

S+ Functional Data Analysis

Douglas B. Clarkson
Chris Fraley
Charles C. Gu
James O. Ramsey

S� Functional
Data Analysis

User’s Manual for Windows®

With 79 Illustrations

Douglas B. Clarkson
Insightful Corporation
1700 Westlake Ave. N.
Seattle, WA 98109

Chris Fraley
Insightful Corporation
1700 Westlake Ave. N.
Seattle, WA 98109

Charles C. Gu
Insightful Corporation
1700 Westlake Ave. N.
Seattle, WA 98109

James O. Ramsey
McGill University
1025 Dr. Penfield Ave
Montreal, Quebec H3A 1B1

With 79 illustrations.

Insightful, Insightful Corporation, “Insightful intelligence from data”, S-PLUS, S+, S-PLUS
Graphlets, Graphlets, and InFact are registered trademarks of Insightful Corporation. Insightful
Miner, ArrayAnalyzer, FinMetrics, NuOpt, SeqTrial, Wavelets, and SpatialStats are trademarks
of Insightful Corporation. All product names mentioned herein may be trademarks or
registered trademarks of their respective companies.

Library of Congress Control Number: 2005924801

ISBN-10: 0-387-24969-9 Printed on acid-free paper.
ISBN-13: 978-0387-24969-9

© 2005 Insightful Corporation
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adapta-
tion, computer software, or by similar or dissimilar methodology now known or hereafter devel-
oped is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether
or not they are subject to proprietary rights.

Printed in the United States of America. (MVA)

9 8 7 6 5 4 3 2 1 11371380

springeronline.com

The software for the Functional Data Analysis module was originally
written by Jim Ramsay, Department of Psychology, McGill
University, and Bernard Silverman, Department of Mathematics,
University of Bristol. We have contributed enhancements and
extensions, and attempted to reflect their zeal for the analysis of
functional data. We have benefited from contributions by James
Schimert, and comments by Tim Hesterberg at Insightful
Corporation. Our efforts were funded by NIH SBIR grants
1R43CA86539-01 and 2R44CA86539-02 entitled: An S-Plus
Functional Data Analysis Module.

ACKNOWLEDGMENTS

v

Acknowledgments iii

Preface ix

Chapter 1 Introduction 1

 Introductory Tutorial (Height Data) 4

A Linear Model for the Height Data 12

Cluster Analysis of the Height Data 15

FDA Flow Chart 21

Chapter 2 Basis Objects and Operations 23

What is a Basis? 24

Basis Objects 25

Choosing a Univariate Basis 26

Choosing a Bivariate Basis 28

Creating Univariate Bases 29

Creating Bivariate Bases 39

Operations on Univariate Bases 41

Operations on Bivariate Bases 44

Chapter 3 Functional Data Objects and Operations 45

Univariate Functional Data Objects (Pinch Force Example)
48

CONTENTS

Contents

vi

Bivariate Functional Data Objects (Example) 61

Chapter 4 Linear Differential Operators and Smoothing
71

Linear Differential Operators 72

Smoothing via a Roughness Penalty 73

Specifying the Penalty Function 79

Chapter 5 Functional Registration 87

Analytic Registration 89

Lip Motion Example 91

Landmark Registration 96

Chapter 6 Functional Linear Models 101

Example with a Functional Dependent Variable 106

Example with Functional Independent Variables 110

Example with Functional Dependent and Independent
Variables 115

Chapter 7 Functional Generalized Linear Models 123

Weather Example 125

Polychotomous Classification 129

Chapter 8 Functional Principal Components 131

Analysis of the Bone Shape Data 135

Chapter 9 Canonical Correlation 145

Analysis of the Gait Data 147

Chapter 10 Functional Cluster Analysis 155

Clustering Precipitation Data 157

Clustering Temperature Data 162

Summary 164

Contents

vii

Chapter 11 Principal Differential Analysis 165

S+FDA Functions for Principal Differential Analysis 168

Radioactive Decay Example 169

Harmonic Oscillator Example 173

Lip Movement Example 178

Appendix: References 187

Index 189

The book is intended as a guide to the functional data analysis
software in the S+FDA library. It gives a general overview, and treats
each topic through illustrative examples. The code for the examples
can be found in the script files provided with the software, which also
include additional examples. Users can learn to use the S+FDA
library by executing the example scripts while reading. Details on the
functions and their arguments, as well as further examples, can be
found in the associated help files.

PREFACE

1

Installation 3
Object-oriented Programming 3

Introductory Tutorial (Height Data) 4
Selecting the Basis Functions 5
Smoothing 7

A Linear Model for the Height Data 12
Discussion 14

Cluster Analysis of the Height Data 15
Computing a Distance Matrix 15
Displaying the Cluster Mean Functions 17
Between Cluster Distances 18
Summary 19
Multidimensional Scaling 19

FDA Flow Chart 21

INTRODUCTION 1

Chapter 1 Introduction

2

Functional data arise in many fields of research. Measurements are
often best thought of as functions, even in cases where the data is
gathered at a relatively small number of points. Examples include
weather changes, stock prices, bone shapes, growth rates, health
status indicators, and tumor size.

For time-dependent data, observations may be viewed as realizations
of a smooth function of time that have been measured (with
error) at specific time points , but which could have been measured

at any time. Spatial functional data is also common, e.g., the length of
a bone along an axis, the concentration of a drug in a tissue as a
function of depth, yearly mean temperature as a function of location.

Historically, functional data have been analyzed using multivariate or
time-series methods at discrete measurement points. Analyzing
functional data instead as functions has several advantages:

• Functions, unlike raw data, can be evaluated at any “time”
point. This is important because it allows the use of statistical
methods requiring evenly-spaced measurements and allows
extrapolation for use in predictions or treatment decisions.

• Functional methods (e.g., functional principal components,
functional canonical correlation) apply even when the data
have been gathered at irregular intervals, or at different times
on different subjects, when multivariate analogues of these
methods are either inappropriate or unavailable.

• Derivatives and integrals of functions may provide important
information about the underlying process. For example,
knowledge of the direction and rate of change of a patient’s
temperature may be more important than knowledge of the
patient’s current temperature.

Functional methods can also be used when the parameters to be
estimated are functions. Ramsay and Silverman (1997) use smoothing
spline methods for density estimation, and to estimate the link
function in generalized linear models. Another example is regression
splines for fitting time-dependent hazard regression models
(Kooperberg and Clarkson, 1997).

y t

t
j

3

S+FDA integrates functional data analysis methods into S-PLUS. It
includes a complete commercial implementation of the exploratory
methods of Ramsay and Silverman (1997, 2002), featuring:

• methods for transforming observed data to a smoothed
functional form,

• predicting a functional or nonfunctional variable as a
function of one or more functional or nonfunctional variables,

• finding and rotating the functional ‘‘principal components’’ of
a functional variable,

• finding the canonical correlations between two functional
variables, and

• performing a ‘‘principal differential analysis’’.

S+FDA also incorporates more recent innovations and extensions,
such as allowing the use of functions with arbitrary bases, and
providing methods for functional generalized linear models and
functional cluster analysis.

Installation To install the software:

• Go to the website: http://www.insightful.com/
downloads/libraries/default.asp

• Follow the on-screen Setup instructions; default settings are
recommended.

Object-
oriented
Programming

S+FDA makes use of the object-oriented capabilities of the S-PLUS
language. In object-oriented programming, constructor functions
create structured data “objects” that are assigned a class (which
typically has the same name as the constructor). The object-oriented
paradigm allows users to apply generic functions (such as plot) to
these classed objects, the details of which are handled transparently
through class-specific functions or “methods”. This simplifies
programming by avoiding the need to explicitly invoke different
functions or to have additional function arguments when generic
operations are applied to objects of different structures.

y t

Chapter 1 Introduction

4

 INTRODUCTORY TUTORIAL (HEIGHT DATA)

We illustrate some exploratory functional data analysis methods using
the Berkeley height data (Tuddenham and Snyder, 1954). The
corresponding data frame, heightData, is included in the S+FDA
library. This data contains the heights of 54 female (columns 2 to 55)
and 39 male (columns 56 to 94) children observed at 31 times from
age 1 to age 18. The times of measurement are included as the
variable age (column 1). We first inspect the data graphically by
plotting the height curves as follows:

#Set up the plot and label
> plot(heightData$age, heightData[,2], type="n",
 ylim=range(unlist(heightData[,2:55])),
 xlab="Age (years)", ylab="Height (cm)",
 main="Female Height Data")
#draw the height curves
> matlines(heightData$age,as.matrix(heightData[,2:55]))

The result is shown in Figure 1.1.

Figure 1.1: Female height data.

Female Height Data

Age (years)

H
e

ig
h

t
(c

m
)

5 10 15

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8

0

Introductory Tutorial (Height Data)

5

Although the data appear as smooth curves, only 31 discrete values of
height were measured. The curves are produced by connecting these
discrete points with straight lines.

As a functional data analysis application, we fit a function to each
height curve using linear least squares. The function is represented as
a linear combination of basis functions and coefficients that

vary from one height function to the next:

There are a variety of choices for the basis functions, e.g., B-splines,
Fourier series, and exponential series. Once the basis is chosen, the
coefficients are estimated based on the observed data. In Figure 1.1, a
polygonal basis of connected line segments is used to draw the curves.

 Although the functional representation almost always differs from the
data at the points of observation, these differences are assumed to be
small in the sense that the coefficients capture the information

contained in the discretized curve. In most analyses, the raw data is
ignored once the have been estimated because it is simpler to

work with the functional form. The assumption is that the within-
subject variance in the estimates is small compared to the

between-subject variance.

Warning When the number of observations for estimating the is small to

moderate or when the within-subject variance of the estimates is

large, a mixed-effects model may be preferred so that information
may be combined across subjects.

Selecting the
Basis
Functions

To perform a functional data analysis, we must first choose an
appropriate set of basis functions. In the example above, 16 B-spline
basis functions of order 6 were used. Since the order of a polynomial
basis is the degree plus one, this basis consists of 16 piecewise
polynomial splines of degree 5. By default, the interior knots for the 16

b
j
t

j

f x
j
b
j
t

j 1=

n
b

=

j

j

j

j

j

Chapter 1 Introduction

6

basis functions are equally spaced over the range of the independent
variable (the two exterior knots are placed at the endpoints of the
function domain). Since height is being viewed as a function of age,
the appropriate domain for the basis functions is the age span of the
data. The following forms an object of class “bsplineBasis” for the
height data:

> heightBasis <- bsplineBasis(fDomain
 =range(heightData$age), nbasis=16,norder=6)

The basis functions, displayed in Figure 1.2, are equally spaced over
the domain:

> plot(heightBasis, main="B-spline Basis Functions")

Now that we have defined a basis, we need to calculate the
coefficients for each height curve. Since there are 93 subjects in this
dataset, there should be 93 sets of coefficients (one set for each
function). The S+FDA function fVector takes the basis, the data
matrix, and the independent variable, and returns an object of class
“fVector” containing the linear least-squares estimates of the
coefficients. An “fVector” object has two additional attributes:

Figure 1.2: A set of 16 B-spline basis functions.

B-spline Basis Functions

5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Introductory Tutorial (Height Data)

7

“basis”, which stores the basis used in the fit, and “fNames”, which
stores labeling information for the data. In the code below, we also
specify names for the independent variable (age), the subjects (child),
and the units of the response (height). These names are used in the
plotting and printing functions.

> fHgt <- fVector(object=heightBasis, y=heightData[,2:94],
 fArgs=heightData$age,
 fNames=list(age=heightData$age,
 child=names(heightData)[2:94], height='cm'))

Extract the estimated coefficients, basis functions, and function names
from fHgt using the commands getCoef(fHgt), getBasis(fHgt), and
getNames(fHgt), respectively.

Smoothing Although the basis functions smooth the curves, additional smoothing
may be beneficial. The S-PLUS functions for creating functional data
objects allow specification of a smoothing penalty in the least-squares
objective. The penalty also requires a smoothing parameter, lambda.
You may estimate an optimal lambda by minimizing a generalized
cross validation statistic. See section Generalized Cross Validation on
page 82 for more details.

Smoothing techniques are largely exploratory in nature, and are
discussed in more detail in Chapter 4 of this manual, as well as in
Chapter 4 of Ramsay and Silverman (1997). We will have occasion to
use smoothing techniques for most of the functional data analysis
methods provided in S+FDA.

As an example, penalize the squared second derivative with a penalty
parameter lambda=0.001:

> fHgt2 <- fVector(object=heightBasis,
 y=heightData[, 2:94], fArgs=heightData$age,
 penalty=list(lambda=0.001, linDop=fDop(2)),
 fNames=list(age=heightData$age,
 child=names(heightData)[2:94], height='cm'))

Compare with the original data of Figure 1.1 to see how closely the
smoothed functions fit the data. The S-PLUS function fEval evaluates
an object of class “fVector” at any point in the domain of the basis.
Here, we evaluate the 54 spline curves for the females at the original

Chapter 1 Introduction

8

age values (heightData$age), calculate the difference between
predicted and observed heights, and then plot the curve differences at
the given ages:

> hgtFemale<-fEval(fHgt2[1:54], heightData$age)

> plot(heightData$age, hgtFemale[,1], type="n",
 ylim=range(hgtFemale-as.matrix(heightData[,2:55])),
 xlab="Age (years)", ylab="Height Difference (cm)",
 main="Female Height Differences with Splines")
> matpoints(heightData$age,
 hgtFemale-as.matrix(heightData[, 2:55]), pch="o")

The resulting plot is given in Figure 1.3.

The maximum deviation between the spline approximation and the
true heights is about 1.5 cm compared with height values of 80 cm or
more (see Figure 1.1). These differences are small enough that we
consider the smoothed functions to be acceptable for subsequent
analysis.

Figure 1.3: Difference between predicted and actual female height data when using
cubic B-splines for function representation.

Introductory Tutorial (Height Data)

9

Given a representation of the data as an fVector object, it is easy to
conduct several kinds of exploratory analyses with S+FDA. Here, we
compute the first two derivatives of height with respect to time. We
begin with the first derivative:

> plot(fVector(fHgt2[1:54], linDop = fDop(1)),
 xlab="age (years)",
 ylab="First Derivative of Height (cm/year)",
 main="Female Height, First Derivative")

The result is displayed in Figure 1.4.

Despite the large number of curves in Figure 1.4, some general trends
are apparent: there appears to be an acceleration in growth around
age 4, with a second acceleration after age 10. Further exploratory
analysis, such as plotting the mean of the 54 derivative functions, may
help reveal more structure.

The plot of the second derivatives is produced in a similar fashion:

Figure 1.4: First derivatives of the functional representation of the female height
data. The second derivative was penalized for smoothing, with penalty parameter
0.001.

Chapter 1 Introduction

10

> plot(fVector(fHgt2[1:54], linDop=fDop(2)),
 xlab="Age (years)",
 ylab="Second Derivative of Height (cm/year^2)",
 main="Female Height, Second Derivative")

The result is displayed in Figure 1.5.

The large function values near the endpoints in both derivative plots
are due to lack of information concerning values outside the interval.
Smoothing by penalizing a higher derivative would reduce the
variation at the endpoints, although possibly at the risk of
oversmoothing the function. Such considerations are discussed in
more detail in the chapter on smoothing.

Because we use splines of degree five (order 6) when fitting the
functions, the second derivatives are smooth, cubic splines. Had we fit
the raw data with cubic splines (order 4), the second derivative curves
would have been piecewise linear. In general, if an analysis requires a

Figure 1.5: Second derivatives of the functional representation of the female height
data. The second derivative was penalized for smoothing, with penalty parameter
0.001.

Introductory Tutorial (Height Data)

11

smooth kth derivative, and smoothness in higher derivatives is
unimportant, splines of degree k+3 (order k+4) should be used to fit
the functions so that the kth derivative will be a cubic spline.

The ease with which you can examine the derivatives is a direct
consequence of the functional approach, and one of its main
advantages. By regarding the height measurements for each person as
a smooth curve, you are no longer constrained by discrete
observation times.

Chapter 1 Introduction

12

A LINEAR MODEL FOR THE HEIGHT DATA

Now consider a functional linear model for predicting sex in terms of
the growth rate, the first derivative of the height curve. Since the
dependent variable is binary, this model can also be considered a
discriminant function for predicting sex in terms of the growth rate.

For the height data, fit a functional linear model as follows:

> predLm <- fLM(sex~-1+fVector(fHgt, linDop=fDop(1)),
 data.frame(fHgt=fHgt,
 sex=c(rep(1,54), rep(0,39))))

Here the -1 in the model formula eliminates the intercept, which is
already contained in the B-splines. The coefficients in the resulting
model are functional. The first coefficient estimate may be plotted as
follows:

> plot(predLm$coef[[1]], xlab="age", ylab="beta",
 main="Coefficient Function")

The resulting plot is shown in Figure 1.6.

Figure 1.6: The function of coefficients predicting sex in terms of the height function.

Coefficient Function

age

b
e

ta

5 10 15

-0
.0

5
0

.0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

A Linear Model for the Height Data

13

The effect of the growth rate on the linear model prediction has a
maximum around age 5, is positive again at around age 11, and is
negative during the puberty growth spurt after age 11. The negative
lobe after age 11 predicts maleness, when the boys have their growth
spurts, but the girls are finished theirs.

To see how well the resulting model can discriminate between males
and females, plot the fitted values:

> score <- getCoef(predLm$fitted.values)

> plot(as.factor(c(rep("F",54),rep("M",39))),
 score, main="Linear Model Predicted Values")

The results are displayed in Figure 1.7.

Most females have a score above 0.5, and most males have a score
below 0.5, so that growth rates are an effective means of classifying
the observations.

Figure 1.7: Predicted height scores for each sex

0
.0

0
.5

1
.0

1
.5

Linear Model Predicted Values

s
c
o

re

F M

sex

Chapter 1 Introduction

14

Discussion In this simple example of a functional linear model, we have again
used derivative information, this time to predict the sex of the
individual. Although the results for this example are good, generally
predictions based on functional linear models should be viewed with
caution. When the independent variable is functional, so are the
coefficient estimates, and outliers may significantly influence the
outcome (overfitting). Methods to avoid overfitting, particularly
smoothing methods, are discussed in more detail in the chapter on
functional linear models.

Cluster Analysis of the Height Data

15

CLUSTER ANALYSIS OF THE HEIGHT DATA

One approach to cluster analysis is to search for natural groups of
observations by examining “distances” between observations. For the
height data discussed in the previous section, clustering can be based
on a Euclidean or other distance measure between the observed
heights at the observation times (the ages). Specifying these distances
requires that all individuals be measured at the same times. This
requirement can be met by first converting the observed data to
functional form. Once this is accomplished, a much broader class of
distance measures becomes available. For example, derivatives can
be incorporated into the distance metrics. For the height data, we
might be interested in patterns of growth curves related to the growth
rate (the velocity, i.e., first derivative) or the rate of change in the
growth rate (the acceleration, i.e., second derivative). If, for example,
our main interest is the growth rate, then we could define the distance
between the growth curve functions and for two

individuals as the square root of the integrated squared distance
between the first derivatives of the two height curves:

This distance measurement is based on the rate of change of growth,
as opposed to the final height achieved.

Computing a
Distance
Matrix

For the clustering example, we consider only the height data starting
from age 3. The reason for this is that the data in infancy are
unstable, and the transition to standing height around age 2
introduces a significant perturbation. We recompute the smoothed
fHgt from age 3:

> ageRange <- heightData$age >= 3
> heightBasis <- bsplineBasis(fDomain
 =range(heightData$age[ageRange]),
 nbasis=16, norder=6)
> fHgt3 <- fVector(object=heightBasis,

f1 t f2 t

d f1 t f2 t
df1 t

dt

df2 t

dt
---------------–

2
td

t

=

Chapter 1 Introduction

16

 y=heightData[ageRange,2:94],
 fArgs=heightData$age[ageRange],
 penalty=list(lambda=0.001, linDop=fDop(2)),
 fNames=list(age=heightData$age[ageRange],
 child=names(heightData)[2:94],
 height='cm'))

The choice of lambda=0.001 is determined by a procedure described
in section Generalized Cross Validation on page 82 .

The S+FDA function fDist computes distance matrices from
functional data. The following S-PLUS code computes a distance
matrix whose element contains the square root of the integrated
squared distance between the first derivatives of growth functions ()
and () for the height data:

> distHgt <- sqrt(fDist(fHgt3, linDop=fDop(1)))

Now we can apply any clustering method based on distance matrices.
For example, the S-PLUS function hclust computes clusters for a
variety of hierarchical clustering methods from a distance matrix.
Here we use average-linkage clustering:

> clustHgt <- hclust(distHgt, method="average")

 A plot of the cluster tree label according to sex is obtained as follows:

> sex <- as.factor(c(rep("F", 54), rep("M", 39)))
> plclust(clustHgt, labels=as.character(sex))

i j

i

j

Cluster Analysis of the Height Data

17

The result is displayed in Figure 1.8:

Displaying the
Cluster Mean
Functions

Since we have heights for both males and females, it would seem
natural to group the data by sex. The labeling in Figure 1.8 shows that
this grouping is supported by the cluster analysis, indicating that
males and females generally have different growth patterns. Only one
male appears in the female subtree, and relatively few females appear
in the male subtree. To investigate this further, we apply the S-PLUS
function cutree to obtain the two-group solution:

> g <- 2
> groupsHgt <- cutree(clustHgt, k=g)

The clusters are as defined by a horizontal line at about distance 9.5
in Figure 1.8. The frequency of males and females in each of the
groups is easily obtained using the S-PLUS function crosstabs:

> crosstabs(~groupsHgt+sex)

for which an abbreviated output is shown below:

Figure 1.8: Complete linkage cluster tree labeled according to sex.

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F
FF

F

F

FF F

F

F

F

F

F

F

F

F

F
F

F

F
F

M

M M

M
M

M

M M

M

M

M

M
M

M

M

M

M

M

M

M

M

MM

M

M

M M

M

M

M

M

MM

M

M

M

M
M

M

2
4

6
8

1
0

Chapter 1 Introduction

18

 |F |M |RowTotl|
-------+-------+-------+-------+
1 |49 | 1 |50 |
-------+-------+-------+-------+
2 | 5 |38 |43 |
-------+-------+-------+-------+
ColTotl|54 |39 |93 |
-------+-------+-------+-------+

Group 1 is predominantly female and group 2 predominantly male.
We split the data into a list grouped by cluster, and plot the function
and derivative means for each group:

> splitGroups <- split(fHgt3, groupsHgt)
> par(mfrow=c(2,1))
> plot(1, 20, type="n", xlab="age", ylab="height",
 main="Group Mean Function Heights",
 xlim=c(0, 19), ylim=c(60,200))
> temp <- lapply(1:g, function(i)
 lines(mean(splitGroups[[i]]), lty=i, col=i))
> legend(1, 190, paste(1:g), col=1:g, lty=1:g)
> plot(15, 20, type="n", xlab="age", ylab="height",
 main="Group Mean Derivative Heights",
 xlim=c(0, 19), ylim=c(0,30))
> temp <- lapply(1:g, function(i)
 lines(mean(fVector(splitGroups[[i]],
 linDop=fDop(1))), lty=i))
> legend(15, 29, paste(1:g), col=1:g,
 lty=1:g, background=0)

The results are shown in Figure 1.9. Since derivatives were used to
define the distances, one would expect cluster differences to be
reflected in their means, shown in the lower half of Figure 1.9. The
display shows that the behavior of the clusters differs with respect to
the time and duration of the growth spurt around puberty. There is
also a difference in the groups around age 5 where group 1 (mostly
females) tends to have a minor growth spurt that is not present in
mostly-male group 2.

Between
Cluster
Distances

Hierarchical clustering methods produce a grouping for a given
number of clusters, but do not include a mechanism for selecting the
correct number of clusters. The choice of two groups was based on
informal inspection of the clustering tree (Figure 1.8). Because of the

Cluster Analysis of the Height Data

19

small number of cross-overs from males to females, the two-group
solution (males versus females) would seem satisfactory. However, if
the labeling according to sex were not available, we would be
unlikely to reach this conclusion.

Summary This clustering example illustrates the flexibility of functional data
analysis methods - when the data are thought of as functions, distance
measures based on derivatives are possible, and derivatives can be
used to analyze group structure.

Multidimen-
sional Scaling

Multidimensional scaling is also possible once a distance matrix is
available. We applied the S-PLUS function cmdscale to the distance
matrix (using the command cmdscale(distHgt)) to do a simple
multidimensional scaling analysis. In a plot of the (two dimensional)
solution (not shown), the males and females are well separated.

