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Preface

Universe is deadly adventurous and man’s eternal quest to unfold its mysteries
will never cease. Astronomy, perhaps the oldest observational science, has
got its spectacular emergence with the advent of theoretical astrophysics and
it has started to spread in India after some important contributions by Indian
scientists in 1920s and later. Astronomy in the recent past has developed a
lot with the launch of several missions like GALEX (Galaxy Evolution Ex-
plorer), Kepler Space Telescope, Hubble Space Telescope (HST), etc. through
which terabytes of data are available for preservation. Hence several virtual
archives like SDSS (Sloan Digital Sky Survey), MAST (Multimission Archive
at STSCI), Vizier, EDD, LEDA, Chandra, etc. have been developed to pre-
serve the one-time snapshots of various astronomical events.

During the last two decades galaxy formation theory and their related star
formation histories have drawn interests among the astrophysicists to a great
extent to uncover these mysteries using the reach treasure of virtual archives.
While digging the pathway, a new branch ASTROSTATISTICS (or Statistical
Astronomy) has emerged since 1980s. It is a blending of statistical analysis of
astronomical data along with the development of new statistical techniques
useful to analyze astrophysical phenomenon. The target is not only to explore
the formation and evolutionary history of galaxies but also to uncover the
unknown facts related to star formation, gamma ray bursts, supernova and
other intrinsic variable stars. Where much data are not available, model-
based approaches may be adopted.

In this book we have tried to introduce “Astrostatistics” as a subject
just like biostatistics. Through the various chapters we have discussed the
basic concepts of both Astrophysics and Statistics along with the possible
sources of Astronomical data. Subsequently we have entered into different
types of applications of statistical techniques already developed or specifically
introduced for astrophysical problems. We have discussed on techniques like
regression, clustering and classification, missing data problems, simulation,
data mining and time series analysis. Along with the discussion, specific
examples are given so that readers can easily digest the method and can apply
it to their own problem. Finally we have included a chapter on the use of
R package which is an open access software. There we have included several
examples which will be helpful for the readers. In the appendix we have
included some astronomical data sets which we have used in our examples.

We are indeed grateful to many persons and organizations for helping
us during the preparation of the manuscript. In particular, we are grate-
ful to Professor Ajit Kembhavi, Director, IUCAA, India, for continuous
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encouragement and providing new ideas related to “fundamental plane”
concept. We are also deeply indebted to Professor Sailajananda Mukherjee,
Retired Professor and Former Head, Department of Physics, North Bengal
University, India, for carefully reading the Astrophysical part of the book and
suggesting significant improvements. We will always remember the cooper-
ation and support we have received from Professor Joseph Hilbe, Emeritus
Professor, University of Hawaii, USA. We will also remain grateful to Pro-
fessors Jogesh Babu and Eric Feigelson, Pensylvania State University, USA,
whose contributions inspired us to start work in this area.

We offer our heartiest thanks to our collaborators Didier Fraix Burnet,
Emmanuel Davoust, Margarita Sharina, Ranjeev Misra and Malay Naskar.
We feel proud of our students Saptarshi Mondal, Tuli De, Abisa Sinha,
Pradeep Karmakar and Bharat Warule for their sincere efforts and dedication.
Being faculty members of Calcutta University, India, we are really grate-
ful to our Vice-Chancellor Professor Suranjan Das and Pro-Vice-Chancellor
(Academic) Professor D.J. Chattopadhyay for their continuous support.

Finally we thank Mr. Aparesh Chatterjee for carefully preparing the
typescript of this book.

Calcutta, India Asis Kumar Chattopadhyay
August 15, 2014 Tanuka Chattopadhyay



Contents

1 Introduction to Astrophysics . . . . . . . . . . . . . . . . . . 1
1.1 Light and Radiation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sources of Radiation . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Brightness of Stars . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Absolute Magnitude and Distance . . . . . . . . . 9
1.3.2 Magnitude–Luminosity Relation . . . . . . . . . . 10
1.3.3 Different Photometry Systems . . . . . . . . . . . 11
1.3.4 Stellar Parallax and Stellar Distances . . . . . . . 12
1.3.5 Doppler Shift and Stellar Motions . . . . . . . . . 14

1.4 Spectral Characteristics of Stars . . . . . . . . . . . . . . . 15
1.5 Spectral Features and Saha’s Ionization Theory . . . . . . 17
1.6 Celestial Co-ordinate Systems . . . . . . . . . . . . . . . . 23
1.7 Hertzsprung–Russel Diagram . . . . . . . . . . . . . . . . . 26
1.8 Stellar Atmosphere . . . . . . . . . . . . . . . . . . . . . . 27
1.9 Stellar Evolution and Connection with H–R Diagram . . . 41
1.10 Variable Stars . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.11 Stellar Populations . . . . . . . . . . . . . . . . . . . . . . 62

1.11.1 Galactic Clusters . . . . . . . . . . . . . . . . . . . 62
1.11.2 Globular Clusters . . . . . . . . . . . . . . . . . . . 63
1.11.3 Fragmentation of Molecular Clouds and

Initial Mass Function (IMF) . . . . . . . . . . . . . 65
1.12 Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.13 Quasars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.14 Pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.15 Gamma Ray Bursts . . . . . . . . . . . . . . . . . . . . . . 84
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2 Introduction to Statistics . . . . . . . . . . . . . . . . . . . . 91
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.2 Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.2.1 Discrete-Continuous . . . . . . . . . . . . . . . . . 92
2.2.2 Qualitative–Quantitative . . . . . . . . . . . . . . . 92
2.2.3 Cause and Effects . . . . . . . . . . . . . . . . . . . 93

2.3 Frequency Distribution . . . . . . . . . . . . . . . . . . . . 93
2.3.1 Central Tendency . . . . . . . . . . . . . . . . . . . 93
2.3.2 Dispersion . . . . . . . . . . . . . . . . . . . . . . . 94

ix



x Contents

2.3.3 Skewness . . . . . . . . . . . . . . . . . . . . . . . 94
2.3.4 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . 95

2.4 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . 95
2.4.1 Histogram . . . . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Box Plot . . . . . . . . . . . . . . . . . . . . . . . . 96

2.5 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.5.1 Scatter Plot . . . . . . . . . . . . . . . . . . . . . . 98

2.6 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.7 Multiple Correlation . . . . . . . . . . . . . . . . . . . . . . 102
2.8 Random Variable . . . . . . . . . . . . . . . . . . . . . . . 102

2.8.1 Some Important Discrete Distribution . . . . . . . 103
2.8.2 Some Important Continuous Distributions . . . . . 107

3 Sources of Astronomical Data . . . . . . . . . . . . . . . . . 109
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2 Sloan Digital Sky Survey . . . . . . . . . . . . . . . . . . . 109
3.3 Vizier Service . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4 Data on Eclipsing Binary Stars . . . . . . . . . . . . . . . . 114
3.5 Extra Galactic Distance Data Base (EDD)

(edd.ifa.hawaii.edu/
index.html) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.6 Data on Pulsars . . . . . . . . . . . . . . . . . . . . . . . . 115
3.7 Data on Gamma Ray Bursts . . . . . . . . . . . . . . . . . 115
3.8 Astronomical and Statistical Softwares . . . . . . . . . . . 116
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1 Population and Sample . . . . . . . . . . . . . . . . . . . . 119
4.2 Parametric Inference . . . . . . . . . . . . . . . . . . . . . 120

4.2.1 Point Estimation . . . . . . . . . . . . . . . . . . . 121
4.2.1.1 Unbiasedness . . . . . . . . . . . . . . . . 121
4.2.1.2 Efficiency . . . . . . . . . . . . . . . . . . 122
4.2.1.3 Maximum Likelihood Estimator

(MLE) . . . . . . . . . . . . . . . . . . . . 123
4.2.2 Interval Estimation . . . . . . . . . . . . . . . . . . 123

4.3 Testing of Hypothesis . . . . . . . . . . . . . . . . . . . . . 124
4.3.1 p-Value . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3.2 One Sample and Two Sample Tests . . . . . . . . . 126
4.3.3 Common Distribution Test . . . . . . . . . . . . . 128

4.4 Empirical Distribution Function . . . . . . . . . . . . . . . 128
4.5 Nonparametric Approaches . . . . . . . . . . . . . . . . . . 130

4.5.1 Kolmogorov–Smirnov One Sample Test . . . . . . 130
4.5.2 Kolmogorov–Smirnov Two Sample Test . . . . . . 131
4.5.3 Shapiro–Wilk Test . . . . . . . . . . . . . . . . . . 132
4.5.4 Wilcoxon Rank-Sum Test . . . . . . . . . . . . . . 133
4.5.5 Kruskal–Wallis Two Sample Test . . . . . . . . . . 134

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



Contents xi

5 Advanced Regression and Its Applications
with Measurement Error . . . . . . . . . . . . . . . . . . . . . 137
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Simple Regression . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Multiple Regression . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 Estimation of Parameters in Multiple Regression . 139
5.3.2 Goodness of Fit . . . . . . . . . . . . . . . . . . . . 141
5.3.3 Regression Line Through the Origin . . . . . . . . 142

5.4 Effectiveness of the Fitted Model . . . . . . . . . . . . . . . 142
5.5 Best Subset Selection . . . . . . . . . . . . . . . . . . . . . 143

5.5.1 Forward and Backward Stepwise Regression . . . . 144
5.5.2 Ridge Regression . . . . . . . . . . . . . . . . . . . 144
5.5.3 Least Absolute Shrinkage and Selection

Operator (LASSO) . . . . . . . . . . . . . . . . . . 145
5.5.4 Least Angle Regression (LAR) . . . . . . . . . . . 145

5.6 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . 146
5.7 Regression Problem in Astronomical Research

(Mondal et al. 2010) . . . . . . . . . . . . . . . . . . . . . . 147
5.7.1 Regression Planes and Symmetric

Regression Plane . . . . . . . . . . . . . . . . . . . 149
5.7.2 The Symmetric Regression Plane

with Intercept . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Missing Observations and Imputation . . . . . . . . . . . . 155
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Missing Data Mechanism . . . . . . . . . . . . . . . . . . . 155

6.2.1 Missingness Completely at Random (MCAR) . . . 155
6.2.2 Missingness at Random (MAR) . . . . . . . . . . . 156
6.2.3 Missingness that Depends on Unobserved

Predictors and the Missing Value Itself . . . . . . . 156
6.3 Analysis of Data with Missing Values . . . . . . . . . . . . 156

6.3.1 Complete Case Analysis . . . . . . . . . . . . . . . 156
6.3.2 Imputation Methods . . . . . . . . . . . . . . . . . 157

6.3.2.1 Mean Imputation . . . . . . . . . . . . . . 157
6.3.2.2 Hot Deck Imputation (Andridge

and Little 2010) . . . . . . . . . . . . . . . 157
6.3.2.3 Cold Deck Imputation (Shao 2000) . . . . 158
6.3.2.4 Warm Deck Imputation . . . . . . . . . . 159

6.4 Likelihood Based Estimation: EM Algorithm . . . . . . . . 159
6.5 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . 161
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



xii Contents

7 Dimension Reduction and Clustering . . . . . . . . . . . . . 163
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Principal Component Analysis . . . . . . . . . . . . . . . . 164

7.2.1 An Example Related to Application
of PCA (Babu et al. 2009) . . . . . . . . . . . . . . 167
7.2.1.1 The Correlation Vector Diagram

(Biplot) . . . . . . . . . . . . . . . . . . . 169
7.3 Independent Component Analysis . . . . . . . . . . . . . . 172

7.3.1 ICA by Maximization of Non-Gaussianity . . . . . 175
7.3.2 Approximation of Negentropy . . . . . . . . . . . . 176
7.3.3 The FastICA Algorithm . . . . . . . . . . . . . . . 176
7.3.4 ICA Versus PCA . . . . . . . . . . . . . . . . . . . 177
7.3.5 An Example (Chattopadhyay et al. 2013) . . . . . 179

7.4 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . 182
7.4.1 Method of Estimation . . . . . . . . . . . . . . . . 185
7.4.2 Factor Rotation . . . . . . . . . . . . . . . . . . . . 188

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8 Clustering, Classification and Data Mining . . . . . . . . . 193
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Hierarchical Cluster Technique . . . . . . . . . . . . . . . . 193

8.2.1 Agglomerative Methods . . . . . . . . . . . . . . . 194
8.2.2 Distance Measures . . . . . . . . . . . . . . . . . . 194
8.2.3 Single Linkage Clustering . . . . . . . . . . . . . . 195
8.2.4 Complete Linkage Clustering . . . . . . . . . . . . 195
8.2.5 Average Linkage Clustering . . . . . . . . . . . . . 196

8.3 Partitioning Clustering: k-Means Method . . . . . . . . . . 196
8.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.5 An Example (Chattopadhyay et al. 2007) . . . . . . . . . . 200

8.5.1 Cluster Analysis of BATSE Sample and
Discriminant Analysis . . . . . . . . . . . . . . . . 201

8.5.2 Cluster Analysis of HETE 2 and Swift Samples . . 204
8.6 Clustering for Large Data Sets: Data Mining . . . . . . . . 207

8.6.1 Subspace Clustering . . . . . . . . . . . . . . . . . 207
8.6.2 Clustering in Arbitrary Subspace Based

on Hough Transform: An Application
(Chattopadhyay et al. 2013) . . . . . . . . . . . . . 209
8.6.2.1 Input Parameters . . . . . . . . . . . . . . 211
8.6.2.2 Data Set . . . . . . . . . . . . . . . . . . . 211
8.6.2.3 Experimental Evaluation . . . . . . . . . . 211
8.6.2.4 Properties of the Groups . . . . . . . . . . 212

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215



Contents xiii

9 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . 217
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.2 Several Components of a Time Series . . . . . . . . . . . . 218
9.3 How to Remove Various Deterministic

Components from a Time Series . . . . . . . . . . . . . . . 219
9.4 Stationary Time Series and Its Significance . . . . . . . . 220
9.5 Autocorrelations and Correlogram . . . . . . . . . . . . . 220
9.6 Stochastic Process and Stationary Process . . . . . . . . . 221
9.7 Different Stochastic Process Used for Modelling . . . . . . 223

9.7.1 Linear Stationary Models . . . . . . . . . . . . . . 223
9.7.2 Linear Non Stationary Model . . . . . . . . . . . . 227

9.8 Fitting Models and Estimation of Parameters . . . . . . . 228
9.9 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.10 Spectrum and Spectral Analysis . . . . . . . . . . . . . . . 232
9.11 Cross-Correlation Function (wcross(θ)) . . . . . . . . . . . . 235
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

10 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 241
10.1 Generation of Random Numbers . . . . . . . . . . . . . . . 242
10.2 Test for Randomness . . . . . . . . . . . . . . . . . . . . . 245
10.3 Generation of Random Numbers from Various

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.4 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . 256
10.5 Importance Sampling . . . . . . . . . . . . . . . . . . . . . 258
10.6 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . . . 261
10.7 Metropolis–Hastings Method . . . . . . . . . . . . . . . . . 261
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

11 Use of Softwares . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.2 Preliminaries on R . . . . . . . . . . . . . . . . . . . . . . . 277
11.3 Advantages of R Programming . . . . . . . . . . . . . . . . 278
11.4 How to Get R Under Ubuntu Operating System . . . . . . 279
11.5 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . 279

11.5.1 Computation . . . . . . . . . . . . . . . . . . . . . 279
11.5.2 Vector Operations . . . . . . . . . . . . . . . . . . 280
11.5.3 Matrix Operations . . . . . . . . . . . . . . . . . . 281
11.5.4 Graphics in “R” . . . . . . . . . . . . . . . . . . . 285

11.6 Some Statistical Codes in R . . . . . . . . . . . . . . . . . 292

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343



Chapter - 1

Introduction to Astrophysics

1.1 Light and Radiation

The most important carrier of information from all kinds of heavenly bodies
is light. Light is an electromagnetic wave which is characterized by an elec-
tric field E and magnetic field H, and the direction of its propagation is at
right angles to both these fields. Unlike mechanical waves, e.g. sound waves
on the ocean, it can propagate through empty space. So, if Z-direction is
the direction of its propagation (Fig. 1.1), then Y and X directions are the
directions of electric and magnetic fields. The wave motion can be described
by a sine curve and the distance between two consecutive peaks measures the
wavelength λ, which is an important characterization of the propagating light.

The number of oscillations of electromagnetic wave per unit time at a given
point is called the frequency ν of the electromagnetic radiation so that

λν = c (1.1)

where c is the speed of light and its value in vacuum is 3×108 m/s. The entire
electromagnetic spectrum is shown in Fig. 1.2. It consists of Gamma rays, X-
rays, ultraviolet, visible light, infrared, microwaves and radio waves of which
visible range covers a very small window (400–700nm, 1 nm = 10−7 cm). For
detection of spectra in different regimes appropriate detectors are required,
e.g. for visible light optical telescope is required whereas X-ray or infrared
telescopes are required to detect X-ray and infrared rays from astronomical
sources.

Laws of Radiation in Thermodynamic Equilibrium

When a system filled with gas and radiation is kept isolated from its sur-
roundings, then the system will eventually have equal temperature at all
points and we say that the system is in thermal equilibrium. This happens
because of frequent collisions among the constituents of the system leading
to exchange of energy which helps the system to reach rapidly to a state

© Springer Science+Business Media New York 2014
A.K. Chattopadhyay, T. Chattopadhyay, Statistical Methods
for Astronomical Data Analysis, Springer Series in Astrostatistics 3,
DOI 10.1007/978-1-4939-1507-1 1
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2 1 Introduction to Astrophysics

of thermal equilibrium. In other words when mean free path, which is the
path between two successive collisions, becomes sufficiently small (in case of
electromagnetic radiation it is the mean free path of photons), the system
soon attains thermal equilibrium.

A system is said to be in mechanical equilibrium if the velocity distribution
follows Maxwellian velocity distribution.

Direction of
propagation

E

H

Figure 1.1 Electric field, magnetic field and direction of propagation

A system is said to be in chemical equilibrium if chemical activities have no
net change over time.

A system is said to be in thermodynamic equilibrium (TE) when it is simul-
taneously in thermal, mechanical as well as in chemical equilibrium.

Black Body Radiation

According to Kirchoff’s law the ratio of the emissive power to its absorption
power at a given temperature T is the same for all bodies. So this ratio
is universal function of temperature T of the body and the frequency ν of
radiation falling on it. A black body (BB) is something which absorbs all
the radiation falling on it. So, absorption power of BB is unity. This shows
that the emissivity is universal function of ν and T provided the body is in
TE, having a constant temperature T .

Specific Intensity (Iν)

It is the amount of energy crossing per unit area of the emitting surface,
placed perpendicular to the direction of propagation of light in unit time,
per unit solid angle, per unit frequency interval.
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Figure 1.2 Electromagnetic spectrum

If θ be the angle between the direction of propagation �p and normal n̂ to the
surface of area dσ, then (Fig. 1.3)

Iν =
dEν

dσ cos θdwdν
(1.2)

Mean Intensity (Jν)

It is the mean intensity obtained by averaging Iν over all directions.

Jν =

∫
Iνdw∫
dw

=
1

4π

∫ 2π

φ=0

∫ π

θ=0

Iν sin θdθdφ (1.3)

For isotropic radiation (independent of φ and θ)

Jν = Iν = Bν (1.4)

which is true for BB radiation.

Flux (Fν)

It is the total amount of energy crossing per unit area in unit time, per unit
frequency in all directions.
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dω
dσ

dθ

p

n

Figure 1.3 Propagation of electromagnetic radiation

Fν =

∫
Iν cos θdw =

∫ 2π

φ=0

∫ π

θ=0

Iν cos θ sin θdθdφ

= 2π

∫ π

0

Iν(θ) cos θ sin θdθ (for axisymmetric radiation)

= 2π

∫ +1

−1

Iν(μ)μdμ (1.5)

Here, μ = cos θ.
At the surface of BB (which is a hemisphere facing towards the observer)

Fν =

∫ 2π

φ=0

∫ π/2

θ=0

Iν cos θ sin θdθdφ = πIν = πBν (1.6)

Energy Density (Uν)

It is the amount of radiation energy received by a cylinder with unit cross
section in unit time whose axis is along the direction of propagation per unit
frequency per unit volume is

dUν =
dEν
dvdν

=
Iνdσ cos θdwdν

cdσ cos θdν
=

1

c
Iνdw (1.7)

c being the speed of light.
Considering sources which are isotropically distributed at the same dis-

tance, the total energy is

Uν =
1

c

∫
Iνdw =

4π

c
Jν =

4π

c
Bν =

4

c
Fν (1.8)
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Figure 1.4 Energy density vs frequency plot for black body

Hence,

Fν =
c

4
Uν (1.9)

The various laws of radiation are as follows:

Planck’s Law

Bν =
2hν3

c2
1

ehν/kT − 1
(1.10)

It is clear from Fig. 1.4 that Planck’s law is consistent with the observed ra-
diation.

Rayleigh–Jeans Law: For hν << kT

Bν =
2kTν2

c2
(1.11)

where k is the Boltzmann constant.

Wien’s Law: For hν >> kT

Bν =
2hν3

c2
e−hν/kT (1.12)
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a b

Figure 1.5 Continuous (a) and discrete (b) energy levels

In classical theory followed by Rayleigh–Jeans law, the energy is continuous
and the average energy is

E =

∫ ∞

0

Ee−E/kTdE/
∫ ∞

0

e−E/kT dE = kT (1.13)

where e−E/kT is the probability of having the energy E at temperature T , so
for E it is 1

e . In Fig. 1.5a, the energy is continuous. In Fig. 1.5b the energy
is discrete and energy values are so wide (ν large) that no allowed energy
values are found near kT . In this case all energy values have negligible
probabilities except E = 0. So E is close to zero rather than kT . According
to Planck’s law the energy values are discrete and energy at the n th level is

En = nhν

so, E =

∑
nhνe−nhν/kT
∑
e−nhν/kT

(1.14)

Now,
1

1− x = 1 + x+ x2 + . . . (for x < 1)

x

(1− x)2
= x+ 2x2 + 3x3 + . . .

So, E = [
hνe−hν/kT

(1− e−hν/kT )2
]/[

1

(1− e−hν/kT )
] =

hν

ehν/kT − 1
(1.15)
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Rayleigh–Jeans law diverges at high ν because at high ν, there are still too
many degrees of freedom (∞ν2) as ν is large as energy spacing is low and
each degree of freedom has a finite amount of energy 1

2kT . But quantum
theory predicts that each degree of freedom shares a negligible amount of
energy instead of 1

2kT so that total energy remains finite. The concept of
discreteness thus makes the distribution function a convergent one at high
frequency zone which is also clear from Eqs. (1.12) and (1.15), respectively.

Wien’s Displacement Law

Planck’s law in terms of wavelength λ is

Bλ =
2hc2

λ5
1

ehc/λkT − 1
(1.16)

Making dBλ

dλ = 0 gives λ = λmax for which

λmaxT = 0.2895 (1.17)

where λmax is the peak wavelength of the BB radiation at temperature T .
This relation is known as Wien’s displacement law. It shows that the peak
shifts towards shorter wavelength at higher temperature (Fig. 1.6)

Stefan–Boltzmann Law: Energy flux radiated from unit area over all
wavelengths is

F =

∫
Fνdν = σT 4 (1.18)

where σ is the Stefan–Boltzmann constant.

1.2 Sources of Radiation

In the previous section we have discussed so far about the properties of elec-
tromagnetic radiation. As we look at the night sky we see several bright spots
as sources of energy. These are called stars. With more powerful telescopes
we can observe clusters of bright spots or extended objects of various shapes,
e.g. elliptical, spiral or irregular. The former class of objects are called
star clusters and the latter are called external galaxies. These objects have
been discussed in detail in Sects. 1.11 and 1.12, respectively. Star clusters
are ensembles of stars and galaxies are vast collection of stars, interstellar
gas and dust, cosmic rays and unseen matter pervaded by magnetic field.
The Galaxy which we belong to consists of some 1011 stars. Sun is just a
mediocre member of this group. Nevertheless it is the most important from
our point of view because being the nearest star, it is most suitable for de-
tailed physical studies. Unlike other stars seen as a point sources Sun is seen
as a disc. This is called Photosphere. Sun is composed of layers of hot gases.
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Figure 1.6 Schematic of Wien’s displacement law

The other layers starting from Photosphere are Chromosphere and Corona.
The visible disc of Sun is actually the base of the Photosphere. Our view is
obstructed beyond this layer due to the high opacity of denser layers below it.
The temperature at the base of Photosphere is roughly 5,800 K. Above the
Photosphere the second major layer is Chromosphere which extends nearly
20,000 km above the Photosphere, with density decreasing and temperature
increasing upwards. The Corona is the outermost layer starting from Chro-
mosphere. With the invention of the instrument Coronagraph in 1930 by
French physicist B. Lyot it has now become possible to study the spectra
of Corona in great detail. The Chromosphere and Corona are dominated
by emission spectra whereas Photosphere is dominated by Frounhofer lines
which are absorption phenomena. The Coronal temperature is extremely
high (∼106). The density of particles (mostly electrons) is of the order of
∼106 to 108 cm−3 compared to 1010− 1012 in Chromosphere and 1016− 1017

in Photosphere.

1.3 Brightness of Stars

As we observe the brightness of stars through telescope we find that those
differ from one another. During the second century bc, Hipparchus first
observed 1,000 stars and classified them into six groups according to the
decreasing order of brightness B1, B2, . . . , B6. This scale of brightness is
called apparent magnitude often denoted by “m”. In 1830 William Herschel



1.3 Brightness of Stars 9

found (through stellar photometry experiment) that a first magnitude star is
100 times brighter than a sixth magnitude star. Later in 1856, N.R. Pogson
gave a quantitative scale assuming equal ratios of brightness would give equal
differences in magnitude. So if

B1

B6
= 100,

B1

B2

B2

B3

B3

B4

B4

B5

B5

B6
= 100

If
Bi
Bi+1

= x, i = 1, 2, . . . , 5

then
x5 = 100

giving
x =

5
√

100 = 2.512.

So if Bm and Bn are the brightness of two stars having apparent magnitudes
m and n, then

Bm
Bn

= (2.512)(n−m),

yielding

log
Bm
Bn

= (n−m) log 2.512 = 0.4(n−m)

Hence,
Bm
Bn

= 100.4(n−m) (1.19)

1.3.1 Absolute Magnitude and Distance

Since the brightness depends strongly on the distance, so two stars having
equal brightness but placed at different distances will give different magni-
tudes, i.e. farther one will be dimmer than the nearer one. This creates
ambiguity in considering apparent magnitude. So, for calibration one in-
troduces absolute magnitude which is the apparent magnitude of the star
placed at a standard distance of 10 parsecs (1 parsec = 3× 1018 cm). So for a
star having apparent and absolute magnitudes m and M , respectively, from
Eq. (1.19),

Bm
BM

= 100.4(M−m)

If Bm and BM are the brightness of two stars at distances d and D,
respectively,

Bm
BM

=
D2

d2
= 100.4(M−m)

i.e.
m−M = 5(log d− logD)
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If we take D = 10 parsec, the above relation reduces to

m−M = 5 log d− 5 (1.20)

This is the fundamental relation involving apparent magnitude, absolute
magnitude and distance of a star and if any two are given the third can be
computed. m−M is often called the distance modulus. The above relation
is true for nearby astronomical objects but for larger distance (redshift � 1)
another term known as “K-correction” is to be added on the RHS of (1.20)
to get the absolute magnitude at any particular colour of wavelength. This
will be discussed later.

1.3.2 Magnitude–Luminosity Relation

Now from (1.19),
n−m = 2.5 logBm/Bn

Let Lm, Ln be the luminosities (energy radiated from a star per unit time)
of the two stars at distances dm and dn respectively. Then,

Bm =
Lm

4πdm2

, Bn =
Ln

4πdn2

This yields
n−m = 2.5 log(Lm/Ln) + 5 log(dn/dm)

i.e.

(n− 5 log dn)− (m− 5 log dm) = 2.5 log
Lm
Ln

Using (1.20),
n−Mn = 5 log dn − 5

and m−Mm = 5 log dm−5 where Mm and Mn are their absolute magnitudes.

Hence Mm −Mn = −2.5 logLm/Ln

If one of the stars is sun, then Mn = M�, Ln = L�,

and
M −M� = −2.5 logL/L� (1.21)

for any star having absolute magnitude and luminosity M and L, respectively.
M� = +4.83 and L� = 3.84× 1033 ergs s−1.

Thus the above relation gives a conversion law between absolute magnitude
(M) and luminosity (L) of a star since M� and L� are known.
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1.3.3 Different Photometry Systems

With the development of photo electric photometry it has become possible
to measure the magnitudes by modern photo electric methods. Among the
various photometric techniques during the last few decades the U,B, V mag-
nitude system, developed by Johnson and Morgan (1953) is most widely used.
This system measures the apparent magnitudes of a star in ultraviolet (U),
blue or photographic (B) and green or visual (V) regions of the spectrum.
The scale is calibrated as, for a class AOV star U = B = V . The centres of
the bands for U, B, V magnitudes are, respectively, at λ350 nm, λ430 nm and
λ550 nm. There are other photometric systems, e.g. Johnson Cousin UB-
VRI System, Washington CMT1T2 system established by Canterna (1976)
and Geisler (1990), Sloan Digital Sky Survey (SDSS), ugriz system, etc. The
wavelengths and widths of the above broad band system (in Å, 1 Å = 10−8 cm)
are given in Table 1.1.

UBVRI Washington SDSS
λeff �λ λeff �λ λeff �λ

U 3,663 650 C 3,982 1,070 u′ 3,596 570
B 4,361 890 M 5,075 970 g′ 4,639 1,280
V 5,448 840 T1 6,389 770 r′ 6,122 1,150
R 6,407 1,580 T2 8,051 1,420 i′ 7,439 1,230
I 7,980 1,540 z′ 8,896 1,070

Table 1.1 Different photometric systems

Colour Index of a Star
According to Wien’s displacement law, at higher temperature λmax shifts
towards shorter wavelength. Therefore stars of higher temperature will emit
more in shorter wavelengths (blue–violet) and vice versa. Since colour de-
pends on temperature, stars at different wavelengths will have different
colours. The difference between the photographic (magnitude measured on
the basis of photographic image using blue filter and blue sensitive emul-
sions) and photo visual (same but using a yellow filter and yellow sensitive
emulsions) magnitudes is known as colour index (CI) of a star. In U B V
photometry the widely used colours are B − V and U −B. A hot star emits
more in blue or violet than yellow or red. So B magnitude of a hot star
is brighter (numerically smaller number) than its V magnitude (numerically
larger number). So for a hot star B − V is negative. Similarly it is posi-
tive for a cool star. When light from a star passes through atmosphere blue
light is more scattered than red. So the star appears redder. This is known
as “reddening”. It can be measured numerically comparing a star of same
spectral class if the spectral class of the star is known and CI is measured.
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Figure 1.7 Parallax distance relation

1.3.4 Stellar Parallax and Stellar Distances

Parallax is a virtual shift of the original position of an object, due to the view
along different lines of sight. Stellar parallax is caused by different orbital
positions of earth, i.e. the nearby star under consideration appears to move
with respect to the distant stars. Figure 1.7 shows that E and E

′
are the two

positions of earth. When earth is at E, to an observer at earth, the position
of a nearby star at O appears to shift to the position A, relative to a distant,
hence, apparently fixed star. Similarly at E

′
, the shift occurs at B. Since the

observer observes a two-dimensional picture of the sky, the places AB and
A

′
B

′
appear to coincide. So if the total angular shift is divided by 2 then,

parallax p is found for the star, actually at O. From the triangle E(Sun)O
we have

prad = a
d , where d is the distance of the star and a is the distance of earth

from Sun.
But 1rad = (180×60×60

π )
′′

of arcseconds

i.e. 1rad � 206265 of arcseconds

Therefore, p
′′

206265 = a
d since the parallax is expressed in arcseconds. This

finally gives the distance d of the nearby star as

d =
206265a

p′′ (1.22)

Now, when p
′′

= 1
′′
, d = 206265a = 3.26 lightyear = 3× 1018 cm.

This distance is used as the unit of distance in astronomy and is called 1
“parsec”.
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a

b

Figure 1.8 (a) Doppler Shift and Stellar motions. (b) Proper motion of
star

The above method of trigonometric parallax is applicable for stars which are
astronomically nearer, i.e. approximately within 50 parsec (abbreviated as pc
here after). This distance corresponds to 0

′′
.02. Measurement of still smaller

parallaxes introduces various kinds of errors and thus is not appropriate. For
larger distances other methods such as “Moving Cluster Method” or various
objects, e.g. Cepheid Variables, Supernovae, RR Lyrae Variables, W Virginis
stars, brightest red giants in globular star clusters, Mira Variables are used
as distance indicators.
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1.3.5 Doppler Shift and Stellar Motions

Suppose an observer is at rest and a source emitting light is moving away
from the observer at a speed vr 	 c.

Let ν0 be the frequency of light from the source. Then it sends waves at
regular interval T = 1

ν0
. Let x be the distance between the source and the

observer, at t = 0 (Fig. 1.8a). The next wave pulse is emitted after time T
and the source moves a distance vrT away from the observer, within time T .
The first pulse takes time x

c to reach the observer and the second pulse takes
x+vrT
c time to reach the observer.

So the first pulse reaches the observer at time, t1 = x
c and second pulse

reaches at time t2 = T + x+vrT
c . The time interval detected by the observer

between two pulses is

T ′ = t2 − t1 = T +
x+ vrT

c
− x

c
=
vr + c

c
T

So, apparent frequency experienced by the observer is

ν′ =
1

T ′ =
c

vr + c

1

T
=

c

vr + c
ν0

or,
ν0
ν′

=
vr
c

+ 1

or,
λ′

λ0
= 1 +

vr
c

(since c = ν0λ0 = ν′λ′)

or,
λ′ − λ0
λ0

=
vr
c

or,
�λ0
λ0

=
vr
c

or, vr = cz (1.23)

where z = �λ0

λ0
is called the Doppler redshift (Fig. 1.8a) as λ > λ0. So

when a heavenly body is moving away from us then the wavelength emitted
from that body gets red shifted. So if z can be measured, the velocity along
the line of sight, also called radial velocity of that object can be measured.
Redshift of light also takes place due to expansion of the Universe (known
as cosmological redshift) or due to deflection of light near a compact object
(known as gravitational redshift) but these are beyond our present discussion.

In the above part we have discussed about the radial velocities of heavenly
bodies and it is along the line of sight of an observer. There is another
kind of motion of celestial objects which is perpendicular to the line of sight
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direction. This is called transverse component of velocity, vt. Then the space
velocity v of the object is measured as

v2 = vr
2 + vt

2

If μ be the corresponding angular shift at the position of the observer O (say)
in 1 year (Fig. 1.8b), then μ is called the proper motion of the object.

If the star be at a distance d from the observer,

μ
′′

206265
=
nvt
d

where n is the number of seconds in a year.

Then using (1.21) for d,

vt =
μ

′′

206265
.
1

n
.
206265

p′′ a

Using
a = 1.49× 108 km and n = 3.16× 107 s

vt = 4.74
μ

′′

p′′ km s−1 (1.24)

Peculiar Motion

In all velocity measurements, sun is considered as the origin with respect
to which the velocities are defined. But sun, as a star also moves. So one
should consider the sun’s motion also and hence there should be a suitable
reference frame with respect to which stellar motions could be defined. The
hypothetical origin of this reference system is called “Local Standard of Rest
(LSR)”.

It is defined as the origin of a reference system such that the motion of all
stars within a small neighbourhood of Sun, say, 50–100parsec, have the mean
velocity zero. So, LSR with respect to a group of stars can be considered as
the centroid of the system. The motion of an individual star with respect to
LSR is called its “Peculiar Velocity”.

1.4 Spectral Characteristics of Stars

In eighteenth century (1787–1826), the great German physicist, Joseph Fraun-
hofer, first observed dark line (often called as absorption lines) superimposed
on a continuous background in the spectrum of Sun. The origin of such spec-
tra was an intriguing problem among the astrophysicists unless the structure
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of atom was explored gradually. In 1885, J.J. Balmer fitted a simple empirical
formula to the spectrum of hydrogen atom as

λ = B
n2

n2 − 4

where B is a constant (viz. 3645.6) and n is an integer taking the values 3,
4, 5, . . . etc. The series of different wavelengths for successive values of n are
known as Balmer series. In 1890, J.R. Rydberg modified the formula and
replaced λ by its corresponding frequency ν by

ν = RH

[
1

22
− 1

n2

]

, n = 3, 4, . . . etc.

where RH (viz. 109,677.58cm−1) is known as Rydberg constant. Though
with the above formulae the wavelengths or frequency of hydrogen atom
can be computed for other lines in its spectra still its origin and also the
complexities in the spectra of other elements remain a puzzle for a long time.
Finally in 1901, Planck introduced his quantum hypothesis and in 1913 Neils
Bohr devised the structure of hydrogen atom incorporating Planck’s quantum
hypothesis and the concept of nucleus in an otherwise empty atom, as a result
of Rutherford’s famous experiment of scattering of α-particles by a thin gold
foil, held in 1911. The various postulates of his theory are as follows:

(1) Electron revolves around the nucleus of hydrogen atom and during
the revolution they do not radiate electromagnetic radiation accord-
ing to Maxwell’s theory, even it is accelerated.

(2) Electrons move along certain stationary orbits, defined by their an-
gular momentum,

mevr = n(h/2π), n = 1, 2, 3 . . . etc.

where me is the mass of the electron, v is its velocity at a distance
r from the centre of the atom and h is the Planck’s constant. n is
called the principal quantum number.

(3) When transition of electrons occurs between any two energy levels
of the electron then only radiation is emitted/absorbed following the
law,

Ei − Ef = hν(emission)(Ei > Ef )

Ef − Ei = hν(absorption)(Ei < Ef )

where Ei, Ef are the initial and final energy values, and ν is the frequency of
the corresponding radiation (Fig. 1.9). When we model the stellar bodies we
assume it as a BB having a spherical structure. So when light emitted from
the surface of a star passes through a cold diffuse gas, under low pressure,
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then the atoms present in the gas absorb some wavelengths of the incoming
radiation of the actual source, resulting in an absorption feature in the spec-
trum (Fig. 1.10). An observer in front of these two sources, see, what we call
“absorption spectra”.

But when an observer is at a position which only includes the diffuse cloud
but no radiative BB source, then the source now is a glowing gas with some
selective wavelengths of radiation consisting of discrete bright lines or emis-
sion lines and the observer sees what is called “emission spectra”. When the
observer is in front of a BB emitter without any intervening diffuse cloud,
he/she sees what is called “continuous” spectra.

1.5 Spectral Features and Saha’s Ionization Theory

After the discovery of Fraunhofer lines, astrophysicists became interested to
study the spectral characteristics of other stars. It is found that though the
spectrum of other stars sustains the general characteristics of Fraunhofer lines

Figure 1.9 Energy levels of hydrogen atom
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Figure 1.10 Different types of spectrum
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but (1) the strengths of the lines vary from star to star on the basis of different
elements and (2) strength of any particular element varies continuously in
the spectra of different stars, e.g. lines of He I and He II (i.e. He+) are
the principal features for some spectra or these lines are completely absent
in others, where lines of neutral or ionized metals become dominant. At
that time the atomic structure was not known. So various interpretations
were suggested by the scientists. Thus stars showing prominent He lines
were suggested to be composed of He. Hence the reason for various spectral
features were due to compositional differences in different stars. Another
group suggested that the differences were the manifestation of the different
stages of stellar evolution. But is was Sir Norman Locker’s excellence who
for the first time on the basis of laboratory experiment described the spectral
features as a temperature sequence. But with the poor knowledge of atomic
structure the quantitative interpretation of spectral features was not become
very successful. Finally with the advent of atomic theory by Planck (1901),
Rutherford (1911) and Bohr (1913), Saha (1920) was able to successfully
explain the Fraunhofer lines through his famous ionization theory known as
Saha’s ionization equation.

Maxwell Distribution

According to Maxwell’s hypothesis moving particles of a gas having velocities
in the range vi and vi + dvi follow a Gaussian distribution,

n(vi)dvi = n
( m

2πkT

)1/2
exp

(−mvi2
2kT

)

dvi

where n(vi)dvi is the number of particles in the velocity range vi and vi+dvi
and n is the total number of particles and m is the mass of a gas particle.

For a spherical shell within radii v, and v + dv the volume is 4πv2dv. Then
number of particles in the shell having velocity range v and v + dv is

n(v)dv = n
( m

2πkT

)3/2
exp

(−mv2
2kT

)

4πv2dv (1.25)

Ideal Gas Laws

Consider a cube of gas of unit length consisting of n particles. Then the
average number of particles towards any arbitrary face is n

6 . If vrms is the
root mean square velocity of the particles, then the number of particles hitting
any face per unit time is n

6 vrms. After striking a face, a gas particle of mass
m is reflected and the reflection takes place in the opposite direction without
loss of energy for an ideal gas. So the change in momentum of the gas particle
is 2mvrms. So, pressure on the face of the cube = Force/unit area is nkT.
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Problem 1 Show that the pressure in a cube of perfect gas having vrms = 3kT
m

is nkT.

P = Rate of change of momentum

= (2mvrms)(
n

6
vrms)

=
1

3
mnv2rms

=
1

3
mn(

3kT

m
)

= nkT

This is the equation of state of a perfect gas.

Boltzmann Law for Excited State for Electron Gas

Let (pex, pey, pez) be the momentum of an electron at a point (x, y, z) follow-
ing quantum mechanical laws. Then, dxdydzdpexdpeydez = volume element
in phase space. The minimum volume of a cell in phase space = h3, h being
the Planck’s constant.

Then, number of cells in the volume element = d3rd3pe
h3 . Since the electrons

have two states of spin up and spin down, the total numbers of electron states
in the cells

dg(pe) =
2d3rd3pe

h3
=

2dvd3pe
h3

If the electron density in three-dimensional space is ne, then the volume per
electron is dv = 1

ne
and the volume in the momenta space (pe, pe + dpe) is

d3pe = 4πpe
2dpe, i.e.

dg(pe) =
8πpe

2dpe
neh3

(1.26)

Then from (1.25)

n(v)dv = n
( m

2πkT

)3/2
exp

(−mv2
2kT

)

4πv2dv

= n

(
h3

2(2πmkT )3/2
.
8πv2

h3
.m3exp(−mv2/2kT )dv

)

= n

(
h3

2(2πmkT )3/2

)

g(v) exp(−Ev/kT )dv (1.27)

where

g(v) = m3h(v) =
8πm3v2

h3
and Ev =

1

2
mv2
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So, for any two states of gas with the velocity ranges (v, v + dv) and
(v′, v′ + dv′),

n(v)

n(v′)
=

g(v)

g(v′)
exp[−(Ev − Ev′)/kT ]

Let s, o be the excited state and ground state of the gas particles, then

ns
no

=
gs
go

exp[−(Es − Eo)/kT ] =
gs
go

exp(−ψs/kT ) (1.28)

Let n be the total number of atoms in all states s, then

n =
∞∑

s=0

ns

so, go
n

no
= go

∞∑

s=0

(
ns
no

)

= go

∞∑

s=0

(
gs
go

)

e−ψs/kT

= go + g1e
−ψ1/kT + g2e

ψ2/kT + . . .

= up(T )

Here up(T ) is called the partition function. So the Boltzmann formula now
takes the form following (1.28)

ns
n

=
gs
up
e−ψs/kT (1.29)

Now an atom is at r th stage of ionization means it has stripped off r electrons.
If χr be the ionization potential at (r + 1)th stage, the energy required by

an electron is χr + pe
2

2me
where pe and me are the momentum and mass of the

electron and pe
2

2me
is its K.E.

Let nr and dnr+1 be the number densities of electrons in two ionization states
r and (r + 1) and the electron at (r + 1) has the momentum in (pe, pe+dpe).
Let the statistical weight of the free electron be dg(pe). Then,

dnr+1

nr
=
gr+1dg(pe)

gr
exp

(

−χr + pe
2/2me

kT

)

(1.30)

Then using (1.26)

dnr+1

nr
=
gr+1

gr

8πpe
2dpe

neh3
exp

(

−χr + pe
2/(2me)

kT

)
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Summing over all momenta pe

nr+1

nr
=
gr+1

gr

8π

neh3
e−χr/kT

∫ ∞

0

pe
2 exp

( −pe2
2mekT

)

dpe

Now, for y > 0,
∫∞
0 x2e−y

2x2

dx =
√
π

4y3

So, using the above result,

nr+1

nr
.ne =

gr+1

gr
.2.

(2πmekT )3/2

h3
e−χr/kT (1.31)

Here, nr+1, nr indicate ground states of excitation. More generally if nr,k is
the number density of atoms in the r the stage of ionization and k the stage
of excitation and gr,k is its corresponding statistical weight then, proceeding
as before,

nr,s
nr,0

=
gr,s
gr,0

e−ψr,s/kT , nr =
∞∑

s=0

nr,s

and

gr,0
nr,0

nr = gr,0

∞∑

s=0

nr,s
nr,0

= gr,0 + gr,1e
−ψr,1/kT + . . . = ur(T )

Hence,

nr = ur
nr,0
gr,0

and
nr+1 = ur+1

nr+1,0

gr+1,0

so,
nr+1

nr
=

ur+1

ur

nr+1,0gr,0
nr,0gr+1,0

=
ur+1

ur

1

ne

2(2πmekT )3/2

h3
e−χr/kT (using (1.31))

i.e.
nr+1

nr
ne =

ur+1

ur
2

(2πmekT )3/2

h3
e−χr/kT

Since,
Pe = nekT

nr+1

nr
Pe =

ur+1

ur
2

(2πme)
3/2

h3
e−χr/kT (kT )5/2
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i.e. ln
nr+1

nr
=
−5040.4

T
χr + 2.5lnT + ln

(
2ur+1

ur

)

− 0.48− lnPe (1.32)

The above equation is the well-known generalized from of Saha’s ionization
equation.

Observations and Interpretation

It is clear from Eq. (1.32) that degree of ionization is inversely proportional
to the electron pressure (Pe) and it is same for all elements. On the other
hand degree of ionization increases with temperature T but it is not related
to temperature T in the same way as with Pe as T is locked with ionization
potential χr which is different for different element. If temperature remains
constant, ionization will be greater for smaller χr and vice versa. Now in
giants and supergiants Pe is several order lower than in dwarfs. So atoms with
smaller χr will have higher degree of ionization in giants than in dwarfs and
vice versa. Thus neutral metallic lines Ca I (χr = 6.09 eV), Sr I (χr = 5.67 eV)
are stronger in dwarfs and ionized metallic lines Ca II (χr = 11.82 eV), Sr II
(χr = 1,098 eV) are stronger in the spectra of giants. As degree of ionization
increases with temperature and ionization potential of hydrogen atom is quite
high, viz. 10.15 eV so in the atmosphere of cool stars a small number of
H atoms are excited. So Balmer series of lines are weak in the spectra of
cool stars. In the spectra of stars having comparatively higher temperature,
these lines are available but in the spectra of hottest stars these lines again
disappear as H atoms are ionized. So in the spectra of hottest stars ionized
line of H and excited lines of He are available as He atom has the highest
i.p (viz. 24.54 eV).

Hence it is clear from the above discussion that the spectra of different stars
are mainly a temperature sequence combined with the property of ionization
potential of various elements and the density of the atmosphere manifested
by electron pressure. These features can be quantitatively explained with the
help of Saha’s Ionization Theory.

1.6 Celestial Co-ordinate Systems

For studying various astronomical objects we have introduced various co-
ordinate systems. If at any point of the earth a straight line is drawn through
an observer, it will meet the celestial sphere (the spherical dome of sky) at
two points, Z, Z

′
(Fig. 1.11), called “Zenith” and “Nadir”. The circular

plane through the observer and perpendicular to this line cuts the sphere
along a great circle, called “horizon” (viz. NS). Similarly if a line is drawn
through the observer parallel to earth’s rotational axis, then this line will
intersect the sphere at two points, called north celestial pole (P ) and south
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celestial pole (P ′) and the corresponding plane perpendicular to this line
cuts the sphere along a great circle, called the equator (viz. QR). Due to
annual motion of Earth around Sun, the Sun appears to move along a great
circle, called “the ecliptic” and this intersects the equator and meridian (the
circle along which plane of the paper cuts the celestial sphere) at four points,
“First point of Aries” (γ, at 21st March), Vernal Equinox (at 22nd June),
“First point of Libra” (Ω, at 23rd September) and Autumnal Equinox (22nd
December). The shape of our Galaxy also provides co-ordinate systems.
The central plane through the Galactic disc cuts the sphere along galactic
equator. A line perpendicular to this plane cuts the sphere at two points,
north galactic pole (NGP) and south galactic pole (SGP). Super galactic
plane, is the plane of Local Supergalaxy. Corresponding reference points for
this plane are north supergalactic pole (NSP) and south supergalactic pole
(SSP). Then the various co-ordinate systems are defined as:

Figure 1.11 Various co-ordinate systems used in astronomy

1. Azimuth–Altitude: This is the co-ordinate systems with respect to
Z−Z ′

and horizon NWSE. The co-ordinates of a star σ are azimuth
and altitudes are the angular distances corresponding to the arcs,NX
and σX made at the observer O.

2. Right ascension (α)–declination (δ): This is the co-ordinate systems
with respect to P − P ′ and celestial equator. The co-ordinates of a
star or any object δ are (α, δ), which are the angular distances by the
arcs γM(α) and σM(δ) of great circles made at O.
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3. Celestial Latitude (b) and Longitude (l): This is the co-ordinate
system with respect to E and E′ and ecliptic. The co-ordinates of a
star σ or any object are the angular distances made by the arcs γR
(l) and σR (b) of great circles made at O.

4. Galactic Latitude and Longitude: This is the co-ordinate system with
respect to the galactic equator and NGP and SGP. The co-ordinates
of any star δ or object are the angular distances of the arcs GL and
σL of great circles (G being the Galactic centre). The equatorial co-
ordinates of NGP are α = 12 h 49min and δ = 27.4◦ (α is measured in
hour angle). The angle between celestial equator and galactic equator
is roughly 63.5◦.

5. Super Galactic Latitude (b) and Longitude (l): This is the co-ordinate
system with respect to NSP, SSP and supergalactic equator. The co-
ordinates of any star σ or any objects are the angular distances of
the arcs G′L and σL of great circles. The NSP has the galactic co-
ordinates l = 47.37◦ and b = 6.32◦ and zero point (origin) (G’) in the
supergalactic plane has the co-ordinates (l = 137.37◦ b = 0◦).

Co-ordinate Transformation

Following Groningen Image Processing System (home page: Gipsy) let the
co-ordinates (α, β) will have to be changed to (α′, β′), where α is the longitude
and β is the latitude (say). The unit vector along the direction (α, β) has
co-ordinates

r1 = cosα cosβ

r2 = sinα cosβ

r3 = sinβ

Then, if �s = T�r where �s = (s1, s2, s3), then

α′ = tan−1(s2/s1)

β′ = sin−1(s3)

α
′

are chosen in appropriate quadrant.
The matrices T for useful co-ordinate transformations are (Cartesy: skyco.
c, Gipsy source code) given in Appendix at the end of this chapter.

Projected Separation Between Two Stars in the Sky

If two points are very close together on the sky, within a degree or less then
the approximate angular separation between them is given by

d = {(α2 − α1)2 cos2
(
δ1 + δ2

2

)

+ (δ2 − δ1)2}1/2
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where (α1, δ1)m and (α2, δ2) are the RA and DEC of the two celestial objects
and they are measured in degrees. Then the distance is the projected distance
measured in degrees.

For two objects separated by arbitrary distance the general formula is

cos γ= cos(90− δ1) cos(90− δ2) + sin(90− δ1) sin(90− δ2) cos(α1 − α2).

where γ is the arc length measured in degrees.

1.7 Hertzsprung–Russel Diagram

In early era of twentieth century (1913) E. Hertsprung of Denmark and H.N.
Russel of USA independently found that spectral characteristics or colours
of various stars are closely associated with their luminosity or absolute mag-
nitudes and can be classified into groups O, B, A, F, G, K, M following a
temperature sequence of approximately 40,000 to 2,400 K. Each spectral class
is divided into ten subclasses, e.g. O1, O2, . . . , O10, B1, B2 . . . etc. The plot
of absolute magnitude versus spectral classes of the stars show some definite
trends (Fig. 1.12).

(1) Almost 90 % of the stars lie along a narrow band extending from
left top to right bottom of the diagram known as the “main se-
quence” (MS, viz. branch V). The extent of absolute magnitude is
from −7/−8 to +15. Sun belongs to this branch having the position
(+4.8, G2) in the diagram.

(2) A short branch upwards the MS extending from F to M and −1.0 to
+1.0, in absolute magnitude is known as “giants” (viz. branch III).

(3) Above the “giants” lies the group of stars extending up to a magni-
tude −3.0. This is called “bright giants” (viz. branch II).

(4) At the top of the diagram there are stars belonging to highly luminous
absolute magnitude range−3.0 to −8.0, known as “super giants” (viz.
Ia, Ib).

(5) At the lower left, far below the MS, there is a group of very faint stars
belonging to middle B to G with absolute magnitude varying from
+10.0 to +15.0. This group is called “white dwarfs” (viz. branch
VII).

(6) Most of the variable stars, e.g. Cepheids, RR Lyrae, stars, occupy a
large region belonging to giants and supergiants.

(7) Between MS and “white dwarfs” branches, there lies a group of stars
known as subdwarfs (viz. branch VI).

(8) There are two other groups of dwarf stars very recently classified
(1993) as L and T dwarfs. L dwarfs are objects having spectrum in
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the range 6,400–9,000Å and mainly show neutral alkali lines, e.g.
NaI, KI, RbI, CsI, LiI, oxide bands (TiO, VO), hydride bands (CrH,
FeH, CaOH), etc. T dwarfs mainly contain strong H2O, lines, neutral
alkalines but no hydrides. For late T, H2O, NaI and KI have highest
strength. About 403 L dwarfs and 62 T dwarfs are so far discov-
ered. With the advent of theories of stellar evolution it is found that
different trends in the H–R diagram are nothing but manifestations
of different phases of stellar evolution from its birth towards death,
which are described in the later part of this chapter.

1.8 Stellar Atmosphere

Figure 1.12 The Hertzsprung–Russel diagram (H–R)

The layers of stars producing various kinds of absorption and emission fea-
tures in the corresponding spectra constitute the stellar atmosphere. The
surface temperatures of stars generally vary from 3,000 to 40,000K. At this
high temperature the materials are more or less in gaseous form. As the
stars continuously emit radiation, it is expected there is a central engine as
the source of energy. So a study of the surface characteristics, together with
various modelling helps us to delineate a quantitative picture of physical and
chemical conditions inside stellar atmosphere.
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For this the basic assumptions are

(1) The atmosphere is considered as stratified plane parallel layers as the
atmosphere is very thin compared to the radii of stars.

(2) Since the atmosphere is more or less gaseous, convection or radiation
is the only heat transfer mechanism, operative therein.

(3) At the surface of star the flux of radiation F = σTe
4 where Te is

the surface temperature and σ is the Stefan–Boltzmann constant.
But below the surface, as the temperature increases thermodynamic
equilibrium is not maintained but at each depth the flux is isotropic,
i.e. we assume thermodynamic equilibrium at local temperature T(z)
and call it as local thermodynamic equilibrium (LTE).

(4) Since the structure of star is more or less spherical, we assume a spher-
ical symmetry and hydrostatic equilibrium (equilibrium between grav-
itational and pressure forces).

Radiative Transport Equation

Suppose a beam of light of intensity Iν at frequency ν is passing through a
medium of length ds and density ρ, then it suffers deeming due to absorption
of a part of it by the material in the medium as well as scattering in other
directions. So if κν and σν are the absorption and scattering coefficients,
then the extinction is −(κν +σν)ρIνds. Again when light is emitted then the
observer at the previous position observes an increase in the intensity due
to emission and scattering of light along the same direction. So if φ(I ′, I)
be the fraction of energy scattered from I’ to I (observer’s direction), then∫
φ(I ′, I)dw = 1 and φ(I ′, I) = 1

4π for isotropic scattering. So if jν is the
emission coefficient, then increase in the intensity due to emission is equal to
jνρds+ σνρds

∫
Iνϕ(I, I ′)dw. So the equation of transfer becomes

Diminution of intensity = extinction + emission

i.e. dIν = −(κν + σν)ρIνds+ jνρds+ σνds

∫
Iν(I ′)φ(I ′, I)dw

From Fig. 1.13, if we take z axis along the normal and θ is the inclination
between the normal direction and observer’s direction, the ds = −dz sec θ.
Putting, μ = cos θ the above equation reduces to

μ
dIν
dτν

= Iν − Sν
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Figure 1.13 Spherical surface of a star viewed as a circular disc by the
observer

where τν is defined to be the optical depth as

dτν = (κν + σν)ρdz and Sν =
jν + σν

∫
Iν(I ′)φ(I ′, I)dω

kν + σν

is called the source function.

For LTE, jν = kνIν = kνBν and for isotropic scattering,

σν

∫
Iν(I ′)φ(I ′, I)dω =

σν
4π

∫
Iν(I ′)dω = σνJν

where Jν is the mean intensity.

Then,

Sν =
κνBν + σνJν
κν + σν

For hot star, σν = 0, so, Sν = Bν and the transfer equation finally reduces
to

μ
dIν
dτν

= Iν −Bν (1.33)
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Solution of Transfer Equation in Grey Atmosphere

In LTE (1.33) reduces to (dIν ≈ dBν),

Iν = Bν + μ
dBν
dτν

.

Then the flux of radiation at frequency ν is

Fν(τν) = 2πBν

∫ +1

−1

μdμ+ 2π
dBν
dτν

∫ 1

−1

μ2dμ (following Eq. (1.5))

i.e. Fν(τν) =
4π

3

dBν
dτν

=
4π

3κνρ

dBν
dT

dT

dz

Since dτν = (κν + σν)ρdz = κνρdz, σν = 0 for hot star.

So if 1
κ
dB
dT =

∫∞
0

1
κν

dBν

dT dν

where κ is Rosseland mean absorption coefficient, then total flux,

F =

∫ ∞

0

Fνdν =
4π

3ρ

dT

dz

∫ ∞

0

1

κν

dBν
dT

dν

and we have

F =
4π

3ρκ

dB

dT

dT

dz
=

4π

3ρκ

dB

dz

where dτ = ρκdz, τ is the mean optical depth.

So,
4π

3

dB

dτ
= F = Constant,

or, B =
3F

4π
(τ + t)

t being the constant of integration.

Solving (1.33) as a linear equation,

Iν =

∫ ∞

τν

Bνe
−(τν

′−τν)/μ dτν
′

μ

So, the intensity at the surface of a star (τ = 0, Bν = B, for grey atmosphere)
we have

I(τν = 0) =

∫ ∞

0

3F

4π
(τν

′ + t)e−τν
′/μ dτ

′
ν

μ

=
3F

4π
(μ+ t)
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So

F = 2π

∫ 1

0

I(τν = 0)μdμ =
3F

2

(
t

2
+

1

3

)

which gives t = 2
3 , so, B = 3F

4π (τ + 2
3 ).

At the surface, F = σTe
4 and πB = σT 4.

So, substituting B and F in the above relation,

T 4 =
3

4
Te

4

(

τ +
2

3

)

. (1.34)

It is called the Milne–Eddington solution for grey atmosphere.

Convection and Radiation in Stellar Atmosphere

Let us consider a bubble of the atmosphere of a star becomes overheated.
Let T

′
,P

′
, ρ

′
and Ts, Ps, ρs be the temperature, pressure and density of the

volume element and surrounding atmosphere, respectively. Since the bubble
is lighter it starts moving and after travelling a distance −dz the temperature
of the bubble is T ′ − (dT

′
dz )dz and that of surrounding is Ts − (dTs

dz )dz.

For convection to continue,

T ′ −
(
dT ′

dz

)

dz > Ts −
(
dTs
dz

)

dz.

We assume P = P’ (otherwise the bubble will burst) and adiabatic condition
within the bubble. Then, dP = dP ′ = dP

dz dz and we have

1

T

dTs
dPs

>
1

T ′
dT ′

dP ′

i.e.�s =

(
d logTs
d logPs

)

>

(
d log T ′

d logP ′

)

= �ad

If some part of the flux is carried by convection, then

�ad < �rad
Since only a part of the total flux is left for radiative transfer, we have

�ad < �rad
This is called Schwarzchild criterion for convection.
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Now, from (1.34), ( 1
T
dT
dτ )rad = 3

16
Te

4

T 4

For hydrostatic equilibrium,

dP = gρdz and dτ = κρdz

so,
dP

dτ
=
g

κ
i.e. dτ =

κ

g
dP

So,

�rad =

(
d logT

d logP

)

=
3κPTe

4

16gT 4

Now, F = σTe
4, σ = ac

4 where

g =
GM

R2
, L = 4πR2F

So,

�rad =
3κPL

16πacGMT 4

For adiabatic expansion, PV γ = Const and PV = RT where R = Cp − Cv,
then,

�ad =

(
d logT

d logP

)

ad

=
γ − 1

γ

Basic Equations of Stellar Atmosphere

The basic equations governing the stellar atmospheres are (1) the equation of
continuity, (2) the equation of hydrostatic equilibrium, (3) equation of ther-
mal equilibrium and (4) equation of energy transfer through either convection
or radiation.

Equation of Continuity

Let dM(r) present the mass of a star within a spherical shell radius r and r
+ dr and ρ(r) be the density then,

dM(r)

dr
= 4πr2ρ(r) (1.35)



1.8 Stellar Atmosphere 33

Equation of Hydrostatic Equilibrium

Let P(r + dr) and P(r) be the pressures exerted by the gaseous material
over the two faces of an infinitesimal cylinder of thickness dr then the net
pressure force along the increasing direction of r is (P (r)− P (r+ dr)) (since
the pressures on the curved surfaces in the upward and downward directions
balance each other). If this net pressure force balances the gravitational pull
of the material in the shell,

P (r)− P (r + dr) =
GM(r)ρ(r)

r2

i.e.
dP (r)

dr
= −GM(r)ρ(r)

r2
(1.36)

Equation of Thermal Equilibrium

If dL(r) is the change in the luminosity within the shell and ∈ is the energy
produced in the shell per unit time, then

dL(r) = 4πr2ρ(r). ∈ (r)dr

i.e.
dL(r)

dr
= 4πr2ρ(r) ∈ (r) (1.37)

Equation of Energy Transfer

For radiative equilibrium,

�rad =

(
d log T

d logP

)

rad

=
3κPL

16πacGMT 4

i.e.

(
dT

dP

)

rad

=
3κL

16πacGMT 3

Now, multiplying this relation by (1.36)

(
dT

dr

)

rad

= −3κ(r)L(r)ρ(r)

16πacr2T 3(r)
(1.38)

Similarly for convective equilibrium

(
dT

dr

)

ad

= −γ − 1

γ

T (r)

P (r)

GM(r)ρ(r)

r2
(1.39)
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Various Models of Stellar Structure

Polytropic Models

In the above discussion there are three unknowns P, ρ and T and two in-
dependent equations, viz. equation of continuity and hydrostatic equation.
So we are in need of a third equation for studying stellar structure which is
served by the equation of state.

Initially when the energy generation mechanism and mode of energy trans-
port were not very well known the stars were expected to be in convective
equilibrium and hence an adiabatic equation of state is used to study stellar
atmosphere. That is, if P and ρ are the pressure and density inside a star,
then P ∝ ργ where γ =

Cp

Cv
. Cp, Cv being the specific heats at constant pres-

sure and volume, respectively, and γ is taken as γ = 1 + 1
n . n is called the

polytropic index and it describes various conditions of the atmosphere, e.g.
when n = 0, ρ becomes constant, i.e. the atmosphere is of uniform density,
when n →∝ it leads P ∝ ρ, i.e. the atmosphere is of constant temperature
(iso-thermal). Later it will be seen that when n = 1.5, it corresponds an atmo-
sphere in convective equilibrium. If one substitutes ρ = ρcy

n+1, P = Pcy
n+1

where Pc and ρc are the central pressure and density of the star, respectively,
then from Eqs. (1.35) and (1.36) introducing new variable y we have

1

x2
d

dx

{

x2
dy

dx

}

+ yn = 0 (1.40)

where r = αx, α =
√
Pc(n+ 1)/(4πGρ2c).

It is interesting to note that the above differential equation, known as Lane–
Emden equation, has analytic solutions for n = 0, 1, 5, respectively, only and
for other values of n, the solution is to be studied numerically.

The boundary conditions for this second order differential equation are at
x = 0 (at the centre of the star), y = 1 (since at the centre ρ = ρc so yn = 1
giving y = 1) and seek a solution where one expects dy

dx = 0 as well as for
many cases, e.g. for a uniform density sphere.

Prolem 2 Solve Lane–Emden equation for n = 0.

The corresponding form of Lane–Emden equation is (viz. Eq. (1.40))

1

x2
d

dx

{

x2
dy

dx

}

+ 1 = 0

i.e. x2
dy

dx
= −x

3

3
+A (constant)
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At x = 0, dy
dx = 0 leads to zero value for the constant and

dy

dx
= −x

3

leading, y =
−x2

6
+B (constant)

Since at x = 0, y = 1 this leads to B = 1, i.e. y = 1− x2

6 .

Problem 3 Solve Lane–Emden equation for n = 1.

The corresponding form of Lane–Emden equation is

d

dx

{

x2
dy

dx

}

+ x2y = 0

Let us substitute, xy = X
i.e. y =

X
x

i.e.
dy

dx
=

xX ′ −X
x2

(

X ′ ≡ dX
dx

)

So, the above equation reduces to

X ′′
+ X = 0

This has a solution, X = A cosx+B sinx

i.e. y =
A cosx

x
+
B sinx

x

Since, y = 1 as x → 0. So, A = 0, B = 1, since,
Lt

x→ 0, cosx
x = 0 and

Lt
x→ 0, sin x

x = 1 so the solution is y = sin x
x , the second boundary condition

is explicitly satisfied after L
′

Hospital’s rule.

Problem 4 Show that for n = 1, the mass of a star is proportional to the
central density.

Now for n=1 the equation of state takes the form, P = Kρ2, K is a constant.
Hence we can write Pc = Kρ2c for central pressure and central density. Let
M and R be the mass and radius of a star. Now since, r = αx,
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R = αx1 = απ for n=1 (since, x = x1, is at the boundary, so y = 0 there

which leads to sinx
x = 0, i.e. x1 = π) . So, R2 = α2π2 = Pc(n+1).π2

4πGρ2c
= Kπ

2G .

Thus for n=1 the radius of a star is independent of the central density.

Now, M = [− 3
x
dy
dx ]x1ρc

4
3πR

3.

Then it can be shown that for n = 1, M = (2πK
3

G3 )1/2.ρc, i.e. for n = 1 mass
of a star is proportional to the central density.

Problem 5 Show that for n = 5, the radius of a star is infinite but the mass
is finite.

The corresponding form of Lane–Emden equation is

1

x

d

dx

{

x2
dy

dx

}

+ y5 = 0

Substituting x = 1
z = e−t, y = ( z2 )1/2u = (12e

t)1/2u the above equation

reduces to d2u
dt2 = 1

4u(1− z4)

which has the solution, u = ±
[

12Fe−2t

(1 + Fe−2t)2

]1/4
, F is constant

i.e. y =

{
3F

(1 + Fx2)2

}1/4

As, at x = 0, y = 1, it gives F = 1/3.

So, y = (1 + 1
3x

2)−1/2

Now for y = 0, x →∞ i.e. for n = 5 the radius of a star is infinite. Also, for

n = 5, Pc = Kρ
6/5
c . Then it can be shown that (similarly as for n = 1),

M = 18
√
2K3/2

√
4π G3/2ρ

1/5
c

, i.e. the mass of the star is finite.

Density and Pressure Profile Inside Star

If M, R be the mass and radius of a star, then integrating (1.35) with respect
to r

M = 4π

∫ R

0

r2ρdr = 4πα3

∫ x1

0

ρcy
nx2dx.
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where x = x1 at y = 0, i.e. P = 0 which represents the boundary surface of
the star. Thus,

M = −4πα3ρc

∫ x1

0

d

dx

{

x2
dy

dx

}

dx. (using Eq. (1.40))

= 4πα3ρc

(

−x2 dy
dx

)

x=x1=R/α

=
4πR3ρc

3

(

− 3

x

dy

dx

)

x=x1

If ρ̄ be the mean density of the star, then

M =
4

3
πR3ρ̄

Then,
M

4
3πR

3
= ρ̄ = ρc

(

− 3

x

dy

dx

)

x=x1

i.e. ρc =
3M

4πR3
/

(

− 3

x

dy

dx

)

x=x1

Now, at r = R, x = x1. So, from the definition of α,

Pc(n+ 1)

4πGρc2
= α2 =

R2

x12

Using x1 in terms of the other,

Pc =
GM2

R4
/

{

4π(n+ 1)

(
dy

dx

)2

x=x1

}

Substituting Pc in P = Pcy
n+1 and ρ = ρcy

n we can find the pressure and
density profiles as a function of y which is a function of x, hence r for a given
star of mass M and radius R.

Mass Radius Relation in a Polytropic Star

We have assumed in the derivation of Lane–Emden equation,

r = αx, α =
√

Pc(n+1)
4πGρ2c

where Pc = Kρ
1+ 1

n
c

Now, it is found M = 4πα3ρc(−x2 dydx )x=x1
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Then substituting α and Pc,

M = 4π[ (n+1)K
4πG ]

3
2 ρ

(3−n)
2n

c (−x2 dydx )x=x1

Solving for ρc,

ρc = {(M4π )[ 4πG
(n+1)K ]

3
2 [−x21( dydx)x=x1 ]−1} 2n

3−n

Now, R = αx1 = [ (n+1)K
4πG ]

1
2 ρ

(1−n)
2n

c x1

Substituting ρc in the above equation,

R = (4π)
1

n−3 [ (n+1)K
G ]

n
3−n [−x21( dydx)x=x1 ]

n−1
3−nM

1−n
3−n

Hence R ∝M 1−n
3−n

For n = 3
2 , R ∝M− 1

3

Thus for a white dwarf or a fully convective star (as we will see later that
in both cases n = 3

2 ) undergoing mass transfer, stellar radius is inversely
proportional to mass.

Homologous Model

The equations governing stellar structure (viz. Eqs. (1.34)–(1.38)) can be di-
rectly integrated if the sources of energy and the form of opacity within a
star are identified.

The huge amount of energy emitted by a star, e.g. Sun (say) is 4×1033ergs s−1.
This huge energy cannot be supplied by ordinary chemical reaction or the en-
ergy emitted by gravitational contraction. The source should be much intense
than those. So along the line of above speculation, Bethe in 1939, for the
first time suggested thermonuclear reactions. These are known as carbon–
nitrogen cycle or C–N–O cycle. Later George Gamow suggested another
thermonuclear reactions, known as, proton–proton reactions or p–p chain.

C–N–O cycle

C12 +H1 = N13 + γ

N13 = C13 + β+ + ν

C13 +H1 = N14 + γ
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N14 +H1 = O15 + γ

O15 = N15 + β+ + ν

N15 +H1 = O16 = C12 +He4

p–p chain

H1 +H1 = H2 + β+ + ν

H2 +H1 = He
3 + γ

He
3 +He

3 = H4 +H1 +H1

Rates of Thermonuclear Reactions

Let us consider the reaction A + a = B + b where small letters correspond
to the light particles. If σ(a, b) is the cross section for the above reaction
and Na(v)dv be the number of particles per unit volume within the velocity
range v and v + dv, then the number of encounters of these particles with A
particles per second is σ(a, b)NANa(v)vdv. Then the rate of reaction

Rc = NA

∫ ∞

0

σ(a, b)Na(v)vdv

Assuming a Maxwellian velocity distribution form it can be shown that
Rc∞NANaT n where Na is the total number of light particles per unit volume

and n = τ−2
3 where τ = (27B

2

4kT )1/3, B = 4π2

h

√
2μaZAZae

2, ZA, Za being the

charges of A and a and μa = MaMA

Ma+MA
,Ma,MA are atomic weights of a and

A, respectively.

Now, for p–p chain, the first reaction gives ZA = Za = 1, μ = 1
2 , T ∼

12×106, τ = 14.8, n = 4.3. So, Rc∞NANaT 4.3. Now, NA = Na = ( ρXmH
) cm−3

where X is the fraction of H atom in the star, mH is the mass of H atom, ρ is
the density of the star. Then, Rpp = 4 × 10−6ρX2( T

106 )4.3 erg s−1. Similarly
for CNO cycle, for the fourth reaction in CNO cycle, ZA = 7, Za = 1, μa =
14
15 , T ∼ 20 × 106 K, n = 18.5, Na = ρX

mH
, NA = ρACN

13mH
where ACN is the

fraction of cosmic mixture of carbon and nitrogen ∼ 5.3× 10−3X.

Then, RCNO = 11× 10−22ρXACN(T/106)18.5

So,
RCNO
Rpp

= 2.75× 10−16ACN
X

(T/106)14.2

It has been seen that for massive stars RCNO/Rtotal is close to 1, i.e. there
CNO cycle dominates and for less massive stars Rpp/Rtotal is close to 1, i.e.
the reverse situation occurs.
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Stellar Opacity

Opacity is the diminution of stellar radiation as it passes from the centre
towards the envelope of the star. The opacity might happen due to various
processes, e.g. (1) scattering of radiation by electrons in all frequencies (κe),
(2) absorption of photons by electrons (κff ) and (3) absorption of photons
by electrons within an atom or ion which then become free (κbf ). The cor-
responding form of opacity, κ = κ0ρ

αT β where for electron scattering, κ0 =
0.34, α = β = 0, for bound-free scattering κ0 = 1.5 × 1023, α = 1, β = −3.5
and for free-free scattering κ0 = 6.3 × 1022, α = 1, β = −3.5, respectively.
The above relation is known as Kramer’s law of opacity.

Now we concentrate on the nature of transport mechanism operating near the
centre of a star. If we assume that the stellar material consists of monatomic
gas, then γ = 5/3. So �ad = γ−1

γ = 0.4. Hence for convection process we
must have �rad > �ad = 0.4.

It has been shown that�rad = 3κP
16πacGT 4

L
M (viz. Eq. (1.38)). From Eq. (1.37)

near central region, L(r) = 4
3πr

3ρcRc where Rc is the rate of energy genera-

tion and M = 4
3πr

3ρc. Substituting, �rad at the centre = 3κcPcRc

16πacGTc
4 .

Putting κc = κ0ρ
αT−β, Rc = R0ρT

n we can see that �rad at the centre is
greater than 0.4 for massive stars where CNO cycle is operative and vice
versa for less massive stars. So we can at once say that for massive stars
the stellar core is convective, stellar envelope is radiative and CNO
cycle is the dominating source of nuclear energy whereas for less
massive stars we have radiative cores, convective envelope with p–
p cycle taking place at the centre.

Homologous Model

Introducing the dimensionless variables x = r
R , q = M(r)

M , f = L(r)
L , p =

P/
(
GM2

4πR4

)
, t = T/

(
μGM
RR

)
and σ = ρ/

(
M

4πR3

)
and substituting κ = κ0Z

λρα

and ∈=∈0 ρT n [in place of Rc we have used ∈ to keep parity with reaction
rate equation] Eqs. (1.35)–(1.38) reduce to

dq

dx
=

p

t
x2 (Equation of continuity)

dp

dx
= −p

t

q

x2
(Hydrostatic equation)

df

dx
= Dp2tn−2x2 (Equation of energy production)
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dt

dx
= −C pα+1f

x2tα+β+4
(Radiative equilibrium)

and
dt

dx
= −2

5

q

x2
(Convective equilibrium)

where C, D are constants, with boundary conditions at x = 0, q = 0, f = 0
and at x = 1, q = 1, f = 1, t = 1, p = 0. The above set of equations are
easily solvable under given boundary conditions.

The empirical relations observed for stars are

(L/L�) = (M/M�)3.5

(R/R�) = (M/M�)0.75

(Te/Te,�) = (M/M�)0.5

and (L/L�) = (Te/Te,�)6.9

It is found that the profiles found, solving equations following homologous
model, do not match with the above profiles if the stellar atmosphere is
assumed to be either in full convective or in full radiative equilibrium. So the
stellar atmosphere is a combination of the two modes of energy transport,
radiation as well as convection for massive and solar type stars as discussed
in the previous part of stellar opacity.

1.9 Stellar Evolution and Connection with H–R Diagram

As a star passes through various evolutionary phases, from its birth to death
its position in the H–R diagram continuously changes and the evolutionary
track depends on the mass of the star.

