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Foreword

Advances in information technology have transformed the field of epidemiology
in profound ways. Data, which had been the most valuable commodity of the
empirical sciences, are increasingly available and accessible. The quantity of data
rises exponentially on a daily basis. The forms and sources of data are also
multiplying. These changes are driving epidemiology into the era of “big data
science” and converting more and more epidemiologists into data analysts. As a
result, practical skills to manage large and complex data sets and make sound
use of them are of increasing importance to future epidemiologists. This book
by Dr. Charles DiMaggio is a valuable addition to the toolbox for epidemiology
students, public health professionals, and researchers in the health-care industry.

This book distinguishes itself from other applied SAS texts in three notable
aspects. First, it is extremely reader-friendly. Dr. DiMaggio has taught the intro-
ductory SAS course at Columbia to hundreds of students for over a decade. This
book is based primarily on his lectures and is written in a conversational style. The
materials are presented in a way that is easy to understand and interesting to learn.
In addition to the technical know-how, each chapter contains some “clinical pearls”
– insight and wisdom that are unavailable in other applied SAS books. In fact, the
reader may feel more like being engaged in a conversation with Dr. DiMaggio than
studying a monotonic, mind-numbing how-to manual. Second, this book focuses on
the fundamentals. In the first five chapters, Dr. DiMaggio explains in painstaking
detail the most basic functions of data input, management, and exploration. These
chapters are followed by intermediate statistical analyses of epidemiologic data,
both categorical and continuous. Going through these chapters will not make
the reader an expert SAS programmer, but it will provide the reader with the
necessary skills to perform analytical responsibilities required for a master’s level
epidemiologist. Finally, this book is filled with illuminating examples from actual
epidemiology research projects. It is written for aspiring epidemiologists by an
experienced epidemiologist. These examples are used not only for procedural
demonstrations but also for explanations of important epidemiological concepts
such as confounding, disease odds ratio, and exposure odds ratio.
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viii Foreword

As one of the most sophisticated statistical packages, SAS is so kaleidoscopic
that first-time users often find it intimidating. Public health students will find
this comprehensive text especially helpful for overcoming their initial fears and
confusion. It can serve as a textbook for introductory courses on SAS applications
as well as a self-study reference for epidemiologists and other health professionals.

New York, NY, USA Guohua Li
Columbia University M. Finster



Preface

The path to this book began, as these things so often do, when I was asked to teach
a course. In this case, a semester-long class for master’s students on epidemiologic
analyses using SAS. Over a few years of preparing for and teaching the material I
confronted a combination of practical and conceptual considerations that led me to
believe that perhaps there was room for another book about SAS.

On a practical level, working with a program like SAS is a skill I consider
necessary for all graduating master’s epidemiologists. To be honest, the necessity
that the program actually be SAS is based on a circular argument. Many employers
of epidemiologists use SAS because their current analysts use SAS, and newly
minted analysts will compel additional future analysts to use SAS. This reliance
on SAS of potential employers of master’s-level epidemiology students may change
in the future, but my sense is that it will not be anytime soon. While the practical
motivation to learn SAS is somewhat self-fulfilling, it does not detract from the
capabilities that made SAS an important skill in the first place. And, does it make
the choice of SAS any less necessary. As I sit and write this, a quick search on the
New York Times jobs link returns 15 epidemiology jobs in the New York City area.
A search for SAS returns 457 hits. When I do this search on the first day of class,
with generally the same results, there is invariably an increased interest among the
students in spending a few hours a week learning SAS.

The kinds of SAS-related work that master’s-level epidemiologists are called
upon to undertake do not exceed some fairly straightforward categorical and
continuous data analyses. There was, though, no book that addressed this material
in a similarly straightforward fashion. The feedback I’ve received from the past
students is that the procedures covered in this material account for a good majority
of their daily activity and that knowing how to do those things helps set the stage
for learning more advanced material.

On a conceptual level, the role of statistical software in epidemiologic practice is
in a state of flux, and the kinds of data and analyses epidemiologists are being called
upon to work with are evolving into what might be called the era of “big data” and
the rise of “computational epidemiology.” SAS is tailor-made to deal with the kinds
of huge data sets that are becoming routine in epidemiology. That there has been
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x Preface

an explosion in the availability of administrative and routinely collected health data,
free and open-source data, social media data, and other online data is clear. That
the data are amenable to reliable or valid analyses is less clear. The basics, about
missing and incorrect values, about confounding, about bias, about study design,
are if anything even more important. The data can inform, but we may have to teach
them to speak clearly, and in a language that is epidemiologically valid.

Fortunately, SAS is more than up to the task. It has a facility for dealing with
extremely large data sets that I have found unsurpassed in other statistical programs.
SAS allows epidemiologists to pay special attention to the necessary (though not
glamorous) initial steps of reading in, preparing, and cleaning large amounts of data,
when early errors or missteps will be amplified throughout the analysis, sometimes
in ways that are difficult to trace to their origins. For this reason, fully the first third
of this book addresses using SAS to read in and manipulate data to get them into a
form that makes epidemiologic sense.

The one aspect of preparing and teaching this material that I did not expect was
that it was actually fun. I’m certain this says more about me than it does about the
material. But perhaps a kind of geeky enjoyment of some of the practical aspects of
epidemiologic methods, like learning how to use SAS, is a sign that you’ve chosen
the right profession. I tried to capture some of what I found interesting and enjoyable
by using examples and materials that have practical relevance to epidemiologic
practice.

I have come to appreciate that public health practice requires a long-term view,
and that you may not always (or even frequently) see the effects of your work. The
effects of teaching public health are even farther removed from immediacy. Despite
the practical aspects underlying this book, the ultimate motivation is as ephemeral
as public health practice itself. In the end, I hope to contribute in some small way
to the efforts of someone I haven’t met, to improving the health, happiness, and
well-being of someone who may not even be born yet.

New York, NY, USA Charles DiMaggio
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Chapter 1
Introduction

Abstract The primary objective of this book is to provide you with the tools
to use the SAS statistical software package in the practical conduct of basic
epidemiological research analyses. To reach that objective, you will need to first
become familiar with the SAS computing environment so you can create, open,
and retrieve files and learn how to read, clean, and manipulate data. You will then
become familiar with conducting descriptive analyses in SAS and understand how
to conduct some slightly more advanced analytic tasks like analysis of variance
(ANOVA), linear regression, and categorical data analyses.

1.1 About SAS

Since you’re reading this, you probably have some sense of what SAS is. But it
never hurts to start from first principles. SAS stands for Statistical Analysis System.
It is a powerful suite of procedures, and the software language to manipulate them,
that is well known, well documented, and flexible enough to handle most any
statistical task. It is, essentially, an industry standard, with ninety-six of the top 100
Fortune 500 companies using it. It is also broadly utilized by government public
health agencies, both federal, like the Centers for Disease Control and Prevention
(CDC) and the National Institutes of Health (NIH), and local like the New York City
Department of Health and Mental Hygiene.

A number of factors contribute to SAS’s popularity. It works in a desktop
Windows environment but can be deployed as a command-line, enterprise-level
Unix system. It can import almost any type of data (ascii, delimited, Excel, etc.)
It can be manipulated to handle almost any statistical procedure. It is particularly
powerful at handling the extremely large data sets that are increasingly available to
public health practitioners and that constitute the databases for many surveillance
activities. Some agencies, such as the National Center for Health Statistics, provide
downloadable data in SAS format along with SAS syntax to read and interpret it.
This in itself is a strong incentive for epidemiologists to consider learning SAS.

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
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2 1 Introduction

1.1.1 Alternatives to SAS

Perhaps the principle disadvantage of using SAS is the yearly licensing fee which
may be prohibitively expensive for students and some researchers, particularly those
without the benefit of institutional affiliations to help offset the cost.1 There are other
statistical programs that are (certainly) cheaper and (perhaps) easier to use. Chances
are, in fact, that if you spend any amount of time doing epidemiologic analysis,
you will be called on to use more than one program anyway. Here’s a selective and
highly opinionated roundup of some of the usual suspects:

• Excel. This ubiquitous spreadsheet program has a quick learning curve, many
useful statistical functions, and the advantage of being readily understood and
shared for collaborative purposes. Many public health and epidemiological
researchers will find, though, that they soon outgrow it when they develop a need
for more advanced and specialized procedures, data manipulation, and graphics.

• SPSS. Nice if you like graphical user interfaces and a menu-driven approach to
data analysis. Depending on the type of work you do, this may very well be the
only statistical software package you will need. It is particularly well suited to
procedures such as factor analysis and is very popular among social scientists. (In
fact, SPSS stands for Statistical Package for Social Science.) The spreadsheet-
like interface provides a relatively painless transition from a program like Excel.
An added advantage for many users is that the package can be purchased during
one’s graduate education obviating the need for costly yearly licensing fees.

• R. A popular open-source freeware alternative to proprietary statistical software
packages. The language is similar to S-Plus. As more researchers and statisticians
contribute to its development, and as documentation proliferates, it will be an
increasingly viable option for researchers and epidemiologists. There are few, if
any, procedures it cannot handle. The graphics are as good as or (in many cases)
better than those found in expensive packages like SAS. It even includes mapping
and spatial analytic tools to rival those found in packages costing thousands of
dollars. It has a lot to recommend it, and I’m a big fan. I do, though, find it less
flexible in handling the large public health data sets SAS handles with ease.

• EpiInfo. Developed by the CDC for their own investigators, this program has
something for everyone; it even comes with a nice mapping module. Epidemi-
ologists will appreciate the sample size calculators, the simple intuitive 2× 2
table calculators, and questionnaire development and analysis programs for case-
control studies. Every practicing medical epidemiologist owes it to themselves to
download this free program.

• SUDAAN. This software program was developed expressly for the purpose of
analyzing survey data. The procedures themselves are familiar, but the analyses
take account of complex sampling strategies, nesting of variables within strata,
and correlations among data elements. Available in either a stand-alone version

1There is a reason why you tend to find SAS at large companies and government agencies.
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or as a SAS-callable version, the program is utilized for the analysis of many
large, ongoing US government health surveys such as CDC’s Behavioral Risk
Factor Surveillance System. Recently, SAS introduced survey procedures that
may obviate the need for an add on like SUDAAN.

1.1.2 Why SAS, Then?

Simply put, it is the most highly rated, most comprehensive, most robust, most
reliable, and best documented statistical program out there. If you are a master’s
level epidemiologist or public health professional, knowing SAS will enhance your
ability to get a job and allow you to work more effectively once you get that job.2

1.2 About This Book

This is a book about SAS for epidemiologists (or other public health researchers)
insomuch as I am an epidemiologist who uses SAS for my work. There are folks
who have devoted their careers to writing and developing SAS programs. There
are other folks who spend their time doing nothing but work in SAS. I am not one
of them. I know that there are other, perhaps more elegant, ways of accomplishing
much of what I will present. There is an entire universe of SAS out there. But, I have
worked with SAS for a decade and have carved out a small area of that universe
that has been useful and productive for the conduct of my research. This book is
an attempt to make that area of SAS accessible to epidemiologists, public health
workers, researchers, and other health professionals whose day-to-day activity calls
on them to analyze data.

This material was developed for a one-semester component of a master’s level
program in epidemiology. I don’t assume you know anything about SAS. If you
do, you may find some of the early going tedious. I do assume, though, that you
already have some knowledge of basic epidemiology, such as study designs like
case-control, cohort, and randomized clinical trials, and know what a confounder,
a mediator, and an interaction term are. I also assume you know some introductory
master-level biostatistics. I will accept that you may have forgotten or become a
bit fuzzy about what you learned, and I’ll briefly review some important statistical
concepts as they are introduced. This is not, though, a primer or textbook on
biostatistics of which many excellent examples are available. Optimally, as you
are reintroduced to basic epidemiological and statistical concepts, and apply them
using SAS, you will not only learn something about SAS, but also gain a better
understanding of epidemiology and statistical analysis as well.

2A Few years back, the master’s students at my university essentially demanded that we teach them
SAS so they could better compete for jobs.
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We will be using the SAS programming language to conduct analyses. There is a
menu-driven graphical user interface version of SAS available, but most researchers
and epidemiologic analysts use the syntax-driven SAS-language-based approach.
Writing syntax presents a bit more of a learning curve but is amply rewarded by
the increased control, flexibility. and ability to document and recall analyses. It also
gently introduces some programming skills, which epidemiologists are increasingly
called on to have.

SAS is, for all intents and purposes, an exclusively Windows environment. There
is a command-line, Unix version of SAS, but I can’t imagine most epidemiologists
will encounter it. You can, with some difficulty, port SAS to a Linux environment,
but not (at least to my experience) with full functionality. The last time SAS
produced a product for Mac users was version 6.2, so a native Mac version is really
not an option.3 So all the directions and screen grabs in this book are pictures of
Windows.

1.2.1 Goals

My goals for readers of this book are that by the end, you should be able to:

• Read raw data into SAS
• Manipulate and clean data sets in SAS through printing, sorting, merging and the

use of conditional expressions
• Apply simple statistical and graphical procedures for the descriptive analysis of

data
• Conduct simple and stratified categorical data analyses in SAS and understand

the concept of confounding within that context
• Conduct ANOVA in SAS, interpret SAS ANOVA output, and be aware of the

concept of statistical interaction within that context
• Conduct correlation and linear regression in SAS. Interpret SAS output for

correlation and linear regression
• Understand and apply the concept of residual analysis for regression diagnostics.
• Understand the concepts of model building within the context of linear regression

1.2.2 How to Use the Book

The material in this book covers a master’s level semester-long introductory course
on applied epidemiological analysis in SAS. The data sets that I use to illustrate
concepts and procedures, and which form the basis for the problems at the end
of each chapter, are available to instructors who contact me through the publisher.

3I recently switched from Linux to Mac. I run SAS (very nicely) under Windows XP using a
Parallels virtual machine.
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This is in keeping with my agreement with the folks who have been gracious enough
to allow me to use their data. This doesn’t preclude using the book for self-study,
but SAS is a language, and the only way to learn a language is to use it.4

1.2.2.1 About Those Grey Boxes and Their Hyperlinks. . .

Throughout the text, I sometimes set off additional information in grey boxes. If you
are using an electronic version of the book, the titles of those little snippets of info
are song titles that link to online videos.

EVERYDAY I WRITE THE BOOK
Something like this.

The songs themselves involve in some way some aspect of the material in the
box, and usually reflect my (heavily 1970s and 1980s influenced) musical tastes.
Sometimes they’re just the closest titles I could find that include something about
the material in the box.5 Consider them an opportunity to take a little break and refill
your coffee mug.

4I may, in the future, come up with a way to get the data to individuals, so it doesn’t hurt to contact
me.
5You try finding a popular song about Macros.

http://www.youtube.com/watch?v=jfFunjzyIsE


Part I
Working with Data in SAS

This first section of material is, in many respects, the most important. SAS is most
usefully a tool for the secondary analysis of large, existing data sets. But first, you
must get the data into SAS. Then, the data have to be examined, and invariably
manipulated, to draw valid and reliable epidemiological inferences. SAS provides
arguably some of the best solutions available to epidemiologists for this process.



Chapter 2
The SAS Environment

Abstract In this chapter, we begin to become familiar with the basic SAS working
environment. We introduce the basic 3-screen layout, how to navigate the SAS
Explorer window, the two basic types of SAS programs, the kinds of data with
which you will work in SAS, and how to get help.

2.1 The SAS Screen

When you start up SAS, your screen will typically be split up into three frames
(Fig. 2.1).

On your left you can tab (at the bottom) between the “SAS Explorer”, to navigate
to files and folders, and SAS “Results” which allows you to navigate to the different
statistical analyses and graphs you create during a SAS session.

On your right, you will see the Editor window on the bottom half of the screen
where you will write and submit your programs and commands and the Log Window
on the top portion of the screen, where SAS will give you messages (including
flagging errors) about your submitted programs. The Output Window lurks behind
the Editor and Log. When you submit syntax to perform analyses, it instantly comes
to the fore to display your results. You can, though, bring it up to the front at any
time by left clicking on Output on the bottom of your screen.

You left click on the frame of a window or the tab to make a window active. Your
toolbar and available commands are context specific, i.e., they change depending on
which window is currently active.

2.2 The Program Editor

The Editor window comes in two flavors. You can use the program editor window
or the enhanced program editor window.

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 2,
© Springer Science+Business Media New York 2013
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Fig. 2.1 The SAS screen

The program editor window is available across all computing platforms. Only
one program editor window can be open at a time, and when you submit a command,
it disappears and needs to be brought back up with the “recall” command. Of course
since you don’t have an editor window anymore, it’s not easy to submit a command.
You will find it again under the View menu at the top of your screen.

The enhanced editor window is available in MS Windows environments, where
it is the default and just appears as Editor’. It has some nice features, not the least of
which is that it doesn’t disappear when you submit a command. It also color codes
your syntax. Data and procedure keywords appear in blue and variables in black.
Helpfully, it also flags errors in syntax by coloring them red. It’s the only way to go.

WINDOWS.
If you accidentally close down a window, you can bring it back up by going
to the View menu at the top of your screen and clicking on the window you
want.

http://www.youtube.com/watch?v=Y1QIuAJoS94
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2.3 SAS Statements

You write SAS commands or statements in the Editor window. A line of SAS syntax
almost always starts with a keyword of some kind, usually DATA or PROC, (we’ll
talk about those soon) and ends with a semicolon. You can have any number of SAS
statements each requesting that SAS do something different. In a very common
sense way, SAS will run statements when it sees the word RUN.

Once you’ve written your commands, make sure each statement ends in a semi-
colon and that all the statements you want to run are followed by a RUN command
and that the RUN command also ends in a semicolon.1 You can then submit your
syntax. In MS Windows, you submit your statements by (1) highlighting it by left
click-dragging your mouse across the syntax and then (2) clicking the little running-
man icon on the tool bar. SAS then processes the syntax and then returns your results
in the Output window as well as some information, such as how long the process
took, if SAS encountered any errors, etc., in the Log window.

RUNNING
If you don’t highlight the syntax you want run and just click the running-man
icon, SAS will run every command in the Editor window. If you have been
working on a lot of code, creating and manipulating files, you may end up
destroying a lot of your work.

2.4 Comments

SAS lets you write little notes to yourself or to others who may try to read or run
your program. There are two ways to indicate to SAS that what you are typing is not
a command and that it should ignore it. You can either enclose the comment with a
slash–asterisk asterisk–slash, like so:

/* comment */

or you can enclose it with an asterisk and a semicolon, like so:

* comment ;

The second approach is useful if you want to insert a short comment off to the
side of a line of syntax or if you want to convert a section of code to text (just insert
an * at the beginning of the line of syntax). Then the next time you want to run that
syntax, just remove the asterisk.

1You may be beginning to detect the importance of semicolons in SAS.

http://www.youtube.com/watch?v=IKqV7DB8Iwg 
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I suggest you use comments liberally. They not only help analysts coming after
you, but also they help you when you forget what exactly you were trying to
accomplish with a particularly gnarly line of syntax.

2.5 Quick Demonstration of an SAS Program

So what does a SAS program look like? Something like this (Fig. 2.2).
Here you see the command syntax written in the Editor window. I’ve enlarged

the default font size so you can read it. Don’t worry about what the data represents
at this point. This is just a brief, initial, demonstration.

In the Editor window, notice a couple of things. First, look at all those
semicolons. Next, notice that the code is color coded. The procedure I’m requesting
(“proc univariate”) is dark blue, as is the final “run” statement. The subcommands
under that procedure, such as specifying the data set to work on (“var”) the types of
graphs I want for that variable (“histogram” and “probplot”) are all light blue. The
data set itself (“p8483.demo 1”) and the variable name (“age”) are in black. The
comment I’ve put after the histogram request is color-coded green. Had I written
something incorrectly or omitted a semicolon, SAS would very likely (though not
always, depending on the type of error) have flagged the error by coloring the
syntax red.

Fig. 2.2 The SAS Editor
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Fig. 2.3 The SAS Results Window

The log window on top gives some information about the syntax I’ve submitted
and how long it took SAS to run the program. If there had been an error message,
it would appear here in red. Also, note that the results pane on the left lists the
univariate procedure I requested.

If I click on the Output tab at the bottom of the screen, I bring up my results
(Fig. 2.3). In this case, I requested both statistical analyses and a graph (Fig. 2.4).

2.6 Two Types of SAS Programs

There are 2 basic types of SAS programs. You may hear them referred to as “steps”
by old (and not so old) SAS Pros. They are the DATA step and the PROC step. DATA
steps create or manipulate SAS data sets. PROC steps process data sets and conduct
analyses. SAS knows a step is beginning when it sees DATA or PROC and knows
one is ending when it sees RUN, QUIT, or another DATA or PROC statement. Read
this paragraph again. Commit it to memory. It is the center around which all things
SAS revolve.

It’s helpful to know that DATA steps execute each line of your syntax for each
observation in your data set before looping to the next line of syntax. SAS sees only
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Fig. 2.4 The SAS Graphics Window

one observation of your data at a time and won’t go onto the next until finished
with first. This may not seem very useful information right now, but when we move
on to consider various ways of reading data into SAS, it will help explain some
inscrutable DATA step error messages.

As mentioned, SAS needs a RUN statement at the end of a program. But it
doesn’t really need one for each and every PROC. You can, if you like, string
together a bunch of PROCS and then put a RUN statement at the end of them so
they all run. I don’t recommend this approach. I find the RUN statements a useful
way of breaking up long or complex SAS code, making it both easier to read and
debug.

SEMICOLONS
In English, a semicolon is used to link two independent clauses and is
considered by some to be obsolete; I like them. In SAS, the semicolon is
used to demarcate the end of a syntax statement; SAS likes them very, very,
very much.

http://www.youtube.com/watch?v=cqTnlEbSrDs&feature=fvst


2.8 Two Parts to a SAS Data Set 15

2.7 Two Kinds of SAS Data

Now we know there are (basically) two kinds of SAS programs. There are only two
kinds of SAS variables: character and numeric. This distinguishes SAS from other
programs that require many specific variable definitions. Even SAS dates (which
we’ll spend more time considering in later chapters) are numbers. They are based on
a reference to January 1, 1960. (Why? Your guess is as good as mine.) So January 2,
1960, is the number 1, December 31, 1959 is the number −1, January 3, 1961 is the
number 368, and so on. Missing character variables are denoted by a blank space;
missing numbers are denoted by a decimal point.

2.8 Two Parts to a SAS Data Set

A SAS data set file holds (1) the data itself and (2) the descriptor portion that
describes the variables.

The data portion of a SAS data file consists of the rows and columns of the data
itself. You can view the data itself a couple of ways. You can write a PROC PRINT
command in the Editor window. Or, you can double click on the physical file in the
library folder found in the Explorer window.

The descriptor portion is like meta-data. It contains information on every variable
such as the type of variable it is (we now know it can only be numeric or character),
its length, any format you’ve applied, and any label you’ve applied. We’ll discuss
formatting and labeling later on. You can access this descriptor information using a
PROC CONTENTS command.

SAY GOODBYE TO YOUR SPREADSHEET
Perhaps one of the most difficult aspects of the transition to SAS from
programs such as Excel and SPSS is letting go of the need to manipulate a
physical spreadsheet. SAS data seems to be floating in some netherworld to
which you are sending commands.

In fact, SAS data sets very much do exist in a physical form on your hard
drive. You just do not have call to work on the physical file directly. This is
an asset when you are working with the large files for which SAS is so well
suited. It is easy enough to find and call up the file when you have a handle
of the SAS filing system of libraries. You can, at any time call the data file up
directly. If only to reassure yourself that it exists.

http://www.youtube.com/watch?v=snihdG1rE0Y
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2.9 Some Simple SAS Utilities

Printing and saving in SAS works pretty much the way it does in any Windows
program. The default output file format is something called a “list” file, but you can
also save your output as file types compatible with Windows Office programs such
as Rich Text Format (RTF) for Word text documents and Enhanced Metafile (EMF)
files for inserting graphs and charts into windows documents. SAS also has a nice
export function, so you can send your data sets to programs like Excel. To print or
save just part of your output, highlight the results in the output window, right click,
and print, copy, paste, or save.

You can change your system options for things like lines per page, font type and
size, centering text under the tools menu:

Tools --> Options --> System

2.10 Getting Help

OK, SAS is not exactly world renowned for the ease and clarity of their help and
documentation. It sometimes seems like you need to know the answer to find the
answer. The situation, though, has improved considerably over the years. You can
access information on most procedures under the Help menu. You need, though, to
go through a couple of steps:

Help --> SAS Help and Documentation --> SAS Products
--> Base SAS --> SAS Procedures --> Procedures

You can get list of SAS functions (we’ll discuss them later) at:

Help --> SAS Help and Documentation ---> SAS products
--> Base SAS --> SAS Language Dictionary -->
Dictionary of Language Elements --> SAS Data Set Options

(whew)
You could, alternatively, type “help” and the name of the procedure you want help

for (e.g., “help univariate”), in the Command Window. The Command Window is
located on the upper left-hand part of your screen and has a little check mark icon
next to it. You can also get a list of SAS keyboard shortcuts (“function keys”) by
typing “keys” in the command window. This would tell you, for example, that F8 is
the keyboard approach to submit a command.

Remember, there’s (almost) always more than one way of doing things in SAS.
It is an extraordinarily robust and multifaceted computing language. For example,
to clear a your output screen, you can type “clear” in the Command Window or use
the short-cut function “CNTRL-E” One of the nice things about SAS’s popularity is
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that there is invariable someone who faced the same issue you have, and often, they
were nice enough to post something online about how they solved their problem. I
answer most of my questions with Google.

Problems

2.1. Submitting Commands and Reading Output
Start up SAS and with the Editor window active, use the “File” menu to navigate
to your files. Open the intro–sparcs–ami syntax file by double clicking on it. Scroll
down to the code titled “compare ages”.

Type in the full file-path location of the data file

demo_1

in between quotation marks following the statement

libname p8483

Don’t forget the semicolon. Submit the t-test statement comparing the age of non-
New York City acute myocardial infarction patients (“upstate”) to residents from
New York City. What is the mean age of upstate AMI patients? NYC AMI patients?
Is this difference statistically significant? Do you think it is clinically important?

2.2. Saving SAS Output to Microsoft Word
Clear your output screen by pressing Cntrl-E. Do the same with your Log screen.
Using the intro–sparcs–ami syntax file, run the univariate analysis of age. Save the
output of the univariate analysis as a rich text (RTF) file on your desktop, by

1. Saving the RTF SAS file as a MS Word file
2. Using “File - Export” to export your histogram onto your desktop as a Windows

Enhanced Metafile (EMF)
3. Opening your saved MS Word file created in step 1 and inserting your histogram

in it using “Insert–Insert Picture”

2.3. Using SAS Help
Use the SAS help system to find an example of how to use the “OBS=” data set
option to limit the number of observations SAS processes. Copy and paste the
example from the help file into the word document you created in Exercise 1.2.

2.4. Using PROC CONTENTS to View Variables
Return to the intro-sparcs-ami syntax file in your editor window. Write in and submit
the following syntax:

proc contents data = p8483.demo_1;
run;
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How many observations and variables are in this data set? Is the data sorted? What
type of variable is the DATE variable? What type of variable is the DISPO variable
and how long is it?

Use the SAS Explorer (hint: double click on the libraries folder) to find the demo-
1 file on your computer system. Double click it to open it. Scroll down and inspect
the DATE and the ECODE variables. How does the DATE variable appear? Does
the ECODE variable look to be very useful?

Close out of SAS. You do not need to save your changes.



Chapter 3
Working with SAS Data

Abstract This chapter introduces the core concepts of SAS programming. We learn
how to use SAS “libraries” to locate, refer to and save data files. How to crate data
files by inputting data directly into the Editor. How to read in existing data files by
specifying data sources and the kinds of data they contain. And, how to decipher
error messages and debug some common problems. The chapter ends with some
notes on a few tricks for getting data into SAS, and the SAS utilities available for
reading in MS Excel files.

3.1 SAS Data Libraries

SAS data files are stored in libraries of similar or related data sets. New SAS users
sometimes find libraries confusing. You can think of them as a sort of shorthand
or pointer SAS uses to find files on your computer. SAS doesn’t create the folders
themselves. You do that in Windows (or Mac’s Finder) as you normally would. SAS
just has a unique way of referring to those folders, and it provides you with a way to
direct your work to the files that are stored in that folder. The names SAS uses for
the folders on your computer are called librefs, and you assign the names for your
folders using a.

LIBNAME

statement.
For example, say you will be creating and working with a number of SAS data

files from New York State hospitalization discharge (SPARCS) data. In Windows,
you can create a folder on your desktop named “sparcs” to keep them in by (1) right
clicking on your desktop and (2) following the prompts for a new folder. If you then
right click on this new folder and check its properties, you will be told it is located
on your hard drive in a location called (for example)

‘C:\windows\desktop\sparcs\’

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 3,
© Springer Science+Business Media New York 2013
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Notice this is not a file. It is an empty folder you created in Windows.
Now, in SAS, before you start creating data sets based on the SPARCS data, you

will use a

LIBNAME

statement to create a libref called “sparcs” that points SAS to the sparcs folder you
created in windows. From now on, in SAS, you will not refer to the file with the
Windows location of

‘C:\windows\desktop\sparcs\’

You will instead use the libref name (“sparcs”) you created with your LIBNAME
statement. Physically, the file is in

‘C:\windows\desktop\sparcs\’.

The SAS libref is just a shorthand name for that location.
The libref (which refers to a folder) is paired with a data filename, separated by a

dot, to uniquely identify a data set (“libref.dataset”). This is a key concept and bears
repeating: In SAS, data files are referred to by their “libref.dataset” name. So, rather
than writing syntax to tell SAS to conduct analyses on a mortality file called

‘C:\windows\desktop\sparcs\
mortality.sas7bdat’,

1 you refer to your mortality data file in SAS as “sparcs.mortality.” This filing
system is another feature that allows SAS to work across many types of computing
platforms. After a little getting used to, you will find this kind of shorthand actually
quite useful and logical.

Finally, it’s worth restating (because it seems to be a stumbling block for folks)
that the folder to which you direct SAS in the libname statement must physically
already exist; SAS won’t create it.

STOP. NAME YOUR LIBRARY.
You need to reissue the LIBNAME reference each time you start a SAS
session. If you want to avoid this, you can R click libraries in Explorer, choose
“New,” click “Enable at startup,” name it, and locate it by browsing to the
directory.

3.2 Two Special SAS Libraries

There are two special libraries you should be aware of.

1Sas7bdat is the file extension for SAS data files.

http://www.youtube.com/watch?v=9mEdTc340mI
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WORK is a default library that only exists during that particular session. It need
not be invoked at all. If you reference a data set without specifying a libref, SAS
will automatically store it in the work library.

Caution: The work library is erased at the end of the SAS session! This is
useful if you are, say, working on creating a data set, and there are a number of
intermediary steps that you don’t need to hold onto. But remember, if you want to
keep a permanent data set, it must be stored in a permanent library, not the Work
library. And remember, a single named SAS file implies (invokes) the work libref
which is temporary.

SASUSER is a folder location that comes preinstalled on Windows versions
of SAS. It is a folder in the bowels of SAS that you can invoke without first
creating it. It is an easy way to save a data file to a permanent folder if the whole
libref/LIBNAME thing is just too overwhelming.

3.3 Three Ways to Browse SAS Data Libraries

To explore your SAS data libraries, you can (1) type libname in the command
window then drill down to files with your mouse, (2) click on the Explorer Window
tab then double click on Libraries, and (3) write a PROC CONTENTS command in
the Editor Window with an ALL keyword to invoke all the files in the library and an
NODS option to suppress the descriptor portions of the files. The syntax looks like
this:

proc contents data=sparcs._all_ nods;
/*note the space between _all_ and nods*/

run;

SAS will print out all the SAS data sets within the library and give some information
on each file (Fig. 3.1).

3.4 Inputting Data into SAS

This is where SAS excels (pun intended). You can, essentially, read almost any data
type into SAS, and there are myriad ways of doing it, depending on the format
and location of the data. For any approach, though, you need to first indicate to
SAS that rather than performing a procedure on an existing data set (with a PROC
statement) you are creating or manipulating a data set (with a DATA statement). You
then specify the name of the data set, whether it should be stored in a temporary
(WORK) library or in a permanent library, and how the data should be INPUT into
the file by specifying (in the order in which they appear in the data file) the variable
names and what type of data they are (numeric or character).
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Fig. 3.1 PROC CONTENTS Output

The first essential step in reading in data, though, is to determine how your data
is laid out.

In general, and certainly for epidemiological purposes, it makes sense for each
line or row of data to correspond to an individual or an observation on an individual,
with variables for that individual observation arrayed along that row or line of
data. If you are typing in or creating your own data set, this may be the most
straightforward approach.

ID Variable 1 Variable 2 Variable 3

Person 1 AAAAA BBBBB CCCCC
Person 2 DDDDD EEEEE FFFFF
Person 3 GGGGG HHHHH JJJJJ

But, you may be working with data from another source, perhaps from a govern-
ment administrative health data set, and what works for epidemiologists and SAS
programmers is not always the best approach for data base managers. Especially
with large data sets, space and when file size considerations are important.

The data may be arrayed as a single continuous array of values:

AAAAABBBBBCCCCCDDDDDEEEEEFFFFFGGGGGHHHHHJJJJJ
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There may be an unbroken row of data for each observation with a hard return or
a character at the end of each observation:

AAAAABBBBBCCCCC
DDDDDEEEEEFFFFF
GGGGGHHHHHJJJJJ

The data may be arrayed in columns with a space between each column. That
space may not even really be a space, but rather a tab character:

AAAAA BBBBB CCCCC
DDDDD EEEEE FFFFF
GGGGG HHHHH JJJJJ

The variables may be separated by some other character such as a decimal point;
they may continue on another line or even on another file. Missing observations may
be represented by a series of blank spaces or a special character or series of numbers
or two tab characters or may not be indicated at all.

The data may also come in any number of formats. You may be one of those
fortunate individuals who receive his or her data in SAS format, but this is not
usually the case. It may be in ascii or text format (indicated by a .txt file extension).
It may be in Excel or SPSS or STATA or R format.

The good news is that SAS can handle just about any data set in just about any
configuration. It may take some work, though. It’s been my experience that the
majority of data analytic effort in the secondary epidemiologic analysis of data is
spent in wrestling the file into an appropriate format. While most external data sets
come with information describing how they are laid out (we’ll talk more about that
shortly), the best first step is simply to look at the raw data.

LOOK AT YOUR DATA.
The potentially complex and myriad variety of data set ups, leads to the first
and foremost rule of data entry: LOOK AT YOUR DATA.

Usually, the best first step is to use a simple text editor, like Notepad (or
for larger files Wordpad), to open up the file.

There are two (main) ways of reading data into SAS: You will generally either
type (or cut and paste) data directly into SAS or read in an external data file.

3.5 Reading in Data from the Editor Window

In this, most simple, approach, you either type or paste data directly into the SAS
editor window. For many smaller epidemiological analyses involving less than, say,
a few hundred observations, this may be all you will ever need. The steps are as
follows:

http://www.youtube.com/watch?v=TH7qW2q5on0
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1. In the data editor window type the word DATA. Then name the data set being
created or manipulated in the libref.sasdataset format and end the line with a
semicolon.2 If you are creating or manipulating a temporary data set, you can
use the work libref omitting the libref altogether. If SAS doesn’t see a libref in
the DATA step, it will assume it is a temporary work data set.

2. On the next line of syntax, type the word INPUT. You will then describe to SAS
how to read in or input the data from the raw data by naming the variables,
specifying locations, and identifying them as character or numeric. Your input
statement will be dictated by how your data are laid out (see below). This line of
syntax is also ended with a semicolon.

3. On the next line of syntax, type the word CARDS or DATALINES followed by
a semicolon. This indicates to SAS that what follows next is the raw data itself.

4. Type in or paste the raw data. Place a semicolon at the end of the data, on a line
by itself. This indicates you have finished naming the data. You will know the
data is successfully entered when it is highlighted a pleasant yellow color.

NAMES
SAS is a little fussy about how you may name data sets and variables. Both
data set and variable names must start with character or underscore. They can
be 32 characters long with no spaces or special characters like # or %.

CARDS
Cards may seem like an odd choice of word to indicate data. It refers to those
days of yore when data observations were entered on punch cards.

3.6 Two Basic INPUT Statements

As noted above, the INPUT statement is where you tell SAS how your data is laid
out. The majority of data can be input in one of two basic ways: as fixed columns or
with user-specified formats. The second approach, where you specify the location
and type of each variable, is the most flexible and probably the safest approach. But,
for completeness sake, and in the case you find a nice neat data set, we’ll consider
the first approach.

2Remember, you must already have created the libref with a LIBNAME statement, or you will get
an error message.

http://www.youtube.com/watch?v=9DkaRUtp3w8
http://www.youtube.com/watch?v=8nTFjVm9sTQ
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3.6.1 Space-Delimited and Column Input

For simple space-delimited data, where each row represents an observation, all the
variables for each observation line up nicely, and there are no missing values, it will
often suffice to just INPUT the list of variable names. Note that the default SAS
variable type is numeric, so if you have character variables, you have to alert SAS
by putting a $ sign after the variable name to indicate it is a character variable.

The following INPUT statement indicates that each row represents an observa-
tion containing three variables. Variable 2 (named var2) is a character variable.

INPUT var1 var2 $ var3 ;

You will run into problems with this approach if there are any missing data. SAS
will just read the data consecutively and place them under the wrong variable.

If you know or suspect there are missing variables, you can add an additional
level of control by explicitly telling SAS where each variable column begins and
ends by specifying the number of spaces after the variable name. In the following
syntax we take the previous input statement and tell SAS that variable 1 (named
var1) begins on the first space and ends on the 5th space; there are then two blank
spaces that SAS should ignore, and variable 2 begins at space 8 and goes till space
10 and that there are another two empty spaces before variable 3 begins at space 13:

INPUT var1 1-5 var2 $ 8-10 var3 13-26 ;

Here’s a demonstration of how you might use column input with data entered
directly into the editor window to create a file of discharge data on a group of
4 patients (Fig. 3.2). The variables are the patients’ first and last names, their
social security number, and whether they were admitted or released. Perhaps you’ve
abstracted them directly from patient charts. Look closely at the syntax in the bottom
editor window. You should understand what each line of code means. If you don’t,
reread the section above before proceeding.

Once you’ve created a data set, look at it. There are two ways to do that. You can
either use a PROC PRINT command, as I did in the syntax above. (Notice I didn’t
have to specify the data file to print because it is the only data set created during this
session). You will get an output screen that looks like this (Fig. 3.3).

Or you can navigate to the work library and double click on the data file name to
open the viewer (Fig. 3.4).

One (very) important final point about simple column input: it is a poor choice for
anything other than standard numeric or character variables. So if your data contains
dates, or even just commas separating numbers, you are better off with user-defined
input.
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Fig. 3.2 Entering data in column format directly in the editor window

3.7 Reading in Data from External Files

If you plan on working collaboratively with other folks’ data, or if you will be
analyzing standardized health data sets downloaded from government sites such as
the CDCs National Center for Health Statistics, entering data directly into the editor
window with a “cards” or “datalines” statement is not an option.

More often than not, you will be working with external data sets formatted in
ways that make sense to the originator and, very likely, to no one else. In this case,
rather than specifying “cards” or “datalines,” you will need an INFILE statement to
identify the file location and type. And, most likely, you will need to create some
user-defined inputs, rather than use simple column input.

3.7.1 The INFILE Statement

An INFILE statement identifies the location and type of the raw data file you want
to read into SAS. After typing the word INFILE, type, within quotation marks, the
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Fig. 3.3 Printing out your data

path, on your computer, to the file. Make sure you specify the file extension and end
the statement with a semicolon:

INFILE c:\temp\sparcs.txt;

You can put various options into the INFILE statement to help SAS read the file.
Three common ones are as follows:

1. LRECL=n stands for logical record length and tells SAS how long each row or
observations is. The default SAS setting is that each row or observation is 256
characters long, and then a new row or observation begins. If each row of data is
shorter than that, you do not need to specify the record length. But, if it is longer
than 256 characters, you need to use the LRCL option, or SAS will truncate your
data at 256 characters. Remember, SAS includes blank spaces when it calculates
the number of characters in a row.

2. OBS=n tells SAS to read in n number of observations. There is no preset number
of observations, and by default, SAS will read in all your observations. This
option is useful if you are troubleshooting a large data set that takes a long time
to read and want to debug your DATA syntax without having to read the entire
data set.



28 3 Working with SAS Data

Fig. 3.4 Viewing data using the SAS Explorer Window

3. MISSOVER assigns SAS missing data values to variables not given a value in a
data record. (Well talk more about that later.)

The following line of INFILE syntax tells SAS that the data is a text file (the
.txt extension) called ADR02NY located on your computer’s “F” drive in a folder
called “SPARCS” which is a subfolder of “K Data”, that each observation is 450
characters long and that it should only read in the first 100 observations:

INFILE ’F:\K Data\SPARCS\ADR02NY.TXT’ LRECl=452 obs=100;

3.7.2 Formatted INPUT of External Data Sets

Recall that with simple column inputs, where you just list the variable names,
whether they are character variables, and perhaps where the columns begin and
end, is useful for the simplest data sets. If your data is not in some form of space-
delimited column format, or if it contains any data other than simple numbers and
characters, you will need to further define the variables in the INPUT statement.

After typing INPUT, for each variable, you specify a location by using a pointer
control, and then you specify the informat for that variable.
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The pointer control is written as

@n

and tells SAS the variable begins at column n.

3.7.3 Informats

Informats, when used as part of an INPUT statement, tell SAS how to read in and
store data by specifying the width of the variable field and what kind of variable
it is.

