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The software for the Functional Data Analysis module was originally 
written by Jim Ramsay, Department of Psychology, McGill 
University, and Bernard Silverman, Department of Mathematics, 
University of Bristol. We have contributed enhancements and 
extensions, and attempted to reflect their zeal for the analysis of 
functional data.   We have benefited from contributions by James 
Schimert, and comments by Tim Hesterberg at Insightful 
Corporation. Our efforts were funded by NIH SBIR grants 
1R43CA86539-01 and 2R44CA86539-02 entitled: An S-Plus 
Functional Data Analysis Module.
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The book is intended as a guide to the functional data analysis 
software in the S+FDA library. It gives a general overview, and treats 
each topic through illustrative examples. The code for the examples 
can be found in the script files provided with the software, which also 
include additional examples. Users can learn to use the S+FDA 
library by executing the example scripts while reading. Details on the 
functions and their arguments, as well as further examples, can be 
found in the associated help files. 
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Functional data arise in many fields of research.  Measurements are 
often best thought of as functions, even in cases where the data is 
gathered at a relatively small number of points.   Examples include  
weather changes,  stock prices,  bone shapes,  growth rates,  health 
status indicators, and tumor size.   

For time-dependent data, observations may be viewed as realizations 
of a smooth function  of time that have been measured (with 
error) at specific  time points , but which could have been measured 

at any time. Spatial functional data is also common, e.g., the length of 
a bone along an axis, the concentration of a drug in a tissue as a 
function of depth, yearly mean temperature as a function of location.

Historically, functional data have been analyzed using multivariate or 
time-series methods at discrete measurement points.   Analyzing 
functional data instead as functions has several advantages:

• Functions, unlike raw data, can be evaluated at any “time” 
point. This is important because it allows the use of statistical 
methods requiring evenly-spaced measurements and allows 
extrapolation for use in predictions or treatment decisions. 

• Functional methods (e.g., functional principal components, 
functional canonical correlation) apply even when the data 
have been gathered at irregular intervals, or at different times 
on different subjects, when multivariate analogues of these 
methods are either inappropriate or unavailable.

• Derivatives and integrals of functions may provide important 
information about the underlying process. For example, 
knowledge of the direction and rate of change of a patient’s 
temperature may be more important than knowledge of the 
patient’s current temperature.

Functional methods can also be used when the parameters to be 
estimated are functions. Ramsay and Silverman (1997) use smoothing 
spline methods for density estimation, and to estimate the link 
function in generalized linear models. Another example is regression 
splines for fitting time-dependent hazard regression models 
(Kooperberg and Clarkson, 1997). 
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3

S+FDA integrates functional data analysis methods into S-PLUS. It 
includes a complete commercial implementation of the exploratory 
methods of Ramsay and Silverman (1997, 2002), featuring: 

• methods for transforming observed data to a smoothed 
functional form, 

• predicting a functional or nonfunctional variable  as a 
function of one or more functional or nonfunctional variables, 

• finding and rotating the functional ‘‘principal components’’ of 
a functional variable, 

• finding the canonical correlations between two functional 
variables, and 

• performing a ‘‘principal differential analysis’’.

S+FDA also incorporates more recent innovations and extensions, 
such as allowing the use of functions with arbitrary bases, and 
providing methods for functional generalized linear models and 
functional cluster analysis. 

Installation To install the software:

• Go to the website: http://www.insightful.com/
downloads/libraries/default.asp

• Follow the on-screen Setup instructions; default settings are 
recommended.

Object-
oriented
Programming

S+FDA makes use of the object-oriented capabilities of the S-PLUS 
language. In object-oriented programming, constructor functions 
create structured data “objects” that are assigned a class (which 
typically has the same name as the constructor). The object-oriented 
paradigm allows users to apply generic functions (such as plot) to 
these classed objects, the details of which are handled transparently 
through class-specific functions or “methods”. This simplifies 
programming by avoiding the need to explicitly invoke different 
functions or to have additional function arguments when generic 
operations are applied to objects of different structures.

y t
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 INTRODUCTORY TUTORIAL (HEIGHT DATA)

We illustrate some exploratory functional data analysis methods using 
the Berkeley height data (Tuddenham and Snyder, 1954). The 
corresponding data frame, heightData, is included in the S+FDA 
library. This data contains the heights of 54 female (columns 2 to 55) 
and 39 male (columns 56 to 94) children observed at 31 times from 
age 1 to age 18. The times of measurement are included as the 
variable age (column 1). We first inspect the data graphically by 
plotting the height curves as follows:

#Set up the plot and label
> plot(heightData$age, heightData[,2], type="n",
       ylim=range(unlist(heightData[,2:55])),
       xlab="Age (years)", ylab="Height (cm)", 
       main="Female Height Data")
#draw the height curves
> matlines(heightData$age,as.matrix(heightData[,2:55]))

The result is shown in Figure 1.1.

Figure 1.1: Female height data.
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Although the data appear as smooth curves, only 31 discrete values of 
height were measured. The curves are produced by connecting these 
discrete points with straight lines.

As a functional data analysis application, we fit a function to each 
height curve using linear least squares. The function is represented as 
a linear combination of basis functions  and coefficients  that 

vary from one height function to the next:

There are a variety of choices for the basis functions, e.g., B-splines, 
Fourier series, and exponential series. Once the basis is chosen, the 
coefficients are estimated based on the observed data. In Figure 1.1, a 
polygonal basis of connected line segments is used to draw the curves.

 Although the functional representation almost always differs from the 
data at the points of observation, these differences are assumed to be 
small in the sense that the coefficients  capture the information 

contained in the discretized curve. In most analyses, the raw data is 
ignored once the  have been estimated because it is simpler to 

work with the functional form. The assumption is that the within-
subject variance in the  estimates is small compared to the 

between-subject variance. 

Warning When the number of observations for estimating the  is small to 

moderate or when the within-subject variance of the  estimates is 

large, a mixed-effects model may be preferred so that information 
may be combined across subjects.

Selecting the 
Basis
Functions

To perform a functional data analysis, we must first choose an 
appropriate set of basis functions. In the example above, 16 B-spline 
basis functions of order 6 were used. Since the order of a polynomial 
basis is the degree plus one, this basis consists of 16 piecewise 
polynomial splines of degree 5. By default, the interior knots for the 16 
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basis functions are equally spaced over the range of the independent 
variable (the two exterior knots are placed at the endpoints of the 
function domain). Since height is being viewed as a function of age, 
the appropriate domain for the basis functions is the age span of the 
data. The following forms an object of class “bsplineBasis” for the 
height data:

> heightBasis <- bsplineBasis(fDomain
              =range(heightData$age), nbasis=16,norder=6)

The basis functions, displayed in Figure 1.2, are equally spaced over 
the domain:

> plot(heightBasis, main="B-spline Basis Functions")

Now that we have defined a basis, we need to calculate the 
coefficients for each height curve. Since there are 93 subjects in this 
dataset, there should be 93 sets of coefficients (one set for each 
function). The S+FDA function fVector takes the basis, the data 
matrix, and the independent variable, and returns an object of class 
“fVector” containing the linear least-squares estimates of the 
coefficients. An “fVector” object has two additional attributes: 

Figure 1.2: A set of 16 B-spline basis functions.
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“basis”, which stores the basis used in the fit, and “fNames”, which 
stores labeling information for the data. In the code below, we also 
specify names for the independent variable (age), the subjects (child), 
and the units of the response (height). These names are used in the 
plotting and printing functions.

> fHgt <- fVector(object=heightBasis, y=heightData[,2:94],
               fArgs=heightData$age, 
               fNames=list(age=heightData$age, 
                child=names(heightData)[2:94], height='cm'))

Extract the estimated coefficients, basis functions, and function names 
from fHgt using the commands getCoef(fHgt), getBasis(fHgt), and 
getNames(fHgt), respectively.

Smoothing Although the basis functions smooth the curves, additional smoothing 
may be beneficial. The S-PLUS functions for creating functional data 
objects allow specification of a smoothing  penalty in the least-squares 
objective. The penalty also requires a smoothing parameter, lambda.
You may estimate an optimal lambda by minimizing a generalized 
cross validation statistic.  See section Generalized Cross Validation on 
page 82 for more details. 

Smoothing techniques are largely exploratory in nature, and are 
discussed in more detail in Chapter 4 of this manual, as well as in 
Chapter 4 of Ramsay and Silverman (1997). We will have occasion to 
use smoothing techniques for most of the functional data analysis 
methods provided in S+FDA.

As an example, penalize the squared second derivative with a penalty 
parameter lambda=0.001:

> fHgt2 <- fVector(object=heightBasis, 
             y=heightData[, 2:94], fArgs=heightData$age,
             penalty=list(lambda=0.001, linDop=fDop(2)),
             fNames=list(age=heightData$age,
             child=names(heightData)[2:94], height='cm'))

Compare with the original data of Figure 1.1 to see how closely the 
smoothed functions fit the data. The S-PLUS function fEval evaluates 
an object of class “fVector” at any point in the domain of the basis. 
Here, we evaluate the 54 spline curves for the females at the original 
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age values (heightData$age), calculate the difference between 
predicted and observed heights, and then plot the curve differences at 
the given ages:

> hgtFemale<-fEval(fHgt2[1:54], heightData$age)

> plot(heightData$age, hgtFemale[,1], type="n",
        ylim=range(hgtFemale-as.matrix(heightData[,2:55])), 
       xlab="Age (years)", ylab="Height Difference (cm)", 
       main="Female Height Differences with Splines")
> matpoints(heightData$age,
       hgtFemale-as.matrix(heightData[, 2:55]), pch="o")

The resulting plot is given in Figure 1.3.

The maximum deviation between the spline approximation and the 
true heights is about 1.5 cm compared with height values of 80 cm or 
more (see Figure 1.1). These differences are small enough that we 
consider the smoothed functions to be acceptable for subsequent 
analysis. 

Figure 1.3: Difference between predicted and actual female height data when using 
cubic B-splines for function representation.
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Given a representation of the data as an fVector object, it is easy to 
conduct several kinds of exploratory analyses with S+FDA. Here, we 
compute the first two derivatives of height with respect to time. We 
begin with the first derivative:

> plot(fVector(fHgt2[1:54], linDop = fDop(1)), 
       xlab="age (years)", 
       ylab="First Derivative of Height (cm/year)",
       main="Female Height, First Derivative")

The result is displayed in Figure 1.4.

Despite the large number of curves in Figure 1.4, some general trends 
are apparent: there appears to be an acceleration in growth around 
age 4, with a second acceleration after age 10. Further exploratory 
analysis, such as plotting the mean of the 54 derivative functions, may 
help reveal more structure. 

The plot of the second derivatives is produced in a similar fashion: 

Figure 1.4: First derivatives of the functional representation of the female height 
data. The second derivative was penalized for smoothing, with penalty parameter 
0.001.
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> plot(fVector(fHgt2[1:54], linDop=fDop(2)), 
       xlab="Age (years)",
       ylab="Second Derivative of Height (cm/year^2)",
       main="Female Height, Second Derivative")

The result is displayed in Figure 1.5. 

The large function values near the endpoints in both derivative plots 
are due to lack of information concerning values outside the interval. 
Smoothing by penalizing a higher derivative would reduce the 
variation at the endpoints, although possibly at the risk of 
oversmoothing the function. Such considerations are discussed in 
more detail in the chapter on smoothing. 

Because we use splines of degree five (order 6) when fitting the 
functions, the second derivatives are smooth, cubic splines. Had we fit 
the raw data with cubic splines (order 4), the second derivative curves 
would have been piecewise linear. In general, if an analysis requires a 

Figure 1.5: Second derivatives of the functional representation of the female height 
data. The second derivative was penalized for smoothing, with penalty parameter 
0.001. 
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smooth kth derivative, and smoothness in higher derivatives is 
unimportant, splines of degree k+3 (order k+4) should be used to fit 
the functions so that the kth derivative will be a cubic spline.

The ease with which you can examine the derivatives is a direct 
consequence of the functional approach, and one of its main 
advantages. By regarding the height measurements for each person as 
a smooth curve, you are no longer constrained by discrete 
observation times. 
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A LINEAR MODEL FOR THE HEIGHT DATA

Now consider a functional linear model for predicting sex in terms of 
the growth rate, the first derivative of the height curve. Since the 
dependent variable is binary, this model can also be considered a 
discriminant function for predicting sex in terms of the growth rate. 

For the height data, fit a functional linear model as follows:

> predLm <- fLM(sex~-1+fVector(fHgt, linDop=fDop(1)), 
                data.frame(fHgt=fHgt,
                sex=c(rep(1,54), rep(0,39))))

Here the -1 in the model formula eliminates the intercept, which is 
already contained in the B-splines. The coefficients in the resulting 
model are functional. The first coefficient estimate may be plotted as 
follows:

> plot(predLm$coef[[1]], xlab="age", ylab="beta",
       main="Coefficient Function")

The resulting plot is shown in Figure 1.6. 

Figure 1.6: The function of coefficients predicting sex in terms of the height function.
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The effect of the growth rate on the linear model prediction has a 
maximum around age 5, is positive again at around age 11, and is 
negative during the puberty growth spurt after age 11. The negative 
lobe after age 11 predicts maleness, when the boys have their growth 
spurts, but the girls are finished theirs.

To see how well the resulting model can discriminate between males 
and females, plot the fitted values:

> score <- getCoef(predLm$fitted.values)

> plot(as.factor(c(rep("F",54),rep("M",39))), 
       score, main="Linear Model Predicted Values")

The results are displayed in Figure 1.7. 

Most females have a score above 0.5, and most males have a score 
below 0.5, so that growth rates are an effective means of classifying 
the observations. 

Figure 1.7: Predicted height scores for each sex
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Discussion In this simple example of a functional linear model, we have again 
used derivative information, this time to predict the sex of the 
individual. Although the results for this example are good, generally 
predictions based on functional linear models should be viewed with 
caution. When the independent variable is functional, so are the 
coefficient estimates, and outliers may significantly influence the 
outcome (overfitting). Methods to avoid overfitting, particularly 
smoothing methods, are discussed in more detail in the chapter on 
functional linear models. 
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CLUSTER ANALYSIS OF THE HEIGHT DATA

One approach to cluster analysis is to search for natural groups of 
observations by examining “distances” between observations. For the 
height data discussed in the previous section, clustering can be based 
on a Euclidean or other distance measure between the observed 
heights at the observation times (the ages). Specifying these distances 
requires that all individuals be measured at the same times. This 
requirement can be met by first converting the observed data to 
functional form. Once this is accomplished, a much broader class of 
distance measures becomes available. For example, derivatives can 
be incorporated into the distance metrics. For the height data, we 
might be interested in patterns of growth curves related to the growth 
rate (the velocity, i.e., first derivative) or the rate of change in the 
growth rate (the acceleration, i.e., second derivative). If, for example, 
our main interest is the growth rate, then we could define the distance 
between the growth curve functions  and  for two 

individuals as the square root of the integrated squared distance 
between the first derivatives of the two height curves: 

This distance measurement is based on the rate of change of growth, 
as opposed to the final height achieved.

Computing a 
Distance
Matrix

For the clustering example, we consider only the height data starting 
from age 3.  The reason for this is that the data in infancy are 
unstable, and the transition to standing height around age 2 
introduces a significant perturbation. We recompute the smoothed 
fHgt from age 3:

> ageRange <- heightData$age >= 3
> heightBasis <- bsplineBasis(fDomain
                       =range(heightData$age[ageRange]),
                       nbasis=16, norder=6)
> fHgt3 <- fVector(object=heightBasis,

f1 t f2 t

d f1 t f2 t
df1 t

dt
---------------

df2 t

dt
---------------–

2
td

t

=
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               y=heightData[ageRange,2:94],
               fArgs=heightData$age[ageRange],
               penalty=list(lambda=0.001, linDop=fDop(2)),
               fNames=list(age=heightData$age[ageRange], 
                           child=names(heightData)[2:94], 
                           height='cm'))

The choice of lambda=0.001 is determined by a procedure described 
in section Generalized Cross Validation on page 82 .

The S+FDA function fDist computes distance matrices from 
functional data. The following S-PLUS code computes a distance 
matrix whose  element contains the square root of the integrated 
squared distance between the first derivatives of growth functions ( ) 
and ( ) for the height data: 

> distHgt <- sqrt(fDist(fHgt3, linDop=fDop(1)))

Now we can apply any clustering method based on distance matrices.   
For example, the S-PLUS function hclust computes clusters for a 
variety of hierarchical clustering methods from a distance matrix. 
Here we use average-linkage clustering:

> clustHgt <- hclust(distHgt, method="average")

 A plot of the cluster tree label according to sex is obtained as follows:

> sex <- as.factor(c(rep("F", 54), rep("M", 39)))
> plclust(clustHgt, labels=as.character(sex))

i j

i

j
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The result is displayed in Figure 1.8:

Displaying the 
Cluster Mean 
Functions

Since we have heights for both males and females, it would seem 
natural to group the data by sex. The labeling in Figure 1.8 shows that 
this grouping is supported by the cluster analysis, indicating that 
males and females generally have different growth patterns. Only one 
male appears in the female subtree, and relatively few females appear 
in the male subtree. To investigate this further, we apply the S-PLUS 
function cutree to obtain the two-group solution:

> g <- 2
> groupsHgt <- cutree(clustHgt, k=g)

The clusters are as defined by a horizontal line at about distance 9.5 
in Figure 1.8. The frequency of males and females in each of the 
groups is easily obtained using the S-PLUS function crosstabs:

> crosstabs(~groupsHgt+sex)

for which an abbreviated output is shown below:

Figure 1.8: Complete linkage cluster tree labeled according to sex.
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       |F      |M      |RowTotl|
-------+-------+-------+-------+
1      |49     | 1     |50     |
-------+-------+-------+-------+
2      | 5     |38     |43     |
-------+-------+-------+-------+
ColTotl|54     |39     |93     |
-------+-------+-------+-------+

Group 1 is predominantly female and group 2 predominantly male. 
We split the data into a list grouped by cluster, and plot the function 
and derivative means for each group:

> splitGroups <- split(fHgt3, groupsHgt)
> par(mfrow=c(2,1))
> plot(1, 20, type="n", xlab="age", ylab="height", 
       main="Group Mean Function Heights",
       xlim=c(0, 19), ylim=c(60,200))
> temp <- lapply(1:g, function(i) 
            lines(mean(splitGroups[[i]]), lty=i, col=i))
> legend(1, 190, paste(1:g), col=1:g, lty=1:g)
> plot(15, 20, type="n", xlab="age", ylab="height",
       main="Group Mean Derivative Heights",
       xlim=c(0, 19), ylim=c(0,30)) 
> temp <- lapply(1:g, function(i)
                 lines(mean(fVector(splitGroups[[i]], 
                       linDop=fDop(1))), lty=i))
> legend(15, 29, paste(1:g), col=1:g, 
         lty=1:g, background=0)

The results are shown in Figure 1.9. Since derivatives were used to 
define the distances, one would expect cluster differences to be 
reflected in their means, shown in the lower half of Figure 1.9. The 
display shows that the behavior of the clusters differs with respect to 
the time and duration of the growth spurt around puberty. There is 
also a difference in the groups around age 5 where group 1 (mostly 
females) tends to have a minor growth spurt that is not present in 
mostly-male group 2.

Between 
Cluster
Distances

Hierarchical clustering methods produce a grouping for a given 
number of clusters, but do not include a mechanism for selecting the 
correct number of clusters. The choice of two groups was based on 
informal inspection of the clustering tree (Figure 1.8). Because of the 
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small number of cross-overs from males to females, the two-group 
solution (males versus females) would seem satisfactory. However, if 
the labeling according to sex were not available, we would be 
unlikely to reach this conclusion.

Summary This clustering example illustrates the flexibility of functional data 
analysis methods - when the data are thought of as functions, distance 
measures based on derivatives are possible, and derivatives can be 
used to analyze group structure. 

Multidimen-
sional Scaling 

Multidimensional scaling is also possible once a distance matrix is 
available. We applied the S-PLUS function cmdscale to the distance 
matrix (using the command cmdscale(distHgt) ) to do a simple 
multidimensional scaling analysis. In a plot of the (two dimensional) 
solution (not shown), the males and females are well separated. 

Figure 1.9: The mean function (top) and its first derivative for the two groups in 
Figure 1.8
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The S+FDA library offers many other methods for functional data 
analysis. These are discussed more fully in subsequent chapters, as 
well as in Ramsay and Silverman (1997, 2002).
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FDA FLOW CHART

The flowchart in Figure 1.10 represents the organization of this 
manual.

Each box in the flowchart represents a chapter. Functional data 
analysis begins by selecting a basis to represent discrete data in 
functional form. The data typically correspond to a sample of 
functions,  so that registration to remove unimportant differences (e.g. 
phase and/or amplitude variations) between samples may be 
necessary. Although the basis representation usually provides some 
smoothing, it is often desirable to apply one or more smoothing 
operations before analysis. This smoothing may be accomplished via 
a penalty on a linear differential operator applied to the functions. 

Once a functional data object has been created, it can be analyzed 
and transformed in ways that are not possible for discrete data. You 
may perform various arithmetic operations, including differentiation 
and integration. In addition, a variety of analyses  from discrete data 
analysis have functional analogs: linear and generalized linear 

Figure 1.10: FDA flowchart.
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generalized linear modeling, principal component and canonical 
correlation analysis, and cluster analysis. Principal differential 
analysis, which has no analog for discrete data, is another option for 
functional data.