Pre Main Sequence Contraction

Let us consider a system of particles under gravitational attraction and some
external forces. Then, if I be the moment of inertia, then

1

2

d2I

dt2
= 2T + Ω− 3PV

where T, Ω, P, V are the kinetic energy, potential energy, external pressure

and volume of the system. If the system be in equilibrium, d2I
dt2 = 0 and in

absence of any external pressure the above relation reduces to 2T + Ω = 0,
which is known as Virial Theorem (Goldstein et al. 2001). So, when
d2I
dt2 < 0, dIdt will decrease over time, hence I =

∑

i

miri
2 will also decrease

over time, i.e. the size of the system will decrease and we say that the
system is gravitationally unstable. Now, a star is speculated to begin its life
from the gravitational contraction of a big cloud of interstellar matter. The
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contraction continues until the central temperature is as high as 107 K. At this
temperature the nuclear reaction starts and hydrogen is converted to helium
via fusion reaction (viz. p–p/CNO cycles). Once the nuclear reaction starts,
the star achieves a quasi hydrostatic equilibrium. If the energy produced in
the nuclear reaction is less than the radiated energy, the star contracts, its
central temperature increases along with an increase in energy production.
If the energy produced is greater than the energy released, then the star
expands which decreases its central temperature. In this way the star attains
a quasi equilibrium state by a valve mechanism and we see the star on the
main sequence. The time scale for pre main sequence contraction, τg, is found
as follows. For a perfect gas of mass M,

T =
3

2
(γ − 1)U, where U is the internal energy.

For monatomic gas (as the spherical contracting cloud of gas mostly comprises
of hydrogen gas in atomic stage), γ = 5/3. So, T = U. Hence, total energy
E = U + Ω = Ω

2 . If L be the luminosity of the contracting cloud, then

L = −dE
dt

= −1

2

dΩ

dt

where Ω = − 3
5−nGM

2 = − 3
5
GM2

R for monatomic gas of uniform density
(n = 0).

Then, L = − 3

2(5− n)

GM2

R2

dR

dt

i.e. dt = − 3

2(5− n)

GM2

LR2
dR

For radiative equilibrium, n = 3 then

τg = τgr = 3
4
GM2

LR (here the contraction is slow enough due to slow transfer
of energy to keep L nearly constant).
The tracks for contraction through radiation are shown in Fig. 1.14.

For convective equilibrium, n = 1.5 (solving the equation of transfer for full
convective equilibrium for homologous model) and it is an efficient mechanism
for quick transport of energy making luminosity of the star to decrease rapidly
and keeping surface temperature almost constant. Then L is a function of R
only and,

τg = τgc =
GM2

7LR

Comparing the above two time scales, τgc << τgr. During this pre main
sequence contraction, radiative tracks are called Heney tracks (1955) and
convective tracks are called Hayashi tracks (1961).



1.9 Stellar Evolution and Connection with H–R Diagram 43

Post Main Sequence Evolution

Figure 1.14 Pre main sequence evolutionary tracks for stars. r stands for
radiative track and c stands for convective track (courtesy: Abhyankar 2001)

When hydrogen gas in the core gets exhausted producing a helium core,
the nuclear reaction propagates in a thin shell of hydrogen of low density
surrounding the core. So we have a helium core, a hydrogen burning shell
and an envelope surrounding the shell.

We have seen that for a massive star the envelope is fully radiative and
the energy generated in the shell balances the energy radiated keeping the
luminosity almost constant. So the star moves horizontally along a track of
constant luminosity to the right (Fig. 1.15). But the time for this phase is so
short, that almost no stars are seen in this phase on the H–R diagram and
is called “Hertsprung Gap”.

On the contrary, for the less massive stars the envelope is fully convective so
it transfers the energy produced in the shell rapidly outwards which in turn
increases it luminosity.
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Figure 1.15 Post main sequence evolutionary tracks for stars

Also due to the contraction of the core, the central temperature rises which
generates a pressure force and the envelope expands. So as a result of ex-
pansion of the envelope the surface temperature falls but the luminosity is
high due to larger size of the envelope. As a result the stars move to the top
right corner of the H–R diagram and are called “Red Giants”. During the
contraction of the helium core the central temperature rises and as it reaches
108 K Heluim burning takes place via the reaction 3He4 → C12 but the pro-
cess depends upon the mass of stars. For massive stars (M > 3M�), most
of the time the core remains non-degenerate throughout. The degeneracy is
discussed during the final stage of stellar evolution. So, the star undergoes a
steady state of helium burning and passes through the left and undergoes a
pulsation phase indicated as “Cepheid variable strip”.

As helium burning gets exhausted the reaction again propagates to the shell
and the star expands like the previous situation of hydrogen burning shell
and follows path to the right again and the process continues successively
producing oxygen, neon, silicon at the centre via the reactions C12 +C12 →
Ne20 +He4, C12 + He4 → O16, O16 +O16 → Si28 +He4, and the following
events occur. Stars of masses between 0.5M� − 3M�, become white dwarfs
with a degenerate C–O core. For stars of masses between 3M� − 8M�,
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they finally produce C–O–Mg core white dwarfs. For stars of masses larger
than 8M�, nuclear burning at the core finally produces iron which is an
endothermic reaction which produces instability and as a result the core
contracts and the envelope is thrown with a big explosion called Supernova
and the remnants core contracts to become a Neutron star and or Black
hole (BH) if the star is as massive as 20M�.

For low mass stars (M < 3M�) the core becomes degenerate and the degen-
erate electron pressure halts the core contraction. The stars become White
dwarf and occupy the bottom left position of the H–R diagram.

Final Stages of Stellar Evolution

We have envisaged in the previous sections that a star starts its life from the
onset of gravitational instability taking place in a large big cloud, comprising
mostly of hydrogen gas and undergoes various phases through main sequence,
red giant, super giant and ends its life as a supernovae, white dwarf, neutron
star or black hole depending upon its mass.

In the following part we will describe in detail about the compact objects,
e.g. white dwarf, neutron star and a black hole.

White Dwarf

Degenerate State

Let us consider a cloud of electrons in the volume element dv. Then the
number of electrons in the spherical shell of momentum and velocity ranges
(p, p + dp) and (v, v+dv), according to Boltzmann distribution is

n(p)dpdv = ne
4πp2

(2πmekT )3/2
exp

(

− p2

2mekT

)

dpdv

The maximum of this distribution occurs at pmax =
(
2me

kT

)1/2
. Here ne is the

number density of free electrons, T is the temperature, k is the Boltzmann
constant and me is the mass of the electron. The distribution functions are
shown in Fig. 1.16 for different T and constant ne. Now, since electrons are
fermions they must follow Pauli’s exclusion principle. So each quantum cell
in six-dimensional phase space cannot contain more than two electrons. Now,
volume of such a cell is dpxdpydpzdxdydz = h3 where h is Planck’s constant.

Therefore in the momentum shell the number of such cells = 4πp2dpdv
h3 . Hence,

number of electrons in this shell = 8πp2dpdv
h3 . Thus, n(p)dpdv ≤ 8πp2dpdv

h3 , the
corresponding curve (dashed one) is shown in Fig. 1.16. It is clear from
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Fig. 1.16 that for low temperature, at a constant ne, the Boltzmann distri-
bution is in contradiction of quantum mechanics. This happens again if T
remains constant and ne is too high, so there is a need to include quantum
mechanical idea when temperature is too low or electron density is too high
and call this state as degenerate state.

Figure 1.16 Boltzmann distributions of electrons at three temperatures (thin
lines) and that (dotted line) corresponding to Pauli exclusion principle

Let us consider electron gas at lowest energy (i.e. temperature almost zero).
This degenerate state without violating Pauli exclusion principle is the state
in which all the electrons up to a certain momentum pF (say) occupy two
states in a phase-space quantum cell.

Then, n(p) =
8πp2

h3
for p ≤ pF

= 0 for p > pF

Then the total number of electrons in the volume dV is given by

ne(V ) = dV
∫ pF
0

8πp2dp
h3 =

8πp3F
3h3 dV
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Figure 1.17 Surface element dσ with normal vector n̂ and unit vector s
along the axis of solid angle dΩs

Let us consider the flux of momentum of electron through a unit surface per
second which is its pressure. Let us consider the flux of electrons through
an elementary surface dσ, entering into a solid angle dΩs along any arbitrary
direction s. Then the pressure of electrons over all directions s of a hemisphere
and over all absolute values of p is (Fig. 1.17)

P =
1

4π

∫ 2π

φ=0

∫ π

θ=0

∫ ∞

p=0

n(p)v(p)p cos2 θdp(sin θdθdφ)

where dΩs = sin θdθdφ and v(p) is the velocity of electrons in (p, p + dp)
and p = mev(p)/

√
(1− v(p)2)/c2

Then,

P =
8π

3h3

∫ pF

0

p3v(p)dp

Using the above relation involving p and v(p)

P =
8πc5me

4

3h3

∫ x

0

ξ4dξ

(1 + ξ2)1/2
=
πme

4c5

3h3
f(x) (1.41)

where ξ = p/(mec) and x = pF /(mec), f(x) = 8
∫ x
0

ξ4dξ√
1+ξ2

.

So, ne (number density of electrons)= ρ
μemH

= 8π
3h3m

3
ec

3x3

Then these can be written as

P = c1f(x), ρ = c2x
3 and x = pF /(mec)

where ρ is the density and c1, c2 are constants.
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Then from (1.35) and (1.36),

c1
c2

1

r2
d

dr

(
r2

x3
df(x)

dr

)

= −4πGc2x
3

i.e.
1

r2
d

dr

(

r2
dz

dr

)

= −πGc2
2

2c1
(z2 − 1)3/2

where z2 = x2 + 1 and 1
x3

df(x)
dr = 8 dzdr .

Replacing r,z by dimensionless variables, x
′

and y,

x
′

=
r

α
, α =

√
2c1
πG

1

c2z0

y = z
z0
, where z0 is the central value of z, we have

1

x′2
d

dx′

(

x
′2 dy

dx′

)

+

(

y2 − 1

z02

)3/2

= 0 (1.42)

This is Chandrasekhar’s differential equation for white dwarf. The
boundary conditions are at r = 0, x

′
= 0 y = 1, dy

dx′ = 0 and at r = R,

x= 0, z = 1, y = 1
z0
, x

′
= x1(say).

Figure 1.18 Mass radius relation for white dwarf
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Then mass of the white dwarf is

M(R) =

∫ R

0

4πr2ρdr = 4πα3c2z0
3

∫ x1

0

x
′2
(

y2 − 1

z02

)3/2

dx
′

=
4π

c22

(
2c1
πG

)3/2(

−x′2 dy

dx′

)

x1

(1.43)

Solving numerically, dy

dx′ from (1.42) and substituting in (1.43) we get mass
vs radius relation for different values of z0 from ∝ to 1, i.e. from x =∝ (fully
relativistic) to x = 0 (non-relativistic), and shown in Fig. 1.18. It is clear from
Fig. 1.18 that the mass of white dwarf cannot exceed the Chandrasekhar
mass given by Mch = ( 2

μe
)2 × 1.459M� where μe is the mean molecular

weight of the electrons. For He white dwarf star, μe = 2 so, Mch = 1.459M�.

Neutron Star

Neutron stars are the compact objects where the gravitational force is bal-
anced by degenerate neutron stars, either relativistic or non-relativistic or
partially relativistic. Since the neutrons are fermions, the equation of state is
same as that of a white dwarf, with me replaced by mn (viz. Eq. (1.41)) and
μe replaced by μn = 1. For extreme relativistic state the equation of state
for white dwarf reduces to P ∼ ρ04/3(ξ >> 1) and P ∼ ρ05/3(ξ << 1) where
ρ0 is the rest mass density. But in case of neutron gas one has to consider
the density, ρ = ρ0 + u/c2 where u/c2 is the energy density. In case of white
dwarf ρ0 >> u/c2, so ρ ∼ ρ0. In case of neutron stars, for non-relativistic
neutrons, ρ0 >> u/c2 so, ρ ∼ ρ0. So equation of state for non-relativistic
neutrons is P ∼ ρ5/3 (stiffer equation of state). For relativistic neutrons,
ρ0 << u/c2 so, ρ ∼ u/c2. Again P = u/3, i.e. P = ρc2/3. So the equation
of state is P ∼ ρ (softer equation of state, i.e. gas is more compressible).

Relativistic Hydrostatic Equation of State

For compact objects, Einstein field equation is

Rik − 1

2
gikR =

k

c2
Tik

where Rik is the Ricci tensor, gik is the metric tensor, R is the Riemann
curvature, Tik is the energy momentum tensor. The corresponding metric
for spherically symmetric static mass distribution is

ds2 = eνc2dt2 − eλdr2 − r2(dθ2 + sin2 θdφ2)

where ν = ν(r), λ = λ(r). Tik has only nonzero components T00 = ρc2,
T11 = T22 = T33 = P.
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Then the field equations are

κP

c2
= e−λ

(
ν′

r
+

1

r2

)

− 1

r2
(1.44)

κP

c2
=

1

2
e−λ

(

ν” +
1

2
ν′2 +

ν′ − λ′
r

− ν′λ′

2

)

(1.45)

κρ = e−λ
(
λ′

r
− 1

r2

)

+
1

r2
(1.46)

where prime denotes differentiation with respect to r.

Multiplying (1.46) by 4πr2 and using m =
∫ r
0

4πr2ρdr, we get after integrat-
ing (1.46)

κm = 4πr(1 − e−λ)

Here mass does not include not only the rest mass but also the total en-
ergy divided by c2. Differentiating (1.44) with respect to r and eliminating
λ, λ

′
, ν

′
, ν

′′
using the other two equations we get Tolman–Oppenheimer–

Volkoff (TOV) equation which is the relativistic form of hydrostatic equi-
librium

dP

dr
= −Gm

r2
ρ

(

1 +
P

ρ2c

)(

1 +
4πr3P

mc2

)(

1− 2Gm

rc2

)−1

This equation along with equation of state gives the mechanical structure
for a chosen value of central density ρc at r = 0. When ρ = p = 0, the
corresponding r = R and m = m(R) give the size and total mass of the star.
For several choices of ρc, one gets several m = m(ρc), R = R(ρc) and by
elimination of ρc one gets the mass radius relation R = R(m) for a particular
equation of state. In Fig. 1.19, the mass radius relation is plotted for a few
choices of equation of states, from softer to stiffer equations of state (suffix
1–6). For a stiffer equation of state, the matter is less compressible and hence
one expects for a given M larger R and a smaller ρc. For a given ρc, one can
put more mass on top until ρ = 0. This lowers the gravitational pull inside
the star and hence maximum mass mmax is higher. For a soft equation of
state, the reverse occurs, hence mmax is lower. For relativistic degenerate
neutron star, P ∼ ρ (softer), hence mmax ∼ 0.72M� which is the solution
obtained by Oppenheimer and Volkov (1939) after the discovery of neutron
star in 1934. For other cases mmax generally varies from 1 to 3M�. But
particle physicists have not become able to correctly formulate yet the exact
form of equation of state so mmax is still not unique unlike white dwarfs.

Black Holes

In the previous sections of stellar evolution we have described that a massive
star undergoes a big explosion due to an instability in the core arising out
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of the endothermic reaction producing iron and the remnant is a neutron
star or black hole depending upon its mass. These black holes are called
“stellar mass black holes” (BH). So black holes represent the ultimate fate
of a massive star (M > 20M�). Black holes are compact objects which can
be described in general relativity (GR) by a metric, known as, Schwarzchild
metric in four-dimensional space time. The metric is

ds2=

(

1− 2GM

rc2

)

c2dt2 −
(

1− 2GM

rc2

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2

The value 2GM
c2 = rs is called the Schwarzchild radius. It has a great physical

importance.

Figure 1.19 Mass radius relation for neutron star

Now, for a stationary observer at infinity (i.e. dr = dθ = dφ = 0 and r →∝),
ds2 = c2dt2. So, if τ is the proper time (the time measured by an observer
carrying a standard clock), then dτ = ds

c = dt in this particular case. Let
us consider two stationary observers, one at (r, θ, φ) and the other at infinity
(r →∝), then,

dτ

dτ∞
=
(

1− rs
r

)1/2

Let two consecutive signals are emitted from the point of first observer. Then
the corresponding frequency, often called, rest frequency, ν0 = 1

dτ . The other
observer at infinity receives the signals at interval, dτ∞, at a frequency, often
called observer’s frequency, ν = 1

dτ∞
. So, redshift due to the gravitational
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field of the compact object under consideration in observer’s frame at in-

finity is z = ν0−ν
ν =

(
1− rs

r

)−1/2 − 1 and which shows as r → rs, z →∝,
i.e. no light is received from the point r ≤ rs. The corresponding situation
can be geometrically described as follows. The trajectory of a photon is de-
scribed by null geodesic, ds2 = 0. If ds2 > 0, it is called “time like” and if
ds2 < 0, it is called “space like”. The material particles, following “causality
principle” are always time like. The null geodesics are called “light cones”.
The Schwarzchild metric has a singularity at r = rs, but it is not a physical
singularity and can be removed by the following substitution,

w = t+
rs
c

ln

∣
∣
∣
∣
r

rs
− 1

∣
∣
∣
∣

Figure 1.20 Light cone configurations for black hole

Then, Schwarzchild metric takes the form,

ds2 =
(

1− rs
r

)
c2dw2 − 2

rs
r
cdrdw −

(
1 +

rs
r

)
dr2 − r2dθ2

− r2 sin2 θdφ2

Then null geodesic for this metric yields (along radial boundaries of the light
cone, i.e. dθ = dφ = 0),

(
1− rs

r

)(dw
dr

)2

− 2rs
cr
− 1

c2

(
1 +

rs
r

)
= 0

which has the solutions
(
dw

dr

)

= −1

c
and

(
dw

dr

)

=
1

c

1 + rs/r

1− rs/r
The first slope is constant but the second slope changes sign from negative
to positive for r < rs to r > rs. For r < rs, both the slopes are negative, i.e.
the light cone shrinks and all material particles are drawn towards the centre
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(Fig. 1.20), i.e. no static solution is possible for r < rs, since it requires
a motion vertically upwards, i.e. outside the light cone. That is why the
configuration r ≤ rs is called a BH.

1.10 Variable Stars

Variable star is that whose brightness changes over time. There are two
broad groups of variable stars: (1) extrinsic variables and (2) intrinsic vari-
ables. Extrinsic variables are the variables whose brightness varies due to
some external agent, e.g. obscuration of light by another star or dust, etc.
Eclipsing binary stars or multiple stars, visual binaries and spectroscopic bi-
naries belong to this category. On the contrary when brightness varies due
to some internal physical process within the star, it is called an intrinsic
variable. Table 1.2 gives a brief classification of variable stars.

Table 1.2 Classification of variable stars.

Nomenclature of Variable Stars

In a particular constellation the variables are designated by double letters
starting from A and ending with Z followed by the IAU approved abbrevi-
ations of the corresponding constellation, e.g. AA, . . . , AZ, BB, . . . , BZ,
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. . . , ZZ and then Aql for the constellation Aquilae, etc. When all these are
exhausted the variable is designated by the letter V followed by the number
denoting the number of variables in a constellation followed by the abbrevi-
ated name of that constellation, e.g. V 1359 Aql is the 1359th variable star
of the constellation Aquila.

The Cepheid Group Stars

Classical Cepheids (Type I), W-Virginis stars (Type II) and RR Lyrae stars
are the members belonging to this group. The light curves (LC), defined
as the magnitude versus time period, are shown in Fig. 1.21. The rise of
the curves are rapid for Type I Cepheids of periods 2–6 and 7–8 days but
the curve is more or less symmetric for type I Cepheids of period 10 days.
For longer period again the rise is rapid compared to the fall in brightness.
The LC is strongly correlated with the velocity versus time curve. They are
yellow supergiants with spectra varying from F to K and highly luminous
with absolute magnitudes varying from −1.5 to −6. So they are 104 times
more luminous than Sun. Again there is a strong correlation between the time
period and luminosity of Cepheids group of stars. This particular property
has a great advantage of using Cepheids in determining distance to external
galaxies. From period luminosity relation, the absolute magnitude M of a
Cepheid is computed, observing its period of LC. Since Cepheids are bright
objects, they are observable in distant galaxies. So measuring their median
apparent magnitude in a distant galaxy, the distance of that galaxy can be
measured using magnitude distance relation (viz. Eq. (1.19)). The LC of type
II Cepheids are similar to that Type I but the fall in brightness is stiffer and
also fainter compared to Type I. They are mostly found in globular clusters
and near the centre of our Galaxy. They are mainly Population II type stars
(metal deficient) whereas Type I Cepheids are Population I type (metal rich)
stars. RR Lyrae stars are mostly found in globular clusters. So they are
sometimes called Cluster variables. They are mainly Population II stars and
their periods vary from 2 to 24 h. The spectral class belongs to A to F. H
and CaII emission lines are observed during rise of their light curves.

Pulsation Theory of Cepheid Group of Stars

We have seen in the previous sections of stellar structure that under hy-
drostatic equilibrium, pressure, density and size of a star are independent of
time. Let us consider the various equations under a small radial perturbation.
Then,
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P = P0 + P1, P1 = P0pe
iwt

r = r0 + r1, r1 = r0qe
iwt

ρ = ρ0 + ρ1, ρ1 = ρ0se
iwt

where the quantities with suffix “0” are functions of M(r). Now the equation
of continuity and equation of motion can be written as

∂r

∂M(r)
=

1

4πr2ρ(r)

and
∂P

∂M(r)
= −GM(r)

4πr4
− 1

4πr2
∂2r

∂t2

Then substituting the expressions for P, r and ρ in equation of motion and

using g0 = GM(r)
r20

, linearizing and using the fact that P0, r0 obey the hydro-

static equation ∂P0

∂M = − GM
4πr40

we find

P0

ρ0

∂p

∂r0
= w2r0q + g0(p+ 4s)

Similarly equation of continuity leads to r0
∂q
∂r0

= −3q − s.

If we assume the perturbation is adiabatic,

p = γs

then from the above equations, (assuming γ constant) differentiating with
respect to r0,

∂q

∂r0
+ r0

∂2q

∂r20
= −3

∂q

∂r0
− 1

γ

∂p

∂r0

Then eliminating ∂p
∂r0

, p and s we get

∂2q

∂r20
+

(
4

r0
− ρ0g0

P0

)
∂q

∂r0
+

ρ0
γP0

[

w2 + (4− 3γ)
g0
r0

]

= 0 (1.47)

Let ρ be the constant and ρ = ρ0. Then

r0 =

(
3M

4πρ0

)1/3

, g0 =
GM

r20
=

4π

3
Gr0ρ0

Then hydrostatic equation in equilibrium gives

P0(r0) =
2π

3
Gρ20(R2

0 − r20)

where R0 is the radius of the star at equilibrium.
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We introduce a dimensionless variable, η = r0/R0 and put

B =
3w2

2πGρ0γ
+

2(4− 3γ)

γ

Then, from Eq. (1.47) we get

d2q

dη2
+

(
4

η
− 2η

1− η2
)
dq

dη
+

B

1− η2 q = 0

The simplest solution of the above equation is q = Constant = q0 provided,
B = 0. Then for B = 0, w2 = w2

0 = 4π
3 Gρ0(3γ−4). This is the period density

relation for pulsating stars obtained by A. Ritter in 1879. So if T = period
of the pulsating star,

T =

[
3π

(3γ − 4)Gρ0

]1/2

and it shows that T 2ρ0 = Constant.

The above model of radial adiabatic pulsation theory is over simplified and
cannot explain the phase leg between size and luminosity over a quarter of
a period, observed for variable stars. The most satisfactory answer was due
to Martin Schwarzchild in 1938. He argued that a star as a whole does not
pulsate. The interior of a star pulsates and it sends compressional waves to
the outer layers. So a star is not brightest when it is smallest but when the
compressional waves are moving fastest, i.e. when velocity of approach is
maximum. This is what is observed for light curve and velocity curve for
Cepheid variables.

Other Variable Stars

RV Tauri variables are mostly red giants or yellow super giants of spectral
class G to K having periods between 30 and 150 days. The LC has alternately
large and small maxima. The cause of two maxima is speculated to be due
to pulsation together with some other physical process.

Long period variables or Mira variables have periods ranging from 100
days to 1,000 days. Median absolute magnitude has the range from +2 to
−2. Their spectra belong to M class. They are red giant stars. They are
Population II type stars.

Beta canis majoris variables are blue giants having spectral class B and
absolute magnitude in the range −2 to −4. Their periods range from 6 to
8 h. Due to small periods they are hardly observed.
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U Geminorium stars belong to eruptive variable class. Their light variation
is sudden. It rises to maximum in 2, 3 days and declines in another 10–20
days. The variation in magnitude ranges from 2 to 6 magnitudes. The
spectral class ranges from A to F.

Figure 1.21 Light curves of Cepheids group of stars, RR-Lyrae and RV
Tauri stars

Novae and Supernovae belong to the group of exploding variables. Novae
are generally faint subdwarfs which suddenly flare up to very high luminos-
ity and occasionally undergo explosion. Figure 1.22 describes in detail the
light curve of a nova during various stages of light variation. Like Cepheids,
novae are also used as distance indicators. The distances of nearby novae are
mostly determined by the angular rate of expansion of the nebulae (big cold
gas cloud) around them which are used for calibration.

There are many theories regarding the nova outburst but the proper expla-
nation is due to Martin Schwarzchild. During the stellar evolution hydrogen
converts into helium through fusion process and this liberates huge amount
of energy. This energy generates shock waves which propagates into stellar
surface shooting materials outwards. This phenomenon is observed as novae.
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Figure 1.22 Various stages of light variation of a nova (courtesy: Basu et al.
2010)

Supernovae are the results of a big explosion occurring at the stellar core of
very massive stars when there is an instability during the transformation of
silicon to iron, which is endothermic. At this stage iron group of metals are
suddenly transformed to helium and some neutrons are set free. This change
requires huge amount of energy and this is supplied by rapid contraction.
The core can hardly bear such contraction. The outer layers undergo, at the
same time, thermonuclear reactions which liberates huge energy which is not
radiated quickly to hold a stable structure. As a result the star undergoes
violent explosion. The total energy liberated is of the order of 1050 ergs which
corresponds to an absolute magnitude −17.

Extrinsic Variable Stars

We have already discussed that the light variation occurs in extrinsic binary
system due to obscuration of light from one by another partner.

Visual Binaries

When the stars in a binary system are widely separated, so that a telescope
can resolve them, they are called Visual binaries. The brighter star in a
binary is called primary and the fainter one is called secondary. Sirius, 61
Cygni are examples of such binaries.

Spectroscopic Binaries

If the stars in a binary system be so close that they cannot be resolved visually
with the aid of a telescope, but their spectra contain single and double lines,
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it is called a Spectroscopic binary. This happens because when the two stars
revolve about their common centre of gravity and one is approaching towards
the observer while the other is receding from the observer, then light from
the approaching one is shifted towards the violet end whereas that from the
receding one is shifted towards the red end. So, two separate line patterns in
opposite phases are observed. When both move perpendicular to the line of
sight, no such shift is observed giving a single pattern. So the spectrum of the
pair reveals alternately single and double lines, provided they are sufficiently
close and are of almost equal brightness.

Eclipsing Binary Stars

When the stars in a spectroscopic binary are such that the orbit is lined
up with the line of sight or makes a very small angle, the variation of light
occurs periodically. The light curve of such system shows two minima in a
total period (Fig. 1.23). When the orbital plane is perpendicular to line of
sight there is no eclipse. When the plane is along the line of sight, the eclipse
is total or annular. For other positions the eclipse is partial.

Modelling of Light Curves of Eclipsing Binaries

In the following section it is described how light curves can be used for com-
puting the physical characteristics of the companion stars using a simple
model of circular orbits in absence of effects like limb darkening, tidal dis-
tortion, etc. At first a theoretical light curve is generated assuming the

Figure 1.23 Light curve of a typical eclipsing binary star
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physical parameters for the stars. Then it is compared with the observed
light curve. Then by adjusting the values of the parameters the theoretical
curve is matched with the observed one. The assumed parameters are the
estimated parameters for the companion stars with some error of precession.
The present model is due to Dan Bruton. Let M1,M2, L1, L2, R1, R2, i be
the masses, luminosities, radii and orbital inclination of star1 and star2, re-
spectively (Fig. 1.24). Let R be the distance between the centres of the stars.
Let θ be the azimuthal angle. Let (x1, y1, z1) and (x2, y2, z2) be the cartesian
co-ordinates of the two stars, then

x1 = − x

1 + (1/q)
, y1 = − y

1 + (1/q)
, z1 = − z

1 + (1/q)

and
x2 =

x

1 + q
, y2 =

y

1 + q
, z2 =

z

1 + q

where x = R sin θ, y = R cos i cos θ, z = R sin i cos θ and q = M2/M1

(Goldstein et al. 2001).

Let F1, F2 be the brightness of the two stars. Then,

F1 =
L1

4πR1
2 , F2 =

L2

4πR2
2

Then the brightness to an observer is F = K(F1A1 + F2A2) where A1, A2

are the areas of the star discs seen by an observer and K is a constant that
can be determined from the area of the observer’s detector and the distance
between earth and the binary system.

Figure 1.24 Co-ordinates of the centre of mass of an eclipsing binary system
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A1 and A2 can be found by considering the geometry of the eclipse. The dis-
tance between the two stars to an observer is ζ =

√
(x2 − x1)2 + (y2 − y1)2.

So for ζ > R1 + R2, there is no eclipse, for (R1 + R2) > ζ >
√
R1

2 −R2,

there is shallow eclipse and for
√
R1

2 −R2
2 > ζ > R1 − R2, there is deep

eclipse and for ζ < (R1 − R2), there is annular eclipse. The corresponding
positions are shown in Fig. 1.25 and the corresponding observed areas are
listed in Table 1.3.

z1 > z2 z1 < z2
State A1 A2 A1 A2

No πR1
2 πR2

2 πR1
2 πR2

2

Eclipse

Shallow πR1
2 πR2

2 −�A1 −�A2 πR1
2 −�A1 −�A2 πR2

2

eclipse

Deep πR1
2 πR2

2 −�A2 −�A1 πR1
2 −�A2 −�A1 πR2

2

eclipse

Annular or πR1
2 πR2

2 − πR1
2 0 πR2

2

total eclipse

Table 1.3 Areas of the stellar discs during various stages

To calculate �A1 and �A2 from Fig. 1.25,

�A1 =
1

2
R1

2(θ1 − sin θ1),�A2 =
1

2
R2

2(θ2 − sin θ2)

θ1, θ2 can be found from R2
2 = R1

2 + ζ2 − 2R1ζ cos(θ1/2) and R1
2 = R2

2 +
ζ2 − 2R2ζ cos(θ2/2)

Now, θ = 2π× phase (φ) and phase = (Time since primary eclipse) / (orbital
period).

So, intensity I can be plotted against φ, which gives the theoretically pre-
dicted light curve.

So the best choice of L1, L2, R1, R2, i, q give the best light curve with mini-
mum error.

The software package Binary maker 3.0 predicts the physical parameters more
accurately considering other effects also, given the observed light curve data.



62 1 Introduction to Astrophysics

Figure 1.25 The various geometrical positions of the eclipse (courtesy: Dan
Bruton: astro at sfasu.edu)

1.11 Stellar Populations

The solar system belongs to a vast ensemble of stars and gas, called our
Galaxy (viz. Sect. 1.12). Our Galaxy contains almost 1011 stars. Most of
these stars are found as isolated ones, called “field” star, or in association
with another star or a triple system called “binary” or “multiple star” whereas
a few (1 %) are associated with groups of various shapes and sizes. These
are called “star clusters”. There are primarily two types of star clusters:
(1) galactic or open clusters and (2) globular clusters.

1.11.1 Galactic Clusters

Galactic clusters contain stars of the order of 102–104. They do not possess
any particular shape. The stars belonging to this category are Population
I objects, i.e. they are metal rich, take part in the Galactic rotation and
contain bright stars belong to O and B classes. All the stars belonging to
any particular star cluster have a common motion which is different from its
surrounding objects. This is called, its systematic velocity. Also the stars
in a cluster are at the same distance. So if the stars in a cluster are plotted
for apparent magnitude versus colour that is equivalent to its H–R diagram,
shifted parallel to match the zero age main sequence (ZAMS) which is equal
to its distance modulus. So on the other way various galactic clusters whose
distances are known by other methods can be used to calibrate the ZAMS.
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The C–M diagram of various Galactic clusters are shown in Fig. 1.26. It is
clear from the figure that (1) the main sequence is almost scatter free, (2)
the turn of points of various clusters is different for different clusters, (3)
the termination of the giant branches is different in different clusters and (4)
the main sequence contains primarily hot blue stars. All these observations
reveal that the stars in Galactic clusters have almost homogeneous chemical
composition, the clusters are not “coeval” and they are young.

1.11.2 Globular Clusters

Globular clusters contain stars of the order of 104–106 and they are mainly
Population II objects, i.e. metal deficient. They possess a spherical structure
and are concentrated near the Galactic bulge and halo. Globular clusters
far away from the Galactic centre do not take part in the Galactic rotation.
If the stars in globular clusters are plotted in H–R diagram, the following
features are observed (Fig. 1.27). (1) The main sequence has large scatter,
(2) the clusters are more-or-less “coeval”, and (3) contain cool stars belong-
ing to classes F–M. So it can be concluded that the chemical composition of
stars largely vary in globular clusters. In fact more or less all giant ellipti-
cal galaxies have globular clusters which show bimodality in their integrated
metallicities. The reason of such bimodality is not clear yet. There are var-
ious theories regarding this bimodality exist among which “merger model”
(Ashman and Zepf 1992) is somewhat popular. According to this theory,
elliptical galaxies have been formed by the merger of two progenitor gas rich
spiral galaxies. The globular clusters which are comparatively metal poor
are the clusters of the progenitor spirals and the metal rich globular clusters
have been formed by the dissipative (wet merger) merger of the associated
gas of the spiral galaxies in the next episode of star formation. But there
are other theories of galaxy formation besides merger model, e.g. mono-
lithic collapse model, multiphase dissipational collapse model, dissipationless
merger model (dry merger) and accretion and in situ hierarchical merging
(viz. Sect. 1.12). Sometimes the formation of galaxies has been suggested by
various statistical models in multivariate set-up (Chattopadhyay et al. 2009
and the references therein). Since globular clusters contain cool stars so they
are older. The ages of globular clusters have been determined by using simple
stellar population (SSP) model and they are comparable to the age of their
host galaxies (∼Gyr), i.e. they are the robust counterpart overcoming the
complicated process of galaxy formation. Hence they can be considered as
the fossil records of galaxy formation.



64 1 Introduction to Astrophysics

Figure 1.26 The C–M diagram of Galactic clusters

Fundamental Plane

In 1995, Djorgovsky found a scaling relation among the core radius (rc),
central velocity dispersion (σe), central surface brightness (μv(0)) of globular
clusters in our Galaxy. The relation found is

μv(0) = (−4.9± 0.2)(log σ − 0.45 log rc) + (20.45± 0.2)

which corresponds to rc ∼ σ2.0±0.15I−1.1±0.1
0

where I0 is the luminosity density and

log I0 = 0.4(Mv,� −Mv)− log(2π)− 2 log rc

and μv(0) = MV,� + 20.652− 2.5 log I0

This is similar to the Virial Theorem,

rc ∼ σ2I−1
0 (M/L)−1

for a constant mass to light ratio within the measurement errors. This means
that the globular clusters are dynamically stable system, with respect to core
parameters and for a universal mass to light ratio.
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Figure 1.27 H–R diagram of globular clusters (bottom) and image of a
typical globular cluster (top)

For effective radius parameters the FP is re ∼ σ1.45±0.2I0.85±0.1
e . This is close

to the FP of giant elliptical galaxies R∼σ1.4±0.2 I−0.8±0.1.

1.11.3 Fragmentation of Molecular Clouds and Initial Mass
Function (IMF)

Star formation remains a tantalizing problem in modern astronomy. Most
of the astronomers now believe that star formation is triggered by the grav-
itational collapse of the dense molecular clouds. Molecular clouds are large
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gaseous cold (10–100K) clouds (102M�–106M�) of size varying from 10 to
100 pc. It primarily consists of H2 and He and contains traces of molecules
such as CO, NH3, H2CO,CS, and N2H

+. Molecular hydrogen is difficult to
detect by infrared or radio observations so cloud properties are demonstrated
by strong rotational or vibrational emission lines of CO in cm, mm and sub
mm ranges. The core is traced by NH4. These molecular clouds are thought
to be regions of recent star formation as many recently formed open clus-
ters, e.g. NGC 3293, NGC 2264 are found to be embedded in such clouds.
Many theories have been developed to demonstrate the existence of a second
generation of fragmentation, i.e. the fragmentation of these molecular clouds
in star clusters. In this context a hierarchy of fragmentation scenario of an
infinite gas cloud to galaxies and stars has been developed by Hoyle (1953).

A Simple Model of Fragmentation and Jeans Instability

Suppose a system is in static equilibrium having density ρ0 pressure p0, grav-
itational potential φ0.

Now equations of continuity, motion, Poisson equation and equation of state
(adiabatic) of such a system are

∂ρ

∂t
+ ��.(ρ�v) = 0

∂�v

∂t
+ (�v.��)ρ = −1

ρ
��p+ �F

�2φ = 4πGρ

d

dt
(p/ργ) = 0

where �F is the external force.

Now for static equilibrium,

�F = −��φ0, ��p0 = −ρ��φ0,�2φ0 = 4πGρ0 (since �v0 = �0), p0 = constant.
ργ = kT

μmH
.ργ0 , where k is Boltzmann constant, μ is the mean molecular weight

and mH is the mass of hydrogen atom.

If there are small perturbations of the form

φ = φ0 + φ1

ρ = ρ0 + ρ1

p = p0 + p1
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�v = �0 + �v1

then linearizing the above set of equations (assuming the perturbations are
small enough) we have

∂ρ1
∂t

+ ρ0 ��0. �v1 = 0 (equation of continuity)

ρ0
∂ �v1
∂t

= −��p1 + ρ0 ��φ1 (equation of motion)

�2φ1 = 4πGρ1 (poisson equation)

and p1 = cs
2ρ1 (equation of state)

where cs is the isothermal speed of sound and c2s = dp
dρ .

Then the above four equations can be combined to

∂2ρ1
∂t2

= cs
2 �2 ρ1 + 4πGρ0ρ1

This is a wave equation which admits a plane wave solution,

ρ1 = ρ0e
i(�k.�x−wt)

where �k is the wave number and |�k| = 2π
λ = k, λ being the wavelength of

the perturbation. Then substituting ρ1, in the latter equation we have the
dispersion relation

w2 = cs
2k2 − 4πGρ0 = cs

2(k2 − kJ2)

where cs
2kJ

2 = 4πGρ0 (say).

If k < kJ , w
2 < 0, the disturbance grows exponentially with time. λJ = 2π

kJ
is defined as the Jeans (1902) critical wavelength. Its value is

λJ =
2π

kJ
=

(
πkT

μmHGρ0

)1/2

The Jeans mass, MJ = π
6 ρ0λ

3
J = 1023

(
T
μ

)3/2
ρ
−1/2
0 g.

So a cloud mass M > MJ will be gravitationally unstable and will undergo
isothermal collapse.

It is to be noted that the unperturbed conditions assumed by Jeans are not
consistent. Because for a constant pressure p0, ��p0 = −ρ��φ0 leads to a
constant φ0 but a constant φ0 leads to ρ0 = 0 from �2φ0 = 4πGρ0. So
for a proper stability analysis one needs a proper equilibrium configuration
(Spitzer 1978). Still Jeans analysis is important for its simplicity as the
correct stability analysis yields qualitatively similar results.
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Initial Mass Function

Figure 1.28 Mass spectrums of various star clusters and stellar associations
(courtesy Bastian et al. 2010)

Now as the cloud collapses its density increases, so under isothermal collapse
(i.e. constant temperature), Jeans mass decreases, i.e. the cloud fragments.
In this way a hierarchical fragmentation scenario sets in until the cloud be-
comes opaque to trap the radiation and switches over from isothermal to
adiabatic phase and the fragmentation stops. The mass spectrum developed
at this stage is what is called “IMF” and is defined by Salpeter (1955) as a
power law of the form,

ξ = dN
d logm∞mΓ where m is the mass of a star and N is the number of

stars in the logarithmic mass range logm and (logm + d logm). It is found
by Salpeter that Γ ∼ −1.35 for 0.4M� ≤ m ≤ 10M�. The IMF in linear
mass units takes the form dN

dm∞m−α so that Γ = 1 − α. Later a segmented
power law was derived by Kroupa et al. (1993) that gave Γ ∼ −1.35 above a
few solar masses with a shallower power law (Γ ∼ 0 to −0.25) for low mass
stars. The turn over occurs at 0.3M�, often known as the characteristic mass
(mc). The mass spectrums for various star clusters, galactic or globular are
shown in Fig. 1.28.
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Integrated Galaxial IMF

Study of IMF is very important regarding the link between stellar and galac-
tic evolution and hence the insight on theories of star formation. It is ques-
tionable whether the IMF is universal or not. Under the assumption of an
invariant canonical stellar IMF in star clusters and an invariant embedded
cluster mass function (ECMF), i.e. the mass function of the star clusters,
the integrated galaxial initial mass function (IGIMF) is defined as (Weidner
and Kroupa 2005)

ξIGIMF =

∫ Mecl,max(SFR(t))

Mecl,min

ξ(m ≤ mmax)ξecl(Mecl)dMecl

where ξ is the stellar IMF, ξecl is the star cluster ECMF, mmax is the max-
imum mass of a star in a particular star cluster and Mecl,min and Mecl,max

are minimum and maximum masses of star cluster and Mecl,max is a func-
tion of the star formation rate (SFR) which varies over time. If the ECMF
is taken as

ξecl∞M−β
ecl

then assuming β ∼ 2.2 (Lada and Lada 2003; Hunter et al. 2003) it is seen
that IGIMF (αIGIMF ) is steeper than IMF (α) and for β > 2, αIGIMF

largely differs from α for increasing values of α (Fig. 1.29). Now for β > 2
the number of white dwarfs falls rapidly and the fall of supernova II even
stronger. The effect is more pronounced for steeper α. So depression of SN
II slows down the chemical enrichment, hence formation of stars particularly
in galaxies with low SFR (e.g. dwarf galaxies). As a result the IGIMF
steepens.

The scenario changes completely for a slightly lower β(∼ 2.0) and the sam-
pling procedure for the maximum mass Mecl,max of the star cluster. In
Fig. 1.30 it is seen that IMF and IGIMF are almost identical for low β(∼ 2.0)
and stochastic sampling of Mecl,max. So at this point it is very important to
have an accurate estimation on β,Mecl,max and knowledge of birthplace of
high mass stars using kinematic conditions.

1.12 Galaxies

A vast ensemble of stars and gaseous matter pervaded by magnetic field,
cosmic rays together with unseen matter is known as a galaxy. The galaxy to
which our solar system belongs is called “Milky Way” or Galaxy. Its shape is
like a flattened spheroid with certain ring like structures, called spiral arms.
Sun lies along an arm (Orion) at a distance 8.2 kpc from the centre of the
Galaxy. The arm structure is confined in a thin disc like structure, called the
Galactic disc. The arms generate from a dense region, called nuclear bulge
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Figure 1.29 Trends of IGIMF and IMF for different values of β (courtesy
Kroupa 2004)

in which the densest part of the Galaxy, called nucleus, is embedded. The
nucleus, bulge, disc and spiral arms primarily contain Population I objects.
The disc rotates around the Galactic centre with a high velocity whose type
is different from that of a solid body rotation. This is known as “differential
galactic rotation”. In solid body rotation, all the objects situated at different
distances from the centre of rotation have the same angular velocity ω so, if
v is the linear velocity at a distance r from the centre since v = ωr, so v∞r.
In case of “differential galactic rotation” objects away from the centre move
more slowly. In Keplerian motion objects move around a central massive
objects of mass M such that v2 = GM/r, i.e. the linear velocity falls off as
the inverse square root of the radius since M is constant. Differential galactic
rotation is different from Keplerian motion (applicable to planetary orbits)
in a sense that here mass M as we will see is not constant and it occurs for
gaseous bodies such as Sun and planets with atmosphere.
In Fig. 1.31 the profiles of three types of motion have been shown. Although
the primary constituents are confined in a thin disc, the Population II ob-
jects e.g., globular clusters, high velocity stars like subdwarfs, Cepheids (RR
Lyraes and Type II Cepheids) define a more or less spherical structure en-
closing the disc. This is known as Galactic halo. Observations indicate that
neutral hydrogen gas clouds extend in the halo to at least 1 kpc above the
Galactic plane. The mass of our Galaxy has been estimated by various au-
thors (Schmidt 1956, 1965; Lohmann 1953; Bucerius 1934) to be of the order
of 1011M�. But later observations of V.C. Rubin and her co-workers indicate
that galaxies are much more massive and are of much greater extension. The
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Figure 1.30 Trends of IGIMF and IMF under various sampling procedures
(courtesy Bastian et al. 2010)

mass, however, exists in unobserved form. For Galactic rotation we have
v2/r = GM/r2. If M∞r, then v = constant and this is what is seen for
galaxies (Fig. 1.31). So a thrice compound model of the Galaxy (nuclear re-
gion, disc and halo) considered by several authors yields a mass of the order
of 1012M�.

Oort’s Constants

We have discussed that differential galactic rotation introduces some kind
of shearing motion in the Galactic plane. If this shear can be determined
quantitatively, the local force law can be estimated. Oort’s constants are the
well-known constants which give measure of this local shear and the force
law. In this part we give a derivation of these constants. Let us assume
circular motion of gaseous material around Galactic centre. Then at a given
galactic longitude the radial velocity will be maximum at a position where
the line of sight is closest to the Galactic centre. This point is the tangential
point T corresponding to the Galactic longitude l (say) (viz. Fig. 1.32).
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Figure 1.31 Schematics of various types of rotations

Figure 1.32 Galactic rotation (Courtesy: Basu et al. 2010)
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Let rmin be the distance of T from Galactic centre C (say). Then CT =
rmin = r0 sin l, where r0 is the distance of sun S from C. Then, ST = r0 cos l.
Let P be any other point on the Galactic plane and CP = r and SP = rs.
Then from the triangle SCP,

sin l

r
=

sin(90 + φ)

r0
i.e.

sin l

r
=

cosφ

r0

Then the radial velocity of any material at P relative to that near Sun is
vr = r0(w(r) − w0) sin l where ω and w0 are the angular velocities at P at a
distance r and at S at a distance r0 from C. If P has the latitude b, then

vr = r0(w(r) − w0) sin l cos b

We assume here, b = 0. The expanding ω(r) by Taylor series in neighbour-
hood or r0,

w(r) = w0 + (r − r0)

(
dw

dr

)

r0

+O(r − r0)2

Neglecting smaller terms,

vr = r0 sin l(r − r0)
(
dw
dr

)
r0

, to first order of approximation. The first
Oort’s constant A is defined as

A = −1

2
r0

(
dw

dr

)

r0

= −1

2
r0

[
d

dr

(v
r

)]

r0

=
1

2

(
v

r
− dv

dr

)

r0

It represents the rate of local shear. Then,

vr = 2A(r0 − r) sin l

Also, from triangle SCP, r2 = r0
2 + rs

2 − 2r0rs cos l

So,
r

r0
= 1− rs

r0
cos l+O

(
rs
r0

)2

i.e.

r0 − r = rs cos l (neglecting smaller terms)

Then, vr = Ars sin 2l

The transverse velocity of the material at P with respect to that at S is
given by

vT = v sinφ− v0 cos l

Then using some algebraic manipulations and assuming rs/r0 << 1,

vT = −rs
[

r0

(
dw

dr

)

r0

cos2 l + w0

]

Then, vT = rs(A cos 2l +A− w)
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Introducing another constant B = A− w0,

vT = rs(A cos 2l+B)

Now, B = A− w0 = 1
2 (vr − dv

dr )r0 − v0
r0

= − 1
2 (vr + dv

dr )0

So (dvdr )r0 = −w0 − 2B = −(A+B)

Let F = v2

r be the force law at a distance r from C for the material at P.
Then,

(
dF

dr

)

r0

=

(
2v

r

dv

dr
− v2

r2

)

r0

= 2w0

(
dv

dr

)

r0

− w2
0

i.e.

(
dF

dr

)

r0

= −(A−B)(3A+B)

If the force law is of the form F = Drn, then

(
d lnF

d ln r

)

r0

= n = −
(

3A+B

A−B
)

Thus the value of Oort’s constants give local force law of the Galaxy. Ob-
servations suggest that n varies from +1 to −2 from close to the centre to
outer region. Working values of A and B are 14.4± 1.2 km s−1 kpc−1,−12±
2.8 km s−1 kpc−1 which have been accepted in IAU, 1985. The other rota-
tion parameters are r0 = 8.5 ± 1.1 kpc, v0 = 222 ± 20 km s−1, w0 = 26.4 ±
1.9 km s−1 kpc−1.

External Galaxies

In the previous section we have discussed various features of our Galaxy. But
actually there are many such galaxies in the Universe. The galaxies belong
to groups and many more to clusters. The clusters in general contain a large
numbers of galaxies of different types and of various sizes. The nearest clus-
ter is Local Group which contains our Galaxy, Andromeda Galaxy (M31),
Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC) and many
dwarf galaxies with a total of 30 in number. The next ones are The Local
Volume (LV), Virgo and Coma clusters at distances of 10 Mpc, 16 Mpc and
. . . Mpc, respectively. The galaxies are first classified by E.P. Hubble in early
1920s on the basis of their morphological structures. His scheme consists of
three regular classes, viz. ellipticals, spiral/barred spirals and irregulars. It
is represented by his famous tuning fork diagram (Fig. 1.33). The elliptical
galaxies have spheroidal structures having no spiral arms and are subclassi-
fied as E0 to E7 depending on the degree of flattening. Spiral galaxies are
like our Galaxy and they are subclassified as Sa, Sb, Sc on the degree of
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tightness of the spiral arms. If the spiral galaxies have bars at their centre,
they are termed barred spiral and denoted by SB, Irregular galaxies do not
posses any particular shape. Our Galaxy is a spiral galaxy whereas LMC,
SMC are irregular galaxies. Recently there are several catalogues of galaxies,
e.g. Messier Catalogue, abbreviated by M followed by a number, New Gen-
eral Catalogue abbreviated by NGC followed by a number, etc.

Scaling Relations for Galaxies

Virial Theorem

As we have discussed in Sect. 1.9 that a gas cloud or any other isolated

Figure 1.33 Hubble’s Tuning fork diagram of galaxy classification

dynamical system in equilibrium will satisfy the Virial theorem, 2T + Ω = 0,
where T, Ω are the kinetic energy and potential energy of the system and

T =
∑

i

1

2
mivi

2 or 2T = M < v2 >= Mσ2, where M is the total mass of the

system and σ2 is the mean square velocity. Also,

Ω =
∑

i>j

−Gmimj

|�ri − �rj |

i.e. Ω = −GM
2

rg

where rg is the separations of the stars and hence must represent a charac-
teristic extent of the system. For a spheroidal system 1

rg
= α

Re
where Re is
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the effective radius and α is some constant of order unity. Then the Virial
theorem takes the form,

Mσ2 =
αGM2

Re

i.e. M =
1

α
Reσ

2G−1 = CG−1Reσ
2

which gives an estimate of the gravitational mass of the system if Re and σ
can be estimated. This mass is called Virial mass of the system.

Fundamental Plane

Faber and Jackson (1976) studied the correlation between the luminosities
(L) of elliptical galaxies and their velocity dispersion (σ) and found a relation
of the type,

L

2× 1010L�
�
(

σ

200 km s−1

)4

, 50 ≤ σ ≤ 500 km s−1

This is known as Faber–Jackson relation.

Again luminosity of elliptical galaxies correlates tightly with the effective
radius of the surface brightness profile. This is known as Kormendy relation
which is of the form

L ∞ Re
0.8 or

equivalently Ie∞Re−1.2 (as L∞IeRe2 where Ie is the effective luminosity, i.e.
the surface brightness at Re). Now the above two relations can be combined
into a third relation in the three-dimensional parameters space Re, Ie and σ
as,

Re ∞ σ1.4Ie
−0.83

or Re∞σ5/4Ie
−5/6 or in terms of luminosity, L∞ Ie

−2/3σ5/2 which is known
as the Fundamental Plane (FP) of elliptical galaxies. The Kormendy and
the Faber–Jackson relations are the projections of this FP to the respective
two-dimensional slices. Note that we can deduce L if we can measure σ and
Ie for the corresponding galaxy. Then if we can measure apparent magnitude
hence apparent luminosity we can use the usual inverse square law to deduce
the distance of that galaxy.

Hubble’s Law

In 1929 Edwin Hubble studied the recessional velocities of galaxies and their
distances and published a paper in the “Proceedings of the National Academy
of Sciences” which is the trendsetter of modern observational cosmology. He
concluded that the speed of recession of a galaxy is proportional to its distance
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from us, i.e. if v is the recessional velocity and v << c and D is its distance,
then v∞D, i.e. v = H0D. Here H0 is called the Hubble’s constant. Again
from Doppler’s law we know that v

c = �λ
λ = z(say), i.e. v = cz where z is

the redshift. Here z << 1 (maximum z = 0.003). Here it is to be noted that
for high redshift the distance of a galaxy becomes function of redshift and is
given as

D1 = r1S(to)(1 + z)

where S(to) is the scale factor at present epoch and r1 is the distance of the
galaxy from us when the light left from the galaxy at any epoch t1(say) to
reach us at the present epoch to (say) and then

H(t) =
˙S(t)

S(t)
where H(to) = H0

With this value of D1 the bolometric flux (flux integrated over all wave-
lengths)

Fbol =
Lbol

4πD1
2 =

Lbol
4πr12S2(to)(1 + z)2

where Lbol is the bolometric luminosity.

This reduces to mbol −Mbol = 5 logD1 − 5

where Mbol and mbol are the absolute and apparent bolometric magnitudes
of the galaxy. Now, when the magnitudes are measured using a particular
filter (λ0, say) then an astronomer has to apply corresponding correction to
redshift so that

m(λ0)−M(λ0) = 5 logD1 − 5 +BC

where BC is called the K-correction.

K-Space Parameters

Now, mass to luminosity ratio following Virial theorem and FP is

M

L
∞ σ2Re

σ5/2Ie
−2/3
∞σ−1/2Re(σ

−3/2Re
6/5)

−2/3∞σ1/2Re
1/5

As ellipticals lie close to the FP so by combining parameters it is possible to
find projection which gives exact edge on view of the plane. Thus defining,

k1 =
1√
2

log

(
M

c2

)

=
1√
2

log(σ2Re), where M = c2σ
2Re

k2 =
1√
6

log

(
c1
c2

M

L
Ie

3

)

=
1√
6

log

(
σ2Ie

2

Re

)

where, L = c1IeRe
2
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and k3 =
1√
3

log

(
c1
c2

M

L

)

=
1√
3

log

(
σ2

IeRe

)

it is easy to see that k1 is proportional to the virial mass M, k3 is proportional
to M/L and k1 − k3 plot gives the edge on view of the FP.

Galaxy Formation: Existing Theories

Classical formation of galaxies can be divided into five major categories: (1)
the monolithic collapse model, (2) the major merger model, (3) the multi-
phase dissipational collapse model, (4) the dissipationless merger model (dry
merger) and (5) accretion and in situ hierarchical merging.

According to monolithic collapse model, elliptical galaxies start its life from
the collapse of an isolated massive gas cloud at high redshift. So the colour
distribution of its globular clusters is unimodal and their rotation is produced
by the tidal force from satellite galaxies. Larson (1975), Carlberg (1984),
Arimoto and Yoshii (1987), Peebles (1969) and many more have worked in
support of the above theory. But in most of the giant elliptical galaxies,
bimodality in metallicity cannot be explained by the above theory. So Ash-
man and Zepf (1992), Zepf et al. (2000) and many astrophysicists devised the
“merger theory”. According to merger model, elliptical galaxies are formed
by merger of two or more disc galaxies. Younger globular clusters are formed
out of the shocked gas in the disc while blue metal poor globular clusters
come from halos of the merging galaxies (Bekki et al. 2002). As a result
the colour distribution is bimodal. In this model, the kinematical properties
of the globular clusters depend weakly on the orbital configuration of the
merging galaxies, but metal rich globular clusters are generally located in
the inner region of the galaxy and the metal poor ones in the outer regions.

In spite of over all success of the merger model it suffers from the following
aspects, (1) in merger model the metal rich globular clusters are speculated
to be produced in merger of gaseous discs. So a strong correlation is expected
between mean metallicity of globular clusters and its specific frequency. But
in practice no such correlation exists. (2) In many elliptical galaxies higher
mean metallicity does not reflect the higher proportion of metal rich globular
clusters, moreover (3) the blue peak of metallicity of globular clusters of
NGC 3311, 3923 is redder than halo globular clusters of Milky Way. So
these globular clusters are probably not the globular clusters of original spiral
and (4) specific frequency (SN ) of metal poor globular clusters in M87 is
larger than SN of spiral galaxies. The multiphase dissipational collapse has
been proposed by Forbes et al. (1997). According to this model the globular
clusters form in distinct star formation episodes through dissipational collapse
and there is tidal stripping of globular clusters from satellite galaxies. So we
have blue metal poor globular clusters in initial stage and metal rich globular
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clusters form at a later stage. This produces a bimodality in metallicity. So
blue accreted globular clusters have no rotation but red globular clusters
show rotation depending on the degree of dissipation (Côté et al. 2001).

1.13 Quasars

A “quasar” or “quasi stellar object” is a star like object having large ultra
violet flux of radiation accompanied by generally broad emission lines and
absorption lines in some cases found at large redshift. Some of the quasars
(10 %) are radio-loud.

In the optical region, the continuum spectrum of quasars can crudely be
approximated by a power law of the form, F (ν)∞ν−α, 0.5 ≤ α ≤ 1 in
the colour range −0.8 ≤ U − B ≤ −0.7. So for identifying quasars one
should identify all star like objects having U–B in the above range but the
list is contaminated by white dwarfs. We have mentioned in Sect. 1.3.5 that
redshift of light might occur due to Doppler effect (Doppler shift) or due
to passing of light near a very compact object (gravitational redshift) or
expansion of the universe (cosmological redshift). Now since the redshift of
quasars are generally larger than those of normal galaxies and are similar to
those of seyfert galaxies and active galactic nuclei (AGN) whose redshifts are
believed to be cosmological, the redshifts of quasars are assumed to be of
similar origin.

K-Correction for Quasars

Now observed flux at frequency ν0 from a quasar at redshift z is related to
its luminosity distance DL and luminosity L is given by

F (ν0) =
(1 + z)L(ν0(1 + z))

4πDL
2

where DL for a closed universe (curvature K = +1) is

DL = (c/H0q0
2)[q0z + (q0 − 1)(

√
1 + 2q0z − 1]

H0 is the value of Hubble’s constant at present time to, q0 is the deceleration
parameters (i.e. the rate at which the universe is slowing down its expansion)
at to.

Now if m is the apparent magnitude of the quasar, then

m = −2.5 logF + constant (similar to Eq. (1.21))
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where the constant depends on the filter used in obtaining the flux. Then
substituting F (ν0) in the above relation and using (1.21) and H0 = h100 ×
100 km s−1Mpc−1

m = M + 5 log

{
1

q02
[q0z + (q0 − 1)(

√
1 + 2q0z − 1)]

}

−2.5 log(1 + z) + k(z) + 42.39− 5 log h100

Here, k(z) = −2.5 log
[
L(ν0(1+z))
L(ν0)

]
is called the K-correction. This allows

for the relevant correction so that absolute magnitude corresponds to zero
redshift, i.e. the absolute magnitude is measured in rest frame.

Sample Completeness: V/Vm Method

The V/Vm test was first used by Schmidt (1968) to study the space distribu-
tion of a complete sample of radio quasars from 3cR catalogue.

Let Fm be the limiting flux of a survey. We define two columns, V (r) =
4
3πr

3 and Vm = 4π
3 rm

3 where r is the radial distance to a quasar and rm =
(

L
4πFm

)1/2
is the limiting distance at which flux of a quasar with luminosity

L reduces to Fm. For r > rm, the quasars do not belong to the sample under
consideration. If the quasars are expected to be uniformly distributed, then
V/Vm are uniformly distributed in [0, 1]. Then,

< V/Vm >= 0.5 and σ(V/Vm) =
1√

12N

where N is the number of objects in the sample. Also this is true for galaxies
having distances << c/H0. When the parent population has a very large
density which increases outwards, then < V/Vm >> 1/2.

Luminosity Function of Quasars

This is the distribution of quasars as a function of their luminosity. It is
a segmented power law in the low and high luminosity regimes, fitted by
various authors (Boyle et al. 1991; Warren et al. 1987). The luminosity func-
tion increases with redshift up to z � 2 after which it slows down (Fig. 1.34)
and there is a decline towards higher redshifts. This feature of luminosity
evolution is tried to be explained by various accretion models on a super-
massive black hole (Cavaliere and Padovani 1989; Small and Blandford 1992;
Haehnelt and Rees 1993).
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Active Galactic Nuclei

AGN are the nuclei of some violent activities with high degree of rapid vari-
ation emitting infrared, radio, ultraviolet and X-ray radiation of the electro-
magnetic spectrum. Models of active galaxies primarily rest on the existence
of a supermassive blackhole at the centre of the galaxy and materials which
accrete onto the blackhole release large amount of gravitational energy in
the high energy zone. There are several types of AGN, e.g. seyfert 1 and 2,
quasars and blazars. Most scientists believe that they are practically same
viewed from different directions. For example, Seyfert galaxies have low red-
shift and have galactic envelope and quasars are star like and have no such
envelope. Seyferts have low redshifts whereas quasars have high redshifts
(viz. z > 1). So if a Seyfert is observed at high redshift its galactic envelope
might be very faint to be observed and designated as a quasar. Seyfert 1 has
broad emission lines while Seyfert 2 has narrow emission lines. Blazers are
very bright in the radio band which results looking directly a jet which is
emitting nonthermal radiation. So blazers are not optically luminous.

Figure 1.34 Luminosity functions of quasars (courtesy: Boyle et al. 1991)

1.14 Pulsars

Pulsars are highly magnetized rotating neutron stars emitting electromag-
netic radiation, similar to that of a light house. The radiated beam is ob-
served when it is pointing towards earth. The first pulsar was discovered in
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1967 by Jocelyn Bell Barnell and Hewish while they were observing inter-
planetary scintillation. Subsequently Pacini and Gold established the theory
that the pulsars are rotating neutron stars and not white dwarfs and the
radiation was due to rotation and not due to oscillations with the discovery
of very short period pulsars (33 ms) in Crab nebula. It was also found that
there is an increase in the spinning period (P) of the pulsar due to the brak-
ing of the dipole magnetic field strength. Later a separate class of pulsars
were discovered whose spinning periods are of the order of few milliseconds.
They are called “millisecond pulsars” (MSP). In most cases they are found in
“binary system” and they are comparatively older (108–109 years) compared
to ordinary radio pulsars (107 years). The formation of a pulsar happens
when the core of a massive star contracts as a result of supernova explosion.
Since the core radius is very small, there is a sharp decrease of moment of
inertia. As a result due to the conservation of angular momentum, it is ac-
companied with a very high rotational motion. This rapidly rotating system
with a strong dipolar magnetic field acts as a very energetic source of elec-
tromagnetic radiation in a small cone. The magnetic axis is not aligned with
the rotation axis and this miss alignment causes the “pulsed” nature of the
radiation. The rotation gradually slows down as electromagnetic power is
emitted and thus the birth of an ordinary radio pulsar leads to a death when
the radiation becomes negligibly small. When a neutron star is in a binary
system then the interaction between them occurs through transfer of mass
from the least massive companion (me) to the primary (mp). Binary and
millisecond pulsars are generally speculated to be the precursors of X-ray
binaries. There are two groups of X-ray binaries—high and low depending
on the mass of the companion, mc > 10M� and mc < 2M�, respectively.
High mass X-ray binaries with mc > 10M� are giants and supergiant stars.
In this system the companion star has an extended envelope which in most
cases fills its “Roche lobe” and matter is accreted from this companion to the
primary. The high mass system is eccentric having short orbital period, e.g.
2.1 days (Cen X - 3) and 35 days (1223 - 62) for the strong X-ray sources.
For less massive system the companion is generally WD and of later spectral
type (A, F or G). The neutron stars of these systems are surrounded by an
accretion disc, fed by the outflow of matter from the companion. The orbit is
more or less circular having long orbital period. In both cases, mass transfer
occurs from the companion to the primary. As a result the orbital angular
momentum is transferred to spin of the primary through accretion and the
spin period of the primary decreases to the order of milliseconds. Sometimes
the orbit might collapse as a consequence of gravitational radiation losses. It
is an NS–WD pair, the WD will be disrupted and a part of it mass will be
accreted by the NS. As a result a rapidly rotating solitary pulsar will emerge
(van den Heuvel and Bonsema 1984) (Fig. 1.35). The present pulsar catalog
can be found at www.atnf.csiro.an/people/pulsar/psrcat/.

www.atnf.csiro.an/people/pulsar/psrcat/
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Figure 1.35 P–Ṗ diagram of ATNF pulsars

If ω and M is the angular velocity and mass of a pulsar then ω2r = GM/r2.

So the spin period P = 2π
w =

(
3π
Gρ

)1/2
where M = 4

3πr
3ρ and ρ is the mean

density. The characteristic age of a pulsar is τc = 1
2
P
·
P

. The mass function

of a binary pulsar is defined as f(mP ,mc, i) = 4π2

G
a3 sin3 i
Porb

= mc
3 sin i

(mP+mc)2
where

a is the length of semi major axis of the elliptic orbit, Porb is the orbital
period, i is the inclination of the plane of the orbit to the observer. From
spectroscopic Doppler shift measurement i cannot be measured but instead
the analysis gives a value of sin i. So if Porb is measured then f(mP ,mc, i)
is found easily from which an estimate of the mass range of the companion
can be found for a value of mP . The magnetic field strength of a pulsar is

related to P,
·
P as,

B =

(
3c3

8π2

I

R6 sin2 α
P

·
P

)1/2

where α is the angle between magnetic axis and rotation axis, I is the mo-
ment of inertia of the NS, R is the size of the NS and c is the speed of
light. For a typical NS, I = 1045 g cm2, R = 10 km and assuming α = 90◦,
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B = 1012 G

( ·
P

10−15

)1/2
(
P
s

)1/2
. In spite of the great advancement in pulsar

astronomy many questions are yet to be answered regarding their population
characteristics in Galaxy, Globular clusters, magnetic field decay in solitary
neutron stars, minimum or maximum spin periods of radio pulsars, correla-
tion between core collapse in supernovae and neutron star birth rate prop-
erties, pulsar–blackhole binaries, emission mechanism of pulsar radio beam,
shape of radio beam, role of propagation effects in pulsar magnetospheres and
composition of neutron star atmospheres and their interaction with magnetic
fields, etc.

1.15 Gamma Ray Bursts

Gamma ray bursts (GRBs) are intense flashes of gamma rays, lasting for tens
of seconds and are the most spectacular astronomical objects to be explored
yet. GRBs were first observed in the late 1960s by military satellites and
the results were published in 1973 with data from Vela satellites (Klebesadel
et al. 1973). First it was assumed that GRBs have no traces in other wave-
lengths and there was confusion about their sources. But the observations of
some GRBs showed X-ray signals and subsequently optical and radio wave-
lengths in their after glows. This helped to measure the redshift distances
which confirmed that GRBs are of cosmological origin at distances of the
order of millions of light years away, similar to distant galaxies and quasars.
At this distance the energy varies in the range 1015–1054 ergs, larger than
that of any other astronomical source. The major advancement in the explo-
ration of GRB phenomena occurs after the launch of Compton Gamma-Ray
Observatory (CGRO) and the Burst and Transient Experiment (BATSE) on-
board CGRO. With that attempt almost 3,000 GRBs are known today. They
are isotropically distributed with no dipole or quadruple components. This
suggests a cosmological distribution. The spectra of GRBs are nonthermal
with a power law pattern, ∼∈−α where α is 1 at low energy and increases
to 2–3 above photon energy ∼0.1–1MeV. Depending on the duration GRBs
can be classified into short (≤2 s) and long bursts (>2 s) though in recent
multivariate approach an intermediate class (Chattopadhyay et al. 2007) has
been suggested. Several models of GRBs have been suggested on the basis
of its high energy. Primarily the high energy and casuality suggest that the
source is confined in a region whose size is of the order of kilometres in a time
scale of the order of seconds. So a fire ball of (e±, γ) forms, which expands
relativistically.

The difficulty with this is that such a fire ball immediately converts the
energy into kinetic energy of the baryons and produces a quasi-thermal spec-
trum instead of increasing the luminosity and this occurs within a time scale
of the order of milliseconds. So a “fire ball shock model” is introduced which
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explains that as soon as the fire ball becomes transparent, a shockwave will
occur in the outflow which reconverts the kinetic energy of expansion to non-
thermal particle and radiation energy. In Fig. 1.35 the observed light curves
of the afterglow of GRB 9702228 at various wavelengths have been compared
with the predicted fire ball shock model. The GRB radiation, starting with
γ-ray range during the burst subsequently radiates into X-rays, UV, opti-
cal, IR and radio in its afterglow. Though the mechanism of the bursts is
somewhat explained the progenitors of GRB are not well identified so far.
The current theories existing so far conjectured that a very small fraction of
stars ∼10−6 give rise to GRBs. One category includes massive stars whose
core collapses and it releases huge amount of energy when it merges with a
companion, termed hypernova or collapser and another category is a neu-
tron star–neutron star (NS) or a neutron star–black hole (BH) binary system
which loses orbital angular momentum, releases gravitational energy during
the merger. Both these systems finally end in a BH and the debris form a
torus surrounding the BH. The accretion of debris material onto the BH un-
dergoes a sudden release of gravitational energy comparable to the observed
ones. The current effort is to devise a proper understanding of the progenitor
scenarios, i.e. how the progenitors along with its environment can give rise
to the observable bursts and afterglow characteristics.

Appendix

Transformation matrices T for various co-ordinate systems are as follows:

From (α, δ) 1950.0 to (α, δ) 2000.0.

T =

⎛

⎜
⎜
⎜
⎜
⎝

0.9999257453 −0.0111761178 −0.0048578157

0.0111761178 0.9999375449 −0.0000271491

0.0048578157 −0.0000271444 0.9999882004

⎞

⎟
⎟
⎟
⎟
⎠

From (α, δ) 2000.0 to galactic (l, b)

T =

⎛

⎜
⎜
⎜
⎜
⎝

−0.0548808010 −0.8734368042 −0.4838349376

0.4941079543 −0.4448322550 0.7469816560

−0.867666568 −0.1980717391 0.4559848231

⎞

⎟
⎟
⎟
⎟
⎠



86 1 Introduction to Astrophysics

From (α, δ) 2000.0 to supergalactic (l, b)

T =

⎛

⎜
⎜
⎜
⎜
⎝

0.3751891698 0.3408758302 0.8619957978

−0.8982988298 −0.957026824 0.4288358766

0.2286750954 −0.9352243929 0.2703017493

⎞

⎟
⎟
⎟
⎟
⎠

From galactic (l, b) to (α, δ) 2000.0

T =

⎛

⎜
⎜
⎜
⎜
⎝

−0.0548808010 0.49410795443 −0.8676666568

−0.8734368042 −0.4448322550 −0.1980717391

−0.4838349376 0.7469816560 0.4559848231

⎞

⎟
⎟
⎟
⎟
⎠

From galactic (l, b) to supergalactic (l, b)

T =

⎛

⎜
⎜
⎜
⎜
⎝

−0.7353878609 0.6776464374 0.0000000002

−0.0745961752 −0.0809524239 0.9939225904

0.6735281025 0.7309186075 0.1100812618

⎞

⎟
⎟
⎟
⎟
⎠

From supergalactic (l, b) to (α, δ) 2000.0

T =

⎛

⎜
⎜
⎜
⎜
⎝

0.3751891698 −0.8982988298 0.2286750954

0.3408758302 −0.0957026824 −0.9352243929

0.8619957978 0.4288358766 0.2703017493

⎞

⎟
⎟
⎟
⎟
⎠
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From supergalactic (l, b) to galactic (l, b)

T =

⎛

⎜
⎜
⎜
⎜
⎝

−0.7353878609 −0.0745961752 0.6735281025

0.6776464374 −0.0809524239 0.7309186075

0.0000000002 0.9939225904 0.1100812618

⎞

⎟
⎟
⎟
⎟
⎠

Exercise

1. Find the mass of a galaxy if its velocity is known.
[Hint. use Virial Theorem 2T + V = 0]

2. What is the wavelength chosen by a radio telescope and why?

3. What is the wavelength of emission line of HeII from a transition ni = 5
to nf = 2?
[Hint. 1

n2
f
− 1

n2
i

= 91.16 nm
Z2λ , Z being the atomic number of He]

4. A galaxy moves towards the observer with a velocity of 1,500 km s−1.
What will be the shift of first Balmer line (Hα) in the spectrum? Given
Hα = 6, 563 Å.
[Hint. Δλ

λ = vr
c ]

5. Show that Lyman series limit lies between 911.25 and 1,215 Å. Given
I.P of hydrogen atom is 13.6 eV.
[Hint. 1

λ(cm) = 109740( 1
n2
f
− 1

n2
i
]

6. Compute the fraction of calcium atoms in the first ionized state at
T = 15,000 K, Pe = 400 dynes cm−2. For calcium log 2u1

u0
= 0.18.

7. Derive Wien’s displacement law from Planck’s law. How is it different
from the case hν = kT—why?

8. What is the ratio of energies emitted by two stars of same size having
surface temperatures at T = 15,000 K and 5,000 K, respectively?

9. How long a star can shine if its mass and luminosity are M = 100 M�
and L = 106L�, if initially it is composed of pure hydrogen? Given
that the efficiency to convert H to He is 0.7 %.
[Hint. Time = Total Energy/Luminosity]

10. Consider a cloud of molecular hydrogen with T = 10 K, n = 106 cm−3.
What is the minimum mass for gravitational collapse and compute the
time scale for it. Given mH = 1.67× 10−24 g cm−3.

[Hint. MJ = 1023(Tμ )
3
2 ρ

− 1
2

0 g]

11. Calculate the time taken by light from a star with parallax p = 0
′′
.75

to reach Earth.
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12. The apparent magnitude of a star is +3.5 and its parallax is 0
′′
.025.

What are its absolute magnitude and luminosity?

13. Show that a massive has a much shorter life than Sun.

14. Using the principle of hydrostatic equilibrium find the central pressure
of a star in terms of its mass and radius.

15. Compute the mass of an elliptical galaxy having a typical velocity
350 km s−1 and radius 10 kpc.
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Chapter - 2

Introduction to Statistics

2.1 Introduction

Statistical tools and techniques play a major role in many areas of science
like biology, economics, physics etc. In particular, a systematic development
in statistical methodology for biological problems started long back and con-
stituted a new area of biostatistics. Compared to biology, the rate of progress
in the development of statistical techniques for physical science is very slow.
The reason may be due to lack of interaction between Physicists and Statisti-
cians. In areas like Astronomy and Astrophysics the application of sophisti-
cated statistical analysis is a comparatively recent phenomenon. Astronomy
is the science to study the different features of planets, stars, galaxies and
the universe as a whole. Astrophysicists try to model observed astronom-
ical properties by using laws governing physical process. The problem is
to make inference for the underlying properties on the basis of observations
related to a few external characteristics. During the past two decades the
inter-disciplinary field of astrostatistics has newly emerged in order to study
important astrophysical issues through appropriate statistical analysis. With
the advancement of technology, at present several data archives have been
prepared which contain tera bytes of astronomical data. Statistical analy-
sis of these high dimensional large data sets is a challenging problem and a
good solution can be obtained only through interaction among Astronomers,
Statisticians and Computer Scientists.

The subject statistics (in singular sense) is concerned with the collection
of data and with their analysis and interpretation. Data may be of two
types, viz. real life and simulated. For situation where it is difficult or even
impossible to collect direct observations, one can take help of simulated data
generated from some conceived probability model. One can take help of
simulation to study the formation of stars and galaxies.

In order to prepare the proper data set (simulated or real life), the final
task is to identify the significant parameters (in statistics these are called
variables) which are actually responsible for variation in the data. For astro-
nomical objects, the commonly used variables (parameters) are luminosity,
magnitude, mass, redshift, etc.

© Springer Science+Business Media New York 2014
A.K. Chattopadhyay, T. Chattopadhyay, Statistical Methods
for Astronomical Data Analysis, Springer Series in Astrostatistics 3,
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2.2 Variable

2.2.1 Discrete-Continuous

Variables are classified as discrete or continuous according to the nature of
values they take. Theoretically a variable is said to be discrete if it takes
values from a finite and usually small domain (set of values it takes). The
values are usually, by nature, integers. In particular, a variable taking only
two possible values can be defined as a binary variable. For example, number
of misprints per page in a book, the presence or absence of bar in a galaxy,
etc. are discrete variables.

