
Use R !

Cedric Gondro

Primer to Analysis
of Genomic Data
Using R

Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Use R!

Kolaczyk / Csárdi: Statistical Analysis of Network Data with R (2014)
Nolan / Temple Lang: XML and Web Technologies for Data Sciences with R (2014)
Willekens: Multistate Analysis of Life Histories with R (2014)
Cortez: Modern Optimization with R (2014)
Eddelbuettel: Seamless R and C++ Integration with Rcpp (2013)
Bivand / Pebesma / Gómez-Rubio: Applied Spatial Data Analysis with R

(2nd ed. 2013)
van den Boogaart / Tolosana-Delgado: Analyzing Compositional Data with R

(2013)
Nagarajan / Scutari / Lèbre: Bayesian Networks in R (2013)

Cedric Gondro

Primer to Analysis of
Genomic Data Using R

123

Cedric Gondro
Ctr. Genetic Analysis and Applications
University of New England
Armidale, NSW, Australia

.

ISSN 2197-5736 ISSN 2197-5744 (electronic)
Use R!
ISBN 978-3-319-14474-0 ISBN 978-3-319-14475-7 (eBook)
DOI 10.1007/978-3-319-14475-7

Library of Congress Control Number: 2015934220

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

http://extras.springer.com
www.springer.com
www.springer.com

To Placido, Walburga, Simone and Sean

Preface

Overview

Just about any text written on the analysis of genomic data will begin by mentioning
the rapid pace of changes in the field. How the technology is frantically moving
forward and how datasets are getting bigger and bigger. A huge experiment one
year is just a tiny proof of concept the following year. Databases are growing
exponentially. The literature on even quite specific subjects is overwhelming and
we have to decide if we are going to keep up to date or actually get some of the
work done.

It feels that just a few years ago, a genome scan with 300–400 microsatellite
markers was a pretty big deal (in truth, it really was just a few years ago)! Then along
came the 10k SNP chip, then the 50k, the 500k, and then, of course, the one, two,
and three million SNP arrays. Full individual sequence data is rapidly becoming the
platform of choice. At 10x coverage, that’s around 30 billion nucleotide reads per
patient/animal/sample in the unprocessed fastq files.

Of course, we cannot manually operate at this kind of scale anymore. Data
analysis became heavily dependent on computers and efficient algorithms to sift
through the sea of data and make sense out of it all.

A plethora of computational tools have been written to cope with this high
volume of data. Most of these have been developed to tackle specific problems,
and even if they excel in their specific task, they may not be ideal for automated
processes—the output of one tool is not in an adequate format for another tool
further down the analysis pipeline. This leaves us with the task of finding out which
tools are available for each step in an analysis, choosing the ones that meet our
needs, figuring out how each one works, and sewing them together. Alternatively,
some software (usually commercial, a.k.a. costs money) will seamlessly handle
a full analysis from beginning to end, but the user is restricted to the choice of
algorithms coded into the program, there’s less flexibility in what can be done, and
there’s always a lingering feeling of black box about it. In recent years, R [90],
a statistical programming language and environment, has become popular for the

vii

viii Preface

analysis of genomic data and even further has become the de facto tool for the
analysis of gene expression data. R provides an integrated development environment
for analysis and at the same time flexibility and full control of the analytic workflow.

In this book, we will focus on using R for the analysis of genomic data and how
to set up routines to automate the analytical steps. We will not cover all that R can
do (that in itself would be a rather large book and there are some very good ones
already), but we will focus on some of the key points relevant to the analysis of
genomic data: less emphasis on the theory and more emphasis on a practical hands-
on, how to get the job done approach. The purpose of this book is to serve as a
companion text for advanced undergraduate and graduate units in genomic analysis
and bioinformatics and can be used as the practical component in lab sessions. The
book should also be of use to researchers who want to use R for the analysis of
genomic data.

Strictly speaking, no previous knowledge of R is necessary—the first chapter
covers some of the basics, but readers will definitely benefit from some prior
exposure to R. Familiarity with undergraduate level biostatistics and genetics is
assumed.

I am mainly involved with livestock projects, so there is a very strong bias toward
examples in this area. This is probably not such a bad thing since livestock lies
between the genetics of humans, mice, and a few other model organisms for which
the computational tools and sources of information available are quite mature, while
on the other extreme we have species for which there are no commercial platforms,
limited biological information in the databases, and none of the tools can be used
out of the box. Livestock, e.g., cattle, sheep, and pigs, are an excellent resource to
work on because we are forced to adapt methodologies to fit our needs, but at the
same time we have sufficient resources to explore most of the facets at the cutting
edge of genomic research.

What This Book Is About

• Understanding the basics of R needed to analyze genomic data
• R packages available for genomic analysis
• How to work with and manipulate large data files
• Building and using databases to store and retrieve data
• The importance of preprocessing and quality control with genomic data
• Principles of genome-wide association studies
• Principles of genomic prediction
• Principles of gene expression analysis
• Working with public databases to extract biological information
• Principles of population genetics
• Automation of analyses
• How to speed up R for high-throughput analysis
• How to use stand-alone software as part of an analysis pipeline in R

Preface ix

What This Book Is Not About

• A comprehensive overview of R syntax and programming
• Theoretical biostatistics
• Animal breeding
• And of course, as the title suggests, we will only scratch the surface of each topic

A Note on R

While this book is static (at least until the next edition), R is dynamic. Things can
change rather quickly in R (but that’s also true for the gene technologies). Add-on
packages can change quite significantly from one version to the next, they might be
replaced by another package, or they may simply not be maintained anymore. This
constant state of flux can be aggravating at times, particularly when you have a long
and complex analysis script that breaks down under a new version. And of course,
these changes will do no favors to the book. Over time some things are bound to
break down. Keep this in mind as you read/work your way through the book, and
remember that the web is your friend to help figure out what went wrong because
new versions were released.

This book was prepared using R version 3.1.1 and packages from Bioconductor
2.14. The focus is on the Windows version of R, but the examples should port to
Linux or Mac without the need for any changes.

Data

All datasets used throughout the book can be downloaded from the publisher’s
website. There’s one folder for each chapter, so it should be quite straightforward to
match them together. Many R books provide accompanying datasets as R packages.
I have decided to provide raw and untreated data in the exact same format as I
routinely encounter. One of the key points of this book is on how to handle genomic
data and this is best achieved by working sequentially through each step of the
process and discussing the common data cleaning issues and pitfalls. The downside
of this is that there are some rather lengthy data cleaning steps and readers will find
it hard to skip around chapters without performing the previous steps.

Analysis of genomic data is computationally intensive in whatever way you
look at it. And this of course is just a way of saying that you’ll be spending
more time in front of the monitor waiting for results than you would like to.
Efficient programming can go a long way to reduce these waiting periods, but the
computational resources available will also play a key role in the process—with a
lot of processors, jobs can be parallelized; with a lot of memory, there will be no

x Preface

need to shuffle data between memory and disk. Unfortunately efficient programming
ultimately is linked to computational resources. The best solution for a high-end
machine might not be adequate for more modest resources; the job might simply
run out of memory and crash. Here I have sought a balance that favors lower end
resources at the expense of efficiency: any current personal desktop will run these
examples in a reasonable time frame. From time to time throughout the chapters, we
will also discuss some more efficient approaches in case the computational grunt is
available.

Acknowledgments

Foremost, I would like to thank all the students who took the Genomic Analysis
course with me; your feedback and comments on preliminary versions of this book
have greatly improved its content and structure. Thanks also to Brian Kinghorn,
John Gibson, Julius van der Werf, and Sam Clark, my colleagues, and friends at
UNE for the many fruitful discussions we have had over the years—some sections of
this book are based on notes developed by them. Thanks also to Laercio Porto-Neto
and Hawlader Al Mamun for permission to use some text written by them. I also
acknowledge funding support for this work from the Next-Generation BioGreen 21
Program (No. PJ009954), Rural Development Administration, Republic of Korea,
and the Australian Research Council (DP130100542).

Armidale, NSW, Australia Cedric Gondro

Contents

1 R Basics . 1
1.1 Why R?. 1
1.2 Installing R . 3
1.3 Packages and Bioconductor . 5
1.4 R 32-Bit or 64-Bit? . 7
1.5 Getting a Handle on R . 7
1.6 Importing and Manipulating Data . 11
1.7 Plots and Descriptive Statistics . 18
1.8 Saving Results . 24
1.9 Some Help on Help . 26
1.10 Where to Go from Here? . 27

2 Simple Marker Association Tests . 29
2.1 Introduction to Markers . 29

2.1.1 Microsatellites . 31
2.2 Case–Control and Family-Based Association Studies 32
2.3 Discrete and Quantitative Traits . 33
2.4 Additive, Dominant, and Recessive Models . 34
2.5 A Worked Out Example . 34
2.6 Useful R Books and Packages . 71

3 Genome Wide Association Studies . 73
3.1 From Microsatellites and Linkage Analysis to SNP

and Genome Wide Association Studies . 73
3.1.1 Single Nucleotide Polymorphism . 74
3.1.2 Genome Wide Association Studies . 74

3.2 Experimental Design . 75
3.3 Platforms .. 76
3.4 Preprocessing and Quality Control . 77

3.4.1 Storing and Handling Data . 77
3.4.2 Quality Control . 83

3.5 Single SNP Analysis . 95

xi

xii Contents

3.6 Multiple Testing . 102
3.7 What Next . 103
3.8 Useful R Packages .. 103

4 Populations and Genetic Architecture . 105
4.1 Beyond Genome Wide Association Studies . 105
4.2 Matrix Algebra. 106

4.2.1 Loops and Vectorization . 106
4.3 Matrix Operations in R . 109
4.4 SNP Best Linear Unbiased Prediction .. 111
4.5 Genomic Prediction.. 124

4.5.1 Prediction with snpBLUP . 126
4.5.2 Prediction with gBLUP . 132

4.6 Population Genetics . 135
4.6.1 Signatures of Selection . 136
4.6.2 Other Population Estimates . 140
4.6.3 Genetic Distances . 141

4.7 Parentage Testing . 152
4.8 Useful R Books and Packages . 160

5 Gene Expression Analysis . 163
5.1 Introduction to Gene Expression Analysis . 163

5.1.1 Platforms for Expression Profiling . 164
5.2 Experimental Design . 167
5.3 Gene Expression Data . 168
5.4 Preprocessing and Quality Control . 169

5.4.1 Importing Gene Expression Data into R . 169
5.4.2 Quality Control . 172
5.4.3 Preprocessing .. 179

5.5 Analysis of Differential Expression . 185
5.5.1 Multiple Testing . 192
5.5.2 Differential Expression of RNA-Seq . 193

5.6 Useful R Packages .. 199

6 Databases and Functional Information . 201
6.1 Introduction to Databases . 201
6.2 Gene Annotation .. 202
6.3 Gene Ontology .. 212
6.4 Pathway Analysis, Physical Mapping, and Protein Domains 218
6.5 Useful R Packages .. 220

7 Extending R . 221
7.1 Large Data–Large Problems . 221
7.2 Improving Read and Write Operations in R . 222
7.3 Byte-Code Compiler. 226
7.4 Managing Memory . 227
7.5 Parallel Computation . 230

Contents xiii

7.6 External Interfaces in R . 236
7.6.1 Linking R to C++ . 241

7.7 Using R Inside Other Applications . 245
7.8 Reporting in R . 247
7.9 Summary .. 251
7.10 Useful R Books and Packages . 252

8 Final Comments . 255
8.1 The Future: Polishing the Crystal Ball . 256

A Example QC Report for GWAS Data . 257

References . 265

List of Figures

Fig. 1.1 Screenshot of R console . 4
Fig. 1.2 Startup properties for R console . 5
Fig. 1.3 Screenshot of Tinn-R . 9
Fig. 1.4 Barplot of allele counts . 20
Fig. 1.5 Barplot of pooled allele counts . 21
Fig. 1.6 Boxplot of weights for all animals . 23
Fig. 1.7 Boxplot of weights for all animals separated by allele class. 24
Fig. 1.8 Density plot of weights for all animals . 25
Fig. 1.9 Sorted plot of weights for all animals. 26

Fig. 2.1 Screenshot of raw sire data . 35
Fig. 2.2 Plot of weights . 39
Fig. 2.3 Boxplot of weights by sire . 42
Fig. 2.4 Boxplot of weights by sex . 42
Fig. 2.5 Density plot of weights . 43
Fig. 2.6 Plot of weights color coded by sex. 44
Fig. 2.7 Plot of allelic and genotypic frequencies for marker 1. 49
Fig. 2.8 XY plot of fitted values versus residuals . 55
Fig. 2.9 QQ plot . 56
Fig. 2.10 Effect sizes plot . 67

Fig. 3.1 Accuracy× heritability . 76
Fig. 3.2 Screenshot of SNP chip data . 78
Fig. 3.3 XY plot of intensity reads . 86
Fig. 3.4 Example of a good quality SNP. 87
Fig. 3.5 Example of a bad quality SNP . 88
Fig. 3.6 Sample heterozygosity.. 93
Fig. 3.7 Heatmap of sample correlations.. 95
Fig. 3.8 Density plot of 83 animals . 99
Fig. 3.9 Plot of negative log odds . 102

xv

xvi List of Figures

Fig. 4.1 Single SNP regression analysis . 114
Fig. 4.2 Single SNP regressions× snpBLUP . 120
Fig. 4.3 Plot of SNP effects. 121
Fig. 4.4 Manhattan plot of GWAS . 123
Fig. 4.5 Observed phenotypes versus predicted values using snpBLUP 128
Fig. 4.6 True genetic values versus predicted values using snpBLUP 129
Fig. 4.7 Prediction in validation population . 131
Fig. 4.8 FST per SNP . 139
Fig. 4.9 Extent of LD in hanwoo .. 145
Fig. 4.10 Extent of LD in three unrelated populations.. 146
Fig. 4.11 Allele sharing tree . 147
Fig. 4.12 Heatmap of GRM . 149
Fig. 4.13 SVD of GRM . 151
Fig. 4.14 Heatmap of family relationships . 155
Fig. 4.15 Counts of opposing homozygotes .. 157
Fig. 4.16 Percentage of correct parentage assignment . 161

Fig. 5.1 fastq file . 171
Fig. 5.2 Example of a bad quality slide . 173
Fig. 5.3 Example of a good quality slide. 174
Fig. 5.4 Relative log expression plot from a fitted PLM .. 175
Fig. 5.5 Boxplot and histogram of raw probe level log intensities. 175
Fig. 5.6 Plot of array–array Pearson correlation .. 176
Fig. 5.7 Cycle quality . 178
Fig. 5.8 Boxplot and histogram of normalized probe set log intensities 182
Fig. 5.9 Plot of first and second principal components .. 183
Fig. 5.10 bowtie2 .. 185
Fig. 5.11 MA plot . 190
Fig. 5.12 Volcano plot . 191
Fig. 5.13 Plot of sorted RNA-seq counts . 195
Fig. 5.14 Mean–variance .. 198

Fig. 6.1 Screenshot of NCBI’s EntrezGene website. 203
Fig. 6.2 Affymetrix bovine database in SQLiteStudio . 210
Fig. 6.3 Screenshot of Gene Ontology website . 213
Fig. 6.4 Tree plot of MF . 217
Fig. 6.5 Pathway of cysteine metabolism . 218

Fig. 7.1 Running batch jobs with Rcmd . 232
Fig. 7.2 Parallel performance .. 235
Fig. 7.3 UPGMA phylogenetic tree . 240
Fig. 7.4 Screenshot of AffyPipe . 246
Fig. 7.5 Screenshot of R running in a C# GUI. 247
Fig. 7.6 Sample Sweave report . 250
Fig. 7.7 Sample HTML report . 252
Fig. 7.8 Screenshot of HTML report generated by AffyPipe 253

Chapter 1
R Basics

In this chapter we will cover the basic steps for getting started in R. We will discuss
the pros and cons of R, how to install the software and additional packages, and
some suggestions on how to set up the machine to use R efficiently. We will also see
how to read, manipulate, summarize, plot, and save data—the cornerstones of any
analysis.

1.1 Why R?

Before praising R’s many virtues a short overview is in order. R is a software
environment and programming language for statistical analysis. It is similar to the
S language and a lot of code written in S can be used straight with R. Originally
written by Robert Gentleman and Ross Ihaka from the University of Auckland, R is
currently developed by the R Development Core Team [90]. At the time of writing
the current version is 3.1.1.

In recent years R has become the de facto choice of many statisticians and
is widely used to teach statistics courses at universities. Dozens of books have
been published about R itself or on the use of statistical methodologies which
are illustrated using the R environment. This book is part of a series published by
Springer called Use R! which already has over 50 books published.

Now, going back to the title of this section, why R? For starters, it’s free. Of
course cost should never be the only determinant, but then again, R is free! The
concept of free extends beyond just cost. R is free to use, is free to modify, is open
source, and is platform free. What this essentially means is that it is easy to work

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-14475-7_1) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_1

1

http://dx.doi.org/10.1007/978-3-319-14475-7_1
http://dx.doi.org/10.1007/978-3-319-14475-7_1

2 1 R Basics

across platforms (e.g., Windows, Mac OS, and Linux), you can embed R into your
own applications and you can change the code to suit your needs. R is released under
the GNU public license.

Since R is a programming environment (and a programming language in its own
right) users can write their own code to address particular needs without being
restricted to predetermined types of analyses. Of course this comes at the cost of
having to learn the syntax of the language—even though some point and click
graphical interfaces have been developed, for example R Commander [36] which
wraps R in a graphical environment for simple statistical analyses or AffyPipe
(details in Chap. 7) for Affymetrix microarray analyses.

R consists of a base installation and can be extended through packages (some-
what the equivalent of programming libraries). There are thousands of packages
available to tackle a wide range of problems. These packages are developed inde-
pendently from the core program and can be downloaded from central repositories
or, less frequently, directly from the developers’ web sites. And this is probably the
key feature of R. Chances are that someone has already written a package that will
do what you need, saving hours or days of programming it yourself. Packages can
be used together allowing the output of a function in one package to be used as
the input for a function in another package—essentially you have at your fingertips
an overwhelming set of building blocks. Just to illustrate, this book was written
entirely in R.

And this brings us to why use R for analysis of genomic data. There are hundreds
of packages specifically available for this task. There are packages for importing a
wide range of data formats, preprocessing data, performing quality control tests, for
the actual analytical steps, downstream integration with biological databases, and
so on. A large number of new algorithms and methods are published and released
as an R package at the same time, thus providing quick access to the most current
technologies without the slow turnover time of commercial software. Of course,
there’s the risk that you will be the first to find out that the new hot algorithm is not
really so cool!

But it’s not all joy; the learning curve for R is pretty steep. The syntax, well,
consider that packages are freely contributed by hundreds of developers across the
world, there are no formal naming conventions and R is case sensitive! I’m sure
you get the picture. For example, if you want to plot a heatmap it’s anyone’s guess
if the syntax is Heatmap, heatmap, HeatMap, HEATMAP or, why not, heat.Map.
And to add insult to injury many packages implement similar functions, such as the
following real heatmap examples: hclusterPlot, matrixPlot, heatmap, heatmap.2,
heatmap_2, heatmap_plus, heatplot, and so on. So it can become quite taxing to
remember the name of the package, the name of the function in the package, and
the proper casing. This of course does not sit well with those who, such as myself,
by noon do not seem to remember quite well what they had for breakfast. Of course
there are always the help files, but they are usually unhelpful, unless you know the
exact name of the function you are looking for (don’t believe me? Try to search for
how to invert a matrix). And web searches have to be carefully worded or they will
not be of great assistance either—have you ever thought of how non-informative the

1.2 Installing R 3

letter R is for searching the web? As a tip, when searching online try r statistics—
that helps. Searches with “how to . . . using R” also usually return meaningful results.

Of more practical importance is that genomic datasets have become extremely
large and R was not designed for memory efficiency. There is however a strong
drive in the R community to develop tools to handle these ever increasing in
size datasets and new approaches/packages are continuously being developed. It is
frequently intractable to load the entire dataset into memory and forget about using
32-bit Windows with its around 2 GB limit per process regardless of how much
memory you have available. Some workarounds for this dimensionality problem
are discussed in Chap. 3 but they will impact negatively on runtimes.

Another common comment is that R is slow, given that it is a scripted language
and not a compiled one. This is not necessarily true since computationally intensive
operations are usually written in C or Fortran and linked from within R. Of course
we can be pedantic and say that real R is slow, but the practical result is that R is
(or could be) just as fast as C or Fortran because that is what’s running under the
hood. Even though we are now in the criticise R section, I should highlight that
since we can dynamically link to code in C or Fortran (and also other languages to
various degrees), this opens the possibility of (1) using prior code or (2) developing
code specifically tailored for solving a computationally intensive task and sending
the results back into R to make use of its resources (e.g., plotting—R excels at it).

Time to get started with R. . .

1.2 Installing R

You can download the source code for R and compile it yourself or download
binaries for quite a few platforms available from http://www.r-project.org/. Here
we will focus on the Windows release, but most of the examples we will cover can
be run on any platform without changes.

To install, download the executable (around 40 MB), double click to start it up,
and then click on the usual next, next, next . . . with a couple of options in between.
The current version installs two versions of the R executable, a 32-bit and a 64-bit
version if you are running a 64-bit version of Windows (only the 32-bit version is
installed on 32-bit Windows). If you are using Mac OS, the R binary also installs
32- and 64-bit versions. Once installation is complete, to open R find the R folder
in the Start Menu and click on R or R x64. This will open the R console (Fig. 1.1)
and you are ready to go.

But before we start analyzing data, a couple of handy tips should be mentioned.
If you right click on the shortcut to R and then on properties you will get the window
shown in Fig. 1.2. You will see that in the path window a flag was added to increase
memory, you’ll really only need this if you are running the 32-bit version of R (the
64-bit version uses all the machine’s memory by default). For example to increase

http://www.r-project.org/

4 1 R Basics

Fig. 1.1 Screenshot of R console

memory to 4G (maximum in R32 running Windows64) add to the path --max-mem-
size=4000M. On shared resources, this flag can also be used to limit the maximum
memory available to R.

You will also want to be able to access the internet from R (e.g., to install new
packages). This may not be a problem, but many companies/universities use proxies
to access the internet and you will have to tell R how to get out there. The proxy can
be set up manually from within the R console, but it’s very annoying when you set
a job up to run over the weekend only to come in on Monday morning and find out
that the program is waiting for you to type in your user/password and has not even
started the run! To avoid this kind of grievance just add another flag to the path:

--vanilla http_proxy=http://proxyname.edu.au:8080/
http_proxy_user=username:password

The 8080 is the port number, it will normally work. Another common port to
try is 80. You’ll find the proxyname in your browser under settings or ask your IT
administrator. Note that you’ll leave your username and password exposed as plain
text.

You can also run R from a DOS shell (cmd—Command Prompt) by simply typing
R in the command line. Just note that you will either have to be in the directory
with R.exe or add it to your path. The default path for the executables are R-
X.XX.X\bin\x64 for the 64-bit build and R-X.XX.X\bin\i386 for the 32-bit build.
Linux and Mac OS add R to the path during installation.

Still in Fig. 1.2 there is the field Start in. Here you can change R’s default start up
directory. When you run R this becomes the active working directory, meaning that
if no path is given, this is where R will try to read files from or write output to. Not
being in the right directory is a common source of frustration when getting started
with R. We will discuss this later on but in the meantime it is not a bad idea to set
the start up directory to a meaningful path (e.g., C:\Rprojects).

http://proxyname.edu.au:8080/

1.3 Packages and Bioconductor 5

Fig. 1.2 Startup properties for R console in Windows. Alongside the path, options for memory
size and proxy settings can be added

1.3 Packages and Bioconductor

As previously mentioned, one of the strong points of R is the availability of a huge
number of packages to perform different tasks. From the R console, click on the
menu Packages. The submenu will offer the choice to load a package that has
already been installed; select the mirror (Set CRAN mirror) from which to download
packages (choose one close to you—it’s usually faster); Select repositories, Install
package(s), Update packages, or Install package(s) from local zip files.

6 1 R Basics

Note that the options in the console’s menu are simply a point-and-click way
to execute a command instead of typing it in directly on the console. For example,
using the command line in R, the mirror from which to download packages can be
set to, e.g., Melbourne in Australia with:

local({r = getOption("repos"); r["CRAN"] = "http://cran.ms.unimelb.edu.au";
options(repos=r)})
A list with the URLs for the mirrors can be found at
http://cran.r-project.org/mirrors.html

Windows packages come as compressed (zipped) files and can be manually
downloaded to your machine (not using R) and then installed using the option Install
package(s) from local zip files. Alternatively, packages can be downloaded and
installed straight from R. From the command line you can use download.packages,
update.packages, and install.packages. Be aware of dependencies, packages that
need other packages to work properly. The command line option is a safer choice
since it will check for dependencies and download/install them for you. Also
remember to set the repositories. If say, a package from Bioconductor is needed and
the repository is not set you will not be able to download and install the package.
In the R console it’s simply a matter of selecting the repositories from the popup
window. In the command line use: setRepositories(graphics=F, ind=1:6)

For analysis of genomic data your one stop shop is Bioconductor. Bioconductor is
the repository that holds a large number of packages needed for analysis of genomic
data. The link to Bioconductor is http://www.bioconductor.org/ . There you will
find details on how to install packages and groups of packages. There’s also lots
of information on Bioconductor in general and the various packages. The current
version is 2.14.

The easiest way to get started is to download and install the most common
packages. In the console type

source(“http://bioconductor.org/biocLite.R”)
biocLite()

To install a particular package use biocLite(“packagename”). To download and
install everything use biocLite(groupName=“all”), but be warned that this is a very
large installation and definitely not recommended!

Packages are normally installed in the same directory as R, inside a folder called
library. There’s one folder for each package—makes it easy to see what you have
installed and to make any changes to a particular package. This all works well if
you have unrestricted privileges on the machine. In shared environments you will
probably not have write permission to install packages (in Linux, unless you are
running R as root this will always be the case) or you might just want to maintain
some packages in a different location. For these cases, create a personal library for
yourself. That’s quite simple from the command line; just add the path to your new
library when installing packages. For example to download and install a package
with all dependencies to the folder c:/myRlibrary:

install.packages("PackageName", dependencies=TRUE, lib="c:/myRlibrary")

http://cran.ms.unimelb.edu.au
http://cran.r-project.org/mirrors.html
http://www.bioconductor.org/
http://bioconductor.org/biocLite.R

1.5 Getting a Handle on R 7

But R will need to know where to find this library so that it can load packages
from it. For this, before trying to load a package, you have to tell R what is the path
to your library:

.libPaths("c:/myRlibrary")

And if you do not want to do this each time, add the path to the text file
Rprofile.site which is found in the etc folder in the R directory (you’ll need write
permission to modify this file, of course!). Another option is to add another flag in
the startup properties (as in Fig. 1.2): R_LIBS_USER="c:\myRlibrary".

1.4 R 32-Bit or 64-Bit?

If you are using a 32-bit version of Windows you will have no choice. You can
only use R32. If you are running a 64-bit version of Windows you can run R32
or R64. There can be quite a few technical arguments as to which version to run
but in practice it mainly comes down to memory. If you have more than 4 GB on
your machine you’ll probably want to be able to use it, so stick to R64. Some old
packages that are not being maintained anymore might only have a 32-bit version,
but you will also need an older compatible version of R to run them. The short
version is that the world is now 64-bit, 32-bit environments are too constrained for
handling genomic data.

1.5 Getting a Handle on R

As soon as you open the console, you are ready to start using R. R can be used as a
calculator if you wish. For example at the prompt type in

> 43.7*572

[1] 24996.4

and R will give you the answer. Note that by default, input (user commands) is
shown in red and output in blue. Just as an aside, pressing enter does not necessarily
execute the command. For example, you could do the same simple multiplication
across two lines

> 43.7 *
+ 572

[1] 24996.4

and R will wait until the second value is inserted before multiplying the two
numbers. Note that the prompt has changed from > to +, meaning that the console

8 1 R Basics

is waiting for additional input. From now on, the + symbol at the start of code line
simply means that it is a continuation from the previous line. The > symbol at the
start of a line means R is ready to receive the next command.

Of course it’s more useful if we can store the results for future use. For this use
variables. For example

> aa<-43.7
> bb<-572
> cc<-aa*bb

now cc holds the result. To see the value of cc just type

> cc

[1] 24996.4

or

> print(cc)

[1] 24996.4

The symbol <- means assign or allocate. In R you can allocate values to the left
(<-) or to the right (- >). a <- 43.7 is the same as 43.7 - >a. Current versions of R
also accept the use of =. So you could also use a=43.7. It is recommended to use
<- and - > in R and considered good practice. I personally don’t care! I’d rather use
one keystroke than two (plus shift). From now on the = symbol will be used. Just
be aware than it is frowned upon!

You can run an entire analysis just typing commands straight into the console.
This works well for simple one-off jobs. But most of the time you will be better
off by writing a script to perform the tasks you want done and then running it. And
by the way, scripts are just a sequence of instructions/commands to be performed.
There are several reasons to favor scripts. Many tasks are repetitive—the same script
can be used on different datasets. Repeatability—with scripts you always know what
you actually did and you can repeat the analysis. Modularity—scripts to perform
specific tasks can be combined to perform a larger analysis; over time you will have
a nice collection of scripts to choose from. Efficiency—some routines can take a
long time to run, it’s annoying to stare at a screen for 10 min waiting to write the
next line of code.

R Console has a simple editor that can be used to write scripts. But since scripts
are simply text files, any text file editor can be used. In Windows a really nice R
editor is Tinn-R (Fig. 1.3) which is freely available from

http://sourceforge.net/projects/tinn-r

In Linux, Emacs is a good option; and for Macs, the R editor is reasonable (there
is some limited color coding) but TextWrangler is a better choice. Note that you
need to install the program and an R syntax highlighting definition file which can
be downloaded from the R website (from the main page click on the link other; R

http://sourceforge.net/projects/tinn-r

1.5 Getting a Handle on R 9

Fig. 1.3 Screenshot of Tinn-R with a simple script

GUIs and then IDE/Script Editors). On this same page you will also find a large
list with many other editors for the three platforms. There are also fully fledged
development environments for R (IDEs); Rstudio has become very popular over
the last few years. Revolution, a commercial version of R (free for academic use)
integrates R with Microsoft’s Visual Studio.

To run the script in Fig. 1.3 click on File in the R console and then on Source R
code. . . , this will open a window to choose the script you want to run. Alternatively
use the command source and the name of the file on the command line. For example

> source("chapter1/Sc1.r")

[1] 24996.4

Notice that when using the Source R code. . . option from the menu bar to run a
script the console will still output source(“scriptname.r”). Menu options are just a
point and click equivalent to commands.

In the example we used “chapter1/Sc1.r”. This is because the script was not in the
same directory as the current active working directory (if it is you only need to write
the name of the script). In this case we did not have to give the full path but only
the folder and script name because the script is in a subfolder within the working
directory. If the script was in a completely different folder, we would have to use

10 1 R Basics

the full path (e.g., “c:\SomewhereElse\Sc1.r”). To find out the current working
directory type getwd() and to change it use setwd(“newpath”). Or from the menu
bar use File and Change dir. . . .

Throughout the book we will consider that our working directory is one level
above the chapter we are working on (for argument sake let’s say our working
directory is primer and there’s a separate folder for each chapter).

> getwd()

[1] "C:/primer"

One last comment before we get back to the script. Notice that a forward slash
is used to specify the path instead of the usual Windows backslash. This is a nice
feature in R which helps keep scripts portable across platforms (Linux and Mac
use the forward slash for paths). In Windows the R interpreter converts the forward
slash into a backslash. It is possible to use the backslash as well but then it has to be
double, i.e., two backslashes (\\). We’ll discuss the reasons for this later on.

Now back to the script. And we get the exact same result as before using the
console. Note: when using scripts the print function must be used to explicitly output
results to the console, just writing the variable name will not work.

Once the script has run, results (e.g., variables—aa, bb and cc) are stored in the
current R session. It might be useful to keep these results for future use. There are
two main options, either save to text files (more details in the next section) or save
the whole R session (a.k.a. workspace):

> save.image("chapter1/myworkspace")

and to load a saved workspace:

> load("chapter1/myworkspace")

Alternatively, workspaces can be saved/loaded using the console’s menu
(under File).

The workspace holds all variables available in the session. To list all vari-
ables type

> ls()

[1] "aa" "bb" "cc"

It is good practice to remove variables that are no longer necessary. The function
for this is rm. Let’s remove the variables aa and bb.

> rm(aa,bb)
> ls()

[1] "cc"

To remove everything use rm(list=ls()), but make sure that you really do not need
any of the variables anymore!

1.6 Importing and Manipulating Data 11

Many genomic datasets come as flat (text) files and the structure of these files is
not necessarily well documented. Alongside R and a good R editor or IDE, a text
editor/viewer capable of opening large data files comes in handy to have a quick
look at what’s inside the file (e.g., how many lines of comments to remove before
the actual data starts). One of my favorites is TextPad

http://www.textpad.com/download/index.html

It’s a shareware product costing around US$30.00, but quite worth the price.
Unfortunately it will not handle really large datasets (e.g., large fastq files). Some
options for large datafiles include:

Large Text File Viewer—http://www.swiftgear.com/ltfviewer/features.html
EmEditor—http://www.emeditor.com/#download
V File Viewer—http://www.fileviewer.com/Download.html

In Linux or Mac OS the terminal programs more or less can be used. If it’s just
a matter of having a quick peek at the data, the R readLines function does the job
well. For example to see the first 3 lines of the script sc1.r use

> readLines("chapter1/sc1.r",n=3)

[1] "# simple script example"
[2] ""
[3] "aa = 43.7 # assign value"

where n is the number of lines to read.

1.6 Importing and Manipulating Data

Data is usually stored in binary format, as a flat text file or in a database. Here we
will concentrate on text files and in Chap. 3 we will show some examples of how to
work with databases. Binary data is a rather complex topic and will not be discussed
here (we will however discuss how to save data in binary format to use in R). For the
more common sources of data (e.g., Affymetrix CEL files or BAM sequence files)
packages to deserialize the binary files are readily available. The reader interested
in the topic might find [39] useful.

The most common type of data is in tabular format (rows× columns). The R
function to read tabular text files is read.table. There are quite a few argument
options, for details type ?read.table (note: documentation for a command can be
accessed by ?function_name or search using help.search(“search string”)).

For example, to import a data file called snps.txt into the variable mydata:

> mydata=read.table("chapter1/snps.txt",
+ header=T,sep="\t")

Recall that the plus (+) symbol simply means that the input continues on the next
line. And to see the contents of the file:

http://www.textpad.com/download/index.html
http://www.swiftgear.com/ltfviewer/features.html
http://www.emeditor.com/#download
http://www.fileviewer.com/Download.html

12 1 R Basics

> print(mydata)

name allele1 allele2
1 snp1 A A
2 snp2 A B
3 snp3 A A
4 snp4 A B
5 snp5 B B
6 snp6 B B
7 snp7 A A
8 snp8 A B
9 snp9 - -
10 snp10 A B
11 snp11 B B
12 snp12 B B
13 snp13 A A
14 snp14 A B
15 snp15 - -
16 snp16 A B
17 snp17 B B
18 snp18 B B

Note here the two main arguments header, to define if there is a header in the
file (T or TRUE) or not (F or FALSE) and sep, the separator (tab in the example).
It is always a good idea to check the dimensions of the data, to see if it is what you
expected.

> dim(mydata)

[1] 18 3

The function read.table stores the data as a data.frame which is a two-
dimensional matrix like structure that can hold different types of data in each column
(e.g., numeric, factor, character, etc.). To access the data in a data.frame indexes
can be used (e.g., mydata[2,3]) or the column name (e.g., mydata$allele1[3]). For
column names the syntax is the name of the data.frame followed by the dollar
symbol ($) and then the name of the column of interest.

> print(mydata[2,3])

[1] B
Levels: - A B

> print(mydata$allele1[3])

[1] A
Levels: - A B

The column names can be retrieved with

1.6 Importing and Manipulating Data 13

> names(mydata)

[1] "name" "allele1" "allele2"

To see the top or bottom part of the data use

> head(mydata)

name allele1 allele2
1 snp1 A A
2 snp2 A B
3 snp3 A A
4 snp4 A B
5 snp5 B B
6 snp6 B B

> tail(mydata)

name allele1 allele2
13 snp13 A A
14 snp14 A B
15 snp15 - -
16 snp16 A B
17 snp17 B B
18 snp18 B B

To see a range of data

> mydata[1:5,1:2]

name allele1
1 snp1 A
2 snp2 A
3 snp3 A
4 snp4 A
5 snp5 B

And to see all data in a column use mydata$name or mydata[,1].
It is also useful to be able to select a nonconsecutive (and possibly reordered)

subset of the data. You can use the concatenate (c) function for this. Create a variable
that holds the indices you are interested in, for example

> indices=c(1,7,10,2,4)
> print(indices)

[1] 1 7 10 2 4

and then show the data for these indices

> mydata$name[indices]

14 1 R Basics

[1] snp1 snp7 snp10 snp2 snp4
18 Levels: snp1 snp10 snp11 snp12 snp13 ... snp9

You have probably noticed that after the output there are levels. This is an
extremely important aspect of R. By default, when a file is read into R and converted
into a data.frame, character columns are usually converted to factors (it does make
sense, after all R is a statistical programming language). If you do not want R to
convert your character columns into factors use col.Classes=“character” as an
additional argument to read.table. But note that this will convert all columns to
character—not so good if you have numeric data as well. If you have a mix of data
types you will need to explicitly define the type of each column (as a vector of
types, one for each column). On the other hand, numeric values are imported into R
as numbers. Now, why is this important? Because often data has missing values and
what the provider of the data used to represent a missing value is anyone’s guess!
Let’s import a file with some animal phenotype measures

> pheno=read.table("chapter1/animals.txt",
+ header=T,sep="\t")
> print(pheno)

id weight
1 animal1 300
2 animal2 280
3 animal3 350
4 animal4 NA
5 animal5 290
6 animal6 310
7 animal7 300
8 animal8 330
9 animal9 300
10 animal10 NA
11 animal11 280
12 animal12 325
13 animal13 335
14 animal14 305
15 animal15 275
16 animal16 265
17 animal17 415
18 animal18 325

We would expect that id is a factor and weight is numeric. This can be checked by

> class(pheno$id)

[1] "factor"

> class(pheno$weight)

[1] "integer"

1.6 Importing and Manipulating Data 15

Yes! That worked fine. And looking at the data we can see that there are two
missing values that R correctly assigned as missing (NA). By default R treats NA in
the text file as missing. This can be changed using the argument na.strings=“–” in
read.table if missing data is represented as “–”. Now let’s read in the same data but
instead of NA to represent missing values we have *.

> phenowrong=read.table("chapter1/animals2.txt",
+ header=T,sep="\t")
> print(phenowrong)

id weight
1 animal1 300
2 animal2 280
3 animal3 350
4 animal4 *
5 animal5 290
6 animal6 310
7 animal7 300
8 animal8 330
9 animal9 300
10 animal10 *
11 animal11 280
12 animal12 325
13 animal13 335
14 animal14 305
15 animal15 275
16 animal16 265
17 animal17 415
18 animal18 325

> class(phenowrong$id)

[1] "factor"

> class(phenowrong$weight)

[1] "factor"

Ups! Let’s fix that.

> phenoright=read.table("chapter1/animals2.txt",
+ header=T, sep="\t", na.strings="*")
> print(phenoright)

id weight
1 animal1 300
2 animal2 280
3 animal3 350

16 1 R Basics

4 animal4 NA
5 animal5 290
6 animal6 310
7 animal7 300
8 animal8 330
9 animal9 300
10 animal10 NA
11 animal11 280
12 animal12 325
13 animal13 335
14 animal14 305
15 animal15 275
16 animal16 265
17 animal17 415
18 animal18 325

> class(phenoright$id)

[1] "factor"

> class(phenoright$weight)

[1] "integer"

The problem is that too frequently there is no standard for missing data in the
same file. Empty spaces, dashes, and words like none and missing are used all at the
same time. This is especially true for phenotypes, covariates, and other information
that was collated manually. Rather frequently you will not be able to find all of these
just by eyeballing the file. You can a priori define the class of each column but if
you don’t tell R what to treat as missing values you will get an error when reading
in the file. So, always check the classes in the data.frame to make sure that they are
what you expected.

Now, how to fix this? The easiest way is to convert the column from factor to
numeric format using as.numeric. But there is a catch here. First convert from factor
to character and then to numeric! Forgetting to do this is one of the main sources of
problems people come across in R! Let’s exemplify.

> as.numeric(phenoright$weight)

[1] 300 280 350 NA 290 310 300 330 300 NA 280
[12] 325 335 305 275 265 415 325

> as.numeric(phenowrong$weight)

[1] 6 4 12 1 5 8 6 10 6 1 4 9 11 7 3
[16] 2 13 9

In the first case the conversion did what was expected (ok—it was already numeric
anyhow, but you get the point). In the second case, you also got numbers—but they
are definitely wrong. What are these numbers? They are the indices of the factors!

1.6 Importing and Manipulating Data 17

If extreme care is not taken you might end up doing calculations using indices and
not the values of your measurements. So, one way to convert is

> as.numeric(as.character(phenowrong$weight))

[1] 300 280 350 NA 290 310 300 330 300 NA 280
[12] 325 335 305 275 265 415 325

That does the trick—you do get a warning that NAs were introduced, but that’s
what you wanted anyhow. And to fix your data.frame

> phenowrong$weight=
+ as.numeric(as.character(phenowrong$weight))
> class(phenowrong$weight)

[1] "numeric"

The values in weight are integers, so instead of as.numeric you could also have
used as.integer.

Often we want to combine different datasets into a single data.frame. A simple
way of doing this is using cbind to bind columns or rbind for rows. Note that the
number of rows must match in the first case and the number of columns in the
second. For example to make a single data.frame from mydata and pheno

> alldata=cbind(mydata,pheno)
> print(head(alldata))

name allele1 allele2 id weight
1 snp1 A A animal1 300
2 snp2 A B animal2 280
3 snp3 A A animal3 350
4 snp4 A B animal4 NA
5 snp5 B B animal5 290
6 snp6 B B animal6 310

If we look at alldata it is quite obvious that the columns name and id are
equivalent (another classic problem—different identifiers used for the data and they
don’t even have the same meaning). We will see some examples of this and how to
merge datasets later on. For the time being let’s just reorder the data and drop the
redundant identifier name which is at best misleading (the data is for a single SNP
genotyped on many samples and not many SNP for a single sample).

> alldata=alldata[,-1] # use minus (-) to drop a column
> # now reorder the data.frame the way we want it
> alldata=alldata[,c(3,4,1,2)]
> print(head(alldata))

id weight allele1 allele2
1 animal1 300 A A
2 animal2 280 A B

18 1 R Basics

3 animal3 350 A A
4 animal4 NA A B
5 animal5 290 B B
6 animal6 310 B B

The minus sign followed by an index can be used to delete a column. This is
quite a useful feature of R and is not limited to a single column. Before we used a
variable called indices to subset data (mydata$name[indices]), if we used –indices
instead we would get all data except for the values in rows 1, 7, 10, 2 and 4. To
reorder the data.frame we use c and the order in which we want the columns. We
might also want to sort the data. Let’s sort by weight.

> alldata=alldata[order(alldata$weight,decreasing=T),]
> print(alldata)

id weight allele1 allele2
17 animal17 415 B B
3 animal3 350 A A
13 animal13 335 A A
8 animal8 330 A B
12 animal12 325 B B
18 animal18 325 B B
6 animal6 310 B B
14 animal14 305 A B
1 animal1 300 A A
7 animal7 300 A A
9 animal9 300 - -
5 animal5 290 B B
2 animal2 280 A B
11 animal11 280 B B
15 animal15 275 - -
16 animal16 265 A B
4 animal4 NA A B
10 animal10 NA A B

Now our data.frame is sorted by column weight in decreasing order (if you want
the data sorted in increasing order use decreasing=F).

1.7 Plots and Descriptive Statistics

Once we have read the data file into R, checked that the dimensions are what would
be expected and converted the columns into the correct format, we are ready to start
working with the data. Before doing any fancy analysis it is always a good idea to
get a feel for the data with some basic plots and descriptive statistics. A very handy
function in R is summary.

1.7 Plots and Descriptive Statistics 19

> summary(alldata)

id weight allele1 allele2
animal1 : 1 Min. :265.0 -: 2 -: 2
animal10: 1 1st Qu.:287.5 A:10 A: 4
animal11: 1 Median :302.5 B: 6 B:12
animal12: 1 Mean :311.6
animal13: 1 3rd Qu.:326.2
animal14: 1 Max. :415.0
(Other) :12 NA's : 2.0

The summary function will give you counts for factors and measures such as
mean, median, and others (as above) for numeric columns (weight in our example).
The results for id are clearly not relevant but for allele1 and allele2 you can
immediately see how many of each allele there are and also the number of missing
genotypes (by the way, the symbol for missing here was “–”). You can also get each
of these statistics independently

> min(alldata$weight,na.rm=T)

[1] 265

> max(alldata$weight,na.rm=T)

[1] 415

> mean(alldata$weight,na.rm=T)

[1] 311.5625

> median(alldata$weight,na.rm=T)

[1] 302.5

> quantile(alldata$weight,0.25,na.rm=T)

25%
287.5

> quantile(alldata$weight,0.75,na.rm=T)

75%
326.25

Notice the use of na.rm=T which means remove missing values. If you forget to
add this you will get NA as an answer.

> mean(alldata$weight)

[1] NA

Some other useful summaries are standard deviation (sd) and variance (var)

20 1 R Basics

> sd(alldata$weight,na.rm=T)

[1] 36.36476

> var(alldata$weight,na.rm=T)

[1] 1322.396

As the old adage goes, a picture is worth a thousand words—and that’s very
true for summarizing data (and especially genomic data, as we will see in the next
chapters). Let’s plot the counts for the alleles in both columns using a barplot
(Fig. 1.4).

> barplot(c(summary(alldata$allele1),
+ summary(alldata$allele2)),
+ main="Allele counts",col=c(1,2,3,1,2,3))

Notice how we are starting to chain R functions together. To create the barplot,
we first used the summary function to obtain the counts (number of “–”, “A”, and
“B”) for each of the two allele columns, then we concatenated the counts into a
vector using c. Finally the, in this case, six counts were provided to the barplot

− A B − A B

Allele counts

0
2

4
6

8
10

12

Fig. 1.4 Barplot of allele counts

1.7 Plots and Descriptive Statistics 21

function to create the image. The argument main is used for the graph’s title and col
is for colors. To see which colors are available in R type colors() or palette() for the
active colors. You can use the actual name of the color or a numeric value as in the
example. The numeric value refers to the index of the color returned by palette().

> palette()

[1] "black" "red" "green3" "blue"
[5] "cyan" "magenta" "yellow" "gray"

We could also pool all alleles together and then look at the overall counts
(Fig. 1.5).

> pooled=c(as.character(alldata$allele1),
+ as.character(alldata$allele2))
> pooled=summary(factor(pooled))
> barplot(pooled,main="Pooled allele counts",col=
c(1,2,3))

> legend("topleft",c("-","A","B"),fil=1:3)

Now we split the plotting into two parts. First we made a variable with the pooled
data (very creatively called pooled) and then used this variable for plotting. We also

− A B

Pooled allele counts

0
5

10
15

−

A

B

Fig. 1.5 Barplot of pooled allele counts

22 1 R Basics

added a legend to the plot. The first argument is the position where we want the
legend, then the captions and finally the color coding (fil). Notice the workaround
to merge the two allele sets. Again we run into trouble because of factors in R. You
cannot simply concatenate two sets of data of class factor.

> head(c(alldata$allele1,alldata$allele2))

[1] 3 2 2 2 3 3

> head(c(as.character(alldata$allele1),
+ as.character(alldata$allele2)))

[1] "B" "A" "A" "A" "B" "B"

See? Again you end up with the indices! And if you try to summarize the indices,
R will treat them as numeric and give you

> summary(c(alldata$allele1,alldata$allele2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 2.500 2.389 3.000 3.000

Which is definitely not what you want. After converting the factors into character
we have to transform them back into factor! Otherwise R will treat the data as
character and your summary will look as follows:

> summary(c(as.character(alldata$allele1),
+ as.character(alldata$allele2)))

Length Class Mode
36 character character

So, the take home message is: always pay attention to what is happening with
factors!

Another common plot is the boxplot. Of course it will only work with numeric
data, so let’s use weight (Fig. 1.6).

> boxplot(alldata$weight,col="blue",
+ main="Boxplot of weights for all animals")

The hinges show the extreme values excluding outliers, the box borders are the
upper and lower quartiles, and the line in the box shows the median. Outliers are
flagged as circles. In the example we have one outlier—which should be investigated
before further analysis (i.e., is it a real value or a data error that should be removed).

Now we have a visual representation of the data we get using summary. In general
we are more interested in looking at the distribution of one variable in relation to
the different classes the observed values belong to. This is very easy in R. Let’s see
what weight looks like if we split the data using the levels in allele1 (Fig. 1.7).

> boxplot(alldata$weight~alldata$allele1, col=2:4,
+ main="Boxplot of weights by allele class")

1.7 Plots and Descriptive Statistics 23

l

30
0

35
0

40
0

Boxplot of weights for all animals

Fig. 1.6 Boxplot of weights for all animals

The tilde symbol (˜) means “modeled by”. Here we have weight modeled by
allele1. In Chap. 2 we will return to boxplots in more meaningful scenarios.

Another good way of visualizing data is with density plots (Fig. 1.8).

> plot(density(alldata$weight,na.rm=T),
+ main="Density plot of weights",col="blue")

It is immediately obvious that the data is reasonably normal except for the
outlier—which adds the extra hump to the density plot. Note again the use of
na.rm=T or you will get an error. Here we first calculated the density and then
plotted it. The function plot is the most generic plotting function in R with many
specific methods for different objects. To exemplify, let’s plot the sorted values of
weight and then connect each point with a line through the points (Fig. 1.9).

> plot(sort(alldata$weight),col="blue",
+ main="Sorted weights",xlab="animal",ylab="weight")
> lines(sort(alldata$weight),col="red")

This may at first look a bit complicated, but all we are doing is sorting the data
with the function sort and then plotting the points. The arguments xlab and ylab are
the labels for the x and y coordinates of the plot. And then we use lines to add a line
through our points.

24 1 R Basics

l

− A B

30
0

35
0

40
0

Boxplot of weights by allele class

Fig. 1.7 Boxplot of weights for all animals separated by allele class

The graphical capabilities or R are extensive. We have just skimmed over the
surface of some useful options. We will look at other graphs as we progress the
topics. Try having a look at some other options such as pie or hist. Excellent
reference books for graphics in R are [19, 70, 78] and [61].

1.8 Saving Results

We have already seen how to save the entire workspace. But most of the time all you
want to do is save the relevant results—for example the alldata modified data.frame
that we made. For this you can use the function write.table.

> write.table(alldata,"chapter1/alldata.txt",
+ quote=F,row.names=F,sep="\t")

This will save the data.frame alldata as a text file alldata.txt in the directory
chapter1 (sideline: R recognizes \ as an escape symbol—as used, e.g., for tab (\t)—
to get an actual backslash in R you must use a double backslash: \\). By default
write.table saves values between quotes, to remove them use the argument quote=F.
You also probably will not want the row names (at least not in this case), use

1.8 Saving Results 25

250 300 350 400 450

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Density plot of weights

N = 16 Bandwidth = 14.95

D
en

si
ty

Fig. 1.8 Density plot of weights for all animals

row.names=F to remove them. If you don’t want a header use col.names=F. To
save a file that can be opened straight into a spreadsheet such as Excel, you could
call the file alldata.csv and use sep=“,” as a separator.

A down and dirty way to save results is to redirect the console output to a text
file using sink.

> sink("chapter1/out.txt")
> alldata
> sink()

This will redirect the console output to a file called out.txt. Remember to close
the pipe when you are finished using sink(). There are many other ways of saving
data in R. Have a look at the help files for save, write, writeLines among others.

You will also want to save plots for reports or publications. This can be
done manually: go to the plot window, click on file and then save the image.
Programmatically, use the function dev.print. To save the density plot as a pdf

> plot(density(alldata$weight,na.rm=T),
+ main="Density plot of weights",col="blue")
> dev.print(file="chapter1/density.pdf",
+ device=pdf,width=8,height=8)

26 1 R Basics

5 10 15

30
0

35
0

40
0

Sorted weights

animal

w
ei

gh
t

Fig. 1.9 Sorted plot of weights for all animals

The arguments are the file name, format (e.g., pdf or png) and dimensions—
height and width. For pdf the dimensions are in inches but for png they must be
given in pixels (e.g., width = 1,024,height = 768).

1.9 Some Help on Help

I have not been overly kind to R’s help files so far. I even mentioned that the R help
is rather unhelpful. But as you come to terms with R you will get to know the names
of the functions and then it becomes very useful.

Apart from the help.search(“function_name”) and ?function_name discussed
before, you can also use help.start() or click on Help and then HTML help to open
a browser window on the main help page (HTML help is the default option during
installation). Just note that the last few releases of R need an HTTP server to be
running for the search engine to work. This is normally not a problem if you launch
help from within an R session, but search will not work out of an R session (unless
the server is up and running). Further, as soon as you close the R session your help
session goes with it (the current page will remain open but the links will not work
anymore). And a last hint that is sometimes useful is to type the first few letters of

1.10 Where to Go from Here? 27

a function followed by a double tab. This will show some of the available functions
that start with those letters. By the way, a single tab can be used for auto-completion
of a function’s name, but it has limited functionality since it will only do something
after what has been typed in matches a single function.

1.10 Where to Go from Here?

This ends our rather quick tour of R. I have tried to cover some of the most basic
procedures that are regularly used: importing, summarizing, visualizing and saving
data. But as I mentioned before, there are hundreds of packages—so far we have
only made use of the basic R installation—and there are also dozens of books
covering a plethora of topics. This chapter ends by mentioning a few resources that
might help to get you going down the R path (we’ll leave the bio references for the
other chapters). This list is in no way exhaustive and admittedly rather biased on my
own preferences.

• When you install R you have the option of installing pdf manuals as well. Make
sure you install these. There’s an excellent introduction to R which will cover
what we discussed here in much greater detail. The reference manual includes
all functions from the base installation—a search in this manual can be more
fruitful than the help search engine. There are also a few more advanced manuals
worthwhile reading.

• From the R website (http://cran.r-project.org/) you can download whole books
which are freely available and also some handy reference cards. It is also
worthwhile reading the FAQs.

• For a user’s manual style introduction to R (i.e., R as software), you should start
with the short text by Zuur et al. [126]. It was also written with life scientists in
mind.

• Crawley [20], Dalgaard [22], and Verzani [114] are good texts for introductory
statistics and R. The more formal and less introductory Cohen and Cohen [17] is
also well worthwhile reading.

• Crawley’s The R Book [21] is huge but it is a really good text that covers most
types of analyses (albeit at an introductory level). This one and Adler’s [1] R in
a Nutshell complement each other very well.

• For linear models try Faraway [31], the example driven book by Everitt and
Hothorn [29] or the excellent regression book by Sheather [100]. More advanced
models are covered in Faraway [32], the classic Pinheiro and Bates [86] book on
mixed models which is based on S but translates well into R, and Dobson et al.’s
[24] generalized linear models text.

• For data manipulation Spector’s [105] text covers most common needs.
• R has excellent plotting capabilities. A good coverage of lattice plots is given by

Sarkar [96] and for more general plots have a look at Maindonald and Braun [70]

http://cran.r-project.org/

28 1 R Basics

and also Cook and Swayne [19], Murrell [78] (the second edition should be out
by the time you are reading this text), and Keen [61].

• Bayesians will like Albert [4] and the more comprehensive Carlin and Louis [14].
Probability simulation and Gibbs sampling is discussed by Suess and Trumbo
[107] and is a good companion to the text on Monte Carlo methods by Robert
and Casella [15].

• Probability is covered extensively in Ugarte et al. [112] and a lighter read (at least
in physical dimensions!) is Baclawski [9].

• A bit more programmatic in nature, the books by Rizzo [94] or Jones et al.
[60] give some good foundations of the underlying algorithms used for statistical
analyses and on the usage of R as a programming language. And if programming
is the order of the day, you should not do without Chamber’s [16] Software for
Data Analysis.

Chapter 2
Simple Marker Association Tests

In this chapter we will briefly overview genetic markers and their use in association
studies. Then we will discuss step by step how to import data from a small genomic
project, check the data for inconsistencies, fit and evaluate different statistical
models and interpret the results.

2.1 Introduction to Markers

Genetic markers can be described as a measurable variation (polymorphism) at
the DNA level. They are chromosome regions where differences in nucleotide
sequences occur between individuals of the same species. Various types of markers
have been used to detect DNA variability, the most common being:

• Restriction fragment length polymorphism (RFLP)
• Random amplification of polymorphic DNA (RAPD)
• Amplified fragment length polymorphism (AFLP)
• Single stranded conformation polymorphism (SSCP)
• Copy number variation (CNV)
• Microsatellites
• Single nucleotide polymorphism (SNP)

The last two, microsatellites and SNP are currently the most commonly used
markers—we will focus on these herein. This might be somewhat academic but note
that there is a difference between a genetic marker and DNA variation. A marker
is more related to the technique employed to measure the variation whilst DNA
variation is obviously independent of our ability to measure it or not. When we talk

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-14475-7_2) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_2

29

http://dx.doi.org/10.1007/978-3-319-14475-7_2
http://dx.doi.org/10.1007/978-3-319-14475-7_2

30 2 Simple Marker Association Tests

about DNA variation per se we should think more in terms of indels—insertions or
deletions of various lengths; VNTRs—variable number of tandem repeats, which
are multiple copies of the same sequence of DNA, usually simple non-coding
repeats (e.g., AC repeated a certain number of times); and SNP—single nucleotide
polymorphisms which are a single nucleotide mutation (base substitution). SNP
occur in very large numbers and are widely spread across the genome in both coding
and non-coding regions, which makes them ideal for association studies.

The objective of an association study is to link a specific DNA region (and
its underlying variation) with a trait of interest. For example in human research,
many studies have been undertaken to identify genomic regions which confer
greater resistance/susceptibility to diseases such as cancer (an accessible overview
of association studies in cancer is given by Patel et al. [85]), and ultimately, within
these regions, identify the variants that lead to expression of the trait. Knowledge
of these functional variants improves our understanding of disease mechanisms,
suggests targets for novel therapeutics and can be useful for risk prediction and
prevention. For the latter, in a very naive way, this would mean that in the
future a new individual could be genotyped and if he/she has SNP variant A at
location 23445635 on chromosome 3, then this individual has a 26 % probability
of developing Alzheimer. In livestock the objective is to find associations that can
explain part of the variance observed in a production trait. For example one of
the variants found in microsatellite marker M is associated with an increase in
marbling of x%. This of course has implications for breeding decisions and can help
improve the accuracy of breeding values. Identification of regions associated with a
trait can also help select candidate regions for gene discovery—that is, identify the
actual genes (“the real biology”) and the functional mutations that confer the trait
differences (e.g., myostatin for double muscling). Note that an association does not
imply causality. A marker can be associated with a trait but it is not necessarily in
any way related to it. Recall that a chromosome is a physical structure of nucleotides
connected to each other which only gets broken up by recombination events. Hence
we can think of DNA sequences being transmitted from parent to offspring in
chunks. The closer the marker is to the actual causative gene, the greater the chance
that the same marker allele will be transmitted to the offspring with the same
causative allelic variant of the gene—the marker and the gene are in linkage, on
the same DNA chunk, or more formally haplotype. A haplotype is er, hmm, a chunk
of DNA which has a combination of alleles that would not be observed by chance
if each one was segregating independently. This brings us to the concept of linkage
disequilibrium (LD): a non-random association of alleles. Pay some attention to
the difference between linkage and linkage disequilibrium. The first is more related
to the actual physical connection of nucleotides on a DNA strand. The second is
more of a statistical concept, we can detect LD with a statistical test of significance
but it is not necessarily telling us anything about the actual physical proximity of
what we are testing (although reasonable inferences can be made).

In short, the terminology is rather telling. Genetic markers mark, they don’t
necessarily cause and association tests identify connections: what we can measure
(marker) is to some extent related to what we want to know (e.g., the true
causative gene).

2.1 Introduction to Markers 31

Just a couple of additional points we should keep in mind: the perfect marker
is a causative marker, as for example the anecdotal SNP we used to exemplify
(partial) susceptibility to Alzheimer. But if the marker is not causal, the further
away it is from our causative gene the greater the chance that a recombination
event will break up the linkage between marker and gene. To illustrate, in our also
anecdotal marbling example if a recombination occurred between marker M and the
true marbling gene in the vicinity of the marker, the favorable variant would then
no longer be useful to track the causal variant.

2.1.1 Microsatellites

Microsatellites are a type of VNTR. If the length of the repeating unit is less than five
base pairs, the VNTR is referred to as a microsatellite. If the length of the repeating
unit is greater than five base pairs the VNTR is called a minisatellite.

Variation in microsatellites is measured through the number of repeats that an
individual has of the repeating unit. For example, back to our AC repeating unit,
one individual might have ten repeats of CA while another has 7. It is immediately
evident that these regions will have different sizes and, if we manage to quantify
them, we can use these measures to distinguish individuals. We can get a handle on
microsatellites using PCR—polymerase chain reaction—methods. Briefly, unique
primers that flank the repeating sequence are used to amplify the region and then
the amplified product is separated by size using a more manual gel electrophoresis
or a high throughput capillary system. We can refer to each of these different sizes
as an allele. Note that diploid organisms will have two of each chromosome and
consequently can have two different microsatellite alleles (heterozygote) or two of
the same (homozygote). Just as a curio, we used the AC example because it is the
most common repeat in humans—dinucleotide repeats are the most frequent and
50 % of these are AC.

As we discussed above marker alleles are not necessarily causative of the trait we
are interested in. In the case of microsatellite markers it is almost a given that they
are not causative and that they are in non-coding regions (it can’t do much good to a
functional gene to have variable numbers of repeating sequences inside it). Another
point to mention with microsatellites is that they can have many different alleles
(SNP will generally only have two), between 10 and 30 is quite common. This can
be a blessing and a curse at the same time. A single microsatellite marker is much
more informative (many alleles) than one SNP marker (mostly only two alleles).
On the down side, they are much sparser in the genome (microsatellites are in the
thousands while SNP are in the millions) with much lower LD between marker and
causal variant.

We will defer discussing SNP until the next chapter. Here we will limit the
discussion to analysis of microsatellites under the scenario that we have identified a
candidate region from say, a genome wide mapping project (e.g., [71]), we have
genotyped some microsatellite markers in this region and then we test this fine

32 2 Simple Marker Association Tests

mapped region for association. Microsatellites have been widely used in QTL
mapping projects and there is an extensive literature in the field in relation to
experimental design and appropriate analytical approaches. Keep in mind that the
example we will work on in this chapter is much more akin to a genome wide
association study using SNP (but with just a few markers instead of thousands) than
a traditional QTL mapping study with sparse markers. Excellent texts on linkage
analysis and QTL mapping are [120] and [102].

But before we delve into analyses using R let’s have a quick look at the two most
common designs for association studies: case–control and family-based, as well as
the types of traits—discrete (often binary) and continuous or quantitative.

2.2 Case–Control and Family-Based Association Studies

Case–control is a classic approach used in epidemiological studies. The cases
are individuals who show the disease (in epidemiological or medical research) or
express the trait/condition under study. The control is made up of individuals that
do not express the disease or trait. The objective is to compare the frequency of
alleles and/or genotypes of genetic markers between the two groups to determine
if any of the genotyped polymorphisms are associated with the disease/trait and
what is the probability that this polymorphism will increase/reduce the chance of
the individual (and other individuals in the population with the same polymorphism)
expressing the trait or being afflicted by the disease. A point to note is that genotypic
and haplotypic frequencies can vary quite significantly across populations. The
experiment has to be designed is such a way as to minimize or be able to account
for the effect of population stratification which can confound your results. For
example, Korean Hanwoo cattle are highly marbled while Brahman cattle have low
intramuscular fat. If we set up an experiment to contrast Hanwoo and Brahman,
marbling (the trait) would be completely confounded with breed effect. In effect,
breed differences are probably one of the higher order associations that can be
easily picked up by differences in allelic frequencies, as shown in the nice paper
by Hayes et al. [53]. So, to set up a case–control study try to minimize population
stratification by selecting cases and controls with similar genetic backgrounds or at
least select samples in a way that will allow separating population structure from
the trait (somewhat akin to a block design).

Family-based association designs are, as the name suggests, based on family
relationships between individuals in the test. It has the advantage over case–control
studies in the ability to reduce confounding effects of population stratification. The
general principle is to compare siblings which have the same genetic background
and test if either one of the allelic variants of the parent (of course the parent has
to be heterozygous for the marker) is significantly associated with the disease or
trait. As a simple example, take a sire that expresses a trait of interest (e.g., very
high resistance to tick infestation), is heterozygous for a suspect marker and mate
this sire with many homozygous females that do not express the trait, preferably

2.3 Discrete and Quantitative Traits 33

they will be homozygous for a third allele, different from the sire’s alleles. Then
collect phenotypes of the offspring, genotype them for the marker, and test if there
is an association between the allele they inherited from the sire and their level of
resistance to tick infestation. This is a simple example of a half sib design. There are
also full sib designs and other more complex ones. In humans, for obvious reasons,
there’s limited input of the researcher into the mating structure, so it’s common to
work with many small families with a heterozygous parent and one normal/one
affected offspring—the family trio. In livestock there are fewer restrictions on
setting up the experimental design and then questions relating to how many families
and family sizes become extremely relevant. We will not go into any in-depth
details in this text, but power and sample size are critical considerations in genomic
studies and should be given proper attention before embarking on a large scale
experiment. A paper by Spencer et al. addresses the main points of design within
the scope of genome-wide association studies [106]; see also the book chapter of
Roderick Ball with nice R examples [10]. Some other R packages that can assist
with power tests are listed at the end of the chapter.

2.3 Discrete and Quantitative Traits

So far we have focused on the markers. Let’s now give some consideration to the
type of traits we could be interested in. In humans most disease traits are treated
as discrete and generally binary, i.e., you either have the disease or you don’t.
A livestock example is marbling score, where animals are assigned a value between
1 (very low marbling) and 12 (very high marbling). The analysis of a case–control
study for a discrete trait with only a few levels and a single marker can be as simple
as a χ-square contingency test.

On the other hand, we also have continuous traits such as height or weight which
are quantitative traits. These traits usually follow a normal distribution. Here also
there’s no need for anything too fancy. Again in a case–control study, if you just want
to test the difference between two alleles, a simple t-test might do the trick. And for
a few alleles an Anova is a good starting point. Things get a bit more complicated
once you have to start taking into account population stratification and fixed effects
that impacted on your observations. But we will get back to this further on.

With population-based studies the pedigree clearly plays a main role in the
analysis. How to tackle the issue will depend on the structure of the relationships.
In livestock it is not unusual to have half sib designs—a few (10–20) sires mated
to randomly selected females from the population and each sire has again 10–20
offspring (that’s what we will be working with in our example further on). An easy
way to analyze this data is to test for association individually within sire families
and compare the results across families. It’s also worthwhile to pool the data into a
single combined analysis.

34 2 Simple Marker Association Tests

Just before we move on, the message here is that it is crucial that you understand
what type of trait you are working on and the data structure. The distribution of the
trait is paramount to making a decision of an adequate model for your data.

2.4 Additive, Dominant, and Recessive Models

The main models normally used for a single marker are the additive, dominant,
or recessive model. If we go back to our basic genetics classes we will recall that
we were endlessly drilled about the expected phenotypic ratios given that this allele
was dominant over that one or what were the expected phenotypic proportions if this
allele is recessive in relation to that other one and etc. Genetics has not changed, so
it’s still the same old story. When we test for association we have to consider if,
once an individual has certain allele, whatever the other allele is, the phenotype
will be the same—a dominant model, AA = Ax and x can be any other allele.
Alternatively, we can have the inverse. If an individual has allele a (just to stick with
the classic notation), its phenotype will be determined entirely by the other allele
(unless of course it’s the same a)—that’s the recessive model. The third model—
additive—considers that each allele individually contributes to the phenotype, thus
an individual Aa would have a phenotype that is the simple sum of the estimated
individual values of alleles A and a.

A more generic framework is to use a genotypic model. Here instead of
estimating allelic effects and the interaction between alleles, we estimate allelic pair
combinations (genotypes). This has the advantage that the heterozygote does not
need to be the sum of two allelic effects, it can take any intermediate value, it can be
beyond the values of the homozygotes on either side—overdominance, and we can
also quite easily detect dominance or recessive effects (e.g., no difference between
AA and Aa). This rather trivial example with only two alleles and three genotypes
(but it becomes relevant with SNP) suggests that the genotypic model is a good one
size fits all approach; however if we have many markers there might not be enough
data to estimate the genotypic effects, e.g., for each marker there are three or four
alleles that the offspring inherited from the sires and a whole lot of other alleles
from the various dams.

If we go beyond single markers, epistasis comes into play. This is a hot research
topic nowadays, we will not discuss it here but always keep in mind that life is
complex.

2.5 A Worked Out Example

But this text is meant to be applied, let’s get back to the main point: how to do a
marker association test using R.

2.5 A Worked Out Example 35

First note that there will be many intermediate steps before we perform the
actual association test—they involve understanding the structure of the data and
performing formatting and clean up steps for the analysis. Frankly, this can be rather
boring but it is important to get a handle on how to perform these preprocessing steps
in practice since they will be routinely required in real world applications.

Suggestion: as you work your way through the example, write the code in an
editor (use e.g. Tinn-R). Some parts are quite long and you will not want to retype
everything if you make a mistake. Also, if something goes very wrong, it will be quite
easy to rerun from scratch if you save all the steps.

We will use a simulated dataset (but in a realistic format). Here’s our scenario:
from previous mapping experiments a certain genomic region was identified as
a potential QTL region (by the way, a QTL is a quantitative trait locus—a
genomic region that explains phenotypic differences due to genetic polymorphisms)
associated with weight in cattle. Even though there is some confidence that there
really is a QTL in this region, its exact location is not well defined (the confidence
interval is 10 cM). Researchers looked at the actual known genes in this region
(details in Chap. 6) and based on the functional knowledge of these genes decided
that five could potentially be involved in the trait. Five microsatellite markers
that we expect to be in full linkage with each of these genes were identified and
selected for the project. The researchers then set up a half sib experimental design
with 10 heterozygote sires and each sire had 40 offspring (perfect numbers that
only simulations will allow!) with randomly selected females from a population
with a similar genetic background. The sires and the offspring were genotyped
for all five markers and phenotypic measures were recorded (the females were
neither genotyped nor measured). We received this dataset and our task is to test
for association between these markers and the phenotypes. Hopefully we will find
a marker that is associated with our trait and we will be able to get closer to
pinpointing the actual causative gene! Let’s get started. . .

It’s a very small dataset, 10 sires×40 offspring = 400 records, plus the
genotypes/phenotypes from the sires themselves. We received two data files: one
with the progeny and another with the sires. Our files are called progdata.txt and
siredata.txt. The first step is to open the data in a text editor and look at how it is
formatted (Fig. 2.1).

Fig. 2.1 Screenshot of raw sire data

36 2 Simple Marker Association Tests

We immediately see that there are three lines of information that are not part of
the data itself; progdata.txt also has three lines of noise. We start by importing the
data into R and checking if everything looks fine.

> sires=read.table("chapter2/siredata.txt",
+ header=T,sep="\t",skip=3)
> prog=read.table("chapter2/progdata.txt",
+ header=T,sep="\t",skip=3)
> dim(sires)

[1] 10 12

> dim(prog)

[1] 400 14

> print(sires)

id weight m11 m12 m21 m22 m31 m32 m41 m42 m51 m52
1 sire1 334.14 M2 M1 M3 M2 M3 M4 M4 M2 M4 M2
2 sire2 364.81 M3 M2 M3 M2 M2 M3 M2 M4 M3 M1
3 sire3 383.95 M2 M4 M2 M4 M3 M2 M3 M4 M1 M4
4 sire4 349.88 M2 M1 M1 M2 M4 M3 M2 M1 M4 M3
5 sire5 357.87 M1 M3 M2 M1 M3 M1 M3 M4 M3 M2
6 sire6 364.87 M3 M2 M1 M3 M4 M2 M3 M1 M1 M3
7 sire7 361.36 M4 M1 M4 M1 M2 M1 M1 M2 M2 M4
8 sire8 357.56 M3 M4 M2 M4 M4 M1 M2 M4 M1 M3
9 sire9 333.49 M1 M2 M4 M3 M3 M2 M1 M2 M3 M2
10 sire10 360.92 M2 M3 M3 M1 M3 M2 M2 M3 M3 M2

> head(prog)

id sire sex weight m11 m12 m21 m22 m31 m32 m41 m42
1 id1 sire1 F 293.61 M5 M6 M2 M5 M3 M6 M2 M5
2 id2 sire1 M 335.43 M1 M4 M3 M1 M4 M5 M4 M3
3 id3 sire1 M 340.09 M2 M3 M2 M6 M3 M1 M4 M3
4 id4 sire1 M 343.08 M2 M3 M2 M1 M4 M6 M2 M3
5 id5 sire1 F 287.08 M1 M3 M2 M4 M4 M6 M4 M5
6 id6 sire1 F 302.17 M2 M2 M2 M5 M3 M5 M2 M4
m51 m52

1 M4 M4
2 M2 M2
3 M4 M3
4 M4 M5
5 M2 M3
6 M4 M1

Everything looks ok. We have the correct numbers in both files. Notice the use
of skip as an argument to jump the first three lines.

