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Preface

This book is aimed at exposing statistical techniques which are very essential
to understand research work in the Biological, Agricultural, and Health Sci-
ences. Other disciplines may also find the book useful. This book is born out
of my teaching Experimental, field experimentation, and Biostatistics courses
at various universities in the United States and Nigeria. The book has also
benefited from lecture notes during my graduate program at the University
of Reading, Berkshire, UK.

The book covers the basic aspects of statistics, such as data descrip-
tion, probability, sampling distributions, estimation, and hypotheses testing.
These topics are covered in Chaps. 1 to 5. Regression analysis and analysis of
categorical data are covered in Chaps. 7 and 8 respectively. Chapter 6 covers
an introduction to analysis of variance. Here, students are first introduced to
treatment comparison methods as well as multiple comparison procedures.
This chapter also introduces students to the concepts of contrasts and or-
thogonality. Chapter 9 introduces students to the principles of experimental
design, while Chap. 10 covers the completely randomized design including
more coverage on contrast and multiple comparisons as well as the analy-
sis of experiments designed with quantitative levels. Chapter 11 covers the
randomized complete block design, including discussion on group balanced
block design while Chap. 12 covers Latin square designs as well as cross-over
designs. Several examples are introduced in this chapter. This chapter also
covers materials relating to multiple Latin squares.

Chapter 13 covers the analysis of covariance in both the completely ran-
domized design (CRD), and the randomized complete block design (RCBD).
Chapter 14 introduces students to simple factorial designs in both 2" and 32
designs. The concept of confounding and partial confounding is similarly in-
troduced in this chapter. Resolutions IIT and IV designs are also introduced in
this chapter. The split plot design is introduced in Chap. 15. Also introduced
here are the strip-plot and the split-split plot designs with examples. Incom-
plete block and lattice designs are introduced in Chap. 16. Quantal-bioassay
and the logistic regression are introduced in Chap. 17 including the probit
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model. The repeated measures design for single and two-factor models is in-
troduced in Chap. 18. Chapter 19 introduces students to survival analysis.
Here, the concept of censoring and estimating survival functions is discussed.
Hazard and proportional hazard models are similarly discussed. Chapter 20
discusses combined analysis of experiments over time, season, and sites.

Several different examples are presented in the text to illustrate the di-
versity of the various models. All examples in this text have been analyzed
using MINITAB version 16. These examples have therefore been accompa-
nied with their corresponding MINITAB codes embedded in the text. The
examples have also been analyzed with R programs, and these are made avail-
able at the Springer site which is dedicated to this text. We have presented
partial outputs arising from the use of MINITAB 16. To facilitate data entry,
many of the data sets for examples and exercises are provided on the book’s
website (http://extra.springer.com). The example data files are contained in
the folder DATAFILES and are presented chapter by chapter. All R program
codes for analyzing the examples in the text are contained as ASCII files in
RCODES folder. Partial outputs generated from the R programs are con-
tained in the Routput.pdf. This also contains the necessary information on
all the examples.

The book is intended for use in undergraduate courses in Agricultural
Sciences, Nursing and Health Sciences as well as in Biological Sciences.
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Chapter 1
Introduction

1.1 Concepts

In a certain university, suppose we were to obtain the height, sex, weight, and
age of each student in a large class in Biostatistics, then such a collection of
numbers or survey represents characteristics of the group of individuals con-
tained in this class. If the aggregate of individuals in this class represents
the only individuals of interest in the survey, they constitute the Universe
or population of interest. If, however, the Universe is composed of a wider
aggregate or group of individuals, say the full time Undergraduate students
at this University, then the members of this class represent only a part or
sample of the Universe or population. Complete enumeration or survey of a
characteristic in the population is defined as a Census whereas enumeration
on only a part of the population is known as a Sample or as a Sample Sur-
vey. Population or Universe may consist of characteristics of people, or acres
in farms, Sex, etc. etc. Examples are—all progeny of a particular rat, the
birthweights of pigs in one litter, all possible values of millet yield per acre in
Kano State. Populations are classified and described by numbers. Students
in this University for example, are described by their registration or matric-
ulation numbers. It is a fact, however, that the more developed a society is,
the more that society will be characterized by numbers. Knowledge of char-
acteristics of a society allows intelligent action to be taken in order to further
develop the society. A sample on the other hand is a part of the population
(in some cases, a sample may include the whole of the population). Often,
we are interested as researchers in the behavior of a variate throughout a
population, but observations on every member of the population may be im-
possible. For instance, we cannot contemplate catching and weighing every
fish in a particular study pond or counting the number of every deficient seed
in a kilogram bag of seeds. Sometimes too, the restriction is stronger than
consideration for economy or speed. The observations or measurements may
involve classification of the individual (weight of a rat’s heart or amount of a
certain trace element in a Tilapia fish) so that full records for a population
would prevent any continuing study of that population. Thus, the intention

B. Lawal, Applied Statistical Methods in Agriculture, 1
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8_1,
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is to use sample information to have an inference about a given population.
It is therefore very important to concisely define the population of interest
and to obtain a representative sample from such a population so that valid
inferences could be made. Numbers used to describe a characteristic of a pop-
ulation and which are derived from all members of the Universe are called
Parameters. Parameters represent the facts about the population. Numbers
derived from a sample and which may be used to “guesstimate,” to estimate,
or to approximate the value of the parameters are called Statistics. Thus,
a weighted average of a student in any given semester is an estimate of the
students grade average for his 4 years at the University, in this example,
the one Semester specified weighted average is a statistic, and it estimates
the weighted average for a total of eight Semesters. A statistic is subject to
variation (i.e. it is a variable). As opposed to the above uses of Statistics
as represented by columns of numbers, averages, percentages, ratios, and its
like, there is a subject of Statistics which is a field and a science unto itself.
Statistics are concerned mainly with the following items:

(i) “to design or to plan experimental investigations (experiments) and
Sample Surveys.
(ii) to summarize the numbers collected from experiments and Sample
Surveys’, and
(iii) to relate or to infer facts about the population utilizing facts from the
sample.”

Statistics as a science and subject unto itself is a branch of applied mathemat-
ics and probability. As such, it is rigorous and well-defined within a framework
of definitions and assumptions. Whenever a statistical procedure is applied to
a real-life situation, the assumption may or may not be justified. This means
then that the application of statistical procedures always involves a degree of
subjectiveness. The degree of subjectiveness should be constantly questioned
and evaluated in order to make proper use of the statistical procedure under
consideration. We may also note here the following:

1. The population is a set of data that characterizes some phenomena.

2. The sample is a set of data selected from a population.

3. A statistical inference is a decision, estimate, prediction, or generalization
about the population based on information contained in the sample.

1.1.1 Why Study Statistics?

The growth in data collection associated with scientific phenomena as well as
the operations of business and government (quality control, Statistical audit-
ing, forecasting, etc) has been truly outstanding over the past several decades.
Published results of political, economic, and social surveys as well as increas-
ing government emphasis on drug and product testing provide vivid evidence
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of the need to be able to evaluate data sets intelligently. Consequently, you
will want to develop a discerning sense of rational thought that will enable
you to evaluate numerical data. You may be called upon to use this ability
to make intelligent decisions, inferences, and generalizations. For this reason,
the study of statistics is an essential prerequisite for a role in modern Society.
Indeed, it is the key Technology. Because the use of Statistics has manifested
itself in several aspects of human endeavor (education, research, economic
data, etc.), it is necessary therefore that an understanding of the subject of
Statistics should form part of our educational training and experience. Such
an understanding will acquaint us with the language of the discipline as well
as the basic concepts of statistics at least. We will be exposed to the applica-
ble properties of statistical concepts in Biology, Medicine, Agriculture, and
social Sciences. However, we must keep in mind that Statistics is intended to
be a tool for research.

1.2 Methods of Describing Data

At the beginning of this chapter, we refer to some characteristics of members
of this class. Some of this data are measured (e.g., weight) whereas others
are classified (e.g., sex which must be male or female).We call these classified
records “attributes.” Each of the quantities or attributes recorded on each
student is called a variate.

Definition A variate is any quantity or attribute whose values varies from
one unit of investigation to another.

Definition An observation is the value taken by a variate for a particular
unit of investigation. With large data sets, it will be clear for reasons that
will be given later that we would need some method for summarizing the
information in a data set. Methods for describing data sets are also essential
for Statistical inference. Most populations are large data sets. Consequently,
if we are going to make descriptive statements (inferences) about a population
based on information described in a sample, we will once again need methods
for describing a data set.Two methods for describing data are presented in
the next chapter—one graphical and the other numerical. As we shall see
later, both play an important role in Statistics.

1.2.1 Types of Data

Although the number of phenomena that can be measured is almost limit-
less, data can generally be classified as one of two types: Quantitative or
qualitative.
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Definition A quantitative data are observations that are measured on a
numerical scale. The most common type of data is quantitative data, since
many descriptive variables in nature are measured on numerical scales. Ex-
amples of quantitative data are: Number of leaves per plant, yield of cowpea,
the heights (or weights) of students in a class, the number of Lecturers in the
faculty of Science, University of Ilorin, Nigeria. The measurements in these
examples are all numerical. All data that are not quantitative are qualitative.
Quantitative variates can also be divided into two types. They may be con-
tinuous, if they can take any value we care to specify within some range or
discrete if their values change by steps or jumps. Thus the 1000 seed weight
of a crop for instance is continuous, because there is no reason why 1000 seeds
should not have a weight of 6.94326254 Kg even if no scales could measure
it accurately. However, a variate like the number of plants per plot must be
whole number 0,1,2,--- going up in steps; decimal values are certainly not
allowed here. Heights and weights are obvious examples of continuous vari-
ates. On the other hand, discrete observations are integers because they arise
from counts.

Definition A qualitative variate or attribute is a variate whose values can-
not be put in any numerical order. That is, they are observations that are
categorical rather than numerical and are not capable of being measured.
Examples of this are “The political affiliations of a group of people.” Each
person would have one and only one political affiliation. Sex of a person is
also another example as it can be either male or female. This type of variate
can either be ordinal (if there are intrinsic ordering about its categories, e.g.,
severity of a disease or a variable with three categories: good, adequate. and
poor) or nominal (if its categories are unordered and mutually exclusive).
Gender, marital status, flower color are examples of nominal qualitative or
categorical variable.

1.3 Measurements

Most biological, agricultural, and medical experiments involve measurements
which are numbers that characterize certain variables of a population. It is
therefore necessary to have a device for producing meaningful and consistent
numbers, or a measuring device. To have repeatable or reproducible mea-
surements or numbers, it is necessary to have a measuring device with a
prescribed or measurable margin of error. Note that we do not say that the
measuring instrument or device must be error-free, but only that the error of
measurement must fall within prescribed limits. Knowing the limits of error
of measurement, we are then in a position to determine whether we can or
cannot measure a characteristic on the individuals of the sample or of the
population with the desired accuracy.
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1.3.1 Measuring Devices

The measuring devices utilized by experimenters, lecturers, merchandizers,
consumers, etc. are many and diverse. We shall list some of the more com-
mon, at least to certain fields, measuring devices with some comments on
their use. Perhaps the first measuring device that comes to mind is a ruler
or similar device used for linear measurements. This instrument is usually
calibrated in feet, inches, 1/6 inches, centimeters, millimeters or other Units
of measurements. It is implied from our primary school days that these units
are fixed units and never vary. This implication is of course, never made
explicit until Secondary school Physics courses are encountered. Even here,
they receive only limited attention. Do we ever stop to question how much
variation there is between the same calibration marks on the rulers manu-
factured as brand X? Our experience has told us that rulers commercially
available are calibrated closely enough so that we need not worry about er-
rors of calibration in every day life. Unfortunately, this “Safe-feeling” may
be carried over into scientific research requiring very precise measurements
with sometimes not so happy results. Would any of us recognize the fact that
brand Y rulers were only 11.99 inches even though calibrated as a 12 inch
ruler? Do any of us know how tall we are to the nearest centimeter when you
we arise in the morning? Or how tall we are to the nearest 1/2 inch when
we retire at night? Is our height measured with or without shoes and stock-
ings? Such questions lead us to the idea that the height of a person must be
defined in precise terms or we shall be unable to determine what is meant
by the height of a person except in very general terms. Another measuring
device is the scale which is calibrated in pounds and ounces. For scientific
investigations, the scale is calibrated in kilograms, grams, centigrams and
milligrams. We have spring and balance scales with all degrees of accuracy
for both types. Do we ever bother to ascertain the accuracy of the scales
used? A few years ago, a research organisation checked the scales used for
weighing heavy objects; the scale was found to weigh low for relatively light
objects. This would mean that the differences in weight between heavy and
medium, heavy and light, and medium and light objects were smaller than
they should have been. The error in measurement of weights could have led to
erroneous conclusions. A simple check would have revealed this error which
had gone undetected for an unknown length of time. If a scale is utilized for
precise weights which have important consequences, e.g., in certain research
investigations, it should be calibrated against a known standard through-
out the total range of weights employed on the scale.Another very common
measuring device is the human judge. Humans serve as measuring devices
for sports events, beauty contests, taste panels, reading other measuring de-
vices, scoring plant strains for disease, infection, etc. One of the key criteria
for a useable judge is the ability to discriminate and to differentiate between
levels of the characteristic under consideration. For example, if all “moimo”
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within a specified range taste the same to a person, he is useless for discrim-
inating between the small differences that a researcher in home economists
is studying. Also, in a beauty contest, if all the girls involved were equally
beautiful to a person, this person would be useless as a judge, since he would
be unable to pick a winner. If all plant strains appeared to be equally infected
with a disease to the judge, when in fact they were not, that person’s scores
would be useless in differentiating between the strains.The ability to discrim-
inate can be sharpened in many cases with adequate training. However, some
individuals may never be able to attain a high level of discrimination with
regard to a particular characteristic despite considerable training. One of
the key characteristics of outstanding research is their ability to observe and
to discriminate among the various types of evidence encountered and then
to organize and sort out the pertinent facts. Successful researchers are keen
observers. A fourth type of measuring instrument with which we have wide
acquaintance is the questionnaire. The questionnaire has many and diverse
forms, but they all have one common goal and that is illicit information from
or about people and their activities and attitudes. The most widely known
form is the ordinary test given in courses. As you all know, there are as many
forms of tests as there are lecturers or persons giving the test. There are true—
false, multiple-choice, completion, matching, discussion, etc., types of tests
and various combinations of these types. Another form of the questionnaire
which is associated with surveys and censuses seeks to determine information
on such items as type of dwelling, occupancy, and ownership of dwelling, in-
come and expenditure of occupants, attitudes of people toward various items
ranging from prejudice to choice of political opponents. These questionnaires
are constructed by people who often forget one simple fact and that is—if the
person being interviewed does not understand the question and an answer is
given, the answer might as well has been generated by a random or chance
process. Application forms represent another form which attempts to obtain
information about individuals for University admission, job application, etc.
Often these forms are very brief, but occasionally, the inventor of forms be-
comes a little too enthusiastic. The forms of questionnaires are varied and
we constantly have to complete one form or another almost daily. Many of
you will be involved with developing questionnaires in your life time. Please
be precise, exact, and unambiguous. Another type of measuring device is
the chemical determination. Large laboratories are constructed for the sole
purpose of performing chemical determinations in plants, animals, humans
and mineral samples. The results are utilized in several ways. For example,
the Drug Department checks on the contents and quality of foods and drugs.
Limits of variation in individual items are set and manufacturers must con-
form to these standards. Other chemical laboratories check soil samples for
fertility content, milk samples for butterfat contents, food samples for pesti-
cide residues, concentration and content of drugs, concentration and content
of alcoholic beverages, concentration of tars, resins, nicotine etc. in cigars and
cigarettes, contents of cosmetics, concentration and identity of weed seeds in
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crop or lawn seed, etc. A very large statistical problem in connection with
all these items is the design of the sampling procedure and establishment of
limits of variation that will be tolerated in the samples. For many items, the
statistical standards have not yet been established; there are too many items
and too few statisticians. In other cases, standards have been arbitrary, but
many of these may be shown to be relatively impossible to attain when stud-
ied statistically. For example, in certified seed, the presence of one specified
noxious weed makes the entire lot of seeds unsuitable for sale. Now in order to
find one noxious in a lot of seeds, it would be necessary to inspect the entire
lot seed by seed. This is too expensive and time consuming for commercial
seed production, some other means, e.g., field inspection, must be used to
eliminate the specified noxious weed seeds from the sample.