Continuous variable can take infinite number of values from a large domain.
For example, day temperature, luminosity, mass, etc. are continuous
variables.

Practically variables are classified as discrete or continuous according to
the number of values they can take. Due to precision limitation of measur-
ing instruments actual measurement of a variable always occurs in a discrete
manner. Variables which can take lots of values are usually identified as con-
tinuous whereas variables taking fewer values are identified as discrete. The
actual distinction should be done on the basis of the nature of the variables
which may not be known, in particular, for astronomical variables.

2.2.2 Qualitative–Quantitative

Variables for which the different states are not primarily determined by num-
bers are called qualitative whereas variables that do have numerical distance
between any two values are called quantitative. For example, favourite type
of music (classical, semi-classical, modern, etc.), colours of astronomical ob-
jects, etc. are qualitative and functional life of a computer CPU, distance of
an astronomical object, etc. are quantitative.

For qualitative variables, there is a separate branch of statistical anal-
ysis known as categorical data analysis although this includes also ordered
categories (ordinal variables).

Most of the statistical analysis are meant for quantitative variables.
Among them techniques like correlation and regression, parametric and non-
parametric inference, multivariate analysis, Monte Carlo simulation, Bayesian
analysis, time series analysis, directional data analysis, etc. are very much
important for the proper analysis of astronomical data.
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2.2.3 Cause and Effects

The distinction between cause (explanatory or independent variable) and
effect (response or dependent variable) is very much important for different
types of regression analysis. For example, in order to predict wheat yield
(effect), the independent variable can be chosen as minimum and maximum
temperature, daily rain, evaporation from basin, sun hours, etc. But there
may be situation where it is difficult to distinguish between the cause and
effects as their inherent natures are not known. This is particularly important
for astronomical variables (parameters). For early type galaxies there is linear
relation among three parameters, viz. effective radius (re), central velocity
dispersion (σ) and surface brightness average over effective radius (< μe >)
given by

log re = a log σ + b < μe > +c

known as the fundamental plane. But here the dependent and independent
variables are not known and astrophysicists try to predict any one of them
on the basis of the other two. Since this is not possible by ordinary least
square regression, some alternative methods have been developed. For two
variables, methods like bisector regression or orthogonal regression may be
used.

2.3 Frequency Distribution

In statistics frequency distribution is a tabular presentation of the original
raw data in order to study the concentration of the values over different
intervals of the total range. We initially subdivide the total range of the
values into a number of intervals (this number should be properly chosen)
and then compute the frequency (i.e. the number of observations belonging
to) of each class. Such a representation will help us to study the following
inherent features of the data.

2.3.1 Central Tendency

This feature is the most widely used among all other features of a frequency
distribution. Central tendency relates to the way in which quantitative data
tend to cluster around a central value. This feature always helps us to rep-
resent a total data by a single value as it is supposed to be a representative
of the entire data set. So, a proper measure of central tendency should be so
chosen that it reflect the average nature of the values. Some of the common
measures of central tendency are mean, medium and mode. Among them
arithmetic mean is the most popular as for most data it is a best representa-
tive. But when there are some unusual objects in the data sets, whose values
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are widely different from most of the values (known as outliers), median,
being the middle most value, should be preferred over mean as the mean is
very much affected by the outlier. For open ended data sets also median is a
possible measure of central tendency. There are also a few situations where
mode is the only possible measure of central tendency. If somebody is inter-
ested to know average preference of people for a car size, then mode is the
only option as car sizes are of some fixed values and mode is that size which is
preferred by the maximum number of persons. For astronomical data usually
mean and median are the two possible measures of central tendency.

2.3.2 Dispersion

Statistical dispersion determines the variability or spread in a variable (pa-
rameter). This is also known as variation. Dispersion is a very important
concept as it indicates the amount of scatter present in a data set. Generally
a good data set is expected to have less scatter and more central tendency.
The most common and useful measure of dispersion is the variance (or stan-
dard deviation = +

√
variance). Some other possible measures are the mean

deviation and range. General form of the measures variance and mean devi-
ation are given by

Mean square deviation about A =
1

n

n∑

i=1

(xi −A)2 (2.1)

and Mean deviation about A =
1

n

n∑

i=1

|xi −A| (2.2)

respectively, where (x1, x2, . . . , xn) is a set of n values of the variable
(parameter) and A is any measure of central tendency. In particular when

A is equal to the arithmetic mean x̄ = 1
n

n∑

i=1

xi, the Mean square deviation

reduces to variance and the mean deviation about A reduces to mean devia-
tion about mean. Standard deviation of a sample estimate corresponding to
a population parameter is used to measure the amount of error involved in
that estimate as a good estimator.

2.3.3 Skewness

Skewness describes the degree of departure of a frequency distribution from
symmetry. A distribution which is not symmetrical is called asymmetrical or
skewed. Positive skewness implies that the longer tail of the distribution is
towards the higher values and negative skewness compounds to the situation
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where the longer tail is towards the lower values of the parameter (variable)
under study. For a unimodal symmetric distribution, the values of mean,
median and mode are equal. If the distribution is positively skewed mean >
median > mode and for a negatively skewed distribution mean < median <
mode. Hence one can consider the following coefficients as possible values of
skewness.

sk1 =
(mean−mode)

sd
(2.3)

sk2 =
3(mean−median)

sd
(2.4)

sk3 =
(Q3 −median)− (median−Q1)

Q3 −Q1
(2.5)

where Q1 and Q3 are the first and third quartiles of the distribution.

Two other possible measures are
β1 = μ2

3/μ
3
2 and

γ1 =
√

(β1)
where μ2, μ3 and μ4 are second, third and fourth population central moments.

All odd ordered central moments are zero for a symmetric distribution,
positive for a positively skewed distribution and negative for a negatively
skewed distribution. It may also be noted that variance is the second order
central moment.

2.3.4 Kurtosis

Another method of describing a frequency distribution is to specify its degree
of peakedness or kurtosis. This is measured by

β2 = μ4/μ2
2 or

γ2= β2-3

2.4 Exploratory Data Analysis

Distinguished statistician J.W. Tukey described exploratory data analysis
(EDA) as the future of data analysis. EDA is an approach for data analysis
that uses a number of techniques (mostly graphical) to explain the underlying
structure of a data set, extract important variables, detect outliers and many
other features. Unlike confirmatory analysis, EDA does not consider any



96 2 Introduction to Statistics

assumption regarding the underlying model but allows the data to reveal
its underlying structure and model. Under EDA, the graphical techniques
include either plotting of raw data or plotting of simple statistics. Some of
these plots can be described as follows.

2.4.1 Histogram

Histogram (Fig. 2.1) is a graphical display of tabulated frequencies. It is a
graphical version of a table which shows the proportion of cases fall into
each of several specified categories. The categories are usually specified as
non overlapping intervals of some variable. The bars must be adjacent. The
matter of selecting the number of categories (or bins) to be used in the
histogram is not trivial. The choice of the width of a bin is also subjective.
Although a histogram can be very useful for examining the distribution of a
variable, the graph can differ significantly depending on the number of bins
used. As an alternative one may use nonparametric density estimation which
is an attempt to estimate the probability density function of a variable based
on the sample. It can also be considered as a way of averaging and smoothing
the histogram. According to this method, the kernel (weight function) density
estimator, corresponding to a random sample x1, x2, . . . , xn with a density
function f is given by

f(x, h) =
1

nh

n∑

i=1

k

(
x−Xi

h

)

(2.6)

with kernel k and bandwidth h. Both the kernel function and bandwidth
must be specified by the methodologist. For convenient mathematical prop-
erties, the standard normal density is often is used as the kernel density
function k. The bandwidth of the kernel is a free parameter and exhibits a
strong influence on the resulting estimate. Several attempts have been made
to find the optimum value of the bandwidth.

2.4.2 Box Plot

A box plot (Fig. 2.2), also known as box-and-whisker plot is a method of
displaying data invented by John Tukey. Under this method, draw a box with
ends at the first (Q1) and third quartiles (Q3). The width of the box may
be arbitrary. Draw the median as a horizontal line in the box. Then extend
the whiskers to the furthest points that are not outliers. These two points
denoted by L1 and U1 (inner fence in Fig. 2.2) can be calculated by using the
relations L1 = Q1− 1.5Q and U2 = Q3 + 1.5Q, where Q = (Q3−Q1) = IQR
(in Fig. 2.2). Any point below L1 and above U1 may be treated as an outlier.
Such a plot also helps to know about the skewness of the distribution by
depending on the position of the median line. Under some modification, one
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Figure 2.1 Histogram of temperature values corresponding to 111 selected
points for an environmental pollution survey

may also further extend the whiskers to the points L2 and U2 (outer fence
in Fig. 2.2) given by L2 = Q1 − 3Q and U2 = Q3 + 3Q. Points in between
L1 and L2 or U1 and U2 may be considered as suspected outliers and points
above U2 and below L2 may be considered as confirmed outliers.

Figure 2.2 Upper part of a Box plot

2.5 Correlation

Correlation is a statistical technique which can show whether and how strongly
pairs of variables are related. For example, height and weight of a group of
persons, central velocity dispersion and surface brightness average over effec-
tive radius of galaxies, etc. are correlated variables. Correlations works for
data in which numbers are meaningful. It cannot be used for categorical data
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such as colour and gender. By correlation we usually mean linear correlation.
So any such measure does not reflect any non linear relationship.

Given n pairs values (xiyi) i = 1, 2, . . . n, corresponding to two jointly
distributed random variables (X,Y ), the correlation coefficient (also called
Pearson’s product moment correlation coefficient) is given by

r =

n∑

i=1

(xi − x̄)(yi − ȳ)

√√
√
√

n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

(2.7)

It ranges from −1.0 and +1.0. The closer is r to +1 or −1, the more closely
the two variables are related. A zero value of r indicated that there is no
linear correlation. The square of the coefficient (i.e. r2) is equal to the percent
of the variation of one variable that is related to the variation in the other.
An r-value of 0.6 means 36 % of the variation is related.

While working with correlations one must be careful about spurious cor-
relation. Over the last few years sales of mobile phones and half cooked
foods have both risen strongly and there is a high correlation between them
but one cannot assume that buying mobile phones causes people to buy half
cooked foods. These are called spurious correlations. The correlation coeffi-
cient can also be viewed as the cosine of the angle between the two vectors
of observations. But this method only works with centred data, i.e. the data
which have been shifted by the sample mean so as to have an average of zero.
According to this concept, the correlation between two variables x and y is
given by

cos θ =
x.y

||x|| ||y||
x and y are the observation vectors of the centred data and ||x|| and ||y||
correspond to their lengths, respectively.

2.5.1 Scatter Plot

The simplest mode of a diagrammatic representation of bivariate data is
the use of scatter plot (or XY plot). Taking two perpendicular axes of co-
ordinates, one for x and other for y, each pair of values is plotted as a point on
graph paper. The whole set of points taken together constitutes the scatter
diagram. This method is not very suitable when the number of individuals is
very large. If it is found that as one variable increases, the other also increases
on the average, the two variables are said to be positively correlated. On the
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other hand, as one variable increases, the other may decrease on the average,
then the two variables are said to be negatively correlated. A third situation
corresponds to the case where if one variable increases or decreases, the other
remains constant on the average. Such a situation may be interpreted as zero
correlation (or no linear correlation).

2.6 Regression

Regression analysis is the statistical methodology for predicting values of one
or more response (dependent) variables from a single or collection of predictor
(independent) variables. It can also be needed for assessing the effects of the
predictor variables on the responses. The name “regression” has been intro-
duced by F. Galton. While correlation investigates the interrelation between
pairs of variables, regression corresponds to the effect of the independent vari-
able on the dependent variable. In the simplest situation with one dependent
(y) and another independent (x) variable, the relationship between y and x
has to be expressed in a mathematical form. If it is possible to assume a
linear relationship, the approximate relation may be represented by

y = a+ bx (2.8)

where the constants a and b have to be estimated from the observed data.
Given the n paired values of x and y denoted by (xi, yi) i = 1, . . . , n, the
above line gives an estimate of yi as

Yi = a+ bxi (say) (2.9)

The difference (yi−Yi) is the error of estimate for the ith pair. The values of
a and b should be such that these errors of estimate are as small as possible.
For this, for estimating a and b from the observed data, the least square
method is used which consists in minimizing the sum of squares of the errors
of estimation. Hence the problem is to choose a and b in such a way as to
minimize

s2 =
∑

i

(yi − Yi)2

=
∑

i

(yi − a− bxi)2 (2.10)

One has to minimize s2 with respect to a and b to get the estimates of a and b.
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The estimated values of a and b can be obtained by solving the simulta-
neous normal equations

∂s2

∂a
= 0 and

∂s2

∂b
= 0

which lead to the equations.

∑

i

yi = na+ b
∑

i

xi (2.11)

and
∑

i

xiyi = a
∑

i

xi + b
∑

i

xi
2 (2.12)

The final estimated values are given by

b =
n
∑
xiyi − (

∑
xi)(
∑
yi)

n
∑

i

xi
2 −
(
∑

i

xi

)2 (2.13)

= r
sy
sx

(2.14)

and a = ȳ − bx̄ (2.15)

As a result, the desired predicted formula is given by

y = ȳ + r
sy
sx

(x− x̄) (2.16)

and is known as the regression equation of y on x. Regression, in general, is
the problem of estimating a conditional expected value.

Linear regression is called linear because the relation of the response (de-
pendent) to the explanatory variable(s) is assumed to be a linear function of
some unknown constant parameters like a and b.

The model
yi = a+ bxi + cxi

2 (2.17)

is again a linear regression model even though the graph is not a straight
line.

In non linear regression the observational data are modelled by a function
which is a non linear combination of model parameters and depends on one
or more dependent variables. For example,

yi =
axi
b+ xi

(2.18)
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is a non linear model because it cannot be expressed as a linear combination
of a and b.

Multiple Regression

Suppose there are p parameters (variables) like absolute Blue magnitude
(MB), maximum rotation velocity (Vmax), central density of the halo from
the best-fit mass model (ρ00), central surface brightness (μ0), core radius of
the halo (Re), etc. for a number of spiral galaxies and we want to predict
one of them on the basis of the others. Such a problem may be considered
under multiple regression technique. Suppose there are p variables denoted
by x1, x2, . . . , xp where x1 is dependent and of primary interest and we want
to study how x2, x3, . . . , xp jointly influence x1. Here the idea is to build
up a relationship between the dependent variable x1 and the independent
variables x2, . . . , xp. Suppose then it is possible to establish an approximate
relation of the form

x1 = b1 + b2x2 + b3x3 + . . .+ bpxp

Then by the least square method the estimates of the constants are given by

bj = −R1j

R11

s1
sj

for j = 2, 3, . . . p

and b1 = x̄1 −
p∑

j=2

R1j

R11

s1
sj
x̄j

where x̄j and sj are the mean and standard deviation of the jth variable
xj , R is the determinant of the symmetric correlation matrix

⎛

⎜
⎜
⎜
⎜
⎝

1 r12 . . r1p
r21 1 . . r2p
. . . . .
. . . . .
rp1 rp2 . . 1

⎞

⎟
⎟
⎟
⎟
⎠

and Rij is the cofactor of rij in R.

Hence the multiple regression equation (also known as prediction equa-
tion) is given by

X1 = x̄1 − R12

r11

s1
s2

(x2 − x̄2) . . .− R1p

r11

s1
sp

(xp − x̄p)

The coefficient bj is called the partial regression coefficient of x1 on xj for
fixed x2, . . . , xj−1, xj+1, . . . , xp.
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2.7 Multiple Correlation

In order to study the dependence of x1 on a set of independent variables
x2, . . . , xp, we actually try to evaluate the influence of x2, . . . , xp on x1. This
may be computed by the simple correlation between x1 and the predicted
value of x1 on the basis of x2 . . . xp, denoted by X1.23...p, given by the multiple
regression of x1 on x2 . . . xp. It is called the multiple correlation coefficient
of x1 on x2 . . . xp and is denoted by r1.23...p. By starting from the simple
formula of Pearson’s product moment correlation coefficient (2.7), this can
be derived as

r1.23...p =

(

1− R

R11

)1/2

The only difference with the simple correlation coefficient is that r1.2...p lies in
between 0 and 1 instead of −1 to 1 as the covariance between x1 and X1.2...p

is at the same time the variance of X1.23...p, which has to be non-negative.
r1.2...p may also be regarded as a measure of the efficiency of the multiple
regression equation.

2.8 Random Variable

A random variable may be crudely defined as the value of a measurement
associated with an experiment. For example, the number of sun spots per
year may be treated as a random variable.

Definition: A random variable over a sample space is a function that maps
every sample point (i.e. outcome of an experiment) to a real number.

Like ordinary variables, random variables also may be of two types, discrete
and continuous. The most general way to express the nature of distribution
a random variable is to compute the cumulative distribution function (c.d.f)
defined as

F (x) = P [X ≤ x]

Probability mass function (p.m.f) in case of discrete variables and probabil-
ity density functions (p.d.f) in case of continuous variables are also used to
describe the distribution of a random variables. Such functions give the prob-
abilities associated with the different values or range of values of the random
variable.

For a discrete variable (X), the pmf and cdf are defined as below. The pmf
is defined as

fX(x) = P [X = x]



2.8 Random Variable 103

where f(x) ≥ 0 and
∑

x

f(x) = 1, the sum being taken over all values of

x having positive probabilities, known as the mass points of X . The cdf is
defined as

FX(x) =
∑

X≤x
f(x)

For a continuous random variable, the pdf f(x) is defined as
∫ b

a

f(x)dx = P [a < X < b]

Hence the function f itself has to be continuous or at least piece-wise contin-
uous and the probability for X to take any particular value x must be zero.

Here also f(x) ≥ 0 and
∫
R f(x)dx = 1 where R is the domain of the

possible values of x.

2.8.1 Some Important Discrete Distribution

Some discrete distributions which may be used as possible models for mod-
elling astronomical parameters are as follows.

1. Binomial Distribution

Suppose there are n objects in the sky and we introduce a variable

ui = 1 if the object is a planet

= 0 otherwise

Then the variable X =
n∑

i=1

ui = number of objects which are planets

out of n objects.

Technically, if we denote the event of an objects being a planet by
“success” and if it is known that the probability that an object will be
a planet in the sky is p, then X denotes the number of successes out
of n experiments (known as trials) with success probability for each
trial being p (which is constant). If we further assume that the trials
are independent, i.e. “the event that a particular object is planet” is
independent of the event that “another object is a planet”, then the
distribution of the random variable X is given by the pmf

f(x) =

(
n
x

)

pxqn−x x = 0, 1, . . . n (2.19)
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Such a distribution is known as a binomial distribution. Here n is
a positive number, 0 < p < 1 and q = 1 − p. This distribution is
determined by two unknown constants n and p, which are known as
the parameters of the distribution.

Clearly, f(x) ≥ 0 for all x and

n∑

x=0

f(x) = (q + p)n = 1.

The first four moments of this distribution are given by

μ1
′ = mean = np

μ2 = variance = npq (2.20)

μ3 = npq(q − p)
μ4 = 3n2p2q2 + npq(1− 6pq)

This distribution is symmetrical, positively skew or negatively skew
according as p = 1/2, p < 1/2 and p > 1/2.

2. Poisson Distribution

Consider a steady celestial source of constant luminosity that pro-
duces on the average a finite number of counts in a detector every
second. The photons do not arrive with equal intervals. The average
rate of arrival is controlled by a fixed probability of an event occur-
ring in some fixed interval of time. There is some chance of an event
occurring in every millisecond, but no certainty that the event will
indeed arrive in any specific millisecond. This randomness leads to a
variation in the number of counts detected in successive intervals. If
we denote by X the number of counts in a particular interval, then
X is said to follow a Poison distribution with pmf

f(x) =
e−λλx

x!
x = 0, 1, 2, . . . ,∞ (2.21)

where f(x) ≥ 0 and

∞∑

x=0

f(x) = 1

This distribution is determined by the only parameter λ.

The first four moments of this distribution are

μ1
′ = mean = λ

μ2 = variance = λ (2.22)

μ3 = λ

μ4 = 3λ2 + λ
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So, this distribution has the special property that the mean is equal
to the variance.

The distribution is positively skew and leptokurtic.

3. Negative Binomial Distribution

The galaxy count-in-cell distribution characterizes the location of
galaxies in space. It includes statistical information on voids and
other underdense regions, on clusters of all shapes and sizes, on fil-
aments, on counts of galaxies in cells of arbitrary shapes and sizes
randomly located, etc. It can be shown that the overall galaxy count-
in-cell distribution agrees with the negative binomial distribution.

The set-up of negative binomial is same as that of a binomial, i.e.
there are a number of repeated trials which have only two outcomes
(“success” and “failure”) with constant probability of success (or fail-
ure) for each trial denoted by p and the trials are independent. Sup-
pose the experiment is continued until r successes occur where r is
specified in advance. Let us denote by X the total number of trials
required to produce r successes. Then the pmf of the distribution of
X is given by

P [X = x] =

(
x− 1
r − 1

)

pr(1 − p)x−r x = r, r + 1, . . .∞ (2.23)

The negative binomial distribution can also be defined in an alterna-
tive manner. Let us denote by Y the number of failures before the
rth success. Then Y = X − r and the alternative pmf is given by

f(y) = P [Y = y] =

(
r + y − 1

y

)

pr(1 − p)y y = 0, 1, 2, . . .∞ (2.24)

We will use the form (2.24).

Here also, f(y) ≥ 0 and

∞∑

x=0

f(y) = 1

The first four moments are given by

μ1
′ =

r(1 − p)
p

μ2 =
r(1 − p)
p2

(2.25)

μ3 =
r(p− 1)(p− 2)

p3
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μ4 =
r(1 − p)(6− 6p+ p2 + 3r − 3pr)

p4

This distribution is positively skew and leptokurtic.

4. Uniform Distribution

Uniform distribution will occur in practice if, under the given experi-
mental conditions, the different values of the random variable become
equally likely. A simple way to uniformly distribute points on sphere
is called the “hypercube rejection method”. To apply this to a unit
cube at the origin, choose co-ordinates (x, y, z) each uniformly dis-
tributed on the interval [−1, 1]. If the length of this vector is greater
than 1, then reject it, otherwise normalize it and use it as a sample.
By choosing uniformly distributed polar co-ordinates θ(0 < θ < 360)
and φ(0 < φ < π/2), if the poles lie along the z-axis then the position
on a unit hemisphere is

x = cos(
√
φ) cos(θ)

y = cos(
√
φ) sin(θ) (2.26)

z = sin(
√
φ)

A whole sphere is obtained by simply randomizing the sign of z.

The p.m.f of a uniformly distributed random variable X over (a, a+
(k − 1)h) is given by

f(x) = 1
k where x = a, a+ h, . . . , a+ (k − 1)h

Clearly, f(x) ≥ 0 for all x

and
∑

x

f(x) = k × 1

k
= 1

The first four moments are given by

μ1
′ = a+

h(k − 1)

2

μ2 = h2
(k2 − 1)

12
(2.27)

μ3 = 0

μ4 =
h4

240
(k2 − 1)(3k2 − 7)

The distribution is symmetrical and highly platykurtic.
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2.8.2 Some Important Continuous Distributions

Some important continuous type theoretical distributions that can be used
to model Astronomical parameters and phenomenon are as follows:

1. Pareto (Power law) distribution

When the probability of measuring a particular value of some quan-
tity varies inversely as a power of that value, the quantity is said to
follow a power law or Zipf’s law or the Pareto distribution. Mass
density of stars in a star cluster follows the power law.

If X is a random variable with a Pareto distribution, then the prob-
ability density function of X is given by

f(x) =
αxm

α

xα+1
xm < x <∞ (2.28)

where xm (positive) is the minimum possible value of X and α is a
positive constant. For this distribution

Mean =
αxm
α− 1

for α > 1

Median = xm
α
√

2

Mode = xm (2.29)

Variance =
xm

2α

(α− 1)2(α− 2)
for α > 2

Skewness =
2(1 + α)

α− 3

√
α− 2

α
for α > 3

Depending on the value of α, the mean, variance and higher moments
may not exist in some situation.

2. Normal distribution

Normal probability distribution, also known as Gaussian distribution
refers to a family of distributions that are bell shaped.

Gaussian function approximates the shapes of many observables in
astronomy, such as the profiles of seeing disks, the width of spectral
lines and the distribution of noise in radio receivers. In error analysis,
the Gaussian distribution is often used to determine the significance
of a measurement is the presence of noise.
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The distribution is defined by the probability density function

f(x) =
1√
2πσ

e−
1

2σ2 (x−μ)2 ,−∞ < x <∞ (2.30)

The first four moments are given by

μ1
′ = μ

μ2 = σ2 (2.31)

μ3 = 0

μ4 = 3σ4

The Normal distribution can be characterized by the two parameters
μ and σ2. This distribution is symmetrical and mesokurtic.

If the random variable X follows a Normal distribution with mean μ
and variance σ2, then the standardized random variable

z =
X − μ
σ

follows a standard normal distribution with mean zero and variance 1.
The pdf of the distribution of z is given by

φ(z) =
1

2π
e−z

2/2,−∞ < z <∞ (2.32)

3. Lognormal distribution

The variable X is said to have a log-normal distribution if lnX (or
logX) is normally distributed. Here X varies from 0 to ∞. It is
also known as Galton distribution. A variable might be modelled as
a lognormal if it can be thought of as the multiplicative product of
many independent random variables each of which is positive.

The pdf of this distribution is given by

f(x) =
1

x
√

2πσ2
e−

(ln x−μ)2

2σ2 0 < x <∞ (2.33)

Mean = eμ+σ
2/2

Median = eμ (2.34)

Mode = eμ−σ
2

Variance = (eσ
2 − 1)e2μ+σ

2

Skewness = (eσ
2

+ 2)
√
eσ2 − 1

The distribution is positively skew and leptokurtic.



Chapter - 3

Sources of Astronomical Data

3.1 Introduction

Astronomy in recent past has developed a lot with the launch of several
missions like GALEX (Galaxy Evolution Explorer), Kepler Space Telescope,
Hubble Space Telescope (HST), etc. through which terabytes of data are
available for preservation. This increasing proportionality of huge data de-
mands data access efficiency. The implication of the above statement is
important in a sense that most of the astrophysical phenomena are being
observed in terms of light intensity as a function of wavelength or frequency
which are snapshots of experiments which cannot be repeated as such. So
one can easily understand why every single observation needs to be preserved.
Thus, on the one hand, it requires the advent of more sophisticated observing
instruments and sophisticated data management systems are to be developed,
on the other hand, to complement the above challenge. With the above point
in view astronomers have developed several Virtual data archives like SDSS
(Sloan digital sky survey), MAST (Multi mission archive at STSCI), EX-
OSAT (European X-ray observatory Satellite), CGRO (Compton Gamma
Ray Observatory), GALEX, Vizier, EDD, LEDA, HETE-2 (High Energy
Transient Explorer), Chandra, Swift, ROSAT (Rontgen Satellite), WMAP
(Wilkinson Microwave Anisotropy Probe), NED (NASA Extragalactic Data
base), PDSC (Planetary Data System) etc. and in the making of future mis-
sions like ALMA (Atacama Large Millimeter Array), SKA (Square Kilometer
Array) in 2025, etc.

In the following sections we will describe in brief some of the features of few
data archives along with how data collected from different heavenly bodies
can be accessed using various sites.

3.2 Sloan Digital Sky Survey

The general information on SDSS is in the website www.sdss.org. This vir-
tual data archive contains huge amount of data on all objects starting from
stars, stellar populations to galaxies and quasars in multi wavelength bands

© Springer Science+Business Media New York 2014
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u, g, r, i, z through a dedicated 2.5 m telescope at Apache Point Observa-
tory, New Mexico. This telescope covers almost a quarter of the sky. Data
release 8 (DR8) contains measurements on 500 million stars and galaxies
with spectra of 2 million objects. It contains more than 1,20,000 quasars.
In this site, on the LHS there are number of windows written, e.g. Go
to sdss.org/dr7/. Among these windows if one clicks on sdss.org/dr7/
and then Database (CAS) under Data the entire tabular scheme of
SDSS appears showing the heads like Site, Search Tools, Advanced
Tools, Links and Help and Tutorials (hereafter called page 1). There
are several search techniques found under “Tools”. When large amount
of data are required SQL Search is chosen. If under Tools at page 1
(skyserver.sdss.org/dr7/en/tools/search/), one clicks SQL Search, a
dialog box appears and one has to write a special query language known
as “Structured Query Language” (SQL) corresponding to the requirement.
Below some examples of SQL are given.

Example 1 Find ra, dec, u, g, r, i, z magnitudes of ten galaxies having
redshift within 1 and 1.5.

Solution.

SELECT TOP 10

p.objid, p.ra, p.dec, p.u, p.g, p.r, p.i, p.z,

S.z, S.specClass

FROM photoObj AS p

JOIN SpecObj AS s ON s.bestobjid = p.objid

WHERE

S.z > 1

AND

S.z < 1.5

AND
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S.specClass = 2

In the above example the index “2” is chosen for galaxy search. Similarly
there are other indices which can be found clicking the following path at
page 1:

Schema→ Schema Browser → Views → SpecPhoto → specClass

There are other paths also.

The various indices used for different objects are

0 → Unknown object

1 → Star

2 → Galaxy

3 → Quasars

4 → High redshift quasars

5 → Blank sky

6 → Stars dominated by molecular bands

7 → Emission line galaxies

For acquaintance with various sample SQL queries one may click to Sample
SQL Queries under Help and Tutorials menu at page 1.

It is possible to merge several SQL queries for getting photometric as well as
spectral data of the same object.

Example 2 Find u, g, r, i, z magnitudes, ra, dec, IDS, along with equivalent
widths of Hα, Hβ , Hδ absorption lines and corresponding errors of ten galax-
ies. Here u, g, r, i, z are photometric measurements and widths of Hα, Hβ , Hδ

are spectral features.
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Solution.

SELECT TOP 10

p.objid, p.ra, p.dec, p.u, p.g, p.r, p.i, p.z, S.z, S.specClass,

‘Ha 6565’, L.ew, L.ewErr, L.continuum,

‘Hb 4863’, L2.ew, L2.ewErr, L2.continuum,

‘Hd 4103’, L Hd.ew, L Hd.ewErr, L Hd.continuum

FROM PhotoObj AS p

JOIN SpecObj AS S ON S.bestobjid = p.objid

JOIN SpecLine AS L ON S.SpecObjID = L.SpecObjID
JOIN SpecLine AS L2 ON S.SpecObjID = L2.SpecObjID

JOIN SpecLine AS L Hd ON S.SpecObjID = L Hd.SpecObjID

WHERE

L.Lineid = 6565

and L2.Lineid = 4863

and L Hd.Lineid = 4103

and S.specClass = 2

For getting the spectrum of a galaxy one has to use Get images under
Search Tools. Then click on any plate (the big white circular area on RHS
contains numerous open dots and each dot corresponds to a plate containing
spectra of 640 objects). Then among 640 objects corresponding to a partic-
ular plate, stars, galaxies, quasars are classified. So clicking any object of
choice the corresponding spectra can be found.

If the co-ordinates (ra, dec) of any astronomical object is known, then its
spectra and data on spectral properties can be obtained as follows.
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1. First one has to follow the sequence starting from DR7 Tools on LHS at
page 1

Visual Tools → Navigate.

A dialog box on LHS appears and one has to type the (ra, dec) of the
object one requires.

Then the image of the object will be found.

2. For having the spectra and other properties the following sequence is to
be followed starting from page 1.

Search Tools → Get images → Visual Tools → Explore.

Then on LHS click on ra,dec gutter under Search by. A dialog box
appears where one has to type ra and dec values of the object under query
and then to press OK button.

For spectral line indices one has to click SpecLineIndex under
SpecObj, which is under Summary.

3. For having photometric properties one has to click the window under
PhotoObj under Summary on the LHS of the dialog box.

The list of various line indices in SDSS observes can be found as follows from
page 1:

Schema → Schema Browser → Views → SpecLine → line ID

Then a dialog box appears where line indices along with corresponding wave-
lengths are listed.

Moreover SDSS has its own tutorial pages for initial training. This can be
found following the sequence under Help in the initial tabular scheme from
page 1.

Help → SQL Tutorial and then clicking on NEXT subsequently.

SDSS has several projects, through which one can study various astrophysical
problems. For this one has to click projects in the initial tabular schemes, at
the top of the web page. The features about SDSS described above is just a
snapshot of the numerous features which can be found exploring the various
tools and links in initial tabular scheme (cas.sdss.org/astrodr7/en/). The
transformation laws among SDSS and Johnson magnitudes can be found in
www.sdss.org/dr5/algorithms/sdssUBVRITransform.html.

www.sdss.org/dr5/algorithms/sdssUBVRITransform.html
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3.3 Vizier Service

This is a data archive where the observations of several catalogs are enlisted.
The corresponding website is vizier.u-strasbg.fr/viz-bin/VizieR.

In the above site a dialog box appears and the query catalog is typed there,
e.g. if one wants to find all observations on globular clusters so far enlisted
in Vizier, one has to type “globular clusters”. Then the list of all available
tables of observations appears along with the corresponding literature. Then
the viewer chooses the appropriate table and collects the data in a table.

3.4 Data on Eclipsing Binary Stars

It has been discussed in Chap. 1 that the intensity of light coming from two
gravitationally bound stars, varies due to eclipse. Hence analysing these light
curves properties of the stars can be studied in detail. For collecting data on
observed light curves of these binary systems the following procedure is to
be carried out.

1. The site http://exoplanetarchive.ipac.caltech.edu/applica-

tions/ETSS/Kepler_index.html contains Kepler Light Curves
link. So clicking this link a dialog box appears.

2. If the Kepler ID of a binary star is known (which is an integer, e.g.
2141697) it is typed in the Kepler ID box and the view button is
clicked.

3. Then a table appears where the second column (StarID) gives the
list of all light curves corresponding to that binary star. Any one is
clicked.

4. Then Compute Periodogram button is clicked. Then one source
on RHS is selected and one item under “X axis” is chosen and it
gives a table comprising of a number of periods computed for different
values of the power spectrum along with p-values. A suitable period is
chosen (generally with moderately low p-value) and the corresponding
Phased curve is clicked.

5. Clicking the Phased Curve download button the light curve data,
i.e. flux versus period table is found which can be stored for analysis.

6. The list of eclipsing binary stars (prsa catalog, Prsa et. al. 2011, AJ,
141, 83) is found in http://keplerebs.villanova.edu/ or
archive.stsci.edu/kepler/ eclipsing binaries.html.

The latest light curve data can also be found from “Vizier” site, following
the procedure discussed above.

http://exoplanetarchive.ipac.caltech.edu/applica-
tions/ETSS/Kepler_index.html


3.5 Extra Galactic Distance Data Base (EDD) . . . 115

3.5 Extra Galactic Distance Data Base (EDD) (edd.ifa.hawaii.edu/
index.html)

This site gives the distance determination to galaxies within about 10,000
km s−1. In this site user can cross match the parameters collected from
(1) the Virgo/Fornax SBF catalog of Blakslee et al., (2) the 2 MASS Large
Galaxy Atlas, (3) the 2 MASS Redshift survey (2MRS). Arriving at this site
the NEXT button should be pressed. Then a site appears where data on
galaxies, dwarf galaxies, stars, Supernova Ia are stored under various catalogs.
To cross match data from different catalogs, one has to select parameters from
any one by clicking the white empty box on LHS and pressing the Ctrl
on keyboard. Then other parameters are selected from other catalogs in the
same way and finally the submit button is pressed below the last catalog
selected.

3.6 Data on Pulsars

Australia Telescope National Facility (ATNF) collects radio observations of
almost 2008 radio and millisecond pulsars and the table of parameters of
these pulsars can be retrieved by clicking the white boxes adjoint to each
parameter and pressing the TABLE button at the beginning/end of the
site. Also a window Pulsar Tutorial is helpful for the users in this concern.
The website is http://www.atnf.csiro.au/people/pulsar/psrcat/.

3.7 Data on Gamma Ray Bursts

Data on Gamma Ray Bursts are stored in BATSE, SWIFT and HETE cata-
logs. SWIFT is part of NASA’s medium size explorer (MIDEX) program and
has been launched on November, 2004. The official site is swift.gsfc.nasa.
gov/docs/swift/results and then following the sequence, data on GRBs
can be retrieved.

Swift Gamma-Ray Burst Table 4 which columns would you like to
view → view.

The advantage of these GRBs is that their redshift values are also listed
unlike BATSE.

The website of current BATSE catalog is

www.batse.msfc.nasa.gov/batse/grb/catalog/current/

http://www.atnf.csiro.au/people/pulsar/psrcat/
www.batse.msfc.nasa.gov/batse/grb/catalog/current/
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The website of High Energy Transient Explorer (HETE-2) is

space.mit.edu/HETE/ and then press the Bursts button on the left and
finally Table of HETE Fregate Archival Data for Localized Bursts.

3.8 Astronomical and Statistical Softwares

Aladin: It is a free interactive software and with this user can visualize
images, superimpose entries from various catalogs. The user manual is freely
available on its site aladin.u-strasbg.fr.

TOPCAT: TOPCAT is a free interactive software which can perform several
types of graphics both in Astronomy and in Statistics. Having Java it can
be downloaded.

Binary Maker 3.0: It is a priced software for modelling the light curves of
eclipsing binaries.

STATA: This is a widely used commercial package especially used for re-
search in Statistics, Economics, Sociology, Political science, Biomedicine, Epi-
demiology, etc. It has both the facilities of command-line interface, which
facilitates replicable analyses and graphical user interface which uses menus
and dialog boxes to give access to nearly all built-in commands. STATA
stores the data set in random-access or virtual memory, which limits its use
with extremely large data sets. Like R, STATA is regularly updated by in-
corporating newly developed statistical techniques.

S-PLUS: It is a priced statistical software for doing several statistical anal-
ysis including advanced multivariate statistical techniques like Cluster Anal-
ysis, Factor Analysis, Principal Component Analysis and several testings
including ANOVA (Analysis of Variance), MANOVA (Multivariate Analysis
of Variance), KS (Kolmogorov–Smirnov Test) test. It has also graphical ad-
vantage. It has both “script” and “menu driven” modes for computations.

MINITAB: It is also a priced statistical software performing all the above
facilities.

SPSS: It is a priced statistical software with the advantage of a large memory
space for handling with large data sets (e.g. 3–4 Lacs of objects at a time).

R: R is a free command based software for statistical analysis and also for
graphics. It has variety of platforms like Windows and Linux. Since it is
an open interface, everyday its content is increasing and as a result users
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can use recent statistical methods for their advanced research. There is also
“User Manual” for the users once it is downloaded. Use of softwares will be
discussed in detail in Chap. 11.

Virtual Observatory

The international Virtual observatory alliance (IVOA) was formed in June,
2002 in order to develop tools, systems and organizational structures for
the proper utilization of the astronomical archives. About 20 countries are
involved in this alliance and India is one of them. The VO-India (vo.iucaa.
ernet.in/∼voi/) has several products like VO plot, VO Megaplot, VO Stat,
VO Cat, VO Platform, VO Convert, etc. Among them the first three are
particularly useful for different types of diagrammatic presentation of data
and their statistical analysis. There are both stand alone and Web based
versions which may be freely accessed. The input data files may be either in
ASCII formed or in VOTABLE format.

Exercises

1. Download 10,000 galaxies having u, g, r magnitudes within redshift 1
and 2, along with Hα, Hβ , Hδ equivalent width absorption lines.

2. Draw H–R diagram of the globular cluster NGC2419, given its ra = 07
h 38 ’ 08” .47 dec = +38 deg 52 ’ 56”.8. From the diagram compute its
approximate age and the ratio between main sequence stars and white
dwarfs.

3. Apply K-means cluster analysis with respect to the colours (u–g, g–r,
r–u) and the equivalent widths of Hα, Hβ, Hδ. Hence find the optimum
group.

4. Collect the spectra of 10,000 stars from SDSS and assign indices to
the several absorption lines. Now do a Hierarchical Cluster Analy-
sis using Pearson’s correlation instead of Euclidean distance. Draw a
dendrogram to find the optimum grouping and compare it with the
classification of stars in six groups O, B, A, F, G, K, M.

5. Using the simple modelling of binary star light curve (discussed in
Chap. 1) find the ratio of luminosities of 100 binary star light curves
downloaded from Prsa Catalog.



Chapter - 4

Statistical Inference

4.1 Population and Sample

Population: In any Statistical Analysis we are interested in some numerical
characteristic of an aggregate of individuals rather than in the characteristics
of the individuals themselves. Such an aggregate is called a “population” or
“universe”.

Sample: We know that in most of the situations it is not at all possible to
study the entire population (just as the actual universe). In some cases it
may be the infinite hypothetical population. So we have to remain content
with the information gathered from a part of the population only. Such a
part of the population by which we want to represent the entire population
is called a sample.

Example: Classification of Spiral Galaxies on the basis of rotation curves.

Population: The class of all Spiral galaxies.

Sample: A small set of spiral galaxies selected by some method which is
supposed to represent the population of Spiral galaxies.

We select some of the parameters (which are called variables in statistical
language) to study the variation among spiral galaxies with respect to their
rotation curves like:

D = distance from the observer; D25 = diameter at 25thB mag arc s−2

isophote; h = disc scale length; Vmax = maximum rotational velocity outside
rin; MB = absolute B magnitude; Bar = presence of a bar(1/0).

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4939-1507-1 4) contains supplementary material,
which is available to authorized users.
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4.2 Parametric Inference

The central problem of Statistics is to devise means of inferring the nature
of the population from the known nature/distribution of the sample. This
is similar to the classical problem of inductive inference, i.e. going from the
particular to the general.

For astronomical observations, it is always difficult to accept them as sam-
ples from the corresponding population. Since the universe is unknown, it
is always probable that the observations are not proper representative of the
corresponding population. As a result, the inference derived from the obser-
vations may be far away from the reality. Although, for the known universe
also the problem of proper sample selection is always a burning problem, in
case of astronomical objects it is much more complicated. With the advance-
ment of technology, at present more reliable observations are coming and the
need for proper statistical techniques for drawing inferences is increasing day
by day.

The problem of statistical inference includes two types of situations. In
the first case the feature in which we are interested is totally unknown and
we may want to make a guess about this feature completely on the basis of
a random sample from the population. This type of problem is known as the
problem of estimation.

In the second case some information of a tentative nature regarding the
feature of the population may be available and we may want to see whether
the information is acceptable on the basis of the random sample taken from
the population. This type of problem is known as the problem of testing of
hypothesis.

For first type (i.e. estimation) of problems, under the parametric set-up,
the investigator is interested in the value of some parameters (these are differ-
ent from physical parameters and are some unknown constants depending on
which the base, scale and shape of the underlying population changes) which
are completely unknown and he/she depends solely on the sample data to
make a guess about the value of the unknown parameter. Again two proce-
dures under this category may be distinguished. Under the first procedure, a
single value may be used as the estimated value of the unknown parameter.
This is called the method of point estimation. Under the second type of
procedure, the investigator may compute two values, again on the basis of
the sample data, and expect that the true value of the parameter lies within
these two values (lower and upper confidence limits, respectively) with a high
probability. This is known as the method of interval estimation.
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4.2.1 Point Estimation

In point estimation we use the value of some statistic (function of the sample
values), say T , as the estimator of the unknown parameter (function of the
population values) under consideration, say θ where θ may be scalar or vector
valued.

How one can choose a statistic as a good estimator for the corresponding
parameter? Usually its quality is judged by the distribution of estimates
which it yields, i.e. by the properties of its sampling distribution.

4.2.1.1 Unbiasedness

The first criterion is that the estimator should be unbiased. This means that
it has no tendency to be regularly above or below the parameter so that
the estimate is distributed in an unbiased manner about the true value of
the parameter. Formally this means that the expectation of the proposed
estimate should be equal to the parameter.

Unbiasedness: The Expectation of the proposed estimator T should be equal
to the value of the unknown parameter θ, whatever the true value may be, i.e.

Expectation(T ) = θ for every possible value of θ

The second criterion is that for a good estimator the spread of its sampling
distribution be as small as possible. So for every possible value of θ, the
variance of T should be smaller than the variance of any other estimator
satisfying the first criterion. Such an estimator is unique and is defined as
the Minimum variance Unbiased Estimator (MVUE).

Minimum Variance Unbiased Estimator

An unbiased estimator T of the parameter θ is said to be a MVUE of θ if for
any other unbiased estimator of θ, say, T ∗

Variance (T ) < = Variance (T ∗) for every possible value of θ

Estimating Variance

Suppose X1, . . . , Xn are independent and identically distributed random vari-
ables with expectation μ and variance σ2. Let

X = (X1 + . . .+Xn)/n
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be the “sample average”, and let

S2 =
1

n

n∑

i=1

(Xi −X)2

be a “sample variance”. Then S2 is a “biased estimator” of σ2 because

E(S2) =
n− 1

n
σ2 �= σ2.

Note that when a transformation is applied to an unbiased estimator, the
result is not necessarily itself an unbiased estimate of its corresponding pop-
ulation statistic. That is, for a non linear function f and an unbiased esti-
mator U of a parameter p, f(U) is usually not an unbiased estimator of f(p).
For example, the square root of the unbiased estimator of the population
variance is not an unbiased estimator of the population standard deviation.

Bias is not the only consideration when choosing a statistic, however. Bias
refers to the central tendency of the sampling distribution of a statistic, but
the variance of the sampling distribution can also be an important consider-
ation. Specially, statistics with smaller sampling variances will yield greater
statistical power. For example, while S2 above is more biased than the tra-
ditional sample variance

S2
sample =

1

n− 1

n∑

i=1

(Xi −X)2,

S2 has a lower estimation variability than S2
sample because the denominator

dividing the sum of squares is larger in the calculation of S2, resulting in a
smaller scale of final values, and therefore lower estimation variability, than
that of S2

sample. Practically, this demonstrates that for some applications
(where the amount of bias can be equated between gropups/conditions) it
is possible that a biased estimator can prove to be a more powerful, and
therefore useful, statistic.

4.2.1.2 Efficiency

As the sample size increases, the scatter of possible values of the sample mean
from the actual (population) mean decreases so that the probability that a
given value of sample mean differs by more than a fixed amount from the
population mean decreases. We can therefore say that the accuracy of the
estimator increases as the sample size increases. In other words, the variance
of the sampling distribution of the estimator is inversely proportional to
sample size.
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This property of increasing accuracy with sample size is obviously de-
sirable and an estimator which has that property is said to be consistent.
Mathematically, this means that the probability that the estimate differs
from parameters by less than an arbitrary small error approaches unity as
the sample size increases to infinity. This property is analogous to conver-
gence in mathematical sense. For example, the sample mean x̄ is a consistent
estimator of the population mean μ since

σx̄ = σ/
√
n (which is the standard error of x̄)

becomes smaller as n increases.

The property of consistency is concerned with the behaviour of an estima-
tor as the sample size increases to infinity. We should note that a consistent
estimator is not necessarily unbiased. Similarly as unbiased estimator is not
necessarily consistent. However, many estimators are both unbiased and
consistent. Whatever be the probability distribution of the observation, the
sample mean is always an unbiased estimate of the population mean. How-
ever the variance (with divisor n) of a set of observations is a biased estimate
of the population variance as shown earlier. But it is always consistent since
its standard error is given by

√
(2/n)σ2 which becomes smaller as n increases.

The sample mean is the most important property of a sample. If the
sample is large, its mean has an approximate normal distribution even if the
parent population is not normal. It is the reason for what so much attention
is paid to the Normal Distribution.

4.2.1.3 Maximum Likelihood Estimator (MLE)

Let f(x1, x2, . . . , xn|θ) be the joint probability density function or probability
mass function of the sample observations. When x1, x2, . . . , xn are given it
may be looked upon as a function of θ and denoted by L(θ). Under this
method we take that value as the estimate of θ for which L(θ) is maximum.

θest = Max
θ
L(θ)

But the maximum has to be the global maximum and if the derivative
does not exit at θ = θest we will not get the estimator. This ML method is
very popular and it also has the invariance property.

4.2.2 Interval Estimation

Under point estimation a single value is used to estimate the unknown pop-
ulation parameter. An alternative procedure is to give an interval within
which it may be supposed to lie. This is called interval estimation.
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Instead of assigning a single number to each sample and reporting the size
of a typical error, the present method assigns an interval to each sample
and reports the confidence level that the interval contains the parameter.
Confidence is a technical term related to probability. Just as the standard
error (SE) of an estimator measures the long-run average size of the error in
repeated sampling, but the error for any particular sample could be smaller or
larger than the SE, the confidence level is the long-run fraction of intervals
that contain the parameter in repeated sampling, but the interval for any
particular sample might or might not contain the parameter.

The statement “the interval [92, 94] contains the vale of the population pa-
rameter, at confidence level 90 %” does not mean that the probability that the
population value is between 92 and 94 is 0.90. (The event that the interval
[92, 94] contains the population value is not random: either the population
value is between 92 and 94, or it is not.) Rather, the statement means that
if we were to take samples of size n repeatedly and compute a 90 % confi-
dence level for the population parameter’s value from each sample of size n,
the long-run fraction of intervals that contain the population value would
converge to 90 %.

The length of the confidence interval and the confidence level measure how
accurately we are able to estimate the parameter from a sample. If a short
interval has high confidence, the data allow us to estimate the parameter ac-
curately. Higher confidence generally requires a longer interval, and, shorter
intervals generally have lower confidence levels. Conventional values for the
confidence level of confidence intervals include 68, 90, 95, and 99 %, but
sometimes other values are used.

The interpretation of confidence level for a particular interval is analogous
to the interpretation of Standard Error (SE) for a particular value of the
estimate. The SE is the square-root of the long-run average squared error of
the estimator in repeated sampling, but for any particular sample, the error
could be larger or smaller than the SE—and we will not know which unless
we know the true value of the parameter. The confidence level measures
the long-run fraction of intervals that contain the parameter in repeated
sampling, but for any particular sample, the confidence interval either will or
will not contain the parameter—and we will not know which unless we know
the true value of the parameter.

4.3 Testing of Hypothesis

Some information regarding the underlying population may be available and
we may want to see whether the information is tenable in the light of the
sample taken from the population.
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The information that we know previously and want to verify (nullify) is called
the null hypothesis (H0). The complementary part of H0 is called the alter-
native hypothesis (H1).

We perform the test on the basis of the given sample and possible errors are:

Rejecting H0 when it is true (Type I error)

Accepting H0 when it is false (Type II error).

H0 True H0 False
Accept H0 Correct Type II Error
Reject H0 Type II Error Correct

We try to fix the probability of type I error at a particular level and then try
to minimize the probability of type II error or maximize the power (1−P(type
II error)). The test is performed on the basis of a critical (rejection) region.
If the value of the test static falls in the critical region, we reject H0 otherwise
we accept it.

Hence level of significance (α) may be defined as the maximum value of
P(type I error). A test is of size α if under H0 for at least one value of the
parameter θ the level is attained.

4.3.1 p-Value

Each statistical test has an associated null hypothesis, the p-value is the
probability that your sample could have been drawn from the population(s)
being tested (or that a more improbable sample could be drawn) given the
assumption that the null hypothesis is true. A p-value of 0.05, for example,
indicates that you would have only a 5 % chance of drawing the sample being
tested if the null hypothesis was actually true. p-Value corresponds to the
level attained by a test.

Null Hypotheses are typically statements of no difference or effect. A p-value
close to zero signals that your null hypothesis is false, and typically that a
difference is very likely to exist. Large p-values closer to 1 imply that there
is no detectable difference for the sample size used. A p-value of 0.05 is a
typical threshold. p-Value may be defined as the minimum value of P(type I
error).
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Example:
Suppose the random variable X follows Normal (μ, σ2) distribution.

To test H0 : μ = μ0 against H1 : μ �= μ0,
where we assume that σ is known.
Let X1, X2, .., Xn be a sample of size n and M be the Sample mean.

Critical region: M ≥ c (where c is the critical point)

Then level of significance
α = P [M ≥ c|μ = μ0]
= P [(M − μ0)

√
n)/σ ≥ (c− μ0)

√
n/σ]

= 1− Φ[(c− μ0)
√
n/σ] > 1− Φ[(M − μ0)

√
n/σ]

= p value (where Φ is the CDF of standard normal distribution).

Hence p value is the smallest level of significance.

4.3.2 One Sample and Two Sample Tests

One Sample (Test for One Mean Value)

Let X1, X2, . . . , Xn be a random sample drawn a Normal population with
mean μ and sd σ. Students’ t test is used to compare the unknown mean of
the population (μ) to a known number (μ0). So here the Null hypothesis is
H0 : μ = μ0 against the alternative H1 : μ �= μ0.

Test statistic (population standard deviation σ is known):

The formula for the Z-test is

Z =
√
n(Sample mean− μ0)/σ

Z has a Normal distribution with mean 0 and variance 1.

Test statistic (population standard σ deviation is unknown):

The formula to t test is t =
√
n(Sample mean− μ0)/s,

where s is the sample standard deviation.

The statistic t follows t distribution with n− 1 degrees of freedom, where n
is the number of observations.
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Decision of the z or t-Test: If the p-value associated with the z or t-test
is small (usually set up at p < 0.05), there is evidence to reject the null
hypothesis in favour of the alternative. In other words, there is evidence that
the mean is significantly different than the hypothesized value i.e. the test
is significant. If the p-value associated with the z or t-test is not small
(p > 0.05), there is not enough evidence to reject the null hypothesis, and it
may be concluded that there is evidence that the mean is not different from
the hypothesized value i.e. the test is not significant.

Two Sample (Test for Equality of Two Means)

Suppose we have two independent samples The unpaired t method tests the
null hypothesis that the population mean related to two independent, random
samples from two independent approximately normal distributions are equal
against the alternative that they are unequal (as in the one sample case).

Assuming equal variances, the test statistic is calculated as:

t =
x1 − x2√

s2
(

1
n1

+ 1
n2

)

s2 =

n1∑

j=1

(xj − x1)2 +

n2∑

i=1

(xi − x2)2

n1 + n2 − 2

where x1 and x2 are the sample means, s2 is the pooled sample variance,
n1 and n2 are the sample sizes and t follows Student t distribution with
n1 + n2 − 2 degree of freedom.

Paired Sample (from Bivariate Normal Distribution)

The paired t test provides a hypothesis test of the difference between popu-
lation means for a pair of n random samples whose differences are approxi-
mately normally distributed.

The test statistic is calculated as

t =
d̄

√
s2/n

where d̄ is the mean difference, s2 is the sample variance, n is the sample size
and t follows a paired t distribution with n-1 degrees of freedom.
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The decision can be taken exactly in a similar way as in the one sample
situation.

4.3.3 Common Distribution Test

Quantile–Quantile Plot

The quantile–quantile (q–q) plot is a graphical technique for determining if
two data sets come from populations with a common distribution.
A q–q plot is a plot of the quantiles of the first data set against the quantiles
of the second data set. By a quantile, we mean the fraction (or percent) of
points below the given value. That is, the 0.3 (or 30 %) quantile is the point
at which 30 % of the data fall below and 70 % fall above that value.

A 45◦ reference line is also plotted. If the two sets come from a popula-
tion with the same distribution, the points should fall approximately along
this reference line. The greater the departure from this reference line, the
greater the evidence for the conclusion that the two data sets have come from
populations with different distributions.

Normality Tests

Probability Plot

Normal Test Plots (also called Normal Probability Plots or Normal Quartile
Plots) are used to investigate whether process data exhibit the standard
normal “bell curve” or Gaussian distribution (Fig. 4.1).

First, the x-axis is transformed so that a cumulative normal density function
will plot in a straight line. Then, using the mean and standard deviation
which are calculated from the data, the data is transformed to the standard
normal values, i.e. where the mean is zero and the standard deviation is one.
Then the data points are plotted along the fitted normal size.
The nice thing is it is not necessary to understand all the transformations. If
the plotted points fit the normal line well, it can be safely assumed that the
process data is normally distributed.

4.4 Empirical Distribution Function

In statistics, an empirical distribution function is a cumulative probability
distribution function that concentrates probability 1/n at each of the n num-
bers in a sample.
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Figure 4.1 Normal probability plot

Let x1, x2, . . . , xn be random variables with realizations. The empirical
distribution function Fn(x) based on sample x1, x2, . . . , xn is a step function
defined by

Fn(x) =
number of elements in the sample ≤ x

n
=

1

n

n∑

i=1

I(xi ≤ x),

where I(A) is an indicator function.
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4.5 Nonparametric Approaches

Standard Statistical techniques are optimal under the assumptions of:

1. Independence

2. Homoscedasticity

3. Normality

But the third assumption may not be valid in many situations. In nonpara-
metric methods the third assumption is not required. Here we simply assume
that the variables are from a continuous distribution. Nonparametric meth-
ods are available both for estimation and testing of hypothesis problems.

4.5.1 Kolmogorov–Smirnov One Sample Test

This is alternative to Chi-square goodness of fit test but can also be applied
to small sample. The test for goodness of fit usually involves examining a
random sample from some unknown distribution in order to test the null hy-
pothesis that the unknown distribution function is in fact a known, specified
function. We usually use Kolmogorov–Smirnov test to check the normality
assumption in Analysis of Variance. However it can be used for other con-
tinuous distributions also. A random sample X1, X2, . . . , Xn is drawn from
some population and is compared with F ∗(x) in some way to see if it is rea-
sonable to say that F ∗(x) is the true distribution function of the random
sample.
One logical way of comparing the random sample with F ∗(x) is by means of
the empirical distribution function S(x). The empirical distribution function
S(x) is a function of x, which equals the fraction of Xi’s that are less than
or equal to x for each x. The empirical distribution function S(x) is useful
as an estimator of F (x), the unknown distribution function of the Xis.
We can compare the empirical distribution function S(x) with hypothesized
distribution function F ∗(x) to see if there is good agreement. One of the
simplest measures is the largest distance between the two functions S(x) and
F ∗(x), measured in a vertical direction. This is the statistic suggested by
Kolmogorov.
Let the test statistic T be the greatest (denoted by “sup” for supremum)
vertical distance between S(x) and F (x). In symbols we say

T = supx |F ∗(x)− S(x)|

For testing H0 : F (x) = F ∗(x) for all x

H1 : F (x) �= F ∗(x) for at least one value of x
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If T exceeds the 1-á quantile as given in Biometrika table, Volume-2, then
we reject H0 at the level of significance á. The approximate p-value can be
found by interpolation.

Example:
A random sample of size 10 is obtained: X1 = 0.621, X2 = 0.503, X3 =
0.203, X4 = 0.477, X5 = 0.710, X6 = 0.581, X7 = 0.329, X8 = 0.480, X9 =
0.554, X10 = 0.382. The null hypothesis is that the distribution function
is the uniform distribution function. The mathematical expression for the
hypothesized distribution function is

F ∗(x) = 0, if x < 0

x, if 0 ≤ x < 1

1, if 1 ≤ x

Formally, the hypotheses are given by
H0 : F (x) = F ∗(x) for all x from −∞ to ∞
H1 : F (x) = F ∗(x) for at least one value of x
where F (x) is the unknown distribution function common to the Xis
and F ∗(x) is given by above equation.

The Kolmogorov test for goodness of fit is used. The critical region of size
α = 0.05 corresponds to values of T greater than the 0.95 quantile 0.409,
obtained from Biometrika table for n = 10. The value of T is obtained by
graphing the empirical distribution function S(x) on the top of the hypoth-
esized distribution function F ∗(x). The largest vertical distance is 0.290,
which occurs at x = 0.710 because S(0.710) = 1.000 and F ∗(0.710) = 0.710.
In other words,

T = supx|F ∗(x)− S(x)|
= |F ∗(0.710)− S(0.710)| = 0.290

Since T = 0.290 is less than 0.490, the null hypothesis is accepted. In other
words, the unknown distribution F (x) can be considered to be of the form
F ∗(X) on the basis of the given sample. The p value is seen, to be larger
than 0.20.

4.5.2 Kolmogorov–Smirnov Two Sample Test

Perform a Kolmogorov–Smirnov two sample test that two data samples come
from the same distribution. Note that we are not specifying what that com-
mon distribution is.
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The two sample K–S test is a variation of one sample test. However, instead
of comparing an empirical distribution function to a theoretical distribution
function, we compare the two empirical distribution functions. That is,

D = supx |S1(x)− S2(x)|
where S1 and S2 are the empirical distribution functions for the two samples.
Note that we compute S1 and S2 at each point in both samples (that is both
S1 and S2 are computed at each point in each sample).

The hypothesis regarding the distributional form is rejected if the test statis-
tic, D, is greater than the critical value obtained from Biometrika table.
There are several variations of these tables in the literature that use some-
what different scaling for the K–S test statistic and critical regions. These
alternative formulations should be equivalent, but it is necessary to ensure
that the test statistic is calculated in a way that is consistent with how the
critical values were tabulated. For the R code, one may look at Chap. 11.

In order to increase the power of the K–S test near tails one may use the
Anderson Darling test.

4.5.3 Shapiro–Wilk Test

Shapiro–Wilk is a standard test for normality. The test statistic W may
be thought of as the correlation between given data and their corresponding
normal scores, with W = 1 when the given data are perfectly normal in
distribution. When W is significantly smaller than 1, the assumption of
normality is not met. That is, a significant W statistic causes the researcher
to reject the assumption that the distribution is normal. Shapiro–Wilk W
is recommended for small and medium samples up to n = 2,000. For larger
samples, the Kolmogorov–Smirnov test is recommended.

The Wilk–Shapiro test statistic is defined as:

W =
(
∑n

i=1 wiX(i))
2

∑n
i=1(Xi − X̄)2

where the summation is from 1 to n and n is the number of observations.
The array X contains the original data, X()s are the ordered data, X is the
sample mean of the data, and w′ = (w1, w2, . . . , wn) or

w′ = MV −1[(M ′V −1)(V −1M)]−1/2

M denotes the expected values of standard normal order statistics for a sam-
ple of size n and V is the corresponding covariance matrix.
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W may be thought of as the squared correlation coefficient between the or-
dered sample values (X()) and the wi. The wi are approximately proportional
to the normal scores Mi. W is a measure of the straightness of the normal
probability plot, and small values indicate departures from normality. For R
code, we again refer Chap. 11.

4.5.4 Wilcoxon Rank-Sum Test

The Wilcoxon Rank Sum test can be used to test the null hypothesis that
two populations X and Y have the same continuous distribution. We assume
that we have independent random samples x1, x2, . . . , xm and y1, y2, . . . , yn,
of sizes m and n, respectively, from each population. We then merge the data
and rank of each measurement from lowest to highest. All sequences of ties
are assigned an average rank.

The Wilcoxon test statistic W is the sum of the ranks from population X .
Assuming that the two populations have the same continuous distribution
(and no ties occur), then W has a mean and standard deviation given by

μ = m(m+ n+ 1)/2

and
s =
√

[mn(N + 1)/12],

where N = m+ n.

We test the null hypothesis H0: No difference in distributions. A one-sided
alternative is Ha: first population yields lower measurements. We use this
alternative if we expect or see that W is unusually lower than its expected
value μ. In this case, the p-value is given by a normal approximation. We
let N ∼ N(μ, s) and compute the left-tail P (N <= W ) (using continuity
correction if W is an integer).

If we expect or see that W is much higher than its expected value, then we
should use the alternative Ha: first population yields higher measurements.
In this case, the p-value is given by the right-tail P (N >= W ), again using
continuity correction if needed. If the two sums of ranks from each population
are close, then we could use a two-sided alternative Ha: there is a difference
in distributions. In this case, the p-value is given by twice the smallest tail
value (2P (N <= W ) if W < μ, or 2P (N >= W ) if W > μ).

We note that if there are ties, then the validity of this test is questionable.
For R code, see Chap. 11.
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4.5.5 Kruskal–Wallis Two Sample Test

The Kruskal–Wallis test is a nonparametric test used to compare three or
more samples. It is used to test the null hypothesis that all populations
have identical distribution functions against the alternative hypothesis that
at least two of the samples differ only with respect to location (median), if
at all.
It is the analogue to the F-test used in analysis of variance. While analy-
sis of variance tests depend on the assumption that all populations under
comparison are normally distributed, the Kruskal–Wallis test places no such
restriction on the comparison.

The Kruskal–Wallis test statistic for k samples, each of size ni is:

T =
1

s2

(
k∑

i=1

Ri
ni
−N (N + 1)2

4

)

where N is the total number (all ni) and Ri is the sum of the ranks (from
all samples pooled) for the i-th sample and:

S2 =
1

N − 1

(
∑

all

Rij
2 −N (N + 1)2

4

)

The null hypothesis of the test is that all k distribution functions are equal.
The alternative hypothesis is that at least one of the populations tends to
yield larger values than at least one of the other populations.

Either k population distribution functions are identical, or else some of the
populations tend to yield larger values than other populations

The test statistic for the Kruskal–Wallis test is T . This value is compared
to a table of critical values based on the sample size of each group. If T
exceeds the critical value at some significance level (usually 0.05) it means
that there is evidence to reject the null hypothesis in favour of the alternative
hypothesis. For R code, see Chap. 11.

Example: The Anderson–Darling test determines whether a sample comes
from a specified distribution. Given a set of observation X1, X2, . . . , Xn and
their ordered values X(1) ≤ X(2) . . . ≤ X(n), the Anderson–Darling (AD)
statistic is given by

A2 = −n− S2

where S2 =

n∑

k=1

2k − 1

n

[
ln(F (X(k))) + ln(1− F (X(n+1−k)))

]
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In Chattopadhyay and Chattopadhyay (2006, 2007) extinctions in colours
and errors in ages of the globular clusters were tested for normally using
Anderson–Darling statistic. This is an example of one sample nonparametric
test under testing of hypothesis,

H0 : The population is normal

H1 : The population is not normal

The corresponding result is given in Table 4.1.

Name Age Errors Errors
in age in extinctions

Milky Mean 1.59 1.95
Way SD 0.44 0.62

Globular AD statistic 0.45 0.11
Clusters Remark Good fit Very good fit

Table 4.1 Example of one sample nonparametric test

From the above table it can be inferred that since both the error distributions
are Normal, i.e. symmetric, the errors are supposed to be averaged out in
final analysis and the results are thus not influenced by them.

Reference

Chattopadhyay, T., and A.K. Chattopadhyay. 2006. Astronomical Journal
131:2452.

Chattopadhyay, T., and A.K. Chattopadhyay. 2007. Astronomy and Astro-
physics 472:131.



Chapter - 5

Advanced Regression and Its Applications
with Measurement Error

5.1 Introduction

Regression analysis is used to study the relationship among variables. The
target is to establish a causal effect of one variable upon another in case
of simple regression in which only two variables are considered. In case of
multiple regression the target is to study the effect of a number of variables
on a single variable. Regression technique has been widely used in areas like
econometrics, financial statistics, biostatistics, etc. In Astronomy also several
authors have used this technique for prediction purpose. The problem of
how to characterize spiral galaxies having extended rotation curve and how
many parameters are necessary for this characterization has been studied
by Chattopadhyay and Chattopadhyay (2006). Tully–Fisher relation is a
relation for spiral galaxies between their luminosity and how fast they are
rotating. The idea is that the bigger the galaxy is, faster it is rotating, i.e. if
one knows the rotation velocity of the spiral galaxy, by using the Tully–Fisher
relation it is easy to predict its intrinsic brightness. Again by comparing the
intrinsic brightness with apparent magnitude, one can calculate its distance.
By starting from virial theorem, Tully and Fisher suggested the following two
forms

L ∞ Wα

and L ∞ Rβ

where L is the intrinsic luminosity, W is a characterization of the motion of
the body and R is a measure of linear size. α and β are proper constants.
Kodaira and Kashikawa (2000) found a much tighter correlation among the
three parameters given by

L ∞ V R2

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4939-1507-1 5) contains supplementary material,
which is available to authorized users.
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where V is the rotational velocity of the galaxy. Such type of relations are
used to derive the fundamental plane of galaxies. Regression techniques have
been extensively used to establish fundamental planes with a less amount of
scatter.

5.2 Simple Regression

Suppose we have data only on two variables, viz. intrinsic luminosity (L)
and rotational velocity (V ) and we want to predict L in terms of V by using
the relation

L = a+ bV + e (5.1)

where a (intercept) and b (slope) are constants and e is the noise term re-
flecting other factors that influence luminosity.

The parameter (variable) L is termed the “dependant” or “effect” or
“response” or “endogenous” variable. V is termed the “independent” or
“cause” or “predictor” or “exogenous” or “explanatory” variable. In case of
Astronomical data it is usually difficult to identify variables as “dependent”or
“independent” due to lack of information. For such cases a symmetric relation
is very much necessary.

At the outset of any regression analysis, one formulates some hypothesis
about the relationship between the variables like (5.1). This may be linear or
non linear. In particular if the dependent variable is categorical or binary one
may use Poisson or logistic regression. Here the data set contains observations
for L and V . The noise component e is unobservable and the constants a and b
are unknown. In statistical term, these unknown constants a and b are known
as parameters. Least square method is used to estimate these unknown
constants where we minimize the sum of squares due to error (noise).

5.3 Multiple Regression

In case of simple regression we assume that the “effect” is the outcome of a
single cause. But in practice the “effect” is usually the outcome of several
“causes”. For example, a galaxy with a higher luminosity has a larger central
velocity dispersion (σ) or a galaxy with a larger size (viz. effective radius
re) has fainter effective surface brightness (< μe >). The above two point
correlations are rather tight but scatter is still reduced using a three variable
relation of the form

log re = k + a log σ + b < μe > +e (5.2)

where k, a, and b are unknown constants (parameters) and e is the noise term.
The above relation is known as multiple regression.
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In case of two variables (simple regression) it is easy to study the physical
relationship (linear or non linear) by a two-dimensional diagram convention-
ally termed “scatter” diagram. Each point in the diagram represents an
individual in sample. But in case of multiple regression it is not so easy.
The task of estimating the parameters k, a and b is conceptually identical to
the earlier task of estimating only a and b. The difference is that we can no
longer think of regression as choosing a line in a two-dimensional diagram.
With two explanatory variables we need three dimensions, and instead of
estimating a line we are estimating a plane. Multiple regression analysis will
select a plane so that the sum of squared errors is at a minimum. In this
case the error is the vertical distance between the actual value of log re and
the estimated plane. The intercept of that plane with the log re axis (where
log σ and < μe > are at zero level) implies the constant term k, its slope
in the log σ dimension implies the coefficient a and its slope in the < μe >
dimension implies the coefficient b.

In model (5.2), k represents the log of the effective radius of a galaxy with
unit central velocity dispersion and no effective surface brightness. Sometimes
such situation may be imaginary and in such cases the value of k must be
zero (i.e. no intercept). a captures the per unit effect on effective radius of
central velocity dispersion and b captures per unit effect on effective radius
of effective surface brightness.

With p explanatory variables, multiple regression analysis will estimate
the equation of a hyperplane in space such that the sum of squared errors is
minimized.

5.3.1 Estimation of Parameters in Multiple Regression

Consider a multiple regression equation with (p − 1) explanatory variables
given by

X1 = a+ b2X2 + b3X3 + . . .+ bpXp + ei (5.3)

Here data will consist of p values corresponding to the p variables, for each of
n individuals. We have to estimate the constants (parameters) a, b2, b3 . . . bp
by least square method. These parameters will be estimated by minimizing
the error sum of squares given by

s2 =

n∑

i=1

(X1i − a− b2X2i − . . .− bpXpi)
2

Here p normal equations can be obtained by minimizing s2 w.r.t a, b2 . . . bp.

From the first normal equation we get

X1 = a+ b2X2 + . . .+ bpXp (5.4)

where X i is the mean values of xi i = 1 . . . p.
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If we denote by si and rij , the standard deviation of Xi and correlation
coefficient between Xi and Xj(i, j = 1 . . . p) by solving the other (p − 1)
normal equations we get the estimate of bj as

b̂j = (−1)j−2 s1
sj

∣
∣
∣
∣
∣
∣

r21 r22 . . . r2(j−1) r2(j+1) . . . r2p
r31 r32 . . . r3(j−1) r3(j+1) . . . r3p
rp1 rp2 . . . rp(j−1) rp(j+1) . . . rpp

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

r22 r23 . . . . . . . . . . . . r2p
r32 r33 . . . . . . . . . . . . r3p
rp2 rp3 . . . . . . . . . . . . rpp

∣
∣
∣
∣
∣
∣

If R = ((rij))i, j = 1 . . . p denotes the p × p correlation matrix of x1, x2
. . . xp, |R| the corresponding determinant and Rij the cofactor of rij in R,
then

b̂j = (−1)2j−1 s1
sj

R1j

R11

= −R1j

R11

s1
sj

for j = 2, 3 . . . p

Hence from (5.4) we have

â = x1 +

p∑

j=2

R1j

R11

s1
sj
xj (5.5)

Thus the linear multiple regression equation (prediction equation) of X1 on
X2, X3 . . . Xp is given by

X1 = x1 − R12

R11

s1
s2

(X2 − x2) . . .
R1p

R11

s1
sp

(Xp − xp) (5.6)

The coefficient bj is called the partial regression coefficient of X1 on Xj for
fixed X2, . . . Xj−1, Xj+1, . . . Xp.

Using the estimated regression coefficients we write the fitted regression
equation as

X̂1 = â+ b̂2X2 + . . .+ b̂pXp

For each observation in our data we can compute

X̂1i = â+ b̂2X2i + . . .+ b̂pXpi, i = 1 . . . n (5.7)

These are called fitted values.

The residuals are given by ei = X1i − X̂1i, i = 1 . . . n. Assuming that eis are
independently and identically distributed as N(0, σ2), an unbiased estimate
of error variance σ2 is given by

σ̂2 =
SSE

n− p (5.8)
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where SSE =

n∑

i=1

(X1i − X̂1i)
2 =

n∑

i=1

ei
2 is the residual sum of squares.

Here the denomination (n− p) is called degrees of freedom. It is equal to the
number of observations minus the number of estimated regression coefficients.

5.3.2 Goodness of Fit

After fitting the linear model to the given data set, an assessment is necessary
for the goodness of fit. The strength of linear relationship between X1 and
the set of predictors X2, X3 . . . Xp can be examined through the examination

of the correlation coefficient of X1 versus X̂1 given by

r(X1, X̂1) =

∑
(X1i −X1)(X̂1i − X̂1)

√∑
(X1i −X1)2

√∑
(X̂1i −X1)2

(5.9)

where X1 is the mean of the response variable X1 and X̂1 is the mean of
the fitted values. The coefficient of determination R2 = [r(X1, X̂1)]2 is also
given by

R2 = 1− SSE

SST
= 1−

∑
(X1i − X̂1i)

2

∑
(X1i −X1)2

(5.10)

Thus, R2 may be interpreted as the proportion of the total variability in
the response variable X1 that can be accounted for by the set of predictor
variables X2, X3 . . . Xp. Here R is called the multiple correlation coefficient.
It measures the relationship between one variable X1 and a set of variables
X2, X3 . . . Xp.

When the model fits the data well, it is clear that the value of R2 is
close to unity. In the absence of any linear relationship between X1 and
X2, X3 . . . Xp, R

2 will be near to zero. But in some situations a large value
of R2 may not mean that the model fits the model well. For those situations
a more detailed analysis is necessary.

Another quantity, known as adjusted R2, denoted by R2
α is also used to

judge goodness of fit. It is defined as

R2
α = 1− (SSE)/n− p

SST/n− 1

= 1− n− 1

n− p(1 −R2) (5.11)
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5.3.3 Regression Line Through the Origin

Let us consider two regression lines of the forms

X1 = a+ b2X2 (5.12)

and X1 = b2X2 (5.13)

The first one is a regression line with an intercept and the second one is a
regression line passing through the origin. This is called a no-intercept model.
Sometimes the line may be forced to go through the origin because of the
subject matter or other external considerations. One has to make the choice
between the two models with care. Here goodness of fit of the two models
should be judged in terms of the residual sum of squares rather than the R2

value as the R2 values obtained from the two models are not comparable. In
the first case the R2 value is based on the deviations from the sample mean
whereas in the second case R2 is based on the deviations measured about
zero.

5.4 Effectiveness of the Fitted Model

After fitting an appropriate regression model it is necessary to perform some
investigation to check the effectiveness of the fitted model. So graphical pre-
sentation may be used to check linearity and normality assumptions. For this
one may use normal probability plot where ordered standardized residuals are
plotted against the ordered normal scores. Under normality assumption this
plot should be a straight line with a zero intercept and slope one.