2.5 A Worked Out Example 37

So, what have we got on data? In prog we have the animal id, should be a unique
identifier for each animal, we have sex, weight—our trait of interest and the marker
information, one column for each marker and each allele, apparently the first number
refers to the marker and the second to the allele (i.e., m11 is marker one, allele one).
To build genotypes we will have to pool together two columns, but that’s later on.
Let’s summarize the data and see if there’s anything amiss going on.

> summary(sires)

id weight m11 m12 m21 m22
sire1 :1 Min. :333.5 M1:2 M1:3 M1:2 M1:3
sire10 :1 1st Qu.:351.8 M2:4 M2:3 M2:3 M2:3
sire2 :1 Median :359.4 M3:3 M3:2 M3:3 M3:2
sire3 :1 Mean :356.9 M4:1 M4:2 M4:2 M4:2
sire4 :1 3rd Qu.:363.9
sire5 :1 Max. :383.9
(Other):4
m31 m32 m41 m42 m51 m52
M2:2 M1:3 M1:2 M1:2 M1:3 M1:1
M3:5 M2:4 M2:4 M2:3 M2:1 M2:4
M4:3 M3:2 M3:3 M3:1 M3:4 M3:3

M4:1 M4:1 M4:4 M4:2 M4:2

> summary(prog)

id sire sex weight
id1 : 1 sire1 : 40 F:200 304.06 : 3
id10 : 1 sire10 : 40 M:200 299.28 : 2
id100 : 1 sire2 : 40 307.21 : 2
id101 : 1 sire3 : 40 311.7 : 2
id102 : 1 sire4 : 40 313.62 : 2
id103 : 1 sire5 : 40 313.66 : 2
(Other):394 (Other):160 (Other):387
m11 m12 m21 m22 m31 m32
- : 1 - : 1 - : 1 - : 1 - : 1 - : 1
M1: 98 M1:70 M1: 97 M1:64 M1: 55 M1:66
M2:139 M2:68 M2:130 M2:63 M2:115 M2:69
M3:101 M3:67 M3: 93 M3:79 M3:134 M3:72
M4: 60 M4:62 M4: 79 M4:61 M4: 95 M4:61
M5: 1 M5:74 M5:56 M5:69

M6:58 M6:76 M6:62
m41 m42 m51 m52
- : 1 - : 1 - : 1 - : 1
M1: 78 M1:57 M1: 83 M1:58
M2:142 M2:68 M2: 94 M2:64
M3: 82 M3:78 M3:135 M3:64

38 2 Simple Marker Association Tests

M4: 97 M4:75 M4: 87 M4:74
M5:68 M5:76
M6:53 M6:63

The sires data seems fine. For each marker there are four alleles (once we pool
the data from m_1 and m_2 together). Note that the marker allele names are the
same in different markers, this does not mean that the alleles are the same, it just
means that the notation used was to call alleles from m1–mn, where n is the total
number of alleles. Note that microsatellite genotyping is much less automated than,
e.g., SNP genotyping using arrays and labs tend to use ad-hoc formats for the data
(e.g., allele names may be based on fragment size, an official nomenclature or some
internal referencing system). In prog we already see some trouble. Weight which
should be a numeric trait is being treated as a factor, that’s because the notation
used for missing is “-”. We’ll have to fix this. With the markers we also see that
there’s missing data, again using “-”. There also seem to be more alleles than in the
sire group—they must be coming from the dams. Let’s see what the missing weight
looks like, for this we can use the function which

> prog[which(prog$weight=="-"),]

id sire sex weight m11 m12 m21 m22 m31 m32 m41 m42
90 id90 sire3 M - M4 M1 M2 M5 M2 M5 M4 M2

m51 m52
90 M1 M1

which returns an index of the position of the items true for the logical test.
The logical operators in R are

• equality ==
• not equal !=
• greater than > or greater than or equal >=
• smaller than < or smaller than or equal <=

There’s a single missing record for weight. Might as well just remove the entire
record straight away, there’s not much to associate a missing record to!

> prog=prog[-which(prog$weight=="-"),]
> prog$weight=as.numeric(as.character(prog$weight))
> summary(prog$weight)

Min. 1st Qu. Median Mean 3rd Qu. Max.
282.8 307.0 331.0 329.9 351.8 480.5

> summary(sires$weight)

Min. 1st Qu. Median Mean 3rd Qu. Max.
333.5 351.8 359.4 356.9 363.9 384.0

That looks better! We used the minus sign and which to remove the missing
data, then converted our weights to a numeric value and then summarized them.

2.5 A Worked Out Example 39

l

l
l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

lll

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

lll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

ll

0 100 200 300 400

30
0

35
0

40
0

45
0

XY plot of weight by animal

animal

w
ei

gh
t

Fig. 2.2 Plot of weights—notice the outlier point and the clear separation of the data into two
groups

If we compare the means and spread with the sires data we observe that the
maximum value is much larger than that of the sires. It’s probably a good idea to
have a look at it.

> plot(prog$weight,main="XY plot of weight by animal",
+ xlab="animal",ylab="weight",col="blue")

Figure 2.2 shows that there is one measurement that is an outlier and the data
seem to be separating very clearly into two groups—we have to keep this in mind.

We could handle the outlier in two ways—go back to the researchers and ask
them about it: does it really make sense, can they go back to the original data and
check it out. Or just remove it from our dataset, let’s do that. From Fig. 2.2 we know
that the outlier is above 400, we can use which again

> prog=prog[-which(prog$weight>400),]
> summary(prog$weight)

Min. 1st Qu. Median Mean 3rd Qu. Max.
282.8 307.0 330.1 329.5 351.6 386.3

40 2 Simple Marker Association Tests

Now let’s have a look at the marker data and see which genotypes are missing

> index=grep("m",names(prog))
> missing=numeric()
> for (i in 1:length(index))
+ missing=c(missing,which(prog[,index[i]]=="-"))
> print(missing)

[1] 69 69 69 69 69 69 69 69 69 69

> missingU=unique(missing)
> print(missingU)

[1] 69

There’s quite a lot going on here. First we used the function grep that searches for
pattern matches—it uses regular expressions and it’s a very powerful tool. What we
did was search for the letter m in the header names of prog, this returns the indexes of
the markers. Of course this is overkill here and using a single letter for the searches
is rather dangerous, only do this if you really know the header structure. The point
was just to call attention to the function; try to spend some time learning how to
use grep, it is really handy to find patterns in data. Next we created a new variable
called missing, and defined it as a numeric variable. We had to declare the variable
explicitly because in the next line we use a loop and R will not assign values to a
variable in a loop unless it has been previously declared. The syntax for loops in R
is for(i in x:y), i is the counter, x is the starting value and y is the final value. The
value of i will change in unit increments unless you explicitly modify it. Inside the
loop instead of a hard coded value we used length to find out the actual number of
marker columns—just makes the code more flexible. We used a loop to go over all
marker columns and added to missing the indices of the marker alleles with “-”.

When we print the indices in missing and eyeball the results, we see that there is
a single index repeated across all markers. We can also use the function unique to
get only the unique non-repeated values in missing. Now let’s look at the missing
genotype

> print(prog[missingU,])

id sire sex weight m11 m12 m21 m22 m31 m32 m41 m42
70 id70 sire2 M 372.45 - - - - - - - -

m51 m52
70 - -

That’s great! The same animal failed genotyping across all markers/alleles and all
other records are complete—probably just a bad DNA sample. We can again exclude
this record using which and the index of the missing data

> prog=prog[-missingU,]
> summary(prog$m11)

2.5 A Worked Out Example 41

- M1 M2 M3 M4 M5
0 97 139 101 59 1

Note that “-” is still there as a level with no records. Probably not necessary but
we can remove it by re-leveling the factors (will only keep levels with records)

> for (i in 1:length(index))
+ prog[,index[i]]=factor(prog[,index[i]])
> summary(prog$m11)

M1 M2 M3 M4 M5
97 139 101 59 1

And we have cleaned up our data. This is rather convoluted and there are better
ways of doing it (e.g., declare “-” as the symbol for missing data when reading in the
files, use na.strings=“-” as an argument in read.table). We are almost ready for the
analysis, but first let’s try to find out why our weight data is separating so distinctly
into two groups. Our data only has two potential fixed effects—sire and sex. Let’s
plot weights grouped by these two effects

> boxplot(prog$weight~prog$sire,
+ col=1:length(levels(prog$sire)),
+ main="Boxplot of weights by sire")
> boxplot(prog$weight~prog$sex,
+ col=1:length(levels(prog$sex)),
+ main="Boxplot of weights by sex")

Figure 2.3 does not show too much difference due to sires. Now, the effect of sex in
Fig. 2.4 is really large, that’s were our bimodality (Fig. 2.5) is coming from

> plot(density(prog$weight),col="blue",
+ main="Density plot of weights")

We can show that it really is sex that is splitting our data by repeating the previous
XY plot using sex to color the points (Fig. 2.6). Note that we also used the argument
pch to change the symbol used to plot each data point and used legend so we know
what is what. The arguments for legend are position (topleft, bottomright, etc.),
the items [here we used directly the levels in prog$sex but could have used, e.g.,
c(“female”,“male”) instead], the colors (first two in the active palette), and likewise
pch for the symbols.

> plot(prog$weight,col=prog$sex, pch=as.numeric
(prog$sex),

+ main="XY plot of weight by animal",
+ xlab="animal",ylab="weight")
> legend("topleft",levels(prog$sex),col=1:2,pch=1:2)

42 2 Simple Marker Association Tests

sire1 sire10 sire2 sire3 sire4 sire5 sire6 sire7 sire8 sire9

28
0

30
0

32
0

34
0

36
0

38
0

Boxplot of weights by sire

Fig. 2.3 Boxplot of weights by sire

F M

28
0

30
0

32
0

34
0

36
0

38
0

Boxplot of weights by sex

Fig. 2.4 Boxplot of weights by sex

2.5 A Worked Out Example 43

300 350 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Density plot of weights

N = 397 Bandwidth = 6.891

D
en

si
ty

Fig. 2.5 Density plot of weights

In our dataset we have genotypes for sires and offspring. One more test we can
do is to see if there are any genotyping errors that we can pick up by comparing
the genotypes of the sires with the genotypes of the offspring. We would expect that
the most common alleles in the offspring would be those that show up in the sire.
In the code below we use grep again to get the indices for the markers in both sires
and prog, then we “bend” these indices into a matrix because we have one column
for one allele and then the next column for the second allele. Next we use library to
load a package called made4 (note: to load packages use library(packagename) but
it needs to be already installed in the library folder). Here we are using a function
(comparelists) in the package to compare two vectors. A new variable compatible is
created to hold the results—the first argument is to say that we want to fill the matrix
with NA, then the dimensions of the matrix (number of sires by number of markers).
The next step is a loop (actually two loops—the first one goes over the markers,
the second one over the sires). For each sire and each marker, we get the alleles of
the sire (variable sirealleles), we summarize the allele counts of the offspring of the
sire, sort these counts in decreasing order and assign the top two to topalleles. Then
we compare sirealleles with topalleles using comparelists and assign the length of
the differences (number of alleles that do not match between the two) to the correct
index in compatible. In this manner we have gone over all sires and all markers and
have a matrix in which any number that is not 0 could be an indication of problems.

44 2 Simple Marker Association Tests

l

l

l

ll

l

l
l

l

l
l
l
l

l

l

l

l

l

ll

l

l

l
l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

llll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

lll

l

l

0 100 200 300 400

28
0

30
0

32
0

34
0

36
0

38
0

XY plot of weight by animal

animal

w
ei

gh
t

l F
M

Fig. 2.6 Plot of weights color coded by sex

> indexms=grep("m",names(sires))
> indexms=matrix(indexms,length(indexms)/2,2,byrow=T)
> print(indexms)

[,1] [,2]
[1,] 3 4
[2,] 5 6
[3,] 7 8
[4,] 9 10
[5,] 11 12

> indexm=grep("m",names(prog))
> indexm=matrix(indexm,length(indexm)/2,2,byrow=T)
> print(indexm)

[,1] [,2]
[1,] 5 6
[2,] 7 8
[3,] 9 10
[4,] 11 12
[5,] 13 14

2.5 A Worked Out Example 45

> library(made4)
> compatible=matrix(NA,length(sires$id),
+ length(indexms[,1]))
> for (j in 1:length(indexms[,1]))
+ {
+ for (i in 1:length(sires$id))
+ {
+ indexs=which(prog$sire==sires$id[i])
+
+ sirealleles=sires[i,indexms[j,]]
+ sirealleles=c(as.character(sirealleles[,1]),
+ as.character(sirealleles[,2]))
+
+ hold=prog[indexs,indexm[j,]]
+ hold=factor(c(as.character(hold[,1]),
+ as.character(hold[,2])))
+ hold=sort(summary(hold),decreasing=T)
+ topalleles=names(hold)[1:2]
+
+ compatible[i,j]=
+ length(comparelists(sirealleles,topalleles)$Set

.Dif)
+
+ if(i==1 & j==1)
+ {
+ cat("allele counts in offspring\n")
+ print(hold)
+ cat("most common alleles in offspring\n")
+ print(topalleles)
+ cat("sire alleles\n")
+ print(sirealleles)
+ }
+ }
+ }

allele counts in offspring
M2 M1 M3 M5 M4 M6
27 26 9 8 6 2
most common alleles in offspring
[1] "M2" "M1"
sire alleles
[1] "M2" "M1"

> print(compatible)

46 2 Simple Marker Association Tests

[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 0
[5,] 0 0 0 0 0
[6,] 0 0 0 0 0
[7,] 0 0 0 0 0
[8,] 0 0 0 0 0
[9,] 0 0 0 0 0

[10,] 0 0 0 0 0

Our matrix compatible is filled with zeros. Which means we could not pick up
any inconsistency between sire and offspring genotypes. Our conclusion here is that
the sires were probably genotyped correctly. Unfortunately, real life is much more
complicated, the results will not look so neat if, e.g., there are few offspring per sire,
but I hope this helps to get you started.

Note the use of the if statement. It was used so that the contents of the variables
were printed only once—one sire and one marker (could use this for checking
purposes). The symbol & is the logical and (e.g., IF this is TRUE AND that is also
TRUE then do. . .). By the way the symbol for logical or is |. The function cat is
similar to print, but a bit prettier!

There are many important aspects in this code. We used a function from a library
(in practice could also have simply used the equivalent function setdiff from the
base installation); built and populated matrices, illustrated the usage of double
loops (rather inefficient in R but handy with not too large datasets), used if to
test a condition and run some other code, used nested functions to collate results
(e.g., sort(summary(hold)).

Now, returning to the problem, let’s flip the question. Given that the sire
genotypes are correct, can we pick up any offspring that might be incorrectly
genotyped? We do basically the same but this time we compare the alleles of the
sire with the alleles in each offspring and check for Mendelian inconsistencies—
at least one of the alleles should be common between the two. There might have
been a mutation but it’s much more likely that it’s a genotyping error. This works
better with markers that have many alleles, if the dam had the same allele(s) as the
sire we would not be able to pick up errors as the offspring would appear to be
consistent with the sire but in reality received the allele from the dam’s side.

The code is similar to what we did before. Variable compatible (note that we are
overwriting the previous matrix) now has one row for each offspring and again one
column for each marker. We also use an additional loop to go over all offspring for
a given sire. Note at the end that we convert compatible to a data.frame and then to
factors (makes the summary more meaningful). We need to first convert the matrix
to a data.frame to be able to change the type of data (from numeric to factor, a matrix
will not let you change the data type on a column by column basis—a matrix can
only hold a single data type).

2.5 A Worked Out Example 47

> compatible=matrix(NA,length(prog$id),
+ length(indexms[,1]))
> for (j in 1:length(indexms[,1]))
+ {
+ for (i in 1:length(sires$id))
+ {
+ indexs=which(prog$sire==sires$id[i])
+
+ sirealleles=sires[i,indexms[j,]]
+ sirealleles=c(as.character(sirealleles[,1]),
+ as.character(sirealleles[,2]))
+
+ for (k in 1:length(indexs))
+ {
+ hold=prog[indexs[k],indexm[j,]]
+ topalleles=c(as.character(hold[,1]),
+ as.character(hold[,2]))
+ compatible[indexs[k],j]=
+ length(comparelists(sirealleles,topalleles)

$intersect)
+ }
+ }
+ }
> compatible=data.frame(compatible)
> for (i in 1:length(compatible[1,]))
+ compatible[,i]=factor(as.character(compatible[,i]))
> cat("\nSummary of alleles in common between
+ sires and offspring\n")

Summary of alleles in common between
sires and offspring

> summary(compatible)

X1 X2 X3 X4 X5
0: 1 1:332 1:326 1:324 1:336
1:333 2: 65 2: 71 2: 73 2: 61
2: 63

It’s looking good except for the first marker—one animal has no corresponding
allele in its sire. For offspring that have a 2 (two alleles in common with the sire)
we cannot determine which one came from the sire and which one came from the
dam, since in our dataset the dams were not genotyped. There is a workaround
using imputation. We could look at the frequencies of the alleles and try to impute
the allele coming from the sire based on a probability function. Here our data is a
bit too small for that and imputation only really becomes important when we have

48 2 Simple Marker Association Tests

missing data in our genotypes. But what we have to do is look into the record that
does not have any allele in common with the sire.

> index=which(compatible[,1]==0)
> print(prog[index,])

id sire sex weight m11 m12 m21 m22 m31 m32 m41 m42
1 id1 sire1 F 293.61 M5 M6 M2 M5 M3 M6 M2 M5
m51 m52

1 M4 M4

Let’s simply drop the record. This is of course overkill. You would not normally
drop the entire record (you’d just set this marker to NA), after all the other genotypes
seem to be ok. But since we did not have to pay for this data we can afford to be
over conservative and work with the assumption that if one genotype is not correct
we do not trust the others—guilt by association.

> prog=prog[-index,]
> dim(prog)

[1] 396 14

Four animal records were removed from our dataset—just one percent. But don’t
expect such good data from real experiments.

The next thing we can do with the data is plot the genotypic and allelic
frequencies (Fig. 2.7). Let’s work with data from the first marker across all families.
First we have to summarize the count data for alleles

> alleles=summary(factor(c(as.character(prog$m11),
+ as.character(prog$m12))))
> print(alleles)

M1 M2 M3 M4 M5 M6
166 207 167 121 74 57

> alleles=alleles/sum(alleles)
> print(alleles)

M1 M2 M3 M4 M5
0.20959596 0.26136364 0.21085859 0.15277778 0.09343434

M6
0.07196970

That was easy. The function sum does what you’d expect. And now for
genotypes. . .

> hold=data.frame(m11=as.character(prog$m11),
+ m12=as.character(prog$m12))
> hold[,1]=as.character(hold[,1])

2.5 A Worked Out Example 49

M2 M3 M1 M4 M5 M6

Barplot of allelic frequencies

0.
00

0.
10

0.
20

M1_M2 M2_M3 M2_M2 M3_M4 M3_M3 M3_M5 M1_M1 M3_M6 M4_M6

Barplot of genotypic frequencies

0.
00

0.
04

0.
08

Fig. 2.7 Plot of allelic and genotypic frequencies for marker 1

> hold[,2]=as.character(hold[,2])
> sorted=character()
> for (i in 1:length(hold[,1]))
+ sorted=rbind(sorted,sort(as.character(hold[i,])))
> genotypes=paste(as.character(sorted[,1]),
+ as.character(sorted[,2]),sep="_")
> genotypes=summary(factor(genotypes))
> print(genotypes)

M1_M1 M1_M2 M1_M3 M1_M4 M1_M5 M1_M6 M2_M2 M2_M3 M2_M4
14 42 34 22 26 14 28 35 38

M2_M5 M2_M6 M3_M3 M3_M4 M3_M5 M3_M6 M4_M4 M4_M5 M4_M6
17 19 21 24 19 13 7 12 11

> genotypes=genotypes/sum(genotypes)
> print(genotypes)

M1_M1 M1_M2 M1_M3 M1_M4 M1_M5
0.03535354 0.10606061 0.08585859 0.05555556 0.06565657

50 2 Simple Marker Association Tests

M1_M6 M2_M2 M2_M3 M2_M4 M2_M5
0.03535354 0.07070707 0.08838384 0.09595960 0.04292929

M2_M6 M3_M3 M3_M4 M3_M5 M3_M6
0.04797980 0.05303030 0.06060606 0.04797980 0.03282828

M4_M4 M4_M5 M4_M6
0.01767677 0.03030303 0.02777778

That was much less simple. The problem here is that we have to merge the two
alleles together to form the genotype. And not only that, we have to make sure that
AB is not considered different from BA. First we created a temporary data.frame to
hold the two alleles, then a new variable to hold the sorted order of the alleles was
used—sorted. Next we sorted each pair of alleles using a loop and added the sort
order to sorted. Finally, we merged the sorted alleles into a single genotype using
the function paste which concatenates strings. The rest is the same as we did with
the alleles.

Now for plotting. The functions split.screen and screen are a handy way of
placing more than one image in a single plot area (instead of having to make two
separate plots, see Fig. 2.7).

> split.screen(c(2,1))

[1] 1 2

> screen(1)
> barplot(sort(alleles,decreasing=T),col=1:11,
+ main="Barplot of allelic frequencies")
> screen(2)
> barplot(sort(genotypes,decreasing=T),col=1:11,
+ main="Barplot of genotypic frequencies")
> close.screen(all = TRUE)
> dev.print(file="images/animgeno.pdf",
+ device=pdf,width=8,height=8)

We sorted the frequencies in decreasing order before plotting. We can see that the
most frequent alleles are the ones coming from the sires. Recall the use of dev.print
for saving plots.

For the analysis we will use a genotype model. Let’s make a new data.frame with
the same information but with a single column for the genotypes for each marker
instead of two columns with alleles. We can do exactly the same as before and just
add a loop and a new variable allgeno to store the genotypes. Then we create a new
data.frame with the progeny data and the genotypes called markers.

> allgeno=NULL
> for(i in 1:length(indexm[,1]))
+ {
+ hold=data.frame(prog[indexm[i,]])
+ hold[,1]=as.character(hold[,1])

2.5 A Worked Out Example 51

+ hold[,2]=as.character(hold[,2])
+ sorted=character()
+ for (i in 1:length(hold[,1]))
+ sorted=rbind(sorted,sort(as.character(hold[i,])))
+ genotypes=paste(as.character(sorted[,1]),
+ as.character(sorted[,2]),sep="_")
+ allgeno=cbind(allgeno,genotypes)
+ }
> colnames(allgeno)=c("M1","M2","M3","M4","M5")
> markers=data.frame(prog[,1:4],allgeno)
> head(markers)

id sire sex weight M1 M2 M3 M4 M5
2 id2 sire1 M 335.43 M1_M4 M1_M3 M4_M5 M3_M4 M2_M2
3 id3 sire1 M 340.09 M2_M3 M2_M6 M1_M3 M3_M4 M3_M4
4 id4 sire1 M 343.08 M2_M3 M1_M2 M4_M6 M2_M3 M4_M5
5 id5 sire1 F 287.08 M1_M3 M2_M4 M4_M6 M4_M5 M2_M3
6 id6 sire1 F 302.17 M2_M2 M2_M5 M3_M5 M2_M4 M1_M4
7 id7 sire1 M 335.11 M1_M2 M1_M2 M3_M3 M2_M4 M2_M5

Now that we have cleaned the data, let’s save it so that if we decide to rerun the
analysis later on we don’t need to go through all the cleaning steps again.

> write.table(markers,"chapter2/cleandata.txt",
+ quote=F,sep="\t",row.names=F)

At long last we are ready to analyze the data. This is quite common with genomic
data (and almost all statistical analyses for that matter), more than half of the work
involves cleaning up and preprocessing.

We want to test the markers with a continuous trait (weight) for association.
A good way to go about it is with a linear model for analysis of variance (anova).
Here is where R comes into its own. We can use the function lm to fit models, it
can handle regressions, analysis of variance and analysis of covariance. The syntax
is lm(formula=mymodel, data=mydata), there are other arguments such as how
to handle missing data, what weights should be used in the fitting process, you
can define a specific subset of the data to be used and also a list of contrasts to
be tested (see the help page for details). The argument data is just the name of
the data.frame that will be used in the analysis. Instead of having to use the full
name (data.frame$headername) as we have been using so far, you can then use only
the header names in the formula and these will be picked up from the data.frame
specified in data.

A side note here—if you don’t want each time to write the name of the data.frame
and the name of the header you can use attach(data.frame), this will make all
headers in the data.frame directly available in R.

> attach(sires)
> print(id)

52 2 Simple Marker Association Tests

[1] sire1 sire2 sire3 sire4 sire5 sire6 sire7
[8] sire8 sire9 sire10

10 Levels: sire1 sire10 sire2 sire3 sire4 ... sire9

> detach(sires)

Just be careful, for example if you attach both sires and prog you will run into
trouble because of the names in common that are in both data.frames. It’s probably
best not to attach a data.frame but if you do, remember to detach it when you are
finished—this removes the direct access and its consequences from R’s workspace.
To exemplify the problem

> attach(sires)
> attach(prog)

The following object(s) are masked from 'sires':

id, m11, m12, m21, m22, m31, m32, m41, m42,
m51, m52, weight

> detach(sires)
> detach(prog)

Now, the important part is our model formula. The syntax is somewhat similar to
how we would normally write a model y ∼ x1 + x2 + xn. As we mentioned before,
the tilde symbol ˜ means “modeled by”. On the left-hand side we have our response
variable and on the right-hand side our explanatory variables. For our data we could
test something along the lines of weight ˜ M1. This models weight in relation to the
genotypes of marker 1. The full R syntax is

lm(weight ˜ M1, data=markers)
Let’s just run the model in R and see what happens

> lm(weight~M1,data=markers)

Call:
lm(formula = weight ~ M1, data = markers)

Coefficients:
(Intercept) M1M1_M2 M1M1_M3 M1M1_M4
3.253e+02 1.771e+00 2.256e+00 8.919e+00

M1M1_M5 M1M1_M6 M1M2_M2 M1M2_M3
-1.372e+00 7.143e-04 -1.049e+00 9.872e+00

M1M2_M4 M1M2_M5 M1M2_M6 M1M3_M3
-3.144e-01 -2.640e+00 1.145e+01 4.787e+00

M1M3_M4 M1M3_M5 M1M3_M6 M1M4_M4
7.156e+00 1.295e+01 8.932e+00 1.955e+01

M1M4_M5 M1M4_M6
1.065e+01 6.623e-02

2.5 A Worked Out Example 53

R prints out the model formula (call) and the coefficients. That’s nice but not
quite enough. Let’s assign the results to a variable and see what that looks like

> results=lm(weight~M1,data=markers)
> class(results)

[1] "lm"

Our variable results is of class lm, which is a class that holds results from a linear
model and has quite a few methods that can be applied to it. The first and most
important method is our already familiar summary.

> summary(results)

Call:
lm(formula = weight ~ M1, data = markers)

Residuals:
Min 1Q Median 3Q Max

-46.185 -22.118 1.607 21.368 52.109

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.253e+02 6.763e+00 48.095 <2e-16 ***
M1M1_M2 1.771e+00 7.809e+00 0.227 0.8207
M1M1_M3 2.256e+00 8.035e+00 0.281 0.7790
M1M1_M4 8.919e+00 8.651e+00 1.031 0.3032
M1M1_M5 -1.372e+00 8.388e+00 -0.164 0.8702
M1M1_M6 7.143e-04 9.564e+00 0.000 0.9999
M1M2_M2 -1.049e+00 8.283e+00 -0.127 0.8993
M1M2_M3 9.872e+00 8.002e+00 1.234 0.2181
M1M2_M4 -3.144e-01 7.911e+00 -0.040 0.9683
M1M2_M5 -2.640e+00 9.132e+00 -0.289 0.7727
M1M2_M6 1.145e+01 8.913e+00 1.284 0.1998
M1M3_M3 4.787e+00 8.731e+00 0.548 0.5838
M1M3_M4 7.156e+00 8.510e+00 0.841 0.4009
M1M3_M5 1.295e+01 8.913e+00 1.453 0.1472
M1M3_M6 8.932e+00 9.746e+00 0.916 0.3600
M1M4_M4 1.955e+01 1.171e+01 1.669 0.0959 .
M1M4_M5 1.065e+01 9.954e+00 1.069 0.2856
M1M4_M6 6.623e-02 1.020e+01 0.006 0.9948

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 25.3 on 378 degrees of freedom
Multiple R-squared: 0.0432, Adjusted R-squared:

54 2 Simple Marker Association Tests

0.0001707 F-statistic: 1.004 on 17 and 378 DF,
p-value: 0.4529

Now we get the model formula, the range of the residuals of our fitted data and
the coefficients with the estimates for each class, the standard errors of the estimates,
the t-values and the p-values. And also the usual significance stars. We also get some
additional information regarding residual standard errors and number of degrees of
freedom, goodness of fit of the model with the R-squared and adjusted R-squared,
and so on. We will only focus on the interpretation of the output, readers interested
in a step by step walkthrough of the calculations might enjoy the introductory book
by Crawley [21] or, for a more in-depth theoretical exposition, Faraway’s [31] book
is a good reference.

It’s always a good idea to have a quick look at the (adjusted) R squared or
the p-value of the F-statistic. It’s not necessarily decisive in model selection but
it does provide a broad indication if the model is actually explaining any part of
the observations or not. In our example we can see that it’s a rather poor fit—
the adjusted R-squared is almost zero. It’s also a good idea to check if the model
is behaving sensibly (if our assumptions are not too strong—e.g., data is normal,
residuals are well behaved, variance is not changing based on our measures). Use
plot(lmobject) to get four “quality control” plots of your model (there are actually
six plots, but four are shown by default). The first two are the most interesting, an
xy plot of fitted by residual values and a QQ plot of theoretical normal quantiles
by residual quantiles. Just using plot on an lmobject is the most convenient way for
plotting, but you can also make the plots yourself. To extract the fitted values from
an lmobject use the function predict and for the residuals the function residuals
(that’s another two more methods for an lmobject), then just plot one against the
other

> plot(predict(results),residuals(results),
+ main="XY plot of residuals X fitted values",
+ xlab="fitted values (weight)",
+ ylab="residuals",col="blue")

We do not observe too much of a pattern in the plot (Fig. 2.8) so the variance is
constant (or at least constant enough). For a normal QQ plot it’s as simple as

> split.screen(c(2,1))

> screen(1)
> qqnorm(predict(results),col="blue")
> screen(2)
> qqnorm(residuals(results),col="blue",main="")
> close.screen(all = TRUE)

The top plot in Fig. 2.9 shows the fitted values against the normal theoretical
quantiles and the lower plot shows the same but for the residuals (which would be
the second plot given by plot(results)). Note that in terms of normality we have
nothing to write home about. I’m sure we can blame the effect of sex for it!

2.5 A Worked Out Example 55

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

325 330 335 340 345

−
40

−
20

0
20

40

XY plot of residuals X fitted values

fitted values (weight)

re
si

du
al

s

Fig. 2.8 XY plot of fitted values versus residuals. Note that the variance seems stable, i.e.,
independent of the values for weight

Another two functions that come in handy to check the data are fligner.test for
homogeneity of variances and shapiro.test for normality.

> fligner.test(weight~M1,data=markers)

Fligner-Killeen test of homogeneity of variances

data: weight by M1
Fligner-Killeen:med chi-squared = 7.6979, df = 17,
p-value = 0.9726

> shapiro.test(prog$weight)

Shapiro-Wilk normality test

data: prog$weight
W = 0.9483, p-value = 1.548e-10

Once we are satisfied that nothing too amiss is going on with our model, we can
interpret the results. In the summary table we have Estimate, Std. Error, t value,
and Pr(>|t|). It’s quite straightforward. The estimate is the estimated mean value for

56 2 Simple Marker Association Tests

l
ll

l

l

l

l
ll

l

l

l

l
l

l

l

l

lll

l
l

l

ll

l
l

l

l

l

l

l

l

l ll

ll

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

ll

l

l l

l

l

l

ll

l
l

l

lll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l l

ll
l

ll
lll l

l

l

ll l
l

ll

l

l
l

l

l
l

ll

l
l

l

l

ll

l

l

ll

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l

ll

l

l

l

ll

l

ll

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll
ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

ll ll

l

l
l

l

l

ll
l

l

l
l

l

l
l

l
l

l
l

l

l

l
l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

ll

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3

32
5

33
0

33
5

34
0

34
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

l
l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

ll

ll

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l
l

l l

l

ll

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l
l ll

l l

l

l

l

l

l

l

l
l

−3 −2 −1 0 1 2 3

−
40

0
20

40

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Fig. 2.9 QQ plot (observed versus theoretical normal quantiles). Top plot: fitted values. Lower
plot: residual values

each factor. Note that what is called Intercept is the actual estimate for one of the
levels and all other values are shown as a deviation from this top value (R by default
uses a treatment–contrast parameterization). The baseline is selected in alphabetical
order (in our example M1_M1), so if you want a different baseline you’ll need to
reorder the levels. The standard errors are, as you would expect, the uncertainty
around the estimates and the last column shows the p-values. Note that the p-values
are always in relation to the baseline factor.

Another useful function is anova which is essentially just a different output for an
lmobject as a standard anova table (a good way to quantify the effect of explanatory
variables).

> anova(results)

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

M1 17 10928 642.83 1.004 0.4529
Residuals 378 242028 640.29

2.5 A Worked Out Example 57

The marker is not significant (does not explain much of the variability in weight).
We know this model has little explanatory power, but we also know that sex seems
to have a pretty big effect on our data. Let’s include sex in the model

> summary(lm(weight~sex+M1,data=markers))

Call:
lm(formula = weight ~ sex + M1, data = markers)

Residuals:
Min 1Q Median 3Q Max

-23.1174 -7.2400 -0.7689 7.1190 31.3916

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.992e+02 2.900e+00 103.168 < 2e-16 ***
sexM 4.558e+01 1.081e+00 42.143 < 2e-16 ***
M1M1_M2 6.111e+00 3.274e+00 1.867 0.062693 .
M1M1_M3 5.512e+00 3.368e+00 1.637 0.102537
M1M1_M4 1.010e+01 3.625e+00 2.787 0.005590 **
M1M1_M5 1.884e+00 3.516e+00 0.536 0.592370
M1M1_M6 7.143e-04 4.007e+00 0.000 0.999858
M1M2_M2 7.090e+00 3.476e+00 2.040 0.042079 *
M1M2_M3 5.965e+00 3.354e+00 1.779 0.076118 .
M1M2_M4 7.739e+00 3.320e+00 2.331 0.020292 *
M1M2_M5 4.637e+00 3.830e+00 1.211 0.226794
M1M2_M6 1.350e+01 3.735e+00 3.615 0.000341 ***
M1M3_M3 9.128e+00 3.660e+00 2.494 0.013051 *
M1M3_M4 1.421e+01 3.569e+00 3.981 8.24e-05 ***
M1M3_M5 1.260e+01 3.734e+00 3.375 0.000815 ***
M1M3_M6 1.043e+01 4.084e+00 2.555 0.011010 *
M1M4_M4 1.304e+01 4.910e+00 2.655 0.008258 **
M1M4_M5 1.010e+01 4.171e+00 2.422 0.015898 *
M1M4_M6 9.537e+00 4.278e+00 2.229 0.026375 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 10.6 on 377 degrees of freedom
Multiple R-squared: 0.8325, Adjusted R-squared: 0.8245
F-statistic: 104.1 on 18 and 377 DF, p-value: < 2.2e-16

That is a big effect! It is highly significant and we expect males to be around
46 kg heavier than females. That’s a lot more than any of the other effects. And the
adjusted R-squared is also looking much better at over 0.82 (largely due to sex).
And now a lot of genotypes seem to have an effect. So, that’s that for marker 1? Not
quite. We have not considered the effect of sire in our model

58 2 Simple Marker Association Tests

> summary(lm(weight~sex+sire+M1,data=markers))

Call:
lm(formula = weight ~ sex + sire + M1, data = markers)

Residuals:
Min 1Q Median 3Q Max

-20.5650 -5.7110 -0.0889 5.2261 21.5778

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 293.8628 2.6104 112.574 < 2e-16 ***
sexM 45.5573 0.8566 53.186 < 2e-16 ***
siresire10 14.5459 1.9541 7.444 7.00e-13 ***
siresire2 18.2750 2.0120 9.083 < 2e-16 ***
siresire3 27.9691 2.0110 13.908 < 2e-16 ***
siresire4 8.5190 1.9165 4.445 1.16e-05 ***
siresire5 14.2383 1.9915 7.150 4.72e-12 ***
siresire6 15.8241 2.0043 7.895 3.37e-14 ***
siresire7 14.2136 2.0673 6.875 2.66e-11 ***
siresire8 14.1905 2.1265 6.673 9.22e-11 ***
siresire9 3.6338 1.9234 1.889 0.0596 .
M1M1_M2 1.0713 2.6239 0.408 0.6833
M1M1_M3 -0.7715 2.7549 -0.280 0.7796
M1M1_M4 0.9751 3.0089 0.324 0.7461
M1M1_M5 -1.6311 2.8036 -0.582 0.5611
M1M1_M6 -1.6844 3.1542 -0.534 0.5937
M1M2_M2 -0.4491 2.8385 -0.158 0.8744
M1M2_M3 -2.0030 2.7399 -0.731 0.4652
M1M2_M4 -1.4636 2.7087 -0.540 0.5893
M1M2_M5 -1.9519 3.0634 -0.637 0.5244
M1M2_M6 2.4693 3.0634 0.806 0.4207
M1M3_M3 -0.8174 3.0775 -0.266 0.7907
M1M3_M4 2.1514 2.9849 0.721 0.4715
M1M3_M5 2.2666 3.1662 0.716 0.4745
M1M3_M6 0.4037 3.3847 0.119 0.9051
M1M4_M4 -3.6682 4.0730 -0.901 0.3684
M1M4_M5 1.2526 3.6037 0.348 0.7283
M1M4_M6 -3.0625 3.6157 -0.847 0.3975

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 8.303 on 368 degrees of freedom
Multiple R-squared: 0.8997, Adjusted R-squared: 0.8923
F-statistic: 122.3 on 27 and 368 DF, p-value: < 2.2e-16

2.5 A Worked Out Example 59

Sire also seems to have quite a large influence on our data and note that the
variation that before was attributed to the marker is now being captured by the sires.
Be careful when interpreting these p-values, remember that they reflect differences
from the base level (here sire 1). We could have a scenario with all sires significantly
different from sire 1 but not different between themselves. They would all seem to
be significant but the actual variation explained by sire might not be. For example,
sires 5, 7 and 8 are all quite similar to each other (the estimated difference between
sires 7 and 8 is only 22.1 g—14.2136−14.1905= 0.0221). Note that sire 3 has the
highest p-value (0.0596) and is also the one with the smallest difference (3.6338 kg)
from sire 1. Coincidentally sire 1 has the lightest offspring (on average), hence all
coefficients are positive. So, these p-values do not tell us how much of the variation
is explained by the sires and we still do not know if the term is significant enough
to be worthwhile keeping in the model. To formally test the difference in models
(essentially proportion of variation explained by a term) do an anova on them.

> model1=lm(weight~sex+sire+M1,data=markers)
> model2=lm(weight~sex+M1,data=markers)
> model3=lm(weight~M1,data=markers)
> anova(model1,model2)

Analysis of Variance Table

Model 1: weight ~ sex + sire + M1
Model 2: weight ~ sex + M1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 368 25370
2 377 42379 -9 -17009 27.413 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

> anova(model2,model3)

Analysis of Variance Table

Model 1: weight ~ sex + M1
Model 2: weight ~ M1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 377 42379
2 378 242028 -1 -199649 1776.1 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Sire has a highly significant effect in our model and the term should be kept. Out
of completeness we also ran an anova test to see if we had to keep sex and of course,
no questions there. In summary to test if a term should be kept or deleted from a
model, build the models you want to try, store them as an mobject and then compare
them using an anova. We can also test our model against a null model—a model that
has no explanatory power at all.

60 2 Simple Marker Association Tests

> model4=lm(weight~1,data=markers)
> anova(model3,model4)

Analysis of Variance Table

Model 1: weight ~ M1
Model 2: weight ~ 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 378 242028
2 395 252956 -17 -10928 1.004 0.4529

And this confirms it—our marker is not providing any information at all. But
we already knew that from the R-squared and anova. Note that the p-value above
(0.4529) and the p-values from the anova and from the F-statistic given by summary
that we obtained with the model fitting only the marker are exactly the same—as
they should be. In contrast look at sex

> anova(model2,model4)

Analysis of Variance Table

Model 1: weight ~ sex + M1
Model 2: weight ~ 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 377 42379
2 395 252956 -18 -210577 104.07 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

So far we have not mentioned interactions between terms. If we wanted a fully
saturated model with all terms and interactions (and completely inestimable from
this data) it would look like

weight ˜ sex*sire*M1
The symbol * is used to model the main effect and the interactions. To estimate

only the interactions use sex:sire. For quadratic terms use ˆ2, consult the R help
files for details. This analysis was for the first marker across all families (but we did
include sire in the model). We could also look at the effects on a per sire, single
family model. For the first sire it would be

> summary(lm(weight~sex+M1,
+ data=markers[which(prog$sire=="sire1"),]))

Call:
lm(formula = weight ~ sex + M1, data = markers[which
(prog$sire =="sire1"),])

Residuals:

2.5 A Worked Out Example 61

Min 1Q Median 3Q Max
-9.1959 -3.9096 0.0613 3.8731 12.6641

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 292.0005 3.9627 73.687 <2e-16 ***
sexM 44.0293 2.4834 17.730 <2e-16 ***
M1M1_M2 4.0354 4.1938 0.962 0.344
M1M1_M3 -0.7563 4.6992 -0.161 0.873
M1M1_M4 -0.5998 7.2481 -0.083 0.935
M1M1_M5 2.6276 4.7673 0.551 0.586
M1M1_M6 4.2302 7.2481 0.584 0.564
M1M2_M2 1.7728 5.3540 0.331 0.743
M1M2_M3 5.1777 4.8342 1.071 0.294
M1M2_M4 1.0178 4.6020 0.221 0.827
M1M2_M5 -0.1500 5.0916 -0.029 0.977

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 6.236 on 27 degrees of freedom
Multiple R-squared: 0.9484, Adjusted R-squared: 0.9292
F-statistic: 49.59 on 10 and 27 DF, p-value: 9.349e-15

The across families model is preferable—provided the marker and gene are fully
linked, they will not recombine and the phases in the sire families are the same.
If we run the same model with sex and sire for the other markers we get

> summary(lm(weight~sex+sire+M2,data=markers))

Call:
lm(formula = weight ~ sex + sire + M2, data = markers)

Residuals:
Min 1Q Median 3Q Max

-22.7912 -5.6914 -0.5605 4.9794 23.5298

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 294.07371 2.56442 114.674 < 2e-16 ***
sexM 45.61291 0.86016 53.028 < 2e-16 ***
siresire10 15.96557 1.95229 8.178 4.74e-15 ***
siresire2 19.33987 1.94433 9.947 < 2e-16 ***
siresire3 27.56248 2.08319 13.231 < 2e-16 ***
siresire4 9.04794 2.01229 4.496 9.28e-06 ***
siresire5 14.91096 1.99842 7.461 6.23e-13 ***
siresire6 17.24295 1.96925 8.756 < 2e-16 ***

62 2 Simple Marker Association Tests

siresire7 15.51597 2.08658 7.436 7.36e-13 ***
siresire8 14.52662 2.04696 7.097 6.61e-12 ***
siresire9 3.64002 1.98009 1.838 0.0668 .
M2M1_M2 -1.35543 2.52170 -0.538 0.5912
M2M1_M3 -1.91512 2.40510 -0.796 0.4264
M2M1_M4 -4.73051 2.72847 -1.734 0.0838 .
M2M1_M5 -5.53041 2.96409 -1.866 0.0629 .
M2M1_M6 0.07772 2.74350 0.028 0.9774
M2M2_M2 -1.03401 2.71730 -0.381 0.7038
M2M2_M3 -1.36273 2.49493 -0.546 0.5853
M2M2_M4 -0.64443 2.51757 -0.256 0.7981
M2M2_M5 1.29490 2.85511 0.454 0.6504
M2M2_M6 -1.03280 2.65962 -0.388 0.6980
M2M3_M3 -1.90353 2.79155 -0.682 0.4957
M2M3_M4 -0.71610 2.68207 -0.267 0.7896
M2M3_M5 -4.12052 3.12912 -1.317 0.1887
M2M3_M6 2.27967 2.94271 0.775 0.4390
M2M4_M4 0.18093 2.94842 0.061 0.9511
M2M4_M5 -0.06594 3.82900 -0.017 0.9863
M2M4_M6 0.01959 3.13892 0.006 0.9950

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 8.285 on 368 degrees of freedom
Multiple R-squared: 0.9001, Adjusted R-squared: 0.8928
F-statistic: 122.9 on 27 and 368 DF, p-value: < 2.2e-16

> summary(lm(weight~sex+sire+M3,data=markers))

Call:
lm(formula = weight ~ sex + sire + M3, data = markers)

Residuals:
Min 1Q Median 3Q Max

-23.3480 -5.8414 -0.3709 4.6576 23.8250

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 295.7821 3.4113 86.705 < 2e-16 ***
sexM 45.3620 0.8563 52.972 < 2e-16 ***
siresire10 14.5426 2.0227 7.190 3.65e-12 ***
siresire2 19.8409 2.0035 9.903 < 2e-16 ***
siresire3 27.9406 2.0000 13.970 < 2e-16 ***
siresire4 8.6615 1.9331 4.481 9.95e-06 ***
siresire5 15.1641 2.0205 7.505 4.67e-13 ***
siresire6 16.4759 1.9655 8.383 1.11e-15 ***

2.5 A Worked Out Example 63

siresire7 15.0614 2.0775 7.250 2.48e-12 ***
siresire8 14.5809 1.9743 7.386 1.03e-12 ***
siresire9 3.2624 2.0031 1.629 0.104
M3M1_M2 -1.7039 3.4520 -0.494 0.622
M3M1_M3 -2.7986 3.3179 -0.843 0.400
M3M1_M4 -3.5924 3.5067 -1.024 0.306
M3M1_M5 -5.2669 3.7516 -1.404 0.161
M3M1_M6 -2.9969 3.9630 -0.756 0.450
M3M2_M2 -3.5294 3.7086 -0.952 0.342
M3M2_M3 -1.7399 3.3301 -0.522 0.602
M3M2_M4 -3.1061 3.3233 -0.935 0.351
M3M2_M5 -5.2805 3.5647 -1.481 0.139
M3M2_M6 2.7613 3.9215 0.704 0.482
M3M3_M3 -3.6043 3.6052 -1.000 0.318
M3M3_M4 -3.4710 3.3397 -1.039 0.299
M3M3_M5 -1.1773 3.6098 -0.326 0.745
M3M3_M6 -1.9418 3.5353 -0.549 0.583
M3M4_M4 -2.0071 3.8458 -0.522 0.602
M3M4_M5 0.4192 3.9026 0.107 0.915
M3M4_M6 -1.4906 3.8018 -0.392 0.695

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 8.303 on 368 degrees of freedom
Multiple R-squared: 0.8997, Adjusted R-squared: 0.8923
F-statistic: 122.3 on 27 and 368 DF, p-value: < 2.2e-16

> summary(lm(weight~sex+sire+M4,data=markers))

Call:
lm(formula = weight ~ sex + sire + M4, data = markers)

Residuals:
Min 1Q Median 3Q Max

-22.7806 -5.8261 -0.0981 5.2882 23.2222

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 295.6093 3.1683 93.301 < 2e-16 ***
sexM 45.7384 0.8595 53.213 < 2e-16 ***
siresire10 15.7858 1.9570 8.066 1.03e-14 ***
siresire2 19.7087 1.9245 10.241 < 2e-16 ***
siresire3 28.1588 1.9848 14.187 < 2e-16 ***
siresire4 7.6661 2.0518 3.736 0.000216 ***
siresire5 14.7326 1.9683 7.485 5.33e-13 ***
siresire6 16.2506 2.0735 7.837 5.01e-14 ***

64 2 Simple Marker Association Tests

siresire7 14.5987 1.9936 7.323 1.54e-12 ***
siresire8 15.1862 1.9403 7.827 5.38e-14 ***
siresire9 3.1479 2.0130 1.564 0.118734
M4M1_M2 -4.0779 2.9327 -1.391 0.165216
M4M1_M3 -3.2466 3.1855 -1.019 0.308782
M4M1_M4 -2.2060 3.0873 -0.715 0.475355
M4M1_M5 -0.2960 3.4868 -0.085 0.932384
M4M1_M6 5.3292 3.8099 1.399 0.162723
M4M2_M2 -3.2301 3.3161 -0.974 0.330672
M4M2_M3 -4.0546 3.0258 -1.340 0.181061
M4M2_M4 -2.6226 3.0451 -0.861 0.389654
M4M2_M5 -2.0669 3.1708 -0.652 0.514888
M4M2_M6 -1.1982 3.2424 -0.370 0.711925
M4M3_M3 -1.9093 3.4852 -0.548 0.584141
M4M3_M4 -3.3156 3.1471 -1.054 0.292793
M4M3_M5 -0.9638 3.6675 -0.263 0.792853
M4M3_M6 -5.1306 3.7296 -1.376 0.169770
M4M4_M4 0.7503 3.4346 0.218 0.827189
M4M4_M5 -1.7691 3.6234 -0.488 0.625656
M4M4_M6 -6.6717 3.7661 -1.772 0.077298 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 8.226 on 368 degrees of freedom
Multiple R-squared: 0.9016, Adjusted R-squared: 0.8943
F-statistic: 124.8 on 27 and 368 DF, p-value: < 2.2e-16

> summary(lm(weight~sex+sire+M5,data=markers))

Call:
lm(formula = weight ~ sex + sire + M5, data = markers)

Residuals:
Min 1Q Median 3Q Max

-14.192 -3.152 -0.124 3.451 13.538

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 305.860 1.813 168.731 < 2e-16 ***
sexM 46.151 0.519 88.921 < 2e-16 ***
siresire10 14.829 1.181 12.553 < 2e-16 ***
siresire2 10.591 1.299 8.151 5.72e-15 ***
siresire3 18.050 1.276 14.144 < 2e-16 ***
siresire4 6.169 1.200 5.139 4.48e-07 ***
siresire5 13.321 1.185 11.237 < 2e-16 ***
siresire6 9.559 1.283 7.449 6.77e-13 ***

2.5 A Worked Out Example 65

siresire7 12.990 1.193 10.889 < 2e-16 ***
siresire8 5.610 1.334 4.205 3.29e-05 ***
siresire9 1.308 1.188 1.101 0.2717
M5M1_M2 1.505 1.804 0.834 0.4046
M5M1_M3 2.329 1.699 1.371 0.1713
M5M1_M4 3.405 1.794 1.898 0.0585 .
M5M1_M5 1.928 1.923 1.003 0.3166
M5M1_M6 2.232 1.852 1.206 0.2287
M5M2_M2 -16.271 2.123 -7.665 1.60e-13 ***
M5M2_M3 -14.598 1.728 -8.448 6.98e-16 ***
M5M2_M4 -14.061 1.795 -7.835 5.08e-14 ***
M5M2_M5 -14.299 1.937 -7.382 1.05e-12 ***
M5M2_M6 -17.000 2.091 -8.130 6.64e-15 ***
M5M3_M3 -14.144 1.869 -7.566 3.12e-13 ***
M5M3_M4 -13.574 1.685 -8.053 1.13e-14 ***
M5M3_M5 -12.417 1.844 -6.735 6.33e-11 ***
M5M3_M6 -14.058 1.788 -7.863 4.21e-14 ***
M5M4_M4 -9.444 2.030 -4.652 4.59e-06 ***
M5M4_M5 -12.355 1.995 -6.193 1.58e-09 ***
M5M4_M6 -10.021 2.393 -4.188 3.53e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 5.045 on 368 degrees of freedom
Multiple R-squared: 0.963, Adjusted R-squared: 0.9603
F-statistic: 354.5 on 27 and 368 DF, p-value: < 2.2e-16

Nothing much is really happening until we get to the last marker—then we get
stars everywhere. For the first four markers only a few genotypes are marginally
significant and none of them would make it past a p-value cutoff of 0.05. They
also have reasonably small effects, the largest one being around 6 kg, the standard
deviation is 25 kg, so just around 0.2 of a standard deviation). Our first four markers
were not very exciting. But how do we interpret the results from the fifth marker?
Sex is still significant and adds around 46 kg to the weight of males. The sires
are different between each other, we hope to have captured the polygenic effects
reasonably well. Recall that the differences are shown in relation to sire 1 and most
sires are significantly different from it but not necessarily different between each
other. Note that the estimates of sire effects change when different markers are fitted
but are still reasonably consistent (the standard errors can help with confidence of
estimates).

As for the markers our baseline genotype is M1_M1, homozygote for allele M1.
There are in total 18 genotypes in our data for this marker. We see that the first 5
were not significant and the other 12 were (17 because one is the baseline contrast).
If we look closely at the first 5 we will notice that all of them have an allele M1 in
the genotype, but the others do not. And that’s our result: allele M1 has a significant

66 2 Simple Marker Association Tests

effect on our trait. What else can we say? Allele M1 is dominant—remember that
the baseline is M1_M1 and we are getting almost the same estimates for one or
two “doses” of allele M1. The allele cannot be recessive because then the difference
between the homozygote M1_M1 and the heterozygotes would have to be similar to
the difference between having or not allele M1 (similar to the other 12 values). Could
it be additive? Again we would expect a consistent intermediate value between 0,
1 and 2 copies of the allele—which we do not see here; if anything the estimates
for the heterozygotes seem positive. Of course there might be different interactions
between allele M1 and each of the other alleles, but that’s another story. . . The mean
of the estimates for genotypes that do not carry allele M1 is −13.52 kg; thus animals
with allele M1 will be almost 14 kg heavier than other animals.

Our grand conclusion: the candidate gene in linkage with marker 5 is a
potential suspect for having an effect and influencing weight in cattle. Animals
which carry allele M1 from marker 5 should show an additional weight gain
of around 14 kg in relation to other animals. The favorable allele shows a
dominance effect.

That’s the end of this analysis. Did it actually work? I would say yes. The
simulation was based on a mean weight for males of 350 kg (sd = 10), females
300 kg (sd = 10) and only marker 5, allele M1 had an effect of 15 kg (sd = 2) and
the allele was set up to be dominant.

Some things to keep in mind. This exercise was highly guided—the parameter-
ization worked well. In real life it’s not common that the baseline will work so
nicely. First, ignore p-values and focus on estimates of the effects, that’s much
more meaningful and you will be able to pick the relationships between levels
right away. The main value of the p-values is to evaluate your confidence in the
estimate of effects given the data. Also, even if an effect is significant, it might be so
small as to have little value anyhow (and the opposite is true as well). If you don’t
like treatment–contrasts you can use a global mean and deviate everything from it.
A good way to view the data is with the simple plot.design (Fig. 2.10). Try also the
effects package for nice plots or the model.tables function.

> plot.design(weight~sex+sire+M5,data=markers,col=
"blue")

Of course, before we dig into the actual estimates as we did here, the easiest way
to see if the marker itself has an effect on the trait is with an anova table. We can
right away see which markers we want to zoom in on.

> anova(lm(weight~sex+sire+M1,data=markers))

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 204821 204821 2971.0104 <2e-16 ***
sire 9 21807 2423 35.1467 <2e-16 ***
M1 17 958 56 0.8175 0.6729

2.5 A Worked Out Example 67

31
0

32
0

33
0

34
0

35
0

Factors

m
ea

n
of

 w
ei

gh
t

F

M

sire1

sire10

sire2

sire3

sire4

sire5

sire6

sire7

sire8

sire9

M1_M1M1_M2M1_M3

M1_M4

M1_M5

M1_M6

M2_M2

M2_M3

M2_M4

M2_M5M2_M6M3_M3

M3_M4M3_M5
M3_M6

M4_M4

M4_M5

M4_M6

sex sire M5

Fig. 2.10 Effect sizes plot of weight for factors sex, sire and marker5

Residuals 368 25370 69

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

> anova(lm(weight~sex+sire+M2,data=markers))

Analysis of Variance Table

68 2 Simple Marker Association Tests

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 204821 204821 2984.1111 <2e-16 ***
sire 9 21807 2423 35.3017 <2e-16 ***
M2 17 1069 63 0.9166 0.5545
Residuals 368 25258 69

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

> anova(lm(weight~sex+sire+M3,data=markers))

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 204821 204821 2971.0585 <2e-16 ***
sire 9 21807 2423 35.1473 <2e-16 ***
M3 17 959 56 0.8179 0.6725
Residuals 368 25369 69

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

> anova(lm(weight~sex+sire+M4,data=markers))

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 204821 204821 3027.2435 <2e-16 ***
sire 9 21807 2423 35.8119 <2e-16 ***
M4 17 1429 84 1.2427 0.2282
Residuals 368 24899 68

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

> anova(lm(weight~sex+sire+M5,data=markers))

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 204821 204821 8047.286 < 2.2e-16 ***
sire 9 21807 2423 95.198 < 2.2e-16 ***
M5 17 16962 998 39.200 < 2.2e-16 ***
Residuals 368 9366 25

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

2.5 A Worked Out Example 69

Yes, the only marker worth while looking at is marker 5. A note of caution when
using anova. Terms are tested in the order of the model. Rather crudely this means
that after fitting sex and sire, the marker is tested on the remaining variance not
captured by the first two terms. A bit more formally it is the sequential sums of
squares (SS)—type I; i.e., the improvement in the error SS as an additional term is
added. The order we used here is appropriate and will ensure that the marker does
not “suck up” variation from the other two terms (and we are really only interested
in the marker effects anyhow). If markers were fitted first in the model, they would
all appear to be significant. Keep in mind that the order of terms will change the
results. To get type II errors (hierarchical) or type III (marginal), the Anova function
from the library car can be used. Type III will give the same results as running anova
multiple times with a different order for the factors and only looking at the last level
each time. One point about Anova is that we can test all markers at the same time:

> library(car)
> Anova(lm(weight~sex+sire+M1+M2+M3+M4+M5,
+ data=markers), type=3)

Anova Table (Type III tests)

Response: weight
Sum Sq Df F value Pr(>F)

(Intercept) 143615 1 5574.5479 <2e-16 ***
sex 162947 1 6324.9082 <2e-16 ***
sire 7529 9 32.4717 <2e-16 ***
M1 335 17 0.7652 0.7328
M2 293 17 0.6699 0.8320
M3 347 17 0.7913 0.7031
M4 574 17 1.3095 0.1845
M5 14151 17 32.3113 <2e-16 ***
Residuals 7729 300

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Results are similar but F-values are slightly lower, which is not surprising given
that more terms were added to the model.

What we did was quite simple. You might want to use a linear mixed effects
model (fixed and random effects)—have a look at lmer in package lme4 or lme in
package nlme. For non linear mixed effects models use nlme also in package nlme.
For generalized linear models glm is a good option. For those familiar with ASReml
there’s an R version—but it’s not free. For binary data use a logistic regression such
as PLR from package MCRestimate or even a simple χ-square test chisq.test.

To end this chapter let’s compare the results using our linear model with only
fixed effects with a mixed effects model with sire as random.

70 2 Simple Marker Association Tests

> library(nlme)
> linear=coefficients(lm(weight~sex+sire+M5,
+ data=markers))[c(1,2,12:28)]
> random=fixef(lme(weight~sex+M5,random=~1|sire,
+ data=markers))
> linear=data.frame(effect=names(linear),fixed=linear)
> random=data.frame(effect=names(random),random=random)
> comparison=merge(linear,random,by="effect")
> comparison=data.frame(comparison,
+ difference=comparison$fixed-comparison$random)
> print(comparison)

effect fixed random difference
1 (Intercept) 305.860128 315.115009 -9.254880841
2 M5M1_M2 1.504781 1.490549 0.014232509
3 M5M1_M3 2.328878 2.314576 0.014301890
4 M5M1_M4 3.404947 3.453365 -0.048418026
5 M5M1_M5 1.928433 1.971879 -0.043446586
6 M5M1_M6 2.232493 2.254357 -0.021864058
7 M5M2_M2 -16.270931 -16.370461 0.099530184
8 M5M2_M3 -14.598117 -14.625505 0.027387920
9 M5M2_M4 -14.060934 -14.107196 0.046262575
10 M5M2_M5 -14.298566 -14.344659 0.046093036
11 M5M2_M6 -17.000394 -17.034139 0.033744340
12 M5M3_M3 -14.143775 -14.170504 0.026729166
13 M5M3_M4 -13.574197 -13.602779 0.028581779
14 M5M3_M5 -12.417066 -12.440205 0.023139180
15 M5M3_M6 -14.057730 -14.088632 0.030902255
16 M5M4_M4 -9.443498 -9.441622 -0.001875957
17 M5M4_M5 -12.355493 -12.290890 -0.064603120
18 M5M4_M6 -10.020663 -10.080629 0.059965642
19 sexM 46.151039 46.159111 -0.008071354

The differences are small in this example. In general you might expect smaller
effects with a random model. What we did above was to extract the coefficients
(the ones we wanted to compare—note the use of the index) in linear and the fixed
effects from our random model in random. Then we transformed the results into
data.frames with a column called effect which we used to combine the two (the
function merge can be used to combine data.frames based on the contents of a
column). You could also try a mixed model with all markers as a random effect
(better to use lmer for this).

2.6 Useful R Books and Packages 71

2.6 Useful R Books and Packages

• Applied Statistical Genetics with R: For Population-based Association Stud-
ies [35]. A good read with a focus on human studies and more emphasis on
discrete traits.

• Statistical Genetics of Quantitative Traits: Linkage, Maps and QTL [120] and
The Statistics of Gene Mapping [102] are two good books about mapping and
QTL detection with examples in R. Both provide good theoretical foundations.

• nlme, lme4, mgcv, MCRestimate for model fitting.
• lattice for trellis graphs, ideal for multivariate plots.
• GeneticsBase good for storing and handling genetic data, can save a lot of work

but it’s not very flexible.
• genetics excellent generic package, was replaced by GeneticsBase but I still

prefer this old package.
• haplo.stats and ldDesign some nice functions to compute power and sample

sizes.

Chapter 3
Genome Wide Association Studies

In this chapter we will discuss genome wide association studies (GWAS) using
SNP. GWAS present some challenges for biostatistics and bioinformatics—the
sheer dimensionality of the data can create storage/retrieval and analysis problems.
Quality control and data preprocessing are also important steps in GWAS. We
will initially discuss basic database usage for data storage and handling and the
main metrics for evaluating the quality of genotypes followed by how to perform a
GWAS, multiple testing issues and how to visualize results.

3.1 From Microsatellites and Linkage Analysis to SNP
and Genome Wide Association Studies

Until 2004 microsatellites were the most widely used type of DNA markers used
in QTL mapping studies in livestock. A relatively large number of microsatellites
were known for various species (roughly in the range of 1,000–10,000 depending on
the species) and their genomic location was also reasonably well characterized. Note
that this predates modern sequencing platforms and assemblies for most species
were not yet available.

In general terms, the markers are used to identify regions harboring quantitative
trait loci (QTL). In a typical genome scan, about 200–400 markers are genotyped
across the genome, and the objective is to identify putative QTL segregating within
marker intervals (interval mapping) that are associated with a trait of interest. The
limitation of these studies is that the association holds within a family or within
a designed cross of divergent breeds but it is generally not valid across different
families. The reason is that the markers are generally too far from the QTL, e.g.,

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-14475-7_3) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_3

73

http://dx.doi.org/10.1007/978-3-319-14475-7_3
http://dx.doi.org/10.1007/978-3-319-14475-7_3

74 3 Genome Wide Association Studies

the average distance between adjacent markers would be 3,500/200 = 17.5 cM.
A 10 cM distance means that there will be a recombination in 10% of cases.
The phase between alleles on the marker and QTL can be different across family
groups. Also, the experimental design requirements and the linkage analysis itself
can be quite cumbersome in these studies.

Once a broad QTL region is identified, the region can be narrowed down by
adding additional new markers (other microsatellites or more often SNP) within the
putative QTL region to identify candidate genes and, ultimately, find the functional
mutation. If the actual functional mutation can be identified, it can be used directly
and linkage is not an issue anymore. This is however a costly exercise and has met
limited success apart from some well-known cases of genes with large effects on
phenotypes, e.g., myostatin (muscling) and DGAT (milk) mutations.

3.1.1 Single Nucleotide Polymorphism

A new direction was initiated in the early 2000s with sequencing of whole genomes.
A by-product of sequencing was the notion that DNA base pairs (=nucleotides)
are usually the same in individuals from a species, but they vary about 1 in every
500–1,000. Hence, in a part of the genome, some individuals will have
. . . AACTGTA . . . whereas some others have . . . AATTGTA. . . The variants are
called Single Nucleotide Polymorphisms (SNP).

SNP are important because they are all over the genome and at much higher
density than microsatellites. A ballpark figure is 20 million reasonably common
SNP in a species. Furthermore, many functional mutations will actually be SNP.
SNP also allow for fast, accurate, and cheap genotyping. For example, the com-
mercially available ovine SNP chip allows genotyping one individual for more than
50,000 SNP for around $75.00 per animal and prices are dropping rapidly.

3.1.2 Genome Wide Association Studies

The high density of SNP has important implications for association studies. Firstly,
QTL experiments do not need to be based on, e.g., large half-sib families or
divergent line crosses as we do not need such a rigorous structure to ensure LD.
LD can be assumed across families in a population. This will have an added
advantage that estimated effects are more likely to be valid across families. Finally,
by simultaneously fitting all markers, a statistical model can accommodate the joint
effects of all QTL affecting a quantitative trait (rather than a single QTL). Such
models are fitted in genomic prediction studies and the combined effect of the SNP
can account for a reasonable proportion of the genetic variance observed in a trait.
If the marker information is treated appropriately (e.g., snpBLUP) the estimation
procedures do not suffer from an excess of false positive results due to multiple
testing.

3.2 Experimental Design 75

Results from simulation and empirical studies have shown that fitting thousands
of gene markers to explain phenotypes for as little as 1,000 subjects is feasible.
They have also shown that reasonable power can be obtained if the number of
subjects is between 2,000 and 8,000 (depending on trait heritability and effective
population size). The broad consensus is that about 60,000 markers are needed for
accurate predictions of breeding values (otherwise the distance between markers
will be too wide), and even higher numbers/densities are needed to expect successful
predictions across populations with different genetic backgrounds. The latter also
requires QTL to have similar effects across these populations with results to date
suggesting that predictions do not hold well across populations.

We have discussed GWAS with a rather unsubtle bias toward livestock. A nice
and much more “humane” paper with a historical perspective of genome wide
association studies is given by Kruglyak [63]. A good methodological summary
on GWAS for human studies is the paper by Bush and More [13]. For a crop plants
perspective see Huang and Han [55].

3.2 Experimental Design

We will not go into any in-depth details of design issues. As with any experiment,
the design can make or break the project. In the previous chapter we discussed some
general design concepts such as population wide studies, case–control studies, and
family-based studies. Practical considerations unfortunately cannot be avoided and
there will have to be some compromise due to availability of funding and samples.
A nice discussion of design issues is given by Spencer et al. [106]—there’s even an
R package developed by the authors that will tell you the power of your experiment
given your budget. A book chapter by Roderick Ball has some with nice R examples
and an accompanying R package [10]. See also [109] for a discussion of design
issues or [62] on power analysis considerations.

A few things to keep in mind though:

• Sample size. Sample size and power calculations can give you insights into what
you will be able to pick up or not. But the short version is to aim for the largest
sample size that your money will buy and you can phenotype.

• Multiple testing. Even with a small 10K chip you would still expect 100 false
positives for a significance threshold 0.01. And if we use the human 1000K,
well. . . Further on we will discuss multiple testing correction approaches. For
the time being just remember that GWAS can yield a large number of spurious
results.

• Rare alleles. If the trait you are interested in is associated with a rare allele in the
population you will need much larger numbers to identify effects in these SNP.

• Coverage. In GWAS hopefully there will always be a SNP that is in full (or
almost) linkage disequilibrium with the causative gene. But this may not always
be the case. If SNP and QTL are not always on the same phase you will lose

76 3 Genome Wide Association Studies

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

accuracy X heritability for different number of individuals genotyped
solid line − 50K

dashed line − 700k

heritability

ac
cu

ra
cy

100
200
500
1000
2000
5000
10000
20000
50000

Fig. 3.1 Accuracy × heritability for different number of individuals genotyped on 50k and 700k
SNP arrays

some power. Consider using haplotypes for the analysis or at least quantifying
recombination if your data will allow it. The population structure will also play a
role here. In humans more LD is observed in Caucasian than African populations.
A chip suitable for one population might not be adequate for the other in terms of
coverage—there can be ascertainment bias depending on the data used to select
the SNP. In livestock we expect to need less dense arrays than in humans since
these populations have smaller effective population sizes and longer stretches of
DNA in LD.

• Size of effect. It’s easier to pick up large effects explained by a few loci. If the
trait is determined by many loci of small effects the sample size will have to be
considerably larger.

For illustration purposes, Fig. 3.1 shows theoretical accuracies of prediction (this
is for genomic selection/prediction, not GWAS) for heritabilities ranging between 0
and 1 and for different number of individuals (between 100 and 50,000) genotyped
on 50k and 700k arrays. Note how the 14-fold increase in the number of SNP only
increases accuracies between 2 and 10%. The assumptions here were an effective
population size of 100 individuals and a genome of 30M [41]. The vertical red line
shows changes in accuracy for a trait with heritability 0.4.

3.3 Platforms

It was the availability of chip-based, parallelized SNP assaying of up to one million
or even more SNP per individual that allowed genome wide association studies
to become so ubiquitous. The main players who produce these arrays for SNP
chip genotyping are Affymetrix and Illumina; both producing SNP chips capable
of genotyping in excess of one million SNP [79]. Arrays such as the Affymetrix

3.4 Preprocessing and Quality Control 77

Human SNP Array 6.0 feature not only SNP (around 900,000) but also copy
number polymorphisms (an additional 950,000 probes).The most comprehensive
SNP chips are for humans; however Illumina produces, e.g., a 1720k chip for
canines, 700k chips for both bovines and sheep as well as a large number of
lower density arrays (e.g., 50k bovine, 50k sheep, 60k porcine). Both Illumina and
Affymetrix also offer customized SNP chips. Check the manufacturers websites for
detailed documentation of the technologies in use and the various off the shelf chips
available.

As the sequencing technology rapidly evolves, we can expect that array-based
genotyping will be replaced by cheap sequencing methods in the very near future
(GBS—genotyping by sequencing). With sequence-based data there are differences
in the preprocessing and quality control steps but the analysis itself is still largely
the same.

3.4 Preprocessing and Quality Control

In the previous chapter we spent quite some time cleaning up the data for the
analysis. GWAS also demand a fair amount of preprocessing and quality control.
We will not discuss the phenotypes here—we went over some common steps in
Chap. 2. Here we will focus only on the SNP data.

We will work with a small sample from a real dataset from sheep. The platform is
an Illumina SNP chip with 54,977 SNP and the data file was generated by Genome-
Studio (proprietary software from Illumina). We have 83 animals genotyped, not
nearly enough to even get started in a real association study but enough to discuss
the principles.

The next sections on data handling and quality control are largely based on the
book chapter [43] and reproduced here with kind permission from the publisher.
A fully automated analysis pipeline in R that performs QC and stores data is
described in [45].

3.4.1 Storing and Handling Data

This dataset can quite easily be handled directly in R, but for larger datasets
dimensionality can become a problem—the whole dataset will not fit into the
memory of common desktop machines. The simplest workaround is to store the
data in a database and retrieve only the parts of the data that are needed at any given
time. R can interface quite easily with databases—SQL queries can be sent straight
from R to the database and retrieved records stored as a data.frame.

Databases are by far the best approach to manage large datasets. While for
large collaborative projects it is essentially mandatory to have a dedicated database

78 3 Genome Wide Association Studies

manager to design the database and manage data storage/access, it is still easy to
implement robust solutions for smaller projects and worthwhile to have a general
understanding of their usage.

SNP array data will usually come in two formats: a proprietary database structure
developed by the chip manufacturer or a flat file. We will work only with the flat
files. Our first step is to build a database from the flat files for further downstream
analysis in R. We will build the database straight from R, but of course you don’t
need it for this. There are many options for working with databases. We will use
SQLite. The key advantages are that it connects well to R—the annotation packages
that we will see in the next chapters are all built with it; there’s no installation
involved—a single 500 kb executable is all you need; databases can simply be
copied across machines without any further installation; to access a database from
R all we need is the RSQLite package.

For our example we will use two files: a genotypes file and a map file. The first
(Fig. 3.2) contains all genotype calls for all SNP and all samples; the second holds
mapping information of the SNP, e.g., chromosome, physical location, etc.

For our database we need to create a schema (a schema is simply a text file that
describes the database structure and is used to create the initial empty DB) with
the tables and columns we want in it. The map file (the simplified version used
here) has only three columns: SNP identifier, chromosome, and position. The data
file (Fig. 3.2) has seven columns: SNP identifier, sample identifier, allele 1, allele 2,
X, Y, and GC score (we will discuss the last three later on). As mentioned before,
this data file was generated by GenomeStudio. There are many other columns that
can be added/removed to the data—keep in mind that the actual columns and their
order can change between datasets. Also note that GenomeStudio has extensive

Fig. 3.2 Screenshot of SNP chip data

3.4 Preprocessing and Quality Control 79

capability for data filtering as well, and strictly speaking most of what we are doing
here could be done straight in GenomeStudio (albeit at a rather high price tag and
with less flexibility).