1.3.2 Standardization of Measuring Devices

Around 4 m sticks were purchased and arrived in a box which originally
contained 12 m sticks. Two of the meter sticks differed from the other by
two or more than one millimeter in the calibration marks. The meter sticks
carried the same brand name and lot number. This points up the fact that
whenever a new measuring device is utilized, it should be checked against
a standard—the standard should have known accuracy. A measuring device
with unknown accuracy may be useless for the purpose at hand. If we have a
meter stick of known accuracy reading the calibration marks, we could check
the newly purchased meter sticks against the standard. Scales should be
checked for accuracy throughout their usable range of weights prior to using
the scale for precise and accurate work. Human judges should be checked for
discriminatory power and for level of discrimination. Questionnaires should
be pretested prior to use in order to eliminate ambiguities and lack of clarity.
Chemical and physical procedures should be checked when first initiated and
occasionally thereafter in order to ascertain that the process remains accurate
within the prescribed levels. Procedures that are usefully accurate for one
type of material may be inaccurate for a second kind of material. The above,
as well as all other measuring devices should be calibrated against known
calibrated standards; they should be recalibrated at intervals in order to
ascertain that the measuring device remains accurate. Duplicate samples
and samples of known content are often included along with the unknown
samples as a method of checking on the measuring device.

1.3.3 Variability in Measurements

Variability is always present in measurements and it is universal in charac-
teristics of all populations. We live in a variable world. Since, it is universal,
we must learn to live with it and to design experimental investigations and
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surveys in such a way as to overcome the effects of accomplishing this and
they will all be treated under the broad name “Experimental Design Tech-
niques.” Variability is very important when biological materials are involved
rather than inanimate materials.

1.3.4 Bias in Measurement

An unstated tenet in the collection of numbers utilizing a measuring device
is that the plus errors are about equal to the negative errors. Over a large
number of trials, one would expect the errors to sum near to zero. Suppose
that this is not the case and that the magnitude of inaccuracies in one di-
rection, say, plus, exceeds those in the negative direction. The nature of this
type of discrepancy is termed a systematic error, or more commonly, a bias.
To illustrate, let us suppose that experimenter A always reads the measuring
device one unit higher than does experimenter B. The bias of A compared
to B is + 1, and the bias of B compared to A is — 1. Note that we did not
state which, if either of the two experimenters, takes correct measurements in
the sense that if they measured all individuals in the population, they would
obtain the population parameter for the characteristic measured.

1.3.5 FError in Measurement

The causes of variation in measurements are many and varied. These are,
as we have pointed out previously, systematic errors and biases, personal
errors, mistakes, and errors due to assignable causes. In addition, variation
in measurements may be caused by unassignable causes due to the combi-
nation of a number of uncontrolled and often unknown variables each with
individually small effects. If the magnitude and sequence of these variations
are completely unpredictable, i.e., they form a random sequence, we denote
them as random variation or random error. The sum of the random errors
over all individuals in the population should be zero. The total variation in
measurements may be written as:

Total variation = Assignable causes + bias + random error
The error of measurement is often defined as
Error of measurement = bias + random error.

Quite often, the bias is ignored when in fact it may be the larger factor in
the error of measurement. If differences between individuals in the popu-
lation are utilized rather than the individual measurements, the bias term
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adds to zero. Regardless of the procedure in order for the measuring de-
vice to be useful, some measure of the reliability and accuracy should be
known. Thus, the method of utilizing numbers may affect the effect of the
bias term; this method must have meaning to the experimenter. We shall
discuss in Chaps. 9-11, methods (experimental designs) and randomization
techniques that are often employed to minimize random error terms and
biases respectively.

1.4 Exercises

1. Classify each of the following into either qualitative (nominal or ordinal)
or quantitative (continuous or discrete)

Birth weight, date of birth and father’s race of a new baby
Level of cholesterol in a cubic milliliter of blood

smoking status (never, former, or current)

injury (severe, moderate, mild, none)

sex of a new born

Species of a tree (redwood, cedar, pine, oak)

Blood group type (A, B, AB).

2. What is meant by descriptive statistics?
3. Define the following: Quantitative variable; Discrete variable.



Chapter 2
Frequency Distributions

2.1 Introduction

One principal aim of any statistical enquiry is to be able to understand and
describe the population of interest. For example, a farm survey is aimed at
estimating current crop output and evaluating the impact of various govern-
ment policies; a consumer survey will be interested in assessing how much of
its product is being consumed and what is the chance of increasing produc-
tion if some action is taken. Thus, the first task of a statistical staff is that of
organizing the data in the form that salient characteristics can be easily seen.

Suppose in your enumeration area, 35 farming households were sam-
pled, and the weights of heads of households in kilograms (to nearest whole
number) as obtained from the field are shown in Table 2.1:

Table 2.1 Weights of heads of households in kilograms

70 66 60 55 61 63 72
68 60 60 63 60 75 68
59 71 53 76 64 64 52
64 64 68 64 66 67 63
64 70 69 68 63 59 57

These data are what we call raw data, that is, data as obtained from the
field. With the data in this form, very little information can be obtained
about the population. The first possible thing that we can do is to put the
data in what we call an array. An array is the arrangement of the values in
ascending or descending order of magnitude. For example, if we put the data
in an ascending array we have the following results:

52 53 55 57 59 59 60
60 60 60 61 63 63 63
63 64 64 64 64 64 64
66 66 67 68 68 68 68
69 70 70 T1 72 75 76

B. Lawal, Applied Statistical Methods in Agriculture, 11
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8_2,
(© Springer International Publishing Switzerland 2014
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NAME Cl 'WEIGHTS'
SET C1

DATA>70 66 60 55 61..........

DATA>END
SORT C1 C2
PRINT C1 C2

2.2 Frequency Distributions

2.2.1 Ungrouped Distribution

2 Frequency Distributions

The above initial analysis can be improved by finding out how many farmers

have specific weights.

Sample No. of farmers having
No. Weights such weights
1 52 1
2 53 1
3 55 1
4 57 1
5 59 2
6 60 4
7 61 1
8 63 4
9 64 6
10 66 2
11 67 1
12 68 4
13 69 1
14 70 2
15 71 1
16 72 1
17 75 1
18 76 1

Note that the total should be equal to the number of households. This
classification tells us more about the sample; for example, we could see that:

(i) most farmers have different weights

(ii) the most popular (or common) weight of household head is 64 kg.

This is an example of ungrouped frequency distribution. The display is called

a frequency table.

Definition

The number of farmers having a certain weight is called its frequency. In
general, the number of times a particular variable/individual occurs is called
its frequency. This is represented by “f.” For example, the frequency of 67 is

1, that of 68 is 4, etc.
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2.2.2 Grouped D:istribution

One serious disadvantage of the classification above is that the table may be
too long. Take an example when we consider the weights of a sample of 200
households. The analysis in the form of the preceding section becomes too
cumbersome and uninformative.

A more convenient way of summarizing a large mass of raw data is to
group the observations/variables (in this case) weights into categories and
find out how many household heads belong to each category, for example,
how many household heads have weights?

e 52 kg to a weight less than 54 kg
e 54 kg to a weight less than 56 kg
e 56 kg to a weight less than 58 kg, etc.

We write the above in a more shortened form:

e 53 kg - under 54 kg
e 54 kg - under 56 kg
e 56 kg - under 58 kg

Each of these categories is called a class interval. A simple procedure we use
is what we call Tally Score Method. This method consists of making a stroke
in the proper class for each observation and summing these for each class to
obtain the frequency. It is customary for convenience in counting to place
each fifth stroke through the preceding four as shown below.

Weights in kg Tally No. of farmers (f)

52 - under 56 111 3
56 - under 60 111 3
60 - under 64 11111 1111 9
64 - under 68 11111 1111 9
68 - under 72 11111 111 8
72 - under 76 11 2
76 - under 80 1 1

Total 35

Descriptive Analysis

(i) No household head has weight that is less than 52 kg and more than
80 kg.
(ii) The most common weight is somewhere between 60 and 68 kg.
(iii) Most of the farmers have weights from 56 to 72 kg, that is,
3+9+9+8=29 or 83 % of the farmers.

This is an example of a grouped frequency distribution.
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Definitions

Class Interval: Each category is called a class interval or simply a class.
Class Limits: These are the end numbers of each class, e.g., 52, 56, 58, etc.
Upper Class Limit: This is the larger number of the class intervals, e.g., 56.
Lower Class Limit: This is the smaller number of the class intervals, e.g., 52.
Size or Width of a class interval: This is the difference between the upper
and lower class limits, e.g., 56 — 52 = 4.

e Class Mark: This is the midpoint of the class interval and is defined as

Upper Class Limit 4+ Lower Class Limit 56 + 52
3 e'g'7 =
2 2

54, etc.

e C(lass Boundary: When the upper limit of each class is the same as the
lower limit of the next class, the class limits are called class boundaries
(above example).

2.2.3 Constructing a Frequency Distribution

There is no hard and fast rule for the construction of frequency distribution,
but the following procedures may be followed:

(i) Try to use equal class interval width. This is useful for comparative
purposes and for easier calculations.

(ii) The number of classes should not be too many or too few. A rough
guideline for constructing k classes for a sample data is the smallest
integer value of k such that 2 > n, where n is the sample size. In the
example above, the sample size is 35 and since 2° < 35 < 25, we would
employ k = 6 classes. Note that in our example above, we have used
seven classes.

(iii) It is advisable to use class interval width of multiples of 2, 5, or 10.

In our example above, if we choose & = 6 classes, then, the class width is
computed as

Largest value — Smallest value Range  Range 76—52

4

class size Class size k 6

We would usually increase this class width by a little notch say, to 4.2 or
4.5. Suppose we choose 4.5. We can now start the construction of our classes
by starting from a value that is slightly less than the minimum. Our mini-
mum in this case is 52. Suppose we start with 51.5. We then give below the
construction of the six classes with a class width of 4.5.
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Weights Midpoints Tally Frequency (f)

51.5 - <56.0 53.75 111 3
56.0 - <60.5 58.25 11111 11 7
60.5 - <65.0 62.75 11111 111111 11
65.0 - <69.5 67.25 11111 111 8
69.5 - <74.0 71.75 1111 4
74.0 - <78.5 76.25 11 2

Total 35

Note The idea of having equal class interval may be waived in a lot of cases.
For example, when we have a lot of classes with very few values, it might be
advisable to lump them together.

Another example is the case when some classes are unbounded, that is,
when we have the case of open class intervals. The table below gives the ages
of pupils in a primary school in years.

Age (years) Frequency (f)

Under 6 3
6-7 39
8-9 42

10 - 11 40

12 - 13 36

Above 13 7

Note that the classes Under 6 and Above 13 have no lower limit and upper
limit, respectively.

2.2.4 Other Forms of Frequency Distribution

Relative Frequency

We may be interested in the proportion of our sample or population that
falls in a certain class. In this case, we make use of relative frequency. The
result of dividing each class frequency by the total frequency of all classes
and multiplying the result by 100 is the relative frequency.

Weights Frequency Relative frequency (%)

52 - under 56 3 = x 100 =86
56 - under 60 3 = % 100 = 8.6
60 - under 64 9 == x 100 = 25.7
64 - under 68 9 2= X 100 = 25.7
68 - under 72 8 £ % 100 = 22.9
72 - under 76 2 2 X100 =5.7
76 - under 80 1 5= X 100 = 2.9

35
Total 35 100.10
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The relative frequency is mostly useful for easy comparison of two or more
frequency distributions. A biological example for instance is the situation
where we wish to compare the number of seeds germinating in two varieties
of a plant.

The following data in Table 2.2 are used to illustrate the comparative use
of the relative frequency approach.

Table 2.2 Age distribution of grade and pupils in Gabon, 1962.

Frequency (f)
Age (years) Boys Girls Total
10-11 6 5 11
12 - 13 119 49 168

14 - 15 210 102 312
16 - 17 169 75 244

18 - 19 34 4 38
20 - 21 12 - 12
22 -23 2 - 2

Total 552 235 787

Source: Fundamentals in Educational Planning, (UNESCO)

One cannot compare these values straightaway because the population of
the boys in the school is greater than that those of girls, so expectedly, the
figures for boys will be greater than those for girls. However, to compare both
results, we would need to convert both frequencies into relative frequencies.
The relative frequency is very useful for an easy comparison of two or more
frequency distributions. We give an example of such a use with the data
below which relate to the age distribution of pupils in Gabon in 1962.

Relative frequencies Total relative

Age (years) Boys Girls frequency
10-11 1.1 2.1 1.4
12 - 13 21.5 20.9 21.3
14 -15 38.0 43.4 39.6
16 - 17 30.6 31.9 31.0
18-19 6.2 1.7 4.8
20-21 2.2 0 1.5
22 - 23 0.4 0 0.3
Total 100 100 100

The results from the above analysis suggest the following:

(i) Gabonese government should encourage more girls to school.
(ii) The proportional distribution of ages by sex is close enough except for
age group 14 - 15 (difference =5.4 %) and 18 - 19 (difference = 4.5 %).
(iii) More boys of older age stay at school.
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2.2.5 Cumulative Frequency Distributions

Suppose for the data in Table 2.1, we are interested in answering questions
such as:

e How many household heads weigh less than 53 kg?
e How many household heads weigh more than 52 kg?

The answers to these and other similar questions are best answered through
cumulative frequency distributions.

