sources, Crawford et al. [3] finds an
accurate normal approximation to the likelihood, L(Sm|Smax) ∼ N(Sm − Smax −
Sb,σ2

tot), where σtot is the sum of the instrumental noise fluctuation and the
background source fluctuations and Sb is the mean flux contributed by background
point sources.

21.3 Two-Band Flux Reconstruction

Let the spectral index α describe the spectral behavior between the two bands as
S(λ2) = S(λ1)(λ2/λ1)

−α , where λ1 and λ2 are the wavelengths. The measured
fluxes in the two bands are then (following (21.5))

S(1)m = S(1)max + S(1)b + n(1) and S(2)m = S(2)max + S(2)b + n(2). (21.10)

We will assume that the noise terms n(1) and n(2) are uncorrelated. Bayes theorem
reads

P(S(1)max,S
(2)
max|S(1)m ,S(2)m ) ∝ L(S(1)m ,S(2)m |S(1)max,S

(2)
max)π(S

(1)
max,S

(2)
max). (21.11)

The posterior distribution must represent two new aspects: (1) the correlation in

the background source fluxes S(1)b and S(2)b by virtue of sharing common physical

sources of emission, and (2) that knowledge of the spectral index and S(1)max, j informs

S(2)max, j. In the absence of these, the joint posterior splits into replicas of (21.6) for

each band. For the purpose of categorizing sources, we will apply dα/dS(2)max to

transform the posterior density in S(1)max,S
(2)
max to a density of the flux in one band

S(1)max and the spectral index α between bands.
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While it is possible to compute for the two-dimensional likelihood analogous to
(21.8), it is much simpler to consider survey regimes where there are a sufficient
number of background sources to contribute an approximately correlated Gaussian
term to the flux along a given pointing. There,

lnL(S(1)m ,S(2)m |S(1)max,α) =C′ − 1
2

rT C−1r, (21.12)

where C is the noise covariance between the bands (including contributions from
instrumental noise, the atmosphere, and sources fainter than Smax), and r is the
vector

r =
{

S(1)m − S(1)max − S(1)b ,S(2)m − S(2)max(α)− S(2)b

}
. (21.13)

Under the Gaussian likelihood assumption, this method can be trivially extended to
multiple bands.

One can explicitly test the flux reconstruction by simulating realizations of
maps in the various bands and comparing the reconstructed fluxes with the known
flux which entered the simulations. By applying the single-band method to each
band individually, Crawford et al. [3] found that the inferred spectral indices
could be dramatically incorrect. This is because the signal in the weaker band
can be effectively deboosted to the background flux level. This can lead to an
incorrect categorization based on the spectral index. In contrast, in the multiband
case, information from a stronger detection in another band is carried over to the
weak band.

21.4 Concluding Remarks

The fluxes inferred from the procedures described here usually enter into three
sorts of subsequent products: population abundance, spectral energy distributions,
and categorized source catalogs. Source categorization is central to many of these
goals, and here one can apply a cut that the spectral index exceed a discrimination
threshold αd for one population versus another, P(α > αd)> Pd . In developing the
population abundance, one now has a PDF of fluxes for each source, and would like
to determine the underlying abundance as a function of flux which is consistent with
that sample. At high flux, most of the abundance information comes from the data,
while a lower flux, progressively more information comes from the prior. More work
needs to be done to quantify this tradeoff. Further rigorous methods should also be
developed to combine counts data from a variety of experiments and to properly
include prior information in this setting.
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Chapter 22
Commentary: Bayesian Analysis Across
Astronomy

Thomas J. Loredo

Abstract This contribution is a commentary on seven papers presented in the
session “Bayesian Analysis Across Astronomy” at the Statistical Challenges in
Modern Astronomy V conference held at Pennsylvania State University in June
2011. I provide a perspective on the current state and future direction of Bayesian
astrostatistics with an emphasis on the development of multilevel models to link
astronomical data to astrophysical theory.

I am tasked with providing a commentary on seven of the eight papers presented
in the “Bayesian analysis across astronomy” session at the fifth Statistical Chal-
lenges in Modern Astronomy conference (SCMA V). Of course, it is impossible to
comment in detail on so diverse a set of papers in the brief allotted space. At the
editors’ suggestion, I will instead use my commentary as a sort of bully pulpit to
provide a perspective on the current state and future direction of Bayesian astro-
statistics. The seven papers provide a contemporary vantage point; my participation
in the previous SCMA conferences, spanning two decades, provides a somewhat
more historical vantage point.

22.1 Looking Back

The first SCMA conference was held in August 1991. Bayesian methods were both
new and controversial in astronomy at that time. Of the 22 papers published in the
proceedings volume [6], only two were devoted to Bayesian methods ([15, 27];
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see also the unabridged version of the latter, [16]).1 Both papers had a strong
pedagogical component (and a bit of polemic). Of the 131 SCMA I participants
(about 60% astronomers and 40% statisticians), only two were astronomers whose
research prominently featured Bayesian methods (Steve Gull and me).

Twenty years later, the role of Bayesian methods in astrostatistics research is
dramatically different. At SCMA V, two sessions were devoted entirely to Bayesian
methods in astronomy: “Bayesian analysis across astronomy” (BAA), with eight
papers and two commentaries, and “Bayesian cosmology,” including three papers
with individual commentaries. Overall, 14 of 32 invited presentations (not counting
commentaries) featured Bayesian methods, and the focus was on calculations and
results rather than on pedagogy and polemic.

On the face of it, the changes seem to indicate that Bayesian methods are not
only no longer controversial, but are in fact now widely used, even favored for
some applications (most notably for parametric inference in cosmology). But how
representative are the SCMA presentations of broader astrostatistical practice?

At the meeting, Martin Hendry, Roberto Trotta and I engaged in an unintentional
friendly competition in amateur bibliometrics, each of us presenting statistics based
on ADS queries aiming to provide a handle on the use of Bayesian methods “across
astronomy.” Figure 22.1 shows my entry; Hendry’s and Trotta’s were similar. The
publication counts indicate significant and rapidly growing use of Bayesian methods
in astronomy and physics.

It is tempting to conclude from the SCMA and bibliometric indicators that
Bayesian methods are now well-established and well-understood across astronomy.
But the SCMA metrics reflect the role of Bayesian methods in the astrostatistics
research community, not in bread-and-butter astronomical data analysis. And as
impressive as the trends in the bibliometric indicators may be, the absolute numbers
remain small in comparison to all astronomy and physics publications, even limiting
consideration to data-based studies. Although their impact is growing, Bayesian
methods are not yet in wide use by astronomers.

My interactions with colleagues indicate that significant misunderstandings
persist about the differences between Bayesian and more conventional frequentist
approaches to scientific inference. I believe these play no small role in hindering
broader adoption of Bayesian methods in routine data analysis. This opinion seems
to be shared by a number of astronomers and statisticians at SCMA V who use
Bayesian methods; there was a lively discussion at the end of the BAAAsession
about two particularly prevalent misconceptions: the notion that prior probabilities
are the main thing distinguishing Bayesian and frequentist methods, and the notion
that Bayesian computation is harder than frequentist computation for implementing
methods with comparable capability; both notions are incorrect. Clearing up these
and other misconceptions within the broader community of astronomical data
analysts is an important pedagogical task for the future, potentially paving the way

1A third paper [24] had some Bayesian content but focused on frequentist evaluation criteria, even
for the one Bayesian procedure considered.
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Fig. 22.1 Simple bibliometrics measuring the growing use of Bayesian methods in astronomy
and physics, based on queries of the NASA ADS database in October 2011. Thick (blue) curves
(against the left axis) are from queries of the astronomy database; thin (red) curves (against the
right axis) are from joint queries of the astronomy and physics databases. For each case the dashed
lower curve indicates the number of papers each year that include “Bayes” or “Bayesian” in the
title or abstract. The upper curve is based on the same query, but also counting papers that use
characteristically Bayesian terminology in the abstract (e.g., the phrase “posterior distribution” or
the acronym “MCMC”); it is meant to capture Bayesian usage in areas where the methods are
well-established, with the “Bayesian” appellation no longer deemed necessary or notable

to broader use of basic Bayesian methods by astronomers. And experience with
basic methods will provide a bridge to understanding the more advanced methods
astrostatistics researchers are developing.

22.2 Looking Forward

Now I will turn from the past to highlight an emerging theme in Bayesian
astrostatistics research that is evident in the BAAApresentations. The theme harkens
back to SCMA I, in particular to Mike West’s commentary on my SCMA I paper
[31]. In his closing remarks he pointed to an especially promising direction for
future Bayesian work in astrostatistics:

On possible future directions, it is clear that Bayesian developments during recent years
have much to offer—I would identify prior modeling developments in hierarchical models
as particularly noteworthy. Applications of such models have grown tremendously in
biomedical and social sciences, but this has yet to be paralleled in the physical sciences.
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Investigations involving repeat experimentation on similar, related systems provide the
archetype logical structure for hierarchical modeling. . . There are clear opportunities for
exploitation of these (and other) developments by astronomical investigators. . . .

However clear the opportunities may have appeared to West, there was very little
work on hierarchical Bayesian modeling in astronomy for over a decade after
SCMA I. A particularly promising application area is modeling of populations
of astronomical sources, where hierarchical models can naturally account for
measurement error, selection effects, and “scatter” of properties across a population.
I discussed this at some length at SCMA IV in 2006 [18], but as of that time there
was little work in astronomy using hierarchical Bayesian methods, and for the most
part only the simplest such models were used.

SCMA V marks a changepoint in this respect. Several of the papers in the
BAAAsession (and elsewhere) describe recent and ongoing research developing
sophisticated hierarchical models for complex astronomical data. Other papers raise
issues that may be addressed with hierarchical models. Together, these papers point
to hierarchical Bayesian modeling as an important emerging research direction for
astrostatistics.

To illustrate the notion of a hierarchical model—also known as a multilevel model
(MLM)—we start with a simple parametric density estimation problem, and then
promote it to a MLM by adding measurement error.

Suppose we would like to estimate parameters θ defining a probability density
function f (x;θ ) for an observable x. A concrete example might be estimation
of a galaxy luminosity function, where x would be two-dimensional, x = (L,z)
for luminosity L and redshift z, and f (x;θ ) would be the normalized luminosity
function (i.e., a probability density rather than a galaxy number density). Consider
first the case where we have a set of precise measurements of the observables,
{xi} (and no selection effects). Panel (a) in Fig. 22.2 depicts this simple setting.
The likelihood function for θ is L (θ ) ≡ p({xi}|θ ,M) = ∏i f (xi;θ ). Bayesian
estimation of θ requires a prior density, π(θ ), leading to a posterior density
p(θ |{xi},M) ∝ π(θ )L (θ ).

An alternative way to write Bayes’s theorem expresses the posterior in terms of
the joint distribution for parameters and data:

p(θ |{xi},M) =
p(θ ,{xi}|M)

p({xi}|M)
. (22.1)

This “probability for everything” version of Bayes’s theorem switches the goal of
modeling from separate specification of a prior and likelihood, to specification of
the joint distribution for everything; this proves helpful for building models with
complex dependencies. Panel (c) depicts the dependencies in the joint distribution
with a graph—a collection of nodes connected by edges—where each node
represents a probability distribution for the indicated variable, and the directed edges
indicate dependences between variables. Shaded nodes indicate variables whose
values are known (here, the data); we may manipulate the joint to condition on
these quantities. The graph structure visually displays how the joint distribution
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a

c d

b

Fig. 22.2 Illustration of multilevel model approach to handling measurement error. (a) and
(b) (top row): Measurements of a two-dimensional observable and its probability distribution
(contours); in (a) the measurements are precise (points); in (b) they are noisy (filled circles depict
uncertainties). (c) and (d): Graphical models corresponding to Bayesian estimation of the density
in (a) and (b), respectively

may be factored as a sequence of independent and conditional distributions: the θ
node represents the prior, and the xi nodes represent f (xi;θ ) factors, dependent on θ
but independent of other xi values when θ is given (i.e., conditionally independent).
The joint distribution is thus p(θ ,{xi}|M) = π(θ )∏i f (xi;θ ). In a sense, the most
important edges in the graph are the missing edges; they indicate independence that
makes factors simpler than they might otherwise be.

Now suppose that, instead of precise xi measurements, for each observation we
get noisy data, Di, producing a measurement likelihood function �i(xi)≡ p(Di|xi,M)
describing the uncertainties in xi (we might summarize it with the mean and standard
deviation of a Gaussian). Panel (b) depicts the situation; instead of points in x space,
we now have likelihood functions (depicted as “1σ” error circles). Panel (d) shows
a graph describing this measurement error problem, which adds a {Di} level to the
previous graph; we now have a multilevel model.2 The xi nodes are now unshaded;
they are no longer known, and have become latent parameters. From the graph we
can read off the form of the joint distribution:

2The convention is to reserve the term for models with three or more levels of nodes, i.e., two or
more levels of edges, or two or more levels of nodes for uncertain variables (i.e., unshaded nodes).
The model depicted in panel (d) would be called a two-level model.
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p(θ ,{xi},{Di}|M) = π(θ )∏
i

f (xi;θ )�i(xi). (22.2)

From this joint distribution we can make inferences about any quantity of interest.
To estimate θ , we use the joint to calculate p(θ ,{xi}|{Di},M) (i.e., we condition
on the known data using Bayes’s theorem), and then we marginalize over all xi

variables. We can estimate all the xi values jointly by instead marginalizing over
θ . Note that this produces a joint marginal distribution for {xi} that is not a
product of independent factors; although the xi values are conditionally independent
given θ , they are marginally dependent. If we do not know θ , each xi tells us
something about all the others through what it tells us about θ . Statisticians use the
phrase “borrowing strength” to describe this effect, from John Tukey’s evocative
description of “mustering and borrowing strength” from related data in multiple
stages of data analysis (see [19] for a tutorial discussion of this effect and the related
concept of shrinkage estimators).

The few Bayesian MLMs used by astronomers through the 1990s and early
2000s did not go much beyond this simplest hierarchical structure. For example,
unbeknownst to West, at the time of his writing my thesis work had already
developed a MLM for analyzing the arrival times and energies of neutrinos detected
from SN 1987A; the multilevel structure was needed to handle measurement error
in the energies (an expanded version of this work appears in [20]). Panel (a) of
Fig. 22.3 shows a graph describing the model. The rectangles are “plates” indicating
substructures that are repeated; the integer variable in the corner indicates the
number of repeats. There are two plates because neutrino detectors have a limited
(and energy-dependent) detection efficiency. The plate with a known repeat count,
N, corresponds to the N detected neutrinos with times t and energies ε; the plate
with an unknown repeat count, N, corresponds to undetected neutrinos, which must
be considered in order to constrain the total signal rate; D denotes the nondetection
data, i.e., reports of zero events in time intervals between detections.

Other problems tackled by astronomers with two-level MLMs include: modeling
of number-size distributions (“logN–logS” or “number counts”) of gamma-ray
bursts and trans-Neptunian objects (e.g., [21, 26]); performing linear regression
with measurement error along both axes, e.g., for correlating quasar hardness
and luminosity ([13]; see his paper in these proceedings for an introduction to
MLMs for measurement error); accounting for Eddington and Malmquist biases in
cosmology [19]; statistical assessment of directional coincidences with gamma-ray
bursts [10, 22] and in large catalog cross-matching ([3]; see Budavári’s paper and
my commentary on it in these proceedings for discussion of the underlying MLM);
and handling multivariate measurement error when estimating stellar velocity
distributions from proper motion survey data [2]. Dobigeon, [4] developed a similar
three-level MLM to tackle joint segmentation of astronomical arrival time series
(a multivariate extension of Scargle’s well-known Bayesian Blocks algorithm). van
Dyk et al. [29] describe a many-level MLM for fitting Chandra X-ray spectral data;
a host of latent parameters enable accurate accounting for uncertain backgrounds
and instrumental effects such as pulse pile-up.
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Fig. 22.3 Graphs describing multilevel models used in astronomy, as described in the text

Cosmology is a natural arena for multilevel modeling, because of the indirect
link between theory and observables. For example, in modeling both the cosmic
microwave background (CMB) and the large scale structure (LSS) of the galaxy
distribution, theory does not predict a specific temperature map or set of galaxy
locations (these depend on unknowable initial conditions), but instead predicts
statistical quantities, such as angular or spatial power spectra. Modeling observables
given theoretical parameters typically requires introducing these quantities as latent
parameters. In Loredo [17] I described a highly simplified hierarchical treatment
of CMB data, with noisy CMB temperature difference time series data at the
lowest level, l = 2 spherical harmonic coefficients in the middle, and a single
physical parameter of interest, the cosmological quadrupole moment Q, at the top.
While a useful illustration of the MLM approach, I noted there were enormous
computational challenges facing a more realistic implementation. It took a decade
for such an implementation to be developed, in the pioneering work of [30]. And
only recently have explicit hierarchical models been implemented for LSS modeling
(e.g., [14]).

This brings us to the present, and the SCMA V contributions. Panel (b) of
Fig. 22.3 shows the graph for one of the MLMs described in Mandel’s presentation
in the BAAAsession (the reader will have to consult his paper in these proceedings,
or Mandel et al. [23], for a description of the variables and the model). With
three levels, complex connections between latent variables (some of them random
functions—light curves—rather than scalars), and three different types of data, this
model leapfrogs nearly all previous astronomical MLMs in complexity.
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One has to be careful with highly structured MLMs. Information gain from the
data tends to weaken as one considers parameters at increasingly high levels [9].
On the one hand, if one is interested in quantities at lower levels, this weakens
dependence on assumptions made at high levels. On the other hand, if one is
interested in high-level quantities, sensitivity to the prior becomes an issue. The
weakened impact of data on high levels has the effect that improper (i.e., non-
normalized) priors that are safe to use in simple models (because the likelihood
makes the posterior proper) can be dangerous in MLMs [7, 11]. The impact
of the graph structure on the model’s predictive ability becomes less intuitively
accessible as complexity grows, making predictive tests of MLMs important, but
also nontrivial [1, 8, 28]. An exemplary feature of Mandel’s work is the use of
careful predictive checks, implemented via a frequentist cross-validation procedure,
to quantitatively assess the adequacy of the model.

Other BAAApresentations invoked interesting MLMs to tackle forefront astro-
statistics problems. Brewer’s treatment of reverbation mapping, aiming to estimate
supermassive black hole masses from observation of light echoes from the broad
line regions of active galactic nuclei, used a complex MLM with the structure
schematically shown in the graph in panel (c). Kashyap showed how to use Bayesian
methods to account for systematic error in instrument properties, such as the
energy-dependent effective area or point spread function, when analyzing Chandra
X-ray spectral and imaging data. Panel (d) is a deceptively simple graphical
summary of his team’s approach, showing two levels of an MLM. The novel
feature here is the split upper level, with the left node, representing instrument
properties, not gray.3 Conventionally, astronomers fix the instrument description
(corresponding to making this node gray in the graph). Kashyap’s team instead
assigns a probability distribution to the instrument properties, using a Monte Carlo
code modeling interactions between instrument subcomponents (this node itself has
multiple levels). They show how marginalizing over uncertain instrument properties
can propagate systematic error throughout the whole analysis. In fact, in some of this
team’s work the bottom node in this graph is not simply data, but is itself a nontrivial
MLM connecting the source and instrument inputs to the observables [29].

Other sessions also featured work using Bayesian MLMs. Wandelt’s presentation
in the Bayesian cosmology session described a hierarchical Bayes approach (albeit
without explicit MLM language) for reconstructing the galaxy density field from
noisy photometric redshift data. Contributed presentations also featured MLMs,
including a treatment of number-size distributions by Baines et al., and an analysis
of directional coincidences between ultra-high energy cosmic rays and local active
galactic nuclei by Soiaporn et al., who tackled the problem with a three-level
MLM combining marked point processes for modeling the population of cosmic
ray sources and directional statistics for describing measurement errors.

3Drell et al. [5] used a similar structure, in a much simpler setting, to account for systematic error
in supernova cosmology; in place of the instrument property node was a node describing possible
evolution of supernova properties.
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The BAAAsession also included presentations raising issues that could profitably
be addressed with a multilevel approach. For example, Switzer described an
approach for accounting for Eddington bias in estimating fluxes of point sources
measured by multiband surveys. The underlying MLM resembles panel (d) of
Fig. 22.2, but with the top node gray, corresponding to fixed specification of a
population flux distribution. Flux estimates shift from their naive best-fit values
because the flux distribution plays the role of a nonuniform prior. A hierarchical
Bayesian treatment would parameterize the flux distribution, allowing for more
adaptive adjustment of the fluxes. Several papers cited above on MLMs for
number-size distributions adopt this approach, for single-band fluxes. The challenge
Switzer’s team faces is extending it to multiband data, where the distribution of
spectral shapes across the population becomes important.

I will close this commentary with a provocative recommendation I have offered
at meetings (including SCMA V) but not yet in print, born of my experience
using multilevel models for astronomical populations. It is that astronomers cease
producing catalogs of estimated fluxes and other source properties from surveys.
This warrants explanation and elaboration.

As noted above, a consequence of the hierarchical structure of MLMs is that the
values of latent parameters at low levels cannot be estimated independently of each
other. In a survey context, this means that the flux (and potentially other properties)
of a source cannot be accurately or optimally estimated considering only the data
for that source. This may initially seem surprising, but at some level astronomers
already know this to be true. We know—from Eddington, Malmquist, and Lutz and
Kelker—that simple estimates of source properties will be misleading if we do not
take into account information besides the measurements, i.e., specification of the
population distribution of the property. The standard Malmquist and Lutz-Kelker
corrections adopt a fixed (e.g., spatially homogeneous) population distribution,
and produce an independent corrected estimate for each object. What the fully
Bayesian MLM approach adds to the picture is the ability to handle uncertainty
in the population distribution. After all, a prime reason for performing surveys is
to learn about populations. When the population distribution is not well-known a
priori, every source property measurement bears on estimation of the population
distribution, and thus indirectly, each measurement bears on the estimation of the
properties of every other source, via a kind of adaptive “bias correction.”4 This is
Tukey’s “mustering and borrowing of strength” at work.

To enable this mustering and borrowing, we have to stop thinking of a catalog
entry as providing all the information needed to infer a particular source’s properties
(even in the absence of auxiliary information from outside a particular survey). Such
a complete summary of information is instead provided by the marginal posterior

4It is worth pointing out that this is not a uniquely Bayesian insight. Eddington, Malmquist, and
Lutz and Kelker used frequentist arguments to justify their corrections; Eddington even offered
adaptive corrections. The large and influential statistics literature on shrinkage estimators leads to
similar conclusions; see [18] for further discussion and references.
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distribution for that source, which depends on the data from all sources—and on
population-level modeling assumptions. However, in the MLM structure (e.g., panel
(d) of Fig. 22.2), the likelihood function for the properties of a particular source
may be independent of information about other sources. The simplest output of a
survey that would enable accurate and optimal subsequent analysis is thus a catalog
of likelihood functions (or possibly marginal likelihood functions when there are
uncertain backgrounds or other “nuisance” effects the surveyor must account for).

For a well-measured source, the likelihood function may be well-approximated
by a Gaussian that can be easily summarized with a mean and standard deviation.
But these should not be presented as point estimates and uncertainties.5 For
sources near a nominal “detection limit,” more complicated summaries may be
justified. Counterpart surveys should cease reporting upper limits when a known
source is not securely detected; instead they should report a more informative non-
Gaussian likelihood summary. Discovery surveys (aiming to detect new sources
rather than counterparts) could potentially devise likelihood summaries that commu-
nicate information about sources with fluxes below a nominal detection limit, and
about uncertain source multiplicty in crowded fields. Recent work on maximum-
likelihood fitting of “pixel histograms” (also known as “probability of deflection”
or P(D) distributions), which contain information about undetected sources, hints at
the science such summaries might enable in a MLM setting (e.g., [25]).

In this approach to survey reporting, the notion of a detection limit as a decision
boundary identifying sources disappears. In its place there will be decision bound-
aries, driven by both computational and scientific considerations, that determine
what type of likelihood summary is associated with a particular candidate source
location.

Coming at this issue from another direction, Hogg and Lang [12] have recently
made similar suggestions, including some specific ideas for how likelihoods may be
summarized. Multilevel models provide a principled framework, both for motivating
such a thoroughgoing revision of current practice, and for guiding its detailed
development. Perhaps at SCMA VI in 2016 we will be able to report on analyses of
the first survey catalogs providing such more optimal, MLM-ready summaries.

But even in the absence of so revolutionary a development, I think one can place
high odds in favor of a bet that Bayesian multilevel modeling will be flourishing
in astrostatistics research by the time of SCMA VI. Whether Bayesian methods
(multilevel and otherwise) will start flourishing outside the astrostatistics research
community is another matter, dependent on how effectively astrostatisticians can
rise to the challenge of making Bayesian methods more broadly used and un-
derstood. The abundance of young astronomers with enthusiasm for Bayesian
astrostatistics, present both at SCMA V and in the Center for Astrostatistics summer
schools, makes me optimistic.

5I am tempted to recommend that, even in this regime, the likelihood summary be chosen so as
to deter misuse as an estimate, say by tabulating the +1σ and −2σ points rather than means and
standard deviations. I am only partly facetious about this!
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Chapter 23
Sparse Astronomical Data Analysis

Jean-Luc Starck

Abstract Wavelets have been used extensively for several years now in astronomy
for many purposes, ranging from data filtering and deconvolution, to star and
galaxy detection or cosmic ray removal. More recent sparse representations such
as ridgelets or curvelets have also been proposed for the detection of anisotropic
features such as cosmic strings in the l microwave background. We review in this
paper a range of methods based on sparsity that have been proposed for astronomical
data analysis.

23.1 Introduction

The wavelet transform (WT) has been extensively used in astronomical data analysis
during the last 10 years. A quick search with ADS (NASA Astrophysics Data
System, adswww.harvard.edu) shows that around 1,000 papers contain the keyword
“wavelet” in their abstract, and this holds for all astrophysical domains, from
study of the sun through to CMB (Cosmic Microwave Background) analysis [29].
This broad success of the wavelet transform is due to the fact that astronomical
data generally gives rise to complex hierarchical structures, often described as
fractals. Using multiscale approaches such as the wavelet transform, an image can
be decomposed into components at different scales, and the wavelet transform
is therefore well-adapted to the study of astronomical data. Furthermore, since
noise in the physical sciences is often not Gaussian, modeling in wavelet space of
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many kinds of noise—Poisson noise, combination of Gaussian and Poisson noise
components, non-stationary noise, and so on— has been a key motivation for the
use of wavelets in astrophysics.

If wavelets represent well isotropic features, they are far from optimal for
analyzing anisotropic objects. This has motived other constructions such as the
curvelet transform [4]. More generally, the best data decomposition is the one which
leads to the sparsest representation, i.e. few coefficients have a large magnitude,
while most of them are close to zero. Hence, for specific astronomical data sets
containing edges (planetary images, cosmic strings, etc.), curvelets should be
preferred to wavelets.

In this paper, we review a range of astronomical data analysis methods based on
sparse representations. We first introduce the concept of sparsity, and we present
several sparse representations that have been used for astronomical data analysis.
Then we present how sparse representations can be used in different applications.

23.2 Introduction to Sparsity

23.2.1 What Is Sparsity?

A signal x, x = [x1, · · · ,xN ], is sparse if most of its entries are equal to zero. For
instance, a k-sparse signal is a signal where only k samples have a non-zero value.
A less strict definition is to consider a signal as weakly sparse or compressible when
only a few of its entries have a large magnitude, while most of them are close to zero.

If a signal is not sparse, it may be sparsified using a given data representation. For
instance, if x is a sine, it is clearly not sparse but its Fourier transform is extremely
sparse (i.e. 1-sparse). Hence we say that a signal x is sparse in the Fourier domain
if its Fourier coefficients x̂[u], x̂[u] = 1

N ∑+∞
k=−∞ x[k]e2iπ uk

N , is sparse. More generally,
we can model a vector signal x ∈ R

N as the linear combination of T elementary
waveforms, also called signal atoms: x = Φα = ∑T

i=1α[i]φi, where α[i] = 〈x,φi〉
are called the decomposition coefficients of x in the dictionary Φ = [φ1, · · · ,φT ]

T

(the N ×T matrix whose columns are the atoms normalized to a unit �2-norm, i.e.
∀i ∈ [1,T ],‖φi‖�2 = 1).

Therefore to get a sparse representation of our data we need first to define the
dictionary Φ and then to compute the coefficients α . x is sparse in Φ if the sorted
coefficients in decreasing magnitude have a fast decay; i.e. most of coefficients α
vanish but a few.

23.2.2 What Is the Best Dictionary?

Obviously, the best dictionary is the one which leads to the sparsest representation.
Hence we could imagine having a huge overcomplete dictionary (i.e. T � N),
but we would be faced with prohibitive computation time cost for calculating
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the α coefficients. Therefore there is a trade-off between the complexity of our
analysis step (i.e. the size of the dictionary) and the computation time. Some
specific dictionaries have the advantage of having fast operators and are very good
candidates for analyzing the data. The Fourier dictionary is certainly the most
famous, but many others have been proposed in the literature such as wavelets
[16], ridgelets [4], curvelets [6, 22], bandlets [15], to name only a few. Different
approaches have also been recently proposed in order to build a dictionary directly
from the data. This is the case in learned dictionaries [18], for instance using e.g.
the KSVD algorithm [1], the grouplet decomposition [17] or the GMCA method for
multichannel/hyperspectral data [3].

In astronomy, the most well known sparse representation, if we omit the Fourier
transform, is certainly the isotropic undecimated wavelet transform (see next
section).

23.3 Useful Dictionaries for Astronomical Data

23.3.1 The Isotropic Undecimated Wavelet Transform

The Isotropic undecimated wavelet transform (IUWT) [29] decomposes an n× n
image c0 into a coefficient set W = {w1, . . . ,wJ ,cJ}, as a superposition of the form

c0[k, l] = cJ[k, l]+
J

∑
j=1

wj[k, l],

where cJ is a coarse or smooth version of the original image c0 and wj represents
the details of c0 at scale 2− j (see [22,23] for more information). Thus, the algorithm
outputs J+1 sub-band arrays of size n×n. (The present indexing is such that j = 1
corresponds to the finest scale or high frequencies).

Hence, we have a multi-scale pixel representation, i.e. each pixel of the input
image is associated with a set of pixels of the multi-scale transform. This wavelet
transform is very well adapted to the detection of isotropic features, and this
explains its success for astronomical image processing, where the data contain
mostly isotropic or quasi-isotropic objects, such as stars, galaxies or galaxy clusters.

The decomposition is achieved using the filter bank (h2D,g2D = δ − h2D, h̃2D =
δ , g̃2D = δ ) where h2D is the tensor product of two 1D filters h1D and δ is the dirac
function. The passage from one resolution to the next one is obtained using the
“à trous” algorithm [23]

c j+1[k, l] =∑
m
∑
n

h1D[m]h1D[n]c j[k+ 2 jm, l + 2 jn],

wj+1[k, l] = c j[k, l]− c j+1[k, l] , (23.1)

where h1D is typically a symmetric low-pass filter such as the B3 Spline filter: h1D ={
1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16

}
.
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Fig. 23.1 Wavelet transform of NGC 2997 by the IUWT. The co-addition of these six images
reproduces exactly the original image

Fig. 23.2 Galaxy NGC 2997

Figure 23.1 shows IUWT of the galaxy NGC 2997 displayed in Fig. 23.2. Five
wavelet scales are shown and the final smoothed plane (lower right). The original
image is given exactly by the sum of these six images.
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23.3.2 Signal Detection in the Wavelet Space

Observed data Y in the physical sciences are generally corrupted by noise, which
is often additive and which follows in many cases a Gaussian distribution, a
Poisson distribution, or a combination of both. It is important to detect the wavelet
coefficients which are “significant”, i.e. the wavelet coefficients which have an
absolute value too large to be due to noise. We defined the multiresolution support
M of an image Y by:

Mj[k, l] =

{
1 if wj[k, l] is significant
0 if wj[k, l] is not significant

(23.2)

where wj[k, l] is the wavelet coefficient of Y at scale j and at position (k, l). We need
now to determine when a wavelet coefficient is significant. For Gaussian noise, it
is easy to derive an estimation of the noise standard deviation σ j at scale j from
the noise standard deviation, which can be evaluated with good accuracy in an
automated way [24]. To detect the significant wavelet coefficients, it suffices to
compare the wavelet coefficients wj[k, l] to a threshold level t j. t j is generally taken
equal to Kσ j, and K is chosen between 3 and 5. The value of 3 corresponds to a
probability of false detection of 0.27%. If wj[k, l] is small, then it is not significant
and could be due to noise. If wj[k, l] is large, it is significant:

if | wj [k, l] | ≥ t j then wj [k, l] is significant
if | wj [k, l] | < t j then wj[k, l] is not significant

(23.3)

When the noise is not Gaussian, other strategies may be used:

• Poisson noise: if the noise in the data Y is Poisson, the transformation [2]

A (Y ) = 2
√

I + 3
8 acts as if the data arose from a Gaussian white noise model,

with σ = 1, under the assumption that the mean value of I is sufficiently large.
However, this transform has some limits and it has been shown that it cannot
be applied for data with less than 20 photons per pixel. So for X-ray or gamma
ray data, other solutions have to be chosen, which manage the case of a reduced
number of events or photons under assumptions of Poisson statistics.

• Gaussian + Poisson noise: the generalization of variance stabilization [20] is:

G ((Y [k, l]) =
2
α

√
αY [k, l]+

3
8
α2 +σ2 −αg

where α is the gain of the detector, and g and σ are the mean and the standard
deviation of the read-out noise.

• Poisson noise with few events using the MS-VST: For images with very few
photons, one solution consists in using the Multi-scale Variance Stabilization
Transform [35]. The MSVST combines both the Anscombe transform and
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the IUWT in order to produce stabilized wavelet coefficients, i.e. coefficients
corrupted by a Gaussian noise with a standard deviation equal to 1. In this
framework, wavelet coefficients are now calculated by:

IUWT
+

MS-VST

⎧⎨
⎩

c j = ∑m∑n h1D[m]h1D[n]
c j−1[k+ 2 j−1m, l + 2 j−1n]

wj = A j−1(c j−1)−A j(c j)

(23.4)

where A j is the VST operator at scale j defined by:

A j(c j) = b( j)
√
|c j + e( j)| (23.5)

where the variance stabilization constants b( j) and e( j) only depends on the
filter h1D and the scale level j. They can all be pre-computed once for any
given h1D [35]. The multiresolution support is computed from the MSVST
coefficients, considering a Gaussian noise with a standard deviation equal to 1.
This stabilization procedure is also invertible as we have:

c0 = A −1
0

[
AJ(aJ)+

J

∑
j=1

wj

]
(23.6)

For other kind of noise (correlated noise, non-stationary noise, etc.), other solutions
have been proposed to derive the multiresolution support [29]. In the next sec-
tion, we show how the multiresolution support can be used for denoising and
deconvolution.

23.3.3 Curvelet

The 2D curvelet transform [4] was developed in an attempt to overcome some
limitations inherent in former multiscale methods e.g. the 2D wavelet, when
handling smooth images with edges i.e. singularities along smooth curves. Basically,
the curvelet dictionary is a multiscale pyramid of localized directional functions
with anisotropic support obeying a specific parabolic scaling such that at scale
2− j, its length is 2− j/2 and its width is 2− j. This is motivated by the parabolic
scaling property of smooth curves. Other properties of the curvelet transform as
well as decisive optimality results in approximation theory are reported in [5].
Notably, curvelets provide optimally sparse representations of manifolds which are
smooth away from edge singularities along smooth curves. Several digital curvelet
transforms [6, 22] have been proposed which attempt to preserve the essential
properties of the continuous curvelet transform and several papers report on their
successful application in astrophysical experiments [25, 26, 28].
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Fig. 23.3 A few first generation curvelets. Backprojections of a few curvelet coefficients at
different positions and scales

Figure 23.3 shows a few curvelets at different scales, orientations and locations.
It has been shown that the curvelet transform could be very useful for detecting
weak anisotropic features such as cosmic strings [26].

Curvelets have been recently extended to the third dimension [32–34].

23.3.4 Sparsity on the Sphere

23.3.4.1 Introduction

Cosmic Microwave Background (CMB) observed data from WMAP and PLANCK
satellite are both spherical (i.e. the whole sky is observed), and polarized. Full-sky
CMB polarization data consists of measurements of the Stokes parameters so that
in addition to the temperature T map, Q and U maps are given as well. The fourth
Stokes parameter commonly denoted V is a measure of circular polarization. In the
case of CMB which is not expected to have circularly polarized anisotropies, V
vanishes. The former three quantities, T , Q and U then fully describe the linear
polarization state of the CMB radiation incident along some radial line of sight. T is
the total incoming intensity, Q is the difference between the intensities transmitted
by two perfect orthogonal polarizers the directions of which define a reference
frame in the tangent plane, and U is the same as Q but with polarizers rotated
45◦ in that tangent plane. To analyze CMB data (non Gaussinaty detection, etc),
sparse decompositions have been recently developed. This section reviews how
wavelet and curvelet transforms can be extended to spherical data and polarized
spherical fields.
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23.3.4.2 Wavelet and Curvelet on the Sphere

The undecimated isotropic transform on the sphere described in [28] is similar
in many respects to the usual isotropic undecimated wavelet transform described
previously. It is obtained using a zonal scaling function φlc(ϑ ,ϕ) which depends
only on colatitude ϑ and is invariant with respect to a change in longitude ϕ .
It follows that the spherical harmonic coefficients φ̂lc(l,m) of φlc vanish when
m �= 0 which makes it simple to compute spherical harmonic coefficients ĉ0(l,m)
of c0 = φlc ∗ f where ∗ stands for convolution:

ĉ0(l,m) = φ̂lc ∗ f (l,m) =

√
4π

2l+ 1
φ̂lc(l,0) f̂ (l,m) (23.7)

A possible scaling function [31], defined in the spherical harmonics representation,
is φlc(l,m) = 2

3 B3(
2l
lc
) where B3 is the cubic B-spline compactly supported over

[−2,2]. Denoting φ2− j lc a rescaled version of φlc with cut-off frequency 2− jlc, a
multi-resolution decomposition of f on a dyadic scale is obtained recursively:

c0 = φlc ∗ f

c j = φ2− j lc ∗ f = c j−1 ∗ h j−1 (23.8)

where the zonal low pass filters h j are defined by

Ĥj(l,m) =

√
4π

2l+ 1
ĥ j(l,m) =

⎧⎪⎨
⎪⎩

φ̂ lc
2 j+1

(l,m)

φ̂ lc
2 j

(l,m)
if l < lc

2 j+1 and m = 0

0 otherwise

(23.9)

The cut-off frequency is reduced by a factor of 2 at each step so that in applications
where this is useful such as compression, the number of samples could be reduced
adequately. Using a pixelization scheme such as Healpix [14], this can easily
be done by dividing by 2 the Healpix nside parameter when computing the
inverse spherical harmonics transform. As in the undecimated isotropic algorithm,
the wavelet coefficients can be defined as the difference between two consecutive
resolutions, wj+1(ϑ ,ϕ) = c j(ϑ ,ϕ) − c j+1(ϑ ,ϕ). This defines a zonal wavelet
function ψlc as

ψ̂ lc
2 j
(l,m) = φ̂ lc

2 j−1
(l,m)− φ̂ lc

2 j
(l,m) (23.10)

With this particular choice of wavelet function, the decomposition is readily
inverted by summing the coefficient maps on all wavelet scales

f (ϑ ,ϕ) = cJ(ϑ ,ϕ)+
J

∑
j=1

wj(ϑ ,ϕ) (23.11)
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where we have made the simplifying assumption that f is equal to c0. Obviously,
other wavelet functions ψ could be used just as well, such as the needlet [19].
Based on this undecimated wavelet transform on the sphere, it was shown in
[28] that curvelet on sphere can be derived by applying ridgelets on the different
wavelet scales.

23.3.5 Polarized Data on the Sphere

The spin-2 spherical harmonics basis denoted ±2Y�m:

Q± iU =∑
�,m

±2a�m±2Y�m (23.12)

and the E and B mode are defined on the sphere by

E = ∑�,m aE
�mY�m = ∑�,m− 2a�m+−2a�m

2 Y�m

B = ∑�,m aB
�mY�m = ∑�,m i 2a�m−−2a�m

2 Y�m (23.13)

where Y�m stands for the usual spin 0 spherical harmonics basis functions. The
quantities E and B are derived by applying the spin lowering operator twice to
Q + iU and the spin raising operator twice to Q − iU so that E and B are real
scalar fields on the sphere, invariant through rotations of the local reference frame.
From Cosmic Mircowave Background observations such those provided by WMAP
and PLANCK, cosmological information can be directly obtained from the power
spectra and cross-spectra of the fields T,E,B

Combining the wavelet transform on the sphere and the spin-2 spherical harmon-
ics decomposition, it was shown in [30] that the we can derive coefficient maps wT

j ,
wE

j , wB
j and the low resolution approximation maps cT

J , cE
J , cB

J :

T = cT
J +

J

∑
j=1

wT
j E = cE

J +
J

∑
j=1

wE
j B = cB

J +
J

∑
j=1

wB
j (23.14)

where cX
J stands for the low resolution approximation to component X and wX

j is
the map of wavelet coefficients of that component on scale j. Finally, we can easily
construct an EB-curvelet transform by first computing the E-B wavelet transform,
following by a ridgelet transform on the different scales of the decomposition. More
details can be found in [30]. Figure 23.4 shows, on the left, backprojections of E-
wavelet coefficients, and, on the right, backprojections of B-wavelet coefficients on
the right hand side at different scales. Figure 23.5 shows the backprojection of a
B-curvelet coefficient.
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Fig. 23.4 E-wavelet (left) and B-wavelet atoms (right)

Fig. 23.5 B-curvelet atom

23.4 Inverse Problems and Sparsity

23.4.1 The Sparsity Prior

Many image problems in astronomy can be formalized as a linear inverse problem,

Y = AX + ε, (23.15)

where Y are a set of noisy measurements, ε is an additive noise, X is the solution
of our problem, and A is a linear operator. Finding X knowing the data Y and A
is an inverse problem. When it has not a unique and stable solution, it is an ill-
posed problem, and a regularization is necessary to reduce the space of candidate
solutions. Once the dictionary Φ is chosen, inverse problems can be regularized
using a sparsity penalty. Between all possible solutions, we want the one which
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has the sparsest representation in the dictionary Φ . Noting α the representation
coefficients in Φ , the solution X can be reconstructed as X = Φα , the sparsity can
be measured through the ‖α‖�0 norm, which indicates the limit of �p when p → 0.
This counts in fact the number of non-zero elements in the sequence. This approach
leads to the following minimization problem:

min
α

‖α‖�0 s.t. ‖Y −AΦα‖�2 ≤ σ . (23.16)

It was proposed to convexify the constraint by substituting the convex �1 norm for
the �0 norm leading to [7]:

min
α

‖α‖�1 s.t. ‖Y −AΦα‖�2 ≤ σ . (23.17)

This equation can also be recast in its Lagrangian form:

min
α

λ‖α‖�1 +
1
2
‖Y −AΦα‖2

�2 . (23.18)

Depending on the A operator, there are several ways to obtain the solution of this
equation.

23.4.2 Deconvolution

In a deconvolution problem, when the sensor is linear, A is the block Toeplitz matrix.
A first iterative thresholding deconvolution method was proposed in [27] which
consists in the following iterative scheme:

X (n+1) = X (n) +AT
(

WDenΩ (n)

(
Y −AX (n)

))
(23.19)

where WDen is an operator which performs a wavelet thresholding, i.e. applies
the wavelet transform of the residual R(n) (i.e. R(n) = Y −AX (n)), threshold some
wavelet coefficients, and applies the inverse wavelet transform. Only coefficients
that belong to the so called multiresolution support Ω (n) [27] are kept, while the
others are set to zero. At each iteration, the multiresolution support Ω (n) is updated
by selecting new coefficients in wavelet transform of the residual which have an
absolute value larger than a given threshold. The threshold is automatically derived
assuming a given noise distribution such as Gaussian or Poisson noise.

More recently, it was shown ([8, 13], Daubechies et al. 2007) that a solution of
(23.18) can be obtained through a thresholded Landweber iteration

X (n+1) = WDenλ
(

X (n) +AT
(

Y −AX (n)
))

, (23.20)
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Fig. 23.6 Simulated Hubble Space Telescope image of a distant cluster of galaxies. Left: original,
unaberrated and noise-free. middle: input, aberrated, noise added. Right, wavelet restoration
wavelet

with ‖A‖= 1. In the framework of monotone operator splitting theory, it was shown
that for frame dictionaries, a slight modification of this algorithm converges to the
solution [8]. Extension to constrained non-linear deconvolution is proposed in [10].

A simulated Hubble Space Telescope image of a distant cluster of galaxies is
shown in Fig. 23.6, middle. The simulated data are shown in Fig. 23.6, left. Wavelet
deconvolution solution is shown Fig. 23.6, right. The method is stable for any kind
of point spread function, and any kind of noise modeling can be considered.

23.4.3 Inpainting

The classical image inpainting problem can be defined as follows. Let X be the
ideal complete image, Y the observed incomplete image and M the binary mask
(i.e. Mi = 1 if we have information at pixel i, Mi = 0 otherwise). In short, we have:
Y = MX . Inpainting consists in recovering X knowing Y and M. We thus want to
minimize:

min
X

‖ΦT X‖0 subject to Y = MX . (23.21)

Note that we now switch to an analysis-type prior in (23.21). It was shown in
[11] that this optimization problem can be efficiently solved through an iterative
thresholding algorithm called MCA:

X (n+1) = ΔΦ ,λn(X
(n) +Y −MX (n)). (23.22)

where the nonlinear operator ΔΦ ,λ (Z) consists in (1) decomposing the signal Z
in the dictionary Φ to derive the coefficients α = ΦT Z, (2) thresholding the
coefficients: α̃ = ρ(α,λ ), where the thresholding operator ρ can either be a hard
thresholding or a soft thresholding, and (3) reconstructing Z̃ from the thresholded
coefficients α̃ .
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Fig. 23.7 Left panel, simulated weak lensing mass map, middle panel, simulated mass map with
a standard mask pattern, right panels, inpainted mass map. The region shown is 1◦ ×1◦

The threshold parameter λn decreases with the iteration number and it plays a
role similar to the cooling parameter of the simulated annealing techniques, i.e. it
allows the solution to escape from local minima. More details on optimization in
inpainting with sparsity can be found in [12].The case where the dictionary is a
union of subdictionaries Φ = {Φ1, . . . ,ΦK} where each Φi has a fast operator has
also been investigated in [11, 12].

The experiment was conducted on a simulated weak lensing mass map masked by
a typical mask pattern (see Fig. 23.7). The left panel shows the simulated mass map
and the middle panel shows the masked map. The result of the inpainting method
is shown in the right panel. We note that the gaps are undistinguishable by eye.
More interesting, it has been shown that, using the inpainted map, we can reach an
accuracy of about 1% for the power spectrum and 3% for the bispectrum [21].
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Chapter 24
Exploiting Non-linear Structure in Astronomical
Data for Improved Statistical Inference

Ann B. Lee and Peter E. Freeman

Abstract Many estimation problems in astrophysics are highly complex, with
high-dimensional, non-standard data objects (e.g., images, spectra, entire distri-
butions, etc.) that are not amenable to formal statistical analysis. To utilize such
data and make accurate inferences, it is crucial to transform the data into a
simpler, reduced form. Spectral kernel methods are non-linear data transformation
methods that efficiently reveal the underlying geometry of observable data. Here
we focus on one particular technique: diffusion maps or more generally spectral
connectivity analysis (SCA). We give examples of applications in astronomy; e.g.,
photometric redshift estimation, prototype selection for estimation of star formation
history, and supernova light curve classification. We outline some computational and
statistical challenges that remain, and we discuss some promising future directions
for astronomy and data mining.

24.1 Introduction

The recent years have seen a rapid growth in the depth, richness, and scope of astro-
nomical data. This trend is sure to accelerate with the next-generation all-sky sur-
veys (e.g., Dark Energy Survey (DES),1 Large Synoptic Survey Telescope (LSST),2

Panoramic Survey Telescope and Rapid Response System (PanSTARRS),3 Visible

1www.darkenergysurvey.org
2www.lsst.org [19].
3www.pan-starrs.ifa.hawaii.edu/public
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and Infrared Survey Telescope for Astronomy (VISTA),4) hence creating an ever
increasing demand on sophisticated statistical methods that can draw fast and
accurate inferences from large databases of high-dimensional data. From a data
mining perspective, there are two general challenges one has to face. The first is
the obvious computational challenge of rapidly processing and drawing inferences
from massive data sets. The second is the statistical challenge of drawing accurate
inferences from data that are high-dimensional and/or noisy.

Many of the estimation problems in astronomical databases are extremely
complex, with observed data that take a form not amenable to analysis via standard
methods of statistical inference. To utilize such data, it is crucial to encode them
in a simpler, reduced form. The most obvious strategy is to hand-pick a subset of
attributes based on prior domain knowledge. For example, ratios of known emission
lines in galaxy spectra may aid in the classification of low-redshift galaxies into
starburst, active galactic nuclei, and passive galaxies. In astrophysical data analysis,
a widely used technique for statistical learning is template fitting, where observed
data are compared with sets of simulated or empirical data from systems with known
properties; see e.g., [1, 13, 18, 31] for some recent template-based work in a variety
of astrophysical contexts. Another common data mining approach is

principal component analysis (PCA), a globally linear projection method that
finds directions of maximum variance; see, e.g., ([26] and references therein; [5]).

Despite their wide popularity in astrophysical data analysis, the above strategies
to statistical learning all have obvious draw-backs: When handpicking a few
attributes, one may discard potentially useful information in the data. For template
fitting, the final estimates depend strongly on the particular selection of templates as
well as the quality of each of the templates. Finally, PCA works best when the data
lie in a linear subspace of the high-dimensional observable space, and can perform
poorly when this is not the case.

In this paper, we describe a more flexible approach to statistical learning that
exploits the intrinsic (possibly non-linear) geometry of observable data with a
minimum of assumptions. The idea is that naturally occurring data often have sparse
structure due to constraints in the underlying physical process. In other words,
the dimension d of the data space may be large but most of this space is empty.
Spectral kernel methods, such as spectral clustering [25, 34], Laplacian maps [3],
Hessian maps [14], and locally linear embeddings [30], analyze the data geometry
by using certain differential operators and their corresponding eigenfunctions.
These eigenfunctions provide a new coordinate system. For example, consider the
emission spectra of astronomical objects. The original data with measurements
at thousands of different wavelengths are not in a form amenable to traditional
statistical analysis and nonparametric regression. Figure 24.1, however, shows a
low-dimensional embedding of a sample of 2,793 SDSS galaxy spectra. The gray
scale codes for redshift. The results indicate that by analyzing only a few dominant
eigenfunctions of this highly complex data set, one can capture the main variability

4www.vista.ac.uk

www.vista.ac.uk
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Fig. 24.1 Embedding of a sample of 2,793 SDSS galaxy spectra using the first three diffusion
map coordinates. The gray scale codes for redshift (Reproduced from Richards et al. [26])

in redshift, although this quantity was not taken into account in the construction
of the embedding. Moreover, the computed eigenfunctions are not only useful
coordinates for the data. They form an orthogonal Hilbert basis for smooth functions
of the data—a property that we utilize in [26] for redshift estimation.

More generally, the central goal of spectral kernel methods can be described as
follows:

Find a transformation Z =Ψ(X) such that the structure of the distribution PZ is simpler than
the structure of the distribution PX while preserving key geometric properties of PX .

“Simpler” can mean lower dimensional but can also be interpreted much more
broadly. For example, for redshift prediction using photometric data [17], we
transform the original 16 variables (for magnitude differences between five broad
wavelength bandpasses, as measured using four different magnitude systems) to a
150-dimensional space. For the transformed data, we then fit an additive model of
the form

Y =
p

∑
i=1

βiψi(x)+ ε

where Y denotes observed redshift, x is the original data object (galaxy),ψi(x) is the
i:th coordinate after the transformation, and ε is some random noise.
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In this work, we focus on one particular non-linear data transformation called
diffusion maps [11, 22], which is an approach to spectral connectivity analysis
(SCA; [23]). SCA analyzes the higher-order connectivity of the data by defining
a Markov process on a graph, where each graph node is an observable object, such
as a spectrum, galaxy image, or set of light curves for a supernova, etc. The data
are then transformed to a metric space where distances reflect the connectivity of
the data. In Sect. 24.2, we describe the method. In Sect. 24.3, we give examples of
some applications in astronomy. Finally, in Sect. 24.4, we discuss computational and
statistical challenges for estimation for large astronomical databases, and outline
some promising future directions.

24.2 Spectral Connectivity Analysis

There are several data transformation methods that aim to find a low-dimensional
embedding Z =Ψ (X) of the data while preserving key geometric properties of
the data distribution PX in local neighborhoods. Examples of locality-preserving
methods are local linear embedding, Laplacian eigenmaps, Hessian eigenmaps,
local tangent space alignment (LTSA; [35]), and diffusion maps. While the exact
details vary, the optimal r-dimensional embedding (where r < d) is provided as
the solution to an eigenvalue problem, where the first r eigenvectors (ψ1, . . . ,ψr)
provide the new data coordinates.

Here we elaborate on diffusion maps—a specific approach to spectral connec-
tivity analysis; Euclidean Commute Time maps is a closely related SCA technique
discussed in e.g., [16]. Assume we observe data Xobs = {x1, . . . ,xn}, where x ∈R

d .
The basic idea is to create a distance D(xi,x j) that measures “connectivity” or how
easily information “flows” from point xi to x j in a Markov chain on the observed
data. (The data “points” xi and x j represent entire observable objects; for example,
the full emission spectra of two astronomical objects, images of two galaxies, or
light curves of two supernovae; D is a measure of distance between the objects.)
High flow occurs in high-density regions, and points that are connected by many
high-flow paths are close with respect to the diffusion metric. The transition matrix A
of the Markov chain is based on a user-defined pairwise distanceΔ(·, ·) that is a good
measure of dissimilarity in local neighborhoods; a common choice is the Euclidean
distance in R

d but other dissimilarity measures that incorporate prior knowledge and
measurement errors can also be used. We define the transition probability from xi to

x j in one step by A(xi,x j)=
exp(−Δ (xi,x j)/ε)

∑k exp(−Δ (xi,xk)/ε)
, where ε > 0 is a tuning parameter that

determines the local neighborhood size. Let At(xi,x j) denote the t-step transition
probability; the parameter t determines the amount of smoothing along high-density
regions and the “scale” of the analysis. The diffusion distance between points xi and
x j is defined as

D(xi,x j) = ∑
z∈Xobs

(At(xi,z)−At(x j,z))2

φ0(z)
, (24.1)
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where the sum is over all points z in the data set Xobs, and φ0(z) is the stationary
distribution of the Markov chain as t → ∞. In practice, we never explicitly
implement the Markov chain but instead solve an eigenproblem for an n-by-n
matrix. Let λ1 ≥ λ2 ≥ . . . and {ψi} be the eigenvalues and corresponding right
eigenvectors of the 1-step transition matrix A. The diffusion map Ψt : Xobs → R

r

(where r < n) is given by

Ψt(x) = (λ t
1ψ1(x), . . . ,λ t

rψr(x)). (24.2)

As shown in [10,22], it holds that Dt(xi,x j)≈ ‖Ψt(xi)−Ψt(x j)‖, i.e., the Euclidean
distance in the new coordinate system approximates the diffusion distance in
the original coordinate system. Because all connections between data points are
simultaneously considered, diffusion maps are robust to noise and outliers and they
return embeddings where metrics are explicitly defined.

Incorporating data geometry via Ψ and SCA can lead to radically improved
inference algorithms. For details on the statistical properties of SCA refer to [23].
In Sect. 24.3, we give examples of some specific applications in astronomy.

24.2.1 Out-of-Sample Extensions of Empirical Data Sets

Let X denote the space of all data. One can show that the random walk and the
eigenvectors {ψ j} derived from the finite set Xobs have meaningful limits as the
sample size n → ∞. Hence, we can think of the eigenvectors of the discrete random
walk as estimates of eigenfunctions {ψ j(x)} j∈N, defined on X , at the observed
values x1, . . . ,xn. We estimate the function ψ j(x) at values of x not corresponding
to one of the xi’s in the data set by the kernel-smoothed estimate

ψ̂ j(x) =
1
λ j

n

∑
i=1

A(x,xi)ψ j(xi), (24.3)

where A(x,x j) =
exp(−Δ (x,x j)/ε)

∑k exp(−Δ (x,xk)/ε)
. This expression is known in the applied math-

ematics literature as the Nyström approximation. These out-of-sample extensions
allow us to make predictions for new data points that are not in the sample using
diffusion maps and, for example, adaptive regression (as in Sec. 24.3.1).

24.3 Applications in Astronomy

In this section, we give some examples of applications of SCA to astrophysical
problems. Among other things, diffusion maps can be used to estimate parameters
in a regression framework, build classification models, and select prototypes for
parameter estimation in complex models. The details are described in separate
papers.
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24.3.1 Adaptive Regression and Redshift Estimation

In [26], we show how one can take advantage of the underlying data structure in non-
parametric regression such as redshift prediction. The main idea is to describe the
intrinsic data geometry in terms of fundamental eigenmodes. These eigenmodes can
be viewed both as (1) coordinates of the data, as in Fig. 24.1, and as (2) orthogonal
basis functions for curve estimation. The latter insight can be used to develop a
general regression framework for sparse, complex data.

Let X ⊂ R
d denote the space of all observed data. In regression, the goal is to

predict a real-valued function f (x) for data x ∈ X , when given a sample of known
pairs (x,Y ) where the response Y = f (x)+ε . If f ∈ L2(X ) and {ψ1,ψ2, . . . ,} is an
orthonormal basis, then we can write

f (x) =
∞

∑
j=1

β jψ j(x),

where the expansion coefficients β j =
∫

f (x)ψ j(x)dx. The standard approach in
non-parametric curve estimation [15] is to choose a fixed known basis (e.g., Fourier
or wavelet bases) for, for example, L2([0,1]), and then extend the basis to two or
three dimensions by a tensor product. Such an approach quickly becomes intractable
in higher dimensions. In astrophysical problems, the response Y may be the redshift,
age or metallicity of galaxies, and x is often a high-dimensional, non-standard data
object, such as the emission spectrum measured at p > 1,000 wavelength bins, or
photometry data in a color space with p > 10 dimensions.

In [28], we suggest a new, adaptive approach to non-parametric curve estimation,
which utilize the data-driven (orthogonal) eigenfunctions {ψ1,ψ2, . . . ,} computed
by PCA or spectral kernel methods. The regression function estimate r̂(x) is then
given by

f̂ (x) =
p

∑
j=1

β̂ jψ j(x),

where the coefficients β̂ j are estimated from the data, and p is a smoothing
parameter determined by cross-validation and a mean-squared error prediction risk.
The method is computationally efficient, making it appropriate for large databases
such as the SDSS. One can use the predictions to speed up more computationally
expensive estimation techniques by narrowing down the relevant parameter space;
e.g., the redshift range or the set of templates in cross-correlation techniques.
Adaptive regression also provides a useful tool for quickly identifying outliers; e.g.,
misclassified spectra, spectra with anomalous features, etc. In Richards et al., we
consider a sample of 3,835 galaxy spectra from the SDSS database. For this data,
the estimates based on eigenmodes from SCA (diffusion maps) lead to markedly
better predictions than estimates from PCA, indicating the importance of non-linear
geometries.
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The development of fast and accurate methods of photometric redshift estimation
is a crucial step towards being able to fully utilize the data of next-generation
surveys for precision cosmology. In [17], we apply adaptive regression and SCA
to the problem of photometric redshift estimation for three different data sets:
350,738 SDSS main sample galaxies, 29,816 SDSS luminous red galaxies, and
5,223 galaxies from DEEP2 with CFHTLS ugriz photometry. For computational
speed, we first derive diffusion coordinates for training sets limited to about 104

galaxies, and then extend these coordinates to the full data sets by the Nyström
method. The final redshift predictions achieve an accuracy on par with that of
existing ML-based techniques, e.g., artificial neural networks [12] and k-nearest
neighbors [2].