23

What is a Basis? 24
Univariate 24
Bivariate 24

Basis Objects 25
Univariate 25
Bivariate 25

Choosing a Univariate Basis 26
SelectBasis 26
Function Properties 26

Choosing a Bivariate Basis 28

Creating Univariate Bases 29
constantBasis 29
bsplineBasis 30
FourierBasis 31
polynomialBasis 33
polygonalBasis 34
exponentialBasis 35
compositeBasis 36

Creating Bivariate Bases 39
Separable Bases 39
Finite Element Bases 39

Operations on Univariate Bases 41
Derivatives 41
Integrals 42
Inner Products 43

Operations on Bivariate Bases 44
Derivatives 44

BASIS OBJECTS AND 
OPERATIONS 2



Chapter 2  Basis Objects and Operations

24

WHAT IS A BASIS? 

Univariate In the S+FDA library, univariate functions are represented as linear 
combinations of basis functions: 

where the  are coefficients, and the  are known basis functions. 

For example, in an exponential basis,  for user-

specified parameters .

Bivariate Similarly, bivariate functions may be represented as: 

where  are the basis functions based on (triangle) finite 
elements. 

Alternatively, by assuming that the basis functions are separable, the 
representation is:
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BASIS OBJECTS

S+FDA supports both univariate and bivariate basis functions 
including:

• univariate bases: B-spline, Fourier series, polynomial, 
polygonal, exponential. Moreover, users can define their own 
bases, and composite bases of two or more bases are also 
possible.

• bivariate bases: finite element, or the product of two 
univariate bases.   

Univariate In S+FDA, each of the supported univariate bases is a class that 
inherits from a larger class called fBasis. Different subclasses of 
fBasis are defined by the number of basis functions and the domain. 
Once the user specifies the type of basis, the number of basis 
functions, and the domain, a basis-specific constructor function 
computes values for the coefficients from the data.

Bivariate In S+FDA, the basis may be assumed to be separable, in which case it 
is the product of two univariate bases functions, and is of class 
fProdBasis. 

If the finite element basis is used, the class is fFinElemBasis.
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CHOOSING A UNIVARIATE BASIS

Selecting basis functions is perhaps the most important step in a 
functional data analysis: the basis functions need to have features as 
close as possible to the data they estimate so that an accurate 
representation of the function can be obtained with only a few basis 
terms.

fSelectBasis Basis selection is so important that we provide the user with a 
function called fSelectBasis that is specifically designed for this 
task. Input to fSelectBasis includes information on whether the 
function is periodic, how many events are likely to occur in the basis, 
and whether or not derivatives are needed. Although fSelectBasis
function can help in selecting a basis, there is no fully automatic way 
to select a good basis and knowledge of the problem and available 
data is of critical importance. Note also that fSelectBasis allows 
access to only some of the types of bases that are available in the 
S+FDA library. 

Function
Properties

The number of events or features that occur in a function is a measure 
of its complexity. Features or events can be viewed graphically and 
include peaks, valleys, zero crossings, plateaus, and linear slopes. In 
the S+FDA function fSelectBasis, if there is only one event, it is 
assumed that the basis is constant over all values of its domain, with 
value equal to the value of the single event (class constantBasis). On 
the other hand, if more than one event is specified and derivatives are 
required, then a polynomial basis (class bsplineBasis) is used with 
the number of basis functions equal to the number of events. Finally, 
if derivatives are not needed, then a piecewise linear spline (class 
polygonalBasis) can be used. 

A function is periodic if its values are repeated in fixed intervals. For 
example, a function that varies in a regular pattern from day to day 
(e.g., temperature) or over the course of a year (e.g., mean daily 
temperature) can be thought of as periodic. A periodic function can 
often be expressed as a Fourier series, which is a sum of sine and 
cosine functions.
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Once a set of basis functions has been selected, coefficients must still 
be estimated. Values of the coefficients vary not only with the 
underlying data, but also with the fitting procedure. In particular, 
smoothing techniques may be needed to mitigate the influence of 
outliers and avoid overfitting. Smoothing is discussed in more detail 
in Chapter 4.
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CHOOSING A BIVARIATE BASIS

In bivariate analysis, the user must decide whether to assume that the 
basis functions are separable. If so, the product basis function is 
appropriate. Otherwise, the finite element basis is preferred. The 
relative advantages of each type are:

• Product: saves computation.

• Finite Element: theoretically more accurate, feasible to 
differentiate.

See Chapter for a comparison of computation times and accuracy of 
approximation...
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CREATING UNIVARIATE BASES

In object-oriented programming, a constructor for an object usually 
has the same name as the class assigned to the object. This convention 
is followed for objects of class fBasis. For example, the function 
FourierBasis constructs an object of class FourierBasis, and the 
function bsplineBasis constructs an object of class bsplineBasis.
The following section gives more detail on the basis functions 
available in S+FDA. The description is largely non-mathematical, but 
is hopefully sufficient to enable you to choose your own basis. 

constantBasis The simplest bases are those of class constantBasis. The basis 
functions in this class are constant (and equal to one) over their entire 
domain. There is only one argument to the constructor, the domain of 
the function. The basis may be constructed and plotted using the 
following commands:

> basis <- constantBasis(fDomain=c(0,10))
> plot(basis)

The resulting plot is shown in Figure 2.1.

Figure 2.1: Constant basis function over the domain (0,10). 

0 2 4 6 8 10

0
.8

0
.9

1
.0

1
.1

1
.2



Chapter 2  Basis Objects and Operations

30

The constantBasis constructor is surprisingly useful. Measurements 
on subjects that do not change with time (e.g., sex) can be included in 
functional models as functions with a constant basis. Indeed, linear 
regression models can be viewed as functional linear models in which 
the basis functions are constant.

bsplineBasis Piecewise polynomial splines consist of smoothly joined polynomials, 
where each polynomial is defined between two values called knots. In 
piecewise polynomials, function values of polynomials defined in 
adjacent intervals are constrained to be equal at the knots, and 
smoothness is obtained by constraining derivatives to be equal at the 
knots as well. In B-splines of order  (see, e.g., deBoor, 1978, or 
Green and Silverman, 1994), derivatives of order up to  are 
required to be equal at the knots in adjacent polynomials. The order of 
a B-spline is one more than the degree of the piecewise polynomials 
used in the fit. Thus, an order 4 B-spline is a piecewise cubic (degree 
3) polynomial in which the values of the first and second derivatives, 
in addition to the function values, match at the knots. B-splines are 
usually preferred over piecewise polynomials because they give a 
smoother fit to the data.

The bsplineBasis constructor allows as input the domain of the 
function, the order of the spline, the number of B-spline basis 
functions, and the location of the knots (although not all of these are 
needed since, for example, the number of knots and the order of the 
spline determine the number of basis functions). Ramsay and 
Silverman (1997) recommend that the order of the spline to be at least 
as high as the highest-order derivative of interest plus three (or, 
equivalently, that the degree of the spline be equal to the number of 
desired derivatives plus two). Using this rule, the highest-order 
derivative of interest would be a smooth cubic spline. 

Knots should be placed appropriately around features in the function 
such as maxima and minima, with fewer knots in locations where the 
function shows little variability. The exact knot location is not usually 
important, but using too few knots may lead to significant error in the 
functional representation, while using too many knots may lead to 
overfitting of the data. One common practice is to use a fixed grid of 
(many) knots, and then apply smoothing methods (see Chapter 4) to 
eliminate problems due to overfitting. An alternative is to use 

k

k 1–



Creating Univariate Bases

31

regression methods to find “optimal” knot locations (see, e.g., 
Friedman and Silverman, 1989). Currently only the smoothing 
methods are supported in S+FDA.

The follow constructs and plots the functions in a B-spline basis:

> basis <- bsplineBasis(fDomain=c(0,10), norder=6, 
                        nbasis=20)
> plot(basis)

The resulting plot is given in Figure 2.2.

FourierBasis Periodic functions such as time series are represented by objects of 
class FourierBasis. Functions represented in this basis have 
expansions of the following form: 

Figure 2.2: B-spline basis functions over the domain (0,10). 
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The basis functions are , , , 

, etc. The first basis function is a constant, the second 
a sine function, the third a cosine function with the same period, and 
so on.

In a Fourier basis there are always an odd number of basis functions, 
and the period is taken to be the same as the domain of the function. 
The basis functions are estimated using a fast Fourier transform. A 
plot of an object of class FourierBasis can be obtained as follows:

> basis <- FourierBasis(fDomain=c(0,10), nbasis=4)
> plot(basis)

The result is shown in Figure 2.3.

Notice that although four basis functions were specified, we obtained 
five basis functions. This is because a Fourier basis always has an odd 
number of basis functions: the constant basis function plus an equal 
number of sin and cos basis functions.

Figure 2.3: Fourier basis functions over the domain (0,10). 
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polynomialBasis The basis functions in an object of class polynomialBasis are the 
terms of a polynomial centered at a fixed scalar , for example: 

The number of basis functions is equal to the degree of the 
polynomial, plus one. In the polynomial shown, the number of basis 
functions is five, one for each term in the polynomial. 

A plot of the first five functions in a polynomial basis over the domain 
(0,10) and centered at 5 is obtained as follows (see Figure 2.4):

> basis <- polynomialBasis(fDomain=c(0,10),nbasis=5,ctr=5)
> plot(basis)

Note that any smooth function can be represented by a polynomial 
basis expansion, since the terms are those of its power series about a 
point. Unfortunately, the basis functions in polynomial bases tend to 

Figure 2.4: First five polynomial basis functions centered at 5 over domain (0,10). 
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be highly correlated and often exhibit numerical instability. Also, the 
fit may be poor away from the center , and adaptation to local 
features removed from  may not be possible without a very large 
number of basis functions. Although polynomial bases play an 
important role in classical analysis, they have been superseded by the 
more flexible B-spline bases in applications.

polygonalBasis Objects of class polygonalBasis are piecewise linear, equivalent to an 
order 2 (linear) B-spline basis. This basis has the advantage of 
simplicity, and the disadvantage that the first derivatives are step 
functions. The polygonalBasis constructor has a single argument, 
fArgs, containing the points at which the function changes (the knots 
in a linear B-spline basis). Perhaps the most common way to use a 
polygonal basis is to set the knots in fArgs equal to the observation 
times of the function so that the unsmoothed function linearly 
interpolates the observed data. Smoothing is then used to prevent 
overfitting.

A plot of five polygonal basis functions is obtained as follows (see 
Figure 2.5):

> basis <- polygonalBasis(fArgs=seq(0, 10, length=5))
> plot(basis)

c

c
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exponentialBasis Objects of class exponentialBasis consist of terms of the form 
 where the  are user-specified rate constants. As with 

polynomial bases away from their center, exponential bases do not 
adapt well away from the origin. For this reason, exponential bases 
should only be chosen in special circumstances. A plot of five 
exponential basis functions is obtained as follows (see Figure 2.6):

> basis <- exponentialBasis(fDomain=c(0, 10), 
                      ratevec=c(-2, -1, -0.5, -0.25, -0.1))

Figure 2.5: Polygonal basis functions on the domain (0, 10). 
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 > plot(basis)

compositeBasis Objects of class compositeBasis represent bases whose terms are 
selected from one or more fundamental bases. A composite basis is a 
sum of terms of the form: 

each of which is a basis expansion. The following is an example of the 
representation of a function in terms of a composite basis consisting of 
three different fundamental bases:

Figure 2.6: Exponential basis functions on the domain (0,10). 
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(there are  basis functions of the th type in this composite basis). 

The advantage of a composite basis is the ability to adapt to more 
complex functions with fewer basis functions. As a simple example, 
consider a time series with a baseline and a linear trend in time. Such 
a function can be represented by the composite of a polynomial basis 
with two terms (a constant plus a linear term) to account for the linear 
trend, and a Fourier basis to represent the detrended time series.

In a more complex example of a composite basis, we use a constant 
basis to account for a baseline, an exponential basis to account for 
exponential decay, and a Fourier basis to account for periodic 
behavior. Such a basis can be constructed as follows:

> basis1 <- constantBasis(fDomain=c(0, 10))
> basis2 <- exponentialBasis(fDomain=c(0, 10), ratevec=-1)
> basis3 <- FourierBasis(fDomain=c(0, 10))
> basis <- compositeBasis(basis1, basis2, basis3)
> plot(basis)

The resulting plot is shown in Figure 2.7.

Figure 2.7: A composite basis consisting of a constant, an exponential decay, and a 
Fourier series over the domain (0, 10). 
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Although we explicitly included a constant basis for a baseline (mean) 
term, in fact a constant basis functions is already included in the 
Fourier basis.
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CREATING BIVARIATE BASES

Separable 
Bases

An S-PLUS constructor function fProdBasis creates product basis 
functions for bivariate functional data. Simply supply the two 
univariate bases that form the product. 

For example, to create a product basis consisting of a Fourier and a B-
spline univariate basis:

> basis1 <- FourierBasis(fDomain=c(0,365), nbasis=11)
> basis2 <- bsplineBasis(fDomain=c(0,52), nbasis=20) 
> basisProd <- fProdBasis(basis1, basis2)

The result is an object of class fProdBasis, which contains as two 
components the univariate bases:

> names(basisProd)
[1] "basis1" "basis2"

Finite Element 
Bases

An S-PLUS constructor function fFinElemBasis creates finite element 
basis functions for bivariate functional data.

> args(fFinElemBasis)

function(xDomain, yDomain, params)

For example:

> basisFinElem <- fFinElemBasis(c(0, 10), c(0, 10), 
                                c(10, 10))
> basisFinElem

 Linear Basis for 2D Finite Element Method:

 Domain x: 0 10
         y: 0 10

 Number of Basis: 121
 Number of Element: 200

The result is an object of class fFinElemBasis which contains the 
following components:

> names(basisFinElem)
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[1] "fDomain"   "Vnode"     "Velem"     "basis.coe"

The plot method for the object of class fFinElemBasis is also 
available for graphic view of the i-th basis function, as shown in 
Figure 2.8:

> plot(basisFinElem)

By default, the method picks one basis function in the middle of the 
domain. In this example, it chooses the 60th basis function.

Figure 2.8: The 60th basis function of basis2D, an object of class 
fFinElement.
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OPERATIONS ON UNIVARIATE BASES

Derivatives The function fEval produces values of basis functions and their 
derivatives (when applicable). 

Applied to an object that inherits from class fBasis, the required 
input to fEval includes the basis object, the points at which the basis 
is to be evaluated, and the desired order of the derivative. The output 
is the evaluated derivative (or function value) for all basis functions at 
the specified points. 

As an example, evaluate and plot the first derivatives of the 
exponential basis (displayed in Figure 2.6) over a sequence of 
numbers of length 100 over the domain (0, 10) using code:

> basis <- exponentialBasis(fDomain=c(0,10), 
                      ratevec=c(-2, -1, -0.5, -0.25, -0.1))
> dBasis <- fEval(basis, fArg=seq(0, 10, length=100), 
                  linDop=fDop(1))
> matplot(seq(0, 10, length=100), dBasis, type="l")



Chapter 2  Basis Objects and Operations

42

The resulting plot is given in Figure 2.9.

Integrals It is also possible to integrate the basis functions. The function fInt
integrates all of the functions in a basis over a specified range. For 
example, the exponential basis in Figure 2.6 can be integrated as 
follows:

> basis <- exponentialBasis(fDomain=c(0,10), 
                      ratevec=c(-2, -1, -0.5, -0.25, -0.1))
> fInt(basis, limits=c(0, 10))

This results in the following vector of integral values:

1.000 0.999 0.999 0.999 0.998 0.994 0.981 0.950 0.864 0.632

It is often less computationally expensive to integrate the basis 
functions over a specified range, and then use these integrals to 
evaluate the integrals of the functions of interest. 

Figure 2.9: First derivatives of Figure 2.6.
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Inner Products Inner products of basis functions are required in many of the analyses 
provided in S+FDA. These inner products are integrals of the form:

for any two basis functions  and , where the two bases are 
assumed to have the same domain and the integration is over the 
entire domain. For example, inner products of the basis functions 
within a particular basis are computed using the function fInProd as 
follows:

> fInProd(basis, basis)

The result is a square matrix containing the inner products with 
dimension equal to the number of functions in basis. This inner 
product matrix is used, for example, in functional regression models. 
Inner products of the derivatives of basis functions are also possible.

b1 s b2 s sd

b1 s b2 s
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OPERATIONS ON BIVARIATE BASES

Derivatives Evaluating bivariate basis functions of class fFinElemBasis and their 
derivatives (when applicable) are the main operations of interest. 
Integrals of functions are not calculated as the linear combination of 
the integrals of basis functions, therefore S+FDA does not implement 
integrals of basis functions. 

Evaluate the basis functions at specified arguments by

> fEval(basis, fArg1, fArg2=fArg1, xDeriv=0, yDeriv=0)

where arguments xDeriv and yDeriv can be specified by 1 for the 
first order derivative on  and . It returns a matrix of basis function 

values  with  and .

x y

s xj yj s 1 nBasis= j 1 nPoint=
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S+FDA supports functional data objects of either one or two 
arguments, as described below. 

Univariate 
Functional
Data Objects

Univariate functional data objects are represented by objects of class 
fFunction in S+FDA. Their structure is defined in terms of a basis 
expansion:

for known or estimated coefficients  and basis functions , as 
discussed in Chapter 2. 

Bivariate 
Functional
Data

Functional data objects with two arguments are represented in 
S+FDA in one of two ways, depending on whether the basis 
expansion is separable. The class of the object is either:

• fProdFunction (for separable basis expansions), or 

• fFinElemFunction (for finite element basis expansions).

Separable basis expansions for bivariate functions have the form

where the  are known or estimated coefficients, and  and 

 are basis functions from the  and  bases, respectively. With 
this form, each bivariate function can be written as an inner product 
of two univariate basis functions. These occur most often in variances 
computations for vectors of function objects. 

More generally, bivariate functions can be expanded as: 
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where the  are estimated coefficients,   are finite element
basis functions.  Currently, this expansion is implemented only for 
linear combinations of the basis functions, not higher order powers of 
the basis functions.

ij j x y
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UNIVARIATE FUNCTIONAL DATA OBJECTS (PINCH FORCE 
EXAMPLE)

In this section we first describe the various constructors associated 
with univariate functional data objects in S+FDA, and then discuss 
some of the most useful operations associated with these objects. 
Smoothing operations are discussed in the next Chapter.

Constructing 
Univariate 
Functional
Data Objects

An object of class fFunction represents a single univariate function. It 
may be constructed using a class fFunction constructor in one of 
three ways:

• from data -- i.e., a vector of known function values, the 
arguments at which the functions are evaluated and a basis, or

• from known basis coefficients and the corresponding basis, or

• from an fFunction object or an fVector object with length of 
1.

These methods are now discussed in more detail.

Constructing 
from data and a 
basis

You may construct an S+FDA object of class fFunction from an 
object of class fBasis, together with a vector of known function 
values (observations) and the vector of points at which the function is 
evaluated. 

As an example, we consider a dataset measuring the pinch force of an 
individual over time (see Ramsay and Silverman, 1997). Individuals 
pinch a measuring device for about one third of a second, and the 
force of the pinch is measured. Twenty pinches, each with 151 
measurements over time, were observed. 

The S+FDA data set pinchmat contains this data, with the columns 
indexing the replicates and the rows indexing the observed pinch 
force at each of the 151 observation times. The vector pinchtime
contains the 151 times, scaled as a sequence of integers from 0 to 150. 

You may create an object of class fFunction using the first column in 
pinchmat as follows:

#Create a basis
> basis <- bsplineBasis(fDomain=range(pinchtime))
#Create an fFunction object
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> onePinch <- fFunction(object=basis, y=pinchmat[,1],
                  fArgs=pinchtime, fNames=list(time="ms",
                  pinch="1", force="Newtons (Normalized)"))

In this example we first created the basis, and then used the 
fFunction constructor to create the functional data object, onePinch.
The coefficients in onePinch are obtained as the least-squares fit or 
projection of the function values (argument y) onto the space of the 
basis functions. Notice that the function domain specified by the basis 
must span the range of argument values. The argument fNames 
associates character strings with functional data objects for labeling 
purposes, for example, to give a name to the function or variable, to 
name the units in the function argument, to name the values at which 
the function is observed, or to name the units for the function values.

S+FDA includes a plot method for functional data objects. Here we 
plot the onePinch object, and also include the observations in the plot 
by a subsequent call to points (see Figure 3.1):

#Plot the fFunction object
> plot(onePinch, main="Pinch #1")
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> points(pinchtime, pinchmat[, 1])

Notice that the function names from argument fNames in the 
constructor are used for labeling the plot.

Constructing 
from coefficients 
and a basis

You may construct an S+FDA object of class fFunction from an 
object of class fBasis, together with a vector of coefficients . This 
method of construction is primarily used internally, but users may 
also have occasion to use it, for example, in simulation. Here we 
simulate a functional data object with noise added to the coefficients 
of onePinch:

> coef <- getCoef(onePinch)
> coef <- coef + rnorm(length(coef)) # add noise
> onePinch2 <- fFunction(coef, basis, 
                         fNames=list(time="ms", pinch="1",
                         force="Newtons(Normalized)"))

The function getCoef is used to access the coefficients in onePinch.

Figure 3.1: The onePinch functional data object with the observations 
superimposed. 
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Constructing 
from fFunction 
object or fVector 
object with 
length of 1

It is also possible to create a smoother fFunction object from an 
existing fFunction object.  See Chapter 4.

For an object of class fVector with length of 1, i.e., only one function 
in the vector, its class can be changed to fFunction.  See example in 
later of this section.