Figure 1.9: The mean function (top) and its first derivative for the two groups in
Figure 1.8

Group Mean Function Heights

age

h
e

ig
h
t

0 5 10 15

6
0

8
0

1
2

0
1
6

0
2
0

0
1
2

Group Mean Derivative Heights

h
e

ig
h
t

0 5 10 15

0
5

1
0

1
5

2
0

2
5

3
0

1
2

Group Mean Function Heights

age

h
e

ig
h
t

0 5 10 15

6
0

8
0

1
2

0
1
6

0
2
0

0

1
2

Group Mean Derivative Heights

age

h
e

ig
h
t

0 5 10 15

0
5

1
0

1
5

2
0

2
5

3
0

1
2

Chapter 1 Introduction

20

The S+FDA library offers many other methods for functional data
analysis. These are discussed more fully in subsequent chapters, as
well as in Ramsay and Silverman (1997, 2002).

FDA Flow Chart

21

FDA FLOW CHART

The flowchart in Figure 1.10 represents the organization of this
manual.

Each box in the flowchart represents a chapter. Functional data
analysis begins by selecting a basis to represent discrete data in
functional form. The data typically correspond to a sample of
functions, so that registration to remove unimportant differences (e.g.
phase and/or amplitude variations) between samples may be
necessary. Although the basis representation usually provides some
smoothing, it is often desirable to apply one or more smoothing
operations before analysis. This smoothing may be accomplished via
a penalty on a linear differential operator applied to the functions.

Once a functional data object has been created, it can be analyzed
and transformed in ways that are not possible for discrete data. You
may perform various arithmetic operations, including differentiation
and integration. In addition, a variety of analyses from discrete data
analysis have functional analogs: linear and generalized linear

Figure 1.10: FDA flowchart.

Regist rat ion

Principal
Component

Analysis

Cannonical
Correlat ion

Analysis

Linear
Models

Cluster
Analysis

Principal
Different ial

Analysis

Generalized
Linear
Models

Data Bases

Funct ional
Data

Objects

Linear
Different ial

Operat ors /
Smoothing

Funct ional

Operat ions

Chapter 1 Introduction

22

generalized linear modeling, principal component and canonical
correlation analysis, and cluster analysis. Principal differential
analysis, which has no analog for discrete data, is another option for
functional data.

23

What is a Basis? 24
Univariate 24
Bivariate 24

Basis Objects 25
Univariate 25
Bivariate 25

Choosing a Univariate Basis 26
SelectBasis 26
Function Properties 26

Choosing a Bivariate Basis 28

Creating Univariate Bases 29
constantBasis 29
bsplineBasis 30
FourierBasis 31
polynomialBasis 33
polygonalBasis 34
exponentialBasis 35
compositeBasis 36

Creating Bivariate Bases 39
Separable Bases 39
Finite Element Bases 39

Operations on Univariate Bases 41
Derivatives 41
Integrals 42
Inner Products 43

Operations on Bivariate Bases 44
Derivatives 44

BASIS OBJECTS AND
OPERATIONS 2

Chapter 2 Basis Objects and Operations

24

WHAT IS A BASIS?

Univariate In the S+FDA library, univariate functions are represented as linear
combinations of basis functions:

where the are coefficients, and the are known basis functions.

For example, in an exponential basis, for user-

specified parameters .

Bivariate Similarly, bivariate functions may be represented as:

where are the basis functions based on (triangle) finite
elements.

Alternatively, by assuming that the basis functions are separable, the
representation is:

f x jbj x

j 1=

n
b

=

j bj

bj t kjtexp=

kj

f x y jbj x y

j 1=

n
b

=

bj x y

f x y ijb
x
i x b

y
j y

j 1=

n
y

i 1=

n
x

=

Basis Objects

25

BASIS OBJECTS

S+FDA supports both univariate and bivariate basis functions
including:

• univariate bases: B-spline, Fourier series, polynomial,
polygonal, exponential. Moreover, users can define their own
bases, and composite bases of two or more bases are also
possible.

• bivariate bases: finite element, or the product of two
univariate bases.

Univariate In S+FDA, each of the supported univariate bases is a class that
inherits from a larger class called fBasis. Different subclasses of
fBasis are defined by the number of basis functions and the domain.
Once the user specifies the type of basis, the number of basis
functions, and the domain, a basis-specific constructor function
computes values for the coefficients from the data.

Bivariate In S+FDA, the basis may be assumed to be separable, in which case it
is the product of two univariate bases functions, and is of class
fProdBasis.

If the finite element basis is used, the class is fFinElemBasis.

Chapter 2 Basis Objects and Operations

26

CHOOSING A UNIVARIATE BASIS

Selecting basis functions is perhaps the most important step in a
functional data analysis: the basis functions need to have features as
close as possible to the data they estimate so that an accurate
representation of the function can be obtained with only a few basis
terms.

fSelectBasis Basis selection is so important that we provide the user with a
function called fSelectBasis that is specifically designed for this
task. Input to fSelectBasis includes information on whether the
function is periodic, how many events are likely to occur in the basis,
and whether or not derivatives are needed. Although fSelectBasis
function can help in selecting a basis, there is no fully automatic way
to select a good basis and knowledge of the problem and available
data is of critical importance. Note also that fSelectBasis allows
access to only some of the types of bases that are available in the
S+FDA library.

Function
Properties

The number of events or features that occur in a function is a measure
of its complexity. Features or events can be viewed graphically and
include peaks, valleys, zero crossings, plateaus, and linear slopes. In
the S+FDA function fSelectBasis, if there is only one event, it is
assumed that the basis is constant over all values of its domain, with
value equal to the value of the single event (class constantBasis). On
the other hand, if more than one event is specified and derivatives are
required, then a polynomial basis (class bsplineBasis) is used with
the number of basis functions equal to the number of events. Finally,
if derivatives are not needed, then a piecewise linear spline (class
polygonalBasis) can be used.

A function is periodic if its values are repeated in fixed intervals. For
example, a function that varies in a regular pattern from day to day
(e.g., temperature) or over the course of a year (e.g., mean daily
temperature) can be thought of as periodic. A periodic function can
often be expressed as a Fourier series, which is a sum of sine and
cosine functions.

Choosing a Univariate Basis

27

Once a set of basis functions has been selected, coefficients must still
be estimated. Values of the coefficients vary not only with the
underlying data, but also with the fitting procedure. In particular,
smoothing techniques may be needed to mitigate the influence of
outliers and avoid overfitting. Smoothing is discussed in more detail
in Chapter 4.

Chapter 2 Basis Objects and Operations

28

CHOOSING A BIVARIATE BASIS

In bivariate analysis, the user must decide whether to assume that the
basis functions are separable. If so, the product basis function is
appropriate. Otherwise, the finite element basis is preferred. The
relative advantages of each type are:

• Product: saves computation.

• Finite Element: theoretically more accurate, feasible to
differentiate.

See Chapter for a comparison of computation times and accuracy of
approximation...

Creating Univariate Bases

29

CREATING UNIVARIATE BASES

In object-oriented programming, a constructor for an object usually
has the same name as the class assigned to the object. This convention
is followed for objects of class fBasis. For example, the function
FourierBasis constructs an object of class FourierBasis, and the
function bsplineBasis constructs an object of class bsplineBasis.
The following section gives more detail on the basis functions
available in S+FDA. The description is largely non-mathematical, but
is hopefully sufficient to enable you to choose your own basis.

constantBasis The simplest bases are those of class constantBasis. The basis
functions in this class are constant (and equal to one) over their entire
domain. There is only one argument to the constructor, the domain of
the function. The basis may be constructed and plotted using the
following commands:

> basis <- constantBasis(fDomain=c(0,10))
> plot(basis)

The resulting plot is shown in Figure 2.1.

Figure 2.1: Constant basis function over the domain (0,10).

0 2 4 6 8 10

0
.8

0
.9

1
.0

1
.1

1
.2

Chapter 2 Basis Objects and Operations

30

The constantBasis constructor is surprisingly useful. Measurements
on subjects that do not change with time (e.g., sex) can be included in
functional models as functions with a constant basis. Indeed, linear
regression models can be viewed as functional linear models in which
the basis functions are constant.

bsplineBasis Piecewise polynomial splines consist of smoothly joined polynomials,
where each polynomial is defined between two values called knots. In
piecewise polynomials, function values of polynomials defined in
adjacent intervals are constrained to be equal at the knots, and
smoothness is obtained by constraining derivatives to be equal at the
knots as well. In B-splines of order (see, e.g., deBoor, 1978, or
Green and Silverman, 1994), derivatives of order up to are
required to be equal at the knots in adjacent polynomials. The order of
a B-spline is one more than the degree of the piecewise polynomials
used in the fit. Thus, an order 4 B-spline is a piecewise cubic (degree
3) polynomial in which the values of the first and second derivatives,
in addition to the function values, match at the knots. B-splines are
usually preferred over piecewise polynomials because they give a
smoother fit to the data.

The bsplineBasis constructor allows as input the domain of the
function, the order of the spline, the number of B-spline basis
functions, and the location of the knots (although not all of these are
needed since, for example, the number of knots and the order of the
spline determine the number of basis functions). Ramsay and
Silverman (1997) recommend that the order of the spline to be at least
as high as the highest-order derivative of interest plus three (or,
equivalently, that the degree of the spline be equal to the number of
desired derivatives plus two). Using this rule, the highest-order
derivative of interest would be a smooth cubic spline.

Knots should be placed appropriately around features in the function
such as maxima and minima, with fewer knots in locations where the
function shows little variability. The exact knot location is not usually
important, but using too few knots may lead to significant error in the
functional representation, while using too many knots may lead to
overfitting of the data. One common practice is to use a fixed grid of
(many) knots, and then apply smoothing methods (see Chapter 4) to
eliminate problems due to overfitting. An alternative is to use

k

k 1–

Creating Univariate Bases

31

regression methods to find “optimal” knot locations (see, e.g.,
Friedman and Silverman, 1989). Currently only the smoothing
methods are supported in S+FDA.

The follow constructs and plots the functions in a B-spline basis:

> basis <- bsplineBasis(fDomain=c(0,10), norder=6,
 nbasis=20)
> plot(basis)

The resulting plot is given in Figure 2.2.

FourierBasis Periodic functions such as time series are represented by objects of
class FourierBasis. Functions represented in this basis have
expansions of the following form:

Figure 2.2: B-spline basis functions over the domain (0,10).

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

f t 0 1 tsin 2 tcos 3 2 tsin 4 2 tcos+ + + + +=

Chapter 2 Basis Objects and Operations

32

The basis functions are , , ,

, etc. The first basis function is a constant, the second
a sine function, the third a cosine function with the same period, and
so on.

In a Fourier basis there are always an odd number of basis functions,
and the period is taken to be the same as the domain of the function.
The basis functions are estimated using a fast Fourier transform. A
plot of an object of class FourierBasis can be obtained as follows:

> basis <- FourierBasis(fDomain=c(0,10), nbasis=4)
> plot(basis)

The result is shown in Figure 2.3.

Notice that although four basis functions were specified, we obtained
five basis functions. This is because a Fourier basis always has an odd
number of basis functions: the constant basis function plus an equal
number of sin and cos basis functions.

Figure 2.3: Fourier basis functions over the domain (0,10).

bo t 1= b1 t tsin= b2 t tcos=

b3 t 2 tsin=

0 2 4 6 8 10

-0
.4

-0
.2

0
.0

0
.2

0
.4

Creating Univariate Bases

33

polynomialBasis The basis functions in an object of class polynomialBasis are the
terms of a polynomial centered at a fixed scalar , for example:

The number of basis functions is equal to the degree of the
polynomial, plus one. In the polynomial shown, the number of basis
functions is five, one for each term in the polynomial.

A plot of the first five functions in a polynomial basis over the domain
(0,10) and centered at 5 is obtained as follows (see Figure 2.4):

> basis <- polynomialBasis(fDomain=c(0,10),nbasis=5,ctr=5)
> plot(basis)

Note that any smooth function can be represented by a polynomial
basis expansion, since the terms are those of its power series about a
point. Unfortunately, the basis functions in polynomial bases tend to

Figure 2.4: First five polynomial basis functions centered at 5 over domain (0,10).

c

p t 0 1 t c– 2 t c– 2
3 t c– 3

4 t c– 4+ + + +=

0 2 4 6 8 10

0
2

0
0

4
0

0
6

0
0

Chapter 2 Basis Objects and Operations

34

be highly correlated and often exhibit numerical instability. Also, the
fit may be poor away from the center , and adaptation to local
features removed from may not be possible without a very large
number of basis functions. Although polynomial bases play an
important role in classical analysis, they have been superseded by the
more flexible B-spline bases in applications.

polygonalBasis Objects of class polygonalBasis are piecewise linear, equivalent to an
order 2 (linear) B-spline basis. This basis has the advantage of
simplicity, and the disadvantage that the first derivatives are step
functions. The polygonalBasis constructor has a single argument,
fArgs, containing the points at which the function changes (the knots
in a linear B-spline basis). Perhaps the most common way to use a
polygonal basis is to set the knots in fArgs equal to the observation
times of the function so that the unsmoothed function linearly
interpolates the observed data. Smoothing is then used to prevent
overfitting.

A plot of five polygonal basis functions is obtained as follows (see
Figure 2.5):

> basis <- polygonalBasis(fArgs=seq(0, 10, length=5))
> plot(basis)

c

c

Creating Univariate Bases

35

exponentialBasis Objects of class exponentialBasis consist of terms of the form
 where the are user-specified rate constants. As with

polynomial bases away from their center, exponential bases do not
adapt well away from the origin. For this reason, exponential bases
should only be chosen in special circumstances. A plot of five
exponential basis functions is obtained as follows (see Figure 2.6):

> basis <- exponentialBasis(fDomain=c(0, 10),
 ratevec=c(-2, -1, -0.5, -0.25, -0.1))

Figure 2.5: Polygonal basis functions on the domain (0, 10).

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

kitexp ki

Chapter 2 Basis Objects and Operations

36

 > plot(basis)

compositeBasis Objects of class compositeBasis represent bases whose terms are
selected from one or more fundamental bases. A composite basis is a
sum of terms of the form:

each of which is a basis expansion. The following is an example of the
representation of a function in terms of a composite basis consisting of
three different fundamental bases:

Figure 2.6: Exponential basis functions on the domain (0,10).

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

bk x kj
bkj x

j 1=

n
b

=

f x 1jb1j x

j 1=

n1

2jb2j x

j 1=

n2

3jb3j x

j 1=

n3

+ +=

Creating Univariate Bases

37

(there are basis functions of the th type in this composite basis).

The advantage of a composite basis is the ability to adapt to more
complex functions with fewer basis functions. As a simple example,
consider a time series with a baseline and a linear trend in time. Such
a function can be represented by the composite of a polynomial basis
with two terms (a constant plus a linear term) to account for the linear
trend, and a Fourier basis to represent the detrended time series.

In a more complex example of a composite basis, we use a constant
basis to account for a baseline, an exponential basis to account for
exponential decay, and a Fourier basis to account for periodic
behavior. Such a basis can be constructed as follows:

> basis1 <- constantBasis(fDomain=c(0, 10))
> basis2 <- exponentialBasis(fDomain=c(0, 10), ratevec=-1)
> basis3 <- FourierBasis(fDomain=c(0, 10))
> basis <- compositeBasis(basis1, basis2, basis3)
> plot(basis)

The resulting plot is shown in Figure 2.7.

Figure 2.7: A composite basis consisting of a constant, an exponential decay, and a
Fourier series over the domain (0, 10).

nk k

0 2 4 6 8 10

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Chapter 2 Basis Objects and Operations

38

Although we explicitly included a constant basis for a baseline (mean)
term, in fact a constant basis functions is already included in the
Fourier basis.

Creating Bivariate Bases

39

CREATING BIVARIATE BASES

Separable
Bases

An S-PLUS constructor function fProdBasis creates product basis
functions for bivariate functional data. Simply supply the two
univariate bases that form the product.

For example, to create a product basis consisting of a Fourier and a B-
spline univariate basis:

> basis1 <- FourierBasis(fDomain=c(0,365), nbasis=11)
> basis2 <- bsplineBasis(fDomain=c(0,52), nbasis=20)
> basisProd <- fProdBasis(basis1, basis2)

The result is an object of class fProdBasis, which contains as two
components the univariate bases:

> names(basisProd)
[1] "basis1" "basis2"

Finite Element
Bases

An S-PLUS constructor function fFinElemBasis creates finite element
basis functions for bivariate functional data.

> args(fFinElemBasis)

function(xDomain, yDomain, params)

For example:

> basisFinElem <- fFinElemBasis(c(0, 10), c(0, 10),
 c(10, 10))
> basisFinElem

 Linear Basis for 2D Finite Element Method:

 Domain x: 0 10
 y: 0 10

 Number of Basis: 121
 Number of Element: 200

The result is an object of class fFinElemBasis which contains the
following components:

> names(basisFinElem)

Chapter 2 Basis Objects and Operations

40

[1] "fDomain" "Vnode" "Velem" "basis.coe"

The plot method for the object of class fFinElemBasis is also
available for graphic view of the i-th basis function, as shown in
Figure 2.8:

> plot(basisFinElem)

By default, the method picks one basis function in the middle of the
domain. In this example, it chooses the 60th basis function.

Figure 2.8: The 60th basis function of basis2D, an object of class
fFinElement.

0

2

4

6

8

10

X

 0

2

4

6

8

10

Y

00
.20

.4
0.

60
.8

1
Z

the 60th basis function

Operations on Univariate Bases

41

OPERATIONS ON UNIVARIATE BASES

Derivatives The function fEval produces values of basis functions and their
derivatives (when applicable).

Applied to an object that inherits from class fBasis, the required
input to fEval includes the basis object, the points at which the basis
is to be evaluated, and the desired order of the derivative. The output
is the evaluated derivative (or function value) for all basis functions at
the specified points.

As an example, evaluate and plot the first derivatives of the
exponential basis (displayed in Figure 2.6) over a sequence of
numbers of length 100 over the domain (0, 10) using code:

> basis <- exponentialBasis(fDomain=c(0,10),
 ratevec=c(-2, -1, -0.5, -0.25, -0.1))
> dBasis <- fEval(basis, fArg=seq(0, 10, length=100),
 linDop=fDop(1))
> matplot(seq(0, 10, length=100), dBasis, type="l")

Chapter 2 Basis Objects and Operations

42

The resulting plot is given in Figure 2.9.

Integrals It is also possible to integrate the basis functions. The function fInt
integrates all of the functions in a basis over a specified range. For
example, the exponential basis in Figure 2.6 can be integrated as
follows:

> basis <- exponentialBasis(fDomain=c(0,10),
 ratevec=c(-2, -1, -0.5, -0.25, -0.1))
> fInt(basis, limits=c(0, 10))

This results in the following vector of integral values:

1.000 0.999 0.999 0.999 0.998 0.994 0.981 0.950 0.864 0.632

It is often less computationally expensive to integrate the basis
functions over a specified range, and then use these integrals to
evaluate the integrals of the functions of interest.

Figure 2.9: First derivatives of Figure 2.6.

0 2 4 6 8 10
-2

.0

0 2 4 6 8 10

-2
.0

-1
.5

-1
.0

-0
.5

0
.0

Operations on Univariate Bases

43

Inner Products Inner products of basis functions are required in many of the analyses
provided in S+FDA. These inner products are integrals of the form:

for any two basis functions and , where the two bases are
assumed to have the same domain and the integration is over the
entire domain. For example, inner products of the basis functions
within a particular basis are computed using the function fInProd as
follows:

> fInProd(basis, basis)

The result is a square matrix containing the inner products with
dimension equal to the number of functions in basis. This inner
product matrix is used, for example, in functional regression models.
Inner products of the derivatives of basis functions are also possible.

b1 s b2 s sd

b1 s b2 s

Chapter 2 Basis Objects and Operations

44

OPERATIONS ON BIVARIATE BASES

Derivatives Evaluating bivariate basis functions of class fFinElemBasis and their
derivatives (when applicable) are the main operations of interest.
Integrals of functions are not calculated as the linear combination of
the integrals of basis functions, therefore S+FDA does not implement
integrals of basis functions.

Evaluate the basis functions at specified arguments by

> fEval(basis, fArg1, fArg2=fArg1, xDeriv=0, yDeriv=0)

where arguments xDeriv and yDeriv can be specified by 1 for the
first order derivative on and . It returns a matrix of basis function

values with and .

x y

s xj yj s 1 nBasis= j 1 nPoint=

45

45
Univariate Functional Data Objects 46
Bivariate Functional Data 46

Univariate Functional Data Objects (Pinch Force Example)

48
Constructing Univariate Functional Data Objects 48
Operations on Univariate Functional Data Objects 51
Vectors of Functional Data Objects 55
List of Functional Data Objects 59
Operations on fList Objects 60

Bivariate Functional Data Objects (Example) 61
Constructing Bivariate Functional Data Objects 61
Operations on Bivariate Functional Data Objects 65

FUNCTIONAL DATA OBJECTS
AND OPERATIONS 3

Chapter 3 Functional Data Objects and Operations

46

S+FDA supports functional data objects of either one or two
arguments, as described below.

Univariate
Functional
Data Objects

Univariate functional data objects are represented by objects of class
fFunction in S+FDA. Their structure is defined in terms of a basis
expansion:

for known or estimated coefficients and basis functions , as
discussed in Chapter 2.

Bivariate
Functional
Data

Functional data objects with two arguments are represented in
S+FDA in one of two ways, depending on whether the basis
expansion is separable. The class of the object is either:

• fProdFunction (for separable basis expansions), or

• fFinElemFunction (for finite element basis expansions).

Separable basis expansions for bivariate functions have the form

where the are known or estimated coefficients, and and

 are basis functions from the and bases, respectively. With
this form, each bivariate function can be written as an inner product
of two univariate basis functions. These occur most often in variances
computations for vectors of function objects.

More generally, bivariate functions can be expanded as:

f x jbj x

j 1=

n

=

j bj x

f x y ijbi
x
x bj

y
y

j 1=

n
y

i 1=

n
x

=

ij bi
x
x

bj
y
y x y

f x y j j x y

j 1=

n
b

=

47

where the are estimated coefficients, are finite element
basis functions. Currently, this expansion is implemented only for
linear combinations of the basis functions, not higher order powers of
the basis functions.

ij j x y

Chapter 3 Functional Data Objects and Operations

48

UNIVARIATE FUNCTIONAL DATA OBJECTS (PINCH FORCE
EXAMPLE)

In this section we first describe the various constructors associated
with univariate functional data objects in S+FDA, and then discuss
some of the most useful operations associated with these objects.
Smoothing operations are discussed in the next Chapter.

Constructing
Univariate
Functional
Data Objects

An object of class fFunction represents a single univariate function. It
may be constructed using a class fFunction constructor in one of
three ways:

• from data -- i.e., a vector of known function values, the
arguments at which the functions are evaluated and a basis, or

• from known basis coefficients and the corresponding basis, or

• from an fFunction object or an fVector object with length of
1.

These methods are now discussed in more detail.

Constructing
from data and a
basis

You may construct an S+FDA object of class fFunction from an
object of class fBasis, together with a vector of known function
values (observations) and the vector of points at which the function is
evaluated.

As an example, we consider a dataset measuring the pinch force of an
individual over time (see Ramsay and Silverman, 1997). Individuals
pinch a measuring device for about one third of a second, and the
force of the pinch is measured. Twenty pinches, each with 151
measurements over time, were observed.

The S+FDA data set pinchmat contains this data, with the columns
indexing the replicates and the rows indexing the observed pinch
force at each of the 151 observation times. The vector pinchtime
contains the 151 times, scaled as a sequence of integers from 0 to 150.

You may create an object of class fFunction using the first column in
pinchmat as follows:

#Create a basis
> basis <- bsplineBasis(fDomain=range(pinchtime))
#Create an fFunction object

Univariate Functional Data Objects (Pinch Force Example)

49

> onePinch <- fFunction(object=basis, y=pinchmat[,1],
 fArgs=pinchtime, fNames=list(time="ms",
 pinch="1", force="Newtons (Normalized)"))

In this example we first created the basis, and then used the
fFunction constructor to create the functional data object, onePinch.
The coefficients in onePinch are obtained as the least-squares fit or
projection of the function values (argument y) onto the space of the
basis functions. Notice that the function domain specified by the basis
must span the range of argument values. The argument fNames
associates character strings with functional data objects for labeling
purposes, for example, to give a name to the function or variable, to
name the units in the function argument, to name the values at which
the function is observed, or to name the units for the function values.

