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Preface

This book is aimed at exposing statistical techniques which are very essential
to understand research work in the Biological, Agricultural, and Health Sci-
ences. Other disciplines may also find the book useful. This book is born out
of my teaching Experimental, field experimentation, and Biostatistics courses
at various universities in the United States and Nigeria. The book has also
benefited from lecture notes during my graduate program at the University
of Reading, Berkshire, UK.

The book covers the basic aspects of statistics, such as data descrip-
tion, probability, sampling distributions, estimation, and hypotheses testing.
These topics are covered in Chaps. 1 to 5. Regression analysis and analysis of
categorical data are covered in Chaps. 7 and 8 respectively. Chapter 6 covers
an introduction to analysis of variance. Here, students are first introduced to
treatment comparison methods as well as multiple comparison procedures.
This chapter also introduces students to the concepts of contrasts and or-
thogonality. Chapter 9 introduces students to the principles of experimental
design, while Chap. 10 covers the completely randomized design including
more coverage on contrast and multiple comparisons as well as the analy-
sis of experiments designed with quantitative levels. Chapter 11 covers the
randomized complete block design, including discussion on group balanced
block design while Chap. 12 covers Latin square designs as well as cross-over
designs. Several examples are introduced in this chapter. This chapter also
covers materials relating to multiple Latin squares.

Chapter 13 covers the analysis of covariance in both the completely ran-
domized design (CRD), and the randomized complete block design (RCBD).
Chapter 14 introduces students to simple factorial designs in both 2n and 32

designs. The concept of confounding and partial confounding is similarly in-
troduced in this chapter. Resolutions III and IV designs are also introduced in
this chapter. The split plot design is introduced in Chap. 15. Also introduced
here are the strip-plot and the split-split plot designs with examples. Incom-
plete block and lattice designs are introduced in Chap. 16. Quantal-bioassay
and the logistic regression are introduced in Chap. 17 including the probit
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model. The repeated measures design for single and two-factor models is in-
troduced in Chap. 18. Chapter 19 introduces students to survival analysis.
Here, the concept of censoring and estimating survival functions is discussed.
Hazard and proportional hazard models are similarly discussed. Chapter 20
discusses combined analysis of experiments over time, season, and sites.

Several different examples are presented in the text to illustrate the di-
versity of the various models. All examples in this text have been analyzed
using MINITAB version 16. These examples have therefore been accompa-
nied with their corresponding MINITAB codes embedded in the text. The
examples have also been analyzed with R programs, and these are made avail-
able at the Springer site which is dedicated to this text. We have presented
partial outputs arising from the use of MINITAB 16. To facilitate data entry,
many of the data sets for examples and exercises are provided on the book’s
website (http://extra.springer.com). The example data files are contained in
the folder DATAFILES and are presented chapter by chapter. All R program
codes for analyzing the examples in the text are contained as ASCII files in
RCODES folder. Partial outputs generated from the R programs are con-
tained in the Routput.pdf. This also contains the necessary information on
all the examples.

The book is intended for use in undergraduate courses in Agricultural
Sciences, Nursing and Health Sciences as well as in Biological Sciences.
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Chapter 1
Introduction

1.1 Concepts

In a certain university, suppose we were to obtain the height, sex, weight, and
age of each student in a large class in Biostatistics, then such a collection of
numbers or survey represents characteristics of the group of individuals con-
tained in this class. If the aggregate of individuals in this class represents
the only individuals of interest in the survey, they constitute the Universe
or population of interest. If, however, the Universe is composed of a wider
aggregate or group of individuals, say the full time Undergraduate students
at this University, then the members of this class represent only a part or
sample of the Universe or population. Complete enumeration or survey of a
characteristic in the population is defined as a Census whereas enumeration
on only a part of the population is known as a Sample or as a Sample Sur-
vey. Population or Universe may consist of characteristics of people, or acres
in farms, Sex, etc. etc. Examples are—all progeny of a particular rat, the
birthweights of pigs in one litter, all possible values of millet yield per acre in
Kano State. Populations are classified and described by numbers. Students
in this University for example, are described by their registration or matric-
ulation numbers. It is a fact, however, that the more developed a society is,
the more that society will be characterized by numbers. Knowledge of char-
acteristics of a society allows intelligent action to be taken in order to further
develop the society. A sample on the other hand is a part of the population
(in some cases, a sample may include the whole of the population). Often,
we are interested as researchers in the behavior of a variate throughout a
population, but observations on every member of the population may be im-
possible. For instance, we cannot contemplate catching and weighing every
fish in a particular study pond or counting the number of every deficient seed
in a kilogram bag of seeds. Sometimes too, the restriction is stronger than
consideration for economy or speed. The observations or measurements may
involve classification of the individual (weight of a rat’s heart or amount of a
certain trace element in a Tilapia fish) so that full records for a population
would prevent any continuing study of that population. Thus, the intention
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2 1 Introduction

is to use sample information to have an inference about a given population.
It is therefore very important to concisely define the population of interest
and to obtain a representative sample from such a population so that valid
inferences could be made. Numbers used to describe a characteristic of a pop-
ulation and which are derived from all members of the Universe are called
Parameters. Parameters represent the facts about the population. Numbers
derived from a sample and which may be used to “guesstimate,” to estimate,
or to approximate the value of the parameters are called Statistics. Thus,
a weighted average of a student in any given semester is an estimate of the
students grade average for his 4 years at the University, in this example,
the one Semester specified weighted average is a statistic, and it estimates
the weighted average for a total of eight Semesters. A statistic is subject to
variation (i.e. it is a variable). As opposed to the above uses of Statistics
as represented by columns of numbers, averages, percentages, ratios, and its
like, there is a subject of Statistics which is a field and a science unto itself.
Statistics are concerned mainly with the following items:

(i) “to design or to plan experimental investigations (experiments) and
Sample Surveys.

(ii) to summarize the numbers collected from experiments and Sample
Surveys’, and

(iii) to relate or to infer facts about the population utilizing facts from the
sample.”

Statistics as a science and subject unto itself is a branch of applied mathemat-
ics and probability. As such, it is rigorous and well-defined within a framework
of definitions and assumptions. Whenever a statistical procedure is applied to
a real-life situation, the assumption may or may not be justified. This means
then that the application of statistical procedures always involves a degree of
subjectiveness. The degree of subjectiveness should be constantly questioned
and evaluated in order to make proper use of the statistical procedure under
consideration. We may also note here the following:

1. The population is a set of data that characterizes some phenomena.
2. The sample is a set of data selected from a population.
3. A statistical inference is a decision, estimate, prediction, or generalization

about the population based on information contained in the sample.

1.1.1 Why Study Statistics?

The growth in data collection associated with scientific phenomena as well as
the operations of business and government (quality control, Statistical audit-
ing, forecasting, etc) has been truly outstanding over the past several decades.
Published results of political, economic, and social surveys as well as increas-
ing government emphasis on drug and product testing provide vivid evidence
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of the need to be able to evaluate data sets intelligently. Consequently, you
will want to develop a discerning sense of rational thought that will enable
you to evaluate numerical data. You may be called upon to use this ability
to make intelligent decisions, inferences, and generalizations. For this reason,
the study of statistics is an essential prerequisite for a role in modern Society.
Indeed, it is the key Technology. Because the use of Statistics has manifested
itself in several aspects of human endeavor (education, research, economic
data, etc.), it is necessary therefore that an understanding of the subject of
Statistics should form part of our educational training and experience. Such
an understanding will acquaint us with the language of the discipline as well
as the basic concepts of statistics at least. We will be exposed to the applica-
ble properties of statistical concepts in Biology, Medicine, Agriculture, and
social Sciences. However, we must keep in mind that Statistics is intended to
be a tool for research.

1.2 Methods of Describing Data

At the beginning of this chapter, we refer to some characteristics of members
of this class. Some of this data are measured (e.g., weight) whereas others
are classified (e.g., sex which must be male or female).We call these classified
records “attributes.” Each of the quantities or attributes recorded on each
student is called a variate.

Definition A variate is any quantity or attribute whose values varies from
one unit of investigation to another.

Definition An observation is the value taken by a variate for a particular
unit of investigation. With large data sets, it will be clear for reasons that
will be given later that we would need some method for summarizing the
information in a data set. Methods for describing data sets are also essential
for Statistical inference. Most populations are large data sets. Consequently,
if we are going to make descriptive statements (inferences) about a population
based on information described in a sample, we will once again need methods
for describing a data set.Two methods for describing data are presented in
the next chapter—one graphical and the other numerical. As we shall see
later, both play an important role in Statistics.

1.2.1 Types of Data

Although the number of phenomena that can be measured is almost limit-
less, data can generally be classified as one of two types: Quantitative or
qualitative.
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Definition A quantitative data are observations that are measured on a
numerical scale. The most common type of data is quantitative data, since
many descriptive variables in nature are measured on numerical scales. Ex-
amples of quantitative data are: Number of leaves per plant, yield of cowpea,
the heights (or weights) of students in a class, the number of Lecturers in the
faculty of Science, University of Ilorin, Nigeria. The measurements in these
examples are all numerical. All data that are not quantitative are qualitative.
Quantitative variates can also be divided into two types. They may be con-
tinuous, if they can take any value we care to specify within some range or
discrete if their values change by steps or jumps. Thus the 1000 seed weight
of a crop for instance is continuous, because there is no reason why 1000 seeds
should not have a weight of 6.94326254 Kg even if no scales could measure
it accurately. However, a variate like the number of plants per plot must be
whole number 0, 1, 2, · · · going up in steps; decimal values are certainly not
allowed here. Heights and weights are obvious examples of continuous vari-
ates. On the other hand, discrete observations are integers because they arise
from counts.

Definition A qualitative variate or attribute is a variate whose values can-
not be put in any numerical order. That is, they are observations that are
categorical rather than numerical and are not capable of being measured.
Examples of this are “The political affiliations of a group of people.” Each
person would have one and only one political affiliation. Sex of a person is
also another example as it can be either male or female. This type of variate
can either be ordinal (if there are intrinsic ordering about its categories, e.g.,
severity of a disease or a variable with three categories: good, adequate. and
poor) or nominal (if its categories are unordered and mutually exclusive).
Gender, marital status, flower color are examples of nominal qualitative or
categorical variable.

1.3 Measurements

Most biological, agricultural, and medical experiments involve measurements
which are numbers that characterize certain variables of a population. It is
therefore necessary to have a device for producing meaningful and consistent
numbers, or a measuring device. To have repeatable or reproducible mea-
surements or numbers, it is necessary to have a measuring device with a
prescribed or measurable margin of error. Note that we do not say that the
measuring instrument or device must be error-free, but only that the error of
measurement must fall within prescribed limits. Knowing the limits of error
of measurement, we are then in a position to determine whether we can or
cannot measure a characteristic on the individuals of the sample or of the
population with the desired accuracy.
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1.3.1 Measuring Devices

The measuring devices utilized by experimenters, lecturers, merchandizers,
consumers, etc. are many and diverse. We shall list some of the more com-
mon, at least to certain fields, measuring devices with some comments on
their use. Perhaps the first measuring device that comes to mind is a ruler
or similar device used for linear measurements. This instrument is usually
calibrated in feet, inches, 1/6 inches, centimeters, millimeters or other Units
of measurements. It is implied from our primary school days that these units
are fixed units and never vary. This implication is of course, never made
explicit until Secondary school Physics courses are encountered. Even here,
they receive only limited attention. Do we ever stop to question how much
variation there is between the same calibration marks on the rulers manu-
factured as brand X? Our experience has told us that rulers commercially
available are calibrated closely enough so that we need not worry about er-
rors of calibration in every day life. Unfortunately, this “Safe-feeling” may
be carried over into scientific research requiring very precise measurements
with sometimes not so happy results. Would any of us recognize the fact that
brand Y rulers were only 11.99 inches even though calibrated as a 12 inch
ruler? Do any of us know how tall we are to the nearest centimeter when you
we arise in the morning? Or how tall we are to the nearest 1/2 inch when
we retire at night? Is our height measured with or without shoes and stock-
ings? Such questions lead us to the idea that the height of a person must be
defined in precise terms or we shall be unable to determine what is meant
by the height of a person except in very general terms. Another measuring
device is the scale which is calibrated in pounds and ounces. For scientific
investigations, the scale is calibrated in kilograms, grams, centigrams and
milligrams. We have spring and balance scales with all degrees of accuracy
for both types. Do we ever bother to ascertain the accuracy of the scales
used? A few years ago, a research organisation checked the scales used for
weighing heavy objects; the scale was found to weigh low for relatively light
objects. This would mean that the differences in weight between heavy and
medium, heavy and light, and medium and light objects were smaller than
they should have been. The error in measurement of weights could have led to
erroneous conclusions. A simple check would have revealed this error which
had gone undetected for an unknown length of time. If a scale is utilized for
precise weights which have important consequences, e.g., in certain research
investigations, it should be calibrated against a known standard through-
out the total range of weights employed on the scale.Another very common
measuring device is the human judge. Humans serve as measuring devices
for sports events, beauty contests, taste panels, reading other measuring de-
vices, scoring plant strains for disease, infection, etc. One of the key criteria
for a useable judge is the ability to discriminate and to differentiate between
levels of the characteristic under consideration. For example, if all “moimo”
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within a specified range taste the same to a person, he is useless for discrim-
inating between the small differences that a researcher in home economists
is studying. Also, in a beauty contest, if all the girls involved were equally
beautiful to a person, this person would be useless as a judge, since he would
be unable to pick a winner. If all plant strains appeared to be equally infected
with a disease to the judge, when in fact they were not, that person’s scores
would be useless in differentiating between the strains.The ability to discrim-
inate can be sharpened in many cases with adequate training. However, some
individuals may never be able to attain a high level of discrimination with
regard to a particular characteristic despite considerable training. One of
the key characteristics of outstanding research is their ability to observe and
to discriminate among the various types of evidence encountered and then
to organize and sort out the pertinent facts. Successful researchers are keen
observers. A fourth type of measuring instrument with which we have wide
acquaintance is the questionnaire. The questionnaire has many and diverse
forms, but they all have one common goal and that is illicit information from
or about people and their activities and attitudes. The most widely known
form is the ordinary test given in courses. As you all know, there are as many
forms of tests as there are lecturers or persons giving the test. There are true–
false, multiple-choice, completion, matching, discussion, etc., types of tests
and various combinations of these types. Another form of the questionnaire
which is associated with surveys and censuses seeks to determine information
on such items as type of dwelling, occupancy, and ownership of dwelling, in-
come and expenditure of occupants, attitudes of people toward various items
ranging from prejudice to choice of political opponents. These questionnaires
are constructed by people who often forget one simple fact and that is—if the
person being interviewed does not understand the question and an answer is
given, the answer might as well has been generated by a random or chance
process. Application forms represent another form which attempts to obtain
information about individuals for University admission, job application, etc.
Often these forms are very brief, but occasionally, the inventor of forms be-
comes a little too enthusiastic. The forms of questionnaires are varied and
we constantly have to complete one form or another almost daily. Many of
you will be involved with developing questionnaires in your life time. Please
be precise, exact, and unambiguous. Another type of measuring device is
the chemical determination. Large laboratories are constructed for the sole
purpose of performing chemical determinations in plants, animals, humans
and mineral samples. The results are utilized in several ways. For example,
the Drug Department checks on the contents and quality of foods and drugs.
Limits of variation in individual items are set and manufacturers must con-
form to these standards. Other chemical laboratories check soil samples for
fertility content, milk samples for butterfat contents, food samples for pesti-
cide residues, concentration and content of drugs, concentration and content
of alcoholic beverages, concentration of tars, resins, nicotine etc. in cigars and
cigarettes, contents of cosmetics, concentration and identity of weed seeds in
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crop or lawn seed, etc. A very large statistical problem in connection with
all these items is the design of the sampling procedure and establishment of
limits of variation that will be tolerated in the samples. For many items, the
statistical standards have not yet been established; there are too many items
and too few statisticians. In other cases, standards have been arbitrary, but
many of these may be shown to be relatively impossible to attain when stud-
ied statistically. For example, in certified seed, the presence of one specified
noxious weed makes the entire lot of seeds unsuitable for sale. Now in order to
find one noxious in a lot of seeds, it would be necessary to inspect the entire
lot seed by seed. This is too expensive and time consuming for commercial
seed production, some other means, e.g., field inspection, must be used to
eliminate the specified noxious weed seeds from the sample.

1.3.2 Standardization of Measuring Devices

Around 4 m sticks were purchased and arrived in a box which originally
contained 12 m sticks. Two of the meter sticks differed from the other by
two or more than one millimeter in the calibration marks. The meter sticks
carried the same brand name and lot number. This points up the fact that
whenever a new measuring device is utilized, it should be checked against
a standard—the standard should have known accuracy. A measuring device
with unknown accuracy may be useless for the purpose at hand. If we have a
meter stick of known accuracy reading the calibration marks, we could check
the newly purchased meter sticks against the standard. Scales should be
checked for accuracy throughout their usable range of weights prior to using
the scale for precise and accurate work. Human judges should be checked for
discriminatory power and for level of discrimination. Questionnaires should
be pretested prior to use in order to eliminate ambiguities and lack of clarity.
Chemical and physical procedures should be checked when first initiated and
occasionally thereafter in order to ascertain that the process remains accurate
within the prescribed levels. Procedures that are usefully accurate for one
type of material may be inaccurate for a second kind of material. The above,
as well as all other measuring devices should be calibrated against known
calibrated standards; they should be recalibrated at intervals in order to
ascertain that the measuring device remains accurate. Duplicate samples
and samples of known content are often included along with the unknown
samples as a method of checking on the measuring device.

1.3.3 Variability in Measurements

Variability is always present in measurements and it is universal in charac-
teristics of all populations. We live in a variable world. Since, it is universal,
we must learn to live with it and to design experimental investigations and
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surveys in such a way as to overcome the effects of accomplishing this and
they will all be treated under the broad name “Experimental Design Tech-
niques.” Variability is very important when biological materials are involved
rather than inanimate materials.

1.3.4 Bias in Measurement

An unstated tenet in the collection of numbers utilizing a measuring device
is that the plus errors are about equal to the negative errors. Over a large
number of trials, one would expect the errors to sum near to zero. Suppose
that this is not the case and that the magnitude of inaccuracies in one di-
rection, say, plus, exceeds those in the negative direction. The nature of this
type of discrepancy is termed a systematic error, or more commonly, a bias.
To illustrate, let us suppose that experimenter A always reads the measuring
device one unit higher than does experimenter B. The bias of A compared
to B is + 1, and the bias of B compared to A is − 1. Note that we did not
state which, if either of the two experimenters, takes correct measurements in
the sense that if they measured all individuals in the population, they would
obtain the population parameter for the characteristic measured.

1.3.5 Error in Measurement

The causes of variation in measurements are many and varied. These are,
as we have pointed out previously, systematic errors and biases, personal
errors, mistakes, and errors due to assignable causes. In addition, variation
in measurements may be caused by unassignable causes due to the combi-
nation of a number of uncontrolled and often unknown variables each with
individually small effects. If the magnitude and sequence of these variations
are completely unpredictable, i.e., they form a random sequence, we denote
them as random variation or random error. The sum of the random errors
over all individuals in the population should be zero. The total variation in
measurements may be written as:

Total variation = Assignable causes + bias + random error

The error of measurement is often defined as

Error of measurement = bias + random error.

Quite often, the bias is ignored when in fact it may be the larger factor in
the error of measurement. If differences between individuals in the popu-
lation are utilized rather than the individual measurements, the bias term
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adds to zero. Regardless of the procedure in order for the measuring de-
vice to be useful, some measure of the reliability and accuracy should be
known. Thus, the method of utilizing numbers may affect the effect of the
bias term; this method must have meaning to the experimenter. We shall
discuss in Chaps. 9–11, methods (experimental designs) and randomization
techniques that are often employed to minimize random error terms and
biases respectively.

1.4 Exercises

1. Classify each of the following into either qualitative (nominal or ordinal)
or quantitative (continuous or discrete)

• Birth weight, date of birth and father’s race of a new baby
• Level of cholesterol in a cubic milliliter of blood
• smoking status (never, former, or current)
• injury (severe, moderate, mild, none)
• sex of a new born
• Species of a tree (redwood, cedar, pine, oak)
• Blood group type (A, B, AB).

2. What is meant by descriptive statistics?
3. Define the following: Quantitative variable; Discrete variable.



Chapter 2
Frequency Distributions

2.1 Introduction

One principal aim of any statistical enquiry is to be able to understand and
describe the population of interest. For example, a farm survey is aimed at
estimating current crop output and evaluating the impact of various govern-
ment policies; a consumer survey will be interested in assessing how much of
its product is being consumed and what is the chance of increasing produc-
tion if some action is taken. Thus, the first task of a statistical staff is that of
organizing the data in the form that salient characteristics can be easily seen.

Suppose in your enumeration area, 35 farming households were sam-
pled, and the weights of heads of households in kilograms (to nearest whole
number) as obtained from the field are shown in Table 2.1:

Table 2.1 Weights of heads of households in kilograms

70 66 60 55 61 63 72
68 60 60 63 60 75 68
59 71 53 76 64 64 52
64 64 68 64 66 67 63
64 70 69 68 63 59 57

These data are what we call raw data, that is, data as obtained from the
field. With the data in this form, very little information can be obtained
about the population. The first possible thing that we can do is to put the
data in what we call an array. An array is the arrangement of the values in
ascending or descending order of magnitude. For example, if we put the data
in an ascending array we have the following results:

52 53 55 57 59 59 60
60 60 60 61 63 63 63
63 64 64 64 64 64 64
66 66 67 68 68 68 68
69 70 70 71 72 75 76

11B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 2,
c© Springer International Publishing Switzerland 2014
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NAME C1 ’WEIGHTS’
SET C1
DATA>70 66 60 55 61..........57
DATA>END
SORT C1 C2
PRINT C1 C2

2.2 Frequency Distributions

2.2.1 Ungrouped Distribution

The above initial analysis can be improved by finding out how many farmers
have specific weights.

Sample No. of farmers having
No. Weights such weights

1 52 1
2 53 1
3 55 1
4 57 1
5 59 2
6 60 4
7 61 1
8 63 4
9 64 6
10 66 2
11 67 1
12 68 4
13 69 1
14 70 2
15 71 1
16 72 1
17 75 1
18 76 1

Note that the total should be equal to the number of households. This
classification tells us more about the sample; for example, we could see that:

(i) most farmers have different weights
(ii) the most popular (or common) weight of household head is 64 kg.

This is an example of ungrouped frequency distribution. The display is called
a frequency table.

Definition

The number of farmers having a certain weight is called its frequency. In
general, the number of times a particular variable/individual occurs is called
its frequency. This is represented by “f.” For example, the frequency of 67 is
1, that of 68 is 4, etc.
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2.2.2 Grouped Distribution

One serious disadvantage of the classification above is that the table may be
too long. Take an example when we consider the weights of a sample of 200
households. The analysis in the form of the preceding section becomes too
cumbersome and uninformative.

A more convenient way of summarizing a large mass of raw data is to
group the observations/variables (in this case) weights into categories and
find out how many household heads belong to each category, for example,
how many household heads have weights?

• 52 kg to a weight less than 54 kg
• 54 kg to a weight less than 56 kg
• 56 kg to a weight less than 58 kg, etc.

We write the above in a more shortened form:

• 53 kg - under 54 kg
• 54 kg - under 56 kg
• 56 kg - under 58 kg

Each of these categories is called a class interval. A simple procedure we use
is what we call Tally Score Method. This method consists of making a stroke
in the proper class for each observation and summing these for each class to
obtain the frequency. It is customary for convenience in counting to place
each fifth stroke through the preceding four as shown below.

Weights in kg Tally No. of farmers (f )

52 - under 56 111 3
56 - under 60 111 3
60 - under 64 11111 1111 9
64 - under 68 11111 1111 9
68 - under 72 11111 111 8
72 - under 76 11 2
76 - under 80 1 1

Total 35

Descriptive Analysis

(i) No household head has weight that is less than 52 kg and more than
80 kg.

(ii) The most common weight is somewhere between 60 and 68 kg.
(iii) Most of the farmers have weights from 56 to 72 kg, that is,

3 + 9 + 9 + 8 = 29 or 83 % of the farmers.

This is an example of a grouped frequency distribution.
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Definitions

• Class Interval: Each category is called a class interval or simply a class.
• Class Limits: These are the end numbers of each class, e.g., 52, 56, 58, etc.
• Upper Class Limit: This is the larger number of the class intervals, e.g., 56.
• Lower Class Limit: This is the smaller number of the class intervals, e.g., 52.
• Size or Width of a class interval: This is the difference between the upper

and lower class limits, e.g., 56 − 52 = 4.
• Class Mark: This is the midpoint of the class interval and is defined as

Upper Class Limit + Lower Class Limit
2

, e.g.,
56 + 52

2
= 54, etc.

• Class Boundary: When the upper limit of each class is the same as the
lower limit of the next class, the class limits are called class boundaries
(above example).

2.2.3 Constructing a Frequency Distribution

There is no hard and fast rule for the construction of frequency distribution,
but the following procedures may be followed:

(i) Try to use equal class interval width. This is useful for comparative
purposes and for easier calculations.

(ii) The number of classes should not be too many or too few. A rough
guideline for constructing k classes for a sample data is the smallest
integer value of k such that 2k ≥ n, where n is the sample size. In the
example above, the sample size is 35 and since 25 ≤ 35 ≤ 26, we would
employ k = 6 classes. Note that in our example above, we have used
seven classes.

(iii) It is advisable to use class interval width of multiples of 2, 5, or 10.

In our example above, if we choose k = 6 classes, then, the class width is
computed as

Largest value − Smallest value
class size

=
Range

Class size
=

Range
k

=
76 − 52

6
= 4

We would usually increase this class width by a little notch say, to 4.2 or
4.5. Suppose we choose 4.5. We can now start the construction of our classes
by starting from a value that is slightly less than the minimum. Our mini-
mum in this case is 52. Suppose we start with 51.5. We then give below the
construction of the six classes with a class width of 4.5.
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Weights Midpoints Tally Frequency (f )

51.5 - <56.0 53.75 111 3
56.0 - <60.5 58.25 11111 11 7
60.5 - <65.0 62.75 11111 11111 1 11
65.0 - <69.5 67.25 11111 111 8
69.5 - <74.0 71.75 1111 4
74.0 - <78.5 76.25 11 2

Total 35

Note The idea of having equal class interval may be waived in a lot of cases.
For example, when we have a lot of classes with very few values, it might be
advisable to lump them together.

Another example is the case when some classes are unbounded, that is,
when we have the case of open class intervals. The table below gives the ages
of pupils in a primary school in years.

Age (years) Frequency (f )

Under 6 3
6 - 7 39
8 - 9 42

10 - 11 40
12 - 13 36

Above 13 7

Note that the classes Under 6 and Above 13 have no lower limit and upper
limit, respectively.

2.2.4 Other Forms of Frequency Distribution

Relative Frequency

We may be interested in the proportion of our sample or population that
falls in a certain class. In this case, we make use of relative frequency. The
result of dividing each class frequency by the total frequency of all classes
and multiplying the result by 100 is the relative frequency.

Weights Frequency Relative frequency (%)

52 - under 56 3 3
35 × 100 = 8.6

56 - under 60 3 3
35 × 100 = 8.6

60 - under 64 9 9
35 × 100 = 25.7

64 - under 68 9 9
35 × 100 = 25.7

68 - under 72 8 8
35 × 100 = 22.9

72 - under 76 2 2
35 × 100 = 5.7

76 - under 80 1 1
35 × 100 = 2.9

Total 35 100.10
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The relative frequency is mostly useful for easy comparison of two or more
frequency distributions. A biological example for instance is the situation
where we wish to compare the number of seeds germinating in two varieties
of a plant.

The following data in Table 2.2 are used to illustrate the comparative use
of the relative frequency approach.

Table 2.2 Age distribution of grade and pupils in Gabon, 1962.

Frequency (f )

Age (years) Boys Girls Total

10 - 11 6 5 11
12 - 13 119 49 168
14 - 15 210 102 312
16 - 17 169 75 244
18 - 19 34 4 38
20 - 21 12 - 12
22 - 23 2 - 2
Total 552 235 787

Source: Fundamentals in Educational Planning, (UNESCO)

One cannot compare these values straightaway because the population of
the boys in the school is greater than that those of girls, so expectedly, the
figures for boys will be greater than those for girls. However, to compare both
results, we would need to convert both frequencies into relative frequencies.
The relative frequency is very useful for an easy comparison of two or more
frequency distributions. We give an example of such a use with the data
below which relate to the age distribution of pupils in Gabon in 1962.

Relative frequencies Total relative
Age (years) Boys Girls frequency

10 - 11 1.1 2.1 1.4
12 - 13 21.5 20.9 21.3
14 - 15 38.0 43.4 39.6
16 - 17 30.6 31.9 31.0
18 - 19 6.2 1.7 4.8
20 - 21 2.2 0 1.5
22 - 23 0.4 0 0.3
Total 100 100 100

The results from the above analysis suggest the following:

(i) Gabonese government should encourage more girls to school.
(ii) The proportional distribution of ages by sex is close enough except for

age group 14 - 15 (difference = 5.4 %) and 18 - 19 (difference = 4.5 %).
(iii) More boys of older age stay at school.
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2.2.5 Cumulative Frequency Distributions

Suppose for the data in Table 2.1, we are interested in answering questions
such as:

• How many household heads weigh less than 53 kg?
• How many household heads weigh more than 52 kg?

The answers to these and other similar questions are best answered through
cumulative frequency distributions.

Cumulative Cumulative
frequency frequency

Weights in kg Frequency from below from above

52 - under 56 3 3 35
56 - under 60 3 6 32
60 - under 64 9 15 29
64 - under 68 9 24 20
68 - under 72 8 32 11
72 - under 76 2 34 3
76 - under 80 1 35 1

Total 35

No. of farmers whose weights are less than 52 kg = 0
No. of farmers whose weights are less than 56 kg = 3
No. of farmers whose weights are less than 60 kg = 6
No. of farmers whose weights are less than 64 kg = 15
No. of farmers whose weights are less than 68 kg = 24
No. of farmers whose weights are less than 72 kg = 32
No. of farmers whose weights are less than 76 kg = 4
No. of farmers whose weights are less than 80 kg = 35

The above are obtained from the cumulative frequency distribution from
below. Similarly, we have,

No. of farmers whose weights are greater than 52 kg = 35
No. of farmers whose weights are greater than 56 kg = 32
No. of farmers whose weights are greater than 60 kg = 29
No. of farmers whose weights are greater than 64 kg = 20
No. of farmers whose weights are greater than 68 kg = 11
No. of farmers whose weights are greater than 72 kg = 3
No. of farmers whose weights are greater than 76 kg = 1
No. of farmers whose weights are greater than 80 kg = 0

The above are similarly obtained from the cumulative frequency distribution
from above.
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2.3 Graphical Representation of Data

Many people have a strong aversion for anything having numbers and tables,
so it might be useful to represent frequency distribution in a more appealing
form. One method is to represent the frequency distribution in graphic form
which is more informative to the layman. We consider some cases:

2.3.1 The Dotplot

One very useful and simple graphical way to display data is by the use of the
graphical method called the dotplot. The plot employs a horizontal line with
the appropriate axis mark to reflect the range of the data. Each sample ob-
servation is then represented in the graph by a single dot above the horizontal
line at the specified value. For instance, a data value of 55 is represented by
a single dot in the figure below, while a value of 64 is represented by six dots
that are stacked above one another. The figure below is a MINITAB output
of the dotplot for the data in Table 2.1. We could see that the interval 59–70
contains most of our data values. Further, the plot provides visual informa-
tion which otherwise could not be discerned from mere looking at the original
data in Table 2.1.

MTB > DotPlot ’WGT’.

Dotplot: WGT
:

: : : :
. . . . : : . : : : . : . : . . . .

+---------+---------+---------+---------+---------+-------WGT
50.0 55.0 60.0 65.0 70.0 75.0

A very useful advantage of the dotplot is in comparative analysis of two
distributions.

2.3.2 The Stem and Leaf Display

The stem and leaf plot offers a quick way to graphically display the shape
of continuous type data while including the actual numerical values in the
graph. That is, the plot retains the original values of the data. The stem
and leaf works best for small numbers of observations as each item of data
must be listed. Below is a MINITAB command to construct a stem and leaf
display of the data in Table 2.1 which was stored in column 1, C1.



2.3 Graphical Representation of Data 19

MTB > STEM AND LEAF C1;
SUBC> INCREMENT=5.

Stem-and-leaf of weights N = 35
Leaf Unit = 1.0

2 5 23
6 5 5799

(15) 6 000013333444444
14 6 66788889
6 7 0012
2 7 56

The first column from the MINITAB output for stem and leaf display gives
the cumulative frequencies, both from above and below to the interval in
which the median is located. Thus the parentheses around 15 indicate that
the median is in that class interval. The column also tells us that 6 household
heads have weights below 60 and 14 who have weights of at least 70.

To construct the stem and leaf display, we note that the minimum datum
here is 52 and the maximum is 76. Thus, we could make this a one-stemmer
by having as stems the tens digits 5, 6, and 7, while the ones digit would
then constitute the leaves. This would only result in only three classes, which
would not give a fair pictorial representation of the data. This approach is
displayed in the following:

MTB > STEM AND LEAF C1;
SUBC> INCREMENT=10.

Stem-and-leaf of weights N = 35
Leaf Unit = 1.0

6 5 235799
(23) 6 00001333344444466788889
6 7 001256

The stem and leaf display we have in the figure above is an example of a
two-stemmer display. Here the 5’s for instance are broken into two groups;
50 - 54 and 55 - 59. That is, the leaves in both groups are respectively the
digits {1, 2, 3, 4} and {5, 6, 7, 8, 9}. The two stemmers can be invoked in
MINITAB by using the subcommand increment= 5 while the one-stemmer
can similarly be invoked by using the subcommand increment= 10. Other
forms of the stem and display are the five-stemmer and the ten-stemmer. For
a five stemmer, we would have for the 5’s the following stems.

Stems Leaves

2∗ With unit digits 0 or 1
2t With unit digits 2 or 3
2f With unit digits 4 or 5
2s With unit digits 6 or 7
5• With unit digits 8 or 9

In this splitting, the symbol t is used for the digits 2 and 3; f for four and five;
and s for six and seven. We again give this display for our data in Table 2.1.
The display is generated by the MINITAB subcommand increment= 2.
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MTB > stem and leaf c1;
SUBC> increment=2.

Stem-and-leaf of weights N = 35
Leaf Unit = 1.0

2 5 23
3 5 5
4 5 7
6 5 99
11 6 00001
15 6 3333
(6) 6 444444
14 6 667
11 6 88889
6 7 001
3 7 2
2 7 5
1 7 6

We note that in all the above MINITAB displays of the stem-and-leaf plots,
the MINITAB orders the leaf units. However, one needs to very careful with
stem-and-leaf displays because the display itself does not tell you the actual
value of the data. The actual value is provided by the leaf unit= statement
which is given just above the display. For example, if the leaf unit = 1.0
had been leaf unit = 10, then the smallest data element would have been
520. Similarly, if the leaf unit had been leaf unit = 0.001 instead of 1.0, then
the smallest data element would have been 0.052. We give an example below
where the data in Table 2.1 were multiplied each by 10, and the resulting stem
and leaf display below (a five-stemmer) gives the leaf unit = 10, indicating
that the minimum data element is 520 and the maximum being 760. Notice
that this display is very similar in every respect to the five-stemmer display
above, except for the leaf unit value.

MTB > LET C3 = C1*10
MTB > STEM AND LEAF C3

Stem-and-leaf of C3 N = 35
Leaf Unit = 10

2 5 23
3 5 5
4 5 7
6 5 99
11 6 00001
15 6 3333
(6) 6 444444
14 6 667
11 6 88889
6 7 001
3 7 2
2 7 5
1 7 6
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2.3.3 Histograms

A histogram consists of a set of rectangles whose:

(i) bases are on the horizontal axis (X-axis) with lengths equal to the size of
the class intervals

(ii) areas are proportional to the class frequencies.

Remark

We will consider the case when the size of all class intervals are equal. The
frequencies in this case represented on the vertical Y-axis are taken numeri-
cally to be equal to the height of the rectangle. As an example, consider the
data in Table 2.1 with the corresponding frequency distribution displayed
earlier using the tally method. There we have six classes with the class width
of 4.5. We can implement this in MINITAB by doing the following.

MTB > SET C1
DATA> 70 66 60 55 61 63 72 68 60 60 63 60 75 68
DATA> 59 71 53 76 64 64 52 64 64 68 64 66 67 63
DATA> 64 70 69 68 63 59 57
DATA> END
MTB > GStd.
* NOTE * Character graphs are obsolete.

MTB > Histogram ’WGT’;
SUBC> Start 53.75 76.25;
SUBC> Increment 4.5.

Histogram of WGT N = 35

Midpoint Count
53.75 3 ***
58.25 7 *******
62.75 11 ***********
67.25 8 ********
71.75 4 ****
76.25 2 **

A graphical version of the histogram can be accomplished with the following
commands with the resulting histogram (Fig. 2.1).

MTB > GPro.
MTB > Histogram ’WGT’;
SUBC> MidPoint 53.75:76.25/ 4.5;
SUBC> Bar;
SUBC> ScFrame;
SUBC> ScAnnotation.
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Fig. 2.1 Histogram plot for the data

Example 2.3.1

We shall again illustrate the construction of an histogram with the following
example:
In a plot of 130 tillers, the following information was obtained:

No. of plants 0 1 2 3 4 5 6 Total
No. of tillers 25 19 22 15 33 13 7 130

Which of them is the variable?
Which of them is the frequency?

The procedure is as follows:

1. The variable, number of plants will be on the X-axis.
2. The frequency, number of tillers will be on the Y-axis.
3. Scale your Y-axis from zero and in such a way as to take the highest

frequency (33). An example is to scale from 0 to 35.
4. On the X axis, mark 0, 1, 2, 3, 4, 5, 6 spacing with equal intervals.
5. Draw each rectangle in such a way that the variable values are at the

center and the heights equal the number of families.

The resulting histogram with midpoints corresponding to 0, 1, · · · 6 is dis-
played in Fig. 2.2.
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Fig. 2.2 Histogram for this example

2.3.4 Polygons

Frequency Polygon

This assumes that observations in a class interval are clustered around the
central value, that is, the class mark.

The frequency polygon is a line graph constructed by plotting the class
frequencies of the various classes at their respective class marks and connect-
ing these points by means of straight lines. Again, we can use the data in
Table 2.1 as an example.

Remark

It is customary to complete the picture by adding one class at each end of
the distribution with zero frequencies.

That is, the class 48 - 52 with class mark of 50.0 and f = 0.
Also, the class 80 - 84 with class mark = 82.0 and f = 0. We then join the
points.

2.3.5 Cumulative Frequency Polygon - The Ogive

This is a graph of cumulative frequencies plotted against the class boundaries.
Consider the previous examples.
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Less than 52 kg = 0; Less than 56 kg = 3

Less than 60 kg = 6; Less than 64 kg = 15

Less than 68 kg = 24; Less than 72 kg = 32

Less than 76 kg = 34; Less than 80 kg = 35

We will concern ourselves with less than ogive.

MTB > NOTE OGIVE FOR HOUSEHOLD HEAD WEIGHT DATA
MTB > SORT C1 C2
MTB > SET C3
DATA> 1:35
DATA> END
MTB > NAME C3 ’CUMFREQ’
MTB > Plot ’CUMFREQ’*’WGTS’;
SUBC> Connect;
SUBC> ScFrame;
SUBC> ScAnnotation.

All the above graphs can be drawn using relative frequencies. The advantages
of using graphical representations are:

(i) The pattern of a distribution is easily seen from a graph.
(ii) It is more informative to the layman.

The ogive for the data in Table 2.1 is constructed in MINITAB with the
following statements and the graph is presented in Fig. 2.3.

MTB > ECDF ’WGT’;
SUBC> Connect;
SUBC> Distribution.
Empirical CDF of WGT

We may note here that a normal distribution with computed mean and stan-
dard deviation is superimposed on the the ogive in Fig. 2.3. If we do not
want this overlay, we can simply remove the Distribution statement in the
MINITAB statement and simply put a period after the “connect” statement.

2.4 Presentation of Data: Charts and Diagrams

So far we have considered diagrams used to illustrate variables. Attributes
(that is, qualitative variables) can also be illustrated pictorially. We consider
some cases below.
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Fig. 2.3 Plot of the ogive for the data in Table 2.1

2.4.1 The Bar Chart

The Simple Bar Chart

We shall use a simple Bar Chart to illustrate the volume of cocoa exported
from Nigeria between 1960 and 1965 (Fig. 2.4). The table below gives the
volume of cocoa in metric tons (thousands) exported by Nigeria between 1960
and 1965.

Year Metric tons

1960 73.6
1961 67.4
1962 66.8
1963 64.8
1964 80.2
1965 85.4

The procedure for drawing a bar graph is the following:

(a) Each value is represented with a bar (rectangle) and its height to its
value.

(b) The width of all rectangles is the same (that is, equal).
(c) The bars are separated by intervals (or gaps) of equal size.
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Data Display

Row YEAR Tonnage

1 1960 73.6
2 1961 67.4
3 1962 66.8
4 1963 64.8
5 1964 80.2
6 1965 85.4

MTB > Chart Mean( ’Tonnage’ ) * ’Year’;
SUBC> Bar.

Fig. 2.4 Simple bar chart

2.4.2 Multiple Bar Chart

We can also construct Multiple Bar Chart which is mostly used for compar-
ative purposes. We shall use this technique to compare the purchase of palm
kernels in Kwara State from Okene/Okehi and Oyun local government areas
between 1971/1972 and 1973/1974.

Palm kernels (in tons)

1971/1972 1972/1973 1973/1974

Okene/Okehi 33 19 6
Oyun 84 26 44
Total 117 45 50

Source: Kwara State Statistical Year Book 1977/1978.
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Fig. 2.5 Multiple bar chart

We see from the multiple bar graphs in Fig. 2.5 that Oyun local government
of Kwara State produced far more tons of palm kernel than Okene local
government in the years 1971 and 1973/1974. The exception perhaps being
1972/1973. This graph in 2.5 can easily be implemented in MINITAB with
the following statements.

MTB > print c1-c3

Data Display

Row LGOVT TONS YEAR
1 OKENE 33 71-72
2 OKENE 19 72-73
3 OKENE 6 73-74
4 OYUN 84 71-72
5 OYUN 26 72-73
6 OYUN 44 73-74

MTB > Chart Mean( ’TONS’ ) * ’LGOVT’;
SUBC> Group ’YEAR’;
SUBC> Overlay;
SUBC> Bar.

Chart of Mean( TONS )
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2.4.3 Component Bar Chart

This is a simple bar chart divided into sections such that each division
(height) corresponds in magnitude to the value it represents. For example, a
component bar chart for the data employed for the multiple bar chart in the
previous section can be constructed as follows.

(a) Draw simple bars of the totals.
(b) Divide each simple bar into components by just marking off respective

values.

We give in Fig. 2.6 an implementation of the component bar graph for the
last example.

Fig. 2.6 Component bar chart

2.4.4 Pie Charts

The pie chart is mostly suitable for categorical variables and represents our
variables or attributes in the form of circles. As an example, we will construct
a pie chart from the table below which gives the amount of money realized
from the export of the principal crops of Nigeria in 1965 in millions of Naira.
Here, we consider crop as a categorical nominal variable with three categories.
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Value Relative
Crop (in million N) frequency

Cocoa 85.4 0.3142
Palm produce 80.2 0.2951

Groundnut 106.2 0.3907
Total 271.8 1.0000

To draw a pie chart, we first note that since a circle spans 360◦, the circle can
thus be divided into sections such that the size of each section is obtained as:

N 271.8 million is represented by 360◦ (whole circle). Therefore, N 1 million
will be represented by 360

271.8 = 1.325◦. We therefore have the distribution for
each of the produce as follows (that is, the slices of the pie corresponding to
each category):

Cocoa =
360

271.8
× 85.4 = 113.1◦

Palm =
360

271.8
× 80.2 = 106.2◦

Groundnut =
360

271.8
× 106.2 = 140.7◦

The above slices in degrees can also be obtained by multiplying the relative
frequencies with 360◦. Using a protractor and a compass, we can easily draw
a pie chart. Fig. 2.7 gives the pie chart for the principal export crops in
Nigeria in 1965.

Data Display

Row CROP VALUE

1 COCOA 85.4
2 PALM 80.2
3 GNUT 106.2

MTB > PieChart ( ’VALUE’ ) * ’CROP’;
SUBC> Combine 0.02;
SUBC> Panel.

Pie Chart of CROP
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Fig. 2.7 A pie chart example

2.5 Exercises

1. The data below give the weight in kilograms of 100 college students taken
at random in fall 1996.

Weight (kg) Frequency (f )

60 - 62 5
63 - 65 18
66 - 68 42
69 - 71 27
72 - 74 8

Find the mean and median of the grouped data. Also, calculate Shannon’s
index of diversity and interpret your result.

2. The data below relate to ozone levels measured as high as 220 parts per
billion (ppb) in a forested area of Edo State. Concentrations this high can
cause eyes to burn and are a hazard to both plants and animal life.

160 176 160 180 167
164 165 163 162 168
173 179 170 196 185
163 162 163 172 162
167 161 169 178 161
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Construct a two-stemmer stem-and-leaf display for the data. What can
you say about the shape of the data?

3. The angle between two adjacent toes was measured from radiographs
of the affected feet of 50 young adults undergoing treatment for a foot
abnormality:

ANGLE BETWEEN TOES (DEGREE)

42 32 33 33 29 31 33 29 40 31
27 30 29 43 34 29 34 29 28 30
36 46 30 41 45 31 30 33 29 29
33 35 37 27 29 43 32 27 32 32
39 41 44 32 35 29 31 28 28 29

Choose a suitable class interval, arrange the results in a frequency table.
Construct a histogram of the data.

4. The cholesterol levels for a sample of 100 subjects are classified as follows:

Cholesterol Number of
level students

Recommended 25
Borderline 10
Moderate risk 50
High risk 15

a. Construct a bar chart to display the distribution.
b. Use a pie chart to present the distribution.



Chapter 3
Numerical Description of Data

3.1 Introduction

The graphic procedures described in the last chapter help us to visualize
the pattern of a data set. To obtain a more objective summary description
and a comparison of data sets, we must go one step further and formulate
quantitative measures for important aspects such as, the location of center
of the data and the amount of variability present in the data. To effectively
present the ideas and associated formulas, it is convenient to represent a data
set by symbols to prevent the discussion from becoming anchored to a specific
set of numbers. A data set consists of a number of measurements symbolically
represented by x1, x2, · · · , xn. The last subscript n denotes the number of
measurements in the data and x1, x2, · · · , represents the first observation,
the second observation and so on.

The notation
n∑

i=1

xi represents the sum of n numbers x1, x2, · · · , xn and is

read as the sum of all xi, with i ranging from 1 to n or
n∑

i=1

xi = x1 + x2 + · · · + xn

Examples

1.
4∑

i=1

xi = x1 + x2 + x3 + x4

2. If x1 = 3, x2 = 5, x3 = 4 and x4 = 3, then,
(i)

4∑

i=1

(xi − 2) = (x1 − 2) + (x2 − 2) + (x3 − 2) + (x4 − 2)

=
∑

xi − 4(2)

33B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 3,
c© Springer International Publishing Switzerland 2014
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= 15 − 8

= 7

(ii)
4∑

i=1

3xi = 3x1 + 3x2 + 3x3 + 3x4 = 3

(
4∑

i=1

xi

)

= 3 × 15 = 45

(iii)
4∑

i=1

x2
i = x2

1 + x2
2 + x2

3 + x2
4 = 32 + 52 + 42 + 32 = 59

(iv)
4∑

i=1

(xi − 2)2 = (x1 − 2)2 + (x2 − 2)2 + (x3 − 2)2 + (x4 − 2)2

= (3 − 2)2 + (5 − 2)2 + (4 − 2)2 + (3 − 2)2

= 1 + 9 + 4 + 1

= 15

3.1.1 Properties OF
∑

If a and b are constants, then,

(i)
n∑

i=1

bxi = b
∑

xi

(ii)
n∑

i=1

(bxi + a) = b
∑

xi + na

(iii)
n∑

i=1

(xi − a)2 =
∑

x2
i − 2a
∑

xi + na2

(iv)
n∑

i=1

a = na, and hence,
n∑

i=1

1 = n

3.2 Measures of Center or Central Tendency

Perhaps the most important aspect of studying the distribution of a sam-
ple of measurements is the position of a central value, i.e., a representative
value about which the measurements are distributed. Any numerical measure
intended to represent the center of a data set is called a measure of location
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or central tendency. The two most commonly used measures of center are the
mean and the median.

3.2.1 The Mean, x̄

The sample mean or average of a set of n measurements x1, x2, · · · , xn is the
sum of these measurements divided by n. The mean is denoted by x̄ and is
expressed as:

x̄ =
∑

xi

n

Examples

(1) Given the heights in inches of five men as 66, 73, 68, 69, and 74. Then
the mean equals

x̄ =
∑

xi

n
=

66 + 73 + 68 + 69 + 74
5

=
350
5

= 70

i.e., x̄ = 70 inches.
(2) The birth weights in pounds of five new born babies at a hospital on a

certain day are 9.2, 6.4, 10.5, 8.7, and 7.8. Hence, the mean birth weight
for this data is

x̄ =
9.2 + 6.4 + 10.5 + 8.1 + 7.8

5
=

42.0
5

= 8.4 lbs

The pattern in the data can be seen more easily if the readings are arranged
in order of magnitude as shown below:

6.4, 7.8 ∨ 8.7, 9.2, 10.5

mean 8.4

We can see that the mean is a good summary figure. About half of the
readings are smaller than the mean and half larger. Even when the mean is
not a good summary figure, it generally provides a useful mental or visual
focus when looking at the data. So, it is a good idea to calculate the mean
of a data set in the early stages of analysis. At the very least, this can make
it easier to see whether the data are symmetrical or skewed.

Many times, our data appear in frequency tables where we no longer know
the actual values of the observations, but only to which class interval they
belong. In these instances, the best we can do is to approximate the sample
mean. The mean is given by the expression:

x̄ =
∑

fixi∑
fi

=
∑

fixi

n
. (3.1)
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3.3 Weighted Means

If for instance, we are interested in finding the mean of several means which
are themselves obtained on different numbers of observations, then it is ap-
propriate to weight the means or observations by using weights to depend
on the number of observations in each mean. A weighted mean is therefore
defined by,

x̄w =
∑

wixi∑
wi

where, wi are the weights. Consider for example the data in Table 2.1. The
means of the first 14 observations for this data is 64.36, while the mean of
the remaining 21 observations is 64.06 respectively. If we think, therefore

that the mean of the entire 35 observations would be
64.36 + 64.06

2
= 64.21,

which clearly does not agree with the actual mean of 64.18. The reason here
is that the means are not weighted. The true mean will be computed as:

x̄w =
14(64.36) + 21(64.06)

14 + 21
=

2246.3
35

= 64.18

Here, the respective weights are w1 = 14
35 = 0.4 and w2 = 21

35 = 0.6
respectively.

3.3.1 Geometric Mean

If xi, x2, · · · , xn are all positive numbers, then the geometric or harmonic
mean is given by

G = n
√

(x1x2 · · ·xn)

= (x1x2x3 · · ·xn)1/n

and,
1
H

=
1
n

∑[ 1
xi

]

The geometric mean is mainly useful in calculating relative values such as
index numbers and in averaging ratios and rates.

3.3.2 Mean of Grouped Data

If we refer to our data in Table 2.6, we have the following:
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Wt. in kg xc f f xc

52–56 54 3 162
56–60 58 3 174
60–64 62 9 558
64–68 66 9 594
68–72 70 8 560
72–76 74 2 148
76–80 78 1 78
Total 35 2274

Hence, using Eq. (3.1),

x̄ =
2274
35

= 64.9714

Consider, the data below in which the midpoints of the intervals as well as
the frequency values are given.

xc f f xc

57 1 57
52 1 52
47 3 141
42 4 168
37 6 222
32 7 224
27 12 324
22 6 132
17 8 136
12 2 24

Total 50 1480

Here again, we have

x̄ =
∑

fxc

n
=

1480
50

= 29.60.

3.3.3 The Median

The sample median of a set of n measurements x1, x2, · · · , xn is the middle
value when the measurements are arranged in order of magnitude, e.g., from
smallest to largest. If n is an odd number, there is a unique middle value and
it is the median. If n is an even number, there are two middle values and the
median is defined as their average.

Roughly speaking, the median is the value that divides the data into two
equal halves. In other words, 50 % of the data lie below the median and 50 %
lie above it. Simple formulae for finding the median are given below.
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Case I: n Odd

If the number of observations n is odd, then the position of the median in an
ordered array and given by,

(
n + 1

2

)

.

For example, if n = 15, then the median is in the 8th position. Similarly, if
n = 25, then the median is in the 13th position.

Case II: n Even

If the number of observations n is even, then the median is the average of
the two observations whose positions in the ordered array are given by,

(n

2

)th
, and

(n

2
+ 1
)th

i.e., the median equals,

1
2

[(n

2

)th
+
(n

2
+ 1
)th
]

.

For example, if n = 10, then the median is the average of the fifth and
the sixth observations. Similarly, if n = 20, the median is also given by the
average of the 10th and the 11th observations in the ordered array.

Examples

To find the median of the birth weight data given in the example above, we
first order the measurements from smallest to largest as:

6.4, 7.8, 8.1, 9.2, 10.5

The middle value is 8.1 and the median is therefore 8.1 pounds.
Consider another example, the monthly incomes in Naira of eight members

of an engineering firm in Lagos are 500, 750, 600, 550, 550, 700, 2000, and
550. To calculate the mean and median income, we note that

∑
x = 6200 and

hence, x̄ = 775. Thus, the mean monthly income for the group is N 775.00.
To find the median, first we order the data. The ordered values are:

500, 550, 550, 550, 600, 700, 750, 2000.

Here, n = 8, an even number. Thus the median is the average of the fourth
and fifth observations, i.e., the median income is:

M =
550 + 600

2
= N 575.

Here the median of N 575 appears to be a more sensible measure of the center
than the mean.
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Other measures of location are quartiles, deciles, and percentiles. These are
points which divide distributions of ranked values (e.g., smallest to largest)
into quarters, tenths, and hundredths respectively. Thus, the median is the
second quartile, fifth decile, and fiftieth percentile. These are discussed in the
next section.

3.4 Percentiles

The pth percentile of a data array (arranged in order of magnitude)
x1, x2, · · · , xn is number x such that at least p % of the data fall below it
and (100 − p) % of the data fall above it. To calculate the pth percentile of a
data set, we do the following:

• Arrange the data in ascending order
• Compute and index i using the expression:

i =
( p

100

)
n (3.2)

where p is the percentile of interest and n is the number of observations
in the data set.

(a) if i is not an integer, then round up to the next highest integer and
this will denote the position of the pth percentile.

(b) if i is an integer, then the pth percentile is the arithmetic mean of the
ith and (i + 1)th observations in the ordered array.

Example: Finding the Specific Percentile from a Data Set

Consider the data in Chap. 2 relating to the weights of heads of households in
kilograms. The data has been arranged in order of magnitude from smallest
to largest.

WGT
52 53 55 57 59 59 60 60 60 60 61 63 63 63 63
64 64 64 64 64 64 66 66 67 68 68 68 68 69 70
70 71 72 75 76

The 80th percentile is computed as follows:

i =
(

80
100

)

35 = 28

Since this is an integer, the 80th percentile therefore is the average of the 28th

and 29th observations in the array, i.e., the 80th percentile is
68 + 69

2
= 68.5.

Alternatively, suppose we wish to know the percentile ranking of a head
of household, whose weight is 71 kg. Here, we compute this as:

# of data values less than 71
35

× 100 =
(

31
35

)

100 = 88.6 ≈ 89
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i.e., this will correspond to the 89th percentile. In general, we obtain the
ranking for a specific data value x as:

# of data values less than x

n
× 100, and round up to the nearest integer

3.4.1 Quartiles

The most common percentiles of interest are Quartiles, which divide the data
set into four equal parts and are defined as follows:

Q1 = first quartile, or 25th percentile

Q2 = second quartile, or 50th percentile

Q3 = third quartile, or 75th percentile

To obtain Q1, Q2, and Q3, we use the expression in (3.2) noting that each
corresponds to i = 25, 50, and 75 respectively. Thus for Q1, we have,

i =
(

25
100

)

35 = 8.75

Rounding this up, Q1 is therefore the 9th observation, i.e., Q1 = 60.
Similarly for Q2, we have,

i =
(

50
100

)

35 = 17.5

Rounding up again, gives Q2 (median) as the 18th observation, i.e., Q2 = 64.
The index for Q3 is also computed as:

i =
(

75
100

)

35 = 26.25.

Rounding up again gives Q3 as the 27th observation, i.e., Q3 = 68.

3.4.2 Checking for Outliers with Quartiles

Having computed Q1 and Q3, we can then compute the interquartile range or
IQR which is defined as, IQR = Q3 −Q1 = 68− 60 = 8. The inner fences are
located at 1.5(IQR) distances below Q1 and above Q3, thus, Q1−1.5(IQR) =
60 − 1.5(8) = 48 and Q3 + 1.5(IQR) = 68 + 1.5(8) = 80 respectively. If our
data value falls either below the lower inner fence or above the upper inner
fence, then we consider such data as a possible outlier. To be truly certain the
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data value is an outlier, it must fall outside the outer fences which are 3(IQR)
distances below Q1 and above Q3 respectively, i.e., our data value must be less
than Q1 − 3(IQR) = 60 − 24 = 36 and above Q3 + 3(IQR) = 68 + 24 = 92;
a data value x is an outright outlier if x ≤ 36 or x ≥ 92 in this case.

The Box plot displayed below, gives a graph of the five number summary
for our data, viz., the minimum, Q1, Q2, Q3, and the maximum. For our
data, these values are respectively, {52, 60, 64, 68, 76} and these can also be
obtained in MINITAB with the DESCRIBE statement as displayed below.
MINITAB gives these values as well as the mean and standard deviation.
MTB > describe c1

Descriptive Statistics: WGT

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
WGT 35 0 64.171 0.951 5.628 52.000 60.000 64.000 68.000  76.000

MTB > boxplot c1

Boxplot

-----------------
----------------I + I----------------

-----------------
+---------+---------+---------+---------+---------+------WGT

55.0 60.0 65.0 70.0 75.050.0

3.5 The Boxplot

The box plot, apart from displaying the five number summary data can also
be employed to compare distributions. Below we have constructed box plots
for each of two data sets separately and jointly for comparative purposes.

MTB > DESCRIBE C1-C2

N MEAN MEDIAN TRMEAN STDEV SEMEAN
C1 10 18.00 17.00 18.13 3.46 1.10
C2 10 18.000 18.000 18.000 0.816 0.258

MIN MAX Q1 Q3
C1 13.00 22.00 15.50 22.00
C2 17.000 19.000 17.000 19.000

MTB > BOXPLOT C1

-----------------------------
---------------I +        I

-----------------------------
--+---------+---------+---------+---------+---------+----C1

12.0 14.0 16.0 18.0 20.0 22.0
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MTB > BOXPLOT C2

---------------------------------------------------
I+I

---------------------------------------------------
--------+---------+---------+---------+---------+--------C2

17.20 17.60 18.00 18.40 18.80

MTB > STACK C1-C2 C3;
SUBC> SUBSCRIPT C4.

MTB > BOXPLOT C3;
SUBC> BY C4.

C4

-----------------------------
I+I---------------1

-----------------------------

-----------
2 I + I

-----------
--+---------+---------+---------+---------+---------+----C3

12.0 14.0 16.0 18.0 20.0 22.0

3.5.1 Mean of Grouped Data

The mean of grouped data is often easily obtained by coding the data, gener-
ally, this usually involves a variate xi which can be transformed into variate
Ui with the following transformation:

Ui =
xi − x0

c

or xi = cUi + x0, where, x0 is any value of x taken as an arbitrary average and
c is the class interval width. With this transformation, the mean is computed
as:

x̄ = x0 +
c
∑

fiUi∑
fi

. (3.3)

For the data in the preceding section, suppose we chose x0 = 37, then we
have the table:
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xi fi Ui fiUi fiU2
i

57 1 4 4 16
52 1 3 3 9
47 3 2 6 12
42 4 1 4 4
37 6 0 0 0
32 7 −1 −7 7
27 12 −2 −24 48
22 6 −3 −18 54
17 8 −4 −32 128
12 2 −5 −10 50

Totals 50 −74 328

From the table, we have,
∑

fiUi∑
fi

=
−74
50

= −1.48

x̄ = 37.0 + c(−1.48) = 37 + 5(−1.48), since c equals 5

= 29.60.

We observe that this value of x̄ agrees with the value that we obtained
earlier for the ungrouped data. However, the arithmetic of the coded proce-
dure is much simpler and this latter procedure is often recommended when
hand calculators are not available or simply to simplify the calculations.

3.5.2 The Median of Grouped Data

We shall illustrate again with the grouped data above. Here,
∑

fi = n = 50,
hence, the median is somewhere half way of this, i.e., 25. Thus, counting
frequencies from the bottom upward (i.e., from below), we find 2+8+6+12 =
28 cases, three more than what we want—this is at an x value of 27. To
make 25 cases exactly, we need 9 of the 12 cases in this class. The median
lies somewhere within the interval 25–29 whose exact limits are 24.5 and
29.5. Thus, we interpolate that we must go 9/12 = 3/4 of the way. The total
distance is 5. Hence, 3

4 × 5 = 3.75. Thus adding this to the lower limit, we
have 24.5 + 3.75 = 28.25 as the median. Generally, the median M is given as
(if interpolation is from below),

M = l0 +
[
n/2 − Fb

f0

]

c (3.4)

where, l0 equals the exact lower limit of the class interval containing the
median, Fb is the sum of all frequencies below l0 and f0 is the frequency of
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the interval containing the median. c and n are defined as usual. Employing
this formula, for the example above, we have,

M = 24.5 +
(25 − 16)5

12
= 28.25

A slightly similar formula is available for computing the median of grouped
data by interpolation from above, but the above will suffice for our purpose.

3.5.3 The Mode

The mode is the item that occurs most often in a distribution, i.e., the item
that has the highest frequency. The procedure for obtaining the mode is
by simply putting the observations in form of a frequency distribution and
picking the one that has the highest frequency.

As an example, the age in (years) of ten students are

14, 15, 16, 16, 17, 17, 22, 22, 22, 22.

Then a frequency display of the data is as follows:

x f

14 1
15 1
16 2
17 2
22 4

The highest frequency here is 4, and hence, the mode is 22 years. The above
can be implemented in MINITAB by specifying

TALLY C1

where the data is assumed to be stored in column one (C1).
As another example, a newspaper wants to predict an election result of a

certain constituency. Five political parties (A, B, C, D, and E) are in the race.
The newspaper then interviews a selected sample of 1000 potential voters,
the results of this interview are summarized below.

Party f

A 13
B 294
C 298
D 344
E 9

Undecided 42
Total 1000
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Based on the above summary table, Party D is the favorite on the basis of
the result from the survey. Therefore, the mode or the most popular party is
party D.

3.5.4 Comparisons Between Mean, Median,
and Mode

The mean, median and mode are all measures of central tendency (or lo-
cation) in a specific way. The question that one is often facing in practical
application is: “Which one of the measures of central tendency is most ap-
propriate?” The question is not easily answered. As will be illustrated later,
the one we use depends on the objectives for conducting an enquiry and the
type of data gathered. Let us now compare them.

(i) The mean and mode (when it exists) are easy to calculate. However
when the number of observations are large, it is tedious putting a set of
data in an array, thus the median may be tedious to calculate.

(ii) Mean and median always exist in a distribution, whereas, mode may not
exist and if it exists may not be unique. For example, in the summary
data below,

x f fx

3 3 9
5 2 10
7 3 21
9 1 9
11 3 33

Total 12 82

The above frequency table can be re-written in the ungrouped form as:

3, 3, 3, 5, 5, 7, 7, 7, 9, 11, 11, 11.

Hence,

x̄ =
82
12

= 6.83

and

M =
(6th + 7th)

2
=

7 + 7
2

= 7.

The mode in this case equals 3, 7, 11, i.e., the mode takes three different
values at the central value. Thus the mode is not unique in this case,
and we would describe such a data as having a tri-modal distribution.
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(iii) Generally, the median provides a better measure of the center when there
are extremely large or small observations in a set of data. For example,
in the above example of monthly income of eight people, we had x̄ = 775,
the median M = 575. The extreme value item is 2000. The median is
more central than the mean, i.e., the median is not affected by extreme
or abnormal values (or outliers).

(iv) When faced with qualitative data, mean and median are meaningless.
Thus, the mode is the only appropriate means of measure of central
location in this case.

Example A manufacturing company is carrying out a market research
of the use of its brands of University vests in three different colors. He
noted 30 students in a certain class wearing vest of the following colors.
Green, Yellow, Brown, Blue, Green, Yellow, Red; Blue, Brown, Yellow,
Blue, Black, Blue, Brown, Red; Blue, Green, Blue, Yellow, Red; Blue,
Red, Brown, Blue, Yellow, Brown, Blue, Black, Yellow, Blue. Find the
best average.

Solution Surely mean and median are meaningless in this problem. So
our alternative is the modal choice of color.

Color Frequency

Green 3
Yellow 6
Brown 5
Blue 10
Red 4

Black 2

The modal color is blue.

3.6 Relationship Between Mean, Median, and Mode

1. For symmetrical distributions (Fig. 3.1), the mean, mode, and median
coincide, i.e., Mean = Mode = Median or X̄ = M = m theoretically.
However, for real life data, they will seem to be close.

2. For skewed distributions, the following empirical relationship exists
between the three measures, viz.,

Mode = Mean − 3 (Mean − Median) (3.5)

Of course we can write the above as,

Mean-Mode = 3 (Mean-Median) or,

Mean − Median =
1
3

(Mean − Mode). (3.6)
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In general, the above is more succinctly written as,

Mode = 3 Median − 2 Mean (3.7)

i.e.,

m = 3 M − 2 x̄

3. For positively skewed or right-skewed distributions (see Fig. 3.3) m <
M < x̄. Similarly, for negatively skewed or left-skewed distributions (see
Fig. 3.2), we have x̄ < M < m.

In the next figure, we present the histogram and corresponding probability
plot of a right-skewed distribution.
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Fig. 3.1 A symmetric distribution. Here, X̄ = M
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Fig. 3.2 A left-skewed distribution. Here, X̄ << M
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Fig. 3.3 A right-skewed distribution. Here, X̄ >> M
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3.7 Measures of Variation or Dispersion

No two objects are exactly alike. Even “identical twins” differ. The universe
is filled with objects and individuals which vary from one another by some
characteristics more so in biological and medical data. The averages (mean,
median, and mode) or measures of location which we have treated measure
the center of data. The assumption is that all data in the observation takes
a single value. This in most cases does not hold.

Therefore, there is a need to measure the degree of spread or variation
of our data from one another and (or around the average). This degree of
spread is called variation or dispersion.

When the value of our observations are the same, then there is no variation
and our degree of variation equals zero.

Example

The age (in years) of ten boys in form V from two different secondary schools
are:

School I 13, 14, 16, 16, 17, 17, 21, 22, 22, 22. Hence, x̄1 =
180
10

= 18 years

School II 18, 18, 19, 17, 19, 19, 17, 18, 18, 17. Hence again, x̄2 =
180
10

=
18 years

We can conclude that the average age of boys in the two schools are the
same. However, a careful look at the data shows that the ten boys in School II
are far more uniform than those in School I. Thus School II boys are likely to
behave more like 18-year-olds than those in School I. A measure of variation
is out to measure this degree of variability.

We discuss below the various measures of variation that have been
suggested from various literature.

3.7.1 The Range

The range which is defined as Highest data value − Lowest data value, is a
basic measure of variability or spread. For example, in the two schools data
above, we have for both the schools.
School I: Range = 22 − 13 = 9
School II: Range = 19 − 17 = 2.

Thus we see straight from the values of the ranges for both data sets that
the data for School I is more widely spread than those from School II. Hence,
we would expect the boys in School II to behave more like 18 years old than
those from School I. In other words, the data in School II is said to be more
homogeneous than those from School I.
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3.7.2 Variance and Standard Deviation

The variance of a sample is always represented by S2 and the standard devi-
ation will be represented by the square root of S2, i.e., S =

√
S2. While the

standard deviation is an absolute measure of dispersion, it is however, mea-
sured in units—does it depend on the units of measurement? The coefficient
of variation on the other hand is a relative measure of dispersion based on
the standard deviation and is defined as,

CV =
s

x̄
× 100 % (3.8)

The coefficient of variation being a ratio, it is a dimensionless quantity.
Thus for comparing the variability of say, two distributions, we compute their
CVs. The distribution with the smaller CV would be more homogeneous than
the other with a higher CV.

We consider in the next section two cases of obtaining sample variances
for both ungrouped and grouped data.

3.7.3 Case I: Variance of Ungrouped Data

Given a set of values x1, x2, · · · , xn, the variance is defined as

s2 =
∑

(xi − x̄)2

n − 1

=
1

n − 1

[∑
x2

i − (
∑

xi)2

n

]

Example

To find the variance of the age of boys in School I above, we note that x̄ = 18,
hence,

X
(age) x − x̄ (x − x̄)2

13 −5 25
14 −4 16
16 −2 4
16 −2 4
17 −1 1
17 −1 1
21 3 9
22 4 16
22 4 16
22 4 16

Total 0 108
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Variance = s2 =
108

10 − 1
=

108
9

= 12 years2. Hence, s =
√

S2 =
√

12 =

3.4641 years. Alternatively, we could use the second formula for finding the
variance. Here, we have,

∑
x2

i = 132 + 142 + 162 + 162 + 172 + · · · + 222 = 3348

n = 10, and
∑

xi = 180, thus,

∑
x2

i − (
∑

x)2

10
= 3348 − 1802

10
= 3348 − 3240 = 108.

Hence, s2 = 108
10−1 = 12 years2 and the corresponding coefficient of varia-

tion CV is (3.4641/18) × 100 = 19.2 %. This second approach is most useful
when hand calculators that perform statistical functions are available.
For the second school, i.e., School II, we also have x̄ = 18 and s2 = 2

3years2,
i.e., s = 0.8165 years, and hence, the CV = (0.8165/18) × 100 = 4.5 %

The results above support our initial observation that the age of boys in
School I vary more widely than the age of boys in School II since VAR(I) >
VAR(II) or CV(I) > CV(II).

Steps to Follow when Calculating S2 for Case I

(i) Obtain the mean.
(ii) From each observation, deduct the mean to obtain the deviations x − x̄.
(iii) Square each deviation to obtain (x − x̄)2.
(iv) Obtain the sum

∑
(x − x̄)2.

(v) Divide this sum by n − 1.

As mentioned earlier, most hand calculators these days have facilities for the
calculation of means and variances for ungrouped data. The above can be
implemented in MINITAB as follows:

MEAN C1 K1
LET C2=C1-K1
NOTE NOW FIND THE SUM OF DEVIATIONS
SUM C2
LET C3=C2*C2
NOTE FIND SUM OF SQUARED DEVIATIONS AND PUT IN K2
SUM C3 K2
LET K3=K3/(N(C1)-1)
PRINT K3

of course we could simply ask MINITAB to give us the following:

MEAN C1
STDEV C1 k1
LET K2=K1*K1 (VARIANCE)
MEDIAN C1
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3.7.4 Calculating the Variance of Grouped Data

The data below gives the weight in kilograms of 100 students at a given
University.

Weight (kg) Frequency

60–62 5
63–65 18
66–68 42
69–71 27
72–74 8

To find the variance of the above grouped data, we form the table below.

Class
Wt.(kg) mark Freq.

(kg) xi fi fixi xi − x̄ (xi − x̄)2 fi(xi − x̄)2

60–62 61 5 305 −5.45 41.6025 208.0125
63–65 64 18 1152 −3.45 11.9025 214.2450
66–68 67 42 2814 −0.45 0.2025 8.5030
69–71 70 27 1890 2.55 6.5025 175.5675
72–74 73 8 584 5.55 30.8025 246.4200
Totals 100 6745 852.7500

From the above table, we have

x̄ =
∑

fixi

n
=

6745
100

= 67.45

S2 =
∑

fi(xi − x̄)2
∑

fi − 1
=

852.7500
99

= 8.6136

Hence, S =
√

8.6136 = 2.9349 kg.
Another formula for computing the variance of grouped frequency is:

∑
fi(xi − x̄)2
∑

fi − 1
=
[∑

fix
2
i∑

fi
− x̄2
] [ ∑

fi∑
fi − 1

]

Implementing this for the example above, we have,

xi fi fixi fix2
i

61 5 305 18,605
64 18 1152 73,728
67 42 2814 188,538
70 27 1890 132,300
73 8 584 42,632

Total 100 6745 455,803
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Hence, x̄ = 6745
100 = 67.45, and,

∑
fix

2
i∑

fi
− x̄2 =

455803
100

− 67.452

= 4558.03 − 4549.5025

= 8.5275.

Hence, S2 = 100
99 × 8.5275 = 8.6136 and S =

√
8.6136= 2.9349 kg.

3.7.5 Use of Coding to Simplify Calculations

The calculations above could have been simplified if we had coded the data.
We give an example of the procedure involved for using this method. First,
suppose we define u = (x− 67)/3, where 67 is an arbitrary value and 3 is the
class width in the example above. Then, x = 67 + 3u. Thus, E(X) = x̄ =
67 + 3ū. To obtain the variance, we note that the variance of a constant is
zero. Further, if Var(y) = σ2, then Var(ay) = a2σ2. Similarly, Var

[
x
b

]
= σ2

b2 ,
where a and b are constants. Hence Var(x) above equals 32Var(u) = 9Var(u).
We illustrate this in the following table.

xi ui fi fiui fiu2
i

61 −2 5 −10 20
64 −1 18 −18 18
67 0 42 0 0
70 1 27 27 27
73 2 8 16 32

Total 100 15 97

ū =
15
100

= 0.15, i.e.,

x̄ = 67 + 3ū = 67 + 3(0.15)

= 67.45

and

Var(u) =
100
99

{
97
100

− 0.152
}

= 0.9571.

Hence, Var(x) = c2 Var(u) = 9(0.9571) = 8.6136. This agrees with the ear-
lier result obtained and we see that the sums are not too large in the
computational table.
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3.8 Empirical Rule

The mean and the standard deviation of a data set can be used to find the
proportion of the total observations that fall within a given interval about
the mean. We mostly consider the intervals (i) x̄ ± s, (ii) x̄ ± 2s, (iii) x̄ ± 3s.
The empirical rule relates to only mound-shaped or bell-shaped distribution.
The rule states that for mound shaped distribution, approximately:

(a) 68 % of the observations fall within the interval x̄ ± s, i.e., within one
standard deviation of the mean.

(b) 95 % of the observations fall within the interval x̄ ± 2s, i.e., within two
standard deviations of the mean.

(c) 99.7 % of the observations fall within the interval x̄±3s, i.e., within three
standard deviations of the mean.

As an example, consider the data in Table 2.1 (see p. 11). There are
35 observations. x̄ = 64.171 and s = 5.628. Hence, x̄ ± s = 64.171 ±
5.628 = [58.54,69.80]. With our data arranged in order of magnitude and
counting how many observations are between 59 and 69, we have 25, (from
the MINITAB display below) that is, 25

35 = 0.714 or 71.4 % of the total obser-
vations lie within this interval. Corresponding intervals for x̄ ± 2s and x̄ ± 3s
are computed as follows:

x̄ ± 2s = 64.171 ± 2(5.628) = 64.171 ± 11.256 = [52.92, 75.43]

x̄ ± 3s = 64.171 ± 3(5.628) = 64.171 ± 16.884 = [47.29, 81.06]

From the above, we see that approximately, 33 and 35 observations fall
respectively in the intervals x̄ ± 2s and x̄ ± 3s. Consequently, we say that
for this data set, approximately 94.2 and 100 % of the data fall within these
intervals respectively. These results are not consistent with the empirical rule,
hence, we can rightly conclude that this data set is not mound or bell shaped,
i.e., it is skewed.

MTB > sort c1 c2
MTB > print c2

Data Display

C2
52 53 55 57 59 59 60 60 60 60 61 63 63 63 63
64 64 64 64 64 64 66 66 67 68 68 68 68 69 70
70 71 72 75 76



3.9 Exercises 55

3.9 Exercises

1. Five measurements in a data set are x1 = 7, x2 = 5, x3 = 6, x4 = 8 and
x5 = 6. Compute the numerical values of

(i)
5∑

i=1

xi (ii)
4∑

i=1

xi, (iii)
5∑

i=1

2xi, (iv)
5∑

i=1

(xi − 6), (v)
5∑

i=1

(xi − 6)2

2. Demonstrate your familiarity with the summation notation by evaluating
the following expressions when x1 = 1, x2 = 2, x3 = 4 and x4 = 5

(i)
4∑

i=1

xi (ii)
2∑

i=1

(xi − 4) (iii)
∑

(xi − 2), (iv)
4∑

i=1

(xi − 2)2

3. The residues of fungicide measured in parts per million in a random sample
of 50 fresh oranges harvested 40 days after receiving the last of last of six
sprays of the fungicide were as follows:

1.63 1.40 1.64 1.30 1.49 1.58 1.03 1.06 1.33
1.52 1.87 1.83 1.97 l.62 1.21 1.01 1.14 1.58
1.43 1.41 1.51 1.15 1.61 1.10 1.03 1.84 1.61
1.71 1.32 1.29 1.82 1.99 1.43 1.53 1.56 1.48
1.82 1.81 1.21 1.73 1.59 1.99 1.34 1.23 1.65
1.20 1.76 1.54 1.58 1.99

Arrange the results in a grouped frequency table and calculate the sample
mean, variance, and median from this table. Comment on your results.

4. The angle between two adjacent toes were measured from radiographs
of the affected feet of 50 young adults undergoing treatment for a foot
abnormality.

ANGLE BETWEEN TOES (DEGREE)

42 32 33 33 29 31 33 29 40 31
27 30 29 43 34 29 34 29 28 30
36 46 30 41 45 31 30 33 29 29
33 35 37 27 29 43 32 27 32 32
39 41 44 32 35 29 31 28 28 29

Similar measurements were made on the feet of 40 normal young adults.

12 18 13 15 16 12 15 18 15 15
17 15 16 17 17 16 18 13 12 15
14 15 12 14 14 18 17 18 12 14
13 12 12 14 17 16 12 16 15 13
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Obtain the mean, variance, and median for these sets of data. Now choose
a suitable class interval, arrange the results in a frequency table and
compute the same statistics. Compare your results.

5. Calculate the means and median of the following sets of data for the
situations.

(i) Ungrouped
(ii) Grouped using a suitable class interval width

(a) The time interval in minutes between the arrival of successive
customers at a cash desk of a self service store was measured over
56 customers and the results are given below:

1.05 1.68 0.78 1.10 0.32 1.61 0.10 3.12 0.21
3.30 0.15 0.54 2.16 1.14 0.16 0.31 0.91 0.18
0.57 0.65 4.60 1.72 0.52 2.32 0.08 2.68 1.16
1.19 0.11 0.05 3.70 1.48 3.80 2.08 0.09 1.76
2.71 2.12 2.81 0.04 1.16 0.62 0.58 0.57 0.04
0.63 1.21 0.01

(b) The intelligence quotients of 100 children are given below:

72 112 100 116 99 111 85 82 08 85 94 91
118 103 102 133 98 106 92 102 115 109 100 57
108 77 94 121 100 107 104 67 11 88 87 97
102 98 101 88 90 93 85 107 80 106 120 91
101 103 109 100 127 107 112 98 83 98 89 106
79 117 85 94 119 93 100 90 102 87 95 117
142 94 93 72 98 105 122 104 104 79 102 104
107 97 100 109 103 107 106 96 83 107 102 110
102 76 98 88

6. The following sample of serum cholinesterase indices in normal individuals
is taken from Kaufman (1954). The data has been sorted. Use this to find
the followings:

INDICES

1.03 1.03 1.04 1.04 1.04 1.06 1.08 1.09 1.13 1.15
1.15 1.15 1.16 1.16 1.18 1.21 1.22 1.23 1.24 1.24
1.25 1.26 1.27 1.30 1.32 1.32 1.35 1.35 1.37 1.39
1.40 1.40 1.42 1.43 1.44 1.44 1.46 1.48 1.51 1.52
1.52 1.54 1.55 1.57 1.59 1.59 1.61 1.65 1.65 1.65
1.67 1.68 1.69 1.70 1.70 1.70 1.71 1.72 1.75 1.75
1.75 1.78 1.82 1.83 1.84 1.86 1.86 1.88 1.89 1.91
1.92 1.92 1.92 1.92 1.92 1.93 1.94 1.95 2.02 2.10
2.12 2.13 2.14 2.14 2.15 2.17 2.23 2.26 2.27 2.29
2.52 2.54 2.55 2.59 2.60 2.65 2.67 2.76 3.09 3.27



3.9 Exercises 57

(i) The mean, the median, and mode for the data if
∑

x = 170.40.
(ii) The upper and lower quartiles (Q1, Q3) and hence obtain IQR, the

interquartile range.
(iii) Obtain the five-number summary for the data.
(iv) Obtain variance s2 for this data if

∑
x2 = 313.60. Find the

percentage of the data values that fall between x̄ ± s.

7. The data below relate to serum CK concentrations (creatine phosphoki-
nase) of 36 male volunteers. The data has been sorted from smallest to
largest.

CSK
25 42 48 57 58 60 62 64 67 68 70 78 82
83 84 92 93 94 95 95 100 101 104 110 110 113
118 119 121 123 139 145 151 163 201 203

For these data,
∑

x = 3538.0 and
∑

x2 = 404, 778.00.

(a) Compute x̄ and s2, the sample variance and hence s the sample
standard deviation.

(b) What percentage of the data fall in the interval ȳ ± s?
(c) What percentage of the data fall in the interval ȳ ± 2s?
(d) What percentage of the data fall in the interval ȳ ± 3s?
(e) Based on your results above, what can you say about the shape of the

distribution of these data.

8. The mean and the median of a set of test scores are 75 and 60 respectively.
Circle the letter of the statement which is most defensible.

(a) The distribution of test scores is skewed to the left.
(b) The distribution of test scores is skewed to the right.
(c) Half of the test scores are greater than 60.
(d) A few test scores are very small, pulling the median down.
(e) Both (a) and (d) are true.

9. The data below give the weight in kilograms of 100 college students taken
at random in Fall 2006.

Weight (kg) Frequency (f )

60–62 5
63–65 18
66–68 42
69–71 27
72–74 8

Find the mean and median for the grouped data. Also, compute Shannon’s
index of diversity and interpret your result.



Chapter 4
Probability and Probability Distributions

4.1 Introduction

The concept of probability is relevant to experiments that have some un-
certain outcomes. These are the situations in which, despite every effort to
maintain fixed conditions, some variation in the result during repeated trials
of the experiment is unavoidable. As used in here, the term “experiment” is
not restricted to laboratory experiments but includes any activity that re-
sults in the collection of data pertaining to phenomena that exhibit variation.
The domain of probability encompasses all phenomena for which outcomes
cannot be exactly predicted in advance.

Examples of experiments with uncertain outcomes are

(i) Tossing a coin
(ii) Rolling a die
(iii) Gender of the first two newborns in town tomorrow
(iv) Tossing two coins
(v) Rolling two dice
(vi) Planting a seed, etc.

Though, in the above examples, each experimental outcome is unpredictable,
we can describe the collection of all possible outcomes as:

Definition

The collection of all possible outcomes of an experiment is called the Sample
Space of outcomes and each distinct outcome is called a simple event, an
elementary outcome or an element of the sample space. They are usually
denoted by S and E respectively.

Before we discuss the concept of probability and probability distributions
completely, let us familiarize ourselves with some counting methods, that will
be most useful to us in this chapter.
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4.2 Counting Methods

In calculating probabilities, it is very essential that we be able to count sample
points corresponding to S and E in the event. However, this sometimes
becomes a tedious job, and thus compact counting methods are necessary. A
branch of Algebra, called “Permutations” and “Combinations” is very useful
here.

Suppose two operations A and B are carried out, and if there are “m”
different ways of carrying out A and “k” different ways of carrying out B,
then the combined operation of A and B may be carried out in m × k = mk
different ways.

4.2.1 Permutation

The number of permutations (or arrangements) of n distinct objects, taken
all together is

n! = n(n − 1)(n − 2) · · · × 2 × 1

0! = 1

1! = 1 × 1 = 1

2! = 2 × 1 = 2

3! = 3 × 2 × 1 = 6

4! = 4 × 3 × 2 × 1 = 24

5! = 5 × 4 × 3 × 2 × 1 = 120

6! = 6 × 5 × 4 × 3 × 2 × 1 = 720

and so on. Note that n! is read n factorial.

Example

Consider the three letters A, B, C, the number of possible arrangements of
these three letters will be 3! = 3×2×1 = 6. These arrangements are given by

ABC,ACB,BAC,BCA,CAB,CBA.

The number of permutations of n distinct objects taken r at a time, written
nPr is given by:

n(n − 1)(n − 2) · · · (n − r + 1) =
n!

(n − r)!

Thus in the above example, 3P2 =
3!

(3 − 2)!
=

3!
1!

= 6 and these are.

AB, AC, BC, BA, CA, CB
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Example

What is the number of permutations of ten distinct digits taken two at a
time?

The first digit can be chosen in ten ways and having filled the first place,
the second digit can be chosen in nine ways. Hence there are 10 × 9 = 90
permutations or

10P2 =
10!
8!

=
10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
= 10 × 9 = 90 ways

If two or more letters (numerals, items, objects, etc.) are identical (or of the
same form), then, the number of permutations is appropriately reduced. For
example, Consider the letter ABCDAF. The number of arrangements of the
six letters is

6!
2!

= 360

The denominator or divisor is because there are two As in the letter. In
general, if we have n objects which are composed of p objects of one kind, q
of another, r of another and so on, then the number of different arrangements
is given by

n!
p!q!r! · · ·

Example 1

Out of 12 tulip bulbs to be planted in a row along a border, four are yellow
flowers, six are red flowers, and two are orange flowers. How many color
patterns could be created? The number of color patterns that can be obtained
by varying the planting order will be

12!
4!6!2!

= 13, 860

Example 2

In a clinic there are two specialists, one for ear patients and one for nose
patients. If during a day, six patients are to arrive, four for ear treatment
and two for nose treatment, in how many ways can the duty roster for the
specialists be arranged?

The number of ways of arranging the duty roster equals

6!
4!2!

= 15.
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4.2.2 Combinations

Combinations deal with the number of distinct arrangements of n objects
taken r at a time. It is written as nCr or

(
n
r

)
and is given by

(
n

r

)

=
n!

r!(n − r)!
.

Combinations unlike permutation disregards order.

Example

In the previous example with three letters A, B, and C, we saw that there
were 3P2 = 6 ways of arranging two letters at a time, namely, AB, AC, BC,
BA, CA, and CB. However, the number of distinct ways of arranging two of
these at a time is

(3
2

)
= 3, that is,

3!
2!1!

= 3 ways

and these arrangements are:

AB, AC, and BC.

Since, these arrangements disregard the ordering of the letters, AB is not
distinct from BA.

At the beginning of this chapter, we defined the sample space and simple
events. We can now list the simple events and their corresponding sample
spaces for each of the examples of experiments with uncertain outcomes
enumerated at the beginning of this chapter. These are:

(i) S = {H, T}
(ii) S = {1, 2, 3, 4, 5, 6}
(iii) S = {BB, BG, GB, GG}, where BG stands for Boy first, Girl second.
(iv) S = {HH, HT, TH, TT}
(v) S = {xi, xj ; 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}
(vi) S = {G, NG}, where G stands for germination and NG for no

germination.

The sample space for (v) is as shown in Table 4.1.
Each of the outcomes in the Table 4.1 is equally likely. Note that the events

(1, 2) �= (2, 1), etc.
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Table 4.1 Sample space for rolling two dice

j

i 1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

4.2.3 Probability of an Event

This is the proportion of times an event occurs say, A is expected to occur
when the experiment is repeated under identical conditions and is denoted
as P(A).

Thus in our above examples for case (i), P(H)=1/2 while for case (ii),
P(4)= 1

6 . The probability of one boy or one girl is given by P(1 boy or 1 girl)
= 1

4 + 1
4 = 1

2 .
For all events:

(a) 0 ≤ P (A) ≤ 1
(b) P(S) = 1

That is, computed probabilities are never greater than 1 or less than 0.

Examples

(i) Twenty discs are marked with the numbers 1–20 inclusive. They are
placed in a box and one disc is drawn from it. What is the probability
that the number on the disc will be a multiple of 5?

Solution Here S = 20 and E (the events) = {5, 10, 15, 20}. Hence P(E)
= 4/20 = 1/5

(ii) A bag contains five blue balls, three red balls, and two black balls. A
ball is drawn at random from the bag then, the probabilities

(a) Prob (red ball) = 3
10

(b) Prob (black ball) = 2
10

(c) Prob (not a black ball) = 8
10 or 1 − 2

10 = 8
10

(iii) A die is rolled, calculate the probability that

(a) it will give a five?
(b) a number less than three
(c) an even number.
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Solution S = {1, 2, 3, 4, 5, 6}

(a) E = {5}, hence, P(E) = 1
6

(b) E = {1, 2}, hence, P(E) = 2
6 = 1

3
(c) E = {2, 4, 6}, hence, P(E) = 3

6 = 1
2

(iv) Refer to Table 4.1. Find the probability that the total sum of the two
dice will be (a) 5 (b) less than 5 (c) more than 5 (d) 7 (e) 11.

Solutions S = 36 sample points

(a) If total is 5, then E = {(1, 4), (4, 1), (2, 3), (3, 2)}, hence,
P(E) = 4

36 = 1
9

(b) If total is less than 5, then E = {2, 3, or 4} and they are given by
the following sample points, E = {(1, 1), (1, 2), (2, 1), (2, 2), (1, 3),
(3, 1)}. Hence P(E) = 6

36 = 1
6

(c) 1-P(less than or equal to 5) = 1 − (1
6 + 1

9 ) = 13
18 . Alternatively, (c)

can be obtained as follows: More than 5 implies total sums equal to
6, 7, 8, 9, 10, 11, or 12. Thus,

E={(3,3), (1,5), (5,1), (2,4), (4,2), (1,6), (6,1), (2,5)
(5,2), (3,4), (4,3), (2,6), (6,2), (3,5), (5,3), (4,4)
(3,6), (6,3), (4,5), (5,4), (4,6), (6,4), (5,5), (5,6)
(6,5), (6,6)}

Hence P(E) = 26
36 = 13

18 which gives the same result as in (c) above.

(d) If total = 7, then, E = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}.
Therefore, P(E) = 6

36 = 1
6

(e) If total = 11, then, E = {(5, 6), (6, 5)} and P(E) = 2
36 = 1

18

Example 4.1.1

When an experimental stimulus is given to an animal, it will either respond
or fail to respond. In other words, there are only two possible outcomes
when a stimulus is applied to an animal. Either the animal responds (R) or
it does not (N). The experiment consists of administering the stimulus to
three animals in succession and recording R or N for each animal. Find the
probability of the following events

(i) Only one animal responds
(ii) There is a response in the first trial
(iii) Both the first and second animals fail to respond.

Solution

There are two possible outcomes R (response) and N (no response) for each of
the animals. Since there are three animals, there are 2×2×2 = 8 elementary
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outcomes for this experiment. These are listed below and are identified by
the symbols E1, E2, · · · , E8.

RRR (E1) RRN (E2) RNR (E3) NRR (E4)
RNN (E5) NRN (E6) NNR (E7) NNN (E8)

(i) For this, the events consists of points A= {E5, E6, E7}, hence, P(A)= 3
8 .

(ii) The events here are B = {E1, E2, E3, E5} and hence, P(B) = 4
8 = 1

2 .
(iii) Here the events consist of C = {E7, E8}, hence P(C) = 2

8 = 1
4 .

Table 4.2 Distribution of probabilities

Presence of Rh+

Gender Yes (Rh+) No (Rh−) Total

Boys 0.4335 0.0765 0.51
Girls 0.4165 0.0735 0.49
Total 0.85 0.15 1.00

4.3 Marginal & Conditional Probabilities

In a certain city hospital 85 % of newly born babies are Rh+ (that is, they
all have the Rh+ antigen on the surface of their red blood cells, otherwise, it
is Rh-). It is also known that about 51 % of all babies born at this particular
hospital are boys. Let the distribution of the probabilities be as given in
Table 4.2.

Suppose an individual newly born baby is randomly selected from this
hospital, then

(i) P(Boy) = 0.51 and P(Girl) = 1− 0.51 = 0.49.
(ii) P(Rh+) = 0.85 and P(Rh−) = 1 − 0.85 = 0.15.
(iii) Probability that the child is a boy and is Rh+ = P(Boy and Rh+) =

0.4335

The probabilities in (i) and (ii) mentioned above are called marginal prob-
abilities. We can also construct marginal probability tables with frequency
data. Consider the following data which relate to a group of 1000 randomly
selected adults who were asked if they are in favor of abortion or are against
it. The results of this survey is presented in Table 4.3.

Table 4.3 Survey frequency distribution

Response

Gender In favor Against Total

Male 248 203 451
Female 310 239 549
Total 558 442 1000
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Thus,

P (Male) =
451
1000

= 0.451

P (Female) =
549
1000

= 0.549

P (In favor) =
558
1000

= 0.558

P (Against) =
442
1000

= 0.442

The above are the four marginal probabilities or simple probabilities. Notice
that these probabilities involve single events.

4.4 Laws of Probability

4.4.1 The Addition Law of Probability

For any two events A and B, the probability that either A or B or both will
occur, denoted by P(A or B) is defined as:

P (A or B) = P (A) + P (B) − P (A and B) (4.1)

The Venn diagram below displays this concept for two events A and B.

Fig. 4.1 Venn diagram to illustrate A ∩ B
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However, if A and B are mutually exclusive events, then the definition in
(4.1) becomes,

P (A or B) = P (A) + P (B) (4.2)

Since in this case, P (A and B) = 0.

Example 4.3.1

If 30 % of Nigerians are obese (A) and that 4 % of Nigerians suffer from
diabetes (B). 2 % are both obese and suffer from diabetes. What is the
probability that a randomly selected person is obese or suffers from diabetes?

Here, P(A) = 0.3, P(B) = 0.04 and P(A and B) = 0.02. Then,

P (A or B) = P (A) + P (B) − P (A and B)

= 0.3 + 0.04 − 0.02 = 0.32

Example 4.3.2

Refer to Table 4.3. What is the probability that the individual selected is
male or against abortion. Let A = {Male} and B the event B = {against}.
Here, P (A) = 451

1000 , P (B) = 442
1000 and P (A and B) = 203

1000 , hence,

P (A or B) = P (A) + P (B) − P (A and B)

=
451
1000

+
442
1000

− 203
1000

=
690
1000

= 0.690

4.4.2 Multiplication Law

For any two events A and B, the conditional probability of A given B is
defined as:

P (A | B) =
P (A and B)

P (B)
provided P (B) �= 0 (4.3)

Of course it also follows that

P (B | A) =
P (A and B)

P (A)
provided P (A) �= 0 (4.4)
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Example 4.3.3

It is estimated that 15 % of the adult population has hyper-tension, but that
75 % of all adults feel that personally, they do not have this problem. It is
also estimated that 6 % of the population has hyper-tension but does not
think that the disease is present. If an adult patient reports that he or she
does not have hyper-tension, what is the probability that the disease is, in
fact, present?

If we let A denote the event that the patient does not feel that the disease
is present and B, the event that the disease is present, we are given that
P (A) = 0.75, P (B) = 0.15 and P (A and B) = 0.06. We want to find
P (B | A). From the definition in (4.4), we have

P (B | A) =
P (A and B)

P (A)
=

0.06
0.75

= 0.08

Thus, there is an 8 % chance that a patient who expresses an opinion that
she or he has no problem with hypertension does, in fact, have the disease.

Example 4.3.4

Refer to the previous example (Example 4.3.3). If the disease is present, what
is the probability that the patient will suspect its presence?

Here, we wish to find P (Ā | B), where Ā denotes the compliment of event
A, that is, the event that A does not occur. Hence P (Ā) = 1 − P (A) =
1 − 0.75 = 0.25. Thus,

P (Ā | B) =
P (Ā and B)

P (B)
=

P (Ā) × P (B | Ā)
P (B)

=
0.25 × 0.09/0.25

0.15
=

0.09
0.15

= 0.60

That is, if the patient expresses the opinion that he or she has hypertension,
there is a 60 % chance of the patient being right.

We have used the multiplication rule in the last example. This rule states
for two events A and B that,

P (A and B) = P (B) × P (A | B) or (4.5a)

P (A and B) = P (A) × P (B | A) (4.5b)

Refer to Table 4.2, what is the probability that the baby selected is a boy
who is Rh+? that is,

3P (Boy|Rh+) =
P (Boy andRh+)

P (Rh+)
=

0.04335
0.85

= 0.51
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Example

Refer to Table 4.3, the probability of a male who is in favor is

P (Male and favor)
P (favor)

=
248/1000
558/1000

=
248
558

= 0.444

We can represent this in a tree diagram as follows: First let A represents the
event ‘in favor’. Then P (A) = 0.558 and P (Ā) = 1 − 0.558 = 0.442. Here,
P (Ā) is often described as the compliment of event A which is 1−P (A). The
tree diagram below represents these conditional probabilities. For instance,
the probability that the person selected is a female who is opposed to abortion
is 0.541.

A
0.558

Male | favor0.444

Female | favor0.556

Ā

0.442
Male |against0.459

Female |against0.541

4.5 Relationship Between Probability and Odds

If the odds in favor of an event A are a to b, then the probability that the
event occurs is p =

a

a + b
and the probability that event does not occur is

1− a

a + b
=

b

a + b
. As an illustration, the odds in favor of obtaining a sum of

seven in throwing two dice is 1:5. Thus, probability of observing this event is
1/(1+5) = 1/6 and the odds against this event would therefore be b : a = 5 : 1

with corresponding probability
b

a + b
=

5
6
. The odds for success of an event

therefore are the probability of success to the probability of failure.

4.6 Specificity, Sensitivity of Tests

Measures for testing the effectiveness of a test procedure (screening test or
set of symptoms), such as a medical test to diagnose a disease for sensitivity,
specificity, and predictive values.
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In considering screening tests, we must be aware of the fact that they are
not always infallible. That is, a testing procedure may yield a false positive
or a false negative.

1. A false positive results when a test indicates a positive status when the true
status is negative. That is, the test indicates that the disease is present,
but the person does not really have the disease.

2. A false negative results when a test indicates a negative status when the
true status is positive. That is, the person has the disease but the test
does not detect it, because the person tested negative.

Suppose we have for a sample of n subjects (n always large), the information
in the table below:

Disease

Test result Present (D) Absent (D̄) Total

+ve a b a+b
−ve c d c+d
Total a+c b+d n

• The sensitivity of a test (or symptom) is the probability of a positive test
result (or presence of the symptom) given the presence of the disease. That
is, it is

P (+ve | D) =
a

a + c

• The specificity of a test (or symptom) is the probability of a negative test
result (or absence of the symptom) given the absence of the disease. That is,

P (−ve | D̄) =
d

b + d

• The predictive value positive of a screening test or symptom is the
probability that the subject has the disease, given that the subject has
a positive screening test result (or has the symptom). Or simply defined
as the proportion of positive results that are true positives (i.e., have the
symptom or disease)

P (D | +ve) =
P (D and + ve)

P (+ve)
(4.6)

=
P (D and + ve)

P (D and + ve) + P (D̄ and + ve)
(4.7)

=
P (D) × P (+ve | D)

P (D) × P (+ve | D) + P (D̄) × P (+ve | D̄)
(4.8)

=
P (D) × sensitivity

P (D) × sensitivity + P (D̄) × (1.0 − specificity)
(4.9)
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• The predictive value negative of a screening test (or symptom) is the
probability that subject does not have the disease, given that the subject
has a negative screening test result (or does not have the symptom) or
again simply defined as the proportion of negative results that are true
negatives (i.e., do not have the symptom or disease).

P (D̄ | −ve) =
P (D̄ and − ve)

P (−ve)
(4.10)

=
P (D̄) × specificity

P (D̄) × (1.0 − sensitivity) + P (D̄) × specificity
(4.11)

Example 4.6.1

If a woman takes an early pregnancy test, she will either test positive, mean-
ing that the test says she is pregnant, or test negative, meaning that the test
says she is not pregnant. Suppose that if a woman is really pregnant, there
is 98 % chance that she will test positive. Also, suppose that if a woman is
not pregnant, there is a 99 % chance that she will test negative.

(1a) Suppose that 1000 women take early pregnancy tests and that 100 of
them are really pregnant. What is the probability that a randomly
chosen woman from this group will test positive?

(1b) Suppose that a woman tests positive, what is the probability that she
is really pregnant?

(2a) Suppose that 1000 women take early pregnancy tests and 50 of them are
really pregnant. What is the probability that a randomly chosen woman
from this group will test positive?

(2b) Suppose that a woman test positive, what is the probability that she is
really pregnant?

Disease

Test result Pregnant (D) Not pregnant (D̄)

Positive +ve 0.98 0.01
Negative (−ve) 0.02 0.99

Total 1.00 1.00

a The sensitivity of the test is given by:

P (+ve | pregnant) = 0.98

b The specificity of the test is given by:

P (-ve | not pregnant) = 0.99
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In problem (1a), in a population of 1000 women, 100 of them were actually
pregnant. Hence P (D) = 0.10 and P (D̄) = 0.90 in the population. We can
now use a probability tree diagram to solve our problem.

Popl

D

0.10

+ve
0.98 × 0.10 = 0 .0980.98

-ve
0.02 × 0.10 = 0 .0020.02

D̄

0.90 +ve
0.90 × 0.01 = 0 .0090.01

-ve
0.90 × 0.99 = 0 .8910.99

The probabilities are computed as follows using the multiplication rule:

P (D ∩ +ve) = P (D) × P (+ve|D) = 0.10 × 0.98 = 0.098

P (D̄ ∩ +ve) = P (D̄) × P (+ve|D̄) = 0.90 × 0.01 = 0.009

Similar calculations lead to those for the (−ve)s. Hence, the probability that
a randomly chosen woman from this group will test positive equals 0.098 +
0.009 = 0.107. In problem (1b), the probability that she is really pregnant
given that she tested positive is the predictive value positive of the test and
is computed as:

P (D ∩ +ve)
P (+ve)

=
0.098
0.107

= 0.9159

For (2a), we now have P (D) = 0.05 and P (D̄) = 0.95. The following
probability tree diagram displays the various probabilities relating to this
problem.

Popl

D

0.05

+ve
0.98 × 0.05 = 0 .0490.98

-ve
0.02 × 0.05 = 0 .0010.02

D̄

0.95 +ve
0.95 × 0.01 = 0 .00950.01

-ve
0.95 × 0.99 = 0 .94050.99
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Hence, the probability that a randomly chosen woman from this group will
test positive equals 0.049+0.0095 = 0.0585. In problem (2b), the probability
that she is really pregnant given that she tested positive is the predictive
value positive of the test and is computed as:

P (D ∩ +ve)
P (+ve)

=
0.049
0.0585

= 0.8376

Example 4.3.3

The blood type distribution in a certain country at the time of war was
thought to be type A, 41 %; type B, 9 %; type AB, 4 %; and type O, 46 %.
It is estimated that during this war, 4 % if inductees with type O blood were
typed as having type A, 88 % of those with type A blood were correctly typed,
4 % with type B blood were typed as A, and 10 % with type B were typed as
A. A soldier was wounded and brought to surgery. He was typed as having
type A blood. What is the probability that this was his true blood type?

Here we wish to find P (A1 | B), where, let,

A1 :He has type A blood

A2 :He has type B blood

A3 :He has type AB blood

A4 :He has type O blood

Similarly we are given,

P (A1) = 0.41 P (B | A1) = 0.88

P (A2) = 0.09 P (B | A2) = 0.04

P (A3) = 0.04 P (B | A3) = 0.10

P (A4) = 0.46 P (B | A4) = 0.04

The following tree diagram together with the computed probabilities are
presented.
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Popl

A 1

0.41

B
0.41 × 0.88 = 0 .36080.88

B‘
0.41 × 0.12 = 0 .04920.12

A 2

0.09

B
0.09 × 0.04 = 0 .00360.04

B‘
0.09 × 0.96 = 0 .08640.96

A 3

0.04 B
0.04 × 0.10 = 0 .0040.10

B‘
0.04 × 0.90 = 0 .0360.90

A4

0.46

B
0.46 × 0.04 = 0 .01840.04

B‘
0.46 × 0.96 = 0 .44160.96

From the above,

P (B) = P (A1 and B) + P (A2 and B) + P (A3 and B) + P (A4 and B)

= 0.3608 + 0.0036 + 0.0040 + 0.0184 = 0.3868

But P (A1 and B) = 0.3608. Hence,

P [A1 | B] =
0.3608
0.3868

= 0.9328

Thus there is a 93 % chance that the blood type is A if it has been typed as A.
There is a 7 % chance that it has been mistyped as A when it is actually some
other type. We have used in the example above the use of what is known as
Bayes’ theorem.

4.7 Receiver Operating Characteristics(ROC) Curves

The receiver operating characteristic (ROC) curve is a graphical plot of the
sensitivity (true positives rate) versus the false positive rate (1−specificity) of
the screening test, at different cut-off points used to designate test positive.
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4.7.1 Example

Consider the following data for serum ferritin as a test for iron deficiency
anemia. The level of serum ferritin (SF) found in blood and measured in mil-
ligrams percent is to be used as a diagnostic tool for detecting iron deficiency
anemia. Large values of SF is often associated with iron deficiency anemia
(Table 4.4).

Table 4.4 Serum ferritin as IDA diagnostic test

Serum ferritin # With IDA # Without IDA
(mmol/l) (% of total) (% of total)

< 15 474 20
15–34 175 79
35–64 82 171
65–94 30 188
> 94 48 1332

Suppose we adopt cut points ≤ 15, ≤ 34, ≤ 64, and ≤ 94, then the corre-
sponding 2 × 2 contingency tables for each of the cut points are presented in
(i) to (iv) below.

IDA
SF 1 0 Total

≤ 15 474 20 494
> 15 335 1750 2085
Total 809 1770 2579

IDA
SF 1 0 Total

≤ 34 649 99 748
> 34 160 1671 1831
Total 809 1770 2579

)ii()i(

IDA
SF 1 0 Total

≤ 64 731 270 1001
> 64 78 1500 1578
Total 809 1770 2579

IDA
SF 1 0 Total

≤ 94 761 438 1199
> 94 48 1332 1380
Total 809 1770 2579

)vi()iii(

For Table (i), the sensitivity and specificity are computed as:

Sensitivity =
474
809

= 0.5859

Specificity =
1750
1770

= 0.9887

For Table (ii), the computed values are:

Sensitivity =
649
809

= 0.8022
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Specificity =
1671
1770

= 0.9441

For Table (iii), these are similarly computed as:

Sensitivity =
731
809

= 0.9036

Specificity =
1500
1770

= 0.8475

and finally for Table (iv), we have:

Sensitivity =
761
809

= 0.9407

Specificity =
1332
1770

= 0.7525

These results are tabulated as follows (Table 4.5):

Table 4.5 Relationship between sensitivity and specificity

SF (cut-points) Sensitivity Specificity 1−Specificity

≤ 15 0.5859 0.9887 0.1130
≤ 34 0.8022 0.9441 0.0559
≤ 64 0.9036 0.8475 0.1535
≤ 94 0.9407 0.7525 0.2475
> 94 1.0000 0.0000 1.0000

The above table indicates the relationship between specificity and sensitivity.
It clearly shows that as sensitivity increases, the specificity drops and vice
versa. Thus there is a trade off and ideally, we would want a test that is highly
sensitive and highly specific. A cut point of ≤ 15 for instance to diagnose iron
deficiency anemia has sensitivity of 0.5859 and a specificity of 0.9887. We can
increase the cutoff point for instance to increase the sensitivity. For instance,
if we were to use a cutoff point of ≤ 94, we would have a higher sensitivity
indicating that a larger number proportions of the diagnosis will be positive,
but we would have decreased the specificity to 0.7525 and thus increasing
the probability of false positives. The choice of a cutoff point should be se-
lected carefully as we would not wish to minimize the false negative error
(that patients does not have iron deficiency anemia when he/she clearly has
it) in this particular case for instance. The relationship between sensitivity
and specificity is often graphically illustrated by employing the Receiver op-
erating characteristic (ROC) curve. The ROC curve is a graphical plot of the
sensitivity values against 1−specificity curves and compare sensitivity versus
specificity across a range of values for the ability to predict a dichotomous
outcome. Area under the ROC curve is another measure of test performance.

The area under the ROC curve is a measure of the accuracy of the test.
An area of 1 represents a perfect test or complete agreement, while an area of
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0.5 is considered worthless. In general, an ROC area of between 0.5 and 0.70
is considered marginally useful. An area of between 0.7 and 0.9 is considered
a good test, while an area greater than 0.90 is considered as an excellent
test. Here, in our example, the area under the ROC curve is 0.9344 which is
therefore considered as an excellent test.

0.
00
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25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Area under ROC curve = 0.9344

Fig. 4.2 ROC curve for Serum Ferritin

4.8 Probability Distributions

Suppose we denote the number of responses by X in Example 4.1 above.
Then, X can take the following values, 0 (corresponding to no responses, i.e.
NNN), 1, 2 or 3. We present corresponding outcomes for these values of X
below.

X Outcome

0 {NNN}
1 {RNN, NRN, NNR}
2 {RRN, RNR, NRR}
3 {RRR}

We notice that the value of X is not fixed as it could take any of the values
0, 1, 2 or 3. Therefore in statistical terms, X will be described as a discrete
random variable. It is discrete because X takes discrete values 0, 1, · · · . The
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probability density function (pdf) of X, denoted by p(x) can therefore be
obtained as follows:

Response

X 0 1 2 3 Total

p(x) 1
8

3
8

3
8

1
8 1

p(x) as given by the values above is described as the probability density
function of the random variable X (No. of responses). Thus p(x) satisfies the
following:

(i) p(x) ≥ 0, for all i
(ii)
∑

p(x) = 1, summed over all values of X

4.8.1 Mean and Variance of X

The mean of X, denoted by μx or E(X) (expectation of X ) is calculated from
the expression as mentioned below.

E(X) =
∑

xp(x), hence,

= 0
(

1
8

)

+ 1
(

3
8

)

+ 2
(

3
8

)

+ 3
(

1
8

)

= 0 +
3
8

+
6
8

+
3
8

=
3
2

Similarly, the variance is obtained by using the formula

σ2
x =
∑

x2 p(x) − μ2
x

i.e.,

Var X =
∑

x2 p(x) − E(X)2

= 02
(

1
8

)

+ 12
(

3
8

)

+ 22
(

3
8

)

+ 32
(

1
8

)

−
(

3
2

)2

= 0 +
3
8

+
12
8

+
9
8

− 9
4

=
3
4

Hence, the standard deviation σx =
√

3
4 = 0.86660. E(X) is read as “Ex-

pected value of X ” or simply as the “Expectation of X ”. The expectation
gives the mean of the distribution.
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We notice that for a discrete probability density function p(x), then p(x)
must satisfy

∑
p(x) = 1 (4.12)

Example 4.8.1

A cell when it multiplies can give birth to a maximum of four daughter cells.
The probability of x daughter cells being formed by a cell which has just
multiplied is given by the following probability distribution

x 1 2 3 4

p(x) 1
4

3
8

1
8

1
4

It can be seen from the example that X has discrete pdf and

4∑

x=1

p(xi) =
1
4

+
3
8

+
1
8

+
1
4

= 1

For the above pdf, we can evaluate the following probabilities

(i) P (X = 3) = P (3) = 1
8

(ii) P (X < 2) = P (1) = 1
4

(iii) P (X > 2) = P (3) + P (4) = 1
8 + 1

4 = 3
8

(iv) P (X ≤ 2) = P (1) + P (2) = 1
4 + 3

8 = 5
8

(v) P (2 ≤ X ≤ 4) = P (2) + P (3) + P (4) = 3
8 + 1

8 + 1
4 = 3

4

(vi) P (X ≥ 3) = P (3) + (p(4) = 1
8 + 1

4 = 3
8

4.8.2 Cumulative Probability Distribution Function

The cumulative probability distribution (cdf) for a discrete random variable
X is defined as:

F(x) = P (X ≤ x)

and for the pdf in Example 4.8.1, the corresponding cdf is given by:

x 1 2 3 4

F (x) 1
4

5
8

6
8 1
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Given, the cumulative distribution function F (x), then the probabilities in
(i)–(vi) in the previous subsection, are calculated as follows:

(i) P (X = 3) = F (3) − F (2) = 6
8 − 5

8 = 1
8

(ii) P (X < 2) = P (X ≤ 1) = F (1) = 1
4

(iii) P (X > 2) = 1 − P (X ≤ 2) = 1 − F (2) = 1 − 5
8 = 3

8

(iv) P (X ≤ 2) = F (2) = 5
8

(v) P (2 ≤ X ≤ 4) = F (4) − F (1) = 1 − 1
4 = 3

4

(vi) P (X ≥ 3) = 1 − P (X < 3) = 1 − P (X ≤ 2) = 1 − F (2) = 1 − 5
8 = 3

8

The mean and variance of the X in this example are also obtained from the
pdf as:

E(X) =
∑

xp(x) = 1
(

1
4

)

+ 2
(

3
8

)

+ 3
(

1
8

)

+ 4
(

1
4

)

=
19
8

Var(X) =
∑

x2p(x) − E(X)2 = 12
(

1
4

)

+ 22
(

3
8

)

+ 32
(

1
8

)

+ 42
(

1
4

)

=
1
4

+
12
8

+
9
8

+
16
4

−
(

19
8

)2

= 6.875 − 5.6406 = 1.234

4.9 The Binomial Distribution

Suppose, a drug company announces that it has just developed a new drug
to cure a certain fictitious disease NNYZ. The company also claims that the
cure rate of this new drug is 0.8 or 80 %. Suppose, there are four patients at
the local hospital with this particular disease and we are interested in testing
the efficacy of this new drug. Consequently, this new drug is administered to
these four patients over a specified period of time and the conditions of the
patients are re-examined at this time. What is the distribution of the number
of patients cured by this new drug.

Let S denote the event that the drug cures and F the event that the drug
fails to cure the patient. Then

P (S) = 0.8, and P (F ) = 1 − 0.8 = 0.20.

Further let X be the number of patients cured. Then the possible values of
X are {0, 1, 2, 3, 4} corresponding to:

FFFF︸ ︷︷ ︸
X=0

, SFFF︸ ︷︷ ︸
X=1

, SSFF︸ ︷︷ ︸
X=2

, SSSF︸ ︷︷ ︸
X=3

, SSSS︸ ︷︷ ︸
X=4

But since each patient is either cured or not cured, thus we have 2×2×2×2 =
16 possible outcomes. We have, however, listed only five of these possible
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outcomes, hence there is a need for us to locate where the other possible
outcomes are lurking (or hiding). For example, the outcome SFFF listed
above only indicates that the first patient was cured. It could have been
only the second, the third or the fourth. Hence there would be four possible
outcomes for the case when X = 1, namely {SFFF, FSFF, FFSF, FFFS}.
To generate these outcomes we make use our earlier rule. Thus,

FFFF =
4!

0!4!
= 1

SFFF =
4!

1!3!
= 4

SSFF =
4!

2!2!
= 6

SSSF =
4!

!3!1!
= 4

SSSS =
4!

4!0!
= 1

for instance for the SSFF, there are two of one kind (SS) and two of the other
kind (FF), hence, there are six possible outcomes corresponding to X = 2.
In all, the outcomes are represented as:

These are,

FFFF
FFFS FSFF FFSF SFFF

FFSS SSFF SFSF FSFS SFFS FSSF
FSSS SSSF SSFS SFSS

SSSS

The corresponding probabilities are therefore:

P (X = 0) = 0.24 = 0.0016

P (X = 1) = 4(0.23 0.81) = 0.0256

P (X = 2) = 6(0.22 0.82) = 0.1536

P (X = 3) = 4(0.21 0.83) = 0.4096

P (X = 4) = (0.84) = 0.4096

Hence, the distribution of X, the number of patients cured can be summarized
in Table 4.6.
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Table 4.6 Distribution of the random variable X in this example

X 0 1 2 3 4 Total

P (x) 0.0016 0.0256 0.1536 0.4096 0.4096 1

We notice that
∑

P (x) = 1. P (x) is a pdf and a special pdf for that matter.
The number of patients cured X is said to follow a binomial distribution with
parameters n = 4 and p = 0.8 and is written as X ∼ b(4, 0.8).

The binomial distribution arises mainly when there are only two possible
outcomes in each trial of an experiment, such that the two possible outcomes
are mutually exclusive. These outcomes may be success or failure, germi-
nation or no-germination, defective or non-defective, yes or no etc. In the
example above, a patient is either cured (S) or not cured (F). The probabil-
ity of success is always denoted by p and that of failure by 1 − p or q and a
binomial experiment is one that possesses the following properties:

(a) The experiment consists on n repeated trials.
(b) Each trial results in an outcome that may be classified as a success or

failure, that is, dichotomous (Greek) or binary (Latin) outcomes.
(c) The probability of success is p and failure q such that p + q = 1
(d) The repeated trials are independent.

Then, if X represents the number of successes in n such repeated trials of the
experiment, then the possible values of X are 0, 1, 2, · · · , n and the distribu-
tion of X is called a binomial distribution with parameters n and p and is
written as X ∼ b(n, p). For the above example, the probabilities can therefore
be computed as in the following Table where, p = 0.8 and q = 1 − p = 0.20.

Values of X 0 1 2 3 4

p(x) q4 pq3 p2q2 p3q p4

No of sequences 1 =
(
4
0

)
4 =

(
4
1

)
6 =

(
4
2

)
4 =

(
4
3

)
1 =

(
4
4

)

Such that Pr(Cured) = p and Pr(not cured) = q. Then, p(x) is given by

p(x) =
(

n

x

)

pxqn−x, x = 0, 1, 2, · · · , n.

or =
n!

x!(n − x)!
pxqn−x, x = 0, 1, 2, · · ·n.

For the binomial distribution, it can be shown that

E(X) = np and Var(X) = npq.

That is, the mean of a binomial distribution is np, while its variance is npq.
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Example 4.9.1

The probability of a bacterium being infected with a phage is 0.4. If four
bacteria are examined under a microscope what is the probability of

(i) No bacteria being infected
(ii) three bacteria being infected
(iii) at least one bacterium being infected?

In this example, each bacterium represents a trial. Since a bacterium is either
infected (success) or not infected (failure), we thus have a binomial distri-
bution with n = 4 and p = 0.4 and if X denotes the number of bacterium
infected, then,

p(x) =
(

4
x

)

(0.4)x(0.6)4−x, x = 0, 1, 2, 3, 4

Hence,

(i) Prob (No bacteria are infected) = p(0)
=
(4
0

)
(0.4)0(0.6)4 = (0.6)4 = 0.1296

(ii) Prob (three bacteria being infected) = p(3)
=
(4
3

)
(0.4)3(0.6)1

= 4 × (0.4)3(0.6) = 0.1536
(iii) Prob (at least one bacterium is infected) = P (X ≥ 1)

=p(1) + p(2) + p(3) + p(4) = 1 − p(0)
=1 − (0.6)4 = 0.8704

Alternatively, I would prefer to use the cumulative distribution function to
solve the above problems. We have used MINITAB to generate the cdf for
an X ∼ b(4, 0.4). These are presented below.

MTB > CDF;

SUBC> BINOMIAL 4 0.4.

Cumulative Distribution Function

Binomial with n = 4 and p = 0.400000

x F(x)

0 0.1296

1 0.4752

2 0.8208

3 0.9744

4 1.0000
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(i) P (X = 0) = F (0) = 0.1296
(ii) P (X = 3) = F (3) − F (2) = 0.9744 − 0.8208 = 0.1536
(iii) P (X ≥ 1) = 1 − P (X < 1) = 1 − P (X ≤ 0) = 1 − F (0) = 1 − 0.1296 =

0.8704

Example 4.9.2

The genetic features of two adult mice are such that the probability of an
offspring being an albino is 0.2.

If the mice give birth to six offsprings, calculate the probability of

(i) no albino
(ii) one albino only
(iii) two or more albinos

Solution

Here, p = 0.2; q = 1 − 0.2 = 0.8 and n = 6. Hence, p(x) has the form:

p(x) =
(

6
x

)

(0.2)x(0.8)6−x, x = 0, 1, 2, 3, 4, 5, 6.

The corresponding cdf is presented below.

MTB > CDF;

SUBC> BINO 6 0.2.

Cumulative Distribution Function

Binomial with n = 6 and p = 0.200000

x F(x)

0 0.2621

1 0.6554

2 0.9011

3 0.9830

4 0.9984

5 0.9999

6 1.0000

(i) P (X = 0) = P (X ≤ 0) = F (0) = 0.2621
(ii) P (X = 1) = F (1) − F (0) = 0.6554 − 0.2621 = 0.3933
(iii) P (X ≥ 2) = 1 − P (X < 2) = 1 − P (X ≤ 1) = 1 − F (1) = 1 − 0.6554 =

0.3446
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Of course we could solve the problems by using the pdf, but these require
extensive calculations especially if n is large. We however present these results
in what follows:

(i) Prob (No albinos) = p(0)
=
(6
0

)
(0.2)0(0.8)6 = (0.8)6 = 0.2621

(ii) Prob (one albino only) = p(1)
=
(6
1

)
(0.2)1(0.8)5

= 6(0.2)(0.8)5 = 0.3933
(iii) Prob (two or more albinos) = P (X ≥ 2)

= p(2) + p(3) + p(4) + p(5) + p(6)
= 1 − p(0)− p(1)
=1− 0.2621 − 0.3932 = 0.3447

4.10 The Poisson Distribution

Data which come as counts rather than as continuous measurements are often
very skewed. Poisson or related theoretical distributions can sometimes be
used to describe this type of data. The Poisson distribution, is also widely
used in ecology to describe the ways in which shrubs, trees, insects etc are
spread over areas. Other examples giving rise to a Poisson distribution are,
insect counts in field plots, noxious weed seeds in seed samples, number of
egg clusters on a leaf, etc. The Poisson distribution is most often used to
model discrete events in time or space and has sometimes been referred to as
the distribution of rare events.

Thus, if X has a Poisson distribution, then the probability density function
(pdf) of X will be given by:

p(x) =
e−μ μx

x!
, x = 0, 1, 2, · · · , (4.13)

where x! stands for factorial.
Since p(x) is a probability density function, it follows that

∞∑

x=0

p(x) = 1

i.e., the probabilities must sum up to 1.

Example 4.10.1

If insect egg clusters on the leaves of a tree have a Poisson distribution with
parameter μ = 0.5. Calculate the probability of a leaf having
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(i) No egg clusters
(ii) At least one egg cluster.

Let X denote the number of egg clusters on a leaf. Hence,

p(x) =
(0.5)xe−0.5

x!
, x = 0, 1, 2, 3, · · ·

(i) Prob (no eggs) = p(0) = (0.5)0e−0.5

0! = e−0.5 = 0.6066
(ii) Prob (at least one egg cluster in leaf) is computed as:

P (X ≥ 1) = 1 − P (X < 1) = 1 − P (X ≤ 0) = 1 − 0.6066 = 0.3934

Again if the cdf is available, we would be better off using this for the problem
above. We present the MINITAB generation of the cdf of a Poisson with
parameter μ = 0.5

MTB > CDF;

SUBC> POISSON 0.5.

Poisson with mu = 0.500000

x F(x)

0 0.6065

1 0.9098

2 0.9856

3 0.9982

4 0.9998

5 1.0000

(i) P (X = 0) = P (X ≤ 0) = F (0) = 0.6065
(ii) P (X ≥ 1) = 1 − P (X < 1) = 1 − P (X ≤ 0) = 1 − F (0) = 1 − 0.6065 =

0.3935

The Poisson distribution has E (X ) = μ and Var (X ) = μ. That is, for this
distribution the mean and variance are equal to the parameter μ

4.10.1 Fitting of Poisson Distribution to a Sample
of Data

The data below shows the number of noxious weed seeds in 98 samples of
Phleum praetense (meadow grass). Fit a Poisson distribution to the data.
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No of Noxious weeds

X 0 1 2 3 4 5 6 7 8 9 10 11 +

Frequency 3 17 26 16 18 9 3 5 0 1 0 0

The first step is to estimate the mean μ from the data by computing:

μ̂ =
∑

xifi∑
fi

=
(0 × 3) + (1 × 17) + (2 × 26) + · · · + (11 × 0)

3 + 17 + 26 + · · · + 0

=
296
98

= 3.0204

Hence,

p(x) =
(3.0204)x e−3.0204

x!
, x = 0, 1, 2, · · · , 11 (4.14)

and

var(x) =
∑

fi(xi − μ̂)2
∑

fi − 1
= 3.2779

As a first check, we notice that the variance is very close to the mean. These
initial calculations indicate that perhaps the data can best be fitted by a
Poisson distribution.

4.10.2 Use of Recursion Formula

We know that

p(x) =
μxe−μ

x!
, and

p(x + 1) =
μ(x+1)e−μ

(x + 1)!

Hence,

p(x + 1)
p(x)

=
μx+1

(x + 1)!
× x!

μx
=

μ

x + 1

i.e.,

p(x + 1) =
μ

x + 1
p(x)

Thus, if x = 0,

p(1) =
μ

1
p(0) = μp(0)
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p(2) =
μ

2
p(1)

p(3) =
μ

3
p(2), etc.

For these data, p(0) =
e−3.0204(3.0204)0

0!
= 0.0488. Hence, the expected

values are given by

Ei = np(xi) x = 0, 1, 2, · · · , 11

Table 4.7 gives the result of these computations.

Table 4.7 Table of expected frequencies

No of noxious Poisson Expected
weeds (x) Frequency multipliers frequency

0 3 1 = 1.0 4.781
1 17 μ̂ = 3.0204 14.440
2 26 μ̂

2 = 1.5102 21.807

3 16 μ̂
3 = 1.0068 21.955

4 18 μ̂
4 = 0.7551 16.578

5 9 μ̂
5 = 0.6041 10.015

6 3 μ̂
6 = 0.5034 5.042

7 5 μ̂
7 = 0.4315 2.176

8 0 μ̂
8 = 0.3756 0.817

9 1 μ̂
9 = 0.3356 0.274

10 0 μ̂
10 = 0.3020 0.083

11 + 0 μ̂
11 = 0.2746 0.030

Total 98 97.998

We shall discuss whether this model fits the data, further in Chap. 8.

4.11 The Normal Distribution

The most important continuous distribution in the entire field of Statistics is
the normal (Gaussian) or bell-shaped distribution. The graph of the normal
curve is bell-shaped and is given in Fig. 4.3 below.
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Fig. 4.3 Normal Probability Plot for μ = 30 and σ = 5

The distribution provides a basis upon which much of the theory of inductive
statistics is based.

The variable X is said to have a normal distribution with mean μ and
variance σ2. Its distribution function is of the form:

p(x) =
1

σ
√

2π
e− (x−μ)2

2σ2 , −∞ < x < ∞

and is usually written as X ∼ N(μ, σ2). Once μ and σ are specified, the
normal distribution is completely satisfied.

Some Properties

(i) The mode which is the point on the horizontal axis occurs at x = μ.
(ii) The curve is symmetrical about a vertical axis through the mean μ.
(iii) The total area under the curve and above the horizontal axis is equal to

1. Thus the area under the curve to the left of x = μ equals 1/2, while
similarly the area under the curve to the right of x = μ is also 1/2.

4.11.1 Areas Under the Normal curve

If X ∼ N(μ, σ2), and suppose we are interested in the probability P (X1 <
X < X2), we can obtain this area by means of a transformation

z =
X − μ

σ
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Here, z is called a standardized normal variate and E(Z) = 0, i.e., the
mean of z = 0. Similarly, the variance of z = 1. A typical standard normal
distribution curve is presented in Fig. 4.4

Fig. 4.4 A standard normal distribution

Thus,

P (X1 < X < X2) = P

[
x1 − μ

σ
<

x − μ

σ
<

x2 − μ

σ

]

= P

[
x1 − μ

σ
< z <

x2 − μ

σ

]

= Φ
[
x1 − μ

σ

]

− Φ
[
x2 − μ

σ

]

Where, because of symmetry, Φ(−x) = 1 − Φ(x). For example, Φ(−0.88) =
1.0 − Φ(0.88) = 1 − 0.8106 = 0.1894. Tables of Φ(z) are given in Table 1 in
the appendix. z is often referred to as the z-score.

Example 4.11.1

Given a X ∼ N(50, 100), find the probability that X assumes a value between
45 and 62.
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Fig. 4.5 Area required for this example 4.3.1

Here, we are interested in P (45 < X < 62) and since μ = 50, and σ2 = 100,
i.e. σ = 10. Hence,

P (45 < X < 62) = Φ
[
62 − 50

10

]

− Φ
[
45 − 50

10

]

= Φ(1.2) − Φ(−0.5)

= 0.8849 − {1 − Φ(0.5)} = 0.8849 − 1 + 0.6915

= 0.5764

Example 4.11.2

If X ∼ N(μ, σ2), then,

P (μ − σ < X < μ + σ) = 0.683

P (μ − 2σ < X < μ + 2σ) = 0.954

P (μ − 3σ < X < μ + 3σ) = 0.9974

For example,

P (μ − 3σ < X < μ + 3σ) = Φ
[
μ + 3σ − μ

σ

]

− Φ
[
μ − 3σ − μ

σ

]

= Φ(3) − Φ(−3)

= Φ(3) − {1 − Φ(3)}
= 2Φ(3) − 1
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= 2(0.9987) − 1

= 0.9974

Example 4.11.3

Find Pr(z ≤ 1.52).
The area required for this problem is plotted in Fig. 4.6 and is computed

from the table in the appendix as P (z ≤ 1.52) = 0.9357.

Fig. 4.6 Area required for this example 4.3.3

Example 4.11.4

Find P (z > 1.52).
Similarly, the area required is plotted in Fig. 4.7 and is computed as, P (z >
1.52) = 1 − P (z ≤ 1.52) = 1 − 0.9357 = 0.0643.

Example 4.11.5

A population of marine gastropods have shell lengths which are normally
distributed with mean 7 mm and variance 2 mm2. What proportion of the
population will have a shell length between 5 and 9 mm?



4.11 The Normal Distribution 93

Fig. 4.7 Area required for this example 4.3.4

Solution

Let X be the shell length of a gastropod. Then X ∼ N(7, 2), i.e., μ = 7,
σ2 = 2, which implies that σ =

√
2. The area required for this problem is

plotted in Fig. 4.8

Fig. 4.8 Area required for this example 4.3.5
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Hence,

P (5 ≤ X ≤ 9) = Φ
[
9 − 7√

2

]

− Φ
[
5 − 7√

2

]

= Φ
(

2√
2

)

− Φ
(

−2√
2

)

= Φ(1.41) − {1 − Φ(1.41)}
= 2Φ(1.41) − 1

= 2(0.9207) − 1

= 0.8414

Hence, approximately 84 % of the population will have a shell length in the
range 5 to 9 mm.

4.12 Normal Approximations to the Binomial

We recall that the binomial probability density function(pdf) is given by:

p(x) =
(

n

x

)

px(1 − p)n−x x = 0, · · · , n (4.15)

However, when n is very large, the expression in (4.15) can be computational
burdensome, laborious and time consuming. We may in this case employ
the normal approximation to the calculation of binomial probabilities. We
recall that for a binomial random variable with parameters n and p, the
mean and variance are respectively given by μ = np and σ2 = npq. Thus,
σ =

√
npq. The figure below, Fig. 4.9 gives a normal approximation to a

binomial distribution with parameters 25 and 0.6. That is, b(25, 0.6). Here
μ = np = 15, and σ2 = npq = 6 and thus σ =

√
6 = 2.4495.
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Fig. 4.9 Overlay of normal distribution on binomial

For the approximation to work,

min[np, n(1 − p)] ≥ 5

Further, the continuity correction for the normal approximation must be
applied as indicated in (4.16) to (4.16) for a binomial variate with parameters
n and p.

P (x ≤ a) = P

[

z <
(a + 0.5) − np

√
npq

]

P (x ≥ a) = P

[

z >
(a − 0.5) − np

√
npq

]

(4.16)

P (a ≤ x ≤ b) = P

[
(a − 0.5) − np

√
npq

< z <
(b + 0.5) − np

√
npq

]

Suppose we wish to find (i) P (X ≤ 12) and (ii) P (10 ≤ X ≤ 16) for the
b(25, 0.6) example above. Here the correct solutions are (i) Cumulative
Distribution Function

Binomial with n = 25 and p = 0.6

x P(X<=x)
12 0.153768
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and similarly, the second case has the solution (ii) p = F (16) − F (9) =
0.7265 − 0.0132 = 0.7133.

The normal approximation probabilities are computed as follows:

P (X ≤ 12) = P

[

z <
(12 + 0.5) − 15

2.4495

]

= P (z < −1.02)

= 0.1539

Similarly,

P (10 ≤ X ≤ 16) = P

[
(10 − 0.5) − 15

2.4495
< z <

(16 + 0.5) − 15
2.4495

]

= P (−2.25 < z < 0.61)

= 0.7291 − 0.0122

= 0.7169

We see the normal approximations are very close to the exact values. The ap-
proximation will better be appreciated for say, the case when x ∼ b(150, 0.6),
where we would need to generate 150! for instance in order to compute the
necessary probabilities. In this kind of situation, the binomial approximation
will be very useful. Of course such an exact computation will not create any
problem in MINITAB.

4.13 The Hypergeometric Distribution

The hypergeometric distribution has the following characteristics:

• The finite population of N subjects, where each subject is classified as
either S (success) or F (failure).

• A random sample of size n subjects is drawn without replacement from
this population, such that r of which are S’s (for Success) and (N − r) are
F’s (for failure).

• The hypergeometric random variable x is the number of Successes in the
sample of size n.

The boxes below demonstrate visually these realizations.

r
N − r −→

x
n − x

Population(N) Sample(n)
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With the above set up, the hypergeometric distribution is therefore has
the probability distribution:

Pr(x) =

(
r
x

)(
N−r
n−x

)

(
N
n

) , for x = 0, 1, 2, · · ·n (4.17)

Example

If N = 10, R = 5 and n = 6, then N − R = 5. The extreme samples are
SSSSSF and FFFFFS. That is, min = 1 and max = 5.

5
10 − 5

x
6 − x

Population( N ) Sample( n)

−→

Hence,

Pr(x) =

(5
x

)( 5
6−x

)

(10
6

) , for x = 0, 1, 2, · · · 5

The MINITAB is employed to calculate these probabilities with the following
results. Note that the cumulative distribution function F (x) = P (X ≤ x) is
also displayed and is generated by stating in the MINITAB statement (1):
MTB > CDF c1.

MTB > Set c1
DATA> 1( 0 : 5 / 1 )1
DATA> End.
MTB > PDF C1;
SUBC> Hypergeometric 10 5 6.

Probability Density Function

Hypergeometric with N = 10, M = 5, and n = 6

x P(X=x)
0 0.000000
1 0.023810
2 0.238095
3 0.476190
4 0.238095
5 0.023810

MTB > CDF C1;
SUBC> Hypergeometric 10 5 6.
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Cumulative Distribution Function

Hypergeometric with N = 10, M = 5, and n = 6

x P(X<=x)
0 0.00000
1 0.02381
2 0.26190
3 0.73810
4 0.97619
5 1.00000

4.14 Sampling Distributions

4.14.1 Introduction

In sampling theory, we are concerned with the problem of estimating popu-
lation parameters from the sample statistics. Questions such as “How close
to the required parameter can a statistic be expected to lie”? “How can we
be sure that our estimate is not more than a specified quantity out”? Can
be answered by studying the appropriate sampling distributions of x̄ and s2,
which are defined as:

x̄ =
∑

x

n
and s2 =

∑
(xi − x̄)2

n − 1
Estimation theory, deals with the estimation of the parameters of the pop-
ulation from the sample. Thus x̄ estimates the population mean, and s2 the
population variance etc.

Example 4.14.1

The number of heart beats per minute of a patient recorded on ten successive
days was a follows:

73, 72, 73, 74, 76, 70, 71, 72, 72, 74

Here, x̄ =
∑

xi

n
=

73 + 72 + · · · + 74
10

= 72.7, and

s2 =
1

n − 1

{∑
x2

i − (
∑

xi)2

n

}

=
1
9
{732 + 722 + · · · + 742} − (727)2

10
= 2.9
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Hence, s =
√

2.9 = 1.7.
If X is normally distributed with mean μ and variance σ2, that is, X ∼

N(μ, σ2), if we take a random sample of size n from this population, then

(i) x̄ =
∑

xi

n
∼ N(μ,

σ2

n
)

(ii) Further, if X has any non-normal probability distribution with mean
μ and variance σ2, then the distribution of x̄ approaches the normal
distribution with mean μ and variance σ2

n as the sample size n increases.
The conventional choice of n is that the above approximation will be true
for n ≥ 30.

The above are called the Central Limit Theorem, (CLT).
To illustrate (ii) above, suppose a population consists of five numbers 1,

2, 3, 4, and 5. Then, μ =
15
5

= 3 and σ2 =
∑

(xi − μ)2

n
= 2.

Now suppose a random sample of size 2 is drawn from this population.
There are 25 samples of size 2 which can be drawn with replacement from
the population, they are:

(1,1) (2,1) (3,1) (4,1) (5,1)
(1,2) (2,2) (3,2) (4,2) (5,2)
(1,3) (2,3) (3,3) (4,3) (5,3)
(1,4) (2,4) (3,4) (4,4) (5,4)
(1,5) (2,5) (3,5) (4,5) (5,5)

The corresponding sample means are:

1.0 1.5 2.0 2.5 3.0
1.5 2.0 2.5 3.0 3.5
2.0 2.5 3.0 3.5 4.0
2.5 3.0 3.5 4.0 4.5
3.0 3.5 4.0 4.5 5.0

and these can be displayed as distribution as in Table 4.8.

Table 4.8 Sampling distribution of x̄

x̄ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

p(x̄) 1
25

2
25

3
25

4
25

5
25

4
25

3
25

2
25

1
25

Hence,

E(X̄) =
∑

x̄p(x̄),

= 1.0
(

1
25

)

+ 1.5
(

2
25

)

+ · · · + 5.0
(

1
25

)

=
75
25

= 3
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This illustrates the fact that E(x̄) = μ. That is, the mean of all means of the

sampling distribution, denoted as μx̄ =
∑

x̄i

25
=

75
25

= 3.
Similarly, the variance is obtained by using the formula

σ2
x̄ =
∑

x̄2 p(x̄) − μ2
x̄

i.e,,

σ2
x̄ =
∑

x̄2 p(x̄) − μ2
x̄

= 1.02
(

1
25

)

+ 1.52
(

2
25

)

+ · · · + 5.02
(

1
25

)

− 32

=
250
25

− 32 = 1

The above variance of x̄ can also be obtained as:

σ2
x̄ =

1
n

∑

i=1

25x̄2
i − μ2

x̄ =
250
25

− 32 = 1

But this is equal to
σ2

2
=

2
2

= 1. Hence Var(x̄) =
σ2

n
and σx̄ =

σ√
n

is called

the standard error of mean. In this case, the standard error is 1.0. To further
illustrate this, suppose we use MINITAB to generate 1000 random samples
from a discrete distribution [1, 5]. Then, suppose we took random samples of
sizes 5, 15, 25 and 30 from this population. We display below their dotplots
in Fig. 4.10 as well as the computed sample means and sample variances and
standard errors.

MTB > Random 1000 c1-c30;
SUBC> Integer 1 5.
MTB > rmean c1-c5 c31
MTB > rmean c1-c15 c32
MTB > rmean c1-c25 c33
MTB > rmean c1-c30 c34
MTB > Dotplot ’n5’ ’n15’ ’n25’ ’n30’;
SUBC> Overlay.

Dotplot of n5, n15, n25, n30

MTB > describe c31-c34

Descriptive Statistics: n5, n15, n25, n30

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
n5 1000 0 2.9838 0.0207 0.6542 1.0000 2.6000 3.0000 3.4000
n15 1000 0 2.9959 0.0115 0.3646 1.8667 2.7333 3.0000 3.2667
n25 1000 0 2.9885 0.00883 0.2793 2.1200 2.8000 3.0000 3.2000
n30 1000 0 2.9921 0.00801 0.2532 2.3667 2.8333 3.0000 3.1667

Variable Maximum
n5 4.6000
n15 4.1333
n25 3.8800
n30 3.8333
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The dot plots describes the sampling distribution of x̄ for sample sizes
n = 5, 15, 25, 30. The distributions are approximately normal even for small
sample sizes. For the population, theoretically, μ = 3.0 and σ2 = 2. Hence
σ = 1.4142

In the above simulation, we see that μx̄ are all about 3.01, all 2.98,
thus very close to the theoretical value of 3.0. Similarly, σx̄ = σ√

n
, n =

5, 15, 25, 30 are estimated as 1.4142√
5

, 1.4142√
15

, 1.4142√
25

, 1.4142√
30

= (0.6324, 0.3651,
0.2828, 0.2528). The column labelled StDev in the descriptive statistics
above indicate the sample standard errors for the four sample sizes. Again,
we see that the simulated values are very close to the theoretical values.

Example 4.14.2

A second example is given below.
Consider a population with the following probability distribution

X 0 1 2 3

p(x) 0.2 0.4 0.3 0.1

Fig. 4.10 Dot plots for the four sample means

Suppose we take a random sample of size 2 (X1, X2) from this population.
We could have the following combinations:

x̄ = x1+x2
2 with the following joint distributions of x1 and x2 as displayed

in Table 4.9 below.
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Table 4.9 Joint distribution of X1 and X2

X1

X2 0 1 2 3 Total

0 0.04 0.08 0.06 0.02 0.20
1 0.08 0.16 0.12 0.04 0.40
2 0.06 0.12 0.09 0.03 0.30
3 0.02 0.04 0.03 0.01 0.10

Total 0.20 0.40 0.30 0.10 1.0

Where for example:

P (X1 = 0, X2 = 2) = P (X1 = 0) × P (X2 = 2) = 0.2 × 0.3 = 0.06

The possible values of x̄ = x1+x2
2 are given below in Table 4.10, together with

their corresponding probabilities.

Table 4.10 Sampling Distribution of x̄

Values of x̄ 0 0.5 1.0 1.5 2.0 2.5 3.0 Total

p(x̄) 0.04 0.16 0.28 0.28 0.17 0.06 0.01 1

where for example:
For x̄ = 1, the possible values of (X1, X2) = (1, 1), (2, 0), (0, 2) and

hence the probability is 0.16 + 0.06 + 0.06 = 0.28. Similarly, for x̄ = 1.5, we
have the possible values of (X1, X2) being (0,3), (1,2), (2,1) and (3,0) with
corresponding probability = 0.02 + 0.12 + 0.12 + 0.02 = 0.28 etc.
For the parent population:

∑
xip(x) = 1.3 = μ

∑
x2

i p(x) = 2.5

Hence, its variance equals 2.5 − 1.32 = 0.81 = σ2. That is, the mean and
variance of the parent population are 1.3 and 0.81 respectively.

From Table 4.10, for the sample of size 2, we have:
∑

x̄ip(x̄) = 1.3 = x̄

∑
x̄2

i p(x̄) = 2.095

Hence, Var(x̄) = 2.095 − 1.32 = 0.405 = σ2

2 . Thus we note that, generally,
x̄ is distributed with the same mean and variance σ2

n where n is the sample
size.

The standard deviation of the sample variance
√

σ2

n = σ√
n

is called the
the standard error for the mean.
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4.14.2 Simulation

We present below a MINITAB simulation program for selecting a random
sample of size 2 put in columns C3 and C4. 1000 samples of size 2 were
randomly generated from the discrete distribution in example 4.14.2. The
distribution of x̄ so generated are presented in a dotplot. It is almost sym-
metrical. The distribution of the 1000 means are presented in the tally and
these agree closely with those presented in Table 4.10. From the simulation,
μx̄ = 1.304 and σ2

x̄ = 0.3725. These agree very closely with the theoretical
values of 1.30 and 0.405 respectively.

Row X p(x)

1 0 0.2
2 1 0.4
3 2 0.3
4 3 0.1

MTB > Random 1000 c3-c4;
SUBC> Discrete ’X’ ’p(x)’.
MTB > RMean C3 C4 C5.
MTB > Describe ’X-bars’.

MTB > DotPlot ’X-bars’.

Dotplot: X-bars

Each dot represents up to 21 points

.
: :
: :
: :

: : : :
: : : :
: : : : .

: : : : : : .
+---------+---------+---------+---------+---------+-------X-bars

0.00 0.60 1.20 1.80 2.40 3.00

MTB > tally c5

Tally for Discrete Variables: X-bars

X-bars Count
0.0 28
0.5 157
1.0 296
1.5 292
2.0 159
2.5 61
3.0 7
N= 1000

Row Mean1 StDev1 Variance1

1 1.304 0.610292 0.372456

MTB >
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The normality approximation improves when we took a random sample of size
5 from the same discrete distribution. The dot plot of 1000 random samples
of size 5 from this distribution together with the estimated μx̄ = 1.3212
and σ2

x̄ = 0.4029 agree more closely with the theoretical values. Further, the
shape of the dotplot is more symmetrical, indicating that the approximation
improves with increasing sample size.

MTB > DotPlot ’means’.

Each dot represents up to 14 points

.
: .
: : .

: : : :
: : : : : :
: : : : : :

. : : : : : : :
. . : : : : : : : : : . .

+---------+---------+---------+---------+---------+-------means
0.00 0.50 1.00 1.50 2.00 2.50

Data Display
Row Mean1 StDev1 Variance1

1 1.3212 0.402930 0.162353

4.14.3 Sampling Distribution of x̄: A Summary

The above results can be summarized succintly in the following.

1. If sampling is from a normally distributed population with mean μ and
variance σ2, then,

(a) μx̄ = μ
(b) σx̄ = σ√

n

(c) The sampling distribution of x̄ is normal.

2. If sampling is from a non-normally distributed parent population, then,

(a) μx̄ = μ
(b) σx̄ = σ√

n

(c) The sampling distribution of x̄ is approximately normal (Central
Limit Theorem).

Example 4.14.3

If the uric acid values in normal adult males are approximately normally dis-
tributed with a mean and standard deviation of 5.7 and 1 mg %, respectively,
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find the sampling distribution of x̄ and the probability that a sample of size
9 will yield a means:

(a) Greater than 6 (b) between 5 and 6
(c) Less than 5.2

The sampling distribution of x̄ will be normal with μx̄ = μ = 5.7 and
σx̄ = σ√

n
= 1√

9
= 1/3 = 0.3333.

(a)

P (x̄ > 6) = P

(

Z >
6 − 5.7
0.3333

)

= P (Z > 0.90) = 1 − 0.8159 = 0.1841

(b)

P (5 < x̄ < 6) = P

(
6 − 5.7
0.3333

< Z <
5 − 5.7
0.3333

)

= P (0.91 < Z < −2.10)

= 0.8159 − 0.0179 = 0.7980

(c)

P (x̄ < 5.2) = P

(

Z <
5.2 − 5.7
0.3333

)

= P (Z < −1.50) = 0.0668

Example 4.14.4

The partial pressure of oxygen, PaO2, is a measure of the amount of oxygen
in the blood. Assume that the distribution of PaO2 levels among newborns
has an average of 38 (mm Hg) and a standard deviation of 9. If we take a
random sample of size 25, what is the probability that the sample mean will
be

(i) greater than 36?
(ii) greater than 41?

In this example, the distribution of all PaO2 levels in all newborns was not
given. Hence by central limit theorem, the distribution of x̄ will be ap-
proximately normal with μx̄ = μ = 38 and σx̄ = σ√

n
= 9√

25
= 9

5 = 1.80.
Hence,

(a) P (x̄ > 36) = P

(

Z >
36 − 38

1.80

)

= P (Z > −1.11) = 1 − 0.1335 = 0.8665

(b) P (x̄ > 41) = P

(

Z >
41 − 38

1.80

)

= P (Z > 1.67) = 1 − 0.9525 = 0.0475.
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4.14.4 Sampling Distribution of Population
Proportion

Suppose a random sample of size n (usually large) is drawn from a population
with an unknown proportion p of a certain attribute. Then the sampling
distribution of p̂ is approximately normal with

μp̂ = p

σp̂ =

√
p(1 − p)

n

Example 4.14.5

In a certain population of mussels (Mytilus edulis), 80 % of the individuals
are infected with an intestinal parasite. A marine biologist plans to examine
100 randomly chosen mussels from the population. Find the probability that
85 % or more of the sampled mussels will be infected.

Here,

μp̂ = p = 0.80

σp̂ =

√
p(1 − p)

n
=

√
0.80 × 0.20

100
= 0.04

Hence,

3P (p̂ > 0.85) = P

(

Z >
0.85 − 0.80

0.04

)

= P (Z > 1.25) = 1 − 0.8944 = 0.1056

If in the above example, the biologist takes a random sample of 50, what
would be the probability that fewer than 35 of the sampled mussels would be

infected? Here again, μp̂ = p = 0.80 and σp̂ =
√

0.80×0.20
50 = 0.0566

Hence again,

3P (p̂ < 0.70) = P

(

Z <
0.70 − 0.80

0.0566

)

= P (Z < −1.77) = 0.0384

Since 35 is 70 % of 50.

4.15 Exercises

1. Evaluate each of the following: (a)
(

8
5

)

(b)
(

7
0

)

(c)
8!

5!3!
(d) 7P3

2. Use MINITAB to simulate the rolling of a a fair die a total of 10,000
times. Also obtain the relative frequencies of the number of dots on the

die. Are these approximately
1
6

each?
3. Find the area under the standard normal curve that lies
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(a) to the left of z = 2.85
(b) To the right of z = −1.42
(c) either to the left of z = −2 or to the right of z = 1.
(d) between z = −1.66 and z = 2.85.
(e) Find z0.68.

4. The number on a branch is a random variable X which takes values x
with probability p(x) = Kx, x = 1, 2, · · · , 10.
Find the value of K in order that p(x) is a probability distribution. Show
that the probability that a branch has two shoots is 2/55 and that the
mean number of shoots on a branch will be 7.