3.7.3.1 Anatomy of an Informat

SAS INFORMATS have the following form:

<$>informat-namew.<d>

where

• $ indicates a character variable. If you do not explicitly specify the type of
variable or omit the $, SAS assumes it is a numeric variable.

• Informat-name names the informat. SAS has many predefined informats for
things like characters that retain leading blanks, characters that trim leading
blanks, dates, dates and times, comma-separated numeric values, percents, etc.
However weird the format of your data, it’s likely SAS has an informat for you.
You can look up informats in SAS documentation, but I have found that the two
best sources of informats are Delwhiche and Slaughter’s “The Little SAS Book”
for more common informats and the Internet for more exotic informats.

• w is a number that defines the total width of the field to read.
• . is a required delimiter and indicates to SAS that this is an informat. You will note

when using the enhanced program editor (which you should be using anyway)
that when you enter the dot as part of an INPUT statement, the informat turns a
mellow green color.

• d placed after the required dot delimiter defines the number of decimal points for
a numeric variable and is optional.

Some examples of SAS predefined informats are as follows:

• $CHAR6. defines an 8-space-long character variable that retains leading and
trailing blank spaces.

• $6. defines an 8-space-long character variable that trims leading and trailing
blank spaces.

• 4. defines a 4-space-long numeric variable with no decimals.
• 4.2 defines a 4-space-long numeric variable with 2 decimal places.
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• COMMA4.2 removes embedded commas and dollar signs from a 4-space-long
numeric variable with 2 decimal places (In general, COMMAn. reads n columns
of data and removes nonnumeric characters like commas and dollar signs. It
affords much more control over the data input and can deal with most any data
type.)

• MMDDYY8. defines an 8-space-long date variable in a month-day-year
(mm/dd/yyyy) format.

As a demonstration of reading in an external data file, let’s return again to the
idea of hospital discharge data. We’ll be spending a lot of time working with such
a data set to illustrate SAS concepts and procedures , and we’ll define it in more
detail in later chapters. For now, say you have a text file of all hospital discharges
in a certain area. You are interested in creating a SAS data file of the first 1,500
observations that contains the patients’ ages, zip codes of residences, gender, race,
ethnicity, and primary diagnosis.

Review the following syntax. You should be able to recognize all the elements of
the syntax. Note that, as in the previous simple column input from the text editor,
we begin with a DATA statement that creates a temporary file.3

Also note the reassuring blue-colored notes in the log that tell us that file was
successfully created (Fig. 3.5).

3.8 Behind the Scenes of a Data Step

It’s been my experience that most problems using SAS occur during the creation or
manipulation of data sets. SAS will do what it can to tell you what went wrong, but a
basic understanding of what is going on behind the scenes is helpful in deciphering
error messages.

To begin, DATA starts the process and names the file. The INFILE statement
then creates what is called an input buffer to temporarily hold each observation as it
is being processed. The INPUT statement then takes values out of the input buffer
and stores them in what is called a program data vector (PDV) which associates
attributes such as length, type, and name with each variable in an observation. The
RUN statement then creates the descriptor portion of the data set from the PDV.

I realize that’s quite a mouthful, and while it is not strictly necessary to know
all these steps, it is very helpful to be aware of how the overall process occurs.
In particular notice how the process loops from observation to observation. After
the RUN statement, SAS automatically returns to the beginning of the DATA step,
reinitializes all the variables in the input buffer to missing, then INPUT reads the
variables from the buffer to the PDV again, and then RUN creates the descriptors.

3What is the name of the file we are creating? How do you know it is temporary? In what library
would you find it?
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Fig. 3.5 Reading in data from an external file

Finally, the process loops back again to the DATA step. It helps to know that your
data file is processed observation by observation.

Being aware of this process may help you better understand the invariable (and
sometimes inscrutable) error messages SAS will send your way.

3.8.1 Deciphering Error Statements

If SAS encounters an error in either the syntax or in the data set, it will let you know
through an error message in the log. SAS may or may not stop processing the data
set. This is an important and potentially crucial point. It is of more concern when a
data set when contains errors is created. Read your log. Always.

3.8.1.1 The Most Common Errors

The most common error is leaving out a semicolon somewhere along the way.
Because the omission of a semicolon can result in most any kind of error, the error
message in the log usually won’t state that you omitted a semicolon. Generally,
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unless the error message clearly indicates something else, always look for a missing
semicolon first.

After that, the most common errors in reading data are simple syntax errors such
as misspelling a data file, leaving off an extension, or leaving off a quotation mark.
Note that if, for example, you leave off or misspell a data file extension, the SAS
error message will not be “you misspelled the extension,” SAS will, rather, tell you
the source file doesn’t exist.

After syntax misspecifications, SAS will most often report errors when it comes
across missing values or finding a character value when it is expecting a numeric
value because the INPUT statement defined a numeric value for that variable.

3.8.2 Error Messages

You will find error messages in the log.
An error message may look something like this:

_ERROR_=1 _N_=10

3.8.2.1 Anatomy of an Error Message

• Number 1 in the error statement is a binary flag SAS uses with each loop of the
data, with 1 meaning a data error was encountered and zero meaning no errors.

• The number 10 indicates that the error occurred during the 10th loop through the
data, which, if the data file is specified correctly, should be your 10th observation.

You will also get an indication of exactly at what column SAS encountered the
error, what the error was, and (often) what SAS was expecting.

In the following screen shots, we will look at some error messages you might get
when trying to read in data (Fig. 3.6).

Here, SAS gives us the error message that the “file does not exist.” We are then
informed that SAS “stopped processing this step” because of this error, that the data
set we were trying to create “may be incomplete,” and that (helpfully) if there had
been an existing such data set, it was not replaced. All very useful information, but
what did we do wrong?

The most important bit of information is that SAS believes the file to which we
referred does not exist. This should lead us to look at the part of the syntax that
refers to the file. This would be our INFILE statement:

infile "C:\Users\Charles DiMaggio\Documents\K\P6781\Thumb
Drive\ F_CALIFORNIASAS\Hertt95.txt" lrecl=999;

First off, SAS is (almost) always right. It is looking for the file you specified, and
it is not there. Basically one of two things has occurred. You correctly typed the file
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Fig. 3.6 Error messages when reading in a data message

name, but it is either not on your computer or in the folder you specified. Or, you
typed the name incorrectly. This is the more common situation. Here, I typed

\Hertt95.txt

when the actual file name is

\Heart.95.txt

You can avoid this kind of error. When you write your INFILE statement, locate
the file to which you want to direct SAS by using Windows Explorer, then right
click the file name, select properties, and copy and paste the file location and name
into SAS. This should result in fewer typing errors.

The next screen shot demonstrates a second common error (Fig. 3.7). Here, I
present only the log screen. You will see that I’ve corrected the file name, and SAS
now reports (in reassuring blue font) that the infile statement is the same as the file
name it found.

The error now is of the somewhat inscrutable

_ERROR_= _N_=

type. SAS tells us that it encountered invalid data for a variable called RLN. It is
occurring on every pass of the data and seems to be at position 30.

The most appropriate next step is to look at our data in a simple text editor and
compare what we find at position 30 with what we told SAS it should find.
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Fig. 3.7 Log screen for errors reading in data

Here is a screen shot of the first few lines of the text file we specified in our
INFILE statement (Fig. 3.8). If we count 30 spaces from the first column, on the
first line, we encounter the character

_

On the second line, we encounter the string of characters

NM9UGEKG

We can now look at our input statement to see what we told SAS to look for:

input FACNUM AGEYRS SEX RACE ZIP LOS DISP PMTSOR DRG APRSEV
RLN;

We see that we specified the relevant variable (RLN) as numeric. When SAS,
instead, encountered a character variable at that position, it returned an error
message.

The next screenshot indicates an even more problematic situation (Fig. 3.9). This
is a continuation of the same error message. First we see that after 20 error messages,
SAS reaches its limit and informs us that, although there may be more of the same
errors, it will no longer document each of them. Of greater concern, though, is
that SAS created the data set, errors and all. Note that SAS completed a PROC
CONTENT without any error message.

This example illustrates the crucial importance of reviewing your log, partic-
ularly when creating data sets. While you should always look at your log, it is
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Fig. 3.8 Reviewing the raw data

critically important to look at the log every time you run a data step. If you look
at it after running some procedures, you may not catch the error.

3.8.3 A Few Other Common Errors

As noted above, the most common error is probably omitting a semicolon. It is very
unlikely, though, that you will get an error message from SAS telling you that you
omitted a semicolon because SAS will read what follows the omitted semicolon as
part of the statement preceding the omitted semicolon. This can result in most any
error message.

Another common error is forgetting to put a RUN statement at the end of your
syntax or (again) forgetting the semicolon after the word run. This basically puts
SAS into a state of suspended animation. It’s like it knows what you want it to do
but is just waiting for permission to go ahead and do it. You will see the word
“Running” in the title bar of your output and log windows. You don’t need to
resubmit your entire program. Just type “RUN;” and submit that. If all you did was
omit the semicolon after the word RUN, just highlight and submit the semicolon.

Perhaps not as common as omitting a semicolon or a run statement, but markedly
more annoying, is submitting unbalanced quotes, i.e., omitting a quotation mark at
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Fig. 3.9 Creating a data set despite errors

the beginning or end of a string of character values. SAS will see everything after
the lone quotation mark as part of a character string. If you just recall and resubmit
the code, SAS will just see it as a further appending to the original code. You need to
give SAS what it’s looking for: a quote mark to end the first quote. A neat approach,
taught as part of the SAS Institute’s introductory course, is to type

*run;

In case it is not a mismatched quote, the * at the start creates a comment that
SAS doesn’t read.

3.9 Notes on Manipulating Data (or How to Tame
an Annoying Data Set)

SAS offers many, many ways of inputting data. I have never come across a data set
it couldn’t handle. Here are a couple of features and tricks that I’ve found useful.
You can find a lot more with some simple online searches and in books like the
admirable little Delwiche and Slaughter.
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3.9.1 Illogically Arrayed Data

Your data may not always be logically arrayed with one row of data corresponding
to one observation.

3.9.1.1 More Than One Row per Observation

You can read more than one row of data into a single observation by using a slash
(/) to tell SAS to skip to and continue reading the next line of data. For even greater
control, you can use a #n to tell SAS to skip to a specific line of data (where n is the
line number). Note that the #n is a more flexible approach. You can even tell SAS
to go back to a previous line.

Say, for example, you had the following raw data indicating the name of a town,
its population, the number of cases of some particular disease in that population,
and the number of deaths among those cases:

Buford
1000 20
5
Tookton
2000 50
3

You could use the following syntax:

INPUT town $ / population cases / deaths;

If, alternatively, you just wanted a count of deaths for each town, you could input
the data like this:

INPUT town #3 deaths;

3.9.1.2 More Than One Observation per Row

Alternatively, your data may be arrayed such that each row of data represents more
than one observation. You can use @@ at the end of the INPUT statement to tell
SAS to start a new observation regardless of whether it is at the end of a line of raw
data or not.

As an example, say our town data above is arrayed like this:

Buford 1000 20 5 Tookton 2000 50 3

INPUT town $ population cases deaths @@;

If your data file has descriptive text at the beginning that you don’t want to read
in, you can tell SAS to start reading the file at some row other than the first row
with FIRSTOBS = n as part of your INFILE statement (where n is the line of data
at which you want SAS to begin).
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Say, for example, you are reading a census file into SAS, and the first few lines
are administrative text you don’t need. The following INFILE statement will start
reading in the data at the 26th row:

INFILE C:\Documents and Setting\Charles DiMaggio
\My Documents\Census\ny_data.txt FIRSTOBS=26;

A very useful, INFILE option is to limit the number of observations you want
SAS to read with OBS=n. As noted above, this is helpful if you have a very large
data file and you want to debug or make sure your INPUT statement is free of errors.

This syntax will read in only the first 26 lines of data: (Note the difference from
the previous example.)

INFILE C:\Documents and Setting\Charles DiMaggio\My
Documents\Census\ny_data.txt OBS=26;

SAS assumes 256-character record (observation) length or less. You can change
this with long record length command (LRECL). For example, here, we tell SAS to
read 2,000 characters for each observation:

INFILE c:\myrawdata\whatever.dat LRECL = 2000;

3.10 Data Input Miscellany

Here are a couple of (somewhat) random points about data input that sometimes
come up:

• SAS will automatically read in decimal points if they are in the data. The only
reason to specify decimal points is if they are implied but not provided in the
data.

• In an INPUT statement, a dollar symbol ($) following a variable name left aligns
the character variable, removing any leading blanks. Using the key $CHAR will
preserve leading blank values.

• Don’t forget the dot after the informat. If you do, SAS will misinterpret it. For
example, $3 would be read as a column style input of size one at the 3rd space.
You can mix input styles in the same INPUT statement, SAS doesn’t care (see
pp 36–38 of The Little SAS Book).

3.11 Importing Excel Spreadsheets

An estimated 80% to 90% of all computers use Microsoft Windows or its applica-
tions. You will almost invariably have reason to read Microsoft Excel data into SAS.
SAS comes with an import wizard that makes the process relatively painless.
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Just click through the following steps:

File > Import Data >

Select Excel from dropdown list and follow the wizards cues.
Note that the import wizard is actually writing code. You will be given the option

to save the code. It will look something like this:

PROC IMPORT DATAFILE = filename OUT = dataset;
DBMS = identifier REPLACE;

If it’s a file or file type you will be working on with any frequency, it’s a good
idea to save the syntax.

Exporting data to a program like Excel is just as simple, by using the Export
utility.

Problems

3.1. Reading in Data From the Editor Window
The following data represents blood test results for a series of patients, the first set
of numbers is a patient identifier (ID), “Positive” or “Negative” refers to the overall
test result (RESULT), the final set of numbers is the absolute test value (VALUE):

203769Positive486
201948Positive400
202085Positive364
201755Positive416
202092Positive373
202087Positive657
201358Negative341
201429Positive448
201549Negative320
202741Positive391
201627Positive532
202004Negative268
202052Negative334
203531Positive573
204366Negative348
204042Negative252

• Write the syntax to create a data file called “results” in your SAS work library
that includes the variables ID, Result, and Level. (You can cut and paste the data
from the text file called exercise3 1.txt)

• Print out the data set using PROC PRINT. (You may have to use SAS help or
search online for full details on how to use PROC PRINT.)

3.2. Reading in Data from and External Source
• Using the information in the “sparcs layout” text file, create syntax to read a SAS

data file into your work library called “sparcs1” as follows:
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– Specify the location of the SPARCS 04 data file on your computer. Include
the following variables: DATE, AGE, COUNTY, ZIP CODE, SEX, RACE,
ETHNICITY, PRIMARY DIAGNOSIS, and DISPOSITION.

– Specify a long record length of 450 characters and limit the syntax to read in
only the first 100 observations.

• Print the data set out to your output window.
• Use the “Export” utility under the “File” menu to save a comma-delimited (.csv)

version of the file on your desktop.

3.3. Creating a SAS Library
Using the libname command from the first line of the intro-sparcs-ami.sas syntax
file, create a libref called desk that points to your desktop. (Hint: Right click a file
on your desktop and look under the general tab of properties to determine the correct
path.)



Chapter 4
Preliminary Procedures

Abstract In this section we’ll spend some time looking at simple SAS procedures
that you will use frequently. These utility procedures allow you to print, format, and
output data in a variety of ways.

4.1 PROC PRINT

PROC PRINT is a useful way to list variables, as well as a (simplistic) tool to get
totals and subtotals. In its simplest form, you invoke PROC PRINT, specify your
data set, and run the procedure:

proc print data=your.data;
run;

You can turbocharge PROC PRINT with a number of options:

• A VAR statement allows you to select variables to be printed and defines the order
of variables.

• NOOBS suppresses the observation numbers and in combination with an ID
statement allows you to specify a more informative variable to identify the
observations.

• A SUM statement allows you to calculate simple column totals.
• A WHERE statement creates subsets by using a comparison or logical operators

and functions. Comparisons terms in SAS include EQ (equal), NE (not equal),
GT (greater than), LT (less than), GE (greater than or equal to), LE (less than or
equal to), and IN (referring to a term contained in the following parentheses, e.g.,
WHERE DX IN (“AMI,” “Pneumonia,” “UTI”)). Logical operators include the
terms AND or NOT. There are also some special operators such as BETWEEN-
AND or CONTAINS that can be helpful. We will revisit these operators when
we discuss sub-setting statements.

As an example, the following screen shot demonstrates a PRINT command
for a data set named “fitness” (Fig. 4.1). We are printing out only the first five
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DOI 10.1007/978-1-4614-4854-9 4,
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Fig. 4.1 PROC PRINT

observations (note that OBS=n has to be in parentheses) and are suppressing the
default SAS observation numbers. We could have specified a specific ID variable,
but instead, I’ve listed a name variable as the first of three variables I want SAS
to print. I’ve also restricted the printout to only females and asked for a total of a
numeric variable called runtime. Looking back on this paragraph, you can appreciate
somewhat the relative brevity and elegance of the syntax.

REALLY. LOOK AT YOUR DATA.
Get in the habit of printing out the first couple of lines of a data set after you
create it. Use OBS=n to limit the number of observations.

4.2 PROC SORT

After PROC PRINT, PROC SORT is probably among the most useful and frequently
used utility procedures. It’s used to sequence observations before merging files and
grouping observations for subset analyses. For example, PROC PRINT won’t sort

http://www.youtube.com/watch?v=h9ZGKALMMuc
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observations. If you need subgroups of observations for your analyses, you must use
PROC SORT before running PROC PRINT. You can sort an existing file, or you can
sort data and create a new file.

Note that PROC SORT by itself doesn’t produce any output, although you will
receive feedback on the procedure in the log window.1

At its most basic, a PROC SORT statement consists of invoking PROC SORT,
specifying the DATA set, and telling SAS what variable BY which to sort. The BY
variable must be amenable to some sort of logical ordering, either numerically or
alphabetically. You can create a new, sorted file using the OUT option (OUT is an
option in many procedures) or you can just sort the existing file.

The SAS default is to sort the observations in ascending order of the BY variable.
You can, though, choose DESCENDING as an option in front of the BY variable.
You can sort by more than one variable, but if you want them all in descending
order, you need to specify DESCENDING for each variable.

Once you’ve sorted a data set, you can use SUM as part of PROC PRINT to
obtain subtotals.

If we were, for example, to run the following syntax:

proc sort data=fitness out= sortdat;
/*output data set is in the work library */

by gender; /* will be sorted by gender ascending */
run;

proc print data=sortdat;
/* note using the output sorted data set */

by gender; /* variable by which we sorted */
sum runtime; /* request sum of numeric variable */
run;

we would get the following output (Fig. 4.2).
SORT and PRINT is not a very powerful way to obtain subtotals, and you will not

likely have much use for it for any but the smallest data sets. PROC SORT, though,
is a very useful procedure, and you will likely use it extensively for merging files.

SOME TRICKS
As mentioned earlier, PROC PRINT is not limited to simple BY statements.
There are special operators in SAS that allow you to do some pretty cool
things. For example, using CONTAINS will return observations that exactly
contain a certain character or numeric result. And there are more flexible
operators. “ = ∗′′ gives text that sounds like some character string (e.g., where
name= ∗“smith′′;). NULL or IS MISSING gives observations where the thing
is missing (e.g., where name is missing or where name is null).

All these operators work for creating data sets from existing data sets,
which we will soon explore.

1It is for these procedure that do not produce output that checking your log is critically important.

http://www.youtube.com/watch?v=sfv3kBzJZgU
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Fig. 4.2 PROC SORT

4.3 Enhancing Output: Titles and Footnotes

Titles and footnotes provide you with an easy way to provide simple descriptions of
your output. They can also be used to enhance your output for presentation purposes.

As you might expect, titles will appear at the top of your output, and footnotes
will appear at the bottom. You can have up to ten lines of each. It’s a good habit to
give each of your analyses a title. When you are doing a lot of analyses, this helps
keep your output organized and understandable.

You include a title or footnote command as part of your current procedure by
writing the word TITLE followed by the text you want to appear enclosed in quotes.
The command is, as ever, completed with a semicolon:

TITLE This is my title;

To have more than one line of text as your title, designate each line with TITLEn,
where n is the line number:

TITLE First Line of Your Title;
TITLE2 Second Line of Your Title;
TITLE3 Third Line of Your Title;

The rules are the same for footnotes.
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Fig. 4.3 Titles and footnotes

If we were to run the following syntax:

proc print data=sortdat; /* using the sorted data set */
title ’Printout of Fitness Data’;
title2 ’Sorted by Gender’;
title3 ’With Sums for Runtime’;
footnote ’Analyst: DiMaggio’;
footnote2’Conducted December 2008’;
by gender; /* variable by which we sorted */
sum runtime; /* request sum of numeric variable */
run;

You would get the following output (Fig. 4.3).

NEW PAGES
SAS will continue using the same titles and footnotes from the most recent
procedure that included a TITLE or FOOTNOTE statement. You need to
cancel previous ones by including a blank title and/or footnote statement or
write new ones to avoid confusion.

Also, titles and footnotes are hierarchical: issuing a new number n title or
footnote replaces that one and cancels all subsequent ones.

http://www.youtube.com/watch?v=Fe7yOccqdxI
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4.4 LABELS

When you are working with someone else’s data, internal SAS variable names can
sometimes be inscrutable. For example, consider the following input statement for
New York State Medicaid data:

input
@1 id $CHAR20.
@193 ip_dx1 $CHAR6.
@199 ip_dx2 $CHAR6.
@255 cptsx1 $CHAR2.
@309 delivery 1.
@310 ip_days 4.
@314 ip_stat $CHAR2.;

A variable name like id might make sense as identification, but what are we to
make of variables like cptsx1? A SAS LABEL statement, included as part of the data
step, assigns a plain English name to SAS variables. The syntax is straightforward:

LABEL
var1=name for variable 1
var2=name for variable 2
var3=name for variable 3

So, for the above data statement, a label statement would look like this and would
follow the input statement:

label
id = ’ELIGIBLE IDENTIFICATION NUMBER’
ip_dx1 =’INPATIENT PRINCIPAL DIAGNOSIS CODE’
ip_dx2 = ’INPATIENT DIAGNOSIS CODE-2’
cptsx1 = ’PROCEDURE CODING SYSTEM CODE’
delivery = ’RECIPIENT DELIVERY CODE’
ip_days = ’MEDICAID COVERED INPATIENT DAYS’
ip_stat = ’INPATIENT STATUS CODE’;

Now, if you were, for example, to print out a table of diagnoses, the column of
diagnoses on your output would be labeled “INPATIENT PRINCIPAL DIAGNOSIS
CODE,” rather than

‘‘ip_dx1’’

Label names can be up to 256 characters long and are not restricted by SAS
variable name rules like not beginning with a number, slash, asterix. etc. Note that
the label replaces the variable’s name in SAS output but that when referring to the
variable in procedures or data steps, you must still use the internal SAS variable
name.

Labels can be assigned as part of a DATA step, as in the example above, or they
can be assigned as part of a PROC. There is a very important distinction between
the two approaches. When you assign labels as part of a DATA step, they are
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permanently attached to the variables. When you assign labels during a PROC, they
will apply for that SAS session only, i.e., you will need to re-apply them the next
time you start up SAS.

NEW LABELS
Once you’ve defined your labels, for most procedures, they will automatically
be invoked. For some procedures, though, you have to specify that you want
to use labels. This is the case for PROC PRINT, for example,

proc print data = your.data noobs label;

4.5 PROC FORMAT and FORMAT

As described in the section above, a LABEL statement is applied to internal SAS
variable names to give them plain English or more informative names. By contrast,
FORMATS are applied to the internal SAS values that a variable can take. For
example, say your data set has a variable called “gender” which is a numeric
variable coded “1” for females and “2” for males. (This is a common situation with
secondary data sets.) You want to assign the word “Female” to the number 1 and
“male” to the number 2 not only because it will make more sense when sharing
output with colleagues, but so you don’t need to refer to a coding reference every
time you return to this data set.

It is essentially a two-step process. You use PROC FORMAT to create a format
for the variable “gender.” (This format which you name and define will live
somewhere in the inner recesses of the SAS system.) You then apply this format
by using a FORMAT statement in a procedure.

Similar to the INFORMATS we discussed in Chap. 2, SAS FORMATS have
the form

<$>format_namew.<d>

where (as with INFORMATS) $ is an optional indicator for a character variable, w
is a required width definition, the dot is a required delimiter, and d, the number after
the dot, is the number of decimal points if any.

SAS ships with a number of predefined standard formats. For example, DOL-
LAR10.2 would display the numeric variable “11500” as “$11,500.00.” The prede-
fined SAS FORMAT $UPCASEw. will convert your character variable to uppercase.
As with INFORMATS, lists of predefined SAS FORMATS are available in the
documentation (hard to find) and on the Internet (easier to find). And also, as
with INFORMATS, I find Delwhiche and Slaughter’s “The Little SAS Book” an
excellent resource in this regard.2

2pp. 100–101 in the 2nd edition and pp. 110–111 in the 3rd edition.

http://www.youtube.com/watch?v=DO4GAm3GJ0k
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Fig. 4.4 Formatting a variable

If you find a predefined SAS format that fits your needs, you just include it as part
of your procedure. Running this syntax will result in the following output (Fig. 4.4).

proc print data=fitness (obs=5) noobs;
var name age weight;
where gender = ’F’;
sum runtime;
format name $UPCASE10.;
run;

Note that, as with LABEL, FORMAT does not actually change the internal
source variable, just the way it is displayed.

A nice thing about FORMAT is that (unlike INFORMAT) you are not limited
to what SAS has created for you. You can define your own FORMAT using PROC
FORMAT. We will see that this can be put to good advantage.

The syntax for PROC FORMAT looks like this:

proc format;
value format_name

1=’formatted_output_1’
2 =’formatted_ouput_2’;

run;
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Fig. 4.5 Creating your own format with PROC FORMAT

You begin by invoking PROC FORMAT. Notice that you are not referencing any
particular data set. The FORMAT you create will exist in a special place SAS has
reserved for such things. The next line of syntax consists of the word “value” then
a name for your format. The name cannot be longer than 32 characters and cannot
begin with special characters like * or /. If you are creating a few formats for the
same variable, you may be tempted to end your format name with a number. Don’t.
SAS will think you are delimiting a width for the format. Also, notice that when
creating a format with PROC FORMAT, we do not end the format name with a dot
delimiter. The delimiter is used when the format in a procedure is invoked.

In the following syntax, we are using PROC FORMAT to create a format that we
will apply to the ages of runners. We specify a numeric range of 0 to 40 that we will
consider “young” and a range of 41–100 that we will consider “old” (Fig. 4.5).

Now that we have created this new format, we will apply it to the data we have
been printing. Note that the relevant line of syntax is

format age old_runner.;

and that we now include the delimiting dot. You will notice that when you put a dot
after a word in the Enhanced Editor, SAS colors it a pleasant aqua.

proc print data=fitness (obs=5) noobs;
var name age weight;
where gender = ’F’;
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Fig. 4.6 Using PROC FORMAT to categorize a variable

sum runtime;
format age old_runner.;
run;

The above syntax will give you this output (Fig. 4.6).
Note that we assigned a name to a range of numeric values. In the world

of science, where folks tend to be either splitters (breaking things down to
their smallest constituent parts) or lumpers (combining things to find patterns),
epidemiologists tend to be lumpers. Formatting numeric ranges is an easy way to
lump things together and perhaps begin to see some patterns in your data.

Our example involved formatting a numeric variable to display character values.
Look at the syntax. You will see that the format values are enclosed in quotes to
indicate that they are character values. If we wanted to format this numeric variable
to display a number instead, say 1 for young and 2 for old, they would not be
in quotes. The name of the format itself (old-runner) could basically have been
anything.

If the original variable to which we were applying a format were a character
variable, the name of the format we create would have to start with a $ sign. In the
sample syntax below, we are formatting a character variable for a school grade that
has SAS internal values of A, B, C, and D. Notice that both the internal values and
the formatted values are enclosed in quotes and that the name of the format begins
with a $ sign.
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proc format;
value $grade
’A’=’good’
’B’=’fair’
’C’=’poor’
’U’=’see
instructor’;
run;

When you apply this format as part of a procedure, you will also need to include
the $ sign:

proc print data=your.dataset;
format final_exam $grade.;

/* again note need for dot when applying*/
run;

Much like a LABEL statement, when you define a FORMAT as part of a PROC,
it will apply for that SAS session only. The next time you start up SAS, you will
have to redefine the FORMAT. When you define a FORMAT as part of a DATA
step, the FORMAT will be permanently associated with that data set. Unfortunately,
unlike a LABEL statement, the FORMAT is not actually attached. SAS knows there
is a FORMAT associated with a variable, because it was part of the DATA step,
but it doesn’t know any of the details about the FORMAT. When you try to run a
procedure on a variable that has such a DATA-defined format associated with it, you
will get an error message and will still need to reinvoke the FORMAT much as you
would if it were defined as part of a PROC.

In fact, the situation may get more complicated. Depending on how the formats
were defined, SAS may not even allow you to open the data set.

There are a couple of ways around these difficulties. The most straightforward
and easiest (and hence the one I tend to use) is to just include formats as part of the
syntax for a procedure. You could alternatively run the FORMAT statement(s) every
time you open up the data set. Or you could create something called a format library
that permanently stores the format information. You do this with a LIBNAME
statement where the libref is the word “library.”

PUBLIC LIBRARY
Many publicly available data sets, for example, CDC’s Behavioral Risk Factor
Surveillance System, come with format libraries that can be difficult to use
and apply. This can be frustrating, especially if you just want to run a couple of
quick analyses. If you don’t properly download, save, and identify the library,
you will get numerous error messages, and sometimes the file won’t run at
all. In this situation, the simplest solution is to include a NOFMTERR option
when opening the data set.

http://www.youtube.com/watch?v=Orwg5tq4mjs
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4.6 ODS

ODS stands for Output Delivery System. It is a SAS tool that allows you to save your
output in a variety of different file types including Microsoft Excel, .pdf, .html, and
.rtf (rich text format, for MS Word documents). You start ODS by simply typing
the letters “ods,” then specifying the file type you’d like ODS to create, and then
specifying where on your computer you’d like ODS to create that file. I usually
specify someplace on my desktop. When you specify the file location, it must be
enclosed in quotes and have the appropriate file extension. No RUN statement is
necessary for this opening ODS statement. You then write out whatever PROC from
which you want output as you normally would, including a RUN statement. You
then close ODS.

As an example, let’s say that we are out to impress, and the simple SAS output
for runners’ ages, weights, and run times from our previous example just won’t do.
HTML is a fairly versatile file type that can be opened by many programs, and SAS
provides a nice output style for HTML called “sasweb.”

Below, you will see the syntax on the lower half of the screen and the usual SAS
output on the upper half of the screen (Fig. 4.7).

Fig. 4.7 Output delivery system (ODS)
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Fig. 4.8 PDF output using ODS

But, by invoking ODS, you get additional output. First, SAS creates a new
internal window called Results Viewer that contains your ODS output. The output
certainly looks nicer (Fig. 4.8).

More importantly, SAS creates a file with that nice output, on your computer,
based on your specifications. The following screen shot is of the HTML document
we created, which I opened using my Firefox browser. I could also have opened it
with Microsoft Word, which would have made it easy to include it in any report or
manuscript in which I might want to include it.

ODS has many tricks up its sleeves, and if you spend much time on SAS, you
will surely find use for it in many important ways. For our purposes, knowing how
to save your output in different file forms is sufficient. In the above example, if you
wanted a pdf file instead of an html file, you would simply have opened the pdf
engine with ods and specified a pdf file extension like

ods pdf file=c:\temp\example.pdf

There is, though, no nice formatting option for a pdf file like sas web, so it might be
better to use ods to create the html file then save or print the html as a pdf.
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SIMPLE TABLES
You may prefer setting up and formatting tables in a more familiar program
like Microsoft Excel or Word. You can use ODS as a neat way to output a
table of results directly into Excel so you can use it in a Word document.
Open ODS HTML and just put an .xls extension for the file. Make sure you
specify a “minimal” style to get rid of any extraneous SAS formats.

ods html file = ’C: \table.xls’ style=minimal;

A QUICK REVIEW

• LABEL: specify up to a 256-character label for each variable in an existing
data set

• FORMAT: define how to display variable values in an existing data set (if
used in DATA step, permanently assigns format, if used in PROC step, just
for that session)

• PROC FORMAT: to create your own formats
• INFORMAT: to assign a SAS format type to a variable when inputting

data
• LIBNAME: used to create a data library name

Problems

4.1. Using PROC PRINT
You are a hospital epidemiologist. The medical director needs some (very) quick
information on what group of patients requires the most resources. Not knowing
that all you know how to do is PRINT data, she hands you SAS data file exercise4-
1. She’s not very clear about what’s on it, but she thinks it can help you answer her
question.

(a) Begin by exploring the data set. Copy the file into a folder on your computer.
Write a LIBNAME statement to locate it. Open the file using the SAS Explorer.
What kind of file does it appear to be? How many observations are there? How
many variables?

(b) Looking at a few variables may help you get a quick sense of where resources
are going. You recognize AGE as age of the patient, LOS as length of stay
in days, CHARGE1 is how much the stay costs the hospital, and PDX as
primary diagnosis. Write syntax to print the variable’s age, primary diagnosis,
and charge. Limit your output to the first 20 observations. Do not print the
observation numbers. Print only those observations where the length of stay
is greater than 14 days and request a total for the costs charged to the patient.

http://www.youtube.com/watch?v=2vQTuCwpbIc
http://www.youtube.com/watch?v=jUwd737mioM
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(c) What is the total charge for patients whose length of stay was greater than
14 days? What is the total charge for patients whose length of stay was less
than 7 days? Based just on this incomplete information, what can you tell the
medical director?

4.2. From SAS to Excel
One of your colleagues is interested in the results of your initial work with the
exercise4-1 file. He asks if you could create an Excel file for him so he could do
some analyses of his own. He also asks if you have a sense of what the average age
and gender of patients is.

(a) Create an Excel file of exercise4-1 listing the variables for date of service, age,
gender, primary diagnosis, and disposition for the first 150 observations.

(b) Within Excel, calculate the average age. What is the average age for males vs.
females?

4.3. Creating and Applying Formats
The medical director decides she wants to make a presentation to the hospital board
using your results. She asks if you could spruce up the output you showed her.

(a) Apply the dollar11.2 format to the CHARGE variable and print out the first 20
observations.

(b) Use PROC FORMAT to create a 3-level format for the charge variable named
dol-range, with low defined as the lowest charge up to 500,000, medium defined
as 500,001 to 1,000,000, and high defined as 1,000,001 to the highest value.
Apply this format and print out the first 20 observations.3

(c) Create and apply a format to the sex variable that formats F as female and M as
male. Apply this format and print out the first 20 observations.

4.4. Using Titles and Labels
As an additional task, you are asked to print up the results of a series of blood tests
from a research project.

(a) Open the text file Exercise4-2 and cut and paste the data into your editor
window.

(b) Read the data into a SAS data file called “test” in your work library. (Hint: See
exercise from previous chapter on reading in data from editor window.)

(c) Title your output “Initial Blood Test Results.” Label the variables as follows:
ID = “Patient Identifier,” RESULT = “Final Result,” and VALUE = “Assay
Level.” Print the output.

3The CHARGE variable is actually more complicated that with which you are working. It is a
10-digit SAS numeric variable which includes cents and right filled with zeros, so these numbers
are not the actual charges. Don’t worry about this.



Chapter 5
Manipulating Data

Abstract In this chapter we spend some time discussing how to use DATA and
SET statements to create new SAS variables, new files out of old files and different
ways to combine and merge data sets.

As we’ve discussed, there are two basic types of SAS statements: PROC and
DATA. As important as PROC steps are to plumb the depths of your data, much of
the hard work of epidemiological data analysis in SAS occurs during DATA steps.
You will use DATA steps not only to read in and create new data sets but, perhaps as
importantly, to clean, subset and merge data sets, as well as to create new variables.
It is during DATA steps that you take raw observations and manipulate them into
forms amenable to analysis. And it is frequently the DATA steps that require most
of the real thought that ensure the reliability and validity of your work. In fact, after
wrestling with DATA steps, the PROC steps seem almost trivial. The good news
is that SAS is extraordinarily effective and flexible in manipulating even the largest
and most complex data sets. It is this capability that distinguishes it from many other
data analysis tools.

5.1 The SET Statement

Once you’ve read in your raw data into a SAS data set, you can create other SAS
data sets based on it. The key to creating and manipulating SAS data sets is the SET
statement. In general, when manipulating existing SAS data sets, the SET statement
takes the place of the INFILE and INPUT statements we’ve discussed.

The general form of a DATA step with a SET statement is

DATA newDataset;
SET oldDataset;

additional statements manipulating the existing data
set;

RUN;

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 5,
© Springer Science+Business Media New York 2013
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READY, SET. . .
As you can see, a SET statement is part of a DATA step that creates a new
data set. If you name your new data set with the same name as the existing
data set you will irretrievably replace the old data set.

If not used with appropriate care and respect, SET statements can destroy
an existing data set. Proceed with caution. Always use a new name.

5.2 Using SET to Define and Create New Variables

We spend a lot of time in epidemiology counting, adding up, subtracting, and
dividing variables. All the concepts you may have learned about risk differences,
rate ratios, and odds can only be applied when you have the appropriate variables on
which to perform these kinds of operations. SAS has great capabilities in this regard.

As described above, you first name or specify a new data set using a DATA
step, then you use a SET statement to identify an existing data set you will be
manipulating to create that new data set. You can use the SET statement to create
new variables in the existing data set or add, multiply, or apply functions to existing
variables in the existing data set.

The basic format to create a new variable is (simply enough)

newVariable = expression;

So, for example,

var = 10;

creates a new numeric variable for every observation called var that is a constant
with value 10.

var=ten

creates a new character variable.

var2= var1*10;

creates a new variable named var2 that is the product of an existing variable, var1,
multiplied by 10.

5.2.1 Operations

Mathematical or logical operations in SAS tend to be familiar and often have
character equivalents:

+ add
- subtract

http://www.youtube.com/watch?v=6GdeU0ww4zY
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* multiply
/ divide

** exponentiate
= or EQ equal
> or GT greater than
<= or LE less than or equal
>= or GE greater than or equal

5.2.2 Functions

In addition to straightforward operations, SAS comes with a plethora of canned
routines, called functions, that are sort of automated procedures. They come in the
basic form

functionName(argument, argument )

So, for example,

newVar = INT(oldVar);

returns the integer portion of the value in the parenthesis, and

newDateVar = DAY(oldDateVar)

returns the day names of dates.1 You can even put another function as the argument
of a function.

There are functions that will help you convert character variables to numeric
variables and vice versa, functions to string two or more variables together, and
functions to strip out pieces of variables. In fact, if you can think of something
you’d like to do to or with a variable, whether it is numeric or character, there’s a
good chance SAS will have a function that addresses it.

You can unearth a full list of SAS functions and their associated procedures in
SAS help by following these steps through the menu:2

help -> SAS help and documentation -> SAS products - Base
SAS ->

SAS Language dictionary -> dictionary of language elements ->
SAS data set options

THERE’S A FUNCTION FOR THAT
SAS functions aim to please. So much so that they may return a result even
if you feed them a variable with missing or nonsensical values. Before using
a function on a variable, perform some simple procedures like MEANS or
FREQ on it, and check your results.

1In this case, the argument oldDateVar must be a valid SAS date variable.
2Again, SAS help is excellent, if not immediately reachable. Delwiche and Slaughters’ 2nd edition
lists some popular functions in Sects. 3.2 and 3.3.

http://www.youtube.com/watch?v=ODGA7ssL-6g
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5.2.3 Example: Deaths Following the Terrorist Attacks
of September 11, 2001

Let’s look at an example of using a DATA-SET sequence of statements to
manipulate variables in a data set. The file ch5demo1 is a New York City Office
of the Chief Medical Examiner data set of deaths related to the terrorist attacks of
September 11, 2001, grouped by zip code. Let’s explore the file. You should, by
now, be familiar with how to do this.3

We see that males and females are listed separately (Fig. 5.1). We’d like a variable
for the total number of deaths in a zip code. The following syntax accomplishes that:

data nyc_deaths;
set ch5.ch5demo1;
tot_911_deaths = female_911_deaths + male_911_deaths;
run; /* note there is no output, check log window */

A DATA-SET run like this will not produce any results in the output window. It
is, though, crucially important to check your log window to make sure the process
ran correctly (Fig. 5.2).

Fig. 5.1 Contents of the September 11, 2001, deaths file

3Hint: PROC CONTENTS.
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Fig. 5.2 Log file for data manipulation

There is no dreaded red font, so we know that the procedure ran. But, there are a
number of notes, the most important of which is that “missing values were generated
as a result of performing an operation on missing values.”. This occurred 20 times at
positions 30 and 36.4 Let’s take a look at the file. We could print up the observations,
but in this case, let’s drill down to it using SAS’s Explorer window (Fig. 5.3).5

We see that when a zip code tabulation area did not have an entry for both male
and female deaths, SAS (appropriately) returned a missing value for total deaths.
We also see that there were no observations where there was a male or female death
in a zip code and a missing observation for the opposite gender. The coder placed
zeros when that occurred. Keep in mind that SAS may or may not return a result
when there is a missing value for one of the arguments depending on the operand or
function.