S+FDA includes a plot method for functional data objects. Here we
plot the onePinch object, and also include the observations in the plot
by a subsequent call to points (see Figure 3.1):

#Plot the fFunction object
> plot(onePinch, main="Pinch #1")

Chapter 3 Functional Data Objects and Operations

50

> points(pinchtime, pinchmat[, 1])

Notice that the function names from argument fNames in the
constructor are used for labeling the plot.

Constructing
from coefficients
and a basis

You may construct an S+FDA object of class fFunction from an
object of class fBasis, together with a vector of coefficients . This
method of construction is primarily used internally, but users may
also have occasion to use it, for example, in simulation. Here we
simulate a functional data object with noise added to the coefficients
of onePinch:

> coef <- getCoef(onePinch)
> coef <- coef + rnorm(length(coef)) # add noise
> onePinch2 <- fFunction(coef, basis,
 fNames=list(time="ms", pinch="1",
 force="Newtons(Normalized)"))

The function getCoef is used to access the coefficients in onePinch.

Figure 3.1: The onePinch functional data object with the observations
superimposed.

Pinch #1

time (ms)

fo
rc

e
 (

N
e

w
to

n
s
)

0 50 100 150

0
2

4
6

8

j

Univariate Functional Data Objects (Pinch Force Example)

51

Constructing
from fFunction
object or fVector
object with
length of 1

It is also possible to create a smoother fFunction object from an
existing fFunction object. See Chapter 4.

For an object of class fVector with length of 1, i.e., only one function
in the vector, its class can be changed to fFunction. See example in
later of this section.

Operations on
Univariate
Functional
Data Objects

Once created, you may apply various operations to functional data
objects. Smoothing is fundamental in functional data analysis, and is
treated separately in Chapter 4. Below we discuss other important
operations: evaluation, derivatives, inner products, and integrals for
function objects.

Evaluation Use the function fEval to evaluate a function, its derivatives with a
linear differential operator applied to the function specified by the
argument linDop, at arbitrary argument values within the domain of
the function. Here, we evaluate the onePinch object at some arbitrary
times.

> newtimes <- seq(1.5, 140.5, length=140)
> onePinchEval <- fEval(onePinch, fArg=newtimes)

Derivatives Obtain derivatives of functional data objects using the constructing
function in S+FDA. The following examples show how to compute
and plot the first and second derivatives of the pinch force object,
onePinch:

> onePinchEval1 <- fEval(onePinch, fArg=newtimes,
 linDop=fDop(1))
> onePinchEval2 <- fEval(onePinch, fArg=newtimes,
 linDop=fDop(2))
> par(mfrow=c(2,1))
> plot(fFunction(onePinch, linDop=fDop(1)),
 main="First Derivative")
> plot(fFunction(onePinch, linDop=fDop(2)),
 main="Second Derivative")

Chapter 3 Functional Data Objects and Operations

52

The resulting plot is given in Figure 3.2.

The oscillations in the second derivative indicate that additional
smoothing may be desirable.

Linear
Differential
Operator

We can also apply a linear differential operator to an fFunction
object by specifying the argument linDop in the constructing
function.

Here is an example:

> x <- seq(0,365)
> y <- sin(2*pi*x/365) + cos(4*pi*x/265)
> basis1 <- FourierBasis(c(0,365), nbasis=8)
> fun1 <- fFunction(basis1, y, x)
> fLinOp <- fVector(matrix(c(2,1),1,2),
 constantBasis(c(0,365)))
> ex2 <- fFunction(fun1, linDop=fLinDopN(fLinOp))

Figure 3.2: The first two derivatives of the onePinch functional data object.

First Derivative

time

fo
rc

e

0 50 100 150

-0
.4

0
.0

0
.2

0
.4

0
.6

Second Derivative

time

fo
rc

e

0 50 100 150

-0
.0

6
-0

.0
2

0
.0

2
0
.0

6

Univariate Functional Data Objects (Pinch Force Example)

53

where fLinOp is an object of class fVector having two fFunction
objects (see its definition in the next of this section) as the nonlinear
coefficients of the 0th and 1st derivatives in the linear differential
operator, and fLinDopN is the constructing function to create an object
of class fLinDopN for normalized linear differential operator. See
Chapter 4, or the help files of fFunction and fLinDopN, for more
detailed information about the definition of the linear differential
operator.

Integration It is also possible to integrate functions (or linear differential operators
applied to a function) over an interval in the domain of the function
using the function fInt. Noting that the integral of the function
computed over any time interval gives the total exertion over that
interval, we compute the total exertion over the first 50 standardized
time units, and compare it with the total exertion for the curve:

> fInt(onePinch, limits=c(0,50))/fInt(onePinch)

The result indicates that 76.6 percent of the total exertion occurred in
the first 50 standardized time units.

A common use for integrals of positive functions is to standardize the
function so that its integral has the value 1, for example:

> onePinchStd <- onePinch/fInt(onePinch)

S+FDA provides another function, fIntExp, that integrates the
exponential of a function. It is useful for monotonic functional
smoothing since the resulting integral is monotonic (see the chapter
on smoothing), as well as for density estimation.

Inner Products Inner products can be computed in S+FDA via the function fInProd.
The inner product of two functional data objects defined on the same
domain is the integral of their product over that domain. For
example, we can compute the inner product of the onePinch object
and its the first derivative as follows:

> fInProd(onePinch, fFunction(onePinch, linDop=fDop(1))))

or, equivalently,

> fInProd(onePinch, onePinch, linDop2=fDop(1))

Inner products can also be used to standardize the integrals of the
squared function values, for example:

> onePinchStd2 <- onePinch/sqrt(fInProd(onePinch))

Chapter 3 Functional Data Objects and Operations

54

Centering The mean of a functional data object can be obtained by dividing the
integral of the function by the length of its domain. Centering is
possible by subtracting the mean from the function. The integral of
the centered function vanishes. The resulting function can be further
scaled by dividing by the integral, giving unit area under the absolute
curve. These operations are accomplished as follows:

> onePinchInt <- fInt(onePinch)
> onePinchCtr <- (onePinch - onePinchInt/150)/onePinchInt

(150 is the length of the domain of the function).

Arithmetic
Operators

It is also possible to apply the operators “+”, “-”, “*”, “/”, “sqrt”, “^”
to the functions (the exponentiation operator, “^” is restricted to
constant values). As an example, we construct a polygonal basis for
pinch force data:

> basis <- polygonalBasis(pinchtime)
> onePinchPolyg <- fFunction(basis, y=pinchmat[,1],
 fArgs=pinchtime)

and plot of the difference between onePinchPolyg and onePinch
(with B-spline basis):

> par(mfrow=c(1,1))
> plot(onePinch - onePinchPolyg)

Univariate Functional Data Objects (Pinch Force Example)

55

The result is shown in Figure 3.3.

The differences between the two functions are small relative to the
observed function values, which have a maximum magnitude near 8.

Vectors of
Functional
Data Objects

An object of class fFunction is the functional equivalent of a scalar.
Vectors of functional data objects, each having the same basis, are
represented by objects of class fVector. We will often refer to fVector
objects as variables, since these are usually (but not always) observed
as a quantity measured over a random sample, such as pinch force
measured over a random sample of subjects. In addition to vectorized
counterparts of operations on objects of class fFunction, it is also
possible to form mean and variance functions for vectors of functional
data objects.

Similar to fFunction objects, the operations of evaluation,
derivatives, integrals, linear differential operator and inner products
can be applied to an fVector objects.

Figure 3.3: Difference between pinch force function objects created with a B-spline
and a polygonal basis.

Function

time

fo
rc

e

0 50 100 150

-0
.0

1
0

.0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

Chapter 3 Functional Data Objects and Operations

56

Creating vectors
of functional
data objects

Construction of objects of class fVector is similar to that of objects of
class fFunction. Instead of a vector of function values, the required
input is a matrix of function values, in which each column
corresponds to a separate function. Observations in a column that are
missing are omitted in computations. This has no effect on the
computations in other columns. Here we create an fVector using a
polygonal basis from all twenty columns in the pinch force data
described above:

> par(mfrow=c(2,1))
> basis <- polygonalBasis(pinchtime)
> pinchVecPolyg <- fVector(basis, y=pinchmat,
 fArgs=pinchtime,
 fNames=list(time="ms",
 pinchForce=paste(1:20),
 force="Newtons (Normalized)"))
> plot(pinchVecPolyg, main="Vector of Functions")
> basis <- bsplineBasis(range(pinchtime))
> pinchVecBspln <- fVector(basis, y=pinchmat,
 fArgs=pinchtime,
 fNames=list(time="ms",
 pinchForce=paste(1:20),
 force="Newtons (Normalized)"))
> plot(pinchVecBspln, main="Vector of Functions")

The result is displayed in Figure 3.4.

For an object of fVector with length of 1, it can be changed to an
object of class fFunction. For example:

> pinchVecPolyg1 <- fFunction(pinchVecPolyg[1])

turns pinchVecPolyg1 to be an object of class fFunction.

Indexing Objects of class fVector can be indexed in the same manner as a
numeric vector. An fVector object is returned even when that
fVector would be of length 1.

Sum of a vector
of functions

The sum of an object of class fVector is an object of class fFunction
representing the (point wise) sum function. For example:

> sumOnePinch <- sum(pinchVecPolyg)

Univariate Functional Data Objects (Pinch Force Example)

57

Mean of a vector
of functions

The mean of an object of class fVector is an object of class fFunction
representing the (point wise) mean function. As an example, we
compute and plot the vector of functions created from the pinch force
data with a polygonal basis:

> plot(mean(pinchVecPolyg))

The result appears in the top half of Figure 3.5. Standardization of
vector of functions to a point wise mean of zero is accomplished using
intuitive operations:

> cntrPinchVec <- pinchVecPolyg - mean(pinchVecPolyg)
> plot(cntrPinchVec, main="Deviations from the mean”)

The result is given in the bottom half of Figure 3.5.

Variances Pointwise variances (variances at each point in the domain) can also
be computed in S+FDA via the function fVar. As an example, we
compute and plot pointwise variances for the vectors of functions
created from the pinch force data with the polygonal basis:

> varPinchVec <- fVar(pinchVecPolyg, bivariate=F)
> plot(varPinchVec, main="Pointwise Variances")

Figure 3.4: Vectors of pinch force functions created with different bases.

Vector of Functions - Polygonal Basis

time

fo
rc

e

0 50 100 150

0
2

4
6

8
1
0

Vector of Functions - B-Spline Basis

time

fo
rc

e

0 50 100 150

0
2

4
6

8
1
0

Chapter 3 Functional Data Objects and Operations

58

The result is displayed in the top part of Figure 3.6:.

.

It is also possible to compute covariances between two vectors of
values that are the results of evaluating an fVector object at two
argument values. For example, let

> x1 <- fEval(pinchVecPolyg, 50)
> x2 <- fEval(pinchVecPolyg, 55)

Then the covariance between the functions at argument values 50
and 55 can be computed as follows:

> var(t(x1),t(x2))

This value turns out to be 0.827.

Generalizing this to all values in the domain of the function, a
bivariate variance-covariance function can be defined by considering
the covariance at any two arguments. The following example
computes and plots this function for the polygonal basis
representation of the pinch force data:

Figure 3.5: Mean of the pinch force functions (top half). Pinch force functions
standardized to a point wise mean of zero (bottom half).

mean(pinchVec)

time

fo
rc

e

0 50 100 150

0
2

4
6

8

Deviations from the Mean

time

fo
rc

e

0 50 100 150

-2
-1

0
1

Univariate Functional Data Objects (Pinch Force Example)

59

> covPinchVec <- fVar(pinchVecPolyg)
> plot(covPinchVec)

The plot is given in the bottom half of Figure 3.6:

The following code can be used to verify that the covariance has the
same value (0.827) at 50, 55:

> fEval(covPinchVec, 50, 55)

List of
Functional
Data Objects

A list of functional data objects with possible different basis functions
are represented by objects of class fList. The components of the
fList object are objects of class fFunction.

Creating list of
functional data
objects

We can construct an fList object from objects of class fFunction,
fVector, list, or fList.

Here is an example of creating an fList object from two fFunction
objects:

> fBasis1 <- FourierBasis(c(0,365), nbasis=101)

Figure 3.6: The variance function (top), and the estimated variance-covariance
function (bottom) for the pinch force functional data object.

Pointwise Variances

time

v
a
r.

fo

rc
e

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

0
20

40
60

80
100

120
140

X

0

20

40

60

80

100

120

140

Y

0
0

.5
1

Z

Chapter 3 Functional Data Objects and Operations

60

> fBasis2 <- bsplineBasis(c(0, 365), nbasis=101)
> temp1 <- fFunction(fBasis1, tempav[,1], 1:365)
> prec1 <- fFunction(fBasis2, precav[,1], 1:365)
> fL1 <- fList(temp1, prec1)

Or, create an fList object from an fVector object:

> temp23 <- fVector(fBasis1, tempav[,2:3], 1:365)
> fL2 <- fList(temp23)

Or, create an fList object from a simple list of fFunction objects:

> fL3 <- fList(list(temp1, prec1))

Or, create an fList object from fList objects:

> fL4 <- fList(fL1, fL2)

Operations on
fList Objects

Since any fList object is a list of fFunction objects, perform any
operation by doing an lapply.

For example, to take the square root of fL4:
> lapply(fL4, sqrt)

Bivariate Functional Data Objects (Example)

61

BIVARIATE FUNCTIONAL DATA OBJECTS (EXAMPLE)

In this section we first describe the various constructors associated
with bivariate functional data objects in S+FDA, and then discuss
some of the most useful operations associated with these objects.

Constructing
Bivariate
Functional
Data Objects

There are two possible bivariate functional data objects:
fProdFunction and fFinElemFunction. Construct these using the
corresponding constructors.

Construct a class fProdFunction object using the constructor in one of
two ways:

• from data -- i.e., a vector of known function values, the matrix
of arguments at which the functions are evaluated -- and a
basis,

• from known bases coefficients and the corresponding bases.

from known basis coefficients and the two univariate bases. Construct
fFinElemFunction objects from data -- i.e., a vector of known
function values, the matrix of arguments at which the functions are
evaluated -- and a basis, or from an fFinElemFunction existing
object.

There are also functions for fitting linear models which return an
object, one of whose components is a bivariate functional data object.
This is discussed in greater detail in Chapter 6.

The constructor methods are now discussed in more detail.

Constructing
from data and a
basis

You may construct a bivariate function data object of either class
fProdFunction or fFinElemFunction. We discuss each of these in
turn.

As an example, we again consider the pinchmat dataset (see section
Constructing Univariate Functional Data Objects on page 48). This
time we model the variance-covariance surface.

First calculate the correlation of the data set pinchmat evaluated at
the grid of points, where and both range over 1:20.

> corPinch <- cor(pinchmat)

x y x y

Chapter 3 Functional Data Objects and Operations

62

Construct a fProdFunction object by inputting an object of class
fProdBasis, together with a matrix of known function values
(observations) and two vectors for the arguments.

The first step is to create the fProdFunction object by first creating
each of the component univariate bases. In this example, construct
B-Spline and Fourier bases:

> fBasis1 <- bsplineBasis(c(1,20), nbasis=15, norder=2)
> fBasis2 <- FourierBasis(c(1,20), nbasis=15)

Next, construct the fProdFunction object

> fcorPinch1 <- fProdFunction(fProdBasis(fBasis1, fBasis2),
 fVar=corPinch,
 fArg1=1:20, fArg2=1:20,
 bFNames=namesfcorPinch)

where

> namesfcorPinch <- list(args=list(arg1="Pinch",
 arg2="Pinch"),
 vars="cor(Pinch)")

which gives names used in plot and print methods.

Alternatively, construct a fFinElemFunction object by inputting an
object of class fFinElemBasis, together with a matrix of known
function values and the two vectors of points at which the function are
evaluated.

Create the finite element basis functions:

> fBasisFE <- fFinElemBasis(xDomain=c(1,20),
 yDomain=c(1,20), params=c(19,19))

Given the basis functions fBasisFE, the data corPinch and 1:20 for
and , create an object of class fFinElemFunction by

> fcorPinchFE <- fFinElemFunction(fBasisFE,
 fVar=corPinch,
 fArg1=1:20, fArg2=1:20,
 bFNames=namesfcorPinch)

First, generate the graph of the original data set

> par(mfrow=c(1,1))
> persp(1:20, 1:20, corPinch)

x

y

Bivariate Functional Data Objects (Example)

63

The plot of corPinch is shown in Figure 3.7:

Next, compare the functional data objects created using the product
basis and the finite element basis:

> par(mfrow=c(2,1))
> plot(fcorPinchProd)
> plot(fcorPinchFE)

Figure 3.7: Plot of the corPinch data.

5

10

15

20

X5

10

15

20

Y

0
.9

30
.9

40
.9

50
.9

60
.9

7
0

.9
8

0
.9

9
1

Z

Chapter 3 Functional Data Objects and Operations

64

The results are given in Figure 3.8:

Note that it is also possible to have arbitrary evaluation points in
constructing a fFinElemFunction object. In other words, the y values
need not correspond to the same x’s.

In this case, the arguments to the constructor function are a vector of
known function values (observations) and a matrix of points at which
the function is evaluated. See the help file for the fFinElemFunction
constructor function for more details.

Figure 3.8: Plots of the functional data objects for the corPinch data The top
plot shows the FDA object constructed from a product basis, and the bottom
shows that constructed from a finite element basis

Bivariate Functional Data Objects (Example)

65

Constructing
from coefficients
and two
univariate bases

You may construct an S+FDA object of class fProdFunction from two
univariate objects of class fBasis, together with a matrix of
coefficients . This method of construction is primarily used
internally, but users may also have occasion to use it, for example, in
simulation. Here we simulate a functional data object with noise
added to the coefficients of fcorPinchProd:

> coef <- getCoef(fcorPinchProd)
> noise <- matrix(rnorm(nrow(coef)*ncol(coef)),
 nrow=nrow(coef))
> coef <- coef + noise %*% t(noise)
> fcorPinchProd2 <- fProdFunction(coef, fBasis1, fBasis2)

The function getCoef is used to access the coefficients in
fcorPinchProd.

Constructing
from existing
object

It is also possible to create a smoother fProdFunction or
fFinElemFunction object from an existing object with the same class.
See Chapter 4.

Operations on
Bivariate
Functional
Data Objects

Once created, you may apply various operations to bivariate
functional data objects: evaluate functions, derivatives, and integrals.

Evaluation Use the function fEval to evaluate a function, or its derivatives at
argument values within the domain of the function.

Suppose you want to evaluate the functional data objects at the
following data points:

> x1 <- y1 <- seq(1.01, 19.9, length=20)

For easy comparison, create a two column matrix of the function
evaluations. The first column contains the result from the product
basis, the second for the finite element basis.

evaluate
> fcorPinch.x1y1 <- cbind(as.vector(fEval(fcorPinchProd,
 x1, y1)), fEval(fcorPinchFE, x1, y1))

The following code plots the results shown in Figure 3.9:

> par(mfrow=c(2,1))

ij

Chapter 3 Functional Data Objects and Operations

66

> zlim <- range(fcorPinch.x1y1)
> persp(x1, y1, matrix(fcorPinch.x1y1[, 1],
 ncol=length(x1)), zlim=zlim)
> persp(x1, y1, matrix(fcorPinch.x1y1[, 2],
 ncol=length(x1)), zlim=zlim)

Derivatives Obtain derivatives of functional data objects using the function fEval
in S+FDA. The following example shows how to compute and plot
the partial derivatives of the covariance matrix of pinchMat.

For easy comparison, create a two column matrix of the derivatives.
The first column contains the result from the product basis, the
second for the finite element basis.

> dxfcorPinch <- cbind(as.vector(fEval(fcorPinchProd, x1,
 y1, linDop1=fDop(1))),
 fEval(fcorPinchFE, x1, y1, xDeriv=1))

Figure 3.9: Plots comparing function evaluations. The top plot is for the product
basis, and the bottom is for the finite element basis.

5

10

15

X5

10

15

Y

0
.9

4
0

.9
6

0
.9

8
1

Z

5

10

15

X5

10

15

Y

0
.9

4
0

.9
6

0
.9

8
1

Z

Bivariate Functional Data Objects (Example)

67

> dyfcorPinch <- cbind(as.vector(fEval(fcorPinchProd, x1,
 y1, linDop2=fDop(1))),
 fEval(fcorPinchFE, x1, y1, yDeriv=1))

The following code plots the results shown in Figure 3.10: for the
derivative with respect to the first argument.

> zlim <- range(dxfcorPinch)
> persp(x1, y1, matrix(dxfcorPinch[,1], ncol=length(x1)),
 zlim=zlim)

> persp(x1, y1, matrix(dxfcorPinch[, 2], ncol=length(x1)),
 zlim=zlim)

Figure 3.10: Plots comparing first derivatives with respect to the first argument. The
top plot is for the product basis, and the bottom is for the finite element basis.

5

10

15

X5

10

15

Y

-0
.0

4-0
.0

2
0

0
.0

2
0
.0

4
0
.0

6
Z

5

10

15

X
5

10

15

Y

-0
.0

4-0
.0

2
0

0
.0

20
.0

4
0
.0

6
Z

Chapter 3 Functional Data Objects and Operations

68

Integration It is also possible to integrate functions over a region in the domain of
the function using fInt. This is only possible for functions created
from a finite element basis.

Note that the lower and upper limits for the second argument may be
a function of the first argument.

As a simple example, integrate the functional data object of the
corPinch data, created from the finite element basis. By default the
region of integration is the entire domain.

> int.corPinch <- fInt(fcorPinchFE, eps=0.1)

In the next example, we integrate a plane, and integrate over limits
which are linear functions of the first argument. Specifically, we
integrate:

To integrate over the desired limits, first calculate quantities that
define the domain. Integrate from 0 to 10, and from limits that
are linear functions of .

> xUpperLimit <- 10
> slope <- 0.3
> intercept <- 3
> n <- 11 # number of points for x domain
> x <- seq(0, xUpperLimit, len=n) # x domain
> yLowerLimit <- slope*x

f x y x ydd

y1 x

y2 x

x1

x2

x y+ x ydd

0.3x

0.3x 3+

0

10

x y

x

Bivariate Functional Data Objects (Example)

69

> yUpperLimit <- slope*x + intercept

Next create functional data objects for the limits of integration,

and

> fBasis1 <- bsplineBasis(c(0, xUpperLimit), nbasis=n,
 norder=2)
> fyLower <- fFunction(fBasis1, yLowerLimit, x)
> fyUpper <- fFunction(fBasis1, yUpperLimit, x)

Then create a functional data object for the integrand,

> z <- matrix(nrow=n, ncol=n)
> for(i in x) z[i+1,] <- i+x
> fBasisFE <- fFinElemBasis(c(0,xUpperLimit),
 c(0,xUpperLimit), params=c(4,4))
> fun <- fFinElemFunction(fBasisFE, fVal=z, fArg1=x)

Finally, integrate:

> int.fun <- fInt(fun, lowArg1=0, upArg1=xUpperLimit,
 lowArg2=fyLower, upArg2=fyUpper)

The exact answer can be calculated as:

> exactAnswer <-0.5*intercept*xUpperLimit*(xUpperLimit
 + slope*xUpperLimit + intercept)
> c(int.fun, exactAnswer)
[1] 240 240

which agrees.

y1 x

y2 x

71

Linear Differential Operators 72

Smoothing via a Roughness Penalty 73
Smoothing when Constructing Functional Data Objects 73
Smoothing Functional Data Objects 74
When to Smooth? 75
Pinch Force Data Example for Univariate Functional Data 76
Correlation of Pinch Force Data Example for Bivariate

Functional Data 76

Specifying the penalty function 79
Height Data Example 80
Effect of Penalty Parameter 82
Penalizing Linear Combinations of Derivatives 82
Generalized Cross Validation 82
Trade-off Between Smoothing and Prediction 85

LINEAR DIFFERENTIAL
OPERATORS AND
SMOOTHING 4

Chapter 4 Linear Differential Operators and Smoothing

72

LINEAR DIFFERENTIAL OPERATORS

Linear differential operators are used extensively throughout the
S+FDA library. These operators can be applied to functions and
evaluated, or used as smoothing penalty functions.

Perhaps the simplest linear differential operators are derivative
operators of any given order (including order 0, which gives the
function itself). The general form of a linear differential operator is:

where denotes the th derivative of with respect to ,

(is a derivative operator), and the are specified objects of

class fFunction.