Back to the data, notice that we have some nuisance information lines—9 in
this case. A simple schema will consist of two tables, one for each of the files and
one column for each source of information. A snpmap table with SNP identifier,
chromosome and position, and a data table with the seven columns from our dataset.
The schema could look like

CREATE TABLE snpmap(
name,
chromosome,
position

);

CREATE TABLE SNP(
snp,
animal,
allele1,
allele2,
x,
y,
gcscore

);

CREATE INDEX snp_idx ON SNP(snp);
CREATE INDEX animal_idx ON SNP(animal);

CREATE INDEX chromosome_idx ON snpmap(chromosome);

Note that the above is not R code. It is simply a plain text file with the structure
(description) of the DB that we want to create (you can write and save this using,
e.g., Notepad). The table and columns names are discretionary; here we decided to
hold mapping information (three columns) in snpmap and the genotypes in SNP
(seven columns). Note that indices (CREATE INDEX) are created at the end to
make sure that searches by SNP ID, sample ID, or chromosome are fast to execute
(indices make the database slow to build but speed up the queries dramatically).
A good source of information for SQLite syntax can be found at http://www.sqlite.
org/. Once we’ve saved our schema in a text file (e.g., as snpDB.sql or schema.txt)
we are ready to create the database and populate it with the data. This can be done
from the command line on the console (also not in R) provided, of course, sqlite is
installed and in the OS path with:

sqlite SNPsmall < snpDB.sql

http://www.sqlite.org/
http://www.sqlite.org/

80 3 Genome Wide Association Studies

and this creates a new database SNPsmall with the previous schema ready to be
populated with the genotype data. Excel users might find it useful to think of a
schema as a text file that defines the names and number of sheets in a spreadsheet
and within each sheet (table), there’s a certain number of column headers.

But this is really just to briefly illustrate the internal structure of a database. In
practice it is quite simple to create a new database directly in R, and for our example
not even the schema is needed. First open R and load the RSQLite package

> library(RSQLite)

Then run the following code:

> con=dbConnect(dbDriver("SQLite"),
+ dbname = "chapter3/SNPsmall")

> dbWriteTable(con,"snpmap","chapter3/SNPmap.txt",
+ header= TRUE, append=T, sep="\t")

> dbWriteTable(con,"SNP","chapter3/SNPsample.txt",
+ append=T, header=TRUE, skip=9,sep="\t")

Let’s go over the code. The first line simply creates a new blank database called
SNPsmall using the SQLite database driver (R has DBMS’s for most common
database engines). In the same line a connection (function dbConnect) to the
new database is created (if the database already existed, R would simply open a
connection to it).

Now we have an empty DB similar to what we did using straight sqlite
but without any tables/fields information. R can simply create tables and fields
directly from the flat files themselves. To populate the DB (once connected to it
using dbConnect) we can upload our flat files of genomic data SNPmap.txt and
SNPsample.txt using the function dbWriteTable (once for each file). The function
takes quite a few arguments: the database connection con that was created in the
previous line, the name of the a new table to be created in the DB (snpmap and
SNP), the name of the flat file to import, if there is a header in the file it can
be used to create the field/column names, if appending or not to the database,
the separator used between columns in the data and how many lines to skip if
there are extraneous header files. Note that in this example the top nine lines from
the genotypes file had to be removed (Fig. 3.2). Note: a source of angst when
creating databases in R is what is used as end of line (eol) in the file. While
R automatically recognizes \n (Linux) or \r\n (Windows), SQLite does not. An
additional parameter to dbWriteTable is eol (e.g., eol=”\r\n”).

We can have a look at the tables and fields (columns) in the DB using
dbListTables and dbListFields

> con=dbConnect(dbDriver("SQLite"),
+ dbname = "chapter3/SNPsmall")
> dbListTables(con)

3.4 Preprocessing and Quality Control 81

[1] "snpmap" "SNP"

> dbListFields(con,"snpmap")

[1] "name" "chromosome" "position"

> dbListFields(con,"SNP")

[1] "snp" "animal" "allele1" "allele2" "x"
[6] "y" "gcscore"

The function dbGetQuery is used to send an SQL query to the DB and return the
data in a single step. A two step approach is using dbSendQuery and fetch, but we
will not discuss these here. The syntax for dbGetQuery is dbGetQuery(connection
name,“SQLquery”). For example, if we want to retrieve the number of records in a
table

> dbGetQuery(con,"select count (*) from snpmap")

count (*)
1 54977

> dbGetQuery(con,"select count (*) from SNP")

count (*)
1 4563091

That looks right. There are 54,977 records in snpmap and we know our chip has
54,977 SNP so that matched up well. The number of records in SNP is also fine—it
should be the number of samples times the number of SNP

> 54977*83

[1] 4563091

If we want to retrieve sample ids we would do something as

> animids=dbGetQuery(con,
+ "select distinct animal from SNP")
> dim(animids)

[1] 83 1

> head(animids)

animal
1 sample1
2 sample10
3 sample11
4 sample12
5 sample13
6 sample14

82 3 Genome Wide Association Studies

Herein we will not discuss SQL queries or syntax. Any general SQL book will
cover most of the common needs (see for example [91]). All we really need to
know is how to use select * from tableName where columnName=“mysearch”. For
example let’s retrieve all data associated with the first sample.

> animids=as.vector(animids$animal)
> hold=dbGetQuery(con,paste(
+ "select * from SNP where animal='",animids[1],"'",
+ sep=""))
> dim(hold)

[1] 54977 7

> head(hold)

snp animal allele1 allele2
1 250506CS3900065000002_1238.1 sample1 A B
2 250506CS3900140500001_312.1 sample1 B B
3 250506CS3900176800001_906.1 sample1 B B
4 250506CS3900211600001_1041.1 sample1 B B
5 250506CS3900218700001_1294.1 sample1 B B
6 250506CS3900283200001_442.1 sample1 B B

x y gcscore
1 0.833 0.707 0.8446
2 0.018 0.679 0.9629
3 0.008 1.022 0.9484
4 0.010 0.769 0.9398
5 0.000 0.808 0.9272
6 0.019 0.583 0.9552

In the first line we just changed the data.frame with animal ids to a vector—saves
some indexing work. Then we retrieved the data for the first sample from our vector
of animal ids. It’s quite easy to picture a loop for each animal—read in one animal,
run some analysis or other, read in the next animal. . . Notice the use of paste to
create a query string and also the rather awkward use of single and double quotes—
we need quotes for the R string and we also need to include a single quote for the
SQL query in the DB. Just the query string looks like

> paste("select * from SNP where animal='",animids[1],
"'",+ sep="")

[1] "select * from SNP where animal='sample1'"

We already have a vector for the samples. Let’s also get a vector of SNP.

> snpids=as.vector(dbGetQuery(con,
+ "select distinct name from snpmap")[,1])
> length(snpids)

3.4 Preprocessing and Quality Control 83

[1] 54977

> head(snpids)

[1] "250506CS3900065000002_1238.1"
[2] "250506CS3900140500001_312.1"
[3] "250506CS3900176800001_906.1"
[4] "250506CS3900211600001_1041.1"
[5] "250506CS3900218700001_1294.1"
[6] "250506CS3900283200001_442.1"

So, we managed to successfully create a database, connect to it, add the data from
the flat files, and retrieve data from it into R. Before we close this section, recall
that in our schema we created indexes to make data retrieval faster (you would have
noticed that it is somewhat slow right now). We can also add indexes to our database
straight from R with

>dbGetQuery(con,
+ "CREATE INDEX chromosome_idx ON snpmap(chromosome)")

>dbGetQuery(con,"CREATE INDEX snp_idx ON SNP(animal)")
>dbGetQuery(con,"CREATE INDEX ID_idx ON SNP(snp)")

This is just sending an SQL command to the database (here, create the indexes).
Any valid SQL syntax can be sent to the DB as a string (meaning that anything that
can be done in SQL can be done from R). A significant performance improvement
is noticeable if you again retrieve the SNP from the database

> snpids=as.vector(dbGetQuery(con,
+ "select distinct name from snpmap")[,1])

And one last thing. When we are finished with the DB we should close the
connection

> dbDisconnect(con)

[1] TRUE

3.4.2 Quality Control

Now we are ready to do some quality control on our data. Various metrics are
commonly used for QC in GWAS. There is still some level of subjectivity in these,
particularly when setting thresholds. The statistics are performed either across SNP
or across samples, and the objective is to remove bad SNP or samples because the
genotypes are incorrect (or unreliable). The main point with QC is that quite a few
of the filtering parameters used are based on some sort of population metric and

84 3 Genome Wide Association Studies

the definition of good/bad is based on a deviation in relation to other SNP and/or
samples. The challenge is to identify artificial variation introduced due to errors
from true population variation.

To illustrate this point, genotypes tend to be susceptible to ascertainment bias
which is caused by the SNP discovery process being based on a relatively small
number of individuals. This bias can complicate estimates of genetic diversity and
affect call rates [5, 64]. This effect is even stronger when an array designed for, e.g.,
a particular breed is used for genotyping a more genetically distant one (e.g., Bos
taurus and Bos indicus). In these scenarios, the viability of the platform, has to be
evaluated [93] prior to wide adoption and various filtering criteria thresholds have
to be tested.

Typical SNP filtering criteria include percent genotyping fail, median call rates,
genotyping quality scores (GC score), minor allele frequencies and SNP that are
not segregating, deviation of heterozygosity in number of standard deviations,
and deviation from Hardy–Weinberg equilibrium. Sample filtering criteria include
call rates, deviation of heterozygosity in number of standard deviations, and
correlation between samples. Individual chromosomes sometimes are also selected
for exclusion (e.g., sex chromosomes).

Let’s start with across SNP analyses.

3.4.2.1 Genotype Calling and Signal Intensities

SNP alleles are usually coded as A/B in Illumina (as in our example—Fig. 3.2) or
the actual nucleotides are used. This changes depending on the platform, laboratory
or the export parameters used to generate the genotype file. Preference should be
to use a simple reference for alleles and an additional DB table with all pertinent
information for the SNP. Let’s have a look at the first SNP (snpids[1]) in the dataset.

> con=dbConnect(dbDriver("SQLite"),
+ dbname = "chapter3/SNPsmall")
> snp=dbGetQuery(con,
+ paste("select * from SNP where snp='",
+ snpids[1],"'",sep=""))
> dim(snp)

[1] 83 7

> head(snp)

snp animal allele1 allele2
1 250506CS3900065000002_1238.1 sample1 A B
2 250506CS3900065000002_1238.1 sample5 A B
3 250506CS3900065000002_1238.1 sample6 A B
4 250506CS3900065000002_1238.1 sample7 B B
5 250506CS3900065000002_1238.1 sample8 B B

3.4 Preprocessing and Quality Control 85

6 250506CS3900065000002_1238.1 sample9 B B
x y gcscore

1 0.833 0.707 0.8446
2 0.829 0.714 0.8446
3 0.816 0.730 0.8446
4 0.031 1.132 0.8446
5 0.036 1.146 0.8446
6 0.037 1.150 0.8446

> snp$allele1=factor(snp$allele1)
> snp$allele2=factor(snp$allele2)
> summary(snp$allele1)

A B
36 47

> summary(snp$allele2)

A B
6 77

We first restore the DB connection that we had closed then send an SQL query to
retrieve data for the first SNP. Convert alleles into factors (usually data is returned as
character) and then summarize the allele information. There are no missing values
in our data and as we expected, there are only two alleles—A and B. If there were
missing values (missing calls, to use the terminology) we would see a third factor
(e.g., NA or “-”). Our data also has an X and a Y column (these are specific to
Illumina). These are the normalized intensities of the reads for each of the two
alleles. Allele calls are assigned based on the signal intensity of the fluorescence
read by the scanner. These intensities can be plotted as an XY plot. We would
expect that one of the homozygous genotypes would show high X values and low
Y values while the other homozygote would be the opposite. Heterozygotes would
be somewhere between the two. If the technology was 100 % accurate we would
have only three points on the plot and all samples would have the same intensity
measures; but since there is considerable variation in intensities, what we do observe
are three clouds (clusters) of data which will hopefully separate well between each
other (Fig. 3.3). To plot the data

> snp=data.frame(snp,
+ genotype=factor(paste(snp$allele1,
+ snp$allele2,sep=""),
+ levels=c("AA","AB","BB")))
> plot(snpx,snpy,col=snp$genotype,
+ pch=as.numeric(snp$genotype),
+ xlab="x",ylab="y",
+ main=snp$snp[1],cex.main=0.9)

86 3 Genome Wide Association Studies

lll
lll

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

250506CS3900065000002_1238.1

x

y

l AA (6)
AB (30)
BB (47)

Fig. 3.3 XY plot of intensity reads

> legend("bottomleft",paste(levels(snp$genotype),
+ " (",summary(snp$genotype),")",sep=""),
+ col= 1:length(levels(snp$genotype)),
+ pch= 1:length(levels(snp$genotype)),
+ cex=0.7)

We coded the genotypes by color and symbol to make it easier to distinguish
between them. But for this we had to add a new column to our data with the
genotypes—that’s what we do in the first line of code, and then we plot the X
and Y data using the same plotting functions we discussed before. Notice how the
genotypes clearly cluster into three discrete groups—an indication of good data. Of
course you do not want to look at each of these plots one by one for each SNP
(especially the human 1000K array!). Common practice is to go back to these plots
after the association test and make sure that the SNP data looks ok at least for the
significant SNP. There are some methods to summarize the clusters into an objective
measurement, e.g., sums of the distances to the nearest centroid of each cluster and
the individual calls.

Another metric included in the data is the GC score, without any in-depth details,
it is a measure of how reliable the call is (essentially, distance of the call to the

3.4 Preprocessing and Quality Control 87

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s15711.1

x

y

l −− (0)
AA (11)
AB (12)
BB (2065)

ll

l

lll

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NA or 0:0 gc<0.6:0 gc>=0.6:2088
samples

gc
sc

or
e

− A B

allelic frequencies

−: 0 A: 34 B: 4142

0.
0

0.
2

0.
4

0.
6

0.
8

AA AB BB AA AB BB MIS

genotypic frequencies
HW p−value: 0

left expected, right observed, MIS=missing

0
50

0
10

00
15

00
20

00

Fig. 3.4 Example of a good quality SNP. Top left: clustering for each genotype (non-calls are
shown as black circles). Top right: GC scores. Bottom left: non-calls and allelic frequencies (actual
counts are shown under the histogram). Bottom right: genotypic counts, on the left-hand side the
expected counts and on the right the observed counts; the last block shows number of non-calls

centroid as we mentioned above) on a scale from 0 to 1. Some labs will not assign
a call to GC scores under 0.25. Another common magic number is to cull reads
under 0.6 (and projects working with human data may use even higher thresholds of
0.7–0.8).

> length(which(snp$gcscore<0.6))

[1] 0

For this SNP all GC scores are above 0.6. Figures 3.4 and 3.5 exemplify what a
good and a bad SNP look like. We might want to cull individual reads based on a
threshold GC score value, but we might also remove the whole SNP if, for example,
more than 2 or 3 % of the genotyping for the SNP failed or if the median GC score
is below a certain value (say 0.5 or 0.6). Again, the SNP we are analyzing is fine.

> median(snp$gcscore)

[1] 0.8446

3.4.2.2 Minor Allele Frequency and Hardy–Weinberg Equilibrium

Population-based metrics are also employed. A simple one is the minor allele
frequency—MAF. Not all SNP will be polymorphic, some will show only one

88 3 Genome Wide Association Studies

l

l

l

ll

lll

l

l

l

lll

l

l

l

l

ll

lll

l

llllll

l

l
l

l
l
l

ll

l

llllllll

l

llll

l

ll

l
l

l

l

lllll

l

l

ll

l

l

l

lll

l

l

lllll l

l

l

l

l

l

l

l

ll
l
l
l

l

l

l

l

l

l

l

ll

l

ll

l
l

ll

l

llll

l

ll

ll

l

l

l

ll

lllllll

l

ll

l

l

l
l

llll

l

l

l
llllll

ll

ll

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

ll

l

ll

l

ll

l

lll

l

l

l

l

l
l

ll

l

ll

l

llllll

l

ll

l

llll

l

ll

l

ll

l

l

ll

lll

l
l

lll

l

l

l

ll

l

l

l

l

l

l

l

l

lllll

ll

lll

llll

l

l

l

l

lll

l

ll

l

l

ll

l

l

ll

ll

llll

l

l

l

llllllll

lll
l

ll

l

l

l
ll

l

l
l

ll

l

l
l
ll

l

l

l
l

ll

l

llllll

ll

lll

lll
lll

l

l

l

l

l

l

l

l

l

l

l

ll

l

lll

ll

lllll

l

l

l

l

l

l

l
l

ll

l
l

l

ll

l ll

l
l

ll

l

l

l

l

l

ll

l

l

l

llll
l
l

l

l

l
l

ll

l

llllllll

l
l

l

l

llll

l

l

l

l

l

l

ll

l

llllll

ll
l

l

l

llll

l

llll

l

llllllllll

l

llll

l

l
l

l

l

lllll

l
l

llll

l

llll

l

l

l

l

l

l

ll

llll

l

lll

l

ll

lll
l
l

lllll

l

l

ll
l

l

ll
l

l

l

lll

l

llll

ll

lllllll

l

l

l
ll

l

l

l

l

l

ll

lll

l

l

l

l

l

l

l

ll

l

l

l

llll

l
l

l

ll

l

l

l
l

lllllll

ll

ll

l

ll

l

l
l

l

l

lll

l

l

l

ll

l

l

l

ll
l

lll

llll

l

l

l

l

l

llllll

l

lll

l

llll

l

ll

l

llll

l
l
l
ll

lllll

l

ll

ll

llll

l

ll

l

l

l

lll

l

l

ll

l
l

llllll

l

l

l

l
l
l

l

l

ll

l

l

l
l
l
l

l

l

l

l

ll

l

ll

l

l

l

lll

ll
l

ll

l

l

l
l

l

l

ll

l

l

llll

l

l

l

l

l

l

ll

l

ll

ll

l

l

l

l

lllllll

ll
l

ll

l

ll

l

llllllll ll

l
l

ll

ll

ll

l

lllllll

l
l

l

l

l

lllll

l

ll

l

l

ll

ll

lll

l

l

l

l

l
l
l

l

l

lll

l

ll

l

ll

l

llllllll

l

l

ll

ll

l
l

l
l
l

ll

l

lll l

l
l

l

llll
ll
l
l

l

l

l

l

ll

l
l

l

lll

l

l

ll

ll

l
l

llll
l

ll

l

l
l

lllllll

l
l

l

l

ll

l
l
ll

llllll

l

l

l

ll

l

llll

l
l
l
l

lll

l

l

l

ll

ll

lllll

l

l

l

l

l

lllllllll

l

l

l
l

l

l

l

llllll

l
l
lll

l

l

ll

ll

l

l

l

l

ll

l

l
l
l

l

l

lll

lll

l

ll

l

ll

l

lll

l

l

ll

ll

l

llll

l

lll

l
l

llll

l
l

llll

l

l

ll

l

ll

l

lll

l

l

l

ll

l

l

llll

l

l

l
l

l

l

lll

l
l

l

ll

l

l

lll
l

l

llll
l

l

llll

l

lll

l
l

l

l

l

l

l

lllll

l

l

l

lll

l

l

l

l

l

llll

ll
l

l

l

l

l

l
l

ll

l
l

llll

l

l

lllll

l

l

l

ll

l

ll

l

l

lll

l
l

l

l

l

l

l

l

ll

l
ll

l

ll

l

l
l

ll

l

l

l

l

l

lllll

l

ll l

l

l

l
l
l

ll

l
l

l

llll

l

l

l

l
ll

l

l

l

l

l

l

l

ll

l
l

ll

l

l

l

l

llll

l

l

l

l

lll

l

llllllll

l

lll

l

l

l

l
l

l

lll ll

l
l

l

l

lllll

l

l

l

l

ll
l

l

l

l

ll

l

l

l

l

lll

l

ll

l

l

l

llll

l

l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l
l

ll

lll

lll

l

ll

l

l

ll

lll

l

ll

l

ll

ll

l
lll

l

l
l

l

lll

l

l

ll

l

l

l llll

lllll

l

l

lllll

l

llllll

l

lll

l
l

lll

l
l

lll

l

l

l

l

l

llll

ll

l

l

lll

l

ll

l

lllll

l

ll

l

l
l

l

ll

l

l
l

ll

l

ll
l
l
l

l
l

l

l
l

l

l

l

l

ll

l
l

ll

l

l

l

l

lll

l
l
l

l

ll
l

l

l

l

ll

ll

l

ll

l

l

l
l

lllllllll

l

ll

l

l

l

ll

l

l

ll

l

l

l

l

l

l

ll

ll

l

lllll

l

l

lllllll

l

l

lll

l
l
l

lll

l

lll

l

ll

l

ll

l
l

l

ll

l

lll

l

lll

l
lll

lll

l

l

l

ll

l
l

lll

l

l
l

llll

l
l

l

l

llll

l
ll

ll

l

ll

l

l

l

l

lll

ll

l

l

l
l

l

l

l

l
l
l

ll

l
l

l
l

ll
l
l

ll

l
l

l

l

ll

ll

lll

l

l

l

l
l

l

l

ll

l

ll

l

ll
l
l

l

l

ll

l
ll

lllll
l
l

l

l
l

l

llll

l
ll

ll

l

ll

llll

ll
l

l

l

l
l

ll

l
l

l

l

l

l
l
l
l

l

l

lllll

l

ll

l

l

l

lll

ll

l

l

lll

l

l

l

l

l

l

l

l

l

ll

l

lll

l
l

l

l

ll

l

l
l

l
l

l

l
l

l

l

lll

ll

llll

l

l
l

l

ll
lll

l

ll

l

ll

l
ll

lll

l

l
l
ll

l

l

lll

l

l

l

l

l
l

l

l

lll

ll
l

ll

l

l

l

l

l
l

l

l
l

ll

l
l

ll

l

l

l

lll

ll

l

l

l
l

l

l

ll

l

l

l

l

llllll

ll

l

l
ll

ll

lll

l

l

l ll

l

lll

l

lll

ll
ll l

l

l

l

l

llll

l

lll

l
ll

l

l

l

l
l
ll

lll

l l
lll

l

l

l

ll

l

ll

l

l

l

l

l

l l

l

l

lll

l

ll

l

ll

l
l

l

ll

ll

l

l

l

ll

l

l
l

lll

l

ll

l
ll

ll

l
l
l
l

l

l

l

l

ll

l

l

l

l

l
l

llllll

l

l
lll
l
ll

l

l

l

ll

l

llllll

l

llllll

l

ll

l

l

l

ll

ll

llll

l

lll

l
l
l

l

l

l

lll

l
l

ll

l

l l
l

l
l

l

ll

0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

CytB_1505.1

x

y

l −− (2088)
AA (0)
AB (0)
BB (0) ll

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NA or 0:2088 gc<0.6:2088 gc>=0.6:0

samples

gc
 s

co
re

− A B

allelic frequencies

−: 4176 A: 0 B: 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AA AB BB AA AB BB MIS

genotypic frequencies

HW p−value: NA

left expected, right observed, MIS=missing

0
50

0
10

00
15

00
20

00

Fig. 3.5 Example of a bad quality SNP. Top left: clustering for each genotype (non-calls are
shown as black circles—here all samples). Top right: GC scores. Bottom left: non-calls and allelic
frequencies (actual counts are shown under the histogram). Bottom right: genotypic counts, on
the left-hand side the expected counts and on the right the observed counts; the last block shows
number of non-calls

allele across all samples (monomorphic) or one of the alleles will be at a very low
frequency. The association between a phenotype and a rare allele might be supported
by only very few individuals (no power to detect the association), in this case the
results should be interpreted with caution. To avoid this potential problem, SNP
filtering based on MAF is often used to exclude low MAF SNP (usual thresholds
are between 1 and 5 %), but it is worthwhile to check the sample sizes and estimate
an adequate value for your dataset. To illustrate, at a MAF cutoff value of 5% there
would only be 25 homozygous samples in 10,000 (assuming H–W equilibrium);
the weightings for the genotypes can be adjusted to minimize these frequency
problems but caution should be exercised if it is worthwhile to keep such SNP.

In our example the allelic frequencies for the SNP are

> alleles=factor(c(as.character(snp$allele1),
+ as.character(snp$allele2)),
+ levels=c("A","B"))
> summary(alleles)/sum(summary(alleles))*100

A B
25.3012 74.6988

3.4 Preprocessing and Quality Control 89

The frequencies are reasonable, around one-quarter A allele and three-quarters B
allele. But again, the point to consider is the objective of the work and the structure
of the actual data that was collected. For example, if QC is being performed on
mixed samples with an overrepresentation of one group, it is quite easy to have SNP
that are not segregating in the larger population but are segregating in the smaller
one—the MAF frequency in this case will essentially be the proportion of the minor
allele from the smaller population in the overall sample. And if the objective of the
study was to characterize genetic diversity between groups, the interesting SNP will
have been excluded during the QC stage.

The next metric is Hardy–Weinberg (HW) equilibrium. For a quick refresher, the
Hardy–Weinberg “law”, independently proposed by G.H. Hardy and W. Weinberg
in 1908, describes the relationship between genotypic frequencies and allelic
frequencies and how they remain constant across generations (hence also referred
to as Hardy–Weinberg equilibrium) in a population of diploid sexually reproducing
organisms under the assumptions of random mating, an infinitely large population
and other assumptions.

Consider the bi-allelic SNP with variants A and B at any given locus, there
are three possible genotypes: AA, AB, and BB. Let’s call the frequencies for each
genotype D, H and R. Under random mating (assumption of independence between
events) the probability of a cross AA×AA is D2, the probability for AA×AB is 2DH
and the probability for BB×BB is R2. If p is the frequency of allele A (p=D+H/2)
then the frequency of B will be q= 1− p and consequently the genotypic frequencies
D, H, and R will respectively be p2, 2pq, and q2.

The relationship model in itself is simply a polynomial expansion (binomial
in the above example with two alleles), so it can easily be extended to scenarios
with multiple alleles or n-ploid organisms, it can also accommodate inheritance
patterns of genes on sex chromosomes and other particularities of individual
systems. Whatever the experimental scenario, Hardy–Weinberg equilibrium can
be seen as the null hypothesis of the distribution of genetic variation when no
biologically significant event is occurring in the population. This in turn allows
testing quantitative predictions on empirical data. This “law” is, in fact, an informal
theorem that depicts the mathematical consequences of Mendelian inheritance
at a population level. Rigorously the theorem can be proven within a system
that specifies the mechanisms of inheritance and all the other causal modulators.
Naturally real populations will not strictly adhere to the assumptions for Hardy–
Weinberg equilibrium, but the model is however quite robust to deviations. When
empirical observations are in a statistical sense significantly different from the
model’s predictions, there is a strong indication that some biologically relevant
factor is acting on this population or there are genotyping errors in the data. This is
where HW becomes controversial—it can be hard to distinguish a genotyping error
from a real population effect. Common p-value thresholds for HW are, e.g., 10−4 or
less (I tend to use multiple testing corrected p-values, so much lower cutoffs).

90 3 Genome Wide Association Studies

To calculate HW for our SNP in R

> obs=summary(factor(snp$genotype,
+ levels=c("AA","AB","BB")))
> print(obs)

AA AB BB
6 30 47

> hwal=summary(factor(c(as.character(snp$allele1),
+ as.character(snp$allele2)),levels=c("A","B")))
> hwal=hwal/sum(hwal)
> print(hwal)

A B
0.2559524 0.7440476

> exp=c(hwal[1]^2,2*hwal[1]*hwal[2],hwal[2]^2)*sum(obs)
> names(exp)=c("AA","AB","BB")
> # chi-square test
> # with yates correction
> xtot=sum((abs(obs-exp)-c(0.5,1,0.5))^2/exp)
> # get p-value: high chi-square, low pvals
> pval=1-pchisq(xtot,1)
> print(pval)

[1] 0.8897645

It’s just a typical χ-square test. The only interesting part is the Yates correction
used when adding up the χ-square values. Yates correction is appropriate for small
sample sizes but can lead to biases in larger datasets. Generally the interpretation of
results (which SNP to include/exclude) is the same but actual χ-square values can
be quite unexpected. And before we forget, yes—the SNP is in Hardy–Weinberg
equilibrium.

3.4.2.3 Quality Control Across Samples

Quality control across samples is quite similar to what we did with the SNP. If 2 or
3% of the genotypes are missing it is probably a good idea to exclude the sample,
provided there is nothing particularly different about it (an extreme example: a
single sample comes from a different breed). Low median GC scores are also
indicative of problems in the DNA extraction or genotyping.

Another criterion that we have not discussed so far is correlation between
samples. If samples show very high correlations they might have to be excluded.
This could be an indication of wrong genotyping (e.g., samples wrongly duplicated).

3.4 Preprocessing and Quality Control 91

However, some studies have used duplicated samples to evaluate reproducibility
of genotypes; in this case the correlation can be informative about the quality of
the data.

As a ballpark figure, random (simulated) genotypes in HW equilibrium would
on average show a correlation of 0 but in real populations this tends to be around
0.3–0.6. Of course, this is highly connected to the structure of your data—a case–
control study with random samples is different from a half-sib project in livestock.
Correlations are computationally intensive because you need all data stored in
memory as a matrix to calculate all pairwise correlations. The R function is
cor(genotypesMatrix). If you cannot fit the data matrix into memory consider some
roundabouts such as reading samples in pairs for all combinations (can take a long
time to run!) or estimate correlations from a random subset of the SNP.

3.4.2.4 Heterozygosity

Another useful metric is heterozygosity, which is simply the proportion of heterozy-
gotes in relation to all genotypes. You can also check heterozygosity on SNP and
compare to the expected heterozygosity (or gene diversity), it’s just more common
to evaluate heterozygosity on the samples. Essentially if a sample’s heterozygosity
is too high it can be an indication of DNA contamination. Removal of samples ±3
standard deviations from the mean is reasonable. We will need the heterozygosity
for all samples before we can look for outliers. We could just go over all samples
in the DB, calculate (and store) the heterozygosity for each subject and discard the
data. You might have to do that if the dataset is too large, but since our example is
quite small let’s build a matrix with the genotype counts (sumslides) for all samples
and a matrix of SNP× sample (numgeno)—our entire dataset.

> sumslides=matrix(NA,83,4)
> rownames(sumslides)=animids
> colnames(sumslides)=
+ c("-/-","A/A","A/B","B/B")
> # hold reshaped (numeric data)
> numgeno=matrix(9,54977,83)
> for (i in 1:83)
+ {
+ hold=dbGetQuery(con, paste(
+ "select * from SNP where animal='",animids[i],"'",
+ sep=""))
+
+ hold=data.frame(hold,
+ genotype=factor(paste(hold$allele1,hold$allele2,
+ sep=""),levels=c("--","AA","AB","BB")))
+
+ hold=hold[order(hold$snp),]

92 3 Genome Wide Association Studies

+ sumslides[i,]=summary(hold$genotype)
+ temp=hold$genotype
+ levels(temp)=c(9,0,1,2)
+ numgeno[,i]=as.numeric(as.character(temp))
+ # change to 9 genotypes under GC score cutoff
+ numgeno[which(hold$gcscore<0.6),i]=9
+ }
> rownames(numgeno)=hold$snp
> colnames(numgeno)=animids
> dim(sumslides)

[1] 83 4

> dim(numgeno)

[1] 54977 83

> head(sumslides)

-/- A/A A/B B/B
sample1 838 15818 20100 18221
sample10 777 15397 21367 17436
sample11 803 15381 21564 17229
sample12 763 15440 21145 17629
sample13 822 16257 19524 18374
sample14 750 15637 21014 17576

> numgeno[1:10,1:3]

sample1 sample10 sample11
250506CS3900065000002_1238.1 1 2 1
250506CS3900140500001_312.1 2 1 2
250506CS3900176800001_906.1 2 1 2
250506CS3900211600001_1041.1 2 2 2
250506CS3900218700001_1294.1 2 2 1
250506CS3900283200001_442.1 2 0 1
250506CS3900371000001_1255.1 0 2 2
250506CS3900386000001_696.1 1 1 0
250506CS3900414400001_1178.1 2 2 2
250506CS3900435700001_1658.1 9 9 9

What did we do? We defined a matrix to store genotype counts for each sample
(sumslides) and gave names to the rows and columns just to make it easier to identify
in the output (see above). Notice that we used three genotypes plus −/− for missing
genotypes. Another matrix numgeno was created to store all genotypic data. Then
we made a loop to query the DB and extract data for each animal, sorted the data
by SNP (using order) to make sure that the data returned by the DB is always in the
same order; summarized the genotypic data in their classes and added the results

3.4 Preprocessing and Quality Control 93

l ll
l l lll

ll l l l l ll llll
ll
ll
ll
ll
ll

ll
ll

ll
ll

ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
lll

ll
ll

ll
ll
lll

ll
ll
lll

ll
ll

0.35 0.36 0.37 0.38 0.39 0.40

0
20

40
60

80

Sample heterozygosity
mean: 0.384 sd: 0.012

mean: black line 3 SD: red line number of outliers: 0

heterozygosity

sa
m

pl
e

Fig. 3.6 Sample heterozygosity

to sumslides. Then we re-leveled the genotypes into numeric format (9—missing,
0—AA, 1—AB, 2—BB), we will see why further on. And in the last line of the
loop we set all genotypes with GC scores under 0.6 as missing. Finally some
housekeeping, assign names to the rows and columns so we can identify SNP and
samples and check if everything looks alright.

To calculate and plot heterozygosities is quite simple now that we have the data.
All we have to do is divide the number of heterozygotes by the total genotypes;
calculate the mean and standard deviation, and then calculate the values for 3SD
to each side of the mean. Finally we plot (Fig. 3.6) the data and add lines for the
mean and 3SD (the SD lines do not show up in the plot since we have no outliers
in our data). The plot itself is not so simple but it highlights the versatility of R for
creating graphs—a simple version is just plot(sort(samplehetero)). Finally, we save
the figure as a PDF.

> samplehetero=sumslides[,3]/(sumslides[,2]+
+ sumslides[,3]+sumslides[,4])
> # outliers 3 SD
> up=mean(samplehetero)+3*sd(samplehetero)
> down=mean(samplehetero)-3*sd(samplehetero)
> hsout=length(which(samplehetero>up))

94 3 Genome Wide Association Studies

> # number of outliers
> hsout=hsout+length(which(samplehetero<down))
> plot(sort(samplehetero),1:83,col="blue",cex.main=0.9,
+ cex.axis=0.8,cex.lab=0.8,
+ ylab="sample",xlab="heterozygosity",
+ main=paste("Sample heterozygosity\nmean:",
+ round(mean(samplehetero),3)," sd:",
+ round(sd(samplehetero),3)),
+ sub=paste("mean: black line ",3,
+ "SD: red line number of outliers:",hsout),
+ cex.sub=0.8)
> abline(v=mean(samplehetero))
> abline(v=mean(samplehetero)-3*sd(samplehetero),col="red")
> abline(v=mean(samplehetero)+3*sd(samplehetero),col="red")
> dev.print(file="images/samplehetero.pdf",
+ device=pdf,width=6,height=6) # save plot

We still have not calculated the correlation matrix. The function cor will only
work with numeric data, hence us changing the genotypes to numeric format (it’s
also much smaller to store—10M× 208M in the original file).

> animcor=cor(numgeno)
> library("gplots")
> hmcol=greenred(256)
> heatmap(animcor,col=hmcol,symm=T,labRow=" ",labCol=" ")

In the first line we calculate the correlation matrix—simple Pearson correlation and
then plot the results as a heatmap (Fig. 3.7). Heatmaps are excellent to visualize
relationships between data and we will revisit them in the next chapters. The library
gplots has some nice graphing functionalities. The function greenred defines the
number of colors we want to use in the heatmap; more colors will evidence smaller
changes, less colors help bring out higher levels of the data structure. Try to play
around with the number of colors to get a feeling for it. The argument symm = T in
heatmap is used to tell the function that the matrix is symmetric.

Note that missing data was replaced by 9—this greatly inflates differences
between samples and, on the other hand, strongly pulls together samples with a lot
of missing data. Keep in mind that this is for QC purposes only; such an approach
should not be used to estimate genomic relationships from the data.

A couple of last comments before we move on to the association tests: (1) what
we discussed here was across all SNP and/or samples. With case–control studies it is
worthwhile running these QC metrics independently on cases and controls and then
checking the results for consistency. (2) We have not plotted any results based on
mapping information, it is a good idea to plot, e.g., HW statistics per chromosome
to see if there are any evident patterns such as a block on the chromosome that is
consistently out of HW. In Appendix A is a full example QC report for the dataset
we have been looking at—the entire report is automatically generated using R [45].
A couple of good review papers for quality control issues in GWAS are given by
Ziegler et al. [125] and Teo [109].

3.5 Single SNP Analysis 95

Fig. 3.7 Heatmap of sample correlations

3.5 Single SNP Analysis

Somewhat surprisingly most of the hard work is already done. At least in so far
as simple analyses are concerned—remember, this is a primer after all! Our starting
point is that we applied all the above QC metrics discussed so far and built a numeric
matrix of SNP× sample similar to numgeno as we discussed above. The only
difference is that the genotypes of unreliable SNP were replaced with 9 and the same
for unreliable samples. This matrix was saved as a text file called SNPxSample.txt.

> genotypes=read.table("chapter3/SNPxSample.txt",
+ header=T,sep="\t",na.strings = "9",
+ colClasses = "factor")
> dim(genotypes)

[1] 54977 83

We know the data format, so it’s much easier to import the file into R in a ready to
use format. If we wanted to do linear regressions on our data we would have defined
c("character",rep("factor",83)) (we have to specify the type of each column because
R will return an error if we try to define the row names as numeric). But here we

96 3 Genome Wide Association Studies

are going to fit genotypes as factors in an anova. We also defined that our missing
value is 9, so no need to fix this up later on. Just out of convenience (and a sense of
aesthetics) let’s change the names of the factors from 0, 1 and 2 to AA, AB and BB.
Note that NA is not within brackets—it’s a data type (missing).

> for (i in 1:length(genotypes[1,]))
+ levels(genotypes[,i])=c("AA","AB","BB",NA)

There are some SNP and/or samples that were discarded (entire row/column set
to 9–NA). There’s little point in analyzing these, so let’s remove them from our
data.frame. Of course we could have removed them when we did the QC, but in
more complex analysis we might want to, e.g., impute the data—it’s good to be
flexible.

> indexsnp=apply(genotypes,1,
+ function(x) length(which(is.na(x)==T)))
> indexsnp=which(indexsnp==length(genotypes[1,]))
> indexsample=apply(genotypes,2,
+ function(x) length(which(is.na(x)==T)))
> indexsample=which(indexsample==length(genotypes[,1]))
> length(indexsample)

[1] 0

> length(indexsnp)

[1] 5458

Now here we did something different. The intuitive approach (at least from a
programmer’s perspective) would be to loop across rows and count the number
of NAs and then repeat across columns. So far we have been very liberal in the
use of loops, but the truth is that R is not good with loops—or at least it is very
slow with them. But R has in-built functions that are very effective for recursive
operations, one of these is apply. What this function does is go over all rows
or all columns of a data.frame and repeat the same procedure on each one. The
syntax is apply(mydata.frame,direction,procedure). The first argument is the name
of the data.frame we want to work on (our genotypes); the second argument is
the direction—along rows (1) or along columns (2) and the third argument is what
we want to repeat (e.g., calculate means or standard deviations). Here all we wanted
was to get the number of SNP or samples which are missing (NA). A bit harder
to follow is what function(x) is all about. This is quite similar to a routine in a
programming language. We can use function to encapsulate a series of commands,
it will take in declared arguments (e.g., variable1, variable2, etc.), execute the
operations and return a result of these. This is what we did above. We declared a
function that takes in data x which is one of the rows or columns of the data.frame,
calculates the number of NAs in that row or column and returns it to the caller.

3.5 Single SNP Analysis 97

So, what apply does is hmm, apply a function over either the rows or columns of
a data.frame and automatically concatenate the results into the most logical data
structure (in our example apply returns a vector of integers).

Of course functions can be used out of apply. In reality, each time we use
a command of the type commandname(mydata) we are using a function. An R
package is just a library of functions. We can make our own functions, for example

> multiplier = function(x,y,z)
+ {
+ res=x*y*z
+ return(res)
+ }
> multiplier(5,9,13.4)

[1] 603

We created a function called multiplier which takes in three arguments, multiplies
them and returns the multiplied value. Now, whenever we need to multiply three
values we can use this function. Hint: many functions in R if you type in the name
without an argument will return the code used in the function—quite handy to
see what’s behind the curtain and to learn a bit more about R without having to
delve into the source code.

> var

function (x, y = NULL, na.rm = FALSE, use)
{

if (missing(use))
use <- if (na.rm)

"na.or.complete"
else "everything"

na.method <- pmatch(use,c("all.obs", "complete.obs",
"pairwise.complete.obs","everything",
"na.or.complete"))

if (is.na(na.method))
stop("invalid 'use' argument")

if (is.data.frame(x))
x <- as.matrix(x)

else stopifnot(is.atomic(x))
if (is.data.frame(y))

y <- as.matrix(y)
else stopifnot(is.atomic(y))
.Internal(cov(x, y, na.method, FALSE))

}
<bytecode: 0x0000000002e3b6b8>
<environment: namespace:stats>

98 3 Genome Wide Association Studies

All this to say: avoid using loops in R (at least those with many iterations and
simple tasks). In Chap. 7 we will briefly discuss some ways of speeding up R and
in Chap. 4 we will revisit the apply functions and show that they are not necessarily
really skipping over the loops the way we might think they are. You might also
want to read [44] for some additional handy tips. Check the R help for other useful
recursive functions such as lapply, eapply, mapply, rapply, tapply, by. . .

Back to our analysis after this intermezzo. We have the indexes for SNP and
samples. No samples were deemed unusable but 5458 SNP did not pass QC (see
Appendix A for details). Let’s remove them

> genotypes=genotypes[-indexsnp,]
> dim(genotypes)

[1] 49519 83

Done! We have already seen all the tools we need for the analysis in the
previous chapter. All we have to do is test a model against each individual SNP.
For illustration purposes we will use a very simple model, just the trait modeled by
the SNP with no other effects. We have no trait data, so let’s simply invent some.
Our trait is weight

> weight=rnorm(83,mean=50,sd=10)
> summary(weight)

Min. 1st Qu. Median Mean 3rd Qu. Max.
28.90 43.61 49.81 51.25 59.69 83.41

> sd(weight)

[1] 10.97551

> plot(density(weight),col="blue",
+ main="Density plot of weights")
> abline(v=mean(weight),col="red")
> lines(density(rnorm(83000,mean=50,sd=10)),
+ col="green",lty=2)

What did we do? We sampled 83 measures from a normal distribution with a
mean of 50 and a (rather large) standard deviation of 10. This is a really nice
feature in R—it is very easy to sample from different distributions (e.g., rnorm,
rbinom, rgamma, rbeta, rcauchy, rchisq, rexp, rf. . .). Check also dnorm, pnorm, and
qnorm for respectively, density, distribution, and quantiles (for other distributions
just replace d, p, and q with the name of the distribution). The density plot (Fig. 3.8)
shows that the data is not perfectly normal due to the small sample size and large
SD—at least in comparison to the large sample overlaid on the plot. Does this
data make sense? Of course not! There are no effects associated with a particular
genotype on any SNP so we would not expect any effect at all. And that’s why we
are doing this—with almost 50,000 tests we are in multiple testing hell. At a 1%
significance level we would expect almost 500 false positives.

3.5 Single SNP Analysis 99

20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Density plot of weights

N = 83 Bandwidth = 4.082

D
en

si
ty

Fig. 3.8 Density plot of 83 animals sampled from a normal distribution with mean 50 and SD 10.
The dotted line shows the density plot for a sample of 83,000

> singlesnp=function(trait,snp)
+ {
+ if (length(levels(snp))>1) lm(trait~snp)
+ else NA
+ }
> results=apply(genotypes,1,
+ function(x) singlesnp(weight,factor(t(x))))
> pvalfunc=function(model)
+ {
+ if(class(model)=="lm") anova(model)[[5]][1]
+ else NA
+ }
> pvals=lapply(results,
+ function(x) pvalfunc(x))
> names(results)=row.names(genotypes)
> pvals=data.frame(snp=row.names(genotypes),
+ pvalue=unlist(pvals))

100 3 Genome Wide Association Studies

First we create a function to fit weight to the SNP (and return NA in case there’s
nothing to fit). Then we use apply to call the singlesnp function for each SNP
and store the entire model returned by lm in results (results is of class list—an R
structure that can essentially hold any type of data). Then we use lapply (an apply
on lists) to extract the p-values for the anova test. It’s the same as we did before, we
are just checking if the SNP explains part of our trait. And then some housekeeping
(give names to rows and columns) to make sure we know what is what. Note that
this will take a few minutes to run.

How many SNP are significant at a 1 % threshold?

> length(which(pvals$pvalue<0.01))

[1] 552

Quite close to the number of false positives we would expect. We will address
this issue in the next section. In the meantime we will assume that all results are
correct and valid. The next step is to have a look at the effect sizes per genotype of
the significant SNP. To avoid working with large tables let’s exemplify using only
the top five SNP. Start by getting the index for the top 5.

> index=sort(pvals$pvalue,index.return=T)[[2]][1:5]

Function sort with the argument index.return=T returns a list of results. First the
sorted values, next the sorted indices. That’s why we use [[2]] (double brackets to
index lists) for the indices and then [1:5] for the first 5. Since we stored the whole
model in results all we have to do is extract the coefficients from each of the top
SNP and build a table to see what we’ve got.

> estimates=NULL
> for (i in 1:5)
+ estimates=rbind(estimates,
+ coefficients(summary(results[[index[i]]])))
> estimates=cbind(rep(c("AA mean","AB dev","BB dev"),5),
+ estimates,rep(names(results)[index],each=3))
> estimates=data.frame(estimates)
> names(estimates)=c("genotype","effect",
+ "stderror","t-value","p-value","snp")
> for (i in 2:5) estimates[,i]=
+ signif(as.numeric(as.character(estimates[,i])),2)
> print(estimates)

genotype effect stderror t-value p-value
1 AA mean 78.00 5.4 14.00 5.1e-24
2 AB dev -24.00 5.8 -4.20 6.5e-05
3 BB dev -30.00 5.6 -5.40 8.0e-07
4 AA mean 53.00 1.5 35.00 2.7e-50
5 AB dev -5.20 2.2 -2.30 2.1e-02
6 BB dev 18.00 5.2 3.50 8.3e-04

3.5 Single SNP Analysis 101

7 AA mean 46.00 4.4 10.00 1.6e-16
8 AB dev -0.62 4.8 -0.13 9.0e-01
9 BB dev 9.60 4.6 2.10 4.2e-02
10 AA mean 75.00 9.9 7.60 5.9e-11
11 AB dev -18.00 10.0 -1.80 8.1e-02
12 BB dev -27.00 10.0 -2.70 8.8e-03
13 AA mean 48.00 1.9 26.00 1.2e-39
14 AB dev 7.70 2.4 3.20 2.1e-03
15 BB dev -6.00 3.5 -1.70 9.5e-02

snp
1 OAR9_100790876.1
2 OAR9_100790876.1
3 OAR9_100790876.1
4 DU281388_299.1
5 DU281388_299.1
6 DU281388_299.1
7 OAR14_25266721.1
8 OAR14_25266721.1
9 OAR14_25266721.1
10 OAR5_101989167.1
11 OAR5_101989167.1
12 OAR5_101989167.1
13 OAR13_23609874.1
14 OAR13_23609874.1
15 OAR13_23609874.1

And that’s all there is to it.
So far we have not seen how to use map information in practice. We can

exemplify with a common GWAS plot (we will revisit GWAS plots in the next
chapter). For each chromosome plot the negative log odds of the p-values for the
association test by physical location. We can get the map from our database and
merge the p-values with mapping information

> map=dbGetQuery(con,
+ paste("select * from snpmap",sep=""))
> merged=merge(pvals,map,by.x=1,by.y=1)

Now let’s plot the log odds for chromosome 1 (Fig. 3.9). Here we are using the
natural logarithm but you would usually use base 10 for log odds (just replace log
with log10).

> plot(merged$position[which(merged$chromosome==1)],
+ -log(merged$pvalue[which(merged$chromosome==1)]),
+ xlab="map position",ylab="-log odds",
+ col="blue",pch=20,main="Chromosome 1")
> abline(h=-log(0.01),col="red")

102 3 Genome Wide Association Studies

ll

l
l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l
l

l

l

l

l

l

l
l

ll

l

l

ll

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l
l
l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l
ll
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

ll

ll

l

l

l

l

l
ll

l

l

ll

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

ll
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

llll

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

ll

l

l

l

l

l
l
l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

ll
l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l
ll

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l
l

ll

l

l

ll

l

l

l

l

l
l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

lll

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

ll
l

l

l

l

l

l

l
ll l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

ll

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

ll
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

lll

l

l
l
l

l
l

ll

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l
ll

l

l

l

l

l
l

l
l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l
l
l

l

ll
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

lll

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l
l
l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

ll

l

l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

lll l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

ll l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l
l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08 3.0e+08

0
2

4
6

Chromosome 1

map position

−
lo

g
od

ds

Fig. 3.9 Plot of negative log odds of association test in chromosome 1. The line shows the
significance threshold for 0.01

Have a look at the package lattice for building chromosome plots, as for example
those shown in appendix A.

3.6 Multiple Testing

Multiple testing can be quite complicated—there’s even a whole book on the subject
almost entirely devoted to genomic applications [25]. We will only discuss the very
simple Bonferroni correction and some key points. Bonferroni is easy, just divide
the desired significance level for the test by the number of tests. In our case we
would only accept SNP with a p-value under

> 0.01/length(pvals[,1])

[1] 2.019427e-07

The problem with Bonferroni is that it is overly conservative. SNP are not
independent but rather in linkage with each other, this should be taken into account.
We could instead monitor the false discovery rate (FDR), e.g., set it to be 5 or 10 %
of the significant SNP. Even though there is a lot of discussion about multiple testing
the issue is probably over inflated. The truth is we are working with cutoffs and
however simple or complicated a correction method we use there will always be
some level of uncertainty (and the accompanying false positives or false negatives).
Further, a GWAS is not the end of the story—it is the lead into new insights that
have to be further pursued, some false positives in our results are probably better
than false negatives, in the first case it’s just a dead end trail (and more money,
of course!). Depending on the objectives of the study, the best approach may be

3.8 Useful R Packages 103

to simply rank the results and work your way from the top down—remember that
whatever the correction used, the ranking will still be the same.

But let’s see how many of our significant SNP survive multiple testing correction

> length(which(pvals$pvalue<0.01))

[1] 552

> length(which(pvals$pvalue<0.01/length(pvals$pvalue)))

[1] 0

> sort(pvals$pvalue)[1:5]

[1] 1.591244e-06 6.905358e-05 8.181758e-05 8.391490e-05
[5] 9.044598e-05

None—well in our case that’s good. We really would hope that randomly selected
trait values would not survive such a stringent filter.

3.7 What Next

This is really just the tip of the iceberg. From here you might want to impute missing
genotypes based on LD information or pedigree structure. Single SNP analysis are
a good starting point but you will want to test for association using multiple SNP
and/or haplotypes. Also try more robust methods for fitting SNP such as random
effects in a mixed effects model or a Bayesian approach. We will briefly visit some
of these topics in the next chapter but let’s leave most of this for Advanced Analysis
of Genomic Data Using R. . .

3.8 Useful R Packages

The packages we discussed in the last chapter are all useful here. Add to those:

• GenABEL, a comprehensive suite of functions for GWAS and one of the most
widely used

• fdrtool, handy functions for false discovery rates
• multtest, yes you guessed it—multiple testing
• qtl for analyzing QTL projects and bim for a Bayesian approach
• GeneticsPed, some nice functions for handling pedigrees
• beadarraySNP has lots of functions and reporting options for Illumina data
• haplo.stats for haplotypes
• snpMatrix is a flexible package with many functions for association studies and

imputation

There are quite a few more—but this should keep you busy for a while!

Chapter 4
Populations and Genetic Architecture

In this chapter we overview additional uses of SNP markers. We extend the
single SNP association analysis from the previous chapter and now fit all SNP
simultaneously with SNP best linear unbiased prediction (snpBLUP). Genomic
prediction using snpBLUP and gBLUP are then discussed. We then overview how
to identify signatures of selection, estimate population parameters, measure linkage
disequilibrium and relationships between populations. The final section illustrates a
practical application for SNP genotypes: parentage testing. Most of these analyses
rely on manipulation of matrices—how to work with matrices in R is also discussed.

4.1 Beyond Genome Wide Association Studies

The primary use of SNP arrays has been association studies: identification of
genomic regions associated with a trait of interest; the final objective being to
identify the causal variants that lead to the phenotype. In the last chapter we
performed SNP by SNP analyses but also mentioned that there are issues with
this approach, the main ones being false discoveries due to multiple testing and
over estimation of the size of effects since all other SNP are disregarded. With
quantitative traits that are highly polygenic single SNP regressions will miss out on
a lot of true signals due to the stringency of the significance testing. In this chapter
we will discuss how to fit all SNP simultaneously using snpBLUP and compare with
single SNP regression results.

While human studies generally have more of a QTL vibe to them, in livestock the
main objective has been to use SNP data to make predictions of outcome—either
predict the phenotype of the individual itself or estimate its breeding value (additive

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-14475-7_4) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_4

105

http://dx.doi.org/10.1007/978-3-319-14475-7_7
http://dx.doi.org/10.1007/978-3-319-14475-7_4

106 4 Populations and Genetic Architecture

genetic value). The key difference is that in livestock individual SNP effects are not
so relevant, what is relevant is how well the SNP are able to predict a phenotype.
A method for genomic prediction that does not even estimate individual SNP effects
is gBLUP—we will use it to predict phenotypes and see that it is an equivalent model
to snpBLUP.

But there is much more that can be done with SNP data, it has allowed obtaining
much better estimates of population parameters such as heterozygosity, inbreeding,
effective population sizes, relationships between populations, identification of
signatures of selection, and even very practical applications such as parentage
testing. We will discuss some of these later in the chapter.

But first, all these methods are heavily reliant on matrix algebra. We will start
this chapter with an overview of how to work with matrices in R.

4.2 Matrix Algebra

Readers are probably familiar with the basics of matrix algebra and we will not
need more than a broad understanding of it for what we will do in this chapter.
If you are unfamiliar with terms such as inverse, transpose, identity, or determinant
it might be worth having a quick look at a linear algebra book (in fact, the
Wikipedia entry for Matrix suffices). But what we do need to know is that matrix
manipulations are mostly just repetitive operations performed on the elements of a
matrix. A programmer will intuitively resort to using loops for matrix operations but
as we already discussed in Chap. 3 these are rather inefficient in R. Let’s sidetrack a
little and see why loops are inefficient in R.

4.2.1 Loops and Vectorization

This section starts with a rather obvious comment: R is not C or FORTRAN. Usual
programming practices do not always translate well into R. Keep in mind that R is
an interpreted language and not a compiled one. Things will always be slower in R
than in, e.g., C or FORTRAN; at best the speed will be the same. On the positive
side, most of R itself is written in C or FORTRAN and many functions have been
implemented in these languages (see details in Chap. 7). This naturally suggests that
the fewer times the interpreter has to be called upon to then send a command to run
a compiled function, the faster the code will execute. But before looking into this,
let’s look at something that most languages do not like: memory re-allocation. Since
R does not force us to declare variable types nor their size before we use them, we
tend to forget that as we grow the contents of a variable we have to allocate memory
for it. This is time consuming (and fragments the memory). Typical villains are
c, cbind, or rbind, very handy commands but also very slow. Let’s illustrate with a
vector of one million random numbers that are added 100 times to an initially empty
variable

4.2 Matrix Algebra 107

> nums=rnorm(1000000)
> numsMat=NULL
> for (i in 1:100) numsMat=cbind(numsMat,nums)

This took 27.9 s to complete. If instead we pre-allocate the size of the matrix and
then fill in the data it takes only 2.6 s.

> numsMat=matrix(NA,1000000,100)
> for (i in 1:100) numsMat[,i]=nums

And even better, is to simply create the whole matrix in a single line in 1.4 s.

> numsMat=matrix(rep(nums,100),1000000,100)

This is orders of magnitude faster and one of the easiest ways to improve
performance in R; and probably also one of the most common pitfalls. The last
snippet of code above returns to the initial point of this section, that it is better to
use functions compiled in a low level language (as rep here) and avoid repeated
calls to the R interpreter. To further illustrate let’s load a dataset of genotypes into R
and calculate the allele frequencies. The file (genotypes.rds) is in the folder for this
chapter in RDS format (RDS is a binary format that is quick to read in R, details in
Chap. 7). The function to read an RDS file into R is readRDS(fileName). The data
consists of 2,000 individuals genotyped for 10,000 SNP, genotypes are coded as 0,
1, and 2 with 1 being the heterozygotes; and no missing data—all set for fitting an
additive effects model (more on this data later). We could use loops to calculate
allele frequencies:

> geno = RDS("chapter4/genotype.rds")
> freqA=numeric(10000)
> freqB=numeric(10000)
> for (i in 1:10000)
+ {
+ hold=0
+ for (j in 1:2000)
+ hold=hold+geno[i,j]
+ freqB[i]=hold/4000
+ freqA[i]=1-freqB[i]
+ }

This is a rather literal translation from C or FORTRAN and quite inefficient in R
(it took 13.3 s). We can make some good progress by using vectorization. Generally
R functions are vectorized—they will perform the same operation on a single value
or a vector of values using a lower level language. Of course this still implies looping
over the vector but if this is done from within a compiled function, the speed gains
can be large. For example, replacing the inner loop with the sum function which
adds all elements of a vector we come down to 0.6 of a second.

108 4 Populations and Genetic Architecture

> freqA=numeric(10000)
> freqB=numeric(10000)
> for (i in 1:10000)
+ {
+ freqB[i]=sum(geno[i,])/4000
+ freqA[i]=1-freqB[i]
+ }

And we can do even better with the compiled function rowSums and make use of
vectorization in the whole process:

> freqB=rowSums(geno)/4000
> freqA=1-freqB

Here, as the name suggests, rowSums calculates the sum for each row in a
compiled function, then each element is divided by the number of alleles (two times
the number of individuals), finally we calculate the frequency for the other allele
by subtracting the frequencies in freqB from 1.0 for all SNP. If the rationale behind
dividing by 4,000 is not clear, it is because there are 2,000 individuals and genotypes
are coded as 0, 1 and 2—if e.g., all individuals for a SNP were homozygous 2, the
sum of all genotypes for that SNP would be 4,000 which divided by two times the
number of individuals (2× 2,000 = 4,000) would give an allele frequency of 1.

Now we are down to 0.06 s and only two lines of code. In Chap. 7 we discuss how
to write a similar function in C++ and call it from R. Note also the vectorization to
calculate the frequency of B; it is simply 1− f reqB and we did not need to explicitly
loop through every element of freqB to take the difference.

In summary, R is slow with loops. With a loop you are each time going back
and forth through the interpreter. Try to send everything as much as possible as
a vector which can then be iterated through using compiled functions. Recall that
most of R is written in C or FORTRAN, it is just a matter of presenting the data
more efficiently to these functions. This book clearly cannot cover all the different
functions available in R but as a rule of thumb whenever the code involves double
loops it is worthwhile to spend some time investigating if there is a low level
language function already written that will perform the operation.

At this point it is worth revisiting the apply family of functions that were briefly
discussed in Chap. 3. Using these functions it is possible to avoid loops and vectorize
the task. Use these functions to iterate through a vector (sapply), list (lapply), matrix
(apply) or some other object by applying a function on their elements. For example
apply runs a function over the lines or columns of a matrix. These functions are
convenient and make for concise coding (albeit not intuitive until you are familiar
with the syntax) but they are not always very useful to improve performance. To
some extent it is just loop hiding, the speed gains are more related to the function
that is being applied rather than the apply function itself. To illustrate let’s run a
single SNP regression on a phenotype (additive model) and store the p-values. Just
invent some values for a phenotype and then use lm for a single SNP regression (as
we did in the last chapter).

4.3 Matrix Operations in R 109

> pheno=rnorm(2000,mean=100,sd=10)

> pvals=numeric(10000)
> for (i in 1:10000)
+ pvals[i]=coef(summary(lm(pheno~geno[i,])))[2,4]

This took 31.15 s. The downside with this approach is that we make a call to the
lm function (which is compiled code), return to R, call the function again, and repeat
this 10,000 times. Intuition would suggest that apply would do a better job.

> pvals=apply(geno,1,
+ function(snp) coef(summary(lm(pheno~snp)))[2,4])

This takes even slightly longer (31.31 s). In reality we did not vectorize anything;
all we did was call lm 10,000 times again. The take home message is that the apply
functions will not automatically vectorize a task, if the code has reached a stage
where the only option is to iterate, it will seldom make any difference in terms of
speed if a for loop or an apply function is used.

A last point is that not everything is vectorizable. Some computations may
depend on the result from a previous stage (e.g., Bayesian approaches). In these
instances it can be worthwhile to write the function in a low level language instead.
If you are going to stick with R, try not to repeat any calculations within loops and
if memory is not an issue, sometimes it is slightly more efficient to use suboptimal
code (e.g., doubling up entire objects with some change) rather than trying to modify
specific elements in an object.

4.3 Matrix Operations in R

This rather long break was to understand what R is doing behind the curtains.
Now we will see matrix operations in R but keep in mind that in reality this is
just making optimal use of vectorization and reducing communication with the
interpreter. Matrix operators are quite intuitive in R; start by centering the matrix
of genotypes on zero (i.e., all genotypes minus 1.0).

> M=geno-1

Now the heterozygotes are zero and the homozygotes are −1 and 1 (this will
be useful later). Again, a programmer would think in terms of double loops (e.g.,
an outer loop for the rows and an inner loop for the columns) to implement this
subtraction; R does this automatically for us. Similarly, if two matrices have the
same dimensions we can do an element-wise multiplication (i.e., all a[i, j] ∗ b[i, j]
multiplications) with e.g.

> M2=M*geno

110 4 Populations and Genetic Architecture

And to multiply a matrix by a vector (e.g., the phenotypes—pheno)

> M2=M*pheno

This multiplies every column in M with the values in pheno. If the dimensions
do not match, R will return a warning message

> M2=pheno[1:13]*M

Warning message:
In pheno[1:13] * M :
longer object length is not a multiple

of shorter object length

Pay some attention to the direction: down the rows and across the columns (easy
to swap things around and with square matrices there will be no warning to indicate
a problem). Of course, the above works with all numeric operators: plus, minus,
division. . .

Now for some real matrix operations. To transpose a matrix

> Mt=t(M)
> dim(M)

[1] 10000 2000

> dim(Mt)

[1] 2000 10000

And for matrix multiplication

> MtM = Mt %*% M
> dim(MtM)

[1] 2000 2000

Recall that the number of columns of the left matrix has to be the same as the
number of rows of the right matrix (here 10,000) and the resulting matrix will be the
number of rows on the left matrix and the number of columns on the right matrix
(here 2,000× 2,000). Each entry in the new matrix is the dot product of the rows on
the left by the columns on the right. The first element in matrix MtM is

> MtM[1,1]

[1] 5019

which is obtained by

> sum(Mt[1,]*M[,1])

[1] 5019

4.4 SNP Best Linear Unbiased Prediction 111

Here we multiplied SNP× SNP, we could also do sample× sample by inverting
the order of the two matrices.

> MtM = M %*% Mt
> dim(MtM)

[1] 10000 10000

You will have noticed that this is rather slow. If there is an extensive need to use
matrices, Revolution R (an enhanced version of R) is much faster. Revolution R was
developed by Revolution Analytics and is a commercial, enhanced version of R; just
recently the program was made freely available, it can be used exactly in the same
way as R (with some additional tweaks). See details at revolutionanalytics.com. In R
the first matrix multiplication took 46.2 s and in Revolution R only 0.85 of a second.
The remainder of the chapter will be much faster using Revolution R. A faster way
to get the same result is with the crossprod function which calculates the product of
the transpose of a matrix with a second matrix (crossprod(A,B)) or the transpose of a
matrix with itself (crossprod(A)). This is about twice as fast in R, no real difference
in Revolution R. We will not use crossprod in the chapter for clarity purposes, but
remember to use it with real applications.

> # same as t(M)%*%M
> MtM = crossprod(M)

The last operator we need is solve, for matrix inversion. We need this to get a
matrix from one side of an equation to the other; e.g., from y = Ax to x = A−1x.

> Minv=solve(MtM)

solve can also be used to get the values of x in y = Ax with x = solve(A,y) which
is the same as x = solve(A) %*% y.

Additional functions useful for working with matrices are: upper.tri and lower.tri
to extract the upper and lower elements of a matrix; diag for diagonal elements;
eigen to calculate eigenvalues and eigenvectors and svd for singular value decom-
position. We will illustrate the use of these functions throughout the chapter, but
also check the help files for additional parameters.

4.4 SNP Best Linear Unbiased Prediction

While single SNP regression analyses are informative and simple to do, they have
some drawbacks as previously mentioned. In this section we will use snpBLUP to
simultaneously estimate all SNP effects.

The data for this section is simulated; there are 10,000 SNP for 2,000 individuals
(gwasData.rds) with the SNP coded as 0, 1 and 2 with no missing genotypes. The
SNP are already ordered by map position (coordinates in map.txt file) and there
is also a file with phenotypes (phenotypes.txt) in the same order as the samples

112 4 Populations and Genetic Architecture

in the genotypes file. The population is completely unrelated, genotypes are in
linkage equilibrium (i.e., there is no linkage between SNP), allele frequencies are
roughly the same at 0.5; and there are ten true QTL in the data which are actual
SNP (i.e., there will be no loss of linkage phase between marker and QTL due to
recombination). The phenotypes are mean centred and all known fixed effects have
been accounted for (equivalent to the residuals after adjusting for all confounding
factors). It is a somewhat unrealistic dataset but useful for our purposes. Before
fitting all SNP simultaneously let’s revisit the marker-by-marker analysis and build
up from there. Start by reading in the data and fitting a linear model using lm.

> # read in data - simulated with 10 QTL
> gwas=readRDS("chapter4/gwasData.rds")
> pheno=read.table("chapter4/phenotypes.txt",
+ header=T,sep="\t")$Pheno
> map=read.table("chapter4/map.txt",header=T,sep="\t")
> dim(gwas)

[1] 10000 2000

> # single SNP regression with lm
> effect=numeric(10000) # effect sizes (coefficients)
> pval=numeric(10000) # p-values
> for (i in 1:10000)
+ {
+ res=coef(summary(lm(pheno~gwas[i,])))[2,c(1,4)]
+ effect[i]=res[1]
+ pval[i]=res[2]
+ }

> effect[1:4]

[1] -0.4989296 0.1690589 0.1876288 -0.1043797

> pval[1:4]

[1] 0.01431413 0.40415900 0.35829852 0.60490297

This is quite similar to what we did in Chaps. 2 and 3, but in those chapters a
genotype model was used; i.e., genotypes were fitted as factors and we estimated
effects of all other genotypes as a deviation in relation to a baseline genotype.
This has the advantage of not making assumptions about the mode of inheritance
(dominant, recessive. . .). But we can also explicitly model different modes of
inheritance. Instead of the analysis of variance method used so far, a simple linear
regression approach can be used. A linear regression, in its simplest form, models
the relationship between two numeric variables, e.g., how does variable x change
when variable y changes. In GWAS terms, it translates to: how much does phenotype
(y) change when genotype (x) changes. Genotypes are now coded as numeric values

4.4 SNP Best Linear Unbiased Prediction 113

(not factors) according to a predefined mode of inheritance that the researcher wants
to test. For example, an additive model (which is what we fitted here) assumes that
alleles have a dose effect; one allelic variant has no effect (e.g., A) on the trait and the
other has an effect (e.g., B), a heterozygous individual (AB) will express the effect
and a homozygous individual with two copies of the allele (BB) will express twice
the value of the effect (hence the term additive). This naturally suggests coding SNP
genotypes as 0 (AA), 1 (AB), and 2 (BB). The importance of additive models will
become clearer later on.