5. The time taken after planting for winter wheat crops to reach maturity
is normally distributed with a mean of 183 days and variance 100 days
(squared). If the crops are planted on 1st October, what percentage will
mature
(i) before April (ii) during April (iii) after May.
(Assume the month of February has 28 days)

6. Given a normal distribution with μ = 200 and σ2 = 100. Find

(i) the area below 214
(ii) the area above 179
(iii) the point that has 80 % of the areas below it.
(iv) the two points containing the middle 75 % of the area.

7. In a standard normal distribution, find the z-scores that cuts off the top
(a) 28 %, (b) 35 %, (c) 5 %, (d) 18 %

8. Given a normal distribution with μ = 40 and σ = 6, find:

(i) The area below 32
(ii) The area above 27
(iii) The area between 42 and 51
(iv) The point that has 45 % of the area below it
(v) The point that has 13 % of the area above it.

9. If X is normally distributed with μ = 100 and σ2 = 64. Find

(i) P (X < 107) (ii) P (X < 97) (iii) P (X > 110)
(iv) P (X > 90) (v) P (95 < X < 106) (vi) P (103 < X < 114)
(vii) P (88 < X < 100) (viii) P (60 < X < 108)

10. A population of marine gastropods have shell lengths which are normally
distributed with mean 7 mm and standard deviation 1.44 mm. What
proportion of the population will have a shell length between 5 and 9 mm?

11. The transit times, T, of impulses across a membrane are measured in μ
sec, and are distributed according to a N (1860, 4624). Find
(i) P (T ≥ 2000) (ii) P (T ≤ 1800)
If samples of four impulses are observed, find
(iii) P (T̄ ≥ 1930) (iv) P (T̄ ≤ 1870)
where T̄ is the mean transit time of the Sample.
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12. If X ∼ N(3, 9), find
(i) P (2 < x < 5) (ii) P (X > 0) (iii) P (| X − 3 |> 6)

13. If X ∼ N(100, 64), find b such that:

(i) P (X > b) = 0.8708
(ii) P (X < b) = 0.4030

14. On average 80 % of the tomato seeds in a packet will germinate. Find the
probability that

(i) One taken from a packet will germinate
(ii) None of five seeds taken from a packet will germinate
(iii) At least one of five seeds taken from a packet will germinate.

15. In a field trial on crop yield, each of the chemicals phosphorus, nitrogen
and potassium can be applied to plots at one of three different concen-
trations. How many plots will be needed if the crop yields for every
combination of phosphorus, nitrogen and potassium concentrations are
to be examined?

16. Prior to examination, the packed cell volume (PCV) values in six Zebu
and nine N’dama cattle are measured. In how many ways can the
examination take place if

(i) all the cattle are to be examined in order to increase PCV value,
(ii) the Zebu cattle only are to be examined in order to increase PCV

value,
(iii) The N’Dama cattle are to be examined in order to increase PCV

value followed by the Zebu cattle in order to increase PCV value?

17. A medical research team wished to evaluate a proposed screening test
for Alzheimer’s disease. The test was given to a random sample of 450
patients with Alzheimer’s disease and an independent random sample of
500 patients without symptons of the diseases. The two samples were
drawn from populations of subjects who were 65 years of age or older
where it is assumed that 11.3 % of the US population aged 65 and over
have Alzheimer’s disease. The data from this study is presented below:

Alzheimer’s diagnosis?

Test result Yes (D) No (D̄) Total

Positive (T ) 436 5 441
Negative (T̄ ) 14 495 509

Total 450 500 950

18. Suppose x has a hypergeometric probability distribution with N =
15, n = 8, and r = 5.

a Compute p(x) for x = 0, 1, 2, 3, 4, 5.
b P (x = 3)
c P (x ≤ 2)
d P (x > 3)
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19. The following table shows the density for a random variable X, the num-
ber of persons seeking emergency treatment unnecessarily per day in a
small hospital.

X 0 1 2 3 4 5

P(x) .01 .1 .3 .4 .1 -

Determine:

(i) The missing probability
(ii) Find F, the cumulative density function.
(iii) P (X = 4)
(iv) P (X ≤ 2)
(v) P (1 < X ≤ 4)
(vi) P (X > 4)
(vii) The mean of the random variable X.

20. The probability that a student at a certain college will catch a mild cold
in winter is 0.60. If twenty students are randomly selected at random
during winter, find using the output below the probability that:

(i) Exactly 14 students will catch the cold?
(ii) Between 10 and 15 (inclusive) will catch the cold.
(iii) At most 14 students will catch the cold?
(iv) At least 11 students will catch the cold?
(v) More than five but less than 16 will catch the cold?

X CUMPROB

0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 0.0003
5 0.0016
6 0.0065
7 0.0210
8 0.0565
9 0.1275

10 0.2447
11 0.4044
12 0.5841
13 0.7500
14 0.8744
15 0.9490
16 0.9840
17 0.9964
18 0.9995
19 1.0000
20 1.0000



110 4 Probability and Probability Distributions

21. Show that p(x) =
9 − x

45
, for x = 1, 2, 3, · · · , 8 is a probability density

function. Hence, compute its mean and standard deviation μx and σx

respectively.
22. In the game of craps, two balanced dice are rolled. Let

A = event the sum of the dice is 7
B = event the sum of the dice is 11
C = event the sum of the dice is 2
D = event the sum of the dice is 3
E = event the sum of the dice is 12
F = event the sum of the dice is 8
G = event that we observe doubles or sum on the dice is 8

Compute the probabilities of each of the seven events listed above.
23. When an experimental stimulus is given an animal, it either responds or

fails to respond. In other words, there are only two possible outcomes
when stimulus is applied to an animal. Either it responds (R) or it does
not (N). An experiment consists of administering the stimulus to three
animals in succession and recording R or N for each animal. Find the
probability of the following events.

(i) Only one animal responds.
(ii) There is a response in the first trial.
(iii) Both the first and third animals fail to respond.

24. Scientists have developed a test for determining when the mercury level
in fish is above acceptable level. If the fish actually contain an excessive
amount of mercury, then the test is 99 % effective in determining this,
and only 1 % will escape detection. On the other hand,if the mercury
level is within acceptable limits, then the test will correctly indicate this
96 % of the time. Suppose the test is to be used on fish from a river that
that has been polluted by a chemical company, and it is estimated that
30 % of the fish in the river contain excessive amounts of mercury. If a
fish is caught and tested by the scientist, and the test indicates that the
mercury level is within acceptable limits, what is the probability that the
mercury content is actually greater than the acceptable level.

25. It is thought that 30 % of all people in the United States are obese (A1)
and that 3 % suffer from diabetes (A2). 31 % are obese or suffer from
diabetes. What is the probability that a randomly selected person

(a) Have both obese and diabetes
(b) Is diabetic given that he/she is obese?
(c) Is diabetic but is not obese?
(d) Is diabetic given that he/she is not obese?

26. In a large city, suppose that 10 % of the adult male population has heart
disease. A new technique to detect heart disease using a radiopaque dye
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is tested. Suppose that positive tests are obtained for 80 % of those with
known heart disease and 5 % of those known to be free of heart disease.
If an adult male is selected at random from this population:
Find:

(a) The sensitivity of the test.
(b) The specificity of the test.
(c) The false negative rate.
(d) Using a tree diagram, find the probability that he tests positive.
(e) Given that this individual tests positive, what is the probability that

he has heart disease?

Among females in the United States between 18 and 74 years of age,
diastolic blood pressure is normally distributed with mean μ = 77 mm
Hg and standard deviation σ = 11.6 mm Hg.

(a) What is the probability that a randomly selected woman has a
diastolic blood pressure less that 60 mm Hg?

(b) That she has a DBP greater than 90 mm Hg?
(c) That the woman has a DBP which is in the top 8 % of the population?
(d) What is the probability that the mean of a random sample of size 16

from this population, will be greater than 90 mm Hg? That is find
P (x̄ > 90).

This exercise is drawn from Pagano and Gauvreau (2000). The table
below presents results from the study of self-reported smoking status with
measured serum cotinine level. Cotinine level was used as a diagnostic
tool for predicting smoking status. For a set of cutoff points, the observed
sensitivities and specificities are presented below.

Continine level
(ng/ml) Sensitivity Specificity

5 0.971 0.898
7 0.964 0.931
9 0.960 0.946
11 0.954 0.951
13 0.950 0.954
14 0.949 0.956
15 0.945 0.960
17 0.939 0.963
19 0.932 0.965

(i) How does the probability of a false positive result changes as the
cutoff is raised? How does the probability of a false negative result
change?

(ii) Use the above data to construct an ROC curve.
(iii) Based on the ROC curve, what value of serum cotinine level would

you choose as an optimal cutoff point for predicting smoking status
and why?
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The following table shows the cumulative distribution function F (x) for
a random variable X, the number of wing beats per second of a species
of large moth while in flight.

X 6 7 8 9 10

F(x) 0.05 0.15 0.75 0.90 1.00

Determine:

(i) Find P (X ≤ 8)
(ii) P (X > 7)
(iii) P (7 ≤ X ≤ 9)
(iv) P (X = 8)
(v) P (X ≥ 8)
(vi) Find P (x), the probability density function of X.
(vii) The mean of the random variable X.

4. Suppose that 60 % of the voting population in a city, about to have a
referendum on adding fluoride to the drinking water, favor fluoridation.
A sample of 16 persons are interviewed. What is the probability that the
number of people who will favor fluoridation is: (USE MINITAB)

(i) Exactly eight.
(ii) Between six and twelve, inclusive.
(iii) At least six.
(iv) No more than 10

An individual is selected at random from a convalescent home in which
30 % have a particular disease and is given a screening test to detect the
presence of the disease. Let D denote the event that the person selected
has the disease and let S indicate a positive result on the screening test.
The probability of a positive screening test result given that the person
selected has the disease is 0.92. The corresponding probability for a non-
diseased person is 0.15. Find:

(a) The specificity and sensitivity of the test.
(b) The false negative rate.
(c) Using a tree diagram, find the probability that a person has the

disease given that the screening test is positive? That is, find P (D|S).

Explain why each of the following distributions is or is not a probability
distribution.
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x P(X=x)
0 0.15
1 0.25
2 0.10
3 0.25
4 0.30

x P(X=x)
0 0.15
1 -0.20
2 0.30
3 0.20
4 0.15

x P(X=x)
-1 0.15
0 0.30
1 0.20
2 0.15
3 0.20

(a) (b) (c)

The probability density function of a random variable X is given by:

X -2 -1 0 1 2

p(x) 1
8

2
8

2
8

2
8

1
8

Find:

(i) P (X ≤ 2)
(ii) P (−1 ≤ Xle1)
(iii) P (X ≤ 1 or X = 2)

Show that the following is a probability density function, and hence, find

f(x) =
8
7

(
1
2

)x

, x = 1, 2, 3

(a) P (X ≤ 1)
(b) P (2 < X < 6)
(c) P (X ≤ 1 or X > 2).



Chapter 5
Estimation and Hypotheses Testing

5.1 Confidence Intervals

In this chapter, we shall discuss statistical inference where data collected will
be viewed as a random sample from some population. The information so
gathered from such a sample will then be used to conduct a Statistical esti-
mation which basically comprises determining an estimate of some parameter
of the population as well as assessing the precision of such an estimate. We
present an example in Table 5.1, relating to contamination counts of a sample
of 20 vaccines preserved with phenol.

Table 5.1 Contamination counts from a sample of 20 bacterial vaccines

67 62 52 55 54
61 51 59 54 57
57 60 50 66 68
54 53 52 58 56

From the above data,

x̄ =
67 + 62 + · · · + 56

20
= 57.30

Thus if our random sample is assumed to have come from a population with
mean μ and standard deviation σ, then, 57.3 is an estimate of μ and x̄ will
therefore be said to be an estimator for μ or an estimate of μ. Similarly,

s =

√∑
(xi − 57.3)2

19
= 5.32

Again, 5.32 is an estimate of σ and s will be called an estimator for σ. Both x̄
and s are called statistics because they are random variables themselves. They
vary with each random sample of size n = 20 drawn from this population.
The values 57.3 and 5.32 are point estimates of μ and σ respectively.

Since x̄ itself is a variable, it follows that any single observed value of x̄,
will not exactly equal the population mean μ, and researchers have found

115B. Lawal, Applied Statistical Methods in Agriculture,
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it desirable to have an idea of how close our estimate is to the true popu-
lation mean. The method often employed for this is the method of interval
estimation or confidence intervals.

5.1.1 Building a Confidence Interval

From our results in Chap. 4, we recall that if X1, X2, · · · , Xn is a random
sample of size n from a population that is normally distributed with mean μ
and variance σ2. Then, x̄ will also be normally distributed with mean μ and
variance σ2

n . Hence,

Z =
x̄ − μ

σ/
√

n
(5.1)

would be a standard normal variate. Thus to build a 95 % confidence interval
for μ, we need L and U such that

P (L ≤ μ ≤ U) = 0.95 (5.2)

To find such L and U , we note that

P (−1.96 ≤ Z ≤ 1.96) = 0.95 (5.3)

Hence replacing the Z in (5.3) with the defined Z in (5.1), we have,

P (−1.96 ≤ x̄ − μ

σ/
√

n
≤ 1.96) = 0.95

P

(
−1.96σ√

n
≤ x̄ − μ ≤ 1.96σ√

n

)

= 0.95

Rearranging and isolating μ, we have,

P

(

x̄ − 1.96σ√
n

≤ μ ≤ x̄ +
1.96σ√

n

)

= 0.95 (5.4)

From (5.4), we see that

L = x̄ − 1.96
σ√
n

, and U = x̄ + 1.96
σ√
n

The lower and upper bounds therefore are L and U respectively and the 95 %
confidence interval can therefore be succinctly written as:

x̄ ± 1.96
σ√
n

.
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In general, a 100(1 − α) % confidence interval for the population mean μ if
σ2 were known is:

x̄ ± zα/2

(
σ√
n

)

= x̄ ± zα/2 σx̄ (5.5)

(1 − α) is called the confidence coefficient and zα/2 is the value of Z such
that α/2 of the area lies to its right. For instance, to obtain the Z value that
corresponds to a 99 % confidence interval, we do the following:

100(1 − α) = 99; hence,

1 − α = 0.99

α = 0.01

α/2 = 0.005

Thus, we need z0.005 = 2.575. If the population variance σ2 for the vaccine
example had been 25, then, a 95 % confidence interval for μ is:

57.30 ± 1.96
5√
20

= 57.30 ± 2.19 = (55.11, 59.49)

We can therefore be 95 % confident that the unknown population mean num-
ber of contaminations on the vaccines is between 55.11 and 59.49, that is
between 56 and 60. We can implement above in MINITAB, by assuming that
σ is known.

MTB > print c1

Data Display
Counts

67 62 52 55 54 61 51 59 54 57
57 60 50 66 68 54 53 52 58 56

MTB > OneZ ’Counts’;
SUBC> Sigma 5;
SUBC> Confidence 95.

One-Sample Z: Counts

The assumed sigma = 5

Variable N Mean StDev SE Mean 95.0% CI
Counts 20 57.30 5.32 1.12 (55.11, 59.49)

The effect of changing the confidence coefficient is presented in Table 5.2.
We observe that increasing the confidence coefficient widens the confidence
interval and reducing the coefficient shortens the interval.
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Table 5.2 Effect of increasing confidence coefficient on confidence width

1 − α Confidence interval Width

0.90 (55.46, 59.14) 3.68
0.95 (55.11, 59.49) 4.38
0.99 (54.42, 60.18) 5.76

5.1.2 Sample Size Determination

The 100(1 − α) % confidence interval for μ was found to be equal to x̄ ±
zα/2

(
σ√
n

)
, where zα/2

(
σ√
n

)
is often referred to as the margin of error.

That is,

x̄ ± zα/2

(
σ√
n

)

︸ ︷︷ ︸
margin of error

For a given margin of error d, therefore, the sample size required to have a
specified 100(1 − α) % confidence interval in our estimate of the population
mean μ is obtained from the following:

d = zα/2

(
σ√
n

)

d2 =
z2 σ2

n
, hence

n =
z2 σ2

d2

n should be ranked to the next integer.

Example 5.1.1

A research scientist wants to know how many times per hour a certain strand
of bacteria reproduces. He believes that the variance is 3.61 and the mean is
9.5. How large a sample would be required in order to estimate the average
number of reproductions at 90 % confidence level with an error of at most
0.18 reproductions? Here, d = 0.18, z.05 = 1.645 and σ2 = 3.61. Hence,

n =
(1.645)2 3.61

(0.18)2
= 301.5 That is, n = 302
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5.1.3 Case of σ Not Known and n Large (n ≥ 30)

If σ, the population standard deviation, is unknown but n is large (≥ 30),
then we can replace the unknown σ with the corresponding sample standard

deviation obtained from s =

√∑
(xi − x̄)2

n − 1
and the 100(1−α) % large sample

confidence interval for μ is now given by:

x̄ ± zα/2

(
s√
n

)

(5.6)

Example 5.1.2

5.1.4 Case of σ Not Known and n Small (n < 30)

If σ is unknown and n < 30, then, a 100(1 − α) % confidence interval for μ
would now be given by

x̄ ± tα/2

(
s√
n

)

(5.7)

where tα/2 is the upper α/2 tail of a Students’ t distribution with n − 1 de-
grees of freedom (d.f.) and s is the sample standard deviation estimated from
the data. The above analysis is based on the assumption that the sample
was drawn from a normally distributed population with mean μ and un-
known variance σ2. This assumption would would have to be validated with
a normality test.

Example 5.1.3

A plant pathologist grew 13 individually potted soybean seedlings as part
of a study on plant growth. The plants were raised in a greenhouse under
identical environmental conditions (light, temperature, soil, etc.) and she
then measured the total length (centimeter) for each plant after 16 days of
growth. These data are presented in Table 5.3.

Table 5.3 Stem length of soybean plants

20.2 22.9 23.3 20.0 19.4
22.0 22.1 22.0 21.9 21.5
19.7 21.5 20.9

The summary statistics for the above data are displayed as:
∑

x = 277.4,
∑

x2 = 5937.12, n = 13
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Hence, x̄ =
277.4
13

= 21.3385, s2 =
∑

x2 − nx̄2

n − 1
=

5937.12 − 13(21.3385)2

12
=

1.4859 and therefore s =
√

1.4859 = 1.21897. To obtain a 99 % confidence
interval for μ for instance, we note from Table 2 in the appendix that t0.005
with 12 d.f. = 3.0545. Hence, the confidence interval is computed as:

21.339 ± 3.0545
(

1.2190√
13

)

= 21.339 ± 1.033 = (20.306, 22.372)

The 99 % confidence interval is implemented in MINITAB with the following,
where the data have been read into a column named “Length.”

MTB > OneT ’Length’;
SUBC> Confidence 99.

One-Sample T: Length

Variable N Mean StDev SE Mean 99.0% CI
Length 13 21.338 1.219 0.338 (20.306, 22.371)

Fig. 5.1 Normal probability plot and test

The test of the assumption of normality is carried out with the normal prob-
ability plot in Fig. 5.1. The Anderson–Darling test indicates that these data
can be assumed to have come from a normal population.
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5.1.5 Confidence Interval for a Population
Proportion

To estimate a population proportion, we assume that a sample of size n is
drawn from a population of interest and the number of subjects having the
characteristic of interest is observed, (say, X ). Thus X subjects have the
characteristic of interest and therefore n − X do not have the characteristic

of interest. An estimate of the population proportion p is therefore p̂ =
X

n
,

p̂ is read p-hat. A 100(1 − α) % for p is therefore given by:

p̂ ± zα/2

√
p̂(1 − p̂)

n
(5.8)

Here again, the quantity zα/2

√
p̂(1−p̂)

n is called the margin of error.

Example 5.1.4

In evaluating the policy of routine vaccination of infants for whooping cough,
adverse reactions were monitored in 339 infants who received their first in-
jection of vaccine. Reactions were noted in 69 of the infants. To construct a
95 % confidence interval for p, the proportion of all infants have reactions to
first time injection of the vaccine, we have:

Solution

The sample proportion of infants having reactions to the vaccine is p̂ = 69
339 =

0.204. The sample size is large enough in this example. The estimate of the

standard error σp̂ is
√

p̂(1−p̂)
n = (0.2035)(0.7965)

339 = 0.022. The 95 % confidence
interval for p, based on the above data is:

0.204 ± 1.96(0.022)

0.204 ± 0.043

(0.161, 0.247)

We are 95 % confident that the proportion of adverse reaction in infants who
receive their first injection of the vaccine is between 0.161 and 0.247.

5.1.6 Sample Size Determination for Estimating
a Proportion

As in the case for the mean, given a one half of the desired interval, d, the
margin of error, then, the sample size required to achieve this desired margin
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of error at a 100(1 − α) % confidence interval is obtained by setting d equal
to the margin of error, to obtain n. That is,

d = zα/2

√
p̂(1 − p̂)

n

d2 = z2
α/2

p̂(1 − p̂)
n

, hence

n =
z2

α/2 p̂(1 − p̂)

d2

The above expression calls for p̂ which we do not know as this can only be
obtained after the sample has been drawn. Thus, if prior information about
p̂ is available, we would use this instead. Thus, for a known (prior value) p,
the above formula becomes:

n =
z2

α/2 p(1 − p)

d2 (5.9)

However, if no prior informed guess of p is available, then we would use the
following formula to obtain n, viz:

n =
z2
α/2

4d2 (5.10)

The expression in (5.10) is based on the fact that p(1 − p) in (5.9) is largest
when p = 0.5, and in this case, p(1 − p) = 1

4 . Thus a value of n calculated
from the expression in (5.10) will be conservative, in the sense that it will be
large enough.

Example 5.1.5

A hospital administrator wishes to know what proportion of discharged pa-
tients are unhappy with the care received during hospitalization. How large
a sample should be drawn if we let d = 0.05. The confidence coefficient is
0.95, and no other information is available. How large should the sample be
if p is approximated by 0.22?

Solution

In the first part of the question, p is unknown, hence we would use the
expression in (5.10) to obtain n. Here, Zα/2 = 1.96 and d = 0.05, thus,

n =
(1.96)2

4(.05)2
= 384.16 = 385.
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Thus n = 385 in this case. In the second part of the question, p is given as
0.22, hence in this case, we would use the expression for n in (5.9), thus,

n =
(1.96)2 × 0.22 × 0.78

(0.05)2
= 263.69 = 264.

That is, we would require a sample size of n = 264 in this case.

5.2 Confidence Interval for the Difference
of Two Population Means

5.2.1 Distribution of Difference of Two Means

Suppose we have two populations X1 and X2 such that X1 is distributed
normal with mean μ1 and variance σ2

1 . Similarly, X2 is distributed normal
with mean μ2 and variance σ2

2 . That is,

X1 ∼ N(μ1, σ
2
1)

X2 ∼ N(μ2, σ
2
2)

If a random sample of sizes n1 and n2 is taken from these populations
respectively, it follows that

x̄1 =
∑

X1

n1
∼ N

[

μ1,
σ2

1

n1

]

and

x̄2 =
∑

X2

n2
∼ N

[

μ2,
σ2

2

n2

]

Since the two samples are random and independent, hence,

x̄1 − x̄2 ∼ N

(

μ1 − μ2,
σ2

1

n1
+

σ2
2

n2

)

(5.11)

that is, the difference of two sample means is also normally distributed with
a mean that equals the difference of the two means and a variance that equals
the sum of their variances.

For two independent populations I and II with means μ1, μ2 and variances
σ2

1 and σ2
2 respectively, suppose random samples of sizes n1, n2 were drawn

respectively and sample means x̄1 and x̄2 were appropriately computed. Fur-
ther, if the populations are normally distributed with known variances σ2

1
and σ2

2 respectively, then a 100(1 − α) % confidence interval for μ1 − μ2 is
given by

(x̄1 − x̄2) ± zα/2

√
σ2

1

n1
+

σ2
2

n2
(5.12)
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This result stems from the result in (5.11). However, if the populations are not
normally distributed, but if the sample sizes n1 and n2 are large (n1, n2 ≥ 30),
then, a large sample 100(1 − α) % confidence interval for μ1 − μ2 will now be
given by

(x̄1 − x̄2) ± zα/2

√
s2
1

n1
+

s2
2

n2
(5.13)

where s2
1 and s2

2 are sample variances computed from the samples respectively.

Example 5.1.6

The bacterial count in the mouths of 10 patients just admitted to hospital
was as follows:

1570, 2275, 1194, 7006, 9993,
4034, 8608, 7976, 7280, 6337.

A second group of 12 patients who had spent 6 days in hospital gave the
following counts:

9709, 9847, 5292, 7751, 9038, 4030
4011, 7325, 7054, 5877, 8074, 5247

If the bacteria counts are known to have a population standard deviation of
2500 for each group of patients, find the 95 % confidence interval for (μ1−μ2).

Solution

Let μ1 and μ2 be the means of the two groups. Then,

x̄1 =
∑

x1

10
= 5627.3

x̄2 =
∑

x2

12
= 6937.9

Hence, the 95 % confidence interval for (μ1−μ2) is computed using expression
in (5.12) as,

(5627.3 − 6937.9) ± 1.96

√
25002

10
+

25002

12
= −1310.6 ± 2098.1

= (−3406.7, 787.5)

We are therefore 95 % confident that the true difference (μ1 −μ2) of bacteria
counts in the two groups is between −3406.7 and 787.5. Since the confidence
interval includes zero, we conclude that the two population bacteria count
means are equal.
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5.2.2 Case When (n1, n2) < 30 and σ1, σ2 Are Unknown

Here again, two independent random samples of sizes n1 and n2 are each
drawn from two independent normal populations with parameters (μ1, σ

2
1)

and (μ2, σ
2
2) respectively. However, in this situation σ2

1 and σ2
2 are unknown.

This implies that they would have to be estimated from the samples.
In order to proceed for this analysis, we would need to make the assump-

tion that although σ2
1 and σ2

2 are not known, but they are being assumed to
be equal, that is, σ2

1 = σ2
2 = σ2, a common unknown population variance. In

this situation the populations are said to be homogeneous.
Under these conditions, we have

x̄1 ∼ N

(

μ1,
σ2

n1

)

, x̄2 ∼ N

(

μ2,
σ2

n2

)

(5.14)

and therefore

(x̄1 − x̄2) ∼ N

[

(μ1 − μ2),
σ2

n1
+

σ2

n2

]

(5.15)

But then, σ2 still remains unknown, and we can estimate it from each of the
two samples thus:

s2
1 =

(
∑

x1i − x̄1)2

n1 − 1
, s2

2 =
(
∑

x2i − x̄2)2

n2 − 1

These are two estimates of the same parameter. We can therefore pool these
two estimates together to get a unified (pooled) estimate

S2
P =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(5.16)

S2
P is an unbiased estimate of σ2 and hence, a 100(1−α) % confidence interval

for μ1 − μ2 will be given by

(x̄1 − x̄2) ± tα/2

√
S2

P

n1
+

S2
P

n2

where tα/2, is the Student’s t distribution with n1+n2−2 degrees of freedom.
We should note here that the above analysis is contingent on the following
assumptions being true:

1. That the populations in which the samples were drawn are homogeneous.
That is, σ2

1 = σ2
2 . In other words, that the population variances are equal.

2. That the samples were drawn from populations that are independently
normally distributed.
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Example 5.1.8

The activity of an enzyme (units per gram protein) in 12 liver tissues infected
with hepatitis and 18 normal liver tissues was as follows:

Hepatitis Liver tissue :

4.15, 4.48, 4.22, 3.94, 4.52, 3.70
4.77, 4.03, 3.90, 4.86, 3.16, 3.33

Normal Liver tissues:

3.15, 4.23, 3.12, 2.70, 3.99, 4.40
3.86, 3.86, 3.16, 4.27, 4.34, 3.79
4.28, 4.63, 4.98, 3.52, 2.77, 3.18

Construct a 95 % confidence interval for the difference in their population
means. Does it appear that the mean activity of enzyme in the hepatitis
group is higher than the normal group? Why do you reach this conclusion?

Solution

Let μ1 = mean of Hepatitis and μ2= mean of Normal liver patients.
∑

x1 = 49.06,
∑

x2
1 = 203.6432 and n1 = 12

x̄1 = 4.088, s2
1 =

∑
x2

1 − (
∑

x1)2

n1

n1 − 1
= 0.27915

Similarly,
∑

x2 = 68.23,
∑

x2
2 = 266.0687, and n2 = 18

x̄2 = 3.791, , s2
2 = 0.4376

Hence, Pooled variance S2
P equals

S2
P =

11 × s2
1 + 17 × s2

2

28
= 0.3753 (5.17)

and SP =
√

S2
P = 0.6126.

tα/2(28) = 2.048 and hence, the 95 % confidence interval for (μ1 − μ2) is
computed as:

(4.088 − 3.791) ± 2.048

√
0.3753

12
+

0.3753
18

= (0.297) ± 0.468

= (−0.171, 0.765) (5.18)
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MTB > PRINT C1-C2

Data Display

Row HEPTIT NORMAL

1 4.15 3.15
2 4.48 4.23
3 4.22 3.12
4 3.94 2.70
5 4.52 3.99
6 3.70 4.40
7 4.77 3.86
8 4.03 3.86
9 3.90 3.16
10 4.86 4.27
11 3.16 4.34
12 3.33 3.79
13 4.28
14 4.63
15 4.98
16 3.52
17 2.77
18 3.18

MTB > TwoSample ’HEPTIT’ ’NORMAL’;
SUBC> Pooled.

Two-Sample CI: HEPTIT, NORMAL

Two-sample T for HEPTIT vs NORMAL

N Mean StDev SE Mean
HEPTIT 12 4.088 0.528 0.15
NORMAL 18 3.791 0.662 0.16

Difference = mu HEPTIT - mu NORMAL
Estimate for difference: 0.298
95% CI for difference: (-0.170, 0.765)
Both use Pooled StDev = 0.613

We have assumed for now that the two assumptions above are satisfied for
these data set. We shall revisit this example and conduct the necessary tests
after we have discussed hypothesis testing.

5.3 Confidence Interval for the Difference
of Two Population Proportions

Suppose we have two binomial populations, A and B. If a random sample of
size n1 is taken from population A and the number of successes is denoted by
X. Another independent random sample of size n2 is taken from population
B and the number of successes is denoted by Y.
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Then, from the sample from population A, we have p̂1 =
X

n1
. Similarly,

from the sample from population B, we also have p̂2 =
Y

n2
. An unbiased

point estimator for the difference between the two population proportions is
p̂1 − p̂2, with standard error,

√
p̂1 (1 − p̂1)

n1
+

p̂2 (1 − p̂2)
n2

.

Hence, a 100(1 − α) % confidence interval for p1 − p2 will be given by

(p̂1 − p̂2) ± zα/2

√
p̂1 (1 − p̂1)

n1
+

p̂2 (1 − p̂2)
n2

.

Example 5.3.1

Aronow and Kronzon (1991) identified coronary risk factors among men and
women in a long-term health care facility. Of 215 subjects who were black, 58
had diabetes mellitus. Of the 1140 white subjects, 217 had diabetes mellitus.
We wish to construct a 90 % confidence interval for the difference between
the two population proportions.

Solution

The sample proportion for blacks with diabetes is p̂1 = 58/215 = 0.2698.
Similarly, for whites, is p̂2 = 217/1140 = 0.1904. Hence, the 90 % confidence
interval is computed as:

(0.2698 − 0.1904) ± 1.645

√
(0.2698) (0.7302)

215
+

(0.1904) (0.8096)
1140

.

0.0794 ± 0.0533 = (0.0261, 0.1327)

5.4 Hypothesis Testing

5.4.1 Concepts and Definitions

The concepts and definitions presented here were adapted from a set of notes
shared with me almost 30 years ago. I liked the take on this topic; therefore,
I have adapted it for this chapter. This source is duly acknowledged at the
end of this text.
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A hypothesis is a statement about population characteristics. The hypoth-
esis is tested through experimental investigations to ascertain its plausibility.
A hypothesis that is relatively well verified and possesses some degree of
generality is a theory. A theory that has been verified beyond all reasonable
doubt at the moment is designated a law.

There are two types of scientific researches, namely, empirical and analyt-
ical. The former deals with experimental investigations which involve data
while the latter deals with laws, axioms, postulates, and definitions in the
field of inquiry. Much of our research is empirical in nature as it involves mea-
surement and observations on various characteristics. Empirical facts only
substantiate the claim for the hypothesis; they do not prove it.

The object of a scientific investigation is not to prove the scientist correct,
but to establish the truth.

A necessary part of research is Inference, which is a process of reasoning.
Inference may be deductive or inductive. Deductive Inference is the process
of determining the implications inherent in a set of propositions, and it is
always associated with analytic research.

Aristotle was the first to stress the systemic nature of science and to teach
the use of reasoning in the development of science. Syllogism is one form of
logical deduction that was used to a large extent; this method of deductive
inference begins with two main premises, usually a major premise and a minor
premise, or propositions which are so related in thought that a person is able
to infer a third proposition from them. The following example(s) illustrate
this method of deductive Inference

(i)
Major Premise: All living plants absorb water (inductive)
Minor Premise: This tree is a living plant (observation)

Conclusion: Therefore, this tree absorbs water (deduction)
(ii)

Major Premise: Human beings are composed of men and women
(Inductive)

Minor Premise: This person is a man (observation)
Conclusion: Therefore, this person is a human being (deduction)

We can see that knowledge of the past furnishes the major premise, a particu-
lar problem or situation supplies the minor premise. The deduction obtained
by the psychological process of reasoning constitutes the conclusion.

Inductive Inference

forms a large part of the definition of the subject of Statistics. This type of
inference is characterized by the fact that from the sample facts, we draw
conclusions concerning population facts, i.e., it is reasoning from the results
obtained from a sample, a part or an experiment of characteristics of the
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entire population or of all the members of a class. Thus inductions are based
on partial evidence and as such are characterized by a degree of uncertainty.
The evidence for inductive inference may often be stated on a probability
basis.

Two other terms Sample Survey and Experiment require definition. A Sam-
ple Survey is an investigation of what is present in the population. When the
sample is a 100 % sample, it is called the census. Any observation that appears
in the population could appear in the sample. Any condition not represented
in the population will not be observed in a sample or a census. In many
investigations however, it is desired to investigate conditions which do not
appear in a population. In an experimental investigation or experiment, the
experimenter may, and often does, introduce conditions which do not exist in
any naturally occurring population. The investigator controls the conditions
in the experiment whereas the conditions in a survey are those that prevail
in the population.

5.4.2 Test of Significance

Sometimes one wants to compare an observed result with a prior hypothesis
or expectation. If the observed result differs from the hypothesis but is based
on a sample, a test of significance is needed. This in effect determines whether
the difference is possibly real or only due to sampling error.

When studying an observable phenomenon, we often have some prior
hypothesis in mind, e.g., from previous studies, theory or feelings. If we
measured the whole population in question, the result would either agree
with our prior hypothesis or show it to be wrong. The outcome would be
clear. But if our data were based only on a sample from that population,
and the sample result differed from our prior hypothesis, we would have a
problem. Was our prior hypothesis wrong? Or was the sample result differed
only because of sampling error, i.e., was it an atypical sample? We could de-
termine the answer taking a much larger sample. But with random sampling,
we can avoid the extra work and cost by using a test of significance. This
gives the probability that the difference between the sample value and the
hypothesized value was only due to a sample error. If the probability is high
we accept our prior hypothesis, if it is low we reject it.

The hypothesized value is usually called the null hypothesis. If the test
shows the difference to be highly probable, the sample value is called “Statisti-
cally Significant,” i.e., the difference is probably real, and the null hypothesis
will be rejected in this case.

To illustrate, consider the following example. Acute myeloblastic leukemia
is among the most deadly of cancers. It is claimed that the time X, in months
that a patient survives after initial diagnosis is distributed normal with mean
μ = 13 months, and standard deviation σ = 3 months. A random sample of
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16 patients is selected among those diagnosed with this disease at a teach-
ing hospital in Ibadan and an average of 11 months was recorded for their
survival. Does this indicate that the mean of survival is not achieved?

The fact that our sample estimate is less than 13 tells us nothing. What
we would like to establish is whether the difference of an average of 2 months
could reasonably be expected to arise, given that the μ = 13 is correct. If
it could, we would not be justified in claiming that the sample indicated a
reduction in survival months. To evaluate the significance of this observed
difference, we can calculate the probability that our sample result would be
2 months or more below the population figure of 13.

From Chap. 4, we know that

x̄ ∼ N

(

μ,
σ2

n

)

.

Hence, to compute P (x̄ < 11), we note here that the sampling distribution of
x̄ has, μx̄ = 13 and σx̄ = σ/

√
n = 3/4 = 0.75. Thus the required probability

is computed as:

P (x̄ < 11) = P (Z <
11 − 13

0.75
= P (Z < −2.67) = 0.0038

That is, only about 4 samples in every 1000 of similar size (n = 16) would
give a mean survival time of 11 months or less. We are therefore faced with
two alternative decisions:

(a) Either: A very rare event has occurred, and by chance we have got a
sample which will only occur about 4 times in every 1000 such samples or

(b) This low sample has arisen because the population mean survival time
is less than 13 months which we assumed it to be.

Which of these alternatives we choose depends on how much of a risk we are
prepared to take. The first of these alternatives has a probability of 0.0038 of
being correct. In rejecting it and accepting the second alternative, therefore,
we are running a 0.38 % chance of being wrong. In the long run we would
expect to be wrong about 4 times in every 1000 similar situations. It would
be perfectly reasonable to discount such a risk.

Suppose, however, that our chance of being wrong had worked out to be
10 % instead of 0.38 %. Now acceptance of the second alternative means that
in the long run we shall be wrong 10 times in every 100 similar situations. Is
this a reasonable risk to run?

5.4.3 Example Seed

To illustrate, suppose a maize seed order firm stipulates that 80 % of seeds
purchased must germinate in 3 days. It is supposed that this degree of germi-
nation rate is not being achieved, so a sample is taken to check the situation.
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It is discovered that out of a random sample of 100 seeds, only 70 % germi-
nated. Does this indicate that the required rate of germination is not being
achieved?

The mere fact that our sample estimate is less than 80 % tells us nothing.
What we want to establish is whether the difference of 10 % could reasonably
be expected to arise, given that the 80 % is correct. If it could, we would not
be justified in claiming that the sample indicated a deterioration in germi-
nation rate. To evaluate the significance of this observed difference, we can
calculate the probability that our sample result would be 10 % or more below
the population figure of 80 %. Here, we are using the fact that:

p̂ ∼ b(p,
pq

n
)

This will be discussed further in Sect. 5.7. Before we can calculate this prob-
ability, we need to know the parameters of the sampling distribution when
n = 100 and p = 80 %. Remember that the mean = p and the standard er-

ror (s.e. =
√

p̂(100−p̂)
n . Since, we have p̂ = 80 %, hence the s.e. becomes

√
80×20
100 = 4.

The Z point for the observed 70 % is, using the normal approximation
given by

z =
p̂ − p

s.e.
=

70 − 80
4

= −2.5

P (z < −2.5) = 0.0062. That is, only about 6 samples in every 1000 of similar
size (n = 100) would estimate it at 70 % or less. We are therefore faced with
two alternative decisions:

(a) Either: A very rare event has occurred, and by chance we have got a
sample which will only occur about 6 times in every 1000 such samples or

(b) This low sample has arisen because the population percentage is less
than 80 % which we assumed it to be.

Which of these alternatives we choose depends on how much of a risk we are
prepared to take. The first of these alternatives has a probability of 0.0062 of
being correct. In rejecting it and accepting the second alternative, therefore,
we are running a 0.62 % chance of being wrong. In the long run we would
expect to be wrong about 6 times in every 1000 similar situations. It would
be perfectly reasonable to discount such a risk.

Suppose, however, that our chance of being wrong had worked out to be
10 % instead of 0.62 %. Now acceptance of the second alternative means that
in the long run we shall be wrong 10 times in every 100 similar situations. Is
this a reasonable risk to run?

What is or is not a reasonable risk will depend on the consequence of being
wrong. Through custom and practice, a number of standard risk levels, known
as significance levels, have become established. By far the most commonly
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used of these are the 5 % and 1 % or 0.05 and 0.01 significance levels. The
process of calculating if the probability of making a wrong decision is greater
or less than the required significance level is known as significance testing or
simply as test of significance.

5.4.4 The Level of Significance

Different levels of significance involve different chances of making an error.
Two kinds of error can be considered here. One is to accept the null hypothesis
when it is actually false (a type II error). The other is to reject the null
hypothesis when it is actually true (a type I error). The possibilities are set
out below.

Null hypothesis is:
Decision True False

Fail to reject H0 Correct Type II
decision error

Reject H0 Type I Correct
error decision

Thus an incorrect decision occurs if either a true null hypothesis is rejected
or a false null hypothesis is not rejected. The former is called a type I error
and the latter is similarly called the type II error.

We would however like the chances of correct decisions to be as high as
possible. But reducing the likelihood of making a type II error (wrongly
rejecting the null hypothesis) generally means increasing the chance of making
a type I error (wrongly accepting the null hypothesis). One cannot have it
both ways. Fortunately, we can reduce both types of risk by increasing the
sample size. The more information you have in the sample, the greater will
be the ability of the test statistic to reach the correct decision.

With a 5 % level of significance, we have a 5 % chance of committing a
type I error; rejecting the null hypothesis even when it is true. With a 1 %
significance level, we reduce the chances of committing such an error. But
the chance of committing type II error is correspondingly increased.

So, on which side should the analyst err? With a new type of plane one
would rather commit a type I error: Send the plane back for further tests even
though it might in fact be air-safe. In legal cases we would rather commit a
type II error: Let a guilty person off rather than convict an innocent man.
In other cases such evaluations are more difficult to make. But in the case of
statistical tests of significance the precise probability levels are usually not
very important and most of our results are always clear-cut. Thus the general
procedure for significant testing can be summarized as follows:
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(i) A statistical hypothesis is set up, i.e., initial assumption, which is almost
invariably an assumption about the value of a population parameter, e.g.,
in an example above μ = 13. These hypotheses are usually referred to
as null hypotheses, since they almost always state that no change has
occurred from known or specified conditions.

(ii) An alternative hypothesis is defined which is to be accepted if the test
permits us to reject the null hypothesis. In our example it is “μ is less
than 11.” “Steps (i) and (ii) must be carried out before the sample is
analyzed.”

(iii) An appropriate significance level is fixed, e.g., 5 % or 1 %.
(iv) On the assumption that the null hypothesis is true, the appropriate

sampling distribution is defined and the area which will lead to rejection
of the null hypothesis is identified. The probability that the sample result
will fall into this rejection area is made equal to the specified significance
level.

(v) The position of the sample result in the sampling distribution is cal-
culated. If it falls in the rejection area, the null hypothesis is rejected
and the alternative hypothesis is accepted. The result is then said to be
Statistically Significant.

5.4.5 Types of Alternative Hypotheses

Consider the following situations for our example earlier where μ0 = 13 is
specified. Generally therefore, the hypotheses can be formulated as:

(i)

H0 : μ ≥ μ0

Ha : μ < μ0 (5.19)

(ii)

H0 : μ ≤ μ0

Ha : μ > μ0 (5.20)

(iii)

H0 : μ = μ0

Ha : μ �= μ0 (5.21)

The alternative hypothesis Ha in (i) above is often called a left-tailed single-
sided alternative. The alternative in (ii) is similarly referred to as the
right-tailed single alternative while that in (iii) is referred to as the two-
sided alternative. The decisions that would be made depend on the type of
alternative we have. It is therefore imperative that both the null and alter-
native hypotheses be set up prior to the commencement of conducting an
experiment or study. We will now consider in turn the procedure for testing
each of the alternatives in (i) to (iii) for a single mean or proportion.
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5.5 Tests for Means and Proportion

The basic case of testing the difference between an observed sample mean x̄
and a hypothesized population mean μ follows from the sampling distribution
of the mean.

If we have a population X that is, N(μ, σ2) then if a random sample size
n is taken from this population, it follows from central limit theorem (CLT)
that

x̄ ∼ N

(

μ,
σ2

n

)

Case I: Population σ2 Known

The hypothesis to be tested is of the form in (5.19), viz:

H0 : μ ≥ μ0 a specified value versus

Ha : μ < μ0

If the hypothesis is correct and the sample size is greater than 30, then from
CLT (irrespective of the population disposition or distribution)

x̄ ∼ N

(

μ0,
σ2

n

)

Hence,

Z =
x̄ − μ0

σ/
√

n

is distributed N (0,1). That is, a standard normal with mean 0 and variance 1.
In order to test the above hypothesis, all we need is to compute the test

statistic:

Z =
X̄ − μ0

σ/
√

n
=

√
n(X̄ − μ0)

σ
(5.22)

and choose a significance level α. In the present case, the nature of our
alternative hypothesis indicates that we use a left-tailed test. Hence if α =
0.05 is chosen, then our decision rules are given by the following decision rule:

Decision Rule (DR) Reject H0 if Z ≤ −zα. In our case, since α =
0.05, z.05 = 1.645, then our critical rejection region is R : Z ≤ −1.645.

On the other hand, if the alternative is of type (5.20), then our decision
rule would be:
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Decision Rule Reject H0 if Z ≥ zα. In our case, since α = 0.05, z.05 =
1.645, then our critical rejection region is R : Z ≥ 1.645 since the hypotheses
in this case are of the form:

H0 : μ ≤ μ0 (a specified value) versus

Ha : μ > μ0

If the hypothesis to be tested is of the form in (5.21), that is, a two-sided
alternative, then our DR would be to reject H0 if | Z |≥ zα/2. In our case,
since α = 0.05, hence, we need z.025. The Table in appendix I gives z.025 =
1.96. Hence, our critical region (rejection region) is R :| Z |≥ 1.96.

5.5.1 p Values

With the advent of high-powered computing, most researches these days
often quote p values rather than say that the test statistic is significant or
not significant. The p value is the probability of getting a value as extreme
or more extreme than the calculated test statistic if the null hypothesis were
true. We give below, how to compute p values for each of the alternatives in
(5.19)–(5.21).

If (Ha : μ < μ0) : p value = P (z < Z∗)

If (Ha : μ > μ0) : p value = P (z > Z∗)

If (Ha : μ �= μ0) : p value = 2 P (z > |Z∗|)

where Z∗ is the computed test statistics from (5.22). With p values, the
decision rules are given with a specified α as,

Reject H0 if p value ≤ α (5.23)

Example 5.5.1

The mean and variance of the number of contaminants in a bacterial vaccine
preserved with phenol are 60 and 25 respectively. A sample of 20 bacterial vac-
cines in a different preservative gave the contamination counts presented ear-
lier in Table 5.1. Assuming that the counts are normally distributed, has the
preservative significantly changed the contamination counts? Use α = 0.05.

Here the population has N (60, 25) with μ = 60 and σ2 = 25, and hence
σ = 5. The hypothesis to be tested is

H0 : μ = 60

Ha : μ �= 60
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From the data, x̄ = 57.3, n = 20, and σ = 5 are given. Hence we can compute
the test statistic Z∗ as:

Z∗ =
√

n(X̄ − μ0)
σ

=
√

20(57.3 − 60)
5

= −2.41

The rejection region is |Z∗| ≥ 1.96. Since | −2.41 | = 2.41 > 1.96, i.e., we
would reject H0 and conclude that the preservative has significantly changed
the number of counts at the 5 % significance level.

The corresponding p value is computed as:

p value = 2P (Z > 2.41) = 2(1 − 0.9920) = 0.016

The decision rule is that we would reject H0 if p value ≤ 0.05. Since,
0.016 << 0.05, thus, we would strongly reject H0. This result leads to the
same conclusion we obtained using the other decision rule. In any case both
should give the same conclusion. The MINITAB implementation of this is
presented below:

Data Display

Counts
67 62 52 55 54 61 51 59 54 57
57 60 50 66 68 54 53 52 58 56

MTB > OneZ ’Counts’;
SUBC> Sigma 5;
SUBC> Test 60.

One-Sample Z: Counts

Test of mu = 60 vs mu not = 60
The assumed sigma = 5

Variable N Mean StDev SE Mean
Counts 20 57.30 5.32 1.12

Variable 95.0% CI Z P
Counts ( 55.11, 59.49) -2.41 0.016

Notice that the 95 % confidence interval does not include 60, hence H0 can
not be true. That is, we would reject H0.

Case II: Population Variance Unknown

In this case, since the population variance is unknown, it means that we will
have to estimate σ2 from the sample data.
An unbiased estimate of the population variance σ2 is:

s2 =
(
∑

x − x̄)2

n − 1
=
∑

x2 − nx̄2

n − 1



138 5 Estimation and Hypotheses Testing

We also estimate μ by x̄ =
∑

xi

n
. From CLT, we know that x̄ ∼ N(μ, σ2/n).

But here, we do not know σ2, and hence we replace σ2 in the expression for
the test statistic by s2. That is, the expression in (5.22) becomes

√
n(x̄ − μ0)

s

but the expression is now no longer distributed as a standardized normal
variate but as a Student’s t distribution with n−1 degrees of freedom. Tables
of Student’s distribution are given in Table 2 of the appendix. That is, the
test statistic is now

T =
(x̄ − μ0)
s/

√
n

=
√

n(x̄ − μ0)
s

(5.24)

Example 5.5.2

The mean time for mice to die when injected with 1000 leukemia cells is
known to be 12.5 days. When the injection was doubled in a sample of 10
mice, the survival times were

10.5, 11.2, 12.9, 12.7, 10.3, 10.4, 10.9, 11.3, 10.6, 11.7

If the survival times are normally distributed do the results suggest that the
increased dosage has decreased survivorship?

The hypothesis is formulated below as

H0 : μ ≥ 12.5

Ha : μ < 12.5 (one-tailed test)

Here, σ2 of the population is not known, only the mean μ = 12.5 is given.
Hence we would have to estimate σ2 from the data.

x̄ =
∑

x

n
=

112.5
10

= 11.25

∑
x2 = 1273.39 and hence

s2 =
1273.39 − (112.5)2

10

10 − 1
=

7.765
9

= 0.8628

Hence s =
√

0.8628 = 0.9289 and the test statistic becomes:

T =
√

10(11.25 − 12.5)
0.9289

= −4.2554

From the Student’s t distribution in Table 2 in the Appendix, we have ν = 9
and if α = 0.05, the tabulated t value equals 1.833. The decision rule for
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the problem is: Reject H0 if T < −tα = −1.833. Clearly −4.25 << −1.833,
thus we would reject H0, and the results suggest that a large injection dose
reduces the life expectancy of mice. The MINITAB implementation for this
example is displayed below.
Data Display

Time
10.5 11.2 12.9 12.7 10.3 10.4 10.9 11.3 10.6 11.7

MTB > OneT ’Time’;
SUBC> Test 12.5;
SUBC> Alternative -1.

One-Sample T: Time

Test of mu = 12.5 vs mu < 12.5

Variable N Mean StDev SE Mean
Time 10 11.250 0.929 0.294

Variable 95.0% Upper Bound T P
0.001-4.2611.788emiT

In this example, the computed p value is 0.001 < 0.05. Hence we would
strongly reject H0, again leading to the same conclusion as above. Had we
not assumed that the sample was drawn from a normal population, a nor-
mality test would have been necessary. This test is presented in Fig. 5.2,
and indicates that the p value for the Andersen–Darling test is 0.144 indi-
cating that the data indeed could be assumed to have come from a normally
distributed population.

Fig. 5.2 Normal probability plot and test for this example
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Example 5.5.3

Suppose in our Example 5.5.1, the variance of the population was not given.
Then from the data, n = 20,

∑
x = 1146,

∑
x2 = 66, 204, hence,

s2 =
66, 204 − (1146)2

20

20 − 1
= 28.33

and the test statistic is computed as:

T =
√

20(57.3 − 60)√
28.3

= −2.27

Thus | T | = 2.27. The tabulated tα/2 = t.025 with 19 degrees of freedom
is 2.093. Since 2.27 > 2.093, we would still need to reject H0 because 2.27
falls in the critical region and the same conclusion holds at α = 0.05 level of
significance. The MINITAB output in this case is presented below.

MTB > OneT ’Counts’;
SUBC> Test 60.

One-Sample T: Counts

Test of mu = 60 vs mu not = 60

Variable N Mean StDev SE Mean
Counts 20 57.30 5.32 1.19

Variable 95.0% CI T P
Counts ( 54.81, 59.79) -2.27 0.035

Example 5.5.4

The number of wing beats per second of 16 male house flies were as follows:

194.7, 191.5, 187.0, 189.7, 190.0, 197.0, 189.9, 188.9

197.2, 191.4, 193.1, 186.9, 189.3, 185.2, 193.1, 196.6

If the mean number of wing beats per second of female flies is 190, do the
wings of the males beat with a different frequency?

Let us assume that the number of beats per second follows a normal
distribution, and the hypothesis of interest is

H0 : μ = 190

Ha : μ �= 190 (i.e., two-tailed test)
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From the data, n = 16,
∑

x = 3061.7,
∑

x2 = 586, 079.41, hence,

x̄ =
3061.7

16
= 191.36

s2 =
586, 079.41 − (3061.7)2

16

16 − 1
= 13.5986

hence s =
√

13.5986 = 3.69 and the calculated test statistic T is:

T =
√

16(191.36 − 190)
3.69

= 1.47

From the t table, the tabulated t value with ν = 15 degrees of freedom at
α = 0.05 is t.025 = 2.131.

Since 1.47 < 2.131, i.e., we would fail to reject H0 and conclude that there
is no difference in wing speeds between male and female house flies at the
0.05 level of significance. The MINITAB implementation is presented below.
The Anderson–Darling normality test gives a p value of 0.559 which is not
less than 0.05. Hence, we can say that the sample was drawn from a normally
distributed population.

Data Display

Beats
194.7 191.5 187.0 189.7 190.0 197.0 189.9 188.9 197.2
191.4 193.1 186.9 189.3 185.2 193.1 196.6

MTB > OneT ’Beats’;
SUBC> Test 190.

One-Sample T: Beats

Test of mu = 190 vs mu not = 190

Variable N Mean StDev SE Mean
Beats 16 191.344 3.692 0.923

Variable 95.0% CI T P
Beats ( 189.376, 193.311) 1.46 0.166

5.5.2 Testing for a Binomial Proportion

Suppose we wish to test the hypothesis

H0 : p = p0

Ha : p �= p0
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Let n (usually very large) denote the number of trials and let X denote the

number of success in the n trials, then p̂ =
X

n
is approximately normally

distributed with mean and standard errors respectively,

μp̂ = p, and σp̂ =

√
p(1 − p)

n

Hence under H0:

p̂ ∼ N

(

p0,

√
p0(1 − p0)

n

)

Consequently, the relevant test statistic is:

Z =
p̂ − p0√
p0(1−p0)

n

(5.25)

and Z is distributed N (0,1). Since the alternative hypothesis is two-sided, we
would therefore reject H0 at a significance level α if | Z |≥ zα/2.

An equivalent formulation of the test statistic Z is also given by:

Z =
X
n − p0
√

p(1−p)
n

=
X − np0√
np0(1 − p0)

(5.26)

Example 5.5.5

In a certain cross of two varieties of peas, genetic theory led the investigator
to expect one-half of the seeds produced to be wrinkled and the remaining
one half to be smooth. In order to test this hypothesis, a final-year student
conducted the experiment with 40 seeds of the cross and observed that 30 are
wrinkled and 10 are smooth. Assuming α = 0.01, is the genetic theory right?

Here the hypotheses are

H0 : p = 0.5

Ha : p �= 0.5

n = 40, X = 30 and p0 = 0.5.
Thus,

Z =
30 − 40 × 0.5√
40 × 0.5 × 0.5

=
30 − 20√

10
= 3.162

zα/2 = 2.58 and since 3.162 > 2.58, i.e., we would reject H0 and conclude
that the results of the experiment do not support the claim of the genetic
theory. The corresponding p value is calculated as,

p value = 2P (Z > 3.16) = 2(1 − 0.9992) = 0.0016

Since 0.0016 <<< 0.05, we would again strongly reject H0 in this example.
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5.6 Tests Concerning Two Population Means

We have shown in an earlier section that given two populations X1 and
X2 distributed normally with means μ1 and μ2 and variances σ2

1 and σ2
2

respectively, then from (5.11)

x̄1 − x̄2 ∼ N

(

μ1 − μ2,
σ2

1

n1
+

σ2
2

n2

)

and hence,

(X̄1 − X̄2) − (μ1 − μ2)√
σ2
1

n1
+ σ2

2
n2

(5.27)

will be distributed as a standardized normal variate. That is, N (0,1).

5.6.1 Testing Differences Between Two
Population Means

Case I: σ2
1 and σ2

2 Known

If the variances σ2
1 and σ2

2 of two independent populations are known and
samples of sizes n1 and n2 are drawn respectively from these two populations,
situations do arise when we are interested in testing whether significant dif-
ferences do exist between the means of the two populations. The hypothesis
of interest could be:

H0 : μ1 = μ2

Ha : μ1 �= μ2

Under H0, the test statistic is given by:

(x̄1 − x̄2) − (μ1 − μ2)√
σ2
1

n1
+ σ2

2
n2

But under H0 : μ1 = μ2 implies that μ1 − μ2 = 0, thus the test statistic
reduces to

Z =
(x̄1 − x̄2)√

σ2
1

n1
+ σ2

2
n2

(5.28)

The test is valid for all sample sizes if the probability distribution of x1 and
x2 is normal.
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Example 5.6.1

The data for this example were presented in Example 5.1.6 and relate to
bacteria counts in the mouth of two groups of patients admitted to a hospital.
The first group has 10 patients (and had just been admitted in the hospital)
and the second group has 12 patients (who have spent 6 days in the hospital).
The bacteria counts are known to have a population standard deviation of
2500 for each group of patients. Do the data for the two groups indicate that
the mean bacterial count is influenced by a stay in hospital?

Let μ1 and μ2 be the means of the two groups. Then, the hypothesis of
interest can be formulated as:

H0 : μ1 = μ2

Ha : μ1 �= μ2

x̄1 =
∑

x1
10 = 5627.3. Similarly, x̄2 =

∑
x2

12 = 6937.9. Hence, the statistic Z in
(5.28) becomes

Z =
(5627.3 − 6937.9
√

25002

10 + 25002

12

= −1.224

Since the test is a two-tailed one, | Z |= 1.224. At a 5 % significance level, the
tabulated z value is 1.96 and since 1.224 < 1.96, i.e., we would fail to reject
H0 and conclude that no evidence is found in support of a period in hospital
influencing bacterial counts in the patients at the 0.05 level of significance.
The corresponding p value is computed as 2P (Z > 1.22) = 2(1 − 0.8888) =
0.2224. Since 0.2224 ≮ 0.05, we would therefore fail to reject H0. This again
leads to the same conclusion. If n1 and n2 are large (> 30) and σ1 and σ2
are unknown, we can use the large sample test statistic

(x̄1 − x̄2)√
s2
1

n1
+ s2

2
n2

(5.29)

where s2
1 and s2

2 are the respective sample variances from the samples.

Case II: σ2
1 and σ2

2 Not Unknown

By far the most common case encountered in research studies is this case.
Here two independent random samples of sizes n1 and n2 are each drawn from
two independent normal populations with parameters (μ1, σ

2
1) and (μ2, σ

2
2)

respectively. The hypothesis of interest is again given by:

H0 : μ1 = μ2

Ha : μ1 �= μ2

However, in this situation σ2
1 and σ2

2 are unknown. This implies that they
would have to be estimated from the samples.
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In order to test these hypotheses, we would need to make the assumption
that although σ2

1 and σ2
2 are not known, but they are being assumed to be

equal, that is, σ2
1 = σ2

2 = σ2, a common unknown population variance. In
this situation the population are said to be homogeneous.

Under these conditions, we have

x̄1 ∼ N

(

μ1,
σ2

n1

)

, x̄2 ∼ N

(

μ2,
σ2

n2

)

and therefore

(x̄1 − x̄2) ∼ N

(

(μ1 − μ2),
σ2

n1
+

σ2

n2

)

But then, σ2 still remains unknown, and we can estimate it from each of the
two samples, thus:

s2
1 =

(
∑

x1i − x̄1)2

n1 − 1
, s2

2 =
(
∑

x2i − x̄2)2

n2 − 1

These are two estimates of the same parameter. We can therefore pool these
two estimates together to get a unified (pooled) estimate

S2
P =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

S2
P is an unbiased estimate of σ2 and the above test statistic becomes

T =
(x̄1 − x̄2) − (μ1 − μ2)√

S2
P

n1
+ S2

P

n2

However, this will now be distributed as Student’s t distribution with n1 +
n2 − 2 degrees of freedom. Under H0, the test statistic reduces to:

T =
(x̄1 − x̄2)√

S2
P

n1
+ S2

P

n2

(5.30)

Example 5.6.2

The activities of an enzyme (units per gram protein) in 12 liver tissues
infected with hepatitis and 18 normal liver tissues were presented in Exam-
ple 5.2.1 earlier. Is there a significant difference is enzyme activity at α = 0.05
level of significance?

Solution

Let μ1 = mean of Hepatitis and μ2 = mean of Normal liver patients.
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H0 : μ1 = μ2

Ha : μ1 �= μ2

We reproduce the calculations carried out earlier for this example below.
∑

x1 = 49.06,
∑

x2
1 = 203.6432 and n1 = 12

x̄1 = 4.088, s2
1 =

∑
x2

1 − (
∑

x1)2

n1

n1 − 1
= 0.27915

Similarly,
∑

x2 = 68.23,
∑

x2
2 = 266.0687, and n2 = 18

x̄2 = 3.791, , s2
2 = 0.4376

Hence, Pooled variance S2
P equals

S2
P =

11 × s2
1 + 17 × s2

2

28
= 0.3753 (5.31)

and SP =
√

S2
P = 0.6126 and the test statistics is computed as:

T =
4.088 − 3.791

S
√

1
12 + 1

18

= 1.301

tα/2(28) = 2.048 and since 1.301 < 2.048, i.e, we would fail to reject H0 and
conclude that there is no significant difference in enzyme activities in the two
groups.

MTB > TwoSample ’HEPTIT’ ’NORMAL’;
SUBC> Pooled.

Two-Sample T-Test and CI: HEPTIT, NORMAL

Two-sample T for HEPTIT vs NORMAL

N Mean StDev SE Mean
HEPTIT 12 4.088 0.528 0.15
NORMAL 18 3.791 0.662 0.16

Difference = mu HEPTIT - mu NORMAL
Estimate for difference: 0.298
95% CI for difference: (-0.170, 0.765)
T-Test of difference = 0 (vs not =): T-Value = 1.30 P-Value = 0.203 DF = 28
Both use Pooled StDev = 0.613

As discussed earlier, the above analysis is contingent upon the following
assumptions being true.
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1. That the populations in which the samples were drawn are homogeneous.
That is, σ2

1 = σ2
2 . In other words, that the population variances are equal.

2. That the samples were drawn from populations that are independently
normally distributed.

A test of equality of variances of the form:

H0 : σ2
1 = σ2

2

Ha : σ2
1 �= σ2

2

is provided by computing the statistic:

F∗ =
s2
1

s2
2

(5.32)

where s2
1 and s2

2 are the sample variances and we usually allow the bigger
of the two to be the numerator. Our decision rule is therefore to reject H0
if F∗ ≥ F(n1−1,n2−1)(1 − α). Here F is the F distribution with n1 − 1 and
n2 − 1 degrees of freedom at α level of significance. In our example,

F∗ = 0.4376/0.2791 = 1.57

Here sample 2 has the bigger variance and is used as the numerator. Hence,
F(18−1,12−1) = F(17,11)(0.95) = 2.68. Since 1.57 < 2.68, we would therefore
fail to reject H0. That is, σ2

1 = σ2
2 and this assumption is satisfied. The

equality of variances test is implemented in MINITAB as follows:

MTB > %VarTest ’NORMAL’ ’HEPTIT’;
SUBC> Unstacked.

Test for Equal Variances

Level1 NORMAL
Level2 HEPTIT
ConfLvl 95.0000

Bonferroni confidence intervals for standard deviations

Lower Sigma Upper N Factor Levels

0.477372 0.661509 1.05658 18 NORMAL
0.357214 0.528253 0.97648 12 HEPTIT

F-Test (normal distribution)
Test Statistic: 1.568
P-Value : 0.452

Levene’s Test (any continuous distribution)
Test Statistic: 1.014
P-Value : 0.323

Test for Equal Variances: NORMAL vs HEPTIT

The F test computed is 1.568 with a p value of 0.452, indicating again that
the null hypothesis is plausible.
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The test of normality is similarly carried out and the Anderson–Darling
tests for both data give respectively, p value of 0.913 for the hepatitis group
and p value of 0.386 for the normal group. In both cases, the p values are
not less than 0.05, hence we will say that there are no evidence to suggest
that the two samples were not drawn from two independent normally dis-
tributed populations. Hence our analysis for this example is valid as the two
assumptions are satisfied.

Example 5.6.2

A feeding test is conducted on a herd of 25 milking cows to compare two
diets, A and B. A sample of 12 cows randomly selected from the herd is fed
diet B (dewatered alfalfa), the remaining 13 cows are fed diet A (field-wilted
alfalfa). From observations made over a 3-week period the average daily milk
production is given in Table 5.4:

Table 5.4 Data for this example

Diet A: 44, 44, 56, 46, 47, 38, 58, 49, 35, 46, 30, 53, 41
Diet B: 35, 47, 55, 29, 40, 39, 32, 41, 42, 57, 51, 39

Do the data strongly indicate that milk yield is less with diet B than with
diet A (test at α = 0.05)?

Here too there is no information on the variances of the populations from
which the samples were drawn and the hypotheses are of the form:

H0 : μ1 ≤ μ2

Ha : μ1 > μ2

The following initial computations of means and sample variances yield the
following for both diets.

Diet A: x̄1 = 45.15,
∑

(x1i − x̄1)2 = 767.69, s2
1 = 64.0

Diet B: x̄2 = 42.25,
∑

(x2i − x̄2)2 = 840.25, s2
2 = 76.4

The pooled variance S2
P equals,

S2
P =

12s2
1 + 11s2

2

23
= 69.9, and S = 8.36.

Hence, the test statistic T is computed as,

T =
(45.15 − 42.25)

8.36
√

1
13 + 1

12

= 0.87

The d.f. = 12 + 13 − 2 = 23 and t.05(23) = 1.714 since this is a one-tailed
test. But 0.87 < 1.714; therefore, we would fail to reject H0 and conclude
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that there is no evidence that diet A significantly yields better than diet B.
This test is conducted in MINITAB with the following:
Data Display

Row Diet A Diet B

1 44 35
2 44 47
3 56 55
4 46 29
5 47 40
6 38 39
7 58 32
8 49 41
9 35 42
10 46 57
11 30 51
12 53 39
13 41

MTB > TwoSample ’Diet A’ ’Diet B’;
SUBC> Pooled;

SUBC> Alternative 1.

Two-Sample T-Test and CI: Diet A, Diet B

Two-sample T for Diet A vs Diet B

N Mean StDev SE Mean
Diet A 13 45.15 8.00 2.2
Diet B 12 42.25 8.74 2.5

Difference = mu Diet A - mu Diet B
Estimate for difference: 2.90
95% lower bound for difference: -2.83
T-Test of difference = 0 (vs >): T-Value = 0.87 P-Value = 0.197 DF = 23
Both use Pooled StDev = 8.36

The p value for the test is 0.197 ≮ 0.05. Therefore, we would fail to reject
H0, which agrees with the earlier conclusion reached.

MTB > %VarTest ’Diet A’ ’Diet B’;
SUBC> Unstacked.

Test for Equal Variances

Level1 Diet A
Level2 Diet B

F-Test (normal distribution)

Test Statistic: 0.838
P-Value : 0.762

Test for Equal Variances: Diet A vs Diet B
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A test of equality of variances of the two populations gives a p value of
0.762 ≮ 0.05. Hence we would fail to reject the null hypothesis that H0 :
σ2

1 = σ2
2 . In other words, the two populations are homogeneous.

The second assumption that the sample be drawn from independent nor-
mal populations yield Anderson–Darling Normality test p values of 0.910 and
0.585 for diets A and B respectively. In both cases, the normality assump-
tion will be satisfied as the Anderson–Darling p values indicate that there is
no evidence to suggest that the samples could not have come from normally
distributed populations. Hence our analysis in this example is valid.

5.7 The Mann–Whitney U -Test

For the two-sample pooled t-test discussed earlier, it was assumed that
(i) the variances of the two populations are equal (that is, homogeneous) and
that (ii) the two samples are drawn from normally distributed independent
populations. In reality, these two assumptions could prove to be too restric-
tive. As an alternative, the Mann–Whitney U -test, which is a nonparametric
test (does not assume any formal distribution for the populations) but
however requires that the two populations have continuous type identical
distributions. Consider the following example adapted from Samuels and
Witmer (2006). The data involve the studying of breathing patterns in an ex-
perimental and control groups. The variable of interest is the total ventilation
measurements (liters of air per minute per square meter of body area).

Experimental Control

5.32 4.50
5.60 4.78
5.74 4.79
6.06 4.86
6.32 5.41
6.34 5.70
6.79 6.08
7.18 6.21

To employ the Mann–Whitney test, we first rank the data n1 +n2 = 16 data
values in order of magnitude. These are presented below:

Experimental Rank (R1) Control Rank (R2)

5.32 5 4.50 1
5.60 7 4.78 2
5.74 9 4.79 3
6.06 10 4.86 4
6.32 13 5.41 6
6.34 14 5.70 8
6.79 15 6.08 11
7.18 16 6.21 12

89 47
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The rank sums are:

R1 = 5 + 7 + · · · + 15 + 16 = 89

R2 = 1 + 2 + · · · + 11 + 12 = 47

A test statistic that is based on R1 and R2 is obtained by first calculating:

U1 = n1n2 +
n2(n2 + 1)

2
− R2

U2 = n1n2 +
n1(n1 + 1)

2
− R1

The Mann–Whitney test employs either U1 or U2 but often, the smaller of
the two, denoted by T is usually employed. Thus, the Mann–Whitney U -test
for (μ̄1 − μ̄2) for n1 ≥ 10 and n2 ≥ 10 is given by:

z =
U1 − n1n2

2√
n1n2(n1 + n2 + 1)

12

(5.33)

The hypotheses

H0 : (μ̄1 − μ̄2) = 0

Ha : (μ̄1 − μ̄2) < 0

are tested by rejection H0 if z < −Zα. Similar rejection regions are equivalent
to what we have discussed in previous sections for the other two alternative
hypotheses (b) Ha : (μ̄1 − μ̄2) > 0 or (c) Ha : (μ̄1 − μ̄2) �= 0. We present the
analysis of the data using MINITAB.

MTB > Mann-Whitney 95.0 ’Exptal’ ’Control’;
SUBC> Alternative 0.

Mann-Whitney Test and CI: Exptal, Control

N Median
Exptal 8 6.190
Control 8 5.135

Point estimate for ETA1-ETA2 is 0.895
95.9 Percent CI for ETA1-ETA2 is (0.110,1.560)
W = 89.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0313

The alternative employed here is the two-tailed alternative (c). The p value
for this test is 0.0313 which indicated that we would reject H0 at the 5 %
significance level. We conclude therefore that there is a significant difference
in the median ventilation measurements of the two groups. We also note here



152 5 Estimation and Hypotheses Testing

that the MINITAB automatically computes the 95 % confidence intervals.
This can be changed to say, 90 % at will in MINITAB.

5.8 Comparison of Two Binomial Proportions

Suppose we have two binomial populations, A and B. If a random sample of
size n1 is taken from population A and the number of successes is denoted by
X. Another independent random sample of size n2 is taken from population
B and the number of successes is denoted by Y. The relevant hypotheses can
take one of the three forms I, II, and III as indicated in Table 5.5 of the form,
for example:

Table 5.5 The three possible alternative hypotheses

I II III

H0 : p1 ≤ p2 H0 : p1 ≥ p2 H0 : p1 = p2
Ha : p1 > p2 H0 : p1 < p2 H0 : p1 �= p2

Right-tailed test Left-tailed test Two-tailed test

Under H0, p1 = p2 = p?, where p denotes the unspecified equality population
proportion. Then,

p̂1 =
X

n1
, E(p̂1) = p1, Var(p̂1) =

p1(1 − p1)
n1

Similarly,

p̂2 =
Y

n2
, E(p̂1) = p1, Var(p̂2) =

p2(1 − p2)
n2

and

E(p̂1 − p̂2) = p1 − p2, and Var(p̂1 − p̂2) =
p1(1 − p1)

n1
+

p2(1 − p2)
n2

Thus under H0, p̂1 − p̂2 is approximately normally distributed with

E(p̂1 − p̂2) = 0

Var(p̂1 − p̂2) = p(1 − p)
(

1
n1

+
1
n2

)

since in this case p1 = p2 = p. Hence, a pooled estimate of p is given by:

p̂ =
X + Y

n1 + n2
=

n1 p̂1 + n2 p̂2

n1 + n2
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with estimated variance that equals

p̂(1 − p̂)
(

1
n1

+
1
n2

)

and the test statistic is given by:

Z =
p̂1 − p̂2√

p̂(1 − p̂)
(

1
n1

+ 1
n2

)

Example 5.7.1

A study is conducted to detect the effectiveness of mammographies. From 31
cases of breast cancer detected in women in the 40- to 49-year-old age group,
6 were found by the use of mammography alone. In older women, 38 of 101
cancers detected were found by mammography alone. Is this evidence at the
α = 0.05 level that the probability of detecting cancer by mammography
alone is higher with older women than with younger?

Solution

Let the population of younger women be characterized by p1 and the cor-
responding of older women by p2. Then the hypotheses of interest here are
type I, that is,

H0 : p2 ≤ p1

Ha : p2 > p1

From the younger women, we have p̂1 = 6
31 = 0.194. Similarly, from the older

women, we also have p̂2 = 38
101 = 0.376. Thus here X + Y = 6 + 38 = 44 and

n = n1 + n2 = 31 + 101 = 132. Hence, the pooled estimate for p is

p̂ =
X + Y

n
=

44
132

= 0.333

Thus the test statistic is

p̂2 − p̂1√

p̂(1 − p̂)
(

1
n1

+ 1
n2

) =
0.376 − 0.194

√
0.333(1 − 0.333)

( 1
31 + 1

101

) = 1.88

The corresponding p value is computed as P (Z > 1.88) = 0.0301. Our de-
cision rule rejects H0 if p value is ≤ 0.05. Since 0.0301 < 0.05, we would
therefore reject H0. Therefore, it is the case that the proportion of cancer
detected by mammography alone is higher in older women than in younger
women.
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5.9 Paired T -test

The hypotheses involving two populations that we have discussed in the pre-
vious sections in this chapter assume that the populations of interest are
independent. Consequently, we have assumed all along that the random sam-
ples from the two independent populations are themselves independent. Often
however, situations do arise in which the random samples are not indepen-
dent, where each observation in one sample is paired either by design or
naturally (left hand versus right hand of the same person) with observation
in the other sample. Examples are left and right gripping strengths of indi-
viduals, pair of twins studies in Medicine, pre- and posttest, same subjects
observed before and after receiving a treatment, and litter mates of the same
sex being assigned randomly to receive two different treatments, etc. Data
arising from these kind of studies are often called matched-pair data and the
corresponding hypothesis tests based on them have been described as paired
comparisons tests.

Example 5.8.1

A study was conducted to investigate the effect of physical training on the
triglyceride level. Eleven subjects participated in the study. Prior to training,
blood samples were taken to determine the triglyceride level of each subject.
Then the subjects were put through a training program that centered on
daily running and jogging. At the end of the training period, blood samples
were taken again and a second reading on the triglyceride level was obtained.
The data obtained are presented in Table 5.6.

In this example, the two readings are not independent, being from the
same subjects taken at different times and therefore are paired by subject.
If we denote observations from the first sample by xi, i = 1, 2, · · · , n and
observations from the second sample similarly by yi, i = 1, 2, · · · , n with cor-
responding population means μx and μy respectively. The possible hypotheses
are presented in Table 5.7.

The hypotheses in Table 5.8 are equivalent to those presented in Table 5.7
respectively:

Since the two samples are not independent, we often have to base our
analysis on the differences di = xi − yi or could alternatively be defined as
di = yi − xi. Either way, we just bear in mind that we need to formulate
the alternative hypothesis correctly. Suppose in the above example, we wish
to test the hypothesis that the training program is effective in increasing
the mean level of triglyceride. Suppose we use the differences defined by
di = xi − yi. Then,

μd = μx − μy
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Hence, our hypothesis of interest here is:

Table 5.6 Pre- and posttraining readings (in milligrams of triglyceride per 100 mL
of blood

Subject Pretraining Posttraining

1 68 95
2 77 90
3 94 86
4 73 58
5 37 47
6 131 121
7 77 136
8 24 65
9 99 131
10 629 630
11 116 104

Table 5.7 Possible hypotheses of interest

I II III

H0 : μx ≥ μy H0 : μx ≤ μy H0 : μx = μy

Ha : μx < μy Ha : μx > μy Ha : μx �= μy

Table 5.8 Equivalent hypotheses to those in Table 5.7

I II III

H0 : μx − μy ≥ 0 H0 : μx − μy ≤ 0 H0 : μx − μy = 0
Ha : μx − μy < 0 Ha : μx − μy > 0 Ha : μx − μy �= 0

H0 : μx − μy ≥ 0 or H0 : μd ≥ 0 (5.34)

Ha : μx − μy < 0 or Ha : μd < 0 (5.35)

To test this hypothesis therefore, we obtain
∑

di and hence d̄. We also obtain
the standard deviation of d, and denote this as sd. For these data, d̄ = −12.55
and sd = 24.47. The test statistic for the above hypotheses is the one-sample
t-test discussed earlier with μ0 = 0. That is,

t =
d̄ − μd

sd/
√

n
(5.36)

For our data therefore, we have,

t =
−12.55 − 0
24.47/

√
11

=
−12.55
7.38

= −1.70

The decision rule rejects H0 if t ≤ −tα(10 d.f.). That is if −1.70 ≤ −1.8125.
Since −1.70 ≮ −1.8125, we would therefore fail to reject H0 and conclude
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that the data do not support the claim that the training program increases
the mean level of triglyceride in subjects. This paired t-test is implemented
in MINITAB with the following:

MTB > Let C3=C1-C2
Data Display

Subjects PRE POST d

1 68 95 -27
2 77 90 -13
3 94 86 8
4 73 58 15
5 37 47 -10
6 131 121 10
7 77 136 -59
8 24 65 -41
9 99 131 -32

10 629 630 -1
11 116 104 12

MTB > OneT ’d’;
SUBC> Test 0;
SUBC> Alternative -1.

One-Sample T: d

Test of mu = 0 vs mu < 0

Variable N Mean StDev SE Mean
d 11 -12.55 24.47 7.38

Variable 95.0% Upper Bound T P
0.060-1.700.83d

Alternatively, we could use the paired t-test procedure in MINITAB to obtain
a similar result.

MTB > Paired ’PRE’ ’POST’;
SUBC> Alternative -1.

Paired T-Test and CI: PRE, POST

Paired T for PRE - POST

N Mean StDev SE Mean
PRE 11 129.5 168.5 50.8
POST 11 142.1 164.4 49.6
Difference 11 -12.55 24.47 7.38

95% upper bound for mean difference: 0.83
T-Test of mean difference = 0 (vs < 0): T-Value = -1.70 P-Value = 0.060
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A 95 % confidence interval for μd is computed as:

d̄ ± t.025(10 d.f.)
(

sd√
n

)

= −12.55 ± 2.2281(7.38)

= −12.55 ± 16.44

= (−28.99, 3.89)

As observed before, the above one-sample test assumes normality for the
differences di. A test of normality is presented in Fig. 5.3 and the Anderson–
Darling test gives a p value of 0.429. Hence, our assumption of the normality
of the differences di is satisfied and our analysis is valid.

Fig. 5.3 Normality test for the differences di

5.10 Chapter Summary

We summarize in Table 5.9 the various formulae and underlying condi-
tions necessary for the rightful application of the computation of confidence
intervals and hypotheses testing in one and two samples.
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where:

(i) refers to a situation where a random sample is drawn from a normal
population with σ known and the zα/2 are the z value from a standard
normal. Typical values are:

Area
1 − α zα/2

0.80 1.28
0.90 1.645
0.95 1.96
0.99 2.575

(ii) refers to the case of a random sample drawn from a normal population
with σ unknown but will be estimated from available data and the tα/2
is the critical value for a t distribution with n − 1 degrees of freedom
which gives an area of α/2 to the right of the distribution.

(iii) This refers to a large random sample from a population with a
proportion p of a certain characteristic or attribute.

(iv) refers to two random samples drawn from two normally distributed
populations with known variances (or standard deviations) σ2

1 and σ2
2

respectively.
(ivb) refers to case (iv) above but with variances unknown, but the samples

sizes are large (n1, n2 ≥ 30). In this case, s2
1 and s2

2 are respectively
estimated from the samples.

(v) is the case to two random samples drawn from two independently nor-
mal populations with both σ2

1 and σ2
2 unknown but assumed equal to

a common value (homogeneity) S2
P =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
and t is

the Student’s t distribution with n1 +n2 −2 degrees of freedom. Again,
both s2

1 and s2
2 are respectively estimated from the samples.

(vi) This is the case of two large random samples drawn from two
populations having p1 and p2 proportions of a certain attribute.

The corresponding standard errors for each of our statistics in Table 5.9 are
the denominators in each of the expressions for the test statistics. That is:

s.e.(x̄) =
s√
n

s.e.(p̂) =

√
p̂(1 − p̂)

n

s.e.(x̄1 − x̄2) =

√
σ2

1

n1
+

σ2
2

n2
, if σ2

1 , σ2
2 , are known

s.e.(x̄1 − x̄2) =

√
S2

p

n1
+

S2
p

n2
, if σ2

1 , σ2
2 , are unknown
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s.e.(p̂1 − p̂2) =

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

5.11 Exercises

1. Find zα/2 for the following levels of α,

(a) α = 0.04 (b)α = 0.08 (c) α = 0.06 (d)α = 0.14.

2. Find the tα/2(n − 1) for the following levels of α and n.

(a) α = 0.05, n = 17
(b) α = 0.01, n = 10
(c) α = 0.10, n = 15
(d) α = 0.05, n = 9

3. Find the zα/2 for the following confidence levels.

(a) 96 %
(b) 88 %
(c) 94 %
(d) 85 %
(e) 92 %

4. A milkman surveyor wishes to know how many liters of milk people over
20 drink each week. Their consultant thinks that the mean is 6.2 L of
milk per week with a standard deviation of 1.1. How large a sample would
be required in order to estimate the average number of liters of milk per
week consumed by people over 20 at the 90 % confidence level with an
error of at most 0.07 L of milk?

5. A botanist observed 150 seedlings for the purpose of studying chlorophyll
inheritance in corn. The seed came from self-fertilized heterozygous green
plants. Hence green and yellow seedlings were expected in proportions of
3 green to 1 yellow. The sample showed 120 green and 30 yellow seedlings.
Is this sample in agreement with expectations?

6. A metropolitan newspaper was considering a change to tabloid form. A
random sample of 900 of its daily readers was polled to secure readership
reaction for such a change. Of this sample, 541 persons opposed the
change in format for the paper.

(a) Is it likely that more than 50 % of the readers are in favor of the
change?

(b) Describe two or more procedures for obtaining confidence limits for
the population proportion opposed to the change.

7. A farmer claims that the average yield of corn of variety A exceeds the
average yield of variety B by at least 12 bushels/acre. To test this claim,
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50 acres of each variety are planted and grown under similar conditions.
Variety A yielded, on average, 86.7 bushels/acre with a standard de-
viation of 6.28 bushels/acre, while variety B yielded, on the average,
77.8 bushels/acre with a standard deviation of 5.61 bushels/acre. Test
the farmer’s claim using a 0.05 level of significance.

8. The following data represent the running times of films produced by two
different motion-picture companies:

Time in minutes
Company 1 81 165 97 134 92 87 114
Company 2 102 86 98 109 92

Test the hypothesis that the average running time of films produced by
company 1 exceeds the average running time of films produced by com-
pany 2 by 10 min against the one-sided alternative that the difference
is more than 10 min. Use a 0.1 level of significance and assume the
distributions of times to be approximately normal.

9. For each of the following combinations of the p value and α, decide
whether to accept or fail to reject the null hypothesis

(a) p value = 0.06, α = 0.10
(b) p value = 0.005, α = 0.05
(c) p value = 0.07, α = 0.02
(d) p value = 0.05, α = 0.03

10. Compute p values for the following tests and draw your conclusions at
α = 0.01

(a) H0 : μ = 20 vs H1 : μ > 20, z = 1.98
(b) H0 : μ = 2.5 vs H1 : μ < 2.5, z = −1.36
(c) H0 : μ = 50 vs H1 : μ �= 50, z = 2.64
(d) H0 : μ = 8.5 vs H1 : μ �= 8.5, z = −1.80

11. In clinical trials, there is what we call the placebo effect whereby pa-
tients often will report that they feel better even though the placebo
contains nothing more than an harmless composition. Suppose that in a
given study, 400 random subjects were given a placebo and the percent-
age of patients reporting improvement was 35 %. What would be a 90 %
confidence interval for the true proportion of patients in the population
who exhibit the placebo effect? Compute the same for 95 % and 99 %
confidence intervals. Compare the three results.

12. For the following small sample tests for the population mean, compute p
values for each test and draw your conclusions at α = 0.01

(a) H0 : μ = 20 vs H1 : μ > 20, t = 2.7, n = 15
(b) H0 : μ = 2.5 vs H1 : μ < 2.5, t = −2.75, n = 18
(c) H0 : μ = 50 vs H1 : μ �= 50, t = 2.4, n = 5
(d) H0 : μ = 8.5 vs H1 : μ �= 8.5, t = 2.0, n = 15
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13. Percentages of ideal body weight were determined for 18 randomly se-
lected insulin-dependent diabetics and are shown below. A percentage
of 120 means that an individual weighs 20 % more than his or her ideal
weight; a percentage of 95 means that the individual weighs 5 % less than
the ideal.

107 119 99 114 120 104 88 114 124
116 101 121 152 100 125 114 95 117

(a) Estimate μ, σ2 and σ.
(b) Construct a 95 % confidence interval for the population mean, μ, the

percentage of ideal body weight for this group.
(c) Does this confidence interval contain the value 100 %? What does the

answer to this question tell you?
(d) What assumption must be satisfied for the above analysis to be valid?

Conduct such a test.

14. The following data represent resting systolic blood pressure (SBP) of a
group of children having one hypertensive parent (group 1) and a group
of children both of whose parents have normal blood pressure (group 2).

GROUP 1:

100 102 96 106 110
110 120 112 112 90

GROUP 2:

104 88 100 98 102
92 96 100 96 96

(a) Compute the mean SBP for groups 1 and 2 children.
(b) Obtain a 95 % confidence interval for the difference, μ1 −μ2, between

means of SBP for group 1 and group 2 respectively.
(c) Use your result in (b) to test the hypotheses H0 : μ1 = μ2 vs H1 :

μ1 �= μ2 at α = 0.05
(e) What assumptions are necessary for the above analysis? Test these

assumptions from the information provided.

15. The mean carbon dioxide concentration in the air is 0.035 %. It is thought
that the concentration immediately above the soil surface is higher than
this.

(a) Set up the null and alternative hypotheses required to gain statistical
support for this contention.

(b) Suppose 144 randomly selected air samples taken from within 1 foot
of the soil were analyzed. A sample mean x̄, of 0.09 % and sample
standard deviation, s, of 0.25 % resulted. Calculate the necessary test
statistic.
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(c) Using p values, can H0 be rejected at the α = 0.10 level?
(d) Can H0 be rejected at the α = 0.05 level?
(e) Based on your decision in (d), do you think that the stated contention

has been supported statistically? Use α = 0.05.

16. A zoologist measured tail length in 86 individuals, all in the 1-year age
group, of the deermouse Peromyscus. The mean length was 60.43 mm
and the standard deviation was 3.06 mm. A 95 % confidence interval for
the mean is (59.77, 61.09). True or false and say why:

(a) We are 95 % confident that the average tail length of the 86
individuals is between 59.77 and 61.09 mm.

(b) We are 95 % confident that the average tail length of all the
individuals in the population is between 59.77 mm and 61.09 mm.

17. Acute myeloblastic leukemia is among the most deadly of cancers. Con-
sider variable X, the time in months that a patient survives after the
initial diagnosis of the disease. Assume that X is normally distributed
with a standard deviation of 3 months. Studies indicate that μ = 13
months. Consider the sample mean X̄ based on a random sample of size
16. If the above information is correct, what are the numerical values of

(a) E[X̄]
(b) Var {X̄}
(c) the standard error of the mean?

18. The drug Anturane, marketed since 1959 for the treatment of gout, is
being studied for use in preventing sudden deaths from a second heart
attack among patients who have already suffered a first attack. In the
study, 733 patients received Anturane and 742 were given a placebo. After
8 months, it was found that of out of 42 deaths from a second heart attack,
29 had occurred in the placebo group and 13 in the Anturane group.

(a) Use these data to estimate the difference in the proportion of sudden
deaths among Anturane users and among patients not receiving the
drug.

(b) Construct a 99 % confidence interval on the difference in the propor-
tion of sudden deaths among Anturane users and among patients not
on the drug.

(c) If 90 % confidence interval was constructed based on the same data,
which interval would be longer? Why? Verify your answer.

(d) Have you gained evidence to support the statement that the death
rate from second attacks is lower among patients on the drug than
among patients not on the drug? Explain.

19. The following sample of 16 measurements was selected from a population
with mean μ and standard deviation σ.
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91 80 99 110 95 106 78 121
106 100 97 82 100 83 115 104

(a) Construct an 80 % confidence interval for the population mean. You
may assume that (

∑
x = 1567,

∑
x2 = 155867). What assumptions

must be satisfied?
(b) Interpret your result in (a) and explain what would happen to the

confidence width if the confidence level is increased to 95 %?

20. A football league reported that the average number of touchdowns per
game in 1988 was eight. The number of touchdowns per game for 37
randomly selected games played this year is:

5 8 6 4 8 5 4 4 4 6 5 6 5 8 6 4 4 5 8
8 7 6 4 4 8 6 5 6 6 4 8 5 4 4 5 7 5

Do these touchdown totals suggest that the average number of touch-
downs per game, μ, for this year has decreased from the 1988 mean of
eight? Formulate the null and the alternative hypotheses for this problem
and test at the 10 % significance level. Assume σ = 0.80 and that the sum
of all the data,

∑
x = 207. Also compute the corresponding p value for

this test and draw your conclusion.
21. In a recent poll, college students were asked if they supported the state

lottery. The poll showed that 710 of the 1360 students surveyed did
support the state lottery.

(a) Determine a 99 % confidence interval for the true proportion, π, of
all college students who support the state lottery.

(b) Interpret your result in (a) and explain what would happen to the
confidence width if the sample size were increased from 1360 to 2000?
(no calculations needed!)

(c) What is the margin of error in (a)?

22. Using the MINITAB system, we get the following results:

TEST OF MU=155.000 VS MU > 155.000
THE ASSUMED SIGMA=25.9

N MEAN STDEV SE MEAN Z P VALUE
DAYS 40 166.73 25.89 4.09 2.86 0.0021

From the above printout, determine:

(a) the null and alternative hypotheses
(b) the smallest significance level at which the null hypothesis can be

rejected
(c) Show how the P value was computed.
(d) How were 2.86 and 4.09 obtained?
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23. In a 1993 study conducted by the American Management Association,
630 randomly selected major US firms were polled on their drug-testing
policies. According to the report, “ . . . 85 % of the firms surveyed now
test employees, applicants, or both.” At the 5 % significance level, do the
data provide sufficient evidence to conclude that the percentage of major
US firms that drug-tested in 1993 exceeds the 1992 figure of 74 %. Also
computer the corresponding p value for the test and once again draw
your conclusions.

24. The mean carbon dioxide concentration in the air is 0.035 %. It is thought
that the concentration immediately above the soil surface is higher than
this.

(a) Set up the null and alternative hypotheses required to gain statistical
support for this contention.

(b) Suppose 144 randomly selected air samples taken from within 1 foot
of the soil were analyzed. A sample mean x̄, of 0.09 % and sample
standard deviation, s, of 0.25 % resulted. What is the p value for this
test?

(c) Based on your decision in (b), do you think that the stated contention
has been supported statistically? Use α = 0.05.

25. Among patients with lung cancer, usually 90 % or more die within 3 years.
As a result of new forms of treatment, it is felt that this rate has been
reduced. In a recent study of 150 patients diagnosed with lung cancer,
128 died within 3 years.

(a) Calculate a point estimate of p, the true proportion of lung cancer
patients who died within 3 years.

(b) Set up the null and alternative hypotheses needed to support the
above contention.

(c) Can H0 be rejected at the α = 0.10 level?
(d) Can H0 be rejected at the α = 0.05 level?
(e) Do you think that there is sufficient evidence to claim that the new

methods of treatment are more effective than the old? Explain.

26. An investigator randomly selected 36 nerve cells from a certain region of
the brain of male guinea pigs. The counted number of dendritic branch
segments emanating from each selected cell are as follows:

38 42 25 35 35 33 48 53 17
24 26 26 47 28 24 35 38 26
38 29 49 26 41 26 35 38 44
25 45 28 31 46 32 39 59 53

The mean x̄ for these counts is 35.67 and the sample standard deviation
s is 9.99.
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(a) Obtain the standard error for the mean x̄.
(b) Construct a 95 % confidence interval for the population mean, μ, the

number of dendritic segment counts that can emanate from the body
of a male pig nerve cell.

(c) Test the hypothesis that:

H0 : μ ≤ 30

Ha : μ > 30

Use α = 0.05. Obtain the p value for this test and draw your
conclusions.

The number of wing beats per second of 16 male house flies were as
follows:

194.7 191.5 187.0 189.7 190.0 189.9 188.9 197.0
197.2 191.4 193.1 186.9 189.3 185.2 193.1 196.6

Use MINITAB or R to analyze to answer the following questions:

(a) Estimate μ, σ2 and σ.
(b) Construct a 95 % confidence interval for the population mean, μ, the

number of beats of male flies.
(c) If the mean number of wing beats of female flies is 190, do the data

above support the claim that the wings of the males beat with a dif-
ferent frequency? Explain your answer on the basis of the confidence
interval obtained.

(d) What assumption must be satisfied for the above analysis to be valid?
Conduct such a test.

(e) What is the standard error of the mean?

The activity of an enzyme (units per gram protein) in 12 liver tissues
infected with hepatitis and 18 normal liver tissues were as follows:

HEPATITIS LIVER TISSUES:

4.15 4.48 4.22 3.94 4.52 3.70
4.77 4.03 3.90 4.86 3.16 3.33

NORMAL LIVER TISSUES:

3.15 4.23 3.12 2.70 3.99 4.40
3.86 3.86 3.16 4.27 4.34 3.79
4.28 4.63 4.98 3.52 2.77 3.18

Use MINITAB or R to conduct a two-sample T test for the data.

(a) Test the hypotheses that:

H0 : μ1 = μ2

Ha : μ1 �= μ2

Use α = 0.05.
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(b) What assumptions are necessary for the above analysis? Conduct
these tests.

In running a white cell count, a drop of blood is smeared thinly and
evenly on a glass slide, stained with Wright’s stain, and examined under
a microscope. Of 200 white cells counted, 125 were neutrophils, a white
cell produced in the bone marrow whose function, in part, is to take up
infective agents in the blood.

(a) Find a point estimate for p, the proportion of neutrophils found
among the white cells of this individual.

(b) Construct a 95 % confidence interval for p.
(c) In a normally healthy individual, the percentage of neutrophils

among the white cells is 60–70 %. Based on the interval obtained
in part (b), is there clear evidence of a neutrophil imbalance in this
individual? Explain.

(d) How large a sample should be drawn if we let the margin of error
d = 0.05, the confidence coefficient is 0.95, and no estimate of p is
available from previous studies?

In a study of water usage in a small town, a random sample of 25 homes
is obtained. The variable of interest is X, the number of gallons of water
utilized per day. The following observations are obtained on a randomly
selected weekday.

175 185 186 168 158
150 190 178 137 175
180 200 189 200 180
172 145 192 191 181
183 169 172 178 210

(a) Estimate μ, σ2 and σ.
(b) Construct a 90 % confidence interval for μ.
(c) The reservoir is large enough to handle an average usage of 160 gal-

lons/day. Does there appear to be a water shortage problem in the
town? Explain your answer on the basis of the confidence interval
obtained.

(d) What assumptions must be satisfied for the above analysis to be
valid?

Using specimens obtained from 10 individuals, determinations of percent
calcium content of sound teeth gave the following results:

36.39 36.19 34.20 35.15 35.47
35.22 36.11 35.63 36.63 35.59

If the mean percentage of calcium content of sound teeth in all individuals
is 35, do the data above support the hypothesis that average calcium
content in such individuals is different from 35?
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(a) Test the above hypothesis at α = 0.05 level of significance.
(b) What assumption must be satisfied for the above test to be valid?

Conduct such a test.
(c) What is the value of the test statistic?
(d) How was the standard error for the mean obtained?
(e) Obtain a 95 % confidence interval for the population mean, μ, the

average calcium content of sound teeth for all individuals.

An experimental flock of 200 chickens is inoculated with an organism
suspected of causing a set of clinical signs observed in several commercial
flocks in recent months.Within 14 days after inoculation, 137 of the birds
have exhibited the characteristic signs. Suppose the chickens are housed
and handled in such a way that cross infection is not a problem and that
independence can be assumed. Find:

(a) A point estimate p̂ of the proportion of inoculated chickens showing
the signs within 14 days.

(b) Find σp̂.
(c) Obtain a 92 % confidence interval for the population proportion of

inoculated chickens showing signs within 14 days.
(d) Interpret your result.

Scientific method or scientific inquiry is the procedure whereby knowledge is
acquired. Science is an attempt to extend our range of knowledge.

The evaluated knowledge is then used to formulate a hypothesis which is
a tentative or a postulated explanation of a phenomenon.



Chapter 6
Analysis of Variance (ANOVA)

6.1 Introduction

In the last chapter, we were able to compare two population means using
either the large sample Z test or the two-sample t test. Analysis of vari-
ance (that is, analysis based on the variation in the data) often written as
“ANOVA” concerns how to test the means of more than two populations.
Suppose we have k populations each distributed independently with mean μi

and variance σ2
i , i = 1, 2, · · · , k. Then the hypotheses of interest here are:

H0 : μ1 = μ2 = · · · = μk

Ha : at least two of these means are not equal (6.1)

ANOVA therefore is a powerful tool for testing such hypotheses as in (6.1). It
also allows us to test for interaction effects among factors as we will discuss
in later chapters.

To carry out the above hypotheses in (6.1), suppose we take simple random
samples of equal sizes (we will consider the case of unequal sample sizes later)
r (equal replication) from each of these populations. Then we can compute
ȳi and s2

i , the sample mean and sample variance for each sample, where:

ȳi =
∑

yij

r
, s2

i =
∑

y2
ij − rȳi; i = 1, 2, · · · , k; j = 1, 2, · · · , r

and a typical layout for such a data is presented in Table 6.1.

Table 6.1 Table of observations for one-way ANOVA

Treatments Observations Total

1 y11 y12 · · · y1r Y1+
2 y21 y22 · · · y2r Y2+
...

...
... · · ·

...
...

k yk1 yk2 · · · ykr Yk+

Total Y+1 Y+2 · · · Y+k Y++

169B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 6,
c© Springer International Publishing Switzerland 2014
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6.1.1 Analysis of Variance of Table 6.1

There are r × k = rk observations in the data and if we let G =
k∑

i=1

r∑

j=1

yij =

Y++, then,

The correction factor (C.F.) =
Y 2

++

rk
=

G2

rk
.

The total sums of squares (Total SS) is computed as:

Total SS = y2
11 + y2

12 + · · · + y2
kr − CF =

∑

i

∑

j

y2
ij −

Y 2
++

rk
= TSS

and is based on (rk − 1) degrees of freedom. That is, the total number of
observations minus one.

The treatments sum of squares (TSS) is similarly computed as:

TSS =
Y 2

1+

r
+

Y 2
2+

r
+ · · · +

Y 2
k+

r
− CF =

∑

i

Y 2
i+

r
−

Y 2
++

rk

and is also based on (k−1) degrees of freedom. Again, this is obtained as the
total number of treatments minus one. For brevity, if we denote the treatment
totals as T1, T2, · · · , Tk, then, the treatment SS (or between samples sum of
squares) can be computed as:

TSS =
T 2

1

r
+

T 2
2

r
+ · · · +

T 2
k

r
− CF

The error sum of squares is obtained by subtraction as Total SS−Treatment
SS, or as:

SSE =
∑

i

∑

j

y2
ij −

Y 2
i+

r

and is based on Total d.f.−Treatment d.f. = rk−1−(k−1) = k(r−1) degrees
of freedom.

We can put all these more succinctly in what is called the analysis of
variance table which is displayed in Table 6.2.

Table 6.2 Analysis of variance table

Source of
variation d.f. SS MS F

Treatments k − 1 TSS TSS
k−1 = A

A

S2

Error k(r − 1) SSE SSE
k(r−1) = S2

Total rk − 1 Total SS
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Where:

(a) The MS = Mean Squares obtained by dividing the SS with their cor-
responding degrees of freedom. Thus for instance, the Treatments

MS =
TSS
k − 1

. Similarly for the error line, we have,
SSE

k(r − 1)
= MSE

(MSE = mean square error). Please note that we did not have a mean
square value for the Total SS line.

(b) The error mean square (EMS) is a pooled variance estimate of the
population variance σ2 (unknown) and is often denoted by S2.

(c) The F values (F ratios) are computed as the ratio of (Treatments
MS)/(EMS) and are distributed as the F distribution with (k − 1) and
(k(r − 1)) degrees of freedom.

(d) We note here that:
• Total SS = TSS + Error SS
• Total d.f. = Treatment d.f. + Error d.f.

The appropriate test procedure for the hypotheses in (6.1) is derived from the
analysis of variance table in Table 6.2. The value under the F-column A

S2 is,
when H0 is true, distributed as F distribution with k−1 and k(r−1) degrees
of freedom. This value can be compared with the tabulated F value with the
corresponding pairs of degrees of freedom at a specified α level (Table 4 in the
Appendix). The one-way analysis of variance (it is one way because, there is
only one partition above the Total SS line in addition to the Error SS line)
validity is contingent on the following assumptions being true.

6.1.2 Assumptions of the One-Way ANOVA Model

The following are some of the assumptions underlying the one-way analysis
of variance.

(i) The populations from which the samples are drawn are assumed to be
approximately normally distributed and independent.

(ii) The populations are homogeneous. That is, we will assume that the
population variances are equal, viz.:

σ2
1 = σ2

2 = · · · = σ2
k = σ2.

For a given data set, these assumptions must therefore be tested to ensure
the validity of our analysis. We give below an example of one-factor ANOVA
analysis and the subsequent tests for the validity of the above assumptions.
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6.1.3 An Example

Carbon dioxide is known to have a critical effect on microbiological growth.
Small amounts of CO2 stimulate the growth of many organisms, while high
concentrations inhibit the growth of most. The latter effect is used com-
mercially when perishable food products are stored. A study is conducted
to investigate the effect of CO2 on the growth rate of Pseudomonas fragi,
a food spoiler. Carbon dioxide is administered at five different atmospheric
pressures. The response noted was the percentage change in cell mass after
1-h growing time. Ten cultures are used at each level. The following are the
data so obtained (Table 6.3).

Table 6.3 Factor (CO2 pressure in atmospheres) level

Atmospheric pressure levels

Sample 0.0 0.083 0.29 0.50 0.86

1 62.6 50.9 45.5 29.5 24.9
2 59.6 44.3 41.1 22.8 17.2
3 64.5 47.5 29.8 19.2 7.8
4 59.3 49.5 38.3 20.6 10.5
5 58.6 48.5 40.2 29.2 17.8
6 64.6 50.4 38.5 24.1 22.1
7 50.9 35.2 30.2 22.6 22.6
8 56.2 49.9 27.0 32.7 16.8
9 52.3 42.6 40.0 24.4 15.9
10 62.8 41.6 33.9 29.6 8.8∑

y 591.4 460.4 364.5 254.7 164.4
ȳ 59.14 46.04 36.45 25.47 16.44

For the above data, k = 5 and r = 10. Hence, there are rk = 50
observations in the data. The Total SS is computed as:

Total SS = 62.62 + 50.92 + · · · + 29.62 + 8.82 − (1835.4)2

50
= 12, 522.3568

where G =
∑

yij = 62.6 + 50.0 + · · · + 29.6 + 8.8 = 1835.4.
Similarly, the Treatments SS, TSS, is computed as:

TSS =
591.42

10
+

460.42

10
+

364.52

10
+

254.72

10
+

164.42

10
− 1835.42

500
= 11, 274.3188

Hence, the Error SS is computed by subtraction as:

Error SS = Total SS − TSS = 12, 522.3568 − 11, 274.3188 = 1248.0380.

The resulting ANOVA table is presented in Table 6.4.
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Table 6.4 Analysis of variance table for the example

Source of
variation d.f. SS MS F

Treatments 4 11,274.3188 2818.5797 101.63
Error 45 1248.0380 27.7342 = S2

Total 49 12,522.3568

From Table 4 in the appendix, F (4, 45, α = 0.05) = 2.61. Since the calcu-
lated F -value from our ANOVA table is 101.63 >> 2.61, we would therefore
strongly reject the null hypothesis. Consequently, we can at this point, con-
clude that there are significant differences in the means of the atmospheric
levels at 0.05 level of significance.

We can implement the above analysis in MINITAB in two ways. Here, we
have chosen to read the data in unstacked way (that is by levels). The ANOVA
table for this analysis is also provided by MINITAB with results presented to
only one decimal point. The results are consistent with what we obtained by
hand calculations. The p value for the test of the hypotheses is 0.0000 <<
0.05. Since we reject when p value < 0.05, i.e., we will strongly reject H0.

MTB > read c1-c5
DATA> 62.6 50.9 45.5 29.5 24.9
DATA> 59.6 44.3 41.1 22.8 17.2
DATA> 64.5 47.5 29.8 19.2 7.8
DATA> 59.3 49.5 38.3 20.6 10.5
DATA> 58.6 48.5 40.2 29.2 17.8
DATA> 64.6 50.4 38.5 24.1 22.1
DATA> 50.9 35.2 30.2 22.6 22.6
DATA> 56.2 49.9 27.0 32.7 16.8
DATA> 52.3 42.6 40.0 24.4 15.9
DATA> 62.8 41.6 33.9 29.6 8.8
DATA> end
10 rows read.
MTB > AOVOneway ’P1’ ’P2’ ’P3’ ’P4’ ’P5’;
SUBC> Tukey 5;
SUBC> GBoxplot;
SUBC> GNormalplot;
SUBC> NoDGraphs.

One-way ANOVA: P1, P2, P3, P4, P5

Source DF SS MS F P
Factor 4 11274.3 2818.6 101.63 0.000
Error 45 1248.0 27.7
Total 49 12522.4

S = 5.266 R-Sq = 90.03% R-Sq(adj) = 89.15%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -+---------+---------+---------+--------
)--*-(4.80559.140101P

)-*--(5.05346.040102P
P3 10 36.450 5.934 (-*--)
P4 10 25.470 4.483 (-*-)
P5 10 16.440 5.894 (-*-)

-+---------+---------+---------+--------
15 30 45 60
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Pooled StDev = 5.266

Bartlett’s Test (Normal Distribution)

Test statistic = 1.07, p-value = 0.899

Levene’s Test (Any Continuous Distribution)
Test statistic = 0.19, p-value = 0.941

We notice that there are significant differences between the five levels. At this
point, we can not fully determine which level is necessarily the best until we
consider multiple comparison procedure at a later chapter, however, we see
from the generated means from MINITAB above that there are differences
between the means which range from 16.44 to 59.140. The box plot of these
means is presented in Fig. 6.1. It is clear that level 5 seems to be the best but
whether it is better than level 4 or 3 at this point we do not know. We shall
investigate this further later. However, we can demonstrate at this point, the
analysis of variance (ANOVA) procedure is an extension of the two-sample
t test that we considered in the previous chapter. We demonstrate this by
computing the pooled estimate of the unknown population variances (that
are assumed equal).

Fig. 6.1 Box plots of the pressure level means
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6.1.4 Extending the Two-Sample t Test

For each of our samples, we noted that we would obtain ȳi and s2
i for

i = 1, 2, · · · , k. Thus, under the assumption that the populations are ho-
mogeneous, then, an estimate of the pooled estimate of the common variance
σ2 is obtained as:

S2
P =

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · · + (nk − 1)s2
k

(n1 − 1) + (n2 − 1) + · · · + (nk − 1)
(6.2)

If ni = n, ∀ i, (for all i) then, the above reduces to:

S2
P =

(n − 1)s2
1 + (n − 1)s2

2 + · · · + (n − 1)s2
k

(n − 1) + (n − 1) + · · · + (n − 1)
=

1
k

k∑

i=1

s2
i

For our data in the above example, n = 10 = r and k = 5. Here, s2
1 = 23.0849,

s2
2 = 25.5293, s2

3 = 35.2117, s2
4 = 20.1001, and s2

5 = 34.7449. Thus,

S2
P =

23.0849 + 25.5293 + · · · + 34.7449
5

=
138.6709

5
= 27.7342

We notice that this computed value of S2
P = 27.7342 is exactly what we

obtained as the Error mean square (EMS) under the analysis of variance in
Table 6.4. We therefore see that the analysis is a general extension of the
two-sample t test to k means.

Without further knowledge about the five levels, the making of particular
comparisons between pairs of levels is rather dangerous. However, it is clear
that level 5 is the best atmospheric pressure as it has the lowest percentage
change.

6.2 Multiple Comparisons Procedures

We have seen that although the F test above indicates that there are signif-
icant differences among the level (treatment) means, however, this does not
tell or indicate which specific means are significantly different. To do this,
we have to conduct paired comparisons. In this example, since we have five

population means, we would therefore need to make
(

5
2

)

= 10 such paired

comparisons, leading to what is often known as multiple comparison tests
because we are making more comparisons than allowed by the treatment de-
grees of freedom (Here, 10 > 4). We consider some of the procedures for
conducting multiple comparisons in what follows.
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6.2.1 Fisher’s Least Significant Difference (LSD)

For any two means, say, μi and μj , with i �= j, the hypothesis of interest is

H0 : μi = μj

Ha : μi �= μj , i �= j.

To conduct the test, the standard error for the difference between the two

sample means is
√

S2

r1
+ S2

r2
. In our example, this equals

√
2S2

10 since r1 =
r2 = 10. The least significance difference is

LSD =

√
2S2

10
× t0.025,45 = 2.3552 × 2.0141 = 4.7436,

where t0.025,45 = 2.0141 is the Students’ t-distribution percentile based on the
error degrees of freedom of 45 at the α = 0.05 level of significance. In other
words, the two means μi and μj will be significantly different at α = 0.05
level of significance if

|ȳi. − ȳj.| ≥ 4.7436, for i �= j. (6.3)

The implementation of this in MINITAB is presented in a summarized result
below and is accomplished in MINITAB by specifying after the model state-
ment means level/lsd, where level is the factor name. The result is given in
the previous section.

Alternatively, we could use confidence interval approach to implement the
same. Here, 95 % confidence intervals for the ten pairs of comparisons can be
obtained as follows:

(ȳi. − ȳj.) ± t0.025,45 ×
√

2S2

10
= (ȳi. − ȳj.) ± 4.7436.

For levels 1 and 2 for instance, this becomes

(59.14 − 46.04) ± 4.7436 = 13.10 ± 4.7436 = (8.3564, 17.8436).

Since this interval does not include zero, therefore, we can conclude that
there is a significant difference between level means 1 and 2. The procedure
is then repeated for the other nine paired comparisons. This can readily
be accomplished in MINITAB by specifying after the model statement, the
following: MINITAB will conduct both Tukey and LSD tests. The LSD results
are presented below.
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N Mean Grouping

Grouping Information Using Fisher Method

P1 10 59.140 A
P2 10 46.040 B
P3 10 36.450 C
P4 10 25.470 D
P5 10 16.440 E

Means that do not share a letter are significantly different.

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons

Simultaneous confidence level = 72.40%

P1 subtracted from:

Lower Center Upper ---------+---------+---------+---------+
P2 -17.844 -13.100 -8.356 (-*-)
P3 -27.434 -22.690 -17.946 (-*-)
P4 -38.414 -33.670 -28.926 (-*)
P5 -47.444 -42.700 -37.956 (-*-)

---------+---------+---------+---------+
-2 0        25 50

P2 subtracted from:

Lower Center Upper ---------+---------+---------+---------+
P3 -14.334 -9.590 -4.846 (-*-)
P4 -25.314 -20.570 -15.826 (-*-)
P5 -34.344 -29.600 -24.856 (-*-)

---------+---------+---------+---------+
-25 0 25 50

P3 subtracted from:

Lower Center Upper ---------+---------+---------+---------+
P4 -15.724 -10.980 -6.236 (-*-)
P5 -24.754 -20.010 -15.266 (-*-)

---------+---------+---------+---------+
-25 0  25 50

P4 subtracted from:

Lower Center Upper ---------+---------+---------+---------+
P5 -13.774 -9.030 -4.286 (-*-)

---------+---------+---------+---------+
-25 0  25 50

Other statistical softwares, such as SAS, often warns us with NOTE: This
test controls the Type I comparison-wise error rate, not the experiment-wise
error rate. It is therefore important that we discuss briefly what is meant by
experiment-wise error rate.
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6.2.2 Experiment-Wise Error Rate (EER)

With several comparisons on the means, the experiment-wise error rate
(EER) is the probability that one or more of the comparison tests result
in a Type I error (that is, the probability of rejecting at least one correct null
hypothesis under several other competing null hypotheses—which may be
true or false). If the comparisons are independent, then the experiment-wise
error rate is

α∗ = 1 − (1 − α)h,

where α∗ is the experiment-wise error rate, α is the per-comparison error rate
or specified level of significance, and h is the total number of comparisons. In
our example for instance, where there are 10 independent comparisons to be
made at the 0.05 level of significance each, then the probability that at least
one of them would result in a Type I error is

1 − (1 − 0.05)10 = 0.4013.

Clearly, a Type I error rate of 0.4013 is unacceptable. However, if the com-
parisons are not independent then the experiment-wise error rate is less than
1 − (1 − α)h and regardless of whether the comparisons are independent,
α∗ ≤ h α. In our example for instance, 0.4013 < 10(0.05) = 0.50.

Although Fisher’s LSD does not control the experiment-wise error rate,
the results obtained indicate that there are significant differences in the ten
pairs. Thus level 5 gives the lowest mean, while level 1 gives the highest rate
of change of bacteria. Since lowest is best here, we would recommend level 5
as the best.

We now consider multiple comparisons procedures that endeavor to control
the experiment-wise error rates in the following sections.

6.2.3 The Tukey Test

The Tukey test procedure uses the critical value qα(k, ν) which is obtained
from tables of significant studentized ranges (two-tailed Table 6 in the Ap-
pendix) having k treatments, in the expression in (6.4). Here, α is the upper
tail of the q distribution and ν is the number of degrees of freedom on which
the mean square error (MSE) is based and bi is the number of observations
on which the means are based. That is, we need to obtain

Significance difference (SD) = qα(k, ν) ×
√

MSE

bi
. (6.4)

In our example, bi = 10, and if α = 0.05 and
√

MSE/10 =
√

27.7342/10 =
1.6654, hence q0.05(5, 45) = 4.025 where k = 5 is the number of means to be
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compared. Now SD = 1.6654 × 4.025 = 6.7032, approximately. When testing
differences between the various means, if the difference between any two
means is larger than the SD = 6.7032, then the means are assumed to be
significantly different. That is, if

|ȳi. − ȳj.| ≥ 6.7032, for i �= j. (6.5)

The implementation of this in MINITAB is presented in a summarized re-
sult below and is accomplished in MINITAB by specifying after the model
statement means level/tukey lines.

In general, to conduct Tukey’s test, we would do the following:

(a) Calculate the SD for a specified α level as in (6.4).
(b) Rank the treatment means from smallest to largest.
(c) For those treatment means not indicating significance, place a bar under

those pairs. Any pair not connected by an underbar implies significant
difference in the population means.

We may note that Tukey’s procedure ensures that all comparisons are made
at the specified α significance value. For our example, the results indicate
significance differences between all means.

Results of Tukey’s test
ȳ5. ȳ4. ȳ3. ȳ2. ȳ1.

16.44 25.47 36.45 46.04 59.14

We present below the MINITAB output for conducting Tukey’s test on the
data in Table 6.3.

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -+---------+---------+---------+--------
P1 10 59.140 4.805 (-*--)
P2 10 46.040 5.053 (--*-)
P3 10 36.450 5.934 (-*--)
P4 10 25.470 4.483 (-*-)
P5 10 16.440 5.894 (-*-)

-+---------+---------+---------+--------
15 30 45 60

Pooled StDev = 5.266

MTB > AOVOneway ’P1’ ’P2’ ’P3’ ’P4’ ’P5’;
SUBC> Tukey 5;
SUBC> Fisher 5.
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Grouping Information Using Tukey Method

N Mean Grouping
P1 10 59.140 A
P2 10 46.040 B
P3 10 36.450 C
P4 10 25.470 D
P5 10 16.440 E

Means that do not share a letter are significantly different.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons

Individual confidence level = 99.33%

P1 subtracted from:

Lower Center Upper +---------+---------+---------+---------
P2 -19.795 -13.100 -6.405 (--*-)
P3 -29.385 -22.690 -15.995 (--*--)
P4 -40.365 -33.670 -26.975 (--*-)
P5 -49.395 -42.700 -36.005 (--*--)

+---------+---------+---------+---------
-50 -25 0 25

P2 subtracted from:

Lower Center Upper +---------+---------+---------+---------
P3 -16.285 -9.590 -2.895 (--*--)
P4 -27.265 -20.570 -13.875 (--*-)
P5 -36.295 -29.600 -22.905 (--*--)

+---------+---------+---------+---------
-50 -25 0 25

P3 subtracted from:

Lower Center Upper +---------+---------+---------+---------
P4 -17.675 -10.980 -4.285 (--*-)
P5 -26.705 -20.010 -13.315 (--*--)

+---------+---------+---------+---------
-50 -25 0 25

P4 subtracted from:

Lower Center Upper +---------+---------+---------+---------
P5 -15.725 -9.030 -2.335 (-*--)

+---------+---------+---------+---------
-50 -25 0 25
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6.3 Contrasts

We will discuss other multiple comparison procedures in Chap. 10. However
here, we will define contrasts and the concept of orthogonal contrasts.

Definition of Contrast

For k treatments having population means μ1, μ2, . . . , μk, a contrast L is a
linear combination of the k treatment means, that is

L = c1μ1 + c2μ2 + · · · + ckμk =
k∑

i=1

ciμi, (6.6)

where c1, c2, . . . , ck are constants such that
k∑

i=1

ci = 0.

Consider for example four treatments A, B, C, and D. One might be
interested in the following comparisons (contrasts):

L1 = μA − μB + μC + μD

3
,

L2 = μB − μC + μD

2
,

L3 = μC − μD.

(a) In L1, cA = 1, cB = cC = cD = −1
3 . Hence, L1 is a linear combination of

the four means and
∑

ci = 0. Thus, L1 is a contrast.
(b) In L2, cA = 0, cB = 1, cC = cD = − 1

2 . Hence, L2 is a linear combination
of the four means and again,

∑
ci = 0. Thus, L2 is also a contrast.

(c) Similarly, in L3, cA = 0, cB = 0, cC = 1, cD = −1. Again, this indicates
that L3 is a linear combination of the means and that

∑
ci = 0 in this

case.

Alternatively, we may decide not to work with fractions and rewrite the
contrasts, say, L1 as L1 : 3μA − μB − μC − μD. The results of removing
fractions are displayed in the following table.

Contrasts μA μB μC μD

L1 3 −1 −1 −1
L2 0 2 −1 −1
L3 0 0 1 −1

Definition of Orthogonal Contrasts

Two contrasts, say,

L1 =
k∑

i=1

ciμi and L2 =
k∑

i=1

diμi,
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where c1, c2, . . . , ck and d1, d2, . . . , dk are constants with
k∑

i=1

ci = 0 and

k∑

i=1

di = 0 are said to be orthogonal if and only if

k∑

i=1

ci di = 0.

For instance, in the four treatments example above, the pairs of contrasts
(L1, L2), (L1, L3), and (L2, L3) are orthogonal. That is, L1, L2, and L3 are
pairwise orthogonal. This has implications for partitioning the treatment SS
into the three components represented by the contrasts. We shall examine an
example of this in a later section in this chapter.

6.4 Partitioning the Treatments SS

For our example, the treatment degrees of freedom is 4, hence we can form at
most four contrasts each based on 1 degree of freedom, in this study. Suppose
the contrasts so formed are presented in the following table.

Contrasts μ1 μ2 μ3 μ4 μ5
∑

i c2i

L1 −1 −1 −1 −1 4 20
L2 −1 −1 −1 3 0 12
L3 −1 −1 2 0 0 6
L4 −1 1 0 0 0 2

The above contrasts correspond respectively to the following null hypotheses:

H0 : L1 = μ5 − μ1 + μ2 + μ3 + μ4

4
= 0

H0 : L2 = μ4 − μ1 + μ2 + μ3

3
= 0

H0 : L3 = μ3 − μ1 + μ2

2
= 0

H0 : L4 = μ2 − μ1 = 0

These contrasts can be estimated and tested in MINITAB with the following
code statements and corresponding partial output using the GLM procedure.
Note how the contrasts are declared as covariates.
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MTB > code (1) -1 (2) -1 (3) -1 (4) -1 (5) 4 c7 c8

MTB > code (1) -1 (2) -1 (3) -1 (4) 3 (5) 0 c7 c9

MTB > code (1) -1 (2) -1 (3) 2 (4) 0 (5) 0 c7 c10

MTB > code (1) -1 (2) 1 (3) 0 (4) 0 (5) 0 c7 c11

MTB > GLM ’Y’ = L1 L2 L3 L4;

SUBC> Covariates ’L1’ ’L2’ ’L3’ ’L4’;

SUBC> Brief 2 .

General Linear Model: Y versus

Factor Type Levels Values

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

L1 1 5134.9 5134.9 5134.9 185.15 0.000

L2 1 3544.7 3544.7 3544.7 127.81 0.000

L3 1 1736.7 1736.7 1736.7 62.62 0.000

L4 1 858.1 858.1 858.1 30.94 0.000

Error 45 1248.0 1248.0 27.7

Total 49 12522.4

S = 5.26632 R-Sq = 90.03% R-Sq(adj) = 89.15%

Term Coef SE Coef T P

Constant 36.7080 0.7448 49.29 0.000

L1 -5.0670 0.3724 -13.61 0.000 5 vs others

L2 -5.4350 0.4807 -11.31 0.000 4 vs 1, 2 & 3

L3 -5.3800 0.6799 -7.91 0.000 3 vs 2 & 1

L4 -6.550 1.178 -5.56 0.000 2 vs 1

We note the following from the above partial MINITAB output for this
example:

1. First, because the design is balanced (each treatment being equally repli-
cated), the Type I and adjusted Type III SS are the same. This is often
not the case for unbalanced designs.

2. The total of all contrasts SS equals the original Treatment (level) SS of
11,274.3188. That is,

5134.898 + 3544.707 + 1736.664 + 858.050 = 11, 274.319
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The sum of squares for the contrasts add up to the original treatment SS in
this case because the contrasts are pairwise orthogonal. That is, for constants
ci and dj , we have

5∑

i=1

5∑

j=1

ci dj = 0, for all pairs of contrasts.

Calculating Contrasts SS For any contrast L =
k∑

i=1

ciμi, the SS is

obtained as

SS(L) =

(∑k
i=1 ci yi.

)2

bi

∑
c2
i

, (6.7)

where yi. is the total for treatment i. For example, for the L1 contrast,
bi = 10,

∑
c2
i = 42 + 4 = 20, hence, SS(L1) is

[(591.4)(−1) + (460.4)(−1) + (364.5)(−1) + (254.7)(−1) + (164.4)(4)]2

(20)(10)

=
(−1013.4)2

120
= 5134.898 = 5134.898

Similarly, SS(L2) is

[(591.4)(−1) + (460.4)(−1) + (364.5)(−1) + (254.7)(3)]2

(12)(10)
=

(−652.2)2

120

= 3544.707

SS(L3) is computed as

[(591.4)(−1) + (460.4)(−1) + (364.5)(2)]2

(6)(10)
=

(−322.8)2

60
= 1736.664.

Finally, SS(L4) is similarly calculated as

[(591.4)(−1) + (460.4)(1)]2

(2)(10)
=

(−131)2

20
= 858.05.

Each of the above calculated contrasts SS is based on 1 degree of freedom.
To obtain corresponding estimates of means using the MINITAB approach,
we note that for contrast L1 for instance, this equals

4ȳ5. − (ȳ1. + ȳ2. + ȳ3. + ȳ4.)
20

=
4(16.44) − (59.14 + 46.04 + 36.45 + 25.47)

20
= −5.067
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with corresponding standard error calculated as
√

16S2

10 + 4S2

10

202 =

√
20 × 27.7342

202 × 10
= 0.3724.

Similarly for the contrast L2, the mean estimate equals

3ȳ4. − (ȳ1. + ȳ2. + ȳ3.)
12

=
3(25.47) − (59.14 + 46.04 + 36.45)

12
= −5.435

with corresponding standard error calculated as
√

9S2

10 + 3S2

10

122 =

√
12 × 27.7342

122 × 10
= 0.4807.

Also for L3, the mean estimate and corresponding standard error are
computed as:

L̄3 =
2ȳ3. − (ȳ1. + ȳ2.)

6
=

2(36.45) − (59.14 + 46.04)
6

= −5.380

s.e. =

√
4S2

10 + 2S2

10

62 =

√(
6 × 27.7342

62 × 10

)

= 0.6799.

Finally, the mean estimate and corresponding standard error for L4 are
computed as:

L̄4 =
ȳ2. − ȳ1.

2
=

46.04 − 59.14
2

= −6.550

s.e. =

√
S2

10 + S2

10

22 =

√(
2 × 27.7342

22 × 10

)

= 1.1778.

These calculated results are consistent with those generated using
MINITAB which were displayed earlier. We may observe that denominators
in all the cases are the number of replications r multiplied by the appropriate∑

i c2
i in the contrast formulation. Of course in this example, we have only

four contrasts that are all very significant, indicating again that level 5 gives
the lowest growth rate of the bacteria and hence the best in this example.

6.5 Tests of Homogeneity of Variances

At this point, we need to test the assumptions underlying the analysis. The
test that the data come from normal populations with constant variance
σ2 is sometimes referred to as Bartlett’s test of homogeneity of variances.
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The implication of the constant variance assumption under the assumptions
above is that all treatments came from the same population. What this in
essence means is that the treatments are assumed to have equal variances.
If this were not so, then all the inferences, t-tests etc., are invalid. It is
therefore important to check whether this assumption of equality of variances
or homogeneity is invalidated and in order to do this, we use Bartlett’s test
of homogeneity. We are interested in testing the hypotheses,

H0 : σ2
1 = σ2

2 = · · · = σ2
k

Ha : at least two of these are not equal (6.8)

where k is the number of treatments or number of factor levels. To implement
Bartlett’s test, we perform the following calculations for the data in Table 6.3.
To accomplish the above hypotheses, we will employ Bartlett’s homogeneity
test which is based on the following computations:

(1) Compute the pooled variance for the three sites as

S2
P =

1
N − k

k∑

i=1

(ri − 1)s2
i , i = 1, 2, · · · , k

(2) Compute

q = (N − k) log10 S2
p −

k∑

i=1

(ri − 1) log10 s2
i

(3) Compute

c = 1 +
1

3(k − 1)

[
k∑

i=1

(ri − 1)−1 − (N − k)−1

]

(4) Then,

χ2
0 = 2.3026

q

c
∼ χ2

k−1

N =
k∑

i=1

ri and s2
i is the sample variance of the ith treatment. We would

therefore reject H0, whenever χ2
0 > χ2

α,k−1.

6.5.1 Bartlett’s Test for Data in Table 6.3

For the data in Table 6.3, we have s2
1 = 23.0849, s2

2 = 25.5293, s2
3 = 35.2117,

s2
4 = 20.1001, s2

5 = 34.7449, and S2
P = 27.7342. Here k = 5, n1 = n2 = n3 =

n4 = n5 = 10 (number of replications). Hence, N =
∑

ri = 5 × 10 = 50 and
therefore,
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q = 45 log 27.7342 − 9(log 23.0849 + log 25.5293 + log 35.2117

+ log 20.1001 + log 34.7449)

= 64.9350 − 9(7.1611)

= 0.4858

That is, q = 0.4858.

c = 1 +
1

3 × (5 − 1)

[
5
9

− 1
45

]

= 1 +
2
45

= 1.0444

Hence,

X2
0 = 2.3026

(
0.4858
1.0444

)

= 1.0710 (6.9)

But, χ2
0.05,4 = 7.35 and since 1.0710 
 7.35, we would fail to reject H0 and

conclude that indeed, the treatment populations all have the same variance
at the 5 % significance point. Bartlett’s test is implemented in MINITAB
with the following statements and modified output (Fig. 6.2).

Test for Equal Variances: Y versus LEVELS

MTB > Vartest ’Y’ ’LEVELS’;
SUBC> Confidence 95.0.

Test for Equal Variances: Y versus LEVELS

95% Bonferroni confidence intervals for standard deviations

LEVELS N Lower StDev Upper
1 10 2.96775 4.80467 10.9432
2 10 3.12092 5.05266 11.5080
3 10 3.66527 5.93394 13.5152
4 10 2.76925 4.48331 10.2113
5 10 3.64090 5.89448 13.4253

Bartlett’s Test (Normal Distribution)
Test statistic = 1.07, p-value = 0.899

Levene’s Test (Any Continuous Distribution)
Test statistic = 0.19, p-value = 0.941

The calculated statistic of 1.07 under Bartlett’s test agrees exactly with our
result. The p value indicates that we would fail to reject H0. It should be
pointed out here that Bartlett’s test is often used when it is assumed that
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Fig. 6.2 Four MINITAB plots for residuals

the errors follow a normal distribution. When this is not the case, Levene’s
test is most appropriate.
The residual plots for the data indicate that the normality assumption is
justified. A more formal normality test is provided in MINITAB as follows:

Fig. 6.3 Normality test for the residuals
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The Anderson–Darling normality test in Fig. 6.3 gives a p value of 0.498
indicating that we would fail to reject the hypothesis that the data came
from a normal population.

6.6 Nonparametric Test

In situations where the homogeneity assumption or normality assumption
fails, the Kruskal–Wallis test (K–W) provides an alternative. It is simply,
“analysis of variance by ranks” and can be more powerful than the traditional
ANOVA test, especially if any of the assumptions were violated. The Kruskal–
Wallis test statistic for testing the hypotheses in (6.10)

H0 : μ1 = μ2 = · · · = μk

Ha : at least two of these are equal (6.10)

is given by:

H =
12

n(n + 1)

k∑

i=1

R2
i

ni
− 3(n + 1). (6.11)

where ni is the number of observations in group or treatment i, n =
∑k

i=1 ni

is the total number of observations for the k groups, and Ri is the sum of
the ranks of the ni observations in group i. The hypothesis is rejected when
H > χ2

α with (k − 1) degrees of freedom.

Example

A completely randomized design produced the following sample results
(Blaisdell 1993).

Sample 1 Sample 2 Sample 3

69 (13) 63 (8) 51 (1)
73 (15) 64 (9) 56 (2)
70 (14) 60 (5) 59 (4)
68 (12) 61 (6) 58 (3)
74 (16) 65 (10) 62 (7)

67 (11)
n1 = 5 n2 = 6 n3 = 5

R1 = 70 R2 = 49 R3 = 17

Here, n = 5 + 6 + 5 = 16 and hence,

H =
12

n(n + 1)

k∑

i=1

R2
i

ni
− 3(n + 1)
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=
12

16(17)

[
702

5
+

492

6
+

172

5

]

− 3(17)

=
12
272

(1437.9667) − 51

= 12.440

The K–W test is implemented in MINITAB as follows; The data are first
read in as factors and response variables.

Data Display

Row Factors Resp
1 1 69
2 1 73
3 1 70
4 1 68
5 1 74
6 2 63
7 2 64
8 2 60
9 2 61

10 2 65
11 2 67
12 3 51
13 3 56
14 3 59
15 3 58
16 3 62

MTB > Kruskal-Wallis ’Resp’ ’Factors’.

Kruskal-Wallis Test: Resp versus Factors

Kruskal-Wallis Test on Resp

Factors N Median Ave Rank      Z
1 5 70.00 14.0 3.12
2 6 63.50 8.2 -0.22
3 5 58.00 3.4 -2.89
Overall 16 8.5

H = 12.44 DF = 2 P = 0.002

The computed value from MINITAB agrees with our computed value
above. The p value suggests that the null hypothesis will be strongly rejected
in this case when the computed H statistic is compared to a chi-squared dis-
tribution with 2 degrees of freedom. In the above example, the ranks are not
tied. If there are ties in the rankings, there is a small adjustment that needs
to be made. This is automatically done in MINITAB and we do not plan to
give an example of this here.
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6.7 ANOVA with Unequal Replication

We are interested here in the case where ri �= rj for some i and j. We
demonstrate the analysis with the following example. This example from
Zar (1993) relates to 19 pigs that are assigned at random among four
experimental groups. Each group is fed a different diet. The data are pig
body weights in kilograms. Are there significant differences in the effects of
the diets on the pigs?

Feed 1 Feed 2 Feed 3 Feed 4

60.8 68.7 102.6 87.9
57.0 67.7 102.1 84.2
65.0 74.0 100.2 83.1
58.6 66.3 96.5 85.7
61.7 69.8 90.3

ni 5 5 4 5
Ti 303.1 346.5 401.4 431.2

In this example, the sample sizes are not all equal. The total number of
observations is n∗ = 5 + 5 + 4 + 5 = 19. y++ = 1482.2. The total sum of
squares is computed as:

Total SS = 60.82 + 68.72 + 69.82 + 90.32 − (1482.2)2

19
= 4354.698

Similarly, the Feeds sum of squares is computed as:

Feeds SS =
(303.1)2

5
+

(346.5)2

5
+

(401.4)2

4
+

(431.2)2

5
− (1482.2)2

19
= 4226.348

and the error sum of squares is obtained by subtraction. That is,

Error SS = 4354.698 − 4226.348 = 128.350.

The resulting analysis of variance table is presented in Table 6.5. The
hypotheses,

H0 : μ1 = μ2 = μ3 = μ4

Ha : at least two of these means are not equal (6.12)

Table 6.5 Analysis of variance table for the example

Source of
variation d.f. SS MS F

Feeds 3 4226.348 1408.783 164.64
Error 15 128.350 8.557
Total 18 4354.698
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are tested by comparing the computed F value of 164.64 with an F (3,15,
0.05) = 3.29. Since 164.64 >> 3.29, we would strongly reject H0. There are
significant differences between the feeds as they affect the pigs at the 0.05
level of significance (Fig. 6.4).

The standard error for comparing any two feeds means is√

8.557
(

1
ni

+ 1
nj

)
. For two means with equal replications, say feed 1 and

feed 2 for example, the standard error becomes
√

8.557
( 1

5 + 1
5

)
= 1.1850. In

general, this is given by

√
2S2

n
, where S2 = EMS.

On the other hand, for two means with unequal replications, such as

feed 1 and feed 3, the standard error is computed as:
√

8.557
(

1
ni

+ 1
nj

)
=

√
8.557
( 1

5 + 1
4

)
= 1.9623. The ANOVA for this example is analyzed in

MINITAB as follows:

MTB > set C1
DATA> 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4
DATA> end
MTB > set c2
DATA> 60.8 57 65 58.6 61.7 68.7 67.7 74 66.3 69.8
DATA> 102.6 102.1 100.2 96.5 87.9 84.2 83.1 85.7 90.3
DATA> end
MTB > print c1 c2

Data Display

Row FEEDS Wgt
1 1 60.8
2 1 57.0
3 1 65.0
4 1 58.6
5 1 61.7
6 2 68.7
7 2 67.7
8 2 74.0
9 2 66.3

10 2 69.8
11 3 102.6
12 3 102.1
13 3 100.2
14 3 96.5
15 4 87.9
16 4 84.2
17 4 83.1
18 4 85.7
19 4 90.3

MTB > Oneway ’Wgt’ ’FEEDS’;
SUBC> Tukey 5;
SUBC> GBoxplot;
SUBC> GNormalplot;
SUBC> NoDGraphs.

One-way ANOVA: Wgt versus FEEDS
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Total 18 4354.70

S = 2.925 R-Sq = 97.05% R-Sq(adj) = 96.46%

FEEDS 3 4226.35 1408.78 164.64 0.000
Error 15 128.35 8.56

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev --+---------+---------+---------+-------
1 5 60.62 3.06 (--*-)
2 5 69.30 2.93 (--*-)
3 4 100.35 2.77 (--*-)
4 5 86.24 2.90 (-*-)

--+---------+---------+---------+-------
60 72 84 96

Pooled StDev = 2.93

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of FEEDS

Individual confidence level = 98.87%

FEEDS = 1 subtracted from:

FEEDS Lower Center Upper -----+---------+---------+---------+----
2 3.343 8.680 14.017 (-*--)
3 34.069 39.730 45.391 (-*-)
4 20.283 25.620 30.957 (-*-)

-----+---------+---------+---------+----
-25 0 25 50

FEEDS = 2 subtracted from:

FEEDS Lower Center Upper -----+---------+---------+---------+----
3 25.389 31.050 36.711 (-*--)
4 11.603 16.940 22.277 (-*-)

-----+---------+---------+---------+----
-25 0 25 50

FEEDS = 3 subtracted from:

FEEDS Lower Center Upper -----+---------+---------+---------+----
4 -19.771 -14.110 -8.449 (-*--)

-----+---------+---------+---------+----
-25 0 25 50

Bartlett’s Test (Normal Distribution)
Test statistic = 0.03, p-value = 0.998

Levene’s Test (Any Continuous Distribution)
Test statistic = 0.02, p-value = 0.995

Source DF SS MS F P

The means are all significantly different from one another with B being
the best. None of the computed confidence intervals includes zero.
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6.8 One Factor with Quantitative Levels

In most experimental designs, the levels of the treatments are sometimes
equally spaced. This allows us to explore the relationship between the re-
sponse variables and the qualitative variables more intimately in terms of
examining linear, quadratic, and cubic effects if the quantitative has four
levels. We give an example below (Table 6.6).

MTB > read c1-c3
DATA> 18 1 33.6
DATA> 24 1 31.1
DATA> 30 1 33.0
DATA> 36 1 28.4
DATA> 42 1 31.4
DATA> 18 2 37.1
DATA> 24 2 34.5
DATA> 30 2 29.5
DATA> 36 2 29.9
DATA> 42 2 28.3
DATA> 18 3 34.1
DATA> 24 3 30.5
DATA> 30 3 29.2

Fig. 6.4 Box plot of feed means
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Table 6.6 Data on row spacing on yield of soybean

Row spacings (inches)

Block 18 24 30 36 42

1 33.6 31.1 33.0 28.4 31.4
2 37.1 34.5 29.5 29.9 28.3
3 34.1 30.5 29.2 31.6 28.9
4 34.6 32.7 30.7 32.3 28.6
5 35.4 30.7 30.7 28.1 29.6
6 36.1 30.3 27.9 26.9 33.4

DATA> 36 3 31.6
DATA> 42 3 28.9
DATA> 18 4 34.6
DATA> 24 4 32.7
DATA> 30 4 30.7
DATA> 36 4 32.3
DATA> 42 4 28.6
DATA> 18 5 35.4
DATA> 24 5 30.7
DATA> 30 5 30.7
DATA> 36 5 28.1
DATA> 42 5 29.6
DATA> 18 6 36.1
DATA> 24 6 30.3
DATA> 30 6 27.9
DATA> 36 6 26.9
DATA> 42 6 33.4
DATA> end
30 rows read.
MTB > GLM ’Y’ = Blocks Row;
SUBC> Brief 2 .

General Linear Model: Y versus Blocks, Row

Factor Type Levels Values
Blocks fixed 6 1, 2, 3, 4, 5, 6
Row fixed 5 18, 24, 30, 36, 42

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Blocks 5 5.410 5.410 1.082 0.29 0.911
Row 4 125.661 125.661 31.415 8.50 0.000
Error 20 73.919 73.919 3.696
Total 29 204.990

S = 1.92248 R-Sq = 63.94% R-Sq(adj) = 47.71%
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Clearly, there are significant differences between the level means for row
spacing. Now, let us partition the treatment (Spacing) SS into 4 single degree
of freedom components using orthogonal polynomial contrasts. For a five-level
treatment, we may use the table of orthogonal polynomials in the appendix.
To implement this in MINITAB, we use the code command to accomplish
the same.

MTB > code (18) -2 (24) -1 (30) 0 (36) 1 (42) 2 c1 c4
MTB > code (18) 2 (24) -1 (30) -2 (36) -1 (42) 2 c1 c5
MTB > code (18) -1 (24) 2 (30) 0 (36) -2 (42) 1 c1 c6
MTB > code (18) 1 (24) -4 (30) 6 (36) -4 (42) 1 c1 c7
MTB > print c1-c7

Data Display

Row Row Blocks Y RL RQ RC RQT
1 18 1 33.6 -2 2 -1 1
2 24 1 31.1 -1 -1 2 -4
3 30 1 33.0 0 -2 0 6
4 36 1 28.4 1 -1 -2 -4
5 42 1 31.4 2 2 1 1
6 18 2 37.1 -2 2 -1 1
7 24 2 34.5 -1 -1 2 -4
8 30 2 29.5 0 -2 0 6
9 36 2 29.9 1 -1 -2 -4
10 42 2 28.3 2 2 1 1
11 18 3 34.1 -2 2 -1 1
12 24 3 30.5 -1 -1 2 -4
13 30 3 29.2 0 -2 0 6
14 36 3 31.6 1 -1 -2 -4
15 42 3 28.9 2 2 1 1
16 18 4 34.6 -2 2 -1 1
17 24 4 32.7 -1 -1 2 -4
18 30 4 30.7 0 -2 0 6
19 36 4 32.3 1 -1 -2 -4
20 42 4 28.6 2 2 1 1
21 18 5 35.4 -2 2 -1 1
22 24 5 30.7 -1 -1 2 -4
23 30 5 30.7 0 -2 0 6
24 36 5 28.1 1 -1 -2 -4
25 42 5 29.6 2 2 1 1
26 18 6 36.1 -2 2 -1 1
27 24 6 30.3 -1 -1 2 -4
28 30 6 27.9 0 -2 0 6
29 36 6 26.9 1 -1 -2 -4
30 42 6 33.4 2 2 1 1

The created columns c4–c7 are respectively the Linear (RL), Quadratic
(RQ), Cubic (RC), and Quartic (RQT) components. The complete analysis is
presented with the following MINITAB commands and corresponding output.

MTB > GLM ’Y’ = Blocks RL RQ RC RQT;
SUBC> Covariates ’RL’ ’RQ’ ’RC’ ’RQT’;
SUBC> Brief 2 .

General Linear Model: Y versus Blocks

Factor Type Levels Values
Blocks fixed 6 1, 2, 3, 4, 5, 6
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S = 1.92248 R-Sq = 63.94% R-Sq(adj) = 47.71%

Term Coef SE Coef T P
Constant 31.3033 0.3510 89.18 0.000
RL -1.2333 0.2482 -4.97 0.000
RQ 0.6333 0.2098 3.02 0.007
RC -0.0917 0.2482 -0.37 0.716
RQT 0.02167 0.09381 0.23 0.820

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Blocks 5 5.410 5.410 1.082 0.29 0.911
RL 1 91.267 91.267 91.267 24.69 0.000
RQ 1 33.693 33.693 33.693 9.12 0.007
RC 1 0.504 0.504 0.504 0.14 0.716
RQT 1 0.197 0.197 0.197 0.05 0.820
Error 20 73.919 73.919 3.696
Total 29 204.990

Both the linear and quadratic components are significant, hence the
anticipated model would be:

Yi = 31.3033 − 1.2333x + 0.633x2 (6.13)

The plot of the response is presented in Fig. 6.5.

Fig. 6.5 Quadratic response plot of effects of sowing
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6.9 Orthogonal Polynomials for Unequal Spacing

The table of orthogonal polynomial coefficient in the appendix is only suit-
able for the cases when the levels of factors are equally spaced. When this
is not the case, it might lead to simple complications, but we can generally
generate our own orthogonal polynomials that satisfy all the conditions set
forth for orthogonal polynomials. Suppose we have a fertilizer experiment
with three levels {0, 10, 30} kg/ha. We see that orthogonal polynomial pro-
cedure can not be readily applied in this case because the levels are not
equally spaced. Let us see how we can generate an appropriate orthogonal
polynomial coefficients for these levels. We accomplish this as follows:

1. First, we code the levels to the smallest integers by dividing with ten to
get the following

Levels Coded
X X2 X3

0 0 0 0
10 1 1 1
30 3 9 27∑

4 10 28

2. Form the following three equations with three unknowns (a, b, c)

Li = a + Xi

Qi = b + cXi + X2
i

LiQi = (a + Xi)(b + cXi + X2
i ) (6.14)

3. Summing the equations in 6.14, we have
∑

Li = 3a +
∑

Xi = 0
∑

Qi = 3b + c
∑

Xi +
∑

X2
i = 0

∑
LiQi = 3ab + (ac + b)

∑
Xi + (a + c)

∑
X2

i +
∑

X3
i = 0 (6.15)

4. The above leads to

3a + 4 = 0

3b + 4c + 10 = 0

3ab + 4(ac + b) + 10(a + c) + 28 = 0 (6.16)

5. Solving the system of equations in (6.16), we have

a = −4
3
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b =
6
7

c = −22
7

6. Substituting these values back in the set of equations in (6.14) for i =
1, 2, 3, we have

L1 = a + X1 = −4
3

+ 0 = −4
3

L2 = a + X2 = −4
3

+ 1 = −1
3

L3 = a + X3 = −4
3

+ 3 = +
5
3

Similarly,

Q1 = b + cX1 + X2
1 =

6
7

− 22
7

0 + 0 = +
6
7

Q2 = b + cX2 + X2
2 =

6
7

− 22
7

1 + 1 = −9
7

Q3 = b + cX2 + X2
2 =

6
7

− 22
7

3 + 9 = +
3
7

7. Hence, the orthogonal polynomial coefficients are

Levels of factor

Linear −4
3

−1
3

5
3

Quadratic
6
7

−9
7

3
7

Dropping the common denominators, we have the final orthogonal
coefficients

Levels of factor

Linear −4 −1 5
Quadratic 6 −9 3

8. Of course if we have four or more levels for the factor, the procedure is
exactly the same except that we would have more constants to determine
from the systems of equations. Again, I want to reiterate here that if the
levels are equally spaced, then we do not have any problem and the tables
of orthogonal polynomials can be used to handle this situation.
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6.10 Two-Factor Analysis of Variance

A two-factor experiment comprises, say, two factors A and B each having
a and b levels respectively. The resulting ab treatment combinations can be
laid out in a completely randomized design. If all treatment combinations are
equally replicated, then we say that the design is balanced. Otherwise, the
design is unbalanced or nonorthogonal. We will however, start our discussion
of two-factor experiments by considering a balanced case with interaction
present. When interaction is present, the general model can be written as

μij = μ + αi + βj + (αβ)ij + εij , i = 1, 2, . . . , a, j = 1, 2, . . . , b, (6.17)

with
∑

i

αi = 0 =
∑

j

βj =
∑

i

(αβ)ij =
∑

j

(αβ)ij .

Thus,

αi = μi. − μ.., βj = μ.j − μ.., and (αβ)ij = μij − μi. − μ.j + μ..,

where in (6.17),

• μ is the overall mean
• αi is the main effect of the ith level of factor A
• βj is the main effect of the jth level of factor B
• (αβ)ij is the interaction effect between level i of factor A and level j of

factor B
• εij − N(0, σ2).

6.10.1 An Example: Bacteria Counts

The data in the following table are taken from the bacteria count data sub-
mitted by Binnie, N. S. to the Journal of Statistics Education Data Archive.
The data contain measurement of bacteria counts of Staphylococcus aureus
(strain 1), the concentration of tryptone (a nutrient) and the temperature
(in ◦C) of incubation. In order to test for the effects of concentration, tem-
perature, and their interactions, an analysis of variance model is proposed
(Table 6.7).

(a) Obtain an estimated treatment means plot. Does it appear that concen-
tration and temperature have any effects? Explain.

(b) Obtain the ANOVA model for the data.
(c) Set up the ANOVA table.
(d) Test for the interaction effects. Use α = 0.05. State the null and the

alternative hypotheses, your decision, and conclusion. State the p value
of the test.
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Table 6.7 Replicated observations for two-factor data

Temperature

Concentration 27 35 43

0.6 9, 97 66, 110 98, 123
0.8 16, 123 93, 149 82, 146
1.0 22, 132 147, 189 120, 106
1.2 30, 263 199, 263 148, 232
1.4 27, 145 168, 197 132, 163

(e) Test to see if concentration and temperature have significant effects on
the number of counts at α = 0.05. State the null and the alternative
hypotheses, your decision, and conclusion. State the p value of the test.

The Total SS is obtained as:

Total SS = (9)2 + (97)2 + (66)2 + · · · + (132)2 + (163)2 − (3795)2

30
= 133108

To obtain the SS for concentrations and temperature, first we form the two-
way table of totals as follows:

Temperature

Concentration 27 35 43 Totals

0.6 106 176 221 503
0.8 139 242 228 609
1.0 154 336 226 716
1.2 293 462 380 1135
1.4 172 365 295 832

Totals 864 1581 1350 3795

Hence, Concentrations and Temperature SS are computed as:

Conc. SS =
(503)2

6
+

(609)2

6
+ · · · +

(832)2

6
− (3795)2

30
= 39, 432

Temp. SS =
(864)2

12
+

(1581)2

12
+

(1350)2

12
− (3795)2

30
= 26, 788

The Interaction SS is computed as:

Conc. × Temp. SS =
(106)2

2
+

(176)2

2
+ · · · +

(295)2

2
− (3795)2

30
− Conc. SS − Temp. SS = 4781

The resulting analysis of variance table is therefore presented as in Table 6.8.
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Table 6.8 ANOVA table for the data in Table 6.7
Source of
variation d.f. SS MS F

Concentration 4 39,432 9857.9 2.38
Temperature 2 26,788 13,394 3.23

C × T 8 4781 597.6 0.14
Error 15 62,107 4140.4
Total 29 133,108

Our results indicate that at the 5 % point, neither the concentration, temper-
ature means are significantly different, nor is the interaction effect significant.
The MINITAB implementation is presented below.