In S+FDA, linear differential operators are specified as objects of
class fLinDop, which includes subclasses fLinDopN for normalized
linear differential operators (weight function for highest-order
derivative is the constant 1) and fDop for simple derivative operators.
For example, fDop(2) denotes the second-derivative operator.

Lf t wk t D
kf t

k 0=

m 1–

Dmf t+=

D
k
f t k f t t

D
k

wk t

Smoothing via a Roughness Penalty

73

SMOOTHING VIA A ROUGHNESS PENALTY

Smoothing
when
Constructing
Functional
Data Objects

Bases computed using least-squares methods may result in fits that are
highly oscillatory - especially when many basis functions are used. To
avoid such overfitting, roughness penalties may be added to the least-
squares criterion when constructing functional data objects from
observed data. S+FDA provides the option of specifying a penalty
term for creating smoothed functional data objects using the
roughness penalty approach. In constructing a smoothed function
from observed data, the penalized least-squares criterion has the
following form:

• for univariate functional data:

:

• for bivariate functional data with product basis functions:

+

• for bivariate functional data with linear finite element basis
functions:

 +

yi jbj xi
j 1=

n
b

–

2

L jbj x

j 1=

n
b

2

xd

T

+

i 1=

n

=

zk ijbi
x
xk bj

y
yk

j 1=

n
y

i 1=

n
x

–

2

k 1=

n

=

L bi
x
x ijL bj

y
y

j 1=

n
y

i 1=

n
x

2

xd yd

T
y

T
x

zk j j xk yk
j 1=

n
b

–

2

k 1=

n

=

j j x x y j y x y+

j 1=

n
b

2

xd yd

T

Chapter 4 Linear Differential Operators and Smoothing

74

where is a linear differential operator, and is a penalty parameter
that must be specified.

The goal is to estimate the functional coefficients . You may use any
linear combination of derivatives of the basis functions to specify the
linear differential operator in the penalty term. A good rule of thumb
is to include in the penalty a derivative of order two greater than the
highest derivative of interest. This will penalize the curvature (second
derivative) of the derivative of interest. Also make sure that the
underlying basis is sufficiently smooth for the penalty to make sense.

The idea in a roughness penalty approach is to penalize roughness, as
defined by the square of the given combination of derivatives in the
final term of the above equation, so that the resulting function
estimate (or its derivative) is smooth. The positive parameter
specifies the amount of smoothing. Larger values give more weight to
the penalty and thus increase the amount of smoothing.

Smoothing
Functional
Data Objects

You may also smooth functional data objects after they have been
created. In this case, the criterion to be minimized is the sum of the
(1) integrated squared distance between the smoothed and the
unsmoothed function, plus (2) the penalty parameter as follows:

• for univariate functional data:

• for bivariate functional data with product basis functions:

+

L

f x jbj x

j 1=

n
b

–

2

xd L jbj x

j 1=

n
b

2

xd+=

f x y ijbi
x
x bj

y
y

j 1=

n
y

i 1=

n
x

–

2

xd yd=

L bi
x
x ijL bj

y
y

j 1=

n
y

i 1=

n
x

2

xd yd

T
y

T
x

Smoothing via a Roughness Penalty

75

• for bivariate functional data with linear finite element basis
functions:

 +

Again the goal is to estimate the functional coefficients or , but

here the functions , or , are “known” functions that have
already been expressed as a basis functions expansion:

 ,

or

or

 .

When to
Smooth?

It is important to note that the two smoothing techniques (smoothing
from the observed data, or smoothing an existing function) can lead
to different results, and different values of the smoothing parameter
may be desired. The smoothing process is exploratory in nature and
cannot be automated to accommodate all problems of interest.

Oversmoothing when creating the functional data object, or at any
point in a sequence of functional data operations, can result in loss of
information. In general, in order to retain maximal information, it is
safer to smooth only when necessary. Regularization should be
deferred as much as possible to the final functional data object to be
estimated (e.g. functional regression coefficients or principal
components).

f x y j j x y

j 1=

n
b

–

2

xd yd=

j j x x y j y x y+

j 1=

n
b

2

xd yd

T

j ij

f x f x y

f x jb̃j x=

f x y ijb̃i
x
x b̃j

y
y=

f x y i

˜
i x y=

Chapter 4 Linear Differential Operators and Smoothing

76

Pinch Force
Data Example
for Univariate
Functional
Data

The functional data object onePinchBspln constructed from the pinch
force data using a B-spline basis expansion in Chapter 3 is already
somewhat smooth because of:

• the choice of cubic splines for the basis, and

• the relatively limited number of basis functions (23) used in
fitting the functions to the 151 observed data points.

By contrast, the functional data object for the pinch force data
constructed from a polygonal basis in Chapter 3 (onePinchPolyg) is a
good candidate for smoothing techniques since it contains the
observations joined by line segments.

Create the functional data object from observed data and the
polygonal bases constructed from the observation times:

> onePinchPolyg <- fFunction(polygonalBasis(pinchtime),
 y=pinchmat[, 1], fArgs=pinchtime)

Next, apply a smoothing operation to create a smoothed object, in
this case by penalizing the first derivative:

> pinchSmooth2 <- fFunction(onePinchPolyg,
 penalty=list(lambda=100,linDop=fDop(2)),
 basis=bsplineBasis(range(pinchtime),
 norder=3,
 breaks=seq(pinchtime[1],
 pinchtime[length(pinchtime)],
 length=50)))

Note that we specify a new basis for the smoothed object. The original
basis does not have a sufficient number of derivatives for the specified
penalty term to be nonzero. Generally, if the basis for the functional
data object is sufficiently smooth, you may construct a smoothed
object directly from the basis and the observed data.

Correlation of
Pinch Force
Data Example
for Bivariate
Functional
Data

A two dimensional example is given by the data corPinch, the
correlation of the data set pinchmat, created in Chapter 3. We
construct a smoothed functional data object first using the product
basis, then the finite element basis.

To construct a basis function object of class fProdBasis, first create
each of the component univariate bases. In this example, construct B-
Spline and Fourier bases:

Smoothing via a Roughness Penalty

77

> fBasis1 <- bsplineBasis(c(1,20), nbasis=15, norder=2)
> fBasis2 <- FourierBasis(c(1,20), nbasis=15)
> fBasis12 <- fProdBasis(fBasis1, fBasis2)

Create the bivariate functional data object from the function values
and variables:

> fcorPinch <- fProdFunction(fBasis12, fVar=corPinch,
 fArg1=1:20)

Create the smoothed bivariate functional data object by penalizing
the first derivatives on both arguments of the function:

> fcorPinchSm <- fProdFunction(fBasis12, fVar=corPinch,
 fArg1=1:20, penalty=list(lambda=1000,
 linDop1=fDop(1), linDop2=fDop(1)))

Next, create the bivariate functional data with basis function of class
fFinElemBasis.

> fBasis <- fFinElemBasis(xDomain=c(1,20), yDomain=c(1,20),
 params=c(19, 19))
> fcorPinch2 <- fFinElemFunction(object=fBasis,
 fVar=as.vector(corPinch),
 fArg1=cbind(rep(1:20, length=20),
 rep(1:20, each=20)))

and the smoothed functional data object:

> fcorPinchSm2 <- fFinElemFunction(object=fBasis,
 fVar=as.vector(corPinch),
 fArg1=cbind(rep(1:20, length=20),
 rep(1:20, each=20)),
 lambda=0.5)

We plot the smoothed functional data with two different basis
functions as follows:

 > par(mfrow=c(2, 1))
 > plot(fcorPinchSm)

Chapter 4 Linear Differential Operators and Smoothing

78

 > plot(fcorPinchSm2)

Figure 4.1: The top plot is the smoothed functional data object with product basis
functions and the bottom one is the smoothed functional data with finite element basis
functions..

Specifying the Penalty Function

79

SPECIFYING THE PENALTY FUNCTION

Smooth a functional data object by specifying the functional form of
the smoothing term, via the penalty argument in functional data
object constructors such as fFunction or fVector. For example, the
following second-order linear differential operator is a common
choice:

In the above example we smoothed functional data that had a
polygonal basis using this second-order penalty, but in order to do so
we had to change the basis to one that is sufficiently smooth to have a
nonzero penalty.

Below we plot the original function, its transformation onePinchBspln
to a B-spline basis, and the smoothed function resulting from applying
the roughness penalty with that same B-spline basis:

> onePinchSpln <- fFunction(bsplineBasis(range(pinchtime),
 norder=4,
 breaks=seq(pinchtime[1],
 pinchtime[length(pinchtime)],
 length=50)),
 y=pinchmat[,1], fArgs=pinchtime)

> par(mfrow=c(2,1))
> plot(onePinchPolyg, lty=8,
 main="Function with Polygonal and B-Spline Bases")
> lines(onePinchSpln, lwd=2)
> plot(onePinchPolyg, lty=8,
 main="Polygonal Function and Second Order Smooth")
> lines(pinchSmooth2, lwd=2)

Lbj x
d

2
bj x

dx
2

------------------ D
2
bj x= =

Chapter 4 Linear Differential Operators and Smoothing

80

The results are displayed in Figure 4.2::

The results show that using the penalty produces a smoother function.

Height Data
Example

In Chapter 1, we used a penalty on the second derivative to smooth a
functional form of the height data. If we smooth with the same
penalty parameter, 0.001, on the fourth derivative, we obtain a much

Figure 4.2: The first instance of the pinch force data fit with polygonal and B-spline
bases (top). The polygonal fit and fit obtained when smoothing with a second order
roughness penalty (bottom). The functional data with polygonal basis is indicated by
the dotted line in both cases.

Function with Polygonal and B-Spline Bases

args

v
a

rs

0 50 100 150

0
2

4
6

8

Polygonal Function and Second Order Smooth

args

v
a

rs

0 50 100 150

0
2

4
6

8

Specifying the Penalty Function

81

smoother second derivative, although the oscillatory behavior of the
function away from the endpoints indicates that further smoothing
might be desirable (see Figure 4.3).

Figure 4.3: Second derivatives of the functional representation of the female height
data. The fourth derivative was penalized for smoothing, with penalty parameter
0.001.

Chapter 4 Linear Differential Operators and Smoothing

82

Effect of
Penalty
Parameter

As an example of the effect of the smoothing penalty parameter, we
smooth the height data using a penalty on the fourth derivative for
lambda = 0.00002, 0.1. 0.5, 2.0. Figure 4.3 shows the second
derivative of female height for each of these values of lambda:

As might be expected, the larger penalty parameter results in a
significantly smoother second derivative.

Penalizing
Linear
Combinations
of Derivatives

You may also smooth by using the square of a linear differential
operator as the smoothing penalty. Specify this via the linDop
component of the penalty argument to fFunction or fVector.

Generalized
Cross
Validation

The goal is to choose a lambda that minimizes errors when predicting
new observations. If the errors for each lambda were known, it would
be possible to plot the errors vs. lambda, and choose the lambda
corresponding to the minimum error.

Figure 4.4: Second derivative of the female height data when the functional data is
formed using a 4th order penalty.

Specifying the Penalty Function

83

However, the errors are not known and so it is necessary to estimate
the prediction error that would result from each lambda. The sum of
squared residuals gives an optimistic estimate of error because the
same data is used to both fit the model, and assess its performance.

Leave-one-out cross-validation calculates fits. For :

• omit data point , and estimate the smoothed function from
the remaining data,

• predict the omitted case, and

• calculate the deleted residual, which is the difference between
the observed response and the prediction.

The sum of squares of these deleted residuals honestly estimates the
prediction error.

However, cross-validation has two problems (Ramsay and Silverman,
2004). First, it is computationally expensive, especially for large .
Second, it tends to undersmooth the data, tending to choose a lambda
that results in fitting noisy variation that should be ignored.

Generalized cross validation (GCV) is a modified form of cross
validation which avoids the computational expense of cross
validation. It also tends to avoid undersmoothing. Please see Craven
and Wahba (1979) or Green and Silverman (1994) for details. In brief,
the deleted residuals can be obtained from the ordinary residuals by
dividing by a factor. GCV replaces these individual factors by their
average value, or equivalent degrees of freedom.

For the height data example in Chapter 1, the smooth was defined by
a penalty on the second derivatives, and the value of lambda used was
actually the optimal cross validated penalty parameter. Below we
illustrate how we chose this value, by computing the smooth for a
number of values of lambda. The values shown here are in an interval
(determined by trial and error) that contains a local minimum:

> heightBasis
 <- bsplineBasis(fDomain=range(heightData$age),
 nbasis=16, norder=6)
> lambda <- c(0.0001, 0.00025, 0.0005, 0.00075, 0.001,
 0.0015, 0.002, 0.0025)
> gcv <- numeric(length(lambda))

n i 1 n=

i

n

Chapter 4 Linear Differential Operators and Smoothing

84

> for(i in 1:length(lambda))
 gcv[i] <- attributes(fVector(object=heightBasis,
 y=heightData[,2:94], fArgs=heightData$age,
 penalty=list(lambda=lambda[i],

 linDop=fDop(2))))$gcv

A plot of the generalized cross validation statistic versus the logarithm
of the penalty parameter can be created as follows (see Figure 4.5):

> par(mfrow=c(1,1))
> plot(log(lambda), gcv,
 ylab="Generalized cross validation")
> lines(log(lambda), gcv, lty=1)

The display shows that the optimal smoothing parameter corresponds
to log(lambda) = -6.9 or lambda = 0.001, the value that was used to
obtain the results in Chapter 1.

Figure 4.5: Generalized cross validation statistic for the functional height data with
penalized second derivative.

log(lambda)

G
e

n
e

ra
liz

e
d

 C
ro

s
s

 V
a

lid
a

ti
o

n

-9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0

1
5

.3
1

5
.4

1
5

.5
1

5
.6

1
5

.7

Specifying the Penalty Function

85

Trade-off
Between
Smoothing and
Prediction

Prediction error is a measure of how well the resulting function
predicts the observed data, rather than a measure of smoothness. To
obtain smoother second derivatives for the height data than those
obtained above and in Chapter 1, either use a larger penalty
parameter or a different penalty function.

In the case of the height data, the rule of thumb suggests that a fourth-
derivative penalty should be used to obtain smooth second
derivatives. Yet using such a penalty with corresponding optimal cross
validated penalty parameter (approximately 0.00002) yields a result
whose second derivative is virtually identical to that obtained in
Chapter 1.

The most practical approach is to examine the functional data and
any derivatives of interest for a few choices of lambda, and choose one
that has the desired smoothness properties while retaining reasonable
predictive ability. Figure 4.6 shows the difference between predicted
and observed values of female height for smoothing using a fourth
order penalty for the same values of lambda used in Figure 4.3:

Figure 4.6: Difference between predicted and observed female height for functional
data formed using a fourth order smoothing penalty.

Chapter 4 Linear Differential Operators and Smoothing

86

As expected, the prediction ability decreases as the smoothing
parameter is increased. The residuals are smallest for lambda =
0.00002, which is close to the optimal cross validated penalty
parameter. Yet Figure 4.3 shows that the second derivative is highly
oscillatory for this value of the penalty parameter. In this case the
choice of lambda = 0.5 is probably a reasonable compromise
between smoothness and prediction.

87

Analytic Registration 89

Lip Motion Example 91
Warping Functions 94

Landmark Registration 96
Summary 99

FUNCTIONAL REGISTRATION 5

Chapter 5 Functional Registration

88

Functional data analyses assume that a random sample of functions
are comparable. Often this is not the case. For example, in the bone
shape data discussed in more detail in the chapter on principal
components, the shape of a bone surface is extracted from an x-ray of
the bone by creating functions and that trace out an
outline of the bone as a function of the distance traveled along the
bone surface, . The total distance traveled, the length of the bone
surface, is adjusted to a distance of one, eliminating bone size from
consideration, and making it possible to compare bone shapes
through the functions and . This is a simple example of
registration, which is concerned with eliminating uninteresting
differences in functions so that the remaining functional variation is
(more) completely concerned with the differences of interest - in the
bone data, we were concerned with bone shape, not bone size.
Standardizing to a bone length of one does much to eliminate
uninteresting variation in the bone curves, but it ignores differences
that may be caused by different starting or ending positions on the
bone surface, and differences due to bone orientation, e.g., angle of
the leg bone on an x-ray. Ideally, these differences would also be
eliminated or otherwise accounted for in a bone shape analysis,
preferably using a model-based manner incorporating, say, shift and/
or scaling parameters. In practice, uninteresting differences in curves
must often be eliminated in a more ad hoc fashion.

x d y d

d

x d y d

Analytic Registration

89

ANALYTIC REGISTRATION

Analytic methods may be used to register curves by optimizing a
functional criterion. For each observation , let be either the

functional data object or one of its derivatives, and let be a target
function (in the absence of other information, an estimate of the
overall mean of the).The basic idea behind the S+FDA function
fRegister is to find a parameterized monotonic warping function

 for each function such that closely

matches the target function in a penalized least squares sense.

Here the are the parameters, and the penalized least-squares

criterion is:

where the integrals are over the domain of the function. Notice that
the penalty term which includes the penalty parameter is for
smoothing the warping functions .

Rather than registering the functions, it is also possible to register a
linear combination of each functions and one or more of its
derivatives. That is, it is also possible to register the results of applying
a linear differential operator to the functions .

i fi t

g t

fi

hi t i fi t fi hi t i

g t

i

fi hi s i g s– 2
sd

i 1=

n

hi s i

2
sd+=

hi t i

fi t

Chapter 5 Functional Registration

90

While any monotonic warping function is possible, in S+FDA the

parameters in the warping function define an intercept and slope,

and also the coefficients of the basis functions of a class fFunction
object. Specifically, the warping functions in fRegister have the
following form:

where is the lower bound on the range of the function, is the

upper bound, and is function represented by a B-spline

basis. The parameters of each include the slope and intercept

 as well as the coefficients and parameters (denoted by)of the

B-spline basis. Function fRegister has defaults for the knots and
order of the B-splines, which can be chosen by users.

Although it is theoretically possible to optimize the criterion
given above, in practice the problem becomes much more tractable if
optimization is performed over a grid of points. This is what is done
in fRegister. After estimating the warping functions and obtaining

the registered curves over a grid of points, the estimates

are projected onto the basis used in the functions , and returned

as the fWarp and fReg components of the output from fRegister. The
details are given in Chapter 5 of Ramsay and Silverman (1997) and in
the references cited there.

hi

i

hi t c0i c1i i c0i c1i w v i vd

L

u

exp ud

L

t

+=

L u

w v i

hi c0i

c1i i

hi

fi hi s i

fi t

Lip Motion Example

91

LIP MOTION EXAMPLE

Consider the measurement of the lower lip position as a single
individuals says the syllable “bob” (see Ramsay and Silverman, 1997).
Lower lip position was measured at 51 times for 20 replications over a
(standardized) 650 millisecond interval. Measurements were made on
a single individual. Time has already been registered to the same
beginning and ending positions, with a standardized time length of 1.
The data was fitted using an order 6 B-spline basis with 31 basis
functions. No smoothing was performed. These operations are
accomplished as follows:

> lipBasis <- fBasis(type="bspline", fDomain=c(0,1),
 nbasis=31, params=(c(1:25)/26))
> fLip <- fVector(object=lipBasis, y=lipmat, fArgs=liptime,
 fNames=list(NormalizedTime=liptime,
 Replications=seq(20), Units="mm"))

The resulting functional data curves and their derivatives are
displayed in Figure 5.1:

> par(mfrow=c(2,1))
> plot(fLip, main="Lower Lip Curves for \"bob\"")
> plot(fVector(fLip, linDop=fDop(1)),
 main="Derivative Lower Lip Curves for \"bob\"")

Although the 20 curves begin and end at the same locations after
registration, some features (e.g., the point at which the curve
minimum occurs) seem to be out of alignment. For example, in the
plot of the first derivatives shown in the bottom of Figure 5.1, the
shifts in extrema around 0.2 and 0.9 are particularly noticeable. Such
differences may be important in an analysis.

We use the S+FDA function fRegister to register the first derivatives
of the curves:

> regLip1 <- fRegister(fLip, mean(fLip), nDeriv=1,
 maxIter=120, lambda=0.1,
 criterion=1, penalty=0.0005)

The function fRegister requires a target function, taken here to be
the derivative of the mean of the lip curves. Since this mean is itself a
function of the curves we intend to register, additional calls to
fRegister may improve the registration process:

Chapter 5 Functional Registration

92

> regLip1 <- fRegister(fLip, mean(regLip1$fReg),
 nDeriv=1, maxIter=120, lambda=0.1,
 criterion=1, penalty=0.0005)

The registered functions are contained in the fReg component of
regLip1, and the target function in the second call to fRegister is the
derivative of their mean.

In the example call to fRegister we set nDeriv=1. This means that we
are registering with respect to the first derivatives rather than the
functions. We also provide two smoothing parameters, lambda, which
is used in smoothing the warping functions, and penalty, which is
used only when the warping function is based upon the derivatives
(nDeriv > 0). In this case, the registered functions are estimated from
the warping functions using smoothing splines with penalty
parameter equal to penalty. It may take some experimentation with
the lambda and penalty parameters to obtain satisfactory results.

The registered lip data is plotted as follows:

> par(mfrow=c(2,1))

Figure 5.1: Lower lip position during twenty utterances of the syllable “bob” (top)
with derivatives (bottom).

Lower Lip Curves for "bob"

NormalizedTime

U
n

its

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
1
0

1
5

Derivative of Lower Lip Curves for "bob"

NormalizedTime

U
n

its

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
-5

0
0

5
0

1
0

0

Lip Motion Example

93

> plot(regLip1$fReg,
 main="Registered Lower Lip Curves for \"bob\"")
> plot(fVector(regLip1$fReg, linDop=fDop(1)), main=
 "Derivative of Registered Lower Lip Curves for \"bob\"")

The results are given in Figure 5.2. Comparing with Figure 5.1, we see
that both the functions and especially the derivatives are closer
together, and that we no longer have large shifts in the derivative
extrema. The estimates for the warping functions are given in Figure
5.3, in which we see that they are not strictly monotone due to round
off errors.

Some cautions Analytic registration finds warping functions to minimize a least
squares or similar criterion. One possible method for doing this is to
make curve amplitudes as similar as possible. While the warping
function does not modify the function values, warping simply to
minimize amplitude (rather than features) can have significant impact
on the curves - in trying to eliminate curve differences we may
introduce artificial curve differences that can impact or even drive the
results of any further analysis. As an example illustration of this
problem, we use the fRegister function to register the lip data curves
rather than their derivatives:

Figure 5.2: Registration for the lip data using function fRegister.

Registered Lower Lip Curves for "bob"

Registered NormalizedTime

U
n
its

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
1
0

1
5

Derivative of Registered Lower Lip Curves for "bob"

Registered NormalizedTime

U
n
its

0.0 0.2 0.4 0.6 0.8 1.0

-2
0
0

-1
0
0

0
1
0
0

Chapter 5 Functional Registration

94

> regLip0 <- fRegister(fLip, mean(fLip), maxIter=100)

Both the registered and unregistered curves are shown in Figure 5.4.
In this display we see that the registered curves are indeed very close
together (minimizing the integrated squared distance), but that we
have also introduced small artificial bumps near the minimum that
are now the main feature differentiating the curves.

Warping
Functions

Warping functions are interesting in themselves because they contain
information on how the curves were “aligned” in their arguments.
This information is lost in the registered functions. If the warping
function goes above/below the diagonal, the function is shifted in the
positive/negative direction. These trends can be made more apparent
in a plot that subtracts the diagonal from the warping curves. For the
lip data, the warping functions contain information about how parts
of the syllable are extended in length, while other parts are
contracted, from one replication to the next.

Figure 5.3: Lower lip curve warping functions.

Lower Lip Curve Warping Functions

NormalizedTime

R
e

g
is

te
re

d
 N

o
rm

a
liz

e
d

T
im

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lip Motion Example

95

Figure 5.4: Registered curves (top) and unregistered curves (bottom).

Registered Lower Lip Curves for "bob"

Registered NormalizedTime

U
n

its

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
1

0
1

5

Unregistered Lower Lip Curves for "bob"

NormalizedTime

U
n

its

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
1

0
1

5

Chapter 5 Functional Registration

96

LANDMARK REGISTRATION

Even though we generally have features or landmarks (e.g., extrema)
in mind, the analytic registration used in function fRegister does not
directly account for them. In landmark registration, the location of
function landmarks are specified, often by hand, and a warping
function is then obtained (by contracting or stretching the domain) so
that all landmarks of the same type occur at the same position. Care
must be taken in selecting the curve landmarks, especially if
derivatives are used for landmark selection. Choosing the wrong
landmarks can yield misleading results.

To see how landmarks might be defined, consider an enlarged version
of the first derivatives for the lip data.