4Why did this occur? Some zip code tabulation areas may not have had any deaths assigned to
them, or they may have been male but not female deaths, or vice versa. The position of our male
and female death numbers is 30 and 36, respectively.
5We will find the file in the work library.
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Fig. 5.3 Reviewing the new data file

5.3 Adding (Concatenating) Data Sets

Concatenation refers to adding or stacking one data set on to another. We will again
use SET as part of a DATA step to concatenate or stack data sets by using a SET
statement to append data sets to each other. The basic syntax looks like

DATA newDataset
SET oldDataset1 oldDataset2

As before, the DATA statement names the new data set to be created. When
concatenating data sets, the SET statement consists of a list of the existing data
sets you want added to each other. The operation simply adds the data sets to each
other observation- or row-wise. So, if you add one data set with 5 observations
(e.g., 5 patients) and 3 variables to another with 5 different observations (i.e., 5
other patients) and 3 different variables, the resulting new data set will have 10
observations and 6 variables. If both sets have the identically same variables (i.e.,
same variable name, same variable type, same format, etc.), the resulting data set
will again have 10 observations but will have only 3 variables.

Concatenation does not merge observations. One set of observations is simply
added to or “stacked on top” of another. If, for example, you added data set A
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to the exact same data set A, the new data set will contain the same number of
variables with the observations duplicated. As with previous SET statements, during
concatenation you can manipulate existing variables to create new variables.

5.3.1 Concatenating the September 11 Data Set

Continuing with our 9/11 terrorist deaths example, you soon realize that deaths were
not limited to New York City residents. You obtain a separate file of deaths for non-
New York City deaths. Ch4demo2 contains these data. Your next step is to add the
New York City file to the non-New York City file:

data tot_deaths; /* creating new file in work library */
set nyc_deaths ch5.ch5demo2; /* adding file to existing non_NYC

file */
run;

You receive something like the following in your log window:

11
12 data tot_death; /* creating new file in work library */
13 set nyc_deaths ch5.ch5demo2; /* adding file to existing

non_NYC file */
14 run;

NOTE: There were 185 observations read from the data set
WORK.NYC_DEATHS.

NOTE: There were 1421 observations read from the data set
CH5.CH5DEMO2.

NOTE: The data set WORK.TOT_DEATH has 1606 observations and 4
variables.

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

Note that the 1,606 observations in the new data set are simply the sum of the
185 observations in the New York City data set plus the 1,421 observations in the
non-New York City data set.

5.4 Merging Data Sets Using MERGE – BY

Often when working with secondary data sets you will find that your file does
not contain all the variables you would have included had you designed the study
yourself. So, for example, you might want to know some information on the
socioeconomic status of individuals. If you don’t have that individual-level data, you
may choose to use income information from the area in which a person resides. If
you know the person’s zip code, you could look up the median household income for



64 5 Manipulating Data

that area from census records. You can then merge a file of zip code tabulation areas
and their median household income statistics to your file of individual observations.
SAS makes such operations easy. (Perhaps too easy, as we shall see.)

To match and merge data sets based on some key or identifying variables in SAS,
simply substitute the word MERGE for the word SET and include a BY statement
to identify the key variable by which you wish to connect the observations:

DATA newDataset;
MERGE oldDataset1 oldDataset2;
BY idVariable;

where idVariable is a variable present in both data sets that uniquely identify an
observation.

This powerful procedure differs fundamentally from simply concatenating data
files using a SET statement. If you have, say, 100 observations in one file and merge
them on a one-to-one basis with another file of 100 observations, your resulting file
will have 100 observations.6

5.4.1 SORT Before You MERGE

Whereas you can add or concatenate two files together as they are, to merge files,
they have to be sorted by the key variable by which you wish to match them up.
That bears repeating:

To MERGE, first SORT
As presented in Chap. 3, PROC SORT is used to sort a data set.
You can merge more than 2 data sets. You can do one-to-one (BY variable not

repeated in either data set), one-to-many, or many-to-one (BY variable unique in
one data set and repeats in the other) merges. SAS doesn’t care, and the syntax is
the same.

CAREFUL. MERGE AHEAD.
Merging is a powerful procedure. It should at all times be used with caution.
In addition to the usual warnings about looking at your log file for errors,
you should carefully review the resulting data set. If, for example, two data
sets have the same-named variable, one of them will be discarded. If you do
something like neglect to include a BY variable, there’s no telling what the
resulting data set will be.

6How many observations would you have if you concatenated using a SET statement?

http://www.youtube.com/watch?v=lWdG8NoFXY0
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5.4.2 Merging the 9/11 Data Set

As an example of merging, we return to our 9/11 data set. We know as good
epidemiologists that a simple count of events is not nearly as informative as a
rate. We have the number of deaths in a zip code tabulation area, but we need
some estimate of the number of individuals at risk. A simple first step would be
to base a rate on the number of individuals living in a zip code tabulation area. This
information is available from census figures and is contained in the file Ch5demo3.
Take a moment to explore it.

You will find that there are a number of helpful variables in this file, but first, we
need to merge it to our existing totDeaths file. We begin by identifying a variable
by which to merge the data sets. The variable has to be present in both files and
defined the same (numeric, character, date) in both files. Zip is an obvious choice.
The following syntax should merge the files based on zip code:

data pop_deaths;
merge tot_deaths ch5.ch5demo3;
by zip;

run;

Oops. Running that syntax will return the following error in our log window:

ERROR: BY variables are not properly sorted on data set
WORK.TOT_DEATHS.

Zip=11697 male_911_deaths=6 female_911_deaths=1
tot_911_deaths=7

POPBLACK=5 POPASIAN=13 POP_HISP=52 POP_2024=190 POP_2534=407
POP_3544=605

POP_4554=616 MHI=58491 POP_TOT=4226 FIRST.Zip=1 LAST.Zip=1
_ERROR_=1 _N_=358

NOTE: The SAS System stopped processing this step because of
errors.

NOTE: There were 186 observations read from the data set
WORK.TOT_DEATHS.

NOTE: There were 359 observations read from the data set
CH4.CH4DEMO3.

WARNING: The data set WORK.POP_DEATHS may be incomplete.
When this step was stopped there were 357 observations
and 13 variables.

We forgot to sort by our “BY” variable, zip. Remembering PROC SORT from
Chap. 3, we write the following syntax:

proc sort data=tot_deaths;
by zip;

proc sort data=ch5.ch5demo3;
by zip;

run;
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After sorting, we run the merge statement again. This time, for good measure,
let’s just keep the two variables in which we are interested:

data pop_deaths(keep= zip tot_911_deaths mhi);
merge tot_deaths ch4.ch4demo3;
by zip;
run;

This runs smoothly, and the log does not return any error messages.

TWIST AND MERGE
There’s a neat little twist you can use when merging data sets. The “IN=”
option when used with MERGE identifies the data set an observation comes
from.

It creates a temporary variable called “indata1” that indicates whether the
variable came from a data set. 0 means a data set didn’t contribute to the
current observation, 1 means it did. This is cool enough in its own right, but
used with an IF statement (which we’ll talk more about shortly) we can use it
to eliminate non-matching observations. The following syntax creates a data
set with only merged observations from the data set “old1”.

DATA new; MERGE old1
(IN=selected) old2;
BY var;
IF selected=1;
run;

As noted above, a rigid requirement for merging files is that the BY variables
must match exactly, i.e., type (numeric vs. character), name, and length. You may
have to spend a fair amount of time preparing data sets for merging.

If you need to convert a character variable to a numeric variable use INPUT,
which we first encountered when we discussed reading data into a SAS data set,
as part of a DATA-SET statement to create a new variable. As with our previous
encounter with INPUT, you will have to specify a numeric INFORMAT that best
describes how to read the character data value into the new numeric variable.

If you need to convert a numeric variable to a character variable, you will again
use a DATA-SET statement to create a new variable, but this time, you don’t use
INPUT. Rather, initialize the new variable as a character variable by using the dollar
sign ($) and define its length. Then set the new character variable equal to the old
numeric variable. For good measure, align it to the left to eliminate all leading
blanks.

http://www.youtube.com/watch?v=yqVFJNcQ4X0
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CONVERTING VARIABLES.
SAS is very strict about BY variables in a merge. They must be the same type,
length, etc. You may find yourself in the position of having to manipulate
variables so they will merge. The following syntax may come in handy:

1. Convert a character variable to a numeric variable using input()

data new_data; /* create new data set */
set old_data;
num_var=input(char_var,informat.);
/* e.g. numeric informat 3. */
run;

2. Convert a character variable to a numeric variable using put()

data new_data;
set old_data;
char_var = put(num\_var, informat.)
/* e.g. character informat $3. */

BY ANY OTHER NAME
When creating new data sets, you can rename variables on the fly. Put the
RENAME option next to the data set in which you want to rename the
variable. If renaming more than one variable, put them each in parentheses:

DATA newData:
SET oldData1 oldData2
(RENAME=(old_var=new_var) );
RUN;

5.5 Conditional Expressions Using IF-THEN-ELSE

When we discussed formats in the last chapter, I mentioned something about
science consisting of lumping things together or splitting things apart and that
epidemiologists are very much “lumpers.” While partly tongue-in-cheek, we do as
epidemiologists tend to group things together and see if there are patterns in the
groups or if the groups are associated with each other or some other factor.

We saw in the previous chapter that proc format is an easy way to group variables
for descriptive purposes. It does not, however, actually create a new variable on
which you can perform more sophisticated statistical procedures. IF-THEN-ELSE
statements are used quite logically and intuitively as part of DATA steps to create
such new grouped variables based on existing attributes.

http://www.youtube.com/watch?v=ueZ6tvqhk8U
http://www.youtube.com/watch?v=sQgd6MccwZc&ob=av2e
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As opposed to our approach in Chap. 3, we would simply write

IF age < 40 THEN ageGroup = young;

Here we create a new character variable called ageGroup based on the existing
numeric variable age.

We need to complete the IF-THEN-ELSE statement to create a set of mutually
exclusive groups:

IF age < 40 THEN age_grp = young;
ELSE IF age GT 40 THEN age_grp = ’old’;
ELSE age_grp = ’ ’;

You could now, if you were looking at a dichotomous outcome such as mortality,
calculate a familiar epidemiologic measure for age such as an odds ratio.

A couple of points about this syntax are in order:

• You can use mathematical operators (=,>,<,>=,etc.) or comparison operators
(EQ, NE, GT, LT, GE).

• IF THEN statements are case sensitive.
• If creating a character variable, it needs to be in quotes.
• Always try to include a concluding ELSE statement. This statement has no

IF-THEN attribute. It is more efficient computationally and insures that the
categories are exclusive.

Another minor but potentially important point: SAS uses the length of the first
variable read into a data set to define the variable. So, in a statement like,

if dx=one then diagnosis =flu;
else if dx=two then diagnosis =Urinary Tract Infection;
else diagnosis = ;

because the first diagnosis defined is the 3-character variable flu, SAS will define
the variable diagnosis as 3 characters long and truncate any following diagnoses.
urinary tract infection will be cut off to Uri. In a simple case like this, you could
just define the urinary tract infection variable first. It would be better, though, to use
a LENGTH statement to define the variable explicitly by preceding the IF-THEN
statement with

length diagnosis $ 11;
/*note no period after the length number like with format*/

THE IN LIST
Rather than write an IF-THEN statement for each possible value of an existing
variable, you can use an IN statement to create a look-up list.

An IN statement compares the value of a variable to a list of variables:
IF sx IN (cough, ache)

THEN dx = flu;

http://www.youtube.com/watch?v=WpPdLb69-qk
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For a demonstration of the power of IF-THEN-ELSE statements, let’s turn to our
New York State SPARCS data set. Say, we are interested in the mortality associated
with substance use and with child abuse. There is no explicit mortality variable in the
data set, but there a disposition variable that includes death as one possible outcome.
Similarly, while there is no single, explicit substance use variable, or child abuse
variable, we can create one using ICD-9 codes.7 We need to create 3 new variables
based on the existing variables. The following syntax will accomplish that:

/* IF-THEN-ELSE Demonstration */

DATA NYCSPARCS; /* name the data set in work directory */

INFILE ’C:\Users\Charlie\Documents\Columbia\Epi\SAS COURSE\Data
Sets\nycsparcs.TXT’
MISSOVER LRECl=452 OBS=15000;
/* tell SAS where file is, that its a long file and to
read in the 1st 15,000 observations */

INPUT /* input the variables you are interested in */
@18 DATE yymmn6. /* informat based on SPARCS raw file */
@44 AGE 3.
@71 PDX $CHAR6.
@331 ECODE $CHAR6.
@343 DISPO $CHAR2.
;
RUN;

PROC CONTENTS DATA=NYCSPARCS; /* check your file was read
in */

RUN;

/********************MORTALITY **************************/
data nycsparcs;
set nycsparcs;
IF DISPO = ’20’ then death=1;

else death=0;

/*********************** SUBSTANCE ABUSE *****************/

if pdx in /* use ICD9 codes to create diagnoses */
(’2910’,’2911’,’2912’,’2913’,’2914’,’2915’,’29181’,’29189’,
’2919’,’2920’,’29211’,’29212’,’2922’,’29281’,’29282’,’29283’,
’29284’,’29289’,’2929’, ’30300’,’30301’,’30302’,’30303’,

’30390’,
’30391’,’30392’,’30393’,’30400’
’30401’,’30402’,’30403’,’30410’,’30411’,’30412’,’30413’,

’30420’,
’30421’,’30422’,’30423’,’30430’,’30431’,’30432’,’30433’,

’30440’,

7International Classification of Diseases, 9th edition is a widely utilized system that assigns
numbers to diseases. It dates back to the work of William Farr in nineteenth-century England.
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’30441’,’30442’,’30443’,’30450’,’30451’,’30452’,’30453’,
’30460’,

’30461’,’30462’,’30463’,’30470’,’30471’,’30472’,’30473’,
’30480’,

’30481’,’30482’,’30483’,’30490’,’30491’,’30492’,’30493’,
’30500’,

’30501’,’30502’,’30503’,’3051’,’30520’,’30521’,’30522’,’30523’,
’30530’,’30531’,’30532’,’30533’,’30540’,’30541’,’30542’,

’30543’,
’30550’,’30551’,’30552’,’30553’,’30560’,’30561’,’30562’,

’30563’,
’30570’,’30571’,’30572’,’30573’,’30580’,’30581’,’30582’,

’30583’,
’30590’,’30591’,’30592’,’30593’)
Then subst_ab=1;
Else subst_ab=0;

/************ CHILD ABUSE ***********************************/

if age LE 10 AND ecode in
(’E9670’,’E9671’,’E9672’,’E9673’,’E9674’,’E9675’,’E9676’,
’E9677’,’E9678’,’E9679’,’E9684’,’E9040’,’E9041’,’E9042’,
’V1541’,’V1542’,’V1549’,’V6121’)
then child_ab=1;
else child_ab=0;

RUN;

Our first step is to check our log for any error messages (Fig. 5.4).
There are no error messages. Next, let’s check the contents of this new data file

(we included a PROC CONTENTS statement in the syntax) (Fig. 5.5).
So far, so good. Now, let’s print out some of the data set to assure ourselves we

have the variables we need. We will also request some quick totals. The following
syntax will accomplish that:

PROC PRINT DATA=NYCSPARCS;
VAR death subst_ab child_ab;
sum death subst_ab child_ab;
run;

The bottom of our output will look like this, showing that there were 154 deaths,
3,460 cases of substance misuse, and no cases of child abuse (Fig. 5.6).
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Fig. 5.4 Log window for data created with IF-THEN-ELSE variables

Fig. 5.5 PROC CONTENTS for data file created with IF-THEN-ELSE variables
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Fig. 5.6 PROC PRINT for data file created with IF-THEN-ELSE variables

5.6 Conditional Expressions Using a Restricting
IF Statement

An IF statement alone, as part of a DATA step, will restrict data to a subset by
allowing only observations that meet the criteria. This could be useful if you have a
large, unwieldy data set, and you are only interested in part of it. Say, for example,
you are interested in outcomes in children but have a data set for all ages. You could
create a new data set with this syntax, which creates a new data set called “kids”
based on an existing data set called “allAges” by using a restricting IF statement
based on the variable “age”:

DATA kids;
SET all_ages;
IF age < 18;
RUN;

As in most things SAS-related, there is more than one way to accomplish this
task. We could, alternatively, have used a DELETE statement to do the same thing:

IF age > = 18 THEN DELETE;



5.7 Conditional Expressions with SAS Dates 73

5.6.1 Restricting Variables Read into a New Data Set

The above techniques will restrict the observations read into a data set. You may,
though, want to drop or keep certain variables read into a new data set. For this
purpose, SAS has the very intuitively named

DROP=( ) KEEP=( )

which can be used as part of a DATA step.
The following syntax creates a new data set named “new” based on an existing

data set named “old.” We tell SAS not to include two variables (var1 and var2) and
to create a new variable named “total” based on the sum of var3 and var4:

DATA new (DROP=var1 var2);
SET old;
total=var3 + var4;
RUN;

We could, alternatively, have used (KEEP = var3 var4) as part of the DATA
statement to accomplish the same thing. It all depends on how many variables you
are dropping and how many you are keeping.

5.7 Conditional Expressions with SAS Dates

We’ve encountered SAS dates before, but they deserve a bit more attention. Recall
that SAS dates are essentially numeric variables indexed to January 1, 1960. As we
have seen previously, they can be formatted in any number of ways, but they are at
their core simply a number. One nice thing about this for epidemiologists is that we
have an easy way at getting at and manipulating a time variable.

By putting quotes around a date and following it with the letter d, you are
telling SAS to read and turn that date into the corresponding numeric value. So,
for example,

4dec2000d.

is considered by SAS to be the number 14958.
In this way, you can do things like string dates to create ranges like

14dec2000d-19dec200d.

and use them as part of conditional expressions. The following example demon-
strates how useful this can be.

5.7.1 Using Dates to Subset the 9/11 Data

Say, we’re interested in whether the terrorist attacks of September 11, 2001, in New
York City were so stressful as to put individuals at increased risk of such outcomes
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Fig. 5.7 PROC TTEST results (before terrorist attacks)

as acute myocardial infarctions (heart attacks). We might, as one step, see whether
compared to non-New York City residents, younger folks in New York City were
more likely to suffer AMI following the terrorist attacks of September 11 than they
were before the terrorist attacks. We can use the data from the file ch5demo4 to help
answer that question. This is a file we encountered before.8

The following syntax requests a t-test on the continuous variable age, comparing
New York City residents to non-New York City residents for the time period before
September 2001. Don’t worry about the t-test syntax. Note, though, the conditional
expression restricting observations to just those that occurred prior to October 2001:

proc ttest data=ch5.ch4demo4;
class nyc;
var age;
where date < ’1oct2001’d;
title ’Comparing ages nyc and upstate ami patients: pre 9/11 ’;
run;

Our results page looks like this (Fig. 5.7).

8The data set of all myocardial infarction admissions in New York City from 1994 to 2004 we used
in Chap. 1.
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Fig. 5.8 PROC TTEST results (after terrorist attacks)

The mean age of AMI patients in New York City in the period preceding the
terrorist attacks was 68.3, compared to the mean age of 67.5 for non-New York City
residents. Let’s run syntax for the postattack period:

proc ttest data=ch5.ch4demo4;
class nyc;
var age;
where date > ’1oct2001’d;
title ’Comparing ages nyc and upstate ami patients: post 9/11’;
run;

There is very little difference, leading us to believe that the terrorist attacks had
little effect on hospital discharges for AMI for city vs. non-city residents (Fig. 5.8).

WHAT TIME IS IT?
Believe it or not, you may someday need to find out what the internal SAS
value is for a date. Here’s how to do it:

data _null_; *tell SAS not to create a data set;
date=’1jan2001’d; *the date you want;
put date=;
run; /* will show up in log */

http://www.youtube.com/watch?v=MYiahoYfPGk
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Problems

5.1. Concatenating Data Sets
Return to the chapter section where we added the file of New York City to non-New
York City deaths. Create the totDeaths file in your work library as described in the
example. Using the SAS Explorer window, locate the totDeaths file.

• What is striking about the data set?
• What do you notice about the variable for total deaths?
• Correct this problem by using a SET statement to create a total death variable in

a new data set also called totDeaths. Did this solve the problem?
• Look at the log after creating the new data set. What warning did you receive?

5.2. Merging and Performing Operations on Data Sets

Using data sets Ch5demo1, Ch5demo2, and Ch5demo3, perform the following
operations and answer these questions:

1. Add data from Ch5demo1 to the data from Ch5dem2 to create a complete data
set called MERGE1.

• How many observations were read in from Ch5demo1?
• How many from Ch5demo2?
• How many observations and variables are in the new data set? (Hint: Look at

your log file.) Does this appear correct? How could you determine if an error
occurred?

2. Merge the data from Ch5demo3 with the data from the newly created MERGE1
data set. Name the new data set MERGE2. You will need to decide by which
variable you should merge.

• What do you have to do with the two data sets before merging them?

3. Working with the file MERGE2, calculate the death rate per 100,000 population
in each zip code. Name the new file MERGE2CALCS.

• What is the death rate for zip code 11566?
• What was the death rate for zip code 10032? (Hint: Use the SAS Explorer

window and look in your Work Library.)
• What conclusion do you draw from this comparison? (Hint: Zip code 10032

is in Northern Manhattan approximately 10 miles from ground zero; ZIP code
11566 is on Long Island about 40 miles from ground zero.)

• Assuming that most if not all the victims of 9/11 were of working age (say,
between the ages of 20 and 64), create a variable that lists the death rate per
zip code for working age individuals. What are the new rates for workers for
zip codes 11566 and 10032? What conclusions can you draw from this new
information?



Part II
Descriptive and Categorical Analysis

The first step in any epidemiological analysis should be describing your data.
If you’re working with existing data, you will uncover anomalies, errors, and
idiosyncrasies that must be addressed early in your analysis. It is only after cleaning
your data that you should turn to looking at potential patterns and associations.
Much of epidemiology involves categorical outcomes like morbidity and mortality,
so we turn to this task first. If, though, your main outcome of interest is continuous,
you will want look at the material in Part III of this text.



Chapter 6
Descriptive Statistics

Abstract In this chapter we introduce those procedures that are most likely to
be of benefit at the earliest stages of epidemiologic analysis. Some relatively
simple procedures (MEANS, FREQ, TABULATE) can be used to get descriptive
information about your data. Sometimes this may be all you are interested in. More
likely, you will use this information to inform and guide further analyses. We will
defer for the moment some of the theory underlying these analyses and will return
to the topics of categorical and continuous analyses in future chapters.

6.1 PROC MEANS

The humble PROC MEANS returns descriptive statistics such as the means and
standard deviations of continuous variables. The main options for PROC MEANS
are VAR (to select variables) and CLASS (to group observations). MAXDEC
included as part of the data statement is a useful option to limit the number of
decimal places. Syntax for PROC MEANS looks like this:

PROC MEANS data=your.data MAXDEC=2;
VAR age height weight;
CLASS gender;

The variables specified with VAR are all continuous and numeric, and we have
used the CLASS option to request that the results be grouped by gender.

The data file ch5demo1 is a sample of 1,000 of the California myocardial
infarction observations we looked at earlier. The following syntax runs MEANS
on the age variable grouped by gender:

proc means data=ch6.ch5demo1;
var ageyrs;
class sex;
run;

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
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Fig. 6.1 PROC MEANS results

In the results window, we are given the count, mean age, standard deviation,
as well as minimum and maximum values for age for each gender. This is useful
information in and of itself, but in early stages of data analysis, it is most helpful for
identifying problematic observations. For example, what are we to make of the 105
year old? We may want to be sure this was coded correctly (Fig. 6.1).

6.2 PROC FREQ

The FREQ procedure returns frequency counts and cross tabulations of categorical
variables, i.e., those variables that name or categorize things, like gender, diagnostic
category, or exposure status. All those two-by-two tables we learn about in our
introductory epidemiology courses can be most readily analyzed with PROC
FREQ.1

Rather than a VAR statement to identify the variables we want to analyze, in
PROC FREQ we use a TABLES statement to identify the categorical variable(s) to
analyze. As part of the TABLES statement, you can set cross tabulations. Use an

1We will go into more detail in upcoming chapters.
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asterisk (*) to connect the two variable you want to cross tabulate. A key PROC
FREQ option (for an epidemiologist) is the MEASURES command which, for
a 2×2 table, will return odds ratios. Another useful option is NOCUM, which
suppresses some of the voluminous cumulative frequencies and percentages that
can complicate your output.

Here is an example of PROC FREQ syntax requesting simple (separate) fre-
quency tables for the two variables exposure and mortality:

PROC FREQ data=your.data;
TABLES exposure mortality
RUN;

An example of PROC FREQ syntax looking at the association between some
exposure and an outcome like mortality would be

PROC FREQ data=your.data;
TABLES exposure*mortality / MEASURES;
RUN;

The only difference between this and the previous syntax is the asterisk.
Let’s return to our ch6demo1 file and calculate an odds ratio for the association

of gender with race among these myocardial infarction patients:

proc freq data=ch6.ch6demo1;
tables sex*race2 / measures;
run;

The first page of results (not pictured) will give us a 2×2 table and some statistics.
The final page of results returns an odds ratio of 0.9 with a 95% confidence interval
0.7–1.2. We will spend a considerable amount of time with PROC FREQ when we
consider the analysis of categorical data later.

6.3 PROC TABULATE

The TABULATE procedure is a sort of hybrid of MEANS and FREQ. It’s useful
in the analysis of continuous variables grouped by some classifying categorical
variable. It is, actually, a very powerful procedure, and I’ve been told you could
almost sustain a career based on an intimate knowledge of PROC TABULATE. For
our purposes, a cursory understanding is sufficient to give us some tools that are
useful for epidemiological investigation.

The general form for proc tabulate is:

PROC TABULATE data = dataset;
VAR continuous_variable
CLASS categorizing_variable
TABLES page, row, column

RUN:

As in PROC MEANS, a VAR statement is used to indicate a continuous variable
you want to analyze, and CLASS is used to indicate a categorical or classifying
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variable by which you want the continuous variable grouped. A PROC TABULATE
statement must have at least a CLASS or a VAR statement, though not necessarily
both.

The real power of TABULATE is in the TABLE statement. Whereas in PROC
FREQ the TABLE statement is fairly simple with dimensions indicated by an as-
terisk (*), a TABLE statement in PROC TABULATE can set up a multidimensional
table of columns, rows, and pages. The TABLE statement in PROC TABULATE
has its own set of unique operators.

A comma indicates a new table dimension in the order of page-row-column.2 So,
if only one variable is specified, it will be arranged in columns. If two variables
are specified and they are separated by a comma, the right-most variable will be in
columns arranged by the left one which will determine the rows. If three variables
are specified each separated by commas, there will be a page for each value of the
left-most variable, values of the middle variable determines the rows, and the right-
most variable will be in the columns.

The following code will give you a table with a column of counts for each type
of diagnostic-related group for our ch5demo1 file (Fig. 6.2):

proc tabulate data=ch6.ch6demo1;
class drg;
table drg;

run;

There are two additional operators for the TABLE statement. A blank space is a
command to concatenate table information. An asterisk is a command to cross-nest,
or subgroup information. This may be best understood through some examples.

Here, we use a blank and the key word “all” to get a total (Fig. 6.3):

proc tabulate data=ch6.ch6demo1;
class drg;
table drg all;

run;

Next, to get a two-dimensional table of two categorical variables (here, diagnostic-
related group and race), we first specify the categorical variables with a CLASS
statement, then use a comma as part of the TABLE statement to set up the
dimensions of the table. Notice that we are also requesting a total count by including
a space and the word “all” (Fig. 6.4):3

proc tabulate data=ch6.ch6demo1;
class drg race2;
table drg all , race2 all;

run;

2Some users of PROC TABULATE believe it is easier to read the comma-delineated TABLE
specifications (page-row-column) from right to left.
3Note that a simple PROC FREQ with TABLES drg*race2 would basically achieve the same
result. Although this is an example of the frequent situation where there is more than one way
to achieve something in SAS, you will find, though, that if your interest is in creating tables, PROC
TABULATE affords you much more flexibility.
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Fig. 6.2 Simple PROC TABULATE results

Up to now, we could pretty easily have created these tables with a simple FREQ
statement. We have not yet included a VAR statement to identify a continuous
variable upon which to conduct analyses. Let’s do so now. The default analysis
for a continuous variable is a sum, but a number of other analyses are available as
part of PROC TABULATE. Here, we request analysis of an age variable in a table
of diagnostic-related groups by race (Fig. 6.5):

proc tabulate data=ch6.ch5demo1;
class drg race2;

var ageyrs;
table drg, race2*ageyrs;

run;

Of course, the sum of ages is not very helpful. This is just a first, simple
example. We can, though, request a number of statistics by following the writing
a TABLE statement with the continuous analysis variable (which may be nested in
a categorical variable) with an asterisk and the desired statistic (Fig. 6.6):

proc tabulate data=ch6.ch6demo1;
class drg race2;

var ageyrs;
table drg, race2*ageyrs*mean;

run;
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Fig. 6.3 PROC TABULATE with a total

Other useful statistics you can ask for are median, min, max, std (standard
deviation), and nmiss (number of missing observations).

6.3.1 Using TABULATE for Surveillance Data

One epidemiologically useful application of PROC TABULATE is create data
sets based on tables that sum outcomes or diagnoses over some time period for
surveillance. The following syntax will accomplish that task:

/*proc tabulate to create output data set for surveillance*/
proc tabulate data=ind.sparcs94; /*individual-level data*/
where nyc=1; /* subset to geographic area */
class month; /* specify surveillance period using
variable previously created with MONTH() function */

var injury ami child_ab; /* specify diagnoses to monitor
(have to be numeric) */

table month, injury ami child_ab; /* table specifications
(default is sum or total) */

ods output table=sparcs94; /*create output dataset from table*/
data sparcs94; /*clean up dataset*/

set sparcs94;
drop _type_ _page_ _table_; run;



6.3 PROC TABULATE 85

Fig. 6.4 PROC TABULATE with an additional dimension

A VICIOUS CYCLE
If all this TABULATE syntax seems terribly complicated and different from
the rest of SAS syntax, well, it is. In fact, PROC TABULATE grew out of a
separate programming language that was adopted whole cloth by the makers
of SAS. They didn’t tinker too very much with it, because TABULATE
is quite powerful in its own right. I invariably have to come back to the
documentation for PROC TABULATE just to remind myself how to use it.
But that might be because I don’t use it often enough. And perhaps because
I don’t use it often, I have to look up the syntax. It’s a vicious cycle. But
there are times when nothing but PROC TABULATE will do. For example,
if you want a straightforward way of summarizing across time periods for
surveillance. So it’s good to keep it as an arrow in your quiver.

http://www.youtube.com/watch?v=EIdc0NGumVc
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Fig. 6.5 PROC TABULATE with a continuous variable

Problems

6.1. Reading Data into SAS
In this series of exercises you will work with New York City hospital discharge data
to walk through the steps involved in the initial analysis of health data. We begin by
reading the data into SAS.

The data is located on the NYCSPARCS05.txt file. You will first need to read it
into SAS with a DATA-INFILE-INPUT statement. Create a temporary file in your
work directory. You can name it anything you like. Specify a long record length
(LRCL=450) and have SAS apply default missing values (MISSOVER). Read in all
the observations, but limit the variables to the date of admission, patients age, county
and zip code of residence, sex, race, primary diagnosis, and length of stay. You can
find the location and format of these values in your SPARCS documentation and
layout file. To save time, I’ve looked them up for you:

Variable Location Informat
DATE @18 yymmn6.
AGE @44 3.
COUNTY @50 $CHAR2.
ZIP @52 $CHAR5.
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Fig. 6.6 PROC TABULATE with summary statistic for a continuous variable

SEX @57 $CHAR1.
RACE @58 $CHAR2.
PDX @71 $CHAR6.
LOS @349 4.

6.2. Create New Variables from Existing Variables
Now that you have a SAS data set (did you check your log and print out a few
lines of data?), you can create some new variables and change existing ones so they
are more amenable to analysis. Time is a crucial variable in epidemiologic studies.
We’d like to have some sense of when, during the year, events occur. Create a month
variable from the existing date variable. There is a very nice SAS function that will
do this for you. Try to find it online or in your documentation.

For analytic purposes, it is often useful to have a numeric indicator variable
for categorical attributes. Create a numeric variable called GENDER based on the
SPARCS character variable SEX. There are a number of ways to do this, but in this
instance a series of simple IF-THEN-ELSE statements to create two new variables
(male and female) will suffice.
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Here’s the code to do it:

IF sex=’M’ THEN male=1;
else male=0;
IF sex=’F’ THEN female=1;
ELSE female=0;

Use this same approach to create numeric 0/1 indicator variables from the
SPARCS character RACE variable for white (01), black (02), asian (04), other race
(88), and unknown race (99). Again, these codes area available in the SPARCS
documentation.

Founding father of epidemiology William Farr is reputed to have said death is a
fact. All else is inference. Create a 0/1 mortality indicator variable from the existing
DISPO (disposition) variable. Find the appropriate disposition code for death in
your SPARCS documentation.

The outcome variable in this data set is, essentially, the primary discharge
diagnosis, PDX. This is in ICD9 format, which is a series of 3–5 numbers. If your
research interest is extremely specific, there may be just one or two codes in which
you are interested. Sometimes, someone else has done similar work and you can
find the code online. CDCs National Center for Health Statistics is often very good
that way. More likely, you will need to comb through the ICD9 documentation to
identify all codes that relate to the outcome. If you have no clinical experience in the
area (or at all), you would do well to get input from clinical colleagues on your list
of codes. In this example, we are interested in substance abuse. Use the list of ICD9
codes in the document “Substance Abuse ICD” with an IN lookup table as part of
an IF-THEN-ELSE statement to create a 0/1 indicator variable for substance abuse.

6.3. Using PROC MEANS
What is the oldest age in this group?

6.4. Using PROC FREQ
Run PROC FREQ on county, race, and sex. What, if anything, is unusual or striking
about the county results? Which county represents Manhattan?4 You will have
to look in your documentation to answer this question. Where does the largest
percentage of non-NYC residents come from? (Again, use your documentation)
What, if anything, about the race results may cause some concern about the
reliability and validity of that variable?

6.5. Using PROC TABULATE
Use PROC TABULATE to look at substance abuse.

Create a summary table of the number of substance abuse discharges each month
and the percent of the total monthly discharges they represent. This approach can
be used to sum across monthly or weekly data to perform surveillance activities in
health departments.

4New York City consists of five counties (Manhattan, Bronx, Kings, Queens, Richmond).
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Limit your observations to just those in New York City counties with a WHERE
statement (where county in (‘58’ ‘59’ ‘60’ ‘61’ ‘62’);). Your CLASS variable
will be the month variable you created. The VAR variable is the substance abuse
variable you created. Your TABLE statement should request two dimensions with
the left-most dimension (row) your month variable. Since you want both the total
number of substance abuse diagnoses each month, as well as the percentage of total
diagnoses they represent, you will need two items on the right side of the comma:
subst ab*sum subst ab*pctsum. Note that they are separated by a space.

Create a table to determine the total number of substance abuse diagnoses for
each county in New York City as well as the percent of the total represented by that
number. Here’s some code to help you:

proc tabulate data=nycsparcs; /*create dataset*/
where county in (’58’ ’59’ ’60’ ’61’ ’62’);
class county;
var subst_ab;
table county, subst_ab*sum subst_ab*pctsum;
run;

Assuming all counties receive the same amount of resources from the city for
substance abuse (not so in reality), based on this analysis, which county would
appear to require more resources for substance abuse? Which might require less?
What other variables might affect these results? What other information might you
want to determine?

Finally, include the following statement to create a table from your output, which
can be used for graphing:

ods output table=subst;



Chapter 7
Histograms and Plots

Abstract SAS has some very powerful graphing procedures that are well worth
exploring and utilizing. In this chapter we introduce some of that capability by
presenting syntax for histograms and plots.

7.1 Introduction

In the interests of full disclosure, I must admit I seldom use SAS to plot or graph
data. I generally use R for its impressive and (to my mind at least) intuitive graphic
features, or export the data into Excel and Microsoft’s point and click approach. I
think, though, this is less a reflection on SASs graphic capabilities, which are by
many accounts protean, than it is on my decreasing willingness to learn new things
when old ones seem to suit my need.

SAS does have some very neat graphing features, and they are well worth
exploring and utilizing. And, more often than not, it is more convenient to create
charts and graphs in the same program in which you are conducting analyses. In
this chapter I present the merest hint of what SAS is capable of, specifically how to
produce histograms and plots.

7.2 PROC GCHART for Histograms

You can easily recognize SAS graphing procedures because they have a G in front
of them, for example, PROC GCHART and PROC GPLOT. PROC GCHART is the
SAS tool to produce histograms. For categorical variables, you’ll get a bar for every
value of that variable. For continuous variables, SAS will determine the values.1

1Although it is never a good idea to let a machine dictate something this important.
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In its simplest form, you invoke PROC GCHART, identify the data set, and then
specify whether you want vertical bars (VBAR) or horizontal bars (HBAR) for the
listed variables. You can request a pie chart by specifying PIE instead of VBAR or
HBAR.

SAS produces charts in a separate graph window, with a name like

GRAPH1.GSEG.CHART1.

With that window active, you can save the image as a jpeg, a gif, etc. In many
systems, you can just right click on the figure and choose

Edit --> Copy --> Paste

I find saving the file as an .emf (enhanced metafile) works best for inserting into
windows documents.

It is not an error when you see PROC GCHART still running at the top of the
editor screen even after you’ve created your chart. It just means that the procedure
is active. Running other procs will exit you from GCHART, or can type “quit.”

You can use GCHART to perform some simple analysis of variables by including
a forward slash (/) and options on the line of syntax following the variable . For
example, “SUMVAR=” identifies a variable to use for a sum or mean calculation
for each value of your variable, and TYPE= specifies that the height or length of the
bar or size of the slice represents a mean or sum of the analysis variable values.

If requesting a pie chart, some useful options include “FILL=x” to request a
cross-hatch pattern, or “EXPLODE=” to request that a certain value of the variable
be a slice pulled away from the pie.

A particularly useful option from the perspective of epidemiology is “GROUP-
VAR=”, which allows you to specify that variables be analyzed by some grouping or
categorizing variable. This could be exposed vs. unexposed, treated vs. not treated,
and cases vs. controls.

As a demonstration, we will work with a file of children, some of whom have a
disease of interest (cases) and some of whom do not (controls).2 As a first pass, say
we want to know how many children in the entire sample are male and how many
female (Fig. 7.1):

PROC GCHART DATA = ch7.ch7demo1;
VBAR sex;

RUN;

Say, though, we are interested in seeing the difference in genders between cases
of disease and noncases? A GROUPVAR option will allow us to do that (Fig. 7.2):

PROC GCHART DATA = ch7.ch7demo1;
VBAR sex / groupvar=case_control;

RUN;

2This is data from an actual study which, for confidentiality purposes, we will not further describe.
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Fig. 7.1 Bar graph with
GCHART

By this point you will have realized that the default in GCHART is for all bars
to have the same color. You can override this by typing in the somewhat inscrutable
command “PATTERNID=MIDPOINT” in the HBAR or VBAR statement (Fig. 7.3).

PROC GCHART DATA = ch7.ch7demo1;
VBAR sex / groupvar=case_control patternid=midpoint;

RUN;

There are, of course, many, many other graphing options. I leave it to you to
explore them by searching under the topic GOPTIONS.

7.3 PROC GPLOT to Plot Continuous Data

PROC GPLOT is the tool to plot continuous data. Essentially you will be plotting
one variable against another to create a scatter plot or perhaps a time series of some
kind. The syntax, in its simplest form, is very straightforward:

PROC GPLOT DATA=
PLOT var1 * var2

RUN;
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Fig. 7.2 Grouping the bar
chart

You can subset the data using a WHERE statement and control symbols, how
lines are joined and colors, using a SYMBOL statement. As part of your SYMBOL
statements you can include a VALUE= option to choose a particular type of symbol
(a plus sign is the default) such as a STAR, DIAMOND, SQUARE, or TRIANGLE.
An I= option allows you to choose JOIN (join points with a line) or SPLINE (smooth
line) (the I stands for interpolation). You can adjust color and width with C= and W=
symbol options.

Note that SYMBOL statements are global (they last for the entire SAS session)
and additive (you can append onto previous statements). You will have to use a
RESET statement to get back to the default settings. To cancel all your previous
SYMBOL statements, type and submit

goptions reset=symbol;

As an example of how useful PROC GPLOT can be, let’s return to our example of
acute myocardial infarctions before and following the terrorist attacks of September
11, 2001, in New York City. We learned in Chap. 5 that we can use PROC
TABULATE to sum the number of diagnoses over each month-year time period
and then use ODS to create an output data set of these summed monthly counts. We
now use this data with PROC GPLOT to create a time series plot (Fig. 7.4).
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Fig. 7.3 Applying unique colors to the grouped variables

Don’t be frightened by the following syntax. The actual GPLOT syntax is actu-
ally rather short. Everything else is, believe it or not, bells and whistles associated
with fonts, colors, titles, etc. I suggest you do what all the best programmers do at
some point in their careers and simply take the code and use it for your own:

/************* AMI Time Series *************************/

goptions reset=all;
goptions cback=white device=win;

axis1 major = (h=2.0 c=black)
minor = (h=1.0 c=black)
order = 0 to 12000 by 1000
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Fig. 7.4 Time series graph for surveillance

label = (h=1.5 a=90 f=arial c=black ’Number of
injury-related diagnoses’);

axis2 major = (h=2.0 c=black)
minor = (h=1.0 c=black)
/*order = 1 to 132 by 6*/
label = (h=1.5 f=arial c=black ’Month and Year’);

proc gplot data= ch7.ch7demo2;
plot ami\_sum * date / href=15219

vaxis = axis1
haxis = axis2;

symbol v=’.’ f=arial h=2 i=sm30 c=black;
note h=1.0 move=(59,60)pct ’September 2001’; * percent
(over, up);

title h=3.0 c=black f=arial j=center
’New York City AMI-Related Hospital Discharges’;

title2 h=2.0 c=black f=arial j=center
’1994 to 2004 By Month and Year’;

run;
quit;
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IT KEEPS RUNNING
GCHART and GPLOT are procedures that will keep running in the back-
ground until you type the command “quit.”