Operations on 
Univariate 
Functional
Data Objects

Once created, you may apply various operations to functional data 
objects. Smoothing is fundamental in functional data analysis, and is 
treated separately in Chapter 4. Below we discuss other important 
operations: evaluation, derivatives, inner products, and integrals for 
function objects.

Evaluation Use the function fEval to evaluate a function, its derivatives with a 
linear differential operator applied to the function specified by the 
argument linDop, at arbitrary argument values within the domain of 
the function. Here, we evaluate the onePinch object at some arbitrary 
times.

> newtimes <- seq(1.5, 140.5, length=140)
> onePinchEval <- fEval(onePinch, fArg=newtimes) 

Derivatives Obtain derivatives of functional data objects using the constructing 
function in S+FDA. The following examples show how to compute 
and plot the first and second derivatives of the pinch force object, 
onePinch:

> onePinchEval1 <- fEval(onePinch, fArg=newtimes, 
                         linDop=fDop(1))
> onePinchEval2 <- fEval(onePinch, fArg=newtimes, 
                         linDop=fDop(2))
> par(mfrow=c(2,1))
> plot(fFunction(onePinch, linDop=fDop(1)), 
       main="First Derivative")
> plot(fFunction(onePinch, linDop=fDop(2)), 
       main="Second Derivative")
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The resulting plot is given in Figure 3.2.

The oscillations in the second derivative indicate that additional 
smoothing may be desirable.

Linear
Differential 
Operator

We can also apply a linear differential operator to an fFunction
object by specifying the argument linDop in the constructing 
function.

Here is an example:

> x <- seq(0,365)
> y <- sin(2*pi*x/365) + cos(4*pi*x/265)
> basis1 <- FourierBasis(c(0,365), nbasis=8)
> fun1 <- fFunction(basis1, y, x)
> fLinOp <- fVector(matrix(c(2,1),1,2),
                    constantBasis(c(0,365)))
> ex2 <- fFunction(fun1, linDop=fLinDopN(fLinOp))

Figure 3.2: The first two derivatives of the onePinch functional data object. 
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where fLinOp is an object of class fVector having two fFunction
objects (see its definition in the next of this section) as the nonlinear 
coefficients of the 0th and 1st derivatives in the linear differential 
operator, and fLinDopN is the constructing function to create an object 
of class fLinDopN for normalized linear differential operator.  See 
Chapter 4, or the help files of fFunction and fLinDopN, for more 
detailed information about the definition of the linear differential 
operator.

Integration It is also possible to integrate functions (or linear differential operators 
applied to a function) over an interval in the domain of the function 
using the function fInt. Noting that the integral of the function 
computed over any time interval gives the total exertion over that 
interval, we compute the total exertion over the first 50 standardized 
time units, and compare it with the total exertion for the curve: 

> fInt(onePinch, limits=c(0,50))/fInt(onePinch)

The result indicates that 76.6 percent of the total exertion occurred in 
the first 50 standardized time units.

A common use for integrals of positive functions is to standardize the 
function so that its integral has the value 1, for example: 

> onePinchStd <- onePinch/fInt(onePinch)

S+FDA provides another function, fIntExp, that integrates the 
exponential of a function. It is useful for monotonic functional 
smoothing since the resulting integral is monotonic (see the chapter 
on smoothing), as well as for density estimation.

Inner Products Inner products can be computed in S+FDA via the function fInProd.
The inner product of two functional data objects defined on the same 
domain is the integral of their product over that domain. For 
example, we can compute the inner product of the onePinch object 
and its the first derivative as follows:

> fInProd(onePinch, fFunction(onePinch, linDop=fDop(1))))

or, equivalently,

> fInProd(onePinch, onePinch, linDop2=fDop(1))

Inner products can also be used to standardize the integrals of the 
squared function values, for example:

> onePinchStd2 <- onePinch/sqrt(fInProd(onePinch))
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Centering The mean of a functional data object can be obtained by dividing the 
integral of the function by the length of its domain. Centering is 
possible by subtracting the mean from the function. The integral of 
the centered function vanishes. The resulting function can be further 
scaled by dividing by the integral, giving unit area under the absolute 
curve. These operations are accomplished as follows:

> onePinchInt <- fInt(onePinch)
> onePinchCtr <- (onePinch - onePinchInt/150)/onePinchInt

(150 is the length of the domain of the function).

Arithmetic
Operators

It is also possible to apply the operators “+”, “-”, “*”, “/”, “sqrt”, “^”
to the functions (the exponentiation operator, “^” is restricted to 
constant values). As an example, we construct a polygonal basis for 
pinch force data:

> basis <- polygonalBasis(pinchtime)
> onePinchPolyg <- fFunction(basis, y=pinchmat[,1],
                             fArgs=pinchtime)

and plot of the difference between onePinchPolyg and onePinch
(with B-spline basis): 

> par(mfrow=c(1,1))
> plot(onePinch - onePinchPolyg)
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The result is shown in Figure 3.3.

The differences between the two functions are small relative to the 
observed function values, which have a maximum magnitude near 8.

Vectors of 
Functional
Data Objects

An object of class fFunction is the functional equivalent of a scalar. 
Vectors of functional data objects, each having the same basis, are 
represented by objects of class fVector. We will often refer to fVector
objects as variables, since these are usually (but not always) observed 
as a quantity measured over a random sample, such as pinch force 
measured over a random sample of subjects. In addition to vectorized 
counterparts of operations on objects of class fFunction, it is also 
possible to form mean and variance functions for vectors of functional 
data objects. 

Similar to fFunction objects, the operations of evaluation, 
derivatives, integrals,  linear differential operator and inner products 
can be applied to an fVector objects. 

Figure 3.3: Difference between pinch force function objects created with a B-spline 
and a polygonal basis.
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Creating vectors 
of functional 
data objects

Construction of objects of class fVector is similar to that of objects of 
class fFunction. Instead of a vector of function values, the required 
input is a matrix of function values, in which each column 
corresponds to a separate function. Observations in a column that are 
missing are omitted in computations. This has no effect on the 
computations in other columns. Here we create an fVector using a 
polygonal basis from all twenty columns in the pinch force data 
described above: 

> par(mfrow=c(2,1))
> basis <- polygonalBasis(pinchtime)
> pinchVecPolyg <- fVector(basis, y=pinchmat,                  
                           fArgs=pinchtime, 
                           fNames=list(time="ms", 
                           pinchForce=paste(1:20), 
                           force="Newtons (Normalized)"))
> plot(pinchVecPolyg, main="Vector of Functions")
> basis <- bsplineBasis(range(pinchtime))
> pinchVecBspln <- fVector(basis, y=pinchmat, 
                           fArgs=pinchtime, 
                           fNames=list(time="ms", 
                           pinchForce=paste(1:20), 
                           force="Newtons (Normalized)"))
> plot(pinchVecBspln, main="Vector of Functions")

The result is displayed in Figure 3.4.

For an object of fVector with length of 1, it can be changed to an 
object of class fFunction.  For example:

> pinchVecPolyg1 <- fFunction(pinchVecPolyg[1])

turns pinchVecPolyg1 to be an object of class fFunction.

Indexing Objects of class fVector can be indexed in the same manner as a 
numeric vector. An fVector object is returned even when that 
fVector would be of length 1. 

Sum of a vector 
of functions

The sum of an object of class fVector is an object of class fFunction
representing the (point wise) sum function.  For example:

> sumOnePinch <- sum(pinchVecPolyg)
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Mean of a vector 
of functions

The mean of an object of class fVector is an object of class fFunction
representing the (point wise) mean function. As an example, we 
compute and plot the vector of functions created from the pinch force 
data with a polygonal basis:

> plot(mean(pinchVecPolyg))

The result appears in the top half of Figure 3.5. Standardization of 
vector of functions to a point wise mean of zero is accomplished using 
intuitive operations: 

> cntrPinchVec <- pinchVecPolyg - mean(pinchVecPolyg)
> plot(cntrPinchVec, main="Deviations from the mean”)

The result is given in the bottom half of Figure 3.5.

Variances Pointwise variances (variances at each point in the domain) can also 
be computed in S+FDA via the function fVar. As an example, we 
compute and plot pointwise variances for the vectors of functions 
created from the pinch force data with the polygonal basis: 

> varPinchVec <- fVar(pinchVecPolyg, bivariate=F)
> plot(varPinchVec, main="Pointwise Variances")

Figure 3.4: Vectors of pinch force functions created with different bases. 
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The result is displayed in the top part of Figure 3.6:. 

.

It is also possible to compute covariances between two vectors of 
values that are the results of evaluating an fVector object at two 
argument values. For example, let

> x1 <- fEval(pinchVecPolyg, 50)
> x2 <- fEval(pinchVecPolyg, 55)

Then the covariance between the functions at argument values 50 
and 55 can be computed as follows:

> var(t(x1),t(x2))

This value turns out to be 0.827. 

Generalizing this to all values in the domain of the function, a 
bivariate variance-covariance function can be defined by considering 
the covariance at any two arguments. The following example 
computes and plots this function for the polygonal basis 
representation of the pinch force data:

Figure 3.5: Mean of the pinch force functions (top half). Pinch force functions 
standardized to a point wise mean of zero (bottom half). 

mean(pinchVec)

time

fo
rc

e

0 50 100 150

0
2

4
6

8

Deviations from the Mean

time

fo
rc

e

0 50 100 150

-2
-1

0
1



Univariate Functional Data Objects (Pinch Force Example)

59

> covPinchVec <- fVar(pinchVecPolyg)
> plot(covPinchVec)

The plot is given in the bottom half of Figure 3.6:

The following code can be used to verify that the covariance has the 
same value (0.827) at 50, 55:

> fEval(covPinchVec, 50, 55)

List of 
Functional
Data Objects

A list of functional data objects with possible different basis functions 
are represented by objects of class fList.  The components of the 
fList object are objects of class fFunction.

Creating list of 
functional data 
objects

We can construct an fList object from objects of class fFunction,
fVector, list, or fList.

Here is an example of creating an fList object from two fFunction 
objects:

> fBasis1 <- FourierBasis(c(0,365), nbasis=101)

Figure 3.6: The variance function (top), and the estimated variance-covariance 
function (bottom) for the pinch force functional data object.
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> fBasis2 <- bsplineBasis(c(0, 365), nbasis=101)
> temp1 <- fFunction(fBasis1, tempav[,1], 1:365)
> prec1 <- fFunction(fBasis2, precav[,1], 1:365) 
> fL1 <- fList(temp1, prec1) 

Or, create an fList object from an fVector object:

> temp23 <- fVector(fBasis1, tempav[,2:3], 1:365)
> fL2 <- fList(temp23)

Or, create an fList object from a simple list of fFunction objects:

> fL3 <- fList(list(temp1, prec1))

Or, create an fList object from fList objects:

> fL4 <- fList(fL1, fL2)

Operations on 
fList Objects

Since any fList object is a list of fFunction objects, perform any 
operation by doing an lapply.

For example, to take the square root of fL4:
> lapply(fL4, sqrt) 
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BIVARIATE FUNCTIONAL DATA OBJECTS (EXAMPLE)

In this section we first describe the various constructors associated 
with bivariate functional data objects in S+FDA, and then discuss 
some of the most useful operations associated with these objects. 

Constructing 
Bivariate 
Functional
Data Objects

There are two possible bivariate functional data objects: 
fProdFunction and fFinElemFunction.  Construct these using the 
corresponding constructors.

Construct a class fProdFunction object using the constructor in one of 
two ways:

• from data -- i.e., a vector of known function values, the matrix 
of arguments at which the functions are evaluated -- and a 
basis,

• from known bases coefficients and the corresponding bases.

from known basis coefficients and the two univariate bases. Construct 
fFinElemFunction objects from data -- i.e., a vector of known 
function values, the matrix of arguments at which the functions are 
evaluated -- and a basis, or from an fFinElemFunction existing 
object.

There are also functions for fitting linear models which return an 
object, one of whose components is a bivariate functional data object.  
This is discussed in greater detail in Chapter 6.

The constructor methods are now discussed in more detail.

Constructing 
from data and a 
basis

You may construct a bivariate function data object of either class 
fProdFunction or fFinElemFunction.  We discuss each of these in 
turn.

As an example, we again consider the pinchmat dataset (see section 
Constructing Univariate Functional Data Objects on page 48).  This 
time we model the variance-covariance surface.  

First calculate the correlation of the data set pinchmat evaluated at 
the grid of  points, where  and  both range over 1:20.   

> corPinch <- cor(pinchmat)

x y x y
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Construct a fProdFunction object by inputting an object of class 
fProdBasis, together with a matrix of known function values 
(observations) and two vectors for the arguments.

The first step is to create the fProdFunction object by first creating 
each of the component univariate bases.  In this example, construct  
B-Spline and Fourier bases:

> fBasis1 <- bsplineBasis(c(1,20), nbasis=15, norder=2)
> fBasis2 <- FourierBasis(c(1,20), nbasis=15)

Next, construct the fProdFunction object

> fcorPinch1 <- fProdFunction(fProdBasis(fBasis1, fBasis2),       
                            fVar=corPinch,
                            fArg1=1:20, fArg2=1:20,
                            bFNames=namesfcorPinch)

where

> namesfcorPinch <- list(args=list(arg1="Pinch", 
                                   arg2="Pinch"), 
                         vars="cor(Pinch)")

which gives names used in plot and print methods.

Alternatively, construct a fFinElemFunction object by inputting an 
object of class fFinElemBasis, together with a matrix of known 
function values and the two vectors of points at which the function are 
evaluated.

Create the finite element basis functions:

> fBasisFE <- fFinElemBasis(xDomain=c(1,20), 
                            yDomain=c(1,20), params=c(19,19))

Given the basis functions fBasisFE, the data corPinch and 1:20 for  
and , create an object of class fFinElemFunction by

> fcorPinchFE <- fFinElemFunction(fBasisFE, 
                                  fVar=corPinch, 
                                  fArg1=1:20, fArg2=1:20, 
                                  bFNames=namesfcorPinch) 

First, generate the graph of the original data set 

> par(mfrow=c(1,1))
> persp(1:20, 1:20, corPinch)

x

y
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The plot of corPinch is shown in Figure 3.7:

Next, compare the functional data objects created using the product 
basis and the finite element basis:

> par(mfrow=c(2,1))
> plot(fcorPinchProd)
> plot(fcorPinchFE)

Figure 3.7: Plot of the corPinch data.
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The results are given in Figure 3.8:

Note that it is also possible to have arbitrary evaluation points in 
constructing a fFinElemFunction object.  In other words, the y values 
need not correspond to the same x’s.

In this case, the arguments to the constructor function are a vector of
known function values (observations) and a matrix of points at which 
the function is evaluated.  See the help file for the fFinElemFunction 
constructor function for more details.

Figure 3.8: Plots of the functional data objects for the corPinch data The top 
plot shows the FDA object constructed from a product basis, and the bottom 
shows that constructed from a finite element basis
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Constructing 
from coefficients 
and two 
univariate bases

You may construct an S+FDA object of class fProdFunction from two 
univariate objects of class fBasis, together with a matrix of 
coefficients . This method of construction is primarily used 
internally, but users may also have occasion to use it, for example, in 
simulation. Here we simulate a functional data object with noise 
added to the coefficients of fcorPinchProd:

> coef <- getCoef(fcorPinchProd)
> noise <- matrix(rnorm(nrow(coef)*ncol(coef)),
                  nrow=nrow(coef))
> coef <- coef + noise %*% t(noise) 
> fcorPinchProd2 <- fProdFunction(coef, fBasis1, fBasis2)

The function getCoef is used to access the coefficients in 
fcorPinchProd.

Constructing 
from existing 
object

It is also possible to create a smoother fProdFunction or 
fFinElemFunction object from an existing object with the same class.  
See Chapter 4.

Operations on 
Bivariate 
Functional
Data Objects

Once created, you may apply various operations to bivariate 
functional data objects: evaluate functions, derivatives, and integrals.

Evaluation Use the function fEval to evaluate a function, or its derivatives at 
argument values within the domain of the function. 

Suppose you want to evaluate the functional data objects at the 
following data points:

> x1 <- y1 <- seq(1.01, 19.9, length=20)

For easy comparison, create a two column matrix of the function 
evaluations.  The first column contains the result from the product 
basis, the second for the finite element basis.

# evaluate
> fcorPinch.x1y1 <- cbind(as.vector(fEval(fcorPinchProd, 
                      x1, y1)), fEval(fcorPinchFE, x1, y1)) 

The following code plots the results shown in Figure 3.9:

> par(mfrow=c(2,1))

ij
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> zlim <- range(fcorPinch.x1y1)
> persp(x1, y1, matrix(fcorPinch.x1y1[, 1], 
                       ncol=length(x1)), zlim=zlim)
> persp(x1, y1, matrix(fcorPinch.x1y1[, 2], 
                       ncol=length(x1)), zlim=zlim)

Derivatives Obtain derivatives of functional data objects using the function fEval
in S+FDA. The following example shows how to compute and plot 
the partial derivatives of the covariance matrix of pinchMat.

For easy comparison, create a two column matrix of the derivatives.  
The first column contains the result from the product basis, the 
second for the finite element basis.

> dxfcorPinch <- cbind(as.vector(fEval(fcorPinchProd, x1, 
                       y1, linDop1=fDop(1))),
                       fEval(fcorPinchFE, x1, y1, xDeriv=1)) 

Figure 3.9: Plots comparing function evaluations.  The top plot is for the product 
basis, and the bottom is for the finite element basis.
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> dyfcorPinch <- cbind(as.vector(fEval(fcorPinchProd, x1, 
                       y1, linDop2=fDop(1))), 
                       fEval(fcorPinchFE, x1, y1, yDeriv=1))

The following code plots the results shown in Figure 3.10: for the 
derivative with respect to the first argument.

> zlim <- range(dxfcorPinch)
> persp(x1, y1, matrix(dxfcorPinch[,1], ncol=length(x1)), 
        zlim=zlim)

> persp(x1, y1, matrix(dxfcorPinch[, 2], ncol=length(x1)), 
        zlim=zlim)

Figure 3.10: Plots comparing first derivatives with respect to the first argument.  The 
top plot is for the product basis, and the bottom is for the finite element basis.
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Integration It is also possible to integrate functions over a region in the domain of 
the function using fInt.   This is only possible for functions created 
from a finite element basis. 

Note that the lower and upper limits for the second argument may be 
a function of the first argument.

As a simple example, integrate the functional data object of the 
corPinch data, created from the finite element basis.  By default the 
region of integration is the entire domain.

> int.corPinch <- fInt(fcorPinchFE, eps=0.1)

In the next example, we integrate a plane, and integrate over limits 
which are linear functions of the first argument.  Specifically, we 
integrate:

To integrate over the desired limits, first calculate quantities that 
define the domain.  Integrate  from 0 to 10, and  from limits that 
are linear functions of .

> xUpperLimit <- 10
> slope <- 0.3
> intercept <- 3
> n <- 11    # number of points for x domain
> x <- seq(0, xUpperLimit, len=n) # x domain
> yLowerLimit <- slope*x

f x y x ydd

y1 x

y2 x

x1

x2

x y+ x ydd

0.3x

0.3x 3+

0

10

x y

x
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> yUpperLimit <- slope*x + intercept

Next create functional data objects for the limits of integration,  

and 

> fBasis1 <- bsplineBasis(c(0, xUpperLimit), nbasis=n, 
                          norder=2)
> fyLower <- fFunction(fBasis1, yLowerLimit, x)
> fyUpper <- fFunction(fBasis1, yUpperLimit, x)

Then create a functional data object for the integrand,

> z <- matrix(nrow=n, ncol=n) 
> for(i in x) z[i+1, ] <- i+x
> fBasisFE <- fFinElemBasis(c(0,xUpperLimit), 
                            c(0,xUpperLimit), params=c(4,4))
> fun <- fFinElemFunction(fBasisFE, fVal=z, fArg1=x)

Finally, integrate:

> int.fun <- fInt(fun, lowArg1=0, upArg1=xUpperLimit, 
                  lowArg2=fyLower, upArg2=fyUpper)

The exact answer can be calculated as:

> exactAnswer <-0.5*intercept*xUpperLimit*(xUpperLimit
               + slope*xUpperLimit + intercept)
> c(int.fun, exactAnswer )
[1] 240 240

which agrees.

y1 x

y2 x
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LINEAR DIFFERENTIAL OPERATORS

Linear differential operators are used extensively throughout the 
S+FDA library. These operators can be applied to functions and 
evaluated, or used as smoothing penalty functions. 

Perhaps the simplest linear differential operators are derivative 
operators of any given order (including order 0, which gives the 
function itself). The general form of a linear differential operator is:

where  denotes the th derivative of  with respect to , 

(  is a derivative operator), and the  are specified objects of

class fFunction.

In S+FDA, linear differential operators are specified as objects of 
class fLinDop, which includes subclasses fLinDopN for normalized 
linear differential operators (weight function for highest-order 
derivative is the constant 1) and fDop for simple derivative operators. 
For example, fDop(2) denotes the second-derivative operator.
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SMOOTHING VIA A ROUGHNESS PENALTY

Smoothing
when
Constructing 
Functional
Data Objects

Bases computed using least-squares methods may result in fits that are 
highly oscillatory - especially when many basis functions are used. To 
avoid such overfitting, roughness penalties may be added to the least-
squares criterion when constructing functional data objects from 
observed data. S+FDA provides the option of specifying a penalty 
term for creating smoothed functional data objects using the 
roughness penalty approach. In constructing a smoothed function 
from observed data, the penalized least-squares criterion has the 
following form:

• for univariate functional data: 

:

• for bivariate functional data with product basis functions: 

+    

                            

• for bivariate functional data with linear finite element basis 
functions:

             +
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where  is a linear differential operator, and  is a penalty parameter 
that must be specified. 