24.3.2 Prototype Selection for Estimation of Star Formation
History

Parameter estimation in astronomy and cosmology often requires the use of complex
physical models. In a typical application the mapping from the parameter space
to the observed data space is built on sophisticated physical theory or simulation
models or both. In [27, 28], we study one such scenario: the problem of estimating
star formation history (SFH) in galaxies given SDSS high-resolution spectra.
A common technique in the astronomy literature, called empirical population
synthesis (see e.g., Cid Fernandes et al. [9] and references within), is to model
each galaxy as a mixture of stars from different simple stellar populations (SSPs),
where an SSP is defined as a group of stars with the same age and metallicity. The
principle behind this method is that each galaxy consists of multiple subpopulations
of stars of different ages and compositions so that the integrated observed light
from each galaxy is a mixture of the light contributed by each SSP. By estimating
the mixture coefficient of each SSP, one can then reconstruct the star formation rate
and composition as a function of time throughout the life of that galaxy.

In our work, we use theoretical SSP models by Bruzual and Charlot [6]. For the
galaxy spectra, we adopt the empirical population synthesis model in [8]:

Yλ (γ,Mλ0
,AV ,v∗,σ∗) = Mλ0

(
N

∑
j=1

γ jX j,λ rλ (AV )

)
⊗G(v∗,σ∗) (24.4)

where Yλ is the light flux at wavelength λ ; X j is the normalized jth SSP spectrum;
and γ j ∈ [0,1] is the proportion of luminosity contributed by the jth SSP. (The
remaining model parameters describe the flux normalization and observational
noise, such as the amount of reddening due to foreground dust, spectral distortions
due the movement of stars within the observed galaxy, etc.) We fit the signal model
in (24.4) to observed noisy galaxy data with maximum likelihood estimation and
MCMC. We then derive various physical parameters of interest from the SSP
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parameters (which are known) and the component weights in the signal model
(which are estimated). For example: the average log age of the stars in a galaxy,
〈logt〉 = ∑N

j=1 γ j log t(X j), where t(X j) is the age of the j:th SSP; similarly, the

average log metallicity 〈logZ〉 = ∑N
j=1 γ j logZ(X j), where Z(X j) is the metallicity

of the j:th SSP.
An important question is: How should one choose the set of SSPs? Though

the parameters that define each SSP are continuous, optimizing the signal model
over a large set of SSPs on a fine parameter grid is computationally infeasible and
inefficient. As we shall see, it also leads to poor statistical estimates. In [28], we
introduce a principled approach of choosing a small basis of SSP prototypes for
optimal SFH parameter estimation. The basic idea is to explore the underlying
geometry of the SSP observable data, and quantize the vector space and effective
support of these model components. In addition to greater computational efficiency,
we achieve better estimates of the SFH target parameters. In simulations, our
proposed quantization method obtains a substantial improvement in estimating the
target parameters over the common method of employing a parameter grid. The
main reason for the improvement is that under the presence of noise, components
with similar functional forms will be indistinguishable. Hence, it is more advan-
tageous to choose prototypes that are approximately evenly spaced in the space
of model data rather than evenly spaced in the parameter space. By replacing the
theoretical models in each neighborhood by their local average in diffusion space
(“Diffusion K-means”; Fig. 24.2), the model quantization approach is optimal for
treating degeneracies because it allows a slight increase in bias to achieve a large
decrease in variance of the target parameter estimates. See Fig. 24.3 for a plot of
two SSP spectral bases with K prototypes chosen by a regular parameter grid and
by our proposed quantization method, respectively.

24.3.3 Supernova Classification

In many astronomical problems, classification is of paramount importance. For
instance, one may be interested in determining which of a collection of light curves
is associated with RR Lyrae stars, or Cepheids, etc. Depending on the problem,
classification may be done in an unsupervised manner, to uncover hidden structure
in the data, or, if at least some of the data labels are known, a classifier can be trained
and then used to predict the classes of unlabeled data.

The next generation of survey telescopes will observe hundreds of thousands
of noisy and irregular photometric SN light curves, from which astronomers will
want to construct highly pure and efficient Type Ia SN samples for use in testing
cosmological theories. In [29], we apply a semi-supervised approach to supernova
classification. In the unsupervised step, we fit regression splines to each of a set of
light curves, then via diffusion map place them in a lower-dimensional embedding
space that capture the geometry of the underlying data distribution. In that space,
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Fig. 24.2 Prototyping of SSP spectra by Diffusion K-means. Representation of 1,278 SSP spectra
in three-dimensional diffusion space. Large black dots denote the K = 45 centroids. Individual
SSPs are colored by cluster membership. The theoretical SSPs reside on a simple, low-dimensional
manifold which is captured by the K prototypes (Reproduced from Richards et al. [27])

we then take the supervised step of training a random forest classifier with only
the labeled data, with the results used to classify the unlabeled data. Applied to the
data of the Supernova Photometric Classification Challenge (Kessler et al. 2010),
we achieve 96% purity and 86% efficiency when labeling the training set; for the
test set, the figures are 56% and 48% respectively. As the sample sizes (of unlabeled
and/or labeled data) increase, our semi-supervised approach will yield progressively
more accurate classifications, in contrast to template-based approaches which do not
benefit from larger data sets. We also explore how different spectroscopic followup
strategies affect these figures, finding that deeper surveys yielding fewer labeled
SNe can produce better results than shallower surveys. Determination of an optimal
labeling strategy is an important component of active learning, a topic we will return
to in the discussion below.
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Fig. 24.3 Basis spectra for CF05 and Diffusion K-means, colored by log t . All spectra are
normalized to 1 at λ0 = 4,020 Å. The diffusion K-means basis covers the spectral range in relatively
uniform increments, while the CF05 basis oversamples spectra from young stellar populations and
undersamples the spectral range of older populations (Reproduced from Richards et al. [27])

24.4 Discussion and Future Directions

In this review, we have described SCA—a statistical technique for transforming
complex, data objects into a coordinate system that reveals the structure of the
underlying data distribution. Such a transformation may improve the performance
of classification, regression, clustering and parameter estimation. We have seen
applications of SCA in redshift prediction, estimation of star formation history and
photometric supernova classification. Currently, we are working with Chad Schafer
to develop SCA as a tool for combining theoretical modeling and observational
evidence into optimal constraints on the parameters of physical models. The idea is
to map observed data (e.g., light curves of Type Ia supernova) as well as distributions
for the observable data, constrained by physical theory (e.g., cosmological models)
into a simpler encoding space. The shared representation of data and distributions is
then exploited to achieve optimal constraints on physical theories, in the form of set
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estimators on the distribution space; see Schafer’s SCMA 2011 talk and paper for
details.

Another promising direction of SCA is semi-supervised learning (SSL), in
particular, in combination with active learning. Suppose that we have a regression
or classification problem. The typical scenario in SSL is that we have access
to a large database of unlabeled examples (e.g., photometric data with unknown
redshift), but relatively few labeled examples (e.g., data with spectroscopically
confirmed redshift). Classical regression and classification techniques only take
advantage of labeled data, but the central idea behind SSL is that one can make
use of the unlabeled data to improve predictions; see e.g., [4, 21, 33] for theoretical
results on SSL. In our supernova classification application, we showed that learning
a low-dimensional coordinate system using unlabeled data improves subsequent
classification by trees. We also found evidence that the exact choice of training
examples has a large effect on the results. In future work, we plan to explore whether
we can achieve greater accuracy in classification and regression problems with fewer
training labels if a so-called active learner is allowed to repeatedly pose queries, in
the form of unlabeled data instances to be labeled by an oracle. In the machine
learning literature, there are many variants of active learning; see, e.g., [32] for a
literature survey. All these models involve a search through the hypothesis space.
Such searches and subsequent queries could potentially be better adapted to the
underlying data distribution via an unsupervised technique such as SCA that exploit
clusters and groupings in data.

Finally, there are the computational challenges of efficiently constructing
weighted graphs and performing eigencomputations for very large databases. We
are currently exploring several solutions—most notably, fast approximate nearest
neighborhood searches via trees, eigencomputations via streaming PCA [7], very
large-scale algebraic computations via matrix randomization [24], and subsampling
combined with Nyström extensions to reduce the size of the distance matrix that is
effectively eigendecomposed.
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Chapter 25
Commentary: Exploiting Non-linear Structure
in Astronomical Data for Improved Statistical
Inference

Didier Fraix-Burnet

Abstract As discussed in the paper by Ann Lee, both dimensionality reduction
and classification seek a reduced simpler form of the data. The first one works
with the parameter space, while classification works with the object space. Ideally,
one wishes to find a parameter space in which the points are naturally gathered
into distinct groups and, as a physicist more particularly, data points can fit our
model curves. I want to point out that dimensionality reduction methods and
classification approaches are highly complementary and should even be carried out
together. Astrophysical objects are complex, so that numerical simulations are now
a common tools to do physics. Model fitting has thus become a comparison between
populations (the observed ones and the synthetic ones) rather than plotting a curve
onto data points. This is exactly the role of statistics.

25.1 Structures in the Data Space and Classification

The paper by Ann Lee and Peter Freeman deals with the difficulty of infering
anything meaningful from astrophysical data that are complex and of high-
dimensionality (and non-standard). Dimensionality reduction aims at easing
statistical inference and simplifying interpretation through a simpler form of the
data. In astrophysics, where technological achievements provide us with a growing
number of different kinds of observables, extracting the most influencial parameters
also serves as a guide for future investigations and even telescope/detector design.
A reduced parameter space is essential for modeling especially if analytical
calculations are carried out. However, the numerical simulations become most
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often unavoidable because of the complexity of the astrophysical objects. Then, the
number of parameters here also must be synthetized to the most important ones.

The general purpose of classification is to ease memory and discover the
relationships between classes. It is easier to recall properties for tens of classes
rather than a million objects. It is also much easier (and less computer intensive)
to fit models on a limited number of representatives of classes than to many not
so different objects. But obtaining classes is not sufficient if we are not able to
understand why they are composed as they are and why they are different. Finding
relationships is thus essential.

Dimensionality reduction reduces
the number of parameters

Classification reduces the
number of objects

Par1 Par2 Par3 Par4 . . .

Object1 . . . . . . .

Object2 . . . . . . .

Object3 . . . . . . .

Object4 . . . . . . .

. . . . . . . . . . . . . . . . . .

In summary, both dimensionality reduction and classification share the same
goal. In simple words, the common ideal objective is to find a parameter space in
which the points are naturally gathered into distinct groups and data points can fit
our models. Ann Lee has shown us how dimensionality must care about structures
in the data space. I would like to show that classification is also very concerned with
these same structures.

Traditional classification in astrophysics makes heavy use of scatter plots and
hard limits, most often linear. Parameters are chosen according to the observational
means (infrared or radio galaxies, X-ray objects. . .), their “obviousness” (elliptical,
Lyman-α or compact galaxies. . .) or an a priori understanding of the underlying
physics (star-forming or massive galaxies. . .). Such classifications are thus limited
by the use of very few properties and cannot reflect the real complexity of
astrophysical objects.

Multivariate classifications are just beginning to be used in astrophysics [1–3].
Clustering analyses are generally based on distance matrices, principally using
euclidian distances, thus assuming a linear multivariate space. More sophisticated
methods use a priori knowledge to implement a particular geometry of the data
space and use an adapted distance definition. On the contrary parameter-based
(or character-based) approaches, using the coordinates of the objects and not
their pairwise distances, explore the geometry of the data space. As one can
easily understand, distance-based methods are generally much more computationaly
efficient.

It appears to me that the diffusion maps technique described in the paper by Ann
Lee and Peter Freeman, and the spectral connectivity analysis more generally, is
of the second kind, These methods explore the geometry of the data space even
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though they assume an euclidian metrics locally (any curved geometry can be
locally approximated by euclidian spaces). This works well because the data space
is expected to be sparse due to the physical relations that explain the diversity of
objects.

Transformation processes that cause properties to evolve are all continuous in
astrophysics. The distribution of data points in a multivariate space is thus mainly
continuous. For sparsity to occur, that is for structures to be differentiated with voids
in between, the variables must be constrained by some underlying phenomena.

Classifying objects in a continuous data space is not that easy because fuzziness
is unavoidable: limits cannot be hard and overlaps are possible. Even if gaps are
observed, it is generally impossible to guarantee that they will not be filled by newly
discovered objects. So classification in a continuous data space must be understood
as an ordered organisation. Distance-based or character-based methods establish
relationships between the objects, most easily depicted on a hierarchical represen-
tations like trees or split-networks (a generalization of trees). The relationships so
revealed allow for a flexible classification, the number of groups depending on the
level where the tree is cut.

However, when does a parameter matrix or a distance matrix be represented on
a tree-like scheme? It can be shown [4] that this is the case when the objects define
a convex structures in the data space This is very similar to the salesman problem,
a classical question in algorithmics that seeks to optimize the journey of a salesman
through different cities. The solution is easy when the cities are arranged on a single
convex hull, then the tree is linear. When several complex hulls are present, the tree
becomes more complicated and can take the form of a split-network.

Hence, the geometry of the data space is crucial to organize the objects in an
intelligible way. This data space cannot be any, it is defined by the parameters with
which the convex hulls appear.

In conclusion, to reduce the number of objects, we need to be in the right data
space. We thus need to select the right parameters, To do that objectively and
extensively, the methods to reduce the dimensionality are extremely useful since
they can identify the most discriminant axes of variability. But they must preserve
the main geometrical properties of the data space. This is a quality of the spectral
connectivity analysis method used by Ann Lee and Pete Freeman.

25.2 Finding the Right Data Space

There is thus a parallel and complementary search of the right data space both by
using dimensionality reduction techniques, to probe the parameters, and by using
multivariate classification, to probe the robustness and the interest of the groups that
can be defined from these parameters. Starting from the initial parameter space,
one constructs a sub-parameter space with the first kind of approach, and then
check whether a classification can be obtained. From this second analysis, some
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information is gathered on the structuring properties of the parameters, then further
iterations can lead to a final sub-parameter space from which a final classification is
proposed. Then, and only then, the interpretation can begin.

25.3 Model Fitting and Populations

Would we envisage to put living organisms into equations and follow their evolu-
tion? Biologists rather use statistical laws to model the evolutions and relationships
of populations.

Model fitting in astrophysics still often means plotting a curve onto data points.
Unfortunately, the observations and their parameters are too many, so that most
scatter plots are merely clouds of points in which many curves can fit equally well. In
addition, without a proper classification, the chance is weak that the right population
of galaxies has been picked up for the test.

But there is more. Ann Lee presents an application of the spectral connectivity
analysis to obtain prototypes of synthetic galaxy spectra. The reason is that it would
take too much time to find the best values for the many variables of the models by
fitting each of the million observed spectra. It is simpler to only use a limited number
of model prototypes selected from the synthetic population of models. We have here
a good example where the search of the most influencing parameters (reduction of
dimensionality in the model space) leads to a classification (the prototypes).

I however find it amusing to use individual observed objects against prototypes
of models, and not using “prototypes” of observed objects. This reflects the radical
evolution of contemporary astrophysics. On one side we have a huge amount of
observations, with many objects described by many parameters. On the other side,
computers allow us to investigate a detailed and complicated physics. Numerical
simulations produce huge populations of synthetic objects. The question is how use
them to compare with the observed populations?

Model fitting nowadays clearly appears as a comparison between populations,
not any more fitting a curve for an individual galaxy. Classification becomes crucial,
but not with the old fascioned way of segregating objects according to their most
obvious properties. This is real statistics that astronomers must use. Physicists in
general are not formed at all to this way of thinking, of doing science. This is
cultural, and certainly explains why astrostatistics is still not widely popular in
astrophysics. It will certainly take some time, but change is coming.
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Chapter 26
Surprise Detection in Multivariate Astronomical
Data

Kirk D. Borne and Arun Vedachalam

Abstract Astronomers systematically study the sky with large sky surveys.
A common feature of modern sky surveys is that they produce hundreds of
terabytes (TB) up to 100 (or more) petabytes (PB) both in the image data archive
and in the object catalogs. For example, the LSST will produce a 20–40 PB
catalog database. Large sky surveys have enormous potential to enable countless
astronomical discoveries. Such discoveries will span the full spectrum of statistics:
from rare one-in-a-billion (or one-in-a-trillion) object types, to complete statistical
and astrophysical specifications of many classes of objects (based upon millions
of instances of each class). The growth in data volumes requires more effective
knowledge discovery and extraction algorithms. Among these are algorithms for
outlier (novelty/surprise/anomaly) detection. Outlier detection algorithms enable
scientists to discover the most “interesting” scientific knowledge hidden within
large and high-dimensional datasets: the “unknown unknowns”. Effective outlier
detection is essential for rapid discovery of potentially interesting and/or hazardous
events. Emerging unexpected conditions in hardware, software, or network
resources need to be detected, characterized, and analyzed as soon as possible for
obvious system health and safety reasons, just as emerging behaviors and variations
in scientific targets should be similarly detected and characterized promptly in
order to enable rapid decision support in response to such events. We have
developed a new algorithm for outlier detection (KNN-DD: K-Nearest Neighbor
Data Distributions). We have derived results from preliminary experiments in terms
of the algorithm’s precision and recall for known outliers, and in terms of its ability
to distinguish between characteristically different data distributions among different
classes of objects.
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26.1 Introduction

Novelty and surprise are two of the more exciting aspects of science—finding
something totally new and unexpected. This can lead to a quick research paper,
or it can make your career, or it can earn the discoverer a Nobel Prize. As scientists,
we all yearn to make a significant discovery. Petascale databases potentially offer
a multitude of such opportunities. But how do we find that surprising novel
thing? These come under various names: interestingness, outliers, novelty, surprise,
anomalies, or defects (depending on the application). We are investigating various
measures of interestingness in large databases and in high-rate data streams (e.g., the
Sloan Digital Sky Survey [SDSS], 2-μm All-Sky Survey [2MASS], and GALEX
sky survey), in anticipation of the petascale databases of the future (e.g., the
Large Synoptic Survey Telescope [LSST]), in order to validate algorithms for
rapid detection and characterization of events (i.e., changes, outliers, anomalies,
novelties).

In order to frame our investigation of these algorithms, we focus on a specific
extragalactic research problem. We explore the environmental dependences of
hierarchical mass assembly and of fundamental galaxy parameters using a com-
bination of large multi-survey (multi-wavelength) object catalogs, including SDSS
(optical) and 2MASS (NIR: near-infrared). We generated and are now studying
a sample of over 100,000 galaxies that have been identified and catalogued in
both SDSS and 2MASS. The combination of multi-wavelength data in this cross-
matched set of 100,000 galaxies from these optical and NIR surveys will enable
more sophisticated characterization and more in-depth exploration of relationships
among galaxy morphological and dynamical parameters. The early results are quite
tantalizing. We have sliced and diced the data set into various physically partitioned
large subsamples (typically 30 bins of more than 3,000 galaxies each). We initially
studied the fundamental plane of elliptical galaxies, which is a tight correlation
among three observational parameters: radius, surface brightness, and velocity
dispersion [11,12]. This well known relation now reveals systematic and statistically
significant variations as a function of local galaxy density [7]. We are now extending
this work into the realm of outlier/surprise/novelty detection and discovery.

26.2 Motivation

The growth in massive scientific databases has offered the potential for major
new discoveries. Of course, simply having the potential for scientific discovery
is insufficient, unsatisfactory, and frustrating. Scientists actually do want to make
real discoveries. Consequently, effective and efficient algorithms that explore these
massive datasets are essential. These algorithms will then enable scientists to mine
and analyze ever-growing data streams from satellites, sensors, and simulations—
to discover the most “interesting” scientific knowledge hidden within large and
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high-dimensional datasets, including new and interesting correlations, patterns,
linkages, relationships, associations, principal components, redundant and surrogate
attributes, condensed representations, object classes/subclasses and their classifica-
tion rules, transient events, outliers, anomalies, novelties, and surprises. Searching
for the “unknown unknowns” thus requires unsupervised and semisupervised
learning algorithms. This is consistent with the observation that “unsupervised
exploratory analysis plays an important role in the study of large, high-dimensional
datasets” [28].

Among the sciences, astronomy provides a prototypical example of the growth
of datasets. Astronomers now systematically study the sky with large sky surveys.
These surveys make use of uniform calibrations and well engineered pipelines for
the production of a comprehensive set of quality-assured data products. Surveys are
used to collect and measure data from all objects that are visible within large regions
of the sky, in a systematic, controlled, and repeatable fashion. These statistically
robust procedures thereby generate very large unbiased samples of many classes of
astronomical objects. A common feature of modern astronomical sky surveys is that
they are producing massive catalogs. Surveys produce hundreds of terabytes (TB)
up to 100 (or more) petabytes (PB) both in the image data archive and in the object
catalogs. These include the existing SDSS and 2MASS, plus the future LSST in the
next decade (with a 20–40 PB database). Large sky surveys have enormous potential
to enable countless astronomical discoveries. Such discoveries will span the full
spectrum of statistics: from rare one-in-a-billion (or one-in-a-trillion) type objects,
to the complete statistical and astrophysical specification of a class of objects (based
upon millions of instances of the class).

With the advent of large rich sky survey data sets, astronomers have been slicing
and dicing the galaxy parameter catalogs to find additional, sometimes subtle, inter-
relationships among a large variety of external and internal galaxy parameters.
Occasionally, objects are found that do not fit anybody’s model or relationship. The
discovery of Hanny’s Voorwerp by the Galaxy Zoo citizen science volunteers is
one example [20, 21]. Some rare objects that are expected to exist are found only
after deep exploration of multi-wavelength data sets (e.g., Type II QSOs [25, 33];
and Brown Dwarfs [3, 27]). These two methods of discovery (i.e., large-sample
correlations and detection of rare outliers) demonstrate the two modes of scientific
discovery potential from large data sets: (1) the best-ever statistical evaluation and
parametric characterization of major patterns in the data, thereby explicating scaling
relations in terms of fundamental astrophysical processes; and (2) the detection of
rare one-in-a-million novel, unexpected, anomalous outliers, which are outside the
expectations and predictions of our models, thereby revealing new astrophysical
phenomena and processes (the “unknown unknowns”). Soon, with much larger sky
surveys, we may discover even rarer one-in-a-billion objects and object classes.

LSST (www.lsst.org) is the most impressive astronomical sky survey being
planned for the next decade. Compared to other sky surveys, the LSST survey will
deliver time domain coverage for orders of magnitude more objects. The project
is expected to produce ∼15–30 TB of data per night of observation for 10 years.

www.lsst.org
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The final image archive will be ∼100 PB, and the final LSST astronomical object
catalog (object-attribute database) is expected to be ∼20–40 PB, comprising over
200 attributes for 50 billion objects and ∼20 trillion source observations.

Many astronomy data mining use cases are anticipated with the LSST
database [4], including:

• Provide rapid probabilistic classifications for all 10,000–100,000 LSST events
each night;

• Find new correlations and associations of all kinds from the 200+ science
attributes;

• Discover voids in multi-dimensional parameter spaces (e.g., period gaps);
• Discover new and exotic classes of objects, or new properties of known classes;
• Discover new and improved rules for classifying known classes of objects;
• Identify novel, unexpected behavior in the time domain from time series data;
• Hypothesis testing verify existing (or generate new) astronomical hypotheses

with strong statistical confidence, using millions of training samples;
• Serendipitous discovery of very rare type of objects through outlier detection.

We are testing and validating exploratory data analysis algorithms that specifically
support many of these science user scenarios for large database exploration.

26.3 Related Work

Various information theoretic measures of interestingness and surprise in databases
have been studied in the past. Among these are Shannon entropy, information
gain [17], Weaver’s Surprise Index [32], and the J-Measure [30]. In general, such
metrics estimate the relative information content between two sets of discrete-valued
attributes. These measures can be used to identify interesting events in massive
databases and data streams (through efficient interestingness metrics).

We have used PCA to identify outliers [14, 15]. In particular, we have been
studying cases where the first two PC vectors capture and explain most (>90%) of
the sample variance in the fundamental plane of elliptical galaxies. Consequently,
in such a case, the component of a data record’s attribute feature vector that projects
onto the third PC eigenvector will provide a measure of the distance z3 of that data
record from the fundamental plane that defines the structure of the overwhelming
majority of the data points. Simply sorting the records by z3, and then identifying
those with the largest values, will result in an ordered set of outliers [13] from
most interesting to least interesting. We have tested this technique on a small cross-
matched test sample of ellipticals from SDSS and 2MASS [14]. We will research
the scalability of this algorithm to larger dataset sizes, to higher dimensions (i.e.,
number of science parameters), and to a greater number of principal components.

In many cases, the first test for outliers can be a simple multivariate statistical test
of the “normalcy” of the data: is the location and scatter of the data consistent with a
normal distribution in multiple dimensions? There are many tests for univariate data,
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but for multivariate data, we will investigate the Shapiro–Wilk test for normalcy
and the Stahel-Donoho multivariate estimator for outlyingness [22,29]. The Stahel-
Donoho outlyingness parameter is straightforward to calculate and assign for each
object: it is simply the absolute deviation of a data point from the centroid of the
data set, normalized to the scale of the data. These tests should not be construed as
proofs of non-normalcy or outlyingness, but as evidence. For petascale data, even
simple tests are non-trivial in terms of computational cost, but it is essential to apply
a range of algorithms in order to make progress in mining the data.

Several other algorithms and methods have been developed, and we will investi-
gate these for their applicability and scalability to the large-data environment antic-
ipated for LSST: “Measures of Surprise in Bayesian Analysis” [1], “Quantifying
Surprise in Data and Model Verification” [2], and “Anomaly Detection Model
Based on Bio-Inspired Algorithm and Independent Component Analysis” [31].
Such estimators can also be used in visual data mining—to highlight the most
interesting regions of the dataset—this provides yet another tool for visual ex-
ploration and navigation of large databases for outliers and other interesting
features [16, 23]; cf. [9, 19].

26.4 New Algorithm for Outlier Detection: KNN-DD

We have implemented a new algorithm for outlier detection that has proven
to be effective at detecting a variety of novel, interesting, and anomalous data
behaviors [5]. The “K-Nearest Neighbor Data Distributions”(KNN-DD) outlier
detection algorithm evaluates the local data distribution around a test data point
and compares that distribution with the data distribution within the sample defined
by its K nearest neighbors. An outlier is defined as a data point whose distribution
of distances between itself and its K-nearest neighbors is measurably different from
the distribution of distances among the K-nearest neighbors alone (i.e., the two sets
of distances are not drawn from the same population). In other words, an outlier is
defined to be a point whose behavior (i.e., the point’s location in parameter space)
deviates in an unexpected way from the rest of the data distribution.

Our algorithm has these advantages: it makes no assumption about the shape
of the data distribution or about “normal” behavior, it is univariate (as a function
only of the distance between data points), it is computed only on a small-N local
subsample of the full dataset, and as such it is easily parallelized when testing
multiple data points for outlyingness. The algorithm is specified by the following
rules, slightly updated from our previous results [5], as a consequence of our new
experimental results (Sect. 8.1):

Here, f (d,x) is the distribution of distances d between point x and a sample of
data points, fK(d,O) is the distribution of distances between a potential outlier O
and its K-nearest neighbors, and fK(d,K) is the distribution of distances among
the K-nearest neighbors. The algorithm compares the two distance distribution
functions fK(d,O) and fK(d,K) by testing if the two sets of distances are drawn
from the same population.



280 K.D. Borne and A. Vedachalam

Algorithm Outlier detection using K-nearest neighbor data distributions
(KNN-DD)
1. Find the set S(K) of K nearest neighbors to the test data point O.
2. Calculate the K distances between O and the members of S(K). These distances define fK(d,O).
3. Calculate the K(K-1)/2 distances among the points within S(K). These distances define

fK(d,K).
4. Compute the cumulative distribution functions CK(d,O) and CK(d,K), respectively, for

fK(d,O) and fK(d,K).
5. Perform the K-S Test on CK(d,O) and CK(d,K). Estimate the p-value of the test.
6. Calculate the Outlier Index = 1−p.
7. If Outlier Index > 0.98, then mark O as an “Outlier”. The Null Hypothesis is rejected.
8. If 0.90 < Outlier Index < 0.98, then mark O as a “Potential Outlier”.
9. If p > 0.10, then the Null Hypothesis is accepted: the two distance distributions are drawn from

the same population. Data point O is not marked as an outlier.

According to the definition of the KNN-DD algorithm, an outlier is defined
as a data point whose distribution of distances between itself and its K-nearest
neighbors is measurably different from the distribution of distances among the
K-nearest neighbors alone (i.e., the two sets of distances are not drawn from the
same population). We tested the effectiveness of this algorithm on a variety of
synthetic idealized data streams (Sect. 26.5).

Our algorithm takes advantage of the two-sample K-S (Kolmogorov-Smirnov)
statistical test, which is a classical non-parametric test used to estimate the
likelihood that two sample distributions are drawn from the same population (= the
Null Hypothesis). There is no assumption of normalcy or any other functional form
for the distance distribution functions—this is an important and essential criterion
in order to avoid introducing any bias in the estimation of outlier probability. We
initially attempted to apply the Mann–Whitney (Wilcoxon) U Test to compare
the two distance distribution functions, but this test failed to detect true outliers
effectively—the primary reason is that the U Test essentially measures the difference
in the median of the two distributions, which demonstrates that a single parameter
is often a completely insufficient indicator of true outlyingness in multivariate data.
The p-value derived from the K-S statistic (= the maximum difference between the
two samples’ cumulative density functions) measures the likelihood that the two
samples satisfy the Null Hypothesis. We define the Outlier Index as (1− p) = the
probability that the Null Hypothesis is invalid (i.e., that the data distributions are
not drawn from the same population). Consequently, the Outlier Index measures
the likelihood that the test data point deviates from the behavior of the remainder
of the data stream. Our algorithm has the advantage that it makes no assumption
about the shape of the data distribution or about “normal” behavior.

The KNN-DD algorithm is different from the Distribution of Distances algorithm
for outlier detection [26], in which the comparison is between the local data distri-
bution around a test data point and a uniform data distribution. Our algorithm is also
different from the k-Nearest Neighbor Graph algorithm for outlier detection [18],
in which data points define a directed graph and outliers are those connected graph
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components that have just one vertex. Furthermore, our algorithm appears similar
but is actually different in important ways from the incremental LOF (Local Outlier
Factor) algorithms [6,24], in which the outlier estimate is density-based (determined
as a function of the data point’s local reachability density), whereas our outlier
estimate is based on the full local data distribution. Finally, we believe that the
KORM (K-median OutlieR Miner) approach to outlier detection in dynamic data
streams [10] is most similar to our algorithm, except that their approach is cluster-
based (based on K-medians) whereas our approach is statistics-based (based on the
distribution function of distances).

To test the KNN-DD algorithm and to evaluate its effectiveness, we conducted
two levels of experimentation. First, we tested the algorithm with a variety of simple
synthetic data sets with and without outliers (Sect. 26.5). Second, we tested the
algorithm on a set of actual scientific data, extracted from two astronomy databases
(the data sets are described in Sect. 26.6 and the results of our outlier detection
experiments are summarized in Sect. 26.7).

26.5 Synthetic Data Experiments

For our initial tests of the KNN-DD algorithm for outlier detection and its
effectiveness, we performed a sequence of experiments on idealized synthetic data
series. We synthesized three types of data streams:

• Linear data streams
• V-shaped data reversals (i.e., the “normal” data trend suddenly changes direction)
• Circular-shaped data distributions

The next step in the experiments was to insert test data points at varying distances
from the “normal” data stream: ranging from “true normal” (TN) to “soft outlier”
(SO) to “hard outlier” (HO), for which the test point was placed progressively
farther and farther from the “normal” data. We finally applied our algorithm and
measured the Outlier Index for the test data points, which estimates the likelihood
that the test points are outliers. In each experiment, there were 25 points in the
data stream, from which we identified the K = 9 nearest neighbors. Therefore, the
36 distances between these 9 points were calculated and used as an estimate for
fK(d,K). Similarly, the nine distances between the test data point and K nearest
neighbors were calculated and used as an estimate for fK(d,O). In each of the scatter
plots shown below (Figs. 26.1–26.3), the outlier is identified as a filled brown square,
the K nearest neighbors are identified as filled green circles, and the remaining (non-
nearest neighbor) points in the data stream are identified as filled blue diamonds.

Table 26.1 presents our experimental results: the KS Test p-value, the Outlier
Index, and the Outlier Flag for the nine experiments described above. It is clear
from this table that the K-Nearest Neighbor Data Distribution algorithm for outlier
detection is very effective at identifying outliers and at quantitatively estimating
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Fig. 26.1 Experiment L-TN
(see Table 26.1)

their likelihood of “outlyingness”. These results provide confidence that our new
algorithm can be used to detect a variety of anomalous deviations in topologically
diverse data streams.

26.6 Experimental Scientific Data Set

For the preliminary experiments reported here, we used a very small set of elliptical
galaxies and stars from the combined SDSS+2MASS science data catalogs. We
used 1,000 galaxies as the training set (i.e., as the set that represents “normal”
behavior). We then used 114 other galaxies and 90 stars as test points (i.e., to
measure and test for outlyingness). The galaxies represent “normal” behavior,
and the stars are intended to represent outlier behavior. We chose seven color
attributes as our feature vector for each object. The seven colors are essentially
the seven unique (distance-independent, hence intrinsic) flux ratios (i.e., “colors”)
that can be generated from the eight (distance-dependent, hence extrinsic) flux
measures from SDSS and 2MASS: the ugriz+JHK flux bands (which astronomers
call “magnitudes”). Hence, we are exploring outlier detection in a 7-dimensional
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Fig. 26.2 Experiment V-SO (see Table 26.1)

Fig. 26.3 Experiment C-HO (see Table 26.1)
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Table 26.1 Results of experiments on the effectiveness of the K-Nearest Neighbor Data
Distributions algorithm for outlier detection

Experiment ID
Short description of
experiment

KS test
p-value

Outlier index = 1−p
= Outlyingness
likelihood (%)

Outlier flag
(p < 0.05?)

L-TN (Fig. 26.1) Linear data stream,
true normal test

0.590 41.0 False

L-SO Linear data stream,
soft outlier test

0.096 90.4 Potential outlier

L-HO Linear data stream,
hard outlier test

0.025 97.5 TRUE

V-TN V-shaped stream,
true normal test

0.366 63.4 False

V-SO (Fig. 26.2) V-shaped stream,
soft outlier test

0.063 93.7 Potential outlier

V-HO V-shaped stream,
hard outlier test

0.041 95.9 TRUE

C-TN Circular stream,
true normal test

0.728 27.2 False

C-SO Circular stream,
soft outlier test

0.009 99.1 TRUE

C-HO (Fig. 26.3) Circular stream,
hard outlier test

0.005 99.5 TRUE

parameter space. In reality, there is some overlap in the colors of galaxies and stars,
since galaxies are made up of stars, which thereby causes the stars to have much less
outlyingness measure than we would like. On the other hand, this type of star-galaxy
lassification/segregation is a standard and very important astronomy use case for
any sky survey, and therefore it is a useful outlier test case for astronomy. The data
distribution overlap among the stars and galaxies in our 7-dimensional parameter
is somewhat ameliorated by the following fact. The flux of a galaxy GAL(flux) in
one waveband is approximately the linear combination of its ten billion constituent
stars’ fluxes SUM*(flux) in that same waveband (modulo other effects, such as
dust absorption and reddening, which are minimal in elliptical galaxies). Hence the
colors of a galaxy are formed from the ratios of these linearly combined SUM*(flux)
values. Consequently, the 7-dimensional feature vector of a galaxy need not align
with any particular combination of stars’ feature vectors. To illustrate this point,
we consider a “toy” galaxy comprised of just two stars, with red band fluxes R*1
and R*2 and ultraviolet band fluxes U*1 and U*2. The U-R color (i.e., flux ratio)
of the galaxy (modulo a logarithm and scale factor that astronomers like to use)
is essentially (U*1+U*2)/(R*1+R*2), which cannot be represented by any simple
linear combination of the stars’ U-R colors: U*1/R*1 and U*2/R*2. Therefore, the
actual distributions of stars and galaxies in our parameter space are sufficiently non-
overlapping to allow us to perform reasonable outlier tests using stars as the outlier
test points with regard to the “normal” galaxy points.
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For our distance metric, we used a simple Euclidean (L2-norm) distance
calculated from the seven feature vector attributes. Since they are all flux ratios,
the seven attributes are already physically similar in terms of their mean, variance,
and scale factor. No further data normalization or transformation is required.

Though the total numbers of galaxies and stars in our experiments are quite small,
especially compared to the massive databases from which they were extracted,
they actually do represent a somewhat typical data stream use case, in which a
small number of incoming observations are tested against a small comparison set
of “local” measurements, to search for and to detect outlier behaviors among the
incoming measurements. In the future, we will expand our experiments to much
greater numbers of test and training points.

26.7 Results from Scientific Data Set Experiments

We found the following results for the KNN-DD algorithm [5]. We measured
standard Recall and Precision metrics along with the ROC curve as a function
of continuously varying p-values (1 − p is the Outlier Index, as defined in the
Algorithm definition in Sect. 26.4). In these experiments, Recall is calculated from
the ratio of (number of stars correctly classified as outliers)/(total number of stars),
and Precision is calculated from the ratio of (number of stars correctly classified as
outliers)/[(number of galaxies misclassified as outliers)+(number of stars correctly
classified as outliers)]. The variation in Precision as a function of p-value is
illustrated in Fig. 26.4. The maximum precision (99%) for our test dataset is reached
when the p-value reaches the limiting value 0.02. We establish this p-value (0.02) as
the critical value used in the KNN-DD algorithm definition (Sect. 26.4).

We found that the “knee” in the ROC curve (i.e., the discrimination point that
maximizes the combined Precision and Recall) occurs at p-value ≈ 0.05, which is
the limiting value for outlier detection that we used in the KNN-DD algorithm [5].
We found that the Recall is almost exactly constant (approximately 100%) over
most of the range of p values greater than 0.05. This clearly corroborates the point
that we made in the first part of Sect. 26.6, that the data distribution of stars in our
7-dimensional feature space is mostly distinct from the data distribution of galaxies
in that same parameter space. We tested this hypothesis by applying the DBI
(Davies-Bouldin Index, [8]) as an evaluation metric for measuring the distinctness
(i.e., separation) of the star and galaxy data distributions. In most cases, the DBI
index verified that the star and galaxy data distributions were in fact well separated,
though there were some interesting counter-examples that we will study in future
work.

For p-value = 0.02, we find the following results: (1) for the 114 test galaxies,
89 are correctly classified (78%), and 25 are incorrectly classified as outliers (22%);
and (2) of the 90 stars, 89 are correctly classified as outliers (99%), and one is
misclassified as “normal”. Hence, in this case, Recall = 99% and Precision = 78%
(= 89/(89+ 25)).
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Fig. 26.4 Variation in the Precision of the outlier experiments using the KNN-DD algorithm, as a
function of the p-value (where Outlier Index = 1−p; see Sect. 26.4)

26.8 Concluding Remarks and Future Work

We find that our new KNN-DD algorithm is an effective and efficient algorithm
for outlier detection. It has reasonable Precision and Recall accuracies, and it
operates efficiently on small-N local data points, compared to other algorithms (e.g.,
PC-Out, [16]) that operate intensively on the full (large-N) set of global data. We
therefore see the value of further experimentation with the KNN-DD algorithm
on larger, more complex data streams. We also found some interesting behavior
in high-dimension feature spaces regarding the region occupied by the outlier stars,
compared with the region occupied by the outlier galaxies, compared with the region
occupied by normal (non-outlier) galaxies. Further investigation of these surprising
results is also warranted, which may already be yielding some scientific discoveries
from these simple experimental test cases. We will also extend our KNN-DD
comparison tests to include additional published outlier detection algorithms.

Our algorithm’s success is based on the assumption that the distribution of
distances between a true outlier and its nearest neighbors will be different from the
distribution of distances among those neighbors by themselves. This assumption
relies on the definition of an outlier as a point whose behavior (i.e., the point’s
location in parameter space) deviates in an unexpected way from the rest of the data
distribution.
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The main advantages of our KNN-DD algorithm are:

• It is based on the non-parametric K-S test.
• It makes no assumption about the shape of the data distribution or about “normal”

behavior (of non-outliers).
• It compares the cumulative distributions of the test data (i.e., the set of inter-point

distances), without regard to the nature of those distributions.
• It operates on multivariate data, thus solving the curse of dimensionality.
• It is algorithmically univariate, by estimating a function that is based entirely

on the scalar distance between data points (which themselves occupy high-
dimensional parameter space).

• It is simply extensible to higher dimensions.
• The KNN-DD distance distributions are computed only on small-K local sub-

samples of the full dataset of N data points (K<<N).
• The algorithm is easily (embarrassingly) parallelizable when testing multiple

data points for outlyingness.

The major deficiencies of the KNN-DD algorithm that need attention, as the
algorithm is currently defined, and areas for future work include:

• The choice of K (see Sect. 26.4) is not determined or justified. We need to validate
our choice of K, or else find a justifiable selection criterion for particular values.

• The choice of p (Sect. 26.4) is only weakly determined.
• We need to measure the learning times of the KNN-DD algorithm.
• We need to determine (and validate) the complexity of the KNN-DD algorithm.
• We need to compare the KNN-DD algorithm against a larger set of other outlier

detection algorithms.
• We need to evaluate KNN-DD algorithm’s effectiveness and efficiency on much

larger datasets.
• We aim to demonstrate the usability of the KNN-DD algorithm on streaming

data, not just with static data (as used in this paper’s experiments).
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Chapter 27
On Statistical Cross-Identification in Astronomy

Tamás Budavári

Abstract The association of independent detections of the same objects is one
of the most important fundamental challenges of observational astronomy today.
Multicolor datasets have proven to provide great insight into large-scale structure,
galaxy evolution, and multi-epoch observations are becoming mainstream with
the upcoming next-generation sky surveys. The cross-identification is, however, a
difficult problem scientifically, computationally and statistically. We will discuss a
probabilistic approach that applies Bayesian hypothesis testing to decide whether
a given set of detections truly belong to the same source. Studying the ensemble
statistics of the datasets we can assign probabilities to the matches. The algorithms
are shown to perform well in simulations and real observations. We extend the
method to stars with unknown proper motion and discuss further applications to
transients events. Also we visit some of the issues that arise in the online aggregation
of catalogs.

27.1 Introduction

The problem of source identification in separate observations is as old as astronomy
itself. When the early astronomers re-observed a celestial object, they performed
crossmatching to past detections by pointing the telescope to the previously
measured direction and verified (by eye) that identify of the source. Today we
automatically collect the detections in catalogs and identify hundreds of million
sources at once. When the observations have similar selection functions and clearly
isolate the sources, any reasonable criterion will yield correct associations. One can
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choose to measure pairwise distances and threshold at “some” angular separations
or derive the maximum likelihood of a best-fit common direction for the detections.
In the general case, most of the ad hoc methods break down. Also the constraining
power of the measured directions might not be fully sufficient to distinguish between
the good and bad candidates, and we want to fold in other type of measurements into
the process, for example, the brightness and/or color of the sources. In this talk we
discuss a Bayesian approach to tackle the core problem and look at its applicability
beyond the simplest positional matching of static sources.

27.2 The Real Question: Same or Not?

Instead of asking misleading meta-questions, e.g., about the angular separation of
the sources, we can directly address the real question: are the given detections
belong to the same astronomical object or not. In Bayesian hypothesis testing we
can compare these two possibilities using the Bayes factor, which is simply the ratio
of the likelihoods of the two complement hypotheses,

B =
Lsame

Lnot
(27.1)

The interpretation seems straightforward at first. If B=1, we cannot decide. When
B>1, the data suggest a match but B<1 argues otherwise. In reality nothing is black
or white and the decision is more complicated. This is the topic of Sect. 27.3. Before
that we should familiarize ourselves with the Bayes factor, its calculation and the
issues with its direct interpretation.

To evaluate the likelihood of the hypotheses we have to consider the entire
domain of their parameter space and sum up all the possibilities. Here we first use an
analogous problem to illustrate the simplicity of the calculation and to gain further
insight into the challenges of the interpretation. We use playing dice. A die is an
object analogous to an astronomical source, whose detection corresponds to rolling
the die. The measured position is the side that the die shows. Of course, we have
lots of object/dice. If the dice are fair and have no preference for any particular side,
we learn nothing from the outcome of the rolling. If the dice, however, are loaded
and do prefer certain sides, the outcomes of the rolling can help us make decisions
about their identity. The astronomical cross-identification problem is exactly same
as the following thought experiment. First let us consider the two-way case. From a
bag of loaded dice, we draw twice with replacement. First we roll a followed by a

. Is it the same die? We just need a model for how the dice are loaded (Fig. 27.1).
For example, a die with loadedness of l = 1 will prefer the side as described by
some known probabilities, e.g.,

P1( )=
3
12

, P1( )=
2

12
, . . . , P1( )=

1
12
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1. 2.

Fig. 27.1 From a bag of loaded dice that prefer different sides, we draw twice with replacement.
First we roll a followed by a . Is it the same die? The measurements can help us decide. If
we roll the same side with the die drawn for the second time, the match is more likely but
clearly not guaranteed. This thought experiment is analogous to the cross-identification problem
of astronomical detections

Similarly,

P2( )=
2
12

, P2( )=
3

12
, . . . , P2( )=

2
12

...
...

...

P6( )=
1
12

, P6( )=
2

12
, . . . , P6( )=

3
12

This matrix of probabilities is the analog of the known astrometric accuracy model
on the sky: the probability (density) of the possible outcomes for a given true
direction.

If the dice drawn with replacement are indeed the same, their loadedness have
to naturally be the identical. It is the same die after all. The likelihood of a given
loadedness l is the product of the Pl( ) and Pl( ) probabilities. But we do not know
what l is. We could use maximum likelihood estimation to figure out its best guess
value(s) but now we are not interested in that. Instead we have to consider all the
l values to account for all possibilities in our hypothesis. The uniform prior on l is
1/6, as it can take six possible values. The result is the likelihood of the dice being
the same

Lsame =
1
6∑l

Pl( )Pl( ) (27.2)

The sum is directly calculated from our data, in this case, the rolled faces. For the
cross-identification of more than two dice, we can use the same calculation only the
product in the likelihood will contain more terms; one for each observation.

The complement hypothesis claims that the two dice are different, hence their
loadedness could differ. We need two variables l1 and l2 to parameterize the model.
Now the sum conveniently falls apart as

Lnot =

[
1
6∑l1

Pl1( )

][
1
6∑l2

Pl2( )

]
(27.3)

Similarly this formula also works with multiple observations and not just for two.
In case of fair dice with all Pl(·) probabilities equal to 1/6, we can verify that
B=1, i.e., we did not learn anything from the observations. For loaded dice and
real astronomical observations the ratio will be typically more conclusive.
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Real directional measurements are continuous and so are the parameters of
the models that we have to integrate out. Let us consider n detections, one from
each survey i. Are they the same object or not? Our data consist of D = {xi} unit
vectors of the observed directions. The astrometric model is usually described by
the “normal distribution”. On the surface of the sphere the Fisher distribution [3] is
the simplest analog to the familiar Gaussian distribution;

F(x|m,w) =
wδ (|x|−1)
4π sinh(w)

exp(wm·x) (27.4)

where m is the model direction (three dimensional unit vector) and δ (·) is the Dirac
δ . In the limit of high accuracies, the Fisher and Gaussian distributions become
interchangeable, and the precision parameter w of the Fisher distribution is related
to the σ of the Gaussian by the w=1/σ2 equality, where σ is in radians. With the
Fisher distribution, the Bayes factor is analytically calculated. Assuming a uniform
prior density on the entire sky,1 the result takes the following simple form [1],

B =
sinhw

w

n

∏
i=1

wi

sinhwi
with w =

∣∣∣∣∣
n

∑
i=1

wixi

∣∣∣∣∣ (27.5)

which is the same formula that also arose in an earlier study of GRB repeatability
in the limit of substantial directional uncertainties [6]. The wi=0 values mean no
spatial constraint (like fair dice) and the Bayes factor is B=1. If all positional
measurements are highly accurate (wi� 1), we get back a more familiar exponential
expression,

B = 2n−1∏wi

∑wi
exp

{
−∑i< j wiwjϕ2

i j

2∑wi

}
(27.6)

where ϕi j is the angle between xi and x j unit vectors. In the two-way case, the
dimensionless Bayes factor simplifies to

B =
2

σ2
1 +σ2

2

exp

{
− ϕ2

2(σ2
1 +σ2

2 )

}
(27.7)

where all quantities are in radians, and σ2
i = 1/wi as before. The top panel of

Fig. 27.2 illustrates (27.7) on a logarithmic scale for fixed 0.1” and 0.5” uncertainties
that roughly correspond to the precision of the Sloan Digital Sky Survey (SDSS)
and the Galaxy Evolution Explorer (GALEX). Note that for constant accuracies, a
cut on the Bayes factor B = B(ϕ ;σ1,σ2) is equivalent to thresholding the angular
separation as B only depends on ϕ .

1The formula is different for observations with limited field of view, however, the scaling
eventually cancels out in the probability and only the density matters within the footprint [1].
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Fig. 27.2 The Bayes factor is shown in the top panel as a function of angular separation for three
different matching scenarios. The solid line corresponds to detections with σ = 0.1” accuracy and
the dashed line is for 0.5”. These roughly corresponds to the precision of the SDSS and GALEX
surveys, respectively. The dotted line is the analog of the SDSS-GALEX matching. The bottom
panel illustrates the probability using the same line styles. Here we use 25,000 SDSS sources per
square degree, and assume that the GALEX density is 50% of that. The three dotted lines are based
on estimates of the selection functions that represent overlaps of 100%, 75% and 50% of GALEX.
As the intersection decreases, so does the probability, but the large posteriors are fairly insensitive
to (small) variations in the prior

When B is very large, the data suggest a good match, and when B is close to 0,
the evidence points to separate objects. While in practice these extrema certainly
occur very frequently, the interesting regime is in between at intermediate values.
What these values really correspond to is difficult to see right away.

27.3 Probability

The Bayes factor is the fundamental quantity we rely on. Its interpretation, however,
may not be obvious at first. The Bayes factor, also, does not capture the full
complexity of the problem. Our goal is to assign probabilities that we can relate to.
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Let us consider the bag of loaded dice in our previous thought experiment. Having
drawn two dice with replacement and seen the rolled sides of and , how can we
determine or even estimate the probability? The answer is that we cannot unless we
study the content of the bag and count the dice. If we only have a single die in the
bag, the probability is 1 regardless of the value of B. Also if the bag contains a very
large number of dice, we expect a low probability. Based on the number of dice in
the bag, we can calculate the prior probability of drawing (with replacement) the
same die twice before looking at the results of the rolls.

The Bayes factor is the missing link that connects the prior and the posterior
probabilities. For two complement hypotheses (same or not), B tells us how the
prior probability P0 is updated based on the data to yield the posterior,

P =

[
1+

1−P0

BP0

]−1

(27.8)

If we have N dice in the bag, the probability of drawing the same die for the second
time is P0=1/N. When we draw k times, the prior is P0 = Nk−1. Astronomy is
just a little bit different from this. The added complication comes from the fact
that separate observations may have different selection functions, e.g., would detect
different sources at different wavelengths. In Fig. 27.3, several SDSS, GALEX and
2MASS sources illustrate the different selections. In the general case, the prior is

P0 =
N�

∏Ni
(27.9)

where Ni are the number of sources in the ith dataset,2 and N� is the number of
sources that are seen in all. The latter is unknown but an educated guess usually
works reasonably well. The bottom panel of Fig. 27.2 shows the SDSS-GALEX
matching scenarios with the same styles as the Bayes factors in the top panel.
For this illustration we assume N values that correspond to 25,000 and 12,500
detections per square degree for SDSS and GALEX, respectively. We see that the
exquisite SDSS astrometry provides great constraints. When we match observations
with SDSS-like accuracies (solid line), probabilities peak at around 1. The larger
uncertainty of GALEX means lower maximum posterior for the GALEX-GALEX
matching at 0 separation, and a slower drop as function of the angular distance.
The SDSS-GALEX crossmatch shown in dotted lines can only be calculated with
an estimate of the overlap. Here we plot the results N� values that correspond to
100%, 75% and 50% of the GALEX density. We can clearly see the aforementioned
robustness of the posterior against small changes in the prior.

2Here we again assume all sky coverage; see the previous footnote and the reference therein.
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Fig. 27.3 Datasets contain different sets of objects with varying accuracy. Their densities on the
sky are different, as well, and only a fraction of the sources appear in all

The prior can be accurately determined from the ensemble statistics of the input
datasets [1]. Iteratively solving a set of two simple equations takes the guesswork
completely out of the problem and provides a self-consistent result. Using a constant
prior P0, we can rewrite (27.9) as a sum over all possible ∏Ni combinations in the
catalogs

∑P0 = N� (27.10)

Similarly this equality holds for the sum of the posteriors

∑P = N� (27.11)

Considering that P values are determined from corresponding Bayes factors and
the prior, this is an equation for N� that we can efficiently solve numerically in
just a few steps of iterations. It is initialized with an estimate of N�, e.g., min{Ni},
then calculates the prior, and sums up the corresponding posteriors to obtain a new
estimate of N�.
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27.4 Simulations for SDSS and GALEX

Using a simulated object in a mock universe with realistic mixture of sources
and galaxy clustering, we can evaluate the performance of the new method [4].
We assign a uniform [0,1] random number to each mock object representing its
properties, and express the selection function of the simulated surveys as intervals.
The density of sources seen in an actual survey is matched by tuning the length of
the interval. The intersection of the two surveys’ selection function is adjusted by the
overlap of the two intervals. We create catalogs that match the SDSS and GALEX
observations and simulate their observed positions by drawing from realistic error
distribution around the true positions of the mock sources.

Figure 27.4 shows the value of the prior as a function of the iteration. We
see convergence in just a few steps, which is a result of the large posterior’s
robustness against small variations in the prior. In comparison to the true input
overlap represented by the constant solid line, the measured points appear to go
to a somewhat higher value. This is due to the proximity of objects by chance. This
confusion is significantly lower for the high signal-to-noise GALEX detections that
are shown with a dashed line and crosses. The value of the prior for these S/N>3
sources is higher because their density on the sky is lower and more of those sources
are seen in both surveys, larger N�. Also the points approximate the constant better.

That said, these small deviations in the prior estimate are practically negligible
in most cases, except for extremely confused observations. By overestimating
the prior, we assign slightly high posterior probabilities. In case when this is
unacceptable, a simulation similar to the presented SDSS-GALEX case can be
performed to calibrate the discrepancy from the confusion.

Matches selected based on the Bayes factor are different than those from simple
cuts on angular separation. The reason is that GALEX has varying astrometric

0 2 4 6 8 10
Iteration

4x10-10

5x10-10

6x10-10

7x10-10

8x10-10

9x10-10

P
0

Fig. 27.4 The iterative
procedure accurately
determines the prior in just a
few steps. The empirical
solution converges to a
slightly higher value due to
the proximity of random
objects. This discrepancy is
even lower for the high
signal-to-noise subset
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Fig. 27.5 Thresholding on the Bayes factor is superior to simply using angular separations even
for two-way matching when the astrometric errors vary from detection to detection as in the
GALEX catalog

errors, which is accurately emulated in the above example. In the simulation we
know the truth and can compare the performance of the two methods. In Fig. 27.5
we show the false positive contamination versus the true positive rate. The thick
solid lines illustrates the performance of the probabilistic approach in comparison to
the think dashed line for the angular separation. The cross-over at large separations
is an artifact of the astrometric model (truncated estimate). The thin lines show the
same for the high signal-to-noise, S/N>3 subsets.

Another interesting outcome of the simulation is the explanation of multiple
matches. In the real datasets, the bulk of the associations consists of 1-to-1 matches,
but we also observe that a fraction of the GALEX detections are assigned to two or
more SDSS detections, and vice versa. Early speculations were inclined to blame
this on the image processing pipelines but our simple model of point sources with
realistic astrometric errors can indeed accurately reproduce the correct fractions.
We can hence conclude that these multiple matches are not artifacts of the data
processing but are purely statistical in nature.

27.5 Proper Motion

We briefly mention the possibility of extending the new method to more complicated
situations. For example, we can associate stars that move on the sky. The naive
approach to this problem would be to artificially make the uncertainties larger,
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Fig. 27.6 Probability of two-way associations as a function of proper motion. As we look at longer
time differences between the epochs, our models yield increasing different answers

so we consider objects farther away on the sky. This, however, would yield loads
of false matches and would not account for the type of motion we are looking for.

The cross-identification of stars with unknown proper motion is done properly by
computing the likelihood of the same two hypotheses. Same or not? The difference
is that the parameters now not only consist of the position on the sky but also
the parameters of the model for the motion. In a recent paper [5], we explore
different approaches on select stars in the repeated SDSS observations of Stripe
82. Our models differ only in the prior on the proper motion: we compare the static
model to a constant out to μmax=600 mas/year and a more elaborate empirical prior
based the SDSS statistics and matching Besançon simulations. In Fig. 27.6 we plot
the two-way matching with varying separations in time. As we increase the time
baseline (from left to right) the static model (triangles) starts to reject the faster
stars but the proper motion models assign finite probabilities, even if not too large.
The constant prior yields a constant posterior (open circles) that becomes lower
with time. Perhaps even more interesting is Fig. 27.7 where we use the same time
baseline but introduce intermediate epochs in our datasets. The previous two-epoch
results quickly jump to high probabilities for three- and four-epoch observations.
While their superior quality might be somewhat surprising at first, it is actually easy
to understand: Proper motion is well-approximated by a movement along a great
circle. The big difference between two and more epochs is the fact that it is always
possible to precisely fit a great circle to two points but not to three or more, hence
such configurations are very much rewarded.
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Fig. 27.7 Probability of two-, three-, and four-way star associations as a function of proper
motion. Introducing a third intermediate epoch improves significantly the cross-identification. The
effect of the fourth measurement is not so dramatic

27.6 Discussion

The power and elegance of the presented Bayesian approach to cross-identification
shine most in the non-trivial cases. Thresholding two-way matches based on angular
separations is equivalent to cutting on Bayes factors (or posterior probabilities)
when the astrometric uncertainties are assumed to be constant (and the prior does not
change as a function of position on the sky.) Even in that simple case, the statistical
method provides guidance on where to draw the line. For more than two datasets
and/or varying astrometric errors any other approach becomes substantially more
complicated. Our probabilistic treatment completely takes the guesswork out of
the association and delivers reliable results. The Bayes factor is directly calculated
from the data and the prior is estimated in a self-consistent manner. While the fully
Bayesian solution would include a hierarchical model and a hyper-prior for the
prior or N�, the computational expenses cannot be really justified for the typical
observations today. The reason is the insensitivity of large posteriors to small
variations in the prior.

The beauty of the method is that it is not limited to positional information. Any
kind of data can be naturally folded into the associations, which is often needed
to break the degeneracies in uncertain data. One obvious example is the spectral
energy distributions (SEDs) of the sources, that we usually can model reasonably
well. One can calculate separate Bayes factors for all available observations [1] and
simply multiply them.