Cumulative Cumulative
frequency frequency
Weights in kg Frequency from below from above
52 - under 56 3 3 35
56 - under 60 3 6 32
60 - under 64 9 15 29
64 - under 68 9 24 20
68 - under 72 8 32 11
72 - under 76 2 34 3
76 - under 80 1 35 1
Total 35
No. of farmers whose weights are less than 52 kg = 0
No. of farmers whose weights are less than 56 kg = 3
No. of farmers whose weights are less than 60 kg = 6
No. of farmers whose weights are less than 64 kg = 15
No. of farmers whose weights are less than 68 kg = 24
No. of farmers whose weights are less than 72 kg = 32
No. of farmers whose weights are less than 76 kg = 4
No. of farmers whose weights are less than 80 kg = 35

The above are obtained from the cumulative frequency distribution from

below. Similarly, we have,

No. of farmers whose weights are greater than 52 kg = 35
No. of farmers whose weights are greater than 56 kg = 32
No. of farmers whose weights are greater than 60 kg = 29
No. of farmers whose weights are greater than 64 kg = 20
No. of farmers whose weights are greater than 68 kg = 11
No. of farmers whose weights are greater than 72 kg = 3
No. of farmers whose weights are greater than 76 kg =1
No. of farmers whose weights are greater than 80 kg = 0

The above are similarly obtained from the cumulative frequency distribution

from above.
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2.3 Graphical Representation of Data

Many people have a strong aversion for anything having numbers and tables,
so it might be useful to represent frequency distribution in a more appealing
form. One method is to represent the frequency distribution in graphic form
which is more informative to the layman. We consider some cases:

2.3.1 The Dotplot

One very useful and simple graphical way to display data is by the use of the
graphical method called the dotplot. The plot employs a horizontal line with
the appropriate axis mark to reflect the range of the data. Each sample ob-
servation is then represented in the graph by a single dot above the horizontal
line at the specified value. For instance, a data value of 55 is represented by
a single dot in the figure below, while a value of 64 is represented by six dots
that are stacked above one another. The figure below is a MINITAB output
of the dotplot for the data in Table 2.1. We could see that the interval 5970
contains most of our data values. Further, the plot provides visual informa-
tion which otherwise could not be discerned from mere looking at the original
data in Table 2.1.

MTB > DotPlot ’'WGT’.

Dotplot: WGT

fommm - fomm fommm - fomm o o WGT

A very useful advantage of the dotplot is in comparative analysis of two
distributions.

2.3.2 The Stem and Leaf Display

The stem and leaf plot offers a quick way to graphically display the shape
of continuous type data while including the actual numerical values in the
graph. That is, the plot retains the original values of the data. The stem
and leaf works best for small numbers of observations as each item of data
must be listed. Below is a MINITAB command to construct a stem and leaf
display of the data in Table 2.1 which was stored in column 1, C1.
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MTB > STEM AND LEAF C1;
SUBC> INCREMENT=5.

Stem-and-leaf of weights N = 35
Leaf Unit = 1.0

2 5 23

6 5 5799
(15) 6 000013333444444
14 6 66788889

6 7 0012

2 7 56

The first column from the MINITAB output for stem and leaf display gives
the cumulative frequencies, both from above and below to the interval in
which the median is located. Thus the parentheses around 15 indicate that
the median is in that class interval. The column also tells us that 6 household
heads have weights below 60 and 14 who have weights of at least 70.

To construct the stem and leaf display, we note that the minimum datum
here is 52 and the maximum is 76. Thus, we could make this a one-stemmer
by having as stems the tens digits 5, 6, and 7, while the ones digit would
then constitute the leaves. This would only result in only three classes, which
would not give a fair pictorial representation of the data. This approach is
displayed in the following;:

MTB > STEM AND LEAF C1;
SUBC> INCREMENT=10.

Stem-and-leaf of weights N = 35
Leaf Unit = 1.0

6 5 235799
(23) 6 00001333344444466788889
6 7 001256

The stem and leaf display we have in the figure above is an example of a
two-stemmer display. Here the 5’s for instance are broken into two groups;
50 - 54 and 55 - 59. That is, the leaves in both groups are respectively the
digits {1, 2, 3, 4} and {5, 6, 7, 8, 9}. The two stemmers can be invoked in
MINITAB by using the subcommand increment =5 while the one-stemmer
can similarly be invoked by using the subcommand increment =10. Other
forms of the stem and display are the five-stemmer and the ten-stemmer. For
a five stemmer, we would have for the 5’s the following stems.

Stems Leaves

2*  With unit digits 0 or 1
2t With unit digits 2 or 3
2f  With unit digits 4 or 5
2s  With unit digits 6 or 7
5° With unit digits 8 or 9

In this splitting, the symbol t is used for the digits 2 and 3; f for four and five;
and s for six and seven. We again give this display for our data in Table 2.1.
The display is generated by the MINITAB subcommand increment = 2.
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MTB > stem and leaf cl;
SUBC> increment=2.

Stem-and-leaf of weights N = 35
Leaf Unit = 1.0

2 5 23

3 55

4 57

6 5 99
11 6 00001
15 6 3333
(6) 6 444444
14 6 667
11 6 88889
6 7 001

3 72

2 75

1 76

We note that in all the above MINITAB displays of the stem-and-leaf plots,
the MINITAB orders the leaf units. However, one needs to very careful with
stem-and-leaf displays because the display itself does not tell you the actual
value of the data. The actual value is provided by the leaf unit = statement
which is given just above the display. For example, if the leaf unit=1.0
had been leaf unit =10, then the smallest data element would have been
520. Similarly, if the leaf unit had been leaf unit =0.001 instead of 1.0, then
the smallest data element would have been 0.052. We give an example below
where the data in Table 2.1 were multiplied each by 10, and the resulting stem
and leaf display below (a five-stemmer) gives the leaf unit =10, indicating
that the minimum data element is 520 and the maximum being 760. Notice
that this display is very similar in every respect to the five-stemmer display
above, except for the leaf unit value.

MTB > LET C3 = C1*10
MTB > STEM AND LEAF C3

Stem-and-leaf of C3 N 35

Leaf Unit = 10

2 5 23

3 55

4 57

6 5 99
11 6 00001
15 6 3333
(6) 6 444444
14 6 667
11 6 88889
6 7 001

3 72

2 75

1 76
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2.3.3 Histograms

A histogram consists of a set of rectangles whose:

(i) bases are on the horizontal axis (X-axis) with lengths equal to the size of
the class intervals
(ii) areas are proportional to the class frequencies.

Remark

We will consider the case when the size of all class intervals are equal. The
frequencies in this case represented on the vertical Y-axis are taken numeri-
cally to be equal to the height of the rectangle. As an example, consider the
data in Table 2.1 with the corresponding frequency distribution displayed
earlier using the tally method. There we have six classes with the class width
of 4.5. We can implement this in MINITAB by doing the following.

MTB > SET C1

DATA> 70 66 60 55 61 63 72 68 60 60 63 60 75 68
DATA> 59 71 53 76 64 64 52 64 64 68 64 66 67 63
DATA> 64 70 69 68 63 59 57

DATA> END

MTB > GStd.

* NOTE * Character graphs are obsolete.

MTB > Histogram ’WGT';
SUBC> Start 53.75 76.25;
SUBC> Increment 4.5.

Histogram of WGT N = 35

Midpoint Count
53.75 3 kKK
58.25 T kAR kkkk
62.75 11 Kk kkkkkkkokk
67.25 8 KkA KA KKK
71.75 4 kkkk
76.25 2 kx

A graphical version of the histogram can be accomplished with the following
commands with the resulting histogram (Fig. 2.1).

MTB > GPro.

MTB > Histogram ’'WGT’;

SUBC> MidPoint 53.75:76.25/ 4.5;
SUBC> Bar;

SUBC> ScFrame;

SUBC> ScAnnotation.
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Histogram of WGT

124

10+

[e0)
1

Frequency
()}
1

53.75 58.25 62.75 67.25 71.75 76.25
WGT

Fig. 2.1 Histogram plot for the data
Example 2.3.1
We shall again illustrate the construction of an histogram with the following

example:
In a plot of 130 tillers, the following information was obtained:

No. of plants 0 1 2 3 4 5 6 Total
No. of tillers 25 19 22 15 33 13 7 130

Which of them is the variable?
Which of them is the frequency?

The procedure is as follows:

1. The variable, number of plants will be on the X-axis.

2. The frequency, number of tillers will be on the Y-axis.

3. Scale your Y-axis from zero and in such a way as to take the highest
frequency (33). An example is to scale from 0 to 35.

4. On the X axis, mark 0, 1, 2, 3, 4, 5, 6 spacing with equal intervals.

5. Draw each rectangle in such a way that the variable values are at the
center and the heights equal the number of families.

The resulting histogram with midpoints corresponding to 0,1,---6 is dis-
played in Fig. 2.2.
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Histogram of Plant No.

35

304

25+

20

154

Frequency

104

G T T T T
0 1 2 3 4 5 6

Plant No.

Fig. 2.2 Histogram for this example

2.3.4 Polygons

Frequency Polygon

This assumes that observations in a class interval are clustered around the
central value, that is, the class mark.

The frequency polygon is a line graph constructed by plotting the class
frequencies of the various classes at their respective class marks and connect-
ing these points by means of straight lines. Again, we can use the data in
Table 2.1 as an example.

Remark

It is customary to complete the picture by adding one class at each end of
the distribution with zero frequencies.

That is, the class 48 - 52 with class mark of 50.0 and f =0.
Also, the class 80 - 84 with class mark =82.0 and f =0. We then join the
points.

2.3.5 Cumulative Frequency Polygon - The Ogive

This is a graph of cumulative frequencies plotted against the class boundaries.
Consider the previous examples.
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Less than 52 kg = 0; Less than 56 kg = 3

Less than 60 kg = 6; Less than 64 kg = 15

Less than 68 kg = 24; Less than 72 kg = 32

Less than 76 kg = 34; Less than 80 kg = 35
We will concern ourselves with less than ogive.

MTB > NOTE OGIVE FOR HOUSEHOLD HEAD WEIGHT DATA
MTB > SORT C1 C2

MTB > SET C3

DATA> 1:35

DATA> END

MTB > NAME C3 ’CUMFREQ’

MTB > Plot 'CUMFREQ’ *'WGTS’;

SUBC> Connect;

SUBC> ScFrame;

SUBC> ScAnnotation.

All the above graphs can be drawn using relative frequencies. The advantages
of using graphical representations are:

(i) The pattern of a distribution is easily seen from a graph.
(ii) It is more informative to the layman.

The ogive for the data in Table 2.1 is constructed in MINITAB with the
following statements and the graph is presented in Fig. 2.3.

MTB > ECDF 'WGT’;

SUBC> Connect;

SUBC> Distribution.
Empirical CDF of WGT

We may note here that a normal distribution with computed mean and stan-
dard deviation is superimposed on the the ogive in Fig. 2.3. If we do not
want this overlay, we can simply remove the Distribution statement in the
MINITAB statement and simply put a period after the “connect” statement.

2.4 Presentation of Data: Charts and Diagrams

So far we have considered diagrams used to illustrate variables. Attributes
(that is, qualitative variables) can also be illustrated pictorially. We consider
some cases below.
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Empirical CDF of WGT

Normal
100- Mean 64.17
StDev 5.628
N 35
801
= 60
Q
5
Q40
20
0-
T T T T T T T
50 55 60 65 70 75 80
WGT

Fig. 2.3 Plot of the ogive for the data in Table 2.1

2.4.1 The Bar Chart

The Simple Bar Chart

We shall use a simple Bar Chart to illustrate the volume of cocoa exported
from Nigeria between 1960 and 1965 (Fig. 2.4). The table below gives the
volume of cocoa in metric tons (thousands) exported by Nigeria between 1960
and 1965.

Year Metric tons

1960 73.6
1961 67.4
1962 66.8
1963 64.8
1964 80.2
1965 85.4

The procedure for drawing a bar graph is the following:

(a) Each value is represented with a bar (rectangle) and its height to its
value.

(b) The width of all rectangles is the same (that is, equal).

(¢) The bars are separated by intervals (or gaps) of equal size.
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Data Display

Row YEAR Tonnage
1 1960 73.6
2 1961  67.4
3 1962 66.8
4 1963 64.8
5 1964 80.2
6 1965 85.4
MTB > Chart Mean( ’Tonnage’ ) * 'Year’;
SUBC> Bar.
Chart of Mean( Tonnage )
90
80
70
S 60
©
£
e 504
s
e 407
3
= 309
20+
10+
T T T T T T
1960 1961 1962 1963 1964 1965
Year
Fig. 2.4 Simple bar chart

2.4.2 Multiple Bar Chart

We can also construct Multiple Bar Chart which is mostly used for compar-
ative purposes. We shall use this technique to compare the purchase of palm
kernels in Kwara State from Okene/Okehi and Oyun local government areas
between 1971/1972 and 1973/1974.

Palm kernels (in tons)
1971/1972 1972/1973  1973/1974

Okene/Okehi 33 19 6
Oyun 84 2 44
Total 117 45 50

Source: Kwara State Statistical Year Book 1977/1978.
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Chart of Mean( TONS )

90

80+

70+

60

501

40-

Mean of TONS

30+

201

10

0
YEAR 7172 7273 73-74 7172 7273 7374
LGOVT OKENE OYUN

Fig. 2.5 Multiple bar chart

We see from the multiple bar graphs in Fig. 2.5 that Oyun local government
of Kwara State produced far more tons of palm kernel than Okene local
government in the years 1971 and 1973/1974. The exception perhaps being
1972/1973. This graph in 2.5 can easily be implemented in MINITAB with
the following statements.

MTB > print cl-c3
Data Display

Row LGOVT TONS YEAR

1 OKENE 33 71-72
2 OKENE 19 72-73
3 OKENE 6 73-74
4 OYUN 84 71-72
5 OYUN 26 72-73
6 OYUN 44  73-74
MTB > Chart Mean( ’'TONS’ ) * ’"LGOVT’;

SUBC> Group ’'YEAR’;
SUBC> Overlay;
SUBC> Bar.

Chart of Mean( TONS )
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2.4.3 Component Bar Chart

This is a simple bar chart divided into sections such that each division
(height) corresponds in magnitude to the value it represents. For example, a
component bar chart for the data employed for the multiple bar chart in the
previous section can be constructed as follows.

(a) Draw simple bars of the totals.
(b) Divide each simple bar into components by just marking off respective
values.

We give in Fig. 2.6 an implementation of the component bar graph for the
last example.

Chart of Mean( TONS )

160+ YEAR
& 73-74
1404 &= 72-73
0 W 71-72

1201

1004

80+

Mean of TONS

60+

40

20+

04
LGOVT OKENE OYUN

Fig. 2.6 Component bar chart

2.4.4 Pie Charts

The pie chart is mostly suitable for categorical variables and represents our
variables or attributes in the form of circles. As an example, we will construct
a pie chart from the table below which gives the amount of money realized
from the export of the principal crops of Nigeria in 1965 in millions of Naira.
Here, we consider crop as a categorical nominal variable with three categories.
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Value Relative

Crop (in million N) frequency

Cocoa 85.4 0.3142

Palm produce 80.2 0.2951
Groundnut 106.2 0.3907
Total 271.8 1.0000

To draw a pie chart, we first note that since a circle spans 360°, the circle can
thus be divided into sections such that the size of each section is obtained as:

N 271.8 million is represented by 360° (whole circle). Therefore, N 1 million
will be represented by % = 1.325°. We therefore have the distribution for
each of the produce as follows (that is, the slices of the pie corresponding to

each category):

360 o
COCO& = m X 854 = 1131
360
Palm = —— .2 =106.2°
alm 5718 x 80 06
360
Groundnut 5718 x 106 0.7

The above slices in degrees can also be obtained by multiplying the relative
frequencies with 360°. Using a protractor and a compass, we can easily draw
a pie chart. Fig. 2.7 gives the pie chart for the principal export crops in
Nigeria in 1965.
Data Display
Row CROP VALUE
1 COCOA 85.4
2 PALM 80.2
3 GNUT 106.2
MTB > PieChart ( 'VALUE’ ) * ’CROP’;
SUBC> Combine 0.02;
SUBC> Panel.