Returning to the analysis with the SNP data, two variables (effect and p-val) were
created to store the values of the coefficients (additive effects) and the p-values
from the regressions. The effects are the estimates of how much a single copy of
the B allele changes the value of the trait—it is the allele substitution effect (not an
entirely appropriate use of the term but within our context it is sensible). Note that
effects can be positive or negative (B allele increases or decreases the phenotypic
measurement in relation to A allele). Further, these are just relative estimates (one
allele in relation to the other) and the sign is only due to the coding used for the
genotypes (code BB as 0 and AA as 2 instead, the signs will invert). This is really
just a line fitting exercise; let’s compare the results with the highest and lowest
p-values to make this point clearer:

> which(pval==min(pval))

[1] 8577

> which(pval==max(pval))

[1] 7296

The most and least significant SNP are 8577 and 7296, these can be plotted with

> # split screen for two plots
> par(mfrow = c(2,1))

> # most significant SNP
> plot(gwas[8577,],pheno,
+ xlab="genotypes", ylab="phenotypes",
+ main=paste("effect size:",round(effect[8577],2)))
> mod=lm(pheno~gwas[8577,])
> abline(mod,lwd=2,col="blue") # add regression line

> # least significant SNP
> plot(gwas[7296,],pheno,
+ xlab="genotypes",ylab="phenotypes",
+ main=paste("effect size:",round(effect[7296],2)))
> mod=lm(pheno~gwas[7296,])
> abline(mod,lwd=2,col="blue")

114 4 Populations and Genetic Architecture

l l
l
l l

l

l

l

l

l

l

l l

l

l

l

l

l

l

ll

l
l

l
l

l

l
l

l

l

l

l

l

ll
lll

l

l

l
ll

l

l

l
l

l
l

l

l l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

ll

ll

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l
ll

l

l
l

l

l

l
l

l

l

l

l

l

l

ll

l

l
l

ll

l

l
l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll l

l

l

l

l
l

l

l

l
l

l

ll

l

l

l

l

l l

l

l

l

l

l
l

l l
l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

ll
l l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

ll

l
l
l

ll

ll

l

l

l

l

ll

l
ll l

l
l

l

l

l

l
l

l

l

l

l l

l l

l
l

l

l

l

l

l
l

l
l
l

l

l

l ll

l

l
l

l

ll
l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

ll

ll

l

l
l

l

l

l

l

l

l l
l

l

l

l

l

l
l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l
l l

l

l
ll
l

l

l
l

l

l

l

l
l

l

l
l

l

l

ll

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

llll

ll
ll l

l

l
l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

ll
l

l

l
l

lll l

l

l ll

l

l

l

l

l
l

l

l

l

l l
l

l
ll

l

l

l

l

l

l
l
l
ll
ll

ll ll

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l l

l

ll

l
l

l

l
l

l
l

l

l

l

l

l

l

l l
l l

l
l

l
l

lll
l

l
l

l

l

l

l
l

l

l

l

l
l

l

l
l l

l

ll

l

l

ll

l

l

l

ll
l

ll

l

l

ll

l

l

l

l
l

l

l

l

l

l

l
l

l

l ll

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

lll
l

l

l

l
l

l
l

l

l

l
l

l

l

l

l
l

l
ll

l

l

l
l

l
l

l
l

l l
l
l
l

l

l

l

l

l

l
l ll

l

l

ll

l

l
l

l

l

l

l

l
l

ll
l

l

l

l l

l

l

l

l l

l

l
l

l

l

l
ll

ll

l

l

ll
l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

ll
l

l

l
l

l

l
l

l

l
ll l

l

l
l

l

ll
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l l
l

ll

l

l

l

l
ll

l

l

l

l

l

l

l

ll

l
ll

ll

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

ll
l

ll

l

l

l

l
l l

l

l

l

l

ll

l

ll

l

l
l

l

l l

l

ll

l

l

l

l

l
l
l
l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l
l
l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l
l

l
l
l

l
l

l
ll

l

ll

l

l

l

l
l

l
l

l

l

l

l

l
l
l

l

l

l

l
l

l

l

l

ll

l

l

ll

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

ll l
l

l

l

l

l

l

l

l ll

l

l

l

l
l

l

l

l

l

l

l l

l

ll

l

l
l l

l
l

l

l

l l

l
ll

l
l

l

l

l
l

ll

l

l

l
l

ll
l

l

l

l
l

l
l

l

l

l

llll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l ll

ll

l

l

l
l

l l

l

l

l

llll

l
ll
l

l

l

ll

l

l

l

l

l

ll

l

l
l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l
l

l

l
l
l

l
l

l

l

l

l

l

l
l

l

l
l

l

ll

l

l

l

l

l
l

lll

l
l

l
l
l

l

l
l l

l

l

l

l
l

l

ll ll

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l l

l l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l
l

l

l

l
l

l
l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l
l

l
l
l

ll l

l
l

l

l

l l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l
l

l

l

l

l

l
ll

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l
l

l

l
l

l

ll

l

l

l

l

l

l
l

ll l

l

l
l

l
l

l

l l
l

l

l
l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
lllll
l

ll

l

l

l
l
l

l
l ll

l

l
l

l
l

l

l

ll

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l l
l

l

l

l

l
l

l

l

l

l

ll
l

l
l

l

l

ll
l

l

l

l l

l

l

l

ll

l

l
l l

l

l
l

l

l

l

l

lll
l
ll
lll
l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l
l
l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l
ll

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l l

0.0 0.5 1.0 1.5 2.0

−
20

0
10

20

effect size: −2.88

genotypes

ph
en

ot
yp

es

l l
l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l l

l
l

l
l

l

l
l

l

l

l

l

l

l l
lll

l

l

l
ll

l

l

l
l

l
l

l

ll

l

l

l

l
l

l

l

l

ll

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

ll

l l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
ll

l

l
l

l

l

l
l

l

l

l

l

l

l

ll

l

l
l

ll

l

l
l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll l

l

l

l

l
l

l

l

l
l

l

ll

l

l

l

l

ll

l

l

l

l

l
l

l l
l

l

l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

ll
ll

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

ll

l
l

l

ll

ll

l

l

l

l

l l

l
lll

l
l

l

l

l

l
l

l

l

l

ll

ll

l
l

l

l

l

l

l
l

l
l
l

l

l

lll

l

l
l

l

lll

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

ll

ll

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l
l l

l

l
lll

l

l
l

l

l

l

l
l
l

l
l
l

l

l l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

llll

ll
l ll

l

l
l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l l
l

l

l
l

l l
l l

l

l ll

l

l

l

l

l
l

l

l

l

ll
l

l
ll

l

l

l

l

l

l
l

l
l l
ll

lll l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l l

l
l

l

l
l

l
l

l

l

l

l

l

l

ll
ll

l
l

l
l

lll
l

l
l

l

l

l

l
l
l

l

l

l
l

l

l
ll

l

ll

l

l

l l

l

l

l

l l
l

ll

l

l

ll

l

l

l

l
l

l

l

l

l

l

l
l

l

lll

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l

lll
l

l

l

l
l

l
l

l

l

l
l

l

l

l

l
l

l
l l

l

l

l
l

l
l

l
l
l l

l
l

l

l

l

l

l

l

l
ll
l

l

l

l l

l

l
l

l

l

l

l

l
l

ll
l

l

l

ll

l

l

l

l l

l

l
l

l

l

l
ll

l l

l

l

lll

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

ll
l

l

l
l

l

l
l

l

l
lll

l

l
l

l

l l
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll
l

ll

l

l

l

l
ll

l

l

l

l

l

l

l

ll

l
ll

ll

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l l
l

ll

l

l

l

l
ll

l

l

l

l

l l

l

ll

l

l
l

l

ll

l

ll

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l
l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l
l

l
l

l

l
l

l
l l

l

ll

l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

l l

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l ll
l

l

l

l

l

l

l

ll l

l

l

l

l
l

l

l

l

l

l

ll

l

l l

l

l
ll

l
l

l

l

ll

l
ll

l
l

l

l

l
l

l l

l

l

l
l

ll
l

l

l

l
l

l
l

l

l

l

l lll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

ll l

ll

l

l

l
l

ll

l

l

l

lll l

l
ll

l

l

l

ll

l

l

l

l

l

ll

l

l
l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

l l

l

l

l

l

l
l

lll

l
l

l
l
l

l

l
l l

l

l

l

l
l

l

llll

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

ll

ll
l

l

l

l

l
l

l

l l

l

l

l

l

l

l
l

l
l

l

l

l
l

l
l

l

l
l
l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l
l

l
l

l

lll

l
l

l

l

ll

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l
l

l

l

l

l l

l

l

l
l
l

l

l

l

l
ll

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l
l

l

l
l

l

l l

l

l

l

l

l

l
l

ll l

l

l
l

l
l

l

ll
l

l

l
l

l
l

l

l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l l lll

l

ll

l

l

l
l

l
l
lll

l

l
l

l
l

l

l

l l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

ll

l

l

l
l
l

l

l

l

l
l

l

l

l

l
l

ll
l

l

l

l

l
l

l

l

l

l

ll
l

l
l

l

l

l l
l

l

l

l l

l

l

l

ll

l

l
ll
l

l
l

l

l

l

l

ll l
l

ll
ll

l
l

l

l

l

ll

l

l
l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

ll

l

l

l

l

l

l
l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l

l l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l l

0.0 0.5 1.0 1.5 2.0

−
20

0
10

20

effect size: 0

genotypes

ph
en

ot
yp

es

Fig. 4.1 Regression analysis results for the most and least significant SNP. Model fitted is additive
with genotypes coded as 0, 1, and 2. The line shows the regression fit

Figure 4.1 shows the most and least significant SNP. There is a strong additive
association with the first SNP—the regression line has a negative inclination (slope)
and an estimated effect size of −2.88; with the second SNP the regression line is
flat and the estimate of effect size is zero. Later we will check if the first SNP is
one of the true QTL. Note that the differences (in the significant SNP) are rather
subtle, SNP effects of quantitative traits are seldom visually obvious. We used the
lm function for the regression analysis and what it did was fit a simple model of
the form y = a+ bx, basically given y (phenotypes) and x (genotypes), it used least
squares to estimate the values of a (intersect) and b (slope, SNP effect). For the first
SNP this is

> y=pheno
> x=gwas[1,]
> mod=lm(y~x)
> summary(mod)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-19.2988 -4.5255 -0.0773 4.3939 19.1710

4.4 SNP Best Linear Unbiased Prediction 115

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5069 0.2512 2.018 0.0437 *
x -0.4989 0.2035 -2.451 0.0143 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

Residual standard error: 6.376 on 1998 degrees of freedom
Multiple R-squared: 0.002999, Adjusted R-squared: 0.0025
F-statistic: 6.01 on 1 and 1998 DF, p-value: 0.01431

We used variable y for the phenotypes and x for the genotypes of the first SNP
to match with the notation used above. For this SNP the estimates of intercept (a)
and slope (b) are respectively 0.5069 and −0.4989. The objective of this text is to
be applied, so purposefully numerical details have largely been avoided, but it is
easier to understand how to do snpBLUP if the regression is built up from scratch.
The most common way of solving for a and b is with least squares (it minimizes the
sum of the squared residuals—values for a and b that give the smallest difference
between observed and predicted values of y). The notation for this would be

b̂ =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2 (4.1)

â = ȳ− b̂x̄ (4.2)

The estimate of b is just the sum of the product of the deviations from the mean
for x and y, divided by the square of the sum of the deviations from the mean of x.
And the estimate of a is the mean of y minus the product of the mean of x with the
estimate of b. In R the code is

> b=sum((x-mean(x))*(y-mean(y)))/sum((x-mean(x))^2)
> a=mean(y)-b*mean(x)
> a

[1] 0.5069125

> b

[1] -0.4989296

Note that the results are exactly the same as those from lm. The intercept and
the slope are the two parameters needed to define the line through the data and can
be used to predict values of y given x (y = a+ bx). The predict function in lm can
be used or simply use the coefficients directly. There are only three genotypes, so
there can only be three values for y:

> pred=predict(mod)
> pred[1:4]

116 4 Populations and Genetic Architecture

1 2 3 4
0.007982874 0.506912508 -0.490946760 0.506912508

> yhat=a+b*x
> yhat[1:4]

[1] 0.007982874 0.506912508 -0.490946760 0.506912508

Without details and just for completeness (an excellent text for regression in R is
[100]), the same R2, F-values, and p-values can be obtained directly with

> SST = sum((y - mean(y))^2)
> SSR = sum((yhat - mean(y))^2)
> SSE = sum((y-yhat)^2)

> R2=SSR/SST
> Fval=SSR /(SSE/(length(y)-2))
> Pval=1-pf(Fval,1,(length(y)-2))
> c(R2,Fval,Pval)

[1] 0.00299874 6.00950385 0.01431413

This is what the loop using lm did behind the scenes. The analysis could be
replicated with a loop using the manual approach we just overviewed or we could
instead use matrix algebra (note that this is still single SNP regressions—just doing
it with matrices). The equivalent matrix notation is

y = Xβ + e (4.3)

where X is a design matrix that assigns the mean (a—intercept) and number of
SNP alleles (b—slope, effect) to the phenotype records (y). β are the regression
coefficients (β0 = a and β1 = b) and e is the random error term assumed to be ei j ∼
N(0,σ2

e) where σ2
e is the variance error. The design matrix X needs two columns

(one for each β), the first column is for the intercept, which is the same for all
individuals, so it is simply a column of ones; the second column is for the dose
effect (slope) and will be the number of copies of one of the alleles (here, allele
B) for each individual. For this example X is a matrix of 2,000 rows by 2 columns,
filled with 1’s in the first column and the genotypes (0, 1 or 2) in the second column.
We want to solve for β which can be estimated with

[
β̂0

β̂1

]
=
[
X ′X

]−1 [
X ′y

]
(4.4)

This can be ported to R as

> y=pheno
> X=matrix(0,2000,2)

4.4 SNP Best Linear Unbiased Prediction 117

> X[,1]=1 # fill with ones for intercept
> # store output
> interceptM=numeric(10000) # beta0 or a (intercept)
> effectM=numeric(10000) # beta1 or b (slope)

> # solve for all SNP
> for (i in 1:10000)
+ {
+ X[,2]=gwas[i,]
+ XtX=t(X)%*%X
+ lhs=solve(XtX)
+ rhs=t(X)%*%y
+ sol=lhs%*%rhs
+ interceptM[i]=sol[1,1]
+ effectM[i]=sol[2,1]
+ }

The matrix sol is a 2× 1 matrix with solutions for the β s. The values of ŷ
(predicted y) for, e.g., SNP 1 can be obtained with

yhat=interceptM[1]+effectM[1]*gwas[1,]

The results are identical to those from lm or from using least squares to estimate
the intercept and slope.

> # SNP effect from lm
> effect[1:4]

[1] -0.4989296 0.1690589 0.1876288 -0.1043797

> # SNP effect from matrix
> effectM[1:4]

[1] -0.4989296 0.1690589 0.1876288 -0.1043797

Now we are finally ready to fit all SNP simultaneously using snpBLUP (ridge
regression). This approach uses the same models suggested for genomic prediction
[75] and involves fitting SNP as random effects. While snpBLUP solves the problem
of multiple testing and over estimation of SNP effects, it does strongly shrink back
the estimates of SNP effects. Effects are treated as random samples from a normal
distribution and assumed to have equal variance (with many SNP the variance has
to be very small). Alternative methods use different variance estimates for each
individual SNP (e.g., Bayesian methods; see [34] for an overview with R examples).
In its simplest form snpBLUP is

y = μ +Xg+ e (4.5)

118 4 Populations and Genetic Architecture

where μ is the trait mean, X is the design (genotypes) matrix linking SNP effects
to phenotypes, and g is the vector of additive genetic effects. Following [52], the
mixed model equations to solve for g (SNP effects) are

[
μ̂
ĝ

]
=

[
1′n1n 1′nX
X ′1n X ′X + Iλ

]−1 [
1′ny
X ′y

]
(4.6)

This takes a similar form to what we did before but X now includes all SNP
(the matrix of genotypes) and there is the parameter λ which is λ = σ2

e /σ2
g (ratio

of residual by genetic variance). The σ2
g (SNP specific variance) value is usually

unknown and can be approximated as σ2
a /m (the additive variance divided by the

number of markers). The additive and residual variances can be inferred from the
heritability of the trait: σ2

a = σ2
ph2 and σ2

e = σ2
p(1− h2). These concepts will be

discussed in the next section, for now all we need is to know that the heritability of
the trait for this data is 0.5.

A point with this estimate of λ is that it does not take into account differences in
allele frequencies—not an issue in this simulated dataset since frequencies are all
the same—but a preferable estimate of λ is

λ = 2∑ pi(1− pi)∗ (σ2
e /σ2

a) (4.7)

where p is a vector of the frequencies of one of the alleles.
The equations for the SNP solutions are not straightforward at first glance.

However it becomes clearer once they are broken down into their individual
components. First, if the trait is mean centered and adjusted for all fixed (unrealistic
but simplifies the concept) effects, there is no need to estimate a trait mean, and the
solution reduces to

[
ĝ
]
=
[
X ′X + Iλ

]−1 [
X ′y

]
(4.8)

where X is the matrix of genotypes adjusted for allele frequencies (X − 2p), λ is a
scalar value calculated as above and I is an identity matrix; i.e., calculate X ′X and
then add the value of λ to the elements in the diagonal of X ′X . The other term is
the transpose of X multiplied by the phenotypes (y). If the trait mean needs to be
estimated, the other terms are included. 1n is a vector of ones of length n (number of
samples); 1′n1n is simply the number of samples, 1′nX and X ′1n are the transpose of
each other (i.e., same values) and link the mean with the genotypes (these values are
generally so small that a vector of zeros instead will give the same results). The last
term, 1′ny is simply the sum of y. In the R code below, matrix algebra is used but the
components of the matrix can be built in any suitable way.

> # snpBLUP
> h2=0.5 # heritability
> y=pheno

> p=rowMeans(gwas)/2 # frequency of second allele

4.4 SNP Best Linear Unbiased Prediction 119

> # lambda (equation 4.7)
> d=2*sum(p*(1-p))
> ve=var(y)*(1-h2) # residual variance
> va=var(y)*h2 # additive variance
> lambda = d * (ve/va)
> # equivalent for lambda:
> #lambda=(1-h2)/(h2/d)

> # snpBLUP (equation 4.6)
> X=t(gwas-(p*2)) # freq. adjusted X matrix
> XtX=t(X) %*% X # X'X
> diag(XtX)=diag(XtX)+lambda # X'X+lambda

> ones=rep(1,length(y)) # 1n
> oto=t(ones)%*%ones # 1n'1n
> otX=t(ones)%*%X # 1n'X
> Xto=t(X)%*%ones # X'1n
> # build full matrix:
> lhs=rbind(cbind(oto,otX),cbind(Xto,XtX))

> oty=t(ones)%*%y # 1n'y
> Xty=t(X)%*%y # X'y
> rhs=rbind(oty,Xty)
> effectBLUP=solve(lhs)%*%rhs # SNP solutions

Here rbind and cbind were used to build the matrices—this is inefficient as
previously discussed, better to pre-allocate the matrix and then fill it in. snpBLUP
is computationally intensive and very demanding on memory, large datasets will be
unfeasible on commodity machines. This data was already mean centered, so the
estimate for trait mean is zero (below). The mean is the first value in the solutions
matrix (effectBLUP). Rerun the example with, e.g., y = pheno+ 23.7 to test.

> head(effectBLUP)

[,1]
[1,] -3.259863e-16
[2,] -4.892722e-02
[3,] 1.853745e-02
[4,] 1.145339e-02
[5,] -7.280290e-03
[6,] -1.749794e-02

Without fitting the mean, the same SNP solutions can be obtained with

> # without fitting mean (equation 4.8)
> XtX=t(X) %*% X

120 4 Populations and Genetic Architecture

ll

l
l

l

l

ll
l

l ll

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

ll
l

l

l

l

l

l
l

l

l

l

l

ll

l

ll

l
l

l
l

ll

l

l

l

l
l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

ll
l

l

l

l l

l

l

l

l

l

l
l

l

l

l

lll

ll

l

l

l

l

l

l

l

l

l
l

ll

l
lll

l

l

l

ll

l

l

l

l

l
l

l

l l

l

l

l

l

l

l

ll

l

l

l
l

l

ll

ll

l

l
l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

ll

l ll
l

l

l

l

ll

l

l
ll

l

l

l

l

l
l

l
l l

l
l

l

l
l

l

ll

l

l
l

l

l
l

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

ll

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

ll

l
l

l

l

l

l

l

l

l
l

l

l
l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l
l

ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
ll

l

l
l

l

l
l

l

ll

l

l

l

l
l

l

l
l

l

l

l

l

ll

l
l

l

l
l

l

l
l

l

l
l

lll

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l
ll

l ll

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l
ll

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

lll

l

l

l

l

l

l
l

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l ll
l

l

l
l
l

l

l

l

l

l
l

l

l
ll

ll

ll
l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

llll
l

ll
l

l

lll

l l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

ll
l

l

l
l

l

l
l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l l
l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l

ll

l
ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
ll

l

l

l

l
l

l
l

ll
l

l

l

l

lll

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l
l

l
lll

l

l

l

l
l

l

l

l

l
lll

l

l
l

l

l

l

l

l

l

l

l
l

ll

ll

l
l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l l
l

l

l

ll

l
l

l

ll

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l
lll

l

ll

l

l

l
l

l

l

ll

l

l l

l

l

l

l

l

ll
l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll
l
l

l
l

l

l

l

l

l

l

ll

l

l
l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l l

ll

l
l

l

l l
l

ll
l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
ll

l
l

l

l

l

l
l

l

l

l

l

lll

l

l

l

l

l

l l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

ll

l l
l

l

l

l

l
l
l

l
l
l

l l

l
l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

ll
ll

l

l

l
l

l

l

l

ll

l

l

ll

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l
l

ll

l

l
ll

lll

l

l

l l
l

l

l
l

l

l
l

l

l
l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

ll

l

l

l ll
l

l

l
l

l
l

l
ll

l

l
l

l

l

l

l

l l

l

l

lll

l

l

l

l

l

l

l

l

l

ll
l l
l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l
l

l
l

l

l

l

l

l
l
l

l

l
ll

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l
l

l
ll

l

l

l

l

l

l

l

l

l

l
l
l

l

l
l

l

l

l

l

l

l

ll

l

lll

ll

l

l
ll

llll

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l
l

l

l

l

ll

l
ll

l
l

l

l
l

l
l

l

ll

l

l
l

ll
l

l

l

l

l

l

ll

l

ll
ll

l

l

l
l

l

l

ll
l

l

l

l

l

l

l

ll

l

l

l
l

l

ll
l l

l

l

l

l
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

ll

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l
l

l

l l

l

l
ll

l
l

l

l

l

l

l
ll

l

l
ll

l

l

l
ll

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

ll

lll

l

l

ll l

l

l

l
l

l

l

l
lll

l

l

l

l

l

l l

l

l

ll

l

l

l

l

ll

l

ll
ll

l

ll

l

ll
l

l

l

l

l

l

l

l

l

l

l l
l

l
ll

l

l

l

ll

l
l

l

l

l
l

l
ll

l

l

l

l

l

l

l

l
l

l
ll

l
l

l

l

ll

l

l

l

l

l

l

l

l

l
lll
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l
ll

l

l
l

l

l

ll

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
lll

l

ll

l

l

l

l

l

l
l
l

l

l
l

l

l

l
l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l

ll
ll

l
l

l

l
ll

l

l

l
l

l
l

l
l

l
ll

l

l
l

l

ll

l

l
l

l

l

l

l

ll

l
l

l

l
l

ll

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

ll

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l
l
l

l
l

l

l

l

l

l
l

ll

l
l

l

l

l

l

l
ll

l
l

l

l

l

ll

l
l

l

l

l

l
l

l
l

l

l

l

ll

l

l
ll

l

l
ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l l

l

l

l

l
ll

l

l

l

l

l

l
l

l

ll

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l
l

l

l
l ll
ll

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

ll

l

l

l

ll

l

l
l

l
l

l

l
l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

ll
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l
l ll

l ll

l

l

l

ll

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l l
l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

ll

l
l

l

l
l

l
l

l

l

l

l

ll

l
l

l

l ll

l

l

ll

l

l

l

l

l

l

l

l
l
l l

l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l

lll
l

l

l

l

ll
ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
lll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l
l l

l l

l
l

l

l

l
ll

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

lll
l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l l
l

l

l

l

l

lll
l

l

l

l

ll

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l
ll

l
l

l
l

l

l l

l

l
l
l

l

l

l

l
ll

l

l

l

l

l
l

l

l
l

l

ll

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l
l

l
l

l
ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l
l

l

l
l

l

l
l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll
l

l
l
ll

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

lll

l

l

ll
l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
ll

l
l

l

ll

l
ll

l

l
l

l
l

ll

l
l

ll

l

l
l

l

l

l

ll

ll

l

l

l

l

ll

l
l

l

l
l

l
l l

l

l

l

l

l

l

l

l lll
l

l

l

l

l

l

l

l

ll
l

l

l

l

l
ll

l

l

l

l
l

ll

l

l

ll
l

l

l

l

l
l
l
l

ll
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

lll
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

ll

l

l

l
l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l

l
l

l

l

l

lll
l

l

l

l

l

l

l

l

l
l
l
l

l

ll
l

l
l

l
l

l

l

l

l
l

l
l

l
l

l

l

ll

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll
l

l

lll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l
l

l
l

l

l
l

l

l

l
l

l

l

l l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
ll
l

l

l

l
l

l

l
ll

ll
l

l

l

l

l

l

l

l

l

ll
l

l
l

ll

l

l

l

l

l

l

ll

l

l

l
l

l

l

ll

l

l

ll

ll
ll

l

l

l

l
l

l

ll
l

l
l

l

l
l

l

ll

l

l

l

l

ll

l
l

l

l

l

l

l
l ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l
l

l

lll

l

l

l

l

l

l
l

l

l
l

l

l
l

ll

l
l

l

l

l

l

l

l

l

l

l

l
lll

l

l

l

l

l

l

l
l

l
l

l

l

l

l
ll
l

l

l

ll

l

l

l

l

l

ll

ll

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

ll

l

ll

ll

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l
l

l

l
l

l

l

l
lll

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l l

l

l
ll

l

l

l

l

l

l

l
l

l
l

l

ll

ll l
l

l
l

l

l

l
l l

l

ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll
l

l
l

l
l

l

l
l

ll

ll ll

l

l

l

l

l

l

l
l

l

l l
l

l
l
l

lll

l

l

l
ll

l

l
lll

l
l

l

l
l

ll

l

l

l

l

l
l

l

l

l
l

l
l

l

ll l

l

l

l

l

l
l

l

l

l
l

l
ll

ll

l

l

l

l

l

l

l
l

l

l

l

l

l
llll

l

ll

l

l
l

l

l
l

l

l

l

l

ll

l
l
l

l

l

l

lll

l

l
l

l

l
l

l
l

l
l

l

l

l

ll

l

ll

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

l

l
l

l

ll

l

l l

l

l

l

ll
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l
ll

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

ll

l
l

l

l

l

lll

l

l

l
l
l

l
l

l
l

lll

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll
l

l

lll

l

l

l

l

ll

l

l
ll

ll

l

l

ll

l

l
l

l

l
l

l
l

l

l

l
l

l l

l
l

l

l

l

l l

l

l

l

l

l

l l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

ll

l

l

lll
ll

l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

ll
l

l

l

l l

l

l

l

l

l
ll

l
l

ll

l

l

l

l

l

l

ll

ll

l

l

l l

l
l

l

l
ll

ll

l

l

l

l

l

l

l l
l

ll l

l

l

l
ll

l

l

l

l

l

llll

l

l

l

l

l
l

lll

l

l

l
l

ll

l
l

l

l

l l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l
l

l

l
l l

l

l

l
l

l
l

ll

l

l

l l

l

l

lll
l

l

l

l
l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

ll

l

l
l

l
l

l
l

l
l

l

l

l

l

l
l

l

l
ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

lll
ll

l

l

l

ll

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

ll

ll

l

l
l l

l

l

l

l

l
l

l

l

l

l

l
l

l

ll

l

l
l

l

l
l

l

l

lll

l
ll

l

l

l

lll

lll

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

ll

l

lll

l

l

l

l

l

l
l

l
l ll

l
l

ll

l

l

l

l

ll
l

l
ll

l

l

l

l

llll

l

l

l

l

l
l
ll

l l

l

ll
l

l
l
l

ll

l

l

l
l

l
l

l
ll l

l

l

l

l

l
l

l

l

l

l

l

l

ll
ll

ll

l

l

l

l

l

l

l

l

l

ll l
ll

ll

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l
l
l

l
l

l
l

l

l

ll

l

l

l

l
l

l
l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

ll
l

l
l

l

l

l
l

l

l

l

l

ll
l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

ll

l

ll

l
l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

ll
l

l

l

l

ll

l

l
l

l

l

l

l

l l

l

l

l

l

l ll

l

lll

l

l

l
l

l

l

l

l

ll

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
ll

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

ll
l

l

ll

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l
ll

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

lll

l
l

l
l

l

l

l

l

l

l
ll

l

l
l

l

l

l
l

l

l

l

ll

l

l

ll
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

ll
l

l

l

l

l

l

l
lll

l

l

l

l
l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l
l

l
llll

l

l
l

l

l

l

l
l

l

ll

l

l

l

ll
ll

l

l

l

l l

l
l

l

l
l

ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l
l

l
l

lll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l
l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l l
l

l
l

l

l

l

l

l

l

l

ll

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

lll
l

l

l

l
l

l

l

lll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

ll

ll

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l l

l
l

l

l

l

l
l

l

l
l

l

ll

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

ll

l

l l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l
l

l
l

l

l

ll
ll

l l

l

l

l

l
l

l

l

l

l

l l

l
l

l

l

l

l
l

ll
l
l
l

ll

l

l

l

l

l

l

l

l
lll
l

l

l

l

l
l
l

l

l

l

l

l

lll

l

l

l

l

l
l

l

l
ll

l

l

l

l

l
l

l

l

l
l

l

lll
l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l
l

l ll l

l

l

l

l

l

l ll

l
ll

l
l

ll
l

l

l

ll

l

l
l

l

l

l
l

l

l

lll
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l

l

l

ll

ll

l

l
l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l ll
l l

l

l
l

l

ll

ll
ll

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

lll

l

l

l

l
ll

l

l

l

l

l

ll

l

l

l

ll

l

l

l

lll
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l l

l
l

l

ll

l

l

l

l

l

l l
l

l

l

l

l

l

l
l

lll

l

l
l

l
l

l

l

l

l l

l

l

l
l

l
l

ll

l

l

l

l

ll

l

l

l

l

l
l

l
l

ll

l

l

l

l

l
l

l
l l

l

l l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l
l

l
l

ll

ll
l

l
l

l
l

ll

l
l

l

l

l

l

ll

l

l

l

l

l

ll

l

l
l

l

ll
l

ll

l

l

l
l

l

l

l

ll

l
l

l

l
l

l

l

l

l

l

l

l

l
l
l

l

l

l

ll
l

l
l

ll

l

l

l

ll

ll

l

l
l

l

l

l

l

ll
l

ll

l

l
l

l

l

l

l
l

l

l

l

l

l

ll
l
l

l

l

l

l

l

l

l

l

l

l

ll
l

l
l

l

ll

l

l

l
l

l
l
l

l

l

l

ll

l

l

l
l

l

l ll
l

l

l
l

ll

l

l

l

l

ll

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l

l

l l

l
l

l

ll

l
l

lll

l

l

l

ll
l

l

l
l

l

l

l

l

ll

l

l

l
ll

l

l

l
ll

l

ll

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

ll
ll l

l
l

l
l

l

l

ll

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
ll

l

l
l

l

l
l

l

l
l

l

l

l l

ll
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

llll

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

ll

l

l

l
l

l

l
l
l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l ll

l

l

l

l
l

l
l

ll

l

l

l
l

ll
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

lll

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll
l

l

l
l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

ll

ll

l

l

l

l

l

l
l

l

l

l

l

ll

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

lll
ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l lll

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l
l

l

l

ll

l

l

ll

ll

l

l

l

l
l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

ll

l

l

ll

l

l

l

l

l

l

l

l

lll

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

ll

l l

l

l

l
l

l

l

l

l

l

ll

l
l
l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l l

l

l
l

l
l

l

ll

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

ll

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l
l

l

l

l
ll

l

l

l
ll

l

l
l

l

ll

l

l

l

l
l

l

l

l
l

ll

l

l

ll

l
ll

ll
l

l

l

l

l
l

l

l

l

l

l

l
l

l
l
l

l

l

l

l

l
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

ll l

l

ll

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

lll
l

l
l

l

l

ll
l

l

l
l

l

l
l

l

l

ll

l

l

l

ll

ll

l

l

l

l

l

ll

l

l

ll

l
l

l

l

l
l

l
ll

l

l

l
l
l

l

l

l

l

l

ll

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

ll

l

l

l
l

l

l

ll

lll

ll

l

ll

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
ll

l

ll

l

l

l

ll

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l
l
l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

ll

l

l

ll l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l
l

l

ll
l

ll

ll

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

ll
l

ll

l
l

lll

ll

l

l

l

l
l

l

l

l

l

lll

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
ll

l

l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l
lll

l

l

l

l

l

l

l
ll

ll

l
ll

l
l

l

l
l

l

l
l
l

l
ll

l

l

ll

l
l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l

ll
l

l

l
l

l

ll l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l
l

l

l

l
l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l
l

ll

l

ll
l

l

l

ll

ll

l

ll

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

ll

l

l

l
l

l
l

ll

l

l

l

l
l

l

ll

l

l

l

l

l

l

l
l

ll

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
llll

ll

l
l

l

l

l
l

ll

l

l

l

ll

l

l
ll

l

l
l

l

l

l
l

l
l

l
l

l

l

l
l

l

l
l

l

l

l

l
l

l l
l

l

l

l

l

l
l

l
l

l

lll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l
l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l
ll

l
l

l

l

l
l

l

l
l

l

l

l
l

l

ll
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l
l

l
l

ll

l

l

l

lll

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

ll

ll

ll

l

l
l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l
l

l
l
l

l

l

l
l

l

l

l

ll

l

l
l

l
l

l

l

l l
l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

ll

l

l
l

l
l

l

l

l

l

ll

l

l

l

ll

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

ll

l

l

ll

l

l

ll

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l

ll

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
l

ll

l lll

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l
l
l

ll

l
l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l
l

l

l

ll

l

l

l

l
ll

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll
l
l

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

l

l l

l
l

l
l

l

l
l

l

l

l

l
l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l
l l

l

l

l

l

l
l

l

l

l
l

l

l

ll
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

ll

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
ll

l

l
l

ll

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

llll

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
ll

ll

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l
l
l

l

l

l

ll
l

l

l

l

ll

l ll

ll
l

l

l

ll
l

l

l

l

ll

l
l

l

ll

l

l
l
l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l
l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

ll
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

lll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l
l

l

l

ll

l

l

l

l

l
l

l

ll

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l
l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l
l

ll

l

l

l

l

l
l
l

l
l

l

l

l

l

l

l

ll

l
l

l

l
l

l

l

lll

l
l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l l

ll

l

l

l

l
l

l

ll

l

l l

l

l

l
l

ll

l

l

l
l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l
l

l

l

ll

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l
ll

l
lll

l
l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

ll

l

l

l
l

l
l

l
l

l
l

l
l

l

lll
l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l ll

l

l
l l
l

l

l

l

l

l

l

ll

l l

l

ll

l
l

l
l

l

l

l

l

l

ll

l
l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
ll

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

lll

l

l

l

l

l

l

l l

l

l

ll

l

ll

l
l

l

l
l

l

l

lll

l

l

l

l

l

l

l
l

l
l

l

ll

l
l

l

l
l

l ll

l

l

l

l
l

l

l

ll

l l

ll

ll
l

l
l

l

ll
l

l

l

l
l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l
l

l

l

l

l
ll

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l
l

l
l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l
l

l

ll

ll

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

lll

l

ll
l

l

ll

l

l

l
l

l

l

l
l

l

l

l
l

l l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

ll l

l

l
l

l

l

ll

l

l

l
l

l
ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

ll
l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l l

l

l

l
l

l

ll
l

l

l
l

l

l

l

l

l
l

l

ll

ll

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

l
l

l

l
ll

l

l

l

l
l

ll

l

l ll

l
l

l

l

l

l
l

l

l

l

l

l
l

l
l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

lll

ll

l

l

l

l

ll
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

ll
l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l

l

l

l
ll

lll

l

l l

l

l

ll

l

l
l

l

ll

l

l

l

l

ll
l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

ll l

l

l
l

l

l

l

l

l

l

l

l ll

l

l

l

l
ll

l

l
l

l

l

l

ll
l

l

l

l

l

l

l
l

ll

ll

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l
l

l
l

l

l

l

l

l

l
l

ll

l

l
l

l
llll
l
l

l

l

l

l

l l
l

l

l
l
l

l

lll

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l

ll

l

ll

l

ll

l l
l l

l

l
l

l

l

l

l
l

l
l

l

l
l

l

l
l

l
l
l

l

l

l

l

l

l

ll

l

l

l

ll

l

l
l ll

l

l

l

l

l

ll

l

l

l

l

ll ll

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

ll

l

l

l
l

l

l
l

ll

l
l

l

l

l l

l

l

l

l

l
ll

l

l

l

l
l

l

l

l
lll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l
l

l

ll

l

l
l

ll

ll
l

l

l

l

l

l
l

l

l

ll

l
l

l

ll

l

l l

l
l

l

l

l

l

l

l
l ll

l

l

l

l

l

l

l

l

ll
l

l

l

l

ll

l
l

l

l

l

l

l
ll

l

ll

l
l

l
l

l

ll

l

l

l

l

l l
l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l
l

l

l

ll
l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

ll

l

l

l
l

ll

l
l

l
l

ll
l

l

l

l
l

l

l

l

l

l

l
l

ll

l

l

ll

l

l

ll

l

l

l

ll

l

l

l
lll
l

l
l
l

l

l
l
ll

l

l
l

l

l

ll

l

l

l
l

l
l

l
ll

l
l

l

l
l
l

l l

l

l

l

l
l

l l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

lll
ll

l

l

l
l

ll

l

l

l

l
l

l

l

lll

l

l

l

l

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l
ll

l

l

l l
l

lll

l

l

l

l

l

l

l

l

l
l

l

l

lll

l

l

l

l

l

l

l
ll

l
ll

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l
ll

l

l

l

l

l

l
l

l
ll

l l

l

l

l
l

l

l

l

ll

l

l l

l

l

l
l

l
l

l

l

l
l

l

ll

l

l
l

l

l
l

l

l

l

ll
l

l

l

l

l

l

ll

l

l

l

l
l
ll

l

ll

l
l

llll
l

l

l

l
ll

l

l

l

l

l

l

l

ll

lll
l

l

−3 −2 −1 0 1 2 3

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

SNP effect estimates

single SNP regressions

sn
pB

LU
P

Fig. 4.2 Estimates of SNP effects from single SNP regressions and snpBLUP. The correlations
are high but there is strong shrinkage of effect sizes with snpBLUP

> diag(XtX)=diag(XtX)+lambda
> Xty=t(X)%*%pheno
> effectBLUP2=solve(XtX)%*%Xty # SNP solutions

Conditional on other SNP, snpBLUP shrinks the estimates of effects. The extent
of this shrinkage can be seen by comparing the effects from the single marker
regressions with snpBLUP (Fig. 4.2).

> # just to make variable names more meaningful
> effSingle=effect
> effBlup=effectBLUP2

> plot(effSingle,effBlup,
+ xlab="single SNP regressions",
+ ylab="snpBLUP",
+ main="SNP effect estimates",pch=20)

> cor(effSingle,effBlup)

[,1]
[1,] 0.9779384

4.4 SNP Best Linear Unbiased Prediction 121

ll

ll

ll

ll
l
l
ll
l
l
ll

l

lll

l

l
ll
l
l
l

l

l
l

ll

l

l
lll
ll
l
l

l
ll

l
l

l
lll
ll

l
ll
lll
l
l
l

l
l
l
l

ll
lll
l

ll

l
l

lllll

l

l

ll
l
l

l

l

l

l
l
l

l

l

lll

ll

l
l

l
l

l

l
l

l
ll
ll
lll
l

l
l

l
ll

l

l

l
l

lll
lll

l

l

l
l
l

ll

l

l
ll
l

ll

ll

l

ll
l

l

l

ll
l
l

l
l

ll

l
l
l
l

l
l

l

l

l
l
l

l

l
ll
l

l
lllll
l

l

ll

l
ll
l

l
l

l
ll

l

lll
l
l

l

lll

ll
ll
l

l

ll
l

lll
lll
l

l

ll
l
l

lll
lll

l

ll
l

l

lll
l
l
l

l

ll
ll
ll

l
ll

l

l
l
l

l
l

l
l

lll
l
l
ll

ll
ll

l

l
l

l

l

l

lll
ll
ll
l
l
l

l

l

l
l

l

l
ll

l

l

ll

ll

ll
l

l

l
l
l
l

l

l

l
l

l

ll
l
ll
l

ll
l
l
ll

l
lll
l
l

l
ll

l
l

l
l
l

l

l
l

l

l
l
lll
ll

l

lll

ll

l

lllll

ll

l

l

l
l

l

l
l
lll

ll
l
l
l
l

lll
l

l

l

l
l
l
l
l

l
l

l

l
ll

l

l

ll
l
l

l

l

l
ll

l
l
l

l

llll
ll
l

l

l

l

ll
l
l
l
l

l
l
l
l

l
llll
l
l

l

l

l
ll

ll

l
l

l

l
l

l
lll
l

l

l

l
l

ll
l
l

ll

l

l

l

l
ll

l
ll

l

ll

l
llll
llll
l

l
l

lllll
l
ll
llll
l

l

l

l

l

l

l
l

l

ll

l
l
l
l
ll

l

l

l

l
l

l

l

l
l
l

ll

l
lllll
lll

l

lll

l
lll

l

l

ll
l
l
l

l

l
l
l

l

lll
l
ll

l

ll
l
l
l
l

l

l

ll

l
l

l

l

l
l

l
lll

l
ll
ll

l

ll

l
ll
l

l

ll

l

l

l
l

l

l
ll

l
ll
ll
l

l

l
l

l

ll
l

l

l

l

ll
l
l
lll
l

l

ll
l
l
ll
l
l

l

l
lll
l
ll
l
l
ll

l

l
l

l
l
l
ll

l

l
l
l

l

l

l

l

l
ll

l
ll

l
ll

l
llllll

ll
l

l

l

l
lll

l
lll
l
lll

l

l
ll
llll
ll

l

lll
l

l

l

l

ll

ll
l

l

l
l

l

ll
l

l

ll
l

l
lll
l

l

ll
ll
l
ll
l

l

ll
l
l

ll
l

l
l
l

l

l

l

l

l
l

l

l

l
l
l
l

l

l

ll

ll

ll

ll

l
l

l
l

l

l
l

l
ll
l

lllll
l
lll
l
ll
l

l

l
l

l

ll

l

l
l

l

l

l
ll

l
l

ll

l
l
ll

l
lll
l

l

l
l

l

ll

ll

l

ll

l

l

l

l

l

ll
l

l
l
l
l

l

ll
l
l
ll
l
ll
l

l

l

l

l

l

l

l
l
l
l

l
ll

l
l

l

ll
ll

l
l
l
l
l

l

l

l
ll
l
ll
l

l

l

l

ll

l
ll

l

ll
l
l
ll
ll

ll

l
l
l
l
l
l
l

l
l

l
ll

l
l

l
l

l

ll
l

l
l
l

l

l

l
lll
lll

l
l
l
l
l
l

l

l

l

lll

l

l

l

l
l

l
l

ll

l

l
l
lllllll
ll

l

l

l

l
ll

l
l
ll

l

l

l
ll

lll

l
l

ll
lll

l

l

l

l

l

l
l

l
l

l
l

lllllllll

lll

l
l

l

ll
ll
ll

ll

l

l
l

ll

l
l

ll

l

l
l
ll

l

l
l

l

ll

lll

l

l
ll
l

l
ll

l

l

l
ll
l
l
l

l

l

l
l

l
l
l
ll
l
l
l
l
ll

l
ll
l

l
l

l

l

ll
l
l
l
l

l

l

llll
ll
l
lll
lll

l

l

llll
ll
l

lll
l
l
lll
l

l

ll

l

l

ll

l

l

l

l
l

l

l
l

l
l
l

l

ll
l
l

l
ll
l

lll
l

llll
l
ll
ll

ll
ll

lll
l

l

l
ll
l
l
lll

l
l

l

l

l
l
l

l

l

llllll
ll

l

l

l

l
l
l

ll
l

l
l
l

l
ll

ll

l

l
l
l

l
ll

l

l

l
l
l

l

l

l

l

l

ll
ll

l
ll

ll
l

l
l
l

l

l

l
lll
l

l

l

ll
l
l

l
l
l

l
l
ll

l
llll
ll

l

l

l
l

ll
ll
l
l

l
l
l

ll
l
l

l

l

lllll
l
l

l

l

l

l

ll
l
llll
ll
l
l

l

l
l
l
l
ll
lllll

l

l
l
llllllll

l

l
l

l

l

llll
l
l

l

l
ll

ll

l

l
l
ll
lll
ll

l

l
l

ll

l

lll

ll

llll

l

l

l

l

ll
l
llll
l

l

ll

l

l

lll

ll

l

l

l

l

lll
l
ll

l

ll
l
l
ll

l
ll
l

lll

l

l

l

l

l
l
l

l
ll

l

l

l

l
l
l
l

l
l
ll
ll
l

l

l
l
l
l

l
l
ll

ll

l
l

l
l
l
lll
ll
l

l
l
l
lll
l
l

l

l
l
l

lll

l
lll

l

l
l
ll
l
l
l

l

l
l

ll

l
l

l

l

l
ll
l
l
ll

l
l

l
ll

lll
l

l

ll
l
l
l

ll
ll
llll
l

l
l

l

l

lll
l
ll
l
l
l
l
ll
l
lllll
lll

lll

l

l

l
l

l

ll

l

l
l
ll

l
ll

l
l
l

ll
ll
l

l
ll

lll

l

l

l

l

l

l

l

l
l
l
llll
l
l
ll
ll

l

l

l

ll
l

llllll

l
l

l

ll

l

l
l

l

l
l

l

l
l

l
l
l

l

l
l
l
l

l
lll

l

llll
l

l

l
l
l
l
ll
l
l
ll

l
l
l

l

l
l
l

ll

ll

l

l
l

l

l
l
l

l

l

l

l

l
l
ll

l

lllll
l
l

l

l

l

l
l

lll

l
ll

l
l

ll

l

l

l
l
ll

ll

l
l

l

l

l

l

l
l
ll
l

l

l

l

l
l
lll

l
l
l

l

l
l

l

l
l
ll

l
l
l
l
l

l
l
ll
ll

l

lll

l

l

ll

ll
lll
l
l

l
ll

l

l
l
l

lll

l

l
l

ll
l
l

l

ll
lll
l
l

ll
l
l
ll

l

l

l

l

lll
ll
l

l

l
l
l
ll
lll

l

l

l
l

l

l

l
l

l
l

l

l
l
l
ll

l

l

l

l

l

l
l

lll
l
l

l
l
l

l
ll

ll

lll
l
l

l

l
ll
l
l

l

l

l
llll

l

l

l

l
l

l
l

l

l

l

ll

l

lll
l

l
ll

l
l
lll

l

l
ll

l

l
ll

l

l

l
l
l

l

l

l
ll
l
l

l

l

l

lll
l

l

l

l
l

l
ll

l
l
l
lll
l

l

l

l

l

ll
l

ll
l
lllll
l
ll

l

l

ll
l

l

llll

l
lll
ll
lllll

l

l

l
ll

l

l
l
l
l

l

ll
ll

l
l

l

l
l

l
ll
l
l
l

ll
ll

l

l

l
ll
l
ll
ll

l

l
l

l

ll
l
l
l
ll
l

l

ll
l

l

l
l
l

l
l

l

ll
l

l
ll
l

ll
ll
l
l
lll

l

l

l

l

l

l

ll

l

ll
ll
llll
lll
l

l
l
ll
l
l

l

lll

l

l
l

l

l
l
l

l

l
l
l

l
l
l
l

ll

l

l

l

l
l

l

ll
l

l
l
l
ll

l
l

l

l

l

lll
l
l

l
ll

ll
l
l
l

l
l
l
l
l

l

l

l

ll

ll
l
lll

l
l

lll

l

l
l
l

l
l

llll

l
ll
l

l

ll
l

ll

ll
l

l
l

l
l
l

llll

ll

l

llll
l
l
l

l
ll
l
l

l
l

l

l
l
l
l

l

l
ll
lllll

l
l

l
l

l

l

l

lll

l
l

l
ll
ll
l

ll
ll

l

l

ll
lll
l

l
l

l

lll

l

l
l
l

l

l
l

l

l

l

l
l
l

ll

l

l

l

lll
l

l

l
l
ll

l

l

l

l
l

l
ll
lll
ll
l

lll
l

l

l

l

l
l

ll
l
l
l
llll
l
l

l
l
l

ll
lll

l
l
l

ll

l

l

l
l

ll
ll

l

l

l
l

ll
l
l
lll
ll

l
l

l

ll

l
l
ll
l

l

l
llll

l

ll
l
l

l
ll
l
ll

l

l
l
l

l

l
ll

l

l
l
ll

l

l
l

l
ll
lll

l

l
ll

l
l

ll

l

l
ll
l

lll

l

l

l
l
l
l

l

ll

ll
ll

l

lll

l

lll

l

l

l

l

ll

ll
llll

l
l

l
ll

l
l

ll
l

ll
l
l
llll
l
l
l

l
ll

l

ll

l

l

l
l
l
l
l
l

l

l

l
ll
l

l

l
l

l
l
l
l
lll

l

l
ll

l
ll
l

l

l

l

l

ll

ll

l

lll
l
l

l
lll

l

l
l
l
l
l

ll
llll

l

l

l

l

l

l

ll

l

l

ll

l
lll
ll
l

ll
lll

l

l
lll

ll

ll

ll

l
ll

l

l
lll
ll
l
l

l

l

ll

l
l
l

ll

ll
l

l

l
l
l
l
l
l
l
llll

l

l

l

l
l

l
l

lll

l

l

l
l
ll

l

l

l
ll
ll
l
l

llll
l
l
lll
lll
l

ll

l

l

l

l

l
l
l
l
l
l
l
llll
l

l

l
ll

l

l

l
l

l
l

llllll

l

l
l
l

l

l

l

ll
l

l

l

l
l
l
l

l
ll
l
ll
l
llll
ll
ll

l
l

l

ll
l
l

l

l

lll

l

l

l

l

l

ll
l
l

l

l
l
l

l
ll
l

l

l

lll
ll
ll

l

l
l
l

l
lll
l
lll
ll
l
l

l

l
l
ll

l
l
l
l
l

lll
ll

l

l

ll
l
l

l

l

l
l

l
l
l
l

l

l
lll

lll

l

l
l
l

l

ll

l
l
l
l

l

l

l

l
l

l

l
l
l
ll
l
l
l
l
l

ll
l

ll

l

l
ll
l

l

l
l
l

l

l
l

ll

ll
lll

l
l
l
l

l

ll

l

l
l
lll

l

l
l

l
ll

l

l
l
l

l
l

l
lllll

l

l

l

l
l
l

l

l

l

l

ll
l
lllll
l
l
l
l

l
llll
l
lll

l
ll
l
l
l
lll
l

ll

l

l

l
ll

l

ll

l
lll
l

l
ll

ll

ll

ll
ll

l

l
l
l
l

l

lll

ll
l

ll

l
l
l

l

ll
l

ll

l
ll

l

l

l

ll
ll

l

l
l

l

l

lll
l
l
l
l

l
l

l
l

l
l
l

l

l
l
l
ll
l

l
l

ll
ll

l
l
l

ll
l
l

l

l

l
l

l

ll

l
l
l
l

ll
l
ll
ll
ll
l
l
l

l

l

lll

l

l
ll

ll
ll

ll
l

l

l

l
l

l

l

l

l

llll
l

l

l

l
l
l
l
l

ll
l
l

l
llll

l

l
lll

l

l

l
l
ll

ll

l

l
l
l

l
l
l

l
l
l

l

l

l

l
lll
l

l

ll

l
ll

l
l

l
l

l
ll

l

l
l
ll

l

l

l
l
l
l
l
l

l
l
lll
ll

l

l

l

l

l
l
l
l
l
ll

l
l
l
ll
l

l

l
l

l
ll
l
l

ll

l

ll
l

l

l
lll

ll
l

ll
l

l

l

l

l
ll

l
l

ll

l

l
l
l

l

l
l
ll
ll
l

ll

l

l

l
lll

l

l
l
l
l
ll

l

l
l

l

l

l
ll
l

l

l

ll

l
l
l

l
l
l

l
l

l

l

l
l
l
l
l

ll

l

ll
l

l

l
l

l
l
l
ll

ll
l

ll

lll
l
l
l
l

l

ll
l

l
llll
l

l

ll

l
l

l
l

l

l
l
l
l
lll
l

l
ll
l

l
ll
l

l

l

l
l

l

ll
ll
l
ll

l
ll
lll
lll
l

l

l

l

l

l

l
l
l
l
l
l
l
ll
l
ll
l

l
llll
l
lll

lll
llll

l

l
ll

ll

l
l
l
ll
l

l

lll

l

l
l
l
ll
l

l

l
llllll
l
l
l
l

l
l

l
l
l

l

l

l

lllll
l
ll

l

ll

l

ll
ll
l
l
ll
lll
l
l

l

lll

l

l
l

l

lll
l
ll
l
l

l
ll

l
ll

l

l
l
l
ll
llll

l
l

l
ll

l

l
l
l

ll

ll
l
lll
lll

l
l

l

l

ll
ll

l

ll

l

ll

l

lll
l

l

l
ll
ll

l

l

l

l

l
l
ll

l
l
ll

l
l

l

ll
ll
l
llll
l

l

l

l
l

l

ll

l

l

l

l

l
l
l
ll

l

l
l
ll

l

ll
ll

l

l
l
lll

l
l
lll
ll
l
l

lll
ll
l
ll

l

l
l

l

l

l
l
l
l
ll

ll

l
ll

l
ll
l
l
l
l
l
l

l

l

l

l

l

l
l
l

l
l

l

l
lll

l

l

l
l

l

l
ll

l

lll

l

ll
l
ll

l
lll
ll
l

l
ll

l

lll
ll
ll

l
l

llll

ll
ll

ll
l

l
l

l

l
l

l
l

l
l

l
l

l
l
l
l
l

l

l
l
ll

l
l

l
l
l
ll
l

l
l

l

l
l
l
ll

l
l

lll
ll

l
l

l

l

ll
l

l

l
l
ll
l
l
ll

l
l

l

ll
l
l

l
ll

l
ll
l

l

l
l

l

l
l
l

l

l

l

l
l

l

l

ll
l

l
l
ll
ll
l

l
l
l

l

ll
llll
l
l

l

l
ll
l
l
lll

l

l

l

l
lll

l

l

lll
l

l
l
l
llll

ll

l
l

l
l
l
l

l
lll

l

l

l
l

l
l
l
lll
ll
l
l

l

l

l
l
lll
ll
l
l
l

ll
l
l

ll
l

l

llll

l

l

l

l

l
ll
ll

l
l
ll
ll

llll
l
l
l
l
l

l

lll
l

l

l

l

l

ll
lll

l

l
l
l
ll

l

ll
ll
l

l
l

lll
ll

l

l
l

l

l
l
l
ll

l

ll
l
l
l
llll
ll
l
l

ll

l

lll
l
l
l
l
ll
l
lll
ll

l

l
l
l

l
l

l
l

l

l

l

l

l

l
l
ll
l

ll
l
ll
l

l

l

l

l
l

ll

ll
l
l

l

l

ll

l
l
l
l

ll

l

l
l
ll
l
l
l

l
l
l
llll

l

ll

l
l

l
llll
l
l

l

ll

l

l

l

l

l

l
l
l

l

lllll

l

ll

ll
l

l

ll

l

ll

l

l

ll
l
l
l

l

l
lll
ll

ll

l
l
lll

l

l
l
ll

l

l

l

l

l
l

l
ll
l
l
l
lll

l

l

lll
lll

l
l

ll
ll
lll
ll

l
l

l
l

ll
l

l

l
l
l
l

l
ll

l
lllll

l

l

l
ll
ll
llll

ll
l

l

l
l

lll

lll
l

l
l

l

llll

l

l

ll

l
lllll

l
lll
lllll

l

l
l
l

ll

lll
ll
ll
l

ll

l

l

l
l

l

l
ll
llll

l

l

l

l
l
l

l

l
l

l
l
l
ll
ll

ll

ll
l

l

l
l

lll

l

l
l

lll
ll

l

l

l

l

l
l
l

ll

l

l
l
llll
l

l
l
l

l
l

l
ll
l

l

l
l
l
l

l

l

l

l
lll
ll
l
l

l

l

ll

l

l
l
ll
ll
l
l
ll

l

lll
l

l
l

l

l
ll

l
ll
l

ll

l
l
lll

l
l
l

l
l
l

l
l
l

l

l
l

l

l
ll

l

ll

l
l

l

ll

l

l

l

l

l

l
l
l

l

l
l

l

l
ll
l
l

l
l
l
ll

l

ll
l
ll
l
l
l
l

l

l
ll
ll

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l
ll
l

l
lll
ll

l

l

l
lll
l

l

l
ll

l
lll

l

ll
l
l
l
l
l
l
l
l
l
l

lll

l

l

ll

l

l

l

l

ll
ll
l

l

l
ll
l
l
lll
l

ll

ll
l

ll

l

l

ll
l

l

ll

l

l

l

l
l

llll
llll
l
l
ll
l

l

l

l

l
l
l
l

l

ll
l

ll

l
ll

l

l
l

l

lll

l

ll
ll

l

ll
l
ll
lll

l

l
l
l
lll
l
l
l

ll
l

l

l
l
l
l
l
ll

l
l

l

l
l

l

ll

l
l

lll
l
l
lll

l

lll
lll
l
ll

l
l

l
lll

l

ll

l
l
l
l
l

l

l

ll
l

l
l

l
l
l

l
lll

l
l

l

l
l

l
lll
l

lllllll

l

llll

l

l

l

lllll

l

l
l
l

l

l
l
l

l
l
l

l

l

l

l

ll

l

l
l

l
l

l
l

l
l

lllll
l
lll

l

l
ll
l
ll

l

l

l

lllll

l

ll
l

ll

l
l
l
ll
lll

l

ll
l

l

l

l
l
l

l

l
ll

l

ll

l
l

lll
l
l
l

l

l
l

l
l
l
ll

l

l
l
l

ll

l

l
l

l
l

ll

l

l

l
l

l

l

l
l

l

l
ll
ll
l

l
l
lll

l
l

ll

llll
l
l
l
l

l

l

l
ll

l

l

l
l
ll
ll

l
l
l

l

l

l

l
l
l
llll

ll
l

l

l
l

l

l
l

l

l
l
l

l
l
l

l
l

l
l
l

l

l

l

l

l

l

l

l

l
ll

l

l

ll
l
lll

l
l

l

l
l
l
l
l
l
l
l
lllllll
l
l

l
lll
l

l
l

l
l

l
l
l

l
l

lll
ll

ll

ll
llll

l
ll
l
ll

l

l

l
l

l
l
l

l
l

l

llll
ll

l

l

l

ll

l

ll

l

l
l
l
l
lll
l

l

l

l

l

lll
l
l

ll
lll

l

l
l

l
l

l
l
ll
l

ll
l

l
l

l

ll
l

l

l

l
ll
l

l

l
l

l
l
l
lll

l
llll
ll

l

l
l
ll

ll

l

ll
l
ll

l
l

l
ll
ll
lll

ll

l
l
l
l

l
l
l
lllll

l

l

l

ll
l

l

ll
l
l

lll
l

l

l
l

l
l
l
lll
ll

l

l
ll

l

l
ll
l
lllll
l
l

lll

l

l

l

l

l
ll
l
lll
lll
l
l
l
l
l
lll
lll
l
llll

l
l

ll

l
l
l

l

l
ll
l

llll
lll
l
l
l

l

ll
lll

l

l

l
ll
ll
ll

l
l

llll

l
ll

l

l

l

l

l

llll
l
l

ll

l

l

l
ll

ll
l

l
llll
l
l
l
l
l
l

l
l
l
lll

l

l

l

llll
l

l

ll
l
ll
llll

l
l
l
l

l
l

ll

l
l
l
l

ll

l

l

l
l

l

l

ll
l
l
lll
ll
l
l
lll
l

l
l

l

ll

l

ll
ll

l

l

l

lll
ll
l
l
l
l
l

l
lll

l

l
l
l
l
l
ll
ll

l

l

l

llll
l
l

l

l
l

l

ll
lll
l

ll

ll
l

l

l

l
l

l

l
ll
ll
ll
l
l
l

l

lll
l
l
l
l
ll
l
ll

l

l
l

l

ll

llll
l
l

l

ll
ll

l

l
l
l

l

l

ll

l
ll
ll

ll

lll
ll
ll
ll
ll
l
l

l

l

ll
l
l

l

l

l

ll

l

lllll
l

llll
llll
l
ll

l
l
l

l
ll
ll
ll

l

ll
ll
l

ll

lll
ll

l
l

l

l
l
ll
ll
l
ll
l

l

l
l
ll
l
ll
l

ll

l

l

l

l
l

l

l

l

ll

llll

l

l
l
l
l
l
l

l

l

l

lll
ll
l
ll

l

l

ll

l
ll

l
l

l
ll
l
l
ll

l
lllll
llll
l

l

l

l

ll

ll

l

l

l

ll

l

l
l
l
l
l
l

l

ll
l
l

l

l
l
l
l
l
l
l
l
lll
l
l

l

ll
l

l
l

l
l
ll

l
l

l

l
l

l

ll
lll

ll

l
lllll

l

l

l
ll
l
ll

l
l
l
l
ll

l
l
llll
l
lll

lll

l
ll
l
l
ll
l

l

ll

l

l

l

l
l

l

l
l

l

l

l

llll

l
l

l

l

l
l
lllll
ll
l
l

l

l

ll
l

lll
ll

l
l

l

l
l

l
l
l
l

l

l

l
l

l

l

llll
l
l
l
ll

l

l

l

l
llll
l

l

lll

l
l
l

lll
l
l
l
l

l

l

l

l

l
l
lll

l

l

l

l

l

l
l
llll
l
ll

ll
l
lll
ll
llll
l

l

l

l
l
l
ll

l

l

l
l

l

l
l

l
l

l
ll
l

l

l
l
l
l
l

l

l
l

l
l
ll

l

l

l
l
l
lll

ll

l

l

l
l

l
lll
l

l
lll
l

l
l

l
l
llllll

l
l
l
l

l
l
l
llll
l
l

l

l
l

ll

l
l
l
l

l
lll

l

l
l
l

l
l

l
l
l
l

l

l
ll

ll
l
l
l
l
l
l
l
l

l

l
l
l

ll
l
l

lll

l

l
ll

l
l

l

ll

ll

ll

l
l
lllllll
ll
l
l

l

l
l
l

l

l

l
l

l
l

l

l
l

l
l

l

l
l
l

l
l

ll

l
l

l
l
l
l
l

l

l

l

l
l

l
l

l

l
l
l

l

l
l

l
l
ll

lll
ll
l
l
l
l
l
l

l

l

l
l
lll

ll
l

l

l
ll

l

lll

l
ll
l
l

l

l
l

l

l
ll

l

l
l

l

l
l
l
l
l

l

ll

l
l
l

l

l

l

llll

l

lll
l

l

l
l

ll

ll
l
l

l
l
l

l

l

l

l

l
lll
l
l

l

l

l
ll

l

l

l
ll
l

l
l
l

l

ll

ll

l
l
l
l

l
l
l

l
l

l
l

llll

l
l

l

l
l
l

l

ll

l

l
l
llllll
ll

l
l
l
l

l

l
l
l

l

l

l

l

ll
l
lllll
l

ll

l
l

l
l
ll
l
l

l

l
lll

l

ll

l
l

l
l
l

l
l

l
l

l

l
l
l

l
l
lll
l

l

llll

l

ll

ll
l
l
ll
l
l
l

lll

l

l

l

l

l

l
l
l

l

l

lll

l
l
l
l
l

l

l

l
ll
l
l
l

ll

l

l

ll

l
l

l
l

l

l

ll

lll
l

l

l

ll

l

ll

l

l
l
l

l

ll
l
l

ll

ll

l

l

l
l
l

l
l

l

l

ll
lll
l
l
l
l

l

l
l

l

l
l

ll
ll
l
l
l
l
ll
l
l
lll
l
ll
l
l
ll

l

l

l
l
l
l
l

l

l
l
l

ll

l

ll
ll
lll
l

l

l

l

l
l

l

l
l
lll
ll

l
l

l
ll
l

l
lll

l

ll

l

ll

l

l

l

l
l

l
l
lllll
l

ll
l
ll
ll
ll
l

l
l
l

l

l
l
l
l
l
l
lll
l
l
l

l
l
l
l
lll

l

l
l
l

l

l

l

l
l

l

l
lll

l

ll

l

l

l

ll
l
l

l

ll
l

l
ll
ll
l
l
l

ll
l

ll
l
ll
lll
l

ll
l
l
l
llll
ll
l
l
l
ll

l

l
l

l

l
ll

l
ll
l
l

l

l
l
l
l

l

l

l

l

l
ll

l

l
ll
lll
l

l
ll
ll

l

l
lll

l

l
l

l
l

l
lll
l
l
l
ll
l

l
l

l

l

l
l

l

ll
l
l

ll

l

l

l

ll
l

l

ll
l
l
l
l
ll
l
ll

l

l
ll

l

lll

l

l

ll

l

l

l
l
lllll
l

ll

l

l

l

ll
l

l

l
ll

l

ll
l
l
l

l
l
l
l
ll
ll
l
lll

l

l
ll

l
l
l

l

l

l
l

l
l
l

l

l
l

l

l
l

l
l
l

l
l
l

l

l

l
l

l

l

l

l

l
ll

l
l
l
l

l

l

l

l
lll
l
l
l

l

l

ll
ll
l

l

l
l
l

l

l

ll
l

l

l

l
l
ll
l
l
l
l
l

l
l

l
ll

l

l
ll

l

l

ll
l

l
l

l

l

l
l
ll
ll
l

l
ll
l
l
ll
l

l

l
ll
ll
l
l
l

l

lll

l
l

l

lll

ll

l
l

l
l
ll
l

ll
l
ll

ll

l
l
l

l
ll
ll

l

l
l
l
l

l
l
l

l

l

lll
lllll
l
l

lll
lll
l

l

ll

l

l

l

l
lll
l

l
l

ll

l

ll
lll
ll
l
l
l

lll

l
ll

l
l
l

l

l
ll
l
l

l

ll
l

l

ll

ll
l
l
l

l
l

ll
l
l
l
l
l
l

l

l
ll

l

ll
l
l

l
l

l

l
lll
l

l

l
l

l

l
lll
ll
lll
ll
ll
l

l
lll
l
ll

l

l

ll

ll
l
ll

l
l
ll
ll

l

l
l

ll
l
l

lll

l

ll

l
ll
ll
l
l

l
l
l

l
l

l

l

l

l

l

l

lll
l

l

ll
l
l
l
l
l
l
l
ll

ll
l

l

l
ll

ll

l

l
l
l

l
l

l
l

ll

l

l

l

l

lll

l

llll
l
lll
l

l

llll
l
ll
ll

l

lll

l

l
l

l
l
l

l

l
l

l
l

l
l

ll

l
l
l
l

l

l

l
ll

l

l

l
l
l

l

l

l

l

ll
l

ll
lll
l
l

ll

l

l

l
ll
lll
lll

l

l

ll
ll
ll

l

l
l
llll

l
l

ll
ll
ll
l

l
l

ll
l

ll
l
l

l
l
l
l
ll
ll

l

ll

l

l

l

l

ll
l

ll

l
l

l
l

l

l
lll

l

ll
l

ll
l
l

l
l
l

l
l

lllllll

l
l

l

l

ll

ll

l

l

l

ll
llll

l

l
ll
l
ll
l
lll
l

l

l
l

l

l
l
l
l
l
lll
l
l

l
l
l
l
llll
l

l
ll
l

l
l
l

l

l

l

ll
ll
l

l

l
l
l
l
l

l

l

l

l
l
ll

lll
l
l

l
l
l
ll

l

l

l

llll

ll

ll
l

l
l

l
l
l

l

l

l

l
l
ll

ll

l

l
ll

l
l
ll

l

llllll

l
l

l
l

l

l
l
ll
l
l

l

l

l

ll

l

ll

ll
l
l

l
l

l
lll
l

l

l
l

l
l

l
l
l

l
ll

l
l

l
lll
l

ll

l

ll

ll

l

ll

l
ll
l
lll

l

l

lllll

l

l

l
l
l
l

lll
l
ll
ll

l
l

l
ll
l
l
ll
l
ll

l

l

l

l

l

l
l
ll

l
l

l

l

l
l

l
lll

l

l
l

l

ll

l

ll

ll

l
l
l
l
l
l
l

l
l
ll
l

l

l
ll

l

ll

l

l
l
l
l
l

ll

l

ll

l

l

l

l
l
l
ll

l

l

l

l
l

l

l

l
lll

l

l
l
l

l

l
ll
l
ll
l
l
ll
l
l

ll

l
l

l

l
l

l

l

lll

l
l

l
l

l

ll

l

l

l

l
l

l

l
l
l
l

l

l
l

l

l
ll

l
ll
l

l

ll

l

l
l
l
l

l
l
ll
l

l

l

l

l

l
ll
l
ll

l

l
l
l

l
l

l

l
l
l
ll
ll
l
ll

l

l
ll

l
ll

l
l

l
l

l

l

l

l
l
lll
l

l
l
lll
ll
l
l

lll

l

l
l
l

l

lll
l
l
l
ll
l
ll
l
l

l
ll
ll

l

l
ll

l

ll
l

l
lllll
lllll
l

l

l

llll

l
l
l

l
l

l
ll
l
l

l

l

ll

l
l

l

l

lll
l

l

l

l

ll

l

ll
l
l
l
l
ll

l

lll
l

l
l

l

l

ll

l

l

lll
l

l

l
l
l
l
ll
ll
lll

l

l

l

l

l
l
l
l

l

ll
l

l
l
l
l
l

l
l

l
l
l
l
l
l

l
lll
l

l

l
l
ll
l

ll

l
lll
l
l

lll

l

l
l

l

l

l
l
l

ll

lll
l
l

l
ll
l
l
ll

l

l

ll

l

llll
l

l

l

l

l

l
l

l

l

ll

l

l
l

ll

l
l

l

ll
lll
l
l

ll

ll

l

lll
l

l
l
l
l

l

l

l
ll
l

l

l

l
l

l
l
l
l
l
l

l
l

l
ll

l

l

l
l
ll
ll

l
l

ll

l
l

l

l
ll
l
l

l
l
l

l

l

l
l
l

l

l

l

l

ll

l

l

l
l
l

ll

ll

ll

l

l

l
l
ll

l
ll
l

ll

l
l

l

l
l
l

l

l

ll

l

l
ll
l

l

l
ll
l

ll

ll
l
l
ll
ll

l

l

l
ll
l

l
l
l

l

l
l
l
ll
ll

l

l
l

l

l

ll

l

l
l

l

l
l
l

l

l

llllll
l

l

l
l
ll
l
l

l
l
l
l

l
ll
l

l

l
l

l

l

l

l
l

lll
ll

l

l

l
l
l
l

l
l
l

l

l
ll

l
ll
ll
l
l

l

ll
ll

l

l

l

l
lll

l
l
ll
l
llll
l
l
l

lll
l
l
l

ll
l
l
l

ll
l

l
lll

l

l

lll

ll

l

ll

l

l

l

ll
l

l

l
l
ll
l
l
l
ll

l

l

ll
ll
l

l

l

l

l

l

ll
l
l
l
l
ll
l

ll

l

ll

l
l

l
l
l
l
l

l

l
lll

l
l

l

l
l
l

ll

ll
l

l

l

l
lll

lll
l
l

l

l

l

ll
l

l
l
l
ll
lll

l
lll
l

lll

l
ll

l

l

l
l
ll
l
ll
l

l

l
ll
l

l

l
l

l

lll

l

l

l
lll

l

l

ll
l
l
ll

l

l
ll

l

lll

l

lll

l
lll
lll

l

l
l

l

l

ll
l

l

l
ll

ll

l

l

l

l

l

l

l
l
ll
l

l
l
l
l

l
l

l
ll
l
l

l
l
l
l
llll
l

ll

l

lll
lllll

l
l
l

l

l
l

ll
ll

l

ll
l
l

lll
ll
l

l
l

ll
l
l
l

ll
l

l

l

l
l
ll
l

ll

l

ll

l
l

l
l
l
ll

ll

l

ll

l
l
l
ll
l
l
ll

l
l
l

l
l
l

l
l

l

l

l

lll
lll
ll

l

l
ll

ll

l

l

l
l
l

l

lll

l
l

ll
l
ll

l
l

l

l

l
ll

l
l
l
l
l
l

l
l

l

l

l

l

ll

l
l
l
l

l

l

lll

l

ll

ll

l

l
llll

l

lll

l

l

l

l
ll
l
ll
l

l
l

l

l
l

l
l
ll
l
l
l

l

l
ll

l

llll

lllll
ll
l
l

l

ll
l

ll
l
l

l
l

l

l

ll

l
ll

l

l

l
l

l

l

l

l

l
l
ll

l

l
lll
lll
ll
l

l

ll
l
lllllll
llll

l

llll
l

l

l
l
ll

l

l
l
l

l

l
l

l

l

l
l
l

l
l
l

l

l
l

l
l
lll

l

ll
l
l
l

l
l

l

ll
ll
l
l
l
ll
llll

l

l
l
l

l

ll
ll
l

l

l
l

l

l

l
l

l

ll
l

l

l
ll
l
l
l
ll
l

ll

l

l
l
l

ll

l

l
l

lll

l
l

l

l

l

ll
l
l
l

ll

l

ll

ll
l

ll

l
l
lll
l
l

l

l

l

l

lll
ll
ll

l
l
l
ll
lll
l

l

l
ll

l
l

ll
l
l

ll

ll
ll
l

l

ll
l

l

lll
l

ll
l
l
l

l

ll

l

l

l
l

l
l
l
l
l

ll

l
l
ll

l

lll

l

l
l
lll

l

l
l

ll
ll

l
l

l
l

l

l

l

l
l
l
l

l

ll

l
l
ll
l

l
l
l

l

ll
ll

l

ll
l

l

l

l

ll

l

ll

ll

l
l
l

ll

l

l

l

l

l

l
ll
ll
l
ll
lll

l

lll

l

ll

l

l
ll

l

l
llll

l
lll

l

l

l

l

l

ll
l
l

l
l
l
l
l

l

l
ll

l

l

ll
l
l

l

l

l

l

l

ll

l

l
l
l
l
l

ll

l
ll
l
l

l
l

l
l
ll

l

l
ll
ll
l
l

l

l
l

l
l

l

l

l

ll

lll
lll
l
ll
l
l
ll

l

l

l
l
ll
l

l

l

l

l

l
l
l

l
ll
ll
l
l
l

ll
l
l

lll
l
ll

l
l
l
l
ll
l
ll

ll

l

l

l

l
ll
lll

l

lll
l
l
ll
l

lll
l
ll
ll
l
l

l
l
ll
ll
l

l

lll

l
l

l

l

ll
lll

l

l
l

ll

l

l

l
l
ll
l
l

l

l

l

ll
l
l
ll
l

l
l
l

llll
l
l
l

lll
l

l

l

lll

l
l
ll

l
l
l

l

l
ll
l
l
l
l

l

l
l
ll
l

ll
l
l

ll

l

l

lll

ll
l

l
l

l
lll

ll

l

l

ll

l
l

l

l

l
l
l
l
l
ll
l
l
ll
l
l

ll

l

l

l
l
l
l

l

l
l
l

l

l

l
l

l

l
l
l

l
llll
l
ll

l

l
ll
lll
l
ll
ll
ll

l
lll
ll

l

l

l
l

lll
l
l
l
ll
ll

l

l
l
l

l

l

l

l
lll
l
ll
ll
l

l
l
ll

l
l
l
l
l

l

l
ll
ll
l

l

l
l

lll
l

l

l

l
l
l
ll
l

ll
lll
l
l
l
l

ll

l
l
ll
l
l

l
l

l

l
l

l

l
l

ll

l
l
lll
ll

l
l

l
l
l
llll

l
l
l
lllllll
l

l

l
l

lll

l
l
ll
l
lll
l

l

ll
ll

l

l
ll

l
llll
ll

l
l
ll
l

l
llll

l

l

l

lll

l

l

l
ll

ll

ll

ll

l

l
l

l
ll
l
ll
l
l
l
ll
ll

l
l
l
l

l

ll

l

ll
lll

l
l

l

l
l

l

l
l

l
l

l
ll
l
ll
l
l
l

l

l

l
l
ll
l

l

l

l
l
l
ll

l

l

l

ll

l
ll

l

l
ll
l
l

l

l
ll
l

l

l
l
l
l
l

ll

ll

l

l

ll

ll
l
l

lll

l

l

l
lll

l

ll
ll
l

l
l
l

l

l

l

l
l

l

l
l
l

l

l

l

lll

l

l
l

l

l

l

l

l
l

l
lll

l

ll

l

ll
ll
l

ll

lll

l

l

l

ll
l

l

l
ll
ll

l
ll

l
ll
ll

l

l

l

l
lll
l
l

l

l
l

l

l
l
l

l
lll
l
l

l

ll

l
l

l

l

l

lllll
ll

ll

ll

l

ll
l

l
l
l

lll
l
l

l

l
l
l
ll
l

lll
l
l

l

l
l

l

l

l

l
ll
l

l

ll
ll

l
l

l
ll

l

l
ll

l

lll
l

l

ll

l
l

ll
ll

l
l
l
lll
ll
l
l

ll
l
l

l
ll
l
l
l
l

l

l
l

l
l

l

l
ll
l

l

ll

l
l

l

ll

l

l

l
l
ll
l

l
ll

l

llll

l

ll
l

l

ll
l

l

l
l

ll
lll

l

l

l

llll
l
l

l

l
ll

l
l

l

l
ll
l

l

l
l
l
l
ll
l

l

l
lllll

l

l
llll
l

l

l

ll

l

l

lll
l
l

l

l

l
ll
ll
l
l
ll

l

l
ll
l

l

l

l

l
l

l

ll

l

l

l
ll

l

ll
ll

l

l
ll
l

l
l
l

l

l
ll
l

l
l

l
ll
l

l
l

l

l
l

l

llll
lll

l

ll
lllllll
l

l

l

l

ll
l
l
l
l

lll

l

l

l
l
ll
lll
l
llll

llll
l

ll
l
l

lll

l

l
l
l
l

l

l
l
l
l
l

l
l

l

l
l

l

l

l

l

ll
ll

ll

l
l
l

ll

l

l

l

lll

ll
l

l

l

l

l

l

l
lll

l

l

l

l
l
ll
lll
l
lll
ll

l
l

l

lll
l
l

l

l
ll

l
l

l

l

ll

lll

l

ll

l
ll

l
l
l
lll

l

l
l

l

l
ll

l

l
l

l
lll
l
lll
l
lllll
l

l
lll
l

l
ll

l

l

l

ll
lll
l

l

0 2000 4000 6000 8000 10000

−
3

−
2

−
1

0
1

2
3

SNP effects

snp

S
N

P
 e

ffe
ct

single SNP
snpBLUP
true QTL

Fig. 4.3 True QTL effects and estimates of SNP effects from single SNP regressions and
snpBLUP

To finish this section we can compare the results from both methods with the
truth. 10 QTL were simulated in the data (the size of effects and which SNP can be
found in the trueQTL.txt file). A plot of effects is informative (Fig. 4.3).