Row CONC TEMP Y
1 0.6 27 9
2 0.6 27 97
3 0.6 35 66
4 0.6 35 110
5 0.6 43 98
6 0.6 43 123
7 0.8 27 16
..................
25 1.4 27 27
26 1.4 27 145
27 1.4 35 168
28 1.4 35 197
29 1.4 43 132
30 1.4 43 163

MTB > Twoway ’Y’ ’CONC’ ’TEMP’;
SUBC> Means ’CONC’ ’TEMP’.

Two-way ANOVA: Y versus CONC, TEMP

Source DF SS MS F P
CONC 4 39432 9857.9 2.38 0.098
TEMP 2 26788 13394.1 3.23 0.068
Interaction 8 4781 597.6 0.14 0.995
Error 15 62107 4140.4
Total 29 133108

S = 64.35 R-Sq = 53.34% R-Sq(adj) = 9.79%

6.11 Replication and Sample Size Determination

In this chapter, we will consider sample size determination based on
hypothesis testing approach for

1. One-sample t and z tests
2. Two-sample t and z tests
3. One-way ANOVA design.

If the parameter of interest is μ, and the hypotheses have a significance level
α, and if we let d be the true difference that the hypothesis is desired to test,
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and it is also desired that the test rejects the null hypothesis H0 : μ = μ0
with a probability of at least 1−β, then, 1−β will be referred to as the power
of the test. Usually in any investigative experimental design, the values of
α, d and 1 − β are often specified a priori by the investigator and our goal
is to find the minimum sample size that will satisfy these requirements. We
present in the following sections the calculations required to determine the
necessary sample sizes for varying values of α, d and 1 − β.

Most statistical softwares these days have the capability of computing
sample sizes required for various types of cases and therefore the need for
extensive use of formulae is no longer necessary for the understanding of
sample size calculations at this level. Hence, we have employed MINITAB to
generate the required sample sizes for us given the required parameters. We
have therefore demonstrated its use in a few examples in this section.

6.11.1 One- or Two-Sample t Test

For one or two sample tests for population means, if we let r be the number
of observations per sample required to guarantee the requirements imposed
by the three parameters above, then, r is the smallest integer such that:

r ≥ a[t(ν, bα) + t(ν, β)]2
(σ

d

)2
, (6.18)

where

(i) σ is the population standard deviation
(ii) ν denotes the degree of freedom for the t-test
(iii) and

a =
{

1 for a one-sample test
2 for a two-sample test; b =

{
1 for a one-sided test
1
2 for a two-sided test.

A problem often associated with the sample size calculation as expressed in
(6.18) is that σ is often unknown and it therefore calls for a good estimate of
this parameter. Previous or past experience with similar designs is often very
useful in getting a good estimate for σ. Of course, if the extent of departure
from the mean is measured in terms of σ, that is, if for instance d = kσ,
where k is specified, then, we can see that the expression in (6.18) will not
involve the unknown σ at all.

Another result from (6.18) is that the sample size r depends only on the
ratio

σ

d
. In other words, the sample size obtained from d = 8 and σ = 2 will

be the same as that for the case when d = 12 and σ = 3.

Example

In a paired test experiment on weight gained by rats after exercise, the weight
change can be tested as one-sample t test with H0 = 0 and Ha �= 0. How
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large a sample is needed if we wish to test at α = 0.05 with a 90 % chance
of detecting a population mean different from μ0 = 0 by as little as 1.0 g.,
if it assumed that s = 1.2523? MINITAB is employed for this problem. The
ensuing power curve is presented in Fig. 6.6 with the minimum sample size
required being calculated as r = 19.

Fig. 6.6 Power curve for this example

MTB > Power;
SUBC> TOne;
SUBC> Difference 1;
SUBC> Power .90;
SUBC> Sigma 1.2523;
SUBC> GPCurve.

Power and Sample Size

1-Sample t Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 1.2523

Sample Target
Difference Size Power Actual Power

1 19 0.9 0.908217



6.11 Replication and Sample Size Determination 205

6.11.2 One- and Two-Sample Z Test Example

In healthy males, the CD4 T-lymphocytes are normally distributed with a
mean of μ = 1500 cells/mm3. In males with HIV infection present but with
no diagnosis of AIDS, the CD4 cells are normally distributed with μ = 600
and σ = 150. If a drug could increase the mean cell count to 700 cells/mm3

and maintained that level, then the drug would be of value. What sample
size is needed to detect a difference of 100 cells at α = 0.05, with power
1 − β = 0.90, if it is assumed that H0 = 600 and Ha = 700? We can use
MINITAB to solve this problem as follows:

Power Curve for 1-Sample Z Test

MTB > Power;
SUBC> ZOne;
SUBC> Difference 100;
SUBC> Power .90;
SUBC> Sigma 150;
SUBC> Alternative 1;
SUBC> GPCurve.

Power and Sample Size

1-Sample Z Test

Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 150

Sample Target
Difference Size Power Actual Power

100 20 0.9 0.909319

The power curve for the problem is presented in Figs. 6.7 and 6.8.
Our calculations show that we would require a sample size of 20 for this
problem.

Suppose the alternative hypothesis had been, Ha : μ �= 600, then we would
have
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Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 150

Sample Target
Difference Size Power Actual Power

100 24 0.9 0.904228

Power Curve for 1-Sample Z Test

MTB > Power;
SUBC> ZOne;
SUBC> Difference 100;
SUBC> Power .90;
SUBC> Sigma 150;
SUBC> GPCurve.

Power and Sample Size

1-Sample Z Test

Testing mean = null (versus not = null)

Fig. 6.7 Power curve for this example
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Fig. 6.8 Power curve for this example

In this case, the minimum sample size required will be r = 24.

6.11.3 Two-Sample t Test Example

This example is adapted from Zar (1999). It is desired to test for significant
difference between the mean blood clotting times of persons using two dif-
ferent drugs. Suppose we wish to detect a true difference between the two
means of 1 min and to have 96.6 % probability of detecting this difference,
and testing at α = 0.05 with an assumed Sp = 0.7206.

MTB > Power;
SUBC> TTwo;
SUBC> Difference 1;
SUBC> Power .966;
SUBC> Sigma 0.7206;
SUBC> GPCurve.

Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Assumed standard deviation = 0.7206

Sample Target
Difference Size Power Actual Power

1 16 0.966 0.966869

The sample size is for each group.
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We see that in this example, we require sample sizes of 16 to achieve our
desired goals or objectives and the power curve is presented in Fig. 6.9.

6.11.4 Sample Size in One-Factor ANOVA

Of interest to researchers is the question of how many replications should
we have per treatment level. Of course, it is often recommended that we use
equal replication, that is, n1 = n2 = · · · , nt, assuming that we have t levels
for the factor in question. Suppose the means of these levels are μ1, μ2, · · · , μt

respectively. MINITAB can generate the required sample sizes.

Fig. 6.9 Power curve for the two-sample t example

Consider the following example relating to an experiment to determine
whether the development time for insect embryos (measured in days as
elapsed from eggs laying to hatching) is the same at four different experimen-
tal temperatures. Suppose we wish to have a 90 % probability of detecting a
difference between population means as small as 2 days, testing at α = 0.05
level of significance with an assumed σ̂2 = s2 = 1.6550.
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MTB > Power;
SUBC> OneWay 4;
SUBC> MaxDifference 2;
SUBC> Power .9;
SUBC> Sigma 1.2865;
SUBC> GPCurve.

Power and Sample Size

One-way ANOVA

Alpha = 0.05 Assumed standard deviation = 1.2865

Factors: 1 Number of levels: 4

Maximum Sample Target
Difference Size Power Actual Power

2 13 0.9 0.906489

The sample size is for each level.

Our analysis indicates that the researcher would require 13 replicates each
for each treatment level for this study. The power curve for this example is
presented in Fig. 6.10. If the power of detection was reduced from 90 to 80 %
for instance, then we would require ten replications each for the experiment,
that is, a total of 40 experimental units (eggs) in this case.

Suppose in the last example, we have only 40 eggs available and six tem-
peratures that might be tested. We still wish to detect a difference of at least
2 days, and power (1 − β) > 0.75 and s2 = 1.6550, then we would have the
following table of results:

t r Power

6 6 0.4378
5 8 0.6324
4 10 0.7973

where, if t = 6, the number of replicates would be 40/6 = 6.67, that is 6.
The computed power for this case is 0.4375 < 0.75. Therefore, if we reduce
the number of temperature levels we can use, from six to five (with eight
replicates each), again, the computed power in this case is now 0.6324 which
is still less than the desired power of minimum 0.75. Now if we choose only
four of the six temperatures, the computed power is now 0.7973 which now
meets our desired objective of minimum power of 0.75. Thus, we conclude
that no more than 4 of the temperature levels be used in this experiment if
we are limited to 40 experimental units (eggs).
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Fig. 6.10 Power curve for the ANOVA example

For equally replicated factor levels, the standard error of the difference

between two means is
√

2σ2

r . Thus, at a given significance level α, the ob-
served difference for a given true difference of magnitude d, the number of
replications required will be given by:

r =
2t20σ

2

d2 = 2t20

(σ

d

)2
= 2[tα + Φ−1(p)]2

(σ

d

)2
≈ 2[2.00 + Φ−1(p)]2

(σ

d

)2

(6.19)

where t0 is the students’ t critical value, σ2 is the unit plot variance, Φ is
the normal distribution function and p is the the probability of obtaining
an observed difference that will be considered significant. In most situations,
we often set t0.05 = 2.00 and hence the approximate result on the far RHS.
We can of course always replace σ2 by a priori estimate of s2. Results ob-
tained above indicate that the number of replications to be employed in an
experiment depends on (i) the resources available (as in the case of 40 insect
eggs above), (ii) the treatment structure or simply put the number of treat-
ments in the experiment, (iii) the size of the difference between the treatment
means, and (iv) the relative importance of different comparisons. For exam-
ple, consider an experiment having four new treatments and a control (or
standard treatment). Suppose 30 plots are available for this experiment. We
can have the following two possible designs.
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(i) Six blocks of five plots each with each of the four new treatments and the
control randomized within each block of size 5.

(ii) Five blocks of size 6 with each of the four new treatments and the control
applied twice and the resulting randomized within each block of size 6.

For the above two designs, the standard errors for comparing (a) any two
treatments, (b) a treatment with the control, and (c) new treatments means
and control are computed as follows:

For design (i), we have, the following standard errors:

(a)

√
2s2

6
= 0.577s, (b)

√
2s2

6
= 0.577s, (c)

√
5s2

24
= 0.456s.

Similarly for design (ii), we have, the following standard errors:

(a)

√
2s2

5
= 0.632s, (b)

√
3s2

10
= 0.548s, (c)

√
3s2

20
= 0.387s.

Clearly, if the comparison of the control and treatment is of importance
here, then, design (ii) will be preferable as it has a lower standard error for
these comparisons than design (i). We may note here that in this case, the
treatments will not be equally replicated. Unequal replications are sometimes
very useful in experiments in which materials for all treatments may not
go round as in breeding experiments. Unequal replication in experimental
designs is no longer problematic in terms of analysis since the advent of
powerful computer software can take care of unbalanced designs and the
estimate of the error variance σ2 can also be adequately estimated by pooling
estimates of variance based on the assumption that estimate are the same
for each observation. A problem may arise if this assumption were not true,
and then in that case, the methods of transformations of data discussed in
Chap. 10 will be employed.

6.12 Exercises

1. The MINITAB printout for an experiment utilizing a completely random-
ized design is shown below:

ANOVA Table

Source d.f. SS MS F

Factor 3 57,258 19,086 14.80
Error 34 43,836 1289
Total 37 101,094
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a. How many treatments are involved in the experiment? What is the
total sample size?

b. Conduct a test of the null hypothesis that the treatment means are
equal. Use α = .01.

c. What assumptions must be satisfied before the analysis above can be
valid? (state three only).

2. The partially completed ANOVA table given here is for a one-way
experiment

Source d.f. SS MS F

Treatments – 3047.64 1015.88 –
Error – – –
Total 14 9966.75

a. Give the number of levels for the treatments.
b. How many observations were collected for each treatment-level?
c. Complete the ANOVA table.
d. Test to determine whether the treatment means differ. Use α = 0.10.

3. Dangerous chemicals from industrial wastes linked to cancer and other
diseases can enter the food chain through their presence in lake sediments.
The amounts of DDT were determined for samples of trout from four lakes
and are given below.

Lake Levels of DDT in Parts per million

-----------------------------------------

-----------------------------------------

1 1.7 1.4 1.9 1.1 2.1 1.8

2 0.3 0.7 0.5 0.1 1.1 0.9
3 2.7 1.9 2.0 1.5 2.6

4 1.2 3.1 1.9 3.7 2.8 3.5

(a) Do the data provide sufficient evidence at α = 0.05 level to conclude
that there is a difference in mean DDT levels for the four lakes?

(b) Compare the mean DDT levels in lakes 2 and 3 by constructing a 90 %
confidence interval.

(c) Suppose it was hypothesized before collecting the data for this exper-
iment that the mean DDT levels were not the same for lakes 1, 3, and
4. Is there sufficient evidence to support this belief?

(d) Conduct the tests necessary for the validation of your analysis.

4. The table below relates to the outcome of an experiment in which five
subjects were assigned at random to each of the four dosages of a drug.
The dependent variable y is a physiological measure that presumably is
influenced by the amount of the drug administered.
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Dosage levels

0 5 10 15

10 9 14 17
8 13 13 15

12 12 11 14
11 10 12 18
9 11 15 16

50 55 65 80

The experiment was designed to see if there is a linear trend in the
response.

(a) Complete the following analysis of variance table, explaining how the
treatment SS of 105 was obtained.

Source d.f. SS MS F

Treatments – 105 – –
Error – – –
Total – 145

(b) Test whether the four dosage levels have significantly different effects
on the physiological measure y (Use α = 0.05).

(c) Are there any assumptions that must be satisfied? State them and
conduct the appropriate tests for the validity of these assumptions.

(d) The treatment SS has been partitioned into linear, quadratic, and
cubic components using tables of orthogonal polynomial coefficients
displayed below.

Linear −3 −1 1 3
Quadratic 1 −1 −1 1
Cubic −1 3 −3 1

How was the linear SS computed? Test your results and suggest the
most suitable regression model for the data.

(e) What relationship, if any, is there between the single observed F value
of part (a) and the three observed F values of part (d)?

5. An agronomist has conducted a four-level fertilizer response experiment
in which he tested the following three planned comparisons:

μ1 μ2 μ3 μ4

L1 1 −1 0 0
L2 1 1 −2 0
L3 1 1 1 −3
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The sum of squares (SS) for the three comparisons are 75, 175, and 125,
respectively. The value of MSE equals 25, and there were plots for each
level.

(a) Is it possible to perform the test of the omnibus null hypothesis H0 :
μ1 = μ2 = μ3 = μ4 from the available information? If so, is the test
significant? If it is not possible, explain why not.

(b) Find the observed F value for each of the planned comparisons tested
by the agronomist. Which, if any, are statistically significant at α =
0.05?

(c) What relationship, if any, is there between the single observed F value
of part (a) and the three observed F values of part (b)?

(d) For each of the Li, indicate the null hypothesis that is being tested.
Find the observed F value for each of the planned comparisons tested
by the agronomist. Which, if any, are statistically significant at α =
0.05?

6. Three different methods were used to determine the dissolved oxygen con-
tent of lake water (in mg/kg). Each of the three methods was applied to
a sample of water six times, with the following results.

Method 1 Method 2 Method 3

10.96 10.88 10.73
10.77 10.75 10.79
10.90 10.80 10.78
10.69 10.81 10.82
10.87 10.70 10.88
10.60 10.82 10.81

Test the hypotheses that the three methods yield equally variable results
(σ2

1 = σ2
2 = σ2

3).
7. To evaluate the effects of high levels of copper in their feed, six chicks were

fed a standard basal diet to which three levels of copper (0, 400, 800 ppm)
were added. The following data show the feed efficiency ratio (g feed/g
weight gain) at the end of 3 weeks.

Copper Chicks

level 1 2 3 4 5 6

0 1.57 1.54 1.65 1.57 1.59 1.58
400 1.91 1.71 1.55 1.67 1.64 1.67
800 1.88 1.62 1.75 1.97 1.78 2.20

Analyze the above data and test for significant differences of means at
α = 0.05 level. Fit a response model to the data.
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8. The partially completed ANOVA table given here is for a one-way
experiment

Source d.f. SS MS F

Treatments – 126 – –
Error 20 – 16
Total 23 –

a. Complete the table.
b. Give the number of levels for the treatments.
c. How many observations were collected for each treatment level, that

is, replication per treatment?
d. Test to determine whether the treatment means differ. Use α = 0.05.



Chapter 7
Regression Analysis

7.1 Introduction

Sometimes it is desired to build a mathematical or functional relationship
between two or more related variables. In addition, it may be of interest to
measure the strength of relationship between these variables. The latter topic
is referred to as correlation analysis while the former which is used to examine
and draw inferences about the functional relationship existing among these
variables is called regression analysis.

An example of a relationship that may be of interest is the response of
maize to varying amounts of fertilizers. In this example, the response of maize
which may be yield per acre is the response or dependent variable while the
varying amounts of fertilizers is the independent or explanatory variable.

The simplest form of relationship between two variables is the straight
line, and is of the form:

yi = β0 + β1 xi + εi (7.1)

Here, y is the dependent or response variable, x is the independent or ex-
planatory variable while β0 and β1 are called the parameters of the model
and are to be estimated from the available data. The εi are the random error
terms attributable to the observed value yi, that is, the ith observation. The
parameters β0 and β1 are also, respectively, the Y-intercept and the slope of
the regression line. The error terms satisfy the following assumptions:

(i) E(εi) = 0. That is, the error terms sum to zero.
(ii) Var(εi) = σ2. That is, each error term is distributed with a constant

variance of σ2.
(iii) The error terms are independently distributed normal. This, together

with the assumptions in (i) and (ii) above implies that the εi ∼ N(0, σ2).

The validity of these assumptions will be examined at a later section in this
chapter.

The parameter β0 in the above equation is interpreted to be the intercept
while β1 is the slope. The significance of β0 in most experiments like the
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218 7 Regression Analysis

example above is that it is expected that even when the input of fertilizer is
none, some yields are at least expected.

The implication of the above distribution of the error terms εi is that, each
of the individual observation of the response variable yi follows the following
distribution:

yi ∼ N(β0 + β1xi, σ
2)

In practice, n pairs of observations on X and Y are normally available. These
are usually denoted by (xi, yi), i = 1, 2, · · · , n. With this notation it can be
shown that the best line using the method of least squares is given by

ŷi = β̂0 + β̂1xi

where

β̂1 =
Sxy

Sxx
and β̂0 = ȳ − β̂x̄ (7.2)

Where as usual, ȳ =
∑

yi

n
and x̄ =

∑
x

n
are the means of Y and X

observations respectively, with,

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) =
∑

xiyi −
∑

x
∑

y

n
(7.3)

being the corrected sum of cross-products, and

Sxx =
∑

(xi − x̄)2 =
∑

x2
i − (
∑

x)2

n
(7.4)

is the corrected sum of squares of X.

7.2 Model Assumptions

For the simple linear model in (7.1), the following are the underlying model
assumptions. These assumptions must be verified in the light of avail-
able data. Any model violations must be examined and corrections sought.
We shall discuss the verification of these assumptions and further discuss
measures for addressing any violations.

1. The random error term ε has a mean of 0. That is, E(εi) = 0, for all i and
hence, E(Yi) = β0 + β1xi. This is sometimes denoted as

μY |X = β0 + β1X. (7.5)

2. The random error term ε has a constant variance σ2. That is, Var(εi) = σ2,
for all i.
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This assumption implies that the variances do not depend on the val-
ues of X. In other words, the variance is constant from one observation to
another. This homogeneity of variances is often referred to as homoscedas-
ticity and therefore σ2

Y |X ≡ σ2, for all i. Here, σ2
Y |X is read as “the

conditional variance of Y given X.” Further,

Var(β0 + β1x1 + εi) = Var(εi) = σ2. (7.6)

3. The random error term ε is distributed normal. That is, combining
assumptions (1) and (2), we have ε ∼ N(0, σ2).

4. The error terms are assumed to be uncorrelated. That is,

Cov(εi, εj) = 0, for all i �= j. (7.7)

A consequence of this is that any two dependent variables Yi and Yj are
uncorrelated, or simply stated are independently distributed.

7.3 Estimating the Parameters of the Simple Model

Several methods are used to estimate the parameters of the linear regression
model, of which the model in (7.1) is a simple linear regression model. Our
focus here is to obtain point estimates for the parameters of our model using
available data from our random sample. By far the most used method is the
ordinary least squares (OLS) method developed by Gauss. We list below two
of the methods that have been used to estimate the parameters of a regression
model:

(a) method of ordinary least squares (OLS)
(b) method of maximum likelihood (MLE)

We now discuss these methods in the following sections.

7.3.1 The Ordinary Least Squares (OLS) Method

For the simple regression equation,

yi = β0 + β1xi + εi, i = 1, 2, . . . , n, (7.8)

the ordinary least squares (least squares for short) method minimizes the
sum of squared deviations with respect to the parameters β0 and β1. That
is, the method sought to minimize

S =
n∑

i=1

ε2
i =

n∑

i=1

(yi − β0 − β1xi)2, (7.9)
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with respect to β0 and β1. This implies that we need to obtain
∂S

∂β0
and

∂S

∂β1
and set them to zero. Hence,

∂S

∂β0
= 2

n∑

i=1

(yi − β0 − β1xi)(−1), (7.10a)

∂S

∂β1
= 2

n∑

i=1

(yi − β0 − β1xi)(−xi). (7.10b)

Setting the equations in (7.10a) and (7.10b) to zero, we have

n∑

i=1

yi − nβ̂0 − β̂1

n∑

i=1

xi = 0, (7.11a)

[0.05 in]
n∑

i=1

xiyi − β̂0

n∑

i=1

xi − β̂1

n∑

i=1

x2
i = 0. (7.11b)

Multiplying Eq. (7.11a) by
∑

xi and Eq. (7.11b) by n, and dropping the
subscripts for brevity, we have

∑
xi

∑
yi − nβ̂0

∑
xi − β̂1

(∑
xi

)2
= 0, (7.12a)

n
∑

xiyi − nβ̂0

∑
xi − nβ̂1

∑
x2

i = 0. (7.12b)

Subtracting Eq. (7.12b) from Eq. (7.12a), we have

∑
xi

∑
yi − β̂1

(∑
xi

)2
− n
∑

xiyi + nβ̂1

∑
x2

i = 0. (7.13)

That is,

nβ̂1

[∑
x2

i − 1
n

(∑
xi

)2
]

= n
∑

xiyi −
∑

xi

∑
yi.

Dividing through by n, we have,

β̂1

[∑
x2

i − 1
n

(∑
xi

)2
]

=
∑

xiyi − 1
n

∑
xi

∑
yi,

and hence,

β̂1 =
∑

xiyi − 1
n

∑
xi

∑
yi

∑
x2

i − 1
n (
∑

xi)2
=
∑

(xi − x̄)(yi − ȳ)
∑

(xi − x̄)2
=
∑

xiyi − nx̄ȳ
∑

x2
i − nx̄2 . (7.14)
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That is,

β̂1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
xiyi− 1

n

∑
xi

∑
yi∑

x2
i − 1

n (
∑

xi)2

∑
(xi−x̄)(yi−ȳ)∑

(xi−x̄)2

∑
xiyi−nx̄ȳ∑
x2

i −nx̄2

(7.15)

Writing

Sxy =
∑

xiyi − 1
n

∑
xi

∑
yi =
∑

(xi − x̄)(yi − ȳ) =
∑

xiyi − nx̄ȳ

and

Sxx =
∑

x2
i − (
∑

xi)2

n
=
∑

(xi − x̄)2 =
∑

x2
i − nx̄2,

we can therefore write the parameter estimate of β1 more succinctly as

β̂1 =
Sxy

Sxx
. (7.16)

From Eq. (7.8), we have E(Yi) = β0 + β1E(Xi). Hence, the parameter
estimates of β0 can be obtained as

β̂0 = ȳ − β̂1x̄. (7.17)

The estimated regression equation is therefore given by

ŷi = β̂0 + β̂1xi = ȳ − β̂1x̄ + β̂1xi = ȳ + β̂1(xi − x̄). (7.18)

Example 7.1.1

Data in Table 7.1 represent systolic blood pressure (SBP) and age readings
on a sample of 24 individuals of a particular ethnic group. The ages range
from 21 to 70 years.

Table 7.1 Observations on age and SBP for 24 individuals

Individual Age SBP Individual Age SBP Individual Age SBP
i X Y i X Y i X Y

1 34 116 9 46 144 17 47 139
2 26 112 10 53 150 18 42 135
3 51 151 11 29 111 19 61 163
4 58 161 12 50 148 20 38 128
5 34 122 13 40 135 21 57 159
6 40 129 14 34 126 22 66 177
7 31 119 15 67 172 23 42 135
8 57 158 16 23 100 24 53 149
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MTB > READ C1-C2
DATA> 34 116
DATA> 26 112
DATA> 51 151
............
DATA> 66 177
DATA> 42 135
DATA> 53 149
DATA> end

MTB > PRINT C1-C2

Data Display

Row X Y

1 34 116
2 26 112
3 51 151
4 58 161
5 34 122
6 40 129
7 31 119
8 57 158
9 46 144
10 53 150
11 29 111
12 50 148
13 40 135
14 34 126
15 67 172
16 23 100
17 47 139
18 42 135
19 61 163
20 38 128
21 57 159
22 66 177
23 42 135
24 53 149

MTB > GStd.
* NOTE * Character graphs are obsolete.

MTB > Plot ’Y’ ’X’;
SUBC> Symbol ’+’.
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Plot

-
175+

-
+
+

Y - +
- 2 +
-

150+ ++ 2
- +
- +
- + 2
- + +

125+ +
- + +
- +
-
-

100+
--+---------+---------+---------+---------+---------+----X
24.0 32.0 40.0 48.0 56.0 64.0

MTB > GPro.

++

+

For the above data, the scatter plot is presented above and we have the
following computations:

Individual X Y X2 Y 2 XY

1 34 116 1156 13,456 3944
2 26 112 676 12,544 2912
3 51 151 2601 22,801 7701
...

...
...

...
...

...
...

...
...

...
...

...
22 66 177 4356 31,329 11,682
23 42 135 1764 18,225 5670
24 53 149 2809 22,201 7897

Sum 1079.0 3339.0 52,119.0 474,053.0 155,921.0

Thus,
∑

x = 1079.0,
∑

x2 = 52119.0, n = 24
∑

y = 3339.0,
∑

y2 = 474053.0,
∑

xy = 155921.0

where,
∑

x = 34 + 26 + · · · + 53 = 1079.0
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∑
x2 = 342 + 262 + · · · + 532 = 52, 119.0.

Hence,

x̄ =
1079.0

24
= 44.9583, (7.19)

and,

Sxx =
∑

x2 − (
∑

x)2

n
= 52, 119.0 − 1079.02

24
= 3608.9583 (7.20)

Similarly,
∑

y = 116 + 112 + · · · + 149 = 3339.0
∑

y2 = 1162 + 1122 + · · · + 1492 = 474, 053.0.

Hence,

ȳ =
3339.0

24
= 139.1250, (7.21)

and,

Syy =
∑

y2 − (
∑

y)2

n
= 474, 053.0 − 3339.02

24
= 9514.6250. (7.22)

Also,
∑

xy = (34)(116) + (26)(112) + · · · + (53)(149) = 155, 921.0.

Hence,

Sxy =
∑

xy − (
∑

x) (
∑

y)
n

= 155, 921.0 − (1079.0)(3339.0)
24

= 5805.1250.

(7.23)

From the above expressions for the OLS estimates of the parameters, we have

β̂1 =
Sxy

Sxx
=

5805.1250
3608.9583

= 1.6085

and

β̂0 = ȳ − β̂x̄ = 139.1250 − (1.6085 × 44.9583) = 66.8096.

Therefore, the fitted regression equation is

ŷi = 66.8096 + 1.6085 xi. (7.24)
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7.3.2 Interpretations of Parameter Estimates

The estimate of the slope relating SBP with age is 1.6085, which means that
for a unit increase in age, SBP increases by 1.6085 units. Similarly at age
0, corresponding to x = 0, the SBP would be 66.8096, but x = 0 was not
within the range of values of x, namely, 23 ≤ X ≤ 67 when we built our
model. Hence it would be very unwise to predict what would happen when
x = 0, since this value is not in our sample data. We shall discuss this further
later in the text. Usually, we are not too interested in the interpretation of
β̂0. We can implement the regression model in MINITAB with the following
commands and partial output.

MTB > Regress ’Y’ 1 ’X’;
SUBC> Constant;
SUBC> Brief 2.

Regression Analysis: Y versus X

The regression equation is
Y = 66.8 + 1.61 X

Predictor Coef SE Coef T P
Constant 66.808 2.200 30.37 0.000
X 1.60853 0.04720 34.08 0.000

S = 2.836 R-Sq = 98.1% R-Sq(adj) = 98.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 9337.7 9337.7 1161.31 0.000
Residual Error 22 176.9 8.0
Total 23 9514.6

Unusual Observations
Obs X Y Fit SE Fit Residual St Resid
1 34.0 116.000 121.498 0.776 -5.498 -2.02R

R denotes an observation with a large standardized residual

7.4 Inferences on Parameter Estimates

In order to make inferences about the estimated parameters, we need to carry
out an analysis of variance as follows:

For a general simple linear model:

(i) The Total SS = Syy and is based on (n − 1) d.f.

(ii) The Reg SS =
S2

xy

Sxx
and is based on 1 d.f.
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(iii) Error SS = Syy −
S2

xy

Sxx
and is based on (n−1−1) = (n−2) d.f. (obtained

by subtraction)

Hence, the ANOVA table becomes:

Source of
variation d.f. SS MS F

Regression 1
S2

xy

Sxx

S2
xy

Sxx
RMS/EMS

Residual (error) n − 2 Syy −
S2

xy

Sxx
ESS/(n − 2) = S2

Total n − 1 Syy

where ESS is the residual or Error SS, RMS is the regression mean square
and S2 is the error mean square.

For our data example therefore, Syy = 9514.625 from previous calculation.
The fitted (or explained or regression) sum of squares is defined as

S2
xy

Sxx
=

(5805.1250)2

3608.9583
= 9337.7294

The residual (Error) SS = Total SS−Fitted SS =Syy −
S2

xy

Sxx
. Hence, the

analysis of variance table is displayed in Table 7.2.

Table 7.2 Analysis of Variance Table

Source of
variation d.f. SS MS F

Regression 1 9337.7294 9337.7294 1161.31∗∗

Residual (error) 22 176.8956 8.0407 = S2

Total 23 9514.6250
∗∗Significant at the 0.001 % point

where,

• d.f.: degree of freedom
• SS: sum of Squares
• MS: mean square = SS/corresponding d.f.
• F: The F ratio—(Regression MS)/(Residual MS) is F distributed with 1

and 22 = (n−) degrees of freedom.

The degrees of freedom for F are those of the regression and residual lines
in the analysis of variance table. The regression SS is based on 1 d.f. which
equals the number of parameters being estimated in the model minus one.
That is, Reg d.f. = # number of parameters − 1 = (2 − 1) = 1 in this case,
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since only two parameters β0 and β1 are being estimated in the example.
Note that in general:

Total SS = Regression SS + Error SS and, therefore

Total d.f. = Reg d.f. + Error d.f.

The corresponding MINITAB output for this from the above program is
presented below. Our results agree with those obtained from MINITAB.

Analysis of Variance

Source DF SS MS F P
Regression 1 9337.7 9337.7 1161.31 0.000
Residual Error 22 176.9 8.0
Total 23 9514.6

S = 2.836 R-Sq = 98.1% R-Sq(adj) = 98.1%

We recognize that the residual sum of squares (RSS) agrees to two decimal
places with the sum of squares deviations obtained earlier on. In general,
these two are always the same.

The significance of the regression is tested by the computed value of F in
the analysis of variance table. The hypothesis being tested here is:

H0 : β1 = 0

Ha : β1 �= 0. (7.25)

These hypotheses are tested with the computed F value or p value given in
the output. The decision rule here is to reject H0 if F ∗ ≥ F(1,22)(.975) = 5.79.
Since, 1161.31 ≫ 5.79, therefore, we would strongly reject H0 and conclude
that the the slope of the linear relationship is not zero. In other words, the
explanatory variable X (age) is important in the model. We could also have
conducted the above test using the p value. Here the p value is 0.0000 ≪ 0.05,
which again leads to strongly rejecting H0.

In the analysis of variance table, the residual mean square =S2 provides
an estimate of the population variance σ2. The population variance σ2, may
or may not be equal to S2, the variance about the regression. If the model is
true, then σ2 = S2. If the model is not true, then σ2 < S2 and we say that
the postulated model is incorrect or suffers from lack of fit.

7.4.1 Confidence Interval for β0 and β1

The estimates of β0 and β1 obtained from a sample of 24 subjects in Table 7.1
are not fixed, since if we were to take another sample of 24 subjects, we are
more than likely to obtain different estimates for β0 and β1. Thus, it is very
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important to build a level of confidence around our parameter estimates. To
do this however, we need to obtain the standard errors of β̂0 and β̂1.

The variances of β̂0 and β̂1 are given by:

Var(β̂0) =
(

1
n

∑
x2

i

Sxx

)

σ2

Var(β̂1) =
σ2

Sxx
.

Thus, estimates of these variances are given by,

V̂ar(β̂0) =
(

1
n

∑
x2

i

Sxx

)

S2

V̂ar(β̂1) =
(

1
Sxx

)

S2. (7.26)

where S2 equals the error mean square (EMS). Hence, from (7.26), the
standard error (s.e.) of β̂1 is given by:

s.e. (β̂1) =
S√
Sxx

=

√
8.0407

3608.9583
= 0.0472

A 100(1 − α) % confidence interval limits for β1 is therefore given by:

β̂1 ± tα/2 s.e. (β̂1) (7.27)

where the t value is the 95 % percentage point of a Student’s t distribution
with (n − 2) degrees of freedom, i.e., the number of degrees of freedom on
which the estimate S2 was based (the error d.f. in the ANOVA table).

For the example above, with α = 0.05, then t0.975(22 d.f.) = 2.0739.
Hence, a 95 % confidence interval for the slope β1 is

1.6085 ± 2.0739 × 0.0472 = 1.6085 ± 0.098 = (1.511, 1.707). (7.28)

Thus with α = 0.05, a 95 % confidence interval for the slope β1 is (1.511,
1.707).

In addition to estimating the slope β1 from the data, one may also be
interested in testing a hypothesis about the value of the slope. In particular,
suppose we are interested in testing whether the slope β1 is some hypothesized
value (say, b1), that is, an hypothesis of the form

H0 : β1 = b1

H1 : β1 �= b1. (7.29)

To test this hypothesis, we calculate

t =
β̂1 − b1

s.e. (β̂1)
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and compare this with the t distribution on (n − 2) degrees of freedom. In
particular, if b1 = 0, then for our example above, we have:

t =
1.6085
0.0472

= 34.0784.

For this particular case, the test is equivalent to the F test discussed earlier
and it is not too difficult to see that 34.07842 = 1161.34 (very close to the
earlier calculated F value in the analysis of variance table).

7.4.2 Confidence Interval Estimation for β0

Similarly, from (7.26), the standard error (s.e.) of β̂0 is given by:

s.e (β̂0) =

√(∑
x2

i

nSxx

)

S2 =

√(
52119.0

24 × 3608.9583

)

8.0407 = 2.1996

A 100(1 − α %) confidence interval limits for β0 is also given by:

β̂0 ± tα/2 s.e. (β̂0) (7.30)

where the t value is the 95 % percentage point of a Student’s t distribution
with (n − 2) degrees of freedom, i.e., the number of degrees of freedom on
which the estimate S2 was based.

From our previous result, if α = 0.05, then t0.975(22 d.f.) = 2.0739. Hence
a 95 % confidence interval for the slope β0 is

66.810 ± 2.0739 × 2.1996 = 66.810 ± 4.562 = (62.248, 71.372) (7.31)

Thus with α = 0.05, a 95 % confidence interval for the slope β0 is
(62.248, 71.372).
Similarly, a hypothesis of the form

H0 : β0 = b0

Ha : β0 �= b0 (7.32)

can be conducted with the test statistic,

t =
β̂0 − b0

s.e. (β̂0)

and compare this with the t distribution on (n − 2) degrees of freedom. In
particular, if b0 = 0, then for our example above, we have:

t =
66.8096
2.1996

= 30.3735.
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Both of these tests for β1 and β0 are provided in the MINITAB output. Here
the SE Coef refers to the standard error of the coefficient and the T relate
to the calculated t statistics for testing each of the hypotheses in (7.29) and
(7.32) for the cases when the hypothesized values are zeros. The p values
obtained in both cases indicate that β1 �= 0 nor is β0 = 0.

Predictor Coef SE Coef T P
Constant 66.808 2.200 30.37 0.000
X 1.60853 0.04720 34.08 0.000

7.5 Residuals

The residuals are given by êi = yi − ŷi which for the data in Table 7.1, we
have for instance, when x = 34, ŷ = 66.8081 + 1.6085(34) = 121.497 and
hence, the residual is equal to 116 − 121.497 = −5.497. Other residuals are
computed in the same way and the results are presented in Table 7.3.

Table 7.3 Observed, fitted, and residuals for the data in Table 7.1

Subject xi yi ŷi êi ê2i

1 34 116 121.498 −5.49817 30.2299
2 26 112 108.630 3.37009 11.3575
3 51 151 148.843 2.15679 4.6517
4 58 161 160.103 0.89706 0.8047
5 34 122 121.498 0.50183 0.2518
6 40 129 131.149 −2.14936 4.6198
7 31 119 116.673 2.32743 5.4169
8 57 158 158.494 −0.49441 0.2444
9 46 144 140.801 3.19945 10.2365
10 53 150 152.060 −2.06028 4.2447
11 29 111 113.456 −2.45551 6.0295
12 50 148 147.235 0.76532 0.5857
13 40 135 131.149 3.85064 14.8274
14 34 126 121.498 4.50183 20.2665
15 67 172 174.580 −2.57973 6.6550
16 23 100 103.804 −3.80432 14.4728
17 47 139 142.409 −3.40909 11.6219
18 42 135 134.366 0.63357 0.4014
19 61 163 164.929 −1.92853 3.7192
20 38 128 127.932 0.06770 0.0046
21 57 159 158.494 0.50559 0.2556
22 66 177 172.971 4.02881 16.2313
23 42 135 134.366 0.63357 0.4014
24 53 149 152.060 −3.06028 9.3653∑

0.0000 176.8956
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We note here that the sum of squared deviations
24∑

i=1

(yi − ŷi)2 =
∑

ê2
i =

176.8956 and that the sum of deviations
24∑

i=1

(yi − ŷi) =
∑

êi = 0.0000. The

former equals the Error sum of squares obtained in the analysis of variance
table displayed earlier.

7.6 Prediction of Y from X

In many regression problems, the purpose is to predict Y from knowledge of
the corresponding X. The predicted value of y for a given value of x say xc

is ŷc = β̂0 + β̂1 xc.
However, it is important to draw a clear distinction between predicting for

an individual value of xc or predicting for a mean value of xc. Let us explain
this in detail. In our example, we have observations on age and SBP from a
random sample of 24 subjects. Consider the case when age = xc = 34. Do we
want to predict the SBP for an individual in the population whose age is 34?
Or do we want to predict for all individuals in the population whose ages are
34 (there are certainly several people with age 34 in any human population).
The above questions inform on the type of analysis that we would have to
employ. Confidence levels obtained with the former are often called fiducial
confidence intervals, while predictions based on the latter are often referred to
as mean predictions with corresponding mean prediction confidence intervals.

7.6.1 Mean Prediction

In our example, the predicted SBP for all subjects that are 34 years old would
be 66.808 + 1.6085(34) = 121.497. The standard error of the predicted value
is given by

s.e. (ŷc) =

√

S2

{
1
n

+
(xc − x̄)2

Sxx

}

. (7.33)

From the expression in (7.33), relating SBP and age, the predicted mean SBP
for a large population of subjects who are all 34 years old is 121.497 and the
standard error of this predicted mean is

√

8.0407
{

1
24

+
(34 − 44.9583)2

3608.9583

}

= 0.7763.

The s.e. above applies to the predicted mean value of y for a given x = xc.
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7.6.2 Individual Prediction

The prediction of y for an individual new member of the population for which
y has been measured has a standard error given by

s.e. of (individual member) =

√

S2

{

1 +
1
n

+
(xc − x̄)2

Sxx

}

. (7.34)

This prediction is by far the most frequent in experimental data analysis.
The SBP of a single individual who is 34 years old is still 121.497 but with a
s.e. given by

√

8.0407
{

1 +
1
24

+
(34 − 44.9583)2

3608.9583

}

= 2.9399.

A 95 % confidence interval for the mean predicted SBP is given by

121.497 ± t0.975 × s.e. = 121.497 ± 2.0739 × 0.7763 = 121.497 ± 1.610

= (119.887, 123.107)

while that for a predicted individual SBP is given by

121.497 ± 2.0739 × 2.9399 = 121.497 ± 6.097 = (115.400, 127.594)

Both of these for xc = 34 are implemented in MINITAB with the following,
together with a partial output. Our manually calculated results are very close
to those obtained from MINITAB.

MTB > Regress ’Y’ 1 ’X’;
SUBC> Constant;
SUBC> Predict 34.

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 121.498 0.776 ( 119.888, 123.108) ( 115.401, 127.595)

Values of Predictors for New Observations

New Obs X
1 34.0

We present in Fig. 7.1 the plot of the predicted regression line for the data
in Table 7.1.
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Fig. 7.1 Plot of predicted equation

A word of caution when predicting in regression analysis. we must not try
to predict for values of x that are not in the sample data. For example, in
our data example here, we have the range of X is 23 ≤ x ≤ 67. What this
means is that we can not predict values of Y for x < 23 or x > 67. Such a
result will lead to interpolation as we do not know whether the form of the
regression equation will still be as estimated outside these sample values.

7.6.3 Percentage Variation

The percentage variation is given by

R2 =
SS due to regression

Total SS
× 100 % =

S2
xy

Sxx Syy
× 100 %. (7.35)

That is, it is the proportion of the total variation about the mean ȳ explained
by the regression. For our data, this is equal to

9337.7294
9514.625

× 100 = 98.14 %.

We shall see in Sect. 7.8 how this is related to the sample correlation coeffi-
cient. The R2 obtained in this example is very high indicating that our model
might be very good. We will further examine the adequacy of this model in
Sect. 7.7.
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7.7 Adequacy of the Regression Model

The fitted regression line is calculated in the previous section on the assump-
tion that the true relationship between y and x is of the form y = β0 + β1x.
This is an assumption we should not blindly accept but should tentatively
entertain. Two procedures that are commonly used to examine the adequacy
of a regression model will be discussed here.

The first of these is when genuine replicated observations are available.
Consider the data in Table 7.1, we observe here that certain values of x are
repeated, e.g., x = 34 (three times), 40 (two times) and so on. These repeated
observations and their corresponding response values (yi) are presented in
Table 7.4. These are obtained after employing the following MINITAB com-
mands to sort variable age and to carry along with it, the corresponding
values of SBP.

MTB > sort c1 c3
MTB > sort c2 c4;
SUBC> by c3.

Table 7.4 Replication observations and their corresponding response values

xi yi’s

34 116, 122, 126
40 129, 135
42 135, 135
53 150, 149
57 158, 159

For the data in Table 7.1, therefore, it would be possible to conduct a test of
lack of fit by breaking the Error SS into two components:

(a) Lack of Fit SS
(b) Pure Error SS

We proceed with the calculations to conduct a test of adequacy, by first
calculating the Pure Error SS at these replicated points, viz.:

Calculation of Pure Error SS

At x = 34, SS = 1162 + 1222 + 1262 − (116 + 122 + 126)2

3
= 50.6667 on 2 d.f.

At x = 40, SS = 1292 + 1352 − (129 + 135)2

2
= 18.00 on 1 d.f.

At x = 42, SS = 1352 + 1352 − (135 + 135)2

2
= 0.00 on 1 d.f.

At x = 53, SS = 1502 + 1492 − (150 + 149)2

2
= 0.50 on 1 d.f.

At x = 57, SS = 1582 + 1592 − (158 + 159)2

2
= 0.50 on 1 d.f.
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Note that the SS at x = 40 can also be computed as (129−135)2

2 = 18.00.
Hence, Total Pure Error SS = 50.6667 + 18.0 + 0.0 + 0.5 + 0.5 = 69.6667 and
is based on 2 + 1 + 1 + 1 + 1 = 6 degrees of freedom. We therefore have the
revised analysis of variance for these data in Table 7.5.

Table 7.5 Revised analysis of variance table

Source of
variation d.f. SS MS F

Reg. 1 9337.7294 9337.7294 1161.31∗∗

Residual (error) 22 176.8956 8.0407=S2

Lack of fit 16 107.2289 6.7018 0.577
Pure error 6 69.6667 11.6111=S2

e

Total 23 9514.6250

Since the lack of fit is not significant, there is therefore no reason to doubt the
adequacy of the model. We would therefore still use the error mean square
S2 to carry out the F test and to obtain confidence limits, etc. However with
a significant lack of fit, it means that the proposed model is not adequate
and we seek ways to improve the model by examining the residuals. Any test
of significance carried out with this type of model will not be valid. We can
implement the lack of fit test in MINITAB with the following statements and
corresponding partial output.

MTB > Regress ’Y’ 1 ’X’;
SUBC> Constant;
SUBC> Pure;
SUBC> Brief 3.

Regression Analysis: Y versus X

Analysis of Variance

Source DF SS MS F P
Regression 1 9337.7 9337.7 1161.31 0.000
Residual Error 22 176.9 8.0
Lack of Fit 16 107.2 6.7 0.58 0.823
Pure Error 6 69.7 11.6

Total 23 9514.6

The results we see are identical with those calculated manually.

7.7.1 Examinations of Residuals

The residuals are defined as the n differences ε̂i = yi−ŷi, i = 1, 2, · · · , n where
yi is an observed value and ŷi is the corresponding fitted value obtained from
the fitted regression equation.

In performing the regression analysis, we have assumed the following:
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(i) Constant variance from one observation to the other.
(ii) The errors (residuals) are independently distributed randomly with mean

zero and constant variance σ2.
(iii) The errors are individually distributed normal.

Any of these assumptions may be violated in addition to misspecification of
the model. We now examine the various techniques for the examination of
residuals. These techniques are all graphical. This is usually accomplished by
plotting the residuals ε̂i = yi − ŷi against the yi, xi or ŷi. The shape of the
plot could assume any of the following:

The plot in Fig. 7.2 indicates that the residuals are randomly distributed
about its mean of zero, except for one outlier whose plot is too far away
from the horizontal reference line at zero. This observation would need to be
examined further.

Several plots are displayed in Fig. 7.3. However, from the plot of the
residuals versus fitted values, there does not seem to be any pattern to the
distribution of the residuals about its mean of 0 except for the single obser-
vation whose plot is not consistent with those of the other 23 observations.
The normal probability plot of the residuals in Fig. 7.3 indicates that we can
reasonably assume that the residuals and hence the error terms follow the
normal distribution. A formal test of this is presented in Fig. 7.4, which gives

Fig. 7.2 Plot of residuals versus xi
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Fig. 7.3 Various residual plots for the data example

the Anderson–Darling test p value of 0.410, indicating that the residuals in-
deed can be assumed to follow the normal probability distribution. Thus, the
normality assumption is not violated in this example.

In the graphical diagnostic plots displayed from Figs. 7.2 to 7.8, we have:

(i) The horizontal band displayed in Fig. 7.2 indicates no abnormality and
our least squares analysis would appear to be invalidated.

(ii) If the variance is not constant as assumed; there is a need for weighted
least squares or a transformation on the observed yi before making a
regression analysis. A plot of the residuals against either fitted values or
the explanatory variable will indicate this as in Fig. 7.5.

(iii) If there is an error in the analysis, a linear term in time should have
been included in the model, i.e., an β0 term.

(iv) Linear and quadratic terms in time should have been included in the
model. There is need for extra terms in the model (e.g., square or cross
products terms) or need for a transformation on the observations yi

before analysis. Again, a plot of the residuals against the explanatory
variable will indicate this as in Fig. 7.6.
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Fig. 7.6 Data departing from linearity

Another very important invalidation of a regression model is if the errors are
serially correlated (i.e., not independent). In this case, the Durbin–Watson
test statistic provides a good guide for this inadequacy.

In our example, we plotted the standardized residuals, first against the
explanatory variable X in Fig. 7.7 and then against the predicted values in
Fig. 7.8. Both indicate that there is a single observation with its standardized
residual outside the interval [−2,+2]. This observation is numbered 1, and
all such other observations are usually flagged by MINITAB. In our case,
MINITAB warns us with the following statement:

Unusual Observations
Obs X Y Fit SE Fit Residual St Resid
1 34.0 116.000 121.498 0.776 -5.498 -2.02R

R denotes an observation with a large standardized residual
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Fig. 7.7 Plot of studentized residuals versus xi

It is often suggested that any observation with a studentized residual |ri| > 2
should be considered a possible outlier. However, in this example the value of
|r1| = 2.02 indicates a violation not too serious. This value is not particularly
high to dissuade us from possibly fitting a new model with this observation
removed or from reverting to some transformation of the dependent variable.

Fig. 7.8 Plot of studentized residuals versus ŷi
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7.8 Correlation Coefficient

Correlation is a measure of the strength of linearity between two variables X
and Y. The sample correlation coefficient is defined as

r =
∑

(xi − x̄)(yi − ȳ)
√∑

(xi − x̄)2
∑

(yi − ȳ)2
=

Sxy√
SxxSyy

(7.36)

From the above definition of r in (7.36), we have

r2 =
S2

xy

SxxSyy
that is,

r2Syy =
S2

xy

Sxx
.

From our results in the previous sections, we showed that,

Residual SS = Total SS − Fitted SS

That is,

Residual SS = Syy −
S2

xy

Sxx
= Syy − r2Syy = Syy(1 − r2).

That is,

Residual SS
Total SS

= 1 − r2.

Thus r2 is the estimated proportion of the variance of y that can be attributed
to the linear regression while (1 − r2) is the proportion free from x. We see
that the square of the correlation coefficient is equal to the R2, the coefficient
of determination computed earlier on.

7.8.1 Properties of r

(i) r must lie between −1 and +1, that is, −1 ≤ r ≤ 1 where −1 repre-
sents perfect negative linear association in the sample and +1 represents
perfect positive linear association in the sample.

(ii) Its numerical strength measures the strength of the linear relationship
and the sign of r indicates the direction of the relationship.

(iii) r2 is the proportion of variation in y accounted for by the fitting of the
straight line.
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For our data,

r2 =
S2

xy

SxxSyy
=

(5805.1250)2

3608.9583 × 9514.6250
= 0.9814

Hence, r =
√

0.9814 = 0.9907. r2 is sometimes referred to as the coefficient of
determination while

√
(1 − r2) is similarly called the coefficient of alienation.

The population correlation coefficient is denoted by ρ. To test the
hypothesis

H0 : ρ = 0 vs Ha : ρ �= 0

we calculate the test statistic,

t =
r
√

n − 2√
1 − r2

(7.37)

and reject H0 if |t| ≥ t1−α/2 where t1−α/2 is a Student’s t distribution with
(n − 2) d.f. at α = 0.05.

In our example above, to test the hypothesis H0 : ρ = 0 vs. H1 : ρ �= 0,
we compute

t =
0.9907

√
24√

1 − 0.99072
=

4.8534√
0.1361

= 35.6605.

Since t > t1−α/2 = 2.0739, i.e., we reject H0 and conclude that ρ �= 0. That
is, there is a very strong linear relationship between the age and SBP.

7.8.2 General Hypotheses Concerning ρ

To test a more general hypothesis

H0 : ρ = ρ0 vs Ha : ρ �= ρ0

a large sample test is based on the fact that

Z =
√

n − 3
{

1
2

log
(

1 + r

1 − r

)

− 1
2

log
(

1 + ρ0

1 − ρ0

)}

∼ N(0, 1)

=
√

n − 3
1
2

log
(

1 + r

1 − r
× 1 − ρ0

1 + ρ0

)

.

That is,

Z =
√

n − 3
1
2

log
{

(1 + r)(1 − ρ0)
(1 − r)(1 + ρ0)

}

(7.38)
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is distributed as a standard normal variate. That is, Z ∼ N(0, 1). Given a
two-sided alternative and α = 0.05, H0 is rejected if |Z| > 1.96.

For a null hypothesis for the data above, H0 : ρ = 0.90 vs. Ha : ρ �= 0.90
for instance, we have

Z =
√

(24 − 3)
1
2

log
{

(1 + 0.9907)(1 − 0.90)
(1 − 0.9907)(1 + 0.90)

}

= 4.5826
[
1
2

log
(

0.1991
0.0177

)]

=
(

4.5826
2

)

log(11.2486) = 5.546

Since |Z| > 1.96, i.e., we would reject H0 and conclude that r is significantly
different from 0.90.

7.9 Multiple Regression

In the previous sections, we assumed a simple linear model involving only
one independent variable. We did not consider models involving several in-
dependent variables. Situations in which we allow y to depend on more than
one variable give rise to multiple regression, when we have p independent
variables. The model can be written as

yi = β0 + β1x1 + β2x2 + · · · + βpxp + εi. (7.39)

The parameters of this model are β0, β1, β2, · · · , βp while x1, x2, · · · , xp

are the factors supposedly influencing the effect of y (that is, explanatory
variables) and the εi are the random error terms.

Of course each of the x ’s can take quadratic, cubic, quartic, . . . , forms.
For example, the model

y = β0 + β1x1 + β2x
2
1 + εi

can be rewritten as

y = β0 + β1x1 + β2x2 + εi where x2 = x2
1.

This model we recognize as a quadratic model. We shall illustrate the problem
of the multiple regression by the simplest multiple regression model, that is
the model involving only two independent or explanatory variables. Suppose
the model is given by

y = β0 + β1x1 + β2x2 + ε. (7.40)

Suppose n sets of observations are available on Y, X1, and X2. Then by the
method of least squares,

b1 = β̂1 =
Sx1ySx2 − Sx2ySx1x2

Sx1Sx2 − (Sx1x2)2
(7.41a)
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b2 = β̂2 =
Sx2ySx1 − Sx1ySx1x2

Sx1Sx2 − (Sx1x2)2
(7.41b)

b0 = β̂0 = ȳ − β̂1x̄1 − β̂2x̄2 (7.41c)

where

Sx1 =
∑

x2
1 − (
∑

x1)2

n
, Sx2 =

∑
x2

2 − (
∑

x2)2

n

Syy =
∑

y2 − (
∑

y)2

n
, Sx1y =

∑
x1y −
∑

x1
∑

y

n

Sx2y =
∑

x2y −
∑

x2
∑

y

n
, Sx1x2 =

∑
x1x2 −

∑
x1
∑

x2

n
.

The estimated regression equation is given by

ŷi = b0 + b1x1i + b2x2i (7.42)

7.9.1 Example

An examination of corn plants on various soils have the concentration of
inorganic (x1) and organic (x2) phosphorus in the soils and the phosphorus
content y on corn grown in the soils were measured for 17 soils. Table 7.6
gives the results of this examination.

Table 7.6 Data for this example on multiple regression

Soil sample x1 x2 y Soil sample x1 x2 y

1 0.4 53 64 9 11.6 29 93
2 0.4 23 60 10 12.6 58 51
3 3.1 19 71 11 10.9 37 76
4 0.6 34 61 12 23.1 46 96
5 4.7 24 54 13 23.1 50 77
6 1.7 65 77 14 21.6 44 93
7 9.4 44 81 15 23.1 56 95
8 10.1 31 93 16 1.9 36 54

17 29.9 51 99

The summary statistics for the data in Table 7.6 are presented in the following
with n = 17.
∑

x1 = 188.20,
∑

x2 = 700.00,
∑

y = 1292.00
∑

x2
1 = 2341.1376,

∑
x2

2 = 31, 712.0,
∑

y2 = 103, 075
∑

x1x2 = 8585.112,
∑

x1y = 16, 203.812,
∑

x2y = 54, 081.029

x̄1 = 11.07, x̄2 = 41.18, ȳ = 76.18.
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Hence,

Syy = 4426.5, Sx1 = 1519.30, Sx2 = 2888.50

Sx1y = 1867.40, Sx2y = 757.50, Sx1x2 = 835.70

If we define D to be the denominator in expressions (7.41a) and (7.41b), then
we have,

D = Sx1Sx2 − (Sx1x2)
2

= (1519.30)(2888.50) − (835.70)2

= 3690.104

Hence,

b1 =
[(1867.4)(2888.5) − (757.5)(835.7)]

D
= 1.2902

b2 =
[(757.5)(1519.3) − (1867.4)(835.7)]

D
= −0.1110

b0 = ȳ − b1x̄1 − b2x̄2

= 76.18 − (1.2902)(11.07) + (0.1110)(41.18) = 66.47

The estimated regression equation is therefore given by:

ŷ = 66.47 + 1.2902x1 − 0.1110x2. (7.43)

Thus for soil sample (1) where X1 = 0.4, and X2 = 53, we have,

ŷ = 66.47 + 1.2902(0.4) − (0.1110)(53) = 61.1.

The regression sum of squares is computed as:

Reg. SS = b1Sx1y + b2Sx2y

= 1.2902(1867.4) + (−0.1110)(757.5)

= 2325.237

Residual SS = Total SS − Regression SS

= Syy − Fitted SS

= 4426.5 − 2325.237

= 2101.3.
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The analysis of variance table is therefore given in Table 7.7.

Table 7.7 Regression analysis of variance table

Source d.f. SS MS F

Regression 2 2325.237 1162.62 7.75∗

Residual 14 2101.3 150.09 = S2

Total 16 4426.5
∗Significant at α = 0.01

Hence, we reject the null hypothesis that

H0 : β1 = β2 = 0 vs Ha : at least one of the βs is not zero.

In other words, at least one of the parameters is not zero. Again,

R2 =
Fitted SS
Total SS

=
2325.237
4426.50

= 0.525

R =
√

R2 = 0.725.

While R2 is called the coefficient of multiple determination, R on the other
hand is called the multiple correlation coefficient between Y and the X ’s. It
can be shown that

F =
(n − k) R2

(k − 1)(1 − R2)

where k is the number of parameters in the model. Thus F supplies a test of
the significance of the multiple correlation coefficient. The adjusted R2 can
be simply computed with the following expression:

Adj. R2 = 1 − MSE
Total MS

= 1 − 150.09
4426.5/16

= 1 − 0.5425 = 0.4575

The multiple regression procedure is implemented in MINITAB with the
following. Here, x1, x2, and y are read into columns C1, C2, and C3,
respectively.
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MTB > REGRESS C3 2 C1 C2;
SUBC> Constant;
SUBC> Brief 3.

Regression Analysis: Y versus X1, X2

The regression equation is
Y = 66.5 + 1.29 x1 - 0.111 x2

Predictor Coef SE Coef T P
Constant 66.465 9.850 6.75 0.000
x1 1.2902 0.3428 3.76 0.002
x2 -0.1110 0.2486 -0.45 0.662

S = 12.25 R-Sq = 52.5% R-Sq(adj) = 45.7%

Analysis of Variance

Source DF SS MS F P
Regression 2 2325.2 1162.6 7.75 0.005
Residual Error 14 2101.3 150.1
Total 16 4426.5

Source DF Seq SS
x1 1 2295.2
x2 1 29.9

Unusual Observations
Obs x1 y Fit SE Fit Residual St Resid
10 12.6 51.00 76.28 4.98 -25.28 -2.26R

R denotes an observation with a large standardized residual

The results we obtained from manual calculations agree with those obtained
from MINITAB. Note that the regression degrees of freedom is 2 since we are
now estimating three parameters. Hence, d.f. equals (3 − 1) = 2 in this case.

7.9.2 Partial F tests

Sometimes we may be interested in such questions as whether it was worth
while or economically reasonable to include both dependent variables x1 and
x2 in the last problem. Would it be reasonable to collect data on variable x2 if
for instance only variable x1 is sufficient to predict y. In order to answer these
and similar questions, we need to conduct what is known as partial F test.

For the problem above, we have

Fitted SS = 2325.237

Total SS = 4426.5.
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If the model y = β01 + β1x1 + ε were fitted, the fitted SS due to fitting x1
would be:

(Sx1y)2

Sx1

=
1867.42

1519.3
= 2295.256.

Similarly if only x2 had been in the model, viz., y = β02 + β2x2 + ε, then
fitted SS due to β2 would be:

(Sx2y)2

Sx2

=
755.52

2888.5
= 198.652

Revised analysis of variance table

Source d.f. SS MS F

(1) Full regression 2 2325.237 150.9
(2) Regression of x1 1 2295.256 2295.23 15.29∗∗

(3) Regression of x2 1 198.652 198.65 1.32
(4) Total variation 16 4426.5
(1) − (2) Extra SS due to 1 30.001 30.00 0.20

fitting x2|X1
(1) − (3) Extra SS due to 1 2126.611 2126.61 14.17∗∗

fitting x1|X2

We see from the above table that the inclusion of x2 in the model given that
x1 is already in the equation is not at all significant (F value = 0.20, p value =
0.3384) indicating that once x1 is already in the model, adding x2 does not
contribute much to the model. On the other hand, the reverse is not true.
That is, if x2 is first fitted, the additional SS due to x1 given that x2 is
already in the model is highly significant. Then for the above data a simple
model of the form y = β0 + βx1 + ε will suffice, that is,

β̂ =
Sx1y

Sx1

= 1.229

β̂0 = ȳ − β̂x̄ = 76.18 − 1.229(11.07)

= 62.57.

That is, the estimated equation in this case would be:

ŷ = 62.57 + 1.229x1. (7.44)

We may note here that MINITAB will generate the sequential SS due to each
variables as they enter the regression model. In this example, MINITAB gives
these sequential SS as:

Source DF Seq SS
x1 1 2295.2
x2 1 29.9
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The above means that sequentially, SS(x1 = 2295.2) while SS(x2|x1) = 29.9.
We can similarly obtain the SS(x2) and the SS(x1|x2) if we reverse the order
of entry of the variables in a new regression procedure. Some other pro-
grams avoid this by giving us what is called the type II sum of squares.
Unfortunately, MINITAB does not automatically generate these.

7.10 Outliers and Influential Observations

A regression analysis may be inadequate if any of the following occur:

• The relationship is curvilinear
• Presence of outliers
• Presence of influential observations

A data point can be unusual in a regression analysis if the point is an outlier
(is unusual in a vertical direction); one that is unusual in the horizontal
direction is called a high leverage point. An observation can be both an outlier
and have a high leverage point. When an outlier is present in a data set, then
the error mean squares are usually inflated, thus reducing the correlation
between the explanatory variable(s) and the dependent variable. It may also
unduly influence the estimated regression line.

The leverage of an observation denoted by hi is used to identify influential
observations. A good rule of thumb identifies an observation to be influential
if its leverage hi is such that:

hi >
3(k + 1)

n
(7.45)

where k is the number of explanatory variables in the model, and n is the
number of observations in the data.

A more robust overall measure of influential observations is either Cook’s
distance measure or the Dffits. The latter gives the difference between the
predicted value when all the observations are used in the regression, and when
the ith observation is deleted. Both statistics are provided in a MINITAB
regression analysis. The bound for Cook’s distance is 1

n and a value of D
greater than the 95th percentile of an F distribution with (k+1) and n−(k+1)
degrees of freedom is considered an unusual observation. Consider a multiple
regression model having three explanatory variables x1, x2 and x3 with n =
30 observations on each variable and the response variable y. The results of
analysis from the MINITAB application is presented below.
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7.10.1 Example

Regression Analysis: y versus x1, x2, x3

The regression equation is
y = 1.81 - 0.531 x1 - 0.440 x2 + 0.209 x3

Predictor Coef SE Coef T P VIF
Constant 1.8110 0.2795 6.48 0.000
x1 -0.53146 0.06958 -7.64 0.000 1.046
x2 -0.43964 0.07304 -6.02 0.000 1.243
x3 0.20898 0.04064 5.14 0.000 1.199

S = 0.213468 R-Sq = 82.3% R-Sq(adj) = 80.2%

PRESS = 1.51475 R-Sq(pred) = 77.36%

Analysis of Variance

Source DF SS MS F P
Regression 3 5.5047 1.8349 40.27 0.000
Residual Error 26 1.1848 0.0456
Total 29 6.6895

Source DF Seq SS
x1 1 3.4460
x2 1 0.8538
x3 1 1.2049

Unusual Observations

Obs x1 y Fit SE Fit Residual St Resid
3 3.34 0.3800 0.7973 0.0544 -0.4173 -2.02R
10 3.10 0.7700 1.1695 0.0783 -0.3995 -2.01R

R denotes an observation with a large standardized residual.

MTB > print c1-c7

Data Display

Row x1 x2 x3 y HI1 COOK1 DFIT1
1 3.05 1.45 5.67 0.34 0.097152 0.103328 -0.682864
2 4.22 1.35 4.86 0.11 0.135938 0.014286 0.236056
3 3.34 0.26 4.19 0.38 0.064896 0.070898 -0.568802
4 3.77 0.23 4.42 0.68 0.105082 0.001799 0.083276
5 3.52 1.10 3.17 0.18 0.149217 0.004185 0.127099
6 3.54 0.76 2.76 0.00 0.167164 0.039271 -0.394624
7 3.74 1.59 3.81 0.08 0.172851 0.035228 0.372962
8 3.78 0.39 3.23 0.11 0.132582 0.037014 -0.384540
9 2.92 0.39 5.44 1.53 0.100859 0.063853 0.518806

10 3.10 0.64 6.16 0.77 0.134379 0.156992 -0.845616
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11 2.86 0.82 5.48 1.17 0.076758 0.004387 0.130432
12 2.78 0.64 4.62 1.01 0.059251 0.000022 -0.009147
13 2.22 0.85 4.49 0.89 0.155650 0.112024 -0.689419
14 2.67 0.90 5.59 1.40 0.103917 0.039358 0.399648
15 3.12 0.92 5.86 1.05 0.084138 0.003260 0.112283
16 3.03 0.97 6.60 1.15 0.166074 0.000016 -0.007909
17 2.45 0.18 4.51 1.49 0.126445 0.012589 0.221531
18 4.12 0.62 5.31 0.51 0.140753 0.002771 0.103364
19 4.61 0.51 5.16 0.18 0.265126 0.003324 -0.113155
20 3.94 0.45 4.45 0.34 0.102589 0.008336 -0.180066
21 4.12 1.79 6.17 0.36 0.191406 0.089547 0.604725
22 2.93 0.25 3.38 0.89 0.095939 0.001015 0.062516
23 2.66 0.31 3.51 0.91 0.107166 0.005277 -0.142951
24 3.17 0.20 3.08 0.92 0.114972 0.045597 0.430562
25 2.79 0.24 3.98 1.35 0.081006 0.045952 0.438348
26 2.61 0.20 3.64 1.33 0.111527 0.042193 0.413680
27 3.74 2.27 6.50 0.23 0.260386 0.005582 0.146706
28 3.13 1.48 4.28 0.26 0.110855 0.013270 -0.227793
29 3.49 0.25 4.71 0.73 0.081181 0.005342 -0.144011
30 2.94 2.22 4.58 0.23 0.304739 0.000000 0.001169

In this example, h̄ = 3(k+1)
n = 3×4

30 = 0.40. The column labeled “HI” in
the MINITAB output indicates that there is no possible influential in the
data since all the hi < 0.40. Also, F(4,26,0.95) = 2.743 and none of Cook’s
D values exceeds this value. Hence we can similarly assume that there are
no unusual observations in the data. However, observations 3 and 10 have
standardized residuals greater then |2| and hence these two observations are
possible outliers.

7.10.2 Multicollinearity

When several explanatory variables are involved in a multiple regression
model, there is a need to ensure that the explanatory variables are not
themselves highly correlated. When this occurs, it leads to what is called mul-
ticollinearity and the attendant inflation of standard errors of the estimated
regression coefficients which may lead to wrongful hypotheses decision. In fact
one should test for multicollinearity in a multiple regression involving more
than two independent variables, more so, if some of the variables are deriva-
tives (e.g, x2

1, x
2
2, or x1x2) of the original variables. The multicollinearity is

checked with the use of variance inflation factors defined as:

VIFj =
1

1 − R2
j

for j = 1, 2, · · · , k.

A VIF value greater than ten is said to constitute a presence of multicollinear-
ity in our data. In the above example, the VIF values are all less than ten,
and we can therefore conclude that multicollinearity is not present in our
explanatory variables.
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7.11 Rank Correlation

Our earlier analysis on correlation and regression assumes that the data came
from normally distributed populations. However, if this were not the case,
then we need to employ rank correlation analysis. Two methods commonly
in use are Spearman’s (1904) and Kendall’s (1938) rank correlation analyses.

Consider the following data (Blaisdell 2010) which relate to data collected
by a certain professor who wishes to determine if there is an association
between the final examination scores in her course and the times required to
complete the exam. Exam scores and times (in minutes) for 15 students are
presented in the table below.

Student Exam score (Y ) Time (X )

1 86 108
2 94 100
3 73 115
4 78 113
5 54 118
6 93 99
7 69 110
8 79 109
9 84 111
10 82 117
11 41 120
12 67 116
13 98 89
14 74 112
15 71 110

MTB > Rank ’Y’ c3.
MTB > Rank ’X’ c4.
MTB > let c5=(c3-c4)**2
MTB > sum c5

Sum of d2 = 978

MTB > print c1-c5

Data Display
Row Y X y1 x1 d2
1 86 108 12 5 49
2 94 100 14 3 121
3 73 115 6 11 25
4 78 113 8 10 4
5 54 118 2 14 144
6 93 99 13 2 121
7 69 110 4 7 9
8 79 109 9 6 9
9 84 111 11 8 9
10 82 117 10 13 9
11 41 120 1 15 196
12 67 116 3 12 81
13 98 89 15 1 196
14 74 112 7 9 4
15 71 107 5 4 1
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Columns labeled y1 and x1 contain respectively, the rankings of Y and X. The

column labeled d2 has d2 = (y1 − x1)2, with
15∑

i=1

di = 978. The appropriate

formula for computing Spearman’s rank correlation is given by:

rs = 1 − 6
∑

d2
i

n(n2 − 1)
= 1 − 6(978)

15(225 − 1)
= 0.7464.

MTB > XTABS ’Y’ ’X’;
SUBC> Layout 1 1;
SUBC> Counts;

SUBC> DMissing ’Y’ ’X’;
SUBC> Correlation.

Pearson’s r -0.746429
Spearman’s rho -0.746429

The MINITAB code for doing this can be simply:

MTB > xtabs c1 c2;
SUBC> correlation.

Alternatively, we can perform Pearson’s correlation on the ranked variables,
however, specifying that p values should not be computed. Thus,

MTB > Correlation ’y1’ ’x1’;
SUBC> NoPValues.

Correlations: y1, x1

Pearson correlation of y1 and x1 = -0.746

7.12 Concordance Correlation

Most often, the researcher may want to see if measurements on one instru-
ment can be reproduced on another instrument (which may be of the same
or different make). In such situations, pairs of observations are collected
on the same samples from two different methods or two different instru-
ments. Consider the example below relating to avian plasma concentrations
(in nanograms per milliliter) that were determined by two different assay
methods immediately after the blood was collected (Zar 2010).
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Blood sample Method A Method B

1 6.1 5.0
2 8.6 7.7
3 11.0 11.4
4 13.2 13.9
5 16.9 18.5
6 20.5 21.7
7 22.7 25.3
8 25.8 27.9
9 26.7 29.5
10 28.8 32.6
11 31.4 35.9
12 34.3 38.4

The concordance correlation coefficient, rc, can be computed as:

rc =
2Sxy

Sxx + Syy + (n − 1)(x̄ − ȳ)2
. (7.46)

The summary statistics for the data are:
∑

x = 246.00
∑

y = 267.80
∑

xy = 6628
∑

x2 = 5997.98
∑

y2 = 7335.48 Sxy = 1138.10

Sxx = 954.98 Syy = 1359.08

x̄ = 20.50 ȳ = 22.32 n = 12.

Hence, from (7.46), rc is computed as:

2(1138.10)
954.98 + 1359.08 + (12 − 1)(20.5 − 22.32)2

=
2276.20

2350.4964
= 0.9684

7.13 Multiple and Partial Correlations

Suppose the the zero-order correlation coefficients between an independent
variable y and two explanatory variables x1 and x2 are displayed as follows
for the data in Table 7.6.

MTB > Correlation ’x1’ ’x2’ ’y’.

Correlations: x1, x2, y

x1 x2
x2 0.399

0.113

y 0.720 0.212
0.001 0.414

Here, r12 = 0.399 (r2
12 = 0.1592), ry1 = 0.720 (r2

y1 = 0.5184), and ry2 =
0.212 (r2

y2 = 0.0449).
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The multiple correlation coefficient for the two independent variables (IVs)
as a function of the zero-order correlation coefficients is given by:

Ry.12 =

√
r2
y1 + r2

y2 − 2ry1ry2r12

1 − r2
12

(7.47)

Thus,

Ry.12 =

√
0.5184 + 0.0449 − 2(0.720)(0.212)(0.399)

1 − 0.1592
=

√
0.4415
0.8408

= 0.7246.

Alternatively, we can compute Ry.12 from the expression:

Ry.12 = β̂y1.2. (7.48)

7.13.1 Partial Correlations

The partial correlations written as ry1.2 or ry2.1 can be computed, respec-
tively, from the following expressions:

ry1.2 =
ry1 − ry2 r12√

(1 − r2
y2)(1 − r2

12)

ry2.1 =
ry2 − ry1 r12√

(1 − r2
y1)(1 − r2

12)
. (7.49)

Again, for our example,

ry1.2 =
0.720 − 0.212(0.399)
√

(1 − 0.0449)(1 − 0.1592)
=

0.6354
0.8961

= 0.7091

and r2
y1.2 = 0.70912 = 0.5028. Similarly,

ry2.1 =
0.212 − 0.720(0.399)
√

(1 − 0.5184)(1 − 0.1592)
=

−0.0753
0.6363

= −0.1183

and r2
y2.1 = −0.11832 = 0.0140.

In general, partial correlation coefficients are computed from simple
correlation coefficients as:

rij.k =
rij − rik rjk√

(1 − r2
ik)(1 − r2

jk)
. (7.50)

While MINITAB does not directly compute the partial correlation coeffi-
cients, however, SAS software computes the squares of the partials and we
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present a typical output from SAS that estimates these values. The signs on
the partials are derived from the signs of the regression parameter estimates
(either positive or negative).

The REG Procedure
Model: MODEL1

Dependent Variable: Y

Number of Observations Read 17
Number of Observations Used 17

Analysis of Variance

Sum of Mean
F>rPeulaVFerauqSserauqSFDecruoS

4500.057.747985.261184971.52322ledoM
22290.05111192.1012

95074.6244
14rorrE

Corrected Total 16

Root MSE 12.25121 R-Square 0.5253
Dependent Mean 76.17647 Adj R-Sq 0.4575
Coeff Var 16.08267

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t| Type I SS Type II SS

Intercept 1 66.46540 9.84961 6.75 <.0001 98649 6834.56761
x1 1 1.29019 0.34276 3.76 0.0021 2295.23440 2126.54090
x2 1 -0.11104 0.24859 -0.45 0.6619 29.94508 29.94508

Parameter Estimates

Squared Squared
Partial Partial

Variable DF Corr Type I Corr Type II

Intercept 1 . .
x1 1 0.51852 0.50299
x2 1 0.01405 0.01405

Model: MODEL1

Test 1 Results for Dependent Variable Y

Mean
Source DF Square F Value Pr > F

Numerator 1 29.94508 0.20 0.6619
Denominator 14 150.09222

The REG Procedure
Model: MODEL1

Test 2 Results for Dependent Variable Y

Mean
Source DF Square F Value Pr > F

Numerator 1 1191.81502 7.94 0.0137
Denominator 14 150.09222
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Predictor Sequential SS Partial SS
x1 2295.2344 2126.5409
x2 29.9451 29.9451

The square of the partial correlation of coefficient of y and x2 adjusted for
x1 is computed as:

r2
y2.1 =

R(β2|β0, β1)
Total SS − R(β1|β0)

=
29.9451

4426.4705 − 2295.2344
= 0.01405

7.14 Comparisons of Regressions

Suppose that an experimenter wishes to determine how the response y is
influenced by the dosage x of each of two comparable treatments. Treat-
ment 1 is administered to n1 subjects in different dosages, and their response
measurements are recorded. Similarly, Treatment 2 is administered to an in-
dependent group of n2 subjects and their responses are recorded. If we use
the suffix 1 to denote data from the first set of data (Treatment 1) and the
suffix 2 for the second set of data (Treatment 2). If we assume that a linear
relationship is appropriate for each treatment, we have

Treatment 1: y1i = α1 + β1x1i + e1i i = 1, 2, · · · , n1

Treatment 2: y2j = α2 + β2x2j + e2j j = 1, 2, · · · , n2 .

It is often of practical interest to test the null hypothesis that the two
regression lines have equal slope, that is

H0 : β1 = β2.

Graphically, this is equivalent to the hypothesis that these two lines are
parallel.

From previous knowledge

b1 =
Sx1y1

Sx1

, a1 = ȳ1 − b1x̄1

Error SS = SSE(1) = Sy1 − (Sx1y1)
2

Sx1

on (n1 − 2) d.f.

Similarly,

b2 =
Sx2y2

Sx2

, a2 = ȳ2 − b2x̄2

Error SS = SSE(2) = Sy2 − (Sx2y2)
2

Sx2

on (n2 − 2) d.f.

If a single straight line were fitted,

b =
Sxy

Sx
, and SSE = Sy − (Sxy)2

Sx
on (n1 + n2 − 2) d.f.
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where
∑

x =
∑

x1 +
∑

x2,
∑

x2 =
∑

x2
1 +
∑

x2
2

∑
y =
∑

y1 +
∑

y2,
∑

y2 =
∑

y2
1 +
∑

y2
2

∑
xy =
∑

x1y1 +
∑

x2y2, and

Sx =
∑

x2 − (
∑

x)2

n1 + n2
, Sy =

∑
y2 − (
∑

y)2

n1 + n2

Sxy =
∑

xy −
∑

x
∑

y

n1 + n2
.

An estimate of the pooled variance S2 is given by

SSE(1) + SSE(2)
n1 + n2 − 4

.

Hence the difference = SSE − [SSE(1) + SSE(2)] will be based on (n1 + n2 −
2) − (n1 + n2 − 4) = 2 d.f.

and

F∗ =
Difference MS

S2

=
(n1 + n2 − 4)[SSE − SSE(1) − SSE(2)]

2[SSE(1) + SSE(2)]

and the computed F will be distributed F with 2 and (n1 + n2 − 4) d.f.

7.14.1 Example

Consider the following data relating two treatments A and B with regards to
the reduction in blood sugar level, where the explanatory variable X refers
to the dosage level for each of the treatments (Table 7.8).

Table 7.8 Blood sugar reduction levels for various dosage levels

Treatment A Treatment B
xi yi xi yi

0.20 30 0.20 23
0.25 26 0.25 24
0.25 46 0.30 42
0.30 35 0.40 49
0.40 54 0.40 55
0.50 56 0.50 70
0.50 65
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For treatment A: n1 = 7 and,
∑

x1 = 2.4,
∑

x2
1 = 0.915, Sx1 = 0.0921

∑
y1 = 312.0,

∑
y2
1 = 15194.0 Sy1 = 1287.7143

∑
x1y1 = 116.60, Sx1y1 = 9.6286.

Hence,

β̂1 =
Sx1y1

Sx1

= 104.5451

and therefore,

Residual SS = 1287.7143 − 9.62862

0.0921
, that is,

SSE(1) = 281.0917.

For treatment B: n2 = 6 and,
∑

x2 = 2.05,
∑

x2
2 = 0.7625, Sx2 = 0.0621

∑
y2 = 263.0,

∑
y2
2 = 13195 Sy2 = 1666.8333

∑
x2y2 = 99.8, Sx2y2 = 9.9417

Hence,

β̂2 =
Sx2y2

Sx2

= 160.1342

and again, therefore,

Residual SS = 1666.8333 − 9.94172

0.0621
, that is,

SSE(2) = 74.8322.

If a single straight line were fitted, the estimate of the pooled variance S2 is

S2 =
74.8322 + 281.0917

7 + 6 − 4
= 39.5471 on 9 d.f.

with n1 + n2 = 7 + 6 = 13, and,
∑

x =
∑

x1 +
∑

x2 = 2.4 + 2.05 = 4.45
∑

x2 =
∑

x2
1 +
∑

x2
2 = 0.915 + 0.7625 = 1.6775
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∑
y =
∑

y1 +
∑

y2 = 312 + 263 = 575
∑

y2 =
∑

y2
1 +
∑

y2
2 = 15, 194 + 13, 195 = 28, 389

∑
xy =
∑

x1y1 +
∑

x2y2 = 116.6 + 99.8 = 216.4.

Therefore,

Sx = 1.6775 − 4.452

13
= 0.1542

Sy = 28, 389 − 5752

13
= 2956.3077

Sxy = 216.4 − 4.45 × 575
13

= 19.5731

SSE = 2956.3077 − (19.5731)2

0.1542
= 471.8314.

Difference = SSE − SSE(1) − SSE(2)

= 471.8314 − 281.0917 − 74.8322

= 115.9075 on 2 d.f.

Therefore,

F =
115.9075/2

39.5471
= 1.47 with 2 and 9 d.f.

Since F is not significant, i.e., we accept the null hypothesis that the regres-
sion lines are coincident. In other words, the treatment effect can be ignored
and a single straight line of the form Y = β0 + β1x would be appropriate for
the data in Table 7.8. The results above can succinctly be displayed, as in
Table 7.9.

Table 7.9 Analysis of variance table for testing the hypothesis of parallelism

Source df SS MS F

(a) SSE(1) 5 281.0917
(b) SSE(2) 4 74.8322
(c) (a) + (b) 9 353.9239 39.5471 = S2

(d) SSE 11 471.8314
(e) Difference (d) − (c) 2 115.9075 57.9538 1.47

F value in Table 7.9 is computed as Difference MS/S2 = (e)/(c) = 1.47, which
is clearly not significant at α = 0.05.
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7.14.2 Alternative Approach

An alternative test is to proceed as follows:

Compute S2 =
SSE(1) + SSE(2)

n1 + n2 − 4

Var(β̂1 − β̂2) = S2
(

1
Sx1

+
1

Sx2

)

which for our example

= 39.5471
(

1
0.0921

+
1

0.0621

)

= 1066.2224.

Then the test H0 : β1 = β2 is given by

t =
β̂1 − β̂2√

var (β̂1 − β̂2)
=

104.5451 − 160.1342√
1066.2224

=
−55.5891
32.6531

= −1.7024

where t is tabulated as Student’s t distribution with (n1 + n2 − 4) = 9 d.f.
Clearly at the 5 % point, the calculated value of t0.975 = 2.2622 is not

significant, i.e., we accept H0 which is clearly the earlier conclusion arrived
at in the previous section.

To implement the above in MINITAB, we do the following:

(a) Read the data in as x1, y and TRT in columns C1, C2, and C3
respectively. Notice that C3 is alphanumeric.

(b) To be able to use column C3, we create a dummy variable x2 such that

x2 =
{
1 if TRT A
0 if TRT B

This is accomplished with the statement beginning “Indicator.”
MINITAB actually creates two dummy variables into columns C4 and
C5 corresponding to the levels of variable TRT. One of these is, how-
ever, redundant and we have labeled the redundant column NA (not
applicable).

(c) Create a variable x3, which is the interaction of x1 and x2. That is,
x3 = x1 × x2.
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MTB > Indicator ’TRT’ C4 C5.
MTB > LET C6=C1*C4
MTB > PRINT C1-C6

Data Display

Row x1 y TRT x2 NA x3

1 0.20 30 A 1 0 0.20
2 0.25 26 A 1 0 0.25
3 0.25 46 A 1 0 0.25
4 0.30 35 A 1 0 0.30
5 0.40 54 A 1 0 0.40
6 0.50 56 A 1 0 0.50
7 0.50 65 A 1 0 0.50
8 0.20 23 B 0 1 0.00
9 0.25 24 B 0 1 0.00
10 0.30 42 B 0 1 0.00
11 0.40 49 B 0 1 0.00
12 0.40 55 B 0 1 0.00
13 0.50 70 B 0 1 0.00

We wish to fit the multiple regression model:

y = β0 + β1x1 + β2x2 + β3x3 + ε (7.51)

where x2 is as defined above and x3 is the product of x1 and x2.

MTB > Regress ’y’ 3 ’x1’ ’x2’ ’x3’;
SUBC> Constant;
SUBC> Brief 2.

Regression Analysis: y versus x1, x2, x3

The regression equation is
y = - 10.9 + 160 x1 + 19.6 x2 - 55.6 x3

Predictor Coef SE Coef T P
Constant -10.879 9.003 -1.21 0.258
x1 160.13 25.26 6.34 0.000
x2 19.62 11.71 1.68 0.128
x3 -55.64 32.67 -1.70 0.123

S = 6.293 R-Sq = 87.9% R-Sq(adj) = 83.9%

Analysis of Variance

Source DF SS MS F P
Regression 3 2599.91 866.64 21.88 0.000
Residual Error 9 356.40 39.60
Total 12 2956.31

Source DF Seq SS
x1 1 2483.97
x2 1 1.11
x3 1 114.82
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From (7.51), we see that when x2 = 0, we have the regression equation in
(7.52a) for TRT B, and when we substitute x2 = 1 again in (7.51), we have
the regression equation in (7.52b) for TRT A. That is,

y = β0 + β1x1 + ε (7.52a)

y = (β0 + β2) + (β1 + β3)x1 + ε. (7.52b)

From (7.52a) and (7.52b), the intercepts and slopes of the two regression
models for treatments A and B are presented in Table 7.10.

Table 7.10 Intercepts and slopes for the two regression lines

Regression
equation for Intercept Slope

TRT A (β0 + β2) (β1 + β3)
TRT B β0 β1

For the two lines to be coincident, therefore, both the parameters β2 and β3
in the equation for TRT A must be zero. That is, we would need to test the
hypotheses:

H0 : β2 = β3 = 0 (7.53)

Ha : at least one of these �= 0 (7.54)

To conduct these hypotheses, we note from the MINITAB output that the
sequential SS are:

Source DF Seq SS
x1 1 2483.97
x2 1 1.11
x3 1 114.82

That is, SS(x1 = 2483.97), SS(x2|x1 = 1.11), and SS(x3|(x1, x2) = 114.82).
Hence, the sum of squares due to x2 and x3 given that x1 is already in the
model is SS(x2, x3|x1) = 1.11+114.82 = 115.93 and is based on 2 d.f. Hence,
the test statistic for testing the hypotheses in (7.53) is computed as:

F =
115.93/2

EMS
=

57.965
39.60

= 1.46 with 2 and 9 d.f.

where EMS is the error mean square in the multiple regression output from
MINITAB, which is based on 9 d.f. We see that the above result is comparable
with our earlier result from manual calculations. Once again, we would fail
to reject the null hypothesis in (7.53), indicating that both β2 and β3 could
be zero, reducing the equation for both treatments to that in (7.52a). Thus,
the appropriate regression model for the data in Table 7.8 is the model

Y = β0 + β1x1 + ε
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which when implemented in MINITAB gives the following output:

MTB > Regress ’y’ 1 ’x1’;
SUBC> Constant;
SUBC> Brief 3.

Regression Analysis: y versus x1

The regression equation is
y = 0.79 + 127 x1

Predictor Coef SE Coef T P
Constant 0.789 5.994 0.13 0.898
x1 126.91 16.69 7.61 0.000

S = 6.553 R-Sq = 84.0% R-Sq(adj) = 82.6%

Analysis of Variance

Source DF SS MS F P
Regression 1 2484.0 2484.0 57.85 0.000
Residual Error 11 472.3 42.9
Total 12 2956.3

and the estimated regression equation in Fig. 7.9 has the form:

ŷi = 0.789 + 126.91x1i.

0.500.450.400.350.300.250.20
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30

20
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y

S 6.55281
R-Sq 84.0%
R-Sq(adj) 82.6%

Fitted Line Plot
y =  0.789 + 126.9 X1

Fig. 7.9 Plot of the estimated regression equation
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7.15 Fitting Parallel Lines

In the last example, our conclusion was that a single relationship holds for
both sets of data, and of course there is no need to consider any other possi-
bility. If however, we had found sufficient evidence that the relationships for
the two sets are not identical, then one may be interested in testing whether
the slopes of the two regressions are the same and that the two sets of data
differ only in their intercepts. Thus, we would need to fit a model of the form:

Set 1 : y1i = β01 + βx1i i = 1, 2, · · · , n1

Set 2 : y2j = β02 + βx2j j = 1, 2, · · · , n2.

Here we have two different values of β0i, i = 1, 2 but a common value of β,
that is, the lines are parallel.
The estimate of the common slope is

b =
Sx1y1 + Sx2y2

Sx1 + Sx2

=
Sxy

Sx

while the estimates of the intercepts are

b01 = ȳ1 − bx̄1

b02 = ȳ2 − bx̄2 and

Residual SS: RSS = Sy −
S2

xy

Sx
on (n1 + n2 − 3) d.f.

where

Sy = Sy1 + Sy2

Sxy = Sx1y1 + Sx2y2 and

Sx = Sx1 + Sx2

Since there are three parameters estimated namely β01, β02, and β from the
models, therefore, the difference degrees of freedom equals,

Diff. d.f. = RSS d.f. − ESS(1) d.f. − ESS(2) d.f.

= (n1 + n2 − 3) − (n1 − 2) − (n2 − 2)

= (n1 + n2 − 3) − (n1 + n2 − 4)

= 1 d.f.

and therefore,

F =
Diff. MS

S2

where S2 is as given in the previous section, and F is distributed as F
distribution with 1 and (n1 + n2 − 4) degrees of freedom.
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Example

For instance, for our example in Table 7.8

b =
Sxy

Sx
=

9.6286 + 9.9417
0.0921 + 0.0621

=
19.5703
0.1542

= 126.9150

and,

b01 = ȳ1 − bx̄1 = 44.5714 − 126.9150(0.3429) = 1.0522

b02 = ȳ2 − bx̄2 = 43.8333 − 126.9150(0.3417) = 0.4664.

Hence,

Sy = 1287.7143 + 1666.8333 = 2954.5476.

Therefore, the residual sum of squares RSS is computed as:

RSS = Sy −
S2

xy

Sx
= 2954.5476 − 19.57032

0.1542
= 470.7821.

The difference is again computed as:

Difference = 470.7821 − ESS(1) − ESS(2) = 114.8582 on 1 d.f.

Since ESS(1) = 281.0917 and ESS(2) = 74.8322 from our previous calcula-
tions. Hence,

F =
114.8582
39.5471

= 2.90

F(1,9) = 7.21 at α = 0.05. Thus, the calculated F value is not significant.
That is, we can conclude that the two regression lines are parallel.

Alternatively, we could use the following approach, but first, let us display
in the table below the summary statistics from the two data samples.

Sample ni Syy Sxx Sxy

1 7 1287.7143 0.0921 9.6286
2 6 1666.8333 0.0621 9.9417

Total 13 2954.5476 0.1542 19.5703

However, we need the following computations from the above table:

(a) Common slope which equals:

b0 =
2∑

i=1

(
Sxyi

Sxxi

)

=
19.5703
0.1542

= 126.9150.
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(b) The Residual SS about separate regressions:

RSS =
2∑

i=1

Syyi −
2∑

i=1

(
S2

xyi

Sxxi

)

= 2954.5476 −
[
(9.6286)2

0.0921
+

(9.9417)2

0.0621

]

= 2954.5476 − (1006.6226 + 1591.5845)

= 2954.5476 − 2598.2071

= 356.3405.

This will be based on n1+n2−2k d.f., where k is the number of regression
lines.

(c) SS due to fitting common slope:

FIT SS =
(
∑

i Sxiyi)
2

Sxxi

=
(19.5703)2

0.1542
= 2483.7655. i = 1, 2.

This is based on 1 d.f.
(d) SS due difference in slope, that is between slopes SS (BSS):

BSS =
∑

i

Syyi
− (
∑

i Sxyi)
2

∑
i Sxxi

= 2598.2071 − 2483.7655

= 114.4416

and is based on k − 1 degrees of freedom.

Table 7.11 Analysis of variance table for testing the hypothesis of parallelism

Source d.f. SS MS F

Common slope 1 2483.7655 2483.7655
Between slopes 1 114.4416 114.4416 2.89
Separate residuals 9 356.3405 39.5934
Total 11 2954.5476

We can now summarize the above results succinctly in an ANOVA table as
shown.
The F value in Table 7.11 is clearly not significant at α = 0.05.

To implement parallelism in MINITAB, we notice again from Eqs. (7.52a)
and (7.52b) that for the two regression equations to be parallel, the slopes
must be equal. That is, β3 must necessarily be zero. Hence, we would need
to test the hypothesis that:

H0 : β3 = 0 (7.55)

Ha : β3 �= 0. (7.56)
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To conduct these hypotheses, we note from the MINITAB output that the
sequential SS are again given by:

Source DF Seq SS
x1 1 2483.97
x2 1 1.11
x3 1 114.82

Thus, SS(x3|(x1, x2) = 114.82) on 1 d.f. and the test statistic for testing the
hypotheses in (7.55) is computed as:

F =
114.82
EMS

=
114.82
39.60

= 2.90 with 1 and 9 d.f.

MTB > Regress ’y’ 2 ’x1’ ’x2’;
SUBC> Constant;
SUBC> Brief 3.

Regression Analysis: y versus X1, X2

The regression equation is
y = 0.48 + 127 X1 + 0.59 X2

Predictor Coef SE Coef T P
Constant 0.478 6.597 0.07 0.944
x1 126.89 17.48 7.26 0.000
x2 0.587 3.819 0.15 0.881

S = 6.865 R-Sq = 84.1% R-Sq(adj) = 80.9%

The estimated regression equation when we set β3 = 0 is:

ŷ = 0.478 + 126.89x1 + 0.587x2. (7.57)

Consequently, if we set x2 = 1 for treatment A and x2 = 0 for treatment B in
the above estimated equation, we have the estimated parallel regression lines
for TRT A and TRT B respectively in expressions (7.58a) and (7.58b). These
lines are plotted in Fig. 7.10. Notice that the lines are very close together,
since based on our previous results, these lines are actually coincident.

TRT A: ŷ = 1.065 + 126.89x1 (7.58a)

TRT B: ŷ = 0.478 + 126.89x1 (7.58b)
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Fig. 7.10 Plot of the estimated parallel regression equations

7.16 Nonlinear Regression

In the earlier sections, we were fitting models of the form

Y = β0 + β1x + ε

Y = β0 + β1x1 + β2x
2 + ε.

These models are said to be linear with respect to their parameters β0, β1, β2,
etc. even though the second model indicates a quadratic relationship between
y and x and both are often referred to as linear models. However, it has
been established that for most biological situations, the linear model may
be inadequate. Most nonlinear models applicable to biological or agricultural
situations can be grouped into three kinds.
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(a) Exponential growth curves

y = β0β
x
1

that is, an exponential growth curve, the parameters β0 and β1 are no
longer linear. Another form of this curve is given by Y = β0β

−x
1 , that

is, an exponential decay law. In either case a simple transformation, e.g.,
logarithmic will make the model linear in their parameters. For example,

for growth curve log y = log β0 + x log β1

decay curve log y = log β0 − x log β1

which are now equivalent to the last models. Both models are sometimes
written in the form y = β0e

β1x and y = β0e
−β1x respectively.

The graphs in Fig. 7.11 for instance give the exponential models for
the cases when β > 0 and when β < 0. The former is the model
y = 6(1.0408)x, while the latter is y = 400e−0.05x.

(b) The models in (a) are problematic because the rapid and unlimited in-
crease as x increases and this has sometimes made it inappropriate for
use with real biological data which often requires asymptotic convergence
of y as x increases. To overcome this problem, the exponential model that
includes limitation on growth has been suggested and is of the form:

Fig. 7.11 Exponential growth and decay curves

yi = a(1 − e−bxi) + εi. (7.59)
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The model in (7.59) is often referred to as the negative exponential model
and we present in Fig. 7.12 the plots for a = 20 and two b values of −0.06
and −0.03, with the b = −0.06 curve being steeper.

Fig. 7.12 Negative exponential growth curves

The model in (7.59) is a special case of growth models satisfying
Mitcherlich Law. Specifically, this model has been referred to as the
MacArthur–Wilson growth equation.

Other exponential curves include the two-term exponential curves
which rise steeply from zero and then fall slowly to zero asymptotically.
These curves are of the form

yi =
γ1

γ1 − γ2
(e−γ2xi−γ1xi) + εi. (7.60)

By using Eq. (7.60), Fig. 7.13 gives the two-term exponential curves with
the higher curve having γ1 = 0.05 and γ2 = 0.04.

yi =
0.05

0.05 − 0.04
(e−0.04xi−0.05xi) + εi,

yi =
0.05

0.05 − 0.11
(e−0.11xi−0.05xi) + εi.
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Fig. 7.13 Two-term exponential growth curves

(c) Also commonly used is the Michaelis–Menten (1913) model which has
received wide usage for enzymatic and chemical kinetic reactions among
others. The model is of the form:

y =
ax

b + x
. (7.61)

Here as x increases, the function approaches an asymptote, a, and b can
be assumed to be the value of x at which the function has reached half its
asymptotic value and b is referred to as the Michaelis–Menten constant.

Example: The Puromycin Data

The following example from Bates and Watts (1988, p. 269) gives the rela-
tionship between the velocity of an enzymatic reaction (chemical kinetics), y,
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and the substrate concentration, x. The data for this experiment is presented
in Table 7.12.

Table 7.12 Reaction velocity and substrate concentration data

x .02 .02 .06 .06 .11 .11 .22 .22 .56 .56 1.10 1.10

y 76 47 97 107 123 139 159 152 191 201 207 200

We present in the following figure scatter plot of reaction velocity (y) against
substrate concentration (x).

Plot of y*x. Symbol used is ’+’.
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To estimate the parameters of the the model given in (7.61), we make use of
the NLINEAR procedure in MINITAB Regression module. We use a = 100
and b = 0.10 as initial values. We must also supply for MINITAB the expected
functional form of the model which in this case is: ax

(b+x) . The MINITAB
statements and partial output is presented below. We may note here that
MINITAB uses the Gauss–Newton method in solving for the parameters of
the model.
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a
b 0.765084
Lack of Fit

Source DF SS MS F P
Error 10 1195.45 119.545
Lack of Fit 4 497.95 124.487 1.07 0.447
Pure Error 6 697.50 116.250

Summary

Iterations 11
Final SSE 1195.45
DFE 10
MSE 119.545
S 10.9337

MTB > NLinear;
SUBC> Response ’y’;
SUBC> Continuous ’x’;
SUBC> Parameter "a" 100;
SUBC> Parameter "b" .1;
SUBC> Expectation a*x/(b+x);
SUBC> NoDefault;
SUBC> GFCurve;
SUBC> GHistogram;
SUBC> TMethod;
SUBC> TStarting;
SUBC> TConstraints;
SUBC> TEquation;
SUBC> TParameters;
SUBC> TSummary;
SUBC> TPredictions.

Nonlinear Regression: y = a * x / (b + x)

Method

Algorithm Gauss-Newton
Max iterations 200
Tolerance 0.00001

Starting Values for Parameters

Parameter Value
a 100
b 0.1

Equation

y = 212.684 * x / (0.0641213 + x)

Parameter Estimates

Parameter Estimate SE Estimate
a 212.684 6.94716
b 0.064 0.00828

y = a * x / (b + x)

Correlation Matrix for Parameter Estimates
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Because the observations were replicated at all the values of x, a lack of
fit test conducted gives a p value of 0.447 which is not significant, indicating
that the model is quite adequate. The predicted observations as well as the
residuals are presented below.

Data Display

Row x y Resid1 Fits1
1 0.02 76 25.4340 50.566
2 0.02 47 -3.5660 50.566
3 0.06 97 -5.8109 102.811
4 0.06 107 4.1891 102.811
5 0.11 123 -11.3616 134.362
6 0.11 139 4.6384 134.362
7 0.22 159 -5.6847 164.685
8 0.22 152 -12.6847 164.685
9 0.56 191 0.1671 190.833
10 0.56 201 10.1671 190.833
11 1.10 207 6.0311 200.969
12 1.10 200 -0.9689 200.969

It seems that observation 1 has a very high residual, otherwise the others
are well behaved. Based on the above, therefore, the estimated regression
equation is:

ŷi =
212.7xi

0.0641 + xi

with the corresponding estimated response displayed in Fig. 7.14.
We may observe here that MINITAB already had the Michaelis–Menten
expectation model which can be readily invoked. It has used θ1 and θ2
respectively for a and b parameters in our model.

Transformational Approach

The MM model in (7.61) can be transformed into a linear model using the
reciprocal transformation. That is,

y =
ax

b + x

can be transformed into:

1
y

=
b + x

ax
=

b

a

(
1
x

)

+
1
a

(7.62)

Thus a plot of 1/y against 1/x should give us a straight line and the regression
of 1/y against 1/x should produce an intercept of 1/a and a slope of b/a.
When this was implemented in MINITAB, we get the following partial out.
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Fig. 7.14 Michealis–Menten predicted curve

Regression Equation

invy = 0.00510718 + 0.000247221 invx

Coefficients

Term Coef SE Coef T P
Constant 0.0051072 0.0007040 7.25454 0.000
invx 0.0002472 0.0000321 7.70049 0.000

Summary of Model

S = 0.00189226 R-Sq = 85.57% R-Sq(adj) = 84.13%
PRESS = 0.000116760 R-Sq(pred) = 52.94%

Analysis of Variance

Source DF Seq SS Adj SS Adj MS F P
Regression 1 0.0002123 0.0002123 0.0002123 59.2975 0.000016
invx 1 0.0002123 0.0002123 0.0002123 59.2975 0.000016

Error 10 0.0000358 0.0000358 0.0000036
Lack-of-Fit 4 0.0000019 0.0000019 0.0000005 0.0821 0.984946
Pure Error 6 0.0000339 0.0000339 0.0000057

Total 11 0.0002481
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Thus 1/a = 0.0051072 gives â = 195.803. Similarly b/a = 0.0002472 gives
b̂ = 0.0484, leading to the model,

ŷi =
195.803xi

0.0484 + xi
.

which when we realize that we could easily use manual calculations to obtain
these values, then the use of transformation is well justified and the results
are not too far from those obtained earlier on.

7.16.1 Example 7.16.1

The body weight W in kilograms and the sitting height h in centimeters of
five people are given in the following table:

W 50 65 80 100 120
h 84.7 91.2 97.2 104.7 111.0

Fig. 7.15 Graph of h against weight W

A graph of the above data indicates that the shape is of the form h = AWα

(Fig. 7.15). Transforming here, we have

log h = log A + α log W

=⇒ Y = α + βx

where Y = log h, α = log A, β = α, and X = log W , which is now very
familiar to us. Hence,

log W 3.91 4.17 4.38 4.61 4.79
log h 4.44 4.51 4.58 4.65 4.71
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and
∑

y =
∑

log h = 22.89,
∑

y2 = 104.8367, Sy = 0.0463
∑

x =
∑

log W = 21.86,
∑

x2 = 96.0576, Sx = 0.4857
∑

xy = 100.2249, Sxy = 0.1498.

Hence,

β̂ =
Sxy

Sx
=

0.1498
0.4857

= 0.3084

and,

α̂ = ȳ − β̂x̄ = 3.2297

while,

Â = eα = e3.2297 = 25.272.

Hence the estimated nonlinear regression equation is:

ĥ = 25.272 W 0.3084 (7.63)

R2 =
Fitted SS
Total SS

=
0.14982

(0.48570 × 0.0463)
= 0.9978

That is r = 0.999, a very good fit indeed.

MTB > Regress ’LH’ 1 ’LW’;
SUBC> Constant;
SUBC> Brief 3.

Regression Analysis: LH versus LW

The regression equation is
LH = 3.22 + 0.311 LW

Predictor Coef SE Coef T P
Constant 3.21975 0.02689 119.73 0.000
LW 0.310634 0.006135 50.63 0.000

S = 0.004240 R-Sq = 99.9% R-Sq(adj) = 99.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.046098 0.046098 2563.66 0.000
Residual Error 3 0.000054 0.000018
Total 4 0.046152
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Obs LW LH Fit SE Fit Residual St Resid
1 3.91 4.43912 4.43496 0.00340 0.00415 1.64
2 4.17 4.51305 4.51646 0.00225 -0.00341 -0.95
3 4.38 4.57677 4.58096 0.00190 -0.00419 -1.10
4 4.61 4.65110 4.65028 0.00237 0.00082 0.23
5 4.79 4.70953 4.70691 0.00318 0.00262 0.93

Row w h yhat

1 50 84.7 84.347
2 65 91.2 91.509
3 80 97.2 97.606
4 100 104.7 104.612
5 120 111.0 110.707

Alternatively, we could use the nonlinear procedure in MINITAB without
having to transform the data, once we know the functional form of the model,
which is h = AW b. The following MINITAB results are generated:

MTB > Name C5 "Fits1".
MTB > NLinear;
SUBC> Response ’h’;
SUBC> Continuous ’w’;
SUBC> Parameter "a" 0.5;
SUBC> Parameter "b" 0.5;
SUBC> Expectation a *w**(b);
SUBC> NoDefault;
SUBC> GFCurve;
SUBC> TMethod;
SUBC> TStarting;
SUBC> TConstraints;
SUBC> TEquation;
SUBC> TParameters;
SUBC> TSummary;
SUBC> TPredictions;
SUBC> Fits ’Fits1’.

Nonlinear Regression: h = a * w ** b

Method

Algorithm Gauss-Newton
Max iterations 200
Tolerance 0.00001

Starting Values for Parameters

Parameter Value
a 0.5
b 0.5

Equation

h = 24.8484 * w ** 0.312216

Fitted Line: logh versus w
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Parameter Estimates

Parameter Estimate SE Estimate
a 24.8484 0.658102
b 0.3122 0.005964

h = a * w ** b

Lack of Fit

There are no replicates.
Minitab cannot do the lack of fit test based on pure error.

Fig. 7.16 Predicted sitting height h vs. weight W

From the above, the estimated nonlinear regression equation is presented
below with corresponding fitted nonlinear regression displayed in Fig. 7.16

h = 24.8484 W 0.31222

The predicted values as well as the associated residuals are presented in the
display below.

Data Display

Row w h yhat Resid1 Fits1
1 50 84.7 84.347 0.415996 84.284
2 65 91.2 91.509 -0.278729 91.479
3 80 97.2 97.606 -0.405598 97.606
4 100 104.7 104.612 0.051839 104.648
5 120 111.0 110.707 0.222063 110.778
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Example 7.16.2

The following example is from Kutner et al. (2005). A hospital administrator
wishes to develop a regression model for predicting the degree of long-term
recovery after discharge from the hospital for severely injured patients. He
intends to use as an explanatory variable, the number of days hospitalized
(X ) and a response variable being the prognostic index of long-term recovery
(Y ), with large values of the index reflecting a good prognosis. Data were
collected on 15 patients and these are presented in Table 7.13.

Table 7.13 Data on severely injured patients

Days Prognostic
Patient hospitalized index

i Xi Yi

1 2 54
2 5 50
3 7 45
4 10 37
5 14 35
6 19 25
7 26 20
8 31 16
9 34 18
10 38 13
11 45 8
12 52 11
13 53 8
14 60 4
15 65 6

A scatter plot of Y against X is displayed in Fig. 7.17.
Plot
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Fig. 7.17 Scatter plot of Y against X
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Two possible exponential models are being considered, namely,

Yi = β0Xi
β1 + ei (7.64a)

Yi = β0e
β1Xi + ei (7.64b)

Taking logarithms of both sides of the two models, we have for the two models
respectively,

lnYi = ln β0 + β1 lnXi + εi (7.65a)

lnYi = ln β0 + β1Xi + εi (7.65b)

We decide to implement these models in MINITAB since the procedure in-
volved is similar to that developed in the previous section. To implement the
model (7.65a), we first transform Y and X to their logs and then run the
regression on the transformed variables. The parameter estimates for this
model are:

log β̂0 = 5.0747, β̂1 = −0.7191.

Hence, β̂0 = e5.0747 = 159.9242. Consequently, the predicted regression
equation is:

ŷi = 159.9242 X−0.7191
i . (7.66)

For instance, when xi = x1 = 2, then ŷ1 = 159.9242(2)−0.7191 = 97.1502.
Other predicted values are similarly obtained and these are plotted against
X in Fig. 7.18 with the observed values superimposed. The observed values
are denoted with the “+” symbol. Clearly, this model does not fit the data
well from the graph.

Similarly, to implement model (7.65b), we again transform Y to its log and
then run the regression on the transformed variable against X. The parameter
estimates under this model from the MINITAB output are:

log β̂0 = 4.03716, β̂1 = −0.03797.

Hence, β̂0 = e4.03716 = 56.6652. Consequently, the predicted regression
equation is:

ŷi = 56.6652 e(−0.03797 Xi). (7.67)

For instance, when xi = x1 = 2, then ŷ1 = 56.6652e2(−0.03797) = 52.5214.
Other predicted values are similarly obtained and these are plotted against X
in Fig. 7.19. The observed values are again superimposed on the same graph
and are again denoted with the “+” symbol.

The MINITAB nonlinear regression modules generate the following results
and accompanying fitted and residuals for both models. Clearly, the second
model fits better.
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The MINITAB outputs are presented briefly below for both models.

Equation

Y = 88.7885 * X ** -0.466221

Parameter Estimates

Parameter Estimate SE Estimate
a 88.7885 11.2726
b -0.4662 0.0578

Y = a * X ** b

Lack of Fit

There are no replicates.
Minitab cannot do the lack of fit test based on pure error.

Summary

Iterations 11
Final SSE 625.715
DFE 13
MSE 48.1320
S 6.93772
--------------------------
Equation

Y = 58.6066 * EXP(-0.0395865 * X)

Parameter Estimates

Parameter Estimate SE Estimate
a 58.6066 1.47216
b -0.0396 0.00171

Y = a * EXP(b * X)

Lack of Fit

There are no replicates.
Minitab cannot do the lack of fit test based on pure error.

Summary

Iterations 13
Final SSE 49.4593
DFE 13
MSE 3.80456
S 1.95053
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Fig. 7.18 Plot of estimated regressions for model (a)

Data Display

Row X Y Resid1 Fits1 Resid2 Fits2
1 2 54 -10.2703 64.2703 -0.14544 54.1454
2 5 50 8.0741 41.9259 1.91768 48.0823
3 7 45 9.1611 35.8389 0.57770 44.4223
4 10 37 6.6516 30.3484 -2.44796 39.4480
5 14 35 9.0578 25.9422 1.32902 33.6710
6 19 25 2.5004 22.4996 -2.62453 27.6245
7 26 20 0.5614 19.4386 -0.93870 20.9387
8 31 16 -1.9082 17.9082 -1.17864 17.1786
9 34 18 0.8467 17.1533 2.74500 15.2550
10 38 13 -3.2865 16.2865 -0.02098 13.0210
11 45 8 -7.0520 15.0520 -1.86957 9.8696
12 52 11 -3.0708 14.0708 3.51911 7.4809
13 53 8 -5.9464 13.9464 0.80947 7.1905
14 60 4 -9.1627 13.1627 -1.45024 5.4502
15 65 6 -6.6805 12.6805 1.52848 4.4715

7.16.2 Example 7.16.3: Exponential Response Model

For fertilizer response trials, the Mitscherlich response function model:
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Fig. 7.19 Plot of estimated regressions for model (b)

yi = a[1 − e−b(x+c)] (7.68)

has been suggested to be appropriate. We apply the above model to the data
presented in Mead and Curnow (1983). The data relate to an experiment
investigating the effect of nitrogen fertilization on sugarcane yields. Five ni-
trogen levels (0, 50, 100, 150, 200) kg/ha in four randomized blocks of five
plots each. The yields are presented in the following table.

Blocks
Nitrogen I II III IV Total

0 60 73 77 72 282
50 125 144 145 116 530
100 152 154 160 141 607
150 182 167 181 185 715
200 198 188 189 182 757

Total 717 726 752 696 2891

Our initial analysis of the above data in MINITAB gives the following results:
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MTB > ANOVA ’Y’ = Block N.

ANOVA: Y versus Block, N

Factor Type Levels Values
Blocks fixed 4 1, 2, 3, 4
N fixed 5 0, 50, 100, 150, 200

Analysis of Variance for Y

Source DF SS MS F P
Blocks 3 322.9 107.6 1.34 0.309
N 4 35392.7 8848.2 109.77 0.000
Error 12 967.3 80.6
Total 19 36683.0

S = 8.97821 R-Sq = 97.36% R-Sq(adj) = 95.82%

Clearly, the nitrogen effects are very highly significant, while there is very lit-
tle variation among the blocks. We now consider two alternatives for modeling
the response of nitrogen.

(a) Fit a polynomial model using orthogonal polynomials since the levels of
nitrogen are equally spaced. Since there are five levels, we can fit a fourth
degree polynomial (a quartic model) to the data.

(b) Fit the exponential Mitscherlich response function model in (7.68).

7.16.3 Polynomial Model

The fourth degree polynomial model is implemented in MINITAB, first, by
coding the levels of nitrogen into the four components using the table of
orthogonal polynomial coefficients and then running the two-way ANOVA
model. The results are displayed below.

MTB > Code (0) -2 (50) -1 (100) 0 (150) 1 (200) 2 ’N’ c4
MTB > Code (0) 2 (50) -1 (100) -2 (150) -1 (200) 2 ’N’ c5
MTB > Code (0) -1 (50) 2 (100) 0 (150) -2 (200) 1 ’N’ c6
MTB > Code (0) 1 (50) -4 (100) 6 (150) -4 (200) 1 ’N’ C7

Data Display

Row N Block Y LN QN CN QQN
1 0 1 60 -2 2 -1 1
2 50 1 125 -1 -1 2 -4
3 100 1 152 0 -2 0 6
4 150 1 182 1 -1 -2 -4
5 200 1 198 2 2 1 1
6 0 2 73 -2 2 -1 1
7 50 2 144 -1 -1 2 -4
8 100 2 154 0 -2 0 6
9 150 2 167 1 -1 -2 -4
10 200 2 188 2 2 1 1
11 0 3 77 -2 2 -1 1
12 50 3 145 -1 -1 2 -4
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13 100 3 160 0 -2 0 6
14 150 3 181 1 -1 -2 -4
15 200 3 189 2 2 1 1
16 0 4 72 -2 2 -1 1
17 50 4 116 -1 -1 2 -4
18 100 4 141 0 -2 0 6
19 150 4 185 1 -1 -2 -4
20 200 4 182 2 2 1 1

MTB > GLM ’Y’ = Block LN QN CN QQN;
SUBC> Covariates ’LN’ ’QN’ ’CN’ ’QQN’;
SUBC> Brief 2 .

General Linear Model: Y versus Block

Factor Type Levels Values
Block fixed 4 1, 2, 3, 4

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Block 3 323.0 323.0 107.7 1.34 0.309
Linear 1 32205.6 32205.6 32205.6 399.53 0.000
Quadratic 1 2592.2 2592.2 2592.2 32.16 0.000
Cubic 1 275.6 275.6 275.6 3.42 0.089
Quartic 1 319.3 319.3 319.3 3.96 0.070
Error 12 967.3 967.3 80.6
Total 19 36682.9

S = 8.97821 R-Sq = 97.36% R-Sq(adj) = 95.82%

The analysis indicates that a second degree polynomial will be suitable
for the response model. This and the model in (7.68) are implemented both
on the average yields of each nitrogen level. Both the quadratic regression
analysis and the nonlinear model analysis are presented below.

Polynomial Regression Analysis: y versus x

The regression equation is
y = 74.19 + 1.112 x - 0.002721 x**2
S = 8.62347 R-Sq = 98.3% R-Sq(adj) = 96.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 8699.45 4349.72 58.49 0.017
Error 2 148.73 74.36
Total 4 8848.17

Sequential Analysis of Variance

Source DF SS F P
Linear 1 8051.41 30.32 0.012
Quadratic 1 648.04 8.71 0.098
-----------------------------------------------------
NONLINEAR MODEL

MTB > NLinear;
SUBC> Response ’Y’;
SUBC> Continuous ’x’;
SUBC> Parameter "a" 100;
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SUBC> Parameter "b" .01;
SUBC> Parameter "c" 30;
SUBC> Expectation a * ( 1-EXP(-b*( x +c)) );
SUBC> NoDefault;
SUBC> GFCurve;
SUBC> TMethod;
SUBC> TStarting;
SUBC> TConstraints;
SUBC> TEquation;
SUBC> TParameters;
SUBC> TSummary;
SUBC> TPredictions.

Nonlinear Regression: y = a * (1 - EXP(-b * (x + c)))

Method

Algorithm Gauss-Newton
Max iterations 200
Tolerance 0.00001

Starting Values for Parameters

Parameter Value
a 100
b 0.01
c 30
Equation

y = 202.988 * (1 - EXP(-0.0108615 * (x + 40.2389)))
Parameter Estimates

Parameter Estimate SE Estimate
a 202.988 14.4450
b 0.011 0.0029
c 40.239 10.3793

y = a * (1 - EXP(-b * (x + c)))

Summary

Iterations 7
Final SSE 86.5870
DFE 2
MSE 43.2935
S 6.57978
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Based on both analyses, the estimated regression models are, respectively:

ŷ = 74.19 + 1.112 N − 0.002721 N2

ŷ = 202.988
[
1 − e−0.011(N+40.239)

]

Data Display
Row N y RESI2 FITS2 Resid2 Fit2
1 0 70.50 -3.69286 74.193 -1.37082 71.871
2 50 132.50 9.52143 122.979 5.68564 126.814
3 100 151.75 -6.40714 158.157 -6.98433 158.734
4 150 178.75 -0.97857 179.729 1.47147 177.279
5 200 189.25 1.55714 187.693 1.19804 188.052

The residuals and fitted values for both models are displayed below. Clearly,
model 2 fits better. Thus, we see in this example that the Mitscherlich re-
sponse model fits much better. Its Error SS is 86.5870 as against 148.73 for
the quadratic. The plots of estimated regression models in both cases are
presented in Figs. 7.20 and 7.21 respectively.

Fig. 7.20 Plot of estimated quadratic model



290 7 Regression Analysis

Fig. 7.21 Plot of estimated Mitscherlich response model

Other nonlinear growth curves include the logistic curve that will be discussed
in Chap. 17. Others are:

• Drug Responsiveness Model: These are often used in pharmacological set-
tings and the model describes the effects of varying dose levels of drugs.
The model has the form

yi = β0 − β0

1 +
(

xi

β2

)β1
+ εi. (7.69)

In the above model, xi is the dosage at level i and y is the response
variable as a percentage of maximum possible responsiveness. β0 describes
the expected response at the dose saturation, β2 is the concentration that
produces a half-maxima response; and the β1 parameter determines the
slope of the function.

Example 7.16.4 (Drug Responsiveness)

The following example is taken from Kutner et al. (2005, p. 550) (reproduced
with permission of The McGraw-Hill Companies) and relates to a pharma-
cologist modeling the responsiveness to a drug using the nonlinear regression
model discussed in (7.69), which is reproduced below.

yi = β0 − β0

1 +
(

xi

β2

)β1
+ εi.
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The data for 19 cases at 13 dose levels are presented in Table 7.14. We see
that the observations are replicated at x = 3.5, 4.0, 4.5, 5.0, 5.5, and 6.0. The
plot of the observed responsiveness (y) against dose levels is presented in the
MINITAB program with partial output.

Table 7.14 Drug responsiveness data

Dose Responsiveness
x y

1.0 0.5
2.0 2.3
3.0 3.4
3.5 11.5 10.9
4.0 24.0 25.3
4.5 39.6 37.9
5.0 54.7 56.8
5.5 70.8 68.4
6.0 82.1 80.6
6.5 89.2
7.0 94.8
8.0 96.2
9.0 96.4

To fit the model in (7.69), we realize that we do not have initial values.
Therefore, we use starting values β0 = 0, β1 = 0, and β2 = 0.1. The choice of
β2 = 0.1 is motivated by the fact that we do not want the denominator in the
expression involving x to be zero. The results of this analysis together with
computed predicted values and residuals are in the following SAS output.

MTB > Name C3 "Resid1" C4 "Fits1".
MTB > NLinear;
SUBC> Response ’y’;
SUBC> Continuous ’x’;
SUBC> Parameter "a" 100;
SUBC> Parameter "c" 4;
SUBC> Parameter "b" 5;
SUBC> Expectation a-(a / ( 1 + ( x / c ) ** b ));
SUBC> NoDefault;
SUBC> GFCurve;

Method

Algorithm Gauss-Newton
Max iterations 200
Tolerance 0.00001

SUBC> GFourPack;
SUBC> TMethod;
SUBC> TStarting;
SUBC> TConstraints;
SUBC> TEquation;
SUBC> TParameters;
SUBC> TCorrelation;
SUBC> TSummary;
SUBC> TPredictions;
SUBC> Residuals ’Resid1’;
SUBC> Fits ’Fits1’.

Nonlinear Regression: y = a - a / (1 + (x / c) ** b)

Starting Values for Parameters
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Equation

y = 100.34 - 100.34 / (1 + (x / 4.81554) ** 6.48024)

Parameter Estimates

Parameter Estimate SE Estimate
a 100.340 1.17407
c 4.816 0.02801
b 6.480 0.19431

y = a - a / (1 + (x / c) ** b)

Correlation Matrix for Parameter Estimates

a c
c 0.817768
b -0.696059 -0.531430

Lack of Fit

Source DF SS MS F P
Error 16 35.7149 2.23218
Lack of Fit 10 27.0349 2.70349 1.87 0.229
Pure Error 6 8.6800 1.44667

Summary

Iterations 8
Final SSE 35.7149
DFE 16
MSE 2.23218
S 1.49405

Plot of y*x. Symbol used is ’+’.
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b 5
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The estimated nonlinear regression equation is therefore

ŷi = 100.340 − 100.340

1 +
( xi

4.816

)6.480 .

The estimated curve is plotted in Fig. 7.22 with the observed values
superimposed over it. Clearly this model fits the data very well.

1

Fig. 7.22 Estimated drug responsiveness curve

Since the observations are replicated, the lack of fit test provided above
gives a p value of 0.229 which clearly indicates that the null hypothesis of
the adequacy of the model holds. Also the following predicted values and
residuals indicate a very good fit of this model to the data.
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Data Display

Row x y Resid1 Fits1
--------------------------------
1 1.0 0.5 0.49622 0.0038
2 2.0 2.3 1.96344 0.3366
3 3.0 3.4 -1.06541 4.4654
4 3.5 11.5 0.23467 11.2653
5 3.5 10.9 -0.36533 11.2653
6 4.0 24.0 0.81711 23.1829
7 4.0 25.3 2.11711 23.1829
8 4.5 39.6 0.27276 39.3272
9 4.5 37.9 -1.42724 39.3272
10 5.0 54.7 -1.55059 56.2506
11 5.0 56.8 0.54941 56.2506
12 5.5 70.8 0.26922 70.5308
13 5.5 68.4 -2.13078 70.5308
14 6.0 82.1 1.21243 80.8876
15 6.0 80.6 -0.28757 80.8876
16 6.5 89.2 1.42581 87.7742
17 7.0 94.8 2.62351 92.1765
18 8.0 96.2 -0.53400 96.7340
19 9.0 96.4 -2.22627 98.6263

We also present the diagnostics test for the residuals from the model in
Fig. 7.23. The pattern of the residuals suggests randomness and the normality
plot indicates that we can reasonably assume normality of the error term.

Fig. 7.23 Various residual diagnostics plot arising from the fitted model

While we have considered the above models in this section, there are
several other nonlinear models to describe the relationship between an
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explanatory variable x and a response variable y. For instance, the re-
lationship between crop yield y and the spacing between rows of plants,
concentration Y of a drug in the bloodstream, and time x after the drug
is injected, and the rate Y of a chemical reaction and the amount x of cat-
alyst used have the following relationships, for instance (Graybill and Iyer
1994) are:

yi =
1

(b1 + b2xi)b3
(7.70a)

yi =
1

b1 + b2xi + b3x2
i

(7.70b)

yi =
1

b1 + b2x
b3
i

. (7.70c)

We display below the graphs of (7.70b) and (7.70c) for the given parameters.
In Fig. 7.24,the upper graph has b1 = 8.94, b2 = −22.4, b3 = 16, while the
dotted curve has b1 = 8, b2 = −8, b3 = 1. Similarly, the curves in Fig. 7.25,
the upper graph has b1 = 1, b2 = 6, b3 = 3, while the dotted curve has
b1 = 1.2, b2 = 9, b3 = 0.9.

7.17 Other Special Nonlinear Models

Growth models play important roles in biological applications. We list below
some growth models:

Fig. 7.24 Plot of typical family of curves in (7.70b)
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Fig. 7.25 Plot of typical family of curves in (7.70c)

7.17.1 The Logistic Growth Model

The logistic growth model has a continuous observation y being related to
an explanatory variable x by the relationship:

yi =
a

1 + be−kxi
+ εi. (7.71)

The model in (7.71) is similar to the logistic model used for binary response
outcome in Chap. 17, except that the values of b and k are positive in this
case and a is defined as the limiting growth, that is, a value that y approaches
as the x becomes larger. We may note that the kx above may be replaced by
kx, where x has several explanatory variables. A typical graph of this model
is displayed in Fig. 7.26 for the parameters a = 10, b = 5, and k = 4, 2, 1, 0.25
respectively from the upper curve.
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Fig. 7.26 Plot of typical family of curves in (7.71)

7.17.2 The Gompertz Growth Model

This model is defined as:

yi = ae[−b e−kxi ] + εi. (7.72)

This is similar to the double exponential model we discussed earlier and a
again is the limiting growth, while for x = 0, y = a e−b. Other important
growth curves are the:

• Richards growth model having the form:

yi =
a

[1 + b e−kxi ]1/δ
+ εi (7.73)

• Weibull growth model with the form:

yi = a − b e−γxδ
i + εi (7.74)

The above are just some of the growth curves that have proved very useful in
biological applications and there are certainly a richer list of growth models
not covered in this text.
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7.18 Polynomial Regressions

Sometimes the true relationships between the dependent variable Y and
independent variable X may not be of the form

Y = β0 + β1x that is, a straight line

It may be curvilinear, that is, of the form

Y = β0 + β1x + β2x
2 + β3x

3 , etc.

We can reduce this model to a simple multiple regression problem of the form

Y = β0 + β1x1 + β2x2 + β3x3 , etc.

where x1 = x, x2 = x2, x3 = x3, etc. We give as an example, the following
data:

Example 7.18.1

Consider the hypothetical data below. It is assumed that the model y = α+βx
is appropriate and we wish to examine the adequacy of this model.

Y 4 3 8 18 22 24 24 18 13 10 16
X = x1 2 2 2 3 3 4 5 5 6 6 6

X2 = x2 4 4 4 9 9 16 25 25 36 36 36

To fit the model Y = β0 + β1x + e, we would have,

Sx1 = 28 Sx1y = 50 Syy = 570.727

Hence, β̂0 = 7.403 and β̂1 = 1.786, with R2 computed as:

R2 =
Fitted SS
Total SS

=
S2

x1y

Sx1 Syy
=

502

(28 × 570.727)

= 0.1564

It is obvious from this low value of R2 that this model is grossly inadequate.
A plot of residuals against fitted values in Fig. 7.27 reveals that a quadratic

term will be necessary to model the relationship between Y and X. The model
of interest is therefore

Y = β0 + β1x + β2x
2 + e. (7.75)

To fit these models we compute and obtain the following:

Sx2 = 1820.727, Sx1x2 = 224, Sx2y = 290.727.

Hence,

β̂1 = 32.216, β̂2 = −3.804 and β̂0 = −50.94
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and the estimated regression equation is

Ŷ = −43.7758 + 32.2161x − 3.8038x2 (7.76)

Fig. 7.27 Plot of the estimated regression equation

Fitted SS = β̂1Sx1y + β̂2Sx2y

= 504.87

R2 =
504.87
570.727

= 0.885

which is a much improved fit than the earlier model. We can, in fact, test that
the inclusion of β2 into the model is very significant by using the partial F test
discussed earlier in this chapter which is equivalent to the result presented in
MINITAB below for testing H0 : β2 = 0 vs Ha : β2 �= 0. This test provides a p
value of 0.0000. We would therefore reject H0 at α = .001 level of significance.

Analysis of Variance

Source DF SS MS F P
Regression 2 504.937 252.469 30.6998 0.000
Error 8 65.790 8.224
Total 10 570.727

Source DF Seq SS F P
Linear 1 89.286 1.6691 0.229
Quadratic 1 415.651 50.5426 0.000
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A graph of the estimated regression equation is presented in Fig. 7.28. It is
important to sound a word of warning regarding fitting polynomial regression.
The explanatory variables are correlated and this usually lead to the problem
of multicollinearity which is not being discussed in this text.

Fig. 7.28 Plot of the estimated quadratic model

7.19 Exercises

1. The data in this example relate to the marks obtained in a 100 level
examination by seven students in mathematics (X ) and physics (Y ).
It is envisaged that a simple linear relationship exists between marks
obtained in physics and mathematics.

X 38 51 19 53 39 38 66
Y 50 72 36 64 52 56 80

(a) Find the summary statistics Syy, Sxx, and Sxy.
(b) Obtain the Pearson’s sample correlation r.
(c) Fit a simple regression to the above data and generate the relevant

analysis of variance table.
(d) How would you rate your regression line?

2. Twenty plots, each of 10.4 m, were randomly chosen in a large field of
corn. For each plot, the plant density and the mean cob weight were
observed. The results are given in the table below:
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Plant density Cob weight Plant density Cob weight
X Y X Y

137 212 173 194
107 241 124 241
132 215 157 196
137 208 112 230
135 225 184 193
115 250 112 224
173 185 124 248
103 241 80 257
102 237 165 200
65 282 160 190
132 220 85 244
149 206 157 208
85 246 119 224

Data adapted From Samuel et al. (2005)

(a) Use MINITAB to fit a simple linear regression to the data.
(b) Conduct model adequacy.
(c) Predict Y for values of X = 58, 120, and 134.
(d) What is the error mean square?

3. Galileo’s Experiment The following is part of the data submitted by
Dickey, D.A. to the Journal of Statistics Education data archive (see also
Dickey and Arnold 1995). The data are from an experiment in which
Galileo rolled a ball down an inclined plane above a floor. The data
contain the height (y) of the ball rolled down and the horizontal distance
(x) traveled before landing.

x 573 534 495 451 395 337 253

y 1000 800 600 450 300 200 100

To model the height (y) as a function of the distance (x), the following
regression model is suggested: y =

(
β0x

2
)
/(1 + β1x) + ε.

(a) Fit the nonlinear regression model to the data.
(b) Construct an approximate 95 % confidence interval for the

parameters.
(c) Obtain the fitted values and the residuals from the nonlinear regres-

sion models. Do the residuals follow a normal distribution? Comment
on your findings.

4. Galileo’s Experiment The following is part of the data submitted by
Dickey, D.A. to the Journal of Statistics Education data archive (see also
Dickey and Arnold 1995). The data are from an experiment in which
Galileo rolled a ball down an inclined plane above a floor and the ball
crossed a horizontal shelf built into the end of the ramp. The data con-
tains the height (y) of the ball rolled down and the horizontal distance
(x) traveled before landing.
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x 1500 1340 1328 1172 800
y 1000 828 800 600 300

To model the height (y) as a function of the distance (x), the following
regression model is suggested: y =

(
β0x

2
)
/(1 + β1x) + ε.

(a) Fit the nonlinear regression model to the data.
(b) Construct an approximate 95 % confidence interval for the

parameters.
(c) Obtain the fitted values and the residuals from the nonlinear regres-

sion models. Do the residuals follow a normal distribution? Comment
on your findings.

5. The following artificial data are reproduced from Mead and Curnow by
permission. The data relate to change of activity of microorganism with
time.

y = activity 10 13 22 24 29 35 32 36
x = time 2.5 5 10 20 30 40 60 80

Fit the Michaelis–Menten model to the above data.
6. A study is run to develop an equation by which the concentration of

estrone in saliva can be used to predict the concentration of this steroid
in free plasma. These data are obtained on 14 healthy males.

(Concentration of estrone (Concentration of estrone
in saliva, pg/ml) in free plasma, pg/ml)

Individual X Y

1 7.4 30.0
2 7.5 25.0
3 8.5 31.5
4 9.0 27.5
5 9.0 39.5
6 11.0 38.0
7 13.0 43.0
8 14.0 49.0
9 14.5 55.0
10 16.0 48.5
11 17.0 51.0
12 18.0 64.5
13 20.0 63.0
14 23.0 68.0

A model of the form:

yi = β0 + β1xi + εi

is to be used to predict estrone in free plasma from estrone in saliva. Use
MINITAB for this question to answer the following questions:
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(a) What is the estimated value of β1? What is the interpretation of this
value? Find the 95 % confidence interval for β1.

(b) Test the null hypothesis H0 : β1 = 0 against the two-sided alternative
that H1 : β1 �= 0, using α = 0.05 and state the p value. What is the
interpretation of the results of this test?

(c) Use the estimated regression equation to predict the estrone level in
free plasma in two males whose saliva estrone levels are 17.5 and 24,
respectively.

(d) Explain what R2 tells us and how it is computed?
(e) Estimate the variance of ε.

7. In an experiment to study the growth behavior of protozoa colonization
in a particular lake, 15 sponges were placed in a lake and 3 were gathered
at a time. The number of protozoa were counted at 1, 3, 6, 15, and 21
days. The equation of the following form is suggested for the growth

Y = Seq(1 − ekt)

where:

• Y : total protozoa on the sponge
• Seq: species equilibrium constant
• k: parameter that measures how quickly growth rises
• t: time, number of days

The data are displayed below where Y is total number of protozoa
counted

Obs. Day Y Obs. Day Y Obs. Day Y

1 1 17 6 3 25 11 15 33
2 1 21 7 6 33 12 15 33
3 1 16 8 6 31 13 21 39
4 3 30 9 6 32 14 21 35
5 5 25 10 15 34 15 21 36

(i) Estimate Seq and k.
(ii) Give estimated standard errors of the parameters.

8. An experimenter wished to determine the relationship between temper-
ature and heartbeat rate in the common grass frog, Rana pipiens. The
temperature was manipulated in 2 ◦ increments ranging from 2 to 18 ◦C,
with heartbeat rates recorded at each interval.
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Recording Temperature Heartbeat
number (◦C) (/min)

1 2 5
2 4 11
3 6 11
4 8 14
5 10 22
6 12 23
7 14 32
8 16 29
9 18 32

A model of the form:

yi = β0 + β1xi + εi

is to be used to predict heartbeat rate from body temperature. Use
MINITAB to answer the accompanying questions.

(a) What are the estimated values of β0 and β1? What is the interpre-
tation of this estimate of β1? Give 95 % confidence limits for these
estimates.

(b) Test the null hypothesis H0 : β1 = 0 against the two-sided alternative
that H1 : β1 �= 0, using α = 0.05 and state the p value. What is the
interpretation of the results of this test?

(c) Use the estimated regression equation to predict the mean heartbeat
per minute for temperatures 9 and 20 ◦C respectively.

(d) Obtain the upper and lower 95 % confidence limits for the heart rate
expected in Rana pipiens at 10 ◦C.

(e) Explain what R2 tells us and how it is computed.
(f) Obtain the sample correlation coefficient r and interpret it.

9. In a multiple regression problem involving several explanatory variables,
the following model is proposed:

Yi = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + εi

i = 1, 2, · · · , 16.
The analysis yielded the following partially completed ANOVA table.

Source d.f. SS MS F

Regression 250
error
Total 1500

(a) Complete the above ANOVA table.
(b) State the hypotheses being tested by the F value above.
(c) Compute the coefficient of determination.
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10. Are a person’s brain size and body size predictive of his/her intelligence?
Data on Y based on the performance IQ (PIQ) scores from Wechsler adult
intelligence scale (revised), brain size (X1) based on the count from MRI
scans (given as count/10,000), and body size measured in height (X2) in
inches and weight (X3) in pounds on 38 college students are displayed
below.

Y X1 X2 X3
---------------------------

----------------------------

124 81.69 64.5 118
150 103.84 73.3 143
128 96.54 68.8 172
134 95.15 65.0 147
110 92.88 69.0 146
131 99.13 64.5 138
98 85.43 66.0 175
84 90.49 66.3 134

147 95.55 68.8 172
124 83.39 64.5 118
128 107.95 70.0 151
124 92.41 69.0 155
147 85.65 70.5 155
90 87.89 66.0 146
96 86.54 68.0 135
120 85.22 68.5 127
102 94.51 73.5 178
84 80.80 66.3 136
86 88.91 70.0 180
84 90.59 76.5 186
134 79.06 62.0 122
128 95.50 68.0 132
102 83.18 63.0 114
131 93.55 72.0 171
84 79.86 68.0 140
110 106.25 77.0 187
72 79.35 63.0 106
124 86.67 66.5 159
132 85.78 62.5 127
137 94.96 67.0 191
110 99.79 75.5 192
86 88.00 69.0 181
81 83.43 66.5 143
128 94.81 66.5 153
124 94.94 70.5 144
94 89.40 64.5 139
74 93.00 74.0 148
89 93.59 75.5 179

A model of the form below is found to be appropriate:

Y = β0 + β1 X1 + β2 X2 + β3 X3 + ε.
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Use MINITAB to fit the above model and conduct the necessary
diagnostic tests. From your fitted model,

(a) Write down the estimated regression parameters.
Give 90 % confidence intervals for these parameters.

(b) Test whether the explanatory variables X1, X2, and X3 are impor-
tant in the model. Use α = 0.05.

(c) How was R2 computed?
(c) Interpret β̂1 and β̂3.
(d) Test the hypotheses at α = 0.10 from your confidence interval results

in (a).

H0 : β3 = 0

Ha : β3 �= 0

(e) In your opinion, which variables are the most important in predicting
Y, a person’s IQ?

(f) Obtain the residuals for observations numbered 8 and 32. How were
they obtained from the available output?



Chapter 8
Categorical Data Analysis

8.1 Introduction

Categorical variables may have categories which are naturally ordered called
ordinal variables or those that have no natural order called nominal variables.
For example, the variable “weight” with categories “small,” “medium,” and
“big” is an ordinal variable, so also is the attitudinal variable with categories
“agree,” “neutral,” and “disagree.” On the other hand, variables such as
“sex” and “color” of flowers which have no natural order are examples of nom-
inal variables. In this chapter, emphasis will be placed on testing the agree-
ment of frequency arising from data from experiments with known distribu-
tion (e.g., Poisson and Binomial) and analysis of two-way contingency tables.

8.1.1 Tests of Goodness of Fit

Consider the one-way classification in Table 8.1 in which a sample of size n
is randomly distributed in each of the k classes.

Table 8.1 Table of observed frequencies and underlying probability distribution

Classes
1 2 3 · · · k Total

x1 x2 x3 · · · xk n
p1 p2 p3 · · · pk 1

Let pi i = 1, 2, · · · , k be the probability of an individual falling into the
i-th class. A problem that often arises in research is the testing of the com-
patibility of a set of observed and theoretical frequencies. Let the observed
frequency in class i be denoted by xi such that

∑
xi = n, then to test the hy-

pothesis that the observed frequencies are distributed according to specified
probability p0

i , we use the classical Pearson’s X2 test statistic given by

X2 =
∑

(Oi − Ei)2

Ei
(8.1)
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where Oi = xi is the observed frequency in the ith class and Ei = np0
i is

the corresponding expected frequency under the null hypothesis of specified
probabilities in the ith class.

Alternatively, we often use the likelihood ratio test statistic:

G2 = 2
∑

Oi log(Oi/Ei) (8.2)

where np0
i is the expected frequency under the null hypothesis. Under the

null hypothesis, X2 or G2 has asymptotically an χ2 distribution with k − 1
degrees of freedom, provided the expected values are not too small. Thus,
the test is accomplished by comparing the observed value of X2 with the
tabulated χ2 distribution with (k − 1) d.f.

Example 8.1.1

In a particular genetic experiment, the observations were classified as follows:

Classes
A B C D

xi 99 33 24 4

The genetic theory calls for a 9 : 3 : 3 : 1 ratio. Hence the underlying
distribution calls for,

p1 =
9
16

, p2 =
3
16

, p3 =
3
16

, and p4 =
1
16

such that
∑

pi = 1. In this example, n =
∑

xi = 99 + 33 + 24 + 4 = 160.
Under H0, the expected frequencies are respectively 160 × 9

16 = 90, 30, 30,
and 10 corresponding respectively to observed values, O1 = 99, O2 = 33, O3 =
24, and O4 = 4. Thus,

X2 =
∑

(Oi − Ei)2

Ei

=
(99 − 90)2

90
+

(33 − 30)2

30
+

(24 − 30)2

30
+

(4 − 10)2

10
= 6.0.

Since 6.0 < χ2
3 = 7.81, we would fail to reject H0 and conclude that the results

of the experiment confirm the genetic theory at α = .05 level of significance.
Similarly, the corresponding likelihood ratio test statistic is computed as:

G2 = 2[99 log(99/90) + 33 log(33/30) + 24 log(24/30) + 4 log(4/10)

= 2[9.436 + 3.145 − 5.355 − 3.665]

= 7.14.

The result from the G2 also indicates that we would fail to reject the null
hypothesis at α = 0.05 level of significance.
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8.2 The 2 × 2 Contingency Table

Categorical data where people or things are classified simultaneously by two
or more attributes are discussed in this section. The results of such a cross-
classification can be conveniently arranged as a table of counts known as a
Contingency Table. When just two classificatory variables are considered, the
table is called a two-way (2D) contingency table. The simplest two-way table
is the 2 × 2 contingency table.

The four fold 2 × 2 table with variables A and B has been and probably
is still the most frequently employed means of presenting statistical data.
Consider the following table of counts relating to two classificatory variables
A and B each with two categories. Here, a sample of n subjects is jointly
classified by two categories, A and B. We assume here that only the sample
size n is known in advance, the resulting table of counts in Table 8.2 would
be said to have arisen from a multinomial sampling scheme. Other sampling
schemes include the case when both the row marginal totals, n1+ and n2+, as
well as the column marginal totals, n+1 and n+2, are known in advance. See
Lawal (2003) for a more detailed discussion of the conceptual implications of
the various sampling schemes that could give rise to a 2×2 contingency table.

Let the corresponding underlying probability distribution be as presented
in Table 8.3 under the multinomial sampling scheme. Then,

∑

i

∑

j

pij = 1

since only the sample size n is assumed fixed here.

Table 8.2 Observed frequency count in a 2 × 2 table

B
A 1 2 Total

1 n11 n12 n1+
2 n21 n22 n2+

Total n+1 n+2 n

Table 8.3 Observed frequency count in a 2 × 2 table

B
A 1 2 Total

1 p11 p12 p1+
2 p21 p22 p2+

Total p+1 p+2 1

Test of Independence

We are concerned here with the null hypothesis of no association between A
and B, which we will be formally stated as:

H0 : A and B are independent

Ha : A and B are not independent
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This can formally be stated mathematically as

H0 : pij = pi+ p+j (8.3)

Ha : pij �= pi+ p+j (8.4)

for i = 1, 2; j = 1, 2. It can be shown that under the null hypothesis in (8.3),
the estimate of pij is given by,

p̂ij =
ni+ n+j

n2 .

Consequently, the expected value, Eij = np̂ij equals

Eij = n
ni+ n+j

n2 =
ni+ n+j

n
(8.5)

that is,

Eij =
ni+ n+j

n
=

(
marginal
row total

)(
marginal
column total

)

sample size
.

We present the calculations of the expected frequencies in the following
example.

Example 8.2.1

In an investigation into the frequency of side effects, say nausea, with a
particular drug, 50 subjects may be given the drug, 50 subjects a placebo,
and the number of subjects suffering from nausea assessed in each sample.
The table below (Table 8.4) shows a possible outcome:

Table 8.4 The classification of 100 subjects in this study

Side effect (Nausea)
Treatment Present Absent Total

Drug given 15 35 50
Placebo given 4 46 50

19 81 100

The expected values are computed as follows:

E11 =
n1+ n+1

n
=

50 × 19
100

= 9.5

E11 =
n1+ n+2

n
=

50 × 81
100

= 40.5

E21 =
n2+ n+1

n
=

50 × 19
100

= 9.5

E22 =
n1+ n+1

n
=

50 × 81
100

= 40.5.
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The test statistic is the Pearson’s X2 defined in this case as,

X2 =
2∑

i=1

2∑

j=1

(nij − Eij)2

Eij
(8.6)

and is distributed χ2 with (2 − 1) × (2 − 1) = 1 degree of freedom. For this
example, we have therefore,

X2 =
∑

(Oi − Ei)2

Ei

=
(15 − 9.5)2

9.5
+

(35 − 40.5)2

40.5
+

(4 − 9.5)2

9.5
+

(46 − 40.5)2

40.5
= 7.862

Now, χ2
1 = 3.841 at the 5 % level. Since the calculated X2 = 7.862 > 3.841,

we would reject the null hypothesis and we are led to support the truth
of our hypothesis that occurrence of side effects is dependent on the treat-
ments involved. The above calculations can be obtained in MINITAB with
the following:

MTB > PRINT C1 C2

Row A B
1 15 35
2 4 46

MTB > ChiSquare ’A’ ’B’.

Chi-Square Test: A, B

Expected counts are printed below observed counts

A B Total
1 15 35 50

9.50 40.50

2 4 46 50
9.50 40.50

Total 19 81 100

Chi-Sq = 3.184 + 0.747 +
3.184 + 0.747 = 7.862

DF = 1, P-Value = 0.005

Result from MINITAB indicates that the p value for this test is 0.005 which
is less than 0.05. This again leads us to rejecting the null hypothesis that the
two variables are independent.
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An alternative calculation of Pearson’s test statistic X2 for the 2 × 2 table is
given by:

X2 =
n(n11 n22 − n12 n21)2

n1+ n2+ n+1 n+2
. (8.7)

Hence, for our example, we have,

X2 =
100(15 × 46 − 35 × 4)2

50 × 50 × 19 × 81
= 7.862.

Yates (1934) has suggested an improvement to Pearson’s X2 test statistic
when expected values are small. His statistic is given by

T 2 =
n(|n11 n22 − n12 n21| − n

2 )2

n1+ n2+ n+1 n+2
(8.8)

and is distributed χ2 with 1 d.f.
In the above example, we notice that the number of subjects subjected to

the treatment is prefixed, i.e., the marginal totals (50,50) are already fixed.
This experiment is an example of the well-known comparative trial. Other
possible sampling schemes are:

(i) The case of selecting 100 subjects and then administering the treatments
to them at random. In this case, only the total sample size is fixed—
this is, the Double Dichotomy Scheme. Other names for this scheme are
“naturalistic,” “cross-sectional,” or “multinomial.”

(ii) Suppose before the experiment was conducted, the marginals—(50,50)
and (19,81)—were already predetermined. In this case, only the config-
uration inside the table can change. This sampling scheme is popularly
known as the 2×2 independent trial and it is by far the most well-known.
The appropriate test statistic is the well-known Fisher’s exact test.

8.3 Fisher’s Exact Test

Sometimes for the test of association in a 2 × 2 table conducted earlier, the
expected values Êij may be small (less than five), in this case, the underlying
assumption that X2 will follow an χ2 distribution may be violated. In such
a circumstance, the Fisher’s exact test provides an alternative. The test is
most useful therefore for small samples. With Fisher’s exact test, consider
again the 2 × 2 table (Table 8.5). Here, n11 will be described as the pivot
cell. The Fisher’s exact test expect that we
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Table 8.5 Observed frequency count in a 2 × 2 table

B
A 1 2 Total

1 n11 n12 n1+
2 n21 n22 n2+

Total n+1 n+2 n

Let us consider a simple example. The data in Table 8.6 refer to 35
aggressive interactions of territorial pairs of convict cichlids (Chiclasoma
nigrofasciatum), either member of the resident pair is likely to attack a con-
specific intruder into the territory. It is suspected that the resident male is
more likely to attack an intruding male, and that the resident female is more
likely to attack an intruding female.

Table 8.6 Interaction results of 35 aggressive cichlids

Intruder
Resident Male Female Total

Male 12 5 17
Female 3 15 18

Total 15 20 35

Fisher’s exact test consists first of generating all tables that are consistent
with the given marginal totals M1 = {17, 18} and M2 = {15, 20}. Then for
each such table, we calculate the sums of the individual probabilities asso-
ciated with tables which are as extreme or more extreme than the observed
table. An extreme table is one in which

P (n′
11) ≤ P (n11) (8.9)

where n′
11 is any other table satisfying the marginal totals M1, M2 above and

having the pivot cell n′
11.

The probability of the observed table is given by the hypergeometric
distribution, n

′
= {n11, n12, n21, n22}, given by the probability model:

P [n11] =
n1+!n2+!n+1!n+2!
N !n11!n12!n21!n22!

. (8.10)

For our data, the probability of the observed table is therefore given by:

P(12, 5, 3, 15) =
17!18!15!20!
35!12!5!3!15!

= 0.0016.

The collection of all possible tables consistent with the marginal totals is
displayed below.
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0 17
15 3

1 16
14 4

2 15
13 5

3 14
12 6

4 13
11 7

5 12
10 8

6 11
9 9

7 10
8 10

8 9
7 11

9 8
6 12

10 7
5 13

11 6
4 14

12 5
3 15

13 4
2 16

14 3
1 17

15 2
0 18

Here the range of the pivot cell is determined by n11 = {max(0, n1+ −
n+2) to min(n1+, n+1)}. Thus in our case, n11 varies from 0 to 15.

The hypergeometric probabilities of each consistent table are displayed
below:

n′
11 P (n′

11)

0 0.0000
1 0.0000
2 0.0004
3 0.0039
4 0.0233
5 0.0834
6 0.1853
7 0.2620
8 0.2382
9 0.1389

10 0.0513
11 0.0117
12 0.0016
13 0.0001
14 0.0000
15 0.0000

Tables that are extreme or more extreme than the observed table are therefore
those having pivot cells, 0, 1, 2, 12, 13, 14, and 15. Consequently, the Fisher’s
exact two-sided test is the sum of these probabilities. That is, the p value is
given by: 0.0016 + 0.0001 + 0.0004 = 0.0021. Thus, we would reject the null
hypothesis that intruder’s attack and resident’s attack are not associated.
The MINITAB for implementing Fisher’s test is presented below:
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MTB > XTABS ’R’ ’C’;
SUBC> Layout 1 1;
SUBC> Frequencies ’COUNT’;
SUBC> Counts;
SUBC> DMissing ’R’ ’C’;
SUBC> ChiSquare;
SUBC> Expected;
SUBC> Fisher.