The goal is to estimate the functional coefficients . You may use any 
linear combination of derivatives of the basis functions to specify the 
linear differential operator in the penalty term. A good rule of thumb 
is to include in the penalty a derivative of order two greater than the 
highest derivative of interest. This will penalize the curvature (second 
derivative) of the derivative of interest. Also make sure that the 
underlying basis is sufficiently smooth for the penalty to make sense.

The idea in a roughness penalty approach is to penalize roughness, as 
defined by the square of the given combination of derivatives in the 
final term of the above equation, so that the resulting function 
estimate (or its derivative) is smooth. The positive parameter  
specifies the amount of smoothing. Larger values give more weight to 
the penalty and thus increase the amount of smoothing.

Smoothing
Functional
Data Objects

You may also smooth functional data objects after they have been 
created. In this case, the criterion to be minimized is the sum of the 
(1) integrated squared distance between the smoothed and the 
unsmoothed function, plus (2) the penalty parameter as follows:

• for univariate functional data:

           

• for bivariate functional data with product basis functions: 

+    
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• for bivariate functional data with linear finite element basis 
functions:

             +

                           

Again the goal is to estimate the functional coefficients  or , but 

here the functions , or , are “known” functions that have 
already been expressed as a basis functions expansion:     

                                      , 

or

                                   

or

                                     .

When to 
Smooth?

It is important to note that the two smoothing techniques (smoothing 
from the observed data, or smoothing an existing function) can lead 
to different results, and different values of the smoothing parameter  
may be desired. The smoothing process is exploratory in nature and 
cannot be automated to accommodate all problems of interest.

Oversmoothing when creating the functional data object, or at any 
point in a sequence of functional data operations, can result in loss of 
information. In general, in order to retain maximal information, it is 
safer to smooth only when necessary. Regularization should be 
deferred as much as possible to the final functional data object to be 
estimated (e.g. functional regression coefficients or principal 
components).
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Pinch Force 
Data Example 
for Univariate 
Functional
Data 

The functional data object onePinchBspln constructed from the pinch 
force data using a B-spline basis expansion in Chapter 3 is already 
somewhat smooth because of:

• the choice of cubic splines for the basis, and 

• the relatively limited number of basis functions (23) used in 
fitting the functions to the 151 observed data points. 

By contrast, the functional data object for the pinch force data 
constructed from a polygonal basis in Chapter 3 (onePinchPolyg) is a 
good candidate for smoothing techniques since it contains the 
observations joined by line segments. 

Create the functional data object from observed data and the 
polygonal bases constructed from the observation times: 

> onePinchPolyg <- fFunction(polygonalBasis(pinchtime),
                             y=pinchmat[, 1], fArgs=pinchtime)

Next, apply a smoothing operation to create a smoothed object, in 
this case by penalizing the first derivative:

> pinchSmooth2 <- fFunction(onePinchPolyg,
                   penalty=list(lambda=100,linDop=fDop(2)),
                   basis=bsplineBasis(range(pinchtime), 
                        norder=3, 
                        breaks=seq(pinchtime[1],
                               pinchtime[length(pinchtime)],
                               length=50)))

Note that we specify a new basis for the smoothed object. The original 
basis does not have a sufficient number of derivatives for the specified 
penalty term to be nonzero. Generally, if the basis for the functional 
data object is sufficiently smooth, you may construct a smoothed 
object directly from the basis and the observed data.

Correlation of 
Pinch Force 
Data Example 
for Bivariate 
Functional
Data 

A two dimensional example is given by the data corPinch, the 
correlation of the data set pinchmat, created in Chapter 3. We 
construct a smoothed functional data object first using the product 
basis, then the finite element basis.

To construct a basis function object of class fProdBasis, first create 
each of the component univariate bases. In this example, construct B-
Spline and Fourier bases:
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> fBasis1 <- bsplineBasis(c(1,20), nbasis=15, norder=2)
> fBasis2 <- FourierBasis(c(1,20), nbasis=15)
> fBasis12 <- fProdBasis(fBasis1, fBasis2)

Create the bivariate functional data object from the function values 
and variables:

> fcorPinch <- fProdFunction(fBasis12, fVar=corPinch, 
                             fArg1=1:20) 

Create the smoothed bivariate functional data object by penalizing 
the first derivatives on both arguments of the function:

> fcorPinchSm <- fProdFunction(fBasis12, fVar=corPinch, 
                    fArg1=1:20, penalty=list(lambda=1000, 
                    linDop1=fDop(1), linDop2=fDop(1)))

Next, create the bivariate functional data with basis function of class 
fFinElemBasis.

> fBasis <- fFinElemBasis(xDomain=c(1,20), yDomain=c(1,20),
                          params=c(19, 19))
> fcorPinch2 <- fFinElemFunction(object=fBasis, 
                          fVar=as.vector(corPinch),
                          fArg1=cbind(rep(1:20, length=20), 
                                      rep(1:20, each=20)))

and the smoothed functional data object:

> fcorPinchSm2 <- fFinElemFunction(object=fBasis, 
                           fVar=as.vector(corPinch),
                            fArg1=cbind(rep(1:20, length=20), 
                                       rep(1:20, each=20)),
                           lambda=0.5)

We plot the smoothed functional data with two different basis 
functions as follows:

 > par(mfrow=c(2, 1)) 
 > plot(fcorPinchSm)
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 > plot(fcorPinchSm2)

Figure 4.1: The top plot is the smoothed functional data object with product basis
functions and the bottom one is the smoothed functional data with finite element basis 
functions..
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SPECIFYING THE PENALTY FUNCTION 

Smooth a functional data object by specifying the functional form of 
the smoothing term, via the penalty argument in functional data 
object constructors such as fFunction or fVector. For example, the 
following second-order linear differential operator is a common 
choice: 

In the above example we smoothed functional data that had a 
polygonal basis using this second-order penalty, but in order to do so 
we had to change the basis to one that is sufficiently smooth to have a 
nonzero penalty. 

Below we plot the original function, its transformation onePinchBspln
to a B-spline basis, and the smoothed function resulting from applying 
the roughness penalty with that same B-spline basis:

> onePinchSpln <- fFunction(bsplineBasis(range(pinchtime),
                            norder=4, 
                            breaks=seq(pinchtime[1],
                               pinchtime[length(pinchtime)],
                               length=50)),
                            y=pinchmat[,1], fArgs=pinchtime)

> par(mfrow=c(2,1))
> plot(onePinchPolyg, lty=8, 
       main="Function with Polygonal and B-Spline Bases")
> lines(onePinchSpln, lwd=2)
> plot(onePinchPolyg, lty=8,
       main="Polygonal Function and Second Order Smooth")
> lines(pinchSmooth2, lwd=2)
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The results are displayed in Figure 4.2::

The results show that using the penalty produces a smoother function. 

Height Data 
Example

In Chapter 1, we used a penalty on the second derivative to smooth a 
functional form of the height data. If we smooth with the same 
penalty parameter, 0.001, on the fourth derivative, we obtain a much 

Figure 4.2: The first instance of the pinch force data fit with polygonal and B-spline 
bases (top). The polygonal fit and fit obtained when smoothing with a second order 
roughness penalty (bottom). The functional data with polygonal basis is indicated by 
the dotted line in both cases.
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smoother second derivative, although the oscillatory behavior of the 
function away from the endpoints indicates that further smoothing 
might be desirable (see Figure 4.3). 

Figure 4.3: Second derivatives of the functional representation of the female height 
data. The fourth derivative was penalized for smoothing, with penalty parameter 
0.001.
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Effect of 
Penalty 
Parameter 

As an example of the effect of the smoothing penalty parameter, we 
smooth the height data using a penalty on the fourth derivative for 
lambda = 0.00002, 0.1. 0.5, 2.0. Figure 4.3 shows the second 
derivative of female height for each of these values of lambda:

As might be expected, the larger penalty parameter results in a 
significantly smoother second derivative. 

Penalizing 
Linear
Combinations 
of Derivatives

You may also smooth by using the square of a linear differential 
operator as the smoothing penalty. Specify this via the linDop 
component of the penalty argument to fFunction or fVector.

Generalized 
Cross 
Validation

The goal is to choose a lambda that minimizes errors when predicting 
new observations.   If the errors for each lambda were known, it would 
be possible to plot the errors vs. lambda, and choose the lambda
corresponding to the minimum error. 

Figure 4.4: Second derivative of the female height data when the functional data is 
formed using a 4th order penalty.
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However, the errors are not known and so it is necessary to estimate 
the prediction error that would result from each lambda. The sum of 
squared residuals gives an optimistic estimate of error because the 
same data is used to both fit the model, and assess its performance. 

Leave-one-out cross-validation calculates  fits. For :

• omit data point , and estimate the smoothed function from 
the remaining data,

• predict the omitted case, and 

• calculate the deleted residual, which is the difference between 
the observed response and the prediction. 

The sum of squares of these deleted residuals honestly estimates the 
prediction error.

However, cross-validation has two problems (Ramsay and Silverman, 
2004). First, it is computationally expensive, especially for large .   
Second, it tends to undersmooth the data, tending to choose a lambda
that results in fitting noisy variation that should be ignored.

Generalized cross validation (GCV) is a modified form of cross 
validation which avoids the computational expense of cross 
validation. It also tends to avoid undersmoothing. Please see Craven 
and Wahba (1979) or Green and Silverman (1994) for details. In brief, 
the deleted residuals can be obtained from the ordinary residuals by 
dividing by a factor. GCV replaces these individual factors by their 
average value, or equivalent degrees of freedom.

For the height data example in Chapter 1, the smooth was defined by 
a penalty on the second derivatives, and the value of lambda used was 
actually the optimal cross validated penalty parameter. Below we 
illustrate how we chose this value, by computing the smooth for a 
number of values of lambda. The values shown here are in an interval 
(determined by trial and error) that contains a local minimum:

> heightBasis 
       <- bsplineBasis(fDomain=range(heightData$age),
                       nbasis=16, norder=6)
> lambda <- c(0.0001, 0.00025, 0.0005, 0.00075, 0.001,
              0.0015, 0.002, 0.0025)
> gcv <- numeric(length(lambda)) 

n i 1 n=

i
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> for(i in 1:length(lambda))
      gcv[i] <- attributes(fVector(object=heightBasis,   
                 y=heightData[,2:94], fArgs=heightData$age,
                 penalty=list(lambda=lambda[i], 

            linDop=fDop(2))))$gcv

A plot of the generalized cross validation statistic versus the logarithm 
of the penalty parameter can be created as follows (see Figure 4.5):

> par(mfrow=c(1,1))
> plot(log(lambda), gcv, 
       ylab="Generalized cross validation")
> lines(log(lambda), gcv, lty=1)

The display shows that the optimal smoothing parameter corresponds 
to log(lambda) = -6.9 or lambda = 0.001, the value that was used to 
obtain the results in Chapter 1.

Figure 4.5: Generalized cross validation statistic for the functional height data with 
penalized second derivative. 
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Trade-off 
Between 
Smoothing and 
Prediction

Prediction error is a measure of how well the resulting function 
predicts the observed data, rather than a measure of smoothness. To 
obtain smoother second derivatives for the height data than those 
obtained above and in Chapter 1, either use a larger penalty 
parameter or a different penalty function. 

In the case of the height data, the rule of thumb suggests that a fourth-
derivative penalty should be used to obtain smooth second 
derivatives. Yet using such a penalty with corresponding optimal cross 
validated penalty parameter (approximately 0.00002) yields a result 
whose second derivative is virtually identical to that obtained in 
Chapter 1. 

The most practical approach is to examine the functional data and 
any derivatives of interest for a few choices of lambda, and choose one 
that has the desired smoothness properties while retaining reasonable 
predictive ability. Figure 4.6 shows the difference between predicted 
and observed values of female height for smoothing using a fourth 
order penalty for the same values of lambda used in Figure 4.3:

Figure 4.6: Difference between predicted and observed female height for functional 
data formed using a fourth order smoothing penalty.



Chapter 4  Linear Differential Operators and Smoothing

86

As expected, the prediction ability decreases as the smoothing 
parameter is increased. The residuals are smallest for lambda = 
0.00002, which is close to the optimal cross validated penalty 
parameter. Yet Figure 4.3 shows that the second derivative is highly 
oscillatory for this value of the penalty parameter. In this case the 
choice of lambda = 0.5 is probably a reasonable compromise 
between smoothness and prediction.
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Functional data analyses assume that a random sample of functions 
are comparable. Often this is not the case. For example, in the bone 
shape data discussed in more detail in the chapter on principal 
components, the shape of a bone surface is extracted from an x-ray of 
the bone by creating functions  and  that trace out an 
outline of the bone as a function of the distance traveled along the 
bone surface, . The total distance traveled, the length of the bone 
surface, is adjusted to a distance of one, eliminating bone size from 
consideration, and making it possible to compare bone shapes 
through the functions  and . This is a simple example of 
registration, which is concerned with eliminating uninteresting 
differences in functions so that the remaining functional variation is 
(more) completely concerned with the differences of interest - in the 
bone data, we were concerned with bone shape, not bone size. 
Standardizing to a bone length of one does much to eliminate 
uninteresting variation in the bone curves, but it ignores differences 
that may be caused by different starting or ending positions on the 
bone surface, and differences due to bone orientation, e.g., angle of 
the leg bone on an x-ray. Ideally, these differences would also be 
eliminated or otherwise accounted for in a bone shape analysis, 
preferably using a model-based manner incorporating, say, shift and/
or scaling parameters. In practice, uninteresting differences in curves 
must often be eliminated in a more ad hoc fashion.

x d y d

d

x d y d
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ANALYTIC REGISTRATION

Analytic methods may be used to register curves by optimizing a 
functional criterion. For each observation , let  be either the 

functional data object or one of its derivatives, and let  be a target 
function (in the absence of other information, an estimate of the 
overall mean of the ).The basic idea behind the S+FDA function 
fRegister is to find a parameterized monotonic warping function 

 for each function  such that  closely 

matches the target function  in a penalized least squares sense. 

Here the  are the parameters, and the penalized least-squares 

criterion is:

where the integrals are over the domain of the function. Notice that 
the penalty term which includes the penalty parameter  is for 
smoothing the warping functions .

Rather than registering the functions, it is also possible to register a 
linear combination of each functions and one or more of its 
derivatives. That is, it is also possible to register the results of applying 
a linear differential operator to the functions .
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While any monotonic warping function  is possible, in S+FDA the 

parameters  in the warping function define an intercept and slope, 

and also the coefficients of the basis functions of a class fFunction
object. Specifically, the warping functions in fRegister have the 
following form:

where  is the lower bound on the range of the function,  is the 

upper bound, and  is function represented by a B-spline 

basis. The parameters of each  include the slope  and intercept 

 as well as the coefficients and parameters (denoted by )of the 

B-spline basis. Function fRegister has defaults for the knots and 
order of the B-splines, which can be chosen by users. 

Although it is theoretically possible to optimize the criterion  
given above, in practice the problem becomes much more tractable if 
optimization is performed over a grid of points. This is what is done 
in fRegister. After estimating the warping functions  and obtaining 

the registered curves  over a grid of points, the estimates 

are projected onto the basis used in the functions , and returned 

as the fWarp and fReg components of the output from fRegister. The 
details are given in Chapter 5 of Ramsay and Silverman (1997) and in 
the references cited there. 
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LIP MOTION EXAMPLE

Consider the measurement of the lower lip position as a single 
individuals says the syllable “bob” (see Ramsay and Silverman, 1997). 
Lower lip position was measured at 51 times for 20 replications over a 
(standardized) 650 millisecond interval. Measurements were made on 
a single individual. Time has already been registered to the same 
beginning and ending positions, with a standardized time length of 1. 
The data was fitted using an order 6 B-spline basis with 31 basis 
functions. No smoothing was performed. These operations are 
accomplished as follows:

> lipBasis <- fBasis(type="bspline", fDomain=c(0,1), 
                     nbasis=31, params=(c(1:25)/26))
> fLip <- fVector(object=lipBasis, y=lipmat, fArgs=liptime,
                  fNames=list(NormalizedTime=liptime, 
                  Replications=seq(20), Units="mm"))

The resulting functional data curves and their derivatives are 
displayed in Figure 5.1:

> par(mfrow=c(2,1))
> plot(fLip, main="Lower Lip Curves for \"bob\"")
> plot(fVector(fLip, linDop=fDop(1)), 
       main="Derivative Lower Lip Curves for \"bob\"")

Although the 20 curves begin and end at the same locations after 
registration, some features (e.g., the point at which the curve 
minimum occurs) seem to be out of alignment. For example, in the 
plot of the first derivatives shown in the bottom of Figure 5.1, the 
shifts in extrema around 0.2 and 0.9 are particularly noticeable. Such 
differences may be important in an analysis. 

We use the S+FDA function fRegister to register the first derivatives 
of the curves:

> regLip1 <- fRegister(fLip, mean(fLip), nDeriv=1,                      
                     maxIter=120, lambda=0.1, 
                     criterion=1, penalty=0.0005)

The function fRegister requires a target function, taken here to be 
the derivative of the mean of the lip curves. Since this mean is itself a 
function of the curves we intend to register, additional calls to 
fRegister may improve the registration process:
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> regLip1 <- fRegister(fLip, mean(regLip1$fReg), 
                       nDeriv=1, maxIter=120, lambda=0.1, 
                       criterion=1, penalty=0.0005)

The registered functions are contained in the fReg component of 
regLip1, and the target function in the second call to fRegister is the 
derivative of their mean. 

In the example call to fRegister we set nDeriv=1. This means that we 
are registering with respect to the first derivatives rather than the 
functions. We also provide two smoothing parameters, lambda, which 
is used in smoothing the warping functions, and penalty, which is 
used only when the warping function is based upon the derivatives 
(nDeriv > 0). In this case, the registered functions are estimated from 
the warping functions using smoothing splines with penalty 
parameter equal to penalty. It may take some experimentation with 
the lambda and penalty parameters to obtain satisfactory results.

The registered lip data is plotted as follows:

> par(mfrow=c(2,1))

Figure 5.1: Lower lip position during twenty utterances of the syllable “bob” (top) 
with derivatives (bottom).
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> plot(regLip1$fReg, 
       main="Registered Lower Lip Curves for \"bob\"")
> plot(fVector(regLip1$fReg, linDop=fDop(1)), main=
   "Derivative of Registered Lower Lip Curves for \"bob\"")

The results are given in Figure 5.2. Comparing with Figure 5.1, we see 
that both the functions and especially the derivatives are closer 
together, and that we no longer have large shifts in the derivative 
extrema. The estimates for the warping functions are given in Figure 
5.3, in which we see that they are not strictly monotone due to round 
off errors.

Some cautions Analytic registration finds warping functions to minimize a least 
squares or similar criterion. One possible method for doing this is to 
make curve amplitudes as similar as possible. While the warping 
function does not modify the function values, warping simply to 
minimize amplitude (rather than features) can have significant impact 
on the curves - in trying to eliminate curve differences we may 
introduce artificial curve differences that can impact or even drive the 
results of any further analysis. As an example illustration of this 
problem, we use the fRegister function to register the lip data curves 
rather than their derivatives:

Figure 5.2: Registration for the lip data using function fRegister.
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> regLip0 <- fRegister(fLip, mean(fLip), maxIter=100)

Both the registered and unregistered curves are shown in Figure 5.4. 
In this display we see that the registered curves are indeed very close 
together (minimizing the integrated squared distance), but that we 
have also introduced small artificial bumps near the minimum that 
are now the main feature differentiating the curves. 

Warping 
Functions

Warping functions are interesting in themselves because they contain 
information on how the curves were “aligned” in their arguments. 
This information is lost in the registered functions. If the warping 
function goes above/below the diagonal, the function is shifted in the 
positive/negative direction. These trends can be made more apparent 
in a plot that subtracts the diagonal from the warping curves. For the 
lip data, the warping functions contain information about how parts 
of the syllable are extended in length, while other parts are 
contracted, from one replication to the next.

Figure 5.3: Lower lip curve warping functions.
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Figure 5.4: Registered curves (top) and unregistered curves (bottom).
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LANDMARK REGISTRATION

Even though we generally have features or landmarks (e.g., extrema) 
in mind, the analytic registration used in function fRegister does not 
directly account for them. In landmark registration, the location of 
function landmarks are specified, often by hand, and a warping 
function is then obtained (by contracting or stretching the domain) so 
that all landmarks of the same type occur at the same position. Care 
must be taken in selecting the curve landmarks, especially if 
derivatives are used for landmark selection. Choosing the wrong 
landmarks can yield misleading results. 

To see how landmarks might be defined, consider an enlarged version 
of the first derivatives for the lip data.

In the derivative curves, we chose four landmarks: 1) near time zero, 
some curves ascend before they descend. The first landmark is the 
position of the beginning of the descent near time zero. 2) The 
minimum around 0.2 is chosen for the second landmark. 3) the point 

Figure 5.5: First derivatives for the lip data.
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at which the derivative curve crosses the horizontal axis is chosen as 
landmark 3. This is the location of the curve mimimum. 4) The 
maximum around 0.9 is the final landmark.