One should also check whether the fit is not overly determined by one or
few influential observations. To find influential observations, leverage values
have important role. Consider the fitted model

X̂1i = â+ b̂2X2i + . . .+ b̂pXpi(i = 1 . . . n)

and the corresponding ordinary least square residuals

ei = X1i − X̂1i

The fitted values can also be written in an alternative form

X̂1i = pi1X11 + pi2X12 + . . .+ pinX1n(i = 1 . . . n) (5.14)

where pij ’s are quantities which depend only on the values of independent

variables. In simple regression of the form yi = â+ b̂xi(i = 1 . . . n)
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pij is given by

pij =
1

n
+

(xi − x)(xj − x)
∑

(xi − x)2
(5.15)

In multiple regression pij ’s are the elements of that “hat” or projection ma-
trix. Here the pii value is known as the leverage value for the i-th observation.
There are several distance measures to identify influential observations. One
of them is Cook’s distance defined as

Ci =

(
r2i
p

)(
pii

1− pii

)

, i = 1 . . . n (5.16)

where ri =
ei

σ̂
√

1− pii
A large value of Ci indicates that the point is influential. Points with Ci value
greater than the 50 % point of the F distribution with p and (n− p) degrees
of freedom be classified as influential point. As a practical rule, one may
take that point as influential whose Cook’s distance measure is greater than
1. After identifying the influential observations, these should be critically
examined. One may refit the model by excluding the influential observations
to see the effect of these points.

Another measure was proposed by Hadi (1992) on the basis of the fact
that the influential observations are outliers either in the response variable
or in the predictors or both. The proposed measure is

Hi =
pii

1− pii +
p

1− pii
d2i

1− d2i
i = 1 . . . n (5.17)

where di = ei√
SSE

is the normalized residual. Observations with large values

of Hi are usually treated as influential.

5.5 Best Subset Selection

As the least square estimates often have low bias but large variance, pre-
diction accuracy can sometimes be improved by shrinking or setting some
coefficients to zero. Further with a large number of predictors sometimes we
like to determine a smaller subset that exhibits the strongest effect. There
are a number of approaches to variable subset selection with linear regres-
sion. Best subset regression finds for each m, the subset of size m that gives
smallest residual sum of squares, m = 1, 2 . . . p, where p is the total number
of predictors. Problem of choosing m involves the trade off between bias and
variance. But for large values of p, this method becomes infeasible. There
are many other methods also. Some of them are discussed below.
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5.5.1 Forward and Backward Stepwise Regression

Forward subset selection starts with the intercept and then subsequently
adds into the model gradually those predictors which improve the fit most
rapidly. Although it involves a large amount of computation for large values
of p, there are several reasons for preferring it. Even if p is larger than n
(total number of observations), we can always compute the forward stepwise
sequence. Further forward stepwise is a constrained search and has lower
variance.

Backward stepwise selection starts with the full model and subsequently
deletes the predictor that has the least impact on the fit. Backward solution
can be used only when n > p but forward stepwise method can always be
used.

There are stepwise selection strategies that consider both forward and
backward waves at each step and select the best of the two. For the R code
we refer Chap. 11. The corresponding data file UCD1.txt is given in the
Appendix.

Like forward stepwise method, there is another method known as forward
stepwise regression. At each step the algorithm identifies the variable which
has the largest correlation with the current residual. It then computes the
simple linear regression coefficient of the residual on this chosen variable and
then adds it to the current coefficient for that variable. This is continued till
none of the variables have correlation with this residuals. This method can
take many more than p steps to reach the least square fit.

5.5.2 Ridge Regression

Ridge regression shrinks the regression coefficients by imposing a penalty on
their size. The ridge coefficients minimize a penalized residual sum of squares.
The ridge regression coefficients can be obtained by minimizing

n∑

i=1

(X1i − a− b2X2i − . . .− bpXpi)
2 subject to

p∑

j=2

b2j ≤ t (5.18)

where t is a known constant known as size constraint. When there are many
correlated variables in a linear regression model their coefficients are likely to
be poorly determined and show high variance. By imposing size constraint
on the coefficients this problem can be minimized. This method is applicable
to the situation where p is very large compared to n. For R code we refer
Chap. 11.
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5.5.3 Least Absolute Shrinkage and Selection Operator (LASSO)

Like ridge regression method, LASSO is also a shrinkage method where the
L2 penalty function is replaced by L1 penalty function. The LASSO estimate
of the regression coefficients can be obtained by minimizing

n∑

i=1

(X1i − a− b2X2i − . . .− bpXpi)
2 subject to

p∑

j=2

|bj| ≤ t (5.19)

This L1 norm constraint makes the solution non linear in the X1i and there
is no closed form expression. The problem is of the form of a quadratic
programming problem. Here the solution largely depends on the choice of t.

If t is chosen larger than t∗ =

p∑

2

|b̂j |, where b̂j , j = 2 . . . p are the least

square estimates, then the LASSO estimates will be same as the least square
estimates. Alternatively, for t = t/2, the least square estimates are shrunk
by about 50 % on average.

5.5.4 Least Angle Regression (LAR)

Efron et al. (2004) introduced this concept which can be looked upon as an
improvement over the forward stepwise regression. At first step LAR iden-
tifies the variable having the largest correlation with the response variable.
Then moves the coefficient of this variable continuously towards its least
square value so that the correlation with the residual decreases in absolute
value. Another variable then enters the active set as soon as its correlation
with the residual becomes as much as that of the first variable. Then the
coefficients of both the variables are moved together in a way that keeps their
correlations decreasing. This process is continued until all the variables are
in the model and ends at the full least square fit. The LAR algorithm can
be described as follows.

(a) Standardize the predictors to have mean zero and unit norm. Start
with the residual e = X1 −X1, b2 = b3 = . . . = bp = 0.

(b) Find the predictor Xj(j = 2 . . . p) having the largest correlation
with e.

(c) Move bj from 0 towards its least square coefficient until some other
competitor variable Xk has as much correlation with the current
residual as does Xj .

(d) Move bj and bk in the direction defined by their joint least square
coefficients of the current residual on (Xj , Xk) until some other vari-
able Xl has as much correlation with the current residual.

(e) Continue this way until all p− 1 predictors have been entered.
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5.6 Multicollinearity

In multiple regression, the underlying assumption is that the predictor vari-
ables are not strongly interrelated. Regression coefficient measures the change
in the response variable when the corresponding predictor variable is changed
by one unit and all other predictor variables are held constant. But if the
independent variables are strongly related then this interpretation may not
remain valid. When there is no linear relationship among the predictor vari-
ables they are said to be orthogonal. The lack of orthogonality is not a serious
problem. But in some cases the causes are so strongly interrelated that the
regression result becomes ambiguous.

The condition of nonorthogonality is known as the problem of multicollinear-
ity. Usually it is very difficult to identify multicollinearity in a data set.
Multicollinearity increases the standard errors of the coefficients. As a result
some of the coefficients of independent variables may be found insignificant
whereas without multicollinearity and with lower standard errors, the same
coefficients might have been found to be significant. Thus we may say that
multicollinearity makes some variables statistically insignificant while they
should be otherwise significant. Variance inflation factors (VIF) measure the
amount by which the variance of estimated coefficients are increased over the
cases of no correlation among the predictor variables. If no two predictor
variables are correlated, then all the VIFs will be 1. If VIF for one of the
variables is greater than 5, we say that there is multicollinearity associated
with that variable. As a practical rule, if there are two or more variables
having VIF around or greater than 5, one of these variables must be removed
from the regression model.

The VIF can be computed in the following manner. Consider the linear
model with p independent variables Y = b0 + b1X1 + b2X2 + . . . bpXp + e.
Then the estimated variance of the estimate of bj is given by

ˆV ar(b̂j) =
s2

(n− 1) ˆV ar(Xj)

1

1−R2
j

where R2
j is the value of multiple R2 for the regression of Xj on other pre-

dictors, s2 is the mean square error and n is the sample size.

1
1−R2

j
is known as the VIF of b̂j . We calculate p different VIFs, one for each

Xi(i = 1 . . . p) by first running an ordinary least square regression that has Xi

as a function of all other predictors. Then compute the VIF for b̂i(i = 1 . . . p)
by using the formula

VIF =
1

1−R2
i
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A common rule of thumb is that if V IF (b̂i) > 5 then multicollinearity is
high.

One can tackle multicollinearity by increasing the sample size as when
sample size is increased standard error decreases. Another way is to remove
the most inter correlated variables from the analysis. But this method may
contradict the basic assumption that these variables were there due to the
theory of the model.

5.7 Regression Problem in Astronomical Research
(Mondal et al. 2010)

Regression analysis is a widely used method in astronomical research. It is
used for two purposes: (1) to develop a quantitative relationship among astro-
nomically observed properties of a set of objects and (2) to predict the values
of a particular property in terms of other properties of that set, e.g. relations
between X-ray temperatures and velocity dispersions for galaxy clusters, the
colour–luminosity relations for field galaxies, period luminosity relation for
variable stars, Tully–Fisher relation (maximum rotation velocity vs. luminos-
ity relation) for galaxies and other Fundamental Plane (FP) (later discussed
in detail) relations when considering more than two variables. In case of two
variables X and Y, one is treated as independent and the other dependent and
ordinary least squares method gives a single linear regression of the depen-
dent variable Y against the independent variable X, denoted by OLS(Y |X).
OLS(Y |X) is one which minimizes the sum of squares of the Y residuals and
predicts Y in terms of X. For astronomical purpose several problems are faced
with the above choice. If the choice of the independent variable is not clear,
then there is alternative option of OLS(X |Y ) and the distinction between
these two approaches is often not clear (Bandiera and Hunt 1989) though a
third robust process is discussed by Branham (1982) and Lutz (1983) which
is not least squares procedure at all. So one single relationship treating X and
Y symmetrically is required. In the above discussion measuremental errors
have not been considered. Measuremental errors are the errors which arise
in the measurement process of the instrument, e.g. signal to noise ratio, re-
peated measurements of some property etc. Heteroscedastic measuremental
errors are mentioned in Isobe et al. (1990) as well as in Feigelson and Babu
(1992).

In the paper of Isobe et al. (1990), the authors deal with data having
no measuremental errors. Feigelson and Babu (1992) performed regression
between two variables including measuremental errors. Non linear regression
using ORDPACK (Boggs et al. 1990; Press et al. 1986) has been performed
also. Akritas and Bershady (1996) have developed regression regarding two
variables including known measuremental errors, (a) allowing measuremen-
tal errors of both the variables, (b) allowing measuremental errors of the
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variables to be dependent on each other, (c) measuremental errors depend-
ing on measurement and (d) finding other symmetric lines, e.g. bisector
and orthogonal regression, etc. Then these techniques are applied to vari-
ous astrophysical regression situations like colour–luminosity relation for field
galaxies, Tully–Fisher relation and Tolman test as mentioned above.

In the work by Mondal et al. (2010), the regression line has been extended
to regression plane of three variable y1, y2 and y3, on the one hand, includ-
ing measuremental errors of all the variables and, on the other hand, finding
any symmetric plane in which any of the three variables can be considered
as dependent and other two as independent variables. The extension from
regression line to regression plane is an important aspect of studying Funda-
mental Plane of galaxies. There are various characteristics of galaxies which
are correlated, e.g. a galaxy with a higher luminosity has a larger central
velocity dispersion (σ) (Faber and Jackson 1976) or a galaxy with a larger
size (viz. effective radius re) has fainter effective surface brightness (< μv >)
(Kormendy 1977). The usefulness of these correlations is when a characteris-
tic that can be determined without prior knowledge of galaxy’s distance, e.g.
central velocity dispersion and it is correlated with a characteristic, such as
luminosity or in turn effective radius, that can be determined only for galax-
ies with known distances, then, with this correlation, one can determine the
distances to distant galaxies which is a difficult task in astronomy.

The above two point correlations are rather tight but the scatter is still
reduced using a three variable relation of the form log re = a log σ+b < μv >
+c (Dressler et al. 1987; Djorgovski and Davis 1987). This relation is known
as fundamental plane (FP). It is applicable for giant early type galaxies and
extends to faint and low-mass galaxies (Nieto et al. 1990). Following the
above argument if σ, < μv > and angular re (in seconds of arc) can be
measured for distant galaxies, then the distances (D in kpc) of these galaxies
can be measured from the above FP relation as re in the above relation is
linear (in kpc) and re (linear) ∼ Dre (angular). In the above relation log re is
considered as a dependent and σ and < μv > are considered as independent,
as in ordinary regression for three variables case. But actually these three
parameters are intrinsically independent of each other, so the concept of
dependent and independent variables is not applicable to the above situation.
Hence we are in need of a symmetric relation (symmetric fundamental plane)
where the concept of dependent or independent variables does not come into
the picture and any variable can be expressed in terms of the remaining
ones. This symmetric plane then plays the role of the so-called FP used
generally in Astrophysics. In their work, Feigelson and Babu (1992) have
found such a unique symmetric line while considering two variables (X, Y)
and the symmetric line is the angular bisector of the two regression line (Y |X)
and (X |Y ) with minimum variance. But they have not considered the case of
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three variables. In the work of Mondal et al. (2010) the concept of symmetric
line has been extended to symmetric plane involving three variables although
the choice is not unique.

5.7.1 Regression Planes and Symmetric Regression Plane

Following Akritas and Bershady (1996) the regression planes are derived ex-
tending from two to three variables in the following manner that incorporates
measuremental errors. Let the observations and their variance–covariance
matrices corresponding to variables of interest be denoted by

(Y1i, Y2i, Y3i, Vi), i = 1, . . . , n (5.20)

where for each i, Vi is a symmetric 3× 3 matrix with elements

Vi =

⎛

⎜
⎜
⎜
⎜
⎝

V11,i V12,i V13,i

V22,i V23,i

V33,i

⎞

⎟
⎟
⎟
⎟
⎠

The observed data are related to unobserved intrinsic values of the variables
(X1i, X2i, X3i)

by the relation

Y1i = X1i+ ∈1i
Y2i = X2i+ ∈2i (5.21)

Y3i = X3i+ ∈3i, i = 1, 2, . . . , n

where the errors (∈1i,∈2i,∈3i) are the measuremental errors corresponding
to unobserved true values X1i, X2i and X3i. Y1i, Y2i and Y3i are the ob-
served values of the variables (also known as surrogates). They have a joint
trivariate distribution with assumed mean vector 01×3 and dispersion matrix
Vi. In this model, we allow Vi to depend on (Y1i, Y2i, Y3i) and thus implic-
ity on (X1i, X2i, X3i). However, we assume that Vi is the only aspect of
the distribution of (∈1i,∈2i,∈3i) that depends on (Y1i, Y2i, Y3i). This implies
that, on the basis of the above assumption, given Vi, (∈1i,∈2i,∈3i) are in-
dependent of (X1i, X2i, X3i). The intuitive meaning of the above technical
assumption is that ∈1i, ∈2i, ∈3i are equally likely to be positive or negative
for any values of X1i, X2i, X3i and the sizes of their absolute values are gov-
erned (in addition to the type of the measuremental error distribution) by
the magnitudes of V11,i, V22,i, V33,i, which are given. In most cases the mea-
suremental errors for (X1i, X2i, X3i) are assumed independent implying that
the off diagonal elements of the matrix Vi are zeros and observed data are
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of the form (Y1i, Y2i, Y3i, V11,i, V22,i, V33,i) where Vkk,i denote the variances of
∈ki, k = 1, 2, 3. It is further assumed that the true values of the variables
follow the multiple regression model corresponding to the i-th observation,

X1i = a1 + b1X2i + c1X3i + e1i (5.22)

where e1i (i.e., model error) is assumed to have zero mean and finite variance.
The variance or standard deviation of e1i is known as the “intrinsic scatter”.

When it is not known that which one should be the dependent variable, then
the other two possible models are

X2i = a2 + b2X1i + c2X3i + e2i

X3i = a3 + b3X1i + c3X2i + e3i

For three variables (where dependent variable is unknown) we have to con-
sider the regression equations (X1|X2, X3), (X2|X1, X3) and (X3|X1, X2).

If we use model (5.22), without measuremental errors the estimates of the
unknown constants are (using (5.21)):

b̂1 =
1

d

[
n∑

i=1

(Y1i − Y 1)(Y2i − Y 2)

n∑

i=1

(Y3i − Y 3)2−

n∑

i=1

(Y1i − Y 1)(Y3i − Y 3)
n∑

i=1

(Y2i − Y 2)(Y3i − Y 3)

]

ĉ1 =
1

d

[
n∑

i=1

(Y1i − Y 1)(Y3i − Y 3)

n∑

i=1

(Y2i − Y 2)2−

n∑

i=1

(Y1i − Y 1)(Y2i − Y 2)

n∑

i=1

(Y2i − Y 2)(Y3i − Y 3)

]

â1 = Y 1 − b̂1Y 2 − ĉ1Y 3

where

d =

n∑

i=1

(Y2i − Y 2)2
n∑

i=1

(Y3i − Y 3)2 −
[

n∑

i=1

(Y2i − Y 2)(Y3i − Y 3)

]2

These are the simple usual regression estimates (OLS).
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But when measuremental errors are present in all variables, then the covari-
ance matrix changes with subtractions, i.e., Modified covariance matrix =
covariance matrix of the data− covariance matrix of the error.

Some formulae:

var(Y1i) = var(X1i) + E(V11,i)

var(Y2i) = var(X2i) + E(V22,i) (5.23)

var(Y3i) = var(X3i) + E(V33,i)

If there is no repeated observation, E(V11,i), E(V22,i), E(V33,i) are replaced
by V11,i, V22,i, V33,i, respectively.

cov(Y1i, Y2i) = cov(X1i, X2i) + E(V12,i)

cov(Y2i, Y3i) = cov(X2i, X3i) + E(V23,i) (5.24)

cov(Y1i, Y3i) = cov(X1i, X3i) + E(V13,i)

If there is no repeated observation, E(V12,i), E(V23,i), E(V13,i) are replaced
by V12,i, V23,i, V13,i, respectively.

Now the modified estimates are (using (5.21), (5.23), (5.24)):

b̂1 =
1

d

[

(cov(Y1, Y2)−
n∑

i=1

V12,i)(var(Y3)−
n∑

i=1

V33,i)−

(cov(Y1, Y3)−
n∑

i=1

V13,i)(cov(Y2, Y3)−
n∑

i=1

V23,i)

]

ĉ1 =
1

d

[

(cov(Y1, Y3)−
n∑

i=1

V13,i)(var(Y2)−
n∑

i=1

V22,i)−

(cov(Y1, Y2)−
n∑

i=1

V12,i)(cov(Y2, Y3)−
n∑

i=1

V23,i)

]

â1 = Y 1 − b̂1Y 2 − ĉ1Y 3



152 5 Advanced Regression and Its Applications with Measurement Error

where

d =

[{

var(Y2)−
n∑

i=1

V22, i

}{

var(Y3)−
n∑

i=1

V33,i

}

−
{

cov(Y2, Y3)−
n∑

i=1

V23,i

}2
⎤

⎦

Here we make assumption on

cov(Xki, eli) = 0

where

k = 1, 2, 3 ; l = 1, 2, 3

Similarly the least squares estimates can also be obtained for the models
(X2|X1, X3) and (X3|X1, X2), respectively.

In the standard OLS model without measuremental errors, we assume that
model errors are independently and identically distributed as Gaussian with
mean 0 and variance σ2. Also Xi’s become identical with Yi’s as ∈1i’s are
zero (viz. Eq. (5.21)).

5.7.2 The Symmetric Regression Plane with Intercept

The three regression planes without model error can be written as

y1 = a1 + b1Y2 + c1Y3 (5.25)

y2 = a2 + b2Y1 + c2Y3 (5.26)

y3 = a3 + b3Y1 + c3Y2 (5.27)

where y1, y2 and y3 are the predicted values of Y1, Y2 and Y3, respectively.
Let these planes intersect at (a, b, c). Then the line of intersection of any two
planes among the three and passing through O(a, b, c) is OA (say) is given
by (Fig. 5.1)

x− a
α′ =

y − b
β′ =

z − c
γ′

where α′, β′ and γ′ are direction cosines of OA. Now, OA is perpendicular to
the normals of the intersecting planes (Y1|Y2, Y3), (Y2 Y1, Y3) (say) so,

α′ − b1β′ − c1γ′ = 0
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−b2α′ + β′ − c2γ′ = 0

From the above equations ratio of α′, β′ and γ′ can be found. Let A be any
point on

X

Y

Z

O (a,b,c)

A B

C

r

C

BA

O (a,b,c)

Z

Y

X

r

r

G

Figure 5.1 Regression planes OABO (Y1|Y2, Y3), OACO (Y2|Y1, Y3) and
OBCO (Y3|Y1, Y2)

OA at a distance r (say) (choice of r is arbitrary). Then A has the co-
ordinates A(α′r + a, β′r + b, γ′r + c). Similarly we can choose other two
points B and C at a distance r from O, lying on the lines of intersection of
other regression planes such that B(α′′r+a, β′′r+b, γ′′r+c), C(α′′′r+a, β′′′r+
b, γ′′′r+c). Then the co-ordinates of the centroid G of the tetrahedron OABC
has the co-ordinates, G([α′ +α′′ +α′′′r+ 4a]/4, [β′ + β′′ + β′′′r+ 4b]/4, [γ′ +
γ′′ + γ′′′r + 4c]/4). So the equation of OG is

x− a
[(α′ + α′′ + α′′′)r]/4

=
y − b

[(β′ + β′′ + β′′′)r]/4
=

z − c
[(γ′ + γ′′ + γ′′′)r/4

Hence the required symmetric plane perpendicular to OG and passing through
O is

(α′ + α′′ + α′′′)(x − a) + (β′ + β′′ + β′′′)(y − b) + (γ′ + γ′′ + γ′′′)(z − c) = 0



154 5 Advanced Regression and Its Applications with Measurement Error

i.e.

Ax+By + Cz +D = 0, (5.28)

where A, B, C, D are constants.

The choice of the plane is not unique. Here we have considered tetrahedron
with three sides (viz. OA, OB, OC) equal, but asymmetry may lead to
different such choices of the symmetric planes.
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Chapter - 6

Missing Observations and Imputation

6.1 Introduction

Statistical analysis with missing data is an important problem as the problem
of missing observation is very common in many situations. During the last
two decades different methods have been developed to tackle the situation.
One possible way to handle missing values is to remove either all features
or all objects that contain missing values. Another possibility is imputation
where we fill in the missing values by inferring new values for them. The
imputation method may not be applicable to some astronomical data sets as
the missing value may arise from physical process and imputing missing values
is misleading and can skew subsequent analysis of data. For example, the
Lyman break technique (Giavalisco 2002) can identify high-redshift galaxies
based on the absence of detectable emissions in bands corresponding to the
FUV rest frame of the objects.

6.2 Missing Data Mechanism

Under the regression set-up with predictor X and response Y missing value
problems often arise. To decide how to handle missing value problems, pri-
marily we need to know why these values are missing. We may define four
general missingness mechanisms.

6.2.1 Missingness Completely at Random (MCAR)

A variable value is missing completely at random if the probability of missing-
ness is the same for all units. Under the regression set-up if the missing values
are independent of both X and Y then these are called missing completely
at random.
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6.2.2 Missingness at Random (MAR)

Most missingness is not completely at random. A more general assumption,
missing at random, is that the probability of a variable value is missing
depends only on variable information. Under the regression set up, if the
missing value depends on X but not on Y then these are called missing at
random.

If X is age and Y is income of a group of persons, then if the probability
of recording an income value is the same for all individuals irrespective of
their age and income then the missing values are called MCAR. But if the
probability of recording an income value varies according to the age of the
respondent but does not vary according to the income of the respondent
within an age group then the missing data are missing at random but not
observed at random (MAR).

6.2.3 Missingness that Depends on Unobserved Predictors
and the Missing Value Itself

Missingness is no longer at random if it depends on information that has not
been recorded and this information also predicts the missing values. A par-
ticularly difficult situation arises when the probability of missingness depends
on the variable itself. Under the regression set-up this type of situation arises
when probability of response depends on both X and Y .

For statistical inference with missing information, we usually assume that
the missingness pattern is MCAR or MAR.

Generally we try to include as many predictors in the model as possible
so that the “missing at random” assumption is reasonable.

6.3 Analysis of Data with Missing Values

6.3.1 Complete Case Analysis

A direct approach is to exclude the missing observations from the analysis.
Here we initially delete all units for which the outcomes or any of the inputs
are missing. But this approach introduces significant bias in the final result.
If many variables are included in a model, there may be very few complete
cases so that most of the data would be excluded from the analysis. Further
if the units with missing values differ systematically from the completely
observed units, the final results are very much likely to be biased.
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6.3.2 Imputation Methods

Under this approach we fill in the missing values by some suitable method.
Different imputation techniques have been developed by several authors. This
filled in data increases the precision of the estimates but may introduce a dif-
ferent kind of bias. Under single imputation, each missing values in a data
set is replaced with one randomly imputed value whereas under multiple im-
putation each missing value is replaced by several imputed values in order to
reflect uncertainty about the imputation model. Different single imputation
methods are discussed below.

6.3.2.1 Mean Imputation

Let Yij be the ith observation corresponding to the jth variable and some of
Yij values are missing for the jth variable Yj . Under mean imputation Yij is

estimated by Y
(j)

j , the mean of the recorded values of the variable Yj . Let
us denote by nj, the number of recorded observations for the jth variable Yj

and by s
(j)
jj , the estimated variance from the recorded values. Under MCAR

s
(j)
jj is a consistent estimator of the true variance.

The variance by considering both observed and imputed values is given by

(nj − 1)s
(j)
jj + 0

n− 1

So, the sample variance obtained by using the filled in data under estimates
the variance by a factor (nj − 1)/(n− 1).

Similarly it can be proved that the covariance values are also under-
estimated.

Mean imputation may also severely distort the distribution of the variable.

6.3.2.2 Hot Deck Imputation (Andridge and Little 2010)

Hot deck imputation involves replacing missing values of one or more vari-
ables for a non-respondent with observed values from a respondent that is
similar to the non-respondent with respect to characteristics observed by
both cases. The similar respondent may be randomly selected from a set of
potential similar respondents. This is known as random hot deck method.
Otherwise a single similar respondent is identified and values are imputed
from that respondent. This particular similar respondent (known as nearest
neighbour) is selected on the basis of some metric. This is known as deter-
ministic hot deck method. Hot deck method does not use model fitting for
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the variable to be imputed and thus is less sensitive to model misspecifica-
tion than an imputation method based on a parametric model. For this the
hot deck method is very popular. But hot deck method heavily depends on
the choice of metric to find similar respondent(s) for the respondents with
missing values. One can choose such a metric on the basis of the available co-
variates in the following manner. Let xi = (xi1, xi2, . . . , xim) be the values of
m covariates for the observation i to create adjustment cells and c(xi) denote
the cell in the cross-classification in which subject i falls. Then matching the
observation i with missing values by the observation j may be based on the
metric

d(i, j) =

⎧
⎨

⎩

0 if j ∈ c(xi)

1 if j /∈ c(xi)
Other possible matric choices may be

1. Maximum absolute distance

d(i, j) = max
k
|xik − xjk|

where the xk values have been suitably scaled to make differences
comparable.

2. Mahalanobis distance

d(i, j) = (xi − xj)
[ ˆvar(xi)]
−1(xi − xj)

where ˆvar(x) is an estimate of the covariance matrix of xi.

Once a metric is chosen there are several ways to define the set of similar
observations for each observation with missing values. One possible method
is to define the set of similar observations j with d(i, j) < δ for a pre specified
maximum distance δ corresponding to the missing observation i. One similar
observation j is then selected by a random draw from the set. Alternatively
if the closest observation to i (denoted by j) is selected, the method is called
a deterministic or nearest neighbour hot deck.

6.3.2.3 Cold Deck Imputation (Shao 2000)

A cold deck method imputes a non-respondent of Y variable by reported
values from anything other than Y values. It may take values from a covariate
and/or from a previous survey. Cold deck imputation is opposite to hot deck
imputation in which a non-respondent is imputed by a respondent from the
same variable in the current survey. Suppose we have a sample s selected
from a finite population P consisting of some units represented by i = 1 . . .N .
The observed values are given by {Yi, i ∈ r}, r ⊂ s. Suppose also that we
have auxiliary data xi’s observed for all i ∈ s and xi > 0. Then the simplest
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cold deck imputes a non-respondent Yi, i ∈ s − r by xi and the resulting
Horvitz–Rhompson estimator of Y is

Ŷ =
∑

i∈r
wiYi +

∑

i∈s−r
wixi (6.1)

where wi is the survey weight associated with the ith sampled unit.

6.3.2.4 Warm Deck Imputation

This method is also known as ratio imputation. Under this imputation
method, k imputation cells Pk are created such that P1UP2 . . . UPk = P ,
according to a categorical auxiliary variable (as in hot deck) which is ob-
served for every i ∈ s and is different from X such that for every k the
following model is valid.

Yi = βkxi + x
1/2
i ei i ∈ Pk (6.2)

where βk is an unknown parameter, ei is independent of xi with E(ei) = 0
and v(ei) = σ2

k > 0 which is unknown. Then, within imputation cell k, a non

respondent Yi is imputed by β̂kxi, where

β̂k =
∑

i∈rk
wiYi/

∑

i∈rk
wixi (6.3)

rk is the set of respondent in the kth imputation cell and wi is the survey
weight associated with the ith sampled unit.

For dealing with data involving missing values, so far we have discussed
methods like complete case analysis, hot deck, cold deck methods for impu-
tation, etc. One may also use methods like maximum likelihood, Bayesian,
multiple imputation, etc.

6.4 Likelihood Based Estimation: EM Algorithm

In general, there is no difference between ML estimation for incomplete data
and complete data. But for incomplete data asymptotic standard error values
are not reliable as the large sample normality is not readily applicable. Let
us introduce a new notation to denote the observed and missing part of the
complete data Y as Y = (Yobs, Ymis). Then the joint density function is
given by

fθ(Y ) = fθ(Yobs, Ymis)

Hence the marginal density of observed values is given by

fθ(Yobs) =

∫
fθ(Yobs, Ymis)dYmis
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Then the likelihood of θ based on the data Yobs (ignoring the missing data)
is given by

Lθ(Yobs)∞fθ(Yobs) (6.4)

Inference about θ can be based on the likelihood Lθ(Yobs) under the assump-
tion that incomplete data can be ignored. For each component of Y we define
a missing data indicator.

If Y = (Yij)
n×k be the matrix of n observations measured for k variables.

We define a response indicator

Rij = 1 if Yij is observed

= 0 if Yij is missing

Here R = (Rij)
n×k is considered as a matrix of random variables and the

joint distribution of R and Y is given by

fθ,ψ(Y,R) = fθ(Y )fψ(R|Y )

The conditional distribution of R given Y is indexed by an unknown param-
eter ψ which specified the missing data mechanism.

fθ,ψ(Yobs, R) =

∫
fθ(Yobs, Ymis)fψ(R|Yobs, Ymis)dYmis (6.5)

Hence the likelihood of θ and ψ is given by

Lθ,ψ(Yobs, R)∞fθ,ψ(Yobs, R) (6.6)

Now inference for θ may depend either by Lθ(Yobs) given by (6.4) or by
Lθ,ψ(Yobs, R) given by (6.6).

If fψ(R|Yobs, Ymis) = fψ(R|Yobs) . . . (6.6.1) i.e. distribution of missing data
mechanism does not depend on the missing values, then inference for θ from
Lθ(Yobs) will be same as that from Lθ,ψ(Yobs, R).

Equation (6.6.1) implies that probability of a particular component of Y
is missing does not depend on the value of that component, i.e. missing
values are missing at random. So the likelihood based inferences that ignore
the missing data, missing value mechanism is required to be MAR and not
necessarily MCAR.
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If the likelihood is differentiable and unimodel, ML estimates can be found
by solving the likelihood equation

δlnLθ(Yobs)

δθ
= 0 (6.7)

When a closed form of (6.7) cannot be found iterative methods can be ap-
plied. Let θ(0) be the initial estimate, e.g. based on completely observed
observations. Let θ(t) be the estimate at the tth iteration. Then by Newton–
Raphson method

θ(t+1) = θ(t) + I−1(θ(t)|Yobs)δlnLθ(Yobs)
δθ

(6.8)

where I(θ|Yobs) = − δ2lnLθ(Yobs)
δθ2 .

If the log likelihood function is concave and unimodel, then the sequence θ(t)

converges to the ML estimate of θ. It will converge in one step if lnLθ(Yobs)
is a quadratic function of θ. For expectation Maximization (EM) algorithm
(Dempster and Laird 1977) we do not require to calculate the second deriva-
tive. Basically there are only two steps, viz. E-step and M-step. Under
E-step we calculate the conditional expectation of the missing data given the
observed data and the current estimated values of the parameters. Then
we substitute these expected values for missing values. Under M-step we
calculate the ML estimate of θ assuming that there is no missing value.

The steps of E-M algorithm are as follows:

1. Replace missing values by estimated values.

2. Estimate parameters of the distribution.

3. Reestimate the missing values assuming that the new parameter
estimates are correct values.

4. Reestimate the parameters and so on until convergence.

6.5 Multiple Imputation

Under multiple imputation, instead of filling in a single value for each missing
value, Rubin (1987) proposed that each missing value should be replaced by
a set of plausible values that represent the uncertainty about the right value
to impute. Multiple imputation inference involves these distinct steps.

1. The missing data are filled in k times to generate k complete data
sets.

2. The k complete data sets are analysed by using standard procedures.

3. The results from the k complete data sets are combined for the
inference.
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Chapter - 7

Dimension Reduction and Clustering

7.1 Introduction

For multivariate analysis with p variables the problem that often arises is
the ambiguous nature of the correlation or covariance matrix. When p is
moderately or very large it is generally difficult to identify the true nature
of relationship among the variables as well as observations from the covari-
ance or correlation matrix. Under such situations a very common way to
simplify the matter is to reduce the dimension by considering only those
variables (actual or derived) which are truly responsible for the overall vari-
ation. Important and useful dimension reduction techniques are Principal
Component Analysis (PCA), Factor Analysis, Multidimensional Scaling, In-
dependent Component Analysis (ICA), etc. Among them PCA is the most
popular one. One may look at this method in three different ways. It may
be considered as a method of transforming correlated variables into uncor-
related one or a method of finding linear combinations with relatively small
or large variability or a tool for data reduction. The third criterion is more
data oriented. In PCA primarily it is not necessary to make any assumption
regarding the underlying multivariate distribution but if we are interested
in some inference problems related to PCA then assumption of multivariate
normality is necessary. The eigen values and eigen vectors of the covari-
ance or correlation matrix are the main contributors of a PCA. The eigen
vectors determine the directions of maximum variability whereas the eigen
values specify the variances. In practice, decisions regarding the quality of
the principal component approximation should be made on the basis of eigen
value–eigen vector pairs. In order to study the sampling distribution of their
estimates the multivariate normality assumptions became necessary as oth-
erwise it is too difficult. Principal components are a sequence of projections
of the data. The components are constructed in such a way that they are
uncorrelated and ordered in variance. The components of a p-dimensional
data set provide a sequence of best linear approximations. As only a few of

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4939-1507-1 7) contains supplementary material,
which is available to authorized users.

© Springer Science+Business Media New York 2014
A.K. Chattopadhyay, T. Chattopadhyay, Statistical Methods
for Astronomical Data Analysis, Springer Series in Astrostatistics 3,
DOI 10.1007/978-1-4939-1507-1 7

163

http://dx.doi.org/10.1007/978-1-4939-1507-1_7


164 7 Dimension Reduction and Clustering

such linear combinations may explain a larger percentage of variation in the
data, one can take only those components instead of p variables for further
analysis.

More recently, ICA has emerged as a strong competitor to PCA and
factor analysis. ICA finds a set of source data that are mutually independent,
PCA finds a set of data that are mutually uncorrelated. ICA was primarily
developed for non-Gaussian data in order to find independent components
responsible for a larger part of the variation. ICA separates statistically
independent original source data from an observed set of data mixtures.

Factor analysis is used to describe the covariance relationship among many
variables in terms of a few underlying, but unobservable, random quantities
called factors. Factor analysis can be used in situations where the variables
can be grouped according to correlations so that all variables within a partic-
ular group are highly correlated among themselves but have relatively small
correlation with variables in a different group. Thus each group of variables
represents a single underlying factor. Factor analysis can be considered as
an extension of PCA.

7.2 Principal Component Analysis

A PCA is concerned with explaining the variance–covariance structure
through a few linear combinations of the original variables. Its general ob-
jectives are

1. data reduction

2. interpretation

Reduce the number of variables from p to k (p > k). Let the random
vector X ′ = (X1 . . .Xp) have the covariance matrix Σ with eigen values
λ1 ≥ λ2 . . . ≥ λp ≥ 0.

Consider the linear combinations

Y1 = l1
′X = l11X1 + l21X2 + . . .+ lp1Xp

Y2 = l2
′X = l12X1 + l22X2 + . . .+ lp2Xp

Yp = lp
′X = l1pX1 + l2pX2 + . . .+ lppXp

Then var(Yi) = li
′Σli i = 1, 2, . . . , p

cov(YiYk) = li
′Σlk i, k = 1, 2, . . . , p
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The first principal component is the linear combination with the maxi-
mum variance, i.e. it maximizes

V (Y1) = l1
′Σl1

It is clear that V (Y1) = l1
′Σl1 can be increased by multiplying any l1 by

some constant.

It is better to restrict attention to coefficient vectors of unit length.

First principal component is the linear combination l1
′X that maximizes

var(l1
′X) subject to l1

′l1 = 1.

Second principal component is the linear combination l2
′X that maxi-

mizes var(l2
′X) subject to l2

′l2 = 1 and cov(l1
′X, l2′X) = 0 and so on.

Theorem 7.1 Let Σ be the covariance matrix associated with the random
vector X ′ = (X1 . . .Xp). Let Σ have the eigen value–eigen vector pairs
(λ1, e1)(λ2, e2) . . . (λp, ep) where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. Then ith principal
component is given by

Yi = ei
′X = e1iX1 + e2iX2 + . . .+ epiXp i = 1 . . . p.

With these choices

V (Yi) = ei
′Σei = λi i = 1 . . . p

cov(YiYk) = ei
′Σek = 0 i �= k

If some λis are equal the choice of the corresponding coefficient vectors is
same eis and hence Yis are not unique.

Proof: We know that max
l �=0

l′Σl
l′l

= λ1 is attained where l = e1

But e1
′e1 = 1 since the eigen vectors are normalized. Thus

max
l �=0

l′Σl
l′l

= λ1 =
e1

′Σe1
e1′e1

= e1
′Σe1 = var(Y1)

Similarly

max
l⊥e1...ek

l′Σl
l′l

= λk+1 k = 1, . . . , p− 1.

For the choice l = ek+1 with ek+1
′ei = 0 i = 1 . . . k and k = 1 . . . p− 1,

ek+1
′Σek+1/ek+1

′ek+1 = ek+1
′Σek+1 = var(Yk+1)

But ek+1
′(Σek+1) = λk+1ek+1

′ek+1 = λk+1

So, var(Yk+1) = λk+1

cov(YiYk) = ei
′Σek = ei

′λkek = λkei
′ek = 0 i �= k
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Theorem 7.2 Let X ′ = (X1 . . . Xp) have covariance matrix Σ with eigen
value–eigen vector pair (λ, e1) . . . (λp, ep) where λ1 ≥ λ2 . . . λp ≥ 0.

Let Y1 = e1
′X Y2 = e2

′X . . . Yp = ep
′X be the principal components.

Then

σ11 + σ22 . . .+ σpp =

p∑

1

var(Xi)

= λ1 + . . .+ λp =

p∑

1

var(Yi)

Proof: We can write

Σ = P�P ′ � = Diag(λ1 . . . λp)

P = (e1 . . . ep) PP ′ = P ′P = I T r(Σ) = σ11 + . . .+ σpp

Tr(Σ) = Tr(P�P ′) = Tr(�PP ′)
= Tr(�) = λ1 + . . .+ λp

Thus σ11 + . . .+ σpp = V (X1) + . . .+ V (Xp)

or,

p∑

1

V (Xi) = Tr(Σ) = Tr(�) =

p∑

1

var(Yi)

or, total population variance

= σ11 + . . .+ σpp = λ1 + . . .+ λp

Hence proportion of total variance due to the kth principal component is

=
λk

λ1 + . . .+ λp
, k = 1 . . . p

If most (80–90%) of the total population variance for large p can be attributed
to the first one, two or three components, then there components can replace
the original p variables.

The magnitude of eki measures the importance of the kth variable to the ith
principal component irrespective of other variables.

Result: If Y1 = e1
′X Y2 = e2

′X . . . Yp = ep
′X are principal components

obtained from the covariance matrix Σ, then

ρYi,Xk
=
eki
√
λi√

σkk
i, k = 1 . . . p

where (λi, ei) are eigen value–eigen vector pairs of Σ.
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Proof: Let lk
′ = [0, 0 . . .0, 1, 0, . . .0]

So that Xk = lk
′X

and cov(XkYi)

= cov(lk
′X, ei′X)

= lk
′Σei

= lk
′λiei = λilk

′ei = λieki

⇒ ρYiXi = cov(YiXk)√
V (Yi)

√
V (Xk)

= λilki√
λi

√
σkk

= eki

√
λi√

λkk
i, k = 1 . . . p

7.2.1 An Example Related to Application of PCA
(Babu et al. 2009)

Here analysis is based on four sets of GCs in Milky Way which have appro-
priate photometric and structural parameter values.

This consists of 50 GCs taken from Recio-Blanco et al. (2006). All the photo-
metric data come from HST/WFPC2 observations in the F439W and F555W
bands, the WFPC2 equivalents of the B and V filters, which are suited for
a generic survey and constitute the best choice to identify new anomalous
HBs. The parameters used for study are:

logTeffHB : Maximum effective temperature along the HB. The effective tem-
perature of an astronomical object is the temperature it would have if it acted
like a black body, absorbing all the incoming radiation received at its surface
and reradiating it all back to space.

MV : Absolute magnitude measured using V band filter. Magnitude is the
scale of brightness. Absolute magnitude is the apparent magnitude if the
object is placed at a distance of 10 parsec.

c: Central concentration = log(rt/rc), where rt is the tidal radius and rc is
the core radius.

Rgc: Distance from galactic centre in kpc (1 kpc = 1,000 parsec).

trh: Logarithm of core relaxation time at half-light radius. The relaxation
time measures the time for the velocity of an object to be changed by grav-
itational perturbations from other objects. When the objects are in relaxed
state, equipartition of kinetic energy occurs. The sizes of galaxies are difficult
to measure since they don’t possess clearly defined boundaries. Most galaxies
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simply get fainter and fainter in their outer regions, and the apparent size of
the galaxy depends almost entirely on the sensitivity of the telescope used
and the length of time for which the object is observed. To overcome this
ambiguity, astronomers define the “half-light” or “effective” radius (re) as
the radius within which half of the galaxy’s luminosity is contained.

rc: Core radius.

μv: Central surface brightness per square arc seconds.

[Fe/H]: Cluster metallicity. The metallicity of an object is the proportion of
its matter made up of chemical elements other than hydrogen and helium.

Γcol: Collisional parameter. The collisional parameter is defined as the prob-
ability of collisions, per unit time, for one star in the cluster and it was
derived via the formula (King 2002):

Γcol = log[5×10−15
√
σ3rc]

Nstar
, where σ = 10[−0.4×(μv−26.41)], Nstar = Total number

of stars in the cluster.

ρ0: central luminosity density in Solar luminosities per cubic parsec.

rh: half-light radius in parsec.

trc: core relaxation time in year.

He: initial helium abundance. It was taken from Salaris et al. (2004).
They estimated the initial He content in about 30 % of the Galactic globular
clusters (GGCs).

Hertzsprung–Russell diagram or the colour–magnitude diagram (CMD)
is that in which the absolute magnitudes (intrinsic luminosity) of stars are
plotted against their surface temperatures or colours. The scatter plot shows
a strong correlation between luminosity and surface temperature among the
average-size stars known as main sequence stars, with hot, blue stars hav-
ing the highest luminosities and relatively cool, red stars having the lowest
ones. The horizontal branch (HB) (already discussed in previous section) is
a unique astrophysical tool for understanding and the interpretation of the
CMDs of globular clusters. Its wider colour (temperature) distribution is
usually called the HB morphology.
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Fusi Pecci et al. (1993) defined some HB morphology parameters, viz. HBR,
HBRE , Lt, (B − V )peak, BT, DT which we have used in our work. They
are defined as follows:

HBR: (B-R)/(B+V+R)

HBRE : The HB Red Extreme, defined as the intrinsic (B − V )0 colour of
the point.

Lt: The total length of the HB measured from HBRE down to the blue end
of the HB.

(B−V )peak: The dereddened colour of the peak of the HB star distribution,
measured by dividing the whole length into bins starting from HBRE and
counting the stars populating each bin, perpendicular to the adopted ridge
line.

BT: The length of the Blue Tail, measured along the ridge line of the HB
starting from (B − V )peak down to the adopted blue HB extreme.

A powerful tool in the cluster classification was introduced by Dickens (1972).
He defined seven HB types [Dickens type (DT)] from type 1, corresponding
to blue HB, up to type 7, with completely red HB.

7.2.1.1 The Correlation Vector Diagram (Biplot)

A matrix of rank 2 can be displayed as a biplot which consists of a vector
for each row and a vector for each column, chosen so that each element of
the matrix is exactly the inner product of the vectors corresponding to its
row and its column (Gabriel 1971). If the rank of a matrix is higher, it
can be displayed by a biplot of a matrix of rank 2 that approximates the
original matrix. In PCA, a biplot can be used to show inter unit distances
and indicate the clustering of units, at the same time to display the variances
and correlations of the parameters.

Any matrix of observations y of dimension m × n (in the present work n is
the number of galaxies and m is the number of parameters) can be written
by singular value decomposition as

y =

r∑

i=1

λipiqi
′, (λ1 ≥ λ2 ≥ . . . ≥ λr) (7.1)
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where r is the rank of the matrix y and λi, pi & qi
′ are the singular value,

singular column and singular row, respectively. Then by applying the method
of least squares fitting a matrix of rank 2 approximation to y is

y =
2∑

i=1

λipiqi
′, (7.2)

and the corresponding measure of goodness of fit is given by

ρ(2) =
λ1

2 + λ2
2

∑r
i=1 λi

2 (7.3)

If ρ(2) is close to 1, then the biplot will be a good approximation to y. If
the variance–covariance matrix be denoted by Sm×n = 1

ny
′y = (sij) and the

correlation matrix by Rm×n = (rij), then it can be shown that

ym×n ∼ G′n×2H ′2×m, (7.4)

where

G = (p1
n×1p2

n×1)
√
n = (g1

n×1g2
n×1) (7.5)

and

H = (1/
√
n)(λ1q1λ2q2) = (h1

m×1h2
m×1) (7.6)

Further,
sij ∼ hi′hj ,
sj

2 ∼ ||hj ||2

rij ∼ cos(hi, hj).

Using PCA with the present data set, we see that if we take HBR, HBRE ,
DT, Lt, BT and (B − V )peak by excluding log TeffHB from the set then in
the first component there are HBR, HBRE , DT, (B−V )peak while in second
component there are Lt and BT (Fig. 7.1). Here, Figs. 7.1, 7.2, 7.3, and 7.4
are the biplots (correlation vector diagrams) corresponding to PCA.

At the second step we have chosen two representative morphological pa-
rameters from the two components, namely HBR and Lt and studied their
variations with respect to intrinsic parameters [Fe/H] and Mv. Initially, we
have chosen these two intrinsic parameters. Later, we have included more
independent parameters through stepwise multiple regression technique for
a better prediction of the morphology parameter. Fist, we have taken HBR,
Lt and [Fe/H] (Fig. 7.2). Here, PCA shows that [Fe/H] belongs to the same
component with HBR. Then we have taken HBR, Lt and Mv. PCA shows
that Mv is in the same component with Lt (Fig. 7.3). From this it may be in-
ferred that the choice of HBR is not sensitive to variation in Mv while choice
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Figure 7.1 PCA for the HB morphology parameters HBR, HBRE , DT Lt,
BT and (B − V )peak of data set

of Lt is not sensitive to variation in [Fe/H] values. Finally, we have chosen
Lt, HBR, [Fe/H], Mv and logTeffHB together and here from PCA it appears
that logTeffHB has contribution to two different components of which in one
component there is [Fe/H] and in the other there is Mv (Fig. 7.4). Thus, as
a result logTeffHB seems to be sensitive to both of the independent param-
eters [Fe/H] and Mv. Hence, it may be concluded that logTeffHB may be
selected as the proper HB morphology parameters for comparison.

The R code for PCA and Biplot is given below. The corresponding data
file is given in the Appendix.

data ← read.table (“C:\\Users\\Tanuka \\Desktop\\
NGC5128new \\.txt”,
header = TRUE)
cor (data)
eigen (cor (data))
prcomp (data, cor = TRUE)
summary (pc.cr ← prcomp (data, cor = TRUE)
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Figure 7.2 PCA for the HB morphology parameters HBR, [Fe/H] and Lt of
data set

pc.cr ← prcomp (data, cor = TRUE, scores = TRUE)
x ← pc.cr$rotation
x
t ← pc.cr$scores
t
plot (t[,1], t[,2])
biplot (pc.cr)

7.3 Independent Component Analysis

ICA has emerged as a strong competitor to PCA and factor analysis. ICA
was primarily developed for non-Gaussian data in order to find independent
components (rather than uncorrelated as in PCA) responsible for a larger
part of the variation. ICA separates statistically independent component
data, which is the original source data, from an observed set of data mixtures.
All information in the multivariate data sets are not equally important. We
need to extract the most useful information. ICA extracts and reveals useful
information form the whole data set. This technique has been applied in
various fields like speech processing, brain imaging, stock predictions, etc.
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Figure 7.3 PCA for the HB morphology parameters HBR, Mv and Lt of
data set

Suppose there are n observations on each of p correlated variables. Let us
denote the data matrix by Xn×p. By singular value decomposition one can
write X = UDV ′. Writing S =

√
nU and A′ = DV ′/

√
n, we have X = SA′

and hence each of the columns of X is a linear combination of the columns
of S. Now since U is orthogonal and assuming that the columns of X have
mean zero, it is easy to show that the columns of S have zero mean, unit
variance and they are uncorrelated. In terms of random variables we can
interpret the PCA as an estimate of a latent variable model X = AS. But
given any orthogonal p×pmatrixR, we can writeX = AS = AR′RS = A1S1,
where A1 = AR′, S1 = RS and cov(S1) = Rcov(S)R′ = 1. Hence it is
impossible to identify any particular latent variable as a unique underlying
source.

ICA was most clearly stated by Comon (1994). Formally, the classical
ICA model is of the same form:

X = AS (7.7)

where A is the nonsingular mixing matrix. So A−1 is the unmixing matrix.
The main goal of ICA is to estimate the unmixing matrix A−1 and thus to
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Figure 7.4 PCA for the HB morphology parameters Lt, HBR, [Fe/H], Mv

and logTeffHB of data set

recover the hidden source using Sk = A−1
k X , where A−1

k is the kth row of
A−1. Lack of correlation determines the second order cross moments (covari-
ance) of a multivariate distribution while, in general statistical independence
determines all of the cross moments. These extra moment conditions allow
us to identify the elements of the matrix A uniquely. Since the multivariate
Gaussian distribution is determined by the second order moments alone, it is
the exception, and any Gaussian independent component can be determined
only up to a rotation. Hence the identifiability problem related to PCA or
factor analysis can be avoided if we assume that Si’s are independent and
non-Gaussian.

In the model, it is assumed that the data variables are lines or non linear
mixtures of some latent variables, and the mixing system is also unknown.
Equation (7.7) can be written as:

Xi = ai1S1 + ai2S2 + . . .+ aipSp, i = 1, 2, . . . , p. (7.8)

The Si’s are statistically mutually independent, where aij ’s are the entries
of the nonsingular matrix A. All we observe are the random variables Xi,
and we have to estimate both the mixing coefficients aij and the independent
components Si, using the Xi.
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There are many computer algorithms for performing ICA. A first step
in those algorithms is to whiten (sphere) the data. This means that any
correlations in the data are removed, i.e. the data are forced to be uncorre-
lated. Mathematically speaking, we need a linear transformation V such that
Z = V X , where E(ZZ ′) = 1. This can be easily accomplished by choosing
V = C−1/2, where C = E(XX ′).

After sphering, the separated data can be found by an orthogonal trans-
formation on the whitened data Z. ICA can be carried out in different ways
like maximization of non-Gaussianity, minimization of mutual information,
etc. Here we have concentrated on maximization of non-Gaussianity.

7.3.1 ICA by Maximization of Non-Gaussianity

X = AS, V X = V AS

⇒ X = (V A)S, (7.9)

which implies that Zi is closer to Gaussian that Si. Si is estimated by Zi
through maximization of non-Gaussianity. From Eq. (7.9) we can write

S = WZ, (7.10)

where W = (V A)−1.

We can measure non-Gaussianity by Negentropy (Hyvarinen et al. 2001).
The entropy of a discrete source S with possible values s1, s2, . . . , sn is
defined as:

H(S) = −
n∑

i=1

ps(si) log ps(si), (7.11)

ps is the mass function of S. On the other hand, for a continuous source, S,
the entropy is called differential entropy which is given by:

H(S) = −
∫
ps(η) log ps(η)dη, (7.12)

ps(η) is the density function of S. Negentropy is the difference between the
differential entropy of a source S from the differential entropy of a Gaussian
source with the same covariance of S. It is denoted by J(S) and defined as
follows:

J(S) = H(SGauss)−H(S), (7.13)

where SGauss is a Gaussian random variable with the same variance as S. It
can be proved that among all random variables with equal variances, Gaus-
sian variables have the maximum entropy (Hyvarinen et al. 2001). As such,
when applied to a sample the expectations are replaced by data averages.
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Negentropy is always non-negative, and it is zero if and only if S has a
Gaussian distribution. Negentropy has an interesting property that it is in-
variant for invertible linear transformation. It is also a robust measure of
non-Gaussianity. Here we estimate S by maximizing the distance of its en-
tropy from Gaussian entropy as the noises are assumed to be Gaussian and if
the signals are non-Gaussian only then they can be separated from the noise.
If the signals are Gaussian, then ICA will not work.

7.3.2 Approximation of Negentropy

One drawback of negentropy is that it is very difficult to compute. That’s
why it needs to be approximated (Hyvarinen et al. 2001). The approximation
is given by:

J(S)∞(E[G(S)] − E[G(SGauss)])
2, (7.14)

where G is a non-quadratic function. In particular, G should be so chosen
that it does not grow too fast. Two popular choices of G are:

G1(S) =
1

a
log cosh(aS)

G2(S) = −e−s2/2 (7.15)

where 1 ≤ a ≤ 2 is some suitable constant, which is often taken equal to 1.

7.3.3 The FastICA Algorithm

There are many algorithms which do ICA like FastICA, ProDen (Hastie and
Tibshirani 2003), KernelICA, etc. The fastICA algorithm is a commonly
used one, including industrial applications. This algorithm was developed by
Hyvarinen and Oja (2000). In this method the independent components are
estimated one by one. This algorithm converges very fast and is very reliable.
This algorithm is also very easy to use. Our objective is to maximize J(S).
Now this is equivalent to maximizing E[G(WZ)] as given in Eq. (7.13) under
the constraint ||W || = 1. For the sake of notational and computational com-
plicity, we consider one particular component. We are interested in finding
out the optima of E[G(WT

KZ)] under the constraint ||W || = 1, where WT
KZ

is the kth component of WZ. This optimization problem can be solved by
the Lagrange multiplier method. The objective function is

O(WK) = E[G(WT
KZ)]− β(WT

KWK − 1).

We take the derivative of O(WK) with respect to WK , set it to zero and get

F (WK) =
∂O(WK)

∂WK
= E[Zg(WT

KZ)]− βWK = 0,
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where g(·) is the derivative of the function G(·). We solve this system of
equations iteratively by the Newton–Raphson method:

WK+1 = Wk − J−1
F (WK)F (WK),

where JF (WK) is the Jacobian of function F (WK), which is given by

JF (WK) =
∂F

∂WK
= E[ZZT g′(WT

KZ)]− βI.

The first term on the right-hand side of above equation can be approximated
as

E[ZZ ′g′(WT
KZ)] ≈ E[ZZ ′]E[g′(WT

KZ)] = E[g′(WT
KZ)]I.

Thus the Jacobian becomes diagonal.

JF (WK) = [E{g′(WT
KZ)} − β]I.

From expression ( ), the Newton–Raphson iteration becomes

Wk+1 = WK − 1

E[g′(WT
KZ)]− β [E{Zg(WT

KZ)} − βWK ].

Multiplying both sides by the scaler β − E[g′(WT
KZ)] we get

WK+1[β − E[g′(WT
KZ)]] = WK [β − E[g′(WT

KZ)]]

+ E[Zg(WT
k Z)]− βWK

implying,

WK+1[β − E[g′(WT
KZ)]] = βWK − E[g′(WT

KZ)]WK

+ E[Zg(WT
KZ)]− βWK

and finally,
WK+1 = E[Zg(WT

KZ)]− E[g′(WT
KZ)]WK .

It is to be noted that we are using the representation WK+1 for the left-hand
side, while its value is actually multiplied by a scaler. This is taken care of
by renormalization, in the FastICA algorithm.

7.3.4 ICA Versus PCA

Both ICA and PCA are used for analysing large data sets. Whereas ICA
finds a set of source data that are mutually independent, PCA finds a set
of data that are mutually uncorrelated. ICA was originally developed for
separating mixed audio signals into independent sources. In this paper we
make the comparison by analysing GC data.
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The purpose of PCA is to reduce the original data set of two or more
sequentially observed variables by identifying a small number of meaning-
ful components. To start, the data are organized in an n × p matrix X ′ =
[x1, . . . , xp], where the xi vector describes the n globular clusters (GCs) for
the ith parameter. To be precise in this discussion and without loss of gen-
erality, we can assume that the data matrix has dimension n ≥ p with rank
r ≤ p. The data are then centred by subtracting the average from each value.
The procedure consists in finding the eigen values and eigen vectors of the
covariance matrix. Eigen values correspond to the variance of PCs and eigen
vectors correspond to the loadings of the different parameters in a particular
component.

PCA, based on the linear correlation between data points, shows a way
to extract parameters or variables which are linearly uncorrelated. Although
required to be linearly uncorrelated, because of the higher order correlations
these parameters are not necessarily independent.

ICA (Hyvarinen et al. 2001; Stones 2004) is based on the basic assumption
that the source components are statistically independent in the sense that
the value of one gives no information about the values of the others. For non-
Gaussian variables, the p.d.f.s need all moments to be specified, and higher
order correlations must be taken into account to establish independence. It
is expected that for a non-Gaussian situation ICA will perform better than
PCA in terms of the homogeneity of data corresponding to the different
groups formed with respect to the important components.

We must fix the number of independent components to be sought. In
practice, before the ICA algorithm is applied, the observed data are often pre-
processed to remove the correlation between the observed variables, which is
called whitening. The FastICA algorithm uses PCA as the whitening method.
At present there is no better method available to automatically determine
the optimum number of ICs. In this paper, the number of ICs is determined
by the number of PCs chosen (Albazzaz and Wang 2004). PCA is performed
to determine this number and find a breakpoint in the eigen value spectrum.
If there is no clear breakpoint in the spectrum, we can keep the number
of leading components that carry some arbitrary percentage of the variance
(Hyvarinen et al. 2001). In our work it is difficult to find a clear breakpoint.
Under such a situation, generally, the number of PCs is fixed which have
a cumulative variance greater than 50–80 %. Here, we fix the cumulative
variance as 80 % and as a result we have decided to take four components for
further analysis.
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7.3.5 An Example (Chattopadhyay et al. 2013)

Analysis is based on the sample of globular clusters (GCs) of the early-type
central giant elliptical galaxy in the Centaurus group, NGC 5128, whose
structural parameters have been derived by McLaughlin et al. (2008). The
distance is that adopted by McLaughlin et al. (2008), namely 3.8 Mpc. The
sample consists of 130 GCs (three outliers have been excluded during cluster
analysis) whose available structural and photometric parameters are tidal
radius (Rtid, in pc), core radius (Rc, in pc), half light radius (rh, in pc),
central volume density (log ρ0, in M� pc−3), σp,0 (predicted line of sight ve-
locity dispersion at the cluster centre, in km s−1), two-body relaxation time
at the model projected half mass radius (trh, in year), galactocentric ra-
dius (Rgc, in kpc), the concentration (c ∼ log(Rtid/Rc)), the dimensionless
central potential of the best fitting model (W0), the extinction-corrected cen-
tral surface brightness at F606W bandpass (μ0 in mag arcsec−2), V surface
brightness averaged over rh((μ0))h in mag arcsec−2, the logarithm of inte-
grated model mass (logMtot, in M�), Washington T1 magnitude, extinction
corrected colour (C − T1)0 and metallicity determined from colour ([Fe/H],
index).

The radial velocities (Vr , in km s−1) are available for 50 GCs (Woodley
et al. 2007). The position angles (ψ, east of north) are available for all 127
GCs (Woodley et al. 2007). The ages and metallicities ([Z/H], in dex) using
Lick indices of some of the GCs have been used from Chattopadhyay et al.
(2009).

The entire data set of 130 GCs with all the parameters (used from the
literature as well as derived by the authors) are listed in Chattopadhyay et al.
(2009).

In order to test the normality of the distribution pattern of a variable, the
Shapiro–Wilk test is used. This test was published in 1965 by Shapiro and
Wilk (1965). The null hypothesis of this test is that the data are normally

distributed. The test statistic is W =
(
∑n

i=1 aix(i))
2

∑n
i=1(xi−x̄)2 , where n is the number

of observations, x(i) are the ordered sample value (x(1) is the smallest) and
ai are constants generated from the means, variances and covariances of the
order statistics of a sample of size n from a normal distribution. But in our
case the data set used is multivariate. So, in this paper we have used the
multivariate extension of the Shapiro–Wilk test. Here the null hypothesis
was that the entire data set follows a multivariate normal distribution. Here
the test statistic is based on the ordered sample vectors and the vector of
constants generated from the mean vector and the dispersion matrix of the
vector of order statistics of a sample of size n from a multivariate normal
distribution. If the p-value is less than the chosen level of significance, the
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null hypothesis is rejected or in other words, the data are not multivariate
normally distributed. We found that the p-value of the test was 4.231×10−14,
which is too small. Thus the null hypothesis has been rejected at the 5 %
level of significance and we could conclude that the data set does not follow
a multivariate normal distribution.

On the basis of PCA of the present data set the total percentage of varia-
tion by the first four components was found to be almost 87 % and if we add
the fifth component, this amount becomes almost 94 %. As the increase is not
significant we have stopped at four components. Then we have done cluster
analysis (CA) by k-means clustering on the basis of principal components
and independent components. Three groups (viz. G1, G2 and G3) have been
found as a result of CA with respect to the four principal and independent
components, respectively (found in the present analysis). In this work, we
have done clustering on the basis of principal and independent components,
respectively, whereas in our previous work, we have done clustering on the
basis of three significant parameters, viz. V surface brightness averaged over
rh((μv)h), half-light radius (rh), and predicted line of sight velocity dispersion
at the cluster centre (σp,0), but these three parameters are extracted through
PCA and as such that classification may also be treated as the classification
through PCA and it is also apparent from the corresponding leadings of the
PCs. We have applied the same technique as in Chattopadhyay et al. (2009),
viz. the work by Sugar and James (2003) to find the optimum number of
clusters in both cases.

Under this method, we have first determined the structures of subpop-
ulations (clusters) for varying number of clusters taking K = 1, 2, 3, 4, etc.
For each such cluster formation, we have computed the values of a distance
measure dk = (1/p) minx E[(xk − ck)′(xk − ck)] which is defined as the dis-
tance of the xk vector (values of the parameters) from the centre ck (which
is estimated as the mean value), p is the order of the xk vector. Then to
find the optimum number of clusters the following steps are followed. Let us
denote by d′k the estimate of dk at the Kth point. Then d′k is the minimum
achievable distortion associated with fitting K centres to the data. A natural
way of choosing the number of clusters is to plot d′k versus K and look for the
resulting distortion curve. This curve is always monotonic decreasing. Ini-
tially, one would expect much smaller drops, i.e. a levelling off for K greater
than the true number of clusters because past this point adding more cen-
tres simply partitions within groups rather than between groups. According
to Sugar and James (2003) for a large number of items the distortion curve
when transformed to an appropriate negative power (e.g. p/2) will exhibit
a sharp “jump” (if we plot k versus transformed d′k). Then the jumps have

been calculated in the transformed distortion as Jk = (d
′−p/2
k − d′−p/2k−1 ). The

optimum number of clusters is the value of k at which the distortion curve
levels off as well as its value associated with the largest jump.
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It has been found that the number of GCs in G1 are 7 and 5, in G2 are
85 and 95, and in G3 are 35 and 27 in clustering with respect to the principal
and independent components, respectively. Here, the number of the GCs in
group G1 is significantly lower compared to those in the other two groups
G2 and G3 in both cases, unlike the comparable numbers of members in all
three groups found by Chattopadhyay et al. (2009). This difference may be
due to the use of a model based clustering technique (Qiu et al. 2007) on a
non-Gaussian data set in Chattopadhyay et al. (2009).

Within cluster sum of squares (WSS) is a tool to check whether a clus-
tering is good or poor. It is the sum of squares of the distances of the ob-
servations within cluster from the cluster centre, which is called the cluster
centroid. Mathematically,

WSS =
∑

x∈Ci

(x− ri)2.

where the summation is taken over the observations x within the cluster Ci
and ri is the cluster centroid. A good clustering yields clusters where they
have a small within cluster sum of squares (and a high between cluster sum
of squares). In other words, we choose the best clustering, in terms of the
minimum within cluster sum of squares. From the analysis based on the
within cluster sum of squares, we can say that on the basis of this metric, the
ICA classification is much better in comparison with the PCA classification

Table

Comparison of within cluster sum of squares

Within cluster
sum of squares
(IC)

Within cluster
sum of squares
(PC)

Within cluster sum of
squares (model based
clustering (Chattopadhyay
et al. 2009))

G1 12.676 374.130 409.362
G2 210.673 2561.471 1745.402
G3 122.977 1351.861 437.855

and the previous model based clustering method. We may further try to
investigate how much worse the PCA classification is on the basis of a confu-
sion matrix assuming that the ICA classification is much closer to the actual
situation. As the number of observations in G1 obtained corresponding to
PCA and ICA are 7 and 5, respectively (which are very much insignificant
compared to the total size) we have constructed the confusion matrix on the
basis of G2 and G3, i.e. on the basis of (127− 12 = 115) GCs. A confusion
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matrix contains information about actual and confused classifications done
by a classification.clustering system. The performance of such systems is
commonly evaluated using the data in the matrix. The diagonal elements
represent correctly classified observations while the cross-diagonal elements
represent misclassified observations or confusions. The following is the con-
fusion matrix for our analysis:

PC Total
G2 G3

IC G2 84 10 94
G3 0 21 21

From the above confusion matrix, we can say that out of 94 GCs, which are
expected to be in G2, 84 are correctly classified by the PCA method and
out of 21 GCs, which are expected to be in G3, 21 are correctly classified by
the PCA method and hence the percentage of confusion is around 10 and 0,
respectively. The R code for ICA is as below.

data2 ← read.table (“C:\\Users\\Tanuka \\Desktop\\
NGC5128new \\.txt”,
header = TRUE)
data2
library(fastICA)
fastICA(data2, 4, fun = c(“log cosh(S)”), alpha =1.0,
maxit = 200, tol = 1e-04)

The data file NGC5128new.tex is given in the Appendix.

7.4 Factor Analysis

Factor analysis is a statistical method used to study the dimensionality of
a set of variables. In factor analysis, latent variables represent unobserved
constructs and are referred to as factors or dimensions. Factor analysis at-
tempts to identify underlying variables, or factors, that explain the pattern of
correlations within a set of observed variables. Factor analysis is often used
in data reduction to identify a small number of factors that explain most of
the variance that is observed in a much larger number of manifest variables.

Suppose the observable random vector X with p components has mean
vector μ and covariance matrix Σ. In the factor model we assume that
X is linearly dependent upon a few(m< p) unobservable random variables
F1F2, . . . , Fm called common factors and p additional sources of variation
∈1,∈2, . . . ,∈p called the errors (or specific factors).
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Then the factor model is

p×1

X =
p×1
μ +

p×m
L

m×1

F +
p×1∈ (7.16)

X1 − μ1 = l11F1 + l12F2 + . . .+ l1mFm+ ∈1
X2 − μ1 = l21F1 + l22F2 + . . .+ l2mFm+ ∈2

...
Xp − μp = lp1F1 + lp2F2 + . . .+ lpmFm+ ∈p

The coefficients lijs are called the loading of the ith variable on the jth
factor so the matrix L is the matrix of factor loadings. Here ∈i is associated
only with the ith response Xi. The p deviations X1 − μ1 . . .Xp − μp are
expressed in terms of p+m random variables F1, F2, . . . , Fm,∈1, . . . ∈p which
are unobservable (but in multivariate regression independent variables can be
observed).

With some additional assumption on the random vectors F and ∈, the
model implies certain covariance relationships which can be checked.

We assume that

E(F ) = 0m×1 cov(F ) = E(FF ′) = Im×m

E(∈) = 0p×1 cov(∈) = E(∈∈′) = ψ =

⎛

⎝
ψ1 0 . . . 0
0 ψ2 . . . 0
0 0 . . . ψp

⎞

⎠

and cov(∈, F ) = E(∈, F ) = 0p×m (7.17)

The model X − μ = LF+ ∈ is linear in the common factors. If the p
response of X are related to the underlying m factors in a non linear form,
then the covariance structure LL′+ψ may not be adequate. The assumption
of linearity is inherent here.

These assumption and the relation (7.16) constitute the orthogonal factor
model.

The orthogonal factor model implies a covariance structure for X .

Here (X − μ)(X − μ)′ = (LF+ ∈)(LF+ ∈)′

= (LF+ ∈)((LF )′+ ∈′)

= LF (LF )′+ ∈ (LF )′ + LF ∈′ + ∈∈′

= LFF ′L′+ ∈ F ′L′ + LF ∈′ + ∈∈′
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Σ = covariance matrix of X

= E(X − μ)(X − μ)′

= LE(FF ′)L′ + E(∈ F )′L′ + LE(F ∈′) + E(∈∈′)

= LIL′ + ψ = LL′ + ψ

Again (X − μ)F ′ = (LF+ ∈)F ′ = LFF ′+ ∈ F ′

or, cov(X,F ) = E(X − μ)F ′ = E(LF+ ∈)F ′ = LE(FF ′)
+ E(∈ F ′) = L

Now Σ = LL′ + ψ implies

var(Xi) = li1
2 + . . .+ lim

2 + ψi

cov(XiXk) = li1lk1 + . . .+ limlkm

⎫
⎬

⎭
(7.18)

cov(XF ) = L⇒ cov(XiFj) = lij

⇒ V (Xi) = σii = li1
2 + . . .+ lim

2 + ψi

Let ith communality = hi
2 = li1

2 + . . .+ lim
2

Then σii = hi
2 + ψi (i = 1 . . . p)

hi
2 = sum of squares of loadings of ith variable on the m common factors.

Given a random sample of observations
p×1
x1 , x2 . . .

p×1
xn , the basic problem is

to decide whether Σ can be expressed in the form (7.18) for reasonably small
value of m, and to estimate the elements of L and ψ.

Here the estimation procedure is not so easy. Primarily we have from the

sample data estimates of the p(p+1)
2 distinct elements of the upper triangle

of Σ but on the RHS of (7.18) we have pm+ p parameters, pm for L and p

for ψ. The solution will be indeterminate unless p(p+1)
2 − p(m + 1) ≥ 0 or

p > 2m. Even if this condition is satisfied L is not unique.
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Proof: Let
m×m
T be any ⊥ matrix so that TT ′ = T ′T = I

Then (7.16) can be written as

X − μ = LF+ ∈= LTT ′F+ ∈= L∗F ∗+ ∈ (7.19)

where L∗ = LT and F ∗ = T ′F

Since E(F ∗) = T ′E(F ) = 0

and cov(F ∗) = T ′Cov(F )T = T ′T = I

It is impossible to distinguish between loadings L and L∗ on the basis of the
observations on X . So the vectors F and F ∗ = T ′F have the same statistical
properties and even if the loadings L and L∗ are different they both generate
the same covariance matrix Σ, i.e.

Σ = LL′ + ψ = LTT ′L′ + ψ = L∗L∗′ + ψ (7.20)

The above problem of uniqueness is generally resolved by choosing an
orthogonal rotation T such that the final loading L satisfies the condition
that L′ψ−1L is diagonal with positive diagonal elements. This restriction
requires L to be of full rank m. With a valid ψ, viz. one with all positive
diagonal elements it can be shown that the above restriction yields a unique L.

7.4.1 Method of Estimation

Given n observations vectors x1 . . . xn on p generally correlated variables,
factor analysis seeks to verify whether the factor model (7.16) with a small
number of factors adequately represent the data.

The sample covariance matrix is an estimator of the unknown covariance
matrix Σ. If Σ appears to deviate significantly from a diagonal matrix, then
a factor model can be used and the initial problem is one of estimating the
factor loadings lij and the specific variances. ψi.

Principal Component Method

Let Σ has eigen value–eigen vector pairs (λi, ei) with λ1 ≥ λ2 ≥ . . . λp ≥ 0.
Then by spectral decomposition



186 7 Dimension Reduction and Clustering

Σ = λ1e1e1
′ + λ2e2e2

′ + . . .+ λpepep
′ (7.21)

= (
√
λ1e1 . . .

√
λpep)

⎛

⎜
⎝

√
λ1e1

′
...√
λpep

′

⎞

⎟
⎠

=
p×p
L

p×p
L′ + 0p×p

[in (7.21) m = p and jth column of L =
√
λjej ]

Apart from the scale factor
√
λj , the factor loadings on the jth factor are

the population jth principal component.

The approximate representation assumes that the specific factors ∈ are
of minor importance and can be ignored in factoring Σ. If specific factors
are included in the model, their variances may be taken to be the diagonal
elements of Σ− LL′.

Allowing for specific factors, the approximation becomes

Σ = LL′ + ψ

= (
√
λ1e1

√
λ2e2 . . .

√
λmem)

⎛

⎜
⎜
⎜
⎝

√
λ1e1

′√
λ2e2

′
...√

λmem
′

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

ψ1 0 . . . 0
0 ψ2 . . . 0
...

...
...

...
0 0 . . . ψp

⎞

⎟
⎟
⎟
⎠

(7.22)

where m ≤ p

(we assume that last p−m eigen values are small)

and ψii = σii −
m∑

j=1

lij
2 for i = 1 . . . p.

For the principal component solution, the estimated factor loadings for a
given factor do not change as the number of factors is increased. If m = 1

L =
(√

λ1ê1

)

if m = 2

L =

(√
λ̂1ê1

√
λ̂2ê2

)

where (λ̂1, ê1) and (λ̂2, ê2) are the first two eigen value–eigen vector pairs for
S (or R).
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By the definition of ψ̂i the diagonal elements of S are equal to the diagonal

elements of L̂L̂
′
+ ψ. How to determine m?

The choice of m can be based on the estimated eigen values.

Consider the residual matrix S − (LL′ + ψ)

Here the diagonal elements are zero and if the off diagonal elements are
also small we may take that particular value of m to be appropriate.

Analytically we chose that m for which

Sum of squared entries of (S − (LL′ + ψ)) ≤ λ̂2m+1 + . . .+ λ̂2p (7.23)

Ideally the contribution of the first few factors to the sample variance of
the variables should be large. The contribution to the sample variance sii
from the first common factor is lii

2. The contribution to the total sample
variance s11 + . . . spp = Tr(S) from the first common factor is

l̂211 + l̂221 + . . .+ l̂2p1 = (
√
λ1ê1)′(

√
λ1ê1) = λ̂1

Since the eigen vectors ê1 has unit length.

In general

⎛

⎝
Proportion of total
sample variance due

to the jth factor

⎞

⎠=

⎧
⎪⎨

⎪⎩

λ̂j

s11+...+spp
for a factor analysis of S

λ̂j

p for a factor analysis of R

(7.24)

Criterion (7.24) is frequently used as a heuristic device for determining the
appropriate number of common factors. The value of m is gradually increased
until a suitable proportion of the total sample variance has been explained.

Other Rules Used in Package

No. of eigen value of R greater than one (when R is used)

No. of eigen value of S that are positive (when S is used)
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7.4.2 Factor Rotation

If L̂ be the p×mmatrix of estimated factor loadings obtained by any method,
then

L∗ = L̂T where TT ′ = T ′T = I

is a p×m matrix of rotated loadings.

Moreover the estimated covariance (or correlation) matrix remains un-
changed since

L̂L̂′ + ψ̂ = L̂TT ′L̂′ + ψ̂ = L̂∗L̂∗′
+ ψ̂

The above equation indicates that the residual matrix Sn − L̂L̂′ − ψ̂ = Sn −
L̂∗L̂∗′ − ψ̂ remains unchanged. Moreover the specific variances ψ̂i and hence
the communication ĥ2i are unaltered. Hence mathematically it is immaterial

whether L̂ or L∗ is obtained.