Tabulated statistics: R, C

Using frequencies in COUNT

Rows: R Columns: C

1 2 All

1 12 5 17
7.29 9.71 17.00

2 3 15 18
7.71 10.29 18.00

All 15 20 35
15.00 20.00 35.00

Cell Contents: Count
Expected count

Fisher’s exact test: P-Value = 0.0020456

8.4 Combining Several 2 × 2 Tables

In many studies, a number of 2× 2 tables, all bearing on the same questions,
may be available, and we may wish to combine these in some way to make an
overall test of association between the row and column factors. For instance,
in the survival of infants to amount of prenatal care received, data may be
obtained from several clinics and for each clinic, the data might be arranged
in a 2 × 2 table. In general, we are interested in combining the information
from each of the 2 × 2 tables across the levels of the subpopulation (clinics).
However, there is always a danger in collapsing the tables across the sub-
populations because conclusions drawn from such a collapsed table may not
reflect the truth within the subpopulation interactions.

This may be illustrated with the data in the example in Table 8.7 relating
to the survival of infants according to the amount of prenatal care received
by the mothers. The amount of care is classified as “more” or “less” and the
mothers attended one of two clinics denoted by A and B.
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Table 8.7 Amount of care received from two clinics. (Source: Bishop et al.)

Amount of
prenatal Status

Clinics care Survived Died Total

A More 176 3 179
Less 293 4 297
Total 469 7 476

B More 197 17 214
Less 23 2 25
Total 220 19 239

Total 689 26 715

The X2 values for the test of independence for each of the clinics are given by,

Clinic A: X2 =
476(176 × 4 − 293 × 3)2

179 × 297 × 46 × 7
= 0.083

Clinic B: X2 =
239(197 × 2 − 17 × 23)2

214 × 25 × 220 × 19
= 0.000.

Both are not significant and both therefore indicate that we would fail to
reject H0, that is, the survival of an infant is independent of the amount
of prenatal care. However, if we combine the information in both clinics by
collapsing across the two clinics, we shall have the following 2×2 in Table 8.8.

Table 8.8 The 2 × 2 from the collapsing of the clinics

Care Survived Died Total

More 373 20 393
Less 316 6 322
Total 689 26 715

The computed test statistic from the combined Table (Table 8.8) is,

X2 =
715(373 × 6 − 20 × 316)2

393 × 322 × 689 × 26
= 5.25

which surprisingly is now significant, indicating that the survival of infants
is dependent on the amount of prenatal care after ignoring the clinic.

These results indicate that within each of the clinics, survival does not
seem related to the amount of prenatal care. There are apparent significant
variations between the survival rates for the two clinics. What this means
is that while the within clinics analysis suggests that survival is not related
to the amount of prenatal care, this conclusion we see is certainly negated
when the tables were collapsed across the clinics. This apparent contradiction
indicates that an overall test of the hypothesis relating the amount of prenatal
care and infant survival must account for potential differences among the
clinics. This contradiction is known as Simpson’s paradox.
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A general statistic that combines information from each of these 2×2 tables
(indeed from many such tables) across the levels of clinics is the Mantel–
Haenzel test statistic,

QMH =
(n+11 − m+11)2

V+11
(8.11)

where n+11, m+11, and V+11 are the corresponding sums of observed fre-
quency, expected frequency, and variance of the pivot cell across two
subtables (clinics).

For clinic A: Expected value of the pivot cell = 176.3676
For clinic B: Expected value of the pivot cell = 196.9874

The variance of each of the pivot cells is given by

Vi11 =
ni1+ni2+ni+1ni+2

N2(N − 1)

Hence, we can compute the variances for the pivot cells in both clinics as
follows:

Clinic A:
179 × 297 × 469 × 7

4762(475)
= 1.6217

Clinic B:
214 × 25 × 220 × 19

2392(238)
= 1.6450.

For the above data,

n+11 = 176 + 197 = 373

m+11 = 176.74 + 196.98 = 373.3550

V+11 = 1.622 + 1.645 = 3.2667.

Hence, substituting this in the expression in 8.11, we have,

QMH =
(373 − 373.355)2

3.2667
= 0.0386 on 1 d.f.

Clearly, the QMH computed above is not significant. This further shows that
for our data, survival does not depend on the amount of prenatal care after
adjusting for the effects of the clinics.

The MINITAB implementation of the above is presented below. Note that
the clinic is the layer variable.
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Data Display

Row Clinic Care Status count
1 1 1 1 176
2 1 1 2 3
3 1 2 1 293
4 1 2 2 4
5 2 1 1 197
6 2 1 2 17
7 2 2 1 23
8 2 2 2 2

MTB > XTABS ’Care’ ’Status’ ’Clinic’;
SUBC> Layout 1 1;
SUBC> Frequencies ’count’;
SUBC> Counts;
SUBC> DMissing ’Care’ ’Status’ ’Clinic’;
SUBC> ChiSquare;
SUBC> MHCTest.

Tabulated statistics: Care, Status, Clinic

Using frequencies in count

Results for Clinic = 1

Rows: Care Columns: Status

1 2 All

1 176 3 179
2 293 4 297
All 469 7 476

Cell Contents: Count

Pearson Chi-Square = 0.084, DF = 1, P-Value = 0.773

Likelihood Ratio Chi-Square = 0.082, DF = 1, P-Value = 0.774

* NOTE * 2 cells with expected counts less than 5

Results for Clinic = 2

Rows: Care Columns: Status

1 2 All

1 197 17 214
2 23 2 25

All 220 19 239

Cell Contents: Count



8.5 The General R × C Contingency Table 319

Pearson Chi-Square = 0.000, DF = 1, P-Value = 0.992

Likelihood Ratio Chi-Square = 0.000, DF = 1, P-Value = 0.992

* NOTE * 1 cells with expected counts less than 5

Results for all 2x2 tables

Common odds ratio 0.898038

MHCstatistic DF P-Value

0.0064278 1 0.936099

The MINITAB computed QMH = 0.0064. This value is not correct as the
true value should have been 0.0386. Of course, both results lead to the same
conclusion that survival does not depend on the amount of prenatal care after
adjusting for the effects of the clinics. The estimated common odds ratio is
θ̂ = 0.8980. This common ratio is based on the assumption that the strength
of association (or direction of association) is the same across the clinics. The
Breslow–Day test for the homogeneity of odds ratios gives X2 = 0.0440 on
1 d.f. corresponding to a p value of 0.8338. Clearly, there is very strong
evidence in this case that the odds-ratios are homogeneous across the two
tables. However, if this were not the case, then we would have believed that
there is an interaction or effect modification between clinic and survival. The
clinic factor is often referred to as effect modifier.

8.5 The General R × C Contingency Table

Suppose a sample of n objects is jointly classified according to two different
and independent classifications A and B with r and c classes respectively.
Let nij be the observed frequency in cell (i, j) with i = 1, 2, · · · , r and j =
1, 2, · · · , c. The observation can be displayed as in Table 8.9.

Two commonly experimental settings are often encountered in contingency
tables analysis. These are:

1. Only the sample size n is fixed and the marginal totals are allowed to vary
at random subject to the constraints

∑

i

n1+ = n and
∑

j

n+1 = n. This

setting leads to the usual test of independence.
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Table 8.9 Observed a × c contingency table

B
A 1 2 · · · c Total

1 n11 n12 · · · n1c n1+
2 n21 n22 · · · n2c n2+
...

...
...

...
...

...
r nr1 nr2 · · · nrc nr+

Total n+1 n+2 · · · n+c n

2. The second setting assumes that one of the marginal totals is fixed. That
is, either the row marginals ni+, i = 1, 2, · · · , r or the column marginals
n+j , j = 1, 2, · · · , c are fixed. This setting leads to the prospective and
retrospective studies respectively.

We are concerned here with the test of homogeneity. Asymptotically (that is,
when n is large), the two tests lead to the same results. In the independence
model, our hypotheses are of the form

H0 : A and B are independent

Ha : A and B are not independent

which again mathematically can be formulated for i = 1, 2, · · · , r; j =
1, 2, · · · , c as

H0 : pij = pi+ p+j (8.12)

Ha : pij �= pi+ p+j . (8.13)

In the homogeneity model, if we assume for instance that the row marginals
ni+ are fixed, then we are interested in the hypotheses,

H0 : the proportional split among categories of variable A

is the same across each level of variable B

Ha : the proportional split among categories of variable A

is not the same across each level of variable B

which mathematically can be formulated for i = 1, 2, · · · , r; j = 1, 2, · · · , c
as,

H0 : =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p11 = p21 = · · · = pr1 proportion in column 1 of B is the same
p12 = p22 = · · · = pr2 proportion in column 2 of B is the same
... =

... = · · · =
...

...
p1c = p2c = · · · = prc proportion in column c of B is the same

Ha : = p11 �= p21 at least any two of the p’s are not equal.
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Under both models, the expected frequencies are again given by,

Eij =
ni+ n+j

n
(8.14)

That is, for a general r × c two-way contingency table, the expected value for
a particular row and column is given by

(Particular column total) × (Particular row total)
Grand total

.

And again, the test statistic is the Pearson’s X2 defined in this case as,

X2 =
2∑

i=1

2∑

j=1

(nij − Eij)2

Eij
, i = 1, 2, · · · , 5; j = 1, 2, · · · , c (8.15)

and is distributed χ2 with (r − 1) × (c − 1) degrees of freedom.

Example 8.5.1

Records of the number of lambs born to the ewes of various flocks are pre-
sented in Table 8.10. The records are given for two breeds of ewe on each
of two farms. Do the proportions of ewes giving birth to 0, 1, 2, 3 or more
lambs vary significantly for different farms and different breeds?

Table 8.10 Number of lambs for different breeds at two farms
Number of lambs per birth

Farm Breed 0 1 2 3 + Total

1 A 10 21 96 23 150
B 4 6 28 8 46

2 A 22 95 103 4 224
B 18 49 62 0 129

First consider all four flocks simultaneously in a 4 × 4 contingency table
(Table 8.11).

Table 8.11 Number of lambs cross-classified by farm/breed combinations (where
the figures in brackets are the expected values)

Number of lambs
Farm/breed 0 1 2 3 + Total

1A 10(14.8) 21(46.7) 96(79.0) 23(9.61) 150
1B 4(4.5) 6(14.3) 28(24.21) 8(2.9) 46
2A 22(22.0) 95(69.8) 103(117.9) 4(14.3) 224
2B 18(12.7) 49(40.2) 62(67.9) 0(8.2) 129

Total 54 171 289 35 549
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The expected values of 14.8 and 69.8 for instance are computed respec-
tively from Table 8.11 as:

14.8 =
150 × 54

549
and 69.8 =

224 × 171
549

.

Overall X2 = 83.8 on (4 − 1)(4 − 1) = 9 d.f. which is clearly very significant.
Because of the “factorial” nature of the four flocks, there are various ways

in which we continue the analysis. One method is to look at each “main
effect.” Consider first the two-way table formed from farms and number of
lambs leading to a 2 × 4 contingency table (Table 8.12).

For the data in Table 8.12, the computed X2 = 80.9 on 3 d.f., so that
there are clear overall differences between farms as they relate to the number
of lambs born to the ewes.

Next, we create the two-way table, this time formed from breeds and
number of lambs leading to a 2 × 4 contingency table (Table 8.13).

Table 8.12 The two-way table of farms and number of lambs

Number of lambs
Farm 0 1 2 3 + Total

1 14(19.3) 27(61.0) 124(103.2) 31(12.5) 196
2 40(34.7) 144(110.0) 165(185.8) 4(22.5) 353

Total 54 171 289 35 549

Table 8.13 The two-way table of breeds and number of lambs

Number of lambs
Breed 0 1 2 3 + Total

A 32(36.8) 117(116.5) 199.(196.9) 27(23.9) 374
B 22(17.2) 55(54.5) 90(92.1) 8(11.1) 175

Total 54 171 289 35 549

Again, for the data in Table 8.13, the computed X2 = 3.34 on 3 d.f., which
is not significant. Hence, the major difference between flocks is that farm 1
produces greater proportions of twin and triplet births than farm 2. Overall
differences between breeds appear negligible but to check this, we examine dif-
ferences between breeds for farms 1 and 2 respectively in Tables 8.14 and 8.15.

Table 8.14 Two-way table of breeds and number of lambs at farm 1

Number of lambs (Farm 1 )
0 1 2 3 + Total

Breed A 10(10.7) 21(20.7) 96(94.9) 23(23.7) 150
Breed B 4(3.3) 6(6.3) 28(29.1) 8(7.3) 46
Total 14 27 124 31 196

The computed statistic for the 2 × 4 contingency table (Table 8.14) is
X2 = 0.3 on 3 d.f. This value is clearly not significant at α = .05 level.
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Table 8.15 Two-way table of breeds and number of lambs at farm 2

Number of lambs (Farm 2 )
Breed 0 1 2 3 + Total

Breed A 22(25.4) 95(91.4) 103(104.7) 4(2.5) 224
Breed B 18(14.6) 49(52.6) 62(60.3) 0(1.5) 129
Total 40 144 165 4 353

Similarly, the test statistic obtained for the data in Table 8.15 is X2 = 4.12
on 3 d.f., again indicating that there is no significance at the 5 % level of
significance.

Conclusion

There is clearly a considerable difference between the two farms in the propor-
tions of 0, 1, 2, and 3 lambs per birth but no important differences between
breeds.

Example 8.5.2

In a study of lung cancer, researchers were interested in the relationship
between income (economic level) and smoking exposure. Two hundred and
seventy-two males (age ≥ 55) were classified by current smoking patterns and
five economic levels. The data are presented in Table 8.16.

Table 8.16 Cross-classification of smoking habits with economic level. (Source:
brown et al. 1975)

Economic level
Smoking 1 (low) 2 3 4 5 (high) Total

Never smoked 14 37 15 22 11 99
Past smoker 7 22 12 7 3 51
≤1 pack/day 3 25 6 9 3 46
>1 pack/day 13 26 18 15 4 76

Total 37 110 51 53 21 272

We wish to test the hypothesis that smoking habits are independent of
economic level at ages 55 and over. For these data, we employ the MINITAB
to do the analysis. First we read the data into three columns named smoking,
level, and count respectively (see the data displayed below). Next we use the
MINITAB command to analyze the data again; see the commands used in
the output below.
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MTB > print c1-c3

Data Display

Row Smoking Level count

1 1 1 14
2 1 2 37
3 1 3 15
4 1 4 22
5 1 5 11
6 2 1 7
7 2 2 22
8 2 3 12
9 2 4 7
10 2 5 3
11 3 1 3
12 3 2 25
13 3 3 6
14 3 4 9
15 3 5 3
16 4 1 13
17 4 2 26
18 4 3 18
19 4 4 15
20 4 5 4

MTB > Table ’Smoking’ ’Level’;
SUBC> Frequencies ’count’;
SUBC> ChiSquare 3;
SUBC> Layout 1 1.

Tabulated Statistics: Smoking, Level
Rows: Smoking Columns: Level

1 2 3 4 5    All

1 14 37 15 22 11  99
13.47 40.04 18.56 19.29 7.64 99.00
0.15 -0.48 -0.83 0.62 1.21 --

2 7 22 12 7 3      51
6.94 20.63 9.56 9.94 3.94 51.00
0.02 0.30 0.79 -0.93 -0.47 --

3 3 25 6 9 3  46
6.26 18.60 8.63 8.96 3.55 46.00
-1.30 1.48 -0.89 0.01 -0.29 --

4 13 26 18 15 4  76
10.34 30.74 14.25 14.81 5.87 76.00
0.83 -0.85 0.99 0.05 -0.77 --
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All 37 110 51 53 21 272
37.00 110.00 51.00 53.00 21.00   272.00
-- -- -- -- -- --

Chi-Square = 12.374, DF = 12, P-Value = 0.416
2 cells with expected counts less than 5.0

Cell Contents --
Count
Exp Freq
St Resid

We notice that MINITAB warns us that there are two cells with expected
counts Eij < 5. These are cells (2,5) and (3,5) with 3.94 and 3.55 expected
values respectively. Previous studies have advocated that the test of indepen-
dence is only valid if none of the expected cell frequencies is less than five.
However recent studies by Yarnold (1970), Lawal and Upton (1984, 1989)
have advocated that expected cell frequencies can indeed be lower than five
without violating the validity of the approximation. Lawal (1980) has ad-
vocated that minimum expected frequencies can be tolerated for expected
values satisfying:

Fij ≥ sd−3/2 (8.16)

where Fij is the smallest expected value, s is the number of cells having
expected values less than three and d = (r − 1)(c − 1). In the output above,
none of the expected values is less than 3, therefore, the χ2 would be suitable
for this analysis.

The results indicate that X2 = 12.374 on (4 − 1)(5 − 1) = 12 d.f. The
corresponding p value is 0.416 which indicates that we would fail to reject
H0, that is, there is no strong evidence to suggest that smoking habit is
associated with economic level in this example. In the above output, the first
row gives the observed counts, the second row gives the expected counts,
while the third row gives the standardized residuals

zij =
(nij − Fij)√

Fij

Thus, for z11 and z45 for example, these are computed as:

z11 =
(14 − 13.47)√

13.47
= 0.15

z45 =
(4 − 5.87)√

5.87
= −0.77.

We may notice here that
∑

i

∑

j

z2
ij = 0.152 + · · · + (−0.77)2 = X2 = 12.374.

The zij help us to detect cells that would otherwise make our independence
model untenable. Values of |zij | > 2 are considered to be aberrant cells (see,
Lawal 2003).
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8.6 Fitting the Poisson Distribution

The Poisson density function is given by

f(x) =
eμμx

x!
, x = 0, 1, 2, · · · (8.17)

and we showed in Chap. 4 that

f(x + 1) =
μ

X + 1
f(x).

We shall now consider again the data in Chap. 4 on noxious weeds which
we assume can be fitted by a Poisson distribution. The calculations in the
chapter yield the following summary:

No. of
noxious Expected
weeds Frequency frequency (O−E)2

E
Yarnold’s Lawal’s

x

0 3 4.781 0.663
1 17 14.440 0.454
2 26 21.807 0.806
3 16 21.955 1.615
4 18 16.578 0.122
5 9 10.015 0.103
6 3 5.042 0.827
7 5 2.176
8 0 0.870
9 1 0.274 2.01 2.01 1.204
10 0 0.083

11 or more 0 0.030
Total 6.60 8.29

The expected frequency for the Poisson distribution of counts of 11 or more
is obtained by subtracting the sum of the expected frequencies for counts up
to ten from the total number of noxious weeds. Since some of the expected
values are less than five, we can employ Yarnold’s rule. With Yarnold’s rule,
the minimum tolerable expected frequency is given by 5r

k where r is the
number of cells with expectation less than five and k is the total number
of cells. Here k = 12, r = 6, hence minimum frequency = 5×6

12 = 2.5. We
would therefore need to combine the last five cells, we now have an expected
value of 3.433. And by Yarnold’s rule k = 8, r = 2 and hence, the minimum
expectation =5×2

8 = 1.25, and the new Pearson’s X2 = 6.60 on 8−2 = 6 d.f.
which when compared with χ2

6(0.05) = 12.59 is not significant, indicating
that the model fits the data well.

Lawal (1980) has also advocated an improvement to Yarnold’s rule above.
Lawal suggested that the minimum expected frequency is given by 3r/k where
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r is the number of expectations less then three. So all that we need collapse
by this rule are the last four cells and it will give an X2 = 8.29 with 9−2=7
d.f., and corresponding p value of 0.308 which is still not significant and of
course this test is more powerful than the previous test because it is based
on more degrees of freedom. When we employed MINITAB to fit the Poisson
model to this data, we have the following partial output.

Results for: poisson.MTW

MTB > PGoodness ’x’;
SUBC> Frequencies ’f’;
SUBC> RTable.

Goodness-of-Fit Test for Poisson Distribution

Data column: x
Frequency column: f

Poisson mean for x = 3.02041

Poisson            Contribution
x Observed Probability   Expected    to Chi-Sq
0 3 0.048781 4.7806 0.66319
1 17 0.147339 14.4393 0.45413
2 26 0.222513 21.8062 0.80654
3 16 0.224026 21.9546 1.61502
4 18 0.169163 16.5779 0.12198
5 9 0.102188 10.0144 0.10276
6 3 0.051442 5.0413 0.82654
>=7 6 0.034548 3.3857 2.01869

N N* DF Chi-Sq P-Value
98 0 6 6.60885 0.359

2 cell(s) (25.00%) with expected value(s) less than 5.

We see that MINITAB is employing Yarnol’s rule and the computed X2 =
6.60885 with corresponding p value of 0.359 indicating that the model fits
the data.

8.7 Fitting the Binomial Distribution

We recall from Chap. 4 that the binomial distribution is given by

f(x) =
(

n

x

)

px qn−x (8.18)

where p is the probability of success in n independent trials and q = 1 − p.
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It can be shown that the recurrence relation for this distribution is

f(x + 1) =
n − x

X + 1
p

1 − p
f(x). (8.19)

8.7.1 Example

The number of males was recorded for each of 160 litters of five pigs with the
following results:

Number of males 0 1 2 3 4 5
Frequency of litters 10 15 40 55 30 10

Assuming that any particular birth in a particular litter is equally likely
to be male or female, test the hypothesis that the above data can be fitted
by a binomial distribution.

We recognize that a birth can either result in a male or female, so we have
a binomial case in our hand. Since each birth is equally likely, i.e. p = 1

2 = q.
That is, H0 : p = 1

2 vs H1 : p �= 1
2 . Hence

f(x + 1) =
(

n − x

x + 1

)

.

(
p

1 − p

)

f(x)

=
n − x

x + 1
f(x) since p = q =

1
2

Further n = 5, thus

f(x + 1) =
5 − x

x + 1
f(x)

f(0) = (1 − p)5 = 1/32

f(1) = 5/1 × 1/32 = 5/32,

f(2) = 4/2 f(1) = 10/32

f(3) = 3/3 f(2) = 10/32,

f(4) =
5 − 3

4
f(3) = 5/32

f(5) = 1/32.

Note the symmetry (e.g., f (1) = f (4)).
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No. of males Observed frequency Expected frequency (O−E)2

E
(160 × probability)

0 10 5 5.0
1 15 25 4.0
2 40 50 2.0
3 55 50 0.5
4 30 25 1.00
5 10 5 5.0

160 X2 = 17.5

The 5 % significance point on the χ2 distribution on 6−1 = 5 d.f. is 11.07
and corresponding p value of 0.0036 which clearly indicates that we would
have to reject the null hypothesis that p = 1

2 . So, we reject the hypothesis
that the birth in a particular litter is equally likely i.e., accept that p �= 1

2 .

Estimating p from the Sample Data

Further calculations to compare the observed frequencies with frequencies
calculated on the assumption that the probability of a pig being male is p,
where p is to be estimated from the data, are summarized below.

p̂ =
Total number of males
Total number of births

=
(15 × 1) + (40 × 2) + (55 × 3) + (30 × 4) + (10 × 5)

160 × 5
= 0.5375.

Both the binomial probabilities and expected frequencies are presented in the
table below, together with the computed X2 test statistic.

No. of Probability Expected (O − E)2/E
males Frequency

0 f(0) = (0.4625)5 = 0.0212 3.39 12.89

1 f(1) = 5(1.1622)(0.0212) = 0.1230 19.68 1.113

2 f(2) = 4
2 (1.1622)0.1230 = 0.2859 45.744 0.721

3 f(3) = 3
3 (1.1622)0.2859 = 0.3323 53.108 0.067

4 f(4) = 1
2 (1.1622)0.3323 = 0.1931 30.896 0.026

5 f(5) = 1
5 (1.1622)0.1931 = 0.0449 7.18 1.108

X2 = 15.925 with 6−2 = 4 d.f. which is highly significant. Thus, the data do
not fit the binomial model. The calculations are implemented in MINITAB
as follows:



330 8 Categorical Data Analysis

MTB > set c1
DATA> 0 1 2 3 4 5
DATA> end
MTB > PDF ’x’ c2;
SUBC> Binomial 5 0.5375.
MTB > let c3=c2*160
MTB > let c5=((c4-c3)**2)/c3

MTB > print c1-c5

Data Display

Row x p E O X2
1 0 0.021162 3.3859 10 12.9199
2 1 0.122969 19.6750 15 1.1108
3 2 0.285820 45.7312 40 0.7182
4 3 0.332169 53.1470 55 0.0646
5 4 0.193017 30.8827 30 0.0252
6 5 0.044863 7.1781 10 1.1093

MTB > Sum ’X2’.

Sum of X2

Sum of X2 = 15.9481

Again, the computed X2 = 15.9481 and is based on 4 d.f., with corre-
sponding p value of 0.0031which clearly indicates that we would strongly
reject Ho.

8.8 Exercises

1. The data below are obtained by Catchside during his analysis of the
secondary association of chromosomes in Brassila oleracea. The pollen
mother cells were classified according to whether they had 3, 2, 1, or
0 pairs of bivalents showing secondary association at metaphase. Three
preparations were studied to test the hypothesis that the classification
of the pollen mother cells could be considered as constant from slide to
slide.

Slide
Number of pairs 1 2 3

0 14 7 11
1 32 36 35
2 51 39 32
3 41 23 16

2. A psychologist tests coordination of hand and eye in 475 subjects. He
finds that 30 can perform a certain task with the right hand but not
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the left, 13 with the left hand but not the right. What light does this
throw on whether success rates for the two hands differ in the population
sampled?.

3. From a large sowing of seed, 480 plants are raised, and are classified for
flower color and leaf type:

Dark Light
Leaf blue blue Yellow Pink White

Rough 41 105 36 39 151
Smooth 3 15 18 28 44

Test the hypothesis that color and leaf type are independent.
4. A therapeutic drug was tested against a placebo in terms of three sub-

jectively evaluated patient categories: (1) much improved, (2) slightly
improved, and (3) not improved. A total of 120 patients were assigned
to the drug group and 90 other patients were given the placebo. All
were judged to be in approximately the same initial condition. Physi-
cian evaluation was then made without knowing which treatment the
patient received. The resulting data were organized in the following 2×3
contingency table.

Patient categories
Much Slightly Not

Treatment improved improved improved Total

Drug 60 32 28
Placebo 28 17 45
Total

What are the factors of interest in this study? Analyze the data and on
the basis of your result, is the drug effective? Use α = 0.05.

5. The data below relate to the study of the risk of cancer and cigarette
smoking. Smoking is measured in pack-years (one pack-year is the equiv-
alent of smoking a pack of cigarettes per day for 1 year). A light smoker
is defined as a smoker with less than 31 pack-years of smoking, medium
smoker, between 31 and 45 pack-years (inclusively); heavy smoker, more
than 45 pack-years. Use MINITAB to answer the following questions:

Smoking history
Cancer Site Never Light Medium Heavy Total

Lung 12 33 44 92
Oral-bladder 37 37 42 36
Other cancer 270 138 182 136
No cancer 2025 996 880 738

Total
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(a) What are the factors of interest in this study?
(b) What is the observed frequency of oral-bladder cancers among

medium smokers?
(c) What is the contribution toward the overall X2 value from individu-

als that are jointly classified with lung cancer and medium smoking
history? How was it computed?

(d) What is the overall X2 value?
(e) State the null and alternative hypotheses in this study and conduct

the test (use α = 0.05).
(f) How was the 9 d.f. obtained?
(g) On the basis of your result, is smoking bad for you?

6. Each of 126 individuals of a certain mammal species was placed in an
enclosure containing equal amounts of each of six different foods. The
frequency with which the animals chose each of the foods was:

Food item (i) 1 2 3 4 5 6

Frequency 13 26 31 14 28 14

(a) Test the hypothesis that there is no preference among the food items.
Use α = 0.05

(b) If the null hypothesis is rejected, ascertain which of the foods
were preferred by the animals. Formulate the null and alternative
hypotheses.

7. Over a specified period, observers sighted 300 birds at a particular
location. The birds are classified into four species categories:

Species 1 2 3 4 Total

# of birds 60 120 97 23 300

Test the hypothesis that the composition of the species in the location
has changed from the expected proportion of 3:3:3:1?

8. The following blood-type frequencies were obtained from a sample of 1000
subjects screened at a shopping mall over a period of one month.

Blood type O A B AB Total

Frequency 465 394 96 45 1000

(a) Do the above data support the claim that less than 5 % of the
population screened has blood type AB?

(b) Perform a test to test the hypothesis that the distribution of these
blood types in the population should be in the ratio 9:8:2:1.

9. The Mendelian theory states that probability distribution of the color
and shape of a variety of pea be in the ratio 9:3:3:1. A random sample of
200 peas has the following observed distribution:
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Color and Round and Round and Angular and Angular and
shape yellow green yellow green Total

Frequency 110 40 42 8 200

Perform a hypothesis test to determine whether the observed data
contradict the Mendelian theory.

10. The following are the numbers of a particular organism found in 100
samples of water from a pond.

Number of organisms
per sample Frequency

0 15
1 30
2 25
3 20
4 5
5 4
6 1
7 0

Total 100

Test the hypothesis that the above data follow a Poisson distribution.
What is the p value for the test?

11. The number of tomato plants attacked by spotted wilt disease was
counted in each of 160 areas of nine plants. The results are displayed
below (Snedecor and Cochran 1973).

No of diseased
plants 0 1 2 3 4 5 6 7 Total

Frequency 36 48 38 23 10 3 1 1 160

Fit a binomial distribution to these data and perform the relevant
goodness-of-fit test.

12. The table below contains results of a study by Mendenhall et al. (1984) to
compare radiation therapy with surgery in treating cancer of the larynx.

Cancer Cancer
Treatment controlled not controlled

Surgery 21 2
Radiation 15 3
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The distribution of the pivot cell n11 is also given by:

n11 Probability

18 0.0449
19 0.2127
20 0.3616
21 0.2755
22 0.0939
23 0.0144

(a) Use Fisher’s exact test to test the following hypotheses:

H0 : θ = 1 against

Ha : θ �= 1

where θ is the odds ratio. Explain how you formed the p value and draw
you conclusions based on your results.

13. If it is believed that treatment A is better than treatment B, list all
possible outcomes that are extreme or more extreme than the observed
table in the following fictitious table of data.

Treatment
Outcome A B Total

Die 5 3 8
Live 9 15 24
Total 14 18 32

Conduct Fisher’s exact test on these data.
14. The following are data from two studies that investigated the risk factors

for epithelial ovarian cancer (Pagano and Gauvreau 1993).

Study I

Term pregnancies
Disease
status None One or more Total

Cancer 31 80 111
No cancer 93 379 472

Total 124 459 583

Study II

Term pregnancies
Disease
status None One or more Total

Cancer 39 149 188
No cancer 74 465 539

Total 113 614 727
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(a) Estimate the odds ratio of developing ovarian cancer for women who
have never had a term pregnancy versus women who have had one or
more in the first study.

(b) If possible, you would like to combine the evidence in these two strata
to make an overall statement about the relationship between ovarian
cancer and term pregnancies. What would happen if you were to
simply sum the entries in the tables?

(c) Conduct a test of homogeneity. Is it appropriate to use the Cochran–
Mantel–Haenszel method to combine the information in these two
tables?

(d) Obtain the Cochran–Mantel–Haenszel estimate of the common odds
ratio.

(e) Test the null hypothesis that there is no significant association be-
tween ovarian cancer and term pregnancies at the 0.01 level of
significance.

15. Geissler (1889) in a genetic study examined hospital records in Saxony
and compiled data on gender ratio. The following table gives the number
of male children in 6115 families with 12 children. If we assume that the
genders in successive children follow a binomial distribution with constant
probability p, estimate p from the data and test whether the data agree
with a binomial model.

Number Frequency

0 7
1 45
2 181
3 478
4 829
5 1112
6 1343
7 1033
8 670
9 286
10 104
11 24
12 3

16. Student (1907) conducted a study on errors made in counting yeast cells
or blood corpuscles with a hemocytometer. In his study, yeast cells were
killed and mixed with water and gelatin; the mixture was then spread on
a glass and allowed to cool. Four different concentrations were used and
counts were made on 400 squares, and the data are presented below:
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Number Concentration Concentration Concentration Concentration
of Cells 1 2 3 4

0 213 103 75 10
1 128 143 103 20
2 37 98 121 43
3 18 42 54 53
4 3 8 30 86
5 1 4 13 70
6 0 2 2 54
7 0 0 1 37
8 0 0 0 18
9 0 0 1 10
10 0 0 0 5
11 0 0 0 2
12 0 0 0 2

(a) Fit Poisson distributions to each set of data.
(b) Test the goodness-of-fit to these data using Pearson’s X2.
(c) What are the parameter estimates for each data set?
(d) Which data fit the Poisson model best?

17. Hoaglin (1980) suggested a “Poissoness plot” which is a simple visual
method for assessing goodness of fit. For a Poisson model, the expected
frequencies are given by:

Ex = n Pr(X = x) = ne−λ λx

x!
, or log Ex = log n − λ + x log λ − log x!

Hence a plot of log(Ox)+log x! versus x should yield nearly a straight line
with a slope of log λ and an intercept of log n − λ. Construct such plots
for the data in the last exercise and comment on your results. Reconcile
your result with the results in the last exercise.



Chapter 9
Experimental Design

9.1 Introduction

Before we formally describe the principles of experimental design, two terms
need to be defined. The two terms are Observational Study and Experiment.

Observational study investigates what is present in the population. Any
condition not represented in the population will not be observed in an ob-
servational study (we shall discuss this at the end of this chapter). In many
investigations, however, it is desired to investigate conditions which do not
appear in a population. In an experimental investigation or experiment, the
experimenter may, and often does introduce conditions which do not exist
in any naturally occurring population, i.e., it is a planned interference in
the naturally occurring order of events by the investigator. The investigator
controls the conditions in the experiment, whereas the conditions in a survey
are those that prevail in the population.

An experiment is defined as the planning and collection of measurements
or observations according to a prearranged plan, for the purpose of obtaining
factual evidence for or against a stated theory or hypothesis. An experiment
should be self-contained, i.e., it should provide an independent piece of in-
formation about a stated theory or hypothesis, and the conclusions should
be based on the experimental data alone. Extraneous knowledge may help
the investigator to understand the observed results, but it should not be
injected into the statistical inferences. This certainly does not mean that
one cannot use accumulated or prior knowledge in planning further experi-
ments. However, experimentation is only one step in the continuous search
for knowledge.

Some additional terms are defined below:

Treatment A treatment is a single entity or phenomenon under study in
an experiment.

Absolute Experiment An absolute or single phenomenon experiment is
one which contains a single treatment.
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Comparative Experiment A comparative experiment is one designed
specifically to compare two or more treatments, which might be different
varieties of corn (maize), different diets for cows, different drugs, or different
acid concentrations in an industrial process.

Many comparative experiments are factorial, permitting simultaneous
study of different factors each at different levels. Thus in an experiment to
study the control of stem borers in corn or maize, three sowing dates (Factor
A with three levels) might be tried in conjunction with four sprays (Factor B,
four levels). In this “3 × 4 factorial experiment,” the “twelve combinations
of sowing dates and sprays are the twelve ‘treatment combinations’”. The
treatment combinations are displayed in the following table.

Levels of factor A Levels of factor B

1 2 3 4

1 11 12 13 14
2 21 22 23 24
3 31 32 33 34

A factor may be qualitative (e.g., different concentrations of nitrogen in a
fertilizer experiment) or quantitative (e.g., different doses of vitamin C).

Each experiment comprises a set of “experimental units” called plots with
different treatments or treatment combinations applied to different experi-
mental units. Plots may be for example, pens of animals, individual animals
or plants, individual leaves on growing plants, or (in an inoculation experi-
ment on plants) half-leaves. Commonly, treatments are replicated, i.e., there
is more than one plot per treatment. Factorial experiments include single
replicate experiments (one plot per treatment combination; see Chap. 14) and
fractional replicate (not all treatment combinations present; see Chap. 14).

The comparison between treatments, between factor levels, or treatment
combinations are based on data recorded after the treatments have had a
chance to affect the experimental material (the response). These data are
one or more variates (often called variables) which as we discussed in Chap. 1
may be continuous (e.g., weights, heights, temperatures, and pressures) or
discrete (e.g., counts, scores).

Variates may also be “primary” (obtained by direct reading of a scale
by counting or by scoring) or “derived” (obtained from one or more other
variates by arithmetic calculations).

For factorial experiments with quantitative factors, the analysis of a variate
may consist of investigating a “response surface,” and for our purpose in this
text, experiments designed to study response surfaces will be regarded as
comparative.

Experimental Unit It is the smallest unit in which a treatment is applied.
It could be an individual animal or a group. For example, an individual
mouse is considered as the experimental unit when a drug therapy or surgical
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procedure is being tested, but an entire litter of mice is the experimental
unit when an environmental teratogen is being tested. For the purpose of
estimating error of variance or standard error for statistical analysis, it is
necessary to consider the experimental unit (Weber and Skillings 2000). Many
excellent sources provide discussions on the type of experimental units and
their appropriateness (Dean and Voss 1999; Festing and Altman 2002; Keppel
1991; Wu and Hamada 2000).

Treatment Design A treatment design represents the arrangement and
selection of treatments for comparative purposes or for ascertaining responses
to several treatment variables and levels of variables.

9.2 Experimental Design

An experimental design is the arrangement of treatments in an experiment.
It is used in all types of empirical investigations. Designing of an experiment
is more difficult to define than its analysis, because it means both designing
(part of planning) and a “specific design.” Finney (1955) defined the “design”
of an experiment to mean:

(i) The set of treatments selected for comparisons
(ii) The specification of the experimental unit (animals, field plots) to which

the treatments are to be applied
(iii) The rules for allocating the treatments to the plots or units
(iv) The specification of the measurements or other records to be made on

each unit
(v) Specification of details of the management of the experiment

The need for a statistical subject of “design and analysis of experiments”
arises from variability inherent in the experimental material, environment,
and management. This variability leads to uncontrolled, indeed uncontrol-
lable variability in the observed variate values, i.e., to “experimental error”
where “error” does not mean “mistake.”

The four major components of design and analysis according to Preece
(1982) are as follows:

(a) Planning, design, and layout
(b) Management
(c) Data recording
(d) Scrutiny and editing of data

We describe below the implications of the four components listed above.
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9.2.1 Planning, Design, and Layout

This component includes the following:

(i) A statement of the objectives of the experiment. A clear and unam-
biguous hypothesis must be formulated. The investigator must be very
familiar with the subject matter, and a thorough literature search and
consultations with experts in the area are of extreme importance in de-
veloping the knowledge needed to formulate a testable hypothesis. The
question you are trying to answer should be very specific and clearly
stated. Examples of hypotheses are listed below:

(a) Alternative Hypothesis

– Groups are expected to show different results, e.g., rats will gain
more weight on diet A rather than diet B.

(b) Null Hypothesis

– Groups are expected to be the same, e.g., rats on diet A will gain
the same amount of weight as rats on diet B.

(c) Untestable

– A result can not be easily defined or determined, e.g., rats on diet
A will look better than rats on diet B. What does better mean?
A definition of “better” must be clearly stated.

Once the question and hypothesis have been stated, the methods and
techniques to be used can be determined, and evaluated for the best
possible method to perform the research.

(ii) Definition of the population about which the inferences are to be made.
(iii) Selection of experimental treatments, which must include a control

treatment/s. Sometimes a strictly “untreated” control may seem ap-
propriate, and sometimes in medical vocabulary, a “placebo.” Controls
generally take four different forms viz., negative, vehicle, positive, and
comparative.

(iv) Choosing the plot shape and size.

Choices of (iii) and (iv) must be guided by the principles of replication,
randomization, and blocking (local control). These concepts will be fully
discussed in section 9.3.

9.2.2 Management

Administration, supervision, and management of an experiment need system-
atic care if reliable results are to be obtained. If plots are pieces of land, they
must be measured up and planted properly. If the treatments are different
rates of doses, these must be determined accurately.
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Care must be taken to avoid extra variability after treatments have been
applied. Extra variability can be introduced into the results by different man-
agement of the plots, e.g., by having some plots weeded more carefully or
frequently than others in a field experiment where treatment differences are
not intended to include weeding differences. Such circumstances may require
different blocks to be weeded by different people, so that unwanted between-
laborer differences are assimilated in between-block differences. Likewise, if an
experiment has to be irrigated throughout, but there is insufficient equipment
to irrigate it all at once, the irrigation should be “by blocks.”. Also included
in this category are, operations such as harvesting or scoring for diseases.

9.2.3 Data Recording

There is a need for suitable balance for obtaining accurate, precise data
values. When weights, heights, and other continuous variables are to be
recorded, a “degree of precision of recording” should be specified and ad-
hered to, e.g., “to the nearest 5 g,” “to the nearest 25 cm,” etc. Data should
be recorded on prepared data sheets having proper headings. Copying of data
introduces errors and should be avoided if possible.

9.2.4 Scrutiny and Editing of Data

This involves searching for outliers. Quality assurance procedures to identify
data entry errors should be developed and incorporated into the experimental
design before data analysis.

9.3 Principles of Experimentation

The experimental designs that will be considered in this text are for com-
parative experiments involving two or more treatments where the object of
investigation is to obtain information on the treatments relative to each other.
In other words, the interest is on differences between treatment averages
rather than on the averages per se. We shall consider the characteristics of
designing the experimental arrangements or procedures as follows.

9.3.1 Randomization

Randomization is an objective or fair method of random allocation of the
experimental material or treatments in an experiment to the experimental
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units. Randomization is also used to ensure that the order in which the trials
are performed are random. Thus, randomization subjects all treatments to as
nearly equal conditions as possible, and by utilizing chance allotments there-
after. It is known in field experiments for instance, that the errors in adjacent
plots are usually positively correlated. Randomization is used to circumvent
much of this difficulty. By randomization, the treatments are allocated at
random to the experimental unit subject to the design restrictions, so that
there is an equal chance of any two treatments appearing in both adjacent and
nonadjacent plots. The expected value of the total error for any treatment is,
hence, independent of that for any other treatment. Randomization helps:

1. Protect us from “systematic” error that might be caused by subjectively
assigning the treatments to the experimental units

2. In averaging out the effects of all uncontrollable conditions or extraneous
factors that might exist

3. To obtain unbiased estimates of differences among treatment responses
(means or effects)

4. To obtain an unbiased estimate of the error variation in the experiment
5. Validate the underlying statistical assumption that the errors are ran-

domly independently distributed

9.3.2 Replication

Replication refers to the repetition of the basic experiment with the same
assignment of treatments. Thus, an experiment that has eight rats allocated
to treatment A, say, has eight replicates for treatment A. However, an increase
in the number of replicates of a treatment tends to decrease the variation in
the estimate of a difference between two treatment means from orthogonal
designs. This is the manner in which replication leads to a reduction in the
experimental error of differences of treatment effects. Replications allow us to:

1. Estimate the error variance σ2 due to uncontrollable or assignable causes
in the experiment

2. Make experimental result “powerful” enough to recognize true differences
between groups (statistical significance) by increasing the accuracy of
estimates of means, and other functions of the response variable

However, knowing the exact number of replications is extremely important. It
might turn out to be worse to use too few replications than too many. Choos-
ing the correct number of replications is a function of four determinants, viz.,

• d, the minimal difference that is necessary to detect differences in
treatment means

• s2, an estimate of the error variance in the experimental material obtained
from a previous experiment or by observing a group of untreated animals
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• α, the probability of making a type I error (when you believe that there
is a true difference when there is none) which is typically 0.05

• β, the probability of making a type II error (when you believe there is no
difference between the treatments, in reality there is) which is typically
0.1. To prevent this type of error, use sufficient replications to prove there
is a difference. You must define how much difference is a true difference.

Formulas for determining the proper number of animals using the four
variables above can be found in standard statistical texts, but it is wise to
consult a statistician. A notable consequence of several replications of an
experiment is often an increase in the heterogeneity of the variances of the
treatments due to increase variability of the response variable. However, local
control or blocking is a technique for dealing with this situation. We discuss
the concept of local control or blocking in the next subsection.

9.3.3 Blocking

Grouping of the experimental material in such a manner that the units
within a group are more alike than are units in different groups. This kind of
grouping is called blocking or stratification. It allows considerable reduction
in error of treatment associated with experimental material. An investigator
might decide whether to group experimental units by gender, age, litters,
breed, sbp(systolic blood pressure), or by any other factor that may be
deemed to influence the response variable.

The above three characteristics will be exemplified with two to three ex-
amples, and we shall then later present various types of experimental designs
which control various types of heterogeneity among the individual items or
units in the investigation.

We have not said anything about the size and the shape of the smallest
unit of observation, i.e., the sampling unit, nor about the smallest unit to
which one treatment is applied, i.e., the experimental unit. In some cases, the
sampling and experimental units are the same, and in others the experimental
and/or the sampling unit size is fixed and cannot be varied. When the size
and shape can be varied according to certain criteria, one can talk about
the optimum size and shape, but this is a topic unto itself which will not be
discussed in this text. We shall assume that the size and shape of the sampling
and experimental unit are given. Examples of investigations wherein the unit
is fixed are the animal in physiological and nutritional studies, the plant in
physiological studies, the individual in learning experiences, a cake or pie
in baking studies (a whole cake or whole pie must be baked, even if size
and shape can be varied), the classroom for teaching methods (the number
of students can be varied, but classroom is fixed), the automobile for road
endurance tests, a piece of equipment used to produce or evaluate a product,
fixed farms or pastures in certain management investigations, etc.
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Example 9.2.1

The first experimental design we shall consider has to do with weighing very
light objects. Suppose that one has seven objects (a, b, c, d, e, f, g) to be
weighed. One experimental design for weighing the seven objects would be
(any order of weighing could be utilized, but they are ordered here for easy
reading; Table 9.1):

Table 9.1 First weighing experiment

Weighing Object weighed

1 Determination for zero correction
2 a
3 b
4 c
5 d
6 e
7 f
8 g

The second design also utilizes eight weighings. In the first weighing all
the objects are weighed. In the second weighing, only objects a, b, and d are
weighed, in the third only objects a, c, and e, and so on. We see that in the
eighth weighing, only objects d, e, f are weighed. The weights of each of the
objects are obtained from the following weighings (Table 9.2).

Table 9.2 Second weighing experiment

Sum or differences of weighing

Weight of object 1 2 3 4 5 6 7 8

a + + + + − − − −
b + + − − + + − −
c + − + − + − + −
d + + − − − − + +
e + − + − − + − +
f + − − + + − − +
g + − − + − + + −

In the second design, therefore, we note that if an object is present in the
weighing it receives a +, and a − if not present. The sum of the first four
weighings minus the sum of the last four weighings gives the weight of object
a for instance, while the sum of weighings 1, 2, 5, and 6 minus the sum of
weighings 3, 4, 7, and 8 gives the weight of object b, etc.

In the second design, the same number of weighings are used here as for
the previous weighing design, but each object has been weighed four times
rather than only once as in the previous design. This means that the variation
in weights from the above design is only one-fourth that of the first design.
The weights of each of the objects are obtained as follows:
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â =
1 + 2 + 3 + 4 − 5 − 6 − 7 − 8

4

b̂ =
1 + 2 + 5 + 6 − 3 − 4 − 7 − 8

4

ĉ =
1 + 3 + 5 + 7 − 2 − 4 − 6 − 8

4

d̂ =
1 + 2 + 7 + 8 − 3 − 4 − 5 − 6

4

ê =
1 + 3 + 6 + 8 − 2 − 4 − 5 − 7

4

f̂ =
1 + 4 + 5 + 8 − 2 − 3 − 6 − 7

4

ĝ =
1 + 4 + 6 + 7 − 2 − 3 − 5 − 8

4

Example 9.2.2

As a second illustrative example which is used to illustrate characteristics (i)
and (ii) above, let us suppose that the investigator is comparing four nutri-
tional treatments and is using the rat as the experimental animal. Suppose
that he/she randomly selects five rats for each treatment without any regard
to the rat’s parentage for design I. This allows all four treatments a fair or
equal chance to be allotted any 5 of the 20 rats. Design I could look like this:

01 (A) 10 (D) 06 (B) 08 (D) 17 (C)
18 (B) 03 (C) 16 (A) 12 (B) 14 (A)
05 (C) 15 (B) 19 (D) 20 (A) 11 (C)
09 (A) 13 (D) 04 (B) 02 (D) 07 (C)

Design I

Alternatively, suppose that another investigator takes account of the rat’s
parentage, and uses five litters of four male rats each. (The word litter is
used to designate the members born at the same time from the mating of
two parents.) Thus, twins in humans would be a litter of size two, triplets
would be a litter of size three, etc. In certain types of animals like rabbits,
dogs, cats, swine, etc., the members of a litter are brothers and sisters, and
usually not identical in genetic composition. The four treatments are then
allotted by chance to the four male rats of each of the five litters to form
design II. This is “fair” to all four treatments as each has an equal chance
at any rat in the litter. In this design, the comparison among treatments
is within a litter (i.e., on members of the same litter) and on rats of the
same sex. The variation among members of the same litter or family for
many characteristics including nutritional response is less than the members
of different litters. Hence, design II would be expected to yield treatment
means which are less variable than the corresponding means from design I.
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Litters
1 2 3 4 5
A B D B C
C A B D B
B D C C A
D C A A D

Design II

In fact, from nutritional experiments on swine, it was found that the variation
of treatment means compared on individuals of the same litter was about one-
half of that obtained when the animals were not grouped or stratified into
litters. Practically, this means that the investigators using design II would
require only one-half as many animals to obtain the same degree of variation
among treatment means as for design I. A simple change of design from I to
II would cut the cost of experimentation one-half, or alternatively for a fixed
amount of experimentation, it would decrease the variation among treatment
means by one-half.

The use of blocking or stratifying experimental material into relatively
homogenous groups can greatly increase the efficiency of experimentation.
Since total variation is equal to that due to assignable causes, plus bias
plus random error, by blocking, a portion of the random error is put into the
assignable or controllable category, thereby, reducing the amount of variation
in the chance or random category.

9.4 Methods of Increasing the Accuracy
of an Experiment

Accuracy refers to the success of estimating the true value of a quantity. It is
often confused with precision which refers to the clustering of sample values
about their average. Precision can be thought of as the inverse of variance,
while accuracy involves both biasedness and precision.

Often the experimenter has to choose between an unbiased estimate with
rather low precision (high variance), and a slightly biased one with high
precision. The choice of the proper estimate is often dictated by circumstances
beyond his/her control, but certain methods of increasing the accuracy of the
experiment should be kept in mind.

(i) Accuracy can be generally increased by increasing the size of the experi-
ment. One must, however, be careful not to introduce heterogeneity into
the experiment by poor supervision with a possible biased result.

(ii) Experimental techniques should be refined as much as possible by making
sure that:

(a) Uniform method of applying treatment to the experimental units is
adopted.

(b) Sufficient control over external influence so that every treatment
operates under as nearly the same conditions as possible.
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(c) Checks are set up to avoid gross errors in recording and analyzing
the data.

(iii) Experimental material should be selected to suit the experiment, i.e.,

(a) Size and shape of the experimental unit (plot) are prepared to
achieve maximum accuracy, and unbiasedness.

(b) Often, additional measurements can be taken to help explain the
final results e.g., covariance analysis techniques.

(c) Treatments should be grouped together in the best manner. In other
words, the proper selection of the experimental design is of the ut-
most importance, e.g., if too many treatments or the experimental
units are quite heterogeneous, then an incomplete block design will
be suitable or if interactions are assumed to be important, then
factorial system will be suitable. If high-order interactions are not
important, then some system of confounding might be used, etc.

9.5 Random and Fixed Effect Models

The model for most designs is of the form

Yij = μ + ti + eij (9.1)

with i = 1, 2, . . . , t (the number of treatments) and j = 1, 2, . . . , ri, the
number of replications for treatment i. Equation (9.1) is a regression model
with
∑

ti = 0. The eij (the errors) are independent of the ti. One method of
distinguishing between the t’s and the e’s has been to call the t’s the fixed
effects, and e’s the random effects.

By fixed effects, we imply that all the treatments about which inferences
are to be made are included in the experiment. A random effect is assumed
to be one of a large number of possible effects: in general we shall refer to the
number of possible effects to be infinite, i.e., a random sample from a larger
population of treatments. In this situation, we should be able to extend the
conclusions (which are based on the sample of treatments) to all treatments in
the population, whether they were explicitly considered in the analysis or not.
Here, the tiS are random variables and knowledge about the particular ones
investigated is relatively useless. Instead, we would test hypotheses about
the variability of the ti, and try to estimate this variability. This is called the
random effects or components of variance models.

9.6 Control of Error

Error control can be accomplished by:

1. Blocking (e.g., split plot, incomplete block designs, etc.)
2. Plot technique, that is size and shape of the experimental units
3. Data analysis (use of concomitant observations as in analysis of covariance).
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9.7 Summary of Principles of Experimental Designs

At the beginning of this chapter, we listed three desirable characteristics
for designing experiments or what we are sometimes described as the three
principles of design, viz., replication, randomization, and local control.

Randomization and replication are necessary to obtain a valid estimate
or measure of the experimental variation. Replication and “local control” (=
blocking or grouping) are necessary to achieve a reduction in the random vari-
ation among treatment effects in the experiment. The use of “local control”
has been made throughout this book in blocking or grouping to eliminate or
to control the various sources of variation.

In addition to the three basic principles of experimental design mentioned
above, we can also consider perhaps a fourth principle, viz., orthogonal-
ity. Orthogonality is important in order to estimate the random variation
between treatment means is the same for all pairs of treatments having
equal replication, and having the same degree or magnitude of random error
variation.

If orthogonal designs are not possible, then we strive for balanced designs
which will ensure that differences between pairs of treatment effects for all
have the same variance. In balanced designs, all treatment pairs occur equally,
frequently with each other in the b blocks of size k for the v treatments. Since
bk = total number of experimental units and since there are v treatments each
repeated r times then bk = vr in balanced designs. Orthogonal designs are
balanced designs, but the reverse is not true. The randomized complete block
design is a balanced design, but the balanced incomplete block design is not
an orthogonal design. We shall discuss the concept of orthogonality further
when we become familiar with the randomized complete block design.

9.8 Observational Studies

In observational study, unlike in experimental study, the researcher does not
have control over the assignments of treatments or exposure to a certain
disease (e.g., cancer). Thus, neither the subjects under study or any of the
factors of interest are determined by the investigator. There are two types of
observational data, viz., prospective studies and retrospective studies.

9.8.1 Prospective Studies

A prospective study or cohort study or follow-up study is a study in which
two random samples of subjects were selected, one having the presence (the
exposed) of the suspected antecedent or risk factor (e.g., smoking), and the
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other sample consists of subjects which do not have the suspected antecedent
or risk factor. The subjects are then followed up to some time into the future
(i.e., prospectively), and the proportions of subjects developing the disease
(outcome variable or response, e.g. lung cancer) at some point in time are
then estimated for both samples. The 2 × 2 Table 9.3 gives the distribution
subjects into each of the four categories over a specified period of time.

Table 9.3 Classification of a sample of n subjects

Disease status

Risk factor Present Absent Total at risk

Present (exposed) a b a + b
Absent (unexposed) c d c + d

Total a + c b + d n

Here we note that for this scheme, the sum of probabilities across each
row adds to 1, i.e.,

(
a

a + b

)

+
(

b

a + b

)

= 1

(
c

c + d

)

+
(

d

c + d

)

= 1

We may also note that this scheme is often very expensive and time-
consuming to undertake.

9.8.2 Relative Risk

For data arising from prospective studies, the risk of development of the

disease is computed as
(

a

a + b

)

. Similarly, the risk among the unexposed

subjects is similarly computed as
(

c

c + d

)

. Hence, the relative risk is the

ratio of the risk of developing the diseases among exposed subjects to the
risk of developing the diseases among unexposed subjects i.e.,

R̂R =
Pr(disease|exposed)

Pr(disease|unexposed)
=

a/(a + b)
c/(c + d)

=
a(c + d)
c(a + b)

(9.2)

and a 100(1 − α) % confidence interval (CI) for RR or ψ as is sometimes
succinctly represented is computed as:

100(1 − α)% CI = ψ̂1±(zα/
√

X2) (9.3)

where, zα is the two-sided z value and X2 corresponds to Pearson’s test
statistic.
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Consider the following example that examines the risk factors for breast
cancer among women participation in the US National Health and Nutrition
Examination Survey (Carter et al. 1989). In this study, a woman is considered
exposed if she first gave birth at age 25 or more. In a sample of 4550 women
who gave birth to their first child before the the age of 25, 65 developed
breast cancer. Of the 1628 women who gave birth at age 25 or more, 31
were diagnosed with breast cancer. The data from this study are displayed
in Table 9.4.

Table 9.4 Study data on breast cancer in women

Disease status

Risk factor Present Absent Total

Present (exposed) 31 1597 1628
Absent (unexposed) 65 4485 4550

Total 96 6082 6178

ψ̂ =
Pr(disease|exposed)

Pr(disease|unexposed)

=
31/1628
65/4550

= 1.3329.

The proportion having breast cancer, therefore, was 1.33 times higher for
those women who had their first birth at a later age than those who gave
birth at an earlier age.

X2 =
6176[(31)(4485) − (65)(1597)]2

(96)(6082)(1628)(4550)
= 1.7729.

Hence, the 95 % CI is calculated as:

ψ̂1±(zα/
√

X2) = 1.33291±(1.96/
√

1.7726)

= 1.33291±1.4721

= (1.3329−0.4721, 1.33292.4721)

= (0.8731, 2.0348).

Thus the 95 % CIs for ψ are computed to be (0.8731,2.0348).

9.8.3 Retrospective Studies

A retrospective study or case-control study is the opposite of prospective
study. Here, the samples are selected from those having the outcome variable
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(disease of interest), and the researcher then looks back (i.e., takes a retro-
spective look) at the subjects and classify them according to those that have
(or had) or have not been exposed to the risk factor. Under this scheme, we
again have the following as given in Table 9.5.

Table 9.5 Classification of a sample of n subjects

Sample

Present Absent Total
Risk factor (cases) (controls)

Present a b a + b
Absent c d c + d

Total a + c b + d n

Here we note that for this scheme, the sum of probabilities across each
columns adds to one, i.e.,

(
a

a + c

)

+
(

c

a + c

)

= 1

(
b

b + d

)

+
(

d

b + d

)

= 1

9.8.4 Odds Ratio

For data arising from retrospective studies, relative risk measure would not
be appropriate. Instead, we would compute what is known as the odds ratio.
First, we recall that the odds of an event is defined as the ratio of P(A)/[1-
P(A)]. Thus,

(a) The odds of being a case (disease present) in Table 9.5 to being a control
among subjects with the risk factor is computed as:

a/(a + b)
b/(a + b)

=
a

b

(b) The odds of being a case (disease present) to being a control (disease
absent) among subjects without the risk factor is computed as:

c/(c + d)
d/(c + d)

=
c

d

(c) The estimated odds ratio OR or simply θ is therefore computed as:

θ̂ =
a/(b)
c/(d)

=
ad

cd
(9.4)
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It is sometimes advocated that for those situations where there are zero
cell frequencies, the estimate can be computed as:

θ̂∗ =
(a + 0.5)(d + 0.5)
(c + 0.5)(d + 0.5)

(d) A 100(1 − α) % CI for θ is again computed as:

100(1 − α)% CI = θ̂1±(zα/
√

X2) (9.5)

Alternatively, we can use the fact that the asymptotic variance of θ̂ is
given by:

V̂ ( ˆln θ) =
[
1
a

+
1
b

+
1
c

+
1
d

]

(9.6)

and hence, the CI is computed as:

e�±zα/2

√
V̂

where � is the log of the estimated odds ratio. We give an example below.

Example

The following example is a case-control study (Hennekens et al. 1984), where
two samples of women were identified with and without breast cancer, and
their records were retrospectively examined to determine whether they have
been exposed to the use of oral contraceptive. Among the 989 women in the
study who had breast cancer, 273 had in the past used oral contraceptives
and 716 had not. Of the 9901 women who did not have breast cancer, 2641
had used oral contraceptives and 7260 had not.

Table 9.6 Study data on breast cancer in women

Sample

Risk factor Cases Controls Total

Present (exposed) 273 2641 2914
Absent (unexposed) 716 7260 7976

Total 989 9901 10,890

Hence,

θ̂ =
273 × 7260
716 × 2641

= 1.0481

Thus, women who had used oral contraceptives in the past have odds of
developing breast cancer, i.e., only 1.048 times the odds of nonusers. This
odds may not be significant. The Pearson’s X2 statistic is computed as:

X2 =
10890[(273)(7260) − (716)(2641)]2

(2914)(7976)(989)(9901)
= 0.3965
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Hence, the 95 % CI is calculated as:

θ̂1±(zα/
√

X2) = 1.04811±(1.96/
√

0.3965)

= 1.04811±3.1127

= (1.0481−2.1127, 1.04814.1127)

= (0.9055, 1.2131)

The 95 % CIs for θ are computed to be (0.9055, 1.2131). Since this CI
does not include zero, we can conclude that the use of oral contraceptives in
the past by women does not seem to cause significant difference in the rate
of breast cancer in the female population. MINITAB can compute the odds
ratio as well as X2 for us but unfortunately, could not compute the CIs, etc.
We present a typical MINITAB out for this problem.

Tabulated statistics: risk, case

Using frequencies in f
Rows: risk Columns: case

n y All

a 7260 716 7976
p 2641 273 2914
All 9901 989 10890

Cell Contents: Count

Pearson Chi-Square = 0.396, DF = 1, P-Value = 0.529
Likelihood Ratio Chi-Square = 0.394, DF = 1, P-Value = 0.530

Results for all 2x2 tables

Common odds ratio 1.04814

MHCstatistic DF P-Value
0.350407 1 0.553883

Employing the alternative approach, we have

V̂ =
1

273
+

1
2641

+
1

716
+

1
7260

= 0.00557334

and hence,
√

V̂ = 0.0747. A 95 % CI is computed as:

eln(1.0481)±1.96(0.0747) = e0.0470±0.1464 = e−0.0994,0.1934 = (0.9053, 1.2134)
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9.9 Exercises

1. Some terms that occur rather frequently in the literature are:

(a) Accuracy
(b) Precision
(c) Validity
(d) Reliability
(e) Bias

Restricting your remarks to the theory of statistics or to applications of
statistical methods, define and discuss each of these terms.

2. What is meant by a “control treatment”?
3. Define:

(a) Absolute experiment
(b) Comparative experiment

Give examples of each.
4. Describe the role of replication in the design of experiments.
5. Describe how we interpret the estimated values of the following measures:

• Relative risk
• Odds ratio

6. Define the following terms: relative risk, prospective study, and odds ratio.
7. Two treatments, heparin and enoxaparin, were compared in a double-

blind, randomized clinical trial of patients with coronary artery disease
(Samuels and Witmer 1999). The subjects are classified as having a
positive or negative response to treatment. The data is presented below.

Treatments

Outcome Heparin Enoxaparin Total

Negative 309 266
Positive 1255 1341

Total 1564 1607

(a) Estimate the odds ratio θ
(b) Construct a 95 % CI for the population value of θ.
(c) Based on your results in (a) and (b), is there any evidence of significant

association between the outcome and treatment at the 0.05 level of
significance?



Chapter 10
The Completely Randomized Design

10.1 Introduction

The completely randomized design (CRD) is the simplest of all experimental
designs, both in terms of analysis and experimental layout. Here, treatments
are randomly allocated to the experimental units entirely at random. Thus
if a treatment is to be applied to five experimental units, then each unit
is deemed to have the same chance of receiving the treatment as any other
unit. The CRD is often used if we believe that the experimental material is
homogeneous or uniform. In this case, the experimental units are regarded as
a group and the investigator believes that the experimental material available
contains only nonassignable variation, and that it would be impossible to try
to group the material into blocks or some other subgroups such that the
variation among subgroups is larger than among units within subgroups as
far as the response variable under investigation is concerned. Usually, though
not necessarily, the random assignment is restricted in such a manner as
to have an equal number of experimental units assigned to each treatment.
The CRD should therefore be used where extraneous factors can easily be
controlled, such as in laboratories or green houses. The CRD is usually the
choice design in pilot studies where experimental units and conditions are
homogeneous.

To illustrate the above, suppose that an animal nutritionist has four diets,
A, B, C, and D and he wants to allocate five rats to each diet. The response is
the weight gained after 6 weeks. The diets will then be randomly allocated to
the 20 rats. The 20 rats are treated alike in all other respects except for type
of diet, that is, they all are in the same pen and have the same food and water
sources. The intermingling of 20 rats results in the rats all being subjected to
the elements of the environment in the enclosure. The diets (treatments) are
compared in as nearly equitable manner as possible. One possible random
assignment is to do the following.

Step 1 Label the animals from 1 to 20 and put these in Column C1.
Step 2 Randomly select five animals using MINITAB from C1 and place

them in C2. These are {11, 4, 1, 7, 12}.

355B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 10,
c© Springer International Publishing Switzerland 2014
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Step 3 Remove the five digits in step 2 from C1 and put the remaining digits
in C3 where again you perform step 2, yielding the digits {2, 10, 19,
18, 14}.

Step 4 Repeat step 3 by removing the digits generated in steps 2 and 3
from C1 and again randomly select five digits from the remaining 10
digits yielding once again {6, 17, 5, 9, 3}. The remaining five digits
are therefore {8, 13, 15, 16, 20}.

Step 5 If we denote diet A as the first group, is then assigned to the animals
selected from step 2. The last group, which is diet D received rats
numbered {8, 13, 15, 16, 20}.

Table 10.1 gives the final random allocation for this experiment.
The above layout for an experiment in a completely randomized design

might be appropriate for 20 pots on a greenhouse bench or a series of soil
analyses involving four treatments.

The design is the simplest of all experimental designs because it involves
zero-way or no elimination of heterogeneity in the experimental material. The
total variation in the experiment may be written as:

Table 10.1 A CRD layout with four treatments and five replications

Rats Diet Rats Diet Rats Diet Rats Diet

1 A 6 C 11 A 16 D
2 B 7 A 12 A 17 C
3 C 8 D 13 D 18 B
4 A 9 C 14 B 19 B
5 C 10 B 15 D 20 D

Total variation = variation among treatment means + error variation

Observed yield = treatment + random (unit) variation.

The yield of any experimental unit may be written as treatment mean + an
error term. It is permissible to use the above form when the different
components of variation are additive in their effects.

The above design is sometimes called a one-way classification or single-
factor design because the data can be classified in only one way, namely,
according to the treatment, and treatment is the only factor involved.

The model for the design is given below as:

Yij = μ + ti + εij
i = 1, 2, · · · , t
j = 1, 2, · · · , r

(10.1)

where:

Yij is the yield for treatment i in the jth replicate

μ is the overall mean



10.1 Introduction 357

ti is the effect of the ith treatment, and,

εij is a random error component.

The data from such an experiment will appear as in Table 10.2.

Table 10.2 Table of observations for a completely randomized design

Treatments Observations Total

1 y11 y12 · · · y1r Y1+
2 y21 y22 · · · y2r Y2+
...

...
... · · ·

...
...

t yt1 yt2 · · · ytr Yt+

10.1.1 Analysis of Variance of Table 10.2

There are r × t = rt observations in the experiment. Hence,

The correction factor (CF) =
Y 2

++

rt
=

G2

rt

Total SS = y2
11 + y2

12 + · · · + y2
tr − CF =

∑

i

∑

j

y2
ij −

Y 2
++

rt
= TSS

GSS =
Y 2

1+

r
+

Y 2
2+

r
+ · · · +

Y 2
t+

r
− CF =

∑

i

Y 2
i+

r
−

Y 2
++

rt

The error sum of squares (SS) is obtained by subtraction as Total
SS−Treatment SS, or as:

SSE =
∑

i

∑

j

y2
ij −

Y 2
i+

r

Hence the analysis of variance table is given in Table 10.3.

Table 10.3 Analysis of variance table for a CRD

Source of
variation d.f. SS MS F

Treatments t − 1 GSS GSS
t−1 = A A

S2

Error t(r − 1) SSE SSE
t(r−1) = S2

Total rt − 1 TSS
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Since we are interested in testing the equality of the t treatment effects, the
appropriate hypotheses are

H0 : t1 = t2 = · · · = tt = 0

Ha : ti �= 0 for at least one i (10.2)

The hypotheses in (10.2) are equivalent to the following in terms of the
population means of the treatments.

H0 : μ1 = μ2 = · · · = μt

Ha : at least two of the means are not equal (10.3)

The appropriate test procedure is derived from the analysis of variance table
in Table 10.3. The value under the F column A

S2 is, when H0 is true, dis-
tributed as an F distribution with (t−1) and t(r−1) degrees of freedom. This
value can be compared with the tabulated F value with the corresponding
pairs of degrees of freedom at a specified α level (Table 4 in the Appendix).

10.2 Example 10.1

In an experiment to compare melon variates, six plots of each of four varieties
were grown, the plots being allotted to varieties in a completely random
manner, and the results are given below in Table 10.4.

Total for all observations = 643.69 = G. Here r = 6, t = 4 and rt = 24.

CF = (643.93)2/24 = 17264.034

Total variation (SS) = 2629.23 + 8472.09 + 2434.12 + 5387.73 − CF

= 1659.1303

Alternatively, this could be computed as,

Table 10.4 Results of the experiment

Varieties

A B C D

25.12 40.25 18.30 28.05
17.25 35.25 22.60 28.55
26.42 31.98 25.90 33.20
16.08 36.52 15.05 31.68
22.15 43.32 11.42 30.32
15.92 37.10 23.68 27.58∑

y 122.94 224.42 116.95 179.38∑
y2 2629.23 8472.09 2434.12 5387.73

Mean ȳ 20.49 37.40 19.49 29.90
Variance (S2

i ) 22.04 15.61 30.91 4.97
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25.122 + 17.252 + · · · + 27.582 − CF = 18, 923.1643 − CF

= 1659.1303

Treatment SS =
122.942

6
+

224.422

6
+

116.952

6
+

179.382

6
− CF

= 1291.4771

Note that the divisor 6 comes about because each sum in the
∑

y unit comes
from six observations. The error SS is obtained by subtraction as:

Error SS (SSE) = Total SS − Treatment SS = 367.66

The complete analysis of variance table for the data is presented in Table 10.5.

Table 10.5 Analysis of variance table

Source d.f. SS MS F

Between varieties 3 1291.477 430.492 23.4179
Error 20 367.655 18.383 = (S2)
Total 23 1659.130

The estimated standard error of a variety mean is
√

S2

r
=

√
18.383

6
= 1.7504.

The estimated standard error of a difference between two variety means based
on r1 and r2 observations is

√
S2

r1
+

S2

r2
or

√
2S2

r
if r1 = r2 = r.

Hence in our example where all treatments are equally replicated, this
becomes,

√
2S2

r
=

√
2 × 18.383

6
= 2.4754 (10.4)

The standard error in (10.4) is based on 20 d.f. (the error d.f.).
We can therefore present the results as follows:

Variety Mean yield

A 20.5
B 37.4
C 19.5
D 29.9
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For an overall test of whether the varieties give different yields, we cross-
check the computed F value of 23.42 with an F distribution with 3 and 20
degrees of freedom. At α = 0.01, the tabulated F value is 3.10, and there is
therefore strong evidence that there are real differences in yielding abilities
between the varieties.

Without further knowledge about the four varieties, the making of partic-
ular comparisons between pairs of varieties is rather dangerous. However it is
clear that B is the best variety and that D is probably better than A and C.

10.2.1 Students’ t Test

In order to compare any two treatment means say μ1 and μ2 respectively, we
need to compute the following:

t∗ =
ȳ1 − ȳ2√

2S2

r

(10.5)

and compare with the tabulated t value with the error degrees of freedom.
Thus in our example above, the value of t for the comparison between
A and D is,

t∗ =
29.9 − 20.5

2.48
=

9.4
2.48

= 3.79

which is significant since the 1 % significance level for t on 20 d.f. is 2.852
from Appendix Table 2.

Alternatively, we could have obtained

t.01(20 d.f.) ×
√

2S2

r
= 2.85 × 2.48 = 7.068

In the foregoing, tα/2 (20 d.f.) ×
√

2S2

r
is called the least significance dif-

ference (LSD). And our hypothesis is rejected whenever |(ȳi − ȳj)| is greater
than the LSD for all i �= j.

An immediate consequence of the above t test is that, in order to determine
the best variety, we need to have made comparisons on all possible pairs of
treatment means (AB, AC, AD, BC, BD, and CD) that is six possible pairs of
means, where for equally replicated experiments, the difference for each pair
of means is compared with the LSD. However, it has been recognized that
if several t tests were performed, the probability that at least one of these
is apparently significant is greater than 0.05. If the t tests are independent,
this probability is 0.23 for five tests, 0.40 for ten tests and 0.64 for 20 tests.
The implication here is that with five comparisons for instance, the level
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of significance is no longer 5 % but 23 % (inadvertently high!). Conclusions
therefore arrived at will certainly be erroneous and these observations lead
to the problem that is commonly referred to as Multiple Comparison.

10.3 Multiple Comparisons of Means

Among several methods suggested for combating the problem of multiple
comparison, three methods are mostly favored by biologists and investiga-
tors in agriculture. These are described in this section; the first of these is
Duncan’s Multiple Range test.

10.3.1 Duncan’s Multiple Range Test

Instead of making all comparisons in relation to a single significance difference
(LSD) as in the t test, the size of the LSD is adjusted depending upon whether
the two means being compared are adjacent or whether one or more other
means fall between those being compared.

To apply Duncan’s multiple range test for equal sample sizes, we first
compute:

Least Significance Ranges = LSR = Kr

√
S2

r

where the K values are obtained from Duncan’s table of significant ranges
(Appendix Tables 7 and 8).

For the data in our example, the standard error of a mean is
√

S2

6 = 1.75.
From Duncan’s table with 20 d.f. and α = 0.05, we obtain readings (K ) for
the different ranges of mean (r) to be compared. The values are

r = 2 K = 2.95

r = 3 K = 3.10

r = 4 K = 3.18

The least significant ranges are thus for

r = 2 R2 = 2.95 × 1.75 = 5.160

r = 3 R3 = 3.10 × 1.75 = 5.425

r = 4 R4 = 3.18 × 1.75 = 5.750.

To test the differences between the various means, we next rank the means
from the smallest to the largest resulting in,

ȲC = 19.5, ȲA = 20.5, ȲD = 29.9, ȲB = 37.4.
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The comparisons would yield

B vs. C = 37.4 − 19.5 = 17.9 > 5.75 (R4)

B vs. A = 37.4 − 20.5 = 16.9 > 5.43 (R3)

B vs. D = 37.4 − 29.9 = 7.5 > 5.16 (R2)

D vs. C = 29.9 − 19.5 = 10.4 > 5.43 (R3)

D vs. A = 29.9 − 20.5 = 9.4 > 5.16 (R2)

A vs. C = 20.5 − 19.5 = 1.0 < 5.16 (R2)

From the above analysis, it can be concluded that there are significant
differences between all pairs of means except A and C

Results of Duncan’s Multiple Range Test
ȲA ȲC ȲD ȲB

20.5 19.5 29.9 37.4

It is obvious that variety B is the best of all the other treatments. To prevent
contradictions, no differences between a pair of means are considered signif-
icant if the means involved fall between two other means that do not differ
significantly.

10.3.2 Tukey’s Test

Here we compute:

Significance Difference (SD) = qr ×
√

S2

r
(10.6)

where the needed qr value is obtained from tables of significant studentized
ranges (two tailed, Appendix Table 6). Thus for our example, r = 4, α = 0.05,

and
√

S2

r = 1.75; hence q4(20d.f.) = 3.96 where r = 4 is the number of means
to be compared. Now SD = 1.75×3.96 = 6.93. In testing differences between
the various means, in all instances, if the difference between any two means
is larger than the SD = 6.93, then the means are assumed to be significantly
different. The results from this test are presented in Table 10.6. Note that
this procedure was earlier introduced in Chap. 6.

10.3.3 Scheffé’s Test

Scheffé’s test is similar to Tukey in that the same significant difference is
also computed. The only difference is that the Scheffé’s test makes use of F
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tables. It is also more stringent than the Tukey test. Thus the probability of
type I error is lower.

To use this test, we compute,

SD =
√

(t − 1) F(t−1,E d.f.) ×
√

2S2

r

Where t is the number of treatments and E is the error degrees of freedom.

For our data in Table 10.4,
√

2S2

r = 2.48 and F(3,20) at α = 0.05 = 3.10,
hence,

SD =
√

(4 − 1)F(3,20) ×
√

2S2

r
=

√
3 × 3.10 × 2.48 = 7.56

Table 10.6 Summary of results for the three methods when applied to our example

Comparison Difference Tukey Scheffé Duncan

B vs. C 17.9 SG SG SG
B vs. A 16.9 SG SG SG
B vs. D 7.5 SG NS SG*
D vs. C 10.4 SG SG SG
D vs. A 9.4 SG SG SG
A vs. C 1.0 NS NS NS

6.93 7.56

where

SG − Significant and

NS − Not significant

While the Tukey and Duncan tests produced significant difference between
varieties B and D, the Scheffé test indicates that these are not significantly
different.

Other tests that have been employed in multiple comparison problems are
the Newman–Keuls’ and Dunnett’s procedures which are not the subject of
discussion in this text. It must be noted however that the comparisons to
be studied should be selected in advance of any analysis of the data—indeed
before conducting the experiment. The analysis of variance for the data in
Table 10.4 is carried out in MINITAB in two ways. The first consists of
reading the data into four columns C1–C4. This produces the ANOVA table,
table of means, and individual 100(1−α)% confidence intervals but does not
do pairwise comparisons. The results are presented below.
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MTB > PRINT C1-C4

Data Display
Row A B C D

1 25.12 40.25 18.30 28.05
2 17.25 35.25 22.60 28.55
3 26.42 31.98 25.90 33.20
4 16.08 36.52 15.05 31.68
5 22.15 43.32 11.42 30.32
6 15.92 37.10 23.68 27.58

MTB > AOVOneway ’A’ ’B’ ’C’ ’D’.

One-way ANOVA: A, B, C, D

Analysis of Variance
Source DF SS MS F P
Factor 3 1291.5 430.5 23.42 0.000
Error 20 367.7 18.4
Total 23 1659.1

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev --------+---------+---------+--------
A 6 20.490 4.694 (----*----)
B 6 37.403 3.950 (----*-----)
C 6 19.492 5.560 (----*----)
D 6 29.897 2.230 (-----*----)

--------+---------+---------+--------
Pooled StDev = 4.288 21.0 28.0 35.0

The ANOVA table results agree with those presented in Table 10.5. We
present an alternative way for the analysis in MINITAB. Here, we have read
in the varieties in one column (C1) and the yield in another column (C2).
The analysis of variance is then implemented with the request for Fisher’s
LSD and Tukey’s Test. Again the results are presented in the following:

MTB > print c1-c2

Data Display

Row VART YIELD

1 A 25.12
2 A 17.25
3 A 26.42
4 A 16.08
5 A 22.15
6 A 15.92
7 B 40.25
8 B 35.25
9 B 31.98
10 B 36.52
11 B 43.32
12 B 37.10
13 C 18.30
14 C 22.60
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15 C 25.90
16 C 15.05
17 C 11.42
18 C 23.68
19 D 28.05
20 D 28.55
21 D 33.20
22 D 31.68
23 D 30.32
24 D 27.58

MTB > Oneway ’YIELD’ ’VART’;
SUBC> Tukey 5;
SUBC> Fisher 5;
SUBC> MCB 5 +1.

One-way ANOVA: YIELD versus VART

Source DF SS MS F P
VART 3 1291.5 430.5 23.42 0.000
Error 20 367.7 18.4

Total 23 1659.1

S = 4.288 R-Sq = 77.84% R-Sq(adj) = 74.52%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -------+---------+---------+---------+--
A 6 20.490 4.694 (----*----)
B 6 37.403 3.950 (----*-----)
C 6 19.492 5.560 (----*----)
D 6 29.897 2.230 (-----*----)

-------+---------+---------+---------+--
21.0 28.0 35.0 42.0

Pooled StDev = 4.288

Grouping Information Using Tukey Method

VART N Mean Grouping
B 6 37.403 A
D 6 29.897 B
A 6 20.490 C
C 6 19.492 C

Means that do not share a letter are significantly different.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of VART

Individual confidence level = 98.89%
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VART = A subtracted from:

VART Lower Center Upper -------+---------+---------+---------+--
B 9.982 16.913 23.845 (---*----)
C -7.930 -0.998 5.933 (---*----)
D 2.475 9.407 16.338 (---*----)

-------+---------+---------+---------+--
-15 0 15 30

VART = B subtracted from:

VART Lower Center Upper -------+---------+---------+---------+--
C -24.843 -17.912 -10.980 (----*----)
D -14.438 -7.507 -0.575 (----*----)

-------+---------+---------+---------+--
-15 0 15 30

VART = C subtracted from:

VART Lower Center Upper -------+---------+---------+---------+--
D 3.474 10.405 17.336 (----*----)

-------+---------+---------+---------+--
-15 0 15 30

For the four varieties A, B, C, and D, there are
(4
2

)
= 6 pairwise comparisons.

MINITAB does these by computing the confidence interval for two means,
(μ1 − μ2) and check whether the interval includes zero. If zero is included,
then we would fail to reject H0. Otherwise, the two means are significantly
different. In the above results from the Tukey’s test, only A and C are not sig-
nificantly different from one another, which agrees with our result displayed
in Table 10.6.

Similarly, the results from Fisher’s LSD test are also presented below.

Grouping Information Using Fisher Method

VART N Mean Grouping
B 6 37.403 A
D 6 29.897 B
A 6 20.490 C
C 6 19.492 C

Means that do not share a letter are significantly different.

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons among Levels of VART

Simultaneous confidence level = 80.83%

VART = A subtracted from:

VART Lower Center Upper ---------+---------+---------+---------+
B 11.750 16.913 22.077 (---*---)
C -6.162 -0.998 4.165 (---*---)
D 4.243 9.407 14.570 (---*---)

---------+---------+---------+---------+
-12 0 12 24
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VART = B subtracted from:

VART Lower Center Upper ---------+---------+---------+---------+
C -23.075 -17.912 -12.748 (---*---)
D -12.670 -7.507 -2.343 (----*---)

---------+---------+---------+---------+
-12 0 12 24

VART = C subtracted from:

VART Lower Center Upper ---------+---------+---------+---------+
D 5.241 10.405 15.569 (----*---)

---------+---------+---------+---------+
-12 0 12 24

Here again, only the pair A and C are found not to be significant as the
computed interval (−4.165, 6.162) again includes zero. This result is again
consistent with our earlier results presented in Table 10.6.

10.4 The Unbalanced Case

In some single-factor experiments, the number of observations (replications)
taken on each treatment may be different. We then say that the design is
unbalanced. The analysis of variance described above may still be used, but
slight modifications must be made in the SS formula. We illustrate these
modifications with an example below.

10.4.1 Example 10.2

Three fertilizers A, B, and C were applied to 15 plots chosen at random in a
field of strawberries such that fertilizer A is applied to 4 plots, B to 6 plots
and C to 5 plots. The total crop yields (lbs) (coded) by these plots over the
entire season were recorded and are presented in Table 10.7.

Table 10.7 Yields from application of three fertilizers on a field of strawberries

Fertilizer Yields Total

A 4, 7, 6, 6 23
B 5, 1, 3, 5, 3, 4 21
C 8, 6, 8, 9, 5 36

80

10.4.2 Analysis

The CF is computed as: CF = 802

15 = 426.67 and, (That is after Total SS =
65.33).

The Analysis of variance Table for the data in Table 10.7 is presented in
Table 10.8.

Total SS = 42 + 72 + · · · + 52 − 802

15
= 65.33
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Treatment SS =
232

4
+

212

6
+

362

5
− 802

15
= 38.283

Table 10.8 Analysis of variance table for the data in Table 10.7

Source d.f. SS MS F

Fertilizers
(treatments) 2 38.28 19.14 8.49

Error 12 27.05 2.254 = S2

Total 14 65.33

Standard error for comparing treatment A with treatment B is given by
√

S2

4
+

S2

6
= 0.9691

and B with C is given by
√

S2

6
+

S2

5
= 0.9091.

Note that these are no longer

√
2S2

r
since r1 �= r2 �= r3. The analysis is

implemented in MINITAB with the following results. We have only employed
Tukey’s method in this example.

MTB > PRINT C1-C2

Data Display
Row FERT YIELD

1 A 4
2 A 7
3 A 6
4 A 6
5 B 5
6 B 1
7 B 3
8 B 5
9 B 3
10 B 4
11 C 8
12 C 6
13 C 8
14 C 9
15 C 5

MTB > Oneway ’YIELD’ ’FERT’;
SUBC> Tukey 5.

One-way ANOVA: YIELD versus FERT
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B 6 3.500 1.517
346.17.2005C

1.501=veDtSdelooP

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0206

Critical value = 3.77

Intervals for (column level mean) - (row level mean)

A B

B -0.334
4.834

1.235 -1.276 
C -4.135 -6.124

Analysis of Variance for YIELD
Source DF SS MS F P
FERT 2 38.28 19.14 8.49 0.005
Error 12 27.05 2.25
Total 14 65.33

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev
A 4 5.750 1.258

(------*------)
----------+---------+---------+------

4.0 6.0 8.0

(-------*-------)
(------*-----)

----------+---------+---------+------

Results from Tukey’s test indicate that both A & B and A & C are not
significant. These are represented in terms of the population means in the
following table.

μB μA μC
3.50 5.75 7.20

However, Tukey’s test also shows that B and C are significant. This represents
a contradiction. As mentioned earlier, in this example, we would be at great
pains to say that there are significant differences in the three fertilizers means
even though the overall F value of 8.49 with a p value of 0.005 indicates
significance. In this case at least, the results are inconclusive and we either
go and take more replications or we could conduct some other partitioning
of the treatments SS as in the next section.

10.5 Tests on Individual Treatment Means

The hypotheses of interest in the analysis of variance table are of the form
for t treatments

H0 : μ1 = μ2 = μ3 = · · · = μt

Ha : at least two of these are unequal
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Suppose in conducting such an hypotheses, the null hypothesis is rejected;
there are then significant differences between the treatment means, but
exactly which treatments differ is not specified. In this situation, further
comparisons between groups of treatment means may be useful. However,
with t treatments, we can make at most t−1 comparisons, that is, the treat-
ments degree of freedom in the analysis of variance. Any attempt to make
more than this number of comparisons will result in the earlier problem of
multiple comparisons with its attendant problems.

For example, if t = 5, this means that we can make at most (5 − 1) = 4
comparisons in order to arrive at our conclusion. In practice, one can make a
total of

(5
2

)
= 10 paired comparisons with this set of treatments. Our problem

therefore is on how to choose these four comparisons in such a way that at
the end of the analysis and comparisons, we would have been able to solve
the problem posed above.

In Example 10.1, for instance, suppose our hypothesis is of the form

H0 : μB = μD or μ2 = μ4

Ha : μB �= μD or μ2 �= μ4

Where A, B, C, D are represented respectively by 1–4. This hypothesis can
be tested by investigating an appropriate linear combination of population
means or treatment totals. Here we would prefer to use the population means,
namely:

L1 : μ2 − μ4 = 0

If the hypothesis had been for instance of the form:

H0 : μ1 + μ3 = μ2 + μ4

H1 : μ1 + μ3 �= μ2 + μ4

this implies that the linear combination is now

L2 : μ1 + μ3 − μ2 − μ4 = 0.

In general, and as previously discussed in Chap. 6, the comparison of treat-
ment means of interest will imply a linear combination of treatment means
such as

C =
t∑

i=1

ciμi (10.7)

with the restriction that
t∑

i=1

ci = 0. Such linear combinations are called

contrasts. In L1 for instance, c1 = 1, c2 = −1, and hence
∑

ci = 0. Similarly,
in L2, we have, c1 = 1, c2 = −1, c3 = 1, and c4 = −1. Hence again,

∑
ci = 0.

Thus, both L1 and L2 are therefore contrasts by definition.
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The sum of squares (SS) for any contrast is computed as,

SSC =
(
∑

ciYi+)2

r
∑

c2
i

i = 1, 2, · · · , t (10.8)

and has a single degree of freedom. Further, if we have two contrasts with
coefficients {ci} and {di}, then the contrasts are said to be orthogonal if

t∑

i=1

cidi = 0 (10.9)

For t treatments, a set of t− 1 orthogonal contrasts will partition the SS due
to treatments into t − 1 independent single degree of freedom components.
Tests performed on orthogonal contrasts are independent.

Example 10.3

A botanist observes that the stalks of primroses are of different lengths in
different habitats. He has three habitats, h0, h1, and h2 and random samples
of plants from each habitat is drawn, and grown in good potting loam in posts
in a glass house under uniform moisture and other environmental conditions.
The experiment was conducted using a one-way classification design with six
replications per habitat. His results are shown in Table 10.9.

10.5.1 Analysis

Our analysis starts by computing the necessary SSs for the ANOVA table.
Here, r = 6 and t = 3, therefore rt = 18 and the CF is calculated as CF =
15892

18 = 140, 273.39. Hence,

Table 10.9 Mean length of primrose stalks from three habitats. (Source: Ridgman,
Experimentation in Biology, p. 55)

Habitats Length (mm) Total

h0 (dry) 83 82 98 76 66 64 469
h1 (wet) 106 96 107 94 87 92 582
h2 (wet) 81 93 79 98 111 76 538

Total 1598

Total SS = 832 + 822 + · · · + 762 − CF

= 143, 367 − 140, 273.39 = 3093.61

Treatment SS =
4692

6
+

5822

6
+

5382

6
− CF

= 141, 354.83 − 140, 273.39 = 1081.44

Note the division by 6 because 469, 582, and 538 each is the sum of six
observations. Therefore,
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Error SS = Total SS − Treatment SS

= 3094 − 1081.44

= 2012.17

Table 10.10 Analysis of variance table for the data in Table 10.9

Source d.f. SS MS F

Habitats 2 1081.44 540.72 4.03
Error 15 2012.17 134.14
Total 17 3093.61

F(2,15) at α = 0.05 equals = 3.68. Since the computed F value of 4.03 is
greater than 3.68, hence we conclude that significant differences exist between
the means of the habitats.

In order to ascertain which of the habitats is best, we need to make further
comparisons. Since we have only 2 d.f. for this, this means that we could make
at most only two comparisons. The comparisons chosen by Ridgman are:

(i) Comparison between the two wet habitats, viz., h1 versus h2, that is,

H0 : μ1 = μ2

Ha : μ1 �= μ2

and,
(ii) The mean of the dry habitat compared with the average means of the

wet habits. That is, h0 versus h1 + h2, which translates to the following
hypotheses:

H0 : μ0 =
μ1 + μ2

2
, that is

2μ0 = μ1 + μ2 versus

Ha : μ0 �= μ1 + μ2

2
, that is

2μ0 �= μ1 + μ2

H0 under (i) can be rewritten as L1 = μ1 − μ2 = 0. Similarly that of (ii) can
be written as L2 = 2μ0 − μ1 − μ2 = 0.

These can be conveniently written in terms of the population means in the
form:

μ0 μ1 μ2
∑

c2i

(i) 0 1 −1 2
(ii) 2 −1 −1 6

We note that for (i)
∑

ci = 0+1− 1 = 0, that is, L1 is a contrast by (10.7).

Similarly for (ii)
∑

di = 2 − 1 − 1 = 0, that is, L2 is also a contrast.
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Further for contrasts L1 and L2, we have
∑

cidi = 0 × 2 + 1(−1) + (−1)(−1) = 0 − 1 + 1 = 0.

That is, the two contrasts are orthogonal.

10.5.2 Computing Contrasts SS

To calculate the two contrasts SS, we first tabulate the totals for each
treatment as in the Table below:

Treatments
totals 469 582 538

∑
c2i

(i) 0 1 −1 2
(ii) 2 −1 −1 6

The partitioning of the habitat SS can be obtained using the expression
in (10.8). For hypothesis (i), we have from the above table of totals,

{(+1) × 582 + (−1) × 538}2

2 × 6
=

(−44)2

12
= 161.33.

For hypothesis (ii), we also have

{(+2) × 469 + (−1) × 582 + (−1) × 538}2

6 × 6
=

(−182)2

36
= 920.1

Since the two contrasts are orthogonal, we see that 161.33 + 920.1 = 1081.4.
This equals the original habitat SS given earlier in Table 10.10.

Alternative Calculations

The SS calculated above can alternatively be calculated as follows:

For Hypothesis (i)

The SS =
5822

6
+

5382

6
− (582 + 538)2

12
=

628, 168
6

− 11202

12
= 161.33

For Hypothesis (ii) Hypothesis (ii) has 2μ0 = μ1+μ2. We would therefore,
first add the totals for habitats h1 and h2, to give 582 + 538 = 1120 and we
note that this total comes from 12 observations. Hence, the SS is computed as:

The SS =
4692

6
+

11202

12
− (469 + 1120)2

18

=
219, 961

6
+

1, 254, 400
12

− 2, 524, 921
18

= 920.11
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Table 10.11 Revised analysis of variance table

Source d.f. SS MS F

h0 Vs h2 1 161.33 161.33 1.20
(within wet habitats)

h0 Vs h1 + h2 1 920.11 920.11 6.87
(wet Vs. dry habitats)

Error 15 2012.17 134.14
Total 17 3093.61

which agrees with the earlier results. A new analysis of variance is given
below in Table 10.11. F(1,15) at α = 0.05 equals = 4.54. With our calculated
value of 6.87 for the second contrast we can say that if the null hypothesis
that there is no difference in stalk length between primroses obtained from
wet and dry habitats is true, we have witnessed a very unlikely event and
would prefer to believe that there is a difference. With an F value of 1.20 for
the other contrast, however, we would be quite content to go on believing
that within the wet area the primroses form a homogeneous population.

Yet another method for conducting the above hypothesis is to go via stu-
dents’ t test. For hypothesis (i), we first obtain the standard error (S.E.) for
comparing the means of h1 and h2, viz.

Required S.E. =

√
2S2

r
=

√
2 × 134.14

6
= 6.683

Hence,

t =
h̄1 − h̄2

6.683
=

(582)
6 − (538)

6

6.683
=

97 − 89.67
6.683

= 1.097

Compare with Student’s t distribution t15 at α = 0.05 = 2.131 (two-tailed
value). Since 1.097 < 2.132, therefore, we would fail to reject H0. That is,
there are no significant differences between the means of the two wet habitats.

For hypothesis (ii), S.E. is computed as

S.E. =

√
S2

6
+

S2

12
=

√
134.14

6
+

134.14
12

= 5.788

Since the mean of h0 comes from 6 observations and the mean of h1 + h2
comes from 12 observations. That is,

h̄0 =
469
6

= 78.17

(h0 + h2) =
582 + 538

12
= 93.33.

Hence,

t =
93.33 − 78.17

5.788
= 2.619
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Since 2.619 > 2.132 at α = 0.05, we conclude that H0 is not tenable and
conclude that there is sufficient evidence to conclude that there are significant
differences between the combined mean of the wet habitats and the mean of
the dry habitat.

It is worth mentioning here that the computed values of t obtained un-
der (i) and (ii) will, when squared equal the original F values obtained in
Table 10.11. That is,

1.0972 = 1.20 and

2.6192 = 6.86

which shows that in general td =
√

F(1,d).
Of course we could have saved ourselves a lot of calculations by utilizing the

capability of MINITAB to compute the two contrasts SS. We can accomplish
this as follows:

(a) First code the levels of habitat based on the contrasts in (i) and (ii) and
designate them as hypothesis H1 and H2, respectively.

(b) Now run an ANOVA analysis indicating H1 and H2 to be covariates.
(c) The resulting analysis, presented below would give us the similar results

obtained earlier from our manual calculations—except that this is more
reliably accurate.

(d) The results again indicate, based on the calculated p values that we would
strongly reject H2.

MTB > Code (0) 0 (1) 1 (2) -1 ’Hab’ c3
MTB > Code (0) 2 (1) -1 (2) -1 ’Hab’ c4
MTB > GLM ’length’ = H1 H2;
SUBC> Covariates ’H1’ ’H2’;
SUBC> Brief 2 .

General Linear Model: length versus

Factor Type Levels Values

Analysis of Variance for length, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
H1 1 161.3 161.3 161.3 1.20 0.290
H2 1 920.1 920.1 920.1 6.86 0.019
Error 15 2012.2 2012.2 134.1
Total 17 3093.6

S = 11.5821 R-Sq = 34.96% R-Sq(adj) = 26.28%

Term Coef SE Coef T P
Constant 88.278 2.730 32.34 0.000
H1 3.667 3.343 1.10 0.290
H2 -5.056 -2.62 0.0191.930
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10.6 Design with a Quantitative Treatment

The single treatment factor investigated in the one-way classification analysis
of variance can be either quantitative or qualitative. A quantitative factor is
one whose level can be associated with points in a numerical scale, such as
temperature, pressure, time, and dosage levels. Qualitative factors, on the
other hand, are factors in which the levels cannot be arranged in order of
magnitude.

In so far as the initial design and analysis of the experiment are concerned,
both types of factors are treated identically. However, in experiments relating
to quantitative factors, we are interested not only in the differences in the
treatment means, but also in determining if the treatment means are function-
ally related to the ordered values of the factor. In general, we are interested
in finding a mathematical relationship between the factor and the response.
The general procedure for this problem, we will recall, is called regression
analysis. However, if the levels of the factor are equally spaced, a simple
procedure using orthogonal polynomial coefficients may be readily employed.

The procedure consists of computing a linear, quadratic, cubic, quartic,
quintic, etc. effect and SS for the factor. Each effect has a single degree of
freedom contrast and they are computed from the treatment totals at the t
factor levels as in the earlier section, and the corresponding sum of squares is
found from Eq. (10.8). It is possible to extract polynomial effects up through
order t − 1 if there are t factor levels used in the experiment.

Example 10.6.1

The data in Table 10.12 relate to the outcome of an experiment with four
equally spaced dosages of a drug.

Table 10.12 Effects of four equally spaced dosage levels

T1 T2 T3 T4

0 5 10 15

10 9 14 17
8 13 13 15
12 12 11 14
11 10 12 18
9 11 15 16∑

Yi 50 55 65 80
Ȳi 10 11 13 16

The dependent variable Y is a physiological measure that presumably is influ-
enced by the amount of the drug administered. Table 10.12 gives the outcome
of the experiment in which r = 5 subjects were assigned at random to each
of the four dosages of the drugs. The initial analysis of the data is presented
in Table 10.13
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10.6.1 Analysis of Variance for the Experiment

Total SS = 102 + 82 + · · · + 162 − 2502

20
= 145.00

Treatments SS =
502

5
+

552

5
+

652

5
+

802

5
− 2502

20
= 105.00

Error SS = Total SS − Treatments SS = 40.00

Table 10.13 ANOVA table for the data in Table 10.12
Source d.f. SS MS F

Treatments 3 105 35 14.0
Error 16 40 2.5
Total 19 145

Pooled StDev = 1.581 10.0 12.5 15.0 17.5

Tukey’s pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0113

Critical value = 4.05

Intervals for (column level mean) - (row level mean)

0 5 10

MTB > set c1
DATA> 5(0:15/5)
DATA> end
MTB > set c2
DATA> 10 9 14 17 8 13 13 15
DATA> 12 12 11 14 11 10 12 18
DATA> 9 11 15 16
DATA> end
MTB > Oneway ’y’ ’dosage’;
SUBC> Tukey 5.

One-way ANOVA: y versus dosage

Analysis of Variance for y
Source DF SS MS F P
dosage 3 105.00 35.00 14.00 0.000
Error 16 40.00 2.50
Total 19 145.00

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev
0 5 10.000 1.581
5 5 11.000 1.581
10 5 13.000 1.581

1.581000.61551

------+---------+---------+---------+
(-----*-----)

(-----*-----)
(-----*-----)

(-----*-----)
------+---------+---------+---------+
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5 -3.864
1.864

10 -5.864 -4.864
-0.136 0.864

15 -8.864 -7.864 -5.864
-3.136 -2.136 -0.136

The graph of Y means against the values of X-dosage levels is given in
Fig. 10.1.

Fig. 10.1 Plot of Y means against the dosage values

With t treatments, we can fit a (t − 1)th degree polynomial. In our example
t = 4, hence the appropriate model will be of the form,

Ȳi = β0 + β1X1 + β2X
2
1 + β3X

3
1 + ε (10.10)

10.6.2 Use of Orthogonal Polynomials

Table 6 in the Appendix gives the coefficients for orthogonal polynomials for
up to t = 10. For our case, t = 4, and since we have 3 degrees of freedom for
treatments, the three components are appropriately called linear, quadratic,
and cubic. From this table the required coefficients are
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Linear −3 −1 1 3
Quadratic 1 −1 −1 1

Cubic −1 3 −3 1

Note that each component forms a contrast as
∑

ci = 0. Further, each pairs
of contrasts are orthogonal. Thus the three contrasts are said to be mutually
or pairwise orthogonal. This means that the treatment SS can be partitioned
into these three components. That is,

Treatment SS = Linear SS + Quadratic SS + Cubic SS.

For the above example, the treatment totals are

50 55 65 80

Hence, the sum of squares is calculated as follows:

The Linear SS =
{(−3) × 50 + (−1) × 55 + (+1) × 65 + (+3) × 80}2

5 × 20
=

1002

100
= 100.0

Quadratic SS =
{(+1) × 50 + (−1) × 55 + (−1) × 65 + (+1) × 80}2

5 × 4
=

102

20
= 5.0

Cubic SS =
{(−1) × 50 + (+3) × 55 + (−3) × 65 + (+1) × 80}2

5 × 20
=

02

100
= 0.

Of course we could have obtained the Cubic SS from the fact that

Cubic SS = Treatment SS − Linear SS + Quadratic SS = 105 − 105 = 0.

Our revised analysis of variance table is given in Table 10.13 and F(1,16) at
α = 0.05 is 4.49. Hence, only the linear component is significant, that is the
response can be fitted by an equation of the form

Yi = β0 + β1X1 (10.11)

Table 10.14 Revised analysis of variance table

Source d.f. SS MS F

Linear 1 100 100 40
Quadratic 1 5 5 2.0

Cubic 1 0 0 0
Error 16 40 25
Total 19 145

rather than Eq. (10.10). The method of construction of these equations had
earlier been discussed in Chap. 6.



380 10 The Completely Randomized Design

A third degree polynomial applied to the data in Table 10.12 using
MINITAB gives the following results. Again, we see that the SS due to the
quadratic and cubic are not significant, indicating that a simple linear re-
gression model will be adequate for these data. A simple regression model
applied to the data gives the following estimated equation

ŷi = 9.5 + 0.4Xi

With R2 = 0.69 and Xi = (0, 15) in the above-estimated equation.
MTB > %Fitline ’y’ ’dosage’;
SUBC> Poly 3;
SUBC> Confidence 95.0.

Analysis of Variance

Source DF SS MS F P
Regression 3 105 35.0 14 0.000
Error 16 40 2.5
Total 19 145

Source DF Seq SS F P
Linear 1 100 40.000 0.000
Quadratic 1 5 2.125 0.163
Cubic 1 0 0.000 1.000

Again, the MINITAB implementation of the above is presented below.
Again we recode the levels of dosage based on the orthogonal coefficients
and declaring the components designated L, Q, and C as covariates as in
the previous example.

MTB > Code (0) -3 (5) -1 (10) 1 (15) 3 ’dosage’ c3
MTB > Code (0) 1 (5) -1 (10) -1 (15) 1 ’dosage’ c4
MTB > Code (0) -1 (5) 3 (10) -3 (15) 1 ’dosage’ c5

MTB > print c1-c5

Data Display

Row dosage y L Q C
1 0 10 -3 1 -1
2 5 9 -1 -1 3
3 10 14 1 -1 -3
4 15 17 3 1 1
5 0 8 -3 1 -1
6 5 13 -1 -1 3
7 10 13 1 -1 -3
8 15 15 3 1 1
9 0 12 -3 1 -1
10 5 12 -1 -1 3
11 10 11 1 -1 -3
12 15 14 3 1 1
13 0 11 -3 1 -1
14 5 10 -1 -1 3
15 10 12 1 -1 -3
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Ter m Coef SE Coef T P
Constant 12.5000 0.3536 35.36 0.000
L 1.0000 0.1581 6.32 0.000
Q 0.5000 0.3536 1.41 0.176
C 0.0000 0.1581 0.00 1.000

MTB > Fitline ’y’ ’dosage’;
SUBC> Confidence 95.0.

Regression Analysis: y versus dosage

The regression equation is
y = 9.500 + 0.4000 dosage

S = 1.58114 R-Sq = 69.0% R-Sq(adj) = 67.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 100 100.0 40.00 0.000
Error 18 45 2.5
Total 19 145

16 15 18 3 1 1
17 0 9 -3 1 -1
18 5 11 -1 -1 3
19 10 15 1 -1 -3
20 15 16 3 1 1

MTB > GLM ’y’ = L Q ’C’;
SUBC> Covariates ’L’ ’Q’ ’C’;
SUBC> Brief 2 .

General Linear Model: y versus

Factor Type Levels Values

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
L 1 100.000 100.000 100.000 40.00 0.000
Q 1 5.000 5.000 5.000 2.00 0.176
C 1 0.000 0.000 0.000 0.00 1.000
Error 16 40.000 40.000 2.500
Total 19 145.000

S = 1.58114 R-Sq = 72.41% R-Sq(adj) = 67.24%
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The fitted regression line is also implemented in MINITAB in the bottom
part of the above MINITAB partial output.

Example 10.6.2

This example is taken from the book by D.C. Montgomery (1982),“Design
and Analysis of Experiments.”

The tensile strength of synthetic fiber used to make cloth for men’s shirts
is of interest to a manufacturer. It is suspected that strength is affected by
the percentage of cotton in the fiber. Five levels of cotton percentage are of
interest: 15, 20, 25, 30, and 35 %. Five observations are taken at each level
of cotton percentage. Table 10.15 gives the data for this experiment.

Table 10.15 Tensile strength of synthetic fiber at five levels

Percentage
of Observations Total

carbon 1 2 3 4 5 Yi

15 7 7 15 11 9 49
20 12 17 12 18 18 77
25 14 18 18 19 19 88
30 19 25 22 19 23 108
35 7 10 11 15 11 54

Total 376

Analysis of Variance for the Experiment

CF = 3762/25

Total SS = 72 + 122 + 142 + · · · + 112 − CF

= 636.96

Treatment SS =
492

5
+

772

5
+

882

5
+

1082

5
+

542

5
− CF

= 475.76

The results of our analysis are presented in Table 10.16.

Table 10.16 ANOVA table for the data in Table 10.15
Source d.f. SS MS F

Treatments 4 475.75 118.94 14.76
Error 20 161.20 8.06
Total 24 636.96
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F(4,20) at α = 0.05 = 2.87. Thus we would reject H0 and conclude that the
percentage of cotton in the fiber significantly affects the strength.

In order to partition the treatment SS into four components (corresponding
to the treatments degree of freedom), we may use the fact that the percentage
of cotton are equally spaced. This enables us to make use of table of coeffi-
cients of orthogonal polynomials. From Table 6 in the Appendix we have for
d.f. = (5 − 1) = 4. Those coefficients are,

Linear −2 −1 0 1 2
Quadratic 2 −1 −2 −1 2

Cubic −1 2 0 −2 1
Quartic 1 −4 6 −4 1

Like in the previous section, we note here too that each component forms
a contrast and the four contrasts are mutually orthogonal. Since they are
orthogonal, the addition of the sum of squares for the four components will
equal the original treatment SS. The coefficients and treatment totals are
displayed in Table 10.17

Table 10.17 Calculation of components SS

Treatment Totals 49 77 88 108 54
Linear −2 −1 0 1 2

Quadratic 2 −1 −2 −1 2
Cubic −1 2 0 −2 1

Quartic 1 −4 6 −4 1

Linear SS =
{(−2) × 49 + (−1) × 77 + (0) × 88 + (+1) × 108 + (+2) × 54}2

5 × 10
= 33.62

Similarly, the Quadratic SS = 343.21 and the Cubic SS = 64.98, while the
Quartic SS = 33.95. The revised analysis of variance therefore is as shown
in Table 10.18.

Table 10.18 Revised analysis of variance table

Source d.f. SS MS F

Percentage cotton 4 475.76 118.94 14.76
Linear 1 33.62 33.62 4.17

Quadratic 1 343.21 343.21 42.58
Cubic 1 64.98 64.98 8.06

Quartic 1 33.95 33.95 4.21
Error 20 161.20 8.06
Total 24 636.96

From Table 10.18, we note that F(1,20) at α = 0.05 = 4.35 and therefore
both the quadratic and cubic effects of cotton percentage are statistically
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significant. We will therefore fit a cubic polynomial of the form

Yi = β0 + β1x + β2x
2 + β3x

3 + ε (10.12)

to the data. The MINITAB implementation for the model above is pre-
sented below with the estimated regression function plotted in Fig. 10.2.
The regression equation is,

ŷi = 62.6114 − 9.0114x + 0.4814x2 − 0.0076x3

MTB > %Fitline ’y’ ’x’;
SUBC> Poly 3;
SUBC> Confidence 95.0;
SUBC> Coef ’COEF1’.

Polynomial Regression Analysis: y versus x

The regression equation is
y = 62.6114 - 9.01143 x
+ 0.481429 x**2 - 0.0076 x**3

S = 3.04839 R-Sq = 69.4 % R-Sq(adj) = 65.0 %

Analysis of Variance

Source DF SS MS F P
Regression 3 441.814 147.271 15.8482 0.000
Error 21 195.146 9.293
Total 24 636.960

Source DF Seq SS F P
Linear 1 33.620 1.2816 0.269
Quadratic 1 343.214 29.0272 0.000
Cubic 1 64.980 6.9926 0.015

MTB > set c1
DATA> 5(15:35/5)
DATA> end
MTB > set c2
DATA> 7 12 14 19 7 7 17 18 25 10
DATA> 15 12 18 22 11 11 18 19 19 15
DATA> 9 18 19 23 11
DATA> end
MTB > Name c3 = ’COEF1’
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Fig. 10.2 The plotted cubic polynomial to the data in Table 10.15

A MINITAB computation of the components SS is again accomplished by first
coding the levels of ‘pct’ the percentage of fiber and then run the appropriate
ANOVA model, declaring the components as covariates. The following partial
results are obtained.

11 15 15 -2 2 -1 1
12 20 12 -1 -1 2 -4
13 25 18 0 -2 0 6
14 30 22 1 -1 -2 -4
15 35 11 2 1
16 15 11 -2 2 -1 1
17 20 18 -1 -1 2 -4

2 1

Results for: fiber.MTW

MTB > Code (15) -2 (20) -1 (25) 0 (30) 1 (35) 2 ’pct’ c3
MTB > Code (15) 2 (20) -1 (25) -2 (30) -1 (35) 2 ’pct’ c4
MTB > Code (15) -1 (20) 2 (25) 0 (30) -2 (35) 1 ’pct’ c5
MTB > Code (15) 1 (20) -4 (25) 6 (30) -4 (35) 1 ’pct’ c6

MTB > print c1-c6

Data Display

Row pct y L Q C Qt
1 15 7 -2 2 -1 1
2 20 12 -1 -1 2 -4
3 25 14 0 -2 0 6
4 30 19 1 -1 -2 -4
5 35 7 2 2 1 1
6 15 7 -2 2 -1 1
7 20 17 -1 -1 2 -4
8 25 18 0 -2 0 6
9 30 25 1 -1 -2 -4
10 35 10 2 2 1 1
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18 25 19 0 6
19 30 19 1 -1 -2 -4
20 35 15 2 1
21 15 9 -2 2 -1 1
22 20 18 -1 -1 2 -4
23 25 19 0 6
24 30 23 1 -1 -2 -4
25 35 11 2

-2 0

2 1

-2 0

2 1 1

MTB > GLM ’y’ = L Q ’C’ Qt;
SUBC> Covariates ’L’ ’Q’ ’C’ ’Qt’;
SUBC> Brief 2 .

General Linear Model: y versus

Factor Type Levels Values

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
L 1 33.62 33.62 33.62 4.17 0.055
Q 1 343.21 343.21 343.21 42.58 0.000
C 1 64.98 64.98 64.98 8.06 0.010
Qt 1 33.95 33.95 33.95 4.21 0.053
Error 20 161.20 161.20 8.06
Total 24 636.96

MTB > Fitline ’y’ ’pct’;
SUBC> Poly 3;
SUBC> Confidence 95.0.

Polynomial Regression Analysis: y versus pct

The regression equation is
y = 62.61 - 9.011 pct + 0.4814 pct**2 - 0.007600 pct**3

10.7 Model Adequacy Checking

The following are some of the assumptions underlying the analysis of variance
for the CRD.

(i) The observations in the experiment are adequately represented by the
model in (10.1), that is,

Yij = μ + τi + εij .

(ii) The errors, εij , are normally and independently distributed.
(iii) These errors all have a constant variance σ2.

Generally, we can never be sure if all these assumptions are satisfied when
we handle data daily and slight departures from these assumptions are of
little concern. The assumption of homogeneity of variance ceases to be valid
if some treatments are erratic in their effects or if data follow a non-normal,
skewed distribution, as for instance, in the skewed distributions, the variance
tends to be a function of the mean. We would expect that inferences not be
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made until these assumptions have been validated. Violations of the above
assumptions can be investigated by investigating the residuals, which we
recall from Chap. 7 are defined as:

eij = yij − ŷij

where ŷij is the fitted values under the model and yij is the observed data
for treatment i in replicate j.

For the analysis of the data in Table 10.4, the normality test 10.3 using the
Anderson–Darling test gives a p value of 0.696 and is based on the following
hypotheses,

H0 : The eij are normally distributed

Ha : The eij are not normally distributed

The p value of 0.696 indicates that we would fail to reject H0, hence the
normality assumption is satisfied (Fig. 10.3).

Fig. 10.3 Normality test and plot for the residuals for the data in Table 10.4

The test of homogeneity of variances of the residuals for each treatments
(varieties) is conducted with Bartlett’s test of homogeneity of variances dis-
cussed earlier in Chap. 6. This test is sometimes referred to as Bartlett’s Test
of Homogeneity of Variances. The implication of the constant variance as-
sumption under the assumptions above is that the treatments all came from
the same population. In essence what this means is that the treatments are
assumed to have equal variances. If this were not so, then all the inferences,
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t tests etc., are invalid. It is therefore important to check whether this as-
sumption of equality of variances or homogeneity is invalidated, and in order
to do this, we use Bartlett’s test of homogeneity. We are interested in testing
the hypotheses:

H0 :σ2
1 = σ2

2 = · · · = σ2
t

Ha :σ2
1 �= σ2

2 �= · · · �= σ2
t

where t is the number of treatments. To implement Bartlett’s test, we perform
the following calculations for the data in Table 10.4.

χ2
0 = log 10

q

c
= 2.3026

q

c

where

q = (N − t) log S2
p −

t∑

i=1

(ni − 1) log s2
i

c = 1 +
1

3(t − 1)

[∑
(ni − 1)−1 − (N − t)−1

]

S2
p =

1
N − t

t∑

i=1

(ni − 1)s2
i .

N =
t∑

i=1

ni and s2
i is the sample variance of the ith treatment. We would

therefore reject H0, whenever χ2
0 > χ2

α,t−1.

10.7.1 Example 10.62

In example 10.1, we have four treatments: A, B, C, and D. From Table 10.4,
we have s2

A = 22.04, s2
B = 15.61, s2

C = 30.91, and s2
D = 4.97.

Here t = 4, n1 = n2 = n3 = n4 = 6 (number of replications). Hence,
N =
∑

ni = 4 × 6 = 24 and therefore,

S2
p =

(6 − 1)s2
1 + (6 − 1)s2

2 + (6 − 1)s2
3 + (6 − 1)s2

4

24 − 4

=
5(s2

1 + s2
2 + s2

3 + s2
4)

20

=
5 × 73.53

20
= 18.38.
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Note that the value of S2
P = 18.33 is the same as the error mean square value

in Table 10.5. In general, S2
P = error mean square. Hence,

q = (24 − 4) log 18.38 − (5 log 22.04 + 5 log 15.61 + 5 log 30.91 + 5 log 4.97)

= 58.225 − 5(10.87527)

= 3.849

That is, q = 3.849.

c = 1 +
1

3 × (4 − 1)

[(
1
5

+
1
5

+
1
5

+
1
5

)

− 1
20

]

= 1 +
1
9

(
4
5

− 1
20

)

= 1.083.

Hence,

X2
0 = 2.3026

(
3.849
1.083

)

= 3.5540.

But, χ2
0.01,3 = 11.34, and since 3.5540 
 11.34, we would therefore fail to

reject H0 and conclude that indeed, the treatment populations all have the
same variance at the 1 % significance point. Bartlett’s test is implemented in
MINITAB with the following statements and modified output.

Lower Sigma Upper N Factor Levels

2.60661 4.69442 6 A
2.19354 3.95050 6 B
3.08726 5.56005 6 C
1.23816 2.22989

15.5997
13.1276
18.4762
7.4100 6 D

Bartlett’s Test (normal distribution)

Test Statistic: 3.554
P-Value : 0.314

MTB > Name c3 = ’STDV1’ c4 = ’VARS1’
MTB > %Vartest ’YIELD’ ’VARIETY’;
SUBC> Confidence 95.0;
SUBC> Stdevs ’STDV1’;
SUBC> Variances ’VARS1’.
Executing from file: C:\PROGRAM FILES\MTBWIN\MACROS\Vartest.MAC

Test for Equal Variances

Response YIELD
Factors VARIETY
ConfLvl 95.0000

Bonferroni confidence intervals for standard deviations
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Levene’s Test (any continuous distribution)

Test Statistic: 2.090
P-Value : 0.134

Test for Equal Variances: YIELD vs VARIETY

The calculated statistic under Bartlett’s test agrees exactly with our result
of 3.554. The p value indicates that we would fail to reject H0. It should be
pointed out here that Bartlett’s test is often used when it is assumed that
the errors follow a normal distribution. When this is not the case, Levene’s
test is most appropriate.

10.8 Exercises

1. The results of trials of three varieties of gooseberry bush in eight regions
are as follows:

Region 1 2 3 4 5 6 7 8
Control variety 21 24 20 14 15 18 17 28
New variety A 24 28 17 18 25 19 25 28
New variety B 22 28 21 16 17 17 19 30

The two purposes of the trial were:

(i) To compare the two new varieties.
(ii) To examine the average differences between the control variety and

the new varieties.

Complete the analysis of variance below, explaining how the calculations
already made are obtained and write a report of your conclusion, giving
S.E.s and confidence intervals when appropriate.

Source SS d.f. MS F

Regions 400 7 3.98
Varieties 46 2 23

Error 81 14 5.79
Total 527 23
CF 1088

2. The amount of carbon used in the manufacture of steel is assumed to have
an effect on the tensile strength of the steel. Given the following data,
perform the appropriate analysis and interpret your results. The tensile
strengths of six specimens of steel for each of three different percentages
of carbon are shown (The data have been coded for easy calculation).
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Percentage of carbon
0.10 0.20 0.30

23 42 47
36 26 43
31 47 43
33 34 39
31 37 42
31 31 35

3. It is suspected that five filling machines in a certain plant are fillings cans
to different levels. Random samples of the production from each machine
were taken with the following results. Analyse the data and state your
conclusions.

Machine

A B C D E

11.95 12.18 12.16 12.25 12.10
12.00 12.11 12.15 12.30 12.04
12.25 12.08 12.10 12.02
12.10 12.01

4. The data below relate to the activated lives of 20 batteries. There are
four treatments investigated in the experiment. Carry out an analysis of
variance and use either Duncan’s, Scheffé, or Tukey tests to draw your
conclusions.

Activated lives of twenty thermal batteries resulting from experiment

Treatment

1 2 3 4 Total

73 74 68 71
73 74 69 71

Observations (sec) 73 74 69 72
75 74 69 72
75 75 70 73

Total 369 371 345 359 1444
Number of observations 5 5 5 5 20

Mean 73.5 74.2 69.0 71.8 72.2

5. Consider the data below. Carry out a full analysis of variance and parti-
tion your treatments SS into linear, quadratic, and cubic models. What
would be the appropriate response model?
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Treatment levels

10 lb/ 20 lb/ 30 lb/ 40 lb/
Obs. plot plot plot plot

1 25 36 35 43
2 29 37 39 40
3 31 29 31 36
4 30 40 42 48
5 27 33 44 47

6. A biologist wished to study the effects of ethanol on sleep time. A sample
of 20 rats matched for age and other characteristics, was selected, and
each rat was given an oral injection having a particular concentration of
ethanol per body weight. The rapid eye movement (REM) sleep time for
each rat was then recorded for a 24-h period. The data are presented
below (Source: Devore and Peck 2001).

Treatment Observations on rats

levels 1 2 3 4 5

0 (control) 88.6 73.2 91.4 68.0 75.2
1 g/kg 63.0 53.9 69.2 50.1 71.5
2 g/kg 44.9 59.5 40.2 56.3 38.7
4 g/kg 31.0 39.6 45.3 25.2 22.7

Carry out a full analysis of variance and partition your treatments SS into
the following components (i) control vs. others (ii) between others. Also
conduct a multiple comparison procedure on the means of the treatment
levels.

7. Nineteen pigs were divided into four groups, and each group was given a
different feed. The data are weights, in kilograms. The data are presented
below (Source: Zar 2000).

Feed1 Feed2 Feed3 Feed4

60.8 68.7 102.6 87.9
57.0 67.7 102.1 84.2
65.0 74.0 100.2 83.1
58.6 66.3 96.5 85.7
61.7 69.8 90.3
---------------------------------

---------------------------------

Carry out an analysis of variance on the above data and test the necessary
assumptions. Which feed would you recommend?

8. The MINITAB printout for an experiment utilizing a completely random-
ized design is shown below:
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Analysis of variance table
Source d.f. SS MS F

Factor 3 57,258 19,086 14.80
Error 34 43,836 1289
Total 37 101,094

a. How many treatments are involved in the experiment? What is the
total sample size?

b. State the null and alternative hypotheses for this experiment and con-
duct a test of the null hypothesis that the treatment means are equal.
Use α = .01.

c. What assumptions must be satisfied before the analysis above can be
valid? (State these only).

d. Are the treatments equally replicated?

9. The partially completed ANOVA table given here is for a one-way
experiment:

Source d.f. SS MS F

Treatments – 2193.442 548.3605 –
Error – – –
Total 29 2437.572

a. Give the number of levels for the treatments.
b. How many observations were collected for each treatment level?
c. Complete the ANOVA table.
d. Test to determine whether the treatment means differ. Use α = .10.

10. The partially completed ANOVA table for an experiment is shown below:

Source d.f. SS MS F

Treatments – 2236.44 – –
Error 11 – 546.96
Total 14 –

(a) Complete the above table. What design was employed?
(b) How many treatments are involved in the experiment? What is the

total sample size?
(c) Conduct a test of the null hypothesis that the treatment means are

equal. Use α = .05.
(d) Are the treatments equally replicated in this experiment (with

reasons)?

11. The following data from Steel and Torrie (1960) give the results of effects
of inbreeding on plant weight in red clover. The results are the aver-
age weight in grams of non-inbred (F1) lines and three groups of inbred
families arranged in increasing order of inbreeding.
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F1: 254 263 266 249 337 277 289 244 265
Slightly inbred: 236 191 209 252 212 224
F2: 253 192 141 160 229 221 150 215 232 234 193 188
F3: 173 164 183 138 146 125 178 199 170 177 172 198
----------------------------------------------------------------

Carry out the analysis of variance for the data and draw your conclusions.
12. Four strains of rats were selectively bred for differences in blood pressure

in order to determine the possible effect of heredity on blood pressure
A, B, C, and D are given in the table below:

Strains

A B C D

84 87 89 89
82 84 94 86
86 84 92 88
89 92 91 93
85 88 92 85
85 89 91 85
92 92 95 89
80 89 89 90
79 87 87 90
83 88 91 93

(i) Analyze the above data for statistical differences among the means.
(ii) If a statistically significant F value is found, then test for statistically

significant differences among all possible pairs of means.
(iii) Test for the underlying assumptions for your analysis to be valid.
(iv) From a biological point of view, which strain(s) would you recom-

mend?



Chapter 11
The Randomized Complete Block Design

11.1 Introduction

If it is possible to group the experimental material or conditions in a manner
such that the variation among experimental units within a group is less than
the variation would have without grouping, this should be done in order
to compare treatments on the less variable material or under less variable
conditions.

Example 11.1.1

The first illustrative example in the introduction of Chap. 10 illustrates this
point. Suppose, the twenty rats in that example were selected differently.
Suppose, 20 rats are selected, four from each of five litters ensuring that
we have four rats each from the same mother. Again, suppose that the four
nutritional treatments were A, B, C, and D. The four rats in each litter would
be randomly allocated to a treatment. One possible arrangement could be:

Rats and treatment numbers
Litter Rat Trt Rat Trt Rat Trt Rat Trt

no no no no no no no no no

1 1 B 2 A 3 D 4 C
2 5 B 6 C 7 A 8 D
3 9 C 10 A 11 B 12 D
4 13 A 14 B 15 D 16 C
5 17 D 18 C 19 A 20 B

In the above arrangement, the rats have been stratified into five groups (lit-
ters). The rats could be housed in different cages which will be kept under
nearly identical conditions or rats in each litter could be exposed to the
same environment, resulting in possibly five different environments. Then,
the observed variation among the five groups is composed of variation among
litters + variation among environments. However, as far as the treatments
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are concerned they are compared within a group, and the variation among
treatment means is less than it would have been without grouping by litter +
environment.

Example 11.1.2

Suppose, for the second example, the interest is in the effectiveness of nine
different herbicides in eliminating dandelions from home lawns, and that eight
different lawns have been selected for the investigation; each of the eight lawns
are relatively uniform in topography, grass cover, and dandelion infestation.
Each lawn forms a relatively uniform block of land. (It was for situations
like this that the randomized complete block design was first described by
Sir Ronald A Fisher, and hence, the name). Each of the eight blocks, or
lawns, are divided into nine experimental units each of which are as alike
as possible. Then, the nine treatments are randomly allocated to the nine
experimental units in each of the eight blocks or lawns. With the numbers
1, 2, · · · , 9 representing the treatments, one possible arrangement could be:

Block 3 Block 4
3 5 9 1 6 8 2 4 7 7 5 2 4 6 8 1 9 3

Block 5 Block 6
8 1 2 6 3 7 5 9 4 9 3 6 4 7 1 5 8 2

Block 7 Block 8
3 7 9 6 1 4 5 2 8 4 1 9 2 7 5 3 8 6

Block 1 Block 2
1 9 2 7 6 8 3 4 5 6 2 8 1 3 4 9 5 7

The characteristic to be measured is number of dandelions in the plot or
experimental unit at monthly intervals up to one year after spraying with
the herbicide. In the above experiment, there could be considerable variation
in dandelion count among the eight lawns, but this would not affect the
differences between treatments, since all treatments are compared with each
other on each of the 8 lawns.

If the treatments had been randomly allocated to the 8 × 9 = 72 experi-
mental units, or plots, and if the lawns differed in dandelion count, all eight
plots of some treatments could by chance have been allocated to lawns with
low dandelion count, and other treatments to lawns with a high dandelion
count. The comparison between treatments would then be mixed up with
differences between lawns. In the randomized block design, each of the nine
treatments appears on each of the eight lawns. Given that the lawns differ in
dandelion count this arrangements makes the differences between mean less
variable than if there had been no stratification.
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The count at a given time t (t = 0, 1, 2, · · · , 12 months) may be expressed
as the sum of the block and treatments, and an error term minus the overall
mean, thus:

Count = Block mean + Treatment mean − Overall mean + Error.

The sum of all counts for two given treatments, say 1 and 2, in the above
described experiment is:

trt. one sum + sum of 8 block means − 8 (overall mean) + 8 error terms
trt. two sum + sum of 8 block means − 8 (overall mean) + 8 other error

terms.

The difference of two treatment means is therefore:

1
2
(treatment one sum − treatment two sum + 8 error terms − 8 other error

terms)

This equals:

Ȳ1+ − Ȳ2+ +
1
8

8∑

j=1

(e1j − e2j).

Here, we may note that the effects of the overall mean, and of the block
means do not appear in the difference between two treatment means. Since
we are comparing herbicide treatments for effectiveness of dandelion control
the differences between means are the statistics of interest. All designs having
this property for all treatments in the experiment are known as orthogonal
designs.

In another form, we may write the observation or count as:

Ȳ + (Ȳi+ − Ȳ ) + (Ȳ+j − Ȳ ) + error

where, the treatment mean minus overall mean is defined to be the treatment
effect, and the block mean minus the overall mean is defined to be the block
effect. Note that the observation is assumed to be the sum of four terms. This
need not be the case, as some observations may be the product of these four
terms rather than the sum. The appropriateness of the assumption of additive
effects must be questioned for every type of experiment. If the observation is
the product of terms instead of the sum, one could use another function of
the observations to obtain additive effects. In this case, one could transform
the observation to log of observation. Thus, if

Y = abcd, then

log Y = log a + log b + log c + log d.

One might wonder why additivity of effects is desirable. The answer is simply
that life is easier, i.e., computations are simpler, on the additive scale.
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In field and laboratory experimentation on biological material the random-
ized complete block design is probably the most frequently used experimental
design. Ease of construction, lay-out, and analysis of result contributes heav-
ily to its frequent use. Also, for the above type of experiment it has been
found to be considerably more efficient than the completely randomized de-
sign. Summarization of several hundred experiments over a period of years
for field experiments indicates that nine blocks or replicates of a randomized
complete block design are approximately equivalent to ten replicates of a com-
pletely randomized design in attaining the same degree of variability among
treatment means. For this kind of experimentation the blocking, or stratifi-
cation into blocks almost halves the variability among treatment means.The
value of blocking material is dependent upon the type of experimental mate-
rial under consideration. Each type of experimentation requires evaluation.
One can always block as a form of insurance against heterogeneity, but over-
stratification results in some disadvantages which will be discussed later. As
a rule, one should use the minimum blocking to control the heterogeneity, or
the suspected heterogeneity present in the experimental material.

11.1.1 Why RCBD?

Blocking is an experimental technique to control the variability of the experi-
mental material. On the fields however, variability takes different form: either
soil heterogeneity or sloping. Thus before blocking is considered, an appro-
priate and effective blocking technique must be designed. Gomez and Gomez
(1984) have described most appropriately, what must be done to arrive at
this decision. These are:

• The recognition of the sources of variability to be used for blocking
• The selection of the block shape and orientation

Gomez and Gomez further stated that: ‘an ideal source of variation to use as
the basis for blocking is one that is large, and highly predicate.’ They give
the following examples:

(i) Soil heterogeneity, in a fertilizer or variety trial where yield data is the
primary character of interest

(ii) Direction of insect migration in an insecticide trial where insect infesta-
tion is the primary character of interest

(iii) Slope of the field in a study of plant reaction to water stress.

Once the sources of blocking are identified, the next thing will be to consider
the appropriate size, and shape of the block to maximize the variability
among the blocks. Gomez and Gomez gave the following guidelines which
are reproduced here with the permission of the authors.
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1. When the gradient is uni-directional (i.e., there is only one gradient), use
long and narrow blocks, and orient these blocks so that their length is
perpendicular to the direction of the gradient.

2. When fertility gradients occur in two directions with one gradient much
stronger than the other one, ignore the weaker gradient and follow the
preceding guideline for the case of unidirectional gradient.

3. When the fertility gradient occurs in both directions with both gradients
equally strong and perpendicular to each other, choose one of the following
alternatives:

• Use blocks that are as square as possible.
• Use long and narrow blocks with their length perpendicular to the di-

rection of one gradient (as in (1) above) and use the covariance analysis
technique in Chap. 13 to take care of the other gradient.

• Use the Latin square design discussed in the next chapter to take care
of variability in both directions.

4. When the pattern of variability is not predictable, blocks should be as
square as possible.

As an example, suppose we wish to conduct a variety trial, but the gradient
of the field is from left to right as indicated in the following figure. If we
have eight treatments and we wish to employ three replicates or blocks, then
blocks are laid out so that they are perpendicular to the direction of the
gradient. If we number the treatments 1 to 8, then we can readily randomize
these treatments within blocks as shown below. Note that we generated a
random digit from an integer distribution [1, 8]. We generated 30 random
numbers for each block. We then go down each replicate until we have come
across all the treatments 1–8. We will skip a random number if it is already
used. In this way, we can randomly allocate all the treatments to each block.

6 3

5 7

2 4

8 1

Block I

4 6

2 8

7 5

1 3

Block II

7 1

6 4

2 8

6 3

Block III

Direction of Gradient
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MTB > Base 10000.
MTB > Random 30 c1 c2 c3;
SUBC> Integer 1 8.
MTB > print c1-c3

Data Display

REP REP
Row REP I II III

1 6 4 7
2 3 6 1
3 6 4 6
4 5 2 4
5 6 8 1
6 6 7 1
7 7 5 7
8 2 8 2
9 4 1 4
10 8 8 8
11 1 3 7
12 7 3 6
13 3 1 2
14 6 2 1
15 1 4 8
16 7 8 3
17 3 7 5
18 2 2 6
19 6 1 5
20 7 8 3
21 7 5 3
22 3 3 7
23 5 3 4
24 7 4 6
25 3 1 8
26 7 3 5
27 1 6 5
28 5 1 5
29 1 2 4
30 7 2 8

On the other hand, if variability is from North to South, then the blocks
will be laid out as in the following—being perpendicular to the direction of
the gradient.

6 5 2 8

3 7 4 1

Block I

6 5 2 8

3 7 4 1

Block II

6 5 2 8

3 7 4 1

Block III

Example 11.1.3

As an illustration of the above consideration, suppose that one was interested
in only three herbicides instead of nine, and that the size of the experimental
unit was fixed, i.e., the lawns were divided into nine plots or experimental
units instead of three. One could use blocks of size three and have three
blocks per lawn.
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Block 1 Block 2 Block 3

1 2 3 4 5 6 7 8 9
Lawn I

Block 4 Block 5 Block 6

1 4 7 2 5 8 3 6 9
Lawn II

Block 7 Block 8 Block 9

1 5 9 7 2 6 4 8 3
Lawn III

Block 10 Block 11 Block 12

1 8 6 4 2 9 7 5 3
Lawn IV

In the above layout for instance, the lawns have been stratified into three
blocks of size three each. The nine treatments are then allocated according
to the above layout. We notice that each treatment is replicated four times
in the whole experiment, there are 12 blocks each of k = 3 plots. Each pair
of treatments occur together only once in the entire layout. Further, the
lawns each constitute a single replicate of the experiment. The above design
is called a balanced incomplete block design and we shall discuss this design
further in Chap. 16.

However, if the nine experimental units in each lawn were relatively homo-
geneous, one could use a completely randomized design of three treatments,
and three replicates on each treatment for each lawn. This would result in
minimum blocking which would control the lawn to lawn variability. It should
be pointed out, however, that we will probably divide the lawn into thirds
and have larger experimental units.

Example 11.1.4

To illustrate another variation of the randomized complete block design, sup-
pose that only five herbicides were of interest, four of these (1, 2, 3, and 4)
were of more interest than the fifth one (no. 5), and suppose that nine exper-
imental units were available on each lawn. Treatments 1, 2, 3, and 4 could be
included twice on each lawn and treatment 5 could be put in once. If we let
number 1 and 6 be the plots for treatment 1, numbers 2 and 7 be the plots
for treatment 2, numbers 3 and 8 be the plots for treatment 3, numbers 4
and 9 be the plots for treatment 4, and number 5 be the plot for treatment
5 in the original design, then the arrangements in the first three blocks or
lawns would be:



402 11 The Randomized Complete Block Design

Block 3
3 5 4 1 1 3 2 4 2

Block 1
1 4 2 2 1 3 3 4 5

Block 2
1 2 3 1 3 4 4 5 2

Both of the above two variations on the randomized complete block design are
orthogonal designs i.e., differences between treatment means do not involve
the block effects. As long as the orthogonality of block and treatment effects
is a property of the design, the analysis remains simple.

11.1.2 Model and Analysis for the RCBD

From the discussion in Sect. 11.1, it is clear that a randomized complete
block design (RCBD) is one in which there are t treatments per block, and the
treatments are randomized within each of the blocks. Each block contains the
same number of experimental units which are assumed to be homogeneous.
Usually, homogeneity within each block is achieved through matching (e.g.,
by age group among human subjects, litters among animals, neighboring
plots of land, or sets of similar trees etc).

The statistical model for this design is:

Yij = μ + ti + bj + eij i = 1, 2, · · · , t, j = 1, 2, · · · , b (11.1)

where, i is the general mean, ti is the effect of the i-th treatment, bj is the
effect of the j-th block and eij is the random error term. Both treatments
and blocks are viewed as being fixed factors.

A typical table of observations for a randomized block design experiment
is given in Table 11.11.

Table 11.1 Typical table of observations

Blocks
Treatments 1 2 3 · · · b Total

1 Y11 Y12 Y13 · · · Y1b Y1+
2 Y21 Y22 Y23 · · · Y2b Y2+
3 Y31 Y32 Y33 · · · Y3b Y3+
...

...
...

...
...

...
...

t Yt1 Yt2 Yt3 · · · Ytb Yt+

Total Y+1 Y+2 Y+3 · · · Y+b Y++ = G
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11.1.3 Analysis

There are a total of bt experimental units (plots) in this experiment. Each
treatment is said to be replicated b times.

Correction factor C.F =
Y 2

++

bt
=

G2

bt

Total SS = Y 2
11 + Y 2

12 + · · · + Y 2
bt − CF based on (bt-1) d.f.

Blocks SS =
Y 2

+1

t
+

Y 2
+2

t
+ · · · +

Y 2
+b

t
− CF based on (b-1) d.f.

Treatments SS =
Y 2

1+

b
+

Y 2
2+

b
+ · · · +

Y 2
t+

b
− CF based on (t-1) d.f.

The Error SS is obtained by subtraction as:

Error SS (SSE) = Total SS − Treatments SS

The Error SS is based on (bt − 1) − (b − 1) − (t − 1) = (b − 1)(t − 1) degrees
of freedom. The structure of the analysis of variance table is presented in
Table 11.2.

Table 11.2 Analysis of variance for a randomized block design

Source d.f. SS MS F

Blocks b − 1

∑
Y 2
+j

t
−

Y 2
++

bt
SS Blocks

b−1

Treatments t − 1
∑

Y 2
i+

b
−

Y 2
++

bt
SS Trt.

t−1 = A A/S2

Error (b − 1)(t − 1) SSE SSE
(b−1)(t−1) = S2

Total bt − 1
∑

i

∑
j

Y 2
ij −

Y 2
++

bt

Example 11.2.1

The data in Table 11.3 relates to a trial of four strains of Galliapolli Wheat
(Snedecor Page 16) laid out in five randomized blocks of four treatments
each.

Table 11.3 Yields of wheat in (lb/plot)

Blocks Strain
Strains 1 2 3 4 5 total

A 32.3 34.0 34.3 35.0 36.5 172.1
B 33.3 33.0 36.3 36.8 34.5 173.9
C 30.8 34.3 35.3 32.3 35.8 168.5
D 29.3 26.0 29.8 28.0 28.8 141.9

Total 125.7 127.3 135.7 132.1 135.6 656.4
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C.F. =
656.42

20
= 21543.048

Total SS = 32.32 + 33.32 + · · · + 28.82 − CF = 182.17

Blocks SS =
125.72

4
+

127.32

4
+ · · · +

135.62

4
− CF = 21.46

Treatments SS =
172.12

5
+

173.92

5
+ · · · +

141.92

5
− CF = 134.45

Hence the Error SS = Total SS−Blocks SS−Treatments SS
= 182.17− 21.46 − 134.45 = 26.26 on (5 − 1)(4 − 1) = 12 degrees of
freedom. The analysis of variance table for the data in Table 11.3 is
presented in Table 11.4.

F(3,12) at α = 0.05 = 3.49. Since 20.48 > 3.49, we thus conclude that there
is strong evidence that there are significant differences between the yielding
abilities of the four strains. Standard error for comparing any two treatment
means

S.E =

√
2S2

b
=

√
2 × 2.188

5
= 0.936

Notice that the number of blocks in the experiment correspond to the number
of replicates of the treatments, viz., five in this study. The above analysis is
implemented in MINITAB with the following together with a corresponding
output.

Table 11.4 Analysis of variance table for the experiment

Source d.f. SS MS F

Blocks 4 21.46
Treatments 3 134.45 44.817 20.48

Error 12 26.26 2.188
Total 19 182.17

5 A 5 36.5
6 B 1 33.3
7 B 2 33.0
8 B 3 36.3
9 B 4 36.8

MTB > SET C2
DATA> 4(1:5)
DATA> END
MTB > SET C3
DATA> 32.3 34.0 34.3 35.0 36.5
DATA> 33.3 33.0 36.3 36.8 34.5
DATA> 30.8 34.3 35.3 32.3 35.8
DATA> 29.3 26.0 29.8 28.0 28.8
DATA> END

Data Display
Row STRAINS BLOCKS YIELD

1 A 1 32.3
2 A 2 34.0
3 A 3 34.3
4 A 4 35.0
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10 B 5 34.5
11 C 1 30.8
12 C 2 34.3
13 C 3 35.3
14 C 4 32.3
15 C 5 35.8
16 D 1 29.3
17 D 2 26.0
18 D 3 29.8
19 D 4 28.0
20 D 5 28.8

MTB > GLM ’YIELD’ = BLOCKS STRAINS;
SUBC> Brief 1 ;
SUBC> Means STRAINS;
SUBC> Pairwise STRAINS;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: YIELD versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1 2 3 4 5
STRAINS fixed 4 A B C D

Analysis of Variance for YIELD, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 4 21.462 21.462 5.365 2.45 0.103
STRAINS 3 134.448 134.448 44.816 20.48 0.000
Error 12 26.262 26.262 2.188
Total 19 182.172

Least Squares Means for YIELD

STRAINS Mean SE Mean
A 34.42 0.6616
B 34.78 0.6616
C 33.70 0.6616
D 28.38 0.6616

Tukey Simultaneous Tests
Response Variable YIELD
All Pairwise Comparisons among Levels of STRAINS

STRAINS = A subtracted from:

Level Difference SE of Adjusted
STRAINS of Means Difference T-Value P-Value
B 0.360 0.9356 0.385 0.9797
C -0.720 0.9356 -0.770 0.8666
D -6.040 0.9356 -6.456 0.0002

STRAINS = B subtracted from:

Level Difference SE of Adjusted
STRAINS of Means Difference T-Value P-Value
C -1.080 0.9356 -1.154 0.6649
D -6.400 0.9356 -6.840 0.0001

STRAINS = C subtracted from:

Level Difference SE of Adjusted
STRAINS of Means Difference T-Value P-Value
D -5.320 0.9356 -5.686 0.0005

The results from Tukey’s pairwise comparison tests indicate that A is sig-
nificantly different from D, so are B and C from D. The other pairs are not
significant. The results of the test are summarized in Table 11.5.
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Table 11.5 Results of the pairwise comparisons

Comparisons A & B A & C A & D B & C B & D C & D

Result * * *

* Significant at α = 0.05 level of significance

The results in Table 11.5 are succinctly displayed in the following table.

μD μC μA μB
28.38 33.70 34.42 34.78

11.1.4 Calculation of the Error SS from Residuals

The following results in Table 11.6 could have been obtained from a random-
ized block experiment with four treatments in each of the three blocks. The
figures were actually chosen to simplify the calculations to be made.

Table 11.6 Results of an hypothetical experiment

Treatments
Blocks A B C D

1 16 14 20 10
2 14 23 25 18
3 15 17 18 14

The analysis of the above data gives the following ANOVA Table.
The error mean square is the amount of random variation among the

results that cannot be explained by differences between blocks and differences
between treatments. To see this, we calculate it in another way.

First, calculate the overall mean, the four treatment and the three block
means. Each of the 12 results are influenced by the block in which they occur,
and the treatment they receive. To remove these effects subtract from each
result the overall mean, the deviation of the appropriate block mean from
the overall mean, and the deviation of the appropriate treatment mean from
the overall mean i.e.,

Result − Overall mean − (Block mean − Overall mean)
− (Treatment mean − Overall mean)

Table 11.7 ANOVA table for in Table 11.6
Source d.f. SS MS

Blocks 2 56 28
Treatments 3 90 30

Error 6 46 7.7
Total 11 192

Correction factor 1 3468
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or more simply

Result − Block mean − Treatment mean + Overall mean.

The results of this is given below in Table 11.8

Blocks Total Means Treatments Total Means

1 60 15 A 45 15
2 80 20 B 54 18
3 64 16 C 63 21

204 17 D 42 14
204 17

Table 11.8 Table of residuals
Blocks A B C D Total

1 + 3 − 2 + 1 − 2 0
2 − 4 + 2 + 1 + 1 0
3 + 1 0 − 2 + 1 0

Total 0 0 0 0 0

where for example + 3 = 16 − 15 − 15 + 17 and the error sum of squares are
calculated as;

Error SS = (+3)2 + (−2)2 + (+1)2 + (−2)2 + (−4)2 + (+2)2 + (+1)2

+ (+1)2 + (0)2 + (−2)2 + (+1)2

= 46

Notice that each block and treatment residuals adds to zero. Those twelve
values in Table 11.8 are called the residuals.It should be noted that this
is not the best way to calculate the error sum of squares but simply to
illustrate where it comes from. The correct way to calculate it is from an
analysis of variance. The analysis of variance is simpler and quicker, and
avoids difficulties with rounding-off errors that would occur with real data.

11.2 Missing Values in a RCB Design

Sometimes an observation in one of the blocks of a randomized block design
may be missing. The reason for these could be:

1. Due to carelessness or error (e.g., in accurate recording of yields or wrong-
ful application of a treatment to a wrong plot). Many times, data are
recorded, whose values are not consistent with common sense or expecta-
tion or with the rest of the data so collected in the experiment. In some
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cases, such an outlier may be a true reflection of true differences in yields
of the treatments but in most cases, these data are often wrongly recorded,
data in this category are of measurement type (such as plant height, seed
weight, or protein content). If we can not correct this anomaly, such a
data value/s should be considered missing.

2. Due to reasons beyond our control such as unavoidable damage such as
pest destruction or damage of a crop in a plot (e.g., stem borers destroying
a plot of planted maize).

3. Due to no or poor germination, or an animal death in an experiment.
4. Other common causes could be excessive water logging in a plot which

ultimately destroyed the plants or destruction by stray grazing cattle.
5. Due to loss of harvested samples because sometimes certain traits of a

crop can only be determined outside the experimental field (where the
original samples were taken). For example, the grain yields of maize/plot
can only be measured after dihusking and threshing. Other examples such
as measuring plant heights, leaf areas, and protein content of a cowpea can
only be measured in a laboratory. In such situations, it is not uncommon,
in spite of best efforts of the researcher to avoid missing values, that some
samples may be missing between the field and the laboratory or in some
cases, completely misplaced. When no measurement of traits from such
missing samples are possible, then such sample/s should be considered
missing.

A missing observation introduces a new problem into the analysis, since treat-
ments are no longer orthogonal to blocks, i.e., every treatment does not occur
in every block. The general approach to missing value problem is an approx-
imate analysis in which the missing observation is estimated, and then the
usual analysis of variance is performed proceeding just as if the missing ob-
servation were real data, with both the error and total degrees of freedom
reduced by one each.

If the plot corresponding to the k-th treatment and the l-th block (Ykl)
is missing, then it can be estimated approximately from the remaining data
from the expression

x0 =
tT

′

k + bB
′

l − G
′

(b − 1)(t − 1)
(11.2)

where, T
′

k is the total for all known yields for plots receiving treatment k,
B

′

l is the sum of all known yields from plots in Block l and G
′

is the sum of
all known yields.

The variance of the mean of a treatment estimate t̂k is given by

Var (t̂k) =
σ2

b

[

1 +
t

(b − 1)(t − 1)

]

(11.3)

The variance of any other treatment mean is still given by
σ2

b
.
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Situations when more than one plot is missing is complicated and the
standard procedure is to use Yates’ algorithm to estimate the missing values.
This will not be described in this text.

11.2.1 Example 11.2.2 Let us consider the data in example 11.1. Sup-
pose the value for strain D in block 5 is ‘missing’. Then without this value,
we have

Strain D total = T
′

D = 113.1

Block 5 total = B
′

5 = 106.8

Grand Total = G
′
= 627.6

Missing value estimate from (11.2) is therefore estimated as,

x0 =
4 × 113.1 + 5 × 106.8 − 627.6

4 × 3
= 29.9

This value of 29.9 compares favorably with the real value of 28.8. This esti-
mated value is entered in the table with the observed values and the analysis
of variance is performed as usual with reduced degrees of freedom in both
the total and error lines.

Including this missing value, the new value will be,

Treatment D Total = 143.0

Block 5 Total = 136.7

Grand Total = 657.5

In Table 11.9 are presented the analysis of variance with the estimated missing
value included.

Table 11.9 ANOVA table for a missing value analysis

Source d.f. SS MS F

Blocks 4 24.08 6.02
Treatments 3 124.86 41.62 17.94

Error 11 25.04 2.32
Total 18 174.48
CF 1 21615.31

Note the new degrees of freedom for Error =(12 − 1) = 11 and for Total
=(19− 1) = 18 since one parameter x0 was already estimated from the data.

A 34.4
B 34.8

Strain means C 33.7
D 28.6
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S.E. for comparing any two means of strains A,B, and/or C is computed as:
√

2S2

b
=

√
2S2

5
=

√
2 × 2.32

5
= 0.96

S.E. for comparing strain D with any other strains from the expression in
(11.3) is calculated as:
√

S2

[
2
b

+
t

b(b − 1)(t − 1)

]

=

√{
S2

5
(2 +

4
4 × 3

}

=

√(
7 × S2

15

)

= 1.04

Both standard errors are based on 11 d.f. A MINITAB implementation of the
missing value problem is implemented in what follows, but first the data are
read in with the particular observation read in with an asterisks indicating to
MINITAB to treat that observation as missing. The analysis is then carried
out as usual.