To find the horizontal location of these extrema, we first discretize the 
data, and then use the S-PLUS function identify as follows:

> nmarks <- 4
> x <- (1:200)/201
> lipmat <- fEval(fVector(fLip, linDop=fDop(1)), x)
> par(mfrow=c(1,1),pty='m')
> lipMarks <- matrix(0,20,nmarks)
> for (i in 1:20) {
      plot(x, lipmat[,i], main=paste('Curve',i))
      abline(h=0)
      index <- identify(x, lipmat[,i], n=nmarks)
      lipMarks[i,] <- x[index]
  }

Twenty curves are plotted, one at a time. For each curve, we use the 
mouse to identify the four landmarks. This yields a matrix, lipMarks,
containing four columns and twenty rows, one for each of the 20 
functions. Given the lipMarks matrix, landmark registration can then 
performed using the landmarkReg function as follows:

> landLip <- landmarkReg(fLip, mean(fLip), lipMarks)

Notice that although the landmarks were found using the derivative 
curve, the function curves are registered (rather than the derivatives).

The fReg and fWarp components of the landLip object contain the 
registered curves (here the first derivatives) and the warping 
functions, respectively. The registered curves are given in Figure 5.6, 
while the warping functions are given in Figure 5.7. In Figure 5.6, we 
see that the landmarks are indeed aligned along the horizontal axis.
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Figure 5.6: Landmark registration of lip curves.

Figure 5.7: Warping functions for landmark registration of the lip curves.
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Derivatives of 
registered curves

We now consider the derivatives of the registered curves, which can 
plotted by

> plot(fVector(landLip$fReg, linDop=fDop(1))

which gives Figure 5.8.

The registered curves clearly show the effects of registration: the 
curves all cross the horizontal axis at the same point near 0.4, and the 
minimums around 0.2 and the maximums around 0.9 are aligned. 
There are also some undesirable effects, in particular the variation in 
the curves from 0 to 0.2. 

Summary In summary, the aim of registration is to align sets of functions so that 
comparison is possible at each argument value. Registration is often 
an unavoidable aspect of functional data analysis, but it can have 
unintended consequences, and must be applied with caution. 

Figure 5.8: Derivatives of the registered lip motion curves.
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Linear regression is one of the most commonly used methods in 
statistics. In linear regression the expected value of a dependent 
variable, , is predicted using one or more independent variables or 
predictors, . A least-squares criterion is minimized in fitting the 
model to obtain estimates. Often the interest is in simply in obtaining 
good predictors of the dependent variable, but linear regression 
models are also used to study relationships between variables. 
Functional linear models extend linear regression methods to allow 
functional independent and/or dependent variables. 

We begin the chapter with a mathematical description of a functional 
linear model. This is followed by some examples. 

Functional
Dependent
Variables

Perhaps the simplest functional linear model is one in which the 
dependent variable is a function, and the predictors or independent 
variables are scalar. In this case, at each point  in the function 
domain, estimates of the dependent variable can be obtained using a 
linear model in the predictors. Because the regression coefficients 
depend upon , they too are functions of . For example, a two 
predictor model would have the form 

Here  and  are the two scalar predictors,  is the functional 

dependent variable, , , and  are coefficient functions, 

and  is the error term. Clearly, for each , estimates for 

, , and  can be obtained by fitting a linear 

regression model. 

y

x

t

t t
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Functional
Independent
Variables

Now consider the case in which the dependent variable is scalar, but 
the independent variables are functions. The model takes the form

This model has two functional predictors,  and , with two 

coefficient functions,  and , an intercept coefficient, , 

and an error . Because the independent variables and associated 
coefficients are functional, we integrate over their values to obtain the 
contribution of the independent variable. Methods for fitting this 
model are not necessarily straightforward (see Chapter 10 of Ramsay 
and Silverman 1997), although by using a grid of points in , the 
coefficient functions can be closely approximated.

In the current release of the S+FDA library we integrate over the 
entire range of the independent variable. If, for example, we want to 
form predictions based upon all values of the independent variable 
prior to the current time, , we would want to integrate over the range 

. This is possible in S+FDA when both response and covariates 
are functional data, and finite element basis functions are used. See 
section Example with Functional Dependent and Independent 
Variables on page 115.

Classical least-squares models can also be fitted using specific values 
of the function argument. For example, one might predict final height 
by the height at ages 2 and 3.

Regularization For simplicity, suppose we have only a single functional independent 
variable and consider the grid of points discussed above. Notice that 
as the number of grid points increases, then so does the prediction 
accuracy, until, when the number of grid points exceeds the number 
of observations, perfect prediction is obtained. While models with 
such a large number of grid points can be fitted, they are not 
interesting in the sense that the coefficient functions tend to be highly 
irregular and give little insight into how the predictor affects the 
mean. Moreover, while perfect prediction may be possible in the 

y 0 1 s x1 s 2 s x2 s+ sd+ +=

x1 s x2 s
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current sample, prediction for new subjects will generally be much 
less successful. Smoothing of the coefficients gives better insight into 
the effect of the predictors, because it can limit the degrees of freedom 
used in prediction, as well as helping to establish the true predictive 
capabilities of the linear model. 

Smoothing in functional linear models can be obtained in the usual 
manner by adding a roughness penalty term. A typical roughness 

penalty term for a coefficient function  might be , 

where  is the second derivative and  is the penalty parameter, 
but roughness penalties based on any linear differential operator are 
possible. Notice that roughness penalties for coefficients for functional 
dependent variables are also possible and often desirable. See 
Chapters 9-11 of Ramsay and Silverman (1997) for details.

Functional
Dependent and 
Independent
Variables

More general models in which both the independent and the 
dependent variables are functions are also available. These take the 
form 

Here both the dependent and independent variables are functions, as 
are the coefficients and error terms. Notice, however, that all of the 
coefficient functions, save the intercept, are functions of two 
arguments. If it is assumed that these two argument functions are 
separable functions that can be written as the tensor products of two 
sets of basis functions, then we assume that these functions are of class 
fProdFunction. Otherwise, they are of class fFinElemFunction.

Relationship to 
Classical Linear 
Regression

Functional linear regression model reduce to classical linear 
regression models when both the independent and dependent 
variables are constant over the domain.

s s
2
sd

s

y t 0 t 1 s t x1 s 2 s t x2 s+ sd t+ +=
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Models containing both functional and nonfunctional independent 
variables are also often of interest, regardless of whether the 
dependent variable is functional. In S+FDA, functions that are 
constant over their domain are always represented internally as 
functional variables with a basis of class “constantBasis”. However, 
any numeric or factor variable can be used in a functional linear 
model in the same manner that it is used in the S-PLUS lm procedure.

It is useful to notice that if  is constant for all  (has a 
constantBasis basis), then  is constant with respect to , and 

 is simply , i.e., integration over  is not required. 

Similarly, if  is constant with respect to , then  disappears in the 
coefficients for the independent variables and in the error term. 

x s s

s t s

s t x s sd t x s

y t t t
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EXAMPLE WITH A FUNCTIONAL DEPENDENT VARIABLE

In this section we give an example of a functional linear model in 
which the dependent variable is the only functional variable. Our 
data is the height data first examined in Chapter 1. This is the data 
collected on the heights of 54 females and 39 males as they grew from 
age 1 to 18. In Chapter 1 the height data was used for a number of 
analyses, including a linear model predicting a patient’s sex in terms 
of their growth function. Here we predict the patients growth as a 
function of their final height (to get an overall measure of growth), 
and their sex. As you may recall from Chapter 1, the functional 
variable fHgt gives the vector of growth curves for all individuals. 

We begin by standardizing the growth curves so that all individuals 
grow by the same amount. We also create a data frame containing the 
height curves, the sex variable, and the final heights of all individuals. 
This is accomplished with the following statements:

> ratio <- 100/(heightData[31,2:94] - heightData[1,2:94])
> sHgt <- fHgt
> for(i in 1:93) 
      sHgt[i] <- (fHgt[i]-heightData[1,i+1])*ratio[i]
> dataHgt <- data.frame(sHgt=sHgt, 
              sex=as.factor(c(rep("F",54),rep("M",39))), 
              finalHgt=t(heightData[31,2:94]))

The linear model can then be fitted using the function fLM as follows:

 > predLm <- fLM(sHgt~-1+sex, dataHgt)

We next plot the fitted values for males and females using the fitted 
values returned by fLM:

 > par(mfrow=c(2,1))
 > plot(predLm$fitted[1], main="Fitted values")
 > lines(predLm$fitted[55], lty=2)
 > legend(1,100, c("females", "males"), lty=1:3)
 > plot(fFunction(fFunction(predLm$fitted[1]),
        linDop=fDop(1)), main="Fitted values")
 > lines(fFunction(fFunction(predLm$fitted[55]),
        linDop=fDop(1)), lty=2)
 > legend(1,100, c("females", "males"), lty=1:3)
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This result is displayed in Figure 6.1:

From the top graph in Figure 6.1, we see that if we standardize to a 
constant total growth for both males and females, then the males lag 
behind the females in their growth. The main reason for this is the 
longer period of male growth during adolescence of the males - since 
total growth has been standardized, the males growth continues after 
female growth stops, and thus must lag behind the females. Looking 
at the derivative curves in the bottom of the graph, we see that, as in 
Chapter 1, the rate of growth for the females shows a bump around 
age four that does not seem to be present in the males.

The object predLm created in the call to fLm above is an object of class 
“fLm”. The model coefficients are returned as the coefficients
component of predLm, where coefficients is a list objects of class 
“fProdFunction”, each of which corresponds to a predictor (including 

Figure 6.1: Fitted female and male (standardized) growth curves (top) and 
derivatives (bottom).
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the scalar predictors) in the model. Here there are two coefficient 
functions, the first is for the females, and the second is for the males. 
These coefficient functions can be plotted as follows:

> par(mfrow=c(1,1))
> plot(predLm$coef[[1]], main="coefficient Functions")
> lines(fMargin(predLm$coef[[2]],1), lty=2)
> legend(1,5.9, c("female", "male"), lty=1:2)

The resulting plot is given in Figure 6.2.

As might be expected, the coefficient functions look somewhat like 
scaled versions of the fitted values shown in the top of Figure 6.1.

Modeling the 
Derivatives

Derivatives of functions can be used in a linear model in the same 
places that the function proper can be used. For example, the 
following fits and plots the first derivative of height, which give the 
same plot as bottom plot in Figure 6.1:

> DsHgt <- fVector(sHgt, linDop=fDop(1))
> dpredLm <- fLM(DsHgt ~ -1 + sex, dataHgt)

Figure 6.2: Coefficient functions for the height data.
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> plot(dpredLm$coef[[1]], xlab="age", ylab="hight",
       main="Derivative Coefficient Functions")
> lines(fMargin(dpredLm$coef[[2]],1), lty=2)
> legend(14,1, c("female", "male"), lty=1:2)
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EXAMPLE WITH FUNCTIONAL INDEPENDENT VARIABLES

As an example with a functional independent variable, we consider 
the weather data. This is data collected on the (average) daily 
temperature and the daily precipitation of 35 Canadian weather 
stations over a one year period. Following Chapter 9 of Ramsay and 
Silverman (1997), we predict logarithm of the total yearly 
precipitation as a linear function of the daily temperature functions. 

We first fit the model without a penalty function to see why a penalty 
is needed:

> predPrecip <- fLM(log(prec)~-1+fTemp, fWeather)
> plot(predPrecip$coef[[1]])

This resulting coefficient function for temperature is displayed in 
Figure 6.3.Coefficient functions for the height data

Figure 6.3: Coefficient function for temperature when there is no penalty in the 
linear model.
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While the residual sum of squares vanishes, indicating perfect 
prediction, the coefficient function is highly irregular and nearly 
impossible to interpret - the model is badly overfitted. 

Another measure of fit is the cross-validated prediction error. In cross-
validation, the model is fitted with each observation, in turn, left out 
of the model. The predicted value for the deleted observation is then 
computed, and the deleted residual is computed by subtracting this 
predicted value from the observed value. The cross validation 
prediction error is then computed as the sum of the squared deleted 
residuals.

The cross-validated prediction error for this example can be 
computed as follows:

> crossValidLM <- function(xLambda, xPenMat, jMatx)
{
   fun <- function(i, fWeather, xLambda, xPenMat, jMatX)
   {
      ans <- fLM(log(prec)~-1+fTemp, fWeather[-i,],
              xPenalty=list(lambda=xLambda, linDop=fDop(2)),
             jMatX=jMatX, xPenMat=xPenMat)
      coefun <- fFunction(getCoef(ans$coef[[1]]),
                          ans$coef[[1]]$fBasis1)
      pred <- fInProd(fWeather$fTemp[i], coefun)
      log(fWeather$prec[i]) - pred
   }
   ans <- sapply(1:35, fun, fWeather=fWeather,
            xLambda=xLambda, xPenMat=xPenMat, jMatX=jMatX)
   sum(ans*ans)
 }
> jMatX <- fInProd(getBasis(fWeather$fTemp),
                   getBasis(fWeather$fTemp))
> xPenMat <- fInProd(getBasis(fWeather$fTemp),
                     getBasis(fWeather$fTemp), 
                     linDop1=fDop(2), linDop2=fDop(2)) 

In the crossValidLM function, the delete predicted values are 
computed by integrating the product of the lone independent variable 
and its coefficient function. The function requires two matrices, 
xPenMat and jMatX as input. These matrices depend only upon the 
basis of the functional independent variables, and thus do not change 
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as observations are added or removed. The function fLM has been 
implemented so as to take advantage of these precomputed values in 
speeding up the computations. 

To find an optimal penalty parameter, we executed the crossValidLM
function over a grid of potential penalty parameters as follows:

> xLam <- c(0, 10^seq(1:10))
> bb <- double(11)
> for(i in 1:11) 
      bb[i] <- crossValidLM(xLam[i], xPenMat, jMatx)
> plot(log(xLam+1), bb)
> lines(log(xLam+1), bb)

The resulting plot is shown in Figure 6.4.

The value xLam = 0 corresponds to no smoothing, and the 
corresponding cross-validated prediction error is 56.61. Smoothing 
the coefficients during the estimation procedure yields more accurate 
results. The smallest cross validation prediction error was 32.02 
corresponding to xLam = 10^9 :

Figure 6.4: Cross-validated sums of squares error for various values of the log of the 
penalty parameter (plus 1) on the horizontal axis.
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> predPrecipPen <- fLM(log(prec)~-1+fTemp, fWeather,
               xPenalty=list(lambda=10^9, linDop=fDop(2)),
               jMatX=jMatX, xPenMat=xPenMat)
> plot(predPrecipPen$coef[[1]])

A plot of the fitted coefficient function for this value of xLam is given 
in Figure 6.5. From this figure we see that the coefficient function 
gives moderately negative weights to temperatures around May, and 
highly positive weights to temperatures around September, with a 
small positive weights to temperatures around January. 

A plot of the predicted versus the actual values is obtained as follows:

> plot(getCoef(predPrecipPen$fitted), log(fWeather$prec),
       xlab="Predicted Values", ylab="Observed Values")
> lines(rbind(c(5,5), c(7.5,7.5)))

Here we use the function getCoef to extract the scalar fitted values 
from the fitted value functions of class “constantBasis” . The plot is 
shown in Figure 6.6. Although there is an apparent outlier, removing 
it has little effect on the fitted model.

Figure 6.5: The fitted coefficients function for temperature with penalty 
parameter10^9.
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Figure 6.6: Predicted versus observed values for the log of precipitation. Notice the 
outlier near (5, 7.5).
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EXAMPLE WITH FUNCTIONAL DEPENDENT AND 
INDEPENDENT VARIABLES

It is also possible to fit functional linear models in which both the 
dependent and independent variables are functional. This section 
gives two examples that differ in the domain of integration for the 
independent variable:

• over the whole interval 

• the historical model, in which the independent variable is 
integrated over the range , where  is a lag 

before time .

gaitarray Data
Set

The following example is taken from Chapter 12 of Ramsay and 
Silverman (1997). The data set was originally collected at the Motion 
Analysis Laboratory at Children’s Hospital in San Diego (see Olshen, 
et al., 1989), and consists of measurements of the angles made by the 
hip and by the knee of each of 39 children. The angles are measured 
over 20 time points through the course of one gait cycle. Time has 
been normalized over the gait cycle for each child. The three 
dimensional 20 by 39 by 2 array, gaitarray, contains both of these 
matrices, with the first matrix in the array being hip angle.

Here we use a Fourier basis with nineteen basis functions to obtain an 
object of data frame fGait.

> fGaitBasis <- fBasis(type="Fourier", fDomain=c(0,1),
                       nbasis=19)
> gaitNames <- list(NormalizedTime=gaittime,
                    Cases=seq(dim(gaitarray)[2]), 
                              Angle="deg")
> fHipVec <- fVector(object=fGaitBasis, y=fHip,
                     fArgs=gaittime, fNames=gaitNames)
> fKneeVec <- fVector(object=fGaitBasis, y=fKnee,
                      fArgs=gaittime, fNames=gaitNames)
> fGait <- data.frame(fHip=fHipVec,fKnee=fKneeVec)

0 T

s0 t t s0 t

t
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Since there are only twenty sampling points, a nineteen basis 
functions fit the children’s curves very well - the maximum difference 
between the fitted curve and the observed measurement is 0.00082. 
Because we have standardized with respect to time, the domain of the 
functions (argument fDomain) is the interval (0,1).

In our example, we predict knee angle (fGait$fKnee) in terms of hip 
angle (fGait$fHip).

No smoothing We begin our analysis by computing the solution without explicit 
smoothing. The code for fitting the model:

 > predKnee <- fLM(fGait$fKnee ~ fGait$fHip)

By default, an intercept is included in the model. The fitted model 
contains two coefficient functions, a function for the intercept, and a 
functional data object of class “fProdFunction” for knee angle. These 
functions are obtained as the first and second elements, respectively, 
of the list of coefficients predKneeU$coefficients. We plot the data, 
the coefficients for knee angle, the fitted values, and the residuals:

 > par(mfrow=c(2,2))
 > plot(fGait$fKnee, main="Response Functions")
 > plot(predKnee$coef[[2]])
 > title(main="Bivariate Coefficient Function")
 > plot(predKnee$fitted, main="Predicted Functions")
 > plot(predKnee$resid, main="Residual Functions")
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The resulting plot is given in Figure 6.7. It is evident that the 
coefficient function for hip angle, the bivariate function in the upper 
right corner, is quite irregular. 

Smoothing While the unsmoothed results are useful for prediction, the highly 
irregular shape of the coefficient matrix gives little insight into how 
the hip and knee angles are related. Moreover, the cross-validated 
prediction error may be less than optimal. Function fLM provides for 
two smoothing parameters, one for the independent variables and 
another for the dependent variables. Some experimentation with 
these parameters yielded much smoother coefficient estimates, while 
at the same time having little effect on the magnitude of the residuals. 

> predKneeSmoothed <- fLM(fGait$fKnee ~ fGait$fHip,
           xPenalty=list(lambda=0.1, linDop=fDop(2)), 
           yPenalty=list(lambda=0.000001, linDop=fDop(2)))

This result is displayed in Figure 6.8. From the figure, we see that the 
bivariate coefficient function predicting knee angle as a function of 
hip angle are much smoother. 

Figure 6.7: Top left: knee angle functions (response). Clockwise from top right: hip 
angle coefficients, fitted values, and residuals from an unsmoothed fit. 



Chapter 6  Functional Linear Models

118

Conceptually, the two smoothing parameters could be handled by 
cross validation, but the computational cost increases dramatically 
with the number of parameters to be estimated. When the dependent 
variable is scalar, it is possible to do cross validation on the scalar 
residuals, as illustrated above. And for functional dependent 
variables, the residuals are functions with values in the same domain 
as the dependent variable, so that there is a choice of cross validation 
smoothing criteria. 

lip Data Set The following example is taken from Chapter 10 of Ramsay and 
Silverman (1997). The data set was originally collected at the Haskins 
Speech Laboratories at Yale University by V. Gracco. The 
considerable preprocessing is described in Ramsay and Silverman, 
and in Malfait and Ramsay. The S-PLUS data setlip consists of four 
variables: EMG, acceleration, position, time.

Figure 6.8: Top left: knee angle functions (response). Clockwise from top right: hip 
angle coefficients, fitted values, and residuals from a smoothed fit.
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The goal here is to model lip acceleration, acceleration, as a 
function of EMG activity EMG.To fit the historic linear model, we first 
create an object fLip with 101 Fourier basis functions in the time 
domain

> fLipBasis <- fBasis(type="Fourier", fDomain=c(0, 690), 
                      nbasis=101)
> fLip <- list(time=lip$time, fEmg=fVector(fLipBasis, 
               lip$emg, lip$time), fAcc=fVector(fLipBasis,
               lip$acc, lip$time))

No Smoothing The code to fit the historic linear model without explicit smoothing:

> lip.hlm <- fLMFinElem(fAcc~fEmg, data=fLip, param=11, 
                        lag=4) 

in which param is a parameter to specify the number of elements in 
the domain of each argument of the bivariate regression function. 
With param = 11, lag can be an integer range from 1 and 11. lag is a 
parameter to specify  in the lower bound of 

, where  is the lag length of each triangle 
element used in basis functions. By default, an intercept is included in 
the model. The fitted model lip.hlm contains a list, named fBeta, of 
the functional data objects with class fFinElemFunction. The fitted 
values and residuals can be estimated by the predict method:

> predfLip <- predict(lip.hlm, fLip$time) 

We plot the data and the estimated bivariate regression function: 

> par(mfrow=c(2,2)) 
> plot(fLip$fAcc)
> title("Functional Data fAcc")
> plot(lip.hlm$fBeta)
> title("Estimated Regression Function")

The fitted values and the residuals can be plotted by making choices 1
(for predicted value) and 2 (for residuals) in the menu produced by 
the command:

0 690

lag x=

s0 t max 0 t –= x
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> plot(predfLip)

Smoothing To smooth the shape of the regression function, fLMFinElem provides 
a smoothing parameter lambda.   This produces smoother coefficient 
estimates, while at the same time having little effect on the magnitude 
of the residuals.