Pie Chart of CROP
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Pie Chart of CROP

Category
[l cocoA
O pALM
E eNuT

Fig. 2.7 A pie chart example

2.5 Exercises

1. The data below give the weight in kilograms of 100 college students taken
at random in fall 1996.

Weight (kg) Frequency (f)

60 - 62 5
63 - 65 18
66 - 68 42
69 - 71 27
72 -74 8

Find the mean and median of the grouped data. Also, calculate Shannon’s
index of diversity and interpret your result.

2. The data below relate to ozone levels measured as high as 220 parts per
billion (ppb) in a forested area of Edo State. Concentrations this high can
cause eyes to burn and are a hazard to both plants and animal life.

160 176 160 180 167
164 165 163 162 168
173 179 170 196 185
163 162 163 172 162
167 161 169 178 16l
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Construct a two-stemmer stem-and-leaf display for the data. What can
you say about the shape of the data?
3. The angle between two adjacent toes was measured from radiographs
of the affected feet of 50 young adults undergoing treatment for a foot

abnormality:

42
27
36
33
39

ANGLE BETWEEN TOES

32
30
46
35
41

33
29
30
37
44

33
43
41
27
32

29
34
45
29
35

31
29
31
43
29

33
34
30
32
31

(DEGREE)
29 40
29 28
33 29
27 32
28 28

31
30
29
32
29

Choose a suitable class interval, arrange the results in a frequency table.

Construct a histogram of the data.

4. The cholesterol levels for a sample of 100 subjects are classified as follows:

Cholesterol Number of
level students
Recommended 25
Borderline 10
Moderate risk 50
High risk 15

a. Construct a bar chart to display the distribution.
b. Use a pie chart to present the distribution.



Chapter 3
Numerical Description of Data

3.1 Introduction

The graphic procedures described in the last chapter help us to visualize
the pattern of a data set. To obtain a more objective summary description
and a comparison of data sets, we must go one step further and formulate
quantitative measures for important aspects such as, the location of center
of the data and the amount of variability present in the data. To effectively
present the ideas and associated formulas, it is convenient to represent a data
set by symbols to prevent the discussion from becoming anchored to a specific
set of numbers. A data set consists of a number of measurements symbolically
represented by x1,xs3, -+ ,x,. The last subscript n denotes the number of
measurements in the data and xq,zs,- -, represents the first observation,
the second observ%mtion and so on.

The notation Z x; represents the sum of n numbers z1, 2o, , 2, and is
i=1
read as the sum of all z;, with i ranging from 1 to n or
n
Zﬂfi =T1+ T2+ + Ty

i=1

Examples
1.

4
Z$i2$1+$2+$3+3§4
i=1

2. If x1 =3, xo =5, x3 = 4 and x4 = 3, then,

(i)

B. Lawal, Applied Statistical Methods in Agriculture, 33
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8_3,
(© Springer International Publishing Switzerland 2014
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=15-8

4 4
}:maz&m+3m+%my+m4=3<§:%>=3x15:45
i=1 i=1

(iii)
4
Y a}=ai+ad+ai+al=3"+5"+4>+3" =59

i=1

> (@i—2)? = (21 -2 + (12— 2)* + (w3 — 2)* + (24 — 2)°

=1
=3-22+(5-2%*+4-2)%+(3-2)?
=1+9+4+1
=15

3.1.1 Properties OF )

If a and b are constants, then,
n
i=1
(1) Z(b% +a)= bei + na
(z; —a)? = me — Qain + na®

(iv) Z a =na, and hence, Z 1=n
i=1

i=1

I
-

NE

(iid)

~.
Il
_

3.2 Measures of Center or Central Tendency

Perhaps the most important aspect of studying the distribution of a sam-
ple of measurements is the position of a central value, i.e., a representative
value about which the measurements are distributed. Any numerical measure
intended to represent the center of a data set is called a measure of location
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or central tendency. The two most commonly used measures of center are the
mean and the median.

3.2.1 The Mean, x

The sample mean or average of a set of n measurements x1, s, -+ , T, is the
sum of these measurements divided by n. The mean is denoted by Z and is
expressed as:

2z

n

Tr =

Examples

(1) Given the heights in inches of five men as 66, 73, 68, 69, and 74. Then
the mean equals
>oxip  66+T73+68+69+74 350

= - 2% _ 70
= 5 5

i.e., & = 70 inches.

(2) The birth weights in pounds of five new born babies at a hospital on a
certain day are 9.2, 6.4, 10.5, 8.7, and 7.8. Hence, the mean birth weight
for this data is

9.2+6.44+105+81+7.8 420
5 5

T = = 8.4 Ibs
The pattern in the data can be seen more easily if the readings are arranged
in order of magnitude as shown below:

6.4,7.8\V 8.7,9.2,10.5

mean 8.4

We can see that the mean is a good summary figure. About half of the
readings are smaller than the mean and half larger. Even when the mean is
not a good summary figure, it generally provides a useful mental or visual
focus when looking at the data. So, it is a good idea to calculate the mean
of a data set in the early stages of analysis. At the very least, this can make
it easier to see whether the data are symmetrical or skewed.

Many times, our data appear in frequency tables where we no longer know
the actual values of the observations, but only to which class interval they
belong. In these instances, the best we can do is to approximate the sample
mean. The mean is given by the expression:

Zfifﬂi _ Zfz‘xi
> fi no

xr =

(3.1)
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3.3 Weighted Means

If for instance, we are interested in finding the mean of several means which
are themselves obtained on different numbers of observations, then it is ap-
propriate to weight the means or observations by using weights to depend
on the number of observations in each mean. A weighted mean is therefore
defined by,

P YowiT;
w sz

where, w; are the weights. Consider for example the data in Table 2.1. The
means of the first 14 observations for this data is 64.36, while the mean of

the remaining 21 observations is 64.06 respectively. If we think, therefore

64.36 + 64.06
that the mean of the entire 35 observations would be 62.50 + 62.06 = 64.21,

which clearly does not agree with the actual mean of 64.18. The reason here
is that the means are not weighted. The true mean will be computed as:

| 14(64.36) + 21(64.06) _ 2246.3

Ty = = 64.18
Y 14 421 35
Here, the respective weights are w; = % = 04 and wy = % = 0.6
respectively.
3.3.1 Geometric Mean
If z;, x5, ,x, are all positive numbers, then the geometric or harmonic

mean is given by

Qo
B
~
| —
Il
| —
| — |
| —
—_

The geometric mean is mainly useful in calculating relative values such as
index numbers and in averaging ratios and rates.

3.3.2 Mean of Grouped Data

If we refer to our data in Table 2.6, we have the following:
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Wt.inkg z. [ fxc
52-56 54 3 162
56-60 58 3 174
60-64 62 9 558
64-68 66 9 594
68-72 70 8 560
72-76 74 2 148
76-80 78 1 78
Total 35 2274

Hence, using Eq. (3.1),
2274
r=—— =064.9714
35

37

Consider, the data below in which the midpoints of the intervals as well as

the frequency values are given.

Tc f f Tc
57 1 57
52 1 52
47 3 141
42 4 168
37 6 222
32 7 224
27 12 324
22 6 132
17 8 136
12 2 24
Total 50 1480
Here again, we have
Y fae 1480
T " 20 29.60.

3.3.3 The Median

The sample median of a set of n measurements x1,xs,- -

, Ty is the middle

value when the measurements are arranged in order of magnitude, e.g., from
smallest to largest. If n is an odd number, there is a unique middle value and
it is the median. If n is an even number, there are two middle values and the

median is defined as their average.

Roughly speaking, the median is the value that divides the data into two
equal halves. In other words, 50 % of the data lie below the median and 50 %

lie above it. Simple formulae for finding the median are given below.
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Case I: n Odd

If the number of observations n is odd, then the position of the median in an
ordered array and given by,
n+1
5 .

For example, if n = 15, then the median is in the 8th position. Similarly, if
n = 25, then the median is in the 13th position.

Case II: n Even

If the number of observations n is even, then the median is the average of
the two observations whose positions in the ordered array are given by,

(5" w3
ORI

For example, if n = 10, then the median is the average of the fifth and

the sixth observations. Similarly, if n = 20, the median is also given by the
average of the 10th and the 11th observations in the ordered array.

i.e., the median equals,

Examples

To find the median of the birth weight data given in the example above, we
first order the measurements from smallest to largest as:

6.4,7.8,8.1,9.2,10.5

The middle value is 8.1 and the median is therefore 8.1 pounds.

Consider another example, the monthly incomes in Naira of eight members
of an engineering firm in Lagos are 500, 750, 600, 550, 550, 700, 2000, and
550. To calculate the mean and median income, we note that > z = 6200 and
hence, £ = 775. Thus, the mean monthly income for the group is N 775.00.
To find the median, first we order the data. The ordered values are:

500, 550, 550, 550, 600, 700, 750, 2000.

Here, n = 8, an even number. Thus the median is the average of the fourth
and fifth observations, i.e., the median income is:

N OO0y

Here the median of N 575 appears to be a more sensible measure of the center
than the mean.
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Other measures of location are quartiles, deciles, and percentiles. These are
points which divide distributions of ranked values (e.g., smallest to largest)
into quarters, tenths, and hundredths respectively. Thus, the median is the
second quartile, fifth decile, and fiftieth percentile. These are discussed in the
next section.

3.4 Percentiles

The pth percentile of a data array (arranged in order of magnitude)
T1,To, +* , T, is number x such that at least p% of the data fall below it
and (100 — p) % of the data fall above it. To calculate the pth percentile of a
data set, we do the following:

e Arrange the data in ascending order
e Compute and index i using the expression:

i = (1%0) n (3.2)

where p is the percentile of interest and n is the number of observations
in the data set.

(a) if 7 is not an integer, then round up to the next highest integer and
this will denote the position of the pth percentile.

(b) if i is an integer, then the pth percentile is the arithmetic mean of the
ith and (¢ 4+ 1)th observations in the ordered array.

Example: Finding the Specific Percentile from a Data Set

Consider the data in Chap. 2 relating to the weights of heads of households in
kilograms. The data has been arranged in order of magnitude from smallest
to largest.

WGT
52 53 55 57 59 59 60 60 60 60 61 63 63 63 63
64 64 64 64 64 64 66 66 67 68 68 68 68 69 70
70 71 72 75 76

The 80th percentile is computed as follows:

80
i (100) 35 8

Since this is an integer, the 80th percentile therefore is the average of the 28th
68 +69 68.5

Alternatively, suppose we wish to know the percentile ranking of a head
of household, whose weight is 71 kg. Here, we compute this as:

# of data Vahggs less than 71 < 100 — (31) 100 — 88.6 ~ 89

and 29th observations in the array, i.e., the 80th percentile is

35
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i.e., this will correspond to the 89th percentile. In general, we obtain the
ranking for a specific data value z as:

# of data values less than x

x 100, and round up to the nearest integer
n

3.4.1 Quartiles

The most common percentiles of interest are Quartiles, which divide the data
set into four equal parts and are defined as follows:

Q1 = first quartile, or 25th percentile
@2 = second quartile, or 50th percentile

()3 = third quartile, or 75th percentile

To obtain Q1,Q2, and @3, we use the expression in (3.2) noting that each
corresponds to ¢ = 25,50, and 75 respectively. Thus for ()1, we have,

. 25

Rounding this up, @; is therefore the 9th observation, i.e., Q1 = 60.
Similarly for @2, we have,
50
T =17
i (100) 35 7.5

Rounding up again, gives Q2 (median) as the 18th observation, i.e., Q2 = 64.
The index for )3 is also computed as:

75
= (=) 35 = 26.25.
! (100)

Rounding up again gives Q3 as the 27th observation, i.e., @3 = 68.

3.4.2 Checking for Outliers with Quartiles

Having computed Q)7 and Q3, we can then compute the interquartile range or
IQR which is defined as, IQR = Q3 — @1 = 68 — 60 = 8. The inner fences are
located at 1.5(IQR) distances below @1 and above Q3, thus, Q1 —1.5(IQR) =
60 — 1.5(8) = 48 and Q3 + 1.5(IQR) = 68 4+ 1.5(8) = 80 respectively. If our
data value falls either below the lower inner fence or above the upper inner
fence, then we consider such data as a possible outlier. To be truly certain the
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data value is an outlier, it must fall outside the outer fences which are 3(IQR)
distances below ()1 and above Q3 respectively, i.e., our data value must be less
than @1 — 3(IQR) = 60 — 24 = 36 and above Q3 + 3(IQR) = 68 + 24 = 92;
a data value x is an outright outlier if z < 36 or x > 92 in this case.

The Box plot displayed below, gives a graph of the five number summary
for our data, viz., the minimum, @1,Q2,Qs, and the maximum. For our
data, these values are respectively, {52, 60, 64,68,76} and these can also be
obtained in MINITAB with the DESCRIBE statement as displayed below.
MINITAB gives these values as well as the mean and standard deviation.

MTB > describe cl
Descriptive Statistics: WGT

Variable N N* Mean SE Mean StDev Minimum Q1 Median 03 Maximum
WGT 35 0 64.171 0.951 5.628 52.000 60.000 64.000 68.000 76.000

MTB > boxplot cl

Boxplot
———————————————— I + T-——m— o
Fmm e ———— tomm—————— Fmm——————— Fmmm - to——————— F-————= WGT
50.0 55.0 60.0 65.0 70.0 75.0

3.5 The Boxplot

The box plot, apart from displaying the five number summary data can also
be employed to compare distributions. Below we have constructed box plots
for each of two data sets separately and jointly for comparative purposes.

MTB > DESCRIBE C1-C2

N MEAN MEDIAN TRMEAN STDEV ~ SEMEAN

Cl 10 18.00 17.00 18.13 3.46 1.10

c2 10 18.000 18.000 18.000 0.816 0.258
MIN MAX 01 03
Cl 13.00 22.00 15.50 22.00
c2 17.000 19.000 17.000 19.000

MTB > BOXPLOT C1
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MTB > BOXPLOT C2

I + I
———————— e A e O]
17.20 17.60 18.00 18.40 18.80

MTB > STACK C1l-C2 C3;
SUBC> SUBSCRIPT C4.

MTB > BOXPLOT C3;
SUBC> BY C4.

c4

1 mmmmmee I + I

2 I + I
- fom - fo———— fom - Fom +----C3
12.0 14.0 16.0 18.0 20.0 22.0

3.5.1 Mean of Grouped Data

The mean of grouped data is often easily obtained by coding the data, gener-
ally, this usually involves a variate x; which can be transformed into variate
U, with the following transformation:

Ti—x

U, = L 20
c

or z; = cU; + xg, where, g is any value of x taken as an arbitrary average and
¢ is the class interval width. With this transformation, the mean is computed
as:

ey fiU;
ST

For the data in the preceding section, suppose we chose zy = 37, then we
have the table:

T =X (33)
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i, fi U, fiU; fiU?
57 1 4 4 16
52 1 3 3 9
47 3 2 6 12
42 4 1 4 4
37 6 0 0 0
32 7 -1 -7 7
27 12 -2 =24 48
22 6 —3 —18 54
17 8 —4 -32 128
12 2 -5 -10 50
Totals 50 —74 328
From the table, we have,
> fiUi _ o 148
> fi 50

Z =370+ c¢(—1.48) =37+ 5(—1.48), since c equals 5
= 29.60.