In the derivative curves, we chose four landmarks: 1) near time zero,
some curves ascend before they descend. The first landmark is the
position of the beginning of the descent near time zero. 2) The
minimum around 0.2 is chosen for the second landmark. 3) the point

Figure 5.5: First derivatives for the lip data.

NormalizedTime

U
n

it
s

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
-5

0
0

5
0

1
0

0

Landmark Registration

97

at which the derivative curve crosses the horizontal axis is chosen as
landmark 3. This is the location of the curve mimimum. 4) The
maximum around 0.9 is the final landmark.

To find the horizontal location of these extrema, we first discretize the
data, and then use the S-PLUS function identify as follows:

> nmarks <- 4
> x <- (1:200)/201
> lipmat <- fEval(fVector(fLip, linDop=fDop(1)), x)
> par(mfrow=c(1,1),pty='m')
> lipMarks <- matrix(0,20,nmarks)
> for (i in 1:20) {
 plot(x, lipmat[,i], main=paste('Curve',i))
 abline(h=0)
 index <- identify(x, lipmat[,i], n=nmarks)
 lipMarks[i,] <- x[index]
 }

Twenty curves are plotted, one at a time. For each curve, we use the
mouse to identify the four landmarks. This yields a matrix, lipMarks,
containing four columns and twenty rows, one for each of the 20
functions. Given the lipMarks matrix, landmark registration can then
performed using the landmarkReg function as follows:

> landLip <- landmarkReg(fLip, mean(fLip), lipMarks)

Notice that although the landmarks were found using the derivative
curve, the function curves are registered (rather than the derivatives).

The fReg and fWarp components of the landLip object contain the
registered curves (here the first derivatives) and the warping
functions, respectively. The registered curves are given in Figure 5.6,
while the warping functions are given in Figure 5.7. In Figure 5.6, we
see that the landmarks are indeed aligned along the horizontal axis.

Chapter 5 Functional Registration

98

Figure 5.6: Landmark registration of lip curves.

Figure 5.7: Warping functions for landmark registration of the lip curves.

Registered Lip Curves

NormalizedTime

U
n
it
s

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
1
0

1
5

Lip Curve Derivative Warping Functions

NormalizedTime

U
n
it
s

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Landmark Registration

99

Derivatives of
registered curves

We now consider the derivatives of the registered curves, which can
plotted by

> plot(fVector(landLip$fReg, linDop=fDop(1))

which gives Figure 5.8.

The registered curves clearly show the effects of registration: the
curves all cross the horizontal axis at the same point near 0.4, and the
minimums around 0.2 and the maximums around 0.9 are aligned.
There are also some undesirable effects, in particular the variation in
the curves from 0 to 0.2.

Summary In summary, the aim of registration is to align sets of functions so that
comparison is possible at each argument value. Registration is often
an unavoidable aspect of functional data analysis, but it can have
unintended consequences, and must be applied with caution.

Figure 5.8: Derivatives of the registered lip motion curves.

Derivatives of Registered Lip Curves

NormalizedTime

U
n

it
s

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
-5

0
0

5
0

1
0

0

101

Functional Dependent Variables 102
Functional Independent Variables 103
Regularization 103
Functional Dependent and Independent Variables 104
Relationship to Classical Linear Regression 104

Example with a Functional Dependent Variable 106
Modeling the Derivatives 108

Example with Functional Independent Variables 110

Example with Functional Dependent and Independent
Variables 115

gaitarray Data Set 115
lip Data Set 118

FUNCTIONAL LINEAR
MODELS 6

Chapter 6 Functional Linear Models

102

Linear regression is one of the most commonly used methods in
statistics. In linear regression the expected value of a dependent
variable, , is predicted using one or more independent variables or
predictors, . A least-squares criterion is minimized in fitting the
model to obtain estimates. Often the interest is in simply in obtaining
good predictors of the dependent variable, but linear regression
models are also used to study relationships between variables.
Functional linear models extend linear regression methods to allow
functional independent and/or dependent variables.

We begin the chapter with a mathematical description of a functional
linear model. This is followed by some examples.

Functional
Dependent
Variables

Perhaps the simplest functional linear model is one in which the
dependent variable is a function, and the predictors or independent
variables are scalar. In this case, at each point in the function
domain, estimates of the dependent variable can be obtained using a
linear model in the predictors. Because the regression coefficients
depend upon , they too are functions of . For example, a two
predictor model would have the form

Here and are the two scalar predictors, is the functional

dependent variable, , , and are coefficient functions,

and is the error term. Clearly, for each , estimates for

, , and can be obtained by fitting a linear

regression model.

y

x

t

t t

y t 0 t 1 t x1 2 t x2 t+ + +=

x1 x2 y t

0 t 1 t 2 t

t t tk=

0 tk 1 tk tk

103

Functional
Independent
Variables

Now consider the case in which the dependent variable is scalar, but
the independent variables are functions. The model takes the form

This model has two functional predictors, and , with two

coefficient functions, and , an intercept coefficient, ,

and an error . Because the independent variables and associated
coefficients are functional, we integrate over their values to obtain the
contribution of the independent variable. Methods for fitting this
model are not necessarily straightforward (see Chapter 10 of Ramsay
and Silverman 1997), although by using a grid of points in , the
coefficient functions can be closely approximated.

In the current release of the S+FDA library we integrate over the
entire range of the independent variable. If, for example, we want to
form predictions based upon all values of the independent variable
prior to the current time, , we would want to integrate over the range

. This is possible in S+FDA when both response and covariates
are functional data, and finite element basis functions are used. See
section Example with Functional Dependent and Independent
Variables on page 115.

Classical least-squares models can also be fitted using specific values
of the function argument. For example, one might predict final height
by the height at ages 2 and 3.

Regularization For simplicity, suppose we have only a single functional independent
variable and consider the grid of points discussed above. Notice that
as the number of grid points increases, then so does the prediction
accuracy, until, when the number of grid points exceeds the number
of observations, perfect prediction is obtained. While models with
such a large number of grid points can be fitted, they are not
interesting in the sense that the coefficient functions tend to be highly
irregular and give little insight into how the predictor affects the
mean. Moreover, while perfect prediction may be possible in the

y 0 1 s x1 s 2 s x2 s+ sd+ +=

x1 s x2 s

1 s 2 s 0

s

t

0 t

Chapter 6 Functional Linear Models

104

current sample, prediction for new subjects will generally be much
less successful. Smoothing of the coefficients gives better insight into
the effect of the predictors, because it can limit the degrees of freedom
used in prediction, as well as helping to establish the true predictive
capabilities of the linear model.

Smoothing in functional linear models can be obtained in the usual
manner by adding a roughness penalty term. A typical roughness

penalty term for a coefficient function might be ,

where is the second derivative and is the penalty parameter,
but roughness penalties based on any linear differential operator are
possible. Notice that roughness penalties for coefficients for functional
dependent variables are also possible and often desirable. See
Chapters 9-11 of Ramsay and Silverman (1997) for details.

Functional
Dependent and
Independent
Variables

More general models in which both the independent and the
dependent variables are functions are also available. These take the
form

Here both the dependent and independent variables are functions, as
are the coefficients and error terms. Notice, however, that all of the
coefficient functions, save the intercept, are functions of two
arguments. If it is assumed that these two argument functions are
separable functions that can be written as the tensor products of two
sets of basis functions, then we assume that these functions are of class
fProdFunction. Otherwise, they are of class fFinElemFunction.

Relationship to
Classical Linear
Regression

Functional linear regression model reduce to classical linear
regression models when both the independent and dependent
variables are constant over the domain.

s s
2
sd

s

y t 0 t 1 s t x1 s 2 s t x2 s+ sd t+ +=

105

Models containing both functional and nonfunctional independent
variables are also often of interest, regardless of whether the
dependent variable is functional. In S+FDA, functions that are
constant over their domain are always represented internally as
functional variables with a basis of class “constantBasis”. However,
any numeric or factor variable can be used in a functional linear
model in the same manner that it is used in the S-PLUS lm procedure.

It is useful to notice that if is constant for all (has a
constantBasis basis), then is constant with respect to , and

 is simply , i.e., integration over is not required.

Similarly, if is constant with respect to , then disappears in the
coefficients for the independent variables and in the error term.

x s s

s t s

s t x s sd t x s

y t t t

Chapter 6 Functional Linear Models

106

EXAMPLE WITH A FUNCTIONAL DEPENDENT VARIABLE

In this section we give an example of a functional linear model in
which the dependent variable is the only functional variable. Our
data is the height data first examined in Chapter 1. This is the data
collected on the heights of 54 females and 39 males as they grew from
age 1 to 18. In Chapter 1 the height data was used for a number of
analyses, including a linear model predicting a patient’s sex in terms
of their growth function. Here we predict the patients growth as a
function of their final height (to get an overall measure of growth),
and their sex. As you may recall from Chapter 1, the functional
variable fHgt gives the vector of growth curves for all individuals.

We begin by standardizing the growth curves so that all individuals
grow by the same amount. We also create a data frame containing the
height curves, the sex variable, and the final heights of all individuals.
This is accomplished with the following statements:

> ratio <- 100/(heightData[31,2:94] - heightData[1,2:94])
> sHgt <- fHgt
> for(i in 1:93)
 sHgt[i] <- (fHgt[i]-heightData[1,i+1])*ratio[i]
> dataHgt <- data.frame(sHgt=sHgt,
 sex=as.factor(c(rep("F",54),rep("M",39))),
 finalHgt=t(heightData[31,2:94]))

The linear model can then be fitted using the function fLM as follows:

 > predLm <- fLM(sHgt~-1+sex, dataHgt)

We next plot the fitted values for males and females using the fitted
values returned by fLM:

 > par(mfrow=c(2,1))
 > plot(predLm$fitted[1], main="Fitted values")
 > lines(predLm$fitted[55], lty=2)
 > legend(1,100, c("females", "males"), lty=1:3)
 > plot(fFunction(fFunction(predLm$fitted[1]),
 linDop=fDop(1)), main="Fitted values")
 > lines(fFunction(fFunction(predLm$fitted[55]),
 linDop=fDop(1)), lty=2)
 > legend(1,100, c("females", "males"), lty=1:3)

Example with a Functional Dependent Variable

107

This result is displayed in Figure 6.1:

From the top graph in Figure 6.1, we see that if we standardize to a
constant total growth for both males and females, then the males lag
behind the females in their growth. The main reason for this is the
longer period of male growth during adolescence of the males - since
total growth has been standardized, the males growth continues after
female growth stops, and thus must lag behind the females. Looking
at the derivative curves in the bottom of the graph, we see that, as in
Chapter 1, the rate of growth for the females shows a bump around
age four that does not seem to be present in the males.

The object predLm created in the call to fLm above is an object of class
“fLm”. The model coefficients are returned as the coefficients
component of predLm, where coefficients is a list objects of class
“fProdFunction”, each of which corresponds to a predictor (including

Figure 6.1: Fitted female and male (standardized) growth curves (top) and
derivatives (bottom).

Fitted values

args

v
a

rs

5 10 15

0
2

0
4

0
6

0
8

0
1

0
0

females
males

Fitted values

args

v
a

rs

5 10 15

0
5

1
0

1
5

females
males

Chapter 6 Functional Linear Models

108

the scalar predictors) in the model. Here there are two coefficient
functions, the first is for the females, and the second is for the males.
These coefficient functions can be plotted as follows:

> par(mfrow=c(1,1))
> plot(predLm$coef[[1]], main="coefficient Functions")
> lines(fMargin(predLm$coef[[2]],1), lty=2)
> legend(1,5.9, c("female", "male"), lty=1:2)

The resulting plot is given in Figure 6.2.

As might be expected, the coefficient functions look somewhat like
scaled versions of the fitted values shown in the top of Figure 6.1.

Modeling the
Derivatives

Derivatives of functions can be used in a linear model in the same
places that the function proper can be used. For example, the
following fits and plots the first derivative of height, which give the
same plot as bottom plot in Figure 6.1:

> DsHgt <- fVector(sHgt, linDop=fDop(1))
> dpredLm <- fLM(DsHgt ~ -1 + sex, dataHgt)

Figure 6.2: Coefficient functions for the height data.

Coefficient Functions

points2

y

5 10 15

0
1

2
3

4
5

6

female
male

Example with a Functional Dependent Variable

109

> plot(dpredLm$coef[[1]], xlab="age", ylab="hight",
 main="Derivative Coefficient Functions")
> lines(fMargin(dpredLm$coef[[2]],1), lty=2)
> legend(14,1, c("female", "male"), lty=1:2)

Chapter 6 Functional Linear Models

110

EXAMPLE WITH FUNCTIONAL INDEPENDENT VARIABLES

As an example with a functional independent variable, we consider
the weather data. This is data collected on the (average) daily
temperature and the daily precipitation of 35 Canadian weather
stations over a one year period. Following Chapter 9 of Ramsay and
Silverman (1997), we predict logarithm of the total yearly
precipitation as a linear function of the daily temperature functions.

We first fit the model without a penalty function to see why a penalty
is needed:

> predPrecip <- fLM(log(prec)~-1+fTemp, fWeather)
> plot(predPrecip$coef[[1]])

This resulting coefficient function for temperature is displayed in
Figure 6.3.Coefficient functions for the height data

Figure 6.3: Coefficient function for temperature when there is no penalty in the
linear model.

Function

args

v
a

rs

0 100 200 300

-0
.1

5
-0

.1
0

-0
.0

5
0

.0
0

.0
5

0
.1

0

Example with Functional Independent Variables

111

While the residual sum of squares vanishes, indicating perfect
prediction, the coefficient function is highly irregular and nearly
impossible to interpret - the model is badly overfitted.

Another measure of fit is the cross-validated prediction error. In cross-
validation, the model is fitted with each observation, in turn, left out
of the model. The predicted value for the deleted observation is then
computed, and the deleted residual is computed by subtracting this
predicted value from the observed value. The cross validation
prediction error is then computed as the sum of the squared deleted
residuals.

The cross-validated prediction error for this example can be
computed as follows:

> crossValidLM <- function(xLambda, xPenMat, jMatx)
{
 fun <- function(i, fWeather, xLambda, xPenMat, jMatX)
 {
 ans <- fLM(log(prec)~-1+fTemp, fWeather[-i,],
 xPenalty=list(lambda=xLambda, linDop=fDop(2)),
 jMatX=jMatX, xPenMat=xPenMat)
 coefun <- fFunction(getCoef(ans$coef[[1]]),
 ans$coef[[1]]$fBasis1)
 pred <- fInProd(fWeather$fTemp[i], coefun)
 log(fWeather$prec[i]) - pred
 }
 ans <- sapply(1:35, fun, fWeather=fWeather,
 xLambda=xLambda, xPenMat=xPenMat, jMatX=jMatX)
 sum(ans*ans)
 }
> jMatX <- fInProd(getBasis(fWeather$fTemp),
 getBasis(fWeather$fTemp))
> xPenMat <- fInProd(getBasis(fWeather$fTemp),
 getBasis(fWeather$fTemp),
 linDop1=fDop(2), linDop2=fDop(2))

In the crossValidLM function, the delete predicted values are
computed by integrating the product of the lone independent variable
and its coefficient function. The function requires two matrices,
xPenMat and jMatX as input. These matrices depend only upon the
basis of the functional independent variables, and thus do not change

Chapter 6 Functional Linear Models

112

as observations are added or removed. The function fLM has been
implemented so as to take advantage of these precomputed values in
speeding up the computations.

To find an optimal penalty parameter, we executed the crossValidLM
function over a grid of potential penalty parameters as follows:

> xLam <- c(0, 10^seq(1:10))
> bb <- double(11)
> for(i in 1:11)
 bb[i] <- crossValidLM(xLam[i], xPenMat, jMatx)
> plot(log(xLam+1), bb)
> lines(log(xLam+1), bb)

The resulting plot is shown in Figure 6.4.

The value xLam = 0 corresponds to no smoothing, and the
corresponding cross-validated prediction error is 56.61. Smoothing
the coefficients during the estimation procedure yields more accurate
results. The smallest cross validation prediction error was 32.02
corresponding to xLam = 10^9 :

Figure 6.4: Cross-validated sums of squares error for various values of the log of the
penalty parameter (plus 1) on the horizontal axis.

log(xLam + 1)

b
b

0 5 10 15 20

4
0

6
0

8
0

1
0

0

Example with Functional Independent Variables

113

> predPrecipPen <- fLM(log(prec)~-1+fTemp, fWeather,
 xPenalty=list(lambda=10^9, linDop=fDop(2)),
 jMatX=jMatX, xPenMat=xPenMat)
> plot(predPrecipPen$coef[[1]])

A plot of the fitted coefficient function for this value of xLam is given
in Figure 6.5. From this figure we see that the coefficient function
gives moderately negative weights to temperatures around May, and
highly positive weights to temperatures around September, with a
small positive weights to temperatures around January.

A plot of the predicted versus the actual values is obtained as follows:

> plot(getCoef(predPrecipPen$fitted), log(fWeather$prec),
 xlab="Predicted Values", ylab="Observed Values")
> lines(rbind(c(5,5), c(7.5,7.5)))

Here we use the function getCoef to extract the scalar fitted values
from the fitted value functions of class “constantBasis” . The plot is
shown in Figure 6.6. Although there is an apparent outlier, removing
it has little effect on the fitted model.

Figure 6.5: The fitted coefficients function for temperature with penalty
parameter10^9.

Function

args

v
a

rs

-0
.0

0
4

-0
.0

0
2

0
.0

0
.0

0
2

0
.0

0
4

0
.0

0
6

J F M A M J J A S O N D

Chapter 6 Functional Linear Models

114

Figure 6.6: Predicted versus observed values for the log of precipitation. Notice the
outlier near (5, 7.5).

Predicted Values

O
b

s
e

rv
e

d
 V

a
lu

e
s

4 5 6 7

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

Example with Functional Dependent and Independent Variables

115

EXAMPLE WITH FUNCTIONAL DEPENDENT AND
INDEPENDENT VARIABLES

It is also possible to fit functional linear models in which both the
dependent and independent variables are functional. This section
gives two examples that differ in the domain of integration for the
independent variable:

• over the whole interval

• the historical model, in which the independent variable is
integrated over the range , where is a lag

before time .

gaitarray Data
Set

The following example is taken from Chapter 12 of Ramsay and
Silverman (1997). The data set was originally collected at the Motion
Analysis Laboratory at Children’s Hospital in San Diego (see Olshen,
et al., 1989), and consists of measurements of the angles made by the
hip and by the knee of each of 39 children. The angles are measured
over 20 time points through the course of one gait cycle. Time has
been normalized over the gait cycle for each child. The three
dimensional 20 by 39 by 2 array, gaitarray, contains both of these
matrices, with the first matrix in the array being hip angle.

Here we use a Fourier basis with nineteen basis functions to obtain an
object of data frame fGait.

> fGaitBasis <- fBasis(type="Fourier", fDomain=c(0,1),
 nbasis=19)
> gaitNames <- list(NormalizedTime=gaittime,
 Cases=seq(dim(gaitarray)[2]),
 Angle="deg")
> fHipVec <- fVector(object=fGaitBasis, y=fHip,
 fArgs=gaittime, fNames=gaitNames)
> fKneeVec <- fVector(object=fGaitBasis, y=fKnee,
 fArgs=gaittime, fNames=gaitNames)
> fGait <- data.frame(fHip=fHipVec,fKnee=fKneeVec)

0 T

s0 t t s0 t

t

Chapter 6 Functional Linear Models

116

Since there are only twenty sampling points, a nineteen basis
functions fit the children’s curves very well - the maximum difference
between the fitted curve and the observed measurement is 0.00082.
Because we have standardized with respect to time, the domain of the
functions (argument fDomain) is the interval (0,1).

In our example, we predict knee angle (fGait$fKnee) in terms of hip
angle (fGait$fHip).

No smoothing We begin our analysis by computing the solution without explicit
smoothing. The code for fitting the model:

 > predKnee <- fLM(fGait$fKnee ~ fGait$fHip)

By default, an intercept is included in the model. The fitted model
contains two coefficient functions, a function for the intercept, and a
functional data object of class “fProdFunction” for knee angle. These
functions are obtained as the first and second elements, respectively,
of the list of coefficients predKneeU$coefficients. We plot the data,
the coefficients for knee angle, the fitted values, and the residuals:

 > par(mfrow=c(2,2))
 > plot(fGait$fKnee, main="Response Functions")
 > plot(predKnee$coef[[2]])
 > title(main="Bivariate Coefficient Function")
 > plot(predKnee$fitted, main="Predicted Functions")
 > plot(predKnee$resid, main="Residual Functions")

Example with Functional Dependent and Independent Variables

117

The resulting plot is given in Figure 6.7. It is evident that the
coefficient function for hip angle, the bivariate function in the upper
right corner, is quite irregular.

Smoothing While the unsmoothed results are useful for prediction, the highly
irregular shape of the coefficient matrix gives little insight into how
the hip and knee angles are related. Moreover, the cross-validated
prediction error may be less than optimal. Function fLM provides for
two smoothing parameters, one for the independent variables and
another for the dependent variables. Some experimentation with
these parameters yielded much smoother coefficient estimates, while
at the same time having little effect on the magnitude of the residuals.

> predKneeSmoothed <- fLM(fGait$fKnee ~ fGait$fHip,
 xPenalty=list(lambda=0.1, linDop=fDop(2)),
 yPenalty=list(lambda=0.000001, linDop=fDop(2)))

This result is displayed in Figure 6.8. From the figure, we see that the
bivariate coefficient function predicting knee angle as a function of
hip angle are much smoother.

Figure 6.7: Top left: knee angle functions (response). Clockwise from top right: hip
angle coefficients, fitted values, and residuals from an unsmoothed fit.

Chapter 6 Functional Linear Models

118

Conceptually, the two smoothing parameters could be handled by
cross validation, but the computational cost increases dramatically
with the number of parameters to be estimated. When the dependent
variable is scalar, it is possible to do cross validation on the scalar
residuals, as illustrated above. And for functional dependent
variables, the residuals are functions with values in the same domain
as the dependent variable, so that there is a choice of cross validation
smoothing criteria.

lip Data Set The following example is taken from Chapter 10 of Ramsay and
Silverman (1997). The data set was originally collected at the Haskins
Speech Laboratories at Yale University by V. Gracco. The
considerable preprocessing is described in Ramsay and Silverman,
and in Malfait and Ramsay. The S-PLUS data setlip consists of four
variables: EMG, acceleration, position, time.

Figure 6.8: Top left: knee angle functions (response). Clockwise from top right: hip
angle coefficients, fitted values, and residuals from a smoothed fit.

Example with Functional Dependent and Independent Variables

119

The goal here is to model lip acceleration, acceleration, as a
function of EMG activity EMG.To fit the historic linear model, we first
create an object fLip with 101 Fourier basis functions in the time
domain

> fLipBasis <- fBasis(type="Fourier", fDomain=c(0, 690),
 nbasis=101)
> fLip <- list(time=lip$time, fEmg=fVector(fLipBasis,
 lipemg, liptime), fAcc=fVector(fLipBasis,
 lipacc, liptime))

No Smoothing The code to fit the historic linear model without explicit smoothing:

> lip.hlm <- fLMFinElem(fAcc~fEmg, data=fLip, param=11,
 lag=4)

in which param is a parameter to specify the number of elements in
the domain of each argument of the bivariate regression function.
With param = 11, lag can be an integer range from 1 and 11. lag is a
parameter to specify in the lower bound of

, where is the lag length of each triangle
element used in basis functions. By default, an intercept is included in
the model. The fitted model lip.hlm contains a list, named fBeta, of
the functional data objects with class fFinElemFunction. The fitted
values and residuals can be estimated by the predict method:

> predfLip <- predict(lip.hlm, fLip$time)

We plot the data and the estimated bivariate regression function:

> par(mfrow=c(2,2))
> plot(fLip$fAcc)
> title("Functional Data fAcc")
> plot(lip.hlm$fBeta)
> title("Estimated Regression Function")

The fitted values and the residuals can be plotted by making choices 1
(for predicted value) and 2 (for residuals) in the menu produced by
the command:

0 690

lag x=

s0 t max 0 t –= x

Chapter 6 Functional Linear Models

120

> plot(predfLip)

Smoothing To smooth the shape of the regression function, fLMFinElem provides
a smoothing parameter lambda. This produces smoother coefficient
estimates, while at the same time having little effect on the magnitude
of the residuals.