B = Bdirection ·Bphotometry · · ·Bothers (27.12)
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Generalizations of the presented approach are fairly straightforward, yet, excep-
tionally powerful. In addition to the aforementioned proper motion example, we can
also extend the solution to associate cosmic events [2] or extended sources. As long
as we can model the data, we can evaluate the likelihoods to decide whether the
detections are the “same” or “not”.

The matches can be obtained efficiently in an incremental algorithm [1], where
we add new datasets or catalogs to partially matched associations. Aggregations of
a large number of datasets, however, can still pose certain computational challenges.
Conceptually the problem with such data is that we are not allowed to throw away
partial matches in early steps that might turn out to be valid matches in case all
the subsequent detections fall into the “ideal” directions. The theoretically correct,
pessimistic approach will have too many tuples early on that are only pruned later in
the process. A heuristic, optimistic approach can compensate for this by assuming
certain errors in the subsequent data and hence can reduce the partial matches at the
beginning at the risk of loosing exceptionally unlucky (and unlikely) alignments.
Alternatively one can only aggregate detections that are “guaranteed” to belong
to each other and apply a multi-pass solution to arrive at the final results. These
strategies are currently being explored in the context of the Hubble Legacy Archive
and the upcoming time-domain surveys.

Cross-identification has always been a hard problem scientifically, computation-
ally and statistically. Part of the reason is that science and statistics are inherently
interwoven in such settings. This explicit Bayesian approach shows the way out of
this Catch-22 by offering a computable and consistent solution.
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Chapter 28
Commentary: On Statistical Cross-Identification
in Astronomy

Thomas J. Loredo

Abstract This contribution is a commentary on Tamás Budavári’s paper, “On
statistical cross-identification in astronomy,” presented at the Statistical Challenges
in Modern Astronomy V conference held at Pennsylvania State University in June
2011. I describe multilevel Bayesian treatments of this problem developed for
identifying gamma ray burst counterparts.

Budavári’s paper reviews the key concepts of a recent body of research by him
and his colleagues on Bayesian cross-matching of astronomical object catalogs.
When object directions have quantified uncertainties (e.g., error circles with con-
fidence levels), this approach offers significant advantages over more conventional
approaches that attempt to assess directional coincidences using ad hoc statistics
(e.g., nearest neighbor angles, counts in cones, χ2-based statistics, likelihood ratios)
and p-values. In the mid-1990s gamma-ray burst (GRB) astronomers developed
essentially the same approach for assessing evidence for repetition of GRBs [4,6,8],
and for association of GRBs with special supernovae [5]. This work pre-dates the
discovery of GRB X-ray afterglows; the available GRB data provided direction
estimates with large uncertainties (5–25◦ error circles for directions from BATSE
data; many-arc-minute error boxes for interplanetary network direction estimates).
Budavári seeks to cross-match optical and UV catalogs that are much larger
in size than GRB catalogs, and with much more accurate directions. This is a
complementary regime, raising unique challenges for Bayesian cross-matching—
especially computational challenges—that Budavári’s team is addressing with
innovative techniques just briefly touched on in his paper (e.g., see [1–3, 7]).

For this commentary I am taking a cue from Budavári’s Discussion section,
where he states that a “fully Bayesian solution would include a hierarchical model”
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but that “the computational requirements do not justify the extra work.” Luo et al. [8]
developed a hierarchical (multilevel) Bayesian framework for assessing directional
and temporal coincidences in a GRB catalog; an exact calculation was indeed
impossible, and LLW96 had to rely on an unsatisfying approximate treatment.
However, for an important issue that Budavári discusses, a simple multilevel model
is both computationally accessible, and illuminating.

Specifically, Budavári highlights the important role of the prior probability
for association, P0, in Bayesian cross-matching; it is needed to convert marginal
likelihoods (or Bayes factors) for association to posterior probabilities (or odds). But
Budavári’s P0 is determined using the data; it cannot really be a prior probability.
A multilevel model not only enables estimation of P0, but also can account for its
uncertainty, which should play a role in assessing the method’s performance in
simulation studies (e.g., determining whether the discrepancy between estimated
and true association fractions in Budavári’s Fig. 4 is acceptable). A multilevel
treatment also illuminates other issues important for probabilistic cross-matching. In
the limited space available here I describe a simple example calculation illustrating
the main idea; a more complete and general treatment will be published elsewhere.

Suppose we have a “target” catalog of Nt newly detected objects, and we would
like to determine if some or all of them are associated with any of Nc previously
detected objects in a candidate host or counterpart catalog spanning the same
region of the sky. From the target observations, analysis of the data associated
with object number i produces a likelihood function, �i(ω), for its direction, ω ;
the target catalog provides summaries of these likeihood functions (e.g., best-fit
directions and error circles when uncertainties can be accurately described by Fisher
distributions). Similarly, mk(ω) is the likelihood function for the direction to object
k in the candidate host catalog. Suppose the cataloged hosts are a sample from a
large population with a known (or well-estimated) directional distribution, ρc(ω),
e.g., an isotropic distribution with ρc = 1/4π . Then the posterior distribution for
the direction to candidate host object k is ρc(ω)mk(ω)/Zk, where the normalization
constant Zk =

∫
dω ρc(ω)mk(ω). The marginal likelihood that target i is associated

with host k (thus sharing a common direction) is

hik =

∫
dω

ρc(ω)mk(ω)

Zk
�i(ω). (28.1)

The marginal likelihood that target i is instead from a background population of
hosts with direction distribution ρ0(ω) is

gi =
∫

dω ρ0(ω)�i(ω). (28.2)

The Bayes factor in favor of association of target i with host k versus a background
source is bik = hik/gi. When the direction likelihoods are proportional to Fisher
distributions and the host and background densities are isotropic, this corresponds
to Budavári’s B (also derived earlier by LLW96 and [4]).

Of course, we do not know a priori which candidate host to assign to each target.
The marginal likelihood that target i is associated with one of the candidate hosts
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must account for this uncertainty by introducing a prior probability for the host
choice, say 1/Nc, and marginalizing over k; the resulting marginal likelihood is

hi =
1

Nc
∑
k

hik =
1

Nc
∑
k

∫
dω

ρc(ω)mk(ω)

Zk
�i(ω). (28.3)

Budavári introduced a prior probability for association, P0, in order to convert
marginal likelihoods (or Bayes factors) to posterior probabilities (or odds). Using
intuitively appealing arguments, he develops equations to determine a value for P0,
but they use the data, and thus P0 is not really a prior probability, and his posterior
probabilities are not formally valid. To better motivate and extend Budavári’s
appealing results, we make the association model a multilevel model, introducing a
population parameter that we will estimate from the data.

Define the target population association parameter, α , as the probability that a
randomly selected target comes from the population of cataloged candidate hosts (so
1−α is the probability that a target comes from the background). Were α known,
the posterior probability that target i is associated with one of the hosts would be

pi(α) =
αhi

(1−α)gi+αhi
. (28.4)

But typically α will not be known a priori; in fact, estimating α may be a significant
scientific goal. The likelihood function for α is the probability for the target data,
given α and the host catalog information; using the above results, it is

L (α) =
Nt

∏
i=1

[(1−α)gi+αhi] . (28.5)

A straightforward calculation shows that the maximum-likelihood value of α , α̂ ,
satisfies the following equation:

∑
i

pi(α̂) = α̂Nt . (28.6)

This is an intuitively appealing result: for the maximum-likelihood value of α , the
sum of the association probabilities is equal to the expected number of targets with
associations.

To see the connection with Budavári’s rule for assigning P0 (his equation (10)),
suppose the data provide direction estimates with uncertainties that are small
compared with the angles between hosts. Then the sum in the marginal likelihood
for association for a target object, (28.3), will typically be dominated by just one
term, so

hi ≈ 1
Nc

∫
dω

ρc(ω)mk(i)(ω)

Zk(i)
�i(ω), (28.7)
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where k(i) specifies the index of the host that is the nearest neighbor to target i (in the
sense of having the largest marginal likelihood term). If we use this approximation
for hi in (28.4) for pi(α), then (28.6) becomes equivalent to Budavári’s equation (10)
(identifying α̂ with his P0, pi with his P, and α̂Nt with his N�), for the case of two
catalogs.

This calculation does more than simply justify Budavári’s intuitive arguments for
setting P0. One concrete benefit is that it enables accounting for uncertainty in α .
Combined with a prior for α , the likelihood function in (28.5) produces a posterior
for α . If the prior is not highly informative, the posterior will be asymptotically
normal, with a mean close to α̂ and a variance, σ2

α , that can be found by calculating
the second derivative of ln[L (α)] at α̂; the result is

1
σ2
α

=
1

α̂(1− α̂)∑i
( p̂i − α̂)2 =

Nt

α̂(1− α̂)

[
1
Nt
∑

i
p̂2

i −
(
∑i p̂i

Nt

)2
]
, (28.8)

where p̂i ≡ pi(α̂). Two limiting cases are illuminating. Suppose first that the target
positions have very large uncertainties. In the limit where �i(ω) → C, a constant,
we have gi = hi = C. The Bayes factor for association of each object is unity
(indicating the data provide no information to alter prior probabilities), and the
likelihood function for α is flat, so there is no unique α̂ value. The right hand side
of (28.8) vanishes, implying divergence of the variance (actually, the asymptotic
approximation is not valid with a flat likelihood function). The data provide no
information about the association fraction in this case, as one would expect. Now
consider the opposite limit where the direction uncertainties are small, leading to
unambiguous associations (very large Bayes factors), so that for values of α away
from zero or unity, pi ≈ 0 or 1. In this case, (28.6) tells us that α̂ = N+/Nt , where
N+ is the number of targets with pi ≈ 1. Equation 28.8 indicates that in this limit,
σα → 1/

√
Nt , again an intuitively reasonable result. For intermediate cases, where

there is evidence for associations but with some ambiguity, the uncertainty in α will
be larger than “root-N,” by an amount depending on the variance between the p̂i

values and α̂ . Calculating σα for the SDSS–GALEX example in Budavári’s Sect. 4
may be helpful in assessing the discrepancy between the estimated and input values
of P0.

In the SDSS–GALEX example, P0 was over-estimated; Budavári attributes this
to confusion due to chance proximity of objects in each catalog. But one of the
aims of probabilistic modeling of directional coincidences is to account for this
sort of confusion. An accurate Bayesian calculation will account for it, resulting in
no significant bias in estimation of the association fraction, but possibly increased
α uncertainty when the directional uncertainties lead to significant counterpart
confusion. When a particular target has multiple plausible associations, the prob-
ability for association will be split across them. One way to see how the Bayesian
calculation handles counterpart ambiguity is to rewrite the likelihood function to
more explicitly display how it accounts for each possible association. First introduce
unifying notation for the components in the likelihood factor for a particular target:
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define weights wk, with w0 = 1−α and wk = α/Nc for k = 1 to Nc, and let hik = gi

when k = 0. Also introduce target labels λi that take values from 0 to Nc. Then (28.5)
can be written as

L (α) =
Nt

∏
i=1

Nc

∑
λi=0

wλi
hiλi

= ∑
λ1...λNt

(
∏

k

wmk(λ )
k

)
∏

i
hiλi

, (28.9)

where the last sum is over all label assignments, and mk(λ ) is the multiplicity for
host k, counting the number of targets with λi = k in a particular term of the sum.
This sum-of-products decomposition displays the likelihood as a weighted sum of
terms considering every possible assignment of targets to candidate hosts. If we
adopt the best-candidate approximation of (28.7), only a small fraction of the terms
is considered; when confusion is important, additional terms in hi should be kept so
that the calculation accounts for all plausible associations.

Equation 28.9 also reveals an unsatisfactory aspect of the model I have described
here: it allows for all possible host multiplicities, in particular, it allows for
assigning two targets to the same host. In some settings this is desirable, e.g.,
for constraining GRB repetition, or for determining whether ultra-high energy
cosmic rays come from nearby active galaxies. But in many settings—including
the SDSS–GALEX case—it is only meaningful to assign targets to distinct hosts.
This argues that the sum-of-products version of the likelihood function is the more
fundamental representation to use for building coincidence assessment models;
for the SDSS–GALEX case, the sum over labels would be constrained to ensure
distinct associations. This is why LLW96 adopted this representation for developing
a general framework for spatio-temporal coincidence assessment.

As a final remark on the value of an explicit multilevel model for associations,
recall that we needed to assign a prior probability for the host choice, taken as 1/Nc

in (28.3); in the sum-of-products version of the likelihood function, this assignment
appears in the wk factors. More generally, the candidate host prior may not be
constant; it could depend, for example, on host distances and luminosities, and
this affects estimation of α . It is straightforward to account for this in a multilevel
model, though it can complicate the calculations. The paper in these proceedings
by Soiaporn et al. briefly describes work by my team based on just such a model,
developed to assess evidence for association of ultra-high energy cosmic rays with
local active galaxies.

Budavári developed his Bayesian approach from scratch, unaware of earlier work
on the problem in the GRB literature. In fact, that work was well-hidden, tersely
presented in short papers in conference proceedings. More extensive treatments did
not follow because it proved extremely difficult to get funding to further develop
the approach; reviewers expressed strong skepticism of Bayesian methods. To cite
one ironically relevant example, the report from a 2005 NVO proposal review
panel asserted that the Bayesian approach offered “nothing new” for the problem,
and that its implementation “would not be much more than a ‘few-liner’ addition
to Xmatch,” the χ2-based NVO cross-match algorithm now made obsolete by
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Budavári’s Bayesian algorithm. With this frustrating history, it has been a delight
to see Budavári’s team not only rediscover the approach, but also make significant
and highly nontrivial statistical and computational innovations mating it to the needs
of VAO users.
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Chapter 29
Data Compression Methods in Astrophysics

Raul Jimenez

Abstract Astrophysics is an observational science and as such it is gathering data
from the whole sky. The availability of large CCD cameras on telescopes with large
fields of view is permitting the collection of large amount of data. Eventually an
observational astrophysicist would like to collect all information available in the sky.
This however brings some problems as one usually has “too many” data and new
techniques are required to analyse them. In this chapter I will provide a (biased)
view of how the problem can be addressed using new statistical tools to achieve
data compression of the data. Note that when I talk about data compression in
astrophysics I will always refer to algorithms that are able to massively accelerate
likelihood computations of comparing data with models and not about “throwing”
data away. In particular I will illustrate how to deal with data from galaxy surveys,
exoplanet light-transit searches and direct gravitational wave searches.

29.1 Introduction

There are many instances where objects consist of many data, whose values are
determined by a small number of parameters. Often, it is only these parameters
which are of interest.

Such a problem is very general, and has been attacked in the case of parameter
estimation in large-scale structure and the microwave background (e.g. [1]). Pre-
vious work has concentrated largely on the estimation of a single parameter; the
main advance of this paper is that it sets out a method for the estimation of multiple
parameters. The method provides one projection per parameter, with the consequent
possibility of a massive data compression factor. Furthermore, if the noise in the
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data is independent of the parameters, then the method is entirely lossless. i.e.
the compressed dataset contains as much information about the parameters as
the full dataset, in the sense that the Fisher information matrix is the same for the
compressed dataset as the entire original dataset. An equivalent statement is that the
mean likelihood surface is at the peak locally identical when the full or compressed
data are used.

29.2 MOPED

A data-compression method was developed by Heavens et al. [2]. We review it here.
Describe data by a vector xi, i = 1, . . . ,N (e.g. a set of fluxes at different

wavelengths). These measurements include a signal part, which we denote by μ ,
and noise, n:

x = μ+n (29.1)

Assuming the noise has zero mean, 〈x〉 = μ, the signal will depend on a set of
parameters {θα}, which we wish to determine. For galaxy spectra, the parameters
may be, for example, age, magnitude of source, metallicity and some parameters
describing the star formation history. Thus, μ is a noise-free spectrum of a galaxy
with certain age, metallicity etc.

The noise properties are described by the noise covariance matrix, C, with
components Ci j = 〈nin j〉. If the noise is gaussian, the statistical properties of the
data are determined entirely by μ and C. In principle, the noise can also depend
on the parameters. For example, in galaxy spectra, one component of the noise will
come from photon counting statistics, and the contribution of this to the noise will
depend on the mean number of photons expected from the source.

The aim is to derive the parameters from the data. If we assume uniform priors for
the parameters, then the a posteriori probability for the parameters is the likelihood,
which for gaussian noise is

L (θα ) =
1

(2π)N/2
√

det(C)

×exp

[
−1

2∑i, j
(xi − μi)C−1

i j (x j − μ j)

]
. (29.2)

One approach is simply to find the (highest) peak in the likelihood, by exploring all
parameter space, and using all N pixels. The position of the peak gives estimates of
the parameters which are asymptotically (low noise) the best unbiased estimators.
This is therefore the best we can do. The maximum-likelihood procedure can,
however, be time-consuming if N is large, and the parameter space is large. The aim
of this paper is to see whether we can reduce the N numbers to a smaller number,
without increasing the uncertainties on the derived parameters θα . To be specific,



29 Data Compression in Astrophysics 311

we try to find a number N′ < N of linear combinations of the spectral data x which
encompass as much as possible of the information about the physical parameters.
We find that this can be done losslessly in some circumstances; the spectra can
be reduced to a handful of numbers without loss of information. The speed-up in
parameter estimation is about a factor ∼100.

In general, reducing the dataset in this way will lead to larger error bars in the
parameters. To assess how well the compression is doing, consider the behaviour
of the (logarithm of the) likelihood function near the peak. Performing a Taylor
expansion and truncating at the second-order terms,

lnL = lnLpeak +
1
2
∂ 2 lnL

∂θα∂θβ
ΔθαΔθβ . (29.3)

Truncating here assumes that the likelihood surface itself is adequately approxi-
mated by a gaussian everywhere, not just at the maximum-likelihood point. The
actual likelihood surface will vary when different data are used; on average, though,
the width is set by the (inverse of the) Fisher information matrix:

Fαβ ≡−
〈
∂ 2 lnL

∂θα∂θβ

〉
(29.4)

where the average is over an ensemble with the same parameters but different noise.
For a single parameter, the Fisher matrix F is a scalar F , and the error on the

parameter can be no smaller than F−1/2. If the data depend on more than one
parameter, and all the parameters have to be estimated from the data, then the error
is larger. The error on one parameter α (marginalised over the others) is at least[
(F−1)αα

]1/2
. There is a little more discussion of the Fisher matrix in [1], hereafter

TTH. The Fisher matrix depends on the signal and noise terms in the following way
(TTH, equation 15)

Fαβ =
1
2

Tr
[
C−1C,αC−1C,β +C−1(μ ,αμ

t
,β + μ ,β μ

t
,α)
]
. (29.5)

where the comma indicates derivative with respect to the parameter. If we use the
full dataset x, then this Fisher matrix represents the best that can possibly be done
via likelihood methods with the data.

In practice, some of the data may tell us very little about the parameters, either
through being very noisy, or through having no sensitivity to the parameters. So
in principle we may be able to throw some data away without losing very much
information about the parameters. Rather than throwing individual data away, we
can do better by forming linear combinations of the data, and then throwing away
the combinations which tell us least. To proceed, we first consider a single linear
combination of the data:

y ≡ bt fx (29.6)
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for some weighting vector b (t indicates transpose). We will try to find a weighting
which captures as much information about a particular parameter, θα . If we assume
we know all the other parameters, this amounts to maximising Fαα . The dataset
(now consisting of a single number) has a Fisher matrix, which is given in TTH
(equation 25) by:

Fαβ =
1
2

(
btC,αb
bt Cb

)(
bt C,βb

btCb

)
+

(btμ ,α)(b
tμ ,β )

(bt Cb)
. (29.7)

Note that the denominators are simply numbers. It is clear from this expression that
if we multiply b by a constant, we get the same F. This makes sense: multiplying the
data by a constant factor does not change the information content. We can therefore
fix the normalisation of b at our convenience. To simplify the denominators, we
therefore maximise Fαα subject to the constraint

btCb = 1. (29.8)

The most general problem has both the mean μ and the covariance matrix C
depending on the parameters of the spectrum, and the resulting maximisation leads
to an eigenvalue problem which is nonlinear in b. We are unable to solve this, so we
consider a case for which an analytic solution can be found. TTH showed how to
solve for the case of estimation of a single parameter in two special cases: (1) when
μ is known, and (2) when C is known (i.e. doesn’t depend on the parameters). We
will concentrate on the latter case, but generalise to the problem of estimating many
parameters at once. For a single parameter, TTH showed that the entire dataset could
be reduced to a single number, with no loss of information about the parameter.
We show below that, if we have M parameters to estimate, then we can reduce the
dataset to M numbers. These M numbers contain just as much information as the
original dataset; i.e. the data compression is lossless.

We consider the parameters in turn. With C independent of the parameters, F
simplifies, and, maximising F11 subject to the constraint requires

∂
∂bi

(
b jμ,1 jbkμ,1k −λb jCjkbk

)
= 0 (29.9)

where λ is a Lagrange multiplier, and we assume the summation convention ( j,k ∈
[1,N]). This leads to

μ ,1(b
tμ ,1) = λCb (29.10)

with solution, properly normalised

b1 =
C−1μ ,1√
μ t
,1C−1μ ,1

(29.11)
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and our compressed datum is the single number y1 = bt
1x. This solution makes

sense—ignoring the unimportant denominator, the method weights high those data
which are parameter-sensitive, and low those data which are noisy.

To see whether the compression is lossless, we compare the Fisher matrix
element before and after the compression. Substitution of b1 into (29.7) gives

F11 = μ t
,1C−1μ ,1 (29.12)

which is identical to the Fisher matrix element using the full data (29.5) if C is
independent of θ1. Hence, as claimed by TTH, the compression from the entire
dataset to the single number y1 loses no information about θ1. For example, if μ ∝ θ ,
then y1 = ∑i xi/∑i μ i and is simply an estimate of the parameter itself.

It is important to note that y1 contains as much information about θ1 only if all
other parameters are known, and also provided that the covariance matrix and the
derivative of the mean in (29.11) are those at the maximum likelihood point. We
turn to the first of these restrictions in the next section, and discuss the second one
here.

In practice, one does not know beforehand what the true solution is, so one has
to make an initial guess for the parameters. This guess we refer to as the fiducial
model. We compute the covariance matrix C and the gradient of the mean (μ,α ) for
this fiducial model, to construct b1. The Fisher matrix for the compressed datum
is (29.12), but with the fiducial values inserted. In general this is not the same as
Fisher matrix at the true solution. In practice one can iterate: choose a fiducial
model; use it to estimate the parameters, and then repeat, using the estimate as the
estimated parameters as the fiducial model.

29.2.1 Estimation of Many Parameters

The problem of estimating a single parameter from a set of data is unusual in
practice. Normally one has several parameters to estimate simultaneously, and this
introduces substantial complications into the analysis. How can we generalise the
single-parameter estimate above to the case of many parameters? We proceed by
finding a second number y2 ≡ bt

2x by the following requirements:

• y2 is uncorrelated with y1. This demands that bt
2Cb1 = 0.

• y2 captures as much information as possible about the second parameter θ2.

This requires two Lagrange multipliers (we normalise b2 by demanding that
bt

2Cb2 = 1 as before). Maximising and applying the constraints gives the solution

b2 =
C−1μ ,2 − (μt

,2b1)b1√
μ ,2C−1μ ,2 − (μt

,2b1)2
. (29.13)
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This is readily generalised to any number M of parameters. There are then M
orthogonal vectors bm, m = 1, . . .M, each ym capturing as much information about
parameter αm which is not already contained in yq; q < m. The constrained
maximisation gives

bm =
C−1μ ,m −∑m−1

q=1 (μ
t
,mbq)bq√

μ ,mC−1μ ,m −∑m−1
q=1 (μ t

,mbq)2
. (29.14)

This procedure is analogous to Gram-Schmidt orthogonalisation with a curved
metric, with C playing the role of the metric tensor. Note that the procedure gives
precisely M eigenvectors and hence M numbers, so the dataset has been compressed
from the original N data down to the number of parameters M.

Since, by construction, the numbers ym are uncorrelated, the likelihood of the
parameters is obtained by multiplication of the likelihoods obtained from each
statistic ym. The ym have mean 〈ym〉 = bt

mμ and unit variance, so the likelihood
from the compressed data is simply

lnL (θα) = constant−
M

∑
m=1

(ym −〈ym〉)2

2
(29.15)

and the Fisher matrix of the combined numbers is just the sum of the individual
Fisher matrices. Note once again the role of the fiducial model in setting the
weightings bm: the orthonormality of the new numbers only holds if the fiducial
model is correct. Multiplication of the likelihoods is thus only approximately
correct, but iteration could be used if desired.

Under the assumption that the covariance matrix is independent of the param-
eters, reduction of the original data to the M numbers ym results in no loss of
information about the M parameters at all. In fact the set {ym} produces, on average,
a likelihood surface which is locally identical to that from the entire dataset—
no information about the parameters is lost in the compression process. With the
restriction that the information is defined locally by the Fisher matrix, the set {ym}
is a set of sufficient statistics for the parameters {θα}. A proof of this for an arbitrary
number of parameters is given in the appendix.

29.3 The General Case

In general, the covariance matrix does depend on the parameters, and this is the
case for galaxy spectra, where at least one component of the noise is parameter-
dependent. This is the photon counting noise, for which Cii = μ i. TTH argued that it
is better to treat this case by using the n eigenvectors which arise from assuming the
mean is known, rather than the single number (for one parameter) which arises if we
assume that the covariance matrix is known, as above. We find that, on the contrary,
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the small number of eigenvectors bm allow a much greater degree of compression
than the known-mean eigenvectors (which in this case are simply individual pixels,
ordered by |μ ,α/μ|). For data signal-to-noise of around 2, the latter allow a data
compression by about a factor of 2 before the errors on the parameters increase
substantially, whereas the method here allows drastic compression from thousands
of numbers to a handful. To show what can be achieved, we use a set of simulated
galaxy spectra to constrain a few parameters characterising the galaxy star formation
history.

In the case when the covariance matrix is independent of the parameters, it does
not matter which parameter we choose to form y1, y2, etc, as the likelihood surface
from the compressed numbers is, on average, locally identical to that from the full
dataset. However, in the general case, the procedure does lose information, and the
amount of information lost could depend on the order of assignment of parameters
to m. If the parameter estimates are correlated, the error in both parameters is
dominated by the length of the likelihood contours along the ‘ridge’. It makes sense
then to diagonalise the matrix of second derivatives of lnL at the fiducial model,
and use these as the parameters (temporarily). The parameter eigenvalues would
order the importance of the parameter combinations to the likelihood. The procedure
would be to take the smallest eigenvalue (with eigenvector lying along the ridge),
and make the likelihood surface as narrow as possible in that direction. One then
repeats along the parameter eigenvectors in increasing order of eigenvalue.

Specifically, diagonalise Fαβ in (29.5), to form a diagonal covariance matrix
Λ = StFS. The orthogonal parameter combinations are ψ = Stθ , where S has the
normalised eigenvectors of F as its columns. The weighting vectors bm are then
computed from (29.14) by replacing μ ,α p by Sprμ ,αr.

29.4 Extension to MOPED Using an Ensemble
of Fiducial Models

Unlike the case of galaxy spectra [2], in cases when the signal is very sparsly
populated among the full data (e.g. light transit of an exoplanet), the fiducial model
will weigh some data high, very erroneously if the fiducial model is way off from
the true model. This is because the derivatives of the fiducial model with respect to
the parameters are large near the walls of the box-like shape of the model.

In this section we present an alternative approach to find the best fitting transit
model to a light-curve. Although the method is illustrated for the case of exo-planet
searches [3], it is fully general and can be applied to other cases like gravitational
wave detection [4]. The method is based on using an ensemble of randomly chosen
fiducial models. For an arbitrary fiducial model the likelihood function will have
several maxima one of which is guaranteed to be the correct solution. This is the
case where the values of the free parameters (q) are close to the true one; thus μ(q)
is similar to x. For a different arbitrary fiducial model there are also several maxima,
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but only one will be guaranteed to be a maximum, the true one. Therefore by using
several fiducial models one can eliminate the spurious maxima and keep the one that
is common to all the fiducial models which is the true one. We combine the MOPED
likelihoods for different fiducial models by simply averaging them1

The new measure Y is defined:

Y (q)≡ 1
Nf

∑
{q f }

L (q;q f ) , (29.16)

where q and q f are the parameter vectors {T,η ,θ ,τ} and their fiducial values
{Tf ,η f ,θ f ,τ f } and Nf is the number of fiducial models. The summation is over
an ensemble of fiducial models {q f }. L (q;q f ) is the MOPED likelihood, i.e.

L (q;q f ) =∑
m

[
bbbm(q f ) · xxx− bbbm(q f ) ·μμμ(q)

]2
(29.17)

Figure 29.1 shows the Y as a function of period T for a different size sets of
fiducial models for a synthetic light-curve with S/N = 3 and 2,000 observations.
The top panel shows the value of Y using an ensemble of three fiducial models. As
it can be seen from the figure there are more than few minima. Using an ensemble of
ten fiducial models (shown in the next panel) reduces the number of minima. In the
last panel we used an ensemble of 20 fiducial models and there is only one obvious
minimum, the true one.

Figure 29.2 shows the value of Y as a function of each free parameter for a
synthetic light-curve. We set the values of 3 of the parameters to the “correct” values
(used to construct the light-curve) and we let the fourth free for each panel. Note that
the shape of the Y as a function of η , θ and τ is smooth, however the dependency
on T is erratic suggesting that efficient minimization techniques are not applicable.

29.4.1 Confidence and Error Analysis

To confidently determine that the minimum found is not spurious the likelihood
of the candidate solution must be compared to the value and distribution of Y
derived from a set of light-curves with no transit signal. One can simulate a set
of null light-curves and build a distribution by calculating the value of Y for each
point in the parameter space for each simulated “null” light-curve; a real expensive
computational task. Alternatively this null distribution can be analytically derived.

1This is chosen ad hoc. We have tried other approaches all of which work similarly well. Averaging
turned out to be the functional form in which, error and confidence level of the measurement, could
be easily and analytically calculated.
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Fig. 29.1 Y as a function of period T for a set of fiducial models for a synthetic light-curve with
S/N = 3 and 2,000 observations and T = 1.3 days. The top panel shows the value of Y using three
randomly selected fiducial models, the middle panel 10 and the bottom using 20. As the number
of fiducial models used increases the number of minima decreases. At Nf = 20 there is only one
obvious minima at T = 1.3 days
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Fig. 29.2 Top panel left: Likelihood as a function of period T . Top panel right: Likelihood as a
function of transit duration η . Bottom panel left : Likelihood as a function of θ and bottom panel
right : Likelihood as a function of τ . In all parameters the correct value is found. Note that for T
the topology of the Likelihood surface is fairly complicated with many local minima, thus making
efficient minimization techniques not applicable

Since x ∼ N(〈x〉,σx) and all other variables are deterministic, then it can be
shown that Y (q) follows a non-central X 2 distribution Y (q) ∼ X 2(r,λ ) where
r is the number of degrees of freedom and λ is the non centrality of the distribution.
The non-central X 2 distribution has mean and variance according to:

μ = r+λ , (29.18)

σ2 = 2(r+ 2λ ) , (29.19)

where r = 4 and λ is given by

λ =
E2 [X ]

var [X ]
. (29.20)

The square of the expectation value is,

E2 [X ] =∑
m
[〈x〉 Bm(qf)−Cm(q;qf)]

2 (29.21)

where we define

Bm(q f )≡∑
t

bt
m(q f ), and Dm(q;q f )≡ bbbm(q f ) ·μμμ(q) (29.22)
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Fig. 29.3 Values of Y (T ) for
the null case (i.e. a
light-curve without a transit)
both simulated (crosses) and
analytically calculated (see
Sect. 29.4.1) (solid line is the
expected value and dotted
line is the 67% confidence
level). It is clear that the
simulated values agree well
with the theoretical ones

and the variance is given by

var [X ] = var

[
∑
m

bbbm(q f ) · xxx−∑
m

bbbm(q f ) ·μμμ(q)
]

=∑
m

∣∣bbbm(q f )
∣∣2 var

[
xt]= σ2

x βm(q f ) (29.23)

where we define βm(q f ) to be:

βm(q f )≡ bbbm(q f ) ·bbbm(q f ) . (29.24)

Combining the above equations we get

λ =
∑m

[〈x〉 Bm(q f )−Dm(q;q f )
]2

σ2
x βm(q f )

(29.25)

To compute confidence levels for a particular Y we integrate a non-central X 2

distribution with non centrality given by (29.25) from Y (q) to infinity. This is
done numerically, still this is a very quick operation. Furthermore, this will only
be performed few times per light curve.

Figure 29.3 shows the values of Y (T ) for the null case (i.e. a light-curve without
a transit) both simulated (crosses) and theoretically calculated using the equations
above (solid line is the expected value and dotted line is the 80% confidence level)
(Fig. 29.4). It is clear that the simulated values agree well with the theoretical ones.
Note that because the confidence can be calculated analytically we do not have to
simulate null light-curves and recalculate the Y for each light-curve thus gaining
computational speed.
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Fig. 29.4 The value of Y is
shown as a function of period
for a synthetic light-curve
with a transit at 1.25 days.
The different panels show
different values of S/N. Note
that there is a well defined
minimum at the right period.
The dotted line shows the
80% confidence level. Note
that at this level there is only
one single minimum at the
right period even for S/N as
low as 5
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Chapter 30
Commentary: Data Compression Methods
in Astrophysics

Ann B. Lee

Abstract A common problem in astrophysics is how to efficiently estimate key
parameters for objects when given a very large data set. In his paper, Jimenez
describes an approach to data compression that can massively accelerate likelihood
computations without losing information about the parameters of interest. The
method is known as MOPED (Heavens et al. Mon Not R Astron Soc 317(4):965–
972, 2000) and has previously been used for the estimation of star formation history
from galaxy spectra (Panter et al. Mon Not R Astron Soc 343(4):1145–1154, 2003;
Panter et al. Mon Not R Astron Soc 378(4):1550–1564, 2007), and identification
of planetary transits from light curves (Protopapas et al. Mon Not R Astron Soc
362(2):460–468, 2005). Here we discuss the set-up and some of the assumptions
of the MOPED approach. We then describe a few alternative or complementary
methods of compression and parameter estimation when these assumptions are
violated, and discuss their pros and cons.

30.1 Introduction

The general setting is that we observe a set of N measurements x = (x1, . . . ,xN),
such as the flux measurements at different wavelengths for a spectrum, or the
measurements at different time points for a light curve. We have a parametric model
for the distribution of observables, fθ (x), where θ = (θ1, . . . ,θk) are parameters of
interest; e.g. the age and metallicity of a galaxy, or the period, depth, duration and
epoch of planetary transits. The goal is to estimate such parameters given a data
set x.
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In his work, Jimenez describes the MOPED model [4] for this problem which
has been used for astronomical problems such as modeling galaxy star formation
histories [5, 6] and detecting planetary transits in photometric time series [7]. This
model makes the additional assumption of a noiseless signal with additive Gaussian
noise:

x = μ(θ )+n,

where n ∼ MVN(0,C). The covariance matrix C is assumed to be “known”,
meaning that it does not depend on the model parameter θ .

In many applications, the number of measurements, N, could be large—which
would make likelihood fits very slow. Hence, the question: Can we find a lower-
dimensional linear transformation, y = Bx, without losing information on the
parameters θ? The definition of “lossless” here is that the Fisher matrix at the
maximum likelihood (ML) point is the same whether we use the full data set or
the compressed version. Jimenez’ answer is yes. Under the previous assumptions,
MOPED computes k projection indices {y1, . . . ,yk} that form a set of sufficient
statistics for the k parameters {θ1, . . . ,θk}. If k � N, then the computational speed-
up is considerable.

How about cases where MOPED may run into trouble? In the next section, we list
and discuss some situations that could be challenging for MOPED and ML-based
methods.

30.2 Discussion of Model Assumptions and Challenging
Cases

1. The transformation matrix B requires computations at the ML point which is
unknown. In other words, it is important to have a good “fiducial model”.

A common criticism of likelihood methods is that the Fisher Information
matrix is evaluated at the ML point which is unknown, and that different fiducial
models can lead to highly varying results. In [7], the authors offer a clever
solution. They suggest a scheme where one combines the MOPED likelihoods
for different models by simple averaging. Figure 1 in Jimenez’ paper shows the
averaged likelihood function for a synthetic light curve when averaging over
N = 3,10,20 fiducial models. As the number of fiducial models increases the
number of minima decreases, with one obvious minimum for N = 20. So far,
there is no theoretical analysis of the method, and all data are simulated according
to the assumed signal-to-noise model. Nonetheless, the empirical results are
appealing.

2. Estimates rely on the assumptions of the parametric model: noiseless signal plus
Gaussian noise, and noise independent of the parameters.

This comes down to the age-old discussion of whether to use parametric
or non-parametric methods. Well, how comfortable are you with the model
assumptions for the application of interest? MOPED, for example, may not work
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well when the computed eigenvectors depend very sensitively on the model
parameters, as in e.g. redshift determination where the observed wavelength
λobs = (1+ z)λemit for emitted wavelengh λemit and redshift z. In such situations,
one could instead use nonparametric data compression methods which derive
new coordinates from an ensemble of data objects x1, . . . ,xn ∼ P. The idea
is to learn the structure of the underlying data distribution P for e.g. several
galaxy spectra with different redshifts, and then find a compression scheme
that retains the key properties of P. These methods are not “lossless” from an
information point of view but they require no parametric model and no fiducial
model for the data. In [8] and [2], we show how Principal Component Analysis
(PCA) and nonlinear eigenmap methods such as Diffusion Maps can be used for
nonparametric regression and redshift estimation of SDSS galaxy spectra.

3. The parameter space can be very large and/or degenerate.
There are several reasons why this may be a problem: Likelihood methods

do not perform well for large parameter spaces; see e.g. [3] for a discussion
of maximum likelihood estimation in an infinite-dimensional parameter space.
There is also no computational gain in using MOPED when the number of
parameters K is of the same order or larger than the dimension N. In such
situations, however, it may be possible to improve the performance of MLE and
MOPED by first reducing the parameter space. Here is an example: In [1], the
authors adopt an empirical population synthesis model to estimate star formation
history in galaxies using SDSS spectra. Each galaxy is modeled as a mixture
of stars from K different simple stellar populations (SSPs), where an SSP is
defined as a group of stars with the same age and metallicity. By fitting the
galaxy signal model to observed galaxy data with MLE, and by estimating the
mixture coefficients of a set of K SSPs, one can reconstruct the star formation
rate of a galaxy and its composition as a function of time. A key problem
however is how to to choose the set of K SSPs. Though the parameters that
define each SSP are continuous (i.e. K is infinite), optimizing the signal model
over a large set of SSPs on a fine parameter grid is computationally infeasible
and inefficient. SSP bases on regular age and metallicity grids also lead to poor
estimates due to degeneracies (many prototypes with similar spectra). In [9], we
introduce a principled approach of choosing a small basis of q SSP prototypes for
optimal SFH parameter estimation. The basic idea is to explore the underlying
geometry of the SSP observable data (the parameter space), and quantize the
vector space and effective support of these model components. We showed that
the quantization leads to improved ML estimates of parameters and greater
computational efficiency. Now an interesting question is if one can use MOPED
with the q chosen prototypes in parameter space for an even larger computational
gain.

4. The link between parameter space and observables may be so complex that there
is no simple analytical form for the likelihood function.

Due to the complexity of the physical process or due to complex observational
effects, one may not have an explicit expression for the distribution fθ (x)
of observables, but one may be able to simulate data under different values



324 A.B. Lee

of θ . In his SCMA talk “Addressing the Challenges of Luminosity Function
Estimation via Likelihood-Free Inference”, Chad Schafer describes likelihood-
free approaches for such situations—the main idea is to explore the parameter
space by a Monte Carlo scheme involving sampling from the distribution space,
followed by sampling from the data space and comparing observed data with
the output of complex simulation models; see Schafer’s SCMA paper in this
proceeding for details.

30.3 Conclusions

MOPED is a lossless compression scheme for parameter estimation under certain
model and signal assumptions. Use the method if you are comfortable with the
model assumptions and if the number of parameters is relatively small compared to
the number of observations. For very large or degenerate parameter spaces, one may
benefit from first reducing the parameter space by e.g. quantization or a “method of
sieves” [3] before applying likelihood methods or MOPED.

When model assumptions are violated, there are several alternative or com-
plementary data reduction methods; e.g. dimension reduction methods such as
principal component analysis and diffusion maps that explore the distribution
of all data from an ensemble. These compression methods are not “optimal” for
parameter estimation, but they assume no specific theoretical model. There also exist
model-free methods for parameter estimation, as in e.g. redshift determination via
nonparametric regression, and “likelihood-free” inference that utilize output from
complex simulation models.

Acknowledgements The author is grateful to Peter Freeman and Chad Schafer for helpful
discussions.
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Chapter 31
Morphological Image Analysis and Sunspot
Classification

David Stenning, Vinay Kashyap, Thomas C.M. Lee, David A. van Dyk,
and C. Alex Young

Abstract The morphology of sunspot groups is predictive both of their future
evolution and of explosive associated events higher in the solar atmosphere, such
as solar flares and coronal mass ejections. To aid in this prediction, sunspot groups
are manually classified according to one of a number of schemes. This process is
both laborious and prone to inconsistencies stemming from the subjective nature
of the classification. In this paper we describe how mathematical morphology can
be used to extract numerical summaries of sunspot images that are relevant to their
classification and can be used as features in an automated classification scheme.
We include a general overview of basic morphological operations and describe our
ongoing work on detecting and classifying sunspot groups using these techniques.
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31.1 Scientific Background and Motivation

The Sun’s photosphere is the region that emits the light that we see. The deeper
regions are opaque and the higher and much less dense corona is only one-
millionth as bright as the photosphere in visible light. Sunspots are dark areas on
the photosphere that result from intense magnetic fields. The magnetic fields inhibit
convection, cooling the corresponding surface regions. Areas on the photosphere
where the surface temperature has been reduced then appear as dark spots when
viewed in optical light. Sunspots can also be seen in magnetograms which are
images that represent variations in the strength of magnetic fields in the Sun’s
photosphere [3]. In magnetograms, sunspots correspond to high flux regions that
appear as areas of opposite magnetic polarity.

The classification and tracking of sunspots is an active undertaking of solar-
physicists hoping to untangle connections between sunspot activity and various
solar phenomena. Recent studies, for example, suggest that solar flares are related
to the magnetically active regions around sunspot groups [5]. As a result, various
sunspot classification schemes aim to characterize magnetic flux content in the
active-regions on the solar disk [4]. One particular scheme—the Mount Wilson
classification—puts solar active-regions into four classes based on the complexity
of magnetic flux distribution. When combined with space weather data, this scheme
can be used to predict activity in the solar corona such as highly energetic solar
flares and massive bursts of solar wind known as coronal mass ejections [4]. While
precise predictions remain elusive, the complexity of the magnetic flux distribution
of sunspot groups can be used to infer trends and tendencies in the patterns of solar
flares and coronal mass ejections.

Recently launched NASA missions such as the Solar Dynamics Observatory—
with its continuous science data downlink rate of 130 Megabits per second—are
producing an unprecedented volume of solar data. Nonetheless the majority of
sunspot classification is still performed through visual inspection by experts [2].
This is a laborious process and, as with all manual procedures, is susceptible to
bias from the human observer [4]. Since the morphology of sunspot groups form a
continuous spectrum rather than a set of discrete and obvious classes, there is a level
of subjectivity in manual classification. One of the attractions of the Mount Wilson
scheme is its reliance on a relatively simply set of classification rules. While this
may aid manual classification it introduces artificial dichotomies that may hinder
scientific understanding. Even with the relatively straightforward Mount Wilson
scheme, trained experts do not always agree on classifications. As a result, there is a
need for an automated, objective and reliable procedure for detecting and classifying
sunspot groups.

The Mount Wilson classification scheme divides sunspot groups into four classes.
The simplest morphologically is the α class which consists of groups that are
dominated by a single unipolar sunspot, i.e., a sunspot with a magnetic field that is
dominated either by a positive or a negative polarity. The second class, the β class,
is made up of groups with both polarities, but with a simple and distinct spatial
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Fig. 31.1 Examples of the four classes of sunspot groups used in the Mount Wilson scheme. The α
class (a) is dominated by a single pole that appears black or white in the magnetogram, depending
on the polarity (positive or negative). The β class (b) has regions of both positive and negative
polarity that can be separated by a straight line. The βγ class (c) also exhibits both polarities
but they cannot be easily separated into two regions. In the βγδ class (d) the two polarities are
scattered throughout the region

division between the polarities. In particular a straight line can be drawn through
the group that nearly divides the negative from the positive polarities. Groups in
the third class, βγ , are also bipolar, but are sufficiently complex that a straight line
cannot divide the positive and the negative polarities. Finally, in the fourth class,
βγδ , the positive and negative polarities are scattered throughout the region and
cannot be easily separated. Example of the sunspot groups from the four classes
appear in Fig. 31.1.



332 D. Stenning et al.

Because this classification scheme is defined in terms of the morphology of the
sunspots, we propose to use methods from mathematical morphology to extract
features from the magnetograms that can be used in an automated classification
technique, such as a classification tree, support vector machine or some other
common method, to reconstruct the Mount Wilson classification. We use a data set
that consists of magnetogram images collected by the Solar and Heliospheric Ob-
servatory/Michelson Doppler Imager (SOHO/MDI). Each magnetogram includes
the date and time the image was taken, the location on the solar disk, and the
identification number of the sunspot group given jointly by the U.S. Air Force and
the National Oceanic and Atmospheric Administration (USAF/NOAA). The manual
classification of the sunspot group by USAF/NOAA according to the Mount Wilson
scheme is also provided.

The primary goal of this article is to make progress toward an automatic sunspot
classification method that relies on features extracted using techniques from math-
ematical morphology. We begin in Sect. 31.2 with an overview of the mathematical
morphology methods that we employ. In Sect. 31.3 we describe how we compute
relevant numerical summaries of the magnetogram images using mathematical
morphology and methods for using these summaries for classification. Finally in
Sect. 31.4 we discuss the road forward toward automated sunspot classification.

31.2 Mathematical Morphology

Mathematical morphology is a powerful tool for image analysis, which was
developed about 40 years ago. Unlike other tools (e.g., Fourier methods), morpho-
logical operators relate directly to shape. When used appropriately, morphological
operations can simplify images by preserving their essential shapes and eliminating
noise. For detailed descriptions of the subject, see [6, 7].

31.2.1 Binary and Greyscale Images

Objects in digitized images are only approximations to their counterparts in the real
world. One reason is simply because their domains are defined in different spaces:
images are pixelated and thus “discrete” while the object itself is “continuous” in
nature. We will use ZZ2 to denote the space of objects in binary images. That is
ZZ2 can be thought of as a two dimensional grid of pixels that is infinitely tall and
infinitely wide. We can treat ZZ2 as the discrete version of the Euclidean plane IR2,
and represent it as a two dimensional Cartesian square grid.1

1Originally mathematical morphology was defined in the d-dimensional Euclidean space IRd ,
but there is no great difficulty in translating the this theory from IRd to its discrete version ZZd .
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Fig. 31.2 Top row: (a) a binary image that has been (c) dilated, (e) eroded, (g) opened, and (i)
closed. Bottom row: (b) a greyscale image that has been (d) dilated, (f) eroded, (h) opened, and (j)
closed. For the binary image a vertical line was used as the SE in the morphological operations.
For the greyscale image, a rectangle was used

A binary image, f , is a image where each pixel is either black or white. For
example we can assign the value 1 (i.e., black) to a pixel if it belongs to an object,
otherwise the value 0 (i.e., white). Notice that we can always consider objects (i.e.,
the “black” parts) in a binary image as sets and the image itself as the union of all
such sets. See Fig. 31.2a for a binary image. Mathematically, we can write a binary
image as a mapping, which maps each pixel of a subset D f of ZZ2 into the couple
{0,1}:

f : D f ⊂ ZZ2 −→ {0,1},
where D f is some subset of ZZ2 and is called the definition domain of f .

More generally, a greyscale image, f , is a mapping which maps each element in
a subset D f of ZZ2 into the set of non-negative integers IN0:

f : D f ⊂ ZZ2 −→ IN0.

Very often the set of non-negative integers under consideration is {0, . . . ,255},
where the larger the value, the brighter the pixel is. In mathematical morphology,
it is useful to treat the pixel values of a greyscale image as the heights of a surface
above the image plane. See Fig. 31.2b for a greyscale image.

In our discussion about mathematical morphology, we use ZZ2, but understand that the development
works equally well for either ZZd or IRd .
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B

X D (X)B

Fig. 31.3 Dilation of a set X by a disk-shaped structuring element B

31.2.2 Dilation and Erosion

In mathematical morphology there are two basic operations: dilation and erosion.
These are the basic building blocks and many other morphological operations can
be expressed in terms of dilation and erosion. We first define dilation.

Suppose we have a set X ⊂ ZZ2 and a curser B that scrolls across ZZ2. If we record
the location of B whenever it intersects or “runs into” X the result is called the
dilation of X by B, denoted by DB(X). This is illustrated in Figure 31.3. Notices
that the dilation of X is a bloated version of X , where the degree and character of
the bloating is determined by the shape and size of B. The dilation of X by B is the
answer to the question: “What is the location of B when B hits X?” (We define A
hits B as A∩B �= φ .) In other words, DB(X) is the set of all points x such that B hits
X when the location or origin of B is at x.

We call B a structuring element (SE). Generally speaking a SE is a subset of ZZ2

with a known shape and origin. SE elements are used to examine or transform the
image f under study. As with dilation, all morphological operators treat the image
as a set (i.e., a binary image) and use one or more SEs to examine it. We could also
say these operators use the shape(s) of the SE(s) to transform f . Notice that the SE B
is arbitrary, hence one can always choose a suitable SE to perform the desired task.
This gives the user a great flexibility in applying morphological methods. Usually
SEs are regular and small in size when compared to the image. For example, in the
case of a binary image in Fig. 31.3, B is a disk with a small radius and with its center
as the origin.

The formal definition of dilation is:

DB(X)≡ {x ∈ ZZd | Bx ∩X �= φ},

where Bx is the SE B placed with its origin at x. Figure 31.2c, d show the dilation of
the images displayed in Fig. 31.2a, b, respectively.

The erosion of X by B, denoted by EB(X), is the answer to the question: “Where
is the origin of B when B fits wholly inside X?” That is, EB(X) is the set of points x
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B

EX B(X)

Fig. 31.4 Erosion of a set X by a disk-shaped structuring element B

such that B fits wholly inside X when the origin of B is at x. The formal definition
of erosion is:

EB(X)≡ {x ∈ ZZd | Bx ⊂ X}.
See Fig. 31.4 for an example, and Fig. 31.2e, f for examples of eroded images.2

31.2.3 Opening and Closing

Dilation and erosion remove information and in general the lost information cannot
be retrieved. The search for an operation that attempts to revert the effects of
dilation and erosion leads to the definition of, respectively, morphological closing
and opening. We first give the definition of opening, and for that, we define the
reflection Ǎ of a set A: Ǎ ≡ {−a | a ∈ A}. That is, Ǎ is the mirror image of A about
the origin.

The opening of X by B, denoted by OB(X), is defined as the erosion of X by B
followed by the dilation by B̌. That is:

OB(X)≡ DB̌{EB(X)}.

Figure 31.5 is an example of opening. Notice that X has been rounded by B from
the inside, and that those disks which are smaller in size than the SE B vanish after
opening.

Also notice the filtering effect of opening: those image structures that cannot
contain the SE B are removed from the image. Therefore the size and shape of B

2It is easy to verify that dilation and erosion form a pair of dual transformations:

DB(X) ≡ {EB(X
c)}c.

This duality property means that, when using the same SE, the dilation of a set X is equivalent to
the complement of the erosion of the complement (i.e., the “background”) of the set X .
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X O (X)B

B

Fig. 31.5 Opening of a set X by a disk-shaped structuring element B

CB (X)X

B

Fig. 31.6 Closing of a set X by a disk-shaped structuring element B

should be carefully chosen for the information to be extracted from the image. For
example, if one wants to remove linear features but not disk shaped structures, B
should be chosen as a disk of a suitable size. Examples of opened images can be
found in Fig. 31.2g, h.

The closing of X by B, denoted by CB(X), is defined as the dilation of X by B
followed by the erosion by B̌. That is:

CB(X)≡ EB̌{DB(X)}.
See Figure 31.6 for an example of closing. As opposite to opening, closing rounded
the objects “from outside”. See also Fig. 31.2i, j for examples of closed images.3

In practice the choice between opening or closing depends on the types of
objects or noise to be extracted/removed. For example, the removal of “salt noise”—
white dots in the image—requires opening, while “pepper noise”—black dots in the
image—requires closing.

31.2.4 Other Morphological Operations

There are other useful morphological operators, but due to space limitation, we omit
their detailed descriptions here. One such operation is skeletonization: the skeleton
of an binary object is defined as the union of the centers of all the maximal balls

3Opening and closing also share a dual property: OB(X) = {CB(Xc)}c.
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inside the object. It is useful for extracting summary features to represent the object.
Another useful operator for detecting object boundaries is morphological gradient,
typically defined as the arithmetic difference DB(X)−EB(X).

31.3 Detection and Classification of Sunspot Groups

We aim to develop an automatic procedure for detecting and classifying sunspot
groups according to the Mount Wilson scheme. Given the complexity of the
magnetogram images, we adopt an imaging-oriented modular approach. That is, the
ultimate problem of detection and classification is broken into a sequence of sub-
problems, and simple and effective imaging techniques are applied to sequentially
solve these sub-problems.

Since the Mount Wilson scheme relies on characterizing the shape and distri-
bution of magnetic flux in sunspot groups, mathematical morphology is utilized to
extract scientifically meaningful features from the available magnetograms. That
is, the morphological operations described in Sect. 31.2 are used to examine the
distribution of positive and negative magnetic polarities visible in the magnetogram.
In particular, we characterize the complexity of the sunspot group based on the
scatter of magnetic flux and the separation of the two polarities. In this way,
our procedure tailors a classifier to utilize expert knowledge in constructing an
interpretable and effective classifier. Another approach to classification, at the other
extreme, is to generate a large set of numerical summaries to use as features in a
“blackbox” classifier. While this approach can also yield an effective classifier, the
results tend to be much more difficult to interpret in terms of the underlying science.

31.3.1 Science-Driven Feature Extraction

In this section we describe the procedure that we employ to extract numerical
summaries of the magnetogram images that will serve as features in the ultimate
classification. Our strategy is to derive features that are tailored to distinguish
between the four classes in the Mount Wilson scheme. Since all four classes
are defined in terms of the distribution of the positively and negatively oriented
magnetic fields, we begin by using morphological operators to identify the regions
of positive and negative polarity in a magnetogram.

To do this we first clean the image using a morphological opening operation with
a spherical structuring element of radius 2. This smooths the white sunspots—the re-
gions of positively oriented magnetic field that appear white in the magnetograms—
so that smooth boundaries can be obtained after thresholding. After cleaning we
extract the white sunspot by selecting pixels with magnetogram intensity greater
than a given threshold, namely greater than x̄+2.5s, where x̄ and s are, respectively,
the mean and sample standard deviation of all the pixel values in the image. Next
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we aim to extract the black sunspots—the regions of negatively oriented magnetic
polarities that appear black in the magnetograms. To do this, we invert the original
image by multiplying by negative one so that it looks like a film negative, and then
clean and threshold the inverted image in exactly the same we did with the original
image when extracting the white sunspots.

Figure 31.7 illustrates our feature extraction routine for α , β , βγ , and βγδ
sunspot groups. In this figure, the first row is the original magnetogram that appears
in Fig. 31.1, the second row is the cleaned magnetogram, the third row is the
extracted white sunspot, and the fourth row is the extracted black sunspot. The
columns represent α , β , βγ , and βγδ types, respectively. We will describe the final
two rows below.

Given the extracted white and black sunspots, we are in a position to define a
feature that aims to identify sunspot groups in the α class. Since this class is defined
by “A unipolar sunspot group”, an extreme ratio of the number of extracted pixels
the white and black sunspots (NW and NB, respectively) should be indicative of
an α group. This ratio is denoted |NW/NB| and is given, for each representative
magnetogram, beneath its respective column in Fig. 31.7.

The difference between the β , βγ , and βγδ classes is the degree of separation
between the white and black sunspots. In the β class they can be largely separated
by a straight line, in the βγ class they can be largely separated, but not by a straight
line, and in the βγδ class they are mixed. Thus to distinguish between these groups
we aim to identify the best boundary between the white and black sunspots and to
access the quality of this boundary. We do this by combining the extracted white and
black sunspots into the same image and using a standard region growing operation
to produce the separating boundary. In Fig. 31.7, the fifth row shows the combined
image, with the white and black sunspots plotted in blue and yellow, and the sixth
row illustrates the resulting separating boundary. Notice that the boundary becomes
more complex for the βγ group than β group and even more so for the βγδ group.

A natural way to distinguish β groups and βγ groups is to measure the
“roughness” of the separating line. A good example of roughness measure is
the averaged second derivative, which we compute using second differencing. In
some cases the region growing operation results in more than one separating line,
indicating poor separation between the white and black sunspots. In this case the
group should be classified as a βγδ group.

To help identify sunspot groups in the βγδ class we must quantify the degree
of scatter or mixture of the region’s positive and negative polarities. In order to do
this we introduce a spatial complexity measure. In particular, let W be the set of
pixels in an extracted white sunspot. We then compute the center of mass, c, of W .
For each pixel w ∈ W , the number of pixels that a line segment from w to c passes
through is denoted L(w) and of these, the number of blue pixels is denoted l(w).
(Recall that blue pixels correspond to the white sunspots.) The spatial complexity
measure, A(W ), is computed as

A(W ) =
1

|W | ∑w∈W

l(w)
L(w)

,
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Fig. 31.7 Top row: original magnetograms for four types of sunspots. Second row: morpholog-
ically cleaned magnetograms. Third row: extracted white sunspot. Fourth row: extracted black
sunspot. Fifth row: detected white (in blue) and black (in yellow) sunspots. The green dots are
their centers of mass. Bottom row: separating line(s) between the white and black sunspots. The
parenthetical summaries at the bottom are the area ratio of white to black sunspots and the spatial
complexity measure A(·) values for the white and for the black sunspots. We expect the area ratio to
be more extreme for α groups and the complexity measurements to be smaller for the βγδ groups
than for β or βγ groups
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where |W | is the number of pixels in W . Notice that L(w)≥ l(w) and 0≤A(W )≤ 1.
To see why A(W ) can be used as a spatial complexity measure, observe that if the
white sunspot pixels are scattered (and disconnected) around in the image, then for
most w∈W , l(w) is small relative to L(w), and thus a small value of A(W ) indicates
high spatial complexity of W .

A similar quantity A(B) can be computed for the set of pixels in an extracted
black sunspot B. The A(W ) and A(B) values for each of the representative
magnetograms are given beneath the columns in Fig. 31.7. The green dots in the
fifth row of Fig. 31.7 are the centers of mass of W and B.

The full procedure for computing the features is as follows:

1. Clean the original magnetogram image using morphological operations.
2. Extract the “white sunspots” by thresholding the cleaned image.
3. Apply the above steps to the negative of the image to extract the “black sunspots”.
4. Compare the relative areas of the white and black sunspots (for discriminating α

from the other three types).
5. Compute the separating line for the white and black sunspots (for discriminating

β and βγ).
6. Compute the complexity measures A(W ) and A(B) (for discriminating βγδ

from the rest).