We observe that this value of T agrees with the value that we obtained
earlier for the ungrouped data. However, the arithmetic of the coded proce-
dure is much simpler and this latter procedure is often recommended when
hand calculators are not available or simply to simplify the calculations.

3.5.2 The Median of Grouped Data

We shall illustrate again with the grouped data above. Here, > f; = n = 50,
hence, the median is somewhere half way of this, i.e., 25. Thus, counting
frequencies from the bottom upward (i.e., from below), we find 24+-8+46+12 =
28 cases, three more than what we want—this is at an x value of 27. To
make 25 cases exactly, we need 9 of the 12 cases in this class. The median
lies somewhere within the interval 25-29 whose exact limits are 24.5 and
29.5. Thus, we interpolate that we must go 9/12 = 3/4 of the way. The total
distance is 5. Hence, % x 5 = 3.75. Thus adding this to the lower limit, we
have 24.5 4 3.75 = 28.25 as the median. Generally, the median M is given as
(if interpolation is from below),

o [R5, o

where, [y equals the exact lower limit of the class interval containing the
median, Fj, is the sum of all frequencies below [y and fj is the frequency of
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the interval containing the median. ¢ and n are defined as usual. Employing
this formula, for the example above, we have,

(25 — 16)5

M = 24.
5+ D

= 28.25
A slightly similar formula is available for computing the median of grouped
data by interpolation from above, but the above will suffice for our purpose.

3.5.3 The Mode

The mode is the item that occurs most often in a distribution, i.e., the item
that has the highest frequency. The procedure for obtaining the mode is
by simply putting the observations in form of a frequency distribution and
picking the one that has the highest frequency.

As an example, the age in (years) of ten students are

14, 15, 16, 16, 17, 17, 22, 22, 22, 22.

Then a frequency display of the data is as follows:

z f
14 1
15 1
16 2
17 2
22 4

The highest frequency here is 4, and hence, the mode is 22 years. The above
can be implemented in MINITAB by specifying

TALLY C1

where the data is assumed to be stored in column one (C1).

As another example, a newspaper wants to predict an election result of a
certain constituency. Five political parties (A, B, C, D, and E) are in the race.
The newspaper then interviews a selected sample of 1000 potential voters,
the results of this interview are summarized below.

Party f

13
294
298
344

moQw»

Undecided 42
Total 1000
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Based on the above summary table, Party D is the favorite on the basis of
the result from the survey. Therefore, the mode or the most popular party is
party D.

3.5.4 Comparisons Between Mean, Median,
and Mode

The mean, median and mode are all measures of central tendency (or lo-
cation) in a specific way. The question that one is often facing in practical
application is: “Which one of the measures of central tendency is most ap-
propriate?” The question is not easily answered. As will be illustrated later,
the one we use depends on the objectives for conducting an enquiry and the
type of data gathered. Let us now compare them.

(i) The mean and mode (when it exists) are easy to calculate. However
when the number of observations are large, it is tedious putting a set of
data in an array, thus the median may be tedious to calculate.

(ii) Mean and median always exist in a distribution, whereas, mode may not
exist and if it exists may not be unique. For example, in the summary
data below,

fx
9
10
21
9
33

Total 12 82

—
Ro~wowl|s
W= W

The above frequency table can be re-written in the ungrouped form as:

3, 3, 3 5 5 7, 7 7 95 11, 11, 11.

and

(6th+7th) 747

M:
2 2

7.

The mode in this case equals 3, 7, 11, i.e., the mode takes three different
values at the central value. Thus the mode is not unique in this case,
and we would describe such a data as having a tri-modal distribution.
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Generally, the median provides a better measure of the center when there
are extremely large or small observations in a set of data. For example,
in the above example of monthly income of eight people, we had & = 775,
the median M = 575. The extreme value item is 2000. The median is
more central than the mean, i.e., the median is not affected by extreme
or abnormal values (or outliers).

When faced with qualitative data, mean and median are meaningless.
Thus, the mode is the only appropriate means of measure of central
location in this case.

Example A manufacturing company is carrying out a market research
of the use of its brands of University vests in three different colors. He
noted 30 students in a certain class wearing vest of the following colors.
Green, Yellow, Brown, Blue, Green, Yellow, Red; Blue, Brown, Yellow,
Blue, Black, Blue, Brown, Red; Blue, Green, Blue, Yellow, Red; Blue,
Red, Brown, Blue, Yellow, Brown, Blue, Black, Yellow, Blue. Find the
best average.

Solution Surely mean and median are meaningless in this problem. So
our alternative is the modal choice of color.

Color  Frequency

Green
Yellow
Brown
Blue
Red
Black

A S oo w

The modal color is blue.

3.6 Relationship Between Mean, Median, and Mode

1. For symmetrical distributions (Fig. 3.1), the mean, mode, and median
coincide, i.e., Mean = Mode = Median or X = M = m theoretically.
However, for real life data, they will seem to be close.

2. For skewed distributions, the following empirical relationship exists
between the three measures, viz.,

Mode = Mean — 3 (Mean — Median) (3.5)

Of course we can write the above as,

Mean-Mode = 3 (Mean-Median) or,

1
Mean — Median = 3 (Mean — Mode). (3.6)
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In general, the above is more succinctly written as,
(3.7)

Mode = 3 Median — 2 Mean

i.e.,
m=3M-22

3. For positively skewed or right-skewed distributions (see Fig. 3.3) m <
M < z. Similarly, for negatively skewed or left-skewed distributions (see

Fig. 3.2), we have Z < M < m.
In the next figure, we present the histogram and corresponding probability
plot of a right-skewed distribution.
Histogram of x density.default(x = x)
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N =1000 Bandwidth = 0.221

X

Fig. 3.1 A symmetric distribution. Here, X = M
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Histogram of x density.default(x = x)
S
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Fig. 3.2 A left-skewed distribution. Here, X << M

Histogram of x density.default(x = x)
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Fig. 3.3 A right-skewed distribution. Here, X >> M
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3.7 Measures of Variation or Dispersion

No two objects are exactly alike. Even “identical twins” differ. The universe
is filled with objects and individuals which vary from one another by some
characteristics more so in biological and medical data. The averages (mean,
median, and mode) or measures of location which we have treated measure
the center of data. The assumption is that all data in the observation takes
a single value. This in most cases does not hold.

Therefore, there is a need to measure the degree of spread or variation
of our data from one another and (or around the average). This degree of
spread is called variation or dispersion.

When the value of our observations are the same, then there is no variation
and our degree of variation equals zero.

Example

The age (in years) of ten boys in form V from two different secondary schools
are:

180

School I 13, 14, 16, 16, 17, 17, 21, 22, 22, 22. Hence, T = 0= 18 years
. 180
School IT 18, 18, 19, 17, 19, 19, 17, 18, 18, 17. Hence again, zo = T0 =

18 years

We can conclude that the average age of boys in the two schools are the
same. However, a careful look at the data shows that the ten boys in School II
are far more uniform than those in School I. Thus School II boys are likely to
behave more like 18-year-olds than those in School I. A measure of variation
is out to measure this degree of variability.

We discuss below the various measures of variation that have been
suggested from various literature.

3.7.1 The Range

The range which is defined as Highest data value — Lowest data value, is a
basic measure of variability or spread. For example, in the two schools data
above, we have for both the schools.

School I: Range =22 —-13=9

School II: Range = 19 — 17 = 2.

Thus we see straight from the values of the ranges for both data sets that
the data for School I is more widely spread than those from School I1. Hence,
we would expect the boys in School II to behave more like 18 years old than
those from School I. In other words, the data in School II is said to be more
homogeneous than those from School 1.
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3.7.2 Variance and Standard Deviation

The variance of a sample is always represented by S? and the standard devi-
ation will be represented by the square root of S2, i.e., S = v/S2. While the
standard deviation is an absolute measure of dispersion, it is however, mea-
sured in units—does it depend on the units of measurement? The coefficient
of variation on the other hand is a relative measure of dispersion based on
the standard deviation and is defined as,

CV =2 x 100 % (3.8)

ISTRRY)

The coefficient of variation being a ratio, it is a dimensionless quantity.
Thus for comparing the variability of say, two distributions, we compute their
CVs. The distribution with the smaller CV would be more homogeneous than
the other with a higher CV.

We consider in the next section two cases of obtaining sample variances
for both ungrouped and grouped data.

3.7.3 Case I: Variance of Ungrouped Data

Given a set of values x1, 9, -+ , z,, the variance is defined as

s (i —1)?

= n—1

:nfl {Zx le ]

Example

To find the variance of the age of boys in School I above, we note that £ = 18,
hence,

X

(age) z—2 (z—2)2
13 -5 25
14 —4 16
16 —2 4
16 -2 4
17 —1 1
17 -1 1
21 3 9
22 4 16
22 4 16
22 4 16

Total 0 108
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108 108
Variance = s° = T0o-1- 9 — 12 years®. Hence, s = VS2 = /12 =
3.4641 years. Alternatively, we could use the second formula for finding the

variance. Here, we have,
D af =134 147 +16° + 16° + 17° + - - - 4 227 = 3348

n =10, and > x; = 180, thus,

o (1) aae 180 oo aouo
D af - SST = 3348 — — - = 3348 — 3240 = 108,

Hence, s> = % = 12 years® and the corresponding coefficient of varia-
tion CV is (3.4641/18) x 100 = 19.2 %. This second approach is most useful
when hand calculators that perform statistical functions are available.

For the second school, i.e., School II, we also have T = 18 and s = %years
i.e., s = 0.8165 years, and hence, the CV =(0.8165/18) x 100 = 4.5 %

The results above support our initial observation that the age of boys in

School I vary more widely than the age of boys in School II since VAR(I) >

VAR(II) or CV(I) > CV(II).

2

)

Steps to Follow when Calculating S? for Case I

(i) Obtain the mean.

(ii) From each observation, deduct the mean to obtain the deviations x — Z.
(iii) Square each deviation to obtain (z — Z)2.

(iv) Obtain the sum > (z — 7)2.
(v) Divide this sum by n — 1.

As mentioned earlier, most hand calculators these days have facilities for the
calculation of means and variances for ungrouped data. The above can be
implemented in MINITAB as follows:

MEAN Cl K1

LET C2=C1-K1

NOTE NOW FIND THE SUM OF DEVIATIONS

SUM C2

LET C3=C2*C2

NOTE FIND SUM OF SQUARED DEVIATIONS AND PUT IN K2
SUM C3 K2

LET K3=K3/ (N(C1l)-1)

PRINT K3

of course we could simply ask MINITAB to give us the following:

MEAN C1

STDEV C1 kl

LET K2=K1*K1l (VARIANCE)
MEDIAN C1



52

3 Numerical Description of Data

3.7.4 Calculating the Variance of Grouped Data

The data below gives the weight in kilograms of 100 students at a given

University.

Weight (kg) Frequency
60-62 5
63-65 18
66-68 42
69-71 27
72-74 8

To find the variance of the above grouped data, we form the table below.

Class
Wt.(kg) mark Freq.

(kg) T fi fiwi xi—% (xi—2)% fi(wi—1x)?
60-62 61 5 305 —5.45 41.6025 208.0125
63-65 64 18 1152 —3.45 11.9025 214.2450
6668 67 42 2814 —0.45 0.2025 8.5030
69-71 70 27 1890 2.55 6.5025 175.5675
72-74 73 8 584 5.55 30.8025 246.4200
Totals 100 6745 852.7500

From the above table, we have
_ Z fiai, 6745
T = =——=6745
n 100
g2 > filz; —E)2 _ 852.7500 — 8.6136

Y fi—1

Hence, S = v/8.6136 = 2.9349 kg.
Another formula for computing the variance of grouped frequency is:

99

> filwi — 3)° _ {Zfzxf _xz} { 2 fi }
Y fi—1 > fi Yo fi—1

Implementing this for the example above, we have,
xi  fi firs fix?

61 5 305 18,605

64 18 1152 73,728

67 42 2814 188,538

70 27 1890 132,300

73 8 584 42,632

Total 100 6745 455,803
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Hence, 7 = 843 — §7.45, and,

100
2
2 4
S fi? o, 4BBS03
S fi 100
— 4558.03 — 4549.5025
= 8.5275.

Hence, 5% = 100 » 8.5275 = 8.6136 and S = v/8.6136= 2.9349 ke.

3.7.5 Use of Coding to Simplify Calculations

The calculations above could have been simplified if we had coded the data.
We give an example of the procedure involved for using this method. First,
suppose we define u = (z — 67)/3, where 67 is an arbitrary value and 3 is the
class width in the example above. Then, x = 67 + 3u. Thus, F(X) = Z =
67 + 3u. To obtain the variance, we note that the variance of a constant is
zero. Further, if Var(y) = o2, then Var(ay) = a?0?. Similarly, Var [%] = Z—j,
where a and b are constants. Hence Var(x) above equals 3%Var(u) = 9Var(u).
We illustrate this in the following table.

zi  uwi  fi fiwe fiud

61 -2 5 —10 20

64 -1 18 —18 18

67 0 42 0 0

70 1 27 27 27

73 2 8 16 32
Total 100 15 97

15

U= 100 =0.15, i.e.,
T =67+ 3u=67+3(0.15)
= 67.45

and

100 [ 97
= ——{— —0.15% 3 = 0.9571.
Var(u) 99 {100 0.15 } 0.957
Hence, Var(x) =c? Var(u) =9(0.9571) =8.6136. This agrees with the ear-
lier result obtained and we see that the sums are not too large in the
computational table.
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3.8 Empirical Rule

The mean and the standard deviation of a data set can be used to find the
proportion of the total observations that fall within a given interval about
the mean. We mostly consider the intervals (i) z & s, (ii) £ 2s, (iii) Z £ 3s.
The empirical rule relates to only mound-shaped or bell-shaped distribution.
The rule states that for mound shaped distribution, approximately:

(a) 68% of the observations fall within the interval Z + s, i.e., within one
standard deviation of the mean.

(b) 95% of the observations fall within the interval Z £ 2s, i.e., within two
standard deviations of the mean.

(c) 99.7 % of the observations fall within the interval Z +3s, i.e., within three
standard deviations of the mean.

As an example, consider the data in Table 2.1 (see p. 11). There are
35 observations. T = 64.171 and s = 5.628. Hence, ¥ + s = 64.171 +
5.628 =[58.54,69.80]. With our data arranged in order of magnitude and
counting how many observations are between 59 and 69, we have 25, (from
the MINITAB display below) that is, g—g = 0.714 or 71.4 % of the total obser-
vations lie within this interval. Corresponding intervals for Z 4+ 2s and z £ 3s
are computed as follows:

T +2s = 64.171 + 2(5.628) = 64.171 + 11.256 = [52.92, 75.43]
T+ 3s = 64.171 4 3(5.628) = 64.171 + 16.884 = [47.29, 81.06]

From the above, we see that approximately, 33 and 35 observations fall
respectively in the intervals T + 2s and T £ 3s. Consequently, we say that
for this data set, approximately 94.2 and 100 % of the data fall within these
intervals respectively. These results are not consistent with the empirical rule,
hence, we can rightly conclude that this data set is not mound or bell shaped,
i.e., it is skewed.