Since the original loadings may not be readily interpretable, it is usual
practice to rotate them until a “simple structure” is achieved.

Ideally we should like to see a pattern of loadings of each variable loads
highly on a single factor and has small to moderate loading on the remaining
factors.

The problem is to find an orthogonal rotation which compounds to a
“simple structure”.

These can be achieved if after rotation the orthogonality of the factor still
exists. This is maintained if we perform orthogonal rotation. Among these
(1) Varimax rotation, (2) Quartimax rotation, (3) Equamax rotation are
important.

Oblique rotation does not ensure the orthogonality of factors after rotation.
There are several algorithm like oblimax, Quartimin, etc.

1. Varimax Rotation

Orthogonal Transformation on L

L∗ = LT TT ′ = I

L∗ is the matrix of orthogonally rotated loadings and let dj =

p∑

i=1

l∗2ij j =

1 . . .m
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Then the following expression is maximized

m∑

j=1

{
p∑

i=1

(
l∗4ij − dj2/p

)
}

Such a procedure tries to give either large (in absolute value) or zero
values in the columns of 	L∗. Hence the procedure tries to produce factors
with either a strong association with the responses or no association at all.

The communality

hi
2 =

m∑

j=1

l∗2ij =

m∑

j=1

lij
2 remains constant under rotation.

2. Quatrimax Rotation

The factor pattern is simplified by forcing the variables to correlate highly
with one main factor (the so called G-factor of 1Q studies) and very little
with remaining factors. Here all variables are primarily associated with a
single factor.

Interpretation of results obtained from factor analysis is usually difficult.
Many variables show significant coefficient magnitudes on many of the re-
tained factors (coefficient greater than |.60| are often considered large and
coefficients of |0.35| are often considered moderate), especially on the first
factor.

For good interpretation factor rotation is necessary. The objective of the
rotation is to achieve the most “simple structure” through the manipulation
of factor pattern matrix.

The most simple structure can be explained in terms of five principles of
factor rotation.

1. Each variable should have at least one zero (small) loading.

2. Each factor should have a set of linearly independent variables whose
factor loadings are zero (small).

3. For every pair of factors, there should be several variables where
loadings are zero (small) for one factor but not the other.

4. For every pair of factors, a large proportion of variables should have
zero (small) loading on both factors whenever more than about four
factors are extracted.

5. For every pair of factors, there should only be a small number of
variables with nonzero loadings on both.
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In orthogonal rotation

1. Factors are perfectly uncorrelated with one another.

2. Less parameters are to be estimated.

3. Promax Rotation

Factors are allowed to be correlated with one another.

Step I. Rotate the factors orthogonally.

Step II. Get a target matrix by raising the factor coefficients to an
exponent (3 or 4). The coefficients become smaller but absolute dis-
tance increases.

Step III. Rotate the original matrix to a best fit position with the target
matrix.

Here many moderate coefficients quickly approaches zero than the large
coefficients (≥ .6).
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Chapter - 8

Clustering, Classification and Data Mining

8.1 Introduction

Cluster analysis is an art of finding groups in variables or observations. Over
the last 50 years different algorithms and computer programs have been de-
veloped for cluster analysis. Generally clustering algorithms can be divided
into two principal types, viz. partitioning and hierarchical methods.

Clustering is different from the classification methods. Classification is
concerned with a known number of groups and the operational objective is
to assign new observations to one of these groups. Cluster analysis is a more
primitive technique where no assumption is made concerning the number of
groups or group structure.

8.2 Hierarchical Cluster Technique

Cluster Analysis, also called data segmentation, has a variety of goals. All
relate to grouping of segmenting a collection of objects (also called observa-
tions, individuals, cases, or data rows) into subsets or “clusters”, such that
those within each cluster are more closely related to one another than objects
assigned to different clusters. Central to all of the goals of cluster analysis
is the notion of degree of similarity (or dissimilarity) between the individual
objects being clustered. There are two major methods of clustering, viz.,
hierarchical clustering and k-means clustering.

In hierarchial clustering the data are not partitioned into a particular
cluster in a single step. Instead, a series of partitions takes place, which may
run from a single cluster containing all objects to n cluster each contain-
ing a single object. Hierarchical clustering is subdivided into agglomerative
methods, which proceed by series of fusions of the n objects into groups, and
divisive methods, which separate n objects successively into finer groupings.
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Agglomerative techniques are more commonly used. Hierarchical clustering
may be represented by a two-dimensional diagram known as dendrogram
which illustrates the fusions or divisions made at each successive stage of
analysis.

8.2.1 Agglomerative Methods

An agglomerative hierarchical clustering procedure produces a series of par-
titions of the data, Cn,Cn−1, . . . , C1. The first Cn consists of n single object
“clusters”, the last C1 consists of single group containing all n cases.

At each particular stage the method joins together the two clusters which
are closest together (most similar). At the first stage, of course, this amounts
to joining together the two objects that are closest together, since at the
initial stage each cluster has one object.

Differences between methods arise because of the different ways of defining
distance (or similarity) between clusters. Several agglomerative techniques
will now be described in detail.

8.2.2 Distance Measures

A key step in a hierarchical clustering is to select a distance measure. A sim-
ple measure is Manhattan distance, equal to the sum of absolute distances
for each pair of variables. The name comes from the fact that in a two-
variable case, the variables can be plotted on a grid that can be compared to
city streets, and the distance between two points is the number of blocks a
person would walk.

A more common measure is Euclidean distance, computed by finding the
square of the distance between each pair of variables, summing the squares,
and finding the square root of that sum. In the two-variable case, the distance
is analogous to finding the length of the hypotenuse in a triangle; that is, it is
the distance as the crow flies. A review of cluster analysis in health psychology
research found that the most common distance measure in published studies
in that research area is the Euclidean distance or the squared Euclidean
distance.

Manhattan or Euclidean distance measures are useful for continuous data.
But for nominal, ordinal or in particular binary data these dissimilarity mea-
sures are not applicable. In case of binary data (with two possible values 0
and 1), for computing similarity or dissimilarity between two objects i and
j with respect to n variables one may start with the following contingency
table.



8.2 Hierarchical Cluster Technique 195

object i
1 0 Total

1 a b a+ b
object j

0 c d c+ d
Total a+ c b+ d a+ b+ c+ d = n

Then a similarity measure is given by

s(i, j) =
a+ d

a+ b+ c+ d

and a dissimilarity (distance) measure is given by

d(i, j) =
b+ c

a+ b + c+ d

To calculate distance between two clusters it is required to define two repre-
sentative points from the two clusters. Different methods have been proposed
for this purpose. Some of them are listed below.

8.2.3 Single Linkage Clustering

One of the simplest methods is single linkage, also known as the nearest
neighbour technique. The defining feature of the method is that distance
between clusters is defined as the distance between the closest pair of objects,
where only pairs consisting of one object from each cluster are considered.

In the single linkage method, D(r, s) is computed as

D(r, s) = Min d(i, j)

where object i is in cluster r and the object j is in cluster s.

Here the distance between every possible object pair (i.j) is computed,
where object i is in cluster r and object j is in cluster s. The minimum value
of these distances is said to be the distance between clusters r and s. In
other words, the distance between two clusters is given by the value of the
shortest link between the clusters. At each stage of hierarchical clustering,
the clusters r and s, for which D(r, s) is minimum, are merged.

8.2.4 Complete Linkage Clustering

The complete linkage, also called farthest neighbour, clustering method is
the opposite of single linkage. Distance between clusters is now defined as
the distance between the most distant pair of objects, one from each cluster.
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In the complete linkage method, D(r, s) is computed as

D(r, s) = Max d(i, j)

where object i is in cluster r and object j is cluster s.
Here the distance between every possible object pair (i, j) is computed,

where object i is in cluster r and object j is in cluster s and the maximum
value of these distances is said to be the distance between clusters r and s.
In other words, the distance between two clusters is given by the value of the
longest link between the clusters. At each stage of hierarchical clustering,
the clusters r and s, for which D(r, s) is minimum, are merged.

8.2.5 Average Linkage Clustering

Here the distance between two clusters is defined as the average of distances
between all pairs of objects, where each pair is made up of one object from
each group.

In the average linkage method, D(r, s) is computed as

D(R, s) = Trs/(Nr ∗Ns)
where Trs is the sum of all pairwise distances between cluster r and cluster
s. Nr and Ns are the sizes of the clusters r and s, respectively. At each
stage of hierarchical clustering, the clusters r and s, for which D(r, s) is the
minimum, are merged.

8.3 Partitioning Clustering: k-Means Method

The k-means clustering algorithm assigns each point to the cluster whose
centre (also called centroid) is nearest. The centre is the average of all the
points in the cluster that is, its co-ordinates are the arithmetic mean for
each dimension separately over all the points in the cluster. The algorithm
is roughly (MacQueen 1967) as follows.

Choose the number of clusters, k. Randomly generate k clusters and deter-
mine the cluster centres, or directly generate k seed points as cluster centres.
Assign each point to the nearest cluster centre on the basis of Euclidean dis-
tance. Recompute the new cluster centres. Repeat until some convergence
criterion is met (usually that the assignment hasn’t changed). The main ad-
vantages of this algorithm are its simplicity and speed which allow it to run
on large data sets. Its disadvantage is that it does not yield the same result
with each run, since the resulting clusters depend on the initial random as-
signments. It maximizes inter-cluster (or minimizes intra-cluster) variance,
but does not ensure that the result has a global minimum of variance.
In order to minimize this problem one may use group average method pro-
posed by Milligan (1980), in order to choose the initial seeds.
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The advantages of partitioning method are as follows:

(a) A partitioning method tries to select best clustering with k groups
which is not the goal of hierarchical method.

(b) A hierarchical method can never repair what was done in previous
steps.

(c) Partitioning methods are designed to group items rather than vari-
ables into a collection of k clusters.

(d) Since a matrix of distances (similarities) does not have to be de-
termined and the basic data do not have to be stored during the
computer run partitioning methods can be applied to much larger
data sets.

For k-means algorithm (Hartigan 1975) the optimum value of k can be ob-
tained in different ways.

By using k-means algorithm first determine the structures of sub pop-
ulations (clusters) for varying number of clusters taking k = 2, 3, 4, etc.
For each such cluster formation compute the values of a distance measure
dk = (1/p) minx E[(xk − ck)′(xk − ck)] which is defined as the distance of
the xk vector (values of the variables) from the centre ck (which is estimated
as mean value). p is the order of the xk vector. Then the algorithm for
determining the optimum number of clusters is as follows (Sugar and James
2003). Let us denote by d′k the estimate of dk at the kth point. Then d′k
is the minimum achievable distortion associated with fitting k centres to the
data. A natural way of choosing the number of clusters is to plot d′k versus k
and look for the resulting distortion curve. This curve is always monotonic
decreasing. Initially one would expect much smaller drops, i.e. a levelling off
for k greater than the true number of clusters because past this point adding
more centres simply partitions within groups rather than between groups. Ac-
cording to Sugar and James (2003) for a large number of items the distortion
curve when transformed to an appropriate negative power (p/2 in our case),
will exhibit a sharp “jump” (if we plot k versus transformed d′k). Then cal-

culate the jumps in the transformed distortion as Jk =
(
d
′−(p/2)
k − d′−(p/2)

k−1

)
.

The optimum number of clusters is the value of k at which the distortion
curve levels off as well as its value associated with the largest jump. The dis-
tortion curve and jump curve for GRB data (Sect. 8.5) are shown in Figs. 8.1
and 8.2.

8.4 Classification

Discriminant analysis and classification are multivariate techniques concerned
with separating distinct sets of objects and with allocating new objects to
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previously defined groups. Once the optimum classification (clustering) is
obtained by applying the method discussed under previous section one can
verify the acceptability of the classification by computing classification/ mis-
classification probabilities for the different observations. Although the k-
means clustering method is purely a data analytic method, for classification
it may be necessary to assume that the underlying distribution is Multivari-
ate Normal. The method can be illustrated as follows for two populations
(clusters). The method can be easily generalized for more than two under-
lying populations. Let f1(x) and f2(x) be the probability density functions
associated with the p × 1 random vector X for the populations π1 and π2,
respectively. An object must be assigned to either π1 and π2. Let Ω be the
sample space. Let us denote by x the observed value of X . Let R1 be that
set of x values for which we classify objects as π1 and R2 = Ω − R1 be the
remaining x values for which we classify objects as π2. Since every object
must be assigned to one and only one of the two groups, the sets R1 and
R2 are disjoint and exhaustive. The conditional probability of classifying an
object as π2 when in fact it is from π1 (error probability) is

p(2 | 1) = P [X ∈ R2 | π1] =

∫

R2

f1(x)dx

Similarly the other error probability can be defined. Let p1 and p2 be the
error probabilities of π1 and π2, respectively (p1 + p2 = 1). Then the overall
probabilities of correctly and incorrectly classifying objects can be derived as

P (correctly classified as π1)
= P [observation actually comes from π1 and is correctly classified as π1]
= P [XεR1|π1]p(π1) = p[XεR1|π1)p1

P (misclassified as π1) = P [XεR1|π2]p(π2)
= P [XεR1|π2)p2

The associated cost of misclassification can be defied by a cost matrix

Classified as
πi π2

π1 0 C(2 | 1)
True population

π2 C(1 | 2) 0

For any rule, the average or expected cost of misclassification (ECM) is
given by

ECM = C(2 | 1)p(2 | 1)p1 + C(1 | 2)p(1 | 2)p2

A reasonable classification rule should have ECM as small as possible.
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Rule: The regions R1 and R2 that minimize the ECM are defined by the
value of x for which the following inequalities hold.

R1 :
f1(x)

f2(x)
≥ C(1 | 2)p2
C(2 | 1)p1

R2 :
f1(x)

f2(x)
<
C(1 | 2)p2
C(2 | 1)p1

If we assume f1(x) and f2(x) are multivariate normal with mean vectors μ1

and μ2 and covariance matrices
∑

1 and
∑

2, respectively, then a particular
object with observation vector x0 may be classified according to the following
rule (under the assumption

∑
1 =

∑
2):

Allocate x0 to π1 if

(μ1 − μ2)′
−1∑
x0 − 1

2
(μ1 − μ2)′

−1∑
(μ1 + μ2) ≥ In[

C(1 | 2)p2
C(2 | 1)p1

]

allocate x0 to π2 otherwise. If we choose C(1 | 2) = C(2 | 1) and p1 = p2,
then the estimated minimum ECM rule for two Normal populations will be
as follows: Allocate x0 to π1 if

(x1 − x2)′S−1
pooledx0 −

1

2
(x1 − x2)′S−1

pooled(x1 + x2) ≥ 0

[where (x1 and x2) are sample mean vectors of the two populations and
Spooled is pooled (combined) sample covariance matrix]. Allocate xo to π2
otherwise.

8.5 An Example (Chattopadhyay et al. 2007)

We have taken data on 1,594 GRBs from the BATSE current GRB cata-
logue, given in the website (Vizier) for public use. There are thirteen vari-
ables of astrophysical interest, Galactic longitudes (li) and latitudes (bi), two
measures of burst durations, the times within which 50 % (T50) and 90 %
(T90) of the flux arrive, three peak fluxes, P64, P256, P1024 measured in 64,
256 and 1,024 ms bins, respectively, four time integrated fluences F1 − F4,
in the 20–50, 50–100, 100–300keV and 300+ keV spectral channels, respec-
tively, and peak counts of photons over the time T1(Cp) and limiting count
of photons that triggers detection (Clim), of which first 11 variables have
nonzero values for all these 1,594 bursts. Out of these 13 variables some
composite variables have been constructed which are widely used for sta-
tistical analysis. They are total fluence FT = F1 + F2 + F3 + F4, spectral
hardness H32 = F3/F2 and H321 = F3/(F1+F2), isotropy parameters, dipole
moments cos θi = cos li, cos bi (using four parts formula), quadruple moments
sin2 bi−1/3 and parameter for testing homogeneity V/Vmax = (Cp/Clim)−3/2
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(Schmidt et al. 1988). For the present study we have used six variables
log T50, logT90, logP256, logFT , logH32, logH321 for the classification purpose
and calculated the mean values of homogeneity and isotropy parameters for
the classified groups to test the nature of spatial distribution of these groups.
We have taken initially these six variables which have been used by most
of the authors (Mukherjee et al. 1998; Hakkila et al. 2000) for compara-
tive study. For classification of GRBs we have used partitioning algorithm
(k-means clustering).

We have taken 14 GRBs of HETE 2 catalog and 36 GRBs of Swift Satellite
data having known redshifts for classification with respect to two parameters,
viz., duration (T90) and total fluence (FT ). The fluence of HETE 2 data is in
between 30 and 400 keV and those of Swift data is between 15 and 150 keV.
The fluence of BATSE data is from 30 keV and above 400 keV. This may
introduce an error or at most of 10 %. The other four parameters are not
available at present for HETE 2 and Swift GRBs.

8.5.1 Cluster Analysis of BATSE Sample and Discriminant
Analysis

For analysis of the data using the methods discussed under above sections
we have used statistical packages like MINITAB, R and C-program codes.
For k-means clustering we have used Euclidean distance assigning a GRB
to the cluster where centroid (mean) is nearest. For discrimination we have
used linear discriminant analysis. A GRB is classified into a cluster if the
Mahalanobis distance of the observations to the cluster mean is the minimum.
An assumption is made that the covariance matrices are equal for all clusters
(Table 8.1).

In Fig. 8.2 the maximum “jump” is seen to be at k = 3, so that the three
class classification is the optimum classification in the present scheme. In
Table 8.2 the group means and standard errors of the parameters for all the
classes are shown, the corresponding values of the isotropy and homogeneity
parameters are also shown for each group for the available values. The groups
are arranged according to increasing values of duration (< T90 >) as clusters
I, II and III, respectively. It is seen from Table 8.2 that all the expected
values of the isotropy parameters except quadruple moments for class II and
class III lie within 1σ level. So it is concluded that all the three classes are
isotropically disturbed. For calculating < V/Vmax > parameter the available
values are used only which is obviously less than the sample size. It is seen
that < V/Vmax > value for cluster III is very small implying that cluster
III is the most inhomogeneous and extremely deep population class having
very high redshifts, whereas class I and class II are more or less uniform.
The most uniform class is the intermediate class I having shortest duration.
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Table 8.1 Correlation matrix for the composite parameters for the present
sample

Parameters logT50 log90 logH32 logP256 logFT > logH321

logT50 1
logT90 0.97 1
logP256 −0.02 0.03 1
logFT 0.64 0.67 0.58 1
logH32 −0.40 −0.40 0.13 −0.07 1
logH321 −0.41 −0.41 0.15 −0.08 0.96 1

Table 8.2 The group and standard errors for the various parameters in three
class classification

Cluster Cluster 1 Cluster 2 Cluster 3

No. of members 423 622 549

Parameters Mean Std error Mean Std error Mean Std error

< log T50 > −0.724 0.020 0.727 0.016 1.356 0.019

< log T90 > −0.296 0.022 1.196 0.015 1.806 0.015

< logP256 > 0.223 0.018 0.100 0.015 0.459 0.021

< logFT > −6.213 0.025 −5.526 0.015 −4.750 0.021

< logH32 > 0.744 0.013 0.391 0.010 0.501 0.009

< logH321 > 0.534 0.014 0.123 0.010 0.254 0.014

< cos θ > −0.027 0.028 −0.008 0.023 −0.019 0.012

(0.9σ) (0.3σ) (0.2σ)

< sin2 b− 1/3 > −0.0097 0.014 −0.019 0.012 0.019 0.013

(0.6σ) (1.5σ) (1.5σ)

< V/Vmax > 0.475 0.019 0.374 0.014 0.145 0.009

Following Mao and Paczynski (1992) and taking < V/Vmax > values for each
group from Table I, a value of Zmax has been derived for a model universe,
ΩM = 0.3,ΩA = 0.7, Ho = 65 km s−1 Mpc−1 and assuming the GRBs to be
standard candles with spectral slope α = 1 (Mallozzi et al. 1996). They
are 0.16, 1 and 10, respectively, which is more reasonable than the high
values of zmax, 4.06, 3.08 and 45.24, respectively, obtained by Balastegui
et al. (2001) before revision. Also in our case class I is the closest one. So
class III can have super massive stars as progenitors. Also the three classes
are as follows. Class I is the class having shortest duration and maximum
hardness but fainter than class II. The duration varies from 0.03 to 6 s. It
has most uniform spatial distribution and is most homogeneous and closest
to the observer (Fig. 8.3).
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Figure 8.3 Histograms of the hardness (H32) parameter for the three classes
found in the cluster analysis

Class II is the intermediate class having duration (T90) varying in the range
10–125 s which is much larger than the intermediate class found by Mukherjee
et al. (1998). It is softer but brighter than class I. It also has uniform spatial
distribution and more or less homogeneous as found from < V/Vmax > value
which is close to 0.5. Class III is the class having longest duration from 5
to 673 s, it is most soft and most inhomogeneous in nature. The duration of
three classes is more or less non overlapping (Fig. 8.4) unlike the previous clas-
sifications though hardness parameters do not differ significantly (Fig. 8.3),
i.e. they follow overlapping zones. So for the present study we have taken
six variables like most of the authors but found similar type of classes as
found by Balastegui et al. (2001) where they have considered nine variables.
Also in the present classification the durations are well separated unlike other
works. In Table 8.3 correlation matrices have been computed for the above
three classes. Unlike class I, for classes II and III fluence and durations have
very little correlations. It is minimum for class II. Peak flux and durations
have anti correlations in classes II and III, respectively. The effect is more
pronounced in longest duration class. Hardness has practically no correlation
with duration for classes I and II but a fare relation for class III.
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Figure 8.4 Histograms of the duration (T90) parameter for the three classes
found in the cluster analysis

Assuming the actual number of clusters is three we have applied discrim-
inant analysis to compute the miss classification probabilities. The results
obtained are shown in Table 8.4. From Table 8.4 we see that proportion of
correct classification is 0.954. Hence it may be inferred that the choice of
three class classification is quite realistic. While looking at the miss classifi-
cation probabilities (not listed in the paper as the sample size is quite large)
we see that for most of the miss classified GRBs the differences in classifica-
tion probabilities for the true clusters and the identified clusters are not very
significant.

8.5.2 Cluster Analysis of HETE 2 and Swift Samples

Among six parameters used in k-means clustering for BATSE data only two,
viz., duration (T90) and total fluence (Ft) are available for GRBs in HETE
2 swift catalogs. Also the total fluence (Ft = F1 + F2 + F3 + F 4) uses in
the BATSE data has the range from 30 KeV and beyond 400 keV (F4), while
for HETE 2 it is 30–400keV and for Swift it is 15–150keV, respectively.
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Table 8.3 Correlation matrix for the composite parameters in clusters I, II
and III, respectively

Parameters logT50 logT90 logP256 logFT logH32 logH321

Cluster I
logT50 1
logT90 0.84 1
logP256 −0.003 0.071 1
logFT 0.26 0.27 0.69 1
logH32 −0.008 −0.044 0.035 0.27 1
logH321 −0.048 −0.097 0.051 0.214 0.93 1

Cluster II
logT50 1
logT90 0.87 1
logT256 −0.44 0.37 1
logFT 0.016 0.051 0.51 1
logH32 −0.086 −0.094 0.075 0.12 1
logH321 −0.078 −0.1 0.092 0.14 0.96 1

Cluster III
logT50 1
logT90 0.82 1
logT256 −0.53 0.45 1
logFT 0.26 −0.15 0.71 1
logH32 −0.290 −0.26 0.24 0.33 1
logH321 −0.30 −0.27 0.26 0.34 0.97 1

Table 8.4 Results of discriminant analysis for the classification

True groups (clusters)
Put into clusters Cluster 1 Cluster 2 Cluster 3

Cluster 1 578 6 23
Cluster 2 28 417 0
Cluster 3 21 0 526

Total 622 423 549

This variation influence may introduce an error or at most 10 %. The GRBs
with known redshifts are selected from the catalogs. They are 14 and 36 in
HEHE 2 and Swift, respectively. Since in the previous analysis the optimum
number of classes is three, we have carried out k-means clustering of BATSE
data taking two parameters (T90 and F1) instead of six and assuming there
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are three classes. Then a discriminant analysis is performed with the same
BATSE data but now with respect to above two parameters and the pro-
portion constant is calculated (at 95 % confidence level). It is found that
the proportion constant is comparatively lower than the previous one but
as high as 0.879. This means that though the other parameters have a fare
contribution but the contribution of duration and fluence are very important
in the classification. This is done to make a calibration among the BATSE,
HETE 2 and Swift GRBs. Now again a discriminant analysis is performed
with HETE 2 and Swift samples to calculate the probabilities of different
GRBs of falling into above three classes. In this way though the other pa-
rameters are not available for HETE 2 and Swift data we have become able
to include them into any of the above three classes. Having the redshifts of
these GRBs are known their cosmological distances are calculated following
Kim et al. (1997) and hence their luminosities (L) are known (L = 4πD2Ft).
The BATSE GRBs (since there is only one GRB in the shortest class it is
excluded) having known redshifts are also included in the combined sample
of GRBs from BATSE, HETE 2 and Swift having known redshifts. It is seen
from the figures that three classes are well separated in luminosities. The
distinction will be more pronounced if all the six parameters are available for
HETE 2 and Swift data. Also the present separation suffers from the obser-
vational error in the sense that two GRBs, one with less luminosity, closer
to the observer and other with higher luminosity, farther from the observer
seem to have same fluence and may fall into the same class. This may be the
reason for some of the GRBs with high redshifts which should have fallen in
class III with higher luminosities have fallen in class II. But still it is clear
from the figure that the classification is merely a luminosity classification at
various distances. In this context it is to be mentioned that for BATSE data
longest duration class has highest value of Zmax and shortest class has lowest
value of Zmax. But here though shortest class (class I) GRBs have compar-
atively lower redshifts but intermediate and longest classes have redshifts of
various ranges. This may be due to the fact that we have found Zmax of
the three classes of BATSE sample assuming a model universe where GRBs
are taken as standard candles of spectral index 1, i.e. all of them have the
same luminosities which is not the situation here and it is the luminosity
which acts as a differentiating maker among the classes. More authenticity
of the result will be increased when the sample size is quite large. To see the
effect of fluence on the classification we have carried out the cluster analysis
with only T90 and T50, the optimum number of classes found is 2 which is
consistent with the two class classification on basis of duration only.

R Code for k means clustering and Classification is given below.



8.6 Clustering for Large Data Sets: Data Mining 207

data3 ← read.table (“C:\\Users\\Tanuka \\Desktop\\ grb2007 \\.txt”,
header = TRUE)
data3
library(MASS)
cor(data3) kmeans(data3, 3)
c1 ← kmeans(data3, 3)
c1
clusmem ← cbind (data3, c1$cluster)
clusmem
group ← c (rep (1, 546), rep (2, 426), rep(3, 622))
discr ← lda (data3, group)
x ← predict (discr) $class
tab ← table (predict (discr)$ class)
tab cbind (data3, c1$cluster)
tab
tab1← table (predict (discr) $ class, group)
tab1

The data file grb2007.txt is given in the Appendix.

8.6 Clustering for Large Data Sets: Data Mining

8.6.1 Subspace Clustering

Clustering is a technique used to place data elements into related groups
without advance knowledge of the group definitions. Clustering algorithms
are attractive for the task of identification in coherent groups for existing data
sets under consideration. However, clustering algorithm needs the following
requirements when applied to large data sets.

1. Minimal requirements of domain knowledge to determine the input
parameters.

2. Discovery of clusters with arbitrary shape and good efficiency on large
databases.

3. Automatic determination of the optimum number of homogeneous
classes. Popular clustering techniques such as the K-Means Clus-
tering and Expectation Maximization (EM) Clustering fail to give
solution to the combination of these requirements. Thus keeping in
view the above considerations some new approaches have been devel-
oped known as Density Based Clustering Techniques and Subspace
Clustering Techniques.

In the Density based approach the main reason why a cluster is recog-
nized is that within each cluster there is a typical density of points which is
considerably higher than outside the cluster. Furthermore, the density within
the areas of noise is lower than the density in any of the clusters. In other
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words,the clusters and consequently the classes are easily and readily identi-
fiable because they have an increased density with respect to the points they
possess. The single points scattered around the database are outliers, which
means they do not belong to any clusters as a result of being in an area with
relatively low concentration. Here discussions have been focused on Subspace
Clustering Techniques which is a data mining task.

Clustering seeks to find groups of similar objects based on the values of
their attributes. Traditional clustering algorithms i.e., the Full Space algo-
rithms use distance on the whole data space to measure similarity between
objects.As the number of dimensions in a data set increases, distance mea-
sures become increasingly meaningless. For very high dimensional data sets,
the objects are almost equidistant from each other. This is known as the
curse of high dimensionality.

The concept of subspace clustering has been proposed to cope with this prob-
lem by discovering clusters embedded in the subspaces of high dimensional
data sets. Subspace Clustering is the task of detecting all clusters in all sub-
spaces. This means that a point might be a member of multiple clusters,
each existing in a different subspace.

Subspaces can either be axis parallel or arbitrarily oriented affine subspaces.
The two approaches towards clustering differ in how they interpret the overall
goal, which is finding clusters in data sets with high dimensionality.

In both cases, the data objects which are grouped into a common subspace
cluster are very dense (i.e. the variance is small) when projected onto the
hyperplane which is perpendicular to the subspace of the cluster (called the
perpendicular space plane). The objects may form a completely arbitrary
shape with a high variance when projected onto the hyperplane of the sub-
space in which the cluster resides (called the cluster subspace plane). This
means that the objects of the subspace cluster are all close to the cluster
subspace plane. The knowledge that all data objects of a cluster are close to
the cluster subspace plane is valuable for many applications.

If the plane is axis-parallel, this means that the values of some of the at-
tributes are more or less constant for all cluster members. The whole group
is characterized by this constant attribute value, an item of information which
can definitely be important for the interpretation of the cluster. This prop-
erty may also be used to perform a dedicated dimensionality reduction for
the objects of the cluster and may be useful for data compression (because
only the higher-variance attributes need to be individually considered for
the search) and an index needs only to be constructed for the high-variance
attributes.
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If the cluster subspace plane is arbitrarily oriented, the knowledge is even
more valuable. In this case, it is known that the attributes which define the
cluster subspace plane have a complex dependency among each other. This
dependency defines a rule, which again characterizes the cluster and which
is potentially useful for cluster interpretation.

Many subspace clustering algorithms use a grid based approach to find
dense regions. They partition the data space into non-overlapping rectan-
gular cells by discretizing each dimension into s number of bins. A cell is
dense if the fraction of total objects contained in the cell is greater than a
threshold. Dense cells in all subspaces are identified using a bottom-up strat-
egy and connected dense cells are merged together to form clusters. In the
grid based approach, objects around the boundaries of the bins have similar
values, but they are put into different bins. As a result, a cluster may be
divided into several small clusters.

These methods are popular due to two main reasons. Firstly, conventional
(full space) clustering algorithms often fail to find useful clusters when applied
to data sets of higher dimensionality, because typically many of the attributes
are noisy, some attributes may exhibit high correlations with others and only
few of the attributes really contribute to the cluster structure. Secondly,
the knowledge gained from a subspace clustering algorithm is much richer
than that of a conventional clustering algorithm because it can be used for
interpretation, data compression, similarity search, etc.

Arbitrarily Oriented Clustering assumes that the cluster structure is signifi-
cantly dense in the local neighbourhood of the cluster centres or other points
that participate in the cluster.

In the context of high-dimensional data, this locality assumption is rather op-
timistic. Theoretical considerations show that concepts like local neighbour-
hood are not meaningful in high-dimensional spaces because distances can
no longer be used to differentiate between points. This is a consequence of
the well-known curse of dimensionality.

8.6.2 Clustering in Arbitrary Subspace Based on Hough Transform:
An Application (Chattopadhyay et al. 2013)

The locality assumption that the clustering structure is dense in the entire
feature space and that the Euclidean neighbourhood of points in the cluster,
or of cluster centres, does not contain noise is a very strict limitation for high-
dimensional real-world data sets. In high-dimensional spaces, the distance to
the nearest neighbour and the distance to the farthest neighbour coverage.
As a consequence, distances can no longer be used to differentiate between
points in high-dimensional spaces and concepts like the neighbourhood of
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points become meaningless. Usually, although many points share a common
hyperplane, they are not close to each other in the original feature space.
In those cases, existing approaches will fail to detect meaningful patterns
because they cannot learn the correct subspaces of the clusters. In addition,
as long as the correct subspace the clusters cannot be determined. Obviously
outliers and noise cannot be removed in a preprocessing step. In present work
concept of an arbitrarily oriented subspace clustering technique developed by
Achtert et al. (2008) has been applied.

In this method development of an original principle to characterize the
subspace holding a cluster is based on the idea of the Hough Transform.
This transform charts out the points from a two-dimensional data space (also
known as picture space) of Euclidean co-ordinates (e.g. pixel of an image) into
a parameter space. It is the parameter space that stands for all possible one-
dimensional lines in the original two-dimensional data space. In principle,
each point of the data space is mapped into an infinite number of points
to the parameter space which is, however, not an infinite set but actually
a trigonometric function relating to the parameter space. Each function in
the parameter space represents all lines in the picture space crossing the
corresponding point in data space. The intersection of the dual curves in the
parameter space points to a line through the corresponding points alike in
the picture space.

The objective of a clustering algorithm is to find intersections of many
curves in the parameter space representing lines through many database ob-
jects. The key feature of the Hough transform is that the distance of the
points in the original data space is not considered any more. Objects can be
identified as associated with a common line even if they are far apart in the
original feature space. As a consequence, the Hough transform is a promising
candidate for developing a principle for subspace analysis that does not re-
quire the locality assumption and, thus, enables a global subspace clustering
approach. The simplest case of Hough transform is the linear transform for
detecting straight lines. In the image space, the straight line can be described
as y = mx + b and can be graphically plotted for each pair of image points
(x, y). In the Hough transform, a main idea is to consider the characteristics
of the straight line not as image points (x1, y1), (x2, y2), etc., but instead in
terms of its parameters, i.e., the slope parameter m and the intercept param-
eter b. Based on that fact, the straight line y = mx + b can be represented
as a point (b,m) in the parameter space. However, one faces the problem
that vertical lines give rise to unbounded values of the parameters m and
b. For computational reasons, it is therefore better to use a different pair of
parameters, denoted r and θ, for the lines in the Hough transform.
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The parameter r represents the distance between the line and the origin.
while θ is the angle of the vector from the origin to this closest point. Using
this parameterization, the equation of the line can be written as r = x cos θ+
y sin θ.

It is therefore possible to associate with each line of the image a pair (r; θ)
which is unique if θε[0;π) and rεR, or if θε[0; 2π) and r ≥ 0. The (r; θ) plane
is sometimes referred to as Hough space for the set of straight lines in two
dimensions.

8.6.2.1 Input Parameters

CASH requires the user to specify two input parameters. The first parameter
m specifies the minimum number of sinusoidal curves that (minpts) need to
intersect a hypercuboid in the parameter space such that this hypercuboid is
regarded as a dense area. Obviously, this parameter represents the minimum
number of points in a cluster and thus is very intuitive. The second parame-
ter s specifies the maximal number of splits along a search path (split level).
CASH is robust with respect to the choice of s. Since CASH does not require
parameters that are hard to guess like the number of clusters, the average
dimensionality of the subspace clusters, or the size of the Euclidean neigh-
bourhood based on which the similarity of the subspace clusters is learned,
it is much more usable.

8.6.2.2 Data Set

In order to evaluate the efficiency of the algorithm CASH, the method has
been applied to a data complied and standardized by Hudson et al. (2001) for
a sample of 56 low-redshift galaxy clusters containing 699 early-type galaxies.
After eliminating the missing observations the sample size has been reduced
to 528 and the CASH method has been performed using four parameters
(variables), viz. the logarithm of the effective Radius (logRc in kpc), the
surface brightness averaged over half light radius (μ in mag arcsec−2, central
velocity dispersion (σ in km s−1) and magnesium index (Mg2 index).

8.6.2.3 Experimental Evaluation

Initial choice of constraints: Since CASH only needs two constraints
viz., m the minpts and s the number of split levels, the constants have been
selected by trial and error method. The jitter has been fixed to a preassigned
small value 0.15. The value of m has been taken from 100 to 40 and values
of s have been varied from 1 to 3. It is expected that the value for m should
not be larger than 100 for a sample of size 528 because it is the minimum
number of points to be included per cluster. Also the number of split levels
should be moderate for a data set of moderate size.
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It is seen that the stability has been achieved by taking m = 60 and s = 2.
After that even a decrease in the value of m has not contributed in the result.
With the above-mentioned combination of s and m, the number of cluster
has been found to be seven.

8.6.2.4 Properties of the Groups

The efficiency of CASH has been checked by several properties.

The average properties of the seven groups are shown in Table 8.5 where
Ngal represents the size of each clusters and Mdyn represents the dynamical

mass which can be obtained from the relation

Mdyn ≈ Aσ2Re/G, where A and G are constants.

It is well known that Fundamental Plane (FP) is a relationship between
the effective radius, average surface brightness and central velocity dispersion
of normal elliptical galaxies and Virial Plane (VP) is the parametric plane
constituted by effective radius, surface brightness averaged over effective ra-
dius and velocity dispersion when a galaxy is in dynamical equilibrium.

The slopes for logRe with respect to logMdyn are shown in Table 8.6 for
seven clusters.

From Table 8.6 it is clear that all the slopes are greater than 0.38. So
the galaxies are not formed as a result of pure disk mergers (Robertson et al.
2006). Since the slope of C4 is more or less close to 0.38, it might be formed
due to pure disk merger. For the remaining ones, the slopes are steeper which
might be due to merger of non-disky objects or the result of repeated merging
of small systems (Shen et al. 2003)

The Mg2 index more or less increases chronologically. So accordingly,
higher Mg2 indicates that the galaxies are dynamically more evolved and
lower Mg2 value signifies that the galaxies are dynamically less evolved (viz.
Table 8.5, column 6).

The Fundamental Plane (FP) is expressed by the relationship,

log10 Re = a log σ + bμe + c

where a, b and c are constants to be determined.

The virial Plane (VP) is expressed by the relationship.

log10Re = 2 logσ + 0.4μe
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Table 8.6 Slopes of seven different clusters

Clusters Ngal Slope
C1 21 0.447
C2 82 0.443
C3 60 0.578
C4 75 0.417
C5 167 0.417
C6 63 0.663
C7 60 0.662

Table 8.7 The values of the Mg2 index, Tilt and slope seven clusters

Clusters Ngal Mg2 Tilt Slope
C1 21 0.26286 0.3487 0.447
C2 82 0.28143 0.744 0.443
C3 60 0.28239 0.645 0.587
C4 75 0.28837 0.649 0.417
C5 167 0.26951 0.728 0.471
C6 63 0.29371 0.749 0.663
C7 60 0.30400 0.732 0.662

The ratio of the slopes of the FP with VP is defined as the tilt. Hence a small
value of tilt indicates that the FP is farther from the corresponding VP. The
tilt values for the seven groups are shown in Table 8.7.

It is also clear from Table 8.7 that tilts are almost increasing in parity with
the Mg2 index and also the tilts are approximately increasing from C1 to C7
indicating that the galaxies in the later groups are more dynamically evolved
(hence closer to their corresponding virial planes). This is also consistent
with the fact that the magnesium indices are also increasing for the groups
indicating that in a dynamically evolved galaxy the metal content is higher.
Since none of the tilt values are close to 1, it can be concluded that these
galaxies have been formed by dissipational Mergers (Robertson et al. 2006).
So the groups can be considered as evolutionary tree with respect to FP, VP
and Mg2 indices as

C1→ C2→ C3→ C4→ C7→ C6(excluding C5)

which is irrespective of the scatter of the FP giving rise to several controversial
arguments so far.
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Chapter - 9

Time Series Analysis

9.1 Introduction

A time series is a sequential collection of data indexed over time. In most
cases the data are continuous but they are recorded at a discrete and finite set
of equally spaced points. If a time series has N -observations (x0, x1, . . . , xN ),
then the time indexed distance between any two successive observations is
referred to as the sampling interval. Time series lets one to explore, analyse
and forecast univariate time series. Moreover, autocorrelations and partial
auto correlations of the series indicate how and to what degree each point
in the series is correlated with earlier values in the series. The analysis of
time series is of immense significance not only for economist and businessman
but also for scientist, geologist, biologist, research worker, etc. for various
reasons. For example, by observing data over a period of time one can easily
understand what changes have taken place in the past, i.e. such analysis is
extremely helpful for forecasting purpose. It also helps in planning future
operations, provided the various features can be extracted from the given
time series after a successful analysis. It also facilitates comparison, i.e. dif-
ferent time series are often compared and important conclusions are drawn
from there. So, in other words we can say that time series helps in modelling
the physical phenomena responsible for the observed variability in various
parameters of an object. Below some examples of time series (Figs. 9.1 and
9.2) are shown. Figure 9.1 shows a trend whereas Fig. 9.2 shows a combi-
nation of trend and seasonal fluctuations and this is typical of sales data.
So from the time series data it is clear that a time series may have several
components like trend, seasonal, cyclical, other irregular fluctuations and a
purely random part, called the “White noise.” At first trend, cyclic variations
are removed from the time series and we are left with a series of residuals
that may or may not be “random”. In the subsequent part we will see that
there are various sophisticated techniques for analysing time series of this
type to examine whether any cyclic variation is still left in the residuals or
whether irregular variation may be explained in terms of probability models,
e.g. moving average (MA) or autoregressive models (AR), etc.

© Springer Science+Business Media New York 2014
A.K. Chattopadhyay, T. Chattopadhyay, Statistical Methods
for Astronomical Data Analysis, Springer Series in Astrostatistics 3,
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Figure 9.2 Time series showing trend with seasonal fluctuations

9.2 Several Components of a Time Series

A time series has generally the following components. (1) Trend, (2) Seasonal
variation, (3) other cyclic variations and (4) irregular fluctuations.

Trend: When there is a long-term change in the mean level of the time series,
we say a trend is present (viz. Fig. 9.2). The term “long term” is variable
sensitive. In case of climatic variables, sometimes there are variations over
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long time, e.g. 50 years. So observations over 20 years will show a trend.
Therefore, analyser should be very much attentive of variable under concern.

Seasonal variation: Many time series have variation over the year. For
example, the temperature is higher in summer than winter or the rainfall is
maximum during June–September in India. This yearly variation is called
seasonal variation.

Other cyclic variations: Sometimes, there is variation over a fixed period
apart from yearly variation. For example, number of sun spots generally have
a period of 22 years but besides that there are many short cycles to account
for. Economic data are sometimes influenced by business cycles varying from
3/4 years to more than 10 years.

Irregular fluctuations: If trend, seasonal fluctuations, other cyclic varia-
tions are removed from a given time series (provided they are present), one
is left with a series of residuals which may or may not be random. So in
that case one has to see whether any cyclic variation is still left or whether
the residual variations can be modelled by probability theory (e.g. MA or
AR models), i.e. the residuals are close to “stationary series”. This will be
discussed in the subsequent sections.

9.3 How to Remove Various Deterministic Components
from a Time Series

Trend

If one is likely to remove the trend from the given time series (provided it

is present there), he/she can use a filter of the form pt =

+j∑

r=−i
krqt+r such

that the time series {qt} is transformed to {pt} with a set of weights {kr} .
If
∑
kr = 1 it is called “moving average” method and if i = j, kr = k−r the

method is called “symmetric moving average method”. If kr = 1
2i+1 , then

pt = 1
2i+1

i∑

r=−i
qt+r. This is the simplest form of moving average method.

Sometimes Spencer’s 15-point moving average or “Henderson moving aver-
age” methods (Chatfield 2004) are also used for detrending the data. Another
kind of filtering “trend” from the data is “Differencing”, i.e. one has to follow
differencing until the data is stationary. Generally first difference is sufficient
to remove the trend, i.e. pt = qt − qt−1 = ∇qt, t = 2, 3, . . .N (Kleibergen
1996) and occasionally second differencing is required, e.g.

∇2qt = ∇qt −∇qt−1 = qt − 2qt−1 + qt−2
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Seasonal variation: For a time series containing trend the seasonal fluctu-
ations for monthly data can be eliminated by

pt =
1
2qt−6 + qt−5 + qt−4 + . . .+ qt+5 + 1

2qt+6

12

For quarterly data the relation comes as

pt =
1
2qt−2 + qt−1 + qt + qt+1 + 1

2qt+2

4

For 4-weekly data one can use moving average over 13 successive observations.
For monthly data, seasonal variation can also be removed by ∇12qt = qt −
qt−12. Further details on seasonal variation can be found in Hylleberg (1992),
and Gómez and Maravall (2001).

9.4 Stationary Time Series and Its Significance

A time series is said to be stationary if it has constant mean and variance, i.e.
if there is no trend, no seasonal and other cyclic variations in the data. In
other words one can say that one section of data is identical with any other
section of the data. We are primarily interested in the stationary part of the
time series because most of the probability models regarding time series are
based on the assumption of stationary time series. For this reason one has to
transform non stationary time series containing trend and/or seasonal and
cyclic fluctuations into a stationary time series to apply several probability
models to the residual time series thus obtained.

9.5 Autocorrelations and Correlogram

Sample autocorrelation coefficients are a series of quantiles defined in the fol-
lowing way. Let {q1, q2, . . . , qN} represent a time series. Then {q1+k, q2+k, . . . ,
qN} are its (N − k) values k-steps apart. Then the auto covariance co-
efficients ck of lag k between these two series is given as

ck =
1

N

N−k∑

t=1

(qt − q)(qt+k − q)

The auto correlation coefficient rk of lag k is defined as

rk = ck/co, k = 1, 2, . . . ,m, m < N.

Correlogram is the plot of rk versus k, k = 0, 1, . . . ,m. Hence it is clear that
for a stationary series rk � 0 for all nonzero values of k.

Figures 9.3 and 9.4 show correlograms of two time series, the first one having
a trend and other one being stationary.



9.6 Stochastic Process and Stationary Process 221

Figure 9.3 Observed data (Top) and Correlogram (Bottom) of a time series
having trend

9.6 Stochastic Process and Stationary Process

A stochastic process is a process that evolves in time following some proba-
bilistic laws. Mathematically it is a collection of random variables indexed
over time. It is denoted by X(t) if time is continuous (0 < t <∞) and Xt if
time is discrete (t = 0,±1,±2, . . . etc.).

Stationary process is a class of stochastic process if the joint distribution of
X(t1), . . . , X(tk) is the same as that of X(t1+τ), . . . , X(tk+τ) ∀t1, t2, . . . , τ.
In this case the stationary process is also called strictly stationary. τ
is called the time lag. The auto covariance function is defined as γ(τ) =
Cov [X(t), X(t + τ)] and auto correlation function is defined by ρ(τ) =
γ(τ)/γ(0). For strictly stationary process, the first two population moments
are constant, i.e.

μ(t) = μ

σ2(t) = σ2

The autocovariance function is defined as γ(τ) = Cov [X(t)X(t+τ)]. In case
of weakly stationary process or second order stationary process

E[X(t)] = μ,

Cov [X(t)X(t+ τ)] = γ(τ).
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Figure 9.4 Correlogram of a stationary time series

Properties of Autocorrelation Function

Let {X(t)} be a stationary stochastic process with mean μ and variance σ2,
then autocorrelation function

ρ(τ) = γ(τ)/γ(0)

Since, γ(0) = σ2 hence ρ(0) = 1

(i) γ(τ) = γ(−τ).

Proof. γ(τ) = Cov [X(t)X(t+ τ)]
= Cov [X(t− τ)X(t)], since {X(t)} is stationary
= γ(−τ).

(ii) | ρ(τ)| ≤ 1.

Proof. Var [δ1X(t) + δ2X(t+ τ)] ≥ 0.
(for any constants δ1, δ2.)

or δ21 Var[X(t)] + δ22 Var[X(t+ τ)] + 2δ1δ2 Cov[X(t)X(t+ τ)] ≥ 0.

or (δ21 + δ22)σ2 + 2δ1δ2γ(τ) ≥ 0.

When δ1 = δ2 = 1, γ(τ) ≥ −σ2 i.e. ρ(τ) ≥ −1
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When δ1 = 1, δ2 = −1, σ2 ≥ γ(τ) i.e., ρ(τ) ≤ +1

Hence, |ρ(τ)| ≤ 1.

9.7 Different Stochastic Process Used for Modelling

9.7.1 Linear Stationary Models

Purely random process: A discrete stochastic process is called a purely
random process, {Zt} which are mutually independent and identically dis-
tributed (iid). It is assumed that

γ(k) = Cov(Zt, Zt + k) =

{
σ2
Z k = 0

0 k = ±1,±2, . . . .

Hence, ρ(k) =

{
1 k = 0
0 k = ±1,±2, . . . .

Purely random process sometimes is called “white noise”.

Autoregressive process: Let {Zt} be a purely random process. Then {Xt}
is to be an autoregressive process of order p (AR(p)) if

Xt = α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + Zt (9.1)

For, p = 1, Xt = αXt−1 + Zt, is called first order autoregressive process.

Then Xt can be written as using the recurrence relations,

Xt = Zt + αZt−1 + α2Zt−2 + . . . ,−1 < α < 1, (9.2)

which is an infinite order moving average (MA) process. Thus there exists a
duality between AR and MA process. This can be seen also using the shift
operator B as, BXt = Xt−1.

Applying it to first order AR model,

(1 − αB)Xt = Zt.

or Xt = Zt/(1− αB)

= (1 + αB + α2B2 + . . .)Zt

= Zt + αZt−1 + α2Zt−2 + . . .

This is identical to Eq. (9.2).
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It can be seen easily that

E(Xt) = 0

Var (Xt) = σ2
z(1 + α2 + α4 + . . .),

= σ2
z/(1− α2), |α| ≤ 1,

γ(k) = E[XtXt+k] = E[(
∑

αiZt−i(
∑

αjZt+k−j)]

= σ2
z

∞∑

i=o

αiαk+i

= αkσz2/(1− α2), |α| < 1

= αkσ2
X

For k < 0, we find γ(k) = γ(−k). Here γ(k) does not depend upon t. So AR
process of order 1 is a second order stationary process provided |α| < 1. The
auto correlation function is given by

ρ(k) = αk, k = 0, 1, 2, . . .

Figure 9.5 shows some autocorrelation function for 1st order AR process for
various values of α. In each case |α| < 1 and hence the series are stationary.

AR process can also be reduced to a MA process in general situation using
backward shift operator. Let us consider AR (p) process.
Then, Xt = α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + Zt.

i.e., (1− α1B − α2B
2 − . . . . . .− αpBp)Xt = Zt

or Φ(B)Xt = Zt, where Φ(B) = 1− α1B − α2B
2 − . . .− αpBp

or Xt = (1 − α1B − α2B
2 − . . .− αp)−1Zt

= (1 + β1B + β2B
2 + . . .)Zt

Now, E(Xt) = 0, and Var(Xt) =

p∑

i=0

β2
i provided the sum converges which is

necessary condition for stationarity. The auto covariance function,

γ(k) = σ2
Z

∞∑

i=0

βiβi+k, β0 = 1

Sufficient condition for convergence is
∑
|βi| converges. In principle, this

is the way to find γ(k). But {βi} are hard to find. So alternatively, the
autocorrelation function ρ(k) is found as follows. Multiplying Eq. (9.1) by
Xt−k, taking expectations, dividing by σ2

X , assuming {Xt} is stationary, using
the fact ρ(k) = ρ(−k) ∀k > 0, ρ(k)’s reduce to

ρ(k) = α1ρ(k − 1) + . . .+ αpρ(k − p)
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Figure 9.5 Autocorrelation function for AR(1) process

These are the set of difference equations known as Yule Walker equation and
has the solution,

ρ(k) = A1π
|k|
1 + . . .+Apπ

|k|
p

where {πi} are the roots of

xp − α1x
p−1 − . . .− αp = 0.

Depending on initial conditions, ρ(0) = 1, it follows
∑

Ai = 1. It shows

that ρ(k)→ 0 as k increases provided |πi| < 1 ∀i, which is the necessary and
sufficient condition for stationarity. It can be shown that an equivalent way
of expressing the stationarity is that the roots of 1 − α1B − . . .− αpBp = 0
must lie outside the unit circle.

Prob. 1 Consider the AR(2) process given by Xt = Xt−1 − 1
3Xt−2 + Zt

Show that the process is stationary. Find the auto correlation coefficients.

Solution: (1−B + 1
3B

2)Xt = Zt

So, the equation 1−B+ 1
3B

2 = 0 has the roots 3±i√3
2 the modulus of which

is
√

3 = 1.732 > 1. So it is a stationary process.
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The Yule Walker equation for k = 1 is

ρ(1) = ρ(0)− 1

3
ρ(−1) = 1− 1

3
ρ(1)

This gives ρ(1) = 3
4 .

The other values of ρ(k) for k ≥ 2 are given by the recursive relation,

ρ(k) = ρ(k − 1)− 1

3
ρ(k − 3)

Prob. 2 Write the autocorrelation function of the AR(2) process,

Xt = 1.2Xt−1 − 0.32Xt−2 + Zt.

Solution:
(1 − 1.2B + 0.32B2)Xt = Zt.

So the equation 0.32B2 − 1.2B + 1 = 0 has the roots (2.5,1.5). As the
roots lie outside the unit circle, the process is stationary.

Hence
ρk = A1π

k
1 +A2π

k
2

where π1, π2 are roots of the auxiliary equation,

y2 − 1.2y + 0.32 = 0

Giving,

π1 = 0.4, π2 = 0.8

Hence
ρk = A10.4k +A20.8k

From the Yule Walker equation, ρ(k) = 1.2ρ(k − 1)− 0.32ρ(k − 2),

ρ(1) = 1.2ρ(0)− 0.32ρ(−1)

= 1.2− 0.32ρ(1)

orρ(1) = 1.2/1.32 = 0.91

Also, ρ(0) = 1. HenceA1 +A2 = 1

ρ(1) = 0.91. Hence0.91 = 0.4A1 + 0.8A2

So, A2 = 0.51/0.4, A1 = −0.11/0.4

So, ρk = −0.11

0.4
0.4k +

0.51

0.4
0.8k

k 0 1 2 3 4 5 6 7 8

ρk 1 0.91 0.77 0.63 0.51 0.41 0.33 0.27 0.21
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Mixed Auto Regressive Moving Average Model (ARMA)

Let {Zt} be a purely random process then{Xt} is said to be ARMA of order
(p,q) process if Xt = α1Xt−1 +α2Xt−2 + . . .+αpXt−p +Zt +β1Zt−1 + . . .+
βqZt−q i.e. using backward shift operator, φ(B)Xt = θ(B)Zt

where φ(B) = 1−α1B−α2B
2− . . .−αpBp and θ(B) = 1+β1B+β2B

2 +
. . .+ βqB

q.
For stationary process roots of φ(B) = 0 and θ(B) = 0 lie outside the

unit circle. It is laborious to calculate to a.c.f in the above manner. Hence
sometimes ARMA is converted to a purely MA process Xt = ψ(B)Xt to
make the computations simpler.

Prob 3 For the ARMA (2, 1) process, Xt−0.8Xt−1−0.1Xt=2 = Zt+0.3Zt−1,
show that it is stationary. Find the ψ weights of process.

Soln: Here, φ(B) = 1− 0.8B − 0.1B2, θ(B) = 1 + 0.3B
ψ(B) = θ(B)[φ(B)]−1

Now, φ(B) = 0 gives roots , 1.09902 , -9.09902
and θ(B) = 0 gives root, 10/3.

All the roots lie outside the unit circle. So the process is stationary.

ψ(B) = (1 + 0.3B)(1− 0.8B − 0.1B2)
−1

= (1 + 0.3B)(1 + 0.8B + 0.1B2 + . . .)

= 1 + 1.1B + 0.34B2 + 0.03B3 + . . .

ψ(B) =

∞∑

i=0

ψiBi

So, ψ1 = 1.1, ψ2 = 0.34, ψ3 = 0.03 etc.

9.7.2 Linear Non Stationary Model

Integrated Autoregressive Moving Average Process
(ARIMA)

We have discussed earlier that all probability models are based on stationary
time series. In most cases the time series are non stationary. So, one has
to remove the non stationary sources of variation, e.g. trend, seasonal fluc-
tuations or any other cyclical fluctuations, etc. If the non stationary source
is due to trend, then one can difference the series, i.e. Xt is replaced by
∇dXt, etc. This type of model is called an “integrated” model because the
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stationary model, i.e. fitted to the differenced data has to be “integrated” to
provide the model for the original non stationary data.

Thus, if Yt = ∇dXt

and Yt = α1Yt−1 + . . .+ αpYt−p + Zt + . . . βqZt−q

then, writing, φ(B)Yt = θ(B)Zt we have to replace Yt by

Xt, i.e. φ(B)(1 −B)dXt = θ(B)Zt

This is an Autoregressive Integrated Moving Average (ARIMA) process of
order (p, d, q).

9.8 Fitting Models and Estimation of Parameters

Autocovariance and Autocorrelations Functions
Theoretical autocovariance and autocorrelations functions are very useful in
checking the stationarity of a time series. It can be shown that
limN→∞E(ck) = γ(k), i.e. ck is an asymptotically unbiased estimator of
γ(k).

The sample auto correlation function of lag k is,

rk = ck/c0

and E(rk) � −1/N

Var (rk) � 1/N (Kendall et al. 1983)

So the confidence limits for rk is = 1/N ± 2/
√
N � ±2/

√
N

Hence values of rk falling outside this limit is significantly different from zero
at 5 % level of significance.

The following points might be noted for modelling
with respect to rk

1. When rk does not converge to zero quickly, it implies nonstationarity. In
that case the time series is to be differenced unless it becomes stationary.

2. When rk cuts at lag q, then it is preferable to use MA(q) model.

3. When rk falls slowly to zero, AR/ARMA models are appropriate
(Chatfield 2004).
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An Ar(p) Process
For AR(p) process, (with mean μ)

Xt − μ = α1(Xt−1 − μ) + . . .+ αp(Xt−p − μ) + Zt.

Then the parameters can be fitted by least square method.
In particular for AR(1) and AR(2) process,

μ̂ = x, α̂1 = r1

and,

μ̂ = x, α̂1 � r1(1− r2)

1− r21
, α̂2 � (r2 − r21)

1− r21
For determining the order of an AR process, AR process of several orders,
p = 1, 2 . . . etc. are fitted and residual sum of squares are plotted against
p = 1, 2, . . . etc. When (p + 1)th term does not improve residual sum of
squares, take then p as the order of the process.

Fitting for MA(q) process: For this process parameters cannot be found
by explicit least square estimation. So the following procedure is followed.
Some suitable starting values of the parameters are considered and the resid-
ual sum of squares is computed. The same is calculated for other values of
the parameters in a parameter space grid. Then those values of parameters
are chosen for which residual sum of squares is minimum.

Fitting ARMA model: The same procedure of minimizing residual sum
of squares is followed for this process also.

Fitting Non Stationary Models

ARIMA Model

For nonstationary model it is transformed to stationary model by first order
or occasionally second order difference scheme and then linear models are
fitted. Then the resulting undifferenced series is the fitted ARIMA model.
For seasonal data seasonal differencing is required.

SARIMA Model

When the time series contains seasonal periodic component of periods (e.g.
for monthly data s = 12) then the generalized ARIMA model to deal with
seasonality is defined as

φp(B)ΦP (Bs)Wt = θq(B)ΘQ(Bs)Zt
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where B is the shift operator, φp, ΦP , θq and ΘQ are polynomials of orders p,
P , q and Q, respectively, and Zt is purely random process. Wt = ∇d∇Ds Xt

denotes the differenced series.

The above model is called SARIMA model of order(p, d, q)× (P,D,Q)s.

For example SARIMA model of order (1, 0, 0)× (0, 1, 1)12 reduces to

Xt = Xt−12 + α(Xt−1 −Xt−13) + Zt + ΘZt−12

where Wt = ∇12Xt and α,Θ are parameters.

The model parameters are estimated by iterative process and the orders p,
P, q, Q are determined from the auto covariance function of the stationary
series Wt found by differencing.

9.9 Forecasting

Suppose we have an observed time series x1, x2, . . . , xN . Then forecasting is
the prediction of xN+1 after time step h. It is denoted as xN (h). Forecasting
might be univariate, i.e. xN (h) depends on x1, x2, . . . , xN , i.e. on a single
time series or it might be multivariate, i.e. the variable depends on more
than one time series. It can be “point forecasting” or “prediction interval”.
When the future value is described by some distribution instead of “point”
or “interval”, then it is called density forecasting.

Point Forecasting for Univariate Methods

(i) Simple Exponential Smoothing (SES):

This is used for non seasonal and non trend time series and is given by
x̂N+1 = c0xN + c1xN−1 + c2xN−2 + . . .

where ci = α(1− α)i, i = 0, 1, . . . so that
∑
ci = 1, 0 < α < 1.

Then,

x̂N+1 = αxN + α(1 − α)xN−1 + . . .

= αxN + (1 − α)x̂N−1 (9.3)
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If we assume x̂1 = x1, then the above equation can be used for successive
forecasting. It is to be noted that

x̂N+1 = α[xN − x̂N−1] + x̂N−1

= αeN + x̂N−1

where eN is the prediction error.

Estimate of α

Since we have assumed α̂1 = x1

e2 = x2 − x̂2

x̂2 = αe2 + x̂1

e3 = x3 − x̂2

eN = xN − x̂N−1

We compute
N∑

i=2

e2i and repeat the procedure for other value of α between

[0,1] and consider that value of α for which
∑
e2i is minimum.

(ii) The Holt and Holt-Winters Point Forecasting: This is used for
non-seasonal time series containing trend. In Eq. (9.3) replacing x̂N+1 by Lt,
i.e. local level at time t,

Lt = αxt + (1 − α)Lt−1

If there is a trend Tt in addition then we have

Lt = αxt + (1− α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1 + (1− γ)Tt−1

Hence,
x̂t+h = Lt + h Tt, h = 1, 2, 3, . . . .

If there is seasonal variation in addition and It is the seasonal component at
time t, then we have

Lt = α(xt/It−12) + (1− α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1

It = δ(xt/Lt) + (1− δ)It−12

Hence, x̂t+h = (Lt + hTt)It−12+h, h = 1, 2, . . . , 12
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(iii) The Box–Jonskins Procedure:

Here the forecasting procedure is based on ARMA or SARIMA model for
non-seasonal/seasonal data. This has been already discussed in Sect. 9.8.

9.10 Spectrum and Spectral Analysis

When a time series is transformed from time domain to frequency domain,
then the corresponding analysis is called “Spectral Analysis”. The advantage
of frequency approach is widely accepted in various fields, e.g. electrical
engineering, geophysics, astrophysics and meteorology. Spectral analysis is
based on the assumption that the time series is made up of sine and cosine
waves with different frequencies and the device which uses this idea is called
the “periodogram” (Schuster 1898). To study “Periodogram” it is necessary
to have an idea of what is “spectral distribution function” and “spectral
density function”.

Let us consider that a time series, apparently random in nature, contain a
mixture of several cyclical fluctuations of different frequencies. Then it can
be expressed as

Xt =

m∑

i=1

Ai cos (wit+ φi) + Zt

where, Ai, wi, φi denote the amplitude, angular frequency and phase at fre-
quency wi. To make “stationary”, we assume {Ai} are uncorrelated random
variables with mean zero or {φi} are random variables uniformly distributed
over [0,2π]

or, Xt =

m∑

i=1

(bicos wit+ disin wit) + Zt

where bi = Aicos φi, di = −Aisin φi.

Letting

k →∞, Xt =

π∫

0

cos wt du(w) +

π∫

0

sin wt dv(w), (9.4)

where u(w) and v(w) are uncorrelated continuous process (Cox and Miller
1968).
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The upper limit is taken π instead of ∞ because

cos [(w +mπ)t] = Cos wt, m, t are integers, m, is even

= Cos (π − w)t, m, t are integers, m, is odd.

So the highest frequency is π, called the “Nyquist frequency” and all the
frequencies lie between [0,π].

Instead of u(w) and v(w) we use a function F (w), so that auto covariance
function of lag k can be expressed as

γ(k) =

π∫

0

cos wkdF (w) (Wierner–Khintchine theorem) (9.5)

F(ω) is called “power spectral distribution function”.

If we assume F (w) = 0, w < 0, then F (w) is monotonic in [0, π]

and γ(0) = σ2
X = F (π) = V ar(Xt)

If F (w) contains any deterministic sinusoidal component at w = w0 (say),
then there is a step increase at w = w0 and for indeterministic part it is
continuous. So we can write F (w) = F1(w) + F2(w), where the first one
is completely “statistical” and the second one is due to the deterministic
component. We are primarily interested in the “indeterministic” part and
for the present case put F2(w) = 0.

Since F2(w) = 0, F (w) is continuous and hence derivable.

So we define f(w) = dF (w)
dw , where f(w) is called “Power spectral density

function”. Then Eq. (9.5) reduces to

γ(k) =

π∫

0

cos wk f(w)dw

So thatf(w) = 1
π

∞∑

k=−∞
γ(k)e−iwk, i.e. the “Discrete Fourier Transform” of

γ(k). Since γ(k) is an even function (i.e. γ(k) = γ(−k)), f(w) = 1
π [γ(0) +

2

∞∑

k=1

γ(k) cos wk]
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The Periodogram: An Estimate of the Power Spectrum

Let (x1, x2, . . . , xN ) be N observations of a time series and we suspect that
it is a mixture of sine and cosine functions with “hidden” periodicities. Then
if N is odd,

Xt = α0 +

m∑

i=1

(αicos wit+ βisin wit) + Zt

where wi = 2πfi, and fi = i/N

Then, α0 =

N∑

t=1

xt/N = x

αi = 2
N

N∑

t=1

xtcos wit

βi = 2
N

N∑

t=1

xtsin wit, i = 1.2, . . . ,m.

Then the “Periodogram” consists of m = (N − 1)/2 values

I(wi) =
N

4π
(α2
i + β2

i ), i = 1, 2, . . .m.

Significance of “Periodogram”

Now,
(α2

i+β
2
i )

2 is the contribution of variance in the range, (wi ± π/N), so we
can plot a histogram whose width is 2π

n .

Then,
α2

i+β
2
i

2 = area of the histogram rectangle

= height × 2π
N

So, height =
N(α2

i+β
2
i )

4π
= I(wi)

Then, I(wi) =

{

(
N∑

t=1

xtcos[
2πit

N
])2 + (

N∑

t=1

xtsin[
2πit

N
])2

}

/Nπ.
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Since,
∑
cos wit = 0 =

∑
sin wit

I(wi)=[

{

(

N∑

t=1

xt − x)cos wit

}2

+

{
N∑

t=1

(xt − x)sin wit

}

]2/Nπ

=

N∑

t,l=1

(xt − x)(xl − x)(cos wit cos wls+ sin wit sinwls)/Nπ

or, I(wi) = (c0 + 2
N−1∑

k=1

ckcos wik)/π

= (

N−1∑

k=−(N−1)

cke
−iwik)/π.

So it appears to be the estimate of the power spectrum

f(w) = (γ0 + 2
∝∑

k=1

γkcoswk)/π

9.11 Cross-Correlation Function (wcross(θ))

The cross-correlation function wcross(θ) between two populations 1 and 2
(say), in terms of angular scale θ, is defined as the fractional excess in the
probability, relative to a random unclustered distributions, of finding an ob-
ject in population 1 in a solid angle δΩ1 and an other object in population 2
in a solid angle δΩ2, separated by angle θ and defined as

δP =
∑

1

∑

2

[1 + wcross(θ)]δΩ1δΩ2

where
∑

1 and
∑

2 are surface densities of populations 1 and 2, respec-
tively (Peebles 1980). The cross correlation function wcross(θ) is measured
in terms of the pair counts between two populations 1 and 2 and is de-
noted byD1D2(θ). Suppose populations 1 and 2 contain M and N objects
(p1, p2, . . . , pM ) and (q1, q2, . . . , qN ) (say), respectively. Let pi(i = 1, 2, . . . ,M)
has the position co-ordinates (pi1, pi2, . . . , pik) (in k-dimensional space) and
qj(j = 1, 2, . . . , N) has the position co-ordinates (qj1, qj2, . . . , qjk). Then the
separations of every object of population 1 with that of population 2 are
dij , (i = 1, 2, . . . ,M, j = 1, 2, . . . , N). The entire range of separations are
binned into a finite number of intervals (θ, θ + δθ) and the number of sepa-
rations falling in (θ, θ + δθ) is denoted by D1D2(θ).

Let R1, R2 be the random realizations of populations 1 and 2, respectively.
Similar procedure is followed for D1R2, D2R1 and R1R2 and R1R2, respec-
tively. Then the various estimates of the cross-correlation functions wcross(θ)
are (Landy and Szalay 1993; Hamilton 1984; Bernstein 1994; Bernardeau
et al. 2002)
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Figure 9.6 Cross correlation functions between two galaxy samples

Wcross(θ) =
D1D2

D2R1
− 1 (9.6)

Wcross(θ) =
D1D2

D1R2
− 1 (9.7)

Wcross(θ) =
D1D2xR1R2

D1R2xD2R1
− 1 (9.8)

and

Wcross(θ) =
D1D2 −D1R2 −D2R1 +R1R2

R1R2
(9.9)

Among the above four estimates, last two are the modified versions of those
originally suggested for the auto-correlation function by Hamilton (1984),
Landy and Szalay (1993). Figure 9.6 shows the cross-correlation function
between two galaxy populations (Blake et al. 2006). Here it is to be noted
that the position co-ordinates might be replaced by various parameters for
objects of populations 1 and 2, respectively.
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Exercise

1. Let Xt = Zt + θZt−1 be a MA (2) process where {Zt} is white noise{
0, σ2

Z

}
,

(i) Find the autocovariance and autocorrelation function for the process
when θ = 0.8

(ii) Complete the variance of the sample mean when θ = 0.8

2. The Wolf sun spot numbers{Xt, t = 1, 2, . . . , 100} have sample autoco-
variance γ̂0 = 1382.2, γ̂2 = 591.82 and γ̂3 = 96.201. Find the Yule Walker
estimates of φ1, φ2 and σ2

Z in the model Xt = φ1Xt−1 + φ2Xt−2 + Zt,

where {Zt} is white noise (0, σ2
z) for the mean correlated series Xt =

Yt − 46.93, t = 1, 2, . . . , 100.

3. Find approximate values for the mean and variance of the periodogram
ordinate I200(π/4) of the AR (1) process,

Xt = 0.5Xt−1 + Zt.

4. Rewrite the following time series models using the backward shift oper-
ator. Classify each of them as ARIMA (p, d, q) process. State whether
the following models are (i) stationary and/or (ii) invertable.

(a) Xt = 0.5X(t− 1) + Zt

(b) Xt − 1.5Xt−1 + 0.6Xt−2 = Zt

(c) (Xt − 0.2)− 1.2(Xt−1−0.2 + 0.2(Xt−2 − 0.2) = Zt − 0.5Zt−1

5. Calculate ρ1, ρ2 for the MA processes.

(i) Xt = Zt − βZt−1

(ii) Xt = (1 + 2.4B + 0.8B2)Zt



238 9 Time Series Analysis

6. Describe the key difference between the correlograms of a stationary
process and a MA process of the same order.

7. Generate samples of an AR (1) process with φ = 0.7 using a computer
program as follows:

(i) Generate a vector at of 150 random normal variable (0.1)

(ii) Take Z1 = a1

(iii) For t = 2, 3, . . . , 150 calculate Zt = 0.7at−1 + at

(iv) To avoid effect of the initial conditions, eliminate first 50 observations
and take the remaining 100 values of the AR (1) process.

8. Obtain the theoretical autocorrelation function of the process, Xt =
0.9Xt−1 + 0.18Xt−2 + Zt where {Zt} is white noise (0, σ2

Z). Generate
a realization of the process using a computer and compare the sample
function with the theoretical one.

9. Prove that the MA (1) processes

Xt = Zt + 0.5Zt=1 and Xt = Zt + 2Zt−1 have the same autocorrelation
structure but that one is invertible and the other is not.

10. Given the MA(2), Xt = Zt + 1.2Zt−1− 0.35Zt−2. (a) check whether it is
invertible, (b) calculate its autocorrelation structure and (c) write it as
an AR(∞) process.

11. Calculate predictions for t = 100,101 and 102 and the final prediction
equation of the MA(2) process Xt = 5 + Zt − 0.5Zt−1, knowing that
the predictions carried out with information up to t = 97 have been
X97(1) = 5.1 and X96(1) = 5.3 and that we have observed X98 = 4.9
and X99 = 5.5.

12. Explain the structure of the forecasts generated by the model

∇Xt = 3 + (1− 0.7B)Zt
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13. Let {Zt} be a stationary process with mean zero and let a and b be
constants.

(i) If Xt = a+bt+st+Zt where {st} is a seasonal component with period
12 and {Zt} is stationary, show that ∇∇12Xt = (1−B)(1−B12)Xt

is stationary.

(ii) If Xt = (a+bt)st+Zt where {st} is a seasonal component with period
12 and {Zt} is stationary, show that ∇2

12Xt = (1− B12(1 −B12)Xt

is stationary.

14. Which, if any, of the following functions defined on the integers is the
autocovariance function of a stationary time series?

(i)
f(h) = 1 + Cos (πh/2) + Cos (πh/4)

(ii)
f(h) = 1 + Cos(πh/2)Cos(πh/4)

(iii)
f(h) = 1, h = 0

= 0.6, h = ±1

= 0, otherwise

15. Let {St : t = 0, 1, 2, . . .} be the random walk with common drift μ, defined
by

S0 = 0

St = μ+ St−1 + Zt, t = 1, 2, 3, . . .

where {Zt} ∼ IID(o, σ2
Z), show that ∇s is stationary and compute its

mean autocovariance function.
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Chapter - 10

Monte Carlo Simulation

The name “Monte Carlo” emerged from the name of the city “Monte
Carlo”, famous for its Casino. In the casino there was a roulette where a
small button was fixed at the centre of a wheel and the numbers 0–9 were
marked at the end of the ten spokes of the wheel. When the button was
pressed, the wheel starts rotating. When the wheel stops, a number within
0–9 was marked by a marker. Depending upon the number near the marker,
one had to play the game. Thus this mechanical device was the device, first
constructed to generate random numbers. The method was theoretically
came through the work “The Monte Carlo Method” published by American
mathematicians John Von Neumann and Stanslav Ulam in 1949. In spite of
the theoretical background this method could not be used in significant scale
until the invention of electronic computers. There are two aspects of this
method. First it is used to simulate any process whose growth is affected by
random factors and second to solve mathematical problems not affected by
random factors but can be connected to artificially constructed probabilistic
model giving rise to solution, otherwise unavailable. For example, suppose
we are to calculate the area A within a unit square in Fig. 10.1.

Let us select N random points within the unit square of which N
′

is that
within A. Then we can say easily that the area of A is proportional to N

′
/N

and the accuracy increases when N is large. It can be shown that the area cal-
culated in this way is within 5–15 % of accuracy compared to the true value.
There are two features for this experiment. First it is easy to construct only
one algorithm to generate a random point within the limit and the results
of all trials are averaged, though the result is not very accurate. So, Monte
Carlo methods are easy to compute, not subject to high degree of accuracy
but can be applied to problems otherwise whose solutions are not available,
e.g. multidimensional computation of volume of arbitrary shape. The sec-
ond feature is that the points generated in the above experiment should be
uniformly scattered. If the points are generated by a qualified gunman aim-
ing to target at the centre, then most of the points will cluster around the
centre, as a result of which area A will be increased a lot from its true value.
So the “random points” are not just random points but also are to be “uni-
formly scattered”. The precise meaning of the above conjecture is understood

© Springer Science+Business Media New York 2014
A.K. Chattopadhyay, T. Chattopadhyay, Statistical Methods
for Astronomical Data Analysis, Springer Series in Astrostatistics 3,
DOI 10.1007/978-1-4939-1507-1 10

241



242 10 Monte Carlo Simulation

Figure 10.1 Area calculation by Monte Carlo method

through the concept of “random numbers”. So “random numbers” are num-
bers that occur in a sequence such that two conditions are satisfied. (1) The
values are uniformly distributed over a predefined interval or set and (2) it
is impossible to predict future values based on previous or present values.

10.1 Generation of Random Numbers

The generation of random numbers can be through some formula but the
quality of randomness can be checked by means of statistical test which will
be discussed below. The random numbers generated by using any formula
are hence called pseudorandom numbers. This is called “simulation” and it
means that these numbers satisfy a set of tests as if they represent the values
of a random variable.