31.3.2 Classification

Given the set of four features described in Sect. 31.3.1 along with their quadratic
and interaction terms, we can use a standard classification (supervised learning)
technique to derive a classification rule. There are numerous possible method,
but we focus mainly on the technique known as random forests [1] because it is
relatively immune to over-fitting, meaning we have to worry less about the classifier
being over-sensitive to spurious relationships in the data, even when including a
large number of features. (Four features grows to 14 features if we include quadratic
and interaction terms.)

A random forest is a state-of-the-art nonparametric classifier that is an ensemble
of a set of decision trees. The individual trees are grown by finding the best split
of the training cases into the classes based on a set of features. The classification in
each of the resulting subgroups is improved using new separate classification rules.
In a case with N training cases and p features, the number of features used to make a
decision at each node of a tree is set at r, where r is much less than p (one common
technique is to set r =

√
p). The ensemble of trees is created by randomly selecting

N cases with replacement from the original N training cases. Each tree is grown by
randomly choosing r features at each node and making a split based on the selected
features. Each tree is grown to completion without pruning , and the random forest
combines the individual decision trees based on the majority vote of the trees.
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As an illustration we randomly divided a data set consisting of 128
magnetograms into a training set of 90 (70%) magnetograms and test set of 38 (30%)
magnetograms. We fit a random forest of 250 trees using the randomForest
routine in R to the training set and used the resulting classification rule to separately
classify both the training and test sets. While the training set had a 100% correct
classification rate, 58% of the test set was correctly classified, based on the
USAF/NOAA classification. All of the misclassified sunspot groups were classified
into a class neighboring the USAF/NOAA classification (i.e., all α sunspot groups
were classified as either α or β , all β groups as β or βγ , all βγ as β or βγ , and all
βγδ as βγ or βγδ .)

A difficulty that arrises when we try to evaluate the quality of our proposed
features for sunspot classification is that the USAF/NOAA classification is not
particularly reliable. An examination of the magnetograms that appear to be
missclassified by our method more often than not reveals that the USAF/NOAA
classification is incorrect or that the sunspot groups is marginal and does not clearly
belong to any one of the four classes. This is of course problematic not only for
evaluating the classifier but also for training the classifier because the USAF/NOAA
classifications in the training set are no more reliable than those in the test set.
The problem stems from the lack of true discrete classes. There is a continuum
between the α class that is “dominated by a single unipolar spot” and the bipolar β
class, as the second polarity grows from negligible to equal in importance. Likewise
there is a continuum from the β to the βγ and to the βγδ class as the bipolar
group ranges from simple distinct regions of positive and negative polarity to a
group with positive and negative polarities scattered throughout. The lack of a
distinct underlying classification leads to subjective assessments as to the proper
classification of a group and an inherent inconsistency in the human classification.
It is both difficult and ultimately fruitless to automatically reproduce such a human
classification.

31.4 Discussion

Our ultimate goal is to provide numerical descriptions and summaries of sunspot
images that capture physical characteristics in sunspot development and evolution
and can be use to predict turbulent events such as solar flares and coronal mass
ejections. Research suggests that the morphology of the sunspot groups is relevant to
the evolution of the group and predictive of such events. Thus our work has focused
on developing morphological summaries that in the first place capture scientific
theories about formation and evolution and secondly may be able to be used to
reproduce existing classification schemes. An immediate goal is to develop new
classification schemes and/or continuous numerical summaries that better represent
the observed variability in sunspot images and are more correlated with solar
activity. Current classification schemes are based on static sunspot groups. A more
interesting classification would characterize not just the static morphology, but also
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the development, evolution, and track of the group. The goal is to automatically
track the formation and evolution of sunspot groups using the massive solar data
sets that are now coming online—and for this tracking to be in terms of sunspot
features that are most pertinent to the ultimate scientific objectives.
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Chapter 32
Commentary: Morphological Image Analysis
and Sunspot Classification

Ricardo Vilalta

Abstract The paper by Stenning et al. discusses mathematical morphological
classification of images of sunspots on the Sun’s surface. Faced with complicated
shapes and distributions of magnetic flux, they seek to reproduce an established
classification scheme with four classes. The problem shares characteristics with the
classification of elevation maps of the surface of Mars where six classes are present
(plateau, crater, ridge, etc.).

32.1 Feature Representation, Bias, Variance,
and Irreducible Error

Typical issues under consideration when selecting or designing a classification
algorithm are the bias and variance components of error induced by the algo-
rithm [1]. For example, one may choose a simple algorithm (e.g., linear combination
of feature values, Naive Bayes, single logical rules, etc.) and draw a hypothesis from
a small family of functions; the poor repertoire of functions may produce high bias
(the best function may be far from the target function) but low variance (because of
the sensitivity on local data irregularities). The alternative is to increase the degree
of complexity by drawing a hypothesis from a large class of functions (e.g., neural
networks with a large number of hidden units); here the hypothesis exhibits flexible
decision boundaries (low bias) but becomes sensitive to small variations in the data
(high variance).

A less explored—but perhaps more critical issue—is that of the feature
representation, which can be the cause of a third component of error known as
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Bayes (irreducible) error. This occurs when the feature representation leads to class
overlap. While bias and variance can be traded off by varying the classification
strategy, Bayes error remains immutable as soon as the feature representation
is fixed. The importance of high quality features is crucial to attain accurate
predictions and cannot be over-emphasized [2]. High quality features convey much
information about the problem; in this case, even a simple hypothesis suffices to
produce good results. In contrast, low quality features complicate the classification
process. Features can bear poor correlation with the class, or interact in many ways,
which calls for additional steps to discover important feature combinations.

32.2 A Commentary on Sunspot Classification

The paper by Stenning, et. al. (this volume) entitled “Morphological Image Analysis
and its Application to Sunspot Classification” describes an interesting approach
to sunspot classification using techniques from mathematical morphology and
image processing. The authors describe a well-thought set of techniques to dif-
ferentiate among four classes, following the Mount-Wilson classification scheme.
Such classes vary according to the shape and distribution of magnetic flux in
sunspots groups. It is clear from the paper that the task of extracting relevant
features to differentiate among such classes is extremely difficult. The distribution
of positive and negative magnetic polarities extracted from the magnetogram can
exhibit multiple configurations, which makes it very difficult to point to the right
class precisely. The paper gives a hint at the strong challenge of acquiring additional
features to improve on accuracy performance (currently reported at around 58% on
a testing set using random forests).

The problem of finding relevant features in images with spatial content appears
in many other scientific domains. We have found that one key element to discover
relevant features in these problems is to look for contextual information according
to the precise nature of the classes under analysis. One particular domain is that of
automatic classification of landforms on Mars, described next.

32.3 An Analogous Problem in Landform Classification
on Mars

We follow our discussion with a brief description of a pattern recognition tool for
mapping landforms on Mars [3, 4] that receives as input a DEM (Digital Elevation
Map). It uses the values of elevations stored in the DEM to calculate additional
geomorphometric features; we use the following cell-based features: slope, curva-
ture, and flooding adjustment. At the end of our feature generation process we have
a three-dimensional feature vector assigned to each cell in the raster. The raster is
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Fig. 32.1 Top: A color-labeling of a site on Mars (Tisia site) with perfect landform classification.
Bottom: The approximation made by a learning algorithm (support vector machines) using local
features

then segmented into spatially single-connected, feature vectors. After segmentation,
the raster consists of a number of spatial patches; these patches are the objects of
final classification based on six possible classes: inter-crater plateau, crater floor,
convex crater wall, concave crater wall, convex ridge, and concave ridge.

Figure 32.1 shows two images of Mars. Figure 32.1-top describes the
“ground-truth”, where all segments have been correctly classified by an expert,
with class labels displayed on the right side. Figure 32.1-bottom shows the result
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of automatically classifying that region of Mars using a small amount of segments
for training, and using the rest for testing. The problem with this task is that there
are semantically different landforms that display similar or even identical landscape
elements. This is difficult because it requires domain knowledge of Martian
topology as regards to structural shape. An example of two distinct landforms
consisting of very similar landscape elements is the case of concave crater walls
and concave ridges. Both landscape elements are rim-like surfaces, the difference
is that in the case of the crater, a collection of rim structures forms a circle-like
landform, and, in the case of the ridge, it forms a linear-like structure. This is again
a problem where the feature representation is crucial to attain good results. In the
case of Mars, additional features capturing the shape and global distribution of
segments on each landform are necessary to overcome the irreducible error that
comes from class overlapping.
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Chapter 33
Learning About the Sky Through Simulations

Andrew Connolly, John Peterson, Garret Jernigan, D. Bard and the LSST
Image Simulation Group

Abstract With data sets that will soon reach petabytes in size, astrophysics is
rapidly moving from a regime limited by statistical noise to one where scientific
progress will be determined by our ability to understand and control systematic
uncertainties. Simulations can play a critical role in this process by providing a
better understanding of the capabilities and limitations of any observational system;
enabling the development of new statistical techniques, testing the performance of
a new design or optimization, and evaluating how an existing scientific analysis
might scale to data volumes a thousand times larger than todays. We describe here
an approach, adopted by the Large Synoptic Survey Telescope (LSST), to develop
high-fidelity simulations at the scale and complexity of the LSST survey itself.
These simulations comprise cosmological models of the universe including: galaxy
populations, stellar distributions from Galactic structure models, and populations
of asteroids within our Solar System. When coupled to simulations of sequences
of LSST observations, and to a photon-based simulator that generates detailed
images with the properties of the LSST system (accounting for the effects of
the atmosphere, telescope and camera), we have an end-to-end system capable of
addressing a broad range of astrophysical and statistical questions. We describe
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here, using a study of image subtraction techniques, how the current generation
of simulations can be used to develop new statistical techniques for processing and
analyzing astronomical data sets.

33.1 Introduction

A new generation of astronomical survey telescopes, the Dark Energy Survey
(DES), the Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS), EUCLID, the Visible and Infrared Survey Telescope for Astronomy
(VISTA), and the Large Synoptic Survey Telescope (LSST) are now, or soon will
be, surveying the universe in unprecedented detail. Repeated observations of the
same part of the sky, with hundreds to thousands of observations over a period
of 10 years, will enable a detailed study of the temporal universe (ranging from
transient sources such as supernovae and optical bursters, to periodic variables
such as Cepheids and RR-Lyrae stars, to moving sources such as asteroids and
high proper motion stars). Combined, these observations will provide some of the
deepest, large-scale surveys of the universe, ever undertaken and provide the ability
to measure the nature of dark energy with figures of merit 10–100 times better than
current surveys (DETF, [1]).

The stringent requirements on the statistical power of these telescopes means that
we will soon no longer be limited by shot noise (i.e. the number of sources within a
sample) but by how well we can understand systematic uncertainties within our data
streams. These systematic effects can arise from the design of the telescope (e.g.
ghosting of images or scatter light), from the response of the atmosphere (e.g. the
stability of the point-spread-function or the variability in the transmissivity of
the sky), from the strategy used to survey the sky (e.g. inhomogeneous sampling of
astronomical light curves), or from limitations in our analysis algorithms (e.g. due
to the finite processing power available approximations may need to be made when
characterizing the properties of detected sources). Understanding which of these
issues will impact the science from a given telescope is critical if we hope to
maximize their scientific returns.

Simulations of the data flow from survey telescopes can provide a critical role
in understanding the capabilities of an astronomical system and in optimizing its
scientific returns. By providing data with the expected characteristics of a survey
well in advance of first light, algorithms and statistical techniques can be optimized
and scaled to the expected data volumes or new statistical approaches can be
developed to improve the data analysis. In the following sections we describe an
approach undertaken by the LSST to simulate its data flow. We describe the
simulation framework, its requirements and design, the data generated to date, how
these data are being used by the LSST, and how we can employ this simulation
framework to explore optimal statistical techniques for the detection of transient or
variable sources in noisy images.
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33.2 Simulating an Astronomical Data Stream

The design of a framework [2] to simulate the data expected from the LSST requires
flexibility and scalability (to enable data generation runs that range from a single
CCD image of a gravitational lens to images from thousands of full focal planes
that trace the expected observing cadence of the survey). This is accomplished by
dividing the simulation workload into three separate components: a base component
that stores a model of the universe (including the distribution of galaxies from a
cosmological simulation, the distribution of stars from a Galactic Structure model
that incorporates contributions from a thin disk, thick disk and halo, and a model
for the asteroid populations within our Solar System), a system for querying
the underlying model of the universe using simulations of sequences of LSST
observations, and a framework for the generation of images via the ray-tracing
of individual photons. The system as implemented today can generate large-scale
astronomical catalogs, sequences of individual CCD images taken over periods of
days or weeks, and large scale imaging runs that generate terabytes of images and
associated reference catalogs.

Figure 33.1 shows an example of the flow of information through the LSST
simulation framework. Simulations of sequences of LSST observations enable
catalogs of LSST sources to be generated. These catalogs can be analysed for
different science programs or passed to a photon based image generator that create
input images for the data management analysis pipelines. The design enables the
generation of a wide range of data products: from all-sky catalogs used in modeling
the LSST calibration pipeline, to time domain data used to characterize variability
as a function of signal-to-noise and temporal sampling, to sequences of images of
gravitational lenses from which to measure cosmological time delays. To date the
framework has been used for three LSST data challenges over the last 3 years and
generated over 10TB of images (>106 amplifier images) and simulated over 1013

photons.

33.2.1 Simulating the Distribution of Sources to Faint
Magnitudes

The underlying source catalogs within the LSST simulator extend to a depth or
rAB = 28. This limit is set by the requirement that sources extend below the detection
limit of the LSST images even after the coaddition of 10 years of data (as the
distribution of sources below the detection limit influences the statistics of sky
background through their color distribution and clustering). Galaxy distributions
are derived from the Millennium simulations of de Lucia et al. [3] and assume a
standardΛ -CDM cosmology. These models extend dark matter N-body simulations
to include gas cooling, star formation, supernovae, and AGN and are designed to
reproduce the observed colors, luminosities, and clustering of galaxies as a function
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Fig. 33.1 The flow of information through the LSST simulation framework. Databases of
astrophysical sources are populated with models of the cosmological distributions of galaxies, the
distributions of stars within our Galaxy, and the populations of asteroids within our Solar System.
Using historical records for the weather at Cerro Pachon and the observing cadences required by the
science drivers for the LSST, sequences of simulated observations are generated by the Operations
simulator. From these simulated pointings, catalogs and images of galaxies can be generated that
match the expected properties of the LSST system. Comparing the catalogs derived by processing
the LSST data with those used to generate the inputs we enable a full end-to-end test of the LSST
system
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of redshift. The LSST cosmological catalogs were generated by constructing a
lightcone, covering redshifts 0 < z < 6, from 58,500 h−1Mpc simulation snapshots.
This lightcone covers a 4.5 × 4.5 degree footprint on the sky and samples halo
masses over the range 2.5 × 109 to 1012 M�. Dynamically tiling this footprint
across the sky enables the simulation of the full LSST footprint while keeping the
underlying data volume small (but at the expense of introducing periodicity in
the large scale structure). For all sources, a spectral energy distribution, is fit
to the galaxy colors using Bruzual and Charlot spectral synthesis models. These
fits include inclination dependent reddening and are undertaken independently
for the bulge and disk components. Morphologies are modeled using two Sersic
profiles and a single point source (for the AGN) with bulge-to-disk ratios and disk
scale lengths from de Lucia et al. Half-light radii for bulges are estimated using
the empirical absolute-magnitude vs half-light radius relation given by Gonzalez
et al. [4]. Comparisons between the redshift and number-magnitude distributions
of the simulated catalogs with those derived from deep imaging and spectroscopic
surveys showed that the de Lucia models under-predict the density of sources at faint
magnitudes and high redshifts. To correct for these effects, sources are “cloned”
in magnitude and redshift space until their densities reflect the average observed
properties. Figure 33.2 shows the resulting size distribution of galaxies within the
simulations compared to observations from the Hubble Space Telescope.

The distribution of stars are based on the stellar structure models of Juric
et al. [5]. These include thin-disk, thick-disk, and halo star components with colors
that match those observed by the Sloan Digital Sky Survey (SDSS, [6]). Spectral
energy distributions are fit to the predicted colors using the models of Kurucz [7]
for main sequence stars and giants, Bergeron et al. [8] for white dwarfs, and
a combination of spectral models and SDSS spectra for M, L, and T dwarfs
(e.g., [9–13]). The dynamical models for the galaxy are taken from Bond et al. [14]
and for each star a parallax and proper motion is derived.

Approximately 10% of the stellar sources are defined to be variable. Variability is
modeled for sources within the base catalogs by defining a light curve, its amplitude,
a period, and a phase. For queries that contain a time constraints the magnitude
of the source is adjusted based on the properties of the light curve (the current
implementation only allows for monochromatic variations in the fluxes). Variables
modeled range from cataclysmic variables, flaring M-dwarfs, and micro-lensing
events. For transient sources, the period of the light curve is set to >10 years such
that the sources will not repeat within the period of the LSST observations.

For Galactic reddening, a value of E(B-V) is assigned to each star using the
three-dimensional Galactic model of Amores and Lepine [15]. For consistency with
extragalactic observations the dust model in the Milky Way is re-normalized to
match the Schlegel et al. [16] dust maps at a fiducial distance of 100 kpc.

Solar System sources are derived from Grav et al. [17]. They include populations
for Near Earth Objects (NEOs), Main Belt Asteroids, the Trojans of Mars, Jupiter,
Saturn, Uranus, and Neptune, Trans Neptunian Objects, and Centaurs. For each
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Fig. 33.2 A comparison of the sizes of galaxies in the simulated galaxy catalogs with observations
of galaxy half light radii from the Hubble Deep Field. The panels show the distributions as a
function of limiting magnitude and are in good agreement for magnitudes r > 20

source the full set of orbital parameters are defined. Integrating these orbital
elements for every source for each observation is, however, computationally
expensive if undertaken when querying the database. Chebychev polynomials are,
therefore, used to interpolate between nightly positions [18]. This results in an
astrometric precision of better than 5 mas for any predicted position and a query
time of less that 2 s to identify the 8,000 asteroids found in each LSST pointing.
Spectral energy distributions are assigned using the C and S type asteroids of DeMeo
et al. [19]. In total there are 11 million asteroids within the simulation. For each
asteroid the orbital positions are precomputed for each night of the 10 years of
LSST operations.
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33.2.2 Querying the LSST Simulations for Sources

The base catalog is stored as a SQL database (using a Microsoft SQLServer).
Data are accessible through a Python interface that uses SQLalchemy to provide a
database agnostic view of the sources. For any LSST pointing sources can be queried
as a function of position and time with the returned data accounting for any change
in brightness due to variability. For large scale runs, the base catalog is queried
using sequences of observations derived from the Operations Simulator [20].
The Operation Simulator simulates LSST pointings that meet the cadence and depth
requirements of the LSST science cases while accounting for historical weather
patterns for Cerro Pachon and the visibility of the LSST footprint on the sky. Each
simulated pointing provides a position and time of the observation together with the
appropriate sky conditions (e.g. seeing, moon phase and angle, and sky brightness).
Positions of sources are propagated to the time of observation (from the proper
motion information for stars and orbits for Solar System sources). Magnitudes
and source counts are derived using the atmospheric and filter response functions
appropriate for the airmass of the observation and after applying corrections for
source variability. The resulting catalogs (instance catalogs) can be formatted for use
in a science application (e.g. measuring the proper motions of high velocity stars)
or fed to the final component of the simulation framework, the image simulator.
This component simulates images by ray-tracing individual photons through the
atmosphere, telescope and camera systems. Photons are drawn from the spectral
energy distributions that define the simulated data and are ray-traced through the
optical system before being converted to electrons by simulating the camera physics.
Images are read-out using a simulation of the camera electronics and amplifier
layout and formatted for ingestion into the LSST data management system.

33.2.3 Simulating High-Fidelity Images Through Photon
Sampling

Each LSST simulated image is generated by simulating the individual photons.
The rational for this, as opposed to convolving an image with an analytic point-
spread-function, is that the number of photons that must be simulated for an image
is comparable to the number of pixels in the image. The number of operations
for either approach is comparable whilst the photon based approach enables the
simulation of wavelength dependent effects and the inclusion of perturbations in the
optical surfaces in a natural way.

Photons are drawn from the spectral energy distribution of each source (scaled
to the appropriate flux density based on the apparent magnitude of a source and
accounting for the spatial distribution of light for extended sources). Each photon is
ray-traced through the atmosphere, telescope and camera to generate a CCD image.
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Fig. 33.3 The image
simulation framework is
flexible enough to switch
off and on different optical
components. From left to
right and top to bottom
we show the resulting PSF
as we progressively add more
components to the optical
path (including perturbations
in the optical surfaces and
the addition of a single layer
atmosphere)

The atmosphere is modeled using a Taylor frozen screen approximation (with the
atmosphere described by six layers). The density fluctuations within these screens
are described by a Kolmogorov spectrum with an outer scale (typically, 10–200 m)
and an inner scale of 1 cm, set by the resolution of the atmospheric screens [21].
All screens move during an exposure with velocities derived from NOAA measure-
ments of the wind velocities above the LSST site in Chile. Typical velocities are on
the order of 20 ms−1 and are found to have a seasonable dependence that is modeled
when generating the screens. Each photons trajectory is altered due to refraction as
it passes through each screen. Figure 33.3 show the impact of the screens and the
wind on the PSF and its homogenization.

Once through the atmosphere photons are reflected and refracted by the optical
surfaces within the telescope and camera. The mirrors and lenses are simulated
using geometric optics techniques in a fast ray-tracing algorithm and all optical
surfaces include a spectrum of perturbations based on design tolerances. Each optic
moves according to its six degrees of freedom within tolerances specified by the
LSST system. Fast techniques for finding intercepts on the aspheric surface and
altering the trajectory of a photon by reflection or wavelength-dependent refraction
have been implemented to optimize the efficiency of the simulated images. Wave-
length and angle-dependent transmission functions are incorporated within each of
these techniques including simulation of the telescope spider and scattering off the
optical spider.

Ray-tracing of the photons continues into the silicon of the detector. Conversion
probability and refraction (a function of wavelength and temperature) and charge
diffusion within the silicon are modeled for all photons. Photons are pixelated
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Fig. 33.4 An image from part of a single amplifier for the LSST focal plane (which contains 189
CCDs and 16 amplifier images per CCD). The distribution of galaxies, and the diffraction spikes
and bleed trails of bright stars are visible within the image

and readout, simulating the effects of blooming, charge saturation, charge transfer
inefficiency, gain and offsets, hot pixels and columns, and QE variations. Figure 33.3
shows the effect of these individual components within the image simulator.

The sky background is added as a post-processing step with the sky background
generated, including Rayleigh scattering of the moons light, based on SEDs for the
full moon and the dark sky. The background is vignetted according to the results
of ray-trace simulations. The simulator generates ∼300,000 photons per second on
an average workstation and requires approximately 500 h to simulate a full focal
plane. In Fig. 33.4 we zoom in on a single amplifier region and show the resulting
distribution of stars and galaxies (including the simulated diffraction spikes and
bleed trails).

33.3 Using Simulations to Define Science

The simulation framework has been used in a number of different studies to test
both analysis algorithms and the efficiencies of different survey strategies. These
applications range from studies of influence of the atmosphere on the distribution
of source ellipticities [22], estimations of the ability of the LSST to measure light
curves for strong gravitational lenses, searches for high proper motion stars within
10 years of observations, and the development and testing of techniques for tracking
asteroids. In the following section we isolate one of these studies that focused on
image subtraction and how we might characterize the kernel that maps one image
to another.



356 A. Connolly et al.

Fig. 33.5 From left to right the panels show a science observation of a single star, the template
or reference image, the kernel that matches these two scenes and the resulting image subtraction.
From top to bottom we simulate kernels generated using the Alard and Lupton method (for 30
terms), the Alard and Lupton method (320 terms), a delta function basis set, and a delta function
basis with regularization

33.3.1 Characterizing Image Subtraction with Kernels

A common aspect of most modern imaging surveys is the desire to characterize the
variability of astrophysical sources through multiple observations of the same part
of the sky (variability can come in the form of transient events such as supernovae,
periodic variability such as Cepheids and RR-Lyrae stars, or moving sources such
as asteroids). Variability is typically measured through the application of image
subtraction whereby a high signal-to-noise template image is subtracted from a
recent science image and any residual flux is attributed to the variability of a source.
In order for this to be a robust detection of variations in the source flux we must
account for the non-astronomical difference between the two scenes (e.g. due to
errors in the astrometric solutions, variation in the transmissivity of the atmosphere,
and differences in the point-spread functions of the two images).

Following Alard and Lupton [23] we can consider two images taken at different
times but in the same filter as representing the same scene but with different
point-spread-functions (PSFs), i.e.

I(x,y) = (K ⊗T )(x,y)+ ε(x,y). (33.1)
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where I(x,y) is the observed image, T (x,y) is a template image, K(x,y) is the kernel
that maps the template to the observed image, and ε(x,y) is an additional noise
component (usually assumed to be a Normal distribution).

If we model the kernel, K, as a linear sum of basis functions, K(x,y) =

∑i aiKi(x,y), we may solve for the coefficients of Ki through a standard least squares
approach (i.e. minimizing the mean square errors between the observed and template
images). These basis functions do not need to be complete nor orthogonal but
should provide a compact representation of the mapping kernel. In Alard and Lupton
(hereafter AL) the basis functions selected for the kernel, K, were assumed to be
Gaussians modified by 2-dimensional polynomials,

Ki(u,v) = e−(u2+v2)/2σ2
n upvq, (33.2)

where i runs over all permutations of n, p,q. In this parameterization, n is the
number of Gaussian components, of width σn and p and q are the orders of the
Gauss–Hermite polynomials such that 0 ≤ p + q ≤ On, with On the order of n.
The total number of basis functions in the set is ∑n(On + 1)× (On + 2)/2 (for a
typical application approximately 50 basis functions are used). It is worth nothing
that the width, σn, number of Gaussians, and order of the polynomials are not fit in
this process but defined through either a set of heuristics or via the application of
cross-validation.

A question that remains open under this mapping is, do these Gauss-Hermite
basis functions represent the optimal description of the mapping kernel or are there
more appropriate bases. For example, in the presence of substantial astrometric
errors between images, the centered Gauss-Hermite bases cannot efficiently map
offsets between sources. In Becker et al. [24] we, therefore, investigated the
advantages and disadvantages of building kernels using delta function basis func-
tions (Ki j(u,v) = δ (u − i)δ (v − j)). The advantage of delta functions is their
flexibility (e.g. their ability to compensate for astrometric misregistration) but
this comes at the expense of a loss of compactness. Figure 33.5 illustrates this
point by showing the image subtraction performance of Gauss-Hermite and delta
function bases when subtracting pairs of stars simulated by the LSST simulation
framework. From left to right the panels show the input science image, I(x,y),
the template image, T (x,y), the derived mapping kernel, K(x,y), and the residuals
after subtracting the science image from the template (after convolving the template
image with the mapping kernel). From top to bottom we consider the case of AL
basis functions with 30 and then 320 terms, a delta function kernel, and a delta
function kernel derived using a regularization term that ensures smoothness.

In all cases the residuals are comparable to or better than the variance derived
from the image statistics. As noted by Becker et al., the delta function kernels
outperform the AL bases in the case of significant astrometric shifts between the
images (even for the case of 320 AL bases). The non-regularized kernels appear to
perform as well as the regularize delta function kernels for the case of a single star.
If, however, we use the mapping kernel derived for one star as a mapping kernel
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for its neighboring stars (even for the case of no variation in the PSF) the image
subtraction residuals are much larger. This is because the number of parameters
within this model (i.e. the number of pixels) is sufficiently large that the model is
overfit (i.e. the kernel fits both the signal and the noise when mapping between
image and template).

Regularization techniques can remove the problem of overfitting the data by
adding a penalty term to the regression. In our case we consider regularization as
a way to ensure smoothness in the resulting kernel (though this is by no means the
only regularization term that could be applied) and penalize the second derivative
by λ · ∫ ∫ |∇ f (x,y)|2dxdy. With λ as the only tuning parameter within this fit,
a combination of cross-validation, risk estimation, and the ability to predict the
appropriate kernel for neighboring sources can all be used to define an appropriate
range of values for λ . For the example in Fig. 33.5 (4th row), a value of λ ∼ 0.5 is
sufficient to produce difference images with similar performance to those given by
the sum–of–Gaussian AL bases while retaining predictive ability when applied to
neighboring sources.

33.4 Conclusions

With a new generation of survey telescopes on the horizon (from PanSTARRS and
DES to LSST) we now face the prospect of science being limited by our ability
to model and correct for systematics within the data rather than simply counting
statistics. Simulations can play a critical role in understanding both the nature of
the data we must work with (e.g. the variation in the PSF as a function of color or
position on the focal plane) and how we might scale our analyses to data volumes
that are 100–1,000 times larger that todays. The LSST has, therefore, implemented
a program to simulated the flow of data expected from this telescope (in the form of
catalogs and images). We show, here, how these simulations can be used to develop
new algorithms for processing imaging data. Within the near future simulated data
sets will include more of the astronomically interesting sources for a deep, temporal
survey (e.g. light curves from variable sources such as supernovae). Combining
these tools with new statistical techniques will provide an opportunity to determine
how well we can characterize the properties of the universe prior to a new generation
of astronomical resources coming on line.
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Chapter 34
Commentary: Learning About the Sky Through
Simulations

Michael J. Way

Abstract The Large Synoptic Survey Telescope (LSST) simulator being built by
Andy Connolly and collaborators is an impressive undertaking and should make
working with LSST in the beginning stages far more easy than it was initially with
the Sloan Digital Sky Survey (SDSS). However, I would like to focus on an equally
important problem that has not yet been discussed here, but in the coming years the
community will need to address—can we deal with the flood of data from LSST and
will we need to rethink the way we work?

34.1 Changing the Way We Work: From 2MASS to SDSS

Perhaps the best way to start things is to compare two large area sky surveys
implementing the “standard way” of distributing data in their own time: The 1990s
era Two Micron All Sky Survey [2MASS; 3] and the 2000s era Sloan Digital Sky
Survey [SDSS; 4].

Initially if a researcher wanted to access the 2MASS1 survey data one could
obtain a five DVD set (double-sided) of the catalog data. The data were bar-
delimited ascii text which could be easily read by everything from legacy scripting
programs like awk to SQL databases like MySQL or Postgres. The ascii source
catalog was about 43 GB in size if copied from the DVDs to local disk. The
full-fidelity Atlas Images (∼10 TB in size and not available via DVD) were later
accessible via the 2MASS Image Services website.2

1http://www.ipac.caltech.edu/2mass
2http://irsa.ipac.caltech.edu/applications/2MASS/IM
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In essence, the average astronomer had to change almost nothing about the way
that they or their Ph.D. advisor had worked over the previous 30 years. For example,
instead of ordering nine-track (1/2 in. = 12.7 mm), exabyte (8 mm), or DDS/DAT
(4 mm) tapes from the observatory (or bringing them along after an observing
run) one simply ordered the 2MASS DVDs. This was possible due to increases
in computer cpu speed and memory capacity combined with modest input/output
(IO) improvements over the previous three to four decades.

All of this changed with the SDSS. It may have been possible to distribute DVD
copies of the SDSS in a similar way to that of the 2MASS, but the scale had moved
from gigabytes to terabytes. Having a few terabytes on a local computer in the early
2000s was not common, so the SDSS took a different route. Working with top-
notch computer scientists such as Jim Gray of Microsoft they decided that much of
the SDSS should be accessible via SQL query. There was certainly some anxiety
amongst much of the community when they realized that their mode of obtaining
data from the SDSS was going to be markedly different than in the past. Hence,
it took the community some time to learn this new way of working, and certainly
some early publications with SDSS data not published by the SDSS team were
problematic because, for example, they did not realize that they could decide the
quality of the photometry at a fine level, unlike that of the 2MASS which was
relatively straightforward.

The SDSS is probably the most similar data set today compared with what the
LSST will look like and how we will interact with it. Currently most users of SDSS
use the casjobs3 interface to obtain their data. The back end is a SQL database tied to
a front end presented to the user as a web interface where SQL queries are entered.
The database comes with a Schema Browser4 that allows one to explore items of
possible interest. There are also a host of on-line tutorials that one can go through to
understand how make the queries, and many authors also publish their SDSS queries
in the appendices of their publications. However, not enough authors do the latter
in my opinion, and hence it is often impossible to replicate the data that people are
using if the original author does not publish or cannot recall their original query.

In the 10 years since the creation of the SDSS disk data storage density has
continued its inexorable rise (see Sect. 34.2) and today one could in fact host the
entire SDSS database relatively easily and cheaply on a modestly sized desktop
computer (e.g. an off-the-shelf workstation with 4×2 TB disks would do the trick).
Again, one could (in theory) dump the entire casjobs catalog to a giant ascii file akin
to that of the 2MASS and use awk or your favorite fortran program on it. One would
need a system that can use 64 bit addressing, but that is fairly standard today (2011).
Of course the IO will make things slow (∼4 h to read a 1 TB disk sequentially), but
nonetheless it is in theory quite possible. The question then arises, will one be able
to work with LSST in the same manner as the SDSS given the inexorable rise of
faster CPUs, Memory, and IO?

3http://casjobs.sdsss.org
4http://casjobs.sdss.org/dr7/en/help/browser/browser.asp
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34.2 Changing the Way We Work: From SDSS to LSST

As we consider the move from SDSS sized data sets to LSST the questions that
people like us might ask at this stage are fairly straightforward:

1. Will one be able to have a copy of the LSST data-set on a local desktop? This will
allow researchers to continue their pre-SDSS era methods of data interrogation.
This is what we like to call the 2MASS mode.

2. Will one still utilize a casjobs type web-query interface to obtain LSST data of
interest and then use legacy home-grown tools to work on the data? This is what
we call the SDSS mode.

3. Must one completely change the way one works with LSST scale data sets? Will
“data locality” be required—will one have to do all of the operations to obtain a
project’s scientific goals on the database directly? This may be called the LSST
mode.

To attempt to answer these questions we have to look at several other factors
discussed in the following subsections.

34.2.1 LSST Database Size and Possible Architecture

We heard from Andy Connolly and Kirk Borne at this conference that the LSST
query database will be of order 10 petabytes (PB) in size, while there will be
around 60 PB of images available after 10 years of operation. It turns out that
query scales almost linearly with the size of the database. Given historical trends
in CPU, memory, storage and IO this means one should be able to derive catalogs
and do joins on tables in a future LSST database as we do today with SDSS casjobs.
However, there are caveats related to IO that will be discussed later.

While query scales linearly with database size, the same cannot be said of the
kinds of operations that scientists would prefer to do on the data. For example,
classification, clustering, density estimation are all normally O(N2) or worse.
However, earlier today Alex Gray showed us that his group has managed to make a
host of algorithms O(N) that are normally considered to be O(N2).

Regardless, this points to some interesting issues. Assuming petabyte database
sizes, the needs to do operations that are O(N2), and the need to look at a large
fraction of the stored data (that will not fit in RAM) how are researchers going to
do these things on the LSST database of tomorrow? Let’s touch on the possible
need for “data locality”. Normally one should only consider moving the data from
the source of the data if one needs more than 100,000 CPU cycles per byte of data
[1]. The kinds of applications this brings to mind are Seti@HOME or cryptography.
Thankfully most science applications are more information intensive with CPU to
IO ratios less than 10,000 to 1. This means that we may have two reasons to consider
the possibility that we will not actually download the data to our local machine/data-
center: The size of the database is too large (petabyte scale) and we have CPU to IO
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Table 34.1 Storage cost
historical trendsa Year Cost/GB Cost/TB Cost/PB

2000 $19.00000 $19,000 $19 million
2010 $00.06000 $62 $62,000
2020 $00.00002 $0.2 $200
a Extrapolated from http://www.mkomo.com/

cost-per-gigabyte

ration of less than 100,000 to 1. We will address these issues in some detail in the
next section, but for now let’s assume we will need to do some calculations at the
site of the database itself.

The LSST has teamed up with several industry partners to develop a new database
to host the LSST called SciDB.5 The current plan is to host this database in several
different geographic locations (obviously to avoid a single point of failure and to
handle the anticipated load), but they also currently plan to have an R interface for
“expert users”. As I mentioned during my talk, I think this is an excellent idea,
but I hope the designers will consider adding additional languages such as Python
which currently has wrappers to support a host of useful tools commonly used by
the current generation of younger astronomers.6

34.2.2 Moving the Data Around: Can I Have a Local Copy
and Make Use of It?

Will one be able to download and store the LSST database to a desktop computer
in 10 years time? If one wishes to download 1 PB over a dedicated 1 gigabit/s line
(in common use today) it will take ∼100 days. In 9 years let’s assume everyone will
have 10 gigabit/s connections (the growth in desktop network speed has not grown
at the same accelerated rate of storage or CPU) so that means it will only take about
10 days. That doesn’t sound unreasonable. Now one has to ask, how much will it
cost to own 1 PB of storage? One can look at historical trends documented in several
places on the internet to get some idea.7 In Table 34.1 you can see what disks costs
were 10 years ago, today and by extrapolation in 10 years time.

Looking at Table 34.1 one comes to the conclusion that if one wants to keep a
copy of the LSST data locally it should not be a problem given the drop in price
over time. After all, who would have imagined 15 years ago that they would be able
to purchase a 1 TB drive for their desktop computer for under $100?

Unfortunately things are not this simple. To illustrate my point I want to recall
some more of Amdahl’s rules of thumb for a balanced system.

5http://www.scidb.org
6For example, numpy, scipy, Rpy (R interface), mlabwrap (MatLab), etc.
7e.g. http://www.mkomo.com/cost-per-gigabyte

http://www.mkomo.com/cost-per-gigabyte
http://www.mkomo.com/cost-per-gigabyte
http://www.scidb.org
http://www.mkomo.com/cost-per-gigabyte
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Table 34.2 Conclusions
from Amdahl’s rules
of thumb for a balanced
system today

Operations Disk I/O No. of disks for that
per second RAM bytes/s BW at 100 MB/s/disk

Giga/109 GB 108 → 1
Tera/1012 TB 1011 → 1,000
Peta/1015 PB 1014 → 1,000,000

1. Bandwidth (BW): 1 bit of sequential IO/s per instruction/s
2. Memory: α = 1 = MB/MIPS8: 1 byte of memory per one instruction/s
3. One IO operation per 50,000 instructions

Looking at Table 34.2 in the context of Amdahl’s ROT perhaps the biggest
problem with high performance computer centers today and into the near future
is that they are CPU rich, but IO poor. The cpus may spend a lot of time sitting idle
while waiting for IO to send them more to work on because not everything can be
stored in RAM. This problem is not going to go away, but there are (thankfully)
people aware of the issue who believe that it is currently possible to keep power
consumption low while increasing sequential read IO throughput by an order of
magnitude using what are called Amdahl blades [5]. Note that power consumption
is becoming an issue for mid-level data centers found at Universities and some
government research labs. Most of these don’t have Google’s electricity budget for
powering them and in fact many government data centers are even being shutdown
to save money.9

Table 34.2 tells one a couple of other interesting things.10 First, for a Peta-scale
balanced system 100 TB/s of IO bandwidth (last row of column three= 1014) would
be required. It will take approximately 1,000,000 disks to deliver this bandwidth
today assuming they are capable of 100 MB/s/disk. Note that the rate of disk IO
growth has not been remarkable in the past 10 years [see 5].

34.3 Conclusions

In the beginning of Sect. 34.2 I posed three questions and I would like to pose some
answers:

1. Will one be able to have a copy of the LSST data-set on a local desktop? Yes,
I think the average researcher will be able to have a copy of the data on their local
system assuming disk storage density continues its historical trend (note that
there are a number of technical arguments against this, as there are for continuing

8Million Instructions Per Second
9http://www.nytimes.com/2011/07/20/technology/us-to-close-800-computer-data-centers.html
10This table is a modified version of one found in a talk by Alex Szalay that the author recently
became aware of.

http://www.nytimes.com/2011/07/20/technology/us-to-close-800-computer-data-centers.html
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Moore’s law into the future [2].11 However, even if one has a copy of the LSST
it is unlikely one will be able to make much use of it using traditional 2MASS
mode tools given the issues with sequential IO that were outlined above.

2. Will one still utilize a casjobs type web-query interface to obtain LSST data of
interest and then use legacy home-grown tools to work on the data (The SDSS
mode.)? Yes, the LSST team seems interested in continuing the use of a casjobs
type interface with an SQL backend. Whether a researcher will then be able to use
their traditional home-grown tools will depend on the data sizes they download
as discussed above.

3. Must one completely change the way one works with LSST scale data sets?
I believe that many of the scientific goals will only be achievable by running
on the database locally as an “expert user”. This points to the need to have a
multitude of robust data/computational centers hosting the LSST data. Today the
best place for these (in the United States) would probably be at the national level
supercomputing centers such as PSC,12 NSCA13 or NAS14 to name a few in the
USA.

Acknowledgements Thanks to Andy Connolly for taking the time to discus his LSST simulator
with me prior to the conference and for encouraging me in my belief that a commentary focused
on computational challenges would be appropriate. I would also like to thank the Astrophysics
Department at Uppsala University in Sweden for their gracious hospitality while part of this
manuscript was being completed.
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Chapter 35
Statistical Analyses of Data Cubes

Erik Rosolowsky

Abstract I review the statistical analyses that have been applied to
position–position-velocity (PPV) data cubes derived from observations. I focus on
the PPV data cubes derived for observations of the star forming interstellar medium.
These techniques separate into the study of sparse data cubes, statistical analysis of
turbulent flows and observationally motivated analyses with an emphasis on object
recognition. I discuss some of the difficulties in object recognition algorithms and
present two observationally motivated tools: the spectral correlation function (SCF)
and a dendrogram analysis. I argue that the comparison of data sets must be made
in the observational domain. Both the SCF and dendrograms show utility at making
these differential measurements, highlighting room for improvement in modern
simulations.

35.1 Introduction

Nearly all observational data in astronomy is the quantitative measurement of
electromagnetic radiation from astronomical sources. These data are intrinsically
four dimensional data as a function of four coordinate axes. The radiation field
is characterized by four parameters (the Stokes parameters describing both the
total intensity and polarization properties of the radiation). The Stokes parameters
can be measured as a function of four coordinates: polar angles of the incident
radiation (2 dimensions), frequency of the radiation (1 dimension) and the time of
the observation (1 dimension). Observational limitations restrict the data products to
appropriate averages over the different dimensions and polarization properties. For
example, the most commonly encountered form of astronomical data is imaging
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data, which presents the total intensity (one of the polarization properties) as a
function of incident angles (e.g., right ascension and declination) averaged over a
single frequency band. Instrumental limitations and attention to particular physical
phenomena dictate the subset of polarization properties and coordinates present in
the data.

This contribution deals with data sets with three coordinate axes: two angular
coordinates and a frequency axis and one polarization property: total intensity.
Such data are historically the product of mapping with radio telescopes; however,
more recent advances in instrumentation have allowed mapping of spectral data
across the electromagnetic spectrum. Radio astronomy remains a focus of data cube
study since heterodyne receiver technologies routinely allow frequency resolution of
Δν/ν ∼ 10−9 (optical spectroscopy can approach this precision, but Δν/ν ∼ 10−6

remains typical). For observations of spectral line features (with frequency ν0),
the frequency resolution determines the precision that can be obtained in velocity
measurements due to the Doppler effect: Δν/ν0 = −vr/c where vr is the radial
component of the velocity and c is the speed of light. For observations that resolve
the frequency structure of a spectral line, the frequency axis is typically converted
to a radial velocity axis via the Doppler effect, and the angular coordinates can be
scaled via trigonometry to physical coordinates provided the distance to the mapped
region is known. Thus, three dimensional radio astronomical mapping data are often
referred to as position-position-velocity (PPV) data cubes.

The characteristics of the intensity distribution within these PPV data sets
determines the most useful statistical approaches. In what follows, I broadly divide
the statistical analyses of data cubes into regimes which have attracted different
statistical techniques. Finally, this contribution emphasizes statistical analyses that
are unique to or most interesting when applied to three dimensional datasets and
studies which reduce to lower-dimensions studies are ignored. This review of the
statistics of three-dimensional data sets focuses on the fields of astronomy where the
statistical study is richest and best developed, namely the physics of the interstellar
medium in our own Galaxy.

Through this contribution, I use five PPV data sets as examples. Three of the
PPV data cubes come from observations made by the COMPLETE survey of star
forming regions [26]. The observed data cubes are from the FCRAO 14-m telescope
observations of 13CO (1 → 0) emission from nearby star-forming molecular clouds.
I extracted three subcubes from the full data set for the star forming regions of
NGC 1333, IC 348, and Ophiuchus A. These regions are all forming small clusters
of stars in different stages of the formation. The clouds are nearby (d = 120 pc
for Ophiuchus and d = 260 pc for Perseus) such that the 50′′ telescope resolution
projects to 0.3 pc and 0.6 pc respectively. The velocity resolution of the observations
is 0.066 km/s, comparable to the thermal line width expected for 13CO in molecular
clouds (0.05 km/s). The other two PPV data sets are mock observations of 13CO
(1 → 0) emission generated from numerical simulations. The first data set is a
subset of the simulation from Padoan et al. [20]. The simulation box has a scale
of 6 pc and a mean density of n = 103 cm3. The simulation is conducted using the
Enzo code to simulate a 1,0243 box using MHD with an initially uniform density
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and periodic boundary conditions. The simulation is isothermal and turbulence is
driven in Fourier space at large scales. The mean Mach number in the simulation
is M = 6 and the simulation neglects self-gravity. The second simulated data set
is 13CO (1 → 0) data generated from the simulations of Offner et al. [18]. The
simulation uses the Orion code, which employs adaptive mesh refinement to attain
a spatial resolution of 0.008 pc in a 2 pc box. The physics includes hydrodynamics,
including self-gravity, representing collapsed regions with sink particles, and is also
isothermal. The simulated data have had their resolution degraded and noise added
to mimic telescope effects. I am grateful to both Paolo Padoan and Stellar Offner for
making these simulated data available for analysis.

35.2 Sparse Data Sets

Sparse PPV data sets are those for which most of the data volume contains no
astrophysical information. The remaining emission is well separated in the data set,
and commonly well described by point-like objects with some prior information
about their shapes and distribution. In this case, a statistical analysis usually reduces
to cataloging the sparse information and generating low-order descriptors of the
emission distributions found in the data set. A typical example is searching for
the 21-cm emission line from atomic hydrogen in deep, extragalactic surveys (e.g.,
[5, 6]). Because of the Hubble flow expansion of the Universe, the emission from
galaxies is well separated in frequency (velocity) space and the galaxies are well
separated from each other. The primary statistical problem is the identification of
weak emission features of significance comparable to the instrumental noise. This
search is complicated by the characteristics of the instrumental noise, which is
typically well described by a normal distribution: N (μ = 0,σ2). The noise variance
is typically unknown, but can be estimated from instrumentation principles and
the data itself, and can change both spatially and spectrally. Several algorithms for
identifying and cataloging sources have been forwarded from thresholding [34] to
more complex search techniques. The search and cataloging process reduces the
three dimensional data set to summary data of the objects observed where the same
analyses as typify cataloging of other data can be applied (distribution functions,
searching for correlation among properties, etc.).

35.3 Turbulence

A more challenging statistical problem lies in the analysis of dense data sets
where astrophysically significant emission fills the data volume. An example of
such a data set is shown in Fig. 35.1. This figure depicts a data set which is the
product of multiple physical processes, a complex radiative transfer problem, and
contamination by the imperfect instrumental response to radiation. Despite the
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Fig. 35.1 Three velocity
planes extracted from the
PPV data set. The planes are
extracted from the IC 348
data set of 13CO (1 → 0)
molecular line emission and
are separated by 0.6 km/s in
velocity. The figure illustrates
the observational
manifestation of a variety of
physics processes. The
emission is selected from
around the IC 348 star
forming region and the
radiation from the region
sculpts the matter and
regulates the emissivity of the
matter in the upper left region
of each plane. In the lower
right, farther from the star
forming region, turbulent
flows control the structure of
the gas. The gas structure and
physical conditions set the
emission conditions and the
emergent light that is
measured here is a function of
the emissivities integrated
along the line of sight

complexities, it has been possible to investigate these data sets and discover the
underlying astrophysical processes that generate such data. The clearest statistical
link between the observational data sets and the underlying physics lies in the study
of turbulent flows.

Statistical descriptions of fluid motion characterize a full six-dimensional phase
space of the motions, but PPV observations only offer insight into half of these
dimensions. Nonetheless, the velocity information that PPV data provide, coupled
with assumptions regarding the degree and nature of anisotropies in the flow offer
a path forward. Astrophysical fluid flows are typified by turbulent motions owing
to extremely high Reynolds numbers (Re > 108). Owing to non-linear terms in the
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fluid equations, turbulent motions are not analytically tractable and have long been
studied using their statistical properties beginning with Kolmogorov [12]. These
approaches, first generated in the theoretical study of turbulence, have been applied
to observational data in order to assess the underlying characteristics of the turbulent
flow. A classic example is the velocity structure function as a function of vector
separation l, as defined by Kolmogorov is

Sp(l)≡ 〈|v(r)− v(r+ l)|p〉 (35.1)

where the angle brackets indicate average over a data volume with position defined
by r, v is a velocity component (usually the line-of-sight component). The power p
is referred to as the order of the structure function. Under incompressible turbulent
flows, Kolmogorov demonstrated S2(l) ∝ l2/3. Thus, observational estimates of
the structure function can be made in order to determine whether fluid flows are
consistent with Kolmogorov flows (e.g., [2,11,16,30], for molecular gas). In general,
such studies have found that astrophysical turbulence is not well characterized by the
comparatively simple assumptions that underpin the Kolmogorov model, showing
structure functions that are significantly steeper. This discrepancy has driven the
study of fluid turbulence into a wealth of other statistical methods in order to assess
the properties of flows. Similarly, the theoretical study of turbulence has also turned
from analytical work to numerical simulation.

Turbulence studies also admit a far simpler description than high order structure
functions, namely probability distribution functions (PDFs) of the physical variables
(e.g., velocity scales, density, magnetic field, etc.). The PDFs of these functions are
also predicted by models, though often with substantial guidance from simulation
work. For example, in isothermal turbulence, the density distribution is represented
by a log-normal distribution [17], a result arrived at after substantial numerical
study. Detailed examination of higher-order moments of emission PDFs (skewness,
kurtosis, etc.) in both real and synthetic data show significant departures from the
initially expected Gaussianity (e.g., [3]).

Despite the richness of possible statistical analyses, these studies are commonly
frustrated because emission in a PPV data cube cannot be translated directly into
a density in three dimensions of phase space. Relating emission to the underlying
structure functions of turbulence with realistic radiative transfer requires significant
theoretical effort to accomplish analytically [14, 15]. In this work, Lazarian and
Pogosyan [14] argue that the Velocity Channel Analysis reliably recovers the
structure function of the turbulent motions even in the face complications due to
radiative transfer. This method constructs a power spectrum of intensity fluctuations
for a set of two dimensional images, each of which is generated by integrating
a PPV data cube over successively larger slices in velocity. The behavior of the
power spectrum as a function of slice thickness can be related analytically to the
underlying properties of turbulence. Parallel work by [8] uses principal component
analyses to study the underlying structure functions of the turbulent flow using
observational data.
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Statistical analyses of PPV data cubes from turbulent gas has yielded substantial
insight into the nature of turbulence in the ISM. The interaction has been bilateral:
the study of turbulence suggests particular statistics to apply to data and the
results of the statistical analyses of observations have driven our understanding of
turbulence in the ISM.

35.4 Observationally Motivated Analyses

The tight relationship between the statistical study of turbulence and the analysis of
PPV data sets has been fruitful for the study of turbulent motions. Unfortunately,
many astrophysical observations cover regions where gravitation, bulk motions,
radiation fields, and chemical effects complicate the tight relationship to theoretical
study. Thus, the statistical study of these data sets cannot be directly related to a
physical theory. Many of the tools used in the analysis of these complicated regions
derive from the tools used to study turbulence, but these tools are often adapted
to best represent the structure seen in real data. Lacking the direct connection to a
physical theory, I classify these as “Observationally Motivated” diagnostics of PPV
cube structure. Such descriptors of the data are primarily reductions of the PPV data
to more representative numbers.

I note that many of the tools discussed are informed by and used with statistical
descriptors developed for two dimensional (velocity-integrated) data. While beyond
the scope of this contribution, these methods have been fruitful and illuminating
since they share many theoretical problems with the general statistical description
of images and the broader field of machine vision. Examples of such techniques
include two dimensional structure-trees [9], fractal analysis [4], Δ -variance [32].
Compared to these two-dimensional studies, comparatively few methods analyze
three-dimensional PPV data.

35.4.1 Correlation Functions in PPV

One approach to PPV data is to generate observational analogs to the theoretically
motivated statistics. Designed specifically for PPV data, the Spectral Correlation
Function (SCF, [23, 28]) was developed to quantify similarities between the shapes
of spectra as a function of separation. The construction mimics a two-dimensional
correlation function as used in turbulence studies. Given a data cube I(r,v), the SCF
at a given scale and order p is

Sp(l) =

〈
1−

√
∑v |I(r,v)− I(r+ l,v)|p

∑v |I(r,v)|p +∑v |I(r+ l,v)|p
〉
. (35.2)
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The order p is typically taken as 2 and the average is taken over all positions in the
data set. The SCF ranges from 0 for completely dissimilar spectra and 1, which is
obtained for identical spectra. Empirically, the SCF was found to be noise robust
with appropriate corrections and followed a power law relationship as a function of
separation between trial spectra: S2(l) ∝ lα . In particular, α proved to be a useful
discriminant between different regions and between simulations and observations.
The scale at which the SCF departed from a power-law behavior in large-scale
(100 pc) studies is conjectured to trace the scale at which turbulent flow transitions
between regimes, such as from three-dimensions to two-dimensions [21]. An
example application of the Spectral Correlation Function is presented in Sect. 35.5
below.

35.4.2 Object Recognition Algorithms and Catalog Statistics

Object recognition algorithms represent the dominant approach for exploring PPV
data sets. In studies of star formation and the molecular ISM, these algorithms are
commonly used since gravitation and excitation effects from young, high-mass stars
create coherent structures that can be characterized as objects (see Fig. 35.1). The
principal difficulty in object recognition studies of such data is that the nature of the
objects under study is ill-defined. Unlike stars, or even galaxies, the molecular ISM
shows similar structure on a large range of scales. At the largest scales (>10 pc),
there appear to be clouds which are demarcated by the chemical transition from the
atomic ISM to the molecular ISM and manifest as a change in the observational
tracers of the gas. Even the definition of clouds is arbitrary as external conditions
such as the radiation field, transient effects, and chemical enrichment can affect
where the transition occurs. At the smallest scales (∼0.1 pc), there well-defined gas
structures in molecular clouds, called cores, which are thought to be the progenitors
of stellar systems [1].

The search for meso-scale structure between these two regimes, often termed
clumps, has driven the object recognition and cataloging as methods of studying
molecular cloud structure. The Clumpfind [35] and Gaussclumps [33] algorithms
serve as the primary means of identifying structures in a PPV data set (see Fig. 35.2).
Gaussclumps iteratively fits and subtracts three-dimensional Gaussians from a data
cube, using a modified χ2 statistic to favor fits consistent with expectations of cloud
structure. In particular, the fits favor objects that have less intensity than are in the
data (so as not to over-subtract the emission) and to stay near the maximum of
intensity in the data. Clumpfind is a watershed segmentation algorithm that identifies
objects based off the structure of the data. The data are contoured with a set of
user-defined levels. Beginning with the highest contour, objects are identified as
connected regions of PPV space. These objects are extended to lower contour levels.
When a volume element is contested between two or more objects, it is assigned to
the ‘closest’ using a set of criteria defined by the algorithm. These methods produce
catalogs of objects which can be studied as a population, and these populations can
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Fig. 35.2 Comparison of analysis algorithms for PPV data. The Clumpfind algorithm is a
watershed algorithm that separates emission into regions based on the proximity to local maxima.
The Gaussclumps algorithm uses a custom goodness-of-fit statistic to iteratively fit and subtract
three-dimensional Gaussians to the data. Finally, the dendrogram algorithm is illustrated for the
same emission profile. The dendrogram is constructed by drawing successively lower contour
levels and identifying the thresholds at which distinct regions join into composite objects. The
graph (bottom right) is a diagram of the representing on the intensity level of the contour (y-axis)
and the associated branch of the image (x-axis)

be compared between different regions in an attempt to correlate their variations
with observed variations in the star formation process seen in other wavebands.

These algorithms function well when applied to data sets with well-defined and
separated objects, but this essentially reduces the problem to that of a sparse data
set (Sect. 35.2). In the dense/blended data case (Fig. 35.1), the action of these well
used algorithms becomes subject to their assumptions, and they may not reliably
extract the physically relevant objects [24, 27]. This is due, in part, to astronomers
not having a good understanding of what the physically relevant objects actually are.

There are substantial concerns for both of these methodologies, primarily
concerning their lack of robustness. In this context, a robust structure identification
algorithm identifies the same set of objects from a given true emission structure
irrespective of observational considerations. If the same object is reobserved
producing a different realization of noise, or even at a different resolution, the
same objects should be extracted with the same physical properties. Designing
such an algorithm requires prior knowledge of the population of objects being
observed. A robust algorithm cannot be obtained since we lack that knowledge.
For example, Gaussclumps relies on fitting a particular functional form to the
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data. Thus, deviation from the Gaussian profile makes the algorithm unstable.
The algorithm fits are iterative: in each iteration, the brightest source is identified
and a Gaussian clump is fit and subtracted. The residuals of bright, blended
sources thus eventually become clumps in their own right. The optimization for
the fit is over ten parameters (three centroid position coordinates, two angles for
the principal axes of the Gaussian, three widths, an amplitude and a constant
offset). The optimization is, not surprisingly, sensitive to initial conditions and
the implementation of the minimization of the fit statistics, yielding different sets
of objects with different minimization algorithms and prescriptions for generating
initial parameter estimates. These concerns are mitigated by avoiding blended data
sets and well-resolved objects where the telescope beam is small compared to the
structure of the source.

The Clumpfind algorithm addresses many of the concerns about the Gaussclumps
approach, since it assumes no specific functional form for the objects extracted.
Instead, it relies on the shape of the data itself to govern how the results are
partitioned (see Fig. 35.2). Clumpfind does not allow overlapping objects, so a data
element cannot be assigned to multiple clouds. The algorithm’s behavior is governed
by two parameters: (1) the brightness steps at which new objects are identified
or elements in the cube are assigned to identified objects and (2) the minimum
brightness level to consider for assignment into objects. The Clumpfind algorithm
suggests using 2σ where σ is the noise rms as the value for both parameters. The
population of identified objects has its details regulated by the choice of the step
size (parameter 1), which must be chosen to be small enough to track the shape of
the data but large enough to reduce the effects of noise on the algorithm.

The Clumpfind algorithm also lacks robustness as defined above. In Fig. 35.3,
I compare the results of the Clumpfind algorithm applied to the a set of 13CO (1 →
0) data imaging the COMPLETE survey. I processed these data using Clumpfind
with the step size set to the recommended value (2σ ), which labels every element
in the data cube with an object label or as background. I repeated the analysis with
the step size 25% larger and 1% larger, producing labeled data sets in each case.
These labeled cubes were compared to the fiducial data set and the correspondence
between individual objects is compared. The correspondences statistic for object i
in the fiducial data set compared to a population of objects in a test data set (indexed
with j)

Ci = max
j

√
(Vi ∩Vj)2

ViVj
, (35.3)

where the notation Vi ∩Vj is the volume of the overlap between objects i and j
measured relative to the volumes of the objects in their respective catalogs: Vi and
Vj. The statistic thus takes values between 0 and 1 and quantifies the maximum
correspondence between an object in the fiducial catalog across all the objects in
different catalogs.1 The results displayed in Fig. 35.3 show that changes in algorithm
parameters do yield variations in the objects identified as would be expected.