MTB > sort cl c2
MTB > print c2

Data Display

C2
52 53 55 57 59 59 60 60 60 60 61 63 63 63 63
64 64 64 64 64 64 66 66 67 68 68 68 68 69 70
70 71 72 75 76
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3.9 Exercises

e

. Five measurements in a data set are 1 =7, xo =5, 3 =6, x4 = 8 and

x5 = 6. Compute the numerical values of

5 4

(i)Y i (ii)Zmi, (iii)ZQmi, (iv) Y (zi—6), (v)> (2 —6)

i=1 i=1 i=1

. Demonstrate your familiarity with the summation notation by evaluating

the following expressions when 1 =1, 29 =2, x3 =4 and z4 =5

4 2

O i (i)Y (wi—4) (i)Y (2 —2), (iv) Y (zi—2)

i=1 i=1 i=1

. The residues of fungicide measured in parts per million in a random sample

of 50 fresh oranges harvested 40 days after receiving the last of last of six
sprays of the fungicide were as follows:

.63 1.40 1.64 1.30 1.49 1.58 1.03 1.06 1.33
.52 1.87 1.83 1.97 1.62 1.21 1.01 1.14 1.58
.43 1.41 1.51 1.15 1.61 1.10 1.03 1.84 1.61
.71 1.32 1.29 1.82 1.99 1.43 1.53 1.56 1.48
.82 1.81 1.21 1.73 1.59 1.99 1.34 1.23 1.65
.20 1.76 1.54 1.58 1.99

Arrange the results in a grouped frequency table and calculate the sample
mean, variance, and median from this table. Comment on your results.

. The angle between two adjacent toes were measured from radiographs

of the affected feet of 50 young adults undergoing treatment for a foot
abnormality.

ANGLE BETWEEN TOES (DEGREE)

42 32 33 33 29 31 33 29 40 31
27 30 29 43 34 29 34 29 28 30
36 46 30 41 45 31 30 33 29 29
33 35 37 27 29 43 32 27 32 32
39 41 44 32 35 29 31 28 28 29

Similar measurements were made on the feet of 40 normal young adults.

12 18 13 15 16 12 15 18 15 15
17 15 16 17 17 16 18 13 12 15
14 15 12 14 14 18 17 18 12 14
13 12 12 14 17 16 12 16 15 13
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Obtain the mean, variance, and median for these sets of data. Now choose
a suitable class interval, arrange the results in a frequency table and
compute the same statistics. Compare your results.
5. Calculate the means and median of the following sets of data for the
situations.

(i) Ungrouped

(ii) Grouped using a suitable class interval width

.05
.30
.57
.19
.71
.63

O NP O W

72
118
108
102
101
79
142
107
102

(a) The time interval in minutes between the arrival of successive
customers at a cash desk of a self service store was measured over
56 customers and the results are given below:

.68
.15
.65
.11
2.1
1.2

o O o

2
1

O N O > O O

.78
.54
.60
.05
.81

O Wk N

.01

.10
.16
.72
.70
.04

PP oo

.32
.14
.52
.48
.16

.61
.16
.32
.80
.62

O w N o

ON O O O

.10
.31
.08
.08
.58

O O N O W

.12
.91
.68
.09
.57

(b) The intelligence quotients of 100 children are given below:

112
103
77
98
103
117
94
97
76

100
102
94
101
109
85
93
100
98

116
133
121
88
100
94
72
109
88

99
98
100
90
127
119
98
103

111
106
107

93
107

93
105
107

85
92
104
85
112
100
122
106

82
102
67
107
98
90
104
96

08
115
11
80
83
102
104
83

85
109
88
106
98
87
79
107

94
100
87
120
89
95
102
102

.21
.18
.16
.76
.04

O P OO

91
57
97
91
106
117
104
110

6. The following sample of serum cholinesterase indices in normal individuals
is taken from Kaufman (1954). The data has been sorted. Use this to find
the followings:

INDICES

ST I e O N e S =

.03
.15
.25
.40
.52
.67
.75
.92
.12
.52

I N e e e

.03
.15
.26
.40
.54
.68
.78
.92
.13
.54

[NCJ N P S

.04
.16
.27
.42
.55
.69
.82
.92
.14
.55

I N N e i

.04
.16
.30
.43
.57
.70
.83
.92
.14
.59

[NCJ NP S S Y

.04
.18
.32
.44
.59
.70
.84
.92
.15
.60

ST I e S e = S =

.06
.21
.32
.44
.59
.70
.86
.93
.17
.65

S N N i

.08
.22
.35
.46
.61
.71
.86
.94
.23
.67

[NSJ N P

.09
.23
.35
.48
.65
.72
.88
.95
.26
.76

.13
.24
.37
.51
.65
.75
.89
.02
.27
.09

WNN R RE R RP P

.15
.24
.39
.52
.65
.75
.91
.10
.29
.27

WNN R PP R
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(i) The mean, the median, and mode for the data if > x = 170.40.
(ii) The upper and lower quartiles (Q1,Q3) and hence obtain IQR, the
interquartile range.
(iii) Obtain the five-number summary for the data.
(iv) Obtain variance s® for this data if Zx2 = 313.60. Find the
percentage of the data values that fall between T + s.

7. The data below relate to serum CK concentrations (creatine phosphoki-
nase) of 36 male volunteers. The data has been sorted from smallest to
largest.

CSK
25 42 48 57 58 60 62 64 67 68 70 78 82
83 84 92 93 94 95 95 100 101 104 110 110 113
118 119 121 123 139 145 151 163 201 203

For these data, Zx =3538.0 and ZxQ =404, 778.00.

(a) Compute z and s?, the sample variance and hence s the sample
standard deviation.

) What percentage of the data fall in the interval § 4 s?

) What percentage of the data fall in the interval g + 257

) What percentage of the data fall in the interval y 4 3s?

) Based on your results above, what can you say about the shape of the
distribution of these data.

8. The mean and the median of a set of test scores are 75 and 60 respectively.
Circle the letter of the statement which is most defensible.

(a) The distribution of test scores is skewed to the left.

(b) The distribution of test scores is skewed to the right.

(c) Half of the test scores are greater than 60.

(d) A few test scores are very small, pulling the median down.
(e) Both (a) and (d) are true.

9. The data below give the weight in kilograms of 100 college students taken
at random in Fall 2006.

Weight (kg) Frequency (f)

60-62 5
63-65 18
66-68 42
69-71 27
72-74 8

Find the mean and median for the grouped data. Also, compute Shannon’s
index of diversity and interpret your result.



Chapter 4
Probability and Probability Distributions

4.1 Introduction

The concept of probability is relevant to experiments that have some un-
certain outcomes. These are the situations in which, despite every effort to
maintain fixed conditions, some variation in the result during repeated trials
of the experiment is unavoidable. As used in here, the term “experiment” is
not restricted to laboratory experiments but includes any activity that re-
sults in the collection of data pertaining to phenomena that exhibit variation.
The domain of probability encompasses all phenomena for which outcomes
cannot be exactly predicted in advance.
Examples of experiments with uncertain outcomes are

(i) Tossing a coin
(ii) Rolling a die
(iii) Gender of the first two newborns in town tomorrow
(iv) Tossing two coins
(v) Rolling two dice
(vi) Planting a seed, etc.

Though, in the above examples, each experimental outcome is unpredictable,
we can describe the collection of all possible outcomes as:

Definition

The collection of all possible outcomes of an experiment is called the Sample
Space of outcomes and each distinct outcome is called a simple event, an
elementary outcome or an element of the sample space. They are usually
denoted by S and E respectively.

Before we discuss the concept of probability and probability distributions
completely, let us familiarize ourselves with some counting methods, that will
be most useful to us in this chapter.

B. Lawal, Applied Statistical Methods in Agriculture, 59
Health and Life Sciences, DOI 10.1007/978-3-319-05555-8_4,
(© Springer International Publishing Switzerland 2014
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4.2 Counting Methods

In calculating probabilities, it is very essential that we be able to count sample
points corresponding to S and F in the event. However, this sometimes
becomes a tedious job, and thus compact counting methods are necessary. A
branch of Algebra, called “Permutations” and “Combinations” is very useful
here.

Suppose two operations A and B are carried out, and if there are “m”
different ways of carrying out A and “k” different ways of carrying out B,
then the combined operation of A and B may be carried out in m x k = mk
different ways.

4.2.1 Permutation

The number of permutations (or arrangements) of n distinct objects, taken
all together is

nl=nn—-1)n-2)---x2x1

ol=1
N=1x1=1
20=2x1=2

3'=3x2x1=6

4! =4x3x2x1=24
Sl=5x4x3x2x1=120

6! =6x5x4x3x2x1="720

and so on. Note that n! is read n factorial.
Example

Consider the three letters A, B, C, the number of possible arrangements of
these three letters will be 3! = 3 x 2 x 1 = 6. These arrangements are given by

ABC,ACB,BAC,BCA,CAB,CBA.

The number of permutations of n distinct objects taken r at a time, written
nP, is given by:

|
nn—1)(n—-2)-(n—r+1)= (nf'r)!
. 31 31
us 1m € above example, 9= = - = an ese are.
Thus in the ab le, 8P, = ;3557 = 7 = 6 and th

AB,AC, BC,BA,CA,CB
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Example

What is the number of permutations of ten distinct digits taken two at a
time?

The first digit can be chosen in ten ways and having filled the first place,
the second digit can be chosen in nine ways. Hence there are 10 x 9 = 90
permutations or

100 10X 9X8XTX6xH5x4x3x2x1

10P2:§_ 8xTx6xHx4x3x2x1

=10 x 9 =90 ways

If two or more letters (numerals, items, objects, etc.) are identical (or of the
same form), then, the number of permutations is appropriately reduced. For
example, Consider the letter ABCDAF. The number of arrangements of the
six letters is

6!

o= 360
The denominator or divisor is because there are two As in the letter. In
general, if we have n objects which are composed of p objects of one kind, ¢
of another, r of another and so on, then the number of different arrangements
is given by

n!
plglr! - -

Example 1

Out of 12 tulip bulbs to be planted in a row along a border, four are yellow
flowers, six are red flowers, and two are orange flowers. How many color
patterns could be created? The number of color patterns that can be obtained
by varying the planting order will be

12!

Example 2

In a clinic there are two specialists, one for ear patients and one for nose
patients. If during a day, six patients are to arrive, four for ear treatment
and two for nose treatment, in how many ways can the duty roster for the
specialists be arranged?

The number of ways of arranging the duty roster equals

6!
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4.2.2 Combinations

Combinations deal with the number of distinct arrangements of n objects
taken r at a time. It is written as nC,. or (:f) and is given by

()= me

Combinations unlike permutation disregards order.

Example

In the previous example with three letters A, B, and C, we saw that there
were 3P, = 6 ways of arranging two letters at a time, namely, AB, AC, BC,
BA, CA, and CB. However, the number of distinct ways of arranging two of
these at a time is (g) = 3, that is,

3!

ﬁ =3 ways

and these arrangements are:
AB, AC, and BC.

Since, these arrangements disregard the ordering of the letters, AB is not
distinct from BA.

At the beginning of this chapter, we defined the sample space and simple
events. We can now list the simple events and their corresponding sample
spaces for each of the examples of experiments with uncertain outcomes
enumerated at the beginning of this chapter. These are:

() § = {H, T}

(i) S =11, 2, 3,4, 5, 6}

(iii) S = {BB, BG, GB, GG}, where BG stands for Boy first, Girl second.
(iv) § = {HH, HT, TH, TT}

(v) S = {x,,mj;1§i§6,1§j§6}

(vi) S {G, NG}, where G stands for germination and NG for no

germination.

The sample space for (v) is as shown in Table 4.1.
Each of the outcomes in the Table 4.1 is equally likely. Note that the events

(1, 2) # (2, 1), etc.
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Table 4.1 Sample space for rolling two dice

;
i1 2 3 4 5 6

1 o(L1) (1L,2) (1,3) (14) (1,5) (1,6)
2 (2,1) (2,2) (23) (24) (25) (26)
3 (31 (32 (33) (34) (35 (36
4 (41) (42) (43) (44) (45) (46)
5 (5,1) (52) (53) (54) (55) (5,6)
6 (6,1) (62) (63) (64) (65 (66)

4.2.3 Probability of an Event

63

This is the proportion of times an event occurs say, A is expected to occur
when the experiment is repeated under identical conditions and is denoted

as P(A).

Thus in our above examples for case (i), P(H)=1/2 while for case (ii),

1

P(4)—7 The probability of one boy or one girl is given by P(1 boy or 1 girl)

= 4 + 4 = "
For all events
(a) 0 P(A) <1
(b) P(S) =1

That is, computed probabilities are never greater than 1 or less than 0.

Examples

(i) Twenty discs are marked with the numbers 1-20 inclusive. They are
placed in a box and one disc is drawn from it. What is the probability
that the number on the disc will be a multiple of 57

Solution Here S =20 and E(the events)

=4/20=1/5

={5, 10, 15, 20}. Hence P(E)

(ii) A bag contains five blue balls, three red balls, and two black balls. A

ball is drawn at random from the bag then, the probabilities

(a) Prob (red ball) =
(b) Prob (black ball) = =
(¢c) Prob (not a black ball)

—orl———

10

8

10

(iii) A die is rolled, calculate the probability that

(a) it will give a five?
(b) a number less than three
(¢) an even number.
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Solution S ={1, 2, 3, 4, 5, 6}
(a) £ ={5}, hence, P(E) = ¢
(b) E ={1, 2}, hence, P(E)
(c) E ={2, 4, 6}, hence, P(E) = z
(iv) Refer to Table 4.1. Find the probability that the total sum of the two
dice will be (a) 5 (b) less than 5 (c) more than 5 (d) 7 (e) 11.

1
3

\w ||

Solutions S =36 sample points

(a) If total is 5, then E ={(1, 4), (4, 1), (2, 3), (3, 2)}, hence,
P(E) =4 =}

(b) If total is less than 5, then F = {2, 3, or 4} and they are given by
the following sample pomts E ={(1, 1) (1, 2), (2, 1), (2, 2), (1, 3),
(3,1)}. Hence P(E) = & = ¢

(¢) 1-P(less than or equal to 5) =1— (% + &) = 12. Alternatively, (c)
can be obtained as follows: More than 5 implies total sums equal to
6,7,8,9, 10, 11, or 12. Thus,

E={(3,3), (1,5, (5,1), (2,4), (4,2), (1,6), (6,1), (2,5)
(5,2), (3,4), (4,3), (2,0), (6,2), (3,5), (5,3), (4,4)
(3,6), (6,3), (4,5), (5,4), (4,6), (6,4), (5,5), (5,6)
(6,5), (6,06)}

Hence P(E) = 28 = 12 which gives the same result as in (c) above.
(d) If total =7, then, E = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}.
Therefore, P(E’)——:%
(e) If total =11, then, E = {(5, 6), (6, 5)} and P(E) = 32—6:%8

Example 4.1.1

When an experimental stimulus is given to an animal, it will either respond
or fail to respond. In other words, there are only two possible outcomes
when a stimulus is applied to an animal. Either the animal responds (R) or
it does not (N). The experiment consists of administering the stimulus to
three animals in succession and recording R or N for each animal. Find the
probability of the following events

(i) Only one animal responds
(ii) There is a response in the first trial
(iii) Both the first and second animals fail to respond.