> lip.hlms <- fLMFinElem(fAcc~fEmg, data=fLip, param=11, 
                         lambda=50000, lag=4)
> predliphlms <- predict(lip.hlms, fLip$time)

The results are displayed in. Note the smoother regression function, 
compared withFigure 6.9:

m

pmp

Figure 6.9: Top left: lip acceleration (response), Clockwise from top right: estimated 
regression function with lag=4, fitted values, and residuals from an unsmoothed fit.
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Figure 6.10: Top left: lip acceleration (response), Clockwise from top right: estimated 
regression function with lag=4, fitted values, and residuals from an unsmoothed fit.
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In functional linear models, the residuals are assumed to be 
independent Gaussian random variables with a constant variance. 
However, in many cases independence is adequate to insure unbiased 
estimates. If the dependent variable is from some other probability 
distribution (e.g. binomial, Poisson, or gamma), then a generalized 
linear model is appropriate. S+FDA provides a function fGLM to fit 
functional generalized linear models in which the dependent variable 
is a scalar. It is not currently possible in S+FDA to fit functional 
generalized linear models in which the dependent variable is a 
function.
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WEATHER EXAMPLE

The example involves daily average temperature and precipitation 
measurements taken at 35 Canadian weather stations over the course 
of a year. Functional data was obtained from this weather data using a 
Fourier basis with 101 basis functions. Although some smoothing 
occurred when the functional data was created since fewer basis 
functions were used than the number of observation points (365), 
additional smoothing was required.

We divided the 35 weather stations into two groups, representing 
coastal and interior cities, respectively.

Modeling the 
Grouped Data

We fit a functional logistic classification model to one of the groups of 
stations to predict group membership. The fit for the coastal region is 
accomplish as follows. We first define the coastal weather station 
indicator variables, yCoastal, and then fit a functional generalized 
linear model predicting this Bernoulli indicator in terms of both the 
average daily temperature and precipitation functions at the 
respective weather stations: 

> Cities <- row.names(fWeather)
> CoastalCities <- c("Charlottetown", "Churchill",   
          "Halifax", "Iqaluit", "Prince Rupert", "Resolute", 
         "Saint Johns",  "Sydney", "Vancouver",   
         "Victoria", "Yarmouth")

> yCoastal <-as.numeric(as.logical(match(Cities, 
                        CoastalCities,nomatch=0)))
> glmCoastal <- fGLM(yCoastal ~ fTemp + fPrec, 
               family=binomial, data=fWeather, 
               penalty=list(lambda=10000, linDop=fDop(2)))

We use a single smoothing parameter, lambda, selected with a 
minimum of experimentation. Although two penalty parameters 
would be desirable because there are two predictors, this is not yet 
possible in the S+FDA module. cross validation could be used to 
select the penalty parameters, but this is more expensive than in the 
functional linear model case because functional generalized linear 
models require iterative algorithms. 
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Interpreting 
the Results

Figure 7.1 shows that the fitted values for the models are all close to 0 
or 1 and perfectly predict their groups. 

> par(mfrow=c(1, 1))
> plot(glmCoastal$fitted, type="n", ylim=c(-.1, 1.1), 
       xlab="observation number", ylab="")
#true classes
> points(yCoastal, pch=1, cex=1.5)
#fitted values
> points(glmCoastal$fitted, pch=18, cex=1) 
> abline(h=c(0, 1))
> title("Fitted Values")

However, since there are only 35 weather stations and 365 functional 
predictors (one independent variables for each day of the year), the fit 
of the values used to define the models is an overly optimistic 
estimate of their predictive ability. Below we evaluate the models 
using cross validation.

Figure 7.1: Fitted values (diamonds) and binary response (open circles) for the 
logistic model of weather data for coastal vs. interior cities. 
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Cross 
Validation

While it requires significant computation time, cross validation (also 
known in this context as the leaving-out-one method - see 
Lackenbruch, 1977) can be used to evaluate the classification 
produced from the generalized linear model. Here we use cross-
validation to obtain a misclassification matrix:

> crossValidGLM <- function(lambda, y)
{
   fun <- function(i, fWeather, lambda)
   {
      ans <- fGLM(y ~ fTemp + fPrec, family=binomial,
                  data=fWeather[-i, ], 
                  penalty=list(lambda=lambda, 
                               linDop=fDop(2)))
      cat(i, " ")
      getCoef(ans$coef[[1]]) * 365 +
              fInProd(ans$coef[[2]], fWeather$fTemp[i], 
                      eps=0.00001) +
              fInProd(ans$coef[[3]], fWeather$fPrec[i], 
                      eps=0.00001)
   }
   dd <- data.frame(y=y, fTemp=fWeather$fTemp, 
                    fPrec=fWeather$fPrec)
   sapply(1:35, fun, fWeather=dd, lambda=lambda)
}

The predicted value is computed as the sum of three terms (one for 
each coefficient): a constant term (times the length of the domain of 
the functions, the integral of a constant) and two integrals, one for the 
average daily temperature functions times the temperature coefficient 
function, and one for the precipitation times the precipitation 
coefficient function. 

Predicted values for the coastal region logistic model can be 
computed as follows:

> predCoastal <- crossValidGLM(10000, y=yCoastal)
> muCoastal <- binomial()$inverse(predCoastal)

We then use the predicted values (muCoastal) to compute the 
probabilities of correct classification for the models defined by each 
of the four groups, taking an observation to be classified in that group 
if its predicted value is greater than 0.5. The results are plotted as 
follows and displayed in Figure 7.2:
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> par(mfrow=c(1,1))
> plot(glmCoastal$fitted, type="n", ylim=c(-.1, 1.1), 
       xlab="observation number", ylab="")
#true classes
> points(yCoastal, pch=1, cex=1.5)
# cross-validated estimates
> points(muCoastal, pch=4, cex=1)
> abline(h=c(0,1))
> title("Cross-validated Predictions")

Only 3 (Churchill, Prince Rupert, Schefferville) out of 35 weather 
stations are misclassified, giving a cross-validated error rate of less 
that 1%:

> Cities[(muCoastal > 0.5 & !yCoastal) |
         (muCoastal < 0.5 & yCoastal)] 

Figure 7.2: Cross-validated predictions (crosses) and binary response (open circles).

observation number

0 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Crossvalidated Predictions



Polychotomous Classification

129

POLYCHOTOMOUS CLASSIFICATION

Polychotomous classification models are not currently available for 
classification in S+FDA. When there are more than two groups, the 
strategy of fitting a logistic model to each group and classifying 
according to best prediction may work. Note that with this method an 
observation could be classified into more than one group, or even fail 
to be classified into any group.
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Classical principal components analysis is used in many ways, 
including analyzing data complexity, reducing data dimension, 
studying relationships between variables, clustering observations, and 
interpreting variances and covariances in multivariate analysis. These 
same uses are also important in functional principal components 
analysis, but in functional principal components the number of 
“variables” in the analysis is infinite, so that reduction to a finite 
number of principal component scores is the only way to make the 
computation tractable. Functional principal component loadings are 
also functions, and it may be desirable or even necessary to regularize 
or smooth them. Historically, principal components extracted from 
functional data are called harmonics.

The basic idea in functional principal components analysis is to find 
functions whose inner products with the data yield the maximum 
variation in the curves. The first principal component accounts for the 
most variation, the second principal component accounts for the 
largest variation orthogonal to the first principal component, and so 
on. In this way, much of the variation in the random data can be 
captured using only a few principal components.

Specifically, in classical multivariate analysis, if  is a random 
variable, the first principal component is the unit vector  that 
maximizes the variance of the linear combination or inner product 

. In general the th principal component is the unit vector that 

maximizes the variance of the inner product , and is orthogonal 
to all of the previous principal components. There are a maximum of 

 principal components, where  is the dimension of .

In functional data, the inner product is defined by integration. For a 
single random function , the process of determining functional 
principal components is equivalent to selecting a grid of points in , 
say , where , computing the classical 

principal components of the vector , and 
then letting the grid size decrease to zero (and yielding an infinite 
number of variables). Notice that, in theory, any number of principal 
components can be computed, although in practice the number of 
important principal components (those with “large” variances) will be 
small. 
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Specified as integrals, for a random functions , the th principal 
component is the function  that maximizes the variance of the 

principal component score  and satisfies the 

constraints  and  for . For 

two functional variables  and , the th principal component 
maximizes the variance of the random variable 

 subject to the normality constraint 

, and to orthogonality 

constraints  for all . 

Principal components with three or more functional varieties are 
handled by extension. 

As in the classical case, functional principal components are 
computed by obtaining a sample of realizations of the random 
function, say , and then computing estimates of the 

functions  based upon the variances and covariances observed in 
this sample. 

Centering Centering, or subtraction of the mean, is usually performed prior to 
extracting harmonics (principal components) because the interest is 
usually in maximizing variances about the mean function. It is also 
possible and common for researchers to compute “principal 
components” from the uncentered data. However, if the mean 
function is not everywhere zero, the largest principal component 
obtained from this uncentered data is usually closely related to the 
mean function. Although the extracted “principal components” no 
longer reflect the linear combination with maximum variance (they 
are not really principal components), they may still prove useful. 

Standardization Analogous to classical multivariate analysis, it may sometimes be 
desirable to standardize the functions by centering and transforming 
the sample variance of each function (at each point in its domain) to a 
variance of 1. This is akin to computing principal components on the 
correlation matrix rather than on the variance-covariance matrix. 
Notice, however, that standardization is not always possible. For 
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example, in some problems the random functions have restricted 
endpoints and thus have a variance of zero at their endpoints with the 
variance decreasing to zero in a regular manner as the endpoints are 
approached (see Figure 8.1). As a consequence the standardized 
functions are not defined at their endpoints, and may exhibit 
undesirable behavior in nearby regions. In order to standardize, the 
principal components would have to be computed over a reduced 
domain. This option is not available in the current implementation of 
S+FDA.

In the following we give an example based upon bone shapes. We 
begin by describing how the data was collected and how the functions 
we will use were derived from the given data. We then give a brief 
technical discussion of functional principal components. Finally, we 
give a complete principal-component analysis of the functional data. 
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ANALYSIS OF THE BONE SHAPE DATA

Our example is from archeology, although the techniques could also 
be used to study medical aspects of modern humans. The analysis is 
similar to that given in Chapter 6 of Ramsay and Silverman (2002). 
The data was collected on 96 femur bones from 60 individuals 
originally buried at St. Peter’s Church in the north of England. Some 
individuals had both their left and right femurs analyzed. The data is 
concerned with the two dimensional shape of the interchondylar notch, 
located in the femur at the knee. It was collected using a two-
dimensional x-ray of the notch, and consists a bone identifier, two 
vectors containing the  and  coordinates of the bone notch outline 
(from the x-ray), an indicator for male (TRUE is male), older (TRUE is 
older), and eb, an indicator of eburnation (TRUE indicates the presence 
of a polished bone surface caused by the complete loss of cartilage). 
The  and coordinates are measured in pixels, and were collected 

as follows: For each  location the two value(s) of  corresponding to 
the notch outline are noted. 

Graphs of the first ten notch curves are given in Figure 8.1. The S-
PLUS code used to produce these plots is as follows:

> apply(boneNotch[, c("x","y")], 2, range)
       x   y 
 [1,] 19 66
 [2,] 102 125
> par(mfrow=c(1, 1))
> plot(19, 66, type="n", xlim=c(19,102), ylim=c(66,125),
       xlab="x", ylab="y")

> boneTmp <- split(boneNotch,boneNotch$boneID)
> dummy <- lapply(boneTmp[1:10], function(z) {
              imin <- min((1:length(z$y))[z$y==min(z$y)])
              yy <- z$y 
              yy[1:imin] <- -yy[1:imin] 
              ii <- order(yy)
              lines(z$x[ii], z$y[ii], type="l")
            })

Notice that in these curves, the femur bone is below the curve, and 
that only the interchondylar notch is displayed in Figure 8.1.

x y

x y

x y
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Registration Registration is the process of eliminating uninteresting differences 
between the curves. The need for registration is apparent from Figure 
8.1: each bone notch starts and ends at a different  location, and the 

depth of each bone notch is different. Because starting and ending  
locations, notch depth, and curve orientation (due to whether the left 
or right leg is measured) are partially artifacts of the way that the data 
is gathered (the location of the bone on the x-ray), these differences 
need to be eliminated prior to performing the analysis of interest. 
Differences between curves based upon measuring the left or right leg 
have already been eliminated by reflecting the curve through the 
vertical axis. For these curves, the data extraction process (discussed 
below) eliminates the remaining differences. It should be noted that 
curve registration must be carried out with caution, because curve 
differences that were not present in the original data could be 
introduced in the process.

Figure 8.1: The first ten bone notch curves.

x

y

20 40 60 80 100

7
0

8
0

9
0

1
0

0
1

1
0

1
2

0

x

x



Analysis of the Bone Shape Data

137

Extracting the 
Functions

The S-PLUS code used to extract the data is given in the help file for 
boneData and is not reproduced here. Interested users should consult 
this help file for details of the extraction. 

Because it is not possible to represent each bone notch curve as a 
single function (there may be two  values for each  value), here we 

use two functions  and  giving the  and  coordinates of 

the curve as a function of the distance along the curve ( ) starting at 
the left-most endpoint. The process of extracting these functions 
begins by standardizing the  and  values by subtracting the 
minimum and dividing by the range. All of the resulting curves start 
at (0,1), end at (1,0), and reach a minimum along the  axis. The  

and  coordinates are then sorted.

Rather than using the raw data values, adjacent values are averaged 
to provide a modest amount of smoothing. The distance along the 
curve is computed as the cumulative sum of the distances between 
each of the points on the averaged curve. These distances are then 
standardized so that each curve begins at  and ends at . 

The functional data objects  and  are computed from the 
standardized distances using the fFunction constructor. 

We use a B-spline basis of order 4 with ten basis functions is to 
represent the  and  components of each bone notch curve. 
Because there are only 10 basis functions, projection onto the basis 
results into additional smoothing. 

The functions  and  are placed into objects of class 
“fVector”, called boneVecX and boneVecY, respectively, each having 
96 functions, one function for each bone notch. We then create the 
boneData data frame from these “fVector” objects and the older,
male, and eb predictors found in the raw bone data. The boneData
data frame is included with the S+FDA library. Additional details on 
the conversion of the raw data into its functional form are given in 
Chapter 6 of Ramsay and Silverman (2002). 

The fPlotCycle command is used to plot the x functions against the y
functions for the same argument values:

> fPlotCycle(boneData$boneVecX[1:10],
             boneData$boneVecY[1:10])
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The resulting plot is displayed in Figure 8.2. 

Although these curves have been registered as discussed above, 
additional registration may be desirable, because each curve may 
cover slightly different portions of the notch, and the orientation of 
each notch may vary from one curve to the next (the x-ray used to 
obtain the curve may have a slightly different orientation). We ignore 
these considerations in our analysis. 

Principal
Components

In the following command the function fPCA is used to extract the first 
ten harmonics (principal components) from the bone notch curves in 
the boneData data frame:

> bonePCA <- fPCA(~boneVecX+boneVecY, boneData, nharm=10,
                  center=T)

Here we simultaneously extract principal components for both 
functional vectors boneVecX and boneVecY. Recall that these functions 
give the  and  locations of the curves as a function of the distance 
along the curve from the left end point, the curve length. 

Figure 8.2: The first ten smoothed and registered bone notch curves.
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Interpretation The bonePCA object created above is an object of class “fPCA”. The 
eigenvalues corresponding to each of the extracted harmonics are 
returned as the vector values. These give the variance of the 
corresponding harmonic. The proportion of the total variance 
explained by the harmonic is returned as the vector varprop. The 
order is such that the proportion of variance explained by the first 
harmonic is largest. The cumulative proportions of the variances are 
computed using the command:

> round(cumsum(bonePCA$varprop), 3) 

which results in the following output:

   PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8 
 0.456 0.751 0.869 0.912 0.948 0.974 0.984 0.989
   PC9 PC10
 0.993 0.996

The first three harmonics are clearly the most important, accounting 
for 86.9 percent of the total variation in the 96 pairs of functions. 
These three harmonics can be plotted using the command 
plot(bonePCA). However, because we simultaneously extracted the 
harmonics from the two functions  and , for this data, it is 
easiest to interpret the harmonics if they are plotted about the mean 
of the bone notch curves, which can be accomplished as follows. We 
first standardize the harmonic to the amount of variance it explains 
by multiplying the harmonic coefficients by the square root of the 
corresponding eigenvalues:

> harmCoef <- getCoef(bonePCA$harmonics[1:3]) %*%
                      diag(sqrt(bonePCA$values[1:3]))
> harm <- fVector(harmCoef,getBasis(bonePCA$harmonics),
                  getNames(bonePCA$harmonics))

The mean functions for boneVecX and boneVecY (from which the 
harmonics were extracted) are then extracted from the bonePCA object 
using the getComponent function for obtaining the components of a 
composite basis:

> meanX <- getComponent(bonePCA$fMean, 1)
> meanY <- getComponent(bonePCA$fMean, 2)

A composite basis is currently created for the means and the 
harmonics for computational reasons. In the future these components 
will be split out, and a list of functional components will be returned.

x t y t
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Plotting the 
Harmonic
Loadings

We are now in a position to plot the first three harmonics. Usually the 
plot.fPCA function would be used, but here we have two related 
functions, and so a cycle plot is preferred. Plotting is accomplished as 
follows:

> par(mfrow=c(3, 1))
> percnt <- c(45.6, 29.5, 11.8)
> for (i in 1:3) {
      x1 <- fFunction(getComponent(harm[i], 1))
      x <- fVector(meanX, meanX + x1, meanX - x1) 
      y1 <- fFunction(getComponent(harm[i], 2)) 
      y <- fVector(meanY, meanY + y1, meanY - y1) 
      fPlotCycle(x,y)
      title(paste("Bone Data P.C.", i, "\n", percnt[i], 
                "% of the Variance"))
 }

The “fVector” objects x and y contain the function mean, and the 
mean plus or minus the harmonic coefficients, for each harmonic. 
The command fPlotCycle(x,y) plots the vector of functions, as 
shown in Figure 8.3:

Figure 8.3: Variation of the first three harmonics about the function mean. 
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The offset (in the  or  direction) from the mean gives the 
magnitude of the principal component loading at each point in the 
curve. Values above or to the right of the mean indicate a positive 
impact on the principal component score, while values below or to 
the left of the mean indicate a negative impact. 

Close inspection of Figure 8.3, reveals that the offset is positive prior 
to the minimum, and negative after the minimum, with the highest 
magnitudes along the sides of the notch. Thus the first harmonic 
seems to measure a left or right shift in the notch. This is a possible 
indication that the data needs further registration.

The second harmonic looks very much like the first harmonic, but all 
of the loadings are positive, concentrated on the notch walls, with 
more emphasis on the left notch wall. This seems to be a measure of 
the notch width.

The third harmonic has near zero loadings everywhere, except near 
the top of the right notch wall. Some curves are indented near this 
location. This harmonic seems to be a measure of this indentation in 
the right notch wall.

Plotting the 
Mean Curves

Another plot that is useful in understanding the principal components 
is to plot the mean curves for a specified range of harmonic scores on 
each harmonic. Here we plot the overall mean curve, the mean of the 
curves with scores in the quantile range (0.60, 0.90) (on the first 
harmonic), and the mean of the curves with scores in the quantile 
range (0.10, 0.40):

> par(mfrow=c(3, 1))
> for(i in 1:3) {
     q <- quantile(bonePCA$scores[, 1],
                  probs=c(0.9, 0.6, 0.4, 0.1))
     y <- bonePCA$scores[,i]
     iu <- y < q[1] & y > q[2]
     il <- y < q[3] & y > q[4]
     ansX <- fVector(meanX,mean(boneData$boneVecX[il]),
                           mean(boneData$boneVecX[iu]))
     ansY <- fVector(meanY,mean(boneData$boneVecY[il]),
                           mean(boneData$boneVecY[iu]))
     fPlotCycle(ansX, ansY)
     title(paste("Bone Data P.C. ", i, "\nMeans Curves"))
 }

x y
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The resulting plots are given in Figure 8.4.

The curves look much like the harmonic curves in Figure 8.3.

Specifying a 
Rotation

As in classical multivariate data analysis, the harmonics are not 
unique - they can be rotated. The resulting rotated harmonics no 
longer maximize the variance (though the total variance they explain 
remains unchanged), but they are potentially simpler to interpret 
because the rotation criteria that is used is chosen such that the 
resulting loadings exhibit simple structure - they tend to be either large 
in magnitude, or they are close to zero.The simplest rotation can be 
accomplished as follows:

> rotateBonePCA <- rotate(bonePCA, nharm=3)

Once the functional principal components have been rotated, a plot 
of the coefficients can be obtained using a simple modification of the 
code above:

# Standardize the harmonic coefficients
> rharm <- rotateBonePCA$harmonics

Figure 8.4: The mean bone curves for harmonic scores in a specified range. 