1I am grateful for the suggestions of Chris Beaumont regarding the formulation of this statistic.
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Fig. 35.3 Comparison of the Clumpfind algorithm objects identified for variations in the algo-
rithm parameters. For each case (25% vs. 1%), the figure compares the correspondence measure
(see text) between objects found for a fiducial population generated using the recommended
algorithm parameters and the population generated for a 25% or 1% change in the algorithm
parameters. The similarity is plotted vs. the number of data elements comprising the clump in
the fiducial data set. Even for trivial changes in the algorithm parameters, very different sets of
objects are extracted from the data

However, even trivial changes in the step size parameter (1%) produce substantial
variations in many of the objects. The figure shows that the changes occur for large
objects (>102 elements) which can have small correspondence to objects in other
catalogs generated from the data. A 1% change produces correspondence statistics
<0.75 for 30% of the elements used in the object catalog.

Despite the concerns about the reliability of the actual object lists produced by
these approaches, there remains utility in viewing these algorithms as a reduction
of the complexity of the data and making differential measurements between and
within regions. The classic approach is to compare the intensity PDFs of the
catalogs produced within regions [13,33,35]. The intensity distributions are usually
characterized in terms of power-law (Pareto) or log-normal distributions. These
distributions are examined because of their connection to other aspects of the star
formation process. Power-law distributions are observed for the mass distributions
of stars and a primary aim of the subfield is the connection of gas structures to the
stellar population that is produced. Log-normal distributions of density and mass
structures are produced by supersonic flows and this property has been linked to
stellar mass distribution as well [22]. Even in this application, these algorithms
must be used with care as the statistical results, such as the index of the power-
law distribution of intensities for Clumpfind catalogs, is a function of algorithm
parameters [24].
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Given our limited understanding of the objects that actually should be cataloged
and the interpretation of their physical properties, a less prescriptive approach
appears merited. Viewed as a three-dimensional data volume, it becomes possible to
characterize the data as a scalar valued function in R3 for which many paths of study
from other disciplines present themselves. My collaborators and I have forwarded
one method well suited for PPV analysis, which is currently under development.
We have called the approach “dendrograms,” reflecting the common visualization
technique in statistics and biology for the output [7, 29]. The “dendrogram”
technique is inspired by work on hierarchical structure in two-dimensional images
where it was called “structure trees” [10]. In this case, hierarchy refers to the
hierarchy of level-sets (contours) within an image. Because of continuity, the higher
(brighter) level sets are necessarily contained within the lower (fainter) sets. The
physically important information is how the numbers of distinct objects, as defined
by the contour value change as a function of the contour. The original and most
general description of the method is that of Reeb Graphs [25] within topology and
Morse theory.

Figure 35.2 also illustrates the construction of the dendrogram. The dendrogram
is generated by contouring the data set at successively lower intensity thresholds and
tracking the objects defined by each level. The dendrogram tracks the contour level
at which each pair of objects in the data set merges, graphically illustrating this by
connecting the two branches in the dendrogram. The process is simplified since the
structure of emission surfaces in three-dimensional PPV data is nearly always purely
hierarchical: lower intensity emission is only rarely contained entirely within the
contours of a higher intensity region and regions are defined to be simply connected.
The representation of the emission trees as a dendrogram implies the number of
objects never increasing with decreasing intensity threshold. Relaxing this criterion
means only means that a proper dendrogram cannot represent the emission surface
structures and the more general Reeb graph is needed. The dendrogram process
is computationally simplified by pre-identifying the highest intensity leaves in the
data set and suppressing those leaves which are likely to be generated by noise.
This suppression is effected by requiring the leaves included in the analysis to
be a minimum distance in position and velocity away from other leaves, usually
set to two resolution elements. Furthermore, for a rms value of the noise of σ ,
a candidate leaf with brightness I0 if removed from consideration if there exists
another candidate with brightness Ii > I0 and the highest value of the contour
containing both leaves has a brightness levels Inode > I0 − nσ . This latter condition
ensures that the candidate leaves included in the dendrogram are significant with
respect to the noise fluctuations in the data. The nature of the dendrogram algorithm
makes it more robust than the Clumpfind or Gaussclumps algorithms since the
tree structure for a given data set is entirely determined from the data alone. The
noise suppression parameters do prune the tree shape, but all possible choices are
just pruned versions of a single true tree. The full tree is usually not characterized
due to computational time restrictions. The algorithm remains sensitive to various
realizations of observational noise which can change the topology of the emission
surfaces and affect tree structure. We present a dendrogram analysis of several data
sets in Sect. 35.5 below.
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35.5 Simulation vs. Observational Domain

The goal of understanding the physics of star formation from PPV observations
is easily frustrated by the complexities of physics that shape the observed line
emission. The studies of other sorts of PPV data, such as HI 21-cm observations or
stellar spectral data cubes, usually observe emission that is (effectively) optically
thin and the observed spectral line data can directly interpreted as due to the
motions of the gas. Even so, the relationship between PPP and PPV space is
complex and structures in PPV cannot be directly inverted to characterize structures
in PPP [19, 31]. For star forming gas, the common molecular line tracers used
are usually optically thick, the molecules themselves are subject to depletion and
time varying chemical effects, and the emission properties depend sensitively on
excitation conditions. Some statistical approaches even include opacity effects [15],
but none account for the diverse chemical and thermal conditions that shape
the molecular emission. The characterization of the emitting objects is further
confused by telescope effects. For example, telescopes have finite resolution in all
dimensions and can impose strong spatial filtering on a true emission distribution.
The instrumental noise that is imposed upon observational data can dominate
the signal and carry with it significant correlations or spatially varying statistical
properties. Viewed in terms of a domain mapping, the actual physical objects in
the Universe map into an “observational” domain through radiative transfer and
telescope effects (Fig. 35.4). Inverting this mapping is nearly impossible except for
the simplest of structures.

Since the physical processes in the star forming ISM are multifarious, the primary
means we have of understanding their simultaneous action on a system is through
numerical simulation. These simulations provide a means of including all of the
relevant physics and mimicking structures in the physical domain. Since mapping
observations into the physical domain is essentially impossible, the only means

Fig. 35.4 Representing the comparison of observations and simulated observations via domain
mapping. The translations from the physical objects into observational data involve radiative
transfer and telescope effects. Inverting this mapping is complicated, and for dense data sets, not
unique. Thus, a meaningful comparison of simulations and physical objects can only be made in
the observational domains using statistical tools
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Fig. 35.5 The average Spectral Correlation Function as a function of separation l as measured for
simulated observations (black) and observational data (gray). All curves present 13CO (1 → 0) data
and have been corrected for the presence of noise in the data. The simulated 13CO data are from
the simulations of Padoan (S1) and Offner (S2). The observational data are from the COMPLETE
survey of star forming regions. All observational data show similar scaling with separation whereas
the simulations have very different properties

of evaluating simulations is to apply radiative transfer and telescope effects to
these data. Thus, the data can be mapped into a simulated observational domain,
and the simulated observations can be compared to actual observations using the
statistical methods described in Sect. 35.4. The similarity of simulations can be used
to evaluate which methodologies and sets of physical parameters produce the data
most similar to actual observations. These best cases are suggestive of the physical
parameters that actually lead to the observed data.

By means of an example, Fig. 35.5 shows the results of the spectral correlation
function applied to the five sample data cubes described above. The SCF is
generated by averaging the correlation function in the data for all the positions
in the data set following (35.2). The correlation function has been corrected for
the decorrelating effects of noise following [23]. Despite different physical scales,
the SCF analysis of the observational data show a remarkable similarity between
their structures, with all data showing a roughly power-law scaling: S2(l) ∝ l−0.25.
In contrast, the Offner simulation (S2) shows S2(l) ∝ l−0.6 which is markedly
different from the observations whereas the Padoan simulation (S1) shows S2(l) ∝
l−0.2, similar to the observational data. However, at any given physical scale
(e.g., 0.1 pc), the SCF values for the simulations are substantially different from
the observations. The SCF analysis shows the utility in comparing observations
with the simulated data. The similarity in slopes between the Padoan simulation
and the observations suggests a good representation of the correlations present
in observational turbulence, but the difference in scales suggests that additional
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Fig. 35.6 Density of unique
structures in the data volume
as a function of contour level.
The number count at each
level is normalized by the
volume of the PPV data cube.
All observational data show
similar behavior, which is
different from the two
simulations

physical effects may be reducing correlation amplitude. The steep scaling seen
for the Offner simulation may imply that more correlation effects through stronger
turbulent flows may mimic these observational data better.

I also completed a dendrogram analysis of the five different data cubes. The
dendrograms do not provide a statistical comparison per se, but are rather a reduction
of the data set, emphasizing the topology of the emission. Subsequent statistical
analyses can yield a differential comparison between data sets. Since each point on
the dendrogram corresponds to a specific isosurface in the data set, the shape of each
of those isosurface can be related to physical quantities such as size, line width and
luminosity. Such an analysis of data appears in [29]. In Fig. 35.6, I present a different
analysis, emphasizing the topology of the data. For each contour level in the data, the
number of unique objects at that level is graphed vs. the contour level, a measured
called the genus. The number of objects is normalized by the data volume in each
simulation, measured in terms of the dimensions of the PPV cube: pc2 kms−1. Only
the behavior of the tree structure containing the brightest emission in each data cube
is considered; and smaller, isolated objects are removed. The genus statistic shows a
similar behavior for all observational data sets with the density of structures peaking
at 20% of the maximum intensity in each data set at a similar density. The Offner
simulation (S2) also peaks at a similar brightness, but with a much higher density of
structures per data volume. The Padoan simulation (S1) shows a far larger density
of structures near the peak brightness, without the contrast in brightness seen in the
observations or the other simulation. The inclusion of self-gravity in S2 may explain
the increased hierarchical structure seen and hence its similarity to observations.

There are many other possible avenues for using the dendrograms as a statistical
tool, including measuring branching ratios between the emission properties of
contour levels or number of parent/progeny structures as a function of brightness. In
exploring these and other statistics, the largest utility comes from finding a measure
such as the SCF or dendrogram-based Genus measure that yield similar results for
disparate observed regions. These suggest that the statistics are tracing an intrinsic
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property of star-forming molecular gas. In such a case, differential measurements
made with respect to simulations can offer insights as to which physics must be
included for a faithful representation of the observed ISM. By ensuring that the
comparisons happen on the common ground of the observational domain, a critical
assessment of the faithfulness of simulations is achieved.
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Chapter 36
Astronomical Transient Detection Controlling
the False Discovery Rate

Nicolle Clements, Sanat K. Sarkar, and Wenge Guo

Abstract Identifying source objects in astronomical observations, in particular
with reliable algorithms, is extremely important in large-area surveys. It is of
great importance for any source detection algorithm to limit the number of false
detections since follow up investigations are timely and costly. In this paper, we
consider two new statistical procedures to control the false discovery rate (FDR)
for group-dependent data—the two-stage BH method and adaptive two-stage BH
method. Motivated by the belief that the spatial dependencies among the hypotheses
occur more locally than globally, these procedures test hypotheses in groups that
incorporate the local, unknown dependencies. If a group is found significant, further
investigation is done to the individual hypotheses within that group. Importantly,
these methodologies make no dependence assumption for hypotheses within each
group. The properties of the two procedures are examined through simulation
studies as well as astronomical source detection data.

36.1 Introduction

Detecting, classifying, and monitoring transient sources in the night sky, specifically
Type Ia supernovae transients, is an area of astronomical research that receives much
attention. Astronomical images represent the intensity of light, or roughly a count
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of the photons at every pixel. However, the number of pixels in each image can be
several millions in size, which makes manual source detection impossible.

The term source pixel is commonly referred to as a pixel in an image that is
above some threshold and thus is part of a true source (transient object). A source
is a collection of these source pixels that correspond to an astronomical object of
interest. The term background pixel is an image pixel that does not come from a
source. A source, like a supernova transient, is a stellar explosion in the sky that
can last for several weeks before fading away. If the host galaxy is reasonably close,
then the supernova becomes quite bright. While there is no difficulty in detecting it
at peak brightness, the scientific goal is to pick it up as it has just begun to rise and
is still very faint. Also, there are many more distant galaxies than bright galaxies, so
there are numerous supernovae that will just barely be seen even at peak brightness.

Typically, the data each night are assumed to come from a mixture Gaussian
distribution, based on source and background pixels. One issue is that the mean
and variance of this Gaussian distribution differs from night to night, due to varying
observing conditions, such as cloud coverage and moonlight. The background pixels
from the ith night are assumed to be normally distributed with mean μi and variance
σ2

i . The source pixels from the ith night and the jth source are normally distributed
with mean μi +θ j, where θ j can be very small. To detect these sources, we want to
test the hypothesis H0 : θ j = 0 vs. the alternative H1 : θ j > 0. To get around the
nightly differences, astronomers standardize the data, also known as computing
the signal-to-noise ratio (SNR). One can search for transient sources that exceed
some SNR threshold using the standardized data converted to p-values.

It is of great importance for any source detection algorithm to limit the number
of false detections. This is because following up new detections is timely and
costly. Astronomers want to spend as little of their time as possible viewing
what turn out to be vacant regions of sky. Currently, there are several publicly
available algorithms for source detection based on sliding cells, Voronoi tessellation,
wavelets, and signal-to-noise filtering. Although these algorithms provide some
limit to the number of false detections, they cannot provide proof or an upper bound
to the number they falsely detect. To give astronomers a source detection procedure
that controls a statistically meaningful measure incorporating Type I errors, i.e.,
false detections, would be a great asset.

36.2 Preliminaries and Background

The False Discovery Rate (FDR) proposed by Benjamini and Hochberg [2], is the
expected proportion of Type I errors among all the rejected null hypotheses. It is
now a widely accepted notion of error rate to control in large-scale multiple testings
arising in modern scientific investigations, including astronomical source detection.
Suppose there are N pixels, with Pj, j = 1, . . . ,N, being the p-values generated
from the observations in those pixels. Then the Benjamini–Hochberg (BH) method
controlling the FDR at a level α operates as follows:
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The BH Method.

• Order the p-values from the smallest to the largest: P(1), . . . ,P(N).
• Find kBH = max{ j : P( j) ≤ jα/N}.
• Reject the null hypotheses whose p-values are less than or equal to P(kBH).

The BH method controls the FDR at the desired level α , albeit conservatively,
unless there is no real source pixel, only when the p-values are independent or
positively dependent (in a certain sense). More specifically, the FDR of the BH
method equals π0α when the p-values are independent, and is less than π0α when
the p-values are positively dependent [5, 16], where π0 is the (true) proportion of
background pixels. The difference between π0α and the FDR gets larger and larger
with increasing (positive) dependence among the p-values.

In absence of knowledge of any specific type of dependence structure among the
p-values, the method due to Benjamini and Yekutieli [5], the BY method, is often
used. The BY method is an adjusted BH method with α replaced by α/CN , where
CN = ∑N

j=1 j−1. The BY method is extremely conservative, particularly when N is
large, thus is not as powerful as one would hope in detecting true source pixels.

The idea of improving the BH method has been one of the main motivations
behind much of the methodological developments taken place in modern multiple
testing. This idea has flourished in a number of different directions; for instance,
in (a) developing adaptive BH methods incorporating information about π0 from
the data into the BH method or taking an estimation based approach to controlling
the FDR [3, 4, 6, 10, 20, 23, 24]; (b) incorporating information about correlations
or utilizing the dependence structure into the BH method [7, 14, 25, 26]; and (c)
generalizing the notion of FDR to k-FDR by relaxing control over at most k − 1
false rejections [17–19].

In the context of present astronomical applications, Hopkins et al. [13] suggested
a way of improving the BY method by incorporating local dependencies. They argue
that astronomical images show some degree of correlation between pixels, but are
not fully correlated. In other words, the brightness intensity of a given pixel is not
influenced by all other N − 1 pixels, rather it is only partially correlated with a
smaller number (n) of pixels neighboring it. Any real transient signal should have
the spatial shape of the stars covering some adjacent pixels, which is called the
telescope ‘point spread function’ (PSF), and this n is related to the number of pixels
representing the PSF. They propose to use the BY method with CN replaced by
Cn = ∑n

i=1 i−1 to account for the local dependencies around the source pixels. This
is clearly more powerful than the original BY method, but it can be shown that such
adjustment to the BY method may fail to control the FDR when π0 ≈ 1.

Also in astronomical context, Friedenberg and Genovese [9] considered detecting
clusters of pixels, rather than individual pixels, and chose the probability of False
Cluster Proportion (FCP) exceeding a certain value as the error rate to control.
By relaxing the error rate control to clusters, rather than individuals, there is
potential for more powerful procedures due to the reduction in data dimension.
However, procedures with cluster-wise control may have some disadvantages
compared to individual-wise control, as noted below.
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Given the massive influx of data due to large-area surveys, it is crucial to be
able to accurately identify and classify transient sources in real-time data collection.
To do so, automated methods must strive to use all the data’s available information
to first identify and then classify objects (Savage and Oliver 2007). This means using
not only clusters of outlying observations as the in the FCP, but also using individual
pixels to systematically classify astronomical objects as either point-like (i.e. stars,
quasars, supernova, etc.) or extended (i.e. galaxies, nebula, etc.). Currently, many
classification methods generate a set of ‘features’ to determine the type of object
discovered. Many of these features are estimated with pixel-wise information, such
as source positions, fluxes in a range of apertures, and shapes using radial moments.
Another nontrivial problem is deblending or splitting of adjacent sources, typically
defined as a number of distinct, adjacent intensity peaks connected above the
detection surface brightness threshold (Salzberg et al. 2005; [1]; Henrion et al.
2011). Deblending of nearby objects is nearly impossible with a cluster-wise
approach. Because of these classification advantages after identifying new sources,
we propose new methodology based on the idea of controlling the rate of false
discoveries of individual pixels.

36.3 Proposed Methods

In this paper, we consider using a different idea of incorporating local dependencies
and propose an alternative to Hopkins and the BY methods. Our idea is based on
the arguments that if the dependencies among the pixels do occur more locally than
globally, then by grouping the pixels using an appropriate group size we can make
these groups independent of each other. This would be the best scenario where we
can apply the BH (more powerful than the BY) method to detect the so called
‘potential source groups’, which we refer to as the groups containing at least one
source pixel. Once a ‘potential source group’ is identified, we can go back to that
group to detect which of the group’s individual pixels belong to the source. Based
on this general idea of pixel grouping, we propose the following two procedures,
by choosing the group size, as in Hopkins et al. [13], related to the PSF of the
telescope. In particular, paralleling Hopkins et al.’s choice of n, the number of pixels
representing the PSF, we chose our group size S to be this same quantity. Using
this argument, the groups containing S ‘partially correlated’ pixels should behave
independently.

Procedure 36.1.

Step 1. Divide the data rectangle into D by D mutually exclusive groups. The group
size is S=D2 and the total number of groups is N/S=G (say), with N being
the total number of pixels (hypotheses).
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Step 2. Find the minimum p-value in each of these G groups. Let P(g)
min be that

minimum for the gth group, g = 1, . . . ,G. Find Qg = SP(g)
min, for g= 1, . . . ,G,

which we will call the grouped p-values.
Step 3. Apply the BH method to these grouped p-values to detect the ‘potential

source groups’. That is, consider the (increasingly) ordered versions of
the grouped p-values, Q(1), . . . ,Q(G), and identify those groups as being
potential source groups for which the grouped p-values are less than or
equal to Q(k∗BH)

, where k∗BH = max{g : Q(g) ≤ gα/G}.
Step 4. Identify the jth individual pixel within the gth potential source group as

being a source pixel if the corresponding p-value, say Pg j, is such that
SPg j ≤ k∗BHα/G.

Theorem 36.1. Procedure 36.1 controls the FDR atα if the groups are independent
or positively dependent in a certain sense.

A proof of Theorem 36.1 is provided in the Appendix. Our next procedure is
based on the following idea, in addition to that of pixel grouping.

When adapting a multiple testing method to the number of true null hypotheses,
say N0, whether it is for controlling the FDR using the BH method or for controlling
the familywise error rate (FWER) using the Bonferroni method (e.g., [8, 11] and
Sarkar and Guo 2010), the p-values are modified from Pj to P̃j = N̂0Pj, based on a
suitable estimate N̂0 of N0. One of these estimates is due to Storey et al. [24]:

N̂0 =
WN(λ )+ 1

1−λ
, (36.1)

where λ is a tuning parameter and WN = ∑N
j=1 I(Pj > λ ) is the number of p-values

exceeding λ and provides an information about the number of true null hypotheses
in the data. For instance, in case of the Bonferroni method that rejects Hj if NPj ≤α ,
its adaptive version would reject the Hj if N̂0Pj ≤α . This would be potentially more
powerful.

Notice that such an adaptive p-value is like a ‘shrunken p-value’, which gets
shrunk towards a smaller value, and thus becomes more significant, if there is
evidence of more signals in the data. So, when the p-values are locally dependent
and tend to have similar local behaviors in terms of being either significant or non-
significant, by doing similar adaptation separately within each group by estimating
the number of true group specific signals, one could utilize the dependence within
each group and potentially improve Procedure 36.1. With that in mind, we propose
our second procedure as follows:

Procedure 36.2.

Step 1. Same as in Procedure 36.1.
Step 2. Find the minimum of the p-values in each of these G groups. Let Pg j, j =

1, . . . ,S, be the p-values in the gth group, and P(g)
min be the minimum of these
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p-values, g = 1, . . . ,G. Find Q̃g = ŜgP(g)
min, for g = 1, . . . ,G, where

Ŝg = min

{
∑S

j=1 I(Pg j > λ )+ 1

1−λ
,S

}
, (36.2)

which we will call the grouped adaptive p-values.
Step 3. Apply the BH method to these grouped adaptive p-values to detect the

‘potential source groups’. That is, consider the (increasingly) ordered
versions of the grouped adaptive p-values, Q̃(1), . . . , Q̃(G), and identify those
groups as being potential source groups for which the grouped adaptive p-
values are less than or equal to Q̃(k̃∗BH)

, where k̃∗BH =max{g : Q̃(g) ≤ gα/G}.
Step 4. Identify the jth pixel within the gth potential source group as being a source

pixel if the corresponding p-value Pg j is such that ŜgPg j ≤ k̃∗BHα/G.

Another adaptive method could also be considered by estimating the number of
groups that do not contain any source signal, say G0, and using the estimate Ĝ0 in
place of G in Procedure 36.1, Steps 3 and 4. However, because of the sparse number
of signals in astronomical data, the estimate Ĝ0 is often just as large or larger than G
itself, providing no additional advantage over Procedure 36.1. This type of adaptive
group estimation is better suited in data where π0 is not so close to 1.

36.4 Simulation Study

We ran several simulation studies to examine the FDR control property and the
power of our proposed procedures compared to existing methodology. One of
the main advantages of the proposed procedures is that there is no dependence
assumption of the p-values within each group. Thus, it is only fair to compare our
procedures with existing methodology that has such relaxed assumptions (namely,
BY and Hopkins).

Since the proposed procedures were developed to control the FDR under arbi-
trary dependence assumptions within each group, the simulation studies were done
under two different dependent scenarios. In the first scenario, each group’s p-values
are generated from a multivariate normal distribution with common correlation
(0 < ρ < 1). In the second scenario, the p-values were also generated from a
multivariate normal distribution, but with an autoregressive type of correlation
structure within each group, separately for each of the G groups. An autoregressive
correlation structure indicates that data collected in a close spatial proximity tend
to be more highly correlated than observations taken further apart. For example,
let Xi j denote an observation in a particular group located in the ith row and jth
column. Then, the correlation between two observations in that particular group can
be written as Corr(xi j,xi′ j′) = ρmax(|i−i′|,| j− j′|), for any 0 ≤ ρ ≤ 1. In other words,
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the correlation between two observations decreases in value as the absolute spatial
distance between (i, i′) or ( j, j′) increases.

Under these two correlation structures, we generated S dependent standard
normal random variables independently for each of the G groups. Three of the G
groups were chosen randomly for each simulation and one of the values 2,3 and 4
is added to the variables in each of these three groups. In other words, only three
groups were assumed to contain all the signals. Simulation studies with varying
number of signal groups (one group to ten groups, instead of three groups) were
also computed, but since they yielded similar results, we have decided to restrict the
discussion of our simulation studies to three signal groups. The group size S was
chosen to be 25, using 5× 5 groups (D = 5). The number of groups is G = 900,
totaling n = 22,500 individual hypotheses per simulation. Since each simulation
contained a fixed three groups of signal each of size 25, the proportion of true null
hypotheses π0 = 1− 75

22,500 = 0.996. Using both correlation structures, we repeated
this 1,000 times at each value of ρ .

Four methods were compared—BY, Hopkins, the proposed Two-Stage, and the
proposed Adaptive Two-Stage (with λ = 0.5) procedures. At each simulation, we
estimate FDR by the proportion of falsely rejected hypotheses and the power is
estimated by the proportion of correctly rejected hypotheses. The simulated FDR
and power obtained by averaging these proportions of falsely and correctly rejected
hypotheses over all repetitions are shown in Fig. 36.1 for the fixed group correlation
and in Fig. 36.2 for the autoregressive case.

When examining the simulated power in the right side of Fig. 36.1, both the
Two-Stage and Adaptive Two-Stage Procedures outperform the BY method with
the fixed group correlation structure. In other words, these proposed two-stage
procedures correctly identify a higher proportion of signals. The Adaptive Two-
Stage Procedure has competitive power with Hopkins’ procedure and surpasses it
when the within group fixed correlation becomes large (ρ > 0.5).

The simulated FDR in the left side of Fig. 36.1, reveals a stable Two-Stage
Procedure, with the estimated FDR < 0.05 across all fixed group correlations.
However, the Adaptive Two-Stage Procedure seems to lose control of the FDR with
moderately correlated data within groups (0.5 < ρ < 0.8). Although unfortunate,
this result is not surprising. Other adaptive methodology also become unstable with
large correlation among hypotheses.

Next, we look at the performance of the proposed procedures under the
autoregressive within group correlation structure. When examining the simulated
power in the right side of Fig. 36.2, both Two-Stage Procedure and Adaptive Two-
Stage Procedure outperform the BY method under this group correlation structure.
The simulated FDR in the left side of Fig. 36.2, reveals stable Two-Stage Procedure
as well as the Adaptive Two-Stage Procedure, with the estimated FDR < 0.05
across all autoregressive group correlation values of ρ .

In conclusion, the simulation study confirms that between the proposed
Two-Stage Procedure and the BY method, both of which are theoretically known to
control the FDR under arbitrary dependence within the groups, the former is clearly
the better choice in terms of controlling the FDR under this dependence situation.
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Fig. 36.1 Simulated FDR and power for fixed group correlation structure

0.0 0.2 0.4 0.6 0.8

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Estimated FDR

AR Correlation Coefficient within Groups

P
ro

po
rt

io
n 

of
 F

al
se

ly
 Id

en
tif

ie
d 

S
ig

na
ls

Benjamini−Yekutieli
Hopkins
Two−Stage
Adaptive Two−Stage

0.0 0.2 0.4 0.6 0.8

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

Estimated Power

AR Correlation Coefficient within Groups

P
ro

po
rt

io
n 

of
 C

or
re

ct
ly

 Id
en

tif
ie

d 
S

ig
na

ls

Benjamini−Yekutieli
Hopkins
Two−Stage
Adaptive Two−Stage

Fig. 36.2 Simulated FDR and power for autoregressive correlation structure
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Fig. 36.3 Small portion of a PTF image

Moreover, it is competitive with Hopkins’, even though Hopkins’ may not control
the FDR. The simulation study also seems to indicate that the Adaptive Two-Stage
Procedure controls the FDR when the correlation is fixed and small (0 < ρ < 0.5),
but may become unstable as correlation gets more extreme. Impressively, the
Adaptive Two-Stage Procedure under the autoregressive correlation scenario,
seems to control the FDR over all positive values of ρ , which is yet to be proved
theoretically.

36.5 Application

The astronomical data used to illustrate our procedures comes from Palomar
Transient Factory (PTF), one of the mid-size wide-field survey projects currently
underway. Each image is 2,048×4,096 pixels, but a smaller sub-rectangle of noise
(130× 130) was chosen to apply the methods. The data consist of approximately
normally distributed observations with mean x̄ = 721.7 and variance s2 = 476.1.
A heat map of the image can be seen below in Fig. 36.3 and the results in Fig. 36.4.
The data were first standardized and converted to p-values. Results of four methods
are presented—BY, Hopkins, Two-Stage BH (Procedure 36.1), and Adaptive Two-
Stage BH (Procedure 36.2). Again, we have chosen λ = 0.5 in Procedure 36.2.
Applying the BY procedure to the data rejects fourteen pixels and Hopkins’ rejects
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Fig. 36.4 The results of the four methods applied to the PTF astronomical data in Fig. 36.3.
The blue points represent source pixels and the red boxes represent a potential source group. Below
each plot is the total number of source pixels found using that method

an additional three pixels. On the other hand, using our Two-Stage BH method,
seven potential source groups are found to have seventeen source pixels and the
Adaptive Two-Stage BH finds 18 from those seven potential source groups.
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36.6 Concluding Remarks

We have proposed, in this research, two new FDR controlling methods to be used
in group-dependent data—Two-Stage BH method and Adaptive Two-Stage BH
method—and compared them with the existing methods of BY and Hopkins. Both
of our proposed methods compare favorably to the BY method in terms of the
proportion of detected source pixels. When the group correlation is small (ρ < 0.5)
or large (ρ > 0.8), both of these methods retain control of the FDR; however, when
this correlation is moderate (0.5< ρ < 0.8), the adaptive procedure seems to become
unstable.

More investigation is needed to estimate the dependence structure of
astronomical data to see if the local correlation is small enough to warrant use of
adaptive methods. Further simulation studies should be done with larger repetitions,
varying π0, and incorporating other dependence structures.

It would also be interesting to study the astronomical source detection problem
differently by adding a third dimension. Since astronomy data is often collected
nightly, the assemblage can be thought of as a ‘data cube’ instead of a ‘data matrix’,
where the first and second dimensions correspond to the spatial location and the
third dimension is the date/time of observation. In other words, multiple testing
procedures can be adapted to not only search for signals at every ith row and jth
column location, but also at every time t. This set up could be explored in both a
frequentist and Bayesian contexts.

Acknowledgements The authors would like to thank Eric Feigelson for acclimating us to transient
detection methodology and the goals of astronomical research, Peter Nugent for supplying the PTF
data, and Peter Freeman for his commentary regarding the False Cluster Proportion methodology.
The research of Sarkar and Guo were supported by NSF Grants DMS-1006344 and DMS-1006021
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Appendix

Proof of Theorem 36.1. We first prove the theorem assuming that the groups are
independent. For that we need the following notations:

R: Number of source pixels detected,
V : Number of source pixels falsely detected,
RG: The index of the ordered (in terms of increasing values of grouped p-values)
potential source group detected (which is also k∗BH),
RG(−k): The index of the ordered potential source group detected based on the
BH method applied to all the groups except the kth one and the critical values
gα/G, g = 2, . . . ,G, and
J0(g): The set of indices of the p-values in the gth group that correspond to
background pixels.
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Then,

FDR = E

{
V

max{R,1}
}
= E

[
E

{
V

max{R,1}
∣∣∣RG,R

}]
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G
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G
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∑
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N
α ≤ α. (36.3)

In (36.3), the fifth equality follows from the assumption that Pk j is distributed as
U(0,1) when it corresponds to a background pixel, the first inequality follows from
the fact that RG ≤ R, and the seventh equality follows from the independence
assumption of the groups. This proves the theorem under independence of the
groups.

If the groups are not completely independent of each other, we will assume that
they are positively dependent in the following sense:

The conditional expectation

E
{
φ(P(−g))

∣∣Pg j = u
}
, (36.4)

where P(−g) is the set of p-values corresponding to all pixels except those in the gth
group. Pg j is the jth p-value corresponding to a background pixel in the gth group,
and φ(P(−g)) is an increasing (coordinatewise) function of all the p-values except
those in the gth group, is non-decreasing in u ∈ (0,1) for each g and j.



36 Transient Detection Controlling False Discovery Rate 395

From (36.3), we note that

FDR ≤
G

∑
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j∈J0(k)
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α
N

=
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N
≤ α.

The second inequality follows from the assumption (36.4) of positive dependence
of groups. This completes our proof of Theorem 36.1.

References

1. Becker, A.C (2006). Transient Detection and Classification. Astronomical Notes 88, 789–792.
2. Benjamini, Y & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society, B 57, 289–300.
3. Benjamini, Y. & Hochberg, Y. (2000). On the adaptive control of the false discovery rate in

multiple testing with independent statistics. Journal of Educational and Behavioral Statistics.
25, 60–83.

4. Benjamini, Y, Krieger, K. & Yekutieli, D. (2006). Adaptive linear step-up procedures that
control the false discovery rate. Biometrika 93, 491–507.

5. Benjamini, Y., and Yekutieli D., (2001). The control of the false discovery rate in multiple
testing uder dependency. Annals of Statistics, 29, 1165–1188.

6. Blanchard, G. & Roquain, E. (2009). Adaptive FDR control under independence and
dependence. Journal of Machine Learning Research 10, 2837–2871.

7. Efron, B. (2007). Correlation and large-scale simultaneous significance testing. Journal of the
American Statistical Association 102, 93–103.

8. Finner, H. & Gontscharuk, V. (2009). Controlling the familywise error rate with plug-in
estimator for the proportion of true null hypotheses. Journal of the Royal Statistical Society, B
71, 1031–1048.

9. Friedenberg, D. & Genovese, C. (2009) Straight to the Source: Detecting Aggregate Objects
in Astronomical Images with Proper Error Control. arXiv: 0910.5449.

10. Gavrilov, Y., Benjamini, Y. & Sarkar, S. K. (2009). An adaptive step-down procedure with
proven FDR control. Annals of Statistics 37, 619–629.

11. Guo, W. (2009). A note on adaptive Bonferroni and Holm procedures under dependence.
Biometrika, 96, 1012–1018.



396 N. Clements et al

12. Henrion, M., Mortlock, D., Hand, D., Gandy, A. (2011). A Bayesian approach to star-galaxy
classification. Monthly Notices of the Royal Astronomical Society, 412, 2286–2302.

13. Hopkins, A. M., Miller, C. J., Connolly, A. J., Genovese, C., Nichol, R. C. & Wasserman, L.
(2002). A new source detection algorithm using the false discovery rate. The Astronomical
Journal 123, 1086–1094.

14. Romano, J. P., Shaikh, A. M. & Wolf, M. (2008). Control of the false discovery rate under
dependence using the bootstrap and subsampling. TEST 17, 417–442.

15. Salzberg, S., Chandler, R., Ford, H., Murthy, S., and White, R. (2007). Decision Trees
for Automated Identification of Cosmic-Ray Hits in Hubble Space Telescope Images. The
Astronomical Society of the Pacific 107, 279–288.

16. Sarkar, S. K. (2002). Some results on false discovery rate in stepwise multiple testing
procedures. Annals of Statistics 30, 239–257.

17. Sarkar, S. K. (2007). Stepup procedures controlling generalized FWER and generalized FDR.
Annals of Statistics 35, 2405–2420.

18. Sarkar, S. K. & Guo, W. (2009). On a generalized false discovery rate. Annals of Statistics 37,
337–363.

19. Sarkar, S. & Guo, W. (2010). Procedures controlling generalized false discovery rate using
bivariate distributions of the null p-values. Statistica Sinica 20, 1227–1238.

20. Sarkar, S. K. (2008). On methods controlling the false discovery rate (with discussions).
Sankhya 70, 135–168.

21. Sarkar, S. K., Guo, W. & Finner, H. (2011). On adaptive procedures controlling the familywise
error rate. To appear in the Journal of Statistical Planning and Inference.

22. Savage, R. & Oliver, S. (2007). Bayesian Methods of Astronomical Source Extraction.
The Astrophysical Journal 661, 1339–1346.

23. Storey, J.D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical
Society, B 64, 479–498.

24. Storey, J. D., Taylor, J. E. & Siegmund, D. (2004). Strong control, conservative point estimation
and simultaneous conservative consistency of false discovery rates: a unified approach. Journal
of the Royal Statistical Society, B 66, 187–205.

25. Sun, W. & Cai, T. (2009). Large-scale multiple testing under dependence. Journal of the Royal
Statistical Society, B 71, 393–424.

26. Yekutieli, D. & Benjamini, Y. (1999) Resampling-based false discovery rate controlling
multiple test procedures for correlated test statistics. Journal of Statistical Planning and
Inference 82, 171–196.



Chapter 37
Commentary: Astronomical Transient Detection
Controlling the False Discovery Rate

Peter E. Freeman

Abstract The two-step, False Discovery Rate-based thresholding procedures
presented by Clements and Sarkar in this volume offer a computationally efficient
means by which to detect faint sources lurking in collections of megapixel
and gigapixel images. We compare Clements and Sarkar’s Procedure 36.1 with
the False Cluster Proportion-based algorithm of Friedenberg and Genovese
(arXiv:0910.5449, 2009). The former employs pixel-wise error control, while
the latter employs cluster-wise error control. We find the two techniques yield
source lists of similar efficiency (finding ≈50% of the sources detected by a more
computationally intensive procedure) and purity (≈100%), if one eliminates single-
pixel detections made by the Clements and Sarkar procedure. We propose that the
Clements and Sarkar procedure be refined such that only statistically significant
clusters are retained in the final source list, mitigating the issue of single-pixel
detections and potentially improving the procedure’s efficiency.

37.1 Introduction

Rapid advances in telescope technology are allowing us to peer more and more
deeply into the Universe and to discover new objects both nearby (e.g., asteroids)
and far away (e.g., quasars). Source detection is the process of differentiating as-
yet-unseen, faint sources from random fluctuations of the astronomical background.
It is important for any source detection algorithm to be highly efficient (i.e., to detect
nearly all sources brighter than some given flux), but it is of even greater importance
that it exhibit high purity (i.e., to limit the amount of false sources it detects). This is
because the time available to follow up detections is limited and astronomers want to
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spend as little of that time as possible viewing what turn out to be empty patches of
sky. One can trivially augment purity by returning to telescopic fields and recording
only those sources within them that are repeatedly detected, but important transient
sources such as Type Ia supernovae may only appear once in a field before fading
from view. Thus it is important that the source list generated from any single image
be pure.

Commonly used, publicly available algorithms for source detection, like those
based on sliding cells,1 Voronoi tessellation (e.g., [2]), wavelets (e.g., [3]), and
signal-to-noise filtering (e.g., [1]) were all created for analyzing megapixel images
such as those of the Chandra X-ray Observatory. Many of these algorithms follow
four basic steps when assessing whether image pixel (i, j) should be associated with
a source:

1. Compute background estimate B̂i, j;
2. Compute signal estimate Ŝi, j;
3. Compute p-value estimate, p̂i, j =

∫ ∞
Ŝi, j

f (S|B̂i, j)dS, where f denotes the

probability distribution function for observing signal strength S given B̂i, j;
and

4. Compare p̂i, j to a threshold significance α .

If p̂i, j < α , we putatively associate pixel (i, j) with an astronomical source.2 By
convention,α is chosen conservatively, with a typical choice being α = 1/N, where
N is the number of exposed pixels in the image. Using this family-wise error rate
(FWER) is akin to performing a Bonferroni correction.

Within the context of these basic steps, the work of Clements and Sarkar in
this volume (hereafter C&S) relates directly to step 4: given p-values for each
pixel, their procedures based on false detection rate methodology produce threshold
values for detection. By applying the Benjamini–Hochberg procedure at two scales-
locally, within a box of size similar to that of the telescope’s point-spread function
(PSF), then globally—they take into account pixel-to-pixel correlations on small
scales in a computationally efficient manner while at the same time generating
source lists that are more complete than those that would be generated using
FWER-based thresholding methods. This is important work, particularly since we
will need new, computationally efficient source detection procedures for analyzing
gigapixel images. However, we argue in the next section that this work is, in a sense,
incomplete: it should be extended beyond the notion of pixel-wise error control to
cluster-wise error control so as to help ensure the purity of generated source lists.

1See, e.g., http://cxc.harvard.edu/ciao/download/doc/detect manual/
2We note that, depending on the algorithm, a putative source may be rejected before being listed:
for instance, in WAVDETECT, putative sources are rejected if they are detected only when the
image-smoothing wavelet scale is smaller than that of the telescope’s point-spread function (PSF).

http://cxc.harvard.edu/ciao/download/doc/detect_manual/
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37.2 Pixel-Wise Error Control Versus Cluster-Wise
Error Control

We compare the performance of C&S’s Procedure 36.1 with a method that
controls for the proportion of false clusters of putative source pixels developed
by Friedenberg and Genovese [4] (hereafter F&G). This False Cluster Proportion-
based procedure extends work by Perone Pacifico et al. [6] on bounding the rate of
false regions within a Gaussian random field by deriving a confidence superset for
the location of true nulls (i.e., background regions).

To compare the two procedures, we follow F&G by analyzing a 512 × 512
pixel subset image of the Chandra Deep Field South (CDFS; see Fig. 37.1). The
data in this image are Poisson-distributed counts; by implementing a basic two-
pass algorithm (compute the global background using all pixels, detect sources,
then recompute the background using only non-source pixels), we estimate the
background intensity to be λ̂b ≈ 0.2 counts/pixel. [5] (hereafter G02), by combining
the use of SExtractor [1] and WAVDETECT [3], ultimately find 27 sources in
this image. Of these 27, F&G detect 17, while at the same time detecting no other
sources.3

To estimate p-values, we compute, for each pixel (i, j),

Fig. 37.1 A 512 × 512
subimage of the Chandra
Deep Field South that we use
to compare Procedure 36.1 of
Clements and Sarkar with the
False Cluster
Proportion-based
thresholding procedure of
Friedenberg and Genovese [4]

3F&G run their algorithm assuming a false cluster proportion of 0.1.
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Table 37.1 Clements and
Sarkar Procedure 36.1: source
detection as a function of box
size

Box Size SPD SPD in G02 MPD MPD in G02

16 355 –a 15 (346)b 15
32 27 5 14 (270) 14

SPD single-pixel detections, MPD multi-pixel detections
a There are too many single pixel sources to determine unam-

biguous links between them and G02 sources, by eye
b Visually identified clumps (total pixels in those clumps)

p̂i, j =
∞

∑
d=di, j

p(d|λ̂b) =
∞

∑
d=di, j

λ̂ d
b e−λ̂b

d!
.

Within the C&S procedure, identification of putative sources depends on the
assumed box size. We test box sizes ranging from 4 to 64 pixels. Table 37.1 shows
results for box sizes 16 and 32, between which there is a sharp change in the number
of detected (i.e., putative source) pixels. In this table, we denote a clump of two or
more contiguous or nearly contiguous detected pixels that we identify by eye as
a multi-pixel detection. All other detected pixels are considered (isolated) single-
pixel detections. If we consider the vast majority of single-pixel detections to be
false source detections, then we find that for box size 16, the false pixel rate appears
much higher than the target of α = 0.05, with the C&S procedure coming much
closer to performing as advertised at box size 32. The naive conclusion would be to
adopt the larger box size. However, we find that for both box sizes, if one eliminates
all single-pixel detections and assumes the G02 source list as ground truth, the two
C&S source lists have similar efficiency (≈50%) and purity (≈100%) as the source
list of F&G. We further note that five of the G02 sources appear to be associated
with single pixel detections at box size 32, suggesting that at box size 16 there may
be as many or more G02 sources that are associated with clusters of non-contiguous
detected pixels whose relative spacing is statistically inconsistent with that expected
given the null hypothesis of uniformly distributed false detections. Thus refining the
C&S procedure to take into account the relative spacing of detected pixels could
potentially lead to an procedure that outperforms the current F&G algorithm.

37.3 Conclusion

The false detection rate-based source thresholding procedures presented by
Clements and Sarkar are conceptually simple, computationally efficient, and
amenable to parallelization. These features are important to consider as we enter
the era of gigapixel image analysis. We test Clements and Sarkar’s Procedure 36.1
using Poisson-distributed data from the Chandra Deep Field South. We find that
while this procedure limits the number of false pixels, it does not effectively limit
the number of false sources. However, we find that by adding a clustering step to
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the algorithm, i.e., that by requiring that each putative source contain two or more
pixels in close proximity, we achieve good cluster-wise error rates. While this is
promising, it is obvious that much more work needs to be done before we achieve a
robust, computationally efficient detection algorithm for use with gigapixel images
that is marked by both high purity and efficiency.
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Chapter 38
Slepian Wavelet Variances for Regularly
and Irregularly Sampled Time Series

Debashis Mondal and Donald B. Percival

Abstract We discuss approximate scale-based analysis of variance for Gaussian
time series based upon Slepian wavelets. These wavelets arise as eigenfunctions
of an energy maximization problem in a pass band of frequencies. Unlike the com-
monly used Daubechies wavelets, Slepian wavelets have the ability to accommodate
both regularly and irregularly sampled data. For regularly sampled Gaussian time
series, we derive statistical theory for Slepian-based wavelet variances and show
that it is comparable to Daubechies-based variances. For irregularly sampled time
series data, we derive a corresponding statistical theory for Slepian-based wavelet
variances. We demonstrate its use on X-ray fluctuations from a binary star system
and on a light curve from the variable star Z UMa.

38.1 Introduction

Over the past two decades, wavelet variance analysis has become an accepted
statistical approach for studying the variability of time series collected at regular
time intervals. The wavelet variance (sometime known as the wavelet spectrum)
quantifies the variability of a time series with respect to time scales. Wavelet
variances at different time scales give rise to a scale-based analysis of variance.
In applications arising from astronomy, geophysics, atmospheric sciences, biology,
ecology and other areas of science, the wavelet variance has helped practitioners
understand quasi-periodic oscillations, small-scale disordered noises, characteristic
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scales, self-similar behavior, long-range dependence, fractal dimensionality,
inhomogeneity and local stationarity that are found in various time series.
The reference list for applications of wavelet variance analysis is extensive; see,
e.g., [5, 9, 15, 16, 18, 24, 29, 35]. In particular, the work of Scargle et al. [29] is an
important early use of the wavelet variance to study time series arising in astronomy.
Background material on wavelet-based time series analysis (including the wavelet
variance) can be found in [27], and there is a recent review article [26] devoted to
the wavelet variance, which includes a basic introduction and discussions on its
interpretation and some recent advances.

In astronomy, however, irregularly sampled time series occur more often than
not, and their analysis introduces new statistical challenges. Standard wavelet
variance analysis is intended to be applied only to regularly sampled time series,
and can not easily cope with irregular or unevenly sampled data (a rarely occurring
exception would be a time series that could be interpolated onto a regular grid
without modification of any of its distributional properties). To date, several
approaches have been proposed to adjust this analysis handle unevenly sampled
time series, including [7, 8, 36]; however, the statistical properties of these methods
have yet to be fully explored. Thus, in this article, we consider irregular sampling
schemes, but focus on ones that are based on second-order stationary increment
point processes. Indeed, substantial work has been done in other contexts on time
series collected under such a sampling scheme; see e.g., [3, 19] and subsequent
literature.

Although numerous other possibilities exist, in what follows we exclusively
focus on the so-called Slepian wavelets. Slepian wavelets are nonstandard wavelets
based on the same ideas leading to Slepian (or discrete prolate spheroidal)
sequences [30]. In particular, zeroth-order Slepian sequences are the solutions to an
optimization problem in which we seek a regularly spaced sequence whose energy is
as concentrated as possible in a band of frequencies centered around zero frequency;
i.e., Slepian sequences can be regarded as an optimal approximation to an ideal low-
pass filter. Wavelet filters commonly used in the analysis of regularly sampled time
series are approximations to ideal band-pass filters. Slepian wavelets are in essence
optimal approximations to ideal band-pass filters and have been used previously in
a multiwavelet scheme for estimating the wavelet variance [17]. Slepian wavelet
filters resemble the familiar least-asymmetric filters due to Daubechies [6], but,
unlike the Daubechies filters, the Slepian filters are nonorthogonal and hence
decompose the process variance only approximately. Some large sample properties
of wavelet variance estimators based on Slepian wavelets are discussed in [21].
The objective of this paper is to extend Slepian wavelets to irregularly sampled
data. Bronez [4] introduced the notion of generalized Slepian sequences that can
be applied to irregularly sampled time series. Here we focus on an adaptation of
Bronez’s scheme that yields an estimator of the wavelet variance for irregularly
sampled series.

The rest of this article is laid out as follows. We define the Slepian wavelet
variance for regularly sampled time series in Sect. 38.2. In Sect. 38.3 we consider
estimators for this variance and their corresponding large sample statistical theory,
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and, in Sect. 38.4 we extend the theory of the Slepian wavelet variance to handle
irregularly sampled data. In Sect. 38.5 we provide examples of the use of this
methodology on actual time series (a regularly sampled series of X-ray counts
and an irregularly sampled series of brightness magnitudes from a variable star).
We conclude with some discussion in Sect. 38.5.

38.2 Slepian Wavelets for Regularly Sampled Data

38.2.1 Construction of Slepian Wavelet Filters

For a positive integer j, define the pass-band

A j =
[−2− j,−2− j−1]∪ [2− j−1,2− j] . (38.1)

Let {ψm}M−1
m=0 be the coefficients for a linear filter that approximates a band-pass

filter with pass-band A j, and let ψ be an M-dimensional vector containing these
coefficients. Let its Fourier transform be

Ψ( f ) =
M−1

∑
m=0

ψme−i2π f m

so that its squared gain function is |Ψ ( f )|2. We seek {ψm} with the following
properties: (1) the filter coefficients sum to zero; i.e., 1Tψ = 0, where 1T is a row
vector of ones; (2) the sum of the squares of the coefficients satisfies ψTψ = 2− j;
and (3) the squared gain function is as concentrated as possible within A j. Note
that properties (1) and (2) match those of a jth level Daubechies wavelet filter.
The concentration measure for the squared gain function |Ψ( f )|2 within A j is
defined as

λ (M, j) =

∫
A j
|Ψ( f )|2 d f

∫ 1/2
−1/2 |Ψ( f )|2 d f

=
ψT Q jψ
ψTψ

= 2 jψT Q jψ

(see, e.g., [17]), where the (s, t)th element of the M×M matrix Q j is

Q j(s, t) =
∫

A j

e−i2π f (t−s) d f =
sin
(
21− jπ(s− t)

)− sin
(
2− jπ(s− t)

)
π(s− t)

(38.2)

(when s = t, Q j(s, t) reduces to 2− j). Maximization of this concentration measure
gives rise to the following constrained eigenvalue problem:

Q jψ = λ (M, j)ψ subject to 1Tψ = 0 and ψTψ = 2− j. (38.3)
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Alternatively we can write this eigenvalue problem as

CMQ jCMψ = λ (M, j)ψ ,

where, letting IM denote the Mth order identity matrix, CM = IM − 1
M 11T is the

centering matrix of order M. To see this, we introduce Lagrangian multipliers a and
λ (M, j) as in [28, p. 50] and consider the expression

ψT Q jψ− 2a1Tψ−λ (M, j)(ψTψ− 2− j)

as a function of ψ , a and λ (M, j). Equating its partial derivatives to zero yields

Q jψ− a1−λ (M, j)ψ = 0, 1Tψ = 0 and ψTψ = 2− j.

Because CM1 = 0 and CMψ = ψ , multiplying the first equation by CM yields

CMQ jψ = λ (M, j)ψ or, equivalently, CMQ jCMψ = λ (M, j)ψ ,

which is an eigenvector problem involving a symmetric matrix whose eigenvectors
(after proper scaling) satisfy the problem stated in (38.3).

Let ψ j,0 be the eigenvector corresponding to the maximum eigenvalue of the
above problem. We define ψ j,0 to be the Slepian wavelet filter of length M for the
level j. We set M = c2 j for level j, where c is a constant independent of j such
that 2c is an integer. When c = 1, the length of the jth level filter matches that of
the Haar wavelet filter. We discuss the rationale for setting c > 1 in the next section.

38.2.1.1 Continuous Problem

We can elucidate some properties of the Slepian filters by approximating the above
eigenvalue problem using a continuous formulation, as follows. Setting M = 2 j,
we have

Q j(s, t) =
sin(2π(s− t)/M)− sin(π(s− t)/M)

π(s− t)
=

2
M
β ( f − f ′) (38.4)

where

β (u) =
sin(πu)− sin(πu/2)

πu
, f =

2s
M

− 1 and f ′ =
2t
M

− 1

so that −1 ≤ ( f , f ′) < 1 if we assume 0 ≤ (s, t) ≤ M − 1. As j tends to infinity,
the discrete eigenvalue problem of (38.3) is well approximated by the continuous
eigenvalue problem

∫ 1

−1
β ( f − f ′)ψ( f ′)d f ′ = λψ( f ) (38.5)
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subject to
∫
ψ( f )d f = 0 and

∫
ψ2( f )d f = 2/M2. Note that we can use this

eigenfunction ψ( f ) to determine the filters for all large j. At level j we would ap-
proximate the discrete eigenvector using ψ( 2s+1

M −1), s = 0,1, . . . ,M−1. The con-
tinuous formulation suggests that, if matrix computations are too cumbersome
for some large j, we can approximate the required eigenvector by applying an
interpolation scheme to the eigenvector from a readily computable smaller j.
The value of the maximum eigenvalue λ associated with continuous filter ψ( f )
represents the fraction of the total energy within the pass-band. We can make
this fraction greater by setting M = c2 j, where 2c is an integer greater than two.
The kernel now becomes

βc(u) =
sin(cπu)− sin(cπu/2)

πu
(38.6)

(the limits of integration in (38.5) remain the same).
Formulating the problem in the continuous domain also allows us to assume that

the wavelet filters are either even or odd functions. To see this, we note that, because
βc is an even function,

λψ(− f ) =
∫ 1

−1
βc( f + f ′)ψ( f ′)d f ′ =

∫ 1

−1
βc( f − f ′)ψ(− f ′)d f ′ (38.7)

Thus ψ(− f ) is also an eigenfunction with corresponding eigenvalue λ and hence
either ψ( f ) =±ψ(− f ) or (ψ( f )+ψ(− f ))/2 and (ψ( f )−ψ(− f ))/2 can be taken
to be two distinct even and odd eigenfunctions with eigenvalue λ .

38.2.2 Shape and Energy at Different Scales

Plots of Slepian wavelets arising from the kernel βc for different values of c are
shown in Fig. 38.1. For c = 1 the Slepian wavelet is S-shaped; for c = 1.5 the
shape somewhat resembles the Mexican hat wavelet; and for larger values of c,
the shape is reminiscent of either the real or imaginary part of the Morlet wavelet
popular in geophysics (note that we can flip these wavelets by multiplying them
by −1). In Table 38.1 the maximum eigenvalues corresponding to Slepian wavelet
filters arising out of matrix Q j for various values of c are given. Asymptotically, the
eigenvectors have a squared gain function of a perfect band-pass filter that is unity
inside A j and zero outside.

Table 38.2 shows the concentration measures for the jth level Haar,
D(4), D(6) and LA(8) wavelet filters. The length of these filters is given by
Lj = (2 j − 1)(L− 1)+ 1, where L = 2, 4, 6 and 8 for, respectively, the Haar,
D(4), D(6) and LA(8) filters. By comparison, the length of the Slepian filters is c2 j.
Setting c= 2,3 and 4 yields Slepian filters that have the same length as, respectively,
the D(4), D(6) and LA(8) filters when j = 1, but the Slepian filters are shorter when
j ≥ 2 (the c = 1 Slepian and Haar filters have the same length for all j). Even though
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Fig. 38.1 The shape of the first eigenvector for different values of c

Table 38.1 Maximum
eigenvalues from (38.3) for
different levels j and
various c

Level j c = 1 c = 2 c = 3 c = 4

1 0.818 0.989 1.000 1.000
2 0.581 0.787 0.951 0.985
3 0.561 0.781 0.947 0.984
4 0.557 0.779 0.946 0.984
≥ 5 0.556 0.779 0.946 0.984

Table 38.2 Concentration
measures for Haar, D(4), D(6)
and LA(8) wavelets

Level j Haar D(4) D(6) LA(8)

1 0.818 0.871 0.895 0.909
2 0.546 0.641 0.696 0.733
3 0.498 0.626 0.691 0.731
4 0.487 0.625 0.691 0.731
≥ 5 0.484 0.625 0.691 0.731

the D(4), D(6) and LA(8) filters are longer than their corresponding Slepian filters
for j ≥ 2, their concentration measures are smaller.

The squared gain functions of the Slepian wavelets at different scales are
illustrated in Fig. 38.2. These show how the energy is spread within a band. We
also show the spread of energy for an ideal wavelet. Note that for c = 2 the energy
is more concentrated within the band.
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Fig. 38.2 The squared gain functions of the Slepian wavelets at different levels j: thin curve is for
c = 2, thick curve is for c = 1

38.3 Statistical Theory for Slepian Wavelet Variance

38.3.1 Slepian Wavelet Coefficients and Wavelet Variance

Suppose we have a time series that we regard as a portion {Xt}N−1
t=0 of a stationary

process with autocovariance sequence (ACVS) {sX ,τ}∞τ=−∞ and spectral density
function (SDF) denoted by S( f ). We denote the Slepian wavelet filter of level j

by {ψ j,u}Mj−1
u=0 , where Mj = c2 j is the length of the filter. In practice, we restrict

ourselves to c = 1 or 2.5. We denote the corresponding transfer function byΨj( f ) =

∑
Mj−1
u=0 ψ j,ue−i2π f u and the associated eigenvalue by λ j.
Now we define the Slepian wavelet coefficient associated with level j and

location or time point t by

Uj,t =
Mj−1

∑
u=0

ψ j,uXt−u, t = Mj − 1, . . . ,N − 1.

Because the wavelet filter does not depend on the location t, the stationarity of {Xt}
and the fact that ∑uψ j,u = 0 imply that the wavelet coefficients at any fixed level
are a portion of a zero mean stationary process with SDF S j( f ) = |Ψj( f )|2S( f ).
The Slepian wavelet variance at scale τ j = 2 j−1 is defined as

μ2
X (τ j) = var(Uj,t) =

∫ 1
2

− 1
2

|Ψj( f )|2S( f )d f (38.8)
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38.3.2 Estimation of Slepian Wavelet Variance

Because e(Uj,t) = 0, we have e(W 2
j,t) = μ2

X(τ j), where E(·) denotes the expectation

operation. An unbiased estimate of μ2
X (τ j) is thus given by

μ̂2
X (τ j) =

1
Nj

N−1

∑
t=Mj−1

U2
j,t , (38.9)

where Nj = N −Mj + 1.
We can relate the Slepian wavelet variance to a similar variance based upon the

Daubechies wavelets. Under certain reasonable conditions, the Daubechies wavelet
variance is approximately equal to

ν2
X (τ j)≈

∫
A j

S( f )d f ,

where A j is given by (38.1). Thus the wavelet variance summarizes the information
in the SDF using just one value at each scale and also provides the basis for
approximating certain SDFs. Moreover, if we assume that SDF is approximately
constant over A j, then the approximation above implies that S( f ) = ν2

X(τ j)/|A j| =
ν2

X (τ j)2 j in the nominal pass-band A j. Then we have

μ2
X(τ j) =

∫ 1
2

− 1
2

|Ψj( f )|2S( f )d f ≈
∫

A j

|Ψj( f )|2ν2
X (τ j)2 j d f = λ jν2

X (τ j)≈ ν2
X (τ j),

(38.10)

where the last approximation holds under the assumption that λ j is close to unity.