Even then, SAS keeps on appending graphs in the graph window. The only
way to get rid of old graphs is to open the “G seg” folder in the Explorer
Window (found in the work library) and delete the graphs you don’t want.
You can also delete the entire Gseg folder to get rid of all the graphs. SAS
will recreate it the next time you need it.

Problems

7.1. PROC GCHART
Return to or recreate the SPARCS data set we worked with in the exercises to
Chap. 5. Write and run a SAS program to create both vertical and horizontal bar
charts for the variable “race.” Is there any apparent advantage to one graphic
(vertical vs. horizontal) versus the other?

Add an option to your syntax for the race histogram to include the mean length
of stay for each race. (Hint: you will need to include a SUMVAR= and a TYPE=
option on the VBAR and HBAR statements.) Create a pie chart of race, including
the mean length of stay by race. Emphasize race category 02. (Hint: you will need a
FILL= and an EXPLODE= statement.)

7.2. PROC GPLOT
For this exercise, imagine you work for the New York City Department of Health
and Mental Hygiene. You are asked to conduct substance abuse surveillance. One
approach could be to look at the total number of substance abuse diagnoses in New
York City hospitals and plot them by some time period.

We’ll use PROC TABULATE and PROC GPLOT to do that. Working again with
the SPARCS data set from above, you will first write a PROC TABULATE statement
that sums substance abuse observations by month. Limit your observations to just
those in New York City with a subsetting WHERE statement (hint: NYC counties
consist of 58, 59, 60, 61, and 62). Use a CLASS variable to group observations by
“month.” SUM the number of substance abuse diagnoses by using the 0/1 “subst ab”
variable you created when reading in the data. Your TABLE statement should have
two dimensions: month and subst ab*sum. Write the syntax to create this table and
run it.

Your next step is to create a data set based on the results of this table so you can
read it into PROC GPLOT. Fortunately, SAS provides an easy way of doing this

http://www.youtube.com/watch?v=COyPUWVwhXY
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with ODS. The following syntax will create a data set called “subst04” in your work
library based on the table you created in PROC TABULATE:

ODS output table=subst04;

Include it at the end of your PROC TABULATE statement, just before your RUN
statement.

Finally, write a PROC GPLOT statement to plot the number of substance abuse
diagnoses per month. Define your data as the subst04 data set you created as part of
your PROC TABULATE run. For your PLOT statement specify that you want to plot
the variable “subst ab Sum” (this is a variable automatically created as part of your
PROC TABULATE run) by the variable “month.” For your SYMBOL statement,
specify a red diamond of width 5 joined by a spline.

What do you notice about the vertical axis for this plot? Is the spline an effective
way of presenting the data?

Add the following vertical axis option as part of the plot statement:

/ vaxis= 0 to 5000 by 200

Rather than a spline, specify a simple join as part of your SYMBOL statement.
Change the color to blue and the width of the symbol to 2.



Chapter 8
Categorical Data Analysis I

Abstract In the next two chapters we consider the kinds of categorical outcomes
frequently encountered in epidemiological practice. Categorical variables are those
that take on discrete values only. When there are only two possible values, such
as survival vs. death, exposed vs. unexposed, or diseased vs. non-diseased, we
can refer to them as dichotomous. We will encounter them again as potential
explanatory or exposure variables when we discuss ANOVA and dummy variables
in linear regression. We now, though, consider them exclusively as both exposures
and outcomes. When both our exposure and outcome are dichotomous categorical
variables we can apply the classic epidemiological 2× 2 table.1

8.1 Introduction to Categorical Outcomes

Categorical variables differ in many important statistical ways from continuous
variables, and our approach to analyzing them must adapt considerably. For
example, they are quite clearly not normally distributed, an assumption underlying
many of the approaches we will consider when we analyze continuous variables.
When variables can take on, say, only two values, scatter plots certainly don’t make
very much sense.

SAS comes with many rich tools to work with noncontinuous, non-normally
distributed outcome data. For our purposes, we will look at some very basic
but potentially very informative approaches, such as arranging data in tables and
comparing frequencies across rows, looking at cross tabulations of two categorical
variables, and stratifying such a cross tabulation by a third or even fourth variable
to assess confounding. In terms of SAS, we will be working almost exclusively in
PROC FREQ using “crosstabs.”

1Practice epidemiology long enough and you may be tempted to collapse the entire universe into a
2×2 table. Its an occupational hazard.

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 8,
© Springer Science+Business Media New York 2013
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8.2 Associations

In categorical data analysis, we are very interested in the idea of associations. In a
very commonsense way, an association can be defined as one categorical variable
changing in value when the level or value of another variable changes.

Say, for example, we are interested in whether mood is associated with weather
conditions. We begin by defining our variables. Say we are going to take a very
“2× 2” approach to this question and define mood as either “happy” or “sad” and
weather as either “nice” or “crummy.” We can arrange our data in a classic 2× 2
table (Fig. 8.1).

With just a brief glance, we can see that the row percentages are the same across
the values of our “exposure” variable.

Let’s say though, we find the following results (Fig. 8.2).
Again, just looking at the row percentages indicates that our “outcome” variable

of mood seems to vary across the row categories of our “exposure” variable of
weather and so may be associated with it. We will, of course, want to quantify
any such association and account for the possibility of chance affecting our results.
Much of categorical statistical analysis, and the remainder of this chapter, involves
how we go about doing that.

Fig. 8.1 A 2×2 table with
no association
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Fig. 8.2 A 2×2 table with
an association

8.3 Examining Frequency Tables

Say we are interested in the effect of gender, socioeconomic status (SES), and age
on health-care expenditures. We might begin with simple one-way frequency tables
of our variables with the following FREQ syntax:2

proc freq data=expend;
tables ses;
run;

Which returns the following table (Fig. 8.3).
We can make a couple of quick observations. First, SES seems fairly equally

distributed across the study sample. Second, we see that SAS has its own way of
ordering variable values (alphanumerically) and that this default does not make very
much sense for our purposes.

It’s usually a good idea to get a sense of your categorical data through such
one-way tables. You will, though, move quickly to want to cross classify the
categorical variables in your data to search for associations. In PROC FREQ this
is accomplished by setting up a cross tabulation (Fig. 8.4).

By default, SAS returns four numbers in each cell: the frequency, the percent of
the total, the row percentage, and the column percentage. Let’s run some crosstabs
on our expenditure data. Notice that we are first running PROC FORMAT for our
outcome variable which would otherwise be listed simply as 0 or 1. We then use

2To recreate these examples, first run the file Ch7 Demo Data.sas. These data actually have nothing
to do with health expenditures. They are from SAS training material and I believe refer to shopping
patterns, but they are a convenient way to illustrate some of the approaches to categorical data
analysis.
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Fig. 8.3 Table cells from
PROC FREQ

Fig. 8.4 Cross classification in a PROC FREQ table

PROC FREQ to request one-way tables for all our variables, then crosstabs of
gender and SES as the exposure and expenditure as the outcome:

proc format;/*note use of proc format to create spendfmt and
format to apply it*/
value spendfmt 1="High Utilization"

0="Low Utilization"
;

run;

proc freq data=expend;
tables expenditure gender ses age

gender*expenditure ses*expenditure;
format expenditure spendfmt.;

run;

The next screenshot presents the one-way tables for our first three variables.
We can see that SAS has applied our format for expenditure. There do not
appear to be any particular problems with these variables, except (again) that
SAS’s alphanumeric approach to ordering variables is inappropriate and misleading
(Fig. 8.5).

In the following screenshot, we see that perhaps age is not the most appropriate
variable for a categorical analysis. It does, though, illustrate that PROC FREQ can
be a good way to catch miscoded variables, weird entries, etc. (Fig. 8.6).

The following screen presents the results of our gender by outcome cross
tabulation (Fig. 8.7):

If your first impression is that SAS presents a lot of data in a small space,
you are correct. You should commit to memory that the four numbers in each cell
are: frequency, percent of total, row percentage, and column percentage. As in our
simple introductory example about weather and mood, we are interested in the row
percentages. Here we see that health-care expenditure does seem to vary by gender,
with women appearing to spend more (68 % of men were in the low-utilization
category compared to 58 % of women).
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Fig. 8.5 PROC FREQ results screen

Let’s turn our attention to the association between SES and health-care expendi-
ture (Fig. 8.8).

Here (again looking at row percentages) we see that 48 % of high-income folks
were in the high-utilization category compared to 32 % of low-income folks. And
again, the ordering of the SES categories is problematic. It is, at best, distracting
and, at worst (if there is some kind of trend in the data) misleading. We will have to
address this.

8.4 Reordering Categorical Variables

To reorder variables for categorical analyses, we use a DATA step to create a data
set in which a character variable is transformed into a numeric variable which
corresponds to logical the order in which we want the categorical variable3:

3We are using a neat bit of Boolean logic here, instead of many IF THEN statements. In SAS an
expression enclosed in parentheses is a logical operator that returns the value 1 if the expression is
true and 0 if it is false. This syntax tells SAS to look at each observation, if the oldvar = low, set it
to 1 (true) and if not, set it to 0 (false). We do that for each level (med and high) and then multiply
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Fig. 8.6 PROC FREQ results for a continuous variable

data expend;
set expend;
SES_level=1*(SES=’Low’) + 2*(SES=’Medium’)

+ 3*(SES=’High’);
run;

We then use PROC FORMAT to create a user defined format:

proc format;
value sesfmt 1=’Low Expenditure’

2=’Medium Expenditure’
3=’High Expenditure’;

run;

Finally, we use PROC FREQ on our reordered numeric variable with this
FORMAT statement:

proc freq data=expend;
tables SES_level*expenditure;
format SES_level sesfmt. expenditure spendfmt.;

run;

We now see the SES variable output more logically (Fig. 8.9).

the 1 or 0 the logical expression returns by 1, 2, or 3 as indicated. There are other ways to do this,
but this quite effectively transforms a text variable into a numeric variable.
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Fig. 8.7 Cross tabulation of dichotomous variables

8.5 Tests of Statistical Significance for Categorical Variables

The following statistical tests are, essentially, assessments of the likelihood of
observing our results given a null hypothesis under a statistical model. They are
not, with the exception of the Spearman correlation coefficient, assessments of the
strength of any observed or apparent association.

8.5.1 Chi-Square

We will, at a minimum, want a measure of whether possible associations, as
evidenced by differing values in rows, are due to chance. For such categorical data,
the chi-square (χ2) statistic is commonly used for this purpose.4

4Perhaps surprisingly, given its almost universal use for categorical data, chi-square has an
underlying assumption of normality. This is why there are, in fact, sample size requirements. We
need enough data for the approximation of the normal distribution.
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Fig. 8.8 Cross tabulation of categorical variables with more than two levels

χ2 is used to assess the statistical significance of an association among nominal
variables and is calculated as the sum of the squared differences between observed
and expected values divided by the expected value:5

χ2 =
Σ(O−E)2

E
, (8.1)

where E is the expected value and is equal to the rowtotal∗columntotal/grandtotal6

and O is the observed value. Our null hypothesis is that our observed values are equal
to our expected values. The p-value for a χ2 is the probability of observing a test
statistic at least as large that we obtain under our null hypothesis.

In SAS χ2 is invoked as an option after the TABLES statement in PROC FREQ,
for example,

TABLES var_a*var_b / CHISQ

5Note that there is a chi-square statistic called the Mantel–Haenszel chi-square specifically for
ordinal data.
6This is derived from column total divided by the grand total, which gives the expected proportion,
which is then multiplied by the row total to get the expected cell count.
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Fig. 8.9 Categorical variables reordered

Some helpful options after the CHISQ include listing the expected frequency in a
cell (“expected”) and instructions not to print column totals or percentages (“nocol,”
“nopercent”).

Let’s use the “expend” data set to write a statement using PROC FREQ invoking
a χ2 statistic to test the association between gender and health-care expenditure. We
will request the expected numbers and use the “nocol” and the “nopercent” options
to suppress column percentages and cell percentages:

/* expenditure chi square exercise */

proc freq data=expend;
tables gender*expenditure

/ chisq expected nocol nopercent;
run;

We can see that there is indeed a statistically significant association between
gender and the expenditure with a p-value of 0.03 (Fig. 8.10).
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Fig. 8.10 Statistics for tabular data

DON’T BE SQUARE
χ2 is not a measure of the strength of an association. It only measures the
statistical significance of an association. It is as much a reflection of the
sample size as of any underlying effect or association. If we double the
numbers in the cells, we double the chi-square. A couple of more salient
points about χ2:

• It is used for frequencies or counts not percentages or proportions.
• For it to be an appropriate statistic, there must be sufficient numbers in the

table cells. Cochrane’s rule is that 80 % of the cell entries should be greater
than 5, and no cells should have cell counts less than 1. For a 2× 2 table,
none of the cells should have expected counts less than 5.

8.5.2 Exact Tests

As noted above, χ2 is only appropriate where there are sufficient numbers in the
table cells. To address the situation when this is not the case we have recourse

http://www.youtube.com/watch?v=LB5YkmjalDg&ob=av3e
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to so-called “exact” tests. You will see reference to two flavors of exact tests.
The Fisher’s exact test is based on the hypergeometric distribution and is intended
for a 2× 2 table where the marginal values are fixed. This is the form perhaps
most commonly encountered in epidemiology. SAS also provides for the so-called
Pearson chi-square statistics which, as its name implies, is based on the chi-square
distribution. It may be used for any n× n table.

Fisher’s exact test is indicated for situation where one of the cells in a 2 × 2
contingency table has fewer than the recommended count of 5. In SAS, Fisher’s
exact test is invoked as an option under a “tables” statement:

tables varA*varB / fisher;

The more general Pearson chi-square is invoked with an exact statement:

exact pchi;

The formula for the calculation of Fisher’s exact test is

r1!r2!c1!c2!/n! f11! f12! f21! f22!, (8.2)

where r and c are the row and column totals, n is the grand total and frc is the cell
frequency.

The calculation involves the following four steps:

1. Lay out the table.
2. Lay out all the more extreme tables.
3. Calculate the χ2 probability for each small frequency 2× 2 table.
4. Sum all of these probabilities.

As an example, consider the following 2× 2 table:

Disease No disease

Exposed 0 3 3
Not exposed 2 2 4

2 5 7

To assess the statistical significance of this table, we start with the key assumption
that the column and row totals are fixed. We then calculate a χ2 statistic for each
table that could give rise to those fixed marginal values and add up the individual
p-values. In this example, the three tables that could have given rise to the above
table are, first, the observed table



110 8 Categorical Data Analysis I

and two hypothetical but potential tables:
Notice again how our choice of tables is constrained the marginal totals.

Disease No disease

Exposed 0 3 3
Not exposed 2 2 4

2 5 7

Disease No disease

Exposed 1 2 3
Not exposed 1 3 4

2 5 7

Disease No disease

Exposed 2 1 3
Not exposed 0 4 4

2 5 7

For each of the three possible tables, we calculate a χ2 statistic and its associated
p-value. Here, they are

χ2 p-value

Observed table 2.100 0.286
Possible table 1 0.058 0.571
Possible table 2 3.733 0.143

Lastly, we add up the p-values: 0.286+ 0.058+ 0.143= 0.487.
SAS, as usual, makes short work of this process for us. As a demonstration, let’s

read in the following small data set:

data pexact;
input a b ;
datalines;

1 2
1 2
1 2
2 1
2 1
2 2
2 2
;
run;

Let’s take a look at the 2×2 contingency table for the variable a vs. b (Fig. 8.11).
Clearly, there are insufficient numbers to justify the use of a χ2 statistic. Let’s

request a Fisher’s exact test:

proc freq data=exact;
tables a*b;
exact pchi;

run;



8.5 Tests of Statistical Significance for Categorical Variables 111

Fig. 8.11 PROC FREQ result for a table with small numbers

Note that on the first screen, we get a warning that χ2 is not a valid test
(Fig. 8.12).

The next screen presents the results of the Fisher’s exact test (Fig. 8.13).
The p-value associated with the exact test is 0.4 – clearly not statistically

significant. Note, though, that SAS also presents the usual “asymptotic”7 χ2

statistic.

EXACTLY
Note that depending on your software version, the SAS request for the usual
χ2 statistic may also return a default “Exact” statistic. It may or may not be
the one you want. Requesting the specific statistic appropriate to your data
will always work.

7Asymptotic refers to an approximation to the large-number normal distribution. It is one of those
great scrabble words, like heteroscedasticity, that tend to arise in statistics. Amazon.com has a
feature called Statistically Improbable Phrases or SIPs that pops up when you search for statistics
textbooks.

http://www.youtube.com/watch?v=kcUJZsf-gfs
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Fig. 8.12 Statistics for a table with small numbers

8.5.3 The Mantel–Haenszel Chi-Square

When we are interested in assessing the statistical significance of ordinal associa-
tions, a more powerful test statistic is the Mantel–Haenszel chi-square8 (sometimes
referred to as “chi-square for trend”). It is more powerful in the setting of a linear
trend because it is restricted to just that one situation, as opposed to the general χ2

which is intended for all possible associations.
But, be careful, the test assumes a linear association and can be thrown off

because it looks at the average trend. If there is no underlying linear trend, it can
give you the wrong answer.

There is an additional statistic in the SAS armamentarium called the mean score
statistic, which is recommended for nominal by ordinal associations. Again, the
usual and customary χ2 is the more conservative approach. In either setting, you
can’t go too far wrong by just relying the plain vanilla χ2.

8No, this is not the Mantel–Haenszel Odds Ratio with which epidemiologists are most familiar.
Mantel and Haenszel were busy folks. We’ll get to that, Mantel–Haenszel, which SAS refers to as
the Cochran–Mantel–Haenszel for stratified 2×2 tables, in the next chapter.
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Fig. 8.13 Exact test results for a table with small numbers

8.5.4 The Spearman Correlation Coefficient

So far we have just considered the statistical significance of an association. If we
want to measure the strength of an association (and as epidemiologists we generally
do), other tests are required. One of these is the Spearman correlation coefficient.

The Spearman correlation statistic is a nonparametric cousin of the Pearson
correlation coefficient, which we will consider in a future chapter, which uses the
ranks of data. Since it is nonparametric and so by definition doesn’t require the
parametric assumptions of normality, etc., it can be used in the setting of categorical
data. Like its Pearson analog, the Spearman statistic has a range between −1 and 1,
so it gives us a measure of the strength of the association.

The Spearman statistic is invoked with the MEASURES statement as an option
under PROC FREQ. Adding CL will return confidence limits for the statistic.

As an example, let’s return to our health-care expenditure data. We will rerun the
PROC FREQ syntax looking at the association between SES and health care expen-
diture. Only this time, we will request measures of both statistical significance (χ2)
and the strength of any association (Spearman correlation coefficient) (Fig. 8.14):

proc freq data=expend;
tables SES_level*expenditure / chisq measures cl;;
format SES_level sesfmt. expenditure spendfmt.;

run;
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Fig. 8.14 Statistics for the association of categorical variables (1)

We might suspect that there is an underlying linear trend, and because the
Mantel–Haenszel χ2 is significant, we can conclude there is evidence of an ordinal
association between purchase and income. It is, though, important to note that the
statistic tells us nothing of the strength of any correlation. For that, we look at the
Spearman correlation statistic and its 95 % confidence bounds (Fig. 8.15).

Our results indicate a relatively small (0.14) positive ordinal association. The
“ASE” in this table refers to the asymptotic standard error or what our standard
error would approach as sample size approaches infinity. The confidence limits are
valid as long as our sample size is large enough. The rule of thumb is we need at
least 25 data points for each degree of freedom.

8.6 Significance vs. Strength

To illustrate the difference between statistical significance and the strength of an
association, let’s take the health-care expenditure data set we’ve been working with
in this chapter, and just double it to create the data set “expend2.” Notice, all we are
doing is cloning and appending the same data set to itself:



8.6 Significance vs. Strength 115

Fig. 8.15 Statistics for the association of categorical variables (2)

data expend1;
set expend;
run;

data expend2;
set expend expend1;
run;

Now, let’s rerun the syntax for the significance and strength of the ordinal
association between SES and expenditure:

proc freq data=expend2;
tables SES_level*expenditure / chisq measures cl;;
format SES_level sesfmt. purchase spendfmt.;

run;

Let’s see how doubling the number of observations affects our test of statistical
significance (Fig. 8.16).

Everything is much more “significant.” As opposed to a p-value for the Mantel
Haenszel χ2 of 0.004, it is now less than 0.0001, which in SAS-talk means very,
very, very small. What about the test of the strength of association (Fig. 8.17)?

We see that it remains 0.14 (although we see that the confidence limit is tighter).
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Fig. 8.16 The effect of an increased sample size on statistical significance (1)

Again, it is important to remember that tests of statistical significance are as much
reflections of sample size as anything else. In the next chapter, we will spend more
time with measures that give us a sense of both the significance and the strength of
an association.

Problems

You are an injury epidemiologist interested in vehicle safety as it relates to several
other variables. Your measure of vehicle safety is based on a score given to vehicle
models using the frequency of insurance claims.

The text file “cars” contains the following variables:

• Safety—safety score (1=below average, 0=average or above)
• Type—type of vehicle (sports, small, medium, large, and sport/utility)
• Region—manufacturing region (Asia, N America)
• Weight—weight of the vehicle in thousands of pounds
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Fig. 8.17 The effect of an increased sample size on statistical significance (2)

8.1. One-Way Frequencies

• Read the file into SAS and use the PRINT procedure to examine data. Provide
the first 20 observations from the PRINT procedure.

• Use PROC FREQ to create one-way frequency tables for the variables safety,
type, and region.

• What is the measurement scale of each variable (safety, type, region, weight)?
• What is the proportion of cars made in North America?
• For the variables safety, type, and region, are there any unusual data values that

warrant further investigation?

8.2. Cross Tabulations
Use PROC FREQ to examine the cross tabulation of region by safety. Generate a
temporary format to clearly identify the values of safety. Along with the default
output, generate the expected frequencies and the chi-square:

• For the cars made in Asia, what percentage had a below-average safety score?
• For the cars with an average or above safety score, what percentage was made in

North America?
• Do you see any association between region and safety?
• What cell contributed the most to any possible association?
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8.3. Chi Square
Perform a chi-square test of the statistical significance of any association between
region and safety. Interpret the p-value from the test with respect to probability. Do
you reject or fail to reject the null hypothesis at the 0.05 level?

8.4. Spearman
Create a new variable named size by assigning 1 for type equal to small or sports,
2 for type equal to medium, and 3 for type equal to large or sport/utility. Examine
the ordinal association between size and safety using PROC FREQ:

• What statistic should you use to detect an ordinal association between size and
safety?

• Do you reject or fail to reject the null hypothesis at the 0.05 level?
• What is the strength of the ordinal association between size and safety?
• What is the 95 % confidence interval around that statistic?
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Categorical Data Analysis II

Abstract At the end of the previous chapter, we spent some time considering the
difference between statistical significance and the strength of an association. In this
chapter we spend some time on a measure that combines elements of both: the Odds
Ratio, which for 2× 2 tables is the recommended test of both the strength and the
statistical significance of an association. As with many SAS statistical procedures
we have seen, the actual execution of the procedure is fairly simple. The challenge
is in understanding the underlying statistical process and interpreting the results.

9.1 Probabilities and Odds

In preparation for a discussion of the odds ratio we must first set the stage with a
brief consideration of probabilities and odds.

A probability is a number from 0 to 1 inclusive, usually expressed in fraction
form. It is the ratio of the number of chances of a specific event to the total number
of chances possible. For example, if I have four marbles in a jar, three red and one
blue, then the probability of drawing the blue marble is 1/4. There is one chance of
a blue marble out of four total chances (marbles).

Odds are expressed as the number of chances for (or against) vs. the number of
chances against (or for) some event occurring. So, in the above marble example,
since there is one chance of your picking the blue marble and three chances of your
picking a red marble, the odds are 3 to 1 against you picking the blue. For odds in
favor, we just reverse them. The odds are 1 to 3 in favor of you picking the blue
marble.1

There is a one-to-one correspondence between probabilities and odds. To convert
odds to probability, we add up the total chances, i.e., sum the odds to represent the
total number of chances of an event occurring, and use that as the denominator for

1Note that this does not mean that the probability is 1/3 for or against.
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the probability. So, if the odds against a horse winning are 4 to 1, this means that,
out of 5 (4 + 1) total chances, the horse has 1 chance of winning. The probability of
the horse winning is 1/5 or 20 percent. To convert a probability to odds we remove
the event from the total chances and set them against each other as a ratio.

The calculations are actually quite simple:

odds = probability / 1-probability
probability = odds / 1+odds

When the probability is 50%, we say it is even odds (1:1). When the probability
of an event is larger than 50%, then the odds for the event will be larger than 1.

9.2 The Odds Ratio

9.2.1 Why Epidemiologists Need the Odds Ratio

For epidemiologists, the odds ratio was a response to the need for a measure of
association that could be used with case-control data.

Many epidemiological data are amenable to the calculation of rate ratios and
risk ratios. While they are quite different conceptually (one uses rates, the other
probabilities), they are both predicated on the idea that we know how much
disease occurs in an exposed population vs. an unexposed population. Crucially,
the “direction” is going from exposure to disease in that we start off knowing the
exposure status in non-diseased individuals.

In case-control studies, this assumption is turned on its head; we now start off
knowing the disease status of the participants and go backwards to figure out the
exposure status. In terms of conditional probabilities, forward-looking study designs
like cohort studies seek to determine the probability of disease given exposure:

Cohort studies : Prob[disease|exposure]. (9.1)

Case-control studies, on the other hand, can only directly present data on the
probability of exposure given disease:

Case-control : Prob[exposure|disease]. (9.2)

Very importantly, we cannot directly calculate the risk or probability of disease
(risk ratios or rate ratios) because we don’t know the original population at risk. If,
for example, we are interested in cigarette smoking as an exposure and lung cancer
as an outcome, we could contrast these two approaches as

Cohort studies : P[disease|exposure] = P[lung cancer|smoking] (9.3)

Case-control : P[exposure|disease] = P[smoking|lung cancer]. (9.4)
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Let’s look at a simple example that illustrates how very different these two
probabilities actually are:

Lung cancer No lung cancer

Smoker 100 900 1,000
Nonsmoker 50 1,950 2,000

The two calculations would be:

Cohort : P[disease|exposure] = 100/1,000= 0.10 (9.5)

Case-Control : P[exposure|disease] = 100/150= 0.66. (9.6)

The inability to get at risk or probability of disease with case control data limited
the effectiveness of the case-control approach in epidemiology and motivated the
search for the measure of effect that would be valid for estimating risk (P[D|E])
using case-control (P[E|D]) data. That measure of effect is the odds ratio.

As we noted, there is a simple one-to-one relationship between a probability and
its associated odds:

odds = probability/1− probability. (9.7)

Or, in terms of the probability of a disease occurring:

ODD = P[disease]/1−P[disease] = P[disease]/P[nodisease]. (9.8)

An odds ratio is (logically enough) the ratio of two odds.
This is information we can get from a case-control study.

9.2.2 The Disease Odds Ratio

Say our lung cancer data above came from a cohort study. We could easily calculate
the risk of disease by comparing the outcomes in the exposed vs. the unexposed:

(100/1,000)/(50/2,000)= 0.1/0.025= 4. (9.9)

What is the odds ratio for this cohort study? It is the odds of disease given
exposure over the odds of disease given no exposure. In terms of probabilities, this is

(P[disease|exposure]/P[no disease|exposure])
(P[disease|no exposure]/P[no disease|no exposure])

. (9.10)
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We can get all this information from our cohort study. We begin with the odds of
disease given exposure:

P[disease|exposure]/P[no disease|exposure] (9.11)

= P[disease|exposure]/1−P[disease|exposure] (9.12)

= (a/a+ b)/(b/a+ b) (9.13)

= (100/1,000)/(900/1,000) (9.14)

= 0.1/0.9 = 0.11. (9.15)

We can similarly get at the odds of disease given no exposure:

P[disease|no exposure]/P[no disease|no exposure] (9.16)

= P[disease|no exposure]/1−P[disease|no exposure] (9.17)

= (c/c+ d)/(d/c+ d) (9.18)

= (50/2,000)/(1,950/2,000) (9.19)

= 0.025/0.927= 0.026. (9.20)

The ratio of these two odds is our disease odds ratio:
DiseaseOR = 0.11/0.026= 4.3.
Note how close this is to our risk ratio.2

Assigning the usual a,b,c,d letters to a 2× 2 epidemiological Punnett square, the
disease odds ratio can be summarized as:

disease odds ratio =
[(a/a+ b)/(b/a+ b)]
[(c/c+ d)/(d/c+ d)]

=
(a/b)
(c/d)

=
ad
bc

. (9.21)

Certainly knowing the odds ratio is a good approximation of the relative risk in
cohort studies is nice enough, but how does it help us with case-control data? The
answer lies in the exposure odds ratio.

2We used to teach the “rare disease assumption” as the reason that a case-control study can
approximate a cohort study. There are now more fundamentally sound reasons supporting the
validity of case-control studies. Rothman, in particular, has a very nice discussion. Still, the reason
the odds ratio is a valid approximation to the relative risk is because the outcomes we study are,
in fact, rare and do not when removed detract appreciably from the bottom number of the ratios
themselves when compared to the denominator of the analogous probability. (See the formula
for converting probabilities to odds.) Odds ratios will overestimate risk, when the outcomes are
common. As a general rule of thumb, I find outcomes in much beyond 10 to 15 percent of the
study population to be problematic.
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9.2.3 The Exposure Odds Ratio

Now let’s say our lung cancer data is from a case-control study that arose from
the same cohort (all case-control studies are, in fact, based on some underlying
cohort. . .) and got the same results:

Lung cancer No lung cancer

Smoker 100 900 ?
Nonsmoker 50 1,950 ?

Notice, though, that we do not know the exposure experience of the underlying
data from which the cases and controls arose. Now, we can’t get the odds of disease
given exposure vs. the odds of disease given no exposure (what we really want).
But, but can get at the odds of exposure given disease vs. the odds exposure given
no disease:

P[exposure|disease]/P[noexposure|disease] (9.22)

= P[exposure|disease]/1−P[exposure|disease] (9.23)

= (a/a+ c)/(c/a+ c) (9.24)

= (100/150)/(50/150)= 2. (9.25)

Similarly, we can get the odds of exposure given no disease:

P[exposure|no disease]/P[no exposure|no disease] (9.26)

P[exposure|no disease]/1−P[exposure|no disease] (9.27)

(b/b+ d)/(d/d+ c) (9.28)

(900/2,850)/(1,950/2,850)= 0.46. (9.29)

So, our exposure odds ratio is = 2/0.46 = 4.3.
This is, in its own small way, an exciting development. We see that it is the exact

same result as the disease odds ratio from the cohort data. And, in fact, if we were
to summarize the exposure odds ratio as we did the disease odds ratio in terms of an
a,b,c,d 2× 2 Punnett square, our result would be:

exposure OR =
[(a/a+ c)/(c/a+ c)]
[(b/b+ d)/(d/d+ c)]

=
(a/c)
(b/d)

=
a/d
b/c

. (9.30)

In fact the calculation for the odds ratio, under any study setting is:

OR =
ad
bc

. (9.31)
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The odds ratio is a measure of association that is invariant across study design,
and allows us to approximate prospective results, from retrospective data.

It is easy to get an odds ratio in SAS by requesting MEASURES under PROC
FREQ in the setting of a 2× 2 table.

9.3 Preterm Labor and Birth Weight Example 1

We will demonstrate an odds ratio calculation in SAS with a data set of 189
observations examining at the relationship between previous preterm labor and
subsequent low birth weight.

We begin by looking at the result of our nlevel table, making sure there is the
correct number of levels for each variable and that there are no zero cells in our
2× 2 table (Fig. 9.1):

proc freq data=birth nlevels;/* nlevels num levels for
variables */

tables prev_pretrm*low / measures; /* 2x2 table measures
request OR */

title ’odds ratio for association between previous preterm and
lbw’;

run;

Fig. 9.1 A 2×2 table
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Fig. 9.2 An odds ratio for a 2×2 table

We note (not shown) that the chi-square result indicates a statistically significant
association between previous preterm labor and low birth weight. Since this is a
2× 2 table, we can turn to the odds ratio calculation, where we see a strong ( 4×)
measure of association (Fig. 9.2)

ALL TOO MUCH
By way of review. . .

• R×C tables: Spearman correlation
• 2× 2 tables: Odds Ratio
• Ordinal X Ordinal: M-H for association, Spearman for strength
• Nominal X Ordinal: mean score stat for association, uncertainty coeff for

strength
• Nominal X Nominal: Pearson chi sqr for association, uncertainty coeffi-

cient for strength

http://www.youtube.com/watch?v=W2rK6rD2VuE
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9.4 Confounding

Epidemiology is much concerned with confounding. Methodological thinking about
what constitutes confounding has evolved over time. Traditionally, a confounder
has been viewed as a variable that (a) is a cause of the disease under study (b) is
associated with the exposure under study and (c) is not a mediator of the exposure
under study. Confounding is usually considered something that arises from the
nature of the relationships of the variables, rather than an error in how a study is
conducted or how data is collected, which are grouped under the heading of bias.

Hennekens makes the point that the confounder need not be an actual cause of
the disease and may be a covariate of the actual causal factor. He also notes that
a confounder must not be associated with the disease only among the exposed. Its
association with the disease must be independent of exposure, i.e., it is causally
related among both exposed and unexposed. In an earlier classic text, Schlesselman
defined confounding as the effect of an extraneous variable that wholly or partially
accounts for the apparent effect of exposure on disease, i.e., any apparent association
may be due to some third variable.

Confounding is perhaps easiest appreciated through an example. Kelsey men-
tions a classic example of confounding from the breast-cancer literature. Early
epidemiologic studies suggested that women with breast cancer were less likely to
have breast-fed their children, and to have breast-fed for shorter periods of time than
controls of the same age. Does this suggest breast-feeding is somehow protective
of breast cancer? It certainly does. Further analysis, though, revealed that more
breast-feeding and longer periods of breast feeding are associated with having more
children. Once this association with parity is controlled for, the apparent association
with breast-feeding and breast cancer disappears. The story actually didn/t end there;
even further analysis showed that having more children was associated with having
a first child at a relatively young age; once this was taken into account, the apparent
association with parity disappeared. The actual confounder was age at first full-term
pregnancy.

9.4.1 Identifying and Controlling Confounding

If there is, in fact, some third variable accounting for an apparent effect of our
exposure variable on our outcome variable, we will want to identify and account
for its effects. Classically, comparing the unadjusted (or crude) measure of effect to
the adjusted (or stratified) measure of effect is the key to assessing for confounding.
This is best illustrated by an example.

Consider the following data on the effect of coffee drinking on myocardial
infarction:
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MI No MI

Coffee 90 60
No coffee 60 90

The odds ratio is ad/bc = (90)(90)/(60)(60) = 2.25. Does this indicate an
apparent causal effect of coffee drinking on myocardial infarction? In addition to
the critical questions of temporality (did coffee drinking precede MI or perhaps
folks who have survived an MI tend to drink coffee?) biological plausibility, existing
literature on the subject, etc., we must ask: Are there any known risk factors for
myocardial infarction that might be associated with drinking coffee? The answer is
yes: smoking.3 It meets the a priori definition of a confounder in that it is causally
related to the disease, associated with the exposure, and not a mediator of the
exposure disease relationship. Lets look at the data for evidence of a confounding
effect.

As noted above, the key to assessing for confounding is stratified analysis. We
“control” for a possible confounder, or account for its effects, by looking at the data
within homogenous groups of people with and without the confounder. The idea is
that if the effect remains among just smokers and just among just non-smokers, then
the effect is probably real. If we find the effect is lessened or attenuated depending
on whether someone has the potential confounder or not, it may be the confounder
that is causing the effect.

In the following two stratified tables, which separates the study participants into
strata or levels restricted to those with and without the potential confounder, we do
just that. This first table is restricted to smokers:

MI No MI

Coffee 80 40
No coffee 20 10 OR= 1.0

Now, the table for nonsmokers

MI No MI

Coffee 10 20
No coffee 40 80 OR= 1.0

The apparent association of coffee with myocardial infarction disappears when
we look at homogenous groups of our putative confounder (smoking).

3Smoking is so frequently a confounder that you might want to at least consider including it in
almost any study in which it is not the actual exposure of interest.
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9.5 Controlling for Confounding

Epidemiologists control for confounding in one of two main ways: through study
design or through analytic technique. Each approach has its advantages and
disadvantages, which we won’t go into here, but it helps to have a general overview.

9.5.1 Controlling Confounding in Study Design

Randomization, as classically seen in randomized clinical trials, is the most effective
means of controlling for both known and unknown confounders. A properly
randomized sample should assure that there are the same number of people with and
without any known (or unknown) confounders in each group. In the above example,
we would randomly select study members to either drink coffee or not drink coffee
and then follow them to see who suffers a myocardial infarction.

Restriction allows people into a study only if they meet certain narrowly defined
categories based on our suspected confounder. So, in the above example, we might
restrict entry to only non-smokers.

Matching entails entering someone without the possible confounder for every
person with the possible confounder, for example, for every non-smoker in the above
study, we make sure there is a smoker.

9.5.2 Analytic Approaches to Confounding

Stratified Analysis is essentially the analytic approach we took above. We stratify
the data into levels that are homogenous for the confounder under consideration
and compare the crude (unadjusted) measure of association, to a measure of effect
that takes this stratification into account. We will need a way to combine the effect
measures from each individual level or stratum into an overall “adjusted” effect
measure. (We will describe just such a statistic shortly.)

Multivariate analysis is perhaps the most popular statistical approach to con-
founding. The ease and power of computing makes procedures like logistic regres-
sion attractive options for all but the simplest data sets. We will visit this approach
in our discussion of linear regression, when we will see that a β coefficient for an
explanatory variable is interpreted as the effect of that variable holding constant all
other variables in the model. We basically identify one or more of the variables other
than the exposure variable as potential confounders. We then compare the “effect”
of our exposure variable when the potential confounder is included or removed from
the model. The key concept remains a comparison of crude with an adjusted measure
of effect, i.e., compare model with the confounding variable to a model without the
confounding variable
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While we are here concentrating on the statistical aspects of confounding, it is
crucial to not lose sight of first principles. Have a clear idea of what your (main)
exposure variable is and what your outcome variable is. Make this decision early
based on substance area knowledge. Causal thinking drives analysis, not the other
way around

Now, back to our data about previous preterm labor and low birth weight.

9.6 Preterm Labor and Birth Weight Example 2

Say subject matter knowledge leads you to consider uterine irritability as a possible
confounder of the prior preterm labor low-birth weight relationship. A review
of the literature reveals that uterine irritability (a) may be causally related to
low birth weight, (b) may be associated with previous preterm labor but (c) is
unlikely to be a mediator or in the causal pathway between any previous preterm
labor low birth weight relationship. So, it meets all the a priori conditions for a
possible confounder. Our next step, is to evaluate through stratified contingency
table analysis. Requesting a stratified analysis is as easy as adding the stratifying
variable to your tables’ statement:

proc freq data=birth nlevels;
tables uterine_irr*prev_pretrm*low / measures;
title ’odds ratio for association previous preterm and lbw’;
title2 ’controlling for uterine irritibility’;

run;

The following screen presents the odds ratio for the association between previous
preterm labor and low birth weight for individuals without uterine irritability
(Fig. 9.3).

The next screen presents the odds ratio for individuals with uterine irritability
(Fig. 9.4)

We see that there is quite a noticeable difference in the OR for the association
between previous preterm labor and low birth weight when uterine irritability is
present or absent. What is going on here? Well, our first though should be that
uterine irritability could indeed be a confounding variable. But, we should also
consider the possibility of interaction or perhaps even mediation. We will need some
additional statistical tests to help us assess the situation. But, as always, knowledge
of our subject matter should be paramount.

9.7 Adjusted Odds Ratios

As noted in our discussion of stratified analysis for confounding, we need a statistic
that validly combines the odds ratios from individual strata. The familiar (at least to
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Fig. 9.3 Odds ratio for a stratum

Fig. 9.4 Odds ratio for another stratum
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Fig. 9.5 Types of CMH
statistics in SAS

epidemiologists) Mantel–Haenszel odds ratio is just this statistic. SAS complicates
matter somewhat by presenting two statistics that include the name “Mantel–
Haenszel.”

9.7.1 Cochran–Mantel–Haenszel Statistic

In SAS the Cochran–Mantel–Haenszel statistic (CMH) is a test for the statistical
significance of an association. The Cochran-Mantel Haenszel statistic is a good test
for associations. It doesn’t require a huge sample size. (Any fairly large overall
sample size will do). Be aware, though, that a large positive association at one
stratum can affect a negative association at another stratum.

To make matters even more interesting, three are, in fact, 3 types of CMH in
SAS. Type 1 is best for linear associations of ordinal by ordinal variables. Type 2 is
best for raw mean scores of ordinal by nominal variables. Type 3 is for the general
association of nominal by nominal variables (Fig. 9.5).

When interpreting your results, choose the CMH that gives the most power for
your type of analysis, but note that while type 3 for general association has the least
power, it is the one used most often. Again, the CMH is not the Mantel–Haenszel
odds ratio with which most epidemiologists are familiar.

9.7.2 The Mantel–Haenszel Odds Ratio

The Mantel–Haenszel risk estimate combines the results of the stratum-specific
comparisons into a single overall estimate. It is formed by a weighted average of
the stratum effects where each weight is based on the precision of the effect and the
size of the stratum which results in an adjusted measure of association or risk. SAS
provides Mantel–Haenszel measures for both case-control and cohort data.