The first algorithm for generating random number was suggested by
J. Neumann. It is known as the “mid-square method”. Let us consider
the following example. Suppose we have a three digit number x0 = 345.
Squaring x0 we get 119,025. Since it has odd number of digits, we can take
for x1 = 902 or 190. Let us take x1 = 902. Squaring we have 813,604. So
x2 = 360 or 136 and so on. However this algorithm did not become a very
successful one as fraction of smaller values is higher than is necessary. The
most commonly used method of generating pseudorandom sequence is due to
Lehmer (1951) which is generated by the recurrence relation

xi ≡ axi−1 (modulo m) (10.1)
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i.e. if axi−1 is divided by m then the remainder is xi. This congruential
relation is generalized by Vyssotslay et al. (1961) as

xi ≡ axi−1 + c (modulo m) (10.2)

where a, c, xi, xi−1 are integers and m is an integer whose value depends on
the design of the computer.

If m = 17, a = 4, c = 1 and x0 = 2, then the sequence of xi’s generated using
(10.2) is 2, 9, 3, 13, 2, 9, . . . so the period is 4. Our intention is that the
period should be longer than the number of random numbers required. So
m should be sufficiently large. The full period of m can be achieved using
(10.2) under the following criteria:

1. c and m have no common divisor,

2. a ≡ 1 (modulo p) for every prime factor p of m, i.e. if p is a prime
factor that divides m, then p divides a− 1.

3. a ≡ 1 (modulo 4) if m is multiple of 4, i.e. if 4 divides m, then 4
divides a− 1.

For the formula (10.1), the period is always less than m and if m = 2γq1
δ1q2

δ2

. . . qr
δr

where qi’s are distinct odd primes, the maximum possible period is

λ(m) = lcm{λ(2γ), λ(q1
δ1), . . . , λ(qr

δr )}
where λ(qδ) = qδ−1(q − 1) if q is odd

λ(2γ) = 1(γ = 0, 1),

= 2(γ = 2),

= 2γ−1(γ > 2).

The maximum period is achieved provided that

1. an/≡ 1(modulo qj
δj ) for 0 < n < λ(qj

δj ),

2.

an ≡ 1(modulo 2) if γ = 1

≡ 3(modulo 4) if γ = 2

≡ 3 or 5(modulo 8) if γ > 2

3. x0 is prime relative to m.

All the above criteria are due to Frisch (1962).

The widely used values of m is m = 2γ . So for 16 bit computer m = 215.
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Usually random numbers are converted to random fractions between (0, 1)
by using ξi = xi/m in order to correspond them to probabilities.

Example 1: Write a program in C to generate random fractions using linear
congruential series. The values are generated by r[i] = (ar[i− 1] + c) mod m.
Given the values of multiplier a, increment c, seed r[0] and a large integer m
(usually taken as max int).

Solution.

# include < stdio.h >

# include < math.h >

main( )

{

int i, n,m;

float r[100], a, c, u[100];

printf (”Enter the number of random number required :”);

scanf (”%d”,&n);

printf (”Enter the value of a&c : \n\n”);

scanf (”%f\n\n%f”,&a,&c);

printf (”Enter the value of the seed r[0] : \n\n”);

scanf (“%f”,&r[0]);

printf (”Enter a large value for m:”);

scanf (”%d”,&m);

for (i = 0; i < n; i+ +);
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{

r[i] = fmod(a ∗ r[i− 1] + c,m);

u[i] = r[i]/m;

printf (”%f\n\n”, u[i]);

}

}

10.2 Test for Randomness

In this section we are giving a simple widely used test for checking random-
ness of a data set. Suppose the random numbers generated in the data set
lie between 0 and 9, and the total numbers generated is N (say). Then one
can use the following equidistribution test to verify the randomness of the
generated values. For this test we initially develop a table which contains
in the first column the ten possible values, 0–9, in the second column the
corresponding observed frequencies and in the last column the expected fre-
quencies, each of which will be equal to N× 1

10 as there are ten values and we
assign the equal probability namely 1

10 to each of them for being selected and
according to the concept of binomial distribution the expected frequency will
be N times the success probability. Then we apply the standard chisquare
test on the observed and expected frequencies. Here the null hypothesis is
that the numbers are independent, i.e. they are randomly generated against
the alternative that they are not random. Hence if the value of the chisquare

statistic given by X 2 =

10∑

i=1

(Oi − Ei)2
Ei

where Oi and Ei’s are observed and

expected frequencies for the ith number is too small, we will accept the null
hypothesis, i.e. according to statistical terminology we will reject the null
hypothesis if observed value of X 2 > X 2

α/2,N−1 or X 2 < X 2
1−α

2
,N−1 where

α is the level of significance and X 2
α/2,N−1 and X 2

1−α
2
,N−1 are the tabu-

lated values given in biometric table. In other words one can accept the null
hypothesis of randomness if the p value (already defined in Chap. 4) is large
(at 5 % level of significance, i.e. > 0.05, say) and reject it otherwise.
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10.3 Generation of Random Numbers from Various
Distributions

(i) Simulation from Exponential Distribution

The p.d.f. of exponential distribution is given by

f(x) = λe−λx, x ≥ 0, λ > 0

Then the c.d.f is

F (x) =

∫ x

0

f(x)dx

=

∫ x

0

λe−λxdx

= 1− e−λx

Since F (x) follows uniform distribution over [0, 1], so here F (x) is a random
fraction between [0, 1] and let us denote it by r, r ∈ [0, 1].

Then r = 1− e−λx

i.e. x = −
(

1

λ

)

ln(1− r) (10.3)

(ii) Simulation from Standard Gaussian Distribution
(Box–Muller Transformation)

The p.d.f of a univariate standard Gaussian distribution is

f(x) =
1√
2π
e−

x2

2 ,−∞ < x <∞

So, p.d.f. of a bivariate standard Gaussian distribution is

f(x, y) =
1

2π
e−(x2+y2

2 ),−∞ < x <∞,−∞ < y <∞

Substituting x = r cos θ, y = r sin θ

f(r, θ) =
1

2π
e−r

2/2

∣
∣
∣
∣J

(
x, y

r, θ

)∣
∣
∣
∣

=
1

2π
e−r

2/2r, since, J

(
x, y

r, θ

)

= r
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substituting z1 = r2

2 , z2 = θ
2π ,

f(z1, z2) =
1

2π
e−z1
√

2z1J

(
r, θ

z1, z2

)

=
1

2π
e−z1
√

2z1π

√
2

z1

= e−z1

which is the p.d.f. of an exponential distribution with λ = 1.

Let r′′ be a random fraction, i.e. r′′ ∈ [0, 1] then,

or z1 = ln(1− r′′)
or z1 = ln r′, (r′ ∈ [0, 1])

or
r2

2
= − ln r′ and θ = 2πξ2, ξ2 ∈ [0, 1]

or x = r cos θ =
√−2 ln r′ cos(2πξ2) (10.4)

where ξ2 ∈ [0, 1].

(iii) Simulation from Binomial Distribution

The p.m.f for the binomial distribution with parameters n and p is given by

f(x) =

(
n
x

)

pxqn−x

where n is the number of trials, p is the probability of success and q is the
probability of failure. Hence, q = 1− p.

Let us define n new set of random variables Zi, i = 1, 2, . . . n as

Zi = 1 if ri ≤ p, i = 1, 2, . . . n.

= 0 otherwise

where ri ∈ [0, 1].

Then, x =

n∑

i=1

zi where zi’s are the values of the random variables

Z ′
is, i = 1, 2, . . . n (10.5)
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(iv) Simulation from a Poisson Distribution

Consider an interval of length t. Suppose within this interval N(t) events
occur at random and the random time interval between (i + 1)th and ith
occurrences be Xi. Then according to the definition of Poisson process

P [N(t) = y] = e−λt
(λt)y

y!
, y = 0, 1, . . .∞

where λ is the rate of occurrence. Further from Poisson process it follows
that Xi follows an exponential distribution with parameter λ, i.e.

f(xi) = λe−λxi , xi > 0

Let us define Sy = X1 +X2 + . . .+Xy

Then the event [N(t) = y] ≡ [Sy ≤ t]

Now if we take t = 1, then

P [N(t) = y] =
e−λλy

y!
, y = 0, 1, . . . ,∞ (10.6)

Here the problem is to generate the values of y. From Eq. (10.6) this can be
done as follows:

Generate samples x1, x2 . . . from exp(λ). At each step check whether
n∑

i=1

xi ≤ 1 and
n+1∑

i=1

xi > 1. If so, then the first Poisson sample is y = n.

(v) Simulation from Cauchy Distribution

The p.d.f of Cauchy (x0, γ) distribution is given by

f(x) =
1

πγ

[

1 +
(
x−x0

γ

)2] , −∞ < x <∞

and the corresponding c.d.f is

F (x) =
1

π
arctan

(
x− x0
γ

)

+
1

2

Let r be a random fraction.

Then by using the relation

F (x) = r

or x = F−1(r)



10.3 Generation of Random Numbers from Various Distributions 249

we can generate a sample from Cauchy distribution as

x = x0 + γ tan

[

π

(

r − 1

2

)]

when the values of the parameters x0 and γ are given.

(vi) Simulation from Gamma Distribution

Simulation from Gamma distribution G(α, n) is as follows where n is an in-
teger. When n is not an integer we follow “rejection sampling”.

We know that if X1, X2, . . . , Xn are independent and identically distributed
(iid) as exp(α), then Y = X1+X2+. . .+Xn ∼ Gamma(α, n). So to generate
the first sample from Gamma, we generate n samples from exp(α). Hence,
y = x1 + x2 + . . .+ xn will be the first sample generated from G(α, n).

For R code of generation of random numbers from several
distributions see Chap. 11, p. 301.

(vii) Rejection Sampling

This method is used when it is difficult to generate sample from a distribution
with p.d.f f(x). Here we choose some enveloping distribution with p.d.f h(x)
such that h(x) has the same ranges as f(x) but from h(x) it is relatively easy
to simulate.

It is possible to choose h(x) to be roughly of similar shape as that of f(x)
and then to envelope f(x) by h(x) we would obtain the desired scatter of
points under f(x), first by obtaining a scatter of points under h(x) and then
rejecting just those which were under h(x) but not under f(x). While it is
often possible to choose an appropriate h(x) to be of similar shape to f(x), it
is clearly not possible to envelope f(x) by h(x) so that for all x, f(x) ≤ h(x)
since f(x) and h(x) are both density functions and

∫
f(x)dx =

∫
h(x)dx = 1.

This can be obtained by uniformly stretching the scatter of points under h(x)
in a direction at right angle to the x axis until h(x) ≥ f(x) for all x. This
is achieved by choosing a suitable scaler k > 1 and generating samples from
g(x) = kh(x). So having sample points from g(x) we will accept only those
which are under both f(x) and g(x) and reject those which are under g(x)
but not under f(x).
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Hence probability of rejection,

∫∞
∞

(g(x)− f(x))dx
∫∞
−∞ g(x)dx

=

∫∞
−∞{kh(x)− f(x)}dx
∫∞
−∞ kh(x)dx

= 1− 1

k

So the technique will be efficient when k is small enough in order to increase
the probability of acceptance.

Example 2: Write a program in C to generate a sample of size n (say) from
an exponential distribution, given the parameter λ.

Solution: # include < stdio.h >

# include < math.h >

# include < time.h >

# include < stdlib.h >

main ( )

{

int i, n;

float r,m[100], lambda;

printf (”Enter the parameter for the exponential distribution”);

scanf (”%”, & lambda);

printf (”Enter the sample size\n”);

scanf (”% d”, & n);

printf (”\n”);

printf (”The sample is :”)

randomize ( );

for (i = 0; i < n; i+ +)
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{

r = rand ( ) / (float) RAND MAX;

m[i] = −(1/lambda) ∗ log(1− r);

printf (”\n%f”,m[i]);

}

}

Example 3: Write a program in C to generate a sample of size n from a stan-
dard normal distribution using pointer, randomize function and Box Muller
transformation. Also compute the mean value for values greater than 2.5.

Solution:
# include < stdio.h >

# include < stdlib.h >

# include < math.h >

# include < time.h >

# include < malloc.h >

main ( )

{

int i, n;

long int s;

s = 15000;

float ∗x, r1, r2, sum, mean;

FILE ∗fp ;

x = (float*) malloc (s* size of (long int));
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fp = fopen (”normal2.dat”, ”w”);

printf (“\n Enter the sample size :”);

scanf (”%d”,&n);

randomize ( );

for (i = 0; i < n; i+ +)

{

r1 = rand ( ) / (float) RAND MAX;

r2 = rand ( ) / (float) RAND MAX;

x[i] = sqrt(- 2 * log r1) ∗ cos(2 ∗ 4 ∗ (atan(1)) ∗ r2;

fprintf (fp, ”f\n”, x[i]);

printf (”%f\n”, x[i]);

}

sum = 0;

for (i = 0; i < n; i+ +)

{

if (x[i] > 2.5)

sum = sum + x[i];

}

mean = sum / n;
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fprintf (fp, “Value of mean = % f”, mean);

f close (fp);

}

Example 4: Write a program in C to generate a sample of size m from a
Binomial distribution, given the values of the parameters n and p.

Solution:
# include < stdio.h >

# include < math.h >

# include < stdlib.h >

# include < time.h >

main ( )

{

int i, n,m, j, x;

float r, p;

printf (”Enter the parameters for Binomial distribution : ”);

scanf (”%d%f”,&n,&p);

printf (”\n Enter the sample size :”);

scanf (”%d”,&m);

printf (”The sample generated of size n is :”);

randomize ( );

for (i = 0; i < m; i+ +)

{
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x = 0;

for (j = 0; j < n; j + +)

{

r = rand ( ) / (float) RAND MAX;

if (r <= p)

x = x+ 1;

}

print f(”\n%d”, x);

}

}

Example 5: Write a program in C to generate a sample from a Poisson
distribution, given the parameter λ.

Solution:
# include < stdio.h >

# include < math.h >

# include < stdlib.h >

# include < time.h >

main ( )

{

int i, n, c;

float r,m, s, lambda;

printf (”Enter the parameter for Poisson distribution : \n”);
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scanf (”% f”, & lambda);

printf (”Enter the sample size : \n”);

scanf (”%d”,&n);

randomize ( );

for (i = 0; i < n; i+ +)

{

s = 0;

c = 0;

while (s <= 1)

{

r = rand ( ) / (float) RAND MAX;

m = - (1 / lambda) * log(1− r);

s = s+m

c = c+ 1;

}

printf (”\n%d”, c− 1);

}

}

Example 6: Generate a sample from half normal distribution with p.d.f,

f(x) =
√

2
πe

−x2/2, 0 ≤ x <∞ using rejection sampling.
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Solution: We choose h(x) = e−x, x ≥ 0 so that g(x) = ke−x, x ≥ 0. One
way of choosing k is to consider condition for equal roots arising from the

equation, ke−x =
√

2
π e

−x2/2.

If the equation has no real roots, then k is very large, if the equation has
two distinct roots, then k is too small. If roots are equal, k has the smallest
possible values, where the two curves touch each other. Taking logarithm of
the above equation,

x2 − 2x+ 2 loge(k
√
π/2) = 0

It has two equal roots iff 4 = 8 loge(k
√
π/2) i.e. k = 2e

π .

Algorithm:

1. Simulate x, from e−x, i.e. x = − ln(r1) where r1 is a random fraction.

2. Compute f(x)) and g(x).

3. Take another random fraction r2 independent of r1.

4. Accept x if r2 <
f(x)
g(x) and reject otherwise and go to step 1 for a new

sample x.

10.4 Monte Carlo Method

Monte Carlo method consists of a system of computational algorithms through
repeated random sampling to compute any specific problem. These are widely
used in physical and mathematical systems, e.g. calculation of risk in business
or evaluating the multidimensional integrals which is otherwise not possible
by any deterministic way. Two major classes of numerical problems that arise
in statistical inference are optimization and integration. Suppose we have to
estimate

Ef [h(x)] =

∫
h(x)f(x)dx (10.7)

We can estimate it by using a sample generated from the density function
f(x). Let x1, x2, . . . , xm be the points. Then we can approximate (10.7) by
the empirical average as

hm =
1

m

m∑

j=1

h(xj)

since hm converges almost surely to Ef [h(x)] by the strong law of large num-
ber (SLLN). Again when h2 has a finite expectation under f , the speed of
convergence of hm can be assessed since the variance

vm =
1

m2

m∑

j=1

[
h(xj)− hm

]2



10.4 Monte Carlo Method 257

For large m,
hm−Ef [h(x)]√

vm
follows N(0, 1), by Central Limit Theorem which

gives convergence test and confidence bound on the approximation ofEf [h(x)]

Estimating by Monte Carlo Simulation is not unique.

Suppose we are to estimate p =
∫∞
2

1
π(1+x2)dx.

Then by definition (13.7) the above integral can be written as p =∫∞
−∞ I(x>2)

1
π(1+x2)dx where I(x>2) = 1 if x > 2 and = 0 otherwise. If

h(x) = I(x>2) and f(x) = 1
π(1+x2) ,−∞ < x < ∞ is the Cauchy p.d.f.,

then by (10.7) the estimator of p is p̂1 (say) and is given by

p̂1 =
1

m
[Number of xj > 2] =

m∑

j=1

Ixj>2

m

of an independent and identically distributed (iid) sample x1, x2,

. . . , xm ∼ Cauchy(0, 1). The variance of the estimator is v(p̂1) = mp(1−p)
m2 =

p(1−p)
m .

So, for, p = 0.15, v(p̂1) = 0.127/m.

Since Cauchy distribution is symmetric,

p =

∫ −2

−∞

1

π(1 + x2)
dx

so, 2p =

∫ −2

−∞

dx

π(1 + x2)
+

∫ ∞

2

dx

π(1 + x2)

so, p =
1

2

[∫ −2

−∞

dx

π(1 + x2)
+

∫ ∞

2

dx

π(1 + x2)

]

So, the estimator from this expression p̂2 (say) is given as, p̂2 =

1
2

⎡

⎣ 1
m

m∑

j=1

I|xj |>2

⎤

⎦

So, var(p̂2) =
p(1− 2p)

2m
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This is as follows:
p = P [Xj > 2]

Also, p = P [Xj < −2]

P [|Xj| > 2] = 1− p[|Xj | < 2]

= 1− p[−2 < Xj < 2]

= 1− (1− 2p)

= 2p

var(p̂2) = m
2p(1− 2p)

(2m)2
=
p(1− 2p)

2m

So, for p = .15, var(p̂2) = 0.052/m, i.e. the variance is reduced, so var(p̂2) is
a better estimate than var(p̂1) due to generation of values outside the domain
of interest [2,∞].

10.5 Importance Sampling

Let us use Monte Carlo method in evaluating
∫ 1

0
g(x)dx for the function g(x)

as shown in Fig. 10.2. We find that g(x) = 0 for x < 0 and x > 1.

Figure 10.2 Monte Carlo method applied to two different functions
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Figure 10.3 Importance sampling

Let us have the density function f(x) as U(0, 1). Then we have
∫ 1

0 g(x)dx =
∫ 1

0 g(x).1dx following (10.7) where h(x) = g(x) and f(x) = 1, x ← [0, 1].

Then value of the integral is

1∑

i=0

g(xi) where xi’s are generated from the

uniform distribution over [0, 1]. So
∫ 1

0
g(x)dx = EU [g(x)] reasonably works

well. Now instead of U [0, 1] if we use U [0, 5] in place of f(x), then f(x) =

1
5 , x ∈ [0, 5]. and,

∫ 1

0
g(x)dx = 5

∫ 1

0
g(x). 15dx = 5

∫ 1

0
g(x)f(x)dx = 5

n

n∑

i=1

g(xi)

and it will make no sense as, on average 80 % of the random points will
lie in 1 < xi < 5 for which g(xi) = 0. So it is clear that one’s choice of
distribution from which to draw the random sample will affect the quality of
their Monte Carlo estimator. Here comes the idea of “importance sampling”.
The objective in importance sampling is to concentrate the distribution of
sample points in that parts of the interval that are of “most importance”
instead of spreading out evenly, mathematically

Ef [h(x)] =

∫
h(x)f(x)dx can be written as,

=

∫
h(x)

f(x)

g(x)
g(x)dx

so that the random sample is now drawn from the new density function g(x)
which covers completely the interval of X of interest (Fig. 10.3). g(x) is called
the instrumental density function.

so, hn =
1

n

∑

j=1

h(xj)
f(xj)

g(xj)

Importance sampling is of considerable interest since it puts very little re-
striction on the choice of the instrumental distribution g(x), which can be
chosen from the distributions that are easy to simulate. Moreover the same
sample, generated from g(x), can be used repeatedly not only for different
functions h(x) but also for densities f(x). Here also, hn converges completely
to Ef [h(x)].
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Example 7: Suppose we want to estimate
∫ t
−∞ φ(x)dx = Φ(t),

where, φ(x) =
1√
2π
e−x

2/2,−∞ < x <∞.

In normal situation the above integral can be written as

∫
I(x)φ(x)dx where I(x) = 1 if x ≤ t and = 0 otherwise

Then following (10.7), h(x) = I(x) and f(x) = φ(x).

So, by Monte Carlo method, the estimated value of Φ(t) is

Φ̂(t) =
1

n

n∑

i=1

I(xi ≤ t)

=
(number of xi ≤ t)

n
=
N(xi)

n
(say)

with estimated variance [Φ̂(t)(1− Φ̂(t)]/n.

The above method breaks down if t is very small or large say −4.5 or 4.5.
Then,

P [t > 4.5] = 1
n

∑

i=1

n

Iti>4.5 and for, n = 10,000 the above summation

produces usually zero.

If we use importance sampling with choice of g(x) as

g(x) = e−(x−4.5)

which is an exponential p.d.f truncated at 4.5 with scale 1, then

P (t > 4.5) =

∫ ∞

4.5

φ(x)dx =

∫ ∞

−∞
I(x > 4.5)

φ(x)

g(x)
.g(x)dx

where, I(x > 4.5) = 1 for x > 4.5

= 0 otherwise
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Then, by (10.7), h(x) = I(x > 4.5)φ(x)g(x) and f(x) = g(x).

So, P (t > 4.5) � 1

n

n∑

i=1

I(xi > 4.5)
φ(xi)

g(xi)

= 0.000003377

An alternative estimator (which is slightly biased) is

∑n
i=1 h(xi)

f(xi)
g(xi)

∑n
i=1

f(xi)
g(xi)

which is better since the variance is reduced.

Example 8: Run an experiment to estimate the variance of the estimator
of P [t > 4.5] to some accuracy obtained from an importance sampler using
the instrument p.d.f as exp(1) left truncated at 4.5.

10.6 Markov Chain Monte Carlo (MCMC)

It is not always necessary to simulate directly a sample from the distribu-
tion f(x) to approximate the integral I =

∫
h(x)f(x)dx, since the other

approaches like importance sampling can be used. Here we shall show that it
is possible to obtain a sample x1, x2, . . . , xn approximately distributed from
f(s) without directly simulating form f(x). Here we use an ergodic Markov
Chain with stationary distribution f(x).

A MCMC method for the simulation of a distribution f(x) is any method
producing an ergodic Markov Chain (X(t)) whose stationary distribution
is f(x).

10.7 Metropolis–Hastings Method

Let P = {pij} be the transition matrix of an irreducible Markov Chain with
states 0, 1 . . . s. Then if X(t) denotes the state occupied by the process at
time t, then

P{X(t+ 1) = j|X(t) = i} = pij

If π = (π0, π1, . . . , πs) be a probability distribution with πi > 0 for all i and if
h(·) is a function defined on the states and we wish to estimate I = Eπ(h) =
S∑

i=0

h(i)πi.

we proceed as follows.



262 10 Monte Carlo Simulation

In order to use this algorithm for a given distribution π = (π0, π1, . . . , πs)
we must construct a Markov Chain with π as its stationary (or target)
distribution.

Here, πipij = πjpji for all i and j and this implies
∑

i

πipij = πj for all j.

Proof: Here we assume that pij has the form

pij = qijαij(i �= j)

with, pn = 1−
∑

i�=j
pij

where Q = {qij} is the transition matrix of an arbitrary Markov Chain on
the states 0, 1, . . . , s and αij is given by

αij =
sij

1 + πi

πj

qij
qji

where sij is a symmetric function of i and j chosen so that 0 ≤ αij ≤ 1 for
all i and j. Q is called the instrumental or proposal distribution. With this
form for pij .

πipij = πiqij
sij

1 + πi

πj

qij
qji

= πiqij
sij[

πjqji+πiqij
πjqji

]

= πiqijsij × πjqji
(πjqji + πiqij)

=
πiπjqijqjisij
πjqji + πiqij

Similarly, πjpji =
πiπjqijqjisij
πiqij+πjqji

, so, πipij = πjpji.

Simulation Process:

Let us assume that (1) X(t) = i and select a state j using the distribution
given by the ith row of Q.

(2) X(t+ 1) = j with probability αij

= i with probability 1− αij
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Simple choice of sij is given by

sij
(M) =

⎧
⎨

⎩

1 +
πiqij
πjqji

(if
πjqji
πiqij

≥ 1)

1 +
πjqji
πiqij

(if
πjqji
πiqij

< 1)

With sij = sij
(M) we have Metropolis method and with sij = sij

(B) we have
Baker’s method. So we have

αij
(M) =

⎧
⎨

⎩

1 if
πjqji
πiqij

≥ 1

(πjqji)/(πiqij) if
πjqji
πiqij

< 1

Thus i/πi = πj , we take X(t + 1) = j with probability 1 for Metropolis
method.

The corresponding algorithm for probability density
function can be restated as follows:

A Metropolis–Hastings algorithm (MH) starts with the objective (target)
density of f . A conditional density q(y/x) is then chosen. The MH algorithm
can be implemented in practice when q(·/x) is easy to simulate from and is
either explicitly available (up to a multiplicative constant independent of x)
or symmetric, i.e. such that q(x/y) = q(y/x). The target density f must be
available to some extent. A general requirement is that the ratio f(y)/q(y/x)
is known up to a constant independent of x.

The MH algorithm associated with the target density f and the conditional or
proposal or instrumental density q produces a Markov Chain (X(t)) through
the following transition.

1. Given x(t)

2. Generate yt ∼ q(y/x(t))

3. Choose x(t+1) =

⎧
⎨

⎩

yt with probability ρ(x(t), yt)

xt with probability 1− ρ(x(t), yt)

where ρ(x, y) = min
{
f(y)
f(x) .

q(x/y)
q(y/x) , 1

}

The probability ρ(x, y) is called the MH acceptance probability.

Example 9: Write a programme in C to perform a MH algorithm using

the target distribution as, πi = e−λλi

i! (i = 0, 1, . . . ,∞) taking qij = 1/2(j =
i− 1, i+ 1, i �= 0), q00 = q01 = 1/2.
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Solution: Here, πi+1/πi = λ
(i+1) ,

πi−1

πi
= i/λ, i �= 0.

(a) Program using factorial (restricted for i = 15)

# include < stdio.h >

# include < math.h >

# include < stdlib.h >

# include < time.h >

long int fact (long int n);

main ( )

{

float pi1, pi2, pit, pitp1, pif, lamda, r1, r2, alpa, r3, s;

long int i, j;

lamda = 2;

randomize ( );

i = 1;

j = 1;

pit = exp(−lamda);

s1 : if(j = 0)

{

pi1 = exp(- lamda)*pow(lamda, j) / fact(j);

pi2 = exp(- lamda)*pow(lamda, j + 1) / fact(j + 1);

}
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else

{

pi2 = exp(- lamda)*pow(lamda, j + 1) / fact(j + 1);

pi1 = exp(- lamda)*pow(lamda, j − 1) / fact(j − 1);

}

r1 = rand( ) / (float)RAND MAX ;

if (r1 <= 0.5)

{

pitp1 = pi1;

j = j + 1;

s = j − 1;

}

else

{

pitp1 = pi2;

if (j == 0)

goto s5;

else

j = j − 1;

s5 : s = j + 1;
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}

r2 = pitp1 / pit;

if (r2 >= 1)

{

alpa = 1;

}

else

{

pif = pit;

j = s;

}

printf(”value = % ld \n”, j);

pit = pif;

i = i+ 1;

if (i <= 10)

goto s1;

}

longint fact (long int n)

{

float c = 1;

long int i;
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if (n == 0)

goto s4;

else

{

for(i = 1; i <= n; i+ +)

c = i ∗ c;

}

}

s4: return(c);

}

(b) Program without using factorial (generalized)

# include < stdio.h >

# include < math.h >

# include < stdlib.h >

# include < time.h >

main ( )

{

float r1, r2, r3, alpa, lamda;

int i, j, s, j1;

i = 1;
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j = 3;

lambda = 3;

randomize ( );

while (i <= 100)

{

r1 = rand ( ) / (float) RAND MAX;

if (r1 <= 0.5)

{

if (j == 0)

s = j;

else

s = j − 1;

}

else

s = j + 1;

if (s == j + 1)

{

alpa = lamda / s;

if (alpa > = 1)

j1 = s;

else
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{

r2 = rand ( ) / (float) RAND MAX;

if (r2 < = alpa)

j1 = s;

else

j1 = j;

}

}

else

{

alpa = s / lamda;

if (alpa > = 1)

j1 = s;

else

{

r3 = rand ( ) / (float) RAND MAX;

if (r3 < = alpa)

j1 = s;

else

j1 = j;
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}

}

print f (“value = %d\n′′, j1);

j = j1;

i = i+ 1;

}

}

Monte Carlo Method for evaluating double and multiple integral

Suppose we are to integrate I =
∫ b1
a1

∫ b2
a2
. . .
∫ bn
an
f(x1, x2, . . . , xn)dV where

dV = dx1dx2 . . . dxn. Then,

I ≈ V < f > ±V
√
< f2 > − < f >2

N

where < f >= 1
N

N∑

i=1

f(x1i, x2i, . . . , xni)

and (x1i, x2i, . . . , xni), i = 1, 2, . . . , N are the N , n-dimensional points uni-
formly distributed over the multidimensional volume V = (b1 − a1)

(b2 − a2) . . . (bn − an) and, < f2 >= 1
N

N∑

i=1

f2(x1i, x2i, . . . , xni).

Ex. Evaluate
∫ 2

x=1

∫ 4

y=3
x2y3dxdy using Monte Carlo Method.

# include < stdio.h >

# include < math.h >

# include < stdlib.h >

# include < time.h >

main ( )



10.7 Metropolis–Hastings Method 271

double x, y, x1, y1, sum, vol

int n

vol = (2 - 1) * (4 - 3);

sum = 0;

for (i = 0; i < 1000; i+ +)

{

x1 = rand ( ) / (float) RAND MAX;

y1 = rand ( ) / (float) RAND MAX;

x = 1 + (2− 1) ∗ x1;

y = 3 + (4− 3) ∗ y1;

sum = sum + (x ∗ x) ∗ (y ∗ y ∗ y),

}

sum = vol * sum / 1000;

printf (”The value of the integral = %d”, sum);

}

When the region of integration is not easy to sample randomly

Suppose we are to evaluate I =
∫
w f(x, y, z)dxdz where the region of inte-

gration is the intersection of a torus with the edge of a large box (Fig. 10.4).
Then W can be represented by

z2 + (
√
x2 + y2 − 3)2 ≤ 1

x ≥ 1, y ≥ −3

Then we enclose the torus by a volume of a rectangular box, 1 ≤ x ≤ 4,−3 ≤
y ≤ 4,−1 ≤ z ≤ 1.
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Figure 10.4 Evaluation of double integral by Monte Carlo method

Then V = (4 − 1) ∗ (4 + 3) ∗ (1 + 1) is the volume of the box. Now we
are to choose N random points (xi, yi, zi), i = 1, 2, . . . , N from the vol-
ume V so that they fall within the region W. Then value of the integral

I ∼= V. 1N

N∑

i=1

f(xi, yi, zi) =< f > and the corresponding error is = ±V
√

<f2>−<f>2

N where < f2 >= 1
N

∑
[f(xi, yi, zi)]

2.

Computer Program: f(x, y) =
√
x2 + y2 + z2 (say)

# include < stdio.h >

# include < math.h >

# include < stdlib.h >

# include < time.h >

main ( )

{

double x, y, z, x1, y1, z1, sum, var, vol, sum1;

int i, n;
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sum = 0;

var = 0;

vol = (4 - 1) * (4 + 3) * (1 + 1);

scanf (”% d”, & n);

for (i = 0; i < n; i+ +)

{

x1 = rand ( ) / (float) RAND MAX;

y1 = rand ( ) / (float) RAND MAX;

z1 = rand ( ) / (float) RAND MAX;

x = 1 + 3 ∗ x1;

y = −3 + 7 ∗ y1;

z = −1 + 2 ∗ z1;

if (z ∗ z + pow(sqrt(x ∗ x+ y ∗ y)− 3.0, 2) < 1.0)

{

sum = sum + sqrt(x ∗ x+ y ∗ y + z ∗ z);

var = var + (x ∗ x+ y ∗ y + z ∗ z);

}

}

sum1 = vol * sum / n;

var = vol * sqrt((var / n - (sum / n) * (sum / n)) / n);
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printf(”The value of integral = %d\, ”, sum1);

printf(”The value of error = %d”, var);

}

Exercise

1. Write a C program to generate 100 random samples from two Gaussian
distributions with means and standard deviations (5, 10) and (6, 10),
respectively, using pointer variables and draw histograms using 20 bins
with fitted curves. Hence compute the means and standard deviations of
the generated samples.

2. Write a program to generate 100 random samples from a standard normal,
exponential and uniform distributions, respectively, using pointer variables
and draw the histograms with fitted curves.

3. Using Metropolis–Hastings algorithm draw the histogram of the sample
generated when the target density is standard normal and proposed den-
sity is exponential. Sample size is 1,000. Number of bins is 100.

4. Do a Monte Carlo simulation to evaluate the integral I =
∫ 1

0
ex−1
e−1 dx where

x is the value of a random variable following uniform distribution. Find
an estimate of the standard error of the integral taking 100 and 16 points,
respectively.

5. Do a Monte Carlo simulation taking sample size 500 to estimate the first
and second moments of the distribution with the probability density func-

tion f(x) = 1√
2πσ

e−
(x−μ)2

2σ2 − ∞ < x < ∞ where μ = 5 and σ = 10.

Compare with the original values and find the errors.

6. Do a Monte Carlo simulation taking sample size 500 to estimate the first
and second moments of the distribution with probability density function,

f(x) = λe−λx, x ≥ 0

= 0, x < 0, λ = 5

Compare with the original values and find the errors.

7. Generate 100 samples from a power law distribution whose pdf is f(x) =
Ax−α, a ≤ x ≤ b where a = 0.01 and b = 100. A is a constant to be
determined from the normalization condition of the pdf.
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Chapter - 11

Use of Softwares

11.1 Introduction

With the advent of large telescopes ample virtual databases have come into
the field with a great challenge of its proper usage, preservation and inter-
pretation. For the past century, the discipline of statistics has primarily
focused on the analysis of date from different areas such as biology, medical
science, social science and engineering. Recently considerable advances have
been made in the application of statistical analysis to fields in the physical
sciences, e.g. geology. Astronomers and astrophysicists have also sought to
understand astronomical data using statistical techniques and a new field
“Astrostatistics” has been emerged during the last few decades. But much
of these analyses have been at a rather elementary level. The majority of
the astronomers have not kept up with the most recent advancement in sta-
tistical modelling and have therefore not been able to take advantage of the
insights afforded by using these sophisticated statistical techniques to the
huge database already existing in various data archives. These are various
software packages to meet up the above requirements for astrophysicists but
a proper training is necessary for using these softwares. Among the vari-
ous softwares some are priced but some are command based and are freely
available in the Internet.

In the present chapter some preliminary descriptions are given on these
freely available softwares for the beginners. The main software to be discussed
is “R”. “R” is suitable for handling large data sets and also for graphical rep-
resentation and the precious thing for “R” is that every time new statistical
techniques are being uploaded by several authors which can be at once used
for multipurpose applications.

11.2 Preliminaries on R

Initially scientists like Rick Beeker, John Chambers and Allan Wilks of Bell
Laboratory developed a language known as S language and the software re-
lated to it is S-Plus. Then some of the scientists carried over some changes

© Springer Science+Business Media New York 2014
A.K. Chattopadhyay, T. Chattopadhyay, Statistical Methods
for Astronomical Data Analysis, Springer Series in Astrostatistics 3,
DOI 10.1007/978-1-4939-1507-1 11
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over “S” and claimed that the language is superior to S-Plus in computational
speed and hence gave the name “R” (a letter appearing before S in the al-
phabetical list).

11.3 Advantages of R Programming

“R” has the following facilities for data manipulation, calculation and graph-
ical display.

(1) It has effective data handling and storage facility.

(2) It is suitable for calculation on arrays in particular matrices.

(3) It includes conditional loops, user defined recursive functions and I/O
facilities.

(4) Give minimal output and store results in a fit object for subsequent
use by further R functions.

How to Get “R” Under “Windows” Operating System

R-software is freely available at http://www.r-project.org/. The users
may try themselves, but beginners may get confused to choose proper working
file or even after downloading he/she may not get the actual executing file for
installation. So in order to face no disturbances beginners are recommended
to follow the download instructions below.

1. Click http://www.r-project.org/.
Then a window describing the introduction of R appears. On the left
side several downloading options appear.

2. Download CRAN

3. A CRAN mirror window appears where a comprehensive R-archive
network is available at the listed address.

4. Choose a location nearest to you.

5. Click on the address given below that country.

6. Three versions of R, namely Linux, Mackintosh, Windows are avail-
able. Click on Download R for Windows.

7. Click on base system among base contributory and R tools.

8. Click on the executing file and ask for downloading.

9. Click on for Download R2.15.1 for Windows at the top. It is to
be noted that every time “R” is going under improvement. So user
has suggested to download the latest version available on site.

10. Double click on R2.15.1 for installation and clicking Next → Next
→ etc. responding to subsequent instructions.

http://www.r-project.org/
http://www.r-project.org/
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11.4 How to Get R Under Ubuntu Operating System

The following steps should be followed for installing “R”.

(1) Open the terminal.

(2) Type: sudo apt-get install r-base.

(3) Type: password.

(4) Follow the commands subsequently.

11.5 Basic Operations

11.5.1 Computation

R can be used as an ordinary calculator.

Examples:

(i) > 2 + (7 ∗ 5) / (4 - 9) # Use of brackets is preferred.

> log (10) # Natural logarithm.

> log 10 (432) # Logarithm with base 10.

> 4 ∧ 2 # 4 raised to power 2.

> 3 / 2 # division.

> sqrt(16) # square root.

> abs (3 - 7) # Absolute value of 3 - 7.

> pi # π

> exp (2) # e2

> 15% / %4 # integer division of 15 / 4.

> # # A command line.

> x← 5 + log(10) # a variable x, given the value
5 + log(10).

> floor (x) # largest integer ≤ x.

> ceiling (x) # smallest integer ≥ x.

> x← 3 + 2i # x is a complex number.

> Re(x) # gives real part of x.
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> Im(x) # gives imaginary part of x.

> y ← −1 + 1i

> x+ y # gives 2 + 3i.

> x ∗ y # gives −5 + 1i.

11.5.2 Vector Operations

Vectors in R can be created by the concatenated function, c, which combines
all values given as arguments to the function into a vector.

> x← c(1, 4, 2, 7); # creates a vector x with 4 components
1, 4, 2, 7.

> x

> length (x) # gives length of x as 4.

> y ← c(1 : 4) # Creates a vector y with consecutive
integers 1, 2, 3, 4.

> x+ y # gives addition of vectors x and y.
Here, (2, 6, 5, 11).

> y ∧ 2 # raises each component of y to power 2.
Here, (1, 4, 9, 16).

> 2 ∧ y # raises 2 to powers of y.
Here, (2, 4, 8, 16).

> x[2 : 4] # Make a subset from 2nd to 4th
element of x.

> x[−c(2, 7)] # All elements of x except 2, 7.
Here, (1, 4).

> x[x > 3] # All elements of x greater than 3.
Here, (4, 7).
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> colour ← c
(“green”, “blue”,

# Defines a character vector of three colours.
“ ” denotes a string.

“orange”)

> x colour ← c(x,
colour);

# The vector is a character vector with strings
“1”, “2”, “7” for “green”, “blue”, “orange”.

11.5.3 Matrix Operations

A matrix of objects can be created in “R” using “matrix” function. The
general syntax is matrix (data, nrow, ncol, byrow = T). The last argument
specifies that the matrix is to be filled by “row by row” or “column by col-
umn”, with the latter being the default.

Example:

> m1← matrix (c(1, 4, 7, 5,−1, 1, 3, 9), ncol = 3, byrow = T);

> m1.

The output is:

[, 1] [, 2] [, 3]

[1, ] 1 4 7

[2, ] 5 −1 1

[3, ] 1 3 9

Again a matrix can be created by combining vectors of equal length and using
the function c bind ( ), meaning “column bind”.

Let > x← c(1, 3, 2, 10, 5)
y ← c(1, 2, 3, 7, 9)

be two vectors of same length. Then,

> m2← cbind(x, y);

m2
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Output:

x y

[1, ] 1 1

[2, ] 3 2

[3, ] 2 3

[4, ] 10 7

[5, ] 5 9

Transpose of the matrix m2

> t(m2)

Output:

[, 1] [, 2] [, 3] [, 4] [, 5]

x 1 3 2 10 5

y 1 2 3 7 9

Dimension of the matrix m2

> dim (m2) # Gives 5 2

A matrix can also be created by using the function “rbind” meaning “row-
bind”.

Example:

> m3← rbind (x, y);

m3

Output:

[, 1] [, 2] [, 3] [, 4] [, 5]

x 1 3 2 10 5

y 1 2 3 7 9
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To Extract a Particular Element/Particular Row/Particular
Column

> m1[2, 3] # Gives element at 2nd row, 3rd column. Here
it is ‘1’.

> m1[2, ] # Gives entire 2nd row. Here it is 5 -1 1

> m1[, 3] # Gives entire 3rd column. Here it is 7 1 9

> m1[c(−1), c(−1)] # Gives a sub matrix removing first row and
first column.
Here it is

[, 1] [, 2]

[1, ] −1 1

[2, ] 3 9

Arithmetic Operations with Matrix

> 2 ∗m1 # Scalar multiplication by 2.

> m1 +m2 # matrix addition of same orders.

> m1 ∗m2 # multiplication of two matrices of same order
component wise.

> sqrt (m1) # Constitute a matrix whose elements are
square roots of elements of original matrix m1.

> m1% ∗%m2 # Gives usual matrix multiplication of two
matrices of order m× n and n× p.

> solve (m1) # Gives inverse of m1 which is a square matrix.

Inverse of Any Matrix

For generalized inverse of any matrix (square or non square), one should
include MASS package prior to writing “ginv” function as follows.

> library (MASS)
> ginv (m1) # Gives generalized inverse of m1.
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Example:

> m1← matrix (c(1, 3, 5, 2,−1, 2, 3, 3, 9),
ncol = 3, byrow = T);
> m1
> m4← m1[−1]; # Gives m1, without first row.

> m4 # Gives
[, 1] [, 2] [, 3]

[1, ] 2 −1 2
[2, ] 3 3 9

> library (MASS)
> ginv (m4)

Output:

[, 1] [, 2]

[1, ] −0.30 −0.03333333

[2, ] −0.36 0.10666667

[3, ] 0.02 0.08666667

Eigen Values and Eigen Vectors of a Matrix

> eigen (m1) # Gives eigen values of the matrix m1.
$ values Here it is 11.4082607 −2.6097848 0.2015242

> eigen (m1) # Gives a matrix whose columns are eigen vectors of
$ vectors matrix m1. Here it is

[, 1] [, 2] [, 3]

[1, ] −0.4724087 0.59234748 −0.7401019

[2, ] −0.2139582 −0.80382721 −0.5179304

[3, ] −0.8550157 0.05464694 0.4289490
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Note: To use any R function which is not in the library the following steps
should be carried out under windows operating system.

1. Press “Package” option at top and press “install package”.

2. A “CRAN” mirror will appear. From that select any country name.

3. A list of functions will appear and select the required function and
press “ok”.

4. In the “R Console” it is shown that “package successfully unpacked
and MDS sum checked”. Then press “Packages” and “Load package”.

5. The list of functions with the new function will be shown. Select the
required one and press “ok”.

The corresponding command in Linux is
install.packages (“package name”) # should be typed in R Console.
R Site Search (“∗ ∗ ∗”) # For searching for any program.

11.5.4 Graphics in “R”

R has extensive graphical facilities for constructing a variety of plots and
diagrams from very simple to complex one. The simplest is the “plot”
function.

Example:

plot (height, weight) # scatter plot of height along x axis and
weight along y axis. Fig. (11.1)

text (height, weight,
labels = as.character

# to add text as male or female on the above
plot. Fig. (11.2) # read file x as height, weight

(x $ sex)) and sex

The effect of different options in plotting parameters are shown in Tables 11.1
and 11.2, respectively.

Multiple Graphs

The plotting area can be divided to incorporate graphs in panel by using
“par” function.

Example: To incorporate four graphs, scatter plot, histogram, sine function
and another function (Fig. 11.3).
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Table 11.1 Various options for “plot” function

Parameter Purpose
type = “p” / “l” / “b” / Points / lines / both / vertical
“h” / “s” / “n” bars / steps / nothing

axis = T / F With / Without axis

main = “. . . ” Main title

sub = “. . . ” Subtitle

x lab = “. . . ” Label for x-axis

y lab = “. . . ” Label for y-axis

x lim, y lim = c (min, max) x/y axis range

pch = 1 / 2 / 3 etc or Plot characters
pch = “+” / “·” etc

lty = 1 / 2 / 3 etc. Line style

col = 1 / 2 / 3 etc. Colour option, by default 1 for black.

lwd = 1 / 2 / 3 etc. Line width (1 for default)

> par (mf row = c(2, 2)) # Splits the area into 2 by 2 rows and
columns

> var1 < − c(2,5,7,9,2,1,1,4,3,11)

> var2 < − c(5,7,8,2,4,6,6,3,2,1)

> plot (var1, var2, # Scatter plot of var1 and var2 with
main =“Scatter Plot”) legend “Scatter plot” in (1, 1) panel.

> hist (rnorm (1000, 0, 1), # Draw histogram of 1000 random
main = “Histogram of number drawn from N(0, 1) with a
rnorm (1000, 0, 1)) legend in panel(1, 2)

> plot (sin, - pi, 2 ∗ pi, # Plot of sin function in the range
main = “sine function”) (−π, 2π) with a legend in panel (2, 1)

> plot (var1 + var2, # Plot of var1 + var2 in panel (2, 2)
main = “plot of var1 + var2”)
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Table 11.2 Addition to existing graph

Function Description
points (x, y) Points at co-ordinates x and y

text (x, y, text) Texts at specified co-ordinates

lines (x, y) Lines to connect the points given by
x and y

abline (a, b) Line with intercept a and slope b

abline (h = 10) Horizontal line at height y = 10

abline (v = 10) Vertical line at distance x = 10

legend (x, y, c (“var1”, “var2”, To put legend at co-ordinates (x, y)
“varN”), lty = 1 : N, col = 1 : N)

legend (locator(1), c(“var1”, . . . , To put legend at any convenient place
“varN”), lty = 1 : N, col = 1 : N)

title (“title”, “subtitle”) To write title at top of figure

Scatter plot
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To Plot with Error Bars

x← c (1, 2, 3, 4, 5, 6, 7) # values of x

y ← c(10, 50, 120, 134, 145, 160, 199) # values of y

errors ← c(0.6324555, 3.6523965, # values of errors of y
7.7097341,11.5991379, 13.0713427,
14.6853669, 14.8842198)

Plot (x, y, type = “b”, pch = 16, lty = 3,
ylim = c(0, 200), ylab = “label y”, xlab
“label of x”, main = “Title of graph”)

len = 0.07 # horizontal length of error
bar

for (i in 1 : 7)

{

arrows (x[i], y[i], x[i], y[i] + errors[i],
angle = 90, length = len)

arrows (x[i], y[i], x[i], y[i] - errors[i],
angle = 90, length = len)

}
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Figure 11.4 Graph with error bars in y values
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Drawing of Pie Chart and Bar Chart

> pie (c(32, 87, 65, 29), labels = c (“india”, “America”, “England”, “China”),
density = 10, angle = 15 + 10 ∗ c(1 : 4), col = c(1 : 4))

# pie diagram of four countries with shading line having density 10 and
various angles and colours (Fig. 11.5).

> bar plot (c(235, 532, 789, 123), names.arg = c(“A”, “B”, “C”, “D”) ylim
= c(0, 800))

# bar diagram of four characters A, B, C, D and y axis has the range (0,
800). (Fig. 11.5 (bottom)).

India
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AB XY PQ JK

0
40

0
80

0

Figure 11.5 Pie chart and bar plot
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Drawing Pair Plot

data ← read.table (“C:\\Users\\Tanuka # Read the file UCD1.txt as
\\Desktop\\UCD1 \\.txt”, header =
TRUE)

matrix, data, with its headers.

x1 ← data [,1] # Defines variables, X1, Y1, Z1
y1 ← data [,2] as the first, 2nd and 3rd
z1 ← data [,3] columns of the matrix, data.

Pairs (cbind (x1, y1, z1), upper.panel # Draw the pair plots.
= NULL, pch = 42)

Figure 11.6 shows Matrix scatter plot for three variables x1, y1 and z1.
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Figure 11.6 Matrix scatter plot of each pair of three variables (say)
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For Different Colours

pairs (cbind (x1, y1, z1), upper.panel = NULL, pch = 42, col = (1 : 3))

For Only One Colour

pairs (cbind (x1, y1, z1), upper.panel = NULL, pch = 42, col = “green”)

To draw two scatter plots for the same horizontal axis and with
legend.

load the data of your choice and then follow the commands below (Fig. 11.7).

x1 ← data [,1]
y1 ← data [,2]
z1 ← data [,3]

plot (z1, x1, main = “log Rh - log sig - 0”, X lab = “Mk”, Y lab = “log sig
- 0”, col = “red”)

legend (- 15, 2.5, c (“log sig - 0 vs Mk”, “log Rh vs Mk”), lty = c (1, 1), lwd
= c (2.5, 2.5), col = c (“red”, “blue”))

par (new = TRUE)

plot (z1, y1, main = “log Rh - log sig - 0”, x lab = “MK”, y lab = “ ”, col
= “blue”)

11.6 Some Statistical Codes in R

(i) K-Means Cluster Analysis

data ← read.table (“path”, header = TRUE,
row.names = NULL)

data1 ← cbind (data $ param1, # Selects the columns with
data $ param2, data $ param3) param1, param2, param3

from the file data.
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Figure 11.7 Two scatter plots with the same horizontal axis

kmeans (data1, 3) # Do, k-means cluster analysis
assuming k = 3.

c1 ← kmeans (data1, 3)

c1 # Shows the numbers with
cluster membership 1/2/3 here.

plot (data [,1], data [,3], $ # plot the clusters with param1
col = c1 cluster) and param3 with respect to

cluster membership.

clus mem ← cbind (data1, # show the parameters with
c1 $ cluster) membership column.
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clus mem

t1 ← which (c1 $ cluster = = 1) # shows which members fall in
cluster1.

data.frame (t1) # put the membership in a
column.

data1 [which (c1 $ cluster = = 1),] # sort the group along with all
parameters with cluster number1.

(ii) Discriminant Analysis with Misclassification Table

Construct data1 as before.

c1 ← kmeans (data1, 3)

c1

clus mem ← cbind (data1,
c1$cluster)

clus mem

group ← c (rep (1, 47), rep (2, 210) # in k means groups are 1, 2, 3
rep(3, 132) with numbers of objects, say,

47, 210, 132, respectively.

library (MASS)

discr = lda (data1, group) $ perform discriminant analysis
with respect to the predefined
groups in k-means cluster analysis.

x ← predict (discr) $class # predict membership w.r.t
discriminant analysis.

tab = table (predict (discr) $ class) # show groups with membership of
the result of discriminant analysis.

tab1 = table (predict (discr) $ class,
group)

tab1 # gives misclassification table.
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rate = 1 - sum (diag (tab1)) /
sum(tab1)

rate # % of misclassified data.

data2 ← cbind (clus mem, x) # data with k-means cluster
member-ship and predicted
membership columns.

Tr.post ← predict (discr) $ posterior

Tr.post # gives posterior probabilities of
discriminated members.

data3 ← cbind (clus mem, x, Tr. post) # gives data, cluster membership,
predicted class and corresponding
probabilities.

data 3

To Sort File, Cluster Membership, Predicted Class
and Its Probability

max ← array (NA, c(389, 1)) # if the sample size is 389 (say)

for (i in 1 : 389)

{

max[i] ← max (Tr.post [i, 1],
Tr.post [i, 2], Tr.post[i, 3])

}

max

data4 ← cbind (clus mem,
Tr.ld1, max)

data4 # Gives data with cluster membership
& discriminated membership with its
probability.
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(iii) Principal Component Analysis (PCA)

Let us load the file under concern and name it as “data” as before. Then the
following commands are to be followed.

cor (data) # Gives correlation matrix of
data.

eigen (cor (data)) # Give eigen values and eigen
vectors of correlation matrix.

prcomp (data, cor = TRUE) # pca through correlation matrix.

summary (pc.cr ← prcomp # Gives cumulative variation.
(data, cor = TRUE)

pc.cr ← prcomp (data, cor = TRUE, # naming
scores = TRUE)

x ← pc.cr$rotation # Give loadings of the principal
components.

x

t ← pc.cr$scores # Give values of PCs for the
observations.

t

plot (t[,1], t[,2]) # Gives the plot of observations
for pc1 and pc2.

biplot (pc.cr) # Gives PC values as well as
loading (i.e. length of the
parameters)

Kolmogrov–Smirnov (KS) Test for Two Samples

Let us load two samples mag−K and mag−V (see Appendix). Then we are
to follow the command

ks.test(mag−K [,1],mag−V [,1],exact=TRUE)

Before this we are to load the function “stats” from library.
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Kruskal–Wallis Rank Sum Test for Two Samples

data ← read.table (“C:\\Users\\Tanuka # Read the file UCD1.txt as
\\Desktop\\UCD1 \\.txt”, header =
TRUE,

matrix, data, with its headers.

x1 ← data [,1] # Define variables, x1, y1
y1 ← data [,2] as the first and 2nd columns

kruskal.test(x1,y1) # performs the test

Output:
Kruskal–Wallis rank sum test
data: x1 and y1 Kruskal–Wallis
chi-squared = 384.6389, df = 347,
p-value = 0.07998

Wilcoxon Rank-Sum Test for Two Samples

data ← read.table (“C:\\Users\\Tanuka # Read the file UCD1.txt as
\\Desktop\\UCD1 \\.txt”, header =
TRUE,

matrix, data, with its headers.

x1 ← data [,1] # Define variables, x1, y1
y1 ← data [,2] as the first and 2nd columns
wilcox.test(x1, y1 = NULL, alternative # any one from “two.sided”,
= c(“two.sided”)) # “less” or “greater”

Output:
data: x1 V = 75855, p-value ¡ 2.2e-16
alternative hypothesis: true location is
not equal to 0

Test for Gaussianity for One Parameter

Load any data file, mag−K (say). Then the following command should be
followed.

ks.test(mag−K [,1],“pnorm”,exact=TRUE)
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Test for Gaussianity in a Multivariate Set-Up

For this one has to install the R-function “mvnorm test”. For this the
following commands are to be followed in “window” set-up.

step1. Click “Cran Mirror” under “Packages” on topmost part of R-
console and select a country.

step2. Click “install package” under “Packages” and select “mvnorm
test” from the dialog box which appears.

step3. Click “load package” under “packages” and load “mvnorm test”
from the library which appears.

To Install Package Under Linux

step1. install.packages (“package name”) # Type in R console.

step2. Load “mvnorm test”.

Load the file, “data” (say). Then follow the command,

mshapiro.test(t(data))

If One Wants to Test for a Number of Columns, 2 (Say)

Construct a new data file, data 1 (say) (e.g. from UCD1.txt), as follows:

data 1 ← as.matrix (cbind (data[,1], data[,2], # 389 is the sample size
389, replace = FALSE) (say)

mshapiro.test(t(data 1))

Regression Analysis

Ordinary Linear Regression

To load data file, “data” (say)

Then follow the commands.
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lm(data$y ∼ data$x) # Fit y on x, where y and x are two
headers of “data”.

summary(lm(data$y ∼ data$x)) # Gives summary of the fitting.

c1 ← lm(data$y ∼ data$x)

plot(c1) # Plot residual vs fitted values.

More than One Variables as Predictors (glm)

lm(data$y ∼ data$x + data$z) # Fit y on (x, z).

Ridge Regression for Two Predictors

data ← read.table # Read the file UCD1.txt as
(“C:\\Users\\Tanuka \\Desktop\\
UCD1 \\.txt”, header = TRUE,

matrix, data, with its headers.

x1 ← data [,1] # Define variables, x1, y1,z1
y1 ← data [,2] as the first, 2nd and 3rd columns
z1 ← data [,3]
library(MASS)
model.ridge← lm.ridge(y1∼ x1+z1,
lambda = 1)

# y1 response, x1, z1 predictors

model.ridge$Inter
model.ridge$coef # Gives coefficients of predictors
summary(model.ridge) # Gives summary of the test
Output:
model.ridge$Inter
[1] 1
model.ridge$coef
x1 z1
-3.050482 -3.046672
summary(model.ridge)

Length Class Mode
coef 2 -none - numeric scales
scales 2 -none - numeric Inter
inter 1 -none - numeric lambda
lamda 1 -none - numeric
ym 1 -none numeric
xm 2 -none numeric
GCV 1 -none - numeric
kHKB 1 -none - numeric
kLW 1 -none - numeric
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Stepwise Regression Model

library (MASS)

fit ← lm (y ∼ data $x + data$z + # All initial predictor variables.
data$p + . . . )

step ← step(fit, direction =
“both”,criterion=‘AIC’)
step$anova # Displays results.

summary(step) # Gives summary.

To Increase the Size of the Print Screen on R (Type in R Console)

options (max.print = 5.5E5) # can print output of size 5.5 ×105 (say)

sink (“data1.txt”) # print the output in the file data 1 in
text format.

data1

Fitting a Distribution with Parameters e.g. Gamma Distribution
to a Data Set x1

library(MASS)
fitdistr(x1,“gamma”)

Fitting Any Distribution to a Data Set x1

1. Install (rriskDistributions)

2. Load (rriskDistributions)

3. Read data as matrix:

x1< −as.matrix(read.table(“path”))

useFitdist(data2fit=x1[,1], show.output = TRUE, “distributions”)

# distributions : “norm”, “logis”, “beta”, “exp”, “chisq”,
# “unif”, “gamma”,“lnorm”, “Weibull”, “f”, “t”, “cauchy”,
# “gompertz”, “triang”
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Generation of Random Numbers (1,000 Say) from Any
Distribution and Showing Histogram of the Sample Generated

x←rdistribution (n=1,000, param1= , param2=, .....)
x← hist(x)

List of distributions:

Distribution Code Parameters
Beta beta shape1, shape2
Binomial binom size, prob
Cauchy cauchy location, scale
Chi-square chisq df
Exponential exp 1/mean
F f df1, df2
Gamma gamma shape,1/scale
Geometric geom prob
Hypergeometric hyper m, n, k
Log-normal lnorm mean, sd
Logistic logis location, scale
Normal norm mean, sd
Poisson pois lambda
Student t df
Uniform unif min, max
Weibull weibull shape
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Kolmogorov–Smirnov Two Sample Test Data Sets
(Sample size 180× 1)

File: Mag−K

−23.2074 −24.2015 −24.7079 −25.5826 −24.7811 −25.1276 −24.8011
−23.9370 −25.2397 −24.8089 −26.1979 −24.5410 −24.7249 −24.1075
−26.0539 −23.6367 −24.2693 −23.2323 −25.7012 −24.1509 −26.1449
−25.9689 −25.0855 −24.0194 −24.2857 −24.6511 −24.8092 −24.5812
−23.3918 −25.2042 −25.4348 −25.0648 −23.5343 −24.5418 −24.9718
−24.2809 −23.2797 −24.8669 −25.0720 −24.5944 −24.7167 −25.1317
−23.6899 −23.2316 −24.9971 −25.6536 −25.6193 −24.5588 −24.5719
−24.6807 −23.1846 −23.6369 −26.3391 −25.1475 −25.2033 −25.0586
−24.9286 −24.8506 −24.9465 −26.1826 −25.6414 −25.4523 −23.2752
−24.8370 −25.0072 −24.3658 −24.6577 −25.4488 −25.5579 −25.0294
−26.1232 −25.4694 −25.1920 −24.2621 −23.5923 −24.1142 −24.2020
−25.3757 −24.5041 −24.7747 −25.7152 −24.1143 −25.3687 −24.7354
−24.4115 −24.3380 −25.7742 −24.7011 −24.1123 −25.7985 −24.9438
−24.6560 −24.6532 −25.4850 −25.0423 −25.1852 −25.9123 −26.3992
−23.2716 −23.2178 −25.3023 −25.2550 −25.8977 −24.3428 −26.1957
−24.5214 −23.7626 −24.9774 −25.0164 −25.4323 −25.2627 −25.7207
−24.9423 −24.4995 −25.7128 −24.8642 −25.8406 −23.9685 −23.9120
−25.2993 −25.2526 −24.0529 −24.5669 −25.0076 −24.9662 −24.9538
−24.4216 −23.7023 −24.9559 −24.1416 −25.6263 −26.1305 −25.1000
−25.9275 −24.8766 −26.0467 −24.1687 −24.8133 −24.2621 −24.9971
−24.9496 −25.3179 −24.9445 −23.9591 −24.2294 −25.5327 −24.8643
−24.2765 −24.8809 −24.2355 −23.9229 −23.3174 −23.4615 −24.4003
−24.5944 −22.8810 −25.1942 −22.2361 −24.9120 −25.8170 −25.4085
−24.3570 −25.3671 −23.0617 −24.9171 −25.0693 −24.4197 −26.2672
−24.5719 −25.8708 −24.4439 −25.5150 −25.8977 −24.5485 −24.4043
−26.1178 −24.4003 −23.6574 −24.9904 −20.7443
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File: Mag−V

−20.47 −21.47 −21.94 −22.73 −21.76 −22.14 −21.70 −21.31 −22.25
−22.30 −23.37 −21.73 −21.77 −21.05 −23.09 −20.80 −21.36 −20.37
−22.80 −20.94 −23.23 −23.03 −21.86 −21.41 −21.35 −21.64 −22.19
−21.76 −20.52 −22.15 −22.39 −22.44 −20.77 −21.46 −22.04 −21.37
−20.47 −22.03 −22.22 −21.64 −21.62 −22.29 −21.15 −20.61 −21.89
−22.47 −22.45 −21.87 −21.79 −21.69 −20.37 −20.83 −21.92 −22.27
−22.32 −22.14 −21.85 −21.76 −22.19 −23.18 −22.66 −22.42 −20.55
−21.94 −22.24 −21.39 −21.55 −22.65 −22.14 −22.35 −23.30 −22.83
−22.26 −21.32 −21.14 −21.31 −21.46 −22.29 −21.56 −21.59 −23.06
−21.34 −22.26 −21.74 −21.53 −21.39 −22.79 −21.87 −21.11 −22.92
−22.06 −21.88 −21.59 −22.45 −22.22 −22.44 −23.08 −23.54 −20.40
−20.40 −22.44 −22.34 −23.06 −21.52 −23.30 −21.51 −20.80 −22.51
−21.74 −22.73 −22.50 −22.68 −22.04 −21.45 −22.99 −21.94 −22.95
−21.03 −20.86 −22.28 −22.35 −21.09 −21.78 −22.07 −21.82 −22.04
−21.61 −20.86 −22.11 −21.42 −22.99 −21.87 −22.66 −22.98 −21.81
−23.35 −21.47 −22.14 −21.43 −22.07 −21.97 −22.49 −21.76 −21.07
−21.39 −22.39 −21.79 −21.45 −21.84 −21.40 −21.19 −20.74 −20.53
−21.76 −21.51 −20.12 −21.76 −21.82 −22.05 −22.99 −22.26 −21.26
−22.53 −20.39 −22.10 −22.13 −21.28 −23.27 −21.79 −22.86 −21.26
−22.70 −23.06 −21.43 −21.36 −22.89 −21.76 −20.35 −21.88 −18.51

Data Set for Gaussianity Test in Univariate Set Up
(Sample Size 180)

File: Mag−K

Data Set for Step Wise Regression (Sample Size 389 × 4)

File: UCD1

logsig0 logRh Mk mukh

1.0607 0.6083 −12.1949 26.9219
1.01703 0.25891 −11.0059 28.544
0.716 0.48076 −9.8997 30.0756
0.716 0.59083 −9.5149 30.6122
0.80618 0.32645 −11.0012 28.5505
0.41497 0.37595 −7.9538 32.8026
0.39794 0.65406 −9.2 31.0523
0.74819 0.51294 −10.89 28.7036
0.90309 0.34397 −10.817 28.8043
0.74036 0.52631 −10.0403 29.88
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1.06446 0.52518 −10.9957 28.558
0.75587 0.6911 −11.0854 28.4346
0.5682 0.34397 −9.607 30.4836
1.09342 0.27664 −10.15 29.7276
0.62325 0.32705 −9.1851 31.0731
0.61278 0.67324 −9.5808 30.5202
0.85126 0.54 −10.6954 28.972
0.65321 0.49715 −9.2349 31.0036
0.81954 0.32346 −9.4103 30.7582
0.81291 0.29623 −9.0554 31.2547
1.15534 0.39873 −11.5055 27.8588
0.79239 0.53191 −10.2505 29.5881
0.88081 0.37701 −9.9812 29.9622
0.76343 0.33994 −9.7054 30.3463
0.77085 0.40424 −10.1554 29.72
0.66276 0.36245 −9.1212 31.1626
1.27646 0.2898 −12.42 26.6184
0.65321 0.13211 −8.2151 32.4346
1.25527 0.34909 −11.9159 27.2997
0.82607 0.38385 −10.0654 29.8451
0.38021 0.19531 −6.8555 34.3529
0.91381 0.38437 −10.7455 28.9029
0.4624 0.51565 −8.3055 32.3075
0.73239 0.28063 −10.2954 29.5257
0.9345 0.435 −10.8608 28.7439
0.95424 0.45406 −10.6756
28.9994 0.70757 0.38645 −9.1012
31.1906 0.63347 0.44554 −9.7455
30.2904 0.60206 0.52818 −9.42
30.7447 0.6902 0.62359 −9.8049
30.2077 0.36173 0.28327 −8.2303 32.4133 1.01284 0.45804 −10.6911 28.9781
0.70757 0.446 −9.5206 30.6042 0.91381 0.51139 −10.6959 28.9714 0.74819
0.36952 −9.1755 31.0866 0.43136 1.24613 −11.7754 27.4907 1.39898 0.43297
−10.7605 29.2823 1.06296 0.54033 −11.8605 27.775 1.20817 0.47712
−11.7605 27.911 1.15442 0.43457 −12.2605 27.2333 1.40586 0.55267
−13.6605 25.3735 1.10721 0.33445 −11.9605 27.6392 0.99211 0.45788
−11.5605 28.1837 1.26245 0.47712 −12.8605 26.4286 1.12057 0.3075
−12.3605 27.0985 1.24601 0.50379 −12.5605 26.8297 1.41397 0.32634
−13.4605 25.6351 1.1271 0.38561 −11.2605 28.5943 1.07628 0.47567
−11.6605 28.0473 1.17319 0.4014 −11.6605 28.0473 0.95809 0.43616
−10.4605 29.697 1.09968 0.2833 −11.9605 27.6392 1.06032 0.35984 −11.5605
28.1837 0.93298 0.5832 −11.8605 27.775 0.97864 0.38382 −11.3605 28.4572
1.31175 0.344 −12.6475 26.7131 0.92583 0.5 −10.5035 29.6375 1.31597 0.636
−12.7675 26.5527 0.90902 0.549 −11.4815 28.2917 0.91116 0.376 −11.3735
28.4394 1.00432 0.41 −11.5255 28.2315 1.20412 0.78387 −12.6449 26.3166
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1.15229 0.58529 −12.3768 26.6765 1.1271 0.34454 −11.94 27.267 1.44091
0.50709 −13.1305 25.6701 1.29003 1.017 −13.2453 25.5183 1.31806 0.8787
−12.9653 25.8891 1.19312 0.92985 −12.3753 26.6785 1.35984 0.96684
−12.8253 26.0755 1.32222 0.708 −12.3853 26.665 1.53782 0.63837 −14.1153
24.3844 1.1271 0.92009 −12.8853 25.9955 1.21748 0.7238 −12.9653 25.8891
1.24055 0.85642 −12.7953 26.1155 1.17319 0.63837 −12.6453 26.316 1.02531
0.78179 −12.8153 26.0888 1.39094 1.00091 −13.7253 24.889 1.36736 1.13397
−13.3953 25.3207 1.19033 1.05479 −12.5753 26.4098 1.32428 0.88942
−13.5253 25.1501 1.36173 0.75376 −13.1453 25.6504 1.2878 0.84484
−13.0453 25.7829 1.29447 0.57767 −12.3853 26.665 1.20683 0.83294
−13.2653 25.4919 1.23805 0.55539 −12.1153 27.0294 1.14301 0.45273
−12.6453 26.316 1.1038 0.65685 −13.9253 24.6294 1.35218 0.8787 −13.6253
25.0194 1.08636 0.7238 −12.4753 26.544 1.19312 0.45273 −12.3253 26.7459
1.20683 0.27664 −12.9853 25.8625 1.65321 1.27261 −15.9944 22.0622
1.48144 0.97158 −14.3244 24.1166 1.66558 0.64747 −15.5592 22.5812
1.71767 1.4484 −16.2184 21.8004 1.42975 1.47473 −15.1784 23.0455 1.51188
1.35823 −15.6184 22.5098 1.07555 1.46177 −13.1784 25.6067 1.58883
0.54531 −13.7384 24.872 1.55871 1.14737 −14.4884 23.908 1.67025 0.54531
−14.2484 24.2137 1.39094 1.35823 −13.8884 24.6772 1.45025 1.30498
−13.3684 25.3561 1.43457 1.36227 −16.3238 21.6785 1.46687 1.95555
−16.1538 21.8755 1.50651 1.48284 −15.2838 22.9161 1.4014 1.48284
−14.8238 23.4856 1.63849 0.6633 −14.5438 23.8378 1.52763 0.86742
−13.9438 24.6055 1.38202 1.16845 −13.9438 24.6055 1.49415 0.96433
−14.1438 24.3478 1.5092 0.56639 −14.3438 24.0919 1.47712 1.00572
−14.3438 24.0919 1.54531 0.56639 −14.1438 24.3478 1.50515 1.00572
−13.9438 24.6055 1.47422 0.56639 −13.5438 25.126 1.43457 0.6633 −13.4438
25.2571 1.39445 0.6633 −13.4438 25.2571 1.07918 0.74248 −13.3438 25.3885
1.73799 1.49956 −15.1484 23.0824 1.50106 0.98465 −14.1584 24.329 1.68664
1.11934 −15.5684 22.5701 0.94448 2.5188 −14.1733 24.3099 0.82607 2.26636
−11.7499 27.5255 0.96848 2.47718 −10.8609 28.7437 0.81954 2.20377
−13.3067 25.4374 0.83251 2.46228 −11.32 28.1127 0.97772 2.36135 −10.7
28.9658 0.81954 2.79944 −11.4654 27.9137 1.02119 2.60203 −13.38 25.3408
1.88081 1.99264 −18.4405 19.4494 2.31302 3.513 −23.7899 17.2129 2.41196
3.871 −24.8122 17.7639 2.19396 3.46 −23.0821 17.0742 2.31197 3.663
−24.3074 17.4357 2.31091 3.557 −23.8753 17.2422 2.11594 3.347 −23.2594
17.0922 2.30298 3.854 −24.9076 17.8392 2.35908 3.844 −24.656 17.6499
2.25912 3.724 −24.2741 17.418 2.42504 3.417 −23.356 17.1066 2.24993 4.166
−25.5727 18.4917 2.17406 3.385 −23.4486 17.1235 2.09517 3.885 −24.7512
17.7181 2.28103 3.9 −24.7952 17.7509 1.96988 3.382 −23.3221 17.1012
2.58104 4.73 −26.4254 19.6929 2.27207 3.605 −24.0529 17.3124 2.22011
3.514 −23.5756 17.1517 2.33706 3.686 −24.2693 17.4155 2.19396 3.468
−23.2323 17.0888 2.19201 3.726 −24.4206 17.4993 2.17202 3.494 −23.5555
17.1468 2.39199 3.642 −24.2675 17.4145 2.37694 3.566 −23.9002 17.2513
2.52802 4.085 −25.3073 18.2036 2.36903 4.019 −25.0655 17.9735 2.46404
3.928 −24.9197 17.8491 1.716 3.036 −20.5284 17.821 1.95424 3 −21.3127
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17.4165 1.81291 2.852 −19.7084 18.3754 1.63548 2.98 −20.2384 18.0028
1.55871 2.949 −19.5384 18.5051 1.59106 3.091 −19.5884 18.4665 1.41664
3.05 −20.3984 17.9005 1.6149 2.988 −18.8784 19.052 1.59439 2.993
−19.3484 18.6557 1.5563 3.068 −19.3584 18.6477 1.51851 3.13 −19.9884
18.1723 1.61805 3.146 −21.0984 17.5137 2.22789 3.364 −23.2074 17.0858
2.14114 3.644 −24.2015 17.3811 2.18808 3.86 −24.7079 17.6865 2.46702
4.227 −25.5826 18.5032 2.40295 3.887 −24.7811 17.7403 2.38507 4.057
−25.1276 18.0298 2.48799 3.823 −24.8011 17.7554 2.34596 3.553 −23.937
17.2652 2.36493 4.092 −25.2397 18.1363 2.34792 3.884 −24.8089 17.7613
2.50907 4.457 −26.1979 19.3287 2.22011 3.856 −24.541 17.5732 2.29491
3.843 −24.7249 17.6988 2.26007 3.571 −24.1075 17.3366 2.54605 4.465
−26.0539 19.1152 2.233 3.543 −23.6367 17.1673 2.33706 3.686 −24.2693
17.4155 2.19312 3.468 −23.2323 17.0888 2.54195 4.258 −25.7012 18.6451
2.28601 3.67 −24.1509 17.3567 2.41397 4.477 −26.1449 19.2486 2.51706
4.392 −25.9689 18.9952 2.30103 3.969 −25.0855 17.9915 2.31492 3.117
−24.0194 17.2982 2.32305 3.688 −24.2857 17.4241 2.58104 3.789 −24.6511
17.6466 2.47407 3.857 −24.8092 17.7616 2.37199 3.785 −24.5812 17.5994
2.20412 3.429 −23.3918 17.1127 2.35295 3.969 −25.2042 18.1018 2.46195
4.176 −25.4348 18.3373 2.34908 4.005 −25.0648 17.9729 2.20085 3.434
−23.5343 17.1418 2.22994 3.701 −24.5418 17.5737 2.34908 3.995 −24.9718
17.8923 2.06707 3.709 −24.2809 17.4216 2.07188 3.497 −23.2797 17.095
2.34104 3.926 −24.8669 17.8065 2.32593 3.988 −25.072 17.9793 2.28892 3.82
−24.5944 17.6081 2.463 3.798 −24.7167 17.6928 2.43297 4.104 −25.1317
18.0336 2.31091 3.516 −23.6899 17.1821 2.25792 3.504 −23.2316 17.0887
2.25503 3.959 −24.9971 17.9139 2.44793 4.288 −25.6536 18.5872 2.44498
4.257 −25.6193 18.5462 2.29601 3.786 −24.5588 17.5847 2.22608 3.831
−24.5719 17.5933 2.43902 3.849 −24.6807 17.6672 2.15806 3.407 −23.1846
17.0833 2.36493 3.551 −23.6369 17.1674 2.34596 4.279 −26.3391 19.5509
2.44994 3.989 −25.1475 18.0483 2.33506 4.019 −25.2033 18.101 2.37603
3.976 −25.0586 17.9674 2.436 3.959 −24.9286 17.8564 2.34203 3.779
−24.8506 17.7937 2.36903 3.958 −24.9465 17.8712 2.48799 4.588 −26.1826
19.3054 2.53504 4.245 −25.6414 18.5726 2.42095 4.133 −25.4523 18.3563
2.09587 3.448 −23.2752 17.0943 2.43505 3.894 −24.837 17.7831 2.35793
4.031 −25.0072 17.9225 2.33905 3.696 −24.3658 17.4678 2.27807 3.82
−24.6577 17.6511 2.39794 4.123 −25.4488 18.3525 2.28511 4.289 −25.5579
18.4747 2.37694 3.99 −25.0294 17.9418 2.46494 4.478 −26.1232 19.2164
2.45102 4.13 −25.4694 18.3751 2.34301 3.941 −25.192 18.0902 2.39393 3.649
−24.2621 17.4117 2.31006 3.511 −23.5923 17.1558 2.20085 3.639 −24.1142
17.3396 2.24601 3.79 −24.202 17.3813 2.44902 4.131 −25.3757 18.2743
2.44295 3.77 −24.5041 17.5499 2.41095 3.883 −24.7747 17.7355 2.45102
4.298 −25.7152 18.6624 2.25503 3.673 −24.1143 17.3397 2.41797 4.17
−25.3687 18.2669 2.38507 3.91 −24.7354 17.7064 2.33304 3.721 −24.4115
17.494 2.41597 3.689 −24.338 17.4523 2.33506 4.262 −25.7742 18.7364
2.32408 3.818 −24.7011 17.6817 2.29003 3.585 −24.1123 17.3388 2.50705
4.326 −25.7985 18.7674 2.40106 3.94 −24.9438 17.8689 2.35908 3.844
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−24.656 17.6499 2.34596 3.765 −24.6532 17.648 2.46805 4.14 −25.485
18.3923 2.39393 3.956 −25.0423 17.953 2.45803 3.98 −25.1852 18.0837
2.45803 4.335 −25.9123 18.9176 2.34203 4.495 −26.3992 19.6492 2.38093
3.403 −23.2716 17.0938 2.29601 3.353 −23.2178 17.087 2.21801 4.005
−25.3023 18.1986 2.405 3.993 −25.255 18.1513 2.41296 4.345 −25.8977
18.8979 2.2971 3.642 −24.3428 17.455 2.38899 4.64 −26.1957 19.3254
2.34005 3.825 −24.5214 17.5607 2.28307 3.605 −23.7626 17.2041 2.18808
3.89 −24.9774 17.8971 2.37401 3.957 −25.0164 17.9304 2.31492 4.066
−25.4323 18.3346 2.2971 4.007 −25.2627 18.159 2.56301 4.296 −25.7207
18.6692 2.43902 3.957 −24.9423 17.8677 2.45803 3.777 −24.4995 17.547
2.43996 4.352 −25.7128 18.6594 2.35005 3.894 −24.8642 17.8044 2.50393
4.394 −25.8406 18.8222 2.19893 3.559 −23.9685 17.2775 2.19005 3.6
−23.912 17.2557 2.47799 4.11 −25.2993 18.1955 2.41497 3.95 −25.2526
18.149 2.27207 3.605 −24.0529 17.3124 2.26293 3.795 −24.5669 17.59
2.34104 3.966 −25.0076 17.9229 2.39794 3.952 −24.9662 17.8877 2.37603
3.96 −24.9538 17.8772 2.33203 3.726 −24.4216 17.4999 2.17898 3.548
−23.7023 17.1858 2.42504 3.947 −24.9559 17.879 2.29601 3.629 −24.1416
17.3523 2.48302 4.252 −25.6263 18.5545 2.29994 4.567 −26.1305 19.2271
2.39707 4.073 −25.1 18.0046 2.43505 4.402 −25.9275 18.9383 2.27207 3.978
−24.8766 17.8142 2.41697 4.482 −26.0467 19.1049 2.18298 3.651 −24.1687
17.3652 2.25912 3.962 −24.8133 17.7647 2.233 3.705 −24.2621 17.4118
2.42406 3.982 −24.9971 17.9139 2.41896 3.936 −24.9496 17.8737 2.306 4.101
−25.3179 18.2144 2.36493 3.914 −24.9445 17.8695 2.30492 3.302 −23.9591
17.2738 2.25912 3.621 −24.2294 17.395 2.45606 4.28 −25.5327 18.4459
2.3831 3.939 −24.8643 17.8045 2.34104 3.658 −24.2765 17.4192 2.42095 3.97
−24.8809 17.8177 2.29798 3.663 −24.2355 17.3981 2.266 3.658 −23.9229
17.2598 2.11992 3.208 −23.3174 17.1004 2.32593 3.401 −23.4615 17.1261
2.266 3.748 −24.4003 17.4875 2.44107 3.763 −24.5944 17.6081 2.29003 3.301
−22.881 17.0666 2.22608 3.985 −25.1942 18.0923 2.13001 3.07 −22.2361
17.1276 2.38507 3.944 −24.912 17.8428 2.38399 4.336 −25.817 18.7914
2.47202 4.183 −25.4085 18.309 2.3249 3.73 −24.357 17.4629 2.31492 4.111
−25.3671 18.2653 2.22298 3.368 −23.0617 17.0729 2.3189 3.943 −24.9171
17.847 2.42797 3.985 −25.0693 17.977 2.42991 3.752 −24.4197 17.4988
2.55703 4.612 −26.2672 19.4361 2.22608 3.831 −24.5719 17.5933 2.36996
4.334 −25.8708 18.8619 2.22891 3.761 −24.4439 17.5131 2.436 4.247
−25.515 18.4258 2.41296 4.345 −25.8977 18.8979 2.31994 3.789 −24.5485
17.5781 2.29092 3.783 −24.4043 17.4898 2.38596 4.346 −26.1178 19.2084
2.266 3.748 −24.4003 17.4875 2.15534 3.55 −23.6574 17.173 2.53403 3.922
−24.9904 17.9081 1.59439 3.077 −20.7443 17.6966 1.65896 3.036 −20.5284
17.821 1.52114 3.091 −18.5084 19.3861 1.4609 2.923 −19.1978 18.7791
1.37658 3.023 −18.0211 19.8531 1.65031 2.939 −19.992 18.1698 1.48572
2.886 −19.0122 18.9359 1.51055 3.113 −20.012 18.1558 2.10037 3.09497
−22.9284 17.0672 2.24304 3.12884 −23.3749 17.1098 2.33445 3.23332
−23.0879 17.0747 2.20412 2.90959 −22.797 17.0673 1.39794 2.918 −18.457
19.434 1.62221 3.177 −20.8802 17.6231 1.54407 2.993 −19.9364 18.209
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1.34242 3.064 −19.2699 18.7196 1.57978 3.135 −20.0476 18.1312 1.65321
2.98 −19.6494 18.4199 1.64345 2.989 −18.9259 19.0105 1.5563 3.175
−21.2218 17.4565 1.70757 2.855 −19.9046 18.2317 1.90849 2.945 −20.9307
17.5969 1.79239 2.865 −19.7577 18.3386 1.5563 2.931 −18.747 19.1685
1.61278 3.129 −20.975 17.5743 1.61278 3.091 −20.4815 17.8493 1.66276
3.137 −18.8612 19.0671 1.62325 2.967 −19.0081 18.9394 1.5682 3.432
−21.0289 17.5474 1.63347 3.362 −18.7218 19.1911