> # file with true QTL effects
> QTL=read.table("chapter4/trueQTL.txt",
+ header=T,sep="\t")
> head(QTL)

QTLval indexQTL
1 -1.0041147 3524
2 0.1370017 100
3 0.9496635 8152
4 -1.7958145 8392
5 0.3614149 2077
6 2.7391442 4112

> plot(effSingle,pch=20,cex=2.5,xlab="snp",
+ ylab="SNP effect",main="SNP effects")
> abline(v=QTL$indexQTL,col="gray")
> points(effBlup,col="red",pch=17,cex=1.5)
> points(QTL$indexQTL,QTL$QTLval,col="green",
+ pch=17,cex=1.5)
> legend("topright",c("single SNP","snpBLUP","true QTL"),
+ fil=c("black","red","green"),cex=0.8)

Figure 4.3 reiterates the strong shrinkage of snpBLUP. The single marker
regression did a better job at approximating the true effects in the simulated data
but notice how three of the true QTL effects are overestimated and many other

122 4 Populations and Genetic Architecture

non-associated SNP show sizeable effects. snpBLUP underestimated effects but the
non-associated SNP are closer to zero. Methods are reasonably comparable; both
identified 6 correct QTL and missed 4 (see below). The trait is not very polygenic
with only ten QTL—not an ideal scenario for snpBLUP. Association significance
can be tested in the same way as in Chap. 3 and can then be compared with the true
known QTL.

> # significant SNP after FDR correction
> # single regression analysis
> sigSNP=which(pval<0.01/length(pval))
> length(sigSNP)

[1] 6

> # number of true QTL found
> length(intersect(sigSNP,QTL$indexQTL))

[1] 6

> # just an approximation based on a t-distribution
> pvalBlup=2*pt(-abs(effBlup/sd(effBlup)),
+ df=length(effBlup)-1)
> sigSNP=which(pval<0.01/length(pval))
> length(sigSNP)

[1] 6

> # number of true QTL found
> length(intersect(sigSNP,QTL$indexQTL))

[1] 6

Both methods found the same six true QTL and missed four of them. Before
discussing genomic prediction in the next section, a useful and common plot in
association studies is the manhattan plot (Fig. 4.4). It is the same plot as we did in
Chap. 3 for the GWAS results but there only one of the chromosomes was used. The
R package qqman has a function to create manhattan plots, but it not too hard to
build manually:

> # manhattan plot
> library(made4) # for colours
> mbcol=as.factor(map$chrom)
> chroms=unique(map$chrom)
> mapcol=getcol(length(chroms))
> chromseps=numeric(length(chroms))
> xdist=length(map[,3])
> cum=0
> chrpos=numeric(length(chroms))
> for (i in 1:length(chroms))

4.4 SNP Best Linear Unbiased Prediction 123

Fig. 4.4 Manhattan plots for single SNP regressions and snpBLUP

+ {
+ index=which(map[,2]==chroms[i])
+ chromseps[i]=index[length(index)]
+ xdist[index]=map[,3][index]+cum
+ cum=cum+map[,3][index[length(index)]]
+ chrpos[i]=cum
+ }

> chrpos[2:length(chroms)]=
+ chrpos[2:length(chroms)]-
+ ((chrpos[2:length(chroms)]
+ -chrpos[1:(length(chroms)-1)])/2)
> chrpos[1]=chrpos[1]/2

> par(mfrow = c(2,1))

> # single SNP regressions
> plot(xdist,-log10(pval),col=(mapcol[mbcol]),pch=20,
+ xlab="chromosome",
+ ylab=expression(paste("-",log[10],"p-value",sep="")),
+ axes=F,main="single SNP regressions")
> abline(h=-log10(0.05/nrow(map)), lty=2)
> axis(1, at=chrpos, labels=chroms,las=1)
> axis(2,)

124 4 Populations and Genetic Architecture

> # snpBLUP
> plot(xdist,-log10(pvalBlup),col=(mapcol[mbcol]),pch=20,
+ xlab="chromosome",
+ ylab=expression(paste("-",log[10],"p-value",sep="")),
+ axes=F,main="snpBLUP")
> abline(h=-log10(0.05/nrow(map)), lty=2)
> axis(1, at=chrpos, labels=chroms,las=1)
> axis(2,)

The packages biRR, BLR, and rrBLUP can be used for ridge regression and
snpBLUP. We can get almost the same results with the function mixed.solve in
rrBLUP.

> library(rrBLUP)
> sol=mixed.solve(y,X)
> effPack=sol$u
> cor(effPack,effBlup)

[,1]
[1,] 0.9984692

Much easier, but not very informative about the underlying methodology. Keep
the SNP effect estimates from the three methods (the variables effSingle, effBlup,
and effPack), we will need them for the next section.

> out=data.frame(single=effSingle,snpblup=effBlup,
+ rrblup=effPack)
> write.table(out,"chapter4/effects.txt",
+ quote=F,sep="\t",row.names=F)

4.5 Genomic Prediction

The objective of genomic prediction is to make use of genotypic data to predict
phenotypic outcomes, for instance disease susceptibility or prognostics in humans;
or production traits in livestock. snpBLUP from the previous section can be used
for this or the equivalent model gBLUP. But first, we saw in the previous section
that not all of the true QTL were identified as associated with the trait (six out
of ten). Looking more closely at the effect sizes of the QTL we see that the six
largest ones were identified (coincidentally those with an effect larger than 1) but
all QTL with effects below 1 were not. This of course relates to the power of
the experiment: with more data, more subtle effects can be identified. However
most quantitative traits are polygenic with some QTL of large(ish) effect but many
of small effect; the latter cannot be identified in association studies because they
do not reach the significance threshold (studies are never large enough to pick
these out). These traits are commonly referred to as complex traits, i.e., they do

4.5 Genomic Prediction 125

not exhibit a simple Mendelian inheritance pattern. A Mendelian trait has either
a single or a small number of genes controlling the phenotypic expression, while
polygenic traits are controlled by multiple genes (sometimes in very large numbers).
Polygenic inheritance, gene–gene interactions and gene–environment interactions
contribute to the complexity of a quantitative trait: an observed phenotype is the
final expression of all these elements and their interactions with each other. Many
important traits in biology, medicine, and agriculture are complex in the sense that
they exhibit continuous variation and complicated genetic inheritance patterns.

Part of the variation observed in quantitative traits is due to the underlying
genetics an individual inherited from its parents, and the other part is due to
environmental influences. In other words, both genes and environment contribute
to the observed variation in traits or phenotypes. This variation can be partitioned
into genetic and non-genetic components (this partitioning is done with statistical
methods such as an analysis of variance); thus the observed phenotypic variance can
be expressed as the sum of the unobserved genetic variance and the environmental
variance:

σ2
P = σ2

G +σ2
E (4.9)

Here, σ2
P is the phenotypic variance while σ2

G and σ2
E are, respectively, the genetic

and environmental variances. The genetic variance can in turn be partitioned into
contributions from additive genetic effects (individual contribution of alleles—σ2

A),
dominance effects (interaction between alleles at the same locus—σ2

D), and epistasis
(interaction between alleles at different loci—σ2

I):

σ2
G = σ2

A +σ2
D +σ2

I (4.10)

Heritability, arguably the most common genetic parameter, is defined as the ratio
of these variances. It captures the proportion that genes and environment contribute
to the variation of a particular trait, and was first introduced by Sewall Wright and
Ronald Fisher in the early twentieth century. Broad sense heritability, denoted by
H2, is the proportion of total phenotypic variation due to all genetic effects. It is
defined as:

H2 = σ2
G/σ2

P (4.11)

On the other hand, narrow sense heritability, denoted by h2, is the proportion of
the total phenotypic variation that is attributable only to the additive genetic effects.
A parent can pass only one copy of its genes to its offspring; dominance effects
cannot be passed to the offspring—it would require sharing both chromosomes and
their respective alleles for dominance effects to be heritable; epistasis decays from
one generation to the next due to recombination. Narrow sense heritability is
defined as:

h2 = σ2
A/σ2

P (4.12)

126 4 Populations and Genetic Architecture

To dissect a complex trait we first need to know what proportion of the total
phenotypic variance is determined by genetics; and then we can try to find the
underlying genetic loci that controls this variation. This is the rationale behind
the use of λ in snpBLUP. Note that with h2 the phenotypic variance is split into
the additive variance and the rest; the latter is not only environmental variance but
also all the other non-additive genetic effects (difference of σ2

G −σ2
A); in practice

additive models try to explain additive variance and narrow sense heritability (σ2
A ,

h2); they do not capture the full extent of genetic effects on a trait nor the broad
sense heritability (σ2

G, H2). Herein we will focus only on additive models for
prediction purposes and using the simplification: σ2

P = σ2
A +σ2

E . This was a short
(and rather simplified) overview of a few key concepts in quantitative genetics,
readers interested in the topic are referred to the classic text of Falconer and
Mackay [30].

4.5.1 Prediction with snpBLUP

As mentioned at the beginning of this section, snpBLUP can be used for prediction
purposes. Let’s do this using the estimates of allele effects calculated from the
single SNP regressions and snpBLUP from the previous section. Start by reading
in the data files: gwasData.rds (genotypes file, same as used in previous section),
phenotypes.txt (trait values for individuals), effects.txt (SNP effects calculated in
previous section) and trueGeneticValue.txt (true additive genetic effects of each
individual with environmental variance removed).

> gwas=readRDS("chapter4/gwasData.rds")
> pheno=read.table("chapter4/phenotypes.txt",
+ header=T,sep="\t")$Pheno
> effect=read.table("chapter4/effects.txt",
+ header=T,sep="\t")
> tgv=read.table("chapter4/trueGeneticValue.txt",
+ header=T,sep="\t")$TGV

Given that SNP effects are known (and additive), it is simply a matter of
multiplying effects by genotypes and summing up across individuals. But first
genotypes need to be scaled based on allele frequencies as we did before with
snpBLUP.

> p=rowMeans(gwas)/2
> X=t(gwas-(p*2))

4.5 Genomic Prediction 127

Phenotypes of individuals can be predicted with

> # using effects from snpBLUP
> pred=X%*%effect$snpblup
> head(pred)

[,1]
[1,] 3.1102863
[2,] 2.9767113
[3,] 1.0998214
[4,] 0.9520851
[5,] 1.7598395
[6,] -0.9082915

To evaluate how well this worked, initially the predicted values can be compared
directly with the observed phenotypes.

> plot(pheno,pred,ylab="predicted values",
+ xlab="observed phenotypes",pch=20)
> mod=lm(pred~pheno)
> abline(mod,lwd=2,col="blue")

> summary(mod)

Call:
lm(formula = pred ~ pheno)

Residuals:
Min 1Q Median 3Q Max

-2.25237 -0.45804 -0.00115 0.48567 2.61141

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.733e-16 1.603e-02 0.0 1
pheno 4.933e-01 2.511e-03 196.5 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

Residual standard error: 0.7168 on 1998 degrees of freedom
Multiple R-squared: 0.9508, Adjusted R-squared: 0.9508
F-statistic: 3.859e+04 on 1 and 1998 DF, p-value: < 2.2e-16

> cor(pheno,pred)

[,1]
[1,] 0.9750789

128 4 Populations and Genetic Architecture

Fig. 4.5 Observed phenotypes versus predicted values using snpBLUP

The correlation (square root of the R2) is very high (0.975) and the fit is very
good as shown in Fig. 4.5. Note that the scale of the predicted values is about half
that of the observed phenotypes; recall that the heritability of the trait (h2) is 0.5
(that was set with λ in snpBLUP), the SNP effects account for around 50 % of the
variation, and the rest is environmental (i.e., not genetic).

This is fine, but it is rather circular. SNP effects were estimated using these
same genotypes and phenotypes. Since there is a large number of SNP and not so
many records it is relatively easy to find a good fit to the data (the model is over
parameterized), but this may not reflect the true genetic values—the unobserved
additive genetic values—which is what we really want to know. Since this is
simulated data, we know the true genetic value of the individuals (variable tgv).
Using the true genetic values, we see that our predictions are not so perfect anymore,
but still quite acceptable (correlation of 0.662). Notice, in Fig. 4.6, that there is much
more scatter in the plot (but the scale is now correct). The phenotypes are the sum
of (additive) genetic and environmental effects (σ2

P = σ2
A + σ2

E); ideally only the
true genetic values would be used to estimate SNP effects but they are generally
unknown—to increase reliability of SNP effects larger sample sizes are needed to
be able to better untangle σ2

A from σ2
E .

4.5 Genomic Prediction 129

Fig. 4.6 True genetic values versus predicted values using snpBLUP

> # accuracy with true genetic values (TGV)
> plot(tgv,pred,ylab="predicted values",
+ xlab="observed phenotypes",pch=20)
> mod=lm(pred~tgv)
> abline(mod,lwd=2,col="blue")
> summary(mod)

Call:
lm(formula = pred ~ tgv)

Residuals:
Min 1Q Median 3Q Max

-7.677 -1.639 -0.061 1.551 7.870

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.172e-16 5.418e-02 0.00 1
tgv 5.529e-01 1.402e-02 39.43 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

Residual standard error: 2.423 on 1998 degrees of freedom

130 4 Populations and Genetic Architecture

Multiple R-squared: 0.4376, Adjusted R-squared: 0.4373
F-statistic: 1555 on 1 and 1998 DF, p-value: < 2.2e-16

> cor(tgv,pred)

[,1]
[1,] 0.6615204

Up to this point, the same data was used to estimate effects and evaluate how well
these estimates can predict genetic values. In practice, effects should be estimated
on one dataset (discovery) and evaluated on an independent one (validation). For
this there are three files in the chapter’s folder (validGeno.rds, validPheno.txt and
validTGV.txt); let’s repeat the prediction steps with this new validation dataset and
see how accurate the predictions of genetic values are.

> # read in validation data
> validG=readRDS("chapter4/validGeno.rds")
> validP=read.table("chapter4/validPheno.txt",
+ header=T,sep="\t")$Pheno
> validT=read.table("chapter4/validTGV.txt",
+ header=T,sep="\t")$TGV

> validX=t(validG-(p*2)) # X matrix
> validPred=validX%*%effect$snpblup

> # accuracy with true genetic values (TGV)
> plot(validT,validPred,ylab="predicted values",
+ xlab="observed phenotypes",pch=20)
> mod=lm(validPred~validT)
> abline(mod,lwd=2,col="blue")
> summary(mod)

Call:
lm(formula = validPred ~ validT)

Residuals:
Min 1Q Median 3Q Max

-4.8286 -0.8362 0.0157 0.8901 5.2968

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.048810 0.030264 -1.613 0.107
validT 0.099682 0.007892 12.630 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

Residual standard error: 1.353 on 1998 degrees of freedom
Multiple R-squared: 0.07394, Adjusted R-squared: 0.07347
F-statistic: 159.5 on 1 and 1998 DF, p-value: < 2.2e-16

4.5 Genomic Prediction 131

ll

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

ll

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−10 −5 0 5 10

−
4

−
2

0
2

4

observed phenotypes

pr
ed

ic
te

d
va

lu
es

Fig. 4.7 True genetic values versus predicted values using estimated SNP effects in a validation
population

> cor(validT,validPred)

[,1]
[1,] 0.2719149

There still is some reasonable accuracy of prediction (correlation of 0.272) but
not nearly as high as with the discovery population. Figure 4.7 shows a wide
scatter and the regression line is much flatter now, note also the scaling of the
predicted values—heavily shrunk toward the mean. With a larger discovery dataset
the estimates of effects would be more accurate and in turn, so would predictions.

Single SNP regressions, as previously mentioned, overestimate effects—
particularly of the QTL. Use the SNP effects from the single SNP regressions
to make predictions and note how the range of predictions is almost 12× larger than
with using the snpBLUP effects.

> # using effects from single SNP regressions
> predS=X%*%effect$single
> plot(tgv,predS,ylab="predicted values",
+ xlab="observed phenotypes",pch=20)
> mod=lm(predS~tgv)
> abline(mod,lwd=2,col="blue")

132 4 Populations and Genetic Architecture

With this data, the true QTL SNP effects are overestimated around 40 % on
average, and snpBLUP effects are underestimated to just 12 % of the size of the
true effects (use the trueQTL.txt file to compare QTL effects with the estimates for
those SNP).

4.5.2 Prediction with gBLUP

An equivalent model for prediction is gBLUP. gBLUP is similar to the traditional
methodology employed by livestock breeding programs to estimate breeding values,
but instead of using pedigree information to define the relationships between indi-
viduals (a numerator relationship matrix) it uses information from a large number
of markers. The marker data is used to define genomic relationships in a genomic
relationship matrix (GRM). The concept is that, if a trait is highly polygenic
and controlled by many genes, then the average similarities (and differences) of
genotypes between individuals can be used to estimate the sum of their additive
effects. So, instead of individually estimating SNP effects and using them to predict
the additive genetic value of an individual as we did above, with gBLUP the
sum of the effects are calculated directly based on the relationships (essentially a
covariance matrix between individuals). The model for gBLUP is somewhat similar
to snpBLUP:

y = μ +Zg+ e (4.13)

with μ being the trait mean, Z being the design matrix allocating records to genetic
values, g the vector of additive effects for an individual, and e the vector of random
normal deviates. Note that now g refers to individuals and not SNP. Our data is mean
centered so, for simplicity, it can be dropped (to fit a mean the exact same approach
used in snpBLUP can be used). To solve for g (without a mean):

[
ĝ
]
=
[
Z′Z +λ G−1

]−1 [
Z′y

]
(4.14)

here λ is σ2
E/σ2

A. Z is the incidence matrix and y the phenotypes; all that is missing
is the genomic relationship matrix (G).

4.5.2.1 Genomic Relationship Matrix

The GRM is a relationship matrix with estimates of the similarity among a group
of individuals based on SNP data. Apart from its use for phenotypic prediction, it
can be used to, e.g., manage inbreeding in livestock or to understand the structure
of relationships and genetic distances between and within populations (this will be
discussed later in the chapter). The GRM is a measure of the additive relatedness
between individuals and, in simple terms, can be thought of as a correlation

4.5 Genomic Prediction 133

matrix between individuals corrected for variation in allele frequencies. There are
various forms of calculating the GRM, here the method proposed by van Raden is
used [113].

> freqAvg=rowMeans(gwas,na.rm=T)
> p=freqAvg/2
> M=gwas-1 # recode matrix as -1, 0, 1
> P=2*(p-0.5) # deviation from 0.5
> W=M-P
> WtW = t(W) %*% W
> d=2*sum(p*(1-p))
> G=WtW/d
> rm(P,WtW,p,freqAvg)

First the allelic frequency is calculated (variable p), then the genotypes are scaled
to −1, 0, and 1 in matrix M. M is then subtracted from twice the deviation from 0.5
of the allele frequencies W = M − 2 ∗ (p− 0.5). This corrects for allele frequency
differences. G is finally calculated as

G =W ′W/2
n

∑
i

pi(1− pi) (4.15)

The divisor is a scalar that scales G to the allele frequencies of a base population
(here p was calculated from the data itself).

4.5.2.2 Genomic Prediction with gBLUP

Once the GRM has been calculated, phenotypes can be predicted with gBLUP. The
R code is

> # lambda
> h2=0.5 # heritability
> y=pheno
> ve=var(y)*(1-h2) # residual variance
> va=var(y)*h2 # additive variance
> lambda = ve/va

> # gBLUP
> Z=matrix(0,ncol(gwas),ncol(gwas))
> diag(Z)=1
> ZtZ=t(Z)%*%Z
> Gil=solve(G)*lambda
> lhs=solve(ZtZ+Gil)
> rhs=t(Z)%*%y
> sol=lhs%*%rhs

134 4 Populations and Genetic Architecture

correlation of snpBLUP X gBLUP predictions
> cor(pred,sol)

[,1]
[1,] 0.9999999

Solutions from snpBLUP and gBLUP are equivalent. gBLUP is more relevant for
genomic prediction applications in livestock, but it is equivalent to snpBLUP and
more computationally efficient since there usually are more markers than samples.
SNP effects are not calculated by gBLUP but can be obtained by backsolving the
solutions of individuals. In our case it is simply

> backSolve=1/d*W%*%solve(G)%*%sol

Predicted values for individuals with unknown phenotypes (using the validation
dataset without the phenotypes) can be obtained by rebuilding the GRM with all
individuals and then using the relationships between individuals with and without
phenotypes to estimate those without.

> All=cbind(gwas,validG)
> freqAvg=rowMeans(gwas,na.rm=T)
> p=freqAvg/2
> M=All-1 # recode matrix as -1, 0, 1
> P=2*(p-0.5) # deviation from 0.5
> W=M-P
> WtW = t(W) %*% W
> d=2*sum(p*(1-p))
> Gall=WtW/d
> rm(P,W,WtW,d,p,freqAvg)

> # selection index approach
> index of individuals with no phenotype
> missindex=2001:4000

> # get only samples with phenotypes
> Ginv=Gall[-missindex,-missindex]
> diag(Ginv)=diag(Ginv)+lambda # add lambda to diagonal
> Ginv=solve(Ginv) # invert
> solAll=Gall[,-missindex]%*%Ginv%*%pheno

> cor(validPred,solAll[2001:4000])

[,1]
[1,] 1

The pedigree package has a gblup function to predict genetic values and can
also calculate the GRM (calcG function). In this example there were no fixed
effects—these would normally be included in the model. The prediction approaches

4.6 Population Genetics 135

discussed assume that the markers capture all the additive genetic variance and
this is only the case if the linkage disequilibrium between markers and QTL is
perfect. Note also that large QTL effects are heavily shrunk down and all SNP
have a nonzero effect (can be very small though). Bayesian methods will be more
appropriate when the trait has QTL of large effects. An in-depth overview of
methods for genomic prediction with many R examples is given in [46]. Readers
may also find Chap. 11 of [77] useful for a more detailed overview of genomic
prediction (oriented toward livestock genomic selection though).

4.6 Population Genetics

Population genetics deals with heredity in populations and the dynamics of the
various forces that result in genetic changes. The field revolves around estimation
of allele frequencies and how they change over time as populations respond to
evolutionary processes such as selection, genetic drift, mutation, and migration.
Population genetics also investigates genetic processes such as recombination, link-
age and population stratification, as well as environmental adaptation, speciation,
and evolutionary relationships. While previously a largely theoretical discipline, the
advances in modern molecular technologies enabled population genetics to become
a more applied subject since we now have a handle on the structure and variability
in populations at the DNA level. While most of the population genetics principles
were initially derived from a theoretical framework, we now can effectively test
these theoretical models on real experimental data and, due to its solid theoretical
foundations, it has become an important toolkit for genomic analysis. Population
genetics is important for conservation and ecology studies, it provides insights into
evolution and nature but it is also informative in association studies and genomic
prediction (e.g., account for population stratification in a GWAS). Here we will
focus on the basic population metrics (selection, diversity, linkage, relationships)
and some applications using SNP array data, without delving into theoretical details
(a good introductory text for population genetics is [51]).

A couple of notes on using SNP array data for population genetics. First the
obvious, you can only do this if there is an array available for the species you are
interested in working with. Sequence data is becoming quite cheap however and this
will not be an issue anymore. Second, arrays are purposely designed to have high
minor allele frequencies, not ideal for overall estimates of diversity but adequate
in comparative studies. Third, they are subject to ascertainment bias, i.e., the data
source from which the SNP were selected from can affect results. For example,
an array may have been based on sequence data from, e.g., two breeds and it will
strongly reflect high levels of diversity in these breeds (because the common SNP
were selected for the array), whilst in other breeds these SNP may be less common
which would suggest less diversity (the representation of the panel is unbalanced).
These last two points are quite relevant and can lead to distorted interpretations if
not taken into account.

136 4 Populations and Genetic Architecture

4.6.1 Signatures of Selection

Selection has shaped all living organisms, simplistically it exposes an advantageous
(or disadvantageous) variant and favors its increase (or decrease) in frequency in a
population due to differences in reproductive efficiencies. Selection can be due to
natural factors as a response to environmental conditions or artificial, such as what
occurs in livestock, where human intervention determines which traits are more
favorable and individuals carrying better variants for these traits are overrepresented
in the matings of the next generation (e.g., the best individual from the gBLUP above
is used more often as a breeder).

Positive selection for a particular genetic variant at a locus leads to an increase
of its prevalence in a population and in the process leaves unique genetic patterns
or signatures in the DNA sequence. Both natural and artificial selection can lead to
genomic changes and these are called signatures of selection (SOS). SOS studies
can reveal regions that were differentially selected in populations of the same
species; it is to some extent similar to a GWAS in its objectives: identification of
genomic regions associated with a trait. A common approach to identify SOS in
the genome of a population is based on quantifying allelic frequency differences
between populations using Wright’s FST [54], Tajima’s D [108], or Fay and Wu’s
H [33] statistics. The pegas [83] package can be used to calculate FST as per
[117] and D from [108]; adegenet has the pairwise.fst from Nei [80] and fstat is
a wrapper for the hierfstat package (the latter can be used for hierarchical FST);
see also the PopGenome and snpStats packages. Other methods to estimate SOS
are based on detection of high-frequency long haplotypes with extended linkage
disequilibrium; e.g., extended haplotype homozygosity (EHH), integrated haplotype
score (iHS), and standardized ratio of iES—integrated site specific EHH—between
two populations (Rsb). In R, the rehh [38] package can be used to compute these
metrics. A good overview of methods for SOS is given in [95].

FST is the most commonly used method and it is directly related to the variance in
allele frequency between populations. The term FST dates back to 1951 with Sewall
Wright [119] but currently there are quite a few derived statistics, all called FST with
the most commonly used being Weir and Cockerham’s [117]. FST methods are based
on variance estimates, likelihood maximization, or Bayesian inference. Here we will
simply use an analysis of variance approach to test for differences in mean values
between groups as proposed by Nicholson et al. [81] which is highly correlated to
the FST of Weir and Cockerham [117]. Parts of this section are adapted from [89],
with permission from the publisher.

With SOS studies it is important to identify populations that are relevant for the
trait of interest (e.g., populations that have horns versus populations that do not have
horns); genetic distances are also important to consider. In the same manner as for
GWAS or genomic prediction, the larger the sample size, the better. For SOS it is
important to obtain reliable estimates of allele frequencies—ensure populations are
balanced (e.g., in livestock no over representation of some sires) and representative
of the diversity in the populations. To illustrate we will use SNP data (sosData.rds)
from 3 different cattle breeds (hanwoo, angus, and brahman) with 25 animals

4.6 Population Genetics 137

genotyped per breed. The genotypes are part of a single chromosome (around 8,000
SNP) coded as 0, 1, and 2 with no missing values. Note that the genotypes are for
illustration purposes only; they are a small subset from a high density panel and in
high linkage disequilibrium which is not ideal for these kinds of study. The data is
already organized so that the SNP are ordered based on their physical location on
the chromosome (rows) and also ordered by breed (columns).

The first thing we need to do is calculate the allele frequencies for each breed.

> sos=readRDS("chapter4/sosData.rds")
> dim(sos)

[1] 7763 75

> # matrix to store freqs of each SNP in each pop
> M=matrix(NA,nrow(sos),3) # 3 populations
> colnames(M)=c("hanwoo","angus","brahman")

> # hanwoo
> M[,1]=apply (sos[,which(colnames(sos)=="hanwoo")],
+ 1,function(x) sum(x)/(length(x)*2))

> # angus
> M[,2]=apply (sos[,which(colnames(sos)=="angus")],
+ 1,function(x) sum(x)/(length(x)*2))

> # brahman
> M[,3]=apply (sos[,which(colnames(sos)=="brahman")],
+ 1,function(x) sum(x)/(length(x)*2))

> head(M)

hanwoo angus brahman
[1,] 0.72 0.02 0.24
[2,] 0.42 0.94 0.00
[3,] 0.58 0.94 1.00
[4,] 0.42 0.36 0.10
[5,] 0.42 0.82 0.92
[6,] 0.42 0.14 0.06

FST is quite simple to calculate in R (or at least this version) and, for each SNP
in a population, it is simply the squared deviation (remember it is a variance, hence
squared) of the average frequency in that population from the average frequency
across all populations divided by the allelic frequency variance (p ∗ q). In code this
is:

> # average allele frequency across populations
> meansB=rowMeans(M)
> alleleVar=meansB*(1-meansB) # p*q variance

138 4 Populations and Genetic Architecture

> # deviation of each population from mean
> meanDevB=M-meansB
> # deviation squared divided by var
> FST=meanDevB^2/alleleVar
> head(FST)

hanwoo angus brahman
[1,] 0.703374419 0.42756112 0.03414831
[2,] 0.004483501 0.95570301 0.82926829
[3,] 0.502976190 0.07440476 0.19047619
[4,] 0.077401372 0.02144082 0.18031732
[5,] 0.446428571 0.04960317 0.19841270
[6,] 0.277582001 0.02710762 0.13120087

We can now plot the results for each breed, e.g., hanwoo and try to identify
regions under selection.

> plot(FST[,1],type="l",xlab="SNP",
+ ylab="Fst",col="gray")

This looks rather messy (the grey lines in Fig. 4.8). There is a lot of noise in the
estimates. Since there is high LD we could try to smooth the FST values to try to
identify clearer patterns across the chromosome. The rummed function can be used
for this; it dampens the individual fluctuations by computing median values across
a moving window.

> smoothed=runmed(FST[,1],k=101,endrule="constant")
> lines(smoothed,type="l",col="red",lwd=6)

The k parameter sets the window size for the running median (it has to be an odd
number). Small windows will have little shrinkage while larger windows will have
stronger damping effects—on the extreme sides, if k = 1 the values will be the same
as the original data; with k = 7,763 (number of SNP) the results will almost be a
straight line through the median of the whole data. Try changing the values of k to
get a feeling for this. Here k = 101 was used, which is a reasonable value for this
data based on the distance between markers and the level of LD in these populations;
there is no exact way to calculate the ideal number for k: some knowledge about LD
and map distances can help but it is also worthwhile to try different values. Signals
at the beginning and end of the chromosome are not reliable due to the smoothing
method, the argument endrule was set to constant to avoid signals on the tails. The
second line of code adds the results of runmed to the plot (Fig. 4.8).

Now, in Fig. 4.8 with the smoothed values plotted we can see a much clearer
signal that is higher than the others (around SNP 3,500). Highly divergent loci
or genomic regions between populations have high FST values and are potentially
associated with either natural or artificial selection—the higher the value the
stronger is the evidence for selection (differentiation). To this point we have relied
only on visual identification of SOS regions but these should be tested more

4.6 Population Genetics 139

0 2000 4000 6000 8000

0.
0

0.
5

1.
0

1.
5

2.
0

SNP

F
st

Fig. 4.8 Genome-wide plot of FST and smoothed FST (thick line). Notice how the smoothed
FST highlights a region under potential selection around SNP 3,500—it is less clear just from the
individual FST values due to the strong fluctuations from SNP to SNP. The horizontal line shows
the threshold of significance

formally. A simple albeit suboptimal approach is to calculate the average and
standard deviation of the FST values for each population, and identify the regions
that have values greater than the average plus three standard deviations (around
1 % top values). Better but computationally more demanding is to use a resampling
approach and obtain p-values from the empirical distributions. Let’s do the easy one
here:

> FSTm=mean(smoothed)
> FSTsd=sd(smoothed)
> sig=FSTm+3*FSTsd
> abline(h=sig)
> print(sig)

[1] 0.4249352

We used the smoothed values to calculate the significance threshold (0.425) but
could also have used the raw FST values (note that there is too much noise and
the dataset is rather small). The function abline was used to place the significance
threshold on the plot and complete Fig. 4.8. There is only one region that shows a
strong SOS—which is good, this is the region where I did some data tweaking of

140 4 Populations and Genetic Architecture

the genotypes for illustration purposes. If this was real data, the next step would be
to identify the significant region in terms of chromosomal position and search the
databases for biological inferences (see Chap. 6 for these next steps).

4.6.2 Other Population Estimates

SNP data is very well suited for population genetics studies: diversity, population
structure, selection, phylogenetics. . . We have already seen some of the common
population metrics but in this section we will focus on using available R packages
to calculate parameters—the objective is to briefly overview some useful functions
for common parameters. To start, we will calculate FST for the same data again using
the pegas package.

> library(pegas)
> M=t(sos)
> M[which(M==0)]="0/0"
> M[which(M==1)]="1/0"
> M[which(M==2)]="1/1"
> M=as.data.frame(M)
> M=as.loci(M)
> M

Allelic data frame: 75 individuals
7763 loci

> FST2=Fst(M,pop=rownames(M))
> head(FST2)

Fit Fst Fis
snp1 0.6192893 0.4744078 0.27565392
snp2 0.6684625 0.6831399 -0.04632153
snp3 0.2963940 0.3275432 -0.04632153
snp4 0.2009834 0.1139111 0.09826590
snp5 0.3479549 0.2960877 0.07368421
snp6 0.1281274 0.1881476 -0.07392996

> cor(FST2[,2],rowMeans(FST))

[1] 0.9952647

First we had to do some data format conversion—pegas uses a loci structure. It
can import data in many formats, unfortunately not the one we had here. All we did
was replace the genotypes from 0, 1 and 2 to 0/0, 1/0 and 1/1. Note that it is a matrix
but it was treated as a vector for the replacement—this is quite handy: R can treat
a matrix as a vector for operations (much faster than using, e.g., apply). Two other
points: for pegas the data has to be in sample by SNP format (hence the transpose),

4.6 Population Genetics 141

also only accepts data.frames. The function as.loci converts the data into a format
that can be used with pegas’s functions. The function Fst calculates FST as well as
FIT and FIS; note that these are average values for the three populations. The correla-
tion with the FST values we calculated before is very high (0.995). The package will
also calculate other parameters such as Hardy–Weinberg equilibrium (hw.test(M)),
R2 (R2.test(M)), linkage disequilibrium (LD2(M)), Tajima’s D (tajima.test(M)), and
others. Another useful package is hierfstat. One of the functions (basic.stats) will
calculate the most common parameters all at once. These include allele frequencies
in each population, observed heterozygosities and gene diversities, FST , FIS, and
others. Again requires some data shuffling to fit the package requirements.

> library(hierfstat)
> M2=data.frame(pop=colnames(sos),t(sos))
> basStats=basic.stats(M2)
> names(basStats)

[1] "n.ind.samp" "pop.freq" "Ho" "Hs"
[5] "Fis" "perloc" "overall"

> # observed heterozygosity
> head(basStats$Ho)

angus brahman hanwoo
snp1 0.04 0.40 0.84
snp2 1.00 0.00 0.68
snp3 1.00 1.00 0.84
snp4 0.56 0.16 0.68
snp5 0.96 0.96 0.68
snp6 0.28 0.12 0.68

There are many other packages (some listed at the end of the chapter) and
there is some redundancy across packages. The downside is that each one expects
data in a certain way, but there are also many useful functions between them; in
combination they cover most of the basic metrics used in population genetics. Check
the documentation of the packages for more information.

4.6.3 Genetic Distances

To close this section, a brief look at genetic distances between populations. Genetic
distances help us understand the evolutionary relationships between individuals,
populations, species; how they share a particular lineage and descend from a
common ancestor. Readers interested in phylogenetics will find most of what
they need in the ape package; the excellent book by Paradis [84] is also a must
for the field. Here we will focus on a few simple examples using SNP data
to estimate distances in populations of a same species. This is a little different

142 4 Populations and Genetic Architecture

from phylogenetic analyses that use data from different species. With multiple
species there is usually a multiple sequence alignment (MSA) step that has to be
performed prior to the phylogenetic analysis itself. A sequence alignment (with
DNA, RNA, or even protein data) tries to identify regions of similarity between
sequences and then aligns them in such a way as to reflect evolutionary relationships
between the sequences. This is based on a model of molecular evolution and an
algorithm is used to find the optimal alignment (or almost optimal—these methods
are usually heuristic due to computational constraints). A common program for
multiple sequence alignment is ClustalW; a somewhat incidental example of MSA
is shown in Chap. 7. Once the sequences have been aligned, different measures
of distances can be calculated and these can then be used to build relationship
trees (phylogenetic trees—a branching diagram that shows the inferred evolutionary
relationships between the organisms sampled). A brief example with mitochondrial
sequence data is shown in Chap. 7. With samples from the same species, data can be
aligned against a reference assembly or, in the case of SNP chips, the data is already
matched up with the SNP from the array; so there is no need for a MSA. Two very
useful packages to handle sequence data are Biostrings and SeqinR.

Here we will continue working with the genotypes from the three cattle breeds
(the sosData.rds file). First, the StAMPP package will be used to estimate pairwise
FST between the three breeds. Up to this point we have only looked at FST per
SNP, but we can also estimate average FST across all SNP and how different each
population is from the others.

> read in the data again, if needed
> sos=readRDS("chapter4/sosData.rds")

> library(StAMPP)

> # some format fixing up
> M=t(sos)
> M[M==0]="AA"
> M[M==1]="AB"
> M[M==2]="BB"
> M=cbind(sample=1:nrow(M), pop=rownames(M),ploidy=2,
+ format="BiA",M)
> M=as.data.frame(M)

> M=stamppConvert(M,type="r")

> M[1:6,1:6]

sample pop pop.num ploidy format snp1
1 1 hanwoo 1 1 BiA 0.5
2 2 hanwoo 1 1 BiA 0.5
3 3 hanwoo 1 1 BiA 0.0
4 4 hanwoo 1 1 BiA 1.0

4.6 Population Genetics 143

5 5 hanwoo 1 1 BiA 0.0
6 6 hanwoo 1 1 BiA 0.5

Once again, we had to organize the data to the format requirements of the
package. The function requires the data to be a data.frame and the first column
should have sample identifiers (here we just used numeric invented ids), the second
column should contain population IDs, the third column is numeric with the ploidy
level (i.e., diploid = 2), the fourth column is a code for the format of the genotype
data (BiA—biallelic AB format), and finally the SNP. The stamppConvert function
converts the AA, AB, and BB to 0.0, 0.5, and 1.0 and adds an extra pop.num column
(numeric levels of the populations).

The stamppFst function calculates pairwise FST values and also confidence
intervals and p-values between the populations. The parameters in the function are
nboots—number of bootstraps across loci for the confidence intervals and p-values;
percent—the percentile for the confidence interval and nclusters—is the number of
cores to use for the calculations. Note that this is quite slow with large datasets.

> # global pairwise FST
> FST=stamppFst(M,nboots=200,percent=95,nclusters=8)
> FST$Fsts

$Fsts
hanwoo angus brahman

hanwoo NA NA NA
angus 0.3747484 NA NA
brahman 0.4505593 0.530454 NA

The number of breeds is sufficiently small to visually identify that the brahman
are more removed from angus and hanwoo; the largest difference is between angus
and brahman while the smallest is between angus and hanwoo. The results are
sensible since the hanwoo and angus are Bos taurus animals and the brahman are
Bos indicus. The first two are closely related whilst the common ancestor between
Taurine and Indicine cattle is much more ancestral. The FST values are much higher
than would be expected in real data—this is largely due to the high LD between
markers in each population (recall this is only a small part of a chromosome and
there was some artificial tweaking of data). Linkage disequilibrium is the non-
random association of alleles at two or more loci that have been co-inherited by
descent from the same ancestral chromosome. We can estimate LD in this data with
the snpStats package. This time it is simple to convert our data into a snpMatrix
object for the package and the function ld can be used to calculate LD between
pairs of SNP.

> library(snpStats)

> # convert to SnpMatrix object
> # plus one is because SnpMatrix

144 4 Populations and Genetic Architecture

> # codes genotypes as 1,2,3
> # and 0 is for missing

> M=new("SnpMatrix",(t(sos)+1))

> # calculate LD in hanwoo
> ldHan=ld(M[1:25,],depth=1000,stats="D.prime")

> # LD across all individuals
> ldAll=ld(M,depth=1000,stats="D.prime")

plot LD
> cols=colorRampPalette(c("yellow", "red"))(10)
> image(ldHan[1:1000,1:1000], lwd=0, cuts=9,
+ col.regions=cols, colorkey=TRUE)
> windows()
> image(ldAll[1:1000,1:1000], lwd=0, cuts=9,
+ col.regions=cols, colorkey=TRUE)

The arguments to ld are depth (how many pairwise combinations to run, here
up to 1,000 SNP apart from each other) and stats (the measure of LD, either the
common D.prime or R.squared or one of another four—details in the documentation
of the package). Another handy argument is symmetric (TRUE or FALSE, if true
returns a symmetric matrix, which is useful for other functions). Results were then
plotted using image and a gradient of colors between yellow and red—similar to a
heatmap. Figure 4.9 shows the pairwise LD for the first 1,000 SNP in hanwoo and
the LD for all individuals is shown in Fig. 4.10. Note how very high levels of LD
extend throughout the whole region in hanwoo but, as expected, are much lower
with distinct populations. A note on the snpStats package, it was designed to handle
quite large datasets and will also compute many population parameters (e.g., FST

with the Fst function—much faster than the version implemented in pegas).
Now we are ready to build a tree of genetic distances for the individuals in

the three populations. A simple method is allele sharing—it is reasonably fast and
usually works well with populations of the same species. For every SNP of every
individual, the absolute differences in genotypes against all other individuals are
taken (genotypes coded as 0, 1, 2), and then the mean of the differences across all
SNP is calculated for each individual. In other words, the allele sharing for two
individuals is the average of the absolute difference between all their SNP. Let’s
first calculate for the first two individuals in our population:

> M=readRDS("chapter4/sosData.rds")
> mean(abs(M[,1]-M[,2]))

[1] 0.436558

4.6 Population Genetics 145

Fig. 4.9 Extent of linkage disequilibrium in hanwoo calculated as D′. There is strong LD along
large chromosomal segments. White areas are SNP with no variation and for which D′ could not
be calculated. The figure shows all pairwise LD for up to 1,000 SNP and the first 1,000 SNP are
shown on the plot

Now for the whole population:

> # allele sharing
> allshare=matrix(NA,ncol(M),ncol(M))
> for(i in 1:ncol(M))
+ {
+ hold = abs(M - M[,i])
+ allshare[,i] = colMeans(hold,na.rm=T)
+ }

> # names of breeds
> colnames(allshare)=colnames(M)
> rownames(allshare)=colnames(M)

> library(ape)
> tree=as.phylo(hclust(as.dist(allshare),
+ method="ward.D2"))

> # just for plotting purposes
> # to assign colours to samples in a population
> pop=as.factor(colnames(M))

146 4 Populations and Genetic Architecture

Fig. 4.10 Extent of linkage disequilibrium in three unrelated populations calculated as D′. There
is weak LD across chromosomal segments. The figure shows all pairwise LD for up to 1,000 SNP
and the first 1,000 SNP are shown on the plot

> cols=c("black","blue","red")

> plot(tree,type="cladogram",edge.color="gray",
+ direction="r", cex=0.7,adj=0,
+ tip.color=cols[as.numeric(pop)])
> legend("topleft",levels(pop),fil=cols,cex=0.8)

The ape library has the as.phylo function which is convenient to convert a
distance matrix into a phylogenetic tree for use with the plotting functions of ape.
The tree is shown in Fig. 4.11, results are consistent with our expectations and all
three breeds cluster separately from each other (with the individuals in each breed
also fully within their own groups). The function as.dist was used to convert the
allele sharing matrix into a distance object; this does not change the values in the
matrix, just the representation. Be careful not to use the dist function—that would
return a distance matrix computed using one of the distance measures implemented
in the function (we would end up with a distance of distances). The default distance
measure is euclidean but there are another five options (maximum, manhattan,
canberra, binary, and minkowski) which can be changed with the method argument.
As an exercise try some of the distance measures straight on the matrix of genotypes
and then build a tree. The function hclust performs hierarchical clustering of a

4.6 Population Genetics 147

hanwoo

hanwoo
hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

hanwoo

angus

angus

angus
angus
angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus

angus
angus

angus

angus

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

brahman

angus
brahman
hanwoo

Fig. 4.11 Genetic distance tree for all individuals in three cattle populations built with allele
sharing

148 4 Populations and Genetic Architecture

distance matrix (needs a dist object). The function implements various clustering
algorithms (same as with dist, use method argument to change); the most common
ones are complete which is the default and finds more similar clusters, the average
method is the same as UPGMA and Ward’s method which tends to shrink the
variance within groups and inflate between groups (two implementations: ward.D
and ward.D2). The distance and clustering methods have a considerable effect
on the final tree, it is worthwhile exploring different options to become familiar
with the properties of each method. The plotting functions for a phylo object are
comprehensive and well detailed in [84], but the most important one is the type
of tree to build (argument type), any one of phylogram, cladogram (used in the
example), fan, unrooted, or radial.

4.6.3.1 GRM and Genetic Diversity

The genomic relationship matrix (GRM) is also useful for estimating genetic
distances and evaluating the genetic variability between populations. The GRM can
be built as before with

> M=M-1 # recode matrix as -1, 0, 1
> p=rowMeans(M,na.rm=T)/2
> P=2*(p-0.5)
> Z=M-P
> ZtZ = t(Z) %*% Z
> d=2*sum(p*(1-p))
> G=ZtZ/d

> rownames(G)=pop
> colnames(G)=pop

And it can be treated as a matrix of genetic distances between all individuals.
The GRM can be used in the same way as the allele sharing matrix to build a
phylogenetic tree (simply replace allshare with G in the code above); or alternatively
a heatmap is quite informative.

> heatmap(G,symm=T,col=gray.colors(16,start=0,end=1),
+ RowSideColors=cols[as.numeric(pop)],
+ ColSideColors=cols[as.numeric(pop)])

> legend("topleft",levels(pop),
+ fil=cols[1:length(levels(pop))])

The heatmap for the three populations is shown in Fig. 4.12. The arguments
RowSideColors and ColSideColors were used to color code the sides of the heatmap
based on the population of origin of each individual. The results are the same as
obtained with the allele sharing method used above; all individuals cluster within

4.6 Population Genetics 149

Fig. 4.12 Heatmap of genetic distances for three cattle populations using the GRM

their own breed groups; the angus and hanwoo are more related with the brahman
being the most dissimilar. The block structures of the heatmap make it easy to
identify relationship groups—notice how even within a breed there are individuals
more and less related to each other (the smaller blocks along the diagonal). Here
the color gradient used had 16 shades of gray (gray.colors(16,start=0,end=1)), use
less colors for stronger (and coarser) differentiation or more colors to pick up subtle
details (change the number of colors to see how it affects the block structures).

Lastly, singular value decomposition (SVD) of the GRM matrix can be used to
evaluate diversity in the populations. SVD is the main algorithm behind principal
component analysis (PCA). In general terms PCA is a method that defines a new set
of variables that capture the variation in the data and project it into new uncorrelated
variables. Whilst the original data can have correlations within it (which makes
some points superfluous), the principal components are uncorrelated (orthogonal).
There can be as many components as data points and components are defined in
such a way as to ensure that each successive component explains less variation
than the previous one (i.e., PC1 should be the most explanatory, then PC2. . .).
A note on PCA is that it is sensitive to the original values—these should be
mean centered and preferably normalized. Components can be used for prediction
purposes, dimensionality reduction, account for fixed effects in the data (e.g.,
population structure in a GWAS); identification of factors in multivariate analysis

150 4 Populations and Genetic Architecture

and, in our case, it can be used to identify the sources of genetic variation in the
populations. Chapter 4 from [116] has a very good description of PCA and the
underlying numerics.

> G=G-mean(G) # mean centering

> SVD=svd(G)

> plot(SVD$v[,1],SVD$v[,2],cex.main=0.9,
+ main="Principal components",pch=16,
+ xlab="PC1",ylab="PC2",col=cols[pop])
> legend("bottomright",levels(pop),
+ fil=cols[1:length(levels(pop))],cex=0.8)

It is quite easy to do an SVD in R using the svd function, just remember to scale
the variables appropriately (other useful functions are irlba for very large datasets,
eigen and princomp). The svd function decomposes a matrix (here the GRM) and
returns a list with the three components: u (left singular vectors), d (singular values),
and v (right singular vectors), such that X =UDV ′. In PCA terms UD are the scores
and V the loadings. The variance explained by each of the components can be
calculated with:

> # variances of components
> variances=SVD$d^2/(ncol(G)-1)
> variances=round(100*variances/sum(variances),3)
> variances[1:2]

[1] 72.571 22.082

Figure 4.13 shows the plot of the first two principal components from the SVD.
Most of the variation in this dataset is already captured by the first two components.
PC1 explains 72.57 % of the variance and PC2 an additional 22.08 %. This again fits
in with previous results, with the brahman being the most distant population (PC1
splits the data into taurine and indicine cattle) and almost 73 % of the variation is
due to the difference between these two subspecies. PC2 then splits the European
and Asian cattle into two groups (another 23 % of the variation). The difference
between individuals within a population is small at around 5 %. Notice that three
angus and one brahman (particularly the latter) do not cluster as tightly as the other
individuals; this could be due to, e.g., crossing with other breeds (could also simply
be individuals less related to the others or even a genotyping problem).

This concludes our brief exploration of population genetics. We overviewed the
main metrics used to understand population structure, variability, and relationships.
There is a wide range of R packages and functions that make it relatively simple
to perform these analyses, possibly the main difficulty is getting data into the
different formats expected by these packages. These metrics are not only relevant
to understand populations but are also useful for GWAS or genomic prediction.
Measures of LD can inform sample sizes needed for identification of QTL or

4.6 Population Genetics 151

l
l

l

l

l

l

l

l

ll

ll

l

l
l

lll
l

l

l

l

ll

l

l

lll
l

l

ll

l

l

lll

lll

l

l

l

l

l

l

l
ll

l
l

l
l

l
l ll

l
l

l

l

l
l l

l
l

l

ll
lll l

l

−0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Principal components

PC1

P
C

2
angus
brahman
hanwoo

Fig. 4.13 Plot of singular value decomposition of the GRM showing the first two PCs

the power to detect effects; population stratification (e.g., breeds) should be used
to account for different genetic backgrounds; signatures of selection can be used
as another approach to identify genetic association with a trait; and even for
quality control purposes: a plot of principal components is an easy way to identify
mislabelled samples (e.g., wrong breed assignment) or outliers (such as one of
the brahman in Fig. 4.13). As a rule, when working on association or prediction
studies, some of these metrics should be part of the workflow—they will provide a
better understanding of the data and help drive experimental questions and analytical
methods.

In relation to the three cattle breeds, we now know that there is strong linkage
in each population which suggests a small effective population size (at least in
this data); we found a signature of selection in hanwoo (unfortunately a fabricated
one); we used various measures of diversity to characterize the populations (FST ,
allele sharing, GRM, SVD) and found that the largest differentiation is between
taurine (angus and hanwoo) and indicine (brahman) cattle, which fits what is known
about breed formation and domestication—these two groups belong to independent
domestication events and have around 4 million years of isolation between them.
Note however that brahman have a taurine background (on average around 8 %)
and are not pure indicine (if we had pure Bos indicus cattle we would see that
the brahman come closer to the taurine in, e.g., a PCA plot). Over 75 % of the

152 4 Populations and Genetic Architecture

variation is due to the difference between these two subspecies (Bos primigenius
taurus and Bos primigenius indicus), and it would be even more with pure indicine
cattle. Another 22 % of the variation is due to an East versus West gradient of
dispersal. Taurine cattle are assumed to have been domesticated in the Near East
(Fertile Crescent) around 10,000 years ago and then dispersed into Europe (angus
in this example) and Asia (hanwoo). There is only another 5 % of variation within
breeds which matches the high LD results. In a real diversity study it would be
necessary to take into account the gene flow between these populations, livestock
in general has not evolved independently, there has always been some level of
migration due to human movements and trade; there is also over representation of
some genetic lines in the various breeds that further complicate matters. For example
the brahman outlier in Fig. 4.13 could be a cross between brahman and taurine cattle
or a composite animal (e.g., droughtmaster—cross of brahman and European cattle).

4.7 Parentage Testing

SNP can be used for parentage verification (identification of parent–offspring rela-
tions). In humans, accurate determination of paternity has a very obvious societal
value; but it is also relevant for livestock production; production performances need
to be linked back to the correct individuals and families so that estimates of breeding
values are correct and inbreeding levels are monitored. Pedigree information is
usually used for these purposes, however problems can occur due to missing data,
human error or even willful forgery. In any of these cases, a DNA-based parentage
test can clarify the ancestry and include (or exclude) a putative parent of an
offspring. In livestock, SNP are rapidly replacing microsatellites as the marker of
choice for parentage testing due to their ease of automation, lower genotyping cost
per marker and standardization between different laboratories. From an information
content perspective SNP are only bi-allelic and more of them are needed to obtain
the same level of information contained in the highly polymorphic microsatellites.
As a general approximation, between 40 and 100 SNP are equivalent to between 14
and 20 microsatellites.

Acceptance or rejection of a parentage test can be based on a probabilistic
model conditioned on allelic frequencies of the population, or simply by testing for
Mendelian inconsistencies between a putative parent–offspring pair. A Mendelian
inconsistency occurs when an individual shows an allele that could not have been
received from its parent. For example the parent has a genotype AA for a SNP at a
given locus and the offspring has a BB; this should not occur as the offspring would
have to have inherited one of the A alleles from its parent (the genotype would
have to be either AA or AB, depending on what allele it received from the other
parent). Such a Mendelian inconsistency can only occur if there was a mutation
at that locus (extremely rare event), a genotyping error (more common) or if they
are not a parent–offspring pair. So, true parent–offspring relations should not have

4.7 Parentage Testing 153

any Mendelian inconsistencies but these do occur due to genotyping errors and, in
practice, a 1% mismatch can be adopted as an acceptable error rate.

In this section we will look at how to perform a parentage test based on
Mendelian inconsistencies, what genomic relationships look like, and the effect of
the number of SNP on the accuracy of parentage testing. This will be based on
opposing homozygotes which occur if one individual is homozygous for one allele
and the other individual is homozygous for the other allele (as in the example above).
All we have to do is count the number of opposing homozygotes (OP) between
every pair of individuals and, those that have a count of zero, are parent–offspring
pairs—except for the genotyping errors which bring the OP counts up (mutation is
negligible). We will use a highly adapted subset of SNP with 20,000 SNP and 312
individuals in family structures (the parData.rds file). There are 12 sires (fathers)
and 108 dams (mothers), plus 96 full-sibs (8 per sire/dam) and another 96 half-sibs
(also 8 per sire). In the full-sibs the same dams were used in each family (12) and
in the half-sibs all dams were different (96). Sires and dams are unrelated. We also
have an accurate pedigree (pedigree.txt) file to work with. Start by reading in the
data with

> M=readRDS("chapter4/parData.rds")
> dim(M)

[1] 20000 312

> ped=read.table("chapter4/pedigree.txt",
+ header=T,sep="\t")
> head(ped)

id sire dam group
1 1 0 0 0
2 2 0 0 0
3 3 0 0 0
4 4 0 0 0
5 5 0 0 0
6 6 0 0 0

Genotypes are already in the same order as the pedigree. In the pedigree (ped)
the sires and dams have 0 for their sires and dams (common notation for unknown
or base population in a pedigree). The last column group splits the individuals into
0 = sire, 1 = dam, 2 = full-sibs and 3 = half-sibs.

To build the matrix of opposing homozygotes (counts of OP for every pair of
individuals) we can use R’s matrix capabilities.

> # OH matrix
> down=up=matrix(0,nrow(M),ncol(M))
> up[M==2]=1
> down[M==0]=1
> op=t(up)%*%down

154 4 Populations and Genetic Architecture

> op=t(op)+op
> rm(up,down)

In the code above, two empty square matrices (number of individuals by number
of individuals) were created—matrices up and down—note that both were created
with the same command line. Then, in the positions where the genotypes are
homozygous 2, we put a 1 in the up matrix and likewise, when genotypes are 0
we put a 1 in the down matrix. These are of course just incidence matrices for the
occurrence of the two homozygous genotypes. Then it is just a matter of multiplying
the matrices to get the partial counts (upper diagonal incidence of 2 and 0; lower
diagonal incidence of 0 and 2); and adding the top and bottom part of the matrix to
get final (and symmetric) counts.

> op[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1267 1341 1327 1353
[2,] 1267 0 1301 1347 1326
[3,] 1341 1301 0 1293 1333
[4,] 1327 1347 1293 0 1284
[5,] 1353 1326 1333 1284 0

The same values, for the first pair, can be obtained with

> top=length(which(M[,1]==0 & M[,2]==2))
> top

[1] 662

> bot=length(which(M[,1]==2 & M[,2]==0))
> bot

[1] 605

> sum(top+bot)

[1] 1267

Let’s take a first look at the data with a heatmap of the OP matrix, the same way
as before with the genomic relationship matrix for the three cattle populations. The
first few lines of code are simply to build a vector for color coding the sides of the
heatmap. The function getcol in the package made4 is useful to get a range of colors
that are clearly distinguishable from one another (up to a maximum of 21).

> # build levels for plotting
> groups=ped$sire
> groups[1:12]="sire"
> groups[13:120]="dam"

4.7 Parentage Testing 155

Fig. 4.14 Heatmap of family relationships based on matrix of opposing homozygotes

> groups[121:312]=paste("fam",groups[121:312])
> groups=as.factor(groups)

> # get colours for plot
> library(made4)
> cols=getcol(length(levels(groups)))

> heatmap(op,symm=T,col=gray.colors(32,start=0,end=1),
+ RowSideColors=cols[as.numeric(groups)],
+ ColSideColors=cols[as.numeric(groups)])
> legend("topleft",levels(groups),
+ fil=cols[1:length(levels(groups))],cex=1.3)

Figure 4.14 shows the heatmap for the matrix of opposing homozygotes. The
figure is not intuitive at first glance but if it is broken down into its various
components and related back to the pedigree structure it becomes clearer. The
diagonal is the similarity of the individual with itself (dark color), across the
diagonal there are 12 blocks—these are the 12 sires and their offspring (16 for each
sire, 8 full-sibs and 8 half-sibs). A quarter of each block is darker, these are the full-
sibs and the relationship is stronger because they are more related to each other (0.5)
than half-sibs (0.25). The full and half-sibs have the same relationship to each other
(sire in common). Still within the blocks, each one has either a strong dark border

156 4 Populations and Genetic Architecture

along the sides of the block (e.g., 1–6 from the top) or cutting across it (e.g., block 6
from the top)—these are the sires of each family. Apart from genotyping errors there
should be no OP between sire and offspring, they should show the same relatedness
as an individual to itself (remember this is the number of opposing homozygotes,
not genetic relationship). The heatmap assigns the order only based on clustering;
the sires can be either on the borders or inside the family block. There is still another
structure inside the blocks which is similar to the sires but now half white, half black.
These are the dams of the full-sibs, they have no OP with their eight offspring (note
how the dark part is always around the full-sib blocks) but they are unrelated to the
half-sibs (hence the white). Then there is a large region with no relations except for
a few dark spots: these are the dams of the half-sibs, note that there are eight per
family. The heatmap clearly identifies all features in the data, alternatively a GRM
could also be used and results should be reasonably similar (although more error
prone). In practice this can be used to check and fix pedigree errors—offspring with
the wrong color in a family group can be easily identified (as an exercise, assign one
of the offspring to another sire and redo the heatmap).

Returning to the parentage testing problem, a plot of the sorted counts of oppos-
ing homozygotes (Fig. 4.15) makes it easy to identify the different relationships.
Visually it can be seen that true parent–offspring relationships have less than 200
OP, full-sib groups around 400 OP, half-sibs 700 OP, and unrelated pairs upwards
of 1,200 OP. Note how there always is some level of genotyping error (none of the
parent–offspring relations have 0 OP). Now, this is a good dataset, and all levels
of relatedness are well defined. In practice there can be uncertainty about some
groupings (there is no gap between one and another—the plot is uninterrupted) but
not in the case of parent–offspring, these are always well defined provided the SNP
panel is reasonably large (further discussed later on).

> plot(sort(op[upper.tri(op)]),main="sorted op counts",
+ ylab="number of op",xlab="",pch=20)
> abline(h=200)

The next step is to identify parent–offspring pairs. Figure 4.15 already showed
that any pair with less than 200 OP will be a correct parent–offspring pair. We know
the first 12 animals are sires, their offspring can be identified with

> # build sire-offspring pairs
> relations=NULL
> for (i in 1:12)
+ {
+ off=which(op[i,]<200)
+ off=off[- which(off==i)]
+ relations=rbind(relations,
+ data.frame(sire=rep(ped$id[i],length(off)),
+ offspring=ped$id[off]))
+ }
> head(relations)

4.7 Parentage Testing 157

sorted op counts

14
00

12
00

10
00

80
0

nu
m

be
r

of
 o

p

60
0

40
0

20
0

0 10000 20000 30000 40000 50000

Fig. 4.15 Sorted counts of opposing homozygotes for all pairwise comparisons

sire offspring
1 1 121
2 1 122
3 1 123
4 1 124
5 1 125
6 1 126

For each sire the entries with less than 200 OP were found (had to remove
the entry of the individual with itself, hence the second line in the loop) and then
matched to the ids in the pedigree (note that pedigree information was never used,
we assembled it de novo). This was simple since we knew the sires, if not, all pairs
would have to be tested—not complicated, just more computationally intensive.

As a last exercise, we will have a look at how many SNP are needed for parentage
testing. For this, a smaller dataset will be used—only the sires and their half-sibs.

> M=M[,which(ped$group==0 | ped$group==3)]
> ped=ped[which(ped$group==0 | ped$group==3),]

The strategy is to select random SNP in increasing numbers and measure how
many are correctly assigned and how many are incorrectly assigned with different
panel sizes. The threshold for correct/incorrect will be 1 % (i.e., the parentage
assignment is accepted up to a maximum of one percent OP mismatches). The code

158 4 Populations and Genetic Architecture

is mostly about pulling together what has been done so far (note that it is quite
specific to this particular dataset).

> # random SNP in intervals of 100
> SNPinterval=seq(100,5000,100)
> # threshold
> tol = 0.01
> # number of sires
> numSires=12
> # offspring per sire
> numOff=8

> # store results for
> # different number of SNP
> results=NULL

> for (i in 1:length(SNPinterval))
+ {
+ # number of SNP to sample
+ numSNP=SNPinterval[i]
+ # sample random SNP
+ rM=M[sample(nrow(M),numSNP),]

+ # OH matrix of subset
+ down=up=matrix(0,nrow(rM),ncol(rM))
+ up[rM==2]=1
+ down[rM==0]=1
+ op=t(up)%*%down
+ op=t(op)+op
+ rm(up,down)

+ # hold results for each sire
+ tot=numeric(numSires)
+ correct=numeric(numSires)
+ incorrect=numeric(numSires)
+ mis=numeric(numSires)

+ for (j in 1:numSires) # loop over sires
+ {
+ # accept 1% mismatch
+ off=which(op[j,] <= (numSNP*tol))
+ off=off[- which(off==j)]
+
+ # total accepted
+ tot[j]=length(off)

4.7 Parentage Testing 159

+ # number correct
+ correct[j]=length(intersect
+ (ped$id[off],ped$id[which(ped$sire==j)]))
+ # number incorrect
+ incorrect[j]=tot[j]-correct[j]
+ # number missing
+ mis[j]=numOff-correct[j]
+ }

+ results=rbind(results,data.frame(
+ total=mean(tot),
+ correct=mean(correct),
+ incorrect=mean(incorrect),
+ missing=mean(mis)
+))
+ }

The structure of the code is to randomly sample SNP panels of different sizes
to use for parentage testing, build an OP matrix with each panel, infer offspring
for each sire, and compare results with the real pedigree to evaluate efficacy of the
panels. Panel sizes range between 100 and 5,000 in 100 SNP increments (these are
held in the SNPinterval variable created with the seq function). The sample function
is used to select SNP for the random panel (a convenient function to sample unique
indexes that can be used to randomly subset data). The matrix of OP is then built for
the subset of genotypes (rM variable) as before. Then the code loops over each of
the sires and assigns offspring to them; this is also the same as we did before but now
instead of the arbitrary cutoff of 200 OP that was visually chosen, now the threshold
is based on a 1 % tolerance for genotyping errors, i.e., for 200 SNP up to 2 OP are
accepted as a true parent–offspring relation (this is defined in the variable tol). The
rest are just metrics to evaluate the panels: tot—total number of offspring accepted
(not necessarily all correct); correct—number of correct offspring identified (note
the use of the intersect function to match inferred relations with true relations from
the pedigree); incorrect—number of offspring incorrectly identified (incorrectly
assigned to a sire); and mis—missing, how many offspring were not assigned to
a sire. For each panel these values are averaged out across all sires and placed in the
results variable (stores average for all sires for each panel size).

To make it easier to visualize, results can be scaled into percentages (note that
results will vary between runs)

> results=results/numOff*100
> head(results)

total correct incorrect missing
1 96.87500 87.50000 9.375 12.500000
2 94.79167 94.79167 0.000 5.208333
3 98.95833 98.95833 0.000 1.041667

160 4 Populations and Genetic Architecture

4 95.83333 95.83333 0.000 4.166667
5 93.75000 93.75000 0.000 6.250000
6 100.00000 100.00000 0.000 0.000000

If the columns total and correct have the same value, there will be no incorrect
assignments; total can be more than 100 %, meaning that more offspring were
assigned than there really are. The number of incorrect assignments is already
zero from 200 SNP onwards (in this particular run, but it is quite consistent),
this indicates that the threshold is quite stringent (note that missing starts higher
and gradually drops down). If the value in tol is increased to 0.02 or 0.03 (2–
3 %) there will be less missing but more incorrect—a percentage based cutoff
is a compromise between (true/false) positives and negatives (try different values
and compare results). Figure 4.16 shows how the proportion of correct parentage
assignment increases with the number of SNP in the panel. We ran the example
only up to 5,000 SNP and not all 20,000; the figure makes it clear that with more
than 1,000 SNP almost any panel is 100 % accurate (and after 1,500 all are). Of
course, since we are working with random SNP we should repeat the sampling to
get a better handle on the variation due to sampling—but for illustration purposes
this suffices; and in reality this does not change much in terms of the trend—larger
gains up to 1,000 SNP, from there on it makes hardly any difference (and most SNP
sets will be perfect for parentage assignment).

> plot(SNPinterval,results[,2],pch=20,
+ xlab="number of SNP",
+ ylab="percentage",
+ main="percentage of correct parentage assignment")
> abline(v=1000)

A final note on parentage testing. True parentage panels use between 100
and 200 SNP, sometimes up to 400, they are carefully selected (based on allele
frequencies, chromosomal distribution, high genotyping success. . .) and work better
than random SNP; it is possible to obtain good results with a smaller panel than what
we observed here. However, the best way to increase accuracy of a parentage panel
is to simply add more SNP (at a higher genotyping cost, of course).

4.8 Useful R Books and Packages

• Ridge regression BLUP and gBLUP:biRR, BLR, rrBLUP and pedigree. The book
Genome-Wide Association Studies and Genomic Prediction [46] covers most
methods for genomic prediction and many examples are in R.

• Estimation of population genetic parameters: genetics, adegenet, pegas, genAbel,
hierfstat, PopGenome (suitable for sequence data) and snpStats.

• Phylogenetics: ape is the broadest package for phylogenetic inferences, the
book Analysis of Phylogenetics and Evolution with R [84] is a must read for

4.8 Useful R Books and Packages 161

ll

l

l

l

l

l

l

l

l l

l l

0 1000 2000 3000 4000 5000

88
90

92
94

96
98

10
0

percentage of correct parentage assignment

number of SNP

pe
rc

en
ta

ge

Fig. 4.16 Percentage of correct parentage assignment using varying numbers of random SNP

using R in this field. There are many other packages listed in the CRAN task
view: Phylogenetics, Especially Comparative Methods. Other useful packages
are DECIPHER for alignments; Biostrings and SeqinR for handling sequence
data.

• Parentage: the hsphase package can calculate the OP matrix and has some
useful plotting functions, the pedigree package has useful functions to build and
manipulate pedigrees (it also calculates inbreeding from a pedigree), other useful
packages are kinship2, pedigreemm and GeneticsPed.

Chapter 5
Gene Expression Analysis

In this chapter we will overview the main points of gene expression analyses.
We will illustrate using Affymetrix gene expression arrays and Illumina RNA-seq
reads, but most of the underlying concepts port well to other platforms. Various
preprocessing quality control metrics are discussed as well as how to evaluate the
quality of the data. Next we discuss how to setup contrasts and detect differentially
expressed genes.

5.1 Introduction to Gene Expression Analysis

A seminal paper in 1995 [97] introduced the concept of a massively parallel version
of the Northern and Southern blot technique which allowed thousands of hybridiza-
tions to be conducted at the same time. This pioneering work revolutionized our
ability to generate high quantities of system-wide, parallelized gene expression data.
Instead of being constrained to studying gene expression of just a single gene or a
handful of them at a time, researchers could now simultaneously study and quantify
a large proportion of the RNA (primarily mRNA) expressed in a sample.

This opened the door to global expression profiling studies and enabled a wide
range of comparative work to be conducted. The primary focus of these studies is
to identify genes (or at least gene expression signals) associated with differences
between traits (or conditions). For example, we can compare gene expression
levels between normal and cancer tumor cells and try to identify which genes
are differentially expressed between the two; we can evaluate expression levels of
different tissues of an organism to understand which genes are expressed in which
tissues; we can also study population variability, test how new drugs affect gene

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-14475-7_5) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_5

163

http://dx.doi.org/10.1007/978-3-319-14475-7_5
http://dx.doi.org/10.1007/978-3-319-14475-7_5

164 5 Gene Expression Analysis

expression levels, contrast resistant and susceptible individuals to identify genes that
confer resistance (or susceptibility), test how exposure to environmental stressors
affects gene expression levels, how gene expression changes over time (time-course
analysis), and the list goes on. In livestock, global gene expression analysis has been
used to search for genes involved in disease resistance, marbling, meat yield, feed
intake, and many other traits. In a nutshell, most expression studies will, at least
initially, try to identify the subset of genes that are differentially expressed between
two or more conditions—simplistically, it is a contrast analysis. This will be the
focus of this chapter—differential gene expression (DGE) analysis.

However, while the broad application of gene expression is to characterize
which genes are expressed at what levels under a given condition, there is a
wide range of other applications which include identification of novel SNP in
coding regions which can later on be used in association studies; mapping of
expression QTL (eQTL) which involves identification of genetic polymorphisms
that change expression levels of RNA; use of expression data for prediction or
diagnostic purposes (e.g., cancer classification); identification of co-expression
networks (groups of genes that respond similarly to a stimulus) that can shed light
on genes that previously had no known function or provide indications about new
interactions in biological pathways.

5.1.1 Platforms for Expression Profiling

There are two main platforms for expression profiling: microarrays [99] and direct
sequencing of transcripts (RNA-seq) [115]. Until a few years ago microarrays were
the dominant platform but with the rapid pace of developments in next-generation
sequencing methods, the latter rapidly replacing the microarrays.

Microarrays consist of a substrate (array) onto which thousands of probes are
adhered to (oligonucleotides, cDNA, PCR products) and separated from each other
by micrometric distances. Probes are spotted onto an array (can be a simple
polylysine coated glass plate) from a microtiter plate using a robot. These are termed
spotted microarrays. The target sample will then hybridize to the probe if they are
complementary. Interpretation of the experiment is made possible by labeling the
target with a fluorescent dye which can be detected and quantified quantitatively or
semi-quantitatively.

Classically, spotted array experiments consist of a competitive hybridization
between two samples with each one tagged with a different dye, generally
the ubiquitous fluorophores cyanine-3 (Cy3) and cyanine-5 (Cy5). The slide is
read by a scanner which uses lasers to excite the fluorophores (absorption of
Cy3—550 nm and Cy5—649 nm) and, e.g., a CCD converts the analogue light
signal of the fluorophores into a digital signal of light intensities (emission
Cy3—570 nm and Cy5—670 nm) which are saved in TIFF graphical format. Since
the hybridization is essentially competitive (the two target sets of RNA compete
with each other to hybridize with the probes), the sample with a higher expression of

5.1 Introduction to Gene Expression Analysis 165

RNA will attach more to its probe and this is detected by the intensity of emission of
the fluorophores. Scanned images can be viewed as an overlay of the two intensity
files (green—Cy3, red—Cy5, each color is referred to as a channel) with the probes
that did not hybridize in black (no expression in both samples), the probes in which
the two samples have similar expression levels in yellow and variants from pure
green (only the Cy3 labeled sample is expressed) to pure red (only Cy5). Note that
the color scheme is really just a nod to the wavelengths in the light color spectrum.

A variant to the spotted arrays is the GeneChip, a commercial array developed
by Affymetrix which uses a photolithographic process analogous to computer
silicon chip production. Masks are used to control the light-driven synthesis of
oligonucleotides (oligos) directly on the chip surface itself. Each oligo is up to 25
nucleotides long and there are up to 40 different oligos to detect a gene product on
each chip. Around half the oligos are perfect matches to characteristic regions of a
gene; the other half uses an oligo with a mismatch in position 13 which, at least in
theory, allows detection of nonspecific hybridization and experimental noise. The
difference between Affymetrix arrays and the spotted arrays as described above is
that the former is not a competitive hybridization, i.e., a single sample is hybridized
on an array, and intensity reads are absolute instead of relative (spotted arrays can
also be used in this manner though, only Cy3 is used).