PROC FREQ returns 2 types of adjusted ORs for case-control data.4 The Mantel–
Haenszel (MH) estimator is a weighted average of stratum specific ORs that can

4You also get the same two types of estimates for cohort data.
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handle zero frequencies. The logit-based estimator is a weighted average of log-
odds ratios and zero frequencies are a computational problem. The procedure adds
0.5 to zero cells. SAS recommends that the MH estimator be used with small sample
sizes.

It is important to note that the MH estimator is based on the assumption that ORs
are constant across strata. This assumption is not met, for example, in the setting
of interaction where effect estimates vary across strata of the third variable. It is
important to consider and check for the homogenieity of the OR across strata.

The Breslow–Day statistic checks for the homogenieity of ORs across strata. It
has a χ2 distribution and requires an appropriately large sample size (recall, 80%
cells >5, no cells <1). Note, though, that it can be misleading if the ORs vary
across 1.

In SAS, the Breslow–Day statistic includes a so-called Tarones adjustment to
correct for a perceived inefficiency of χ2 when sample sizes are small. Requesting
the Breslow–Day statistic also returns the CMH measures of statistical significance.

Simply including a “/ all” option5 following your tables’ statement returns
the Mantel–Haenszel estimate. Including “bdt” returns Breslow–Day statistic and
Tarones adjustment.6

We return to our birth data and the association between previous preterm birth
and low birth weight for a demonstration of contingency table analysis.

proc freq data=birth nlevels;
tables uterine_irr*prev_pretrm*low

/ all bdt; /* Tarone for small sample size */
exact or comor;

/* exact preferred for small sample sizes
comor gives CI for the exact OR*/

title ’Contingency Table Analysis’;
run;

While we get similar results to our previous runs, we will now also get exact
results which may or may not be helpful. Lets jump to the adjusted results (Fig. 9.6)

Looking first at the CMH measures of statistical significance on the top part of
the page, the type 1 statistic is most appropriate for our data, but we can just as
easily use type 3.7 The CMH statistic indicates that there is a statistically significant
association between previous preterm labor and future low birth weight even when
controlling for uterine irritability.

Turning our attention to the Mantel–Haenszel estimate for the common odds
ratio across the two strata of uterine irritability, we see an association on the order

5You can also request / CMH rather than / all. If there is a 2×2 table, SAS will return the Mantel–
Haenszel statistic in addition to the Cochrane–Mantel–Haenszel statistics.
6As you start to stratify by more than one variable, you may find that you will start having problems
with small numbers. SAS has options to request exact tests for odds ratios. You request them with
an “exact” statement on its own line.
7In fact, you wont go too far wrong just using type three routinely.
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Fig. 9.6 Adjusted odds ratio

of about 3.7. This makes sense. The MH is a weighted average of the two strata.
Since the association in the non-uterine irritability stratum was so large, it “pulled
up” the low uterine irritability stratum.

Importantly, we note that the adjusted or MH OR of 3.7 is appreciably different
from the crude OR estimate of 4.3.8 Before we can conclude that uterine irritability
is a confounder of the relationship between previous preterm labor and low birth
weight and should be included in our model, we will need to check for evidence of
interaction. Let’s look a the Breslow–Day statistic for the homogenieity of the odds
ratio which is found at the bottom of the screen. We see that the p-value associated
with the Breslow–Day statistic is not statistically significant, indicating there is no
evidence of statistically significant heterogeneity between strata and therefore little
evidence of statistically significant interaction occurring.9

8There are no hard and fast rules for what constitutes an “appreciable” or “meaningful” difference
between a crude and an adjusted estimate, nor is the comparison amenable to statistical testing.
This is one of those areas (again) where training, experience and substance matter knowledge
combine to guide our efforts. A 15% or 20% difference is an acceptable rule of thumb.
9Of course, the sample size was pretty small, and even with Tarone adjustment we may have
to question these results. Also, see Chap. 11 for a discussion of an epidemiological approach to
interaction. You would want to consider using the Darroch/Rothman approach.
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TABLES
Epidemiological data are traditionally (and ubiquitously) laid out as 2 by 2 or
Punnett tables:

dis nodis

exp a b
unexp c d

It is, actually, a simple enough task to enter data into SAS in terms of a
2× 2 table:

data contingency;
input exposure $ disease $ count ;
cards;
unexp nodis 15
unexp dis 50
exp nodis 40
exp dis 20
;

But, SAS is very much geared toward the analysis of individual observa-
tions. SAS will read each of the cell counts as an individual observation. If
you tried to run a PROC FREQ on these data, SAS would treat each of the
cell counts as an individual observation and return a frequency of 1. We can
turn SAS into an epidemiologist by adding a weight statement that treats the
“count” variable the way we intend:

proc freq data=contingency;
weight count;
tables exposure*disease;

run;

The syntax for a stratified contingency table analysis would be:
/* stratified 2x2 table */
data stress;

input confounder $ exposure $ outcome $ count @@;
cards;

conf unexp dis 50 conf unexp nodis 10
conf exp dis 100 conf exp nodis 90
noconf unexp dis 60 noconf unexp nodis 140
noconf exp dis 10 noconf exp nodis 50

;
proc freq data=stress order=data;

weight count;
tables confounder*exposure*outcome / all;
run;

http://www.youtube.com/watch?v=lAf6_HnQ9SE
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9.8 Summarizing Exploratory Contingency Table Analyses

As we’ve seen, the key to detecting confounding is comparing the crude to the
adjusted odds ratios. For binary categorical data, even when you intend to create
a multivariate logistic model, you should conduct frequency table analyses of all
the variables in your model. An effective approach is to first use PROC FREQ to
examine one-way and stratified cross tabulations of your outcome and exposure
variables setting up a list comparing crude and adjusted measures for possible
confounders and considering the possible role variables may play as interaction
terms and mediators. Only then, should you move on to the multivariable analysis
of categorical data.

Problems

9.1. Contingency Table Analysis
Using the safety data from the previous section compute chi-square tests of
association and measures of the strength of association for type by safety and region
by safety. Use the ALL option to request several tests and measures of association:

• What statistic could you use to measure the evidence of the association between
type by safety?

• Is there statistical evidence of an association between type by safety?
• What statistic could you use to measure the strength of the association between

type by safety?
• How would you interpret the statistic? What statistic could you use to measure the

strength of the association between region by safety? How would you interpret
the statistic?

9.2. Stratified Analysis
Perform a stratified data analysis on type by safety controlling for region. Use the
ALL option to request several tests and measures of association:

• What statistic should you use to detect an association between type by safety
controlling for region?

• How would you interpret the statistic?
• Why are the tables on Asia suppressed?
• Do you think this will cause problems in the model?

Perform a stratified data analysis on region by safety controlling for type.
Request the Tarone’s adjustment for the Breslow–Day statistic. Also use the EXACT
statement and request exact confidence limits for the crude odds ratio and the
adjusted odds ratio.

• Is there evidence that type is a confounder in the relationship between region by
safety?

• Is there evidence that there is a type by region interaction?



Part III
Continuous Data and Regression

We address the analysis of continuous data after categorical outcomes only in
deference to the usual practice of epidemiology. The consideration of continuous
data and outcomes is, though, the traditional underpinning of biostatistical analysis.
ANOVA introduces the concepts of regression analysis. Regression is perhaps the
most frequently used statistical technique in biomedical research today.



Chapter 10
Cleaning and Assessing Continuous Data using
MEANS, UNIVARIATE, and BOXPLOT

Abstract In this chapter we continue and expand on our brief introduction to
continuous data from our consideration of PROC MEANS in Chap. 6. From an
epidemiological perspective, the descriptive procedures in this chapter may be
all that are needed to give us some summary statistics like means and medians,
or simple graphical comparisons. They are often useful for data “cleaning” by
providing tools to look for missing data, identifying outlier or erroneous values, and
getting an overall sense of the data. These procedures, which in addition to PROC
MEANS include PROC UNIVARIATE and PROC BOXPLOT, are also used to
evaluate data for the assumptions for analyses such as ANOVA or linear regression.
We will be talking (a lot) about statistical significance, variability, etc., and its easy
to get caught up in the ideal of statistical significance as its own end. But, remember:
clinical or epidemiological importance is what we’re really interested in.

10.1 PROC MEANS (Redux)

We return to PROC MEANS as the most straightforward place to begin thinking
about continuous, normally distributed independent data. Recall the basic form of
PROC MEANS is:

PROC MEANS data = ;
VAR variables;

RUN;

By default, PROC MEANS will return the number of non-missing observations,
the mean, the standard deviation, as well as the minimum and maximum values. You
can ask for things like the variance, quartiles, and the coefficient of variation. SAS
help lists all the available options. It’s also usually a good idea to print out the first
10 or so observations to get an idea of what you are working with.

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 10,
© Springer Science+Business Media New York 2013
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Fig. 10.1 PROC PRINT for a continuous variable

Let’s quickly walk through the use of PROC MEANS for the initial evaluation
of a continuous variable. We will work with a data set of children less than one year
old discharged from New York City hospitals in our first step is to print out some
observations (Fig. 10.1).

options nodate nonumber; /* some page options*/
proc print data=ch10.infants (obs=10);

/* print only the first 10 observations*/
title ’ list of observations’;
run;

(What are two other ways you could get a sense of an unfamiliar data set?)1

Now let’s run a PROC MEANS for the length-of-stay variable. If you want a
statistic that is not part of the default set that the procedure returns, you must request
the default statistics as well. Here, we want the variance, which is not part of the
default set of statistics, so we also have to request the sample size, the mean etc.
Anytime you want to add a statistic, you will have to go through this process of
specifying the otherwise default statistics.

proc means data= ch10.infants
maxdec=4

1You could use PROC CONTENTS or the SAS Explorer.
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Fig. 10.2 PROC MEANS

n mean median std var; /* proc statement ends with
semi-colon*/
var los;
title ’ descriptive stats: length of stay’;
run;

Even from this simple procedure, we can glean a fair amount of information
about hospital length of stay for infants (Fig. 10.2). The mean length of stay was
four days, but most children stayed two days. This tells us something about the
shape of this data distribution (which we’ll discuss momentarily) and whether it
is possibly being influenced by one or more outlier observations. We see that the
standard deviation is 8.5, which tells us about how tightly clustered (or not) the
observations are around the central value of 4.

There are two very useful options in PROC MEANS with which you should
be familiar. To request the standard error and the confidence limits of a mean,
add STERR and CLM after the “data= statement” on the first line of the syntax.
Remember, because you are requesting non-default statistics, you will also have to
request the default statistics. The syntax looks like this:

proc means data= ch10.infants
maxdec=4
n mean median stderr clm var;
var los;
title ’ descriptive stats: length of stay’;

run;
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Fig. 10.3 Confidence interval for a mean

Running this syntax returns the following results (Fig. 10.3).
As expected, the mean and median for this run are precisely the same as

our previous run. But now, rather than an estimate of about 8.5 for the standard
deviation, we have an estimate of 0.02 for the standard error as well as upper and
lower bounds for the confidence limits of the mean.

I hope you are learning to appreciate that the syntax for running procedures in
SAS is actually not that difficult. The challenge is ensuring you are running them
on data that makes sense, and just as importantly, understanding what the output
means. To that end, before we move on to more sophisticated SAS procedures for
continuous data, let’s take a moment to review some basic statistics that arise from
the calculations in PROC MEANS.

10.2 Review of Some Basic Statistics for Continuous
Variables

There are some basic statistical concepts that are so fundamental to understanding
data analysis that we sometimes run the risk of taking them for granted. One of these
is, I think, how variability about some central estimate or a normally distributed set
of numbers may be captured by sums of squares.

Begin by considering some sample of n numbers drawn from a population N,
say xi = 1,2,3,4,5. The mean of these numbers is simply their sum divided by n:
x̄ = Σxi/n. Now say we’re interested in knowing how closely clustered the values
of xi are around x̄, perhaps because we’re interested in how stable it is.

We could just subtract x̄ from each value of xi, and get the mean of these
differences. You might take a moment to do this with some series of numbers using
an Excel spreadsheet. Did you get zero? You always will, with any set of numbers.
While this is kind of mind bending in its own right, it makes the prospect of getting
a numeric estimate of the variation of a sample of numbers around its mean a bit
more daunting, and leads to the idea of sums of squares.

Rather than just add up the differences, we first square the differences to ensure
that all the values are positive, then we sum up these squared differences. We then
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divide by one less than the total number of observations (see box below) to arrive at
an estimate of the spread around the mean called the sample variance.2

s2 = Σ
(x− x̄)2

n− 1
.3 (10.1)

DEGREES OF FREEDOM
When calculating the sample variance, why do we divide by n − 1 rather
than by n? Well, in practical terms, dividing by n − 1 brings the sample
variance estimate closer to the population variance. This can be easily (though
tediously) demonstrated by taking all possible 2-number samples of a series of
3 numbers. If we compare an average estimate of the variance when dividing
by n to one when dividing by n− 1, we will find that the estimate based on
n− 1 as the divisor is closer to the population estimate. In another practical
example, we know we need at least 2 numbers to calculate a variance. If we
had just one number to base our estimate on, the sum of squares would be
zero, if we divided by n (n=1), the variance would be calculated to be 0/1 = 0.
By using n−1 instead, the formula would be 0/0 = undefined or meaningless,
which is the correct answer when we are trying to estimate variance based on
just one number.

On theoretical grounds, the choice of n− 1 is caught up in the concept
of degrees of freedom. Degrees of freedom are the number of values in a
calculation that are free to vary or (even more theoretically) the dimension
of the vector space from which our calculation can be made. It is based on
the very practical idea of how much information we need to determine the
“location” of a scalar or vector. As an example, we know that the sum of the
differences from the mean is constrained to be zero. If we know any n− 1 of
the values, we will necessarily know the last one. They are constrained to a
space of n− 1.

2In epidemiology we almost invariably consider our data to be samples. Even when we have
everyone enumerated, we may consider it a sample of some future population. We will, therefore,
in general, use sample nomenclature like s2 for sample s for sample standard deviation as opposed
to σ for a population standard deviation.
3In the increasingly unlikely event you find yourself having to calculate this by hand, there is a

simpler calculating formula: s2 = (Σx2)−(Σx)2/n
n−1 .

http://www.youtube.com/watch?v=RhJHL34DiBY&ob=av3n
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We can take the square root of the sample variance to bring the estimate of spread
back into the same metric as the original data with a statistic called the sample
standard deviation4:

s =
√

s2. (10.2)

As I allude to in the previous footnote5 standard deviations are not the only way
to assess the spread or variability of a set of numbers. Another frequently used
statistic, and one that SAS frequently reports, is the coefficient of variation (c.v.).
The c.v. is the proportion or percentage of the mean represented by the standard
deviation, i.e., c.v.= s/μ ·100. It gives you a quick sense of how large the sample
standard deviation is compared to the mean.

A related, but distinctly different statistic from the standard deviation is the
standard error. While standard deviation measures spread or variability of some set
of numbers, the standard error is a measure of the precision of our estimate of some
population parameter, here the mean.

Think of our estimate of the mean as being just one possibility drawn from some
sample which is itself only one possible sample from the underlying population.
Each possible sample from the population has it’s own mean. Taken together, all
these possible means, based on all those possible samples constitute the set of all
possible means, of which ours is only one. How close or how far our humble sample
mean is to the actual population mean is reflected in the standard error. We find
that when we estimate the mean of a population from some reasonable sample,
this sample mean will usually be the same (or very close) to the population mean
itself. We also find that the precision of our estimate, how tightly aggregated the
distribution of all possible estimates of the mean is around our chosen estimate, is
related in a simple but powerful fashion to our sample standard deviation, which is
itself related to sample size. The standard error is, essentially, the standard deviation
of the sampling distribution of sample means and is equal to our sample standard
deviation divided by the square root of the sample size:

s.e.= s/
√

n. (10.3)

The standard error is an integral part of our calculations for p-values and
confidence intervals. Notice, again, that the standard error is intimately connected to

4Standard deviation is so well accepted in statistics that it is, well, the standard approach to
measuring spread around a mean. One might ask, though, why not just sum up the absolute
differences and take the mean of that? Why not indeed. There are, in fact, other measures
such as mean absolute deviation based on just that concept, which though not widely used,
have their defenders (http://www.leeds.ac.uk/educol/documents/00003759.htm). Other measures
of dispersion, such as mean absolute error (MAE), are preferred by practitioners of time series
analysis and forecasting.
5You are studiously reading all the footnotes, aren’t you?

http://www.leeds.ac.uk/educol/documents/00003759.htm
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Fig. 10.4 Demonstration of the central limit theorem

the sample size, n. As sample size goes up, the standard error shrinks. Here are three
histograms drawn from randomly generated numbers from a normal distribution.
Notice how tight the distributions become as the sample size increases (Fig. 10.4).

STRENGTH IN NUMBERS.
The simple profundity of the relationship between standard error and sample
size is not to be overlooked. We are saying that our estimate of the population
parameter becomes more and more precise the larger our sample is. As
information systems and data bases move toward the accumulation of ever
larger numbers of data, standard errors will shrink. As we will see, we use
standard errors to calculate things like confidence intervals. So beware. Large
numbers mean smaller standard errors which translate into tighter confidence
intervals and hence more instances of statistical significance. An appreciation
for the difference between significance and importance was never so crucial.

http://www.youtube.com/watch?v=W_I8IItVQT4&ob=av2n
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Fig. 10.5 Standard deviation
of 20

Fig. 10.6 Standard error of
the mean = 20√

16

Here’s a graphical representation of the difference between standard deviation
and standard error. The first figure is a density plot of a normally distributed
population with a mean of zero and a standard deviation of 20 (Fig. 10.5).

This next figure demonstrates the standard error of the mean for this same
population based on a sample of 16 (Fig. 10.6).

IMAGINE
The concept of all possible means based on all possible samples based on
some mythical population of all possible people, may appear a bit fantastical
but serves a purpose. I was once excoriated in a letter to the editor for using

(continued)

http://www.youtube.com/watch?v=XLgYAHHkPFs
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(continued)
the term standard deviation when I should have used standard error. Or was
it the other way around. Anyway, besides demonstrating that some writers of
letters to the editor truly do have too much time on their hands, I must admit to
a certain statistical dyslexia regarding standard deviation and standard error,
and to give the devil his due, there is an important distinction between the two
that is well worth repeating. So again:

Standard deviation refers to the variability of a sample, population, or
distribution itself. It is used when we want to know how widely dispersed
or variable the sample, population, or distribution is.

Standard error (s.e.) refers to the precision of a parameter estimate. We
apply it when we use a sample to estimate, say, a population mean and want
to know how accurate or precise our estimate is.

And if the idea of all those “possible” samples sticks in your craw, perhaps
Bayesian statistics is for you. . .

10.2.1 Confidence Intervals

You will have realized by now, that we have been considering an underlying normal
distribution of values. We’ll spend a little more time considering the implications
and importance of the normal distribution in continuous data analysis in future
chapters. For now, suffice it to say, that if your population is “normal” in the
statistical sense, then about 68% of your data will lie within 1 standard deviation
of your mean, 95% of your data lies within 2 standard deviations of your mean, and
about 99% of your data lies within 3 standard deviations of your mean.

Another neat aspect about normally distributed variables is that the distribution
of your sample means is also normal, which simplifies things like the calculation of
confidence intervals. Confidence intervals are constructed as a point estimate plus
or minus a critical value derived from a standard normal distribution (usually 1.96)
times the standard error of your point estimate:

CI = x̄± 1.96 · s.e. (10.4)

LIMITED CONFIDENCE
In so-called frequentist statistics we can’t, despite the common-sense appeal
of it, say that there is a 95% probability, or that we are 95% confident,
that x lies within your CI. This is because x is considered fixed; it does
not vary. What does vary is the CI itself. What we are saying is that if we

(continued)

http://www.youtube.com/watch?v=DyV-7fOnQcA
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(continued)
collected many samples (again, all those possible samples. . .) and calculated
an estimate of x and its s.e. for each of those samples, 95% of the time the
true x would be in our calculated CI.

If you’d like to just get the direct probability of x, again, maybe Bayesian
analysis?

HOW NORMAL IS NORMAL?
Its amazing how many continuous processes are normally distributed. In fact,
the Central Limit Theorem tells us that if we have enough data points the
sample means of even non-normally distributed populations will be normally
distributed. The larger the sample size, the closer to normality. A rule of thumb
is about 30 data points. In social sciences, where data is noisier, we should
have more data.

10.3 PROC UNIVARIATE

As we’ve seen, we can get a lot of information from the humble PROC MEANS.
There is though a more useful procedure for continuous, normally distributed data
that returns a much more informative standard set of additional descriptive statistics
information and also gives you options for graphics like histograms (which are
essentially like bar charts for continuous variables) and probability plots.

The syntax is straightforward. For our length-of-stay variable, it would be

proc univariate data= ch10.infants;
var los; * if no var will analyze all variables;
id date; * variable to use to identify the obs;
histogram / normal;
probplot;
title ’ univariate stats: length of stay’;

run;

This syntax requests graphs, so you could precede it with a request to reset and
prettify the graphic output. Something like this works fine:

goptions reset=all fontres=presentation ftext=swissb htext=1.5;

Notice a few things in comparison to our PROC MEANS runs of the length-of-
stay variable. First, we get three pages of output, as opposed to a single line, and
second, our graph window becomes active and displays two images. Let’s explore
some of this output.

First, as always, look at your log (Fig. 10.7).

http://www.youtube.com/watch?v=74hXM2FSV8U
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Fig. 10.7 Log output for PROC UNIVARIATE

Everything appears to be in order. Next let’s look at our statistical results
(Fig. 10.8).

Our first page of output returns some statistics familiar form PROC MEANS
including mean, median, number of observations, standard deviation, and variance.
The advantage here is that we dont have to request them; they are default statistics
for the procedure. There are also a couple of new things here. We get, by default,
the coefficient of variation. We also get a skewness and kurtosis statistic.

Skewness is the tendency for the distribution of values to be more “spread out”
or “longtailed” on one side than the other. If a distribution is normally distributed,
we would expect (and want) the skewness statistic to be at or close to zero. We can
usually tolerate anything up to 1 or down to −1.

When the distribution is more spread out on the left side (your left, i.e., as you
look at the page), it is called (logically enough) left skewed and the skewness statistic
is negative. We will also see that when left skewed, the mean is less than the median.
This is a useful hint if you don’t have a skewness statistic with which to work.

A right-skewed distribution is heavier tailed or “spread out” on the right side.
The skewness statistic is positive, and the mean is greater than the median. That
appears to be the case here.
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Fig. 10.8 PROC UNIVARIATE statistical output

Kurtosis refers to how peaked a distribution is.6 Again, we would want the
statistic to be close to zero. A positive kurtosis statistic indicates a high-peaked,
heavy-tailed distribution. A negative kurtosis statistic indicates a smaller-peaked,
light-tailed distribution.

This page of results also presents quantiles for the data set. Quantiles are a value
below which some proportion of the distribution lies. For example, 3 values (the
quartiles) divide a distribution into 4 equal parts. The interquartile range is the
difference between the first and the third quartiles and can give you an indication of
how tightly clustered or spread out data is. Quantiles are returned as a default part
of PROC UNIVARIATE output.

6There are some neat names for kurtosis that might come in handy if you are trying to impress a
statistician. A high-peaked, heavy-tailed curve is leptokurtotic. A small-peaked, light-tailed curve
is platykurtic. When the kurtosis statistic is close to zero, the curve is mesokurtotic.
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Fig. 10.9 PROC UNIVARIATE extreme values

STEMS AND LEAVES
Back in the not so very distant past, statistics were calculated by hand. John
Tukey (who we’ll meet again) developed a neat way to summarize data by
grouping numbers by their digits. So 36 would have a stem of 3 and a leaf of
six. A stem and leaf plot for a set of numbers might look like this:
2| 01189
3| 1255568999
4| 23

It not only lists all the observations but gives an indication of the distribu-
tions shape. You can request a stem and leaf PLOT in PROC UNIVARIATE:

PROC UNIVARIATE data=your.data PLOT;
var num_var;
run;

On this next screen, we are given the five highest and five lowest observations
for length of stay (Fig. 10.9). Some newborns only stayed one day. There was at
least one, though, who was an inpatient for more than a year. Depending on what
our outcome of interest is, this may be an outlier or perhaps an erroneous entry.
We will want to investigate that more closely. Notice we asked SAS to identify

http://www.youtube.com/watch?v=Z7pAhNumuvo
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Fig. 10.10 PROC UNIVARIATE histogram

the observations by the date variable. In this example it is purely for demonstrative
purposes. I just wanted you to see how the ID option in PROC UNIVARIATE works.
It could, though, prove to be more useful in tying an outlier to some more helpful
variable than just observation number.

There is an additional screen of output related to how well the distribution
approaches a normal distribution which we will not consider. We derive, I think,
enough information about normality from the above statistics and the following
graphs.

Our histogram statement with the request for an overlying normal plot on the
4th line of the syntax returns the following graph. It is quite clearly not normally
distributed (in fact, it looks Poisson distributed). Consider the form in light of our
skewness and kurtosis statistics (Fig. 10.10).

Our next graph is the result of our request for a normal probability plot
(PROBPLOT) (Fig. 10.11). A normal probability plot is a tool to assess if a set
of data is normally distributed. You arrange your data in ascending order and plot
it on the y-axis against the z-values for the data points on the x-axis. You expect, if
the data is normally distributed, a straight diagonal line ascending from the lower
left-hand corner of the plot to the upper right-hand corner. If the data is not normally
distributed, you will see a curve of some kind. A single bend, as in the above
example, indicates skewness. More than one curve indicates possibly a bimodal
distribution.
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Fig. 10.11 PROC UNIVARIATE Normal Plot

We could also have included as part of the probplot statement the “/ nor-
mal’option” to request that SAS superimpose a reference line as we did with the
histogram.

Similar to how you can request a confidence interval about the mean of
some value in PROC MEANS, you can request a confidence interval in PROC
UNIVARIATE with the option CIBASIC on the data line. You can set the specific
type I error level with an alpha = option:

proc univariate data=your.data cibasic alpha=0.01;

10.4 PROC BOXPLOT

We will consider one additional tool in our continuous data assessment and cleaning
armamentarium. PROC UNIVARIATE will return a crude box and whisker plot of
your data as part of the same PLOT option that returns a stem and leaf plot (see
above). A box-and-whisker plot returns the mean, median, quartiles, and minimum
and maximum values.
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PROC BOXPLOT will return a much neater looking graphic of this convenient
and informative 5-number summary. It is useful for comparing the continuous
variable we are interested in across groups. The syntax looks like this:

PROC BOXPLOT Data = ;
PLOT continuousVar * group var / options;

RUN;

The “continuousVar” above is the continuous numeric variable you want the box
plot on. You can request box plots on more than one variable, but you need to enclose
them in parentheses. The group var above is the categorical variable across which
you want to examine the box plots. It needs to be numeric and categorical.

You must sort the data set by your grouping variable before running PROC
BOXPLOT.

Note that SAS requires a grouping variable as part of PROC BOXPLOT. If you
were interested, say, in looking at a boxplot for the entire data set, you would have
to create a dummy variable to group the continuous variable.

To create a dummy variable, you use a DATA step to create a data set that includes
the dummy variable:

DATA new_data_set;
SET existing_data_set;
dummy = 1;

/* create dummy variable to do boxplot on just one group */
run;

You can include options after the PLOT statement to improve the appearance
of your graph. The option “cboxes” specifies the color of the boxplot, the option
“boxstyle” specifies type of boxplot. The following syntax would return a pleasing
enough graphic:

plot continous_var*group_var / boxstyle schematic
cboxes=black;

As with any SAS graphic, the trick is to find the options and settings that serve
you well and then stick with them. I find the following syntax nice:

symbol color = salmon;
title Boxplot’;
proc boxplot data=work;

plot cont_var*cat_var / cframe = vligb
cboxes = dagr
cboxfill = ywh;

run;

To get a quick look at PROC BOXPLOT in action, lets return to our “preemie”
data set. Say were interested in how length of stay varies across different discharge
dispositions. As before, LOS is our continuous outcome variable. The variable
DISPO would be our numeric grouping variable. As noted, we first have to sort
by our grouping variable:
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Fig. 10.12 PROC BOXPLOT

proc sort data=ch10.infants;
by dispo;
run;

We would, of course, check our log to make sure the process went smoothly. We
then run the following syntax:

symbol color = salmon;
proc boxplot data=ch10.infants;

plot los*dispo / cframe = vligb
cboxes = dagr
cboxfill = ywh;

title ’Boxplot’;
run;

which returns the following graphic (Fig. 10.12).
There is really quite a bit of information here. First, each box plot gives an

idea of the normality and symmetry of the continuous response variable. Think
of flipping the box plot clockwise onto its right. If right or positively skewed you
will see the upper whisker longer than the lower whisker. You will also see the
median, represented by the horizontal black line, below the mean, represented by
the red plus sign. You will also get a quick sense of outliers. The maximum length
of the whiskers is about 1/2 times the interquartile range (from the top of the box to
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the bottom of the box). Anything beyond that is represented as outliers. It is clear
from the above example that we would have to seriously reassess any assumption of
normality of length of stay across discharge dispositions.

10.5 In Summary

The three procedures presented in this chapter, MEANS, UNIVARIATE, and
BOXPLOT, are useful in the initial analysis of continuous variables. They not only
provide useful descriptive information; they allow us to assess the basic form of our
data so that we can choose the most appropriate model or perhaps transform our
data to fit the assumptions of the model we are planning to use.

Problems

10.1. PROC MEANS
Use the SPARCS text file to create a temporary (work) SAS file called infants by
reading in the following variables: date, age, county, zip code, sex, race, ethnicity,
source of admission, type of admission, primary diagnosis, birth weight, disposition,
length of stay, and charge.

• Use “disposition = 20” to create a death indicator. Use age less than 1 and
“disposition=20” to create an infant mortality indicator.

• Use type of “admission = 4” and birthweight less than 2,500 grams to create a
low birth weight indicator.

• Use type of “admission = 4” and source of “admission = 2” to create a premature
birth indicator.

• What is the mean birthweight for neonates? Does anything strike you as unusual
about this result? (Hint: What is the normal birth weight?)

• How many observations were used to calculate this result? Where do you think
you got this result? (Hint: What patients are included in this data set?)

• Rerun your analysis of birthweight on this data set. Request the mean, the
median, the standard deviation, the variance, and the confidence limit for the
mean. What can you tell from these results? (Hint: What was the mode?).

• Use a sub-setting IF statement as part of a DATA step to create a permanent file
restricted to children less than 1 year old. How many children less than 1 year
old were discharged?

• Run a PROC MEANS statement on this file requesting the mean, the median, the
standard deviation, the variance, and the confidence limit for the mean. What are
your results, and how do they differ from your first run?
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10.2. PROC UNIVARIATE
Using the infant file you created above, run a PROC UNIVARIATE on the
birthweight variable. Begin your syntax by resetting your graph parameters and
specifying presentation level font resolution, swissb as the text and a text height
of 1.5.

Request a stem and leaf plot, a histogram, and a probability plot with a normal
overlay using an estimated mean and sigma (choose an appropriate color and width).
As part of the univariate run, test the null hypothesis that the mean birth weight was
2,500 grams.

• Does the data appear normally distributed? What leads you to your conclusion?
• What is the skewness statistic, and what does it indicate?
• In what way do the mean and median reflect this?
• What is the kurtosis statistic, and what does it indicate?
• What can you learn from the extreme values that might provide information about

lack of normality?
• Rerun your analyses excluding zero values with a sub-setting WHERE statement.

How does this affect your results?

10.3. PROC BOXPLOT
Use PROC BOXPLOT to examine whether birthweight varies by county. Start with
your infants04 data set. Use a DATA step to create a data set where NYC county is
re-coded as a new variable called borough as follows: county = “58,” borough = 1;
county =“59,” borough = 2 county =“60,” borough = 3; county = “61”, borough =
4; and county = “62,” borough = 5. Make sure to code any other value of county as
missing.

Create boxplots of birth weight by borough. What, if anything, do you conclude
based on these plots?



Chapter 11
ANOVA

Abstract In this chapter, we continue our consideration of continuous outcome
variables. We now address the use of analysis of variance (ANOVA) in the situation
where we have one or more categorical predictor variables. We’ll review the
concepts underlying ANOVA and describe how to apply it in SAS with PROC GLM.
Well introduce the concept of error terms. We wi’ll also take the opportunity to go
over the concept of interaction in epidemiological studies

11.1 Review of ANOVA

To motivate our discussion1 of ANOVA, consider the situation where you have two
or more groups of individuals and you are interested in comparing them on some
continuous outcome. Perhaps you want to compare the systolic blood pressures
of attendees of three different clinics. As you most likely already know, it is not
appropriate to do multiple tests of significance. We’ll review why this is so, but
suffice it to say that in this setting ANOVA is the more appropriate approach.

ANOVA is a statistical model appropriate when you have a continuous response
variable and one or more categorical predictor variables. The ANOVA approach
makes use of F-tests. The F distribution is, in fact, based on the χ2 distribution,
which is the sum of the squared differences of observed minus expected values
divided by the expected value:

χ2 =
Σ(O−E)2

E
. (11.1)

1And motivation it may require. I do not use ANOVA very frequently in my epidemiological work.
My usual “go to” procedure for continuous outcomes is linear regression. But, as we will see,
ANOVA and linear regression are really two sides of the same coin. And since ANOVA emphasizes
the effects of categorical variables, with which epidemiologists are so frequently concerned, it is a
useful and informative starting point for regression-based techniques.

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 11,
© Springer Science+Business Media New York 2013
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The F distribution is defined as the ratio of two independent χ2 ’s divided by their
respective degrees of freedom.

In the setting of ANOVA, we use the F distribution to test the hypothesis that two
variances are equal. We divide the result for one variance by that of the other and
look up the probability of the resulting statistic in a table of F statistics.2 We obtain
the variances we use in the division by partitioning and comparing two different
components that make up the total variance in a data set.

Say, for example, that we have blood pressure readings on all the clients of three
clinics. We calculate the total variance (or total sum of squares3 in the data set by
summing up the squared values of the differences between each individual blood
pressure value and the overall mean blood pressure value for the entire data set. We
then partition this total variance into two parts. First, we calculate a variance term
for the group means by summing the squared differences between the group means
and the overall mean for the entire data set. This is referred to as the sum of squares
between groups or sometimes the model sum of squares. Second, we calculate the
variance for each clinic or group of patients by summing up the squared value for
the differences between each individual in a group or clinic and the mean blood
pressure value for that group or clinic. This is referred to as the sum of squares
within groups, but also goes by the name of residual or error sum of squares. These
three values are clearly and intuitively related: SSTotal = SSBetween +SSWithin, where,
for individual observations i in groups j,

SSTotal = Σ(xi − μi j)
2 (11.2)

SSBetween = Σ(μ j − μi j)
2 (11.3)

SSWithin = Σ(xi j − μ j)
2. (11.4)

As in most traditional statistical testing, we begin from the view that there is no
difference among the groups, for example, our null hypothesis (H0) might be that
the mean blood pressure readings are the same for all our clinic groups. If this is
true, then the ratio of the measure of the variance of the group means (SSBetween) to
the measure of the common variance for all the groups (SSWithin) should be 1. The
more it deviates from 1, the more likely that it is that the group means are not, in
fact, the same, and the more significant will be the result of an F-test that compares
the between group variance to the within group variance.

To conduct the F-test, we divide the sums of squares by their appropriate degrees
of freedom. The approach is laid out in the familiar4 ANOVA table.

If the F-test in the ANOVA is statistically significant, we can then look for which
particular means differ from the others by using multiple comparison procedures

2Or at least we used to. Nowadays, a machine looks it up for us.
3Another example of the use of that most fundamental of statistical concepts, the sum of squares.
4To some
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Source of variation Sum squares d.f. Mean square Variance ratio

Between groups= SSB Σ (μ j −μi j)
2 n−1 SSB / d.f. SSB / SSW

Within groups = SSW Σ (xi −μ j)
2 n(m−1) SSW / d.f

Total SSB + SSW n(m−1)

such as the Bonferroni method, the Scheffe method, Tukey’s Honestly Significant
Difference, or the Newman–Keuls procedure.

11.1.1 Assumptions for ANOVA

There are important assumptions underlying the use of a procedure like ANOVA.
Specifically, we are assuming that (1) our outcome variable is indeed continuous,
(2) that our observations are independent, for example, that taking a blood pressure
measurement on an individual will not somehow affect or is related to taking a
blood pressure measurement on another individual, (3) that the outcome is normally
distributed, and (4) that the variance of the outcome is equal across groups.

ANOTHER VIEW
In preparation for our future discussion of regression analysis and regression
diagnostics, it can be helpful and useful to take a somewhat different view of
ANOVA. We can, without losing any information, view ANOVA as a model,
where:

Outcome = overall average + differential effect from categorical variable +
error.

Note that the error term is the only random variable on the right side of
the equation This error term is (if our assumptions about the outcome variable
are correct) therefore random, normally distributed, with equal variances
across groups. We will find that it is often easier to test our assumptions of
normality etc on the error term than on our continuous outcome variable.
This is particularly the case when we get to multiple linear regression.

A DIFFERENT VIEW.
In more general terms, an error or residual value, can be thought of as the
difference between an observed value and that predicted by the model. They
are denoted by r or ê. Again, they should be random, normally distributed

(continued)

http://www.youtube.com/watch?v=2wYoLQc-x5g
http://www.youtube.com/watch?v=kPUguIgcAHM
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(continued)
with μ = 0. Regression diagnostics consist in large measure of feeding these
residual values into PROC UNIVARIATE and assessing their normality, etc.

Note that the Within Group Sum of Squares, i.e. Σ(xi − μ j)
2, is also

referred to as the Residual or Error Sum of Squares, because it is essentially
defined by these errors.

11.2 Testing Assumptions with MEANS, UNIVARIATE,
and BOXPLOT

A continuous response variable with a single categorical predictor variable is
referred to as a one-way ANOVA. Basically, you are comparing some mean across
two or more groups.

We are obligated to test our assumptions of normality, independence, etc., before
proceeding to our main event of the ANOVA. SAS makes it fairly painless to do that
through the use of descriptive procedures like PROC MEANS, UNIVARIATE, and
BOXPLOT. Testing your assumptions has the additional advantage of allowing you
to “get to know” your data and present overall descriptive measures in which your
audience will very likely be interested.

While PROC MEANS is a simple enough place to begin, we usually take ad-
vantage of the convenience of PROC UNIVARIATE to first analyze our continuous
outcome variable.

proc univariate data = your data;
class cat_var;
histogram cont_var / normal;
var cont_var;
probplot cont_var / normal (mu=est sigma=est color=blue

w=1);
title univariate analysis by categorical variable;

run;

We use the CLASS statement in PROC UNIVARIATE to categorize the data ac-
cording to the group variable in which we are interested. We are, therefore, assessing
normality for each group. We will look at all the statistics that UNIVARIATE so
conveniently provides, like comparing means and medians, kurtosis, and skewness.
Note that we are also requesting a histogram with a normal overlay and a probability
plot to assess normality.

Our next step will be to use PROC BOXPLOT to get a better visual representation
and convenient 5-number summary for the continuous outcome data for each group.
Remember, you must first sort your data by the classification or grouping variable.
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proc sort data=your.data out=sorted_data;
/* need to sort data by your category variable*/

by cat_var
run;

proc boxplot data=sorted_data;
plot cont_var*cat_var / cboxes=black
boxstyle=schematic;

run;

11.3 ANOVA with PROC GLM

OK. There is a SAS procedure called PROC ANOVA, but I do not use it to conduct
ANOVA. It has a somewhat limited number of associated options and really only
works for the most straightforward situation of a so-called balanced ANOVA design,
i.e. when you have the same number observations each group. I find this a bit
limiting.

It is more convenient to use a procedure called PROC GLM that will handle
any ANOVA design (as well as ANCOVA, or the analysis of covariance, and linear
regression). Also, PROC GLM has a nice set of options and tools that allow us
to easily create a data set of residuals or error terms for normality testing with
UNIVARIATE.5

GENERALLY SPEAKING
GLM refers to general linear model, which includes ANOVA and all its linear
cousins like linear regression, ANCOVA (analysis of covariance), MANOVA
(multivariate analysis of variance), and MANCOVA (multivariate analysis of
covariance). All these procedures are related in that they allow prediction of a
continuous variable that is linearly related to predictor variables.

The general linear model can be further generalized to the appropriately but
slightly confusingly named generalized linear model, which allows analysis
of problems where linear assumptions are not appropriate, for example, non-
continuous outcome variables, nonlinear associations with predictor variables,
non-normally distributed data, and nonconstant variance across observations.
Generalized linear models are characterized by a link function that charac-
terizes how the outcome variable is related to the predictor variable. So in a
traditional (or general) linear model with a continuous outcome variable with
a normal distribution, the link function is a so-called identity function. When

(continued)

5This is not always the case. For a number of other SAS PROCS, you have to create the residuals
by hand before feeding them into UNIVARIATE.

http://www.youtube.com/watch?v=ZuRpADKxesQ
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(continued)
the outcome is a proportion with a binomial distribution, the link function is a
logit or Pr[p/(1− p)], and the procedure is referred to as logistic regression. If
the outcome variable is a Poisson distributed count variable, the link function
is the natural log of the mean (ln(μ)). In SAS, such generalized models can
be run under PROC GENMOD.

Conducting a PROC GLM run for ANOVA basically proceeds in three steps:

1. Run the model with PROC GLM
2. Plot the residuals with PROC GPLOT
3. Get statistics on the residuals with PROC UNIVARIATE6

To run the model:

1. Invoke the procedure and specify the data set: PROC GLM data = .
2. Specify your grouping variable: CLASS categorical variable.
3. Specify your model: MODEL continuous outcome variable = categorical vari-

able.
4. Compute means for each group: MEANS categorical variable.
5. Output your residuals as a data set: OUTPUT out = error dataset.
6. Run your model: RUN.
7. Quit GLM: QUIT.