> lip.hlms <- fLMFinElem(fAcc~fEmg, data=fLip, param=11,
 lambda=50000, lag=4)
> predliphlms <- predict(lip.hlms, fLip$time)

The results are displayed in. Note the smoother regression function,
compared withFigure 6.9:

m

pmp

Figure 6.9: Top left: lip acceleration (response), Clockwise from top right: estimated
regression function with lag=4, fitted values, and residuals from an unsmoothed fit.

Example with Functional Dependent and Independent Variables

121

Figure 6.10: Top left: lip acceleration (response), Clockwise from top right: estimated
regression function with lag=4, fitted values, and residuals from an unsmoothed fit.

123

Weather Example 125
Modeling the Grouped Data 125
Interpreting the Results 126
Cross Validation 127

Polychotomous Classification 129

FUNCTIONAL GENERALIZED
LINEAR MODELS 7

Chapter 7 Functional Generalized Linear Models

124

In functional linear models, the residuals are assumed to be
independent Gaussian random variables with a constant variance.
However, in many cases independence is adequate to insure unbiased
estimates. If the dependent variable is from some other probability
distribution (e.g. binomial, Poisson, or gamma), then a generalized
linear model is appropriate. S+FDA provides a function fGLM to fit
functional generalized linear models in which the dependent variable
is a scalar. It is not currently possible in S+FDA to fit functional
generalized linear models in which the dependent variable is a
function.

Weather Example

125

WEATHER EXAMPLE

The example involves daily average temperature and precipitation
measurements taken at 35 Canadian weather stations over the course
of a year. Functional data was obtained from this weather data using a
Fourier basis with 101 basis functions. Although some smoothing
occurred when the functional data was created since fewer basis
functions were used than the number of observation points (365),
additional smoothing was required.

We divided the 35 weather stations into two groups, representing
coastal and interior cities, respectively.

Modeling the
Grouped Data

We fit a functional logistic classification model to one of the groups of
stations to predict group membership. The fit for the coastal region is
accomplish as follows. We first define the coastal weather station
indicator variables, yCoastal, and then fit a functional generalized
linear model predicting this Bernoulli indicator in terms of both the
average daily temperature and precipitation functions at the
respective weather stations:

> Cities <- row.names(fWeather)
> CoastalCities <- c("Charlottetown", "Churchill",
 "Halifax", "Iqaluit", "Prince Rupert", "Resolute",
 "Saint Johns", "Sydney", "Vancouver",
 "Victoria", "Yarmouth")

> yCoastal <-as.numeric(as.logical(match(Cities,
 CoastalCities,nomatch=0)))
> glmCoastal <- fGLM(yCoastal ~ fTemp + fPrec,
 family=binomial, data=fWeather,
 penalty=list(lambda=10000, linDop=fDop(2)))

We use a single smoothing parameter, lambda, selected with a
minimum of experimentation. Although two penalty parameters
would be desirable because there are two predictors, this is not yet
possible in the S+FDA module. cross validation could be used to
select the penalty parameters, but this is more expensive than in the
functional linear model case because functional generalized linear
models require iterative algorithms.

Chapter 7 Functional Generalized Linear Models

126

Interpreting
the Results

Figure 7.1 shows that the fitted values for the models are all close to 0
or 1 and perfectly predict their groups.

> par(mfrow=c(1, 1))
> plot(glmCoastal$fitted, type="n", ylim=c(-.1, 1.1),
 xlab="observation number", ylab="")
#true classes
> points(yCoastal, pch=1, cex=1.5)
#fitted values
> points(glmCoastal$fitted, pch=18, cex=1)
> abline(h=c(0, 1))
> title("Fitted Values")

However, since there are only 35 weather stations and 365 functional
predictors (one independent variables for each day of the year), the fit
of the values used to define the models is an overly optimistic
estimate of their predictive ability. Below we evaluate the models
using cross validation.

Figure 7.1: Fitted values (diamonds) and binary response (open circles) for the
logistic model of weather data for coastal vs. interior cities.

observation number

0 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fitted Values

Weather Example

127

Cross
Validation

While it requires significant computation time, cross validation (also
known in this context as the leaving-out-one method - see
Lackenbruch, 1977) can be used to evaluate the classification
produced from the generalized linear model. Here we use cross-
validation to obtain a misclassification matrix:

> crossValidGLM <- function(lambda, y)
{
 fun <- function(i, fWeather, lambda)
 {
 ans <- fGLM(y ~ fTemp + fPrec, family=binomial,
 data=fWeather[-i,],
 penalty=list(lambda=lambda,
 linDop=fDop(2)))
 cat(i, " ")
 getCoef(ans$coef[[1]]) * 365 +
 fInProd(ans$coef[[2]], fWeather$fTemp[i],
 eps=0.00001) +
 fInProd(ans$coef[[3]], fWeather$fPrec[i],
 eps=0.00001)
 }
 dd <- data.frame(y=y, fTemp=fWeather$fTemp,
 fPrec=fWeather$fPrec)
 sapply(1:35, fun, fWeather=dd, lambda=lambda)
}

The predicted value is computed as the sum of three terms (one for
each coefficient): a constant term (times the length of the domain of
the functions, the integral of a constant) and two integrals, one for the
average daily temperature functions times the temperature coefficient
function, and one for the precipitation times the precipitation
coefficient function.

Predicted values for the coastal region logistic model can be
computed as follows:

> predCoastal <- crossValidGLM(10000, y=yCoastal)
> muCoastal <- binomial()$inverse(predCoastal)

We then use the predicted values (muCoastal) to compute the
probabilities of correct classification for the models defined by each
of the four groups, taking an observation to be classified in that group
if its predicted value is greater than 0.5. The results are plotted as
follows and displayed in Figure 7.2:

Chapter 7 Functional Generalized Linear Models

128

> par(mfrow=c(1,1))
> plot(glmCoastal$fitted, type="n", ylim=c(-.1, 1.1),
 xlab="observation number", ylab="")
#true classes
> points(yCoastal, pch=1, cex=1.5)
cross-validated estimates
> points(muCoastal, pch=4, cex=1)
> abline(h=c(0,1))
> title("Cross-validated Predictions")

Only 3 (Churchill, Prince Rupert, Schefferville) out of 35 weather
stations are misclassified, giving a cross-validated error rate of less
that 1%:

> Cities[(muCoastal > 0.5 & !yCoastal) |
 (muCoastal < 0.5 & yCoastal)]

Figure 7.2: Cross-validated predictions (crosses) and binary response (open circles).

observation number

0 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Crossvalidated Predictions

Polychotomous Classification

129

POLYCHOTOMOUS CLASSIFICATION

Polychotomous classification models are not currently available for
classification in S+FDA. When there are more than two groups, the
strategy of fitting a logistic model to each group and classifying
according to best prediction may work. Note that with this method an
observation could be classified into more than one group, or even fail
to be classified into any group.

131

Centering 133
Standardization 133

Analysis of the Bone Shape Data 135
Registration 136
Extracting the Functions 137
Principal Components 138
Interpretation 139
Plotting the Harmonic Loadings 140
Plotting the Mean Curves 141
Specifying a Rotation 142

FUNCTIONAL PRINCIPAL
COMPONENTS 8

Chapter 8 Functional Principal Components

132

Classical principal components analysis is used in many ways,
including analyzing data complexity, reducing data dimension,
studying relationships between variables, clustering observations, and
interpreting variances and covariances in multivariate analysis. These
same uses are also important in functional principal components
analysis, but in functional principal components the number of
“variables” in the analysis is infinite, so that reduction to a finite
number of principal component scores is the only way to make the
computation tractable. Functional principal component loadings are
also functions, and it may be desirable or even necessary to regularize
or smooth them. Historically, principal components extracted from
functional data are called harmonics.

The basic idea in functional principal components analysis is to find
functions whose inner products with the data yield the maximum
variation in the curves. The first principal component accounts for the
most variation, the second principal component accounts for the
largest variation orthogonal to the first principal component, and so
on. In this way, much of the variation in the random data can be
captured using only a few principal components.

Specifically, in classical multivariate analysis, if is a random
variable, the first principal component is the unit vector that
maximizes the variance of the linear combination or inner product

. In general the th principal component is the unit vector that

maximizes the variance of the inner product , and is orthogonal
to all of the previous principal components. There are a maximum of

 principal components, where is the dimension of .

In functional data, the inner product is defined by integration. For a
single random function , the process of determining functional
principal components is equivalent to selecting a grid of points in ,
say , where , computing the classical

principal components of the vector , and
then letting the grid size decrease to zero (and yielding an infinite
number of variables). Notice that, in theory, any number of principal
components can be computed, although in practice the number of
important principal components (those with “large” variances) will be
small.

x

1

1
T
x i

i

T
x

p p x

x t

t

t1 t2 tm t1 t2 tm

x x t1 x t2 x tm
T=

133

Specified as integrals, for a random functions , the th principal
component is the function that maximizes the variance of the

principal component score and satisfies the

constraints and for . For

two functional variables and , the th principal component
maximizes the variance of the random variable

 subject to the normality constraint

, and to orthogonality

constraints for all .

Principal components with three or more functional varieties are
handled by extension.

As in the classical case, functional principal components are
computed by obtaining a sample of realizations of the random
function, say , and then computing estimates of the

functions based upon the variances and covariances observed in
this sample.

Centering Centering, or subtraction of the mean, is usually performed prior to
extracting harmonics (principal components) because the interest is
usually in maximizing variances about the mean function. It is also
possible and common for researchers to compute “principal
components” from the uncentered data. However, if the mean
function is not everywhere zero, the largest principal component
obtained from this uncentered data is usually closely related to the
mean function. Although the extracted “principal components” no
longer reflect the linear combination with maximum variance (they
are not really principal components), they may still prove useful.

Standardization Analogous to classical multivariate analysis, it may sometimes be
desirable to standardize the functions by centering and transforming
the sample variance of each function (at each point in its domain) to a
variance of 1. This is akin to computing principal components on the
correlation matrix rather than on the variance-covariance matrix.
Notice, however, that standardization is not always possible. For

x t i

i t

Zi i t x t td=

i t i t td 1= i t j t 0= j i

x t y t i

Zi ix t x t td iy t x t td+=

ix t ix t td iy t iy t td+ 1=

ix t jx t td iy t jy t td+ 0= j i

xj t j 1 n=

i t

Chapter 8 Functional Principal Components

134

example, in some problems the random functions have restricted
endpoints and thus have a variance of zero at their endpoints with the
variance decreasing to zero in a regular manner as the endpoints are
approached (see Figure 8.1). As a consequence the standardized
functions are not defined at their endpoints, and may exhibit
undesirable behavior in nearby regions. In order to standardize, the
principal components would have to be computed over a reduced
domain. This option is not available in the current implementation of
S+FDA.

In the following we give an example based upon bone shapes. We
begin by describing how the data was collected and how the functions
we will use were derived from the given data. We then give a brief
technical discussion of functional principal components. Finally, we
give a complete principal-component analysis of the functional data.

Analysis of the Bone Shape Data

135

ANALYSIS OF THE BONE SHAPE DATA

Our example is from archeology, although the techniques could also
be used to study medical aspects of modern humans. The analysis is
similar to that given in Chapter 6 of Ramsay and Silverman (2002).
The data was collected on 96 femur bones from 60 individuals
originally buried at St. Peter’s Church in the north of England. Some
individuals had both their left and right femurs analyzed. The data is
concerned with the two dimensional shape of the interchondylar notch,
located in the femur at the knee. It was collected using a two-
dimensional x-ray of the notch, and consists a bone identifier, two
vectors containing the and coordinates of the bone notch outline
(from the x-ray), an indicator for male (TRUE is male), older (TRUE is
older), and eb, an indicator of eburnation (TRUE indicates the presence
of a polished bone surface caused by the complete loss of cartilage).
The and coordinates are measured in pixels, and were collected

as follows: For each location the two value(s) of corresponding to
the notch outline are noted.

Graphs of the first ten notch curves are given in Figure 8.1. The S-
PLUS code used to produce these plots is as follows:

> apply(boneNotch[, c("x","y")], 2, range)
 x y
 [1,] 19 66
 [2,] 102 125
> par(mfrow=c(1, 1))
> plot(19, 66, type="n", xlim=c(19,102), ylim=c(66,125),
 xlab="x", ylab="y")

> boneTmp <- split(boneNotch,boneNotch$boneID)
> dummy <- lapply(boneTmp[1:10], function(z) {
 imin <- min((1:length(z$y))[z$y==min(z$y)])
 yy <- z$y
 yy[1:imin] <- -yy[1:imin]
 ii <- order(yy)
 lines(z$x[ii], z$y[ii], type="l")
 })

Notice that in these curves, the femur bone is below the curve, and
that only the interchondylar notch is displayed in Figure 8.1.

x y

x y

x y

Chapter 8 Functional Principal Components

136

Registration Registration is the process of eliminating uninteresting differences
between the curves. The need for registration is apparent from Figure
8.1: each bone notch starts and ends at a different location, and the

depth of each bone notch is different. Because starting and ending
locations, notch depth, and curve orientation (due to whether the left
or right leg is measured) are partially artifacts of the way that the data
is gathered (the location of the bone on the x-ray), these differences
need to be eliminated prior to performing the analysis of interest.
Differences between curves based upon measuring the left or right leg
have already been eliminated by reflecting the curve through the
vertical axis. For these curves, the data extraction process (discussed
below) eliminates the remaining differences. It should be noted that
curve registration must be carried out with caution, because curve
differences that were not present in the original data could be
introduced in the process.

Figure 8.1: The first ten bone notch curves.

x

y

20 40 60 80 100

7
0

8
0

9
0

1
0

0
1

1
0

1
2

0

x

x

Analysis of the Bone Shape Data

137

Extracting the
Functions

The S-PLUS code used to extract the data is given in the help file for
boneData and is not reproduced here. Interested users should consult
this help file for details of the extraction.

Because it is not possible to represent each bone notch curve as a
single function (there may be two values for each value), here we

use two functions and giving the and coordinates of

the curve as a function of the distance along the curve () starting at
the left-most endpoint. The process of extracting these functions
begins by standardizing the and values by subtracting the
minimum and dividing by the range. All of the resulting curves start
at (0,1), end at (1,0), and reach a minimum along the axis. The

and coordinates are then sorted.

Rather than using the raw data values, adjacent values are averaged
to provide a modest amount of smoothing. The distance along the
curve is computed as the cumulative sum of the distances between
each of the points on the averaged curve. These distances are then
standardized so that each curve begins at and ends at .

The functional data objects and are computed from the
standardized distances using the fFunction constructor.

We use a B-spline basis of order 4 with ten basis functions is to
represent the and components of each bone notch curve.
Because there are only 10 basis functions, projection onto the basis
results into additional smoothing.

The functions and are placed into objects of class
“fVector”, called boneVecX and boneVecY, respectively, each having
96 functions, one function for each bone notch. We then create the
boneData data frame from these “fVector” objects and the older,
male, and eb predictors found in the raw bone data. The boneData
data frame is included with the S+FDA library. Additional details on
the conversion of the raw data into its functional form are given in
Chapter 6 of Ramsay and Silverman (2002).

The fPlotCycle command is used to plot the x functions against the y
functions for the same argument values:

> fPlotCycle(boneData$boneVecX[1:10],
 boneData$boneVecY[1:10])

y x

x t y t x y

t

x y

x x

y

t 0= t 1=

x t y t

x t y t

x t y t

Chapter 8 Functional Principal Components

138

The resulting plot is displayed in Figure 8.2.

Although these curves have been registered as discussed above,
additional registration may be desirable, because each curve may
cover slightly different portions of the notch, and the orientation of
each notch may vary from one curve to the next (the x-ray used to
obtain the curve may have a slightly different orientation). We ignore
these considerations in our analysis.

Principal
Components

In the following command the function fPCA is used to extract the first
ten harmonics (principal components) from the bone notch curves in
the boneData data frame:

> bonePCA <- fPCA(~boneVecX+boneVecY, boneData, nharm=10,
 center=T)

Here we simultaneously extract principal components for both
functional vectors boneVecX and boneVecY. Recall that these functions
give the and locations of the curves as a function of the distance
along the curve from the left end point, the curve length.

Figure 8.2: The first ten smoothed and registered bone notch curves.

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x y

Analysis of the Bone Shape Data

139

Interpretation The bonePCA object created above is an object of class “fPCA”. The
eigenvalues corresponding to each of the extracted harmonics are
returned as the vector values. These give the variance of the
corresponding harmonic. The proportion of the total variance
explained by the harmonic is returned as the vector varprop. The
order is such that the proportion of variance explained by the first
harmonic is largest. The cumulative proportions of the variances are
computed using the command:

> round(cumsum(bonePCA$varprop), 3)

which results in the following output:

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
 0.456 0.751 0.869 0.912 0.948 0.974 0.984 0.989
 PC9 PC10
 0.993 0.996

The first three harmonics are clearly the most important, accounting
for 86.9 percent of the total variation in the 96 pairs of functions.
These three harmonics can be plotted using the command
plot(bonePCA). However, because we simultaneously extracted the
harmonics from the two functions and , for this data, it is
easiest to interpret the harmonics if they are plotted about the mean
of the bone notch curves, which can be accomplished as follows. We
first standardize the harmonic to the amount of variance it explains
by multiplying the harmonic coefficients by the square root of the
corresponding eigenvalues:

> harmCoef <- getCoef(bonePCA$harmonics[1:3]) %*%
 diag(sqrt(bonePCA$values[1:3]))
> harm <- fVector(harmCoef,getBasis(bonePCA$harmonics),
 getNames(bonePCA$harmonics))

The mean functions for boneVecX and boneVecY (from which the
harmonics were extracted) are then extracted from the bonePCA object
using the getComponent function for obtaining the components of a
composite basis:

> meanX <- getComponent(bonePCA$fMean, 1)
> meanY <- getComponent(bonePCA$fMean, 2)

A composite basis is currently created for the means and the
harmonics for computational reasons. In the future these components
will be split out, and a list of functional components will be returned.

x t y t

Chapter 8 Functional Principal Components

140

Plotting the
Harmonic
Loadings

We are now in a position to plot the first three harmonics. Usually the
plot.fPCA function would be used, but here we have two related
functions, and so a cycle plot is preferred. Plotting is accomplished as
follows:

> par(mfrow=c(3, 1))
> percnt <- c(45.6, 29.5, 11.8)
> for (i in 1:3) {
 x1 <- fFunction(getComponent(harm[i], 1))
 x <- fVector(meanX, meanX + x1, meanX - x1)
 y1 <- fFunction(getComponent(harm[i], 2))
 y <- fVector(meanY, meanY + y1, meanY - y1)
 fPlotCycle(x,y)
 title(paste("Bone Data P.C.", i, "\n", percnt[i],
 "% of the Variance"))
 }

The “fVector” objects x and y contain the function mean, and the
mean plus or minus the harmonic coefficients, for each harmonic.
The command fPlotCycle(x,y) plots the vector of functions, as
shown in Figure 8.3:

Figure 8.3: Variation of the first three harmonics about the function mean.

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 1
45.6% of the Variance

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 2
29.5% of the Variance

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 3
11.8% of the Variance

Analysis of the Bone Shape Data

141

The offset (in the or direction) from the mean gives the
magnitude of the principal component loading at each point in the
curve. Values above or to the right of the mean indicate a positive
impact on the principal component score, while values below or to
the left of the mean indicate a negative impact.

Close inspection of Figure 8.3, reveals that the offset is positive prior
to the minimum, and negative after the minimum, with the highest
magnitudes along the sides of the notch. Thus the first harmonic
seems to measure a left or right shift in the notch. This is a possible
indication that the data needs further registration.

The second harmonic looks very much like the first harmonic, but all
of the loadings are positive, concentrated on the notch walls, with
more emphasis on the left notch wall. This seems to be a measure of
the notch width.

The third harmonic has near zero loadings everywhere, except near
the top of the right notch wall. Some curves are indented near this
location. This harmonic seems to be a measure of this indentation in
the right notch wall.

Plotting the
Mean Curves

Another plot that is useful in understanding the principal components
is to plot the mean curves for a specified range of harmonic scores on
each harmonic. Here we plot the overall mean curve, the mean of the
curves with scores in the quantile range (0.60, 0.90) (on the first
harmonic), and the mean of the curves with scores in the quantile
range (0.10, 0.40):

> par(mfrow=c(3, 1))
> for(i in 1:3) {
 q <- quantile(bonePCA$scores[, 1],
 probs=c(0.9, 0.6, 0.4, 0.1))
 y <- bonePCA$scores[,i]
 iu <- y < q[1] & y > q[2]
 il <- y < q[3] & y > q[4]
 ansX <- fVector(meanX,mean(boneData$boneVecX[il]),
 mean(boneData$boneVecX[iu]))
 ansY <- fVector(meanY,mean(boneData$boneVecY[il]),
 mean(boneData$boneVecY[iu]))
 fPlotCycle(ansX, ansY)
 title(paste("Bone Data P.C. ", i, "\nMeans Curves"))
 }

x y

Chapter 8 Functional Principal Components

142

The resulting plots are given in Figure 8.4.

The curves look much like the harmonic curves in Figure 8.3.

Specifying a
Rotation

As in classical multivariate data analysis, the harmonics are not
unique - they can be rotated. The resulting rotated harmonics no
longer maximize the variance (though the total variance they explain
remains unchanged), but they are potentially simpler to interpret
because the rotation criteria that is used is chosen such that the
resulting loadings exhibit simple structure - they tend to be either large
in magnitude, or they are close to zero.The simplest rotation can be
accomplished as follows:

> rotateBonePCA <- rotate(bonePCA, nharm=3)

Once the functional principal components have been rotated, a plot
of the coefficients can be obtained using a simple modification of the
code above:

Standardize the harmonic coefficients
> rharm <- rotateBonePCA$harmonics

Figure 8.4: The mean bone curves for harmonic scores in a specified range.

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0
0
.0

0
.4

0
.8

Bone Data P.C. 1
Means Curves

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 2
Means Curves

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 3
Means Curves

Analysis of the Bone Shape Data

143

> rharmCoef <- getCoef(rharm)
> rharmCoef <- rharmCoef%*%diag(sqrt(bonePCA$values[1:3]))
> rharm <-fVector(rharmCoef, getBasis(rharm),
 getNames(rharm))

Plot the rotated harmonics
> par(mfrow=c(3, 1))
> percnt <- c(31.7, 31.1, 11.8)
> for (i in 1:3) {
 x1 <- fFunction(getComponent(rharm[i], 1))
 x <- fVector(meanX, meanX+x1, meanX-x1)
 y1 <- fFunction(getComponent(rharm[i], 2))
 y <- fVector(meanY, meanY+y1, meanY-y1)
 fPlotCycle(x,y)
 title(paste("Bone Data P.C.", i, "\n", percnt[i],
 "% of the Variance"))
 }

The resulting plot is displayed in Figure 8.5.

Figure 8.5: The rotated principal functions.

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 1
31.7% of the Variance

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 2
31.1% of the Variance

fd1

fd
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Bone Data P.C. 3
11.8% of the Variance

Chapter 8 Functional Principal Components

144

For the rotated loadings, the first harmonic measures the indentation
in the right notch wall, the second harmonic measures the indentation
in the left notch wall, and the third harmonic measures asymmetry in
the notch. Notice that the roles of the first and third harmonic are
switched from the unrotated case and that the indentation in the right
notch wall now exhibits a much larger magnitude, while the
asymmetry measure (the third rotated harmonic) is now much smaller
in magnitude.

145

Analysis of the Gait Data 147
Regularization 149
Interpreting the Coefficients 151

CANONICAL CORRELATION 9

Chapter 9 Canonical Correlation

146

Classical canonical correlation analysis finds linear transformations of
two sets of variables that maximize the correlation between the
transformed variables. If and are two functions defined on
the same interval domain, functional canonical correlation analysis
seeks coefficient or weight functions and that maximize
the correlations between the random canonical variables

 and . Functional canonical

correlation analysis provides a mechanism for investigating the
relationship of the variability of the two functions.

In the classical case, the canonical correlations are computed by
solving a generalized eigenvalue problem, and a similar method is
used for functional canonical correlations. And as in the classical case,
additional canonical coefficients can be determined, orthogonal
(uncorrelated) to those already found.

x t y t

wx t wy t

W wx t x t td= Z wy t y t td=

Analysis of the Gait Data

147

ANALYSIS OF THE GAIT DATA

Here we consider gait data described in the chapter on functional
linear models (and in Chapter 12 of Ramsay and Silverman 1997)
consisting of measurements of the angles made by the hip and by the
knee of each of 39 children at twenty time points in a single stride or
gait cycle.