38.3.3 Large Sample Statistical Properties

Theorem 38.1. Suppose α j =
∫ 1

2

− 1
2

(|Ψj( f )|2SX( f )
)2

d f < ∞. Then, as Nj → ∞,

N
1
2
j

(
μ̂2

X(τ j)− μ2
X(τ j)

(2α j)
1
2

)

converges to a Gaussian random variable with zero mean and unit variance.

A proof of Theorem 38.1 is immediate; see e.g., [21]. We note that square
integrability of |Ψj( f )|2SX( f ) holds if the ACVS of Uj,t dies down fast enough.
In many geophysical application, if |Ψj( f )|2SX( f ) is not square integrable, it is
due to a singularity at f = 0, which can be cured by adding additional moment
conditions as used in the construction of the higher order Daubechies wavelet filters.

In practice, we need to estimate α j to make use of the above theorem—see
[21, 25, 27] for details.
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38.4 Extension to Irregularly Sampled Data

Suppose now that the observed time series consists of values X(t0),X(t1), . . .X(tN−1)
taken at irregularly spaced time points t0, t1, . . . tN−1. Extending the notion of
wavelet variance analysis to this scenario is challenging in part because of the
lack of an appropriate scale-based wavelet transform for irregularly sampled
time series. In particular, while the popular lifting scheme due to Sweldens [32]
does define a wavelet transform for such series, its wavelet coefficients cannot
be meaningfully associated with specific time scales and hence are not scale-
based. By contrast, an attractive property of Slepian wavelets is that they can
be generalized to handle irregular sampling in a manner such that maintains
each coefficient is associate with a particular scale. Slepian wavelets lead to a
statistically tractable wavelet variance analysis applicable to irregularly sampled
time series if we assume that the sampling times {t0, t1, . . . , tN−1} are a realization
of a stationary point process, as we do henceforth. In other words, the sampling
intervals Δ1 = t1 − t0,Δ2 = t2 − t1, . . . ,ΔN−1 = tN−1 − tN−2 are a portion of a
stationary sequence of positive random variables. Let the marginal density of Δk

be p(x), x > 0, and let μ denote its mean, i.e., the expected sampling interval.
The average sampling interval is equal to

Δ̄ =
1

N − 1
(Δ1 +Δ2 + . . .+ΔN−1) =

tN−1 − t0
N − 1

, (38.11)

and the strong law of large number ensures that, as N → ∞, Δ̄ converges almost
surely to μ . Since the average sampling time is Δ̄ rather than being fixed at unity,
we must redefine the pass band A j in (38.1) to be

A j =
[−2− j/Δ̄ ,−2− j−1/Δ̄

]∪ [2− j−1/Δ̄ ,2− j/Δ̄
]
. (38.12)

Keeping with the tradition of the discrete wavelet transform, we can then consider
Slepian wavelet filter constructions at the dyadic scales τ j = 2 j−1Δ̄ for j = 1,2, . . ..

38.4.1 Construction of Adaptive Slepian Wavelet Filters
for Irregular Sampling Times

For each k, we seek a linear filter {ψk,m}M−1
m=0 that is adapted to time points

tk, tk+1, . . . tk+M−1 and maximizes the energy contained in the pass-band A j. Thus
we consider the Fourier transform

Ψk( f ) =
M−1

∑
m=0

ψk,me−i2π f tk+m
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and seek {ψk,m} such that (1) the filter coefficients sum to zero, (2) the sum
of the squares of the coefficients are normalized to 2− j/Δ̄ and (3) the squared
gain function |Ψk( f )|2 is as concentrated as possible within A j. This leads to the
following maximization problem:

Qk, jψk = λ (k,M, j)ψk subject to 1Tψk = 0, (38.13)

where Qk, j(m,m′), the (m,m′)th element of the M×M matrix Qk, j , is

∫
A j

e−i2π f (tk+m−tk+m′ ) d f =
sin
(

21− jπ
Δ̄ (tk+m − tk+m′)

)
− sin

(
2− jπ
Δ̄ (tk+m − tk+m′)

)

π(tk+m − tk+m′)
.

Set M = c2 j. Take j → ∞, and let m,m′ be sequences of integers implicitly indexed
by j such that 2m/M − 1 → f and 2m′/M − 1 → f ′ for some −1 ≤ ( f , f ′) ≤ 1.
It follows that, for a large class of random sampling schemes that satisfy mild
regularity and mixing conditions (renewal process sampling being one example),
a functional central limit theorem (see, e.g., [10, 20]) yields

tk+m − tk+m′

M
d
=

tm − tm′

M
=

tm
m

m
M

− tm′

m′
m′

M
→p

1
2μ( f − f ′)

and thus

MQk, j(m,m′)→p 2μβc( f − f ′)

(in the above, ‘
d
=’ and ‘→p’ denote equality in distribution and convergence in

probability). Consequently, we are led to a continuous eigenvalue problem taking
the form ∫ 1

−1
μβc( f − f ′)ψk( f ′)d f ′ = λψk( f ), (38.14)

which is basically the same eigenvalue problem considered in (38.5) for the regular
sampling. As long as M is sufficiently large, we can use continuous Slepian wavelet
ψ( f ) to obtain the adaptive filters via

ψ
(

2
tm+k − tk
tM+k − tk

− 1
)
, m = 0,1, . . .M− 1, k = 0,1, . . . .

38.4.2 Adaptive Slepian Wavelet Coefficients
and Average Energy

Once we have computed the adaptive wavelet filters {ψ j,k,m}, we can define Slepian
wavelet coefficients indexed by scale τ j and shift k as follows:
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Uj,k =
Mj−1

∑
u=0

ψ j,k,uX(tk+u), k = 0,1, . . .N −Mj.

Furthermore, if X(t0), . . . ,X(tN−1) is a realization of a stationary stochastic process,
and if the sampling times obey a stationary point process, an immediate consequence
is that the adaptive within-scale Slepian wavelet coefficients Uj,k form a zero mean
stationary time series. Thus we can estimate the overall energy associated with scale
τ j by

v̂2(τ j) =
1

N −Mj + 1

N−Mj

∑
k=0

U2
j,k (38.15)

We now provide some justification as to why this average energy associated with
adaptive Slepian wavelet coefficients gives an approximate estimate of wavelet
variance at scale τ j . Using spectral representation of the stationary time series X(t),
we obtain, for any fixed tk, . . . , tk+Mj−1, conditionally

e(U2
j,k) =

∫ ∞

−∞

∣∣∣Ψj,k( f )
∣∣∣2SX( f )d f , Ψj,k( f ) =

Mj−1

∑
m=0

ψ j,k,mei2π f tm+k .

Now, assuming that the power leakage is negligible for an adaptive Slepian filter,
and that the spectral density is approximately constant within the pass band A j (i.e.,
S( f ) = ν2(τ j)2 jΔ̄ ), we obtain conditionally

e(U2
j,k)≈

∫
A j

∣∣∣Ψj,k( f )
∣∣∣2ν2(τ j)2 jΔ̄ d f = λ (k,Mj , j)ν2(τ j)≈ ν2(τ j).

Thus, unconditionally, the average energy v̂2(τ j) provides an approximate estimate
of the wavelet variance. As was true in the regularly sampled case, v̂2(τ j) is
asymptotically a Gaussian random variable under appropriate regularly conditions.
One such set of regularity conditions is given in [1], for which the mean of v̂2(τ j) is
asymptotically equal to v2(τ j) = e(U2

j,0), and its large sample variance is given by
SU2(0)/(N −Mj + 2), where SU2(0) is the value of the spectral density function of
U2

j,k at origin. We can thus apply multitaper method to deduce an estimator [27, 33]

of SU2(0) and construct 95% confidence interval for v2(τ j).

38.5 Applications

As a first example, Fig. 38.3 shows a regularly sampled time series of counts
from the X-ray binary system GX 5–1. These N = 65,526 counts were recorded
by the Ginga satellite at successive 1/128 second intervals over 512 s [11, 23].
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Fig. 38.3 X-ray fluctuations from a binary star system

Fig. 38.4 Slepian (circles and black lines) and Haar (diamonds and gray lines) wavelet variances
of X-ray fluctuations at the log–log scales

Fig. 38.5 Light curve of Z UMa

A histogram and a quantile-quantile plot of this time series reveal that, despite
the count nature of the data, its empirical distribution is well approximated as
Gaussian [26]. Figure 38.4 gives the c = 1 Slepian and Haar wavelet variances
corresponding to j = 1, . . . ,15. The Slepian wavelet variance estimates and their
associated uncertainties are in good agreement with the corresponding Haar values.

As a second application, we now consider an irregularly sampled time series.
Figure 38.5 displays the light curve data of Z UMa, taken directly from the Web site
of American Association of Variable Star Observers. This star is in the constellation
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Fig. 38.6 Slepian wavelet variances of Z UMa on a log–log scale. Circles (diamonds) show the
c = 1 (c = 2.5) estimates, while the vertical lines indicate 95% confidence intervals

Ursa Major and is an example of a semi-regular variable star. Its magnitude ranges
from 6.2 to 9.4 V, and its pulsating period is about 195.5 days. Observational
evidence suggests that Z UMa has more than just one pulsation cycle.

The works of [2, 12, 14, 31] theorize that Z UMa has multiple periods and that
the irregularities seen in its light curve are either the result of the superposition of
several different pulsation cycles within the star or are driven by the presence of
a stellar companion, distorted stellar shapes, rotation, or star spots. The General
Catalogue of Variable Stars classifies Z UMa as a semi-regular variable of subtype
B. In other words, it has either a poorly defined periodicity or alternating intervals
of slow irregular changes.

The time period we consider here ranges over Julian days 2,445,854–2,452,140,
which gives us an irregularly sampled light curve data with N = 20,227 values
and an average sampling interval of Δ̄ = 0.31 days. Figure 38.6 shows the Slepian
wavelet variance estimates for c = 1 (circles) and c = 2.5 (diamonds). The two
estimates agree well at all scales except for the very largest, for which the
uncertainty in the estimates is quite large. For c = 1 the wavelet variance plot has
a peak at scale τ8 = 79.57 days. A sinusoid with a period of P will show up on a
wavelet variance curve as a peak value near scale P/2, suggesting a nominal period
of 159.14 days, in reasonable agreement with the pulsating period deduced by other
methods. By contrast, the c = 2.5 plot has its peak at a scale of τ9 = 159.14 days.
The broad-band nature of the fluctuations associated with semi-regular variable
stars suggests that it might be more fruitful to view their light curves in terms of
a characteristic scale rather than periodicities [13]. Note also that the decrease in
the estimated wavelet variance curve at the four smallest scales is approximately
linear on the log–log scale, suggesting that a power law might govern the small
scale fluctuations of this star.
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38.6 Discussion

As an estimator of the wavelet variance, the average energy in (38.15) is inherently
biased, largely due the irregular nature of the sampling times. Under certain
sampling scheme (e.g., jittered sampling or some other mildly irregular sam-
plings [1, 34]), this bias can be negligible; however, the bias can be substantial
for the highly irregular sampling schemes occurring in astrophysical applications.
We know from the continuous energy maximization problem that the adaptive
Slepian filters at large scales just mimic the continuous wavelet function. Thus
the bias problem of bias is not due to the adaptive wavelet filters per se, but is
largely due to the nature of the sampling times. In correct this bias, we need to
understand the dependence of (38.15) on the distribution of the sampling times.
Probabilistic calculations show that the bias depends on the distribution of time
intervals tl − tl′ for l, l′ = 0, . . .Mj −1. Correcting for the bias is challenging, but can
be attempted at the expense of extensive computations aimed at estimating certain
distributions associated with the sampling intervals. Indeed, this is where the work
of [22] becomes relevant in that we can essentially generalize their variogram type
estimator to obtain asymptotically unbiased quadratic estimate of wavelet variances.

Although multiwavelets scheme have previously been investigated in the context
of regularly sampled time series [17], there is scope for development of this
scheme, for both the regular and irregular sampling cases. In multitaper spectral
estimates [27, 33], the amount of smoothing desired in the resulting estimate is
determined by the number of multitapers used to form the estimate. It would be
interesting to know how we can optimally determine the value of c and how we can
optimally choose the number of Slepian multiwavelets to be included, with the goal
of reducing the mean square error as much as possible.

Finally, in our closing remarks, we briefly comment upon the construction
of Slepian wavelets in two and higher-dimensions, which can have important
applications in variance analysis of random fields. Basically, in higher dimensions,
Slepian filters can also be constructed for regular and irregular sampling schemes by
maximizing the concentration of energy in an appropriate pass-band of frequencies
and solving the related eigenvalue problem. In addition, the use of annular and
other elliptical regions as pass-band of frequencies will give rise to genuine higher
dimensional wavelet filters, which can have some advantages over the commonly
used constructions by tensor products.
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Chapter 39
Commentary: Slepian Wavelet Variances for
Regularly and Irregularly Samples Time Series

Jeffrey D. Scargle

Abstract This commentary compares the wavelet variance described by Debashis
Mondal and Don Percival with the Fourier power spectrum more familar to
astronomers. Slepian Wavelets can also be used as tapers for spectral analysis in
general, and I briefly describe the corresponding multi-taper estimation of power
spectra and time-frequency distributions, demonstrated on the same data analyzed
in their paper.

39.1 Characterizing Variability and Its Time-Scale
Dependence

While characterizing brightness variations has always been a cornerstone of astron-
omy, large scale photometric survey programs are now generating a critical need
for algorithms to explore massive time series databases. Irregular time sampling,
characteristic of many astronomical data streams, may limit the information that
classical analysis tools can extract.

In this setting Debashis Mondal and Donald Percival1 provide an important tool.
Their exposition of a method to estimate wavelet variance for irregularly sampled
data is a fine example of mathematical expositions of modern time series analysis
techniques, in works such as [2,6] to name just two others, that promise rich rewards
in a variety of applications. The goal of the next section is to explain the place
of wavelet variance in the context of variability analysis in general, largely by
comparison with related Fourier methods more familiar to astronomers.

1Hereafter deonted M&P.
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But first let’s address the issue of technical conditions needed for the validity
of theorems. These mathematical caveats may seem mysterious and difficult to
assess in practice, and thus may be barriers to use of the methods by astronomers.
M&P does not involve many such conditions, but as an example in Sect. 4 we
find the assumption “. . . that the sampling times t0, t1, . . . , tN−1 are a realization of a
stationary point process” followed by details related to the distribution of sampling
intervals. Astronomers do not typically think of sampling as a stochastic process
(although of course it is) and would be hard pressed to decide whether any particular
mathematical condition is satisfied. The sampling, perhaps determined by weather
and telescope time assignment, rather “is what it is.” However digging a little deeper
what is at play here is the concept of independence of the samples—not in the usual
sense of statistical independence of the measured quantities but in the sense that
the presence of an observation at one time does not affect the probability of an
observation at some other time. Unfortunately this condition is rarely satisfied: we
have affects ranging from detector dead-time to sampling cadence being changed in
mid-stream based on analysis of previous data. So what should we do if we are not
sure to what extent such conditions are satisfied by our observations?

Perhaps the most important advice is to begin any analysis by studying the
distribution of the time intervals between successive observations. While a simple
histogram of these intervals does not address the above independence issue, it almost
always provides useful information. Unless something pathological is discovered
with this or other exploratory analysis of the sampling it is probably justified
to proceed with the analysis without undue concern about whether the technical
conditions are fully satisfied. And the sensitivity of an algorithm to statistical
conditions and the like can always be studied by analysis of simulated data with
known properties.

39.2 Wavelet Variance vs. the Power Spectrum

Wavelets have been enthusiastically taken up by astronomers to implement sophis-
ticated analysis of image and time series data [7]. As described by M&P wavelet
variance is a basic tool for characterizing variability at different time scales. Wavelet
variance as a function of time scale can be called the wavelet power spectrum,
in justified analogy to the Fourier power spectrum as a function of frequency—a
workhorse method for well over a century. The two functions are largely different
packaging of essentially the same information. The most fundamental difference
lies in the natural independent variable: a logarithmic time-scale for wavelet power
vs. a frequency scale for Fourier power. Of course the latter can be shown on a
logarithmic frequency scale as in Fig. 39.1, which shows the usual noisiness of the
Fourier power and its amelioration by smoothing. The unsmoothed spectrum is too
noisy to plot; dots and solid lines depict blocks of 16 and 128 points, respectively,
averaged logarithmically. In addition the better frequency resolution results in the
detection of a quasi-periodic signal that is smoothed over in the wavelet variance



39 Commentary: Slepian Wavelet Variances for Time Series 421

−0.5 0 0.5 1 1.5
−5.5

−5

−4.5

−4

Log10 Frequency (c/sec)

Fig. 39.1 Logarithmic power spectrum of GX 5-1, from the same data as in M&P

analysis. The broad peak near 25 c/s (marked at the top of the figure) is the horizontal
branch oscillation that ranges from 15 to 50 c/s depending on the physical state of
this system (Fig. 2 of [4]).

39.3 Multitaper Time-Scale/Time Frequency Distributions

Another parallel between Fourier and wavelet methods is the connection between
time-frequency distributions and the wavelet transform itself. The scalogram, a plot
of the magnitude of the wavelet coefficients against the time and scale independent
variables, is much like the time-frequency distribution [2]. This very useful quantity
presents power as a function of time and frequency, trading off the corresponding
resolutions which are of course subject to the uncertainty principle: fine time
resolution means coarse frequency resolution and vice versa.

To deal with uneven spacing the Lomb-Scargle Periodogram [3, 5, 8, 9, 12], is
often used. Here we use an alternative, starting with the correlation algorithm [1]
often used in astronomy and well studied in the signal processing literature under
the name of slotted techniques (e.g. [10, 11]). The basic idea is to construct bins in
the lag variable τ and sum the product x(t1)x(t2) over all data pairs such that their
time difference lies in a given such bin:

ρ(τk) =
1

Nk
∑
n

X(tn)X(tm) (39.1)

where the sum is over all pairs n,m such that the corresponding time difference
tn − tm lies within the bin [τk,τk + Δτ], and Nk is the number of such pairs. It is
usual to write this formula replacing Xn with Xn − μX , where μX is the mean value
of X , either theoretical or empirical. Here we assume an empirical mean has been
subtracted. The average product x(t1)x(t2) is taken to describe the degree to which
values separated by τ are related (large if positively correlated, large and negative if
anti-correlated, and small if uncorrelated).
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The role of the factor 1
Nk

is interesting. In estimating correlation functions for
evenly spaced data two variants are used

ρ(k) =
1
N ∑n

XnXn+k (39.2)

and

ρ(k) =
1

N − k∑n
XnXn+k (39.3)

representing a trade-off favoring small variance (with larger bias) or small bias (with
larger variance) respectively. Equation 39.1 corresponds to (39.3) since in both cases
the denominator is the number of terms contributing to that value of the lag, so the
expression is truly an average. If desired the analog of (39.2) could be implemented
simply by replacing Nk with a constant.

Even though (39.1) seems a bit abstract it is easily computed in practice. For
evenly spaced data with gaps the binning in τ should correspond to the constant
sampling interval. The power spectrum can then be computed using the well-known
identity that the power spectrum is the Fourier transform of the autocorrelation
function (which needs to be evaluated to the maximum lag possible, namely equal to
the entire time-span of the observations). Two potential difficulties, the possibility
of empty bins or of negative estimated powers, are of no concern here.

With an algorithm in hand to compute the power spectrum (either the procedure
just outlined or the Lomb-Scargle periodogram) it is completely straightforward
to compute the time-frequency distribution simply by accumulating a matrix of
power spectra of the data points in a sequence of windows slid along the observation
interval. The most important parameter is the width of the window. A good choice
with the present data was found to be about 0.05 times the whole interval.

The final issue has to do with improving the information throughput of the
power spectrum procedure by applying a taper (sometimes called a spectral window,
not to be confused with the window discussed in the context of time-frequency
distributions). Mulitaper analysis utilizes the solution to the problem of optimizing
the ability of the taper to concentrate power into the main lobe of the spectrum, and
minimize leakage of power into the side-lobes (cf. M&P and [6]). The mathematical
solution yields a number of taper shapes that are all approximately optimal. The best
one smoothly emphasizes central data at the expense of the data near the ends of the
observation interval. The others compensate for this information loss to some extent
by reversing this relation. Figure 39.2 shows the time-frequency distribution of the
Z UMa data in M&P, computed via Edelson and Krolik autocorrelations with a
simple Slepian taper. The full spectrum has large power at 1 c/day and an interesting
set of aliases, as expected from nightly observations, but in the frequency range
shown in the plot we see the comings and goings of the 195.5 day period noted by
Isles (reference [12] in M&P) and its first harmonic.
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Fig. 39.2 Z UMa time-frequency distribution. Dotted lines: 195.5 day period and its harmonic

Wavelet and Fourier power spectra are complementary tools, useful for extracting
different aspects of the information contained in time series data. Slepian tapers as
optimal solutions to the spectral leakage problem play a similar role in both.

Acknowledgements I am grateful to Debashis Mondal, Don Percival, and Joe Bredekamp and the
NASA Applied Information Systems Research Program for encouragement and support.
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The Future of Astrostatistics



Chapter 40
Astrostatistics in the International Arena

Joseph M. Hilbe

Abstract It was not until the last decades of the twentieth century that computing
power and memory allowed the development of statistical software that was
rigourous enough to entice astronomers to again become interested in statistics.
During the 1990s, personal computers allowed estimation of continually sophis-
ticated iterative statistical routines that could be used to understand astronomical
data. During this time small groups of astronomers and statisticians joined together
developing both collaborations and conferences to discuss statistical methodology.
As computers and accompanying software allowed even more complex models to be
developed in the first decade of the twenty-first century, astrostatistics was born as a
discipline. Although astrostatistics researchers can now employ memory-intensive
Bayesian methods to data that was never possible in earlier years, the vast amount
of data being collected by the new data-generating technologies will soon obfuscate
current statistical and data mining capabilities. Through the formation of an inter-
national astrostatistics network or association and the creation of interdisciplinary
astrostatistics degree programs throughout the world, astrostatisticians in the future
will collaborate to develop the new mathematics and statistics required to handle
the huge amounts of data being gathered. It will also solidify astrostatistics as a
profession.

Statistics can be said to have begun with the Babylonians, Egyptians, and in
particular with the Greeks, several thousand years ago when scholars, farmers,
and businessmen applied such descriptive concepts as the median and range to
agricultural and astronomical observations. However, it was not until the first decade
of the nineteenth century that simple inferential statistical models were developed.
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The first application of Carl Gauss’s method of least squares regression was to the
prediction of the apparent position of Ceres as it came into view from its orbit behind
the Sun. This occurred in 1801, the first year of the new century. However, Gauss
himself did not fully describe the use of least squares regression until 8 years later
in a text on Celestial Mechanics.

Although both descriptive statistics and inferential statistics largely began with
applications to astronomical data, astronomers from the early-mid 19th to near the
end of the last century showed relatively little interest in applying more than basic
descriptive statistical methods to astronomical data. There were some exceptions,
of course, but astronomers in general turned to non-statistical quantitative methods
and later to spectroscopy and differential equations for the understanding of
astronomical data throughout the majority of the nineteenth and twentieth centuries.
Astronomers have in recent years taken note of the advancements in statistical
methodology, and the wide range of capabilities that statisticians now have to
understand large and even ill-shaped data situations. These capabilities were not
available before. On the other side, the non-statistical methods that were used by
most astronomers in the past, which were indeed very effective for what was being
analyzed, are becoming no longer satisfactory when attempting to model the large
masses of data that are being generated by the new data generating technologies

40.1 Statistical Software for Astronomy

Central to astrostatistical research is the software used for the various analyses
being undertaken. The majority of current astrostatisticians now use R, Python,
or R and WinBUGS together for their research. R and Python are both freeware
software applications to which users may easily add their own functions and scripts.
Python, a multi-paradigm programming language, was first released in 1991, with
major enhancements in 2000 (ver. 2) and 2008 (ver 3). CPython, the current default
implementation of Python, is widely used in the physical sciences. R, on the other
hand, was first developed in 1993, went through several years of alpha testing, and
was officially released in 2000. Prior to the availability of R and Python, astronomers
and astrostatisticians generally used S-Plus or fashioned their own FORTRAN or C
functions. S-Plus is similar in structure to R, but is commercial, and has steadily
been losing its user-base to software such as Stata and R. R however, because of
its low-level programming capabilities, can be used to construct most any statistical
model or procedure, making it a powerful analytic tool. The fact that R has become
so popular across academic disciplines, thus leading to the creation of a variety
of methods and functions which can later be adapted for astronomical research,
has made it very attractive as a software application. Astronomers have generally
preferred to write their own software rather than rely on commercial statistical
packages. R and CPython suit this preference fine.

From the mid-late 1990s to the present, a growing number of astronomers
have been turning to Bayesian methodology for the construction of statistical
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models. However, general Bayesian methods for astronomical research required the
development of software appropriate for the types of analyses needed for such work.
It was not until WinBUGS was sufficiently programmed during the last decade,
though, that it could be used for serious Bayesian astrostatistical modeling. R is
also used for Bayesian analysis, and more sophisticated functions are continually
being developed, but typically users of R software incorporate WinBUGS into the
R environment for difficult modeling tasks. Other Bayesian software exists as well,
but is generally not used by astronomers or astrostatisticians. CPython has not had
built-in Bayesian modeling capability, and therefore some astronomers have turned
to R-WinBUGS as a result. Statisticians have not supported CPython, favoring
applications such as R-WinBUGS, Stata, and SAS.

Astrostatistics was first described as such by Babu and Feigelson in the Preface
to their seminal work on the subject, Astrostatistics [1]. The text was authored just
prior to the publication of WinBUGS and to the popularity of R, which was then
barely conceived. As of March 2011, however, there are nearly 3,000 R packages
residing on CRAN mirror sites located throughout the world. Users may download a
core of packages, which consist of the base R program, directly from The R Project
for Statistical Computing web site (http://www.r-project.org/). Other packages may
be downloaded and installed on one’s computer with ease from the Comprehensive
R Archive Network (CRAN) folder within the base web site.

Babu and Feigelson’s text represents the manner in which astronomers and
associated statisticians analyzed data prior to the use of the specialized Bayesian
software that made Bayesian analysis feasible for astronomical analysis. Although
solid astrostatistical work is still being done using the traditional frequentist
approach to statistics, Bayesian methods now predominate in the literature. This
trend has particularly grown in the past 5 years.

40.2 Recent Growth of Astrostatistics

Beginning in the mid 1980s, astronomers began to organize small conferences
devoted to what we may now call astrostatistics. One of the first was the Statistical
Methods in Astronomy conference held in Strasbourg in 1983. The Statistical
Challenges in Modern Astronomy conference has maintained a regular timetable
over two decades, held every 5 years since its inception in 1991. Under the
direction of Jogesh Babu and Eric Feigelson of the Pennsylvania State University
Center for Astrostatistics, the conference has brought together both astronomers and
statisticians from around the world for weeklong series of discussions.

During the 1990s several groups were organized consisting of astronomers
and statisticians having a common interest in developing new statistical tools for
understanding astronomical data. Two of the foremost groups are the Califor-
nia/Boston/Smithsonian Astrostatistics Collaboration (CHASC), headed by David
van Dyk of the University of California, Irvine, and the International Computational
Astrostatistics (InCA) Group, which is primarily comprised of researchers from

http://www.r-project.org/
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Carnegie Mellon University and the University of Pittsburgh. CHASC, InCA, and
the Pennsylvania State University all belong to Large Synoptic Survey Telescope
(LSST) Project, which will provide huge amounts of data for analysis. The 8.4 m
LSST is currently scheduled to begin surveying activities in 2014.

Several sites in various parts of the world are presently engaged in developing
astrostatistics programs and collaborations. An astrostatistics concentration pro-
gram is being developed by the joint efforts of the departments of Statistics and
Astronomy/Astrophysics at Imperial College in London. Conferences on astro-
statistics and degree specializations in the discipline are also being developed at
the University of Calcutta, and at Pennsylvania State University, the University of
Pittsburgh, Carnegie Mellon, Harvard University, University of Florida, University
of Birmingham, and other sites.

When astronomers again began to utilize inferential statistical methods into their
published research, many of the articles employed inappropriate statistical analyses,
or if correct methodology was employed, the analyses generally failed to account
for possible violations of the assumptions upon which the research models were
based. That is, they did not fully appreciate the statistical theory underlying their
analyses. It was certainly not that astronomers lacked mathematical expertise to
understand these assumptions; rather it was that many had no special training in
statistical estimation. Moreover, many astronomers tended to use only a limited
number of statistical procedures. They had not become aware of the vast range
of statistical capabilities that had become available to professional statisticians
and other researchers (Feigelson and Babu 2004). Of course, there were noted
exceptions, but it became readily apparent in the late 20th and during the first
decade of the twenty-first centuries that astronomers in general needed to enhance
their statistical knowledge. Those astronomers who took up this challenge believed
that the best way to address the problem was to conduct conferences and organize
collaborative research groups consisting of both astronomers and statisticians.
I earlier mentioned some of these groups and conferences.

As of 2009, a relative handful of astronomers and statisticians with an interest
in the statistical analysis of astronomical data were associated with collaborative
organizations such as CHASC and InCa. Some 100 ‘astrostatisticians’ attended
the quint-annual Statistical Challenges conference at Pennsylvania State University.
Other conferences have also been ongoing in Europe such as Astronomical Data
Analysis organized by Jean-Luc Starck and Cosmostat. The remaining astrostatis-
ticians have established collaborative associations within their own universities, or
within a small group of universities.

40.3 Astrostatistics and the International Statistical Institute

Some excellent work was being done in the area of astrostatistics, but
communication between astrostatisticians on a global basis has been rather
haphazard. Until recently there has been no overall organization or association
for the discipline.
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To address this need, in early 2008 I formed an astrostatistics interest group
within the fold of the International Statistical Institute (ISI), the world association
of statisticians, with headquarters in The Netherlands. As part of my association
with NASA’s Jet Propulsion Laboratory, I had been on numerous conference
calls with the directors of various NASA and JPL projects and missions since
2007, and repeatedly heard that statistical issues were going to be a problem in
the analysis of their data. This in turn stimulated me to explore the possibility
of forming an association of astrostatisticians that would encourage the global
collaboration of statisticians and astronomers with the aim of effecting better
statistical research. I was also interested in promoting a professional association
for those who considered themselves as astrostatisticians, and not only as a member
of the statistical or astronomical communities.

In December 2009, the ISI Executive Committee approved the existence of
astrostatistics as a full standing committee of the ISI (http://isi-web.org/com/ast).
However, ISI committees consist of no more than 12–15 members. I was receiving
numerous inquires about membership from reseachers of both the statistical and
astronomical disciplines. As a consequence, the ISI Astrostatistics Network was
formed as separate body of researchers, with the ISI astrostatistics committee
serving as the Network executive board. Membership has grown to some 130
members from 26 nations and all populated continents.

After 16 months of existence, the Network has established solid relationships
with both the ISI and International Astronomical Union, whose leadership has
supported the Network and its goals. Network members were awarded an invited
papers session and two special topics sessions at this years ISI World Statistics
Congress in Dublin. In addition, discussions have been underway with several
publishing houses regarding a possible Journal of Astrostatistics. The Network will
only proceed with such a venture, of course, if it is assured that there will be a rather
steady long-term stream of quality submissions made to the journals editorial board.
As of this time we are not convinced that this will be the case in the immediate
future, but do plan for such a journal in the future.

As a consequence of the initial successes of the Network, in December 2010
Springer Science and Business Media begun a Springer Series on Astrostatistics, on
which Network members hold the editorial board positions. The series will publish
texts and monographs on a wide variety of astrostatistical and astrophysical subjects.
A separate Springer astrostatistics e-book series is also being developed to publish
the Proceedings of major astrostatistical conferences throughout the world.

It is clear that many in the astrostatistics community believe that the existence of
a global association of astrostatisticians is a worthwhile body to support. However,
such an association, currently called the International Astrostatistics Network, is
not aimed to be a governing organization, but rather an association to augment and
support the ongoing efforts of established astrostatistics groups and conferences.
The Network consists of researchers with a common interest and a resource to help
disseminate information regarding astrostatistics related literature, conferences, and
research. Most importantly, it can also serve as the professional society for those

http://isi-web.org/com/ast
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identifying themselves as astrostatisticians. Astrostatistics as a profession is but in
its infancy at this time, but it is hoped that a viable profession will be established
within the next 20 years.

40.4 Astrostatistics into the Future

Astrostatistics faces some formidable challenges. The International Virtual
Observatory Alliance (IVO, http://www.ivoa.net) is now being constructed which
will link archival astronomical databases and catalogues from the many ongoing
surveys now being maintained, including LSST. The goal is to make all gathered
astronomical data available to astronomers and astrostatisticians for analysis.
However, this will involve many petabytes of information. In a relatively short time
the amount of data may exceed an Exabyte, or a thousand petabytes. This is a truly
huge amount of data. Even when dealing with terabytes, current statistical software
is not capable of handling such an amount of information. A regression of a billion
observations with ten predictors results in a matrix inversion that far exceeds current
and realistically foreseeable capabilities. New methods of statistical analysis will
need to be developed to deal with these large datasets, and new statistical methods
will need to be created that can evaluate such large amounts of data. There are a
host of statistical and data mining problems related to evaluating huge masses of
data in the attempt to determine the probability of some proposed outcome or event.

Ultra-large models can be attacked using sequential modeling, saving mean
statistics with each iteration, or to partition the data into one-million-observation
models, constructing thousands of these models and putting the summary values
into a metamodel. The statistics of meta-analysis can help as well. Of course, with
more and more data, anomalous observations become dampened out and may be
missed in analysis. Other problems exist as well in implementing such methods.

Preferably, statistical analysis should be made on as much data as possible.
Researchers are now developing VOStat (http://vostat.org), a suite of statistical tools
that will hopefully be adequate to evaluate the type of data I have been describing.
Statisticians, computation specialists, and astronomers will have to work in concert
to deal with these issues.

I believe that astrostatistics will best develop into a mature discipline, capable of
handing the looming data and analytic problems, by becoming a profession. This re-
quires developing joint programs in the discipline, sponsored and maintained by the
mutual efforts of the departments of statistics and astronomy/astrophysics at leading
universities. Graduates will be awarded MS and PhD degrees in astrostatistics, and
be trained in statistical analysis, astrophysics, and computer and computational
logic. With a new generation of astrostatisticians engaged in handling the problems.
I have mentioned here, there is more likelihood that the foremost questions we have
of the early universe, of the nature of dark matter and energy, of the likelihood of
our existing within a multiverse, as well a host of other queries, can be answered.

http://www.ivoa.net
http://vostat.org
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Chapter 41
The R Statistical Computing Environment

Luke Tierney

Abstract R is a computing environment for data analysis and graphics. R is
designed as a high-level programming language that supports complex forms of data
analysis as well as the development of new data analysis methodology. In recent
years R has become the major framework for providing access to new statistical
methodology, and thousands of extension packages are now available. This paper
provides a brief introduction to R with examples drawn from astronomical data.

41.1 Introduction

R [9] is a language for data analysis and graphics originally developed by Ross
Ihaka and Robert Gentleman at The University of Auckland in New Zealand. R is
based on the S language [3,4] developed by John Chambers and others at Bell Labs.
As the primary data analysis framework for the statistics group at Bell Labs the S
language placed a strong emphasis on flexibility and the ability to handle and adapt
to non-standard problems. R has inherited this design philosophy. R is widely used
in the field of statistics and beyond, especially in university environments, and R has
become the primary framework for developing and making available new statistical
methodology. It is, for example, rare these days for a Ph.D. thesis in statistics or
biostatistics not to include and R package implementing the ideas developed in the
thesis. Many R extension packages are available through CRAN (R Development
Core Team [10]) or similar repositories; the number of packages available on CRAN
now exceeds 3,000.
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Table 41.1 R core members and their country of residence

Douglas Bates (USA) John Chambers (USA) Peter Dalgaard (Denmark)
Robert Gentleman (USA) Seth Falcon (USA) Kurt Hornik (Austria)
Stefano Iacus (Italy) Ross Ihaka (New Zealand) Friedrich Leisch (Austria)
Uwe Ligges (Germany) Thomas Lumley (New Zealand) Martin Maechler (Switzerland)
Duncan Murdoch (Canada) Paul Murrell (New Zealand) Martyn Plummer (France)
Brian Ripley (UK) Deepayan Sarkar (India) Duncan Temple Lang (USA)
Luke Tierney (USA) Simon Urbanek (USA)

41.1.1 History and Development Model

R is an Open Source project. After a number of yeas of developing R on their own,
initially for use in a Macintosh computer lab at the University of Auckland, Ross
Ihaka and Robert Gentleman in 1997 established the R core group for developing
and maintaining R. This group now consists of 20 researchers from a number of
different countries shown in Table 41.1.

An essential component of the success of R is the strong support provided
by its community of users. Elements of this support are the many contributed
packages made available, contributions to discussion lists and blogs, contributed
documentation and tutorials, and Task Views provided to help navigate the many
available packages that might be useful in different areas of application [16].

41.1.2 Basic Design of R

The S language was originally designed as a framework to support and enable
the statistics research group at Bell Labs to handle the rich set of non-standard
problems it was confronted with. R retains that basic philosophy of enabling the
exploration of new kinds of data, allowing the data to guide the choice of analysis
to use, and allowing the analysis tools to be adapted to the data as needed. R is
an interactive system, in contrast to batch-oriented systems; this supports and
encourages exploratory data analysis. R is also designed as a high level language that
can be used to express complex data transformation and analysis steps as well as for
implementing new data analysis and display methods. The standard interface to R
is a command line interface in which the user enters commands in the R language.
This is in contrast to systems designed around a graphical user interface, such as
JMP [6], though several extension packages providing graphical user interfaces to
R are available [5, 15].
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41.1.3 Extending the R System

Writing simple R functions is a natural part of working in R. Collections of functions
that implement a particular analysis are often best organized into an extension
package. The R package system provides a framework for developing, documenting,
and testing extension code. Packages can include R code as well as foreign code
(C, FORTRAN). Many R packages are made available though the CRAN repository
[10]; the number of packages available on CRAN recently passed the 3,000 mark.

41.2 Basic Usage and Capabilities

R uses a command line interface, a read-evaluate-print loop: The user types an
expression, R reads the expression, evaluates it, and prints the result. Some simple
examples:

> 2 + 3
[1] 5

> exp(-2)
[1] 0.1353353

> log(100, base = 10)
[1] 2

A vector containing some uniform random numbers can be created using the
runif function and assigned to the variable x with the assignment operator <-:

> x <- runif(4)
> x
[1] 0.1137034 0.6222994 0.6092747 0.6233794

Basic arithmetic operators and functions are vectorized: when applied to a vector
they are automatically applied one element at a time to produce a vector of results.
Scalars are recycled to match the length of the longest vector. Some examples of
vectorized operations are

> x + 1
[1] 1.113703 1.622299 1.609275 1.623379
> log(x)
[1] -2.1741619 -0.4743339 -0.4954860 -0.4725999

41.2.1 Numerical Summaries

R provides functions for computing a range of basic numerical summaries such as
the mean and standard deviation,
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Table 41.2 Functions related to some standard probability distributions

Distribution Density CDF Quantile Generate

Uniform dunif punif qunif runif
Normal dnorm pnorm qnorm rnorm
t dt pt qt rt
F df pf qf rf
Gamma dgamma pgamma qgamma rgamma
Poisson dpois ppois qpois rpois

> mean(x)
[1] 0.4921642
> sd(x)
[1] 0.2523886

or the median and inter-quartile range:

> median(x)
[1] 0.6157871
> IQR(x)
[1] 0.1371875

Functions for sorting and ranking a data vector are also available:

> sort(x)
[1] 0.1137034 0.6092747 0.6222994 0.6233794
> rank(x)
[1] 1 3 2 4

41.2.2 Probability Distributions

R provides support for computing densities or probability mass functions, cumu-
lative distribution functions, and quantile functions of many standard distributions.
Functions for generating random variables are also available. A standard naming
convention is used; density functions start with d, cumulative distribution functions
with p, quantile functions with q, and random number generators with r. Table 41.2
shows some of the available functions. More distributions are available in extension
packages.

41.2.3 Defining Functions

If a method is not available in R it can be implemented by defining a function
using the R language. For example, the Pareto distribution is not covered by base R
(though it is by several contributed packages). The CDF of the Pareto distribution is
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F(x) =

{
1− x

(xm
x

)α
for x ≥ xm

0 otherwise

for parameters xm,α > 0. R functions are created by the function operator
and given a name by assigning the result to a variable. A vectorized R function
ppareto to compute this CDF is defined by

ppareto <- function(x, xmin, alpha = 1) {
stopifnot(all(xmin > 0) \&\& all(alpha > 0))
1 - pmin(xmin / x, 1) \ˆ alpha

}

41.2.4 Linear Algebra

Numerical linear algebra computations are at the heart of many statistical methods.
R provides functions for computing QR and Cholesky factorizations, singular value
decompositions, and PLU decompositions, and for solving triangular systems.
Functions for computing eigenvalues and eigenvectors are also available. The
implementations are based on the open source LAPACK, LINPACK, and EISPACK
libraries. These in turn make use of the basic linear algebra subroutines (BLAS)
library. The R source code includes a basic reference implementation of the
BLAS, but it is easy to substitute a high performance BLAS such as Atlas [1],
OpenBLAS [17] or a vendor BLAS implementation.

The Matrix package [2] provides a richer set of facilities for specialized types
of matrices, including extensive sparse matrix support.

41.3 Graphics

R contains a rich set of graphical facilities. Several graphics frameworks are
available that provide high level functions for creating a variety of statistical graphs.
Two frameworks provided in the basic R distribution are base graphics and Lattice
graphics. Two widely used frameworks available as add-on packages are ggplot2
graphics and the interactive 3D framework RGL. A number of other graphics
frameworks are available or in development

41.3.1 Base Graphics

Base graphics provides a number of standard graphs, such as dot plots, box plots,
histograms, scatter plots, scatter plot matrices, and perspective plots. The base
graphics framework is easy to use for simple tasks and supports incremental
composition and augmenting of plots.
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Fig. 41.1 Distribution of redshift values for galaxies in the Abell 85 cluster with redshift values
less than 0.3

As an example, adapted from Alastair Sanderson’s tutorial pages [11], we
can examine data on galaxy cluster Abell 85 from the NASA/IPAC Extragalactic
Database [8] and create a plot of the distribution of redshift values for galaxy objects
with redshift less than 0.3. First, read in the data and simplify some variable names:

A <- read.table("a85\_extended\_NEDsearch.txt",
sep="|", skip=20, header=TRUE)

colnames(A)[c(2,3,4,5)] <- c("name","ra","dec",
"type")

Next, create the subset with redshift values less than 0.3 as
G <- subset(A,type=="G"&!is.na(Redshift)

&Redshift<0.3)

Finally, create a histogram of the data, superimpose a smooth density estimate, and
add a rug plot showing the raw data values along the bottom:

hist(G\$Redshift, prob = TRUE)
lines(density(G\$Redshift), col = "red")
rug(G\$Redshift)

The result is shown in Fig. 41.1
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Fig. 41.2 Entropy profiles for cool core and non-cool core galaxy clusters

41.3.2 Lattice Graphics

Lattice graphics [12] are used for creating structured sets of related graphs for
understanding multivariate data. Lattice was developed by Deepayan Sarkar based
on Cleveland’s Trellis system for S. Some advantages of lattice graphics include
better, and customizable, default choices for many graphical parameters and layout,
a simpler mechanisms for adding annotations, and a richer facility for showing
multiple data sets in a single graph or set of graphs. Lattice plots usually display
one or two variables given values of additional variables by grouping, using separate
colors or symbols, or by conditioning, using separate plots on identical scales.

As and example, again adapted from Alastair Sanderson’s tutorial pages [11], we
use a set of smoothed gas entropy measurements at a series of radii of 20 galaxy
clusters. The variables in the data set are

egas.smo: smoothed gas entropy
r.kpc: radius, in kiloparsecs
cname: cluster name
cctype: cool core or non-cool core

Figure 41.2 shows the entropy profiles for cool core and non-cool core galaxy
clusters.
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Fig. 41.3 Individual entropy profiles for cool core and non-cool core galaxy clusters

The plot is created by the expression

xyplot(egas.smo ˜ r.kpc | cctype, groups=cname,
scales=list(log=TRUE),
type=c("g", "l"), aspect = "xy", data=entropy)

The formula egas.smo ˜ r.kpc | cctype requests a plot of egas.smo
against r.kpc conditioned on the two values of cctype, thus producing two plots
with common axes. The groups specification establishes the relation between
data points within a common galaxy cluster and results in the common color and
connected lines used for each galaxy cluster’s profile.

A graph showing each profile in its own panel is shown in Fig. 41.3. This plot is
created with the expression

xyplot(egas.smo ˜ r.kpc | reorder(cname, as.numeric(cctype)),
groups=cctype, type=c("g", "l"), data=entropy,
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scales=list(log=TRUE),
auto.key=list(points=FALSE, lines=TRUE))

The reorder function is used to ensure that the cool core and non-cool core
galaxy clusters are shown together.

41.4 Statistical Models

The basic R distribution supports fitting a wide range of statistical models, including
linear and non-linear regression models, generalized linear models, mixed models,
survival models, time series, and spatial models. Tools for general optimization and
maximum likelihood fitting are also provided. Contributed packages add support for
many more models and methods.

41.4.1 Common Modeling Function Features

Most modeling functions support a formula language for specifying a model. For
example, the formula

y ˜ a + b

would be used for specifying a regression of y on the variables a and b. Data is
usually taken from a data frame specified as a data argument. Functions usually
return a model object that can be used to extract coefficients and standard error
estimates, compute residuals or fitted values, predict responses at new explanatory
variable values, or obtain summary information for the fit. The most basic modeling
function is lm for fitting linear models.

41.4.2 Linear Model Example

A simple, though not very sensible, model with separate slopes and intercepts for
cool core and non-cool core galaxy clusters can be fit to the gas entropy data
using the lm function. The summary function can then be used to print a standard
summary of the fit:

> summary(lm(log(egas.smo) ˜ cctype + cctype * log(r.kpc), data = entropy))
Call:
lm(formula = log(egas.smo) ˜ cctype + cctype * log(r.kpc), data = entropy)

Residuals:
Min 1Q Median 3Q Max

-0.87240 -0.15384 0.02201 0.16733 1.05008
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.57021 0.06988 8.16 5.12e-15 ***
cctypenon-CC 2.01888 0.11629 17.36 < 2e-16 ***
log(r.kpc) 0.97672 0.01700 57.47 < 2e-16 ***
cctypenon-CC:log(r.kpc) -0.32162 0.02520 -12.76 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2767 on 375 degrees of freedom
Multiple R-squared: 0.9487, Adjusted R-squared: 0.9482
F-statistic: 2310 on 3 and 375 DF, p-value: < 2.2e-16

41.5 More Language Features

The R language supports a number of fairly standard data types, but also has some
unusual language features.

41.5.1 Some R Data Types

R supports a number of different vector data types, including logical vectors, integer
vectors, real (double precision) vectors, character vectors, and generic vectors.
There are no true scalars, only vectors of length 1. Arrays are vectors with a dim
attribute specifying the array dimensions.

Generic vectors can have any kind of R data objects as their elements and are
building blocks for more general data types. Of these, data frames are the most
important. They contain the columns of variable values for a data set.

Non-vector data types include functions and environments, which hold bindings
between variable names and values.

41.5.2 Some Unusual Language Features

An unusual feature of the R language is that vectors are immutable. Conceptually,
the expression

x[i] <- y

assigns a modified copy of x to the variable x. The original vector assigned to the
variablex is not changed. This eliminates errors caused by unintended modifications
to data occurring inside of functions. For efficiency reasons R tries to avoid making
copies that are not necessary.

Another unusual feature is that all atomic (i.e. non-generic) vector types support
missing values. This is very useful for data analysis applications where missing
values are all too common.
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Arguments to function calls are only evaluated if and when they are needed. This
is called lazy evaluation. One implication is that even control flow constructs can be
viewed as ordinary functions. R functions are also able to obtain the expressions of
the arguments with which they were called. This is useful, for example, for creating
meaningful default labels for plots. Combined with lazy evaluation, this means
functions can implement their own evaluation rules This is called non-standard
evaluation. This can be very useful, but if not used with care can lead to surprising
and confusing results.

41.6 Future Directions

A number of directions for future improvement of R are being explored by
the members of the R core group. Efforts I am involved with include work on
performance improvement and improved handling of larger data sets.

41.6.1 Future Directions: Performance

One major effort at performance improvement is the development of a byte code
compiler for R. The first version of this compiler was released in Spring 2011 and
provides significant improvement for scalar-intensive computations. Future work is
likely to lead to substantial further performance improvements. Areas to be explored
include improved function call performance and possible native code generation.

Given current developments in processor technology, much improvement in
performance is likely to come from the use of parallel computing to exploit
the availability of multiple processor cores. The ability to use high performance
BLAS implementations, including multi-threaded implementations, has already
been mentioned in Sect. 41.2.4. Other directions being explored include automatic
parallelization of basic arithmetic operations and matrix operations when the sizes
of the operands are sufficient to outweigh synchronization overheads. OpenMP is
being examined as an implementation framework, and recent work has also made it
easier for R package authors to make use of OpenMP in their code.

Other efforts at parallelization include the development of explicit parallelization
frameworks such as snow [13] and multicore [14]. A recent book describes
some of the available frameworks [7].

GPU computing is also an area of active research in scientific computing, and
several packages that take available of available GPUs are available. Whether it
makes sense to integrate GPU computing more directly into the core R engine is not
yet clear but is being explored.

Most efforts at parallelization have focused on interpreted code, but it is possible
that compilation may help in improving parallel performance as well.
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41.6.2 Future Directions: Large Data Sets

Most R functions work on data held in computer memory. A current limitation of
R is that integers used to represent vector lengths are stored as 32-bit quantities.
As a result, the number of elements in an R array is limited to at most 231 −
1 = 2,147,483,647. As this corresponds to 16 GB for a numeric array of double
precision elements it is not often a limitation yet, but it is becoming more limiting
over time. Work over the next year or so will investigate how to remove this limit
without forcing a complete rewrite of R and all contributed packages containing C
or FORTRAN code.

With storage capacity likely to remain larger than available RAM for the
foreseeable future, more methods for handling data sets larger than available
memory will continue to be needed. Various approaches can be programmed in R,
and several packages are available for operating on very large data stored on disk or
other storage media, but more work in this areas is needed.

41.7 Getting Started

R is available from CRAN, the comprehensive R archive network, at http://cran.r-
project.com. R is available as source code, as pre-compiled binaries for Windows
and Mac OS X, and through the package management systems of many Linux
distributions.

Once R is installed the help command can be used to accesses the manual
included in R. Manuals are also available at http://cran.at.r-project.org. Links to
user-contributed documentation, tutorials, and books about R are also available at
the CRAN web site. There are several active mailing lists and blogs available. The
Task Views [16] available at CRAN provide a useful way of learning about relevant
contributed packages for different problem domains. As of the time of writing there
is no Astronomy task view, but that may change in the near future.
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Chapter 42
Panel Discussion: The Future of Astrostatistics

G. Jogesh Babu

Abstract Four experienced astrostatisticians express their views on the promise of
astrostatistics in the future: David van Dyk (University College London) discusses
massive datasets and complex models, Eric Feigelson (Penn State University)
speaks on the past and future of astrostatistics, Thomas Loredo (Cornell University)
elucidates fundamentals underlying statistical analysis, and Jeffrey Scargle (NASA-
Ames Research Center) presents challenges and opportunities in astrostatistics.

42.1 David A. van Dyk: Understanding Massive Data Sets
and Complex Models

Perhaps the most pressing data analytic challenge faced by astronomers is the
deluge of massive data sets and data streams. We are in danger of drowning in a
torrent of data (Fig. 42.1). The Sloan Digital Sky Survey produced several thousand
scientific studies from petabyte photometric and spectroscopic surveys obtained
with a modest telescope. This is just the tip of the iceberg. An alphabet soup of
other projects are following is Sloan’s path: DES, PTF, Pan-STARRS, SN Factory,
Kepler, LAMOST, and most spectacularly the planned LSST.

Several presentations during this conference discussed salient aspects of statisti-
cal approaches to these mega-data sets.

Domenico Marinucci discussed the extraordinary growth in the size of data sets in
cosmology. In some measure this is likely true of all areas of astronomy. (Of
course as deeper data becomes available fainter objects become visible and
methods for small or low-count data remain important.)
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Fig. 42.1 Today’s astronomer may be drowned in a tidal wave of their own massive data sets and
complex models

Kirk Borne told us that more data is not just more, it is also qualitatively different
data. This may be true, but we must also recognize that the massive growth in
the quantity of available data is a major change in and of itself. We must both
develop methods to handle large data sets in standard ways, and also realize that
entirely new analysis methods are made possible and necessary by the quality
and/or quantity of the new data sources.

Alexander Gray presented improvements in the computational efficiency for
many standard methods that allow them to be applied to massive data sets.

Ann Lee showed how transforming high-dimensional data to lower dimensional
summaries can make them more amenable to standard analysis. Such methods
can be very powerful when there are many measurements of the same object.

Joseph Richards discussed an automatic classification procedure for the irregular
time series that typically emerge from wide-field surveys. There are dozens of
types of variable stars and extragalactic transients that need to be classified
without human involvement. Thomas Lee spoke on similar challenges involving
the classification of sunspots from imaging data. These procedures can work
when reliable training sets for the various classes are available to supervise
the classification process. It is, however, difficult to capture the subtlety of
classification by humans in any automated procedure.

Statisticians and computer scientists are both developing methodologies for
treating large data sets, but from quite different perspectives. Machine learning and
artificial intelligence methods are designed to be scalable to large data sets, but often
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rely on ad hoc foundations and exhibit unpredictable statistical properties. Statistical
methods tend to be principled with precise theoretical underpinnings and predictable
performance, but are often computationally slow. The challenge is to combine the
best of both worlds and develop principled methods that are scaleable to massive
data sets.

Fortunately, these challenges are not unique to astronomy, but are being con-
fronted in a broad range of academic fields, including business, industry, economics,
biology, and physics. Of course, the models differ in each field, but because many of
the computational issues are similar, cross-fertilization can be fruitful. Astronomers
can benefit from the experience that statisticians and computer scientists have in
treating similar problems in other areas.

The LSST project, in particular, will generate datasets that are not just massive,
but also rich and deep. There will be trigonometric parallaxes, proper motions,
photometry in six bands, morphology, and time series with 102–103 irregularly-
spaced epochs for billions of objects. Analysis will require both simple but scalable
methods and the use of complex models that require sophisticated computing even
with small but rich datasets. Such models are sometimes available analytically, but
often can only be calculated using sophisticated computer models and/or simulators.
An entirely new set of methods are required to incorporate such computer models
into principled statistical analyses. This is currently an active area of research in
astrostatistics and has come up numerous times during this conference:

Andrew Connolly showed how the observational data from LSST can be un-
derstood in detail using sophisticated ray tracing of astronomical populations
through the optics of the telescope and accounting for specific properties of the
detector.

Vinay Kashyap similarly used principal component analysis to analytically sum-
marize complicated calibration properties using computer models of telescope
and detector systems.

David Higdon described how cosmological models, which are extremely time
consuming to calculate in full detail, can be emulated as Gaussian processes
and fit to statistical summaries (e.g. the galaxy two-point correlation function)
of massive datasets.

Chad Schafer introduced ABC, Approximate Bayesian Computation. This
method compares data sets simulating under various values of the model
parameters with the observed data to deduce what values of the parameter
could feasibly have generated the observed data. This is practical when a single
run of the model is not extremely expensive computationally.

David van Dyk and, in a contributed paper, Nathan Stein embed computer models
into multilevel models in a fully Bayesian setting.

These represent a variety of the strategies for tackling the diverse challenges
associated with complex datasets and/or models in astronomy. This rich class
of data-analytic problems demands a diverse suite of new statistical methods.
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Researchers in all areas of astronomy are turning to computer models to represent
complex physical processes that defy analytic formulations. These models pose real
challenges even with moderately sized data sets, but as Carlo Graziani noted, “the
challenge is acute when complex models are mixed with massive data”. Get ready
for a computer model near you!

Model fitting is the first of many challenges associated with complex computer
models. Model checking, comparison, and improvement pose special challenges
when the models under consideration are complex and can only be evaluated
numerically. The design of experiments—deciding when and where to make your
telescopic observations to optimally constrain your astrophysical model—can also
be exceedingly complex when the idiosyncrasies of particular models and particular
data sets are considered. The LSST team is now discovering this in their discussions
of cadences for repeated observations, even without considering formal statistical
optimization. Standard methods for optimal design can guide us when dealing with
complex computer models, but are not generally sufficient in and of themselves.
These are only a few examples of the challenges posed by complex computer
models. Generally speaking however, we cannot expect standard off-the-shelf
statistical methods to be sufficient. This is good news for methodologists: there
is much work to be done to develop the statistical methods and computational
techniques demanded by complex models, especially when they are mixed with
massive data.

Let me end by reiterating the urgent need to fully integrate statisticians, computer
scientists, and other methodologists into empirical astronomy in general and in
the large astronomical survey projects in particular. These data scientists can
contribute to the design of data collection, the development of methodology, the
actual data analyses, and the linking of empirical results with astrophysical models.
These cross-disciplinary colleagues can be integrated within science teams as
graduate students and post-docs or brought in as collaborating faculty funded as
co-investigators on grants or even hired as faculty members. There is a real thirst
among astronomers for statistical help. The current involvement of a handful of
statisticians around the world is simply insufficient to meet their needs.

Astrostatistics deserves to grow into an established subdiscipline of astron-
omy, respected as a full-time research speciality. Statistical subdisiplines are
well-established in other fields. Statisticians reside in academic departments of
economics, psychology, and biology and publish in prestigious journals of econo-
metrics, psychometrics, and biostatistics. Disciplinary scientists with sophisticated
training in statistics have faculty positions in business, engineering, political
science, and biology departments. I am pleased to say that my new academic home,
Imperial College London, is now growing such an astrostatistics group within an
astronomy group in collaboration with its statistics group. I hope this is just the
beginning of a worldwide push toward establishing astrostatistics as an academic
subdiscipline.
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42.2 Eric Feigelson: The Past and Future of Astrostatistics

42.2.1 Astrostatistics Yesterday

Hipparchos arguably started astrostatistics twenty-first centuries ago with his
discourse on the length of a year, starting a millennium-long discussion on how
to estimate a fixed physical quantity given discrepant measurements [12]. A favorite
estimate among the Greeks was the midrange, the mean of the two extrema, which
is now considered to be a poor estimate. During Medieval times, some scholars
recommended against acquiring repeated measurements; if there is only one
measurement, then the value is definitely known! The mean value was advocated by
Tycho Brahe and Galileo, but Johannes Kepler inconsistently used arithmetic means,
geometric means, and middle values in his work. A consensus among astronomers
on the mean emerged only in the eighteenth century, although today many argue
that the median is more robust against outlying measurements.