We will spend some time assessing whether the data meet the underlying
assumptions for ANOVA. Recall that we generally look at the error terms as a
reflection of the overall model fit.

We will use PROC GPLOT to plot residuals against predicted values to see if
there are any patterns that violate the assumption that they are randomly grouped
around zero. On the plot, you should get a spike of data for each group (e.g., if only
two groups, only two spikes of data). Look to see if the data points are evenly spaced
on either side of zero.

After plotting the residuals, run PROC UNIVARIATE on them. Look at the
normality statistics. The mean, median, and mode should all be close to zero, as
should the kurtosis and skewness statistics. Request a histogram and examine it to
see if the data appear normally distributed. Request a normal probability plot and
examine it to see if it is a straight line.

6You may notice that we are running the model before testing our assumptions. This is not, strictly
speaking, the best approach, but we need to run the model to get the residuals. So it is basically
unavoidable. You will, of course, be tempted to peak at your results. Shame on you.
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It is only after this important preliminary work that you will turn your attention
to the results of the model itself.

The following syntax can be used as a template to run PROC GLM for ANOVA:

options ls=75 ps=45; /* page and line spacing options*/
proc glm data = your.data;

class cat_var; /* categorical variable to
group the outcome variable*/

model cont_var=cat_var; /*specify the model i.e. response
variable = predictor(s) */

means cat_var / hovtest; /* computes means of dependent
variable for group*/

/* hovtest is Levene’s test for homogeneity (equality) of
variances
(one of the assumptions of ANOVA is homoscedasticity)
null hypothesis is variances are equal, do not want to reject

null,
want a large p value (look under ’Pr > F’) on output*/

lsmeans cat_var / pdiff=all adjust=tukey; /* pdiff=all
requests all pairwaise p values */

output out=check r=resid p=pred; /* creating an output
data set called ’check’, ’r ’
is a

keyword SAS recognizes as
residuals, p is recognized as
predictors */

title ’testing for equality of means with GLM’;
run;
quit; /* have to quit out of glm, or will keep running */

/* run gplot on the ’check’ dataset created above*/

proc gplot data=check;
plot resid*pred / haxis=axis1 vaxis=axis2 vref=0; /* can

leave this out if you’re OK with defaults*/
axis1 w=2 major=(w=2) minor=none offset=(10pct);
axis2 w=2 major=(w=2) minor=none;
title ’plot residuals vs predictors for cereal’;

run;
quit;

/* run proc univariate to get histogram,
normal plot, kurtosis and skewness on residuals*/

proc univariate data = check normal;
var resid;
histogram / normal;
probplot / mu=est sigma=est color=blue w=1;
title;

run;
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11.3.1 GLM ANOVA Output

If you are reasonably sure your data meets the assumptions of ANOVA, you may
then turn to the actual GLM output. The first few lines of the GLM output consist
of administrative information such as the variable chosen as the class variable, how
many levels are in this class variable, the number of observations and how many of
those observations, were used in the analysis.7

The next section of output contains all the information you need to test the
equality of the means of your continuous outcome variable across the class or group
variable. Remember, you are interested at this point in determining whether the
group or class variable is an important predictor or determinant of the mean for the
outcome.

You will find the classic ANOVA table where the first column indexes the sources
of variability (total, model or between, error or within),8 the next column presents
the sums of squares associated with the sources of variability, and the third column
represents their respective mean squares which are simply the sums of squares
divided by the appropriate degrees of freedom.

Your evaluation will be led inexorably to the F statistic which is based on the
model or between mean square divided by the error or within mean square.

F = Model (Between) MS / Error (Within) MS

Recall your null hypothesis is that all the group means are equal, i.e., group
status has no effect or relationship to the mean of your continuous outcome variable.
A large F is evidence that between group variability is greater than within group
variability and indicates that the model or group status is important. SAS gives
you the p-value for the F statistic, with a smaller value indicating that the observed
results are unlikely to have occurred due to chance.

You should next look at the R2 statistic9 which is a measure of the proportion
of total variability accounted for by the model or group status. It is calculated quite
intuitively as the model or group sum of square divided by the total sum of squares.

R2 = Model (Between) SS / Total SS

It is a measure of how well the model fits, explains, or accounts for the variability
in the data. The more of the total variability accounted for by the model (or group
status), the better the fit. So, values closer to 1 are more indicative of a better-fitting
model.

7PROC GLM performs complete case analysis omitting observations with missing variables. This
can come back to haunt you, and you may want to recode missing variables to some number or
character, so those observations contribute to your analysis.
8Just to keep things interesting, in SAS, the total sum of squares is referred to as sum of squares
total (SST), between group or model sum of squares is referred to as sum of squares model (SSM),
and within group or residual sum of square is referred to as sum of squares error (SSE).
9Sometimes referred to as the coefficient of determination, though not by me.
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The next statistic you should look at is the coefficient of variation. In our
presentation on MEANS and UNIVARIATE, we defined the coefficient of variation
as σ/μ . In the setting of ANOVA it is the mean squared error (MSE) or error as a
percentage of the overall mean.

Coefficient of Variation = Root MSE / Weighted Mean

While the calculation is a bit different, the interpretation is similar. It is a measure
of how noisy the data is, with a larger value indicating more overall variation.

Now would be a good time to look at Levene’s test for the homogeneity of
group variances. As noted in the sample syntax above, Levene’s test is requested
in SAS as the “hovtest” option for the MEANS calculations in PROC GLM. The
null hypothesis is that the variances are all equal10 (which is one of the underlying
assumptions for ANOVA), so you do not want to reject the null. A large p-value is
what you are, in fact, looking for.11

If at this point, if we are satisfied that there is, indeed, some difference across
group means, i.e., that group status is in fact an important consideration in our
outcome variable, we will try to identify which group(s) is (or are) “more” different
than the others.

We can get an initial sense of which group(s) differs from the others by a side-
by-side comparison of boxplots. We can then get more precise information from the
PROC GLM output titled Test Differences Between Means which lists the levels
of the class variable and their μ and σ . The challenge is to pinpoint which of the
differences are sufficiently meaningful from a clinical or public health perspective
and also not likely to have been due to chance.

11.3.2 Multiple Comparisons

You might consider doing a test of statistical significance for the difference between
each possible pair of groups. But you would be misguided. Recall that each such
statistical comparison is subject to a 0.05 probability of type I error, i.e., rejecting
your null hypothesis of no difference when in fact it is true. As the table below
demonstrates, this type I error cost adds up very quickly.12

10The more groups in your class variable, the greater the likelihood that at least one of them will
violate an assumption of normality or equal variance (homoscedasticity), although pooling the
observations and increased numbers will buy you some flexibility.
11You should know that Levenes test is considered underpowered to detect differences in variances.
12The calculation for the true error rate is 1− (1−α)c, where c is the number of comparisons.
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We control the multiple comparison error rate through adjusting. In SAS,
LSMEANS requests multiple comparison methods.

Number of
comparisons

True error
rate

1 0.05
3 0.14
6 0.26
10 0.40

ADJUST = TUKEY adjusts for all possible comparisons by dividing σ
(traditionally 0.05) by the total number of all possible comparisons. ADJUST =
BONFERRONI controls for preplanned comparisons by dividing σ by the number
of comparisons you plan to conduct.

The syntax (included in the template above) is fairly simple:

lsmeans cat_var / pdiff=all adjust=tukey;

pdiff in the syntax above requests all pairwise p-values. You can similarly request
a Bonferoni adjustment with adjust=bon.

TEA TIME
Sometimes in SAS, options can be indicated by shorthand versions of just
their first letter. So, for example, rather than write out residual, you can just
write r. This is very much not the case with ADJUST=TUKEY. If you were
to write ADJUST=T, you would get all possible individual t-tests. You know,
what you were trying to avoid in the first place.

11.3.2.1 LSMEANS

Interpreting the output of LSMEANS requires some thought, and we’ll go through it
in a bit more detail. You will see something like the following, which presents mock
data for the example of the effect of clinic on diastolic blood pressure. We start by
assuming that the results of the F-test for the effect of clinic on blood pressure were
statistically significant.

This first result presents the means for the mean diastolic blood pressure reading
for each clinic population. Just by looking at them, it appears that the clinics
differed. Clinic 1 appears to have achieved a lower mean diastolic blood pressure
reading. Our first step in interpreting the results of LSMEANS is to order the means.
Here, they are 1<3<4<2 (Fig. 11.1).

We now look at the test for statistical significance for each pairwise comparison.
Assume that we requested an appropriate adjustment, either Bonferroni or Tukey
(Fig. 11.2).

http://www.youtube.com/watch?v=r_J6hCCQ_ng
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Fig. 11.1 Group means

Fig. 11.2 Adjusted statistical significance of differences between means

Again, just by “eyeballing” the table, we can see that some comparisons were
statistically significant. To more systematically interpret the table, we return to
our ordered list from above. Now draw a line under each comparison that is not
statistically significant. Here, the comparisons between clinic 3 and clinic 4, and
between clinic 2, and clinic 4.

Proceeding in this way, we conclude that clinic 1 was statistically different from
all the other clinics. Whether this difference is clinically meaningful is not a question
LSMEANS or any other statistical test can answer for us.

11.4 Demonstration of One-Way ANOVA

Data set bp drug contains systolic blood pressure measurements on 120 individuals
each taking one of four drug doses.13 We are interested in the effect of drug dose
on lowering blood pressure. Our first step is to run some preliminary descriptive
statistics on the data themselves.

proc univariate data=bp_drug;
var BP;
histogram / normal;
probplot;
run;

13This data set, as do so many in this text, comes from the SAS Institute.
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Fig. 11.3 Testing assumption of normality with a histogram

proc sort data=bp_drug;
by drug;
run;

symbol color = salmon;
proc boxplot data=bp_drug;

plot BP*Drug / cframe = vligb
cboxes = dagr
cboxfill = ywh;

title ’Boxplot Blood Pressure Drugs’;
run;

The run returns the following results (Figs. 11.3 and 11.4).
We see from our univariate procedure that the mean systolic blood pressure

for the entire sample was 134.9 which is higher than the upper limit of a desired
systolic blood pressure of 120 mm Hg. You would have to rely on your own clinical
knowledge or consultation with clinical folks to help evaluate this finding. The
standard deviation for this mean is about 12 with a coefficient of variation of about
9% indicating some potentially important scatter of the data. The mean is not too
very far off from the median of 132, and the skewness and kurtosis statistics do not
appear problematic. Your histogram and probability plot may, though, cause you to
question the underlying normality of these data.
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Fig. 11.4 Testing assumption of normality with a normal plot

The box plots indicate that there may be a meaningfully lower blood pressure
associated with at least one of the drug doses (Fig. 11.5).

Our next step is to run PROC GLM to create a residual data set and further
explore whether the assumptions for ANOVA are met.

options ls=75 ps=45; /* page and line spacing options*/
proc glm data = bp_drug;

class drug;
model BP=drug;
means drug / hovtest;
output out=check r=resid p=pred; /* creating

an output data set called ’check’
’r ’ is a keyword SAS recognizes as
residuals, ’p’ recognized as
predictors*/

title ’testing equality of mean BP by Drug Dose with
GLM’;

run;
quit; /* have to quit out of GLM */

/* now run gplot on the ’check’ dataset created above*/
Proc gplot data=check;

Plot resid*pred / haxis=axis1 vaxis=axis2 vref=0;
/* can leave out if ok with defaults*/

axis1 w=2 major=(w=2) minor=none offset=(10pct);
axis2 w=2 major=(w=2) minor=none;
title ’plot residuals vs predictors for drugs’;
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Fig. 11.5 Assessing group differences graphically with boxplots

run;
quit;

/* now run proc univariate to get histogram, normal plot,
kurtosis and skewness on residuals*/

proc univariate data = check normal;
var resid;
histogram resid / normal;
probplot;* resid / mu=est sigma=est color=blue w=1;
title;

run;

Let’s ignore the actual ANOVA for the time being, and first turn our attention to
Leven’s test for homogeneity of variances (Fig. 11.6).

The very small p-value indicates that we can reject our null hypothesis of
homoscedasticity. It is likely then that variances varied across drug dose groups
to an extent not supported by our underlying assumptions of ANOVA. Not, in fact,
what we were looking for.14 Let’s see what our PROC GPLOT run of our residuals
reveals (Fig. 11.7).

14I would not worry too much about this result. We buy ourselves some flexibility with larger
numbers and more groups. The one assumption that requires strict adherence, though, is that of
independent (uncorrelated or related) observations.
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Fig. 11.6 Leven’s test for homogeneity of variances

Fig. 11.7 Plotting the residuals



174 11 ANOVA

Fig. 11.8 PROC GLM ANOVA results

The data points for each group seem reasonably randomly dispersed around zero.

DON’T BLINK
In medicine, there is reference to so-called “eigenblink” diagnoses, those
situations where one’s initial almost instantaneous impression is most likely
the correct one. This is a good approach to residual plots. Your first relatively
quick impression is usually the correct one. Humans like to see patterns. If
you spend too much time looking at residual plots, you may talk yourself into
seeing patterns where none exist.

The PROC UNIVARIATE results generally reflect those of the data itself, which
in the setting of a relatively straightforward one-way ANOVA is what we would
expect. At this point, we would (if satisfied that our assumptions are reasonably well
met) proceed with an evaluation of the actual ANOVA. This next screen presents the
main results of our ANOVA (Fig. 11.8).

Based on the overall nonsignificant F statistic, it is unlikely that there are true
underlying differences among the four drug dose groups. Our R2 statistic indicates
that group status explains very little of our total variance. At this point, you might

http://www.youtube.com/watch?v=4f0p5KqdU9U&ob=av2e
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be rather disappointed in the effect of drug dose on blood pressure. But don’t write
this analysis off just yet. In our next section, we will see that perhaps something else
is going on here.

11.5 Accounting for More than 1 Categorical Variable:
n-Way ANOVA and Interaction Effects

Up until now, we have been considering the case of a one-way ANOVA, i.e., the
effect of one categorical predictor variable on a continuous response variable. n-Way
ANOVA refers to the case when we have more than 1, or n, categorical predictor
variables.

As an example, say in our example of four antihypertensive drug doses, our
patients could have had one of three different diseases. Our continuous outcome
variable remains systolic blood pressure. Now, though, we have two categorical
predictor variables: drug dose and disease. We are also likely interested in whether
any particular combination of drug dose and disease interacts to affect blood
pressure in perhaps an unexpected way.

Our model can be represented as

yi jk = μ +αi +β j +(αβ )i j + εi jk, (11.5)

where

• yi jk is the observed blood pressure for each subject
• μ is the overall population mean blood pressure
• αi is the effect of disease i
• βJ is the effect of drug dose j
• (αβ )i j is the interaction between disease i and drug dose j
• εi jk is the residual or error term for each subject

We again assume that our outcome or response observations for each treatment
are independently, identically, and normally distributed with approximately equal
variances (homoscedasticity). Again, before conducting ANOVA, we would explore
our data with descriptive statistics and examine our assumptions through residual
analyses.

In contrast to our previous example, we now have two categorical or group
variables (drug and disease) and we have included a statistical term for the
combination of both drug and disease. This combination is an interaction term. We
will discuss the epidemiological implications and approach to interaction shortly.
For now, though, we will define interaction briefly as the situation where the
relationship between a predictor variable and an outcome or response variable
differs by different levels of a second predictor variable. So, here, we are interested
in whether the effect of a drug on blood pressure varies in some important way
depending on the presence or absence of one of three different diseases.
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Fig. 11.9 The group means

We begin again with some descriptive statistics; here, a simple PROC MEANS
of the 12 combinations of four drug doses and three diseases will suffice.

proc means data=bp_drug mean var std;
class disease drug;
var BP;
title ’Selected Descriptive Statistics for drug-disease
combinations’;

run;

We see that in the setting of Disease A, drug level 1 produces the lowest BP. In
the setting of Disease B, drug level 4 produces lowest BP. In the setting of disease
C, the results are fairly homogenous (Fig. 11.9). We are, in fact, led to consider
possible interactions between drug dose and disease.

An informative approach is to illustrate these potential interaction effects with a
mean plot. This is a plot of our (continuous) blood pressure outcome variable on the
y-axis vs. drug dose on the x-axis stratified by each of the three diseases (Fig. 11.10).

proc gplot data=bp_drug;
symbol c=blue w=2 interpol=std1mtj line=1;

/* interpolation method gives s.e. bars */
symbol2 c=green w=2 interpol=std1mtj line=2;
symbol3 c=red w=2 interpol=std1mtj line=3;
plot BP*drug=disease; /* vertical by horizontal */
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Fig. 11.10 Graphical assessment of interaction

title ’Illustrating Interaction Between Disease and Drug’;
run;
quit;

If the response is the same for each disease (no statistical interaction), we should
see a set of more or less parallel lines illustrating the similar response of blood
pressure (the y- or vertical axis) for the 4 different drug doses (x- or horizontal axis)
for each of the three disease types.

Here, though, the responses are quite obviously not homogeneous (parallel).
Blood pressure increases with increasing levels of drug in the setting of disease
A, decreases with increasing level of drug for disease B, and remains at a fairly
constant and low level for all dosing regiments for disease C.

Our next step, is to examine the statistical significance of the β coefficient for the
interaction term (Fig. 11.11).

proc glm data=bp_drug;
class disease drug;
model BP=disease drug disease*drug;/*note interaction term*/
title ’Analyze the Effects of Drug and Disease’;
title2 ’Including Interaction’;

run;
quit;
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Fig. 11.11 Statistical assessment of interaction

First, look at the overall p-value for the model. If it is not significant, you may
as well stop there. Here we have a model that is unlikely to be due to chance. Next,
look at the R2 statistic to get a sense of model fit or how much variance is explained
by the model. Our model explains almost all the variation in the data.15

What, then, can we conclude from the results of this ANOVA? Only that the
variables “matter” in that one treatment mean differs from at least one other
treatment mean in a statistically significant fashion.

We next turn our attention to the interaction term. It is statistically significant,
indicating statistical interaction between the two variables. What this means concep-
tually is that we cannot statistically consider the effect of the 4 drug levels without
considering the disease. More practically, our model must retain both the variables
that make up the interaction (whether they themselves are individually statistically
significant or not). Our next step is to look at the results of our LSMEANS statement
to assess the combinations of drug dose and disease for statistical significance
(Fig. 11.12).

proc glm data=bp_drug;
class disease drug;

15This is a remarkable change from our previous, one-way ANOVA. What a difference a variable
makes.
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Fig. 11.12 Statistical significance of differences between means in the setting of interaction

model BP=drug disease drug*disease;
lsmeans disease*drug / adjust=tukey pdiff=all;

/*looking at combinations*/
title ’Multiple Comparisons Tests for Drug and Disease’;

run;
quit;

Suffice it to say that the output for interaction terms tends to be voluminous and
not entirely straightforward to interpret. Here, we see the 12 possible combinations
of drug and disease.16 From a purely statistical viewpoint, we would compare
the systolic blood pressure means for all the different drug-disease combinations,
identify those that were statistically significant, and draw conclusions on these
(ostensibly) objective criteria.

But, from an epidemiological perspective, interaction is not quite so straight-
forward, which leads us to a (not so) short discussion of interaction and effect
modification.

16There is a little trick to make sense of these kinds of results. First, order the means from lowest
to highest. Then draw a line under the sets of means that are not statistically significantly different.
The means without lines under them differ from each other.
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11.6 Interaction and Effect Modification:
An Epidemiological Perspective

The following discussion has little to do with SAS, but everything to do with an
epidemiological appreciation of interaction and effect modification.

11.6.1 The Conundrum of Interaction

When an epidemiological measure of disease risk (either absolute or relative)
behaves differently in the presence or absence of another variable, we typically say
interaction is occurring. This is also sometimes referred to as heterogeneity of effect.
That we can measure disease risk on either absolute scales, like risk differences, or
on relative scales, like ratios, leads to a conundrum. Because there are two different
measure of effect, there are two ways to describe interaction. And interaction may
be present on one measures of effect, but absent on the other.

Additive interaction is based on absolute measures, like risk differences. We
consider additive interaction to be present when the absolute measure of the risk of
disease when two factors are present differs from the sum of the individual absolute
risk measures.

Additive interaction: RD1,2 �= RD1 +RD2

Multiplicative interaction is based on relative or ratio measures. We consider
multiplicative interaction to be present when the relative measure of the joint risk
or two risk factors being present differs from the product of the individual absolute
measures:

Multiplicative interaction: RR1,2 �= RR1 ·RR2.

We can illustrate these two types of interaction from the following example. The
table below illustrates these two measures of interaction with an example of the
association of stress and genetics with depression. Each cell contains the rates of
depression in some population for people with or without a genetic marker and with
or without a stressful life event.

No stress Stress

No genetics 10 17
Genetics 10 33

The risk difference associated with stress alone is 17−10= 7. The risk difference
associated with genetics is 10 − 10 = 0. To determine if additive interaction
between stress and genetics is present, we first add up the individual absolute
risk differences associated with each (7+ 0 = 7) and then compare this expected
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absolute risk estimate with the actual observed absolute risk estimate (23). Since the
observed estimate far exceeds the expected, we can say there is additive interaction
(or interaction on an additive scale).

On the multiplicative scale, the relative risk for stress alone is 17/10 = 1.7,
and that for genetics alone is 10/10 = 1. To test if multiplicative interaction
between stress and genetics is present, we multiply the individual relative risk
differences associated with each (1× 1.7 = 1.7) and then compare this expected
relative risk estimate with the actual observed relative risk estimate (3.3). Since the
observed estimate exceeds the expected, we say there is multiplicative interaction
(or interaction on a multiplicative scale).

So far, so good. Interaction on one measurement scale implies interaction on the
other scale. But the plot thickens It turns out, quite to the concern of epidemiologists,
that the absence of interaction on one scale, rather than implying the absence of
interaction on the other scale, is almost invariably accompanied by the presence
of interaction on the other scale. So, if there is no additive interaction, there is
very likely multiplicative interaction, and vice versa. The following rate data on
the potential interaction between life events and intimacy problems on the risk of
depression illustrates this concept.

No life event Life event

No intimacy problems 1 3
Intimacy problems 10 32

The referent value for the absolute risk associated with intimacy problems is
3 − 1 = 2, and the absolute risk associated with life events is 10 − 1 = 9. The
expected joint absolute risk is then 2+ 9 = 11. We see, though, that the observed
joint risk is 31, indicating interaction. If, though, we look at the multiplicative scale,
things appear quite different. The referent value for the relative risk associated with
intimacy problems is 3/1 = 2, and the relative risk associated with life events is
10/1= 9. The expected joint relative risk is then 2x10 = 30. When we compare this
to the observed joint relative risk of 32, we find little or no interaction.

Here then, is the conundrum: how can the two risk factors interact to cause more
disease than expected while at the same time not interact and cause only the level of
disease expected from the individual action of each alone? The answer is, of course,
that they can’t. But which scale is “right”? The answer to that question requires, as
if often the case, that we begin at some basic concepts and work forward.17

17Regression models themselves, which we will introduce in coming chapters, are also either
additive or multiplicative and therefore subject to this ambiguity. Linear models are additive, and
logistic models are multiplicative (don’t let those plus signs in a logistic model fool you; on the
log scale what looks like addition is actually multiplication).
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11.6.2 Components and Causes

We need to start with that most fundamental issue of science: separating coincidence
from causality. Say your phone rings, then your tea kettle whistles. Most reasonable
folks would see no connection other than coincidence. On the other hand, say a
stranger approaches your home and your dog barks. You will likely have an intuitive
sense that these two events are causally related. We might reasonably label the
sequence causal if the subsequent event would not have occurred without the prior
event having occurred. The epidemiological concept of the risk factor rises naturally
from this concept.

A risk factor is the antecedent event without which some outcome would have
occurred. To determine if a risk “caused” a disease, we compare what occurs when
the risk factor is present, to what occurs when the only thing different is that the
risk factor is not present.18 Importantly, we recognize that life (and disease) is
complicated and that there is likely more than one antecedent necessary for some
outcome to occur. In the dog barking example, we assume that you have a home, that
there is a window through which the dog might see the stranger approaching, etc.

A cause that consists of multiple components leads to the idea of “INUS” causes
of disease: Insufficient but Necessary components of Unecessary but Sufficient
causes. The components of a cause are Insufficient in that they need other com-
ponents and Necessary in that the disease will not occur without all the components
being necessary. The causes themselves are Unnecessary in that they are not the
only possible constellation of components that will result in disease, but Sufficient
because the particular constellation of components will result in disease.

Because a cause consists of component risks, causal relationships are context
dependent. The strength of any risk factor is relative to and dependent on the
presence or absence of its causal partners. This has an interesting interpretation from
a population perspective. As put by Susser and Schwartz, if the causal partners of
the risk factor are rare, the people exposed to the risk factor will rarely develop the
disease. Basically the strength of the association of a risk factor of a disease depends
on the prevalence of it’s component risk factors in the population under study.

Take, for example, the situation of neural tube defects in children. They are
associated with both a genetic defect and low levels of maternal folate. In a
population where all women have the genetic defect, but few have a low folate,
diet will be the most important risk factor for disease since every woman with low
folate who gives birth will have a child with a neural tube defect. By contrast, in a
population where folate is ubiquitous, but the genetic defect is rare, the gene will
appear to be the most important risk factor. We tease out these relationships by
looking at different populations.

18Of course, this so-called “counterfactual” set of events cannot actually occur in nature.
Epidemiology consists in large measure of study designs that try to mimic it.
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With that healthy pre-amble, we can now consider how variables in individuals
and populations produce, mediate or modify the exposure-disease relationship.
There are five basic potential relationships between an exposure of interest and
another variable or risk factor:

1. Independent risk factor–Causes disease through a causal pathway different than
that of the exposure of interest (a different causal mechanism).

2. Antecedent–Precedes the exposure.
3. Confounder–An alternate risk factor for the disease, but associated with the

exposure of interest.
4. Mediator–(Also) A risk factor for the disease but (unlike a confounder) does not

provide an alternate explanation for disease
5. Causal partners—Other component members of a causal mechanism that com-

bine with exposure and can result in synergy or interaction.

11.6.3 Usefulness of the Additive Model

Viewed from the framework of component causes, synergy, or interaction is the
underlying process for how any cause results in disease at the individual level.19 We
may reserve the terms “statistical interaction” or “effect modification” for how we
try to capture this idea of synergy, which we often do through statistical measures
of interaction, as in our blood pressure example above.

Moving forward from the idea of component causes working together, Darroch
[3] and Rothman and Greenland (1998) proposed a solution to the conundrum of
interaction. The answer lies in the phenomenon of parallelism, which we define as
the presence of individuals in a study population who can only develop disease from
one or the other of the two causes. We can briefly walk along this line of reasoning.

We begin (again) by considering two risk factors for a disease, A and B. We now
include a set of factors, U, to stand in for all the unknown factors that go into disease
occurrence. These three factors may result in disease in 4 possible ways:

• RABU —the risk of disease from the interaction of A and B
• RAU —the risk of disease from A
• RBU —the risk of disease from B
• RU —the “background” experience where disease occurs in the absence of either

A or B

To determine if the observed RABU exceeds what we might expect if the two
risks did not interact, we subtract out RAU and RBU and then add back RU which
we subtracted twice. Via a little algebra, if the two risk factors are biologically

19Although interaction and effect modification are inherently ambiguous, they are population-level
phenomena, as opposed to biological interaction, which occurs at the individual level when the
effect of one variable depends on the presence of another.
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independent, then RABU = RAU +RBU −RU . In terms of risk differences: (RDAB −
RDU) = (RDA − RDU) + (RDB − RDU) In terms of relative risks, (RRAB − 1) =
(RRA − 1) + (RRB − 1). Any excess risk beyond these inequalities is due to
interaction.

Let’s work through a brief example involving cancer risks due to smoking and
asbestos exposure.

No asbestos Asbestos

No smoking 1 5
Smoking 10 50

We set up our biological independence equality as 50− 1? = (10− 1)+ (5− 1),
and since 49 �= 13 we conclude that the smoking and asbestos interact to cause more
cancer than would be expected if either were present alone. We can say further that
49− 13 or 36 of every 50 cases (72%) of cancer when both smoking and asbestos
are present are due to the interaction between them.

The procedure is the same if the results are on a relative scale. Consider the
following table or relative risks for cancer due to smoking and asbestos.

No asbestos Asbestos

No smoking 1 3.1
Smoking 6.9 13.6

We test the equality 13.6− 1? = (6.9− 1)+ (3.1− 1), and since 12.6 �= 8, we
conclude (again) that there is interaction and that (12.6− 8)/13.6 = 4.6/8 = 34%
of the cases when both risk factors are present is due to interaction.20

The bottom line is that biologic interactions must be measured on an additive
scale, because it is based on partitioning the counts of cases into 4 categories
(RABU , t RAU , RBU and RU ) that make causal sense. Multiplicative models (such as
logistic regression) involve transformations that make these counts and categories
unavailable.

11.6.4 A Final Thought on Interaction in Epidemiological
Studies

So how, practically, should we approach interaction in epidemiological studies? For
me, a graphical assessment remains a useful informative approach. As we did with

20Note that if we looked at these data on a multiplicative scale, then 3.1× 6.9 = 21.4, and since
13.6 < 21.4 the presence of both risk factors actually results in less disease risk than we expect.
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the mean plot in our blood pressure example above, plot your response variable on
the Y axis vs. presence or absence of your second factor (or varying levels of the
second factor) on the X axis.

As for modeling interaction terms, the key is to address biological interaction as
an additive phenomenon. Categorize the two potential interaction variables into a
factorial design, where 11 represents the presence of both, 10 and 01 the presence
of one or the other, and 00 the absence of both. Then test those risk estimates for a
departure from additivity as we did above.

And what about tests for the statistical significance of interaction terms? While
ambiguous, they remain an accepted approach. So when conducting an n-way
ANOVA in which you believe interaction may be present, first look at the test for
interaction in the ANOVA output to decide whether there is interaction between the
factors In general, if there is no interaction between the factors, the tests for the
individual factor effects can be considered in the output to determine the statistical
significance of these factors. As we have seen in our example, though, if there is
interaction between the factors, the tests for the individual factor effects might be
misleading due to masking of these effects by the interaction.

Just know that you are addressing statistical, not necessarily biological concerns.
While the above guidelines for dealing with statistical interaction are well accepted,
the most appropriate epidemiological approach to interaction is a priori , conceptual,
and informed by subject matter expertise. Think about it during data collection and
consider scientifically plausible interactions. By contrast, if you just go looking for
interactions, you may well find them, but they may be artifactual and perhaps even
misleading. Use knowledge and evidence to guide your statistical approach.

Problems

11.1. PROC GLM
In a previous chapter, you examined the mean birth weight for each borough of
New York City. You will now examine this question more formally with the tools
of ANOVA. Using the infants data set you created previously, write the syntax to
conduct an ANOVA testing the effect of borough on birth weight. Request Levene’s
test for the homogeneity of variances. Create an output data set of residuals.

What is the p- value associated with Levenes test for homogeneity of variances?
How do you interpret this?

11.2. PROC GPLOT
Now run PROC GPLOT on the residual data set you created. Plot the residuals
against your predictor or explanatory group variable.

What is your interpretation of the resulting graph of residuals?
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11.3. PROC UNIVARIATE
Run a PROC UNIVARIATE on your residual data set. Request a histogram and a
normal probability plot. Examine the skewness and kurtosis statistics.

What is the mean? Is this consistent with the underlying assumptions for
ANOVA? What is the kurtosis statistic? How do you interpret this result?

11.4. LSMEANS
Re-run your PROC GLM and compare the mean birth weight for each borough.
Request and adjust for all possible pair-wise comparisons.

What is the lowest mean birth weight? Is this statistically significantly different
from the other boroughs? What graphical procedure would be helpful to compare
the mean birth weights across boroughs?



Chapter 12
Correlation

Abstract In this chapter, we consider the (possible) relationship between two
continuous variables. We might, for example be interested in how blood pressure
varies with weight, or if the number of years of schooling is associated with
cholesterol levels. The SAS syntax for examining these kinds of relationships is
fairly simple and straightforward, but the interpretation demands some caution.

12.1 Assessing Correlation

Correlation is a linear relationship between two continuous variables. The relation-
ship could be direct or positive, i.e., when one variable increases (or decreases)
the other variable changes in the same direction as well, or it could be indirect or
negative, i.e., when one variable increase (or decreases), the other variable changes
in the opposite direction.

The first step in assessing a potential correlation between two variables is
graphical, and PROC GPLOT is the most useful tool in this regard. In assessing such
scatter plots, you generally don’t want to spend too much time looking at them. Your
first, or Eigenblink, assessment is usually correct. You will examine the plots for the
presence of linear (positive or negative), curvilinear, cyclical, or no relationship.

So, for example, in the following graphic, figure 1 represents a positive or direct
linear relationship between two variables, figure 2 a curvilinear relationship, figure
3 a cyclical relationship, and figure 4 no relationship at all (Fig. 12.1).

Of course, the actual plots you will see in practice will not be so clear. Lets
take a look at an example to get a sense of how to interpret scatter plots to help
you determine relationships between continuous variables. A data set, which I have
titled “work.corr” contains 33 observations that contain a persons age, their height,

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 12,
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Fig. 12.1 Some scatterplot patterns

and two continuous outcome variables related to lung capacity.1 Let’s first look at
the correlation between age and height (Fig. 12.2). The GPLOT syntax is:

proc gplot data=corr;
title1 ’direct correlation ?’;
plot age*height;
run;
quit;

What are your thoughts on this scatter plot? My initial impression is that there is
a weak, but possibly, positive linear relationship between age and height.

Using similar syntax, we produce the following scatter plot of age with the
outcome2 variable. Again, while not clear cut, there appears to be a negative linear
relationship (Fig. 12.3).

Just looking at scatterplots is an informative way of assessing correlation. We
will, though, want to quantify any apparent relationship. In the next section, we will
consider a statistic that can more formally assess these potential relationships.

12.2 Assessing Correlation Using PROC CORR

One of the most common statistics used to evaluate the linear relationship between
normally distributed continuous variables is the Pearson correlation coefficient,
represented by a lower case r.

1Though I have substantively manipulated these data, I originally found these observations online
and have since been unable to re-locate the site to properly attribute. My apologies to the author. If
they are your data, do let me know.
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Fig. 12.2 Scatterplot age and height

Fig. 12.3 Scatterplot age and lung capacity variable
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The Pearson correlation coefficient (r) is defined as the sum of the products about
the mean of two variables divided by the square root of their sum of squares:

r = ∑(xi − x̄)(yi − ȳ)/
√

∑(xi − x̄)2(yi − ȳ)2. (12.1)

The formula returns a value between −1 and 1 to reflect the strength of negative
or positive relationships. The closer the coefficient is to zero, the weaker the
relationship.2 How should you interpret the strength of a correlation coefficient?
There are any number of rules of thumb floating around of which I’ve found the
most useful to be that a correlation of less than 0.30 reflects little or no relationship
between the variables. Correlations of 0.5 or higher might indeed be important.
Between 0.3 and 0.5 fall in a grey zone: not very strong, but interesting.3

Another useful approach is to square the r value to get r2 which is our old friend
from the previous chapter, the coefficient of determination, and tells us how much
of the variation in one variable is explained by knowing the other variable. So a
correlation coefficient of 0.5, would mean knowing one variable would allow us to
account for or explain 25 % of the variability in the other variable.

HOLD THE LINE
As you will see below, correlation coefficients must be evaluated cautiously.
They may be spurious, they may be masking a non-linear relationship, and
they may be unduly influenced by an outlier observation. Graphing and
considering descriptive statistics will be most helpful.

A correlation coefficient is a convenient summary of the relationship between
two variables, but a few caveats are in order. First and perhaps most important:
correlation does not mean causation. So for example, weight and height are strongly
correlated, but weight does not cause height or vice versa. The following scatter
plot represents the relationship between the yearly average Dow Jones Industrial
Average and the yearly asthma hospitalization rate per 10,000 for children aged
between 1 and 17 for the years 1980–2000. There certainly appears to be some kind
of potential linear relationship (Fig. 12.4).

I calculated the Pearson correlation coefficient for these two variables and got
an r = 0.45 indicating a potential correlation. So, does wealth cause asthma? It
is hard to imagine a biologically plausible explanation. Notice that this is not a
statistical issue; it is an epidemiological and substance matter issue. Those lessons

2Generally, if both variables consist of positive values, or both consist of negative values, you will
get a positive correlation coefficient. If one consists of positive values and the other of negative
values, you will get a negative correlation coefficient.
3Hinkle, Wiersma, and Jurs (1988) Applied Statistics for the Behavioral Sciences, 2nd edn.,
Houghton Mifflin Co.

http://www.youtube.com/watch?v=KHF9itPLUo4
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Fig. 12.4 Scatterplot Dow Jones industrial average and asthma

Fig. 12.5 A non-linear
relationship

you learned about ecologic fallacy, bias, and confounding will help you explain this
likely spurious correlation.4

A second caution: a correlation coefficient only measures linear relationships. If
the relationship if curvilinear or cyclical, the result is suspect. The following set of
data may very well return a correlation of close to zero, but it does not mean there
is no relationship between the variables (Fig. 12.5).

Lastly, be on the lookout for outliers or extreme values that can push a summary
measure like the correlation coefficient in one direction or another. The one lone

4This issue is so common it even has its own journal: The Journal of Spurious Correlations. (http://
www.jspurc.org/).

http://www.jspurc.org/
http://www.jspurc.org/
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Fig. 12.6 An influential
observation or outlier

value in the scatterplot below will influence the correlation coefficient to return
a value close to one, when there is in fact no relationship between the variables
(Fig. 12.6).

From this discussion, you may come to the conclusion that it is usually a good
idea to examine your variables graphically and with descriptive statistics before
calculating a summary measure like a correlation coefficient. You would be correct
in this assumption.

The SAS code for correlation is the fairly simple and appropriately named PROC
CORR. After invoking the procedure and specifying the data set, the rank option
will order your correlations from high to low. You then specify a numeric variable
with a VAR statement and the variable with which you want to pair it with a WITH
statement5:

PROC CORR data=work RANK; /* rank orders correlations from
high to low */

VAR predictor1;
WITH outcome_var;
Title correlation of outcome with predictor;

Run;

Lets run this procedure on the age, height and oxygen consumption data from the
previous section.

proc corr data=corr rank;
var age;
with height;
run;

5If you want a correlation matrix for a number of variables, just omit the WITH statement.
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Fig. 12.7 PROC CORR results

proc corr data=corr rank;
var age;
with outcome2;
run;

We find that the only correlation that rises to potential importance is the inverse
relationship between height and outcome2, which returns an r =−0.47.

I’ve circled the relevant result in the screen capture above (Fig. 12.7).
Correlation coefficients are useful, and we see them a lot in public health

research. There is no denying, though, that regression is the most popular approach
to modeling continuous data. We turn our attention to linear regression in the
upcoming chapters.

Problems

Ecological studies are the most common epidemiological setting for the use of a
correlation coefficient. The data file ch12exercise.xls consists of the number of
pedestrian injuries and census characteristics of ZIP code tabulation areas (ZCTA)
in Nassau County, New York. The variable NUMINJ is the number of injuries that
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occurred in the ZCTA. TOTPOP is the total population for the area. PERBLACK
and PERHISP refer to the proportion of the population that is African American and
non-White Hispanic, respectively. MEDHSINC is median household income and
PCI is per capita income. The data set is in Microsoft Excel format. The following
exercises walk you through a typical analysis using correlation coefficients. You will
see that the calculation of the pearson correlation coefficient is the last, and by no
means the most informative, step in a series of analyses that call on procedures we
have already covered.

12.1. Read in the Pedestrian Injury Data Set
Read the data into SAS. Explore it by running PROC CONTENTS.

12.2. Print Out the Data
Print out the data set. Title it Printout of Pedestrian Injury Data. Limit the print
out to the variables for total population, number injured, percent African American
population, percent Hispanic population, median household income, and per capita
income. Use the name of the ZCTA (variable NAME) to identify the observations.

12.3. Create an Injury Rate Variable
Create a rate variable for pedestrian injures based per 1,000 total population.

12.4. PROC UNIVARIATE
Run a PROC UNIVARIATE analysis of the injury rate, percent African-American,
percent Hispanic, median household income, and per capita income. Identify
the observations by the name of the community (ZCTA). Create histograms and
probability plots for the variables.

What was the average number of injuries per 1,000 population for a Nassau
County ZCTA community during the observation period? Which community had
the highest injury rate? What was it? Which community had the highest proportion
of Hispanic residents and which had the second highest? Which community had
the lowest median household income and which had the second lowest? Which two
variables appear to be least likely to be normally distributed?

12.5. Log Transformation
Log transformations are helpful in addressing issues of normality. Use the
log( ) function6 to create two new variables based on the two non-normal variables
you identified in exercise 12.4 Run PROC UNIVARIATE on these two new
variables. Do they now appear more normally distributed?

12.6. PROC GPLOT
Use PROC GPLOT to create scatter plots examining the graphical association be-
tween injury rate and the appropriate variables for African-American and Hispanic
populations in a community, median household income and per capita income:

/*set up the options for your plots and define axes*/
Options ps=50 ls=64;

6Use the SAS Help feature for log() to see how functions are used in SAS.
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Goptions reset=all gunit=pct border
Fontres=presentation ftext=swissb;
Axis1 length=70 w=3 color=blue label=(h=3)
value=(h=3); Axis 2 length=70 w=3 color=blue
label=(h=3) value=(h=3);

Invoke the above options and axes by including the following line after your plot
statement:

/vaxis=axis1 haxis=axis2

Which of the 4 plots seems to most demonstrate a relationship with injury rate?
How would you describe that plot?