Spotted arrays are more noise prone than Affymetrix chips but they do allow
for greater flexibility since any probe can be designed to spot on the array and
individual research groups can build their own arrays in house—this is relevant
for organisms that Affymetrix does not cover. Cost-wise spotted arrays are cheaper
than GeneChips but a probe library is costly and time consuming to construct. There
are also commercially available arrays from, e.g., Agilent for various species (and
you can also order custom arrays) that are quite similar to conventional in-house
spotted arrays but use long oligos (60-mer) and the printing technologies are much
more reliable. Although this has a somewhat historical feeling to it, an overview
of platforms and comparison of expression data using different platforms is given
in [48] and [118].

RNA-seq uses next generation high-throughput sequencing platforms (e.g.,
Illumina) to sequence RNA transcripts and generates millions of short raw sequence
reads which then have to be assembled (most commonly aligned against a refer-
ence); quantitated (number of reads that aligned to a genomic feature) and annotated
(e.g., what gene do the transcripts belong to) [115]. RNA-seq holds similarity to
an expression profiling method called SAGE (Serial Analysis of Gene Expression)
which was already used with the early Sanger sequencing platforms to sequence and
quantify RNA. While in the early days SAGE never really made inroads due to its
prohibitive cost and time demands; the ever faster and cheaper sequencing platforms
have enabled RNA-seq to become the platform of choice for expression studies. The
basic difference between SAGE and RNA-seq is that the former sequences tags and
not the whole transcript, only fragments of the transcripts are sequenced. A modern
version of SAGE blends the use of short gene tags (26 bp) with high-throughput
next-gen sequencers (HT-SuperSAGE) [72, 73].

166 5 Gene Expression Analysis

In general terms, an RNA-seq experiment involves making a library prior to
the sequencing. The basic steps will require RNA extraction, enrichment and
fragmentation, followed by conversion to complementary DNA (cDNA, which
is also what is used for microarray hybridization) and then platform specific
proprietary adaptor sequences are attached to the ends of the fragments; finally
an amplification round completes the library preparation step. Barcodes (short
sequences 5–7 bp that are used to tag a library) are sometimes also added to allow
multiplexing of samples (run multiple samples in the same sequencing reaction).

The key differences between microarrays and RNA-seq are:

• The costs of running an experiment with microarrays are still lower than
RNA-seq on a per sample basis; but this may already not be the case anymore
on a per feature comparison though. Tag reads instead of full sequencing reduces
costs even further. Microarray costs have stagnated for quite some time while
sequencing costs continue coming down at a fast rate; the cost balance will
probably swap over in the very near future.

• Microarrays are much more mature in terms of platforms, analytical methods,
computational tools and our understanding of possibilities/limitations. RNA-seq
is more recent and almost the same questions we had with microarrays in the
early 2000s are being asked all over again now with RNA-seq: what is the
accuracy, how reliable is the data, what the error rates are and how to correct
for them, what are the sources of bias, how to normalize the data, what are the
appropriate statistical methods for the analysis.

• The dimensionality of raw RNA-seq data is many orders of magnitude larger than
microarrays and demands high end computational resources and large storage
availability.

• RNA-seq provides count data, the actual number of transcripts in a sample (not
quite so simple since counts depend on sequencing depth, which is discussed in
the next section). On the other hand, microarrays are essentially fluorescence
intensities that are read by a scanner and constrained by its resolution—
low expression signals cannot be resolved from background noise and high
expression signals can saturate the scanner (i.e., everything above a certain level
looks the same).

• Microarrays can only quantify expression levels of features that are on the array,
anything else goes undetected. Microarrays also demand a reasonably solid prior
knowledge of the organism of interest to select the probe sets. RNA-seq has
the upper hand in that it is not constrained by preselected probe sets and any
transcript that is expressed is potentially quantifiable. It is also easier to work
with unconventional species for which there is no reference sequence available
because RNA-seq provides the actual nucleotide composition of the RNA (as
short read fragments though) which can be used in BLAST searches to try to
find matches to other known organisms and obtain at least a rough annotation
(not really so straightforward as this will usually require a rather tricky de novo
assembly at some point). But still better than the anonymous probes used in early
arrays that had to be characterized after the profiling experiment.

5.2 Experimental Design 167

• RNA-seq can identify new transcripts, new variants such as SNP, alternative
splicing events. Overall it is a broader and more flexible approach to explore
gene expression.

So, are microarrays obsolete? Not yet. In 2008 Shendure [101] already forecast
their diminishing importance in gene research but also envisioned a wider uptake
in routine clinical applications, e.g., diagnostics (easier, cheaper and better estab-
lished). Quite correctly, research purely focussed on global expression is steadily
adopting RNA-seq; however, various studies in which global profiling is not the
primary objective will continue to rely on microarrays as a research tool, at least
for some time. A comparison between RNA-seq and microarrays is given in [122]
and [124].

5.2 Experimental Design

A lot of effort has been put into optimization of experimental designs for microar-
rays. Most of this work focused on two color arrays since these are competitive
hybridizations and it becomes important to set up the experiment in such a way
as to maximize the power of the contrasts of interest (for an overview see [42]).
With one slide–one sample arrays (single channel hybridizations) there are much
less problems because instead of ratios we are actually working with intensities
(there are ways of estimating channel intensities from two color array experiments
but we will not discuss them herein) and it is much easier to add new data to an
existing experiment (even though there are array batch specific effects that have to
be accounted for).

If you must use two color arrays make sure that dye bias (there are differences
between the intensities just due to dye effects) is not confounded with treat-
ment, minimize the distance between contrasts—your primary question should be
answered by hybridizations on the same slide and not across slides (the between
slide variation is much larger than the within slide variation).

For RNA-seq the main concern is depth of sequencing. This refers to the number
of reads that are sequenced. At a higher cost, a higher depth can be obtained and
you will be able to identify rare variants and improve statistical power, or this can
be reduced but there will be some loss. There is no exact formula for calculating
depth and it is quite dependant on what the study objective is, but the discussions
in [8, 50] and the R package RNASeqPower are good starting points. At the end
of the day it is a trade-off between how many samples will be sequenced and at
what depth for a given amount of money. Liu et al. [69] demonstrated that adding
more depth after 10M reads does not greatly increase power to detect differentially
expressed genes, on the other hand more biological replicates significantly increase
power irrespective of the depth.

In terms of reproducibility both microarrays and RNA-seq are quite robust. There
is not too much point in performing technical replicates of a sample. However,

168 5 Gene Expression Analysis

biological replicates are extremely important. Historically, expression studies are
almost always underpowered. The data is noisy and the number of samples is small.
While it is common practice with association studies to use thousands of samples,
there are few expression studies with more than a hundred biological replicates (and
these normally have ten different experimental treatments!). The problem here is
that we are trying to do over 20,000 tests on, say 20 samples—a complete flip of the
p×m matrix. The short version is: do as many biological replicates as your money
will allow. The magic number is to aim for at least eight samples per treatment
(remember the statistics of small numbers). Try to run all samples at the same time,
same lab, same personnel, same equipment. . . Pay attention not to confuse pseudo-
replicates (different samples from the same individual) and technical replicates
with true biological replicates: there’s not much point in using the same sample
repeatedly unless you want to test the repeatability of the platform. Don’t pool
samples unless you have independent pools of the same treatment and you really
do not have another option. In livestock (and all other projects for that matter) be
careful with fixed (confounding) effects, for example if you are trying to find genes
responsible for marbling in cattle don’t contrast Brahman with Wagyu, all you will
find out is which genes are differentially expressed between the two breeds—breed
and marbling will be completely confounded. So, as a rule of thumb, try to use the
most similar samples as possible that differ only in the trait of interest (but as much
as possible for this trait if using small numbers).

5.3 Gene Expression Data

For the remainder of the chapter we will use Affymetrix microarrays and work
through all the steps from raw data to final differential expression results. While
not the most cutting edge technology, microarrays are still widely used and they
are not overly demanding in terms of computational resources which make them
more suitable for training purposes. I also believe that the principles that underpin
array analysis provide a good entry point to RNA-seq analysis. Another point is
that R cannot take raw sequence reads and run a full analysis; for RNA-seq some
additional software is needed (mostly for mapping the reads to a reference). We
will however discuss the general points of RNA-seq, provide pointers to relevant R
packages and perform some basic tasks with a single small RNA-seq data file; at the
end to illustrate differential expression with RNA-seq a small simulated dataset will
be used. RNA-seq analysis will be shadowing the array analysis. A good overview
of microarray analysis is given in [103]; the RNA-seq counterparts are [82] and [92].
A must read step-by-step tutorial style paper for analysis of RNA-seq using (mostly)
R is [7].

5.4 Preprocessing and Quality Control 169

5.4 Preprocessing and Quality Control

R is arguably the de facto platform for analysis of array data. There’s a large number
of packages available from Bioconductor and it’s the strongest point of R in relation
to analysis of genomic data. Here we are only working with Affymetrix arrays
but the approaches we will discuss are similar for other array platforms, keep in
mind however that each one has its own subtleties—before analyzing array data it
is always a good idea to read the documentation of the platform you are working
on, the array providers usually have extensive documentation available on their
websites. Very nice worked out examples for other platforms (and also Affymetrix)
are given in Hahne et al. [47] and Gentleman et al. [40]. There are many other
books on analysis of microarrays (not necessarily using R), a nice read is Zhang’s
[123] book.

We will work with Affymetrix GeneChip bovine arrays. This expression array
contains 24,128 probe sets representing 11,255 gene identities from Bos taurus build
4.0 and 10,775 annotated UniGene identities, plus 133 control probes. Each probe
set consists of 25-mer short oligos with 11 perfect matches (PM) and 11 mismatches
(MM), the base in position 13 is a mismatch. This set of oligos target the same gene
but different regions. Our dataset consists of five control slides and five treatment
slides (so much for my minimum of eight samples rule!). This is just a toy example
so the control and treatment are not real, but the method is the same for any contrast
you want to test.

Preprocessing and quality control are paramount in expression studies. In terms
of quality control, the key objective is to identify slides of bad quality and remove
them from further analyses. Preprocessing is another interesting feature of array
studies which aims to remove technical noise from the data. With RNA-seq the
objective is to remove reads (or parts of reads) of poor quality (reads that we think
have sequencing errors) and sequences that do not belong to our samples (adapters
and barcodes). We will discuss each of these, but first let’s get our data into R.

5.4.1 Importing Gene Expression Data into R

R has no functions for reading intensities from scanned images, and this is best
left to the manufacturers anyhow. Data from most platforms come as text files
(the extension might be, e.g., gpr, but it’s still just a text file). As such they can
be imported into R using the usual read.table function. The problem is that many
functions from the packages expect an ExpressionSet, this is just a container for
your data with some rather nice features to hold experimental data together and
extract/handle data, it’s usually easy to convert a data.frame to an ExpressionSet,
have a look at the library convert and implementation details of ExpressionSet in the
help files for the library Biobase. Affymetrix data is a bit more complicated since
the data files you’ll need (Cel) are in binary format. Luckily the affy library has a

170 5 Gene Expression Analysis

function—ReadAffy—to read Cel files which makes small work out of the task (see
also the affxparser package). Note that most of the packages we will use are from
Bioconductor, remember to set the Bioconductor repositories (select repositories) or
you will get an error saying that the package is not available and cannot be installed
(these packages are not in CRAN). Once you have installed the affy package, to read
our slide data all we have to do is

> library(affy)
> filenames=c(paste("ctrl",1:5,".CEL",sep=""),
+ paste("treat",1:5,".CEL",sep=""))
> Names= c(paste("C",1:5,sep=""),
+ paste("T",1:5,sep=""))
> slides=ReadAffy(filenames=paste("chapter5/",
+ filenames,sep=""),sampleNames=Names)
> print(slides)

AffyBatch object
size of arrays=732x732 features (19 kb)
cdf=Bovine (24128 affyids)
number of samples=10
number of genes=24128
annotation=bovine
notes=

That’s it! We can see that we have ten arrays and they are bovine (cdf=Bovine).
Before we go on we should mention the cdf—chip definition file. These are unique
to Affymetrix, they describe the layout of the oligos on the slides and which ones
form a probe set. There are some interesting discussions as to which cdf should be
used; as annotations evolve over time, what used to be a good match for a certain
gene might no longer be [37]. Various alternative cdfs have been developed (some
of those are on Bioconductor) and you can even make your own (see the package
altcdfenvs). Point is, whichever cdf you decide to use it will have to be in R’s library
path (if not, R will try to download the default cdf automatically). You can change
the cdf using slides@cdfName=“nameofcdf”.

There are many ways to access data in an AffyBatch object (see affy help files
for more details). For example the perfect match intensities can be retrieved with
pm(slides) and the mismatches with mm(slides).

5.4.1.1 Importing RNA-Seq Data into R

With RNA-seq data it is usually easier to perform the QC, filtering and alignment
steps out of R. A good starting point for the analysis in R is from BAM files. Bam
files are the binary version of SAM (sequence alignment/map) files, a widely used
plain text file format that contains information of aligned sequence data (see details

5.4 Preprocessing and Quality Control 171

in [68]). The R package Rsamtools provides functions to interface with samtools
(a suite of utilities useful for post-processing of aligned reads) from within R.

We can however also read in raw sequence reads generated by the sequencer into
R and do some initial processing of the files. The package ShortRead can be used
to import fastq files into R and also has filtering and trimming functions [76]. Fastq
files are text files with the sequence reads and quality scores for each nucleotide
(plus additional information about the instrument, lane, multiplexing, pair read,
etc.). Formats vary a little between platforms but the first line starts with @ and
sequence information, second line are the raw sequence letters, third line is usually
just a plus symbol (+), the last line has the quality scores for each nucleotide in the
second line; the encoding varies, Phred or a scoring scheme based on it is common
(check the documentation from the sequencer’s manufacturer). It is important to
know the correct scoring scheme so that the QC programs can correctly identify
good/bad reads. An example with the first lines of a fastq file from an Illumina
sequencer is shown in Fig. 5.1. In the book’s folder for this chapter you will find a
small example of a fastq file that we will use throughout the chapter for illustration
purposes. Note that this is just a small part of a real fastq file; roughly, RNA-seq for
one sample would hover around 2 Gb (much larger than the 5 Mb of our array data).
Once you have installed ShortRead, the fastq file can be read into R with readFastq.

> library(ShortRead)
> seq=readFastq("chapter5/RNAseq.fastq")
> summary(seq)

Length Class Mode
102362 ShortReadQ S4

Fig. 5.1 Example of a fastq file from an Illumina sequencer

172 5 Gene Expression Analysis

The sequences can be visualized with

> head(sread(seq))

A DNAStringSet instance of length 6
width seq

[1] 101 CCGCGAGCTACAGGCCCAGCTTCA...TCACAGCTGCCCTCA
[2] 101 TTCAAGTTCTGACCCACTTCAAGG...ACTGCAGCCATGAGT
[3] 101 GTCACATTCGAGTGGCGATACGGG...CATACGGGGACAAGG
[4] 101 AAAACATGAATCTTAAAAAAAACG...CAGCTATCCTTCAAA
[5] 101 GTTTGACAAAGGCTTTTGCCGGGC...TGTCTAGAGGGTTAC
[6] 101 CAAAAATCCTTGATGACATCTTTG...CCCCAAGGACTGACC

A real fastq file might be too large to fit in memory, ShortRead has some
functions that can help by breaking the file into chunks (FastqStreamer) or to sample
subsets to check for problems (FastqSampler). To get only the sequence reads use
sread(seq) and only the quality scores use quality(seq). Check the documentation
for additional details. Reads extracted using sread are of class DNAStringSet and
can be manipulated using the Biostrings package (this package has a lot of useful
functions to work with sequence data).

5.4.2 Quality Control

Once the data has been imported into R we can evaluate its quality. Microarrays
are prone to exhibit high levels of experimental and systematic variability that are
not related to the experimental contrasts. To ensure the best possible outcome it
is critical that these effects are identified and adequately handled. Thus, the bulk
of microarray analysis work lies in extensive preprocessing steps to determine the
quality of the slides and calibration methods to remove spurious variation (the same
as any other genomic dataset). Bad quality slides have unreliable intensity measures
and can have a very large effect on final results. These slides should be identified and
removed from the analysis. It is painful to exclude slides, each sample is expensive,
some samples are hard to obtain and there usually are too few of them right from
the start—but it just has to be done.

There are many ways to evaluate the quality of the data, we will see only a few
here but the key principle is that the data should be reasonably uniform within and
between slides—it’s essentially a search for absence of patterns. Qualitative and
quantitative quality control measures can be used to detect problematic slides, for
example image plots for detection of spatial effects, relative and raw log expression
intensities, slide correlations and others. Let’s see how to do these in R.

A good way to generate image plots is with the package affyPLM, which fits a
probe level model to the Affymetrix data. With affyPLM it is really easy to pick up
spatial effects in the data which otherwise would be hard to notice.

5.4 Preprocessing and Quality Control 173

> library(affyPLM)
> PLM=fitPLM(slides)
> par(mfrow=c(2,2))
> # image of log intensities
> image(slides[,1],main="log intensities")
> image(PLM, type="weights", which=1,
+ xlab=XLabel, main="weights")
> image(PLM, type="resids", which=1,
+ xlab=XLabel, main="residuals")
> image(PLM, type="sign.resids", which=1,
+ xlab=XLabel, main="sign of residuals")

First we fit a probe level model with fitPLM then we make four plots (Fig. 5.2)
for the first slide. Initially we just plot the log intensities from the raw data, then
the weights used in the regression to down-weigh outliers, then the residuals and
finally just the sign of the residuals: one color for positive residuals and another

Fig. 5.2 Example of a bad quality slide. Top-left: log transformed raw probe intensities. The
other three plots are derived from a fitted PLM model. Top-right: weights used to down-weigh
outliers, light green shows areas of high weights and dark green low weights (outliers). Bottom-
left: residuals. Negative residuals in blue and positive residuals in red. The intensity of the coloring
reflects the value of the residuals, residuals close to zero are shown in white. Bottom-right: sign of
residuals. Residuals with no intensity scaling—negative in blue and positive in red

174 5 Gene Expression Analysis

Fig. 5.3 Example of a good quality slide

color for negative residuals—makes it very easy to detect spatial effects. Note
the large spatial effect in this slide, we already have a good candidate for a bad
quality slide! Compare this slide with the slide (ctrl5) shown in Fig. 5.3—quite a
difference! Notice also that it is much harder to pick up problems just from the raw
log intensities plot.

Relative log expression is another commonly used QC measure (Fig. 5.4).
Function Mbox will plot the M values for each array based on a pseudo-median
array (details below). We would hope the medians are close to zero and the spread
across arrays is similar.

> treatcol=c(3,3,3,3,3,2,2,2,2,2)
> Mbox(PLM,col=treatcol,
+ main="relative log expression",show.names=FALSE)

We used a variable treatcol to color code each treatment. Slides 1, 6, and 7 look
somewhat worrisome.

We could also make boxplots or histograms of the raw log intensities (Fig. 5.5).
Again we observe a fair bit of variability in the data set.

> par(mfrow=c(2,1))
> boxplot(slides, col=treatcol,

5.4 Preprocessing and Quality Control 175

−
4

−
2

0
2

4

relative log expression

Fig. 5.4 Relative log expression plot from a fitted PLM

6
8

10
14

raw log intensities

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

raw log intensities

log (base 2) intensities

de
ns

ity

Fig. 5.5 Boxplot and histogram of raw probe level log intensities

+ main="raw log intensities", show.names=FALSE)
> hist(slides, col=treatcol,
+ lty=1,xlab="log (base 2) intensities",
+ main="raw log intensities")

It is also useful to plot the correlations between slides (Fig. 5.6). This can
help identify outlier arrays and detect if the sample treatments group together—
in principle slides within the treatment group should be more similar than across
treatments (but not necessarily always, depends on the differences between the
groups). To exemplify we use the perfect match intensities and matrixPlot from
the library ABarray for graphing.

> library(ABarray)
> Cor=pm(slides)

176 5 Gene Expression Analysis

C
1

C
2

C
3

C
4

C
5

T
1

T
2

T
3

T
4

T
5

T5

T4

T3

T2

T1

C5

C4

C3

C2

C1

Perfect match probes (PM)

0.591
0.611
0.631
0.652
0.672
0.693
0.713
0.734
0.754
0.775
0.795
0.816
0.836
0.857
0.877
0.898
0.918
0.939
0.959
0.98
1

Fig. 5.6 Plot of array–array Pearson perfect match (PM) probes intensity correlation coefficients

> Cor=cor(Cor)
> matrixPlot(Cor, nrgcols=21, k=21,
+ title="Perfect match probes (PM)")

There are many other metrics, e.g., principal component analysis, RNA degrada-
tion plots, ratio of PM and MM expression intensity, MA plots (we’ll discuss these
later), check control probes. In spotted arrays we can look at signal-to-noise ratios,
block effects, print-tip effects, dye effects, etc. See [47] and [40] for worked out
examples.

Our data is definitely nothing to write home about. There are spatial effects, lots
of variation between slides, but that’s just the nature of real data. I would probably
exclude slides one and six (and look more closely at seven) from further analysis or
at least repeat the analysis with and without them and compare the results, if they
are the same good, if not you will have to decide if the difference is due to the slides
being bad or because you removed 20 % of your data—a tough call! As a rule of
thumb, even though there are no well-defined criteria as to when an array should be
discarded/redone, the combined QC measures can provide sufficient diagnostics for
an empirical decision, ergo if a slide looks bad across several different QC tests, get
rid of it.

5.4.2.1 Quality Control of RNA-Seq

With the RNA-seq data, a popular non-R program for quality control is fastQC. It
is a Java program that, for each fastq file, generates a comprehensive html report
with various metrics; e.g., quality scores per position and per sequence, GC content,
adapter contamination, among others. As a reference, you will find the fastQC report

5.4 Preprocessing and Quality Control 177

for this data in the chapter’s folder. FastQC can read fastq files as well as BAM
and SAM. While highly informative, these reports can become unwieldy in large
projects with hundreds or thousands of fastq files (one report for each file). The
program will run on the command line, but it also has a nice graphical interface
which makes it quite easy to use. FastQC is freely available from

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Note that fastQC is a Java program and you will need the Java runtime installed

on you machine for it to run. You can download Java from
https://java.com/en/
A similar job can be done in R with ShortRead with the qa function. By default

only one million reads from each file will be used to create QC summaries. The
returned object is of class FastQA and contains information on number of reads,
base calls, quality scores, among others. To run QC on our data

> seqQC=qa("chapter5/RNAseq.fastq")
> seqQC

class: FastqQA(10)
QA elements (access with qa[["elt"]]):
readCounts: data.frame(1 3)
baseCalls: data.frame(1 5)
readQualityScore: data.frame(512 4)
baseQuality: data.frame(94 3)
alignQuality: data.frame(1 3)
frequentSequences: data.frame(50 4)
sequenceDistribution: data.frame(57 4)
perCycle: list(2)

baseCall: data.frame(426 4)
quality: data.frame(3618 5)

perTile: list(2)
readCounts: data.frame(0 4)
medianReadQualityScore: data.frame(0 4)

adapterContamination: data.frame(1 1)

The various elements from the FastqQA object can be retrieved with, e.g.

> seqQC[["readCounts"]]

read filter aligned
RNAseq.fastq 153557 NA NA

> seqQC[["baseCalls"]]

A C G T N
RNAseq.fastq 4169015 3619064 3585408 4135305 465

QC results can be used for additional downstream summaries that you create
yourself. Or you can use the report function from ShortRead to create an html report
and save it in the directory of Chap. 5

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://java.com/en/

178 5 Gene Expression Analysis

Fig. 5.7 Per cycle quality scores. Notice how quality starts to drop after 80 bp

> report(seqQC,dest="chapter5/QCreport")

[1] "chapter5/QCreport/index.html"

If you open the report you will see that it is based on a template and the comments
do not necessarily generalize across platforms. It is not too hard to change the
template for your own purposes/platform though. A good place to begin evaluation
of the data is to check for adapter contamination (need to exclude, will cause
alignment problems). Next see if the read quality is acceptable across all cycles
(think in terms of nucleotide position 1–n); at the beginning and end of reads the
quality tends to drop down—you might need to trim a few bases on each side (again
a tradeoff, reads become shorter and harder to align but of better quality or longer
but unreliable). Figure 5.7 shows the quality score per cycle, notice how quality
starts to drop after around 80 bp—in this case you might want to trim the last 10–20
bases. Also check quality of the sequences themselves (how many have high quality
scores). These are the basics, but there are many other metrics you could evaluate,
e.g., the distribution of nucleotide composition and GC content to check if they are
within what you would expect.

A bit cumbersome and time demanding but worthwhile doing is to run QC on
the raw sequences, filter the data based on parameters that you think are reasonable
given the quality of the data and then run the QC all over again to see if the data
now looks better.

5.4 Preprocessing and Quality Control 179

5.4.3 Preprocessing

Back to the arrays. Slides deemed of adequate quality will then undergo calibration
steps which generally consist of: (1) background correction to remove intensity
measures that are not due to the target; (2) normalization which is necessary for
across array comparisons, achieved by adjusting the overall distribution intensities
making them similar across slides (note that this step usually makes a dataset
testable only within itself, if new slides are added to the experiment, the entire
set has to be renormalized); and (3) a summarization step which is more specific
to Affymetrix GeneChips since these are unique in the use a set of short oligos
to target a transcript. This probe set has to be summarized into a single intensity
value for each target on each array. Different methods have been developed for each
of these steps [59] and, even if it is still unclear which approach is best, it has
been shown that the main source of variation between results is due to the choice
of summarization method [49]. It’s probably a good idea to run the analysis with
different summarization methods and compare the results.

Various summarization algorithms have been proposed. The main ones are: MAS
5.0 [2], RMA [57, 58], GCRMA [121], PLIER [3], VSN [56], and MBEI [67]. We
will not discuss the algorithms here, just focus on how to use them in R. If you have
to pick a favorite, RMA is not a bad choice, it’s statistically sensible and has been
widely used in the most diverse range of projects.

There are direct wrappers to most of the summarization methods as shown
below. For MAS 5.0, RMA, and GCRMA you’ll need the library affy, for plier the
package plier, for VSN vsn and for MBEI you can use expresso in the affy library.
mas5, rma and gcrma are wrappers for expresso, these methods could be called
using expresso with a summary.method argument. Check the documentation for
the various parameters and possible combinations for each summarization method,
as for example the summarization call to MBEI shown below (e.g., background
correction method, normalization method. . .).

> library(affy)
> MAS=mas5(slides,sc=200)

background correction: mas
PM/MM correction : mas
expression values: mas
background correcting...done.
24128 ids to be processed
| |
|####################|

> MAS =exprs(MAS)
> MAS =log2(MAS)
> MASCalls=mas5calls(slides)

180 5 Gene Expression Analysis

Getting probe level data...
Computing p-values
Making P/M/A Calls

> MASCalls =exprs(MASCalls)
> RMA=rma(slides)

Background correcting
Normalizing
Calculating Expression

> RMA =exprs(RMA)
> GCRMA=gcrma(slides)

Adjusting for optical effect.....Done.
Computing affinities.Done.
Adjusting for non-specific binding.....Done.
Normalizing
Calculating Expression

> GCRMA=exprs(GCRMA)
> library(plier)
> PLIER=justPlier(slides,normalize=TRUE)

Quantile normalizing...Done.

> PLIER=exprs(PLIER)
> library(vsn)
> VSN=vsnrma(slides)

vsn2: 535824 x 10 matrix (1 stratum).
Please use 'meanSdPlot' to verify the fit.

Calculating Expression

> VSN=exprs(VSN)
> MBEI = expresso(slides,
+ normalize.method="invariantset",
+ bg.correct=FALSE,
+ pmcorrect.method="pmonly",
+ summary.method="liwong")

normalization: invariantset
PM/MM correction : pmonly
expression values: liwong
normalizing...done.
24128 ids to be processed
| |
|####################|

5.4 Preprocessing and Quality Control 181

> MBEI=exprs(MBEI)
> MBEI=log2(MBEI)

So, what did we do? We summarized the data using each of the methods. Then
we used the function exprs to extract the intensity values from the ExpressionSet
object as a matrix of probes× samples. For example

> print(MAS[1:5,1:3])

C1 C2 C3
AFFX-BioB-3_at 7.382151 7.968781 8.026792
AFFX-BioB-5_at 8.641223 7.735663 8.224185
AFFX-BioB-M_at 8.721451 8.333241 8.744490
AFFX-BioC-3_at 9.656310 7.623355 8.421468
AFFX-BioC-5_at 9.278536 7.800786 8.248430

Notice that sometimes we converted the expression intensities into log2 and at
other times we did not. RMA, GCRMA, PLIER, and VSN already return intensities
in log 2 scale (usually an adequate data transformation for array data—it is a natural
fit to digital imaging data which is coded in bits).

One last thing to notice is the function mas5calls. This returns a matrix of the
same dimension of MAS with flag calls for the expression of each probe in each
sample. The flags are P—present, M—marginal, and A—absent. These are handy
to filter the data before testing for differential expression, for example, remove all
probes that are flagged as marginal or absent in all arrays. This reduces the number
of tests to be carried out—less problems with multiple testing; and further, low
intensity probes tend to be unreliable since they are at the border of detection of the
scanner, it’s good to remove them.

> print(MASCalls[1:5,1:3])

C1 C2 C3
AFFX-BioB-3_at "M" "P" "P"
AFFX-BioB-5_at "P" "P" "P"
AFFX-BioB-M_at "P" "P" "P"
AFFX-BioC-3_at "P" "P" "P"
AFFX-BioC-5_at "P" "P" "P"

Before we test our datasets for differential expression we can check what the
normalized and summarized data looks like. We will use RMA to exemplify.

> par(mfrow=c(2,1))
> boxplot(RMA, col=treatcol,
+ main="Boxplot of normalized log intensities",
+ show.names=FALSE)
> plot(density(RMA[,1]),col=treatcol[1],
+ main="Histogram of normalized log intensities ",
+ xlim=c(min(RMA),max(RMA)),xlab="log2 intensity")

182 5 Gene Expression Analysis

l

l

lll

lll

lll

ll
l

lll
l
l

l

l
lll
l

l
ll
l

l

ll

ll

l

l

l

ll
lll

l

l

l

l

l
ll

l

lll

l
lll
lll
l

l

l

ll

l

ll

l
l

l

lll

l

l
lll

l

llll
l
llllll
ll

l

l
l
ll
l

l
ll
l
lll

l
ll

ll

l

ll

l

l

l

ll

l
l

ll

l
ll

ll

l

l
ll
l
l
l
ll

l

l

l

l

l
l
ll
ll
l

ll

lll

l

l

l

l

l
l
lll
ll
ll

l

ll
l

lll

l
ll
ll

l

l
ll

l

l

l

l

l

l

ll
l
ll

l

l

l

l
l
l

l
l

l

ll

l
l
l
l

l
l

ll

l

l
l

l

l
l
ll

l
l

l

ll

l
lll

l

l

l

llll

l

l

ll

l

l

l
l

l

l

l

l

l

l

lll

l

l

lll
l
l

ll

ll

l
llll

ll

l
llll
l
l

ll
ll
l

l

l
l

l

l
l
l

l
ll
l

l
l
l

l

l
l

l

l
lll
l

l

l
l

l

ll

l

l

l

l

lll
l
l

ll
l
lll
l
llllllll
l
l

l
ll
l
l

l
ll

l
l
ll

l
l
l

ll

ll
l
l

l

l

l

l

l
ll
l

l
l
l

l

l
lll
ll

llll
l

l

l

l
l

l
l
l

l
l
l
l
ll

l

l
l
l

l
l
l
lll
l
ll

l

l
ll
l
l

l
l
l

ll
lll

l

l

l
lll

l

ll

ll
l
l

ll
l

l
l

l
l
l
ll
ll
l
l

lll

l

l

ll

l
l
ll
l
l
l

l

l
l

l

l
lll
ll

l

l
l

l
l

ll

l

l
l

l
l
l

l
l

l

l

l
l
ll

l

l

ll

l

l

l

lll

l

l

l

l

l

l

l

ll

l

l

l
lll

l

ll
ll
l
l
l
llll
ll
llllll
l

ll

l

l

llll

l

l
l
l
l
l

lll
l
l
l
l
l

l

l

l

l

l

l

llll

llll
l
ll

l
l
l
ll
l

l

l

ll

l
ll

lll

l
l
l

ll

ll
l
l
l

l

lll

ll
ll
l

lll

l

l
l

l

lllll

l

l

l
ll
ll
l

l

l

l
l

lll

l
l
l
l
ll

l

lllll

l
l
l
l
l
lll

l
ll

ll

l

l

l
l

l

l
l

l
l

l
l

lllll

l

l

l
l
ll

l

l

l

l

ll
l
lllll
l

ll
l

l
l

l
l

ll
lll
l
l

lll

l

l

ll

lll
ll
l

l
l
l

l

l

l

l
l

l
ll
l
ll

l

l

l

ll
l

ll

l

l
l

l

l

l

l
l

l
ll

l

l
ll
l

ll

l

l

ll

l
l

l

l

l
l
ll

l

l

l

l

l

l

l

ll

l
l

l

lll

l

ll

l
l

lllllll
llllllll
lll
l

l
l
l

l

l
ll
ll
l
l

l

l
l

l
l
ll

lll
l

l

l
l
l

l

l

l

l

l

l
llll

lllllll
ll

l

l
ll
l
l l

l

l

ll

l
ll

lll
ll

l
ll

l
l
ll

ll

l

l

ll
ll

l

ll

ll

l

llll
ll

l
l
l
ll
l
ll
l

l
ll

l
ll

ll
l

l

lllll
l

l

lll
ll

l
ll

ll

l

ll

l

l

l

l

l
l

l

l
l

lll
l
l
l
l
lll

l

l

l

l

ll
l
ll
l

ll
l

l
l

l
l
lll
ll
l
l

l
l

lll

ll
l
l
ll
l

l

l

l

l

l

l
ll
l
ll

l

l

l

l
l
ll

ll

l

l
l

l
l
l

ll
l

l

l
llll
ll

l

l

l

lll

l

l

l

l

l

l
l

ll

l
l

l

l

lll

l

ll
l
l
l
lllll
l
l
l
l
l

l
lll
l

l
l
l

l

l
lll
l
l

l
l

l
l

l

l
lll
l
l

l
l

l

l

l

l

l

l
l
llll

ll
lll
ll

l
l
l
l
l
l
l l

l

l

lll

l
ll

l
l
l

l
l
l

ll

l
ll

l

ll
ll

ll

l

lll

ll
ll

l

llll

l

ll

l

l

lll

l

ll

l

l

ll
l
ll
l
ll
l

ll
l

ll
l
l

l
l
l

l
ll

l

llll
llll
l
lll

l
ll
ll
l
l

lll

l
l

l

l
l

l

l
l

l

l

l

l

l

l

ll
l

lll
l
l

l

l

l
lll

l
l

l

l

l
lll
llll
l

ll

l

l

l

l

l
l
l
llll
l

l
l

l

l

l

ll

l
ll
ll
lll
l

l

l
l

l

l

l
l
l
l
ll

l

l

l

l
ll

ll

l
l

l
l

l

l

ll

ll

ll
l
l

l

l

l

l
l
l

l

l

l

ll

l
ll

l

ll

l

l
llll

l

l

l

l

l
l

l

l

l

l

l

l

l

lll

l
l

ll

l
l

lllllll
l
l

l
ll
ll
l
l
ll
l

l

ll

l
l

l

llll
ll

ll

l

l
l

l
l

l
lll
l

l

l

l

l

l

ll

l

l

l

l

l
llll

llllllll
l
l

l
l
l

l

l

ll
ll
l

l

l

l
l

l
l
l

ll
ll
ll

l
l
l

l
l

ll

ll

l

l

l

l

l
l
l

l

lll

l

l

l

l

ll
lll

l

l

ll
l
l
l
l

l
ll

l
l
l

l
l
ll
l

l

ll
l
llll
l

l

ll
l
ll
ll

l
ll

l

l

l

l
l

l
l

l

l
l

l

l

ll
l

l

l

l

l
ll

l

l

l

l
l
l

l

l

ll
l

ll

l

l
l

l

l
l
l

l
l

lll

l

ll

l
l
l

l
l
ll
l
lll

l

l

l

l

l

lll

ll

l

l
l

ll

ll

l

l
l
l
l

ll

l
l

l

l

l
ll

ll

l

l

ll

l
l

l

l

l
ll

l

l

l

l
ll

ll

l

l

l
ll
l

l
ll
l

ll

l
lll
llllll
ll
l
llll
l
ll

l

ll

l

l
l
l

l

llllll
l
ll

ll

l

l

l
ll
l

l

l

l
l

l

l
l

l

lllll

ll
llll
ll
l

l

l
l
ll

l
l

l l

l

l

ll

l
ll

lll

l
l

l
ll

l

l
l
l

l
ll
l

l
l
ll

l

l

l
l

l

llll
l

l

l

ll
lll
l
l
l
l

ll
l
l

l
ll
ll

l

llll
l
l
l
l

l

ll
l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l
l

lll

l

ll
ll

l

ll

l

l

l

l
l

ll

l

l

l
l

l
l
lll

l

l
l

l

ll

ll
l

l

l

l
ll
l

l

l

l
l

l
l

ll

l
l

ll

l
l

l

ll
l

l
l

l

l
l
l
l

l
l

l

l

l
ll
l

l

l
l
l

l
ll

l

l

lll

l

l

l
l

l

l
l

ll

ll

l

lll
l

ll

l
l

ll

ll
l

l

ll

l
l

l

lll
l
l
l
l
l
l

l

l
l

l
l

l
l
l

l

l

l

lll

l

l
ll
ll

lll

l

l

l

l

l

l
l

l

l

l

l
l

llll

l
ll
ll

l
l
l

l

llll

l
l

l

lll

l
ll

l
l

l
ll

l
l

ll
ll

l

l

ll

l

ll

l

l

l
l

l

llll
l

l

l

l
l
l
lll
l

lll

lll

l
l
l

ll

l

l
ll
ll

l
ll
l
l
ll
l

ll

l
l

l

ll

l

l

l

l

l
l

l

l

l
l

ll
lll

l

l

l
l
ll

l

l
l

l
ll

lll
l

ll
l

ll

l
l
l
ll
l

lll

l

l
l

l

l

ll

l
l
ll
l
l
ll

l

l
l

l

l
ll
l
ll

l

l

l

ll

ll

ll

l
l

l
l
l

ll

l

ll

l

l
l
ll

l

l

l

ll

l
ll

l

l

lll

l

l

l

l

l

l

l

ll

l
l

l

l

ll
l

l

ll

ll
l
l
l
lll
ll
l

l
l
lllllll
l

ll

l
l

l

l
lllll

l

l

l
l
l

l

l

lll
l

l

l

l

l

l

l

l

l

l
l

l
lll

lll

l
lll

l

l
ll

l

l
l
ll
l

l

l

ll

l
ll
ll
llll

l
ll

l
ll

l
l
ll

l

lll

ll
ll

l

ll

l

ll

l

l

lll

l

lll

l
l

l
ll
l

l

l

l
l

l
lll

l
l
l
l
l
l

l

llllll
l

l
ll
ll
l
ll

l
ll

l
l

l

l

l
l

l

l

l

l
l

l
l

ll
l
l
l
l

l
lll

l

l

l

l

l
ll

lll

ll
l

l
l

l
l

l
lll
l
l
l

l
l
l

l

l

ll

l
ll
ll
l
l
l
l
l

l

l

l

l

l

l
ll
l
ll

l

l

l

ll
l

l

l

l

l

l
l

l
l
l

l
l

l
ll

l

l
l
ll

l

l

l

ll

l
ll

l

l

l

llll
l

l

l

l

l

l

l

l

ll

l
l

l

l

lll

ll

ll

ll
llllll
lll

l

llll
llll
l

ll

l
l

l

llll
l

l

l
l
l
l

l
l

lll
l

l

l

l

l

l

l

l

l

l

l

l
llll

lll

l

l
lll

l

l
l

l
l
l
ll l

l

ll

l
ll

lll
l
l

l
ll

ll

l
ll
l
l

l

l

ll
ll

l

ll

l

ll

l

l

llllll

l
lll

l
l

l

l
l

l
lll

l
l

ll
l

l

l
lll
lll

l
ll

ll
l
lll

l

ll

l
l

l

l

l
l
l
l

l
l

l
l

ll
lll
l

l
lll

l

l

l

l

l
ll
ll

ll
l

ll

l
l

ll
ll
l
l
l

l
l
l

lll

l
l
ll
l
l
l

l
l

l

l

l

l

l

l
l
l

l
ll

l

l

l

ll
l

l

l

l

l

l
l

l
l

l

ll

l
ll

l

l
l
ll

l

l

l

ll

l
l

l

l

l

l
l
l
l

l

l

l

l

l

l

ll

l
l

l

l

lll

l

ll

l
l

l
llllll
l
l
lll
llll
l

ll

l

l

l

l
lll
l
l
ll

l

l
l

l
l

lll
l

l

l

l

l

l

l

l

l

l

l

l
llll

lll
l
l
l
l

l

l
ll
l
l
l

2
4

6
8

12

Boxplot of normalized log intensities

2 4 6 8 10 12 14

0.
00

0.
10

0.
20

Histogram of normalized log intensities

log2 intensity

D
en

si
ty

Fig. 5.8 Boxplot and histogram of normalized probe set log intensities

> for (j in 2:length(treatcol))
+ lines(density(RMA[,j]),col=treatcol[j])

If we compare the normalized data in Fig. 5.8 with the data in Fig. 5.5 we see
that the normalization steps really did their job—we’ve stabilized the means and
the variances. Just be careful because the normalization normally works but that is
not an indication that your slides are ok now, there’s only so much data bending
you can do. Another interesting graph is to plot the first two principal components
of the data (Fig. 5.9), we would expect that the samples from the same treatment
would be more similar to each other and cluster together while the distances between
treatments would be greater—this is not entirely the case here (but not really very
bad either). This is another indication that our data is not of very good quality or that
the contrast is not very large. Be careful with the interpretation of the PCA, if there
are a lot of differentially expressed genes the treatments will separate well (and it
is an early indication of this), otherwise not. If you notice that the samples group
into, e.g., dates of running the hybridization or slide batches (could fit these effects
as a color code), then you have a concern. Slides that are very far apart from others
(irrespective of treatment) also should be looked at more closely.

> PCA=princomp(RMA)
> PCA=loadings(PCA)[,1:2]
> plot(PCA,col=treatcol,main="Principal components plot",
+ pch=treatcol,xlab="PCA1",ylab="PCA2")

In Fig. 5.9 we see that three slides are quite different from the others. We can find
these slides quite easily using which

> which(PCA[,1]> -0.31)

C1 T1 T2
1 6 7

And the same three slides we had flagged before show up again. . .

5.4 Preprocessing and Quality Control 183

−0.33 −0.32 −0.31 −0.30 −0.29 −0.28

−
0.

2
0.

0
0.

2
0.

4
0.

6

Principal components plot

PCA1

P
C

A
2

Fig. 5.9 Plot of first and second principal components for RMA normalized data

5.4.3.1 Preprocessing of RNA-Seq

We left off the RNA-seq data after running QC with ShortRead and we noticed that
the quality was not too good after 80 cycles. The next step is to filter the data by
removing adapters, trim low quality cycles, and remove low quality reads. Again
this is generally easier to do out of R. A good program for our Illumina data is
trimmomatic [12]. The program is available from

http://www.usadellab.org/cms/?page=trimmomatic
Conveniently it includes the adapters that Illumina uses, making life much easier.

Trimmomatic also requires the Java runtime. Copy trimmomatic and the adapters to
your working directory, from the command prompt (not from R) go to the working
directory (using, e.g., cd c:\primer) and then run

Java -jar trimmomatic-0.32.jar SE -phred33
chapter5\RNAseq.fastq chapter5\trimmedRNA.fastq

ILLUMINACLIP:adapters\TruSeq3-PE.fa:2:30:10
LEADING:3
TRAILING:3
SLIDINGWINDOW:4:15
MINLEN:50
HEADCROP:10
CROP:80

Note that the command has to be on a single line, but here for clarity it is split
into multiple lines. This will run trimmomatic with our RNA-seq file and output
filtered results into a new fastq file called trimmedRNA.fastq. There are quite a few
parameters here (for full details check the help files of the program) but briefly:

http://www.usadellab.org/cms/?page=trimmomatic

184 5 Gene Expression Analysis

SE means single end reads, for paired-end data use PE (note: this example is from
paired end data but we are using just one file so let us pretend it is single end). Next
is the quality scoring scheme (phred32 or phred64), then the names of the input and
output files following by trimming parameters. ILLUMINACLIP points to the file
with the adapters; LEADING and TRAILING remove bases at the beginning and end
of the reads below a score of 3; SLIDINGWINDOW slides across the sequence and
removes those inside a window of length 4 that have an average quality below 15;
MINLEN removes sequences that are shorter than 50 after filtering; HEADCROP
removes the first 10 sequences at the start of the run (check the QC report—there is
a lot of nucleotide content variation at the start of the sequences) and finally CROP
deletes everything after the first 80 bases (recall the quality was not so good after
80 cycles). Note that commands are sequential. This leaves us with a filtered fastq
file with 112,364 reads (73.17 %) of the initial reads and you will notice that the
length is shorter due to edge trimming and sizes vary (originally they were all the
same length). If you run a QC report again (the fastQC report is in the folder) you
will see that the metrics are much better now, but it was a hard pruning—probably
excessive. Run QC with ShortRead to compare the results.

> seqQC=qa("chapter5/trimmedRNA.fastq")
> report(seqQC,dest="chapter5/trimmedQCreport")

[1] "chapter5/trimmedQCreport/index.html"

Short Read can also be used for data filtering. It has some in-built functions and
it also allows users to create their own. Check the documentation for details, but just
to illustrate

> seq=readFastq("chapter5/RNAseq.fastq")
> seq

class: ShortReadQ
length: 153557 reads; width: 101 cycles

> seqF=seq[nFilter()(seq2)]
> seqF=trimEnds(seqF,"I")
> seqF

class: ShortReadQ
length: 153557 reads; width: 0..80 cycles

We still need to align the data against a reference genome. This has to be done
out of R and a good option is bowtie2 [66]. For this you will need bowtie2 installed
and an index for reference genome (which is quite large, in excess of 3 Gb). You
can make your own index from raw sequence data and use bowtie2 to build an index
or you can download one that is already available. We will not go into details of
bowtie2 but the software and some indexes can be downloaded from

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

5.5 Analysis of Differential Expression 185

Fig. 5.10 Snapshot of the console using bowtie2 to align the trimmed RNA-seq data against the
reference genome

Additional indexes can be downloaded from Illumina:
http://support.illumina.com/sequencing/sequencing_software/igenome.html
The commands to align our data and the output from bowtie2 are shown in

Fig. 5.10. The aligned data is in SAM format.
The last step is to convert the SAM file into BAM, sort and index it (makes

searches much faster and is a requirement of some programs). For this we use
samtools [68] which can be downloaded from

http://www.htslib.org/
Install samtools in the working directory and from the command line (console,

not R) run

samtools\samtools.exe import
reference\bos_taurus.fa.fai
chapter5\alignedRNA.sam chapter5\alignedRNA.bam

samtools\samtools.exe sort
chapter5\alignedRNA.bam chapter5\sortedAlignedRNA

samtools\samtools.exe index
chapter5\sortedAlignedRNA.bam

Again all three are single line commands, just split for convenience. You should
end up with a final dataset ready to go (sortedAlignedRNA.bam and the index has the
same name with extension .bai). Note that you will again need a reference genome
to convert from SAM to BAM. An additional step might involve merging files to
concatenate data from a sample that is spread across two or more SAM/BAM files.
Use the merge command from samtools.

5.5 Analysis of Differential Expression

Returning to the arrays, we start by filtering out the control probes and the probes
that were flagged as absent or marginal in over half of the samples. The control

http://support.illumina.com/sequencing/sequencing_software/igenome.html
http://www.htslib.org/

186 5 Gene Expression Analysis

probes are what they sound—controls. They are extraneous to the target organism
and at least in principle they should not be differentially expressed between
treatments (they are also spiked-in at different concentrations and can be used to
test intensities). The truth is, more often than not these controls will pop up as
differentially expressed, so once you are through with them in the QC stages remove
them. The A/M flagged probes should be removed to reduce the number of tests.
Give some consideration to the cut off threshold. In our example, if a probe is
expressed in one treatment but not in the other it would be reasonable to expect
five slides flagged as A/M and these are probably the probes you are most interested
in—expressed in one treatment, not expressed in the other. Either separate the calls
per treatment and then decide on a cut off or at least make sure that you do not
penalize non expressed treatments. I’m stressing this point because the P/M/A flags
are commonly mistaken with bad quality reads and they should not be interpreted
as such. There’s a difference between 50 % are bad and 50 % are not expressed.
There are other options for filtering the data. Instead of flag calls use a filtering
criterion based on, e.g., variance, expression intensity, etc. The genefilter library
has some nice functions, particularly nsFilter. Other filtering options depend on
what you intend to do with the data downstream, if you want to associate probes to
genes/function you will need the probes to be annotated (see Chap. 6), if there are
unannotated probes on the array and they are of no interest they can be filtered out
as well (duplicates, different probes that target the same gene can also be filtered
out—but I tend to keep them, at least for differential expression testing).

We will continue using the RMA normalized data, but it’s exactly the same for
all other datasets. The filtering steps are

> dim(RMA)

[1] 24128 10

> index1=grep("AFFX",row.names(RMA),ignore.case=TRUE)
> length(index1)

[1] 133

> Pcounts=apply(MASCalls,1,
+ function(x) length(which(x=="P")))
> index2=which(Pcounts<=4)
> length(index2)

[1] 15123

> summary(factor(Pcounts))

0 1 2 3 4 5 6 7 8
10396 2017 1176 804 730 650 688 816 1115

9 10
1435 4301

5.5 Analysis of Differential Expression 187

> fRMA=RMA[-unique(c(index1,index2)),]
> dim(fRMA)

[1] 8945 10

First we use grep to identify the control probes (Affymetrix uses AFFY in the
probe names), then we use apply to count the number of P calls for each probe and
get the indices of those with 4 or less Ps per probe (6 will be A or M). We see that a
large number of probes are absent in all samples. After filtering we have only 8,945
probes left.

Now we are ready to test for differential expression (DE). There are many
ways of testing for DE ranging from simple mean fold change differences between
treatments to mixed models with various effects (slides, probes. . .). We will use
linear model modeling from the package limma [104]. limma has been widely
used in array studies and is a very mature and easy to use package. There is an
excellent online manual which covers not only Affymetrix arrays but also analysis
of spotted arrays and data preprocessing. To use limma with Affymetrix arrays is
straightforward, all we need is our data, a design matrix, and a contrasts matrix
to define the comparisons of interest. The design matrix simply states which
arrays belong to which treatment, the contrasts matrix define which treatment
combinations we want to test. In our case the design matrix is

> Design=cbind(c(rep(1,5),rep(0,5)),
+ c(rep(0,5),rep(1,5)))
> colnames(Design)=c("ctrl","treat")
> print(Design)

ctrl treat
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 1 0
[6,] 0 1
[7,] 0 1
[8,] 0 1
[9,] 0 1

[10,] 0 1

And the contrasts matrix is just as simple

> Contrasts=matrix(c(1,-1),byrow=F)
> colnames(Contrasts)="ctrl-treat"
> rownames(Contrasts)=c("ctrl","treat")
> print(Contrasts)

ctrl-treat
ctrl 1
treat -1

188 5 Gene Expression Analysis

All we did was define which samples belong to each treatment in the
design matrix and in the contrasts matrix we defined that we want to test
control× treatment (not as if we had anything else to test anyhow). The order
of the terms is important to interpret which probes are over or under expressed. I’m
not fond of the terms up regulated and down regulated, that depends on how the
contrast is set up. For a classic control× treatment it might make sense (remember
that we would have to swap the contrasts) but for anything else it can be a bit
confusing. Using the order of the terms makes it easy to interpret results in any way
which is convenient. For example in our case we know that the contrast is control–
treatment, hence any positive difference in expression means that the control is
more expressed than the treatment and any negative difference means the treatment
is more expressed than the control. Note: here we will use the full RMA dataset, but
we should of course use the filtered subset (fRMA); this is just to illustrate high and
low expression differences during the analysis (as an exercise repeat all the next
steps later on with fRMA instead). To test for differential expression we use

> library(limma)
> Fit=lmFit(RMA,Design)
> Fitc=contrasts.fit(Fit,Contrasts)
> Fitb=eBayes(Fitc)

lmfit is used to model the data and is quite similar to lm as we have used before
but results are stored in a MarrayLM object which is a bit different from the lm
object. But we can still retrieve the coefficients from Fit using

> head(Fit$coefficients)

ctrl treat
AFFX-BioB-3_at 7.838531 7.711012
AFFX-BioB-5_at 7.514108 7.254552
AFFX-BioB-M_at 8.122386 8.002476
AFFX-BioC-3_at 8.438084 8.204015
AFFX-BioC-5_at 7.832757 7.709140
AFFX-BioDn-3_at 11.314343 11.424412

Next we tested our contrast (which here is just the difference ctrl–treat). Again
we can retrieve the coefficients with

> head(Fitc$coefficients)

ctrl-treat
AFFX-BioB-3_at 0.1275193
AFFX-BioB-5_at 0.2595556
AFFX-BioB-M_at 0.1199100
AFFX-BioC-3_at 0.2340691
AFFX-BioC-5_at 0.1236175
AFFX-BioDn-3_at -0.1100690

5.5 Analysis of Differential Expression 189

And to test for differential expression we used the function eBayes which uses
an empirical Bayes shrinkage of standard errors to calculate the statistics [104]. We
can retrieve the results from the moderated t-test and corresponding p-values using

> head(Fitb$t)

ctrl-treat
AFFX-BioB-3_at 0.3595526
AFFX-BioB-5_at 0.7051612
AFFX-BioB-M_at 0.3181206
AFFX-BioC-3_at 0.6716419
AFFX-BioC-5_at 0.3544924
AFFX-BioDn-3_at -0.3922216

> head(Fitb$p.value)

ctrl-treat
AFFX-BioB-3_at 0.7249713
AFFX-BioB-5_at 0.4931869
AFFX-BioB-M_at 0.7554603
AFFX-BioC-3_at 0.5136039
AFFX-BioC-5_at 0.7286702
AFFX-BioDn-3_at 0.7012672

If there were more contrasts we could also retrieve the F-statistics and their p-
values with (Fitb$F and Fitb$F.p.value). Here of course there’s a single contrast
so both are the same. Additional arguments can be passed to eBayes such as the
prior for the proportion of probes that we suppose will be DE, upper and lower
limits of fold change standard deviations and the minimum fold change that we think
is significant in the experiment. There are other slots of interest in an MArrayLM
object (see the help files for details), but one that we should mention is Amean.

> head(Fitb$Amean)

AFFX-BioB-3_at AFFX-BioB-5_at AFFX-BioB-M_at
7.774772 7.384330 8.062431

AFFX-BioC-3_at AFFX-BioC-5_at AFFX-BioDn-3_at
8.321050 7.770949 11.369377

> summary(Fitb$Amean)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.278 4.167 5.500 5.612 6.763 14.440

This is the mean expression intensity across all arrays for each probe. This is one
metric you’ll want to keep an eye on. Signals of low intensity tend to be unreliable—
if a DE probe is in the low signal region it should be treated with some caution. Don’t
forget we are working on a log2 scale here—anything below 8 is not really a strong
signal, it is only 256 on a linear scale; the upper bound on a 16 bit scanner (this

190 5 Gene Expression Analysis

2 4 6 8 10 12 14

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

MA plot

A

M

Fig. 5.11 MA plot

example) is 65,536 and of course, the maximum intensity value we can observe is
16 on a log2 scale. The mean intensity is usually referred to as A in array studies.
Alongside A we can calculate the fold change difference between the two treatments,
this is referred to as M. If we plot one against the other we have an MA plot, which
as we mentioned above can also be used for QC purposes. Hence an MA plot such
as the one in Fig. 5.11 can be made with

> smoothScatter(Fitb$Amean,Fitb$coefficients,
+ nrpoints=500,xlab="A",ylab="M",cex.main=0.9,
+ main="MA plot")
> abline(h=1)
> abline(h=-1)

The function smoothScatter is used just because it makes a prettier graph than
plot. We added two horizontal lines to indicate fold changes above (or below) which
reside the probes of interest (note that a rather low fold change was used). Another
common plot is a volcano plot (Fig. 5.12), which is the minus log odds (LOD) of
the p-values by the fold change (M) values.

> lod=-log10(Fitb$p.value)
> o1=which(Fitb$coefficients>1 | Fitb$coefficients< -1)
> o2=which(Fitb$p.value<0.01)
> o=intersect(o1,o2)
> plot(Fitb$coefficients, lod,
+ xlab="difference in expression (M)",
+ ylab="t-statistic p-values (-log10)",
+ cex.main=0.95, cex=0.25, main="volcano plot")
> points(Fitb$coefficients[o1],lod[o1],

5.5 Analysis of Differential Expression 191

Fig. 5.12 Volcano plot

+ pch=19,cex=0.25,col="blue")
> points(Fitb$coefficients[o2],lod[o2],
+ pch=19,cex=0.25,col="red")
> points(Fitb$coefficients[o],lod[o],
+ pch=19,cex=0.25,col="green")
> legend("bottomleft",c("mean dif.",
"mod.t","intersect"),

+ lty=1,col=c("blue","red","green"),cex=0.7)
> abline(h=-log10(0.01))
> abline(v=1)
> abline(v=-1)

It looks complicated but that’s only because I wanted some nice colors in the
plot. What the volcano plot shows us is a grid of p-values by fold changes and we
can focus on the probes that are statistically significant and at the same time meet
our fold change requirements (the green points in Fig. 5.12).

Basically we are finished. But, which after all are the differentially expressed
probes?

> res=data.frame(FoldChange=Fitb$coefficients,
+ p.value=Fitb$p.value, Amean=Fitb$Amean)

192 5 Gene Expression Analysis

> names(res)=c("FoldChange", "p.value", "Avalue")
> res=res[order(res$p.value),]
> head(res)

FoldChange p.value Avalue
Bt.3289.1.S1_at 1.0083137 6.613378e-05 5.682473
Bt.28515.1.A1_at 1.3295861 9.389443e-05 6.022375
Bt.22867.2.A1_at 0.9768392 3.347976e-04 7.797295
Bt.132.1.S1_at -0.7326319 6.397408e-04 4.782339
Bt.25089.2.A1_at 0.8262308 7.246055e-04 6.324426
Bt.28987.1.S1_at -0.6930765 7.362446e-04 4.644442

> length(which(res$p.value<0.01))

[1] 246

There, we made a data.frame with the probe names, fold changes, p-values, and
A values. Then we sorted the results by p-value and selected a p-value cut off of
0.01. Different filters can of course be applied—higher or lower p-values, p-values
plus a minimum fold change, nothing below an A value of 8, and so on. . .

> length(which(res$p.value<0.01 & res$Avalue>8))

[1] 38

Most of our DE probes are in the low signal region—not a good sign.

5.5.1 Multiple Testing

Multiple testing is also a problem with microarrays. We discussed these issues in
Chap. 3. To keep it simple, Bonferroni correction is probably too stringent for most
cases, a reasonable compromise option is the Benjamin and Hochberg method which
controls false discovery rates.

> adjusted=p.adjust(res$p.value, method="BH")
> length(which(adjusted<0.05))

[1] 0

Not a single probe survived multiple testing correction. Given the bad quality of
three slides and the fact that we did not have a real contrast, it’s probably a good
thing! Some level of judgment comes into play with multiple testing, you might
want to call it quits at this point and move on to the next project or you could go
back to the original list or at least those 38 probes that had a reasonable signal and
investigate if they have some functional significance that is worthwhile pursuing
further. Now would be a good time to return to the beginning, exclude the three bad
arrays, and redo the DE analysis with the filtered RMA data (fRMA). Functional
work is the topic of the next chapter.

5.5 Analysis of Differential Expression 193

5.5.2 Differential Expression of RNA-Seq

Back to our RNA-seq data. Again we will just go over some basic pointers to get
started with the analysis (we also only have one sample—so, nothing to test!). We
still do not have the actual counts of transcripts, the first step is to summarize the
BAM alignments into a count of features. For this we need to install some additional
Bioconductor packages that can read the BAM file (GenomicAlignments) and create
a database of transcripts (GenomicFeatures) that will allow matching sequence reads
to functional annotations. The database is built on the fly by downloading (need to
be connected to the internet) publicly available data (UCSC in this example):

> library(GenomicFeatures)
> library(GenomicAlignments)

> txdb=makeTranscriptDbFromUCSC(genome='bosTau6',
+ tablename='ensGene')

Download the ensGene table ... OK
Extract the 'transcripts' data frame ... OK
Extract the 'splicings' data frame ... OK
Download and preprocess 'chrominfo' data frame ... OK
Prepare the 'metadata' data frame ... OK
Make the TranscriptDb object ... OK

> txGene=transcriptsBy(txdb,'gene')

The various public databases (e.g., ensembl from EMBL-EBI) store information
on genomic coordinates from reference genomes and associations with various
forms of annotation information. Directly from R we can download this data and
build an object to store our annotation needs. The GenomicFeatures package has
a lot of functions and methods for assembly and manipulation of transcript cen-
tered annotation data. We used makeTranscriptDbFromUCSC to make a transcript
database for cattle (txdb) and then grouped the features by gene identifiers (txGene).
The BAM file holds information about the position of our RNA-seq reads in the
cattle reference; and now we have an R object that can match these positions to
functional information. Have a look at the contents of txGene, it holds the annotation
and mapping information to match genes with locations from the BAM file. And to
retrieve the actual counts of transcripts

> reads=readGAlignmentsFromBam(
+ "chapter5/sortedAlignedRNA.bam",sep="")
> newnames=paste("chr",rname(reads),sep="")
> newnames=gsub("MT","M",newnames)
> reads=GRanges(seqnames=newnames,
+ ranges=IRanges(start=start(reads),
+ end=end(reads)),

194 5 Gene Expression Analysis

+ strand=rep("*",length(reads)))
> counts=countOverlaps(txGene,reads)

First we used readGAlignmentsFromBam (in GenomicAlignments) to read in the
BAM file. The other two lines are a bit of a workaround to match names in the
BAM file with names in txGene. If you looked at txGene you will have noticed that
the chromosome names are, e.g., chr1, chr2,. . . But names in the BAM file (reads,
below) are just 1, 2,. . . We had to add chr to the names so that searches match (same
with mitochondria—MT and M).

> reads

GAlignments with 96045 alignments and 0 metadata columns:
seqnames strand cigar qwidth start

<Rle> <Rle> <character> <integer> <integer>
[1] 10 - 70M5I5M 80 427292
[2] 10 + 80M 80 669284
[3] 10 - 80M 80 925717
[4] 10 + 80M 80 944619
[5] 10 + 41M 41 1072654
...

[96041] X + 80M 80 147944551
[96042] X - 80M 80 147944759
[96043] X + 80M 80 148270052
[96044] X - 80M 80 148796047
[96045] X + 80M 80 148808671

end width njunc
<integer> <integer> <integer>

427366 75 0
669363 80 0
925796 80 0
944698 80 0
1072694 41 0

...
147944630 80 0
147944838 80 0
148270131 80 0
148796126 80 0

148808750 80 0

seqlengths:

10 11 12 13 ...
104305016 107310763 91163125 84240350 ...

5 6 7 MT X
121191424 119458736 112638659 16338 148823899

5.5 Analysis of Differential Expression 195

Fig. 5.13 Plot of sorted RNA-seq counts

We then use GRanges to rename our reads and ignore the strands. Finally, the
countOverlaps function was used to create a vector with the number of alignments
that correspond to each of the identifiers (gene ids) in txGene.

> head(counts)

ENSBTAG00000000005 ENSBTAG00000000008 ENSBTAG00000000009
0 0 0

ENSBTAG00000000010 ENSBTAG00000000011 ENSBTAG00000000012
2 0 0

While here there is a single sample, in practice we would create a loop to read
all BAM files, rename and get the counts. Then put it all together into a matrix of
counts that would be similar to the data from the arrays but with counts instead of
intensities. To get an idea of the number of counts we can make a plot (Fig. 5.13)

> plot(sort(counts),col="blue",pch=20,
+ main="sorted RNA-seq counts",
+ xlab="genes",ylab="counts",
+ cex.main=0.9)

196 5 Gene Expression Analysis

Notice how most of the genes have very low expression counts. Let’s have a
closer look

> length(counts)

[1] 24616

> length(which(counts>0))

[1] 7102

> index=which(counts>=200)
> length(index)

[1] 39

> sum(counts[index])/sum(counts)

[1] 0.554584

There are 24,616 known features and 7,102 are expressed at least once in this
sample. There are only 39 transcripts with more than 200 counts (length(index))
and they account for over 55 % of the data. Finally the count data can be saved with

> write.table(counts,
+ "chapter5/expressionCounts.txt",
+ quote=F,sep="\t",
+ col.names=F)

At this point we are ready to use the RNA-seq data for differential expression
analysis. No point in keeping non-expressed features, so the first step would be to
remove them from the data. We only have one sample, so we cannot do an analysis
but in the book chapter’s folder there are two files—RNAdat.txt and RNAcontrast.txt.
This is just an example with simulated data (and purposely quite bad data) for us
to do a basic DE analysis; the first file is count data for 20 samples (10controls×
10treatments) using the same 7,102 genes that were expressed in the file we have
worked with so far. The second file just matches samples to treatment groups and is
useful to build design matrices and contrasts. The general steps for the analysis are
quite similar to what we did with the arrays. First a normalization step, the total read
counts are not the same for each sample and need to be adjusted. Always good to
make use of plots to get a feeling for the data. Then test for differential expression
and correct for multiple testing. In terms of testing, the key difference is that here
we have count data—the distribution of the data is different (a negative binomial
distribution is a good choice). The code below is largely based on [7] and an in-
depth discussion can be found there.

A good package for DE with RNA-seq is edgeR; another popular one is DESeq.
We will use the former one.

5.5 Analysis of Differential Expression 197

> library(edgeR)

> counts=read.table("chapter5/RNAdat.txt",
+ header=T,sep="\t")

> contrast=read.table("chapter5/RNAcontrast.txt",
+ header=T,sep="\t")

> DGE=DGEList(counts,group=contrast$contrast)
> DGE=calcNormFactors(DGE)
> DGE=estimateCommonDisp(DGE)
> DGE=estimateTagwiseDisp(DGE)

> # exact test
> difexpEx=exactTest(DGE,pair=c("ctrl","treat"))
> resEx=topTags(difexpEx,n=nrow(DGE))
> outEx=resEx$table

We loaded the edgeR library, then read in the data. DGEList is a container for
RNA-seq data; we created one called DGE with the counts and group is used to
assign control/treatment classes to the respective samples. Next we estimated the
normalization and dispersion factors (used in the modeling to adjust for data effects).
Normalization is still a topic of interest in RNA-seq analysis, with quite a few
approaches to the problem (for a comparison and discussion see [23]). For further
details see the edgeR manual or [7]. Then performed a simple contrast between
the two groups (exactTest) and extracted results from the model using topTags
(n=nrow(DGE) was used to get values for all features, but could also get only the
top n results if desired).

The data here is quite bad. Notice in Fig. 5.14 that the coefficient of variation is
quite high at low counts; the first step would be to exclude these from the data and
rerun the analysis.