Data Display

Row STRAINS BLOCKS YIELD

1 A 1 32.3
2 A 2 34.0
3 A 3 34.3
.........................
17 D 2 26.0
18 D 3 29.8
19 D 4 28.0
20 D 5 *

MTB > GLM ’YIELD’ = BLOCKS STRAINS;
SUBC> Brief 1 ;
SUBC> Means STRAINS;
SUBC> Pairwise STRAINS;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: YIELD versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1 2 3 4 5
STRAINS fixed 4 A B C D

Analysis of Variance for YIELD, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 4 39.131 21.967 5.492 2.37 0.117
STRAINS 3 100.494 100.494 33.498 14.43 0.000
Error 11 25.536 25.536 2.321
Total 18 165.161

Least Squares Means for YIELD
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STRAINS Mean SE Mean
A 34.42 0.6814
B 34.78 0.6814
C 33.70 0.6814
D 28.60 0.7868

Tukey Simultaneous Tests
Response Variable YIELD
All Pairwise Comparisons among Levels of STRAINS

STRAINS = A subtracted from:

Level
STRAINS

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

B 0.360 0.9636 0.374 0.9813
C -0.720 0.9636 -0.747 0.8760
D -5.820 1.0408 -5.592 0.0008

STRAINS = B subtracted from:

Level
STRAINS

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

C -1.080 0.9636 -1.121 0.6850
D -6.180 1.0408 -5.938 0.0005

STRAINS = C subtracted from:

Level
STRAINS

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

D -5.100 1.041 -4.900 0.0023

The analysis of variance table produced from MINITAB agrees with the one
presented in Table 11.9, and the standard errors computed also agree with
those computed earlier by hand.

11.2.1 Summary of Results of Analysis

The summary of results again indicate that treatment D is significantly dif-
ferent from each of A, B, and C, while there are no significant differences on
the means of A, B and C at the 0.1 % significance levels. It could therefore be
concluded based on the analysis above that the overall differences among the
strain means were significant at 0.1 %. The differences among the strains A,
B, and C were not significant. Strain D yielded 5.7 lb/plot less than the aver-
age yield of strains A, B, and C i.e., the result can be succinctly summarized
as follows:

34.78 34.42 33.70 28.38
B A C D
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11.3 Partitioning Treatment SS in a RCBD

Example 11.3.1

An experiment to investigate the use of soil fumigants for the control of
eelworm used four blocks of six plots each. Two plots in each blocks were
untreated (control), the other four treatments consisted of two fumigants,
F1, F2 each at two levels, F11 and F12; and F21 and F22. The numbers of
cysts per 100 g of soil were counted and these were given in Table 11.10.

Table 11.10 Number of cysts in 100 g of soil

Blocks
Treatments I II III IV Total

Control C1 86 91 108 76 361
Control C2 141 71 113 47 372

F1 level 1 F11 48 55 108 20 231
F1 level 2 F12 93 42 78 7 220
F2 level 1 F21 64 59 67 33 223
F2 level 2 F22 70 36 102 73 281

Total 502 354 576 256 1688

The initial analysis of variance is calculated in the usual way, and the results
are given in Table 11.11.

Table 11.11 Analysis of variance table for the data in table 11.10

Source d.f. SS MS F

Blocks 3 1,0382 3461
Treatments 5 6066 1213 2.60

Error 15 6871 450
Total 23 2,3319
CF 1 11,8723

The MINITAB implementation of the analysis is presented, together with a
partial output in the following,
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15 4 3 78
16 4 4 7
17 5 1 64
18 5 2 59
19 5 3 67
20 5 4 33
21 6 1 70
22 6 2 36
23 6 3 102
24 6 4 73

MTB > GLM ’COUNT’ = BLOCKS TRT;
SUBC> Brief 1 .

General Linear Model: COUNT versus BLOCKS, TRT

Factor Type Levels Values
BLOCKS fixed 4
TRT fixed 6

1 2 3 4
1 2 3 4 5 6

Analysis of Variance for COUNT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 3 10382.7 10382.7 3460.9 7.56 0.003
TRT 5 6066.3 6066.3 1213.3 2.65 0.066
Error 15 6868.3 6868.3 457.9
Total 23 23317.3

MTB > SET C1
DATA> (1:6)4
DATA> END
MTB > SET C2
DATA> 6(1:4)
DATA> END
MTB > SET C3
DATA> 86 91 108 76 141 71 113 47
DATA> 48 55 108 20 93 42 78 7
DATA> 64 59 67 33 70 36 102 73
DATA> END
MTB > PRINT C1-C3

Data Display
Row TRT BLOCKS COUNT

1 1 1 86
2 1 2 91
3 1 3 108
4 1 4 76
5 2 1 141
6 2 2 71
7 2 3
8 2 4

113
47

9 3 1 48
10 3 2 55
11 3 3 108
12 3 4 20
13 4 1 93
14 4 2 42
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The analysis indicates that there are significant differences in the means of the
six treatments at α = 0.10 level of significance. The treatment sum of squares
can be sub-divided into components corresponding to comparisons of interest.

(i) Comparisons between the average means of the controls and average
means of the the fumigants, which has the null hypothesis and equivalent
accompanying contrast C1 as:

H0 :
(μ1 + μ2)

2
=

(μ3 + μ4 + μ5 + μ6)
4

C1 : = 4μ1 + 4μ2 − 2μ3 − 2μ4 − 2μ5 − 2μ6

Total for the control plots = 733

Total for the fumigant plots = 955

Hence the SS corresponding to this contrast is calculated after as,

SS =
7332

8
+

9552

16
− CF = 5440 on 1 d.f.

(ii) Comparison between the average means of the controls. This is equiva-
lent to the following hypothesis and contrast

H0 : μ1 = μ2

C2 : = μ1 − μ2

SS =
3612

4
+

3722

4
− 7332

8
= 15 on 1 d.f.

(iii) Comparison between the four fumigants.

SS =
2312

4
+

2202

4
+

2232

4
+

2812

4
− 9552

16
= 612 on 3 d.f.

It is obvious that this last sum of squares is so small compared with the
error mean square that any component of the SS must be non-significant.

It would however be possible to subdivide this further as follows:

(a) Comparison between fumigants F1 and F2 which is equivalent to contrast:

H0 :
(μ3 + μ4)

2
=

(μ5 + μ6)
2

C3 : = μ3 + μ4 − μ5 − μ6

SS =
4512

8
+

5042

8
− 9552

16
= 176 on 1 d.f.

(b) Comparison between levels of fumigants F1. Equivalent to the contrast

C4 : μ3 − μ4

SS =
2312

4
+

2202

4
− 4512

8
= 16 on 1 d.f.



11.3 Partitioning Treatment SS in a RCBD 415

(c) Comparison between levels of fumigants F2. Equivalent to the contrast

C5 : μ5 − μ6

SS =
2232

4
+

2812

4
− 5042

8
= 420 on 1 d.f.

Note that the sum of SS for contrasts C3, C4, and C5 add up to 612. Similarly,
the sum SS for the five contrasts add up to 6066, that is the total treatment
SS.

The subdivision of the treatment sum of squares can be summed up in a
second analysis of variance in Table 11.12.

Table 11.12 Second analysis of variance table

Comparisons d.f. SS MS F

Control Vs fumigants 1 5440 5440 11.9
Between controls 1 15 15 0.03
F1 Vs F2 1 176 176 0.38
F11 Vs F12 1 16 16 0.03
F21 Vs F22 1 420 420 0.9
Error 15 6871 458

Clearly the only effect shown is that the fumigants reduce the numbers of
cysts. The different fumigants and different levels do not appear to act dif-
ferentially. The mean number of cysts per 100 g of soil are 91.6 for untreated
soil and 59.7 for treated soil; the difference between the means is 31.9 and

the standard error for this difference is
√

458( 1
8 + 1

16 ) = 9.2.

We can write the five contracts in the form:

Contrasts μ1 μ2 μ3 μ4 μ5 μ6

L1 2 2 − 1 − 1 − 1 − 1
L2 1 − 1 0 0 0 0
L3 0 0 1 1 − 1 − 1
L4 0 0 1 − 1 0 0
L5 0 0 0 0 1 − 1

We see that each pair of contrasts is orthogonal and hence we should not be
surprised that the five contrasts sum of squares add up to the original treat-
ments sum of squares based on 5 d.f. Note that the original F values of 2.60

is the average of the five F values, i.e., 2.6 =
11.9 + 0.03 + 0.38 + 0.03 + 0.9

5
.

To implement the above contrasts in MINITAB, first create the five con-
trasts into C1–C5 as covariates L1–L5 respectively. The covariates are created
as in the program below. Where for L1 for instance, we have 2’s for levels
1 and 2 for treatment and − 1 for the remaining levels. The model is then
fitted by declaring that L1–L5 are covariates in the GLM model statement.
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MTB > SET C6
DATA> 8(0) 8(1) 8(-1)
DATA> END
MTB > SET C7
DATA> 8(0) 4(1) 4(-1) 8(0)
DATA> END
MTB > SET C8
DATA> 16(0) 4(1) 4(-1)
DATA> END
MTB > PRINT C1-C8

Data Display

Row TRT BLOCKS COUNT L1 L2 L3 L4 L5

1 1 1 86 2 1 0 0 0
2 1 2 91 2 1 0 0 0
3 1 3 108 2 1 0 0 0
4 1 4 76 2 1 0 0 0
5 2 1 141 2 -1 0 0 0
6 2 2 71 2 -1 0 0 0
7 2 3 113 2 -1 0 0 0
8 2 4 47 2 -1 0 0 0
9 3 1 48 -1 1 1 1 0
10 3 2 55 -1 1 1 1 0
11 3 3 108 -1 1 1 1 0
12 3 4 20 -1 1 1 1 0
13 4 1 93 -1 1 1 -1 0
14 4 2 42 -1 1 1 -1 0
15 4 3 78 -1 1 1 -1 0
16 4 4 7 -1 1 1 -1 0
17 5 1 64 -1 1 -1 0 1
18 5 2 59 -1 1 -1 0 1
19 5 3 67 -1 1 -1 0 1
20 5 4 33 -1 1 -1 0 1
21 6 1 70 -1 1 -1 0 -1
22 6 2 36 -1 1 -1 0 -1
23 6 3 102 -1 1 -1 0 -1
24 6 4 73 -1 1 -1 0 -1

MTB > GLM ’COUNT’ = BLOCKS ;
SUBC> Covariates ’L1’ ’L2’ ’L3’ ’L4’ ’L8’;
SUBC> SSquares 1;
SUBC> Brief 1 .

General Linear Model: COUNT versus BLOCKS

Factor Type Levels Values
BLOCKS fixed 4 1 2 3 4

Analysis of Variance for COUNT, using Sequential SS for Tests

MTB > SET C5
DATA> 4(1) 4(-1) 16(1)
DATA> END
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Source DF Seq SS Adj SS Seq MS F P
L1
L2
L3
L4
L8
BLOCKS

11.88
0.03
0.38
0.03
0.92
7.56

0.004
0.858
0.545
0.858
0.353
0.003

Error

2989.0
15.1

175.6
15.1

420.5
10382.7
6868.3

5440.0
15.1

175.6
15.1

420.5
3460.9
457.9

Total

1
1
1
1
1
3

15
23

5440.0
15.1

175.6
15.1

420.5
10382.7
6868.3

23317.3

Note that we have requested for the sequential SS for this analysis in
MINITAB. The results agree with those obtained by hand calculations earlier.

Alternatively, we could use the following coding system and subsequent
analysis to achieve the same goal. Here, the coefficients for L1–L5 are stored
in columns C5–C9. The print out of these columns agree with those presented
earlier. We have printed the first and last five observations here. The ANOVA
analysis agrees with what we had earlier.

SUBC> Brief 2 .

MTB > print c1-c3 c5-c9

Data Display

General Linear Model: COUNT versus BLOCKS

Factor Type Levels Values
BLOCKS fixed 4 1, 2, 3, 4

Row TRT BLOCKS COUNT L1 L2 L3 L4 L5
1 1 1 0 0
2 1 2 0 0
3 1 3 0 0
4 1 4

86 2 1 0
91 2 1 0
108 2 1 0
76 2 1 0 0 0

5 2 1 141 2 -1 0 0 0
........................................
20 5 4 33 -1 0 -1 0 1
21 6 1 70 -1 0 -1 0 -1
22 6 2 36 -1 0 -1 0 -1
23 6 3 102 -1 0 -1 0 -1
24 6 4 73 -1 0 -1 0 -1

MTB > code (1) 2 (2) 2 (3) -1 (4) -1 (5) -1 (6) -1 c1 c5
MTB > code (1) 1 (2) -1 (3) 0 (4) 0 (5) 0 (6) 0 c1 c6
MTB > code (1) 0 (2) 0 (3) 1 (4) 1 (5) -1 (6) -1 c1 c7
MTB > code (1) 0 (2) 0 (3) 1 (4) -1 (5) 0 (6) 0 c1 c8
MTB > code (1) 0 (2) 0 (3) 0 (4) 0 (5) 1 (6) -1 c1 c9
MTB > GLM ’COUNT’ = BLOCKS L1 L2 L3 L4 L5;
SUBC> Covariates ’L1’ ’L2’ ’L3’ ’L4’ ’L5’;
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Analysis of Variance for COUNT, using Adjusted SS for Tests

S = 21.3983 R-Sq = 70.54% R-Sq(adj) = 54.83%

DF Seq SS Adj SS Adj MS F PSource
BLOCKS 3 10382.7 10382.7 3460.9 7.56 0.003
L1 1 5440.0 5440.0 5440.0 11.88 0.004
L2 1 15.1 15.1 15.1 0.03 0.858
L3 1 175.6 175.6 175.6 0.38 0.545
L4 1 15.1 15.1 15.1 0.03 0.858
L5 1 420.5 420.5 420.5 0.92 0.353
Error 15 6868.3 6868.3 457.9
Total 23 23317.3

Term Coef SE Coef T P
Constant 70.333 4.368 16.10 0.000
L1 10.646 3.089 3.45 0.004
L2 -1.375 7.565 -0.18 0.858
L3 -3.312 5.350 -0.62 0.545
L4 1.375 7.565 0.18 0.858
L5 -7.250 7.565 -0.96 0.353

This author will recommend the latter form of coding as it less cumbersome
than the earlier method.

Example 11.3.2

In an experiment to compare the performance of six newly introduced vari-
eties of maize, it was thought fit to introduce four control varieties a, b, c and
d. The experiment was laid out in a randomized block design with ten plots
per block and five blocks. Table 11.13 gives the data for this experiment.

Table 11.13 The yields in (kg/plot) for the experiment in this example

Blocks
Treatment I II III IV V Total

1a 1.63 1.48 1.43 1.76 1.17 7.47
1b 1.73 1.42 1.50 1.06 0.76 6.47
lc 1.49 1.70 1.52 1.48 0.85 7.04
1d 1.25 1.36 0.93 1.38 0.68 5.60
2 1.07 1.28 1.28 1.83 1.16 6.62
3 0.73 1.42 1.30 1.38 0.70 5.53
4 0.69 1.69 1.61 1.61 1.17 6.67
5 0.52 1.50 1.17 1.05 1.04 5.28
6 1.63 1.34 1.07 1.01 0.87 5.92
7 1.08 1.33 0.63 1.21 0.51 4.76

Block total 11.82 14.42 12.44 13.77 8.91 61.36
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The structure of the analysis of variance (degrees of freedom only) for this
example is given in the following table.

Source d.f

Blocks 4
Treatments 9
Error 36
Total 49

The 9 d.f for treatments can be partitioned into the following components

(i) Control Vs rest with 1 d.f.
(ii) Between controls with 3 d.f.
(iii) Between other varieties with 5 d.f.

Thus, the total degrees of freedom is 1 + 3 + 5 = 9 d.f.

11.3.1 Analysis

First we obtain the total for variety 1 and varieties 2 to 7 viz.,

Total for variety 1 (Controls) = 26.58

Total for varieties 2–7 = 34.78

Next we compute the various SS as shown below,

Correction Factor (CF) =
61.462

50
= 75.5466

Control Vs Rest SS =
26.582

20
+

34.882

30
− CF = 0.3320

Between Control SS =
7.472

5
+

6.472

5
+

7.042

5
+

5.602

5
− 26.582

20
= 0.3919

Between other Varieties =
6.622

5
+ · · · +

4.762

5
− 34.882

30
= 0.6103

Total SS = 1.632 + 1.482 + · · · + 0.512 − 61.462

50
= 5.8892

Blocks SS =
11.822

10
+

14.422

10
+ · · · +

8.912

10
− CF = 1.8831

The analysis of variance of the data in this example is displayed in
Table 11.14.
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Table 11.14 Analysis of variance table

Source d.f. SS MS F

Blocks 4 1.8831
Treatments 9 1.3342 0.1482 2.00
(a) Controls vs rest 1 0.3320 0.3320 4.47*
(b) Between controls 3 0.3919 0.1306 1.76
(c) Between others 5 0.6103 0.1221 1.65
Error 36 2.6719 0.0742
Total 49 5.8892

*Significant at 5 % point

Variety Means (kg/plot)

1 1.33
2 1.33
3 1.11
4 1.33
5 1.06
6 1.18
7 0.95

From the ANOVA table S2 = 0.0738. Hence, the standard error (s.e) for
comparing control (variety 1) mean with any other treatment mean equals

√(
S2

20
+

S2

5

)

=

√(
0.0738

20
+

0.0738
5

)

= 0.136 (36 d.f)

S.E for comparing any two means, not including control equals
√(

S2

5
+

S2

5

)

=

√(
0.0738

5
+

0.0738
5

)

= 0.172 (36 d.f)

The controls mean = 1.33 and the other varieties mean = 1.16, hence the
standard error of difference equals,

√(
S2

20
+

S2

30

)

=

√(
0.0738

20
+

0.0738
30

)

= 0.078 (36 d.f)

The results in Table 11.14 show that none of the six new varieties is better
than the control. Variation between the mean yields for the six varieties is not
significant and the control gives a significantly better yield than the average
variety mean. The above analysis is implemented in MINITAB as follows:
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DATA> 1.08 1.33 0.63 1.21 0.51
DATA> END
MTB > SET C4
DATA> 20(6) 30(-4)
DATA> END
MTB > PRINT C1-C4

Data Display

Row TRT BLOCKS YIELDS CT1

1 1 1 1.63 6
2 1 2 1.48 6
3 1 3 1.43 6
4 1 4 1.76 6
5 1 5 1.17 6
6 2 1 1.73 6
7 2 2 1.42 6
8 2 3 1.50 6
9 2 4 1.06 6
10 2 5 0.76 6
11 3 1 1.49 6
12 3 2 1.70 6
13 3 3 1.52 6
14 3 4 1.48 6
15 3 5 0.85 6
16 4 1 1.25 6
17 4 2 1.36 6
18 4 3 0.93 6
19 4 4 1.38 6
20 4 5 0.68 6
21 5 1 1.07 -4
22 5 2 1.28 -4
23 5 3 1.28 -4
24 5 4 1.83 -4
25 5 5 1.16 -4
26 6 1 0.73 -4
27 6 2 1.42 -4
28 6 3 1.30 -4
29 6 4 1.38 -4

MTB > SET C1
DATA> (1:10)5
DATA> END
MTB > SET C2
DATA> 10(1:5)
DATA> END
MTB > SET C3
DATA> 1.63 1.48 1.43 1.76 1.17
DATA> 1.73 1.42 1.50 1.06 0.76
DATA> 1.49 1.70 1.52 1.48 0.85
DATA> 1.25 1.36 0.93 1.38 0.68
DATA> 1.07 1.28 1.28 1.83 1.16
DATA> 0.73 1.42 1.30 1.38 0.70
DATA> 0.69 1.69 1.61 1.61 1.17
DATA> 0.52 1.50 1.17 1.05 1.04
DATA> 1.63 1.34 1.07 1.01 0.87
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43 9 3 1.07 -4
44 9 4 1.01 -4
45 9 5 0.87 -4
46 10 1 1.08 -4
47 10 2 1.33 -4
48 10 3 0.63 -4
49 10 4 1.21 -4
50 10 5 0.51 -4

MTB > GLM ’YIELDS’ = BLOCKS TRT;
SUBC> SSquares 1;
SUBC> Brief 1 .

General Linear Model: YIELDS versus BLOCKS, TRT

Factor Type Levels Values
BLOCKS fixed 5 1 2 3 4 5
TRT fixed 10 1 2 3 4 5 6 7 8 9 10

Analysis of Variance for YIELDS, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P
BLOCKS 4 1.88311 1.88311 0.47078 6.34 0.001
TRT 9 1.33417 1.33417 0.14824 2.00 0.069
Error 36 2.67189 2.67189 0.07422
Total 49 5.88917

33 7 3 1.61 -4
34 7 4 1.61 -4
35 7 5 1.17 -4
36 8 1 0.52 -4
37 8 2 1.50 -4
38 8 3 1.17 -4
39 8 4 1.05 -4
40 8 5 1.04 -4
41 9 1 1.63 -4
42 9 2 1.34 -4

30 6 5 0.70 -4
31 7 1 0.69 -4
32 7 2 1.69 -4

11.4 Paired Comparisons

Data frequently occur in pairs. For instance, two treatments A and B may be
applied to a pair of identical twins, treatment A to one twin, and treatment
B to the other twin. We can then consider a situation in which we have n
pairs of twins in this particular example. Here pairing was done before the
commencement of the experiment on the basis of expected similar responses
when there were no treatment effects and the individuals are matched. Thus
members of each pair are similar to each other with respect to any extraneous
factors.



11.4 Paired Comparisons 423

Another example for instance is an experiment involving two feed rations
applied to two animals from each of four litters of pigs by assigning the
animals of each litter at random, one to each ration. Yet another example
is the response of two sugar cane varieties grown on paired plots at each of
six locations in Kwara State, to the infestation of a certain root nematode
(Hetero Sacchara). Our main interest in the above experiments is to compare
the effects of the two treatments (variations on varieties) and see if there is
a difference between them.

The randomized complete block which has two experimental units per
block is also an example of a paired design. Many biological and medical
investigations often times involve repeated measurements made on the same
plants, subjects, animals at different times. Some of these investigations could
be studies relating to growth, development, and those involving before and
after application of a certain stimulus. The case involving two measurements
at only two times constitute paired observations and the procedure that will
be discussed in this section might be appropriate for such data.

Case-control studies are often matched observational studies where the
controls are matched with the experimental group. A study of cholesterol
reduction in subjects for instance identified 50 patients with high blood
cholesterol. These individuals are then matched by age, sex, and educational
level to form a control group. The reduction in cholesterol level after 10 weeks
of a particular treatment is then compared.

We shall employ the method of student’s paired comparison’s for the
analysis of data obtained from such experiments.

Example 11.4.1

We illustrate this method with the following example which relates to the
effect of exposure of flowers to different environmental conditions. He choose
ten vigorous plants with freely exposed flowers at the top and flowers hidden
as much as possible at the bottom. Finally, he determined the number of
seeds set per two pods at each location. The data are given in Table 11.15.

Should we wish to test the hypothesis of no difference between population
means against the alternative that top flowers get more seeds, i.e.,

Table 11.15 Number of seeds set/pod at two locations

Plant 1 2 3 4 5 6 7 8 9 10
Top flowers 4.0 5.2 5.7 4.2 4.8 3.9 4.1 3.0 4.6 6.8
Bottom flowers 4.4 3.7 4.7 2.8 4.2 4.3 3.5 3.7 3.1 1.9

H0 : μt ≤ μb (11.4)

Ha : μt > μb
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11.4.1 Analysis

Let the observation on the top and the bottom flowers be designated as
Y1i and Y2i (i = 1, 2, · · · , 10) respectively. Then we need to compute Di =
Y1i − Y2i and the hypotheses in (11.4) then become in terms of Di,

H0 : μd ≤ 0 (11.5)

Ha : μd > 0

To implement the null hypothesis in (11.5) therefore, we need to calculate
the mean of Di, namely, d̄ and the variance of Di, again, namely, s2

d.

Table 11.16 Summary statistics for our analysis

Top flowers Bottom flowers Difference
Plants Y1i Y2i di = Y1i − Y2i

1 4.0 4.4 − 0.4
2 5.2 3.7 1.5
3 5.7 4.7 1.0
4 4.2 2.8 1.4
5 4.8 4.2 0.6
6 3.9 4.3 0.6
7 4.1 3.5 0.6
8 3.0 3.7 − 0.7
9 4.6 3.7 0.9
10 6.8 1.9 4.9∑
di 10.0∑
d2

i 33.0
d̄ 1.0

From Table 11.16, we have,
∑

di = 10, and hence, d̄ = 1.0. Similarly,
∑

d2 =
33. Hence,

s2
d =
∑

d2 − (
∑

d)2

n

n − 1
=

33 − 102

10

10 − 1
= 2.5556

The equivalent one-sample Students’ t-test becomes:

t =
d̄
√

s2
d

n

=
1.0√

0.2556
= 1.977

which is significant at α = 0.05, indicating that the top flowers set more seeds
than the lower flowers. Note that this is a one-tailed test. The paired t-test
is implemented in MINITAB with the following:
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MTB > PRINT C1-C2

Data Display
Row Y1 Y2

1 4.0 4.4
2 5.2 3.7
3 5.7 4.7
4 4.2 2.8
5 4.8 4.2
6 3.9 4.3
7 4.1 3.5
8 3.0 3.7
9 4.6 3.1
10 6.8 1.9

MTB > Paired ’Y1’ ’Y2’;
SUBC> Alternative 1.

Paired T-Test and CI: Y1, Y2

Paired T for Y1 - Y2

N Mean StDev SE Mean
Y1 10 4.630 1.068 0.338
Y2 10 3.630 0.850 0.269
Difference 10 1.000 1.599 0.506

95% lower bound for mean difference: 0.073

11.5 Test for Non Additivity

The randomized complete block design model in (11.1) assumes that there
is no interaction effect between blocks and treatments. In other words, the
model implies that the block effect is the same for all treatments, and like wise
that the treatments effect is the same for all blocks. This is often referred to
as being that the terms are additive or simply as additivity. It is therefore of
utmost interest to check whether the additivity assumption is violated when
we run a RCBD analysis. Although for most practical purposes this is not
often done, but we present in this section Tukey’s single degree of freedom
test for non additivity. We refer to the data in Table 11.3 to illustrate the
procedure for conducting this test. The data and computations necessary are
shown in Table 11.17.
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Table 11.17 Tukey’s one degree of freedom test for non-additivity

Blocks Sum
Strain 1 2 3 4 5 Yi+ Means Ci = Ȳi+ − Ȳ

A 32.3 34.0 34.3 35.0 36.5 172.1 34.42 1.6
B 33.3 33.0 36.3 36.8 34.5 173.9 34.78 1.96
C 30.8 34.3 35.3 32.3 35.8 168.5 33.70 0.88
D 29.3 26.0 29.8 28.0 28.8 141.9 28.38 − 4.44
Sum Y+j 125.7 127.3 135.7 132.1 135.6 656.4 0

Means 31.425 31.825 33.925 33.025 33.90 Ȳ = 32.82
Cj = − 1.395 − 0.995 1.105 0.205 1.08

Ȳ+j − Ȳ

From Table 11.17, we have,
∑

C2
i = 26.8896,

∑
C2

j = 5.3655

If we define di =
∑

j

CjYij , then,

d1 = (32.3 × −1.395) + · · · + (36.5 × 1.08) = 5.608

d2 = (33.3 × −1.395) + · · · + (34.5 × 1.08) = 5.627

d3 = (30.8 × −1.395) + · · · + (35.8 × 1.08) = 7.1975

d4 = (29.3 × −1.395) + · · · + (28.8 × 1.08) = 3.0295

and for i = 1, 2, 3, 4, we have,

i ci di

1 1.6 5.608
2 1.96 5.627
3 0.88 7.1975
4 − 4.44 3.0295

Hence,
∑

cidi = (1.6)(5.608) + (1.96)(5.6270 + (0.88)(7.1975) + (−4.44)(3.0295)

= 12.8845

and therefore, the non-additivity SS (NASS) is calculated as,

NASS =
(
∑

i cidi)2

(
∑

C2
i ×
∑

C2
j )

=
(12.8845)2

5.3655 × 26.8896
= 1.151

The revised analysis of variance table is presented in Table 11.18.
The computed F -value is not significant. Which indicates that our model

is additive. However, when this is significant, and is not due to a few aberrant
observations, a transformation would be required.
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Table 11.18 Revised analysis of variance table

Source d.f. SS MS F

Blocks 4 21.46
Treatments 3 134.45

Error 12 26.26
Additivity 1 1.151 1.151 0.50*
Residual 11 25.109 2.283

* Not significant

The Tukey’s test for additivity can be implemented in MINITAB with the
following procedure which is not too difficult to follow.

MTB > let c4=c3-mean(c3)
MTB > anova c4=c2 c1;
SUBC> means c2 c1.

ANOVA: h.zero versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1 2 3 4 5
STRAINS fixed 4 A B C D

Analysis of Variance for h.zero

DF SS MS F PSource
BLOCKS 4 21.46 2 5.365 2.45 0.103
STRAINS 3 134.448 44.816 20.48 0.000
Error 12 26.262 2.189
Total 19 182.172

Means

BLOCKS N h.zero
1 4 -1.3950
2 4 -0.9950
3 4 1.1050
4 4 0.2050
5 4 1.0800

STRAINS N h.zero
A 5 1.6000
B 5 1.9600
C 5 0.8800
D 5 -4.4400
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MTB > set c6
DATA> (1.6 1.96 0.88 -4.44)5
DATA> end
MTB > let c7=c5*c6

MTB > GLM ’YIELD’ = BLOCKS STRAINS z;
SUBC> Covariates ’z’;
SUBC> Brief 2 .

General Linear Model: YIELD versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1 2 3 4 5
STRAINS fixed 4 A B C D

Analysis of Variance for YIELD, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 4 21.462 21.462 5.365 2.35 0.118
STRAINS 3 134.448 134.448 44.816 19.63 0.000
z 1 1.151 1.151 1.151 0.50 0.493
Error 11 25.111 25.111 2.283
Total 19 182.172

Term Coef SE Coef T P
Constant 32.8200 0.3378 97.14 0.000
z 0.0893 0.1258 0.71 0.493

Unusual Observations for YIELD

Data Display

Row STRAINS BLOCKS YIELD h.zero b1 s1 z

1 A 1 32.3 -0.52 -1.395 1.60 -2.2320
2 A 2 34.0 1.18 -0.995 1.60 -1.5920
3 A 3 34.3 1.48 1.105 1.60 1.7680
4 A 4 35.0 2.18 0.205 1.60 0.3280
5 A 5 36.5 3.68 1.080 1.60 1.7280
6 B 1 33.3 0.48 -1.395 1.96 -2.7342
7 B 2 33.0 0.18 -0.995 1.96 -1.9502
8 B 3 36.3 3.48 1.105 1.96 2.1658
9 B 4 36.8 3.98 0.205 1.96 0.4018
10 B 5 34.5 1.68 1.080 1.96 2.1168
11 C 1 30.8 -2.02 -1.395 0.88 -1.2276
12 C 2 34.3 1.48 -0.995 0.88 -0.8756
13 C 3 35.3 2.48 1.105 0.88 0.9724
14 C 4 32.3 -0.52 0.205 0.88 0.1804
15 C 5 35.8 2.98 1.080 0.88 0.9504
16 D 1 29.3 -3.52 -1.395 -4.44 6.1938
17 D 2 26.0 -6.82 -0.995 -4.44 4.4178
18 D 3 29.8 -3.02 1.105 -4.44 -4.9062
19 D 4 28.0 -4.82 0.205 -4.44 -0.9102
20 D 5 28.8 -4.02 1.080 -4.44 -4.7952

MTB > set c5
DATA> 4(-1.3950 -0.9950 1.1050 0.2050 1.0800)
DATA> end

The result indicate that the additive effect represented by z is not significant.
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11.5.1 Alternative Implementation of Tukey’s
Additivity Test

In this approach we do the following:

(a) Run the RCB analysis and store the fitted values in say Column 9 (C9).
(b) Compute u = fitted values × fitted values and put the result in column

10 (C10).
(c) Now again run the RCB analysis with u in the defining model but declared

as a covariate.
(d) The final results will give the additivity components etc.

SUBC> Abort.
MTB > Name c9 "FITS2"
MTB > GLM ’YIELD’ = BLOCKS STRAINS;
SUBC> Brief 2 ;
SUBC> Fits ’FITS2’.

General Linear Model: YIELD versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1, 2, 3, 4, 5
STRAINS fixed 4 A, B, C, D

Analysis of Variance for YIELD, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 4 21.462 21.462 5.365 2.45 0.103
STRAINS 3 134.448 134.448 44.816 20.48 0.000
Error 12 26.262 26.262 2.188
Total 19 182.172

MTB > let c10=c9*c9

MTB > Name c12 "FITS4"
MTB > GLM ’YIELD’ = BLOCKS STRAINS u;
SUBC> Covariates ’u’;
SUBC> Brief 2 ;
SUBC> Fits ’FITS4’.

General Linear Model: YIELD versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1, 2, 3, 4, 5
STRAINS fixed 4 A, B, C, D

Analysis of Variance for YIELD, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 4 21.462 0.496 0.124 0.05 0.994
STRAINS 3 134.448 0.501 0.167 0.07 0.973
u 1 1.151 1.151 1.151 0.50 0.493
Error 11 25.111 25.111 2.283
Total 19 182.172

S = 1.51091 R-Sq = 86.22% R-Sq(adj) = 76.19%

Term Coef SE Coef T P
Constant -15.63 68.24 -0.23 0.823
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11.6 Departures from Assumptions
in Analysis of Variance

Apart from those mentioned in Chap. 10, for the randomized complete block
design, we also assume the following:

(i) That the treatment effects are additive.
(ii) That the blocks and treatments effects are additive.
(iii) That these errors all have a constant variance σ2 (homogeneity).
(iv) That the treatment and block effects are fixed.

For data following non-normal distribution, as for instance, in the skewed
distributions, the variance tends to be a function of the mean. The usual
approach in combating this problem is to initially transform the data by using
an appropriate transformation. Conclusions of the analysis of variance also
apply to the transformed data. Several transformations have been suggested
for various kinds of data. Some of these are mentioned below.

11.6.1 Square Root Transformation

This is suitable when the observations follow a Poisson distribution. Examples
are counts or number of nematodes in a soil, number of stem borers in a corn
plot after the application of pesticides, number of weeds found on a plot,
number of seeds per plot, number of infected plants in a plot, or the number
of ‘yes’ or ‘1’ in a binary response variable. Most work on plant protection
and particularly entomology and nematology always give rise to data that
are of this kind. The appropriate transformation is therefore given by

Y ∗
ij =
√

Yij or

Y ∗
ij =
√

(Yij + 0.5) if data contains some zeros (Bartlett 1936)

Y ∗
ij =
√

Yij +
√

(Yij + 1) for a better result (Freeman and Tukey 1950).

The data for the square root transformation assume that the means are pro-
portional to the variances for each treatment, i.e., when σ2

i = kμi, then
the square root transformation will be appropriate. The transformation en-
sures that the variance of the data is as nearly independent of the mean
as much as possible. If there are zeros in the data, other suggested form of

transformations are Y ∗
ij =
√

(Yij + 1) or Y ∗
ij =
√(

Yij + 3
8

)
.
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11.6.2 The Logarithmic Transformation

If the variance of the data is proportional to the square of its mean, i.e, if,

σ2
i = kμ2

i

then, the logarithmic transformation will be appropriate in this case, i.e.,

Y ∗
ij = log(Yij).

The above transformations are variance stabilizing transformations and they
do not necessarily induce normality. For example, while the square root trans-
formation (y∗ −→ √

y) stabilizes the variance of the Poisson distributed data
(Y ), however, the normalizing transformation is (y∗ −→ y2/3). If there are
zeros in the data, possible transformations are log(Yij + 1), log(2Yij + 1),
or log
(
Yij + 3

8

)
.

11.6.3 Arc Sine Transformation

For data that came as counts or binomial proportions (p), the arc sine or
angular transformation is most appropriate. Examples of the application of
this is on data relating to percentages (derived from count data rather than
% of protein content for example). For binomial data, expressed as fractions,
the arc sine transformation is

Y ∗
ij = arc sine Yij

= sin−1 Yij

However, for percentages 0 % and 100 %, the above transformation is not
defined and in these cases, it has been suggested that these two values should
be substituted with the following before transformation:

Yij =

⎧
⎪⎨

⎪⎩

1
4n

if Yij = 0

(100 − 1
4n

) if Yij = 100
(11.6)

Examples 11.5.1

In an experiment on weed control in Red Beet, emergence counts were taken
for an area of 3 square feet in each plot. The data and analysis are given
below in Table 11.19.
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Table 11.19 Emergence counts from a weed control experiment

Blocks
Treatment I II III IV Total

1 2 7 12 18 39
2 4 12 23 22 61
3 29 61 56 64 210
4 44 61 85 94 284
5 30 62 71 93 256

Total 109 203 247 291 850

The usual analysis of variance on the above data would yield the analysis of
variance in Table 11.20

Table 11.20 Analysis of variance table for the untransformed data

Source d.f. SS MS F

Blocks 3 3631 1210.3
Treatments 4 1,2758 3189.6 34.0

Error 12 1126 93.8
Total 19 1,7515

The MINITAB implementation of the above analysis on the untransformed
data is presented below. A plot of the residuals versus the fitted values ŷ
is also presented in Fig. 11.1. The plot clearly indicate that the errors are
not randomly distributed. Thus a transformation of the data before analy-
sis would be required. It should be noted here that a test for normality of
the residuals reveal that the residuals satisfy the normality assumption, the
Anderson-Darling test give a p-value of 0.247 which confirms normality.

MTB > set c1
DATA> (1:5)4
DATA> end
MTB > set c2
DATA> 5(1:4)
DATA> end
MTB > SET C3
DATA> 2 7 12 18 4 12 23 22
DATA> 29 61 56 64 44 61 85
DATA> 94 30 62 71 93
DATA> END

MTB > Name c4 = ’RESI1’
MTB > GLM ’COUNTS’ = BLOCK TRT;
SUBC> SSquares 1;
SUBC> Brief 1 ;
SUBC> Residuals ’RESI1’;
SUBC> GNormalplot;
SUBC> GFits;
SUBC> RType 1 .

General Linear Model: COUNTS versus BLOCK, TRT
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Factor Type Levels Values
BLOCK fixed 4 1 2 3 4
TRT fixed 5 1 2 3 4 5

Analysis of Variance for COUNTS, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P
BLOCK 3 3631.0 3631.0 1210.3 12.90 0.000
TRT 4 12758.5 12758.5 3189.6 34.01 0.000
Error 12 1125.5 1125.5 93.8
Total 19 17515.0

Fig. 11.1 Plot of residuals against ŷ

It is often recommended in situations of this kind (counts), that the data
should be transformed to square root before analysis.

We may ask the question—why do we always use the square root trans-
formation for this type of data? Why not the logarithmic transformation
for instance? In other to make a quick check on the usefulness of either the
square root or log transformations for these data, we find the range of values
for each treatment and examine the variation of range with mean or square
root of mean.

Treatment means
9.75 15.25 52.50 71.0 64.0

Range 16 19 35 50 63
Range/Mean 1.64 1.25 0.67 0.70 0.98
Range/

√
Mean 5.1 4.9 4.8 5.9 7.9
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Range increases steadily with the treatment mean but it is not proportional to
the mean (which would suggest the log transformation); except for the last
treatment, the value of Range/

√
Mean are very consistent and the square

root transformation should be used before analysis. Table 11.21 contains the
transformed data for the data in Table 11.19.

Table 11.21 Square root of counts

Blocks
Treatment I II III IV Total

1 1.4 2.6 3.5 4.2 11.7
2 2.0 3.5 4.8 4.7 15.0
3 5.4 7.8 7.5 8.0 28.7
4 6.6 7.8 9.2 9.7 33.3
5 5.5 7.9 8.4 9.6 31.4

Total 20.9 29.6 33.4 36.2 120.1

Note that the ranges of the transformed data, 2.8, 2.8, 2.6, 3.1 and 4.1 are
very much consistent than those of the untransformed data.

Table 11.22 Analysis of variance table for the transformed data

Source d.f. SS MS F

Blocks 3 20.59 6.863
Treatments 4 98.91 24.728 144.61***

Error 12 2.05 0.171
Total 19 127.55

*** Significant at α = 0.001

As would be hoped, the transformation to a scale satisfying the assumptions
of the analysis has produced more clear-cut results, the Error SS being re-
duced from 6.4 % of the total SS to 1.6 %, and the treatment/Error F ratio
being correspondingly increased. Using the transformed values, differences
between treatments 1 and 2 and between 3 and 5 are significant at the 5 %
level, whereas previously they were not. Table 11.23 gives the means of the
treatments for both the transformed and untransformed data, together with
their accompanying standard errors.

Table 11.23 Treatment means and corresponding standard errors

Treatment Untransformed Transformed

1 9.8 2.92
2 15.2 3.75
3 52.5 7.18
4 71.0 8.32
5 64.0 7.85

S.E. of means 4.84 0.207
S.E. of difference between means 6.85 0.292

Below we present the MINITAB analysis of the transformed data.
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MTB > GLM ’Y’ = BLOCK TRT;
SUBC> SSquares 1;
SUBC> Brief 1 ;
SUBC> Means TRT;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus BLOCK, TRT

Factor Type Levels Values
BLOCK fixed 4
TRT fixed 5

1 2 3 4
1 2 3 4 5

Analysis of Variance for Y, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P
BLOCK 3 26.721 26.721 8.907 49.63 0.000
TRT 4 99.021 99.021 24.755 137.93 0.000
Error 12 2.154 2.154 0.179
Total 19 127.896

Least Squares Means for Y

MTB > LET C4=SQRT(C3)
MTB > PRINT C1-C4

Data Display

4 1 4 18 4.24264
5 2 1 4 2.00000
6 2 2 12 3.46410
7 2 3 23 4.79583
8 2 4 22 4.69042
9 3 1 29 5.38516
10 3 2 61 7.81025
11 3 3 56 7.48331
12 3 4 64 8.00000
13 4 1 44 6.63325
14 4 2 61 7.81025
15 4 3 85 9.21954
16 4 4 94 9.69536
17 5 1 30 5.47723
18 5 2 62 7.87401
19 5 3 71 8.42615
20 5 4 93 9.64365

Row TRT BLOCK COUNTS Y

1 1 1 2 1.41421
2 1 2 7 2.64575
3 1 3 12 3.46410
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Leve l
TRT T-Value

Adjusted
P-Value

5

Difference
of Means
-0.4843 -1.617 0.5148

TRT Mean SE Mean
1 2.942 0.2118
2 3.738 0.2118
3 7.170 0.2118
4 8.340 0.2118
5 7.855 0.2118

Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of TRT

TRT = 1 subtracted from:

Leve l
TRT T-Value

Adjusted
P-Value

2 2.657 0.1207
3 14.114 0.0000
4 18.019 0.0000
5

Difference
of Means

0.7959
4.2280
5.3979
4.9136 16.402 0.0000

TRT = 2 subtracted from:

Leve l
TRT T-Value

Adjusted
P-Value

3 11.46 0.0000
4 15.36 0.0000
5

Difference
of Means

3.432
4.602
4.118 13.75 0.0000

TRT = 3 subtracted from:

Leve l
TRT T-Value

Adjusted
P-Value

4 3.905 0.0146
5

Difference
of Means

1.1699
0.6856

SE of
Difference

0.2996

SE of
Difference

0.2996
0.2996
0.2996
0.2996

SE of
Difference

0.2996
0.2996
0.2996

SE of
Difference

0.2996
0.2996 2.289 0.2139

TRT = 4 subtracted from:

The results of Tukey’s test on the transformed data is presented in the
following:

2.942 3.738 7.170 7.855 8.340
1 2 3 5 4
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While treatments 3, 4, and 5 might not be significantly different, clearly they
are different from treatments 1 and 2, who themselves are not significantly
different.

Fig. 11.2 Plot of residuals against ŷ

The plot of the residuals against the fitted values as displayed in Fig. 11.2
which now shows a random pattern for the residuals satisfying the assump-
tion of random distribution of the error terms around zero. Further, the
corresponding normality plot of the residuals in Fig. 11.3 indicates that the
assumption of normality is strongly justified with the transformed data, with
p-value from the Anderson-Darling test being in this case 0.863.
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Fig. 11.3 Normality test and plot of the residuals

11.6.4 Box-Cox Transformation

The Box-Cox (1964) approach identifies a suitable transformation from the
family of power transformations of the form

y∗ = yλ, (11.7)

where λ is to be estimated from the data. Possible values of λ are presented in
the table below. For instance, a λ value of 0.5 corresponds to a transformation
of Y ∗ =

√
Y or if λ = 0 then Y ∗ = ln Y .

λ Y ∗

2 Y 2

1 Y

0.5
√

Y
0 ln Y

− 0.5 1√
Y

− 1 1
Y

To determine λ, a regression of the following form is carried out.

yλ
i = β0 + β1xi + εi, (11.8)

where β0, β1, λ and σ2, the variance of ε are to be estimated from available
data. One procedure to accomplish this is to use a numerical search for values
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of λ ranging from −3 to 3. It has been suggested that we use the following:

y
(λ)
i =

⎧
⎨

⎩

(yλ
i − 1)

λKλ−1 λ �= 0

K ln(yi), λ = 0,
(11.9)

where Y is the original data, and,

K =

(
n∏

i=1

yi

)1/n

= exp

[
1
n

n∑

i=1

ln(yi)

]

, (11.10)

K here, is the geometric mean of the yi observations. We assume that the
transformed values y

(λ)
i follow a normal linear model with parameters β and

σ2 for some values of λ.
MINITAB calculates the standard deviation and plots the graph of stan-

dard deviation (SD) versus λ. We are thus looking for the λ value that
optimizes the log-likelihood profile. Figure 11.4 gives this plot as generated
by MINITAB and unexpectedly, λ = 0.5 is selected and this further confirms
our earlier choice of the square root transformation. MINITAB also computes
the transformed variable automatically based on the choice of lambda and
stores these values in a new column for further analysis.

MTB > BoxCox ’COUNTS’ 2;
SUBC> Store c4.

Fig. 11.4 Boxplot for the data in table 11.23
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It must be emphasized again, however, that the justification for the transfor-
mation lies not in the ‘better’ results achieved but rather in the validity of
the analysis in the transformed scale.

11.7 Relative Efficiency of RCBD

The relative efficiency of a randomized complete block design over that of
the completely randomized design is defined as:

RE(RCBD, CRD) =
(b − 1)MSB + b(t − 1)MSE

(bt − 1)MSE

where MSE is the error mean square under RCBD and MSB is the mean
square for blocks in the RCBD. For example, the relative efficiency for the
data in example 11.1 (no 307) will be computed as: b = 5, t = 4, MSE =
2.188, and MSB = 5.365.

4(5.365) + (5 × 3)2.188
19 × 2.188

= 1.31

i.e., approximately 30 % times more observations of each treatment will be
required in a completely randomized design (CRD) to obtain the same pre-
cision for the estimating treatment means as with the RCB design. Thus the
RCDB is 30 % more efficient than the CRD.

11.8 Group Balanced Block Design

In variety or similar trials, the researcher knows that some varieties behave
differently in terms of days to maturity, days to flowering or plant heights.
For instance, plants with different heights grown adjacent to one another
in experimental plots will be subjected to plant competition or plants with
different maturity days planted adjacent to each other are bound to create
harvesting problems in addition to various competition effects. To mitigate
against these undesirable effects, researchers often group together certain
varieties that have similar characteristics and other traits.

The group balanced design therefore ensures that varieties or treatments
with the same characteristics are grouped together such that varieties in the
same group are always arranged and tested in the same block, thus treatments
or varieties belonging to different groups are never tested together in the same
block. Suppose we have fifteen varieties of sorghum divided into three groups
of five treatments each and designated as groups A, B, and C. The grouping
is based on the maturity days of the plants based on less than 100 days,
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between 100 and 120 days and more than 120 days. The experiment is to be
laid out in four replicates. A typical layout is presented below:

Block 1 Group A

Block 2 Group B

Block 3 Group C

Group C

Group A

Group B

Group A

Group C

Group B

Group B

Group A

Group C

REP I REP II REP III REP IV

Here, we have grouped the t = 15 treatments into g = 3 with each group

having
t

g
= 5 treatments. These groupings are A with treatments {1,2,3,4,5},

B with treatments {6,7,8,9,10}, and C with treatments {11, 12, 13, 14, 15}.
The experimental area here has rt = 4 × 15 = 60 plots such that each
replication has a total of t plots. Each replication is then divided into g = 3
blocks each of t/g = 5 units.

11.8.1 Randomization

The randomization scheme could be as described here:

1. Randomize the g groups into the g blocks as in REP I above. Then for
each of the remaining replications, independently assign at random the
groups to the blocks. The layout should be as displayed above.

2. For each block in each replicate, we assign at random the treatments
corresponding to the groupings as indicated in the layout above. The
resulting randomization will be as displayed below. For instance in repli-
cate I, group A treatments are randomized within block 1, while group
B treatments are randomized within block 2. The group C treatments
are also randomized within block 3 in replicate I. Similar randomization
of treatments within blocks are carried out as led out in the earlier ran-
domization scheme of groups to blocks. The resulting lay out is presented
below.
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Block 1 1 2 3 4 5

Block 2 8 6 7 9 10

Block 3 11 14 13 15 12

Block 1 12 14 11 13 15

Block 2 3 1 4 5 2

Block 3 9 7 10 8 6

IIPERIPER

Block 1 3 5 1 4 2

Block 2 14 11 12 15 13

Block 3 7 9 6 8 10

Block 1 8 10 7 9 6

Block 2 4 1 3 2 5

Block 3 15 11 13 12 14

VIPERIIIPER

The structure of the analysis of variance for this design is presented in
Table 11.24

Table 11.24 Structure of the ANOVA table
Source d.f.

Reps r − 1
Treatment groups g − 1
Error (a) (r − 1)(g − 1)
Treat within group 1 t/g − 1
Treat within group 2 t/g − 1
...

...
Treat within group g t/g − 1

Error (b) g(t − 1)
(

t

g
− 1

)

Total rt − 1

11.8.2 An Example

An experiment to determine the yield per plot of 15 varieties of sorghum was
conducted with four replications and three groupings of the varieties based
on the commencement of their flowering characteristics. The yield from the
experiment which consists of 60 plots of 15 replication per plot and three
blocks of unit five per replicated is presented in Table 11.25.
The Total SS is computed as:

Total SS = [(3.544)2 + (2.870)2) + · · · + (3.641)2] − (199.658)2

60
= 4.41514
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Table 11.25 Yield of sorghum in kg/plot of 15 varieties

Yield kg/plot
Trt RepI RepII RepIII RepIV Total

1 3.544 2.870 3.318 3.171 12.903
2 3.215 2.935 3.128 3.611 12.889
3 3.628 3.078 3.200 3.326 13.232
4 3.152 3.102 2.875 3.222 12.351
5 3.550 3.286 2.786 3.343 12.965
6 2.878 3.054 3.461 3.244 12.637
7 3.171 3.026 3.283 3.641 13.121
8 3.471 3.220 3.865 3.202 13.758
9 3.126 3.051 3.126 3.183 12.486
10 3.260 3.119 3.333 3.388 13.100
11 3.383 2.866 3.551 3.495 13.295
12 3.232 3.198 3.162 3.403 12.995
13 3.774 3.461 3.596 3.723 14.554
14 3.782 3.867 3.589 3.539 14.777
15 3.538 3.473 3.943 3.641 14.595

Total 50.704 47.606 50.216 51.132 199.658

REP SS =
(50.704)2

15
+

(47.606)2

15
+

(50.216)2

15
+

(51.132)2

15
− (199.658)2

60
= 0.50171

Yield total Group
Group REP I REP II REP III REP IV total

A 17.089 15.271 15.307 16.673 64.34
B 15.906 15.470 17.068 16.658 65.102
C 17.709 16.865 17.841 17.801 70.216

Replication by group table of yields

With the above replication by group table of yields, we can now obtain the
following:

Groups SS =
(64.34)2

20
+

(65.102)2

20
+

(70.216)2

20
− (199.658)2

60
= 1.02102

Error (a) SS =
[
(17.089)2

5
+

(15.271)2

5
+ · · · +

(17.801)2

5

]

− (199.658)2

60

− Groups SS − Reps SS.

= 0.46298

We present below the total yield for each of the grouping treatments. Hence
we can now calculate the sum of squares of treatments within each group.
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Total yield for group A

1 2 3 4 5
12.903 12.889 13.232 12.351 12.965

Total yield for group B
6 7 8 9 10

12.637 13.121 13.758 12.486 13.100
Total yield for group C

11 12 13 14 15
13.295 12.995 14.554 14.777 14.595

These SS are computed as:

Trt SS within GP A=
[
(12.903)2

4
+

(12.889)4

4
+ · · · +

(12.965)2

4

]

− (64.340)2

20
= 0.10272

Trt SS within GP B=
[
(12.637)2

4
+

(13.121)4

4
+ · · · +

(13.100)2

4

]

− (65.102)2

20
= 0.248272

Trt SS within GP C=
[
(13.295)2

4
+

(12.995)4

4
+ · · · +

(14.595)2

4

]

− (70.216)2

20
= 0.69060

The above computations therefore lead to the following analysis of variance
table for the experiment:

Table 11.26 ANOVA for group balanced design example

Source d.f. SS MS F

Reps 3 0.5017 0.1672
Groups 2 1.0210 0.5105 6.61
Error (a) 6 0.4630 0.0772
Trt (within Groups) 12 1.0416 0.0868 2.25

Trt within GP A 4 0.1027 0.0257 0.67
Trt within GP B 4 0.2483 0.0621 1.61
Trt within GP C 4 0.6906 0.1727 4.47

Error (b) 36 1.13879 0.0386
Total 59 4.4151

Results from ANOVA Table 11.26 indicate significant differences among the
group means and significant differences only among the treatments within
group C. The others did not show any significant differences within groups
A and B.

The Above analysis is better analyzed with MINITAB. We present the data
structure within MINITAB and the subsequent ANOVA Table obtained.
Based on the structure of the ANOVA Table in Table 11.24, the ANOVA
Table for the above data in Table 11.25 using MINITAB are displayed below.
The data layout presents the data for the first and fourth replicates I and
IV. Column 3 gives the replication numbers, column 4 the grouping number
and column 6 the treatment numbers.
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Row Y REP GP TRT
1 3.544 1 1 1
2 3.215 1 1 2
3 3.628 1 1 3
4 3.152 1 1 4
5 3.550 1 1 5
6 2.878 1 2 6
7 3.171 1 2 7
8 3.471 1 2 8
9 3.126 1 2 9
10 3.260 1 2 10
11 3.383 1 3 11
12 3.232 1 3 12
13 3.774 1 3 13
14 3.782 1 3 14
15 3.538 1 3 15
......................
46 3.171 4 1 1
47 3.611 4 1 2
48 3.326 4 1 3
49 3.222 4 1 4
50 3.343 4 1 5
51 3.244 4 2 6
52 3.641 4 2 7
53 3.202 4 2 8
54 3.183 4 2 9
55 3.388 4 2 10
56 3.495 4 3 11
57 3.403 4 3 12
58 3.723 4 3 13
59 3.539 4 3 14
60 3.641 4 3 15
MTB > GLM ’Y’ = REP GP REP* GP TRT( GP);
SUBC> Brief 2 .

General Linear Model: Y versus REP, GP, TRT

Factor Type Levels Values
REP fixed 4 1, 2, 3, 4
GP fixed 3 1, 2, 3
TRT(GP) fixed 15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
REP 3 0.50171 0.50171 0.16724 4.34 0.010
GP 2 1.02102 1.02102 0.51051 13.24 0.000
REP*GP 6 0.46298 0.46298 0.07716 2.00 0.091
TRT(GP) 12 1.04158 1.04158 0.08680 2.25 0.030
Error 36 1.38785 1.38785 0.03855
Total 59 4.41514

S = 0.196345 R-Sq = 68.57% R-Sq(adj) = 48.48%

We may note here that MINITAB does not use the appropriate Error (a)
MS to test for the group means significance. However, once such an output
is obtained, it is not too difficult to manually conduct such a test ourselves.
The results from MINITAB agree with the ones we calculated.
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11.9 Exercises

1. An experiment involving four treatments A, B, C, and D are applied to
rats that are drawn from the same litter. Ten litters are employed. The
data is presented below.

Litter number Rat number & treatment number

1 1-B 2-A 3-D 4-C
2 5-B 6-C 7-A 8-D
3 9-C 10-A 11-B 12-D
4 13-A 14-B 15-D 16-C
5 17-D 18-C 19-A 20-B
6 21-D 22-C 23-A 24-B
7 25-B 26-A 27-D 28-C
8 29-C 30-B 31-A 32-D
9 33-D 34-C 35-A 36-B
10 37-D 38-A 39-C 40-B

Analyze the data and draw your conclusions. What is the relative efficiency
of this design?

2. The data below is adapted from Gomez and Gomez (1983) and relate to
yield in kg/ha of six treatments on rice.

Treatment
level Rep I Rep II Rep III Rep IV
25 5113 5398 5307 4678
50 5346 5952 4719 4264
75 5272 5713 5483 4749
100 5164 4831 4986 4410
125 4804 4848 4432 4748
150 5254 4542 4919 4098

(i) Analyze the data as an RCB design treating the replicates as blocks
(ii) If the treatment effects are significant, consider fitting an appropriate

polynomial to the response
(iii) Suppose treatment corresponding to treatment level 100 in repli-

cate II were missing, estimate this missing value and run a different
ANOVA Table

3. The partially completed ANOVA table for an experiment is shown below:

ANOVA table
Source d.f. SS MS F

Blocks 7 – 14.0714 –
Treatments – 231.5054 115.7527 –

Error – 573.7500 40.9821
Total 23 –
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a What design was employed?
How many treatments are involved in the experiment? What is the
total sample size?

b Conduct a test of the null hypothesis that the treatment means are
equal. Use α = 0.05.

c What assumptions must be satisfied before the analysis above can be
valid? (state these only).

d Compute the standard error for comparing any two treatment means.

4. Complete the following ANOVA table and state which design was used.

Source d.f. SS MS F

Blocks 2 177.7 – –
Treatments 5 – – –

Error – 448.99 –
Total – 2338.69

5. Complete the following ANOVA table and state which design was used.

Source d.f SS MS F

Blocks 7 40.40 – –
Treatments 2 – – –

Error – 9.29 –
Total 23 65.95



Chapter 12
Multiple Blocking Designs

12.1 The Latin or Euler Square Design

The Latin square is a plan of t rows and t columns of a square with t symbols
arranged such that each letter appears once in each row and once in each
column. If the symbols are Latin letters we could, as Sir Ronald A. Fisher
did, call this a Latin square plan or design. If the symbols used were Greek
letters, we could call the plan a Greek square. If the symbols used were Arabic
symbols, we could call the plan an Arabic square, and so on. By common
usage this plan is used with Latin letters and is called a Latin square design.
Furthermore, this design is for the removal of variations from two sources
usually referred to, though not necessarily, the row and column variations.
The row and column designation merely refers to the two sources.

Example 12.1.1

To illustrate, suppose a study to compare the tolerances (specified response
to a certain amount of dose stimulus) of cats to three substances (A, B, C) is
to be conducted. If nine cats are available for the study, the substances can
be applied to the nine cats as follows:

C B A

B A C

A C B

The above design controls variations in two directions. Now suppose that
nine cats are not available but only three cats are available. We can then
administer the substances in the following order:

449B. Lawal, Applied Statistical Methods in Agriculture,
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Cats

1 2 3

order order order
1 2 3 1 2 3 1 2 3

Substances C B A B A C A C B

which when rearranged “looks like a square”.

Cats

Order 1 2 3

1 C B A
2 B A C
3 A C B

Each treatment appears once in each order and once each for the cats.

Example 12.1.2

Pathologists studying tobacco mosaic virus in order to compare the toxicity of
different solutions would smear the virus solutions over the leaves of tobacco
plants. In three or four days, little spots came out on the leaves, the stronger
the virus, the more spots. To compare the solutions then, they would smear
them on the leaves and count the spots.

For some reason or other, most of these tobacco plants were grown to the
point where they had about five leaves. By smearing the same solution on
all leaves, for several plants, it was revealed immediately that there were
certain natural groupings. The leaves from the same plant, as might well be
expected, have a common quality of susceptibility to the production of spots.
Another plant would be resistant; all the leaves on that would give smaller
counts. The total count on the five leaves of one plant might be one-fifth or
one-third what it was on another plant. But even more striking was the fact
that there was a positional effect. The top leaves tended to be alike (as did
the second, the third, the fourth, and the bottom leaves) in the sense that all
the top leaves might give about half the count of their corresponding bottom
leaves from the same plant.

Here, then, you see the familiar rows and columns made to order. Nothing
hopeful about this regularity, it is there. To compare five virus solutions, we
will simply make sure, if we label them A, B, C, D, E, that they are allotted
to the leaves in the same kind of pattern we had a moment ago for the cats’
experiment
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Plant Number

Leaf Position 1 2 3 4 5

Top A B C D E
2nd B E D C A
3rd C A E B D
4th D C A E B
5th E D B A C

Note the arrangement of the five letters: all five on every plant, all five in
each leaf position. The net result of this was to improve the accuracy of the
comparison, that it is quite conservative to say it was like presenting the
pathologist with an extra greenhouse. He did not need to test as many plants
with each solution. This was a case where these strips really paid off. Cox
and Cochran (1946) described an experiment similar to the one above for the
comparison of five virus inoculations of plants. The plot was a single leaf, and
the two blocking systems were plants and leaf sizes. Five plants were taken
with five leaves on each plant. The design is similar to the one above, in
which the columns were the plants and the rows were the five largest leaves,
the second five largest leaves, and so on. The treatment is represented by
letters, have been allocated in such a way that one leaf of each plant has each
treatment and, of the five leaves receiving a particular treatment, one is the
largest on its plant, and one is the second largest, and so on.

12.2 The Model for the Latin Square Designs

The Latin square differs from the randomized block design in that the
treatments are arranged in complete groups in two directions, the two
classifications being orthogonal to each other and to the treatments.

Thus, for a t× t Latin square, the LS design has the linear model given by

Yijk = μ + ri + cj + tk + eijk
(i, j) = 1, 2, · · · , t

k = 1, 2, · · · , t
(12.1)

where

• μ is the overall mean;
• ri is the ith row effect;
• cj is the jth column effect;
• tk is the kth treatment effect; and
• εijk is the random error term distributed normal with mean zero and

constant variance σ2.

All the above effects act additively, and there is no interaction between any
two of the three factors (rows, columns, and treatments). We also know
that in a Latin square arrangement, each row contains a unit from each
column, and vice versa. Hence, rows and columns are orthogonal. Further,
each treatment appears in each row once and each row contains each of
the treatments once; hence, treatments and rows are orthogonal. Similarly,
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columns and treatments are also orthogonal. In short, a Latin square is a set
up in which the three factors are mutually orthogonal

If we denote by R1, R2, · · · , Rt the row totals, C1, C2, · · · , Ct the column
totals and T1, T2, · · · , Tt the treatment totals in an t × t table, then, the
Analysis of Variance is of the form:

Correction factor =
Y 2

++

t2

Total SS = y2
11 + y2

12 + · · · + y2
tt − CF with (t2 − 1) d.f.

Rows SS =
R2

1 + R2
2 + · · · + R2

t

t
− CF with (t − 1) d.f.

Column SS =
C2

1 + C2
2 + · · · + C2

t

t
− CF with (t − 1) d.f.

Treatments SS =
T 2

1 + T 2
2 + · · · + T 2

t

t
− CF with (t − 1) d.f.

The error sums of squares is obtained by subtraction as

Error SS = Total SS−Row SS−Column SS−Treatments SS

with (t − 1)(t − 2) d.f.

For the 2 × 2, 3 × 3 and 4 × 4 Latin squares, there are 0, 2 and 6 degrees of
freedom associated with the error sum of squares, and with such few degrees
of freedom, in the error term, it is recommended that the Latin square be
repeated or another design used. Since the Latin square design requires as
many replicates as treatments, the design is seldom used for more than 10–12
treatments.

The main advantages of the Latin square is that with two-way stratification
or grouping, it controls more of the variation than the CRD or the RCBD.
The two-way elimination of variation often results in a smaller error mean
square, further the analysis is simple and remains so even with missing data
as analytical procedures are available for omitting one or more treatments,
rows or columns.
The structure of ANOVA Table in Latin Square design is displayed as:

Structure of ANOVA
Source d.f.
Rows t − 1
Cols t − 1
Trt t − 1

Error (t − 1)(t − 2)
Total (t2 − 1)

Example 12.2.1

In a digestion trial carried out with six shorthorn steers, each animal received
each of six rations in six successive periods, the experimental design being
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a Latin square. Coefficient of digestibility of nitrogen were calculated for
each animal for each period as follows in Table 12.1 (rations are indicated in
brackets after each value).

12.2.1 Analysis

We notice that the treatments A, B, C, D, E, F (rations) are arranged such
that the design is a Latin square because each treatment occurs once in each
row (steer) and once in each column (period).Here, there are 6×6 = 36 plots.

Total SS = 61.12 + 69.32 + 67.62 + · · · + 62.92 − CF = 704.75

Table 12.1 The 6 × 6 LS data for the example

Period

Steer I II III IV V VI Totals

1 61.1(B) 69.3(D) 67.6(C) 61.9(F) 58.8(A) 65.2(E) 383.9
2 56.9(A) 59.1(F) 64.0(D) 61.0(C) 65.7(E) 56.6(B) 363.3
3 66.5(C) 62.2(A) 61.1(E) 66.2(E) 62.0(F) 62.2(D) 380.2
4 66.7(E) 67.4(B) 65.1(F) 65.1(D) 69.6(C) 52.7(A) 386.6
5 67.8(D) 64.7(C) 63.6(E) 53.2(A) 61.7(B) 62.0(F) 373.0
6 71.4(F) 67.5(E) 55.8(A) 63.2(B) 68.0(D) 62.9(C) 388.8

Totals 390.4 390.2 377.2 370.6 385.8 361.6 2275.8

The treatments (Rations) totals are presented in the following:

A = 58.8 + 56.9 + 62.2 + 52.7 + 53.2 + 55.8 = 339.6

B = 61.1 + 56.6 + 61.1 + 67.4 + 61.7 + 63.2 = 371.1

C = 67.6 + 61.0 + 66.5 + 69.6 + 64.7 + 62.9 = 392.3

D = 69.3 + 64.0 + 62.2 + 65.1 + 67.8 + 68.0 = 396.4

E = 65.2 + 65.7 + 66.2 + 66.7 + 63.6 + 67.5 = 394.9

F = 61.9 + 59.1 + 62.0 + 65.1 + 62.0 + 71.4 = 381.5

Rows (Steer) SS =
383.92

6
+ · · · +

388.82

6
− CF = 76.87

Columns (Periods) SS =
390.42

6
+ · · · +

361.62

6
− CF = 112.94

Treatments (Rations) SS =
339.62 + · · · + 381.52

6
− CF = 392.16

Error (by subtraction) SS = Total − Row SS − Column SS − Treatment SS

= 122.78.

The analysis of variance table for the data in Table 12.1 is presented in
Table 12.2.
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Table 12.2 Analysis of variance table

Source d.f. SS MS F

Steers 5 76.87 15.37 2.50
Periods 5 112.94 22.59 3.68
Rations 5 392.16 78.43 12.78
Error 20 122.78 6.14

Total 35 704.75

F(5,20) at α = 0.05 = 2.71. Since 12.78 > 2.71, there are therefore significant
differences between the six ration means. Here, S2 = 6.14.

S.E. for comparing any two treatment means =

√
2S2

t
=

√
2 × 6.14

6
= 1.431.

Treatment means

1 2 3 4 5 6
56.6 61.85 65.38 66.07 65.82 63.58

t.05 with 20 d.f. = 2.086. Hence, LSD = 2.086 × 1.431 = 2.98.
Certainly, Rations 3, 4, 5 and 6 are not significantly different. However,

ration 1 is significantly different from ration 2 and consequently for rations
3–6. It should be noted that the LSD procedure is not encouraged when t > 4.

The above analysis is carried out in MINITAB with the following
commands.

MTB > SET C1
DATA> (1:6)6
DATA> END
MTB > SET C2
DATA> 6(1:6)
DATA> END
MTB > SET C4
DATA> 61.1 69.3 67.6 61.9 58.8 65.2
DATA> 56.9 59.1 64 61 65.7 56.6
DATA> 66.5 62.2 61.1 66.2 62 62.2
DATA> 66.7 67.4 65.1 65.1 69.6 52.7
DATA> 67.8 64.7 63.6 53.2 61.7 62
DATA> 71.4 67.5 55.8 63.2 68 62.9
DATA> END
MTB > PRINT C1-C4

Data Display

Row STEER PERIOD TRT Y

1 1 1 B 61.1
2 1 2 D 69.3
3 1 3 C 67.6
4 1 4 F 61.9
5 1 5 A 58.8
6 1 6 E 65.2
7 2 1 A 56.9
8 2 2 F 59.1
9 2 3 D 64.0
10 2 4 C 61.0
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TRT Mean SE Mean
A 56.60 1.012
B 61.85 1.012
C 65.38 1.012
D 66.07 1.012
E 65.82 1.012
F 63.58 1.012

MTB > GLM ’Y’ = STEER PERIOD TRT;
SUBC> Brief 1 ;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus STEER, PERIOD, TRT

Factor Type Levels Values
STEER 6
PERIOD 6
TRT fixed

fixed
fixed

6

1 2 3 4 5 6
1 2 3 4 5 6
A B C D E F

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
STEER 5 76.867 76.867 15.373 2.50 0.065
PERIOD 5 112.943 112.943 22.589 3.68 0.016
TRT 5 392.157 392.157 78.431 12.78 0.000
Error 20 122.783 122.783 6.139
Total 35 704.750

Least Squares Means for Y

11 2 5 E 65.7
12 2 6 B 56.6
13 3 1 C 66.5
14 3 2 A 62.2
15 3 3 B 61.1
16 3 4 E 66.2
17 3 5 F 62.0
18 3 6 D 62.2
19 4 1 E 66.7
20 4 2 B 67.4
21 4 3 F 65.1
22 4 4 D 65.1
23 4 5 C 69.6
24 4 6 A 52.7
25 5 1 D 67.8
26 5 2 C 64.7
27 5 3 E 63.6
28 5 4 A 53.2
29 5 5 B 61.7
30 5 6 F 62.0
31 6 1 F 71.4
32 6 2 E 67.5
33 6 3 A 55.8
34 6 4 B 63.2
35 6 5 D 68.0
36 6 6 C 62.9
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The Tukey simultaneous tests (not displayed above) indicate that while treat-
ment A is significantly different from the other treatments (B, C, D, E, F),
the latter treatments are not significantly different from one another. This
agrees with our earlier conclusion and the results from Tukey are presented
as follows.

μD μE μC μF μB μA
66.07 65.82 65.38 63.58 61.85 56.60

Example 12.2.2

The plan below is for a Latin square experiment to test the efficiency of the
methods of dusting with sulphur in order to control stem rust of wheel.

B D E A C A = dusted before rains
C A B E D B = dusted after rain
D C A B E C = dusted once each week
E B C D A D = drifting once each week
A E D C B E = not dusted

Drifting means that the dust was allowed to settle over the plan from above, as
in airplane dusting. The plot yield in pounds per acre are given in Table 12.3.

Table 12.3 Yields in a Latin square experiment

Rows 1 2 3 4 5

1 4.9 6.4 3.3 9.5 11.8
2 9.3 4.0 6.2 5.1 5.4
3 7.6 15.4 6.5 6.0 4.6
4 5.3 7.6 13.2 8.6 4.9
5 9.3 6.3 11.8 15.9 7.6

Total 36.4 39.7 41.0 45.1 34.3

We can summarize the row and treatment totals in the following table.

Row Treatment
totals Treatment Totals mean

35.9 A 34.2 6.84
30.0 B 32.3 6.46
40.1 C 65.6 13.12
39.6 D 39.8 7.9
50.9 E 24.6 4.92

196.5 196.5

Calculations of the sums of squares are as follows:

Total CF =
G2

t2
=

196.52

25
= 1544.49

Total SS = 1829.83 − CF = 285.34
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Rows SS =
35.92 + 30.02 + · · · + 50.92

5
− CF = 1591.16 − CF = 46.67

Columns SS = 36.42 + 39.72 + · · · + 34.32 − CF = 1558.51 − CF = 14.02

Error SS = 122.78.

Hence, the analysis of variance Table is as presented in Table 12.4.

Table 12.4 Analysis of variance table for data in Table 12.3

Source d.f. SS MS F

Rows 4 44.67
Columns 4 14.02

Treatments 4 196.61 49.15 21.0∗∗

Error 12 28.04 2.337

Total 24 285.34
∗∗ Significant at α = 0.01

S.E. for comparing any two treatment means equals
√

2 × 2.337
5

= 0.967.

With an LSD at α = 0.05 = 2.11 and on examining the means, we see that
the significance of the treatment mean square is due chiefly to treatment C
which is much more effective than any of the others.
The MINITAB implementation of the analysis is presented as follows.

MTB > SET C1
DATA> (1:5)5
DATA> END
MTB > SET C2
DATA> 5(1:5)
DATA> END
MTB > SET C4
DATA> 4.9 6.4 3.3 9.5 11.8 9.3 4 6.2 5.1 5.4
DATA> 7.6 15.4 6.5 6 4.6 5.3 7.6 13.2 8.6 4.9
DATA> 9.3 6.3 11.8 15.9 7.6
DATA> END
MTB > GLM ’Y’ = ROWS COLS TRT;
SUBC> Brief 1 ;
SUBC> Means TRT;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus ROWS, COLS, TRT

Factor Type Levels Values
ROWS fixed 5
COLS fixed 5
TRT fixed 5

1 2 3 4 5
1 2 3 4 5
A B C D E
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Least Squares Means for Y

TRT Mean SE Mean
A 6.840 0.6837
B 6.460 0.6837
C 13.120 0.6837
D 7.960 0.6837
E 4.920 0.6837

Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of TRT

TRT = A subtracted from:

Level
TRT of Means

SE of
T-Value

Adjusted
P-Value

B -0.380 0.9669 -0.393 0.9943
C 6.280 0.9669 6.495 0.0002
D 1.120 0.9669 1.158 0.7736
E -1.920 0.9669 -1.986 0.3283

TRT = B subtracted from:

Level
TRT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

C 6.660 0.9669 6.888 0.0001
D 1.500 0.9669 1.551 0.5517
E -1.540 0.9669 -1.593 0.5283

TRT = C subtracted from:

Level
TRT

Difference SE of
Difference T-Value

Adjusted
P-Value

D -5.160 0.9669 -5.337 0.0014
E -8.200 0.9669 -8.481 0.0000

TRT = D subtracted from:

Level
TRT

Difference
of Means

of Means

SE of
T-Value

Adjusted
P-Value

E -3.040 0.9669 -3.144 0.0538

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
ROWS 4 46.668 46.668 11.667 4.99 0.013
COLS 4 14.020 14.020 3.505 1.50 0.263
TRT 4 196.608 196.608 49.152 21.03 0.000
Error 12 28.044 28.044 2.337
Total 24 285.340

Difference
Difference

Difference
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The results from Tukey’s tests above can be succinctly summarized in
Table 12.5.

Table 12.5 Summary of Tukey’s tests for the means
μC μD μA μB μE

13.120 7.960 6.840 6.460 4.920

12.3 Missing Values in Latin Square Designs

With one missing value the analysis of the Latin square design is relatively
not complicated. Suppose the yield on the plot in row i and column j is
missing and this plot received treatment k, then for a t × t Latin square, an
estimate of the missing yield (plot) is

Y ∗
ijk =

tR
′

i + tC
′

j + tT
′

k − 2G
′

(t − 1)(t − 2)
(12.2)

where the primes indicate totals for the row, column and treatment with the
missing value and G

′
is the grand total with the missing value.

As in the randomized block design, we may replace the missing yield with
this quantity and perform the analysis of variance exactly as above with the
modifications that both error and total degrees of freedom are reduced by
one each. That is, the error degree of freedom becomes (t − 1)(t − 2) − 1 =
t2 − 3t + 1 while that for total becomes t2 − 2.

Example 12.3.1

Suppose in Example 12.2.1, the yield in row (steer) 4, column (Period) V is
missing. This corresponds to the yield for treatment C. Hence,

R
′

4 = 386.6 − 69.6 = 317.0

C
′

5 = 385.8 − 69.6 = 316.2

T
′

C = 3923.3 − 69.6 = 322.7

G
′
= 2275.8 − 69.6 = 2206.2.

If we had not known this value before hand, and we have had to estimate it,
we would have the above totals for the fourth row and fifth column in which
the missing plot occurs, and the total as it affects the treatment concerned
in T

′

C . Hence, from Eq. (12.2), we have

Y ∗
45C =

6(317.0 + 316.2 + 322.7) − 2(2206.2)
5 × 4

=
6(955.9) − 4412.4

20
= 66.2.
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Hence, an estimate of the missing value is 66.2 (compare with the true value
of 69.6)

R4 = 317.0 + 66.2 = 383.2

C5 = 316.2 + 66.2 = 382.4

TC = 322.7 + 66.2 = 388.9

G
′
= 2206.2 + 66.2 = 2272.4

CF =
2272.42

36
= 143438.94.

Hence, the total, row, column, treatments and errors SS are computed giv-
ing the following results and the corresponding analysis of variance table in
Table 12.6.

Total SS = 672.58

Rows (Steer) SS = 70.20

Columns (Periods) SS = 107.182

Treatments (Rations) SS = 379.03

Error SS = 116.17

Note the reduction in both the error and total degrees of freedom by 1. This
is so because we have estimated one parameter Y45 C from the data. If two
missing values have been estimated, the reductions could have been by 2
degrees of freedom each and so on.

The estimated standard error of the difference between the corresponding
treatment (C) mean and the mean of a treatment with no missing values is

Table 12.6 Analysis of variance table of a missing value

Source d.f. SS MS F

Steers 5 70.200
Periods 5 107.182
Rations 5 379.030 75.81 12.41
Error 19 116.17 6.11 = S2

Total 34 672.58

=

√

S2

[
2
t

+
1

(t − 1)(t − 2)

]

=

√

6.11
[
2
6

+
1
20

]

= 1.53.



12.4 Graeco–Latin Square Designs 461

The missing value analysis is carried out in MINITAB by declaring that the
missing cell is blank (*), and then carry out the analysis as usual. MINITAB
will adjust both the total and error degrees of freedom appropriately. The
output from the implementation is presented as follows.

................
20 4 67.4
21 4 65.1
22 4 65.1
23 4 *
24 4 52.7
25 5 67.8
26 5 64.7
27 5 63.6
................

General Linear Model: Y versus STEER, PERIOD, TRT

Factor Type Levels Values
STEER fixed 6
PERIOD fixed 6
TRT fixed 6

1
1
A

2 3 4 5 6
2 3 4 5 6
B C D E F

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
STEER 5 66.989 69.342 13.868 2.27 0.089
PERIOD 5 104.920 106.596 21.319 3.49 0.021
TRT 5 374.759 374.759 74.952 12.26 0.000
Error 19 116.171 116.171 6.114
Total 34 662.839

Least Squares Means for Y

TRT Mean SE Mean
A 56.60 1.009
B 61.85 1.009
C 64.81 1.151
D 66.07 1.009
E 65.82 1.009
F 63.58 1.009

12.4 Graeco–Latin Square Designs

Graeco–Latin squares are Latin squares in which for a given t×t Latin square,
a second t × t Latin square of treatments which are denoted by Greek letters
are superimposed.

The Graeco–Latin square properties are exemplified simply by the 3 × 3
Latin square below in Table 12.7.

Table 12.7 A 3 × 3 Graeco–Latin square design

Aα Bβ Cγ

Bγ Cα Aβ

Cβ Aγ Bα
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In the above arrangement, every Latin letter (A, B, C) occurs once in each
row and once in each column, each Greek letter (α, β, γ) occurs once in each
row and once in each column and each Greek letter occurs once and only
once with each Latin letter. The squares (A, B, C) and (α, β, γ) are said to
be orthogonal and the design is called a Graeco–Latin square.

Graeco–Latin squares of side t exist when t is a prime number (i.e., a
number that can only be divided by 1 or itself) or a power of a prime.
Example, 3 is a prime number, hence a 3 × 3 G–L square exists. 2 is also a
prime number, so a 22 or 32 G–L squares exists, that is, a 4× 4 or 9× 9 G–L
squares. Example of a 4×4 Graeco–Latin square is shown below in Table 12.8.

Table 12.8 A 4 × 4 Graeco–Latin (G-L) square design

Aα Bβ Cγ Dδ

Bδ Aγ Dβ Cα

Cβ Dα Aδ Bγ

Dγ Cδ Bα Aβ

As in the 3 × 3 case, the Latin and Greek letters each form a Latin square.
Further each Greek letter occurs once and only once with each Latin letter.
Hence, by property of Graeco–Latin, the above design is a Graeco–Latin
Square.

Example 12.4.1

In an experiment involving maize of different varieties, it was considered that
the spacing of the maize could influence yield. So five spacing methods were
studied in addition to five varieties of maize and five locations, as well as five
fertilizer treatments. A Graeco–Latin square design was chosen for the study
and the yield of maize per hectare are presented in Table 12.9.

Table 12.9 Yield of varieties for the example

Variety I II III IV V

1 β C 5.65 δ D 7.68 α E 8.75 γ B 4.32 φ A 5.27
2 φ B 3.79 γ C 8.35 β D 4.98 α A 5.94 δ E 7.50
3 γ E 8.12 β A 6.27 δ B 4.22 φ D 7.29 α C 4.71
4 δ A 7.93 α B 4.77 φ C 6.92 β E 8.48 γ D 6.51
5 α D 4.85 φ E 8.88 γ A 8.45 δ C 4.49 β B 4.88

where

Rows = the varieties

Columns = the locations

Latin letters = the fertilizer type

Greek letters = the spacings.

We have decided to employ the MINITAB for this analysis.
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MTB > SET C1
DATA> (1:5)5
DATA> END
MTB > SET C2
DATA> 5(1:5)
DATA> END
MTB > SET C5
DATA> 5.65 7.68 8.75 4.32 5.27
DATA> 3.79 8.35 4.98 5.94 7.50
DATA> 8.12 6.27 4.22 7.29 4.71
DATA> 7.93 4.77 6.92 8.48 6.51
DATA> 4.85 8.88 8.45 4.49 4.88
DATA> END
MTB > PRINT C1-C5

Data Display

Row VARIETY LOCATION SPACING FERT Y

1 1 1 beta C 5.65
2 1 2 delta D 7.68
3 1 3 alpha E 8.75
4 1 4 gamma B 4.32
5 1 5 phi A 5.27
6 2 1 phi B 3.79
7 2 2 gamma C 8.35
8 2 3 beta D 4.98
9 2 4 alpha A 5.94
10 2 5 delta E 7.50
11 3 1 gamma E 8.12
12 3 2 beta A 6.27
13 3 3 delta B 4.22
14 3 4 phi D 7.29
15 3 5 alpha C 4.71
16 4 1 delta A 7.93
17 4 2 alpha B 4.77
18 4 3 phi C 6.92
19 4 4 beta E 8.48
20 4 5 gamma D 6.51
21 5 1 alpha D 4.85
22 5 2 phi E 8.88
23 5 3 gamma A 8.45
24 5 4 delta C 4.49
25 5 5 beta B 4.88

MTB > GLM ’Y’ = VARIETY LOCATION SPACING FERT;
SUBC> Brief 1 ;
SUBC> Means VARIETY LOCATION SPACING FERT.

General Linear Model: Y versus VARIETY, LOCATION, SPACING,FERT

Factor Type Levels Values
VARIETY fixed
LOCATION fixed

5
5

SPACING fixed
FERT fixed

5
5

5
5

1 2 3 4
1 2 3 4
alpha beta delta gamma phi
A B C D E
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Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
VARIETY 4 2.186 2.186 0.546 0.34 0.843
LOCATION 4 6.378 6.378 1.594 0.99 0.464
SPACING 4 5.165 5.165 1.291 0.80 0.555
FERT 4 40.469 40.469 10.117 6.30 0.014
Error 8 12.839 12.839 1.605
Total 24 67.036

Least Squares Means for Y

VARIETY Mean SE Mean
1 6.334 0.5665
2 6.112 0.5665
3 6.122 0.5665
4 6.922 0.5665
5 6.310 0.5665

LOCATION
1 6.068 0.5665

7.190 0.5665
6.664 0.5665
6.104 0.5665
5.774 0.5665

5.804 0.5665
6.052 0.5665
6.364 0.5665
7.150 0.5665
6.430 0.5665

6.772 0.5665
4.396 0.5665
6.024 0.5665
6.262 0.5665

2
3
4
5

SPACING
alpha
beta
delta
gamma
phi

FERT
A
B
C
D
E 8.346 0.5665

The above results indicate that there are no significant differences between (i)
the means of varieties, (ii) the means of locations and (iii) spacing. However,
there are significant differences between the means of the fertilizers, the p
value being 0.014. However, Tukey’s test prove inconclusive (see below) and
we may state here that there does not seem to be an overwhelming significant
difference between the five variety means.

Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of FERT

FERT = A subtracted from:

Level
FERT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

B -2.376 0.8012 -2.966 0.0976
C -0.748 0.8012 -0.934 0.8762
D -0.510 0.8012 -0.637 0.9645
E 1.574 0.8012 1.965 0.3598
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FERT = B subtracted from:

Level
FERT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

C 1.628 0.8012 2.032 0.3320
D 1.866 0.8012 2.329 0.2290
E 3.950 0.8012 4.930 0.0074

FERT = C subtracted from:

Level
FERT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

D 0.2380 0.8012 0.2971 0.9979
E 2.3220 0.8012 2.8981 0.1070

FERT = D subtracted from:

Level
FERT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

E 2.084 0.8012 2.601 0.1600

12.4.1 The Completely Orthogonalized Square

If t is a prime or a power of a prime, there exists a t × t squares with each
cell containing a letter of each of (t − 1) languages, such that the letters of
any two languages form a square with the Graeco–Latin square property. An
example is displayed in Table 12.10.

Note that the Latin letters, the Greek letters and the numerals have the
Latin square property, and also the Latin and Greek letters form a Graeco–
Latin square, as do the Latin letters and numerals, and that the Greek
letters and numerals have the Graeco–Latin square property. Correspond-
ing to the existence of a completely orthogonalized square of side t, there
exists a very useful partitioning of t2 plots. There are in general, (t + 1)
groups of partitioning, namely,

Table 12.10 A 4 × 4 Completely orthogonalized square

A1 α B2 β C3 γ D4 δ

B4 γ A3 δ D2 α C1 β

C2 δ D1 γ A4 β B3 α

D3 β C4 α B1 δ A2 γ

Group d.f.

1 Rows t − 1
2 Columns t − 1
3 Latin Letters t − 1
4 Greek Letters t − 1
5 Numerals t − 1

Error (t − 1)(t − 6)

Total t2 − 1
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While for the 3×3 Graeco–Latin square in Table 12.7, there are 3 − 1 = 2 lan-
guage letters, i.e., the square in Table 12.7 is also a completely orthogonalized
square with the following ANOVA structure

Group d.f.

Rows 2
Columns 2
Latin Letters 2
Greek Letters 2
Error 0

Total 8

Note that the error d.f = 0 and hence, the error mean square can not be
estimated for this design. For this reason, multiples of this set up or t > 3
Graeco–Latin squares are always used. We also note that with this, there are
(3 + 1) = 4 groupings.

Example 12.4.2

In Sir Ronald A. Fisher’s book entitled “The Design of Experiments,” the
following puzzle is given.

Sixteen passengers on a liner discover that they are an exceptionally represen-
tative body. Four are Englishmen, four are Scots, four are Irish, and four are
Welsh. There are also four each of four different ages, 35, 45, 55 and 65 and
no two of the same age are of the same nationality. By profession also four
are lawyers, four soldiers, four doctors and four clergymen, and no two of the
same profession are of the same age or of the same nationality”. It appears,
also that four are bachelors, four married, four widowed and four divorced, and
that no two of the same marital status are of the same profession, or the same
age, or the same nationality. Finally, four are conservatives, four Liberals, four
Socialists and four fascists, and no two of the same political sympathies are of
the same marital status, or the same profession or the same age, or the same
nationality.”

(i) Three of the fascists are known to be an unmarried English lawyer of 65,
a married Scots soldier of 55 and a widowed Irish doctor of 45. It is then
easy to specify the remaining fascist.

(ii) It is further given that the Irish socialist is 35, the conservative of 45 is a
Scotsman, and the English man of 55 is a clergyman.

What do you know of the Welsh Lawyer?
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Solution

Marital Nationality Political
(Row) (Column) Profession sympathy Age

1. Divorced 1. Englishman A. Soldier α. Liberal 1. 45
2. Widowed 2. Scot B. Clergyman β. Socialist 2. 55
3. Married 3. Irish C. Doctor γ. Conservative 3. 35
4. Bachelor 4. Welsh D. Lawyer δ. Fascist 4. 65

The above puzzle can be solved by the use of a completely orthogonalized
Latin square of side 4 we encourage readers to solve this as an exercise.

Marital Nationality

status 1 2 3 4

1 A1 α C4 β D2 γ B3 δ

2 B2 β D3 α C1 δ A4 γ

3 C3 γ A2 δ B4 α D1 β

4 D4 δ B1 γ A3 β C2 α

12.4.2 Relative Efficiencies of Latin Square Design

We present the following for computing the efficiencies of the Latin square de-
sign relative to the completely randomized design (CRD) and the randomized
complete block design (RCBD) respectively.

(i) RE(LS, CRD)

RE =
MSECR

MSELS
=

MSR + MSC + (t − 1)MSE

(t + 1)MSE
. (12.3)

(ii) RE(LS, RCBDcol)

RE =
MSERCBD

MSELS
=

MSR + (t − 1)MSE

t MSE
. (12.4)

(iii) RE(LS, RCBDrow)

RE =
MSERCBD

MSELS
=

MSC + (t − 1)MSE

t MSE
. (12.5)

The expression in (12.4) is the relative efficiency of the Latin square design to
the RCBD with columns of the Latin square employed as blocks in the RCBD.
Similarly, the expression in (12.5) is the corresponding relative efficiency of
the Latin square design to the RCBD with rows of the Latin square employed
as blocks in the RCBD. As an example, consider the data in Table 12.1,
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here t = 6 and from the analysis of variance table presented in Table 12.2
displayed on p. 344, we have MSE = 6.14, MSER = 15.37, MSEC = 22.59
and therefore,

RE(LS, CRD) =
15.37 + 22.59 + 5(6.14)

7(6.14)
=

68.66
42.98

= 1.60

RE(LS, RBDcol) =
15.57 + 5(6.14)

6(6.14)
=

46.27
36.84

= 1.26

RE(LS, RBDrow) =
22.59 + 5(6.14)

6(6.14)
=

53.29
36.84

= 1.45.

Clearly, the Latin square design is much more efficient than the CRD and
26 % more efficient than the RCBD if the columns were used as blocks in a
RCBD, while it is 45 % more efficient than the RCBD if the rows were used
as blocks—ignoring columns.

12.5 Multiple Latin Squares

We recall that for Latin squares design with t treatments the error degrees
of freedom is always (t − 1)(t − 2) if there are no missing values. One
disadvantage of the Latin square design, however, is that by eliminating two
sources of variation, we inevitably reduce the degrees of freedom available for
estimating the remaining unexplained random variations of the error and this
leads to comparisons of treatment means to be less precise. That is, fewer
degrees of freedom are available. For example, for the 3 × 3 design, we have
2 × 1 degrees of freedom for error which is quite small.

One way of overcoming this difficulty while retaining the advantage of two
blocking factors, is to use more than one Latin square which will more than
double the degrees of freedom available for error.

This is usually accomplished by adopting one of the two designs below.

(a) The two (or more) squares are treated entirely independent of each other;
we shall illustrate this with a 3 basic design. This usually occurs in say a
field experiment where two Latin squares are employed in two separate
locations of the trial. The layout can be of the following form:

Column

Row 1 2 3 4 5 6

1 B A C
2 C B A
3 A C B
4 C B A
5 B A C
6 A C B
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In the above design, there are therefore completely separate squares and
the rows (or columns) in the separate squares have no relation with each
other.

B A C

C B A

A C B

C B A

B A C

A C B

)ii()i(

The analysis of variance of the above layout is summarized below. Let G1
and G2 be the total sum of the yields in squares (1) and (2), respectively.
Let T1, T2 and T3 be the treatment totals from six plots each (three from
each square) corresponding, respectively, to treatments A, B, C. Then,
the analysis of variance table takes the form

Source d.f. SS

Between squares 1 G2
1

9 + G2
2

9 − (
∑

x)2

18

Rows 4 (Row SS)(i) + (Row SS)(ii)

Columns 4 (Column SS)(i) + (Column SS)(ii)

Treatments 2 T 2
1 +T 2

2 +T 2
3

6 − (
∑

x)2

18

Error 6 By subtraction

Total 17
∑

x2 − (
∑

x)2

18

Of course, if there are more than two squares (say b), squares of size t,
then the corresponding degrees of freedom become

b = 2 b = 3 b = 3
d.f. t = 3 t = 3 t = 4

Between squares b − 1 1 2 2
Rows (Sq) b(t − 1) 4 6 9

Columns (Sq) b(t − 1) 4 6 9
Treatments (t − 1) 2 2 3

Error (t − 1)(bt − b − 1) 6 10 24

Total bt2 − 1 17 26 47

We give corresponding degrees of freedom for the cases when b = 2, and
t = 3 in column 3 and b = 3 and t = 3, 4 in columns 4 and 5, respectively.
The calculations of the sum of squares is also similar to that of the two
3 × 3 squares discussed earlier. If we assume that there is an interaction
between Square and treatment as would be the case if we consider each
3 × 3 Latin square is laid out either at the same location, or different
locations or different years. However, to have such a combined analysis,
we must demonstrate that the error variances for each Latin square
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are homogeneous (see Chap. 20). In this case, the square–treatment
interaction degrees of freedom will be (b − 1)(t − 1) and the error d.f.
will be reduced accordingly.

(b) The second method considers the two (or more) squares being amalga-
mated to form a “rectangle” in which each treatment appears once in
each column and twice (or more) in each row.
The two squares are written down initially and then randomization of
rows and columns, and allocation of treatments proceeds as before except
that now we have six columns (for our example) and not two distinct sets
of three columns each. The layout is given below for our 3 × 3 example.

B A A C B C

C B C B A A

A C B A C B

The analysis of variance table takes the following form for this design.

Source d.f. SS

Rows 2
R2

1 + R2
2 + R2

3

6
− (

∑
x)2

18

Columns 5
C2

1 + C2
2 + · · · + C2

6

3
− (

∑
x)2

18

Treatments 2
T 2
1 + T 2

2 + T 2
3

6
− (

∑
x)2

18
Error 8 by subtraction

Total 17
∑

x2 − (
∑

x)2

18

Similarly if there are b such (t × t) squares, we give below the corresponding
degrees of freedom.

b = 2 b = 3
t = 3 t = 4

Rows (t − 1) 2 3
Columns (bt − 1) 5 11

Treatments (t − 1) 2 3
Error (t − 1)(bt − 2) 8 30

Total bt2 − 1 17 47

We notice that there are more degrees of freedom for error in design (b)
than in design (a). This superiority of (b) is true for all sizes of the Latin
square. Not surprisingly of course, both designs are equivalent when b = 1
that is, when we have a single t × t Latin square for the experiment. We give
a practical example of a multiple Latin square experiment below.
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12.5.1 Example

The example comes from Mead and Curnow (1983) and relates to an exper-
iment to compare the effects of four light treatments, A, B, C, and D on the
synthesis of mosaic virus in several tobacco leaves. The experiment was ar-
ranged in two Latin squares and leaves from four positions for eight tobacco
plants formed a 4×8 rectangular Latin squares after appropriate randomiza-
tion. the dependent variable is sap from the 32 leaves, which were assayed on
leaves of test plants and the square root of the number of lesions appearing
are taken as a measure of the treatment effects. The data is presented in
Table 12.11.

Table 12.11 Sap from 32 leaves. (Source: Mead et al.)

Plant 1 2 3 4 5 6 7 8
Leaf

position

1 45.4 (A) 32.2 (D) 34.6 (B) 42.4 (C) 38.1 (C) 30.8 (A) 58.4 (B) 32.2 (D)
2 33.4 (B) 47.6 (B) 44.0 (D) 38.6 (D) 27.2 (A) 44.9 (C) 24.8 (A) 36.4 (C)
3 45.6 (C) 32.0 (A) 42.4 (C) 37.8 (A) 40.8 (B) 50.8 (D) 46.2 (D) 28.2 (B)
4 42.7 (D) 34.0 (C) 39.0 (A) 41.6 (B) 35.8 (D) 39.3 (B) 45.8 (C) 30.4 (A)

MTB > Set C1
DATA> 4( 1 : 8 / 1 )1
DATA> End.
MTB > Set C2
DATA> 1( 1 : 4 / 1 )8
DATA> End.
MTB > SET C3
DATA> 45.4 32.2 34.6 42.4 38.1 30.8 58.4 32.2
DATA> 33.4 47.6 44 38.6 27.2 44.9 24.8 36.4
DATA> 45.6 32 42.4 37.8 40.8 50.8 46.2 28.2
DATA> 42.7 34 39 41.6 35.8 39.3 45.8 30.4
DATA> END
MTB > SET C4
DATA> 1 4 2 3 3 1 2 4 2 2 4 4 1 3 1 3
DATA> 3 1 3 1 2 4 4 2 4 3 1 2 4 2 3 1
DATA> END
MTB > print c1-c4

Data Display

Row PLANT POSITION Y TRT
1 1 1 45.4 1
2 2 1 32.2 4
3 3 1 34.6 2
4 4 1 42.4 3
5 5 1 38.1 3
6 6 1 30.8 1
7 7 1 58.4 2
8 8 1 32.2 4
9 1 2 33.4 2
10 2 2 47.6 2
11 3 2 44.0 4
12 4 2 38.6 4
13 5 2 27.2 1
14 6 2 44.9 3
15 7 2 24.8 1
16 8 2 36.4 3
17 1 3 45.6 3
18 2 3 32.0 1
19 3 3 42.4 3
20 4 3 37.8 1
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23 7 3 46.2 4
24 8 3 28.2 2
25 1 4 42.7 4
26 2 4 34.0 3
27 3 4 39.0 1
28 4 4 41.6 2
29 5 4 35.8 4
30 6 4 39.3 2
31 7 4 45.8 3
32 8 4 30.4 1

MTB > GLM ’Y’ = PLANT POSITION TRT;
SUBC> Brief 2 ;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus PLANT, POSITION, TRT

Factor Type Levels Values
PLANT fixed 8 1, 2, 3, 4, 5, 6, 7, 8
POSITION fixed 4 1, 2, 3, 4
TRT fixed 4 1, 2, 3, 4

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
PLANT 7 438.22 438.22 62.60 1.24 0.333
POSITION 3 47.24 47.24 15.75 0.31 0.817
TRT 3 318.19 318.19 106.06 2.10 0.136
Error 18 909.89 909.89 50.55
Total 31 1713.54

S = 7.10980 R-Sq = 46.90% R-Sq(adj) = 8.55%

Unusual Observations for Y

Obs Y Fit SE Fit Residual St Resid
7 58.4000 45.8375 4.7027 12.5625 2.36 R
10 47.6000 36.3375 4.7027 11.2625 2.11 R
15 24.8000 36.6250 4.7027 -11.8250 -2.22 R

R denotes an observation with a large standardized residual.

22 6 3 50.8 4
21 5 3 40.8 2

The analysis of this rectangular Latin squares design indicates that there
are no significant differences between the treatments at α = 0.05 level of
significance. Although there is no need for the Tukey’s simultaneous tests,
the results from these tests also indicate no significant differences between
the means of the four treatments.
Suppose the design has been as displayed below.

Plant 1 7 4 8 6 3 5 2
Square 1 Square 2

Leaf
position

1 45.4 (A) 58.4 (B) 42.4 (C) 32.2 (D) 30.8 (A) 34.6 (B) 38.1 (C) 32.2 (D)
2 33.4 (B) 24.8 (A) 38.6 (D) 36.4 (C) 44.9 (C) 44.0 (D) 27.2 (A) 47.6 (B)
3 45.6 (C) 46.2 (D) 37.8 (A) 28.2 (B) 50.8 (D) 42.4 (C) 40.8 (B) 32.0 (A)
4 42.7 (D) 45.8 (C) 41.6 (B) 30.4 (A) 39.3 (B) 39.0 (A) 35.8 (D) 34.0 (C)
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In the above data, the column sequence is now 1, 7, 4, 8 forming the first
square and columns 6, 3, 5, 2 forming the second square. Now within each
square, each treatment occurs once in each row and once in each column, thus
forming two clearly defined two squares design. The analysis of this structure
is presented with the MINITAB below.

MTB > print c1-c5

Data Display

Row SQR ROWS COLS TRT Y
1 1 1 1 1 45.4
2 1 1 2 2 58.4
3 1 1 3 3 42.4
4 1 1 4 4 32.2
5 2 1 5 1 30.8
6 2 1 6 2 34.6
7 2 1 7 3 38.1
8 2 1 8 4 32.2
9 1 2 1 2 33.4
10 1 2 2 1 24.8
11 1 2 3 4 38.6
12 1 2 4 3 36.4
13 2 2 5 3 44.9
14 2 2 6 4 44.0
15 2 2 7 1 27.2
16 2 2 8 2 47.6
17 1 3 1 3 45.6
18 1 3 2 4 46.2
19 1 3 3 1 37.8
20 1 3 4 2 28.2
21 2 3 5 4 50.8
22 2 3 6 3 42.4
23 2 3 7 2 40.8
24 2 3 8 1 32.0
25 1 4 1 4 42.7
26 1 4 2 3 45.8
27 1 4 3 2 41.6
28 1 4 4 1 30.4
29 2 4 5 2 39.3
30 2 4 6 1 39.0
31 2 4 7 4 35.8
32 2 4 8 3 34.0

MTB > GLM ’Y’ = SQR ROWS( SQR) COLS( SQR) TRT;
SUBC> Brief 2 ;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus SQR, TRT, ROWS, COLS

Factor Type Levels Values
SQR fixed 2
ROWS(SQR) fixed 8
COLS(SQR) fixed 8
TRT fixed 4

1 , 2
1 , 2 , 3, 4, 1, 2, 3, 4
1 , 2 , 3, 4, 5, 6, 7, 8
1 , 2 , 3, 4

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
SQR 1 8.40 8.41 8.41 0.23 0.638
ROWS(SQR) 6 410.65 410.65 68.44 1.88 0.151
COLS(SQR) 6 429.82 429.82 71.64 1.97 0.135
TRT 3 318.19 318.19 106.06 2.91 0.069
Error 15 546.47 546.47 36.43
Total 31 1713.54

S = 6.03587 R-Sq = 68.11% R-Sq(adj) = 34.09%



474 12 Multiple Blocking Designs

TRT Mean SE Mean
A 33.43 2.134
B 2.134
C

40.49
41.20 2.134

D 40.31 2.134

Unusual Observations for Y

Obs Y Fit SE Fit Residual St Resid
12 36.4000 28.0750 4.3994 8.3250 2.01 R

R denotes an observation with a large standardized residual.
Least Squares Means for Y

Here, as in the previous design, there does not seem to be any significant dif-
ferences between the means of the four treatments. We note here the changes
in the degrees of freedom for the second design particularly, for the error
term. However, the second design has a smaller estimate for s2 indicating
that it will be more efficient than the former design.

12.6 Crossover Designs

One of the most common uses of crossover and Latin square design is in
experiments in which the different treatments are applied in sequence to
the same subject, animal or plot and the treatment effects are assumed to
continue to the next period. The rows of the square represent the successive
periods of application, while the columns represent the subjects, animals or
plots. Previous analysis in this chapter assumes that there is no residual or
carryover effect of any treatment into the succeeding period. Where there
seems to be some risk of residual or carryover effects, a common practice is
to separate any two periods of treatment by an interval of time long enough
for the residual effects to have died out.

To allow a long enough “rest period” is some times not feasible or un-
desirable on other grounds. In agricultural field experiments, we should not
want the rest period to be longer than the interval between the harvesting
of 1 year’s crop and the sowing of the next crop. In some dairy cow feeding
experiments, the whole experiment must be completed in one lactation, so
that the total time available for treatment periods plus rest periods is lim-
ited, and generally, the shorter the rest period, the sooner the experiment is
finished.

We shall illustrate a simple design that enables the residual effects to be
estimated.

Suppose that one wishes to utilize the following three merchandising
treatments:

A = a display of 4-lb polythene bags

B = a display of 6-lb polythene bags

C = a display of 8-pound polythene bags
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in determining the effect of size of bag on the sale of oranges in a supermarket.
Six stores from a city were selected for the study. The period of observation
on sales of oranges is for 1 week. If a person purchased two four-pound or one
eight-pound bag of oranges, it is possible that this would affect their purchase
of oranges during the following week, i.e., the effect of a treatment might last
for more than the treatment period. This would be called a residual effect of
the treatment. The sale of oranges for a given treatment above or below the
mean during the treatment period (i.e., the week the treatment was in the
super market) is the direct effect of the treatment. The following known as a
double changeover design was used.

Super markets

Week 1 2 3 4 5 6

1 A B C A B C
2 B C A C A B
3 C A B B C A

In the above, it will be noted that the treatment B follows A twice and
treatment A follows B twice. The same balance is attained for pairs A and
C and B and C.

The randomization procedure is to randomly allot the super markets to
the columns and the letters to the treatments. The rows are not randomized.
The statistical analysis is somewhat complicated because not all effects are
orthogonal. The design is useful in many types of experiments. The dairy
cow, the patient, the worker, the rate, the hospital etc. replace the super
market category, and the period of treatment replaces the week.

Designs like the above in which each treatment is preceded equally often
by each of the other treatments is said to be a balanced design with respect
to residual effects, although the balance is incomplete because a treatment is
never preceded by itself. The model here is:

Yijkh = μ + wi + sj(i) + ph(i) + tk + εijkh (12.6)

where

(i) wi = week or period i = 1, 2, 3 (weeks)
(ii) sj(i) = super markets within week j = 1, 2, · · · , 6 (supermarkets)
(iii) ph(i) = residual effect of treatment h in period or week i. h = 1, 2, 3

(carryover effects)
(iv) tk = treatment i = 1, 2, 3 (treatments)
(v) εijkh = random error term distributed N(0, σ2).

The design above with two orthogonal Latin squares, all ordered pairs of
treatments occur twice and only twice throughout the design. It is thus bal-
anced for residual effects. For designs with an even number of treatments,
e.g. 4, 6, etc, this can be accomplished with a single Latin square and such
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a design will be balanced. However, for odd number of treatments, e.g., 3,
5, 7, etc., a balanced design would require two orthogonal Latin squares. We
present below a standard balanced crossover designs for even numbered treat-
ments of 4 and 6 in Table 12.12 and a similar two orthogonal Latin squares
design for a typical odd numbered treatments t = 5 in Table 12.13. That for
t = 3 is earlier presented in our previous example.

Table 12.12 Balanced cross-over Latin squares designs for even numbered
treatments

Sequence Sequence

Period 1 2 3 4 Period 1 2 3 4 5 6

1 A B C D 1 A B C D E F
2 D A B C 2 C D E F A B
3 B C D A 3 B C D E F A
4 C D A B 4 E F A B C D

5 F A B C D E
6 D E F A B C

Table 12.13 Balanced cross-over design for five treatments

Sequence group I Sequence group 2

Period 1 2 3 4 5 6 7 8 9 10

1 A B C D E A B C D E
2 B C D E A C D E A B
3 D E A B C B C D E A
4 E A B C D E A B C D
5 C D E A B D E A B C

Example 12.6.1

The data in Table 12.14 come from an experiment on the feeding of dairy
cows, the treatments being as follows: A = Roughage; B = Limited grain; C
= Full grain. The results are the milk yields per period (3 weeks) (adapted
from Cochran and Cox 1957).

Table 12.14 Plan and milk yields per period

Period

Sequence Cow 1 2 3

1 1 A 38 B 25 C 15
2 B 109 C 86 A 39
3 C 124 A 72 B 27

2 1 A 86 C 76 B 46
2 B 75 A 35 C 34
3 C 101 B 63 A 1
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In the above design, 3n = 3 × 2 cows are assigned to the n = 2 sequences,
that is, 3 cows to each sequence. The periods correspond to the order in
which the treatments are applied. The above cross-over design has the model
formulation

Yijkh = μ + si + cj(i) + tk + ph + εijkl (12.7)

where

• μ is the general mean
• si is the fixed effect of the i sequence, i = 1, 2
• cj(i) is random effect of the jth cow in sequence i.
• tk is the fixed effect of the kth treatment, k = 1, 2, 3.
• ph is the fixed effect of the hth period, h = 1, 2, 3.
• εijkl is the random error term distributed normal with variance σ2

We have assumed in the crossover design model in (12.7) that there is no
interaction between the factor variables, treatments and period. If it is sus-
pected that there might be interaction, this would need to be included in the
above model. In the above example, since h = 3, we would refer the above
crossover design as a three-period crossover design.

We also note that this design is balanced and is similar to our earlier
design used for the experiment on the super market. We do note that
sequence 1 forms a 3 × 3 Latin square while sequence 2 also forms another
3 × 3 Latin square. Because the design is balanced, we can further refine our
model as in (12.8)

Yijkh = μ + si + cj(i) + ph(i) + tk + εijkh (12.8)

where in this model ph(i) is random effect of the hth period in sequence i.

Analysis

The analysis of crossover design data is better performed with a computer
software such as MINITAB or SAS. To implement the analysis in MINITAB
of the data in Table 12.14, the analysis is implemented in MINITAB with the
following statements. The data are read in C1–C5. The analysis of the data
using the model in (12.7) is presented in the following MINITAB OUTPUT.

Data Display
Row SEQ COW PERIOD TRT Y

1 1 1 1 A 38
2 1 2 1 B 109
3 1 3 1 C 124
4 2 4 1 A 86
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Least Squares Means for Y

SEQ

TRT Mean SE Mean
A 45.17 4.144
B 57.50 4.144
C 72.67 4.144

1 59.44 3.384
2 57.44 3.384

5 2 5 1 B 75
6 2 6 1 C 101
7 1 1 2 B 25
8 1 2 2 C 86
9 1 3 2 A 72
10 2 4 2 C 76
11 2 5 2 A 35
12 2 6 2 B 63
13 1 1 3 C 15
14 1 2 3 A 39
15 1 3 3 B 27
16 2 4 3 B 46
17 2 5 3 C 34
18 2 6 3 A 1

MTB > GLM ’Y’ = SEQ COW(SEQ) PERIOD TRT;
SUBC> Brief 1 ;
SUBC> Means TRT SEQ;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus SEQ, PERIOD, TRT, COW
Factor Type Levels Values
SEQ fixed
COW(SEQ) fixed
PERIOD fixed
TRT fixed

2
6
3
3

2
5 6

3

1
1 2 3 4
1 2
A B C

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
SEQ 1 18.0 18.0 18.0 0.17 0.687
COW(SEQ) 4 5763.1 5763.1 1440.8 13.98 0.001
PERIOD 2 11480.1 11480.1 5740.1 55.70 0.000
TRT 2 2276.8 2276.8 1138.4 11.05 0.005
Error 8 824.4 824.4 103.1
Total 17 20362.4

Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of TRT

TRT = A subtracted from:

Level
TRT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

B 12.33 5.861 2.104 0.1503
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TRT = B subtracted from:

Level
TRT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

C 15.17 5.861 2.588 0.0744

The sequences (cows) SS of 5781.1 on 5 d.f. obtained in our earlier ANOVA
table is obtained from the MINITAB output as the sum of SEQ SS and
the COW(SEQ) SS = 18 + 5763.1 = 5781.1 on 5 d.f. The appropriate F value
computation for sequence effect is obtained from

F =
SEQ MS

COW(SEQ) MS
=

18.0
1440.8

= 0.01.

In this case, the corresponding p-value for the effect of sequence is 0.9164
rather than the value of 0.687 presented in the above analysis of variance
table. The analysis indicates that, there are significant differences in the
adjusted means of treatments A, B, and C. The Tukey pairwise comparison
indicate that the only significant difference is between A and C. But B and
C are also not significantly different, hence this analysis is not conclusive.

On the other hand, the MINITAB output for the analysis based on revised
model (12.8) is again presented below. The error this time is based on 6 d.f.

MTB > GLM ’Y’ = SEQ COW(SEQ) PERIOD(SEQ) TRT;
SUBC> Brief 2 ;
SUBC> Means trt.

General Linear Model: Y versus SEQ, TRT, COW, PERIOD

Factor Type Levels Values
SEQ fixed 2
COW(SEQ) fixed 6
PERIOD(SEQ) fixed 6
TRT fixed 3

1 2
1 2 3 4 5 6
1 2 3 1 2 3
A B C

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

SEQ 1 18.0 18.0 18.0 0.13 0.728
COW(SEQ) 4 5763.1 5763.1 1440.8 10.60 0.007
PERIOD(SEQ) 4 11489.1 11489.1 2872.3 21.13 0.001
TRT 2 2276.8 2276.8 1138.4 8.38 0.018
Error 6 815.4 815.4 135.9
Total 17 20362.4

Least Squares Means for Y

TRT Mean SE Mean
A 45.17 4.759
B 57.50 4.759
C 72.67 4.759
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In both the analyses, the treatment effects are significant. We may note
here that the above analyses do not incorporate the carryover effects of the
treatments. We shall re-analyze the data to take account of the carryover
effects in the next section.

Example 12.6.2

The following example is from Mead (1992). In the experiment, patients
were given drugs on request. Three drugs were compared in the study and
each patient received two different drugs. The allocation of drugs to patients
at the first request was random but the allocation of drugs at the second
request, was given to ensure equality of drug replication. The allocation of
the second drug at the first request was also random. The results of the study
are presented in Table 12.15. The response Y is hours of relief from pain.

Table 12.15 Hours of relief from pain for each patient after each drug application

Patients

Seq. Period Drug 1 2 3 4 5 6 7 8

1 1 T1 2 6 4 13 5 8 4
2 T2 10 8 4 0 5 12 4

2 1 T2 2 0 3 3 0
2 T1 8 8 14 11 6

3 1 T1 6 7 6 8 12 4 4
2 T3 6 3 0 11 13 13 14

4 1 T3 6 4 4 0 1 8 2 8
2 T1 14 4 13 9 6 12 6 12

5 1 T3 12 1 5 2 1 4 6 5
2 T2 11 7 12 3 7 5 6 3

6 1 T2 0 8 1 4 2 2 1 3
2 T3 8 7 10 3 12 0 12 5

The analysis is again presented as follows. We may note here that there were
no sequences in the original data. The inclusion of the sequence variable
is very important in the analysis of the data. Because this design is not
balanced, we would use the model in (12.7) to analyze these data.

10 1 2 2 3 4

Data Display

Row SEQ PERIOD DRUG SUBJ Y

1 1 1 1 1 2
2 1 1 1 2 6
3 1 1 1 3 4
4 1 1 1 4 13
5 1 1 1 5 5
6 1 1 1 6 8
7 1 1 1 7 4
8 1 2 2 1 10
9 1 2 2 2 8
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Unusual Observations for Y

Obs Y Fit SE Fit Residual St Resid
4 13.0000 6.4104 2.4044 6.5896 2.94 R
11 0.0000 6.5896 2.4044 -6.5896 -2.94 R

R denotes an observation with a large standardized residual.

Least Squares Means for Y

DRUG Mean SE Mean
1 7.907 0.6974
2 4.486 0.6895

.................................

.................................
76 6 1 2 6 2
77 6 1 2 7 1
78 6 1 2 8 3
79 6 2 3 1 8
80 6 2 3 2 7
81 6 2 3 3 10
82 6 2 3 4 3
83 6 2 3 5 12
84 6 2 3 6 0
85 6 2 3 7 12
86 6 2 3 8 5

MTB > GLM ’Y’ = SEQ SUBJ( SEQ) DRUG PERIOD;
SUBC> Brief 2 ;
SUBC> Means DRUG PERIOD;
SUBC> Pairwise DRUG PERIOD;
SUBC> Tukey.

General Linear Model: Y versus SEQ, DRUG, PERIOD, SUBJ

Factor Type Levels Values
SEQ fixed 6 1, 2, 3, 4, 5, 6
SUBJ(SEQ) fixed 43 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6,

7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1,
2, 3, 4, 5, 6, 7, 8

DRUG fixed 3 1, 2, 3
PERIOD fixed 2 1, 2

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
SEQ 5 72.68 16.33 3.27 0.30 0.909
SUBJ(SEQ) 37 534.58 534.58 14.45 1.34 0.184
DRUG 2 100.29 116.39 58.19 5.39 0.008
PERIOD 1 277.73 277.73 277.73 25.72 0.000
Error 40 431.99 431.99 10.80
Total 85 1417.26

S = 3.28628 R-Sq = 69.52% R-Sq(adj) = 35.23%
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Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of DRUG
DRUG = 1 subtracted from:

Difference SE of Adjusted
DRUG of Means Difference T-Value P-Value
2 -3.421 1.0473 -3.266 0.0062
3 -2.037 0.9941 -2.049 0.1138

DRUG = 2 subtracted from:

Difference SE of Adjusted

DRUG of Means Difference T-Value P-Value
3 1.384 0.9774 1.416 0.3423

Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of PERIOD
PERIOD = 1 subtracted from:

Difference SE of Adjusted
PERIOD of Means Difference T-Value P-Value
2 3.600 0.7099 5.071 0.0000

3 5.870 0.6627
PERIOD
1 4.288 0.5051
2 7.888 0.5051

Results obtained in this analysis agree with those presented in Mead (1992) in
terms of the interpretations. The advantage of drug 1 is quite clear in the anal-
ysis. Further the number of hours of relief is much more significantly higher
in period 2 than in period 1. Clearly, drug 1 gives a significantly higher hours
of pain relief than drug 2 but is not more significantly different from drug 3.

Example 12.6.3

The data in Table 12.16 come from a two-period crossover design and relates
to responses for drug effects in a drug-testing study. Here, there are two drugs
A and B. This is a Latin square design with the rows being represented by
the experimental units (the subjects) and columns by the time periods, with
the letters representing the treatments or drugs in this case. The letters can
sometime also be factor-level combinations. Note that in Table 12.16, for
instance, the subject numbers may not necessarily be the same. We have
used 1, 2, and 3 in this case for the convenience of the analysis. These could
in fact be subjects 3, 8, 10 in the first sequence, and subjects 11, 2, 20 in the
second sequence.
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Table 12.16 Clinical responses for drug-testing experiment using a 2-period
crossover design

Period

Sequence Subjects 1 2

1 1 A 7.2 B 9.0
2 A 7.2 B 8.0
3 A 16.4 B 20.9

2 1 B 10.2 A 9.2
2 B 20.8 A 15.6
3 B 11.2 A 9.0

The analysis of the data in Table 12.16 are carried out in MINITAB. The
data are read into columns C1 to C5 as displayed below.

Data Display

Row SEQ SUBJ PERIOD DRUG Y

1 1 1 1 1 7.2
2 1 1 2 2 9.0
3 1 2 1 1 7.2
4 1 2 2 2 8.0
5 1 3 1 1 16.4
6 1 3 2 2 20.9
7 2 1 1 2 10.2
8 2 1 2 1 9.2
9 2 2 1 2 20.8
10 2 2 2 1 15.6
11 2 3 1 2 11.2
12 2 3 2 1 9.0

MTB > GLM ’Y’ = SEQ SUBJ( SEQ) PERIOD DRUG;
SUBC> Brief 1 ;
SUBC> Means PERIOD DRUG SEQ;
SUBC> Coefficients ’COEF1’;
SUBC> Pairwise SEQ PERIOD DRUG;
SUBC> Tukey;
SUBC> NoCI.
General Linear Model: Y versus SEQ, PERIOD, DRUG, SUBJ

Factor Type Levels Values
SEQ 2
SUBJ(SEQ) 6
PERIOD 2
DRUG

fixed
fixed
fixed
fixed 2

1 2
1 2 3 1 2 3
1 2
1 2

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
SEQ 1 4.441 4.441 4.441 2.13 0.218
SUBJ(SEQ) 4 247.783 247.783 61.946 29.70 0.003
PERIOD 1 0.141 0.141 0.141 0.07 0.808
DRUG 1 20.021 20.021 20.021 9.60 0.036
Error 4 8.343 8.343 2.086
Total 11 280.729

Least Squares Means for Y

PERIOD Mean SE Mean
1 12.17 0.5896
2 11.95 0.5896
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DRUG
1 10.77 0.5896
2 13.35 0.5896

SEQ
1 11.45 0.5896
2 12.67 0.5896

Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of DRUG

DRUG = 1 subtracted from:

Level
DRUG

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

2 2.583 0.8338 3.098 0.0363

The analysis indicates that there are no significant differences in the sequence
and time-periods effects. However, there are significant differences in the
effects of drugs and subjects. The drug parameter estimate is obtained as
1
2 (10.77 − 13.35) = −1.29.

12.6.1 Crossover Design Analysis With Carryover
Effects

In examples 12.6.1, 12.6.2 and 12.6.3, we have assumed that the carryover ef-
fects are negligible. If this was not the case as often is not, then we would need
to incorporate the carryover effect in our model. In this case, the treatment
effects will be assessed from the new adjusted treatments SS (after adjusting
for the carryover effect). Similarly, the carryover effect will be assessed after
adjusting for the treatments effects.

Consider the data in example 12.6.1 again. Carry over effects would occur
only in observations from the second and third periods. The model incorpo-
rating the carryover effects has model in (12.7) modified as in (12.9a), while
the equivalent model for the balanced case is in (12.9b).

If we denote the direct effects by ta, tb, and tc, these treatments also
produce residual effects ra, rb, and rc, respectively, in the period immediately
following the one in which they are applied. Thus, for the third period in
sequence I, the predicted total treatment effect is (tc + rb), since treatment
C is given in the third period and treatment B in the period immediately
preceding. Then, the model becomes in this case,

Yijkh = μ + cj + ph(i) + tk + rg + εijkh (12.9a)

Yijkh = μ + si + cj(i) + ph(i) + tk + rg + εijkh (12.9b)

where the terms are as previously defined and rg is the carryover effect of the
treatment administered in period h−1 of sequence i. Thus, rg would be zero
in period 1 because no treatment precedes diet A, while the observations in
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periods 2 and 3 contain the carryover effects of diet A and B, that is, ra and
rb, respectively. The direct effects of the treatments as well as the accompa-
nying carryover effects for the example data in Table 12.14 are presented in
Table 12.17.

Table 12.17 Direct and carryover effects, ti and rg for (12.9)

Period

Sequence Cow 1 2 3

1 1 ta tb + ra tc + rb

2 tb tc + rb ta + rc

3 tc ta + rc tb + ra

2 1 ta tc + ra tb + rc

2 tb ta + rb tc + ra

3 tc tb + rc ta + rb

While the model in (12.9a) can easily be implemented in SAS, this,
however, cannot be easily implemented in MINITAB (model is not hierar-
chical). However, the equivalent model in (12.9b) is easily implementable in
MINITAB. This is the one employed in this analysis.

We also note that this design is balanced and is similar to our earlier design
used for the experiment on the supermarket. We do note that sequences I–III
form a 3 × 3 Latin square while sequences IV–VI form another 3 × 3 Latin
square.

Table 12.18 Marginal totals for this example

Period

Sequence Cow 1 2 3 Totals

1 1 A 38 B 25 C 15 78
2 B 109 C 86 A 39 234
3 C 124 A 72 B 27 223

Totals 271 183 81 535

2 1 A 86 C 76 B 46 208
2 B 75 A 35 C 34 144
3 C 101 B 63 A 1 165

Totals 262 174 81 517

Analysis

Number of treatments = n = 3

Number of squares = m = 2.

For each treatment, we compute, T = treatment total. Thus

TA = 38 + 39 + 72 + 86 + 35 + 1 = 271

TB = 25 + 109 + 27 + 46 + 75 + 63 = 345

TC = 15 + 86 + 124 + 76 + 34 + 101 = 436.
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If we define R to be equal to the total of the yields in periods immediately
following the application of this treatment. Then, for treatment A, B and C,
we have, respectively,

RA = 25 + 27 + 76 + 34 = 162

RB = 15 + 86 + 35 + 1 = 137

RC = 39 + 72 + 46 + 63 = 220.

Similarly, if F = total of the sequences (columns or cows) in which this
treatment is a final one, again we have for each of the treatments:

FA = 234 + 165 = 399

FB = 223 + 208 = 431

FC = 78 + 144 = 222.

Let P1 = the total of all yields in the first period. Then,

P1 = 271 + 262 = 533

P2 = 183 + 174 = 357

P3 = 81 + 81 = 162.

The grand total G = 533 + 357 + 162 = 1052. Hence,

P1 − nG = P1 − 3G = 533 − 3(1052) = 2623 (12.10)

nP1 − (n + 2)G = 3P1 − 5G = 3(533) − 5(1052) = 3661. (12.11)

Table 12.19 gives for each treatment, the values of T, r and F and the
subsequent computations in Eqs. (12.10) and (12.11).

Table 12.19 Computations of direct and residual effects

T R F T̂ = 2t̂ Direct effect R̂ = 24r̂ r̂ R̂

A 271 162 399 −383 42.5 −193 −8.04 46
B 345 137 431 −56 56.1 −100 −4.17 −83
C 436 220 222 +439 76.7 +293 12.21 +37

1052 519 1052 0 0 0 0

For the estimation of the direct effect t̂ of a treatment, the general formula
is for treatment i is:

mn(n2 − n − 2)t̂i = (n2 − n − 1)Ti + nRi + Fi + (Pi − nG)

24t̂i = 5Ti + 3Ri + Fi + (Pi − 3G).

Then, for treatment A, we have for instance,

24T̂A = 5(271) + 3(162) + 399 + 533 − 3(1052−)
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= 1355 + 486 + 399 − 2623

= −383.

Similarly, for treatment B, we have,

24t̂B = −56 and 25t̂C = 439.

The general mean = μ̂ =
1052
18

= 58.44 since there are 2 (3×3) squares, that
is, 18 rows in all. Hence, the direct effects for the treatments are calculated
as follows:

t̂A =
−383
24

+ 58.44 = 42.5

t̂B =
−56
24

+ 58.44 = 56.1

t̂C =
439
24

+ 58.44 = 76.7.

For the estimation of the residual effect r̂ of a treatment, the general formula
is for treatment i:

mn(n2 − n − 2)r̂i = nTi + n2Ri + nFi + nPi − (n + 2)G

24r̂i = 3Ti + 9Ri + 3Fi + 3Pi − 5G.

Thus for treatment A, we have:

24r̂A = 3(271) + 9(162) + 3(399) + 3(533) − 5(1052) = −193.

Similarly, 24r̂B = −100 and 24r̂C = 293.
Hence,

r̂A =
−193
24

= −8.04

r̂B =
−100
24

= −4.17

r̂C =
293
24

= +12.21.

12.6.2 Analysis of Variance for the Experiment

Correction Factor, CF =
10522

2 × 3 × 3
= 61483.6

Total SS = 382 + 1092 + · · · + 12 − CF = 20, 362.4



488 12 Multiple Blocking Designs

Sequences (cows) SS =
782 + 2342 + · · · + 1652

3
− CF = 5, 781.1

Periods SS =
2712

3
+

1832

3
+ · · · +

812

3
− 5352

9
− 5172

9

=
2712

3
+

1832

3
+

812

3
− 5352

9
+

2622

3
+

1742

3
+

812

3
− 5172

9
= 11, 489.1

that is, between periods within squares with 2x2 = 4 d.f.
Direct effect (unadjusted) SS is computed as:

2712

6
+

3452

6
+

4362

6
− CF = 2, 276.8

Residual (adjusted) SS =
∑

R̂2

mn3(n2 − n − 2)

=
1

216
(1932 + 1002 + 2932)

= 616.2

Direct (adjusted) SS =
∑

T̂ 2

mn(n2 − n − 1)(n2 − n − 2)

=
1

120
(3832 + 562 + 4392)

= 2854.6

These computations are displayed in Table 12.20.

Table 12.20 Analysis of variance table

Source d.f. SS MS F

Sequences (cows) 5 5781.1
Periods within squares 4 11,489.1
Direct effects (adj) 2 2854.6 1,427.3 28.66
Residual effects (adj) 2 616.2 308.1 6.19
Error 4 199.2 49.8

Total 17 20,362.4

F(2,4) at α = 0.05 = 6.94
In this example, the direct effects give a significant F-value, but residual

effects do not attain significance.
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MINITAB Analysis

To re-analyze the data in terms of the parameters of the model in (12.9a),
we need to recode the data as follows to incorporate the carryover effects
denoted by R for periods 1, 2 and 3.

Period 1 Period 2
seq cow Period trt R Y seq cow Period trt R Y
1 1 1 A 0 38 1 1 2 B 1 25
1 2 1 B 0 109 1 2 2 C 2 86
1 3 1 C 0 124 1 3 2 A 3 72
2 4 1 A 0 86 2 4 2 C 1 76
2 5 1 B 0 75 2 5 2 A 2 35
2 6 1 C 0 101 2 6 2 B 3 63

Period 3
seq cow Period trt R Y
1 1 3 C 2 15
1 2 3 A 3 39
1 3 3 B 1 27
2 4 3 B 2 46
2 5 3 C 3 34
2 6 3 A 1 1

The coding for the carryover is as presented in terms of the parameter λi in
Table 12.17. To implement this model in MINITAB, we would need to create
covariates X1 and X2 for the carryover effects. The covariates are created as
follows:

X1 =

⎧
⎨

⎩

1 if R = 1
−1 if R = 3

0 elsewhere
X2 =

⎧
⎨

⎩

1 if R = 2
−1 if R = 3

0 elsewhere
(12.12)

This leads to the display presented in the analysis from MINITAB below.

Data Display
Data Display

Row SEQ COW PERIOD TRT Y R X1 X2

1 1 1 1 A 38 0 0 0
2 1 2 1 B 109 0 0 0
3 1 3 1 C 124 0 0 0
4 2 4 1 A 86 0 0 0
5 2 5 1 B 75 0 0 0
6 2 6 1 C 101 0 0 0
7 1 1 2 B 25 1 1 0
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Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
SEQ 1 18.0 18.0 18.0 0.36 0.580
COW(SEQ) 4 5763.1 3818.0 954.5 19.16 0.007
PERIOD(SEQ) 4 11489.1 11489.1 2872.3 57.66 0.001
TRT 2 2276.8 2854.6 1427.3 28.65 0.004
X1 1 546.8 258.7 258.7 5.19 0.085
X2 1 69.4 69.4 69.4 1.39 0.303
Error 4 199.3 199.3 49.8
Total 17 20362.4

Coef SE Coef T PTerm
Constant 58.444 1.664 35.13 0.000
X1 -8.042 3.529 -2.28 0.085
X2 -4.167 3.529 -1.18 0.303

Least Squares Means for Y

TRT Mean SE Mean
A 42.49 3.112
B 56.11 3.112
C 76.74 3.112

8 1 2 2 C 86 2 0 1
9 1 3 2 A 72 3 -1 -1
10 2 4 2 C 76 1 1 0
11 2 5 2 A 35 2 0 1
12 2 6 2 B 63 3 -1 -1
13 1 1 3 C 15 2 0 1
14 1 2 3 A 39 3 -1 -1
15 1 3 3 B 27 1 1 0
16 2 4 3 B 46 3 -1 -1
17 2 5 3 C 34 1 1 0
18 2 6 3 A 1 2 0 1

MTB > GLM ’Y’ = SEQ COW(SEQ) PERIOD ( SEQ ) TRT X1 X2;
SUBC> Covariates ’X1’ ’X2’;
SUBC> Brief 2 ;
SUBC> Means TRT;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus SEQ, TRT, COW, PERIOD

Factor Type Levels Values
SEQ fixed 2
COW(SEQ) fixed 6
PERIOD(SEQ) fixed 6
TRT fixed 3

1 2
1 2 3 4 5 6
1 2 3 1 2 3
A B C
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TRT = A subtracted from:

Level
TRT

Difference
of Means

SE of
Difference T-Value

Adjusted

B 13.63 4.556 2.991
C 34.25 4.556 7.518

P-Value
0.0842
0.0037

TRT = B subtracted from:

Level
TRT

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

C 20.63 4.556 4.527 0.0230

Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of TRT

Notice that the addition of the SS for seq and cow(seq) equals 18.0 + 5763.1 =
5781.1 on 1 + 4 = 5 d.f. This gives a MS (unadjusted) of 1156.222 and
a corresponding F value of 23.21. The combined SS for the carryover is
69.4 + 546.8 = 616.2 on 2 d.f and a corresponding combined adjusted SS
of (258.7+69.4) = 328.1 on 2 d.f. The corresponding MS = 328.1/2 = 164.05
with a computed F-value based on the residual MS of 164.05

49.8 = 3.29. This is
clearly not significant. Thus, the carryover effects of the treatments are not
significant in this example.

Similarly, the adjusted treatment effect has a computed F value of 28.65
with a p-value of 0.004, which is clearly significant. Hence, there are signif-
icant differences between the treatment means after adjusting for carryover
effects. Adjusted treatment C is highly significantly different from both
treatments A and B at α = .05 level of significance.

From our analysis above, r̂a = −8.042, r̂b = −4.167. Hence, r̂c = −(r̂a+r̂b)
= 8.042 + 4.167 = 12.209. The above results and analysis of variance table
agree with those obtained from hand calculations earlier.

Re-Analysis of Data in Example 12.6.2

The analysis of the data in example 11.6.2 provides the following results
for adjusted drug effects and adjusted carryover effects. None of them was
significant.

MTB > GLM ’Y’ = SEQ SUBJ(seq) period drug x1 x2;
SUBC> Covariates ’x1’ ’x2’;
SUBC> Brief 2 .

General Linear Model: Y versus SEQ, PERIOD, DRUG, SUBJ

Factor Type Levels Values
SEQ fixed 6 1 2 3 4 5 6
SUBJ(SEQ) fixed 43 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
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PERIOD fixed 2 1 2
DRUG fixed 3 1 2 3

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
SEQ 5 73.95 11.29 2.26 0.20 0.961
SUBJ(SEQ) 37 535.98 535.98 14.49 1.28 0.226
PERIOD 1 265.13 281.85 281.85 24.90 0.000
DRUG 2 119.95 40.98 20.49 1.81 0.177
X1 1 1.30 0.89 0.89 0.08 0.780
X2 1 0.04 0.04 0.04 0.00 0.951
Error 38 430.08 430.08 11.32
Total 85 1426.43

Term Coef SE Coef T P
Constant 6.0711 0.3678 16.51 0.000
X1 0.564 2.009 0.28 0.780
X2 0.126 2.046 0.06 0.951

Least Squares Means for Y

DRUG Mean SE Mean
1 8.201 1.236
2 4.469 1.177
3 5.490 1.346

Example 12.6.4

A digestion trial with beef steers was conducted in an extra period Latin
square crossover design to evaluate the effects of low-quality roughage on
feed digestion. The low-quality roughages used in the trial were (a) cottonseed
hull, (b) bermuda straw, (c) wheat straw and the high-quality roughage used
as control was (d) alfalfa hay. One steer was randomly assigned to each
sequence of four diets. The steer remained on each diet for 30 days and
measurements on dry matter digestion were made during the last week of the
trial allowing a 21-day adjustment to each diet. The rougage diet fed in the
fourth period was repeated during the fifth period. The data on dry matter
digestion for each steer in each sequence are shown in Table 12.21

Table 12.21 Dry matter digestion for this digestion trial

Period

Steer I II III IV V

1 75(A) 76(B) 79(C) 81(D) 79(D)
2 79(C) 73(A) 79(D) 75(B) 77(B)
3 81(D) 79(C) 75(B) 72(A) 73(A)
4 76(B) 79(D) 72(A) 76(C) 73(C)
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Solution

The linear model for this extra period crossover design is:

Yij = μ + si + pj + tk + rh + εij (12.13)

where μ is the general mean, si, i = 1, 2, 3, 4 is the effect of the steer sequence,
pj , j = 1, 2, · · · , 5 is the effect of the jth period, tk, k = 1, 2, 3, 4 is the direct
effect of the kth treatment, rh, h = 1, 2, 3, 4 is the carryover effect of the hth
treatment, and εij is the random error term distributed normally with mean
0 and variance σ2.

The design is balanced because every treatment follows all treatments
including itself once. The carryover effect is obtained as factor variable R in
the MINITAB output below. Dummy variables based on effect coding scheme
is used to obtain dummy variables or covariates X1, X2 and X3, respectively,
where,

X1 =

⎧
⎨

⎩

1 if R = 1
−1 if R = 4

0 elsewhere
X2 =

⎧
⎨

⎩

1 if R = 1
−1 if R = 4

0 elsewhere
X3 =

⎧
⎨

⎩

1 if R = 3
−1 if R = 4

0 elsewhere

The above coding scheme results in the following values of X1, X2 and X3
corresponding to the five levels of R.

R X1 X2 X3

0 0 0 0
1 1 0 0
2 0 1 0
3 0 0 1
4 −1 −1 −1

Thus, the linear model in (12.13) can be written in terms of the covariates
X1, X2 and X3 as in Eq. (12.14)

Yij = μ + si + pj + tk + α1X1 + α2X2 + α3X3 + εij . (12.14)

Here,
4∑

i

αi = 0, which implies that α̂4 = −(α̂1 + α̂2 + α̂3). The implemen-

tation of the analysis in MINITAB is carried out as in the following output
by first reading the data in in columns C1–C5, read in R and then create
X1, X2 and X3.
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Data Display
Row STEERS PERIOD TRT Y R X1 X2 X3

1 1 75 0 0 0 0
2 1 76 1 1 0 0
3 1 79 2 0 1 0
4 1 81 3 0 0 1
5 1 79 4 -1 -1 -1
6 2 79 0 0 0 0
7 2 73 3 0 0 1
8 2 79 1 1 0 0
9 2 75 4 -1 -1 -1
10 2 77 2 0 1 0
11 3 81 0 0 0 0
12 3 79 4 -1 -1 -1
13 3 75 3 0 0 1
14 3 72 2 0 1 0
15 3 73 1 1 0 0
16 4 76 0 0 0 0
17 4 79 2 0 1 0
18 4 72 4 -1 -1 -1
19 4 76 1 1 0 0
20 4

1 A
2 B
3 C
4 D
5 D
1 C
2 A
3 D
4 B
5 B
1 D
2 C
3 B
4 A
5 A
1 B
2 D
3 A
4 C
5 C 73 3 0 0 1

MTB > GLM ’Y’ = STEERS PERIOD TRT X1 X2 X3;
SUBC> Covariates ’X1’ ’X2’ ’X3’;
SUBC> Brief 2 ;
SUBC> Means TRT.

General Linear Model: Y versus STEERS, PERIOD, TRT

Factor Type Levels Values
STEERS fixed 4
PERIOD fixed 5
TRT fixed 4

1 2 3 4
1 2 3 4 5
A B C D

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
STEERS 3 20.950 14.950 4.983 2.39 0.167
PERIOD 4 11.700 11.700 2.925 1.40 0.338
TRT 3 114.550 114.550 38.183 18.33 0.002
X1 1 0.125 0.083 0.083 0.04 0.848
X2 1 1.042 2.083 2.083 1.00 0.356
X3 1 2.083 2.083 2.083 1.00 0.356
Error 6 12.500 12.500 2.083
Total 19 162.950

Term Coef SE Coef T P
Constant 76.4500 0.3227 236.87 0.000
X1 -0.1250 0.6250 -0.20 0.848
X2 0.6250 0.6250 1.00 0.356
X3 -0.6250 0.6250 -1.00 0.356

Least Squares Means for Y

TRT Mean SE Mean
A 72.95 0.6555
B 75.74 0.6555
C 77.49 0.6555
D 79.62 0.6555
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The parameter estimates for the covariates are,

α̂1 = −0.125, α̂2 = 0.625, α̂3 = −0.625. Hence, α̂4 = 0.125

Alternatively, we could employ the dummy variable or indicator variable
capability in MINITAB to create our dummy variables. However, MINITAB
creates cell reference indicator variables only, where in this case, the variables
are created as follows:

Z1 =

{
1 if R = 1
0 elsewhere

; Z2 =

{
1 if R = 1
0 elsewhere

; Z3 =

{
1 if R = 3
0 elsewhere

The above coding scheme results in the following values of Z1, Z2 and Z3
corresponding to the five levels of R.

R Z1 Z2 Z3

0 0 0 0
1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 0

Again, the linear model in (12.13) can be written in terms of the covariates
Z1, Z2 and Z3 as in Eq. (12.15).

Yij = μ + si + pj + tk + β1Z1 + β2Z2 + β3Z3 + εij . (12.15)

Here, apart from the case when R = 0, which takes values of zeros for the
dummy variables, cell R = 4 also have values of the dummy variables being
zeros. Hence, this category is being used as a reference for the other three
categories (1,2,3). Here, therefore, the parameter estimates, converted to the
effect coding scheme, become,

β̂4 = − β̂1 + β̂2 + β̂3

4
= α̂4

α̂1 = β̂1 + β̂4

α̂2 = β̂2 + β̂4

α̂3 = β̂3 + β̂4.

The implementation of the analysis in MINITAB is carried out again as in
the following output by first reading the data into columns C1–C4, read in R
into C5, and then create Z1, Z2 and Z3 in MINITAB. MINITAB will actually
create five dummy variables, but we will eliminate the ones relating to cases
when R = 0 and R = 4, respectively, leading to the output below, including
those from the analysis.
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Row STEERS PERIOD TRT Y R Z1 Z2 Z3

1 1 1 A 75 0 0 0 0
2 1 2 B 76 1 1 0 0
3 1 3 C 79 2 0 1 0
4 1 4 D 81 3 0 0 1
5 1 5 D 79 4 0 0 0
6 2 1 C 79 0 0 0 0
7 2 2 A 73 3 0 0 1
8 2 3 D 79 1 1 0 0
9 2 4 B 75 4 0 0 0
10 2 5 B 77 2 0 1 0
11 3 1 D 81 0 0 0 0
12 3 2 C 79 4 0 0 0
13 3 3 B 75 3 0 0 1
14 3 4 A 72 2 0 1 0
15 3 5 A 73 1 1 0 0
16 4 1 B 76 0 0 0 0
17 4 2 D 79 2 0 1 0
18 4 3 A 72 4 0 0 0
19 4 4 C 76 1 1 0 0
20 4 5 C 73 3 0 0 1

MTB > GLM ’Y’ = STEERS PERIOD TRT Z1 Z2 Z3;
SUBC> Covariates ’Z1’ ’Z2’ ’Z3’;
SUBC> Brief 2 ;
SUBC> Means TRT.

General Linear Model: Y versus STEERS, PERIOD, TRT

Factor Type Levels Values
STEERS fixed 4
PERIOD fixed 5
TRT fixed 4

1 2 3 4
1 2 3 4 5
A B C D

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
STEERS 3 20.950 14.950 4.983 2.39 0.167
PERIOD 4 11.700 7.750 1.937 0.93 0.505
TRT 3 114.550 114.550 38.183 18.33 0.002
Z1 1 0.083 0.125 0.125 0.06 0.815
Z2 1 2.042 0.500 0.500 0.24 0.642
Z3 1 1.125 1.125 1.125 0.54 0.490
Error 6 12.500 12.500 2.083
Total 19 162.950

Term Coef SE Coef T P
Constant 76.5500 0.5951 128.63 0.000
Z1 -0.24 0.815
Z2 0.49 0.642
Z3

-0.250
0.500
-0.750

1.021
1.021
1.021 -0.73 0.490

Means for Covariates

Covariate Mean StDev
XX1 0.2000 0.4104
XX2 0.2000 0.4104
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Least Squares Means for Y

TRT Mean SE Mean
A 72.95 0.6555
B 75.74 0.6555
C 77.49 0.6555
D 79.62 0.6555

The analysis of variance in both cases are the same. However, the parameter
estimates as expected are different. In this case, the parameter estimates of
the covariates are:

β̂1 = −0.250, β̂2 = 0.500, β̂3 = −0.750.

Hence,

β̂4 = −−0.250 + 0.500 − 0.750
4

= 0.125.

In terms of the effect coding therefore, we have,

α̂1 = β̂1 + β̂4 = −0.250 + 0.125 = −0.125

α̂2 = β̂2 + β̂4 = 0.500 + 0.125 = 0.625

α̂3 = β̂3 + β̂4 = −0.750 + 0.125 = −0.625

α̂4 = β̂4 = 0.125

For both coding schemes, the analysis of variance becomes:

Source d.f. SS MS F

STEERS 3 20.950 6.98
PERIOD 4 11.700 2.93

TRT 3 114.550 38.183 18.33
R 3 3.25 1.083 0.520

Error 6 12.500 12.500 2.083

Notice that F-value for R (carryover effects) = 0.520 equals the average of
the F-values of each component of the covariates. That is, F = 0.52 =
(0.06 + 0.50 + 1.00)/3 = 0.52. Thus, we can say that the covariates are pair-
wise orthogonal. The results indicate that there are no significant carryover
effects. However, there is significant differences between the adjusted treat-
ment means. To use Dunnet’s test to compare treatments A, B and C with
the control, first we recode the treatments from alphanumeric to numeric as
in the MINITAB program below. Re-analyze the data and invoke Dunnett’s
comparison by stating that treatment 4, that is D, is the control treatment.
The results suggest that while treatments A and B are significantly different
from the control diet D, however, treatment C is not. The adjusted treatments
means are given as:

μ̂A = 72.95, μ̂B = 75.74, μ̂C = 77.49, μ̂D = 79.62.
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MTB > Code ( "A" ) 1 ( "B" ) 2 ( "C" ) 3 ( "D" ) 4 ’TRT’ c12

MTB > GLM ’Y’ = STEERS PERIOD TRT1 XX1 XX2 XX3;
SUBC> Covariates ’XX1’ ’XX2’ ’XX3’;
SUBC> SSquares 1;
SUBC> Brief 2 ;
SUBC> Means TRT1;
SUBC> Control TRT1;
SUBC> Levels 4;
SUBC> Dunnett;
SUBC> NoCI.

Dunnett Simultaneous Tests
Response Variable Y
Comparisons with Control Level
TRT1 = 4 subtracted from:

Level
TRT1

Difference
of Means

SE of
Difference T-Value

Adjusted
P-Value

1 -6.667 0.9317 -7.155 0.0009
2 -3.875 0.9317 -4.159 0.0145
3 -2.125 0.9317 -2.281 0.1416

12.7 Exercises

1. A crossover study was conducted to evaluate four keyboard layouts.
Twelve volunteers experienced in a common keyboard configuration were
used in the study. Each subject used the four test layouts in sequence.
Each subject was randomly assigned to a sequence of layouts. Each layout
was used for 4 days in their ordinary data and text entry activities. On
the fifth day, they were all given a common task to perform with their
assigned layout and the number of errors on the task were recorded. None
of the subjects knew they were being tested on the final day. The number
of errors recorded on each layout are presented in the following table.

Period

Subject I II III IV

1 7(D) 2(B) 1(A) 5(C)
2 1(A) 4(C) 6(D) 3(B)
3 6(C) 1(A) 3(B) 7(D)
4 3(B) 6(D) 3(C) 1(A)
5 4(C) 5(D) 1(A) 2(B)
6 6(D) 4(C) 2(B) 0(A)
7 1(A) 3(B) 4(C) 5(D)
8 2(B) 2(A) 7(D) 4(C)
9 5(D) 0(A) 3(C) 3(B)
10 0(A) 4(D) 2(B) 3(C)
11 3(C) 2(B) 7(D) 0(A)
12 2(B) 4(C) 0(A) 6(D)
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(a) Is the above design balanced for carryover effects? Explain.
(b) Compute the analysis of variance for the data and test the significance

of the direct and carryover effects.
(c) Obtain a residual plots for the analysis and conduct a normality test

on the residuals. Do you think that a transformation might be needed
for these data? Which one would you suggest?

2. An animal scientist hypothesized that roughage source might influence
utilization of mixed diets of beef steers by altering ruminant digestion
of other diet ingredients. The mixed diet for a 65 % concentrate based
on steam flaked milo and 35 % roughage, together with three roughage
treatments (A) 35 % alfalfa hay as a control, (B) 17.5 % wheat straw and
17.5 % alfalfa and (C) 17.5 % cottonseed hulls and 17.5 % alfalfa. Twelve
beef steers were available for the study. Each of the three roughage diets
was fed to the steers in one of six possible sequences of the three diets.
Each diet in each sequence was fed to two steers for 30 days. The steers
were allowed a period of 21 days to adapt to a diet change before any data
were collected.
The Neutral Detergent Fiber (NDF) digestion coefficient calculated for
each steer on each diet is presented in the following table.

Sequence

1 2 3 4 5 6

Steer: 1 2 3 4 5 6 7 8 9 10 11 12

Period I (A) 50 55 (B) 44 51 (C) 35 41 (A) 54 58 (B) 50 55 (C) 41 46
Period II (B) 61 63 (C) 42 46 (A) 55 56 (C) 48 51 (A) 57 59 (B) 56 58
Period III (C) 53 57 (A) 57 59 (B) 47 50 (B) 51 54 (C) 51 55 (A) 58 61

(a) Is this design balanced for crossover effects?
(b) Compute the analysis of variance for the data and test the significance

of the direct and carryover effects.
(c) Use Dunnett test to compare the control diet, with each of the other

diets and interpret your results.

3. The following are the plan and yields of grain (in lbs) from a Latin square
fertilizer experiment on wheat conducted at Rothamstead Experimental
Station. (Rothamstead Report 1932, p. 147):

Columns

Pows 1 2 3 4 5

1 72.2(D) 55.44 (SS) 36.6 (O) 67.9 (C) 73.0(S)
2 36.4(O) 46.9(C) 46.8(SS) 54.9 (S) 68.5 (D)
3 71.5 (SS) 55.6 (S) 71.6 (D) 67.5 (O) 78.4 (C)
4 68.9 (S) 53.2 (O) 69.8 (C) 79.6 (D) 77.2 (SS)
5 82.0 (C) 81.0 (D) 76.0 (S) 87.9 (SS) 70.9 (O)
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where
• O = no fertilizer
• S = single dressing of Nitrogen (sulphate of Ammonia) in March
• SS = same as S, but applied six monthly dressings (November–April)
• C = Equivalent quantity of cyanamide in October (just before planting)
• D = 50:50 mixture of cyanamide and dicyanadiomide in October

Analyze the data and partition your treatment sum of squares accordingly.
4. In a study to compare the durations effects of three different formulations

of a drug, 12 volunteered males were involved. A three-period crossover de-
sign was used, with four subjects assigned to each of the three treatment
sequences(Sequence 1: T1, T2, T3; Sequence 2: T2, T3, T1; and Sequence
3: T3, T1, T2). The sample data were originally presented in (Ott and
Longnecker 2001).