Data Set for Ridge Regression (Sample Size 389 × 4)

File: UCD1

Data Set for Wilcoxon Test (Sample Size 389 × 4)

File: UCD1

Data Set for Kruskal Wallis Test (Sample Size 389 × 4)

File: UCD1

Data Set for PCA (Sample Size 43 × 9)

File: hbr1

ID logTeff HB DT HBR HBRE Lt (B − V )peak BT

NGC0104 7 −0.97999999999999998 0.83999999999999997 2.5
0.80000000000000004 1 3.7559999999999998 NGC0362 5 −0.87
0.65000000000000002 7.5 0.55000000000000004 6.5 4.0789999999999997
NGC1261 5 −0.70999999999999996 0.69999999999999996 10 0.63 8.5
4.0789999999999997 NGC1851 1 −0.32000000000000001
0.72999999999999998 10 0.65000000000000002 9 4.0970000000000004
NGC1904 1 0.89000000000000001 0.14999999999999999 11
0.050000000000000003 9 4.3520000000000003 NGC2808 1
−0.48999999999999999 0.72999999999999998 13.5 0.63 12
4.5679999999999996 NGC3201 4 0.080000000000000002
0.64000000000000001 9 0.34999999999999998 6 4.0789999999999997
NGC4147 3 0.47999999999999998 0.45000000000000001 8.5
0.20000000000000001 5.5 4.0609999999999999 NGC4590 3
0.14999999999999999 0.55000000000000004 7 0.25 4 4.0410000000000004
NGC4833 1 0.94999999999999996 0.20000000000000001 8 0 5
4.3010000000000002 NGC5024 2 0.76000000000000001
0.10000000000000001 3 −0.050000000000000003 1.5 4.0789999999999997
NGC5694 1 NA 0.14999999999999999 5.5 0 2 4.2039999999999997
NGC5824 NA NA NA NA NA NA 4.3799999999999999 NGC5904 3 0.37
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0.59999999999999998 10 0.23000000000000001 6 4.1760000000000002
NGC5927 NA NA NA NA NA NA 3.7240000000000002 NGC5946 NA NA
NA NA NA NA 4.2789999999999999 NGC5986 NA NA NA NA NA NA
4.415 NGC6093 1 0.92000000000000004 0.32000000000000001 6
0.050000000000000003 4.2000000000000002 4.4770000000000003 NGC6171
6 −0.69999999999999996 0.78000000000000003 9 0.68999999999999995
6.2999999999999998 3.875 NGC6205 1 0.96999999999999997
0.14999999999999999 10 0.050000000000000003 8.5 4.5049999999999999
NGC6218 1 1 0.19 7.5 −0.070000000000000007 4 4.2169999999999996
NGC6235 NA NA NA NA NA NA 4.1139999999999999 NGC6266 1
0.28000000000000003 0.69999999999999996 15 0.13 10 4.4770000000000003
NGC6273 NA NA NA NA NA NA 4.5679999999999996 NGC6284 1 NA
0.20000000000000001 10 0 7 4.2789999999999999 NGC6287 NA NA NA NA
NA NA 4.1139999999999999 NGC6342 NA NA NA NA NA NA 3.778
NGC6356 NA NA NA NA NA NA 3.7559999999999998 NGC6362 5
−0.57999999999999996 0.77000000000000002 9 0.55000000000000004 6.5
3.9540000000000002 NGC6544 NA NA NA NA NA NA 4.1760000000000002
NGC6624 NA NA NA NA NA NA 3.7709999999999999 NGC6637 NA NA
NA NA NA NA 3.7480000000000002 NGC6638 5 −0.29999999999999999
0.66000000000000003 7.5 0.40000000000000002 5 4.0970000000000004
NGC6652 NA NA NA NA NA NA 4 NGC6681 NA NA NA NA NA NA
4.3010000000000002 NGC6717 NA NA NA NA NA NA 4.1139999999999999
NGC6723 5 −0.080000000000000002 0.68000000000000005 11 0.5 9
4.1299999999999999 NGC6864 6 −0.39000000000000001 0.75 8
0.39000000000000001 6.5 4.1760000000000002 NGC6934 NA NA NA NA
NA NA 4.1299999999999999 NGC6981 4 0.17000000000000001
0.59999999999999998 5 0.34999999999999998 3 4 NGC7078 3
0.67000000000000004 0.55000000000000004 14 0.050000000000000003 9
4.4770000000000003 NGC7089 2 0.95999999999999996
0.27000000000000002 9 0.17999999999999999 8 4.4770000000000003
NGC7099 1 0.88 0.25 4.5 0.050000000000000003 2 4.0789999999999997

Data Set for Fast ICA (Sample Size 127 × 15)

File: NGC5128new

c muvh mu0 W0 Rc Rtid Rh logMtot logrho0 sigmap0 logtrh RgcT 1
[Fe/H ] (C − T 1)0

3.86 21.802 14.93 13.7 0.02588 186.21 5.1168 4.33 6.10 2.2387 8.87 10.45
22.663 −1.67 1.137 1.80 19.202 17.87 6.0 2.46604 173.78 5.7544 5.47 2.94
5.7148 9.41 3.53 20.450 −1.62 1.157 3.03 21.327 18.18 7.8 0.94406 1071.52
7.6033 4.88 3.26 3.1189 9.35 21.69 21.363 −2.20 0.955 1.52 22.277 21.08 5.3
6.23735 245.47 12.1619 5.11 1.44 2.5763 9.77 12.67 21.423 −0.27 1.820 2.70
20.652 18.12 7.4 0.91622 501.19 4.6989 4.90 3.42 3.6644 9.06 10.38 20.672
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−0.44 1.707 1.67 20.727 19.49 5.7 2.30144 123.03 4.9204 4.74 2.33 2.6546
9.02 11.99 21.574 −1.30 1.281 1.89 19.952 18.48 6.2 2.11349 181.97 5.2723
5.17 2.81 4.2364 9.24 12.34 20.664 −0.91 1.454 2.24 21.077 19.25 6.8 1.84502
346.74 6.0256 4.81 2.54 2.6977 9.18 9.92 21.620 −1.08 1.376 1.89 19.302
17.89 6.2 2.00909 173.78 5.0119 5.31 3.02 5.0933 9.26 11.85 20.202 −1.65
1.146 1.49 18.952 17.85 5.2 1.53815 56.23 2.9309 4.99 3.15 4.5709 8.78 3.84
21.190 −1.84 1.078 0.99 18.927 18.12 3.1 2.18273 30.20 3.1405 5.06 2.88
4.8195 8.85 2.45 20.525 −1.70 1.128 1.89 19.752 18.30 6.2 2.74157 239.88
6.8391 5.45 2.76 5.1404 9.52 5.39 20.061 −1.05 1.389 1.17 19.552 18.65 4.0
3.09030 60.26 4.8865 5.22 2.54 4.5920 9.20 4.05 20.431 −1.18 1.330 1.89
20.252 18.80 6.2 1.25314 109.65 3.1261 4.56 2.88 2.7227 8.65 7.93 22.161
−2.27 0.931 1.71 19.227 17.97 5.8 1.68655 97.72 3.7068 5.09 3.07 4.5499 8.97
10.83 20.907 −1.99 1.025 2.11 19.827 18.12 6.6 1.27350 181.97 3.7497 4.98
3.23 4.1115 8.94 9.17 21.424 −0.63 1.595 2.05 20.102 18.56 6.5 1.65959
204.17 4.6666 4.95 2.86 3.5237 9.06 8.41 21.297 −2.58 0.836 1.32 20.202
19.25 4.6 3.06902 77.62 5.2602 5.01 2.31 3.4754 9.17 9.91 21.043 −2.47 0.871
2.70 19.202 16.72 7.4 0.60674 331.13 3.1117 4.99 4.05 5.0119 8.82 6.93
21.147 −1.00 1.400 1.67 19.577 18.28 5.7 1.86638 100.00 3.9902 5.16 3.02
4.7643 9.06 6.59 21.013 −0.53 1.653 1.05 19.902 19.04 3.4 2.84446 43.65
4.2170 5.00 2.46 3.8726 9.02 6.39 21.156 −0.84 1.484 1.59 21.802 20.57 5.5
3.89942 177.83 7.9250 4.88 1.80 2.4547 9.40 9.73 21.758 −0.44 1.705 0.01
20.527 19.86 0.1 3.96278 30.20 4.8084 4.85 1.98 3.1189 9.05 22.46 21.310
−0.91 1.451 1.94 20.027 18.67 6.3 2.55270 245.47 6.5917 5.27 2.66 4.2756
9.43 8.45 20.669 −4.77 0.270 0.16 21.677 20.97 0.2 6.42688 50.12 7.8343 4.89
1.38 2.5410 9.38 11.67 21.433 −0.60 1.611 0.93 20.527 19.78 2.8 2.10378
26.92 2.9512 4.38 2.26 2.2751 8.54 9.91 22.446 −2.49 0.863 1.89 21.527 20.08
6.2 1.72187 147.91 4.2954 4.34 2.25 1.8072 8.77 9.84 22.330 −1.00 1.400 1.71
21.277 19.91 5.8 3.97192 229.09 8.7297 5.27 2.13 3.6475 9.62 9.74 20.947
−0.14 1.914 1.71 20.602 19.28 5.8 2.99916 173.78 6.5917 5.14 2.37 3.6224
9.37 12.53 20.831 −0.73 1.540 2.79 21.577 18.92 7.5 2.24905 1479.11 12.7938
5.31 2.64 3.6559 9.87 3.29 20.711 −0.78 1.518 1.40 21.077 20.06 4.9 5.08159
154.88 9.1411 5.12 1.75 3.0061 9.57 2.68 20.945 −1.86 1.071 1.35 21.302
20.33 4.7 3.69828 100.00 6.4565 4.73 1.78 2.2803 9.19 3.87 21.959 −1.95
1.040 1.67 20.502 19.31 5.7 4.72063 251.19 10.0925 5.45 2.11 4.2073 9.77
5.17 20.207 −2.62 0.825 1.89 21.652 20.19 6.2 3.89045 338.84 9.7051 5.00
1.85 2.5763 9.56 7.85 21.358 −1.00 1.410 2.17 21.052 19.38 6.7 3.48337
562.34 10.7647 5.29 2.21 3.4834 9.75 5.04 20.909 −2.60 0.829 0.76 21.152
20.41 1.9 5.04661 52.48 6.6527 4.87 1.64 2.6792 9.26 4.97 20.720 −1.00 1.400
1.46 20.727 19.62 5.1 4.43609 151.36 8.2985 5.22 2.01 3.5318 9.55 8.64
20.670 −1.11 1.360 1.75 21.127 19.74 5.9 3.63915 234.42 8.2224 5.26 2.23
3.7239 9.58 9.35 21.057 −0.19 1.875 2.95 22.377 19.37 7.7 1.85353 1778.28
13.1826 4.99 2.52 2.6182 9.76 7.35 21.838 −0.91 1.451 1.75 21.327 20.02 5.9
3.04089 194.98 6.8865 4.79 1.99 2.3714 9.25 8.78 21.534 −1.34 1.264 1.80
21.802 20.41 6.0 4.92040 346.74 11.4815 5.17 1.74 2.8576 9.75 9.95 21.216
−0.58 1.622 1.80 20.852 19.43 6.0 2.50611 177.83 5.8345 5.06 2.51 3.5318
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9.27 11.01 21.358 −0.22 1.854 1.13 20.402 19.47 3.8 3.40408 60.26 5.2602
5.08 2.29 3.7844 9.21 12.16 20.961 −0.48 1.679 2.70 20.652 18.21 7.4 2.49459
1348.96 12.8233 5.59 2.81 4.9317 9.99 9.36 20.039 −1.96 1.036 2.31 21.452
19.51 6.9 1.94089 426.58 6.7143 4.90 2.55 2.8708 9.30 11.72 21.837 −0.37
1.750 1.89 18.152 16.76 6.2 1.22744 107.15 3.0620 5.36 3.71 6.9024 8.96
11.93 20.049 −2.46 0.874 2.46 19.102 16.97 7.1 1.41579 436.52 5.6105 5.68
3.70 7.8524 9.50 4.26 19.818 −0.39 1.738 2.00 17.327 15.78 6.4 0.92683
102.33 2.4946 5.53 4.22 9.3756 8.89 3.82 19.561 −1.18 1.329 1.71 19.027
17.70 5.8 2.34423 138.04 5.1523 5.58 3.14 6.8391 9.40 4.12 19.857 −0.59
1.615 2.24 18.502 16.66 6.8 1.34276 257.04 4.3853 5.64 3.79 8.2794 9.32 7.16
19.668 −0.63 1.592 2.00 18.077 16.53 6.4 1.11944 123.03 3.0061 5.38 3.83
7.2111 8.96 7.56 19.991 −1.27 1.294 2.24 17.002 15.21 6.8 0.75683 144.54
2.4717 5.62 4.52 10.7399 8.93 8.96 19.403 −1.54 1.188 1.71 18.352 17.09 5.8
1.96789 114.82 4.3152 5.56 3.35 7.2946 9.27 12.30 19.507 −1.62 1.155 2.17
18.377 16.64 6.7 0.97499 158.49 3.0130 5.29 3.88 6.6222 8.92 10.46 20.244
−0.98 1.420 2.46 18.227 16.17 7.1 0.90782 281.84 3.6058 5.45 4.05 7.5509
9.10 10.92 19.851 −1.63 1.151 2.11 17.077 15.40 6.6 0.87902 125.89 2.5823
5.68 4.41 11.0917 8.98 3.37 19.300 −1.00 1.400 2.46 18.377 16.27 7.1 0.89743
281.84 3.5645 5.42 4.04 7.3451 9.08 3.08 19.974 −1.16 1.338 1.89 18.477
17.02 6.2 1.59221 138.04 3.9628 5.48 3.49 6.9663 9.18 3.25 19.830 −1.13
1.353 2.31 18.377 16.45 6.9 1.03276 229.09 3.5727 5.50 3.97 7.8524 9.12 4.45
19.940 −0.70 1.556 1.75 18.977 17.65 5.9 1.87499 120.23 4.2364 5.32 3.16
5.5847 9.15 2.98 20.055 −1.24 1.306 2.17 17.477 15.78 6.7 0.86099 141.25
2.6607 5.49 4.23 8.8308 8.92 6.85 19.680 −1.70 1.126 2.11 17.252 15.57 6.6
0.74645 104.71 2.1928 5.47 4.42 9.4624 8.79 2.24 19.780 −1.00 1.400 2.24
18.252 16.45 6.8 1.27644 239.88 4.1687 5.62 3.84 8.2604 9.27 2.97 19.580
−1.00 1.400 2.54 17.577 15.36 7.2 0.87700 323.59 3.7670 5.81 4.43 11.2980
9.28 3.38 19.210 −1.00 1.400 2.11 17.227 15.51 6.6 0.68077 95.50 2.0045 5.55
4.61 10.7895 8.77 4.44 19.929 −0.34 1.769 1.84 18.002 16.58 6.1 1.12980
87.10 2.7227 5.36 3.83 7.3282 8.88 3.33 19.990 −1.00 1.400 1.46 17.052 15.95
5.1 1.13240 38.90 2.1184 5.52 4.08 9.8401 8.79 3.79 19.600 −1.00 1.400 2.38
18.527 16.54 7.0 0.86298 223.87 3.1915 5.28 3.97 6.5013 8.95 7.22 20.410
−1.00 1.400 2.70 19.327 16.84 7.4 0.98401 537.03 5.0466 5.38 3.81 6.1518
9.29 6.97 20.824 −0.89 1.461 2.31 18.527 16.64 6.9 1.00925 223.87 3.4914
5.32 3.82 6.4121 9.03 7.25 20.154 −1.56 1.178 2.24 18.052 16.26 6.8 1.23027
234.42 4.0179 5.63 3.90 8.5507 9.25 12.62 19.384 −1.29 1.285 2.54 17.127
14.94 7.2 0.72444 269.15 3.1117 5.78 4.65 11.9674 9.14 4.00 19.007 −1.37
1.254 2.70 17.802 15.34 7.4 0.71450 389.05 3.6728 5.65 4.49 9.8628 9.20 4.58
19.416 −1.44 1.225 2.62 18.627 16.24 7.3 1.11944 501.19 5.2360 5.81 4.09
9.6828 9.50 4.00 19.479 −0.41 1.726 2.79 17.277 14.70 7.5 0.50119 331.13
2.8510 5.64 4.92 11.2980 9.03 8.17 19.452 −2.19 0.959 2.38 17.827 15.83 7.0
0.95719 251.19 3.5400 5.65 4.21 9.4842 9.18 6.79 19.436 −1.00 1.412 2.95
17.702 14.69 7.7 0.49204 467.74 3.4995 5.72 4.97 11.7220 9.20 7.61 19.436
−0.88 1.466 2.46 17.252 15.20 7.1 0.70632 218.78 2.8054 5.63 4.56 10.5196
9.01 8.32 19.384 −2.00 1.023 2.62 16.977 14.67 7.3 0.59156 263.03 2.7669
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5.73 4.84 12.1619 9.04 19.68 19.120 −1.61 1.161 2.62 17.602 15.27 7.3
0.87700 389.05 4.0926 5.83 4.44 11.3240 9.34 9.64 18.896 −1.34 1.263 2.87
17.827 15.01 7.6 0.76208 602.56 4.8306 5.93 4.64 12.3880 9.49 2.67 19.040
−1.00 1.400 2.24 17.802 15.95 6.8 1.07895 204.17 3.5237 5.75 4.19 10.4472
9.22 12.56 19.334 −0.56 1.636 3.10 17.552 14.20 7.9 0.49091 645.65 4.4875
5.91 5.11 13.7404 9.44 9.71 18.814 −1.77 1.101 2.17 16.877 15.14 6.7 0.88716
144.54 2.7416 5.78 4.49 12.1899 9.06 15.02 18.971 −1.27 1.294 2.38 17.152
15.17 7.0 0.85507 223.87 3.1623 5.79 4.49 11.6950 9.16 12.35 18.952 −1.35
1.262 2.00 17.827 16.22 6.4 1.40605 154.88 3.7757 5.87 4.02 11.2460 9.32
11.66 19.132 −0.32 1.783 1.94 16.577 15.09 6.3 1.38676 134.90 3.5892 6.13
4.31 15.6315 9.39 10.47 18.068 −1.24 1.304 2.38 16.802 14.82 7.0 0.77983
204.17 2.8840 5.88 4.70 13.6773 9.14 2.75 18.900 −1.00 1.400 1.43 16.502
15.42 5.0 1.68267 53.70 3.0903 6.07 4.12 15.3109 9.26 2.93 18.230 −1.00
1.400 2.11 16.527 14.85 6.6 0.84918 120.23 2.5003 5.90 4.68 14.5211 9.06
9.41 18.828 −0.82 1.498 2.00 15.777 14.27 6.4 0.71945 79.43 1.9364 5.89 4.91
16.1436 8.88 9.50 18.693 −1.69 1.132 2.17 16.827 15.12 6.7 1.07399 173.78
3.3189 5.94 4.40 13.3045 9.25 22.51 18.553 −1.55 1.181 3.32 16.527 10.81 9.8
0.04677 100.00 2.0989 5.92 7.80 23.4963 8.96 5.46 19.031 −0.17 1.893 2.46
16.002 13.88 7.1 1.33660 416.87 5.3088 6.83 4.92 30.3389 9.95 2.10 16.510
−0.55 1.641 2.54 16.127 13.91 7.2 1.14815 426.58 4.9204 6.61 4.89 24.9459
9.80 4.95 16.891 −1.05 1.386 2.95 16.227 13.21 7.7 0.81470 776.25 5.8076
6.79 5.38 31.1889 9.99 10.87 16.681 −0.67 1.572 3.27 16.777 12.51 8.3
0.28840 562.34 4.3752 6.42 6.20 28.1190 9.65 12.47 17.854 −0.31 1.789 2.62
15.327 12.97 7.3 0.45394 204.17 2.1232 6.24 5.69 24.9459 9.09 11.95 17.962
−0.86 1.474 2.54 15.852 13.63 7.2 0.76208 281.84 3.2659 6.38 5.19 23.3346
9.43 1.85 17.640 −1.00 1.400 0.01 14.452 13.80 0.1 0.95499 7.41 1.1614 6.00
4.98 23.7684 8.59 3.56 17.814 −1.27 1.293 1.94 14.077 12.57 6.3 0.39902
38.90 1.0328 6.09 5.89 27.6058 8.56 2.75 17.820 −1.00 1.400 5.23 16.602 6.32
19.5 0.00049 83.18 1.9187 5.69 11.36 18.3231 8.80 10.51 19.301 −0.63 1.596
4.26 16.127 8.37 15.3 0.00378 67.61 1.5849 5.73 9.68 20.0909 8.69 5.93
19.412 −0.56 1.636 3.40 15.277 9.15 11.1 0.01795 45.71 1.3213 6.02 8.78
33.9625 8.70 3.84 18.741 −0.18 1.887 3.51 16.702 10.43 11.9 0.02432 79.43
2.3823 5.72 7.93 17.3780 8.95 10.72 19.140 −1.33 1.267 4.20 15.977 8.35 15.1
0.00649 104.71 2.4660 6.11 9.40 25.0035 9.14 6.60 18.186 −0.83 1.491 2.54
17.802 15.53 7.2 0.84140 316.23 3.6141 5.85 4.52 12.0226 9.28 9.73 19.262
−0.30 1.794 2.87 19.252 16.43 7.6 1.12202 891.25 7.1121 5.70 3.90 7.8163
9.65 7.91 19.710 −1.00 1.400 1.75 18.952 17.64 5.9 2.51768 162.18 5.6885
5.57 3.02 6.4121 9.45 12.11 19.671 −1.49 1.204 2.17 18.402 16.80 6.7 2.02302
331.13 6.2517 5.87 3.50 8.9536 9.64 8.87 19.098 −4.20 0.404 3.03 17.777
14.54 7.8 0.45604 512.86 3.6728 5.84 5.17 13.6144 9.29 7.28 19.261 −0.39
1.736 3.30 17.802 13.37 8.4 0.62806 1288.25 10.6660 6.76 5.49 27.1019 10.37
8.10 17.081 −0.41 1.723 2.00 16.777 15.25 6.4 1.95434 213.80 5.2602 6.37
4.09 16.9824 9.73 10.53 17.498 −1.42 1.234 2.87 16.577 13.77 7.6 1.21619
954.99 7.7090 6.80 4.90 26.8534 10.17 9.18 16.644 −1.21 1.317 3.27 17.602
13.34 8.3 0.56105 1096.48 8.4918 6.66 5.57 26.4850 10.18 11.26 17.358 −0.34
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1.767 2.70 16.677 14.19 7.4 1.07399 575.44 5.5081 6.51 4.82 21.5774 9.83
18.31 17.407 −0.94 1.438 2.38 16.702 14.70 7.0 1.32739 346.74 4.9091 6.40
4.53 19.0108 9.71 7.59 17.554 −0.93 1.444 3.20 17.452 13.60 8.1 0.52481
891.25 6.2230 6.43 5.48 22.4388 9.88 8.49 17.965 −0.39 1.735 3.20 17.652
13.80 8.1 0.69984 1174.90 8.2794 6.58 5.26 23.2809 10.13 21.02 17.533 −0.44
1.707 2.54 16.027 13.83 7.2 0.73451 275.42 3.1550 6.22 5.08 19.9067 9.34
12.95 17.944 −1.61 1.161 2.87 16.852 14.00 7.6 0.47424 371.54 2.9992 6.00
5.33 17.1791 9.22 2.77 18.863 −0.53 1.649 2.24 17.427 15.53 6.8 0.66681
125.89 2.1727 5.65 4.71 11.8304 8.88 3.26 19.952 0.05 2.100 2.79 17.252 14.57
7.5 0.84140 549.54 4.7863 6.27 4.88 18.1134 9.64 5.27 18.173 −0.42 1.714
2.46 17.002 14.88 7.1 0.83560 257.04 3.3113 6.01 4.72 15.0314 9.29 8.86
18.727 −0.57 1.627 2.54 17.627 15.35 7.2 1.21619 446.68 5.2119 6.22 4.42
15.4525 9.68 4.35 18.300 −0.35 1.762 2.54 16.827 14.55 7.2 0.70146 263.03
3.0061 6.09 5.00 17.3780 9.26 3.19 18.599 −0.27 1.819 2.87 16.727 13.91 7.6
0.62661 501.19 3.9719 6.20 5.16 18.6209 9.48 5.04 18.032 −0.99 1.414

Data Set for K-Means Clustering Algorithm (Sample Size
1594 × 6)

File: grb2007

logT 50 logT 90 logP256 LogFt LogH32 LogH321

0.25334 0.71466 1.07397 −5.27852 0.19054 −0.02913 0.10721 0.49638
−0.35754 −5.81951 0.32892 0.13784 1.67306 1.95509 0.55871 −4.22996
0.38283 0.17708 2.48624 2.63348 −0.32057 −5.50934 0.58037 0.28732
1.68699 1.87511 0.17493 −4.76470 0.25791 −0.03144 1.52881 1.79206
0.54008 −4.41162 0.44038 0.22228 1.97878 2.26011 −0.18111 −5.24094
0.51085 0.21099 −0.66154 −0.50169 −0.14146 −6.86566 0.51999 0.38107
0.82737 1.70600 1.67732 −3.53472 0.77891 0.53498 2.62222 2.65707 0.14737
−5.67809 0.10422 −0.19273 0.92345 1.23106 0.47712 −5.31327 0.56201
0.35371 1.10938 1.39389 −0.18977 −5.73393 0.24417 −0.05049 0.50515
0.85926 0.67541 −5.95269 0.25873 −0.02558 1.30724 1.79696 −0.17134
−5.67838 0.98820 0.88566 −1.37675 −1.07058 0.01072 −6.39290 0.83754
0.66610 −0.22403 0.06930 −0.06148 −6.28575 0.54318 0.42291 0.79741
1.47270 1.25679 −4.48705 0.39712 0.16209 1.75606 1.86385 0.60097
−5.14715 0.42466 0.18139 1.78845 2.34475 0.11327 −4.40330 0.46796
0.24368 0.74068 1.09174 0.02284 −6.31785 0.15406 −0.16245 −0.59176
−0.34872 −0.17134 −6.86633 0.68486 0.54012 1.01301 1.42213 −0.25806
−5.52822 0.65513 0.42492 1.48012 1.60758 −0.08355 −6.03939 0.66237
0.40397 0.82321 1.45551 1.53934 −3.82324 0.54139 0.35607 −0.71670
−0.41567 0.12024 −5.89123 1.00000 0.75499 1.45454 1.90758 0.23325
−4.43441 0.51142 0.30186 1.33122 1.61439 −0.28483 −5.26408 0.23772
−0.05779 −1.52288 −1.17393 −0.29243 −7.01382 0.91457 0.85585 −0.49485
−0.01773 0.34044 −5.97005 0.67003 0.50903 −0.95468 −0.34199 1.34335
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−5.20176 0.68711 0.49421 1.13862 1.70436 0.07482 −5.39556 0.33330
0.13590 1.71893 2.16715 0.08849 −4.45647 0.38102 0.09040 −0.11464
0.18639 −0.19111 −6.55912 1.26512 1.15087 1.56811 2.02576 0.67916
−4.14273 0.54873 0.27742 1.01569 1.40824 0.23401 −5.22548 0.41706
0.18906 0.45939 0.70381 −0.47756 −6.69897 0.37824 0.19270 1.47082
2.09129 0.00260 −5.28225 0.27669 0.04116 1.54969 1.93166 0.15685
−5.19098 0.21640 0.03123 0.72526 1.19179 0.00561 −6.22526 0.34511
−0.01806 −1.85387 −1.46852 0.12581 −6.14933 0.87287 0.69100 −0.89279
−0.59176 1.22003 −5.82295 0.35185 0.11387 0.48742 1.18093 1.22848
−4.67244 0.22206 −0.01699 0.94606 1.57630 0.88812 −5.17121 0.63947
0.45084 0.59857 1.18820 0.62552 −4.97102 0.62766 0.39883 1.08264 1.49282
−0.25649 −5.96908 0.11971 −0.14259 −1.14267 −0.81816 0.76208 −5.27774
1.06926 0.92764 −1.72125 −1.17393 0.28892 −5.93843 0.85469 0.61476
−1.40894 −1.00000 −0.41341 −5.92758 0.90845 0.76967 1.50166 1.66891
0.70372 −5.23915 0.65992 0.49239 0.54654 1.10285 −0.11070 −5.93889
−0.02500 −0.34851 0.39724 0.81902 −0.30627 −6.21722 −0.04948 −0.60159
0.08493 0.63225 0.16286 −5.68636 0.88930 0.67322 0.33766 0.68699 1.02350
−5.11227 0.34386 0.18436 −0.59176 −0.29073 0.43008 −6.25898 0.76441
0.66636 1.13659 1.55900 0.30016 −5.21155 0.37187 0.17529 0.99087 1.15836
−0.47625 −5.86918 0.30122 0.08854 −0.93930 −0.60206 0.56455 −5.99388
0.73670 0.58780 0.28330 0.61909 0.11594 −6.19978 0.84759 0.55207 1.30033
1.53372 −0.39362 −4.96889 0.29105 0.16659 0.93651 1.35272 0.27554
−5.17659 0.38845 0.17097 −1.23657 −0.92445 0.15534 −6.05688 1.04299
0.80378 −0.56864 −0.38405 0.43933 −6.37233 0.66375 0.56664 1.75994
2.25489 −0.10073 −5.52608 0.33821 0.08123 1.48652 1.74868 −0.07676
−5.49949 0.37071 0.09549 1.14264 1.42943 −0.05948 −5.30706 0.58899
0.41982 −0.07988 0.16791 0.54295 −6.04934 0.50859 0.37948 0.93328
1.31672 0.02202 −5.50432 0.43072 0.19469 1.22614 1.77513 0.84942
−4.68089 0.42848 0.28129 0.77931 1.31538 0.10755 −5.52223 0.23532
0.01286 1.52218 2.00894 0.01242 −5.11873 −0.01026 −0.33908 0.74068
1.30449 0.65811 −5.13371 0.51550 0.31544 1.11793 1.43864 −0.52433
−5.97384 0.15226 0.02590 1.26557 1.89111 0.62315 −4.37799 0.72472
0.49034 −1.52288 −1.25964 0.27254 −5.79218 0.93583 0.80634 1.31269
1.73149 0.79071 −3.60014 0.71816 0.47888 0.45939 1.03918 −0.08938
−6.09501 0.09973 −0.16159 1.19535 1.86041 −0.01954 −5.91934 −0.40822
−0.73771 0.69827 1.04673 −0.03152 −5.64847 0.51461 0.16794 0.32469
0.50515 −0.38722 −6.66136 0.25826 0.03924 0.76042 1.79607 0.11727
−5.36251 0.10213 −0.08961 1.35763 1.66170 0.13640 −5.34228 0.55229
0.35468 1.03918 1.57036 −0.42022 −6.26400 0.01029 −0.13387 −1.20066
−0.73755 −0.21681 −6.24153 1.07238 0.81451 −0.34872 0.25334 −0.04866
−6.05393 1.04634 0.95104 0.73046 1.09621 −0.48678 −5.85608 0.69682
0.31866 0.25334 0.73560 −0.08302 −6.14026 0.33653 0.09029 0.29754
0.81050 −0.03105 −6.13419 0.43654 0.20923 1.60345 1.91101 0.50623
−4.47496 0.45255 0.26673 1.31538 1.78527 −0.04624 −5.58443 0.31429
0.02938 −1.04096 −0.51856 0.13513 −6.84472 0.17858 −0.03738 1.32862
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1.76665 0.04727 −5.44033 0.29217 0.02697 0.64503 0.85926 0.07188
−5.76120 0.46316 0.29561 −0.59176 0.10721 0.49651 −6.27564 0.55798
0.34188 1.01030 1.40497 −0.18442 −5.64108 0.08211 −0.23784 1.21442
1.50079 −0.25571 −5.32597 0.91452 0.67295 1.34776 1.87437 −0.38616
−5.45783 0.40920 0.09230 0.77931 1.23915 0.81218 −4.99883 0.15747
0.02063 −1.22185 −0.88273 0.34577 −6.18456 0.87540 0.66845 −0.59176
−0.49485 −0.24109 −7.06616 0.53022 0.45623 1.70873 1.88391 0.11494
−5.37782 0.76000 0.61525 0.76042 1.24075 0.78376 −5.22541 0.23213
0.00168 −0.04769 0.37438 −0.16368 −5.87154 0.77029 0.50655 −0.89279
−0.04769 −0.11520 −7.12989 0.10456 −0.10323 0.17173 0.41731 0.37218
−5.37647 0.70629 0.47384 1.28619 2.04322 0.54617 −4.72677 0.47423
0.32594 −0.59176 −0.41567 0.03941 −6.30587 1.10089 0.97552 −0.65170
−0.40012 0.38039 −6.23493 0.87613 0.70642 2.03304 2.19888 0.55255
−4.78875 0.37337 0.13086 −0.49485 −0.07988 −0.39254 −6.64168 0.83032
0.21942 0.33766 0.82321 0.40364 −5.70329 0.35325 0.06533 0.96152 1.44666
−0.22768 −6.20025 −0.18945 −0.44191 −0.04191 0.15776 0.58081 −5.83372
0.64896 0.41028 0.41896 0.69827 −0.54061 −6.07593 1.06805 0.72360
1.43149 1.68585 −0.21681 −5.78270 0.78423 0.46389 1.34651 1.95417
0.72329 −4.34960 0.59008 0.30998 0.23754 0.50515 −0.47237 −5.95546
0.43180 0.26627 −0.11464 0.82321 1.06254 −4.94623 0.56471 0.33826
2.44035 2.55227 −0.15802 −4.97597 0.28094 0.02365 −0.04769 0.41896
1.21147 −5.13472 0.32295 0.11998 1.56358 2.05830 −0.02549 −5.13001
0.18233 −0.12155 −0.89279 −0.49485 −0.23210 −7.11982 0.37048 0.13867
−0.71670 −0.29073 0.32531 −6.53880 0.51720 0.36217 −1.25964 −0.79317
0.43249 −5.95187 0.88396 0.71339 0.76042 1.28330 1.48222 −4.22959
0.34445 0.18979 1.34776 1.44066 −0.07109 −5.85496 0.28917 0.04187
−0.89279 −0.71670 0.72908 −5.51563 0.96848 0.77893 −1.06048 −0.10018
0.01410 −6.79309 0.44913 0.32975 −1.10237 −0.72816 0.21272 −6.51465
0.54575 0.39186 −0.62525 −0.35458 0.15746 −5.81296 0.65031 0.48298
0.44963 0.68124 0.40398 −5.84001 0.15824 −0.07344 0.53857 0.95847
−0.52724 −6.39794 0.27599 0.13974 0.78390 1.27305 1.06453 −4.60119
0.50387 0.25559 1.23754 1.50688 −0.31876 −5.91417 0.61458 0.35726
0.98227 1.30724 −0.09637 −5.65330 0.59327 0.37065 −0.29073 −0.01773
−0.22330 −6.84076 0.51915 0.35133 0.83960 1.30311 0.95453 −4.24003
0.39035 0.15449 0.20412 1.50775 0.24601 −6.27100 0.12396 −0.16799
1.17540 1.69323 0.16613 −4.94900 0.72931 0.56462 1.39501 1.78981 0.23249
−5.17224 0.25409 −0.06888 2.20706 2.43914 −0.54516 −5.47996 0.43387
0.15734 −0.98297 −0.71444 0.21299 −5.92000 0.90331 0.82472 1.80269
2.27659 −0.20831 −4.43176 0.49819 0.27980 0.96755 2.23188 1.00173
−4.65922 0.53855 0.27630 0.20412 1.26102 0.54357 −5.60836 0.62629
0.44314 0.25334 0.85540 0.53020 −5.67728 0.32103 0.01940 1.44166 1.62572
−0.21467 −5.89106 0.27477 0.02431 2.01435 2.21204 −0.25649 −5.68006
0.61548 0.45551 0.97350 1.37555 0.07408 −5.48382 0.17285 −0.08002
0.86308 1.44267 0.06781 −5.42228 0.19461 −0.06209 0.01030 0.56961
0.51904 −6.30945 0.36014 0.19501 −0.55909 −0.11748 0.22660 −6.68212
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0.51584 0.42403 1.09398 1.30587 −0.36856 −5.98657 0.71956 0.55224
0.61236 0.97644 0.09517 −5.74800 0.27605 0.12282 0.33766 0.78390 0.00130
−6.18509 0.00102 −0.35286 −0.46725 −0.01144 −0.09909 −6.74698 0.19474
−0.25723 2.14424 2.27864 0.40381 −4.99166 0.39974 0.13058 1.35518
1.75800 −0.06702 −5.50533 0.12105 −0.28856 1.07569 1.57703 0.08063
−5.73608 0.27757 0.02903 2.00097 2.50323 0.81644 −4.44045 0.62213
0.48390 −0.58004 −0.16685 0.15746 −6.48879 0.50742 0.28157 0.83556
1.18458 0.27989 −5.33451 0.73324 0.56795 0.89960 1.32732 −0.08145
−4.84336 0.68278 0.41285 0.48742 0.86308 −0.26600 −6.11008 0.16450
−0.16859 0.33766 0.65744 0.15290 −6.06318 0.47247 0.35647 −0.97062
−0.58838 0.09552 −6.18302 0.78198 0.54037 0.50515 0.89254 −0.29243
−6.10106 0.35518 0.12767 1.49282 1.69154 0.11959 −6.31345 0.81291
0.46893 1.18458 1.71413 0.55835 −4.02521 0.63920 0.44739 0.86308 1.24866
−0.46344 −5.41696 0.27288 0.15084 1.17909 1.32205 0.22583 −5.58369
0.32646 0.11097 −0.15243 0.14860 −0.24949 −6.79838 0.73478 0.59072
0.89254 1.30033 0.29403 −4.99114 0.22461 −0.04028 0.18639 0.53857
0.17696 −6.37603 0.16277 −0.10490 1.02102 2.08812 0.65369 −4.66186
0.39129 0.14641 0.53046 1.01837 0.96497 −4.95253 0.21136 −0.10590
0.33766 0.92012 −0.27246 −5.97449 0.00959 −0.30103 0.43965 1.38710
1.06055 −4.82927 0.62060 0.41220 0.06145 0.39724 0.65244 −5.74618
0.44333 0.28013 0.96454 1.52551 −0.31605 −5.56431 0.52842 0.30598
1.04673 1.35641 0.24130 −5.06344 0.52916 0.36139 1.35518 1.52135 0.16673
−5.32166 0.30507 0.05892 0.79741 1.08493 −0.10679 −5.91311 0.41099
0.27541 −0.71670 −0.71670 0.86368 −5.92632 0.82416 0.65525 1.24551
1.68008 −0.27327 −5.55382 0.34355 0.00032 1.73509 1.91237 −0.24033
−5.68897 0.06924 −0.17656 −0.52143 −0.33630 −0.20343 −6.42209 0.80450
0.59807 0.86308 1.42839 0.35430 −5.00353 0.46905 0.19956 1.02102 1.70873
0.52375 −4.48192 0.87282 0.66387 0.78845 1.19712 0.16465 −5.29337
0.37552 0.17175 0.22115 0.61236 −0.27491 −5.99340 −0.18432 −0.60666
1.57036 1.84954 −0.07935 −5.24818 0.65447 0.34278 −0.41567 0.03663
0.50215 −5.87903 0.91055 0.59344 1.93134 1.99903 0.60184 −4.94931
0.44305 0.28296 1.02366 1.41896 1.55125 −3.85855 0.59839 0.42474 1.12424
1.33510 0.29885 −5.55177 1.05448 0.77921 1.08493 1.46894 −0.23508
−5.28877 0.89615 0.73626 1.27453 1.68413 −0.44249 −5.81953 0.13959
−0.13028 −0.29073 −0.01773 1.03177 −4.96182 0.82902 0.61342 1.03663
1.44066 −0.41117 −5.86214 0.41983 0.15452 1.10065 1.51033 −0.01728
−5.25916 0.57599 0.43092 −1.50864 −1.13077 −0.29843 −6.54130 0.70292
0.57489 0.72526 1.23431 −0.27084 −5.63937 0.27700 0.04154 1.76522
2.03304 −0.17198 −5.06976 0.32767 0.06321 0.80182 1.31269 0.57368
−4.90035 0.47773 0.31470 1.40278 1.86612 0.51162 −4.73587 0.83363
0.66066 1.18093 1.58937 0.08243 −5.32203 0.53383 0.35599 1.73458 1.95694
−0.04287 −5.32523 0.19552 0.01407 −0.71670 −0.41567 0.15655 −6.08561
0.70235 0.57037 0.94290 1.68585 0.33021 −4.68219 0.97665 0.72498 0.98516
1.45939 −0.27327 −5.59322 0.32786 0.07596 1.72735 1.94732 0.89326
−4.20754 0.47630 0.27875 0.16791 1.10285 1.76553 −4.32799 0.48939
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0.30777 1.80182 2.33252 0.00604 −5.34180 0.37723 0.22105 1.39836 1.82028
0.47407 −4.48387 0.67884 0.45087 1.00208 1.20758 1.43605 −3.93509
0.66757 0.52571 1.36847 1.48196 0.41979 −5.87335 0.51611 0.26114 1.34901
1.56358 0.14799 −5.21638 0.34297 0.06954 −0.11464 0.14860 0.25600
−5.40188 1.14838 0.94403 −0.49485 −0.29073 0.06595 −6.77009 0.66686
0.57714 −0.11464 0.31133 0.13450 −6.27482 0.35135 0.19710 0.18639
0.67541 −0.24565 −6.44570 1.66584 0.90649 1.45258 1.91845 −0.29843
−5.63097 0.50502 0.37427 0.58433 0.93003 0.44592 −5.27075 0.46736
0.11146 1.37905 1.83067 0.61109 −4.60537 0.35069 0.15684 1.35149 1.79829
−0.15181 −5.62104 −0.05899 −0.39089 1.20758 1.82696 −0.34872 −5.51509
0.08043 −0.19568 0.69827 1.12424 −0.42713 −5.98577 0.53585 0.34064
−0.71670 −0.11464 −0.12784 −6.39292 0.90395 0.54281 1.47920 1.73149
0.22246 −5.35527 0.25265 −0.00869 1.12633 1.56433 −0.39469 −5.28205
0.49326 0.22507 −1.15490 −0.37779 −0.20204 −6.85406 0.42154 0.14986
1.02629 1.55592 1.27885 −3.76891 0.73486 0.56983 −1.19382 −0.71670
0.29994 −5.95479 0.89589 0.71393 1.48833 1.72263 1.02082 −4.45124
0.47655 0.28150 0.14860 0.65744 −0.32148 −5.78656 0.24971 −0.09002
0.20412 0.59151 0.86046 −5.02770 0.53722 0.33676 −0.77728 −0.41117
0.26788 −6.19382 1.01962 0.67192 0.73046 1.37555 0.00604 −5.70536
0.51371 0.28052 0.81902 0.98516 −0.26520 −5.61004 0.05825 −0.10969
0.20412 0.53857 1.10527 −4.97277 0.41961 0.21715 0.65128 0.77466 1.28838
−4.62093 0.72032 0.53708 1.81350 2.48805 0.49108 −4.58737 0.57978
0.40085 1.03407 1.37321 −0.47886 −5.81801 0.29277 −0.11765 0.52218
1.16602 0.47741 −5.31876 0.48234 0.26529 −0.65365 0.01995 0.44685
−5.72407 1.16030 0.91332 1.13862 1.49192 −0.22841 −5.70336 0.41964
0.17980 0.89960 1.19888 0.35755 −4.92300 0.62882 0.47172 0.87064 1.56660
0.47770 −4.50475 0.72339 0.52634 1.50947 1.80357 −0.08407 −5.58107
0.63950 0.46610 −1.16115 −0.23807 0.07151 −6.52181 0.67956 0.59043
1.02629 1.71734 −0.10403 −5.52418 0.30312 0.01184 0.38435 0.46776
−0.02919 −6.21977 1.38458 0.80113 −0.49485 −0.23958 0.56644 −5.92398
0.68742 0.51454 1.19712 1.49460 −0.28735 −5.81197 0.31772 0.07869
1.03407 1.29614 0.60660 −4.95257 0.47256 0.28111 1.25334 1.72421 0.30211
−5.41360 0.83027 0.69426 2.11175 2.19053 −0.17718 −4.97400 0.60267
0.43651 −0.89279 0.06145 0.25066 −5.92846 0.56859 0.48358 0.55437
1.23915 0.71600 −5.03796 0.55949 0.32688 0.56205 2.44046 1.21397
−4.00349 0.80204 0.67806 0.26858 1.20930 0.47363 −5.63873 0.40101
0.19268 0.80182 1.42423 0.06707 −5.25204 0.47314 0.21872 −0.41567
0.44963 0.26316 −6.12263 0.65091 0.36314 0.61236 1.14662 0.41061
−5.26201 0.38931 0.14130 −0.59176 −0.15243 −0.05849 −6.58299 0.93379
0.55521 0.60552 0.85926 0.74749 −5.12349 −0.17418 −0.45237 1.40606
2.04070 0.22634 −4.57836 0.61694 0.47860 2.13537 2.43528 0.43600
−4.13656 0.38350 0.15349 1.31940 1.48379 0.22866 −5.60586 −0.05753
−0.39349 1.23106 1.77977 1.21344 −4.61013 0.42820 0.15925 −0.89963
−0.28233 0.14520 −6.61629 1.12008 0.77947 1.08034 1.33638 0.16167
−5.11160 0.42464 0.20866 0.22115 0.70381 0.07555 −6.25626 0.31078
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0.05607 0.55437 0.79741 0.87105 −4.89073 0.74027 0.54210 0.14860 0.73560
0.38148 −5.23106 0.81136 0.69169 −0.71670 −0.29073 −0.12552 −6.99667
0.34633 0.17502 0.12840 0.80618 −0.21467 −5.45154 0.97752 0.67326
1.08721 1.61372 0.32531 −5.62169 0.38004 0.11098 −0.89279 −0.89279
0.09272 −6.43116 0.76483 0.61659 −0.04769 1.18639 0.57646 −5.72157
0.48633 0.26938 0.08493 0.25334 −0.16431 −5.93926 0.17137 0.01812
1.86423 2.24218 0.34104 −4.23717 0.69793 0.53800 0.83960 1.48923 1.25765
−4.04556 0.66041 0.50158 −1.03621 −0.22841 0.89708 −6.12854 0.58582
0.40782 1.25797 1.92212 0.11528 −4.94723 0.47929 0.26162 0.86688 1.34021
−0.02733 −5.77940 0.45026 0.22582 1.35641 1.73046 0.75136 −4.48466
0.50013 0.31907 0.61236 1.19535 0.06070 −5.26180 0.79682 0.61011 0.87806
1.18093 1.65720 −4.07526 0.52909 0.32323 0.43965 1.00484 0.32325
−5.50264 0.54695 0.31204 0.93651 1.58143 1.00668 −4.79929 0.51061
0.27653 1.30172 1.76427 −0.00833 −5.47010 0.21209 −0.04075 0.10721
0.40824 −0.07988 −6.07894 0.67145 0.60797 1.15448 1.48012 −0.31785
−5.27344 0.50917 0.28498 0.55437 1.06145 0.20790 −5.60801 0.47929
0.18768 −0.59176 0.01030 0.09307 −6.26528 0.82446 0.57165 0.89609
1.41577 0.19368 −4.90025 0.61977 0.42988 0.87437 1.27305 0.66238
−4.39335 0.70907 0.55855 1.17725 1.46324 0.08707 −5.34056 0.24575
0.08499 1.91542 2.31833 −0.24109 −4.68905 0.08561 −0.28826 0.42943
0.85540 −0.10679 −6.13283 0.87687 0.70260 −0.55129 −0.29414 0.04100
−6.69323 0.56213 0.31636 1.57259 2.08149 0.27669 −4.37201 0.48712
0.25598 0.93003 1.34147 0.32695 −5.19627 0.25072 0.00153 −0.78252
−0.39686 0.36511 −6.40882 0.81709 0.60772 1.07802 1.88789 0.84535
−4.39244 0.53012 0.27379 1.06625 1.34776 −0.10958 −5.36623 0.54205
0.35692 1.69154 1.90378 0.14426 −4.85571 0.14199 −0.16477 −0.37882
−0.14997 0.13322 −6.03872 0.95683 0.70390 −0.89279 −0.89279 0.29754
−6.17144 0.73068 0.59039 1.25950 1.98544 −0.13253 −5.59825 0.45874
0.18558 0.90309 1.35272 −0.37986 −6.05943 0.40514 0.08662 1.70764
1.87139 −0.07469 −5.34113 0.38053 0.10004 0.94606 1.31269 −0.27984
−5.74084 0.34693 0.21704 1.60206 2.13313 0.26031 −4.97593 0.42500
0.11438 0.86688 1.40278 −0.08040 −5.33734 0.57329 0.30444 1.62638
2.13087 0.18921 −4.56575 0.75473 0.63912 1.08493 1.60136 0.01703
−5.38437 0.36303 0.17244 0.51375 1.17909 0.13481 −5.65886 0.43500
0.15467 1.04922 1.36248 −0.14267 −5.99650 0.33224 0.06621 1.83271
1.92544 0.14520 −4.82597 0.63329 0.40705 0.80618 1.75214 0.77945
−4.91775 0.53717 0.30760 0.80618 1.15253 −0.49894 −5.62268 0.49070
0.22375 1.06145 1.29332 0.33766 −5.59312 0.46995 0.24793 0.28330 0.73560
0.21431 −5.87322 0.52836 0.31910 −0.59176 −0.34104 0.04571 −6.81556
0.66956 0.58734 0.74570 1.14860 −0.01592 −5.39556 0.49721 0.31240
1.76163 2.07604 −0.06854 −4.54165 0.05341 −0.31159 1.56129 1.84201
0.06670 −5.35793 0.59280 0.37251 1.50079 1.84520 −0.26922 −5.33096
0.47829 0.21618 1.25256 1.73483 −0.11520 −5.52331 0.40958 0.15935
0.59857 1.32469 0.00346 −5.47623 0.49165 0.40340 1.10938 1.31133 0.14082
−5.20107 0.78416 0.61498 1.16507 1.42995 −0.28150 −5.81759 0.42240
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0.07612 0.95075 1.42160 −0.12552 −5.52398 0.33570 0.02987 0.97937
1.28619 0.22037 −5.16456 0.49584 0.27836 1.05903 1.46514 0.58297
−4.26696 0.48733 0.21808 −0.34872 −0.04769 0.76050 −6.10182 0.27927
0.08964 0.50515 0.92345 0.87737 −5.01950 0.54374 0.31788 1.43864 1.96710
−0.08355 −5.05904 0.32713 0.16643 1.24393 1.73227 0.19479 −5.08970
0.25899 0.00217 1.06386 1.35149 0.20575 −5.38775 0.34816 0.15062 1.13456
1.49859 −0.34199 −5.08063 0.50522 0.22679 1.72211 1.94919 0.39550
−5.25657 0.44755 0.25307 1.57777 1.91962 0.46642 −5.26352 0.27296
0.02729 0.60552 1.08493 −0.26520 −5.99371 0.24658 0.08914 −0.19382
−0.01773 −0.20135 −6.84448 0.49693 0.30882 −0.38934 0.00346 0.11561
−6.38998 0.75877 0.61752 −0.63451 −0.37263 0.30471 −6.45780 0.63023
0.46395 −0.23958 0.18639 −0.00261 −6.31363 0.62366 0.46833 0.80182
1.27453 0.61045 −5.89719 0.41819 0.16965 0.81050 1.25797 0.67117
−4.73353 0.44678 0.26429 1.14464 1.72026 −0.29757 −5.83556 0.29753
0.08358 1.55281 1.83149 0.04297 −5.20964 0.81564 0.54794 1.64941 1.91373
−0.01682 −5.22651 0.65023 0.45412 1.35025 1.70709 0.48615 −4.47940
0.73798 0.53996 1.11368 1.62308 0.58670 −4.65423 0.45312 0.28431 0.77931
1.14364 −0.45842 −5.38978 0.41124 0.24136 0.86688 1.31133 −0.22841
−5.87788 0.22288 −0.12150 1.78023 2.14633 0.04766 −5.16374 0.41667
0.15784 0.16791 0.50515 −0.17328 −6.03100 0.56637 0.24943 1.39947
1.80627 −0.04576 −5.70498 0.62580 0.40792 1.52051 1.88227 −0.25964
−5.51499 0.62786 0.52916 0.66351 1.06145 −0.28483 −6.06178 0.24930
0.02390 1.12633 2.16115 0.31218 −4.84934 0.57379 0.41456 1.31404 1.93571
0.14270 −4.76135 0.40649 0.23320 1.04673 1.44864 −0.15864 −5.48492
0.37446 0.05367 0.65128 1.13456 0.10003 −5.38796 0.43507 0.13954 2.00180
2.29367 0.14176 −5.01345 0.34686 0.12426 1.39051 1.52218 0.78362
−4.71023 0.67669 0.46436 0.61909 1.20151 −0.31426 −6.03133 0.64861
0.39621 1.40002 1.76641 −0.41567 −5.27034 0.43444 0.09429 0.75066
1.46084 0.32118 −4.84248 0.46841 0.29211 0.67541 0.91677 0.58320
−5.04479 0.58343 0.43034 1.51967 1.80813 −0.25806 −5.46353 −0.03439
−0.25818 1.01569 1.36127 −0.00305 −5.37976 0.19258 −0.08104 0.34400
0.69688 0.42830 −5.81043 0.25163 −0.13109 1.23915 1.62009 −0.41341
−5.76080 0.52893 0.35224 1.15836 1.50079 0.24403 −5.02632 0.15467
−0.12716 1.07569 1.55125 0.12057 −5.37789 0.22459 0.01827 1.31538
1.58070 −0.15802 −5.35566 0.71211 0.55676 1.59293 1.85072 0.09342
−4.98670 0.36466 0.13232 0.70381 1.19179 −0.09583 −5.38122 0.39316
0.18665 1.79829 1.95540 0.18441 −5.21254 0.29127 0.06367 1.75361 1.91945
0.50893 −4.66454 0.59369 0.36650 1.91169 2.28977 0.26951 −4.70785
0.29838 0.04397 1.55398 1.95122 0.07954 −5.24390 0.22012 −0.05779
0.78390 1.25022 −0.02919 −5.19132 0.76157 0.52938 0.94606 1.37438
0.01115 −5.79218 0.30956 −0.01753 0.79295 1.14063 0.40756 −4.99991
0.60531 0.44568 1.70981 2.01850 0.21985 −5.08650 0.44817 0.15596 0.89960
1.10938 0.93661 −4.83803 0.62634 0.46251 1.49237 1.74794 −0.13966
−5.77459 0.23128 −0.11456 0.96454 1.47550 0.19368 −5.36603 0.22522
−0.08271 0.97350 1.39277 0.50406 −5.02678 0.13915 −0.10389 1.67424
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2.12933 0.37621 −4.06819 0.55149 0.34959 1.48923 1.68756 0.11860
−5.20051 0.62381 0.36104 1.55976 2.18203 −0.13312 −4.69124 0.28769
0.04714 0.25334 0.53046 0.34025 −5.87582 0.74263 0.60296 0.23754 0.76997
0.85169 −5.36472 0.49937 0.32938 1.08948 1.76831 0.13799 −5.05700
0.28884 0.03013 0.42943 1.41471 0.04336 −5.45232 0.30040 −0.00993
0.80182 1.20758 0.17955 −5.39019 0.52481 0.29925 1.09621 1.54615
−0.26600 −5.34294 0.37987 0.13649 1.01837 1.48561 0.29798 −5.20754
0.19506 −0.07532 1.06386 1.55281 0.03463 −5.50059 0.49136 0.28626
1.06625 1.42736 −0.22768 −4.95048 0.93289 0.75627 1.15253 1.52343
−0.23508 −5.21169 0.35353 0.14174 1.23754 1.65866 0.06108 −5.12016
0.28300 0.03453 0.67541 1.13659 0.09726 −5.38923 0.38029 0.05604 1.51375
1.76283 0.60821 −4.64056 0.49887 0.27184 1.35395 1.76090 0.46075
−4.62237 0.58307 0.34843 0.90998 1.33766 0.28556 −5.19682 0.50562
0.31269 0.95231 1.26708 0.29842 −5.12610 0.57015 0.39330 1.94227 2.09644
−0.04287 −5.26616 −0.07731 −0.46852 0.89609 1.54258 0.09447 −6.19736
0.52612 0.28557 0.51375 1.05415 −0.28904 −5.67001 0.49825 0.41127
1.67365 1.80813 −0.34582 −5.18827 0.50178 0.12829 0.90655 1.31269
−0.38091 −5.78662 0.45158 0.22798 0.93651 1.33766 −0.00043 −5.52014
0.55612 0.31156 1.42943 2.25789 −0.17070 −4.21456 0.56083 0.42454
1.05169 1.74144 −0.26281 −5.23018 0.44011 0.20960 1.12215 1.50035
−0.34679 −5.38927 0.19194 −0.07345 1.18276 1.72942 0.20222 −4.83221
0.84510 0.70821 1.47457 1.65560 0.54045 −4.65738 0.50758 0.27664 1.15057
1.48652 1.02189 −4.59312 0.53039 0.34024 2.02129 2.11973 −0.01547
−4.75962 −0.23374 −0.52617 0.82737 1.04673 0.18213 −5.42992 0.72809
0.51909 1.09621 1.52218 0.82360 −4.29090 0.63233 0.48286 0.70381 1.14563
−0.06753 −5.49174 0.44448 0.35287 0.03342 0.16524 0.18724 −5.88636
0.76136 0.65656 1.20758 1.62965 0.26293 −4.65868 0.56675 0.32862 0.97644
1.49058 −0.16431 −5.32938 0.51822 0.34242 1.37905 1.71252 0.36586
−4.31646 0.72095 0.50946 0.82737 1.17540 −0.10568 −5.22214 0.30837
−0.08600 0.75066 1.00621 0.01242 −5.51235 0.36838 0.14934 1.73865
2.20620 0.45500 −4.78545 0.33113 0.12605 0.87806 1.23431 0.11361
−5.74899 0.41118 0.17343 1.14264 1.66742 −0.10958 −5.42806 0.48892
0.27578 0.45939 0.71466 0.14706 −5.52856 0.64047 0.43840 1.68813 2.00525
−0.15490 −4.98640 0.29175 −0.03664 1.70873 1.94763 −0.24949 −4.93052
0.67332 0.44480 1.07100 1.51630 0.66408 −4.46763 0.70643 0.50711 1.07335
1.22614 −0.28483 −6.09794 0.60955 0.43346 1.34526 1.70627 −0.37986
−5.30246 0.05142 −0.31812 0.98802 1.51925 0.08565 −5.53062 0.12936
−0.11107 1.09621 1.47270 0.62242 −5.21098 0.50678 0.28667 1.03149
1.57556 0.45117 −4.25438 0.65666 0.42718 0.95231 1.42943 −0.04721
−5.36522 0.44052 0.17334 1.36609 1.69604 0.22660 −4.99887 0.80677
0.64323 1.04922 1.42736 0.24428 −5.23151 0.53058 0.31650 1.48287 1.87825
−0.03905 −5.10807 0.45707 0.24047 0.58433 1.04171 0.01870 −5.66312
0.35194 0.08351 1.30033 1.65066 −0.14026 −5.05159 0.82119 0.71568
0.90655 1.11793 0.36530 −5.32716 0.34895 0.23058 1.04673 1.41471 0.23019
−5.50197 0.41001 0.15557 0.99651 1.56015 0.38256 −4.85393 0.36828
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0.10006 0.87437 1.31605 0.10653 −5.14997 0.49390 0.29551 1.42213 1.85326
−0.02965 −4.38405 0.38131 0.14312 0.59857 0.93972 0.02776 −5.67627
0.43912 0.16956 1.62835 1.92511 0.14333 −4.98661 0.32394 0.06070 1.47457
1.68671 −0.01011 −5.04661 0.66408 0.23880 0.69267 0.98227 0.34753
−5.29065 0.48470 0.22253 0.61909 1.05169 0.12516 −5.43214 0.31961
0.00720 0.67541 0.97644 −0.06702 −5.68039 0.23935 −0.03944 0.92345
1.57259 0.34596 −4.96505 0.48796 0.27367 1.17540 1.56886 −0.02000
−5.03096 0.58081 0.38500 1.13252 1.55125 −0.12090 −5.12680 0.22268
−0.12812 0.98516 1.27527 0.05994 −5.71280 0.40672 0.11402 0.97644
1.68441 0.16702 −5.19702 −0.19002 −0.49240 0.66950 1.12943 −0.21254
−5.73542 0.14442 −0.21445 0.92675 1.51967 0.30771 −5.33583 0.63604
0.46982 1.16602 1.50558 −0.12668 −5.22352 0.08355 −0.22022 0.81902
1.25720 −0.29499 −5.60794 0.56544 0.18987 1.53291 1.75752 −0.21254
−4.75863 0.69075 0.54684 0.98516 1.30380 −0.28819 −5.11114 0.14800
−0.07520 0.33766 0.82530 0.43185 −5.62599 0.44825 0.13788 1.22115
1.80661 −0.18509 −5.39534 0.48050 0.22310 1.07218 1.92129 0.30535
−4.98318 0.38992 0.16637 1.22115 1.65159 −0.00261 −5.21875 0.49955
0.15767 1.41949 2.00194 −0.15802 −4.80022 0.51220 0.27183 0.78390
1.31672 −0.11070 −6.00113 0.01277 −0.22786 0.82737 1.66502 0.30384
−5.32892 0.35406 0.03593 0.80618 1.32073 0.20058 −5.78566 0.24002
−0.08555 1.14464 1.73611 0.05690 −5.28433 0.34988 −0.06008 1.67069
2.30256 0.16077 −4.44454 0.65723 0.47956 1.35395 1.80357 0.48615
−4.83538 0.56872 0.34155 1.18093 1.68528 0.31450 −4.85608 0.55680
0.34064 1.26102 1.73509 −0.34582 −5.63358 0.43485 0.23259 0.79071
1.30518 0.10278 −5.55624 0.31134 0.20807 0.96152 1.66109 0.41061
−5.48879 0.37461 0.13664 1.08948 1.55746 0.44824 −4.52765 0.66526
0.45257 1.42160 1.63323 0.23019 −5.42800 0.14006 −0.21195 1.27305
1.62965 0.05767 −5.14249 0.32055 0.14164 0.89960 1.36006 −0.24795
−5.91017 0.70066 0.55079 1.05538 1.42684 −0.11295 −5.94218 0.48076
0.34877 1.31739 1.71332 −0.24185 −5.12956 0.55908 0.26755 1.29684
1.78686 −0.13847 −5.23657 0.46592 0.12980 0.68124 1.11581 0.03463
−5.46889 0.51561 0.22727 0.38596 0.77466 0.32797 −5.79442 0.26208
−0.02495 1.00208 1.39836 −0.03198 −5.53639 0.25128 0.02702 1.11687
1.59822 −0.08197 −4.93401 0.28783 0.01264 0.77232 1.58469 −0.15802
−5.87572 0.43744 0.25169 −0.05552 0.35870 0.10653 −6.21161 0.59333
0.38597 0.65973 0.98802 −0.12378 −5.52946 0.89357 0.46983 1.27156
1.82861 0.18611 −4.75412 0.81832 0.56934 1.63805 1.96076 0.18441
−5.16775 0.38130 0.17990 1.11474 1.57296 0.11826 −5.71783 0.41983
0.03948 0.97644 1.60206 0.55121 −4.73356 0.49951 0.16082 0.89254 1.23188
−0.24949 −5.33089 0.53383 0.36516 0.61236 1.20238 0.12090 −5.55898
0.30667 0.03954 0.56205 1.42160 0.11793 −5.87719 0.36204 0.10406 1.04297
1.24155 −0.07624 −5.69680 0.45134 −0.11854 0.73560 1.17447 0.03463
−5.47873 0.39638 0.28286 0.96755 1.47457 0.68502 −4.91055 0.53582
0.32656 1.69380 1.94873 −0.09745 −4.97515 0.40295 0.05464 0.89960
1.42839 −0.13847 −6.05384 0.31300 0.05877 0.56205 1.13252 0.47813
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−5.55878 0.49790 0.21703 0.96152 1.36668 −0.17457 −5.63077 0.05410
−0.43932 0.22115 0.78390 0.63959 −5.55658 0.48033 0.26725 0.70927
1.22778 0.23019 −5.52915 0.52288 0.17776 0.62572 1.12005 0.43088
−5.38563 0.51892 0.25700 0.77931 1.42318 0.63114 −4.99478 0.44397
0.19733 0.58433 1.07452 0.45939 −5.11907 0.57103 0.37935 0.72526 1.28834
−0.05453 −5.59556 0.32414 0.01454 0.54654 1.10175 −0.25181 −6.61780
0.33622 0.08674 1.38710 1.92610 0.34459 −5.27860 0.38836 0.07662
−0.38091 −0.26440 0.44886 −5.98093 0.84479 0.71904 1.48923 2.12142
0.15381 −5.32258 0.40707 0.21303 1.73534 2.03110 −0.41567 −4.93935
−0.54501 −1.11478 0.47828 1.05415 −0.17198 −6.34256 0.34121 −0.02307
1.09286 1.48787 0.04336 −5.76165 0.48386 0.29284 0.96755 1.47828
−0.08884 −5.70890 0.34992 0.17143 0.45939 0.75557 −0.08197 −5.95762
0.66348 0.46748 0.28330 0.83149 0.36568 −5.86025 0.07629 −0.35646
0.20656 0.62003 −0.22548 −7.03488 0.30718 0.08428 1.08493 1.70353
0.36773 −4.88074 0.50578 0.33171 0.43965 0.93651 0.00087 −5.89688
0.40477 0.15141 0.90998 1.64440 0.04336 −5.23890 0.35817 0.13093 0.23754
0.92345 0.44747 −5.96605 0.05666 −0.29586 0.68124 1.48968 0.17840
−5.61973 0.24667 −0.02691 1.02366 1.09621 0.32428 −5.71366 0.43144
0.14838 0.71466 1.08721 0.02284 −5.88048 0.17764 −0.03796 0.22115
0.59151 0.22167 −5.73938 0.31605 −0.19707 1.10503 1.55204 0.56773
−4.73967 0.42281 0.23601 1.12005 1.64723 −0.33068 −5.46693 0.27404
−0.07431 1.09174 1.63869 −0.37366 −5.83806 0.25316 −0.03103 1.25022
1.82238 −0.13253 −5.54645 0.55434 0.18395 0.71466 1.38482 0.64246
−4.92919 0.49259 0.28308 0.84361 1.31672 0.36586 −5.21396 0.30864
0.03365 0.72787 1.14364 0.00732 −5.90115 0.52822 0.30192 0.87064 1.26255
0.44295 −5.56257 0.22645 −0.15737 0.87064 1.41577 0.60606 −5.05670
0.42770 0.12850 1.54891 1.90896 0.03383 −4.89333 0.45288 0.30129 1.32732
1.73585 −0.49080 −6.07942 0.39246 0.17583 1.50688 2.06242 0.05538
−5.00485 0.35106 0.02145 1.31940 2.04322 0.30038 −4.66637 0.54368
0.29579 0.53046 1.01970 0.04727 −5.72086 0.22253 −0.25252 0.85150
0.99791 −0.06298 −5.55225 0.69954 0.67139 0.88173 1.43508 −0.30627
−5.14803 0.45871 0.21273 0.18639 0.45939 0.77034 −5.50128 0.54883
0.40764 1.21442 1.62933 −0.05948 −5.34046 0.13108 −0.13378 0.81050
1.30172 0.35641 −5.33106 0.11926 −0.14932 1.02102 1.40606 0.17984
−5.24887 0.40362 0.03938 0.44963 0.78390 0.29048 −5.55705 0.62627
0.39029 0.51375 0.99930 0.46150 −5.38802 0.42393 0.15023 0.13988 0.47188
0.55847 −5.54837 0.59850 0.33993 0.84954 1.30242 0.11860 −5.57988
0.46884 0.21935 1.04171 1.49593 −0.30627 −5.37427 0.47288 0.25995
1.37905 1.49947 −0.03716 −5.41795 −0.09588 −0.42317 0.66351 1.05415
0.10517 −5.32075 0.79490 0.59078 1.07569 1.63548 0.13354 −5.43711
0.47169 0.28598 1.44864 1.88063 −0.14691 −5.22856 0.52006 0.35629
1.55514 1.84757 −0.07160 −4.95082 0.52309 0.25518 0.71466 1.43355
−0.10182 −5.83262 0.15989 −0.21112 1.62900 1.99497 0.14333 −4.98376
0.23117 −0.12203 0.90655 1.41256 0.14737 −5.44965 0.36956 0.12794
1.12215 1.36609 0.11760 −5.46597 0.41564 0.14049 0.93328 1.35763 0.53517
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−5.45300 0.25748 −0.03639 1.30929 1.71225 −0.33913 −5.12761 0.43924
0.08286 0.60552 1.12424 −0.11238 −6.24314 0.28532 −0.04183 1.21611
1.88063 0.45133 −5.21617 0.39245 0.14762 0.82737 1.54456 −0.03621
−5.49801 0.54147 0.17432 0.70927 1.38938 0.63377 −5.07109 0.47569
0.24705 1.22778 1.55476 0.00860 −5.51230 0.33749 −0.02199 0.31133
0.59151 0.45849 −5.90686 0.45289 0.25834 −0.11464 0.14860 0.03663
−6.30697 0.79454 0.69992 1.37203 1.81669 −0.11862 −4.90682 0.48429
0.19227 1.03149 1.46036 0.41497 −5.08019 0.69126 0.46491 0.13862 0.47276
0.14644 −5.62501 0.89558 0.69575 −0.01773 0.17725 0.32181 −6.15565
0.73603 0.63646 1.05660 1.74144 0.29248 −5.39664 0.38200 0.04698 0.76522
1.26557 −0.04144 −5.56719 0.14804 −0.31859 1.12215 1.34021 0.40654
−5.33245 0.32012 0.01884 1.12005 1.81007 0.42797 −5.19491 0.51050
0.26727 0.99087 2.17167 0.00260 −5.18138 0.63344 0.44758 1.42684 1.85092
−0.09259 −5.19111 0.30480 0.03672 0.51375 1.41949 0.32715 −5.47314
0.42176 0.13597 1.56320 2.07300 −0.16877 −5.49363 0.15805 −0.24993
0.56538 0.88536 0.40909 −6.10375 0.06107 −0.23888 1.38596 1.69660
0.00689 −5.36653 0.36054 0.14573 1.05660 1.44217 −0.24489 −5.86485
0.39198 0.27555 0.42943 1.16029 0.24748 −5.72241 0.45986 0.22651 0.83960
1.71520 0.37162 −5.13018 0.46973 0.18960 0.56961 1.25256 0.56407
−5.16222 0.37377 0.09977 0.87806 1.53046 0.22220 −5.35369 0.33389
−0.00773 0.85926 1.37203 −0.20066 −5.41183 0.63517 0.50620 1.62835
1.88518 0.02938 −5.30257 0.11437 −0.36120 0.76997 1.42213 0.21906
−5.43368 0.32825 0.09573 0.38596 1.09844 0.34811 −5.53340 0.60260
0.40777 1.26406 1.89925 0.09899 −4.88446 0.59579 0.38228 0.63225 1.22365
−0.26122 −5.97482 0.87988 0.64164 1.30861 1.60032 −0.05306 −4.87877
0.61008 0.31548 1.04922 1.39501 −0.20343 −5.81741 0.13637 −0.22507
0.12840 0.90655 0.38881 −6.03138 0.51941 0.30183 1.45843 2.07849 0.07041
−5.15527 0.45690 0.13604 0.68699 1.10721 −0.19791 −6.02050 0.47704
0.22176 0.93972 1.49371 0.37310 −5.01968 0.52526 0.23528 1.31538 1.71574
0.05115 −4.92053 0.63859 0.38198 1.05169 1.96964 0.37658 −4.48062
0.46187 0.23548 0.62572 0.96755 0.11361 −5.65679 0.62130 0.40066 1.48470
1.86423 −0.47108 −4.92416 0.81156 0.59172 1.10721 1.50341 0.27416
−4.70115 0.71486 0.47865 0.73560 1.34526 −0.02182 −5.35421 0.66477
0.36560 0.99930 1.34776 −0.29499 −5.66961 0.34907 −0.04202 1.19712
1.69380 −0.11014 −4.66158 0.77779 0.49876 1.04673 1.49549 −0.08619
−5.68647 0.58529 0.24733 0.69267 1.12005 0.20656 −5.37064 0.43382
0.13405 0.51375 1.21611 −0.02136 −5.82871 0.31267 −0.00774 1.09398
1.61236 −0.02965 −5.59007 0.46069 0.13762 0.81902 1.52135 0.14176
−5.31849 0.30855 0.01639 1.42108 2.18184 0.05994 −4.70360 0.52490
0.19011 1.32601 1.70271 −0.05404 −5.53077 0.41011 0.04992 0.50515
0.99087 0.24748 −5.74211 0.49125 0.26048 1.40824 1.60136 −0.12552
−5.63367 0.11098 −0.18684 1.18820 1.72421 0.35717 −4.71661 0.27753
−0.02027 1.74719 1.89855 −0.37263 −5.49010 0.02262 −0.42359 0.35025
1.12005 0.66219 −5.59074 0.55539 0.31177 0.55437 1.12424 −0.05799
−5.48020 0.44944 0.21292 1.30997 1.68528 0.24650 −5.19997 0.28213
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−0.05441 1.00484 1.33122 0.29579 −5.67129 0.26797 −0.06701 0.41896
0.78390 0.59028 −5.41488 0.44580 0.25332 0.56961 0.97053 0.19728
−5.72446 0.38517 0.12078 1.06145 1.41896 0.06781 −5.25142 0.46394
0.18887 1.28330 1.78161 −0.31605 −5.84762 0.12288 −0.18749 1.38824
1.69380 0.24428 −5.03517 0.51353 0.24687 0.63869 1.07569 −0.15243
−5.95967 −0.05812 −0.45880 1.15448 1.72942 0.02572 −4.96879 0.57093
0.24776 0.70381 1.17909 −0.17134 −5.83732 0.69401 0.47941 1.35518
1.84559 −0.43297 −5.08948 0.75549 0.48102 0.63225 1.00208 0.05423
−5.90215 0.67936 0.48340 0.08493 0.28330 0.29601 −6.35853 0.30103
0.03208 1.03407 1.51630 0.08099 −5.35057 0.18439 −0.15856 0.69827
1.07335 0.13481 −5.46306 0.49175 0.12146 1.20585 1.53453 −0.11805
−5.53432 0.48977 0.22971 0.70927 1.01030 0.02735 −6.25342 −0.25326
−0.66626 1.21611 1.69827 −0.16622 −5.42435 0.24232 −0.10818 0.80182
1.15057 −0.17914 −6.11008 0.89634 0.77944 −0.29073 −0.01773 0.04415
−6.81147 0.47596 0.31962 0.71466 1.20930 −0.10624 −6.40358 0.06495
−0.21876 0.75066 0.89960 0.11193 −5.31211 0.87959 0.60532 0.60552
0.91339 −0.04191 −5.32459 0.25033 −0.04705 1.38596 1.63677 0.34183
−5.20405 0.22438 −0.09643 0.56961 1.02102 −0.03905 −7.12581 0.33914
0.18100 0.06145 0.38596 0.48487 −5.96102 0.18593 −0.00789 0.26858
0.43965 −0.19997 −6.83412 0.59443 0.57083 1.30449 1.52964 −0.13077
−5.37847 0.20094 −0.14055 0.68124 1.04171 −0.25727 −6.21789 0.40363
0.01622 0.78390 1.36369 0.07004 −5.40144 0.59613 0.31299 1.01030 1.79962
0.43233 −4.89187 0.41414 0.17767 1.17354 1.48287 −0.27819 −6.27100
0.39794 0.29771 1.35885 1.95262 −0.30103 −6.04605 0.56978 0.35389
0.43965 0.94290 0.19893 −5.75649 0.33482 0.09288 1.45454 1.54891 0.01536
−5.45390 0.47127 0.26448 1.48470 1.85111 −0.19654 −5.16412 0.24870
0.00219 1.53453 2.00948 0.06258 −4.59107 0.65808 0.36173 0.25334 0.47828
0.78972 −5.35232 0.60376 0.31220 0.51375 1.10938 −0.09909 −5.97294
0.38159 0.17090 0.78390 1.36127 −0.28400 −5.99371 0.59607 0.26550
1.19535 1.68699 −0.08831 −5.29022 0.34616 0.11711 1.20238 1.51204
−0.02091 −5.14667 0.05544 −0.39123 1.34274 1.85964 0.07372 −4.90675
0.42888 0.15425 0.56961 1.12005 0.40620 −5.62351 0.15743 −0.23868
0.98516 1.53127 0.51733 −4.87906 0.50409 0.25994 0.94606 1.35518
−0.17393 −5.63551 0.33833 −0.08960 0.86688 1.57110 0.30125 −5.19915
0.26242 −0.01360 0.49638 0.88897 −0.04096 −6.07930 0.27176 −0.02798
1.30311 1.51883 0.05729 −5.56406 0.22544 −0.12548 1.41041 1.76331
0.11561 −5.36524 0.24247 −0.10032 0.80618 1.35395 0.62107 −5.33677
0.40678 0.11243 0.39724 0.68699 0.49150 −5.84634 0.18806 −0.15717
0.55437 1.30861 0.09552 −5.69708 0.23733 −0.07128 0.76997 1.16221
−0.41117 −6.04048 0.34088 −0.01733 1.12424 1.56585 −0.44733 −6.06951
0.59524 0.49783 1.48742 1.81007 0.02325 −4.92125 0.56436 0.44210 0.65128
1.18276 0.11193 −5.17361 0.87057 0.64773 1.53372 1.83108 0.15927
−5.05340 0.34447 0.01814 1.57110 2.13374 −0.21896 −4.98126 0.51414
0.24395 1.25334 1.55746 −0.11351 −5.33904 0.42320 0.14859 1.09844
1.46514 −0.24872 −5.51120 0.29468 −0.02182 0.77931 1.46705 −0.19111
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−5.58867 0.29449 −0.08401 1.15253 1.49282 −0.12090 −5.75412 0.60921
0.33440 0.88536 1.31940 −0.03763 −5.64699 0.43244 0.22094 0.85150
1.25643 −0.20971 −5.74875 0.79401 0.50081 1.48287 1.72158 −0.18575
−5.54837 0.54842 0.35513 0.93972 1.14860 0.27715 −5.83476 0.13242
−0.24428 0.75557 1.56811 −0.11407 −6.25571 0.84807 0.68805 0.97937
1.47920 −0.19997 −5.50546 0.35462 0.09826 0.56961 0.85150 −0.19314
−6.09756 0.98268 0.63231 0.28330 0.81050 −0.08672 −6.86547 0.30340
0.22119 1.05660 1.68182 0.26788 −4.58767 0.51827 0.17946 1.33252 1.62835
−0.24260 −6.49264 0.54380 0.45958 0.33766 0.81902 0.04179 −5.97029
0.73606 0.53173 1.75557 2.00291 −0.04576 −5.05670 0.21287 −0.10135
1.25178 1.37085 −0.22330 −5.79849 −0.18168 −0.59132 0.23754 0.52218
−0.42597 −6.36151 0.80811 0.61396 1.62308 2.03561 −0.18509 −5.25383
0.29896 −0.08355 1.15448 1.67658 0.36717 −5.16711 0.41693 0.20726
1.29048 1.61574 0.26150 −5.35281 0.38047 0.09425 0.63869 1.19535 0.62346
−5.24512 0.47171 0.25259 0.90998 1.20585 −0.10513 −5.49625 0.22820
−0.06892 0.97644 1.49460 0.36642 −4.90160 0.52504 0.32148 1.08721
1.42527 −0.01100 −5.42969 0.36573 0.02348 1.05415 1.51799 0.07004
−5.03003 0.56050 0.27289 0.90309 1.48742 0.14208 −5.38605 0.29386
0.02895 1.58794 1.94258 −0.09151 −4.97671 0.22288 −0.16875 0.99651
1.35763 0.00775 −5.70865 0.38435 0.10940 0.29754 0.46894 0.40312
−5.65614 0.75208 0.51838 0.41896 0.84757 0.37014 −5.93104 0.16022
−0.27288 0.86308 1.59364 0.04883 −5.40044 0.36152 0.07036 0.81902
1.24393 0.04883 −5.44624 0.38951 0.00571 1.36489 2.05733 0.19173
−4.93550 0.39842 0.14449 1.00208 1.40932 −0.07988 −5.47160 0.39273
0.06467 0.78390 1.24234 0.10789 −5.40960 0.30765 0.02378 0.32469 0.84361
0.42797 −5.96807 0.33858 −0.01621 1.01030 1.59857 0.02036 −5.01233
0.61111 0.35375 0.74068 1.22282 0.36866 −5.20239 0.26176 0.01468 0.53046
1.00208 0.00860 −5.76105 0.25750 −0.07008 1.16979 1.54018 −0.38091
−5.99400 0.67296 0.32384 1.16791 1.55592 −0.04431 −5.21063 0.45632
0.25028 0.35025 0.85540 −0.11182 −6.00502 0.32162 0.15809 0.38596
0.48742 0.22376 −5.40856 0.82097 0.60400 1.38938 1.94637 −0.27984
−5.48598 0.68421 0.57256 1.28040 1.80182 −0.13608 −4.89729 0.56331
0.26507 1.30449 1.62704 −0.02319 −5.25720 0.30960 0.06625 0.63225
1.04171 0.14953 −5.83050 0.26100 0.00731 1.28762 1.60552 −0.10513
−4.98263 0.84036 0.68596 1.40824 1.93619 −0.19179 −5.23538 0.37265
0.06427 0.56205 1.10503 0.09202 −5.79132 0.51377 0.28332 −0.04769
0.14860 0.53326 −5.58168 0.70964 0.48349 0.51375 0.96755 0.64385
−5.45930 0.38648 0.14960 1.10503 1.55359 −0.33536 −5.88971 0.76656
0.71236 −0.11464 0.08493 0.20763 −6.15113 0.79149 0.62388 1.28185
1.65066 0.23905 −4.98615 0.59951 0.37116 0.99087 1.54258 0.03383
−5.39718 0.31319 0.00314 0.59151 1.08493 0.29048 −5.63506 0.74265
0.63512 0.62572 0.87437 0.41497 −5.86385 0.35698 0.13654 1.04673 1.53046
0.30406 −4.65701 0.42615 0.12718 1.71680 2.34021 −0.13608 −5.18376
0.28619 −0.01967 1.12005 1.49549 0.03822 −5.49053 0.36338 0.11438
0.45939 1.28475 0.54716 −5.35992 0.37108 0.13098 0.29754 0.85150 0.03862
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−6.02287 0.26995 −0.03657 1.02366 1.15836 −0.00966 −6.40694 0.52051
0.36373 0.82737 1.11581 0.25983 −5.39445 0.35171 0.15263 0.56205 1.02890
0.03222 −5.97102 0.45839 0.27559 0.81478 1.17725 0.16524 −5.61782
0.27549 −0.12519 1.31133 2.03484 0.31387 −4.68742 0.48566 0.26524
0.49638 0.64503 0.44295 −5.83830 0.51347 0.32559 1.51290 1.94574
−0.25964 −5.15286 0.51642 0.24444 1.23593 2.01810 0.00604 −5.52395
0.12794 −0.22231 0.97937 1.52218 −0.33348 −5.69672 0.43737 0.09098
0.96755 1.61372 0.04218 −5.35203 0.69622 0.43727 1.19357 1.73713 0.08063
−5.12773 0.53097 0.27211 −0.17718 0.03302 0.52543 −5.86816 0.71055
0.52189 1.14464 1.35149 −0.03386 −5.49080 0.21171 −0.04665 1.45649
1.71946 0.13830 −5.34285 0.04923 −0.32120 0.69827 0.88897 0.01953
−6.11126 −0.02996 −0.37239 0.66351 1.31269 −0.03810 −5.67940 0.40666
0.12456 0.95231 1.38367 0.44044 −5.43168 0.37318 0.13479 0.84757 1.66532
0.11561 −5.65807 0.45948 0.25733 1.52717 1.78618 −0.12321 −5.12854
0.19971 −0.16021 1.35272 1.73201 0.08493 −4.95393 0.49794 0.28335
1.22115 1.99819 0.40960 −5.15945 0.40246 0.15708 0.97053 1.72578
−0.03953 −5.28452 0.48741 0.16402 0.61909 1.27747 0.25840 −5.45107
0.44943 0.03796 1.22282 1.78161 0.14551 −5.22570 0.53937 0.23130 1.72735
2.03278 −0.24413 −5.09114 0.27854 0.01181 1.31672 1.80488 0.08991
−5.14606 0.02107 −0.33083 0.96152 1.72158 −0.09366 −5.28923 0.54991
0.20941 0.83556 1.56205 −0.12843 −5.59640 0.56959 0.31972 1.50166
2.01569 0.15927 −4.88884 0.46577 0.26627 1.15057 1.69492 −0.16494
−5.84363 −0.06473 −0.35380 0.53857 1.08493 0.65552 −5.33320 0.53784
0.32689 1.93036 2.32706 −0.22185 −5.38585 0.02455 −0.55024 1.41041
1.82571 0.07151 −5.29260 0.36732 0.10545 0.87064 1.31404 −0.28400
−5.80385 0.75224 0.51601 1.43762 1.80094 −0.03810 −5.50038 0.15942
−0.12272 1.33510 1.81860 0.10823 −5.01332 0.30068 −0.01073 0.94606
1.60136 −0.14327 −5.70025 0.18859 −0.08889 0.71466 1.27305 −0.09474
−5.79452 0.08376 −0.30004 1.28185 2.02550 0.21112 −4.67919 0.55772
0.36492 0.89609 1.31940 −0.11520 −5.81172 0.25548 0.06053 1.13046
1.44267 −0.24872 −6.16128 0.47164 0.06542 0.75066 1.34274 0.06967
−5.84670 0.44486 0.14304 1.72211 2.34160 −0.34679 −5.48652 0.20071
−0.12383 0.32469 0.77466 0.29776 −5.77775 0.20293 −0.06068 1.24551
1.51119 0.30211 −5.13781 0.33211 −0.01770 0.97053 2.04673 0.32572
−5.48096 0.39077 0.07902 1.25022 1.78161 −0.33255 −5.37387 0.06597
−0.33489 1.41896 1.98111 −0.11691 −5.15552 0.25387 0.03027 1.26406
1.59435 −0.36051 −5.97159 0.26541 −0.02933 0.50515 0.98227 −0.11919
−6.09637 0.41595 0.27395 0.53046 1.14264 0.46923 −5.31976 0.42751
0.20019 0.38596 0.94290 0.43680 −5.42102 0.30678 0.01906 0.19535 0.88536
−0.03953 −6.23830 0.84669 0.64016 1.18276 1.45454 −0.00261 −5.36917
0.50862 0.09596 1.19888 1.71198 −0.03668 −5.53463 0.35726 −0.01404
0.99370 1.49638 −0.45346 −5.49677 0.43357 0.16226 0.83149 1.19888
0.14489 −5.72874 0.58929 0.49238 1.27894 1.82321 −0.25727 −5.90191
0.02379 −0.35245 0.92012 1.27747 −0.43415 −5.98126 0.07591 −0.10551
0.82737 1.39947 0.31931 −5.16954 0.23573 −0.09641 1.41790 1.71680
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−0.06248 −5.20866 0.52737 0.21732 0.88173 1.36966 0.43807 −5.33781
0.28131 −0.04149 0.46075 0.63022 0.05154 −6.56970 0.22265 0.12665
0.87806 1.69548 −0.34775 −5.76861 0.65067 0.38408 0.92345 1.26557
0.08778 −5.40012 0.54366 0.33061 1.11368 1.42632 −0.35458 −6.00659
0.21588 −0.05045 1.04673 1.68870 0.13577 −4.94275 0.58009 0.27786
0.94919 1.62043 −0.17070 −5.90617 0.28625 −0.10577 1.09398 1.42527
0.41963 −5.46686 0.43094 0.13894 0.96755 2.09866 0.24304 −5.53542
0.19511 −0.17376 0.97350 1.49991 0.19145 −5.23374 0.52456 0.28562
1.55204 1.83840 −0.07572 −5.18910 0.21711 −0.01914 1.15253 1.71466
0.41280 −5.09082 0.34229 0.05172 0.80618 1.36609 −0.20691 −6.63782
0.07887 −0.29253 1.49013 1.77373 −0.17914 −5.35576 0.32825 0.15288
1.49192 1.88100 −0.07520 −4.77588 0.74815 0.51156 0.69267 1.24075
0.25237 −5.59912 0.42279 0.13648 1.03407 1.86650 0.33405 −4.64533
0.34190 0.08516 0.53046 1.19712 −0.02136 −5.90767 0.43173 0.09070
1.36609 1.87026 −0.03905 −5.07217 0.05702 −0.28798 0.93003 1.37321
0.30920 −5.27032 0.29173 0.04697 1.32732 1.82943 −0.25885 −5.17993
0.31660 0.14582 0.76042 1.28330 −0.39254 −6.06877 0.24104 −0.16381
0.45939 0.93651 0.37254 −5.44904 0.56169 0.36130 −0.00087 0.40002
0.19838 −6.01854 0.73609 0.56049 1.05903 1.33510 0.15320 −5.46180
0.21989 −0.11049 0.20412 0.69827 0.72624 −5.59827 0.23944 −0.01357
1.70655 2.06458 −0.22040 −5.87933 0.27208 0.04777 0.94919 1.47270
0.32160 −5.34056 0.31157 0.00120 1.15643 1.63096 0.20978 −5.49377
0.54407 0.28245 0.65744 1.42002 0.48572 −5.04148 0.29401 0.00685 1.24709
1.85926 −0.04866 −4.84579 0.22425 0.06396 1.10938 1.64124 0.42959
−4.96086 0.46745 0.25603 0.99370 2.00976 0.13162 −5.18456 0.46235
0.16067 1.00758 1.56660 −0.14935 −5.36288 0.46173 0.01679 1.74169
2.35062 −0.28988 −5.83224 0.39879 0.12466 0.87806 1.57630 0.03383
−5.56671 0.25514 0.03305 0.91677 1.67306 −0.24795 −5.65538 0.09070
−0.27497 0.50515 1.38482 0.25864 −5.58895 0.44642 0.14410 −0.01773
0.26858 0.43616 −5.95742 0.79139 0.70537 1.27600 1.81817 −0.20135
−5.40545 0.85326 0.49611 0.93328 1.22943 0.19285 −5.84603 0.06178
−0.36574 1.16602 1.81093 −0.34969 −5.87429 0.61382 0.43949 1.50341
2.46950 0.27531 −4.57004 0.44649 0.19941 1.27156 1.53209 −0.01323
−6.00577 0.24977 −0.18753 0.16791 0.53857 0.50893 −5.60263 0.78937
0.64516 1.85501 2.36525 −0.21681 −4.61762 0.04254 −0.39039 0.94606
1.34526 0.52802 −5.14856 0.13360 −0.16637 0.62706 1.01837 0.42619
−5.01002 0.57334 0.37239 0.89025 1.48524 0.32777 −5.23875 0.47376
0.19860 0.85150 1.22282 −0.00218 −5.31659 0.50990 0.27258 1.08721
1.51204 0.17493 −5.15261 0.54745 0.23993 0.46894 1.15643 0.06819
−5.79390 0.49186 0.28179 0.94919 1.24709 0.00087 −5.50369 0.13556
−0.20947 1.16602 1.64503 −0.09259 −5.84863 0.39621 0.11283 1.42002
1.86003 0.20276 −4.81417 0.43764 0.12085 0.92675 1.32732 −0.23136
−5.80110 0.47640 0.26405 1.52881 1.89573 0.04297 −5.63786 0.34368
0.10549 1.16411 1.43046 −0.32239 −4.96353 0.97636 0.68979 0.56205
1.46132 0.30792 −5.80277 0.22892 −0.14231 0.64503 1.51883 0.48458