12.7. PROC CORR
Calculate the Pearson correlation coefficient for the relationship between injury rate
and the appropriate variables for African-American and Hispanic populations in a
community, median household income, and per capita income.

What variable was most strongly correlated with pedestrian injury rate in a
Nassau County community? What was the relationship between income in a
community and pedestrian injury rate? Sum up, in one or two sentences, your
conclusions based on these results.



Chapter 13
Linear Regression

Abstract With correlation, we explored the linear relationship between 2 continuous
variables. With simple linear regression, we seek to further define and describe the
relationship between a single continuous predictor variable and a continuous out-
come variable. Later, we will consider the more common situation of multiple linear
regression where there are more than one predictor variables, some continuous some
categorical.

13.1 Introduction to Regression

The term regression comes from Galton, who looked at the relationship between
the heights of parents and their children. He noticed that the children of tall parents
were closer in height to the population average than to the height of their own
parents. He called this observation regression toward mediocrity. We usually refer
to regression to the mean.

In regression analysis, we are interested in assessing the role of a predictor
variable (x) that is assumed to be fixed, in explaining the variability of an outcome
variable (y). We assess this relationship by sampling from some population to
estimate the model:

y = β0 +β1x+ ε, (13.1)

where

• β0 is the outcome when the predictor y is 0.
• β1 is the slope (the “rise over the run”), or amount of change in the outcome y

per unit change in the predictor x.
• ε is the error term (defined as it was with ANOVA).

We estimate the relationship by using the method of least squares which sets the
best fitting line through our data points, i.e., a line that comes as close as possible,

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
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Fig. 13.1 Population
relationship between two
variables vs. the regression
line

on average, to all the data points by minimizing the deviation of the distance from
the line to the data points in the y direction (Fig. 13.1).

The distance from the estimated line to the data point is y− ŷ. This is the distance
we want to minimize. Since positive and negative values will cancel each other out,
we square the terms.1 A little calculus takes care of minimizing the sum of the
squared terms, Σ(y− ŷ)2.

There are then some fairly simple calculating formulas for the terms in a simple
linear regression model:

β̂0 = ȳ− β̂1x̄ (13.2)

β̂1 =
Σ(xi − x̄)(yi − ȳ)

Σ(xi − x̄)2 . (13.3)

The confidence interval around β̂1 can be constructed as tα/2,n−2∗se. And a

hypothesis test for β̂1
2 is β̂1/se.

Our baseline, or null, model is that there is no relationship between x and y and
that in fact just knowing the mean or average value (ŷ) will give us more or better
information about y than x does. This is analogous to the model H0 : β1 = 0, and in
simple linear regression, we test this null hypothesis that the slope of the regression
line is not statistically significant from zero.

Even at this basic level, linear regression allows us to do a number of interesting
things. We could compare 2 regression lines and test the hypothesis that the
slopes are different from each other, or construct a confidence interval around the

1If you’ve been reading the chapters in sequence, you should by now be starting to appreciate how
squared terms are one of those basic statistical concepts we see again and again.
2If you insist on doing hypothesis tests. . .
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difference between the two slopes. We could use standard errors to estimate the
precision of our estimated y values based on the value of ȳ given some value of x, or
(with more error) the precision of an individual estimate of y.

13.1.1 Variance Perspective of Regression

As we discussed in the chapter on ANOVA, the general linear model tells us that
linear regression is part of the same family of models from which ANOVA arises.3

This set the foundation for us to look at regression in terms of partitioning the total
variance in the data (the total sum of squares or SST) into that explained by our
model (model sum of squares or SSM) and unexplained variability (error sum of
squares or SSE):

• Total variability (TSS) distance from data points to mean line:

Σ(yi − ȳ)2.

• Explained variability (SSM) distance from regression line to mean line:

Σ(ŷ− ȳ)2.

• Unexplained variability (SSE) distance from data points to regression line:

Σ(yi − ŷ)2.

As in ANOVA, if it’s a good model, we expect more explained than unexplained
variability and the proportion of the total variability explained by our regression
model to be closer to 1 (Fig. 13.2).

The assumptions underlying linear regression are also the same as those we
discussed with ANOVA:

1. Independence—first and foremost. Observations are not related and do not
influence each other.

2. Linearity. There is a true, underlying linear relationship between the variables.
3. Normality. At any given value of predictor (x) the response variable (y) is

normally distributed.
4. Homoscedasticity or homogeneity of variance y is not only normally distributed

about x, but has same variance (Fig. 13.3).

Again, as with ANOVA, we will examine these assumptions by looking at the
residuals or error terms though histograms, normal plots, and plots or residuals
against the predictor variables.

3If this terminology and these acronyms appear unfamiliar, refer back to that description.
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Fig. 13.2 Partitioning the
variance

Fig. 13.3 Homoscedasticity (Image courtesy of SAS Institute)

13.2 PROC REG

As we noted in our discussion of ANOVA, PROC GLM provides the tools to analyze
a regression model. We will use PROC REG, though because it is convenient
(and easy to remember) and comes with a rich set of tools, particularly with respect
to residual analyses and diagnostics.

At its most basic, PROC REG consists of a call to the procedure, specifying the
data set, and a model statement.

Proc reg data=your.data;
Model continuous_outcome_variable =

continuous_predictor_variable;
Title simple linear regression;

Run;
Quit; /* need to quit out of the procedure */
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13.2.1 Regression Results

As with PROC GLM, PROC REG returns an ANOVA table. You will recall, that
the Model Sum of Square represents the explained (or the ANOVA between groups)
variance, and the error sum of squares represents the unexplained (or the ANOVA
within group) variance. The F-test is the ratio of the explained (model) variance /
unexplained (error) variance. The p-value associated with the F statistic tests the
null hypothesis that β1 = 0, or that our predictor (x) is not statistically significantly
related to our outcome (y).

Look first at this p-value for the overall model. If it is statistically significant, then
look at the individual t-test(s) for your predictor variable(s) and the R2 (coefficient
of determination) value to see how much of the variability your model explains.

You will also find results for the root mean square error (Root MSE) which is
an estimate of the standard deviation of the response variable at each value of the
predictor variable. It is (logically enough) the square root of the MSE.

The coefficient of variation (Coeff Var) is (as before) the size of the standard
deviation relative to the mean. As in ANOVA it is calculated as4

Root MSE
ȳ

∗ 100. (13.4)

The coefficient of variation is a measure of data spread, as it is in univariate
statistics. It is unit-less, so can be used to compare data that has different units of
measurement or different magnitudes of measurement.

THE RETURN OF R
Note that the square root of the R2 from a simple linear regression is in fact
the Pearsons correlation coefficient (r) we met in the previous chapter on
correlation.

You will also find, in your SAS regression results, a statistic called “Adj R Sq.”
This is the adjusted R2 or the coefficient of determination that is adjusted for the
number of predictor variables in your model. For simple linear regression with one
predictor variable, it is not very useful, but as we will see, it becomes increasingly
useful as the number of terms in your model increase.

4You may be beginning to appreciate why an understanding of ANOVA puts us in good stead for
an understanding of regression. And, perhaps, that there are common themes that run throughout
statistics, particularly when working with members of the general linear family.

http://www.youtube.com/watch?v=dmleBWh69nE
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13.2.2 Predicted Values

One of the nice things about regression in general (and PROC REG in particular) is
that it allows you to predict values of your outcome variable (y) given some value
for x that may not have been represented in your data set. Once you have your
regression model, it’s a fairly simple matter of plugging the value in which you are
interested into the model and calculating the outcome. SAS automates the process
for any number of predictions. The process takes three steps:

1. Create a temporary data set with the values for which you want predictions.
2. Append those values to the data set you used to create the model
3. Calculate the values by specifying a / p option following the model statement

13.2.3 Confidence and Prediction Intervals

Your predictions based on your regression model will, of course, be subject to error.
These errors come in two basic flavors

• Confidence interval for a mean. A 95 % confidence interval that contains the
population mean of y for a particular value of x. Since it is based on means, you
will find your prediction is narrowest or more precise near the center (or mean)
of your data, where you have more data points and becomes less certain as you
move away from mean values of y and x

• Prediction interval for a single observation. Here you are interested in estab-
lishing an inference on an explicit, single observation. 95 % of the time, the
prediction interval will contain the new observation. Because there is less data to
work with and there is more variability than with sample means, these prediction
intervals are wider than confidence intervals and relatively uniform.

13.3 Demonstration of PROC REG

Let’s return to the oxygen consumption data we’ve looked at before. We previously
noted a linear relationship between performance and oxygen consumption. We will
now explore this more closely with a data set that includes additional variables.

Our simple regression model in PROC REG is:

proc reg data=fitness;
model oxygen_consumption=performance;
title ’Linear Regression Oxygen Consumption and

Performance’;
run;
quit;

And returns the results (Fig. 13.4):
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Fig. 13.4 PROC REG

We see that the F-statistic for the model is statistically significant, that the t-
test for our predictor variable performance is also significant, and that our model
explains about 7 % of the variance in the data. Now let’s look at our β regression
coefficient values.

β0 is our baseline or intercept term. It is, in general, the value you would
expect for your outcome variable, y, if your predictor variable was zero. This is
actually quite a helpful epidemiologic feature of linear regression, where we are very
interested in unexposed or referent categories of individuals. If though our predictor
variable cannot be reasonably expected to ever actually be zero (e.g. if our predictor
was systolic blood pressure), then this baseline has no meaningful interpretation.

The value for β1 is the rise over the run, or the change in our outcome variable
for every 1 unit change in our predictor variable. Here, each 1 unit increase in
performance results in about a 1.5 unit increase in oxygen consumption.

Even from this simple example, you can see how we gain much more information
from a regression model than we do from a simple correlation.
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RISE OVER RUN
With regard to the concept of “rise over the run,” it is important to note that
what might appear to be a small β value may have meaningful and important
implications depending on the scale with which the predictor is measured. So,
for example, if we measure age in months and our outcome is systolic blood
pressure, a β = 0.1 would mean a greater than 1 mm Hg increase in blood
pressure for every year of age. This quickly becomes clinically relevant.

Lets say we wanted to create a set of predictions based on this model. PROC
REG has tools to make this fairly simple.

First, we create a data set of predictor (x) values for the performance variable.

data need_predictions;
input performance @@;/* tell sas >1 value for same

variable */
datalines; /* tell SAS next line are data values */

0 3 6 9 12
; /* semi-colon on its own line*/
run;

Next, we append this data to the existing fitness data set

data predoxy; /* appending above data set to the fitness
data set */
set fitness

need_predictions;
run;

Finally, we run the model using the values for which we want predictions

proc reg data=predoxy;
model oxygen_consumption=performance / p; /*tells SAS to

predict values
for oxygen*/

id performance;
title ’Oxygen_Consumption=Performance with Predicted

Values’;
run;
quit;

We will find our predictions on the last five rows of our output (Fig. 13.5).
Another neat feature of PROC REG is that it easily allows to create and plot

confidence and prediction intervals around our regression line. The following syntax
accomplishes this. PROC REG recognizes the key words clm (confidence limit
for mean), cli (confidence limit for individual), conf (to request overlaid plots of
confidence intervals), and pred (to request overlaid plots of predicted values)

http://www.youtube.com/watch?v=jPj-8_wOZcA
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Fig. 13.5 Predictions from PROC REG model

options ps=50 ls=76;

goptions reset=all fontres=presentation ftext=swissb
htext=1.5;

proc reg data=predoxy; /*using data set you created for
prediction*/
model oxygen_consumption=performance / clm cli

alpha=.05;
id name performance;
plot oxygen_consumption*performance / conf pred;
symbol1 c=red v=dot;
symbol2 c=red;
symbol3 c=blue;
symbol4 c=blue;
symbol5 c=green;
symbol6 c=green;
title;

run;
quit;

We get the following plot in our output5:
The actual values for the confidence and prediction intervals can be found in the

output window printout (Fig. 13.6).

5Notice how the confidence interval for the mean becomes less precise the farther we get from the
center of our data.
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Fig. 13.6 Confidence and prediction intervals for a regression line

13.4 Multiple Regression with PROC REG

As you might imagine, in epidemiology we are much more likely to be interested in
the relationship between several variables and some outcome, where the variables
might be an exposure, confounders, mediators etc. When the outcome is continuous,
multiple regression may be the statistical method of choice. But, our null hypothesis
subtly but crucially changes. We now posit that our continuous response variable, y,
does not change or is not related to more than one predictor variable, x1,x2, . . . ,x j.

In simple linear regression, we could represent the model (simply) as a straight
line representing the relationship between y and x. With multiple linear regression,
our ability to represent the model is quickly outpaced by the complexity of the
underlying geometry. For example, the relationship between two predictors, x1 and
x2, could be represented by a plane.

Here we see the representation of our null hypothesis for two predictors
(Fig. 13.7).

Here we see a relationship between our predictor variables and the outcome
(Fig. 13.8).

After 2 predictors, the picture becomes complex enough that it can’t be easily
represented or conceptualized. Fortunately, the basic modeling ideas remain pretty
much the same as they did with simple linear regression.

You will recall that in n-way ANOVA, our null hypothesis was that all categorical
predictors were not related to the continuous outcome variable. This is also the case
in multiple linear regression, where our null hypothesis is that all the regression
coefficients (or all the slopes) are zero.
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Fig. 13.7 Null hypothesis for
two-variable linear regression
(Image Courtesy of SAS
Institute)

Fig. 13.8 Association for
two-variable linear regression
(Image Courtesy of SAS
Institute)

Our assumptions are, again, that our observations are independent, that there
is a linear relationship between predictors and outcome, and that error is random,
normally distributed, and homoscedastic. Again, we will examine the error terms as
mirrors of the y variable. The advantages of this approach becomes clear, because
beyond a minimal number of variables we quickly outstrip our ability to check
replicate values of y for every possible combination of predictor variable values.

As noted, the major advantage of multiple linear regression over simple linear
regression is it may better reflect the complex interplay of multiple variables seen
in the real world. Epidemiological processes invariably depend on more than one
variable, and multiple regression may allow you to investigate these processes.
Perhaps the main disadvantage is that this increased complexity makes it difficult
to determine which model is best. This is something we will discuss in the next
chapter.

Multiple regression has been traditionally divided into two main types, based on
the use to which it is applied. In predictive modeling we are interested in creating a
model into which we can plug in values of predictor variables so as to determine the
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most likely outcome or response value. In explanatory modeling, we are interested
in examining, testing, and describing the role of the relationship between an estimate
and the outcome. This latter type is pretty much where we live in epidemiological
applications of multiple linear regression. Usually (though not always, as we will
see in our discussion of model selection) a model that is good for prediction is also
good for explanation, so the distinction is in some respects artificial.

13.5 Interpreting Coefficients

The SAS syntax involved in multiple linear regression is very like that of simple
linear regression, but the interpretation is a more involved. Perhaps the most
important and powerful distinction from simple linear regression is that each βi

coefficient is interpreted as the effect or relationship between that predictor and the
outcome, holding all the other predictor variables constant. This is the adjustment or
control to which one refers when we state that the results of our multiple regression
analysis adjusted for or controlled for other, potentially confounding variables.

As in simple linear regression, the intercept term is our baseline, or the value
of our outcome if all the predictors or slopes were zero. Again, this is meaningful
only if our predictors can be expected to ever be zero. If not, the intercept simply
represents the point at which the regression line crosses the y axis.

Continuous predictor variables are similarly interpreted as they were in simple
linear regression as the rise over the run, or the change in our outcome variable
for every one unit change in our predictor. But now, this interpretation is based
on the assumption that the other predictor variables are being held constant. So,
for example, the effect of a one unit increase in drug dose is valid for (say) all
individuals of the same age.

13.5.1 Categorical Predictor Variables

We may at this point consider the interpretation of categorical predictor variables
in the setting of linear regression. With categorical variables, we need a reference
category against which to measure the effect of a change in the categorical variable.
In the simplest case, say we have a two-level categorical predictor variable like
gender. We will code one possible outcome (say male) as zero and the other (female)
as one. Our regression coefficient then is the effect on the outcome or y variable of
one gender vs. the other, or the average difference in y between the category for
which x is zero (male or the reference group) and the category for which x is one
(female or the comparison group).
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A dummy variable is categorical variable with a referent class that can be
included in a regression model.6 A dummy variable is in actuality a set of
dichotomous indicator variables that divide some categorical outcome into all
possible levels. If the categorical variable has p possible outcome levels, we need
to create p− 1 dummy variables. So, for example, say we have some 3-level age
variable. We would create two dummy variables, each coded 0 and 1. The referent
category is when both dummy variables are coded 0. As described above, each
coefficient is the difference between that variable and the reference category.

Unfortunately, PROC REG (or PROC GLM for that matter) does not provide
the kind of simple tools found in say PROC LOGISTIC or PROC GENMOD to
create dummy variables for categorical variables in regression models. We have to
code them by hand instead.

The first time folks encounter dummy variable coding, they may (ahem. . .)
feel a bit like dummies themselves. The topic may be best understood through
demonstration. We’ll spend a little time looking at a couple of examples. Lets begin
with a modified version of the fitness data set. Say we have a three level age category
variable called age cat, coded 0 if a participant is less than 30 years old, 1 if 30 to
40 years old and 2 if older than 40.

Since we have 3 levels in our categorical variable, we need to create 2 dummy
variables, here called “dummy1” and “dummy2.” If the age category variable is 1,
the dummy1 variable is set to 1, otherwise dummy1 is set to 0. If the age category
variable is 2, then the dummy2 variable is set to 1, otherwise the dummy2 variable
is set to 0. By exclusion then, if the age category variable is neither 1 nor 2, both
dummy1 and dummy2 are set to 0:

data fitness2;
set fitness2;
if age_cat=1 then dummy1=1;
else dummy1=0;
if age_cat=2 then dummy2=1;
else dummy2=0;
run;

We can then use the following syntax to test the dummy variables.

proc reg data=fitness2;
model oxygen_consumption=performance dummy1 dummy2;
agedum: test dummy1, dummy2;

run;
quit;

Let’s further explore dummy variable coding with another example. I’ll just
present the code here, and expect you to run it yourself to follow the results.7

6Remember, since we are dealing with linear regression, the outcome is still continuous.
7From Introduction to SAS. UCLA: Academic Technology Services, Statistical Consulting Group.
(accessed April 7, 2009).

http://www.ats.ucla.edu/stat/sas/faq/dummy.htm
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We begin by creating a data set. Let’s say they are a set of scores on some test.

DATA dummy;
INPUT id group score;

CARDS;
1 1 48
2 1 49
3 1 50
4 2 17
5 2 20
6 2 23
7 3 28
8 3 30
9 3 32
;
RUN;

We calculate the overall score and then the score for each subgroup. We see that
the group means differ from one another:

PROC MEANS DATA=dummy; /* overall mean */
VAR score;

RUN;

PROC MEANS DATA=dummy; /* mean for each group: group means
different */

CLASS group;
VAR score;

RUN;

We run a standard ANOVA and satisfy ourselves that group status is indeed
important.

PROC GLM DATA=dummy; /* run standard ANOVA: group is
important */

CLASS group ;
MODEL score = group ;

RUN;

Let’s create a dummy variable for group status and run a linear regression on
score with group status as the explanatory variable:

DATA dummy2; /* create dummy variables using 3 indicators
for group */

SET dummy;
IF (group = 1) THEN group1 = 1; ELSE group1 = 0;
IF (group = 2) THEN group2 = 1; ELSE group2 = 0;
IF (group = 3) THEN group3 = 1; ELSE group3 = 0;

RUN;

PROC REG DATA=dummy2; /* run proc reg using 2-level dummy
variables */

MODEL score = group1 group2 ;
RUN;
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If you run this code, you will notice a couple of things. First, the results are
identical to those we got when we ran the ANOVA. This should, by now, come as
no surprise. As we have seen, they are both based on the general linear model we
have been talking about for a few chapters. The second thing you may notice is that
we only used two of the indicator variables we created in the previous step. Why?
Because by process of elimination, the un-included variable is the referent value. In
the setting of linear regression, it is the intercept or the point at which the regression
line crosses the y axis when the other variables are zero.

We see that the parameter estimate for the intercept (30) is the same as the
mean for group 3 from PROC MEANS. The other parameter estimates are similarly
related to the mean of the referent category. The parameter estimate for group
1 is the mean of group1 minus the mean of group 3 (49 − 30 = 19), and the
parameter estimate for group 2 is the mean of group 2 minus the mean of group
3 (20− 30=−10). In summary,

Ypred for group1 = 30 + 1 * 19 + 0 * -10 = 49
Ypred for group2 = 30 + 0 * 19 + 1 * -10 = 20
Ypred for group3 = 30 + 0 * 19 + 0 * -10 = 30

SAS has more automated ways to do dummy coding in other PROCS (e.g.,
LOGISTIC, GENMOD) where you essentially just put in coefficients for compar-
isons. If we were coding these three groups in one of the PROCS, it would look
something like this:

Ypred for group1: 1 0
Ypred for group2: 0 1
Ypred for group3: 0 1

13.5.2 Demonstration of Multiple Linear Regression

Linear regression is inherently an additive model. Each coefficient is the additive
effect of that variable on the outcome. It is not, in actuality, the isolated effect of that
variable on the outcome. Rather, it is the additional effect of that variable, given all
the other variables in the model. This has important implications for model building
and explanation. First, adding or removing a variable to a model will change the
coefficients for all the other variables remaining in the model. Second, variables are
often associated with each other on some level, which may cause additional complex
changes in the model when variables are added or removed. The beta coefficients in
a model will change depending on the variables we include. Clearly, our choice of
variables is a critical consideration. We will address this issue in some detail in the
next chapter.

But first, we return to our fitness example. Oxygen consumption is (again) our
continuous outcome variable. We already know that performance is an important
predictor variable. We will now include the additional predictor variable runtime:
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/* multiple reg demonstration fitness data */

proc reg data=fitness;
model oxygen_consumption=performance runtime;
title ’Multiple Linear Regression fitness Data’;

run;
quit;

We will see that, again, the overall model is statistically significant. But look at
our parameter estimates.

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 55.37940 33.79380 1.64 0.1125
Performance 1 0.85780 1.06475 0.81 0.4272
Runtime 1 -1.40429 2.39427 -0.59 0.5622

Given that the overall model is significant, we would certainly expect at least one
of the predictors to be significant. But something has gone wrong. Here it is likely
to be multicollinearity. The two predictors are so closely intertwined the regression
methodology can’t separate their effects. We will take this as a convenient point
to stop and move onto the next chapter where we consider regression diagnostics,
which address the potential problems of collinearity, influential observations,
heteroscedasticity and non-independent or correlated errors.

Problems

13.1. Infant Birthweight and Hospital Charges: Assumptions
Lets examine the relationship between infant birthweight and overall inpatient
charges using the infants data set we created. Begin by examining the normality
assumptions of the two variables (Hint: Run a PROC CONTENTS to remind
yourself of the variables).

What are your conclusions about the assumptions?

13.2. Infant Birth Weight and Hospital Charges: Correlation
Now, examine the correlation between these two variables using PROC CORR.

Is there a significant relationship between birth weight and charges? How would
you describe this relationship?

13.3. Infant Birth Weight and Hospital Charges: Linear Regression
Write and run a PROC REG model testing the predictive value of infant birth weight
on total charges. Exclude infants with birth weight equal to zero.

What is result for the overall F-test? Is birthweight a statistically significant
predictor of total charges? How much of the total variability does the model explain?
What is the relationship between the Pearsons correlation coefficient and your
estimate of total explained variance?



Chapter 14
Regression Diagnostics

Abstract In this chapter, we consider how we may determine if there are problems
with our underlying assumptions for the use of linear regression. We learn that
residuals are the key to regression diagnostics, that SAS provides many tools, from
plots to statistics, that help us examine whether our data meet assumptions such
as normal distribution, linear relationships, and homoscedasticity, and if there are
outliers influencing summary statistics.

14.1 Introduction

At the end of the previous chapter, we examined the effect of two predictor variables
(“performance” and “run time”) on a continuous outcome (“oxygen consumption”).
We found that while the overall model was statistically significant, neither of the
predictors were significant. One predictor that had been significant in a simple linear
regression fell out of significance when we added the second variable. I mentioned
that there was possibly a problem with collinearity between the two variables.

In this chapter we explore this possibility by examining if there are problems
with our underlying assumptions for the use of linear regression.1 The first key step
in regression diagnostics is residual analysis, and we will start there.

As we first noted in the chapter on ANOVA, residuals are the key to diagnostics
because as the only random variable on the right side of the regression equation,
they mirror the random outcome variable on the left side of the equation. The error
terms allow us to check our assumptions because we are unable to replicate values
of our outcome variable for every possible combination of predictor variable values.

1Regression diagnostics should, really, come before the actual analyses. But, it’s a bit of a “Catch
22” situation where you need to understand something about regression before the diagnostics
make sense.

C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
DOI 10.1007/978-1-4614-4854-9 14,
© Springer Science+Business Media New York 2013
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Fig. 14.1 The regression line

There are a number of summary statistics related to residual terms, but we will
begin by examining plots. The following four plots2 illustrate the importance of
examining our data rather than relying on summary statistics.

Consider first this model estimated as y = 3.0+ 0.5x with R = 0.67 (Fig. 14.1).
Under most circumstances, we would consider this to be a fairly good model.

Troublingly, the data points for the following three plots return the exact same model
with the exact same R value (Fig. 14.2).

SAS provides a rich set of tools to help us uncover this and other potential
problems in our data that might lead us to wrong conclusions.

14.2 Residuals Redux

Residual analysis helps us uncover problems with our assumptions. Recall that
residuals are the difference between our predicted values based on our model, and
the actual data points. They represent the error or unexplained variance in our model
(Fig. 14.3).

Similary recall that our assumptions for linear regression include independent
observations, a normally distributed outcome variable at each value of the predictor
variable, the same variance for our outcome variable at each value of the predic-
tor variable and normally distributed error terms with a mean of zero.

2These four data sets were constructed by Francis Anscombe in the 1970’s and are collectively
referred to as “Anscombe’s Quartet.”
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Fig. 14.2 Anscombe’s Quartet

Fig. 14.3 A residual
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Fig. 14.4 Residual patterns

14.2.1 Residual Plots

As we did in ANOVA, we will plot our residuals against our predicted values. We
will now, though, see a scatter or grouping of points. Ideally, we will see a random
scatter of points around a reference line of zero. A U-shaped pattern indicates
nonlinearity. A funnel-shaped pattern indicates heteroscedasticity. A sine-shaped
pattern indicates nonlinearity, a violation of normality, nonindependence or perhaps
a time series effect3 (Fig. 14.4).

In ANOVA, we first created a set of residuals and fed them into PROC GPLOT
and PROC UNIVARIATE. We will see that PROC REG has some easier residual
tools. We’ll first plot our residuals against our predicted values. If we see no problem
on the residual by predictor plot, we can usually stop there. If we see a problem, we
will look at the individual predictors to see where the violations of our assumptions
may have come from, what type of violation may be occurring, and how we may
address the violation, for example, with a transformation.

Keep in mind that linear regression is, in fact, a pretty robust procedure4

especially when there are the kinds of numbers we often see in the secondary
analysis of epidemiologic data. We tend to be concerned with gross violations of
our assumptions.

3If, in fact, you are interested in looking for time series patterns, residual analyses may be helpful.
4Although independence is a sine qua non.
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14.3 Outliers (Influential Observations)

Outliers are those values that are grossly out of line with the rest of the data. How
large a value needs to be to be of concern is not always an easy question. And what to
do about outliers is even thornier. We can test for outliers with so-called studentized
residuals. These are error terms or residuals that are divided by their standard error:

ε
s.e.(ε)

. (14.1)

The rule of thumb is that a studentized residual with an absolute value less than
two is likely to have occurred by chance. Studentized residuals between 2 and 3
are infrequent, occurring less the 5 % of the time, and may be outliers (the smaller
the sample size, the more the concern). A studentized residual greater than 3 rarely
occurs by chance alone and should be investigated.

Two other statistics can help in our search for influential or extreme observations
which can cause the shape of the regression line to be different than it should be:

• Cooks D statistic measures the change in the parameter estimates that results
from deleting each observation. The suggested cut off is D > 4

n , where n is the
sample size.

• The jackknife residual is based on the studentized residuals with the underlying
concept that the very presence of an outlier affects the prediction line itself.
The jackknife residual removes the outlier and plots the difference between the
prediction line with the outlier and that without the outlier.5 A Jackknife residual
greater than |3| is considered potentially problematic (Fig. 14.5).

If we determine that one of our data values is indeed an outlier, the question then
becomes what to do about it. We don’t want to just throw out the value. The first
approach is to check the data and correct what may possibly be an error. You may
have to collect more data. You may have to consider a different model. Sometimes
higher-order terms like squares can help.

14.4 Collinearity

Collinearity refers to when two or more explanatory variables are highly correlated.
Typically, we’ll see a statistically significant test for the overall model, but the
individual predictors are either not significant or have strange, or apparently
incorrect, slopes (e.g., with the wrong sign). It can be helpful to think of collinearity
in terms of Venn diagrams. Here we see that the variable X1 accounts for about 25 %

5One can imagine the prediction line jackknifing up and down, hence the name.
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Fig. 14.5 Jackknife residual

Fig. 14.6 Variance in Y
explained by X1

Fig. 14.7 Variance in Y
explained by X1 and X2

of the variability in the outcome Y (Fig. 14.6). The model R2 would be 0.25. Let’s
assume that the model itself Y = β0 +β1X is statistically significant at p = 0.001.

Now imagine introducing another variable, X2, which you believe is also
associated with Y. If, though, X1 and X2 are also associated with or correlated with
each other, each of their individual effects will appear smaller (Fig. 14.7). Because
we are explaining more of the overall variance of Y, we may see that the overall
model R2 increases (say from 0.25 to 0.40), but because X1 and X2 are correlated,
the correlation between X1 and Y controlling for X2 may decrease, say to 0.01.
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If we were to add yet another correlated predictor variable (X3), the correlation
between X1 and Y controlling for X2 and X3 will decrease even further, perhaps
to insignificance. We can see (hopefully intuitively) that there is simply too much
competition for that patch of variability in Y which X1 had all to itself in our first
model.

In a perfect world, we would like our predictor variables to be completely
uncorrelated. Of course, such a perfect world does not exist, so we can expect
some level of correlation among our predictor variables. As we will see, deciding
which variables to keep in a model and which to exclude is really an epidemiological
question, not a statistical one.

SAS comes equipped with a number of collinearity diagnostics. The most
commonly used is probably the variance inflation factor (VIF), which is a relative
measure of the increase in variance due to the collinearity of a variable with other
variables.

VIFi =
1

(1−R2
i )
, (14.2)

where, for the variable Xi, R2
i is the R2 value from a regression with Xi (normally a

predictor variable) set as the outcome or dependent variable. So, for example, if the
model is Y = β0 +β1X1 +β2X2 +β3X3 +β4X4 we calculate R2

3 for X3 by fitting the
model X3 = β0 +β1X1 +β2X2.

The underlying idea is actually quite simple. The higher the R2
i for a variable (and

hence the more variance it explains among its co-predictor variables), the smaller the
denominator and the larger the VIF. A VIFi > 10 indicates collinearity. A drawback
of the VIF is that while it provides a measure of collinearity, it doesn’t tell which
variables are collinear with each other.

Two additional SAS collinearity diagnostics are based on Eigen values. COLLIN
and COLLINOINT have the advantage of indicating which groups of variables may
be collinear. COLLIN includes the intercept, COLLINOINT, is adjusted for the
intercept. The drawback of these statistics is that there are as yet no well accepted
guidelines and thresholds for their use.6

14.5 Demonstration: Residual Diagnostics for the Fitness
Data

Based on our discussion above, we may have an issue of collinearity in our oxygen
consumption model. We begin our diagnostics with residual plots.7

6This according to SAS themselves. I invariably rely on VIFs and seek out guidance from my
biostatistical colleagues for additional collinearity statistics.
7Being good statistical citizens, we would have conducted these regression diagnostics before
conducting the actual analyses.
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Fig. 14.8 Residual plot for the model

options ps=50 ls=97;
goptions reset=all fontres=presentation ftext=swissb htext=1.5;

proc reg data=fitness;
PREDICT: model oxygen_consumption

= runtime age run_pulse maximum_pulse;
plot r.*(p. runtime age run_pulse maximum_pulse);

/*plot residuals v predicted values*/
plot student.*obs. / vref=3 2 -2 -3

/*studentized obs. Gives obs. # to ID */
haxis=0 to 32 by 1;

plot student.*nqq.; /*nqq another name for normal prob plot*/
symbol v=dot;
title ’PREDICT Model - Plots of Diagnostic Statistics’;
run;
quit;

Our plot looks fine (Fig. 14.8). The data points appear randomly distributed on
either side of the zero line. In practice, we could pretty much stop looking at residual
plots here. Lets look at some of the individual predictor variables, though, so you
can see that they are similar (Figs. 14.9 and 14.10).

Next, we begin our consideration of outliers with the request for a plot of
studentized residuals vs. observation numbers (which we requested as part of the
residual plots) (Fig. 14.11).

We see here that observations 15 and 20 have values beyond an absolute value
of 2, indicating that they may be problematic. We now further explore possible
influential observations. The following syntax requests an output consisting of
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Fig. 14.9 Residual plot for the “Runtime” variable

Fig. 14.10 Residual plot for the “Age” variable

residuals and so-called influence statistics. Note that we are also creating an output
data set called ch4outliers in the work directory. We will use this to check for
outliers.

goptions reset=all;
proc reg data=fitness;
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Fig. 14.11 Plot of studentized residuals

PREDICT: model oxygen_consumption
=runtime age run_pulse maximum_pulse
/ r influence;

/* r is residuals, influence is for the influence statistics*/
id name; /* to allow us to identify the outlier*/
output out=ck4outliers

rstudent=rstud cookd=cooksd;
/* note we are creating an output data set of the outlier
statistics so we can get SAS to look at them for us so we
create and name a data set and label the output variables
in which we are interested*/
title;
run;
quit;

This data set is small enough that we could eyeball it to identify the studentized
residual values for observations 15 and 20 that may be problematic. With all but
the smallest data sets, though, we would want some way to perhaps automate
the process. The following macro can be used to print out a list of influential
observations:

MACRO
SAS Macros are small programs or routines that automate repetitive tasks.
Some folks swear by them. I rarely, if ever, have had a reason to use
them. But that might simply be resistance on my part to learning additional
programming syntax.

(continued)

http://www.youtube.com/watch?v=NmvHGzIana8
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(continued)
A macro consists of special SAS syntax that contains unique language so it

can be run repeatedly with different variables. In a SAS macro, “%let” creates
a macro variable. A macro variable does not exist in any particular data set,
but is available for use during in any procedure during a SAS session. The
character “&” before a variable name tells SAS to retrieve that macro variable.
You can just copy, paste, and adapt the following macro for use in your own
analyses (That’s what I do). If you are interested in learning more about SAS
macros, this online document is a nice introduction.

/* MACRO FOR OUTLIERS */

/* set the values of these macro variables, */
/* based on your data and model. */
%let numparms=5; /* # of predictor variables + 1 */
%let numobs=31; /* # of observations */
%let idvars=name; /* relevant identification variable(s) */

data influential;
set ck4outliers;
cutcookd=4/&numobs;

rstud_i=(abs(rstud)>3);
cookd_i=(cooksd>cutcookd);
sum_i=rstud_i + cookd_i;
if sum_i > 0;

run;

/* then print out the list of influential observations */

proc print data=influential;
var sum_i &idvars cooksd rstud cutcookd

cookd_i rstud_i;
title ’Observations that Exceed Suggested Cutoffs’;

run;

We see in the screen-shot that the macro prints out the observation for the
participant “Gracie” as a possible outlier (Fig. 14.12). We may want to look at the
original data to make sure that there are no errors in the observation for Gracie, or
consider collecting additional observations on additional participants.

Our next step is to address the issue of potential collinearity in our data set. The
following syntax requests a VIF:

proc reg data=fitness;
FULLMODEL:
model oxygen_consumption

= performance runtime age weight
run_pulse rest_pulse maximum_pulse

/ vif ;/* collinearity diagnostic*/

http://www2.sas.com/proceedings/sugi29/243-29.pdf
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Fig. 14.12 Results of the outlier macro

title ’Collinearity -- Full Model’;
run;
quit;

We look for VIFs greater than 10 in the printout (Fig. 14.13).
The variables “performance” and “runtime” are clearly above the threshold.

How best to deal with this collinearity? It might make sense to drop one of these
two collinear predictors, but this decision must be informed by epidemiological
and subject matter expertise.8 In this case, let us suppose that performance and
runtime are both essentially measuring the same thing and do not play different
epidemiological roles in our model. Lets remove performance.

proc reg data=fitness;
NOPERF:
model oxygen_consumption

= runtime age weight
run_pulse rest_pulse maximum_pulse

/ vif;
title ’Collinearity -- Performance Removed’;

run;
quit;

8This is one reason why regression diagnostics should be performed before model selection
procedures.
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Fig. 14.13 Variance inflation factors

We now see that a number of our predictor variables are statistically significant,
and none of the variables have a VIF above 10 (Fig. 14.14).

14.6 A Word About Model Selection

When folks refer to “model selection,” they are most often talking about “variable
selection”, or deciding which variables to include in a regression. SAS has a number
of tools available to ease the path to model selection. This is one of those cases,
though, where the unpaved road may be preferable to the highway. I will present the
SAS tools for automated model selection. Then I will try to explain why I don’t use
them.

14.6.1 SAS Model Selection Tools

The SAS linear regression model selection tool is, appropriately enough

/ SELECTION = <option>
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Fig. 14.14 Variance inflation factors after removing a collinear variable

It is placed after the model statement as part of PROC REG. SAS makes the
following selection options available to you:

• RSQUARE, ADJRSQ Runs all possible combinations of the variables and selects
the “best” model based on the R2 or adjusted R2 statistic . So, if you specify k
variables in your model, SAS will test 2k models.

• FORWARD Runs all single predictor models, keeps all the variables that are
statistically significant in the single variable scenario, then runs all 2-predictor
models using those variables and keeps the variables that were statistically
significant in the 2-predictor setting, then runs all the 3-predictor models, etc

• BACKWARD Is (logically) the reverse approach to FORWARD. SAS runs an
initial model with all the variables, keeps those that are statistically significant,
then runs a model with those variables, retains the variables that are statistically
significant, etc. . .

• STEPWISE Is a hybrid of FORWARD and BACKWARD where variables are
included in a forward fashion, and excluded in a backward fashion9

9If this is starting to sound a little suspect, read on.
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A syntax might look something like this:

Proc reg data=work.data;
Forward: model outcome=pred1 pred2 pred3 / selection=forward

slentry=0.001;
Backward: model outcome=pred1 pred2 pred3 / selection=backward

slentry=0.001;
Stepwise: model outcome=pred1 pred2 pred3 / selection=stepwise

slentry=0.001;
Title ;
Run;
Quit;

Where the “slentry” option sets the level of statistical significance for which a
variable is included or excluded from a model.10

14.6.2 Problems with Automated Selection Procedures

I am not a fan of automated model selection algorithms. They are convenient, and
they are useful in some settings, but they represent an approach to data analysis and
modeling that is not consistent with my goals as an epidemiologist. Let’s take a look
at some of the problematic aspects of automated model selection procedures.

1. They are based on p-values, and slavish devotion to p-values is itself the subject
of considerable criticism.

2. Even if you are a fan of p-values, the SAS default p-values are too high (0.1–0.5),
hence the need to set SLENTRY= (for forward selection) and SLSTAY= (for
backward selection) to more reasonable levels.

3. Even if you set the entry and retain criteria to a more reasonable level, there is
the issue of multiple significance testing (see the chapter on ANOVA).

4. Even if you adjust for multiple tests, you may (very likely) end up with a different
model from each method.

5. Finally, and most importantly, automated selection methods do not take impor-
tant causal thinking into account.

This last point is the deal breaker for me. As an epidemiologist I should have
some idea about the role each variable in my model plays. Is it the exposure or
risk factor that I believe is associated with the outcome? Is it a confounder that I
may have to control for? Is it an interaction term? These are questions related to
my knowledge of the subject, not something to be submitted to the black-box of
p-values. Causal thinking drives analysis, not vice versa. Automated procedures are
useful, I think, if your goal is to predict some outcome. Epidemiology (and science
in general) aims to explain and intervene if possible.

10More on this in a moment.
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14.6.3 Some Advice on Model Selection

What then is an epidemiologist to do? My usual advice is to base model selection
as much as possible on your knowledge of the disease outcome in which you
are interested. Look closely at your univariate associations. Stratify to assess
confounding. Plot to assess interaction. Diagnose outliers and deviations from
assumptions. Assess fit. Many of the things we’ve gone over in previous chapters.

If you must compare models based on statistical significance, then I suggest you
do it explicitly rather than rely on automated procedures. SAS makes manual model
comparison relatively painless through the use of so-called partial F-tests . Recall
that an F statistic tests the null hypothesis that all the regression coefficients are
zero and do not contribute to our explanation, understanding, or prediction of the
outcome variable. A partial F-statistic tests whether the addition of an independent
or explanatory variable, given others already in the model, significantly contributes
to the prediction of the outcome variable.