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0
0
.0

0
.4

0
.8

Bone Data P.C.  1 
Means Curves

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C.  2 
Means Curves

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C.  3 
Means Curves



Analysis of the Bone Shape Data

143

> rharmCoef <- getCoef(rharm)
> rharmCoef <- rharmCoef%*%diag(sqrt(bonePCA$values[1:3]))
> rharm <-fVector(rharmCoef, getBasis(rharm), 
                  getNames(rharm))

# Plot the rotated harmonics
> par(mfrow=c(3, 1))
> percnt <- c(31.7, 31.1, 11.8)
> for (i in 1:3) {
      x1 <- fFunction(getComponent(rharm[i], 1))
      x <- fVector(meanX, meanX+x1, meanX-x1)
      y1 <- fFunction(getComponent(rharm[i], 2))
      y <- fVector(meanY, meanY+y1, meanY-y1)
      fPlotCycle(x,y)
      title(paste("Bone Data P.C.", i, "\n", percnt[i], 
                "% of the Variance"))
 }

The resulting plot is displayed in Figure 8.5.

Figure 8.5: The rotated principal functions.
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For the rotated loadings, the first harmonic measures the indentation 
in the right notch wall, the second harmonic measures the indentation 
in the left notch wall, and the third harmonic measures asymmetry in 
the notch. Notice that the roles of the first and third harmonic are 
switched from the unrotated case and that the indentation in the right 
notch wall now exhibits a much larger magnitude, while the 
asymmetry measure (the third rotated harmonic) is now much smaller 
in magnitude.
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Classical canonical correlation analysis finds linear transformations of 
two sets of variables that maximize the correlation between the 
transformed variables. If  and  are two functions defined on 
the same interval domain, functional canonical correlation analysis 
seeks coefficient or weight functions  and  that maximize 
the correlations between the random canonical variables 

 and . Functional canonical 

correlation analysis provides a mechanism for investigating the 
relationship of the variability of the two functions.

In the classical case, the canonical correlations are computed by 
solving a generalized eigenvalue problem, and a similar method is 
used for functional canonical correlations. And as in the classical case, 
additional canonical coefficients can be determined, orthogonal 
(uncorrelated) to those already found.

x t y t

wx t wy t

W wx t x t td= Z wy t y t td=
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ANALYSIS OF THE GAIT DATA

Here we consider gait data described in the chapter on functional 
linear models (and in Chapter 12 of Ramsay and Silverman 1997) 
consisting of measurements of the angles made by the hip and by the 
knee of each of 39 children at twenty time points in a single stride or 
gait cycle. 

The gait basis is a an object of class “FourierBasis” on the domain 
(0,1) with 21 basis functions:

> fGaitBasis <- fBasis(type="Fourier", fDomain=c(0,1),
                       nbasis=19)

> gaitNames <- list(NormalizedTime=gaittime,
                 Cases=seq(dim(gaitarray)[2]), Angle="deg")

> fHipVec <- fVector(object=fGaitBasis,y=fHip,
                     fArgs=gaittime, fNames=gaitNames)
> fKneeVec <- fVector(object=fGaitBasis,y=fKnee,
                      fArgs=gaittime, fNames=gaitNames)

> fGait <- data.frame(hip=fHipVec, knee=fKneeVec)

Since there are only 20 measurements over the gait cycle, the basis 
adequately captures all of the information collected with no error.

Because we have standardized with respect to time, the domain of the 
functions (argument fDomain) is the interval (0,1). The resulting 
functions can be plotted as follows:

> par(mfrow=c(2,1))
> plot(fGait[,"hip"], main="Hip Angle")
> plot(fGait[,"knee"], main="Knee Angle")

The display is shown in Figure 9.1 

Next, we compute and plot the coefficient functions  and  
for the canonical correlations using S+FDA statements:

> gaitCancor <- fCancor(fGait[,1], fGait[,2]) 
> plot(gaitCancor, main="No Smoothing")

The result is displayed in Figure 9.2. Note that the coefficient or 
weight functions are highly variable.

wx t wy t
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.

Figure 9.1: Plot of the hip (top) and knee (bottom) angles for 39 children as they 
walk.

Figure 9.2: Canonical function coefficient for the first (top) and second set of 
canonical coefficient functions. The solid curve corresponds to the hip data.
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In this unsmoothed analysis, all of the canonical correlations are close 
to 1. The reason for this can be seen by considering conventional 
methods. In a conventional canonical correlation analysis, we would 
evaluate each of the 39 knee and hip angle functions over a vector of 
time points , and would then compute the canonical 

correlations over the  sets of variates for the hip and knee angles. A 

necessary condition for the -dimensional variance-covariance 
matrix between the hip and knee variables to be nonsingular is that 
the number of observations be greater than , otherwise there 
would in most cases be an infinite number of linear transformations 
for which canonical correlation would be equal to 1.

In a functional canonical correlation analysis, the grid of points 
becomes arbitrarily large, so that usually a infinite number of weight 
functions would result in a functional canonical correlation equal to 1.

Regularization To avoid such overfitting in the canonical correlation analysis, we 
regularize or smooth the canonical coefficients by applying a penalty 
function. One possibility for choosing the penalty parameter is to use 
cross validation, and define the score for a given penalty parameter to 
be the correlation of the canonical correlations obtained by deleting 
each observation is turn. The penalty parameter is then chosen so as 
to maximize this correlation (see Section 12.2.3 of Ramsay and 
Silverman, 1997).

The following computes the cross-validated correlations for six values 
of the penalty parameter (denoted by the lambda component of the 
xPenalty argument). Some preliminary exploration was involved in 
choosing to these six values appropriately.

> crossValid <- function(lambda)
{
 fun <- function(i, fGait, lambda)
 {
     pen <- list(lambda=lambda, linDop=fDop(2))
     ans <- fCancor(fGait[-i, 1],fGait[-i, 2], 
                    xPenalty=pen, yPenalty=pen, ncan=1)
     c(fInProd(ans$xWeight[1], fGait[i, 1]),
       fInProd(ans$yWeight[1], fGait[i, 2]))
 }
 ans <- sapply(1:39, fun, fGait=fGait, lambda=lambda)

ti i 1 p=

p

p

2p 1+
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 cor(t(ans))[1,2]
}
> xLam <- seq(from=5.e-6, to=5.e-5, by=5.e-6)
> aa <- double(length(xLam))
> for(i in 1:length(xLam)) 
      aa[i] <- crossValid(xLam[i])

> par(mfrow=c(1, 1))
> plot(xLam, aa, type="l")
> points(xLam, aa)

The resulting plot of the cross-validated correlations versus the 
penalty parameter value lambda is shown in Figure 9.3.

The third value of lambda (0.000015) maximizes the correlation, 
although that the correlations do not vary significantly over the values 
of lambda considered. We fit the final canonical correlations with 
lambda equal to 0.000015:

> gaitCancor <- fCancor(fGait[, 1], fGait[, 2],
                        xPenalty=list(lambda=0.000015, 

Figure 9.3: Cross-validated correlations for six values of the penalty parameter.
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                                       linDop=fDop(2)))
> par(mfrow=c(2, 1))
> plot(gaitCancor, main="Smoothed Result")

The result is displayed in Figure 9.4.

The regularization gives a better (less optimistic) estimate of the first 
canonical correlation. 

While cross validation is an effective means of estimating a penalty 
for the first canonical correlation, this penalty may not be appropriate 
for the remaining canonical correlations. Moreover, different 
penalties cannot be used for different levels of canonical correlation 
because of loss of orthogonality, so that in general determining more 
than one functional canonical correlations is not straightforward.

Interpreting 
the
Coefficients

As in a functional principal component analysis, interpretation of the 
canonical correlation coefficient (weight) functions is important in 
understanding the analysis. The weight functions are normalized to 

Figure 9.4: Smoothed weighting functions for the first two canonical correlations. 
The solid curve corresponds to the hip data.
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have  norm (integral of the squared function) equal to 1. At each 
time point the weight function value is the weight that is given to the 
deviation of the function from the function mean. 

From the top half of Figure 9.4, it is apparent that highly positive 
canonical scores for both the hip and knee curves tend to be less than 
the mean at both tails, and greater than the mean in the middle of the 
stride, while highly negative scores tend to be greater than the means 
in the tails, and less than the mean in the middle of the curve. The 
knee curve places more weight on the lower tail, with less weights on 
the upper tail. This may reflect a “locking” of the knee towards the 
end of the stride. This is illustrated by comparing the mean difference 
curves for the “middle” range of the positive values versus the 
“middle” negative values. The following code plots these differences 
on both the first, and the second, canonical variates:

> par(mfrow=c(2, 2))
> ii <- order(gaitCancor$variates[, 1, 1])
> plot(fVector(mean(fGait[, 1]), mean(fGait[ii[6:15], 1]),
       mean(fGait[ii[25:34], 1])), main="Can. 1, Hip")
> ii <- order(gaitCancor$variates[,1,2])
> plot(fVector(mean(fGait[, 2]), mean(fGait[ii[6:15], 2]),
       mean(fGait[ii[25:34], 2])), main="Can. 1, Knee")
> ii <- order(gaitCancor$variates[, 2, 1])
> plot(fVector(mean(fGait[, 1]), mean(fGait[ii[6:15], 1]),
       mean(fGait[ii[25:34], 1])), main="Can. 2, Hip")
> ii <- order(gaitCancor$variates[, 2, 2])
> plot(fVector(mean(fGait[, 2]), mean(fGait[ii[6:15], 2]),
       mean(fGait[ii[25:34], 2])), main="Can. 2, Knee")

The resulting plot is displayed in Figure 9.5.

In the hip curves for the first canonical correlation (upper left), the 
positive values for the canonical variate tend to be below the curve at 
the beginning and end of the cycle, and above the curve about 
halfway through the cycle, where the minimum hip angle is reached. 
These individuals show less of a swing in their hip movement than the 
average. The negative values for the canonical deviate show much the 
reverse, being above the curve at the beginning and end of the cycle, 
and reaching a smaller minimum than the average. The range of their 
hip angles tends to be larger than the average. Similar statements 

l-2
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apply to the knee angle in canonical variate 1 (upper left): the positive 
canonical variates tend to have less extreme knee movement, while 
the negative values tend to have more extreme knee movement. 

We now consider the second canonical variate in the second row of 
Figure 9.5. These curves are much like the two curves for the first 
canonical variate, except that there is much less variability in the 
early part of the curve - the variability is concentrated around 0.85 for 
the hip, where the positive canonical values show a smaller maximum 
than the negative canonical variate, and around 0.7 for the knee. 
Again, the positive variates show less of an extreme at this maximum 
than do the negative variates. 

Figure 9.5: The mean curve (solid line) mean curve for some positive (dashed line) 
and negative (dotted line) values of the canonical deviates.
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Cluster analysis is an exploratory method used to find groups or 
clusters of similar data points. Classical hierarchical cluster analysis 
requires a matrix containing the distances between the items to be 
clustered. To compute a distance matrix, a metric or distance measure 
between any two data points is required. Functional methods offer 
many methods for computing distance matrixes, as was seen in 
Chapter 1, where the distance measure was taken as the integrated 
squared distance or  distance between the two functions first 
derivatives.

Here we consider two examples involving daily measurements of 
precipitation and mean daily temperature at 35 Canadian weather 
stations over a one-year period. The functions provide an estimate of 
the expected daily temperatures at these stations. Ideally, additional 
years of observations would be desirable for analysis. We proceed by 
regularizing or smoothing the data, and then using the resulting 
functions to cluster the weather stations. As in the example in 
Chapter 1, the distance measure is obtained from the first derivatives 
of the smoothed functions.

l2
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CLUSTERING PRECIPITATION DATA

We first consider the daily precipitation data, and begin by smoothing 
the data using the construct function fVector. Daily precipitation is 
often highly variable with no precipitation on some days and a large 
amount of precipitation on others. Moreover, dry spells can last for 
quite some time, as can rainy periods. We are interested in the 
“expected” precipitation function, but we have only one year of 
measurements. Because we are interested in the first derivative 
function (the rate of change of the expected precipitation) and not in 
the measurement errors about the function, cross validation for these 
errors is not really helpful and we simply smooth until we seem to 
have an appropriate amount of smoothing by examining the first 
derivative of the smoothed function:

> sPrec <- fVector(fWeather$fPrec, 
             penalty=list(lambda=100000, linDop=fDop(2)))
> par(mfrow=c(2, 1))
> plot(sPrec, main=”Precipitation Functions”)
> plot(fVector(sPrec, linDop=fDop(1)), 
       main=”Precipitation Derivatives”)

In this code the unsmoothed precipitation functions are contained in 
the fPrec variable in the fWeather data frame (see the help file for 
fWeather). The smoothed functions are displayed in Figure 10.1. 
Looking at this Figure, the precipitation functions and their 
derivatives are reasonably smooth, giving a fairly good idea of the 
trend in the precipitation over the year that the data was measured. 

Standardizing Some patterns are evident in the expected precipitation functions, but 
precipitation is highly variable, depending to a considerable extent on 
local situations. For example, the western sides of mountains on the 
west coast of North America tend to get more rain as the weather 
station elevation increases (because of lifting), but the “trend” in 
weather variation is identical at all elevations. Because of this 
increase, we should be less interested in clustering based solely on the 
amount of precipitation, but rather on the rate of precipitation over 
the course of the year. Therefore, we standardize all weather stations 
to a fixed amount of fifty inches. This is accomplished by first 
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integrating the smoothed precipitation functions over the year to get 
the total amount of precipitation, and then adjusting each function so 
that its integral is 50:

> precInt <- fInt(sPrec)/50
> ssPrec <- fVector(t(t(getCoef(sPrec))/precInt),   
                    getBasis(sPrec), getNames(sPrec))
> par(mfrow=c(2, 1))
> plot(ssPrec, main="Standardized Precipitation")
> plot(fVector(ssPrec, linDop=fDop(1)), main=
       "Derivative of the Standardized Precipitation")

This result is displayed in Figure 10.2, which shows that the patterns 
of precipitation are now much more apparent. Indeed, some stations 
report the bulk of their precipitation over the winter months, while in 
others, most precipitation occurs in the summer.

Figure 10.1: Plot of the “expected” precipitation functions for 35 Canadian weather 
stations (top), with the first derivative (bottom).
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Clustering To perform a hierarchical cluster analysis, we must first compute the 
between-station distance matrix using S+FDA function fDist. Here 
we use the integrated squared differences in the rate of change of 
precipitation as our clustering criterion. The S-PLUS function hclust
is then used to cluster the data using a complete-linkage algorithm:

> ssPrecDist <- sqrt(fDist(ssPrec, linDop=fDop(1)))
> ssPrecClust <- hclust(ssPrecDist)

Complete linkage is chosen because we want the maximum within 
cluster distance to be small. Rather than plot the cluster tree, we plot 
the means of the seven cluster solution. The cutree function is used to 
identify stations within the seven clusters, as follows:

> ii <- cutree(ssPrecClust, k=7)
> ssPrecMean <- ssPrec[1:7]
> for(i in 1:7) 
      ssPrecMean[i] <- mean(ssPrec[ii==i])
> par(mfrow=c(1, 1))
> plot(ssPrecMean, 

Figure 10.2: The precipitation functions standardized to 50 inches per year.
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       main="Mean Functions for Seven Clusters")
> legend(0, 0.325, as.character(1:7), lty=1:7)

The result is displayed in Figure 10.3, which shows that the cluster 
mean functions exhibit distinct patterns of precipitation.

To see if the clustering result makes sense, we find the cities 
corresponding to the weather stations for each cluster:

• 1) Calgary, Edmonton, Prince Albert, Regina, The Pass,      
Winnipeg

• 2) Churchill, Dawson, Inuvik, Iqaluit, Schefferville, Thunder 
Bay, Uranium City, Whitehorse, Yellowknife

• 3) Charlottetown, Fredericton, Halifax, Prince Rupert, St. 
Johns, Sydney, Yarmouth

• 4) Kamloops, Prince George

• 5) Arvida, Bagotville, London, Montreal, Ottawa, Quebec, 
Sherbrooke, Toronto

• 6) Vancouver, Victoria

Figure 10.3: Mean functions for the seven clusters.
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• 7) Resolute

Some of these results are expected, e.g., we would expect the far 
northern cities in cluster 2 to be similar, and Vancouver and Victoria, 
both in cluster 6, clearly share the same weather pattern being less 
that fifty miles apart and separated only by a body of water. On the 
other hand, we have no reason to believe that Halifax, on the east 
coast, and Prince Rupert, on the west coast, would have the same 
weather patterns, although they are both coastal cities. Clearly 
clustering based upon precipitation patterns is useful in finding 
groups of weather stations with related weather patterns, but 
precipitation patterns alone are insufficient to characterize the 
weather data. 
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CLUSTERING TEMPERATURE DATA

We now consider the temperature data. Unlike the precipitation data, 
here we do not standardize to a constant mean temperature. We look 
at the rate of change of the average daily temperature, rather than at 
the expected average daily temperature function. As with the 
precipitation data, smoothing is used to obtain an “expected” daily 
temperature from a single year of data. 

The S+FDA statements used to smooth the data, perform a cluster 
analysis, and compute and plot the cluster mean functions are as 
follows:

> sTemp <- fVector(fWeather$fTemp, 
               penalty=list(lambda=50000, linDop=fDop(2)))
> sTempDist <- sqrt(fDist(sTemp, linDop=fDop(1)))
> sTempClust <- hclust(sTempDist)
> jj <- cutree(sTempClust, k=7)
> sTempMean <- sTemp[1:7]
> for(i in 1:7) 
      sTempMean[i] <- mean(sTemp[jj==i])
> par(mfrow=c(2,1))
> plot(sTempMean, main=
      "Temperature Cluster Mean Functions")
> plot(fVector(sTempMean), main=
       "Derivatives of Temperature Cluster Mean Functions")
> legend(300, 0.4, as.character(1:7), lty=1:7)

The result is shown in Figure 10.4. 

The temperature-based clusters are composed of the following 
stations. Here the number in parenthesis is the cluster number for the 
plot legend.

1. (3) Calgary, Edmonton, Kamloops, Prince George, Whitehorse

2. (1) Dawson, Prince Albert, Regina, The Pas, Uranium City,     

         Winnipeg, Yellowknife

3. (6) Charlottetown, Halifax, St. Johns, Sydney, Yarmouth

4. (5) Churchill, Iqaluit, Schefferville

5. (4) Arvida, Bagotville, Fredericton, London, Montreal, Ottawa, 
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         Quebec, Sherbrooke, Thunder Bay, Toronto

6. (7) Prince Rupert, Vancouver, Victoria

7. (2) Inuvik, Resolute

Again there are stations whose cluster assignment make sense (e.g., 
cluster 6 (7)), as well as clusters which are difficult to interpret (e.g, 
cluster 2 (1)).

Figure 10.4: The cluster mean functions for temperature (top) and its derivative 
(bottom).
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SUMMARY

Cluster analysis is an exploratory technique. Functional data methods 
offer the advantage of allowing a greater variety of clustering matrixes 
to choose from. The examples involving the clustering of Canadian 
weather stations are meant to be illustrative, since the known 
locations of weather stations can be used to infer which ones should 
exhibit similar weather patterns.The objective is not so much to find 
“real” clusters of stations, but rather to learn how the weather patterns 
at the different stations are related. Some of the clusters obtained 
consist of stations that are located in the same region, which we would 
expect similar to have weather patterns. Other aspects of the 
clustering are harder to interpret (e.g., assignment of Prince Rupert 
and Halifax to the same cluster), although they may also indicate 
relationships in weather patterns for stations at some distance from 
each other. A cluster analysis that accounted for both precipitation 
and temperature (and other weather related variables such as 
humidity) might be preferable, provided a suitable clustering metric 
could be found. 

Methods for determining the number of clusters in functional cluster 
analysis are identical to those in the classical case, and thus are not 
discussed further here.

If groupings for some of the data are known in advance, it may be 
preferable to use a discriminant function analysis to find the variables 
and matrix that best classify the remaining observations. In the 
chapter on functional generalized linear models, we use a form of 
discriminant function analysis, functional logistic models, to classify 
the weather stations. 
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Principal differential analysis (Ramsay 1996) estimates linear systems of 
ordinary differential equations approximately satisfied by functional 
data. This is of interest in physical processes, where, for example, the 
one-dimensional motion of an object is a function of time that solves 
an ordinary differential equation.   The Maxwell equations are 
another well known physical example. Biological, chemical and other 
phenomena also often satisfy ordinary differential equations, and 
discovering the form of these equations can help to understand the 
nature of the underlying process. 

More formally, for a sample of functions , principal 

differential analysis determines a linear differential operator of 

degree  and/or a function  for which for all . 

Here  is defined as:

where the operator notation has the following interpretation: 

 and , the  derivative of . 

In principal, both the forcing function  and the linear differential 
operator weights (coefficients)  may be functional data objects. 

However, the current implementation may not be reliable unless the 
linear differential operator is known to have constant coefficients. 
Methods that better handle more general linear differential operators 
are under active research, and will be added to S+FDA in the future. 

Given the form of  and the , the linear differential equation 

is estimated by least squares (or penalized least squares). Either  

or one of the  must be known. Computational procedures are 

discussed in Chapter 14 of Ramsay and Silverman (1997). Penalized 
least squares estimation minimizes the criterion:

which reduces to a least squares criterion if the penalty term is 
omitted.
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The function  is called the forcing function since, when , it 
corresponds to the external force applied to a physical system. If  
is identically zero, the resulting differential equation is said to be 
homogeneous. Otherwise the system is nonhomogeneous.

When the forcing function  and/or weight functions  are 
unknown, principal differential analysis can be used to estimate them 
and elucidate the process underlying the functions . 