Critical foundations of modern statistics were laid during the nineteenth century
by scholars using Newton’s laws of motion and gravity to model motions of
bodies in the Solar System [11, 28]. This ‘celestial mechanics’ led some of the
greatest mathematicians of the time—Abraham DeMoivre, Adrien-Marie Legendre,
Pierre-Simon de Laplace, Siméon-Denis Poisson, Carl Friedrich Gauss—to develop
the normal error law, Central Limit Theorem, least-squares regression. Gauss spent
most of his career as Professor of Astronomy and Director of the astronomical ob-
servatory in Göttingen, Poisson was an astronomer at Paris Bureau des Longitudes,
and astronomers later in the century, from John Herschel to Simon Newcomb to
Giovanni Schiaparelli, contributed to least squares theory. Thus, for most of the past
two millennia, the statisticians were the astronomers and the astronomers were the
statisticians.

But the close connection between the fields was sundered during the twentieth
century [8]. The statisticians, guided by Frances Galton, Karl Pearson and R. A.
Fisher, devoted their talents to serve human affairs: biometrics, demography,
economics, political science, and industries ranging from insurance to agriculture.
Astronomers found that modern physics derived from terrestrial phenomena—
electromagnetism, thermodynamics and fluid mechanics, Einstein’s mechanics and
gravity, and above all quantum mechanics regulating atomic and nuclear physics—
could be powerfully applied to celestial phenomena. The astronomers thus because
astrophysicists, seeking to understand the underlying composition and structure
of celestial objects and the physical processes underlying their interactions and
evolution. Enormously successful models for understanding the physics of stars
and cosmology emerged from this enterprise. Thus, by the middle of the twentieth
century, astronomical research had largely moved from the statistics of celestial
phenomena to astrophysical modeling.

In the 1970s and 1980s there was progress in isolated areas. An appendix of
an obscure paper, still under-recognized, by the distinguished British astrophysicist
Donald Lynden-Bell [16] made a profound advance in mathematical statistics.
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He derived the unique nonparametric maximum likelihood estimator for a randomly
truncated univariate dataset, a close analog of the Kaplan–Meier estimator (Kaplan
and Meier 1958) for a randomly censored dataset that lies at the foundation of sur-
vival analysis. Lynden-Bell’s estimator was independently found by Woodroofe [34]
who further elucidated its mathematical properties. The Lynden-Bell-Woodroofe
estimator should, in my opinion, be used in hundreds of astronomical studies of
‘galaxy luminosity functions’ and similar distributions derived from flux-limited
surveys. Unfortunately, Schmidt’s [26] binned V/Vmax estimator with less desirable
properties is still commonly used in its place.

The 1980s also witnessed a great series of papers by Jeffrey Scargle on time
series methodology in astronomy, including the derivation of a generalization a
Fourier periodogram designed for unevenly spaced data [23]. This Lomb-Scargle
periodogram has been extensively used in searches for periodicities, although there
is still controversy on reliable estimation of its False Alarm Probabilities. I stumbled
across survival analysis and brought some of its methods into common use in
astronomy (Feigelson and Nelson 1985). A growing corpus of methodology was
also developed to study the statistics of galaxy clustering [17].

42.2.2 Astrostatistics Today

Around 1995–2000, one could see a significant resurgence in interest and activity
on advanced statistical methods within the astronomical community. The growth
of Bayesian inference during the past decade, well-documented at this conference,
is perhaps the most dramatic example. Poisson processes, image processing, time
series analysis, likelihood-based modeling, wavelet analysis, neural networks have
all witnesses increased applications of sophisticated methodology. We have heard at
this meeting about compressive sensing, an amazing approach originating in image
restoration and signal processing, which hopefully will become important in the
next decade.

However, a serious problem remains with the average astronomical study. While
there is a small but growing vanguard of astrostatistical experts in the astronomical
community, propelled by a small cadre of statistician collaborators, the great
majority of astronomers producing the great majority of research still use a narrow
suite of familiar methods. The major astronomical journals publish around 20,000
papers annually, and most use methods such as weighted least squares regression
(‘minimum χ2’ in the astronomers’ lexicon), Kolmogorov-Smirnov nonparametric
tests (unaware that the Anderson–Darling test has better performance), linear prin-
cipal components for multivariate structure (unaware of nonlinear approaches), and
the two-point correlation function for point processes (unaware of its relationship
to Ripley’s K, Baddeley’s J and other statistics in spatial statistics). David van
Dyk’s group showed that even traditional ‘likelihood ratio test’ is often misused
by astronomers [20], and we have pointed out that the Kolmogorov-Smirnov test
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probabilities often to not apply to astronomers’ problems [2]. Every textbook on
unsupervised nonparametric multivariate clustering points out serious deficiencies
in ‘single linkage agglomerative clustering’, yet astronomers continue to use it (the
‘friends-of-friends algorithm’ in the astronomers’ lexicon). A bibliometric account-
ing of astronomers’ use of modern machine learning classification algorithms—such
as Support Vector Machines or Random Forests—shows only a handful of studies
using these important techniques [7].

The development of the public domain R statistical software system with
its exponentially growing CRAN add-on packages—now numbering over 3,000
packages with over 50,000 statistical functionalities—can dramatically improve
the average astronomer’s toolkit for statistical analysis ([22], http://www.r-project.
org). Extensive Web-based resources and dozens of books are available to inform
astronomers about R’s capabilities and usage. At Penn State and abroad, we have
trained several hundred astronomy graduate students since 2005 in R in week-long
Summer Schools. Our textbook emerging from these schools, Modern Statistical
Methods for Astronomy with R Applications [8], may further broaden the R-fluent
community in astronomy.

42.2.3 Astrostatistics Tomorrow

I suggest that, in addition to learning more methodology, astronomers need to adopt
a more sophisticated view for approaching statistical problems arising in data and
science analysis. Statistics is not just a collection of mechanical tools that can be
quickly applied and that produce scientifically clear results. Rather, the application
of statistics to scientific problems requires careful statement of the problem, model
formulation, choice of statistical method(s), calculation of statistical functionalities,
validation of results, and scientific interpretation.

This is a messier, but much more interesting, process than conducted by most
astronomers. The enterprise is further complicated by the vast scope of modern
statistics, providing enormous capabilities but make it difficult to find and select
methods for a particular problem. Interpreting a statistical result is also not always
obvious: in a large sample, a tiny effect of little scientific importance might be
statistically significant, while in a small sample, even major scientific effects might
be undetectable.

I would like to end with a vision for astrostatistics in 2025:

• The graduate curriculum for astronomers includes a year of statistical methodol-
ogy tuned to our needs.

• Dozens (out of thousands) of astronomers obtain simultaneous M.S. or Ph.D.
degrees in statistics, applied mathematics, and computer science.

• Astronomical papers refer to statistics textbooks, not other astro papers, for
methodology.

http://www.r-project.org
http://www.r-project.org
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• Important problems that confront us today are largely solved: multivariate
heteroscedastic measurement errors, irregularly spaced time series, faint source
detection, etc.

• Astronomers regularly and competently use hundreds of methods in P, the public
domain statistical software system, successor to Q and R.

• One to two dozen well-funded research groups in astrostatistics and astroinfor-
matics are active on three continents.

• Statistical Challenges in Modern Astronomy conferences are held annually, not
every 5 years.

42.3 Thomas Loredo: Statistical Foundations
and Statistical Practice

42.3.1 The Frequentist-Bayesian Debate

The future of astrostatistics is linked to the future of statistics as a discipline. The
emerging needs of astrostatistics may both motivate and benefit from fundamental
developments in statistics. This is a two-way street.

Christopher Genovese told us earlier in the conference that, within statistics,
the debate between frequentist and Bayesian approaches has largely faded from
view. He noted that, although nontrivial philosophical and conceptual differences
certainly exist, statisticians recognize that there are situations where each approach
has an advantage, and both are used successfully.

My outsider view of contemporary statistics supports the assessment that debate
about foundations has faded in recent years. But I do not see this as a positive
development, and I disagree with any prescription that fundamentals should not
be seriously discussed and researched. Issues at the foundations of statistics are not
merely philosophical. Where one comes down on foundational issues has significant
implications for statistical practice. I would urge statisticians to think more rather
than less about the foundations of their discipline, and to consider doing so in closer
partnership with the scientist consumers of their methods. Despite being an outsider
to statistics, I take this position emboldened by being in good company from within
the discipline, and by the seriousness of the topic. For I see statistics as a kind of
theory of the scientific method—at least, that part of the scientific method that may
be described with quantitative precision—giving all scientists a vested interest in
the field’s development.

Prominent statisticians who have contributed enormously to statistical practice
continue to embrace the struggle with the foundations and fundamentals of sta-
tistical inference. Bradley Efron [5], whose work mostly adopts the frequentist
approach, recently lamented the absence of attention to foundations:

Methodology by itself is an ultimately frustrating exercise. A little statistical philosophy
goes a long way but we have had very little in the public forum these days.
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In his 2004 American Statistical Association (ASA) Presidential Address [4], he
asserted:

The 250-year debate between Bayesians and frequentists is unusual among philosophical
arguments in actually having important practical consequences. . . . Broadly speaking,
Bayesian statistics dominated nineteenth Century statistical practice while the twentieth
Century was more frequentist. What’s going to happen in the twenty-first Century? . . . I
strongly suspect that statistics is in for a burst of new theory and methodology, and that this
burst will feature a combination of Bayesian and frequentist reasoning.

Efron sees empirical Bayes methods as a promising frequentist/Bayesian hybrid
approach ([5]; see the accompanying discussion for critical assessments); I will have
more to say about this below.

To cite another example, in his 2005 ASA President’s Invited Address, Roderick
Little said:

Pragmatists might argue that good statisticians can get sensible answers under Bayes or
frequentist paradigms; indeed maybe two philosophies are better than one, since they
provide more tools for the statistician’s toolkit. . . . I am discomforted by this “inferential
schizophrenia.” Since the Bayesian (B) and frequentist (F) philosophies can differ even on
simple problems, at some point decisions seem needed as to which is right. I believe our
credibility as statisticians is undermined when we cannot agree on the fundamentals of our
subject.

Little, whose work has mostly adopted the Bayesian approach, has recently tried
to work out principles for best practices, pulling strengths from each approach.
Roughly speaking, his “calibrated Bayes” compromise relies on Bayesian methods
for inference under a model, but holds an important role for frequentist methods
for model assessment. He feels strongly that Bayesian methods are insufficiently
taught to statisticians. But he also criticizes advocates of Bayesian methods for not
sufficiently assessing their modeling assumptions.

With such leading lights harping on the need to examine fundamentals, why is
there so little of what one might call “foundational self-examination” in statistics?
Andrew Gelman [9], in a discussion of the empirical Bayes synthesis of Efron [5],
presents three meta-principles of statistics, among them one shedding a bit of light
on this question:

My second meta-principle of statistics is the methodological attribution problem, which is
that the many useful contributions of a good statistical consultant, or collaborator, will often
be attributed to the statistician’s methods or philosophy rather than to the artful efforts of
the statistician himself or herself. The result is that each of us tends to come away from a
collaboration or consulting experience with the warm feeling that our methods really work,
and that they represent how scientists really think. In stating this, I am not trying to espouse
some sort of empty pluralism. . . . I think we all have to be careful about attributing too much
from our collaborators’ and clients’ satisfaction with our methods.

The meta-principle speaks to the absence of reflection on foundations: truly talented
statisticians adopting different approaches get good work done; the approach they
adopt seems not to matter. But Gelman’s comment about “empty pluralism” is
important. Satisfaction with the current “inferential schizophrenia” in statistics is
not justified by past successes. Brilliant analysts can rely on unarticulated intuition,
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but the rest of us need sound principles, if only they can be uncovered. (We can also
benefit from collaboration, but that’s another topic!)

Bayarri and Berger [3] provide concrete examples of methodological advances
coming from foundational research in their survey, “The Interplay of Bayesian and
Frequentist Analysis.” They argue that “the debate is far from over and, indeed,
should continue, since there are fundamental philosophical and pedagogical issues
at stake,” with significant implications for practice. They review research that
combines frequentist and Bayesian ideas resulting in new directions for statisti-
cal practice, including work on frequentist performance of Bayesian procedures,
predictive assessment of models, conditional frequentist testing, and so forth.
To highlight just one area with practical consequences: Conditional frequentist
testing is an alternative to traditional hypothesis testing with p-values (astronomers’
“significance levels”) that I have found to be appealing to astronomers I work with,
because it does what they thought their p-values were doing. It also happens to
be closely related to model comparison with Bayes factors, and so serves as a
natural bridge between Bayesian and frequentist thinking. Bayarri and Berger also
discuss areas where the two approaches seem to fundamentally disagree, such as
multiple testing, sequential analysis, and finite population sampling. These topics
are important for a variety of astronomical problems, arguing again that work on
fundamentals will have practical consequences for astronomers.

The ISBA Bulletin from the International Society for Bayesian Analysis, available
at http://bayesian.org/, is a good source for occasional informal interchanges on
these issues. In a recent issue, ISBA President Michael Jordan [14] polled a
number of leading statisticians (including some whose work is largely frequentist)
on what they thought were the principal open problems in Bayesian statistics.
They noted that Bayesian and frequentist methods often differ considerably on
model selection, model misspecification, and model validation. Computation is
often seen as difficult; approximate Bayesian computation (ABC) methods, as
introduced by Chad Schafer at this conference, may be an important approach.
The relationships between frequentist and Bayesian methods need to be elucidated,
such as connections between empirical Bayes and the bootstrap and FDR control.
Choice of priors continues to be an important issue. Concern was expressed about
nonparametric and semiparametric inference where it presently seems safer and
easier to use frequentist rather than Bayesian methods; this was discussed by
Christopher Genovese earlier in the conference. In all of these areas, clarifying
foundations will directly affect practice. And many of them are clearly relevant to
current and emerging astrostatistics problems.

42.3.2 Multilevel Models and Multiple Testing

Let me elaborate on one item in Jordan’s list as an example of where some struggle
at the Bayes/frequentist divide by statisticians and astronomers together might pay
dividends: the role of multilevel modeling (empirical or hierarchical Bayes) in

http://bayesian.org/
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multiple testing, where FDR control has become the standard frequentist technique.
Statistical research in this area is important for addressing challenges being raised
by the astronomy data deluge discussed above by David van Dyk. The deluge
coming from synoptic surveys does not just provide astronomers more data than
we are used to; it also provides a different kind of data: collections of modest-
sized datasets (such as sparse, irregularly-sampled light curves) for vast numbers
of related objects. Astronomers need methods that can accurately and optimally
accumulate information, not only within the dataset for a particular object, but also
across a population of related objects.

This problem is not unique to astronomy. It is arising in many disciplines,
motivating much current statistics research. This research was the main theme of
a recent article by Bradley Efron entitled “The future of indirect evidence” in the
excellent cross-disciplinary journal Statistical Science [5]. Whereas conventional
statistical methods accumulate information about an object or process by repeated
observations of the same object or process, new data require the ability to pool
information across ensembles of related objects or processes—“indirect evidence.”
Efron advocates empirical Bayes methods as a general framework for using indirect
evidence, and False Discovery Rate (FDR) control for the class of problems where
the goal is separation of a large ensemble of related observations into discoveries
and “nulls.” Efron’s paper was published with discussion; none of the discussants
liked FDR, and neither do I.

For astronomers, a catalog is not just a report of final classifications of candidate
sources. Rather, it is a starting point for further analysis and discovery, perhaps
the most common goal being estimating population distributions. Catalogs pro-
duced using FDR control—say, with the well-known Benjamini–Hochberg (BH)
procedure [19]—are ill-suited to this. False discoveries pile up at the low p-values.
In typical astronomical settings, the signal-to-noise ratio will be lower for dim
sources than for bright ones, so the low p-values will tend to come from dim
sources. Applying FDR control methods to this situation will give progressively
greater pollution at dimmer fluxes. Simply knowing that you have controlled the
FDR at some specified level for the whole catalog does not help you accurately
infer the run of logN–logS (log source counts vs. log flux, i.e., the number-size
distribution) or other interesting population-level quantities from the catalog. So
BH FDR control addresses a particular question in an almost miraculously beautiful
way—nonparametrically, adaptively, and robustly—but it does not provide results
that let astronomers answer further, related questions we want to address with the
data. Bayesian multilevel modeling can address such questions, via probabilistic
“soft” classification rather than thresholding, but the approach requires more care in
assessing the impact of modeling assumptions (see, e.g., [27]).

Statisticians themselves are not uniformly enthusiastic about FDR control.
Gelman [9] wrote: “To me, the false discovery rate is the latest flavor-of-the-month
attempt to make the Bayesian omelette without breaking the Bayesian eggs. . . it can
work fine if the implicit prior is ok. . . but I really don’t like it as an underlying
principle.” The frequentist literature on multiple testing itself recognizes that FDR
control may not address the science questions of interest in a particular study.
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Fig. 42.2 Diagram of a discovery chain whereby exoplanets are found from periodic Doppler
shifts in the spectra of the host stars. Progress in detection and characterization of individual planets
leads to studies of exoplanet populations, and improved design of the observational experiments
and spectral analysis procedures

It includes alternatives to FDR control, such as estimation of confidence bounds on
the source fraction advocated by Meinshausen and Rice [18] for some applications.
Tighter interaction between astronomers and statisticians is needed to work out how
frequentist and Bayesian approaches to multiple testing might interact to produce
tools meeting astronomers’ needs. For example, can we simultaneously have the
robustness offered by BH FDR control and the “soft thresholding” offered by
Bayesian multilevel models, enabling a variety of subsequent scientific analyses
using the source detection results?

42.3.3 Statistical Analysis and the Chain of Discovery

Frequentist methods tend to frame a data analysis task as a monolithic decision,
as if addressing that one decision were the sole goal of data-taking. Indeed, this
is made explicit in the decision-theoretic formulation of frequentist estimation and
testing. But astronomers are seldom seeking to produce a single terminal decision
from their data. Instead our observing and cataloging and modeling are all just steps
in what one might call unfolding “chains of discovery.” An astronomical problem
is often first tackled with sequential experimentation and exploration, starting a
chain of discovery leading from study of individual objects to study of populations.
Figure 42.2 diagrams an example of such a chain for extrasolar planet science
using radial velocity data, where planets orbiting other stars are detected from
time-dependent Doppler shifts of the spectra of their host stars. Each of the black
arrows represents a complicated data analysis problem, converting spectral data into
radial velocity curves, modeling these curves to detect planets (as Philip Gregory
described at this meeting), and inferring properties of exoplanet populations from
the individual planetary measurements. But effective analysis, and even effective
data acquisition, requires knowledge from the later steps, so a feedback loop is
established. We need a broad statistical approach that facilitates building such chains
of discovery.

This notion of a discovery chain is related to the type of problem studied in the
branch of statistics known as sequential analysis. A pioneer of this area, Herman
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Chernoff, has an intriguing perspective on its relevance to the scientific process
more generally:

I became interested in the notion of experimental design in a much broader context, namely:
what’s the nature of scientific inference and how do people do science? The thought was
not all that unique that it is a sequential procedure. . . . Although I regard myself as a non-
Bayesian, I feel in sequential problems it is rather dangerous to play around with non-
Bayesian procedures. . . . Optimality is, of course, implicit in the Bayesian approach.

An important direction for future fundamental work in statistics would be explicit
recognition that most scientific data analysis tasks are just steps in an ongoing
sequence of analyses—an unfolding chain of discovery. Efron’s “indirect evidence”
is a special case of this, where one seeks a framework that can integrate inference
about individuals with inference about populations. Given Chernoff’s remarks, it is
perhaps not surprising that Bayesian ideas are playing an important role in working
out how to use indirect evidence, via empirical and hierarchical Bayes methods.
I suspect the future of statistics will involve a more thorough integration of Bayesian
ideas into statistical practice, if only to enable development of even more elaborate
discovery chains. I anticipate that statistical challenges in modern astronomy will
be both drivers and beneficiaries of such developments.

42.4 Jeffrey Scargle: Challenges and Opportunities
in Astrostatistics

42.4.1 Flawed and Beneficial Statistics

Eric Feigelson gave a somewhat gloomy picture of statistical practice among
astronomers in the past, when less-than-perfect methods have been used. In addition
to cases where information has been wasted, some catastrophic blunders in various
fields have occurred that provide important lessons for astronomers, particularly
involving improper treatment of experiment or observation bias. The following are
all true stories:

• The president of a major political polling company believes that a selection bias
can be eliminated by obtaining larger samples. (Of course this is backward: larger
samples only increase the apparent significance of a biased result.)

• A major issue in clinical trials of new drugs or practices, particularly in “meta-
analysis” where small clinical studies are combined to get larger samples, is
whether publication bias is present [21]. This occurs when only studies with high
success rates are published, and negative or indeterminate results are kept private.
Fifty years ago, a Harvard psychologist presented a statistical formula to evaluate
the presence of publication bias, but it has proved to be completely wrong [25],
nearly always reporting that no bias can be present. Astronomers must be careful
to report all of their findings, not just the positive ones. Some of us remember
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when negative stellar parallax measurements were routinely discarded, yielding
distances systematically too small.

• A priori analysis of post f acto ‘clusters’ of quasar redshifts, or alignments
of quasars around bright galaxies, contradicts the cosmological interpretation
of redshifts [1] and yields the conclusion that the Earth lies at the center of
the Universe [30]. This flawed methodology leads to errors of many orders of
magnitude [10, 33, 35].

Astronomical knowledge usually progresses in a more rational fashion. I work at
NASA and can give my perspective on the process often followed in space science.
Some important scientific questions, or ‘mission science goals’, drive the design of a
new satellite observatory. The instrumentation, data acquisition and processing must
be adequate to achieve these goals. The satellite is launched, observations are taken,
and science data analysis is pursued to increase our science knowledge relevant to
the original science goals. I have seen much improvement in this cycle. When I first
joined NASA many years ago, the design of instruments would take little account of
the subsequent data processing; data analysis was mostly an afterthought. But today
one sees considerable forethought regarding data analysis issues and selection bias
in the observations.

42.4.2 A Vision of the Future: Astronomical
Time Series Analysis

I would now like to present a vision on how one area of astronomical research—the
study of temporal variations of celestial objects—might ideally be pursued. Many
major projects are underway to study variability based on multi-epoch wide-field
surveys such as the Palomar Transient Factory, the Catalina Real-Time Transient
Survey, Pan-STARRS, and the planned Large Synoptic Survey Telescope (LSST).
Millions, and soon billions, of time series are emerging from these efforts.

I think there should be a ‘Universal Time Series Analysis Machine’ into which
the data from such surveys can be dumped to give standard analysis products.
The machine would permit a variety of input data modes (such as photon events,
time-to-spill data, counts in bins, flux measurements) obtained with any observing
cadence pattern (evenly spaced, logarithmically spaced, random with periodic
gaps, and so forth). The data products would include auto- and cross-correlation
functions, Fourier power and phase spectra (with tapering), wavelet scalgrams and
scalograms, structure functions, measurement error models, time-scale and time-
frequency analysis, and more. These results of automated processing could then be
fed into automated machine learning systems, such as the multivariate classifiers
described by Joseph Richards at this conference. Advances in machine learning and
data mining in astronomy are reviewed in a new volume by Way et al. [32]. While
such a Universal TSA Machine may seem ambitious, most of its ingredients are in
hand today. I believe that such a Machine can be brought into existence soon.
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As part of such a plan, I have been working on an automated and universal
algorithm for the construction of histograms. Histograms are used all the time in
astronomy for displaying univariate datasets with both small and large samples. But
the results are highly dependent on the choice of bin width, number, and phasing.
One of the tools that is already available is a histogram scheme based on the
Bayesian Blocks algorithm [13, 24], in wide use to construct optimal piecewise-
constant time series representations. It turns out that estimating histograms and
block representations of event time series are mathematically the same problem. In
the former the measurement dimension takes on the role of time as the independent
variable in the latter.

In all of the related cases, including time series, spectral analysis, and histograms,
the appearance changes considerably as one moves from very coarse to very
fine binning. Which one best shows the true distribution? Does coarse binning
oversmooth real features (increased bias)? Does the fine binning show real features
or just noise (increased variance)? Standard procedure to balance bias and variance
can be used (e.g. [31, Chap. 4]) but may miss crucial features of time series with
complicated or nonstationary variations. The automatic data-adaptive selection of
bin size and location in the Bayesian Blocks algorithm not only resolves these issues
but is a countermeasure to the tendency to fiddle with these parameters until the
distribution well fits the experimenters predilections.

This algorithm can easily be generalized to higher dimensional problems. For
example the multi-scale structure of the 3D positional data in the Sloan Digital Sky
Survey redshift survey was revealed through the Bayesian Blocks procedure (Way,
Gazis and Scargle). A notable advance is that the “clusters” are not confined to
have any particular shape, so that collection of Voronoi cells into blocks reveals the
detailed structure of the Cosmic Foam [29].

I will end with an opinion regarding the future that promises to be dominated by
data-rich astronomical enterprises. David van Dyk and others spoke of astronomers
drowning in the flood of data emerging from large-scale surveys, particularly
the planned LSST. I think it is wrong to have a negative attitude towards these
challenges. The data flood is not being imposed on us by some external agent, but is
emerging from our diverse ‘mission science goals’ that require very large datasets.
They provide wonderful opportunities for new scientific insights. To help improve
our attitude, I suggest that this conference, in the future, be renamed Statistical
Opportunities in Modern Astronomy.
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Chapter 43
Bayesian Estimation of log N — log S

Paul D. Baines, Irina S. Udaltsova, Andreas Zezas, and Vinay L. Kashyap

Abstract The study of source populations is often conducted using the cumulative
distribution of the number of sources detected at a given sensitivity. The resulting
“log(N > S)− logS” distribution can be used to compare and evaluate theoretical
models for source populations and their evolution. In practice, however, infer-
ring properties of source populations from observational data is complicated by
the presence of detector-induced uncertainty and bias. This includes background
contamination, uncertainty on both intensity and location of sources, and, most
challenging, the issue of non-detections or unobserved sources. Since the probability
of a non-detection is a function of the unobserved flux, the missing data mechanism
is non-ignorable. We present a computationally efficient Bayesian approach for
inferring physical model parameters and the corrected log(N > S) ∼ log(S) dis-
tribution for source populations. Our method extends existing work in allowing for
both non-ignorable missing data and an unknown number of unobserved sources.
Importantly, our method is also scalable in the number of observed sources, and
computationally insensitive to the number of missing sources. By correcting for
the non-ignorable missing data mechanism and other detection phenomena, we are
able to obtain corrected estimates of the flux and luminosity distribution of source
populations.
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43.1 Overview

The number of sources as a function of flux (“log(N)− log(S)”) is an important tool
for describing and investigating the properties of source populations. In practice,
observations intended to measure the flux distribution are subject to natural and
detector induced uncertainties and biases. The most important consequence of these
effects is that a subset of the source population of interest will be unobserved. Since
fainter sources are more likely to be unobserved, the missing data mechanism is
non-ignorable [1]. Failure to account for non-ignorable missing data mechanisms
can lead to serious inferential bias. In addition to the missing data, it also necessary
to correct for background contamination, and the efficiency of the detector.

To address these challenges we develop a Bayesian method for estimating: (1)
the number of sources unobserved due to detector effects, (2) the flux of observed
sources, and, (3) the parameters of the log(N)− log(S) curve. By modeling the
missing data mechanism we correct for detection biases (e.g., Eddington bias) and
obtain posterior summaries for the bias-corrected source population.

43.2 Inferring logN− logS from Observational Data

The logN − logS plot displays log10(1 − F(s)) vs. log10(s) i.e., the log of the
cumulative number of sources detectable at a given sensitivity, as a function of the
log-flux. Let the distribution of fluxes in the source population be given by G, with
cumulative distribution function FG. The starting point for probabilistic modeling is
that:

Si
iid∼ G ⇒ log10 (1−FG(s)) := H (log10(s)) . (43.1)

It can be shown that H in (43.1) is linear if and only if G is a Pareto distribution.
Fitting a straight line to the logN − logS plot is then seen to be equivalent to
fitting a Pareto distribution to a sample of fluxes. Note that more flexible functional
forms for the logN − logS correspond to more flexible distributions for the true flux
population.

In practice the fluxes are not observed directly, so they must be inferred using
photon counts contaminated by detector effects and uncertainties. These processes,
and any prior information, can naturally be built into our hierarchical model.

To obtain the desired quantities from the posterior distribution, computation is
performed using Markov Chain Monte Carlo (MCMC). Figure 43.1 shows posterior
samples of the logN − logS curve fit using a linear relationship. For this simulation
we note that the true logN − logS curve is consistent with the posterior inference.
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Fig. 43.1 (L) Posterior samples of the logN − logS curve for simulated data. The true curve is
shown in bold. (R) Posterior density of the slope parameter. The true value is shown by the vertical
line

43.3 Conclusion

By modeling the logN − logS relationship within a hierarchical Bayesian frame-
work we achieve flexibility in describing properties of both the source population
and the detector induced uncertainties. Our method explicitly corrects for the non-
ignorable missing data mechanism that is often ignored by competing methods.
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Chapter 44
Techniques for Massive-Data Machine
Learning in Astronomy

Nicholas M. Ball

Abstract Important computational algorithms for statistical analysis of massive
datasets will require efficient NlogN implementations. A leading group producing
these algorithms is the FASTlab group at Georgia Institute of Technology. Sub-
stantial speedups over naive algorithms are achieved; for example, from O(N3) to
O(N) for Support Vector Machine classification and from O(Nn) to O(Nlogn) for n-
point correlation functions. These methods can be applied to datasets such as the
massive image dataset from the Next Generation Virgo Cluster Survey hosted at the
Canadian Astronomy Data Centre. Object classification, Virgo Cluster membership,
photometric redshifts, catalog cross-matching, and spatial clustering can potentially
be achieved with greatly improved efficiency.

44.1 Introduction

Astronomy is increasingly encountering two fundamental truths:

• The field is faced with the task of extracting useful information from extremely
large, complex, and high dimensional datasets.

• The techniques of astroinformatics[1, 2]1 and astrostatistics are the only way to
make this tractable, and bring the required level of sophistication to the analysis.

Thus, an approach which provides these tools in a way that scales to these
datasets is not just desirable, it is vital. The expertise required spans not just

1http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaKDDguide.
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astronomy, but also computer science, statistics, and informatics. We focus here
on questions raised by the practical application of various algorithms to real
astronomical datasets. That is, what is needed to maximally leverage their potential
to improve the science return?

This is not a trivial task. While computing and statistical expertise are required,
so is astronomical expertise. Precedent has shown that, to-date, the collaborations
most productive in producing astronomical science results (e.g., the Sloan Digital
Sky Survey), have either involved astronomers expert in computer science and/or
statistics, or astronomers involved in close, long-term collaborations with experts in
those fields. This does not mean that the astronomers are giving the most important
input, but simply that their input is crucial in guiding the effort in the most fruitful
directions, and coping with the issues raised by real data. Thus, the tools must be
useable and understandable by those whose primary expertise is not computing or
statistics, even though they may have quite extensive knowledge of those fields.

‘Real’ astronomical data are characterized by many issues which differentiate
them from ideal data. They may:

• Be large, complex, increasingly high-dimensional, and may be in the time
domain

• Contain missing data, such as non-observations or non-detections
• Have heteroscedastic (changing variance), non-Gaussian, or underestimated

errors
• Contain outliers, artifacts, false detections, or systematic effects
• Contain correlated inputs
• . . . and so on

44.2 Relevance of the Algorithms Presented

The algorithms we consider here meet the criteria of being well-known—k-nearest
neighbor (kNN), kernel density estimation (KDE), etc.—scalable (NlogN where
possible), and useable by astronomers via the software of the FASTlab group at
Georgia Institute of Technology2 directed by Prof. Alex Gray. Some of the well-
known algorithms already scale without the work of the group, e.g., mixture of
Gaussians, decision tree, linear regression, K-means, and principal components
analysis (PCA). However, others, such as all nearest neighbors, KDE, Support Vec-
tor Machines, and n-point correlation function (nPCF), do not. What is significant
about the results presented here is that they make all of these algorithms scalable.
Extensive use is made of the fact that NlogN scaling is achieved when building a kd-
tree data structure. This and other space-partitioning tree structures are what makes
the scaling possible.

2FASTlab = Fundamental Algorithmic and Statistical Tools Laboratory, http://www.fast-lab.org.

http://www.fast-lab.org.
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The relevance of the work of the FASTlab group is two-fold: (a) their results
enable scalable versions of the algorithms that do not otherwise scale to be
implemented; and (b) they give one the ability to employ more sophisticated variants
of the algorithms that do scale. For example, many astronomical phenomena, such
as galaxy spectra, are nonlinear, but are often treated by linear analyses such as
PCA, or templates. Kernel PCA is a nonlinear extension of PCA, and in the results
presented scales as O(N), rather than O(N3). There are numerous other examples.
Both of these points increase the applicability of the algorithms to real astronomical
data, i.e., data that contains the issues listed in Sect. 44.1.

44.3 CADC, CANFAR, Petascale Data, and Fast Data
Mining Algorithms

The Canadian Advanced Network for Astronomical Research (CANFAR) [3] is a
project at the Canadian Astronomy Data Centre (CADC) to provide an infrastructure
for data-intensive astronomy projects. It provides those portions of a pipeline that
can be usefully supplied in a generic manner, such as access to, processing, storage,
and distribution of data, without restricting the analysis that can be performed.
The system combines the job scheduling abilities of a batch system with cloud
computing resources, and users manage one or more virtual machines, which
operate (to them) in the same manner as a desktop machine.

By extension of the arguments for providing a hardware infrastructure and
standard software tools within CANFAR, we aim to provide a robust set of
generic tools that can be used for data analysis. Given the requirements detailed
in Sect. 44.1, that the methods of astroinformatics and astrostatistics are needed for
appropriately sophisticated analysis of the data, that such algorithms must scale as
NlogN or better to remain tractable in the upcoming petascale regime, and that the
aim of the FASTlab group is to implement them such that they may be used on real
problems, we are using the software of the group to achieve our aims.

The key point is that, while a given science analysis always specific, the
underlying algorithms are generic, and it is those that we aim to provide.

44.4 Example: The Next Generation Virgo Cluster Survey

The Next Generation Virgo Cluster Survey (NGVS)3 is a new 104 square degree
survey of the Virgo Cluster, which will provide coverage of this nearby dense
environment in the universe to unprecedented depth. The limiting magnitude of
the survey is gAB = 25.7 (10σ point source), and the 2σ surface brightness limit

3https://www.astrosci.ca/NGVS/The Next Generation Virgo Cluster Survey.

https://www.astrosci.ca/NGVS/The_Next_Generation_Virgo_Cluster_Survey.
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Table 44.1 NGVS tasks and FASTlab speedups (potential or actual)

Task Algorithm Naive speed FASTlab speed

Object classification SVM O(N3) O(N)
Virgo Cluster membership K-means O(N)

PCA O(N)
kernel PCA O(N3) O(N)

Photometric redshifts NN O(N) O(logN)
all NN O(N2) O(N)

Describing a photo-z PDF KDE O(N2) O(N)
Cross-matching multi-wavelength data nPCFa O(Nn) O(Nlogn)
Clustering of background objects nPCF O(Nn) O(Nlogn)
anPCF = n-point correlation function

is gAB ≈ 29 mag arcsec−2. The data volume of the completed survey will be
approximately 50 terabytes. The objects detected span an enormous dynamic range,
from the giant elliptical galaxy M87 at M(B) = −21.6, to the faintest dwarf
ellipticals at M(B)≈−6. Photometry will be available in five broad bands (u∗ g′ r′ i′
z′), and the unprecedented depth reveals many complex and previously unseen low
surface brightness structures. Some of the survey challenges are given in Table 44.1,
together with the relevant machine learning algorithm, and the speedup provided by
the results of the FASTlab group.

A typical region of the survey is shown in Fig. 44.1, further exemplifying some
of the challenges, and adding others. Many of these, which do not make direct use
of the algorithms, but rather of other astronomical software, may be sped up by a
linear factor equal to the number of processing cores (currently several hundred)
available on the CANFAR system.

Thus, the combination of the fast algorithms provided by the FASTlab group
and the CANFAR system enables large datasets to become tractable, while at the
same time, for challenges that the algorithms do not directly address, enabling those
too to be tackled. Thus, the revolutionary, but nevertheless real and not idealized
astronomical data of the NGVS and future surveys, is being tackled in a smart, and
scalable way.

44.5 Concluding Questions

These algorithms have excellent potential for improving astronomical analysis.
Nevertheless, there are questions one can ask at the interface between astronomical
and statistical considerations:

• Will statistical inference (i.e., Bayesian) methods turn out to be more useful for
most problems than the prediction-oriented methods presented here?

• Are the approximations introduced in some of the algorithms to enable the
speedups (e.g., the kernel methods), unacceptably large?



44 Massive-Data Machine Learning 477

Fig. 44.1 Typical NGVS survey region, showing several challenges to data mining provided by
this survey, including: (1) full-color images, provided by 5-band photometry; (2) bright stars,
exhibiting halos and bleed trails; (3) large galaxies, showing elliptical light profiles, color gradients,
and detailed morphology; (4) complex, irregular, galaxy morphologies—the galaxy on the right is
NGC 4438; (5) similar low-surface brightness features, the incidence of which is hugely increased
by the survey’s unprecedented depth; (6) low surface brightness galaxies, e.g., below NGC 4438;
(7) globular clusters and ultra-compact dwarfs—these objects may be unresolved, or partially
resolved, and exhibit different light profiles to galaxies, complicating their classification, and the
separation of stars (unresolved) and galaxies (resolved); (8) varying sky background, especially
near large galaxies, whose light extends to large radii; (9) most objects in the image have no
spectroscopy, thus their membership, or not, of the Virgo Cluster, must be deduced by other means

• Will the algorithms be rendered insufficiently useful because of errors on the
inputs?

• Are the algorithms limited when the dataset does not fit in memory (either too
big, or portions are run in parallel)?

• Will most astronomical data analyses still contain stages that cannot be practi-
cally addressed by these algorithms, and that also scale worse than NlogN, thus
overwhelming even a CANFAR-like parallel computing system?

• Will there be data of high intrinsic dimension, that cannot easily be dimension-
reduced, thus causing curse-of-dimensionality-type problems that may hamper
these algorithms?
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• Will novel supercomputing hardware, such as GPGPUs, that enable extremely
fast brute-force approaches to problems such as nearest neighbors, prove more
practical?

• If the software is licensed, rather than free and open source, will it be practical to
deploy it on a distributed computing system for astronomical use?

• Will astronomers require the sophistication of the more advanced algorithms, or
will the simple ones that scale remain ‘good enough’, because the improvements
brought by new data still account for most of the new science return?

There are arguments one can make that the answer to all of these is “no”. But, as
always, if we knew all the answers, it wouldn’t be research.
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Chapter 45
A Bayesian Approach to Gravitational Lens
Model Selection

Irene Balmès

Abstract Strong gravitational lenses are unique cosmological probes. These
produce multiple images of a single source. Whether a single galaxy, a group
or a cluster, extracting cosmologically relevant information requires an accurate
modeling of the lens mass distribution. A variety of models are available,
nevertheless discrimination between them as primarily relied on the quality of
fit without accounting for the size of the prior model parameter space. This is a
problem of model selection that we address in the Bayesian statistics framework by
evaluating Bayes’ factors. Using simple test cases, we show that the assumption of
more complicate lens models may not be justified given the level of accuracy of the
available data.

Images produced by strong gravitational lenses result of different light-paths. If the
source behind the lens has a variable luminosity, this will manifest with a time delay
between the images. This time delay Δt depends on the gravitational potential of the
lens, and the underlying cosmological model. Therefore, we can derive constraints
on cosmological parameters (in particular H0), provided a lens model is assumed.
Hence, lens modeling as well as accurate measurements capable of discriminating
between models are critical to the study of time delays.

We aim to tackle this problem from the point of view of Bayesian model selection
analysis (see e.g. [2]). A large number of lens models have been proposed in a
vast literature. Given the fact that observables are limited to the position of the
images, their time delay and flux ratio, we restrict our analysis to simple examples
characterized by a few parameters. In particular we consider two models for lenses
with two images, so called “double” lenses (for a review on lensing, see [1]).
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Laboratoire Univers et Théories (LUTh), UMR 8102 CNRS, Observatoire de Paris,
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Fig. 45.1 Bayes’ factor between model 1 and 2, with different priors. Above the dot-dashed line,
the evidence in favor of model 1 is strong. Each color represents a different lens

1. Power-law model: assume a density profile ρ ∝ r−n, with n a free parameter. For
n = 2, it describes an isothermal lens. In order to assess the dependence on the
prior parameter interval we assume two different priors: 0 < n < 3 (large) and
1 < n < 3 (small).

2. Power-law model with external shear: assume the previous model with the
addition of shear accounting for environmental effect on the lens. This adds two
parameters: the strength of the shear γ , and its direction. Expected values for the
shear vary up to γ � 0.1. We assume three different priors on γ: γ < 0.1, < 0.2
and < 0.5 respectively, testing the shear strength up to unrealistic values.

We performed a likelihood data analysis for a sample of lenses and inferred the
Bayes’ factor for model 1 and 2 under different priors. Results are summarized in
Fig. 45.1. Large Bayes’ factors favor the simpler model, model 1. Above a certain
threshold (dot-dashed line), the evidence in favor of model 1 is considered strong.
In the following, we highlight a few relevant aspects.

• Effect of the prior on n: The lens data set is mainly composed of galaxies, which
we expect to be nearly isothermal. Nevertheless, our analysis shows that a large
fraction of our sample is accurately described by model 1 if 0 < n < 1.

• Effect of the prior on γ: In more than half of the cases, allowing higher
(unrealistic) shear strength does not change the Bayes’ factor. This illustrates
the effect of the Occam’s razor term in the Bayes’ factor: a wider range for a
parameter is bound to give a better fit, but this is balanced against a penalty
factor.

• Effect of the flux ratios: Time delays depend on the gravitational potential of the
lens, whereas flux ratios depend on its second derivative. Furthermore, they are
subject to a number of local phenomena that do not affect time delays. As a result,
flux ratios require more complex models than time delays. This is consistent with
our findings in Fig. 45.1: indeed, adding flux ratios as a constraint leads to having
less lenses accurately described by model 2.
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Chapter 46
Identification of Outliers Through Clustering
and Semi-supervised Learning for All Sky
Surveys

Sharmodeep Bhattacharyya, Joseph W. Richards, John Rice, Dan L. Starr,
Nathaniel R. Butler, and Joshua S. Bloom

Abstract Recently there has been a huge surge of data in astronomy, making outlier
or novelty detection a crucial step in analyzing these data. Here, we introduce
a clustering based semi-supervised approach for outlier detection. The training
data, (X1,Y1), . . . ,(Xn,Yn), where n = 1,542, comes from Hipparcos and Optical
Gravitational Lensing Experiment (OGLE) surveys, with, Xi ∈ R

p (p = 64) as the
features and Yi is a categorical variable having one of the 25 class labels. The set of
64 periodic and non-periodic features are extracted from the light curves. The test
data, Z1, . . . ,Zm, where m = 11,375, is the test data, where, Zi ∈R

p. We select these
11,375 low noise variable light sources for our analysis from a set of unlabeled light
curves of ∼50,000 variable light sources from All Sky Automated Survey (ASAS).
Our goal is to find outlier data points in the unlabeled data set whose labels can not
be properly predicted by the information in the labeled data set. We propose a new
hierarchical algorithm for outlier detection in this partially labeled setup based on
clustering and semi-supervised learning. We apply our method to identify interesting
sources in the ASAS data set, with the training data. We present the ASAS light
curves of some of these interesting sources, and elaborate on the possible physical
mechanisms driving their variability.

46.1 Main Work and Results

We call a collection of data points in the data set interesting outliers, if it forms a
well-separated cluster and have no known class label with high confidence.

For clustering, we consider two different metrics.
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Fig. 46.1 (a) Is it an eclipsing Be star? (b) Young Emission line star, with no literature

Weighted Euclidean Metric: With Random Forest Importance measure
of each feature, based on fitting the training data, as the weights.
Random Forest Proximity Metric: See Liaw and Wiener [1] for details about this
metric.
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The method has parameters (α,L1,L2,C,K). We call a cluster α − outlier if it
contains less than (100α)% of the data points from which it has been separated at a
given iteration. The parameters L1,L2, C and K control how to determine, whether
an outlier is interesting or not. Here is the method

Step 1 We consider the scaled version of feature space of both labeled and
unlabeled data set together, that is, consider, X = (X1, . . . ,Xn,Z1, . . . ,Zm).

Step 2 Now, cluster the (n+m) data using hierarchical divisive clustering. At any
iteration, cluster S divides into S1 and S2.

Step 3 At each iteration, if α.min(|S1|, |S2|) < |S| or min(|S1|, |S2|) ≤ 10, we flag
the smaller cluster. We stop after a large number of iterations, say K.

Step 4 Now consider each flagged cluster S and the set of labeled data points in S
be SL. If L1|S| ≤ |SL|, then remove flag of S. If L2|S| ≤ |SL| < L1|S| (L2 < L1),
but, more than C|SL| has same labels, then also, remove the flag of the cluster.

Step 5 Consider all the data points from the unlabeled data set in the flagged clusters
as the ‘interesting outliers’.

We apply our method to the ASAS data set with α = 0.01, L1 = 0.5, L2 = 0.25,
C = 0.75 and K = 200. Below, we present the light curves of two interesting outliers,
with a note on their peculiarity (Fig. 46.1). This work is described in detail by [2].
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Chapter 47
Estimation of Moments on the Sphere by Means
of Fast Convolution

P. Bielewicz, B.D. Wandelt, and A.J. Banday

Abstract In order to study the statistical properties of large data sets, fast and
reliable methods for the estimation of basic statistical quantities, such as moments
of the data, are required. We present a method for the estimation of moments on
azimuthally symmetric patches defined for data pixelized on the sphere by means
of fast convolution. As an example application, we show the results of a search
in the WMAP CMB sky maps for regions with anomalous values of the variance,
skewness or kurtosis as estimated on a set of concentric rings.

The computation of moments on azimuthally symmetric patches on the sphere can
be viewed as the convolution of the data, taken to the appropriate power, with an
azimuthally symmetric beam that describes the geometry of the patch. To make this
statement more clear, let us consider the example of the computation of variance
on the pixelized map ΔTi for which some regions are excluded by application of the
mask Mi. For a region centered on, but not necessarily including, pixel i an estimator
of the variance Vari,r(ΔT ) is given by

Vari,r(ΔT ) =
∑ j ΔT 2

j MjBr
i j

∑k MkBr
ik

−
(
∑ jΔTjMjBr

i j

∑k MkBr
ik

)2

− ∑ jσ2
j MjBr

i j

∑k MkBr
ik

. (47.1)
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Fig. 47.1 Variance, skewness and kurtosis (from left to right, respectively) estimated on rings with
radius of 5◦ and width of half degree for the foreground corrected V-band WMAP map masked with
the KQ75y7 cut
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Here, Br
i j denotes the profile of the azimuthally symmetric patch used for estimation

of the variance. In the case of our studies of CMB maps presented here, this
corresponds to a ring with radius of radius r and width Δr such that

Br
i j =

{
1 for r ≤ arccos(n̂i · n̂ j)< r+Δr
0 otherwise

. (47.2)

The last term in (47.1) corresponds to a correction for the bias introduced by the
noise variance σ2

i .
Computation of this estimator is achieved by direct summation over all unmasked

pixels j in a given patch centered on pixel i for all possible centers of the patch, and
scales as O(N2

pix), where Npix is the number of pixels in the map. However, this sum

is nothing other than the convolution of the masked map ΔT or ΔT 2 with beam
B. Therefore, it can be performed efficiently by decomposition of the data in the
basis of spherical harmonics Y�m(Ωi) functions. Then, for example, the sum of the
terms in ΔT 2

j is given by ∑ j ΔT 2
j MjBr

i j = ∑�,m ã�mb�Y�m(Ωi), where ã�m and b� are

the spherical harmonic coefficients of the masked map ΔT 2 and patch, respectively.
In the case of azimuthally symmetric patches, we have implicitly utilized the fact
that the coefficients b� can depend only on the multipole order �. Therefore, the
complexity of the algorithm for the computation of the variance can be reduced
to O(Npix logNpix) operations. This algorithm can also be extended to higher order
moments, such as the skewness or kurtosis.

The low complexity of the algorithm makes it well suited for the search for
regions with anomalous statistical properties in large data sets such as CMB maps
derived from the WMAP or Planck data. We employ this technique to search for
regions of the 7-year WMAP data [2] which exhibit anomalous variance, skewness
or kurtosis. Examples of the variance, skewness and kurtosis maps are shown in
Fig. 47.1. Preliminary results reveal a few interesting regions on the sky, but general
consistency with the currently preferred standard ΛCDM model.
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1. Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., & Bartelmann
M., 2005, ApJ, 622, 759

2. Jarosik N., et al., 2011, ApJS, 192, 14
3. Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473



Chapter 48
Variability Detection by Change-Point Analysis

Seo-Won Chang, Yong-Ik Byun, and Jaegyoon Hahm

Abstract We describe a method to detect short-term variability based on the
change-point analysis with filtering algorithm using local statistics. The use of
cumulative sum scheme and bootstrap rank statistics as a means of detecting a series
of change points is discussed. By applying this method to over 30,000 lightcurves
from the MMT transit survey data, we found previously unknown evidences about
stellar variability (including a total of 606 flare events, 18 eclipsing-like features,
and 3 transit-like features). In particular, this approach will be effective in detecting
non-periodic events in massive astronomical time series data.

The detection and characterization of variability is often the first step to understand
the nature of various cosmic objects. Most variability detection methods require
conventional models that are mainly focused on the strictly periodic signals, and
are not suitable for the study of arbitrary-shaped, non-periodic, and sporadically
occurring variations, especially those of short time scales. Also, in many cases,
signal estimation is equated with smoothing of data for de-noising. This sometimes
discards vital information in time series data. We introduce a non-parametric method
to extract all significant features based on the change-point analysis (CPA) with
filtering algorithm using local statistics.
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48.1 Change-Point Detection Algorithm

Using a combination of cumulative sum scheme and bootstrap rank statistics [3],
our method produces a series of estimated change points which correspond to
the moments of apparent systematic changes. A given dataset x1, x2, · · · , xn, the
estimated change point location p̂ is

p̂ = argmax
pk∈[1,n]

∣∣Spk

∣∣ , (48.1)

where Spk = Spk+1 + (xpk − x̄), Sp0 = 0, and the mean x̄. The sub-region is
successfully segmented into exactly two segments by p̂ (x̄1 = · · ·= x̄pk �= x̄pk+1 = x̄n).
If no change-points could be found at all (x̄1 = x̄2 = · · · = x̄n = x̄), the adjacent
sub-region will be considered. Based on N bootstrap samples that are randomly
re-ordered original values, we estimate the confidence levels associated with each
change point, and then remove some candidates that are not statistically significant
anymore. To detect significant features occurring at specific levels in lightcurve, we
define a simple criteria similar to Micro-lensing Alert system [1] in the presence of
hetero-scedastic measurement errors (wi):

(xi − x̄pk ±wi)

σpk

≥ N; ConM ≥ M, (48.2)

where σpk =
√

1
n−1 ∑

n
i=1

(
xi − x̄pk

)
is the standard deviation of each sub-region and

ConM is consecutive measurements of xi that satisfy the selection criteria N. The
different combination of N, M values are used for maximize the detection efficiency
of significant outlying features.

48.2 Application to MMT Transit Survey Data

By applying this method to over 30,000 lightcurves from the MMT transit survey of
M37 open cluster [2], we efficiently identified several hundred instances of abrupt
brightness changes without any smoothing or interpolation of the raw data.

1. Flare-like event detection: The flare detection process is not complete if the
quiescent stellar variability remains in the lightcurves. Without any filtering
(e.g., moving average) of periodic variability, this method is optimized to detect
multiple flare-like features embedded in real astronomical datasets that have
unevenly spaced in time and show statistically non-stationary noise behavior.

2. Eclipsing-like event detection: Because time series observations often suffer
from the incomplete coverage of the entire eclipse periods, eclipsing variables are
usually observed repeatedly to form a complete phased lightcurve. This method
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is useful to detect the moments of eclipse ingress, center, or egress in cases
where the eclipsing pattern is not repeated or the coverage is not sufficient for
the detection through conventional period analysis.

Our CPA approach is particularly effective in detecting non-periodic events from
data with varying noise as well as short duration events from either non-varying or
varying lightcurves.
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Chapter 49
Evolution as a Confounding Parameter
in Scaling Relations for Galaxies

Didier Fraix-Burnet

Abstract Early-type galaxies are characterized by many scaling relations.
Evolutionary classifications find that some of these correlations are indeed generated
by diversification. With a simple mathematical formalism, we show that even the so-
called fundamental plane, a relatively tight correlation between three variables, can
be easily explained as the artifact of the effect of another parameter influencing all,
without any physical hypothesis. In other words, the fundamental plane is probably
a confounding correlation, i.e. not physically causal. The complexity of the physics
of galaxies and of their evolution suggests that the confounding parameter must be
related to the level of diversification reached by the galaxies. Consequently, many
scaling relations for galaxies are probably evolutionary correlations, explained by
the statistical general evolution of most properties of galaxies.

49.1 The Fundamental Plane as a Confounding Correlation

The fundamental plane for early-type galaxies is a correlation between effective
radius, the central velocity dispersion and the surface brightness within the effective
radius [1–3]. Let us consider that the effective radius re, the central velocity
dispersion σ and the luminosity L are all power-law functions of a same generic
parameter X̃ : ⎧⎨

⎩
re = A1X̃ p

σ = A2X̃ s

L = A3X̃t
(49.1)
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The surface brightness μe can be expressed as μe = −2.5log
(
L/4πr2

e

)
+m =

(−2.5t + 5p)log X̃ + 2.5log(4π)+m where m is a constant of normalisation. Any
linear correlation of the form

logre = a logσ + bμe + c (49.2)

translates to

{
p = sa+(−2.5t+ 5p)b

logA1 = a logA2 + b
(
2.5log

(
4πA2

1/A3
)
+m

)
+ c.

(49.3)

If a solution can be found for a and b from (49.3), then the equation of the
fundamental plane (49.2) is obtained. Conversely, the observations provide a, b
and c, so that it is possible to derive p, s and t. There is no need of any further
assumption to explain the fundamental plane.

49.2 Evolutionary Correlations

In the course of diversification, many properties of galaxies change, and they tend to
statistically change in a more or less monotonous way. It seems difficult to avoid the
evolution to act as a confounding factor. It is a well-known problem of comparative
methods in phylogeny [4].

We thus propose that the main confounding parameter is X̃ = T with T an
indicator of the level of diversification, being something like an evolutionary clock
not necessarily easily related to time or redshift. Indeed, the evolutionary clock,
i.e. the factor X̃ = T , can be hidden, not understandable analytically and not
directly observable. It is related to an evolutionary classification that gathers objects
according to their history. This work is published in [5].
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Chapter 50
Detecting Galaxy Mergers at High Redshift

P.E. Freeman, R. Izbicki, Ann B. Lee, C. Schafer, D. Slepčev, and J. Newman

Abstract We introduce a new feature of galaxy images, maxRatio, and demonstrate
its effectiveness at detecting merging galaxies at high redshift.

Mergers play an important role in the development of massive galaxies at red-
shifts z ∼ 2, transforming star-forming disks into quenched spheroidal systems.
Automated detection of merging systems in this redshift regime is thus critical for
testing theories of hierarchical galaxy formation. At low redshifts (z ∼ 0.2), mergers
are efficiently detected by, e.g., extracting estimates of two features from galaxy
images: G (the Gini coefficient) and M20 [1, 3]. However, Lotz et al. show that the
estimators Ĝ and M̂20 become increasingly biased in the low S/N and resolution
regimes. We test the efficacy of Ĝ, M̂20, and other image features in detecting
mergers/interactors (M/I galaxies) at high z by examining 1,653 objects in the H-
band GOODS-S ERS2 field [4] whose morphologies were visually identified by
members of the CANDELS team [2]. These objects include 236 possible mergers,
70 possible interactors, and 46 tabbed as mergers and interactors by different voters.

We introduce a new feature, maxRatio, that as shown below is more effective
than Ĝ and M̂20 for detecting M/I galaxies at high z. Define a sequence s of levels
relative to an object’s maximum intensity. For each level i, generate level sets, then
compute the ratio Ri of the area of the second-largest set to the largest. maxRatio
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Fig. 50.1 Left: boxplots showing the values of maxRatio for visually identified non-M/I (left) and
M/I (right). Right: relative importance of the 12 most informative features included in our analysis;
the most informative is maxRatio

is the maximum value of Ri over the sequence s. For non-merging galaxies whose
images generally exhibit only one cluster of pixels at each level, maxRatio → 0. For
merging systems galaxies with, e.g., two or more distinct nuclei, maxRatio → 1.

We populate a p-dimensional space of features (e.g., Ĝ, maxRatio, etc.) with
training data, then use various classifiers to predict morphologies (e.g., lasso,
random forest, etc.). For instance, lasso selects a sparse set of most important
features by zeroing out the coefficients associated with less important features:

min
β

(
n

∑
i=1

(Yi +XT
i β )

2 +λ ||β ||1
)
, where ||β ||1 =

p

∑
j=1

|β j| .

The response variable Yi is the proportion of voters who identify galaxy i with
M/I galaxies. In our preliminary work, we identify maxRatio is the most important
feature of the data for detecting M/I galaxies. See Fig. 50.1.
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Chapter 51
Multi-component Analysis of a Sample of Bright
X-Ray Selected Active Galactic Nuclei

Dirk Grupe

Abstract I report on the statistical analysis of a sample of about 100 Active
Galactic Nuclei (AGN) with simultaneous UV and X-ray observations from Swift.
I found clear correlations between the X-ray spectral slope αx, the UV slope αUV ,
and the optical-to-x-ray spectral slope αox with the Eddington ratio L/LEdd. A major
aspect of the statistical analysis will be multi-variant analysis statistical tools such as
the Principal Component Analysis (PCA) and cluster analysis. This analysis shows
that the main driver of the AGN properties in this sample is the Eddington ratio
L/LEdd. Although separating Seyfert 1s into Narrow Line Seyfert 1s and Broad Line
Seyfert 1s is still a good classification, with the 2,000 km/s cutoff line it is arbitrary.
The cluster analysis of this AGN sample suggests that we can separate AGN into
those with high and low Eddington ratios and that they form physically distinct
groups.

Powered by accretion of surrounding matter onto the central black hole, Active
Galactic Nuclei (AGN) are one of the must luminous persistent sources in the
Universe. There are several question that we want to answer in AGN research: How
do black holes in Active Galactic Nuclei evolve? Are there different phases in the
evolution of an AGN? How long does the AGN activity last? How do measurements
of the low-redshift Universe relate to high-redshift quasars at the early phases of the
Universe?

In order to answer these questions, the key tools are multi-variate statistical
methods that can explore the parameter space that is spanned by the AGN emission
line and continuum properties. The observed properties of AGN are mainly driven
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by two parameters: the mass of the central black hole and the accretion rate [1,4,6,8]
Both are tied together by the Eddington ratio L/LEdd.

The original AGN sample presented here was selected from the ROSAT All-Sky
Survey containing 110 AGN [3]. The advantages of this sample is that all sources
are bright in X-rays as well as in the Optical/UV. The AGN in this sample are
not (strongly) intrinsically absorbed or reddened. Many of these AGN appear to
be highly variable at Optical/UV and X-ray energies, which makes studies of the
spectral energy distributions of these objects challenging if they are not performed
simultaneously. Swift is the most sufficient observatory to provide simultaneous UV
and X-ray observations. Half of the AGN observed by Swift are Narrow Line Seyfert
1 Galaxies (NLS1s). NLS1s exhibit extreme properties and the occupy one extreme
end in the AGN parameter space. These are AGN with steep X-ray spectra, blue
Optical/UV continua, very strong optical FeII emission, and weak emission from
the narrow line region.