Period

Sequence Subject 1 2 3

1 1 A(1.5) B (2.2) C (3.4)
2 A(2.0) B (2.6) C (3.1)
3 A(1.6) B (2.7) C (3.2)
4 A(1.1) B (2.3) C (2.9)

2 1 B(2.5) C (3.5) A (1.9)
2 B(2.8) C (3.1) A (1.5)
3 B(2.7) C (2.9) A (2.4)
4 B(2.4) C (2.6) A (2.3)

3 1 C(3.3) A (1.9) B (2.7)
2 C(3.1) A (1.6) B (2.5)
3 C(3.6) A (2.3) B(2.2)
4 C(3.0) A (2.5) B (2.0)

Analyze the data and test the significance of direct and carryover effects.
5. The following example is taken from Mead and Curnow (1983) and relates

to an experiment to to compare the effects of four light treatments, A, B,
C and D on the synthesis of mosaic virus in several tobacco leaves and
was arranged in two Latin squares. Leaves from four positions for eight
tobacco plants formed a 4×8 rectangle of units and two Latin squares were
randomized together to produce a randomized design with each treatment
appearing once for each plant and twice at each position. Sap from the
32 leaves were assayed on leaves of test plants and the square root of the
number of lesions appearing are taken as a measure of the treatment effect.
The data are displayed below.

Leaf Plants

Position 1 2 3 4 5 6 7 8

1 45.4 A 32.2D 34.6D 42.4 C 38.1 C 30.8 A 58.4B 32.2D
2 33.4B 47.6B 44.0D 38.6D 27.2 A 44.9 C 24.8 A 36.4 C
3 45.6 C 32.0 A 42.4 C 37.8 A 40.8B 50.8D 46.2D 28.2B
4 42.7D 34.0 C 39.0 A 41.6B 35.8D 39.3B 45.8 C 30.4 A
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Analyze the results of this experiment and draw your conclusions.
6. The following data relate to a 4 × 4 Latin square design four four treat-

ments. The results are the total milk yield in the third week of each
period. We assume here that there are no carryover effects of the previous
treatments. (Source: Mead and Curnow 1983)

Cow

Period 1 2 3 4

1 A192 B195 C292 D249
2 B190 D203 A218 C210
3 C214 A139 D245 B163
4 D221 C152 B204 A134

Carry out the analysis of variance and draw your conclusions. What is the
standard error for comparing any two treatment means? Any two periods?

7. An experiment was designed to determine the effects of three diets on liver
cholesterol in rats (A = control, B = control + vegetable fat, C = control
+ animal fat). Body weight classifications (H, M or L) of the rats and the
litters from which they came were used to form a balanced set of Latin
squares. The litter was nested in squares (i.e., different litters were used
in each square), whereas the weight classifications were not nested. The
data is presented as follows (Source: Lei Gao, Michigan State University).

Weight Litter

Square class 1 2 3

1 H B(1.60) A (1.97) C (2.07)
M C(1.83) B (1.71) A (1.56)
L A(1.44) C (1.84) B (1.72)

Weight Litter

class 4 5 6

2 H A(1.71) C (2.02) B (1.85)
M B(1.63) A (1.75) C (2.06)
L C(1.70) B (1.59) A (1.68)

Weight Litter

class 7 8 9

3 H C(2.09) B (1.83) A (1.98)
M A(1.63) C (1.91) B (1.83)
L B(1.67) A (1.63) C (2.00)



Chapter 13
Analysis of Covariance

13.1 Introduction

The analysis of covariance (ANACOVA) is a statistical technique which is a
combination of Regression and Analysis of variance. It is used in experiments
where besides the observations of primary interests, (variates) one or more
other observations are taken on each experimental unit, called CONCOMI-
TANT variables or Covariates. Measurements on the covariates are made for
the purpose of adjusting the measurements on the variate. These can be used
to increase precision of the experimental comparisons or to throw further light
on the treatment effects, or to remove environmental effects. It is assumed
that the concomitant variable (X ) cannot be controlled by the experimenter
but can be observed along with the variable of interest (Y ). Thus, analysis
of covariance is a method of adjusting for the effects of an uncontrollable
nuisance variable. We present examples of the use of covariance analysis.

Example 13.1.1

Suppose in an experiment to study the effects of various diets (treatments)
for the increase in body weight (Y ) of cows, it would be necessary to have a
group of cows at a fixed age and record initial weight (X ) of each cow. Then
X is the concomitant variable, and in the analysis, we shall try to adjust the
experimental results Y on the basis of their X values.

Example 13.1.2

In this example, consider an experiment to investigate drugs that are hypoth-
esized to reduce blood pressure of adults. Since the blood pressure of adults
before the administration of the drugs (treatments) varies considerably from
one adult to another, a grouping of the adults according to their initial blood
pressure is sometimes possible, albeit cumbersome in practice.
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Thus as in the earlier example, we may record the blood pressure X of
each adult before the administration of the drugs and use this information
to adjust the treatment effects Y in our analysis.

Example 13.1.3

It must be noted that not all concomitant observations are taken before
treatments. On certain occasions, they are taken either during the experiment
or at the end of the experiment. In this example for instance, suppose 40
plants (e.g., maize) had originally been planted in each plot. At harvest time,
however, some of the plots have only 25 or even 20 plants left, the rest of them
being eaten by wild animals. The yields from such plots are naturally lower
than those from the original 40 plots. The number of plants may be recorded
as X and later used to correct the yield Y. The assumption is that the number
of plants left is not due to treatments but is due to an uncorrelated factor
(animals) which introduces heterogeneity to the experimental plots.

Example 13.1.4

A further use of analysis of covariance is in the missing plot technique where
dummy variables are used as concomitants. Several examples will be given in
this chapter to further illustrate the type of experimental situations in which
the analysis of covariance can be profitably employed.

Example 13.1.5 (Data Example)

The data in Table 13.1 were obtained in an experiment to compare three
methods of applying a rust arrestor compound to steel coupons. These meth-
ods were brushing, spraying, and dipping. Fifteen steel coupons used were
divided randomly into three groups. All of the steel coupons were in an initial
state of rust (measured as X ) and they were all exposed to a salt spray, the
additional amount of rust due to this being measured as Y.

Table 13.1 Data for this example

Brushing Spraying Dipping

Coupon Y X Coupon Y X Coupon Y X

1 63 16 6 81 48 11 72 40
2 77 45 7 73 40 12 54 31
3 81 50 8 59 24 13 57 40
4 60 19 9 74 33 14 59 33
5 63 18 10 77 41 15 52 20

Total 344 148 364 186 294 164
Mean 68.8 29.6 72.8 37.2 58.8 32.8
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A question of primary interest is whether the method of application affects
the additional amount of rust. The observation of X can be used to improve
the precision of experimental comparisons here.

The analysis of covariance is a method of adjusting the treatment means
to what might have been obtained if a common value of X had been used
throughout. If in an experiment, there exists a relationship between the ob-
servation Y and a concomitant variable X, the observed (unadjusted) means
of Y could indicate completely wrong results.

13.1.1 Model and Assumptions

A model of the following form is suggested by the discussion above:

Yij = μ + ti + β(Xij − X̄..) + εij ;
i = 1, 2, 3
j = 1, 2, 3, 4, 5 (13.1)

where, it is assumed that

(i) The X’s are fixed, measured without error, and independent of treat-
ments.

(ii) The {εij} are independently and normally distributed with mean 0 and
variance σ2

(iii) the regression coefficient β is the same for all treatments
(iv) the concomitant variable is unaffected by the particular assignment of

treatments to units used. A further implicit assumption is that the
concomitant variable does not itself contain errors.

Analysis

Firstly, the β of Eq. (13.1) must be estimated and its significance assessed.
Then the treatment means must be adjusted for the mean values of the
concomitant variable. Standard errors obtained, and assumptions checked.

The corrected SS (or cross-products) for total and treatments are first
calculated in the usual way, for each of X, XY and Y, to give the following
entries for the ANOVA Table in Table 13.2.
Where for the X’s, we have,

Table 13.2 Analysis of variance table

Source df X XY Y

Treatment 2 145.6 100.0 520.0
Error 12 1686.8 1074.6 884.4

Total 14 1832.4 1174.6 1404.4
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Total = 148 + 186 + 164 = 498

Total line SS = 162 + 452 + · · · + 202 − 4902

15
= 1832.4

Treatment line SS =
1482

5
+

1862

5
+

1642

5
− 4822

15
= 145.6

Error Line SS = Total SS − Treatment SS = 1686.3.

Similarly for the Y’s, we have,

Total Line SS = 632 + 772 + · · · + 522 − 10022

15
= 1404.4

Treatment Line SS =
3442

5
+

3642

5
+

2942

5
− 10022

15
= 520.0

Error Line SS = 1404.4 − 520.0 = 884.4

and for the XY (Cross-products), we also have,

Total Line = (63 × 16) + (77 × 45) + · · · + (52 × 20) − 1002 × 498
15

= 1174.6

Treatment Line =
(344 × 148)

5
+

(364 × 186)
5

+
(294 × 164)

5
− (1002 × 498)

15
= 100.0

Error Line = 1174.6 − 100.0

= 1074.6

The results in Table 13.2 can be used to calculate the regression coefficients
and regression sum of squares for both the Total SS and Error SS lines:

Total line SS Error line SS

Sxy 1174.6 1074.6
Sxx 1832.4 1686.8
β̂ 0.6410 0.6371

Reg.SS 752.94 684.6

where β̂ is computed from both the total line and error line SS respectively
as,

Sxy

Sxx
=

1174.6
1832.4

= 0.6410;
1074.6
1686.8

= 0.6371

Similarly, the regression SS are again computed from both total and error
SS lines as,

S2
xy

Sxx
=

1174.62

1832.4
= 752.94;

1074.62

1686.8
= 684.6
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The reduced SS can now be formed, by subtracting the regression SS from
the corrected SS for Y - this is done for both the Total SS and Error SS lines.
These give

For Total SS: Reduced SS = 1404.4 − 752.9 = 651.5 on 14 − 1 = 13 d.f.

For Error SS: Reduced SS = 884.4 − 684.6 = 199.8 on 12 − 1 = 11 d.f.

This leads to the analysis of covariance in Table 13.3, where the adjusted
treatment SS is calculated by subtraction.

Table 13.3 Analysis of covariance table

Source df SS MS F

Treatment (adj) 2 451.7 225 12.4
Residual (error) 11 199.8 18.16

Total 13 651.5

The value of F on 2 and 11 degrees of freedom is very highly significant,
indicating evidence of differences between adjusted treatment means. The
significance of the regression can now be tested from Table 13.4.

Table 13.4 Analysis of error variance

Source df SS MS F

Within groups unadjusted 12 884.4 73.7
Reduction due to Reg. 1 684.6 864.6 37.7

Error for adjusted 11 199.8 18.16

The F value is very highly significant, strongly indicating a strong linear
relationship between Y and X. We note that the error mean square has been
reduced from 73.7 to 18.16 by the use of the covariate.

The adjusted group means can now be calculated from Eq. (13.1), we have

ˆ̄ti = Ȳi − β̂(X̄i − X̄..) (13.2)

Using (13.1), the summary statistics in Table 13.1, and the residual line
estimate of slope β̂ = 0.6371, we have for the three treatments,

t̂1 = 68.6 − 0.6371 (29.6 − 33.20) = 70.893

t̂2 = 72.8 − 0.6371 (37.2 − 33.20) = 70.252

t̂3 = 58.8 − 0.6371 (32.8 − 33.20) = 59.055

where X̄.. = 33.20 is obtained from Table 13.1. The results are as follows:

Brushing : 70.893

Spraying : 70.252

Dipping : 59.055

We also note here that the use of the covariate has altered the order of the
magnitude of two of the means.
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13.2 Further Analysis

13.2.1 Standard Errors

Estimate of σ = s is
√

18.16 = 4.26.
S.E of an adjusted mean is,

s

√{
1
n

+
(X̄i. − X̄..)2

SSExx

}

(13.3)

S.E for comparing two adjusted means i and j equals,

s

√{
2
n

+
(X̄i. − X̄j.)2

SSExx

}

(13.4)

Where SSExx = 1686.80. In the above example for instance, the standard
error for comparing the adjusted means for Brushing and Dipping is given
by

4.26

√{
2
5

+
(29.6 − 32.8)2

1686.8

}

= 4.26
√

0.4061 = 2.7146

S.E of an adjusted mean is,

s

√{
1
n

+
(X̄i. − X̄..)2

SSExx

}

(13.5)

S.E for comparing two adjusted means i and j equals,

s

√{
2
n

+
(X̄i. − X̄..)2

SSExx

}

(13.6)

In the above example for instance, the standard error for comparing the
adjusted means for Brushing and Dipping is given by

4.26

√{
2
5

+
(29.6 − 32.8)2

1686.8

}

= 4.26
√

0.4061 = 2.7146

Similar calculations give the ses for comparing (i) Brushing and Spraying (ii)
Dipping and Spraying to be 2.809 and 2.734 respectively.



13.3 Test for Parallelism of Regression Lines 509

13.3 Test for Parallelism of Regression Lines

The model for the covariance assumes that there is only a single regression
coefficient β. This implies that the within-treatment regression coefficients
are homogeneous, i.e., for t treatments, we have,

β1 = β2 = β3 = βt = β

Also implicit in the model is that the correct form of the relationship between
the variate (Y ) and the covariate (X ) is linear. We have already shown
that there is a significantly strong linear relationship between X and Y. The
hypothesis of homogeneity is also equivalent to the hypothesis of no treatment
effects in the analysis of covariance.

The hypothesis of homogeneity, we see from above is equivalent to test-
ing whether the within treatment regression lines are parallel. We therefore
consider below the procedure for testing for parallelism.

Procedure

(i) Calculate separately for each treatment; Sxx, Sxy, and Syy.
(ii) Based on calculations in (i), calculate for each treatment, the regression

coefficients, regression SS, and SS for deviations from regression.
(iii) Add together the SS for deviations from the treatment regressions, sub-

tract this from the SS for deviations from average regression (error for
adjusted observation in Table (13.4)). We will thus have a mean square
based on 2 d.f for comparison between three treatments

Table 13.5 Regressions within treatments

Brushing Spraying Dipping d.f.

Reg. coeff. 0.5663 0.8531 0.6566
Reg. SS 348.08 240.74 116.74 1

Residual 12.72 36.06 130.06 3

Total residual SS = 12.72 + 36.06 + 130.06 = 178.84 on 9 df.
Where for example for the Brushing treatment:

Syy = 632 + 772 + · · · + 632 − 3442

5
= 360.8

Sxx = 162 + 452 + · · · + 182 − 1482

5
= 1085.2

Sxy = (63 × 16) + · · · + (63 × 18) − 344 × 148
5

= 614.6

Hence,

β̂1 =
Sxy

Sxx
=

614.60
1085.20

= 0.5563

Reg. SS =
S2

xy

Sxx
=

614.602

1085.20
= 348.0770
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The residual SS is obtained by subtraction as: Syy − Reg. SS = 360.80 −
348.08 = 12.72 on 3 d.f. These results and those of the other two treatments
are presented in Table 13.5. The results in Table 13.5 are combined to give
the results for the analysis of error in Table 13.6.

Table 13.6 Analysis of error variance

Source df SS MS

Error for average Reg. 11 199.80 18.16
Error from treatments Reg 9 178.84 19.87

Difference 2 20.96 10.48

F - value for the test =
10.48

Adjust. Error MS
=

10.48
18.16

= 0.577 which when

compared with F (2,11) is not significant at α = 0.05, which indicates that
the lines are parallel, i.e.,

β1 = β2 = β3 = β

The above test for parallelism is only applicable for the single-factor co-
variance analysis. The covariance analysis is implemented in MINITAB by
reading TRT, Y and X into columns C1, C2 and C3 respectively. We
immediately obtain the transformed variable XX which equals Xij − X̄..,
i.e., Xij − 33.20. This variable is declared as a covariate in the MINITAB
instructions. The results are presented in the following output.

MTB > LET C4=C3-MEAN(C3)

Data Display

Row TRT Y X XX

1 BRUS 63 16 -17.2
2 BRUS 77 45 11.8
3 BRUS 81 50 16.8
4 BRUS 60 19 -14.2
5 BRUS 63 18 -15.2
6 SPRY 81 48 14.8
7 SPRY 73 40 6.8
8 SPRY 59 24 -9.2
9 SPRY 74 33 -0.2
10 SPRY 77 41 7.8
11 DIPP 72 40 6.8
12 DIPP 54 31 -2.2
13 DIPP 57 40 6.8
14 DIPP 59 33 -0.2

SUBC> Covariates ’XX’;
SUBC> Brief 1 ;
SUBC> Means TRT;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

MTB > GLM ’Y’ = TRT;

15  DIPP   52   20  -13.2
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Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of TRT

TRT = BRUS subtracted from:

Level Difference SE of Adjusted
TRT of Means Difference T-Value P-Value
DIPP -12.04 2.716 -4.433 0.0027
SPRY -0.84 2.809 -0.300 0.9519

TRT = DIPP subtracted from:

Level Difference SE of Adjusted
TRT of Means Difference T-Value P-Value
SPRY 11.20 2.734 4.096 0.0046

Means for Covariates

Covariate Mean StDev
XX -0.000000 11.44

Least Squares Means for Y

TRT Mean SE Mean
BRUS 71.09 1.942
DIPP 59.05 1.906
SPRY 70.25 1.951

Source DF Seq SS Adj SS Adj MS F P
XX 1 752.94 684.59 684.59 37.69 0.000
TRT 2 451.65 451.65 225.83 12.43 0.002
Error 11 199.81 199.81 18.16
Total 14 1404.40

General Linear Model: Y versus TRT

Factor Type Levels Values
TRT fixed 3 BRUS DIPP SPRY

Analysis of Variance for Y, using Adjusted SS for Tests

The results agree with our earlier results. The estimated adjusted treatment
means also agree with our results. The F test indicate that there are sig-
nificant differences between the adjusted treatment means (p-value = 0.002).
A pairwise comparison test using Tukey’s test indicate that while both the
adjusted treatment means for brushing and spraying are not significantly
different, both are however significantly different from the adjusted Dipping
treatment mean. This conclusion is displayed in the table below.

Adjusted treatments
t̂BR t̂SP t̂DP
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13.3.1 Testing for Parallelism with MINITAB

To test for parallelism with MINITAB, we refit the model, but his time
include the interaction term between treatments and covariate i.e., we fit the
model,

Yij = μ + ti + β(Xij − X̄..) + (tx)ij + εij ;
i = 1, 2, 3
j = 1, 2, 3, 4, 5 (13.7)

where (tx)ij is the interaction term between treatments and centered covari-
ate i.e., x = (Xij − X̄..). The result of this fit in MINITAB is presented
below:

MTB > GLM ’Y’ = TRT TRT* XX;
SUBC> Covariates ’XX’;
SUBC> Brief 1 .

General Linear Model: Y versus TRT

Factor Type Levels Values
TRT fixed 3 BRUS DIPP SPRY

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
XX 1 752.94 564.31 564.31 28.40 0.000
TRT 2 451.65 396.35 198.18 9.97 0.005
TRT*XX 2 20.97 20.97 10.48 0.53 0.607
Error 9 178.84 178.84 19.87
Total 14 1404.40

If the lines are parallel, we would expect that the interaction term would not
be significant. In the above results, the hypotheses that:

H0 : Interaction term is zero

Ha : Interaction term is not zero

is tested with the computed F value of 0.53 on 2 and 9 degrees of freedom.
This gives a p-value of 0.607 which clearly indicates that we would fail to
reject H0 i.e., the interaction terms can be assumed to be zero. In other
words the lines are parallel.
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Fig. 13.1 Plot of adjusted treatment means against X

Example 13.3.1

The data below is taken from Ostle and Mensing (1975). It is an experiment
in which the gain in weights of pigs for four different feeds were compared.
the covariate X was the initial weight of the pig. Pigs were assigned to feeds
completely at random. The data is recorded in Table 13.7.
Following the analysis procedure in the preceding section, we have the sum-
marized results for the analysis of covariance for the data in Table 13.7 in
Table 13.8.
F = 536.53/276.58 = 1.94 which is not significant at the 5 % level, and hence
we are unable to reject the hypothesis of no differences among the true effects
of the four treatments for the gain in weight of pigs after adjusting for varying
initial weights of the experimental animals.

X̄++ = 29.29, Ȳ++ = 169.71, and β̂ =
496.83
361.50

= 1.374
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Table 13.7 Gains in weight Y and individual weights X of Pigs

Treatments

1 2 3 4
X Y X Y X Y X Y

30 165 24 180 34 156 41 201
27 170 31 169 32 189 32 173
20 130 20 171 35 138 30 200
21 156 26 161 35 190 35 193
33 167 20 180 30 160 28 142
29 151 25 170 29 172 36 189

Total 160 939 146 1031 195 1005 202 1098

Table 13.8 Analysis of covariance

Deviations about regression

Source df SX SXY SY Error SS df MS

Trts. 3 365.46 451.21 21663
Error 20 361.50 496.83 5937.83 5255.01 19 276.58

Total 23 726.96 948.04 8100.96 6864.61 22

Difference for the adjusted treatments 1609.6 3 536.03

So that the adjusted treatment means from Eq. (13.2) and their correspond-
ing standard errors from Eq. (13.5) are

Treatment 1 2 3 4

adj. t̂i 160.10 178.65 163.09 176.98
S.E 7.17 8.06 7.35 7.80

The analysis of covariance for the data in Table 13.9 is carried out in
MINITAB with the following commands and output.

MTB > set c2
DATA> 165 170 130 156 167 151 180 169 171 161 180 170
DATA> 156 189 138 190 160 172 201 173 200 193 142 189
DATA> end
MTB > set c3
DATA> 30 27 20 21 33 29 24 31 20 26 20 25
DATA> 34 32 35 35 30 29 41 32 30 35 28 36
DATA> end
MTB > set c1
DATA> (1:4)6
DATA> end
LET C4=C3-MEAN(C3)

Data Display
Row TRT Y X XX

1 1 165 30  0.7083
2 1 170 27   -2.2917
3 1 130 20  -9.2917
4 1 156 21  -8.2917
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16 3 190 35 5.7083
17 3 160 30 0.7083
18 3 172 29 -0.2917
19 4 201 41 11.7083
20 4 173 32 2.7083
21 4 200 30 0.7083
22 4 193 35 5.7083
23 4 142 28 -1.2917
24 4 189 36 6.7083

MTB > GLM ’Y’ = TRT;
SUBC> Covariates ’XX’;
SUBC> Brief 1 ;
SUBC> Means TRT;
SUBC> Pairwise TRT;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus TRT

Factor Type Levels Values
TRT fixed 4 1 2 3 4

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
XX 1 1236.4 682.8 682.8 2.47 0.133
TRT 3 1609.6 1609.6 536.5 1.94 0.157
Error 19 5255.0 5255.0 276.6
Total 23 8101.0

5 1 167 33 3.7083
6 1 151 29 -0.2917
7 2 180 24 -5.2917
8 2 169 31 1.7083
9 2 171 20 -9.2917
10 2 161 26 -3.2917
11 2 180 20 -9.2917
12 2 170 25 -4.2917
13 3 156 34 4.7083
14 3 189 32 2.7083
15 3 138 35 5.7083

Means for Covariates

Covariate Mean StDev
XX -0.000000 5.622

Least Squares Means for Y

TRT Mean SE Mean
1 160.1 7.167
2 178.6 8.056
3 163.1 7.347
4 177.0 7.794
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The results indicate that there are no significant differences among the ad-
justed treatment means (p-value = 0.157). A test to show if the covariate
has been useful in adjusting the treatment means is performed by testing the
covariate parameter, i.e.,

H0 : β = 0 (13.8)

Ha : β �= 0 (13.9)

Results from the MINITAB ANOVA table gives a p-value of 0.133 for this
test, which indicates that we would fail to reject H0, thus, the covariate has
not improved our analysis, and we might just as well carry out the analysis
based on the response variable Y alone.

Similarly, a test for the assumption of parallelism gives a SS of 1058.6 on
3 d.f and a calculated F value of 1.35 with a corresponding p-value of 0.295.
Again, this indicates that the assumption of parallelism is tenable in this case.

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
XX 1 1236.4 158.7 158.7 0.61 0.448
TRT 3 1609.6 181.4 60.5 0.23 0.874
TRT*XX 3 1058.6 1058.6 352.9 1.35 0.295
Error 16 4196.4 4196.4 262.3
Total 23 8101.0

13.4 Covariance Analysis in a RCBD

We present in the next example, the covariance analysis in a randomized
complete block design (RCBD).

Example 13.4.1

The data in Table 13.9 gives the yield of three varieties of a certain crop in
a Randomized Complete Block Design in four blocks.

Table 13.9 Yields of three varieties of a crop

Varieties Block

Block A B C total

1 X 54 51 57 162
Y 64 65 72 201

2 X 62 64 60 186
Y 68 69 70 207

3 X 51 47 46 144
Y 54 60 57 171

4 X 53 50 41 144
Y 62 66 61 189

Total X 220 212 204 636
Y 248 260 260 768
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Where,

X = yield of a plot in a preliminary year under uniformity trial condition
Y = yield on the same plot in the experimental year when the three varieties

were used.

Analysis

Sxx : Sum of squares of X

Blocks SS =
1622

3
+

1862

3
+

1442

3
+

1442

3
− 6362

12
= 396

Varieties SS =
2202

4
+

2122

4
+

2042

4
− 6362

12
= 32

Total SS = 542 + 512 + · · · + 412 − C.F = 514

Error SS = 514 − 396 − 32 = 86

Sxy: Cross - Products

Blocks SS =
(162 × 201)

3
+ · · · +

(144 × 189)
3

− 636x768
12

= 264

Varieties SS =
(220 × 248)

4
+ · · · +

(204 × 260)
4

− 636 × 768
12

= 24

Total SS = (54 × 64) + · · · + (41 × 61) − (636 × 768)
12

= 286

Error SS286 − 264 + 24 = 46

Syy: Sum of squares of Y

Blocks SS =
2012

3
+

2072

3
+ · · · +

1892

3
− 7682

12
(C.F ) = 252

Varieties SS =
2402

4
+ · · · +

2602

4
− CF = 24

Total SS = 642 + 652 + · · · + 612 − CF = 324

Error SS = 324 − 252 − 24 = 48

Hence, the analysis of covariance table is presented in Table 13.10.
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Table 13.10 Analysis of covariance for data of 13.9

Adjusted SS

Source df Sxx Sxy Syy Error SS df MS

Blocks 3 396 264 252
Varieties 2 32 −24 24

Error 6 86 46 48 23.4 5 4.68

Total 11 514 286 324

Varieties + Error 8 118 22 72 67.9 7

Treatment adjusted for average error regression 44.5 2 22.25

The adjusted SS is obtained by noting that for the error line,

Sxy = 46, Sxx = 86, and Syy = 48.

Hence,

Fitted SS =
S2

xy

Sxx
= 24.6 on 1 df.

Therefore, the

adjusted SS (reduced SS) = Total SS − Fitted SS = 48 − 24.6 = 23.4

The adjusted or reduced SS is based on (6 − 1) = 5 degrees of freedom.
A similar argument leads to the varieties + Error line to give 67.9 on

7 df. Thus F = 22.25/4.68 = 4.75, which is significant at α = 0.10, thus we
can conclude that there are significant differences in the variety means after
adjusting for X at α = 0.10 but not at α = 0.05.

To test the hypothesis Ho : β = 0 vs H1 : β �= 0. We note that for the
Error line, we have the following table:

Source df SS MS F

Regression 1 24.6 24.6 5.26
Error adjusted 5 23.4 4.68

Error for unadjusted 6 48 8

F (1,5) = 4.06 at α = 0.10, thus we could reject the hypothesis that β = 0.
The covariance analysis of the data in Table 13.9 is again implemented in

MINITAB with the following commands and corresponding output.

Row BLOCKS X Y VART XX
1 1 54 64 A 1
2 1 51 65 B -2
3 1 57 72 C 4
4 2 62 68 A 9
5 2 64 69 B 11

MTB > LET C5=C2-MEAN(C2)
MTB > PRINT C1-C5

Data Display
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6 2 60 70 C 7
7 3 51 54 A -2
8 3 47 60 B -6
9 3 46 57 C -7
10 4 53 62 A 0
11 4 50 66 B -3
12 4 41 61 C -12

MTB > GLM ’Y’ = BLOCKS VART;
SUBC> Covariates ’XX’;
SUBC> Brief 1 ;
SUBC> Means VART;
SUBC> Pairwise VART;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: Y versus BLOCKS, VART

Factor Type Levels Values
BLOCKS fixed 4 1 2 3 4
VART fixed 3 A B C

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
XX 1 159.136 24.605 24.605 5.26 0.070
BLOCKS 3 96.966 77.227 25.742 5.50 0.048
VART 2 44.503 44.503 22.251 4.76 0.070
Error 5 23.395 23.395 4.679
Total 11 324.000

Means for Covariates

Covariate Mean StDev
XX 0.000000 6.836

Least Squares Means for Y

VART Mean SE Mean
A 60.93 1.178
B 65.00 1.082
C 66.07 1.178

The test of significance of the adjusted variety means from the analysis of
variance table gives a p-value of 0.070. Thus, while there are no significant
differences in adjusted variety means at α = .05 level of significance, there
is at α = 0.10, since p-value in this case is less than 0.10. Further, a test
of the covariate parameter, β indicates that the p-value is also 0.070, again
we claim that the covariate is not effective at the 5 % significance level, but
is at the 10 % significance level. The covariate in my opinion is not strongly
effective in this analysis.

A test of parallelism is obtained again by fitting the interaction terms in
the model. The results are presented in the following ANOVA Table from
MINITAB. Clearly, the p-value here is 0.123, which clearly indicates that
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interaction is not present and we would therefore expect the lines to have
parallel profiles. In other words, the assumption of parallelism is satisfied in
this analysis.

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
XX 1 159.136 24.092 24.092 12.50 0.038
BLOCKS 3 96.966 75.263 25.088 13.01 0.032
VART 2 44.503 50.282 25.141 13.04 0.033
VART*XX 2 17.612 17.612 8.806 4.57 0.123
Error 3 5.783 5.783 1.928
Total 11 324.000

13.4.1 Factorial Treatment Case

We consider that the following example from Steal & Torrie relating to the
case in which the dependent variable is affected by two independent variables
(covariates) X1 and X2, which measures the initial weight of and forage
consumed by guinea pigs, and a dependent variable Y which measured weight
gained after 55 days. The data is presented in the following table.

Table 13.11 Initial weight X1, forage consumed X2, and gain in weight Y

Soil treatment

Unfertilized Fertilized

Soil type Block X1 X2 Y X1 X2 Y

Miami silt 1 220 1155 224 222 1326 237
loam 2 246 1423 289 268 1559 265

3 262 1576 280 314 1528 256

Mean 242.7 1384.7 264.3 268.0 1471.0 252.7

Plainfield fine 1 198 1092 118 205 1154 82
sand 2 266 1703 191 236 1250 117

3 335 1546 115 268 1667 117

Mean 266.3 1447.0 141.3 236.3 1357.0 105.3

Almena silt 1 213 1573 242 188 1381 184
loam 2 236 1730 270 259 1363 129

3 288 1593 198 300 1564 212

Mean 245.7 1632.0 236.7 249.0 1436.0 175.0

Carlisle 1 256 1532 241 202 1375 239
2 278 1220 185 216 1170 207
3 283 1232 185 225 1273 227

Mean 272.3 1328.0 203.7 214.3 1272.7 224.3
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The model in this case is:

Yij = μ + ti + β(Xij − X̄..) + (tx)ij + εij ;
i = 1, 2, 3
j = 1, 2, 3, 4, 5 (13.10)

where (tx)ij is the interaction term between treatments and centered covari-
ate i.e., x = (Xij − X̄..). The result of this fit in MINITAB is presented
below:
The model in this case is:

Yij =μ + bi + Sj + Fk + (SF )jk + β1(X1ijk − X̄1...) + β2(X2ijk − X̄2...)

+ (tX)ijk + εijk;
i = 1, 2, 3
j = 1, 2, 3, 4
k = 1, 2

(13.11)

The adjusted treatment means for ˆ̄yij in this case are given by:

ŷi. = Ȳi. − β̂y1.2(x̄1i. − x̄1..) − β̂y2.1(x̄2i. − x̄2..) (13.12)

where β̂y1.2 and β̂y1.2 are estimated partial regression coefficients and i refer
to the 4(2) = 8 treatment combinations. The MINITAB implementation of
the above model, and corresponding output is presented below.

MTB > print c1-c6

Data Display

Row BLK FERT SOIL X1 X2 Y
1 1 0 1 220 1155 224
2 1 1 1 222 1326 237
3 2 0 1 246 1423 289
4 2 1 1 268 1559 265
5 3 0 1 262 1576 280
6 3 1 1 314 1528 256
7 1 0 2 198 1092 118
8 1 1 2 205 1154 82
9 2 0 2 266 1703 191

10 2 1 2 236 1250 117
11 3 0 2 335 1546 115
12 3 1 2 268 1667 117
13 1 0 3 213 1573 242
14 1 1 3 188 1381 184
15 2 0 3 236 1730 270
16 2 1 3 259 1363 129
17 3 0 3 288 1593 198
18 3 1 3 300 1564 212
19 1 0 4 256 1532 241
20 1 1 4 202 1375 239
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21 2 0 4 278 1220 185
22 2 1 4 216 1170 207
23 3 0 4 283 1232 185
24 3 1 4 225 1273 227

MTB > Name c7 "COEF1"
MTB > GLM ’Y’ = BLK SOIL| FERT;
SUBC> Covariates ’X1’ ’X2’;
SUBC> Brief 2 ;
SUBC> Means SOIL FERT SOIL| FERT;
SUBC> Coefficients ’COEF1’.

General Linear Model: Y versus BLK, SOIL, FERT

Factor Type Levels Values
BLK fixed 3 1, 2, 3
SOIL fixed 4 1, 2, 3, 4
FERT fixed 2 0, 1

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
X1 1 4.0 1341.6 1341.6 3.13 0.102
X2 1 13219.3 10585.1 10585.1 24.73 0.000
BLK 2 332.0 395.4 197.7 0.46 0.641
SOIL 3 59945.3 59216.4 19738.8 46.12 0.000
FERT 1 2121.1 1850.6 1850.6 4.32 0.060
SOIL*FERT 3 1136.6 1136.6 378.9 0.89 0.476
Error 12 5135.5 5135.5 428.0
Total 23 81893.8

S = 20.6872 R-Sq = 93.73% R-Sq(adj) = 87.98%

Term Coef SE Coef T P
Constant 99.41 69.49 1.43 0.178
X1 -0.4943 0.2792 -1.77 0.102
X2 0.15837 0.03184 4.97 0.000

Means for Covariates

Covariate Mean StDev
X1 249.3 38.68
X2 1416.0 191.92

Least Squares Means for Y
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SOIL Mean SE Mean
1 259.6 8.594
2 126.5 8.485
3 186.2 9.334
4 229.4 9.146
FERT
0 210.1 6.293

1 190.7 6.293
SOIL*FERT
1 0 266.0 12.079
1 1 253.2 12.918
2 0 144.8 12.770
2 1 108.3 12.445
3 0 200.7 13.987
3 1 171.7 11.963
4 0 229.0 14.269
4 1 229.7 15.153

Only the main effect of soil is significant at the 5 % level. Neither the main
effect of soil treatment nor the interactions terms are significant. However, for
instance, the interaction adjusted treatment means, the adjusted mean for
soil 2, and fertilizer 1 (i.e., plainfield fine sand in combination with fertilized
soil treatment), for instance is obtained as:

ˆ̄y21 = 105.5 − (−0.4943)(236.3 − 249.3) − (0.1584)(1357 − 1416) = 108.4197

Since, the partial regression coefficients are estimated as −0.4943 and 0.1584
for X1 and X2 respectively. Similarly, the adjusted soil means are computed
as:

ŷ.1 = Ȳ.j. − β̂y1.2(x̄1.j − x̄1.j) − β̂y2.1(x̄2.j − x̄2.j) (13.13)

For soil 1 for instance this becomes:

ˆ̄y.1 = 258.5 − (−0.4943)(255.3 − 249.3) − (0.1584)(1427.83 − 1416) = 259.6

Here, 255.3 =
(728 + 804)

6
and 1427.83 =

(4154 + 4413)
6

.

13.5 Estimation of Missing Observations

To illustrate the use of covariance analysis to estimate a missing observation,
let us consider the data in Table 11.3 for the Randomized Complete Blocks
design in Chap. 10. Suppose as before the value for strain D in block five
is missing. We reproduce for clarity below the data for Table 11.3 with the
resulting table presented in Table 13.12.
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Table 13.12 Yields of wheat in (lb/plot) with one missing observation

Blocks Strain

Strains 1 2 3 4 5 total

A Y 32.3 34.0 34.3 35.0 36.5 172.1
X 0 0 0 0 0 0

B Y 33.3 33.0 36.3 36.8 34.5 173.9
X 0 0 0 0 0 0

C Y 30.8 34.3 35.3 32.3 35.8 168.5
X 0 0 0 0 0 0

D Y 29.3 26.0 29.8 28.0 0 113.1
X 0 0 0 0 −1 −1

Total Y 125.7 127.3 135.7 132.1 106.8 627.6
X 0 0 0 0 −1 −1

For the missing value, we set the observation Y = 0. If we define a covariate
X such that X = 0 for an observed Y and −1 (or + 1) for Y = 0, i.e.,

X =
{

−1 if observation is missing
0 otherwise

To estimate the missing value, we would calculate the following:

Syy: Sum of Square

Total SS = 32.32 + 33.32 + · · · + 35.82 + 02 − 627.62

20
= 1201.692

Strains SS =
172.12

5
+ · · · +

113.12

5
− C.F = 514.608

Blocks SS =
125.72

4
+ · · · +

106.82

4
− C.F = 125.142

Error SS = Total − Blocks SS − Strain SS = 561.942

Sxy: Sum Squares of Cross-Products (SSCP)

Total SSCP =
(0 × 323)

5
+ · · · +

(−1 × 0)
5

− (−1 × 627.6)
20

= 31.38

Strains SSCP =
(0 × 172.1)

5
+ · · · +

(−1 × 113.1)
5

− (−1 × 627.6)
20

= 8.76

Blocks SSCP =
(0 × 125.7)

4
+ · · · +

(−1 × 106.8)
4

− (−1 × 627.6)
20

= 4.68

Error SSCP = Total − Strains − Blocks = 17.94



13.5 Estimation of Missing Observations 525

Sxx: Sum of Squares of X

Total SS = 02 + 02 + · · · + (−1)2 − (−1)2

20
= 0.95

Strains SS =
02

5
+ · · · +

(−1)2

5
− (−1)

20
= 0.15

Blocks SS =
02

4
+ · · · +

(−1)2

4
− (−1)

20
= 0.20

Error SS = Total − Strains − Block = 0.60

The missing value is given by:

x̂0 =
Error Sxy

Error Sxx
=

17.94
0.60

= 29.9 (13.14)

which is the same value as that obtained in example 11.4.
We can now perform the Analysis of Covariance.

Adjusted

Source df Sxx Sxy Syy df SS(y) MS

Total 19 0.95 31.38 1201.692
Blocks 4 0.20 4.68 125.142
Strains 3 0.15 8.76 514.608

Error 12 0.60 17.94 561.942 11 25.536 2.32

Treatments + Error 15 0.75 26.7 1076.55 14 126.03

Treatments adjusted 3 100.494 33.50

A test of the hypotheses:

H0 : μA = μB = μC = μD

Ha : at least two of the adjusted means are unequal

is tested by computing

F =
33.50
2.32

= 14.44

This is compared with an F3,11(0.95) = 3.59, indicating that there are
significant differences between the adjusted strain means. The MINITAB
implementation is carried out with the following:
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1 A 1 32.3 0
2 A 2 34.0 0
3 A 3 34.3 0
4 A 4 35.0 0
5 A 5 36.5 0
6 B 1 33.3 0
7 B 2 33.0 0
8 B 3 36.3 0
9 B 4 36.8 0

10 B 5 34.5 0
11 C 1 30.8 0
12 C 2 34.3 0
13 C 3 35.3 0
14 C 4 32.3 0
15 C 5 35.8 0
16 D 1 29.3 0
17 D 2 26.0 0
18 D 3 29.8 0
19 D 4 28.0 0
20 D 5 0.0 -1

MTB > GLM ’Y’ = BLOCKS STRAINS;
SUBC> Covariates ’X’;
SUBC> Brief 1 ;
SUBC> Means STRAINS.

General Linear Model: Y versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1 2 3 4 5
STRAINS fixed 4 A B C D

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
X 1 1036.53 536.41 536.41 231.06 0.000
BLOCKS 4 39.13 21.97 5.49 2.37 0.117
STRAINS 3 100.49 100.49 33.50 14.43 0.000
Error 11 25.54 25.54 2.32
Total 19 1201.69

Means for Covariates

Covariate Mean StDev

X -0.05000 0.2236

Least Squares Means for Y

STRAINS Mean SE Mean
A 32.92 0.6885
B 33.28 0.6885
C 32.21 0.6885
D 27.11 0.7425

Data Display

Row STRAINS BLOCKS Y X
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The F -value obtained from the covariance analysis in MINITAB is 14.43 with
a p-value of 0.000. This value compares well with the value obtained from
hand calculations. Further, the p-value for the effect of the covariate is 0.000
which indicates that the covariate is very effective in this analysis.

13.5.1 Another Missing Value Example

The missing value can be estimated as the negative of the slope parame-
ter where, slope is estimated by β̂ = Exy/Exx, if we just apply covariance
analysis the structure of the data in Table 13.12.

MTB > GLM ’Y’ = BLOCKS STRAINS;
SUBC> Covariates ’X’;
SUBC> Brief 3 ;
SUBC> Means STRAINS.

General Linear Model: Y versus BLOCKS, STRAINS

Factor Type Levels Values
BLOCKS fixed 5 1, 2, 3, 4, 5
STRAINS fixed 4 A, B, C, D

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
X 1 1036.53 536.41 536.41 231.06 0.000
BLOCKS 4 39.13 21.97 5.49 2.37 0.117
STRAINS 3 100.49 100.49 33.50 14.43 0.000
Error 11 25.54 25.54 2.32
Total 19 1201.69

S = 1.52363 R-Sq = 97.87% R-Sq(adj) = 96.33%

Term Coef SE Coef T P
Constant 32.8750 0.3546 92.71 0.000
X 29.900 1.967 15.20 0.000
BLOCKS
1 -1.4500 0.6885 -2.11 0.059
2 -1.0500 0.6885 -1.53 0.155
3 1.0500 0.6885 1.53 0.155
4 0.1500 0.6885 0.22 0.832
STRAINS
A 1.5450 0.5982 2.58 0.025
B 1.9050 0.5982 3.18 0.009
C 0.8250 0.5982 1.38 0.195

Means for Covariates

Covariate Mean StDev
X -0.05000 0.2236
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Least Squares Means for Y

STRAINS Mean SE Mean
A 32.92 0.6885
B 33.28 0.6885
C 32.20 0.6885
D 27.11 0.7425

The estimated missing value is estimated as 29.9, the estimate of the covari-
ate parameter. We also note that MINITAB automatically adjusts the error
degrees of freedom accordingly.

13.6 Exercises

1. Given the following data:

Source of variation df Sxx Sxy Syy

Replicates 4 100 140 400
Treatments 10 100 100 900

Error 40 400 900 2500

(a) With the above summary statistics, carry out a full analysis of covari-
ance. What conclusions may be drawn about the effect of treatments.

(b) Test the regression coefficient based on the experimental error at =
α = 0.05.

2. Analyze the following 5 × 5 Latin Square experiment on the yield in bags
per acre of No.1 Irish potatoes (Y ), adjusted for the percentage of No. 1’s
(X ). The treatments were different amounts (pounds) of P2O5 per acre:
a = 0, b = 40, c = 80, d = 120, e = 160. Partition the adjusted treatment
SS into relevant components.

Columns
1 2 3 4 5

Rows t Y X t Y X t Y X t Y X t Y X

1 a 134.0 91 b 149.1 88 c 141.3 87 d 161.3 91 e 149.2 91
2 b 148.5 90 d 148.5 91 e 199.3 94 a 148.5 90 c 152.7 93
3 c 145.2 93 e 149.5 95 a 119.9 90 b 149.2 94 d 145.8 90
4 d 171.1 91 c 169.0 94 b 144.9 89 e 170.8 95 a 130.4 88
5 e 175.8 91 a 153.4 94 d 168.9 92 c 167.6 96 b 141.5 93

Total 774.6 456 769.5 462 774.3 452 797.4 466 719.6 455

3. A rehabilitation center researcher was interested in examining the rela-
tionship between physical fitness prior to surgery of people undergoing
corrective knee surgery, and time required in physical therapy until suc-
cessful rehabilitation. Patients records at the center for 24 males whose
age range from 18 to 30 years, and who had undergone corrective surgery
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were selected. The number of days required for successful completion of
physical therapy y, and the prior physical status (low, average, high) as
factor levels for each patient as well as their ages (x) are presented below
(Neter et al. 1990).

Factor Observations

level Var 1 2 3 4 5 6 7 8 9 10

Low Y 29 42 38 40 43 40 30 32
X 18.3 30.0 26.5 28.1 29.7 27.8 19.8 29.3

Average Y 30 35 39 28 31 31 29 35 29 33
X 20.8 25.2 29.2 20.0 21.5 22.1 19.7 24.7 20.2 22.9

High Y 26 32 21 20 23 22
X 22.7 28.7 18.9 18.0 21.7 20.0

(a) Carry out a covariance analysis of the above data employing age as a
concomitant variable.

(b) Test for treatment and adjusted treatment effects, use α = 0.05.
(c) Conduct a multiple comparison tests on the adjusted treatment means.
(d) Is the covariate important for this study?

4. A horticulturist conducted an experiment to study the effects of flower
variety (factor A: varities LP, WB), and moisture level (factor B: low,
high) on yields of salable flower’s (Y ). Because the plots were not of the
same size, the horticulturist wished to use plot size (X ) as the concomitant
variable. Six replications were made for each treatment, and the data is
presented below (Neter et al. 1990).

Factor B

B1 (low) B2 (high)

Factor A Y X Y X

A1 98 15 71 10
60 4 80 12

(variety LP) 77 7 86 14
80 9 82 13
95 14 46 2
64 5 55 3

A2 55 4 76 11
60 5 68 10

(variety WB) 75 8 43 2
65 7 47 3
87 13 62 7
78 11 70 9

(a) Carry out a covariance analysis for the above data and test for adjusted
main and interaction effects.

(b) What are the estimated regression coefficients.



Chapter 14
Factorial Treatments Designs

14.1 Definitions

Factor-This is an independent variable for study in an experiment, and the
first thing to consider in an experiment is to determine the factor or variable
to be investigated. For example, let us suppose that we are interested in
investigating the effect of inorganic chemicals on plant growth over the life
period of the plant. Since many inorganic chemicals are involved we select one
of them, say, nitrogen, in the nitrate form, NO3. Quite a different result may
be obtained with a different form, say, NH3. The same amount of nitrogen
could be used for the two forms, but the effect on plant response or growth
could be quite different for the two forms of nitrogen.

Nitrogen in this example is the factor to be investigated, while the amounts
of NO3 to be used are referred to as the levels of the factor.

14.1.1 Factorial Design

The experimenter may wish to study two or more factors jointly to observe
the manner in which the response varies with the changing levels of the factors
under study. For example, suppose an agronomist is investigating the yield of
maize. He decided to use various amounts of nitrogen (N) and phosphorous
(P). Suppose that it is decided to use the following levels of N and P:

Levels of N − 10, 20, 40, 80 g.

Levels of P − 13, 39, 65, 91 g.

Now the question arises as to what combinations of the various levels of the
two factors to use in the investigation. Well, why not use all the treatment
combinations in Table 14.1?

531B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 14,
c© Springer International Publishing Switzerland 2014
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Table 14.1 The 16 treatment combinations
Levels of Levels of P (g)

N 13 = 0 39 = 1 65 = 2 91 = 3

10 = 0 n0p0 = 00 n0p1 = 01 n0p2 = 02 n0p3 = 03
20 = 1 n1p0 = 10 n1p1 = 11 n1p2 = 12 n1p3 = 13
40 = 2 n2p0 = 20 n2p1 = 21 n2p2 = 22 n2p3 = 23
80 = 3 n3p0 = 30 n3p1 = 31 n3p2 = 32 n3p3 = 33

The combination of the ith level of N and of the jth level of P is denoted
as nipj . Once the order of the subscript has been defined, the subscript ij is
sufficient to define the treatment corresponding to the combination nipj of
the two factors N and P . The treatment design for the two factors described
above is known as a factorial experiment.

A factorial treatment design is one which contains all combinations of levels
of the various factors. That is, if there are X levels of factor A and Y levels of
factor B, then each replicate contains all X×Y treatment combinations. It has
been shown (Kempthorne 1952) that if the purpose of an experiment utilizing
factorial treatment design is to estimate main effects and interactions, then
the factorial design is optimum, that is, no other selection of treatments does
this more effectively than a factorial with equal numbers of observations on
each treatment.

In most agricultural experiments, factors tend to interact with one another,
and the factorial experiments are most appropriate for this kind of situations.

14.2 Experiments at Two Levels: The 2n Series

A 2n factorial experiment is an experiment involving n factors each at two
levels designated 0, 1. The simplest of the design is when n = 2, that is, two
factors each at two levels—22. For this situation, suppose the two factors are
A and B, with the levels designated 0, 1, respectively. Then, there will be
four (2 × 2) treatment combinations (00), (10), (01), and (11).

If a0 and b0 denote the zero level for both factors and a1 and b1 also denote
the upper levels of the two factors, then the four treatment combinations can
be put in a table as follows:

Factor Factor B
A b0 b1

a0 a0b0 a0b1
a1 a1b0 a1b1
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These are sometimes written as follows.

(1) = a0b0

a = a1b0

b = a0b1

ab = a1b1

Since there are four treatment combinations, it follows that there are three
degrees of freedom for treatments made up as shown in Table 14.2.

Table 14.2 Structure of ANOVA table
Source d.f.

A 1 Main effect of A
B 1 Main effect of B

AB 1 Interaction effect of A and B.

(a) The main effect of a factor is a measure of the change in the level of the
factor averaged over all levels of the other factors.

(b) The interaction is the differential response to one factor in combination
with varying levels of a second factor applied simultaneously. That is,
interaction is an additional effect due to the combined influence of two
(or more) factors.

14.2.1 Factorial Effects in the 22 Factorial

Consider the 2 × 2 table of means in Table 14.3. If we let μij , i = 0, 1; j =
0, 1 be the expected response from treatment combination ij, then μij =
{μ00, μ01, μ10, μ11}.

Simple Effects

The simple effect of A at level b0 of B is defined as:

μ[A B0] = μ10 − μ00. (14.1)

That is, the simple effect of A at level b0 of B is the amount of change in
the expected response when the level of A is changed from a1 to a0, with the
level of B held constant at b0. Similarly, the simple effect of A at level b1 of
B is defined as:

μ[A B1] = μ11 − μ01 (14.2)

which again can be interpreted as the amount of change in the response when
level of A is changed from a1 to a0, while the level of B is kept constant at b1.
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Table 14.3 Population means and simple effects in a 22 factorial

Level of Level of B Simple effects of B
A b0 b1 μ[Ai B]

a0 μ00 μ01 μ[A0 B] = μ01 − μ00
a1 μ10 μ11 μ[A1 B] = μ11 − μ10

Simple effect of A μ[A B0] = μ[A B1] =
μ[A Bj ] μ10 − μ00 μ11 − μ01

The main effect of A, therefore, denoted as μ[A] is defined as the average of
the simple effects μ[A B0] and μ[A B1] in (14.1) and (14.2), respectively.

μ[A] =
1
2
{μ[A B1] + μ[A B0]}. (14.3)

=
1
2
(μ11 − μ01 + μ10 − μ00)

Similarly, the main effect of B is defined as the average of the simple effects
of B at a0 and a1, respectively. That is,

μ[B] =
1
2
{μ[A1 B] + μ[A0 B]} (14.4)

=
1
2
(μ11 − μ10 + μ01 − μ00).

Both main effects can be estimated from table of observed means Ȳij as,

μ̂[A] =
1
2
(Ȳ11 − Ȳ01 + Ȳ10 − Ȳ00) (14.5a)

μ̂[B] =
1
2
(Ȳ11 − Ȳ10 + Ȳ01 − Ȳ00). (14.5b)

Example 14.1.1

Consider the following table of means from a 2 × 2 factorial experiment with
factors A and B.

B
A b0 b1

a0 33 63
a1 22 52

The simple effects of A at b0 and b1 are, respectively, 22 − 33 = −11 and
52 − 63 = −11. Hence, main effect of A is 1

2 (−11 − 11) = −11 or it could
have been computed as 1

2 (52−63+22−33) = −11. Similarly the main effect
of B is 1

2 (52 − 22 + 63 − 33) = 30.



14.2 Experiments at Two Levels: The 2n Series 535

Interaction Effects

Refer again to 2 × 2 table of population means in Table 14.3. Factors A and
B are said to have interaction or to interact if the simple effect of A changes
with the level of B. Thus, the interaction term μ[AB] is defined as:

μ[AB] =
1
2
(μ[A B1] − μ[A B0]) =

1
2
(μ[A1 B] − μ[A0 B]). (14.6)

If there is no interaction, then μ[AB] = 0. Thus, a nonzero value for μ[AB]
is an indication of the presence of interaction between factors A and B.

Example 14.1.2

Consider again the table of means from a 2 × 2 factorial experiment with
factors A and B used in the previous example. The simple effects from four
different table of means (a)–(d) are presented in Table 14.4.

Table 14.4 Simple and interaction effects for four different tables of means
A b0 b1 μ[AiB]
a0 33 63 30
a1 22 52 30

μ[ABj ] −11 −11

A b0 b1 μ[AiB]
a0 12 32 20
a1 4 10 6

μ[ABj ] −8 −22

(a) (b)

A b0 b1 μ[AiB]
a0 33 13 −20
a1 22 42 20

μ[ABj ] −11 29

A b0 b1 μ[AiB]
a0 16 23 7
a1 34 23 −11

μ[ABj ] 18 0

(c) (d)

In Fig. 14.1, which corresponds to Table (a) in Table 14.4, μ[AB] = 0 because
the simple effects of B are the same at both levels of A. Thus, the figure
depicts the case when no interaction is present, which leads to parallel lines.

(a) Identical simple effects with μ[AB] = 0
(b) Unequal simple effects with the same signs with μ[AB] = −7
(c) Unequal simple effects with opposite signs. Here μ[AB] = 40
(d) Unequal simple effects with the same signs and has μ[AB] = −18
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Fig. 14.1 (a) Identical simple effects

Fig. 14.2 (b) Unequal simple effects with the same signs
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In Fig. 14.2 which corresponds to Table (b) in the table of means in Ta-
ble 14.4, we have the simple effects of B changing with the level of A (and vice
versa), indicating the presence of interaction. The interaction effect here is
μ[AB] = −7. The simple effects of A are both negative, while those of B
are both positive. For A, the expected response decreases from a0 to a1 at
both levels of B. The interaction presented in Fig. 14.2 therefore represents a
quantitative interaction, because changing the levels of any one factor results
in a change in the magnitude of the simple effects (but not the direction) of
the other factor. Further, both lines in Fig. 14.2 have downward slopes and
quantitative interaction has a pattern of having lines not being parallel but
have the same direction for their slopes.

Fig. 14.3 Unequal simple effects with opposite signs

In Fig. 14.3 which also corresponds to Table (c) in the table of means in
Table 14.4, we have the simple effect of B at a0 is negative, while its simple
effect at a1 is positive. That is, the expected responses of Factor B decreases
at a0 and increases at a1. The interaction therefore, is due to the difference in
the signs of the simple effects. The interaction plotted in Fig. 14.3 represents
therefore a qualitative interaction because changing the level of any one factor
results in a change in the direction (sign, − to +) of the simple effect of the
other factor. Again, the pattern of the plot in this figure is nonparallel but
the slopes have different directions.

The interaction plot in Fig. 14.4 is similar to that in Fig. 14.3 except that
it is a variation of the former. Here too, the pattern is that the lines are
not parallel and have different slopes except that there is no increase in the
simple effect of A at b1 and, therefore, is flat.
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Fig. 14.4 Unequal simple effects with same signs

14.2.2 The 23 factorial system

For the 23 experiment in which we have three factors each at two levels, there
will be 2 × 2 × 2 = 8 treatment combinations namely,

(1) = a0b0c0

a = a1b0c0

b = a0b1c0

ab = a1b1c0

c = a0b0c1

ac = a1b0c1

bc = a0b1c1

abc = a1b1c1

and seven main effects and interactions given by A, B, AB, C, AC, BC and
ABC corresponding to the breakdown of seven treatments degrees of free-
dom. The order in which both the treatment combinations, factor effects and
interactions are written is very important.
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Example 14.2.2

A study was conducted to determine the influence of plant density and vari-
eties on corn (Zea mays L.) yield. The experiment was a 2 × 2 × 2 factorial
replicated four times in a randomized complete design. The data are displayed
in Table 14.5.

In Table 14.6, the eight treatment combinations totals are presented. These
are extracted from Table 14.5.

Total SS = 1402 + 1382 + · · · + 1322 − CF = 605163 − 43972

32
= 987.7188

Treatment SS =
5502

4
+ · · · +

5322

4
− 43972

32
= 605.9688

The analysis of variance Table (ignoring blocks for now) for the data is
displayed in Table 14.7.

The seven treatment degrees of freedom can be broken into the following,
each with 1 d.f.

A 1
B 1

AB 1
C 1

AC 1
BC 1

ABC 1

Table 14.5 Yield of corn in this 23 factorial experiment

Spacing Density Replications
Variety (in) (plants/acre) I II III IV

A 12 12,000 140 138 130 142
16,000 145 146 150 147

435 433 426 439

25 12,000 136 132 134 138
16,000 140 134 136 140

421 404 408 420

B 12 12,000 142 132 128 140
16,000 146 136 140 141

436 408 410 421

25 12,000 132 130 136 134
16,000 138 132 130 132

410 396 396 402
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Table 14.6 Treatment combination totals
(1) = 550
a = 542
b = 540
ab = 532
c = 588
ac = 563
bc = 550
abc = 532

Table 14.7 Analysis of variance table

Source d.f. SS MS F

Treatments 7 605.9688 86.5670 5.44
Error 24 381.7500 15.9063
Total 31 987.7188

In order to obtain these sums of squares (SSs), we draw up a series of two-way
tables as shown in Table 14.8.

Table 14.8 Series of Two-way tables of observed yields

C0 C1 A0 A1 B0 B1

B0 1092 1151 C0 1090 1074 A0 1138 1090
B1 1072 1082 C1 1138 1095 A1 1105 1064

2164 2233 2228 2169 2243 2154

From Table 14.8, we calculate the following.
The SSs for C, that is SS(C) is given by

SS(C) =
21642

16
+

22332

16
− CF or as,

=
(2164 − 2233)2

32
= 148.7813

as the sums of 2164 and 2233 each came from 16 observations. Similarly for
A and B, we have,

SS(A) =
22282

16
+

21692

16
− CF or as,

=
(2228 − 2169)2

32
= 108.7813

SS(B) =
22432

16
+

21542

16
− CF or as,
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=
(2243 − 2154)2

32
= 247.5313.

For the two-factor interactions, we have,

SS(AB) =
11382 + 10902 + 11052 + 10642

8
− CF−SS(A)−SS(B)

or as
(1138 + 1064 − 1090 − 1105)2

32
= 1.5312.

Similarly,

SS(AC) =
10902 + 11382 + 10742 + 10952

8
− CF−SS(A)−SS(C) = 22.7813

and

SS(BC) = 75.0313.

For the three-factor interaction, the SS(ABC) is computed as,

SS(ABC) = Total treatment SS − SS(A) − SS(B) − SS(C) − SS(AB)

− SS(AC) − SS(BC)

= 1.5312500.

The revised analysis of variance (again, ignoring blocks) is given in Table 14.9
We present in Fig. 14.5 the main and interaction plot matrix from the

above analysis as generated in MINITAB. This is a 3 × 3 display. The diag-
onals give the main effects of A, B, and C, respectively. Cell (1,2) gives the
interaction plot of AB, while cell (3,2) similarly gives the interaction plot of
BC. From the matrix, possible interaction effects exist for AC and BC. Of
the two, only the BC interaction is highly significant at the 5 % point since
F(1,24)(0.95) = 4.26.

Table 14.9 The revised ANOVA table
Source d.f. SS MS F

A 1 108.7813 108.7813 6.84
B 1 247.5313 247.5313 15.56
AB 1 1.5313 1.5313 0.10
C 1 148.7813 148.7813 9.35
AC 1 22.7813 22.7813 1.43
BC 1 75.0313 75.0313 4.72
ABC 1 1.5313 1.5313 0.10
Treatments 7 605.9688 86.5670 5.44
Error 24 381.7500 15.9063
Total 31 987.7188
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Fig. 14.5 Main and interaction plots matrix

14.2.3 Yates Algorithm

We may also employ Yates algorithm for the calculation of the sum of squares
for the data in Table 14.6, which contains the treatment totals. To do this,
first we arrange the treatment combination in the order earlier suggested in
the last section, thus:

Table 14.10 Successive calculations based on Yates algorithm

Treatment Effects and
combinations Response (1) (2) (3) (4) interactions

(1) 550 1092 2164 4397
a 542 1072 2233 −59 108.7813 A
b 540 1151 −16 −89 247.5313 B
ab 532 1082 −43 7 1.5313 AB
c 588 −8 −20 69 148.7813 C
ac 563 −8 −69 −27 22.7813 AC
bc 550 −25 0 −49 75.0313 BC
abc 532 −18 7 7 1.5313 ABC

To use Yates method, we first list all treatment combinations in the first
columns as in Table 14.6. We next place the total response to each of these
treatment combinations in the second column. For the third column, labeled
(1), add the responses in pairs, e.g., 550 + 542 = 1092, 540 + 532 = 1072, 550
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+ 532 = 1082. This completes the first half of column (1). For the second
half, subtract the responses in pairs, always subtracting the first from the
second e.g. 542−550 = −8, 532−540 = −8, 532−550 = −18. This complete
column (1). Proceed in the same manner until the nth column is reached:
(1), (2), · · · . In our case n = 3, so there are just three columns (1), (2) and
(3). The values in column n are the constants, where the first entry is r.2n−1

times the grand total. The last column gives the corresponding contrasts to
the treatment combinations in column one.

To obtain corresponding SS, square the total for each contrast and divide

by 2nr. In our example, n = 3 and r = 4. Thus, SS(A) =
(−59)2

32
= 108.7813.

Similarly SS(ABC) =
(7)2

32
= 1.5313. We can therefore proceed as before and

conduct the usual F tests.

Average effect of A =
2169 − 2228

16
= −3.6875

Average effect of B =
2154 − 2243

16
= −5.5625

Average effect of C =
2233 − 2164

16
= 4.3125

The standard error (s.e.) for any of these differences =
√

2S2

16 = 1.4107. Since
the BC interaction was significant, we can write this in the form:

C0 C1 C1 − C0
B0 1092 1151 59
B1 1072 1082 10

C1 − C0 −20 −69

Average effect of B in absence of C =
1072 − 1092

8
= −2.50

Average effect of B in presence of C =
1082 − 1151

8
= −8.625

The standard error of either of these two average effects
√

2S2

8
= 1.7836.

Difference in effects depending on absence or presence of C

= −2.5 + 8.625 = 6.125

with an s.e. of
√

S2

8
+

S2

8
+

S2

8
+

S2

8
=

√
4S2

8
= 2.8201.
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The yield of A on average is −3.6875, that is, level 2 of A produces a lower
average yield than level 1 of A. This difference has an S.E. (24 d.f.) of 1.4107
and is therefore significant at 5 % level. There was little sign of the effects of
B and C being different for the two levels of A (AB and AC not significant).
The interaction between B and C was significant at 1 %, the four treatment
means being:

C0 C1 C1 − C0
B0 136.500 143.875 7.375
B1 134.000 135.250 1.250

B1 − B0 −2.500 −8.625

Fig. 14.6 Plot of the significant BC interaction

S.E. for comparing any two of the four treatment means = 1.7836.
Factor B has a significant larger effect at the lower level of C than at

the higher level of C. Factor B significantly reduces the average yield at the
higher level of C. The S.E. for comparing the responses to one factor at the
two levels of the other =2.8201.

The implementation of the analysis of the above data in MINITAB is
implemented as follows:
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MTB > SET C1
DATA> (1:2)16
DATA> END
MTB > SET C2
DATA> 2(1:2)8
DATA> END
MTB > SET C3
DATA> 4(1:2)4
DATA> END
MTB > SET C4
DATA> 8(1:4)
DATA> END
MTB > SET C5
DATA> 140 138 130 142 145 146 150 147
DATA> 136 132 134 138 140 134 136 140
DATA> 142 132 128 140 146 136 140 141
DATA> 132 130 136 134 138 132 130 132
DATA> END
MTB > PRINT C1-C5

Data Display

Row A B C REP YIELD

1 1 1 1 1 140
2 1 1 1 2 138
3 1 1 1 3 130
4 1 1 1 4 142
5 1 1 2 1 145
6 1 1 2 2 146
7 1 1 2 3 150
8 1 1 2 4 147
9 1 2 1 1 136
10 1 2 1 2 132
11 1 2 1 3 134
12 1 2 1 4 138
13 1 2 2 1 140
14 1 2 2 2 134
15 1 2 2 3 136
16 1 2 2 4 140
17 2 1 1 1 142
18 2 1 1 2 132
19 2 1 1 3 128
20 2 1 1 4 140
21 2 1 2 1 146
22 2 1 2 2 136
23 2 1 2 3 140
24 2 1 2 4 141
25 2 2 1 1 132
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26 2 2 1 2 130
27 2 2 1 3 136
28 2 2 1 4 134
29 2 2 2 1 138
30 2 2 2 2 132
31 2 2 2 3 130
32 2 2 2 4 132

MTB > ANOVA ’YIELD’ = A B C A*B A*C B*C A*B*C.

ANOVA: YIELD versus A, B, C

Factor Type Levels Values
A fixed 2 1 2
B fixed 2 1 2
C fixed 2 1 2

Analysis of Variance for YIELD

Source DF SS MS F P
A 1 108.78 108.78 6.84 0.015
B 1 247.53 247.53 15.56 0.001
C 1 148.78 148.78 9.35 0.005
A*B 1 1.53 1.53 0.10 0.759
A*C 1 22.78 22.78 1.43 0.243
B*C 1 75.03 75.03 4.72 0.040
A*B*C 1

31

1.53 1.53 0.10 0.759

Total
Error 24 381.75

987.72
15.91

14.2.4 Factorial in Complete Blocks

Now suppose the experiment leading to Table 14.5 had been conducted as
a randomized complete block design with the replicates being blocks and
each of the eight treatment combinations has been appropriately randomized
within each of the four blocks (replicates are being used here as blocks). Let
the data collected be tabulated as shown in Table 14.5 (note that the actual
layout of the experiment is different from that shown in Table 14.5). The
structure of the analysis of variance would now be:

Source d.f.

Blocks 3
Treatments 7

Error 21
Total 31
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Where the blocks SS is computed as:

Blocks SS =
11192

8
+

10802

8
+

10842

8
+

11142

8
− 43972

32
= 151.34.

Again, this can be analyzed in MINITAB with the following statements and
output.

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 3 151.34 151.34 50.45 4.60 0.013
A 1 108.78 108.78 108.78 9.91 0.005
B 1 247.53 247.53 247.53 22.56 0.000
C 1 148.78 148.78 148.78 13.56 0.001
A*B 1 1.53 1.53 1.53 0.14 0.712
A*C 1 22.78 22.78 22.78 2.08 0.164
B*C 1 75.03 75.03 75.03 6.84 0.016
A*B*C 1 1.53 1.53 1.53 0.14 0.712
Error 21 230.41 230.41 10.97

MTB > GLM ’YIELD’ = REP A B C A*B A* C B* C A*B*C;
SUBC> Brief 2 .

General Linear Model: YIELD versus REP, A, B, C

Factor Type Levels Values
REP fixed 4 1 2 3 4
A fixed 2 1 2
B fixed 2 1 2
C fixed 2 1 2

Analysis of Variance for YIELD, using Adjusted SS for Tests

31Total 987.72

The above analysis assumes that there are no treatments block interactions.
The result shows that the interaction between B and C is significant. No
other interaction term is significant at α = 0.05 level of significance.

14.3 The 3n Factorial Designs

Sometimes, the full effect of a treatment may be missed in a 2n factorial
design especially if treatment has a curvilinear effect. In such a situation,
there would be a need to run an experiment in which the number of levels of
a factor has to be at least three, so that at least, we can examine both the
linear and quadratic effect of the treatment.
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14.3.1 The 32 Factorial

The 32 design has two factors each at three levels. There are therefore 32 = 9
treatment combinations usually written as:

A B

0 1 2
0 00 01 02
1 10 11 12
2 20 21 22

The three levels are often described as (LOW, MEDIUM, HIGH) levels
corresponding respectively to (0, 1, 2) levels. The treatment combinations
are sometimes written as:

a0b0 a1b0 a2b0
a0b1 a1b1 a2b1
a0b2 a1b2 a2b2

The structure of the analysis of variance for a single replicate of the 32

design as well as for a replicated one is presented in the table below.

Source d.f.
A 2
B 2

AB 4

Error 0
Total 8

Source d.f.
Reps r − 1

A 2
B 2

AB 4
Error 8(r − 1)
Total 9r − 1

In a single replicate, we see there are no degrees of freedom left for er-
ror. However, replicating this design r times either as a CRD or laid the nine
treatment combinations in r blocks of size 9 with appropriate randomizations
of treatment combinations within blocks will lead to the second structure of
ANOVA Table. Even for r = 2, we would have 8 df for the error term and
we would therefore be a able to estimate the unit plot variance σ2. The
interaction term AB has four degrees of freedom in a 32 design. These inter-
action effects have been described as the AB and AB2 each having two df. If
the levels of A and B are designated as x1 and x2, then the AB interaction
component represents the response values whose x1 and x2 satisfy:

x1 + x2 = 0, 1, 2 (mod 3) (14.7)
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On the other hand, the AB2 component represents the response values whose
x1 and x2 satisfy:

x1 + 2x2 = 0, 1, 2 (mod 3) (14.8)

Thus for (14.7), we have, the treatment combinations corresponding to:

=0 (mod 3): (0,0), (1,2), 2,1)

=1 (mod 3): (0,1), (1,0), (2,2)

=2 (mod 3): (0,2), (2,0), (1,1)

Similarly for (14.8), we have the corresponding treatment combinations:

=0 (mod 3): (0,0), (1,1), (2,2)

=1 (mod 3): (0,2), (1,0), (2,1)

=2 (mod 3): (0,1), (1,2), (2,0)

14.3.2 An Example of a 32 Design

The following dataset relate to a 32 experiment replicated r = 3 times.

Table 14.11 Synthetic data example for the 32 design

Treatment
combinations Rep 1 Rep 2 Rep 3

a0b0 10 12 14
a0b1 16 19 21
a0b2 24 27 32
a1b0 12 15 17
a1b1 19 23 29
a1b2 33 34 37
a2b0 24 27 29
a2b1 39 41 43
a2b2 45 47 52

The data is read into MINITAB. The partial output of the data is presented
below together with the analysis as presented in the ANOVA Table.

MTB > print c1-c4

Data Display

Row A B REP Y
0 1 10
1 1 16
2 1 24
0 1 12
1 1 19
2 1 33
0 1 24
1 1 39

1 0
2 0
3 0
4 1
5 1
6 1
7 2
8 2
9 2 2 1 45
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MTB > GLM ’Y’ = REP A B A* B;
SUBC> Brief 2 ;
SUBC> GHistogram;
SUBC> GNormalplot;
SUBC> NoDGraphs;
SUBC> RType 1 .

General Linear Model: Y versus REP, A, B

Factor Values
REP 1, 2, 3
A 0, 1, 2
B

Type
fixed
fixed
fixed

Levels
3
3
3 0, 1, 2

................
22 1 0 3 17
23 1 1 3 29
24 1 2 3 37
25 2 0 3 29
26 2 1 3 43
27 2 2 3 52

Source DF Seq SS Adj SS Adj MS F P
REP 2 150.89 150.89 75.44 57.18 0.000
A 2 1774.22 1774.22 887.11 672.34 0.000
B 2 1626.00 1626.00 813.00 616.17 0.000
A*B 4 56.44 56.44 14.11 10.69 0.000
Error 16 21.11 21.11 1.32
Total 26 3628.67

S = 1.14867 R-Sq = 99.42% R-Sq(adj) = 99.05%

Analysis of Variance for Y, using Adjusted SS for Tests

Clearly, both main effects A and B and their interactions are all highly
significant. However, to break down the A, B, and AB into single degree
of freedom components, we utilize the following coding commands based on
orthogonal polynomials coefficients. Thus, we have the linear effect of factor A
denoted as AL and the quadratic effect of factor A also denoted as AQ. Similar
construction was made for the linear and quadratic components for B. For the
interaction A, we have the linear-by-linear component ALBL, the linear-by-
quadratic ALBQ, the quadratic–linear component AQBL and the quadratic–
quadratic component, AQBQ. The resulting data is presented below with the
accompanying analysis using the GLM procedure in MINITAB. Notice that
we declare all the components as covariates.

MTB > code (0) -1 (1) 0 (2) 1 c1 c5
MTB > code (0) 1 (1) -2 (2) 1 c1 c6
MTB > code (0) -1 (1) 0 (2) 1 c2 c7
MTB > code (0) 1 (1) -2 (2) 1 c2 c8
MTB > let c9=c5*c7
MTB > let c10=c5*c8
MTB > let c11=c6*c7
MTB > let c12=c6*c8
MTB > print c1-c12
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16 2 0 2 27 1 1 -1 1 -1 1 -1
17 2 1 2 41 1 1 0 -2 0 -2 0

1
-2

18 2 2 2 47 1 1 1 1 1 1 1
19 0 0 3 14

1
-1 1 -1 1 1 -1 -1 1

20 0 1 3 21 -1 1 0 -2 0 2 0 -2
21 0 2 3 32 -1 1 1 1 -1 -1 1 1
22 1 0 3 17 0 -2 -1 1 0 0 2 -2
23 1 1 3 29 0 -2 0 -2 0 0 0 4
24 1 2 3 37 0 -2 1 1 0 0 -2 -2
25 2 0 3 29 1 1 -1 1 -1 1 -1 1
26 2 1 3 43 1 1 0 -2 0 -2 0 -2
27 2 2 3 52 1 1 1 1 1 1 1 1

MTB > GLM ’Y’ = REP AL AQ BL BQ ALBL ALBQ AQBL AQBQ;
SUBC> Covariates ’AL’ ’AQ’ ’BL’ ’BQ’ ’ALBL’ ’ALBQ’ ’AQBL’ ’AQBQ’;
SUBC> Brief 2 ;
SUBC> GHistogram;
SUBC> GNormalplot;
SUBC> NoDGraphs;
SUBC> RType 1 .

General Linear Model: Y versus REP

Factor Type Levels Values
REP fixed 3 1, 2, 3

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
REP 2 150.89 150.89 75.44 57.18 0.000
AL 1 1643.56 1643.56 1643.56 1245.64 0.000
AQ 1 130.67 130.67 130.67 99.03 0.000
BL 1 1624.50 1624.50 1624.50 1231.20 0.000
BQ 1 1.50 1.50 1.50 1.14 0.302
ALBL 1 24.08 24.08 24.08 18.25 0.001
ALBQ 1 23.36 23.36 23.36 17.71 0.001
AQBL 1 2.25 2.25 2.25 1.71 0.210
AQBQ 1 6.75 6.75 6.75 5.12 0.038
Error 16 21.11 21.11 1.32
Total 26 3628.67

Row A B REP Y AL AQ BL BQ ALBL ALBQ AQBL AQBQ
1 0 0 1 10 -1 1 -1 1 1 -1 -1 1
2 0 1 1 16 -1 1 0 -2 0 2 0 -2
3 0 2 1 24 -1 1 1 1 -1 -1 1 1
4 1 0 1 12 0 -2 -1 1 0 0 2 -2
5 1 1 1 19 0 -2 0 -2 0 0 0 4
6 1 2 1 33 0 -2 1 1 0 0 -2
7 2 0 1 24 1 1 -1 1 -1 1

-2
-1 1

8 2 1 1 39 1 1 0 -2 0 -2 0 -2
9 2 2 1 45 1 1 1 1 1 1 1 1

10 0 0 2 12 -1 1 -1 1 1 -1 -1 1
11 0 1 2 19 -1 1 0 -2 0 2 0 -2
12 0 2 2 27 -1 1 1 1 -1 -1 1 1
13 1 0 2 15 0 -2 -1 1 0 0 2 -2
14 1 1 2 23 0 -2 0 -2 0 0 0 4
15 1 2 2 34 0 -2 1 1 0 0 -2-2

Data Display
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S = 1.14867 R-Sq = 99.42% R-Sq(adj) = 99.05%

Term Coef SE Coef T P
Constant 27.4444 0.2211 124.15 0.000
AL 9.5556 0.2707 35.29 0.000
AQ 1.5556 0.1563 9.95 0.000
BL 9.5000 0.2707 35.09 0.000
BQ -0.1667 0.1563 -1.07 0.302
ALBL 1.4167 0.3316 4.27 0.001
ALBQ -0.8056 0.1914 -4.21 0.001
AQBL -0.2500 0.1914 -1.31 0.210
AQBQ -0.2500 0.1105 -2.26 0.038

Our results indicate that AL, AQ, BL, ALBL, ALBQ, and AQBQ all con-
tributed significantly to the treatment variation in the data. Clearly, the
components Al, AQ, BL contributed most to this variation and they are the
ones we should probably focus on in further analysis. The interaction plots
for this example are presented in Fig. 14.7.

Fig. 14.7 Interaction plots in the 32 example

14.3.3 The 33 factorial Design

Here, we have three factors each at three levels resulting in a total of 32 = 27
treatment combinations for a single replicate. We present these treatment
combinations in the Table below with the pictorial representation of the
design in Fig. 14.8.
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Fig. 14.8 Pictorial representation of a 33 Design

Factor C
Factor A Factor B 0 1 2

0 0 000 001 002
0 1 010 011 012
0 2 020 021 022
1 0 100 101 102
1 1 110 111 112
1 2 120 121 122
2 0 200 201 202
2 1 210 211 212
2 2 220 221 222

The model for the 33 factorial design is:

Y (ijk) = μ + A(i) + B(j) + AB(ij) + C(k) + AC(ik) + BC(jk)

+ ABC(ijk) + εijk (14.9)

where (i, j, k) = 1, 2, 3 and the structure of the analysis of variance table for
r replicates of the design is displayed below.
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Source d.f.

Reps r − 1
A 2
B 2

AB 4
C 2

AC 4
BC 4

ABC 8
Error 26(r − 1)
Total 27r − 1

14.4 Other Factorial Systems

We see from the last section that a 23 factorial experiment has eight treatment
combinations. Similarly a 24 and 25 factorial experiments have, respectively,
16 and 32 treatment combinations and that a 3n factorial experiment has n
factors each at three levels.

We could also have mixed factorial of the form 3 × 4, 2 × 4 or 3 × 4 × 2
systems. The latter being a three factor experiment each factor having three,
four, and two levels, respectively, i.e., a total of 24 treatment combinations.

Example 14.3.1

The data in Table 14.12 refer to an experiment involving two factors A and
B. A has four levels and B has three levels. The experiment was replicated
twice (r = 2), and for illustrative purposes, we are assuming that the levels
of the two factors are equally spaced.

Table 14.12 Coded data for this example

Factor Factor A
Replicate B a1 a2 a3 a4

1 b1 7 8 9 7
b2 5 6 11 10
b3 4 6 10 12

2 b1 7 9 9 8
b2 6 6 10 11
b3 6 7 10 12

Since the number of levels for factors A and B are four and three, respectively,
it is possible to evaluate the linear, quadratic, and cubic effects of treatment A
as well as the linear and quadratic effects of B. The joint effects (interaction)
are measured by subdividing the interaction SS into (AL BL), · · · , (AC BQ).
The treatment totals formed from the data in this example are presented in
Table 14.13.
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Table 14.13 Treatment sums formed from data in Table 14.12
a1 a2 a3 a4 Total

b1 14 17 18 15 64
b2 11 12 21 21 65
b3 10 13 20 24 67

Total 35 42 59 60 196

Replicates Total are for Rep1 and Rep2, respectively,

Rep1 = 95; Rep2 = 101

Analysis

Here, r = 2, a = 4, b = 3, therefore, we have a total of 24 observations. The
relevant SSs are computed as follows:

Total SS = 72 + 52 + · · · + 122 − 1962

24
= 117.33

Replicate SS =
952

12
+

1012

12
− 1962

24
= 1.50

SS(A) =
352 + 422 + · · · + 602

6
− 1962

24
= 77.67

SS(B) =
642 + 652 + 672

8
− 1962

24
= 0.583

SS(AB) =
142 + 172 + · · · + 242

2
− CF-SS(A)-SS(B)

= 117.33 − SS(A)-SS(B)

= 24.08.

We present in Table 14.14 the initial analysis of variance table for the analysis
of the data in Table 14.12.

Table 14.14 Initial analysis of variance

Source d.f. SS MS F

Replicates 1 1.5 1.5
A 3 77.67 25.89 80.91*
B 2 0.58 0.29 0.91
AB 6 34.08 5.68 17.75*
Error 11 3.50 0.32
Total 23 117.33

We see that both main effect of A and the interaction terms AB are highly
significant at the 5 % point. The above analysis is carried out in MINITAB
as follows.
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10 1 3 2 6
11 1 3 3 10
12 1 3 4 12
13 2 1 1 7
14 2 1 2 9
15 2 1 3 9
16 2 1 4 8
17 2 2 1 6
18 2 2 2 6
19 2 2 3 10
20 2 2 4 11
21 2 3 1 6
22 2 3 2 7
23 2 3 3 10
24 2 3 4 12

MTB > GLM ’Y’ = REP A B A*B;
SUBC> Brief 2 .

General Linear Model: Y versus REP, A, B

Factor Type Levels Values
REP fixed 2 1 2
A fixed 4 1 2 3 4
B fixed 3 1 2 3

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
REP 1 1.5000 1.5000 1.5000 4.71 0.053
A 3 77.6667 77.6667 25.8889 81.37 0.000
B 2 0.5833 0.5833 0.2917 0.92 0.428
A*B 6 34.0833 34.0833 5.6806 17.85 0.000
Error 11 3.5000 3.5000 0.3182
Total 23 117.3333

MTB > SET C1
DATA> (1:2)12
DATA> END
MTB > SET C2
DATA> 2(1:3)4
DATA> END
MTB > SET C3
DATA> 6(1:4)
DATA> END
MTB > SET C4
DATA> 7 8 9 7 5 6 11 10 4 6 10 12
DATA> 7 9 9 8 6 6 10 11 6 7 10 12
DATA> END
MTB > Print ’REP’ ’B’ ’A’ ’Y’.

Data Display

Row REP B A Y

1 1 1 1 7
2 1 1 2 8
3 1 1 3 9
4 1 1 4 7
5 1 2 1 5
6 1 2 2 6
7 1 2 3 11
8 1 2 4 10
9 1 3 1 4
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Fig. 14.9 Plot of the significant AB interaction term

We shall now partition the three sum of squares into their various components
by making use of coefficients of orthogonal polynomials. For k = 4, there
are linear, quadratic and cubic components. We give below their orthogonal
coefficients (from Table 5 in the appendix)

Linear −3 −1 1 3
Quadratic 1 −1 −1 1
Cubic −1 3 −3 1

Similarly for k = 3, there are

Linear −1 0 1
Quadratic 1 −2 1

For factor A: we have with the treatment totals,

−3 −1 1 3 L
1 −1 −1 1 Q

−1 3 −3 1 C
35 42 59 60 Totals

For factor A, we calculate below, the linear, quadratic, and cubic SS, which
we have denoted here as AL, AQ, and AC , respectively

AL =
[35(−3) + 42(−1) + 59(1) + 60(3)]2

6{−32 + −12 + 12 + 32} = 70.53
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AQ =
[35(1) + 42(−1) + 59(1) + 60(1)]2

6{4} = 1.50

AC =
[35(−1) + 42(3) + 59(−3) + 60(1)]2

6{20} = 5.63

We observe here that ALSS + AQSS + AQSS = 70.53 + 1.50 + 5.63 = 77.66.
The three components SS are therefore pairwise orthogonal, each with 1 d.f.

For factor B: Similarly for factor B, both linear and quadratic compo-
nents are again calculated from the totals for factor B levels and are again
orthogonal.

−1 0 1 L
1 −2 1 Q

64 65 67 Totals

Hence,

BL =
[64(−1) + 65(0) + 67(1)]2

2 × 8
= 0.56

BQ =
[64(1) + 65(−2) + 67(1)]2

6 × 8
= 0.02.

To obtain the interaction contrasts; we first obtain the A contrasts of each
level of B by using

L1
A = (−3,−1, 1, 3), Q1

A = (1,−1,−1, 1), C1
A = (−1, 3,−3, 1).

For the first level of B, we have:

b = 1 : −3(14) − 1(17) + 1(18) + 3(15) = 4

b = 2 : −3(11) − 1(12) + 1(21) + 3(21) = 39

b = 3 : −3(10) − 1(13) + 1(20) + 3(24) = 49.

For the second level of B, we have:

b = 1 : 1(14) − 1(17) − 1(18) + 1(15) = −6

b = 2 : 1(11) − 1(12) − 1(21) + 1(21) = −1

b = 3 : 1(10) − 1(13) − 1(20) + 1(24) = 1.

For the third level of B, we also have:

b = 1 : −1(14) + 3(17) − 3(18) + 1(15) = −2

b = 2 : −1(11) + 3(12) − 3(21) + 1(21) = −17

b = 3 : −1(10) + 3(13) − 3(20) + 1(24) = −7.
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The A contrasts are given in Table 14.15.

Table 14.15 Factor A Contrasts
Linear Quadratic Cubic Factor B

A A A Divisors

B1 4 −6 −2
B2 39 −1 −17
B3 49 1 −7
Linear B 45 7 −5 2
Quadratic B −25 −3 25 6
A divisors 20 4 20

Then, we multiply L1
B = (−1, 0, 1), Q1

B = (1,−2, 1), thus we have

L1
A × L1

B = 4(−1) + 39(0) + 49(1) = 45.

Hence,

L1
A × L1

B SS = ALBL SS =
452

2 × 20 × 2
= 25.31.

Similarly,

ALBQ =
(−25)2

2 × 20 × 6
= 2.60

AQBL =
72

2 × 4 × 2
= 3.60

AQBQ =
(−3)2

2 × 4 × 6
= 0.19

ACBL =
(−5)2

2 × 20 × 2
= 0.31

ACBQ =
(25)2

2 × 20 × 6
= 2.60

Table 14.16 gives the full analysis of variance for the data in Table 14.13.
From the F tables in the appendix, F(1,11) at α = 0.05 = 4.84, hence,

AL, AC , AL BL, AL BQ, AQ BL, and AC BQ are therefore found to be signif-
icant at α = 0.05. Obviously, the response of factor A can be least described
by a third-degree polynomial. The linear × linear quadratic components too
are also highly significant. Of course, we could have asked MINITAB to cal-
culate these sum of squares in Table 14.16 (you may use the referencing Table
command here) by coding the levels of A and B in MINITAB and run with
the ensuing commands in MINITAB and partial output viz:
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MTB > code (1) -1 (2) 0 (3) 1 c2 c5
MTB > code (1) 1 (2) -2 (3) 1 c2 c6
MTB > code (1) -3 (2) -1 (3) 1 (4) 3 c3 c7
MTB > code (1) 1 (2) -1 (3) -1 (4) 1 c3 c8
MTB > code (1) -1 (2) 3 (3) -3 (4) 1 c3 c9
MTB > let c10=c7*c5
MTB > let c11=c7*c6
MTB > let c12=c8*c5
MTB > let c13=c8*c6
MTB > let c14=c9*c5
MTB > let c15=c9*c6
MTB > print c1-c15

Data Display

Row REP B A Y BL BQ AL AQ AC ALBL ALBQ AQBL AQBQ ACBL ACBQ
1 1 1 1 7 -1 1 -3 1 -1 3 -3 -1 1 1 -1
2 1 1 2 8 -1 1 -1 -1 3 1 -1 1 -1 -3 3
3 1 1 3 9 -1 1 1 -1 -3 -1 1 1 -1 3 -3
4 1 1 4 7 -1 1 3 1 1 -3 3 -1 1 -1 1
5 1 2 1 5 0 -2 -3 1 -1 0 6 0 -2 0 2
6 1 2 2 6 0 -2 -1 -1 3 0 2 0 2 0 -6

7 1 2 3 11 0 -2 1 -1 -3 0 -2 0 2 0 6

8 1 2 4 10 0 -2 3 1 1 0 -6 0 -2 0 -2

9 1 3 1 4 1 1 -3 1 -1 -3 -3 1 1 -1 -1

10 1 3 2 6 1 1 -1 -1 3 -1 -1 -1 -1 3 3

11 1 3 3 10 1 1 1 -1 -3 1 1 -1 -1 -3 -3

12 1 3 4 12 1 1 3 1 1 3 3 1 1 1 1

13 2 1 1 7 -1 1 -3 1 -1 3 -3 -1 1 1 -1

14 2 1 2 9 -1 1 -1 -1 3 1 -1 1 -1 -3 3

15 2 1 3 9 -1 1 1 -1 -3 -1 1 1 -1 3 -3

16 2 1 4 8 -1 1 3 1 1 -3 3 -1 1 -1 1

17 2 2 1 6 0 -2 -3 1 -1 0 6 0 -2 0 2

18 2 2 2 6 0 -2 -1 -1 3 0 2 0 2 0 -6

19 2 2 3 10 0 -2 1 -1 -3 0 -2 0 2 0 6

20 2 2 4 11 0 -2 3 1 1 0 -6 0 -2 0 -2

21 2 3 1 6 1 1 -3 1 -1 -3 -3 1 1 -1 -1

22 2 3 2 7 1 1 -1 -1 3 -1 -1 -1 -1 3 3

23 2 3 3 10 1 1 1 -1 -3 1 1 -1 -1 -3 -3

24 2 3 4 12 1 1 3 1 1 3 3 1 1 1 1

MTB > GLM ’Y’ = REP AL AQ AC BL BQ ALBL ALBQ AQBL AQBQ ACBL ACBQ;

SUBC> Covariates ’AL’ ’AQ’ ’AC’ ’BL’ ’BQ’ ’ALBL’ ’ALBQ’ ’AQBL’ ’AQBQ’ &

CONT> ’ACBL’ ’ACBQ’;

SUBC> Brief 2 .

General Linear Model: Y versus REP

Factor Type Levels Values

REP fixed 2 1, 2

Analysis of Variance for Y, using Adjusted SS for Tests
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Source DF Seq SS Adj SS Adj MS F P

REP 1 1.5000 1.5000 1.5000 4.71 0.053

AL 1 70.5333 70.5333 70.5333 221.68 0.000

AQ 1 1.5000 1.5000 1.5000 4.71 0.053

AC 1 5.6333 5.6333 5.6333 17.70 0.001

BL 1 0.5625 0.5625 0.5625 1.77 0.211

BQ 1 0.0208 0.0208 0.0208 0.07 0.803

ALBL 1 25.3125 25.3125 25.3125 79.55 0.000

ALBQ 1 2.6042 2.6042 2.6042 8.18 0.015

AQBL 1 3.0625 3.0625 3.0625 9.62 0.010

AQBQ 1 0.1875 0.1875 0.1875 0.59 0.459

ACBL 1 0.3125 0.3125 0.3125 0.98 0.343

ACBQ 1 2.6042 2.6042 2.6042 8.18 0.015

Error 11 3.5000 3.5000 0.3182

Total 23 117.3333

We obtain exactly the same results with less complications. (You may
decide not to reproduce the entire print output-perhaps first 5 and last five
lines!)

Example 14.3.2

An experiment was conducted on strawberries under cloches to investigate
the response of four varieties to three

Table 14.16 Full analysis of variance table

Source d.f. SS MS F

Replicates 1 1.5 1.5
Treatments
AL 1 70.53 70.53 240.4 *
AQ 1 1.50 1.50 4.69
Ac 1 5.63 5.63 17.59*
BL 1 0.56 0.56 1.75
BQ 1 0.02 0.02 0.06
AL BL 1 25.31 25.31 79.09*
AL BQ 1 2.60 2.60 8.12
AQ BL 1 3.06 3.06 9.56*
AQ BQ 1 0.19 0.19 0.59
AC BL 1 0.31 0.31 0.97
AC BQ 1 2.60 2.60 8.12*
Error 11 3.50 0.32
Total 23 117.33

times of covering. A randomized block design was used, with four blocks
and twelve treatment combinations. Table 14.17 gives the results from this
experiment.
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Table 14.17 Data for the 4 × 3 factorial experiment in this example

Time of Blocks
covering Variety I II III IV Total

February V 10.2 10.1 12.1 12.3 44.7
R 11.1 9.8 8.6 9.4 38.9
F 6.8 9.5 9.5 10.3 36.1
G 5.3 7.5 4.6 7.3 24.7

March V 8.0 9.7 12.0 7.8 37.5
R 9.7 7.9 10.3 11.2 39.1
F 8.6 9.6 9.5 10.0 37.7
G 3.4 4.2 7.3 7.6 22.5

April V 2.0 6.1 4.8 6.7 19.6
R 10.9 8.4 6.5 9.2 35.0
F 2.2 4.9 4.4 3.6 15.1
G 2.1 0.9 3.4 2.3 8.7

Block totals 80.3 88.6 93.0 97.7 359.6

Here, there are two factors, variety and times of covering. Variety is at
four levels (V, R, F, G) while time of covering has three levels (Feb, Mar,
Apr). Thus, we have a total of 4 × 3 = 12 treatment combinations. In this
experiment, therefore each block must have 12 plots and each treatment
combination must be present in each block.

The initial analysis of variance (ignoring the factorial structure of treat-
ments, that is, treating experiment as four blocks of 12 treatments each)
gives,

Source d.f. SS MS F

Blocks 3 13.70 4.57
Treatments 11 356.02 32.37 15.40 ***
Error 33 69.38 2.102
Total 47 439.16

The Treatments F value of 15.40 is highly significant at the 0.01 % point. We
present in Table 14.18 the two-way interaction table for times and varieties.

Table 14.18 Two-way interaction table for times and varieties

Covering Variety Time
time V R F G Totals

February 44.7 38.9 36.1 24.7 144.4
March 37.5 39.1 37.7 22.5 136.8
April 19.6 35.0 15.1 8.7 78.4
Variety totals 101.8 113.0 88.9 55.9 359.6
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The relevant SS are calculated as follows:

SS Main effect of varieties =
101.82

12
+

1132

12
+

88.92

12
+

55.92

12
− CF

= 152.69.

Since each of 101.8, · · · , 55.9 comes from 12 observations.

Table 14.19 Full analysis of variance table for the data in Table 14.17

Source d.f. SS MS F

Blocks 3 13.70 4.57
Varieties 3 152.69 50.90 24.2 ***
Covering times 2 163.01 81.50 38.8 ***
Varieties × times 6 40.32 6.72 3.20*
Error 33 69.38 2.102
Total 47 439.16

Similarly,

SS Main effect of Covering =
144.42

16
+

136.82

16
+

78.42

16
− CF

= 163.01

Interaction SS =
44.72

4
+

38.92

4
+ · · · +

8.72

4
− CF − SS(Varieties)

− SS (Times)
= 40.32.

This could have been obtained as Treatment SS − Varieties SS − Times SS.
The full analysis of variance is presented in Table 14.19.

As the interaction SS is significant, the results are presented in a two-way
table of treatment means. The plot of these means is presented in Fig. 14.11.

The s.e. of difference between two values in body of Table 14.20 is =
√

2S2

4 =

1.03. The S.E. of difference between two variety means =
√

2S2

16 = 0.59.

Summary of Results

For each variety, the difference between the means for the first two covering
times was not significant; for all varieties except R, the third covering times
gave a significantly lower yield than the other times. For the first two covering
times, variety G gave a significantly lower yield than the other three varieties;
for the third covering time, variety R gave a significantly higher yield than the
other three varieties. (All significance statements refer to the 5 % significance
levels).
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Table 14.20 Table of treatment means

Covering Variety Time
time V R F G mean

February 11.2 9.7 9.0 6.2 9.0
March 9.4 9.8 9.4 5.6 8.5
April 4.9 8.8 3.8 2.2 4.9
Variety mean 8.5 9.4 7.4 4.7 7.5

Fig. 14.10 Time and variety interaction plot

In the following MINITAB implementation, the time of covering (February,
March, April) are coded (1, 2, 3), while varieties (V, R, F, G) are coded (1,
2, 3, 4), respectively.

MTB > SET C1
DATA> (1:3)16
DATA> END
MTB > SET C2
DATA> 3(1:4)4
DATA> END
MTB > SET C3
DATA> 12(1:4)
DATA> END
MTB > SET C4
DATA> 10.2 10.1 12.1 12.3 11.1 9.8 8.6 9.4
DATA> 6.8 9.5 9.5 10.3 5.3 7.5 4.6 7.3
DATA> 8.0 9.7 12.0 7.8 9.7 7.9 10.3 11.2
DATA> 8.6 9.6 9.5 10.0 3.4 4.2 7.3 7.6
DATA> 2.0 6.1 4.8 6.7 10.9 8.4 6.5 9.2
DATA> 2.2 4.9 4.4 3.6 2.1 0.9 3.4 2.3
DATA> END
MTB > PRINT C1-C4
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Source DF Seq SS Adj SS Adj MS F P
BLOCKS 3 13.692 13.692 4.564 2.17 0.110
TIME 2 163.007 163.007 81.503 38.73 0.000
VARIETY 3 152.685 152.685 50.895 24.18 0.000
TIME*VARIETY 6 40.320 40.320 6.720 3.19 0.014
Error 33 69.453 69.453 2.105
Total 47 439.157

Least Squares Means for Y

TIM Mean SE Mean
1 9.025 0.3627
2 8.550 0.3627
3 4.900 0.3627
VARIETY
1 8.483 0.4188
2 9.417 0.4188
3 7.408 0.4188
4 4.658 0.4188
TIME*VARIETY
1 1 11.175 0.7254
1 2 9.725 0.7254

Data Display

................................

................................

Row TIME VARIETY BLOCKS Y

1 1 1 1 10.2
2 1 1 2 10.1
3 1 1 3 12.1
4 1 1 4 12.3
5 1 2 1 11.1
6 1 2 2 9.8
7 1 2 3 8.6
8 1 2 4 9.4

41 3 3 1 2.2
42 3 3 2
43 3 3 3
44 3 3 4
45 3 4 1
46 3 4 2
47 3 4 3
48 3 4 4

4.9
4.4
3.6
2.1
0.9
3.4
2.3

MTB > GLM ’Y’ = BLOCKS TIME VARIETY TIME*VARIETY;
SUBC> Brief 1 ;
SUBC> Means TIME VARIETY TIME*VARIETY.

General Linear Model: Y versus BLOCKS, TIME, VARIETY

Factor Type Levels Values
BLOCKS fixed 4 1 2 3 4
TIME fixed 3 1 2 3
VARIETY fixed 4 1 2 3 4

Analysis of Variance for Y, using Adjusted SS for Tests
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1 3 9.025 0.7254
1 4 6.175 0.7254
2 1 9.375 0.7254
2 2 9.775 0.7254
2 3 9.425 0.7254
2 4 5.625 0.7254
3 1 4.900 0.7254
3 2 8.750 0.7254
3 3 3.775 0.7254
3 4 2.175 0.7254

Example 14.3.3

The data in Table 14.21 refer to an experiment with carrots to investigate the
effect of sowing rate on yield for two stocks of seed. The experiment consisted
of three randomized blocks of the eight treatment combinations. Calculate
the analysis of variance, examining the effects of stock and sowing rate and
the interaction between these two factors. Summarize the data in a table of
means and report your conclusions.

Table 14.21 Yield in a two-factor 2 × 4 factorial experiment

Sowing rate Block
Stocks (lbs/acre) I II III

T 1.5 (A) 4.20 4.94 4.45
2 (B) 4.36 3.50 4.17

2.5 (C) 5.40 4.55 5.75
3 (D) 5.15 4.40 3.90

H A 2.82 3.14 3.80
B 3.74 4.43 2.92
C 4.82 3.90 4.50
D 4.57 5.32 4.35

Analysis

We commence the analysis of the data in Table 14.21 by first obtaining the
totals for blocks, and the eight treatment combinations.

Block Totals Treatment Total

BK 1 35.06 TA 13.59
BK 2 34.18 TB 12.03
BK 3 33.8 TC 15.70
Total 103.08 TD 13.45

HA 9.76
HB 11.09
HC 13.22
HD 14.24

Total 103.08
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The analysis of variance (Ignoring the factorial structure) is displayed as:

Source d.f. SS MS F

Blocks 2 0.0991 0.0496
Treatments 7 8.1358 1.1623 3.43*
Error 14 4.7417 0.3386
Total 23 12.9766

Breaking the treatments SS into its three components, we have for SS
computed as:

SS Main effect of Stocks =
54.772 + 48.312

12
− CF = 1.7388

SS Main effect of rates =
23.352 + 23.122 + 28.922 + 27.692

6
− CF= 4.4146

Interaction SS8.1358 − 1.7388 − 4.4146 = 1.9824.

Consequently, the full analysis of variance Table is displayed in Table 14.22.

Table 14.22 The full ANOVA table for the data in Table 14.21
Source d.f. SS MS F

Blocks 2 0.0991 0.0496
Stocks 1 1.7388 1.7388 5.14*
Rates 3 4.4146 1.4715 4.35*
Interaction 3 1.9824 0.6608 1.95
Error 14 4.7417 0.3386
Total 23 12.9766

The two way table of means for the data is presented in Table 14.23

Table 14.23 Two-way table of treatment means

Rates
Stocks A B C D Mean

T 4.53 4.01 5.23 4.48 4.56
H 3.25 3.70 4.41 4.75 4.03
Mean 3.89 3.85 4.82 4.62 4.30

The S.E. of difference between two values in body of table =

√
2S2

3
= 0.475.



568 14 Factorial Treatments Designs

The S.E. of difference between two stock means =

√
2S2

12
= 0.2380.

The S.E. of difference between two rate means =

√
2S2

6
= 0.3360.

14.4.1 Summary of Results

The mean difference between stocks is 0.53 with a S.E. of 0.238. Signifi-
cant variation is also found between the mean yields for different rates but
the experiment provides insufficient evidence for interaction between the two
factors. Examination of the table of treatment mean does, however, suggest
that the two stocks react to changing the sowing rate in different ways—
the yield for stock H increases steadily whereas the yields for stock T are
irregular and the natural conclusion would be to conduct a more sensitive
experiment over a wider range of rates. The analysis of variance for this ex-
ample is again analyzed in MINITAB with the following. Here, the stocks are
coded (T,H)=(1,2); the sowing rates are coded (1.5, 2, 2.5, 3) = (1,2,3,4),
respectively. A partial output is presented.

MTB > SET C2
DATA> 2(1:4)3
DATA> END
MTB > SET C3
DATA> 8(1:3)
DATA> END
MTB > SET C4
DATA> 4.20 4.94 4.45 4.36 3.50 4.17
DATA> 5.40 4.55 5.75 5.15 4.40 3.90
DATA> 2.82 3.14 3.80 3.74 4.43 2.92
DATA> 4.82 3.90 4.50 4.57 5.32 4.35
DATA> END
MTB > PRINT C1-C4

Data Display

Row STOCK S RATE S BLOCK S Y

1 1 1 1 4.20
2 1 1 2 4.94
3 1 1 3 4.45

...................................
22 2 4 1 4.57
23 2 4 2 5.32
24 2 4 3 4.35

MTB > SET C1
DATA> (1:2)12
DATA> END
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MTB > GLM ’Y’ = BLOCKS STOCKS RATES STOCKS*RATES;
SUBC> Brief 1 .

General Linear Model: Y versus BLOCKS, STOCKS, RATES

Factor Type Levels Values
BLOCKS fixed 3 1 2 3
STOCKS fixed 2 1 2
RATES fixed 4 1 2 3 4

Analysis of Variance for Y, using Adjusted SS for Tests

-------------------------------------------------------------------

-------------------------------------------------------------------

Sourc e DF Seq SS Adj SS Adj MS F P

BLOCK S 2 0.099 1 0.099 1 0.049 6 0.15 0.86 5
STOCK S 1 1.738 8 1.738 8 1.738 8 5.13 0.04 0
RATE S 3 4.414 6 4.414 6 1.471 5 4.34 0.02 3
STOCKS*R ATES 3 1.982 3 1.982 3 0.660 8 1.95 0.16 8
Erro r 14 4.741 7 4.741 7 0.338 7

Tota l 23 12.976 6
-------------------------------------------------------------------

Fig. 14.11 Stock and rate interaction plot

We observe that the levels of rates were 1.5, 2, 2.5, and 3, that is, they
are equally spaced and quantitative. We can therefore use this knowledge
to partition the rates 3 df into three components, namely, linear, quadratic
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and cubic each with 1 df by making use of the coefficients of orthogonal
polynomials (Table 6 in Appendix). From the appendix we have:

Linear −3 −1 1 3
Quadratic 1 −1 −1 1
Cubic −1 3 −3 1
Yields 23.35 23.12 28.92 27.69

and the corresponding SS are calculated as follows:

Linear SS =
[(−3)(23.35) + (−1)23.12 + (1)28.92 + (3)27.69]2

20 × 6

=
(18.82)2

120
= 2.952

Quadratic SS =
(23.35 − 23.12 − 28.92 + 27.69)2

4 × 6

=
(−1)2

24
= 0.042

Cubic =
[−23.35 + 3(23.12) − 3(28.92) + 1(27.69)]2

20 × 6

=
(−13.06)2

120
= 1.421.

The above SS can be obtained for rates in MINITAB with the following
commands and partial output.

MTB > %Fitline ’Y’ ’RATES’;
SUBC> Poly 3.

Source DF Seq SS F P
Linear 1 2.95160 6.47734 0.018
Quadratic 1 0.04167 0.08765 0.770
Cubic 1 1.42136 3.32018 0.083

The F values for these components are 8.72, 0.12, and 4.19, respectively. We
see that only the linear component is significant at the 5 % point (compare
with F(1,14) = 4.60). A simple linear regression involving the levels of rates
yield the following estimated equation with corresponding plot in Fig. 14.12.

Ŷi = 2.884 + 0.627 Xi.
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Fig. 14.12 Estimated simple regression response plot

14.5 Single Replicate Experiments

While the factorial structure and its advantages in terms of getting informa-
tion on interaction effects tends to lend itself to the inclusion of more and
more factors, there is the case when only a single replicate of the factorial
structure is available or is desirable. The former situation usually arises when
only one observation per cell is observed in a factorial experiment. The latter
situation arises in large factorial experiments. Even for a 25 factorial, there
are 32 treatment combinations, while a 26 has 64 treatment combinations.
When resources are scarce or unavailable to sustain such a large factorial ex-
periment, and we are unwilling to sacrifice information on some of the factors,
we usually resort to single replicate factorial.

Single replicate experiments are most useful for screening experiments
when several factors are under consideration. However, the single replicate is
run at a cost. The error variance may be grossly estimated from the single
replicate and moreover it has to be estimated from the combination of one
or more interaction effects in the error line.

Consider for instance a 24 factorial indexed by factors A, B, C, D. Suppose
only a single replicate of this design in blocks of 16 is employed. The model
has the formulation:

yijkl = μ + ai + bj + (ab)ij + ck + (ac)ik + (bc)jk + (abc)ijk + dl + (ad)il

(14.10)

+ (bd)jl + (abd)ijl + (cd)kl + (acd)ikl + (bcd)jkl + (abcd)ijkl + εijkl.
(14.11)
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This leads to the following ANOVA structure.

Source d.f Source d.f.
A 1 AD 1
B 1 BD 1

AB 1 ABD 1
C 1 CD 1

AC 1 ACD 1
BC 1 BCD 1

ABC 1 ABCD 1
D 1 Error 0

Total 15

We observe from the above that there is no degree of freedom for the error
term and thus no estimate of σ2 or the associated standard errors of treat-
ment effects may be obtained. However, if we perceive that certain higher
order interactions are insignificant, then we might be able to pull their sums
of squares and corresponding sum of their degrees of freedom together to
constitute the error SS and d.f., respectively. We give an example in the next
example.

Example 14.4.1

In a 24 experiment on the yield of a chemical process, the treatment response
from a single replicate of the experiment is given below.

d0 d1
c0 c1 c0 c1

a0 b0 38 58 59 79
b1 27 30 53 53

a1 b0 40 55 62 75
b1 30 32 50 54

The treatment combinations can be extracted and arranged in the standard
order as shown below.

Treatment
Combinations TC Response

0000 (1) 38
1000 (a) 40
0100 (b) 27
1100 (ab) 30
0010 (c) 58
1010 (ac) 55
0110 (bc) 30
1110 (abc) 32
0001 (d) 59
1001 (ad) 62
0101 (bd) 53
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Treatment
Combinations TC Response

1101 (abd) 50
0011 (cd) 79
1011 (acd) 75
0111 (bcd) 53
1111 (abcd) 54

The initial MINITAB analysis is presented below.

MTB > print c1-c5

Data Display
Row A B C D Y

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 1 1 1 1

38
40
27
30
58
55
30
32
59
62
53
50
79
75
53
54

MTB > GLM ’Y’ = A B C D A*B A*C A*D B*C B*D C*D A*B*C A*B*D A*C*D B*C*D A &
CONT> *B*C*D;
SUBC> Brief 1 ;
SUBC> Means A B C D A*C B*C C*D;
SUBC> Residuals ’RESI1’;
SUBC> Coefficients ’COEF1’;
SUBC> Fits ’FITS1’.

General Linear Model: Y versus A, B, C, D

Factor Type Levels Values
A fixed 2 0 1
B fixed 2 0 1
C fixed 2 0 1
D fixed 2 0 1

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F Contributions
A 1 0.06 0.06 0.06 ** 0.002
B 1 1173.06 1173.06 1173.06 ** 31.624
C 1 370.56 370.56 370.56 ** 9.990
D 1 1914.06 1914.06 1914.06 ** 51.600

MTB > SET C5
DATA> 38 40 27 30 58 55 30 32
DATA> 59 62 53 50 79 75 53 54
DATA> END
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A*B 1 1.56 1.56 1.56 ** 0.042
A*C 1 5.06 5.06 5.06 ** 0.136
A*D 1 3.06 3.06 3.06 ** 0.082
B*C 1 217.56 217.56 217.56 ** 5.865
B*D 1 3.06 3.06 3.06 ** 0.082
C*D 1 0.56 0.56 0.56 ** 0.015
A*B*C 1 14.06 14.06 14.06 ** 0.379
A*B*D 1 3.06 3.06 3.06 ** 0.082
A*C*D 1 0.56 0.56 0.56 ** 0.015
B*C*D 1 0.06 0.06 0.06 ** 0.002
A*B*C* D 1 3.06 3.06 3.06 ** 0.082
Error 0 0.00 0.00 0.00
Total 15 3709.4 4

Notice that the error df is zero and, hence, the F-values cannot be calculated.
In order to know which effects are important, we can obtain the percentage
of the total variation accounted for by each effect. For instance, for effect A,
this equals

0.06
3709.44

× 100 = 0.002.

The contributions of each effect is presented in the last column. The effects B,
C, D, and BC, accounted for 99.079 % of the total variation in Y. Hence, all
other effects can be pooled together to form the error sum of squares on 11 df.

Usually, pooling the higher order interactions are sometimes also feasible.
In this example, however, it is clear that the other effects are clearly not
worth including in our final model. Thus, we refit the model in MINITAB to
give the following ANOVA Table in the output.

MTB > Name c9 = ’RESI2’ c10 = ’COEF2’ c11 = ’FITS2’
MTB > GLM ’Y’ = B C D B*C;
SUBC> Brief 1 ;
SUBC> Means B C D B*C;
SUBC> Residuals ’RESI2’;
SUBC> Coefficients ’COEF2’;
SUBC> Fits ’FITS2’.

General Linear Model: Y versus B, C, D

Factor Type Levels Values
B fixed 2 0 1
C fixed 2 0 1
D fixed 2 0 1

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
B 1 1173.06 1173.06 1173.06 377.44 0.000
C 1 370.56 370.56 370.56 119.23 0.000
D 1 1914.06 1914.06 1914.06 615.86 0.000
B*C 1 217.56 217.56 217.56 70.00 0.000
Error 11 34.19 34.19 3.11
Total 15 3709.44
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All the effects in the above ANOVA table are significant at the 5 % point. The
fitted values and residuals from the above final model are displayed below.

Data Display
Row A B C D Y Fitted Residuals

0 0 0 0 38.8125 -0.8125
1 0 0 0 38.8125 1.1875
0 1 0 0 29.0625 -2.0625
1 1 0 0 29.0625 0.9375
0 0 1 0 55.8125 2.1875
1 0 1 0 55.8125 -0.8125
0 1 1 0 31.3125 -1.3125
1 1 1 0 31.3125 0.6875
0 0 0 1 60.6875 -1.6875
1 0 0 1 60.6875 1.3125
0 1 0 1 50.9375 2.0625
1 1 0 1 50.9375 -0.9375
0 0 1 1 77.6875 1.3125
1 0 1 1 77.6875 -2.6875
0 1 1 1 53.1875 -0.1875

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 1 1 1 1

38
40
27
30
58
55
30
32
59
62
53
50
79
75
53
54 53.1875 0.8125

The parameter estimates of the model are also generated as:

49.6875, 8.5625, −4.8125, −10.9375, −3.6875

leading to the response model:

ŷ = 49.6875 + 8.5625x2 − 4.8125x3 − 10.9375x4 − 3.6875x2x3 (14.12)

where x2, x3 and x4 are variables associated with factors B, C, and D, respec-
tively. Each of the x’s takes values −1 or +1 depending on whether the factor
with which it is associated is present or absent for the particular response
being estimated in (14.12). Thus, if for the BD effect corresponding to the
(ac) treatment combination, we have in this case x2 = +1, x3 = −1, x4 = +1.
Hence, on substitution ŷ = 50.9375. Note that

xi =
{

+1 if letter is absent
−1 if letter is present (14.13)

14.6 Confounding in the Factorial System

A complete factorial system is the one in which all the treatment combina-
tions are placed in one block. Of course, this arrangement can be repeated
to give as many replicates as desired.

For instance, in a 23 experiment, all the eight treatment combinations must
all be in the same block if the experiment were conducted as a randomized
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complete block design. In such a case, we say that the experiment is in blocks
of size 8 or simply block of 8.

Thus, for a 23 experiment in blocks of eight with r replications, we have
the following sketch of the analysis of variance table.

Source d.f.

Replications (Blocks) r − 1
Treatments 7
Error 7(r − 1)
Total 8r − 1

However, for large factorial, such as a 24 or a 25, to arrange these as complete
factorial imply that we must have blocks of size 16 or 32, respectively. It may
well be that for large factorials like these, it may not be possible to perform a
complete replicate of the experiment in one block. That is, we may not have
a block with as many as 16 or 32 plots to contain all these treatment com-
binations. The reason may be because, for example, the block might be one
day, or one homogeneous batch of raw materials, etc. Confounding, therefore,
is a design technique for arranging a complete factorial experiment in blocks,
where the block size is smaller than the number of treatment combinations in
one replicate. For example, for a 24 complete factorial experiment, we require
for one single replicate, a block of 16. However, if for one reason or the other,
a block of this size is not available, we may decide to do with two blocks
of size 8, such that the first block contains a set of eight carefully chosen
treatment combinations and the other block contains the remaining set of
eight treatment combinations.

Example 14.6.1

In a 24 factorial experiment with factors A, B, C, and D, the 16 treatment
combinations are,

(1), a, b, ab, c, ac, bc, abc,
d, ad, bd abd, cd, acd, bcd, abcd.

Suppose we do not have a block large enough to accommodate these treat-
ment combinations, we could lay a single replicate of this experiment in two
blocks of size 8 as presented in Table 14.24.

Table 14.24 A single replicate of a confounded design (without randomization)

(1) ab ac ad bc bd cd abcd Block 1

a b c d abc abd acd bcd Block 2
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We notice from Table 14.24 that all the 16 treatment combinations are con-
tained between the two blocks. However, half of these are in block 1 and
the remaining half are in block 2. The choice of which treatment combina-
tions go into one block or the other is a complicated process, and we will
only give a brief discussion of the mechanics here. In this example, however,
the above layout shows that the four order interaction ABCD has been con-
founded completely with blocks. That is, no information on this interaction
can be obtained from this experiment in this replicate as its effect has been
completely confounded with blocks.

To generate the appropriate treatment combinations that will go in each
block, we need to do the following:

(a) Decide the confounding effects, in our case here, this is the ABCD
interaction term.

(b) Generate treatment combinations that are even (0, 2, 4) or odd (1, 3)
with the defining effects. I always like to work with the even. This will
constitute the principal block.

(c) Generate the other treatment combinations in other blocks by multiply-
ing the treatment combinations in the principal with the ones that are
not already in the principal block to get all the treatment combinations,
bearing in mind that any letter to the power of 2 becomes 1. For instance
a2 = 1 and ab2cd becomes acd treatment combination.

In our example here, the treatment combinations that are even with the
ABCD interaction are:

(1) ab ac ad bc bd cd abcd Block 1
a b c d abc abd acd bcd Block 2

We may note here that the treatment combination (1) is zero to the ABCD
interaction, that is, it has no letter in common with ABCD. Block 1 above
is the principal block. We notice that treatment combination (a) is not in
that block. Hence, multiplying all the treatment combinations in block 1
with (a), generates the treatment combinations in the second block. Note
that a2b = b etc. MINITAB can be used to generate the necessary treatment
combinations for each block. We present the case for the ABCD interaction
confounded with blocks below.
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D
AB
AC
AD
BC
BD
CD
ABC
ABD
ACD
BCD

MTB > print c1-c8

Data Display

Row StdOrder RunOrder CenterPt Blocks A B C D
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 2
1 2
1 2
1 2
1 2
1 2
1 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 1 2

1
-1
-1
1
-1
1
1
-1
-1
1
1
-1
1
-1
-1
1

-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1

-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1

-1
-1
-1
-1
1
1
1
1
-1
-1
-1
-1
1
1
1
1

MTB > Name C1 "StdOrder" C2 "RunOrder" C3 "CenterPt" C4 "Blocks" C5 "A" C6 "B" C7 "C" &
CONT> C8 "D"
MTB > FFDesign 4 16;
SUBC> CTPT ’CenterPt’;
SUBC> Blocks 2;
SUBC> SOrder ’StdOrder’ ’RunOrder’;
SUBC> Alias 4;
SUBC> XMatrix ’Blocks’ ’A’ ’B’ ’C’ ’D’.

Full Factorial Design

Factors: 4 Base Design: 4, 16 Resolution with blocks: V
Runs: 16 Replicates: 1
Blocks: 2 Center pts (total): 0

Block Generators: ABCD

Alias Structure

I

Blk = ABCD

A
B
C

The output indicates that only 14 effects can be estimated. The main effects,
say A main effect is obtained as:

(a − 1)(b + 1)(c + 1)(d + 1)
24

= abcd + abc + abd + ab + acd + ac + ad + a − bcd − bc − bd − b − cd − c − d − (1)
16
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Notice that half of the positive treatment combinations are in block 1, and
half of the negative treatment combinations are also in block 1. Similarly, half
of the positive treatment combinations are in block 2 and half of the negatives
are also in block 2. Thus, the effect of A can be estimated from both blocks.
In comparison, the effect of the ABCD is such that all the positives are in
block 1 and all the negatives are in block 2; thus, the effect of ABCD is no
more than the difference between blocks 1 and 2 and thus the ABCD is said
to be intrinsically confounded with blocks. The effects of the other effects
can similarly be generated and noting that the interaction AB is simply the
product of the entries in column “A” and “B” etc.

14.6.1 Replications in 2n Confounding

If the above basic design in Table 14.24 is repeated, say three times, we could
have the following layout in Table 14.25.

We notice that the treatment combinations have been randomized within
blocks, otherwise the eight treatment combinations in Replicate I in Ta-
ble 14.24 are still the same. The same for treatment combinations in Repli-
cates II and III too. An analysis layout for the above design is given below:

Table 14.25 A 24 factorial in blocks of size 8 in three replicates

Rep. I Rep. II Rep. III
Block 1 Block 2 Block 1 Block 2 Block 1 Block 2

(1) a b (1) (1) acd
ab b bcd ad bd a
ac c abc bd abcd abd
ad d a abcd cd d
bc abc acd cd bc bcd
bd abd abd bc ad abc
cd acd d ac ac b

abcd bcd c ab ab c

Source d.f. d.f.

Replications 2
Blocks (ABCD) 1
Replications & block interaction 2 Blocks within Reps 5
A 1
B 1
AB 1
...

...
D 1
BCD 1
Replications & all others (Error) 28
Total 47
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Here, complete information is lost on the four-order interaction ABCD as
this has been completely confounded with blocks.

In general, therefore, the technique of confounding causes information
about certain treatment effects (usually high-order interactions) to be indis-
tinguishable from or confounded with blocks; and we say that this type of
design is an incomplete block design because each block does not contain all
treatments or treatment combinations. We also note that a basic assump-
tion of the analysis of variance is that the plots be homogeneous, that is,
the variance of each of the plots is a constant and is equal to σ2. However,
having blocks of size 16, 32, or even 64 may make this assumption invalid.
It is therefore imperative that for factorials of these type, we seldom allow a
block to be more than of size 16. However, to conduct say a 25 experiment
in blocks of 16 requires that we would have to employ the technique of con-
founding. Thus, for homogeneity purposes, confounding readily lends itself
for consideration in the designs of experiments.

For 2n factorials, the complete factorial would require a block of size
2n. With confounding, however, blocks of sizes 2n−1, 2n−2, 2n−3, that is,
multiples of 2 are possible. However, for experiments in blocks of 2n−1, we
must sacrifice at least one effect or interaction. For experiments in blocks
of 2n−2, we must sacrifice two effects or interactions plus their generalized
interaction—a total of three effects or interactions.

The choice of these effects is very technical and statisticians need to be
consulted for this and similar designs. For example, for a 24 experiment, with
factors A, B, C, and D, there are a total of 16 treatment combinations and a
total of 15 d.f. for the effects and interactions. These effects and interactions
are

A, B, AB, C, AC, BC, ABC, D
AD, BD, ABD, CD, ACD, BCD, ABCD.

Each of these has 1 df. Thus to conduct this experiment in blocks of eight,
we need to confound any one of the above 15 effects or interactions, while to
have the experiment in blocks of four will require the selection of two basic
effects or interactions. Of course, their generalized interaction will also be
confounded, e.g.,

(i) Suppose ABCD and BC are confounded, then their generalized interac-
tion, ABCD × BC = AB2C2D = AD is also automatically confounded
with blocks. This implies that complete information is lost on these three
effects, including two 2-factor interaction terms. We surely do not want
to lose complete information on two 2-factor effects.

(ii) Suppose we try as defining effects, ABCD and ABD. Again this implies
that ABCD × ABD = A2B2CD2 = C is also automatically confounded
with blocks. Of course, we do not want to confound a main effect with
block, thus the choice of our defining effects in this case is not wise.
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(iii) Now suppose we choose to confound two 3-factor interactions, ABD and
BCD. This also implies that their generalized interaction ABD×BCD =
AB2 CD2 = AC is also confounded with blocks. This would be a better
choice, as it has fewer lower order interactions confounded.

The above indicates that care must, therefore, be taken so that main effects
and possibly second order interactions are not confounded. We generally
assume that higher order interactions may not be as important as lower order
interactions. To generate a single replicate of the third choice, we generate
the even treatment combinations with the defining effects and pull out the
four common treatments combinations to both effects.

ABD BCD

(1) (1)
ab bc
ad bd
bd cd
c a

abc abc
acd abd
bcd acd

Notice that treatment combination c and a are zero letters with ABD and
BCD, respectively. Introducing them and multiplying all previously identi-
fied treatment combinations with either of them will generate the remaining
combinations. From the above, we observe that only four treatment combina-
tions are common to both. These are laid out in the principal block (Block 1)
in Table 14.26.

Table 14.26 Single replicate of a 24 in blocks of 4

Block 1 Block 2 Block 3 Block 4

(1) a b ab
bd abd d ad
abc bc ac c
acd cd abcd bcd

The treatment combinations in Block 2 are generated by noting that (a)
is not in block 1 and multiplying the treatment combinations in block 1 with
a. Block 3 is generated by introducing the combination (b) and again mul-
tiplying through with (b). Block 4 is obtained by multiplying those in block
1 with the (ab) treatment combination. All the 16 treatment combinations
in a 24 factorial are present in the four blocks, however, information on the
ABD, BCD and AC effects are completely lost with the blocks, and there-
fore are not estimable. There is of course a need to randomize the treatment
combinations within blocks in the design in Table 14.26.
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Example 14.6.2

Three factors A (temperature), B (pressure) and C (catalyst concentration)
are believed to influence the yield of a chemical reaction. These factors were
all set at two levels and because of the limitations in the laboratory, the 23

factorial design was run in two blocks of size 4, with ABC as the confounded
effect. Three replicates of the experiment were conducted were carried with
treatment combinations randomized within blocks and blocks randomized
within replicates. The data collected are presented in Table 14.27.

The analysis of the data was carried out in MINITAB as follows:

Table 14.27 An example of a 23 factorial in blocks of 4

Replicate I Replicate II Replicate III
Block 1a Block 1b Block 2a Block 2b Block 3a Block 3b

(1) 4.6 (a) 10.1 (1) 4.4 (a) 7.8 (1) 4.8 (a) 9.2
(ab) 6.6 (b) 4.6 (ab) 6.3 (b) 5.9 (ab) 6.3 (b) 6.2
(ac) 6.2 (c) 7.6 (ac) 7.0 (c) 6.9 (ac) 7.5 (c) 8.0
(bc) 8.1 (abc) 7.7 (bc) 8.9 (abc) 8.2 (bc) 9.0 (abc) 8.2

2 1 1 0 1 1
3 1 0 1 1 1
4 0 1 1 1 1
5 1 0 0 2 1
6 0 1 0 2 1
7 0 0 1 2 1
8 1 1 1 2 1
9 0 0 0 1 2
10 1 1 0 1 2
11 1 0 1 1 2
12 0 1 1 1 2
13 1 0 0 2 2
14 0 1 0 2 2
15 0 0 1 2 2
16 1 1 1 2 2
17 0 0 0 1 3
18 1 1 0 1 3
19 1 0 1 1 3
20 0 1 1 1 3
21 1 0 0 2 3
22 0 1 0 2 3
23 0 0 1 2 3
24 1 1 1

6.6
6.2
8.1
10.1
4.6
7.6
7.7
4.4
6.3
7.0
8.9
7.8
5.9
6.9
8.2
4.8
6.3
7.5
9.0
9.2
6.2
8.0
8.2 2 3

Data Display

Row A B C Y BLOCKS REP
1 0 0 0 4.6 1 1
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MTB > GLM ’Y’ = REP BLOCKS(REP) A B C A*B A*C B*C;
SUBC> Brief 1 ;
SUBC> Means A B C.

General Linear Model: Y versus REP, A, B, C, BLOCKS

Factor Type Levels Values
REP fixed 3 1 2 3
BLOCKS(REP) random 6 1 2 1 2 1 2
A fixed 2 0 1
B fixed 2 0 1
C fixed 2 0 1

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
REP 2 1.1725 1.1725 0.5863 0.34 0.735
BLOCKS(REP) 3 5.1362 5.1363 1.7121 4.22 0.030
A 1 6.1004 6.1004 6.1004 15.04 0.002
B 1 0.1504 0.1504 0.1504 0.37 0.554
C 1 11.3437 11.3438 11.3438 27.96 0.000
A*B 1 4.9504 4.9504 4.9504 12.20 0.004
A*C 1 15.8438 15.8438 15.8438 39.05 0.000
B*C 1 5.9004 5.9004 5.9004 14.54 0.002
Error
Total

12
23

4.8683
55.4663

4.8683 0.4057

The S.E.s

(i) The S.E. of a single yield =
√

0.4057 = 0.6369.

(ii) The S.E. of difference of any two treatment mean is given by
√

2S2

r22 =
√

2×0.4057
12 = 0.2600.

(iii) The S.E. for any interaction mean equals
√

2S2

r21 =
√

2×0.4057
6 = 0.3677.

(iv) Estimated variance of an unconfounded total effects = 24 × 0.4057 =
9.7368 and hence, has S.E. = 3.1204. We note that r = 3 in this example.

We observe that both the main effects, A and C are highly significant. How-
ever, the interaction terms AB, AC, and BC are also highly significant.
Therefore, our focus should be directed to the interaction terms in order
to explain the variations within the experimental factors.

In the completely confounded analysis above, there is total loss of informa-
tion on the ABC interaction, since it has been confounded with blocks. We
may, however, be able to recover some information on the confounded effect
on an analysis that is based on blocks as a unit. This is known as inter-block
information recovery as distinct from our analysis which is also often called
intra-block information of variation of plots within blocks.

The inter-block analysis of the above data is carried out below with the
accompanying output from MINITAB. Here, the BLOCKS within Replicate
BLOCKS(REP) sum of squares of 5.1362 is broken down into the two compo-
nents, namely, Blocks (ABC) and Blocks*Replicate interaction. The p-value
for blocks is very significant at the 5 % point; hence, blocking has been very
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effective in reducing our experimental variance. The interaction plots for this
example are presented in Fig. 14.13. Note that information on the ABC in-
teraction has been lost or confounded with blocks in the above example. We
consider in the next section experiments in which information in confounded
effects are not totally lost.

MTB > GLM ’Y’ = REP BLOCKS BLOCKS*REP A B C A*B A*C B*C;
SUBC> Brief 1 ;
SUBC> Means A B C.

General Linear Model: Y versus REP, BLOCKS, A, B, C

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
REP 2 1.1725 1.1725 0.5863 3.21 0.238
BLOCKS 1 4.7704 4.7704 4.7704 26.08 0.036
REP*BLOCKS 2 0.3658 0.3658 0.1829 0.45 0.647
A 1 6.1004 6.1004 6.1004 15.04 0.002
B 1 0.1504 0.1504 0.1504 0.37 0.554
C 1 11.3438 11.3438 11.3438 27.96 0.000
A*B 1 4.9504 4.9504 4.9504 12.20 0.004
A*C 1 15.8437 15.8437 15.8437 39.05 0.000
B*C 1 5.9004 5.9004 5.9004 14.54 0.002
Error 12 4.8683 4.8683 0.4057
Total 23 55.4663

Fig. 14.13 Interaction plots for the significant two-way interactions
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We present below the interaction means for AB, AC, and the BC
interactions.

B
A 0 1 Mean
0 6.050 7.117 6.583
1 7.967 7.217 7.592

Mean 7.008 7.167

C
A 0 1 Mean
0 5.083 8.083 6.583
1 7.717 7.467 7.592

Mean 6.400 7.775

C
B 0 1 Mean
0 6.817 7.200 7.008
1 5.983 8.350 7.167

Mean 6.400 7.775

Comparisons of the AB interaction means using Tukey’s procedure yield the
following results. Clearly, the significant difference is between the lower level
yield for the two factors against at least one of the upper level combinations
of the factors.

Grouping Information Using Tukey’s Method and 95.0% Confidence

A B N Mean Grouping
1 0 6 7.967 A
1 1 6 7.217 A
0 1 6 7.117 A B
0 0 6 6.050 B

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

A C N Mean Grouping
0 1 6 8.083 A
1 0 6 7.717 A
1 1 6 7.467 A
0 0 6 5.083 B

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

B C N Mean Grouping
1 1 6 8.350 A
0 1 6 7.200 B
0 0 6 6.817 B C
1 0 6 5.983 C

Means that do not share a letter are significantly different.

14.7 Partial Confounding

In complete confounding, information is totally lost on the confounded effects
as they are mixed up with the block effects. However, to avoid the loss of
total information on any of the confounded factorial effects, a different effect
can be confounded in different replication group. Thus, a factorial effect is
only confounded in one of the replications and its effect can thus be estimated
from the other replicates. We illustrate this with the following example.
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Example 14.7.1

An animal scientist conducted a study on the effects of heat stress and dietary
intake of protein and saline water on laboratory mice. The three factors were
each used at two levels in a 23 factorial structure. The levels of the factors were
(A) protein (low, high); (B) water (normal, saline); and (C) heat stress (room
temperature, heat stress). Blocks of size 4 were used with four mice from an
individual litter used in each block. Each mouse was put in an individual
cage and assigned one of the treatment combinations. One replication of the
experiment consisted of two litters of mice. The weights gains (grams) for
the mice are shown for each mouse next to the treatment combination.

Replicate I Replicate II

Litter 1

(1) 27.5
(bc) 20.6
(abc) 22.0
(a) 28.6

(ab) 24.3
(c) 24.3
(ac) 22.8
(b) 24.6

(bc) 19.5
(a) 24.1
(ab) 22.4
(c) 22.0

(abc) 19.7
(b) 19.5
(1) 22.5
(ac) 18.8

Litter 4Litter 3Litter 2

Litter 5

(1) 24.5
(c) 23.0
(ab) 23.4
(abc) 21.7

(a) 33.1
(b) 20.5
(ac) 19.8
(bc) 18.5

Replicate III

Litter 6

In replicate I, the BC effect has been confounded with litters 1 and 2, the
litters serving as blocks in this case. Similarly, in replicate II, the AC effect
has been confounded with litters 3 and 4. In replicate III, the AB effect has
similarly been confounded with litters 5 and 6. Thus, the AB effect will be
estimated from replicates I and II, the AC from replicates I and III, while the
BC would be from replicates II and III. All other effects will be estimated
from the three replicates.



14.7 Partial Confounding 587

Table 14.28 ANOVA for partially confounded 23 factorial

Degrees of
Source freedom (d.f.)

Replicates 2
Blocks within replicates[or AB(rep. III) + BC (rep. I)

+ AC (rep. II) 3
A 1
B 1
C 1
ABC 1
AB (from replicates I, II) 1
AC (from replicates I, III) 1
BC (from replicates II, III) 1
Error 11
Total 23

The analysis of the data in this example is again carried out in MINITAB
with data read into columns C1, C2, C3, C4, C5, C6 as indicated below.

23 1 0 1 19.8 2 3
24 0 1 1 18.5 2 3

MTB > GLM ’Y’ = REP LITTER(REP) A B C A*B A*C B*C A*B*C;
SUBC> Brief 2 .

General Linear Model: Y versus REP, A, B, C, LITTER

Data Display

Row A B C Y LITTER REP
----------------------------------------
1 0 0 0 27.5 1 1
2 0 1 1 20.6 1 1
3 1 1 1 22.0 1 1
4 1 0 0 28.6 1 1
5 1 1 0 24.3 2 1
6 0 0 1 24.3 2 1
7 1 0 1 22.8 2 1
8 0 1 0 24.6 2 1
9 0 1 1 19.5 1 2
10 1 0 0 24.1 1 2
11 1 1 0 22.4 1 2
12 0 0 1 22.0 1 2
13 1 1 1 19.7 2 2
14 0 1 0 19.5 2 2
15 0 0 0 22.5 2 2
16 1 0 1 18.8 2 2
17 0 0 0 24.5 1 3
18 0 0 1 23.0 1 3
19 1 1 0 23.4 1 3
20 1 1 1 21.7 1 3
21 1 0 0 33.1 2 3
22 0 1 0 20.5 2 3
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Factor Type Levels Values
REP fixed 3 1 2 3
LITTER(REP) fixed 6 1 2 1 2 1 2
A fixed 2 0 1
B fixed 2 0 1
C fixed 2 0 1

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
REP 2 43.603 43.603 21.802 0.018
LITTER(REP) 3 8.004 2.234 0.745

5.94
0.20 0.892

A 1 7.820 7.820 7.820 2.13 0.172
B 1 49.020 49.020 49.020 13.35 0.004
C 1 74.554 74.554 74.554 20.30 0.001
A*B 1 2.402 2.402 2.402 0.65 0.436
A*C 1 9.610 9.610 9.610 2.62 0.134
B*C 1 12.602 12.602 12.602 3.43 0.091
A*B*C 1 14.260 14.260 14.260 3.88 0.074
Error 11 40.402 40.402 3.673
Total 23 262.280

F (.05, 1, 11) = 4.84. Only the main effects B and C are significant. None of
the other effects or interactions have significant effect on weight gained by
mice. There is a significant mean reduction in weight gain of 2.858 (s.e =√

2S2

12
=

√
2(3.673)

12
= 0.7824) if the mice are fed with saline water rather

than normal water. Similarly, there is a significant mean reduction in weight
gains of mice of 3.525 g for mice subjected to heat stress relative to those
kept at room temperature with a corresponding S.E. of 0.7824.

Fig. 14.14 Interaction plots for the partial confounding example



14.7 Partial Confounding 589

Example 14.7.2

Consider the following 23 factorial in blocks of two. That means that two ef-
fects and their generalized interaction will be confounded. Suppose we design
such an experiment with each replicate having three confounded effects with
a total of four replicates. That is 32 total observations. The design could be
like this:
Replicate I: Confound BC and AC −→ AB
Replicate II: Confound BC and ABC −→ A
Replicate III: Confound AC and ABC −→ B
Replicate IV: Confound AB and ABC −→ C
We present the data for this design in the following Table 14.29.

Table 14.29 Synthetic data for the design

Replicate I: AB, AC, BC confounded

Block 1 Block 2 Block 3 Block 4

75 (1) 89 (ab) 61 (a) 30 (b)
100 (abc) 73 (c) 45 (bc) 54 (ac)

Replicate II: A, BC, ABC confounded

Block 1 Block 2 Block 3 Block 4

60 (1) 47 (a) 1 (b) 26 (ac)
34 (bc) 81 (abc) 35 (c) 52 (ab)

Replicate III: B, AC, ABC confounded

Block 1 Block 2 Block 3 Block 4

58 (1) 48 (a) 18 (b) 68 (ab)
42 (ac) 52 (c) 82 (abc) 32 (bc)

Replicate IV: C, AB, ABC confounded

Block 1 Block 2 Block 3 Block 4

47 (1) 34 (a) 50 (c) 37 (ac)
57 (ab) 4 (b) 80 (abc) 27 (bc)

We may notice here that the effects of main effects A, B, and C will be
estimated from three replicates each, that is,

A, B, C, are estimable from three replicates each:

1. A −→ Reps: I, III, IV
2. B −→ Reps: I, II, IV
3. C −→ Reps: I, II, III

AB, AC, BC are estimable from two replicates each:

1. AB −→ Reps: II, III
2. AC −→ Reps: II, IV
3. BC −→ Reps: III, IV

ABC is estimable from only one replicate, namely, Rep I.
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We present below the output from MINITAB analysis of the data in
Table 14.29. The data were read in columns C1 to C6.

Data Display

Row REP BLK A B C Y
1 1 1 0 0 0 75
2 1 2 1 1 0 89
3 1 3 1 0 0 61
4 1 4 0 1 0 30
5 1 1 1 1 1 100
6 1 2 0 0 1 73
7 1 3 0 1 1 45
8 1 4 1 0 1 54
9 2 1 0 0 0 60
10 2 2 1 0 0 47
11 2 3 0 1 0 1
12 2 4 1 0 1 26
13 2 1 0 1 1 34
14 2 2 1 1 1 81
15 2 3 0 0 1 35
16 2 4 1 1 0 52
17 3 1 0 0 0 58
18 3 2 1 0 0 48
19 3 3 0 1 0 18
20 3 4 1 1 0 68
21 3 1 1 0 1 42
22 3 2 0 0 1 52
23 3 3 1 1 1 82
24 3 4 0 1 1 32
25 4 1 0 0 0 47
26 4 2 1 0 0 34
27 4 3 0 0 1 50
28 4 4 1 0 1 37
29 4 1 1 1 0 57
30 4 2 0 1 0 4
31 4 3 1 1 1 80
32 4 4 0 1 1 27

Interaction Plot for Y

MTB > Erase C4000.
MTB > GLM ’Y’ = REP BLK( REP) A B A*B C A*C B*C A*B*C;
SUBC> Brief 2 ;
SUBC> Means A B ’C’A*B A*C B*C;
SUBC> Pairwise A B ’C’ A*B A*C B*C;
SUBC> Tukey;
SUBC> NoTest;
SUBC> NoCI.

General Linear Model: Y versus REP, A, B, C, BLK

Factor Type Levels Values
REP fixed 4 1, 2, 3, 4
BLK(REP) fixed 16 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4
A fixed 2 0, 1
B fixed 2 0, 1
C fixed 2 0, 1

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
REP 3 3040.09 3040.09 1013.36 36481.12 0.000
BLK(REP) 12 7568.38 653.91 54.49 1961.72 0.000
A 1 2420.04 2420.04 2420.04 87121.50 0.000
B 1 0.04 0.04 0.04 1.50 0.252
A*B 1 3600.00 3600.00 3600.00 129600.00 0.000
C 1 100.04 100.04 100.04 3601.50 0.000
A*C 1 0.00 0.00 0.00 0.00 1.000
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S = 0.166667 R-Sq = 100.00% R-Sq(adj) = 99.99%

Unusual Observations for Y

Obs Y Fit SE Fit Residual St Resid
1 75.000 75.250 0.144 -0.250 -3.00 R
5 100.000 99.750 0.144 0.250 3.00 R

R denotes an observation with a large standardized residual.

Least Squares Means for Y

A Mean SE Mean
0 39.93 0.04501
1 60.01 0.04501
B
0 49.93 0.04501
1 50.01 0.04501
C
0 47.93 0.04501
1 52.01 0.04501
A*B
0 0 54.89 0.07014
0 1 24.97 0.07014
1 0 44.97 0.07014
1 1 75.05 0.07014
A*C
0 0 37.89 0.07014
0 1 41.97 0.07014
1 0 57.97 0.07014
1 1 62.05 0.07014
B*C
0 0 52.89 0.07014
0 1 46.97 0.07014
1 0 42.97 0.07014
1 1 57.05 0.07014

Grouping Information Using Tukey Method and 95.0% Confidence

A N Mean Grouping
1 16 60.01 A
0 16 39.93 B

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

B N Mean Grouping
1 16 50.01 A
0 16 49.93 A

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

C N Mean Grouping
1 16 52.01 A
0 16 47.93 B

Means that do not share a letter are significantly different.    

Grouping Information Using Tukey Method and 95.0% Confidence

B*C 1 400.00 400.00 400.00 14400.00 0.000
A*B*C 1 0.12 0.12 0.12 4.50 0.063
Error 9 0.25 0.25 0.03
Total 31 17128.97
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A B N Mean Grouping
1 1 8 75.05 A
0 0 8 54.89 B
1 0 8 44.97 C
0 1 8 24.97 D

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

A C N Mean Grouping
1 1 8 62.05 A
1 0 8 57.97 B
0 1 8 41.97 C
0 0 8 37.89 D

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

B C N Mean Grouping
1 1 8 57.05 A
0 0 8 52.89 B
0 1 8 46.97 C
1 0 8 42.97 D

Means that do not share a letter are significantly different.

We present in the figure below the interaction plots from the analysis.

14.7.1 Confounding in the 3n Series

For the 3n series, the block sizes are multiples of 3, e.g., for a 33 experiment,
i.e., a total of 27 treatment combinations, it is possible to have confounded
designs in blocks of nine or three.

A fairly simple design which uses this technique of confounding is the
split-plot design discussed in the next chapter.
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14.8 Fractional Replication

Complete or full factorial experiments cannot always be feasible because the
number of treatment combinations may be very large, and adequate experi-
mental material may not be available to have a balanced design. Fractional
replication is a factorial experiment in which only an adequately chosen frac-
tion of the treatment combinations is utilized in the experiment. In most
practical situations, even though there may be many factors, but very few
are usually important and these are often dominated by main effects and
low-order interactions.

Let us consider the case of a 23 factorial experiment with factors A, B,
and C each at two levels.

Effects representation and their contrasts in the 23design.

Factor-level Constant
combinations (I) A B AB C AC BC ABC Response

(1) +1 −1 −1 +1 −1 +1 +1 −1 y0
(a) +1 +1 −1 −1 −1 −1 +1 +1 y1
(b) +1 −1 +1 −1 −1 +1 −1 +1 y2
(ab) +1 +1 +1 +1 −1 −1 −1 −1 y3
(c) +1 −1 −1 +1 +1 −1 −1 +1 y4
(ac) +1 +1 −1 −1 +1 +1 −1 −1 y5
(bc) +1 −1 +1 −1 +1 −1 +1 −1 y6
(abc) +1 +1 +1 +1 +1 +1 +1 +1 y7

14.8.1 Constructing a 2n−1 Fractional
Factorial Design

As a simple example, suppose we wish to construct a 23−1 fractional factorial.
This means that we wish to use only 23−1 = 22 four treatment combinations
(of the possible eight treatment combinations). The question arises, which

four treatment combinations should we use for such a half replicate
23

22 =
1
2
.

In general, fractional factorial of the form 2n−1 is described as half-replicate
fractional factorial. To answer the earlier question, the principle of fractional
factorial is based on prior information on higher level interaction term/s be-
ing assumed having negligible effects. In our case, let us assume that the ABC
interaction has negligible effect. Thus, the ABC contrast in the above table
can be confounded with blocks resulting in the choice of either the positive
treatment combinations: a, b, c, abc or the negative treatment combinations:
(1), ab, ac, bc. If we decide to go with the positive four treatment com-
binations, then they will be referred to as the principal fraction, while the
negatives will be referred to as the complimentary fraction and in this case,
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we would write I = +ABC as the defining relationship obtained by setting
the confounded effect to I.

Table 14.30 Effects representation and their contrasts in the 23−1 design,
I = +ABC

Treatment
combinations I A B AB C AC BC ABC Response

(a) +1 +1 −1 −1 −1 −1 +1 +1 y1
(b) +1 −1 +1 −1 −1 +1 −1 +1 y2
(c) +1 −1 −1 +1 +1 −1 −1 +1 y4

(abc) +1 +1 +1 +1 +1 +1 +1 +1 y7

To obtain other confounding effects in a half fraction, we generate the con-
trasts for the other effects through multiplication as follows using the defining
equation I = +ABC.

I = ABC

A = A2BC = BC

B = AB2 C = AC

C = ABC2 = AB

Thus, the contrasts that estimate A are the same as the contrasts that es-
timate BC. Similarly for B and AC and for C and AB. In other words, we
would say that the main effects A, B and C are aliased with BC, AC, and AB,
respectively. Similarly, if we have used I = −ABC as the defining equation,
then the corresponding confounding effects would in this case be:

I = −ABC

A = −A2BC = −BC

B = −AB2 C = −AC

C = −ABC2 = −AB

With corresponding effect and contrast representation as follows:

Table 14.31 Effects representation and their contrasts in the 23−1 design. I =
−ABC

Treatment
combinations I A B AB C AC BC ABC Response

(1) +1 −1 −1 +1 −1 +1 +1 −1 y0
(ab) +1 +1 +1 +1 −1 −1 −1 −1 y3
(ac) +1 +1 −1 −1 +1 +1 −1 −1 y5
(bc) +1 −1 +1 −1 +1 −1 +1 −1 y6
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14.8.2 Calculating the Effects:

Using the four treatment combinations in Table 14.30, we can calculate the
main effects as:

A =
(a + abc)

2
− (b + c)

2
=

1
2
(a − b − c + abc) = �A (14.14)

B =
(b + abc)

2
− (a + c)

2
=

1
2
(−a + b − c + abc) = �B (14.15)

C =
(c + abc)

2
− (a + b)

2
=

1
2
(−a − b + c + abc) = �C (14.16)

Since we showed earlier that BC, AC and AB are aliases of A, B, and C,
respectively, therefore, 1

2 (a − b − c + abc) in effect is estimating A+BC (the
main effect and the two-factor interaction term BC). We can, therefore, write
the effects in a 23−1 design as:

A + BC =
1
2
(a − b − c + abc) (14.17)

B + AC =
1
2
(−a + b − c + abc) (14.18)

C + AB =
1
2
(−a − b + c + abc) (14.19)

In this design, we have four treatment combinations and hence, three degrees
of freedom to estimate A+BC, B+AC and C+AB. This design is, therefore,
useful if the two-way interactions are not important or of interest, since the
two-way effects can only be estimated in combination with the main effects.
This design is often referred to as Resolution III Design, because the generator
ABC has three letters, but the properties of the design and all Resolution
III designs are such that the main effects are confounded with the two-way
interactions.

If the complimentary fraction with the defining equation, I = −ABC
has been used, then from Table 14.31, we see again that the estimating A,
B, and C are equivalent to actually estimating A−BC, B−AC, and C−AB,
respectively. That is,

A =
(ab + ac)

2
− (1 + bc)

2
=

1
2
(−1 + ab + ac − bc) = �

′

A

B =
(ab + bc)

2
− (1 + ac)

2
=

1
2
(−1 + ab − ac + bc) = �

′

B

C =
(ac + bc)

2
− (1 + ab)

2
=

1
2
(−1 − ab + ac + bc) = �

′

C

If we choose to run first the principal fraction and subsequently also run
the complimentary fraction, the two can then be combined to form a full
factorial. In such a situation, then,
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1
2
(�A + �

′

A) =
1
2
(A + BC + A − BC) → A

1
2
(�A − �

′

A) =
1
2
(A + BC − A + BC) → BC

We note that in both Tables 14.30 and 14.31, the main effects are orthogonal
to each other (Note: An experimental design is orthogonal if the effects of
any factor balance out (sum to zero) across the effects of the other factors).
In our case, the products of their corresponding elements sum to zero.