Appendix 329

−5.84257 0.45858 0.26247 1.42318 1.91474 0.26126 −4.80981 0.20585
−0.10173 0.16791 0.55437 0.43838 −5.32659 0.90698 0.72325 0.66115
1.26557 0.46613 −5.00917 0.61525 0.34535 0.99651 1.59080 −0.26201
−5.95900 0.32416 −0.02430 0.82321 1.05415 0.14457 −5.73539 0.09009
−0.21196 0.58433 1.01301 0.16584 −5.16501 0.86164 0.72624 0.58433
1.16411 0.62449 −5.02018 0.48439 0.18979 0.57703 1.17540 −0.16622
−6.15983 0.30549 0.03443 1.18820 1.56660 0.06707 −5.23092 0.12086
−0.24934 −1.61979 −0.66555 −0.42713 −5.77461 1.36462 0.92495 −0.90309
−0.65170 0.97011 −5.34133 0.78209 0.61297 −0.71670 −0.11464 −0.15989
−6.72283 0.66945 0.54111 −1.05061 −0.60555 0.04805 −6.43045 1.07954
0.81695 0.01030 1.28330 2.02145 −4.17660 0.77636 0.53859 1.96394 2.18874
1.21932 −3.77004 0.63194 0.51369 −1.39794 −0.75203 −0.11407 −6.69607
0.90826 0.77120 −0.64016 −0.40782 −0.05899 −6.35497 0.69175 0.55615
−0.88941 −0.42022 0.10072 −6.50612 0.69706 0.51663 0.95847 1.23106
−0.23657 −6.16046 −0.30672 −0.62167 −0.23958 0.06145 −0.06702
−5.90173 0.84198 0.73597 −0.69250 −0.22040 0.14364 −6.50059 0.94642
0.76717 1.71305 1.79161 0.66191 −5.03198 0.45209 0.22062 −0.49349
−0.18310 0.47929 −5.33497 1.15300 0.91619 −0.91009 −0.02182 0.15594
−6.45051 0.58449 0.45392 1.48104 1.95478 0.90875 −4.54607 0.47502
0.28893 −1.01773 −0.64975 0.97685 −5.54726 0.79435 0.63395 2.39187
2.66463 0.28126 −4.41930 0.46956 0.32087 −0.59176 −0.34872 −0.09963
−6.84780 0.98924 0.73803 −1.19382 −1.19382 −0.55596 −6.79001 0.83976
0.73229 −0.95078 −0.56543 0.17754 −6.24073 0.99751 0.73835 −0.60555
−0.21610 0.90037 −5.74724 0.58462 0.39578 −1.49485 −1.05552 −0.21681
−6.31349 0.71050 0.64140 −0.01773 0.39724 −0.39147 −6.37947 0.68499
0.20949 0.86688 1.34526 1.60633 −3.41848 0.68396 0.53455 −1.05552
−0.09474 0.69073 −5.74347 0.82502 0.62479 −1.61979 −1.28400 −0.33348
−7.03044 0.69769 0.54394 −0.69897 −0.24565 0.06819 −6.69732 0.48648
0.33743 0.25888 0.61648 −0.32057 −5.92775 0.52320 0.32963 −0.57840
−0.30452 0.46776 −5.59076 0.95097 0.74777 −0.07988 0.28330 −0.43652
−5.77393 −0.27356 −0.63921 −0.89279 −0.71670 −0.26360 −6.93133
0.24474 0.05659 0.25334 0.71046 0.62449 −5.29964 0.07722 −0.27015
−1.19382 −0.89279 −0.17005 −7.20525 0.54034 0.52066 0.26623 0.39270
−0.36151 −5.80831 0.20139 −0.05134 −0.07988 0.44342 1.55617 −4.73414
0.45127 0.26800 −0.35655 −0.11464 −0.12205 −6.11569 1.01954 0.98523
−1.01773 −0.68194 −0.22841 −6.50307 0.98771 0.66116 −0.19928 0.13322
−0.04721 −5.95417 0.30013 0.15200 −1.19382 −1.19382 −0.23062 −6.80000
0.20282 0.01934 −0.89279 −0.47366 0.16107 −6.22871 1.04178 0.72200
−0.69897 −0.29073 0.15806 −6.18698 0.90647 0.78471 1.39724 1.46514
−0.28483 −5.27500 0.99772 0.66247 −0.95078 −0.44491 0.33062 −6.49689
0.65410 0.41448 −0.34872 0.14860 −0.10791 −5.86297 0.05110 −0.09467
−0.95078 −0.69897 1.25892 −5.47283 0.63090 0.45550 −0.50585 −0.16749
0.13767 −6.01291 0.84168 0.60873 −0.71670 −0.59176 −0.16115 −6.78600
0.53703 −0.12735 1.41471 1.87101 0.95027 −3.69476 0.68310 0.52203
−0.89279 −0.89279 −0.42022 −6.61527 0.40700 0.13907 0.47828 0.68124
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1.40776 −4.70597 0.35694 0.08212 −0.89279 −0.59176 0.05956 −6.06329
0.79296 0.28282 −0.89279 −0.59176 0.65562 −5.74434 0.68782 0.56774
−0.86646 −0.59176 −0.05404 −6.97078 0.81024 0.68600 −1.19382 −0.75449
−0.10791 −6.08041 1.28515 0.88053 0.03663 1.08679 1.50907 −4.55925
0.67203 0.43731 −1.05552 −0.52871 0.77041 −5.54316 0.76990 0.52654
−1.92082 −1.55284 −0.29757 −6.75726 0.73464 0.54360 −0.31876 0.15927
0.28870 −6.09243 0.35773 0.17796 0.06145 0.36248 −0.37469 −5.53748
0.12546 −0.15031 −0.89279 −0.59176 0.13194 −6.75088 0.47280 0.30524
−0.04769 0.33766 −0.20691 −5.78752 0.27645 0.04215 −0.71670 −0.59176
1.09409 −4.79458 1.13318 0.85957 0.40603 0.73046 −0.04287 −5.58902
−0.36850 −0.51929 −0.89279 −0.69897 0.01912 −6.50714 1.01986 0.80738
−0.78516 −0.72584 −0.13312 −7.02914 0.88773 0.49712 −0.71670 −0.41567
0.94949 −4.84795 1.15266 0.92390 0.15259 0.30728 0.40976 −5.04735
0.91451 0.66843 0.20003 0.70458 0.68690 −5.14255 0.40583 0.13755 0.37438
1.25178 0.09377 −5.64917 0.22113 −0.12277 0.25334 0.66950 −0.06298
−5.46517 0.08220 −0.21345 −0.31876 −0.05948 0.10483 −6.13141 0.80866
0.64090 0.36248 0.84361 0.60423 −4.81460 0.80065 0.62643 −0.95078
−0.63451 0.28240 −6.09263 1.21781 0.94976 0.42943 0.94606 0.91777
−4.68763 0.56143 0.34308 0.95540 1.69154 1.37563 −3.63603 0.69890
0.58395 −0.10679 0.50705 0.84807 −5.39094 0.40644 0.17126 −0.49485
−0.34872 −0.15490 −6.35821 0.74518 0.59905 0.04297 0.38202 −0.04528
−5.90278 0.63229 0.49230 −1.19382 −1.19382 −0.11464 −6.69724 0.72192
0.53148 −0.61979 −0.23582 −0.06956 −6.44535 0.81115 0.59704 −0.79588
−0.16749 0.80284 −5.52443 0.85600 0.70128 −1.39794 −1.19382 −0.01100
−6.88995 0.63862 0.46019 −0.09745 0.20385 0.20439 −5.75132 0.42422
0.19825 −1.35655 −1.07572 −0.19518 −7.37217 0.66056 0.63955 −0.84164
−0.34104 0.88857 −6.10930 0.25213 0.02232 0.55047 1.25873 −0.33161
−5.48680 0.58620 0.36327 −0.89279 −0.49485 0.04805 −6.00879 1.33717
1.04511 −0.59176 −0.34872 0.33526 −6.21360 0.82140 0.70261 0.60552
1.30792 0.76140 −4.59235 0.52299 0.32711 −0.71670 −0.49485 0.83181
−5.42800 0.84423 0.68951 −0.04769 0.53046 0.12969 −6.02715 −0.15782
−0.51020 −0.73518 −0.16749 0.56879 −5.60940 0.90597 0.70568 −0.86646
−0.50585 −0.11126 −6.73152 0.31005 0.08867 −0.58336 −0.19586 0.12840
−6.64466 0.51698 0.38351 −1.14267 −0.61979 0.00130 −6.24365 0.77784
0.60190 −0.59176 −0.23958 0.26458 −6.28108 0.71816 0.47747 −1.05552
−0.44370 0.58320 −6.30601 0.60013 0.39751 0.19089 0.60552 −0.19997
−6.16915 0.33296 0.16270 −0.59176 0.66950 0.78923 −5.44900 0.70439
0.49218 −0.98297 −0.15243 0.31723 −6.27826 0.72194 0.60499 −1.37675
−0.92082 0.02490 −6.04357 1.09867 0.93701 −1.74473 −1.31876 −0.13253
−6.89644 0.68186 0.56157 −0.55284 −0.33348 0.13033 −6.09956 0.91351
0.81949 −1.05552 −0.75449 0.09552 −6.48969 0.73405 0.70335 −1.55284
−1.25181 −0.17522 −7.01002 0.56291 0.43041 −0.95078 −0.64975 0.21245
−5.77827 1.10679 0.76709 0.29754 0.71466 −0.27165 −5.91172 −0.01602
−0.23395 −0.49485 −0.36452 0.07188 −5.97417 1.07918 0.88139 −0.33348
−0.01055 0.49346 −5.38724 0.80172 0.66361 −0.86646 −0.63451 0.07335
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−6.56891 0.88737 0.72413 −0.51713 −0.10127 −0.04431 −6.04973 0.92453
0.69268 0.78845 1.11687 −0.32057 −5.72563 −0.28063 −0.67523 0.20925
0.61773 0.41313 −5.20572 0.50040 0.23841 0.53857 0.82321 −0.44009
−5.63746 0.57856 0.41165 0.12156 0.29292 −0.06956 −5.60838 0.45113
0.32241 −0.89279 0.25358 1.14070 −4.91087 0.78044 0.56245 0.10721
0.69267 0.26623 −5.25211 0.55329 0.26836 0.45939 0.87437 −0.14267
−5.17556 0.61810 0.31914 −1.05552 −0.68194 0.80140 −5.53106 0.72815
0.54956 −0.89279 −0.19382 0.81164 −5.86066 0.75714 0.53970 −1.39794
−1.01773 −0.08249 −6.39405 1.09080 0.91608 −0.84164 −0.21467 0.14051
−6.57059 0.92514 0.82326 −0.11464 0.14860 −0.19723 −5.82348 0.63942
0.57243 0.12840 0.53046 −0.41005 −6.82609 0.55471 0.27153 −1.46852
−1.10791 −0.01412 −6.80699 0.69394 0.56247 0.06145 0.70381 0.01284
−6.40782 0.64964 0.51486 0.02366 0.37822 0.22917 −5.31574 0.99089
0.69807 −1.01773 −0.56543 0.38561 −6.09039 0.69810 0.49038 −0.49485
−0.29073 −0.16877 −6.52169 0.64658 0.25436 −1.69897 −1.28400 −0.28567
−7.41274 0.56647 0.47232 −0.21183 0.09830 −0.13430 −6.16501 0.92942
0.64876 −0.35655 0.00689 0.27921 −6.26376 0.62095 0.36037 −1.28400
−0.93554 −0.14327 −6.42099 0.84734 0.80465 −0.71670 −0.41567 0.36380
−6.54745 0.66527 0.53516 −0.75449 −0.46344 0.40500 −6.24672 0.89977
0.58913 −0.54061 −0.21610 0.21643 −6.38998 0.78032 0.56491 −1.25181
−0.93554 1.00574 −6.18970 0.48457 0.29973 −1.92082 −1.16749 1.34670
−5.38700 0.80297 0.63707 −0.77469 −0.46344 −0.19179 −6.85344 1.64679
1.28454 −1.01773 −0.61979 0.06521 −6.91147 0.71132 0.57183 0.52634
1.29684 −0.22475 −5.52824 0.44974 0.16989 −0.08566 0.16465 −0.15739
−6.33536 0.95191 0.68915 −0.57512 −0.19246 −0.14813 −6.42499 1.03233
0.82974 −0.04769 0.14860 0.01995 −6.15150 0.49986 0.05171 −0.68194
−0.38091 0.32056 −6.15642 0.90842 0.76562 −0.86012 −0.57512 0.01494
−6.99559 0.87180 0.66762 −0.29073 0.20412 0.08743 −6.08542 −0.11231
−0.43061 −0.20551 0.15806 0.12450 −5.79461 0.98798 0.73580 0.18639
1.32272 0.65629 −5.69144 0.38837 0.11441 −0.21610 0.26102 0.53161
−5.62534 0.88440 0.69878 0.08493 0.54654 −0.14086 −6.07989 0.35728
−0.43398 −1.09691 −0.64207 0.02202 −6.90236 0.30636 0.08086 −0.59176
−0.15243 0.59879 −6.11896 0.60655 0.44342 −0.52871 −0.11014 0.72616
−5.98134 0.40654 0.21638 −1.44370 −1.11919 0.60217 −5.82948 1.03706
0.89872 −1.11919 −0.75449 0.32777 −5.53167 0.95707 0.66410 −0.71670
−0.41567 0.28937 −6.38764 0.65123 0.33202 −0.77469 −0.27084 0.12123
−6.95691 0.60820 0.50301 −0.49485 0.11428 0.61899 −5.38007 0.99588
0.82216 −1.09691 −0.25181 1.04198 −5.29620 0.73869 0.54334 −1.09691
−0.49485 0.39146 −6.01927 0.70470 0.54093 −0.59176 −0.34872 −0.05849
−6.08999 1.22515 1.06274 −0.75449 −0.27165 0.29732 −6.21477 0.76489
0.70471 −1.19382 −0.79588 −0.20482 −7.42763 0.49822 0.27110 −0.95078
−0.47366 0.32675 −5.77940 0.92523 0.62185 −1.35655 −1.11919 −0.01233
−6.61941 0.83837 0.76714 0.38596 0.73560 0.37676 −5.46276 0.06149
−0.42062 −0.20482 0.50974 0.35813 −6.12067 0.24441 −0.13144 0.01030
0.62572 0.75220 −5.35962 0.67152 0.38591 −0.52433 −0.02733 0.46434
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−5.81096 0.81933 0.65660 −0.89279 −0.89279 −0.17070 −6.82658 0.46343
0.24661 −0.75449 0.23955 0.46285 −5.77728 0.66950 0.38306 −1.55284
−1.22185 −0.02365 −6.66033 0.86045 0.68935 −0.12378 0.17114 −0.16052
−6.52240 0.67282 0.43756 −0.41567 −0.11464 −0.21896 −6.90679 0.61684
0.42465 −0.89279 −0.71670 0.62138 −5.89630 0.90953 0.70615 −1.79588
−1.44370 −0.26360 −7.05562 0.65290 0.48721 −1.25181 −1.05552 −0.02965
−7.21767 0.20681 −0.00632 −1.31876 −0.87943 −0.24489 −7.27417 0.33096
0.30378 −0.71670 −0.33348 0.50161 −5.87162 1.03915 0.93156 −0.23958
0.23477 0.26811 −6.02305 0.02648 −0.30319 −0.59176 −0.23958 0.36736
−6.43711 0.56106 0.36437 −1.19382 −0.89279 0.52362 −6.40550 0.70924
0.56732 −0.21610 0.06744 0.63094 −5.35851 0.98419 0.76324 −0.89279
−0.89279 −0.04001 −6.84179 0.51704 0.36401 −0.71670 −0.34872 0.66210
−5.75427 0.79968 0.59624 −1.19382 −0.71670 −0.28735 −6.52770 1.40358
1.01147 −0.89279 −0.41567 0.09272 −6.81217 0.84714 0.70897 −1.01773
−0.33348 0.54283 −6.23582 0.73779 0.47291 −0.25181 0.07335 −0.04144
−6.42848 0.62188 0.47040 −0.75449 −0.51713 0.41531 −5.58403 0.88208
0.74047 −0.59176 −0.41567 0.18921 −6.13407 0.80351 0.71114 −0.71670
−0.30452 0.86451 −5.52672 0.88830 0.76307 −0.34872 −0.07988 0.84572
−5.03685 0.90689 0.70532 −0.71670 0.65744 0.83174 −5.57167 0.62804
0.40083 −0.29073 −0.04769 0.00087 −5.97201 1.27355 1.19880 −0.29073
−0.00656 −0.07727 −6.64933 0.54983 0.43923 0.75557 1.21187 −0.13430
−5.59157 −0.09513 −0.57792 0.38596 1.48287 0.68070 −4.66392 0.70626
0.50249 −0.08938 0.24502 0.39164 −4.92595 1.13745 0.85295 0.11793
0.40824 0.12189 −6.37862 0.01741 −0.35281 0.25334 0.58433 −0.40230
−6.29294 0.53806 0.26044 −1.01773 −0.71670 −0.14388 −7.16616 0.83772
0.77715 −0.56384 −0.11407 −0.14752 −6.80156 0.79420 0.71637 −0.36452
−0.20482 0.12646 −6.08842 0.81758 0.64403 −1.25181 −0.86646 0.44201
−6.41499 0.94332 0.68429 −1.19382 −1.19382 0.00647 −5.35770 1.46447
1.01353 0.59506 1.23024 −0.44249 −5.93230 0.37640 0.20848 −0.44733
−0.08619 0.65312 −5.17122 1.02242 0.83255 −0.64975 −0.06803 0.29732
−5.89238 0.81134 0.63265 −0.59176 0.00647 0.44342 −6.20087 0.78114
0.62097 −0.34872 −0.11464 0.68708 −5.28441 1.13388 0.89047 −0.59176
−0.34872 −0.06500 −6.50086 0.89125 0.69779 0.14860 0.57703 −0.21824
−5.61441 0.84811 0.65935 −0.29073 −0.04769 0.22531 −5.68348 1.18865
0.76773 −1.49485 −0.98297 0.86876 −6.34785 0.26658 0.04149 −1.01773
−0.79588 0.17696 −6.43445 0.98496 0.83481 −1.25181 −0.34872 0.44809
−5.75948 0.96097 0.73959 0.41896 0.89254 −0.45593 −5.81141 0.50312
0.20163 −0.95078 −0.71670 −0.12205 −6.72670 0.84782 0.76793 −0.52724
−0.22330 0.45682 −5.75132 0.82161 0.63874 0.23754 0.86308 −0.23136
−5.95705 −0.24683 −0.72623 −0.29073 0.03663 0.63296 −5.55474 0.83487
0.63677 −1.18709 −0.77728 0.26741 −6.60954 0.76357 0.60266 −1.79588
−1.39794 −0.15552 −7.12720 0.51112 0.21857 0.83960 2.06649 0.26670
−4.57636 0.61737 0.37703 −0.53462 −0.08407 −0.17914 −6.54661 0.32744
0.16761 −0.71670 0.03663 0.52905 −5.65317 0.96352 0.83372 −0.26520
0.04139 −0.04915 −6.03423 1.17313 0.87818 −0.11464 0.39724 −0.22475
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−6.71790 0.38866 0.14920 0.76042 0.94290 −0.52433 −6.03795 −0.05213
−0.49282 −0.34872 0.10721 0.27091 −5.98801 0.86430 0.71271 −0.07988
0.88897 0.27416 −6.17211 0.70516 0.27919 −1.31876 −0.17070 −0.03152
−7.00056 0.51130 0.33597 −0.45717 0.05918 0.07041 −6.23026 0.63956
0.48640 −0.60033 −0.13847 −0.00524 −6.27925 0.74295 0.31275 0.39724
0.79295 0.29358 −5.69949 −0.11387 −0.43300 −0.41567 0.63225 0.30492
−6.14038 0.55877 0.45269 −0.90658 −0.68403 0.04883 −6.76319 0.32188
0.05576 0.22115 1.57923 0.79302 −5.56076 0.31837 0.05263 −0.43063
−0.14813 0.08135 −6.08948 0.67062 0.54778 −0.89279 −0.19382 0.09726
−6.26223 0.47358 0.21609 −1.16115 −0.73049 0.85588 −5.43632 0.93896
0.68530 0.26858 0.60552 −0.27246 −5.74870 1.09540 0.70049 −0.11464
0.92345 −0.18977 −6.39105 0.70695 0.53330 1.13046 1.48652 −0.28904
−5.39835 −0.39873 −1.03620 −0.76447 −0.33724 0.41913 −6.37997 0.70682
0.53243 −0.34872 0.12840 0.08314 −6.56209 0.67542 0.44096 0.25334
0.93328 0.28847 −4.98809 0.19139 −0.18052 −1.19382 −0.71670 0.06032
−5.03560 0.09977 −0.29132 −0.59176 −0.04769 0.25479 −5.99499 0.92115
0.49623 −0.71670 0.59151 0.07846 −5.76881 0.37526 −0.05332 −0.71670
0.33766 0.04650 −6.35605 0.90987 0.60270 −0.71670 −0.19382 0.19312
−5.87859 0.90465 0.72669 −0.49485 0.10721 0.31597 −6.38964 0.74266
0.49754 −0.11464 0.68699 −0.12610 −6.79315 −0.16389 −0.80522 −1.20066
−0.70115 0.39985 −6.10713 0.73655 0.55744 −0.71670 0.29754 0.16584
−6.24885 0.64314 0.50010 −0.29073 0.48742 −0.29499 −6.07335 1.12131
0.65188 −0.29073 0.89609 0.18583 −5.73974 1.04414 0.67329 0.46894
0.99930 −0.47108 −6.12362 0.01270 −0.38244 −1.04096 −0.69465 0.35965
−6.67046 0.53817 0.29444 0.91677 1.80050 −0.37059 −6.34312 −0.27354
−0.71024 −0.19382 −0.01773 0.10346 −5.88924 0.87886 0.65392 −0.23958
0.29754 0.21696 −5.76726 0.91801 0.78098 0.42943 0.82321 −0.44491
−5.37363 0.55051 0.41332 −0.07988 0.38596 −0.09909 −6.62428 0.26077
−0.03484 −0.01773 0.28330 0.43648 −5.49990 0.89369 0.69865 −1.23657
−0.21325 −0.16368 −7.36653 1.02478 0.49760 −0.59176 −0.34872 0.00173
−6.74921 0.93145 0.84426 −1.20761 −0.04528 −0.01909 −6.64308 0.57849
0.38117 −0.41567 −0.11464 0.15351 −6.70163 0.68556 0.52390 −0.26680
0.12057 −0.00745 −6.67826 0.74417 0.31971 −0.59176 −0.04769 0.32490
−6.64064 0.71020 0.62801 −0.34872 −0.07988 0.17667 −5.90858 0.99582
0.69877 −0.29073 0.29863 0.76193 −4.67615 0.42522 0.21288 0.01030
0.53046 0.58546 −5.43177 0.44856 0.14671 −0.04769 0.47828 −0.00656
−6.65695 1.18282 0.60186 0.03663 0.94919 0.43521 −5.84109 0.50239
0.25845 −0.15243 0.46894 0.17260 −6.12999 0.64411 0.43698 −0.71670
0.79295 0.88207 −5.60350 0.66346 0.43974 −0.71670 −0.59176 −0.07366
−7.01868 0.45057 0.30741 −0.59176 0.18639 −0.08197 −6.18491 0.75696
0.17711 −0.07988 0.52218 0.59671 −5.02168 0.46755 0.20789 −0.54363
−0.26761 −0.24489 −7.14661 0.56810 0.42390 −0.89279 −0.59176 0.09552
−6.27524 0.56781 0.46196 −1.37675 −1.12494 0.53212 −6.37330 0.68912
0.57810 0.06145 0.35025 −0.29930 −6.11369 0.49003 0.18244 −0.19382
0.26858 0.89669 −5.65987 0.10680 −0.26315 0.08493 0.63869 0.10857



334 Appendix

−6.47211 0.22726 −0.08249 −0.15243 0.22115 0.83467 −5.00463 0.78608
0.45230 0.29754 0.83149 −0.19860 −5.95870 −0.25057 −0.52979 −1.79588
−1.49485 −0.17783 −7.04998 0.47337 0.36527 −0.07988 0.01030 −0.05750
−6.23137 0.64163 0.34337 0.10721 0.83149 0.46300 −6.03386 0.04365
−0.23787 −1.53760 −1.01323 −0.35360 −6.87641 0.67029 0.46440 −1.08619
−0.53910 0.09026 −6.71981 0.63999 0.39104 −0.25337 0.44963 0.46090
−5.89425 0.50076 0.34821 −0.52871 −0.11182 0.24576 −6.22048 0.80156
0.59070 −0.71670 −0.15243 0.69461 −5.92830 0.74195 0.48449 −0.23958
0.41896 0.30856 −6.22607 0.46833 0.27900 −0.71670 −0.29073 0.27068
−6.75355 0.84354 0.73633 −0.93930 −0.69897 0.42781 −6.15292 0.51085
0.33757 −0.07988 0.37438 −0.14448 −6.23552 0.66331 0.24196 −1.31876
−0.93554 1.25122 −5.38618 0.77113 0.54328 −0.71670 −0.59176 0.56597
−6.04340 0.78370 0.63831 −1.56864 −0.95861 −0.23807 −6.93405 0.31396
0.11951 −1.04576 −0.71670 0.18156 −6.37616 0.79470 0.35018 −0.90658
−0.54821 0.19562 −6.53398 0.71892 0.46633 −0.89279 −0.71670 0.20330
−6.08243 1.25559 0.84532 −0.23958 0.03663 −0.13966 −6.68315 0.89122
0.73507 −0.59517 −0.34486 0.45347 −5.99745 0.77868 0.62187 0.28330
0.65744 −0.34679 −5.46048 0.80266 0.55477 −0.01773 0.38596 0.07700
−5.94811 0.61297 0.41972 0.18639 0.81478 0.02407 −6.07551 0.36808
0.03684 −0.59176 −0.11464 0.35083 −6.20012 0.84860 0.72327 −1.30980
−1.03621 0.99822 −5.30565 1.00937 0.74394 −0.83565 −0.68613 0.46523
−6.27035 0.40772 0.22908 −0.07988 1.00758 0.59106 −5.28862 0.94338
0.66243 0.75557 1.30311 −0.37469 −5.68160 −0.22709 −0.78854 −0.71670
−0.01773 0.53970 −6.17940 0.76181 0.46911 −1.00877 −0.61979 0.60959
−5.79852 0.84619 0.65706 −1.19382 −0.71670 0.70088 −5.42962 0.80894
0.60908 −1.20066 −0.83565 0.14270 −6.66462 0.82487 0.50999 −1.19382
−0.89279 0.57646 −5.85038 0.97996 0.75734 −0.89279 −0.34872 0.32715
−6.69229 0.70429 0.46593 −0.66154 −0.39903 0.20493 −6.42251 0.83325
0.55688 −0.69897 −0.28150 0.14395 −5.89456 0.93283 0.62166 0.41896
1.30587 0.00389 −6.04756 −0.48174 −0.99363 −0.64016 0.07078 −0.07935
−6.16511 0.79976 0.60503 −0.43890 −0.01502 0.17493 −5.71863 0.96725
0.72514 −1.25964 0.31597 0.38489 −6.56443 0.49182 0.33188 −1.35655
−1.03621 0.13767 −6.73278 0.83858 0.68301 −0.52871 −0.11520 0.17056
−6.18339 0.85474 0.76963 −1.21467 0.20575 0.31471 −6.17334 0.95321
0.68103 −0.39147 0.79844 0.52479 −5.17819 0.99167 0.77014 −0.90309
−0.58170 0.42243 −6.59722 0.96692 0.74507 −1.11351 −0.81248 0.36493
−5.92347 1.32448 0.91829 −0.35853 0.05729 −0.08725 −6.09039 0.79613
0.67797 −0.44612 0.49122 0.89014 −5.38655 0.78722 0.56193 −1.04096
−0.43890 0.25285 −5.81135 0.98596 0.68823 −0.83268 −0.60380 0.86219
−5.03575 1.03065 0.81452 −1.36653 −1.00436 0.45240 −5.94873 0.77007
0.49867 −0.39903 −0.05061 0.07115 −6.61407 0.23183 −0.02395 −1.00000
−0.50724 0.64601 −6.16845 0.79970 0.59278 −0.40671 0.09587 0.63919
−5.13643 0.92708 0.70906 0.52218 0.98516 −0.47237 −6.14819 0.39740
0.06609 −0.92445 −0.39903 0.54083 −6.18582 0.90763 0.67412 −0.30016
0.59151 0.27554 −6.11532 0.68738 0.40014 −1.19382 −0.23958 0.29003
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−6.23726 0.71724 0.37955 −1.67778 −0.40671 0.35295 −6.54356 0.52993
0.30268 −0.93181 −0.00568 0.46494 −6.64647 0.43191 0.27784 −1.58503
−0.32239 −0.14327 −7.10763 0.64238 0.54088 −0.76700 0.32634 0.22220
−6.83666 0.69854 0.60574 −0.41567 0.69267 0.49220 −5.14577 1.10538
0.73250 −0.04624 0.29181 0.30406 −5.42351 1.01908 0.80559 −0.45469
−0.07624 −0.25337 −6.85667 0.50337 0.26709 −1.19382 −0.41567 0.00000
−6.90018 0.64998 0.49227 −0.08092 0.29513 −0.36151 −6.10063 0.91319
0.77532 0.06145 0.87064 0.79810 −5.48745 0.46302 0.20275 −0.69037
0.00475 0.54543 −6.09157 0.57511 0.45068 −0.42597 −0.21896 −0.12610
−6.84817 0.72253 0.67058 0.55437 1.26858 −0.21183 −5.64606 0.46012
0.11840 −0.06905 0.37051 −0.10846 −5.86439 0.97692 0.87098 −1.85387
−0.37675 −0.32514 −6.94245 0.86905 0.73013 −0.76447 −0.10403 0.12710
−6.92948 0.49487 0.35200 −0.29757 0.80182 0.24329 −5.78944 0.77457
0.66754 −0.86646 −0.55909 0.21880 −6.58516 0.89420 0.74390 −0.71670
−0.41567 0.43933 −6.18071 0.68303 0.59230 −0.46344 −0.02457 0.74609
−6.00113 0.56463 0.42740 −1.14267 −0.92812 0.31952 −6.15079 0.55187
0.38597 −0.33536 0.00689 0.09342 −6.39631 0.71550 0.52468 −0.03433
0.51375 −0.09044 −6.26114 0.20412 0.02584 −0.95078 −0.75945 0.22479
−6.98338 0.44793 0.19873 −0.45842 0.51680 0.53148 −6.03673 0.52637
0.29448 0.06521 1.20529 0.84261 −5.77075 0.21941 −0.08402 −0.85387
0.28285 0.81311 −6.20356 0.32697 0.07625 −1.03621 −0.78516 0.59857
−5.64030 1.05027 0.79921 −0.25414 0.03862 0.54839 −5.24244 0.89323
0.66991 −1.38722 −0.90658 −0.07263 −6.89269 0.59243 0.21213 0.08493
0.63869 0.36078 −5.79024 0.12857 −0.20356 −0.04769 0.42943 −0.15181
−6.32474 0.41316 −0.03223 −0.68403 −0.24872 0.56348 −6.26440 0.27550
−0.09185 −0.29930 0.35545 −0.17718 −6.58416 0.58499 0.37704 0.22115
1.22282 −0.04287 −6.37182 0.25123 −0.28804 −0.89279 −0.29073 0.52427
−5.44969 0.89398 0.74262 −0.57187 −0.37469 0.16286 −6.85543 0.68660
0.40505 0.47828 1.12005 −0.23508 −5.54625 0.79462 0.56417 −0.80410
−0.41229 0.11294 −6.84351 0.41156 0.13611 −0.03198 0.42619 −0.27246
−5.80482 0.91447 0.76601 −0.98297 −0.61979 0.25624 −6.66675 0.64173
0.51491 0.16791 0.92012 0.75397 −5.05335 0.68036 0.51429 −1.11351
−0.38405 0.47538 −6.00895 0.77243 0.60892 −0.97062 −0.21610 0.14953
−6.16183 0.94153 0.64006 −0.47756 −0.27819 −0.15366 −6.96473 0.93119
0.87632 −1.19382 −0.89279 0.22037 −6.57937 0.79685 0.51134 −0.15243
0.18639 0.20898 −5.25209 0.85742 0.59204 −0.67366 −0.11464 0.07151
−6.48247 1.07938 0.77689 −1.60206 −1.10237 −0.17653 −6.97910 0.71793
0.65263 −0.36957 −0.04964 0.31513 −5.94161 0.90892 0.69090 −0.55440
−0.45223 −0.07314 −6.53211 0.61085 0.47390 −1.12494 −0.66154 0.10789
−6.39431 1.33368 0.92654 −0.11126 0.35946 0.08600 −5.79280 0.67059
0.49845 −0.19382 1.00484 0.43088 −5.79070 0.74512 0.50156 −1.29243
−0.91009 0.21590 −6.19078 0.97558 0.55269 −0.25259 0.00087 −0.22841
−5.83107 0.78663 0.53777 −0.71670 −0.41567 0.72558 −5.97220 0.92181
0.79355 −0.04769 0.14860 0.22840 −5.58548 0.86703 0.68354 −1.19382
−1.19382 −0.22915 −5.53548 −1.22128 −1.63928 1.81986 2.17651 1.63776
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−3.17923 0.58369 0.13642 1.12005 1.62835 0.97896 −3.95043 0.81364
0.66751 1.43201 1.62143 −0.03905 −6.43418 0.38202 0.15262 1.31404
1.88026 0.77247 −4.18722 0.69897 0.50784 1.20585 1.78345 0.94022
−3.99191 0.72981 0.53220 0.20412 0.57703 0.93867 −4.90654 0.50536
0.34150 1.28762 1.36006 0.71600 −5.21382 0.33579 0.14346 2.03355 2.13700
−0.14813 −5.25688 0.36484 0.30712 1.14860 1.63096 0.77195 −4.07289
0.66020 0.46273 1.04922 1.22614 1.24309 −4.30601 0.53205 0.31828 1.45600
1.56698 0.57415 −4.80532 0.35790 0.14789 1.24709 1.65128 0.50799
−4.18889 0.72762 0.50971 1.18639 1.68642 1.15900 −3.97029 0.79638
0.57288 1.55359 1.94669 0.78003 −4.22141 0.51861 0.33858 0.22115 0.56050
0.87668 −5.04920 0.45317 0.25740 2.00069 2.25996 0.82885 −4.15434
0.63454 0.42003 1.12633 1.54258 1.51006 −3.10724 0.72042 0.40764 0.91677
1.82592 1.27119 −4.08767 0.54361 0.34293 1.51883 1.63933 0.36455
−5.31524 0.30920 0.05170 −0.49485 0.06145 1.15433 −5.13065 0.49849
0.25193 1.12633 1.44267 0.72181 −4.78265 0.74936 0.59076 0.69267 1.00758
0.55859 −4.41364 0.89929 0.79360 0.60552 1.65621 1.04513 −4.58586
0.71292 0.52665 1.15057 1.50775 1.09377 −3.96887 0.70599 0.56503 0.35025
0.71466 1.22084 −4.95323 0.44398 0.24067 2.29536 2.47712 −0.25337
−5.01095 0.19252 −0.15563 0.78845 1.60136 1.15640 −4.00279 0.70157
0.45243 1.31672 2.06193 1.23111 −3.99161 0.53083 0.31685 1.11368 1.65744
1.09608 −4.28929 0.39051 0.10454 0.42943 0.93328 0.42959 −5.28222
−0.12321 −0.71544 1.53453 1.88681 1.10680 −3.58195 0.65193 0.43124
1.77279 1.92511 −0.13253 −5.96887 1.25697 0.78601 1.30449 1.54258
1.07430 −4.77536 0.25357 −0.07996 0.63869 1.14264 0.79043 −4.76377
0.85431 0.61722 0.88536 1.52385 0.82556 −4.66993 0.48306 0.19776 0.53857
1.63996 1.02955 −4.75684 0.33203 0.04614 1.89004 2.05672 −0.09583
−5.07982 0.24773 −0.05692 1.86308 2.03548 0.51640 −4.79105 0.28433
−0.02039 2.23545 2.31444 0.32366 −5.85918 0.51624 0.34889 1.51290
1.79206 0.82924 −4.32868 0.72360 0.44619 1.96424 2.18412 0.13098
−4.83550 0.52562 0.28934 0.74068 1.60655 0.82988 −4.49268 0.52837
0.24617 1.59222 2.01247 0.65089 −4.96823 0.30821 −0.07348 1.21780
1.66592 0.56937 −4.08735 0.41289 0.12623 1.34147 1.76760 1.10473
−3.97094 0.57429 0.36088 1.42108 1.73509 0.96199 −4.49839 0.41027
0.14557 1.95138 2.17836 0.22115 −4.98447 0.37745 −0.01130 1.98458
2.52013 0.33965 −4.13888 0.40535 0.06358 2.13476 2.82855 0.93867
−4.43063 0.52653 0.34475 0.56205 0.96142 1.29212 −4.78281 0.66302
0.46349 0.57703 1.61032 1.34118 −4.24665 0.58778 0.34357 1.73201 1.77977
0.93676 −5.01180 0.42041 0.16401 0.93972 1.51925 0.82269 −4.30733
0.62458 0.42073 0.65128 1.14464 1.48022 −4.19647 0.46759 0.14599 1.77138
1.91912 −0.08672 −5.38899 0.87035 0.62601 0.81478 1.28330 0.72222
−5.06193 0.59877 0.33220 1.55125 1.77138 1.33381 −3.38856 0.74938
0.54889 2.68303 2.77051 0.07445 −4.62233 0.47114 0.18254 1.22943 1.77138
0.82027 −4.35384 0.64417 0.44618 1.70105 1.95509 0.39811 −4.74376
0.60879 0.42820 2.05268 2.15244 0.51904 −4.37376 0.60452 0.31263 1.44467
1.75654 0.75587 −4.79713 0.34357 0.05541 0.81478 1.02366 1.11066
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−4.59288 0.50825 0.32558 1.39501 1.83819 0.48487 −4.48261 0.57845
0.36784 2.21187 2.31051 0.65157 −4.49405 0.51343 0.22873 1.51967 1.84658
−0.02780 −5.46983 0.70367 0.40849 0.97644 1.86079 1.40293 −4.31016
0.48718 0.26091 2.07194 2.12871 0.03782 −5.36835 0.47897 0.23074 0.61909
1.04423 0.74367 −4.78336 0.45469 0.13600 1.33122 1.81775 0.71609
−4.36967 0.46745 0.20765 1.59997 1.96030 0.48785 −5.33268 0.22392
−0.01118 1.12005 1.49815 0.64768 −4.16414 0.78329 0.60927 1.54812
1.70927 0.04376 −5.62690 0.87626 0.65925 0.42943 0.92675 1.14392
−4.84351 0.32010 0.03798 0.56961 1.61775 1.13650 −4.85208 0.45575
0.21271 2.02576 2.21408 −0.01189 −4.48633 0.48266 0.26217 0.92675
1.45551 0.59868 −4.62849 0.60664 0.35105 0.93003 2.23738 1.03019
−3.92698 0.78416 0.52463 0.59857 1.47270 0.91339 −4.55942 0.58100
0.34783 1.35272 1.76950 0.73640 −4.08087 0.67941 0.45084 0.62572 1.13659
0.65040 −4.79358 0.70321 0.41808 0.31133 0.95540 0.94310 −5.38648
0.13272 −0.19573 1.49638 1.71600 0.51441 −4.86621 0.36874 0.02632
0.92345 1.56205 1.74994 −3.65687 0.36447 −0.01113 1.77838 1.85150
−0.01502 −5.60067 0.44100 0.18912 0.37438 1.11687 1.20112 −4.43854
0.50463 0.29845 1.11368 1.87325 0.85339 −4.45210 0.53948 0.30629 2.39215
2.41412 0.17173 −5.02168 0.71359 0.45278 0.83960 0.97937 0.60184
−5.67293 −0.10233 −0.60105 1.02890 1.35763 1.12320 −4.10646 0.57144
0.39202 1.03407 1.37555 0.61669 −5.15286 0.42895 0.23107 0.39724 1.20585
0.91158 −4.97469 0.50139 0.25330 2.29894 2.42611 0.29403 −4.82385
0.53849 0.27298 2.19286 2.30145 0.30920 −4.83959 0.57645 0.24677 0.92012
2.23593 0.61836 −4.77788 0.61979 0.39747 1.17909 1.90655 0.57841
−4.58228 0.58459 0.34055 1.40932 1.86213 0.38310 −5.17153 0.55775
0.29994 0.12840 1.23269 1.37793 −3.95200 0.86780 0.64336 2.41960 2.47270
0.47114 −4.93059 0.44048 0.22232 1.58288 2.13781 0.44028 −4.90514
0.38011 0.11300 2.10361 2.40360 0.06221 −4.73065 0.43203 0.18297 1.17540
1.93812 0.97058 −4.03217 0.52006 0.25190 1.35763 2.14761 0.97479
−4.29269 0.56031 0.28586 1.27600 1.50515 −0.05502 −5.94006 0.72592
0.40870 1.27305 1.95586 0.53870 −4.28668 0.52729 0.32778 1.54258 1.86003
0.52956 −4.69607 0.47469 0.23659 0.42455 0.69504 0.73997 −5.48630
0.16757 −0.16807 1.47270 1.90309 0.15836 −5.01498 0.79155 0.57011
1.92840 2.27364 0.77452 −4.81687 0.30660 −0.02920 −0.10902 0.68931
1.33112 −5.13283 0.38211 0.17728 0.49638 1.10503 1.34033 −4.34814
0.62951 0.35976 0.25334 0.71466 1.12470 −4.39193 0.88997 0.69891 1.04922
1.30311 0.53542 −5.99598 0.71592 0.49341 0.92675 1.10721 0.93852
−4.94078 0.39737 0.08074 1.91441 2.36152 0.20790 −4.63481 0.26751
0.00504 1.67306 2.13190 0.62221 −4.07686 0.59683 0.37011 1.07802 1.88318
0.60466 −5.18883 0.50620 0.31221 0.67541 1.28905 0.65225 −4.83265
0.54718 0.32960 0.93003 1.19535 0.43393 −4.79140 0.78516 0.56527 0.33766
0.72526 2.25920 −3.58501 0.60161 0.39029 0.53857 0.97937 1.37816
−4.44201 0.52842 0.30295 0.59857 1.20063 0.92768 −4.77474 0.46631
0.20595 0.35025 1.20585 0.75105 −4.91318 0.52438 0.32506 1.75606 2.03841
−0.08991 −5.38321 0.43204 0.14447 1.40606 1.85345 0.66266 −4.14297
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0.59697 0.41290 −0.04769 0.41896 1.05154 −5.44217 −0.08623 −0.43797
0.45939 1.00208 1.50875 −4.90925 0.39389 0.09176 −0.23958 0.35025
1.57490 −4.58937 0.65538 0.42865 1.41256 1.61708 0.45133 −4.99529
0.55438 0.39063 1.02629 1.60895 0.84739 −4.73016 0.63389 0.40136 0.50515
1.10503 0.70044 −5.28467 0.17586 −0.11817 1.41790 1.77838 0.50691
−4.66206 0.40415 0.05673 1.06386 1.49815 1.16388 −4.29982 0.44317
0.20662 1.35272 1.43046 1.84468 −4.72693 0.18347 −0.28558 0.89609
1.42632 1.15256 −3.68281 0.82596 0.59546 0.58433 1.21101 1.27616
−4.10508 0.64345 0.44627 1.67306 2.08812 0.36455 −4.12819 0.78239
0.55647 0.79295 1.22614 1.54565 −3.92768 0.67082 0.48416 1.44864 1.79696
0.15987 −5.61858 0.70382 0.56710 1.30587 1.79026 1.23676 −3.77529
0.66877 0.39943 0.88173 1.54733 1.79326 −4.03863 0.53374 0.31679 0.35025
0.60552 1.29671 −4.66815 0.67210 0.45136 1.53046 1.89111 0.59780
−5.22592 0.31246 −0.04092 1.19179 1.57482 0.58024 −4.52143 0.65548
0.43625 1.70709 1.77885 −0.09637 −5.47384 0.44527 0.21697 1.75214
2.08971 0.28691 −4.88556 0.01256 −0.28514 1.08034 1.82070 1.16967
−4.36896 0.42921 0.15542 −0.89279 −0.71670 1.66714 −4.36671 0.81338
0.56948 1.89679 2.25643 0.27068 −5.18125 0.27666 −0.06382 1.65866
2.20308 0.20439 −5.26321 0.73651 0.52845 1.12840 1.57556 0.86705
−4.32957 0.45801 0.20039 1.99002 2.17372 0.61836 −4.82845 0.25240
−0.06464 0.31133 0.81478 1.19607 −4.23813 0.69112 0.41995 1.04423
1.06863 0.00346 −6.83502 0.79727 0.54976 1.45160 1.91744 0.26387
−4.24978 0.63836 0.35925 1.64629 2.05879 0.42160 −4.52273 0.43536
0.16172 1.41041 1.60827 −0.32790 −6.74673 0.34416 0.10901 1.50688
1.81690 0.27346 −4.55238 0.57466 0.27840 1.40932 1.68297 0.42765
−4.66671 0.69452 0.47533 0.85926 1.16221 −0.33630 −6.19105 1.33702
0.86171 0.42943 0.81478 0.54667 −5.66930 −0.01207 −0.31703 0.37438
0.81902 0.90574 −5.17360 0.04483 −0.28821 0.92345 1.12633 0.42226
−5.42871 0.25302 −0.12807 1.61032 1.95355 0.72973 −4.26154 0.32828
0.04412 2.58375 2.78976 0.26269 −4.01936 0.58862 0.39709 1.81902 2.29048
1.24095 −3.57425 0.64983 0.39165 1.25178 1.62769 0.45530 −4.86009
0.34914 0.09744 1.61439 2.11730 −0.18776 −5.72640 1.00926 0.77561
2.53624 2.57747 0.42472 −5.82264 0.32895 0.06101 1.45258 1.68413 0.75266
−4.56035 0.59917 0.35485 0.76997 1.13456 0.21085 −4.37820 0.98109
0.81291 1.22282 1.56585 1.02584 −4.81096 0.44592 0.25292 1.46132 1.65375
1.05119 −3.98447 0.60492 0.36541 0.99370 1.36248 1.50043 −3.70198
0.65602 0.39621 1.24866 1.49460 0.99154 −4.25119 0.55001 0.28180 2.37379
2.43046 0.20167 −5.28300 0.37445 0.08484 1.52964 2.10634 0.38039
−4.09243 0.67642 0.51092 0.56205 1.63805 0.82698 −4.95849 0.35515
0.03809 2.45170 2.59037 −0.09691 −4.76861 0.36861 0.03534 1.45356
2.37940 0.85570 −4.07099 0.58121 0.29772 0.76522 1.37203 1.22528
−4.52666 0.51275 0.18772 −0.19382 0.06145 0.90009 −5.67733 0.22292
−0.18300 1.76283 2.02129 0.23249 −4.55859 0.64101 0.45641 0.76042
1.26858 1.12313 −4.08318 0.58474 0.33900 0.79741 1.44567 0.73656
−5.10768 0.31322 −0.02920 1.05169 1.60136 0.56891 −4.60462 0.85026
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0.72035 1.66170 2.00401 −0.18910 −5.13880 0.96931 0.73484 0.88173
1.37672 0.67422 −5.02521 0.51249 0.21976 1.34021 1.59857 0.10789
−6.41074 0.67333 0.58812 0.97053 1.54575 0.69364 −4.97827 0.29350
0.01416 2.48615 2.61453 0.41263 −4.20558 0.54407 0.23787 1.71090 2.32509
0.18583 −5.20052 0.20412 −0.09869 −0.49485 1.41256 1.68214 −4.28951
0.90333 0.68966 1.30311 1.56585 0.74390 −5.17613 0.26907 −0.03779
1.03663 1.29754 1.35297 −4.44237 0.55342 0.38372 1.10721 1.45258 1.35468
−4.28375 0.53912 0.28694 0.56961 1.34651 1.19945 −4.78000 0.54836
0.38329 1.10065 1.67892 0.51720 −5.69914 0.39422 0.13291 1.96424 2.19623
−0.02780 −5.89022 0.62549 0.36501 1.62308 1.89325 −0.05355 −5.48825
0.80375 0.43733 1.17725 1.51883 1.69223 −3.31804 0.62481 0.41335
−0.19179 −0.01368 0.69992 −5.57468 0.99025 0.84129 0.67302 1.11581
−0.16368 −6.18954 1.70223 0.86096 1.94511 1.99819 1.13694 −3.82347
0.66893 0.45059 0.39724 1.44166 0.80291 −5.20979 0.53091 0.21615 1.08264
1.65252 −0.02503 −6.57561 0.83293 0.49401 1.14464 1.65560 0.41078
−4.98915 0.60854 0.36159 0.35025 0.48742 1.05053 −4.95660 0.78637
0.63298 1.80878 2.25704 0.61930 −3.73672 0.68359 0.50182 1.75165 2.02759
0.42210 −4.75928 0.25813 −0.01142 0.64503 1.01301 0.72337 −4.76667
0.58448 0.41076 −0.23958 0.22115 1.17780 −5.51089 0.44611 0.21309
1.74118 2.19339 0.35160 −4.64102 0.34082 0.12856 1.14860 1.68008 0.46938
−4.99516 0.52862 0.36948 1.29048 1.86801 0.51282 −4.65129 0.70024
0.40073 0.99087 2.24171 1.89433 −3.21382 0.54273 0.27192 1.74269 2.16335
0.10653 −4.26336 0.55026 0.35080 0.76042 1.17540 0.59583 −4.47823
0.73066 0.57431 1.42213 1.69604 0.43965 −4.97249 0.40526 0.14006 0.16791
0.49638 0.60778 −4.88409 1.07938 0.88069 1.42002 1.63741 0.14395
−5.10763 0.63261 0.32805 1.47457 1.80182 1.22084 −3.31253 0.77040
0.53073 1.41896 2.11432 0.74437 −4.23270 0.39637 0.12797 1.49103 1.88318
0.29645 −4.78291 0.60780 0.33373 0.85540 1.25178 0.53895 −4.95167
0.74072 0.54147 0.14860 1.13252 1.08693 −5.28861 0.40692 0.13278 0.99651
1.61372 0.74640 −4.25267 0.67284 0.48765 1.08948 1.95969 0.56808
−4.27630 0.30167 0.03882 1.39164 2.00236 0.60076 −4.40060 0.40983
0.16899 1.31538 1.75800 0.37254 −5.00432 0.58016 0.31766 1.31404 1.69436
1.36461 −3.51138 0.69020 0.47262 1.68528 1.91845 0.31133 −4.99106
0.36242 0.07483 1.22448 1.93876 0.66539 −4.47496 0.43019 0.11910 1.55746
2.51647 0.44809 −4.62198 0.39620 0.01513 0.65128 1.10503 0.48359
−5.16647 0.76358 0.61936 1.30861 1.63096 0.32858 −4.70518 0.51403
0.22578 0.88173 2.40475 1.06926 −4.38860 0.58271 0.36006 −0.11464
0.40824 1.06922 −5.48466 0.42358 0.18035 2.04847 2.11410 1.34561
−3.67605 0.43423 0.17896 1.72630 2.07779 0.14051 −5.81916 0.08215
−0.39667 1.50861 1.83271 1.00839 −4.68586 0.31213 0.04990 1.10938
1.59997 1.28212 −3.59174 0.75989 0.50533 0.97937 1.21272 0.58229
−5.12749 0.33281 0.12903 1.52551 1.84915 0.61140 −4.81220 0.00452
−0.40729 1.86876 2.09398 0.08849 −5.12453 0.67177 0.41084 1.93780
2.01623 0.01452 −5.44762 0.24778 −0.11127 1.37438 1.77885 −0.11919
−5.21243 0.92966 0.72949 1.65805 2.11878 0.13130 −4.28350 0.58079
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0.37112 1.69041 1.96152 −0.03152 −6.50780 0.51503 0.48986 1.31133
1.63096 1.01275 −3.94378 0.64196 0.41217 2.00594 2.34337 −0.25259
−5.77826 −0.16779 −0.41010 2.10306 2.18874 0.67440 −4.03621 0.60662
0.42670 0.81902 1.28762 1.19371 −3.91024 0.80970 0.60114 0.74570 1.32073
0.56384 −5.14874 0.48910 0.16788 1.47920 1.84520 0.30190 −5.05779
0.00429 −0.31519 1.18093 1.89183 1.10537 −3.78952 0.85554 0.59578
2.07499 2.21544 0.30406 −5.09566 0.10478 −0.16295 1.54337 1.88861
0.66304 −4.58205 0.48500 0.20285 1.82112 2.11941 0.20656 −4.26472
0.48675 0.19599 1.66412 2.09599 −0.16813 −5.94892 0.58723 0.24841
1.34901 1.76997 0.43807 −4.49362 0.78642 0.50412 1.67010 1.81986 0.17289
−5.41364 0.49085 0.19180 1.15057 1.70215 0.45378 −5.39653 0.42240
0.08652 1.42839 1.91033 0.52166 −4.83890 0.73118 0.58118 0.85540 1.89785
0.59605 −5.34727 0.25029 −0.02498 1.92246 2.04996 0.36493 −4.54592
0.46795 0.22882 1.05660 1.72158 0.99176 −4.37748 0.58146 0.33743 1.68240
1.78390 0.15685 −5.09588 0.60623 0.41488 0.79741 1.18093 1.91432
−3.60010 0.45024 0.20885 1.20585 1.71413 1.04450 −3.93911 0.67957
0.44922 1.33510 1.82861 0.46746 −4.63924 0.34971 0.05575 1.57185 1.59576
0.18327 −6.06987 0.65497 0.32650 −0.29414 0.01662 0.98105 −5.69465
0.39921 0.20922 0.65128 1.17725 1.66064 −4.41016 0.50515 0.30675 1.59576
2.03432 0.01787 −5.77191 0.79290 0.59985 1.68355 1.97761 0.49290
−4.45136 0.51100 0.28712 0.98802 1.41790 0.74020 −4.52535 0.69793
0.55230 1.69548 1.87585 0.10380 −4.80044 0.38404 0.12216 0.88536 1.35518
0.95415 −3.96875 0.65217 0.40901 1.01837 1.70927 0.58872 −5.45420
0.21740 −0.01618 1.04423 1.35272 0.86016 −5.02118 0.28768 −0.01029
2.39175 2.51494 0.17926 −4.80746 0.33975 0.08343 1.24234 1.37789 0.70278
−5.03339 0.39794 0.16185 2.03714 2.12529 −0.14509 −5.32606 0.66533
0.52973 1.83394 2.02785 0.60065 −4.79218 0.63134 0.38632 2.06000 2.17092
0.05881 −4.97253 −0.05747 −0.36878 1.05903 1.31806 0.47334 −4.97457
0.39972 0.14722 1.76235 2.21577 0.75197 −4.05066 0.63904 0.36029 1.33893
2.13415 0.51878 −4.41274 0.31959 −0.05366 0.44963 1.19000 0.91297
−5.18217 0.29179 −0.02840 1.76139 2.06073 0.21906 −4.17822 0.74025
0.50702 1.34274 1.69883 0.50610 −4.86072 0.49463 0.30438
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