> par(mfrow=c(1,2))
> plotMeanVar(DGE,show.tagwise.vars=T,NBline=T)
> plotBCV(DGE)

To see the significantly differentially expressed features (p < 0.05) after FDR
correction

> outEx[outEx$FDR<0.05,c(1,2,4)]

logFC logCPM FDR
ENSBTAG00000006999 0.9884217 12.799881 4.855869e-61
ENSBTAG00000007782 0.9886040 11.962254 1.844169e-54
ENSBTAG00000007172 0.9797505 9.146706 4.465598e-18
ENSBTAG00000020125 0.9161259 8.499507 2.664356e-09
ENSBTAG00000009055 1.0132945 8.151157 1.406032e-08

198 5 Gene Expression Analysis

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

ll

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l
l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

ll

l

l

l

l
l

l
l
l

l

l

l

l
l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l

ll

l

lll

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

lll
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

ll

l

l

lll

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

ll

l

l

l

l

l
l

l

lll
l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l
ll

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll
ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

ll

l
l

l

l

l
l

l

l

l

l

l

l

lll

l
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

llll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

ll

l

l

l

l

l

ll

l

l

ll

l

lll

l

ll

l

ll

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

ll

l

l

ll

l
ll

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l
ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
ll

l
l

ll

l

l

l

l

l

l

l

l

ll

l

lll

l

l

l

ll

l
l

l

l

ll

l

l

l
l

l

ll
ll

l

l

ll

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

lll

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll
l

l

l

llll

l
l

ll

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

ll

lll

l

l

l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l
lll

l
l

l
ll

l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l
l

lll
l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l
llll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

ll

lll

l
l

l l

l

l

l

l

l

l

lll

llll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

lll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l

ll

l

l

l

l

l

lll

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

ll
l

l

ll

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

ll
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

ll

l
l

l

ll

ll

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

ll
l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l

l

l

l

l

l

l
l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l
l

l

l
lll

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

ll

l

l

l

l

l

l

ll

ll
l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

ll

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

lll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

ll

ll

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

ll

l

ll

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l
l

l
l

l

l

l

l

l
l

l

l

lll

l

l

lll

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l
l

lll
l

l

l

ll

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

ll

l

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

ll

l

l

l

l

l

llll

l

l

lll

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

ll

l
l

ll

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

ll

l

l

l

ll

l
ll

l

l

l

l

l

l

l

l

l

l

lll

l

l

l
ll

l

l

l
l

l

l

l

l
l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l
l

l
l

l
ll

l
l

l

ll

l

l

l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

ll

l

l
l

l

l

ll

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l
l

l

ll

l

l

l

l

l
l

lll
ll

l

l

l

l
l l

l

l

l
l

l

ll

l

l

ll
lll

l
ll

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
ll

l
l

l
l

l

ll

ll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

ll

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

ll

l

l

l

l
l

l

l

l

l

l

ll

l
l

l

l

l

l
l

l

l

l
l

l
l

l

l
l

l

lll

l

l

l

ll
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

ll

l
l

l

l

l

l

l
l

ll

l

l

l

l

l

ll
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

lll

ll

l
l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

llll

l

ll

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
ll

l
l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

ll

lll
l

l

l
l

l

l

l

ll

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l
ll

l

ll

l

ll

l

l
l

l

l

l

l

l

ll

ll

l

ll

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

lll

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l
l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

ll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

ll

ll

l
l

l

l

l

l
l

l
l

l
l

l

l
ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

ll

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

l

ll

l

l
l

ll
l

l

l

l

l

ll

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l
l

ll
l

ll

ll

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l

l

l

l

ll

l

l

l

l
l

ll

l

l

l

l

ll
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l
l

ll

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
ll

l

l

l

l

ll

l

l

l

l

l
l

l
l l

l

l

l

l

l

ll

l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l

l

l

l

ll

l

ll

ll

ll

l

l

l

l

ll

l

ll

l
l

l
l

ll
l

l

ll

l
l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

lll

l

l

l

l
l

ll

l

l

l

l

ll

l
ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

llll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

lll

l
l

ll

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

lll

l

ll

ll

ll

l
l

l
l

ll

l

l

l

ll

l
l

l

l

l

l
l

l
l

l

l

l

l

ll

l

l

l

l

ll

ll
l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

llll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

ll

l

ll

l

l

l

l

l

l

l

l
l

l
ll

l

l

l

ll

l

l

l

l

l

l

ll
ll

l

l

l

l

ll

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

ll

l
l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

ll

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

ll
l

ll

l

l
l

l

l

l

ll
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

lll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

ll

llll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll
l

l

l
ll

l
l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

lll

ll

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
lllll

l

l

l

l

l

ll

l

l

l

l

l

llll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l
l

l

l

l

ll

l

ll

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
ll

l

l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

lll
l

l

l

l

l
l
l

l

ll

l

l

l

l

l

l

l

l

l

lll

l
l

l

l

l

l
l

l

l
l

l
l

ll

ll
l

ll

l
l

l

l

l

l

l

l
ll

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l
l

l

ll
l

l

l

l

l

ll

l

l

ll
l

l

ll

l

l

l

l

l

lll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

ll
ll

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lllll

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

ll
l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l
l

l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

ll

l

l

l

ll

l

l

l
l

l

l

ll

l

ll
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l
l

l
l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

lll

l

l

l

l

l

l
l

l

l
lllll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l
l

l

ll

l

l

l

l

ll

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

lll

l

l

l

ll

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

lll
l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll
lll

l
l

l

l

l

l

l
l

ll

l
l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

ll

l

l

l

l

ll

l

l

l

l

ll

l

l

l

ll

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l
l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l
l

l

l

l

l
l

l

l

l

l

ll

ll

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

ll

ll

l

l

l

ll

l
l

l
l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

ll

l

l

l
l

l

l

l
ll

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

ll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

ll
l

l

ll

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l
l

l

l

l

ll

l
l

l

l

l

l

l

l

l
l l

l

l
l
l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l

ll
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
ll

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l
l

l

l

l

ll
l

l

ll
l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l
l

l

ll

l

ll

l

l
l

l

l

l

l

l

l ll

l

l

l

l

l

lll

l

ll

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

lll
l

l
ll

l
l

l

l

ll

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l
l
l

l

lll

l

l
l

l

l

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

1 10 100 1000 10000

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Mean gene expression level (log10 scale)

P
oo

le
d

ge
ne

−
le

ve
l v

ar
ia

nc
e

(lo
g1

0
sc

al
e)

xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxx

xxxx
x

x

x

x

6 8 10 12 14 16

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Average log CPM

B
io

lo
gi

ca
l c

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

l l

l

l ll l

l

ll

l

l

l

l

l

l

l l

l

l

l

ll l l

l

ll l ll l

l

lll l

l

l

l

l

ll

l

l ll l

l

l

l

l ll l

l

llll

l

l

l

ll

l

l

l

l

l

l lll l ll

l

ll

l

ll l

l

l

l

l ll lll l ll

l

lll l l

l

l

l

ll

l

l l l llll

ll

ll l l

l
l

l

l

l

l

l

ll l l lll

l

l ll l l lll l lll

l

l

l

l ll l

l

ll l

l

ll ll l

l

llll l

l

l

l

l l ll ll

l

l ll lll l l

l

lll

l

l

l

lll ll ll lll

l

l l llll ll

l

l l ll

l

l

l

l

l

l ll lll lll l

l

l

l

l

l

l

l

l

l

l ll

l

l

ll

l

l

l

l

l

lll l

l

l

l

ll llll l l

l

l l

l

l

l l

l

ll ll

l

ll l

l

l

l

l lll

l

ll l

l

l

l

l ll l

l

lllll

l

l l

l

ll l

l

l l

l

ll ll l lll l

l

l

ll ll

l

ll lll ll l

l

ll l

l

l

l

lll

l

ll l

l

l l

l

l l

l

l

l

l

l

llll l

l

l

lllll l

l

ll ll

l

l ll l

l

l l

l

lll ll lll

l

ll ll

l

ll

l

l

l

l

l ll ll

l

l

l

l

lll l ll lll

l

l l

l

l

l

l

l

l l ll l

l

l ll lll l

l

l

l

ll l

l

l

l l ll l

l

l

l

ll ll llll l

l

lll ll l

l

lll l l l

l

l

l

l

l llll

l

ll lll

l

ll

l

l ll ll

l

l

l

lll ll

l

ll llll

l

ll

l

l

l

l lll lll

l

ll

l

l

l

l

l l

l

ll l l

l

l ll l

l

l

l

ll

l

lll ll

l

lll l l ll

l

l l

l

l l

l

l

l l lll ll

l

l ll l

l

lll ll lll ll llll l

l
l

l

ll

l

llll

l

l

l

ll

l

l

l

l ll ll lll lll l lll ll lll l ll ll llll

l

ll l l

l

l

l

l
l

lll l

l

l

l

l

ll

l

ll lllll l

l

l

l

l

l

lll ll lll

l

l

l

l

lll

l

l

l

l

l l ll

l

l

llll

l

l l l

l

lllll

l

l lll

l

l l

l

l

lll ll ll ll

l

l

l

ll l ll l

l

l

l ll ll l

l

l

l l

l

l ll

l

l

llll l

l

lll

l

l

l l

l

l l l

l

l ll ll llll l

l

l

l

l

l

l ll l ll

l

l

l ll

l

ll l lll

l

ll ll ll l lll l

l

lll

l

l

l

lll

l

ll l l

l

ll ll lll ll ll l ll ll

l

l ll

l

l ll

l

ll l ll ll l l lll ll

l

l ll ll

l

l l ll l ll

l

llll ll l

l

l l

l

ll l

l

l

lll

l

l

l

lllll ll

l

l

l l ll l

l l

lll ll lll l

l
l

ll ll lllll llllll lll lll

l

lll

l

l l

l

l

l

l llll ll

l

l lllll

l

lll

l

ll ll

l

lll l

l

l llll l

l

l l lll lll ll ll

l

ll ll l l ll l ll lll l l

l

lll

l

l ll ll ll ll l ll ll lllll ll

l
l

l

l

l

l l

l

l

ll ll l

l

l ll

l

lll ll ll l lll

l

ll l l

l

l

l

l

l

ll

l

l l l

l

l

l

l

l

l

l ll

l

l l

l

ll

l

lll l ll l

l

ll ll l l

l

l

l

l

ll l

l

l

l

l

ll l

l

ll l llll

l

l

l

l

l

ll llll ll l ll

l

l

l

ll

l

ll l ll

l

ll l l llll

l

ll l lllll ll

l

l

l

l ll l

l

l

lll lll ll

l

ll ll

l

lll l

l

ll

l

ll l l

l

l l

l

l

ll lll

l

lll ll

l

ll ll ll

l

ll l ll

l

l

l

l

ll

l

l llll ll

l

l

l
l

ll ll ll lll lll l

l

l

l

l

l lll

l

ll

l

l ll ll l

l

ll ll ll ll

l

l

l ll ll

l

l lll ll

l

l

l

l

l

l

l

ll ll lll

l

ll l l

l

l

l ll l ll

l

l l

l

lllll l

l

l

ll

l

l

l

l

l l

l

ll lll l ll l

l

lll l

l

l lllll

l

l

l

ll lll l l l

l

l

l ll

l

lll

l

l lll l

l

l

l

l

l

l

lll

l

l

l

lll l ll ll l

l

l

l

l

lll l

l

l

l

ll l ll ll ll

l

ll lll l

l

l

l lll lll ll ll l

l

llll

l

ll

l

l

l

ll lll lll

l

l

l

l

l

l

ll ll ll

l

l ll l ll ll ll ll ll

l

l

lll l

l

l

l

ll l

l

l l l ll llllll

l

ll lll ll l l

l

ll ll l

l

l

l

lll lll ll l l

l

l

lll

l

ll

l

lll ll

l

ll

l

l lll

l

lll ll

l

l

l

ll

l

lll

l

l ll ll

l

ll l

l

l

l

ll

l

l

l ll ll l l

l

l

l

l l lllll

l

ll ll

l

l l

l

lll

l

l

ll

l

ll ll ll

l

l

l

lll l

l

ll

l

l

l

l

l

ll ll l

l

l

l

l

l ll

l

l

ll ll lll ll ll ll

l

l

l

l

l

ll l ll

l

l

l

l

ll

l

l

l

l

l

l l

l

ll

l

l

l

l ll ll lll l

l

ll ll

l

ll l ll

l

lll

l

ll

l

l

l

l

l

l l llll l l ll l

l

l

l l ll lll lll

l

l

l l ll ll ll l

l

l l ll l

l

l ll ll

l

l

l

ll l lll

l

l

l

l

l

l l lll ll

l

ll ll l

l

l ll l

ll

l l l l

l

lll l ll

l

l ll

l

llll l ll l l l

l

l ll ll l

l

l ll l l

l

l llll l

l

ll l lll

l

l l

l

l ll

l

l

ll ll ll

l

l lll ll

l

ll ll llll ll ll ll ll l

l

ll ll l l ll ll l

l

l ll ll

l

l ll

l

ll l lll l

l

l l lll l lll

l

lll

l

l ll

l

l

l ll l ll ll l

l

ll ll l l lll ll ll

l

ll ll lll

l

l l l l ll

l

l l

l

l ll l ll ll l

l
l

ll

l

l l

l

l l l ll l ll

l

llll ll

l

ll

l

l

l

ll ll ll

l

ll l

l

ll lll l

l

ll

l

l

l l

l

l

l

ll l l

l

l llll l ll lll l ll l

ll l

ll l

l

ll l ll lll lll l

l

ll lll lll ll l

l

l lll ll

l

lll lll

l

l lll ll l

l

ll ll l l

l

l

l ll l lll

l

l l lll l l llll l

l

l l ll ll lllll l

l

ll lll

l

l

ll l

l

l ll l

l

l ll

l

l l

l

l ll l

l

ll l ll l

l

ll l ll

l

ll ll ll

l

ll l

l

l ll l

l

l ll l ll ll lll

l
l

l
l

l

l

ll l

l

l

l ll

ll

l ll ll

l

l

l llll l

l

ll ll

l

l

l

l

l

l l

l

ll l

l

ll l ll

l

ll

l

l l l llll lll l

l

l lll ll l ll

l

l lllll ll

l

l

l

l

l

l ll ll l l

l

lll

l

ll ll l ll llll

l

l

l ll

l

l

l

l

l l

l

l l

l

lll ll lll

l

l

l

l ll ll l l l

l

l ll ll ll l lll ll

l

l

l

l

l

l

l ll ll ll

l

ll

l

ll

l

lll

l

l

l

ll l

l

l

l l l

l

l

l

ll ll l

l

l

l

l

ll

l

l lll lll lll l ll lll

l

ll ll

l

ll ll

l

lllll l l

l

ll lll

l

l

l ll ll

ll

l ll lll

l
l

l lll

l

ll

l

l l ll

l

llll

l

lll l l

l

l

l l

l

ll

l

l lll

l

lll

l

l

l

ll llllll ll l

l

l

l

l

l l

l

l l l

l

l

l

l

l

l

l

l

l lll l

l

ll ll ll llll l ll l

l

lll ll l ll l ll ll

l

l

l lll ll

l

l l llll lll

l

ll ll l ll ll l ll

l

l llll lll l

l

ll

l

l l

l

ll l l

l

l

l

ll lll ll lll lll ll

l

l

ll l

l

ll ll l lll

l

lll

l

l lll

l

lll

l

l

l

lll

l

l l l

l

ll ll

l

l l

l

l

ll

l

llll l

l

l l

l

l l

l

l ll ll

l

l

l

ll l ll l

l

ll l

l

ll

l

l

l

l l lll lll ll ll l l

l

ll lll l

l

l

l

l

ll

l l l

l

l ll lll l ll

l

ll lll ll

l

l

lll ll lll ll

l

l

ll

l

l

l

l

l

l ll

l

l l l l llll llll ll ll ll lll

l

ll ll l lll

l

l

l

l

l

l

l

l

l

l ll lll ll l

l

lllll lll

l

l

l llllll ll ll ll

l

l llll

l

lll lll llll ll l

l

l

l

l

l

ll l

l

ll ll

l

l

l

lll

l

l

l

l

l

ll

l

l lll l ll lll

l

ll lll

l

l

l

l

ll

l

ll l ll l ll ll lll ll ll l

l

ll ll l lll ll

l

lll

l

ll lll

l

ll

l

l

l

lll ll ll l ll ll

l

l ll

l

l

l

l

lll lll

l

ll

l

l l

l

l ll ll

l

l

l

ll ll

l

l l

l

ll l

l

lll l

l

l llll lll

l

l

l

l ll

l

ll

l l

l ll ll

l

l

ll l

l

lll llll

l

ll lll ll ll

l

l ll

l

l l

l

l

lll

l

l l

l

l

l

l

lll ll

l

l

l

lllll l ll lll l

l

lll l l

l

l

ll

l

l

l

l lll ll ll lll lll

l

ll

l

l

l l l ll l

ll

l

l

l

l

l

l

l llll l lll ll l

l

l l lll l

l

lll

l

l

l

l l

l

ll

l

l

l

l

lll

l

lll

l

ll l

l

l l ll

l

ll

l

l

l

l

l

l ll

l

l

l

l

ll

l

l lll

l

l

l

l

l ll lll l ll

l l

l

l

l

l

l

l ll l l

l

l llll

l

l l

l

l lll

l

lllllll

l

l l

l

lll l ll ll

l

lll

l

ll ll

l

l l

l
l

ll lll

l

lll ll

l

l l

l

l ll ll

l

lll

l

ll

l

l

l l

l

l lll l ll

ll

l

l

l

l l

l

l

l

lll

l

l

l ll lll ll l

l

l l

l

l ll l

l

ll l lll l l

l

l lll

l

l

l l ll

l

l

l

ll llll

l

ll l

l

l

l

l

ll l ll lll

l l

l

ll

l

l

l

l

l

l

l

l l

l

l

l

l

l

ll l llll l l l l

l

l

l lllll ll ll

l

l l

l

l

l lll l

l

l

ll

l

l

ll l ll lll

l

ll

l

l

ll

l

l

l

l l lll

l

ll

l

ll l l

l

l llll ll ll ll lll

l

l

l

l ll ll

l

l

l

l

lll l

l

ll lll

l

l

l l

l

ll l

l

ll

l

l

l

l llll l

l

l ll

l

l

l

l

l l llll l

l

l l l

l

llll

l

l ll llll ll llll ll

l

l ll

l

l

l

l ll l l lll l lll

l

l

l l l lll

l

l l ll ll

l

l l l

l

l

l lll

l

l

l

l

l lll ll

l

l

l

l

l

l

l

ll l

l

l

l

l

l

l lll

l

l

l

l

ll

l

l

l

ll

l

l

l

l l ll

l

l lllll l

l

ll llll

l

lll l ll l

l

l

l

l

l

l

l

ll ll l

l

ll ll ll

l

ll ll ll

l

l

l l

l

lllll

l

ll

l

l

l

l ll lll ll l

l

l

l

lll lll l lll

l

lll lll

l

l

l

ll l

l

l

l

l

l

l ll ll l

l

l l ll

l

l

l

ll l

l

l

l

l

l

ll

l

l ll l

l

ll

l

l lll l

l

l

l l

l

l

ll

l llll l l

l

l

l

ll l

l

ll l

l

ll l l ll lll

l

l

l

l

l

l l ll l ll

l

l l ll

l

l

l

l

ll lll

l

lll

l

l

l

lll l l

l

l

l

l

l

l ll

l

l

lll l

l

l

l

l l

l

l

l

l

l ll l l l l

l

l ll l

l

lll

l

l

l ll ll l

l

l

ll

l

l lll ll ll l ll ll

l

ll

l

l l

l

l

l
l

lll

l

lll

l

l ll

l

l ll l

l

l

l
l

lll ll

l

l

l

l

l

l

l ll

l

l

l l ll ll ll

l

l

l
l

l ll l

l

ll

l

ll l

l

l

l

ll ll l ll

l

l

l

l

ll

l

ll l ll

l

lll lll llll

l

l ll

l

l lll lll l l

l

ll ll llll

l

l

l

l

l

lll ll

l

l l

l

l l l ll llll ll

l

l l

l

ll l ll ll ll lll l l

l

l

l

l

l

l lllll l ll ll ll ll l ll

l

l

ll l l l

l

l

l

l

llll

l

l

l

ll

l

l

l

l

lll l llll l ll ll l

l

l

l

l

l l

l

l l l lll l

l
l

l

l lll l

l

ll l lll ll ll ll ll

l

l

l l

l

ll ll l

l

l

l l

l

llll l

l

l

l

l

l l ll l

l

lll llll

l

l l l l

l

ll l l ll

l

l

l

l

l ll l l

l

lll l

l

l

l

l

l

l

ll l ll

l

ll lll

l

l

ll

l

l ll l ll l

l

lll l l

l

ll llll ll lll lll

l

ll l lll ll l l

l

l

l

ll l lll l

l

l

ll ll lll l

l

l

l

ll

l

l l

l

ll l l

l

ll l

l

ll

l

l

l

l

l

l

ll l

l

l

l

l

ll

l

l

l

ll

l

l

l

ll

l

lll

l

l

l

l

l

l

l

l

l

l

ll

l

lll l ll lll ll

l

l

l

l ll ll

l

l

l

l

ll ll l

l

ll ll ll l

l

l

l

l

l

l l

l

l

l

ll lll l l

l

ll

l

l l

l

l l

l

l

l

l ll l ll ll ll lll

l

l

l

l

l

l l l ll

l

l

l

l

l

l

lll lll

l

ll ll l ll

l

l l ll l l

l
l

l llll

l

ll ll lll

l

l

l ll l l

l

l

l l

ll

l

l

llll l

l

ll

l

ll

l

l l

l

ll

l

l ll

l

l

l

lll

l
l l

l

l

l l

l

l l

l

l

l l l ll

l

ll l l

l

lll ll lll

l

l

ll

l

llll ll l

l

l l l l

l

lll

l

ll

l

ll

l

l l

l

l

l

l

l

l

l ll l l

l

ll llll l

l

l

l

l

l

l

ll

l

l

l

l ll l

l

l

l

l

l lll l

l

l

l

l

l l

l

l

l llll

l

l

ll

l

l ll

l

l

l

ll ll

l

l

l

l l l

l

lll

l

ll

l

l

l

ll ll llll l

l

l

ll l l ll ll

l

l l l l

l

ll ll ll lll

l

l

l ll llll

l l

l l

l

ll l l

l

ll ll

l

l

l

l

l

l

l

ll l

l
l

l l ll ll

l

lll

l

ll l

l

l

l

l

l

l

l l lll

l

l

l ll l l l

l

ll

l

l ll

l

l

l

l lll

l

l ll

l

lll ll l ll

l

l llll l lll ll

l

ll

l

l

l

l ll l

l

l ll l

l

l

l llll l l lll l

l

l l

l

l ll ll llll l lll

l

l llll

l

lll l ll ll l

l

l ll

l

lll l ll

l

l

l

l

l

l

ll

l

ll

l

ll l ll l

l

ll ll

l

l

l

l lll l l

l

ll ll ll lllll lll

l

l ll ll

l

l

l

ll lll llll ll

l

ll l l

l

l l

l

l

l

ll l l

l

l

l

l

l

l

l ll l

l

ll l

l

l ll ll

l

lll lll ll

l

l

l

ll ll lll llllllll ll l

l

l

l

l

l

l

l

l

l

llll ll l l ll

l

l

l l llll l

l

l

l

ll l l

l

l l

l

ll

l

ll l ll l

l

l

l

l ll lll lll l

l

l l ll l

l

l l

l

l

ll

l

ll ll

l

l

l

ll

l

l ll lll

l

ll ll lll ll

l

l lll

l

l

l

l

l l l

l

lll ll l

l

l

l

lll ll ll lll lll ll l l l lll l

l

ll

l

l

lll

l

l

l

ll l llll l

l

lll

l

l

l

lll l

l

l

l ll

l

l l lll

l

l l ll lllll lll l

l

l

l

ll ll ll l ll llll

l

ll

l

l
l

ll l

l

lll llll lll

l

ll

l

ll

l

l ll l ll ll ll

l

l lll

l

ll

l

l

l

l

ll

l

ll l

l

l

l

l l ll ll

l

ll ll l

l

lll lll l

l

l l llll

l

l

l

ll l

l

l

l

l

l

l

l

l l

l

l

ll lll l l

l

l

l

ll

l

l ll l

l

l

l

l

l

ll l ll ll l

l

l

l

l

l l l ll ll l l

l

l

l

ll

l

l

ll l

l

l ll lll

l

ll l

l

l lll ll l

l

l

l

l

l

l

l

l

ll ll ll l

l

l ll ll ll

l

l

ll l

l

l ll ll l ll

l

llll

l

l

l

l

l lll

l

ll ll

l

l

ll ll

l

l ll ll

l

l

llll ll

l

l l

l

lll

l

ll l llll lll

l

l

l

l

l

l l lll ll l

l l

ll l ll ll l

l

ll

l

lll ll l

l

ll

l

ll l ll

l

l l

l

l

l

ll l

l

l

l

ll lllll

ll

l l

l

l ll

l

lll l ll

l

l

l

l l ll ll

l

l

l

l

lll l l

l

ll ll ll lll l ll l l ll ll l l

l

l l lll

l

l

l l lll ll

l

lll

l

ll lll ll ll

l

lll l

l

ll ll ll l

l

lll l

l

lll l

l

l

ll

l

l lll l ll

l

ll ll

l

l lll

l

l l

l

l ll ll l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

ll ll ll l ll

l

l

l

l

l

l ll l

l

lll l ll ll l

l

l

ll ll l l

l

l

l

ll l

l

ll ll ll l

l

l l lllll l

l

ll lll ll lllll

l

ll

l

l lll l

l

l

ll

l

l ll lll ll

l

l lll l ll l l lll lll l

l

l

ll l

l

l l

l

l

l

ll l l l

l

lll lll

l

lll l

l

l ll l

l

l l

l

l

ll

l ll ll

l

ll l l

l

l

l
l

ll llll ll

l

ll ll ll lll lll ll

l

ll

l

lll lll l

l

ll

l

l ll l l

l

ll llll l

l

ll l

l

l

lll llll ll ll

l

l

l

ll ll l ll l ll

l

ll ll ll l ll lll

l

ll ll ll ll l

l

l

l

l

l

l

l

l

ll l

l

l ll

l

ll ll l

l

llllll l ll

l

l

l l lll

l

l lll ll l

l

l

l

l

l l lll lllll ll l ll lll

l

ll

l

l ll ll l

l

ll ll ll

l

l lll

ll

lll

l

ll lllll l ll

l

l

l l

l

l

l

l l

l

llll l

l

l

l

ll

l

l

l

llll lll l ll ll

l

ll lll

l

l

l

l ll

l

ll lll l

l

ll

l

ll l ll lll lll lll

l

l

l lll l l lll l l

l

l

l l llll l

l

l

l

l l

l

l l ll

l

lll

l

l ll

l
l

l

l

l

l ll lll

l

ll ll

l

llll ll lll l lll ll ll ll l

l

l

lll ll l lll l ll

l

l

l

llll lll l lll l

l

l

l

l

l

l

l

ll l lll

l

lll

l

l

l

l lll l l lll

l

l

l l

ll l

l

l

l

l l ll lll ll l l lll

l

l

l ll llll llll l

l

l ll ll

l

lll ll l

l

l l

l

l

l l

l

l

l l

l

l lll l lll l

l

l

l l

l

l l ll ll llll

l

ll

l

l ll

l

ll

l

l

l lll ll ll ll

l

l

l

l llll l ll l

l

ll

l

l l l

l

l

l

l ll ll ll l l

l

l

l

l

ll ll

l

l

l

l

l

l
l

l l

l

l

l

l

ll l

l

l
l

l

l l

l

ll l ll

l

l

l

ll

l

ll ll

l

ll

l

ll l l

l

l

ll l

l

l llll ll

l

l l

l

l l

l

ll

l

l ll

l

llll l l

l

l ll l ll ll

l

l lll l lll ll

l

l

l

lll

l

l l

l

l l l

l

ll

l

l ll ll ll lll ll

l
l

l l

l

l l

l

l

lll ll ll ll ll lll ll

l

l ll

l l

l l ll l

l

l ll ll ll ll

l

l

l

l

l

l

l

l ll ll

l

l

l

l

ll

l

l

lll

l

lll

l

l l l ll

l

l ll llll l ll llll ll

l

l

l

l

ll l

l

l

l

l ll l

l

ll

l

lllll

l

lll l

l

l l

l

l ll

l

l

l

ll

l

lll ll l

l

ll l

l

l

l

l

l l

l

l

l

l

l

l

l

l lllll l lll lll l l l

l

ll l ll l

l

l

l

l ll l
l

ll lll

l

ll l

l

l l ll

ll

l

l

l

l

ll ll ll ll l l ll ll

l

l ll llll

l

llll ll l l l ll ll

l

l

l

l ll l l

l

lll

l

l

ll l l l ll l

l Tagwise
Common

Fig. 5.14 Mean–variance relationship and biological coefficient of variation

ENSBTAG00000000855 1.1838970 7.739359 2.287217e-08
ENSBTAG00000017267 0.9936588 8.026673 1.618759e-07
ENSBTAG00000004910 1.0096364 7.830722 2.111096e-06
ENSBTAG00000001393 1.0311526 7.632497 1.223259e-05
ENSBTAG00000002493 1.1216396 7.385824 1.520752e-05
ENSBTAG00000012816 0.8354407 8.092320 1.520752e-05
ENSBTAG00000020630 0.9166478 7.835276 2.335346e-05
ENSBTAG00000001721 0.9187545 7.752196 5.597572e-05
ENSBTAG00000013716 1.5162717 6.476179 4.321941e-04
ENSBTAG00000001424 1.0352284 7.108584 2.774393e-03
ENSBTAG00000009949 0.9746238 7.210936 2.984333e-03
ENSBTAG00000000801 1.1651122 6.806048 3.813573e-03
ENSBTAG00000000025 0.8848511 7.318589 5.249475e-03
ENSBTAG00000006748 0.8856563 7.180246 9.298195e-03
ENSBTAG00000014448 1.5243525 6.166851 1.103187e-02
ENSBTAG00000024199 0.9480600 6.998231 1.988713e-02
ENSBTAG00000009366 1.6453899 5.946605 2.368719e-02
ENSBTAG00000012267 0.8515862 7.179946 3.391110e-02
ENSBTAG00000037972 1.4873236 5.990751 3.982897e-02
ENSBTAG00000001657 0.9060280 6.954235 4.102073e-02
ENSBTAG00000047694 0.8515470 7.068026 4.515505e-02

There are 26 differentially expressed features. There were 50 in the simulated
data and the analysis correctly identified 22. There are 4 false-positives and 24 false-
negatives but don’t read much into this—the data is quite unrealistic. A similar result
can be obtained by fitting a GLM model instead of exactTest. It is similar to what
we did with the arrays—create a design matrix, fit a model, and test a contrast. For
details on the code see [7] and the documentation of edgeR.

5.6 Useful R Packages 199

glm
design=model.matrix(~ contrast, contrast)

estimate design matrix dispersions
DGE2=estimateGLMTrendedDisp(DGE,design)
DGE2=estimateGLMTagwiseDisp(DGE2,design)

fit model
fit=glmFit(DGE2,design)

test contrast (coef) from design matrix
difexpGLM=glmLRT(fit,coef=2)

same as with exactTest
res=topTags(difexpGLM,n=nrow(DGE))
outGLM=res$table
outGLM[outGLM$FDR<0.05,]

A last couple of notes on RNA-seq. This overview was really superficial, there
is a lot more to RNA-seq than what we discussed—there is a huge number of
parameters in each step that can change results. It is still relatively new and there is
not much consensus about golden standards for the analysis. There are many steps
in the analysis and each one will carry over the effects of what was done in the
previous stage. Analysis are somewhat subjective and heavily reliant on external
data (reference assemblies, annotation. . .), chances are that no two analysis will
come up with the same results but hopefully they will at least be similar (the analysis
is a little unique in that the actual data used changes—counts are always different
depending on the method used). There should be more concordance with larger,
clearer effects; much less so when thresholds are less well defined. But even with
all this uncertainty we can still make good inroads and the best way forward is
to make sure that all steps are clearly documented so they can be repeated or re-
evaluated down the track. Lastly, while non-R software was used with the RNA-seq,
it is still possible to use R as the primary pipeline for the analysis by calling the
other programs from R and using its outputs for downstream work (see Chap. 7 for
details).

5.6 Useful R Packages

The number of packages available to work with gene expression data in R is huge.
I’ll just list some of the more usual libraries that may be useful for your work. It’s
definitely worthwhile a visit to Bioconductor to find out more on what is available.

• Biobase, affy, affxparser, marray, oligo—back room work
• affy, vsn, plier, affyPLM—normalization

200 5 Gene Expression Analysis

• arrayQuality, simpleaffy, maDBm gplots, geneplotter, ABarray—summaries and
plotting

• limma, GlobalAncova, genArise, pickgene—differential expression
• OCplus, fdrtool, multtest—false discovery, rates multiple testing
• ShortRead, IRanges, GenomicRanges, GenomeInfoDb, AnnotationDbi,

Biostrings, BSgenome, Rsamtools—for handling and manipulation of sequence
data

• DESeq, edgeR—differential expression with RNA-seq

Chapter 6
Databases and Functional Information

In this chapter we discuss how to translate the statistical results from analysis
into biological knowledge using online databases of genomic data and annotation
packages in R. We also discuss functional profile analysis using gene ontologies and
pathway analysis. Some examples for testing overrepresentation of differentially
expressed genes are shown.

6.1 Introduction to Databases

We take it for granted but the internet has revolutionized the way we work. We
have access to almost unlimited sources of information 24/7, all we have to do
is find it (and hope that our library subscribes to the non-open access journals).
The internet also enabled the existence of online repositories—vast databases of
genomic data and biological knowledge. In GWAS for some applications (e.g.,
genomic breeding values) it might be enough to know that a certain SNP with a
cryptic name is associated with a trait without any further information. For gene
expression, to find out that, e.g., Affymetrix probe identifier Bt.24953.1.S1_at is
differentially expressed is just the beginning of the story. The next step is to find
out what gene this probe maps to and what the gene does, what is its biological
function, what is its relevance to our problem. That’s where the online databases
(DBs) become important—we can annotate our probe (gene) to what is known about
it: function, protein, biochemical pathway, publications that have studied this gene
and so on.

There are many databases out there—there’s even a journal entirely dedicated to
the subject: DATABASE [65]. As a guide there are databases for:

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-14475-7_6) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_6

201

http://dx.doi.org/10.1007/978-3-319-14475-7_7
http://dx.doi.org/10.1007/978-3-319-14475-7_6

202 6 Databases and Functional Information

• Literature with references (and full text) publications
• Taxonomies with classification information
• Sequence databases with DNA information
• Genomic databases with gene information
• Protein databases
• Protein families, domains, and functional sites
• Enzyme and metabolic pathways

Most DBs cross reference each other (and/or duplicate content); so it’s easy to
navigate from one to another. The main databases that will meet most common
needs are:

• NCBI: http://www.ncbi.nlm.nih.gov/
• EMBL: http://www.embl.de/
• DDBJ: http://www.ddbj.nig.ac.jp

And the more specialized

• EXPASY: http://www.expasy.org
• KEGG: http://www.genome.ad.jp/kegg/kegg2.html
• GO: http://www.geneontology.org/

The key issue is to link our data (SNP identifiers, probe ids, sequence. . .) to the
databases. Manufacturers will usually supply (or have available from their website)
either an annotation file with identifiers (e.g., microarrays) to the various databases
or genomic position information (e.g., SNP chips) or at least sequence data that
will allow queries against a reference genome (e.g., primer sequence information).
When the interest is genes, a good identifier is EntrezGene, it’s a numeric identifier
unique for each gene in each species—no problems with dubious meanings such
as gene symbols which have aliases. EntrezGene works well for cross referencing,
in most databases it is possible to map from EntrezGene to identifiers in other
DBs. In practice this would mean, in the case of microarrays, mapping from the
probe to its EntrezGene id and from there to the other database identifiers. And
by the way, the EntrezGene identifier for probe Bt.24953.1.S1_at is 539076 and a
search in EntrezGene (Fig. 6.1) will tell us that it is a Bos taurus gene known as
gametogenetin binding protein 2 (GGNBP2).

6.2 Gene Annotation

Fortunately R has very good annotation options. We can interact directly with
external databases via a browser, from within R itself or using R’s annotation
packages. Our focus will be on the last option. These annotation packages are
essentially SQLite databases built from various public DB sources with R wrapper
functions to query content. In reality the underlying process is very similar to what
we did in Chap. 3: establish a connection to the DB, send an SQL query and return
the data as a data.frame, vector or a list. The difference is that the wrapper functions

http://www.ncbi.nlm.nih.gov/
http://www.embl.de/
http://www.ddbj.nig.ac.jp
http://www.expasy.org
http://www.genome.ad.jp/kegg/kegg2.html
http://www.geneontology.org/

6.2 Gene Annotation 203

Fig. 6.1 Screenshot of NCBI’s EntrezGene website

do all the hard work for us—we don’t need to know anything about SQL. There
are many annotation packages available with three main categories: (1) platform
specific—annotation data mapping probes for a specific array such as the Affymetrix
bovine chip we used in Chap. 5 to DB identifiers (e.g., bovine.db); (2) species
specific—gene centric databases with all known genes for the species and their
mapping to for instance KEGG, GO, Pubmed among others (e.g., org.Bt.eg.db);
(3) genomic databases—genomic data for individual species, careful because they
are very large downloads (e.g., BSgenome.Btaurus.UCSC.bosTau4). Have a look
at the Bioconductor website under Annotation Data to see what’s available. As a
side note, in the same section there are also CDF packages (e.g., bovinecdf) for
the Affymetrix arrays and probe sequence data for many arrays (e.g., bovineprobe).
I made a point of giving an example of each one because the naming conventions
are pretty well structured; it’s quite easy to find what you are looking for.

Before delving into the annotation packages let’s have a quick look at the first
two options to access external DBs. The hard way is to know how to query the DB
via a browser. For example using our 539076—GGNBP2 we could type

> Entrezquery=
+ "http://www.ncbi.nlm.nih.gov/gene?term="
> browseURL(paste(Entrezquery,"539076",sep=""))

Which would open the default browser with exactly the same results shown in
Fig. 6.1. The problem is that you need to know how to query each database. Hint:
normally you can find this out from the database itself looking at the url address,
just type in a query and see what the address looks like. In the package annotate you
will also find some information on how to query the DBs and there are some ready
made functions as well. For example

204 6 Databases and Functional Information

> library(annotate)
> browseURL(pmidQuery(18648396))

will directly open a browser window for the pubmed identifier 18648396). All
pmidQuery does is what we did above, paste a url to an identifier (see also Uni-
GeneQuery). Another hint: type in the name of the function (e.g., UniGeneQuery)
and you can see how the query is setup in case you want to do it manually.

This is handy sometimes but not overly efficient. A better way is with BioMart
which establishes a direct connection to databases which use the system (for details
see http://www.biomart.org).

You’ll need the library biomaRt and then you can create a mart connection from
one of the available marts.

> library(biomaRt)
> listMarts()[,1]

[1] ensembl
[2] snp
[3] functional_genomics
[4] vega
[5] fungi_mart_22
[6] fungi_variations_22
[7] metazoa_mart_22
[8] metazoa_variations_22
[9] plants_mart_22

[10] plants_variations_22
[11] protists_mart_22
[12] protists_variations_22
[13] msd
[14] htgt
[15] REACTOME
[16] WS220
[17] biomart
[18] pride
[19] prod-intermart_1
[20] unimart
[21] biomartDB
[22] biblioDB
[23] Eurexpress Biomart
[24] phytozome_mart
[25] metazome_mart
[26] HapMap_rel27
[27] cildb_all_v2
[28] cildb_inp_v2
[29] experiments

http://www.biomart.org

6.2 Gene Annotation 205

[30] oncomodules
[31] europhenomeannotations
[32] ikmc
[33] EMAGE gene expression
[34] EMAP anatomy ontology
[35] EMAGE browse repository
[36] GermOnline
[37] Sigenae_Oligo_Annotation_Ensembl_61
[38] Sigenae Oligo Annotation (Ensembl 59)
[39] Sigenae Oligo Annotation (Ensembl 56)
[40] Breast_mart_69
[41] K562_Gm12878
[42] Hsmm_Hmec
[43] Pancreas63
[44] Public_OBIOMARTPUB
[45] Public_VITIS
[46] Public_VITIS_12x
[47] Prod_WHEAT
[48] Public_TAIRV10
[49] Public_MAIZE
[50] Prod_POPLAR
[51] Prod_POPLAR_V2
[52] Prod_BOTRYTISEDIT
[53] Prod_
[54] Prod_SCLEROEDIT
[55] Prod_LMACULANSEDIT
[56] vb_mart_24
[57] vb_snp_mart_24
[58] expression
[59] ENSEMBL_MART_PLANT
[60] ENSEMBL_MART_PLANT_SNP

listMarts() shows the available DBs. Let’s connect to ensembl and use the bovine
dataset.

> amart=useMart("ensembl","btaurus_gene_ensembl")

To find out what datasets are available for a given database use listDatasets
(amart). Now let’s query the DB for our probe Bt.24953.1.S1_at

> getBM(attributes="entrezgene",
+ filters="affy_bovine",
+ values="Bt.24953.1.S1_at",
+ mart=amart)

entrezgene
1 539076

206 6 Databases and Functional Information

> getBM(attributes="family_description",
+ filters="affy_bovine",
+ values="Bt.24953.1.S1_at",
+ mart=amart)

family_description
1 GAMETOGENETIN BINDING 2

The function getBM is the main query function. You’ll need to define as arguments
what you want to query (attributes)—in our example we searched for the entrez
identifier which, as expected, returned the same 539076 we had before; and we also
searched for family_description which returned the same results we saw in Fig. 6.1.
We also have to specify a filter (filters)—what kind of information we are supplying
(here affymetrix ids), then the actual query (values)—here our probe id (note that
more than one can be queried each time, the same for attributes, we did not need to
make two independent queries) and finally we supply our mart connection.

To find out what attributes and filters are available for the DB use listAt-
tributes(amart) and listFilters(amart). A word of caution, you might run into trouble
to get through the firewall from your institution since the ports used by BioMart
may be blocked. Try to change the port using a MySQL connection (see details in
the useMart help files).

Now back to the annotation packages. Their advantage is that they are on
the local machine, no struggling with firewalls (nor sys admin wardens) and no
connection latencies. But they can get a bit outdated between releases and of course
there has to be a package for your platform or at least your organism (if not have
a look at AnnotationDbi, annotationTools, Resourcerer. . .). Alternatively, setup a
local BioMart database that you can easily update yourself.

Let’s continue with the bovine Affymetrix array. The library is bovine.db. Start
by loading it and let’s see what’s in it.

> library(bovine.db)
> bovine()

Quality control information for bovine:

This package has the following mappings:

bovineACCNUM has 24117 mapped keys (of 24128 keys)
bovineALIAS2PROBE has 14028 mapped keys (of 41458 keys)
bovineCHR has 16565 mapped keys (of 24128 keys)
bovineCHRLENGTHS has 11692 mapped keys (of 11692 keys)
bovineCHRLOC has 13455 mapped keys (of 24128 keys)
bovineCHRLOCEND has 13455 mapped keys (of 24128 keys)
bovineENSEMBL has 15597 mapped keys (of 24128 keys)
bovineENSEMBL2PROBE has 10755 mapped keys (of 18746 keys)
bovineENTREZID has 16579 mapped keys (of 24128 keys)
bovineENZYME has 2371 mapped keys (of 24128 keys)

6.2 Gene Annotation 207

bovineENZYME2PROBE has 821 mapped keys (of 953 keys)
bovineGENENAME has 16579 mapped keys (of 24128 keys)
bovineGO has 6411 mapped keys (of 24128 keys)
bovineGO2ALLPROBES has 11528 mapped keys (of 12179 keys)
bovineGO2PROBE has 7228 mapped keys (of 7813 keys)
bovinePATH has 5673 mapped keys (of 24128 keys)
bovinePATH2PROBE has 224 mapped keys (of 225 keys)
bovinePFAM is deprecated because up to date

IPI IDs are no longer available.
Please use select() if you need access to

PFAM or PROSITE accessions.

bovinePFAM has 12540 mapped keys (of 24128 keys)
bovinePMID has 15667 mapped keys (of 24128 keys)
bovinePMID2PROBE has 7020 mapped keys (of 8218 keys)
bovinePROSITE is deprecated because up to date

IPI IDs are no longer available.
Please use select() if you need access to

PFAM or PROSITE accessions.

bovinePROSITE has 12540 mapped keys (of 24128 keys)
bovineREFSEQ has 16527 mapped keys (of 24128 keys)
bovineSYMBOL has 16579 mapped keys (of 24128 keys)
bovineUNIGENE has 14297 mapped keys (of 24128 keys)
bovineUNIPROT has 13028 mapped keys (of 24128 keys)

Additional Information about this package:

DB schema: BOVINECHIP_DB
DB schema version: 2.1
Organism: Bos taurus
Date for NCBI data: 2014-Mar13
Date for GO data: 20140308
Date for KEGG data: 2011-Mar15
Date for Golden Path data: 2012-Jun11
Date for Ensembl data: 2014-Feb26

Quite a lot of information. At the bottom we can see where the data came from
and when it was downloaded. The mappings section shows the functions available
to query the DB. Since it is a chip specific DB it is easy to use the Affymetrix
identifiers. Another side note here, if there is no specific package for your platform
use the organism DB, the array manufacturer will have some sort of annotation
which can be used to cross reference to the organism’s genomic DB. If you really
have nothing except probe sequences try to Blast them against NCBI (but don’t run
a large number of automated Blast searches on NCBI, instead download the whole

208 6 Databases and Functional Information

data from NCBI’s website and run local Blast searches). Again using the Affymetrix
Bt.24953.1.S1_at identifier to exemplify

> bovineENTREZID$"Bt.24953.1.S1_at"

[1] "539076"

> bovineGENENAME$"Bt.24953.1.S1_at"

[1] "gametogenetin binding protein 2"

> bovineSYMBOL$"Bt.24953.1.S1_at"

[1] "GGNBP2"

Yes, still the same. We can also use mget to query the DB.

> mget("Bt.24953.1.S1_at",bovineENTREZID)

$Bt.24953.1.S1_at
[1] "539076"

mget will accept multiple probes per query. We can also extract all data at once

> geneids=unlist(as.list(bovineENTREZID))
> length(geneids)

[1] 24128

> geneids[10000:10005]

Bt.2173.1.S1_at Bt.21730.1.S1_at Bt.21730.2.S1_a_at
"532724" "505288" "505288"

Bt.21731.1.S1_at Bt.21731.2.S1_a_at Bt.21732.1.S1_at
"505406" "505406" "508245"

As we would expect there’s one entry for each probe. This can be useful to see
for example if the probes only match a single gene or if there are more than one
probe per gene.

> length(unique(geneids))

[1] 11283

Less than half! I wonder what’s the maximum number of probes that a single gene
maps to.

> summary(factor(geneids))[1]

785621
33

Thirty three. That’s a lot. Let’s find out some more about the gene.

6.2 Gene Annotation 209

> Affyid=
+ names(geneids)[which(geneids=="785621")[1]]
> print(Affyid)

[1] "Bt.13003.1.A1_at"

> mget(Affyid,bovineGENENAME)

$Bt.13003.1.A1_at
[1] "T cell receptor, alpha"

> mget(Affyid,bovineSYMBOL)

$Bt.13003.1.A1_at
[1] "TCRA"

Since the annotation packages are just SQL relational databases we can also query
them directly as we did in Chap. 3. For more details see [47]. These databases are
not only useful in R but can also be used for other applications—simply navigate
to the folder with the database (a folder inside the package under library in R)
and connect to it via SQLite. Figure 6.2 shows SQLiteStudio (excellent viewer for
SQLite databases) connected to the bovine database (sometimes it is also easier to
simply look at the database’s contents to understand it’s structure).

Before moving onto the next topic—enrichment analysis, let’s quickly see how
to map the results from a GWAS study and the RNA-seq data from the previous
chapter to functional information.

For argument’s sake, let’s say that a recent study found that SNP BTB-01143580
is highly associated with body weight in cattle. To identify candidate genes in this
region, we first need to know the location of the SNP and then search for genes in
this region. We start by reading in the map information

> map=read.table("chapter6/map.txt",header=T,sep="\t")
> target=map[which(map$snp=="BTB-01143580"),]$position
> map[which(map$snp=="BTB-01143580"),]

snp chrom position
23538 BTB-01143580 14 24383627

The variable target holds the position on chromosome 14 (now we know where
the SNP is). The next step is to build a data.frame with the position of all known
genes on chromosome 14 using the genomic database (this one uses gene ids as the
primary key and is not platform dependent).

> library(org.Bt.eg.db)

> genepos=org.Bt.egCHRLOC
> mapped=mappedkeys(genepos)
> genepos = as.list(genepos[mapped])

210 6 Databases and Functional Information

Fig. 6.2 Affymetrix bovine database in SQLiteStudio

> pos=matrix(NA,length(genepos),3)
> for (i in 1:length(genepos))
+ {
+ pos[i,1]=names(genepos[i])
+ pos[i,2]=names(genepos[[i]][1])
+ pos[i,3]=genepos[[i]][1]
+ }
> pos=pos[which(pos[,2]=="14"),]
> colnames(pos)=c("gene","chr","position")
> pos=as.data.frame(pos)
> pos$position=as.numeric(as.character(pos$position))
> pos$position=abs(pos$position)

6.2 Gene Annotation 211

> head(pos)
gene chr position

1 100124522 14 67591848
2 100125936 14 48259383
3 100126183 14 19653745
4 100138046 14 878768
5 100140032 14 34007290
6 100196897 14 75741668

First we extracted the chromosome locations from the database (CHRLOC);
then iterated through the list to build a data.frame with gene ids, chromosome, and
position. Since the only interest here is chromosome 14, the rest was discarded. A bit
of fixing up of factors into numeric (the positions) and making them all positive (the
minus sign is for the opposite strand).

Now it is simply a matter of finding genes around this SNP. Here we are just
getting the closest one but normally we would look into a window (e.g., up and
downstream 0.5 Mbp). There are many different ways of doing this, a simple way is
to just get the absolute differences between target and position and then match it to
the gene, e.g.

> dists=pos$position-target
> mindist=min(abs(dists))

> index=which(dists==mindist | dists== -mindist)
> pos[index,]

gene chr position
167 530316 14 24359901

And the gene is 530316. To get some information about it

> mget(as.character(pos[index,1]),org.Bt.egGENENAME)

$`530316`
[1] "UBX domain protein 2B"

> browseURL(paste(Entrezquery,pos[index,1],sep=""))

This shows it is quite simple to match SNP with gene information. A package
that can help with this is NCBI2R. Lastly, let’s match the RNA-seq data to gene ids.
Read in the data from the previous chapter; the rownames are the only information
we have to work with.

rna=read.table("chapter6/RNAdat.txt",header=T,sep="\t")
rna=rownames(rna)
head(rna)

[1] "ENSBTAG00000000010" "ENSBTAG00000000013"
[3] "ENSBTAG00000000014" "ENSBTAG00000000019"
[5] "ENSBTAG00000000022" "ENSBTAG00000000023"

212 6 Databases and Functional Information

rna holds the identifiers we want to match against org.Bt.eg

> acc=org.Bt.egENSEMBL2EG
> mapped=mappedkeys(acc)
> hold=intersect(rna,mapped)
> index=match(hold,rna)
> rna=rna[index]
> rnaToGene=mget(rna,org.Bt.egENSEMBL2EG)

> mget(as.character(rnaToGene[1]),org.Bt.egGENENAME)

$`511289`
[1] "ubiquitin-like 7 (bone marrow stromal cell-derived)"

It is very similar to what we did before. Basically extract all mapped ensembl
keys; match them to the RNA-seq ids (some are not annotated, so were excluded)
and then get a list of transcript ids as the names of the list items and gene id (or ids)
as elements. To get a gene description, mget was used (same as with the SNP).

6.3 Gene Ontology

Gene ontologies (GO) provide a rigid controlled vocabulary to describe genes and
gene products in various species. Ontologies are structured as directed acyclic
graphs, in practice this means a tree-like structure with more general terms on
top and more specific terms below. The most general terms in GO are molecular
function—what a gene does at the biochemical level; biological process—which
process a gene is involved in; and cellular component—where a gene is found within
cells or complexes [18].

The main uses of GO are twofold: help reduce the dimensionality of results
and look for overrepresentation of specific terms and consequently functional
overrepresentation. In the first case, we might come up with a list of 500 DE
genes, it’s very hard to go over each gene individually, see what each one does
and try to make sense out of it all. GO terms can help to group these genes into
clusters with similar properties making the analysis much more tractable. In the
second case we extend this concept of grouping a bit further and formally test if
the genes in our result are more frequent than we would expect by chance, this is
an indication that these overrepresented terms are involved in our trait of interest.
A nice side effect of GO analysis is that it can help reduce the noise (false positives)
in expression experiments, instead of focusing on individual genes we focus on
processes. An example of the use of GO in expression analysis is given in [87].

To illustrate let’s take a list of probes from the file DEprobes.txt which is in
the folder for this chapter. Here we are again using Affymetrix array probes but if
working with RNA-seq data it is simply a matter of using the organism’s database
instead (as above for mapping RNA-seq data). What does the annotation package
tell us about them?

6.3 Gene Ontology 213

Fig. 6.3 Screenshot of Gene Ontology website

> deprobes=read.table("chapter6/DEprobes.txt",
+ header=T,sep="\t")
> goannot=toTable(bovineGO[as.vector(deprobes$AFFY)])
> head(goannot)

probe_id go_id Evidence Ontology
1 Bt.11558.1.A1_at GO:0001666 IEA BP
2 Bt.11558.1.A1_at GO:0001934 IEA BP
3 Bt.11558.1.A1_at GO:0007005 IEA BP
4 Bt.11558.1.A1_at GO:0007015 IEA BP
5 Bt.11558.1.A1_at GO:0007021 IEA BP
6 Bt.11558.1.A1_at GO:0007601 IEA BP

toTable is a handy function to structure the results from the DB. Take the first
term from our results GO:0001666 and let’s see what it is (we already know
it’s a BP—biological process, the other two shorthands are MF and CC). There’s
another column in the table called Evidence. These are evidence codes which give
an indication of how confident we are about the term. IEA means inferred from
electronic annotation. Check the guide to evidence codes on the GO site for other
codes. A search on the GO website will tell us that the term is associated with
response to hypoxia (Fig. 6.3). The same information can be obtained in R using the
annotation package GO.db which is specific for gene ontologies.

> library(GO.db)
> GO()

Quality control information for GO:

This package has the following mappings:

GOBPANCESTOR has 25683 mapped keys (of 25683 keys)
GOBPCHILDREN has 14773 mapped keys (of 25683 keys)

214 6 Databases and Functional Information

GOBPOFFSPRING has 14773 mapped keys (of 25683 keys)
GOBPPARENTS has 25683 mapped keys (of 25683 keys)
GOCCANCESTOR has 3441 mapped keys (of 3441 keys)
GOCCCHILDREN has 1152 mapped keys (of 3441 keys)
GOCCOFFSPRING has 1152 mapped keys (of 3441 keys)
GOCCPARENTS has 3441 mapped keys (of 3441 keys)
GOMFANCESTOR has 9679 mapped keys (of 9679 keys)
GOMFCHILDREN has 1963 mapped keys (of 9679 keys)
GOMFOFFSPRING has 1963 mapped keys (of 9679 keys)
GOMFPARENTS has 9679 mapped keys (of 9679 keys)
GOOBSOLETE has 1860 mapped keys (of 1860 keys)
GOTERM has 38804 mapped keys (of 38804 keys)

Additional Information about this package:

DB schema: GO_DB
DB schema version: 2.1
Date for GO data: 20140308

> mget(goannot[1,2],GOTERM)

$`GO:0001666`
GOID: GO:0001666
Term: response to hypoxia
Ontology: BP
Definition: Any process that results in a change in
state or activity of a cell or an organism
(in terms of movement, secretion, enzyme production,
gene expression, etc.) as a result of a stimulus
indicating lowered oxygen tension. Hypoxia, defined
as a decline in O2 levels below normoxic levels
of 20.8--20.95%, results in metabolic adaptation at
both the cellular and organismal level.

Synonym: response to hypoxic stress
Synonym: response to lowered oxygen tension

GOTERM gives a general description of the term (compare to the top of Fig. 6.3).
Recall that GO is a tree like structure. The immediate term above the term and all
higher order terms can be obtained with

> mget(goannot[1,2],GOBPPARENTS)

$`GO:0001666`
is_a is_a

"GO:0006950" "GO:0036293"

6.3 Gene Ontology 215

> mget(goannot[1,2],GOBPANCESTOR)

$`GO:0001666`
[1] "GO:0006950" "GO:0008150" "GO:0009628" "GO:0036293"
[5] "GO:0050896" "GO:0070482" "all"

Note the use of BP because we are dealing with a biological process. To work down
the tree use CHILDREN and OFFSPRING.

Next we can test for overrepresentation using the package topGO. When testing
for overrepresentation the key point is to make sure that a valid universe is used—
this is the set of all possible probes or genes that the sampling came from. For
example, don’t use all known genes for an organism if the array you used only
had a proportion of these; with RNA-seq preferably use the list of genes that had
some level of expression in the samples. Also if some pre-filtering was conducted,
use only the features that were actually used in testing for differential expression.
Here for simplicity we will (wrongly) use all probes on the Affymetrix bovine array.
First extract the probe names from the DB then create a vector of class factor with
0/1 for all probes, 0 for not DE and 1 for DE, then name the vector with the probe
names so we know what is what. The next step is to create an object of class GOdata
for molecular function, MF (see syntax details and information on GOdata objects
in the topGO help files).

> library(topGO)
> probes=
+ names(unlist(as.list(bovineENTREZID)))
> genelist =
+ factor(as.integer(probes %in% deprobes$AFFY))
> names(genelist) = probes
> GOdata = new("topGOdata", ontology = "MF",
+ allGenes = genelist, annot = annFUN.db,
+ affyLib = "bovine.db")

Building most specific GOs
(1885 GO terms found.)

Build GO DAG topology
(2470 GO terms and 3080 relations.)

Annotating nodes
(5258 genes annotated to the GO terms.)

Once we have a GOdata object it is very easy to test terms for overrepresentation.
Select a test and then test it on the GOdata object.

> test = new("classicCount",
+ testStatistic = GOFisherTest,
+ name = "Fisher test")
> resultFis = getSigGroups(GOdata, test)

216 6 Databases and Functional Information

-- Classic Algorithm --

the algorithm is scoring 173 nontrivial
nodes test statistic: Fisher test

score(resultFis) will return the p-values for each GO term that was tested. An
easier way to see results is with

> GenTable(GOdata,Fisher=resultFis,topNodes=10)

GO.ID
1 GO:0005200
2 GO:0005344
3 GO:0019825
4 GO:0043425
5 GO:0001102
6 GO:0070888
7 GO:0016757
8 GO:0016758
9 GO:0008375
10 GO:0033613

Term
1 structural constituent of cytoskeleton
2 oxygen transporter activity
3 oxygen binding
4 bHLH transcription factor binding
5 RNA polymerase II activating transcripti...
6 E-box binding
7 transferase activity, transferring glyco...
8 transferase activity, transferring hexos...
9 acetylglucosaminyltransferase activity
10 activating transcription factor binding

Annotated Significant Expected Fisher
1 13 3 0.08 5.1e-05
2 14 3 0.08 6.5e-05
3 18 3 0.11 0.00014
4 7 2 0.04 0.00069
5 8 2 0.05 0.00092
6 8 2 0.05 0.00092
7 81 4 0.48 0.00120
8 60 3 0.35 0.00506
9 19 2 0.11 0.00540
10 19 2 0.11 0.00540

6.3 Gene Ontology 217

GO:0002083

GO:0002094

GO:0003674

GO:0003824

GO:0004497

GO:0004505

GO:0004659

GO:0004871

GO:0004872GO:0005215

GO:0005216

GO:0005217

GO:0005218 GO:0005220

GO:0005261

GO:0005262

GO:0005344

GO:0005488

GO:0008124

GO:0008324

GO:0015075

GO:0015267

GO:0015276

GO:0015278

GO:0016491

GO:0016705

GO:0016714

GO:0016740

GO:0016765

GO:0016829

GO:0016835

GO:0016836

GO:0019825

GO:0022803

GO:0022834

GO:0022836

GO:0022838

GO:0022857

GO:0022891

GO:0022892 GO:0038023

GO:0060089

Fig. 6.4 Tree plot of top ten overrepresented molecular function terms

This returns the top most significant GO terms for molecular function. We can also
plot (Fig. 6.4) and save these terms using

> showSigOfNodes(GOdata, score(resultFis),
+ firstSigNodes = 10)

$dag
A graphNEL graph with directed edges
Number of Nodes = 28
Number of Edges = 31

$complete.dag
[1] "A graph with 28 nodes."

Figure 6.4 shows the relationships between the nodes; red squares are the more
significant terms. We can do exactly the same with RNA-seq and even significant
SNP identified by GWAS for which a list of neighboring genes was made (as we did
above). For more details on GO start with [47], [40] and [6].

218 6 Databases and Functional Information

6.4 Pathway Analysis, Physical Mapping,
and Protein Domains

Other common enrichment analyses are based on: (1) KEGG, the Kyoto Ency-
clopedia of Genes and Genomes which is a database that contains information
about metabolic pathways in many organisms; (2) on chromosome locations based
on physical mapping information; and (3) on protein domain information (e.g.,
PROSITE). All of these have similar objectives to what we did in the previous
section—identify overrepresented features in a pathway, in a chromosome region, in
a domain. We will not go into details herein, some worked out examples are given
in [47] and [40]. Useful R packages are mentioned in the next section. To briefly
illustrate we could use functions from the library Category to test our list of probes
for overrepresentation. Initially we create a list of unique gene identifiers for our DE
probes (keggDE) and for our universe (keggU). Next we build the parameters for a
hypergeometric test and then test using the function hyperGTest (see the help files
for syntax details). We can see the pathways with a p-value < 0.01 using summary.
Figure 6.5 shows a pathway (not from this example) with non-genic elements in
yellow, non-DE genes in gray, and the DE genes colored in red or green according
to the fold change (positive and negative, respectively).

Cysteine metabolism

cpd:C01005

ko:K10150

ko:K01760

path:bta00770

SDS

GOT1

GOT2

ko:K05396

bta:506598bta:515715

bta:539159

ko:K05395

MPST

path:bta00430

ko:K09758

bta:514462

ko:K01738

ko:K01740

ko:K01739

path:bta00260 ko:K00640

path:bta00272

path:bta00271path:bta00480

LDHA

LDHB

bta:509519

bta:784938

cpd:C00097

cpd:C00320cpd:C00065

cpd:C02218
cpd:C00506

cpd:C05528

cpd:C00283cpd:C00793cpd:C03125cpd:C00979

cpd:C00606

cpd:C00041

cpd:C09306

cpd:C05527

cpd:C00022

cpd:C00491

cpd:C00059

cpd:C05526

cpd:C00051

cpd:C01962

cpd:C00957

cpd:C05824

cpd:C05823

ko:K05884

cpd:C16069

cpd:C11481

Fig. 6.5 Pathway of cysteine metabolism with DE genes color coded according to fold change

6.4 Pathway Analysis, Physical Mapping, and Protein Domains 219

> library(Category)
> keggDE=unique(toTable(bovineENTREZID
+ [as.vector(deprobes$AFFY)])$gene_id)
> keggU=unique(toTable(bovineENTREZID
+ [as.vector(probes)])$gene_id)
> params=new("KEGGHyperGParams",geneIds=keggDE,
+ universeGeneIds=keggU,annotation="bovine",
+ pvalueCutoff=0.01,testDirection="over")
> keggtest=hyperGTest(params)
> summary(keggtest,pvalue=0.01)

KEGGID Pvalue OddsRatio ExpCount Count Size
1 05310 0.0006823845 21.140977 0.1795209 3 22
2 04612 0.0007475868 11.481481 0.4243222 4 52
3 05332 0.0015576683 15.420330 0.2366412 3 29
4 04145 0.0019502805 6.517094 0.9220848 5 113
5 05330 0.0020796666 13.814039 0.2611213 3 32
6 05320 0.0022750406 13.350000 0.2692814 3 33
7 04940 0.0031692115 11.766807 0.3019216 3 37
8 05323 0.0032409435 7.498732 0.6283232 4 77
9 04672 0.0034219349 11.427551 0.3100816 3 38
10 05150 0.0048698682 9.985714 0.3508818 3 43
11 05145 0.0074054439 5.854241 0.7915241 4 97
12 05416 0.0078636943 8.303571 0.4161621 3 51

Term
1 Asthma
2 Antigen processing and presentation
3 Graft-versus-host disease
4 Phagosome
5 Allograft rejection
6 Autoimmune thyroid disease
7 Type I diabetes mellitus
8 Rheumatoid arthritis
9 Intestinal immune network for IgA production
10 Staphylococcus aureus infection
11 Toxoplasmosis
12 Viral myocarditis

The objective of this chapter was to provide a basic overview of how to explore
functional knowledge in the context of genomic analysis. This is just the tip of
the iceberg; as more knowledge is created and stored in computationally retrievable
form we can expect that embedding prior knowledge into the analytical steps will
become more prevalent. For enrichment analysis, Bioconductor is again the primary
repository to investigate. Here we focused on functional annotation databases, but
there are many other sources of information for sequence data as well that can be
used in conjunction with the RNA-seq data from the previous chapter.

220 6 Databases and Functional Information

6.5 Useful R Packages

• Annotation packages—GO.db, KEGG.db, reactome.db and platform or species
specific DBs (note that KEGG.db is no longer being updated—better avoid)

• AnnotationDbi, annaffy, annotationTools, Resourcerer—annotation tools
• Category, GlobalAncova—general analysis
• GOstats, goTools, topGO, goProfiles—GO
• KEGGgraph, PGSEA, GSEABase, KEGGREST–KEGG
• macat—chromosome location
• domainsignatures—protein domains
• Rgraphviz, geneplotter, GenomeGraphs—plotting

Chapter 7
Extending R

In this chapter we will overview some additional options to work with R: how to
speed up computations and better ways to handle data. Simple parallelization (and
pseudo-parallelization) is discussed along with some packages for R. Sometimes
additional programs are needed for an analysis, we will see how to interface with
them and also how to write programs in other languages for use in R. Many
applications need a graphical interface, we will illustrate how to build graphic shells
and use R as the engine behind the scenes. Results from an analysis are of limited
value unless they are reproducible and reported in a human digestible format—we
will see some of R’s reporting functionalities.

7.1 Large Data–Large Problems

Moore’s law has been holding well for computer hardware: chip performance
doubles roughly every couple of years. The drops in the cost of sequencing over
time closely reflected Moore’s law until around 2008. With the advent of next-gen
sequencing platforms, costs started to fall at a much faster pace than Moore’s law.
This is rapidly leading to data outstripping computational resources. At the end of
the day, large projects require high-end computational resources and there is no real
workaround. There are however ways to improve R’s performance when working
with large datasets and make better use of computational resources. In this chapter
we will discuss some tips on how to improve performance in R and to how exploit
the parallel architecture available in current computers. We will then see how to use
other programs directly from within R and, in broad terms, mention how to write
code in C++ that can interface with R. The coin is then flipped and we discuss a

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-14475-7_7) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_7

221

http://dx.doi.org/10.1007/978-3-319-14475-7_7
http://dx.doi.org/10.1007/978-3-319-14475-7_7

222 7 Extending R

simple example of how to hook R into a graphical user interface in C# so that R
can be used as the engine running the computation. The chapter concludes with an
overview of how to automate reporting in R. Parts of this chapter are based on [44]
with permission from the publisher.

7.2 Improving Read and Write Operations in R

We already discussed vectorization and how important it is for speeding up R in
Chap. 4—this should always be the first focus of attention to optimize your work.
Aside from this, the first bottleneck commonly encountered when working with
genomic data is getting it into R. Datasets tend to be rather large and it can take a
significant amount of time just to load it in. Ideally data would be in binary format
with a specific serialization/deserialization available for storing and retrieving the
data (as for example the Affymetrix CEL files used in Chap. 5 or the RDS files in
Chap. 4). More commonly however, data is stored as plain text files in somewhat
variable formats, requiring flexibility in how data is read into R. We will focus on
this latter scenario.

Up to now we have mostly relied on read.table to import flat files into R. It is the
slowest but most flexible method. read.table performs many additional tasks (e.g.,
convert to factors, numeric, set missing values, check names, etc.). All this adds
considerable overhead to the process. There are some options to speed up read.table
if you tell R what data to expect. For example, predefine the column classes (what
kind of data to expect in each column); define the number of rows in the table
beforehand to avoid having to reallocate memory; and if there are no comments in
the data, set the comment argument to empty. The first option can improve the read
operation quite significantly; the others are more marginal. The read.table function
works much better when there are more rows than columns. To illustrate we will
read in a small file of genotypes (geno.txt) with 1,000 samples (rows)× 50,000 SNP
(columns) and then its transpose (tgeno.txt) with more rows (50,000) than columns
(1,000).

> system.time(
+ test <- read.table("chapter7/geno.txt", sep="\t")
+)

user system elapsed
67.53 0.17 67.71

> system.time(
+ test <- read.table("chapter7/geno.txt",sep="\t",
+ nrows=1000,
+ comment.char = "",
+ colClasses=c("character",rep("numeric",50000)))
+)

7.2 Improving Read and Write Operations in R 223

user system elapsed
63.19 0.09 63.29

> system.time(
+ test <- read.table("chapter7/tgeno.txt", sep="\t")
+)

user system elapsed
15.60 0.06 15.66

The function system.time is useful to benchmark runtimes. Note the use of < −
instead of = inside the function. This is one of the rare occasions where the = sign
does not work. By adding the additional parameters to read.table we gained 4.5 s.
Note that with colClasses the column names have to be included as well—that is
why there are 50,001 column definitions instead of 50,000 and the first one is a
character. There was some speed improvement but a really large gain is when the
data is stored as SNP× sample instead of sample× SNP, the read time comes down
to only 15.6 s which is over four times faster than the first two examples. As a rule
try to get the data in a format that has more rows than columns, but unfortunately
this is the opposite of what most other programs use. If the file has only genotypes
(no row and column names), the scan function can be used instead.

> system.time(
+ test <- matrix(scan(file="chapter7/genoNumeric.txt",
+ what=integer(),sep="\t"),50000,1000,byrow=T)
+)

Read 50000000 items
user system elapsed
9.61 0.11 9.72

The scan function is much faster than read.table but simply returns a vector of
items that then need to be shaped into the desired format. The argument what defines
the data type and sep is the separator. The matrix function was then used to bend the
vector into a matrix, here with 50,000 rows and 1,000 columns. Be careful with the
byrow argument, it defines how the matrix is filled in [either by row or by column
(for the latter use byrow=F)]. With scan it does not matter if the data has more
columns than rows—read times are the same. If there are row and column names in
the data, you will have to use what = character() and then do some manipulation to
shape the matrix.

> T1=Sys.time() # keep track of how long it takes
> test = scan(file="chapter7/tgeno.txt",
+ what=character(),sep="\t")
> cnames = test[1:1000]
> test = test[-c(1:1000)]
> test = matrix(test,50000,1001,byrow=T)

224 7 Extending R

> rnames = test[,1]
> test = test[,-1]
> test = matrix(as.numeric(test),50000,1000,byrow=F)
> rownames(test) = rnames
> colnames(test) = cnames
> rm(rnames,cnames)
> print(Sys.time()-T1) # show runtime

Time difference of 23.33781 secs

This is rather convoluted. The data is read in as a vector with scan, then the
first 1,000 items are stored to use as column names (in cnames), next we remove
them from the vector; bend the vector into a matrix with an additional column for
the SNP names; store these in rnames and delete the first column from the matrix.
Now we have the matrix of genotypes but it is in character format, so we have to
convert to numeric using as.numeric; but this again returns a vector which has to
be bent back into a matrix. Finally add the row and column names to the matrix of
genotypes (test). It is a lot of work and takes 23 s (note the different way to measure
time using Sys.time). This is slower than simply using read.table (15.6 s) and much
slower than using scan with only numeric genotypes (9.6 s). However if the data
is in sample× SNP format as in the first example, it is still faster (it takes over a
minute to read in the data with read.table).

An even faster way to get data into R is with readLines

> system.time(
+ test <- readLines(con="chapter7/tgeno.txt")
+)

user system elapsed
3.29 0.08 3.37

and this brings it down to 3.29 s. But the downside is that readLines returns a
plain vector of unparsed character lines which will require even more manipulation.
Finally, the fastest way to get data into R is with readChar. This loads the whole file
as a raw unparsed string. This is extremely fast and takes only 0.28 s to run (on par
with, e.g., C++), but again without any structure to the data and you need to know
beforehand the size of the data file (can use the argument size from the file.info
function for this). The additional parsing steps required to convert the data to matrix
format can make the whole process even slower than simply using read.table, but it
is useful sometimes.

> system.time(
+ test <- readChar(con="chapter7/tgeno.txt",
+ nchars=file.info("chapter7/tgeno.txt")$size,
+ useBytes=T)
+)

7.2 Improving Read and Write Operations in R 225

user system elapsed
0.28 0.03 0.31

If the plan is to load the genotypes (or any other large dataset) more than once
into R, it is worthwhile to load them once using one of the previously described
approaches and then save it in a binary format. This makes the file much smaller
and is quick to read in. A simple solution is to use the save function (but first get the
genotypes in matrix format again)

> test <- matrix(scan(file="chapter7/genoNumeric.txt",
+ what=integer(),sep="\t"),50000,1000,byrow=T)
> save (test,file="chapter7/genotypes.bin")

The binary file is much smaller than the original file (98 MB versus 18 MB) and
it takes only 0.72 s to load, in the correct matrix format, with

> system.time(
+ load ("chapter7/genotypes.bin")
+)

user system elapsed
0.72 0.03 0.75

A problem with this is that R will load the data into the workspace with the
same original variable name used when the data was saved (test, in this case). If the
variable already exists it will be overwritten. A couple of notes on save: it is not
restricted to a single variable—use a list of variable names to store multiple objects
in a single file; while binary formats are convenient, there is always some risk of
changes to the serialization and the data may become unreadable in newer versions
of R—flat files are still a safer way for long-term data storage. A more elegant way
of storing (single) variables for use in R is with saveRDS; and to read in the data use
readRDS. This is probably the most convenient way to work with large datasets in
R (we have already used RDS files in Chap. 4).

> saveRDS(test,"chapter7/genotypes.rds")

> system.time(
+ newTest <- readRDS("chapter7/genotypes.rds")
+)

user system elapsed
0.70 0.03 0.73

This takes only 0.7 s to read the data in. With RDS we can assign the binary
files to new variable names (same way as with read.table) and there is no risk of
overwriting objects.

Apart from R’s built in possibilities, a few packages that are worth exploring for
GWAS data manipulation are sqldf, ncdf and GWASTools.

226 7 Extending R

In summary, we started with a load time of more than 1 min and ended with less
than 1 s. We have achieved this by using different functions and preparing the dataset
in a format that is more digestible to R; the compromise is that the faster the data
gets imported, the less useful the format becomes. The trade-off is speed to read in
the data versus the additional overhead in later stages to parse it. If it is doable, get
the data as clean as possible (no mixing of genotypes with phenotypes, no row and
column names—store these separately), it will be much faster and easier to import
the data into R. For repeated use of the data, binary formats can save a lot of time
(and disk space).

7.3 Byte-Code Compiler

A byte-code compiler developed by Luke Tierney has been available for R since
version 2.14 and most packages are already making use of it. The package itself
(compiler) is part of the R base installation. In some scenarios, particularly for
loops, significant speed gains are achieved just by adding a couple of extra lines of
code. Essentially the compiler converts the R commands from a sourceable file into
instructions that are executed by a virtual machine (rather loosely think in terms
of Java and its runtime environment). The actual speed gains using the compiler
cannot be generalized; they will be null or marginal for functions written in low-
level languages and for straight R functions in packages that already make use of
it. As a very rough approximation, performance improvements of around 30 % are
achievable. While not dramatic, it could still mean the difference between R being
a viable platform to solve a problem or having to resort to other languages instead.

The package itself has quite a few functions, here we will focus only on a single
one, but further details can be found in the R help files for the package (and it is a
highly recommended read).

To illustrate, as already discussed in Chap. 4, let’s do something that R really
does not like—a double loop (in the example we calculate allele frequencies from
the matrix of genotypes). This takes about 38.7 s.

> test = readRDS("chapter7/genotypes.rds")
> T1=Sys.time()
> freqA=numeric(50000)
> freqB=numeric(50000)
> for (i in 1:50000)
+ {
+ hold=0
+ for (j in 1:1000) hold=hold+test[i,j]
+ freqB[i]=hold/2000
+ freqA[i]=1-freqB[i]
+ }
> print(Sys.time()-T1) # show runtime

Time difference of 38.73523 secs

7.4 Managing Memory 227

The easiest way to use the compiler is by adding the following lines at the
beginning of the code

> library(compiler)
> enableJIT(3)

The command enableJIT enables/disables just-in-time compilation. Use argu-
ment 0 to disable and 3 to compile loops before usage. The JIT compiler can
also be enabled/disabled for all R jobs by setting the start-up environment variable
R_ENABLE_JIT to a value between 0 and 3 (see details of flags in the R help files).
Now, running the double loop again takes only 13.3 s, almost three times faster.

> T1=Sys.time()
> freqA=numeric(50000)
> freqB=numeric(50000)
> for (i in 1:50000)
+ {
+ hold=0
+ for (j in 1:1000) hold=hold+test[i,j]
+ freqB[i]=hold/2000
+ freqA[i]=1-freqB[i]
+ }
> print(Sys.time()-T1) # show runtime

Time difference of 13.29133 secs

7.4 Managing Memory

R was not originally designed for large datasets and, quite frankly, it is a memory
hog. Datasets are getting larger and larger, and R not only stores everything in
RAM but tends to duplicate objects unnecessarily as well. The footprint for the
same operations in C can take less than a quarter of the memory used by R. The
most efficient solution is to simply get a bigger machine and more memory—
genomic data are expensive; is it really sensible to try to run the analysis on a
$1,000.00 computer? It might be doable, but performance will take a significant hit.
First, forget about 32-bit operating systems, they cannot make use of all available
memory; e.g., in Windows the maximum for a single process is around 3 GB.
A further limitation in 32-bit R for Windows is the size of a single object. The
maximum contiguous memory allocation is around 2 GB, so if your object is larger
than that, which often will be the case with genomic data, it cannot be stored
as a single variable. There is no specific allocation, de-allocation and garbage
collection in R, or not at least what a programmer would expect. Garbage collection
is automatic but memory is not released when objects are deleted, they will only be
excluded when needed. For example:

228 7 Extending R

> test=matrix(123,10000,15000)
> memory.size()

[1] 1166.76

returns around 1.15 GB. After the variable is deleted with rm(test), a call to
memory.size still returns 1.15 GB. An explicit call to the garbage collector (with
the gc function) will release the memory.

> rm(test)
> memory.size()

[1] 1166.8

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 182094 9.8 407500 21.8 350000 18.7
Vcells 373779 2.9 126509043 965.2 150379806 1147.4

> memory.size()

[1] 18.08

This now returns 18M which, for this particular case, is just the footprint of R
itself. Generally non-release of memory does not cause any problems because as
soon as R needs the memory the garbage collector is called. If the OS requests
memory the collector is also triggered, but if a very large object is removed it can
be worthwhile to manually call gc(), even if only for the psychological comfort of
other users on a server who might notice that your R process is eating up 200 GB of
RAM.