The gait basis is a an object of class “FourierBasis” on the domain
(0,1) with 21 basis functions:

> fGaitBasis <- fBasis(type="Fourier", fDomain=c(0,1),
 nbasis=19)

> gaitNames <- list(NormalizedTime=gaittime,
 Cases=seq(dim(gaitarray)[2]), Angle="deg")

> fHipVec <- fVector(object=fGaitBasis,y=fHip,
 fArgs=gaittime, fNames=gaitNames)
> fKneeVec <- fVector(object=fGaitBasis,y=fKnee,
 fArgs=gaittime, fNames=gaitNames)

> fGait <- data.frame(hip=fHipVec, knee=fKneeVec)

Since there are only 20 measurements over the gait cycle, the basis
adequately captures all of the information collected with no error.

Because we have standardized with respect to time, the domain of the
functions (argument fDomain) is the interval (0,1). The resulting
functions can be plotted as follows:

> par(mfrow=c(2,1))
> plot(fGait[,"hip"], main="Hip Angle")
> plot(fGait[,"knee"], main="Knee Angle")

The display is shown in Figure 9.1

Next, we compute and plot the coefficient functions and
for the canonical correlations using S+FDA statements:

> gaitCancor <- fCancor(fGait[,1], fGait[,2])
> plot(gaitCancor, main="No Smoothing")

The result is displayed in Figure 9.2. Note that the coefficient or
weight functions are highly variable.

wx t wy t

Chapter 9 Canonical Correlation

148

.

Figure 9.1: Plot of the hip (top) and knee (bottom) angles for 39 children as they
walk.

Figure 9.2: Canonical function coefficient for the first (top) and second set of
canonical coefficient functions. The solid curve corresponds to the hip data.

No Smoothing

NormalizedTime

W
e
ig

h
t
fu

n
c
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
3

No Smoothing

NormalizedTime

W
e
ig

h
t
fu

n
c
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

Analysis of the Gait Data

149

In this unsmoothed analysis, all of the canonical correlations are close
to 1. The reason for this can be seen by considering conventional
methods. In a conventional canonical correlation analysis, we would
evaluate each of the 39 knee and hip angle functions over a vector of
time points , and would then compute the canonical

correlations over the sets of variates for the hip and knee angles. A

necessary condition for the -dimensional variance-covariance
matrix between the hip and knee variables to be nonsingular is that
the number of observations be greater than , otherwise there
would in most cases be an infinite number of linear transformations
for which canonical correlation would be equal to 1.

In a functional canonical correlation analysis, the grid of points
becomes arbitrarily large, so that usually a infinite number of weight
functions would result in a functional canonical correlation equal to 1.

Regularization To avoid such overfitting in the canonical correlation analysis, we
regularize or smooth the canonical coefficients by applying a penalty
function. One possibility for choosing the penalty parameter is to use
cross validation, and define the score for a given penalty parameter to
be the correlation of the canonical correlations obtained by deleting
each observation is turn. The penalty parameter is then chosen so as
to maximize this correlation (see Section 12.2.3 of Ramsay and
Silverman, 1997).

The following computes the cross-validated correlations for six values
of the penalty parameter (denoted by the lambda component of the
xPenalty argument). Some preliminary exploration was involved in
choosing to these six values appropriately.

> crossValid <- function(lambda)
{
 fun <- function(i, fGait, lambda)
 {
 pen <- list(lambda=lambda, linDop=fDop(2))
 ans <- fCancor(fGait[-i, 1],fGait[-i, 2],
 xPenalty=pen, yPenalty=pen, ncan=1)
 c(fInProd(ans$xWeight[1], fGait[i, 1]),
 fInProd(ans$yWeight[1], fGait[i, 2]))
 }
 ans <- sapply(1:39, fun, fGait=fGait, lambda=lambda)

ti i 1 p=

p

p

2p 1+

Chapter 9 Canonical Correlation

150

 cor(t(ans))[1,2]
}
> xLam <- seq(from=5.e-6, to=5.e-5, by=5.e-6)
> aa <- double(length(xLam))
> for(i in 1:length(xLam))
 aa[i] <- crossValid(xLam[i])

> par(mfrow=c(1, 1))
> plot(xLam, aa, type="l")
> points(xLam, aa)

The resulting plot of the cross-validated correlations versus the
penalty parameter value lambda is shown in Figure 9.3.

The third value of lambda (0.000015) maximizes the correlation,
although that the correlations do not vary significantly over the values
of lambda considered. We fit the final canonical correlations with
lambda equal to 0.000015:

> gaitCancor <- fCancor(fGait[, 1], fGait[, 2],
 xPenalty=list(lambda=0.000015,

Figure 9.3: Cross-validated correlations for six values of the penalty parameter.

xLam

a
a

0.00001 0.00002 0.00003 0.00004 0.00005

0
.8

5
6

0
.8

5
8

0
.8

6
0

Analysis of the Gait Data

151

 linDop=fDop(2)))
> par(mfrow=c(2, 1))
> plot(gaitCancor, main="Smoothed Result")

The result is displayed in Figure 9.4.

The regularization gives a better (less optimistic) estimate of the first
canonical correlation.

While cross validation is an effective means of estimating a penalty
for the first canonical correlation, this penalty may not be appropriate
for the remaining canonical correlations. Moreover, different
penalties cannot be used for different levels of canonical correlation
because of loss of orthogonality, so that in general determining more
than one functional canonical correlations is not straightforward.

Interpreting
the
Coefficients

As in a functional principal component analysis, interpretation of the
canonical correlation coefficient (weight) functions is important in
understanding the analysis. The weight functions are normalized to

Figure 9.4: Smoothed weighting functions for the first two canonical correlations.
The solid curve corresponds to the hip data.

Smoothed Result

NormalizedTime

W
e

ig
h
t

fu
n
c

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1

Smoothed Result

NormalizedTime

W
e

ig
h
t

fu
n
c

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

Chapter 9 Canonical Correlation

152

have norm (integral of the squared function) equal to 1. At each
time point the weight function value is the weight that is given to the
deviation of the function from the function mean.

From the top half of Figure 9.4, it is apparent that highly positive
canonical scores for both the hip and knee curves tend to be less than
the mean at both tails, and greater than the mean in the middle of the
stride, while highly negative scores tend to be greater than the means
in the tails, and less than the mean in the middle of the curve. The
knee curve places more weight on the lower tail, with less weights on
the upper tail. This may reflect a “locking” of the knee towards the
end of the stride. This is illustrated by comparing the mean difference
curves for the “middle” range of the positive values versus the
“middle” negative values. The following code plots these differences
on both the first, and the second, canonical variates:

> par(mfrow=c(2, 2))
> ii <- order(gaitCancor$variates[, 1, 1])
> plot(fVector(mean(fGait[, 1]), mean(fGait[ii[6:15], 1]),
 mean(fGait[ii[25:34], 1])), main="Can. 1, Hip")
> ii <- order(gaitCancor$variates[,1,2])
> plot(fVector(mean(fGait[, 2]), mean(fGait[ii[6:15], 2]),
 mean(fGait[ii[25:34], 2])), main="Can. 1, Knee")
> ii <- order(gaitCancor$variates[, 2, 1])
> plot(fVector(mean(fGait[, 1]), mean(fGait[ii[6:15], 1]),
 mean(fGait[ii[25:34], 1])), main="Can. 2, Hip")
> ii <- order(gaitCancor$variates[, 2, 2])
> plot(fVector(mean(fGait[, 2]), mean(fGait[ii[6:15], 2]),
 mean(fGait[ii[25:34], 2])), main="Can. 2, Knee")

The resulting plot is displayed in Figure 9.5.

In the hip curves for the first canonical correlation (upper left), the
positive values for the canonical variate tend to be below the curve at
the beginning and end of the cycle, and above the curve about
halfway through the cycle, where the minimum hip angle is reached.
These individuals show less of a swing in their hip movement than the
average. The negative values for the canonical deviate show much the
reverse, being above the curve at the beginning and end of the cycle,
and reaching a smaller minimum than the average. The range of their
hip angles tends to be larger than the average. Similar statements

l-2

Analysis of the Gait Data

153

apply to the knee angle in canonical variate 1 (upper left): the positive
canonical variates tend to have less extreme knee movement, while
the negative values tend to have more extreme knee movement.

We now consider the second canonical variate in the second row of
Figure 9.5. These curves are much like the two curves for the first
canonical variate, except that there is much less variability in the
early part of the curve - the variability is concentrated around 0.85 for
the hip, where the positive canonical values show a smaller maximum
than the negative canonical variate, and around 0.7 for the knee.
Again, the positive variates show less of an extreme at this maximum
than do the negative variates.

Figure 9.5: The mean curve (solid line) mean curve for some positive (dashed line)
and negative (dotted line) values of the canonical deviates.

Can. 1, Hip

NormalizedTime

A
n

g
le

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

5
0

Can. 1, Knee

NormalizedTime

A
n

g
le

0.0 0.2 0.4 0.6 0.8 1.0

2
0

4
0

6
0

Can. 2, Hip

NormalizedTime

A
n

g
le

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

5
0

Can. 2, Knee

NormalizedTime

A
n

g
le

0.0 0.2 0.4 0.6 0.8 1.0

2
0

4
0

6
0

155

Clustering Precipitation Data 157
Standardizing 157
Clustering 159

Clustering Temperature Data 162

Summary 164

FUNCTIONAL CLUSTER
ANALYSIS 10

Chapter 10 Functional Cluster Analysis

156

Cluster analysis is an exploratory method used to find groups or
clusters of similar data points. Classical hierarchical cluster analysis
requires a matrix containing the distances between the items to be
clustered. To compute a distance matrix, a metric or distance measure
between any two data points is required. Functional methods offer
many methods for computing distance matrixes, as was seen in
Chapter 1, where the distance measure was taken as the integrated
squared distance or distance between the two functions first
derivatives.

Here we consider two examples involving daily measurements of
precipitation and mean daily temperature at 35 Canadian weather
stations over a one-year period. The functions provide an estimate of
the expected daily temperatures at these stations. Ideally, additional
years of observations would be desirable for analysis. We proceed by
regularizing or smoothing the data, and then using the resulting
functions to cluster the weather stations. As in the example in
Chapter 1, the distance measure is obtained from the first derivatives
of the smoothed functions.

l2

Clustering Precipitation Data

157

CLUSTERING PRECIPITATION DATA

We first consider the daily precipitation data, and begin by smoothing
the data using the construct function fVector. Daily precipitation is
often highly variable with no precipitation on some days and a large
amount of precipitation on others. Moreover, dry spells can last for
quite some time, as can rainy periods. We are interested in the
“expected” precipitation function, but we have only one year of
measurements. Because we are interested in the first derivative
function (the rate of change of the expected precipitation) and not in
the measurement errors about the function, cross validation for these
errors is not really helpful and we simply smooth until we seem to
have an appropriate amount of smoothing by examining the first
derivative of the smoothed function:

> sPrec <- fVector(fWeather$fPrec,
 penalty=list(lambda=100000, linDop=fDop(2)))
> par(mfrow=c(2, 1))
> plot(sPrec, main=”Precipitation Functions”)
> plot(fVector(sPrec, linDop=fDop(1)),
 main=”Precipitation Derivatives”)

In this code the unsmoothed precipitation functions are contained in
the fPrec variable in the fWeather data frame (see the help file for
fWeather). The smoothed functions are displayed in Figure 10.1.
Looking at this Figure, the precipitation functions and their
derivatives are reasonably smooth, giving a fairly good idea of the
trend in the precipitation over the year that the data was measured.

Standardizing Some patterns are evident in the expected precipitation functions, but
precipitation is highly variable, depending to a considerable extent on
local situations. For example, the western sides of mountains on the
west coast of North America tend to get more rain as the weather
station elevation increases (because of lifting), but the “trend” in
weather variation is identical at all elevations. Because of this
increase, we should be less interested in clustering based solely on the
amount of precipitation, but rather on the rate of precipitation over
the course of the year. Therefore, we standardize all weather stations
to a fixed amount of fifty inches. This is accomplished by first

Chapter 10 Functional Cluster Analysis

158

integrating the smoothed precipitation functions over the year to get
the total amount of precipitation, and then adjusting each function so
that its integral is 50:

> precInt <- fInt(sPrec)/50
> ssPrec <- fVector(t(t(getCoef(sPrec))/precInt),
 getBasis(sPrec), getNames(sPrec))
> par(mfrow=c(2, 1))
> plot(ssPrec, main="Standardized Precipitation")
> plot(fVector(ssPrec, linDop=fDop(1)), main=
 "Derivative of the Standardized Precipitation")

This result is displayed in Figure 10.2, which shows that the patterns
of precipitation are now much more apparent. Indeed, some stations
report the bulk of their precipitation over the winter months, while in
others, most precipitation occurs in the summer.

Figure 10.1: Plot of the “expected” precipitation functions for 35 Canadian weather
stations (top), with the first derivative (bottom).

Clustering Precipitation Data

159

Clustering To perform a hierarchical cluster analysis, we must first compute the
between-station distance matrix using S+FDA function fDist. Here
we use the integrated squared differences in the rate of change of
precipitation as our clustering criterion. The S-PLUS function hclust
is then used to cluster the data using a complete-linkage algorithm:

> ssPrecDist <- sqrt(fDist(ssPrec, linDop=fDop(1)))
> ssPrecClust <- hclust(ssPrecDist)

Complete linkage is chosen because we want the maximum within
cluster distance to be small. Rather than plot the cluster tree, we plot
the means of the seven cluster solution. The cutree function is used to
identify stations within the seven clusters, as follows:

> ii <- cutree(ssPrecClust, k=7)
> ssPrecMean <- ssPrec[1:7]
> for(i in 1:7)
 ssPrecMean[i] <- mean(ssPrec[ii==i])
> par(mfrow=c(1, 1))
> plot(ssPrecMean,

Figure 10.2: The precipitation functions standardized to 50 inches per year.

Chapter 10 Functional Cluster Analysis

160

 main="Mean Functions for Seven Clusters")
> legend(0, 0.325, as.character(1:7), lty=1:7)

The result is displayed in Figure 10.3, which shows that the cluster
mean functions exhibit distinct patterns of precipitation.

To see if the clustering result makes sense, we find the cities
corresponding to the weather stations for each cluster:

• 1) Calgary, Edmonton, Prince Albert, Regina, The Pass,
Winnipeg

• 2) Churchill, Dawson, Inuvik, Iqaluit, Schefferville, Thunder
Bay, Uranium City, Whitehorse, Yellowknife

• 3) Charlottetown, Fredericton, Halifax, Prince Rupert, St.
Johns, Sydney, Yarmouth

• 4) Kamloops, Prince George

• 5) Arvida, Bagotville, London, Montreal, Ottawa, Quebec,
Sherbrooke, Toronto

• 6) Vancouver, Victoria

Figure 10.3: Mean functions for the seven clusters.

Mean Functions for Seven Clusters

day

In
c
h

0 100 200 300

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0 1

2
3
4
5
6
7

Clustering Precipitation Data

161

• 7) Resolute

Some of these results are expected, e.g., we would expect the far
northern cities in cluster 2 to be similar, and Vancouver and Victoria,
both in cluster 6, clearly share the same weather pattern being less
that fifty miles apart and separated only by a body of water. On the
other hand, we have no reason to believe that Halifax, on the east
coast, and Prince Rupert, on the west coast, would have the same
weather patterns, although they are both coastal cities. Clearly
clustering based upon precipitation patterns is useful in finding
groups of weather stations with related weather patterns, but
precipitation patterns alone are insufficient to characterize the
weather data.

Chapter 10 Functional Cluster Analysis

162

CLUSTERING TEMPERATURE DATA

We now consider the temperature data. Unlike the precipitation data,
here we do not standardize to a constant mean temperature. We look
at the rate of change of the average daily temperature, rather than at
the expected average daily temperature function. As with the
precipitation data, smoothing is used to obtain an “expected” daily
temperature from a single year of data.

The S+FDA statements used to smooth the data, perform a cluster
analysis, and compute and plot the cluster mean functions are as
follows:

> sTemp <- fVector(fWeather$fTemp,
 penalty=list(lambda=50000, linDop=fDop(2)))
> sTempDist <- sqrt(fDist(sTemp, linDop=fDop(1)))
> sTempClust <- hclust(sTempDist)
> jj <- cutree(sTempClust, k=7)
> sTempMean <- sTemp[1:7]
> for(i in 1:7)
 sTempMean[i] <- mean(sTemp[jj==i])
> par(mfrow=c(2,1))
> plot(sTempMean, main=
 "Temperature Cluster Mean Functions")
> plot(fVector(sTempMean), main=
 "Derivatives of Temperature Cluster Mean Functions")
> legend(300, 0.4, as.character(1:7), lty=1:7)

The result is shown in Figure 10.4.

The temperature-based clusters are composed of the following
stations. Here the number in parenthesis is the cluster number for the
plot legend.

1. (3) Calgary, Edmonton, Kamloops, Prince George, Whitehorse

2. (1) Dawson, Prince Albert, Regina, The Pas, Uranium City,

 Winnipeg, Yellowknife

3. (6) Charlottetown, Halifax, St. Johns, Sydney, Yarmouth

4. (5) Churchill, Iqaluit, Schefferville

5. (4) Arvida, Bagotville, Fredericton, London, Montreal, Ottawa,

Clustering Temperature Data

163

 Quebec, Sherbrooke, Thunder Bay, Toronto

6. (7) Prince Rupert, Vancouver, Victoria

7. (2) Inuvik, Resolute

Again there are stations whose cluster assignment make sense (e.g.,
cluster 6 (7)), as well as clusters which are difficult to interpret (e.g,
cluster 2 (1)).

Figure 10.4: The cluster mean functions for temperature (top) and its derivative
(bottom).

Temperature Cluster Mean Functions

day

D
e

g
 C

0 100 200 300

-3
0

-2
0

-1
0

0
1
0

2
0

Derivatives of Temperature Cluster Mean Functions

day

D
e

g
 C

0 100 200 300

-0
.4

-0
.2

0
.0

0
.2

0
.4

1
2
3
4
5
6
7

Chapter 10 Functional Cluster Analysis

164

SUMMARY

Cluster analysis is an exploratory technique. Functional data methods
offer the advantage of allowing a greater variety of clustering matrixes
to choose from. The examples involving the clustering of Canadian
weather stations are meant to be illustrative, since the known
locations of weather stations can be used to infer which ones should
exhibit similar weather patterns.The objective is not so much to find
“real” clusters of stations, but rather to learn how the weather patterns
at the different stations are related. Some of the clusters obtained
consist of stations that are located in the same region, which we would
expect similar to have weather patterns. Other aspects of the
clustering are harder to interpret (e.g., assignment of Prince Rupert
and Halifax to the same cluster), although they may also indicate
relationships in weather patterns for stations at some distance from
each other. A cluster analysis that accounted for both precipitation
and temperature (and other weather related variables such as
humidity) might be preferable, provided a suitable clustering metric
could be found.

Methods for determining the number of clusters in functional cluster
analysis are identical to those in the classical case, and thus are not
discussed further here.

If groupings for some of the data are known in advance, it may be
preferable to use a discriminant function analysis to find the variables
and matrix that best classify the remaining observations. In the
chapter on functional generalized linear models, we use a form of
discriminant function analysis, functional logistic models, to classify
the weather stations.

165

S+FDA Functions for Principal Differential Analysis 168

Radioactive Decay Example 169

Harmonic Oscillator Example 173
Underdamped + Resonance 173

Lip Movement Example 178
Kernel Basis Functions 180
Change of Basis 181
Comparison with PCA 184
Summary 186

PRINCIPAL DIFFERENTIAL
ANALYSIS 11

Chapter 11 Principal Differential Analysis

166

Principal differential analysis (Ramsay 1996) estimates linear systems of
ordinary differential equations approximately satisfied by functional
data. This is of interest in physical processes, where, for example, the
one-dimensional motion of an object is a function of time that solves
an ordinary differential equation. The Maxwell equations are
another well known physical example. Biological, chemical and other
phenomena also often satisfy ordinary differential equations, and
discovering the form of these equations can help to understand the
nature of the underlying process.

More formally, for a sample of functions , principal

differential analysis determines a linear differential operator of

degree and/or a function for which for all .

Here is defined as:

where the operator notation has the following interpretation:

 and , the derivative of .

In principal, both the forcing function and the linear differential
operator weights (coefficients) may be functional data objects.

However, the current implementation may not be reliable unless the
linear differential operator is known to have constant coefficients.
Methods that better handle more general linear differential operators
are under active research, and will be added to S+FDA in the future.

Given the form of and the , the linear differential equation

is estimated by least squares (or penalized least squares). Either

or one of the must be known. Computational procedures are

discussed in Chapter 14 of Ramsay and Silverman (1997). Penalized
least squares estimation minimizes the criterion:

which reduces to a least squares criterion if the penalty term is
omitted.

fj t j 1 n=

L

m t Lfj t t j

L

L i t D
i

i 0=

m

=

D
0
fj t fj t= D

i
fj t

d
i
fj t

dt
i

--------------= i
th

fj t

t

i t

t i t

t

i t

167

The function is called the forcing function since, when , it
corresponds to the external force applied to a physical system. If
is identically zero, the resulting differential equation is said to be
homogeneous. Otherwise the system is nonhomogeneous.

When the forcing function and/or weight functions are
unknown, principal differential analysis can be used to estimate them
and elucidate the process underlying the functions .

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of basis functions that
may be considerably more compact than the current representation.
This follows from the fact that all solutions to a linear differential
equation can be expressed as the sum of:

• a particular solution

and

• a linear combination of basis functions for the null space or
kernel of the linear differential operator.

Although the current implementation of S+FDA cannot currently
handle arbitrary bases, such a representation may nevertheless be
useful in an analysis.

Lfj s s–
2
s penalty+d

j 1=

n

t m 2=

t

t i t

fj t

Chapter 11 Principal Differential Analysis

168

S+FDA FUNCTIONS FOR PRINCIPAL DIFFERENTIAL
ANALYSIS

The S+FDA function fPDA estimates the weight functions for the

linear differential operator , and/or the forcing function, .
The fPDA object is a list with two components:

• an object of class fLinDop which gives the coefficients of the
estimated linear differential operator.

• an object of class fFunction which gives the estimated forcing
function.

The fPDA object also has fitted.values and residuals from
predictions of the original functional data as attributes.

There is a predict method for fPDA objects that calls a function
fLinDopSolve to solve the linear differential equation. The fitting for
prediction is done by linear regression involving the kernel basis
functions of the linear differential operator and a particular solution to
the differential equation if there is a nonzero forcing function. See
Ramsay and Silverman (1997) for more details.

i t

L t

Radioactive Decay Example

169

RADIOACTIVE DECAY EXAMPLE

Consider radioactive decay defined by

where is the amount of a chemical element present at time ,
is the rate constant intrinsic to the element, and is the rate of
decay. The linear differential operator is:

The goal is to estimate .

To illustrate the S+FDA principal differential analysis function, fPDA,
we construct an example of functional data described by the above
radioactive decay equation. We simulate data for iodine 131, for
which when the unit of time is days.

> rateConstantI131 <- 0.0864
> Time <- 0:50
> Y <- matrix(0, 51, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10)
 Y[,j] <- (100 + rnorm(1, sd=10))*
 exp(rateConstantI131*Time)

Since the differential equation is of order one, we use a B-spline basis
of order four so that the first derivative will be a smooth cubic spline.

> basis <- bsplineBasis(c(0,50), norder=4, nbasis=10)

The functional data object created from the basis is:

> fY <- fVector(basis, Y)

Plot the functional data (see Figure 11.1:):

> par(mfrow=c(1, 1))
> plot(fY, main="Radioactive Decay of Iodine 131")

y t ky t–=

y t t k

y t

L D
1

kD
0

+=

k

k 0.0864=

Chapter 11 Principal Differential Analysis

170

To estimate the rate constant, we first call fPDA.

> decayPDAconst <-
 fPDA(fY, weights=list(constantBasis(fDomain=
 c(0, 50)), 1), forcing=0)

Here we have set weights=list(constantBasis(fDomain= c(0,50)),
1) to indicate that the first order coefficient is known to be equal to 1,
and the zeroth order coefficient needs to be estimated. We use a
constantBasis to ensure that the estimated coefficient is a constant.

The value of the rate constant estimate is then given as follows:

> rateConstantEstimate <-
 fEval(decayPDAconst$linDop[[1]], 25)
> rateConstantEstimate
 [,1]
[1,] 0.08638197

(since the coefficient is constant it suffices to evaluate the weight
function at any point in the domain).

Figure 11.1: Functional data for radioactive decay of Iodine 131.