14.8.3 The One-Quarter Fraction
of the 2n Design: 2n−2

Consider a 25 factorial indexed by factors A, B, C, D, and E each at two
levels. We, thus, have a total of 32 treatment combinations. To construct
a half replicate (a 25−1), we need only one defining contrast or generator,
usually the highest order interaction. Let us say, the ABCDE interaction.
Then, in this case,

I = ABCDE

In this case, as in the previous case, we would need just one generator, and
the treatment combinations would be:

a b c d e abc abd abe acd ace ade bcd bce bde cde abcde

To construct a quarter replicate, denoted by 2n−2, we would need two gen-
erators in the defining relationship and their generalized interaction. For
instance, if we decide to use say I = ABCDE = BCDE, then their gen-
eralized interaction A is also confounded. Thus, the defining relationship in
this case would be I = ABCDE = BCDE = A. This certainly will not be
a good design since we are completely losing information on the main effect
A. Suppose instead, we choose the defining relationship:

I = ABCD = ABE = CDE

The even {0, 2, 4} treatment combinations in the ABCD are:

(1), ab, ac, ad, bc, cd, abd, e, abe, ace, ade, bce, bde, cde, abcde

Similarly, the even treatment combinations having {0, 2, 4} letters in common
to the generator ABE are:

(1), ab, ae, be, c, abc, ace, bce, d, abd, ade, bde, cd, abcd, acde, bcde
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The eight common treatment combinations to these two generators (and of
course also to the CDE) are:

(1), ab, cd, ace, bce, ade, bde, abcd

The corresponding aliases are therefore:

I = ABCD = ABE = CDE

A = BCD = BE = ACDE

B = ACD = AE = BCDE

C = ABD = ABCE = DE

D = ABC = ABDE = CE

E = ABCDE = AB = CD

AC = BD = BCE = ADE

AD = BC = BDE = ACE

We observe that main effects have two-factor aliases. Consequently, the only
estimable two factor effects are AC = BD and AD = BC. The analysis of
variance table would therefore look like (for one replicate)

Source d.f.

Main effects 5
2-factor 2
Total 7

14.8.4 An Example:

In a 1
4 fractional replicate experiment, an agronomist wishes to test the effects

of five fertilizers each at two levels on the yield of maize. The data from this
experiment is presented in Table 14.32.

Table 14.32 Yield in kg/acre from a 2(5−2) experiment in two replicates

Treatment combinations
(1) ab cd ace bce ade bde abcd

Rep. I 127 135 158 142 138 129 146 132
Rep. II 131 136 161 140 140 134 150 133

We can implement the analysis of this data in MINITAB by coding the factor
levels 0/1 and whereas, for instance, the treatment combination (1) is coded
as {0 0 0 0 0}, while the combination bde is similarly coded as {0 1 0 1 1}.
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The MINITAB codes as well as the analysis of variance table are presented
below.

B fixed 2 0, 1
C fixed 2 0, 1
D fixed 2 0, 1
E fixed 2 0, 1

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Rep 1 30.25 30.25 30.25 27.32 0.001
A 1 342.25 342.25 342.25 309.13 0.000
B 1 4.00 4.00 4.00 3.61 0.099
C 1 169.00 169.00 169.00 152.65 0.000
D 1 210.25 210.25 210.25 189.90 0.000
E 1 0.25 0.25 0.25 0.23 0.649
A*C 1 72.25 72.25 72.25 65.26 0.000
A*D 1 625.00 625.00 625.00 564.52 0.000
Error 7 7.75 7.75 1.11
Total 15 1461.00

S = 1.05221 R-Sq = 99.47% R-Sq(adj) = 98.86%

MTB > GLM ’Y’ = Rep A B ’C’ D E A*C A*D;
SUBC> SMeans C4000;
SUBC> Brief 0;
SUBC> Interact ’A’ ’C’ ’D’.
MTB > GFInt ’A’ ’C’ ’D’;
SUBC> Responses ’Y’;
SUBC> FMeans C4000.

A B C D E Rep Y
0 0 0 0 0 1 127
1 1 0 0 0 1 135
0 0 1 1 0 1 158
1 0 1 0 1 1 138
0 1 1 0 1 1 138
1 0 0 1 1 1 129
0 1 0 1 1 1 146
1 1 1 1 0 1 132
0 0 0 0 0 2 131
1 1 0 0 0 2 136
0 0 1 1 0 2 161
1 0 1 0 1 2 140
0 1 1 0 1 2 140
1 0 0 1 1 2 134
0 1 0 1 1 2 150
1 1 1 1 0 2 133

MTB > GLM ’Y’ = Rep A B ’C’ D E A*C A*D;
SUBC> Brief 2 .

General Linear Model: Y versus Rep, A, B, C, D, E

Factor Type Levels Values
Rep fixed 2 1, 2
A fixed 2 0, 1
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We see that all the main effects except that of B and E at the 5 % level of
significance are all significant. Further, the two interaction terms are highly
significant and hence, we need to focus on these interaction terms rather than
the main effects.

In general a 1
2p fraction of a 2n design is designated as a 2n−p fractional

factorial and such a design would require:

• p design generators with 2p − p − 1 generalized interactions.
• Each effect would have 2p − 1 aliases.

For instance, a 26−2 fractional factorial would have p = 2 design generators
and 22 − 2 − 1 = 1 generalized interactions. There would, therefore, be
22 − 1 = 3 aliases for each effect.

14.9 2n−p Resolution III and IV Designs

Generally, fractional replications are designs grouped into classes based on
their resolutions. Most common are Resolution III, IV, and V. However, we
will concern ourselves in this chapter on the former two which are defined as
follows:

Resolution III: This is a design in which no main effect is confounded
with any other main effect, but main effects are confounded with two-factor
interactions and two-factor interactions are confounded with other two-factor
interactions.

Resolution IV: This is a design in which no main effect is confounded with
any other main effect or two-factor interactions, but two-factor interactions
are confounded with one another.

It seems that the resolution of a design is determined by the smallest
number of letter appearing in the design generator. Thus, a 23−1 generated
from the ABC contrast is a Resolution III design and would be designated
as 23−1

III design. Similarly, a 24−1 design with the ABCD generator contrast
is a design Resolution IV, that is, a 24−1

IV design.
For instance, a 26−2 fractional design with the two generators ABDE

and ABCF and, thus, their generalized Interaction ABDE × ABCF =
A2B2CDEF = CDEF has the defining relationship:

I = ABDE = ABCF = CDEF

Here, the smallest number of letters for the generators is four, and thus,
this design is Resolution IV design. That is, it is a 26−2

IV design. Similarly,
suppose a 27−4 fractional replication has the following four generators ABD,
ACE, BCF, and ABCG and 24 −4−1 = 11 generalized interactions and each
effect would have 24 − 1 = 15 aliases. Since the smallest number of letters
in the generators is three, we therefore have a 27−4

III design here. That is, a
Resolution III design.
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14.10 Logistic Regression for a Factorial Study

The data in Table 14.33 relate to data from Lombard and Doering (1947) from
a survey of knowledge about cancer. The data has a 24 factorial treatment
combinations, arrangement with n being the number of individuals surveyed
in this category and r the number who gave a good score in the response
to questions about cancer knowledge. The four factors are: (A) newspaper
reading; (B) listening to radio; (C) solid reading; (D) attendance at lectures.
(Note: the data has previously been analyzed in Armitage and Berry (1987)).

Table 14.33 A 24 factorial set of proportions

Number of Number with Number of Number with
Factor individuals good score Factor individuals good score

combinations n r combinations n r

(1) 477 84 d 12 2
a 231 75 ad 13 7
b 63 13 bd 7 4
ab 94 35 abd 12 8
c 150 67 cd 11 3
ac 378 201 acd 45 27
bc 32 16 bcd 4 1
abc 169 102 abcd 31 23

If we let pi be the proportion of individuals giving good score in treatment
combination i = 1, 2, . . . , 16, then the saturated model would have the form:

ln
(

pi

1 − pi

)

= β0 + β1A + β2B + β3C + β4D + β12AB + β13AC

+ · · · + β1234ABCD (14.20)

The above model would not have any degree of freedom and would thus
produce a perfect fit to the data. However, we can overcome this by fitting
only main effects and the second order interactions. That is the model,

ln
(

pi

1 − pi

)

= β0 + β1A + β2B + β3C + β4D + β12AB + β13AC

+ · · · + β34CD (14.21)

The model in (14.21) is implemented in MINITAB with the following
statements and the partial outputs including the data display are presented.
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Binary Logistic Regression: r, n versus A, B, C, D

Link Function: Logit

Response Information

Variable Value Count
r Event 668

Non-event 1061
n Total 1729

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -1.53668 0.116547 -13.19 0.000
A 0.779673 0.173051 4.51 0.000 2.18 1.55 3.06
B 0.247441 0.264111 0.94 0.349 1.28 0.76 2.15
C 1.29218 0.187651 0.000 3.64 2.52 5.26
D 0.196022 0.475627 0.680 1.22 0.48 3.09
A*B -0.0035985 0.285735

6.89
0.41
-0.01 0.990 1.00 0.57 1.74

A*C -0.387508 0.231841 -1.67 0.095 0.68 0.43 1.07
A*D 0.813517 0.469828 1.73 0.083 2.26 0.90 5.67
B*C 0.0069559 0.256503 0.03 0.978 1.01 0.61 1.66
B*D 0.484744 0.405235 1.20 0.232 1.62 0.73 3.59
C*D -0.843755 0.430921 -1.96 0.050 0.43 0.18 1.00

Log-Likelihood = -1046.665
Test that all slopes are zero: G = 213.460, DF = 10, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 2.84098 5 0.724
Deviance 2.79968 5 0.731
Hosmer-Lemeshow 0.28266 4 0.991

MTB > print c1-c6

Data Display

Row A B C D n r
1 0 0 0 0 477 84
2 1 0 0 0 231 75
3 0 1 0 0 63 13
4 1 1 0 0 94 35
5 0 0 1 0 150 67
6 1 0 1 0 378 201
7 0 1 1 0 32 16
8 1 1 1 0 169 102
9 0 0 0 1 12 2
10 1 0 0 1 13 7
11 0 1 0 1 7 4
12 1 1 0 1 12 8
13 0 0 1 1 11 3
14 1 0 1 1 45 27
15 0 1 1 1 4 1
16 1 1 1 1 31 23

MTB > Blogistic ’r’ ’n’ = A B ’C’ D A*B A*C A*D B*C B*D C*D ;
SUBC> ST;
SUBC> Logit;
SUBC> Brief 2.

We observe that the model fits the data well with a deviance of 2.79968
on 5 df and corresponding p − value = 0.731. The five degrees of freedom
correspond collectively to the omitted effects, ABC, ABD, ACD, BCD, and
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ABCD. However, all the second-order interactions are not significant at α =
0.05 level of significance except the CD interaction (and barely too!). We,
therefore, next include only the CD interaction in our next model, that is,

ln
(

pi

1 − pi

)

= β0 + β1A + β2B + β3C + β4D + β34CD (14.22)

These results of implementing model (14.22) are presented in the MINITAB
partial output below.

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -1.48688 0.0979798 -15.18 0.000
A 0.646847 0.115566 5.60 0.000 1.91 1.52 2.39
B 0.301609 0.122295 2.47 0.014 1.35 1.06 1.72
C 1.03747 0.115302 9.00 0.000 2.82 2.25 3.54
D 0.894327 2.81 0.005 2.45 1.31 4.57
C*D -0.717191

0.318555
0.391255 -1.83 0.067 0.49 0.23 1.05

Log-Likelihood = -1050.402
Test that all slopes are zero: G = 205.985, DF = 5, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 9.9194 10 0.448
Deviance 10.2742 10 0.417
Hosmer-Lemeshow 2.5278 4 0.640

Again, this model fits the data with a deviance of 10.2742 on 10 d.f. with a
p−value of 0.417. However, the model is not the most parsimonious because
the CD interaction is no longer significant (p−value = 0.067). Hence, we are
reduced to model (14.23) containing only the main effects of the study.

ln
(

pi

1 − pi

)

= β0 + β1A + β2B + β3C + β4D (14.23)

These results of implementing model (14.23) are presented in the MINITAB
partial output below.



14.10 Logistic Regression for a Factorial Study 603

MTB > Name c7 "EPRO1"
MTB > Blogistic ’r’ ’n’ = A B ’C’ D ;
SUBC> ST;
SUBC> Logit;
SUBC> Eprobability ’EPRO1’;
SUBC> Brief 2.

Binary Logistic Regression: r, n versus A, B, C, D

Link Function: Logit

Logistic Regression Table

Odds
Predictor Coef SE Coef Z P Ratio
Constant -1.46043 0.0964047 -15.15 0.000
A 0.649798 0.115421 5.63 0.000 1.92
B 0.310105 0.122198 2.54 0.011 1.36
C 0.980614 0.110729 8.86 0.000 2.67
D 0.420353 0.190971 2.20 0.028 1.52

95% CI
Lower Upper

1.53 2.40
1.07 1.73
2.15 3.31
1.05 2.21

Log-Likelihood = -1052.060
Test that all slopes are zero: G = 202.669, DF = 4, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 13.6067 0.256
Deviance 13.5909

11
11 0.256

Hosmer-Lemeshow 2.8851 4 0.577

The model fits the data with a deviance of 13.5909 on 11 d.f. and a p value
of 0.256. The estimated logistic model therefore is given by:

ln
(

π̂i

1 − π̂i

)

= −1.4604 + 0.6498A + 0.3101B + 0.9806C + 0.4204D

(14.24)

While we recognize that the effects might not be orthogonal, however, our
results here indicate that the odds of an individual surveyed giving a good
score on the knowledge about cancer is 2.67 times for those with solid reading
than those who have not read about cancer knowledge. It is 1.92 times higher
for those who have read about it in newspapers as against those who had not.
Similar interpretations can be given for factors B and D, with B being the
least effective score in the response to questions about cancer knowledge.
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14.11 Exercises

1. In a 24 experiment on the yield of a chemical process, the treatment
response from a single replicate of the experiment is given below.

d0 d1
c0 c1 c0 c1

a0 b0 8 31 79 77
b1 53 12 73 49

a1 b0 4 9 68 38
b1 43 36 8 23

Fit an appropriate model to this single replicate data.
2. Construct a half replicate of a 25 factorial system such that there would

be two blocks in each of the two replications. Give a sketch of the analysis
of variance.

3. The following exercise is adapted from Hoshmand (1994). The data in
the table below relate to a 25 experiment on corn yield conducted in a
half-replicate with two blocks each containing two replicates.

Block 1 Block 2
Treatment Rep. I Rep. II Treatment Rep. I Rep. II

(1) 132 125 ac 112 114
ac 151 145 ad 122 132
ab 136 138 bc 145 148
be 144 142 bd 161 158

acde 171 162 de 145 138
cd 154 159 ce 162 168

bcde 143 138 abde 144 140
abcd 132 136 abce 155 159

Grain yield from the experiment in (bu/acre)

(a) Perform the analysis of variance.
(b) Which of the main and interaction effects are highly significant?
(c) Plot any two way significant interactions and draw your conclusions.

4. A 24 factorial experiment was conducted in four blocks of four ex-
perimental units each and BCD, and ABD were used as defining
contrasts.

(a) What other effects were confounded with blocks?
(b) Could there have been a better choice of defining contrasts for this

design? Explain.
(c) Write down the structure of ANOVA table for this design for a single

replicate? Two replicates?
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5. For the following list of designs:

(i) 25−1 (ii) 27−3 (iii) 26−1

(iv) 26−2 (v) 26−3 (vi) 27−4

For each of the design above:

(a) What is the fraction of the full design?
(b) Number of generators required?
(c) Number of generalized interactions.
(d) Number of aliases for each effect.
(e) The number of experimental units required to run the design.

6. A 25−2 fractional factorial design is proposed with two competing
generating relations:

(i) I = ABCD = BCE

(ii) I = ABCDE = ABCD

(i) What fraction of a 25 design will it be?
(ii) Generate the aliases and other generalized interactions for the two

designs.
(iii) Generate the treatment combinations for a single replicate of each

design.
(iv) Which defining relationship is preferred for the design? Explain.

7. Analyze the following 23 factorial involving three factors, A, B, and C.
Identify which effect is confounded with blocks in each replicate.

Replicate I Replicate II Replicate III
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

ab (101) b (88) (1) (125) ab (115) bc (75) a (53)
abc (111) a (90) abc (95) c (95) ac (100) abc (76)
(1) (75) bc (115) ac (80) bc (90) (1) (55) b (65)
c (55) ac (75) b (100) a (80) ab (92) c (82)

8. The data below is adapted from and give the yields (in cwt. per acre) of
a 24 experiment on soybeans. The treatments are all combinations of:

Dung :10 tons per acre (d) or nil

Nitrochalk : 12 cwt. per acre (n)or nil

Superphosphate : 12 cwt. per acre (p) or nil

Muriate of potash :1 cwt. per acre (k) or nil
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The design plan is:

Block 1 A Block 1B

nk 64.4 (1) 40.1 p 33.6 npk 51.9
np 32.4 dn 63.4 dnp 56.9 n 27.3
dp 53.7 pk 44.7 d 58.6 k 43.2
dk 47.4 dnpk 65.2 dnk 69.8 dpk 59.7

Block 2 A Block 2B

(1) 62.6 dp 72.8 n 64.1 k 59.7
nk 67.3 dk 77.2 dnk 96.4 dpk 60.2
np 49.6 dnpk 78.2 p 52.8 dnp 68.5
dn 74.7 pk 74.1 d 70.9 npk 52.4

(a) Which effect(s) are confounded?
(b) Analyze the data and draw your conclusions.
(c) Obtain the S.E.s of the effect means.

9. Construct a single replicate of a 25 factorial in blocks of four using as
your defining contrasts effects ADE and BCE.

10. A study is conducted to determine the effect of water level and type
of plant on the overall stem length of pea plants. Three water levels
and two plant types are used. Eighteen leafless plants are available for
study. These plants are randomly divided into three subgroups, and then
water levels are randomly assigned to the groups. A similar procedure is
followed with 18 conventional plants. These data resulted (stem length is
given in centimeters) in the following table:

Factor A (water level)Factor B
(plant type) Low Medium High Total

Leafless 69.0 96.1 121.0 1788
71.3 102.3 122.9
73.2 107.5 123.1
75.1 103.6 125.7
74.4 100.7 125.2
75.0 101.8 120.1

Sub-Total 438 612 738 1788
Conventional 71.1 81.0 101.1 1578

69.2 85.8 103.2
70.4 86.0 106.1
73.2 87.5 109.7
71.2 88.1 109.0
70.9 87.6 106.9

Sub-Total 426 516 636 1578
Total 864 1128 1374 3366
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Use MINITAB to conduct the analysis and answer the following
questions:

a How many treatment combinations are in this experiment?
b How many replications are there for each treatment combination?
c Why is replication necessary?
d What type of design was employed for this experiment?

11. The partially completed ANOVA table for a balanced ANOVA is given
below:

Source DF SS MS F

Factor A 3 605.272 - -
Factor B - - 1145.679 -

A ∗ B 6 - - 7.90
Error 24 - 10.943
Total - -

(a) What type of design was employed in this experiment?
(b) Determine the number of levels of each factor?
(c) Complete the ANOVA Table.
(d) Test to determine significant effects. Use α = .10.
(e) How many replications are used in this experiment?.

12. The partially completed ANOVA table for a balanced ANOVA is given
below:

Source DF SS MS F

Blocks 2 9.00 –
A 2 12.00 – –
B – – 34.50 –

A ∗ B 4 – – 0.53
Error 16 – 1.50
Total – –

(a) What type of design was employed in this experiment?
(b) Determine the number of levels of each factor?
(c) Complete the ANOVA Table.
(d) Test to determine significant effects. Use α = .10.
(e) How many replications are used in this experiment?

13. An experiment was conducted on survival of Salmonella typhimurium to
investigate the effects of three levels of sorbic acid and six levels of water
activity (aw). The data displayed are log (density/ml) measured 7 days
after the imposition of the treatments.
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Factor B (water activity level)Factor A
(Sorbic acid level) 0.98 0.94 0.90 0.86 0.82 0.78

0 8.19 6.65 5.87 5.06 4.85 4.31
8.37 6.70 5.98 5.35 4.31 4.34
8.33 6.25 6.14 5.01 4.52 4.20

100 ppm 7.64 6.52 5.01 4.85 4.29 4.13
7.79 6.19 5.28 4.95 4.43 4.39
7.59 6.51 5.78 4.29 4.18 4.18

200 ppm 7.14 6.33 5.20 4.41 4.26 4.93
6.92 6.18 5.10 4.40 4.27 4.12
7.19 6.43 5.43 4.79 4.37 4.15

Answer the following questions:

a How many treatment combinations are in this experiment?
b How many replications are there for each treatment combination?
c Why is replication necessary?
d What type of design was employed for this experiment?
c Study the SAS program and output attached for this problem and

interpret the printout. You will need to test each effect and draw your
conclusions.



Chapter 15
The Split-Plot Design

15.1 Introduction

For the split-plot design, we are concerned with two or more factors, but we
wish for more precise information on some of them than on others. If we are
interested in more accurate information, for instance, on factor B than on A,
then the usual scheme is to assign the various levels of factor A at random
to whole plots (main plots) in each replicate as in a randomized complete
block design. Following this, the levels of B are assigned at random to the
split plots (subplots) within each whole plot. Such a scheme of randomization
may arise not only from the desire for more precise information on one factor
that on another but also because of the nature of the factors and the way in
which they must be applied to the experimental units.

In agriculture, whole plots are usually large areas of land and the subplots
are small areas of land. For example, several varieties of a crop could be
planted in different fields (whole plots), one variety to a field. Then each
field could be divided into five subplots, for example, and each subplot could
be treated with a different type of fertilizer. Here the crop varieties are the
main treatments and the different fertilizers are the subtreatments. The split-
plot design is also very useful in many scientific or industrial experiments
where some factors require large experimental units and other factors require
small ones. We notice that the whole plot treatments in a split-plot design
are confounded with the whole plots, and the subplot treatments are not
confounded. Therefore, it is better to assign the factor of interest to the
subplots if possible.

The linear statistical model for a split plot design with one observation
per experimental unit is

Yijk = μ + bi + αj + δij + βk + (αβ)jk + eijk. (15.1)

i = 1, 2, · · · , r; j = 1, 2, · · · , t; and k = 1, 2, · · · , s where bi and αj are
replicate (block) and whole plot treatment effects respectively. δij is the whole
plot error, while βk, (αβ)jk, and eijk, respectively represent the subplot
treatment, interaction effects, and random errors.

609B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 15,
c© Springer International Publishing Switzerland 2014
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Basically, the split may be viewed as consisting of two designs: (i) a main-
plot design and (ii) a subplot design. The main-plot design is used to allocate
treatments to the main plots. For a randomized complete block split-plot
design, for example, the main-plot design is a randomized complete block
(RCB). That is, the main-plot treatments are assigned to blocks. In terms
of replicates, each replicate contains one main-plot treatment as, say for
instance in a completely randomized design.

Example 15.1.1

Suppose we are investigating the yield of a = 3 varieties of millet (A1, A2, A3)
at b = 3 three densities D1, D2, and D3 and we wish to replicate the exper-
iment r = 4 times. If the varieties are to go as main-plot treatments, the
layout below divides the experimental area into four replicates since r = 4.
These are then further divided each into three blocks, each block containing
the randomized main-plot treatments V1, V2, and V3.

REP I

V2 V3 V1 V1 V3 V2 V3 V1 V2 V1 V3 V2

REP IVREP IIIREP II

Since we have three subplot treatments, now divide each block into three
units and randomly assign the three plant densities as shown in the layout
below. Note that columns are blocks in this layout

REP I REP II REP III REP IV

D2 D1 D3

D1 D2 D2

D3 D3 D1

D2 D1 D3

D1 D2 D2

D3 D3 D1

D2 D1 D3

D1 D2 D2

D3 D3 D1

D2 D1 D3

D1 D2 D2

D3 D3 D1

V2 V3 V1 V1 V3 V2 V3 V1 V2 V1 V3 V2

The structure of the analysis of variance table becomes:

Example
Source d.f. d.f.

Blocks (replicates) r − 1 3
A a − 1 2
Main-plot error (a − 1)(r − 1) 6
B (b − 1) 2
AB (a − 1)(b − 1) 4
Subplot error a(r − 1)(b − 1) 18
Total abr − 1 35
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The main effects A will be tested from

F =
MSA

Main Plot MS
where MSA is the mean square for A and Main Plot MS is the mean square
obtained from the main-plot error line. The effects of B and AB are tested
as usual with the subplot error mean square. The main-plot error sum of
squares is the interaction between blocks and A sum of squares.

Example 15.1.2: Analysis of Split-Plot Experiment

The response of six varieties of lettuce, grown in frames, to various uncov-
ering dates was investigated in a split-plot experiment with four blocks. The
main-plot treatments were three uncovering dates and each main plot was
split into six split plots for the six varieties. The data in Table 15.1 is from
this experiment.

Table 15.1 Data for this experiment

Uncovering Blocks Treatments

date Variety I II III IV totals

X A 11.8 7.5 9.7 6.4 35.4
B 8.3 8.4 11.8 8.5 37.0
C 9.2 10.6 11.4 7.2 38.4
D 15.6 10.8 10.3 14.7 51.4
E 16.2 11.2 14.0 11.5 52.9
F 9.9 10.8 4.8 9.8 35.3

Main-plot total 71.0 59.3 62.0 58.1
Y A 9.7 8.8 12.5 9.4 40.4

B 5.4 12.9 11.2 7.8 37.3
C 12.1 15.7 7.6 9.4 44.8
D 13.2 11.3 11.0 10.7 46.2
E 16.5 11.1 10.8 8.5 46.9
F 12.5 14.3 15.9 7.5 50.2

Main-plot total 69.4 74.1 69.0 53.3
Z A 7.0 9.1 7.1 6.3 29.5

B 5.7 8.4 6.1 8.8 29.0
C 3.3 6.9 1.0 2.6 13.8
D 12.6 15.4 14.2 11.3 53.5
E 12.6 12.3 14.4 14.1 53.4
F 10.2 11.6 10.4 12.2 44.4

Main-plot total 51.4 63.7 53.2 55.3
Block totals 191.8 197.1 184.2 166.7 739.8

Analysis

(i) Analysis of Main-Plot Section
Since there are three main plots and four replicates, the analysis of the
main-plot section therefore involves analysis based on observations in
3×4 = 12 plot observations and their corresponding subtotals. These are
presented in Table 15.2.
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Table 15.2 Subtotals from the 4 × 3 main-plot observations

Blocks

I II III IV Total

X 71.0 59.3 62.0 58.1 250.4
Y 69.4 74.1 69.0 53.3 265.8
Z 51.4 63.7 53.2 55.3 223.6

Total 191.8 187.1 184.2 166.7 739.8

There are 4 × 3 × 6 plots altogether in the experiment. From Table 15.2,
therefore, we have, CF = (739.8)2/72 = 7601.44. Hence,

Block SS =
191.82

18
+

187.12

18
+ · · · +

166.72

18
− CF = 29.35

Uncovering date SS =
250.42

24
+

265.82

24
+

223.62

24
− CF = 38.01

Main plot SS =
71.02

6
+

59.32

6
+ · · · +

55.32

6
− CF = 110.92

The main-plot analysis of variance table is, therefore, presented in
Table 15.3. Here, main plot error is obtained by subtraction

(ii) Analysis of Split-Plot Section
The split-plot analysis is based on the 6 × 3 = 18 split-plot observations
and subtotals in Table 15.4.
Again, the SS are obtained from the following calculations:

Table 15.3 Main-plot ANOVA table

Source d.f. SS MS F

Blocks 3 29.35
Uncovering date 2 38.01 19.00 2.62
Error (a) 6 43.56 7.26
Main-plot total SS 11 110.92

Table 15.4 Split-plot observations and subtotals

Main-plot
Split-plot treatments

treatments X Y Z Total

A 35.4 40.4 29.5 105.3
B 37.0 37.3 29.0 103.3
C 38.4 44.8 13.8 97.0
D 51.4 46.2 53.5 151.1
E 52.9 46.9 53.4 153.2
F 35.3 50.2 44.4 129.9

Total 250.4 265.8 223.6 739.8

Varieties SS =
105.32

12
+

103.32

12
+ · · · +

129.92

12
− CF

= 260.51
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Dates × Varieties =
35.42

4
+

40.42

4
+ · · · +

44.42

4
− CF

− Varieties SS − Main effects SS = 163.70

Error (b) = By subtraction = 227.27

The full analysis of variance table is presented in Table 15.5.
Table 15.5 Full analysis of variance table

Source d.f. SS MS F

Blocks 3 29.35
Uncovering date 2 38.01 19.00 2.62
Error (a) (B × D) 6 43.56 7.26
(whole plot error)

Varieties 5 260.51 52.10 10.32∗∗∗

Dates × varieties 10 163.70 16.37 3.24∗∗

Error (b) 45 227.27 5.05
(subplot error)
Total 71 762.40

∗∗ Significant at 1 %; ∗∗∗ Significant at 0.01 %

Note that from Table 15.5 the subplot error is less than the whole plot error.
This is the usual case in split-plot designs, since the subplots are gener-
ally more homogeneous than the whole plots. The table of means from this
analysis is provided in Table 15.6.

Table 15.6 Table of means
Uncovering date

Variety X Y Z Mean

A 8.8 10.1 7.4 8.8
B 9.2 9.3 7.1 8.6
C 9.6 11.2 3.4 8.1
D 12.8 11.6 13.4 12.6
E 13.2 11.7 13.4 12.8
F 8.8 12.6 11.1 10.8

Mean 10.4 11.1 9.3 10.3

S.E. for comparing two date means =
√

2 Ea

24 = 0.78 (6 d.f.).

S.E. for comparing two variety means =
√

2 Eb

12 = 0.9175 (45 d.f.).

S.E. for comparing two varieties at a single date =
√

2 Eb

4 = 1.59 (45 d.f.).

S.E. for comparing differences between two varieties for two dates =
√

4 Eb

4 =
2.25 (45 d.f.).

S.E. for comparing two dates, either for the same variety or for different varieties

=

√
2(5 Eb + Ea)

4 × 6
= 1.65.

Note that in general, the formula for the last S.E. is
√

2[(b − 1) Eb + Ea]
r × b
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where r is the number of blocks (replicates), and b is the number of split-plot
treatments.

Because both error mean squares are involved in this S.E., no exact t test
is possible.

The analysis of the data in this example (Table 15.1) is implemented in
MINITAB as follows:

The interaction plot of Variety and Date is presented in Fig. 15.1, while
the main effects’ plots for variety and dates is also presented in Fig. 15.2

MTB > SET C1
DATA> (1:3)24
DATA> END
MTB > SET C2
DATA> 3(1:6)4
DATA> END
DATA> END
MTB > SET C3
DATA> 18(1:4)
DATA> END
MTB > SET C4
DATA> 11.8 7.5 9.7 6.4 8.3 8.4 11.8 8.5
DATA> 9.2 10.6 11.4 7.2 15.6 10.8 10.3 14.7
DATA> 16.2 11.2 14.0 11.5 9.9 10.8 4.8 9.8
DATA> 9.7 8.8 12.5 9.4 5.4 12.9 11.2 7.8
DATA> 12.1 15.7 7.6 9.4 13.2 11.3 11.0 10.7
DATA> 16.5 11.1 10.8 8.5 12.5 14.3 15.9 7.5
DATA> 7 9.1 7.1 6.3 5.7 8.4 6.1 8.8 3.3 6.9
DATA> 1.0 2.6 12.6 15.4 14.2 11.3 12.6 12.3
DATA> 14.4 14.1 10.2 11.6 10.4 12.2
DATA> END

MTB > GLM ’YIELD’ = BLOCKS DATE BLOCKS*DATE VARIETY DATE*VARIETY;
SUBC> Random ’BLOCKS’;
SUBC> SSquares 1;
SUBC> Brief 1 .

Factor Type Levels Values
BLOCKS random 4 1 2 3 4
DATE fixed 3 1 2 3
VARIETY fixed 6 1 2 3 4 5 6

General Linear Model: YIELD versus DATE, BLOCKS, VARIETY

Analysis of Variance for YIELD, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P
-------------------------------------------------------------
BLOCKS 3 29.343 29.343 9.781 1.35 0.345
DATE 2 38.003 38.003 19.002 2.62 0.152
BLOCKS*DATE 6 43.566 43.566 7.261 1.44 0.222
VARIETY 5 260.508 260.508 52.102 10.32 0.000
DATE*VARIETY 10 163.698 163.698 16.370 3.24 0.003
Error 45 227.277 227.277 5.051
Total 71 762.395
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Fig. 15.1 Interaction plots

15.1.1 Summary of Results

Differences between varieties varied with uncovering dates. For uncovering
date X, varieties D and E out-yielded all other varieties significantly; for Y
differences between varieties were small; for Z varieties D, E, and F gave
significantly higher yields than varieties A, B, and C. Although the mean
yield declined between Y and Z for four of the six varieties, the decline was
significant for variety C only. (All significance statements refer to the 5 %
significance level.)

Example 15.1.3

Four strains of perennial rye grass were grown as swards at each of two
fertilizer levels. The four strains were S23, New Zealand, Kent, and X (a
“hypothetical” strain introduced to illustrate some points of statistical in-
terest). The fertilizer levels were denoted by H, heavy and A, average. The
experiment was laid out as four blocks of four whole plots for the varieties,
each split in two for the application of fertilizer. The midsummer dry matter
yields, in units of 10 lb/acre, are displayed in Data for example 15.1.3.
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Fig. 15.2 Main effects plots

Table 15.7 Data for Example 14.1.3

Manuring Blocks Manuring Strain

1 2 3 4 total total

S23 H 299 318 284 279 1180 1983
A 247 202 171 183 803

New Zealand H 315 247 289 307 1158 1952
A 257 175 188 174 794

X H 403 439 355 324 1521 2281
A 222 170 192 176 760

Kent H 382 353 383 310 1428 2220
A 233 216 200 143 792

Total 2358 2120 2062 1896 8436

Analysis

(i) Whole-Plot Analysis
The whole-plot analysis will be based on 4 × 4 = 16 observations and
subtotals which are displayed in Table 15.8.

Table 15.8 The 16 plot observations for the main-plot analysis

Blocks

Variety 1 2 3 4 Total

S23 546 520 455 462 1983
New Zealand 572 422 477 481 1952
X 625 609 547 500 2281
Kent 615 569 583 453 2220
Total 2358 2120 2062 1896 8436
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There are 4 × 4 × 2 = 32 plots altogether in the experiment with CF =
2, 223, 940.5. Hence,

Block SS =
23582

8
+

21202

8
+ · · · +

18962

8
− CF = 13, 712.5

Strains SS =
19832

8
+

19522

8
+ · · · +

22202

8
− CF = 10, 303.75

Whole Plot Totals =
5462

2
+

5202

2
+ · · · +

4532

2
− CF = 31, 530.5

The main-plot analysis of variance table is, therefore, presented in
Table 15.9.

(ii) Analysis of Split-Plot Section
Table 15.10 gives the 2×4 = 8 observations and subtotals needed for this
analysis.

Table 15.9 Main-plot ANOVA table

Source d.f. SS MS F

Blocks 3 13,712.5
Strains 3 10,303.75 3434.583 5.16
Error (a) 9 7514.25 834.917
Main-plot totals 15 31,530.4

Table 15.10 Subplot observations and subtotals

Main-plot
Split-plot treatments
treatments S23 NZ X Kent Total

H 1180 1158 1521 1428 5287
A 803 794 760 792 3149

Total 1983 1952 2281 2220 8436

Fertilizer SS =
52872

16
+

31492

16
− CF

= 142, 845.125

Stain × fertilizer =
11802

4
+

11582

4
+ · · · +

7922

4
− CF − Fertilizer SS − Main effects SS

= 14, 435.125

Error (b) = By subtraction = 7982.75

The full analysis of variance for the data in Table 15.7 is presented in
Table 15.11.
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Table 15.11 Full analysis of variance table

Source d.f. SS MS F

Blocks 3 13,713
Strains 3 10,304 3435 4.11
Error (a) 9 7514 834.917
Whole plot totals 15 31,531
Fertilizer 1 142,845 142,845 214.80∗∗∗

Strains × fertilizer 3 14,435 4812 7.24∗∗∗

Error (b) 12 7983 665
Total 31 196,794

∗∗ Significant at 1 %; ∗∗∗ Significant at 0.01 %

Note that from Table 15.11, again the subplot error is less than the whole-
plot error in this example. We present in Table 15.12, the table of means of
the interactions between Strains and Fertilizers.

S.E. for comparing two strain means =
√

2 Ea

8 = 14.447 (9 d.f.).

S.E. for the response of a single strain =
√

Eb

2 = 18.23 (12 d.f.).

S.E. for comparing two fertilizer means =
√

2 Eb

2 = 9.119 (12 d.f.).

S.E. for comparing two fertilizers at a single strain level =
√

2 Eb

4 = 18.238
(12 d.f.).

Table 15.12 Table of means
Strains Mean

Fertilizer S23 NZ X Kent (units of 10 lb/acre)

H 295.00 289.5 380.25 357.0 330.438
A 200.75 198.5 190.0 198.00 196.813

Mean 247.875 244.00 285.125 277.500 263.625

S.E. for comparing two strains responses =
√

4 Eb

4 = 25.792 (12 d.f.)

S.E. for the average response =
√

2 Eb

16 = 9.119 (12 d.f.)
S.E. for comparing two strains, at a single fertilizer level =

=

√
2(Eb + Ea)

4 × 2
= 19.366

Note that in general, the formula for the last S.E. is
√

2[(b − 1) Eb + Ea]
r × b

where r is the number of blocks (replicates), and b is the number of split-plot
treatments. Here, b = 1 in this example.

Because both error mean squares are involved in this S.E., no exact t test
is possible.
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(Not all of these comparisons are particularly meaningful in this exam-
ple but the standard errors are included for reference purposes.) The above
analysis is again analyzed with MINITAB with the following statements and
corresponding output.

MTB > set c1
DATA> 8(1:4)
DATA> end
MTB > set c1
DATA> (1:4)8
DATA> end
MTB > set c2
DATA> 4(1:2)4
DATA> end
MTB > set c3
DATA> 8(1:4)
DATA> end
MTB > name c1 ’strains’ c2 ’variety’ c3 ’blocks’
MTB > set c4
DATA> 299 318 284 279 247 202 171 183
DATA> 315 247 289 307 257 175 188 174
DATA> 403 439 355 324 222 170 192 176
DATA> 382 353 383 310 233 216 200 143
DATA> end
MTB > name c4 ’yield’
Row strains variety blocks yield

1 1 1 1 299
2 1 1 2 318
3 1 1 3 284
4 1 1 4 279
5 1 2 1 247
6 1 2 2 202
7 1 2 3 171
8 1 2 4 183
9 2 1 1 315

10 2 1 2 247
11 2 1 3 289
12 2 1 4 307
13 2 2 1 257
14 2 2 2 175
15 2 2 3 188
16 2 2 4 174
17 3 1 1 403
18 3 1 2 439
19 3 1 3 355
20 3 1 4 324
21 3 2 1 222
22 3 2 2 170
23 3 2 3 192
24 3 2 4 176
25 4 1 1 382
26 4 1 2 353
27 4 1 3 383
28 4 1 4 310
29 4 2 1 233
30 4 2 2 216
31 4 2 3 200
32 4 2 4 143
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MTB > GLM ’yield’ = strains blocks strains*blocks variety strains*variety;
SUBC> Random ’blocks’;
SUBC> Brief 1.

General Linear Model: yield versus strains, blocks, variety

Factor Type Levels Values
strains fixed 4 1 2 3 4
blocks random 4 1 2 3 4
variety fixed 2 1 2

Analysis of Variance for yield, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
strains 3 10303.8 10303.8 3434.6 4.11 0.043
blocks 3 13712.5 13712.5 4570.8 5.47 0.020
strains*blocks 9 7514.3 7514.3 834.9 1.26 0.349
variety 1 142845.1 142845.1 142845.1 214.73 0.000
strains*variety 3 14435.1 14435.1 4811.7 7.23 0.005
Error 12 7982.8 7982.8 665.2
Total 31 196793.5

Note that the Random statement in the MINITAB program ensures that
the appropriate error mean square is used for testing the effect of the main-
plot treatment. Because the interaction of strains and variety is significant
(p value = 0.005), we present this interaction plot from this analysis is pre-
sented in Fig. 15.3. The plot is generated from the interaction Table of means
in Table 15.12

Fig. 15.3 Interaction plots
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15.1.2 Summary of the Results of the Experiment

At the high fertilizer level, X and Kent significantly out-yielded S23 and
New Zealand. At the average fertilizer level, there were no significant differ-
ences in yield between the four strains. All four strains showed a statistically
significant response to fertilizer; the average response of X and Kent being
significantly greater than that of S23 and New Zealand by 810 lb/acre with

a standard error
√

4 Eb

8 = 10 × 18.23 = 128 lb/acre.

15.1.3 Missing Data in Split-Plot Design

If for some reasons (death of animal, crop destruction, natural disasters, or
any other reason) data on an observation are missing, we can use the formula
below to compute the missing value:

Ŷ =
rM0 + bT0 − Pe

(r − 1)(b − 1)
(15.2)

where:

• Ŷ is the estimated missing value.
• M0 is the total observed values of the specific main plot that contains the

missing data.
• T0 is the total observed value of the treatment combination that contains

the missing data.
• Pe is the total observed values of the main-plot treatment that contains

the missing plot.
• r is the number of replications.
• b is the level of the subplot factors.

The table below gives the standard errors for the split-plot design with a
missing plot value.

Comparison Measured as Standard error

Two main plot A means ai − aj

√
2(Ea+fEb)

rb

Two subplot B means bi − bj

√
2Eb(1+

fb

a
)

ra

Two B means at the same main plot means aibj − aibk

√
2Eb(1+

fb

a
)

r

Two A means at

(a) the same level of B aibj − akbj

√
2Ea+2Eb[(b−1)+fb2]

rb

(b) different levels of B aibj − akbl ditto

where for a single missing plot,

f =
1

2(r − 1)(b − 1)
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15.2 Latin Square Split-Plot Example

This example is adapted from SAS. It relates to sugar beet yield in six vari-
eties, labeled (1)–(6) in Table 15.13. The main plot represents the varieties
while the subplots are the two harvesting times. The experiment is laid out
as a Latin square design. The structure of the analysis of variance for this
analysis is presented in Table 15.14.

To implement the analysis of the data in Table 15.13, the MINITAB GLM
procedure could not handle this type of analysis correctly. So we have done
the analysis in SAS which has capabilities for handling these type of data.
The results from the SAS implementation are presented in the following:

Latin Square Split-Plot Design
The GLM Procedure

Class Level Information

Class Levels Values

Table 15.13 The 6 × 6 LS data for the example

Columns

Harvest Rows I II III IV V VI

1 1 (3) 19.1 (6) 18.3 (5) 19.6 (1) 18.6 (2) 18.2 (4) 18.5
1 2 (6) 18.1 (2) 19.5 (4) 17.6 (3) 18.7 (1) 18.7 (5) 19.9
1 3 (1) 18.1 (5) 20.2 (6) 18.5 (4) 20.1 (3) 18.6 (2) 19.2
1 4 (2) 19.1 (3) 18.8 (1) 18.7 (5) 20.2 (4) 18.6 (6) 18.5
1 5 (4) 17.5 (1) 18.1 (2) 18.7 (6) 18.2 (5) 20.4 (3) 18.5
1 6 (5) 17.7 (4) 17.8 (3) 17.4 (2) 17.0 (6) 17.6 (1) 17.6

2 1 (3) 16.2 (6) 17.0 (5) 18.1 (1) 16.6 (2) 17.7 (4) 16.3
2 2 (6) 16.0 (2) 15.3 (4) 16.0 (3) 17.1 (1) 16.5 (5) 17.6
2 3 (1) 16.5 (5) 18.1 (6) 16.7 (4) 16.2 (3) 16.7 (2) 17.3
2 4 (2) 17.5 (3) 16.0 (1) 16.4 (5) 18.0 (4) 16.6 (6) 16.1
2 5 (4) 15.7 (1) 16.1 (2) 16.7 (6) 16.3 (5) 17.8 (3) 16.2
2 6 (5) 18.3 (4) 16.6 (3) 16.4 (2) 17.6 (6) 17.1 (1) 16.5

Table 15.14 The degrees of freedom under the split-plot model arranged as an LS

Source d.f. This example

Between whole plot (t2 − 1) 35
Rows t − 1 5
Columns t − 1 5
A t − 1 5
Main-plot error (a) (t − 1)(t − 2) 20

Within subplots t2(b − 1) 36
B (b − 1) 1
AB (t − 1)(b − 1) 5
Subplot error (b) t(t − 1)(b − 1) 30
Total (bt2 − 1) 71
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Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Y

Source DF Type III SS Mean Square F Value Pr > F
--------------------------------------------------------------------------
Variety 5 20.619028 4.123806 25.34 <.0001
Rep 5 4.320694 0.864139 5.31 0.0029
Column 5 1.574028 0.314806 1.93 0.1333

Error 20 3.254444 0.162722
Error: MS(Column*Rep*Variety)

Source DF Type III SS Mean Square F Value Pr > F
--------------------------------------------------------------------------
Column*Rep*Variety 20 3.254444 0.162722 0.32 0.9948
Harvest 1 60.683472 60.683472 120.04 <.0001
Variety*Harvest 5 0.745694 0.149139 0.30 0.9119

Error: MS(Error) 30 15.165833 0.505528

MTB > GLM ’Y’ = Varty Col Rep( Col) harvest harvest* Varty;
SUBC> Random ’Rep’;
SUBC> Brief 2 .

General Linear Model: Y versus Varty, Col, harvest, Rep

Factor Type Levels Values
Varty fixed 6 1, 2, 3, 4, 5, 6
Col fixed 6 1, 2, 3, 4, 5, 6
Rep(Col) random 36 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6,

1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6
harvest fixed 2 1, 2

Column 6 1 2 3 4 5 6
Rep 6 1 2 3 4 5 6
Variety 6 1 2 3 4 5 6
Harvest 2 1 2

Number of observations 72
The GLM Procedure

Dependent Variable: Y
Sum of

Source DF Squares Mean Square F Value Pr > F
-----------------------------------------------------------------------------
Model 41 91.1973611 2.2243259 4.40 <.0001
Error 30 15.1658333 0.5055278

Corrected Total 71 106.3631944

R-Square Coeff Var Root MSE Y Mean
0.857415 4.019184 0.711005 17.69028

Source DF Type III SS Mean Square F Value Pr > F
-----------------------------------------------------------------------------
Variety 5 20.61902778 4.12380556 8.16 <.0001
Rep 5 4.32069444 0.86413889 1.71 0.1629
Column 5 1.57402778 0.31480556 0.62 0.6836
Column*Rep*Variety 20 3.25444444 0.16272222 0.32 0.9948
Harvest 1 60.68347222 60.68347222 120.04 <.0001
Variety*Harvest 5 0.74569444 0.14913889 0.30 0.9119

The GLM Procedure
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Analysis of Variance for Y, using Adjusted SS for Tests

Model Reduced
Source DF DF Seq SS
Varty 5 5 20.6190
Col 5 5 1.5740
Rep(Col) 30 25+ 7.5751
harvest 1 1 60.6835
Varty*harvest 5 5 0.7457
Error 25 30 15.1658
Total 71 71 106.3632

+ Rank deficiency due to empty cells, unbalanced nesting, collinearity, or an
undeclared covariate. No storage of results or further analysis will be
done.

S = 0.711005 R-Sq = 85.74% R-Sq(adj) = 66.25%

15.3 The Split-Split-Plot Design

Several variations of the split-plot design are available. One of these is the
split-split-plot design which is used when we have more than two factors in
our study. Here split-plot is further divided to accommodate the third factor.
The design, therefore, allows for three different precision levels for each factor.
The order of precision is

Main-effect treatment =⇒ Split-plot treatment =⇒ Split-split-plot treatment

with main effect having the lowest and the split-split-plot treatment having
the highest precision. In this design, each level of factor A is assigned at
random to r whole plots. A total of ra whole plots are therefore required.
The b levels of factor B are then assigned at random to the subplots (the
subplots are obtained by dividing each of the whole plots into b subplots)
within each whole plot and each subplot is again divided into c subsubplots.
The c levels of factor C are then assigned randomly to each of the subsubplots.
In this design, factor A serves as whole plot, factor B serves as subplot, and
factor C serves as the subsubplot. We present a typical layout of this design
for a 2 × 2 × 2 treatment combination where a = 2, b = 2, c = 2, and the
design is replicated r = 4 times.

(i) First we divide the experimental area into four replications with each
replication into two main plots to take factor level A A1 and A2 and
duly randomized.

REP I

A1 A2 A2 A1

A2 A1 A1 A2

REP IVREP IIIREP II
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(ii) We now subdivide each main plot into two subplots (since factor B has
two levels) and again assign randomly the two levels of factor B (B1 and
B2) within the main plots. This is presented in the figure below.

REP I

A 1B 1 A 1B 2 A 2B 2 A 2B 1 A 2B 1 A 2B 2 A1B 2 A 1B 1

A 2B 1 A 2B 2 A 1B 2 A 1B 1 A 1B 1 A 1B 2 A 2B 2 A 2B 1

REP IVREP IIIREP II

(iii) We now divide each of the subplots into two subsubplots (the number
of levels of factor C) and assign again randomly the two levels C1 and
C2 of factor C (again here factor C has two levels) to the subsubplots.
A possible arrangement is again presented in the figure below.

REP I

A 1 B 1C 2 A 1 B 2C 1 A 2 B 2 C 1 A 2 B 1C 2 A 2 B 1C 1 A 2 B 2C 2 A 1 B 2C 2 A 1 B 1 C 1

A 1 B 1C 1 A 1 B 2C 2 A 2 B 2 C 2 A 2 B 1C 1 A 2 B 1C 2 A 2 B 2C 1 A 1 B 2C 2 A 1 B 1 C 1

A 2 B 1C 2 A 2 B 2C 1 A 1 B 2 C 1 A 1 B 1C 2 A 1 B 1C 1 A 1 B 2C 2 A 2 B 2C 2 A 2 B 1 C 1

A 2 B 1C 1 A 2 B 2C 2 A 1 B 2 C 2 A 1 B1C 1 A 1 B 1C 2 A 1 B 2C 1 A 2 B 2C 1 A 2 B 1 C 2

REP IVREP IIIREP II

The structure of the analysis of variance table for this example is presented
in the table below.

Source of variation d.f.

Reps 3
A 1
Main-plot Error 3
B 1
AB 1
Subplot Error 6
C 1
AC 1
BC 1
ABC 1
Subsubplot error 12
Total 31
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For the general split-split-plot design, the linear model formulation is
presented in (15.3).

Yijkm =μ + αi + em(i) + βj + αβij + e
′

m(ij) + γk + αγik + βγjk (15.3)

+αβγijk + εijkm

The structure of the analysis of variance table is presented in Table 15.15.
The main effects of A in expression (15.3) will be tested with the main-plot
error mean square (em(i)). The B and AB interaction effects will be tested
with the subplot error mean square (e

′

m(ij)) in (15.3), while the C, AC, BC,
and ABC effects are tested with the subsubplot error mean square, namely
(εijkm) also in expression (15.3).

Table 15.15 The degrees of freedom under the split-split-plot model

Source d.f.

Between whole plots ra − 1
A a − 1
Main-plot error a(r − 1)
Within subplots ra(b − 1)
B (b − 1)
AB (a − 1)(b − 1)
Subplot error a(r − 1)(b − 1)
Within subsubplots rab(c − 1)
C c − 1
AC (a − 1)(c − 1)
BC (b − 1)(c − 1)
ABC (a − 1)(b − 1)(c − 1)
Subsubplot error ab(r − 1)(c − 1)
Total abcr − 1

Example 15.3.1

A study conducted at Samaru to determine the influence of plant density and
hybrids on corn (Zea mays L.) yield. The experiment was a 2 × 2 × 3 fac-
torial replicated four times in a randomized complete block design arranged
in a split-split-plot layout. In this experiment, factor A is the two corn hy-
brids (P3730 and B70×LH55) assigned to the main plots, factor B is the
two row spacings (12 and 25 in) assigned to the subplots, and factor C is
the three target plant densities (12,000, 16,000, and 20,000 plants/acre) as-
signed to the subsubplots. The data from the experiment are displayed in
Table 15.16.
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Table 15.16 Yield of two corn hybrids with two row spacings and three plant
densities

Grain yields (bushels/acre)

Row spacing Plant density Replications

Hybrid (in) (plants/acre) I II III IV

P3730 12 12,000 140 138 130 142
16,000 145 146 150 147
20,000 150 149 146 150

435 433 426 439

25 12,000 136 132 134 138
16,000 140 134 136 140
20,000 145 138 138 142

421 404 408 420

B70 × LH55 12 12,000 142 132 128 140
16,000 146 136 140 141
20,000 148 140 142 140

436 408 410 421

25 12,000 132 130 136 134
16,000 138 132 130 132
20,000 140 134 130 136

410 396 396 402

We present below the analysis of the above data in MINITAB. The data are
read into columns C1–C5.

MTB > set c4
DATA> 12(1:4)
DATA> end
MTB > set c3
DATA> 4(1:3)4
DATA> end
MTB > set c2
DATA> 2(1:2)12
DATA> end
MTB > set c1
DATA> (1:2)24
DATA> end
MTB > set c5
DATA> 140 138 130 142 145 146 150 147
DATA> 150 149 146 150 136 132 134 138
DATA> 140 134 136 140 145 138 138 142
DATA> 142 132 128 140 146 136 140 141
DATA> 148 140 142 140 132 130 136 134
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DATA> end
MTB > print c1-c5

Data Display

Row H S D REP Y

1 1 1 1 1 140
2 1 1 1 2 138
3 1 1 1 3 130
4 1 1 1 4 142
5 1 1 2 1 145
6 1 1 2 2 146
7 1 1 2 3 150
8 1 1 2 4 147
9 1 1 3 1 150
10 1 1 3 2 149
11 1 1 3 3 146
12 1 1 3 4 150
13 1 2 1 1 136
14 1 2 1 2 132
15 1 2 1 3 134
16 1 2 1 4 138
17 1 2 2 1 140
18 1 2 2 2 134
19 1 2 2 3 136
20 1 2 2 4 140
21 1 2 3 1 145
22 1 2 3 2 138
23 1 2 3 3 138
24 1 2 3 4 142
25 2 1 1 1 142
26 2 1 1 2 132
27 2 1 1 3 128
28 2 1 1 4 140
29 2 1 2 1 146
30 2 1 2 2 136
31 2 1 2 3 140
32 2 1 2 4 141
33 2 1 3 1 148
34 2 1 3 2 140
35 2 1 3 3 142
36 2 1 3 4 140
37 2 2 1 1 132
38 2 2 1 2 130
39 2 2 1 3 136
40 2 2 1 4 134
41 2 2 2 1 138
42 2 2 2 2 132
43 2 2 2 3 130
44 2 2 2 4 132
45 2 2 3 1 140
46 2 2 3 2 134
47 2 2 3 3 130
48 2 2 3 4 136
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MTB > GLM ’Y’ = H REP(H) S H*S S*REP(H) D H*D S*D h*s*d;
SUBC> Random ’REP’;
SUBC> SSquares 1;
SUBC> Brief 2 .

General Linear Model: Y versus H, S, D, REP

Factor Type Levels Values
H fixed 2 1 2
REP(H) random 8 1 2 3 4 1 2 3 4
S fixed 2 1 2
D fixed 3 1 2 3

Analysis of Variance for Y, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P
H 1 238.521 238.521 238.521 5.27 0.061
REP(H) 6 271.625 271.625 45.271 6.83 0.017
S 1 475.021 475.021 475.021 71.63 0.000
H*S 1 1.687 1.687 1.687 0.25 0.632
S*REP(H) 6 39.792 39.792 6.632 0.75 0.612
D 2 350.042 350.042 175.021 19.92 0.000
H*D 2 37.042 37.042 18.521 2.11 0.143
S*D 2 87.792 87.792 43.896 5.00 0.015
H*S*D 2  1.625 1.625 0.812 0.09 0.912
Error 24 210.833 210.833 8.785
Total 47 1713.979

The analysis obtained is in conformity with the structure of ANOVA table
presented in Table 15.15. We see that the S*D interaction is significant, as well
as the S effect. Often times the 6 d.f. for the REP(H) SS can be partitioned
into two components representing REP SS and REP*H SS. The main effect
of A can then be tested with the REP*H mean square. This is presented in
the output below with H now seemingly important or significant.

MTB > GLM ’Y’ = REP H REP*H S H*S REP*S(H) D H*D S*D H*S*D;
SUBC> Random ’REP’ ;
SUBC> Brief 2 .

General Linear Model: Y versus REP, H, S, D

Factor Type Levels Values
REP random 4 1 2 3 4
H fixed 2 1 2
S fixed 2 1 2
D fixed 3 1 2 3

Source DF Seq SS Adj SS Adj MS F P
REP 3 237.729 237.729 79.243 22.51 0.514 x
H 1 238.521 238.521 238.521 21.11 0.019
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In addition to the standard errors given for treatment comparisons for the
split-plot design discussed earlier (we need to divide by additional factor

√
c,

though), the following additional standard errors for comparisons involving
the split-split unit with c levels are split-split presented below (Cochran and
Cox 1957, p. 305).

Treatment comparison Standard error

ci − cj

√
2Ec

rab

aicj − aick

√
2Ec

rb

bicj − bick

√
2Ec

ra

aibjck − aibjcl

√
2Ec

r

bick − bjck or bick − bjcl

√
2[(c−1)Ec+Eb]

rac

aibjcl − aibkcl

√
2[(c−1)Ec+Eb]

rc

aick − ajck or aick − ajcl

√
2[(c−1)Ec+Ea]

rbc

aibkcl − ajbkcl

√
2[b(c−1)Ec+(b−1)Eb+Ea]

rbc

15.4 The Strip-Plot Design

These designs are also called split-block designs and are suitable for two-
factor experiments, where factor A is applied to whole plots like the usual
split-plot designs but factor B is also applied to strips which are actually a
new set of whole plots orthogonal to the original plots used for factor A (that
is perpendicular to each other). The scheme below gives the layout of this
design. Here we have five varieties V1, V2, V3, V4, and V5 (a = 5) as horizontal
strips in four replicates (r = 4). Notice that the varieties are randomized
within each replicate horizontally. Next, we divide each replicate into three
vertical strips (the number of levels of the second factor). Here, we assume
that we have three nitrogen rates N1, N2, and N3 (b = 3). These treatments
are again randomly assigned to give the scheme displayed below. Therefore,
we have for this design, the horizontal strip plot, the vertical strip plot, and
the intersection plot. The latter accommodates the interaction between the
two factors.
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REP I REP II REP III REP IV

V1 V1 V1

V3 V3 V3

V5 V5 V5

V2 V2 V2

V4 V4 V4

V5 V5 V5

V2 V2 V2

V1 V1 V1

V4 V4 V4

V3 V3 V3

V4 V4 V4

V3 V3 V3

V5 V5 V5

V2 V2 V2

V1 V1 V1

V3 V3 V3

V4 V4 V4

V1 V1 V1

V5 V5 V5

V2 V2 V2

N 2 N 3 N 1 N 1 N 3 N 2 N 3 N 1 N 2 N 1 N 2 N 3

Vertical Strips

The linear statistical model for this two factor design is:

yijk = μ + τi + βj + (τβ)ij + γk + (τγ)ik + (βγ)jk + εijk

⎧
⎨

⎩

i = 1, 2, . . . , r
j = 1, 2, . . . , a
k = 1, 2, . . . , b

where, (τβ)ij , (τγ)ik, and εijk are the errors used to test factor A, factor
B and interaction AB, respectively. Table 15.17 shows the structure of the
analysis of variance assuming A and B to be fixed and blocks or replicates to
be random.

Table 15.17 The degrees of freedom under the strip-plot model

Source d.f.

Replications r − 1 = 3
Horizontal factor (A) a − 1 = 4
Error (a) (r − 1)(a − 1) = 12
Vertical factor (B) b − 1 = 2
B (b − 1)
Error (B) (r − 1)(b − 1) = 6
A × B (a − 1)(b − 1) = 8
Error (c) (r − 1)(a − 1)(b − 1) = 24
Total rab − 1 = 59

Example

This example is from Hosmond (1993) and is data on four soft red winter
wheat cultivars (Arthur 71, Auburn, Caldwell, and Compton) and grown
with four nitrogen rates in a strip-plot design with four replicates. The data
are presented in Table 15.18.
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Table 15.18 Yield for the strip-plot experiment

Nitrogen Grain yield (bushels/acre)

Cultivar rate (lb/acre) Rep I Rep II Rep III Rep IV

40 72 74 76 70
Arthur 71 80 76 75 74 78

120 72 74 73 75
160 74 76 82 86
40 60 62 64 65

Auburn 80 61 63 69 68
120 70 72 69 70
160 72 70 82 86
40 75 73 72 80

Caldwell 80 77 78 77 82
120 80 82 86 88
160 84 82 84 89
40 65 68 63 72

Compton 80 68 72 74 76
120 69 68 70 72
160 73 75 74 76

The analysis of the data in Table 15.18 using MINITAB is displayed below.
The computed p values indicate that there are significantly different mean
yields among the cultivars (p value = 0.000). Similarly, there are significant
differences in the mean yields of nitrogen rates (p value = 0.000). Our analysis
also indicates that the interaction term between the cultivars and nitrogen
rates is highly significant (p value = 0.0006). All the p values are << 0.05.

Data Display

MTB > print c1-c4

Row A B REP Y
1 1 1 1 72
2 1 1 2 74
3 1 1 3 76
4 1 1 4 70
5 1 2 1 76
6 1 2 2 75
7 1 2 3 74
8 1 2 4 78
9 1 3 1 72
10 1 3 2 74

.................

.................
55 4 2 3 74
56 4 2 4 76
57 4 3 1 69
58 4 3 2 68
59 4 3 3 70
60 4 3 4 72
61 4 4 1 73
62 4 4 2 75
63 4 4 3 74
64 4 4 4 76
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Source DF Seq SS Adj SS Adj MS F P
REP 3 257.562 257.562 85.854 15.45 0.037 x
A 3 1282.187 1282.187 427.396 76.64 0.000
REP*A 9 50.188 50.188 5.576 0.72 0.682
B 3 761.313 761.313 253.771 33.07 0.000
REP*B 9 69.062 69.062 7.674 1.00 0.465
A*B 9 237.937 237.937 26.437 3.44 0.006
Error 27 207.687 207.687 7.692
Total 63 2865.938

x Not an exact F-test.

S = 2.77347 R-Sq = 92.75% R-Sq(adj) = 83.09%
1 75.44
2 68.94
3 80.56
4 70.94
B
1 69.44
2 73.00
3 74.38
4 79.06
A*B 1 2 3 4
1 73.00 75.75 73.50 79.50
2 62.75 65.25 70.25 77.50
3 75.00 78.50 84.00 84.75
4 67.00 72.50 69.75 74.50

MTB > GLM ’Y’ = REP A REP*A B REP*B A*B;
SUBC> Random ’REP’;
SUBC> Brief 2 .

General Linear Model: Y versus REP, A, B

Factor Type Levels Values
REP random 4 1, 2, 3, 4
A fixed 4 1, 2, 3, 4
B fixed 4 1, 2, 3, 4

Analysis of Variance for Y, using Adjusted SS for Tests

Now let us compute the coefficients of variation corresponding to each of the
three error mean squares. These are (here, G is the grand mean):

cv(a) =
√

Ea

G
× 100 =

√
5.576

73.96
= 3.19 %

cv(b) =
√

Eb

G
× 100 =

√
7.674

73.96
= 3.75 %

cv(c) =
√

Ec

G
× 100 =

√
7.692

73.96
= 3.75 %
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The cv(a) value for instance indicates the degree of precision associated
with the horizontal factor, cv(b) with the vertical factor, and cv(c) with the
interaction between the two factors. cv(c) is expected to be the smallest, and
hence, highest precision. There is no rule as to which of the other two cv’s
should be higher or lower.

The standard errors for treatment comparisons in a strip-plot design are
displayed in Table 15.19.

Table 15.19 Standard errors for the subplot strips

Treatment comparison Standard error

(i) ai − aj

√
2Ea

rb

(ii) bi − bj

√
2Eb

ra

(iii) aibk − ajbk

√
2[(b−1)Ec+Ea]

rb

(iv) aibj − aibk

√
2[(a−1)Ec+Eb]

ra

The last two standard errors in Table 15.19 are respectively:

(a) The standard error of difference between two main-plot (A) level means
at the same level of B means.

(b) The standard error of difference between two strip-plot (B) level means
at the same level of A means.

To obtain confidence intervals or conduct tests of significance based on
the above standard errors, the Student’s t critical value (say at 5 %) is ob-
tained by multiplying the S.E. for (i) and (ii) by the respective t.05 obtained
for the appropriate d.f. However, for (iii) and (iv), the S.E. of mean differ-
ences involve two error terms, and we would use the following expressions to
respectively compute the weighted Student’s t values:
For case (iii), we have:

t =
(b − 1)Ectc + Eata

(b − 1)Ec + Ea

Similarly, for case (iv), we have:

t =
(a − 1)Ectc + Ebtb

(a − 1)Ec + Eb

where ta, tb, and tc are t values at error d.f. for Ea, Eb, and Ec respectively.
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15.5 Exercises

1. This example is taken from Steel and Torrie (1960), and is hereby duly
acknowledged. An experiment compared the yields of four lots of oats for
three chemical seed treatments and untreated check. The seed lots are
Vicland(1), Vicland(2), with Vicland(1) infected with H. victoriae and
Vicland(2) uninfected. The other two seed lots are Clinton and Branch
oats which are resistant to H. victoriae. The seed lots are the main factor
and assigned randomly to blocks, while the seed protectants, factor B,
were assigned at random to the subplots within each whole plots. The
experiment was laid out a CRBD of four blocks. The yield in bushels per
acre are presented below.

Factor A Factor B

Seed lot Blocks Check Ceresan M Panogen Agrox

Vicland(1) 1 42.9 53.8 49.5 44.4
2 41.6 58.5 53.8 41.8
3 28.9 43.9 40.7 28.3
4 30.8 46.3 39.4 34.7

Vicland(2) 1 53.3 57.6 59.8 64.1
2 69.6 69.6 65.8 57.4
3 45.4 42.4 41.4 44.1
4 35.1 51.9 45.4 51.6

Clinton 1 62.3 63.4 64.5 63.6
2 58.5 50.4 46.1 56.1
3 44.6 45.0 62.6 52.7
4 50.3 46.7 50.3 51.8

Branch 1 75.4 70.3 68.8 71.6
2 65.6 67.3 65.3 69.4
3 54.0 57.6 45.6 56.6
4 52.7 58.5 51.0 47.4

Yields of oats in bushels per acre

(a) Carry out a split-plot analysis for the above data and draw your
conclusions.

(b) Calculate the appropriate standard errors for the difference between
(i) two main-plot means and (ii) to subplot means.

2. In an experiment, three formulations of a diet (factor A) were compared
on the basis of a certain chemical being absorbed in the diet by the kidneys
of experimental rats. The researcher is also interested in comparing three
techniques (factor B) for measuring the absorbed amounts. Four litters,
each containing three rats were used in the study. Within each litter, the
animals were randomly assigned to the three diets. After two weeks on the
diets, the animals were sacrificed and three sample specimens were selected
from each animal’s kidney. The three methods were randomly assigned to
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the three specimens and the absorbed amount of the chemical measured.
The data for the experiment is presented below (Source: Rao 1998).

Litter

Diet Method 1 2 3 4

1 26.97 26.12 27.83 27.47
1 2 22.60 22.91 19.83 21.63

3 30.71 29.53 27.51 28.62
1 17.47 18.13 18.01 17.97

2 2 16.90 16.31 16.52 15.93
3 23.95 22.84 23.84 23.45
1 20.72 20.41 21.01 21.34

3 2 24.32 25.06 25.92 25.33
3 28.31 29.02 29.13 29.36

Absorption data for diet experiment

Analyze the data as split-plot design and draw your conclusions.
3. An environmental horticulturist is interested in finding out whether (1)

stress-adapted landscapes save water (2) whether irrigation equal to 15 %
or less reference evapotranspiration (ET0) can be applied to established
shrubs and ground cover without any drought-related injury. The study
is a three-factor experiment with three irrigation regimes (no irrigation,
12.0 in, and 24.0 in of water), two different irrigation methods (drip and
furrow) on the growth of shrubs and ground covers such as Xylosma,
oleander, Cotoneaster, juniper, ice plant, and Hedera. The experiment is
a strip-split-plot design replicated three times. The data collected over a
2-year period are presented below.

Irrigation Water Growth (in)

Plantings method applied (in) Rep I Rep II Rep III

Xylosma Drip 0.0 8.0 8.4 9.5
12.0 19.5 20.1 20.2
24.0 30.6 31.0 31.4

Furrow 0.0 6.0 5.4 5.8
12.0 12.8 16.9 17.4
24.0 28.2 27.6 29.4

Oleander Drip 0.0 18.0 19.4 19.5
12.0 39.5 40.1 40.3
24.0 60.6 59.0 61.4

Furrow 0.0 16.0 15.4 15.7
12.0 22.8 36.9 37.4
24.0 48.2 47.6 49.4

Coton easter Drip 0.0 6.0 6.4 6.5
12.0 35.5 31.1 30.6
24.0 40.6 41.0 41.3

Furrow 0.0 4.0 4.4 4.8
12.0 19.8 16.9 18.4
24.0 25.2 27.6 29.5
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Irrigation Water Growth (in)

Plantings method applied (in) Rep I Rep II Rep III

Juniper Drip 0.0 12.0 12.4 12.7
12.0 10.5 10.1 10.2
24.0 20.6 18.0 19.3

Furrow 0.0 10.0 11.1 10.8
12.0 9.8 6.9 7.4
24.0 13.2 14.8 15.4

Ice plant Drip 0.0 22.0 18.8 19.5
12.0 26.5 28.1 27.2
24.0 33.6 33.0 32.4

Furrow 0.0 16.0 15.4 15.8
12.0 22.5 26.9 25.4

24 28.8 29.6 29.9

Hedera Drip 0.0 16.0 17.4 18.5
12.0 20.5 22.1 20.7
24.0 40.6 41.0 41.4

Furrow 0.0 12.0 13.2 14.6
12.0 15.8 14.9 14.6
24.0 28.2 27.6 29.4

Growth of shrubs and ground cover as a function of irrigation water
received from April to August (Source: Hosmond 2004).

(a) Analyze the data as a strip-split plot experiment.
(b) What conclusions can you draw from the analysis?
(c) Compute the coefficient of variation for the factors.

4. A split-plot experiment in a randomized complete block design evaluated
the effects of nitrogen, water, and phosphorous rates on the water use
efficiency in a drip irrigation culture of sweet corn. Two rates of phospho-
rus (P1 = 0 and P2 = 245 lb P2O5/acre) were randomized to whole plots
in a randomized complete block design. The 3 × 3 factorial treatments of
nitrogen (0, 130, and 260 lb N/acre) and water (16, 22, and 28 in) were
randomized to subplots within each of the main plots. The data presented
below give the water use efficiency for each subplot (Source: Dr. T.
Doerge, Department of Soil and Water Science, University of Arizona).

Block I Block II

Water Nitrogen P1 P2 P1 P2

16 0 8.1 9.7 8.6 15.5
130 36.0 34.2 34.5 33.1
260 34.6 34.0 40.7 39.3

22 0 10.0 6.2 5.1 10.9
130 21.5 19.7 19.9 21.9
260 30.7 28.9 26.4 25.7

28 0 10.6 6.3 4.5 10.4
130 19.4 19.7 21.7 19.9
260 23.2 23.0 19.4 23.2
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(a) Conduct the analysis of variance for the data using MINITAB.
(b) Construct a summary table of means and marginal means for each

factor and interactions.
(c) Compute the estimated standard errors for comparing two different

levels of:

– Phosphorous rates
– Water rates
– Nitrogen rates

(d) Test the hypotheses for all interaction and main effect terms and
interpret your results.

(e) Partition the sum of squares for water and nitrogen into linear and
quadratic terms including their interaction. Interpret your results
and plot a graph of the observed means to assist.

5. A split-plot experiment was conducted in a completely randomized design
with whole-plot treatments as a 2 × 2 factorial (factors A and B) and the
subplot treatments as three levels of factor C. There were four replications
of the experimental units.

(a) Outline the analysis of variance table showing the sources of variation
and degrees of freedom.

(b) Suppose the above experiment was carried out as a Latin square
design. Repeat part (a) above for this case.



Chapter 16
Incomplete Block Design

16.1 Introduction

The designs considered in the previous chapters, namely, randomized com-
plete block and Latin square design assume that each block always contain
enough experimental units to allow for each treatment (or treatment combina-
tion in case of a factorial design) to be contained at least once in each block or
in the case of Latin square design in each row or column. In particular, when
the number of treatments equals the number of units in a block, the design is
very very simple and the analysis becomes straightforward. However, when
the number of units in a block is less (in some cases could be more) than the
number of treatments, the design is no longer simple and so does the analysis.

This sometimes becomes necessary under certain circumstances when, for
instance, we do not have enough homogeneous units to form a block with
the required number of treatments. This situation can be resolved by the
use of incomplete block designs, which are not too difficult to construct and
can readily be analyzed with MINITAB or SAS. We saw in Chap. 14 the
construction of a design for the 24 factorial in blocks of 8. Since there are 16
treatment combinations in this experiment, ideally, we should have blocks of
size 16 to have this as a randomized complete block or a 16×16 Latin square
design. For the randomized complete block design (RCBD), this makes it
difficult to have homogeneous units within each block (this would be very
difficult in field experiment for instance where sloping, water logging in some
parts of the field may make this impossible). A possible layout of a simple
replicate for instance can be in blocks of eight or even in blocks of four.

a b c abc d abd acd bcd

ab (1) bc ac bd ad abcd cd

In the above design, we have used blocks of eight units. This is therefore a
very simple example of an incomplete block design. It is incomplete because
we are not able to apply all the 16 treatments in every block. In order words,
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an incomplete block design is simply one in which there are more treatments
that can be put in a single block. That is, it is not possible to include all
factor combinations in every block. In the above, we recognize that the fourth
order interaction ABCD has been confounded with blocks.

Example 16.1.1

As an example, consider again, the 24 factorial which is to be laid out in
blocks of size 4. This calls for four blocks in a single replicate with complete
confounding of 3 of the 15 effects. Suppose we number the 16 treatment
combinations, 1–16 in the order presented in Chap. 14, then we have:

1 4 13 16

Block 1

2 3 14 15

Block 2

5 8 9 12

Block 3

6 7 10 11

Block 4

The above is a single unrandomized replicate of an incomplete block design
with t = 16 and k = 4. Several replicates of this basic design can be repeated
depending on whether we want complete or partial confounding. In each case,
however, apart from randomization of treatments within blocks and blocks
within replicates, same group of treatments occur together in every block. We
consider in the next section, balanced incomplete block design where pairs
of treatments occur together the same number of times in the experiment.
Indeed, we shall focus only on balanced designs in this chapter.

In general, suppose we have b blocks of k plots each, and t treatments each
replicated r times, then

N = bk = tr. (16.1)

The design is incomplete because

1. k < t. That is, the number of plots in each block is less than the number
of treatments.

2. No treatment occurs more than once in any block.

For any two distinct treatments i and j, the concurrence λij of i and j is the
number of blocks which contain both i and j. As an example, consider the case
of a design with t = 6, r = 2, b = 4, and k = 3. Then, the four blocks are:

A B C

Block 1

B D F

Block 2

A D E

Block 3

C E F

Block 4

Here, λ12 = λ13 = 1 and λ16 = 0. Thus, in general, for unbalanced incomplete
block design, λij are not all equal.
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16.2 Balanced Incomplete Block Design

A balanced incomplete block (BIB) design is an incomplete block design in
which every pair of treatments occurs the same number of times in the ex-
periment. This guarantees equal precision on all pairwise comparisons among
treatments. The BIB design has the following properties:

1. Each block contains the same number (= k) of treatments. k is the block
size.

2. Each treatment occurs the same number of times (= r) in the entire
experiment. Here, r is the number of replications.

3. Each pair of treatments occurs the same number of times λ in each block
and appears as many times as any other pair of treatments in the design.
That is, λij = λ for all i and j.

Notation

• t = the number of treatments
• b = the number of blocks in the experiment
• k = the number of units/plots per block, that is, the block size
• r = the number of replicates of a given treatment throughout the

experiment

A BIB design is therefore specified by its parameters (t, b, r, k, λ). For a BIB
design with parameters t and k, then parameters b, r, and λ are obtained
from the following expressions.

b =
t!

k!(t − k)!
(16.2a)

r =
(t − 1)!

(k − 1)!(t − k)!
(16.2b)

λ =
(t − 2)!

(k − 2)!(t − k)!
(16.2c)

where a! is read “a” factorial.
If there is a common factor between b, r, and λ, they will be divided by this
common factor to obtain a reduced design. As an example, consider the case
when we have t = 6 treatments in blocks of k = 3 units. Then, we would
have

b =
6!

3!3!
= 20

r =
5!

2!3!
= 10

λ =
4!

1!3!
= 4
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b, r, and λ have 2 as a common factor; hence, a reduced model can be
obtained with parameters b = 10, r = 5, and λ = 2. That is, we have
BIB design with parameters (6, 10, 5, 3, 2). In general, for a BIB design with
parameters (t, b, r, k, λ), the following relationship holds (from 16.2b, c).

tr = bk = N, the number of observations in the experiment

λ =
r(k − 1)

t − 1
.

Most often, a BIB design (usually designated as BIBD) is commonly written
as simply (t, k, λ), where b and r are given in terms of t, k, and λ by (also
from 16.2b, c)

b =
t(t − 1)
k(k − 1)

r =
λ(t − 1)
k − 1

.

16.3 Statistical Model for a Balanced Incomplete
Block (BIB) Design

yij = μ + ti + bj + eij (16.3)

where

yij ∼ is the i-th observation in the j-th block

μ ∼ grand mean

ti ∼ effect of the i-th treatment

bj ∼ is the effect of the j-th block

eij ∼ is the NID(0, σ2) random error term

Analysis

The analysis of a BIB design is based on obtaining the following SS:

SSTotal =
∑∑

y2
ij −

y2
++

N
that is,

SST = SSTrt(adjusted) + SSblocks + SSE
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Because each treatment is represented in a different set of r blocks, the
adjustment is necessary to extract the treatment effect from blocks.

Blocks SS =
1
k

∑
y2
+j −

y2
++

N
. (16.4)

The adjusted treatment SS

SSTrt(adj.) =
k

λt

t∑

i=1

Q2
i (16.5)

where Qi is the adjusted total for the ith treatment, where

Qi = yi+ − 1
k

k∑

j=1

nijy+j (16.6)

with

nij =

{
1 if treatment i appears in block j

0 if treatment i does not appear in block j

Note that
∑

Qi = 0.

Example 16.3.1

Consider an experiment with t = 4 treatments, but only 3 units/block are
available. Such an experiment could be an animal experiment involving four
feeds but, while we have four, three, five, and four litters from each of four
mothers. It would make sense to use only three litters from each mother
(for orthogonality point of few). Hence, we are guaranteed of homogeneity
between litters from the same mother and below is the result of weights of
the animals from the experiment. The data for this example are presented in
Table 16.1.

Table 16.1 Data for this example

Blocks

Trt 1 2 3 4 Total

1 73 74 – 71 218
2 – 75 67 72 214
3 73 75 68 – 216
4 75 – 72 75 222

Total 221 224 207 218 870

In this experiment, t = 4, b = 4, k = 3, r = 3, and λ = 2 = 3(2)/3 and
N = bk = tr = 12. That is, the experiment used a total of 12 experimental
units, hence

Total SS = 732 + 742 + · · · + 752 − 8702

12
= 81.000
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Blocks SS =
2212

3
+

2242

3
+

2072

3
+

2182

3
− 8702

12
= 55.000.

To obtain the adjusted treatments SS, first we note that:

y1+ = 218, y2+ = 214, y3+ = 216, y4+ = 222

y+1 = 221, y+2 = 224, y+3 = 207, y+4 = 218

Hence,

Q1 = 218 − 1
3
(n11y+1 + n12y+2 + n14y+4)

= 218 − 1
3
(221 + 224 + 218)

= −3

Since treatment (trt 1) appears in blocks 1, 2, and 4 only, hence, n1j = 1 for
j = 1, 2, 4 and 0 for j = 3. Similarly,

Q2 = 214 − 1
3
(224 + 207 + 218) = −2.3333

Q3 = 216 − 1
3
(221 + 224 + 207) = −1.3333

Q4 = 222 − 1
3
(221 + 207 + 218) = 6.6666

Trt SSadj. =
k

λt

t∑

i=1

Q2
i

=
3

2 × 4
[
(−3)2 + (−2.3333)2 + (−1.3333)2 + (6.6666)2

]

= (0.375)(60.6655)

= 22.7496

The analysis of variance table is therefore given by:

Source d.f. SS MS F

Blocks 3 55.0000 18.3333
Trtadj. 3 22.7496 7.5832 11.665
Error 5 3.2504 0.6501

Total 11 81.0000

Parameter estimates of the treatment effects are computed from:

t̂i =
kQi

λt
(16.7)
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Thus,

t̂1 =
−3 × 3
2 × 4

= −1.125

t̂2 =
−2.3333 × 3

2 × 4
= −0.875

t̂3 =
−1.3333 × 3

2 × 4
= −0.500

t̂4 =
6.6666 × 3

2 × 4
= 2.500

We present below the MINITAB implementation of the above analysis.

MTB > SET C1
DATA> (1:4)3
DATA> END
MTB > SET C2
DATA> 1 2 4 2 3 4
DATA> 1 2 3 1 3 4
DATA> END
MTB > SET C3
DATA> 73 74 71 75 67 72
DATA> 73 75 68 75 72 75
DATA> END
MTB > NAME C1 ’TRT’ C2 ’BLOCKS’ C3 ’Y’

MTB > Print ’TRT’ ’BLOCKS’ ’Y’.

Data Display

Row TRT BLOCKS Y

1 1 1 73
2 1 2 74
3 1 4 71
4 2 2 75
5 2 3 67
6 2 4 72
7 3 1 73
8 3 2 75
9 3 3 68
10 4 1 75
11 4 3 72
12 4 4 75

MTB > GLM ’Y’ = BLOCKS TRT;
SUBC> Brief 1 ;
SUBC> Means TRT.

General Linear Model: Y versus BLOCKS, TRT

Factor Type Levels Values
BLOCKS fixed 4 1 2 3 4
TRT fixed 4 1 2 3 4
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Tukey Simultaneous Tests
Response Variable Y
All Pairwise Comparisons among Levels of TRT

TRT = 1 subtracted from:

Level Difference SE of Adjusted
TRT of Means Difference T-Value P-Value
2 0.2500 0.6982 0.3581 0.9825
3 0.6250 0.6982 0.8951 0.8085
4 3.6250 0.6982 5.1918 0.0130

TRT = 2 subtracted from:

Level Difference SE of Adjusted
TRT of Means Difference T-Value P-Value

Level Difference SE of Adjusted
TRT of Means Difference T-Value P-Value

3 0.3750 0.6982 0.5371 0.9462
4 3.3750 0.6982 4.8338 0.0175

TRT = 3 subtracted from:

4 3.000 0.6982 4.297 0.0281

Analysis of Variance for Y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
BLOCKS 3 55.000 66.083 22.028 33.89 0.001
TRT 3 22.750 22.750 7.583 11.67 0.011
Error 5 3.250 3.250 0.650
Total 11 81.000

Least Squares Means for Y

TRT Mean SE Mean
1 71.38 0.4868
2 71.63 0.4868
3 72.00 0.4868
4 75.00 0.4868

From the p value of 0.011 given in the MINITAB output, we can conclude that
there are significant differences in the adjusted means of the four treatments.
The standard error of difference between two treatment means is

√
2kS2

λt
=
√

2 × 3 × 0.6501/2 × 4 = 0.6983

and the standard error of a treatment means is
√

kS2

λt
=
√

3 × 0.6501/2 × 4 = 0.4938.
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Based on Tukey’s test, we would say that treatments 1, 2, and 3 are not sig-
nificantly different but each of them is significantly different from treatment
4, which has the highest least squares treatment mean of 75.0. This result is
displayed below.

4 3 2 1

16.4 Constructing a Balanced Incomplete Block
(BIB) Design

For our example involving t = 6, k = 3, r = 5, b = 10, and λ = 2 we can
construct a BIB design for this reduced design with the following layout.

A B E
Block 1

A B F
Block 2

A C D
Block 3

A C F
Block 4

A D E
Block 5

B C D
Block 6

B C E
Block 7

B D F
Block 8

C E F
Block 9

D E F
Block 10

It is noteworthy to observe here that a BIB design may not exist for some
combinations of the five parameters mentioned above. Further, construction
of a BIB design can be very cumbersome and may not easily be achieved.
Fortunately, tables of balanced incomplete block designs have been presented
in Cochran and Cox (1957), Davies (1957), and Fisher and Yates (1953). For
a given set of parameters, the chosen design must be followed by randomly
assigning the treatments to blocks and using a separate randomization for
each block.

In the event that we decide to use the unreduced BIB design for t = 6
treatments in blocks of three units, then we would require b = 20, r = 10,
and λ = 4. Thus, a BIB design with (t, k, λ) = (6, 3, 4) is displayed below.
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A B C
Block 1

D E F
Block 2

A B D
Block 3

C E F
Block 4

A B E
Block 5

C D F
Block 6

A B F
Block 7

C D E
Block 8

A C D
Block 9

B E F
Block 10

A C E
Block 11

B D F
Block 12

A C F
Block 13

B D E
Block 14

A D E
Block 15

B C F
Block 16

A D F
Block 17

B C E
Block 18

A E F
Block 19

B C D
Block 20

Again, randomization of treatments within blocks and of blocks must be
carried out. In the above layout, blocks 1 and 2 can be considered as first
replicate, blocks (3, 4) as second replicate,· · · ,(19, 20) blocks as the tenth
replicate. Notice that each replicate contains all the treatments of interest.

16.5 Efficiency of Incomplete Block Designs

The efficiency of one design relative to another design is measured by the ratio
of the variances for comparing two treatment means in both designs. Thus,
the variance for two treatment means in a randomized complete block design
(RCBD) is 2σ2

rcb/r. Similarly, the corresponding variance in a BIB design is
2kσ2

bib/λt. Thus BIB and RCBD have the same number of treatments and
replications, then, the efficiency of the BIB design relative to the RCBD is
given by

Relative efficiency =
(2σ2

rcb/r)
2kσ2

bib/λt
=

σ2
rcb

σ2
bib

× λt

rk
. (16.8)

The quantity E = λt
rk in expression (16.8) is often referred to as the effi-

ciency factor. Thus, a BIB design is more precise for comparing two treatment
means than the RCBD if

σ2
rcb

σ2
bib

<
λt

rk
. (16.9)

Thus, for a BIB design with t = 6, r = 5, k = 3, b = 10, and λ = 2, the
efficiency factor would be

2(6)
5(3)

= 0.8.



16.6 Lattice Design 649

That is, σ2
bib has to be about 20 % smaller than σ2

rcb for the BIB design to be
as precise as the RCBD with the same number of treatments and replications.
Thus, the aim of a BIB design would be to reduce σ2

bib, and thus increase the
precision for comparing two treatment means. A good BIB design, therefore,
is one such that σ2

bib would be reduced or as small as possible relative to the
σ2

rcb such that the inequality in (16.9) would be achieved.

16.6 Lattice Design

Sometimes, the number of treatments t can be very large in an experiment.
Most often, experiments in plant breeding usually call for a large number of
treatments. In such cases, a completely randomized design of t units would
not be suitable because of heterogeneous within-blocks variations, which
might result in inconsistent parameter estimates. As observed in the pre-
vious section, we could have the treatments arranged in balanced incomplete
blocks.

A design which has the characteristics that the number of treatments
must be a perfect square, that is, t = k2, and that the block sizes must be k,
the square root of t. Further, the number of replications is (k + 1), that is,
r = (k+1) is called a balanced lattice design. Thus, the number of treatments
must be 9, 16, 25, 36, 49, 81, etc. We shall discuss the randomization and
layout of this design in the next section.

16.6.1 Construction of Lattice Design

For t = k2 treatments, there would be (k + 1) replicates, with each replicate
consisting of k blocks and each block containing k units. The construction of
lattice designs is based on the theory of orthogonal Latin squares. Suppose
we have t = 16 treatments. This calls for k =

√
16 = 4 Latin squares, and

there would be (k − 1) = 3 orthogonal Latin squares, except for k = 6, 10,
and 12 since these are not perfect squares. A typical layout for t = 16 is
presented below:

A B C D
B A D C
C D A B
D C B A

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

α β γ δ
δ γ β α
β α δ γ
γ δ α β

For k = 4, we would need to generate k(k+1) = 20 blocks of size 4, thus, each
replication will be divided into k incomplete blocks of size k. In our example,
there would be four incomplete blocks each containing four experimental
units. To construct these 20 blocks, first we start with the Latin letters. Let
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the treatments be designated 1, 2, · · · , 16. Thus, filling in the 4 × 4 cells with
these treatments, we have:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

From the four rows of the above layout, we generate blocks 1–4 as follows:

Block 1 1 2 3 4

Block 2 5 6 7 8

Block 3 9 10 11 12

Block 4 13 14 15 16

From the columns, we can also generate blocks 5–8, viz.:

Block 5 1 5 9 13

Block 6 2 6 10 14

Block 7 3 7 11 15

Block 8 4 8 12 16

To generate blocks 9–12, we need to superimpose the treatments numbered
on the first orthogonal square (Latin letters) and we would, thus, have

A 1 B 2 C 3 D 4

B 5 A 6 D 7 C 8

C 9 D 10 A 11 B 12

D 13 C 14 B 15 A 16

Now generate blocks 9–12 with the treatments, viz.:

Block 9 1 6 11 16 for treatment appearing with letter A

Block 10 2 5 12 15 for treatment appearing with letter B

Block 12 4 7 10 13 for treatment appearing with letter D

Block 11 3 8 9 14 for treatment appearing with letter C
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To generate blocks 13–16, next we superimpose the treatments on the
numerals in the second orthogonal 4 × 4 square. This leads to

11 22 33 44

35 46 17 28

49 310 211 112

213 114 415 316

Again, extracting the treatments to form blocks 13–16, we have

Block 13 1 7 12 14 for treatment appearing with numeral 1

Block 14 2 8 11 13 for treatment appearing with numeral 2

Block 15 3 5 10 16 for treatment appearing with numeral 3

Block 16 4 6 9 15 for treatment appearing with numeral 4

Finally, to generate blocks 17–20, again from the third orthogonal square
(Greek letters), we can superimpose the treatments, again leading to:

α 1 β 2 γ 3 δ 4

δ 5 γ 6 β 7 α 8

β 9 α 10 δ 11 γ 12

γ 13 δ 14 α 15 β 16

Extracting the treatments to form blocks 17–20, we have

Block 17 1 8 10 15 for treatment appearing with α

Block 18 2 7 9 16 for treatment appearing with β

Block 19 3 6 12 13 for treatment appearing with γ

Block 20 4 5 11 14 for treatment appearing with δ

If we were to randomize the above layout, then the replicates, blocks, and
treatments may look like the arrangement in Table 16.2. Notice that replicate
I, for instance, represents the arrangement based on the first orthogonal
square, and further, the treatments have been randomized within each block,
and the blocks have also been similarly randomized within replicate. That is,
this is a balanced lattice design with parameters t = 16, k = 4, r = 5, b = 20,
and λ = 1.
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Table 16.2 Balanced lattice design with t = 16, k = 4, r = 5, b = 20, and λ = 1

Block Rep. I Block Rep. II
(1) 11 1 16 6 (5) 3 13 6 12
(2) 7 4 10 13 (6) 11 4 14 5
(3) 2 15 12 5 (7) 10 1 15 8
(4) 9 8 14 3 (8) 9 16 7 2

Block Rep. III Block Rep. IV
(9) 6 8 7 5 (13) 6 14 10 2

(10) 12 10 9 11 (14) 16 8 4 12
(11) 3 1 4 2 (15) 9 5 13 1
(12) 16 14 15 13 (16) 11 7 15 3

Block Rep. V
(17) 5 16 10 3
(18) 14 12 1 7
(19) 9 4 15 6
(20) 11 2 13 8

We present in Table 16.3 the structure of the analysis of variance table for
the balanced lattice design, viz.:

Table 16.3 Structure of ANOVA in balanced lattice design

Source d.f.

Replication k
Treatments (unadj.) k2 − 1

Block (adj.) k2 − 1
Intrablock error (k − 1)(k2 − 1)

Treatments (adj.) k2 − 2
Effective error (k − 1)(k2 − 1)

Total (k + 1)k2 − 1

We may observe here that the balanced lattice design is balanced incomplete
block design (BIBD) with, t = k2, b = k(k + 1), r = k + 1, and λ = 1.

Example 16.6.1

Plant breeders are interested in determining the spikelet initiation differences
among nine winter wheat cultivars. The number of spikelets per plant from
a field experiment which followed a 3 × 3 balanced lattice design with four
replications is given below. Each cultivar is given a treatment number and
they are: Turkey (1), Pawnee (2), Scout (3), Larned (4), Newton (5), Hawk
(6), Vona (7), HW (8), and Bounty 100 (9). The collected data from each
replicate are presented below:
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Block Rep I Block Rep II
1 18.1 (8) 18.4 (6) 17.6 (1) 4 18.2 (8) 20.2 (7) 16.5 (9)
2 16.5 (3) 18.7 (5) 17.9 (7) 5 15.2 (3) 19.9 (2) 17.8 (1)
3 16.0 (4) 18.0 (2) 16.0 (9) 6 17.8 (6) 18.1 (5) 16.4 (4)

Block Rep III Block Rep IV
7 17.1 (8) 18.4 (5) 18.6 (2)
8 16.2 (4) 17.7 (7) 16.9 (1)
9 16.5 (3) 18.9 (6) 16.2 (9)

10 16.2 (3) 15.9 (4) 18.5 (8)
11 17.2 (6) 18.9 (2) 17.6 (7)
12 15.4 (9) 18.9 (5) 17.4 (1)

Analysis

1. Calculate block totals (B), replicate totals (R), treatment totals (T), and
the grand total (G)

Blocks Totals ( B j)
1 2 3 4 5 6 7 8 9 10 11 12

54.1 53.1 50.0 54.9 52.9 52.3 54.1 50.8 51.6 50.6 53.7 51.7

Reps. Totals
1 2 3 4

157.2 160.1 156.5 156.0

and,

Treatment Totals ( Tj ) Grand
1 2 3 4 5 6 7 8 9 Total (G)

69.7 75.4 64.4 64.5 74.1 72.3 73.4 71.9 64.1 629.8

2. Next, we compute the block totals over all blocks B
′

j in which a particular
treatment appears. For example,

B
′

1 = 54.1 + 52.9 + 50.8 + 51.7 = 209.5 (these are from blocks 1, 5, 8, and 12)

... =
...

...
...

B
′

9 = 50.0 + 54.9 + 51.6 + 51.7 = 208.2 (these are from blocks 3, 4, 9, and 12)

1. Now calculate

Qj = kTj − (k + 1)B
′

j + G, that is,

Qj = 3Tj − 4B
′

j + G.

For instance,

Q1 = (3 × 69.7) − (4 × 209.5) + 629.8 = 0.9.
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Similar calculations lead to results presented in the next table.

trt (j) Tj B
′

j Qj

1 69.7 209.5 0.9
2 75.4 210.7 13.2
3 64.4 208.2 −9.8
4 64.5 203.7 8.5
5 74.1 211.2 7.3
6 72.3 211.7 −0.10
7 73.4 212.5 0.0
8 71.9 213.7 −9.3
9 64.1 208.2 −10.7

Total 629.8 1889.40 0

2. The correction factor (CF) is computed as:

CF =
(629.8)2

k2(k + 1)
=

(629.8)2

36
= 11, 018.0011

Total SS = 18.12 + · · · + 17.42 − CF = 52.7189

Replicate SS =
157.22

9
+ · · · +

1562

9
− CF = 1.1211

Treatments (unadj.) SS =
69.72

4
+ · · · +

64.12

4
− CF = 40.7339

and,

Blocks (adj.) SS =

∑
Q2

j

k3(k + 1)
− C.F. =

0.92

108
+ · · · +

10.72

108
− CF

= 5.5335

Hence,

Intrablocks Error SS = Total SS−Reps SS −Trt SS−Blocks (adj.) SS

= 5.3304.

The above leads to the analysis of variance table based on intrablock
analysis.

Source d.f. SS MS F

Reps 3 1.1211
Treatments (unadj.) 8 40.7339 5.0917 7.499

Blocks (adj.) 8 5.5335 0.6917
Intrablock 16 5.3304 0.3332

Total 35 52.7189
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3. Since the intrablock mean square is 0.3332, which is less than the adjusted
block mean square of 0.6917, it is, therefore, imperative to compute ad-
justed treatment totals, and hence, adjusted treatment means. To do this,
we compute the following:

T
′

j = Tj + μQj (16.10)

where

μ =
Block(adj.) MS − Intrablock Error MS

k2[Block(adj.) MS]
=

Eb − Ee

k2 Eb
(16.11)

where Eb and Ee are the adjusted block and intrablock error mean squares,
respectively. Thus, for our data,

μ =
0.6917 − 0.3332

9(0.6917)
= 0.0576

and the adjusted treatment totals, say for treatment 1, is computed as

T
′

1 = 69.7 + 0.0576(0.9) = 69.7518, hence adj. T̄ ′
adj = 17.4380.

Continuing with the calculations, we have the following adjusted treatment
totals and means:

Treatment (j) Totals (adj.) Means (adj.)

1 69.7518 17.4380
2 76.1604 19.0401
3 63.8356 15.9589
4 64.9896 16.2474
5 74.5204 18.6301
6 72.2944 18.0736
7 73.4000 18.3500
8 71.3644 17.8411
9 63.4836 15.8709

We can now calculate the adjusted Treatment SS as

Treatmentadj. SS =
1

(k + 1)

∑
T

′2
j − C

Treatments (adj.) SS =
69.75182

4
+ · · · +

63.48362

4
− G2

36
= 45.6808

Treatment (adj.) MS =
45.6808

8
= 5.5335

and

The effective error MS = (intrablock error MS) (1 + kμ) = 0.3908
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Hence,

F =
Treatment (adj.) MS
Effective error MS

=
5.5335
0.3908

= 14.611.

The computed F is highly significant. If the intrablock error MS had been
greater than the block (adj.) MS, the value of μ computed earlier would have
been negative and would, therefore, be assumed to be zero. In this case, the
adjustment analysis above would not be necessary and would have based our
F test on the first ANOVA table, that was based on unadjusted treatment
SS. We present a MINITAB analysis for the data. The results obtained agree
with those obtained from our calculations.

MTB > GLM ’y’ = Rep block( Rep) trt;
SUBC> Brief 2 ;
SUBC> Means trt;
SUBC> Pairwise trt;
SUBC> Tukey;
SUBC> NoTest;
SUBC> NoCI.

Rep     fixed  4   1, 2, 3, 4

block(Rep) fixed    12 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3

trt     fixed  9 1, 2, 3, 4, 5, 6, 7, 8, 9

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Rep 3 1.1211 1.1211 0.3737 1.12 0.370
block(Rep) 8 7.9044 5.5335 0.6917 2.08 0.102
trt 8 38.3630 38.3630 4.7954 14.39 0.000
Error 16 5.3304 5.3304 0.3331
Total 35 52.7189

S = 0.577190 R-Sq = 89.89% R-Sq(adj) = 77.88%

Least Squares Means for y

trt Mean SE Mean
1 17.45 0.3286
2 19.22 0.3286
3 15.83 0.3286
4 16.36 0.3286
5 18.73 0.3286
6 18.07 0.3286
7 18.35 0.3286
8 17.72 0.3286
9 15.73 0.3286

Grouping Information Using Tukey Method and 95.0% Confidence

General Linear Model: y versus Rep, trt, block

Factor Type Levels Values
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trt N Mean Grouping
2 4 19.22 A
5 4 18.73 A B
7 4 18.35 A B
6 4 18.07 A B
8 4 17.72 A B C
1 4 17.45 B C D
4 4 16.36 C D E
3 4 15.83 D E
9 4 15.73 E

Means that do not share a letter are significantly different.

16.7 Relative Efficiency for Lattice Design

The relative efficiency of a balanced lattice design over that of the randomized
complete block design (RCBD) is given by the following expression Cochran
and Cox (1957),

R.E. =
Pooled Mean Square

Effective error Mean Square
× 100 (16.12)

where, the effective error mean square, designated as, E
′

e is computed as

E
′

e = Ee(1 + kμ) = 0.3332(1 + 3 × 0.0576) = 0.3907

and the pooled mean square is obtained by adding the adjusted blocks SS
with the intrablock SS and dividing by the appropriate degree of freedom of
k(k2 − 1). Thus, in our case, the pooled MS is computed as

Epooled =
5.5335 + 5.3304

24
=

10.8639
24

= 0.4527

Hence, the relative efficiency (R.E.) in this example equals
0.4527
0.3907

× 100 =

115.9 %.
We see that the experimental precision has been increased by 15.9 % over
that of the randomized complete block design.

Cochran and Cox (1957) listed lattice designs up to t = 144 treatments. We
may also note here that a lattice design may also be used when the number
of treatments is not a perfect square. For instance, if we have 14 treatments
in an experiment, then two of the treatments might be included twice to
make t = 16. Some of the textbooks earlier mentioned in this chapter have
extensive discussions on both balanced and partially balanced lattice designs
and similar incomplete block designs.
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16.8 Exercises

1. Construct a balanced lattice design with t = 9.
2. An incomplete block design consists of the following arrangement of blocks

(1, 2, 3, 4, 5) and treatments (A, B, C, D, E).

Block 1 (B, C, D, E)
2 (A, B, D, E)
3 (A, C, D, E)
4 (A, B, C, D)
5 (A, B, C, E)

(a) What are the design parameters t, r, k, and b?
(b) Verify that the design is balanced.

3. A horticulturalist studied the germination of tomato seed with four differ-
ent temperatures (25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C) in a balanced incomplete
block design because there were only two growth chambers available for
the study. Each run of the experiment was an incomplete block consist-
ing of the two growth chambers as the experimental units (k = 2). Two
experimental temperatures were randomly assigned to the chambers for
each run. The data for the experiment are as presented below and give
the germination rates of the tomato seed.

Run 25 ◦C 30 ◦C 35 ◦C 40 ◦C

1 24.65 – – 1.34
2 – 24.38 – 2.24
3 29.17 21.25 – –
4 – – 5.90 1.83
5 28.90 – 18.27 –
6 25.53 8.42 –

Source: Robert Kuehl (1998)

(a) How many times did each treatment pair occur together in the same
block?

(b) What is the efficiency factor for this design?
(c) Analyze the data and obtain the standard errors between two levels of

temperatures.
(d) Partition the treatment SS into its components.
(e) What degree of polynomial would you recommend?

4. An experiment to examine the preferences of cabbage root flies for six
different substances on which to lay their eggs involved the use of ten
cages of flies with three substances available in each cage. The number
of eggs laid on the various substances was as shown in the table below
(Source: Mead and Curnow 1983).
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Substances

Cage 1 2 3 4 5 6

1 452 69 83 – – –
2 802 143 – 53 – –
3 699 – 32 – 4 –
4 1207 – – 19 – 32
5 958 – – – 8 8
6 – 328 147 – – 53
7 – 314 – 264 223 –
8 – 158 – – 36 5
9 – – 117 14 115 –
10 – – 23 16 – 2

(a) How many times did each treatment pair occur together in the same
block?

(b) What is the efficiency factor for this design?
(c) Analyze the data after a suitable transformation and obtain the

standard errors between two levels of substances.



Chapter 17
Quantal Bioassay

17.1 Introduction

An assay can be described as the comparative analysis of the estimation of
the strength of a drug on animals, animal tissues, etc. with that of a standard
drug. An indirect qualitative assay considers groups of animals or experimen-
tal units subjected to different levels of some stimulus and the proportions
of animals responding to the stimulus is observed and this proportion will be
related to the level of the stimulus. A quantal bioassay involves studying the
relationship between dosage and response proportions (or percentages). They
are usually characterized by studies in which a dose of a drug is applied to n
experimental units and r of them are observed to respond to the drug dose
and hence n − r of them do not respond. The main objective of a quantal
bioassay is to determine what level of the dose would be necessary to bring
about a response in a certain percentage of the experimental units in the
population. For any individual experimental unit (say, an animal) there is a
threshold below which the animal will not respond to the stimulus. In such
cases, the amount of the stimulus required to bring about a minimal (toler-
ance) response in the animal is often referred to as the individual effective
dose (IED). Usually, we are most interested in the level of the stimulus that
would result in 50 % response in a given sample of subjects. We thus have
the following classifications of this measure:

• LD50: median lethal dose
• ED50: median effective dose
• LC50: median lethal concentration and
• EC50: median effective concentration
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The model that will be employed here is the nonlinear logistic regression
model. The logistic model is based on the response variable having a binary
outcome, yes or no; alive or dead, cured or not cured, etc. For instance, in a
bioassay experiment, an insect is classified upon the application of treatment
as either dead or alive. If pi is the proportion of insects killed at treatment
level i (usually, dosage level), then, the linear logistic model assumes the form

pi =
eβ0+β1xi

1 + eβ0+β1xi
. (17.1)

The above leads to the logit model

ln
(

pi

1 − pi

)

= β0 + β1xi. (17.2)

The expression in (17.2) can sometimes be written as

pi

1 − pi
= eβ0+β1xi (17.3)

where

• e = 2.71828, is the base of the natural logarithm.
• pi

1 − pi
is the odds ratio.

• ln
(

pi

1 − pi

)
is the log odds ratio or simply the logit, and

• β0 and β1 are the parameters of the model to be estimated.

The logistic regression in (17.2) does not assume normality of error terms or
homoscedastic of error variances, and in Fig. 17.1, we have the graphs of the
logistic function

pi =
1

1 + e−(β0+β1xi)

for fixed β1 = 0.1, varying β0 = −2.5,−1.5,−1.0, 2.0 values and values of x
ranging from −40 to 80. That is, for β0 taking values {−2.5,−1.5,−1.0, 2.0},
we plot the graph of pi against x for a constant value of β0 at 0.1. The plot
is presented in Fig. 17.1, where

pi =
1

1 + e−(β0+0.1xi)
; x = −40, . . . , 80.
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Fig. 17.1 Plot of logistic function

Let us illustrate our discussion with the following example.

Example 17.1.1: A Quantal Assay Example

The data in Table 17.1 give the effect of different concentrations of nicotine
sulfate in 10 % saponin solution in Drosophila melanogaster.

We usually employ the logarithm of the xi, and in this case, we chose to
use log (xi), that is, the log to base 10 of the doses. The table below gives
the relevant initial calculations for the data in Table 17.1. While I do not
for a moment think that the linear logistic moment should be fitted by what
follows in this section, it is nevertheless incorporated here so that students
can have a proper understanding of what is really going on from the use of
statistical packages.
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Table 17.1 Effect of different concentrations of nicotine sulfate on Drosophila
melanogaster

Nicotine sulfate Number Number of
(g/100 cc) killed insects

dose ri ni

0.10 23 137
0.30 95 152
0.50 119 146
0.70 141 154
0.95 144 152

The mortality rates are computed as pi = ri/ni. Further, we need to calculate
the following:

log-dose xi = log10 (dose)

logit yi = loge

(
pi

1 − pi

)

weighting coefficients wi = ni pi (1 − pi).

Next, we compute the following:
∑

wi,
∑

wixi,
∑

wiyi

∑
wixiyi,

∑
wix

2
i

and

Sxy =
∑

wixiyi − (
∑

wixi)(
∑

wiyi)∑
wi

Sxx =
∑

wix
2
i − (
∑

wixi)2∑
wi

Hence,

β̂1 =
Sxy

Sxx

β̂0 =
∑

wiyi∑
wi

− β̂1

∑
wixi∑
wi

. (17.4)

An initial estimate of the linear logistic model can be found from solving
the equations in (17.5).

β̂0

∑
w + β̂1

∑
wx =
∑

wy (17.5a)

β̂1

∑
wx + β̂1

∑
wx2 =

∑
wxy. (17.5b)
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Thus, substituting the summary statistics from Table 17.2 into the equations
in (17.5), we have

96.252 β̂0 − 46.404 β̂1 = 70.485

−46.404 β̂0 + 31.162 β̂1 = 6.4105.

Table 17.2 Initial summary statistics for the data in Table 17.1

ni xi pi yi wi wx wy wxy wx2

137 −1.000 0.1679 −1.601 19.1387 −19.1387 −30.6354 30.6354 19.1387
152 −0.523 0.6250 0.511 35.6250 −18.6276 18.1982 −9.5154 9.7400
146 −0.301 0.8151 1.483 22.0068 −6.6247 32.6425 −9.8264 1.9942
154 −0.155 0.9156 2.389 11.9026 −1.8437 28.3735 −4.3951 0.2856
152 −0.022 0.9474 2.883 7.5789 −0.1688 21.9060 −0.4880 0.0038

Total 96.2520 −46.4040 70.485 6.4105 31.162

Solving the above, we have initial estimates of the parameters as

β̂0 = 2.9477 and β̂1 = 4.5952.

These initial estimates lead to a revised estimated logit ŷ1i and p̂1i in
Table 17.3. The subscript 1 refers to first-step of the computation.

Table 17.3 Step 1 summary statistics for the data in Table 17.1

ni xi p̂1i ŷ1i wi wx wy wxy wx2

137 −1.000 0.1614 −1.6007 18.5473 −18.5473 −29.6888 29.6888 18.5473
152 −0.523 0.6330 0.5450 35.3126 −18.4642 18.0386 −9.4320 9.6545
146 −0.301 0.8270 1.5644 20.8898 −6.2885 30.9856 −9.3276 1.8930
154 −0.155 0.9034 2.2359 13.4360 −2.0813 32.0289 −4.9613 0.3224
152 −0.022 0.9451 2.8453 7.8898 −0.1758 22.8044 −0.5080 0.0039

Total 96.076 −45.557 74.1690 5.4599 30.4210

which again leads to the equations

96.076 β̂0 − 45.557 β̂1 = 74.169

−45.557 β̂0 + 30.421 β̂1 = 5.4599

Solving the above, we have second step estimates of the parameters as

β̂0 = 2.9570 and β̂1 = 4.6080.

Again, the corresponding estimated logits and proportions, ŷ2i and p̂2i

respectively, at the second step are presented in Table 17.4.



666 17 Quantal Bioassay

Table 17.4 Step 2 summary statistics for the data in Table 17.1

ni xi p2i ŷ2i wi wx wy wxy wx2

137 −1.000 0.1610 −1.6007 18.5034 −18.5034 −29.6185 29.6185 18.5034
152 −0.523 0.6336 0.5108 35.2881 −18.4514 18.0260 −9.4254 9.6478
146 −0.301 0.8278 1.4833 20.8154 −6.2661 30.8753 −9.2944 1.8863
154 −0.155 0.9041 2.3838 13.3568 −2.0690 31.8402 −4.9321 0.3205
152 −0.022 0.9455 2.8904 7.8267 −0.1744 22.6220 −0.5039 0.0039

Total 95.790 −45.464 73.745 5.4626 30.362

which again leads to the equations

95.790 β̂0 − 45.464 β̂1 = 73.745

−45.745 β̂0 + 30.362 β̂1 = 5.4626.

The above can again be repeated. We obtained

β̂0 = 2.9799 and β̂1 = 4.6364.

This process continues until we have convergence (that is, when the estimated
values between two successive steps are very very close). The above approach
is sometimes referred to as the weighted least squares method for fitting the
desired model.

17.2 The Logistic Regression Approach

Let pi be the probability that an insect will be killed with concentration
xi. The linear logistic model fits the logit of pi, namely, ln

(
pi

1−pi

)
as the

dependent function, leading to the model

ln
(

pi

1 − pi

)

= β0 + β1 log10 xi, that is,

ln
(

pi

1 − pi

)

= β0 + β1 dosei

where dosei is the logarithm to base 10 of xi, the concentrations in the ith
group. In Fig. 17.2, we present the plot of the logit of pi for values of p
ranging from 0 ≤ p ≤ 1.
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Fig. 17.2 Logit transformation plot

A MINITAB analysis of the data in Table 17.1 which utilizes the linear logistic
regression provides the following results:

MTB > read c1-c3
DATA> .10 23 137
DATA> .3 95 152
DATA> .5 119 146
DATA> .7 141 154
DATA> .95 144 152
DATA> end

MTB > Let c4 = LOGT(c1)

MTB > Print ’dose’-’ldose’.

Data Display

Row dose r n ldose

1 0.10 23 137 -1.00000
2 0.30 95 152 -0.52288
3 0.50 119 146 -0.30103
4 0.70 141 154 -0.15490
5 0.95 144 152 -0.02228
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Group
Value 1 2 3 4 5 Total
Success
Obs 23 95 119 141 144 522
Exp 22.1 96.3 120.8 139.2 143.7

Failure
Obs 114 57 27 13 8 219
Exp 114.9 55.7 25.2 14.8 8.3

Total 137 152 146 154 152 741

Measures of Association:
(Between the Response Variable and Predicted Probabilities)

Pairs Number Percent Summary Measures
Concordant 89481 78.3% Somers’ D 0.69
Discordant 10602 9.3% Goodman-Kruskal Gamma 0.79
Ties 14235 12.5% Kendall’s Tau-a 0.29
Total 114318 100.0%

MTB >

MTB > BLogistic ’r’ ’n’ = ldose;
SUBC> ST;
SUBC> Logit;
SUBC> Brief 2.

Binary Logistic Regression: r, n versus ldose

Link Function: Logit

Response Information

Logistic Regression Table

Variable Value Count
r Success

Failure
n Total

522
219
741

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 2.9519 0.1897 15.56 0.000
ldose 4.6008 0.3370 13.65 0.000 99.56 51.43 192.75

Log-Likelihood = -308.624
Test that all slopes are zero: G = 282.392, DF = 1, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
3505.0nosraeP
3215.0ecnaiveD

Hosmer-Lemeshow 0.505 3

819.0
619.0

0.918

Table of Observed and Expected Frequencies:
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)
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MINITAB gives us the parameter estimates as

β̂0 = 2.9519 and β̂1 = 4.6008.

The parameter estimates β̂0 = 2.9519 and β̂1 = 4.6008 are both significantly
different from zero, (p < .0001) in both cases.

The odds ratio for the intercept would be e2.9519 = 19.14. Thus at log
(base 10) dosage level (dose = 0), it is almost 19 times most likely that the
insect D. melanogaster would die than not die. Note that this dose level is
equivalent to 1.0 g/100 cc nicotine sulfate concentration. Similarly, with each
unit increase in log10 dosage level, the odds of insect dying increases by 99.6
times.

The estimated killing probability as a function of the log dosage is
estimated as

p̂ =
e2.9519+4.6008dose

1 + e2.9519+4.6008dose ,

which for the first dosage becomes

=
e2.9519+4.6008(−1)

1 + e2.9519+4.6008(−1)

=
0.1923
1.1923

= 0.16128

The expected number of deaths for this dosage level is ni ∗ p̂i = n1 ∗ p̂1 =
137 ∗ 0.16128 = 22.0954. These and other relevant parameters are displayed
below to a better accuracy.

The expected or predicted values are computed as
[
−1.6477, 0.5411, 1.5641, 2.2354, 2.8461

]

with estimated proportions

p̂i = [0.1613, 0.6333, 0.8273, 0.9037, 0.9453].

These results from MINITAB are displayed below.

MTB > LET C8=C3*C7
MTB > PRINT C2 C3 C7 C8

Data Display
Row r n phat expected
  -----------------------------------

1 23 137 0.161263
2 95 152 0.633271
3 119 146 0.827349
4 141 154 0.903720
5 144 152 0.945290

22.093
96.257
120.793
139.173
143.684

The leverages and deviance residuals are also presented below. These are very
useful for diagnostics.
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MTB > print c2 c5-c8

Data Display

----------------------------------------------------
Row r resid lev phat yhat

1 23 0.209557 0.774609 0.161263 22.093
2 95 -0.211261 0.377342 0.633271 96.257
3 119 -0.389042 0.288564 0.827349 120.793
4 141 0.508824 0.295026 0.903720 139.173
5 144 0.113373 0.264459 0.945290 143.684

The level of the dosage which would result in a 50 % response by subjects in
the population under study is an important parameter in dose–response mod-
els. A measure of the potency of the drug is the statistic LD50, median lethal
dose. In this example, LD50 is the lethal dosage at which 50 % of the subjects
(insects) are expected to be killed, and in experiments where the response is
not death, we refer to the ED50, median effective dose. There is also LC50
(median lethal concentration) and EC50 (median effective concentration). In
our example, the LD50 is computed as

ln
(

50
100 − 50

)

= β̂0 + β̂1xM ⇒ x̂M = − β̂0

β̂1
= −2.9519

4.6008
= −0.6416.

That is, log10(LD50) = −0.6416 ⇒ LD50 = 10−0.6416 = 0.2282. That is, the
LD50 = 0.228 g/100 cc.

Similarly, an LD90 is given by

10U , where U =
(2.1972 − β̂0)

β̂1
= 0.6854.

That is, the LD90 is 0.685 g/100 cc. This is the dose level at which we expect
90 % of the insects to be killed in the population.

The logistic model when applied to the data in Table 17.1 fits the data well
with the goodness-of-fit test statistic X2 = 0.505 on 3 d.f. (p value = 0.918).

A test of the hypothesis concerning the parameters of the logistic, that is,
a test of whether H0 : β = 0 against Ha : β �= 0, is provided in the MINITAB
output below.

Test that all slopes are zero: G = 282.392, DF = 1, P-Value =
0.000

Clearly, this indicates that the explanatory variable dosei is important in
the logistic model.
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17.3 Using the Probit Model

Fig. 17.3 Probit transformation plot

To fit the probit model (a typical probit plot is displayed in Fig. 17.3), we
simply specify the link function as NORMIT in the MINITAB sub command
statement.

Results for: bioassy3.MTW

MTB > BLogistic ’r’ ’n’ = ldose;
SUBC> ST;
SUBC> Normit;
SUBC> Hi ’HI1’;
SUBC> Eprobability ’EPRO1’;
SUBC> XPWXinverse ’XPWX1’;
SUBC> Loglikelihood ’LOGL1’;
SUBC> Ghdchisquare;
SUBC> Brief 2.

Binary Logistic Regression: r, n versus ldose

Link Function: Normit

Response Information

Variable Value Count
r Success 522

Failure 219
n Total 741

Logistic Regression Table
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Predictor Coef SE Coef Z P
Constant 1.72778 0.09943 17.38 0.000
ldose 2.6914 0.1791 15.03 0.000

Log-Likelihood = -308.526
Test that all slopes are zero: G = 282.587, DF = 1, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 0.312 3 0.958
Deviance 0.316 3 0.957
Hosmer-Lemeshow 0.312 3 0.958

Table of Observed and Expected Frequencies:
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)

Group
Value 1 2 3 4 5 Total
Success
Obs 23 95 119 141 144 522
Exp 23.0 95.1 119.8 139.4 144.8

Failure
Obs 114 57 27 13 8 219
Exp 114.0 56.9 26.2 14.6 7.2

Total 137 152 146 154 152 741

Measures of Association:
(Between the Response Variable and Predicted Probabilities)

Pairs Number Percent Summary Measures
Concordant 89481 78.3% Somers’ D 0.69
Discordant 10602 9.3% Goodman-Kruskal Gamma 0.79
Ties 14235 12.5% Kendall’s Tau-a 0.29
Total 114318 100.0%

Matrix XPWX1

0.0098865 0.0145852
0.0145852 0.0320833

Data Display

dose r n ldose lev prob yhat
-----------------------------------------------------------
0.10 23 137 -1.00000 0.790354 0.167619 22.964
0.30 95 152 -0.52288 0.317444 0.625709 95.108
0.50 119 146 -0.30103 0.272876 0.820584 119.805
0.70 141 154 -0.15490 0.313976 0.905051 139.378
0.95 144 152 -0.02228 0.305350 0.952325 144.753

MINITAB gives parameter estimates from the probit model as:

β0 = 1.7278 and β1 = 2.6914
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We observe here that the ratio of the logistic parameter model estimates
to those of the logit model is

(2.9519/1.7278) = (4.6008/2.6914) = 1.708.

This ratio is expected to be within the range 1.6 to 1.8. Our ratios are within
this range.

Parameters

Models d.f. X2 p value β̂0 β̂

Logistic 3 0.505 0.918 2.9519 4.6008
Probit 3 0.312 0.958 1.7278 2.6914

The two models provide adequate fits of the data, although the probit model
seems better both in terms of X2 values and the standardized residuals (not
printed). Both models are, of course, based on 3 degrees of freedom.
The final model based on the logistic regression is given in (17.6), while the
estimated logistic regression model is plotted against the concentration levels
in Fig. 17.4.

ln
(

p̂i

1 − p̂i

)

= 2.9519 + 4.6008 dosei, i = 1, 2, · · · , 5. (17.6)

Fig. 17.4 Fitted logistic model
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17.4 Parallel-Line Bioassay

For situations when we wish to compare the toxicity of two drugs, for instance,
we need to fit individual logistic or probit models to both data and compute
the ratio of their LD50s.

As an example, consider the following case: The data in Table 17.5 were
adapted from Litchfield and Wilcoxon (1949). The first set of data was from
an experiment in which the antihistamine activities (the response) of cer-
tain animals to Tagathen (Chlorothen citrate) were studied. The second set
of data also result from a similar experiment with triplennamine (Pyriben-
zamine) as the agent. The dose units are milligrams per kilogram and the
number of animals tested at each dose level was eight.

Table 17.5 Data for this example on relative potency

Tagathen Pyribenzamine

Dose n No. Alive Dose n No. Alive

0.025 8 1 0.175 8 1
0.125 8 4 0.35 8 3
0.25 8 4 0.7 8 5
0.50 8 7 1.4 8 5
1.0 8 8 2.8 8 8

Individual analyses are performed in MINITAB with the split command, after
transforming the dose to log to base 10.

Data Display

Row dose r n drug x

1 0.025 TA -1.60206
2 0.125 TA -0.90309
3 0.250 TA -0.60206
4 0.500 TA -0.30103
5 1.000 TA 0.00000
6 0.175 PY -0.75696
7 0.350 PY -0.45593
8 0.700 PY -0.15490
9 1.400 PY 0.14613
10 2.800

1 8
4 8
4 8
7 8
8 8
1 8
3 8
5 8
5 8
8 8 PY 0.44716

The logistic regression model applied to both data gives respectively X2 =
2.038 and X2 = 2.289 on 3 d.f. Both models fit the individual data sets
very well with respective p values of 0.565 and 0.515. The estimated logistic
regression equations are

ln
(

p̂1i

1 − p̂1i

)

= 2.6181 + 3.0944 x1i, i = 1, · · · , 5

ln
(

p̂2i

1 − p̂2i

)

= 0.8290 + 3.422 x2i, i = 1, · · · , 4
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ED50 = 10(−2.6181
3.0944 ) = 0.1425 for drug TA

ED50 = 10(−0.8290
3.422 ) = 0.5725 for drug PY.

Hence, potency ratio

drug TA
drug PY

=
EDTA

50

EDPY
50

= 0.1425/0.5725 = 0.2489

Thus, drug TA is 1
0.2489 = 4.02 times more active than drug PY. That

is, Tagathen is four times more active than Pyribenzamine. The individual
analysis from MINITAB are presented below.

MTB > LET C5=LOGT(C1)
MTB > Split;
SUBC> NoMatrices;
SUBC> NoConstants;
SUBC> By ’drug’.

Results for: potency.MTW(drug = TA)

MTB > Name c6 = ’EPRO1’
MTB > BLogistic ’r’ ’n’ = x;
SUBC> ST;
SUBC> Logit;
SUBC> Eprobability ’EPRO1’;
SUBC> Brief 2.

Binary Logistic Regression: r, n versus x

Link Function: Logit

Response Information

Variable Value Count
r Success 24

Failure 16
n Total 40

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 2.6181 0.8060 3.25 0.001
x 3.0944 0.9822 3.15 0.002 22.07 3.22 151.35

Log-Likelihood = -18.363
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Test that all slopes are zero: G = 17.115, DF = 1, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
565.03830.2nosraeP
774.03884.2ecnaiveD

Hosmer-Lemeshow 2.038 3 0.565

Results for: potency.MTW(drug = PY)

MTB > Name c6 = ’EPRO1’
MTB > BLogistic ’r’ ’n’ = x;
SUBC> ST;
SUBC> Logit;
SUBC> Eprobability ’EPRO1’;
SUBC> Brief 2.

Binary Logistic Regression: r, n versus x

Link Function: Logit

Response Information

Variable Value Count
r Success 22

Failure 18
n Total 40

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.8290 0.4480 1.85 0.064
x 3.422 1.083 3.16 0.002 30.64 3.66 256.23

Log-Likelihood = -20.291
Test that all slopes are zero: G = 14.470, DF = 1, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
515.03982.2nosraeP
424.0
515.0

3897.2ecnaiveD
Hosmer-Lemeshow 2.289 3

17.5 Use of Joint Model

Alternatively, we could employ the joint model

ln
(

pij

1 − pij

)

= β0 + β1 dosei + β2 drugj + β3 dose * drugij



17.5 Use of Joint Model 677

where pij is the probability of the animal receiving dose i of drug j if alive.
Dose represents the dose effect, drug represents the effect of drug, and
dose*drug represents the interaction effect of dose and drug.

MTB > BLogistic ’r’ ’n’ = x drug x*drug;
SUBC> ST;
SUBC> Factors ’drug’;
SUBC> Logit;
SUBC> Brief 2.

Binary Logistic Regression: r, n versus x, drug

Link Function: Logit

Response Information

Variable Value Count
r Success 46

Failure 34
n Total 80

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.8290 0.4480 1.85 0.064
x 3.422 1.083 3.16 0.002 30.64 3.66 256.23

drug
TA 1.7891 0.9221 1.94 0.052 5.98 0.98 36.47

drug*x
TA -0.328 1.462 -0.22 0.823 0.72 0.04 12.66

Log-Likelihood = -38.653
Test that all slopes are zero: G = 31.790, DF = 3, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 4.327 6 0.633
Deviance 5.286 6 0.508
Hosmer-Lemeshow 4.327 8 0.827

The p value for the interaction term (drug * x ) is 0.823, which indicates
that the interaction term can be removed from the model. A result that leads
to conclude the parallelism of the assays. Hence, a reduced model in (17.7)
is given by:

ln
(

pij

1 − pij

)

= β0 + β1 dosei + β2 drugj (17.7)

where the drugs are dichotomized as:

drugj =

{
1 if drug TA
0 if drug PY.
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MTB > Name c6 = ’EPRO1’
MTB > BLogistic ’r’ ’n’ = x drug;
SUBC> ST;
SUBC> Factors ’drug’;
SUBC> Logit;
SUBC> Eprobability ’EPRO1’;
SUBC> Brief 2.

Binary Logistic Regression: r, n versus x, drug

Link Function: Logit

Response Information

Variable Value Count
r Success 46

Failure 34
n Total 80

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.7930 0.4103 1.93 0.053
x 3.2485 0.7339 4.43 0.000 25.75 6.11 108.53
drug
TA 1.9337 0.6730 2.87 0.004 6.91 1.85 25.86

Log-Likelihood = -38.679
Test that all slopes are zero: G = 31.740, DF = 2, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 4.339 7 0.740
Deviance 5.336 7 0.619
Hosmer-Lemeshow 4.339 8 0.825

Measures of Association:
(Between the Response Variable and Predicted Probabilities)

Pairs Number Percent Summary Measures
Concordant 1269 81.1% Somers’ D 0.69
Discordant 197 12.6% Goodman-Kruskal Gamma 0.73
Ties 98 6.3% Kendall’s Tau-a 0.34
Total 1564 100.0%

MTB > print c1 c2 c4 c6

Data Display

Row dose r drug phat

1 0.025 1 TA 0.077447
2 0.125 4 TA 0.448443
3 0.250 4 TA 0.683722
4 0.500 7 TA 0.851804
5 1.000 8 TA 0.938584
6 0.175 1 PY 0.158964
7 0.350 3 PY 0.334463
8 0.700 5 PY 0.571952
9 1.400 5 PY 0.780351
10 2.800 8 PY 0.904271
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The model in (17.7) fits the data very well with X2 = 4.339 on 7 d.f.
(p value= 0.740). The parameter estimates of the model are

β̂0 = 0.7930 β̂1 = 3.2485 β̂2 = 1.9337.

Under the above coding scheme for drugs, therefore, the relative potency of

drug PY to TA is computed as 10
−β̂2
β̂1 . In our case, this equals

10−1.9337/3.2485 = 10−0.5953 = 0.2539.

Hence again, drug TA is 1
0.2539 = 3.94 times more active than drug PY. The

plot of the parallel models are displayed in Fig. 17.5.

Fig. 17.5 Estimated probabilities plot

17.5.1 Example 17.3

The data in Table 17.6 from Breslow and Day (1980) relate to the occurrence
of esophageal cancer in Frenchmen. Potential risk factors related to the oc-
currence are age and alcohol consumption where any consumption of wine
more than 1 L a day is considered high.
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(a) Fit a logistic model with the explanatory variables age and alcohol
consumption by first considering age as a continuous variable.

Table 17.6 Occurrence of esophageal cancer

Alcohol Cancer

Age group consumption Yes No

25–34 High 1 9
Low 0 106

35–44 High 4 26
Low 5 164

45–54 High 25 29
Low 21 138

55–64 High 42 27
Low 34 139

65–74 High 19 18
Low 36 88

75+ High 5 0
Low 8 31

(b) Consider fitting the interaction term in both situations above. Use
the stepwise regression procedure to fit the most parsimonious model.
Interpret your results.

A logistic model involving age, x (alcohol consumption, coded 1 for high
and 0 for low) with their interaction term gives a goodness-of-fit statistic
X2 = 27.157 on 8 d.f. (p value = 0.0001), which indicates that the model
does not fit at all.

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -5.2879 0.5221 -10.13 0.000
age 0.061368 0.008531 7.19 0.000 1.06 1.05 1.08
x 1.7359 0.9492 1.83 0.067 5.67 0.88 36.47
age*x 0.00078 0.01642 0.05 0.962 1.00 0.97 1.03

Log-Likelihood = -404.905
Test that all slopes are zero: G = 179.678, DF = 3, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
100.0

430.0
000.0

8nosraeP
Deviance 31.929 8
Hosmer-Lemeshow 12.063

27.157

5

Next, we introduce the quadratic effect of age into the model, and still re-
taining the interaction term between x and age with the following partial
output from MINITAB.
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Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -13.531 2.232 -6.06 0.000
age 0.35744 0.07545 4.74 0.000 1.43 1.23 1.66
age2 -0.0025467 0.0006315 -4.03 0.000 1.00 1.00 1.00
x 2.465 1.086 2.27 0.023 11.76 1.40 98.85
age*x -0.01366 0.01846 -0.74 0.459 0.99 0.95 1.02

Log-Likelihood = -395.182
Test that all slopes are zero: G = 199.125, DF = 4, P-Value = 0.00

Goodness-of-Fit Tests

Method Chi-Square DF P
7472.01nosraeP

Deviance 12.482 7 0.086
0.174

Hosmer-Lemeshow 5.442 5 0.364

The model now fits the data with X2 = 10.274 on 7 d.f. (p value = 0.174).
However, the parameter estimates indicate that the interaction term is
not significant and could, thus, be dropped from the model. Further, the
quadratic term is highly significant in the model (p value = 0.000). Hence,
our final model would be the model

ln
(

pi

1 − pi

)

= β0 + β1 age + β2 age2
i + β3 x (17.8)

where the alcohol consumption x is defined as

x =

{
1 if high
0 if low.

The MINITAB implementation of the model in (17.8) gives the following
partial output.

MTB > BLogistic ’status’ = age age2 x;
SUBC> Frequency ’freq’;
SUBC> Logit;
SUBC> Eprobability ’EPRO1’;
SUBC> Brief 2.

Binary Logistic Regression: status versus age, age2, x

Link Function: Logit

Response Information

Variable Value Count
status yes 200 (Event)

no 775
Total 975

Frequency: freq

22 cases were used
2 cases contained missing values
or was a case with zero frequency.



682 17 Quantal Bioassay

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -13.007 2.084 -6.24 0.000
age 0.34378 0.07249 4.74 0.000 1.41 1.22 1.63
age2 -0.0024665 0.0006195 -3.98 0.000 1.00 1.00 1.00
x 1.6744 0.1897 8.83 0.000 5.34 3.68 7.74

Log-Likelihood = -395.455
Test that all slopes are zero: G = 198.579, DF = 3, P-Value = 0.0000

Goodness-of-Fit Tests

Method Chi-Square DF P
491.08531.11Pearson

Deviance 13.028 8 0.111
Hosmer-Lemeshow 3.580 5 0.611

The implementation of the model described in (17.8) gives a X2 = 11.135 on
8 d.f. The model fits the data well. Parameter estimates of β1, β2, and β3 are
highly significant. The analysis shows that the odds of an cancer status being
yes is e1.6744 = 5.335 times higher for high-alcohol-consumption individuals
than those on low alcohol consumption when the effect of age is controlled.

We also obtain the expected probabilities (p̂i), of having cancer based on
the estimated logistic model. The estimated logistic regression is plotted in
Fig. 17.6

ln
(

p̂i

1 − p̂i

)

= −13.007 + 0.3438 agei − 0.00247 age2
i + 1.6744 x. (17.9)

Data Display

Row age xx status freq x age2 phat

1 29.5 high yes 1 1 870.25 0.03430
2 29.5 high no 9 1 870.25 0.03430
3 29.5 low yes 0 0 870.25 0.00661
4 29.5 low no 106 0 870.25 0.00661
5 39.5 high yes 4 1 1560.25 0.16774
6 39.5 high no 26 1 1560.25 0.16774
7 39.5 low yes 5 0 1560.25 0.03640
8 39.5 low no 164 0 1560.25 0.03640
9 49.5 high yes 25 1 2450.25 0.41115
10 49.5 high no 29 1 2450.25 0.41115
11 49.5 low yes 21 0 2450.25 0.11572
12 49.5 low no 138 0 2450.25 0.11572
13 59.5 high yes 42 1 3540.25 0.59629
14 59.5 high no 27 1 3540.25 0.59629
15 59.5 low yes 34 0 3540.25 0.21681
16 59.5 low no 139 0 3540.25 0.21681
17 69.5 high yes 19 1 4830.25 0.65609
18 69.5 high no 18 1 4830.25 0.65609
19 69.5 low yes 36 0 4830.25 0.26339
20 69.5 low no 88 0 4830.25 0.26339
21 79.5 high yes 5 1 6320.25 0.60074
22 79.5 high no 0 1 6320.25 0.60074
23 79.5 low yes 8 0 6320.25 0.21998
24 79.5 low no 31 0 6320.25 0.21998
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Fig. 17.6 Estimated probabilities plot

17.5.2 HIV Status Data Example

The following data in Table 17.7 come from Schork and Remington (2000).
The data represent the outcome variable, HIV status (0 = no, 1 = yes),
factor variables IV (intravenous) drug status (0 = no, 1 = yes), and number
of sexual partners for 25 men selected from a homeless shelter.

Table 17.7 Data for the HIV status example

ID STATUS IVDRUG SEXPART ID STATUS IVDRUG SEXPART

1 0 0 4 14 0 0 5
2 0 1 4 15 1 1 9
3 1 1 3 16 1 0 19
4 0 0 2 17 0 0 7
5 0 0 7 18 1 1 10
6 1 0 12 19 0 0 5
7 1 1 8 20 1 1 8
8 0 0 1 21 0 0 14
9 1 0 9 22 0 1 8
10 0 0 5 23 1 0 14
11 0 0 6 24 1 1 9
12 0 1 4 25 1 1 17
13 0 1 2
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Suppose we define the response variable to be Yi from individual i, then, we
have:

Yi =

{
1 if STATUS is 1
0 otherwise

If we assume that the probability pi of yes HIV status depends on the
drug, SEXPART, and the interaction between drug and SEXPART, then
our logistic model would be as described in (17.10), while the corresponding
probability is as defined in (17.11).

ln
(

pi

1 − pi

)

= β0 + β1 drugi + β2 parti + β3 drug * parti (17.10)

Prob(Yi = 1|drugi,parti) =
exp (β0 + β1drugi + β2parti + β3drug*parti)

1 + exp (β0 + β1drugi + β2parti + β3drug*parti)
(17.11)

where πi is the probability of the ith individual having the HIV, drug rep-
resents the IV drug effect, part represents the effect of the number of sexual
partners, and drug*part represents the interaction effect of IV drug and
numbers of sexual partners. Also,

drugi =

{
1 if yes
0 if otherwise.

The implementation of the model in (17.10) in MINITAB is carried out with
the following codes and the corresponding partial output.

Row y x1 x2 x12

MTB > print c1-c4

Data Display

1 0 0 4 0
2 0 1 4 4
3 1 1 3 3
4 0 0 2 0
5 0 0 7 0
6 1 0 12 0
7 1 1 8 8
8 0 0 1 0
9 1 0 9 0
10 0 0 5 0
11 0 0 6 0
12 0 1 4 4
13 0 1 2 2
14 0 0 5 0
15 1 1 9 9
16 1 0 19 0
17 0 0 7 0
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Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 10.4732 13 0.655
Deviance 11.5979 13 0.561
Hosmer-Lemeshow 3.5724 8 0.893

Measures of Association:
(Between the Response Variable and Predicted Probabilities)

Pairs Number Percent Summary Measures
Concordant 139 90.3 Somers’ D 0.82
Discordant 12 7.8 Goodman-Kruskal Gamma 0.84
Ties 3 1.9 Kendall’s Tau-a 0.42
Total 154 100.0

18 1 1 10 10
19 0 0 5 0
20 1 1 8 8
21 0 0 14 0
22 0 1 8 8
23 1 0 14 0
24 1 1 9 9
25 1 1 17 17

MTB > Blogistic ’y’ = x1 x2 x12;
SUBC> Logit;
SUBC> Reference ’y’ 1;
SUBC> Brief 2.

Binary Logistic Regression: y versus x1, x2, x12

Link Function: Logit

Response Information

Variable Value Count
y 1 11 (Event)

0 14
Total 25

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper

Constant -5.33038 2.52235 -2.11 0.035
x1 2.51506 3.22805 0.78 0.436 12.37 0.02 6918.35
x2 0.481626 0.241700 1.99 0.046 1.62 1.01 2.60
x12 0.0341946 0.386656 0.09 0.930 1.03 0.48 2.21

Log-Likelihood = -9.095
Test that all slopes are zero: G = 16.107, DF = 3, P-Value = 0.001
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The global hypothesis

H0 : β1 = β2 = β3 = 0 vs.

Ha : at least one of these β parameters is not zero (17.12)

is tested with the value of G = 16.107 and corresponding p value of 0.001
on 3 d.f. The p value of 0.001 at α = 0.05 level of significance, indicates
that we would have to reject H0, and therefore, conclude that at least one
of the parameters β1, β2, and β3 is not zero. The model fits the data well
with deviance being 211.5979 on 13 degrees of freedom with corresponding
(p value = 0.561). The resulting estimated model is, therefore, given by

ln
(

p̂i

1 − p̂i

)

= −5.3304 + 2.5151 drugi + 0.4816 parti − 0.0342 drug*parti.

Analysis of the results, however, indicates that the interaction effect is not
significant. This result is obtained from the logistic table in the MINITAB
output. Thus, the test of the hypotheses

H0 : β3|β1, β2 = 0 vs. Ha : β3|β1, β2 �= 0

gives a p value of 0.930, which indicates that we would fail to reject H0. That
is, the interaction term x12 = x1 × x2 = drug * parti is not important in the
model, given that x1 and x2 are already in the model. We can, therefore, fit
the reduced model involving only x1 and x2 as explanatory variables. That
is, the model

ln
(

pi

1 − pi

)

= β0 + β1 drugi + β2 parti (17.13)

with corresponding probability of HIV status being “1” as

Prob(Y = 1, |x1, x2) =
exp(β0 + β1 drugi + β2 parti)

1 + exp(β0 + β1 drugi + β2 parti)
. (17.14)

Again, the model in (17.13) is estimated in MINITAB with the following
codes and partial output.

MTB > Name c5 "EPRO1"
MTB > Blogistic ’y’ = x1 x2 ;
SUBC> Logit;
SUBC> Reference ’y’ 1;
SUBC> Eprobability ’EPRO1’;
SUBC> Brief 2.

Binary Logistic Regression: y versus x1, x2

Link Function: Logit
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Response Information

Variable Value Count
y 1 11(Event)

0 14
Total 25

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -5.46491 2.06826 -2.64 0.008
x1 2.77476 1.38807 2.00 0.046 16.03 1.06 243.55
x2 0.495392 0.190061 2.61 0.009 1.64 1.13 2.38

Log-Likelihood = -9.099
Test that all slopes are zero: G = 16.099, DF = 2, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 10.3988 14 0.732
Deviance 11.6057 14 0.638
Hosmer-Lemeshow 3.5322 8 0.897

Measures of Association:
(Between the Response Variable and Predicted Probabilities)

Pairs Number Percent Summary Measures
Concordant 139 90.3 Somers’ D 0.82
Discordant 12 7.8 Goodman-Kruskal Gamma 0.84
Ties 3 1.9 Kendall’s Tau-a 0.42
Total 154 100.0

The model in (17.13), when implemented, fits the data very well with a
deviance value of 11.6057 on 14 degrees of freedom and p value of 0.638.
The parameter estimates are very important in the model and the estimated
logistic regression equation is

ln
(

p̂i

1 − p̂i

)

= −5.4649 + 2.7748 drugi + 0.4954 parti, (17.15)

with a corresponding estimated probability

p̂i =
exp(−5.4649 + 2.7748 drugi + 0.4954 parti)

1 + exp(−5.4649 + 2.7748 drugi + 0.4954 parti)
. (17.16)
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17.5.3 Interpretation of Parameters

We have

exp(β0) =
Prob(Y = 1|drug = part = 0)
Prob(Y = 0|drug = part = 0)

= Odds of a positive HIV status

exp(β1) =
Odds of a positive HIV status when drugi = 1,parti = 0

Odds of a positive HIV status at baseline
,

exp(β2) =
Odds of a positive HIV status when drugi = 0,parti = 1

Odds of a positive HIV status at baseline
,

where exp(β0) is often referred to as the odds of a positive HIV status at the
baseline. That is, at (drugi = parti = 0).

The analysis shows that the odds of an HIV status being positive is 16.035
times higher for IV drug users than those not on IV drugs when the effect
of sexual partner is controlled. Similarly, the odds increase by 1.641 for a
unit increase in the number of sexual partners. The odds increase by 2.693 =
e2∗0.4954 = 1.6412 and 4.420 = e3∗0.4954 = 1.6413 for two-unit and three-unit
increases in the number of sexual partners, respectively.

In general, the estimated odds of a positive HIV status for any given
drug,part is

= exp(β̂0) × exp(β̂1 drugi) × exp(β̂2 parti)

=

⎧
⎨

⎩

odds
for

baseline

⎫
⎬

⎭
×

⎧
⎨

⎩

factor
due

to drugi

⎫
⎬

⎭
×

⎧
⎨

⎩

factor
due

to parti

⎫
⎬

⎭
.

These expected probabilities are presented below. They are generated auto-
matically by MINITAB and stored in neutral column. We have produced the
estimated probabilities below.

Obs HIV DRUG SEXPART PHAT
------------------------------

_LEVEL_
------------------

1 0 0 4 1 0.02979
2 0 1 4 1 0.32991
3 1 1 3 1 0.23077
4 0 0 2 1 0.01127
5 0 0 7 1 0.11950
6 1 0 12 1 0.61770
7 1 1 8 1 0.78125
8 0 0 1 1 0.00690
9 1 0 9 1 0.26769



17.5 Use of Joint Model 689

0 0 1
0 0 1
0 1 1
0 1 1
0 0 1
1 1 1
1 0 1
0 0 1
1 1 1
0 0 1
1 1 1
0 0 1
0 1 1
1 0 1
1 1 1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 1 1

5
6
4
2
5
9
19
7
10
5
8
14
8
14
9
17 1

0.04797
0.07638
0.32991
0.15455
0.04797
0.85425
0.98106
0.11950
0.90583
0.04797
0.78125
0.81314
0.78125
0.81314
0.85425
0.99677

Here, for instance, for observation 22, the estimated probability is computed
as

Prob(Y = 0, |drug = 1,part = 8)

=
exp(−5.4649 + 2.7748 drugi + 0.4954 parti)

1 + exp(−5.4649 + 2.7748 drugi + 0.4954 parti)

=
exp(−5.4649 + 2.7748 × (1) + 0.4954 × 8)

1 + exp(5.4649 + 2.7748 × (1) + 0.4954 × 8)

=
exp(1.2731)

1 + exp(1.2731)
=

3.5719
4.5719

= 0.7812

Others can be similarly computed, but as indicated earlier, these probabil-
ities are automatically generated in MINITAB upon request. The estimated
logistic model is displayed in Fig. 17.7.

17.5.4 ROC Curve for the Analysis

As discussed in Chap. 4, the receiver operating characteristic curve for the
final model is presented in Fig. 17.8. The area under the curve is estimated
to be 0.9123, indicating a very good classification rule.

We present below the sensitivity and specificity of the model as pro-
duced by SAS. We also have the positively and negatively classified, the
false positives and the false negatives.
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Fig. 17.7 Predicted probability plots from model (17.16)

Obs _PROB_ _POS_ _NEG_ _FALPOS_ _FALNEG_ _SENSIT_ _1MSPEC_
----------------------------------------------------------------------------------
1 0.99677 10 0.09091 0.00000
2 0.98106 9 0.18182 0.00000
3 0.90583 8 0.27273 0.00000
4 0.85425 6 0.45455 0.00000
5 0.81314 5 0.54545 0.07143
6 0.78125 3 0.72727 0.14286
7 0.61770 2 0.81818 0.14286
8 0.32991 2 0.81818 0.28571
9 0.26769 1 0.90909 0.28571
10 0.23077 0 1.00000 0.28571
11 0.15455 0 1.00000 0.35714
12 0.11950 0 1.00000 0.50000
13 0.07638 0 1.00000 0.57143
14 0.04797 0 1.00000 0.78571
15 0.02979 0 1.00000 0.85714
16 0.01127 0 1.00000 0.92857
17 0.00690

1
2
3
5
6
8
9
9
10
11
11
11
11
11
11
11
11

14
14
14
14
13
12
12
10
10
10
9
7
6
3
2
1
0

0
0
0
0
1
2
2
4
4
4
5
7
8
11
12
13
14 0 1.00000 1.00000
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17.6 Exercises

1. In an acute toxicity testing of Jubi Formula, the following data were
obtained after oral administration.

Fig. 17.8 ROC curve for the HIV data

Dose Dose # mice # mice that
(mg) (mg/kg) died

0.00 0.00 6 0
0.82 49.85 6 0
1.64 99.70 6 0
2.46 149.54 6 1
3.28 199.39 6 2
4.10 249.24 6 3
5.74 348.95 6 5
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Fit a logistic regression model to the above data and compute the LD50.
What can you say about the toxicity of the formula?

2. The data in the table below are reported in Woodward et al. (1941) and is
reproduced from Christensen (1991). The data examines the relationship
between exposure to chloroacetic acid and the death of mice. Ten mice
were exposed at each dose level and the doses are measured in grams per
kilogram of body weight.

Dose # dead # exposed

0.0794 1 10
0.1000 2 10
0.1259 1 10
0.1413 0 10
0.1500 1 10
0.1588 2 10
0.1778 4 10
0.1995 6 10
0.2239 4 10
0.2512 5 10
0.2818 5 10
0.3162 8 10

Fit the logistic regression model to the data and estimate the LD50,
LD90, and LD999. Discuss the possible danger of extrapolation to LD999.
Determine how well the model fits the data.

3. An antihistaminic drug was used at various doses to protect test animals
against a certain lethal dose of histamine, with the results given below.

Dose Alive/
μg/kg total

1000 8/8
500 7/8
250 4/8
125 4/8
62.5 1/8

Fit the logistic and probit models to the data above and compute the
LD50 in each case. Comment about your models.

4. Two anticonvulsant drugs were compared by administering them to mice
which were then given electric shock under conditions that caused all
control mice to convulse. The results of the experiment are displayed in
the table below (Goldstein 1965).

(a) Fit separate regression lines for both drugs, and hence, obtain an
estimate of the relative potency from estimates of their LD50s.

(b) Fit a combined regression line and test for equality slopes. Test whet-
her there is dosage and/or drug effects. Summarize your conclusions.



17.6 Exercises 693

Drug A
Dose Convulsed/

mg/kg Total
10 13/15
30 9/15
90 4/15

Drug B
Dose Convulsed/

mg/kg Total
200 12/15
600 6/15

1800 2/15

5. The example below relates to a sample of patients with coronary heart
disease (CHD) and a “normal” sample free of CHD (Lunneborg 1994). A
1 indicates the patient has no CHD, while a 2 indicates that the patient
has CHD. Three risk factors are being evaluated. The risk factors are
systolic blood pressure (sbp), blood-cholesterol level (chol), and age of
the patients.

Group SBP Chol Age

No 135 227 45
No 122 228 41
No 130 219 49
No 148 245 52
No 146 223 54
No 129 215 47
No 162 245 60
No 160 262 48
No 144 230 44
No 166 255 64
No 138 222 59
No 152 250 51
No 138 264 54
No 140 271 56
No 134 220 50
Yes 145 238 60
Yes 142 232 64
Yes 135 225 54
Yes 149 230 48
Yes 180 255 43
Yes 150 240 43
Yes 161 253 63
Yes 170 280 63
Yes 152 271 62
Yes 164 260 65

If we define the variable Y to be

Y =

{
1 if CHD
0 if no CHD.

6. The data below give the effect of different concentrations of nicotine sul-
fate in a 1 % saponin solution on an insect Drosophila melanogaster, the
fruit fly.
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Nicotine sulfate Number Number of
(g/100 cc) killed insects

xi ri ni

0.10 8 47
0.15 14 53
0.20 24 55
0.30 32 52
0.50 38 46
0.70 50 54
0.95 50 52

Fit a logistic regression to the above data.
(a) What would be the explanatory variable in this model?
(b) Write down the estimated regression equation.
(c) Estimate the LD50. What does this mean?
(d) Estimate the LD90. What does this mean?
(e) Find the estimated proportion of insects D. melanogaster, killed when

given a saponin solution concentration of 0.20 g/100 cc.

7. Hastie and Tibshirani (1990) described a study to determine risk factors
for kyphosis, severe forward flexion of the spine following corrective spinal
surgery. The ages in months at the time of the operation for the 18
subjects for whom kyphosis was present were 12, 15, 42, 52, 59, 73, 82,
91, 96, 105, 114, 120, 121, 128, 130, 139, 139, 157; and 22 of the subjects
for whom kyphosis was absent were 1, 1, 2, 8, 11, 18, 22, 31, 37, 61, 72,
81, 97, 112, 118, 127, 131, 140, 151, 159, 177, and 206.