Solution

There are two possible outcomes R (response) and N (no response) for each of
the animals. Since there are three animals, there are 2 x 2 x 2 = 8 elementary
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outcomes for this experiment. These are listed below and are identified by
the symbols Ey, Es,--- , Exg.

RRR (E1) RRN (E») RNR (E3) NRR (Ei)
RNN (E5s) NRN (Eg) NNR (E;) NNN (Es)

(i) For this, the events consists of points A= {Es, Eg, E7}, hence, P(A)=%.
(ii) The events here are B ={F}, E», F3, F5} and hence, P(B) =3 = 1.
(iii) Here the events consist of C ={Fx7, Es}, hence P(C) =% = 1.
Table 4.2 Distribution of probabilities

Presence of Rh+

Gender Yes (Rh+) No (Rh—) Total

Boys 0.4335 0.0765 0.51
Girls 0.4165 0.0735 0.49
Total 0.85 0.15 1.00

4.3 Marginal & Conditional Probabilities

In a certain city hospital 85 % of newly born babies are Rh+ (that is, they
all have the Rh+ antigen on the surface of their red blood cells, otherwise, it
is Rh-). It is also known that about 51 % of all babies born at this particular
hospital are boys. Let the distribution of the probabilities be as given in
Table 4.2.

Suppose an individual newly born baby is randomly selected from this
hospital, then

(i) P(Boy) =0.51 and P(Girl) =1— 0.51 = 0.49.
(i) P(Rh+) =0.85 and P(Rh—) =1 — 0.85=0.15.
(iii) Probability that the child is a boy and is Rh+ = P(Boy and Rh+) =
0.4335

The probabilities in (i) and (ii) mentioned above are called marginal prob-
abilities. We can also construct marginal probability tables with frequency
data. Consider the following data which relate to a group of 1000 randomly
selected adults who were asked if they are in favor of abortion or are against
it. The results of this survey is presented in Table 4.3.

Table 4.3 Survey frequency distribution

Response
Gender In favor Against Total

Male 248 203 451
Female 310 239 549

Total 558 442 1000
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Thus,
451
Male) = —— = 0.451
P(Male) 1000 0.45
549
558
P(In f =——=0.
(In favor) 1000 0.558
442
P(Against) = —— = 0.442
(Against) 1000 0

The above are the four marginal probabilities or simple probabilities. Notice
that these probabilities involve single events.

4.4 Laws of Probability

4.4.1 The Addition Law of Probability

For any two events A and B, the probability that either A or B or both will
occur, denoted by P(A or B) is defined as:

P(A or B) = P(A) + P(B) — P(A and B) (4.1)

The Venn diagram below displays this concept for two events A and B.

A B

Fig. 4.1 Venn diagram to illustrate AN B
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However, if A and B are mutually exclusive events, then the definition in
(4.1) becomes,

P(A or B) = P(A) + P(B) (4.2)

Since in this case, P(A and B) = 0.

Example 4.3.1

If 30% of Nigerians are obese (A) and that 4% of Nigerians suffer from

diabetes (B). 2% are both obese and suffer from diabetes. What is the

probability that a randomly selected person is obese or suffers from diabetes?
Here, P(A) =0.3, P(B) =0.04 and P(A and B) =0.02. Then,

P(Aor B) = P(A) + P(B) — P(A and B)
=0.3+0.04-0.02=0.32

Example 4.3.2

Refer to Table 4.3. What is the probability that the individual selected is
male or against abortion. Let A = {Male} and B the event B = {against}.

Here, P(A) = {35, P(B) = 1505 and P(A and B) = )% hence,

P(Aor B) = P(A) + P(B) — P(A and B)

451 442 203

= 1000 T 1000 ~ 1000

690
= 1000 = 0.690

4.4.2 Multiplication Law

For any two events A and B, the conditional probability of A given B is
defined as:

P(A and B)

P(A | B)= P(B) provided P(B) # 0 (4.3)
Of course it also follows that
P | 4y DA ided P(4) £ 0 (4.4)

P(A)
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Example 4.3.3

It is estimated that 15 % of the adult population has hyper-tension, but that
75% of all adults feel that personally, they do not have this problem. It is
also estimated that 6% of the population has hyper-tension but does not
think that the disease is present. If an adult patient reports that he or she
does not have hyper-tension, what is the probability that the disease is, in
fact, present?

If we let A denote the event that the patient does not feel that the disease
is present and B, the event that the disease is present, we are given that
P(A) = 0.75, P(B) = 0.15 and P(A and B) = 0.06. We want to find
P(B | A). From the definition in (4.4), we have

P(Aand B)  0.06

P(B | 4)= P(4) 075

=0.08

Thus, there is an 8 % chance that a patient who expresses an opinion that
she or he has no problem with hypertension does, in fact, have the disease.

Example 4.3.4

Refer to the previous example (Example 4.3.3). If the disease is present, what
is the probability that the patient will suspect its presence?
Here, we wish to find P(A | B), where A denotes the compliment of event

A, that is, the event that A does not occur. Hence P(A) = 1 — P(A) =
1—0.75 = 0.25. Thus,

- _ P(Aand B)  P(A) x P(B| A)

PATB=="5m " = P®
025 x0.09/0.25  0.09
o 0.15 ©0.15
= 0.60

That is, if the patient expresses the opinion that he or she has hypertension,
there is a 60 % chance of the patient being right.

We have used the multiplication rule in the last example. This rule states
for two events A and B that,

P(Aand B)=P(B)x P(A | B) or (4.5a)

P(Aand B) = P(A) x P(B | A) (4.5b)
Refer to Table 4.2, what is the probability that the baby selected is a boy
who is Rh+7? that is,

P(Boy and Rh+)  0.04335

SP(Boy|Rht) = ——p 25— = 085

=0.51
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Example

Refer to Table 4.3, the probability of a male who is in favor is

P(Male and favor)  248/1000 248 0.444
P(favor) ~ 558/1000 558

We can represent this in a tree diagram as follows: First let A represents the

event ‘in favor’. Then P(A) = 0.558 and P(A) = 1 — 0.558 = 0.442. Here,
P(A) is often described as the compliment of event A which is 1 — P(A). The
tree diagram below represents these conditional probabilities. For instance,
the probability that the person selected is a female who is opposed to abortion

is 0.541.

0.444 Male | favor

A

Female | favor

Male |against

0.541 Female |against

4.5 Relationship Between Probability and Odds

If the odds in favor of an event A are a to b, then the probability that the
and the probability that event does not occur is

. a
event occurs i1s p =
a

+0b

a
As an illustration, the odds in favor of obtaining a sum of

1-— = .
a+b a+d

seven in throwing two dice is 1:5. Thus, probability of observing this event is

1/(145) = 1/6 and the odds against this event would thereforebeb:a =15 :1

b 5
with corresponding probability PR =5 The odds for success of an event
a

therefore are the probability of success to the probability of failure.

4.6 Specificity, Sensitivity of Tests

Measures for testing the effectiveness of a test procedure (screening test or
set of symptoms), such as a medical test to diagnose a disease for sensitivity,
specificity, and predictive values.
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In considering screening tests, we must be aware of the fact that they are
not always infallible. That is, a testing procedure may yield a false positive
or a false negative.

1. A false positive results when a test indicates a positive status when the true
status is negative. That is, the test indicates that the disease is present,
but the person does not really have the disease.

2. A false negative results when a test indicates a negative status when the
true status is positive. That is, the person has the disease but the test
does not detect it, because the person tested negative.

Suppose we have for a sample of n subjects (n always large), the information
in the table below:

Disease
Test result Present (D) Absent (D) Total
+ve a b a+b
—ve c d c+d
Total a-+c b+d n

e The sensitivity of a test (or symptom) is the probability of a positive test
result (or presence of the symptom) given the presence of the disease. That
is, it is

a
a—+c

P(+ve | D) =

e The specificity of a test (or symptom) is the probability of a negative test
result (or absence of the symptom) given the absence of the disease. That is,

_ d
P(—ve | D) = b1 d
e The predictive value positive of a screening test or symptom is the
probability that the subject has the disease, given that the subject has
a positive screening test result (or has the symptom). Or simply defined
as the proportion of positive results that are true positives (i.e., have the
symptom or disease)

P(D and + ve)

P(D | +ve) = o) (46)
_ P(D and + ve)
~ P(D and + ve) + P(D and + ve) (4.7)
- P(D) x P(+ve | D) s
P(D) x P(+ve | D) + P(D) x P(+ve | D) .
- P(D) x sensitivity wo)

P(D) x sensitivity + P(D) x (1.0 — specificity)
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e The predictive value negative of a screening test (or symptom) is the
probability that subject does not have the disease, given that the subject
has a negative screening test result (or does not have the symptom) or
again simply defined as the proportion of negative results that are true
negatives (i.e., do not have the symptom or disease).

P(D and — ve)

P(D | —ve) = Pl—ve)

(4.10)

B P(D) x specificity (4.11)
~ P(D) x (1.0 — sensitivity) + P(D) x specificity '

Example 4.6.1

If a woman takes an early pregnancy test, she will either test positive, mean-
ing that the test says she is pregnant, or test negative, meaning that the test
says she is not pregnant. Suppose that if a woman is really pregnant, there
is 98 % chance that she will test positive. Also, suppose that if a woman is
not pregnant, there is a 99 % chance that she will test negative.

(1a) Suppose that 1000 women take early pregnancy tests and that 100 of
them are really pregnant. What is the probability that a randomly
chosen woman from this group will test positive?

(1b) Suppose that a woman tests positive, what is the probability that she
is really pregnant?

(2a) Suppose that 1000 women take early pregnancy tests and 50 of them are
really pregnant. What is the probability that a randomly chosen woman
from this group will test positive?

(2b) Suppose that a woman test positive, what is the probability that she is
really pregnant?

Disease

Test result Pregnant (D) Not pregnant (D)

Positive +ve 0.98 0.01
Negative (—ve) 0.02 0.99
Total 1.00 1.00

a The sensitivity of the test is given by:
P(+ve | pregnant) = 0.98
b The specificity of the test is given by:

P(-ve | not pregnant) = 0.99
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In problem (1a), in a population of 1000 women, 100 of them were actually

pregnant. Hence P(D) = 0.10 and P(D) = 0.90 in the population. We can
now use a probability tree diagram to solve our problem.

+ve

0.98x 0.10=10.098

0.02x 0.10=10.002

0.90x 0.01 =0.009

0.90x 0.99=0.891
The probabilities are computed as follows using the multiplication rule:

P(D nN+wve) = P(D) x P(+ve|D) = 0.10 x 0.98 = 0.098
P(D N +wve) = P(D) x P(+ve|D) = 0.90 x 0.01 = 0.009

Similar calculations lead to those for the (—ve)s. Hence, the probability that
a randomly chosen woman from this group will test positive equals 0.098 +
0.009 = 0.107. In problem (1b), the probability that she is really pregnant
given that she tested positive is the predictive value positive of the test and
is computed as:

P(DN+ve)  0.098

- = 0.9159
P(+ve) 0.107

For (2a), we now have P(D) = 0.05 and P(D) = 0.95. The following
probability tree diagram displays the various probabilities relating to this
problem.

+ve

0.98 x 0.05=0.049

0.02x 0.05=0.001

0.95x 0.01 =0.0095

0.95x 0.99 =0.9405
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Hence, the probability that a randomly chosen woman from this group will
test positive equals 0.049 +0.0095 = 0.0585. In problem (2b), the probability
that she is really pregnant given that she tested positive is the predictive
value positive of the test and is computed as:

P(DN+4ve)  0.049
= = 0.8376
P(+ve) 0.0585

Example 4.3.3

The blood type distribution in a certain country at the time of war was
thought to be type A, 41 %; type B, 9%; type AB, 4%; and type O, 46 %.
It is estimated that during this war, 4 % if inductees with type O blood were
typed as having type A, 88 % of those with type A blood were correctly typed,
4% with type B blood were typed as A, and 10 % with type B were typed as
A. A soldier was wounded and brought to surgery. He was typed as having
type A blood. What is the probability that this was his true blood type?
Here we wish to find P(A; | B), where, let,

Aj :He has type A blood
A, :He has type B blood
As :He has type AB blood
Ay :He has type O blood

Similarly we are given,

P(A;) =041 P(B|A;) =088
P(A3)=0.09 P(B| Ay)=0.04
P(A3) =0.04 P(B|A;s) =0.10
P(Ay) =046 P(B|As) =0.04

The following tree diagram together with the computed probabilities are
presented.
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B

0.88 0.41x 0.88=0.3608

0.41 x 0.12=10.0492

0.09 x 0.04 =0.0036

0.09 x 0.96=0.0864
Pop],

0.04x 0.10=0.004

0.04x 0.90=0.036

0.46x 0.04=0.0184

0.96 0.46x 0.96 =0 .4416

From the above,
P(B) = P(A; and B) + P(A3 and B) + P(A; and B) + P(A4 and B)
= 0.3608 + 0.0036 + 0.0040 + 0.0184 = 0.3868

But P(A4; and B) = 0.3608. Hence,

0.3608
P[A, | B] = = 0.9328
A1 B = 5 3568
Thus there is a 93 % chance that the blood type is A if it has been typed as A.
There is a 7% chance that it has been mistyped as A when it is actually some
other type. We have used in the example above the use of what is known as
Bayes’ theorem.

4.7 Receiver Operating Characteristics(ROC) Curves

The receiver operating characteristic (ROC) curve is a graphical plot of the
sensitivity (true positives rate) versus the false positive rate (1—specificity) of
the screening test, at different cut-off points used to designate test positive.
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4.7.1 Example

Consider the following data for serum ferritin as a test for iron deficiency
anemia. The level of serum ferritin (SF) found in blood and measured in mil-
ligrams percent is to be used as a diagnostic tool for detecting iron deficiency

anemia. Large values of SF is often associated with iron deficiency anemia
(Table 4.4).

Table 4.4 Serum ferritin as IDA diagnostic test
Serum ferritin # With IDA  # Without IDA

(mmol/1) (% of total) (% of total)
<15 474 20
15-34 175 79
35-64 82 171
65-94 30 188
> 94 48 1332

Suppose we adopt cut points < 15, < 34, < 64, and < 94, then the corre-
sponding 2 X 2 contingency tables for each of the cut points are presented in
(i) to (iv) below.