Of more concern is that, if we create a matrix then overwrite it, R will double the
memory used. For example

> test=matrix(123,10000,15000)
> test=matrix(321,10000,15000)
> memory.size()

[1] 2306.95

test is now (temporarily) using 2.3 GB, we would not be able to do this for two
matrices in 32-bit R for Windows without running out of memory. But we would
expect to be able to change the values of these matrices without any problems. This
is not the case. Start a new R-32 session and type:

> test1=matrix(123,10000,15000)
> test2=matrix(321,10000,15000)
> test1=test1+1

Error: cannot allocate vector of size 1.1 Gb

7.4 Managing Memory 229

R does not replace values, it makes a copy of the entire object with the
modifications. This effectively means that to be able to manipulate the matrix you
will need at least the size of the object in free memory (once finished memory is
released, but it has to be available for the operation). On the positive side this only
happens once and repeated changes will not blow out the memory usage any further
(Chambers [16] discusses the programming logic behind this in detail). Trying to
split the problem with apply will not work either. Now in R-64 type:

> test=matrix(123,10000,15000)
> test=apply(test,1,function (x) x+1)
> memory.size()

[1] 4595.96

This will take up 4.6 GB and is much slower to run. The last resort is a for
loop and it will do better at 1.74 GB (saves around 450M of memory), but it is
painstakingly slow. Again in a new R-64 session, type:

test=matrix(123,10000,15000)
for (i in 1:length(test)) test[i]=test[i]+1
memory.size()

[1] 1742.7

An easy workaround is to split objects into chunks, work on these one at a time
and then modify the object.

test=matrix(123,10000,15000)
hold=test[1:1000,]+1
test[1:1000,]=hold
memory.size()

[1] 1277.07

This takes up around 1.3 GB—much more manageable and easy to scale between
performance (number of chunks) and memory (size of chunks) given the hardware
restrictions.

The limitations of working with large datasets in R are recognized, a package
that aims to address this is bigmemory. For the example we have been using, a
bigmemory matrix will occupy only a fraction of the memory needed by R’s default
matrix. If this still does not work, the package allows using disk storage as well.

library(bigmemory)
test=big.matrix(init=123,nrow=10000,
+ ncol=15000,type="integer")
memory.size()

[1] 25.36

230 7 Extending R

The downside is that most R functions will not work on the big.matrix object
(our simple test = test + 1 will return an error) and it can be rather convoluted to
make use of it. Additional packages are available to facilitate usual tasks and are
worth exploring (e.g., bianalytics, bigtabulate, bigalgebra).

One additional point about memory is that R does not copy an object immedi-
ately.

> test=matrix(123,10000,15000)
> test2=test
> memory.size()

[1] 1166.76

This will still use the same 1.15 GB of memory. But as soon as an element is
changed the matrix is instantiated.

> test2[1,1]=124
> memory.size()

[1] 2306.88

This seldom has any practical effect but it can be confusing why a single change
to one element of a matrix suddenly causes an out of memory error (and of course
the matrix has to be copied as well, which makes an apparently small change seem
very slow to execute).

7.5 Parallel Computation

Parallel computation became a hot topic with the shift from single-core to multi-core
architectures, but programs and programming practices are lagging a little behind
the technology; mainly because there is still more work to develop a program that
runs in parallel instead of on a single thread. Currently, applications written in R
are easier to parallelize than in C or FORTRAN; but this gap is closing rapidly
since parallel development tools are evolving quickly. Some R packages/functions
already run in parallel and are typically transparent to the user, but it is also easy
to parallelize iterative routines in R (albeit this can be rather problem specific of
course). In theory we could run a job eight times faster with eight processors but
there is some overhead to control it all, so the speed gains are not linear and they
can plateau at some point (more on this later).

Some tasks are hard to parallelize, e.g., numerical integration of systems of
differential equations which depend on the previous state of all equations. On the
other hand, some problems are embarrassingly parallel. Luckily a lot of genomic
work falls in this category. For example, in a single SNP analysis each test can
be performed independently from all others. Let’s go back to our SNP data from
Chap. 3. For simplicity we will use a file of weights (randomly generated as we did

7.5 Parallel Computation 231

before) and a file with genotypes already filtered for bad SNP and in the AA, AB,
BB and NA format. All we want to do is get the anova significance p-value for each
SNP. The script would be

> genotypes=read.table("chapter7/SNPparallel.txt",
+ header=T,sep="\t")
> weight=read.table("chapter7/Weightparallel.txt",
+ header=T,sep="\t")$weight

> # function for single SNP regression
> pvalfunc=function(trait,snp)
+ {
+ if (length(levels(snp))>1)
+ anova(lm(trait~snp))[[5]][1]
+ else NA
+ }

> T1=Sys.time()
> pvals=apply(genotypes, 1,
+ function(x) pvalfunc(weight,factor(t(x))))
> pvals=data.frame(snp=row.names(genotypes),
+ pvalue=unlist(pvals))
> print(Sys.time()-T1)

Time difference of 2.930751 mins

Pretty much what we have already done in Chap. 3. Sys.time was again used to
measure how long it took to run the analysis—on my machine 2.93 min.

Before discussing how to run the association analysis in parallel it is worthwhile
mentioning that a really simple way of parallelizing a large task is to simply split
it into smaller chunks and run each one on a different processor. This takes a bit of
thinking on how to split the data and collate results, but it is very easy to do. In the
folder for this chapter there are four scripts (scp1.r, scp2.r, scp3.r and scp4.r) that
are exactly the same as above but each one runs a subset (15,000 in the first 3 and
the rest in the fourth) of the SNP. We can simply open four R sessions and run each
script in one of the sessions; then when they are all finished, read in the results to
collate into a single file. This example is too small to be worth the additional effort
but it is sometimes handy with large datasets. So that this exercise does not become
too trivial let’s use Rcmd.exe for this. Rcmd.exe is a way for R to run batch jobs in
Windows (it is installed in the bin folder of the R path). Rcmd is also used to build
packages for Windows. From a DOS prompt (not in R), navigate to the folder for
Chap. 7 and then type

start Rcmd.exe BATCH scp1.r
start Rcmd.exe BATCH scp2.r
start Rcmd.exe BATCH scp3.r
start Rcmd.exe BATCH scp4.r

232 7 Extending R

Fig. 7.1 Running batch jobs with Rcmd

as shown in Fig. 7.1. Each run took about a minute to complete (except the fourth
and smaller run—20 s). We obtained around a threefold gain in time; of course here
it is of little consequence since it is a small job.

Some details of the commands. The command start starts an independent job
on a new DOS window and the OS will sort out the allocation of processors for
you. If you don’t use start the batch job will run sequentially, which beats the entire
effort. With a bit of creativity it’s quite simple to make better use of resources (albeit
rather inelegantly). BATCH is the parameter for Rcmd to run a script. We could also
run this with a .bat file which is just a script for running a DOS job (in the chapter’s
folder there is a file called RunSNPp.bat). It is a simple text file quite similar to what
we ran in the command prompt (only difference is we gave a name to each window).
You can run the bat file by typing its name on the command prompt (Fig. 7.1) or just
double click on the file. Note that all this is rather Windows centric and for Rcmd to
work it will need to be in the path (alternatively add the full path to it). The Linux
equivalent is R CMD BATCH (this also works in Windows).

Of course R also has options for real parallelization. Interest in parallel
computation in R has grown rapidly in the last few years. This is mainly driven
by the rapid increase in the size of datasets, particularly data derived from genomic
projects which are outstripping hardware performance. And also, the strong drive
toward Bayesian approaches which are computationally demanding. A variety of
packages and technologies have been developed for parallel computing with R.
This is a very active area of research so the landscape is changing quite rapidly;
a good starting point for the current state of affairs is the CRAN Task View:
High-Performance and Parallel Computing with R (http://cran.r-project.org/). In
a nutshell, there are packages to target different platforms (multicore machines,
clusters, grid computing, GPUs) and these either provide low-level functionality
(mainly communication layers) or easier to use wrappers that make the low-
level packages more accessible for rapid development/deployment. Currently, the
most widely used approach for parallel computing is the MPI (Message Passing
Interface) which is supported in R through the Rmpi package. At a higher level
the package snow [111] provides easy to use functions that hide details of the
communication layer and allows communication using different methods (PVM,

http://cran.r-project.org/

7.5 Parallel Computation 233

MPI, NWS or simple sockets). An even higher level wrapper is snowfall which
wraps the snow package. Herein we will illustrate how to parallelize single SNP
regressions using snowfall and simple socket communication; a detailed overview
of parallel methods/packages in R is given in Schmidberger et al. [98] and a good
introductory tutorial is Eugster et al. [28]. For a more nuts and bolts view, Tierney
[110] is a good read. To setup snowfall is quite simple:

>library(snowfall)

Loading required package: snow

> # set max number cpus available - default: 32
> sfSetMaxCPUs(number=128)
> sfInit(parallel=TRUE,cpus=4, type="SOCK",
+ socketHosts=rep("localhost",4))

R Version: R version 3.1.1 (2014-07-10)

snowfall 1.84-6 initialized (using snow 0.3-13):
parallel execution on 4 CPUs.

The first line loads the snowfall library and then the parameter sfSetMaxCPUs
is used to change the default maximum number of CPUs that can be accessed
(in this example the value was set to 128 cores but it will only work if the
machine/cluster actually has this number of nodes). If less than 32 nodes/cores
will be used there’s no need to change the parameter—this is simply a safeguard
to avoid reckless overloading of shared resources. The function sfInit initializes
the cluster. The parameter cpus stores the number of processors to be used (4 in
the example). Here we are using simple socket connections (type=“SOCK”) but
MPI, PVM or NWS could be used for other cluster modes. Note that for these to
work the packages Rmpi, rpvm, or nws would also have to be installed (and the
cluster setup in these modes). Sockets do not require any additional setup but they
are slower than other modes. The argument socketHosts is a list of cpus/computers
in the cluster, for processors on the same machine localhost (here repeated four
times—once for each node) can be used but IP addresses or network computer
ids can be used for distributed systems. One point of note and common pitfall
when working with clusters across different physical machines is that the socket
connection is tunneled through SSH. This has to be setup and accessible to R for
between computer communication to work. In Windows, firewall blocking rules
may be triggered the first time the parallel nodes are initialized, make sure to allow
traffic if the firewall popup appears.

With this the cluster is up and running. After the job has finished, the cluster can
be stopped with

> sfStop()

Stopping cluster

234 7 Extending R

This is all that is needed to setup a simple cluster in R. Now let’s illustrate how
to parallelize the single SNP regressions. All that is needed is a small change from
the sequential code we used before that took around 3 min to run. To parallelize the
job, after setting up the cluster, simply use the sfApply function which is a parallel
version of apply. It is simply a matter of replacing apply with sfApply in the previous
code for the association analysis. The full code on eight cpus is

> library(snowfall)
> sfInit(parallel=TRUE,cpus=8, type="SOCK",
+ socketHosts=rep("localhost",8))

snowfall 1.84-6 initialized (using snow 0.3-13):
parallel execution on 8 CPUs.

> T1=Sys.time()
> sfExport(list=list("weight","pvalfunc"))
> pvals=sfApply(genotypes,1,

function(x) pvalfunc(weight,factor(t(x))))
> sfStop()

Stopping cluster

> print(Sys.time()-T1)

Time difference of 24.53902 secs

This took 24.5 s to run, around seven times faster. Runtimes do not improve
linearly with the number of processors used (some of the reasons for this are detailed
below) but the speed gains are still considerable, particularly with long runs.

In the parallel code an additional function was used

> sfExport(list=list("weight","pvalfunc"))

Each node in the cluster needs to have access to the data structures it has to work
with. In this example the nodes had to use the phenotypic (weight) data to run the
analyses and needed the function to calculate the p-values of the anova. Objects that
will be used by the cluster have to be exported with sfExport. An important point
is that objects exported for use by the cluster are duplicated on each node, this can
take up sizable quantities of memory if the exported objects are large. Once the run
is completed memory is released, but some thought has to be given as to whether
there is enough memory on each node of the cluster (in distributed systems) or in
total (for jobs parallelized on the same machine).

We allocated eight processors for the run, it took just 24.5 s to complete with the
advantage of not having to use batch files and merging outputs as we did above. For
details on the syntax consult the snowfall help files. Consider using parallelization
alongside databases to improve performance in GWAS.

To conclude this section, there are a few points to consider when running R in
parallel.

7.5 Parallel Computation 235

number of cores

pe
rfo

rm
an

ce
 ra

tio

1 2 4 8 16 20 32 40

0
1

2
3

4
5

6
7

8

seconds
0
0.01
0.1
1
2
5

Fig. 7.2 Comparison of performance of parallel runs for varying number of nodes and various
time lengths spent on independent computations within nodes. The labels on the x axis represent
the actual number of cores used. The straight line through 1 (y axis) represents the sequential
runtime (baseline). Figure reproduced from [44], with permission

First, computation is much faster than communication. With parallel computing
it is important to minimize the transfer of data between nodes. For example, under
the exact same conditions, a run takes 50.6 s and the function returns a single value
(as, e.g., the above single SNP analysis). If instead, the function each time returned a
vector of 10,000 numbers, the runtime increases to 91.8 s and with 100,000 numbers
the runtime is 112.2 s. Considerable speed gains can be achieved by minimizing the
shuffling of data between nodes.

Second, the number of calls made to the nodes also impacts performance. In
practice, the more time the workers independently spend on the computation itself,
the more efficient the use of the computational resources will be. Ideally the actual
calculations will be the slowest aspect of the computation, and not the number of
times they have to be performed. But this is not necessarily always the case and
frequently computations on the nodes are trivial and the workers spend hardly any
time computing, but do spend a lot of time communicating and transferring data
(particularly if networks are involved). In these cases it is worthwhile to partition
the problem into larger subsets but there will be some additional coding overhead.

Figure 7.2 illustrates this last point quite clearly by varying the number of
workers (between 1 and 40) and computing times (0, 0.01, 0.1, 1, 2, and 5 s); i.e.,
the number of seconds that each node spends computing before returning results
to the master. Results are shown as a ratio between sequential versus parallel runs.
When the node spends 0 s on the computation (just a call to the node and returns)
performance is poor due to the communication overhead incurred. As more time is
spent on the computation, the gains obtained through additional cores become more
evident but the compromise between computation and communication is still clear.

For times 0.01 and 0.1 s the ideal numbers of cores are respectively 4 and 8 (1.6
and 3.7 times faster). Adding more workers after this reduces the performance. For
calls of 1 and 2 s the performance starts to taper off after 20 workers. Take the 1 s
scenario—with 20 workers the performance is 6.6 times better than the sequential

236 7 Extending R

job but this only increases to 6.8 with 40 workers. Computations of 5 s show the best
results in terms of speed gains but while the performance has not yet plateaued there
is evidence of diminishing returns. In practice, performance is a balance between
computational times and the number of cores used. Once performance starts to taper
off there is little value in adding more workers. Either performance will decline due
to additional communication overhead or there will be unnecessary strain placed on
computational resources, which becomes quite relevant in shared environments.

Third, performance gains through parallelization are not linear (i.e., four cores
do not perform four times better than one core) but rather incremental. For example,
consider the 5 s computation time in Fig. 7.2—with 40 cores the performance is
8.3 times better (far from a 40-fold performance boost). While this may not sound
optimal, if actual runtimes are taken into consideration the picture becomes much
more interesting: the sequential run takes 36.7 min whilst the 40 core run takes
4.4 min. Returning to the example we have been working with, the sequential run
took 175.8 s to run and parallel runs with 2, 4, 8 and 16 cores took respectively
88.08, 45.74, 24.52, and 19.67 s. The speed fold gains were 1.99, 3.84, 7.17, and
8.93—good improvements up to 8 cores but with 16 nodes performance starts to
taper off.

Last point, there is a fixed time lag to initialize the communication protocols
which is around 1.5 s. That is why the parallel run on a single worker performs
worse than the sequential one (Fig. 7.2).

In summary, the key points to consider when setting up parallel tasks in R are:

• the more time spent on computations, the more useful it becomes to parallelize
the process and more cores can be used,

• communication is more expensive than computation, try to minimize data
transfer and calls to nodes whilst maximizing computation within workers,

• performance gains are not linear to the number of cores and can reach a
saturation point; but actual computing times can be significantly lower.

7.6 External Interfaces in R

A lot can be done in R, but sometimes we have code or other applications
that we need or want to use. R can be dynamically linked to compiled code in
C or FORTRAN (and also other languages to various degrees); this opens the
possibility of using prior code or to develop code especially designed to solve a
computationally intensive task. Results can then be sent back into R for further
downstream analyses. A large part of R is written in C, C++ and FORTRAN, so it
is relatively straightforward to compile, link, call, and execute routines written in
these languages. Other languages are also supported to some extent or other (see
packages SJava, RSPerl, and RSPython).

We will show a simple example of how to run a C++ routine in R at the
end of this section but, to start; the easiest way to link to external routines is
to simply run applications compiled in another language straight from within R.

7.6 External Interfaces in R 237

All data preprocessing and setup of files could be done in R, then call the program
from within R and finally read the results back into R for further analyses. The
R function for this is system. By default system will wait for the job to finish
before continuing, but you can also work asynchronously using the argument
wait=FALSE or redirect the output to R (provided it is a console program) with
show.output.on.console=TRUE and intern=TRUE. Program arguments can also be
passed using system but note however that command line arguments cannot be
passed using system in Windows. Use shell instead or the newer implementation
system2 (see the R help files for details). To illustrate let’s use Notepad to look at
the phenotypes in the file Weightparallel.txt.

> system("notepad.exe chapter7/Weightparallel.txt",
wait=F,invisible=F)

This opens the file in Notepad. In Linux or MacOS replace Notepad by another
text file editor (e.g., gedit in Linux). In Windows, to see programs that have a
graphical interface the argument invisible=F has to be used; not necessary for
Linux or MacOS. Now, for something more useful, the DECIPHER package
has the AlignSeqs function to perform multiple sequence alignments, but ClustalW
is the most widely used programs for this common bioinformatics task. To
execute the code below (this will take quite some time to run) ClustalW needs
to be installed in the directory of the chapter (or elsewhere, but change the path
accordingly). ClustalW and the newer Clustal Omega are freely available from
http://www.clustal.org/. Note that the Clustal parameters have to be on the same
line and are space separated—below they are shown on separate lines for clarity
purposes only.

> # clustal W - for DNA
> system(paste("chapter7/clustalw2

-INFILE=chapter7/sequenceData.txt
-OUTFILE=chapter7/aligned.fasta
-OUTPUT=FASTA
-TYPE=DNA
-PWDNAMATRIX=IUB
-PWGAPOPEN=10
-PWGAPEXT=0.1
-ALIGN
-DNAMATRIX=IUB
-GAPOPEN=10
-GAPEXT=0.2
-GAPDIST=5"))

CLUSTAL 2.1 Multiple Sequence Alignments

Sequence type explicitly set to DNA
Sequence format is Pearson

http://www.clustal.org/

238 7 Extending R

Sequence 1: HamadryasBaboon 16521 bp
Sequence 2: BarbaryMacaque 16586 bp
Sequence 3: RhesusMacaque 16564 bp
Sequence 4: LarGibbon 16472 bp
Sequence 5: BorneanOrangutan 16389 bp
Sequence 6: WesternGorilla 16364 bp
Sequence 7: Bonobo 16563 bp
Sequence 8: CommonChimpanzee 16554 bp
Sequence 9: WesternChimpanzee 16561 bp
Sequence 10: Neanderthal 16565 bp
Sequence 11: HumanCambridge 16569 bp
Sequence 12: HumanYoruba 16571 bp
Sequence 13: WesternLowlandGorilla 16412 bp
Sequence 14: BoaConstrictor 18905 bp
Sequence 15: Crocodile 17900 bp
Sequence 16: Dog 16727 bp
Sequence 17: Wolf 16729 bp
Sequence 18: Buffalo 16359 bp
Sequence 19: BosIndicus 16341 bp
Sequence 20: BosTaurus 16338 bp
Sequence 21: Auroch 16338 bp

Start of Pairwise alignments
Aligning...
Sequences (1:2) Aligned. Score: 85
Sequences (1:3) Aligned. Score: 82
Sequences (1:4) Aligned. Score: 79
Sequences (1:5) Aligned. Score: 79
Sequences (1:6) Aligned. Score: 79
Sequences (1:7) Aligned. Score: 80
Sequences (1:8) Aligned. Score: 79
Sequences (1:9) Aligned. Score: 79
Sequences (1:10) Aligned. Score: 77
...
Sequences (17:20) Aligned. Score: 76
Sequences (17:21) Aligned. Score: 77
Sequences (18:19) Aligned. Score: 88
Sequences (18:20) Aligned. Score: 87
Sequences (18:21) Aligned. Score: 88
Sequences (19:20) Aligned. Score: 98
Sequences (19:21) Aligned. Score: 98
Sequences (20:21) Aligned. Score: 99
Guide tree file created: [chapter7/aligned.dnd]
There are 20 groups

7.6 External Interfaces in R 239

Start of Multiple Alignment
Aligning...
Group 1: Sequences: 2 Score:286459
Group 2: Sequences: 3 Score:281562
Group 3: Sequences: 2 Score:313499
Group 4: Sequences: 3 Score:307141
Group 5: Sequences: 2 Score:314341
Group 6: Sequences: 3 Score:312601
Group 7: Sequences: 6 Score:289036
Group 8: Sequences: 2 Score:309608
Group 9: Sequences: 8 Score:287535
Group 10: Sequences: 9 Score:278283
Group 11: Sequences: 10 Score:275077
Group 12: Sequences: 13 Score:258438
Group 13: Sequences: 2 Score:316773
Group 14: Sequences: 2 Score:309583
Group 15: Sequences: 3 Score:307827
Group 16: Sequences: 4 Score:287818
Group 17: Sequences: 6 Score:252796
Group 18: Sequences: 19 Score:233955
Group 19: Sequences: 20 Score:213287
Group 20: Sequences: 21 Score:206131
Alignment Score 17776121
firstres = 1 lastres = 21273
FASTA file created!

Fasta-Alignment file created [chapter7/aligned.fasta]

The file sequenceData.txt contains mitochondrial DNA sequence data for various
species downloaded from NCBI. We performed the multiple sequence alignment in
ClustalW (check the program’s documentation for information of the parameters
used) and can now, for example, use it to build a phylogenetic tree as shown in
Fig. 7.3. This is quite easy to do using the package ape.

> library(ape)
> difmat=read.dna("chapter7/aligned.fasta",
+ format="fasta")
> difmat=dist.dna(difmat,model="raw")
> difmat=hclust(difmat,"average") # simple UPGMA
> plot(as.phylo(difmat))
> axisPhylo()

This is just a simple distance tree to illustrate how R and other programs can be
merged together into an analysis pipeline (it is handy for, e.g., the RNA-seq analysis
in Chap. 5). Readers interested in phylogenetic work might want to start with the
excellent book of Paradis [84] and the ape package.

240 7 Extending R

BarbaryMacaque

RhesusMacaque

HamadryasBaboon

CommonChimpanzee

WesternChimpanzee

Bonobo

HumanCambridge

HumanYoruba

Neanderthal

WesternGorilla

WesternLowlandGorilla

BorneanOrangutan

LarGibbon

Dog

Wolf

BosTaurus

Auroch

BosIndicus

Buffalo

Crocodile

BoaConstrictor

0.15 0.1 0.05 0

Fig. 7.3 Example of a simple UPGMA phylogenetic tree built with the ape package using
mitochondrial sequence data aligned in ClustaW

Data used in the example was downloaded within R from NCBI using the
accession ID (refseq) of the mitochondrial sequence for each species. For example,
for the cattle and human data we can use the following code to query NCBI using
the Entrez Programming Utilities (for details see eutils.ncbi.nlm.nih.gov):

> # get mitochondrion sequences
> # e.g. Bos taurus and human
> # accession IDs
> mitochondria=c("NC_006853.1","NC_012920.1")
> for (i in 1:length(mitochondria))
+ {
+ link=paste("http://eutils.ncbi.nlm.nih.gov/entrez/
+ eutils/efetch.fcgi?db=protein&id=",
+ mitochondria[i],
+ "&rettype=fasta&retmode=text",sep="")
+
+ download.file(link,

7.6 External Interfaces in R 241

+ destfile=paste("chapter7/MT",i,".txt",sep=""),
+ mode = "w")
+ }

trying URL 'http://eutils.ncbi.nlm.nih.gov/entrez/
eutils/efetch.fcgi?db=protein&id=NC_006853.1
&rettype=fasta&retmode=text'

Content type 'application/octet-stream' length unknown
opened URL
downloaded 16 Kb

trying URL 'http://eutils.ncbi.nlm.nih.gov/entrez/
eutils/efetch.fcgi?db=protein&id=NC_012920.1

&rettype=fasta&retmode=text'
Content type 'application/octet-stream' length unknown
opened URL
downloaded 16 Kb

7.6.1 Linking R to C++

At some point you may need to use code written in another language in R. We
will illustrate here with a simple example using Rcpp. Readers interested in the
topic could start with Chap. 6 of Gentleman’s R Programming for Bioinformatics
[39] and then move on to Chamber’s [16] book. Rizzo’s [94] text while it does not
discuss language interfacing might also be appealing due to its more algorithmic
approach. Good entry points for C++ programming are [88] (accessible pure C++
introductory text) and [27] (a blend of C++ and R, makes it easier to work with
C++ for those who are already familiar with R). The best reference for those who
already know C++ is the applied text Seamless R and C++ Integration with Rcpp
[26] written by Eddelbuettel, the author of the package.

Rcpp is fully described in [26] and a must read for programmers making
extensive use of C++ in R. In simple terms, Rcpp acts as the bridge between
C++ and R, facilitating communication between the languages. On the C++ side
of things it is just a couple of extra lines: we need to add a new header (Rcpp.h) and
a using statement for the namespace:

include <Rcpp.h>
using namespace Rcpp;

Functions that will be exposed to R have to start with

// [[Rcpp::export]]

To illustrate, the code below receives two numeric values from R, adds them up
and returns the result to R (this is the full C++ code).

242 7 Extending R

include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
int simpleSum(const int x, const int y)
{

return x + y;
}

On the R side it can also be quite simple. First download, install, and load the
Rcpp package (will also need additional compiler tools installed). Then the C++
code can be compiled on the fly (using sourceCpp) and the functions exported with
(Rcpp::export) will become available for the session (here only simpleSum). Once
sourced all functions become available for use, similar to other internal functions
in R.

> library(Rcpp)
> sourceCpp("chapter7/Cpp/SimpleSum.cpp")

> # function: simple sum of two numbers
> simpleSum(5,3)

[1] 8

The function sourceCpp compiles a dll (link library) in memory and makes it
available for a single R session—the library is deleted when the session is closed
(but it will be saved together with the workspace). This is probably the easiest way
to interface with C++ from R. But there are a few caveats: the library will have to be
compiled and linked each time you want to use the C++ functions; depending on the
number of functions, it can take some time to compile. More of a problem is the lack
of portability if you want to share the library with others. Most Linux installations
will have the necessary tools to compile the library but Windows does not. There
are quite a few compatibility problems with different compilers, the easiest way to
get things to work is to install the Rtools (includes the gcc compiler and various
other applications needed to build R packages for Windows from source). Rtools
can be downloaded from cran.r-project.org/bin/windows/Rtools. Make sure to edit
the path so that Windows knows where to find the tools. In summary you will need
the Rcpp package and Rtools (installed and visible in the path) for this to work.

When using C++, or other languages for that matter, pay attention to error
handling. The C++ code above is unprotected and could result in R hanging on you.

A less ephemeral solution for the library is to compile and save it to disk.
This is rather tricky to do manually but we can use the functionalities for building
packages to make this easier. The Rcpp.package.skeleton function will create all that
is needed to compile the library. First set the working directory to the folder with the
SimpleSum.cpp file—the function does not seem to be able to resolve partial paths
(preferably no spaces in the path either); then create the package structure.

cran.r-project.org/bin/windows/Rtools

7.6 External Interfaces in R 243

> setwd("chapter7/Cpp")
> Rcpp.package.skeleton("egDll", example_code = FALSE,
+ cpp_files = c("SimpleSum.cpp"))

Creating directories ...
Creating DESCRIPTION ...
Creating NAMESPACE ...
Creating Read-and-delete-me ...
Saving functions and data ...
Making help files ...
Done.
Further steps described in './egDll/Read-and-delete-me'.

Adding Rcpp settings
>> added Imports: Rcpp
>> added LinkingTo: Rcpp
>> added useDynLib directive to NAMESPACE
>> added importFrom(Rcpp, evalCpp)

directive to NAMESPACE
>> copied SimpleSum.cpp to src directory

This will create a new directory called egDll with the basic folders and files
needed to build an R package. The argument cpp_files are the names of the source
code files (or just one, as here). The name of the package (here egDll) will become
the name of the library. Note: the steps to build an R package are quite similar to
this, for details on how to make your own packages read the Writing R Extensions
document [in the R Console, click on Help and then on Manuals (in PDF)]. We can
now compile the package with

> system ("R CMD INSTALL --build egDll")

This will create a file called egDll_1.0.zip with 32- and 64-bit versions of the
DLL inside the libs folder. Now extract the DLL into the Cpp folder and we are
ready to load it and use it in R. But before directly accessing the library, note that
in the process we created a real R package that was installed in the library folder of
the R installation path and the egDll_1.0.zip is the same as any other R library from
CRAN or Bioconductor. We could simply load the library and access the functions
in the same way as with any other package (do this in a new clean R session):

> # using as a library
> library(egDll)
> simpleSum(6,9)

[1] 15

It is rather unpolished but this is all that is needed for an in-house package. To link
directly to the library (remember to extract the DLL from the zip file and place it in
the Cpp folder) we use dyn.load to load the library and calls to functions in the DLL
are made with .Call:

244 7 Extending R

> library(Rcpp)
> dyn.load("egDll.dll") # load dll
> .Call("egDll_simpleSum",5,10) # call functions

[1] 15

The syntax for call is nameDLL_functionName followed by the parameters of
the function. Note that Rcpp has to be loaded prior to loading the DLL or using
functions.

This is a bit complicated and for illustration purposes only, but ultimately all we
really need are the definitions for the functions that we want to export to R. If you
look in the src folder that was created by the Rcpp.package.skeleton function there
will be a new file called RcppExports.cpp that translates the simpleSum function
into a structure that can be read by R. This file looks as below.

// This file was generated by
// Rcpp::compileAttributes

// Generator token:
// 10BE3573-1514-4C36-9D1C-5A225CD40393

#include <Rcpp.h>
using namespace Rcpp;

// simpleSum
int simpleSum(const int x, const int y);
RcppExport SEXP egDll_simpleSum(SEXP xSEXP, SEXP ySEXP)
{
BEGIN_RCPP

SEXP __sexp_result;
{
Rcpp::RNGScope __rngScope;
Rcpp::traits::

input_parameter<const int>::type x(xSEXP);

Rcpp::traits::
input_parameter<const int>::type y(ySEXP);

int __result = simpleSum(x, y);
PROTECT(__sexp_result = Rcpp::wrap(__result));

}
UNPROTECT(1);
return __sexp_result;

END_RCPP
}

7.7 Using R Inside Other Applications 245

It is rather cryptic unless you know Rcpp well and it is simpler to let the function
Rcpp.package.skeleton do the translation for us. But it you want to bypass the
package building step this file can be used to compile the DLL directly with g++
and then use R CMD SHLIB to make a DLL to use with dynload.

These are just the basics to get started with blending C++ and R. There are
many other useful features in Rcpp and they are well described in [26]. To finish
this section, there are a few Rcpp extensions that make it easy to transfer data
from R into C++. These are NumericVector, NumericMatrix, CharacterVector, and
CharacterMatrix (these will not work with a data.frame, first convert to matrix
and then send to C++). An example illustrating how to use them is shown in the
RcppExample.cpp file (in the Cpp folder of this chapter). One of the functions
calculates the row sums of a numeric matrix (rowSumsC). To get the row sums
for the genotypes in the RDS file we made before use:

> library(Rcpp)
> sourceCpp("chapter7/Cpp/RcppExample.cpp")
> geno=readRDS("chapter7/genotypes.rds")
> sums=rowSumsC(geno)
> head(sums)

[1] 956 1006 1002 984 989 1003

This should be the same as using the rowSums function in R.

7.7 Using R Inside Other Applications

R is extremely powerful, but it is not very different from a programming language—
which can make it quite complex to use. We can hide this complexity from the
end user by wrapping R in a user friendly point-and-click graphical application.
A nice example is affylmGUI, a graphical user interface for limma. Another example
is AffyPipe for analysis of Affymetrix microarray data. The program is written in
C# and allows the user to import the array files, set up the experiments (contrasts)
of interest and run the analysis. The program will run a full analysis with quality
control preprocessing, differential expression, gene ontology, and pathway analysis
and create an HTML report, part of which is shown in Fig. 7.8. Figure 7.4 shows a
screenshot of the program.

How to interact with R will depend on the programming language used.
The general steps are to use (in Windows) Rterm.exe—R in terminal/console mode.
From the GUI start a new instance of Rterm.exe as an asynchronous process, hide
the console and redirect the standard input, output and error as streams to your
application. And then it’s just a matter of creating, e.g., buttons in your application
which when clicked will send commands (i.e., a simple text stream with R’s syntax)
to R and when R returns output to the output stream you can handle it by, e.g.,

246 7 Extending R

Fig. 7.4 Screenshot of AffyPipe, a C# frontend of an R-based pipeline for analysis of Affymetrix
microarray data

building a table or making a plot. A nice side effect is that computationally intensive
tasks can run remotely on a large machine while the GUI sits on the user’s desktop
controlling the application.

In the folder for this chapter there is a very simple example in C# (the code,
solution, and executable are in the RwithGUI folder). If you are familiar with .Net
programming languages it should be easy to port to other languages (e.g., Visual
Basic) or adapt the project to your needs. We will not discuss the syntax here, but
the program basically just does what was mentioned above: connects to Rterm and
redirects input/output to/from the program. The GUI is shown in Fig. 7.5 and all it
does is the four basic operations (addition, subtraction, multiplication and division)
and it also has a line to input R code and visualize the output (shown in the black
window).

Ultimately this is just the flip side of what we did before using system in R to
execute other programs—now we used another program to run R. Apart from being
useful to create simpler and more user-friendly tools for specific tasks with R as the
primary engine; it can also be used to simplify programming jobs by hooking into
R to access specific functions. In loose terms, R and all its packages and functions
become a vast programming library that can be used in your applications.

7.8 Reporting in R 247

Fig. 7.5 Screenshot of a C# frontend for R using Rterm.exe. The code is in the folder for this
chapter under RwithGUI

7.8 Reporting in R

Once the analyses are finished, results must be collated and presented in a human
digestible format. We have already seen how to save outputs (tables) and plots, but
it’s also handy to pull it all together as part of the analysis—this ensures that the
whole analysis is repeatable and, in practice, it is common to have to go back to an
earlier stage and try a new parameter or test a different model or have to analyze a
new batch of data of exactly the same type. It is time consuming (and irritating) to
cut and paste tables and plots into a word processor for the final result only to find
out that there was this other important covariate that somebody forgot to mention
and you have to start again. . .

There are two goods ways of reporting in R. One is using Sweave which
generated what you have been reading so far. Sweave allows mixing R code with
Latex code in the same file which you can run in R to produce tex files for Latex.
This amounts to an (executable) report which is fully reproducible (there is a strong
drive in the research community to improve documentation of workflows).

248 7 Extending R

If you are not familiar with Latex, it will take some time to get used to the
syntax and basic setup. Conceptually, it is a tag based language—think in terms
of an HTML equivalent for text editing. Error handling is probably the weakest part
of Latex and it can be hard to identify where exactly the problems are; it is also
rather unfriendly for tables (you may have noticed that they are rather wanting in
this text). On the positive side, Latex produces really professional output (and tables
also look good) and for formulas it’s actually easier than any other word processor
I have used. You don’t need Latex installed on your machine to use Sweave, you
can still get the tex files. But if you want to make something readable (normally a
pdf file) you’ll need Latex installed. MiKTeX is a good option (http://miktex.org/)
and there is also a portable version that does not require a full installation. To get
started have a look at the The Not So Short Introduction to LATEX2e by Oetiker et al.
available at http://tobi.oetiker.ch/lshort/lshort.pdf. But let’s get back to Sweave. The
only real difference between a normal script and a sweave script is the separation
between latex and R. A simple example follows.

\documentclass[10pt,a4paper]{article}
\title{Example of an R Report using \emph{Sweave}}
\author{John Doe}
\date{}
\usepackage{Sweave}
\begin{document}
\maketitle

This report shows the density plot for
10000 numbers randomly sampled from a
normal distribution with mean = 100 and
standard deviation = 10.
<<>>=
rnum=rnorm(1000,mean=100,sd=10)
summary(rnum)
plot(density(rnum),col="blue",main="Density plot")
dev.print(file="sweaveplot.pdf",
device=pdf,width=8,height=8)

@
\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{sweaveplot.pdf}
\caption{Density plot of random numbers

sampled from a normal distribution.}
\label{sweaveplot}
\end{figure}
\end{document}

http://miktex.org/
http://tobi.oetiker.ch/lshort/lshort.pdf

7.8 Reporting in R 249

Save this script as for example MySweave.snw and in R, instead of the usual
source, use Sweave(MySweave.snw) this will produce a MySweave.tex file ready
for use.

> Sweave("chapter7/MySweave.snw")

Writing to file MySweave.tex
Processing code chunks with options ...
1 : echo keep.source term verbatim

You can now run (pdf)latex on MySweave.tex

R commands are interwoven with Latex using the symbol <<>>= to start the R
code and @ at the end. If Latex is installed and in the path, we can make a pdf from
the tex file using system

> system(paste("pdflatex.exe","MySweave.tex"))

Which will create the pdf (Fig. 7.6). Another option is to use the function texi2dvi
from the package tools. Another useful package for working with Latex is maDB,
it will even make tables for you. Hint: a common problem is that Latex tries to
find a file called Sweave.sty, make sure it’s in one of the path folders that the OS
knows about (the file is usually in the R installation folder under share/textmf).
For convenience, it is copied in the chapter’s folder directory. Also note that the
MySweave.tex file was created in the working directory and not in the folder for
Chap. 7. To create the pdf using, e.g., portable MikTex, make sure both the tex file
and the Sweave.sty file are in the same directory.

A second way of reporting results is in HTML. Even though links can be used in
pdf files it is a bit cumbersome. HTML is ideal for large reports with many cross
references and dynamic links to external resources. There are many packages for
working with HTML in R. The package annotate can be used with function htmlpage
to build tables with genes and links to external databases (e.g., Entrez, GO,. . .) or
pmAbst2HTML that will build a web page with abstracts and links to PubMed. For
Affymetrix probe ids the function probes2table in the affycoretools package will
also generate an annotated HTML table. There are many other platform-specific
packages to perform similar tasks (have a look in Bioconductor if there’s an off the
shelf solution that works for you). On the other extreme if you are comfortable with
HTML you can just write the code straight into your script and save in a file using
write. In between the two extremes there’s the package R2HTML which has many
functions to simplify HTML reporting. For example

> library("R2HTML")
> HTML("<h1><center>Example of an HTML report with a
+ table and plot</center></h1>",
+ "chapter7/example.html",append=FALSE)
> data=data.frame(id=paste("id",1:20,sep=""),
+ trait=c(rnorm(10,10,1),rnorm(10,12,1)),

250 7 Extending R

Fig. 7.6 Sample Sweave report

+ treat=c(rep("A",10),rep("B",10)))
> HTML(data,file="chapter7/example.html",
+ append=T,row.names=FALSE,Border=3,
+ innerBorder=1,align="center")
> boxplot(data$trait~data$treat,col=c("blue","red"),
+ main="Boxplot of trait by treatment")
> dev.print(file="chapter7/htmlboxplot.png",
+ device=png,width=400,height=400)

7.9 Summary 251

windows
2

> HTMLInsertGraph(GraphFileName="htmlboxplot.png",
+ GraphBorder=1, Align="center", WidthHTML=400,
+ HeightHTML=400, file="chapter7/example.html",
+ append=TRUE)

[1] TRUE

The report is shown in Fig. 7.7. Note that HTML works for simple text and
also dataframes or matrices. The function HTMLInsertGraph was used to add the
boxplot—just make sure that the size of the figure are the same when you save it
and in the HTML report or it will look pretty ugly. A real example from a microarray
report generated with the program AffyPipe (mentioned above) is shown in Fig. 7.8.

7.9 Summary

Following the framework of this primer, we overviewed in rather broad terms some
other ways of working with R and how to be more efficient when working with large
datasets. If computational requirements are becoming unwieldy, it is worthwhile
investigating faster ways of handling and/or analyzing the data—there is a good
chance there will be a different way of coding or a function implemented in a
package that can make the problem more tractable. Better ways of reading in the
data and parallelization will handle most of the common bottlenecks in genomic
analysis. If nothing else works, lower level languages can be used directly in R.
This means that R can be just as fast as C++ or FORTRAN but the advantages of
rapid coding by simply using available functions will be lost. Pipelines that require
many different programs can be built using R; this is particularly useful for sequence
data. It is straightforward to integrate reporting and analysis into a single process in
R using Sweave and HTML. Genomic data is large and involves many intermediate
steps between raw data and final results—the more all these steps are automated
and reproducible, the easier it will be to rerun or tweak an analysis and to avoid
irreproducible human errors. Ideally, every single analysis (and dataset) should have
an executable and well-documented workflow (for us, an R script). Hint: when
working with scripts, comment and justify any judgment calls that had to be made
and then, programmatically implement those decisions (e.g., if outliers are removed
based on visual inspection, add the removal of the data into the script itself).

252 7 Extending R

Fig. 7.7 Sample HTML report

7.10 Useful R Books and Packages

• Data Manipulation in R [105]. Lots of useful tips for working and manipulating
data, but not centered on large datasets.

• R Programming for Bioinformatics [39]. Gentleman’s book has a good overview
of how to use R with other languages. The chapter on external annotation

7.10 Useful R Books and Packages 253

Fig. 7.8 Screenshot of HTML report generated by AffyPipe

databases and how to use them in R is a highlight. There is also some interesting
material on how to work with sequence data.

• Software for Data Analysis [16] and Scientific Programming and Simulation
Using R [60]. Both have a more programmatic style of writing—useful for
readers interested in a more under the hood and broad understanding of R.

• Parallel R [74]. An objective, hands-on overview of parallelization in R with a
good overview of the snow package for parallel computation.

• Seamless R and C++ Integration with Rcpp [26]. A comprehensive overview of
how to integrate R and C++ using the Rcpp package. And a good complement,
more algorithmically focussed is Statistical Computing in C++ and R [27].

• Building Bioinformatics Solutions with Perl, R and MySQL [11]. Good introduc-
tion to the three platforms with an integrative focus for handling bioinformatics
tasks.

• CRAN Task Views. R packages organized into themes; extremely useful with
topics such as reproducible research and high-performance computing (cran.r-
project.org/web/views).

• Revolution R; R with additional features for faster data handling—runtime
differences are very significant with matrix manipulations (revolutionanalytics.
com).

cran.r-project.org/web/views
cran.r-project.org/web/views
revolutionanalytics.com
revolutionanalytics.com

Chapter 8
Final Comments

And hence we come to an end of our Primer to Analysis of Genomic Data
Using R. We have covered quite a broad range of topics—I have endeavored
to keep this discussion very case oriented with the barest minimum of theory I
thought I could get away with (and rather informal, as you may have noticed).
I especially tried to highlight the main pitfalls that new users will come across
when using R, particularly if your background is more toward biology or computer
science (for statisticians R is probably rather intuitive and almost second nature).
Many examples in the early chapters were purposefully inadequate in terms of the
data structure which forced us to understand what R was doing with it and taught us
how to handle it. But once we get used to some of these quirks, R is quite easy to
work with and, thanks to all the contributed packages, the development time can be
minimal.

Another topic discussed quite extensively was data preprocessing. With genomic
data it is critical to ensure good quality data—bad data can yield very unreliable
results which makes data preprocessing paramount for any genomic work. We used
a rather bad microarray dataset to illustrate these issues in Chap. 5. If due consi-
deration is not given to this step, no matter how fancy or complicated the actual
analyses, the outcomes will be poor. The message is clear: invest whatever time is
needed in the preliminary steps to understand the platform and the data.

By now you must have a fair idea of the wide scope of functionality available
in R. The number of R books is growing steadily and the number of packages is
borderline overwhelming. We only had a small taste of what is out there but I hope
it was enough to make you feel comfortable using R and provided the stepping
stones for building your own applications and analyzing your data. We will finish
off with my shot at guessing what the future holds in store for R and genomics. But
until all this comes true—most of which I’ll probably get all wrong—happy Ring. . .

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7_8

255

256 8 Final Comments

8.1 The Future: Polishing the Crystal Ball

Some futurology. For R, I expect there will be some heavy development of packages
for handling and analyzing sequence data, it is a very active topic right now and we
should see packages with a similar level of maturity as those available for, e.g.,
microarrays in the near future. Parallelization, virtualization, and high performance
computing will continue to be on the agenda and will become more embedded in
R itself, requiring less conscious coding by the users. We should see improvements
in data handling and memory management to better suit current datasets. After all,
datasets are becoming large (and that is an understatement) and ways of coping with
dimensionality problems are a hot topic—and not just for R.

Where is all the genomic work going? In terms of GWAS we can expect
denser and denser marker coverage. It’s not unreasonable to speculate that all
common human variants will be assayed (just the SNP would be around 11 million).
Thus there is a clear trend toward direct causal association studies while LD and
haplotypes become less relevant, but only in the context of association studies, of
course. Livestock will lag behind a couple of years as it tends to do and will probably
never get to see the same density as human SNP arrays, but will instead jump straight
onto the next big wave—full sequencing. Over the next 5–10 years full (phased)
sequencing should be economically viable for large scale projects. In the meantime
there will be a lot of research into imputation: sequence a relatively small number of
individuals and impute up to sequence level datasets genotyped at lower densities.

This of course will bring on another onslaught of analyses methods and really
interesting problems of how to handle the data—a project with 10,000 samples
would generate something along the lines of 30 trillion data points. For the here
and now, interactions will be (in truth they already are) a hot topic—gene× gene
interactions, networks, gene× environment interactions. Lots of interesting oppor-
tunities for research in this area. We will see a lot of work in merging GWAS results
with functional knowledge/studies—either as supporting evidence for associations
or to help weed out the noise (false positives).

Microarrays are on the verge of being replaced by next-generation sequencing.
I expect the number of RNA-seq publications, both methods and applications, will
continue to accelerate for the next few years. Current arrays might still have a place
in biomedical applications—probably move out of the labs and into the clinics, but
prices are becoming uncompetitive which could make them obsolete.

All this should happen in a rather short time frame—not good for me since
I’ll be proven wrong pretty soon! But the point is, the changes will be/are being
dramatic and fast, and the development/availability of tools to handle the data will
just become more and more important. R will continue to play a key role in this
field.

Appendix A
Example QC Report for GWAS Data

Over the following pages a fully automated quality control report for SNP data is
illustrated. QC metrics are the same as those discussed in Chap. 3. QC results are
then mingled with standard text blurbs using Sweave as discussed in Chap. 7 to
generate a PDF report. This approach allows producing fully reproducible analyses
and automates reporting in a format that is human digestible. The report was
generated by the program snpQC [45].

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7

257

258 A Example QC Report for GWAS Data

A Example QC Report for GWAS Data 259

260 A Example QC Report for GWAS Data

A Example QC Report for GWAS Data 261

262 A Example QC Report for GWAS Data

A Example QC Report for GWAS Data 263

264 A Example QC Report for GWAS Data

References

1. ADLER, J. R in a Nutshell. O’Reilly, 2009.
2. AFFYMETRIX. Statistical algorithms description document. Tech. rep., Affymetrix, 2002.
3. AFFYMETRIX. Guide to probe logarithmic intensity error (plier) estimation. Tech. rep.,

Affymetrix, 2005.
4. ALBERT, J. Bayesian Computation with R. Springer, New York, 2007.
5. ALBRECHTSEN, A., NIELSEN, F. C., AND NIELSEN, R. Ascertainment biases in snp chips

affect measures of population divergence. Mol Biol Evol 27, 11 (2010), 2534–47.
6. ALEXA, A., RAHNENFUHRER, J., AND LENGAUER, T. Improved scoring of functional groups

from gene expression data by decorrelating go graph structure. Bioinformatics 22 (2006),
1600–1607.

7. ANDERS, S., MCCARTHY, D. J., CHEN, Y., OKONIEWSKI, M., SMYTH, G. K., HUBER, W.,
AND ROBINSON, M. D. Count-based differential expression analysis of rna sequencing data
using r and bioconductor. Nat Protoc 8, 9 (2013), 1765–86.

8. AUER, P. L., AND DOERGE, R. W. Statistical design and analysis of rna sequencing data.
Genetics 185, 2 (2010), 405–16.

9. BACLAWSKI, K. P. Introduction to Probability with R. Chapman & Hall/CRC, Boca Raton,
FL, 2008.

10. BALL, R. D. Designing a gwas: power, sample size, and data structure. Methods in Molecular
Biology 1019 (2013), 37–98.

11. BESSANT, C., OAKLEY, D., AND SHADFORTH, I. Building Bioinformatics Solutions. Oxford
University Press, 2014.

12. BOLGER, A. M., LOHSE, M., AND USADEL, B. Trimmomatic: a flexible trimmer for illumina
sequence data. Bioinformatics 30, 15 (2014), 2114–20.

13. BUSH, W. S., AND MOORE, J. H. Chapter 11: Genome-wide association studies. PLoS
Computational Biology 8, 12 (2012), e1002822.

14. CARLIN, B. P., AND LOUIS, T. A. Bayesian Methods for Data Analysis. Chapman &
Hall/CRC, Boca Raton, FL, 2008.

15. CASELLA, C. P. R. G. Introducing Monte Carlo Methods with R. Springer, 2010.
16. CHAMBERS, J. M. Software for Data Analysis: Programming with R. Springer, New York,

2008.
17. COHEN, Y., AND COHEN, J. Y. Statistics and Data with R. Wiley, 2008.
18. CONSORTIUM, T. G. O. Gene ontology: tool for the unification of biology. Nature Genetics

25 (2000), 25–29.
19. COOK, D., AND SWAYNE, D. F. Interactive and Dynamic Graphics for Data Analysis.

Springer, New York, 2007.

© Springer International Publishing Switzerland 2015
C. Gondro, Primer to Analysis of Genomic Data Using R, Use R!,
DOI 10.1007/978-3-319-14475-7

265

266 References

20. CRAWLEY, M. J. Statistics: An Introduction using R. Wiley, Chichester, UK, 2005.
21. CRAWLEY, M. J. The R Book. Wiley, Chichester, UK, 2012.
22. DALGAARD, P. Introductory Statistics with R, 2nd ed. Springer, 2008.
23. DILLIES, M. A., RAU, A., AUBERT, J., HENNEQUET-ANTIER, C., JEANMOUGIN, M.,

SERVANT, N., KEIME, C., MAROT, G., CASTEL, D., ESTELLE, J., GUERNEC, G., JAGLA,
B., JOUNEAU, L., LALOE, D., LE GALL, C., SCHAEFFER, B., LE CROM, S., GUEDJ,
M., JAFFREZIC, F., AND FRENCH STATOMIQUE, C. A comprehensive evaluation of
normalization methods for illumina high-throughput rna sequencing data analysis. Brief
Bioinform 14, 6 (2013), 671–83.

24. DOBSON, A. J., BARNETT, A., AND GROVE, K. An Introduction to Generalized Linear
Models. Chapman & Hall/CRC, Boca Raton, FL, 2008.

25. DUDOIT, S., AND VAN DER LAAN, M. J. Multiple Testing Procedures with Applications to
Genomics. Springer, New York, 2008.

26. EDDELBUETTEL, D. Seamless R and C++ Integration with Rcpp. Springer, 2013.
27. EUBANK, R. L., AND KUPRESANIN, A. Statistical Computing in C++ and R. CRC Press,

2011.
28. EUGSTER, M., KNAUS, J., PORZELIUS, C., SCHMIDBERGER, M., AND VICEDO, E. Hands-

on tutorial for parallel computing with r. Computational Statistics 26 (2011), 219–239.
29. EVERITT, B., AND HOTHORN, T. A Handbook of Statistical Analyses Using R. Chapman &

Hall/CRC, Boca Raton, FL, 2006.
30. FALCONER, D. S., AND MACKAY, T. F. Introduction to Quantitative Genetics, 4th ed.

Benjamin Cummings, 1996.
31. FARAWAY, J. J. Linear Models with R. Chapman & Hall/CRC, Boca Raton, FL, 2004.
32. FARAWAY, J. J. Extending Linear Models with R: Generalized Linear, Mixed Effects and

Nonparametric Regression Models. Chapman & Hall/CRC, Boca Raton, FL, 2006.
33. FAY, J. C., AND WU, C.-I. Hitchhiking under positive Darwinian selection. Genetics 155, 3

(2000), 1405–1413.
34. FERNANDO, R. L., AND GARRICK, D. Bayesian methods applied to gwas. In Genome-Wide

Association Studies and Genomic Prediction. Springer, 2013, pp. 237–274.
35. FOULKES, A. S. Applied Statistical Genetics with R: For Population-based Association

Studies. Springer, New York, 2009.
36. FOX, J. The r commander: A basic-statistics graphical user interface to r. Journal of Statistical

Software 14, 9 (8 2005), 1–42.
37. GAUTIER, L., MOOLLER, M., FRIIS-HANSEN, L., AND KNUDSEN, S. Alternative mapping

of probes to genes for affymetrix chips. BMC Bioinformatics 5 (2004), 111.
38. GAUTIER, M., AND VITALIS, R. rehh: an r package to detect footprints of selection in

genome-wide snp data from haplotype structure. Bioinformatics 28, 8 (2012), 1176–1177.
39. GENTLEMAN, R. R Programming for Bioinformatics, vol. 12 of Computer Science & Data

Analysis. Chapman & Hall/CRC, Boca Raton, FL, 2008.
40. GENTLEMAN, R., CAREY, V., HUBER, W., IRIZARRY, R., AND DUDOIT, S., Eds. Bioin-

formatics and Computational Biology Solutions Using R and Bioconductor. Statistics for
Biology and Health. Springer, 2005.

41. GODDARD, M. Genomic selection: prediction of accuracy and maximisation of long term
response. Genetica 136, 2 (2009), 245–57.

42. GONDRO, C., AND KINGHORN, B. P. Optimization of cDNA microarray experimental designs
using an evolutionary algorithm. IEEE/ACM Trans Comput Biol Bioinform 5, 4 (2008),
630–638.

43. GONDRO, C., LEE, S. H., LEE, H. K., AND PORTO-NETO, L. R. Quality control for genome-
wide association studies. Methods Mol Biol 1019 (2013), 129–47.

44. GONDRO, C., PORTO-NETO, L. R., AND LEE, S. H. R for genome-wide association studies.
Methods Mol Biol 1019 (2013), 1–17.

45. GONDRO, C., PORTO-NETO, L. R., AND LEE, S. H. snpqc - an r pipeline for quality control
of illumina snp genotyping array data. Anim Genet 45, 5 (2014), 758–61.

References 267

46. GONDRO, C., VAN DER WERF, J., AND HAYES, B. J. Genome-wide Association Studies and
Genomic Prediction. Springer, 2013.

47. HAHNE, F., HUBER, W., GENTLEMAN, R., AND FALCON, S. Bioconductor Case Studies.
Springer, New York, 2008.

48. HARDIMAN, G. Microarray platforms - comparisons and contrasts. Pharmacogenomics 5, 5
(2004), 487–502.

49. HARRISON, A., JOHNSTON, C., AND ORENGO, C. Establishing a major cause of discrepancy
in the calibration of affymetrix genechips. BMC Bioinformatics 8 (2007), 195.

50. HART, S. N., THERNEAU, T. M., ZHANG, Y., POLAND, G. A., AND KOCHER, J. P. Calculating
sample size estimates for rna sequencing data. J Comput Biol 20, 12 (2013), 970–8.

51. HARTL, D. L., AND CLARK, A. Principles of Population Genetics. Sinauer, 2007.
52. HAYES, B. Overview of statistical methods for genome-wide association studies (gwas).

Methods Mol Biol 1019 (2013), 149–169.
53. HAYES, B. J., CHAMBERLAIN, A. J., MACEACHERN, S., SAVIN, K., MCPARTLAN, H.,

MACLEOD, I., SETHURAMAN, L., AND GODDARD, M. E. A genome map of divergent
artificial selection between bos taurus dairy cattle and bos taurus beef cattle. Animal Genetics
40, 2 (2009), 176–184.

54. HOLSINGER, K. E., AND WEIR, B. S. Genetics in geographically structured populations:
defining, estimating and interpreting fst. Nature Reviews Genetics 10, 9 (2009), 639–650.

55. HUANG, X., AND HAN, B. Natural variations and genome-wide association studies in crop
plants. Annu Rev Plant Biol 65 (2014), 531–51.

56. HUBER, W., VON HEYDEBRECK, A., SULTMANN, H., POUSTKA, A., AND VINGRON,
M. Variance stabilization applied to microarray data calibration and to quantification of
differential expression. Bioinformatics 18 (2002), S96–S104.

57. IRIZARRY, R., BOLSTAD, B., COLLIN, F., COPE, L., HOBBS, B., AND SPEED, T. Summaries
of affymetrix genechip probe level data. Nucleic Acids Research 31 (2003), e15.

58. IRIZARRY, R., HOBBS, B., COLLIN, F., BEAZER-BARCLAY, Y., ANTONELLIS, K., SCHERF,
U., AND SPEED, T. Exploration, normalization, and summaries of high density oligonu-
cleotide array probe level data. Biostatistics 4 (2003), 249–264.

59. IRIZARRY, R., WU, Z., AND JAFFE, H. Comparison of affymetrix genechip expression
measures. Bioinformatics 22 (2006), 789–794.

60. JONES, O., MAILLARDET, R., AND ROBINSON, A. Scientific Programming and Simulation
using R. CRC Press, 2009.

61. KEEN, K. J. Graphics for Statistics and Data Analysis with R. Chapman and Hall/CRC, 2010.
62. KLEIN, R. J. Power analysis for genome-wide association studies. BMC Genetics 8

(2007), 58.
63. KRUGLYAK, L. The road to genome-wide association studies. Nature Reviews Genetics 9, 4

(2008), 314–318.
64. LACHANCE, J., AND TISHKOFF, S. A. Snp ascertainment bias in population genetic analyses:

Why it is important, and how to correct it. Bioessays 35, 9 (2013), 780–6.
65. LANDSMAN, D., GENTLEMAN, R., KELSO, J., AND OUELLETTE, B. F. F. Database: A new

forum for biological databases and curation. DATABASE 2009 (2009), bap002.
66. LANGMEAD, B., AND SALZBERG, S. L. Fast gapped-read alignment with bowtie 2. Nat

Methods 9, 4 (2012), 357–9.
67. LI, C., AND WONG, W. Model-based analysis of oligonucleotide arrays: Expression index

computation and outlier detection. PNAS 98 (2001), 31–36.
68. LI, H., HANDSAKER, B., WYSOKER, A., FENNELL, T., RUAN, J., HOMER, N., MARTH, G.,

ABECASIS, G., DURBIN, R., AND GENOME PROJECT DATA PROCESSING, S. The sequence
alignment/map format and samtools. Bioinformatics 25, 16 (2009), 2078–9.

69. LIU, Y., ZHOU, J., AND WHITE, K. P. Rna-seq differential expression studies: more sequence
or more replication? Bioinformatics 30, 3 (2014), 301–4.

70. MAINDONALD, J., AND BRAUN, J. Data Analysis and Graphics Using R, 3rd ed. Cambridge
University Press, Cambridge, 2010.

268 References

71. MARSHALL, K., MADDOX, J., LEE, S., ZHANG, Y., KAHN, L., GRASER, H., GONDRO, C.,
WALKDEN-BROWN, S., AND VAN DER WERF, J. H. Genetic mapping of quantitative trait loci
for resistance to haemonchus contortus in sheep. Animal Genetics 40, 3 (2009), 262–272.

72. MATSUMURA, H., KRUGER, D. H., KAHL, G., AND TERAUCHI, R. Supersage: a modern
platform for genome-wide quantitative transcript profiling. Curr Pharm Biotechnol 9, 5
(2008), 368–74.

73. MATSUMURA, H., URASAKI, N., YOSHIDA, K., KRUGER, D. H., KAHL, G., AND TERAUCHI,
R. Supersage: powerful serial analysis of gene expression. Methods Mol Biol 883 (2012),
1–17.

74. MCCALLUM, E., AND WESTON, S. Parallel R. O’Reilly Media, Inc, 2011.
75. MEUWISSEN, T., HAYES, B., AND GODDARD, M. Prediction of total genetic value using

genome-wide dense marker maps. Genetics 157, 4 (2001), 1819–1829.
76. MORGAN, M., ANDERS, S., LAWRENCE, M., ABOYOUN, P., PAGES, H., AND GENTLEMAN,

R. Shortread: a bioconductor package for input, quality assessment and exploration of high-
throughput sequence data. Bioinformatics 25, 19 (2009), 2607–8.

77. MRODE, R. A. Linear models for the prediction of animal breeding values. Cabi, 2014.
78. MURRELL, P. R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 2005.
79. NEALE, B. M., AND PURCELL, S. The positives, protocols and perils of genome-wide

association. American Journal of Medical Genetics Part B 147B, 7 (2008), 1288–1294.
80. NEI, M. Analysis of gene diversity in subdivided populations. Proceedings of the National

Academy of Sciences 70, 12 (1973), 3321–3323.
81. NICHOLSON, G., SMITH, A. V., JÓNSSON, F., GÚSTAFSSON, Ó., STEFÁNSSON, K., AND

DONNELLY, P. Assessing population differentiation and isolation from single-nucleotide
polymorphism data. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 64, 4 (2002), 695–715.

82. OSHLACK, A., ROBINSON, M. D., AND YOUNG, M. D. From rna-seq reads to differential
expression results. Genome Biol 11, 12 (2010), 220.

83. PARADIS, E. pegas: an r package for population genetics with an integrated–modular
approach. Bioinformatics 26, 3 (2010), 419–420.

84. PARADIS, E. Analysis of Phylogenetics and Evolution with R, 2nd ed. Use R. Springer, New
York, 2012.

85. PATEL, J. N., MCLEOD, H. L., AND INNOCENTI, F. Implications of genome-wide association
studies in cancer therapeutics. British Journal of Clinical Pharmacology 76, 3 (2013),
370–380.

86. PINHEIRO, J. C., AND BATES, D. M. Mixed-Effects Models in S and S-Plus. Springer, 2000.
87. PIPER, E., JONSSON, N., GONDRO, C., LEW-TABOR, A., MOOLHUIJZEN, P., ME, M. V.,

AND JACKSON, L. Immunological profiles of bos taurus and bos indicus cattle infested with
the cattle tick, rhipicephalus (boophilus) microplus. Clinical and Vaccine Immunology (epub
ahead of print) (2009).

88. PITT-FRANCIS, J., AND WHITELEY, J. Guide to scientific computing in C++. Springer, 2012.
89. PORTO-NETO, L. R., LEE, S. H., LEE, H. K., AND GONDRO, C. Detection of signatures of

selection using fst. In Genome-Wide Association Studies and Genomic Prediction. Springer,
2013, pp. 423–436.

90. R DEVELOPMENT CORE TEAM. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014.

91. RAMALHO, J. A. Learn SQL. Wordware Publishing, Plano, USA, 2000.
92. RAPAPORT, F., KHANIN, R., LIANG, Y. P., PIRUN, M., KREK, A., ZUMBO, P., MASON, C. E.,

SOCCI, N. D., AND BETEL, D. Comprehensive evaluation of differential gene expression
analysis methods for rna-seq data. Genome Biology 14, 9 (2013).

93. RINCON, G., WEBER, K. L., EENENNAAM, A. L., GOLDEN, B. L., AND MEDRANO, J. F. Hot
topic: performance of bovine high-density genotyping platforms in Holsteins and Jerseys. J
Dairy Sci 94, 12 (2011), 6116–21.

94. RIZZO, M. L. Statistical Computing with R. Chapman & Hall/CRC, Boca Raton, FL, 2008.

References 269

95. SABETI, P., SCHAFFNER, S., FRY, B., LOHMUELLER, J., VARILLY, P., SHAMOVSKY, O.,
PALMA, A., MIKKELSEN, T., ALTSHULER, D., AND LANDER, E. Positive natural selection
in the human lineage. science 312, 5780 (2006), 1614–1620.

96. SARKAR, D. Lattice Multivariate Data Visualization with R. Springer, New York, 2007.
97. SCHENA, M., SHALON, D., DAVIS, R., AND BROWN, P. Quantitative monitoring of gene

expression patterns with complementary DNA microarray. Science 270 (1995), 467–470.
98. SCHMIDBERGER, M., MORGAN, M., EDDELBUETTEL, D., YU, H., AND MANSMANN, L.

T. U. State of the art in parallel computing with r. Journal of Statistical Software 31(1)
(2009).

99. SCHULZE, A., AND DOWNWARD, J. Navigating gene expression using microarrays - a
technology review. Nature Cell Biology 3, 8 (2001), E190–E195.

100. SHEATHER, S. A Modern Approach to Regression with R. Springer, New York, 2009.
101. SHENDURE, J. The beginning of the end for microarrays? Nature Methods 5 (2008), 585–587.
102. SIEGMUND, D., AND YAKIR, B. The Statistics of Gene Mapping. Springer, New York, 2007.
103. SLONIM, D. K., AND YANAI, I. Getting started in gene expression microarray analysis. PLoS

Computational Biology 5, 10 (2009).
104. SMYTH, G. K. Linear models and empirical Bayes methods for assessing differential

expression in microarray experiments. Statistical Applications in Genetics and Molecular
Biology 3, 1 (2004), 3.

105. SPECTOR, P. Data Manipulation with R. Springer, New York, 2008.
106. SPENCER, C. C. A., SU, Z., DONNELLY, P., AND MARCHINI, J. Designing genome-wide

association studies: Sample size, power, imputation, and the choice of genotyping chip. PLoS
Genetics 5, 5 (2009), e1000477.

107. SUESS, E. A., AND TRUMBO, B. E. Introduction to Probability Simulation and Gibbs
Sampling with R. Springer, 2010.

108. TAJIMA, F. Statistical method for testing the neutral mutation hypothesis by DNA polymor-
phism. Genetics 123, 3 (1989), 585–595.

109. TEO, Y. Y. Common statistical issues in genome-wide association studies: a review on power,
data quality control, genotype calling and population structure. Current Opinion in Lipidology
19, 2 (2008), 133–143.

110. TIERNEY, L. Compstat 2008. Springer, New York, 2008, ch. Implicit and Explicit Parallel
Computing in R, pp. 43–51.

111. TIERNEY, L., ROSSINI, A., AND LI, N. Snow : A parallel computing framework for the r
system. International Journal of Parallel Programming 37, 1 (2009), 78–90.

112. UGARTE, M. D., MILITINO, A. F., AND ARNHOLT, A. Probability and Statistics with R.
Chapman & Hall/CRC, Boca Raton, FL, 2008.

113. VANRADEN, P. Efficient methods to compute genomic predictions. Journal of dairy science
91, 11 (2008), 4414–4423.

114. VERZANI, J. Using R for Introductory Statistics. Chapman & Hall/CRC, Boca Raton, FL,
2005.

115. WANG, Z., GERSTEIN, M., AND SNYDER, M. Rna-seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics 10, 1 (2009), 57–63.

116. WEHRENS, R. Chemometrics with R: multivariate data analysis in the natural sciences and
life sciences. Springer, 2011.

117. WEIR, B. S., AND COCKERHAM, C. C. Estimating f-statistics for the analysis of population
structure. evolution (1984), 1358–1370.

118. WOO, Y., AFFOURTIT, J., DAIGLE, S., VIALE, A., JOHNSON, K., NAGGERT, J., AND

CHURCHILL, G. A comparison of cDNA, oligonucleotide, and affymetrix genechip gene
expression microarray platforms. J Biomol Tech 15, 4 (2004), 276–84.

119. WRIGHT, S. The genetical structure of populations. Annals of Eugenics 15 (1951), 323–354.
120. WU, R., MA, C., AND CASELLA, G. Statistical Genetics of Quantitative Traits: Linkage,

Maps and QTL. Springer, New York, 2007.

270 References

121. WU, Z., RA, I., GENTLEMAN, R., MURILLO, F. M., AND SPENCER, F. A model based
background adjustment for oligonucleotide expression arrays. Journal of the American
Statistical Association 99 (2003), 909–917.

122. XU, X., ZHANG, Y., WILLIAMS, J., ANTONIOU, E., MCCOMBIE, W. R., WU, S., ZHU,
W., DAVIDSON, N. O., DENOYA, P., AND LI, E. Parallel comparison of illumina rna-seq
and affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-
cytidine treated ht-29 colon cancer cells and simulated datasets. BMC Bioinformatics 14
Suppl 9 (2013), S1.

123. ZHANG, A. Advanced analysis of gene expression microarray data. World Scientific, London,
UK, 2006.

124. ZHAO, S., FUNG-LEUNG, W. P., BITTNER, A., NGO, K., AND LIU, X. Comparison of rna-seq
and microarray in transcriptome profiling of activated t cells. PLoS One 9, 1 (2014), e78644.

125. ZIEGLER, A., KONIG, I. R., AND THOMPSON, J. R. Biostatistical aspects of genome-wide
association studies. Biometrical Journal of Statistical Software 50, 1 (2008), 8–28.

126. ZUUR, A. F., IENO, E. N., AND MEESTERS, E. A Beginner’s Guide to R. Use R. Springer,
2009.

	Preface
	Overview
	What This Book Is About
	What This Book Is Not About
	A Note on R
	Data
	Acknowledgments

	Contents
	List of Figures
	1 R Basics
	1.1 Why R?
	1.2 Installing R
	1.3 Packages and Bioconductor
	1.4 R 32-Bit or 64-Bit?
	1.5 Getting a Handle on R
	1.6 Importing and Manipulating Data
	1.7 Plots and Descriptive Statistics
	1.8 Saving Results
	1.9 Some Help on Help
	1.10 Where to Go from Here?

	2 Simple Marker Association Tests
	2.1 Introduction to Markers
	2.1.1 Microsatellites

	2.2 Case–Control and Family-Based Association Studies
	2.3 Discrete and Quantitative Traits
	2.4 Additive, Dominant, and Recessive Models
	2.5 A Worked Out Example
	2.6 Useful R Books and Packages

	3 Genome Wide Association Studies
	3.1 From Microsatellites and Linkage Analysis to SNP and Genome Wide Association Studies
	3.1.1 Single Nucleotide Polymorphism
	3.1.2 Genome Wide Association Studies

	3.2 Experimental Design
	3.3 Platforms
	3.4 Preprocessing and Quality Control
	3.4.1 Storing and Handling Data
	3.4.2 Quality Control
	3.4.2.1 Genotype Calling and Signal Intensities
	3.4.2.2 Minor Allele Frequency and Hardy–Weinberg Equilibrium
	3.4.2.3 Quality Control Across Samples
	3.4.2.4 Heterozygosity

	3.5 Single SNP Analysis
	3.6 Multiple Testing
	3.7 What Next
	3.8 Useful R Packages

	4 Populations and Genetic Architecture
	4.1 Beyond Genome Wide Association Studies
	4.2 Matrix Algebra
	4.2.1 Loops and Vectorization

	4.3 Matrix Operations in R
	4.4 SNP Best Linear Unbiased Prediction
	4.5 Genomic Prediction
	4.5.1 Prediction with snpBLUP
	4.5.2 Prediction with gBLUP
	4.5.2.1 Genomic Relationship Matrix
	4.5.2.2 Genomic Prediction with gBLUP

	4.6 Population Genetics
	4.6.1 Signatures of Selection
	4.6.2 Other Population Estimates
	4.6.3 Genetic Distances
	4.6.3.1 GRM and Genetic Diversity

	4.7 Parentage Testing
	4.8 Useful R Books and Packages

	5 Gene Expression Analysis
	5.1 Introduction to Gene Expression Analysis
	5.1.1 Platforms for Expression Profiling

	5.2 Experimental Design
	5.3 Gene Expression Data
	5.4 Preprocessing and Quality Control
	5.4.1 Importing Gene Expression Data into R
	5.4.1.1 Importing RNA-Seq Data into R

	5.4.2 Quality Control
	5.4.2.1 Quality Control of RNA-Seq

	5.4.3 Preprocessing
	5.4.3.1 Preprocessing of RNA-Seq

	5.5 Analysis of Differential Expression
	5.5.1 Multiple Testing
	5.5.2 Differential Expression of RNA-Seq

	5.6 Useful R Packages

	6 Databases and Functional Information
	6.1 Introduction to Databases
	6.2 Gene Annotation
	6.3 Gene Ontology
	6.4 Pathway Analysis, Physical Mapping, and Protein Domains
	6.5 Useful R Packages

	7 Extending R
	7.1 Large Data–Large Problems
	7.2 Improving Read and Write Operations in R
	7.3 Byte-Code Compiler
	7.4 Managing Memory
	7.5 Parallel Computation
	7.6 External Interfaces in R
	7.6.1 Linking R to C++

	7.7 Using R Inside Other Applications
	7.8 Reporting in R
	7.9 Summary
	7.10 Useful R Books and Packages

	8 Final Comments
	8.1 The Future: Polishing the Crystal Ball

	A Example QC Report for GWAS Data
	References