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of basis functions that 
may be considerably more compact than the current representation. 
This follows from the fact that all solutions to a linear differential 
equation can be expressed as the sum of:

•  a particular solution 

and 

• a linear combination of basis functions for the null space or 
kernel of the linear differential operator.

Although the current implementation of S+FDA cannot currently 
handle arbitrary bases, such a representation may nevertheless be 
useful in an analysis. 
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S+FDA FUNCTIONS FOR PRINCIPAL DIFFERENTIAL 
ANALYSIS

The S+FDA function fPDA estimates the weight functions for the 

linear differential operator , and/or the forcing function,  .   
The fPDA object is a list with two components:

• an object of class fLinDop which gives the coefficients of the 
estimated linear differential operator. 

• an object of class fFunction which gives the estimated forcing 
function.

The fPDA object also has fitted.values and residuals from 
predictions of the original functional data as attributes. 

There is a predict method for fPDA objects that calls a function 
fLinDopSolve to solve the linear differential equation. The fitting for 
prediction is done by linear regression involving the kernel basis 
functions of the linear differential operator and a particular solution to 
the differential equation if there is a nonzero forcing function. See 
Ramsay and Silverman (1997) for more details.

i t

L t
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RADIOACTIVE DECAY EXAMPLE

Consider radioactive decay defined by 

where  is the amount of a chemical element present at time ,  
is the rate constant intrinsic to the element, and  is the rate of 
decay.   The linear differential operator is:

The goal is to estimate .

To illustrate the S+FDA principal differential analysis function, fPDA,
we construct an example of functional data described by the above 
radioactive decay equation. We simulate data for iodine 131, for 
which  when the unit of time is days.

> rateConstantI131 <- 0.0864
> Time <- 0:50 
> Y <- matrix(0, 51, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10) 
      Y[,j] <- (100 + rnorm(1, sd=10))*
                           exp(rateConstantI131*Time)

Since the differential equation is of order one, we use a B-spline basis 
of order four so that the first derivative will be a smooth cubic spline. 

> basis <- bsplineBasis(c(0,50), norder=4, nbasis=10)

The functional data object created from the basis is:

> fY <- fVector(basis, Y)

Plot the functional data (see Figure 11.1:):

> par(mfrow=c(1, 1))
> plot(fY, main="Radioactive Decay of Iodine 131")
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To estimate the rate constant, we first call fPDA.   

> decayPDAconst <- 
             fPDA(fY, weights=list(constantBasis(fDomain=          
                              c(0, 50)), 1), forcing=0)

Here we have set weights=list(constantBasis(fDomain= c(0,50)),
1) to indicate that the first order coefficient is known to be equal to 1, 
and the zeroth order coefficient needs to be estimated. We use a 
constantBasis to ensure that the estimated coefficient is a constant.

The value of the rate constant estimate is then given as follows:

> rateConstantEstimate <-
                      fEval(decayPDAconst$linDop[[1]], 25)
> rateConstantEstimate
           [,1] 
[1,] 0.08638197

(since the coefficient is constant it suffices to evaluate the weight 
function at any point in the domain).

Figure 11.1: Functional data for radioactive decay of Iodine 131.
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The following code plots the original functional data object, the 
predictions produced by predict.fPDA, the residuals from the 
predictions, and the operator residuals ( ):

> predictions <- predict(decayPDAconst)
> par(mfrow=c(2, 2))
> plot(fY, main="Original Functional Data")
> plot(predictions$fitted, 
       main="Predicted Functional Data")
> plot(predictions$residuals, 
       main="Residuals of Predicted Values")
> Lx <- fEval(fY, fArg=Time, linDop=decayPDAconst$linDop) 
> plot(fVector(getBasis(fY), y=Lx), 
       main="Differential Operator Residuals")

In the example just given, we chose a constant basis because of the 
theoretical equation of decay. But it may be of interest to know what 
fPDA would estimate if we did not make this assumption. 

> decayPDAvar <- fPDA(fY, weights=list(NULL, 1), forcing=0)

Figure 11.2: Functional data, predicted fitted values, residuals of predicted values, 
and operator residuals, when constant coefficients are assumed.
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Setting the first element of weights to NULL causes the basis of the 
functional data fY to be used in estimating the forcing function.   
More generally, a basis can be specified for each unknown function in 
the linear differential equation.

Plot the estimated rate of decay. 

> plot(decayPDAvar$linDop[[1]], 
       ylab="Decay Rate Estimate", xlab="Domain", 
       main="Decay Rate Estimate, using inherited basis")
> abline(h=-0.0864)

Figure 11.3: shows that on average the estimated rate of decay is close 
to the theoretical rate. However, there are edge effects, hinting at the 
difficulties to be encountered in situations where less is known about 
the underlying process, and one or more coefficients are estimated 
using a nonconstant basis.

Figure 11.3: Estimated rate of decay, using the basis of the functional data object. 
The horizontal line is drawn at the theoretical decay rate.
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HARMONIC OSCILLATOR EXAMPLE

A mechanical system is characterized by an external force applied to 
the system, together with internal or external frictional forces or 
viscosity. The classic example is a weight suspended from a spring. 
The spring will oscillate when the weight is attached to it provided the 
weight is not too heavy. This motion will fade over time depending 
on the viscosity of the air or other medium in which the system is 
situated.

The equation of motion for a harmonic oscillator with external force 
 is:

where  is the damping constant and  is the square of the natural 

oscillating frequency. 

Underdamped 
+ Resonance 

The second-order equation of motion describes an underdamped 

system if . In this case, oscillation will occur. If the forcing 

function exhibits periodicty, the oscillation is called resonance. An 
analytic solution is known when the forcing function is of the form 

, where  is the resonance frequency. A particular 
solution in this case is 

A general solution to the differential equation can be obtained by 
adding the particular solution to the homogeneous solution, which 
(ignoring the phase shift) is 

under the assumption that the system is underdamped. The following 
code simulates such a system and plots the resulting functional data:

f
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2
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> k0 <- 2
> k1 <- .5
> hconst <- fconst <- 10
> phase <- 0
> nu <- 1/3

> pi2nu <- 2*pi*nu
> a <- pi2nu*k1
> b <- k0 - pi2nu*pi2nu
> d <- a*a + b*b
> A <- a/d
> B <- b/d

> tt <- seq(from=0, to=5, length=101)
> Y <- matrix(0, 101, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10) 
     Y[,j] <- hconst*exp(-k1*tt/2)*sin(sqrt(k0)*tt+phase) +    
       fconst*(A*sin(pi2nu*tt) + B*cos(pi2nu*tt)) + rnorm(1)

Figure 11.4: Simulated functional data for an underdamped harmonic oscillator 
with resonance.
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Now we compute the constant coefficients of the linear differential 
operator assuming that the forcing function is known:

> par(mfrow=c(1, 1))
> basis <- bsplineBasis(c(0, 5), norder=5, nbasis=20)
> fY <- fVector(basis, Y)
> plot(fY, main="Underdamped + Resonance")

# compute constant coeffs using known forcing function
> forcing <- fFunction(basis, fconst * cos(pi2nu*tt))
> oscPDAconst <- fPDA(fY, weights=
                      list(constantBasis(c(0, 5)),
                           constantBasis(c(0, 5)), 1), 
                      forcing=forcing)
> k0 <- fEval(oscPDAconst$linDop[[1]], 2.5)
> k0
         [,1] 
[1,] 2.021411
> k1 <- fEval(oscPDAconst$linDop[[2]], 2.5)
> k1
          [,1] 
[1,] 0.504323

The resulting coefficients are quite close to the true values underlying 
the simulated data.

In this case fPDA also gives a good estimate of the forcing function 
when the linear differential operator is known:

> oscPDAforc <- fPDA(fY, weights=list(2, .5, 1),
                     forcing=basis)
> plot(ans1$forcing, main="Estimated Forcing Function 
                            (known LDO)")
> lines(tt, fEval(forcing, tt), lty=6)



Chapter 11  Principal Differential Analysis

176

However, if we attempt to estimate the linear differential operator 
coefficients as well as the forcing function, the resulting least squares 
problem is ill-conditioned.

> oscPDAall <- fPDA(fY, weights=list(constantBasis(c(0,5)), 
                   constantBasis(c(0, 5)), 1),forcing=basis)
Warning in fPDA(fY, weights = list(constantBasis(c(..:
                 least-squares system is ill-conditioned

The ill-conditioning warning is usually means that the results will not 
be accurate, as is the case for this example. The constant weights are 
estimated to be 0 and 0.083, far from their true values of 2 and 0.5, 
respectively. The forcing function estimate is plotted below:

> plot(oscPDAall$forcing, main="Forcing Function Estimate")

Figure 11.5: Forcing function for underdamped harmonic oscillator estimated by 
fPDA when the linear differential operator is known. The dotted line is the true 
forcing function underlying the simulated data.
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> lines(tt, fEval(forcing, tt), lty=6)

It may in some instances be possible to avoid ill-conditioning by 
increasing the arguments k or nbasis to fPDA (these affect the 
accuracy of the projections used in computing inner products for least 
squares), but in this case we weren’t able to find a suitable set of 
inputs. It is also possible to include penalty terms on the weight 
functions and/or their derivatives, or on the derivatives of the forcing 
function, in fPDA to regularize principal differential analysis, but there 
are no systematic guidelines for doing so with the current 
implementation. New methods under development incorporate 
regularization mechanisms, and we plan to include them in future 
editions of this library.

Figure 11.6: Estimate forcing function when weights are assumed constant but 
unknown. The dotted line is the true forcing function underlying the simulated data.
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LIP MOVEMENT EXAMPLE

The lip movement data, first used in the chapter on registration, 
consists of twenty replications measuring the vertical lip position as a 
single individual says the syllable “bob”. In order to perform 
principal differential analysis, first register and smooth the curves. 
The S+FDA code for creating, registering, and smoothing the lip data 
is as follows:

> lipBasis <- fBasis(type="bspline",fDomain=c(0, 1),
                     nbasis=31,params=(c(1:25)/26))
> fLip <- fVector(object=lipBasis, y=lipmat, fArgs=liptime,
                  fNames=list(NormalizedTime=liptime, 
                  Replications=seq(20), Units="mm"))
> regLip1 <- fRegister(fLip, mean(fLip), nDeriv=1,
                       maxIter=120, lambda=0.1, 
                       criterion=1, penalty=0.0005)
> regLip1 <- fRegister(fLip,mean(regLip1$fReg), nDeriv=1,
                       maxIter=120, lambda=0.1, 
                       criterion=1, penalty=0.0005)
> yLip <- fVector(regLip1$fReg, penalty=
                  list(lambda=1.e-10, linDop=fDop(2)))

Note in this code that the registration is performed on the derivatives 
rather than the functions. 

Because the lower lip is part of a mechanical system, with certain 
natural resonance frequencies and a stiffness or resistance to 
movement, it seems appropriate to explore to what extent this 
method can be expressed it terms of the second-order differential 
equation typically used to analyze such systems, in which the linear 
differential operator 

is a generalization of the which one used for the harmonic oscillator 
example in the previous section. Strictly speaking, the mechanical 
interpretation of the differential equations does not hold if the weight 
coefficients are allowed to be functions rather than constants, but 
higher-order effects can be ignored if they do not vary too rapidly 
with time. The principal differential analysis estimates, assuming 
nonconstant weights, are computed as follows:

0 t f t 1 t D
1
f t D

2
f t+ +
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> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1), 
                 forcing=0)

We set forcing=0 to indicate that the differential equation is assumed 
to be homogeneous (no forcing function). A plot of the residuals for 
the homogeneous fit with the weight functions estimated by fPDA, as 
given in Figure 11.7:, is calculated as follows.

> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1), 
                 forcing=0)
# calculate and plot residual Lx
> lipResiduals <- fEval(yLip, fArg=liptime,
                        linDop=lipPDA$linDop)

> keep <- liptime >= 0.1 & liptime <= 0.9
> matplot(liptime[keep], lipResiduals[keep,], type="l")

Points at the ends of the plot have been removed in order to eliminate 
edge effects near 0 and 1. 

Figure 11.7: Operator residuals from the second-order differential equation fit to the 
lip movement data.
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Although the residual results are not nearly as small as we would 
prefer (for comparison, the largest magnitude of the second 
derivatives is near 500), they still appear to be more or less random, 
indicating that the linear differential operator is capturing the 
functional behavior. 

Kernel Basis 
Functions

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of coefficients that may 
be much smaller than the current representation. Although the 
current implementation of S+FDA does not allow arbitrary bases, this 
property may still be useful in an analysis.

 Specifically, if  is a linear differential operator of degree , then 
there are  linearly independent functions  (the kernel 

basis functions) that span the null space or kernel of , that is, for which 

. The kernel basis functions are determined by  

constraints, which may include initial conditions and/or boundary 
conditions.

In the theory of linear ordinary differential equations, all solutions to 
the homogeneous equation are linear combinations of the kernel 
basis functions. If the weight functions defining  are determined by 
principal differential analysis, and residuals for the ordinary 
differential equation are small, then for homogeneous equations there 
should be a linear combination of the form 

in which the residual terms  are relatively small. 

For nonhomogeneous equations, any solution can be expressed as the 
sum of a particular solution and a linear combination of the kernel 
basis functions. So if  is a particular solution, then the functional 
data have the following representation: 
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Since each of the observed functions  is a solution, up to a 

random error, then the average function,  is also a 

solution with a random error, but the random error for  is  

times smaller than for each function . Thus, when the errors are 

small,  approximates a particular solution to the differential 
equation, and consequently a good fit of the centered functions 

 can be obtained as a linear combination of the kernel 

basis functions. Notice the similarity with functional principal 
components analysis, which finds a set of (orthogonal) functions that 
can be used to re-express the functions  such that the integrated 

squared error  is minimized. 

Change of 
Basis

A set of kernel basis functions,  for a linear differential 
operator can be computed via the function fLinDopSolve:

> lipKernData <- fLinDopSolve(linDop=lipPDA$linDop, 
                              x=liptime)
> lipKern <- fVector(lipKernData, basis=getBasis(yLip))
> par(mfrow=c(2, 1))
> plot(lipKern[1], main="First Kernel Basis Function")
> plot(lipKern[2], main="Second Kernel Basis Function")
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The resulting basis is displayed in Figure 11.8. Notice that the first 
kernel basis function has a much larger range than the second one 
indicating, perhaps, that the first basis function is more important.

The S+FDA function fLinDopSolve is based on the adaptive ordinary 
differential equation solvers DLSODA and DLSODI (Hindmarsh 1983; 
Petzold 1983). Initial conditions may be specified through the 
initialValues argument. Different initial conditions can lead to 
different kernel basis functions, but all sets of kernel basis functions 
span the same function space and are thus equivalent for our 
purposes.

Given the kernel basis functions for a linear differential operator, the 
function fLinDopFit can be used to obtain a representation of a 
function in terms of the kernel basis. Below we compute this fit for the 
lip motion data, from which the linear differential operator was 
derived.

> lipFit <- fLinDopFit(yLip, linDop=lipPDA$linDop)
> par(mfrow=c(2, 1))

Figure 11.8: Kernel basis functions for the linear differential operator fit by 
principal differential analysis to the lip force data.
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> plot(lipFit$fitted.values, main="Fitted Values")
> plot(lipFit$residuals, main="Residual Functions")

The fit is accomplished via least-squares projection of the observed 
functions onto the kernel basis. The fitted functions and the residuals 
for the registered lip movement functions are displayed in Figure 
11.9. Note the difference between these residuals and those shown in 
Figure 11.7, which displays values of the linear differential operator 
applied to yLip, which are viewed as “residuals” when homogeneity is 
assumed. 

The fitted curves appear to be quite similar to the registered and 
smoothed lip curve functions, although the residual functions indicate 
that the fit is not perfect. Nevertheless, these residual functions are 
relatively small, with a range of about 25% of the range of the lip 
curves proper.

The residuals and fitted values given above are precisely those that 
would be obtained from predict applied to lipPDA, because the 
linear differential operator and data input to fLinDopFit came from 

Figure 11.9: Lip curves and residuals from the fit of the lip motion data to the kernel 
basis functions for the linear differential operator determined by fPDA.
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the principal differential analysis. Function fLinDopFit differs from 
the predict method for fPDA objects in that instead of an fPDA object 
it takes as input a linear differential operator and (optionally) a forcing 
function, and returns the predictors (kernel basis functions) and 
coefficients from the fit as well as the fitted values and residuals. 

Comparison
with PCA 

Because of its relationship to functional principal components, it is 
useful to compare the fit obtained from the kernel basis functions 
obtained with the homogeneous functions with the fit obtained using 
a functional principal components analysis. Here we use the 
integrated residual variance as a measure of “goodness of fit”. This 
statistic has meaning for both the functional principal components 
solution and for the functional principal differential analysis solutions, 
but is minimized in the functional principal components models - we 
expect, apriori, that principal differential analysis will not do as well 
as the principal component analysis in predicting variation in our lip 
movement data (if the same number of “parameters” are estimated). 
However, if the principal differential analysis solution explains a good 
deal of the functions variance, then we would have some evidence 
that the estimated linear differential equation has the correct form and 
closely models the process that generated the data. 

In the following code we compute the harmonics using function fPCA
as well as the fitted values for fPDA, and computed the integrated 
variance using functions fInt and fVar.

> ansPCA <- fPCA(~yLip)
> phi <- double(3)
> phi[1] <- fInt(fVar(yLip, bivariate=F))
> phi[2] <- fInt(fVar(fVector(getCoef(yLip)
           -outer(c(getCoef(mean(yLip))), rep(1, 20))
           -getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),
            getBasis(yLip)), bivariate=F))
> phi[3] <- fInt(fVar(predict(lipPDA)$residuals, 
                      bivariate=F))

> par(mfrow=c(1, 1))
> plot(fVar(yLip, bivariate=F), xlab="t", ylab="Var(f(t))",
       main="Variance Functions", ylim=c(0,5))
> lines(fVar(fVector(getCoef(yLip)
        - outer(c(getCoef(mean(yLip))), rep(1,20))
        - getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),



Lip Movement Example

185

        getBasis(yLip)),bivariate=F), lty=2)
> lines(fVar(predict(lipPDA)$residuals, bivariate=F), 
        lty=3)
> legend(0.6, 5, c("Mean", "PCA", "PDA"), lty=1:3)

The plot of the variance functions shown in Figure 11.10:.

Finally, we compute an “r-squared”-like measure for goodness of fit 
based upon these integrated variances:

> Rsq <- 1-phi[2:3]/phi[1]
> names(Rsq) <- c("PCA", "PDA")
> Rsq
      PCA       PDA 
 0.9147264 0.4107527

From both the R-squared statistics and the variance function plots we 
see that the two harmonic functional principal component solution 
provides the best fit, as expected. 

Figure 11.10: Variance functions for PCA and PDA analyses of the lip motion data.
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Summary An unique aspect of functional data analysis is its ability to provide 
insight into the processes underlying the functional data. The goal of 
principal differential analysis - to find an underlying differential 
equation describing the behavior a sample of observations - is an 
exciting and powerful idea. The simple least-squares approach 
currently implemented in S+FDA is limited in what it can handle. 
However, new iterative approaches under development for principal 
differential analysis show great promise for improvement, and in the 
next release of this library, we expect to significantly enhance the 
methods provided here.
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fVar function 57
fVector function 6

G
gaitarray data set 115
gait data 147
gamma 124
GCV 83
generalized cross validation 83
generalized linear model 3, 124, 127
generic functions 3
getBasis function 7
getCoef  function 7
getComponent function 139
getNames function 7

H
harmonic 132, 144
      oscillator 173, 178
height data 6, 12, 80, 83, 85, 106
historic linear model 119
homogeneous 167, 179

I
ill-conditioning 176
independent variable 6, 14, 103
indexing 56
inner product 43, 51, 53, 55, 132
integrals 42, 51, 55, 65

K
kernel basis functions 180, 181
knots 5, 30, 90

L
landmarkReg function
landmark registration 96
lapply function 60
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least-squares criterion 73, 102, 166
lag 119
linear
      differential operator 55, 72, 79, 

82, 166, 168
      least-squares estimates 6
      regression 102
      transformations 146
lip data 92, 96, 118, 178
logistic model 127, 129

M
Maxwell equations 166
mean 55
      curves 141
mean function 17, 57
methods 3
mixed-effects model 5
monotonic 53, 90

N
nonhomogeneous 167

O
object-oriented programming 3
operations to functional data objects 

51
orthogonal 132, 146
oscillatory 81
outliers 27
overfitting 14
oversmoothing 75

P
penalized least-squares criterion 73, 

89
penalty 7, 79, 149
periodic 26
piecewise linear spline 26
     polynomial splines 5
pinch force data 57, 76
pinchmat data set 48

pointwise variances 57
Poisson 124
Polygonal basis 35
polynomialBasis function 33
polynomial basis 5, 26, 33
predict function 119
predict.fPDA function 171
prediction 83
principal components 3, 75, 132, 

133
principal differential analysis 3, 167, 

178
product basis 39
      basis functions 73

R
radioactive decay equation 169
rate of change 15
registered curves 99
registering 178
registration 91, 96, 99, 136, 178
regression 75
regularization 151
residuals 124, 183
resonance 173
rotated harmonics 142
rotate function 132
rotating 3
roughness penalty approach 74
r-squared 185

S
separable functions 104
shape data 135
smoothing 7, 74, 75, 112, 117, 178
sum function 56
sqrt function 54

U
underdamped system 173
univariate bases 25
       functional data 73
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variance 55

W
warping function 89, 94
weather data 125
weight functions 168
within-subject variance 5
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