So, for example, how does much the variable x∗ contribute to a model given that
the variables x1,x2, . . . ,xp are already in a model? We can look at it in terms of
partitioning sums of squares:

SSx∗|x1,x2,...,xp = SSmodel:x1+x2+···+xp+x∗ − SSmodel:x1+x2+···+xp . (14.3)

Where the sum of squares due to x∗ is what remains when we subtract the sum of
square of the model with x∗ absent from that of the model wit x∗ present. To test the
statistical significance of the additional sum of squares, we calculate the F-statistic:

Fx∗|x1,x2,...,xp =
SSx∗|x1,x2,...,xp

SSmodel:x1+x2+···+xp+x∗
. (14.4)

And, as usual, look up the associated p-value. Well, not really, as usual SAS does
it for us. In fact, these partial F-tests are default statistics in PROC REG. Up until
now, we’ve been ignoring them. They are the “Type I” and “Type II” sums of squares
that SAS reports. To test a variable, use the (appropriately named) “TEST” option.
The following syntax tests the joint significance of “c” and “d” given that “a” and
“b” are in the model:

model y = a b c d / TEST c=0 d=0

For a single additional variable, they are essentially the same. If you are testing
the addition of more than one variable, “Type I” tests the variables added in
sequence, and “Type II” tests the variable added last, assuming all the other variables
have been added.
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Problems

14.1. Enter Data
The text file “grades.txt” contains data on a college entrance exam (first column)
designed to predict college grade point average (second column). Read the data into
a SAS file. Name the exam variable score. Name the “gpa” variable gpa.

14.2. Residuals
Create plots of the residuals by score and by the predicted values, and a plot of
studentized residuals by observation number. Do the residual plots indicate any
problems with the model assumptions? Are there any outliers? On what do you
base your conclusion about outliers?
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Solutions

Chapter 2

2.1 Submitting Commands and Reading Output

/** compare ages upstate and nyc ami admissions with ttest **/

libname p8483 " ";

proc ttest data=p8483.demo$_1$; * identify the data
set you are working with;
class nyc; * identify the variable you are using to
identify and compare groups;
var age; /* continuous variable you are analyzing*/
title ’Comparing ages nyc and upstate ami patients’;

*title for your output;
run;

/* univariate analysis of age */

proc univariate data=p8483.demo$_1$;
var age;
histogram; *returns histogram of age variable;
probplot;
run;

• The mean age of upstate AMI patients is 70.
• The mean age of NYC AMI patients 69.
• The difference is statistically significant. (p < 0.0001)
• It is not likely to be clinically important.

2.4 Using PROC CONTENTS To View Variables

• There are 502,492 observations in the data set.
• Each observation represents an acute myocardial infarction.

233C. DiMaggio, SAS for Epidemiologists: Applications and Methods,
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• There are 16 variables for each observation.
• The data is not sorted.
• The DATE variable is numeric.
• DISPO is a 2-unit long character variable.
• DATE looks like numbers.
• ECODE is missing from most observations, and is therefore not very useful.

Chapter 3

3.1 Reading in Data from the Editor Window

data test;
input
@1 ID $6.
@7 RESULT $8.
@15 VALUE 3.;
cards;
203769Positive486
201948Positive400
202085Positive364
201755Positive416
202092Positive373
202087Positive657
201358Negative341
201429Positive448
201549Negative320
202741Positive391
201627Positive532
202004Negative268
202052Negative334
203531Positive573
204366Negative348
204042Negative252
;
run;

proc print data=test;
run;

3.2 Reading in Data from an External Source

DATA sparcs_1;
INFILE ’your/path/here/nycsparcs.TXT’ LRECl=452 OBS=100;
INPUT
@18 DATE yymmn6.
@44 AGE 3.
@50 COUNTY $CHAR2.
@52 ZIP $CHAR5.
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@57 SEX $CHAR1.
@58 RACE $CHAR2.
@60 ETHNIC 1.
@71 PDX $CHAR6.
@343 DISPO $CHAR2;
run;

proc print data=sparcs_1;
run;

3.3 Creating a SAS Library

libname p8483 " C:\Users\Charles DiMaggio\Desktop";

Chapter 4

4.1 Using PROC PRINT

libname ex4_1;

proc contents data=;
run;

proc print data= (obs=20) noobs ;
var age pdx charge;
where los gt 14;
sum charge;
run;

proc print data=- (obs=20) noobs ;
var age pdx charge;
where los lt 7;
sum charge;
run;

• It appears to be hospital discharge data.
• there are 502,492 observations with 16 variables each.
• The total charges are $914,170.00.
• The total charges for patients whose length of stay was less than seven days is

$104,660.00.
• Length of stay is associated with cost of care.
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4.2 From SAS to Excel

ods html file = style=minimal;

proc print data=- (obs=150) noobs;
var sex age zip date dispo pdx;
title ’Patient Demographics’;
run;

ods html close;

4.3 Creating and applying formats

proc print data= (obs=20) noobs;
var charge;
format charge dollar11.2;
run;

proc format;
value dol_range low - 500000 = ’Low’

500001 - 1000000 = ’Medium’
1000001 - high = ’High’;

run;
proc print data=p8483.demo_1 (obs=20) noobs;
var charge;
format charge dol_range.;
run;

proc print data= (obs=20) noobs;
var sex;
run;

proc format;
value $gender "F" = "Female"

"M" = "Male";
run;

proc print data= (obs=20) noobs;
var sex;
format sex $gender.;
run;

4.4 Using Titles and Labels

data test;
input
@1 ID $6.
@7 RESULT $8.
@15 VALUE 3.;
cards;
203769Positive486
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201948Positive400
202085Positive364
201755Positive416
202092Positive373
202087Positive657
201358Negative341
201429Positive448
201549Negative320
202741Positive391
201627Positive532
202004Negative268
202052Negative334
203531Positive573
204366Negative348
204042Negative252
;

proc print data=test noobs label;

label
ID = ’Patient Identifier’
RESULT = ’Final Result’
VALUE = ’Assay Level’;

run;

title ’Initial Blood Test Results’;
run;

Chapter 5

5.1 Concatenating Data Sets

data tot_deaths; set tot_deaths; tot_911_deaths =
female_911_deaths + male_911_deaths; run;

• The file is missing many observations.
• The total deaths variable is missing all non-New York City deaths.
• It solved the problem.
• You receive the warning “Missing values created from missing values”.

5.2 Merging and Performing Operations on Datasets

data MERGE1; set Ch5demo1 Ch5demo2; run;

• 185 observations were read in from Ch5demo1.
• 1,421 observations were read from Ch5demo2.
• There are 1,606 observations in the new data set.
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• It appears correct.
• You could look at the original data set using PROC CONTENTS.

proc sort data=MERGE1; by zip; proc sort data= Ch5demo3; by zip;
run;

data MERGE2; merge MERGE1 ch5demo3; by zip; run;

data MERGE2_calcs; set MERGE2; tot_death = male_911_deaths +
female_911_deaths; death_rate = (tot_death / pop_tot)* 100000;
run;

data MERGE2_calcs; set MERGE2_calcs; work_pop = pop_2024
+ pop_2534 + pop_3544 + pop_4554; work_rate = (tot_death /
work_pop)* 100000; run;

• You need to sort the data sets before merging.
• The death rate for 11,566 is 16.8/100,000; the deathrate for zip code for 10032

is 18.8/100,000.
• ZIP Code 10032 is at increased risk perhaps because it is closer to ground zero.
• The new rates for workers are 34.6 for ZIP code 11566, and 35.1 for 10032.
• The rates went up because the denominator of working individuals is smaller.

The rates based on the working population are probably closer to the “true” risk.

Chapter 6

(You may need to refer back to other chapters to complete some of these problems)

6.1 Reading in the Data Set

DATA NYCSPARCS; /* name the data set in work directory */
INFILE \nycsparcs.TXT’ MISSOVER LRECl=452; * OBS=15000;
/* notice how we commented out the obs=, will read all the

observations */INPUT /* input the variables you are
interested in */

@18 DATE yymmn6.
@44 AGE 3.
@50 COUNTY $CHAR2.
@52 ZIP $CHAR5.
@57 SEX $CHAR1.
@58 RACE $CHAR2.
@71 PDX $CHAR6.
@349 LOS 4.
;
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6.2 Creating New Variables

/**************CREATE MONTH VARIABLE***********/
month=MONTH(DATE);
/***********CREATE NUMERIC GENDER VARIABLE****************/
IF sex=’M’ then male=1;

else male=0;
IF sex=’F’ then female=1;

else female=0;

/**********CREATE NUMERIC VARIABLES FOR RACE ***********/
IF RACE = ’01’ then White=1;

else White=0;
IF RACE = ’02’ then Black=1;

else Black=0;
IF RACE = ’04’ then Asian=1;

else Asian=0;
IF RACE = ’88’ then Other_Race=1;

else Other_Race=0;
IF RACE = ’99’ then Unknown_Race=1;

else Unknown_Race=0;

/************MORTALITY **************************/
IF DISPO = ’20’ then death=1;

else death=0;

/*********** SUBSTANCE ABUSE *****************/

if pdx in /* use ICD9 codes to create diagnoses */
(’2910’,’2911’,’2912’,’2913’,’2914’,’2915’,’29181’,’29189’,
’2919’,’2920’,’29211’,’29212’,
’2922’,’29281’,’29282’,’29283’,’29284’,’29289’,’2929’,
’30300’,’30301’,’30302’,’30303’,’30390’,’30391’,’30392’,
’30393’,’30400’
’30401’,’30402’,’30403’,’30410’,’30411’,’30412’,’30413’,’30420’,
’30421’,’30422’,’30423’,’30430’,’30431’,’30432’,’30433’,’30440’,
’30441’,’30442’,’30443’,’30450’,’30451’,’30452’,’30453’,’30460’,
’30461’,’30462’,’30463’,’30470’,’30471’,’30472’,’30473’,’30480’,
’30481’,’30482’,’30483’,’30490’,’30491’,’30492’,’30493’,’30500’,
’30501’,’30502’,’30503’,’3051’,’30520’,’30521’,’30522’,’30523’,
’30530’,’30531’,’30532’,’30533’,’30540’,’30541’,’30542’,’30543’,
’30550’,’30551’,’30552’,’30553’,’30560’,’30561’,’30562’,’30563’,
’30570’,’30571’,’30572’,’30573’,’30580’,’30581’,’30582’,’30583’,
’30590’,’30591’,’30592’,’30593’)
Then subst_ab=1;
Else subst_ab=0;

RUN;

PROC CONTENTS DATA=NYCSPARCS; /* check your file was read in */
RUN;
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6.3 Using PROC MEANS

proc means data=nycsparcs;
var age;
run;

proc means data=nycsparcs;
var male;
run;

• There is a person aged 109 years old.

6.4 Using PROC FREQ

proc freq data=nycsparcs;
tables county race sex;
run;

• There is no real difference between numeric gender and character sex, although
the numeric variable might be more useful if we need a dummy variable later on.

• Everyone came from a few counties, but since this is New York City data that
makes sense. We refer to data documentation to determine that county 58 is the
Bronx, 59 is Brooklyn, 60 is Manhattan, 61 is Queens, and 62 is Staten Island.
The largest percentage of non-New York City residents comes from county 55
(Westchester).

• Over a quarter of the entries have race as other or unknown. This raises concern
about the reliability and validity of that variable.

6.5 Using PROC TABULATE

proc tabulate data=nycsparcs; /*create output data set from
tabulate procedure */

where county in (’58’ ’59’ ’60’ ’61’ ’62’);
class month;

var subst_ab;
table month, subst_ab*sum subst_ab*pctsum;

ods output table=subst; /* note creating a table from output,
will use it later to graph, can see it in explorer */

run;

• Brooklyn appears to need more resources.
• Staten Island may require less.
• These results may be affected by the number of hospital beds in a county, the

number of beds available for substance abuse, and local medical practice in
admitting or discharging substance abuse, the proportion of age groups in a
county that might be more or less likely to abuse drugs.

• We would want to determine population-based age-stratified rates.
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Chapter 7

7.1 PROC GCHART

proc gchart data=nycsparcs;
vbar race;
hbar race;

run;

proc gchart data=nycsparcs;
vbar race / sumvar=los type=mean;
hbar race / sumvar=los type=mean;

run;
quit;

proc gchart data=nycsparcs;
pie race / sumvar=los type=mean

fill=x explode=’02’;
run;
quit;

One advantage of hbar is that it returns statistics.

7.2 PROC GPLOT

proc tabulate data=nycsparcs; /*create output data set from
tabulate procedure */

where county in (’58’ ’59’ ’60’ ’61’ ’62’);
class month;

var subst_ab;
table month, subst_ab*sum subst_ab*pctsum;

ods output table=subst; /* note creating a table from output,
we’ll use it later to graph, can see it in explorer */

run;

proc gplot data=subst; /* note using output table from tabulate*/
plot subst_ab_Sum * month ;

symbol value=diamond i=spline
c=red w=5;

run;
quit;

• The chart is not zeroed on the vertical axis, which makes changes look more
impressive.

• The spline makes it look like a continuous process when it very much may not
be so.

• You can use the “vaxis” option after the plot statement to define axis. It might be
better to just join the points instead of spline interpolation. (The change in colors
is just for fun.)
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proc gplot data=subst;
plot subst_ab_Sum * month / vaxis= 0 to 5000 by 200;

symbol value=diamond i=join
c=blue w=2;

run;
quit;

Chapter 8

8.1 One-Way Frequencies

proc print data=car;
var type region safety weight;

run;

proc freq data=car;
tables region safety type;

run;

Partial PROC PRINT Output
Obs type region safety weight

1 Medium N America 0 3.395
2 Sport/Utility N America 0 4.180
3 Medium N America 0 3.145
4 Small N America 0 2.600
5 Medium N America 0 3.085
6 Medium N America 0 2.910
7 Sport/Utility N America 0 4.180
8 Medium Asia 0 3.415
9 Medium N America 0 3.995
10 Small N America 0 2.600
11 Small N America 1 2.765
12 Small Asia 0 2.665
13 Medium N America 0 3.100
14 Medium N America 0 3.455
15 Medium N America 0 3.055
16 Large N America 0 3.450
17 Large N America 0 3.640
18 Large N America 0 4.195
19 Large N America 0 3.985
20 Large N America 0 4.480

• Measurement scale of each variable:

– Safety—OrdinaL
– Type—NOMINAL
– Region—nominal
– Weight—CONTINUOUS
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• The proportion of cars built in North America is 0.6354.
• There are no unusual data values that warrant further attention.

8.2 Cross Tabulations

proc format;
value safdesc 0=’Average or Above’

1=’Below Average’;
run;

proc freq data=car;
tables region*safety / expected cellchi2;
format safety safdesc.;

run;

• For the cars made in Asia, 42.86% had a below-average safety score.
• For the cars with an average or above safety score, 69.70% were made in North

America.
• There seems to be an association between region and safety. A higher percentage

(75.41 vs. 57.14) of cars from North America had a higher safety rating.
• The cell where region is Asia and safety is below average contributed the most

to any possible association.

8.3 Chi-Square

proc freq data=car;
tables region*safety / chisq;
format safety safdesc.;

run;

You fail to reject the null hypothesis that there is not an association. The p-value
represents the probability of observing a chi-square value at least as large as the one
actually observed, given that the null hypothesis is true.

8.4 Spearman

data car2;
set car;
size=1*(type=’Sports’ or type=’Small’) +

2*(type=’Medium’) +
3*(type=’Large’ or type=’Sport/Utility’);

run;

proc format;
value sizename 1=Small

2=Medium
3=Large;

run;
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proc freq data=car2;
tables size*safety / chisq measures cl;
format safety safdesc.

size sizename.;
run;

• You should use the Mantel-Haenszel test to detect an ordinal association between
size and safety.

• You reject the null hypothesis that there is not an ordinal association.
• The Spearman correlation statistic indicates that an ordinal association of

moderate strength exists (0.5425) between size and safety.
• The 95% confidence interval around that statistic is (0.6932, 0.3917).

Chapter 9

9.1 Contingency Table Analysis

• The row mean scores difference statistic can be used to measure the evidence of
an association between type by safety?

• With a p-value less than 0.0001, there is statistical evidence of an association
between type by safety.

• You could use the uncertainty coefficient to measure the strength of the associa-
tion between type by safety.

• The proportion of variability in the response variable that is explained by the
predictor variable is 0.3011.

9.2 Stratified Analysis

tables type*safety region*safety / all;
run;

• Use the MH statistic to detect an association between type by safety controlling
for region.

• There is a statistically significant association of type with safety, holding region
constant.

• Because there are no observations for “large” vehicles.
• Yes. There may be cells with zero in the denominator leading to undefined results.

proc freq data=sasuser.safety;
tables type*region*safety / all bdt;
exact or comor;

run;

• Yes. The adjusted odds ratio for the association of region and safety controlling
for type differs from the crude or unadjusted odds ratio.

• The Breslow–Day statistic is not statistically significant, indicating there is no
interaction between type and region.



Solutions 245

Chapter 10

10.1 PROC MEANS

• SAS used all observations, most of which were coded zero because not recorded
for adults.

• N = 200,000, μ = 318.3755000.
• 134,412 children less than 1 year old were discharged from NYC hospitals in this

year.
• N = 22,611, μ = 2816.11.

DATA infants; /* name the data set in work directory */
INFILE ’C:\Users\Charlie\Documents\Columbia\Epi\SAS COURSE\Data
Sets\nycsparcs.TXT’ MISSOVER LRECl=452; * OBS=15000; /*
notice how we commented out the obs=,

will read all the observations */
INPUT /* input the variables you are interested in */
@18 DATE yymmn6.
@44 AGE 3.
@50 COUNTY $CHAR2.
@52 ZIP $CHAR5.
@57 SEX $CHAR1.
@58 RACE $CHAR2.
@60 ETHNIC 1.
@61 SOURCE $CHAR1. /*source of admission used with type of

admission to id prematures*/
@62 TYPE $CHAR1. /* type of admission to identify
@71 PDX $CHAR6. newborns=type 04 */
@294 BIRTHWT 4.
@343 DISPO $CHAR2.
@349 LOS 4.
@434 CHARGE 12.;

/********************MORTALITY **************************/
IF DISPO = ’20’ then death=1;

else death=0;
/*********************** INFANT MORTALITY ****************/
IF AGE LT 1 and DISPO=’20’ then infant_mort=1;

else infant_mort=0;
/********************** LOW BIRTH WEIGHT *************/
IF TYPE=’4’ and BIRTHWT LT 2500 then LBTWT=1;

else LBTWT=0;
/********************** PREMATURE BIRTH **************/
IF TYPE=’4’ and SOURCE=’2’ then preemie=1;

else prememie=0;
run;

proc means data=infants;
var birthwt;
run;
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proc means data=infants n mean median std var clm;
var birthwt;
run;

data infants;
set infants;
if age lt 1;
run;

proc means data= infants n mean median std var clm;
var birthwt;
run;

10.2 PROC UNIVARIATE

• The histogram and probability plot lead us to suspect the data are not normally
distributed.

• The skewness statistic is −1.5, indicating the data are left skewed.
• The mean (2816) is less than the median (3200), again indicating left skewed.
• The kurtosis statistic is 1.3, indicating a high-peaked and heavy-tailed distribu-

tion.
• There are a lot of zeros, indicating either missing data or coding errors.
• Rerunning the analysis with zeros removed returns a more normal-appearing data

distribution, with a mean closer to the median, less skewness, and a kurtosis value
about the same as the previous run:

goptions reset=all fontres=presentation ftext=swissb htext=1.5;

proc univariate data infants mu0=2500 plot;
var birthwt;
histogram birthwt;
probplot birthwt / normal (mu=est sigma=est color=blue w=1) ;
run;

goptions reset=all fontres=presentation ftext=swissb htext=1.5;

proc univariate data infants mu0=2500 plot;
where birthwt ne 0;
var birthwt;
histogram birthwt;
probplot birthwt / normal (mu=est sigma=est color=blue w=1) ;
run;

10.3 PROC BOXPLOT

data infants;
set infants;
if county = ’58’ then borough = 1;
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else if county =’59’ then borough = 2;
else if county =’60’ then borough = 3;
else if county = ’61’ then borough = 4;
else if county = ’62’ then borough = 5;
else borough = .;
run;

proc sort data=infants;
by borough;
run;

symbol color = salmon;
title ’Boxplot NYC County Birthweights’;
proc boxplot data=infants04;
where birthwt ne 0;
plot birthwt*borough / cframe = vligb

cboxes = dagr
cboxfill = ywh;

run;

Chapter 11

11.1 PROC GLM

options ls=75 ps=45; /* page and line spacing options*/
proc glm data = infants;
where birthwt ne 0;

class borough;
model birthwt=borough;
means borough / hovtest;
output out=check r=resid p=pred;

run;
quit; /* have to quit our of GLM */

The p-value for Levene’s test is p < 0.0001; reject the null hypothesis of
homogeneity

11.2 PROC GPLOT

/* now run gplot on the ’check’ dataset created above*/
Proc gplot data=check;

Plot resid*pred / haxis=axis1 vaxis=axis2 vref=0;
axis1 w=2 major=(w=2) minor=none offset=(10pct);
axis2 w=2 major=(w=2) minor=none;
title ’plot residuals vs predictors’;

run;
quit;
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The residuals are evenly distributed about 0 with some evidence of outliers.

11.3 PROC UNIVARIATE

proc univariate data = check normal;
var resid;
histogram resid / normal;
probplot;* resid / mu=est sigma=est color=blue w=1;
title;

run;

• The mean is zero.
• It is consistent with the underlying assumptions for ANOVA.
• The kurtosis statistic is 3.3.
• The data are high peaked and heavy tailed.

11.4 LSMEANS

/* compare means */
proc glm data=infants;

class borough;
model birthwt=borough;
lsmeans borough / pdiff=all adjust=tukey;
title ’Data: Multiple Comparisons’;

run;
quit;

• The lowest mean birth weight is 2,662 grams in borough 1. It is statistically
significantly different from the other boroughs.

• Box plots would be helpful to compare the mean birth weights across boroughs.

Chapter 12

12.1 Read in the Pedestrian Injury Data Set

proc contents data=ch9.ch9exercise;
run;

12.2 Print Out the Data

proc print data=ch9.ch9exercise;
var numinj totpop perblack perhisp medhsinc pci;
id name;
run;
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12.3 Create an Injury Rate Variable

data ch9exercise;
set ch9.ch9exercise;
injrate=(numinj/totpop)*1000;
run;

12.4 PROC UNIVARIATE

options ps=50 ls=76;
goptions reset=all fontres=presentation ftext=swissb htext=1.5;
proc univariate data=ch9exercise;

var injrate perblack perhisp medhsinc pci;
histogram injrate perblack perhisp medhsinc pci/ normal;
probplot injrate perblack perhisp medhsinc pci

/ normal (mu=est sigma=est color=red w=2);
id name;
title ’Univariate Statistics of pedestrian injury data set’;

run;

• The average number of injuries per 1,000 population for a Nassau County ZCTA
community during the observation period was 2.

• Hempstead had the highest injury rate, six injuries per 1,000 population.
• Freeport and Hempstead had the highest proportion of Hispanic residents.
• Inwood and Hempstead had the the lowest median household income.
• “perblack” and “perhisp” appear to be least likely to be normally distributed.

12.5 Log Transformation

data ch9exercise;
set ch9exercise;
lnblack=log(perblack);
lnhisp=log(perhisp);
run;

proc univariate data=ch9exercise;
var lnblack lnhisp;
histogram lnblack lnhisp/ normal;
probplot lnblack lnhisp

/ normal (mu=est sigma=est color=red w=2);
id name;
title ’’;

run;

Yes.
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12.6 PROC GPLOT

/*Use the following syntax to set up the options for
your plots and define axes*/

Options ps=50 ls=64;
Goptions reset=all gunit=pct border
Fontres=presentation ftext=swissb;

Axis1 length=70 w=3 color=blue label=(h=3) value=(h=3);
Axis 2 length=70 w=3 color=blue label=(h=3) value=(h=3);

/*Invoke the above options and axes by
including the following line after your plot statement*/

/ vaxis=axis1 haxis=axis2

Options ps=50 ls=64;
Goptions reset=all gunit=pct border

Fontres=presentation ftext=swissb;

Axis1 length=70 w=3 color=blue label=(h=3) value=(h=3);
Axis 2 length=70 w=3 color=blue label=(h=3) value=(h=3);

proc gplot data=ch9exercise;
plot injrate * (lnblack lnhisp medhsinc pci)

/ vaxis=axis1 haxis=axis2;
symbol1 v=dot h=2 w=4 color=red;
title h=3 color=green

’Scatter Plot of Pedestrian Injury Rate by Explanatory
Variables’;

run;
quit;

• “perhisp” seems to most demonstrate a relationship with injury rate.
• The plot would best be described as a direct linear relationship.

12.7 PROC CORR

proc corr data=ch9exercise rank;
var lnblack lnhisp medhsinc pci;
with injrate;
title ’’;

run;

• “perhisp” was most strongly correlated with pedestrian injury rate.
• The relationship between income in a community and pedestrian injury rate was

weakly negative.
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• There is something in communities with large proportions of poor Hispanics or
Blacks that put people at risk for pedestrian injuries.

Chapter 13

13.1 Infant Birth Weight and Hospital Charges: Assumptions

options ps=50 ls=76;
goptions reset=all fontres=presentation ftext=swissb htext=1.5;

proc univariate data= infants normal;
var charge birthwt;
histogram charge birthwt;
probplot charge birthwt;
run;

The data do not appear normally distributed.

13.2 Infant Birth Weight and Hospital Charges: Correlation

proc corr data=infants rank;
var charge;
with birthwt;
title ’PROC CORR: infant birthweight and charge’;

run;

• There is a statistically significant relationship between birthweight and charges
r =−0.22, p < 0.0001.

• The relationship is inversely proportional.
• We should look at it with a scatterplot.

Options ps=50 ls=64;
Goptions reset=all gunit=pct border

Fontres=presentation ftext=swissb;

Axis1 length=70 w=3 color=blue label=(h=3) value=(h=3);
Axis 2 length=70 w=3 color=blue label=(h=3) value=(h=3);

proc gplot data= infants;
plot charge * birthwt

/ vaxis=axis1 haxis=axis2;
symbol1 v=dot h=2 w=4 color=red;
title h=3 color=green

’Plot of infant birthweight and charge’;
run;
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13.3 Infant Birth Weight and Hospital Charges: Linear Regression

proc reg data=infants;
where birthwt ne 0;
model charge=birthwt;
title ’Simple Linear Regression of charges and birthweight’;

run;
quit;

• The overall F test is 3497 p < 0.0001.
• Birthweight is a statistically significant predictor of total charges p < 0.0001.
• The model explains 14% of the variability R2 = 0.15.
• Total explained variance is the square of Pearson’s, correlation coefficient.

quit;

Chapter 14

14.2 Residuals

options ps=50 ls=97;
goptions reset=all fontres=presentation ftext=swissb htext=1.5;
proc reg data=sasuser.b_grades;

model gpa=score;
plot r.*(p. score);
plot student.*obs. / vref=3 2 -2 -3

haxis=1 to 25 by 1;

title ’Residual Diagnostic Plots’;
run;
quit;
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A
Adjusted odds ratios

CMH, 131
MH OR (see Mantel-Haenszel odds ratio)
SAS, 131
stratified analysis, 129

Analysis of variance (ANOVA)
blood pressure measurement, 161
Bonferroni and Scheffe method, 160–161
components and causes, 182–183
conundrum, interaction, 180–181
description, 159
in disease, 183
in epidemiological studies, 184–185
error/residual value, 161–162
F distribution, 160
F-tests, 159
multiplicative models, 184
N-way ANOVA (see N-way ANOVA)
one-way (see One-way ANOVA)
outcome variable, 161
problems and solutions, 185–186, 247–248
PROC GLM (see PROC GLM)
regression analysis, 161
risk factors, 183–184
smoking and asbestos exposure, 184
“statistical interaction”/“effect

modification”, 183
statistical model, 159
sum of squares, 160
table/relative risks, 184
testing assumptions MEANS,

UNIVARIATE and BOXPLOT,
162–163

total variance, 160
Anscombe, F., 214

C
Categorical data analysis I

associations, 100–101
crosstabs, 99
examining frequency tables

cross classification, 101, 102
PROC FREQ, 101–103
table cells from PROC FREQ, 101, 102

problems
“cars”, 116
chi square, 118
cross tabulations, 117
one-way frequencies, 117
spearman, 118

reordering categorical variables, 103–104
significance vs. strength

“expend2”, 114–115
“significant”, 115

solutions, 242–244
statistical tests, 105–114

Categorical data analysis II
adjusted OR (see Adjusted odds ratios)
confounding (see Confounding)
contingency table analyses, 135
OR (see Odds ratio)
preterm labor and birth weight, 124–125
probabilities and odds, 119–120
problems and solutions, 135, 244

Categorical predictor variables
description, 208
drug dose and disease, 175
dummy variables, 209–210
explanatory variable, 210
PROC LOGISTIC/PROC GENMOD, 209
PROC MEANS, 211
subgroup score, 210
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Chi-square test
CHISQ, 107
description, 105
SAS x2, 106
statistics, tabular data, 107–108

Cochran-Mantel-Haenszel (CMH) statistics,
131

Collinearity
COLLINOINT, 219
description, 217
patch, variability, 219
predictor variables, 219
Y variance, X1, 218

Concatenating/adding data sets, 62–63
Conditional expressions

IF-THEN-ELSE, 67–72
restricting IF statement, 72–73
with SAS dates

problems, 76
subset 9/11 data, 73–75

Confidence intervals, 147
Confounding

breast cancer, 126
control, study design, 128
exposure variable, 129
identification and control, 126–127
multivariate analysis, 128
stratified analysis, 128

Continuous data cleaning and assessment
problems and solutions, 156–157, 245–247
PROC BOXPLOT (see PROC BOXPLOT)
PROC MEANS/Redux, 139–142
PROC UNIVARIATE (see PROC

UNIVARIATE)
variables (see Continuous variables)

Continuous variables
confidence intervals, 147
degrees of freedom, 143
demonstration, central limit theorem, 145
description, standard deviation, 147
limited confidence, 147–148
mythical population, 146–147
normal, 148
Pearson correlation coefficient, 188
population, 144
sample variance, 143
square root, sample size, 144
standard deviation, 144, 146
standard error, 146, 147
strength, numbers, 145
sums of squares, 142

Correlation
chXexercise, 193
description, 187

ecological studies, 193
GPLOT syntax, 188
log transformation, 194
problems and solutions, 193–195, 248–251
PROC CORR (see PROC CORR)
PROC GPLOT, 187, 194–195
scatterplot age and height, 188, 189
scatterplot age and lung capacity variable,

188, 189
scatterplot patterns, 187, 188

D
Darroch, 183
Data set, SAS, 15
Deciphering error statements, SAS, 31–32
Degrees of freedom, 143
Delwhiche, L.D., 29, 47
Delwiche, L.D., 59
Descriptive statistics

problems
using PROC FREQ, 88
using PROC MEANS, 88
using PROC TABULATE, 88–89
variables creation from existing

variables, 87–88
PROC FREQ, 80–81
PROC MEANS, 79–80
PROC TABULATE, 81–89

Disease odds ratio, 121–122

E
EMF. See Enhanced metafile (EMF)
Enhanced metafile (EMF), 16, 17
Error messages, SAS

data set, creating, 34, 36
INFILE statement, 32, 33
log screen, 34, 35
number 1 and 10, 32
reading, data message, 32, 33
reviewing, raw data, 34, 35

“Exact” tests
calculation steps, 109
description, 108–109
PROC FREQ result, 110–111
p-value, 110
“tables” statement, 109

Exposure odds ratio, 123–124
External files, reading

INFILE statement, 26–28
informats, 29–30
INPUT statement, 28
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F
Farr, W., 69, 88
Fitness data, regression diagnostics

ch4outliers, 221–222
influential observations, 222
outlier macro, 223, 224
potential collinearity, 223
residual plot, “runtime” variable, 220, 221
SAS macros, 222–223
statistical citizens, 219
variance inflation factors, collinear variable,

224–226

G
Galton, 197
General linear model (GLM). See PROC GLM

H
Hennekens, 126
Histograms and plots

problems and solutions, 97–98, 241–242
PROC GCHART, 91–93, 97
PROC GPLOT, 93–98

I
IF-THEN-ELSE statements

ICD-9 codes, 69–70
log window, 70, 71
PROC CONTENTS, 70, 71
proc format, 67
PROC PRINT, 70, 72
SAS, 68

Illogically arrayed data, SAS
one observation per row, 37–38
one row per observation, 37

Infant birthweight and hospital charges
assumptions, 212
correlation, 212
linear regression, 212

INPUT statements
fixed columns/user-specified formats, 24
space-delimited and column input, 25–26

Inputting data, SAS
ascii/text format, 23
reading, 22
row/line, 22
single continuous array, 22
tab character, 23

Interpreting coefficients, linear regression
categorical predictor variables, 208–211
multiple linear regression, 211–212

L
LABELS, SAS, 46–47
Linear regression

description, 197
homoscedasticity, 199, 200
interpreting coefficients, 208–212
mean/average value, 198
method, least squares, 197–198
population relationship, 198
predictor and outcome variable, 197
problems and solutions, 212, 251–252
PROC REG (see PROC REG)
standard errors, 199
variance partition, 199, 200

LSMEANS
drug and disease, 179
F-test, 168
group means, 168, 169
multiple comparison methods, 168
pair-wise comparisons, 186
statistical significance, 168, 169
statistical test, 169
syntax, 168

M
Mantel-Haenszel chi-square test, 112
Mantel-Haenszel odds ratio

adjusted OR, 132, 133
Breslow-Day statistic

homogeneity, 133
and Tarones adjustment, 132

CMH measurement, 132
epidemiological data, 134
estimator, 132
PROC FREQ, 131
SAS, 2×2 table, 134
syntax, stratified contingency table

analysis, 134
Merging data sets using MERGE–BY

9/11 data set, 65–67
information, socioeconomic status, 63
SORT before MERGE, 64

Multiple regression, PRO REG
association, variable, 206, 207
description, 206
epidemiological processes, 207



256 Index

Multiple regression, PRO REG (cont.)
explanatory modeling, 208
null hypothesis, 206, 207
predictors and outcome relationship, 207

N
N-way ANOVA

categorical predictor variables, 175
descriptive statistics, 175
drug doses and disease types, 176–177
graphical assessment, interaction, 176, 177
group means, 176
interaction term, 175
LSMEANS statement, 178
statistical assessment, interaction, 177, 178
statistical significance, differences, 178,

179
systolic blood pressure means, 179

O
Odds ratio (OR)

adjusted (see Adjusted odds ratios)
disease (see Disease odds ratio)
epidemiologists, 120–121
exposure, 123–124

ODS. See Output delivery system (ODS)
One-way ANOVA

blood pressure measurements, 169
descriptive statistics, 169
drug dose, blood pressure, 175
group differences, boxplot, 171, 172
Leven’s test, homogeneity, 172, 173
normal plot testing assumption, 170, 171
PROC GLM ANOVA, 174
PROC GLM, residual data set, 171–172
residuals plotting, 172, 173
R2 statistic, 174
skewness and kurtosis statistics, 170
testing assumption, histogram, 170

OR. See Odds ratio (OR)
Output delivery system (ODS)

FORMAT, 54
formatting tables, 54
INFORMAT, 54
LABEL, 54
LIBNAME, 54
pdf, 53
PROC FORMAT, 54
SAS tool, 52
“sasweb”, 52

P
PDV. See Program data vector (PDV)
Preliminary procedures

creating and applying formats, 55
excel, 55
footnotes and titles, 44–45
FORMAT and PROC FORMAT, 47–51
LABELS, 46–47
ODS, 52–54
problems and solutions, 54–55, 235–237
PROC PRINT, 41–42
PROC SORT, 42–44
titles and labels, 55

Preterm labor and birth weight
calculation, OR, 124
nlevel table, 124
OR, stratum, 129, 130
OR, 2 x 2 table, 125
uterine irritability, 129

PROC
FORMAT, 47–51
PRINT, 41–42, 54–55
SORT, 42–44

PROC BOXPLOT
description, 153–154
maximum length, 155
SAS graphics, 154
syntax, log, 155

PROC CONTENTS, 70, 71
PROC CORR

coefficient of determination, 190
Dow Jones industrial average and asthma,

190, 191
influential observation/outlier, 192
non-linear relationship, 191
Pearson correlation coefficient, 188, 190
psychological sciences, 193
SAS code, 192
strength, correlation coefficient, 190

PROC FORMAT, 104
PROC FREQ, 104

ch5demo1 file, 81
cross tabulations, 80–81

PROC GCHART
GROUPVAR option, 92, 94
HBAR or VBAR statement, 93, 94
SAS, 91–92

PROC GLM
ANOVA, 163
class/group, variable, 166
coefficient of variation, 167
description, 163–164
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F statistic, 166
Levene’s test, 167
LSMEANS, 168–169
multiple comparisons, 167–168
PROC GENMOD, 164
PROC GLM run, 164
PROC UNIVARIATE statistics, 164
residuals plot, PROC GPLOT, 164
R2 statistic, 166
set, options and tools, 163
syntax, 165

PROC GPLOT
GPLOT syntax, 95
median household and capita income,

194–195
scatter plot, 187
SYMBOL statement, 94
syntax, 188
time series graph for surveillance, 96
WHERE statement, 94

PROC MEANS
ch5demo1, 79
results, 80

PROC MEANS/Redux
confidence interval, 142
continuous variables (see Continuous

variables)
“data = statement”, 141
default statistics, 140
hospital length, stay for infants, 141
infants04, 156
minimum and maximum values, 139
PROC PRINT, 140
SAS procedures, 142
syntax, 141

PROC PRINT, 70, 72
PROC REG

categories, individuals, 203
confidence and prediction intervals, 202,

205, 206
data set and model statement, 200
fitness data set, 204
F-statistic, 203
multiple regression (see Multiple

regression, PRO REG)
performance variable, 204
predicted values, 202
predictions, model, 204, 205
predictor and outcome variable, 203
regression model, 201, 202
residual analyses and diagnostics, 200
syntax, 204–205

PROC TABULATE
with additional dimension, 82, 85
with continuous variables, 83, 86

problems and solutions, 86–89, 238–240
for surveillance data, 84–85
TABLE statement, 82–83
with total, 82, 84
using PROC FREQ, 88
using PROC MEANS, 88
variables creation from existing variables,

87–88
VAR statement, 81–82

PROC UNIVARIATE
birthweight variable, 157
CIBASIC, 153
CLASS statement, 162
description, 148
extreme values, 151
histogram, 152
length-of-stay variable, 148
log, 148, 149
normality statistics, 164
normal plot, 152, 153
one-way ANOVA, 174
positive and negative kurtosis, 150
quantiles, 150
re-coded, 157
residual values, 162
right-skewed distribution, 149
skewness and kurtosis statistics

examination, 186
statistical, 149, 150
stem and leaf plot, 151

Program data vector (PDV), 30

R
Regression diagnostics

ANOVA, 213
Anscombe’s Quartet, 213, 215
collinearity (see Collinearity)
fitness data (see Fitness data, regression

diagnostics)
linear regression, 213, 214
outliers/influential observations, 217, 218
“oxygen consumption”, 213
problems and solutions, 229, 252
residuals redux (see Residuals redux)
SAS (see Statistical analysis system (SAS))

Reordering categorical variables
DATA step, 103
PROC FORMAT, 104
PROC FREQ, 104

Residuals redux
error/unexplained variance, 214, 215
outcome and predictor variable, 214
plots, 216
predicted values, 214
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Rich Text Format (RTF), 16, 17
Rothman, 122, 183
RTF. See Rich Text Format (RTF)

S
SAS. See Statistical Analysis System (SAS);

Statistical analysis system (SAS)
SASUSER, 21
“Sasweb”, 52
Schlesselman, 126
Schwartz, S., 182
SET statement

adding (concatenating) data sets, 62–63
conditional expressions using

IF-THEN-ELSE, 67–72
restricting IF statements, 72–73
with SAS dates, 73–76

DATA step, 57
merging data sets, 63–67
problems and solutions, 76, 237–238
variables creation (see Variables creation,

SET statement)
Slaughter, S.J., 29, 36, 47, 59
Space-delimited and column input

editor window, 26
output screen, 25, 27
SAS variability, 25
viewing data, 25, 28

Spearman correlation coefficient
ASE, 114
MEASURES statement, 113

Standard deviation
continuous variables, 79
vs. mean, 144
measurement, 144
minimum and maximum values, age,

80
predictor and response variable,

201
sample variance, 144
standard error, 146

Statistical analysis system (SAS)
automated selection procedures, 227
blood test, 39
caution, 21
character and numeric, variability, 15
“CNTRL-E”, 16–17
comments, 11–12
data input miscellany, 38
data sets, 4–5, 15
DATA steps, 13–14
deciphering error statements (see

Deciphering error statements, SAS)
demonstration, program, 12–14

description, 1
EpiInfo, 2
error messages (see Error messages, SAS)
excel, 2
external files, reading (see External files,

reading)
grey boxes and hyperlinks, 5
illogically arrayed data, 37–38
importing excel spreadsheets, 38–39
INPUT statements, 24–26
inputting, 21–23
LIBNAME command, 40
libraries, 19–20
model selection tools, 225–227
partitioning sums, squares, 228
PDV, 30
principle disadvantage, 2–3
problems and solutions, 17–18, 38–39,

234–235
PROC contents, 17–18, 21, 22
PROC step, 13–14
program editor, 9, 10
programming language, 4
R. A popular open-source freeware, 2
reading, editor window, 23–24
reading output and commands, submission,

17
RUN statement, 35
SASUSER, 21
screen, 9, 10
“sparcs layout” text file, 39–40
SPSS, 2
statements, 11
study designs, 3
SUDAAN, 2–3
syntax tests, 228
“type I and II”, 228
utilities, 16

Susser, E.S., 182
SYMBOL statement, 94, 98

T
Titles and footnotes, SAS, 44–45, 55
Tukey, J., 151

V
Variables creation, SET statement

basic format, 58
examples, 60–62
functions, 59
operations, 58–59

W
WHERE statement, 41, 89, 94, 97
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