From the bivariate analysis we found that high L/LEdd AGN have the steepest
X-ray spectra, bluest Optical/UV continua and appear to be X-ray weaker than
low L/LEdd AGN [5]. Applying a Principal Component Analysis (PCA) to the
sample shows that eigenvector 1 which accounts already for 40% of the sample
variance, is strongly correlated with L/LEdd. The interpretation for eigenvector 2 is
that this is the mass of the central black hole. As mentioned earlier, we can also
interpret a high L/Ledd as an indicator of the AGN being in an early stage of their
development [2, 7]. A cluster analysis using complete linkage shows that the AGN
sample can be divided into two groups. We found that these groups are low and
high L/LEdd AGN. Consequently this goes together with the usual separation into
NLS1s and BLS1s. However, the classical cut-off line at 2,000 km/s turns out to be
not always the best way to separate between the two classes. Often we find NLS1s
with relatively flat X-ray spectra, etc. and BLS1s that show typical properties of
NLS1s but their FWHM(Hβ ) is just above the 2,000 km s−1 cut-off line. Therefore
it may be better to use L/LEdd to characterize AGN [6].
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Chapter 52
Applying the Background-Source Separation
Algorithm to Chandra Deep Field South Data

F. Guglielmetti, H. Böhringer, R. Fischer, P. Rosati, and P. Tozzi

Abstract A probabilistic two-component mixture model allows one to separate the
diffuse background from the celestial sources within a one-step algorithm without
data censoring. The background is modelled with a thin-plate spline combined
with the satellite’s exposure time. Source probability maps are created in a multi-
resolution analysis for revealing faint and extended sources. All detected sources
are automatically parametrized to produce a list of source positions, fluxes and
morphological parameters. The present analysis is applied to the Chandra Deep
Field South 2 Ms public released data. Within its 1.884 ks of exposure time and
its angular resolution (0.984 arcsec), the Chandra Deep Field South data are
particularly suited for testing the Background-Source separation algorithm.

An analysis is performed to test the sensitivity and the internal consistency of the
Background-Source separation (BSS) algorithm (see [2] and Guglielmetti et al. in
this volume) with sources on real fields from pointed observations. The employed
field is the Chandra Deep Field South (CDF-S) 2 Ms data [3]. The optimal energy
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band to detect the emission from both point-like and extended sources is between
0.5 and 2.0 keV. Therefore, this test is concentrated on this energy range. The
main advantages of testing real data with respect to simulated ones reside on the
fact that real data are characterized by a complex background, a complex point-
spread function dependence across the field, source confusion and a wide range of
source properties. These characteristics intrinsic to real observations are not easily
elaborated with artificial data. Therefore, the CDF-S 2 Ms data are separated in four
images of 500 ks exposure time each.

The BSS algorithm is applied on each of the four images. The exponential prior
probability density function of the source signal is chosen and 25 pivots equally
spaced are used for the background rate estimation. Scales in the range value 0.5–
13 arcsec are used in the multiresolution analysis. A threshold value of Psource ≥ 0.9
is chosen to separate false-positives in source detection from true sources. No
contaminations due to steep changes in the exposure time map are seen both in the
background map and in the source probability maps. The multiresolution analysis
provides for the detection of a wide range of source fluxes and their complex
morphologies.

The internal consistency of the BSS algorithm is tested comparing each CDF-
S 500 ks data in pairs. Source positions (right ascension and declination), fluxes
and extent (i.e. the estimated size of the detected sources) are taken into account.
The difference of position estimates are within 1σ (Fig. 52.1a), while the ones
of fluxes and extents are within 3σ (Fig. 52.1b). Although 70% of the sources in
the CDF-S region are characterized by X-ray variability [4], Poisson fluctuations
and contaminations by other sources in the fields can increase the uncertainties
estimated for the source flux and extent measurements. The BSS estimates of source
parameters are internally consistent.

A sensitivity analysis is performed on the four CDF-S 500 ks data and the results
are compared to published ones: CDF-S 1 Ms [1] and 2 Ms [3] data. The information
about the sensitivity and the reliability of the survey are described by the sky
coverage and the logN − logS distribution. The estimated sky coverage and the
logN − logS distribution depend on the algorithm employed for source detection.
The BSS background maps are used to construct the flux limit map of each estimated
sky coverage. Hence, vignetting effects and background variations are already
accounted in the coverage. The logN − logS distributions are computed from the
respective sky coverage. It results that the logN − logS distributions obtained with
the four CDF-S 500 ks data are in agreement with the published ones in Giacconi
et al. [1] and Luo et al. [3]: See Fig. 52.1c.

Applying the BSS algorithm to the CDF-S data, we prove that the BSS algorithm
provides for a reliable detection of sources and estimation of source and background
parameters. An extensive application of the technique is addressed in a forthcoming
paper (Guglielmetti et al., in preparation).
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Fig. 52.1 Internal consistency and sensitivity analyses. (a): source position (right ascension).
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Chapter 53
Non-Gaussian Physics of the Cosmological
Genus Statistic

J. Berian James

Abstract We suggest a technique to calculate the impact of distinct physical
processes inducing non-gaussianity on the cosmological density field. The decom-
position of the cosmic genus statistic with an orthogonal polynomial sequence
allows expression of the scale-dependent evolution of the morphology of large-scale
structure, in which effects including galaxy bias, non-linear gravitational evolution
and primordial non-gaussianity might be delineated.

53.1 Topology of Cosmic Structures

The study of large-scale cosmological structures with the topological genus statistic
promises much from the current generation of galaxy redshift surveys, though links
between the physics of structure formation and topological statistics remain unclear.
The reason for this seems to be that such measurements are difficult to interpret
when the underlying distribution departs from a Gaussian random field [1, 2].

The genus of a (two-dimensional) surface measure its connectedness: the number
of holes through the surface less the number of isolated regions; a donut has genus
1, a sphere 0 and two spheres −1. Given a choice of critical density value, the
genus quantifies the connection or isolation of structures enclosed by the surface
of that density, through the three-dimensional density field. Different choices of
density threshold excise filaments, cluster and voids. The curve of genus as a
function of density threshold ν has an analytical form when the underlying density

field is Gaussian random gGRF(ν) ∝ exp
(
− ν2

2

)(
1−ν2

)
, with the constant of
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proportionality determined by the power spectrum of the field—the task is to
understand the manifestation of non-Gaussian physics in the topology of cosmic
structure.

The shape of the curve of genus number as a function of density provides
information even in the Gaussian random case: structures at the mean density of the
Universe are many times connected, while extreme densities excise many disjoint
regions. The balance between these two regimes and the relative abundance of
isolated high and low density regions are a scale-dependent probe of many physical
processes. Consequently it is desirable to study the surface of genus number as a
function of density and scale.

53.2 Hermite Decomposition

To address the manner in which distinct physical processes alter the topology of
large-scale structure, we propose that the genus surface (i.e., the genus curve as a
function of scale, characterized by λ ) be decomposed with an orthogonal basis of
Hermite functions ψn:

g(ν;λ ) =
∞

∑
n=0

an(λ )ψn(ν)⇔ an(λ ) =
∫ ∞

−∞
g(ν;λ )ψn(ν)dν. (53.1)

The evolution of the Hermite modes encode, as a function of scale, the imprint of the
physical processes that have modified the field from the Gaussian random form. In
this prescription, a Gaussian random field has a trivial decomposition: the base mode
of the transform is n = 2, i.e., gGRF(ν) ∝ ψ2(ν), with other low modes appearing
as the field is perturbed from a Gaussian state. Odd-numbered modes will introduce
asymmetric features corresponding to an overabundance of either isolated clusters
and voids. Quantifying the distortions to the genus curve due to a physical process
inducing non-Gaussianity has long been understood to deserve attention. The task
is now to map these physical processes onto the Hermite spectrum.

This idea generalises previous theoretical work—two approaches that have led
to progress are: (i) using perturbation theory to calculate the impact of small
departures from Gaussianity; and (ii) the use of a phenomenological set of derived
statistics that quantify differences between a measured genus curve and that for a
Gaussian random field. Both of these are naturally expressed using the orthogonal
decomposition. Unifying and extending these theoretical directions can provide an
over-arching scheme to link the properties of the genus curve to the physics of
cosmological structures.
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Chapter 54
Modeling Undetectable Flares

Vinay Kashyap, Steve Saar, Jeremy Drake, Kathy Reeves,
Jennifer Posson-Brown, and Alanna Connors

Abstract We have developed a fast method for modeling X-ray event list data from
stellar coronae as stochastically generated flare distributions. A large portion of the
previous algorithm that relied on Monte Carlo simulations has been replaced by
analytical computation. This improves upon the speed of previous algorithms by
many orders of magnitude. We have verified that the method works by applying it
to a star with a previously measured flare distribution.

54.1 The Problem of Small Flares

A fundamental characteristic of solar and stellar flares is that the processes that
generate them appear to be scale-free. That is, the distribution of flare energies are
power-laws. While there is evidence that the power-law model is invalid at very
high and very low energies, this distribution has been verified to hold on the Sun
over many orders of magnitude of flare energies and over the range of timescales
that are accessible to current high-energy astronomy missions [1]. The number of
flares at any given energy range, (E,E + dE], follows a power-law distribution,

dN ∝ E−α dE , (54.1)

where α ≈ 1.8 for the Sun.
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Similar behavior is suspected on active stars, but some crucial differences exist.
The first is that due to sensitivity limitations, we cannot explore the behavior
of stellar flares at energies below the so-called milliflare region (E∼1029−32 erg).
Second, the value of α is generally greater than 2 (see, e.g., [2]). The threshold
α = 2 is critical because beyond that, it is possible to ascribe all of the coronal
luminosity to increasingly weaker, but more numerous, flares. It has thus become
necessary to systematically study the flare distributions on stars. Unfortunately,
current methods to evaluate the flare distribution index α for stars are limited by
two factors: they either depend on explicit detections of flares (which limits the
analysis to strong flares), or if the flare distribution itself is being modeled, then
they are highly computation intensive and are thus slow.

We first developed a method to model the X-ray data directly without resorting
to detecting the flares in the first place, by sampling flare energies from an
assumed distribution, constructing photon arrival time data stochastically, and
comparing the simulated distributions of arrival time differences with that seen in
the data [2]. Initial applications of this method were extremely slow because the
model distribution of arrival time differences δ t had to be empirically generated
and the parameter fitting was carried out on a grid.

Here we have speeded up the process considerably by (a) switching to a
Markov Chain Monte Carlo fitting method, and (b) computing the model semi-
analytically. Because we assume a specific functional form for the flare distribution,
their cumulative effect can be easily discerned in the data. Because flare onset is
stochastic, it is not feasible to model every feature in a light curve, but rather, they
must be modeled only in the aggregate. For a given counting rate R, the probability
of finding exactly one event in a duration δ t is

p(1|R,δ t) = (R δ t) e−R δ t (54.2)

and if R = R(ti) is varying, the overall distribution is the sum of the distributions in
the interval [ti, ti + τ], weighted by the expected number of events,

f (δ t) =∑
i

Ri τ · p(1|Ri,δ t) . (54.3)

We also achieve a considerable speed increase by discarding the grid-based
parameter probability evaluations and using Markov Chain Monte Carlo methods
to efficiently explore the parameter space.

We have computed the flare distribution model parameters for the dM3.5 flaring
star Ross 154 (see [3]) and have verified that the new method gives the same result
as before.
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Chapter 55
An F-Statistic Based Multi-detector Veto
for Detector Artifacts in Gravitational
Wave Data

D. Keitel, R. Prix, M.A. Papa, and M. Siddiqi

Abstract Continuous gravitational waves (CW) are expected from spinning
neutron stars with non-axisymmetric deformations. A network of interferometric
detectors (LIGO, Virgo and GEO600) is looking for these signals. They are
predicted to be very weak and retrievable only by integration over long observation
times. One of the standard methods of CW data analysis is the multi-detector F -
statistic. In a typical search, the F -statistic is computed over a range in frequency,
spin-down and sky position, and the candidates with highest F values are kept for
further analysis. However, this detection statistic is susceptible to a class of noise
artifacts, strong monochromatic lines in a single detector. By assuming an extended
noise model—standard Gaussian noise plus single-detector lines—we can use a
Bayesian odds ratio to derive a generalized detection statistic, the line veto (LV-)
statistic. In the absence of lines, it behaves similarly to the F -statistic, but it is more
robust against line artifacts. In the past, ad-hoc post-processing vetoes have been
implemented in searches to remove these artifacts. Here we provide a systematic
framework to develop and benchmark this class of vetoes. We present our results
from testing this LV-statistic on simulated data.

In a search for gravitational waves, we are conducting hypothesis tests: at a certain
point in parameter space (frequency, spin-down and sky position), is there a signal or
not? Assuming Gaussian detector noise only, we have two hypotheses, HG : x(t) =
n(t) and HS : x(t) = n(t)+h(t,A ), where A are additional signal parameters, like
polarization angles. In the Bayesian approach, we compute the odds ratio of the two
hypotheses, and we marginalize over the unknown parameters A :
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OSG(x)≡ P(HS|x)
P(HG|x) ∝

∫
P(x|HS,A )

P(x|HG)
P(A |HS)dA (55.1)

The marginalization can be done analytically (for specific priors on A , see [3, 5]).
We obtain OSG(x) ∝ eF (x), with the standard multi-detector F -statistic [1, 2].

The problem with this approach is that quasi-monochromatic, stationary detector
artifacts (“lines”) look more like HS than HG and will result in large values for
OSG. So we add an alternative noise hypothesis HL that fits lines in single detectors
better than the multi-detector coherent HS, namely H X

L : xX(t) = nX(t)+hX (t,A )
for a signal in only one detector X , but pure noise HG in the others. Again using
the F -statistic priors and analytically maximizing over A , we can (e.g. for two
detectors X = 1,2) replace the standard F -statistic by a new detection statistic with
an extended noise hypothesis:

OSN(x)≡ P(HS|x)
P(HL|x)+P(HG|x) ∝

eF (x)

ρ4
max/70+ l1 eF 1(x1) + l2 eF 2(x2)

(55.2)

The new detection statistic downweights candidates which have higher single-
detector than multi-detector F -statistics, thereby penalizing lines. The lX are the
prior line probabilities, while the parameter ρmax from a signal strength prior
allows us to tune the detection statistic, determining how much discrepancy between
detectors is attributed to Gaussian noise and how soon vetoing sets in. Further work
on simulated data is necessary to choose this prior optimally.

In preliminary studies with simulated data, we found the new detection statistic
to be much more effective than the standard semi-coherent F -statistic, as seen in
the figure below. Especially at low false-alarm rates, which are desirable for GW
searches, the new statistic allows for more detections. See [4] for more details.
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Chapter 56
Constrained Probability Distributions
of Correlation Functions

D. Keitel and P. Schneider

Abstract Two-point correlation functions are used throughout cosmology as a
measure for the statistics of random fields. When used in Bayesian parameter es-
timation, their likelihood function is usually replaced by a Gaussian approximation.
However, this has been shown to be insufficient. For the case of Gaussian random
fields, we search for an exact probability distribution of correlation functions,
which could improve the accuracy of future data analyses. We use a fully analytic
approach, first expanding the random field in its Fourier modes, and then calculating
the characteristic function. Finally, we derive the probability distribution function,
using integration by residues. The result is strongly non-Gaussian.

For cosmic shear surveys, it was found by Hartlap et al. [2] that a Gaussian like-
lihood for two-point correlation functions is not a valid approximation. The same
is expected for other fields where correlation functions are used for Bayesian or
other likelihood-based analyses. In fact, general constraints on correlation functions
were analytically derived in [5], which already exclude a Gaussian probability
distribution.

Therefore, a better description of the likelihood is necessary. For a Gaussian
random field, we can attempt to do this fully analytically. First, we expand the field
g(x) in its Fourier components, gn. Then, the correlation function can be obtained
by the estimator
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Albert-Einstein-Institut, Callinstraße 38, 30167 Hannover, Germany
e-mail: david.keitel@aei.mpg.de

P. Schneider
Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany
e-mail: peter@astro.uni-bonn.de

E.D. Feigelson and G.J. Babu (eds.), Statistical Challenges in Modern Astronomy V,
Lecture Notes in Statistics 209, DOI 10.1007/978-1-4614-3520-4 56,
© Springer Science+Business Media New York 2013

515



516 D. Keitel and P. Schneider

ξ (x) = 〈g(y)g∗(x+ y)〉= 2
∞

∑
n=1

|gn|2 cos(knx) . (56.1)

With each mode gn having a Gaussian distribution with width σ2
n and for different

separations xm, we define the parameters

Cnm = σ2
n cos(knxm) . (56.2)

We start our derivation with the characteristic function ψ(s), which for the general
multivariate case we obtain, by ensemble averaging, as

ψ(s1,s2, . . . ,sk) =

〈
exp

(
i

k

∑
n=1

snξ (xn)

)〉
=

∞

∏
n=1

(
1− 2i

k

∑
m=1

smCnm

)−1

. (56.3)

Inverse Fourier transformation of the characteristic function yields the distribution
function. We solve the integral by the method of residues, since the integrand has a
pole for each Cnm. For the univariate case, we obtain

p(ξ ) =
∞∫

−∞

ds
2π

e−isξ
∞

∏
n=1

1
1− 2isCn1

=
∞

∑
n=1

Hne−ξ/(2Cn1)
1

2Cn1
∏
m�=n

1

1− Cm1
Cn1

. (56.4)

Here, the Heaviside functions in the factor Hn = H(ξ )H(Cn1)−H(−ξ )H(−Cn1)
come from the choice of contours during integration. We find that this distribution
is strongly non-Gaussian. For the case of x = 0, we have p(ξ < 0) = 0, and also for
other separations, a Gaussian is a very poor fit both at the peak and in the tails. Also,
we find that for reasonable power spectra and field sizes, the mode expansion can
be truncated after a few to a few dozen modes. Still, the numerical implementation
is quite challenging, since the small numbers involved require either high precision
routines or a special reordering of the sum. Also, care needs to be taken if the Cn1

are not all mutually different.
We obtained the bivariate p(ξ1,ξ2) in a similar way, and the full result can be

found in [4]. However, for higher multivariates this approach is too cumbersome,
and it seems more promising to pursue direct numerical Fourier transformation of
the characteristic function, or alternative methods as the one presented by [6]. A
similar distribution has also been obtained in the signal processing literature (see
e.g. [3]), but is not fully applicable to our case.

In our journal paper [4], we detail the derivation of univariate and bivariate
distributions, and we also calculate the moments of these distributions. With them,
we can construct an Edgeworth expansion [1] of the distribution, which is only
valid up to a few terms, but already presents a large improvement compared to
the standard Gaussian approximation. We also found that all our results easily
generalize to multi-dimensional Gaussian random fields. Finally, we note that the
distribution follows the correlation function constraints derived in [5].
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Chapter 57
Improving Weak Lensing Reconstructions in 3D
Using Sparsity

Adrienne Leonard, François-Xavier Dupé, and Jean-Luc Starck

Abstract Weak gravitational lensing is a powerful tool, which allows us to map the
distribution of dark matter in the Universe. With the advent of large, high-resolution
and multi-wavelength surveys, it has recently become possible to use photometric
redshift information to reconstruct the matter distribution in three dimensions, rather
than a two-dimensional projection. This is no easy task, as the inverse problem is
ill posed, the data are noise-dominated, and the lensing efficiency kernel is very
broad along the line of sight. State-of-the-art linear methods to recover the density
distribution typically exhibit a line-of-sight bias in the location of detected peaks,
and a broad smearing of the density distribution along the line of sight. We present
here a non-linear proximal minimization method incorporating a sparse prior, which
allows us to recover the underlying density distribution from lensing measurements
with greatly reduced bias and smearing, thus allowing for more accurate mapping
of the three-dimensional density distribution.

Weak lensing measures the tiny elliptical distortions induced in images of back-
ground galaxies due to the gravitational effects of matter concentrations along
the line of sight. Two linear operations map the measured shear γ onto, first,
the convergence (dimensionless projected density) κ and then onto the matter
overdensity δ = ρ/ρ− 1, where ρ is the mean matter density in the universe. We
can therefore write:

κ = Qδ , or, equivalently, γ = PγκQδ . (57.1)
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Fig. 57.1 From left to right: Reconstructions carried out using the transverse Wiener filter, radial
Wiener filter, SVD, and sparse-based methods. The true density is given by the solid lines, while
the dashed lines represent reconstructions along different lines of sight

Our goal in 3D lensing is to invert this equation in the presence of noise to recover
a map of the density contrast δ .

We can express the problem as one of the form:

ddd = Rsss+ ε, ε ∼ N (0,σ2) , (57.2)

with ddd being the measurements, contaminated by gaussian noise ε , and sss being the
true underlying density.

Simon et al. [3] and VanderPlas et al. [4] propose to invert this equation using
linear methods. The Simon et al. method involves use of a minimum variance
filter incorporating Wiener priors (either in the transverse or radial directions),
whilst VanderPlas et al. employ an inverse variance filter, which undergoes an SVD
decomposition and is then truncated to retain only the largest singular values.

Reconstructions obtained using these methods suffer from the same three
fundamental problems: There is a broad smearing of the reconstructed density along
the line of sight, there is a bias in the radial location of detected structures and the
amplitude of the reconstruction amplitude is damped, sometimes heavily.

We consider the problem in one dimension; i.e. we are concerned with the inver-
sion of the equation κ =Qδ+ε , and lines of sight are considered independently. We
assume that the signal has a sparse representation in an appropriate dictionary Φ .
We therefore wish to solve the following minimisation problem:

min
δδδ∈∈∈Rnnn

‖ΦT δ 1 ‖ s.t. 1
2 ‖ κ−Qδ ‖2

ΣΣΣ−1≤ ε , δ ∈ C (57.3)

where Φ is the dictionary, Σ is the covariance matrix of the noise, ε is the size of
the �2 ball constraining the data fidelity, and C is a closed convex set. To do this, we
use the primal-dual splitting method proposed by Chambolle and Pock [1] (see [2]
for the details).

Figure 57.1 below shows reconstructions of a simulated cluster of galaxies
for each of the four methods discussed above. The sparse-based approach clearly
outperforms the other three methods, exhibiting no appreciable redshift bias or
smearing, and a much smaller damping of the amplitude relative to the true density.
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Chapter 58
Bayesian Predictions from the Semi-analytic
Models of Galaxy Formation

Yu Lu, H.J. Mo, Martin D. Weinberg, and Neal Katz

Abstract The semi-analytic models of galaxy formation (SAMs) have long been
criticized because they can not correctly include the model uncertainties into model
predictions to make the models testable. We demonstrate that using posterior
samples drawn by advanced MCMC algorithms under data constraints we can
rigorously establish confidence bounds for model predictions and perform model
checks using posterior predictive distributions. We conduct a model inference from
the K-band luminosity function of local galaxies and make predictions for galaxies
at higher redshifts. The posterior predictive checks show that while the model can
reasonably well fit the local galaxy luminosity function, its predictions for the stellar
mass function of high redshift galaxies are inconsistent with existing data.

58.1 Introduction

In the conventional implementation of the semi-analytic models of galaxy formation
(SAMs), one first “calibrates” the model with a set of observational constraints to
find an optimal parameter set, and then uses this parameter set to make predictions
for other observations. Such a prediction can not be used to test the model
with observational data because of the fact that the model parameters are largely
degenerate and the inferential uncertainties are completely ignored [1]. To derive
statistically meaningful predictions for further observational tests, one needs to
know the joint probability distribution of the model parameters given observational
data.
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We have developed a Bayesian approach based SAM that allows us to obtain
the posterior distribution of the model parameters for given observational data, to
rigorously test models, and to make robust predictions taking into account model
uncertainties [1]. We use the K-band luminosity function of 2MASS galaxies [2]
as the data constraint, and adopt the Tempered Differential Evolution MCMC
algorithm [3] included in the UMass Bayesian Inference Engine (BIE)1 to sample
the posterior. We then make Bayesian model predictions and perform numerical
model checks using the posterior distribution.

58.2 Bayesian Model Prediction and Posterior
Predictive Check

A Bayesian model prediction for an observable y′ is made by marginalizing over
the posterior probability distribution of parameter set θ given data y, e.g. p(y′|y) =∫

p(y′|θ )p(θ |y)dθ . A usual way to test a model is to check the model predictions
with existing data. One can graphically exam the consistency between the predictive
distribution of y′ and the data. If the predictive distribution is inconsistent with the
data, one should worry about the model assumptions. More importantly, we can
quantitatively check a model with numerical posterior predictive checks (PPC) [4].

We first define a χ2-like test quantity, T (y′l) = ∑N
i=1

(
y′l,i − y′i

)2
/σ ′2

i , where y′l, j
is the prediction of the lth posterior sample for the ith bin of the data, y′i and σ ′2

i
are the mean and the variance of the predictions for the ith bin, and the summation
is over all the bins. Using the reference distribution of the test quantity constructed
by the posterior samples, we compute the tail-area probability for the observational
data y, pB = 1

L ∑
L
l=1 IT (y′l)≥T (y), where I is the indication function. The PPC on the

reproduced K-band luminosity function yields pB = 0.662, suggesting the model
fits the data fairly well. We then make predictions for the stellar mass function of
galaxies at z ∼ 1, and the PPC with existing data [5] yields pB = 0.007, suggesting
the model predictions are inconsistent with the data. The model overpredicts the
number of low-mass galaxies and underpredicts the number of high-mass galaxies
at higher redshifts, indicating the current model family does not properly describe
the redshift evolution of star formation.
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Chapter 59
Statistical Issues in Galaxy Cluster Cosmology

Adam Mantz, Steven W. Allen, and David Rapetti

Abstract The number and growth of massive galaxy clusters is a sensitive probe of
cosmological structure formation and dark energy. Surveys at various wavelengths
can detect clusters to high redshift, but the fact that cluster mass is not directly
observable complicates matters, requiring us to simultaneously constrain scaling
relations of observable signals with mass. The problem can be cast in the form
of a regression, in which the data set is truncated, the (cosmology-dependent)
underlying population must be modeled, and strong, complex correlations between
measurements often exist.

Simulations of cosmological structure formation provide a robust prediction for
the statistical distribution of galaxy clusters in the Universe as a function of
mass and redshift. However, they cannot reliably predict the observables used to
detect clusters in sky surveys, such as X-ray luminosity, the example we will use
throughout this work. Consequently, observers must constrain observable–mass
scaling relations using additional data, and use a joint model for the scaling relations
and the underlying matter distribution to predict, e.g., the number of clusters as a
function of redshift and X-ray luminosity [1]. Here we discuss the features of this
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Fig. 59.1 Simulation of a cluster population obeying power-law scaling relations (solid lines) with
intrinsic scatter. Black crosses indicate detected clusters in the simple case where this requires
luminosity above a fixed threshold (dashed line), with blue dots representing undetected clusters.
Temperatures are simulated assuming a strong intrinsic correlation with luminosity at fixed mass

analysis [3,4], described in terms of a Bayesian regression, which touches on several
issues presented elsewhere in these proceedings.

Current cluster surveys provide a shallow sample of the full population, so
detected clusters are naturally biased high in the detection observable. This is
illustrated in Fig. 59.1a, which makes clear that the selection function must be
accounted for to recover the true scaling relation. The detectable cluster sample is
also sensitive to the underlying distribution in mass, which determines the number
of low mass, highly biased detections. The mass distribution consequently must
appear in the data likelihood, requiring the scaling relations to be constrained
simultaneously with cosmological parameters.

The influence of selection effects can remain even when the observable of
immediate interest is not directly involved in cluster detection, as illustrated in
Fig. 59.1b. The magnitude of the effect in this case depends on the intrinsic
covariance of scatter in cluster luminosity and temperature from the mean values
at fixed mass. If this joint scatter has a strong correlation, luminosity selection can
effectively imply selection on temperature. As this intrinsic correlation is not known
a priori, the best approach is to simultaneously solve for cosmology and the two
scaling relations, along with their joint scatter.

In addition to covariance in the intrinsic scatter, measurement errors in different
cluster observables are generically correlated, and failing to account for this
correlation in the data model can bias the results [2]. Fortunately, the framework
of Bayesian analysis provides a straightforward way to addressing this issue (see
also Kelly, this volume).
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Chapter 60
Statistical Analyses to Understand
the Relationship Between the Properties
of Exoplanets and Their Host Stars

Elizabeth Martı́nez-Gómez

Abstract The increasing number of exoplanet detections shows that planetary
systems around other stars are common in the Universe but also that they may
possess a wide range of physical and orbital properties. Physical and statistical
models are needed to explain the relation between exoplanets and the characteristics
of their host stars. Here we analyze this issue through the application of multivariate
statistical techniques. The results show that both the temperature and the magnetic
activity of the host star seem to determine the properties of an exoplanet within any
system, in particular, of the orbital period. The star’s metallicity also appears to be
influential in the multiplanet systems.

60.1 Some Remarks About Exoplanets

Until a few years ago the detection techniques (e.g. astrometry, direct imaging,
gravitational microlensing, photometry, pulsar timing, radial velocity, and transit
method) only offered the possibility to detect mainly Super-Earths above five Earth
masses around other stars. Now, the improved methodologies show that planets
seem to exist in many possible sizes just as the planets and moons of our own solar
system do (e. g. [1]). The increasing number of candidate exoplanets brings some
confidence to observed features in statistical distributions of the planet and host star
properties. These features can be “fossil traces” of the processes of formation or
evolution of these systems and help to constrain the planet–formation models.

In this work we analyze the possible relationship between the observed properties
of the exoplanets and their host stars by multivariate statistics.
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60.2 Multivariate Statistical Techniques: Application
to the Exoplanet Data Explorer

Most of the multivariate techniques rely on the multivariate normality assumption.
We transform the variables T , K, Te f f , [Fe/H] and log rhk of the Exoplanet Data
Explorer [3] as follows: Y

′
= log[Y +(c+ |minY |)] where c is a constant. Let A a set

of p variables X and B a set of q variables Y. We are interested in linear relationships
between A and B as well as interrelations among the X’s variables in A.

1. Principal Component Analysis (PCA). For our data, we get Z1 = 0.663 T −
0.748 K, and Z2 = −0.748 T − 0.663 K that account for 52% and 48% of the
total variance, respectively. Using the first PC in a multiple regression, we find
that Te f f and log rhk are statistically significant. The PCs can also be used for
clustering, in our case, we did not identify any additional groups.

2. Canonical Correlation Analysis (CCA). We find two canonical pairs of the type:
U1 = 0.022T −0.071K,V1 =−0.051Te f f −0.023 [Fe/H]−0.047rhk with ρ̂∗

1 =
0.302, and U2 = 0.072 T + 0.024 K, V2 = 0.056 Te f f − 0.012 [Fe/H]− 0.064 rhk
with ρ̂∗

2 = 0.191. The semiamplitude K and the temperature Te f f explain most of
the variance of the first pair.

3. Multivariate Analysis of Variance (MANOVA). We have two groups (simple
and multiple planetary systems) which differ from each other significantly,
T 2 = 45.48 (p–value∼0), that is, the exoplanets in each group could have evolved
in different ways.

60.3 Is There a Possible Exoplanet–Host Star Relationship?

Earlier works show the possibility of a relationship (e. g. [2]). We have found
that: (1) both the magnetic activity (log rhk) and the temperature (Te f f ) of the host
star seem to determine the orbital period of an exoplanet within any system, and
(2) the estimated correlation coefficient for multiplanet systems indicates that the
metallicity contributes more to the variability of the exoplanet properties.
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Chapter 61
Identifying High-z Gamma-Ray Burst
Candidates Using Random Forest Classification

Adam N. Morgan, James Long, Tamara Broderick, Joseph W. Richards,
and Joshua S. Bloom

Abstract The growing number of observed Gamma-ray Bursts (GRBs)
necessitates a more efficient use of follow-up resources in order to maximize
the expected scientific returns. Studying the most distant (highest redshift) events,
for instance, remain a primary goal for many in the field. Toward this goal of
optimal resource allocation, we have created the Random Forests Automated Triage
Estimator for GRB redshifts (RATE GRB-z) to identify high-redshift (z > 4)
candidates using rapidly available metrics from the Swift satellite. Using a training
set of 136 GRBs, 17 of which are high-z, our cross-validated performance metrics
suggest that following up on just 20% of the GRBs will yield roughly 55% of all
high-redshift events.

Data: We collated data on all Swift GRBs up to and including GRB 100621A
directly from GCN notices and automated pipelines [1, 2] that process and refine
the data into more useful metrics. Short bursts (T90 < 2 s) and bursts without
rapid notices from the BAT, XRT, and UVOT were removed from the sample for
uniformity. This left 348 events: 136 with known redshift, and 17 with z > 4.

Goal: Our primary goal is a decision for each new GRB: Should we devote further
telescope observing time to this burst or not?

Methods: The RATE GRB-z method uses Random-Forest (RF; [3]) classification,
we rank the GRBs in the training set by their out-of-bag probabilities of being
in the high-z class. Next, we obtain a probability of high-z for new events by
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Fig. 61.1 Cross-validated efficiency (Nhigh observed/Ntotal high; left panel) and purity
(Nhigh observed/Ntotal observed; right panel) versus fraction of followed-up GRBs. The curve
uncertainties are 1 standard deviation from the mean value averaged over 100 RF seeds

inserting them into the RF classifier. If the percentage of training-set bursts with
a higher probability of being high-z than the new event is lower than the percentage
of GRBs one has telescopic resources to observe, follow-up on the new event is
recommended.

Results: Using a total of 12 features in the training set, we used tenfold cross
validation [4] to obtain the performance metrics shown in Fig. 61.1. By following
up on the top 20% of new GRBs, one can capture ∼55% of all high-z (> 4) events.
Further, we expect roughly 35% of these followed-up GRBs will be high-z.
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Chapter 62
Fitting Distributions of Points Using τ2

Tim Naylor

Abstract Fitting datasets which consist of points distributed over a plane where
the typical separation between the points is large compared with their uncertainty in
position is problematical. Typically this is solved by binning the data, but then the
sparsity of the data means that the pixels (if they are to contain several data points)
must be larger than the typical uncertainty, thus throwing away precision. Here
I present a different solution, developed originally for colour-magnitude diagrams
(CMDs) where the model is binned, but the data are not.

62.1 The Problem

The circles in Fig. 62.1 are a typical colour-magnitude dataset for a cluster, with the
greyscale showing a typical model. The model distribution is truly two-dimensional,
with two curves (single stars and equal mass binaries) separated by a region filled
with unequal-mass binaries. Fitting these models to the data is still largely done by
eye, but we have developed a technique [1,2], which we [3–6] and others [7–9] have
applied to finding ages and distances for clusters.

62.2 The Solution

(1) Simulate a million stars with the parameters of interest (e.g. distance and age),
and bin them in colour-magnitude space to create the grey scale model in Fig. 62.1.
(2) Assuming the uncertainties for the data points are small, evaluate the model at
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Fig. 62.1 The colour-magnitude data for dereddened members of NGC6530 (circles) overlaid
on the best fitting model (greyscale). The fitting procedure can be thought of qualitatively in the
following way, using distance an example fitting parameter. Changing the distance is equivalent to
moving the grey scale model up and down over the data points. So for each placement of the model
collect the values of the model at the position of each data point. The value of the product of all
these values is clearly maximised when the model is at the correct vertical position, i.e. when the
distance modulus is correct. The maximum value of the product is a measure of the goodness-of-fit,
and the steepness of the maximum a measure of the uncertainty in the distance

the position of each data point i, to obtain Pi for each data point. If the uncertainties
are large, convolve the image with the uncertainty for the data point before taking
the value. (3) Multiplying these values together gives a goodness-of-fit parameter,
though we actually use the log-likelihood ln∏Pi = τ2, since this is related to χ2. (4)
Change the parameters until you find the best (lowest) value of τ2. There are then
techniques for finding probability that this is a good fit, Pr(τ2). If the model is a good
fit, one can then determine uncertainties in the parameters in a similar way to χ2.
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Chapter 63
Theoretical Power Spectrum Estimation
from Cosmic Microwave Background Data

Paniez Paykari, Jean-Luc Starck, and M. Jalal Fadili

Abstract The cosmic microwave background (CMB) power spectrum is a powerful
cosmological probe as it entails almost all the statistical information of the CMB
perturbations. Having access to only one sky, the CMB spectrum measured by our
experiments is only a realization of the true underlying angular power spectrum.
In this paper we use the sparsity of the CMB spectrum to develop a technique that
estimates the true underlying CMB power spectrum from data alone. The developed
IDL code, TOUSI, for Theoretical pOwer spectrUm using Sparse estImation, will
be released with the next version of ISAP.

63.1 Introduction

Measurements of the CMB anisotropies are powerful cosmological probes. In
the currently favored cosmological model, with the nearly Gaussian-distributed
curvature perturbations, almost all the statistical information are contained in the
CMB angular power spectrum. The observed quantity on the sky is generally the
CMB temperature anisotropy Θ(p) in direction p, which is described as T (p) =
TCMB[1+Θ(p)]. This field is expanded on the spherical harmonic functions as

Θ(p) =
+∞

∑
�=0

�

∑
m=−�

a[�,m]Y�m(p), (63.1)
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a[�,m] =

∫
Θ(p)Y ∗

�m(p)dp, (63.2)

where � is the multipole moment which is related to the angular size on the sky
as � ∼ 180◦/θ and m is the phase ranging from −� to �. For a Gaussian random
field, the mean and covariance are sufficient statistics, meaning that they carry all
the statistical information of the field. In the case of CMB the mean vanishes and
the variance is

< |a[�,m]|2 >= C[�]> 0. (63.3)

The angular power spectrum depends on the cosmological parameters through an
angular transfer function T�(k) as

C[�] = 4π
∫

dk
k

T 2
� (k)P(k), (63.4)

where k defines the scale and P(k) is the primordial power spectrum.
In this paper the sparsity1 of the CMB power spectrum is used as a key

ingredient in order to estimate the theoretical power spectrum without having to
know the cosmological parameters; this estimate will not belong to a set of possible
theoretical power spectra (i.e. all C[�] that can be obtained by CAMB by varying the
cosmological parameters). Instead, such an estimation should be useful for other
applications, such as:

• Monte Carlo: we may want to make Monte Carlo simulations in some applica-
tions without assuming the cosmological parameters.

• Wiener filtering: Wiener filtering is often used to filter the CMB map and it
requires the theoretical power spectrum as an input. We may not want to assume
any cosmology at this stage of the processing.

• Some estimators (weak lensing, ISW, etc.) require the theoretical power spectrum
to be known. Using a data-based estimation of the theoretical C[�] could be an
interesting alternative, or at least a good first guess in an iterative scheme where
the theoretical C[�] is required to determine the cosmological parameters.

63.1.1 Which Dictionary for the Theoretical CMB Power
Spectrum?

We investigate the sparsity of the CMB power spectrum in two different dictionaries:
the Wavelet Transform (WT) and the Discrete Cosine Transform (DCT).

We simulate 100 maps from the theoretical power spectrum and estimate their
power spectra. We decompose each realization in the DCT and WT dictionaries

1A comprehensive account on sparsity and its applications can be found in the monograph [1].
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Fig. 63.1 Power spectrum estimation in the presence of instrumental noise. The blue dots show
the empirical power spectrum of one realization having instrumental noise. Yellow dots show
the estimated power spectrum of one of the simulated noise maps. Green dots show the the
spectrum with the noise power spectrum removed. The black and red solid lines are the input
and reconstructed power spectra respectively. The inner plots show a zoomed-in version

and reconstruct them keeping only the significant coefficients. By comparing the
reconstructed power spectra to the input one we conclude:

• The CMB power spectrum is very sparse in both the DCT and WT dictionaries,
although their sparsifying capabilities are different;

• DCT recovers global features of spectrum (i.e. the peaks and troughs) while WT
recovers localized features.

These complementary capabilities of the DCT and WT transforms will be
combined to propose a versatile way for adaptively estimating the theoretical power
spectrum from a single realization of it.

63.1.2 TOUSI Algorithm on Simulated Noisy CMB Data

Here we present the performance of the TOUSI algorithm in the presence of
instrumental noise. The noise maps were simulated using a theoretical (PLANCK
level) noise power spectrum. They were added to the CMB maps simulated
previously and the power spectra of the combined maps were estimated.

Figure 63.1 shows the reconstruction. The blue dots show the empirical power
spectrum of one realization having instrumental noise. Yellow dots show the
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estimated power spectrum of one of the simulated noise maps. Green dots show the
the spectrum with the noise power spectrum removed. The black and red solid lines
are the input and reconstructed power spectra respectively. The theoretical power
spectrum can be reconstructed up to the point where the structure of the power
spectrum has not been destroyed by the instrumental noise. In our case, having
PLANCK level noise, this goes to � up to 2,500. It can be seen that TOUSI can
do a great job in reconstructing the input power spectrum even in the presence of
instrumental noise.

63.2 Conclusion

Measurements of the CMB anisotropies are powerful cosmological probes. In
the currently favored cosmological model, with the nearly Gaussian-distributed
curvature perturbations, almost all the statistical information are contained in the
CMB angular power spectrum. In this paper we have investigated the sparsity of the
CMB power spectrum in two dictionaries; DCT and WT. The two dictionaries have
different characteristics and can accommodate reconstructing different features of
the spectra. The sparsity of the CMB spectrum in these two domains has helped us
develop an algorithm, TOUSI, that estimates the true underlying power spectrum
from a given realized spectrum. This algorithm uses the sparsity of the CMB power
spectrum in both WT and DCT domains and takes the best from both worlds to get
a highly accurate estimate from a single realization of the CMB power spectrum.
This could be a replacement for CAMB in cases where knowing the cosmological
parameters is not necessary. The developed IDL code will be released with the next
version of ISAP (Interactive Sparse astronomical data Analysis Packages) via the
web site: http://jstarck.free.fr/isap.html
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Chapter 64
Guilt by Association: Finding Cosmic Ray
Sources Using Hierarchical Bayesian Clustering

Kunlaya Soiaporn, David Chernoff, Thomas Loredo, David Ruppert,
and Ira Wasserman

Abstract The Earth is continuously showered by charged cosmic ray particles,
naturally produced atomic nuclei moving with velocity close to the speed of light.
Among these are ultra high energy cosmic ray particles with energy exceeding
5 × 1019 eV, which is ten million times more energetic than the most energetic
particles produced at the Large Hadron Collider. Astrophysical questions include:
what phenomenon accelerates particles to such high energies, and what sort of
nuclei are energized? Also, the magnetic deflection of the trajectories of the cosmic
rays makes them potential probes of galactic and intergalactic magnetic fields.
We develop a Bayesian hierarchical model that can be used to compare different
association models between the cosmic rays and source population, using Bayes
factors. A measurement model with directional uncertainties and accounting for
non-uniform sky exposure is incorporated into the model. The methodology allows
us to learn about astrophysical parameters, such as those governing the source
luminosity function and the cosmic magnetic field.
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64.1 Introduction

Since the Pierre Auger Observatory (PAO) initiated observations in 2004 it has
detected 14 ultra high energy cosmic rays (UHECRs) with energy≥55 Eev in period
1–January 1, 2004 - May 26, 2006, 13 UHECRs in period 2– May 27, 2006 - August
31, 2007, and 42 UHECRs in period 3– September 1, 2007 - December 31, 2009.
The energy threshold of 55 Eev was chosen by using period 1 data [1]. These CR
particles interact with the cosmic microwave background, and according to GZK
limit, CRs with energy �60 Eev should come from sources within 200 Mpc [1].
We consider the 17 active galactic nuclei (AGNs) in the volume-complete (to
15 Mpc) catalog of [3] as candidate sources. We use a Bayesian hierarchical model
to compare three models, M0: only isotropic background source, M1: isotropic
background +17 AGNs, M2: isotropic background +2 AGNs (Centaurus A and
NGC 4945–the two closest AGNs) for the UHECRs from the three periods.

64.2 Models and Algorithms

We describe the CR arrival as a Poisson process with rate set by source fluxes
and exposure factors, the measurement error as a Fisher distribution with the
angular uncertainty of 0.9◦ and the magnetic deflection as a Fisher distribution
with concentration parameter κ . Our hierarchical model has parameters F0 (flux
from isotropic background), FA (total flux from the AGNs), λ (source label of
each UHECR), and κ . We assume AGNs have fixed CR luminosity implying an
AGN at distance d generates CR flux ∝ 1/d2. We analyze a physically plausible
range of deflections κ ∈ [1,1000]. F0 and FA have an exponential prior with scale
s ≈ 0.063 km−2 year−1, based on previous data from CR observatories AGASA
and HiRes. Gibbs sampling is performed on the parameters FA,F0 and λ to obtain
the posterior distributions. We use Chib’s method in [2] to estimate the marginal
likelihood under each model.

64.3 Results

The Bayes factors as a function of κ are shown in Fig. 64.1. Adopting the log-flat
prior for κ , we obtain the overall Bayes factor against the null of 26.10, 5.41 and
0.15 for M1 and 12.37, 8.27 and 0.11 for M2, for periods 1, 2 and 3, respectively.
The strength of the evidence for AGN association differs markedly from period to
period. For M1 and M2 we find �10% of PAO CRs may come from AGN and a
significant fraction must originate elsewhere.
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Fig. 64.1 Bayes factors comparing the association model with 17 AGNs (left) or 2 AGNs (right)
to the null isotropic background model. σ is the standard deviation in 2-d Gaussian approximation
for the Fisher distribution

References

1. The Pierre Auger Collaboration, Abreu, P., et al. (2010). Update on the Correlation
of the Highest Energy Cosmic Rays with Nearby Extragalactic Matter. Astroparticle Physics,
34(5):314-326.

2. Chib, S. (1995). Marginal Likelihood from the Gibbs Output. Journal of the American Statistical
Association, 90(432):1313-1321.

3. Goulding, A.D., Alexander, D.M., Lehmer, B., Mullaney, J.R.(2010). Towards a Complete
Census of Active Galactic Nuclei in Nearby Galaxies: the Incidence of Growing Black Holes.
Monthly Notices of the Royal Astronomical Society, 406(1):597-61.



Chapter 65
Statistical Differences Between Swift
Gamma-Ray Burst Classes Based
on γ- and X-ray Observations

Dorottya Szécsi, Lajos G. Balázs, Zsolt Bagoly, István Horváth,
Attila Mészáros, and Péter Veres

Abstract There are number of evidences that the gamma-ray bursts (GRBs) have
a third group beside the short and long ones: the intermediate group. Although
at this time, no reasonable physical explanation is known for them. We use
discriminant analysis to confirm the former classification and give some further
physical properties for the intermediate GRBs.

D. Szécsi (�)
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65.1 Discriminant Analysis: Separation Between Long
And Intermediate Groups

We analyse the γ- and X-ray properties observed by the Swift satellite. The variables
used in this work are the following: Fluence (Fl), 1-sec Peak Photon Flux (P),
Photon Index (Pind), Early X-Flux (Xfl), Initial Temporal Decay Index (Xdec),
Spectral Index (Xsp) and HI Column Density (XNH).

This analysis can confirm the classification of the GRBs based on the
hardness-duration joint distribution [1], and also can confirm the separation between
the long and the intermediate groups. We can get the discriminant function and the
statistical parameters dominating the discriminant function. In our data set, we have
61 intermediate and 123 long GRBs based on the grouping of the hardness-duration
joint distribution. We used SPSS1 in our computations.

In Table 65.1, we compared the means of the variables between the groups using
F-statistics. Bold faces mark the variables where the differences in the group means
are significant.

In our case, we have two classes (long and intermediate bursts) and one discrim-
inant function. The correlation between the variables and the discriminant function
is shown in the last column of Table 65.1. The correlation coefficients marked with
bold faces are significant at a very high level. Therefore, the discriminant function
is mostly dominated by these variables.

The significance of the differences measured by the discriminant functions is
shown in Table 65.2. As the value in the column Significance is .000, we can state
that the two groups differ significantly based on the γ- and X-ray observations.

Table 65.1 Variables discriminating long and intermediate bursts

Variable
Wilks’
Lambda F df1 df2 Sig. Corr.

Pind 0.838 35.055 1 182 0.000 −0.409
Xdec 0.997 0.476 1 182 0.491 0.048
Xsp 0.943 10.908 1 182 0.001 −0.228
log Fl 0.634 104.841 1 182 0.000 0.707
log P 0.982 3.258 1 182 0.073 0.125
log Xfl 0.833 36.385 1 182 0.000 0.417
log XNH 0.960 7.660 1 182 0.006 0.191

Table 65.2 Discrimination between long and intermediate bursts

Test of function Wilks’ lambda Chi-square df Sig.

1 0.465 136.721 7 0.000

1SPSS is a registered trademark (http://www.spss.com).

http://www.spss.com
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65.2 Conclusion

We confirmed the separation between the long and intermediate groups and gave
the variables dominating the discriminant function (Fluence, Early X-Flux, Photon
Index, Spectral Index and HI Column Density). It is important constructing or
developing a model for the intermediate GRBs.
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Chapter 66
A Quasi-Gaussian Approximation
for the Probability Distribution
of Correlation Functions

Philipp Wilking and Peter Schneider

Abstract The likelihood function of correlation functions needs to be known
whenever they are used for inference about cosmological parameters. It is usually
approximated as a multivariate Gaussian, which is not necessarily a good approx-
imation, as can be seen from the existence of constraints on correlation functions
(see (Schneider and Hartlap, A&A 504:705–717, 2009))—thus, a better approxima-
tion for the likelihood of correlation functions is required. For a 1-D Gaussian field,
the univariate and bivariate likelihood has been derived analytically in (Keitel and
Schneider Constrained probability distributions of correlation functions. Accepted
for A&A [arXiv:1105.3672] 2011) and can deviate very strongly from Gaussians.
Based on the constraints and the exact univariate likelihood, we constructed a quasi-
Gaussian ansatz for the multi-variate correlation likelihood which (1) strictly obeys
the constraints, (2) yields an approximate Gaussian in cases where the Gaussian
approximation for the likelihood holds, and, if this is not the case, (3) provides a
much better approximation than the Gaussian, as demonstrated with simulations;
finally, (4) it provides a significantly better description than the straightforward
copula approach.

As shown in [4], correlation functions ξ (x) of a random field cannot take arbitrary
values, but are subject to constraints, originating from the non-negativity of the
power spectrum P(k). The constraints can be written in terms of the correlation
coefficients rn ≡ ξ (nx)/ξ (0) as rnu ≤ rn ≤ rnu, where the upper and lower bounds
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Fig. 66.1 The Gaussian and quasi-Gaussian approximations for p(y) and p(ξ ), see text for details

are functions of the ri with i < n. The existence of these constraints shows that the
probability distribution of correlation functions cannot be Gaussian.

For a one-dimensional, finite, real Gaussian random field, the exact uni- and
bivariate probability distribution functions of its correlation functions have been
derived analytically in [1], see also Keitel and Schneider’s contribution in these Pro-
ceedings. In order to obtain the higher-variate distributions, we can still efficiently
construct a new, “quasi-Gaussian” likelihood that also obeys the constraints. For
that purpose, we transform the correlation function to a new unbounded quantity

yn = atanh
2rn − rnu − rnl

rnu − rnl
.

Using a Gaussian likelihood for y is by far better justified than for ξ , as illustrated by
the left-hand panel of Fig. 66.1 (the solid contours come from simulations, and the
dashed ones show the approximation). Transforming the Gaussian back to ξ -space
gives a good approximation for the likelihood of ξ (right-hand panel). Details and
more quantitative results can be found in our upcoming paper [5], in which we
also test how the new likelihood performs in a Bayesian analysis compared to the
Gaussian likelihood by constructing a toy model.

As an alternative way to construct likelihood functions, a copula approach (see
e.g., [2, 3]) can be used to couple univariate distributions to get a multivariate PDF.
However, we showed that coupling the analytical univariate p(ξ ) from [1] with
a Gaussian copula yields a multi-variate likelihood that is in bad agreement with
simulations. Thus our quasi-Gaussian approach should be favored—of course, the
accuracy of a copula likelihood might improve with a more realistic coupling.
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Chapter 67
New Insights into Galaxy Structure
from GALPHAT

Ilsang Yoon, Martin Weinberg, and Neal Katz

Abstract We introduce a novel galaxy morphology analysis tool GALPHAT
exploiting Bayesian MCMC to provide the full posterior probability distribution of
galaxy morphology parameters. Utilizing the full posterior, one can assess a prob-
abilistic significance over the entire parameter space, make parameter inferences
with reliable errors and test different hypotheses with statistical confidence levels.
GALPHAT provides new insights into galaxy formation and evolution studies based
on galaxy morphology and successfully demonstrates the feasibility of a large scale
morphology analysis.

67.1 Motivation

The study of galaxy morphologies provides important information to understand
galaxy formation and parametric models are widely used to derive galaxy structural
parameters. However, an accurate decomposition of galaxy morphology is stymied
by degeneracies in the parameter estimation itself. In most previous galaxy decom-
position analyses, the correlations of physical properties and structural parameters
of galaxies are usually assessed through scatter plots of the best-fit parameters.
Those correlations are subject to strong contamination by underlying systematic
correlations of the model parameters. To put galaxy morphology analysis on a
rigorous statistical base, we present a novel image decomposition package GAL-
PHAT (GALaxy PHotometric ATtributes [2]), which uses the Bayesian MCMC
software package BIE [1], providing full parameter posteriors for reliable parameter
estimation and hypothesis testing using a large ensemble of galaxy samples.

I. Yoon (�) • M. Weinberg • N. Katz
Department of Astronomy, University of Massachusetts, Amherst, MA, USA
e-mail: iyoon@astro.umass.edu; weinberg@astro.umass.edu; nsk@astro.umass.edu

E.D. Feigelson and G.J. Babu (eds.), Statistical Challenges in Modern Astronomy V,
Lecture Notes in Statistics 209, DOI 10.1007/978-1-4614-3520-4 67,
© Springer Science+Business Media New York 2013

555



556 I. Yoon et al.

67.2 Methods

Given a parametric model of a galaxy’s surface brightness (i.e. Sérsic), GALPHAT
produces a likelihood function for image data by generating the difference with a
model image. The BIE samples the posterior for a given prior distribution using
a choice of MCMC algorithms. For computational efficiency, GALPHAT pre-
generates a table of two-dimensional cumulative distributions of Sérsic profiles
by numerical integration over pixels on a scale free grid using a rigorous error
tolerance, for many different Sérsic indices n. When generating a model image,
GALPHAT interpolates this table and scales using galaxy radius r and axis ratio
b/a. Then the image is rotated by its position angle using sequential shear operations
carried out in Fourier space, convolved with a given PSF, and combined with an
adjustable sky pedestal. By incorporating this fast and accurate image generation
algorithm for the likelihood evaluation, GALPHAT can analyze a large number of
galaxies (e.g. ∼10,000) within two weeks using a Beowulf Linux cluster.

67.3 Results

We simulate a large ensemble of one-component Sérsic and two-component Sérsic
bulge/exponential disk profile galaxies with a realistic distribution of galaxy
structural parameters for testing the performance of GALPHAT. A summary of our
results is.

• Parameter covariance must be fully taken into account using the full posterior
to correctly characterize the parameter errors and to avoid biases owing to the
parameter covariance, in later inferences.

• A carefully chosen prior significantly improves the inference of galaxy morphol-
ogy parameters particularly for a low signal-to-noise ratio galaxy.

• Bayes factor model selection enables the reliable classification of a galaxy with
statistical confidence, e.g. one- or two-components.
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515, 523, 555

Approximate Bayesian computation, 3, 21
debate with frequentists, 456
hierarchical models, 209, 225, 303, 470,

544
Markov Chain Monte Carlo, 41, 101, 117,

147, 507, 523
model selection, 101, 117, 141, 555
sequential Monte Carlo, 3

binary stars, 491
bootstrap resampling, 491

C
calibration error, 203
celestial mechanics, 453

cosmic rays, 544
cosmography, 27
cosmology, 3, 21, 41, 225

cosmic microwave background, 3, 65, 79,
83, 487, 539

galaxy clustering, 27, 41, 505, 515,
527

galaxy formation, 523
galaxy luminosity function, 21
galaxy merging, 497
gamma-ray bursts, 533
gravitational lensing, 65, 79, 83, 515, 519
luminosity functions, 3
Type 1a supernovae, 3, 209

D
data compression, 309
data mining, 255, 276, 473

k-nearest neighbor, 276
density estimation (smoothing), 147
detection bias, 527
directional data, 83, 291

E
Edgeworth expansion, 515
EM Algorithm, 177
erroneous use of statistics, 453, 461
exoplanets, 531
experimental design, 59

F
False Detection Rate, 456, 511
Fisher information, 309
Fundamental Plane of galaxies, 495
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G
galaxy formation, 101
galaxy morphology, 497, 555
gamma-ray astronomy, 303, 461, 533, 548
gamma-ray bursts, 548
Gaussian processes, 41, 59
Gini index, 497
gravitational wave detection, 511

H
high energy astrophysics, 83
high performance computing, 59
histograms, 461
hypothesis tests, 141

I
image processing, 197, 219, 239, 330, 367,

473, 497, 539, 555
3-dimensional, 367
autocorrelation, 367
dendrogram, 367
denoising, restoration, 239
faint source detection, 219, 239, 383, 501
feature representation, 343
Poisson, 197
simulation, 348, 361

International Astrostatistics Network, 427

K
Kalman filter, 41

L
least squares

weighted, 147

M
machine learning, 177
Markov random fields, 505, 515
massive datasets, 147, 255, 269, 276, 449, 473
mathematical morphology, 330
maximum likelihood estimation, 65, 79, 101,

147, 291, 303, 309, 535
measurement error models, 147
measurement errors, 189, 491
method of moments, 147
mixture models, 197, 367
multivariate analysis, 531

diffusion maps, 255
dimensionality reduction, 255, 269, 309

discriminant analysis, 548
multi-component analysis, 499

multivariate classification, 177, 269, 276, 473
cross-validation, 533
Random Forests, 330, 533
spectral connectivity analysis, 255
Support Vector Machine, 343

N
nonparametric regression, 83, 255
nonparametric statistics, 21, 491

O
optical astronomy, 41, 255, 291, 309, 348, 361,

383, 449
outlier detection, 276

P
Pareto (power law) distribution, 470, 507, 527
photometric redshifts, 3, 27
planetary astronomy, 343
Poisson processes, 197, 544
power spectrum, 539
principal components analysis, 41
publication bias, 461

R
radio astronomy, 367
regression, 147

measurement error models, 163
orthogonal, 163

S
selection bias, 461, 470
SIMEX algorithm, 163
solar astronomy, 330
sparsity, 239, 255, 519, 539
spatial point processes, 473, 505, 535, 544

two-point correlation function, 515
spectral analysis, 41, 65

bispectrum, 83
spherical statistics, 487, 544
statistical computing

Python, 427
R, 163, 427
WinBUGS, 163

statistical fusion, 117
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statistical software, 453
IDL, 539
R, 453

stellar color-magnitude diagrams,
535

stellar oscillations, 171
sub-millimeter astronomy, 219
systematic errors, 21

T
telescope modeling, 203, 348, 361
time series analysis, 177, 189, 209, 461, 491,

507
Bayesian Blocks, 461
change point analysis, 491, 507
event/transient detection, 177, 383

irregularly spaced data, 177, 403
renewal process, 403

truncation, 3, 21, 225, 527

V
variable stars, 403, 507

W
wavelet analysis, 83, 239, 403

needlets, 83
ridgelets, curvelets, 239
Slepian, 403

X
X-ray astronomy, 197, 501, 507, 527
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