(a) Fit a logistic regression model using age as a predictor of whether
kyphosis is present. Test whether age has a significant effect.

(b) Fit the model logit[π(x)] = β0 + β1x + β2x
2. Test the significance of

the squared age term, plot the fit, and interpret.

8. The following data relate to the outcome of the rate at which blood cells
(erythrocytes) settle out of suspension in blood plasma. The response,
y, is 1 if erythrocyte sedimentation (ES) exceeds 20 mm/h and values
below this characterize healthy individuals. Positive responses are known
to be associated with fibrinogen (x1) and gamma-globulin (x2). Fit a
parsimonious logistic regression model to these data.

x1 x2 y x1 x2 y x1 x2 y x1 x2 y

2.52 38 0 3.15 39 0 3.53 46 1 2.67 39 0
2.56 31 0 2.60 41 0 2.68 34 0 2.29 31 0
2.19 33 0 2.29 36 0 2.60 38 0 2.15 31 0
2.18 31 0 2.35 29 0 2.23 37 0 2.54 28 0
3.41 37 0 5.06 37 1 2.88 30 0 3.93 32 1
2.46 36 0 3.34 32 1 2.65 46 0 3.34 30 0
3.22 38 0 2.38 37 1 2.09 44 1 2.99 36 0
2.21 37 0 3.15 36 0 2.28 36 0 3.32 35 0
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9. The following data from Guerrero and Johnson (1982) relate to the num-
ber of Warsaw girls that have menstruated given 25 groups of ages at
menarche of 3918 girls. The total number of girls in each group (n) and
the number having experienced menarche (r) are presented in the data
menarche with the mean age (x) of the group. Fit a logistic model to the
data with age as the explanatory variable.

x n r x n r x n r x n r

9.21 376 0 11.83 111 17 13.58 105 81 15.33 111 107
10.21 200 0 12.08 100 16 13.83 117 88 15.58 94 92
10.58 93 0 12.33 93 29 14.08 98 79 15.83 114 112
10.83 120 2 12.58 100 39 14.033 97 90 17.58 1049 1049
11.08 90 2 12.83 108 51 14.58 120 113
11.33 88 5 13.08 99 47 14.83 102 95
11.58 105 10 13.33 106 67 15.08 122 117

10. A local health clinic sent fliers to its clients to encourage everyone, es-
pecially older people at a high risk of complications, to get flu shots in
time for protection against an expected flu epidemic. In a pilot follow-up
study, 50 clients were randomly selected and asked whether they actually
received a flu shot. In addition, data were collected on their age (x). A
client who received a flu shot was coded y = 1, and a client who did not
receive a flu shot was coded y = 0. A simple logistic regression model is
fitted to the following data.

y Age (years)

0 38, 41, 43, 34, 31, 54, 63, 38, 28, 42, 36, 45, 47, 53, 42, 42, 48, 46, 44, 46, 35
40, 40, 64, 34, 38, 56, 45, 33

1 52, 46, 41, 57, 49, 53, 39, 53, 49, 49, 46, 54, 63, 56, 64, 52, 46, 57, 56, 46, 47

(a) Find the maximum likelihood estimates of β0 and β1. State the fitted
response logistic regression function.

(b) Obtain exp(β1) and interpret the number.
(c) What is the estimated probability that clients aged 55 will receive a

flu shot?
(d) Obtain an approximate 95 % confidence interval for the regression

coefficient β1. Convert this interval into one for the odds ratio.
(e) What is the estimated age at which 60 % of the clients will receive

flu shots?
(f) Is the estimated age in (e) reasonable? Explain.
(g) What is the estimated age at which 80 % of the clients will receive

flu shots?
(h) Is the estimated age in (g) reasonable? Explain.
(i) Based on your result in (c), assess the success of the fliers.
(j) Using the five-step procedure and α = 0.05, test the null hypothesis

that the regression coefficient β1 is nonpositive. State the p value of
your test.
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11. In an experiment testing the effect of toxic substances, 1500 experimental
insects were divided at random into six groups of 25 each. The insects
in each group were exposed to a fixed dose of the toxic substance. A day
later, each insect was observed. Death from exposure was scored 1 and
survival was scored 0. The results are shown in the following table; xi

denotes the dose level received by the insects in group i and ri denotes
the number of insects that died out of 250 (ni) in the group.

Group Time

xi 1 2 3 4 5 6
ri 28 53 93 126 172 197
ni 250 250 250 250 250 250

(a) Fit a logistic regression response to the data.
(b) Obtain exp(β1) and interpret this number.
(c) What is the estimated probability that an insect dies when the dose

level is 3.5?
(d) What is the estimated median lethal dose- that is, the dose for which

50 % of the experimental insects are expected to die?
(e) Obtain an approximate 95 % confidence interval for β1. Convert this

interval into one for the odds ratio. Interpret this latter interval.

12. The data below, reported in Woodward et al. (1941), examined the re-
lationship between exposure to chloracetic acid and the death of mice.
Ten mice were exposed at each dose level and the doses are measured in
grams per kilogram of the body weight.

Dose # Dead # Exposed Dose # Dead # Exposed

0.0794 1 10 0.1778 4 10
0.1000 2 10 0.1995 6 10
0.1259 1 10 0.2239 4 10
0.1413 0 10 0.2512 5 10
0.1500 1 10 0.2818 5 10
0.1588 2 10 0.3162 8 10

(a) Fit an appropriate logistic regression model to the data.
(b) What is the estimated equation? Interpret the estimated parameters

of the model.



Chapter 18
Repeated Measures Design

18.1 Introduction

Data collection in experiments usually involves two methods. The first
method usually involves administering the treatment to different subjects
which are stratified into groups and then measuring the outcome or depen-
dent variable. Thus, different groups of subjects take part in the experimental
condition. We could then conduct a one-way ANOVA to test differences in
the mean outcome variables across the groups. This method is often referred
to as the between-group or between-subjects design.

The second method is to manipulate the explanatory variable on the same
subjects. That is, measure the outcome variable at different points in time
on the same subjects. This method is called the within-subject or repeated-
measures design. The method of analysis of the data depends on which
method was employed in the collection of data.

While the within-subject designs are certainly more powerful, it does have
its drawback: namely, it has the potential for carryover effects. This often
happens if, for instance, we perceive that individual outcome scores increased
because the subjects have gained practice or familiarity with the treatment.
However, within-subject designs require far fewer subjects than the between-
subject design.

As an example, consider h independent groups of patients each of whom
are subjected to repeated measurements of the same response variable, y,
at t time periods. If we let ni represent the number of patients in group
i (i = 1, 2, · · · , h), then a typical data structure for h = 3 is presented in
Table 18.1, where each of xij and yi are t-dimensional.
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Table 18.1 Typical data structure

Time

Group Patient 1 2 · · · t

1 101 y111 y112 · · · y11t

102 y121 y122 · · · y12t

...
...

... · · ·
...

n1 y1n11 y1n12 · · · y1n1t

2 201 y211 y212 · · · y21t

202 y221 y222 · · · y22t

...
...

... · · ·
...

n2 y2n21 y2n22 · · · y2n2t

3 301 y311 y312 · · · y31t

302 y321 y322 · · · y32t

...
...

... · · ·
...

n3 y3n31 y3n32 · · · y3n3t

18.2 Single-Factor Experiments with Repeated
Measures

We give an example of this case in Example 18.1.1 below.

Example 18.1.1

This example is taken from Winer et al. (1991). The data in Table 18.2 relate
to scores on five individuals on four different drugs (1, 2, 3, and 4). We are
interested if there are differences in the mean scores among the four drugs.

Table 18.2 Scores on five subjects administered four different drugs

Drug

Subject 1 2 3 4

1 30 28 16 34
2 14 18 10 22
3 24 20 18 30
4 38 34 20 44
5 26 28 14 30

The above observations can be viewed as a repeated-measures data set since
there are four measurements on each of the subjects. If we consider the data
as a one-factor experiment, then the model of interest would be as in (18.1),

yij = μ + tj + εij i = 1, · · · , 5; j = 1, 2, · · · , 4 (18.1)
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with the corresponding MINITAB output displayed below:

MTB > Oneway ’score’ ’drug’.

One-way ANOVA: score versus drug

Source DF SS MS F P
drug 3 698.2 232.7 4.69 0.016
Error 16 793.6 49.6
Total 19 1491.8

S = 7.043 R-Sq = 46.80% R-Sq(adj) = 36.83%

Although the F p-value = 0.016 which indicates that significant differences
exist between the means of the four drugs; however, the assumption of the
one-way ANOVA that the observations be independently distributed has
been violated here since the observations on each subject are undoubtedly
correlated. The analysis would have been valid had we collected the four ob-
servations for each drug on four different subjects. However, the advantage of
the repeated measures data above is that it allows us to gain a better precision
as it allows us to compare drugs within each subject rather than between sub-
jects. To overcome the short fall in the above initial analysis, the appropriate
model for this example is, therefore, a two-way ANOVA model with

yij = μ + bi + tj + εij i = 1, · · · , 5; j = 1, 2, · · · , 4. (18.2)

We observe the model in (18.2) is the familiar randomized complete block de-
sign (RCBD) discussed in Chap. 11. Here, however, the blocks are the persons
(subjects) and drugs 1 to 4 are the treatments. Thus, the analysis and the
hypothesis testing are equivalent to those discussed under the RCBD. Fur-
ther, we have assumed that the four drug treatments are fixed and that there
is no person–drug interaction. Consequently, the hypotheses of interest are

H0 : μ1 = μ2 = μ3 = μ4

Ha : at least two of these means are unequal.

The corresponding variances and covariances for the four repeated measures
are presented in Table 18.3.

Table 18.3 Variances and covariances for four repeated measures

y1 y2 y3 y4

y1 σ2
1 σ12 σ13 σ14

y2 σ21 σ2
2 σ23 σ24

y3 σ31 σ32 σ2
3 σ34

y4 σ41 σ42 σ43 σ2
4

Under the usual analysis of variance assumptions, we would expect the ob-
servations to be independent, and hence, the covariances in this case would
all be zero.

The analysis of the data in Table 18.2 is carried out in MINITAB with the
following commands.
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MTB > set c1
DATA> (1:5)4
DATA> end
MTB > set c2
DATA> 5(1:4)
DATA> end
MTB > set c3
DATA> 30 28 16 34 14 18 10 22
DATA> 24 20 18 30 38 34 20 44
DATA> 26 28 14 30
DATA> END

MTB > print c1-c3

Data Display

Row subjects drug score

1 1 1 30
2 1 2 28
3 1 3 16
4 1 4 34
5 2 1 14
6 2 2 18
7 2 3 10
8 2 4 22
9 3 1 24

10 3 2 20
11 3 3 18
12 3 4 30
13 4 1 38
14 4 2 34
15 4 3 20

4 4 4416
17 5 1 26
18 5 2 28
19 5 3 14
20 5 4 30

Results for: repeat1.MTW

MTB > GLM ’score’ = Subjects drug;
SUBC> Random ’Subjects’;
SUBC> Brief 2 ;
SUBC> EMS.
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Subjects random 5 1, 2, 3, 4, 5
drug fixed 4 1, 2, 3, 4

Analysis of Variance for score, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Subjects 680.80 680.80 170.20 18.11 0.000
drug 698.20 698.20 232.73 24.76 0.000
Error 112.80 112.80 9.40
Total

4
3
12
19 1491.80

S = 3.06594 R-Sq = 92.44% R-Sq(adj) = 88.03%

Expected Mean Squares, using Adjusted SS

Expected Mean Square
Source for Each Term

1 Subjects (3) + 4.0000 (1)
2 drug (3) + Q[2]
3 Error (3)

Error Terms for Tests, using Adjusted SS

Synthesis
Source Error DF Error MS of Error MS

1 Subjects 12.00 9.40 (3)
2 drug 12.00 9.40 (3)

Variance Components, using Adjusted SS

Estimated
Source Value
Subjects 40.200
Error 9.400

General Linear Model: score versus Subjects, drug

Factor Type Levels Values

The calculated F value of 24.76 is greater than 3.49; hence, there are
significant differences in the four drugs’ means. Alternatively, since the p
value = 0.000 << 0.05, we would, therefore, strongly reject the null, leading
to the same conclusion. We observe immediately that the residual SS of 793.60
in model (18.1) has been reduced to 112.80 in model (18.2), a reduction of
almost 86 %, which is attributable to the subject-to-subject variation.

The mean scores plot for the four drugs are presented in Fig. 18.1. Clearly,
drug 4 has the highest mean while drug 3 has the lowest mean.
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Fig. 18.1 Drugs mean score plots

We present below the implementation of the above analysis using the
multivariate approach. The results displayed are equivalent.

MTB > ANOVA ’score’ = subjects drug;
SUBC> Random ’subjects’;
SUBC> MANOVA;
SUBC> NoUnivariate.

ANOVA: score versus subjects, drug

MANOVA for subjects s = 1 m = 1.0 n = 5.0

Criterion Test Statistic F DF P
-------------------------------------------------------------------
Wilk’s
Lawley-Hotelling
Pillai’s

0.14214 18.106 ( 4,
6.03546 18.106 ( 4,
0.85786 18.106 ( 4,

12)
12)
12)

0.000
0.000
0.000

64530.6s’yoR

MANOVA for drug s = 1 m = 0.5 n = 5.0

Criterion Test Statistic F DF P
-------------------------------------------------------------------
Wilk’s 0.13909 24.759 ( 0.000
Lawley-Hotelling 6.18972 24.759 ( 0.000
Pillai’s 0.86091 24.759 (

3,
3,
3,

12)
12)
12) 0.000

27981.6s’yoR
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18.2.1 Correlation Within Subjects

The estimated correlation within subjects can be calculated as

ρ̂ =
σ2

subj

σ2
subj + σ2

ε

=
40.20

40.20 + 9.40
= 0.810 (18.3)

From the variance components estimates, we have σ2
subj = 40.20 and

σ̂2
ε = 9.40. Consequently, ρ̂ = 0.810, which clearly indicates high correlations

within subjects. This would be the correlation structure under the compound
symmetry assumption where the variance covariance structure now reduces to

Variances and covariances under the compound symmetry

y1 y2 y3 y4

y1 σ2 ρσ2 ρσ2 ρσ2

y2 ρσ2 σ2 ρσ2 ρσ2

y3 ρσ2 ρσ2 σ2 ρσ2

y4 ρσ2 ρσ2 ρσ2 σ2

18.3 Two Factors with Repeated Measures
on One Factor

For a two-factor case, consider the example below to evaluate the effect of
a new vaccine on discomfort due to arthritis. Here, multiple measurements
(month1, month2, and month3) are taken on each subject, resulting in a two-
factor experiment (vaccine and visits) with repeated measures taken over one
of the factors (visits).

Example 18.3.1

A pilot study was conducted on eight patients to evaluate the effect of a
new vaccine on discomfort due to arthritic outbreaks. Four patients were
randomly assigned to receive an active vaccine and four to receive a placebo.
Patients were asked to return to the clinic monthly for 3 months and evaluate
their comfort level with routine daily chores during the preceding month on
a scale of 0 (no discomfort) to 10 (maximum discomfort). Eligibility criteria
required patients to have a rating of at least an 8 in the month prior to
vaccination. The rating data are displayed in Table 18.4. Is there evidence of
a difference in response profiles between the active and placebo vaccines?



704 18 Repeated Measures Design

Table 18.4 Data for Example 18.1.2

Visits

Vaccine Subjects Month 1 Month 2 Month 3

Active 101 6 3 0
103 7 3 1
104 4 1 2
107 8 4 3

Placebo 102 6 5 5
105 9 4 6
106 5 3 4
108 6 2 3

The analysis of the above data is similar to a split-plot analysis discussed in
Chap. 15. Hence, the model specification is similar. The model for the above
data is given by

yijk = μ + vi + eik + mj + (vm)ij + εijk

i = 1, 2, j = 1, 2, 3, k = 1, 2, 3 (18.4)

where μ is the general mean, vi is the effect of the ith vaccine, eik is the
random error term for subjects within treatments (vaccines) with variance σ2

e ,
mj is the effect of the jth month, (vm)ij is the interaction between vaccines
and and month of visit, and εijk is the identically normal distributed random
error term on repeated measures with variance σ2.

The table of mean scores is displayed as

Visiting months

Vaccines 1 2 3 Mean

Active 6.25 2.75 1.50 3.52
Placebo 6.50 3.50 4.5 4.83

Mean 6.38 3.13 3.00 4.17

The observed profile mean scores for each vaccine at each month of visit are
presented in Fig. 18.2.

The MINITAB implementation of the analysis of the data is presented in
what follows:

MTB > print c1-c4
Data Display

Row VAC subjects visit score
--------------------------------
1
2
3
4
5
6

1
1
1
1
1
1

101
101
101
103
103
103

1
2
3
1
2
3

6
3
0
7
3
1
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20 2 106 2 3
21 2 106 3 4
22 2 108 1 6
23 2 108 2 2
24 2 108 3 3

MTB > GLM ’score’ = VAC subjects(vac) visit vac*visit;
SUBC> Random ’subjects’;
SUBC> Brief 1 ;
SUBC> Means VAC visit.

General Linear Model: score versus VAC, visit, subjects

Factor Type Levels Values
VAC fixed 2 1 2
subjects(VAC)random 8 101 103 104 107 102 105 106 108
visit fixed 3 1 2 3

Analysis of Variance for score, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
VAC 10.667 10.667
subjects(VAC) 25.333 4.222
visit 58.583 29.292
VAC*visit 8.583 4.292

2.53
4.16
28.89
4.23

0.163
0.017
0.000
0.041

Error 12.167 1.014
Total

1
6
2
2
12
23

10.667
25.333
58.583
8.583
12.167
115.333

Least Squares Means for score

VAC
1
2
visit
1
2
3

Mean
3.500
4.833

6.375
3.125
3.000

7 1 104 1 4
8 1 104 2 1
9 1 104 3 2
10 1 107 1 8
11 1 107 2 4
12 1 107 3 3
13 2 102 1 6
14 2 102 2 5
15 2 102 3 5
16 2 105 1 9
17 2 105 2 4
18 2 105 3 6
19 2 106 1 5

Our analysis shows that the interactions between vaccines and visits are
significant. Further, it also shows that there are no significant differences
between the two vaccines, although vaccine 2 shows a higher discomforting
effect on patients. Similarly, for the visits, visit 1 clearly shows the most
significant difference in discomforting scores among patients. The second and
third visit scores are not significant. These results are displayed in Fig. 18.2.
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The corresponding interaction plots are also presented in Fig. 18.3.
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18.3.1 Calculations

The calculations of the sum of squares displayed by MINITAB are computed
as follows from Table 18.4. We may note here that the F value computed for
vaccine effect is not correct. The correct value is displayed in the calculated
ANOVA table below. The analysis is the familiar split-plot design analysis.

Total SS = 62 + 32 + · · · + 32 − 1002

24
= 115.3333

Subj SS =
92 + 112 + · · · + 112

3
− 1002

24
= 25.3333

Visit SS =
512 + 252 + 242

8
− 1002

24
= 58.5833

Vac SS =
422 + 582

12
− 1002

24
= 10.6667

int SS* =
252 + 112 + · · · + 182

4
− 1002

24
= 77.8333

Hence,

Vac × Visit SS = (int SS) − Vac SS − Visit SS

= 77.8333 − 10.6667 − 58.5833 = 8.5833

Source d.f. SS MS F

Between subjects 7 25.3333
Vaccine 1 10.6667 10.6667 2.53 ns

Subj (vac) 6 25.3333 4.2222
Visit 2 58.5833 29.2917 28.89∗∗

Vac*visit 2 8.5833 4.2917 4.23∗

Error 12 12.1667 1.0139

Total 23 115.3333
∗ Significance at 5%

∗∗ Significance at 1%

18.3.2 Multivariate Approach

The analysis above is the univariate approach to repeated-measures design
data. Sometimes, this approach may not be enough. The univariate analysis
assumes what we call sphericity assumption. This assumption assumes, in
our example here for instance, that the three correlations r12, r13, and r23
between the three visits are all about the same in size, and that any differ-
ences observed can only be due to sampling variation. The sphericity test
is often accomplished with Mauchly’s test of sphericity, and if the assump-
tion is violated, a correction factor called epsilon is usually applied by most
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statistical software to the error degrees of freedom before calculating the F
value. Other softwares use the Greenhouse–Geisser epsilon or the Huynh–
Feldt epsilon. Values of these close to one indicate that the assumption is not
being violated. Smaller values indicate that the assumption is being violated
and adjustments need to be made to the error degrees of freedom. In this
example, both tests give ε̂ = 0.9567 and 1.3941 respectively.

To implement the multivariate approach to repeated measures data, we
first transform the data in this example to the format below together with
the relevant MINITAB command to perform the analysis.

MTB > print c1-c5

Data Display

Row vac subj y1 y2 y3
1 1 101 6 3 0
2 1 103 7 3 1
3 1 104 4 1 2
4 1 107 8 4 3
5 2 102 6 5 5
6 2 105 9 4 6
7 2 106 5 3 4
8 2 108 6 2 3

MTB > GLM ’y1’ ’y2’ ’y3’ = vac;
SUBC> MANOVA vac / Error;
SUBC> NoUnivariate;
SUBC> Means vac.

General Linear Model: y1, y2, y3 versus vac

MANOVA for vac
s = 1 m = 0.5 n = 1.0

Test DF
Criterion Statistic F Num Denom P
Wilks’ 0.30969 2.972 3 4 0.160
Lawley-Hotelling 2.22906 2.972 3 4 0.160
Pillai’s 0.69031 2.972 3 4 0.160
Roy’s 2.22906

The results presented indicate, by examining the appropriate p values that
there is no significant difference between the vaccines scores. The p value is
similar to the earlier analysis, which is often referred to as “between-subjects”
analysis.

Example 18.3.2

A study was conducted on human subjects to measure the effects of three
foods on serum glucose levels. Each of the three foods was randomly as-
signed to four subjects. The serum glucose mass was measured for each of the
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subjects at 15, 30, and 45 min after the food was ingested. The data are
displayed in Table 18.5.

We can analyze the data in MINITAB by first entering the data and noting
that the levels of time are equally spaced; thus, we can fit a quadratic model
to both main effect and interaction terms in the model. We present the
MINITAB statements below.

Table 18.5 Serum glucose levels for this example

Time (min)

Diets Subjects 15 30 45

1 1 28 34 32
2 15 29 27
3 12 33 28
4 21 44 39

2 5 22 18 12
6 23 22 10
7 18 16 9
8 25 24 15

3 9 31 30 39
10 28 27 36
11 24 26 36
12 21 26 32

DATA> 28 34 32 15 29 27 12 33 28 21 44 39
DATA> 22 18 12 23 22 10 18 16 9 25 24 15
DATA> 31 30 39 28 27 36 24 26 36 21 26 32
DATA> end
MTB > print c1-c4

Data Display

Row Diet subjects Time mass

1 1 1 1 28
2 1 1 2 34
3 1 1 3 32
4 1 2 1 15
5 1 2 2 29
6 1 2 3 27

MTB > set c1
DATA> (1:3)12
DATA> end
MTB > set c2
DATA> (1:12)3
DATA> end
MTB > set c3
DATA> 12(1:3)
DATA> end
MTB > set c4
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................................
27 3 9 3 39
28 3 10 1 28
29 3 10 2 27
30 3 10 3 36
31 3 11 1 24
32 3 11 2 26
33 3 11 3 36
34 3 12 1 21
35 3 12 2 26
36 3 12 3 32

MTB > GLM ’mass’ = Diet subjects(Diet) Time Diet*Time;
SUBC> Random ’subjects’;
SUBC> Brief 2 ;
SUBC> Means Diet Time Diet*Time;
SUBC> Pairwise Diet Time;
SUBC> Tukey;
SUBC> NoCI.

General Linear Model: mass versus Diet, Time, subjects

Factor Type Levels Values
Diet fixed 3 1 2 3
subjects(Diet) random 12 1 2 3 4 5 6 7 8 9 10 11 12
Time fixed 3 1 2 3

Analysis of Variance for mass, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Diet 2 1020.67 1020.67 510.33 11.11 0.004
subjects(Diet) 9 413.33 413.33 45.93 6.45 0.000
Time 2 170.17 170.17 85.08 11.95 0.000
Diet*Time 4 869.67 869.67 217.42 30.53 0.000
Error 18 128.17 128.17 7.12
Total 35 2602.00

Least Squares Means for mass

Diet Mean
1 28.50
2 17.83
3 29.67

Time
1 22.33
2 27.42
3 26.25

Variance Components, using Adjusted SS

Source  Value
subjects(Diet)  12.935
Error  7.120

Estimated
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2 1 22.00
2 2 20.00
2 3 11.50
3 1 26.00
3 2 27.25
3 3 35.75

MTB > GLM ’mass’ = Diet subjects( Diet) Time Diet* Time;
SUBC> Random ’subjects’;
SUBC> Brief 2 ;
SUBC> EMS;
SUBC> Means Diet Time Diet* Time.

General Linear Model: mass versus Diet, Time, subjects

Factor Type Levels Values
Diet fixed 3 1, 2, 3
subjects(Diet) random 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Time fixed 3 1, 2, 3

Analysis of Variance for mass, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Diet 2 1020.67 1020.67 510.33 11.11 0.004
subjects(Diet) 9 413.33 413.33 45.93 6.45 0.000
Time 2 170.17 170.17 85.08 11.95 0.000
Tl 1 92.04 92.04 92.04 12.93 0.002
Tq 1 78.12 78.12 78.12 10.97 0.004

Diet*Time 4 869.67 869.67 217.42 30.53 0.000
Diet*Tl 2 631.08 631.08 315.54 44.32 0.000
Diet*Tq 2 238.58 238.58 119.29 16.75 0.000

Error 18 128.17 128.17 7.12
Total 35 2602.00

S = 2.66840 R-Sq = 95.07% R-Sq(adj) = 90.42%

Variance Components, using Adjusted SS

Estimated
Source Value
subjects(Diet) 12.935
Error 7.120

Diet*Time
1 1 19.00
1 2 35.00
1 3 31.50
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The table of mean scores for the interaction is displayed in the following:

Time

Diets 1 2 3 Mean

1 19.00 35.00 31.50 28.50
2 22.00 20.00 11.50 17.83
3 26.00 27.25 35.75 29.67

Mean 22.33 27.42 26.25 25.33

We observe that the levels for time are equally spaced; hence, we can partition
the effects of time into both linear and quadratic components, each based on
1 d.f. Similar partitioning can be made for the Diet*Time interaction leading
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Fig. 18.4 Diet and time interaction plot

to 2 d.f. each for these components. The components are designated TL, TQ,
D*TL, and D*TQ, respectively in the above MINITAB ANOVA table, and
are generated with the following statements in MINITAB.

MTB > code (1) -1 (2) 0 (3) 1 c3 c5 -----TL (linear)
MTB > code (1) 1 (2) -2 (3) 1 c3 c6 -----TQ (quadratic)

MTB > GLM ’mass’ = Diet subjects( Diet) Tl Tq Diet* Tl Diet * Tq;
SUBC> Covariates ’Tl’ ’Tq’;
SUBC> Random ’subjects’;
SUBC> Brief 2 .
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Results

(a) For Diet 1: There is an increase in mass from time 1 to time 2, and then
a drop in mass between time 2 and time 3.

(b) For Diet 2: There is a decrease from time 1 to time 2, and then from time
2 to time 3. Thus, there are significant mass losses in succession from
time 1 to time 3.

(c) For Diet 3: There are significant increases from time 1 to time 2 and
again from time 2 to time 3 (Fig. 18.4).

The relationship between the interaction between diet and time is best
described by a quadratic model.

Example 18.3.3

This example is data on arthritis from a study involving a two-factor type
joint problem (hip or shoulder), dose (drug administered) at three levels,
and motion measurements recorded for each subject at four different times.
The author unfortunately lost the original source for this data but is, hereby,
duly acknowledged. The responses are motion scores recorded over a period
of 10 h. The data are presented in Table 18.6.

We use MINITAB to analyze the data, but we present a partial output for
the data to indicate how the data was read in.

Table 18.6 Arthritis pain data repeated over over 12 combinations of dose and time

Time

Joint Dose Subject 2 4 6 10

Hip 1.0 1 27 32 39 28
2 29 31 36 21
3 37 44 47 33

2.0 4 38 44 53 43
5 31 34 41 35
6 53 55 58 44

3.0 7 53 55 60 49
8 42 47 48 43
9 64 64 69 62

Shoulder 1.0 10 23 31 33 19
11 17 28 31 20
12 27 37 40 27

2.0 13 33 41 48 43
14 26 30 37 32
15 38 44 49 33

3.0 16 47 50 48 53
17 43 42 45 47
18 58 56 60 61
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------------------------------------

MTB > GLM ’y’ = Joint Dose Joint* Dose Subj( Joint Dose) Time Joint* Time &
CONT> Dose* Time Joint* Dose* Time;
SUBC> Random ’Subj’;
SUBC> Brief 2 ;
SUBC> EMS;
SUBC> Means Joint* Time Dose* Time.

General Linear Model: y versus Joint, Dose, Time, Subj

Factor Type Levels Values
Joint fixed 2 1, 2
Dose fixed 3 1, 2, 4
Subj(Joint Dose)  rando

14, 15, 16, 17, 18
Time fixed 4 2, 4, 6, 10

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Joint 1 512.00 512.00 512.00 2.46

Dose 2 5839.53 5839.53   2919.76 14.01 0.001
Joint*Dose 2 20.58 20.58 10.29 0.05 0.952
Subj(Joint Dose) 12 2501.33 2501.33 208.44 32.34 0.000
Time 3 888.06 888.06 296.02 45.93 0.000
Joint*Time 3 53.67 53.67 17.89 2.78 0.055

Dose*Time 6 256.36 256.36 42.73 6.63 0.000
Joint*Dose*Time 6 66.42 66.42 11.07 1.72 0.145
Error 36 232.00 232.00 6.44
Total 71 10369.94

Data Display

Row

4       1      1      1     10  28
5       1      1      2      2  29
6       1      1      2      4  31
7       1      1      2      6  36
8       1      1      2     10  21
9       1      1      3      2  37
10       1      1      3      4  44
11       1      1      3      6  47
12       1      1      3     10  33

61       2      4     16      2  47
62       2      4     16      4  50
63       2      4     16      6  48
64       2      4     16     10  53
65       2      4     17      2  43
66       2      4     17      4  42
67       2      4     17      6  45
68       2      4     17     10  47
69       2      4     18      2  58
70       2      4     18      4  56
71       2      4     18      6  60
72       2      4     18     10  61

1
2
3

Joint Dose
1
1
1

1
1
1

Subj
1
1
1

Time
2
4
6

y
27
32
39

0.143

18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
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Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Joint 1 512.00 2.46 0.143
Dose 2 2919.76 14.01 0.001
Joint*Dose 2 10.29 0.05 0.952
Subj(Joint Dose) 12 208.44 32.34 0.000
Time 3 296.02 45.93 0.000
Joint*Time 3 17.89 2.78 0.055
Dose*Time 6 42.73 6.63 0.000
Joint*Dose*Time 6 11.07 1.72 0.145
Error 36

512.00
5839.53
20.58

2501.33
888.06
53.67
256.36
66.42
232.00 6.44

Total 71

512.00
5839.53
20.58

2501.33
888.06
53.67
256.36
66.42
232.00

10369.94

S = 2.53859 R-Sq = 97.76% R-Sq(adj) = 95.59%

Variance Components, using Adjusted SS

Estimated
Source Value
Subj(Joint Dose) 50.500
Error 6.444

Least Squares Means for y

Joint*Time Mean
1 2
1 4
1 6
1 10
2 2
2 4
2 6
2 10
Dose*Time
1 2
1 4
1 6
1 10
2 2
2 4
2 6
2 10
4 2
4 4
4 6
4 10

41.56
45.11
50.11
39.78
34.67
39.89
43.44
37.22

26.67
33.83
37.67
24.67
36.50
41.33
47.67
38.33
51.17
52.33
55.00
52.50

S = 2.53859 R-Sq = 97.76% R-Sq(adj) = 95.59%

Results

1. The analysis of variance table for the data is presented above in the
MINITAB output.

2. The joint type effects are not significant.
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3. The dose effects are significant, and so is the interaction between dose and
time at 5 % level of significance.

4. The time effects are also significantly different.
5. The dose, time, and dose*time interaction effects can be partitioned

into various components since their levels are chosen for the appropriate
utilization of orthogonal polynomials.

6. However, the interaction display in Fig. 18.5 shows that the motion in-
creases for each dose level. For dose levels 1 and 2, motions increase
steadily until about the sixth hour and then drop sharply for both levels
of drugs.

7. The third level of dose sees steady increase, and the drop is not very sharp.

10642

55

50

45

40

35

30

25

Time

M
ea

n

1
2
4

Dose

Interaction Plot for y
Fitted Means

Fig. 18.5 Interaction plot of dose and time

18.4 Exercises

1. The following exercise is adapted and relates to measured pulses of sub-
jects at three intensity levels: (1) taking at the warm-up exercising trial,
(2) pulse measurement taken after running. The factors of interest are the
variable diet, which denotes dietary preference, with values of 1 signifying
meat eaters and 2 signifying vegetarians and variable exertype, which is
the type of exercise assigned to the subjects, with 1 signifying aerobic
stairs, 2 signifying racquet ball, and 3 signifying weight training.
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Intensity

Exertype Diet Subject 1 2 3

1 1 1 112 166 215
2 111 166 225
3 89 132 189

2 4 95 134 186
5 66 109 150
6 69 119 177

2 1 7 125 177 241
8 85 117 186
9 97 137 185

2 10 93 151 217
11 77 122 178
12 78 119 173

3 1 13 81 134 205
14 88 133 180
15 88 157 224

2 16 58 99 131
17 85 132 186
18 78 110 164

The observations are, thus, repeated three times. Analyze the above data
as a repeated-measures design using the univariate approach. Draw your
conclusions.

2. The following is taken with permission from Rao (1998) and relates to
the study of a new drug on total cholesterol of subjects measured at six
4-week periods. (Hirotsu 1993).

Period

Treatment Subject 1 2 3 4 5 6

Drug 1 317 280 275 270 274 266
2 186 189 190 135 197 205
3 377 395 368 334 338 334
4 229 258 282 272 264 265
5 276 310 306 309 300 264
6 272 250 250 255 228 250
7 219 210 236 239 242 221
8 260 245 264 268 317 314
9 284 256 241 242 243 241
10 365 304 294 287 311 302
11 298 321 341 342 357 335
12 274 245 262 263 235 246
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Placebo 13 232 205 244 197 218 233
14 367 354 358 333 338 355
15 253 256 247 228 237 235
16 230 218 245 215 230 207
17 190 188 212 201 169 179
18 290 263 291 312 299 279
19 337 337 383 318 361 341
20 283 279 277 264 269 271
21 325 257 288 326 293 275
22 266 258 253 284 245 263
23 338 343 307 274 262 309

(a) Why would the data above be considered as a repeated-measure study?
(b) Analyze the data and draw your conclusions.



Chapter 19
Survival Analysis

19.1 Introduction

In the health sciences, survival analysis is often used to model the time du-
ration until the occurrence of an event—usually death (often referred to as
the survival time). These survival time durations arise as a result of subjects
being followed over time until they reach a specified endpoint or the event
of interest occurs. An example of this is time to death of females who are
diagnosed with breast cancer. Here, the event is death. Another example is
the length of time a particular disease in humans remains in remission. The
distribution of survival times is often skewed to the right and analysis often
focuses on the probability that the individual survives for a given length of
time. In time to event studies, subjects often leave the study either through
death or are lost through follow-up or willingly leave the study. In other sit-
uations, some patients are not followed until death because of the expiration
of the study at a specified time. Censoring occurs when an event of interest
(e.g., remission, death, recovery) has not occurred by the time observations
were made, so that all we knew at that point in time is that, the individual
has survived at least up to some time). Thus censoring can not be glossed
over as they carry important information about the factor of interest.

Survival analysis has also found applications in engineering where the time
to failure (often described as the accelerated failure time model) of a com-
ponent is of interest. Another area that survival analysis has found use is in
the behavioral sciences, particularly in the study of recidivism, involving the
duration (in months or weeks) when prisoners are released and rearrested.

19.2 Censoring

Censoring introduces complications to the statistical analysis of survival data.
It is, however, important to distinguish even if we are not going to treat the
various censoring schemes here. We describe briefly these schemes below.

719B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 19,
c© Springer International Publishing Switzerland 2014
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(i) Right Censoring: It occurs when we do not yet observe the event of
interest at the end of the study (time t) but we do know that the event
occurs after time t.

(ii) Left Censoring: This is a situation when we do know that the event
of interest occurs at some time t0 which is less than t. This often occurs
when observations are obtained on patients at fixed appointment times
(say, every 3 months), and that only at the next appointment do we
realize that the event (such as death) has occurred some time between
the last visit and the current visit. So, survival time is left than the
observation time t.

(iii) Interval Censoring: This occurs when the event is known to have
occurred during an interval.

19.3 Describing Event Times

If we use T to denote the survival time, then the survival function, designated
as S(t) is defined as the probability that an individual survives past time t.
That is,

S(t) = Pr(T > t) = 1 − F (t), (19.1)

where

F (t) = Pr(T ≤ t),

is the cumulative distribution function. The graph of S(t) against t is called
the the survivor curve.

19.4 Estimating the Survival Function S(t)

From (19.1), we have S(t) = 1 − F (t), hence, 0 < S(t) < 1. That is, S(t)
is a decreasing function of t. For situations involving censored data, survival
functions or curves can be estimated by the method of product limit or the
Kaplan–Meier (KM) estimator and the life table method.

19.4.1 The Kaplan–Meier Method

We illustrate the Kaplan–Meier method with the following example taken
from Sedmak et al. (1989) which relates to female breast cancer patients
originally classified as lymph node-negative by standard light microscopy
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(SLM). The data in Table 19.1 give the times to death in months of a random
sample of 45 female breast cancer patients with a minimum of 10 years follow-
up from the Ohio State University Hospitals Cancer Registry. Of these 45
patients, 36 were immunoperoxidase-negative while the remaining 9 were
positive. A status of 0 denotes a censored observation, that is, patients lost
to follow-up, or patient was withdrawn alive.

Table 19.1 Times to death for 45 breast cancer patients

Immunoperoxidase-negative Immunoperoxidase-positive

Sub. Time Status Sub. Time Status Sub. Time Status Sub. Time Status

1 19 1 13 67 1 25 143 0 37 22 1
2 25 1 14 74 1 26 148 0 38 23 1
3 30 1 15 78 1 27 151 0 39 38 1
4 34 1 16 86 1 28 152 0 40 42 1
5 37 1 17 122 0 29 153 0 41 73 1
6 46 1 18 123 0 30 154 0 42 77 1
7 47 1 19 130 0 31 156 0 43 89 1
8 51 1 20 130 0 32 162 0 44 115 1
9 56 1 21 133 0 33 164 0 45 144 0
10 57 1 22 134 0 34 165 0
11 61 1 23 136 0 35 182 0
12 66 1 24 141 0 36 189 0

The KM method can be implemented in MINITAB by utilizing the nonpara-
metric KM method. This is accomplished with the following menu selection
in MINITAB.

Stat > Reliability/Survival > Distribution Analysis (Right Cen-
soring) > Nonparametric Distribution Analysis

We present the corresponding MINITAB statements and partial output
for the analysis of the data in Table 19.1. We note here that we changed
the days for patient 20 from 130 to 131 to avoid ties and our initial analysis
ignores the treatment effects.
We present a partial MINITAB output for the analysis of the data.

\scriptsize
\begin{verbatim}

Obs tsurv censor trt

1 1 0
2 1 0
3 1 0
4 1 0
5 1 0

19
25
30
34
37

6 1 0
7 1 0
8 1 0
9 1 0

46
47
51
56
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Censoring Information Count
Uncensored value 24
Right censored value 21

Censoring value: censor = 0

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

117.378 10.5414 96.7170 138.039

SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.

Distribution Analysis: surv

Variable: surv

10 1 0
11 1 0
12 1 0
13 1 0
14 1 0
15 1 0
16 1 0
17 0 0
18 0 0
19 0 0
20 0 0
21 0 0
22 0 0
23 0 0
24 0 0
25 0 0
26 0 0
27 0 0
28 0 0
29 0 0
30 0 0
31 0 0
32 0 0
33 0 0
34 0 0
35 0 0
36 0 0
37 1 1
38 1 1
39 1 1
40 1 1
41 1 1
42 1 1
43 1 1
44 1 1
45

57
61
66
67
74
78
86
122
123
130
131
133
134
136
141
143
148
151
152
153
154
156
162
164
165
182
189
22
23
38
42
73
77
89
115
144 0 1

MTB > Ltest ’surv’;
SUBC> Noparametric;
SUBC> Splot;
SUBC> CFPlot;
SUBC> Hplot;
SUBC> Xminimum 0;
SUBC> Brief 2;
SUBC> KMEstimates;
SUBC> Confidence 95.0;

Median = 89
IQR = * Q1 = 51 Q3 = *
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Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI
Time at Risk Failed Probability Error Lower Upper
19 0.0219739 0.934710 1.00000
22 0.0307207 0.895344 1.00000
23 0.0371849 0.860452 1.00000
25 0.0424232 0.827963 0.99426
30 0.0468486 0.797067 0.98071
34 0.0506745 0.767347 0.96599
37 0.0540284 0.738551 0.95034
38 0.0569937 0.710517 0.93393
42 0.0596285 0.683130 0.91687
46 0.0619748 0.656309 0.89925
47 0.0640644 0.629992 0.88112
51 0.0659218 0.604129 0.86254
56 0.0675660 0.578684 0.84354
57 0.0690122 0.553627 0.82415
61 0.0702728 0.528934 0.80440
66 0.0713576 0.504586 0.78430
67 0.0722744 0.480567 0.76388
73 0.0730297 0.456864 0.74314
74 0.0736283 0.433469 0.72209
77 0.0740741 0.410373 0.70074
78 0.0743698 0.387571 0.67910
86 0.0745172 0.365060 0.65716
89 0.0745172 0.342838 0.63494
115

45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0 77778
0 55556
0 33333
0 11111
0 88889
0 66667
0 44444
0 22222
0 00000
0 77778
0 55556
0 33333
0 11111
0 88889
0 66667
0 44444
0 22222
0 00000
0 77778
0 55556
0 33333
0 11111
0 88889
0.

.9

.9

.9

.9

.8

.8

.8

.8

.8

.7

.7

.7

.7

.6

.6

.6

.6

.6

.5

.5

.5

.5

.4
466667 0.0743698 0.320905 0.61243

From the above KM estimates, at 56 months, for instance, the survival prob-
ability is 0.7111, indicating that the estimated probability that a patient will
survive for 56 or more months is 0.7111. Similarly, the estimated survival
probability for any time from 56 months up to (but not including) 57 months
is 0.6889. We note that after 115 months, the largest censoring time, the
KM estimate is undefined. The median death time, provided by the 50th
percentile (labeled quantiles) is 89 months.

19.4.2 Computing Survival Probabilities

We observe that patient 1 lived for 19 months before she died. In general, a
survival time of t months implies that a patient survived until time t. Thus,
one of the patients died at 19 months, and the proportion of patients dying
in this period is estimated as

1q19 =
1
45

= 0.0222

The proportion who survived in this period is, therefore

Ŝ(19) = 1 − 1q19 = 1 − 0.0222 = 0.9778

The estimated Ŝ(19) and Ŝ(22) are obtained from the multiplicative rule of
probability, where

P (A ∩ B) = P (A)P (B|A)
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where P (A) represents the probability that the patient is alive during the
period 0–18 months and P (B) the probability that the patient survives at
time t. The probability, therefore, that patients survive longer than 18 months
is P (A ∩ B). We may note here that both Ŝ(0) = Ŝ(18) = 1.

One of the remaining 44 patients died at 22 months, and therefore

1q22 =
1
44

= 0.0227

The probability of living longer than 22 months is, therefore, estimated as:

Ŝ(22) = Ŝ(19)[1 − 1q22] = (0.9778)(0.9773) = 0.9556.

Similarly, one of the remaining 43 patients died at 23 months, and therefore

1q23 =
1
43

= 0.0233.

The probability of living longer than 23 months is therefore estimated as

Ŝ(23) = Ŝ(22)[1 − 1q23] = (0.9556)(0.9767) = 0.9333.

The other surviving probabilities are computed similarly. These estimated
probabilities are presented in the column labeled “survival probability” in
the MINITAB output above.

In the above MINITAB statements, we request that plots be made of
S-Splot and CF-CFplot, the estimated survival and cumulative survival func-
tions, respectively, against time. These are displayed in Fig. 19.1. The LS
(the negative log of the estimated survival functions against time) gives us
an idea as to whether the distribution of days follows an exponential or a
Weibull distribution.

19.4.3 The Life Table Method

This method is usually suitable for large data sets if event times are precisely
measured. The method is also often referred to as the actuarial method and
is implemented as follows in MINITAB.

Stat > Reliability/Survival > Distribution Analysis (Right
Censoring) > Nonparametric Distribution Analysis > Estimate
(actuarial-and specify beginning and end points)

The latter part of the above statement is the Intby 200 20; in the MINITAB
statements below.
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MTB > Ltest ’surv’;
SUBC> Noparametric;
SUBC> Splot;
SUBC> CFPlot;
SUBC> Xminimum 0;
SUBC> Brief 2;
SUBC> Intby 200 20;
SUBC> Confidence 95.0;
SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.

Distribution Analysis: surv

Variable: surv

Censoring Information Count
Uncensored value 24
Right censored value 21

Censoring value: censor = 0

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Median Error Lower Upper

95 33.5410 29.2608 160.739

Additional Time from Time T until 50% of Running Units Fail

Proportion
of Running Additional Standard 95.0% Normal CI

Time T Units Error Lower Upper
20 0.977778

Time
80 33.1662 14.9953 145.005

Actuarial Table

Conditional
Interval Number Number Number Probability Standard

Lower Upper Entering Failed Censored of Failure Error
0 20 45 1 0 0.022222 0.0219739
20 40 44 7 0 0.159091 0.0551405
40 60 37 6 0 0.162162 0.0605974
60 80 31 7 0 0.225806 0.0750952
80 100 24 2 0 0.083333 0.0564169
100 120 22 1 0 0.045455 0.0444095
120 140 21 0 7 0.000000 0.0000000
140 160 14 0 9 0.000000 0.0000000
160 180 5 0 3 0.000000 0.0000000
180 200 2 0 2 0.000000 0.0000000

Survival Standard 95.0% Normal CI
Time Probability Error Lower Upper
20 0.977778 0.0219739 0.934710 1.00000
40 0.822222 0.0569937 0.710517 0.93393
60 0.688889 0.0690122 0.553627 0.82415
80 0.533333 0.0743698 0.387571 0.67910
100 0.488889 0.0745172 0.342838 0.63494
120 0.466667 0.0743698 0.320905 0.61243
140 0.466667 0.0743698 0.320905 0.61243
160 0.466667 0.0743698 0.320905 0.61243
180 0.0743698 0.320905 0.61243
200

0.466667
0.466667 0.0743698 0.320905 0.61243



726 19 Survival Analysis

200150100500

50

40

30

20

10

0

surv

P
er

ce
nt

Mean 117.378
Median 89
IQ R *

Table of Statistics

Cumulative Failure Plot for surv

Censoring Column in censor
Kaplan-Meier Method

200150100500

100

90

80

70

60

50

surv

P
er

ce
nt

Mean 117.378
Median 89
IQ R *

Table of Statistics

Survival Plot for surv

Censoring Column in censor
Kaplan-Meier Method

Fig. 19.1 Plots of estimated survival and cumulative functions under the Kaplan–
Meier method
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As can be seen from this method, the time is first categorized into classes
with equal intervals. In this case, we employ 11 categories (0, 20) up to
(200, .) with 20-month intervals. For instance, the 60-month survival rate is
0.6889 with a standard error of 0.0690. On the other hand, the estimated
median residual lifetime, initially, was 95 months (s.e. = 33.5410) and has
been dropping with it being 80 months at the beginning of the 20 months.
The survival probability is the probability that the subject survives past
the lower limit of that interval. We present the corresponding Survival and
cumulative survival plots under this method in Fig. 19.2.

From the MINITAB output, the conditional probability of failure, which
is an estimate of the probability that a patient will survive in the given
interval, given that he/she made it to the start of the interval is computed
as: (number failed/effective sample size). Thus, for instance, for the intervals
[0, 20), [20, 40), [40, 60), the computation is as follows: In the first interval,
only one of the 45 patients died between 20 (inclusive) and 40 months, and
therefore

1q20 =
1
45

= 0.0222;

Hence, Ŝ(20) = 1 − 0.0222 = 0.9778

Seven of the remaining 44 patients died between 40 and less than 60 months,
and therefore

1q40 =
7
44

= 0.1591.

The probability of living longer than 40 months is, therefore, estimated
(using the multiplicative rule defined earlier) as

Ŝ(40) = Ŝ(20)[1 − 1q40] = (0.9778)(0.8409) = 0.8222.

Similarly, 6 of the remaining 37 patients died between 60 (inclusive) and less
than 80 months, and therefore

1q60 =
6
37

= 0.1622.

The probability of living longer than 60 months is, therefore, estimated as

Ŝ(60) = Ŝ(40)[1 − 1q60] = (0.8222)(0.8378) = 0.6888.

The other surviving probabilities are computed similarly. These estimated
probabilities are presented in the column labeled “survival probability” in
the MINITAB output above.
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Fig. 19.2 Plot of estimated S and CS function under the life table method
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19.4.4 Another Example

The data in Table 19.2 give the remission times in months for ten patients
with tumors (adapted from Friendly).

Table 19.2 Remission times in months for ten tumor patients

Patient Time Censor

1 3.0 1
2 4.0 0
3 5.7 0
4 6.5 1
5 6.5 1
6 8.4 0
7 10.0 1
8 10.1 0
9 12.0 1
10 15.0 1

For the data above, six patients relapsed (censor = 1) after 3.0, 6.5, 6.5, 10.0,
12.0, and 15.0 months. One is lost to follow-up at 8.4 months, while three
are still in remission at the end of study at 4.0, 5.7, and 10.1 months. The
KM method applied to the data gives the following results:

MTB > print c1-c3

Data Display

Row pat time censor
1 1 3.0 1
2 2 4.0 0
3 3 5.7 0
4 4 6.5 1
5 5 6.5 1
6 6 8.4 0
7 7 10.0 1
8 8 10.1 0
9 9 12.0 1
10 10 15.0 1

MTB > Ltest ’time’;
SUBC> Noparametric;
SUBC> Splot;
SUBC> Xminimum 0;
SUBC> Brief 3;
SUBC> KMEstimates;
SUBC> Confidence 95.0;
SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.

Distribution Analysis: time

Variable: time

Censoring Information Count
Uncensored value 6
Right censored value 4

Censoring value: censor = 0
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Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

10.0875 1.52692 7.09479 13.0802

Median = 10
IQR = 5.5 Q1 = 6.5 Q3 = 12

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI
Time at Risk Failed Probability Error Lower Upper
3.0 10 1 0.900000 0.094868 0.714061 1.00000
6.5 7 2 0.642857 0.167949 0.313682 0.97203
10.0 4 1 0.482143 0.187719 0.114221 0.85006
12.0 2 1 0.241071 0.194595 0.000000 0.62247
15.0 1 1 0.000000 0.000000 0.000000 0.00000

Empirical Hazard Function

Hazard
Time Estimates
3.0 0.10000
6.5 0.16667
10.0 0.25000
12.0 0.50000
15.0 1.00000

The survival probabilities computations are similar to the earlier example,
except that we have a tie here at 6.5 months. The survival probability plot
is displayed in Fig. 19.3.
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Fig. 19.3 Plot of estimated survival function based on the Kaplan–Meier method
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Similarly, the actuarial method applied to the data gives the following
results:

Nonparametric Survival Plot for time

MTB > Ltest ’time’;
SUBC> Noparametric;
SUBC> Splot;
SUBC> Xminimum 0;
SUBC> Brief 3;
SUBC> Intby 18 3;
SUBC> Confidence 95.0;
SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.

Distribution Analysis: time

Variable: time

Censoring Information Count
Uncensor ed value 6
Right censore d value 4

Censoring value: censor = 0

Survival Standard 95.0% Normal CI
Time Probability Error Lower Upper

3 1.00000 0.000000 1.00000 1.00000
6 0.88889 0.104757 0.68357 1.00000
9 0.61538 0.176504 0.26944 0.96133
12 0.43956 0.194875 0.05761 0.82151
15 0.21978 0.183428 0.00000 0.57929

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Median Error Lower Upper
10.9687 2.69782 5.68112 16.2564

Additional Time from Time T until 50% of Running Units Fail

Proportion
of Running Additional Standard 95.0% Normal CI

TimeT Units Time Error Lower Upper
3 1.00000 7.96875 2.84375 2.39510 13.5424
6 0.88889 5.91667 2.97443 0.08689 11.7464
9 0.61538 4.80000 2.24499 0.39989 9.2001

12 0.43956 3.00000 2.12132 0.00000 7.1577

Actuarial Table

Conditional
Interval Number Number Number Probability Standard

Lower Upper Entering Failed Censored of Failure Error
0 3 10 0 0 0.00000 0.000000
3 6 10 1 2 0.11111 0.104757
6 9 7 2 1 0.30769 0.181030
9 12 4 1 1 0.28571 0.241473
12 15 2 1 0 0.50000 0.353553
15 18 1 1 0 1.00000 0.000000
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Hazard Standard Density Standard
Time Estimates Error Estimates Error
1.5 0.000000 * 0.0000000 *
4.5 0.039216 0.039148 0.0370370 0.0349189
7.5 0.121212 0.084281 0.0911681 0.0547041
10.5 0.111111 0.109557 0.0586081 0.0523075
13.5 0.222222 0.209513 0.0732601 0.0611426
16.5 0.666667 0.000000 0.0732601 0.0611426

The survival probabilities as well as the survival probability S(t) plot are
displayed in Fig. 19.4.

20151050

100

80

60

40

20

0

time

P
er

ce
n

t

Median 10.9688
Table of Statistics

Survival Plot for time

Censoring Column in censor
Actuarial Method

Fig. 19.4 Plot of estimated survival function based on the life table method

19.5 Testing Survival Times Between Two Groups

What we have done in the previous sections relating to the data in Table 19.1
is to characterize the survival times for a single group (we had ignored that
there are two groups in the study, corresponding to the two treatments) of
patients. However, we would like to compare the distributions of survival
times for the two different groups or populations. We would want to know
whether survival differs significantly between the two treatment groups. The
following MINITAB statements and partial out are used to accomplish this
test.
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SUBC> Splot;
SUBC> Xminimum 0;
SUBC> Brief 2;
SUBC> KMEstimates;
SUBC> Confidence 95.0;
SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.

Distribution Analysis: surv by trt

Variable: surv
trt = 0

Censoring Information Count
Uncensored value 16
Right censored value 20

Censoring value: censor = 0

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

128.167 11.8853 104.872 151.461

Median = *
IQR = * Q1 = 56 Q3 = *

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI
Time at Risk Failed Probability Error Lower Upper
19 36 1 0.972222 0.0273893 0.918540 1.00000
25 35 1 0.944444 0.0381769 0.869619 1.00000
30 34 1 0.916667 0.0460642 0.826382 1.00000
34 33 1 0.888889 0.0523783 0.786229 0.99155
37 32 1 0.861111 0.0576384 0.748142 0.97408
46 31 1 0.833333 0.0621130 0.711594 0.95507
47 30 1 0.805556 0.0659621 0.676272 0.93484
51 29 1 0.777778 0.0692900 0.641972 0.91358
56 28 1 0.750000 0.0721688 0.608552 0.89145
57 27 1 0.722222 0.0746505 0.575910 0.86853
61 26 1 0.694444 0.0767737 0.543971 0.84492
66 25 1 0.666667 0.0785674 0.512677 0.82066
67 24 1 0.638889 0.0800538 0.481986 0.79579
74 23 1 0.611111 0.0812497 0.451865 0.77036
78 22 1 0.583333 0.0821678 0.422287 0.74438
86 21 1 0.555556 0.0828173 0.393237 0.71787

MTB > Ltest ’surv’;
SUBC> By ’trt’;
SUBC> Noparametric;

Distribution Analysis: surv by trt

Variable: surv
trt = 1

Censoring Information Count
Uncensored value 8
Right censored value 1
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Censoring value: censor = 0

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

69.2222 14.0612 41.6629 96.7816

Median = 73
IQR = 51 Q1 = 38 Q3 = 89

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI
Time at Risk Failed Probability Error Lower Upper

22 9 1 0.888889 0.104757 0.683570 1.00000
23 8 1 0.777778 0.138580 0.506166 1.00000
38 7 1 0.666667 0.157135 0.358688 0.97465
42 6 1 0.555556 0.165635 0.230918 0.88019
73 5 1 0.444444 0.165635 0.119806 0.76908
77 4 1 0.333333 0.157135 0.025355 0.64131
89 3 1 0.222222 0.138580 0.000000 0.49383
115 2 1 0.111111 0.104757 0.000000 0.31643

Distribution Analysis: surv by trt

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value
Log-Rank 5.49427 1 0.019
Wilcoxon 4.35118 1 0.037

The product limit method and the life table method give the same results for
the test of the homogeneity of survival curves for the two groups. The two
tests (log-rank and Wicoxon) indicate that the null hypothesis of homogene-
ity curves for the two groups is not tenable (p value < .05). Hence, we can
say that the survival curves of the two groups significantly differ, with group
1 (trt = 1) more likely to survive longer than group 2 (trt = 0), with mean
survival times being 70.94 and 66 days, respectively (note that these esti-
mates are underestimated because the largest observations in both groups
are censored). We present in Fig. 19.5 the survival curves for both groups
under both methods of estimation.

The following MINITAB statements will also implement the life table
method for the test of homogeneity of the two treatment groups. Results
from this approach are identical to those from the KM method and we do
not reproduce results from the application of this method here.
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MTB > Ltest ’surv’;
SUBC> By ’trt’;
SUBC> Noparametric;
SUBC> Splot;
SUBC> Xminimum 0;
SUBC> Brief 2;
SUBC> Intby 200 20;
SUBC> Confidence 95.0;
SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.
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Fig. 19.5 Plot of estimated survival curves under both Kaplan–Meier methods

19.6 Hazard Function

If we let T be a random variable denoting the time of event occurrence,
then, the hazard function, denoted by h(t), is the probability that a subject
experiences the event of interest in a small interval Δt, given that the subject
has survived to the beginning of this interval. In other words, the hazard
function is the conditional probability of experiencing the event between time
t and t+Δt, given that the subject survived to at least time t. We can express
this mathematically as

h(t) = lim
Δt→0

W (t, t + Δt)
Δt

, (19.2)
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where
W (t, t + Δt) = Pr(t < T < t + Δt | T ≥ t).

The hazard function is sometimes referred to as the conditional failure rate
in reliability, the instantaneous failure rate, or the age-specific failure rate in
epidemiology, the force of mortality in demography, or simply as the hazard
rate function.

Some Basic Properties of h(t)

• h(t) ≥ 0 and can be greater than 1. Thus, h(t) is not a probability.
• If h(t) is constant over time t, then E(T ) = 1/h(t). For instance, if h(t) =

0.32 for all t, and time is measured in months, then 1/0.32 = 3.125 days
is the expected length of time until the event occurs.

• h(t) = (No. of occurrence of events)/(Unit of time), where unit of time
could be days, weeks, months, or years.

19.6.1 Types of Hazard Functions

The hazard function is related to the survival function with the following
expression:

S(t) = exp
(

−
∫ t

0
h(u) du

)

. (19.3)

With S(t) defined above, we have,

h(t) =
f(t)
S(t)

= − d

dt
ln[S(t)].

Thus,

f(t) = h(t) exp
(

−
∫ t

0
h(u) du

)

.

Similarly, the cumulative hazard function H(t) is defined as

H(t) =
∫ t

0
h(u) du = − ln[S(t)].

Thus,

S(t) = exp[−H(t)].

The integral part in (19.3) is referred to as the integrated hazard. We now
consider briefly, two of the most widely used hazard functions: the exponential
and the Weibull models, although we will also employ both the lognormal
and the loglogistic models in our applications.



19.6 Hazard Function 737

(a) The Exponential Model
The Exponential or constant hazard model has the random variable T
being distributed exponentially. Thus, if h(t) = λ for all t, then, the
probability distribution for T is given by

f(t) = λ exp(−λ t). (19.4)

(b) The Weibull Model
Here, the model becomes

lnh(t) = μ + α ln t, where α > −1, (19.5)

and therefore
h(t) = λ0t

α, with λ0 = eμ.

Suppose we now have explanatory variables x1, x2, . . . , xp, then, including
the explanatory variables in each of the above models, we would have

lnh(t) = β0 + β1x1 + β2x2 + · · · + βpxp, (Exponential) (19.6a)

lnh(t) = β0 + β1x1 + β2x2 + · · · + βpxp + α ln t. (Weibull) (19.6b)

The expressions in (19.5) are often described as accelerated failure time (AFT)
models and are members of the family of models known as the proportional
hazard models. In general, an accelerated failure time model with covariates
can be written in the form

lnT = β0 + β1x1 + β2x2 + · · · + βpxp
︸ ︷︷ ︸

covariate parameters

+σε (19.7a)

= βX + σε, (19.7b)

where σ is the shape parameter and ε is the error distribution. Other AFT
models are the Gompertz, the lognormal, the loglogistic, and the generalized
Gamma models (these are not discussed in this book). The accelerated failure
time models for the data in Table 19.1 has a model of the form

lnT = β0 + β1trti + σε. (19.8)

The MINITAB program and the partial output for implementing the model
in (19.8) for the case when ε has the exponential distribution is displayed
below.

In the program, we specify in the model statement the dependent time
variable, the censoring variable with the corresponding level, in this case, the
zeros. On the right hand side of the model statement, we have specified the
covariate (trt) with the relevant distribution. In this case, we are employing
the exponential model. Similar results can be obtained for fitting the other
AFT models by simply specifying the distribution in the model statement.
For instance, the following will fit the Weibull models to the data. We present
in Table 19.3 the log-likelihood for the four AFT models.
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MTB > Ltest’surv’;
SUBC>   By’trt’;
SUBC>   Exponential;
SUBC>   Splot;
SUBC>   Brief 1;
SUBC> LSXY;
SUBC> Confid ence 95.0;
SUBC> TwoCI;
SUBC> TESL;
SUBC> Censor ’censor ’ ;
SUBC> Cvalue 0.

Distribution Analysis: surv by trt

Variable : surv
trt = 0

Censoring Information Count
Uncensored value 16
Right censored value 20

Censoring value: censor = 0

Estimation Method: Least Squares (failure time(X) on rank(Y))

Distribution: Exponential

Parameter Estimates

Standard 95.0% Normal CI
Parameter Estimate Error Lower Upper
Mean 171.415 36.3923 113.066 259.874

Log-Likelihood = -104.491

Goodness-of-Fit
Anderson-Darling (adjusted) = 133.711

Distribution Analysis: surv by trt

Variable: surv
trt = 1

Censoring Information Count
Uncensored value 8
Right censored value 1

Censorin g value: censor = 0

Estimation Method: Least Squares (failure time(X) on rank(Y))

Distribution: Exponential
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Parameter Estimates

Standard 95.0% Normal CI
Parameter Estimate Error Lower Upper
Mean 75.3476 26.2036 38.1108 148.967

Log-Likelihood = -42.845

Goodness-of-Fit
Anderson-Darling (adjusted) = 7.010

Distribution Analysis: surv by trt

Test for Equal Scale Parameters

Chi-Square DF P
4.06971 1 0.044

Scale parameter for surv by trt = 0 divided into:

trt Lower Estimate Upper --+---------+---------+---------+----
1 0.1978 0.4396 0.9769 (---------*--------------------)

--+---------+---------+---------+----
0.25 0.50 0.75 1.00

MTB > Lregression ’surv’ = trt;
SUBC> Factors ’trt’;
SUBC> Exponential;
SUBC> CI;
SUBC> Brief 2;
SUBC> Confidence 95.0;
SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.

Regression with Life Data: surv versus trt

Response Variable: surv

Censoring Information Count
Uncensored value 24
Right censored value 21

Censoring value: censor = 0

Estimation Method: Maximum Likelihood

Distribution: Exponential

Regression Table

Standard 95.0% Normal CI
Predictor Coef Error Z P Lower Upper
Intercept 5.47096 0.25 21.88 0.000 4.98097 5.96095
trt
1 -1.11585 0.433013 -2.58 0.010 -1.96454 -0.267163
Shape 1

Log-Likelihood = -146.376
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We present graphically in Fig. 19.6, the probability plots of the applying the
accelerated failure time models—exponential, weibull, lognormal, and the
loglogistic—both on the full data regarding the covariate (trt) for the data in
Table 19.1 and on the bottom graph, the plots by the two treatment groups.

Distribution ID Plot for surv

MTB > RDIdentification ’surv’;
SUBC> Weibull;
SUBC> Exponential;
SUBC> LNormal;
SUBC> LLogistic;
SUBC> Censor ’censor’;
SUBC> Cvalue 0;
SUBC> LSXY;
SUBC> Ptiles 1 5 10 50;
SUBC> Allpts.

Distribution ID Plot: surv

Goodness-of-Fit

Anderson-Darling Correlation
Distribution (adj) Coefficient
Weibull 140.453 0.966
Exponential 140.640 *
Lognormal 140.287 0.987
Loglogistic 140.328 0.975

From Table 19.3, we notice that the lognormal model provides the best fit in
terms of smallest log-likelihood. For instance, since the Weibull is always the
default for AFT models, a test of the hypotheses

H0 : σ = 1

Ha : σ �= 1,

which tests whether the Weibull scale equals 1 or not for the exponential can
be tested by calculating

−2(log-likelihoodWeibull−log-likelihoodexpo) = 2(−145.785+146.376) = 1.182.

This statistic is distributed as χ2 with 1 degree of freedom. The null hypoth-
esis is rejected if 1.182 > χ2

α, 1, the tabulated χ2
α, 1 value in Table 3 of the

Appendix. Since χ2
0.05, 1 = 3.841, H0 cannot be rejected. The best estimated

AFT model for our data would, therefore, be

l̂og T = 4.95561 − 0.84084 trt. (19.9)

The percent change in a unit increase in the covariate is often com-
puted as 100(eβ̂ − 1). Thus, in our example, the percentage change is:
100(e−0.84084 − 1) = −56.87 %. In other words, immunoperoxidase-negative
patients can expect their survival times to be decreased by about 56.87 %, or
put in another way, immunoperoxidase-negative subjects are e−.84084 = 0.43
times more likely than immunoperoxidase-positive ones to survive longer. We
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Fig. 19.6 Estimated probability plots for four accelerated failure time (AFT ) models
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Table 19.3 Results of fitting four accelerated failure time (AFT ) models to our
data

Parameter estimates

Model Log-likelihood α̂ β̂

Exponential −146.376 5.47096 −1.11585
Weibull −145.785 5.34996 −0.980158
Lognormal −143.886 4.95561 −0.84084
Loglogistic −144.932 −0.851647 0.642838
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Fig. 19.7 Estimated survival plot under the lognormal accelerated failure time
(AFT ) model

present in Fig. 19.7 the plot of the estimated survival times for the data in
Table 19.1.

We also present in Figs. 19.8, 19.9, and 19.10 respectively, the hazard,
survival, and cumulative failure plots from the log-normal AFT models for
the data in Table 19.1 for the two levels of the covariate trt.
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Fig. 19.8 Estimated hazard function from the lognormal Model

Fig. 19.9 Estimated survival function from the lognormal Model
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Fig. 19.10 Estimated cumulative Failure time Model

19.7 Proportional Hazards Model

Cox (1972) proposed a general method for modeling the hazard function
h(t) which unlike the AFT models discussed earlier, allows time-dependent
covariates. Cox general method can be written as

log h(t) = log α(t) + β1x1 + β2x2 + · · · + βpxp, (19.10)

where α(t) is any function of t.
Clearly, α(t) can be assumed as the baseline hazard function when all the

explanatory variables are zero. The expression in (19.10) is called the pro-
portional hazard model because for any two hazard functions, the proportion
h1(t)
h2(t)

does not depend on time and is therefore constant. MINITAB fits the

Cox proportional hazard model for each of distributions. We now apply this
model to the data in Table 19.1 using the Weibull distribution as our choice.
The results are presented below.
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MTB > Lregression ’surv’ = trt;
SUBC> Weibull;
SUBC> EPplot;
SUBC> Brief 2;
SUBC> Confidence 95.0;
SUBC> TwoCI;
SUBC> Censor ’censor’;
SUBC> Cvalue 0.

Regression with Life Data: surv versus trt

Response Variable: surv

Censoring Information Count
Uncensored value 24
Right censored value 21

Censoring value: censor = 0

Estimation Method: Maximum Likelihood

Distribution: Weibull

Relationship with accelerating variable(s): Linear

Regression Table

Standard 95.0% Normal CI
Predictor Coef Error Z P Lower Upper
Intercept 5.34996 0.224016 23.88 0.000 4.91090 5.78902
trt -0.980158 0.369932 -2.65 0.008 -1.70521 -0.255106
Shape 1.22545 0.219684 0.862391 1.74137

Log-Likelihood = -145.785

Anderson-Darling (adjusted) Goodness-of-Fit

Cox-Snell Residuals = 20.389

The parameter estimates for trt is −0.9802. We note here that MINITAB
models tt = 0. Thus a patient with a negative treatment would die at about
e0.9802 = 2.67 the rate of an individual with the positive treatment outcome.

19.8 Exercises

1. Suppose one is interested in examining the survival times of individuals
with leukemia. The following data are the times, in months, to remission
of 20 such patients.

1.50, 1.50, 1.50, 1.50, 1.75,
2.25, 2.50, 2.50, 2.75, 3.25,
4.00, 4.25, 4.75, 5.00, 5.50,
5.75, 6.25, 8.00, 8.00, 8.50
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(a) What is the median survival time?
(b) For fixed intervals of length 2 months, use the life table method to

estimate the survival function s(t).
(c) Is the life table cross-sectional or longitudinal? Explain.
(d) Construct a survival curve for this sample of patients.

2. The following data represent survival times, in months, for 11 lymphoma
patients. Values with asterisks (*) denote censored observations: 1*, 3, 4*,
5, 5, 6*, 7, 7, 7*, 8*, 8.

(a) What is the modal survival time?
(b) Use the Kaplan–Meier method to estimate the survival function s(t).
(c) Construct a graph for the product-limit curve.
(d) Use the life table method to estimate the survival function s(t).

3. Consider a clinical trial in which ten patients are observed to have the
following survival pattern (in months). The plus (+) values are patients
who are lost to follow-up. The values are as follows: 1, 2, 3, 3+, 4, 4+, 5,
5+, 8, 9+.

(a) What is the median survival time?
(b) Use the product-limit method to estimate the survival function s(t).
(c) Construct a survival curve for this sample of patients.
(d) Use the life table method to estimate the survival function s(t).

Group Time

1 143, 164, 188, 188, 190,
192, 206, 209, 213, 216,
216*, 220, 227, 230, 234,
244*, 246, 265, 304

2 142, 156, 163, 198, 204*,
205, 232, 232, 233, 233,
233, 233, 240, 261, 280,
280, 296, 296, 323, 344*

4. Two groups of rats with different pretreatment regimes were exposed to a
certain type of carcinogen. The time to mortality from cancer in the two
groups was recorded and asterisk (*) denotes censored observation.

(a) For each group, use the product-limit method to estimate the survival
function s(t).

(b) For each group, construct a graph for the product-limit curve.
(c) Carry out a test to compare the distributions of survival times for the

two groups.
(d) For each group, use the life table method to estimate the survival

function s(t).

5. The data in the following table are on two samples of 21 patients each, sam-
ple 1 was given an experimental drug and sample 2 was given a placebo.
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The times to remission of leukemia patients are given in weeks and values
with asterisks (*) denote censored observations.

Sample Time

1 6*, 6, 6, 6, 7,
9*, 10*, 10, 11*, 13,
16, 17*, 19*, 20*, 22,
23, 25*, 32*, 32*, 34*, 35*

2 1, 1, 2, 2, 3,
4, 4, 5, 5, 8,
8, 8, 8, 11, 11,
12, 12, 15, 17, 22, 23

(a) What is the median survival time in each sample?
(b) Use the product-limit method to estimate the survival function s(t)

for the two sets of patients.
(c) Use the log-rank test to evaluate the null hypothesis that the

distributions of survival times are identical in the two groups.
(d) For each set of patients, use the life table method to estimate the

survival function s(t).

6. The example in the following table relates to the survival times of 25
patients diagnosed with myelomatosis (Peto et al.). The patients were
randomly assigned to two drug treatments. The variables of interest are:

• DUR is the time in days from the point of randomization to ei-
ther death or censoring (which can be due to loss to follow-up or
termination of the observation)

• STATUS has a value of 1 if dead and a value of 0 if censored.
• TRT takes the value of 1 or 2 to correspond to the two treatments.
• RENAL has a value of 1 if renal functioning was normal at the time

of randomization; it has a value of 0 for impaired functioning.

Patients DUR STATUS TRT RENAL Patients DUR STATUS TRT RENAL

1 8 1 1 1 14 1990 0 2 0
2 180 1 2 0 15 1976 0 1 0
3 632 1 2 0 16 18 1 2 1
4 852 0 1 0 17 700 1 2 9
5 52 1 1 0 18 1296 0 1 0
6 2240 0 2 0 19 1460 0 1 0
7 220 1 1 0 20 210 1 2 0
8 63 1 1 1 21 63 1 1 1
9 195 1 2 0 22 1328 0 1 0
10 76 1 2 0 23 1296 1 2 0
11 70 1 2 0 24 365 0 1 0
12 8 1 1 0 25 23 1 2 1
13 13 1 2 1
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7. The data in this exercise presented below give the effects of the drug
ganciclovir on AIDS patients suffering from disseminated cytomegalovirus
infection. Eighteen patients were treated with the drug and 11 were not
(control group). The patients were followed and survival in months after
diagnosis is labeled as time in the table, the censoring status (0 indi-
cates censoring) and (1 denotes that death occurred). The treatments are
designated (1 for for the drug) and (0 for no drug).

Time Status Trt

11 1 1
26 1 1
35 1 1
60 1 1
89 1 1
101 1 1
126 1 1
142 1 1
149 1 1
191 1 1
204 1 1
213 1 1
229 1 1
261 1 1
362 1 1
368 0 1
387 0 1
400 0 1
1 1 2
1 1 2
1 1 2
1 1 2
16 1 2
47 1 2
61 1 2
82 1 2
90 1 2
121 1 2
162 1 2



Chapter 20
Combined Analysis of Experimental Data

20.1 Introduction

Crop performance in field experiments depend on a number of factors,
namely, experimental factors introduced by the researcher (e.g., fertilizer
levels, spacing, plant density, pest control, weed control, etc.), environmental
factors (such as soil fertility, seasonal variation, amount of sunshine, amount
of rainfall, humidity, etc.), and the species properties such as the genotype
of the crop. While experimental factors can be controlled by the researcher
the environmental factors, which are often fixed, cannot be controlled by the
researcher, nor can the consequent interaction effects of these environmental
factors with experimental factors. In some experiments the effects of these
environmental factors and their associated interactions may be even more
pronounced and important than the effects of the research factors.

An experiment conducted at a particular site may therefore not lend it-
self to controllable environmental factors even though we can control the
controllable factors nor to a changing seasonal effect on the performance
of crops. Nor does an experiment conducted in one period in time lend it-
self to a generalization of results of such an experiment to other periods.
Because these uncontrollable environmental factors are subject to changes
with sites and seasons, and because these changes are measurable, the ef-
fects of these changes on crops therefore can be quantified or evaluated. This
is why researchers repeat experiments at several sites and over several crop
seasons. Gomez and Gomez (1984) identified four categories of this kind of
experimentation. These are:

(a) Screening experiments which are meant to identify superior strains from
a very large pool of strains—that is strains that consistently perform
better than others in the pool.

(b) Experiments designed to evaluate the adaptation of the selected high
performance strains on the sites where they were developed to further
select the best-performing strains.

749B. Lawal, Applied Statistical Methods in Agriculture,
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8 20,
c© Springer International Publishing Switzerland 2014
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(c) Experiments designed to evaluate the range of geographical adaptability
of the few selected strains earlier identified in our preliminary screening
experiments.

(d) Experiments designed to evaluate the long-term effect of a group of strains
and their sustainability.

20.1.1 General Analysis of Series of Experiments

For experiments conducted over several seasons or years, the analysis are
often carried out in stages as follows:

1. The data thus obtained on the individual year or seasons or sites is
analyzed.

2. Then a combined analysis is performed on the entire data.

However, the combined analysis is predicated on the assumption of homo-
geneity of variances at the various sites, years, or seasons. Bartlett’s test
of Homogeneity of variances is often employed to test this. However, if this
assumption is violated then the validity of the treatments × sites interaction
test may be suspect and a pooled error of the sites should be used instead of
the overall pooled error. Further complications may arise if the treatments ×
sites interactions are not homogeneous, giving rise to some sites producing a
better estimate of the difference than others. In such a situation, we would
employ a transformation of the reciprocal of each site variance (that is, 1/s2

i

as a weighting function). We give an example of this in this chapter.

20.2 Analysis of Experiments Over Seasons

In most tropical parts of Africa for instance, maize is sometimes grown two
or three times a year. The farmers know the planting dates and seasonal
variation based on past experiences. Thus an experiment on a given crop
conducted over several seasons will be analyzed first on individual season
basis and then a combined analysis recognizing the season effect is fixed. The
following example, from Gomez and Gomez (1984) is a fertilizer trial experi-
ment over two seasons on rice designed as an RCB. The yields are displayed
in Table 20.1. The levels of nitrogen have been modified from that presented
by the original authors to simplify calculations and better understanding by
our readers.
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Table 20.1 Grain yield of rice with five nitrogen rates

Nitrogen Replications

rate Rep I Rep II Rep III

Dry season
0 (N0) 4.891 2.577 4.541
30 (N1) 6.009 6.625 5.672
60 (N2) 6.712 6.693 6.799
90 (N3) 6.458 6.675 6.636
120 (N4) 5.683 6.868 5.692

Wet season
0 (N0) 4.999 3.503 5.356
30 (N1) 6.351 6.316 6.582
60 (N2) 6.071 5.969 5.893
90 (N3) 4.818 4.024 5.813
120 (N4) 3.436 4.047 3.740

20.2.1 Analysis

We first analyze the data for each season. We will therefore get two ANOVA
tables which enable us to test separately whether there are significant dif-
ferences among the means of the treatments for each of the seasons. These
ANOVA tables are presented in Table 20.2. We also present the MINITAB
statements for implementing these analyses. The partial output indicates
significant differences in the mean responses for the five nitrogen levels. The
significance is more pronounced in the wet season experiment as indicated by
the computed p values from the ANOVA tables.

MTB > GLM ’Y’ = REP N;
SUBC> Brief 2 ;
SUBC> Means N.

Least Squares Means for Y

N Mean SE Mean
0 4.003 0.4341

30 6.102 0.4341
60 6.735 0.4341
90 6.590 0.4341
120 6.081 0.4341

WET SEASON

MTB > GLM ’Y’ = REP N;
SUBC> Brief 2 ;
SUBC> Means N.

Least Squares Means for Y

N Mean SE Mean
0 4.619 0.3254
30 6.416 0.3254
60 5.978 0.3254
90 4.885 0.3254
120 3.741 0.3254
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Table 20.2 Separate ANOVA tables for the two seasons

Source d.f. SS MS F p value

Dry season
REP 2 0.0186 0.0093 0.203 0.984
N 4 14.5334 3.6333 6.43 0.013
Error 8 4.5222 0.5653

Total 14 19.0742

Source d.f SS MS F p-value

Wet season
REP 2 1.2429 0.6215 1.96 0.203
N 4 13.8699 3.4675 10.91 0.003
Error 8 2.5415 0.3177

Total 14 17.6543

20.2.2 Combined Seasonal Analysis

To conduct the combined analysis, we need to first test for the homogeneity
of the seasons’ variances (since we have two estimates of error variances now).
That is, test the hypotheses:

H0 : σ2
1 = σ2

2

Ha : σ2
1 �= σ2

2 (20.1)

For more than two seasons or sites, we would employ Bartlett’s test of ho-
mogeneity for this. This is explained in the next example. However, in this
particular case, since there are only two seasons, we can accomplish the above
test with the F test by computing:

F =
Larger MS
Lower MS

=
0.5653
0.3177

= 1.77

The p value for this test is 0.2177. Since p value > 0.05, we would therefore
fail to reject H0. That is, the two variances are homogeneous. We may there-
fore combine the data and run a combined analysis with the ANOVA table
from MINITAB presented in Table 20.3. We present the MINITAB statement
for implementing this analysis after the data have been combined (see the
data display) which displays the first three and last three observations in the
combined data set.
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Row N REP S Y
1 0 1 1 4.891
2 0 2 1 2.577
3 0 3 1 4.541
....................
28 120 1 2 3.436
29 120 2 2 4.047
30 120 3 2 3.740

MTB > GLM ’Y’ = SEASON REP(SEASON) N N* SEASON;
SUBC> Brief 2 ;
SUBC> Means N.

General Linear Model: Y versus SEASON, N, REP

Least Squares Means for Y

N Mean SE Mean
0 4.311 0.2713
30 6.259 0.2713
60 6.356 0.2713
90 5.737 0.2713
120 4.911 0.2713

Table 20.3 Combined analysis for the two seasons

Source d.f. SS MS F p value

S 1 4.4954 4.4954 10.18 a
REP(S) 4 1.2616 0.3154 0.71 0.594
N 4 18.7488 4.6872 10.62 0.000
S*N 4 9.6544 2.4136 5.47 0.006
Error 16 7.0636 0.4415

Total 29 41.2239

The F tests for the various effects are now computed as follows:

S =
S MS

REP(S) MS

N =
N MS

Error MS

S × N =
N × S

Error MS

MINITAB already computed these for us as: For factor N , 10.62 and S×N
as 5.47, both of which are highly significant at α = 0.05 level of significance.
Notice that we did not compute the S F value because we do not have enough
degrees of freedom for the replicate within seasons sum of squares (SS).



754 20 Combined Analysis of Experimental Data

20.2.3 Partitioning the Interaction SS

Now that we have established that the SN interaction is significant, we would
now partition the S × N SS into four orthogonal components using the prin-
ciple of orthogonal polynomials since the levels of nitrogen are equally spaced
from 0 to 120 in steps of 30. We employ the coefficients from the table of
orthogonal polynomials in the appendix. These are reproduced below for our
convenience.

Factor levels

1 2 3 4 5

Linear −2 −1 0 1 2
Quadratic 2 −1 −2 −1 2

Cubic −1 2 0 −2 1
Quartic 1 −4 6 −4 1

To implement the partitioning in MINITAB, we first create coded columns
based on the orthogonal polynomial coefficients using the “code” statement
in MINITAB. The first coding relates to the linear effect of nitrogen denoted
by “LR,” the next three columns are for the quadratic, cubic, and quartic
components of the nitrogen factor (N). Columns 9, 10, 11, and 12 respectively
relate to the linear, quadratic, cubic, and quartic significant interaction terms
of the N × S term. Note how the column of S are multiplied in turns with
columns corresponding to the components of the N factor. We present the
first and last six observations of all these in the MINITAB display below.

MTB > code (0) -2 (30) -1 (60) 0 (90) 1 (120) 2 c1 c5
MTB > code (0) 2 (30) -1 (60) -2 (90) -1 (120) 2 c1 c6
MTB > code (0) -1 (30) 2 (60) 0 (90) -2 (120) 1 c1 c7
MTB > code (0) 1 (30) -4 (60) 6 (90) -4 (120) 1 c1 c8
MTB > let c9=c3*c5
MTB > let c10=c3*c6
MTB > let c11=c3*c7
MTB > let c12=c3*c8

MTB > print c1-c12

Data Display

Row N REP S Y LR QR CQ QT SL SQ SC SQT
1 0 1 1 4.891 -2 2 -1 1 -2 2 -1 1
2 0 2 1 2.577 -2 2 -1 1 -2 2 -1 1
3 0 3 1 4.541 -2 2 -1 1 -2 2 -1 1
4 30 1 1 6.009 -1 -1 2 -4 -1 -1 2 -4
5 30 2 1 6.625 -1 -1 2 -4 -1 -1 2 -4
6 30 3 1 5.672 -1 -1 2 -4 -1 -1 2 -4
......................................................

25 90 1 2 4.818 1 -1 -2 -4 2 -2 -4 -8
26 90 2 2 4.024 1 -1 -2 -4 2 -2 -4 -8
27 90 3 2 5.813 1 -1 -2 -4 2 -2 -4 -8
28 120 1 2 3.436 2 2 1 1 4 4 2 2
29 120 2 2 4.047 2 2 1 1 4 4 2 2
30 120 3 2 3.740 2 2 1 1 4 4 2 2
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Now that we have generated all the necessary components in MINITAB,
we now fit the appropriate model using the GLM procedure in MINITAB.
We observe here that the components while appearing in the GLM line, are
further declared as covariates so that they are not considered as categorical
variables.

MTB > Name c15 "COEF3"
MTB > GLM ’Y’ = S REP( S) LR QR CQ QT SL SQ SC SQT;
SUBC> Covariates ’LR’ ’QR’ ’CQ’ ’QT’ ’SL’ ’SQ’ ’SC’ ’SQT’;
SUBC> Random ’S’;
SUBC> SSquares 1;
SUBC> Brief 2 ;
SUBC> Coefficients ’COEF3’.

General Linear Model: Y versus S, REP

Factor Type Levels Values
S random 2 1, 2
REP(S) random 6 1, 2, 3, 1, 2, 3

Analysis of Variance for Y, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P
S 1 4.4954 4.4954 4.4954 14.25 0.020
REP(S) 4 1.2616 1.2616 0.3154 0.71 0.594
LR 1 0.2757 9.4883 0.2757 0.62 0.441
QR 1 16.8188 1.2730 16.8188 38.10 0.000
CQ 1 1.6207 0.0000 1.6207 3.67 0.073
QT 1 0.0337 0.0016 0.0337 0.08 0.786
SL 1 9.4367 9.4367 9.4367 21.38 0.000
SQ 1 0.0316 0.0316 0.0316 0.07 0.793
SC 1 0.1755 0.1755 0.1755 0.40 0.537
SQT 1 0.0106 0.0106 0.0106 0.02 0.879
Error 16 7.0636 7.0636 0.4415
Total 29 41.2239

S = 0.664437 R-Sq = 82.87% R-Sq(adj) = 68.94%

Term Coef SE Coef T P
Constant 5.5150 0.1213 45.46 0.000
LR 1.2575 0.2713 4.64 0.000
QR -0.3893 0.2293 -1.70 0.109
CQ 0.0021 0.2713 0.01 0.994
QT 0.0061 0.1025 0.06 0.953
SLR -0.7932 0.1716 -4.62 0.000
SQ -0.0388 0.1450 -0.27 0.793
SC 0.1082 0.1716 0.63 0.537
SQT -0.01006 0.06484 -0.16 0.879

Our results here indicate that only the quadratic (QR) effect of nitrogen is
significant (p value = 0.000). Similarly, only the linear component of the
SN interaction term here denoted as (SLR) is significant, indicating that
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only the linear part of the response function is significant. However, since
the quadratic component of the nitrogen factor is significant, we now fit the
quadratic models to the data for each season. These estimated models are
presented for each season below and in Fig. 20.1 are presented the plots of
the response of rice to varying levels of nitrogen. The starred plot relates to
the dry season response in this experiment.

Dry Season: Ŷ = 4.11719 + 0.0726N − 0.000476N2

Wet Season: Ŷ = 4.85175 + 0.0513N − 0.000519N2

Fig. 20.1 Plots of effects of nitrogen

Based on the above, the optimum yield during the dry season will be achieved
at:

0.0726
2 × 0.000476

= 76.26 Kg/ha
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Similarly for the wet season, this becomes:

0.0513
2 × 0.000519

= 49.42.26 Kg/ha

Obviously, the cost of procuring nitrogen fertilizer for producing a kilogram
of rice during the wet season is 64 % of the cost of producing the same during
the dry season.

20.2.4 Effect of Failure of Homogeneity Assumption

If the error variances are not homogeneous, then the combined analysis we
conducted above is suspect. An appropriate analysis in this case would be to
run a weighted least squares analysis where the weights are the reciprocals

of the root mean square errors. That is, ωi =
1
si

, i = 1, 2. In our case

therefore, the weights would be ω1 =
1√

0.5653
= 1.3300 and ω2 =

1√
0.3137

=

1.1.78544.
Hence, the response variable “yield” will be modified so that for the dry

season, each yield value will first be multiplied by ω1 and similarly, each wet
season yield will be multiplied by ω2 to create a new variable, say (yy) from
the original response variable (y). That is,

yy =
{

y × ω1 if wet season
y × ω2 if dry season

Our combined analysis will now be performed on this new transformed
variable (yy).

20.2.5 Example with Homogeneity Assumption
Violated

The following data is reproduced by permission from Hashmand (1994) and
relates to a randomized complete block experiment with four replications
conducted to determine the effects of planting season using five nitrogen
levels. The data in yields per acre are presented in Table 20.4.
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Table 20.4 Yield of wheat from spring and winter planting

Nitrogen Replications

rate Rep I Rep II Rep III Rep IV

Spring planting
0 27.8 24.6 28.2 26.9
50 30.0 29.2 30.1 28.9
100 29.9 28.3 29.7 30.0
150 31.4 32.0 31.7 31.8
200 30.8 31.3 29.9 32.0
250 30.5 31.2 33.0 31.8

Nitrogen Replications

rate Rep I Rep II Rep III Rep IV

Winter planting
0 25.1 24.0 26.2 24.2
50 24.4 29.2 28.1 26.9
100 30.4 26.8 28.2 29.5
150 30.3 34.3 32.1 36.2
200 31.5 33.6 35.8 32.9
250 34.2 35.4 33.6 31.2

20.2.6 Combined Seasonal Analysis

Assuming the variances are equal, the combined analysis ANOVA table
is displayed in Table 20.6 with the following accompanying MINITAB
statements.

MTB > GLM ’Y’ = S Rep( S) N S* N;
SUBC> Brief 1 .

The values are computed with the pooled error mean square of 2.226 that is
based on 30 degrees of freedom. Clearly there are significant differences in the
means of nitrogen as well as in the interaction means between seasons and
nitrogen, with both having p values that are very much less than α = 0.05.
However, we must be cautious here since the above F tests are predicated
on the assumption that the seasons’ variances are homogeneous. The test
of homogeneity is conducted in this case with the usual F test (rather than
with Bartlett’s test of homogeneity) since there are only two variances. Hence
the F test is computed using pooled estimates from the ANOVA table in
Table 20.5 as:
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Table 20.5 Separate ANOVA tables for the two seasons

Source d.f. SS MS F p value

Spring season
REP 3 3.3650 1.1217 1.27 0.321
N 5 67.3983 13.4797 15.25 0.000
Error 15 13.2550 0.8837

Total 23 84.0183

Winter season

Source d.f SS MS F p-value

REP 3 7.0502 2.501 0.70 0.566
N 5 275.043 55.009 15.42 0.000
Error 15 53.513 3.568

Total 23 336.056

Table 20.6 Combined analysis for the two seasons

Source d.f. SS MS F p value

S 1 0.333 0.333 0.15 a
REP(S) 6 10.867 1.811 0.81 0.568
N 5 299.522 59.904 26.92 0.000
S*N 5 42.919 8.584 3.86 0.008
Error 30 66.768 2.226

Total 47 420.410

F =
Larger MS
Lower MS

=
3.5680
0.8837

= 4.04

The p value for this test is 0.0052. Since p value ≤ 0.05, we would therefore
reject the null that the variances are homogeneous. Thus, we cannot use the
pooled variance for the F tests for N and SN. We would need to partition
the SN interaction term into a set of orthogonal contrast. We notice again
here that the nitrogen levels are equally spaced, hence we can partition the
nitrogen SS as well as the SN interaction SS into orthogonal components.
The orthogonal coefficients from the appendix for k = 6 for the linear and
quadratic components are (we would pool the other components together as
“rest”):

Factor levels

0 50 100 150 200 250

Linear −5 −3 −1 1 3 5
Quadratic 5 −1 −4 −4 1 5

Recoding the levels of nitrogen in MINITAB as follows yield:
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MTB > code (0) -5 (50) -3 (100) -1 (150) 1 (200) 3 (250) 5 c1 c5
MTB > code (0) 5 (50) -1 (100) -4 (150) -4 (200) -1 (250) 5 c1 c6
MTB > let c7=c2*c5
MTB > let c8=c2*c6

MTB > GLM ’Y’ = S Rep(S) Nl Nq SNl SNq;
SUBC> Covariates ’Nl’ ’Nq’ ’SNl’ ’SNq’;
SUBC> Brief 2 .

Table 20.7 Combined analysis for the two seasons

Source d.f. SS MS F p value

S 1 0.333 0.333 0.15 a
REP(S) 6 10.867 1.811 0.81 0.568
N (5) (299.522) 59.904 26.92 0.000
Nl 1 264.688 264.688 118.91 0.000
Nq 1 18.335 18.355 8.25 0.007
Nrest 3 16.499 5.499 2.47 0.081

S*N (5) (42.919) 8.584 3.86 0.008
Nl × S 1 36.109 36.109 31.87 0.001
Nq × S 1 0.100 0.100 0.03 0.862
Nrest × S 3 6.710 2.237 0.98 0.424

Error (30) (66.768) 2.226
Reps within Nl × S 6 6.797 1.133
Reps within Nq × S 6 18.384 3.064
Reps within Nrest × S 18 41.587 2.310

Total 47 420.410

We now have the comprehensive ANOVA table results for the analysis in
Table 20.7

We have done the following in Table 20.7:

(i) The nitrogen SS was partitioned into three orthogonal components
(Nl, Nq, Nrest) on 1, 1, and 3 d.f., respectively.

(ii) The pooled error SS that is based on 30 d.f. was partition into three
components.

(iii) The F values for the orthogonal components of N were computed using
as denominator the pooled error value of 2.226 on 30 d.f.

(iv) The F values for the interaction components were computed with the
corresponding Reps within N × S SS. For instance,

Nl × S F- value =
Nl × S MS

Reps within Nl × S MS
=

36.109
1.133

= 31.87

Nq × S F- value =
Nq × S MS

Reps within Nq × S MS
=

0.100
3.064

= 0.03

Nrest × S F- value =
Nrest × S MS

Reps within Nrest × S MS
=

2.237
2.310

= 0.98

Results in Table 20.7 indicate that only the linear component of the nitrogen
× season is significant which indicates that responses to nitrogen rates is
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linear across different seasons. Thus, different nitrogen rates need to be used
for each of the seasons.

Alternatively, if we choose to use the transformational approach, then the
observations for spring and winter seasons will be weighted by the recipro-
cal of their individual variances. That is by 1

0.8837 and 1
3.560 , respectively,

from Table 20.5. The initial analysis with this approach gives the follow-
ing MINITAB output. The results here are similar to those we presented in
Table 20.6.

MTB > GLM ’yy’ = S Rep( S) N N* S;
SUBC> Brief 2 .

Analysis of Variance for yy, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
S 1 7820.67 7820.67 7820.67 11079.03 0.000
Rep(S) 6 4.90 4.90 0.82 1.16 0.355
N 5 94.65 94.65 18.93 26.92 0.000
S*N 5 13.26 13.26 2.65 3.76 0.009
Error 30 21.18 21.18 0.71
Total 47 7954.66

Again decomposing the nitrogen and the N*S interaction into orthogonal
contrasts we have the results presented in Table 20.8.

Table 20.8 Combined weighted analysis for the two seasons

Source d.f. SS MS F p value

S 1 7820.67 7820.67 8996.87 a
REP(S) 6 4.90 0.82 0.94 0.479
N (5) (94.65) 18.93 26.92 0.000
Nl 1 79.69 79.69 112.24 0.000
Nq 1 8.34 8.34 11.75 0.002
Nrest 3 6.62 2.21 3.47 0.028

S*N (5) (13.26) 2.65 3.74 0.009
Nl × S 1 7.20 7.20 10.14 0.003
Nq × S 1 2.56 2.56 3.61 0.067
Nrest × S 3 3.50 1.167 1.64 0.201

Error (30) (21.18) 0.71

Total 47 7954.66

We observe here that the three nitrogen components are significant at the 5 %
point as well as the N*S linear interaction. Since this is significant, our infer-
ence would therefore be based on this interaction term, and the conclusions
to be drawn here are exactly the same as the ones presented earlier.

In the table below are the mean yields for each level of nitrogen by season.

Nitrogen rates

Season 0 50 100 150 200 250

Spring 26.88 29.55 29.48 31.75 31.00 31.63
Winter 25.10 27.15 28.73 33.23 33.45 33.60

Nitrogen level means for the two seasons
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Since the Season*Nitrogen interaction is significant, we therefore model
the nitrogen response by season using the Mitscherlich exponential fertilizer
response model

yi = a
[
1 − e−b(ni+c)

]

where ni are the levels of nitrogen and y is the mean yield. The model was
previously discussed in Chap. 7. The model when implemented gives the
following estimated regression Eqs. (20.2a) and (20.2b) for spring and winter
yields, respectively:

ŷi = 31.8031
[
1 − e−0.012(ni+159.50)

]
(20.2a)

ŷi = 38.6935
[
1 − e−0.005(ni+221.60)

]
(20.2b)

The mean predicted regression equations are plotted in Fig. 20.2. Clearly, the
initial mean yield for winter season is very low for low levels of nitrogen rates,
but as the nitrogen rates increase, there is clearly a significant rise in the mean
yield for winter over spring. Thus if interest centers on lower rates for nitrogen
levels, then spring application will provide higher yield; however, if higher
yields are desired, then winter application of more than 125 kg/ha would
begin to give higher yields in winter than for spring season. Of course, the cost
of procuring fertilizer would have to be taken into consideration in this case.

Fig. 20.2 Estimated plots for both seasons
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20.3 Experiment at Several Sites

The objective of this type of experiment is to ascertain the adaptability of
already selected variety strains of a crop or fertilizer levels. The experiment
is often conducted in randomized complete block design or in split-plot de-
sign. For factorial experiments, the number of levels of the factors are often
very small, usually two level per factor. We present examples of both the
randomized block design and split-plot design in the new examples.

20.3.1 RCB Design Example

A screening varietal trial on maize was conducted at three different locations
in Nigeria (Samaru, Ibadan, and Umudike). The study concerns sixteen new
varieties and four control strains (s-230, s238, ib10, um234). The experiments
were conducted in randomized complete block of three replications each. The
data is presented in Table 20.9. The concern here is to see the adaptability
of the 16 strains over the three sites.

Again our initial analysis is based on analyzing separately the data for
each of the sites as a randomized block design having 20 treatments each.
We may add here that the treatments are randomized within blocks at each
site. We present a MINITAB statement for implementing one of these and
in Table 20.10 are presented in the analysis of variance table results for each
of the sites.

Table 20.9 Synthetic Data for three Sites

Site SAMARU IBADAN UMUDIKE

TRT REP1 REP2 REP3 REP1 REP2 REP3 REP1 REP2 REP3
1 8.14 7.78 7.10 9.22 8.24 8.30 9.28 9.01 9.74
2 7.55 7.55 7.45 8.51 8.79 8.72 8.60 9.70 9.68
3 8.04 7.78 8.07 8.73 7.59 8.34 8.77 9.45 9.59
4 8.21 7.72 8.41 8.33 9.01 8.04 9.62 10.18 9.66
5 8.17 8.66 7.52 8.47 8.62 8.41 9.46 10.60 10.02
6 8.12 7.39 7.24 8.13 8.79 8.76 10.11 9.54 10.16
7 7.82 8.23 8.12 8.02 8.43 8.31 9.85 9.97 9.00
8 8.39 7.30 7.80 8.32 8.63 8.73 10.55 10.11 8.71
9 7.72 7.46 7.36 8.50 8.74 8.64 9.04 9.83 9.30
10 8.57 8.38 7.28 8.39 8.58 8.37 9.79 10.29 9.71
11 8.02 9.09 8.40 8.41 9.08 8.68 10.33 8.76 9.62
12 7.57 8.49 7.67 8.43 8.11 7.93 8.90 8.95 9.46
13 8.16 7.94 7.21 8.17 8.74 8.46 9.48 10.67 9.58
14 7.36 7.39 8.21 9.32 8.19 8.84 9.55 9.92 9.37
15 7.47 7.45 7.78 8.74 8.38 8.22 9.46 9.77 8.83
16 8.07 8.34 7.29 9.08 8.40 8.29 10.19 8.91 10.38
17 3.71 3.71 3.75 4.87 5.02 4.74 4.91 4.97 4.96
18 4.13 4.17 4.19 4.74 4.78 4.32 5.11 4.77 5.10
19 3.91 4.42 3.38 4.60 4.76 4.82 4.81 5.20 5.13
20 4.23 3.93 4.19 4.49 4.55 4.93 5.09 5.23 4.93
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Table 20.10 Separate ANOVA Tables for the Three Sites

Samaru

Source D.F. SS MS F p-value
REP 2 0.7849 0.3924 2.40 0.105
TRT 19 148.4751 7.8145 47.72 0.000
Error 38 6.2224 0.1637
Total 59 155.4824

Ibadan

Source d.f SS MS F p-value
REP 2 0.0854 0.0427 0.38 0.685
TRT 19 139.0019 7.3159 65.52 0.000
Error 38 4.2434 0.1117
Total 59 143.3307

Umudike

Source d.f SS MS F p-value
REP 2 0.2833 0.1416 0.56 0.575
TRT 19 206.5256 10.8698 43.12 0.000
Error 38 9.5788 0.2521
Total 59 216.3877

The three individual ANOVA tables above indicate that there are highly
significant differences among the means of the twenty varieties at a 5 % sig-
nificance level. However, we would like to combine data from these various
sites into a combined analysis to inform on the adaptability of these varieties
at different site environments. We discuss doing this in the next section.

20.4 Combined Analysis

In order to combine the site analysis, we need to ascertain that the variances
in each sites are homogeneous. That is, we need to test the hypotheses:

H0 : σ2
1 = σ2

2 = σ2
3

Ha : at least two of these are unequal (20.3)

For our individual site analysis, we have the following information from
the analysis of variance tables.

Error d.f.
Site fi EMS

1 38 0.1637
2 38 0.1117
3 38 0.2521

To accomplish the above hypotheses, we will employ Bartlett’s homogene-
ity test, which is based on the following computations:

(1) Compute the pooled variance for the three sites as

S2
P =
∑

i fiS
2
i∑

i fi
, i = 1, 2, · · · , k.
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(2) Compute

q =

(
2∑

i=1

fi

)

log10 S2
P −

k∑

i=1

fi log10 S2
i .

(3) Compute

c = 1 +
1

3(k − 1)

⎡

⎣
k∑

i=1

f−1
i −
(

k∑

i=1

fi

)−1⎤

⎦ .

(4) Then
χ2

0 = 2.3026
q

c
∼ χ2

k−1.

For our data, based on the summary statistics in the table above,

S2
P =

38(0.1637 + 0.1117 + 0.2521)
114

= 0.1758; q = 2.7352 and c = 1.0117.

Consequently, χ2
0 =

2.7352
1.0117

= 2.276. When we compare this with a

χ2
(.05,2) = 5.99, clearly we will fail to reject H0. In other words, the sites’

variances are homogeneous. We are now in a position to combine the entire
data set for the three sites and the analysis which is now a random effects
model (because the sites are just a sample of several possible sites for the ex-
periment). The ANOVA table and the variance components are presented in
the MINITAB output displayed below. First we combine the data and code in
the appropriate values for S, REP, and TRT. We present the data display for
the first five treatments and the last five treatments. There are here now 180
observations. Since the sites are assumed fixed, the GLM analysis of variance
for this experiment has the ANOVA table results presented in Table 20.11.

MTB > print c1-c4

Data Display

Row S REP TRT Y
1 1 1 1 8.14
2 1 1 2 7.55
3 1 1 3 8.04
4 1 1 4 8.21
5 1 1 5 8.17
6 1 1 6 8.12
7 1 1 7 7.82
8 1 1 8 8.39
9 1 1 9 7.72
10 1 1 10 8.57
......................
170 3 3 10 9.71
171 3 3 11 9.62
172 3 3 12 9.46
173 3 3 13 9.58
174 3 3 14 9.37
175 3 3 15 8.83
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176 3 3 16 10.38
177 3 3 17 4.96
178 3 3 18 5.10
179 3 3 19 5.13
180 3 3 20 4.93

MTB > GLM ’Y’ = S REP( S) TRT S* TRT;
SUBC> Brief 2 ;
SUBC> EMS;
SUBC> Means S TRT S* TRT.

General Linear Model: Y versus S, TRT, REP

Table 20.11 Combined ANOVA tables for the three sites
Source d.f. SS MS F p value

S 2 78.7382 39.3691 223.91 0.000
REP(S) 6 1.1535 0.1923 1.09 0.371
TRT 19 484.8331 25.5175 145.13 0.000
S*TRT 38 9.1695 0.2413 1.37 0.103
Error 114 20.0445 0.1758

Total 179 593.9389

Clearly, the mean yields in the sites are clearly significant as well as the variety
means. However, there does not seem to be much significant interaction effect
of site and treatment means. The S.E. for each of the means are computed
as follows:

(i) The S.E. of site mean is:
√

EMS

60
=

√
0.1758

60
= 0.0541.

Thus, the S.E. for comparing any two sites means is:
√

2 EMS

60
=

√
2(0.1758)

60
= 0.0766.

(ii) Similarly, the S.E.s for a variety mean and corresponding S.E. for
comparing two variety means are, respectively:
√

EMS

9
=

√
(0.1758)

9
= 0.1398 and

√
2 EMS

9
=

√
2(0.1758)

9
= 0.1977.

(iii) The S.E. for an interaction mean and comparing any two interaction
means are computed, respectively, as:
√

EMS

3
=

√
(0.1758)

3
= 0.2421 and

√
2 EMS

3
=

√
2(0.1758)

3
= 0.3423.
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Sites

Variety Samaru Ibadan Umudike Mean

1 7.673 8.587 9.343 8.534
2 7.517 8.673 9.327 8.506
3 7.963 8.220 9.270 8.484
4 8.113 8.460 9.820 8.798
5 8.117 8.500 10.027 8.881
6 7.583 8.560 9.937 8.693
7 8.057 8.253 9.607 8.639
8 7.830 8.560 9.790 8.727
9 7.513 8.627 9.390 8.510
10 8.077 8.447 9.930 8.818
11 8.503 8.723 9.570 8.932
12 7.910 8.157 9.103 8.390
13 7.770 8.457 9.910 8.712
14 7.653 8.783 9.613 8.683
15 7.567 8.447 9.353 8.456
16 7.900 8.590 9.827 8.772
17 3.723 4.877 4.947 4.516
18 4.163 4.613 4.993 4.590
19 3.903 4.727 5.047 4.559
20 4.117 4.657 5.083 4.619

Mean 7.083 7.746 8.694 7.841

Table of T × S means

Since there are significant differences among the variety means, we can
partition the treatment SS into three components:

1. Between the 16 new varieties with SS computed from the means as: on 15 d.f.

BTSS = 9
[
8.5342 + 8.5062 + 8.4842 + 8.7982 + 8.8812 + 8.6932 + 8.6392

+ 8.7272 + 8.5102 + 8.8182 + 8.9322 + 8.3902 + 8.7122 + 8.6832

+ 8.4562 + 8.7722]−
9
[
138.5352

]

16
= 3.566.

2. Between control varieties SS: On 3 d.f.

BCSS = 9
[
4.5162 + 4.5902 + 4.5592 + 4.6192]−

9
[
18.2842

]

4
= 0.0525.

3. Control vs. others on 1 d.f.

C vs. OSS =

(
138.535 × 9

)2

144
+

(
18.284 × 9

)2

36

=
1246.772

144
+

164.5562

36
− 1411.3262

180
481.0922
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The variety (or TRT SS of 484.8331 has been partitioned into three orthogo-
nal components. These results are presented in Table 20.12. Notice that the
partitioning SS add up (give or take a few computational errors) to the TRT
SS as do the degrees of freedom. Our analysis therefore indicate that while
there are no significant differences between the means of the 16 new vari-
eties, nor between the means of the four control varieties, there is however
significant difference between the means of the controls and the new variety.
Clearly, the new variety strains are much more superior to the control strains.

Table 20.12 New ANOVA table for partitioned SS

Source d.f. SS MS F

TRT 19 484.8331 25.5175 145.13
Others 15 3.566 0.2377 1.35
Between controls 3 0.0525 0.0175 0.10
Contol vs. others 1 481.0922 481.0922 2736.59

Error 114 20.0445 0.1758

Total 179 593.9389

20.5 Split-Plot Example

Suppose we have a series of experiments over s sites (S) designed as a factorial
structure with a levels for the main plot A, and b levels for the sub-plot B, and
with r replications (R); then the structure of the ANOVA table is presented
in Table 20.13.

Table 20.13 Df under the split-plot model at s sites

Source Df

S s − 1
Reps within S s(r − 1)
Main plot A (a − 1)
S*A (s − 1)(a − 1)
Pooled error (a) s(r − 1)(a − 1)
Subplot factor B (b − 1)
A*B (a − 1)(b − 1)
S*A*B (s − 1)(a − 1)(b − 1)
Error sa(r − 1)(b − 1)

Total srab − 1

The site effects of S will be tested with the Reps within Sites Mean square.
The main plot A and interaction S ∗ A will be tested by the pooled error (a)
Mean square, while the B, A ∗ B and S ∗ A ∗ B effects are tested with the
error mean square.
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Example

A study conducted at Samaru and Ibadan was to determine the influence of
row spacing and plant density on corn (Zea mays L.) yield. The experiment
was a 2 × 3 factorial replicated four times in a randomized complete block
design arranged and conducted at two different sites. The factorial was
laid out as a split-plot design. In this experiment, factor A is the two row
spacings (12 and 25 in) assigned to the main, and factor B is the three target
plant densities (12,000, 16,000, and 20,000 plants per acre) assigned to the
subplots. The data from the experiments are displayed in Table 20.14.

We present below the analysis of the above data in MINITAB. The data are
read into columns C1 to C5. We present the first five and last five observations
for these data below. The GLM statement for implementing the model is also
presented. The analysis of variance table is presented in Table 20.15.

Row S A B R Y
1 1 1 1 1 140
2 1 1 1 2 138
3 1 1 1 3 130
4 1 1 1 4 142
5 1 1 2 1 145

...................
44 2 2 2 4 132
45 2 2 3 1 140

Table 20.14 Yield of corn at two different sites with factorial design

Grain yields (bushels/acre)

Row spacing Plant density Replications

Sites (in) (plants/acre) I II III IV

Samaru 12 12,000 140 138 130 142
16,000 145 146 150 147
20,000 150 149 146 150

435 433 426 439
25 12,000 136 132 134 138

16,000 140 134 136 140
20,000 145 138 138 142

421 404 408 420
Badeji 12 12,000 142 132 128 140

16,000 146 136 140 141
20,000 148 140 142 140

436 408 410 421
25 12,000 132 130 136 134

16,000 138 132 130 132
20,000 140 134 130 136

410 396 396 402
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46 2 2 3 2 134
47 2 2 3 3 130
48 2 2 3 4 136

MTB > GLM ’Y’ = S R( S) A S* A A*R(S) B S* B A* B S* A* B;
SUBC> Random ’R’;
SUBC> Brief 2 .

General Linear Model: Y versus S, A, B, R

Factor Type Levels Values
S fixed 2 1, 2
R(S) random 8 1, 2, 3, 4, 1, 2, 3, 4
A fixed 2 1, 2
B fixed 3 1, 2, 3

The results from the ANOVA table indicate that the main effect A, the
subplot factor B and the interaction effects A ∗ B are significant. Since the
A ∗ B interaction is significant, we decide to explore this interaction further
by partitioning it into both linear and quadratic components each on 1 d.f.
This is accomplished in MINITAB by recoding the levels of A and B using
orthogonal polynomial coefficients. The codes for implementing this are dis-
played below and the results are embedded in Table 20.15. Only the linear
component is significant, which indicates that for a given row spacing, yield
increases linearly with increases in plant density.

MTB > code (1) 1 (2) -1 c2 c6
MTB > code (1) 1 (2) 0 (3) -1 c3 c7
MTB > code (1) 1 (2) -2 (3) 1 c3 c8
MTB > let c9=c6*c7
MTB > let c10=c6*c8

I hope readers have by now realized that we have seen the data in Table 20.14
before, in Table 15.15 of Chap. 15. We recognize that the ANOVA table
displayed here in Table 20.15 is a replica of that displayed for the split–split
plot ANOVA table (see page 773).

Table 20.15 Combined analysis based on the split-plot design

Source d.f. SS MS F p value

S 1 238.521 238.521 5.27 0.061
R(S) 6 271.625 45.271 6.83 0.017
A 1 475.021 475.021 71.63 0.000
S*A 1 1.687 1.687 0.25 0.632
A*R(S) 6 39.792 6.632 0.75 0.612
B 2 350.042 175.021 19.92 0.000
Linear 1 338.00 338.00 38.47 0.000
Quadratic 1 12.04 12.04 1.37 0.253

S*B 2 37.042 18.521 2.11 0.143
A*B 2 87.792 43.896 5.00 0.015
L × L 1 55.12 55.12 6.27 0.019
L × Q 1 32.67 32.67 3.72 0.066

S*A*B 2 1.625 0.812 0.09 0.912
Error 24 210.833 8.785

Total 47 1713.979
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20.6 Experiments Conducted Over Several Years

Because of the unpredictability of environmental factors over the years, the
factor years will be assumed to be a random effect. Suppose we have an
experiment conducted as a randomized block design with say t treatments
(T), replicated (R) r times, and conducted over p years (Y). Thus we have
a total of n = tpr plots in the experiment. As in the previous case, we first
analyze the data on a yearly basis obtaining the ANOVA table for each year.
To combine the data, we need to again do the test of variance homogeneity for
the p years. If the hypothesis of homogeneity is affirmed, then we proceed to
the combined analysis, with the following structure of the analysis of variance
table for the combined data would be as displayed in the table below.

Source d.f. MS F

Y p − 1 Y MS
Y MS
RMS

R(Y) p(r − 1) R MS -

T t − 1 T MS
T MS

Y*T MS

Y*T (p − 1)(t − 1) Y*T MS
Y*T MS

EMS
Error p(t − 1)(r − 1) EMS –

Total tpr − 1

The following data were adapted from the notes of Krishan Lal (Combined
Analysis of Data) and relate to experiments conducted over 4 years (Y) hav-
ing four treatments (T) and replicated five times. Thus we have a total of
n = 4 × 4 × 5 = 80 observations in the experiments.

Table 20.16 Grain yield (kg/plot) with four replications. Adapted from Krishan
Lal (2010)

Replication

Year Treatment 1 2 3 4 5

1 1 33.6 33.7 30.9 33.3 15.0
2 34.0 27.2 46.2 36.7 11.6
3 30.5 33.2 15.1 33.3 29.7
4 30.8 14.4 14.2 9.5 12.0

2 1 28.8 28.8 35.2 41.6 43.2
2 46.4 43.2 38.4 54.4 57.6
3 35.2 32.0 32.0 25.6 33.6
4 51.2 40.0 49.6 51.2 49.6

3 1 30.1 38.1 21.4 17.6 14.3
2 36.1 18.3 38.0 31.0 26.6
3 27.2 40.7 15.5 18.1 12.3
4 37.8 54.5 13.2 18.1 7.3

4 1 23.8 48.8 19.5 28.8 34.4
2 15.2 39.0 39.8 52.0 31.2
3 40.2 52.0 33.0 41.2 35.0
4 43.2 46.8 34.5 44.5 38.0
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20.6.1 Analysis

As before we analyze the data first on a year by year basis before we do the
combined analysis. The estimated error variances for the 4 years are displayed
in the following table.

Year1 Year2 Year3 Year4

s2i 78.23 28.31 108.50 67.90
d.f. 12 12 12 12

Because there are very large variations among the estimated variances,
we would use Bartlett’s test for homogeneity of variances discussed in earlier
sections.

S2
P =

12(78.23 + 28.31 + 108.50 + 67.90)
48

= 70.735

q = 48 log10 70.735 −
(
12[log10 78.23 + log10 28.31 + log10 108.50

+ log10 67.90]
)

= 88.7824 − 12(1.8934 + 1.4519 + 2.0354 + 1.8319)

= 88.7824 − 86.5512

= 2.2312

c = 1 +
1
3

(
4
12

− 1
48

)

=
15 × 10
48 × 9

= 0.3472

Hence,

χ2
0 = 2.3026 × 2.2312

0.3472
= 14.7971

The p value corresponding to this value is 0.0020. Since 0.0020 < 0.05, we
would therefore strongly reject the null hypothesis that the error variances are
homogeneous. Since the error variances are heterogeneous, we would have to
employ the method of weighted least squares for our analysis with the weights

ω being the reciprocals of the root mean square errors, that is, ωi =
1
√

s2
i

.

The table below gives the computed values of ωi for each year extracted from
the separate analysis of variance Tables in Table 20.16.

Year1 Year2 Year3 Year4

s2i 78.23 28.31 108.50 67.90
ωi 0.1131 0.1879 0.0960 0.1214
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The ANOVA tables reveal that there are only significant differences in the
treatment means for the second year only. The other years do not exhibit
significant different means.

Table 20.17 Separate ANOVA tables for the three sites

Source d.f. SS MS F p value

Year 1
R 4 498.29 124.57 1.59 0.239
T 3 695.36 231.79 2.96 0.075
Error 12 938.81 78.23
Total 19 2132.45

Year 2
R 4 239.87 59.97 2.12 0.141
T 3 1097.09 365.70 12.92 0.000
Error 12 339.71 28.31
Total 19 1676.67

Year 3
R 4 1379.1 344.8 3.18 0.054
T 3 146.4 48.8 0.45 0.722
Error 12 1301.6 108.5
Total 19 2827.1

Year 4
R 4 756.30 189.08 2.78 0.076
T 3 339.14 113.05 1.66 0.227
Error 12 814.83 67.90
Total 19 1910.27

Row Y T R Yd YY
1 2 1 1 28.8 5.4115
2 2 2 1 46.4 8.7186
3 2 3 1 35.2 6.6141
4 2 4 1 51.2 9.6205
5 2 1 2 28.8 5.4115
6 2 2 2 43.2 8.1173
7 2 3 2 32.0 6.0128
8 2 4 2 40.0 7.5160
9 2 1 3 35.2 6.6141

10 2 2 3 38.4 7.2154
11 2 3 3 32.0 6.0128
12 2 4 3 49.6 9.3198
13 2 1 4 41.6 7.8166
14 2 2 4 54.4 10.2218
15 2 3 4 25.6 4.8102
16 2 4 4 51.2 9.6205
17 2 1 5 43.2 8.1173
18 2 2 5 57.6 10.8230
19 2 3 5 33.6 6.3134
20 2 4 5 49.6 9.3198
..........................
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61 4 1 1 28.8 3.4963

62 4 1 2 52.0 6.3128

63 4 1 3 41.2 5.0017

64 4 1 4 44.5 5.4023

65 4 1 5 15.0 1.8210

66 4 2 1 11.6 1.4082

67 4 2 2 29.7 3.6056

68 4 2 3 12.0 1.4568

69 4 2 4 43.2 5.2445

70 4 2 5 57.6 6.9926

71 4 3 1 33.6 4.0790

72 4 3 2 49.6 6.0214

73 4 3 3 14.3 1.7360

74 4 3 4 26.6 3.2292

75 4 3 5 12.3 1.4932

76 4 4 1 7.3 0.8862

77 4 4 2 34.4 4.1762

78 4 4 3 31.2 3.7877

79 4 4 4 35.0 4.2490

80 4 4 5 38.0 4.6132

MTB > GLM ’YY’ = Y R( Y) T Y* T;

SUBC> Random ’Y’;

SUBC> Brief 2 ;

SUBC> Means Y* T;

SUBC> GNormalplot;

SUBC> GFits;

SUBC> NoDGraphs;

SUBC> RType 1 .

General Linear Model: YY versus Y, T, R

Factor Type Levels Values

Y random 4 1, 2, 3, 4

MTB > GLM ’YY’ = Y R( Y) T Y* T;

SUBC> Random ’Y’;

SUBC> Brief 2 ;

SUBC> Means Y* T;

SUBC> GNormalplot;

SUBC> GFits;

SUBC> NoDGraphs;

SUBC> RType 1 .
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Factor Type Levels Values
Y random 4 1, 2, 3, 4
R(Y) random 20 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1. 2, 3, 4, 5, 1, 2, 3,

4, 5
T fixed 4 1, 2, 3, 4

Analysis of Variance for YY, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Y 3 336.067 336.067 112.022 19.90 0.000 x
R(Y) 16 45.396 45.396 2.837 1.77 0.065
T 3 12.729 12.729 4.243 0.96 0.451
Y*T 9 39.582 39.582 4.398 2.74 0.011
Error 48 77.051 77.051 1.605
Total 79 510.825

x Not an exact F-test.

S = 1.26697 R-Sq = 84.92% R-Sq(adj) = 75.17%

Error Terms for Tests, using Adjusted SS

Synthesis of
Source Error DF Error MS Error MS

1 Y 11.71 5.630 (2) + (4) - (5)
2 R(Y) 48.00 1.605 (5)
3 T 9.00 4.398 (4)
4 Y*T 48.00 1.605 (5)

Variance Components, using Adjusted SS

Estimated
Source Value
Y 5.3196
R(Y) 0.3080
Y*T 0.5586
Error 1.6052

Least Squares Means for YY

Y*T Mean
1 1 3.314
1 2 3.522
1 3 3.208
1 4 1.830
2 1 6.674
2 2 9.019
2 3 5.953
2 4 9.079
3 1 2.333
3 2 2.880
3 3 2.185
3 4 2.513
4 1 4.407
4 2 3.742
4 3 3.312
4 4 3.542

General Linear Model: YY versus Y, T, R
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The ANOVA table for the combined analysis indicates that there is very
strong significant interactions between years and treatment. The hypothesis
that σ2

Y T = 0 is therefore rejected and the estimated variance components is
σ̂2

Y T = 0.5586.

20.7 Exercises

1. The data in this exercise relate to the yield in tons/ha for a randomized
complete block design on six varieties of sorghum planted over 3 years in
three randomized blocks.

Year 1 Year 2 Year 3
Variety replications replications replications

no. 1 2 3 1 2 3 1 2 3

1 4.72 3.89 4.28 2.66 3.76 4.21 4.84 2.80 3.03
2 3.79 2.85 3.76 3.44 2.12 3.68 3.54 3.38 3.19
3 3.34 2.89 4.26 3.01 2.32 3.70 3.81 3.61 2.68
4 3.72 4.25 3.47 2.53 3.19 3.58 3.94 3.91 3.53
5 3.54 3.86 3.79 3.59 3.64 3.42 3.72 2.77 3.22
6 4.86 3.81 4.25 3.98 2.27 2.92 3.70 3.74 2.10

Yields in tons/ha for the experiment

(a) Perform a combined analysis over the years.
(b) Perform a test of homogeneity of variance and draw your conclusions.
(c) Is there a significant interaction effect between the varieties and years?

2. In an attempt to determine the effect of harvest management on forage
yield from 1 Nitro’ a cultivar of alfalfa (Medicago satva L.), a randomized
complete block experiment with four replications was carried out. The
treatments consist of four management systems:

• H1 : No harvest during the growing season
• H2 :Two harvests at bud and herbage regrowth harvested in the fall
• H3 : Three harvests at bud and herbage regrowth harvested in the fall
• H4 : Two harvests at first flower and herbage regrowth harvested in

the fall.

The data from the experiment are presented in the following table
(problem adapted from (Hosmond 2005)).
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Harvest
management Rep I Rep II Rep III Rep IV

Summer
H1 – – – –
H2 1.9 2.0 2.1 2.0
H3 3.0 3.1 3.0 2.8
H4 2.5 2.4 2.8 2.3

Fall
H1 0.5 2.3 1.4 2.1
H2 0.7 0.9 0.8 0.7
H3 0.4 0.6 0.2 0.1
H4 0.3 0.5 0.3 0.4

Effect of management on forage yield (ton/acre)

(a) Perform a combined analysis over the seasons.
(b) Perform a test of homogeneity of variance. Are the variances homoge-

neous?
(c) Is there a significant interaction effect between the seasons and harvest

management practices?
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Table 1 Standard normal probabilities (area between 0 and z)
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Table 2 Values of tα in a t distribution with df degrees of freedom. (shaded area
P (t > tα) = α)
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Table 3 Values of χ2
α,df in a chi-square distribution with df degrees of freedom

(shaded area P (χ2 > χ2
α,df) = α)
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Table 4 Values of fα,ν1,ν2 in an F distribution (shaded area P (F > fα,ν1,ν2) = α).
Numerator degrees of freedom is ν1 and denominator degrees of freedom is ν2.
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Table 4 Values of fα,ν1,ν2 in an F distribution (continued)



784 Appendix: Statistical Tables

Table 5 Orthogonal polynomial coefficients

Coefficients

k Polynomial 1 2 3 4 5 6 7 8
∑

c2i

3 Linear −1 0 1 2
Quadratic 1 −2 1 6

4 Linear −3 −1 1 3 20
Quadratic 1 −1 −1 1 4
Cubic −1 3 −3 1 20

5 Linear −2 −1 0 1 2 10
Quadratic 2 −1 −2 −1 2 14
Cubic −1 2 0 −2 1 10
Quartic 1 −4 6 −4 1 70

6 Linear −5 −3 −1 1 3 5 70
Quadratic 5 −1 −4 −4 −1 5 84
Cubic −5 7 4 −4 −7 5 180
Quartic 1 −3 2 2 −3 1 28
Quintic −1 5 −10 10 −5 1 252

7 Linear −3 −2 −1 0 1 2 3 28
Quadratic 5 0 −3 −4 −3 0 5 84
Cubic −1 1 1 0 −1 −1 1 6
Quartic 3 −7 1 6 1 −7 3 154
Quintic −1 4 −5 0 5 −4 1 84
Sextic 1 −6 15 −20 15 −6 1 924

8 Linear −7 −5 −3 −1 1 3 5 7 168
Quadratic 7 1 −3 −5 −5 −3 1 7 168
Cubic −7 5 7 3 −3 −7 −5 7 264
Quartic 7 −13 −3 9 9 −3 −13 7 616
Quintic −7 23 −17 −15 15 17 −23 7 2184
Sextic 1 −5 9 −5 −5 9 −5 1 264
Septic −1 7 −21 35 −35 21 −7 1 3432
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Table 6 Upper α point of Studentized range, qα(k, ν), where k = r = number of
treatments to be compared and ν = the number of degrees of freedom. (Source: The
Analysis of Variance by Scheffé, H. (1959). Reproduced with permission from John
Wiley & Sons, Inc.)

Table 7 Upper α point of Studentized range (continued)
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Table 8 Upper α = 0.05 points of Duncan’s multiple range tests

k

df 2 3 4 5 6 7 8 9 10

1 17.969 17.969 17.969 17.969 17.969 17.969 17.969 17.969 17.969
2 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085
3 4.501 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516
4 3.926 4.013 4.033 4.033 4.033 4.033 4.033 4.033 4.033
5 3.635 3.749 3.796 3.814 3.814 3.814 3.814 3.814 3.814
6 3.460 3.586 3.649 3.680 3.694 3.697 3.697 3.697 3.697
7 3.344 3.477 3.548 3.588 3.611 3.622 3.625 3.625 3.625
8 3.261 3.398 3.475 3.521 3.549 3.566 3.575 3.579 3.579
9 3.199 3.339 3.420 3.470 3.502 3.523 3.536 3.544 3.547
10 3.151 3.293 3.376 3.430 3.465 3.489 3.505 3.516 3.522
11 3.113 3.256 3.341 3.397 3.435 3.462 3.480 3.493 3.501
12 3.081 3.225 3.312 3.370 3.410 3.439 3.459 3.474 3.484
13 3.055 3.200 3.288 3.348 3.389 3.419 3.441 3.458 3.470
14 3.033 3.178 3.268 3.328 3.371 3.403 3.426 3.444 3.457
15 3.014 3.160 3.250 3.312 3.356 3.389 3.413 3.432 3.446
16 2.998 3.144 3.235 3.297 3.343 3.376 3.402 3.422 3.437
17 2.984 3.130 3.222 3.285 3.331 3.365 3.392 3.412 3.429
18 2.971 3.117 3.210 3.274 3.320 3.356 3.383 3.404 3.421
19 2.960 3.106 3.199 3.264 3.311 3.347 3.375 3.397 3.415
20 2.950 3.097 3.190 3.255 3.303 3.339 3.368 3.390 3.409
21 2.941 3.088 3.181 3.247 3.295 3.332 3.361 3.385 3.403
22 2.933 3.080 3.173 3.239 3.288 3.326 3.355 3.379 3.398
23 2.926 3.072 3.166 3.233 3.282 3.320 3.350 3.374 3.394
24 2.919 3.066 3.160 3.226 3.276 3.315 3.345 3.370 3.390
25 2.913 3.059 3.154 3.221 3.271 3.310 3.341 3.366 3.386
26 2.907 3.054 3.149 3.216 3.266 3.305 3.336 3.362 3.382
27 2.902 3.049 3.144 3.211 3.262 3.301 3.332 3.358 3.379
28 2.897 3.044 3.139 3.206 3.257 3.297 3.329 3.355 3.376
29 2.892 3.039 3.135 3.202 3.253 3.293 3.326 3.352 3.373
30 2.888 3.035 3.131 3.199 3.250 3.290 3.322 3.349 3.371
31 2.884 3.031 3.127 3.195 3.246 3.287 3.319 3.346 3.368
32 2.881 3.028 3.123 3.192 3.243 3.284 3.317 3.344 3.366
33 2.877 3.024 3.120 3.188 3.240 3.281 3.314 3.341 3.364
34 2.874 3.021 3.117 3.185 3.238 3.279 3.312 3.339 3.362
35 2.871 3.018 3.114 3.183 3.235 3.276 3.309 3.337 3.360
36 2.868 3.015 3.111 3.180 3.232 3.274 3.307 3.335 3.358
37 2.865 3.013 3.109 3.178 3.230 3.272 3.305 3.333 3.356
38 2.863 3.010 3.106 3.175 3.228 3.270 3.303 3.331 3.355
39 2.861 3.008 3.104 3.173 3.226 3.268 3.301 3.330 3.353
40 2.858 3.005 3.102 3.171 3.224 3.266 3.300 3.328 3.352
48 2.843 2.991 3.087 3.157 3.211 3.253 3.288 3.318 3.342
60 2.829 2.976 3.073 3.143 3.198 3.241 3.277 3.307 3.333
80 2.814 2.961 3.059 3.130 3.185 3.229 3.266 3.297 3.323
120 2.800 2.947 3.045 3.116 3.172 3.217 3.254 3.286 3.313
240 2.786 2.933 3.031 3.103 3.159 3.205 3.243 3.276 3.304
Inf 2.772 2.918 3.017 3.089 3.146 3.193 3.232 3.265 3.294
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Table 9 Upper α = 0.01 point of Duncan’s multiple range tests

k

df 2 3 4 5 6 7 8 9 10 11

1 90.024 90.024 90.024 90.024 90.024 90.024 90.024 90.024 90.024 90.024
2 14.036 14.036 14.036 14.036 14.036 14.036 14.036 14.036 14.036 14.036
3 8.260 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321
4 6.511 6.677 6.740 6.755 6.755 6.755 6.755 6.755 6.755 6.755
5 5.702 5.893 5.989 6.040 6.065 6.074 6.074 6.074 6.074 6.074
6 5.243 5.439 5.549 5.614 5.655 5.680 5.694 5.701 5.703 5.703
7 4.949 5.145 5.260 5.333 5.383 5.416 5.439 5.454 5.464 5.470
8 4.745 4.939 5.056 5.134 5.189 5.227 5.256 5.276 5.291 5.302
9 4.596 4.787 4.906 4.986 5.043 5.086 5.117 5.142 5.160 5.174
10 4.482 4.671 4.789 4.871 4.931 4.975 5.010 5.036 5.058 5.074
11 4.392 4.579 4.697 4.780 4.841 4.887 4.923 4.952 4.975 4.994
12 4.320 4.504 4.622 4.705 4.767 4.815 4.852 4.882 4.907 4.927
13 4.260 4.442 4.560 4.643 4.706 4.754 4.793 4.824 4.850 4.871
14 4.210 4.391 4.508 4.591 4.654 4.703 4.743 4.775 4.802 4.824
15 4.167 4.346 4.463 4.547 4.610 4.660 4.700 4.733 4.760 4.783
16 4.131 4.308 4.425 4.508 4.572 4.622 4.662 4.696 4.724 4.748
17 4.099 4.275 4.391 4.474 4.538 4.589 4.630 4.664 4.692 4.717
18 4.071 4.246 4.361 4.445 4.509 4.559 4.601 4.635 4.664 4.689
19 4.046 4.220 4.335 4.418 4.483 4.533 4.575 4.610 4.639 4.664
20 4.024 4.197 4.312 4.395 4.459 4.510 4.552 4.587 4.617 4.642
21 4.004 4.177 4.291 4.374 4.438 4.489 4.531 4.567 4.597 4.622
22 3.986 4.158 4.272 4.355 4.419 4.470 4.513 4.548 4.578 4.604
23 3.970 4.141 4.254 4.337 4.402 4.453 4.496 4.531 4.562 4.588
24 3.955 4.126 4.239 4.322 4.386 4.437 4.480 4.516 4.546 4.573
25 3.942 4.112 4.224 4.307 4.371 4.423 4.466 4.502 4.532 4.559
26 3.930 4.099 4.211 4.294 4.358 4.410 4.452 4.489 4.520 4.546
27 3.918 4.087 4.199 4.282 4.346 4.397 4.440 4.477 4.508 4.535
28 3.908 4.076 4.188 4.270 4.334 4.386 4.429 4.465 4.497 4.524
29 3.898 4.065 4.177 4.260 4.324 4.376 4.419 4.455 4.486 4.514
30 3.889 4.056 4.168 4.250 4.314 4.366 4.409 4.445 4.477 4.504
31 3.881 4.047 4.159 4.241 4.305 4.357 4.400 4.436 4.468 4.495
32 3.873 4.039 4.150 4.232 4.296 4.348 4.391 4.428 4.459 4.487
33 3.865 4.031 4.142 4.224 4.288 4.340 4.383 4.420 4.452 4.479
34 3.859 4.024 4.135 4.217 4.281 4.333 4.376 4.413 4.444 4.472
35 3.852 4.017 4.128 4.210 4.273 4.325 4.369 4.406 4.437 4.465
36 3.846 4.011 4.121 4.203 4.267 4.319 4.362 4.399 4.431 4.459
37 3.840 4.005 4.115 4.197 4.260 4.312 4.356 4.393 4.425 4.452
38 3.835 3.999 4.109 4.191 4.254 4.306 4.350 4.387 4.419 4.447
39 3.830 3.993 4.103 4.185 4.249 4.301 4.344 4.381 4.413 4.441
40 3.825 3.988 4.098 4.180 4.243 4.295 4.339 4.376 4.408 4.436
48 3.793 3.955 4.064 4.145 4.209 4.261 4.304 4.341 4.374 4.402
60 3.762 3.922 4.030 4.111 4.174 4.226 4.270 4.307 4.340 4.368
80 3.732 3.890 3.997 4.077 4.140 4.192 4.236 4.273 4.306 4.335
120 3.702 3.858 3.964 4.044 4.107 4.158 4.202 4.239 4.272 4.301
240 3.672 3.827 3.932 4.011 4.073 4.125 4.168 4.206 4.239 4.268
Inf 3.643 3.796 3.900 3.978 4.040 4.091 4.135 4.172 4.205 4.235
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Index

A
Additivity, 397, 425, 427, 429
Aliases, 595, 597, 599, 605
Alpha level-α, 147, 171, 179, 358
Alternative hypothesis, 134, 135, 142,

154, 205, 340
Analysis of Variance Table-Oneway

Regression, 226, 245
RCBD, 403

ANOVA, see Analysis of Variance
Array, 11, 38, 39, 45
Association, 309

B
Balanced incomplete block design, 641

ANOVA table, 644
examples, 643
parameter equations, 641
parameters relationship, 641
reduced design, 641
statistical model, 642

Bartlett’s homogeneity test, 186, 764
Bayes’s Theorem, 74
Bias in measurement, 8
BIBD construction, 642, 652
Binomial distribution, 80, 82

fitting, 327–330
Box-Cox transformation, 438

C
Calculating factorial interaction

contrasts, 557
Case-control studies, 423
Categorical variable

nominal, 4, 307
ordinal, 307

Censoring, 719

interval censoring, 720
left censoring, 720
right censoring, 720

Charts, 24
bar chart, 25
component chart, 28
multiple bar chart, 26, 27
pie chart, 28, 29

Chi squared distribution, 312
degree of freedom, 312
table, 781

Class
interval, 13
limits, 14

Coefficient of Determination, 241,
242, 304

Coefficient of Variation (CV), 50, 51, 635
Cohort studies, 348
Combination, 62
Combined analysis of experiments, 749

over several seasons, 750
over several sites, 763
over several years, 771

Combining several 2 × 2 contin-
gency tables, 315–317, see also
Mantel-Haenzel test

Comparisons of Regressions, 257
Completely Randomized Design

(CRD), 355
correction factor, 357
hypotheses of interest, 369
pilot studies, 355

Concordance correlation, 253
Conditional probability, 67, 727, 735
Confidence difference for two

populations, 123
for means (μ1 − μ2), 123
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for proportions (p1 − p2), 127
Confidence interval, 115

confidence coefficient, 117
difference of two means, 123

Confidence interval estimates for β1, 227
for β0, 229

Confidence interval for a proportion, 121
Confounding in factorial designs, 572

partial confounding, 582
Constant variance, 185, 186, 217, 218,

236, 386, 387, 430, 451
Contingency tables

assumptions and rule, 325
expected values, 325
general r × c table, 319
homogeneity model and test, 320
the 2 × 2 table, 315

Contrasts, 370
contrasts sum of squares, 370
orthogonal contrast, 370

Cook’s measure, 249
Corrected sum of cross-products

of xy, 218, 219
corrected sum of squares

of x, 218, 219
corrected sum of squares

of y, 223, 224
Correlation coefficient, 241

general hypotheses, 242
properties of r, 241
sample correlation coefficient

r, 241, 304
Covariance analysis, 503

adjusted treatment mean, 507
adjusted treatment SS, 507
ANOVA table, 518, 519
assumptions, 505
concomitant variable, 503
in Factorial Designs, 520
in Randomized Complete Block

Design, 516
missing values and Covariance

Analysis, 523
parallelism test, 508

Critical rejection region, 135, 136
Cross-over designs, 475

carry over effect, 484
direct effect, 475
residual effect, 475
sequential effects, 484

Cumulative probability distribution, 79

D
Degrees of freedom (df)

for X2 distribution, 322
for F distribution, 171
for t distribution, 145, 159, 176,

228, 229
Dependent variable, 217, 249, 471,

520, 697
Descriptive statistics, 41, 100, 101
Discrete random variable, 77

density function, 78
mean, 78
variance, 78

The dot plot, see Graphical
representation

Drug responsiveness model, 290
an example, 290

Duncan’s multiple range test, 361
tables, 786, 787

E
Efficiency factor in BIB design, 648
Empirical rule, 54
Error in measurement, 5, 8
Estimator, 115

estimate, 115
Expected frequency, 308, 317, 326
Experiments, 307, 308
Experimental units, 338
Experiments over years, 771
Explanatory variable, 217
Exponential

hazard model, 737
response model, 284

Mitscherlich fertilizer response
model, 284

F
F distribution, 147, 171, 249, 265,

358, 360
table, 782, 783

Factorial designs, 531
in complete blocks, 546
other factorial systems, 553
the 22 factorial, 532
the 2n factorial design, 532
treatment combinations, 531

False negative, 70
False positive, 70
Fisher’s exact test, 312
Fixed effects, 347
Five number summary, 41, 57
Follow-up studies, 348
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Fractional factorial design, 590
aliased effects, 591
complimentary fraction, 590, 592
principal fraction, 590, 592

Frequency
expected, 308, 317, 326
observed, 307, 308, 317, 319

Frequency distribution, 11
construction, 14
cumulative frequency, 17
grouped distribution, 13
relative frequency, 15
ungrouped distribution, 12

Frequency polygons, 23, 24
ogive, 23, 24

G
Geometric mean, 36
Goodness-of-fit tests, 325, 327
Graeco Latin squares, 461, 462, 466
Graphical representation, 18

dotplot, 18
histogram, 21
stem and leaf display, 18
two-stemmer, 19

Group balanced block design, 440
ANOVA structure, 442
example, 442
randomization, 441

H
Hazard function, 735
Histograms, 21

construction, 21
Homogeneity of Variances, 185, 186
Homoscedasticity, 219
Horizontal strip plot, 630
Hyper-geometric distribution, 96
Hypothesis testing, 128

alternative, 134
null, 130, 131

I
Incomplete block design, 639

confounded with blocks, 639
concurrence λij, 640
example, 640

Independent variable, 243, 251, 254, 255,
298, 520, 531

Influential observations, 249
Cooks’s measure, 249
Dffits, 249
leverages, 249

Interaction effects, 533, 535

qualitative interaction, 537
quantitative interaction, 537

K
Kaplan-Meier estimators, 720

method, 720

L
Lack of fit sum of squares, 235
Lattice design, 649

ANOVA structure, 652
an example, 652
construction, 649
randomization, 651

Latin square designs, 451
analysis, 453
ANOVA Table, 454, 457
stratification, 453
The Completely Orthogonalized

Square, 465
Laws of Probability, 66
LD50, 661
Least Significance Difference (LSD),

176, 360
Least squares, 217, 219
Level of a factor, 531
Level of significance, 133
Life-Table method, 724
Linear

combinations of means, 369, 370
logistic model, 662, 664, 666

Logarithmic transformation, 431, 433
Logits, 665
Logistic regression, 664
Log dose, 664

M
Main effects, 532
Main plots, 609, 610

assignment of factors, 627
randomization, 637

Margin of error, 4, 118, 121, 122, 164,
167

Marginal probabilities, 65, 66
Measures of center, 34

relationships between the
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Multiple linear regression, 242
Mean, 35

for grouped data, 36, 42
weighted mean, 36

Mean of discrete random variable, 78
Median, 37
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for grouped data, 43
Measures of variability, 49

range, 49
standard deviation, 50

for grouped data, 52
variance, 50

Measurement, 4
Michaelis-Menten model, 302
MINITAB, 18, 21, 44
Missing Values

ANOVA table, 409, 460
in Latin Square Designs, 459
in RCBD, 407

Mitscherlic Response model, see
Mitscherlich fertilizer response
model

Mode, 44
Model adequacy, 234

model adequacy testing, 386
Model assumptions, 218
Mortality rates, 664
Multicollinearity, 251

Variance Inflation Factor (VIF), 251
Multiple comparison tests, 175, 360

Duncan’s multiple range test, 361
in RCBD, 422
least significance difference, 360
Scheffé’s test, 362
t pairwise tests, 175
t tests, 360
Tukey’s test, 362

Multiple Latin Squares, 468
Multiple and partial correlations, 254

N
Negative exponential model, 271
Non-additivity

Tukey’s additivity test, 425
Normal approximation to binomial, 94
Normality assumption test

Anderson-Darling test, 387
Normal distribution

standardized normal, 88
Normal probability plot, 236
Nonlinear regression, 269
Non-parametric tests

Kruskal-Wallis test, 189
Mann-Whitney U test, 150

Null hypothesis, 133

O
Observational studies, 348
Odds of an event, 351

relationship with probability, 69
Odds interpretation, 667
Odds ratio, 351
One sample tests

one sample t test, 138
one sample Z test, 135

Ordinary least squares, 218, 219
Orthogonal contrasts, 181
Orthogonal designs, 348

in Latin Squares Design, 476
Orthogonal polynomials

cubic effect coefficients, 288, 379
equally Spaced treatment levels,

285, 375
linear effect coefficients, 288, 379
quadratic effect coefficients, 288, 379
table of coefficients, 603, 784
unequal spacing, 1, 48, 198

Outliers, 40, 249

P
Paired t Test, 154
Parallel bio-assay, 674

use of joint model, 676
Parameters

estimates, 225
interpretations, 225, 688

Parallel regression lines, 268
Partial F tests, 247
Percentiles, 39

quartiles, 40
lower quartile, 40
upper quartile, 40

Partitioning treatment SS, 382, 414
in RCBD, 412

Pearson’s X2 Statistic, 352
Percentage variation, 233
Permutation, 60
Pie chart, 28
Pivot cell in 2 × 2 contingency table, 442
Poisson distribution, 85

fitting, 86, 325
recursion formula, 87

Polynomial regression, 298
Pooled variance estimator, 125
Pooled t test, 150
Prediction of Y from X

individual response, 231
mean response, 231

Predictive value positive, 70, 72, 73
Probability, 59

laws of, 66
Probability of an event, 63
Probability distribution, 77
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Probability density function (pdf), 78
Probability tree, 72
Probit analysis, 671

probit versus logistic regression, 673
Product-Limit method, 746, 747
Proportional hazard model, 737, 744
Prospective studies

retrospective studies, 350
definition, 248

P-value
for X2 test, 311, 325
for F test, 147
for t test, 140
for Z test, 135

Pure error SS, 234

Q
Quadratic model, 242
Quantal-bioassay

individual effective dose, 661
median Lethal Dose, LD50, 661, 670
median Effective Dose, ED50, 661
median Lethal Concentration,

LC50, 661
median Effective Concentration,

EC50, 661
examples, 662

Quartiles
lower, 39
outliers from, 40
upper, 39

Quantitative treatment levels, 375
Qualitative

factor, 376
variable, 24

Quantitative
factor, 338, 376
variable, 9

Questionnaires, 6, 7

R
Random error term, 317
Randomized Complete Block

Design, 395
Analysis of Variance table, 404, 405
blocking, 398
group balanced block design, see

Group Balanced Block Design
matching, 402
model and analysis, 402

Rank correlation, 252
Raw data, 11
Random variable, 77
Regression

analysis, 217
assumptions, 217, 218

Relative efficiency
in Balanced Lattice Design, 657
in BIB design, 648
in RCBD, 467
in Latin Square Design, 459

Relative risk, 349
ROC curve, 74–77
Repeated measures design

within-subject method, 697
Replicated factorial design, 538
Replication

definition of, 342
determination of number, 202

Residuals, 230
examination of, 236

Response, 217
Resolution III designs, 592
Resolution IV designs, 596
Retrospective studies, 320, 348, 350

S
Sampling distributions, 98

of x̄, 105
Central Limit theorem, 104

summary results, 79
of proportion p, 106
Sample size determination, 118, 202

in proportion, 121
Sample space, 59, 62
Scatter plot, 273
Sensitivity, see Specificity
Shape

bell shaped, 54, 88
left skewed, 47
mound shaped, 54
right skewed, 47

Significance levels, 132, 133
Simple events, 62
Simple factorial effects, 582
Simpson’s paradox, 316
Single replicate factorial, 568
Small sample confidence interval, 119
Specificity

sensitivity, 69, 76, 111, 689
Split plot design, 609

ANOVA table, 612
main plot error, 611, 626
main plot SS, 612
sub plot analysis, 76

Split-split plot design, 624–627
an example, 640
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design layout, 624
structure of ANOVA Table, 629

Square-root transformation, 430
Analysis of Variance of, 469

Statistical tables, 777
X2, 781
Duncan’s multiple range test,

786, 787
F distribution, 782, 783
orthogonal polynomial

coefficients, 784
standard normal, Z, 779
t distribution, 780

Strip-plot design
an example, 631
design layout, 637
structure of ANOVA table, 629

Standard Errors
for the mean x̄, 166
for the proportion p̂, 168
for the difference of two means, 127
for the difference of two

proportions, 127
Student’s t distribution, 125, 138, 228
Summation notation, 55
Sums of squares

of contrasts, 415
of orthogonal contrasts, 181
from orthogonal polynomial

coefficients, 198
in Yates’s algorithm, 542

Survival analysis, 719
survival time, 720, 723, 732, 734,

740, 742
Survival function, 720

computations, 732
definition, 722
probabilities, 725, 732

T
Table of orthogonal polynomial

coefficients, 286
t Table, 141, 452
Tally, 44, 103
Test of significance, 130, 131,

133, 519
Test

of common intercept, 263
of no interaction, 425
of parallelism, 519
for homogeneity of variances, 772
for normality, 432
lack of fit, 235

multiple comparisons, 175, 176
Tests concerning two populations, 107

two sample Z test, 205
two sample t test, 169, 174
two proportions, 128

Test of independence
in 2 × 2 contingency tables, 75

Test of Significance, 130, 131, 133,
235, 634

Test statistics
Cook’s, 251
Pearson’s X2, 311, 312, 321, 353
Likelihood Ratio test G2, 308
Yates test, 542
Mantel-Haenzel test, 317

Testing for a proportion, 141, 142
The 23 factorial

ANOVA table, 539, 541
calculating the SS, 438
standard errors, 543

Transformations
Arc Sine, 431–438
Box-Cox, 438–440
logarithmic, 431
square root, 430, 431, 433, 439

Tree diagram, 69, 72
Type I error, 133, 178
Type II error, 133, 343
Types of alternative hypotheses, 134

left-tailed, 134, 135
right-tailed, 134
two-sided, 136, 142, 243

t-test, 150, 155, 186
Tukey’s test, 178–180

studentized range tables, 178

U
Unbalanced one-way ANOVA, 171, 699
Upper tail, 178

V
Variate, 1, 3, 4, 42, 338, 503
Variable

binary, 430
categorical, 4, 28, 755
concomitant, 503–505, 530
continuous, 341, 680
discrete, 103
explanatory, 217, 237, 243, 251, 297,

697, 744
independent, 243, 251, 255, 298, 531
qualitative, 24, 194
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response, 194, 217, 218, 280, 295,
355, 516, 662, 697, 757

Variance
analysis, see Analysis of variance
of discrete random variable, 79
heterogeneity, 343
pooled, 148, 171, 186, 258, 759

Variation
explained or fitted, 226
total, 8, 233, 346, 571

Venn diagram, 66
Vertical factor, 632

W
Weibull model, 736, 737
Weighted Mean, 36–39

Y
Yates’s algorithm, 409, 542–546
Y-intercept, 217

Z
z confidence intervals, 113
z critical values, 155
z score, 90
z table, 779
z test

for difference between means, 131,
135, 207, 208, 210, 561

for difference between
proportions, 127

for population mean, 423
for population proportion, 128
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