Radioactive Decay of Iodine 131

time

a
m

o
u

n
t

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0
1

0
0

Radioactive Decay Example

171

The following code plots the original functional data object, the
predictions produced by predict.fPDA, the residuals from the
predictions, and the operator residuals ():

> predictions <- predict(decayPDAconst)
> par(mfrow=c(2, 2))
> plot(fY, main="Original Functional Data")
> plot(predictions$fitted,
 main="Predicted Functional Data")
> plot(predictions$residuals,
 main="Residuals of Predicted Values")
> Lx <- fEval(fY, fArg=Time, linDop=decayPDAconst$linDop)
> plot(fVector(getBasis(fY), y=Lx),
 main="Differential Operator Residuals")

In the example just given, we chose a constant basis because of the
theoretical equation of decay. But it may be of interest to know what
fPDA would estimate if we did not make this assumption.

> decayPDAvar <- fPDA(fY, weights=list(NULL, 1), forcing=0)

Figure 11.2: Functional data, predicted fitted values, residuals of predicted values,
and operator residuals, when constant coefficients are assumed.

Lf

Original Functional Data

time

a
m

o
u
n

t

0 10 20 30 40 50

0
2
0

4
0

6
0

8
0

1
0

0

Predicted Functional Data

time

a
m

o
u
n

t

0 10 20 30 40 50

0
2
0

4
0

6
0

8
0

1
0

0

Residuals of Predicted Values

time

re
s

id
u
a

ls

0 10 20 30 40 50

-0
.0

0
5

0
.0

0
.0

0
5

0
.0

1
0

Differential Operator Residuals

args

v
a

rs

0 10 20 30 40 50

-0
.0

0
5

0
.0

0
5

0
.0

1
5

Chapter 11 Principal Differential Analysis

172

Setting the first element of weights to NULL causes the basis of the
functional data fY to be used in estimating the forcing function.
More generally, a basis can be specified for each unknown function in
the linear differential equation.

Plot the estimated rate of decay.

> plot(decayPDAvar$linDop[[1]],
 ylab="Decay Rate Estimate", xlab="Domain",
 main="Decay Rate Estimate, using inherited basis")
> abline(h=-0.0864)

Figure 11.3: shows that on average the estimated rate of decay is close
to the theoretical rate. However, there are edge effects, hinting at the
difficulties to be encountered in situations where less is known about
the underlying process, and one or more coefficients are estimated
using a nonconstant basis.

Figure 11.3: Estimated rate of decay, using the basis of the functional data object.
The horizontal line is drawn at the theoretical decay rate.

Decay Rate Estimate, using inherited basis

Domain

D
e

c
a

y
 R

a
te

 E
s
ti
m

a
te

0 10 20 30 40 50

0
.0

8
6

2
0

0
.0

8
6

3
0

0
.0

8
6

4
0

Harmonic Oscillator Example

173

HARMONIC OSCILLATOR EXAMPLE

A mechanical system is characterized by an external force applied to
the system, together with internal or external frictional forces or
viscosity. The classic example is a weight suspended from a spring.
The spring will oscillate when the weight is attached to it provided the
weight is not too heavy. This motion will fade over time depending
on the viscosity of the air or other medium in which the system is
situated.

The equation of motion for a harmonic oscillator with external force
 is:

where is the damping constant and is the square of the natural

oscillating frequency.

Underdamped
+ Resonance

The second-order equation of motion describes an underdamped

system if . In this case, oscillation will occur. If the forcing

function exhibits periodicty, the oscillation is called resonance. An
analytic solution is known when the forcing function is of the form

, where is the resonance frequency. A particular
solution in this case is

A general solution to the differential equation can be obtained by
adding the particular solution to the homogeneous solution, which
(ignoring the phase shift) is

under the assumption that the system is underdamped. The following
code simulates such a system and plots the resulting functional data:

f

D
2
y k1Dy k0y+ + f=

k1 k0

k1 2 k0

C 2 tcos 2

A 2 tsin B 2 tcos+

C k1
t

2
---– t k0sinexp

Chapter 11 Principal Differential Analysis

174

> k0 <- 2
> k1 <- .5
> hconst <- fconst <- 10
> phase <- 0
> nu <- 1/3

> pi2nu <- 2*pi*nu
> a <- pi2nu*k1
> b <- k0 - pi2nu*pi2nu
> d <- a*a + b*b
> A <- a/d
> B <- b/d

> tt <- seq(from=0, to=5, length=101)
> Y <- matrix(0, 101, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10)
 Y[,j] <- hconst*exp(-k1*tt/2)*sin(sqrt(k0)*tt+phase) +
 fconst*(A*sin(pi2nu*tt) + B*cos(pi2nu*tt)) + rnorm(1)

Figure 11.4: Simulated functional data for an underdamped harmonic oscillator
with resonance.

Underdamped + Resonance

args

v
a

rs

0 1 2 3 4 5

-1
0

-5
0

5
1

0

Harmonic Oscillator Example

175

Now we compute the constant coefficients of the linear differential
operator assuming that the forcing function is known:

> par(mfrow=c(1, 1))
> basis <- bsplineBasis(c(0, 5), norder=5, nbasis=20)
> fY <- fVector(basis, Y)
> plot(fY, main="Underdamped + Resonance")

compute constant coeffs using known forcing function
> forcing <- fFunction(basis, fconst * cos(pi2nu*tt))
> oscPDAconst <- fPDA(fY, weights=
 list(constantBasis(c(0, 5)),
 constantBasis(c(0, 5)), 1),
 forcing=forcing)
> k0 <- fEval(oscPDAconst$linDop[[1]], 2.5)
> k0
 [,1]
[1,] 2.021411
> k1 <- fEval(oscPDAconst$linDop[[2]], 2.5)
> k1
 [,1]
[1,] 0.504323

The resulting coefficients are quite close to the true values underlying
the simulated data.

In this case fPDA also gives a good estimate of the forcing function
when the linear differential operator is known:

> oscPDAforc <- fPDA(fY, weights=list(2, .5, 1),
 forcing=basis)
> plot(ans1$forcing, main="Estimated Forcing Function
 (known LDO)")
> lines(tt, fEval(forcing, tt), lty=6)

Chapter 11 Principal Differential Analysis

176

However, if we attempt to estimate the linear differential operator
coefficients as well as the forcing function, the resulting least squares
problem is ill-conditioned.

> oscPDAall <- fPDA(fY, weights=list(constantBasis(c(0,5)),
 constantBasis(c(0, 5)), 1),forcing=basis)
Warning in fPDA(fY, weights = list(constantBasis(c(..:
 least-squares system is ill-conditioned

The ill-conditioning warning is usually means that the results will not
be accurate, as is the case for this example. The constant weights are
estimated to be 0 and 0.083, far from their true values of 2 and 0.5,
respectively. The forcing function estimate is plotted below:

> plot(oscPDAall$forcing, main="Forcing Function Estimate")

Figure 11.5: Forcing function for underdamped harmonic oscillator estimated by
fPDA when the linear differential operator is known. The dotted line is the true
forcing function underlying the simulated data.

Estimated Forcing Function (known LDO)

args

v
a

rs

0 1 2 3 4 5

-1
0

-5
0

5
1

0

Harmonic Oscillator Example

177

> lines(tt, fEval(forcing, tt), lty=6)

It may in some instances be possible to avoid ill-conditioning by
increasing the arguments k or nbasis to fPDA (these affect the
accuracy of the projections used in computing inner products for least
squares), but in this case we weren’t able to find a suitable set of
inputs. It is also possible to include penalty terms on the weight
functions and/or their derivatives, or on the derivatives of the forcing
function, in fPDA to regularize principal differential analysis, but there
are no systematic guidelines for doing so with the current
implementation. New methods under development incorporate
regularization mechanisms, and we plan to include them in future
editions of this library.

Figure 11.6: Estimate forcing function when weights are assumed constant but
unknown. The dotted line is the true forcing function underlying the simulated data.

Forcing Function Estimate

args

v
a

rs

0 1 2 3 4 5

-3
0

-2
0

-1
0

0
1

0
2

0

Chapter 11 Principal Differential Analysis

178

LIP MOVEMENT EXAMPLE

The lip movement data, first used in the chapter on registration,
consists of twenty replications measuring the vertical lip position as a
single individual says the syllable “bob”. In order to perform
principal differential analysis, first register and smooth the curves.
The S+FDA code for creating, registering, and smoothing the lip data
is as follows:

> lipBasis <- fBasis(type="bspline",fDomain=c(0, 1),
 nbasis=31,params=(c(1:25)/26))
> fLip <- fVector(object=lipBasis, y=lipmat, fArgs=liptime,
 fNames=list(NormalizedTime=liptime,
 Replications=seq(20), Units="mm"))
> regLip1 <- fRegister(fLip, mean(fLip), nDeriv=1,
 maxIter=120, lambda=0.1,
 criterion=1, penalty=0.0005)
> regLip1 <- fRegister(fLip,mean(regLip1$fReg), nDeriv=1,
 maxIter=120, lambda=0.1,
 criterion=1, penalty=0.0005)
> yLip <- fVector(regLip1$fReg, penalty=
 list(lambda=1.e-10, linDop=fDop(2)))

Note in this code that the registration is performed on the derivatives
rather than the functions.

Because the lower lip is part of a mechanical system, with certain
natural resonance frequencies and a stiffness or resistance to
movement, it seems appropriate to explore to what extent this
method can be expressed it terms of the second-order differential
equation typically used to analyze such systems, in which the linear
differential operator

is a generalization of the which one used for the harmonic oscillator
example in the previous section. Strictly speaking, the mechanical
interpretation of the differential equations does not hold if the weight
coefficients are allowed to be functions rather than constants, but
higher-order effects can be ignored if they do not vary too rapidly
with time. The principal differential analysis estimates, assuming
nonconstant weights, are computed as follows:

0 t f t 1 t D
1
f t D

2
f t+ +

Lip Movement Example

179

> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1),
 forcing=0)

We set forcing=0 to indicate that the differential equation is assumed
to be homogeneous (no forcing function). A plot of the residuals for
the homogeneous fit with the weight functions estimated by fPDA, as
given in Figure 11.7:, is calculated as follows.

> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1),
 forcing=0)
calculate and plot residual Lx
> lipResiduals <- fEval(yLip, fArg=liptime,
 linDop=lipPDA$linDop)

> keep <- liptime >= 0.1 & liptime <= 0.9
> matplot(liptime[keep], lipResiduals[keep,], type="l")

Points at the ends of the plot have been removed in order to eliminate
edge effects near 0 and 1.

Figure 11.7: Operator residuals from the second-order differential equation fit to the
lip movement data.

0.2 0.4 0.6 0.8

-2
0

0
-1

0
0

0
1

0
0

2
0

0
3

0
0

Chapter 11 Principal Differential Analysis

180

Although the residual results are not nearly as small as we would
prefer (for comparison, the largest magnitude of the second
derivatives is near 500), they still appear to be more or less random,
indicating that the linear differential operator is capturing the
functional behavior.

Kernel Basis
Functions

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of coefficients that may
be much smaller than the current representation. Although the
current implementation of S+FDA does not allow arbitrary bases, this
property may still be useful in an analysis.

 Specifically, if is a linear differential operator of degree , then
there are linearly independent functions (the kernel

basis functions) that span the null space or kernel of , that is, for which

. The kernel basis functions are determined by

constraints, which may include initial conditions and/or boundary
conditions.

In the theory of linear ordinary differential equations, all solutions to
the homogeneous equation are linear combinations of the kernel
basis functions. If the weight functions defining are determined by
principal differential analysis, and residuals for the ordinary
differential equation are small, then for homogeneous equations there
should be a linear combination of the form

in which the residual terms are relatively small.

For nonhomogeneous equations, any solution can be expressed as the
sum of a particular solution and a linear combination of the kernel
basis functions. So if is a particular solution, then the functional
data have the following representation:

L m

m u1 u2 um

L

Lui 0= m

L

fj t ijui t j t+

i 1=

m

=

j t

x t

fj t x t ijui t j t+

i 1=

m

+=

Lip Movement Example

181

Since each of the observed functions is a solution, up to a

random error, then the average function, is also a

solution with a random error, but the random error for is

times smaller than for each function . Thus, when the errors are

small, approximates a particular solution to the differential
equation, and consequently a good fit of the centered functions

 can be obtained as a linear combination of the kernel

basis functions. Notice the similarity with functional principal
components analysis, which finds a set of (orthogonal) functions that
can be used to re-express the functions such that the integrated

squared error is minimized.

Change of
Basis

A set of kernel basis functions, for a linear differential
operator can be computed via the function fLinDopSolve:

> lipKernData <- fLinDopSolve(linDop=lipPDA$linDop,
 x=liptime)
> lipKern <- fVector(lipKernData, basis=getBasis(yLip))
> par(mfrow=c(2, 1))
> plot(lipKern[1], main="First Kernel Basis Function")
> plot(lipKern[2], main="Second Kernel Basis Function")

fj t

f t
1
n
--- fj t

j 1=

n

=

f t n

fj t

f t

fj t f t–

fj t

j t

u1 u2 um

Chapter 11 Principal Differential Analysis

182

The resulting basis is displayed in Figure 11.8. Notice that the first
kernel basis function has a much larger range than the second one
indicating, perhaps, that the first basis function is more important.

The S+FDA function fLinDopSolve is based on the adaptive ordinary
differential equation solvers DLSODA and DLSODI (Hindmarsh 1983;
Petzold 1983). Initial conditions may be specified through the
initialValues argument. Different initial conditions can lead to
different kernel basis functions, but all sets of kernel basis functions
span the same function space and are thus equivalent for our
purposes.

Given the kernel basis functions for a linear differential operator, the
function fLinDopFit can be used to obtain a representation of a
function in terms of the kernel basis. Below we compute this fit for the
lip motion data, from which the linear differential operator was
derived.

> lipFit <- fLinDopFit(yLip, linDop=lipPDA$linDop)
> par(mfrow=c(2, 1))

Figure 11.8: Kernel basis functions for the linear differential operator fit by
principal differential analysis to the lip force data.

First Kernel Basis Function

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0
.0

0
.5

1
.0

Second Kernel Basis Function

0.0 0.2 0.4 0.6 0.8 1.0

-0
.0

4
0

.0
0

.0
2

0
.0

4

Lip Movement Example

183

> plot(lipFit$fitted.values, main="Fitted Values")
> plot(lipFit$residuals, main="Residual Functions")

The fit is accomplished via least-squares projection of the observed
functions onto the kernel basis. The fitted functions and the residuals
for the registered lip movement functions are displayed in Figure
11.9. Note the difference between these residuals and those shown in
Figure 11.7, which displays values of the linear differential operator
applied to yLip, which are viewed as “residuals” when homogeneity is
assumed.

The fitted curves appear to be quite similar to the registered and
smoothed lip curve functions, although the residual functions indicate
that the fit is not perfect. Nevertheless, these residual functions are
relatively small, with a range of about 25% of the range of the lip
curves proper.

The residuals and fitted values given above are precisely those that
would be obtained from predict applied to lipPDA, because the
linear differential operator and data input to fLinDopFit came from

Figure 11.9: Lip curves and residuals from the fit of the lip motion data to the kernel
basis functions for the linear differential operator determined by fPDA.

Fitted Functions

args

v
a

rs

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
1
0

1
5

Residual Functions

args

v
a

rs

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

Chapter 11 Principal Differential Analysis

184

the principal differential analysis. Function fLinDopFit differs from
the predict method for fPDA objects in that instead of an fPDA object
it takes as input a linear differential operator and (optionally) a forcing
function, and returns the predictors (kernel basis functions) and
coefficients from the fit as well as the fitted values and residuals.

Comparison
with PCA

Because of its relationship to functional principal components, it is
useful to compare the fit obtained from the kernel basis functions
obtained with the homogeneous functions with the fit obtained using
a functional principal components analysis. Here we use the
integrated residual variance as a measure of “goodness of fit”. This
statistic has meaning for both the functional principal components
solution and for the functional principal differential analysis solutions,
but is minimized in the functional principal components models - we
expect, apriori, that principal differential analysis will not do as well
as the principal component analysis in predicting variation in our lip
movement data (if the same number of “parameters” are estimated).
However, if the principal differential analysis solution explains a good
deal of the functions variance, then we would have some evidence
that the estimated linear differential equation has the correct form and
closely models the process that generated the data.

In the following code we compute the harmonics using function fPCA
as well as the fitted values for fPDA, and computed the integrated
variance using functions fInt and fVar.

> ansPCA <- fPCA(~yLip)
> phi <- double(3)
> phi[1] <- fInt(fVar(yLip, bivariate=F))
> phi[2] <- fInt(fVar(fVector(getCoef(yLip)
 -outer(c(getCoef(mean(yLip))), rep(1, 20))
 -getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),
 getBasis(yLip)), bivariate=F))
> phi[3] <- fInt(fVar(predict(lipPDA)$residuals,
 bivariate=F))

> par(mfrow=c(1, 1))
> plot(fVar(yLip, bivariate=F), xlab="t", ylab="Var(f(t))",
 main="Variance Functions", ylim=c(0,5))
> lines(fVar(fVector(getCoef(yLip)
 - outer(c(getCoef(mean(yLip))), rep(1,20))
 - getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),

Lip Movement Example

185

 getBasis(yLip)),bivariate=F), lty=2)
> lines(fVar(predict(lipPDA)$residuals, bivariate=F),
 lty=3)
> legend(0.6, 5, c("Mean", "PCA", "PDA"), lty=1:3)

The plot of the variance functions shown in Figure 11.10:.

Finally, we compute an “r-squared”-like measure for goodness of fit
based upon these integrated variances:

> Rsq <- 1-phi[2:3]/phi[1]
> names(Rsq) <- c("PCA", "PDA")
> Rsq
 PCA PDA
 0.9147264 0.4107527

From both the R-squared statistics and the variance function plots we
see that the two harmonic functional principal component solution
provides the best fit, as expected.

Figure 11.10: Variance functions for PCA and PDA analyses of the lip motion data.

Variance Functions

t

V
a

r(
f(

t)
)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Mean
PCA
PDA

Chapter 11 Principal Differential Analysis

186

Summary An unique aspect of functional data analysis is its ability to provide
insight into the processes underlying the functional data. The goal of
principal differential analysis - to find an underlying differential
equation describing the behavior a sample of observations - is an
exciting and powerful idea. The simple least-squares approach
currently implemented in S+FDA is limited in what it can handle.
However, new iterative approaches under development for principal
differential analysis show great promise for improvement, and in the
next release of this library, we expect to significantly enhance the
methods provided here.

187

de Boor, C. (1978). A Practical Guide to Splines, Springer, New York.

Friedman, J. H. and B. W. Silverman (1989). Flexible parsimonious
smoothing and additive modeling (Discussion and Response), Journal
of the American Statistical Association, 31, 1-39.

Green, P. J., and B. W. Silverman (1994). Nonparametric Regression and
Generalized Linear Models: A Roughness Penalty Approach, Chapman and
Hall, London.

Gu, Chong (2002). Smoothing Spline ANOVA Models, Springer Series in
Statistics, Springer, New Youk.

Hollig, Klaus (2003). Finite Element Methods with B-Splines, SIAM,
Philadelphia.

Kahaner, David, Cleve Moler, and Stephen Nash (1989). Numerical
Methods and Software, Prentice Hall, Englewood Cliffs, New Jersey.

Matflat Nicole and Ramsay, J. O. (2003). The Historical Functional
Linear Model, The Canidian Journal of Statistics, Vol. 31, No. 2, 115-128.

Lachenbruch, P. A. (1975), Discriminant Analysis, Hafner Press, New
York.

Olshen, R. A., E. N. Biden, M.P. Wyatt, and D. H. Sutherland (1989).
Gait analysis and the bootstrap, Annals of Statistics, 17, 1419-1440.

Ramsay, J. O. and B. Silverman (1997). Functional Data Analysis,
Springer-Verlag, New York.

Ramsay, J. O. and B. Silverman (2002). Applied Functional Data
Analysis, Springer-Verlag, New York.

APPENDIX: REFERENCES

189

A
adaptive ordinary differential

equation solvers 182
Arithmetic Operators 54

B
baseline 38
basis functions 5, 24
between-subject variance 5
binomial 124
bivariate bases 25
 functional data 39, 73
 function 24
 regression function 119
boneData data set 137
B-spline basis 5, 31

bsplineBasis function 30

C
canonical correlations 3
Centering 54, 133
class 25
Classical canonical correlation

analysis 146
Classical hierarchical cluster

analysis 156
classical multivariate analysis 132
class-specific functions 3
clustering 15, 16, 18
 tree 18
compositeBasis function 36

composite basis 37
Constant basis 29
 constantBasis function 29
constructor functions 3
conventional canonical correlation

analysis 149
covariance 58
cross-validated
 correlations 149
 error 128
 prediction error 111
cross-validation 7, 83, 127
crossValidGLM function 127
cubic splines 10
curvature 74

D
degrees of freedom 83
deleted residual 111
density estimation 53
dependent variable 12, 102
derivatives 9, 15, 18, 41, 44, 51, 55,

65, 177
distribution 124

E
Evaluate the basis functions 44
evaluation 51, 55, 65
exponentialBasis function 35
exponential basis 24

INDEX

Index

190

F
fBasis function 25
fCancor function 147
fDist function 16, 159
fDop function72
female height data 4, 82
fEval function 7, 41, 65, 66
fFinElemBasis function 25, 39, 77
fFinElemFunction function 46, 61,

64
fFunction function 46, 48
fGLM function 124
finite element basis 39
 functions 47
fInProd function 43, 53
fInt function 42, 53, 68
fIntExp function 53
fLinDop function 72
fLinDopN function 53
fList function 59
fLM function 12, 106
fLMFinElem function 120
fMargin function 108
forcing function 167
FourierBasis function 31
Fourier basis 32
fPCA function 138
fPDA function 168
fPlotCycle function 137
fProdBasis function 25, 39, 76
fProdFunction function 46, 61, 65
fRegister function 89
fSelectBasis function 26
functional canonical correlation 2,

146, 151
 cluster analysis 3
functional data 2
 analysis 5
 dependent variable 106
 generalized linear models 124
 independent variable 110
 linear model 12, 14, 102
 logistic classification model 125
 methods 2

 principal component analysis 151
 principal components 2, 132
 principal differential analysis 184
fVar function 57
fVector function 6

G
gaitarray data set 115
gait data 147
gamma 124
GCV 83
generalized cross validation 83
generalized linear model 3, 124, 127
generic functions 3
getBasis function 7
getCoef function 7
getComponent function 139
getNames function 7

H
harmonic 132, 144
 oscillator 173, 178
height data 6, 12, 80, 83, 85, 106
historic linear model 119
homogeneous 167, 179

I
ill-conditioning 176
independent variable 6, 14, 103
indexing 56
inner product 43, 51, 53, 55, 132
integrals 42, 51, 55, 65

K
kernel basis functions 180, 181
knots 5, 30, 90

L
landmarkReg function
landmark registration 96
lapply function 60

Index

191

least-squares criterion 73, 102, 166
lag 119
linear
 differential operator 55, 72, 79,

82, 166, 168
 least-squares estimates 6
 regression 102
 transformations 146
lip data 92, 96, 118, 178
logistic model 127, 129

M
Maxwell equations 166
mean 55
 curves 141
mean function 17, 57
methods 3
mixed-effects model 5
monotonic 53, 90

N
nonhomogeneous 167

O
object-oriented programming 3
operations to functional data objects

51
orthogonal 132, 146
oscillatory 81
outliers 27
overfitting 14
oversmoothing 75

P
penalized least-squares criterion 73,

89
penalty 7, 79, 149
periodic 26
piecewise linear spline 26
 polynomial splines 5
pinch force data 57, 76
pinchmat data set 48

pointwise variances 57
Poisson 124
Polygonal basis 35
polynomialBasis function 33
polynomial basis 5, 26, 33
predict function 119
predict.fPDA function 171
prediction 83
principal components 3, 75, 132,

133
principal differential analysis 3, 167,

178
product basis 39
 basis functions 73

R
radioactive decay equation 169
rate of change 15
registered curves 99
registering 178
registration 91, 96, 99, 136, 178
regression 75
regularization 151
residuals 124, 183
resonance 173
rotated harmonics 142
rotate function 132
rotating 3
roughness penalty approach 74
r-squared 185

S
separable functions 104
shape data 135
smoothing 7, 74, 75, 112, 117, 178
sum function 56
sqrt function 54

U
underdamped system 173
univariate bases 25
 functional data 73

Index

192

 functions 24

V
variance 55

W
warping function 89, 94
weather data 125
weight functions 168
within-subject variance 5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