IDA IDA
SF 1 0 Total SF 1 0 Total
<15 | 474 20 494 < 34 | 649 99 748
> 15 | 335 1750 | 2085 >34 | 160 1671 | 1831
Total | 809 1770 | 2579 Total | 809 1770 | 2579
(1) (ii)
IDA IDA
SF 1 0 Total SF 1 0 Total
<64 | 731 270 1001 <94 | 761 438 1199
> 64 | 78 1500 | 1578 > 94 | 48 1332 | 1380
Total | 809 1770 | 2579 Total | 809 1770 | 2579
(iii) (iv)

For Table (i), the sensitivity and specificity are computed as:

474
Sensitivity = i 0.5859

809
1750
.ﬁ i = — = U.
Specificity 70 0.9887
For Table (ii), the computed values are:
4
Sensitivity = 649 = 0.8022

809
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1671

For Table (iii), these are similarly computed as:

731
Sensitivity = — = 0.9036

809
1500
ificity = —— = 0.84
Specificity 1770 0.8475
and finally for Table (iv), we have:
761
itivity = — = 0.94
Sensitivity 309 0.9407
1332
ificity = ——— = 0.752
Specificity 1770 0.7525

These results are tabulated as follows (Table 4.5):

Table 4.5 Relationship between sensitivity and specificity

SF (cut-points) Sensitivity —Specificity 1—Specificity

<15 0.5859 0.9887 0.1130
< 34 0.8022 0.9441 0.0559
< 64 0.9036 0.8475 0.1535
<94 0.9407 0.7525 0.2475
> 94 1.0000 0.0000 1.0000

The above table indicates the relationship between specificity and sensitivity.
It clearly shows that as sensitivity increases, the specificity drops and vice
versa. Thus there is a trade off and ideally, we would want a test that is highly
sensitive and highly specific. A cut point of < 15 for instance to diagnose iron
deficiency anemia has sensitivity of 0.5859 and a specificity of 0.9887. We can
increase the cutoff point for instance to increase the sensitivity. For instance,
if we were to use a cutoff point of < 94, we would have a higher sensitivity
indicating that a larger number proportions of the diagnosis will be positive,
but we would have decreased the specificity to 0.7525 and thus increasing
the probability of false positives. The choice of a cutoff point should be se-
lected carefully as we would not wish to minimize the false negative error
(that patients does not have iron deficiency anemia when he/she clearly has
it) in this particular case for instance. The relationship between sensitivity
and specificity is often graphically illustrated by employing the Receiver op-
erating characteristic (ROC) curve. The ROC curve is a graphical plot of the
sensitivity values against 1—specificity curves and compare sensitivity versus
specificity across a range of values for the ability to predict a dichotomous
outcome. Area under the ROC curve is another measure of test performance.

The area under the ROC curve is a measure of the accuracy of the test.
An area of 1 represents a perfect test or complete agreement, while an area of
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0.5 is considered worthless. In general, an ROC area of between 0.5 and 0.70
is considered marginally useful. An area of between 0.7 and 0.9 is considered
a good test, while an area greater than 0.90 is considered as an excellent
test. Here, in our example, the area under the ROC curve is 0.9344 which is
therefore considered as an excellent test.

0.50 0.75 1.00
1 1 1

Sensitivity

0.25
1

0.00
1

0.00 0.25 0.50 0.75 1.00
1 — Specificity
Area under ROC curve = 0.9344

Fig. 4.2 ROC curve for Serum Ferritin

4.8 Probability Distributions

Suppose we denote the number of responses by X in Example 4.1 above.
Then, X can take the following values, 0 (corresponding to no responses, i.e.
NNN), 1, 2 or 3. We present corresponding outcomes for these values of X
below.

Outcome

{NNN}
{RNN, NRN, NNR}
{RRN, RNR, NRR}
{RRR}

W= o

We notice that the value of X is not fixed as it could take any of the values
0, 1, 2 or 3. Therefore in statistical terms, X will be described as a discrete
random variable. It is discrete because X takes discrete values 0,1,---. The
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probability density function (pdf) of X, denoted by p(x) can therefore be
obtained as follows:

Response
X 0 1 2 3 Total
Mo 3§31 0

p(x) as given by the values above is described as the probability density
function of the random variable X (No. of responses). Thus p(z) satisfies the
following:

(i) p(x) >0, forall
(ii) Y. p(z) =1, summed over all values of X

4.8.1 Mean and Variance of X

The mean of X, denoted by pu, or E(X) (expectation of X) is calculated from
the expression as mentioned below.

E(X)= Z zp(x), hence,

~o(5)+1(5) () (&)

—0+ 042
88 8

3

T2

Similarly, the variance is obtained by using the formula

2= 3w ple) -

i.e.,

pad 12,9 0
8 8 8 4

3

T4

Hence, the standard deviation o, = \/g = 0.86660. E(X) is read as “Ex-

pected value of X7 or simply as the “Expectation of X”. The expectation
gives the mean of the distribution.
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We notice that for a discrete probability density function p(x), then p(x)
must satisfy

> p(x)=1 (4.12)

Example 4.8.1

A cell when it multiplies can give birth to a maximum of four daughter cells.
The probability of z daughter cells being formed by a cell which has just
multiplied is given by the following probability distribution

NI [
wlw| o
o= o
Ll TS

p(z)

It can be seen from the example that X has discrete pdf and

4
1 3 1 1
Zp(acz) 4+8+8+4

r=1

For the above pdf, we can evaluate the following probabilities

(i) P(X =3)=P(3) =}
(i) P(X <2)=P(1) =
(iii) P(X >2)=P@3)+P4)=%+1=2
(iv) P(X <2)=P(1)+P(2)=14+28=3
(v) PREX <) =PR)+PE)+PU) =F+5+1=1
(vi) P(X >3)=P(3)+ (p(4) =t +1 =2

4.8.2 Cumulative Probability Distribution Function

The cumulative probability distribution (cdf) for a discrete random variable
X is defined as:

F(z) = P(X < 2)

and for the pdf in Example 4.8.1, the corresponding cdf is given by:

T

AN e
oolot] o
oo | o
—
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Given, the cumulative distribution function F'(z), then the probabilities in
(i)—=(vi) in the previous subsection, are calculated as follows:

PE)-F@)=$-%=1

i)
)P( ) 8 8
(i) P(X <2)=P(X<1)=F(1)=1
(i) P(X >2)=1-P(X<2)=1-F@2)=1-2=2
(iv) P(X <2)=F(2)=2
(v) PR<X<4)=F@4)-F1)=1-3=12
(vi) P(X >3)=1-P(X<3)=1-P(X<2)=1-F@2)=1-5=2

The mean and variance of the X in this example are also obtained from the

pdf as:
= ap() <1>+2<:)+3(;>+4(i> :%
=S r() ()4 () ()

1 12 9 16 (19

“iTw st AT

2
3 > = 6.875 — 5.6406 = 1.234

4.9 The Binomial Distribution

Suppose, a drug company announces that it has just developed a new drug
to cure a certain fictitious disease NNYZ. The company also claims that the
cure rate of this new drug is 0.8 or 80 %. Suppose, there are four patients at
the local hospital with this particular disease and we are interested in testing
the efficacy of this new drug. Consequently, this new drug is administered to
these four patients over a specified period of time and the conditions of the
patients are re-examined at this time. What is the distribution of the number
of patients cured by this new drug.

Let S denote the event that the drug cures and F the event that the drug
fails to cure the patient. Then

P(S)=08, and P(F)=1-0.8=0.20.

Further let X be the number of patients cured. Then the possible values of
X are {0, 1, 2, 3, 4} corresponding to:

FFFF, SFFF, SSFF, SSSF, SSSS
——— S = = =
X=0 X=1 X=2 X=3 X=4

But since each patient is either cured or not cured, thus we have 2x2x2x2 =
16 possible outcomes. We have, however, listed only five of these possible



4.9 The Binomial Distribution 81

outcomes, hence there is a need for us to locate where the other possible
outcomes are lurking (or hiding). For example, the outcome SFFF listed
above only indicates that the first patient was cured. It could have been
only the second, the third or the fourth. Hence there would be four possible
outcomes for the case when X = 1, namely {SFFF, FSFF, FFSF, FFFS}.
To generate these outcomes we make use our earlier rule. Thus,

4!
FFFF:@:1
SFFF:%:ZL
SSFF:%:6
SSSF:!;!—!HZAL
SSSSz%zl

for instance for the SSFF, there are two of one kind (SS) and two of the other
kind (FF), hence, there are six possible outcomes corresponding to X = 2.
In all, the outcomes are represented as:

These are,

FFFF
FFFS FSFF FFSF SFFF
FFSS SSFF SFSF FSFS SFFS FSSF
FSSS SSSF SSFS SFSS
SSSS

The corresponding probabilities are therefore:

P(X =0) =0.2* = 0.0016

P(X =1) =4(0.2° 0.8") = 0.0256
P(X =2) =6(0.22 0.8%) = 0.1536
P(X = 3) =4(0.2' 0.8%) = 0.4096
P(X =4) = (0.8") = 0.4096

Hence, the distribution of X, the number of patients cured can be summarized
in Table 4.6.



82 4 Probability and Probability Distributions

Table 4.6 Distribution of the random variable X in this example
X 0 1 2 3 4 Total
P(z) 0.0016 0.0256 0.1536 0.4096 0.4096 1

We notice that Z P(z) =1. P(z) is a pdf and a special pdf for that matter.
The number of patients cured X is said to follow a binomial distribution with
parameters n = 4 and p = 0.8 and is written as X ~ b(4, 0.8).

The binomial distribution arises mainly when there are only two possible
outcomes in each trial of an experiment, such that the two possible outcomes
are mutually exclusive. These outcomes may be success or failure, germi-
nation or no-germination, defective or non-defective, yes or no etc. In the
example above, a patient is either cured (S) or not cured (F). The probabil-
ity of success is always denoted by p and that of failure by 1 — p or ¢ and a
binomial experiment is one that possesses the following properties:

(a) The experiment consists on n repeated trials.

(b) Each trial results in an outcome that may be classified as a success or
failure, that is, dichotomous (Greek) or binary (Latin) outcomes.

(¢) The probability of success is p and failure ¢ such that p+¢ =1

(d) The repeated trials are independent.

Then, if X represents the number of successes in n such repeated trials of the
experiment, then the possible values of X are 0,1,2,--- ,n and the distribu-
tion of X is called a binomial distribution with parameters n and p and is
written as X ~ b(n, p). For the above example, the probabilities can therefore
be computed as in the following Table where, p = 0.8 and ¢ =1 — p = 0.20.

Values of X 0 1 2 3

p(x) q Pq

Noof sequences 1= (3) 4=(1) 6=(3) 4=(3) 1=(})

Such that Pr(Cured) = p and Pr(not cured) = ¢g. Then, p(z) is given by

p(.’b) = (n)pzqn—w7 1':0,].,2,"' ) T
x
|
or = meqnfz, z=0,1,2,---n.
xl(n — z)!

For the binomial distribution, it can be shown that
E(X)=np and Var(X) = npq.

That is, the mean of a binomial distribution is np, while its variance is npq.
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Example 4.9.1

The probability of a bacterium being infected with a phage is 0.4. If four
bacteria are examined under a microscope what is the probability of

(i) No bacteria being infected
(ii) three bacteria being infected
(iii) at least one bacterium being infected?

In this example, each bacterium represents a trial. Since a bacterium is either
infected (success) or not infected (failure), we thus have a binomial distri-
bution with n» =4 and p =0.4 and if X denotes the number of bacterium
infected, then,

p(z) = (i) (0.4)%(0.6)**, x=0,1,2,3,4

Hence,

(i) Prob (No bacteria are mfected) p(0)
= (5)(0.4)°(0.6)* = (0.6)* = 0.1296
(ii) Prob (three bacteria being infected) = p(3)
(0.

= (5)(0-4)3(0.6)°
= 4% (0.4)3(0.6) = 0.1536

(iii) Prob (at least one bacterium is infected) = P(X > 1)
=p(1) +p(2) +p(3) +p(4) =1 - p(0)
=1 - (0.6)* = 0.8704

Alternatively, I would prefer to use the cumulative distribution function to
solve the above problems. We have used MINITAB to generate the cdf for
an X ~ b(4,0.4). These are presented below.

MTB > CDF;
SUBC> BINOMIAL 4 0.4.

Cumulative Distribution Function
Binomial with n = 4 and p = 0.400000

F(x)
.1296
L4752
.8208
.9744
.0000

Sw NN R O X
= O O O O
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(i) P(X =0) = F(0) = 0.1296
(ii) P(X =3) = F(3) — F(2) = 0.9744 — 0.8208 = 0.1536
(i) P(X>1)=1-P(X <1)=1-P(X <0)=1—F(0) =1—0.1296 =
0.8704

Example 4.9.2

The genetic features of two adult mice are such that the probability of an
offspring being an albino is 0.2.
If the mice give birth to six offsprings, calculate the probability of

(i) no albino
(ii) one albino only
(iii) two or more albinos

Solution

Here, p=0.2; ¢ =1—0.2 = 0.8 and n = 6. Hence, p(z) has the form:

o) = (1) 027085, o =0.1,23,45.6

The corresponding cdf is presented below.

MTB > CDF;
SUBC> BINO 6 0.2.

Cumulative Distribution Function
Binomial with n = 6 and p = 0.200000

F(x)
L2621
.6554
L9011
.9830
.9984
.9999
.0000

o 0w N PO X
P O O O O O O

X <0) = F(0) = 0.2621
1) — F(0) = 0.6554 — 0.2621 = 0.3933
—~P(X<2)=1-P(X<1)=1-F(1)=1-0.6554 =
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Of course we could solve the problems by using the pdf, but these require
extensive calculations especially if n is large. We however present these results
in what follows:

(i) Prob (No alblnos) p(0)
= ($)(0-2)°(0.8)° = (0.8)° = 0.2621
(ii) Prob (one albino only) = p(1)
= ()(02)'(0.8)°
= 6(0.2)(0.8)7 = 0.3933
(iii) Prob (two or more albinos) = P(X > 2)
=p(2) +p3)+p4) +p(5) +p(6)
— 1 p(0) — p(1)
=1-0.2621 — 0.3932 =0.3447

4.10 The Poisson Distribution

Data which come as counts rather than as continuous measurements are often
very skewed. Poisson or related theoretical distributions can sometimes be
used to describe this type of data. The Poisson distribution, is also widely
used in ecology to describe the ways in which shrubs, trees, insects etc are
spread over areas. Other examples giving rise to a Poisson distribution are,
insect counts in field plots, noxious weed seeds in seed samples, number of
egg clusters on a leaf, etc. The Poisson distribution is most often used to
model discrete events in time or space and has sometimes been referred to as
the distribution of rare events.
Thus, if X has a Poisson distribution, then the probability density function
(pdf) of X will be given by:
oz
p({E) = ‘ x'/J‘ ’ 1':0,]_,2,-'- ) (413)

where 2! stands for factorial.
Since p(x) is a probability density function, it follows that

o0
> plz) =
=0

i.e., the probabilities must sum up to 1.

Example 4.10.1

If insect egg clusters on the leaves of a tree have a Poisson distribution with
parameter p = 0.5. Calculate the probability of a leaf having
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(i) No egg clusters
(ii) At least one egg cluster.

Let X denote the number of egg clusters on a leaf. Hence,

0.5)7¢=0
p(x):%v $:O7172a37"'
(i) Prob (no eggs) = p(0) = M = ¢ 9% = 0.6066

(ii) Prob (at least one egg cluster in leaf) is computed as:
PX>1)=1-P(X<1)=1-P(X <0)=1-0.6066=0.39